g st

e

S
0 ﬁ L 0

GOLDEN COMMON LISP

Version 1.01

Gold Hill Computers
163 Harvard Street
Cambridge, Massachusetts 02139

Gold Hill computers provides this publication "as is", without
warranty of any kind, either express or implied, including,
but not 1limited to, the implied warranties of merchantability
and fitness for a particular purpose. Gold Hill Computers may
make improvements or changes in this publication, or in' the
product and programs described in this publication, at any
time and without notice.

LISP is copyrighted by Addison-Wesley Publishing Company,
Inc. COMMON LISP Reference Manual is copyrighted by Digital
Equipment Corporation.

'GOLDEN COMMON LISP' is a registered trademark of Gold Hill
Computers. 'GCLISP', 'GMACS', and 'GOLDEN EMACS' are
trademarks of Gold Hill Computers. 'San Marco LISP Explorer!'
and 'LISP Explorer' are trademarks of San Marco Associates.
'ZETALISP' is a trademark of Symbolics, Incorporated. ‘'IBM',
'IBM PC', and 'PC-DOS' are registered trademarks of

International Business Machines Corporation. 'PC XT' and 'PC
AT' are trademarks of International Business Machines
Corporation. 'COMPAQ' is a trademark of COMPAQ Computer
Corporation. 'MS-DOS' is a registered trademark of Microsoft,
Incorporated. 'Smalltalk’ is a trademark of Xerox
Corporation. 'Mouse Systems' is a trademark of Mouse Systems

Corporation. 'Intel 8088' and 'Intel 8087' are trademarks of
Intel Corporation.

Copyright (C) 1983, 1984, 1985 by Gold Hill Computers

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written
permission from Gold Hill Computers.

Printed in the United States of America.

ISBN 0-917589~05-X

GOLDEN COMMON LISP
Version 1.01

Upgrade Instructions
Copyright (C) 1985 by Gold Hill Computers

The accompanying items are the materials for upgrading your
GCLISP Version 1.00 to Version 1.01.

These items are included:

1. Five (5) diskettes, each labeled "GCLISP Version 1.01"

D (Master, @ Utilities-1,@Uutilities-2,(@San Marco LISP

Explorer Viewer, anqﬁ)san Marco LISP Explorer Slides):
and

2. A packet of pages for insertion to your GCLISP user
documentation binder.

To upgrade your user documentation:

1. Replace the following items in the D-ring binder of
Version 1.00 documentation with the corresponding items
from the documentation update packet:

- Title/copyright page, half-title page, and Contents
page

- Installation Guide (entire document to be replaced
by Installation Guide Version 1.01 and "Golden
Common LISP: Version 1.0l Installation Guidelines")

- Tutorial Guide (entire document)

- Title/Preface page and pp. 1 - 2 of the Users'
Guide

- Title pages of Reference Manual and Appendices

- "A Quick Start-Up of GOLDEN COMMON LISP"

2. Remove the "Distribution Notice" (if it is present) from
the back of the binder.

3. Add these items at the back of the binder:

- Release Note GCL0100 - 1

GOLD HILL COMPUTERS AUGUST 1.5, 1985

GCLISP VERSION 1.01: Upgrade Instructions

- Release Note GCL0101 - 1
(Note that Release Note GCL0100 - 1 is a reduced-size
reprint of the original previously sent to you, for easy
insertion into the binder.)

Correct the Users' Guide, page 50: read "Ctrl-X Cctrl-x"

4.
for "Ctrl-Z Ctrl-XxX".

To install your GCLISP Version 1.01 software: Follow the
instructions in the Installation Guide, Version 1.01. and
"Golden Common LISP: Version 1.01 Installation Guidelines".

GOLD HILL COMPUTERS AUGUST 15, 1985

March 15, 1985

A QUICK START-UP OF GOLDEN COMMON LISP

Copyright (C) 1984, 1985 by Gold Hill Computers

If this is the first time you have used GOLDEN COMMON LISP and
you are eager to try the software, this short guide will show
you how to start up the system and run the LISP Explorer and
GMACS editor before turning to the full users' documentation.

After your initial exploration, please refer to the GCLISP
Installation Guide for instructions about how to install and
configure your system. Also, send in your Registration Card
so that we can automatically notify you about new software
releases.

GOLDEN COMMON LISP requires an IBM PC, PC XT, PC AT, or
100%-PC~compatible computer with at least:

- one double-density/double-sided diskette drive;
- 512K bytes of memory:;

- A PC-DOS (or MS-DOS) operating system, Version 2.0 or
higher (including Version 3.0).

The GCLISP Program License Agreement envelope contains five
write-protected diskettes 1licensed for use on a single
machine. The following directions assume a minimal PC
configuration, with a single diskette drive and a monochrome
display.

To explore GCLISP, follow the steps below. What you type to
the computer appears in bold-face (e.g., gclisp). To enter a
keychord like Alt-E, press and hold the Alt key, then hit the
E Kkey. If at any time you have a question, turn to the
Installation Guide.

First, start the DOS operating system. If you have problems
doing this, turn now to your IBM PC DOS Manual (or the
equivalent for your computer).

Introduction to the San Marco LISP Explorer

Insert Master

Start GCLISP

Explore

Exit GCLISP

Insert Master
Start GCLISP

Enter GMACS

Get GMACS help

Learn GMACS

Exit GMACS

Exit GCLISP

Insert the GCLISP Master diskette in drive A:.
Type A: to set the current drive to A:.

Type gclisp to load the GCLISP interpreter.
This takes roughly half a minute. Type R when
asked whether you want to install, un-install,
or run GCLISP. The GCLISP Top-Level prompt
(#) will appear shortly.

Type Alt-E to 1load the LISP Explorer.
(Loading takes about two minutes. The system
will prompt you to swap diskettes.) The LISP
Explorer takes you on a self-guided tour of
the world of LISP. To exit the LISP Explorer,
type function key F1.

Type (exit) to leave the GCLISP environment
and go back to DOS. (Ignore the error message
for now, as you have not yet configured your
system.)

Introduction to the GMACS Editor

(See above.)
(See above.)
Type Ctrl-E to enter the GMACS editor. (This

takes about one minute. The system will
prompt you to swap diskettes.)

Type Alt-H to see the various types of GMACS
Help available. Type A followed by file to
find out all the editor commands for files.

Type Alt-H T to load a file that teaches you
about GMACS.

Type F1 to exit GMACS and return to GCLISP.

Type (exit) to leave the GCLISP environment
and go back to DOS.

At any time while in the GCLISP interpreter, you can type
Alt-H to see the Top-Level Help screen.

When you are done exploring, please see the Installation Guide
for important information about GCLISP.

GOLDEN COMMON LISP

Version 1.01

GOLDEN COMMON LISP

CONTENTS

PREFACE
ACKNOWLEDGMENTS
INSTALLATION GUIDE
TUTORIAL GUIDE
USERS' GUIDE
REFERENCE MANUAL

APPENDICES

Gold Hill Computers Customer Protection Plan

Gold Hill Computers Program License Agreement envelope
(containing five GOLDEN COMMON LISP diskettes)

"A Quick Start-Up of GOLDEN COMMON LISP"
Release Note GCL0100 - 1

Release Note GCL010l1 - 1

PREFACE

GOLDEN COMMON LISP, or GCLISP, is a COMMON LISP training and
programming environment for personal computers, designed to
accommodate both new and experienced LISP programmers.

The GOLDEN COMMON LISP package comprises software tools and
publications to train LISP novices and to support the
development of advanced COMMON LISP application programs:

~ The GCLISP interpreter implements a major subset of
COMMON LISP functionality, observing most COMMON LISP
standards and conventions.

- The San Marco LISP Explorer, an on-line interactive
tutorial by San Marco Associates, teaches LISP
programming and Artificial-Intelligence techniques.

- The EMACS-style editor GMACS is a full-screen,
LISP-intelligent text editor for program development. It
is complemented by high-level program debugging
utilities.

- On-line help is available for every GCLISP function and
variable.

- The book LISP, by Patrick H. Winston and Berthold Klaus
Paul Horn (Second Edition; Addison-Wesley, 1984), is the
most widely-used text on LISP.

- The COMMON LISP Reference Manual, by Guy L. Steele Jr.
(Digital Press, 1984), 1is the definitive COMMON LISP
language specification.

In addition, this binder of user documentation includes both
tutorial materials and reference materials for GCLISP users.
The documents included here are:

GCLISP Installation Guide

This is the document to read first. It
contains an inventory of GOLDEN COMMON LISP
components and operating requirements.

Instructions on how to use the GOLDEN COMMON

LISP diskettes and a guide to the
documentation are also included.

GCLISP Tutorial Guide

This document provides. instructions for using
the San Marco LISP Explorer. The LISP
Explorer is geared to the beginning
programmer, drawing on concepts developed in
Winston and Horn's LISP.

GCLISP Users' Guide

This users' guide explains how to use the
features of the GOLDEN COMMON LISP
environment: the interpreter, the GMACS
editor, the on-line help facilities, and the
debugging utilities. The guide also provides
commentary on basic and often-used LISP
structures and functions. It explains
principles and ideas of LISP, and provides
instructions for creating and testing LISP
programs. A sample application illustrates
the design and construction of a GOLDEN COMMON
LISP program.

GCLISP Reference Manual

This manual defines the syntax and semantics
of the GOLDEN COMMON LISP language. It has
been designed to complement the COMMON LISP
Reference Manual, using the same table of
contents, format, and notational conventions.

GCLISP Appendices

Appendix A, "Error Messages", lists the error
messages produced by the GOLDEN COMMON LISP
interpreter.

Appendix B, "Glossary", provides a glossary of
LISP terminology and other technical terms
used in the documentation.

Appendix C, "The Window System", documents the
interface to the GOLDEN COMMON LISP window
system.

Appendix D, "Compatibility Notes", documents
points of divergence between GOLDEN COMMON
LISP and the COMMON LISP standard.

ACKNOWLEDGMENTS

GOLDEN COMMON LISP has come about largely through the efforts
of Harold Ancell, Gerald R. Barber, Judith A. Bolger, Martin
J. Broekhuysen, Hilary C. Chan, Cody F. Curtis, Stanley P.
Curtis, Nick Gall, Carl Hewitt, John Kam, Joseph D. Pehoushek,
Dominique M. Schroeder, John A. Seamster, John A. Teeter,
Eugene Wang, and Chaka.

The package would not have been completed without the
expertise of Patrick H. Winston, Daniel C. Brotsky, and
Karen A. Prendergast, who developed the San Marco LISP
Explorer and gave us valuable input in the design of
GOLDEN COMMON LISP. Ms. Prendergast also provided the
painting for the cover design of the GOLDEN COMMON LISP
package.

The following individuals and groups deserve special
acknowledgment for their contributions:

Guy L. Steele Jr., who wrote the COMMON LISP
language specification, and allowed us to use the
book's original name of the COMMON LISP Reference
Manual.

John Osborn and Chase Duffy of Digital Press, who
worked closely with us to produce a version of the
COMMON LISP Reference Manual for our package.

David K. Wessel and Ellen D. Rawlings of
Addison~-Wesley Publishing Company, who helped us to
include the book LISP (Second Edition), by Patrick
H. Winston and Berthold Klaus Paul Horn.

Daphne Fogg of CSA Press, who worked hard to help us
deliver a quality product under a demanding and
changing delivery schedule.

Daniel J. Dawson, who designed the graphics for the
GOLDEN COMMON LISP package, and remarkably made it
all come together.

GOLDEN COMMON LISP
INSTALLATION GUIDE

Version 1.01

Adwn -

9

Table of Contents

Introduction

Minimum System Requirements

An Inventory of the GCLISP Package
Starting the DOS Operating System
Installing GCLISP

5.1 Installation and Copy-Protection
5.2 Installing GCLISP on a Hard Disk
5.3 Installing GCLISP on Diskettes

starting GCLISP
6.1 Starting GCLISP from a Hard-Disk
Installation
6.2 Starting GCLISP from a Diskette
Installation

Configuring GCLISP
Where to Go from Here

8.1 Becoming a GCLISP Registered User
8.2 Guide to the Documentation

What to Do if Things Go Wrong

10 Some Terminology

1
2

10.1 Some Definitions
10.2 The IBM Keyboard

Appendix Un-Installation and Error Messages

Un-Installation
Errors and Error Messages

-] ~NSoo [RSN SN

10
11

11
11

13
15

15
15

19

19
20

Installation Guide

1 Introduction

GCLISP is designed to be easy to install on a variety of PC
configurations.

You should follow the instructions in each section of this
Guide (see the Guide's Table of Contents) in order to ensure
that your GCLISP package is complete, and 1is properly
installed and configured.

If you have any problems understanding the terms or
conventions used in this Guide, you should turn to section 10,
"Some Terminology".

If you still have problems, you should turn to section 9,
"What to Do if Things Go Wrong".

2 GOLDEN COMMON LISP

2 Minimum System Requirements

Make sure that your PC is capable of running GCLISP.

This is the minimum configuration required to run GCLISP:
- An IBM PC, PC XT, PC AT, or 100%-PC-compatible computer;
- 512K bytes of memory;

- A PC-DOS (or MS-DOS) operating system, Version 2.0 or
higher (including Version 3.0);

- A 5-1/4" double-sided/double-density diskette drive and
diskette drive controller; and

- Either a Monochrome Display Adapter and a Monochrome
Display, or a Color/Graphics Monitor Adapter and a
Color/Graphics Monitor.

The following configuration options are also supported by
GCLISP:

- A second 5-1/4" double-sided/double-density diskette
drive and diskette drive controller;

- A hard disk and disk drive controller;

- A Mouse Systems PC Mouse; and

- An Intel 8087 Numeric Processor Extension.
Note: All disk drives, diskette drives, drive controllers,
display/monitors, and display/monitor adapters 1listed above
must be IBM or IBM-compatible. Operation of the

copy-protected GCLISP diskettes depends upon the full
IBM-compatibility of the drives and drive controllers.

INSTALLATION GUIDE 3

3 An Inventory of the GCLISP Package

Check that your GCLISP package contains these items:

LISP, by Patrick H. Winston and Berthold Klaus Paul Horn
(Second Edition; Addison-Wesley ©Publishing Company,
1984).

The COMMON LISP Reference Manual, by Guy L. Steele Jr.
(Digital Press, 1984).

A D-ring binder containing the following:

* Installation Guide (this document)

* Tutorial Guide
* Users' Guide

* Reference Manual

* Appendices
* Customer Protection Plan
* Two four-pocket diskette sleeves

* Program License Agreement envelope
(containing five write-protected diskettes)

*# A Quick Start-Up of GOLDEN COMMON LISP

* Release Notes GCL0100 - 1 and GCLO10l - 1

The five diskettes contained in the Program License Agreement
envelope are as follows:

GCLISP Master diskette

GCLISP Utilities 1 diskette

GCLISP Utilities 2 diskette

San Marco LISP Explorer Viewer diskette

San Marco LISP Explorer Slides diskette

4 GOLDEN COMMON LISP

4 Starting the DOS Operating System

Start your DOS operating system.

If you do not know how to start your DOS operating system,
follow the instructions in your IBM PC DOS manual (or its
equivalent for your machine).

You do not need to restart DOS every time you want to run
GCLISP. We suggest that you do start it afresh before
installing GCLISP, to ensure that no other program will affect
the installation process.

INSTALLATION GUIDE 5

5 Installing GCLISP

5.1 Installation and Copy-Protection

GCLISP is copy-protected. The copy-protection mechanism
enables you to install GCLISP on diskettes or on a hard disk,
while preventing unauthorized duplication of the software.

The number of authorized installations is pre-set on the
original distribution diskettes. An authorized installation
can be made on either a hard disk or on diskettes, at your
choice.

GCLISP can be run either from the original distribution
diskettes or from an authorized installation. However, you
should always install GCLISP, and then run it from the
installed copy, keeping the original product diskettes safely
stored away. In case of accidental damage to the installed
copy, the originals are then available for running GCLISP.
Also, the original Master diskette is required whenever you
want to un-install an installed copy.

In the remainder of this Guide, several terms are used for
convenience. A product diskette is one of the five original
(distributed) diskettes you purchased. A working diskette is
a diskette you have produced by installing on it the contents
of a product diskette, using the installation procedure
described in section 5.3 below. During the installation
procedure, the diskette where GCLISP is to be installed is
also called a target diskette. The diskette drive where the
target diskette is inserted is called the target drive or the
installation drive.

Since the installation procedure consists essentially of
copying the product diskettes, a working diskette or a
hard-disk installation is also called a working copy.

The following installation instructions guide you through the
normal installation procedure. See Appendix A to this Guide,
"Un-Installation and Error Messages", for instructions on how
to un~install an installed GCLISP, and for explanation of
error messages that may be displayed during the procedures.

6 GOLDEN COMMON LISP

5.2 Installing GCLISP on a Hard Disk
Before installing GCLISP on your hard disk, make sure that:

1. There are at least 1,800,000 bytes free on your hard
disk (this is how much room the GCLISP system
occupies). You can determine the number of free bytes
on drive C: (for example) by using the DOS command
chkdsk, as follows:

C>chkdsk c:

If there is insufficient room, you will have to delete
some existing files from the hard disk.

2. There is no directory named \gclisp on the hard disk
containing files which you want to save. By default,
GCLISP will be installed in \geclisp (during the
installation procedure, you may, if you want, name the
logical drive and the directory where GCLISP will be
installed). If there is already such a directory, all
the files in it will be deleted before the new files are
installed.

To install GCLISP on your hard disk:

1. Insert the GCLISP product Master diskette in drive A:,
and make drive A: the current drive.

2. Enter the command gclisp at the DOS prompt:

A>gclisp

3. Type I when asked whether you want to install,
un~-install, or run GCLISP.

4. Follow the other prompts displayed on the ensuing
display screens.

The installation process takes about 10 minutes to transfer
the GCLISP system from the five diskettes to the hard disk.
Any time during the installation process, you may abort the
installation by typing ctrl-Break and then typing 'Yes'.
(ctrl-Cc instead of ctrl-Break if your keyboard lacks a Break
key.)

After the installation process has successfully completed, it
will set the current directory to the GCLISP default drive and
directory for the hard-disk installation, and then start
GCLISP. (Future starts can take place from that directory
directly, as described in section 6.1 below.)

INSTALLATION GUIDE 7

5.3 Installing GCLISP on Diskettes
To install GCLISP on diskettes:

1. Prepare five working diskettes by formatting them, using
the DOS command format.

2. Insert the GCLISP product Master diskette in drive A:,
and make drive A: the current drive.

3. Enter the command gclisp at the DOS prompt:

A>gclisp

4. Type I when asked whether you want to install,
un-install, or run GCLISP.

5. Follow the other prompts displayed on the ensuing
display screens.

The installation process takes about 15 minutes to transfer
the GCLISP system from the five product diskettes to the
formatted working diskettes. Any time during the installation
process, you may abort the installation by typing ctrl-Break
and then typing 'Yes'. (cCtrl-C instead of ctrl-Break if your
keyboard lacks a Break key.)

After the installation process has successfully transferred
the GCLISP system to the formatted diskettes, it will start
GCLISP from the new working copy on these diskettes. (Future
starts should take place from the working copy directly, as
described in section 6.2 below.)

8 GOLDEN COMMON LISP

6 Starting GCLISP

Since the installation process starts GCLISP automatically
from the new working copy, you can ignore this section the
first time around. But in general, you should follow one of
the procedures below to start GCLISP.
There are two cases: starting GCLISP from a hard-disk
installation, or starting GCLISP from a diskette
installation.
6.1 Starting GCLISP from a Hard-Disk Installation

1. Make drive C: the current drive by entering the

following command at the DOS prompt (for example, the
prompt A>):

A>c:

2. Make the geclisp directory the default directory by
entering the following command:

c>cd \gclisp

3. Enter the GCLISP environment by entering the following
command:

c>gclisp

6.2 Starting GCLISP from a Diskette Installation

1. Insert a working copy of the Master diskette in drive
A:.

2. Make drive A: the current drive by entering the

following command in response to the DOS prompt (for
example, the prompt B>):

B>a:

INSTALLATION GUIDE 9

3. Make \ (the root) the default directory by entering the
following command:

A>cd \

4. Enter the GCLISP environment by entering the following
command :

A>gclisp

10 GOLDEN COMMON LISP

7 Configuring GCLISP

The very first time that GCLISP is started from a working
copy, the display will appear as follows:

GOLDEN COMMON LISP, Version 1.01
Copyright (C) 1984, 1985 by Gold Hill Computers

; Reading file INIT.LSP

Initialization file loaded.

This GCLISP has not been configured,
type (CONFIGURE-GCLISP).

Type Alt-H for help

Top~-Level

*

Note: The message "This GCLISP has not been configured, type
(CONFIGURE-GCLISP)" will not appear once you have configured
your system using configure-gclisp.

To configure GCLISP for use on your system, type the following
at the GCLISP prompt (the * character):

* (configure-gclisp)

(GCLISP begins processing the command as soon as the right
parenthesis is typed; you do not need to hit the Enter key.)

configure-gclisp will inform GCLISP about your system by
asking you questions concerning the type of monitor on your
system and the amount of memory to reserve for DOS. Each
question is accompanied by a full explanation. You may go
over the dquestions several times until you are completely
satisfied with your answers. When you exit, your GCLISP will
be configured. (The amount of memory you have specified to be
reserved for DOS will not take effect until the next
invocation of GCLISP.)

You can run configure-gclisp as often as needed to reflect
changes in your system's resources and their allocation.

INSTALLATION GUIDE 11

8 Where to Go from Here

Congratulations on successfully installing GCLISP on your
system!

8.1 Becoming a GCLISP Registered User

Now before you get too caught up exploring the world of
GCLISP, you should send in the self-addressed GCLISP
Registration Card (located in the Customer Protection Plan at
the back of this binder). This card establishes you as a
registered user, which entitles you to receive written
notification of upgrades to GCLISP, replacements for missing
or damaged parts, and four free newsletters.

Please fill out this card and return it to us now.

Note: The "software serial number" to be entered on the
Registration Ccard is found on a white label near the top left
of your diskettes. The ISBN number at the top right is not
the software serial number.

8.2 Guide to the Documentation

In general, the documentation is designed to be read
sequentially in the order of its appearance in the binder.

If you are new to LISP or if you would like to brush up on
LISP arcana, you should go to the Tutorial Guide (next in this
binder), where you will be introduced to the San Marco LISP
Explorer. The LISP Explorer, in conjunction with the book
LISP, will provide you with an excellent introduction to the
fundamentals of LISP programming.

If you are an experienced LISP programmer, you may want to
bypass the Tutorial and proceed directly to the Users' Guide
to get a feel for the environment provided by GCLISP.

Once you have read the Users' Guide and are ready to progranm,
you will want to read the GCLISP Reference Manual together
with the COMMON LISP Reference Manual to familiarize yourself
with the capabilities of GCLISP in particular and COMMON LISP
in general. Note that most of the material in the
Reference Manual is available on-line via the GCLISP help
facilities.

12 GOLDEN COMMON LISP

If you have a particular problem or area for investigation,
use the following heuristics for finding the information you
want:

- Look through the Table of Contents of each document in
this binder to locate where a topic is written about;

- Consult the Index of each document, for references to
pages where significant words or phrases appear;

- Look through Appendix B, "Glossary", for the meanings of
technical terms;

- Type Alt-H to access the on-line help facilities;

- Type Alt-E to use the San Marco LISP Explorer.

INSTALLATION GUIDE 13

9 What to Do if Things Go Wrong

Don't panic.

Review this Installation Guide and make sure you have followed
the installation, startup, and configuration procedures
correctly.

If you are having trouble with installation, see section A.2,
"Errors and Error Messages", in this Guide's Appendix A,
"Un-Installation and Error Messages".

If the problem appears to be with your computer system, or
with the distribution diskettes, or you can't get GCLISP
started or configured, try to find your problem in the
Troubleshooting Guide below, and take the specified remedial
action.

If you have started GCLISP, but are encountering problems
using it, consult the Release Notes included in this binder.
Also consult Appendix A, "Error Messages", in the Appendices
at the back of this binder.

If you still can't solve your problem, call or write for
Customer Technical Support:

Gold Hill Computers
Customer Technical Support
163 Harvard Street
Cambridge, MA 02139

Phone: (617) 492-2071

Troubleshooting: A Short Guide

PROBLEM REMEDIAL ACTION
A package component is missing or damaged.

Fill out the Replacement Order Card (located
in the Customer Protection Plan at the back of
this binder) and send it to our Customer
Technical Support address (above).

14 GOLDEN COMMON LISP

Files are damaged or missing on
an original GCLISP diskette.

Take the remedial action for damaged
components, above.

You aren't sure that your system meets
the minimum requirements for running GCLISP.

Attempt the installation process. If your
system doesn't meet the minimum requirements,
you should receive either the message Program
too big to fit in memory (see below), or a
message described in your IBM PC DOS manual
(or its equivalent for your computer).

While starting GCLISP, you receive the message
Program too big to fit in memory

You must have at least 480K bytes of available
memory in order to run GCLISP. You can
determine the amount of available memory on
your system using the DOS chkdsk command. The
available memory may be 1limited by the
presence of device drivers or a RAM drive, for
instance.

You don't know how to start DOS
or how to enter DOS commands.

This installation guide assumes that you are
familiar with the basic use of the DOS
operating system on your PC. If you are not,
you should consult your IBM PC DOS manual
before continuing with the installation
process.

GCLISP starts, but prints out an error message
instead of the GCLISP prompt, *.

For a detailed explanation of the error and
the appropriate remedial action, consult
Appendix A, "Error Messages", in the
Appendices at the back of this binder.

INSTALLATION GUIDE 15

10 Some Terminology

10.1 Some Definitions

The following table defines certain terms that appear
frequently in this Guide. If the term that you are looking
for is not defined here, see Appendix B, "Glossary", at the
back of this binder.

TERM MEANING
cursor The cursor is a blinking mark (usually an
underline, ' ') on the display that indicates

where the next typed character will appear.
The cursor is usually to the right of the last
character typed.

enter For a DOS command, the phrase "enter the
command foo" means typing the characters £, o,
" o, and then hitting the Enter key (see the

next subsection).

For a GCLISP command, the phrase "enter the
command (foo)" means typing the characters ¢,
£, o, o,), without hitting the Enter key.

initialization
Initialization is the process of 1loading an
operating system or software package into a
computer in order to run it.

prompt A prompt is a character (or characters) that

appears on the left-hand side of the display
when a system is waiting for a user command.
There are different prompts for different
systems. For example, A> is the default DOS
prompt, while * is the normal GCLISP prompt.

10.2 The IBM Keyboard

This section introduces the IBM PC keyboard. It defines the
names of certain keys and key groups and explains how they are
used within GCLISP. GCLISP makes special use of the keyboard,
so you should at 1least skim this section even if you are
already quite familiar with the keyboard.

16

GOLDEN COMMON LISP

Here is a diagram of the IBM PC keyboard.

IBM PERSONAL COMPUTER KEYBOARD

The keyboard is divided into three areas of keys: a
"Typewriter Area", a "Numeric/Cursor-Control Keypad Area", and
a "Function Key Area".

Typewriter Area

These keys occupy the large middle area of the keyboard. Most
of the keys resemble the keys of an ordinary typewriter, and
function like typewriter keys.

However, the following keys perform special actions in GCLISP:

Enter key

Rubout key

This key is located on the right-hand side of
the Typewriter Area in the same location that
the Return key occupies on a typewriter. It
is marked with a bent, left-pointing arrow to
suggest the action of a Return key.

At the DOS prompt, the Enter key is typed at
the end of a command in order to tell DOS to
begin processing the command. In other words,
the Enter key '"enters" a command (hence the
name). When typing text in the GMACS editor,
the Enter key acts like the Return key on a
typewriter: it moves the cursor to the first
character position of the next line.

This key appears on the upper right-hand side
of the Typewriter Area, just above the Enter
key. It is marked with a long left-pointing
arrow. (It is easy to confuse this key with
the cursor-control key that is marked with a
short left arrow.) This key is also known as

INSTALLATION GUIDE 17

Control key

Alternate key

the Backspace key.

Any time you are entering text, the Rubout key
can be used to delete the characters to the
left of the cursor.

This key is located in the left middle of the
Typewriter Area, above the Shift key. It is
marked Ctrl. The Control key works like the
Shift key: You press and hold down the Control
key, and then type another key.

Throughout the GCLISP documentation, the
prefix Ctrl- is used with a key that is to be
typed with the Control key. For example,
Ctrl-F refers to pressing and holding down the
Control key, and then typing the F key.

This key is located in the lower left of the
Typewriter Area, below the Shift key. It is
marked Alt. The Alternate key works like the
shift key: You press and hold down the
Alternate key, and then type another key.

Throughout the GCLISP documentation, the
prefix Alt- is used with a key that is to be
typed with the Alternate key. For example,
Alt-F refers to pressing and holding down the
Alternate key, and then typing the F key.

Parentheses keys

Escape key

The open and close parentheses are the shift
positions of the 9 and 0 keys, top row right
in the Typewriter Area. In GCLISP,
parentheses surround all commands. Note that
when the closing parenthesis of a command is
typed, GCLISP immediately begins processing
the command (you do not need to hit the Enter
key) .

This key 1is located on the upper left-hand
side of the Typewriter Area, 3just above the
Tab key. It is marked Esc. At the GCLISP
prompt, hitting Esc will delete the current
input. In the GMACS editor, it is wused in
place of the Enter key in certain situations.

Print-Screen key

This key is 1located to the right of the
right-hand shift key. It is marked PrtSc.
When this key is struck with the Shift key
held down, DOS prints the information on the
display to the printer. If the information
contains any graphics, the printer must be

18 GOLDEN COMMON LISP

compatible with the IBM Graphics Printer.
Note that shift-Prtsc toggles copying to the
printer in DOS, but not in GCLISP.

Numeric/Cursor-Control Keypad
These keys are located on the right-hand side of the keyboard:

Numeric Lock key
This key is located at the top of the keypad.
It is marked Num Lock. It acts as a toggle,
switching the keypad between use as a Numeric
keypad and a Cursor Control keypad.

Scroll-Lock - Break key
This key is located at the top-right of the
keypad. It is marked Scroll Lock on top and
Break on the front. Holding down the Ctrl key
and hitting this key will cause GCLISP to
"break" the currently executing function (see
the Users' Guide for more information).

Cursor-Control keys

These keys consist of the four arrow keys: The
Page Up key (labeled Pg Up), the Page Down key
(labeled Pg Dn), the Home key, and the End
key. In the GMACS editor, these are used to
move the cursor around on the display. 1In the
San Marco LISP Explorer, they are used to move
through the lessons.

Function Keys

These keys are located on the left-hand side of the keyboard.
They are labeled Fl1 to Fl0.

At the DOS prompt, they are used for simple editing of the
command 1line. At the GCLISP prompt, they merely generate
graphics characters. In the GMACS editor and the San Marco
LISP Explorer, they are used as command keys.

Appendix A

Un-Installation and Error Messages

The installation process described in section 5 runs
interactively, prompting you to type disk drive and directory
identifiers, and to insert diskettes, as needed. The prompts
are mostly self-explanatory. However, note that the
informational output line "Diskettes MUST NOT have a write
protect tab" refers to all of the working diskettes and to the
product Master diskette. The write-protect tabs should be
left on the other product diskettes.

A.l Un-Installation

GCLISP can be un-~installed -~ that is, removed -- from a hard
disk or a diskette where it has been installed.
Un-installation of a working copy makes it possible to
re-install a new working copy (to the same medium or
elsewhere). This wuseful feature helps to protect you against
the consequences of diskette wear, and also enables you to
switch an installation from one medium to another.

To perform un-installation, insert the product Master diskette
(the original, distributed diskette, not a working copy) in
diskette drive A:, set the default drive to A:, and start
GCLISP. Your display screen will shortly ask whether you want
to install GCLISP, or un-install GCLISP, or simply run
GCLISP. If you choose to un-install a hard-disk installation,
you will also be able to choose whether to delete from the
hard disk all of the GCLISP files, or only the principal
program files.

Important note: Performing a DOS RESTORE operation on the
root directory of a hard disk on which GCLISP has been
installed can damage the GCLISP copy-protection system.
Therefore, you should un-install GCLISP before restoring to
the root directery.

20 GOLDEN COMMON LISP

A.2 Errors and Error Messages

Errors may occur while you are installing or un-installing.
If an error message is displayed, find it in the following
list and take the specified remedial action. If the
installation or un-installation procedure has aborted, it can
then be re-started. (In some instances it will continue after
your correction, for example after removal of a write-protect
tab from a diskette.)

If a displayed error message is not found in the list below,
contact Gold Hill Computers.

Note that these messages are related specifically to
installation and wun-installation. Other possible problenms
with your computer system, or with diskettes, or with
configuring or starting GCLISP, were described in section 9
above, "What to Do if Things Go Wrong".

Diskette is Write Protected

The write-protect tab has been left on the
target diskette. Remove the target diskette
from the drive, take off the write-protect
tab, and put the diskette back in the drive.

Remove write-protect tab from diskette

(Same as the preceding message, for the target
diskette or the product Master diskette.)

Not Enough Space

There is too 1little space on the target
diskette (or on the hard disk) to create the
working copy. Use only a fresihly formatted
diskette for the target diskette in a diskette
installation. For a hard disk installation,
this message means that some files must be
deleted from the hard disk to make room for
GCLISP.

Not enough space on target disk
(Same as the preceding message. This message

may also appear for an invalid drive
specification.)

INSTALLATION GUIDE 21

Drive Not Ready

There is no diskette in the target diskette
drive. 1Insert a (formatted) diskette in the
drive, and press the Enter (or Return) key to
continue with the installation process.

Not enough storage to run the Install program

Installation or un-installation requires at
least 96K available memory in your machine.

Invalid drive specification

You have specified a non-existent drive.
Verify that the physical and 1logical drive
assignments are correct, and specify only
drives which are on your system.

Product is already installed. Install aborted.

During the installation process, GCLISP was
found already installed on the target diskette
or disk drive. There is no need to install to
this medium.

Product never installed. UNinstall aborted.
You've tried to un-install GCLISP from a
diskette or a hard disk where it is not
currently installed.

Product protection system damaged

The copy-protection mechanism is damaged.
Contact Gold Hill Computers for a replacement.

Install Terminated Error Code = nnnn

Contact Gold Hill Computers to remedy a
situation resulting in this error message with
a 4-digit error code. Note: The code 6010 may
appear if a write-protect tab is left on.

Unauthorized Duplicate
Load Failed nn

or
Load Failed Error Code = nnnn
or
Unauthorized Duplicate (Code nnnn)

Contact Gold Hill Computers.

Alternate key 17

Break key 18
configuring GCLISP 10
Control key 17
copy-protection 5, 19
cursor 15
cursor-control keys 18
customer service 13
damaged components 13
diskettes - names 3
diskettes - product 5
diskettes - target 5
diskettes - working 5
documentation guide 11
drive - installation 5
drive - target 5

enter 15

Enter key 16

Escape key 17

function keys 18

help - on-line 12
initialization 15
installation - authorized
inventory - package 3
keyboard 15

keys - special 15
Master diskette 3
missing components 13
Numeric Lock key 18
Parentheses keys 17
Print-Screen key 17
prompt 15

Registered User 11
Registration Card 11
Replacement Order Card 13
Rubout key 16
Scroll-Lock Break key 18
Slides diskette 3
starting GCLISP 8
system requirements 2
terminology 15
troubleshooting 13
un-installation 19
Utilities 1 diskette 3
Utilities 2 diskette 3
Viewer diskette 3
working copy 5

/Index

GOLDEN COMMON LISP

VERSION 1.01 INSTALLATION GUIDELINES

This short document supplements the Golden Common LISP
Installation Guide, Version 1.0l1, found in the binder of user
documentation included in every purchase of GCLISP Version 1.01.

For more details about installation, including the exact
instructions for running the installation procedure, please refer
to the Guide. The procedure has been designed and programmed so
that making each installation should be a routine process.

(7A) Before sitting down to do any installation, please observe
the following guidelines and cautions.

1. An installation can be made to diskette or to hard disk.
You choose which during the installation procedure.

2. Any installed copy can be un-installed, making that copy
available for installation to another hard disk or another
set of diskettes.

3. GCLISP Version 1.01 is fully installable to the IBM and
COMPAQ families of personal computers including the IBM PC,
PC XT, PC AT, and Portable (but not the PCjr); and the
COMPAQ, COMPAQ Plus, and COMPAQ DeskPro. It is also fully
installable on 100%-compatible computers including the AT&T
PC 6300, Columbia PC, Olivetti, some Zenith and Corona
PC's, and Tandy 1000's and 1200's.

On other computers, including those manufactured by Sperry,
Leading Edge, ITT, Televideo, Panasonic, and Eagle, it is
not fully installable. It is also not fully installable to
certain hard disks, including the Datamac 33Mb, Great
Lakes, Iomega Bernoulli Box, Tecmar, Cameron 10Mb, Sunol
25Mb, and Alloy. If your personal computer or your hard
disk is one of these, call us for technical information
first.

4. IBM has published the fact of a possible incompatibility
between the IBM PC AT and the rest of the IBM PC family,
including the PC and the PC XT. Double-density diskettes
which are written on in a quad-density diskette drive on

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 2

the PC AT may thereafter not be readable in the
double~density diskette drives of PC's and PC XT's. Since
every installation of GCLISP -- either a hard-disk or af
diskette installation -- involves writing to the GCLISj
distribution Master diskette, a distribution Master
diskette used to install GCLISP from the quad-density drive
of an AT may thereafter be unreadable on any PC or PC XT.

This is a vendor-hardware problem which could create a
problem for GCLISP installations. Our tests of GCLISP
installations on the PC AT have not encountered it.
However, to minimize the risk, do this: perform all
installations on PC AT's after any other installations.

5. Before, during, and after installation and un-installation
runs, handle the distribution Master diskette with care.
It is needed for every installation and un-installation
run.

(B) As you prepare to install on hard disk, be aware that 480K
bytes of RAM memory must be available on the target machine for
GCLISP to run. Run the DOS command chkdsk. The last line of
output displayed from chkdsk shows the available RAM memory
("bytes free").

(C) buring the installation procedure, observe the following:

1. You can abort the installation procedure at any time by
typing Ctrl-Break (or Ctrl-C if your machine lacks a Break
key). If you do this before the GCLISP interpreter has
been installed, the process can be re-started from the
beginning. If you abort the process after the GCLISP
interpreter has been installed, then you should first
un-install and then re-install. The interpreter has been
installed if, and only if, the file GCLISP.COM is present
in the target installation directory you have chosen
(usually the directory C:\GCLISP on hard disk, or the root
directory on a diskette).

2. These are the most common causes of problems during the
installation procedure:

- Less than 480K bytes of RAM memory 1is available in
your machine.

A machine with 512K bytes or more may have less than
480K available because other programs are resident in
memory when GCLISP is started. Use chkdsk as
described in (B) above to find out if too 1little

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 3

memory is available. A RAM disk, a spooler, a
terminal emulator, device drivers, or a popular
program such as Borland International's Sidekick
program may be occupying memory. Remove the offending
program and re-start the installation procedure.

- A write-protect tab 1is on the distribution Master
diskette or on any installation target diskette.

These diskettes are written on during the installation
procedure. Remove the offending tab and re-start the
installation procedure from the beginning.

~ The diskette drive heads on the source diskette drive
are unclean or un-aligned.

Rarely, but sometimes, this inhibits installing. Make
sure that the drive heads are clean and well-aligned.

- The DOS command processor (the program COMMAND.COM) is
not found during a hard-disk installation.

COMMAND.COM is needed by the installation procedure.
The symptom that it is not available is either (i)
empty target directories (LISPLIB, EXAMPLE, etc.)
after an installation that has run without any sign of
trouble; or (ii) the message "Cannot find file CR.CR"
during the installation. To verify directly that
COMMAND.COM is not available, start GCLISP from the
distribution Master diskette; choose the Run option
("R"); and, when the prompt * appears, type Ctrl-D to
invoke DOS. The message "Failed: COMMAND.COM not
found el " will appear if COMMAND.COM is not
available.

The common cause of this problem is booting your
computer from a DOS system diskette, without having a
copy of COMMAND.COM on the hard disk. To remedy the
problem:

Be sure that a copy of COMMAND.COM is in the
root directory on the hard disk (if
necessary putting it there by copying it
from a DOS system boot diskette).

Be sure that the environment variable
COMSPEC is set to access this hard-disk copy

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 4

of COMMAND.COM, by inserting in your
machine's CONFIG.SYS file the command:

shell=c:\command.com c:\ /P

(For further explanation, see the DOs
technical reference manual for your
machine.)

When you encounter a problem without a quick solution, consult
the Installation Guide, including its Appendix A, "Uninstallation
and Error Messages". :

(D) Post-installation cautions:

- After a hard-disk installation, observe the caution in
Appendix A regarding RESTORE operations on the hard disk.

- If any installed GCLISP diskettes show signs of wear after a
period of time, un-install that copy and re-install it to
new diskettes.

GOLD HILL COMPUTERS JUNE 1985

GOLDEN COMMON LISP
TUTORIAL GUIDE

Version 1.01

The San Marco LISP Explorer

The GOLDEN COMMON LISP Tutorial consists of the San Marco LISP
1

Explorer , an interactive, self-contained exploration of the

basic programming concepts and strategies of LISP.

The LISP Explorer is organized 1like a slide show: each topic
is presented as a sequence of screens, much like a tray of
slides. You choose trays and slides using a screen menu and
keys on your PC keyboard.

To invoke the LISP Explorer from within the GCLISP

environment, type the GCLISP command (explore) -- including
the parentheses -- or the keychord Alt-E. This places you in
the LISP Explorer environment. The function keys F1 - F4 and

F10 can be used to orient yourself and to move around in the
environment:

Fl "Return to GCLISP"
This ends the LISP Explorer session and
returns you to the GCLISP environment.

F2 or Alt-H "The Key Diagram"
This summarizes how to get around in the LISP
Explorer environment using the cursor motion
keys (Right Arrow, Left Arrow, Up Arrow, Down
Arrow, PgUp, PgDn, Home and End) and these
five function keys.

F3 "Itinerary World®
This displays the topics of the LISP Explorer
in the form of a menu. Use the cursor motion
keys Right Arrow, ©Left Arrow, Up Arrow, and
Down Arrow to locate the tray you want to
invoke, and then F3 to invoke it.

F4 wpPrimitive world"
This displays a 1list of LISP primitives and
enables rapid access to a tray in which each
is introduced. Use the cursor motion keys to
locate the primitive you want information
about, and then F4 to access a tray where that

1. “san Marco LISP Explorer" and "LISP Explorer" are
trademarks of San Marco Associates.

2 GOLDEN COMMON LISP

primitive is discussed.

Fl0 "practice Worla"
This enables you to practice what you have
learned by typing input to the GCLISP
interpreter from within the LISP Explorer
environment.

The message "Writing usage history" appears briefly on the
screen when you exit from the LISP Explorer. This
usage-history file, USAGE.LSP, enables the LISP Explorer to
keep track of the last-viewed slide and the set of trays which
you have already accessed. Any time you re-enter the LISP
Explorer, you will be presented with the slide and tray you
were viewing when you last exited. Any time you view the
itinerary, using F3, the itinerary menu will mark the trays
you have already completed.

If there is not enough space to load the LISP Explorer when
you try to enter it, you will receive an informational message
and the LISP Explorer will not be started. This will happen
if you have used up a great deal of the GCLISP workspace, for
example by loading the GMACS editor. When this occurs, you
can end the current GCLISP session by typing (exit), start a
new GCLISP session by typing gelisp, and then type Alt-E to
enter the LISP Explorer.

The LISP Explorer includes trays of slides on these topics:

Preview

Using the Controls

The Itinerary
Abstraction

From Bowls to Lists
Atoms and Lists

LISP Evaluates Forms
Lists Can Be Forms
Symbol Can Be Forms
Quoting Stops Evaluation
Access Procedures
Selector Procedures
Combining List Selectors
The Simplest Constructor
Making Simple Procedures
Watching Procedures Work
More List Constructors
Still More List Constructors
Making More Procedures
Exploiting Analogies
Testing with Predicates
The Equality Predicate
The Data Type Predicates
The List Predicates

The Numeric Predicates

TUTORIAL GUIDE 3

Simple Branching
General Branching
Combining Predicates
Repeating by Recursing
Recursing Twice

The Individual Inspector
The Group Inspector
Binding Variables
Evaluating Sequences
Following Paths to Files
Editing Files

Reading Files
Repeating by Iterating
Repeating by Mapping
Procedural Arguments
Nameless Procedures
Using Association Lists
Using Properties

Using Arrays

Using Structures

Simple Printing

Simple Reading
Formatted Printing
Boxes and Arrows

Using Backgquote
Translating with Macros
Optional Arguments
Approaching New Worlds
The Blocks World

Search

Pattern Matching
Rule-based Experts
Natural Language
Intelligent Data Bases
Moving On

The San Marco LISP Explorer is self-guiding. With this short
introduction, you can invoke it for LISP instruction any time
you are in the GCLISP environment.

GOLDEN COMMON LISP
USERS' GUIDE

Version 1.01

PREFACE

This Users' Guide introduces the GCLISP environment. It
teaches you how to type and evaluate GCLISP functions in the
interpreter, and how to use the GMACS editor for constructing
LISP programs. It also explains the use of the on-line help
facilities and the debugging wutilities. Finally, it includes
the development of a sample application that introduces
various aspects of GCLISP programming.

If you are completely new to LISP, you may want to use the San
Marco LISP Explorer (see the Tutorial Guide) to introduce
yourself to LISP concepts before putting them to work in the
GCLISP environment.

Table of Contents

Chapter 1 The GCLISP Interpreter

1.1 Entering GCLISP
1.2 Exiting from GCLISP

1.2.1 Exit and Re-Entry

.3 On-Line Help

.4 Keychord Commands to the Interpreter

.5 The "Read-Eval-Print" Loop

.6 Evaluation of LISP Forms

.7 System Variables for Tracking Listener
Actions

Listener Levels

Common User Errors and GCLISP Error Messages

0 Loading Input Files

1 Table of COMMON LISP Language Conventions

-HEH oo

Chapter 2 The GMACS Editor

2.1 The GMACS Environment

2.1.1 Entering GMACS

2.1.2 Exit and Re-Entry

2.1.3 Protecting the Buffer Contents
2.1.4 Buffer, File, Window, and Screen
2.1.5 The Edit Screen

2.1.6 A GMACS Glossary

2.1.7 Inputting Commands and Characters
2.1.8 GMACS Help

2.1.9 Aborting GMACS Commands

2.2 Manipulating Buffers and Files

How Buffers and Filenames are Related
Displaying Buffer Names

Marking a Buffer Unmodified

Selecting a New Current Buffer
Reading a File

Writing a File

Deleting a Buffer

Directory Operations

DO DON
e o o s o o o o
[SENESESNSE NN SN S
e o o & s o o o
WO W

2.3 Editing Text

2.3.1 Inserting and Deleting Text
2.3.2 Words and Lines
2.3.3 About the Cursor Motion Commands

L N

W W J o

13

18
21
24

25
27

27
27
28
28
31
32
33
34
36

37

37
38
38
38
38
39
40
40

41
41

42
43

.4 Table of Cursor Motion Commands
.5 Inserting New Lines
.6 Numeric Arguments (Repeat Counts)
.7 Setting Upper-Case and Lower-Case
.8 Search and Replace Commands
.9 Manipulating Regions and Marks
.10 Killing and Recovering Text
3.11 Editing in Two Windows

WWwwwww

2.4 Editing LISP

2.4.1 Cursor Motion

2.4.2 Convenience Aids to Writing in LISP
2.4.3 Indenting LISP Expressions

2.4.4 Displaying Information About LISP Code
2.4.5 Killing and Recovering LISP Code

2.4.6 Evaluating LISP Code from the Editor

.5 Table of Function Keys
.6 Table of Cursor Motion Keys
.7 Summary GMACS Command Reference (by Topic)

NN

Cursor Motion Commands

Edit Window Commands

Text Deletion Commands

Buffer and File Commands

Search and Replace Commands
Case-Setting Commands

commands for Editing LISP
Region and Kill History Commands
Miscellaneous Commands

[SESESESESE VN VSRS
e o o o & o s o
NNNNNNNNNNS
e o o o o & e o o
VWONOULDS W

2.8 GMACS Commands: Quick-Reference Table

Cursor Motion Commands

Edit Window Commands

Text Deletion Commands

Buffer and File Commands

Search and Replace Commands
Case-Setting Commands

Commands for Editing LISP
Region and Kill History Commands
Miscellaneous Commands

NNV NDOND
e o o & o o o o o
00 00 0O 03 0O 0O 00 00 0O
e o o e o a e & o
WONOLI W -

Chapter 3 On-Line Help Facilities
3.1 APROPOS
3.1.1 Using APROPOS to Find the Right Function

3.2 DOC
3.3 LAMBDA~LIST

Chapter 4 Debugging in GCLISP

43
45
45
47
47
49
50
55

56

57
59
60
61
61
62

63
64
65

65
66
67
68
69
70
70
72
73

76
76
77
77
78
78
78
79
80
82
84
85

87
89

91

4.4.1 The arrow-dn Option
4.4.2 The arrow-rt Option
4.4.3 The arrow-up Option
4.4.4 Other Options

4.5 PPRINT

4.5.1 Formatting Rules Used with PPRINT

Chapter 5 An Application: The PIANO Program

5.1 Elements of the Piano Keyboard Program

Mapping Keyboard Characters to Notes

Reading Keyboard Characters

Representing Keyboard Characters in
ASCII Code

The Program Structure for Calling the
PLAY Routine

Putting in an End Test

Modifying and Revising the PIANO Program

5.2 Musical Functions and Variables

oo uauuu

[SESENRVESESE VYV

OO WD

Musical Global Variables

The OCTAVEMOVE Function

The SETHERTZ and SPEAKER Functions
The SLEEP Function

The BEEP Function

The PLAY Function

The PLAYLIST Function

Putting Together Music Programs

92
95
97
98

99

100
101
101

103
104
107
108

108
109

110

110
112
112

114

114
115
115
117
118
118
119
119

Chapter 1

The GCLISP Interpreter

LISP stands for List Processing. Lists are the principal
means for organizing both data and program structures in
LISP. Because both programs and data are 1lists, program
structures can be treated as data: that is, as input to other
programs. Consequently, LISP functions can analyze other LISP
functions, and can even build new LISP functions.

Another aspect of LISP's flexibility is the extent to which
the user is able to define new LISP data and modify existing
ones. As Bernard Greenberg has said about LISP:

LISP objects are often used to model real-world
objects. Like real-world objects, LISP objects have
properties and relations to each other. A typical
real-world object, 1like a house, has a color, a
number of stories, the street it is on, the people
who live in it, and other qualities and quantities

as "properties"™ ... In a LISP program, we might
have one object represent each house we were dealing
with LISP allows us to define, establish,

utilize and change the various properties and
1
relations of groups of objects.

This chapter introduces you to interaction with the GCLISP
interpreter. The interpreter is the main program of GCLISP.
It establishes and maintains your GCLISP environment. This is
the environment within which you type in LISP forms, or load
files of LISP forms, for evaluation. From the interpreter
environment, you can call on the GCLISP tutorial for
instruction, or invoke the GMACS editor to create program
files. The program debugging utilities run in the interpreter
environment, and so does the on-line help system. During much
of your work in GCLISP, you are in direct communication with
the interpreter.

1. Bernard Greenberg, "Notes on the Programming Language LISP"
(Student Information Processing Board, Massachusetts Institute
of Technology; 1976)

2 GOLDEN COMMON LISP USERS' GUIDE

1.1 Entering GCLISP

To enter the GCLISP environment at any time, first set your
DOS working directory. If you have installed GCLISP on a hard
disk, set the working directory to C:\GCLISP. If not, the
working directory should be set to 1logical disk drive A:,
where you have inserted the installed working copy of the
GCLISP Master diskette.

Then enter the command gclisp in response to the DOS command
prompt:

}
| €>gclisp<ENTER>
|
|

The display here shows the operating system prompt and your
gclisp command. (The prompt shows the logical disk drive,
assumed here to be the drive C:.) <ENTER> stands for typing
the key labeled with a bent arrow (sometimes also called
RETURN, or CARRIAGE RETURN or CR, or ENTER). A display screen
like the following will result:

GOLDEN COMMON LISP, Version 1.01
Copyright (C) 1984, 1985 by Gold Hill Computers

; Reading file INIT.LSP

Initialization file loaded.
This GCLISP has not been configured,
type (CONFIGURE-GCLISP).

Type Alt-H for Help
Top-Level
*

The title and copyright 1lines, and two lines about
initialization, are informational output from GCLISP.

The message "This GCLISP has not been configured, type
(CONFIGURE-GCLISP)" appears only if you have not yet run the
configuration program (see the 1Installation Guide). You
should run this first, before continuing in GCLISP. (Then the
message will not appear again.)

CHAPTER 1: The GCLISP Interpreter 3

The one-line guide to invoking on-line help about GCLISP and
the "Top-Level" line inform you that the GCLISP interpreter
has been invoked. The final line is the initial prompt to you

from GCLISP (*), and the cursor mark (_) showing where your

input will be typed. At this point, you are in the GCLISP

environment. You can enter LISP forms for evaluation; or

request on-line help about the environment by typing the
2

keychord Alt-H. You can also invoke the San Marco LISP
Explorer or the GMACS editor.

Occasionally while you are working in GCLISP, the lower-left
corner of the display screen will flash the letters "GC" for a
" few seconds. This indicates that GCLISP is performing
"garbage collection" on the workspace: reclaiming storage in
the workspace so that it is available for the allocation of
new LISP objects. This is an automatic process which will not
affect your interaction, except to slow the interpreter's
response to your typing while the indicator is flashing.

Throughout the Users' Guide and other user documentation, we
will illustrate your interaction with GCLISP with "sample
screens" like the one above. These will be examples of actual
input-output dialogues. A sample screen will always be marked
by left and bottom borders, as just shown. User input will
always be shown in lower-case letters. Output from GCLISP may
be in upper-case or lower-case (or mixed).

With rare exceptions, you should be able to reproduce these
dialogues exactly from within your GCLISP environment.

2. The notation Alt-H means "the H key 1is pressed while the
Alt Key is held down." See section 2.1.7 regarding this and
other keychords.

4 GOLDEN COMMON LISP USERS' GUIDE

1.2 Exiting from GCLISP

When you want to exit from the GCLISP- environment
(immediately, or after doing any amount of work) type in
(exit). This returns you to the operating system:

|

i .

| * (exit)
| >

I

Note the parentheses in the input to the interpreter above.
The closing parenthesis signals the end of input to the
interpreter, and invokes immediate evaluation of the input.
<ENTER> need not be typed.

(exit) resets the entire GCLISP environment. You should use
(exit) only when you are done working in GCLISP for a while,
or when you need more computer memory for non-GCLISP
applications. To execute a temporary exit, preserving the
GCLISP environment, use the GCLISP function dos, described
below.

1.2.1 Exit and Re-Entry

The function exit ends the current GCLISP session, returning
you to the command processor in the operating-system
environment. You can then enter DOS commands in this
environment again; and you can at any time re-start GCLISP
with the geclisp command to the operating system.

However, during any GCLISP session, you may occasionally want

to execute a DOS command. It would waste time to end the

GCLISP session, run the DOS command, and re-start GCLISP. You

can more easily run the DOS command from within GCLISP without
3

terminating the current session.

To do this, use the GCLISP function dos, as in this example:

3. If your system does not have a hard disk, the diskette
containing the DOS command processor =-- the file COMMAND.COM
-- should be in the current drive when you invoke DOS from
within GCLISP.

CHAPTER 1: The GCLISP Interpreter 5

* (dos "copy foo.lsp bar.lsp")
IL

* 2

That is: at the GCLISP prompt, enter the DOS command line, for
example copy foo.lsp bar.lsp, as an argument to the function
dos. The DOS command line is enclosed in double dquotes.
GCLISP sends the command out to DOS for execution. No matter
what the command is, the return value of the GCLISP function
dos is nil, provided there are no errors in the DOS command
line. (Otherwise the return value is a numerical error code
from DOS. See sections 1.5 - 1.6 regarding return values of
evaluated functions.) When DOS has executed the command, the
return value is printed to your screen, and then the
interpreter is ready as wusual for your next GCLISP input
form. (Any output from the DOS command line will be printed
to the screen and will be displayed temporarily before the
return value is printed.)

More generally, you can execute two or more DOS commands in
sequence and still return to the current GCLISP environment:

* (dos)

C>copy foo.lsp bar.lsp<ENTER>
1 File(s) copied

C>time<ENTER>

|

|

|

|

|

|

|

| Current time is 19:23:14.21
| Enter new time:<ENTER>
|

|

|

|

|

|

|

C>exit<ENTER>

NIL
*

That is: the function call (dos), with no arguments, places
you in the DOS environment for as long as you like, without
ending the current GCLISP session. When you are done working
in DOS, the DOS command exit restores the GCLISP environment
as it was when you left. (The display will not look exactly
as just shown, because GCLISP also resumes printing to the
screen exactly where it left off.)

6 GOLDEN COMMON LISP USERS' GUIDE

The keychord Ctrl-D has the same effect as the function call
(dos) .

Note: In the "temporary DOS environment" provided by the
command (dos), use the exit command to return to GCLISP.
Don't give the geclisp command. This would establish a new
GCLISP session without ending the suspended one.

1.3 On-Line Help

You can get on-line help at any time when typing input.

To see the on-line help guide, type the keychord Alt-H (the
Alt key held down while the H key is pressed). The help guide
appears, showing the types of help available and the two
principal GCLISP applications:

To invoke one of the following GCLISP applications,
type the indicated keychord:

Alt-E The LISP Explorer, an on-line tutorial
Ctrl-E The GMACS Editor

To get help in one of the following areas,
type the indicated keychord:

|

|

|

|

|

|

|

|

|

|

|

| Alt-K "Keys" - Displays a list of the actions
| invoked by special keys and keychords.
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Alt-aA "Apropos" - Lists all symbols whose names
contain a specified string. Prompts for the string.

Alt-D "Documentation" - Displays the on-line documentation
for a specified function, variable, or type name.
Prompts for the name.

Alt-L "Lambda=-List" - Displays the arguments for a
specified function. Prompts for the function name.

For more information about on-line help, see Chapter 3,
"On-Line Help Facilities", and also section 1.4 below. (The
GMACS editor has its own, separate on-line help facility; see
Chapter 2.)

CHAPTER 1: The GCLISP Interpreter 7

1.4 Keychord Commands to the Interpreter

Certain commands to the interpreter are invoked by special
keyboard keys and keychords. The complete 1list of keychord
commands is displayed when you type Alt-K, for "Keys" help.
It appears as follows:

These are the GCLISP keychord commands:

These keychords can be typed at any time.

*

|

|

|

|

| Alt-A Apropos a string

| Alt-D Document a function, variable, or type
| Alt-E Enter the LISP Explorer

| Alt-H Invoke On-line Help

| Alt-K Display this list of keychord commands
| Alt-L Display the lambda-list of a function
| Ctrl-B Backtrace the execution stack

| ctrl-C Unwind to Top-Level

| Cctrl-D Invoke the DOS command processor

| Ctrl-E Invoke the GMACS editor

| Ctrl-G Go up one error level

| Ctrl-L Clear the display screen

| Ctrl-p Continue from a break

| Ctrl-Break Enter into a break level

| Ctrl-NumLock Halt typeout to screen (any key continues)
| Rubout Delete the preceding character

| Esc Delete the current input line

|

|

|

|

|

The specialized help commands (Alt=-K, Alt-A, Alt-D, and Alt-L)
and the application commands (Ctrl-E and Alt-E) are described
in more detail when you type Alt-H. The individual keys
Rubout and Esc are convenience aids for typing input. Other
keychord commands give information about the environment, or
alter the environment. These are explained elsewhere in this
chapter and the rest of the Users' Guide.

8 GOLDEN COMMON LISP USERS' GUIDE

1.5 The "Read-Eval=-Print" Loop

LISP program structures are processed by a LISP evaluator,
which consists of a function called eval. The user interacts
with the evaluator primarily through a loop that includes two
other functions besides eval: read and print. Not
surprisingly, this 1loop is referred to as the read-eval-print
loop. The program that implements this 1loop is known as the
listener.

The loop consists of three steps, in order:

(1) Read
(2) Evaluate
(3) Print

In detail, these steps operate as follows:

(1)Read. The function read transforms the
characters typed at the keyboard into LISP objects.
For example, if the sequence of characters "“f", "o",

4
"o" is typed, read returns the symbol named FOO.
If the seq\lence ll(l" II+'I, " II, "2", " !I, "3"[II)" is
typed, read returns a list containing the symbol +
and the integers 2 and 3.

(2) Evaluate. The object returned by read is passed
to the function eval, which evaluates (or
interprets) the object and returns the result(s) of
. the evaluation. For example, when read passes the
list (+ 2 3) to eval, eval returns the integer 5 as
the result.

(3) Print. The results of the evaluation are passed
to print, which outputs the printed representation
of the results to the screen. For example, if eval
passes the integer 5 to print, print outputs the
character 5 to the screen.

4, The LISP reader, or just the reader, is the program which
implements the read function. It changes lower-case letters
to upper-case letters, except when reading character-string
data. Consequently, you can type a symbol in either
lower-case or upper-case letters, or any mix of cases, without
affecting the interpretation.

CHAPTER 1: The GCLISP Interpreter 9

1.6 Evaluation of LISP Forms

The examples in this section illustrate the basic form of user
interaction with the listener as described above.

These simple examples will be familiar to a LISP programmer.
If you are completely new to LISP, you may need to call on the
GCLISP Tutorial, or Winston and Horn's book LISP, for more
extended introductions to the language.

The simplest form you can enter to the listener is a number:

* 2<ENTER>
2
*

|
|
|
I
|
I
|
!

The number 2 is read and evaluated; the result, 2, is printed
to the screen. A number always evaluates to itself. (In LISP
a form which evaluates to itself is called a self-evaluating
form.)

The last line of the output is the prompt, signalling that the
loop has been completed and the 1listener is ready to receive
your next input.

Function evaluation is illustrated by simple addition. The

addition function is a compiled function in GCLISP,
5

represented by the symbol +. To add two numbers, we can type

in as shown:

|
|
| *
| 4
| *
|
|

5. For a complete specification of all of the functions and
variables supported by GCLISP, see the GCLISP Reference
Manual.

10 GOLDEN COMMON LISP USERS' GUIDE

The + function is evaluated with the arguments 2 and 2, and
the result, 4, is printed to the screen. As with all LISP
functions, the function name precedes the function arguments;
and the resulting function call is entered as a list: that is,
enclosed in parentheses.

Note that in the current example, the closing parenthesis in

the input signaled the completion of an input form. No

<ENTER> input was needed. The input reader recognized and

assembled the form, and passed it to the evaluator. 1In the

preceding example, however, the input reader needed the

terminating <ENTER> to recognize the end of the input form

(any white space following the input would also have signaled -
the reader). 1In each case, the print function prints its

result to the screen on fhe next new line.

A number evaluates to itself; a function call evaluates to the
result of applying the function to the values of its
arguments, as Jjust illustrated. A symbol, however, is
interpreted as representing a variable; and it cannot be
evaluated unless it has previously been assigned (or bound to)
a value. Unless a variable is bound to a value, its
evaluation causes an error. The following screen illustrates
an evaluation error with the unbound symbol two.

* two<ENTER>

ERROR:
Unbound variable: TWO
1>

(Note the different prompt 1>, representing a new level of the
listener. Listener levels are described in section 1.8 below;
and errors and error messages are described in section 1.9.)

CHAPTER 1: The GCLISP Interpreter 11

6
To assign the symbol two a value, use the setf function:

(setf two 2)

|
|
| *
| 2
| *
|
|

Now the symbol two can be evaluated:

* twWwo<ENTER>

2
*

We can now perform the addition function using the symbol two
rather than the number 2:

* (+ two two)
4
*

A symbol can be bound to a new value at any time with the setf
function. Suppose we change the value of the symbol two to
the numeric value 3:

*(setf two 3)
3
*

6. We use setf rather than setq because setf is more general
than setq, and for this reason, more in accord with the
philosophy of COMMON LISP.

12 GOLDEN COMMON LISP USERS' GUIDE

Now if we add two and two, the result is the number 6:

|

| * (+ two two)
| 6

| *

|

|

For a final example, consider defining a new function named
"plus". In this illustration, "plus" will be a limited
version of the GCLISP function +. That is, it will be defined
as a function of two arguments which adds its arguments and
returns the result, as + does. (+ is somewhat more powerful
than "plus", because + can be applied to more than two
arguments, and it also performs type checking on its input
arguments.)

To define "plus", use the GCLISP function defun:

* (defun plus (a b) (+ a b))
PLUS

* (plus 2 2)

4

* (plus two two)
6

*

Here, the result of evaluating the first form was the function
name plus (output in upper-case). Then we input a function
call: the function plus applied to the arguments 2 and 2.
This evaluated, as expected, to 4. However, plus applied to
the symbol two (for both arguments) evaluated to 6, since the
most recent value bound to two was 3.

A major part of LISP programming is developing LISP forms
which you expect to use again and again. Any such form can be
defined as a function using defun. Thereafter, to use the
function, you have only to enter the function name together
with specific arguments.

CHAPTER 1: The GCLISP Interpreter 13

1.7 System Variables for Tracking Listener Actions

The 1listener maintains several variables which provide a
useful history of its most recent actions. These variables
have short, easily-remembered names composed from the
characters "*", w/% and "+", At any time during a GCLISP
session, you can use any one of these variables.

One of these is the variable #, which always has the value

7
returned from the last evaluated form. The following sample
screen illustrates its use:

* (min (max 5 10 25) (max 7 49))
25
* *<ENTER>

25

* (setf answer *)
25

* answer<ENTER>

25
*

The first 1line in the sample screen computes the maximum of
the numbers 5, 10, and 25 (which is 25); computes the maximum
of the numbers 7 and 49 (which is 49); and then computes the
minimum of these two results (25). Then the variable *
evaluates to 25. The setf line sets the value of the symbol
answer to the current value of #, or 25. Then the variable
answer evaluates to 25.

* represents only one value returned from an evaluated
function. If the function returns more than one value, *
represents just the first return value. To retrieve (in the
form of a list) all of the values returned from a multi-valued
function, use / instead of *. For example, the truncate

7. Note that the symbol * also represents the multiplication
function in CGLISP. (And is also displayed as a prompt.) Be
careful not to confuse these meanings from the start.

14 GOLDEN COMMON LISP USERS' GUIDE

function divides its second argument into its first argument;
and returns the quotient as the first value and the remainder
as the second value:

* (truncate 17 4)
4

1

* *<ENTER>

(truncate 17 4)

* D F S

/<ENTER>

(4 1)
*

That is: the function call (truncate 17 4) returns the values
4 and 1 (quotient and remainder); and * then returns 4 (the
first return value). But / directly following the function
call returns the 1list with the two return values as its
elements.

The value of the variable + is the most recently read LISP
form, as shown in this example:

* (min (max 5 10 25) (max 7 49))
25
* +<ENTER>

|

|

|

|

I

| (MIN (MAX 5 10 25) (MAX 7 49))

| * (min (max 5 10 25) (max 7 49))
| 25

| * (setf problem +)

| (MIN (MAX 5 10 25) (MAX 7 49))

| * problem<ENTER>

|
|
|
|
|

(MIN (MAX 5 10 25) (MAX 7 49))
N ;

Note carefully: * and / take their values from the most recent
error-free evaluation; but + takes its value from the most
recent error-free reading. That is, + is updated every time
an error-free input form is read, whether the form can be

CHAPTER 1: The GCLISP Interpreter 15

evaluated without error or not. However, only a form that can
be evaluated without error will change the value of * or /.

The variables **, //, and ++ have the corresponding meanings
for the next-to-last evaluated form (or the next-to-last read
form) . And the variables ##*%, ///, and +++ have the
corresponding meanings for the third-from-last evaluated (or
read) form. The following table summarizes these variables.

VARIABLE	MEANING
*	Represents the first value returned from

| | the last evaluated LISP form.

| | |
| ** | Represents the first value returned from

| | the next-to-last evaluated LISP form.

| | |
| kx*x | Represents the first value returned from

	the third-from-last evaluated LISP form.
/	Represents a list of all the returned values
//	from the last evaluated form, or the next-
77/	to-last, or the third-from-last.

| | |
|+ | Represents the last-read form, or the

| ++ | next-to-last, or the third-from-last.

| | |
| I |

16 GOLDEN COMMON LISP USERS' GUIDE

1.8 Listener Levels

When you enter GCLISP via the command geclisp from the
operating system, you are placed at "level 0" of the listener,
or "Top-Level". This ‘evel can be recognized by the prompt *
appearing on your display screen.

During your interaction with the 1listener -- typing in of
forms, evaluation, and printing of results to the screen --
"deeper levels" (or "lower levels") of the 1listener may be
invoked. These are numbered 1, 2, ... (higher numbers for
deeper levels). You can recognize these by the numbered
prompts 1>, 2>,

Only one level of the listener is active at any time:; and you
interact only with that level. The GCLISP user interface
behaves the same at every level: accepting forms, evaluating
them, and printing the results.

How is a deeper 1level activated? There are two possible
ways. The first is by an error in user input. This example
appeared in section 1.6, when an unbound symbol was entered:

* two<ENTER>

ERROR:
Unbound variable: TWO

|
|
|
|
|
|
|
| 1> _
|

I

There is no reason to stay at level 1 in this case. You input
the keychord Ctrl-G or the function call (clean-up-error) to
return to level 0:

|
| 1> <Ctrl-G>

| Back to: Top-Level
| *

|

|

Level 1 disappears, and you are returned to where you left off
at level 0, as shown by the prompt *. A subsequent error at
level 0 would invoke a new level 1.

CHAPTER 1: The GCLISP Interpreter 17

Similarly, an error in input at level 1 invokes a level 2
listener. A return from there via clean-up-error or Ctrl-G
returns to the level 1 where it was suspended (from which you
may return to level O again). And similarly for deeper
levels.

An error is an unintended way to invoke a deeper level. The
second way to invoke a deeper level is deliberate. Inputting

the function call (break) or the keychord ctrl-Break invokes
the next deeper level:

* (break)
BREAK, (CONTINUE) to continue

1>

This is useful as a program debugging technique (see Chapter
4, "Debugging in GCLISP"). 1Internal data about the suspended
level is accessible to you at the deeper level, and may be
useful in detecting and fixing program bugs.

Just as when the deeper level was invoked by error, you can
continue processing as you like at the deeper level and return
to the higher level when you choose. In this case, however,
the return is not via Ctrl-G but via continue or Ctrl-P:

|

| 1> <Ctrl-p>
| NIL
‘*
|

|

Note carefully the difference between an error invocation of a
deeper level and a break invocation. The returns are
different:

(clean-up-error) or Ctrl-G returns from an error
(continue) or Ctrl-P returns from a break

Cctrl-C is a useful, more powerful return from a deeper level
entered either by error or deliberately. It returns to level
0 immediately, discarding any and all intervening deeper
levels.

18 GOLDEN COMMON LISP USERS' GUIDE

1.9 Common User Errors and GCLISP Error Messages

Both new and experienced LISP programmers make frequent errors
when inputting LISP forms to the listener. GCLISP responds
immediately to user errors. The usual response to an error is
an error message printed to the screen, and an invocation of
the next deeper level of the listener.

This section describes the most common errors and the
responses to them. A complete listing of error messages is in
Appendix A, "Error Messages".

Unbound variable. This interaction was described in section
1.8:

* two<ENTER>

ERROR:
Unbound variable: TWO
1> <Ctrl-G>

Back to: Top-Level
*

In this instance, the symbol two did not have an assigned
value.

Undefined function. Just as a variable must be bound to a
value before it can be evaluated, a function name must be
defined before it can be used in a function call.

The error message Undefined function results when you attempt
to use in a function call a name which hasn't been defined as
a function. This error is often caused by mistaking a
variable name for a function name. Suppose, for instance,
that foo was assigned a value, but not defined as a function:
and then you attempt to use foo as a function name in a
function call:

CHAPTER 1l: The GCLISP Interpreter 19

* (setf foo 2)
2
* (foo)

ERROR:

Undefined function: FOO
While evaluating: (FOO)
1> foO<ENTER>

2
1> <Ctrl-G>

Back to: Top-Level
*

Remember that the parentheses around foo indicate to the LISP
listener that (foo) is a function call; while foo (no
parentheses) is interpreted by the listener as a variable.

Wrong number of arguments in a function call. If we define a
function foo to take two arguments, and apply it to three
arguments, we receive the message: Too many arguments for:
FOO, as in this example:

* (defun foo (a b) (+ a b))
FOO
* (foo 6 1 4)

|
|
|
|
|
|
| ERROR:

| Too many arguments for: FOO

| While evaluating: (FOO 6 1 4)
| 1> <Ctrl=-G>
| Back to: Top-Level
| *
|

|

20 GOLDEN COMMON LISP USERS' GUIDE

Wrong type of argument. You receive the error message Wrong
type argument if you use one type of LISP object as an
argument to a function that expects a different type of object
as an argument. This occurs, for instance, if you use a
number for an argument when the function expects a symbol.
The function get, for example, takes two arguments: a symbol
and an object of any type. If we input a number rather than a
symbol for the first argument:

* (get 2 'size)

|
|
| ERROR:

| GET: wrong type argument: 2
| A SYMBOL was expected.

| 1> <Ctrl-G>

|

|

|

|

Back to: Top-Level
*

The following table summarizes the error messages just
described.

MESSAGE EXPLANATION

Unbound variable: foo The symbol foo was used as
a variable, but had no value

assigned to it.

Undefined function:
foo

The symbol foo was used

as a function name in a function
call, but had not been defined
as a function name.

foo was defined as a

function name; but in a function
call to foo, too many

arguments were supplied.

Too many arguments
for: foo

foo: wrong type
argument: X

The type of an argument X
supplied in a call of the foo
function does not match the type
of argument required by the
function definition of foo.

CHAPTER 1l: The GCLISP Interpreter 21

1.10 Loading Input Files

A LISP program consists of a sequence of LISP forms, written
one after the other.

For a program of any size, it makes no sense to type in the
forms one at a time from your console, in the style shown so
far in this Guide. A program of even a few lines will more
likely be typed first into an on-line file; and then the
entire file is input to GCLISP for reading and evaluation.
This is the conventional way of writing and debugging LISP
programs.

Doing this requires two main tools. One is an on-line editor
for creating and modifying the on-line program file. The
GCLISP on-line editor is called GMACS; and the next chapter in
this Guide is a detailed guide to using GMACS. The other tool
is the LISP function 1load, which directs GCLISP to read and
evaluate the contents of a program file. 1load is described in
this section.

Suppose that (using GMACS) a program file called FO0OO.LSP has
been created, with these contents:

(+ 2 3)

(defun bar (a b)
(* a b))

(bar 4 5)

That is: FOO.LSP consists of three LISP forms. The first form
is a simple addition; the second defines the function bar as
simple multiplication; the third is a function call to bar
with the arguments 4 and 5.

To have the file FOO.LSP read and its forms evaluated, give a
load function call at your console. The result 1looks like
this:

* (load "foo.lsp")
; Reading file C:\GCLISP\FO0O.LSP

#. (PATHNAME "C:\\GCLISP\\FOO.LSP")
*

22 GOLDEN COMMON LISP USERS' GUIDE

That is: load takes the name of the program file as an
argument. The name must be delimited by quote characters
("*). The load call prints the "Reading file" informational
message; and, when reading (and evaluation) has been
successfully completed, the full pathname of the file is
printed to the screen.

Several language conventions shown in this sample screen will
be unfamiliar to the LISP novice. For a short explanation of
their meanings, see section 1.11, "Table of COMMON LISP
Language Conventions". Note in particular the double
backslash, \\. This signifies that the reader has expanded a
pathname built with single backslashes. Since the backslash
character is a language convention which specifies that the
following character is to be taken literally, two successive
backslashes are needed to represent a backslash to the
listener. (For an explanation of pathnames, see the tray
entitled "Following Paths to Files" in the San Marco LISP
Explorer.)

Unlike a read-eval-print loop, the load function does not
automatically print to the screen the results of evaluating
the forms in the input file. Thus, though the forms in
FOO.LSP were evaluated, the screen did not show the results.
To print the returned values on the screen, include the :print
option in the load function call:

* (load "foo.lsp" :print t)
; Reading file C:\GCLISP\F0O.LSP

5
BAR
20

#. (PATHNAME "C:\\GCLISP\\F0O.LSP")
*

Compare this screen with the contents of FOO.LSP to verify the
evaluations.

The :print option helps you to locate errors in the program
file. Suppose, for example, that in the function definition
of bar in FOO.LSP, the last parenthesis were missing, so that
it would look like this:

(defun bar (a b)
(* a b)

Now 1load this "defective" version of FOO.LSP, using
:print t. Here is the result:

CHAPTER 1: The GCLISP Interpreter 23

* (load "foo.lsp" :print t)
; Reading file C:\GCLISP\F0O.LSP

5
ERROR:

End of file while reading s-exp.
1>

The error message means "an end-of-file was found while
reading an s-expression'. That 1is: the end of the file was
read before finding the close parenthesis needed to complete
the form in process.

Only the first LISP form in the file returned a value, before
the error message appeared. This says that the error must be
in the second form, and the evaluation halted there (otherwise
the return value for the second form would have printed).

With a small file like this one, there is no real need to use
the :print option; but the option is very useful when reading
a large file.

24 GOLDEN COMMON LISP USERS' GUIDE

1l.11 Table of COMMON LISP Language Conventions

The following table describes briefly several of the language
conventions found in COMMON LISP (you have encountered some of
them in this chapter). For more complete discussion of these
and other conventions, see Chapter 1 of the GCLISP Reference
Manual and Chapter 1 of the COMMON LISP Reference Manual.

CONVENTION
§]

MEANING

Parentheses demarcate a list. The GCLISP
listener interprets a list as

a function call, a macro call, or a
special form.

A single gquote indicates that the
form that follows is not to be
evaluated. ‘'form is the same as
(quote form).

A semi-colon is the comment character.
Any data to its right (on an input line)
will be ignored by the input reader.

In output, anything to the right is an
informational message.

~e

data: "This is not 39 characters long".

The character following the backslash
character is accepted literally by the
input reader, without any special
meaning. (For example, all of the
special characters in this table,
including backslash, lose their special
meanings when preceded by backslash.)

Vertical bars appear on either side of a
symbol name or around characters in the
symbol name to mark special characters
for treatment as literal characters.

A colon assocliates a symbol name with the
package it belongs to.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Double quotes enclose character-string |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Chapter 2

The GMACS Editor

GMACS is a full-screen display editor modeled after EMACS, the
editor created by Richard M. Stallman at the MIT Artificial
Intelligence Laboratory.

You can scan the quick-reference command summary in section
2.8 below to see that GMACS is a modern full-featured text
editor, with a repertory of nearly one hundred commands bound
to keychords and short key sequences. The Xkinds of objects
which can be manipulated by these commands include characters,
words, character strings, 1lines, arbitrary user-defined
regions of text, edit windows, edit buffers, and files.

The particular strength of GMACS, however, is that it
implements commands and features for editing LISP code. Using
these, you can manipulate all of the important elements of
LISP -- s-expressions, lists, lines of code, comments, and
function definitions -- as well as controlling interactively
the appropriate indentation and parenthesizing of your LISP
expressions.

Section 2.7.7 summarizes the LISP-editing commands, and
section 2.4 describes these commands and features in more
detail. The GMACS LISP-editing features will:

- automatically blink the open parenthesis which matches
the current close parenthesis;

- inform you when you have typed too many close
parentheses;

- indent an s-expression or a line correctly:;

- move forward and backward over s-expressions, and cut and
paste them;

- display the parameter list or detailed documentation of
either an interpreted function or a compiled function; or
display the expansion of a macro form;

- display the full name and documentation of a GMACS
command or a LISP function when you remember only part of
the name;

26

GOLDEN COMMON LISP USERS' GUIDE

exit to a temporary LISP listener and re-enter GMACS
without disturbing your GMACS environment (using only one
short command for an exit or re-entry):

evaluate directly, using the temporary listener -- and
without leaving GMACS -- the LISP statements which you
have been typing into the GMACS edit buffer.

An on-line tutorial in the use of GMACS can be invoked from
within GMACS using the keychord Alt-H T for '"Help teach" (see
section 2.1.8).

This chapter as a whole describes the various features of
GMACS and explains how to use them:

Section 2.1 gives you basic information for getting
started with GMACS.

Sections 2.2 through 2.4 give more detailed explanations
of the various facilities of GMACS:

*

Section 2.2 deals with commands and capabilities for
manipulating edit buffers and the associated files.

Section 2.3 describes GMACS capabilities and
commands for general editing.

Section 2.4 is concerned with the set of commands
specifically designed to manipulate LISP programming
language constructs.

Sections 2.5 through 2.8 provide reference listings for
GMACS commands:

*

Section 2.5 lists the commands bound to the function
keys on the IBM PC keyboard.

Section 2.6 lists the commands bound to the cursor
motion keys on the IBM PC keyboard.

Section 2.7 provides a summary reference to all
GMACS commands, including their key bindings and a
short description of each command.

Section 2.8 is a quick-reference 1listing of all
GMACS commands and their key bindings.

CHAPTER 2: The GMACS Editor 27

2.1 The GMACS Environment

2.1.1 Entering GMACS

You have two ways of entering the editor from your GCLISP
environment:

1. wusing the ctrl-E keychord, which has the same effect as
the function call (ed); or

2. using the ed function in one of these forms:

(ed v"<filename>")
(ed t)

When you first invoke GMACS with no filename (the form (ed)),
you are placed in an empty edit buffer (see section 2.1.4)
called "MAIN". If you specified a filename, then the contents
of that file are read from disk into a buffer named after the
file. The form (ed t) gives you a new empty MAIN buffer (and
preserves the MAIN buffer from a previous invocation, if
any) .

When you invoke GMACS for the first time in any GCLISP
session, the editor programs must be loaded into your
computer's memory, to establish the GMACS environment. The
time required to load the editor will vary with your computer
system. Your screen will display a message line showing the
progress of the loading process.

2.1.2 Exit and Re-Entry

To leave GMACS and return to the interpreter environment, type
the key sequence Ctrl-X ctrl-C.

When you again invoke GMACS, via Ctrl-E or the ed function,
the GMACS environment of buffers and files will be
re-established. If your command is (ed), without a filename,
you will be placed in the buffer where you were last editing,
and at the same point in that buffer. If your command is

(ed w<filename>"), then GMACS will re-establish the edit
environment following the rules of the FIND-FILE command (see
section 2.2.5, "Reading a File").

28 GOLDEN COMMON LISP USERS' GUIDE

2.1.3 Protecting the Buffer Contents

At any time in a GMACS session, several edit buffers may
exist. The set of existing buffers is preserved in the GCLISP
workspace when you exit <from GMACS. These will all be
available to you when you re-enter GMACS from the GCLISP
interpreter environment. Their contents will be exactly as
you left them.

However, when you are editing a buffer, you should write out
the buffer to the file often. There are good reasons for
this. In any of the following circumstances, the contents of
the GCLISP workspace, including the buffers, are irretrievably
lost:

- when you exit from GCLISP:;

- when the operating system or GCLISP has to be
re-initialized due to some unforeseen problem; or

- when the computer is turned off.
The commands for handling buffers and files are found in
section 2.2 below, "Manipulating Buffers and Files".
2.1.4 Buffer, File, Window, and Screen
Four things are central to learning how editing is done in
GMACS. This subsection presents these concepts, to avoid any
possible confusion.
The four things are:

- the edit buffer

- the file being edited

- the edit window

- the edit screen

A very brief explanation of the roles of these four is as
follows:

The edit screen is the entire terminal display
screen during a GMACS editing session. The most
important area on the edit screen is the edit
window. In this window is displayed (part or all
of) the contents of the edit buffer. These contents
often consist of a working copy of a file being
edited.

CHAPTER 2: The GMACS Editor 29

Now for details.

The edit buffer.

This is a temporary storage area for lines of
text being edited. The area =-- sometimes
called just "the buffer" -- is in the GCLISP
workspace. It is maintained by GMACS during
an editing session.

When in GMACS, there is at any particular time
just one particular Dbuffer where editing
occurs, the current buffer. Strictly speaking,
editing consists of changing the contents of
the edit buffer by adding or deleting
characters at particular places. You may type
individual characters, or words, or LISP
forms, into the buffer; or manipulate the
buffer contents by rearranging, copying, or
deleting larger blocks of text. But it all
comes down to changing the
character-by-character contents of the edit
buffer. So we speak of "editing the buffer",
or being "in" the buffer.

At any particular time, the buffer may be
empty. Or it may contain lines you have typed
in; or a copy of a file on disk that was read
into it; or any combination of lines
originally gotten either from a disk file or
typed in by you.

The buffer |is an object that you can
manipulate. You can create one or delete it;
or give it a name; or read a file into it; or
make another existing buffer the current edit
buffer. The set of GMACS operations on
buffers is described in section 2.2 below,
"Manipulating Buffers and Files". For now,
though, the important fact about the edit
buffer is that this is where editing happens.

The file being edited.

A file is a named storage area in a directory
on a disk in your computer. Once created, it
stays there until you delete it explicitly,
with an operating-system command such as del
filename. You may type a file to the terminal
screen, or print it (if text), or copy it, or
merge it with other files, or delete it, etc.

You can also edit a file with GMACS. Strictly
speaking, though, the file itself is not
edited. Only the contents of an edit buffer

30

The edit window.

GOLDEN COMMON LISP USERS' GUIDE

can be edited; and a file is not an edit
buffer.

To edit a file, you give a GMACS command to
"read the file into the edit buffer". This
means: find and open the file on the disk, and

read
is a

its contents into the edit buffer. This
copying operation; and has no effect at

all on the contents of the file as stored on
the disk.

Then

you edit the copy in the buffer.

Finally, if you are satisfied with your
changes, you give a GMACS command to "write
the file". This means: write the contents of
the buffer to the disk and give this disk file
the same name as before. In the process, the

old,

unchanged copy of the file on the disk is

automatically deleted. This writing must be

done

in order to save permanently the results

of the editing, since the buffer itself goes

away

Thus:

This

when GCLISP does.

We say "edit the file", but the actual
changes are made on the copy of the file
that has been read into the buffer.

The file 1is permanent. The buffer
contents are not.

Reading the file (from disk) into the
buffer has no effect on the file
contents. Writing the buffer to the file
(on disk) replaces the old version of the
file with the edited version.

is an area on the terminal display

screen. It provides a view into the edit
buffer. In the edit window are displayed as

many

lines of the current contents of the edit

buffer as will fit there.

At any particular time, you can edit only the

part

of the buffer currently showing in the

window. That is, text can be inserted or
deleted only at a point in the part of the
buffer currently showing in the edit window.

The edit screen.

This

is the terminal display screen as it is

CHAPTER 2: The GMACS Editor 31

presented while you are in GMACS. GMACS
controls your use of the screen, dividing it
into several areas. The most important area
is the edit window. Other areas are the mode
line and the echo/message area. The screen is
divided into these three areas, except when
the type-out window may obscure the edit
window.

More details about the edit screen follow.

2.1.5 The Edit Screen

This sample screen shows the display after you initially enter
GMACS (without specifying a filename at entry). The screen is
empty except for the line of information near the bottom and
the cursor mark in the upper left-hand corner.

GMACS V1.00 MAIN: null pathname Alt-H = HELP

A mode line like the one above is a permanent feature of the
edit screen. It always displays as the third-from-last line
on the screen. Reading left to right, it has these elements:

- The editor name and version number: "GMACS V1.00";

-~ The name of the current edit buffer, e.g. "MAIN",
followed by a colon;

- The pathname of the file currently being edited in this
buffer, or "null pathname" if no file is associated with
this buffer;

- An asterisk (*, the buffer-status), if the contents of
the current edit buffer have been changed since they were
last written out to, or read from, a file;

32 GOLDEN COMMON LISP USERS' GUIDE

- "“Alt-H = HELP", to remind you how to invoke on-line GMACS
help.

In most sample screens appearing in this chapter, the mode
line will be omitted:; it is usually unnecessary for
understanding the point being made.

The space above the mode line is usually filled by the edit
window, also known simply as "the window". (Other windows
will always be specifically identified.) The edit window
provides a view of the current edit buffer: either all of the
buffer, or as much of it as can be displayed in the window
area on the screen. You can edit data already in the buffer,
or type in new data, only in the area of the buffer currently
displayed in the window.

As data is typed into a buffer, the buffer expands
automatically to hold it. The cursor moves as you continue to
type. It shows where the next character typed will be
inserted into the buffer. Character insertion (or deletion)
always occurs at the point (called the point) between the
character above the cursor and the character immediately
preceding it. Note that a "non-printing character" such as a
space, a tab, or a newline is like any other character in this
regard. For example, the newline character (produced by
<ENTER>) doesn't show in the screen display; but it is in the
buffer like any other typed data.

When the data in the buffer fills the edit window, the window
shifts down so that you can continue to see what you type into

the buffer. To review and edit what you have typed, you can
move the window back and forth across the buffer (see sections
2.3.3 = 2.3.4 about the cursor motion commands). An entire

buffer of any size can be viewed in this way, one window at a
time.

2,1.6 A GMACS Glossary

Here is a short glossary of the most important terms for the
various elements of the GMACS screen image and the related
edit buffer.

EDIT WINDOW A part of the terminal display screen used for
the purpose of displaying the contents of the
edit buffer. The edit window usually occupies
all but the bottom three lines of the display

screen.

EDIT BUFFER A temporary storage area created and used by
GMACS. (The area is in your GCLISP
workspace.) The active or current edit buffer

appears in the edit window.

CHAPTER 2: The GMACS Editor 33

CURSOR and POINT

The cursor appears as a blinking mark (usually
an underline or a rectangle) on the edit
screen. The point is a position in the
current buffer: the position between the
cursor and the preceding character position.
Thus, if the cursor is under the letter "a" in
the word "bar" (bar), the point is between "b"
and "a". Deletions and insertions in the
buffer take place at the point.

ECHO AREA/MESSAGE AREA

MINI-BUFFER

MODE LINE

BUFFER-STATUS

TYPE-OUT

The bottom two 1lines of the edit screen.
Here, edit commands that you type are
displayed ("echoed"); this enables you to
easily verify your input commands.
Miscellaneous informational messages appear
here also.

An area where you are prompted to enter the
names of files and other information required
by certain commands. The mini-buffer appears
in the right half of the echo area.

The line of status information appearing near
the bottom of every edit screen. The mode
line displays the name of the editor (GMACS)
and its version number; the name of the
current buffer and the associated file,
together with the buffer-status; and the Help
keychord.

The condition of the buffer with respect to
changes. If you have added or deleted data in
the current edit buffer since last reading in
a file to the buffer, or writing out the
buffer to a file, an asterisk appears
following the filename in the mode line.
Otherwise this space is blank.

A display of information produced by a GMACS
command. It appears in the type-out window, a
temporary window in the top part of the edit
screen. (The type-out window temporarily
overlays part or all of the edit window.)

2.1.7 Inputting Commands and Characters

While you are in the GMACS environment, everything you type at
the keyboard is part of an edit command. An edit command
directs GMACS to perform an editing task. (The edit commands
are actually LISP functions.)

34 GOLDEN COMMON LISP USERS' GUIDE

An edit command is invoked by typing an alphanumeric key, a
keychord, a key sequence, or a special function key. A key or
keychord or key sequence that invokes a command is said to be
bound to the command, and vice versa.

Most of the alphanumeric keys on the keyboard -- the
alphabetic keys, the numeric keys, and the punctuation keys =--
are bound to an edit command that inserts the character
represented by the key into the edit buffer. In other words,
typing the key A has the same effect as a command "insert the
character a".

A keychord consists of a modifier key and an alphanumeric
key. The modifier key must be held down vwhile the
alphanumeric key is pressed. The modifier keys are the shift
key, and the Ctrl key and the Alt key, both located just left
of the alphabetic keys on the PC keyboard. (The shift key is
used mainly for inserting upper-case letters.)

A keychord is represented in print by the symbols of the
appropriate keys linked together with hyphens. The printed
form Ctrl-F indicates that the Ctrl key is held down while the
F key is pressed.

A key sequence consists of either a keychord followed by an
alphanumeric key, or else a keychord followed by another
keychord. The additional key or keychord is pressed after the
keys for the first keychord have been released.

A key sequence is represented by the keychords and keys
written one after the other. The printed form Ctrl-x 2
indicates that the Ctrl key is held down while the X key is
pressed, and then =-- after the keychord is released =-- the 2
key is pressed.

For convenience, a number of edit commands bound to keychords
or key sequences have also been bound to the function keys on
the IBM PC keyboard. To invoke one of these commands, you do
not have to use the keychord or key sequence, but can use the
function key instead. (See section 2.5, "Table of Function
Keys.")

A few other special keys =-- the cursor motion keys, Rubout,
Home and End, and Delete =-- invoke editing actions in GMACS,
rather than representing characters for insertion into the
buffer (unless they have been shifted by the NumLock key to
implement the numeric keypad).

2.1.8 GMACS Help

At any time while in the GMACS environment, you can invoke
on-line help about GMACS.

CHAPTER 2: The GMACS Editor 35

To invoke the GMACS on-line help facility, type Alt-H. (This
keychord always appears at the right-hand end of the GMACS
mode line.) This invokes the command HELP-DEADEND, which
displays in the mini-buffer a short menu of options and how to
invoke them:

GMACS V1.00 MAIN: null pathname Alt-H = HELP
Help ?=Help quide D=Document command T=Teach GMACS
A=Apropos K=Keychord binding

Please enter your selection:

The 2 option invokes the help guide, a display of more
detailed descriptions of the options:

These kinds of GMACS on-line help are available.
To invoke one of them, type Alt-H followed by A, D, K, T, or ?.

A "Apropos" - Displays the keychords for all GMACS
commands that contain a specified string.
Prompts for the string.

|
|
|
|
|
|
|
|
| D "Documentation" - Displays documentation on all
| GMACS commands containing a specified string.

| Prompts for the string.

I

|

|

|

|

|

|

|

|

K "Keychord binding" - Displays the GMACS command bound
to a specified keychord. Prompts for the keychord.

T "Teach GMACS" - Invokes the GMACS on-line tutorial.

-~

Displays this guide.

8
The help guide appears in a type-out window. So does the Help
information which is displayed when you request it via one of
the 1listed options. To invoke one of the options, type the

8. Note that when a type-out window has been displayed, you
are prompted to type a space character to continue. Use the
space bar, because any other input will be executed as a GMACS
command. For example, any self-inserting character will be
inserted into the current edit buffer.

36 GOLDEN COMMON LISP USERS' GUIDE

appropriate key (A, D, K, T, or ?) at the prompt. For rapid
access to an option, you can invoke it directly by a key
sequence without waiting to see the menu:

Alt-H A ED-APROPOS
Prompts you for a character string, and
displays in a type-out window all GMACS
commands which contain in their name the
specified string.

Alt-H D ED-DOC
Prompts you for a character string, and
displays in a type-out window the on-line
documentation for all GMACS commands which
vcontain in their name the specified string.

Alt-H K ED-KEYCHORD
Prompts you for a keychord, and displays in a
type-out window the command associated with
the specified keychord.

Alt-H T ED-TEACH
Invokes the GMACS on-line tutorial.

Alt-H ? ED-HELP
Displays the help guide consisting of
descriptions of the options listed in the help
menu.

2.1.9 Aborting GMACS Commands

It is sometimes convenient to abort an editing command, rather
than letting it complete. Two special GMACS commands let you
do this.

Esc DEADEND
The Esc key ("escape") aborts the current
command, rings the terminal bell, and returns
you to normal GMACS command entry.

ctrl-G ED-BEEP
This command aborts the current command, rings
the terminal bell, and returns you to normal
GMACS command entry.

Note that Esc has other meanings in certain other GMACS
commands. Esc operates as DEADEND except in these specific
cases (described in the documentation of the particular
commands elsewhere in this chapter).

CHAPTER 2: The GMACS Editor 37

2.2 Manipulating Buffers and Files

The edit buffer and the file being edited were described in
section 2.1.4, "Buffer, File, Window, and Screen". The
current section summarizes the relation between buffer and
file, and describes the GMACS commands for manipulating
buffers and files.

When you have finished editing in a buffer for the time being,
you can copy ("save" or "write") the contents of the buffer to
a disk file for more permanent storage. To modify an existing
file, you can copy ("read") the file into an edit buffer.

When you edit an existing file, you edit only the copy of it
that has been read into the buffer. If you decide not to keep
the changes you make while editing, you can delete the buffer
instead of returning it to disk storage. If you want to keep
both the earlier version of the file and the newly edited
version, you can write the new version to disk with a new name
and it becomes a separately stored file.

The commands for all of these operations are described below.

2.2.1 How Buffers and Filenames are Related

When you read a disk file into a buffer, or when you write out
the contents of a buffer to a file, GMACS associates the file
and the buffer by name.

At any time, the filename currently associated with a buffer
is the name of the file most recently read into or written out
from the buffer. This name changes only when you specify
another filename for reading from or writing to.

This association is maintained by GMACS during your editing
session (and even between sessions, as described in section
2.1.2 above). You can see the complete 1list of names of your
existing buffers and the filenames associated with them by
using the LIST-BUFFERS command described in the next section.

If GMACS has newly created a buffer and the buffer is empty,
then there is no file associated with the buffer, and the
designation "null pathname" appears in the mode line.

38 GOLDEN COMMON LISP USERS' GUIDE

2.2.2 Displaying Buffer Names

Because buffers stay in GMACS until you delete them, you may
need to know what buffers currently exist. You may also need
to know whether the contents of a buffer have been written out
to a file after the most recent changes made to the contents.

To find out these things, use the LIST-BUFFERS command,
invoked with the key sequence Ctrl-X Ctrl-B. This command
lists (in a type-out window) the name of each edit buffer and
the name of the file associated with it.

An asterisk (*) appears next to the filename if the buffer has
been modified since it was last saved or written to disk with
a SAVE-FILE or a WRITE-FILE command, as described below.

2.2.3 Marking a Buffer Unmodified

To mark a buffer unmodified, use the command Ctrl-X U. This
directs GMACS to regard the buffer contents as having been
unchanged since the most recent READ, WRITE, or SAVE of the
buffer contents. 1In response to the command, GMACS clears the
buffer-status (*) in the mode 1line. (You would use this
command when you edit a buffer, modifying its contents, and
then decide that you do not want to save the changes; or when
you change the buffer contents by a typing mistake.) Note
that the modifications are not undone by this command. The
only action GMACS takes is to clear the buffer-status.

2.2.4 Selecting a New Current Buffer

Recall that the current buffer is where editing is done at any
given time. There is always a current buffer.

To select a different buffer to be the current buffer, use the
SELECT-BUFFER command, invoked by pressing ctrl-X B. This
command prompts for the name of the buffer to switch to.

The command SELECT-PREVIOUS-BUFFER (Ctrl-X P) selects the
buffer in which you were last editing before entering the
current buffer.

2.2.5 Reading a File

To read a specific file into some buffer other than the
current buffer, or into a new edit buffer, use the FIND-FILE
command, executed with the key sequence Ctrl-X Ctrl-F. The
command prompts you for the filename of the desired file.

CHAPTER 2: The GMACS Editor 39

If a buffer exists that is associated with this file, it is
selected as the current buffer and nothing is read into it.
The point 1is positioned where it was last located when that
buffer was last the current buffer.

Otherwise, GMACS looks among the existing buffer names for a
buffer named after this file. (When a buffer is named after a
file, the buffer name is the name of the file without the
"extension" part, if any, of the filename. By this rule, a
buffer would be named CONSOLE for either the file CONSOLE.CON
or CONSOLE.LSP.)

If you have specified FIND-FILE for the file CONSOLE.CON and a
buffer named CONSOLE is already in use but CONSOLE.CON is not
associated with the CONSOLE buffer, then GMACS will create a
new buffer named CONSOLEX and read CONSOLE.CON into it. In
other words, a new buffer will be created for the requested
file, and its name will be the filename with an "X" appended
(and without the extension).

If no buffer is associated with the filename, and there is no
buffer named after the file, then the command creates a new
buffer named after the file and reads the file from disk into
the new buffer.

To read a specific file into the current buffer, use the
READ-FILE command, invoked with the key sequence Ctrl-X
ctrl-R. You are prompted for the name of the file to read.

Whatever is already in the current buffer is written over
(lost) by the reading in of the file. If you have made
changes to the current buffer since you last wrote it to disk
(via SAVE-FILE or WRITE-FILE), READ-FILE warns you and offers
the option of cancelling the command.

Note that, as a result of this behavior, FIND-FILE is a safer
command than READ-FILE. READ-FILE will destroy the current
contents of an existing, unmodified buffer without warning
you, while FIND-FILE will not destroy the current contents of
any buffer.

2.2.6 Writing a File

After you have edited a file in a buffer, or typed text into
an empty buffer, you transfer the buffer's contents to a disk
file (unless you decide not to save the editing you have
done) .

To put the buffer's contents to a file, use either the
SAVE-FILE command or the WRITE-FILE command. SAVE-FILE is
executed with the key sequence Ctrl-X ctrl-s. This command
writes the contents of the buffer to a file with the name
currently associated with the buffer. This replaces the old

40 GOLDEN COMMON LISP USERS' GUIDE

version of the file with the new, edited version. If the
buffer has not been associated with a disk file, you will be
prompted to name a file where you want to save the contents of
the buffer.

If you do not want to replace an existing file with the
contents of the buffer, use the WRITE-FILE command, executed
with the key sequence Ctrl-X Ctrl-W. This command prompts you
for a filename and writes the contents of the buffer as a file
with the new filename. '

2.2.7 Deleting a Buffer

To eliminate a buffer, use the KILL-BUFFER command, invoked
with the keychord ctrl-X K. This command prompts you for the
name of a buffer and erases the buffer with that name. If you
press the ENTER key without entering a buffer name, the
command deletes the current buffer and returns you to the
previous buffer.

If the buffer has been modified since it was last written to a
file, you will be asked to verify the KILL-BUFFER operation.
If you decide not to complete the command, press Ctrl-G.

2.2.8 Directory Operations

While in GMACS, you can read or write files in the working
directory. You may want to change the working directory; or
you may want to examine the contents of this directory or of
some other directory. The following two commands enable you
to do that.

ctrl-X Ctrl-D DISPLAY-DIRECTORY

Use this command to obtain a 1listing of the
names of files in any particular directory.
You are prompted for the pathname of the
directory you want. You can specify either a
directory or a filename, or a set of filenames
using the "*" wild-card convention, just as in
the DOS dir command. The directory listing is
displayed in a type-out window.

ctrl-X C CHANGE-DIRECTORY
Use this command to change the working
directory to the directory you name in
response to the prompt displayed following
this command.

CHAPTER 2: The GMACS Editor 41

2.3 Editing Text

All of the GMACS commands in the following subsections are
useful for editing general text files. The many commands
designed specifically to edit LISP forms are described in
section 2.4 and its subsections.

2.3.1 Inserting and Deleting Text

The simplest editing consists of inserting and deleting
individual characters in an edit buffer.

You insert single characters by typing the character keys on
the keyboard. As you press individual keys, the characters
they represent are entered into the buffer one after the
other.

The edit window shows the results, character by character.
The point moves along as you type. The cursor is always one
character position ahead of the character that was last
typed. If there are characters in the buffer ahead of the
point, they are shifted one character ahead with every new
character inserted.

To erase a character you have just typed, press the Rubout
key. This is the key labeled with a 1left-pointing arrow
(<==), located in the top row of keys on the IBM PC keyboard,
just northeast of the alphabetic keys.

For example, here is a line before and after typing the Rubout
key:

LISP is the language of AE_
LISP is the language of A_

Here, the underlines show the before-and-after cursor
positions.

To delete the character at the cursor position (rather than
the preceding character), invoke the DELETE-CHAR command by
pressing cCtrl-D or Del. The character at the cursor
disappears, and all characters following the cursor move one
character backward.

Two special-purpose commands can be used to delete extra
spacing in the text:

42 GOLDEN COMMON LISP USERS' GUIDE

Cctrl-\ DELETE~-HORIZONTAL-SPACE
This deletes any spaces or tabs adjoining the
point on either side.

Ctrl-+ DELETE-INDENTATION
This deletes any indentation at the beginning
of the current line, and the preceding newline
character. This action appends the current
line to the preceding line.

2.3.2 Words and Lines

Many GMACS commands specify an operation on a word or on a
line. You need to know exactly is meant by a word or a line
in order to use the commands effectively.

To GMACS, a line consists of the sequence of characters from
one newline character to the next (including the ending
newline). There may be more characters in this line than can
fit in a single line of the display screen. Then more than
one display line will be used to display the line.

Such a line in the edit buffer is called a wrapped line on the
display, because the 1line "wraps around" the end of one
display line and continues on the next. GMACS informs you
that a display line is wrapped by placing an exclamation mark
(!) in the right-most display position:

This line wraps onto the next line and the!
next line wraps onto the line after it. Th!
ere is no newline character in the text._

To GMACS, a word is any string of alphanumeric characters:
that is, letters or digits. So the end of a word is marked by
any other character: a punctuation symbol, any other special
character, or white space: a space, tab, or newline
character.

When a GMACS command specifies an operation on a "word", such
as FORWARD-WORD, it means that the operation should be applied
to the nearest string (in the correct direction) which
satisfies this meaning. Thus, FORWARD-WORD means: find the
first alphanumeric character in the forward direction, and
place the point at the end of the "word" that begins with that
character.

CHAPTER 2: The GMACS Editor 43

2.3.3 About the Cursor Motion Commands

These commands enable you to move the point around in the edit
buffer. This is needed when you want to make insertions or
deletions somewhere other than the current point, or to view
some other part of the edit buffer.

There are commands to move the cursor over a character, a

word, a 1line, a screen, or an entire buffer. The commands
come in pairs: for each unit of movement, one command moves
the cursor forward and one command moves it backward. (For

lines, there are two pairs of commands; see below.)

When the point is already at one end of the window and a
cursor motion command attempts to move it "off the end", the
window will be scrolled -- moved over the edit buffer -- so
that the needed new area of the edit buffer appears in the
window and the point moves as desired.

The NEXT-LINE (Ctrl-N) and PREVIOUS-LINE (Ctrl-P) commands
move the point up and down in the edit window by one buffer
line. The point moves up or down the window in the same
column where it began; but when a shorter line is encountered,
the point moves to the end of the line. If a line is wrapped,
a NEXT-LINE, PREVIOUS-LINE, BEGINNING-OF-LINE, or END-OF-LINE
command may move the cursor over several display lines.

The commands END-OF-BUFFER and BEGINNING-OF-BUFFER set the
current mark (see section 2.3.9). This behavior enables you to
return quickly to where you were before giving the command.

2.3.4 Table of Cursor Motion Commands

The following 1list summarizes the cursor motion commands. It
also 1lists the cursor motion keys, or keychords involving
these keys, which will execute these commands.

The command keychords should be used in preference to the
cursor-motion keys or keychords. The keys that make up a
command keychord are closer to the usual position of your
hands centered in the keyboard, while the cursor motion keys
are off to the right. Once the editing commands are familiar
to you, typing will be faster if you use the command
keychords. Oover the course of many repetitive editing
operations, this will save time.

Ctrl-F or Right Arrow
FORWARD-CHAR
Moves the cursor to the right (forward) one
character.

44

GOLDEN COMMON LISP USERS' GUIDE

Ctrl-B or Left Arrow

BACKWARD-CHAR
Moves the cursor to the 1left (backward) one
character.

Alt-F or Ctrl-Right Arrow

FORWARD-WORD
Moves the cursor forward one word.

Alt-B or Ctrl-Left Arrow

Ctrl-E

Ctrl-a

BACKWARD-WORD
Moves the cursor backward one word.

END=-OF-LINE
Moves the cursor to the end of the current
line.

BEGINNING-OF-LINE
Moves the cursor to the beginning of the
current line.

Ctrl-N or Down Arrow

NEXT-LINE
Moves the cursor to the next line (down one).

Ctrl-P or Up Arrow

Ctrl-V or PgDn

Alt-V or PgUp

ctrl-L

PREVIOUS~-LINE
Moves the cursor to the previous 1line (up
one) .

NEXT-SCREEN

Moves the window forward in the edit buffer by
about one window-length (one edit screen).
The window is positioned on the edit buffer so
that the previous 1last 1line in the window
becomes the new first 1line. (This makes it
easier to locate yourself for editing in the
new window.)

PREVIOUS=-SCREEN

Moves the window backward in the edit buffer
by about one window-length (one edit screen).
The window is positioned in the edit buffer so
that the previous first line in the window
becomes the new last line.

REDISPLAY-SCREEN

This command redisplays the entire screen so
that the current line is near the middle of
the edit window. Given a number n as
argument, the current line will be the nth
line from the top in the redisplay if n is
positive, and nth from the bottom if n is

CHAPTER 2: The GMACS Editor 45

negative.

Cctrl-2 > or End
END-OF-BUFFER
Moves the cursor to the end of the buffer.

Ctrl-Z < or Home
BEGINNING-OF-BUFFER
Moves the cursor to the beginning of the
buffer.

2.3.5 Inserting New Lines

You can insert a new line of text with the OPEN-LINE command,
executed with ctrl-o. This command inserts a newline
character at the point, and leaves the point before the
newline character:

(before Ctrl-o0) (after Cctrl-o0)
line one line one
line_two line_

two
line three

|

|

| line_
| line three
|

|

If you are in the middle of a 1line and want to add text, use
ctrl-o.

If you are at the end of a 1line and want to continue with
another line, use the ENTER Xkey. This inserts a newline
character at the point, and leaves the point at the beginning
of the new line:

Tine three

(before <ENTER>) (after <ENTER>)
| I

| line one | line one

| line_two | line

| line three | _two

| |

! I

2.3.6 Numeric Arguments (Repeat Counts)

You will often want get the effect of executing a GMACS
command a certain number of times one after the other. For
example, you may want to move the cursor forward exactly 65
characters. It would be a nuisance to repeat a cursor-motion
command this often. Instead, you can invoke the single

46 GOLDEN COMMON LISP USERS' GUIDE

command with a numeric argument which specifies how often the
command is to be repeated.

To do this, precede the command with the key sequence:
Ctrl-U <number>

That is: type Ctrl-U, then the numeric argument, and then the
command. In this context, the number is called the repeat
count for the command which follows it.

For example, to advance the cursor 65 characters:
ctrl-U 65 Ctrl-F

Ctrl-U alone, without a numeric argument specified, performs
the command 4 times. In other words, there is a "default
repeat count" of 4. To advance the cursor 4 characters:

Ctrl-U Ctri=-F

Any additional cCtrl-U which follows the repeat count argument
multiplies the repeat count by 4. This input advances the
cursor by 64 characters:

Cctrl-U 16 Ctrl-U Ctrl-F
Since the default repeat count is 4, this input does the same:
Ctrl-U Ctrl-U Ctrl-U Ctrl-F

That is: the two "extra" cCtrl-U keychords multiply by 16 the
default repeat count of 4.

Since a repeat count can result in a large change in the
buffer contents, it's important to type the key sequence with
care -- especially the value of the repeat count. To help you
verify your typing, the value of the count appears in the form
<number>: in the echo area as you type it.

Remember that the ordinary characters of the keyboard are
self-inserting input: typing the character A means "insert the
character A". Thus, to insert a row of 65 asterisks into the
buffer:

Ctrl-U 65 *

With some commands, the Ctrl-U prefix causes different
behavior unrelated to a numeric argument. This behavior will
be made explicit in the descriptions of the particular
commands.

CHAPTER 2: The GMACS Editor 47

2.3.7 Setting Upper-Case and Lower-Case

To aid you in formatting text, GMACS has commands for setting
the case of alphabetic characters to upper-case (capitals) or
lower-case (small letters).

The first three following commands are convenient for setting

the case of a word to "initial-caps", "all-small", or
"all-caps". The other two commands set the case of an entire
region (see section 2.3.9, "Manipulating Regions and Marks").
KEY COMMAND

Alt-C UPPERCASE-INITIAL

Capitalizes the letter (if any) following the
point, and lower-cases the rest of the word.
(that is, initial-caps the word starting at
the cursor).

Alt-L LOWERCASE-WORD
Lowercases the word starting at the cursor.

Alt-U UPPERCASE-WORD
Uppercases the word starting at the cursor.

Cctrl-X Ctrl-uU UPPERCASE-REGION
Puts all the letters in the current region in
upper-case.

Cctrl-X Ctrl-L LOWERCASE-REGION
Puts all the letters in the current region in
lower-case.

2.3.8 Search and Replace Commands

You often need to locate a particular character string, for
example a particular word, within a text. You may want to
delete the word, or replace it with another, or do other
editing at that location. You may want to do this at only one
instance of the word; or at every instance of the word; or at
selected instances of the word.

The FORWARD-SEARCH, REVERSE-SEARCH, QUERY-REPLACE, and
GLOBAL-REPLACE commands make these operations easy:

ctrl-s FORWARD-SEARCH
Repositions the point at the next instance of
a character string that you specify.

Ctrl-R REVERSE-SEARCH
Repositions the point at the preceding

48 GOLDEN COMMON LISP USERS' GUIDE

instance of a character string that you
specify.

Alt-% or Alt-5
QUERY~-REPLACE
Finds every instance of the string between the
point and the end of the buffer; and allows
you to selectively replace each such instance
with another pre-specified string.

Alt-*% or Alt-8
GLOBAL~REPLACE
Replaces every instance of the string between
the point and the end of the buffer, with
another pre-specified string.

Thus, QUERY-REPLACE and GLOBAL-REPLACE can perform actual
editing in the buffer. FORWARD-SEARCH and REVERSE-SEARCH only
reposition the cursor to a place where you want to edit.

When any of these commands is given, you are prompted (in the
mini-buffer) to enter the search string. The commands are not
case-sensitive to the search string you specify: a search for
"LISP" will also find "Lisp" and "lisp".

Each of the commands automatically re-positions the edit
window as necessary to show the located string. However, if
the command finds no instance at all of the specified search
string, the cursor is not moved from its original position.
Also, when QUERY-REPLACE or GLOBAL-REPLACE has searched to the
end of the buffer (whether it finds instances along the way or
not), the cursor is returned to its original position. (This
happens also if you abort QUERY-REPLACE.)

When QUERY-REPIACE finds an instance of the string, it halts
and prompts you with four options. Your choices are:

- type Y (to replace that instance and continue searching)

- type N (to leave that instance unchanged and continue
searching)

- type ! (to replace all remaining instances to the end of
the buffer, without further prompting)

- type Ctrl-G (to abort the command -- no more searching or
replacing)

CHAPTER 2: The GMACS Editor 49

2.3.9 Manipulating Regions and Marks

The editing operations described so far have included
insertions on characters, words, and lines. These are natural
units to manipulate with the editor. Ooften, however, it's
convenient to manipulate larger blocks of text: to move, copy,
or delete paragraphs or other large units.

GMACS enables you to define and manipulate text in blocks of
any size, called regions. Unlike a character or a word or a
line, a region is not "naturally" defined: it is not delimited
by blanks or newlines, for example. The limits of a region
are completely up to you.

You specify one end of a region by moving the cursor there and
then giving the SET-POP-MARK command (Ctrl=-@). This sets a
mark at the point. The mark doesn't show in the edit window;
but the message "Mark set" appears in the message area.

To specify the other end of the region, move the cursor there
(either backward or forward from the mark). Then execute the
command to do the desired particular operation on the region,
which consists of the area of the buffer between the mark and
the point.

Three basic operations can be performed on a region:
- A case operation, already described in section 2.3.7
- The command KILL-REGION (Ctrl-w)
- The command SAVE-REGION (Alt-W)

The KILL-REGION and SAVE-REGION commands are useful in
deleting, copying, or moving the contents of the region (see
section 2.3.10, "Killing and Recovering Text").

You can also specify a sequence of marks for immediate or
later use. GMACS keeps a list of these, the mark pdl -- "pdl"
for "push-down list". You can add a mark to this 1list; throw
away a mark from the 1list; or recover and use a mark which is
currently on the list. You should think of the 1list as a
stack of marks, which you manipulate with the following
commands:

Ctrl-@ SET-POP-MARK
The command SET-POP-MARK defines a mark (at
the current location of the point); and puts
the mark on the top of the stack. Each mark
already on the stack is "pushed down": the top
mark becomes the second, the second becomes
the third, and so on. The top mark is also

50 GOLDEN COMMON LISP USERS' GUIDE

called the current mark.

Ctrl-U Ctrl-@ SET-POP-MARK
This "gives you the top mark": it gets the
current mark and places the point at that
position. The mark is taken off the stack.
All the remaining marks, if any, are moved up
one: the former second mark is now the current
mark, etc.

Ctrl-U Ctrl-U Ctrl-@ .
SET-POP-MARK
This command takes the current mark off the
stack without placing the point at the mark.
All the remaining marks, if any, are moved up
one.

These three commands enable you to define, store, recover, and
delete marks whenever you 1like. Besides using a mark to
delimit a region, you may want to use a mark simply as a way
to mark a point in the buffer to which you will want to return
at some later time for further editing.

One additional command enables you to move the point quickly
to the current mark, without changing the region and without
discarding the mark:

Ctrl-Z Ctrl-X or Ctrl-Z Space
EXCHANGE~POINT-AND-MARK
This exchanges the point and the current
mark.

The cursor motion commands END-OF-BUFFER and
BEGINNING-OF-BUFFER (see section 2.3.4) set the current mark.
This behavior enables you to return quickly to where you were
before giving the command.

2.3.10 Killing and Recovering Text

In section 2.3.1, you met the DELETE commands Ctrl-D and
Rubout, which operate on individual characters. Text deleted
from the buffer with one of these commands is not saved
anywhere; so it can't be recovered.

All other commands that remove text, the "kill commands", save
the deleted text so that it can be recovered. GMACS maintains
the special area where the deleted text is saved; it is called
the kill history.

The kill commands operate on words, lines, and regions. This
is the set of kill commands:

CHAPTER 2: The GMACS Editor 51

Alt-D KILL-WORD
Moves the current word (from the point forward
to the end of a word) to the kill history.

Ctrl-Rubout BACKWARD-KILL-WORD
Moves the current word (from the point
backward to the beginning of a word) to the
kill history.

Ctrl-X KILL-LINE
Moves to the kill history the text forward
from the point to the end of the current line,
excluding the terminating newline character
(unless there is nothing else on the line to
the right of the point).

Alt-K BACKWARD=-KILL~-LINE
Moves to the kill history the text backward
from the point to the beginning of the current
line.

ctrl-w KILL-REGION
Moves to the kill history the text between the
current mark and the point.

Alt-w SAVE-REGION
Copies the text between the current mark and
the point to the kill history, without
deleting the text from the buffer.

Ctrl-2 Y DISPLAY-KILL-HISTORY
Displays in a type-out window all entries
contained in the kill history. An arrow marks
the current "top entry".

Cctrl-z O APPEND-NEXT-KILL

Causes the next kill command to either append
or prepend the killed text to the entry at the
top of the kill history. A "backward kill"
prepends, and a "forward kill" appends, when
the killed object is a word or a line.
Similarly for KILL-REGION and SAVE-REGION
(where "backward" means a region backward from
the point to the mark, and "forward" means a
region forward from the point to the mark).

If you give a sequence of kill commands without having given
any intervening commands except cursor-motion commands, then
the texts being killed are contiguous in the edit buffer.
They will be automatically strung together in the kill history
also (appended or prepended to the first-killed text). The
single entry in the kill history which is thus built up will
therefore be a copy of the entire block of text in the buffer
that was killed by the sequence of commands.

52 GOLDEN COMMON LISP USERS' GUIDE

The kill history 1is a push-down list somewhat like the mark
pdl; but there are important differences. Each entry is a
piece of text; and each entry was put on the list by a kill
command. A new entry pushes down the existing entries.
However, there is a maximum of five entries; if there are five
entries and a new entry is made, then the fifth -~ the oldest
entry -- is lost.

The YANK and YANK-POP commands recover entries from the kill
history. The overall effect of YANK or YANK-POP is to copy a
text entry from the kill history to the current point in the
edit buffer. Neither command changes either the contents or
the order of the entries in the kill history.

The general idea of using these commands is that you use YANK
to recover the top entry from the kill history; and you use a
series of YANK-POP commands to recover a lower-down entry. 1In
detail, YANK and YANK-POP operate as follows:

ctrl-Y YANK
This command copies the top text entry from
the kill history to the point (in the edit
buffer).

Alt-Y YANK-POP
There are three different cases, depending on
what preceded the YANK-POP command:

- The preceding command was not YANK or
YANK-POP. Then YANK-POP has the same
effect as YANK.

- The preceding command was YANK. Then
YANK-POP copies the second entry in the
kill history to the edit buffer,
replacing the text of the first entry
which was copied to the edit buffer by
YANK.

- The preceding command was YANK-POP. Then
YANK-POP copies the next-lower entry in
the kill history to <the edit buffer,
replacing the text of the preceding entry
which was copied to the edit buffer by
the preceding YANK-POP command. That is:
if a YANK-POP command had copied the
second entry, then another immediate
YANK-POP command would copy the third
entry. If the preceding entry is the
lowest entry in the kill history, then
YANK-POP copies the highest entry.

CHAPTER 2: The GMACS Editor 53

The net effect of the kill commands and the YANK and YANK-POP
commands is to enable you to delete, move and copy any block
of text at all by first moving it to the kill history with a
kill command, and then recovering it, if wanted, to the same
location or a new one with a YANK or YANK-POP command.

The following example illustrates killing and recovering
texts. Two lines (marked Ll and L2) in an edit buffer are
deleted one after the other, and then returned to the buffer
by YANK and YANK-POP. Note that in this series of diagrams
the cursor is moved only once, between the two executions of
the KILL-LINE command (i.e., between the second and fourth
frames). Thus the three last commands -- YANK and two
YANK-POP commands =-- are given without moving the cursor.

GUIDE

GOLDEN COMMON LISP USERS'

54

KILL HISTORY

EDIT BUFFER

o
I

KILL-LINE [Ctrl-K]

Ll

|====>]

5]

NEXT-LINE [Ctrl-N]

|====>]

=l

KILL-LINE [Ctrl-K]

L2
L1

|-===>]

YANK [Ctrl-Y]

[<m==]

YANK-POP [Alt-Y]

YANK-POP [Alt-Y]

L2
L1

| <===]

CHAPTER 2: The GMACS Editor 55

2.3.11 Editing in Two Windows

You can split the edit-window area on the edit screen into two
edit windows. All of the editing commands will apply to only
one window at a time. Then it is easy and fast to edit almost
simultaneously in the two windows.

Each window has an edit buffer associated with it. The two
buffers may be the same buffer; or they may be different
buffers, enabling you to edit two different files.

At any particular time, the cursor will be in one of the
windows, called the current window. Any input that you type
applies to the current window and the current point.

To work in the other window, give the OTHER-WINDOW command
(ctrl-X 0). This makes the other window the current window.
GMACS maintains any needed information about the inactive
window so that when you return there, you can pick up where
you left off. 1In particular, the point is maintained. There
is also a mark pdl (see section 2.3.9) for each buffer; so,
there are two mark pdl's unless the two windows have the same
buffer. However, GMACS maintains only one kill history, which
is accessible in both windows. This feature is one of the
main reasons for editing in two windows: it enables you to
merge text between two buffers with minimum effort.

Here are the commands for two-window manipulation:

Ctrl-xX 2 TWO-WINDOWS

Splits the edit window into two windows, with
the upper window showing the buffer which was
in the single window, and the lower window
showing the previously-edited buffer, if any.
(If there is none, the two windows show the
same buffer.) The upper window becomes the
current window.

ctrl-z2 Vv SCROLL-OTHER-WINDOW
Scrolls the other window forward by one
screen.

Ctrl-X O OTHER-WINDOW

Moves the cursor to the other window, which
becomes the current window.

Ctrl-X 1 ONE-WINDOW
Returns the screen to single window display.
If no prefix is used, the current window
becomes the single window; with the prefix
Ctrl-U, the other window becomes the single
window.

56 GOLDEN COMMON LISP USERS' GUIDE

2.4 Editing LISP

This section describes those GMACS commands which are designed
specifically to manipulate LISP language constructs. The
language constructs which can be edited by these commands are
the basic ones in LISP: symbols and lists and other
s-expressions. The facility for these manipulations, and for
evaluating LISP code directly from within GMACS (also
described in this section), constitutes a significant
interactive program-development tool.

Since LISP code is written as 1lines of text, all of the GMACS
commands already described in this chapter can of course also
be applied to 1lines of LISP code. However, the special
feature of the commands in this section is that they apply to
lists and other s-expressions as the basic objects of
manipulation, rather than to words or lines.

Several of the commands refer to "the end of the current
list", or "the beginning of the current s-expression", or
similar points. For this to make sense, it's necessary to
know what the "current" item means for an s-expression or a
function definition or a 1list: The current item is the
lowest-level item of that kind containing the point. The
"next" item is the first item of that kind encountered, in one
search direction or the other (the search direction is always
specified).

The "beginning" and "end" of an item need to be defined also.
Beginning and end are marked in LISP code by delimiting
characters; for the items of interest, these are as follows:

- For an atom: parentheses or white space (the space, tab,
or newline character)

- For a list: parentheses

If a command specifies an action on a current or a previous or
a next item, and there is no such item in the edit buffer,
then GMACS rings the bell and does not move the point. (In
other words, the command has no effect in that instance except
to ring the bell.)

CHAPTER 2: The GMACS Editor 57

2.4.1 Cursor Motion

These commands move the cursor to the beginning or the end of
the current s-expression.

Ctrl-z B BACKWARD~SEXP
If the preceding character is not (,), or
white space, the point is moved to just left
of the first character of the current
s-expression.

If the preceding character is), the point is
moved to just left of the matching (.

If the preceding character is white space, the
point 1is moved to Jjust left of the first
character of the preceding s-expression.

If the preceding character is (, the point
moves to the left of it.

Ctrl-2 F FORWARD-SEXP
If the next character is not (,), or white
space, the point is moved to just right of the
last character of the current s-expression.

If the next character is (, the point is moved
to just right of the matching).

If the next character is white space, the
point is moved to Jjust right of the 1last
character of the next s-expression.

If the next character is), the point moves to
the right of it.

These commands move the cursor to the beginning or the end of
the current list.

Cctrl-2 P BACKWARD-LIST
Searches backward, positioning the point just
before the first open parenthesis encountered
at the same level.

Ctrl-2 N FORWARD-LIST
Searches forward, positioning the point just
after the first 'close parenthesis encountered
at the same level.

58

GOLDEN. COMMON LISP USERS' GUIDE

The command DOWN-LIST enables you to move the point into a
list nested within the current list.

ctrl-z2 D

DOWN-LIST

Searches forward, positioning the point Jjust
after the next open parenthesis within the
current 1list. Beeps and does not move the
pgint if a close parenthesis is encountered
first.

These two sample screens illustrate the effect of DOWN-LIST:

(before DOWN-LIST command)

(ta(+b (+c 4d))

(after DOWN-LIST command)

(+a (b (+cd)))

Note that DOWN-LIST is a forward move. There is no
"backward-down-list" command.

These two commands enable you to move the cursor from the
current nested list to the list which contains it:

ctrl-z (

ctrl-z)

BACKWARD-UP-LIST
Searches backward, positioning the point just
before the first unmatched open parenthesis.

FORWARD-UP-LIST
Searches forward, positioning the point just
after the first unmatched close parenthesis.

If the point is not currently within a list, then the terminal
beeps and the point is not moved.

CHAPTER 2: The GMACS Editor 59

These two sample screens show the effect of the
FORWARD-UP-LIST command:

(before FORWARD-UP-LIST command)

(+ a (+b (+cd)))

(after FORWARD-UP-LIST command)

(+a(+b (+cd)))_

These two commands enable you to move the point to the
beginning or to the end of the current function definition.
(It's assumed that a function definition (and any other form
which is not nested within another form) always begins in
column 1 of a line.)

Cctrl-z A BEGINNING-OF-DEFINITION
Searches backward, positioning the point just
before the first open parenthesis encountered
in column 1 of a line.

Cctrl-2 E END-OF-DEFINITION

If the point is currently in a function
definition, performs a BEGINNING-OF-DEFINITION
and then a FORWARD-SEXP, leaving the point
just after the close parenthesis matching the
definition's first open parenthesis. If the
point is not in a current definition, the
point is moved to the end of the next
definition.

2.4.2 Convenience Aids to Writing in LISP

Three miscellaneous GMACS features aid you in writing LISP
programs. They are the MAKE-EMPTY-LIST command; and the
paren-flash and paren-beep features (which are not commands).

Alt-9 MAKE-EMPTY-LIST
Inserts matching parentheses around the
point.

60 GOLDEN COMMON LISP USERS' GUIDE

Whenever the point is Jjust to the right of a close
parenthesis, the corresponding open parenthesis blinks on the
screen (if it appears in the window). This is the paren-flash
feature. It is enabled automatically in GMACS. To disable
it, give the GCLISP command (setf #*flash-mode* nil) after
starting up GMACS. (That is, leave GMACS, give the command,
and re-enter GMACS. Another way to disable the feature is to
put this command into the GMACS initialization file
GMINIT.LSP.) To re-enable paren-flash, give the GCLISP
command (setf *flash-mode* t).

Whenever a close parenthesis is typed, your terminal will
beep, and the message No matching open parenthesis will be
printed, if there is no matching open parenthesis anywhere in
the buffer. (The matching open parenthesis need not be
visible in the window.) This is the paren-beep feature.

2.4.3 Indenting LISP Expressions

These commands enable you to indent a line of LISP code to
reflect the nesting level of the current form.

Ctrl-2 Q INDENT-SEXP
Corrects the indentation of the s-expression
to the right of the point.

ctrl-I INDENT-TO-LEVEL
Indents the current line to the appropriate
level with respect to the preceding 1line,
moving the code on the line to the right or
left as needed. The position of the point is
left unchanged in relation to the text.

Ctrl-J or Ctrl-ENTER
INDENT-NEWLINE
Inserts a newline character at the point and
then performs an INDENT-TO-LEVEL on the new
line thus created.

Alt-3 INDENT-FOR=-COMMENT

If the current line has no comment, moves the
point out to the comment column (inserting
spaces as necessary) and inserts a
semi-colon. If the 1line already has a
comment, the comment is indented the correct
number of spaces and the point is positioned
to the right of the semi-colon.

CHAPTER 2: The GMACS Editor 61

2.4.4 Displaying Information About LISP Code

Several commands enable you to display on-line documentation
about LISP functions. The documentation comes from the text
which would be displayed in response to the GMACS help command
ED-DOC (invoked by Alt-H D).

Ctrl-zZ L DISPLAY-LAMBDA-LIST
Displays in the echo area the lambda list of
the current function (the function at the
beginning of the current s-expression).

ctrl-z ? DISPLAY-DOCUMENTATION
Displays in a type-out window the full Help
documentation of the current function.

Alt-2 DISPLAY-MACROEXPANSION
Displays in a type-out window the
macro-expansion of the s-expression

immediately to the right of the point.

2.4.5 Killing and Recovering LISP Code

These commands enable you to kill s-expressions and comments.
As described earlier, "killing" text means removing it from
the edit buffer and moving it to the kill history. Like any
entry in the kill history, it can then be recovered by YANK
and YANK-POP commands for insertion, if desired, elsewhere in
the buffer or in another buffer. See section 2.3.10, "Killing
and Recovering Text".

Ctrl-z K KILL-SEXP
Moves to the kill history the characters from
the point forward through the end of the
s-expression immediately to the right. The
command has the same effect as the command
sequence SET-POP-MARK (ctrl-@), then
FORWARD-SEXP, and then KILL-REGION.

Ctrl-Z Rubout BACKWARD-KILL-SEXP
Moves to the kill history the characters from
the point backward to the beginning of the
s-expression immediately to the left.

Cctrl-2 ; KILL-COMMENT
Moves to the kill history any comment on the
current 1line (that is, all of the characters
from the first semi-colon through the 1last
character before the newline).

62 GOLDEN COMMON LISP USERS' GUIDE

2.4.6 Evaluating LISP Code from the Editor

Without leaving the GMACS environment, you can call on GCLISP
to evaluate LISP code you are editing and print the results to
the screen. The effect is virtually the same as if the code
were being loaded from an existing file in the interpreter
environment. This facility saves you the time and trouble of
writing out the code from the edit buffer to an on-line file,
leaving GMACS, loading the file, and returning to GMACS. The
result is much faster program editing and debugging.

The evaluation results are printed to a type-out window. If
there is an error in the code, or if you type Ctrl-Break
during the evaluation (or if the break function is part of the
code), the evaluation behavior is the same as if you were
typing the code form-by-form interactively. Evaluation and
printing of results are suspended; a new level of the listener
is invoked; and you can then perform debugging operations:
viewing the current values of variables, tracing the execution
stack, and so forth. You continue via Ctrl-G (from an error)
or Ctrl-P (from a break), as always in the listener.

Whether there was an error or not, GCLISP returns to the GMACS
environment only when evaluation and printing are complete.
You can then pick up editing where you 1left off -- in
particular, revising the forms where errors were found.

These are the commands which invoke evaluation.

Alt-1 EVAL-SEXP
Invokes evaluation of the s-expression to the
right of the point. The point is not moved.

Ctrl-z C EVAL-DEFINITION
Evaluates the current function (the function
which would be found by the command
BEGINNING-OF-DEFINITION) . The point is not
moved.

CHAPTER 2: The GMACS Editor

2.5 Table of Function Keys

The following table lists the IBM PC keyboard function
and the GMACS commands which they invoke.

KEY COMMAND NAME

F1 EXIT-EDITOR

F2 ED-HELP

F3 SELECT-BUFFER

F4 SELECT-PREVIOUS-BUFFER
F5 LIST-BUFFERS

Fé6 DISPLAY~DIRECTORY

F7 FIND-FILE

F8 READ-FILE

F9 SAVE~-FILE

F10 WRITE-FILE

63

keys

64 GOLDEN COMMON LISP USERS' GUIDE

2.6 Table of Cursor Motion Keys

This table shows the GMACS commands invoked by the IBM PC
keyboard cursor motion keys and the Insert and Delete keys.
All of these keys are bound to GMACS commands; and six of them
also invoke GMACS commands in a keychord with the ctrl key.

KEY COMMAND NAME

Home BEGINNING-OF-BUFFER
Up Arrow PREVIOUS~-LINE

Pg Up PREVIQUS-SCREEN
Left Arrow BACKWARD-CHAR

Right Arrow
End

Down Arrow

FORWARD-CHAR
END-OF-BUFFER

NEXT-LINE

Pg Dn NEXT-SCREEN
Ins OPEN-LINE
Del DELETE~-CHAR

ctrl-Left Arrow

BACKWARD-WORD

ctrl-Right Arrow

FORWARD-WORD

ctrl-Pg Up BACKWARD-SEXP

Ctrl-Pg Dn FORWARD-SEXP

ctrl-Home BEGINNING-OF-~DEFINITION
Ctrl-End END-OF~DEFINITION

CHAPTER 2: The GMACS Editor 65

2.7 Summary GMACS Command Reference (by Topic)

This section provides a summary 1listing of GMACS editor
commands, with their key bindings and meanings. The commands
are grouped by topic (e.g., search and replace commands).

2.7.1 Cursor Motion Commands
KEY COMMAND NAME AND FUNCTION

Ctrl=-F or Right Arrow
FORWARD-CHAR
Moves the point one character position to the
right (forward).

Ctrl-B or Left Arrow
BACKWARD-CHAR
Moves the point to the 1left (back) one
character position.

Alt-F or Cctrl-Right Arrow
FORWARD-WORD
Moves the point forward to the end of the
current word.

Alt-B or Ctrl-Left Arrow
BACKWARD-WORD
Moves the point backward to the beginning of
the current word.

ctrl-a BEGINNING-OF-LINE
Moves the point to the beginning of the
current line.

Ctrl-E END-OF-LINE
Moves the point to the end of the current
line.

Ctrl-N or Down Arrow
NEXT-LINE
Moves the point forward to the same column in
the next line.

Ctrl-P or Up Arrow
PREVIOUS-LINE
Moves the point backward to the same column in
the preceding line.

66 GOLDEN COMMON LISP USERS' GUIDE

Ctrl-2Z < or Home
BEGINNING-OF-BUFFER
Positions the point before the first character
in the edit buffer.

ctrl-2 > or End
END-OF-BUFFER
Positions the point after the last character
in the edit buffer.

2.7.2 Edit Window Commands
REY COMMAND NAME AND FUNCTION

Ctrl-vV or PgDn
NEXT-SCREEN
Moves the window forward in the edit buffer by
about one window-length (one edit screen).
The window is positioned on the edit buffer so
that the previous last 1line in the window
becomes the new first line.

Alt-V or PgUp PREVIOUS-SCREEN
Moves the window backward in the edit buffer
by about one window-length (one edit screen).
The window is positioned on the edit buffer so
that the previous first line in the window
becomes the new last line.

Ctrl-X 2 TWO-WINDOWS
Splits the edit window display area into two
windows, with the upper window showing the
current buffer and the 1lower window showing
the previous buffer. The upper window becomes
the current window.

Cctrl-X O OTHER-WINDOW
Moves the cursor to the other window, which
becomes the current window.

ctrl-2 V SCROLL~-OTHER-WINDOW
Scrolls the other window forward one screen.

Ctrl-X 1 ONE-WINDOW
Returns the editor display to one window by
expanding the current window to the size of
the terminal display.

Cctrl-L REDISPLAY-SCREEN
Completely redisplays the screen, leaving the
point near the middle of the edit window.

CHAPTER 2: The GMACS Editor

2.7.3 Text Deletion Commands
KEY COMMAND NAME AND FUNCTION

Ctrl-D or Del DELETE~-CHAR
Deletes the character to the

point.
Ctrl-H or Rubout
RUBOUT
Deletes the character to the
point.
Ctrl-~» DELETE-INDENTATION

67

right of the

left of the

Deletes the newline character and any
indentation at the beginning of the current
line. This action appends the current line to

the preceding line.

Ctrl-\ DELETE-HORIZONTAL~SPACE

Deletes any spaces or tabs adjoining the point

on either side.

Alt-D KILL-WORD

Moves the word to the right of the point to

the kill history.
Ctrl-Rubout BACKWARD-KILL-WORD

Moves the word to the left of the point to the

kill history.

Cctrl-K KILL-LINE

Moves all characters to the right of the point
on the current 1line to the kill history, not
including the terminating Newline character.
(If Newline is the only character to the right
of the point on the current line, it is moved

to the kill history.)

Alt-K BACKWARD-KILL-LINE

Moves all characters to the left of the point
on the current line to the kill history.

ctrl-w KILL-REGION

Moves the characters between the current mark
and the point to the kill history.

68 GOLDEN COMMON LISP USERS' GUIDE

2.7.4 Buffer and File Commands
KEY COMMAND NAME AND FUNCTION

Ctrl-X Ctrl-F or F7

FIND-FILE

Searches the set of edit-buffer names for a
specified filename. Selects the buffer with
that filename if there is one. Otherwise,
creates a buffer with that name and reads the
file into the new buffer from disk. The
command prompts you for the filename.

Cctrl-X Ctrl-R or F8
READ-FILE
Reads a specified file into the current
buffer, overwriting the existing contents of
the buffer. The command prompts for the
filename.

Ctrl-X Ctrl-s or F9
SAVE-FILE
Copies the contents of the current edit buffer
into disk storage under the current file
name. If a file with that name already exists
on disk, the command copies over the existing
file.

Ctrl-X B or F3

SELECT-BUFFER

Selects a specified buffer and displays it in
the edit window. The command prompts you for
the name of the desired buffer. Pressing the
ENTER key without entering a buffer name
selects the previous buffer. If the buffer
does not exist, a new buffer is opened having
no current file.

ctrl-X K KILL-BUFFER
Prompts for the name of a buffer and removes
it from the 1list of buffers known to the
editor.

Ctrl-X P or F4
SELECT-PREVIOUS-BUFFER
Selects the previous buffer.

Ctrl-X Ctrl-B or F5
LIST-BUFFERS _
Lists the names of all existing buffers in a
type~out window, together with the name of
associated files, if any. Modified buffers

CHAPTER 2: The GMACS Editor 69

are marked with the buffer-status (*).

Ctrl-X U UNMODIFY-BUFFER
Marks the current buffer as unmodified since
it was last read from a file or written to a
file. Clears the buffer-status (*) in the
mode line.

Ctrl-X Ctrl-w or F10

WRITE-FILE
Writes out the contents of the current buffer
to the specified file. The command prompts

you for the filename.

Ctrl-X C CHANGE-DIRECTORY
Prompts for a directory name, and changes the
current default directory to the directory
with that name.

Ctrl-X Ctrl-D or Fé
DISPLAY-DIRECTORY
Prompts for a pathname and displays a list of
all files that match it.

2.7.5 Search and Replace Commands
KEY COMMAND NAME AND FUNCTION

Ctrl-s FORWARD-SEARCH
Searches forward from the point for a
specified character string. The point moves
to the end of the first instance found. The
command prompts you for the string.

Ctrl-R REVERSE~SEARCH
Searches backward from the point for a
specified character string. The point moves
to the beginning of the first instance found.
The command prompts for the string.

Alt-% QUERY~REPLACE
Replaces selected instances of a character
string from the point to the end of the
buffer, with another specified string. At
each occurrence, you are queried as to whether
or not to replace it. The command prompts for
both strings.

Alt-* GLOBAL-REPLACE
Replaces all instances of a specified string
with another string, from the point to the end
of the buffer. The command prompts for both
strings.

GOLDEN COMMON LISP USERS' GUIDE

2.7.6 Case-Setting Commands

Ctrl-X Ctrl-vU

ctrl-X Ctrl-L

COMMAND NAME AND FUNCTION

UPPERCASE~INITIAL

Capitalizes the first 1letter of the word to
the right of the point and puts the other
characters in lowercase.

LOWERCASE=-WORD
Puts the word to the right of the point in
lowercase.

UPPERCASE~WORD
Puts the word to the right of the point in
uppercase.

UPPERCASE-REGION
Puts all the 1letters in the region in
uppercase.

LOWERCASE~REGION
Puts all the letters in the region in
lowercase.

2.7.7 Commands for Editing LISP

Ctrl-2 Rubout

COMMAND NAME AND FUNCTION

KILL-SEXP

Moves to the kill history the characters
forward from the point through the end of the
current s-expression.

BACKWARD-KILL-SEXP

Moves to the kill history the characters
backward from the point to the beginning of
the current s-expression.

KILL-COMMENT

Moves to the kill history any comment on the
current 1line (that is, all of the characters
from the first semi-colon through the last
character before the newline).

Ctrl-2 F or Ctrl-PgDhn

FORWARD-SEXP
Moves the point to the end of the s-expression
to its right.

CHAPTER 2: The GMACS Editor 71

Ctrl-Z B or Ctrl-PgUp
BACKWARD~-SEXP
Moves the point to the beginning of the
s-expression to its left.

Ctrl-Z N FORWARD-LIST
Moves the point to the end of the 1list to its
right. The command searches for a close
garenthesis and positions the point just after
t.

Ctrl-z P BACKWARD~-LIST
Moves the point to the beginning of the list
to its left. The command searches for an open
parenthesis and positions the point Jjust to
the left of it.

Ctrl-2 D DOWN-LIST
Moves the point forward in the edit buffer
until it is just to the right of the next open
parenthesis.

Ctrl-2 U, Ctrl-2 (
BACKWARD-UP-LIST
Searches backward for an unmatched open
parenthesis and positions the point to the
left of the first one encountered.

Cctrl-2) FORWARD-UP~LIST
Searches forward for an unmatched close
parenthesis and positions the point to the
right of the first one encountered.

Ctrl-2 A, Ctrl-Z [, Ctrl-Home
BEGINNING~OF-DEFINITION
Moves the point backward to the beginning of
the current LISP function.

Ctrl-2 E, Ctrl-Z], Ctrl-End
END-OF-DEFINITION
Moves the point forward to the end of the
current LISP function.

Alt-! EVAL-SEXP
Evaluates the s-expression to the right of the
point.

Ctrl-Z C EVAL-DEFINITION

Evaluates the current function.

Ctrl-Z Q INDENT-SEXP .
Corrects the indentation of the s-expression
to the right of the point.

72

Ctrl-I

Alt-3

GOLDEN COMMON LISP USERS' GUIDE

INDENT-TO-LEVEL
Indents the current line correctly.

INDENT-FOR-COMMENT

If the current line has no comment, moves the
point out to the comment column (inserting
spaces as necessary) and inserts a
semi-colon. If the 1line already has a
comment, the comment is indented the correct
number of spaces and the point is positioned
to the right of the semi-colon.

Ctrl-J or Ctrl-Enter

Alt-9

Cctrl-z L

ctrl-2z ?

Alt-2

INDENT-NEWLINE .

Inserts a newline character at the current
point, moves the point to the new line, and
inserts white space to correctly indent the
new line. The point is placed to the right of
the indentation.

MAKE-EMPTY-LIST
Inserts matching parentheses around the
point.

DISPLAY-LAMBDA-LIST
Displays in the echo window the lambda-list of
the current function definition.

DISPLAY-DOCUMENTATION
Displays in a type-out window the full Help

documentation of the current function
definition.

DISPLAY-MACROEXPANSION

Displays in a type-out window the

macro-expansion of the current s-expression.

2.7.8 Region and Kill History Commands

KEY

COMMAND NAME AND FUNCTION

Ctrl-X Ctrl-X or Ctrl-2 Space

ctrl-@

EXCHANGE-POINT-AND-MARK
Exchanges the point and the current mark.

SET-POP-MARK

Puts a mark where the point is and puts it at
the top of the mark pdl (making it the current
mark) . Prefixed with cCtrl-U, the command
positions the point at the current mark and
pops that mark from the pdl. Prefixed with
ctrl-U cCtrl-U, the command 3just pops the
current mark from the mark pdl.

CHAPTER 2:

Alt-W

Cctrl-Y

Alt-Y

Ctrl-2 O

Ctrl-2 Y

The GMACS Editor 73

SAVE-REGION
Moves a copy of a region to the kill history
without erasing it from the edit buffer.

YANK
Inserts the entry at the top of the kill
history into the current buffer at the point.

YANK~-POP

If the 1last command was YANK or YANK-POP, the
text returned to the buffer by the last
command is replaced in the buffer by the next
lower entry in the kill history. Otherwise
the command has the same effect as YANK.

APPEND-NEXT-KILL

Causes the next kill command to append the
killed text to the entry at the top of the
kill history.

DISPLAY-KILL-HISTORY
Displays in a type-out window all entries
contained in the kill history.

2.7.9 Miscellaneous Commands

KEY

COMMAND NAME AND FUNCTION

Ctrl-X Ctrl-C or Fl

Ctrl-Break

Esc

EXIT-EDITOR

Exits the GMACS environment and returns you to
the GCLISP environment from which you entered
GMACS.

(Break to listener)
DEADEND

Aborts the current command and returns you to
normal GMACS command entry.

Ctrl-G, Ctrl-X Ctrl-G, F2 G, Alt-H G

Alt-H or F2

ED-BEEP

Aborts the current command, rings the terminal
bell, and returns you to normal GMACS command
entry.

HELP-DEADEND

Displays a help menu that 1lists the options
for accessing information relating to GMACS
commands and key bindings.

74

GOLDEN COMMON LISP USERS' GUIDE

Alt-H ?, Alt-H H, F2 2, F2 H

Alt-H A or F2 A

Alt-H K or F2 K

Alt-H D or F2 D

Alt-H T or F2 T

Alt-X

Enter or Ctrl-M

Ctrl-0 or Ins

ctrl-U

ED-HELP

Displays the help guide consisting of
descriptions of the options listed in the help
menu.

ED~-APROPOS

Prompts you for a character string, and
displays in a type-out window every GMACS
command which contains the specified string in
its name.

ED-KEYCHORD

Prompts you for a keychord, and displays in a
type-out window the command associated with
the specified keychord.

ED=-DOC

Prompts you for a character string, and
displays in a type-out window the on-line
documentation for every GMACS command which
contains the specified string in its name.

ED-TEACH
Invokes the GMACS on-line tutorial.

EXTENDED-COMMAND

Any LISP function not requiring an argument,
and any GMACS command, including those GMACS
commands not bound to a keychord or key
sequence, can be invoked by entering cCtrl-Xx
and typing the name of the command.

NEWLINE

Inserts a newline character at the point. Any
characters to the right of the point move to
the new line. The point is moved to the first
position of the new line.

OPEN-LINE

Inserts a newline character after the point
(unlike <ENTER>, which inserts the newline
before the point).

NUMERIC-ARG

Used as a command prefix to establish a repeat
count for the command (valid for most
commands). - Prefixed by Ctrl-uU, a command

CHAPTER 2: The GMACS Editor 75

executes 4 times (the default repeat count is
4). Prefixed by Ctrl-U <n>, a command executes
<n> times. If <n> is negative and there is a
meaningful "opposite" version of the command,
that is executed positive-<n> times. (For
example, the command to move the cursor down
by -4 lines will move the cursor up by 4
lines.) Repetitions of Ctrl-U following the
numeric argument <n>, if any, multiply the
repeat count by 4 each time.

ctrl-Q QUOTED-INSERT .
Used for inserting as text those characters
which otherwise act as editing commands. The
character typed after Ctrl-Q is inserted into
the buffer.

Ctrl-T EXCHANGE-CHARACTERS

Transposes the two characters to the left of
the point.

76 GOLDEN COMMON LISP USERS' GUIDE

2.8 GMACS Commands: Quick-Reference Table

This section lists the key bindings and command names of GMACS
editor commands for quick referencing.

2.8.1 Cursor Motion Commands

KEY COMMAND NAME

Ctrl=-F or Right Arrow
FORWARD-CHAR

Ctrl-B or Left Arrow
BACKWARD-CHAR

Alt-F or Ctrl-Right Arrow
FORWARD=-WORD

Alt-B or Ctrl-Left Arrow
BACKWARD-WORD

Ctrl-a BEGINNING-OF~LINE
Ctrl-E END-OF-LINE

Ctrl-N or Down Arrow
NEXT-LINE

Ctrl-P or Up Arrow
PREVIOUS~LINE

ctrl-2 < or Home
BEGINNING-OF-BUFFER

ctrl-Z2 > or End
END-OF~BUFFER

2.8.2 Edit Window Commands

KEY COMMAND NAME

Ctrl-V or PgDn
NEXT-SCREEN

Alt-V or PgUp PREVIOUS SCREEN

CHAPTER 2: The GMACS Editor 77

ctrl-X 2 TWO-WINDOWS

ctrl-X O OTHER-WINDOW
ctrl-z Vv SCROLL-OTHER-WINDOW
Ctrl-X 1 ONE-WINDOW

ctrl-L REDISPLAY-SCREEN

2.8.3 Text Deletion Commands
KEY COMMAND NAME
ctrl-D or Del DELETE-CHAR

Ctrl-H or Rubout

RUBOUT
ctrl-~ DELETE-INDENTATION
ctrl-\ DELETE-HORIZONTAL-SPACE
Alt-D KILL-WORD
Cctrl-Rubout BACKWARD-KILL-WORD
ctrl-K KILL-LINE
Alt-K BACKWARD-KILL-LINE
Ctrl-w KILL-REGION

2.8.4 Buffer and File Commands
KEY COMMAND NAME

Cctrl-X Ctrl-F or F7
FIND-FILE

Ctrl-X Ctrl-R or F8
READ-FILE

Cctrl-X Ctrl-8 or F9
SAVE-FILE

Ctrl-X B or F3
SELECT-BUFFER

Ctrl-X K KILL-BUFFER

78 GOLDEN COMMON LISP USERS'

ctrl-X P or F4
SELECT-PREVIOUS-BUFFER

Cctrl-X Ctrl-B LIST-BUFFERS

Ctrl-xX U UNMODIFY-BUFFER
Ctrl-X Ctrl-w or Fl0

WRITE-FILE
ctrl-x C CHANGE-DIRECTORY

ctrl-X Ctrl-D DISPLAY~-DIRECTORY

2.8.5 Search and Replace Commands

KEY COMMAND NAME
ctrl-s FORWARD-SEARCH
Cctrl-R REVERSE-SEARCH
Alt-% QUERY~REPLACE
Alt-# GLOBAL~-REPLACE

2.8.6 Case-Setting Commands

KEY COMMAND NAME
Alt-C UPPERCASE-INITIAL
Alt-L LOWERCASE-WORD
Alt-U UPPERCASE-WORD

Ctrl-X Ctrl-U UPPERCASE-REGION

ctrl-X Ctrl-L LOWERCASE-REGION

2.8.7 Commands for Editing LISP
KEY COMMAND NAME
ctrl-2 K KILL-SEXP

Ctrl-2Z Rubout BACKWARD-KILL-SEXP

ctrl-z ; KILL~-COMMENT

GUIDE

CHAPTER 2: The GMACS Editor

Ctrl-Z F or Ctrl-PgDn

FORWARD-SEXP

Ctrl-Z B or Ctrl-PgUp

Ctrl-2

N
ctrl-z P
Ctrl-2 D

U

Ctrl-2

Ctrl-z)

BACKWARD-SEXP
FORWARD-LIST
BACKWARD-LIST

DOWN-LIST

or Ctrl=-2Z (

BACKWARD-UP-LIST

FORWARD-UP-LIST

Ctrl-Z A, Ctrl-Z [, or Ctrl-HOME

BEGINNING-OF-DEFINITION

ctrl-Z E, Ctrl-2], or Ctrl-END

Alt-1
Ctrl-2 C
ctrl-z Q
Ctrl-I

Alt-3

END-OF-DEFINITION
EVAL-SEXP
EVAL-DEFINITION
INDENT-SEXP
INDENT-TO-LEVEL

INDENT-FOR-COMMENT

Ctrl-J or Ctrl-Enter

Alt-9

Ctrl-Z L

Ctrl-2

L

Alt-2

INDENT-NEWLINE
MAKE-EMPTY-LIST
DISPLAY-LAMBDA-LIST
DISPLAY~DOCUMENTATION
DISPLAY-MACROEXPANSION

2.8.8 Region and Kill History Commands

KEY

COMMAND NAME

Ctrl-X Ctrl-X or Ctrl-Z Space

ctrl-@

EXCHANGE-POINT-AND-MARK

SET-POP-MARK

79

80 GOLDEN COMMON LISP USERS'

Alt-w SAVE-REGION

ctrl-y YANK

Alt-Y YANK-POP

ctrl-z o APPEND-NEXT-KILL
ctrl-z Y DISPLAY-KILL-HISTORY

2.8.9 Miscellaneous Commands
KEY COMMAND NAME

Ctrl-X Ctrl-C or Fl
EXIT-EDITOR

ctrl-Break (Break to listener)

Esc DEADEND

Ctrl=-G or Ctrl=-X Ctrl-G or Alt-H G or F2 G

ED-BEEP
Alt-H or F2 HELP-DEADEND

Alt-H ? OR F2 ?
ED-HELP

Alt-H A or F2 A
ED-APROPOS

Alt-H K or F2 K
ED-KEYCHORD

Alt-H D or F2 D
ED-DOC

Alt-H T or F2 T
ED-TEACH

Alt-X EXTENDED-COMMAND

Enter or Ctrl-M
NEWLINE

Ctrl-0 or Ins OPEN-LINE
Cctrl-U NUMERIC-ARG

ctrl-Q QUOTED-INSERT

GUIDE

CHAPTER 2: The GMACS Editor

Cctrl-T EXCHANGE-CHARACTERS

8l

Chapter 3

on-Line Help Facilities

This chapter describes the main on-line help facilities of
GCLISP. These facilities are there to aid you when you are
constructing a GCLISP program and need information about
particular functions or symbols.

When you press Alt-H, the resulting display shows the types of
help available and how to invoke them:

To invoke one of the following GCLISP applications,
type the indicated keychord:

Alt-E The LISP Explorer, an on-line tutorial
Ctrl-E The GMACS Editor

To get help in one of the following areas,
type the indicated keychord:

Alt-K "Keys" - Displays a list of the actions

Alt-A "Apropos" - Lists all symbols whose names

contain a specified string. Prompts for the string.

Alt-D "Documentation" - Displays the on-line documentation

for a specified function, variable, or type name.
Prompts for the name.

Alt-L "Lambda-List" - Displays the arguments for a

specified function. Prompts for the function name.

|
|
|
|
|
|
|
|
|
|
|
I
| invoked by special keys and keychords.
|
|
|
|
|
|
|
|
|
|
|
|
|

Alt-A, Alt-D, and Alt-L give detailed information about GCLISP
functions and symbols. These specific help options correspond
to GCLISP functions:

- "apropos": the apropos function

CHAPTER 3: On-Line Help Facilities 83

- "Documentation": the doc function
- "Lambda List": the lambda-list function
That is, you can get each kind of help either by typing the

keychord -- for example, Alt-A -- or by a function call =-- for
example, (apropos string). The sections of this chapter

describe each of these options under its function name. (No
GCLISP function corresponds to Alt-K, the "Keys" help
(described in section 1.4, "Keychord Commands to the

Interpreter").)

84 GOLDEN COMMON LISP USERS' GUIDE

3.1 APROPOS

apropos prints to the screen the names of all LISP symbols
that contain the string specified as the apropos argument.
This function is particularly useful for looking up LISP
symbols with names you cannot remember.

The type of each LISP symbol (e.g., "function") is also
printed.

There are no restrictions on the string argument. (In
particular, you can give the null string as the argument; then
the names of all currently-defined LISP symbols will be
printed to the screen,; because the null string is contained in
every name. This has the same effect as typing Alt-H A
<ENTER>.)

By way of illustration, suppose that we give the symbol foo
the following function definition:

defun foo (a b) (+ a b))

I

[* (
| Foo
| *
I

If we now apply apropos to the symbol foo, this screen
appears:

* (apropos 'foo)
FOO - function, arglist: (A B)

IL

* 2

The response shows that foo is currently the only LISP symbol

whose print-name contains the sequence of letters "FOO".

Furthermore, the symbol foo is a function name; and its
9

arglist 1is (A B).

9. Another name for lambda~-list. See section 3.3,
"ILAMBDA-LIST".

CHAPTER 3: On-Line Help Facilities 85

The function apropos returns the value nil, as shown above.
(The LISP names that apropos prints to the screen are not
returned values.)

With foo already defined as a function, we can further define
foo as a variable and assign it the string "foo adds two
numbers" as follows:

(setf foo "foo adds two numbers")

If apropos is now applied to the string "foo", the response is
different from before:

* (apropos 'foo)
FOO - bound
FOO - function, arglist: (A B)

NIL
*

The new entry for foo in this display indicates that foo is a
variable bound to some value. The previous entry for the
function foo appears as the second line in the display.

If the string argument in the apropos function call is not
contained in any GCLISP print-name, apropos simply prints the
string with no information, as in this example:

* (apropos 'baz)
BAZ

NIL
*

3.1.1 Using APROPOS to Find the Right Function

You may want to call apropos with the name of a particular
GCLISP function as argument for the purpose of seeing what
related functions are available.

For instance, you may be developing a LISP program in which a
series of GCLISP objects should be put into a 1list. To see
the names of functions, one of which might perform this task,

86 GOLDEN COMMON LISP USERS' GUIDE

use the string "list" as an argument to apropeos:

|
| * (apropos "list")

| MULTIPLE~-VALUE-LIST - special form
| *PACKAGE-ALIST* - bound

| LISTP - function

| COPY-ALIST - function

| VALUES-LIST - function

| LIST - function

| APROPOS-LIST - function

| *LISTENER-NAME* - bound

| MAKE-LIST - function

| :LISTEN - bound

| DOLIST - special form

| IE~-LAMBDA-LIST - function, arglist: (&OPTIONAL BUF IGNORE)
| LIST=-LENGTH - function

| SETPLIST - function

| SYMBOL~PLIST - function

| LIST* - function

| LISTENER - function

| $LISTENER - bound

| MAPLIST - function

| LAMBDA-LIST - macro

| COPY-LIST - function

|

|

|

|

|

NIL
*

Every currently-defined GCLISP symbol that contains the string
"list" in its name appears in the display (including the names
of functions and variables you may have defined, as well as
the names of GCLISP interpreted functions).

An arglist is included in the display produced by apropes only

if the name names an uncompiled function. In the current
example, every function entry except ie-lambda-list is a
compiled function. (To find the arglist of a compiled

function, use the doc function.)

The empty list -- the list () =-- appears as the arglist of any
function which accepts no arguments.

To find out what each of the functions listed in this example
actually does, use the doc function, described next.

CHAPTER 3: On-Line Help Facilities 87

3.2 DOC

The doc function can help you in the way a dictionary helps
you with unfamiliar words: It provides definitions of
individual functions and variables.

The doc function call takes a LISP name as its argument, as in
this example:

* (doc 'listp)

LISTP is a Function.
(LISTP object) =-> BOOLEAN

This function is a predicate which is true
if and only if OBJECT is is of type LIST.
An object is of type LIST if and only if it
is either of type CONS or type NULL.
(LISTP object) <=> (OR (CONSP object)
(NULL object))

NIL

In this example, the first line printed to the screen says
that the object named by "listp" is a function. The second
line gives the syntax for the function 1listp. It says that a
function call on listp has one argument, which can be any LISP
object; and that the return value of the function call is a
10

boolean. A description of what the function does follows in
the display. The last item printed is the nil return value
from doc.

10. These conventions for describing LISP syntax are specified
in Chapter 1 of the GCLISP Reference Manual.

88 GOLDEN COMMON LISP USERS' GUIDE

The apropos function will display the names of both
pre-defined and user-defined LISP symbols. doc, however, will
display information only about pre-defined functions and
variables, not user-defined functions and variables:

* (doc 'foo)
No documentation found for FOO

NIL
*

CHAPTER 3: On-Line Help Facilities 89

3.3 LAMBDA-LIST

The function 1lambda-list is wuseful for finding the input
requirements of a given function. 1lambda-list accepts a LISP
symbol as an argument, and takes an optional second argument.
If the symbol names a function, then lambda-list returns the
function's lambda-list: a list of the input parameters to the
function.

lambda-list behaves differently based upon the type of
function named by its symbol argument:

- If the argument names an interpreted function,
lambda-1list returns the function's lambda-list and nil.
The optional second argument is unused.

- If the argument names a compiled function and the
optional argument is nil (or is not given), lambda-list
searches the on-line documentation for the function, and:

* if on-line documentation for the function is found,
lambda-list returns the documented lambda-list and
nil;

* if the function's documentation is not found,
lambda-1list returns the symbols nil and :not-found.

- If the argument names a compiled function and the
optional argument is present and not nil, lambda-list
returns nil and :not-found.

- If the argument does not name a function, lambda-list
returns nil and :not-found.

90 GOLDEN COMMON LISP USERS' GUIDE

To illustrate 1lambda-list with an interpreted function,
suppose that foo is defined as follows:

(defun foo (a b) (+ a b))

When lambda-list is applied to this function, the result is:

|

| * (lambda-list 'foo)
| (A B)
| NIL
| *

|

lambda~-list returned (A B), the 1lambda-list of the function
foo.

Here is lambda-list applied to a non-interpreted function (a
compiled function):

* (lambda-list 'listp)
(|object|)

NIL
*

lambda-list returned (|object|), the 1lambda-list for listp as
it appears in the on-line documentation.

Here is 1lambda-list applied to a symbol baz which does not
name a function:

* (lambda-list 'baz)
NIL

s NOT-FOUND

*

CHAPTER 3: Debugging in GCLISP 91

Chapter 4

Debugging in GCLISP

While building a LISP program, you may want to test it
periodically to make sure that the various components function
properly. If the program does not work the way you intend,
you will have to find the source of the problem and correct
it.

To locate problems, use the GCLISP debugging utilities. There
are five of these:

- break or Ctrl-Break

- Dbacktrace or Ctrl-B

- trace
- step
- pprint

In this chapter we discuss how to use these functions,
individually and in combination, to debug your programs.

92 GOLDEN COMMON LISP USERS' GUIDE

4.1 BREAK

The function break suspends the current listener and starts a
new one. At this new listener, you have all of the services
available at Top-Level, the level-0 listener.

break can be invoked by calling it or by depressing the
keychord Ctrl-Break. A second type of program suspension may
occur when the evaluator encounters an error. To illustrate,
we use a function foo that takes two arguments, and apply it
to only one argument. foo is defined as follows:

(defun foo (a b) (+ a b))

When we evaluate foo with only one argument, the results are
as follows:

* (foo 2)

|
|
|
| ERROR:

| Not enough arguments for: FOO
| While evaluating: (FOO 2)

| 1> _

|

The new 1listener 1level is identified by the new prompt, 1>.
The number used with a prompt always tells you which listener
level you are on. (The Top-Level prompt is the asterisk.) If
you make an error at level 1, another listener is established,
with the prompt 2>.

To return from this error level to the previous listener, use
the function clean-up-error, which you can invoke with the
keychord Ctrl-G. The following screen illustrates recovering
from an error using clean-up-error:

* (foo 2)

|
|
|
| ERROR:

| Not enough arguments for: FOO
| While evaluating: (FOO 2)
| 1> (clean-up-error)
| Back to: Top-Level
| *
|

CHAPTER 4: Debugging in GCLISP 93

clean-up-error places you back at Top-Level with the asterisk
prompt.

In this example, the error is straightforward enough that you
probably do not need any further information to understand and
correct it. However, in cases where this is not true, you can
obtain information about the interrupted evalution. One way
to access this stored information is with the function
backtrace (see section 4.2, "BACKTRACE").

You can use break for debugging or testing your own LISP
programs by including a call to break in your program. When
break is called, it suspends the processing of your program
and starts a new listener 1level, where you can perform other
LISP evaluations. When you are ready, Yyou can resume the
evaluation of your program by entering the function continue,
or the keychord Ctrl-P.

You can include a message as an argument to break, which
prints to the screen when the break level is invoked. This
message can remind you of where you are in your program, what
you want to test, etc. You can also include the values of
variables in the break message. To do this, use the ~s
directive of the format function for each variable, and
include the variable names for each ~8 as separate arguments
to break:

(break '"message with a=~S5 and b=~8" a b)

Note that you must enclose your message in quotes and include
the format arguments (e.g., a and b) in the order of their
appearance in the message.

To illustrate break, we define the following simple program:

* (defun foo (a b)
(setf a (+ a 1))
(setf b (+ b 1))
(break "in foo with a=~S and b=~S" a b)
(* a b))
FOO
*

This program simply adds one to the values of its two numeric
arguments. The new values for the variables are then
displayed in a break message. When the program continues from
the break, it multiplies the new values together, returning
the result.

94 GOLDEN COMMON LISP USERS' GUIDE

If we apply foo to the numeric values 3 and 5, we obtain the
following:

* (foo 3 5)
in foo with a=4 and b=6
1>

At the new 1listener 1level you can carry out whatever
evaluations you wish. If you had not included the values of a
and b in the break message, you might evaluate a and b.

Once you have concluded whatever evaluations you want to
perform at the break level, type (continue), or ctrl-P, to
resume evaluation of the program. The following sample screen
illustrates continue using the simple program from the last
example:

* (foo 3 5)

in foo with a=4 and b=6
1> (continue)

24

*

break and continue do not display debugging information so
much as create conditions whereby debugging information can be
more easily obtained. One function that obtains such
information is backtrace.

CHAPTER 4: Debugging in GCLISP 95

4.2 BACKTRACE

The procedure backtrace displays LISP forms that have not
completed evaluation. backtrace can be used at any time, but
is most helpful at a break or error level. The keychord
Ctrl-B may also be used to initiate a backtrace. If used at
Top-Level, it prints only itself as the LISP form which is
incomplete in its evaluation. When there is more than one

11
incomplete form, as is the case at a break or error level,
the form encountered most recently prints first, the preceding
form prints second, and so on. Following the display of
forms, backtrace always returns the value nil.

We can illustrate backtrace with the same program used to
illustrate break. We defined the program as follows:

(defun foo (a b)
(setf a (+ a 1))
(setf b (+ b 1))
(break "in foo with a=~8 and b=~S8" a b)
(* a b))

If we execute backtrace at the break level produced by foo, we
obtain the following:

* (foo 3 5)

in foo with a=4 and b=6

1> (backtrace)

(BACKTRACE)

(BREAK "in foo with a=~S and b=~S" A B)
(FOO 3 5)

NIL

1> _

In the series of LISP forms that print to the screen,
backtrace itself is first because it 1is the most recently
encountered form that has not completed evaluation. The call
to break is the next form that prints, since it is the form

11. There will always be at least two incomplete functions
when break is invoked at a break level: backtrace and break.

96 GOLDEN COMMON LISP USERS' GUIDE

encountered prior to backtrace that is incompletely
12

evaluated. foo is the last incompletely evaluated form that

prints. It began the evaluation process that produced the

break level. The 1last object to print is nil because nil is

the value backtrace returns.

The procedure backtrace can be particularly useful in cases
where there is a problem within a series of nested functions.
If the most deeply nested function calls break or produces an
error, you can then evaluate backtrace at the break level to
see the arguments for each of the nested functions. In many
situations this will help you 1locate the source of the
problem.

12. The evaluation of break will not complete until the
function continue is typed.

CHAPTER 4: Debugging in GCLISP 97

4.3 TRACE

The trace procedure dynamically displays the input values and
the output values (i.e., the arguments and the returned
values) of functions. This facility is useful when it is not
clear that the interfaces between your procedures are
correctly implemented.

To use trace, include the function you want to test as an
argument. Then, each time the specified function is
evaluated, its input and output values print to the screen, as
in this example with the function append:

* (trace append)

|
=
| * (append '(12)'(34))

| Entering: APPEND, Argument list: ((12) (34))
| Exiting: APPEND, Value: (12 34)
|
|
|

I

(12 34)
*

Caution: Apply trace carefully to frequently-used systenm
functions such as first, rest, and cons, as this can severely
slow down computation time. Also, tracing the function trace
will cause the system to loop as trace tries to trace itself.

You may turn trace off either for a particular function
currently being traced, or for all functions currently being
traced:

* (untrace append)
(APPEND)

* (trace ncons append)
T

* (untrace)

(NCONS APPEND)
*

Each of these untrace calls returns a list of the names of the
functions being turned off. (untrace append) turned off the
trace of append initiated in the preceding screen. The 1list
(ncons append) shows that (untrace) turned off the trace of
ncons and append, and that no other functions were currently
being traced.

98 ’ GOLDEN COMMON LISP USERS' GUIDE

4.4 STEP

The GCLISP step procedure allows you to view each step in the
evaluation of a LISP form and control the progress of the
evaluation.

To use step, enter it with the form in question as its
argument. For example, to evaluate the form (+ 1 (+ 2 3))
using the step macro, enter the following:

(step (+ 1 (+ 2 3)))

step prints the form to the screen before any evaluation takes
place. With the above sample form, the screen would appear as
follows:

* (step (+ 1 (+ 2 3)))
(

I
I
| (+1 (+23))_
[

Oonce you have entered the step function, you have a series of
options which allow you to continue the computation. Each
time an option completes, you may again choose among them
until evaluation of the entire form completes. All the
options for the step function are executed with the cursor
motion keys located at the right of the keyboard. Note: Check
to be sure that the NumLock key has not been pressed to shift
the cursor motion keys to numeric keypad. If it has, press it
again to undo the effect.)

If you are not sure what option you want or cannot remember
what all of the options are, you can type '?' and a list of
the options will appear on the screen as follows:

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <>
STEP commands are:
arrow-dn ==> Step to next level down
arrow-rt ==> Value of this form
arrow-up ==> Step to next level up
arrow-lt ==> PrettyPrint this form
Ctrl-Break ==> Enter Break Level
END ==> Complete without more Stepping

(+ 1 (+ 2 3))_

CHAPTER 4: Debugging in GCLISP 99

4.4.1 The arrow-dn Option

The option invoked with arrow-dn (the down-arrow key) proceeds
through evaluation with the smallest sub-forms. If the
current form (i.e., the one last printed to the screen) is
such a sub~-form, it is evaluated, and the next form prints to
the screen. If the current form can be divided into further
sub-forms, the next smallest sub-form prints to the screen.

If we use just the arrow-dn option for evaluating the sample
form (+ 1 (+ 2 3)), the response is as follows:

1. The first sub-form 1 prints to the screen with the first
execution of arrow-dn.

2. With the second execution of arrow-dn, the first
sub-form 1 evaluates (since this form cannot be divided
into any further sub-forms) and the next form, which is
(+ 2 3), prints to the screen.

3. Since (+ 2 3) divides into sub-forms, the first sub-form
within (+ 2 3), which is 2, prints on the third
execution of arrow=-dn.

4. On the fourth execution, the form 2 evaluates and the
form 3 prints, as the next sub-form within (+ 2 3).

5. On the next evaluation of arrow-dn, the form 3
evaluates. Since this is the last sub-form of (+ 2 3),
(+ 2 3) also evaluates; since (+ 2 3) is the 1last form
in the overall form, the overall form evaluates too.

The screen display for this process is as follows:

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <arrow-dn>
1 <arrow-dn>
1=1
(+ 2 3) <arrow-dn>
2 <arrow-dn>

2 =2

3 <arrow-dn>
3 =3

(+ 2 3) =5

(+1 (+23)) =6
6
*

100 GOLDEN COMMON LISP USERS' GUIDE

4.4.2 The arrow-rt Option

The arrow-rt option evaluates the current form (i.e., the one

last printed to the screen) and prints the next form onto the
screen.

At the beginning, the entire form is the current form. If we
choose arrow-rt as the first option, the entire form is
evaluated and the return value prints to the screen. If we
begin instead with the arrow=-dn option, which prints the form
1 to the screen, and then choose the arrow-rt option, it
evaluates the form 1 as the current form and prints the next
form to the screen. If we again select the arrow-rt option,
it evaluates the current form (i.e., (+ 2 3)), and because it
is the 1last form in the overall form, the evaluation for the
entire form prints to the screen too.

Here is how the screen looks in response to the sequence of
options just discussed:

* (step (+ 1 (+ 2 3)))

(+ 1 (+ 2 3)) <arrow=-dn>
1 =-=> 1 <arrow-rt>
(+ 2 3) ==-> 5 <arrow-rt>
(+ 1 (+ 2 3)) =6

6

*

The initial arrow=-dn option prints the form 1 that appears
directly below the printing of the entire form. The
evaluation of 1 (represented by the arrow to its right and the
1 to the right of the arrow) and the printing of the next form
(i.e., (+ 2 3)) occurs with the first execution of the
arrow-rt option. When this option is chosen again, it
evaluates the current form (i.e., (+ 2 3)) and, because it is
the last form in the overall form, evaluates the entire form
too.

CHAPTER 4: Debugging in GCLISP 101

4.4.3 The arrow-up Option

Arrow-up evaluates the current form (i.e., the one printed on
the screen) and the enclosing form.

If we again start with the arrow-dn option and then continue
with the arrow-up option, first arrow-dn prints the form 1,
then arrow-up evaluates 1 (the current form) and (+ 2 3) (the
next form). This completes evaluation of the entire form,
which prints to the screen. The following sample screen
illustrates:

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <arrow=-dn>
1 <arrow-up>

(+ 1 (+23)) =6

6

*

4.4.4 Other Options

There are three other options with the step function not
specifically associated with evaluation. One of these,
arrow-lt, pretty prints the current form (i.e., prints it
again in a human readable format; see section 4.5, "PPRINT,"
for an explanation of pretty printing).

Another option, Ctrl-Break, establishes a new listener level.
At the listener, the following variables are available for
evaluation: step-form, which is bound to the current form;
step-values, which is bound to the values list returned from
the stepped evaluations completed thus far; and step-value
(without the "s"), which is bound to (first step-values).

102 GOLDEN COMMON LISP USERS' GUIDE

The following sample screen shows the Ctrl-Break option used
after two executions of the arrow-dn option. At the listener,
each of the special variables for this option is evaluated.

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <arrow-dn>
1 <arrow=-dn>
l1=1
(+ 2 3) <Ctrl-Break>
STEPPER BREAK
1> step-form
(+ 2 3)
1> step-values
(1)
1> step-value
1
1> (continue)
Back to STEP with form:
(+ 2 3)_

Notice that step=values in this case returns a list of only
one value (the value of step-value). This is because the
previous form (i.e., 1) did not return multiple values.

The last option, end, turns off evaluation by steps and causes
the entire form to be evaluated. The following sample screen
shows the end option after an initial execution of the
arrow-dn option.

|

| * (step (+ 1 (+ 2 3)))
| (+ 1 (+ 2 3)) <arrow-dn>
| 1 <end>
|

| 6

| *

|

CHAPTER 4: Debugging in GCLISP 103

4.5 PPRINT

The pretty printer displays text in an easily-read format. It
enables you to analyze components of a LISP function more
easily. Suppose you have entered this function definition:

|

| * (defun foo (a &optional b c)

| (do ((x a (+ 1 (first b)))

| (Y b (rest b))

| (z ¢ (rest c¢)))

| ((null y) (print "stopped"))
| (print 1)

| (print 2)

| (print 3)))

| Foo

| *

I

The function symbol-function displays the function definition
of foo with no regard for the program structure:

|
| * (symbol-function 'foo)

| (LAMBDA (A &OPTIONAL B C) (DO ((X A (+ 1 (FIRST B)))

| (¥ B (REST B))(Z C (REST C))) ((NULL Y) (PRINT "stopped"))
|

|

|

(PRINT 1) (PRINT 2) (PRINT 3)))
*

For a clearer representation, use the pprint function:

* (pprint (symbol-function 'foo))

(LAMBDA (A &OPTIONAL B C)
(DO ((X A (+ 1 (FIRST B)))
(Y B (REST B))
(z ¢ (REST C)))
((NULL Y)
(PRINT "STOPPED"))
(PRINT 1)
(PRINT 2)
(PRINT 3)))

104

GOLDEN COMMON LISP USERS' GUIDE

4.5.1 Formatting Rules Used with PPRINT

The GCLISP pprint function prints objects in accord with the
following set of rules.

1.

2.

Individual numbers and symbols print just as they do
with the ordinary prinl function.

Lists have various formats depending on the first
element of the list. If the first element is a symbol,
then pprint looks at its pprint property, which
determines how the list will pretty print.

When there is no value associated with pprint on the
symbol's property 1list (i.e., when (get (first 1list)
pprint) => nil), then pprint assumes that the 1list has
no special format requirements and prints it on a single
line if possible. If the list will not fit on one line,
then each element prints on a separate line, all
indented the same number of spaces.

If the value of the pprint property is a symbol, the
function pprint assumes the symbol names a function,
which it calls to print the 1list. When pprint calls
this function, it passes its argument list to it. The
following sample screens illustrate the process of:

- assigning the name of a print function to the
pprint property of a symbol;

- defining that print function; and
- pretty printing a 1list whose first element has as

the value of its pprint property the defined print
function.

First the pprint property for a symbol foo is set to the
value foo-pprinter:

|

| * (setf (get 'foo :pprint) !'foo-pprinter)
| FOO-PPRINTER
| *

|

This causes the function pprint to call foo-pprinter any
time its argument is a 1list whose first element is the
symbol foo. foo-pprinter then prints the 1list that
begins with foo.

CHAPTER 4: Debugging in GCLISP 105
The function foo-pprinter is defined as follows:

|

| * (defun foo-pprinter (object)
| (prinl 'foo)

| (dolist (I (rest object))
| (terpri)

| (prinl I))
|

|

|

|

)
FOO-PPRINTER
*

First foo-pprinter calls prinl to print "foo." Then
dolist is called and isolates successive elements of the
list represented by object, which consists of the
arguments pprint passes to foo-pprinter. For each
element, the function terpri ("terminate print") sends a
Newline character, so that the element is printed on a
new line by prinl.

Thus, if we pretty print the 1list (foo 1 2 3), the
result is as follows:

* (pprint '(foo 1 2 3))
FOO

[

pprint calls foo-pprinter, which prints foo and then
prints each of the other elements in the 1list on
successive lines. Finally, the pprint function returns
the value nil.

Thus, using a function name as the value of the pprint
property of the first element of a list enables you to
control how pprint formats the printing of the 1list.
You can define formatting routines for special lists, or
even completely redefine the pprint facility.

106 GOLDEN COMMON LISP USERS' GUIDE

5. If the value of the pprint property is not a symbol, it
must be a list (called a template) that provides control
information for the system-supplied pprint function.
The template is really a list of sub-lists, with each
sub-list controlling a separate component of the form in
question (i.e., the argument to pprint). For example,
the do special form is composed of three parts: The
iterators, the termination clause, and the body of the
do. The symbol do contains on its property 1list an
entry for the pprint property as follows:

((do-bindings 5) (prog~-body 5) (prog-body-rest 2 T))
The keywords
do-bindings, prog-body, and prog-body-rest

specify the display for the first, second, and remaining
sub-forms of do. The numbers associated with each
keyword specify the number of characters indented for
each sub-form.

Note that the file \LISPLIB\PPRINT.LSP, provided in your
GCLISP package, contains a detailed specification of the
variables and functions available to user-defined pprint
functions. This file includes the full specification of the
keywords for templates, as well as a list of all forms which
pprint supports. Please refer to this file for information
needed to modify and extend the GCLISP pretty print facility.

Chapter 5

An Application: The PIANO Program

Now that you have some familiarity with the GCLISP
environment, you are ready to build GCLISP applications. 1In
this chapter we present the development of a sample GCLISP
program, which you can use as a model to get started.

For this sample application, we choose a program that alters
the function of several keyboard characters, because this type
of program has a general usefulness. Even though you may not
have particular interest in the application developed here, it
is likely that you will eventually want to alter the functions
assigned to keyboard characters.

The program we present here turns the PC keyboard into a piano
keyboard. To sidestep the difficult hardware interface
required for this program, we start with certain GCLISP
functions that produce elements of music., Discussion of these
functions (and the hardware interface they require) also
appears in this chapter, but after the general discussion of
the program has concluded. This way, you may choose not to
read it without having to skip pages. Finally, we have tried
to orient the discussion toward ideas that may help you in
developing GCLISP applications.

Note: After reading this chapter, you can invoke the PIANO
program by calling the function piano.

108 GOLDEN COMMON LISP USERS' GUIDE

5.1 Elements of the Piano Keyboard Program

To build a program that defines the computer keyboard as a
piano keyboard, we must call a routine that plays notes each
time certain keyboard characters are typed. From this
functional description we can identify three elements that we
need for our piano keyboard program:

1. a routine that plays musical notes;
2. a mapping of keyboard characters to musical notes; and

3. a program structure that reads keyboard characters and
calls the music routine to play the note mapped to that
particular keyboard character.

The first of these three components to our program is provided
through a function called play, which takes three different
kinds of arguments:

- keyword designations for notes (e.g., :C for the musical
note C);

- octave values that raise and lower the octave in which
the notes play; and

- time values for the duration a note plays.

We analyze the structure of play at the end of this chapter
(sections 5.2.6 - 5.2.7). For now we concentrate on defining
the second and third elements of the piano keyboard program.

5.1.1 Mapping Keyboard Characters to Notes

To define the terminal keyboard in a way that approximates a
piano keyboard, we can pick two rows of keys: one for the
whole tones (the white keys on the pianc) and one for the half
tones (the black keys on the piano). Further, we can let the
upper row of keys =-- the ones closer to the top of the
keyboard =-- represent the black keys, and the lower row of
keys represent the white keys. This way, the terminal keys
representing the black piano keys are both in-between and
recessed from the terminal Xeys representing the white keys,
as on a piano.

Since there are not 88 keys on the computer keyboard, as there
are on a piano keyboard, we need to define a particular set of
keys on the computer keyboard that can be used to play all (or

CHAPTER 5: An Application: The PIANO Program 109

most) of the notes on a piano. For this we have recourse to
the twelve notes of the conventional musical scale. A scale
provides an appropriate subset of notes, because the piano
keyboard is such that any row of twelve Xkeys plays one full
scale. Each scale of twelve notes is exactly one octave
higher or lower than the one next to it. Therefore we can use
twelve notes and a set of octave values to cover the range of
notes on a piano. That is, we can raise or lower the octave
value of any of the twelve notes on a scale so as to play any
of the eighty-eight keys on the piano. For instance, if we
define the note C of our scale as middle C on the piano, we
can change the octave value to play the other C notes on the
piano keyboard.

If we start by mapping note C of the scale to the A-key on the
keyboard, mapping C# to the W-key, and so on moving up the
scale and across the keyboard from left to right, our piano
keyboard will have the correlation between notes and keyboard
characters shown in Figure 1.

| |
| KEY NOTE |
| |
| A --=> o] |
| W ——> C# |
| S m==> D I
| E ---> D |
| D --—> E |
| F —> F |
| T ---> F# |
| G ——> G |
I Y —-——=> G# |
| H —_— A |
| U ---> A# !
| J —— B |
| K --=> c |
| |

FIGURE 1. The Mapping Between Keyboard Keys and Musical Notes

5.1.2 Reading Keyboard Characters

Now that we have defined the keyboard as a piano keyboard, we
can proceed to the third element of the program: developing a
program structure that reads keyboard characters and calls the
play function to produce the note associated with that
character. Since this really involves two steps -- reading
the characters and calling the play routine -- we can treat
each separately.

110 GOLDEN COMMON LISP USERS' GUIDE

We begin with reading characters from the terminal. To read a
character from the keyboard, we can use the read-char
function. Since we will want to read every keystroke to the
program (assuming only keys that have been defined as notes
will be pressed), we set up a loop that repeatedly reads a
character.

The GCLISP function for building such a 1loop is do. The
syntax for do can sometimes be complex, but for our purposes
it can be relatively simple. Since the initial function call
is read-char and the successive function calls are also
read-char, all we need do to set up a do loop is pick a
variable name for the character read by read-char. If we use
the symbol char as this variable name, then our do routine
looks like this:

(do ((char (char-upcase (read=-char))
(char-upcase (read-char))))
(es0)ees)

This form reads a character from the terminal and assigns its
upper-case value to the variable char.

The meta-form (...) is for the end test for the do loop. For
the time being, we leave this test out. The three dots and
the final parenthesis indicate that the body of the do is also
unspecified as yet.

5.1.3 Representing Keyboard Characters in ASCII Code

When the GCLISP function read-char returns the character it
reads, it transforms it into ASCII code form. This means that
the value assigned to the variable char (each time a keyboard
character is read) is the ASCII representation of that
character. Because the value of char needs to be matched with
another character, that other character has to be in ASCII
format also.

Instead of looking up ASCII code for characters to do this, we
can use the sharp-sign-backslash macro (#\). When this macro
precedes an alphanumeric character, it signals the GCLISP
reader to produce the ASCII code for the character. That is,
to represent the character A in ASCII code, we write:

#\A

5.1.4 The Program Structure for Calling the PLAY Routine

To formulate the basic program structure for our piano-
keyboard, we need to be able to call the function play with
the appropriate note or octave change for each keystroke. For
this, we need to set up a conditional structure that tests

CHAPTER 5: An Application: The PIANO Program 111

which Kkeyboard character was struck and invokes the play
routine with the appropriate argument (note, octave, etc.).

Remembering from our do loop that the symbol char represents
keyboard characters, we write a conditional statement that
calls the play routine when A is struck on the keyboard:

(cond ((eq char #\A) (play :c))...)

This condition specifies that the note C plays whenever the
read-char function returns the ASCII code for the character A.

To shift the octave value, we can call the play routine with
the argument :0d4 to lower the octave and the argument :ou to
raise the octave. If we choose the character "-" to lower the
octave value, the conditional expression looks like this:

(cond ((eq char #\-) (play :0d))...)

This condition shifts the octave down each time the minus key
(=) is pressed. No note plays =-- only the octave for the next
note shifts down. We can write an analogous expression for
raising the octave using the character "+".

If we put together the conditional structures we have Jjust
developed with the do loop into a single program structure
defining the function piano, we get something like this:

(defun piano ()
(do ((char (char-upcase (read-char))
(char-upcase (read-char))))
(eoe)

(cond ((eq char #\A) (play :¢))
((eq char #\W) (play :cs))
((eq char #\8) (play :d4))
((eq char #\E) (play :ds))
((eq char #\D) (play :e))
((eq char #\F) (play :f))
((eq char #\T) (play :£fs))
((eq char #\G) (play :9))
((eg char #\Y) (play :gs))
((eq char #\H) (play :a))
((eq char #\U) (play :as))
((eq char #\J) (play :b))
((eq char #\K)
(play :ou)
(play :c)
(play :04d))
((eq char #\=-) (play :04))
((eq char #\+) (play :0u)))
(speaker :off)))

Note: S represents a sharp sign in the notation for the
musical notes. Thus, :as stands for A#.

112 GOLDEN COMMON LISP USERS' GUIDE

5.1.5 Putting in an End Test

Aside from the note keys, we also have to establish an exit
key. (Remember that we left the end test for the do form
incomplete.) If we choose the character "X" for exit, then
the end test for the program would be as follows:

(eqg char #\X)
and the entire piano program looks like this:

(defun piano ()
(do ((char (char-upcase (read-char))
(char-upcase (read-char))))
((eq char #\X)
"Nice tune!")
(cond ((eq char #\A) (play :c))
((eq char #\W) (play :cs))
((eqg char #\8) (play :4))
((eq char #\E) (play :ds))
((eg char #\D) (play :e))
((eq char #\F) (play :f))
((eq char #\T) (play :fs))
((eq char #\G) (play :g))
((eg char #\Y) (play :gs))
((eq char #\H) (play :a))
((eq char #\U) (play :as))
((eq char #\J) (play :b))
((eq char #\K)
(play :ou)
(play :c)
(play :0d))
((eq char #\-) (play :0d))
((eq char #\+) (play :ou)))
(speaker :o0ff)))

5.1.6 Modifying and Revising the PIANO Program

There are several types of things we could do to improve our
program. We could, for instance, add to the ease with which
other people could use it. For example, we might write
someplace on the screen that "X" is the exit key.

We might otherwise wish to modify our function to give
ourselves greater flexibility. For example, instead of
hard-coding the duration value for the notes, we could include
conditional statements for tempo values, just as we do now for
notes and octaves.

CHAPTER 5: An Application: The PIANO Program 113

Another type of modification is in programming style. We
could improve upon the elegance of our program by using the
case special form instead of the cond special form. The next
section, which explains various music functions, can help you
make some of these modifications.

114 GOLDEN COMMON LISP USERS' GUIDE

5.2 Musical Functions and Variables

The GCLISP program piano transforms the computer keyboard into
a piano keyboard. piano calls the function play in order to
carry out the actual playing of notes. The source code for
piano, play, and their subordinate functions may be found in

the file \EXAMPLE\MUSICPGM.LSP. This section gives
explanations of each of the functions and variables used to
implement the play function. (Several ‘of these functions

involve the hardware interface necessary for providing the
elements of music. -For more information regarding hardware
features of the IBM PC, consult the IBM PC Technical Reference
Manual.)

5.2.1 Musical Global Variables

The following function calls establish a series of global
variables and constants for the GCLISP music environment:

(defvar *music-octave* 2)

(defvar *music-scale*
Y(sCc 494 :cs 466 :d 440 :ds 415 :e 392 :f 370
:fs 349 :g 330 :gs 311 :a 294 :zas 277 :b 262))

(defvar *music-time* 5)
(defconstant speaker-control-port #x61)
(defconstant timer-select-port #x43)

(defconstant frequency-set-port #x42)

The three defined variables =-- #*music-octave*, *music-scalex,
and *music-time* -- represent values that define aspects of
music. #music-octave* and *music-scale* together define the
pitch or frequency value for a note, and #music-time* is used
to define tempo, or time value for a note.

You can think of these three variables as the three components
of a note. The three constants represent the mechanics of
actually producing sound:

- #music-scale* defines twelve notes Dby associating
keywords (:C, :D, :E, etc.) with integer values that
produce the frequencies for the notes represented by the
keywords. (Note: The integer values themselves are not

CHAPTER 5: An Application: The PIANO Program 115

the frequency values for the notes. Rather, they modify
a standard frequency generated by the timer chip to
produce the scale frequencies. See the sethertz function
description in section 5.2.3 below.)

- +*music-octave* represents an octave value. It is used as
a parameter for the 1lsh function to change the frequency
value of a note to one octave higher or lower.

- #music-time* refers to the duration a note sounds. The
music-time value you give to a quarter note (for 4/4
and 3/4 time) establishes a tempo. The unit of duration
is defined by the sleep function discussed below. The
time it takes the GCLISP interpreter to evaluate a single
empty dotimes loop is the value for *music-time#*
represented by the integer 1.

You can think of speaker-control-port, timer-select-port, and
frequency-set-port as components of an instrument that plays
music. These three components all define IBM-PC specific,
8-bit ioports which provide program interfaces to hardware
features of the PC.

5.2.2 The OCTAVEMOVE Function

(defun octavemove (action)
(case action
(sou
(decf *music-octavex))
(so0d
(incf #*music-octave*))
M

This function raises or lowers the current value of the global
variable #*music-octave* by 1. If a value :ou is given for the
parameter action, the value for the variable decreases by one;
if the value of action is :od, the variable value increases by
one. Thus, this function enables new notes to play an octave
higher or lower than the current octave. (Note: When the
value of w#music-octave* decreases, the next note plays an
octave higher (and vice versa).)

5.2.3 The SETHERTZ and SPEAKER Functions

These functions control the mechanics of actually producing
musical notes. speaker turns on or off the speaker, which
allows individual notes to sound. sethertz controls the
frequency generator used to produce notes. Both functions
utilize the %ioport primitive (discussed below).

116 GOLDEN COMMON LISP USERS' GUIDE

The sethertz function is as follows:

(defun sethertz (hertz)
(%ioport timer-select-port #x0B6 nil)
(%ioport frequency-set-port (logand hertz #xO0FF) nil)
(%ioport frequency-set-port (lsh hertz -8) nil)
)

This function sends an integer value to ioport
frequency-set-port in order to generate the frequency for a
note. The note frequency is equal to the frequency of the
timer chip divided by the integer sent to the ioport. The
hertz parameter represents integer values that divide into the
value of the timer chip frequency to produce the fregquencies
for musical notes. The integer values defined by the global
variable *music-scale* provide a set of such hertz values for
the notes of a scale.

To understand the sethertz function in greater detail, we need
to understand the %ioport primitive. This primitive has three
parameters:

= the ioport address (e.g., frequency-set-port,
timer-select-port)

= the ioport data value (e.g., #x0B6)
= the indicator for a 16 bit ioport data value (e.g., nil)

Essentially, the %ioport primitive sends the ioport data value
to the ioport address. The primitive can only send 8 bits at
a time, so the third parameter (the indicator of a 16 bit data
value) should always be nil.

The sethertz function, then, sends an ioport data value
(#x0B6) to timer-select-port that opens that ioport. After
the ioport timer-select-port is open, the integer value for a
new note is sent to ioport frequency-set-port as the ioport
data value.

Because integer values are 16 bits and the %ioport function
only sends the low-order 8 bits, sending the integer requires
two executions of the %ioport function. First, the low-order
8 bits of the integer are sent, by masking the upper 8 bits
using the logand function and the mask #xOFF. Second, the
upper 8 bits of the integer are sent by right-shifting them
into the region of the lower 8 bits.

CHAPTER 5: An Application: The PIANO Program 117

The note frequency produced by sethertz can only sound,
however, if the speaker is on. The function that turns the
speaker on and off is as follows:

(defun speaker (switch
&aux (val (%ioport speaker-control-port

nil
nil)))
(case switch
(son
(%ioport speaker-control-port (logior val 3) nil))
(:off

(%¥ioport speaker-control-port (logand val #x0FC) nil))
))

The parameter switch accepts the values :on or :toff. :on sets
the 1low-order two bits of speaker-control=-port on (without
affecting the other six bits). :off clears these two bits
(without affecting the other six bits).

The sethertz and speaker functions are used in the definition
of the beep function in section 5.2.5 below.

5.2.4 The SLEEP Function

(defvar *tempo* 1)

(defun sleep (time)
(dotimes (i time)
(dotimes (j *tempo*) (dotimes (k 1000)))
))

This function sets up a wait loop that defines the duration of
a note. Actually, sleep defines three nested 1loops. The
innermost loop is an empty loop that iterates one thousand
times. The intermediate loop repeats the number of times set
by the variable *tempo*. And the outer 1loop iterates the
number of times represented by time.

You might test a wvalue of 1 for ¢time as the length of a
sixteenth note, 2 the value of an eighth note, and so on. For
slower pieces and faster pieces the values for a given type of
note (quarter, eighth, etc.) would increase and decrease,
respectively.

118 GOLDEN COMMON LISP USERS' GUIDE

5.2.5 The BEEP Function

(defun beep (tone time)
(sethertz tone)
(speaker :on)

(sleep time))

This function plays a note by putting together the function
that produces a frequency for a note, the function that
defines a duration period, and the function that turns on and
off the speaker. sethertz produces the frequency for the
note, which sounds for the time duration produced by the
evaluation of sleep. beep does not turn the speaker off, thus
allowing the caller to either change the tone or turn off the
speaker.

5.2.6 The PLAY Function

(defun play (music &optional (time *music-time*))
(if (numberp music)
(setq *music-time* music)
(case music
(:x (sleep time))
(sou (octavemove
(so0d (octavemove
(otherwise
(let ((freq (getf *music-scale* music)))
(when (null freq)
(error "Unknown frequency: ~s" freq))
(beep (lsh freq *music-octavex)
*music-timex))
))

tou)) ;octave UP
sed)

u
4a soctave DOWN

))
play does one of four different things:

1. It raises or lowers the octave within which a note
plays:;

2. It resets the duration for the note;
3. It plays (another) note; or
4. It rests.
The parameter music governs how play behaves:

1. If the value of music is :ou or :od, then play changes
the octave;

CHAPTER 5: An Application: The PIANO Program 119

2. If the value is a number, then play resets the duration;

3. If the value ie a note (e.g., :c or :d), then play plays
that note:;

4. If the value is :r, then play rests for the duration.

The optional parameter time temporarily overrides the duration
used for playing a note. If time is omitted, the specified
note plays for duration #*music-time+*.

This function puts together the functions we have discussed
already: octavemove, sleep, and beep.

5.2.7 The PLAYLIST Function

Like play, playlist puts together functions already built.
playlist utilizes play in a dolist loop to play a sequence of
notes:

(defun playlist (notelist)
(dolist (note notelist) (play note))
(speaker :o0ff))

The notelist parameter includes the same three elements used
as arguments to play: notes (:c, :d4, :e, etc.); octave changes
(sou and :0d); and time values. The dolist 1loop evaluates
play for each element of notelist.

5.2.8 Putting Together Music Programs

One way to think of composing music is as the putting together
of notes into phrases which are repeated in variation. You
can implement +this technique for musical composition by using
playlist to create phrases and lines of notes and then putting
these 1lines together. For instance you could have one
function composed of several executions of playlist using the
following format:

(defun music ()
(playlist (...))
(playlist (...))
(playlist (...))

ceo)

You could also use dotimes loops to repeat phrases defined by
playlist. For example:

(dotimes (i 3) (playlist '(5 :gs :e :gs :e)))

You can put together these dotimes loops into functions and
put those functions together as programs (or larger composite

120 GOLDEN COMMON LISP USERS' GUIDE

functions) and in this way build musical compositions in the
same step-by-step, component-by-component fashion used to
develop the music functions themselves.

Index

alphanumeric 42
alphanumeric character 110
Alt key 34

apropos - function 82, 84, 88
apropos - help option 82
arglist 84, 86

ASCII code 110

backslash 22, 24

backtrace - function 95
bound 10

bound to key 34

break 17, 62, 92

break - function 92

break level 95

break message 93

buffer - current 29, 33, 38
buffer-status 31, 33, 38
case - upper lower 8, 47
case-sensitive 48
clean-up-error - function 16, 92
colon 24

command processor - DOS 4
continue 17

continue - function 93, 94, 96, 102
ctrl key 34

current item 56

cursor 32, 33

cursor motion 43

debugging utilities 91
defun 12

doc - function 82, 87

doc - help option 82

dos - function 4

DOS - operating system 2, 4
echo area 31, 33

ed - function 27

edit buffer 27, 28, 29, 33, 37
edit command 33

edit screen 29, 30, 31

edit window 29, 30, 33

edit window - commands 66
edit window - current 55
editing LISP 25, 56

editor 21

EMACS 25

end test 110, 112

enter 2

environment - GCLISP 2

error 16, 18

error level 92, 95
error message 18, 20
Esc key 36

eval - function 8
evaluation 9, 62
evaluator 8

file 29, 37

filename 37, 38, 40
format directive 93
frequency value 114
function call 19

GMACS 21, 25

GMACS tutorial 26

help - on-line 3, 6, 82
indenting LISP 60
interpreter 1

key sequence 25, 34
keychord 3, 6, 25, 34
kill commands 50, 61
kill history 50, 52, 55, 61
killing text 50

lambda list - help option 82
lambda~list 89
lambda-list -~ function 83, 89
language conventions 24
line 42

LISP 1

LISP object 8

list processing 1
listener 8

listener level 16, 92
loading files 21
loading GMACS 27

mark 49

mark - current 49

mark pdl 49, 52, 55
message area 31, 33
mini-buffer 33

mode line 31, 33
modifier key 34

numeric argument 45
NumLock key 34

octave value 108, 111
paren-beep 59
paren-flash 59
parentheses 24
pathname 22, 31, 40
piano program 107, 111, 112
play - function 108, 109, 114, 118
point 32, 33

pprint - function 103
pprint - property 104
print - function 8
print-name 85

prompt 2

push-down list 49, 52
quote marks 24

read - function 8
read-char - function 110
read-eval-print 8, 22
reader 8

region 49

repeat count 46
s-expressions 56

scroll 43
self-evaluating form 9
self-inserting input 46
semi-colon 24

setf - function 11
sharp-sign-backslash macro - #\
shift key 34

single quote 24

step - function 98

step - options 98, 101
symbol 10

template 106

tempo 112, 114, 117
timer chip 115, 116
Top-Level 16

trace - function 97
type 84

type-out window 33, 35
untrace - function 97
variable 10

vertical bars 24

white space 10, 42

word 42

working directory 2, 40
wrapped line 42

110

GOLDEN COMMON LISP
REFERENCE MANUAL

Version 1.01

Table of Contents

Chapter 1 Introduction

1.1 Purpose
1.2 Notational Conventions
1.3 This Manual's Conventions

Call Descriptions
.3.3 Notes
.3.4 List of Conventions
.3.5

Chapter 2 Data Types

2.1 Numbers

2.1.1 Integers
2.1.2 Ratios

2.1.3 Floating-point Numbers

2.1.4 Complex Numbers
2.2 Characters

1 Standard Characters
2 Line Divisions

4 Character Attributes
5 String Characters

2.2.
2.2.
2.2.3 Non-standard Characters
2.2.
2.2.

2.3 Symbols
2.4 Lists and Conses
2.5 Arrays

2.5.1 Vectors
2.5.2 Strings
2.5.3 Bit=-Vectors

6 Hash Tables

7 Readtables

8 Packages

9 Pathnames

10 Streams

11 Random-States

2.12 Structures

2.13 Functions

2.14 Unreadable Data Objects

2.15 Overlap, Inclusion, and Disjointness of

Types

1 Description of Values
2 Capitalization in Special Form and Macro

Conventions Used in Examples

QUUTE W WWH

(o}

10
10
10

10

11
11
11
11
12

12
13
14

14
15
15

15
16
16
16
17
17
17
18
19

19

Chapter 3 Scope and Extent
Chapter 4 Type Specifiers

Type Specifier Symbols

Type Specifier Lists

Predicating Type Specifiers

Type Specifiers that Combine
Type Specifiers that Specialize
Type Specifiers that Abbreviate
Defining New Type Specifiers

Type Conversion Function
Determining the Type of an Object

LN N W Y

VWOJOUd W

Chapter 5 Program Structure

5.1 Forms
5.1.1 Self-Evaluating Forms
5.1.2 Variables
5.1.3 Special Forms
5.1.4 Macros
5.1.5 Function Calls

5.2 Functions

5.2.1 Named Functions
5.2.2 Lambda-Expressions

5.3 Top-Level Forms
5.3.1 Defining Named Functions
5.3.2 Declaring Global Variables and Named
Constants
5.3.3 Control of Time of Evaluation
Chapter 6 Predicates

6.1 Logical Values
6.2 Data Type Predicates

6.2.1 General Type Predicates
6.2.2 Specific Data Type Predicates

6.3 Equality Predicates
6.4 Logical Operators

Chapter 7 Control Structure
7.1 Constants and Variables

7.1.1 Reference
7.1.2 Assignment

7.2 Generalized Variables

20
22
22
23
23
23
23
24
24
25
26
26
27
27
27
28
29
29

29
30

31
31

31
33

34

34
35

35
36

41
44

47
47

47
51

53

7.2.1 Defining New Generalized Variables

3 Function Invocation

4 Simple Sequencing

5 Establishing New Variable Bindings
6 Conditionals

7 Blocks and Exits

8 Iteration

8.1 Indefinite Iteration
8.2 General Iteration

.3 Simple Iteration Constructs
.4 Mapping

7.
7.
7.
7.
7.8.5 The "Program Feature"

8
8
8
7.9 Multiple Values

7.9.1 Constructs for Handling Multiple Values
7.9.2 Rules Governing the Passing of Multiple
Values

7.10 Dynamic Non-local Exits
7.11 Closures
7.12 Stack Groups

7.12.1 Stack Group Structure

7.12.2 Creating and Initializing a Stack Group
7.12.3 Resuming a Stack Group

7.12.4 Dynamic Bindings and Stack Groups
7.12.5 Stack Group Variables

Chapter 8 Macros

8.1 Macro Definition
8.2 Macro Expansion

Chapter 9 Declarations

9.1 Declaration Syntax
9.2 Declaration Specifiers
9.3 Type Declaration for Forms

Chapter 10 Symbols

10.1 The Property List
10.2 The Print Name
10.3 Creating Symbols

Chapter 11 Packages

11.1 Consistency Rules

11.2 Package Names

11.3 Translating Strings to Symbols
11.4 Exporting and Importing Symbols
11.5 Name Conflicts

55

56
58
59
61
65
67

67
67
69
70
74

76
76
79

79
81
82

82
84
85
87
88

89

89
91

92

92
93
93

94

94
97
97

100

100
100
100
100
101

11.6
11.7
11.8

Chapter
12.1

12.2
12.3

Built-in Packages
Package System Functions and Variables
Modules

12 Numbers
Precision, Contagion, and Coercion

Predicates on Numbers
Comparisons on Numbers

12.3.1 Comparisons on Unsigned Fixnums

12.4

Arithmetic Operations

12.4.1 Unsigned Fixnum Arithmetic

12.5

12.5.1 Exponential and Logarithmic Functions
12.5.2 Trigonometric and Related Functions
12.5.3 Branch Cuts, Principle Values, and
Boundary Conditions in the Complex

12.6 Type Conversions and Component Extractions

12.7
12.8
12.9

Irrational and Trancendental Functions

Plane

on Numbers
Logical Operations on Numbers
Byte Manipulation Functions
Random Numbers

12.10 Implementation Parameters

Chapter

13.1
13.2.
13.3
13.4
13.5

Chapter

14.1
14.2

14.3
14.4
14.5

Chapter

15.1
15.2
15.3
15.4
15.5
15.6

13 Characters

Character Attributes

Predicates on Characters

Character Construction and Selection
Character Conversions

Character Control-Bit Functions

14 Sequences

Simple Sequence Functions

Concatenating, Mapping, and Reducing
Sequences

Modifying Sequences

Searching Sequences for Items

Sorting and Merging

15 Lists

Conses

Lists

Alteration of List Structure
Substitution of Expressions
Using Lists as Sets
Association Lists

101
101
109

110

110
111
112

114
115
118
119

119
120

121

121
123
126
126
126

127

127
127
129
130
131

133
133

134
135
136
136

137

137
142
148
149
150
152

Chapter

16.1
16.2

Chapter

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Chapter

18.1
18.2
18.3

Chapter

19.1
19.2
19.3

19.4
19.5
19.6
19.7

16 Hash Tables

Hash Table Functions
Primitive Hash Function

17 Arrays

Array Creation

Array Access

Array Information

Functions on Arrays of Bits

Fill Pointers

Changing the Dimensions of an Array
Array Leaders

Copying the Contents of an Array

18 Strings

String Access
String Comparison
String Construction and Manipulation

19 Structures

Introduction to Structures

How to Use Defstruct

Using the Automatically Defined Constructor
Function

Defstruct Slot-Options

Defstruct Options

By-position Constructor Functions

Structures of Explicitly Specified
Representational Type

19.7.1 Unnamed Structures
19.7.2 Named Structures
19.7.3 Other Aspects of Explicitly Specified

Chapter

20.1
20.2

Chapter

21.1
21.2
21.3
21.4
21.5
21.6

Chapter

Structures
20 The Evaluator

Run-Time Evaluation of Forms
The Top-Level Loop

21 Streams

Standard Streams

Creating New Streams
Operations on Streans
Using Streams as Functions
User Written Streams
Window Streams

22 Input/Output

155

155
155

156

156
157
158
158
159
160
160
161

162
162
162
165
167

167
167

168
168
168
168

168

168
168

169
170

170
172

177

177
179
180
180
182
183

184

22.1 Printed Representation of Lisp Objects 184

22.1.1 What the Read Function Accepts 184
22.1.2 Parsing of Numbers and Symbols 184
22.1.3 Macro Characters 184
22.1.4 Standard Dispatching Macro Character
Syntax 184
22.1.5 The Readtable 184
22.1.6 What the Print Function Produces 185
22.2 Input Functions 187
22.2.1 Input from Character Streams 187
22.2.2 Input from Binary Streams- 189
22.3 Output Functions 189
22.3.1 Output to Character Streams 189
22.3.2 Output to Binary Streams 191
22.3.3 Formatted Output to Character Streams 191
22.4 Querying the User 193
Chapter 23 File System Interface 195
23.1 File Names : 195
23.1.1 Pathnames 195
23.1.2 Pathname Functions 195
23.2 Opening and Closing Files 200
23.3 Renaming, Deleting, and Other File
Operations 201
23.4 Loading Files 202
23.5 Accessing Directories 203
Chapter 24 Errors 205
24.1 General Error-Signalling Functions 205
24.2 Specialized Error-Signalling Forms and
Macros 206
24.3 Special Forms for Exhaustive Case Analysis 206
24.4 Error Handling 206
Chapter 25 Miscellaneous Features 208
25.1 The Compiler 208
25.2 Documentation 208
25.3 Debugging Tools 209
25.4 Environment Inquiries 213
25.4.1 Time Functions 213
25.4.2 Other Environment Inquiries 214
25.5 Identity Function 215

25.6 Implementation Specific Procedures and

Variables

25.6.1 Storage Management Functions

25.6.2 Operating System Interface Functions
25.6.3 IBM PC Specific Functions

25.6.4 Low-Level Functions

215

215
218
220
221

Chapter 1

Introduction

GOLDEN COMMON LISP (or more briefly, GCLISP) is a dialect of
COMMON LISP designed to work on a variety of processors,
including those found in commercial microcomputers such as the

IBM PC (TM).

1.1 Purpose

GCLISP was designed with the following goals in mind (not in
order of importance):

Commonality

Portability

Power

Expressiveness

GCLISP is designed according to the COMMON
LISP core specification. COMMON LISP is
intended to serve as a common dialect, shared
by many different implementations.

GCLISP programs which restrict themselves to
those features specified as part of the COMMON
LISP core may be easily transported to other
COMMON LISP implementations.

In addition, the GCLISP environment is
designed to be easily transported to various
host environments.

GCLISP attempts to provide the most powerful
features of COMMON LISP while 1leaving out
those features which are of limited
usefulness. At the same time, powerful
concepts found in other LISP dialects (e.q.,
ZETALISP's stack groups), but which are not
(yet) part of COMMON LISP, have been
included.

GCLISP also provides a complete interface
(both low and high level) to the host hardware
and operating system.

Although GCLISP does not provide every feature
specified in COMMON LISP, most of the omitted

2 GOLDEN COMMON LISP REFERENCE MANUAL

features can be easily defined in GCLISP.

Compatibility GCLISP is a compatible subset of the COMMON
: LISP core specification. It also incorporates
various ZETALISP concepts.

Efficiency In order to reduce the processing power and
memory demands on the programmer, LISP puts
great demands on the processing power and
memory of the computer. Therefore, efficiency
was one of the primary concerns in the design
and implementation of GCLISP.

Stability GCLISP will evolve toward full implementation
of the COMMON LISP standard. Software
designed with the COMMON LISP specification in
mind will be compatible with future versions
of GCLISP.

This document is a language reference manual. As such, its
basic purpose is to specify the syntax and semantics of the
various language constructs. It is not intended to be a
language tutorial nor a system users' guide. Therefore, it
addresses itself to the intended practical use of a particular
construct only to the degree that such a description may
elucidate its semantics.

Readers of this manual should have a good understanding of
programming in general and LISP in particular. Those who want
to learn how to program in LISP should turn to the book LISP
(Winston and Horn, 1984) which is included in the GCLISP
package. Those who want information on the actual use of
GCLISP should turn to the GCLISP Users' Guide.

This manual is designed to be wused in conjunction with the
COMMON LISP Reference Manual (Steele, 1984) (hereafter
referred to as the CLRM). Therefore, this manual adopts, as
much as possible, the format and notational conventions of the
CLRM. In fact, this manual uses the same chapter, section,
and subsection numbering as the CLRM.

Many of the features described in this manual are described
at greater length in the CLRM. Readers who are totally
unfamiliar with COMMON LISP may find it helpful to peruse the
CLRM before reading this manual.

Many of the entries in this manual are also available via
GCLISP On-Line Help. Because of this, some of the entries may
repeat information provided in other entries.

This manual was written with the following goals in mind (in
order) :

Precision Precision is necessary for two reasons.
First, this manual is responsible for

CHAPTER 1: Introduction 3

specifying the exact behavior of every GCLISP
entity. Secondly, when GCLISP diverges from
the COMMON LISP specification, it often does
so in ways which would not be apparent in an
informal description.

Clarity Hopefully, this is a self-explanatory goal.
It is secondary to precision since this is a
language reference manual, not a language
tutorial. In a language tutorial, precision
is secondary to clarity.

Concision Because most of the features of GCLISP are
described in depth in the CLRM, this manual is
designed to be a concise summary of the CLRM.
In addition, since much of this document is
accessible via GCLISP On-~Line Help, brevity is
of practical concern.

Readers are strongly encouraged to suggest areas in which

this manual falls short of these goals. A comment card is
included in the GCLISP package for this purpose.

1.2 Notational Conventions

The notational conventions used in this manual are, as much
as possible, identical to those used in the CLRM. The next
section provides a brief summary of the CLRM's conventions and
this manual's variations.

1.3 This Manual's Conventions

1.3.1 Description of Values

In the CLRM, the first 1line of function, macro, special
form, and variable entries specifies the name and any
arguments of the entity. This manual adds a description of
the values returned by the entity. Figure 1 illustrates a
typical entry.

Figure 1: Sample Function Entry

[Function]

4 GOLDEN COMMON LISP REFERENCE MANUAL

sample-function integerl integer2 => sum difference

This function returns the sum and the difference of integerl
and integer2.

As the example shows, the result of the function call is
indicated by an evaluation arrow (=>) followed by one or more
names which describe the returned values. (The first line of
the description of a function or special form which does not
return any values (e.g., go) does not contain an evaluation
arrowv.)

The names of results are intended to be as descriptive as
possible. The following 1list describes the result naming
conventions:

boolean The result name boolean refers to a result
which may be either true (t) or false (mnil).

result Result names which contain the word result
indicate that only a single value is
returned.

results Result names which contain the word results
indicate that multiple values may be
returned.

last-form Result names which contain the word last-form
indicate that the results of the last (i.e.,
rightmost) subform are returned. Forms

containing an implicit progn typically have
this type of result.

last-evaled-form
Result names which contain the word
last-evaled-form indicate that the results of
the last (i.e., rightmost) subform which was
evaluated are returned. Control structures
such as case and cond typically have this type
of result.

nil/... Result names with the prefix nil/ indicate
that either nil or some other result will be
returned. In general, a / separates

alternative results.

1.3.2 capitalization in Special Form and Macro Call
Descriptions

Special forms and macro calls are more difficult to describe
than function calls since their syntactic components may or
may not be evaluated. To lessen this confusion, this manual
adopts the following typographic convention:

CHAPTER 1l: Introduction 5

In the first 1line of macro and special form
entries, the syntactic components which are never
evaluated are capitalized, while components which
may or may not be evaluated (e.g., the subforms in
the special form and), are in all lower case (just
like function parameter names).

For example, the first 1line of the entry for the setq
special form looks something like Figure 2:

Figure 2: First Line of setq Entry

[Special form]

setq (Symbol form}* => last-form-result

The component Symbol begins with a capital letter since it
is never evaluated. On the other hand, the component form is
always evaluated, so it is in all lower case.

1.3.3 Notes

As in the CLRM, this manual defines two special types of
notes: Compatibility notes and Implementation notes.

In the CLRM, a Compatibility note points out where COMMON
LISP is either particularly compatible or incompatible with
its predecessors; while in this manual, a Compatibility note
always points out where GCLISP differs from <the COMMON LISP
core specification.

An Implementation note in the CLRM suggests possible
implementation strategies; while in this manual, an
Implementation note points out the particular implementation
strategy used in GCLISP.

1.3.4 List of Conventions

The following 1list summarizes the typographical and
notational conventions used in both this manual and the CLRM.
For more detailed explanations of the various conventions, see
Chap. 1 of the CLRM.

entity-name The names of all functions, special forms,
macros, global variables, and named constants
appear in the same typographical style as
entity-name.

6 GOLDEN COMMON LISP REFERENCE MANUAL

parameter-name
The names of all function parameters and the
names of special form and macro components
appear in the same typographical style as
barameter-name.

(example-function 5 'foo)
All examples of actual code appear in the
typographical style of example-function.

=> This sign appears between a form and its
values, indicating that the evaluation of form
results in values.

==> This sign appears between a macro-call form
and its expansion.

<=> This sign appears ©between two forms,
indicating . that they are semantically
equivalent. In other words, the evaluation of
one of the forms results in the same values
and side effects as the evaluation of the
other form.

[ooe] Brackets enclose an optional component in the
description of special forms and macros.

{eoo)* Braces with a trailing asterisk enclose a
component which may appear zero or more
times. This convention is used in the
description of special forms and macros.

{oos}+ Braces with a trailing plus-sign enclose a
component which may appear one or more times.
This convention is used in the description of
special forms and macros.

| Within braces, the vertical bar separates
mutually exclusive alternatives.

(first . rest)
The dotted-list notation is wused in some
examples. The dot informs the reader that
rest denotes the remaining elements (i.e., the
rest or ecdr) of the 1list, not the 1last
element.

(coo) Parentheses delimit a list of elements. Lists
may contain any number of elements of any type
(including lists).

' The single quote (also known as an accent
acute or an apostrophe) precedes an object
which is not intended to be evaluated. Thus,
‘object is an abbreviation for (quote

CHAPTER 1:

~

#0

#\

#(...)

#x

#o

#b

Introduction 7

object).

The semicolon precedes a comment (which
extends to the end of the line). Comments are
ignored by the LISP reader; their sole purpose
is the enlightenment of the human reader.

Double quotes delimit character strings.

The backslash character is a single escape
character. The character which it precedes
loses any special significance it may have to
the LISP reader; it is treated as an ordinary
letter.

Vertical bars delimit symbols whose
print-names are to be taken literally. The
vertical bar is a multiple escape character.
Such names may contain special characters
(e.g., parentheses, whitespace). Note that a
single vertical bar used in a macro or special
form description has a different meaning.

The number sign (also known as the sharp sign,
the pound sign, the hash mark, and the
oglethorpe) followed by a single quote
precedes an object which names a function.
The evaluator does not evaluate the object,
rather it returns the function named by the
object. Thus #'object is an abbreviation for
(function object).

The number sign followed by a backslash
precedes a character or a character name
(e.g., Tab) which is to be read as a character
object.

Parentheses preceded by a number sign enclose
the elements of a simple general vector. (The
elements of the vector may be of any type.)

The number sign followed by the letter x
precedes a number in hexadecimal (i.e.,
radix~-16) notation.

The number sign followed by the 1letter o
precedes a number in octal (i.e., radix-8)
notation.

The number sign followed by the letter b
precedes a number in binary (i.e., radix-2)
notation.

The colon character is a package marker. The
name preceding it is the name of a package,

8 GOLDEN COMMON LISP REFERENCE MANUAL

while the name following it is the name of a
symbol in that package. If no name precedes
the colon then the name following the colon is
a keyword.

1.3.5 Conventions Used in Examples

The examples of code which appear throughout the manual are
primarily intended to demonstrate the counter-intuitive
effects or results of a given function, macro, or special
form.

All examples consist of a single form (which may contain
more than one subform) followed by either the evaluation arrow
(=>) and the resulting values or some text describing what
action is taken (e.g., signals an error).

All symbols (other <than those which name predefined
functions, variables, etc.) used in the examples (e.g., foo,
bar) are intended to be unbound, to have no function
definition, and to have an empty property list.

Every effort was made to keep the number of auxiliary
functions, special forms and macros to a minimum, so that the
point of an example would not be obscured by an unfamiliar
supporting function.

The following is a 1list of the special forms, macros, and
functions (other than the entity being explained of course)
which are used extensively throughout the examples:

* + - < =

> and append car cdr
cons defun first float gensym
if incf lambda 1let list
member not null progn setf
setq unless values when)

If the reader is familiar with most of these, the examples
should be easily understood.

Chapter 2

Data Types

2.1 Numbers

[Type]

number

COMMON LISP defines three subtypes of number: rational, float,
and complex.

Compatibility note: GCLISP currently supports two subtypes of
number: fixnum (a subtype of integer) and float. The
following types of numbers are not currently supported:

complex, rational (except for its subtype fixnum), ratio, and
bignum.

2.1.1 Integers

[Type]

integer

This type is a subtype of number. COMMON LISP defines two
subtypes of integer: fixnum and bignum.

Compatibility note: fixnum is the only type of integer

currently supported, i.e., objects of type bignum are not
supported.

(Type]

10 GOLDEN COMMON LISP REFERENCE MANUAL

fixnum

This type is a subtype of integer.

15 15
Implementation note: Integers in the range -2 to 2 -1
(inclusive) are fixnums.
2.1.2 Ratios
Ratios are not currently supported.
2.1.3 Floating-point Numbers
[Type]

float

This type is a subtype of number. COMMON LISP defines the
following subtypes of float: short-float, single-float,
long-float, and double-float.

Implementation note: Both single-float and double-float
formats are provided. short-float and long-float are
equivalent to single-float and double-float, respectively.
2.1.4 Complex Numbers

Complex numbers are not currently supported.

2.2 Characters

[Type]

character

Objects of type character represent printed glyphs, e.g.,
letters (in various styles and of various alphabets and
writing systems), icons, and text formatting operations.
Characters have three attributes: code, bits, and font.
COMMON LISP defines one subtype of character: string-char.

CHAPTER 2: Data Types 11

Implementation note: Non-zero fonts are not supported.
Control and Meta bits are supported. The code attribute of a
character conforms to the ASCII code.

Compatibility mnote: The type character is a subtype of
fixnum. In other words, characters are represented by fixnums
(as they are in ZETALISP).

2.2.1 Standard Characters

[Type]

standard-char

This type is a subtype of string-char. Objects of type
standard-char make up the COMMON LISP standard character set.
This character set is equivalent to the 95 standard ASCII
printing characters plus a newline character. All COMMON LISP
implementations must support the standard character set.

Implementation note: The semi-standard characters -
#\Backspace, #\Tab, #\Linefeed, #\Page, #\Return, #\Rubout -
are supported.

2.2.2 Line Divisions

In GCLISP (as in CO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>