
Ll)P

GOLDEN COMMON LXSP

Version 1.01

Gold Hill computers
163 Harvard Street

Cambridge, Massachusetts 02139

Gold Hill Computers provides this publication "as is", without
warranty of any kind, either express or implied, including,
but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Gold Hill Computers may
make improvements or changes in this publication, or in the
product and programs described in this publication, at any
time and without notice.

LISP is copyrighted by Addison-Wesley Publishing
Inc. COMMON LISP Reference Manual is copyrighted by
Equipment corporation.

Company,
Digital

'GOLDEN COMMON LISP' is a registered trademark of Gold Hill
Computers. 'GCLISP', 'GMACS', and 'GOLDEN EMACS' are
trademarks of Gold Hill computers. 'San Marco LISP Explorer'
and 'LISP Explorer' are trademarks of San Marco Associates.
'ZETALISP' is a trademark of Symbolics, Incorporated. 'IBM',
'IBM PC', and 'PC-DOS' are registered trademarks of
International Business Machines Corporation. 'PC XT' and 'PC
AT' are trademarks of International Business Machines
Corporation. 'COMPAQ' is a trademark of COMPAQ Computer
Corporation. 'MS-DOS' is a registered trademark of Microsoft,
Incorporated. 'Smalltalk' is a trademark of Xerox
Corporation. 'Mouse Systems' is a trademark of Mouse systems
Corporation. 'Intel 8088' and 'Intel 8087' are trademarks of
Intel Corporation.

Copyright (C) 1983, 1984, 1985 by Gold Hill Computers

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written
permission from Gold Hill Computers.

Printed in the United States of America.

ISBN 0-917589-05-X

GOLDEN COMMON LISP
Version 1.01

Upgrade Instructions

Copyright (C) 1985 by Gold Hill Computers

The accompanying items are the materials for upgrading your
GCLISP Version 1.00 to Version i.01.

These items are included:

l. Five (5) diskettes, each labeled "GCLISP Version l.Ol"
(j)(Master,(t>utilities-1,(!>utilities-2,('.J)san Marco LISP

Explorer Viewer, an~San Marco LISP Explorer Slides);
and

2. A packet of pages for insertion to your GCLISP user
documentation binder.

To upgrade your user documentation:

l. Replace the following items in the D-ring binder of
Version 1.00 documentation with the corresponding items
from the documentation update packet:

Title/copyright page, half-title page, and contents
page

Installation Guide (entire document to be replaced
by Installation Guide Version 1.01 and "Golden
Common LISP: Version 1.01 Installation Guidelines")

Tutorial Guide (entire document)

Title/Preface page and pp. l - 2 of the Users'
Guide

Title pages of Reference Manual and Appendices

"A Quick Start-Up of GOLDEN COMMON LISP"

2. Remove the "Distribution Notice" (if it is present) from
the back of the binder.

3. Add these items at the back of the binder:

Release Note GCLOlOO - l

GOLD HILL COMPUTERS AUGUST 15, 1985

GCLISP VERSION 1.01: Upgrade Instructions 2

Release Note GCLOlOl - 1

(Note that Release Note GCLOlOO - 1 is a reduced-size
reprint of the original previously sent to you, for easy
insertion into the binder.)

4. Correct the Users' Guide, page 50: read "Ctrl-X Ctrl-X"
for 11 ctr1-z ctr1-x11 •

To install your GCLISP version 1.01 software: Follow the
instructions in the Installation Guide, Version 1.01. and
"Golden Common LISP: Version 1.01 Installation Guidelines".

GOLD HILL COMPUTERS AUGUST 15, 1985

March 15, 1985

A QUICK START-UP OF GOLDEN COMMON LISP

Copyright (C) 1984, 1985 by Gold Hill computers

If this is the first time you have
you are eager to try the software,
you how to start up the system and
GMACS editor before turning to the

used GOLDEN COMMON LISP and
this short guide will show

run the LISP Explorer and
full users' documentation.

After your initial exploration, please refer to the GCLISP
Installation Guide for instructions about how to install and
configure your system. Also, send in your Registration Card
so that we can automatically notify you about new software
releases.

GOLDEN COMMON LISP requires an IBM PC, PC XT, PC AT, or
100%-PC-compatible computer with at least:

one double-density/double-sided diskette drive;

512K bytes of memory;

A PC-DOS (or MS-DOS) operating system, Version 2.0 or
higher (including Version 3.0).

The GCLISP Program License Agreement envelope contains five
write-protected diskettes licensed for use on a single
machine. The following directions assume a minimal PC
configuration, with a single diskette drive and a monochrome
display.

To explore GCLISP, follow the steps below. What you type to
the computer appears in bold-face (e.g., gclisp). To enter a
keychord like Alt-E, press and hold the Alt key, then hit the
E key. If at any time you have a question, turn to the
Installation Guide.

First, start the DOS operating system. If you have
doing this, turn now to your IBM PC DOS Manual
equivalent for your computer).

problems
(or the

Introduction to the San Marco LISP Explorer

Insert Master

Start GCLISP

Explore

Exit GCLISP

Insert Master

start GCLISP

Enter GMACS

Get GMACS help

Learn GMACS

Exit GMACS

Exit GCLISP

Insert the GCLISP Master diskette in drive A:.
Type A: to set the current drive to A:.

Type gclisp to load the GCLISP interpreter.
This takes roughly half a minute. Type R when
asked whether you want to install, un-install,
or run GCLISP. The GCLISP Top-Level prompt
(*) will appear shortly.

Type Alt-'E to load the LISP Explorer.
(Loading takes about two minutes. The system
will prompt you to swap diskettes.) The LISP
Explorer takes you on a self-guided tour of
the world of LISP. To exit the LISP Explorer,
type function key Fl.

Type (exit)
and go back
for now, as
system.)

to leave the GCLISP environment
to DOS. (Ignore the error message

you have not yet configured your

Introduction to the GMACS Editor

(See above.)

(See above.)

Type ctrl-E to enter the GMACS editor.
takes about one minute. The system
prompt you to swap diskettes.)

(This
will

Type Alt-H to see the various types of GMACS
Help available. Type A followed by file to
find out all the editor commands for files.

Type Alt-H T to load a file that teaches you
about GMACS.

Type Fl to exit GMACS and return to GCLISP.

Type (exit) to leave the GCLISP environment
and go back to DOS.

At any time while in the GCLISP interpreter, you can type
Alt-H to see the Top-Level Help screen.

When you are done exploring, please see the Installation Guide
for important information about GCLISP.

GOLDEN COMMON LISP

Version 1.01

GOLDEN COMMON LISP

CONTENTS

PREFACE

ACKNOWLEDGMENTS

INSTALLATION GUIDE

TUTORIAL GUIDE

USERS' GUIDE

REFERENCE MANUAL

APPENDICES

Gold Hill Computers Customer Protection Plan

Gold Hill Computers Program License Agreement envelope
(containing five GOLDEN COMMON LISP diskettes)

"A Quick Start-Up of GOLDEN COMMON LISP"

Release Note GCLOlOO - 1

Release Note GCLOlOl - 1

PREFACE

GOLDEN COMMON LISP, or GCLISP, is a COMMON LISP training and
programming environment for personal computers, designed to
accommodate both new and experienced LISP programmers.

The GOLDEN COMMON LISP package comprises software tools and
publications to train LISP novices and to support the
development of advanced COMMON LISP application programs:

The GCLISP interpreter implements a major subset of
COMMON LISP functionality, observing most COMMON LISP
standards and conventions.

The San Marco LISP Explorer, an on-line interactive
tutorial by San Marco Associates, teaches LISP
programming and Artificial-Intelligence techniques.

The EMACS-style editor GMACS is a full-screen,
LISP-intelligent text editor for program development. It
is complemented by high-level program debugging
utilities.

On-line help is available for every GCLISP function and
variable.

The book LISP, by Patrick H. Winston and Berthold Klaus
Paul Horn-csecond Edition: Addison-Wesley, 1984), is the
most widely-used text on LISP.

The COMMON LISP Reference Manual, by Guy L. Steele Jr.
(Digital Press, 1984), is the definitive COMMON LISP
language specification.

In addition, this binder of user documentation includes both
tutorial materials and reference materials for GCLISP users.
The documents included here are:

GCLISP Installation Guide

This is the document to read first. It
contains an inventory of GOLDEN COMMON LISP
components and operating requirements.
Instructions on how to use the GOLDEN COMMON

LISP diskettes and a guide
documentation are also included.

GCLISP Tutorial Guide

to the

This document provides instructions for using
the San Marco LISP Explorer. The LISP
Explorer is geared to the beginning
programmer, drawing on concepts developed in
Winston and Horn's LISP.

GCLISP Users• Guide

This users' guide explains how to use the
features of the GOLDEN COMMON LISP
environment: the interpreter, the GMACS
editor, the on-line help facilities, and the
debugging utilities. The guide also provides
commentary on basic and often-used LISP
structures and functions. It explains
principles and ideas of LISP, and provides
instructions for creating and testing LISP
programs. A sample application illustrates
the design and construction of a GOLDEN COMMON
LISP program.

GCLISP Reference Manual

This manual defines the syntax and semantics
of the GOLDEN COMMON LISP language. It has
been designed to complement the COMMON LISP
Reference Manual, using the same table of
contents, format, and notational conventions.

GCLISP Appendices

Appendix A, "Error Messages", lists the error
messages produced by the GOLDEN COMMON LISP
interpreter.

Appendix B, "Glossary", provides a glossary of
LISP terminology and other technical terms
used in the documentation.

Appendix C, "The Window System", documents the
interface to the GOLDEN COMMON LISP window
system.

Appendix D, "Compatibility Notes", docum.ants
points of divergence between GOLDEN COMMON
LISP and the COMMON LISP standard.

ACKNOWLEDGMENTS

GOLDEN COMMON LISP has come about largely through the efforts
of Harold Ancell, Gerald R. Barber, Judith A. Bolger, Martin
J. Broekhuysen, Hilary c. Chan, Cody F. Curtis, Stanley P.
Curtis, Nick Gall, Carl Hewitt, John Kam, Joseph D. Pehoushek,
Dominique M. Schroeder, John A. Seamster, John A. Teeter,
Eugene Wang, and Chaka.

The package would not have been completed without
expertise of Patrick H. Winston, Daniel c. Brotsky,
Karen A. Prendergast, who developed the San Marco
Explorer and gave us valuable input in the design
GOLDEN COMMON LISP. Ms. Prendergast also provided
painting for the cover design of the GOLDEN COMMON
package.

the
and

LISP
of

the
LISP

The following individuals and groups
acknowledgment for their contributions:

deserve special

Guy L. Steele Jr., who wrote the COMMON LISP
language specification, and allowed us to use the
book's original name of the COMMON LISP Reference
Manual.

John Osborn and Chase Duffy of Digital Press, who
worked closely with us to produce a version of the
COMMON LISP Reference Manual for our package.

David K. Wessel and Ellen D. Rawlings of
Addison-Wesley Publishing Company, who helped us to
include the book LISP (Second Edition), by Patrick
H. Winston and Berthold Klaus Paul Horn.

Daphne Fogg of CSA Press, who worked hard to help us
deliver a quality product under a demanding and
changing delivery schedule.

Daniel J, Dawson, who designed the graphics for the
GOLDEN COMMON LISP package, and remarkably made it
all come together.

GOLDEN COMMON LISP
INSTALLATION GUIDE

Version 1.01

Table of contents

l Introduction
2 Minimum System Requirements
3 An Inventory of the GCLISP Package
4 Starting the DOS Operating System
5 Installing GCLISP

5.1 Installation and Copy-Protection
5.2 Installing GCLISP on a Hard Disk
5.3 Installing GCLISP on Diskettes

6 starting GCLISP

6.1 starting GCLISP from a Hard-Disk
Installation

6.2 starting GCLISP from a Diskette
Installation

7 Configuring GCLISP
8 Where to Go from Here

8.1 Becoming a GCLISP Registered User
8.2 Guide to the Documentation

9 What to Do if Things Go Wrong
10 Some Terminology

10.1 Some Definitions
10.2 The IBM Keyboard

Appendix Un-Installation and Error Messages

1 Un-Installation
2 Errors and Error Messages

l
2
3
4
5

5
6
7

8

8

8

10
11

11
11

13
15

15
15

19

19
20

Installation Guide

1 Introduction

GCLISP is designed to be easy to install on a variety of PC
configurations.

You should follow the instructions in each
Guide (see the Guide's Table of Contents)
that your GCLISP package is complete,
installed and configured.

section of this
in order to ensure
and is properly

If you have any problems understanding the terms or
conventions used in this Guide, you should turn to section 10,
"Some Terminology". ---

If you still have problems, you should turn to section 9,
"What to Do if Things Go Wrong".

2 GOLDEN COMMON LISP

2 Minimum System Requirements

Make sure that your PC is capable of running GCLISP.

This is the minimum configuration required to run GCLISP:

An IBM PC, PC XT, PC AT, or 100%-PC-compatible computer;

512K bytes of memory;

A PC-DOS (or MS-DOS) operating system, Version 2.0 or
higher (including Version 3.0);

A 5-1/4" double-sided/double-density diskette drive and
diskette drive controller; and

Either a Monochrome Display Adapter and a Monochrome
Display, or a Color/Graphics Monitor Adapter and a
Color/Graphics Monitor.

The following configuration options are also supported by
GCLISP:

A second 5-1/4" double-sided/double-density diskette
drive and diskette drive controller;

A hard disk and disk drive controller;

A Mouse Systems PC Mouse; and

An Intel 8087 Numeric Processor Extension.

Note: All disk drives, diskette drives, drive controllers,
display/monitors, and display/monitor adapters listed above
must be IBM or IBM-compatible. Operation of the
copy-protected GCLISP diskettes depends upon the full
IBM-compatibility of the drives and drive controllers.

INSTALLATION GUIDE 3

3 An Inventory of the GCLISP Package

Check that your GCLISP package contains these items:

LISP, by
(Second
1984).

Patrick H. Winston and Berthold Klaus Paul Horn
Edition; Addison-Wesley Publishing Company,

The COMMON LISP Reference Manual, by Guy L. Steele Jr.
(Digital Press, 1984).

A D-ring binder containing the following:

* Installation Guide (this document)

* Tutorial Guide

* Users' Guide

* Reference Manual

* Appendices

* Customer Protection Plan

* Two four-pocket diskette sleeves

* Program License Agreement envelope
(containing five write-protected diskettes)

* A Quick Start-Up of GOLDEN COMMON LISP

* Release Notes GCLOlOO - l and GCLOlOl - l

The five diskettes contained in the Program License Agreement
envelope are as follows:

GCLISP Master diskette

GCLISP Utilities l diskette

GCLISP Utilities 2 diskette

San Marco LISP Explorer Viewer diskette

San Marco LISP Explorer Slides diskette

4 GOLDEN COMMON LISP

4 Starting the DOS Operating System

Start your DOS operating system.

If you do not know how to start your DOS operating system,
follow the instructions in your IBM PC DOS manual (or its
equivalent for your machine).

You do not need to restart DOS every time you want to run
GCLISP. We suggest that you do start it afresh before
installing GCLISP, to ensure that no other program will affect
the installation process.

INSTALLATION GUIDE 5

5 Installing GCLISP

5.1 Installation and Copy-Protection

GCLISP is copy-protected. The copy-protection mechanism
enables you to install GCLISP on diskettes or on a hard disk,
while preventing unauthorized duplication of the software.

The number of authorized installations is pre-set on the
original distribution diskettes. An authorized installation
can be made on either a hard disk or on diskettes, at your
choice.

GCLISP can be run either from the original distribution
diskettes or from an authorized installation. However, you
should always install GCLISP, and then run it from the
installed copy, keeping the original product diskettes safely
stored away. In case of accidental damage to the installed
copy, the originals are then available for running GCLISP.
Also, the original Master diskette is required whenever you
want to un-install an installed copy.

In the remainder of this Guide, several terms are used for
convenience. A product diskette is one of the five original
(distributed) diskettes you purchased. A working diskette is
a diskette you have produced by installing on it the contents
of a product diskette, using the installation procedure
described in section 5.3 below. During the installation
procedure, the diskette where GCLISP is to be installed is
also called a target diskette. The diskette drive where the
target diskette is inserted is called the target drive or the
installation drive.

Since the installation procedure consists essentially of
copying the product diskettes, a working diskette or a
hard-disk installation is also called a working copy.

The following installation instructions guide you through the
normal installation procedure. See Appendix A to this Guid~,
"Un-Installation and Error Messages", for instructions on how
to un-install an installed GCLISP, and for explanation of
error messages that may be displayed during the procedu:ce.s o

6 GOLDEN COMMON LISP

5.2 Installing GCLISP on a Hard Disk

Before installing GCLISP on your hard disk, make sure that:

1. There are at least 1,800,000 bytes free on your hard
disk (this is how much room the GCLISP system
occupies). You can determine the number of free bytes
on drive C: (for example) by using the DOS command
chkdsk, as follows:

C>chkdsk c:

If there is insufficient room, you will have to delete
some existing files from the hard disk.

2. There is no directory named \gclisp on the hard disk
containing files which you want to save. By default,
GCLISP will be installed in \gclisp (during the
installation procedure, you may, if you want, name the
logical drive and the directory where GCLISP will be
installed). If there is already such a directory, all
the files in it will be deleted before the new files are
installed.

To install GCLISP on your hard disk:

1. Insert the GCLISP product Master diskette in drive A:,
and make drive A: the current drive.

2. Enter the command qclisp at the DOS prompt:

A>gclisp

3.' Type I when asked whether you want to install,
un-install, or run GCLISP.

4. Follow the other prompts displayed on the ensuing
display screens.

The installation process takes about 10 minutes to transfer
the GCLISP system from the five diskettes to the hard disk.
Any time during the installation process, you may abort the
installation by typing ctrl-Break and then typing 'Yes'.
(Ctrl-c instead of ctrl-Break if your keyboard lacks a Break
key.)

After the installation process has successfully completed, it
will set the current directory to the GCLISP default drive and
directory for the hard-disk installation, and then start
GCLISP. (Future starts can take place from that directory
directly, as described in section 6.1 below.)

INSTALLATION GUIDE 7

5.3 Installing GCLISP on Diskettes

To install GCLISP on diskettes:

1. Prepare five working diskettes by formatting them, using
the DOS command format.

2. Insert the GCLISP product Master diskette in drive A:,
and make drive A: the current drive.

3. Enter the command gclisp at the DOS prompt:

A>gclisp

4. Type I when asked whether you want to install,
un-install, or run GCLISP.

5. Follow the other prompts displayed on the ensuing
display screens.

The installation process takes about 15 minutes to transfer
the GCLISP system from the five product diskettes to the
formatted working diskettes. Any time during the installation
process, you may abort the installation by typing ctrl-Break
and then typing 1 Yes 1 • (Ctrl-C instead of ctrl-Break if your
keyboard lacks a Break key.)

After the installation process has successfully transferred
the GCLISP system to the formatted diskettes, it will start
GCLISP from the new working copy on these diskettes. (Future
starts should take place from the working copy directly, as
described in section 6.2 below.)

8 GOLDEN COMMON LXSP

6 Starting GCLISP

Since the installation process starts GCLXSP automatically
from the new working copy, you can ignore this section the
first time around. But in general, you should follow one of
the procedures below to start GCLISP.

There are two cases: starting GCLXSP from
installation, or starting GCLISP from
installation.

a

6.1 Starting GCLXSP from a Hard-Disk rnstallation

a hard-disk
diskette

1. Make drive c: the current
following command at the DOS
prompt A>):

drive
prompt

by entering the
(for example, the

A>c:

2. Make the gclisp directory the default directory by
entering the following command:

C>cd \qclisp

3. Enter the GCLISP environment by entering the following
command:

C>qclisp

6.2 starting GCLXSP from a Diskette rnstallation

1. Insert a working copy of the Master diskette in drive
A:•

2. Make drive A: the current drive
following command in response to the
example, the prompt B>):

B>a:

by entering
DOS prompt

the
(for

INSTALLATION GUIDE 9

3. Make\ (the root) the default directory by entering the
following command:

A>cd \

4. Enter the GCLISP environment by entering the following
command:

A>qclisp

10 GOLDEN COMMON LISP

7 Configuring GCLISP

The very first time that GCLISP is started from a working
copy, the display will appear as follows:

GOLDEN COMMON LISP, Version 1.01
Copyright (C) 1984, 1985 by Gold Hill computers

: Reading file INIT.LSP

Initialization file loaded.
This GCLISP has not been configured,

type (CONFIGURE-GCLISP).
Type Alt-H for help
Top-Level

*

Note: The message "This GCLISP has not been configured, type
(CONFIGURE-GCLISP)" will not appear once you have configured
your system using configure-gclisp.

To configure GCLISP for use on your system, type the following
at the GCLISP prompt (the* character):

* (configure-gclisp)

(GCLISP begins processing the command as soon as the right
parenthesis is typed; you do not need to hit the Enter key.)

configure-gclisp will inform GCLISP about your system by
asking you questions concerning the type of monitor on your
system and the amount of memory to reserve for DOS. Each
question is accompanied by a full explanation. You may go
over the questions several times until you are completely
satisfied with your answers. When you exit, your GCLISP will
be configured. (The amount of memory you have specified to be
reserved for DOS will not take effect until the next
invocation of GCLISP.)

You can run configure-gclisp as often as needed to reflect
changes in your system's resources and their allocation.

INSTALLATION GUIDE 11

8 Where to Go from Here

Congratulations on successfully installing GCLISP on your
system!

8.1 Becoming a GCLISP Registered User

Now before you get too caught up exploring the world of
GCLISP, you should send in the self-addressed GCLISP
Registration Card (located in the customer Protection Plan at
the back of this binder). This card establishes you as a
registered user, which entitles you to receive written
notification of upgrades to GCLISP, replacements for missing
or damaged parts, and four free newsletters.

Please fill out this card and return it to us now.

Note: The "software serial number" to be entered on the
Registration Card is found on a white label near the top left
of your diskettes. The ISBN number at the top right is not
the software serial number.

8.2 Guide to the Documentation

In general, the documentation is designed to be read
sequentially in the order of its appearance in the binder.

If you are new to LISP or if you would like to brush up on
LISP arcana, you should go to the Tutorial Guide (next in this
binder), where you will be introduced to the San Marco LISP
Explorer. The LISP Explorer, in conjunction with the book
LISP, will provide you with an excellent introduction to the
fundamentals of LISP programming.

If you are an experienced LISP programmer, you may want to
bypass the Tutorial and proceed directly to the Users' Guide
to get a feel for the environment provided by GCLISP.

Once you have read the users' Guide and are ready to program,
you will want to read the GCLISP Reference Manual together
with the COMMON LISP Reference Manual to familiarize yourself
with the capabilities of GCLISP in particular and COMMON LISP
in general. Note that most of the material in the
Reference Manual is available on-line via the GCLISP help
facilities.

12 GOLDEN COMMON LISP

If you have a particular problem or area for investigation,
use the following heuristics for finding the information you
want:

Look through the Table of Contents of each document in
this binder to locate where a topic is written about;

Consult the Index of each document, for references to
pages where significant words or phrases appear;

Look through Appendix B, "Glossary", for the meanings of
technical terms;

Type Alt-H to access the on-line help facilities;

Type Alt-E to use the San Marco LISP Explorer.

INSTALLATION GUIDE 13

9 What to Do if Things Go Wrong

Don't panic.

Review this Installation Guide and make sure you have followed
the installation, startup, and configuration procedures
correctly.

If you are having trouble with installation, see section A.2,
"Errors and Error Messages", in this Guide's Appendix A,
"Un-Installation and Error Messages". ---

If the problem appears to be with your computer system, or
with the distribution diskettes, or you can't get GCLISP
started or configured, try to find your problem in the
Troubleshooting Guide below, and take the specified remedial
action.

If you have started GCLISP, but are encountering problems
using it, consult the Release Notes included in this binder.
Also consult Appendix A, "Error Messages", in the Appendices
at the back of this binder.

If you still can't solve your problem, call or write for
Customer Technical Support:

Gold Kill computers
customer Technical support
163 Harvard street
Cambridge, MA 02139

Phone: (617) 492-2071

Troubleshooting: A Short Guide

PROBLEM REMEDIAL ACTION

A package component is missing or damaged.

Fill out the Replacement Order Card (located
in the Customer Protection Plan at the back of
this binder) and send it to our Customer
Technical Support address (above).

J.4 GOLDEN COMMON LISP

Files are damaged or missing on
an original GCLISP diskette.

Take the remedial
components, above.

You aren't sure that your system meets

action

the minimum requirements for running GCLISP.

for damaged

Attempt the installation process. If your
system doesn't meet the minimum requirements,
you should receive either the message Program
too big to fit in memory (see below), or a
message described in your IBM PC DOS manual
(or its equivalent for your computer).

While starting GCLISP, you receive the message
Program too big to fit in memory

You must have at least 480K bytes of available
memory in order to run GCLISP. You can
determine the amount of available memory on
your system using the DOS chkdsk command. The
available memory may be limited by the
presence of device drivers or a RAM drive, for
instance.

You don't know how to start DOS
or how to enter DOS commands.

This installation guide assumes that you are
familiar with the basic use of the DOS
operating system on your PC. If you are not,
you should consult your IBM PC DOS manual
before continuing with the installation
process.

GCLISP starts, but prints out an error message
instead of the GCLISP prompt, *·

For a detailed explanation of the error and
the appropriate remedial action, consult
Appendix A, "Error Messages", in the
Appendices at the back of this binder.

INSTALLATION GUIDE 15

lO Some Terminology

10.1 Some Definitions

The following table defines certain terms that appear
frequently in this Guide. If the term that you are looking
for is not defined here, see Appendix B, "Glossary", at the
back of this binder.

TERM

cursor

enter

initialization

prompt

MEANING

The cursor is a blinking mark (usually an
underline, ' ') on the display that indicates
where the next typed character will appear.
The cursor is usually to the right of the last
character typed.

For a DOS command, the phrase "enter the
command foo" means typing the characters f, o,
o, and then hitting the Enter key (see the
next subsection).

For a GCLISP command, the phrase "enter the
command (foo)" means typing the characters (,
f, o, o,), without hitting the Enter key.

Initialization is the process
operating system or software
computer in order to run it.

of loading
package into

an
a

A prompt is a character (or characters) that
appears on the left-hand side of the display
when a system is waiting for a user command.
There are different prompts for different
systems. For example, A> is the default DOS
prompt, while * is the normal GCLISP prompt.

10.2 The IBM Keyboard

This section introduces the IBM PC keyboard. It defines the
names of certain keys and key groups and explains how they are
used within GCLISP. GCLISP makes special use of the keyboard,
so you should at least skim this section even if you are
already quite familiar with the keyboard.

16 GOLDEN COMMON LISP

Here is a diagram of the IBM PC keyboard.

IBM PERSONAL COMPUTER KEYBOARD

The keyboard is divided into three areas of keys: a
"Typewriter Area", a "Numeric/Cursor-Control Keypad Area", and
a "Function Key Area".

Typewriter Area

These keys occupy the large middle area of the keyboard. Most
of the keys resemble the keys of an ordinary typewriter, and
function like typewriter keys.

However, the following keys perform special actions in GCLISP:

Enter key

Rubout key

This key is located on the right-hand side of
the Typewriter Area in the same location that
the Return key occupies on a typewriter. It
is marked with a bent, left-pointing arrow to
suggest the action of a Return key.

At the DOS prompt, the Enter key is typed at
the end of a command in order to tell DOS to
begin processing the command. In other words,
the Enter key "enters" a command (hence the
name). When typing text in the GMACS editor,
the Enter key acts like the Return key on a
typewriter: it moves the cursor to the first
character position of the next line.

This key appears on the upper right-hand side
of the Typewriter Area, just above the Enter
key. It is marked with a long left-pointing
arrow. (It is easy to confuse this key with
the cursor-control key that is marked with a
short left arrow.) This key is also known as

INSTALLATION GUIDE 17

Control key

Alternate key

the Backspace key.

Any time you are entering text, the Rubout key
can be used to delete the characters to the
left of the cursor.

This key is located in the left middle of the
Typewriter Area, above the Shift key. It is
marked Ctrl. The Control key works like the
Shift key: You press and hold down the Control
key, and then type another key.

Throughout the GCLISP documentation, the
prefix ctrl- is used with a key that is to be
typed with the Control key. For example,
Ctrl-F refers to pressing and holding down the
Control key, and then typing the F key.

This key is located in the lower left of
Typewriter Area, below the Shift key. It
marked Alt. The Alternate key works like
Shift key: You press and hold down
Alternate key, and then type another key.

the
is

the
the

Throughout the GCLISP documentation, the
prefix Alt- is used with a key that is to be
typed with the Alternate key. For example,
Alt-F refers to pressing and holding down the
Alternate key, and then typing the F key.

Parentheses keys
The open and close parentheses are the shift
positions of the 9 and o keys, top row right
in the Typewriter Area. Ill GCLISP,
parentheses surround all commands. Note that
when the closing parenthesis of a command is
typed, GCLISP immediately begins processing
the command (you do not need to hit the Enter
key).

Escape key This key is located on the upper left-hand
side of the Typewriter Area, just above the
Tab key. It is marked Esc. At the GCLISP
prompt, hitting Esc will delete the current
input. In the GMACS editor, it is used in
place of the Enter key in certain situations.

Print-screen key
This key is located to the right of the
right-hand Shift key. It is marked Prtsc.
When this key is struck with the Shift key
held down, DOS prints the information on the
display to the printer. If the information
contains any graphics, the printer must be

18 GOLDEN COMMON LISP

compatible with the IBM Graphics Printer.
Note that Shift-Prtsc toggles copying to the
printer in DOS, but not in GCLISP.

Numeric/Cursor-control Keypad

These keys are located on the right-hand side of the keyboard:

Numeric Lock key
This key is located at the top of the keypad.
It is marked Num Lock. It acts as a toggle,
switching the keypad between use as a Numeric
keypad and a Cursor control keypad.

Scroll-Lock - Break key
This key is located at the top-right of the
keypad. It is marked scroll Lock on top and
Break on the front. Holding down the ctrl key
and hitting this key will cause GCLISP to
"break" the currently executing function (see
the Users' Guide for more information).

Cursor-Control keys

Function Keys

These keys consist of the four arrow keys: The
Page Up key (labeled Pg Up), the Page Down key
(labeled Pg Dn), the Home key, and the End
key. In the GMACS editor, these are used to
move the cursor around on the display. In the
San Marco LISP Explorer, they are used to move
through the lessons.

These keys are located on the left-hand side of the keyboard.
They are labeled Fl to FlO.

At the DOS prompt, they are used for simple editing of the
command line. At the GCLISP prompt, they merely generate
graphics characters. In the GMACS editor and the San Marco
LISP Explorer, they are used as command keys.

Appendix A

Un-Installation and Error Messages

The installation process described in section 5 runs
interactively, prompting you to type disk drive and directory
identifiers, and to insert diskettes, as needed. The prompts
are mostly self-explanatory. However, note that the
informational output line "Diskettes MUST NOT have a write
protect tab" refers to all of the working diskettes and to the
product Master diskette. The write-protect tabs should be
left on the other product diskettes.

A.l Un-Installation

GCLISP can be un-installed -- that is, removed -- from a hard
disk or a diskette where it has been installed.
Un-installation of a working copy makes it possible to
re-install a new working copy (to the same medium or
elsewhere). This useful feature helps to protect you against
the consequences of diskette wear, and also enables you to
switch an jnstallation from one medium to another.

To perform un-installation, insert the product Master diskette
(the original, distributed diskette, not a working copy) in
diskette drive A:, set the default drive to A:, and start
GCLISP. Your display screen will shortly ask whether you want
to install GCLISP, or un-install GCLISP, or simply run
GCLISP. If you choose to un-install a hard-disk installation,
you will also be able to choose whether to delete from the
hard disk all of the GCLISP files, or only the principal
program files.

Important note: Performing a DOS RESTORE operation on the
root directory of a hard disk on which GCLISP has been
installed can damage the GCLISP copy-protection system.
Therefore, you should un-install GCLISP before restoring to
the root direct9ry.

20 GOLDEN COMMON LISP

A.2 Errors and Error Messages

Errors may occur while you are installing or un-installing.
If an error message is displayed, find it in the following
list and take the specified remedial action. If the
installation or un-installation procedure has aborted, it can
then be re-started. (In some instances it will continue after
your correction, for example after removal of a write-protect
tab from a diskette.)

If a displayed error message is not found in the list below,
contact Gold Hill computers.

Note that these messages are related specifically to
installation and un-installation. Other possible problems
with your computer system, or with diskettes, or with
configuring or starting GCLISP, were described in section 9
above, "What to Do if Things Go Wrong".

Diskette is Write Protected

The write-protect tab has been left on the
target diskette. Remove the target diskette
from the drive, take off the write-protect
tab, and put the diskette back in the drive.

Remove write-protect tab from diskette

Not Enough Space

(Same as the preceding message, for the target
diskette or the product Master diskette.)

There is too little space on the target
diskette (or on the hard disk) to create the
working copy. Use only a freshly formatted
diskette for the target diskette in a diskette
installation. For a hard disk installation,
this message means that some files must be
deleted from the hard disk to make room for
GCLISP.

Not enough space on target disk

(Same as the preceding message. This message
may also appear for an invalid drive
specification.)

INSTALLATION GUIDE 21

Drive Not Ready

There is no diskette in the target diskette
drive. Insert a (formatted) diskette in the
drive, and press the Enter (or Return) key to
continue with the installation process.

Not enough storage to run the Install program

Installation or un-installation requires at
least 96K available memory in your machine.

Invalid drive specification

drive.
drive

only

You have specified a non-existent
Verify that the physical and logical
assignments are correct, and specify
drives which are on your system.

Product is already installed. Install aborted.

During the installation process, GCLISP was
found already installed on the target diskette
or disk drive. There is no need to install to
this medium.

Product never installed. UNinstall aborted.

You've tried to un-install GCLISP from a
diskette or a hard disk where it is not
currently installed.

Product protection system damaged

The copy-protection mechanism is damaged.
Contact Gold Hill Computers for a replacement.

Install Terminated Error Code = nnnn

Contact Gold Hill Computers to remedy a
situation resulting in this error message with
a 4-digit error code. Note: The code 6010 may
appear if a write-protect tab is left on.

unauthorized Duplicate
Load Failed nn

or
Load Failed Error Code = nnnn

or
Unauthorized Duplicate (Code nnnn)

Contact Gold Hill Computers.

Alternate key 17
Break key 18
configuring GCLISP 10
Control key 17
copy-protection 5, 19
cursor 15
cursor-control keys 18
customer service 13
damaged components 13
diskettes - names 3
diskettes - product 5
diskettes - target 5
diskettes - working 5
documentation guide 11
drive - installation 5
drive - target 5
enter 15
Enter key 16
Escape key l 7
function keys 18
help - on-line 12
initialization 15
installation - authorized 5
inventory - package 3
keyboard 15
keys - special 15
Master diskette 3
missing components 13
Numeric Lock key 18
Parentheses keys 17
Print-screen key 17
prompt 15
Registered User 11
Registration Card 11
Replacement Order Card 13
Rubout key 16
Scroll-Lock Break key 18
Slides diskette 3
starting GCLISP 8
system requirements 2
terminology 15
troubleshooting 13
un-installation 19
Utilities l diskette 3
Utilities 2 diskette 3
Viewer diskette 3
working copy 5

Index

GOLDEN COMMON LISP

VERSION 1.01 INSTALLATION GUIDELINES

This short document supplements the Golden Common LISP
Installation Guide, Version 1.01, found in the binder of user
documentation included in every purchase of GCLISP Version 1.01.

For more details about installation, including the exact
instructions for running the installation procedure, please refer
to the Guide. The procedure has been designed and programmed so
that making each installation should be a routine process.

(A) Before sitting down to do any installation, please observe
the following guidelines and cautions.

1. An installation can be made to diskette or to hard disk.
You choose which during the installation procedure.

2. Any installed copy can be un-installed, making that copy
available for installation to another hard disk or another
set of diskettes.

3. GCLISP Version 1.01 is fully installable to the IBM and
COMPAQ families of personal computers including the IBM PC,
PC XT, PC AT, and Portable (but not the PCjr)~ and the
COMPAQ, COMPAQ Plus, and COMPAQ DeskPro. It is also fully
installable on 100%-compatible computers including the AT&T
PC 6300, Columbia PC, Olivetti, some Zenith and Corona
PC's, and Tandy lOOO's and 1200 1 s.

On other computers, including those manufactured by Sperry,
Leading Edge, ITT, Televideo, Panasonic, and Eagle, it is
not fully installable. It is also not fully installable to
certain hard disks, including the Datamac 33Mb, Great
Lakes, Iomega Bernoulli Box, Tecmar, Cameron lOMb, sunol
25Mb, and Alloy. If your personal computer or your hard
disk is one of these, call us for technical information
first.

4. IBM has published the fact of a possible incompatibility
between the IBM PC AT and the rest of the IBM PC family,
including the PC and the PC XT. Double-density diskettes
which are written on in a quad-density diskette drive on

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 2

the PC AT may thereafter not be readable in the
double-density diskette drives of PC's and PC XT's. Since
every installation of GCLISP -- either a hard-disk or !'l'
diskette installation -- involves writing to the GCLIS'~
distribution Master diskette, a distribution Master
diskette used to install GCLISP from the quad-density drive
of an AT may thereafter be unreadable on any PC or PC XT.

This is a vendor-hardware problem which could create a
problem for GCLISP installations. Our tests of GCLISP
installations on the PC AT have not encountered it.
However, to minimize the risk, do this: perform all
installations on PC AT's after any other installations.

5. Before, during, and after installation and un-installation
runs, handle the distribution Master diskette with care.
It is needed for every installation and un-installation
run.

(B) As you prepare to install on hard disk, be aware that 480K
bytes of RAM memory must be available on the target machine for
GCLISP to run. Run the DOS command chkdsk. The last line of
output displayed from chkdsk shows the available RAM memory
("bytes free").

(C) During the installation procedure, observe the following:

1. You can abort the installation procedure at any time by
typing Ctrl-Break (or Ctrl-C if your machine lacks a Break
key). If you do this before the GCLISP interpreter has
been installed, the process can be re-started from the
beginning. If you abort the process after the GCLISP
interpreter has been installed, then you should first
un-install and then re-install. The interpreter has been
installed if, and only if, the file GCLISP.COM is present
in the target installation directory you have chosen
(usually the directory C:\GCLISP on hard disk, or the root
directory on a diskette).

2. These are the most common causes of problems during the
installation procedure:

Less than 480K bytes of RAM memory is available in
your machine.

A machine with 512K bytes or more may have less than
480K available because other programs are resident in
memory when GCLISP is started. Use chkdsk as
described in (B) above to find out if too little

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 3

memory is available. A RAM disk, a spooler, a
terminal emulator, device drivers, or a popular
program such as Borland International's Sidekick
program may be occupying memory. Remove the offending
program and re-start the installation procedure.

A write-protect tab is on the distribution Master
diskette or on any installation target diskette.

These diskettes are written on during the installation
procedure. Remove the offending tab and re-start the
installation procedure from the beginning.

The diskette drive heads on the source diskette drive
are unclean or un-aligned.

Rarely, but sometimes, this inhibits installing. Make
sure that the drive heads are clean and well-aligned.

The DOS command processor (the program COMMAND.COM) is
not found during a hard-disk installation.

COMMANU.COM is needed by the installation procedure.
The symptom that it is not available is either (i)
empty target directories (LISPLIB, EXAMPLE, etc.)
after an installation that has run without any sign of
trouble; or (ii) the message "Cannot find file CR.CR"
during the installation. To verify directly that
COMMAND.COM is not available, start GCLISP from the
distribution Master diskette; choose the Run option
("R"); and, when the prompt• appears, type ctrl-D to
invoke DOS. The message "Failed: COMMAND.COM not
found " will appear if COMMAND.COM is not
available.

The common cause of this problem is booting your
computer from a DOS system diskette, without having a
copy of COMMAND.COM on the hard disk. To remedy the
problem:

Be sure that a copy of COMMAND.COM is in the
root directory on the hard disk (if
necessary putting it there by copying it
from a DOS system boot diskette) .

Be sure that the environment variable
COMSPEC is set to access this hard-disk copy

GOLD HILL COMPUTERS JUNE 1985

GCLISP VERSION 1.01 INSTALLATION 4

of COMMAND.COM, by inserting in your
machine's CONFIG.SYS file the command:

shell=c:\command.com c:\ /P

(For further explanation, see
technical reference manual
machine.)

the
for

DOS
your

When you encounter a problem without a quick solution, consult
the Installation Guide, including its Appendix A, "Uninstallation
and Error Messages".

(D) Post-installation cautions:

After a hard-disk installation, observe the caution in
Appendix A regarding RESTORE operations on the hard disk.

If any installed GCLISP diskettes show signs of wear after a
period of time, un-install that copy and re-install it to
new diskettes.

GOLD HILL COMPUTERS JUNE 1985

GOLDEN COMMON LISP
TUTORIAL GUIDE

version 1.01

The San Marco LISP Explorer

The GOLDEN COMMON LISP Tutorial consists of the San Marco LISP
1

Explorer , an interactive, self-contained exploration of the
basic programming concepts and strategies of LISP.

The LISP Explorer is organized like a slide show: each topic
is presented as a sequence of screens, much like a tray of
slides. You choose trays and slides using a screen menu and
keys on your PC keyboard.

To invoke the LISP Explorer from within the GCLISP
environment, type the GCLISP command (explore) -- including
the parentheses -- or the keychord Alt-E. This places you in
the LISP Explorer environment. The function keys Fl - F4 and
FlO can be used to orient yourself and to move around in the
environment:

Fl

F2 or Alt-H

F3

F4

"Return to GCLISP"
This ends the LISP Explorer session
returns you to the GCLISP environment.

"The Key Diagram"

and

This summarizes how to get around in the LISP
Explorer environment using the cursor motion
keys (Right Arrow, Left Arrow, Up Arrow, Down
Arrow, PgUp, PgDn, Home and End) and these
five function keys.

"Itinerary World"
This displays the topics of the LISP Explorer
in the form of a menu. Use the cursor motion
keys Right Arrow, Left Arrow, Up Arrow, and
Down Arrow to locate the tray you want to
invoke, and then F3 to invoke it.

"Primitive World"
This displays a list of LISP primitives and
enables rapid access to a tray in which each
is introduced. Use the cursor motion keys to
locate the primitive you want information
about, and then F4 to access a tray where that

1. "San Marco LISP Explorer" and "LISP Explorer" are
trademarks of San Marco Associates.

2 GOLDEN COMMON LISP

primitive is discussed.

FlO "Practice world"
This enables you to practice what you have
learned by typing input to the GCLISP
interpreter from within the LISP Explorer
environment.

The message "Writing usage history" appears briefly on the
screen when you exit from the LISP Explorer. This
usage-history file, USAGE.LSP, enables the LISP Explorer to
keep track of the last-viewed slide and the set of trays which
you have already accessed. Any time you re-enter the LISP
Explorer, you will be presented with the slide and tray you
were viewing when you last exited. Any time you view the
itinerary, using F3, the itinerary menu will mark the trays
you have already completed.

If there is not enough space to load the LISP Explorer when
you try to enter it, you will receive an informational message
and the LISP Explorer will not be started. This will happen
if you have used up a great deal of the GCLISP workspace, for
example by loading the GMACS editor. When this occurs, you
can end the current GCLISP session by typing (exit), start a
new GCLISP session by typing qclisp, and then type Alt-E to
enter the LISP Explorer.

The LISP Explorer includes trays of slides on these topics:

Preview
Using the controls
The Itinerary
Abstraction
From Bowls to Lists
Atoms and Lists
LISP Evaluates Forms
Lists Can Be Forms
Symbol Can Be Forms
Quoting Stops Evaluation
Access Procedures
Selector Procedures
Combining List Selectors
The Simplest Constructor
Making Simple Procedures
watching Procedures Work
More List Constructors
Still More List Constructors
Making More Procedures
Exploiting Analogies
Testing with Predicates
The Equality Predicate
The Data Type Predicates
The List Predicates
The Numeric Predicates

TUTORIAL GUIDE

simple Branching
General Branching
Combining Predicates
~epeating by Recursing
Recursing Twice
The Individual Inspector
The Group Inspector
Binding Variables
Evaluating Sequences
Following Paths to Files
Editing Files
Reading Files
Repeating by Iterating
Repeating by Mapping
Procedural Arguments
Nameless Procedures
Using Association Lists
Using Properties
Using Arrays
Using Structures
simple Printing
Simple Reading
Formatted Printing
Boxes and Arrows
Using Backquote
Translating with Macros
Optional Arguments
Approaching New Worlds
The Blocks World
Search
Pattern Matching
Rule-based Experts
Natural Language
Intelligent Data Bases
Moving on

3

The San Marco LISP Explorer is self-guiding. With this short
introduction, you can invoke it for LISP instruction any time
you are in the GCLISP environment.

GOLDEN COMMON LISP
USERS' GUIDE

version l.Ol

PREFACE

This Users' Guide introduces the GCLISP environment. It
teaches you how to type and evaluate GCLISP functions in the
interpreter, and how to use the GMACS editor for constructing
LISP programs. It also explains the use of the on-line help
facilities and the debugging utilities. Finally, it includes
the development of a sample application that introduces
various aspects of GCLISP programming.

If you are completely new to LISP, you may want to use the San
Marco LISP Explorer (see the Tutorial Guide) to introduce
yourself to LISP concepts before putting them to work in the
GCLISP environment.

Table of Contents

Chapter l The GCLISP Interpreter l

l.l Entering GCLISP 2
1.2 Exiting from GCLISP 4

1.2.l Exit and Re-Entry 4

1.3 On-Line Help 6
1.4 Keychord Commands to the Interpreter 7
l.5 The "Read-Eval-Print" Loop 8
1.6 Evaluation of LISP Forms 9
1.7 System Variables for Tracking Listener

Actions 13
1.8 Listener Levels 16
1.9 Common User Errors and GCLISP Error Messages 18
l.10 Loading Input Files 21
l.ll Table of COMMON LISP Language Conventions 24

Chapter 2 The GMACS Editor 25

2.1 The GMACS Environment 27

2.1.l Entering GMACS
2.1.2 Exit and Re-Entry
2.1.3 Protecting the Buffer Contents
2.1.4 Buffer, File, Window, and Screen
2.1.5 The Edit Screen
2.1.6 A GMACS Glossary
2.1.7 Inputting Commands and Characters
2.l.8 GMACS Help
2.1.9 Aborting GMACS Commands

2.2 Manipulating Buffers and Files

2.2.1 How Buffers and Filenames are Related
2.2.2 Displaying Buffer Names
2.2.3 Marking a Buffer Unmodified
2.2.4 Selecting a New Current Buffer
2.2.5 Reading a File
2.2.6 Writing a File
2.2.7 Deleting a Buffer
2.2.8 Directory Operations

2.3 Editing Text

2.3.l Inserting and Deleting Text
2.3.2 Words and Lines
2.3.3 About the Cursor Motion commands

27
27
28
28
3l
32
33
34
36

37

37
38
38
38
38
39
40
40

41

41
42
43

2.3.4 Table of Cursor Motion Commands
2.3.5 Inserting New Lines
2.3.6 Numeric Arguments (Repeat Counts)
2.3.7 Setting Upper-case and Lower-case
2.3.8 Search and Replace Commands
2.3.9 Manipulating Regions and Marks
2.3.10 Killing and Recovering Text
2.3.11 Editing in Two Windows

2.4 Editing LISP

43
45
45
47
47
49
50
55

56

2.4.l Cursor Motion 57
2.4.2 Convenience Aids to Writing in LISP 59
2.4.3 Indenting LISP Expressions 60
2.4.4 Displaying Information About LISP Code 61
2.4.5 Killing and Recovering LISP Code 61
2.4,6 Evaluating LISP Code from the Editor 62

2.5 Table of Function Keys
2.6 Table of Cursor Motion Keys
2.7 summary GMACS Command Reference (by Topic)

2.7.l Cursor Motion Commands
2.7.2 Edit Window Commands
2.7.3 Text Deletion Conimands
2.7.4 Buffer and File Commands
2.7.5 Search and Replace Commands
2.7.6 Case-Setting Commands
2.7.7 Commands for Editing LISP
2.7.8 Region and Kill History Commands
2.7.9 Miscellaneous Commands

2.8 GMACS Commands: Quick-Reference Table

2.8.l Cursor Motion Commands
2.8.2 Edit Window Commands
2.8.3 Text Deletion Commands
2.8.4 Buffer and File Commands
2.8.5 Search and Replace commands
2.8.6 Case-Setting Commands
2.8.7 Commands for Editing LISP
2.8.8 Region and Kill History Commands
2.8.9 Miscellaneous Commands

63
64
65

65
66
67
68
69
70
70
72
73

76

76
76
77
77
78
78
78
79
80

Chapter 3 on-Line Help Facilities 82

3.1 APROPOS 84

3.1.l Using APROPOS to Find the Right Function 85

3.2 DOC 87
3.3 LAMBDA-LIST 89

Chapter 4 Debugging in GCLISP 91

4.1 BREAK
4.2 BACKTRACE
4.3 TRACE
4.4 STEP

4.4.l The arrow-dn Option
4.4.2 The arrow-rt Option
4.4.3 The arrow-up Option
4.4.4 Other Options

4.5 PPRINT

4.5.l Formatting Rules Used with PPRINT

Chapter 5 An Application: The PIANO Program

5.1 Elements of the Piano Keyboard Program

92
95
97
98

99
100
101
101

103

104

107

108

5.1.1 Mapping Keyboard Characters to Notes 108
5.1.2 Reading Keyboard Characters 109
5.1.3 Representing Keyboard Characters in

ASCII Code 110
5.1.4 The Program Structure for Calling the

PLAY Routine 110
5.1.5 Putting in an End Test 112
5.1.6 Modifying and Revising the PIANO Program 112

5.2 Musical Functions and Variables

5.2.1 Musical Global Variables
5.2.2 The OCTAVEMOVE Function
5.2.3 The SETHERTZ and SPEAKER Functions
5.2.4 The SLEEP Function
5.2.5 The BEEP Function
5.2.6 The PLAY Function
5.2.7 The PLAYLIST Function
5.2.8 Putting Together Music Programs

114

114
115
115
117
118
118
119
119

Chapter 1

The GCLISP Interpreter

LISP stands for List Processing. Lists are the principal
means for organizing both data and program structures in
LISP. Because both programs and data are lists, program
structures can be treated as data: that is, as input to other
programs. Consequently, LISP functions can analyze other LISP
functions, and can even build new LISP functions.

Another aspect of LISP's flexibility is the extent to which
the user is able to define new LISP data and modify existing
ones. As Bernard Greenberg has said about LISP:

LISP objects are often used to model real-world
objects. Like real-world objects, LISP objects have
properties and relations to each other. A typical
real-world object, like a house, has a color, a
number of stories, the street it is on, the people
who live in it, and other qualities and quantities
as "properties" ••• In a LISP program, we might
have one object represent each house we were dealing
with.... LISP allows us to define, establish,
utilize and change the various properties and

1
relations of groups of objects.

This chapter introduces you to interaction with the GCLISP
interpreter. The interpreter is the main program of GCLISP.
It establishes and maintains your GCLISP environment. This is
the environment within which you type in LISP forms, or load
files of LISP forms, for evaluation. From the interpreter
environment, you can call on the GCLISP tutorial for
instruction, or invoke the GMACS editor to create program
files. The program debugging utilities run in the interpreter
environment, and so does the on-line help system. During much
of your work in GCLISP, you are in direct communication with
the interpreter.

1. Bernard Greenberg, "Notes on the Programming Language LISP"
(Student Information Processing Board, Massachusetts Institute
of Technology; 1976)

2 GOLDEN COMMON LISP USERS' GUIDE

1.1 Entering GCLISP

To enter the GCLISP environment at any time, first set your
DOS working directory. If you have installed GCLISP on a hard
disk, set the working directory to C:\GCLISP. If not, the
working directory should be set to logical disk drive A:,
where you have inserted the installed working copy of the
GCLISP Master diskette.

Then enter the command gclisp in response to the DOS command
prompt:

C>gclisp<ENTER>

The display here shows the operating system prompt and your
gclisp command. (The prompt shows the logical disk drive,
assumed here to be the drive c:.) <ENTER> stands for typing
the key labeled with a bent arrow (sometimes also called
RETURN, or CARRIAGE RETURN or CR, or ENTER). A display screen
like the following will result:

GOLDEN COMMON LISP, Version 1.01
Copyright (C) 1984, 1985 by Gold Hill Computers

: Reading file INIT.LSP

Initialization file loaded.
This GCLISP has not been configured,

type (CONFIGURE-GCLISP).

Type Alt-H for Help
Top-Level

*

The title and copyright lines, and two lines
initialization, are informational output from GCLISP.

about

The message "This GCLISP has not been configured, type
(CONFIGURE-GCLISP)" appears only if you have not yet run the
configuration program (see the Installation Guide). You
should run this first, before continuing in GCLISP. (Then the
message will not appear again.)

CHAPTER 1: The GCLISP Interpreter 3

The one-line guide to invoking on-line help about GCLISP and
the "Top-Level" line inform you that the GCLISP interpreter
has been invoked. The final line is the initial prompt to you
from GCLISP (*), and the cursor mark () showing where your
input will be typed. At this point, you are in the GCLISP
environment. You can enter LISP forms for evaluation; or
request on-line help about the environment by typing the

2
keychord Alt-H. You can also invoke the San Marco LISP
Explorer or the GMACS editor.

Occasionally while you are working in GCLISP, the lower-left
corner of the display screen will flash the letters "GC" for a
few seconds. This indicates that GCLISP is performi~g
"garbage collection" on the workspace: reclaiming storage in
the workspace so that it is available for the allocation of
new LISP objects. This is an automatic process which will not
affect your interaction, except to slow the interpreter's
response to your typing while the indicator is flashing.

Throughout the Users' Guide and other user documentation, we
will illustrate your interaction with GCLISP with "sample
screens" like the one above. These will be examples of actual
input-output dialogues. A sample screen will always be marked
by left and bottom borders, as just shown. User input will
always be shown in lower-case letters. Output from GCLISP may
be in upper-case or lower-case (or mixed).

With rare exceptions, you should be able to reproduce these
dialogues exactly from within your GCLISP environment.

2. The notation Alt-H means "the H key is pressed while the
Alt key is held down." See section 2.1.7 regarding this and
other keychords.

4 GOLDEN COMMON LISP USERS' GUIDE

1.2 Exiting from GCLISP

When you want to exit from the GCLISP· environment
(immediately, or after doing any amount of work) type in
(exit). This returns you to the operating system:

* (exit)
C>

Note the parentheses in the input to the interpreter above.
The closing parenthesis signals the end of input to the
interpreter, and invokes immediate evaluation of the input.
<ENTER> need not be typed.

(exit) resets the entire GCLISP environment. You should use
(exit) only when you are done working in GCLISP for a while,
or when you need more computer memory for non-GCLISP
applications. To execute a temporary exit, preserving the
GCLISP environment, use the GCLISP function dos, described
below.

1.2.l Exit and Re-Entry

The function exit ends the current GCLISP session, returning
you to the command processor in the operating-system
environment. You can then enter DOS commands in this
environment again; and you can at any time re-start GCLISP
with the gclisp command to the operating system.

However, during any GCLISP
to execute a DOS command.
GCLISP session, run the DOS
can more easily run the DOS

session, you may occasionally want
It would waste time to end the

command, and re-start GCLISP. You
command from within GCLISP without

3
terminating the current session.

To do this, use the GCLISP function dos, as in this example:

3. If your system does not have a hard disk, the diskette
containing the DOS command processor -- the file COMMAND.COM
-- should be in the current drive when you invoke DOS from
within GCLISP.

CHAPTER 1: The GCLISP Interpreter

I
I
I * (dos "copy foo.lsp bar.lsp")
I
I NIL
I *
I
!~~~~~~~~~~~~~~~~~~

5

That is: at the GCLISP prompt, enter the DOS command line, for
example copy foo.lsp bar.lsp, as an argument to the function
dos. The DOS command line is enclosed in double quotes.
GCLISP sends the command out to DOS for execution. No matter
what the command is, the return value of the GCLISP function
dos is nil, provided there are no errors in the DOS command
line. (Otherwise the return value is a numerical error code
from DOS. See sections 1.5 1.6 regarding return values of
evaluated functions.) When DOS has executed the command, the
return value is printed to your screen, and then the
interpreter is ready as usual for your next GCLISP input
form. (Any output from the DOS command line will be printed
to the screen and will be displayed temporarily before the
return value is printed.)

More generally, you can execute two or more DOS commands in
sequence and still return to the current GCLISP environment:

I
I
I * (dos)
I
I C>copy foo.lsp bar.lsp<ENTER>
I 1 File(s) copied
I
I C>time<ENTER>
I current time is 19:23:14.21
I Enter new time:<ENTER>
I
I C>exit<ENTER>
I
I NIL
I *
I
!~~~~~~~~~~~~~~~~~~

That is: the function call (dos), with no arguments, places
you in the DOS environment for as long as you like, without
ending the current GCLISP session. When you are done working
in DOS, the DOS command exit restores the GCLISP environment
as it was when you left. (The display will not look exactly
as just shown, because GCLISP also resumes printing to the
screen exactly where it left off.)

6 GOLDEN COMMON LISP USERS' GUIDE

The keychord Ctrl-D has the same effect as the function call
(dos).

Note: In the
COiiiiiiand (dos),
Don't give the
GCLISP session

"temporary DOS environment" provided
use the exit command to return to
gclisp command. This would establish
without ending the suspended one.

by the
GCLISP.

a new

1.3 on-Line Help

You can get on-line help at any time when typing input.

To see the on-line help guide, type the keychord Alt-H (the
Alt key held down while the H key is pressed). The help guide
appears, showing the types of help available and the two
principal GCLISP applications:

To invoke one of the following GCLISP applications,
type the indicated keychord:

Alt-E
Ctrl-E

The LISP Explorer, an on-line tutorial
The GMACS Editor

To get help in one of the following areas,
type the indicated keychord:

Alt-K

Alt-A

Alt-D

Alt-L

*

"Keys" - Displays a list' of the actions
invoked by special keys and keychords.

"Apropos" - Lists all symbols whose names
contain a specified string. Prompts for the string.

"Documentation" - Displays the on-line documentation
for a specified function, variable, or type name.
Prompts for the name.

"Lambda-List" - Displays the arguments for a
specified function. Prompts for the function name.

or more information about on-line help, see Chapter 3,
"On-Line Help Facilities", and also section l.4 below. (The
GMACS editor has its own, separate on-line help facility; see
Chapter 2.)

CHAPTER 1: The GCLISP Interpreter 7

1.4 Keychord Commands to the Interpreter

Certain commands to the interpreter
keyboard keys and keychords. The
commands is displayed when you type
It appears as follows:

are invoked by special
complete list of keychord
Alt-K, for "Keys" help.

*

These are the GCLISP keychord commands:

Alt-A
Alt-D
Alt-E
Alt-H
Alt-K
Alt-L

Ctrl-B
Ctrl-C
Ctrl-D
Ctrl-E
Ctrl-G
Ctrl-L
Ctrl-P
Ctrl-Break
Ctrl-NumLock
Rubout
Esc

Apropos a string
Document a function, variable, or type
Enter the LISP Explorer
Invoke on-line Help
Display this list of keychord commands
Display the lambda-list of a function
Backtrace the execution stack
Unwind to Top-Level
Invoke the DOS command processor
Invoke the GMACS editor
Go up one error level
Clear the display screen
continue from a break
Enter into a break level
Halt typeout to screen (any key continues)
Delete the preceding character
Delete the current input line

These keychords can be typed at any time.

he specialized help commands (Alt-K, Alt-A, Alt-D, and Alt-L)
and the application commands (Ctrl-E and Alt-E) are described
in more detail when you type Alt-H. The individual keys
Rubout and Esc are convenience aids for typing input. Other
keychord commands give information about the environment, or
alter the environment. These are explained elsewhere in this
chapter and the rest of the Users' Guide.

8 GOLDEN COMMON LISP USERS' GUIDE

l. 5 The "Read-Eval-Print" Loop

LISP program structures are processed by a LISP evaluator,
which consists of a function called eval. The user interacts
with the evaluator primarily through a loop that includes two
other functions besides eval: read and print. Not
surprisingly, this loop is referred to as the read-eval-print
loop. The program that implements this loop is known as the
listener.

The loop consists of three steps, in order:

(1) Read
(2) Evaluate
(3) Print

In detail, these steps operate as follows:

(l)Read. The function read transforms the
characters typed at the keyboard into LISP objects.
For example, if the sequence of characters "f", 11 0 11 ,

4
11 0 11 is typed, read returns the symbol named FOO.
If the sequence 11 (11 , 11+11 , 11 11 , 11 211 , 11 ", 11 3", 11) 11 is
typed, read returns a list containing the symbol +
and the integers 2 and 3.

(2) Evaluate. The object returned by read is passed
to the function eval, which eval~ates (or
interprets) the object and returns the result(s) of
the evaluation. For example, when read passes the
list (+ 2 3) to eval, eval returns the integer 5 as
the result.

(3) Print. The results of the evaluation are passed
to print, which outputs the printed representation
of the results to the screen. For example, if eval
passes the integer 5 to print, print outputs the
character 5 to the screen.

4. The LISP reader, or just ·the reader, is the program which
implements the read function. It changes lower-case letters
to upper-case letters, except when reading character-string
data. Consequently, you can type a symbol in either
lower-case or upper-case letters, or any mix of cases, without
affecting the interpretation.

CHAPTER 1: The GCLISP Interpreter 9

1.6 Evaluation of LISP Forms

The examples in this section illustrate the basic form of user
interaction with the listener as described above.

These simple examples will be familiar to a LISP programmer.
If you are completely new to LISP, you may need to call on the
GCLISP Tutorial, or Winston and Horn's book LISP, for more
extended introductions to the language. ~~

The simplest form you can enter to the listener is a number:

I
I
I * 2<ENTER>
I
I 2
I *
I
!~~~~~~~~~~~~~~~~~~~

The number 2 is read and evaluated; the result, 2, is printed
to the screen. A number always evaluates to itself. (In LISP
a form which evaluates to itself is called a self-evaluating
form.)

The last line of the output is the prompt, signalling that the
loop has been completed and the listener is ready to receive
your next input.

Function evaluation is illustrated by simple addition. The
addition function is a compiled function in GCLISP,

5
represented by the symbol +.
in as shown:

I
I
I * (+ 2 2)
I 4
I *
I
I

To add two numbers, we can type

s. For a
variables
Manual.

complete
supported

specification of all of the functions and
by GCLISP, see the GCLISP Reference

10 GOLDEN COMMON LISP USERS' GUIDE

The + function is evaluated with the arguments 2 and 2, and
the result, 4, is printed to the screen. As with all LISP
functions, the function name precedes the function arguments;
and the resulting function call is entered as a list: that is,
enclosed in parentheses.

Note that in the current example, the closing parenthesis in
the input signaled the completion of an input form. No
<ENTER> input was needed. The input reader recognized and
assembled the form, and passed it to the evaluator. In the
preceding example, however, the input reader needed the
terminating <ENTER> to recognize the end of the input form
(any white space following the input would also have signaled
the reader). In each case, the print function prints its
result to the screen on the next new line .•

A number evaluates to itself; a function call evaluates to the
result of applying the function to the values of its
arguments, as just illustrated. A symbol, however, is
interpreted as representing a variable; and it cannot be
evaluated unless it has previously been assigned (or bound to)
a value. Unless a variable is bound to a value, its
evaluation causes an error. The following screen illustrates
an evaluation error with the unbound symbol two.

* two<ENTER>

ERROR:
Unbound variable: TWO
l>

(Note the different prompt 1>, representing a new level of the
listener. Listener levels are described in section 1.8 below;
and errors and error messages are described in section 1.9.)

CHAPTER 1: The GCLISP Interpreter 11

6
To assiqn the symbol two a value, use the setf function:

I
I
I * (setf two 2)
I 2
I *
I
!~~~~~~~~~~~~~~~~~~

Now the symbol two can be evaluated:

I
I
I * two<ENTER>
I
I 2
I *
I
!~~~~~~~~~~~~~~~~~~

We can now perform the addition function usinq the symbol two
rather than the number 2:

I
I
I * (+ two two)
I 4
I *
I
!~~~~~~~~~~~~~~~~~~

A symbol can be bound to a new value at any time with the setf
function. Suppose we chanqe the value of the symbol two to
the numeric value 3:

I
I
I *(setf two 3)
I J
I *
I
!~~~~~~~~~~~~~~~~~~

6. We use setf rather than setq because setf is more qeneral
than setq, and for this reason, more in accord with the
philosophy of COMMON LISP.

12 GOLDEN COMMON LISP USERS' GUIDE

Now if we add two and two, the result is the number 6:

I
I
I * (+ two two)
I 6
I *
I
'~~~~~~~~~~~~~~~~~~

For a final example, consider defining a new function named
"plus". In this illustration, "plus" will be a limited
version of the GCLISP function +. That is, it will be defined
as a function of two arguments which adds its arguments and
returns the result, as + does. (+ is somewhat more powerful
than "plus", because + can be applied to more than two
arguments, and it also performs type checking on its input
arguments.)

To define "plus", use the GCLISP function defun:

I.
I
I * (defun plus (ab) (+ab))
I PLUS
I * (plus 2 2)
I 4
I * (plus two two)
I 6
I *
I
'~~~~~~~~~~~~~~~~~~

Here, the result of evaluating the first form was the function
name plus (output in upper-case). Then we input a function
call: the function plus applied to the arguments 2 and 2.
This evaluated, as expected, to 4. However, plus applied to
the symbol two (for both arguments) evaluated to 6, since the
most recent value bound to two was 3.

A major part of LISP programming is developing LISP forms
which you expect to use again and again. Any such form can be
defined as a function using defun. Thereafter, to use the
function, you have only to enter the function name together
with specific arguments.

CHAPTER l: The GCLISP Interpreter 13

1.7 System Variables for Tracking Listener Actions

The listener maintains several variables which provide a
useful history of its most recent actions. These variables
have short, easily-remembered names composed from the
characters "*", "!", and "+". At any time during a GCLISP
session, you can use any one of these variables.

One of these is the variable •, which always has the value
7

returned from the last evaluated form. The following sample
screen illustrates its use:

* (min (max 5 10 25) (max 7 49))
25
* *<ENTER>

25
* (setf answer *)
25
* answer<ENTER>

25

*

The firs line in the sample screen computes the maximum of
the numbers 5, 10, and 25 (which is 25); computes the maximum
of the numbers 7 and 49 (which is 49); and then computes the
minimum of these two results (25). Then the variable •
evaluates to 25. The setf line sets the value of the symbol
answer to the current value of •, or 25. Then the variable
answer evaluates to 25.

* represents only one value returned from an evaluated
function. If the function returns more than one value, •
represents just the first return value. To retrieve (in the
form of a list) all of the values returned from a multi-valued
function, use / instead of *· For examp,le, the truncate

7. Note that the symbol * also represents the multiplication
function in CGLISP. (And is also displayed as a prompt.) Be
careful not to confuse these meanings from the start.

14 GOLDEN COMMON LXSP USERS' GUXDE

function divides its second argument into its first argument;
and returns the quotient as the first value and the remainder
as the second value:

* (truncate 17 4)
4
1
* *<ENTER>

4
* (truncate 17 4)
4
1
* /<ENTER>

(4 1)

*

That is: the function call (truncate 17 4) returns the values
4 and 1 (quotient and remainder); and• then returns 4 (the
first return value). But / directly following the function
call returns the list with the two return values as its
elementso

The value of the variable + is the most recently read LISP
form, as shown in this example:

• (min (max 5 10 25) (max 7 49))
25
* +<ENTER>

(MIN (MAX 5 10 25) (MAX 7 49))
* (min (max 5 10 25) (max 7 49))
25
* (setf problem +)
(MIN (MAX 5 10 25) (MAX 7 49))
* problem<ENTER>

(MIN (MAX 5 10 25) (MAX 7 49))

*

Note carefully: • and / take their values from the most recent
error-free evaluation; but + takes its value from the most
recent error-free reading. That is, + is updated every time
an error-free input form is read, whether the form can be

CHAPTER 1: The GCLISP Interpreter 15

evaluated without error or not. However, only a form that can
be evaluated without error will change the value of * or I·

The variables ••, II, and++ have the corresponding meanings
for the next-to-last evaluated form (or the next-to-last read
form). And the variables ***, Ill, and +++ have the
corresponding meanings for the third-from-last evaluated (or
read) form. The following table summarizes these variables.

VARIABLE

*

**

I
II
Ill

+
++
+++

MEANING

Represents the first value returned from
the last evaluated LISP form.

Represents the first value returned from
the next-to-last evaluated LISP form.

Represents the first value returned from
the third-from-last evaluated LISP form.

Represents a list of all the returned values
from the last evaluated form, or the next­
to-last, or the third-from-last.

Represents the last-read form, or the
next-to-last, or the third-from-last.

16 GOLDEN COMMON LISP USERS' GUIDE

1.8 Listener Levels

When you enter GCLISP via the command qclisp from the
operatinq system, you are placed at "level O" of the listener,
or "Top-Level". This ".evel can be recoqnized by the prompt •
appearing on your display screen.

During your interaction with the listener typing in of
forms, evaluation, and printinq of results to the screen
"deeper levels" (or "lower levels") of the listener may be
invoked. These are numbered 1, 2, ••• (higher numbers for
deeper levels). You can recognize these by the numbered
prompts 1>, 2>, ••••

Only one level of the listener is active at any time; and you
interact only with that level. The GCLISP user interface
behaves the same at every level: accepting forms, evaluating
them, and printing the results.

How is a deeper level activated? There are two possible
ways. The first is by an error in user input. This example
appeared in section 1.6, when an unbound symbol was entered:

* two<ENTER>

ERROR:
Unbound variable: TWO
l>

There is no reason to stay at level 1 in this case. You input
the keychord ctrl-G or the function call (clean-up-error) to
return to level O:

I
I
I l> <Ctrl-G>
I Back to: Top-Level
I *
I
!~~~~~~~~~~~~~~~~

Level l disappears, and you are returned to where you left off
at level o, as shown by the prompt *· A subsequent error at
level o would invoke a new level 1.

CHAPTER l: The GCLISP Interpreter 17

Similarly,
listener.
returns to
may return
levels.

an error in input at level l invokes a level 2
A return from there via clean-up-error or ctrl-G
the level l where it was suspended (from which you
to level o again). And similarly for deeper

An error is an unintended way to invoke a deeper level. The
second way to invoke a deeper level is deliberate. Inputting
the function call (break) or the keychord ctrl-Break invokes
the next deeper level:

* (break)

BREAK, (CONTINUE) to continue

l>

This is useful as a program debugging technique (see Chapter
4, "Debugging in GCLISP"). Internal data about the suspended
level is accessible to you at the deeper level, and may be
useful in detecting and fixing program bugs.

Just as when the deeper level was invoked by error, you can
continue processing as you like at the deeper level and return
to the higher level when you choose. In this case, however,
the return is not via ctrl-G but via continue or Ctrl-P:

I
I
I l> <Ctrl-P>
I NIL
I *
I
'~~~~~~~~~~~~~~~~~~

Note carefully the difference between an error invocation of a
deeper level and a break invocation. The returns are
different:

(clean-up-error) or Ctrl-G returns from an error
(continue) or ctrl-P returns from a break

ctrl-C is a useful, more powerful return from a deeper level
entered either by error or deliberately. It returns to level
o immediately, discarding any and all intervening deeper
levels.

18 GOLDEN COMMON LISP USERS' GUIDE

1.9 Common User Errors and GCLISP Error Messages

Both new and experienced LISP programmers make frequent errors
when inputting LISP forms to the listener. GCLISP responds
immediately to user errors. The usual response to an error is
an error message printed to the screen, and an invocation of
the next deeper level of the listener.

This section describes the most common errors and the
responses to them. A complete listing of error messages is in
Appendix A, "Error Messages".

Unbound variable. This interaction was described in section
1.8:

I
I
I * two<ENTER>
I
I
I ERROR:
I Unbound variable: TWO
I l> <Ctrl-G>
I Back to: Top-Level
I *
I
!~~~~~~~~~~~~~~~~~~

In this instance, the symbol two did not have an assigned
value.

Undefined function. Just as a variable must be bound to a
value before It can be evaluated, a function name must be
defined before it can be used in a function call.

The error message Undefined function results when you attempt
to use in a function call a name which hasn't been defined as
a function. This error is often caused by mistaking a
variable name for a function name. Suppose, for instance,
that foo was assigned a value, but not defined as a function;
and then you attempt to use foo as a function name in a
function call:

CHAPTER 1: The GCLISP Interpreter

I
I
I * (setf foo 2)
I 2
I * (foo)
I
I ERROR:
I Undefined function: FOO
I While evaluating: (FOO)
I l> f oo<ENTER>
I
I 2
I l> <Ctrl-G>
I Back to: Top-Level
I *
I
'~~~~~~~~~~~~~~~~~~

19

Remember that the parentheses around foo indicate to the LISP
listener that (foo) is a function call; while foo (no
parentheses) is interpreted by the listener as a variable.

Wrong number of arguments in a function call. If we define a
function foo to take two arguments, and apply it to three
arguments, we receive the message: Too many arguments for:
FOO, as in this example:

I
I
I * (defun foo (a b) (+ a b))
I FOO
I * (foo 6 1 4)
I
I ERROR:
I Too many arguments for: FOO
I While evaluating: (FOO 6 l 4)
I l> <Ctrl-G>
I Back to: Top-Level
I *
I
'~~~~~~~~~~~~~~~~~~~

20 GOLDEN COMMON LISP USERS' GUIDE

Wrong type of argument. You receive the error message Wrong
type argument if you use one type of LISP object as an
argument to a function that expects a different type of object
as an argument. This occurs, for instance, if you use a
number for an argument when the function expects a symbol.
The function get, for example, takes two arguments: a symbol
and an object of any type. If we input a number rather than a
symbol for the first argument:

I
I * (get 2 'size)
I
I ERROR:
I GET: wrong type argument: 2
I A SYMBOL was expected.
I l> <Ctrl-G>
I Back to: Top-Level
I *
I
!~~~~~~~~~~~~~~~~~~~~

The following table summarizes
described.

the error messages just

MESSAGE

Unbound variable: foo

Undefined function:
foo

Too many arguments
for: foo

foo: wrong type
argument: X

EXPLANATION

The symbol foo was used as
a variable, but had no value
assigned to it.

The symbol f oo was used
as a function name in a function
call, but had not been defined
as a function name.

foo was defined as a
function name; but in a function
call to foo, too many
arguments were supplied.

The type of an argument X
supplied in a call of the foo
function does not match the type
of argument required by the
function definition of foo.

CHAPTER 1: The GCLISP Interpreter 21

l.10 Loading Input Files

A LISP program consists of a sequence of LISP forms, written
one after the other.

For a program of any size, it makes no sense to type in the
forms one at a time from your console, in the style shown so
far in this Guide. A program of even a few lines will more
likely be typed first into an on-line file; and then the
entire file is input to GCLISP for reading and evaluation.
This is the conventional way of writing and debugging LISP
programs.

Doing this requires two main tools. One is an on-line editor
for creating and modifying the on-line program file. The
GCLISP on-line editor is called GMACS; and the next chapter in
this Guide is a detailed guide to using GMACS. The other tool
is the LISP function load, which directs GCLISP to read and
evaluate the contents of a program file. load is described in
this section.

Suppose that (using GMACS) a program file called FOO.LSP has
been created, with these contents:

(+ 2 3)
(defun bar (a b)

(* a b))
(bar 4 S)

That is: FOO.LSP consists of three LISP forms. The first form
is a simple addition; the second defines the function bar as
simple multiplication; the third is a function call to bar
with the arguments 4 and s.

To have the file FOO.LSP read and its forms evaluated, give a
load function call at your console. The result looks like
this:

* (load "foo.lsp")
Reading file C:\GCLISP\FOO.LSP

#.(PATHNAME "C:\\GCLISP\\FOO.LSP")
*

22 GOLDEN COMMON LISP USERS' GUIDE

That is: load takes the name of the program file as an
argument. The name must be delimited by quote characters
(11) • The load call prints the "Reading file" informational
message; and, when reading (and evaluation) has been
successfully completed, the full pathname of the file is
printed to the screen.

several language conventions shown in this sample screen will
be unfamiliar to the LISP novice. For a short explanation of
their meanings, see section 1.11, "Table of COMMON LISP
Language Conventions". Note in particular the double
backslash, \\. This signifies that the reader has expanded a
pathname built with single backslashes. Since the backslash
character is a language convention which specifies that the
following character is to be taken literally, two successive
backslashes are needed to represent a backslash to the
listener. (For an explanation of pathnames, see the tray
entitled "Following Paths to Files" in the San Marco LISP
Explorer.)

Unlike a read-eval-print loop, the load function does not
automaticall¥ print to the screen the results of evaluating
the forms in the input file. Thus, though the forms in
FOO.LSP were evaluated, the screen did not show the results.
To print the returned values on the screen, include the :print
option in the load function call:

* (load "foo.lsp" :print t)
Reading file C:\GCLISP\FOO.LSP

5
BAR
20
#.(PATHNAME 11 C:\\GCLISP\\FOO.LSP")
*

Compare this screen with the contents of FOO.LSP to verify the
evaluations.

The :print option helps you to locate errors in the program
file. Suppose, for example, that in the function definition
of bar in FOO.LSP, the last parenthesis were missing, so that
it would look like this:

(defun bar (a bl
(* a bl

Now load this "defective" version of FOO.LSP, using
:print t. Here is the result:

CHAPTER 1: The GCLISP Interpreter

* (load "foo.lsp" :print t)
Reading file C:\GCLISP\FOO.LSP

5

ERROR:
End of file while reading s-exp.
l>

23

The error
reading an
read before
tile fonn in

message means "an end-of-file was found while
s-expression". That is: the end of the file was
finding the close parenthesis needed to complete
process.

Only the first LISP fonn in the file returned a value, before
the error message appeared. This says that the error must be
in the second fonn, and the evaluation halted there (otherwise
the return value for the second fonn would have printed) .

With a small file like this one, there is no real need to use
the :print option; but the option is very useful when reading
a large file.

24 GOLDEN COMMON LISP USERS' GUIDE

1.11 Table of COMMON LISP Language Conventions

The following table describes briefly several of the language
conventions found in COMMON LISP (you have encountered some of
them in this chapter) . For more complete discussion of these
and other conventions, see Chapter l of the GCLISP Reference
Manual and Chapter l of the COMMON LISP Reference Manual.

CONVENTION

()

MEANING
I
I
I --=Pc-a-r_e_n...,.t"""h_e_s_e_s-d"""e_m_a_r_c_a_t.,..-e-a-...l""'i-s""'t-.--=T=h-e-G=c=L=-I=s=p-1

listener interprets a list as I
a function call, a macro call, or a I
special form. I

--------- --...-.....----,,..---..,,.----,..-..,..,..--,--.......,..,.--,-...,...,-----1 A single quote indicates that the I
form that follows is not to be I
evaluated. •form is the same as I
(quote form). I

-------- --:---.----:---.--.,..,.-----.,..--,---.,..----' A semi-colon is the coillltlent character. I
Any data to its right (on an input line) I
will be ignored by the input reader. I
In output, anything to the right is an I
informational message. I

-------- -------------,.-------.----' " Double quotes enclose character-string I
data: 11This is not 39 characters long". I

--,-------- --,,,,,.--.,..-----=-c,-,,..-....--..,...,--.,.---,--,,----.,---' \ The character following the backslash I
character is accepted literally by the I
input reader, without any special I
meaning. (For example, all of the I
special characters in this table, I
including backslash, lose their special I
meanings when preceded by backslash.) I

-------- ---....--,...-,---------.-,...,---..--;----::-~' Vertical bars appear on either side of a I
symbol name or around characters in the I
symbol name to mark special characters I
for treatment as literal characters. I

I --=-A-c-o"""l_o_n_a_s_s_o_c_l.,..., a-t,...e_s __ a_s_ymb-.--o""l_n_a_m_e __ w_l..,... t"'h;::-t=h-e I
package it belongs to. I

--------- -----------------------'

Chapter 2

The GMACS Editor

GMACS is a full-screen display editor modeled after EMACS, the
editor created by Richard M. Stallman at the MIT Artificial
Intelligence Laboratory.

You can scan the quick-reference command summary in section
2.8 below to see that GMACS is a modern full-featured text
editor, with a repertory of nearly one hundred commands bound
to keychords and short key sequences. The kinds of objects
which can be manipulated by these commands include characters,
words, character strings, lines, arbitrary user-defined
regions of text, edit windows, edit buffers, and files.

The particular strength of GMACS, however, is that it
implements commands and features for editing LISP code. Using
these, you can manipulate all of the important elements of
LISP -- s-expressions, lists, lines of code, comments, and
function definitions -- as well as controlling interactively
the appropriate indentation and parenthesizing of your LISP
expressions.

Section
section
detail.

2.7.7 summarizes the LISP-editing commands,
2.4 describes these commands and features in
The GMACS LISP-editing features will:

and
more

automatically blink the open parenthesis which matches
the current close parenthesis;

inform you when you have typed too many close
parentheses;

indent an s-expression or a line correctly;

move forward and backward over s-expressions, and cut and
paste them;

display the parameter list or detailed documentation of
either an interpreted function or a compiled function; or
display the expansion of a macro form;

display the full name and documentation of a GMACS
command or a LISP function when you remember only part of
the name;

26 GOLDEN COMMON LISP USERS' GUIDE

exit to a temporary LISP listener and re-enter GMACS
without disturbing your GMACS environment (using only one
short command for an exit or re-entry};

evaluate directly, using the temporary listener -- and
without leaving GMACS the LISP statements which you
have been typing into the GMACS edit buffer.

An on-line tutorial in the use of GMACS can
within GMACS using the keychord Alt-H T for
section 2.l.8).

be invoked from
"Help teach" (see

This chapter as a whole describes the various features of
GMACS and explains how to use them:

Section 2.1 gives you basic information for getting
started with GMACS.

Sections 2.2 through 2.4 give more detailed explanations
of the various facilities of GMACS:

* Section 2.2 deals with commands and capabilities for
manipulating edit buffers and the associated files.

* Section 2.3 describes GMACS
commands for general editing.

capabilities and

* Section 2.4 is concerned with the set of commands
specifically designed to manipulate LISP programming
language constructs.

Sections 2.5 through 2.8 provide reference listings for
GMACS commands:

* Section 2.5 lists the commands bound to the function
keys on the IBM PC keyboard.

* Section 2.6 lists the commands bound to the cursor
motion keys on the IBM PC keyboard.

* Section 2.7 provides a summary reference to all
GMACS commands, including their key bindings and a
short description of each command.

* Section 2.8 is a quick-reference listing of all
GMACS commands and their key bindings.

CHAPTER 2: The GMACS Editor 27

2.1 The GMACS Environment

2.1.1 Entering GMACS

You have two ways of entering the editor from your GCLISP
environment:

l. using the Ctrl-E keychord, which has the same effect as
the function call (ed); or

2. using the ed function in one of these forms:

(ed "<filename>")
(ed t)

When you first invoke GMACS with no filename (the form (ed)),
you are placed in an empty edit buffer (see section 2.1.4)
called "MAIN". If you specified a filename, then the contents
of that file are read from disk into a buff er named after the
file. The form (ed t) gives you a new empty MAIN buffer (and
preserves the MAIN buffer from a previous invocation, if
any) •

When you invoke GMACS for the first time in any GCLISP
session, the editor programs must be loaded into your
computer's memory, to establish the GMACS environment. The
time required to load the editor will vary with your computer
system. Your screen will display a message line showing the
progress of the loading process.

2.1.2 Exit and Re-Entry

To leave GMACS and return to the interpreter environment, type
the key sequence ctrl-X ctrl-c.

When you again invoke GMACS, via Ctrl-E or the ed function,
the GMACS environment of buffers and files will be
re-established. If your command is (ed), without a filename,
you will be placed in the buffer where you were last editing,
and at the same point in that buffer. If your command is
(ed "<filename>"), then GMACS will re-establish the edit
environment following the rules of the FIND-FILE command (see
section 2.2.5, "Reading a File").

28 GOLDEN COMMON LISP USERS• GUIDE

2.1.3 Protecting the Buffer Contents

At any time in a GMACS session, several edit buffers may
exist. The set of existing buffers is preserved in the GCLISP
workspace when you exit from GMACS. These will all be
available to you when you re-enter GMACS from the GCLISP
interpreter environment. Their contents will be exactly as
you left them.

However, when you are editing a buffer, you should write out
the buffer to the file often. There are good reasons for
this. In any of the following circumstances, the contents of
the GCLISP workspace, including the buffers, are irretrievably
lost:

when you exit from GCLISP;

when the operating system or GCLISP has to be
re-initialized due to some unforeseen problem; or

when the computer is turned off,

The commands for handling buffers and files are found in
section 2.2 below, "Manipulating Buffers and Files".

2.1.4 Buffer, File, Window, and Screen

Four things are central to learning how editing is done in
GMACS. This subsection presents these concepts, to avoid any
possible confusion.

The four things are:

the edit buffer

the file being edited

the edit window

the edit screen

A very brief explanation of the roles of these four is as
follows:

The edit screen is the entire terminal display
screen during a GMACS editing session. The most
important area on the edit screen is the edit
window. In this window is displayed (part or all
of) the contents of the edit buffer. These contents
often consist of a working copy of a file being
edited.

CHAPTER 2: The GMACS Editor 29

Now for details.

The edit buffer.
This is a temporary storage area for lines of
text being edited. The area sometimes
called just "the buffer" -- is in the GCLISP
workspace. It is maintained by GMACS ,during
an editing session.

When in GMACS, there is at any particular time
just one particular buffer where editing
occurs, the current buffer. Strictly speaking,
editing consists of changing the contents of
the edit buffer by adding or deleting
characters at particular places. You may type
individual characters, or words, or LISP
forms, into the buffer; or manipulate the
buffer contents by rearranging, copying, or
deleting larger blocks of text. But it all
comes down to changing the
character-by-character contents of the edit
buffer. So we speak of "editing the buffer",
or being "in" the buffer.

At any particular time, the buffer may be
7mpty. Or it may contain lines you have typed
in; or a copy of a file on disk that was read
into it; or any combination of lines
originally gotten either from a disk file or
typed in by you.

The buffer is an object that you can
manipulate. You can create one or delete it;
or give it a name; or read a file into it; or
make another existing buffer the current edit
buffer. The set of GMACS operations on
buffers is described in section 2.2 below,
"Manipulating Buffers and Files". For now,
though, the important fact about the edit
buffer is that this is where editing happens.

The file being edited.
A file is a named storage area in a directory
on a disk in your computer. Once created, it
stays there until you delete it explicitly,
with an operating-system command such as del
filename. You may type a file to the terminal
screen, or print it (if text), or copy it, or
merge it with other files, or delete it, etc.

You can also edit a file with GMACS.
speaking, though, the file itself
edited. Only the contents of an edit

strictly
is not
buffer

30

The edit window.

GOLDEN COMMON LISP USERS' GUIDE

can be edited; and a file is not an edit
buffer.

To edit a file, you give a GMACS command to
"read the file into the edit buffer". This
means: find and open the file on the disk, and
read its contents into the edit buffer. This
is a copying operation; and has no effect at
all on the contents of the file as stored on
the disk.

Then you edit the copy in the buffer.

Finally, if rou are satisfied with your
changes, you give a GMACS command to "write
the file". This means: write the contents of
the buffer to the disk and give this disk file
the same name as before. In the process, the
old, unchanged copy of the file on the disk is
automatically deleted. This writing must be
done in order to save permanently the results
of the editing, since the buffer itself goes
away when GCLISP does.

Thus:

We say "edit the file", but the actual
changes are made on the copy of the file
that has been read into the buffer.

The file is permanent.
contents are not.

The buffer

Reading the file (from disk) into the
buffer has no effect on the file
contents. Writing the buffer to the file
(on disk) replaces the old version of the
file with the edited version.

This is an area on the terminal display
screen. It provides a view into the edit
buffer. In the edit window are displayed as
many lines of the current contents of the edit
buffer as will fit there.

At any particular time, you can edit only the
part of the buff er currently showing in the
window. That is, text can be inserted or
deleted only at a point in the part of the
buffer currently showing in the edit window.

The edit screen.
This is the terminal display screen as it is

CHAPTER 2: The GMACS Editor 31

presented while you are in GMACS. GMACS
controls your use of the screen, dividing it
into several areas. The most important area
is the edit window. Other areas are the mode
line and the echo/message area. The screen is
divided into these three areas, except when
the type-out window may obscure the edit
window.

More details about the edit screen follow.

2.1.5 The Edit Screen

This sample screen shows the display after you initially enter
GMACS (without specifying a filename at entry). The screen is
empty except for the line of information near the bottom and
the cursor mark in the upper left-hand corner.

GMACS Vl.00 MAIN: null pathname Alt-H HELP

A mode line like the one above is a permanent feature of the
edit screen. It always displays as the third-from-last line
on the screen. Reading left to right, it has these elements:

The editor name and version number: "GMACS Vl. 00 11 ;

The name of the current edit buffer, e.g.
followed by a colon;

"MAIN",

The pathname of the file currently being edited in
buffer, or "null pathname" if no file is associated
this buffer;

this
with

An asterisk(*, the buffer-status), if the contents of
the current edit buffer have been changed since they were
last written out to, or read from, a file;

32 GOLDEN COMMON LISP USERS' GUIDE

"Alt-H =HELP", to remind you how to invoke on-line GMACS
help.

In most sample screens appearing in
line will be omitted; it is
understanding the point being made.

this chapter, the mode
usually unnecessary for

The space above the mode line is usually filled by the edit
window, also known simply as "the window". (Other windows
will always be specifically identified.) The edit window
provides a view of the current edit buffer: either all of the
buffer, or as much of it as can be displayed in the window
area on the screen. You can edit data already in the buffer,
or type in new data, only in the area of the buffer currently
displayed in the window.

As data is typed into a buffer, the buffer expands
automatically to hold it. The cursor moves as you continue to
type. It shows where the next character typed will be
inserted into the buffer. Character insertion (or deletion)
always occurs at the point (called the point) between the
character above the cursor and the character immediately
preceding it. Note that a "non-printing character" such as a
space, a tab, or a newline is like any other character in this
regard. For example, the newline character (produced by
<ENTER>) doesn't show in the screen display; but it is in the
buffer like any other typed data.

When the data in the buffer fills the edit window, the window
shifts down so that you can continue to see what you type into
the buffer. To review and edit what you have typed, you can
move the window back and forth across the buffer (see sections
2.3.3 - 2.3.4 about the cursor motion commands). An entire
buffer of any size can be viewed in this way, one window at a
time.

2.l.6 A GMACS Glossary

Here is a short glossary of the most important terms for the
various elements of the GMACS screen image and the related
edit buffer.

EDIT WINDOW

EDIT BUFFER

A part of the terminal display screen used for
the purpose of displaying the contents of the
edit buffer. The edit window usually occupies
all but the bottom three lines of the display
screen.

A temporary storage area created and used by
GMACS. (The area is in your GCLISP
workspace.) The active or current edit buffer
appears in the edit window.

CHAPTER 2: The GMACS Editor 33

CURSOR and POINT
The cursor appears as a blinking mark (usually
an underline or a rectangle) on the edit
screen. The point is a position in the
current buffer: the position between the
cursor and the preceding character position.
Thus, if the cursor is under the letter "a" in
the word "bar" (b!r), the point is between "b"
and "a". Deletions and insertions in the
buffer take place at the point.

ECHO AREA/MESSAGE AREA

MINI-BUFFER

MODE LINE

BUFFER-STATUS

TYPE-OUT

The bottom two lines of the edit screen.
Here, edit commands that you type are
displayed {"echoed"); this enables you to
easily verify your input commands.
Miscellaneous informational messages appear
here also.

An area where you are prompted to enter the
names of files and other information required
by certain commands. The mini-buffer appears
in the right half of the echo area.

The line of status information appearing near
the bottom of every edit screen. The mode
line displays the name of the editor (GMACS)
and its version number; the name of the
current buffer and the associated file,
together with the buffer-status; and the Help
keychord.

The condition of the buffer with respect to
changes. If you have added or deleted data in
the current edit buffer since last reading in
a file to the buffer, or writing out the
buffer to a file, an asterisk appears
following the filename in the mode line.
Otherwise this space is blank.

A display of information produced by a GMACS
command. It appears in the type-out window, a
temporary window in the top part of the edit
screen. (The type-out window temporarily
overlays part or all of the edit window.)

2.1.7 Inputting Commands and Characters

While you are in the GMACS environment, everything you type at
the keyboard is part of an edit command. An edit command
directs GMACS to perform an editing task. (The edit commands
are actually LISP functions.)

34 GOLDEN COMMON LISP USERS• GUIDE

An edit command is invoked by typing an alphanumeric key, a
keychord, a key sequence, or a special function key. A key or
keychord or key sequence that invokes a command is said to be
bound to the command, and vice versa.

Most of the alphanumeric keys on the keyboard the
alphabetic keys, the numeric keys, and the punctuation keys -­
are bound to an edit command that inserts the character
represented by the key into the edit buffer. In other words,
typing the key A has the same effect as a command "insert the
character A".

A keychord consists of a modiLier key and an alphanumeric
key. The modifier key must be held down while the
alphanumeric key is pressed. The modifier keys are the shift
key, and the Ctrl key and the Alt key, both located just left
of the alphabetic keys on the PC keyboard. (The shift key is
used mainly for inserting upper-case letters.)

A keychord is represented in print by the symbols of the
appropriate keys linked together with hyphens. The printed
form Ctrl-F indicates that the Ctrl key is held down while the
F key is pressed.

A key sequence consists of either a keychord followed by an
alphanumeric key, or else a keychord followed by another
keychord. The additional key or keychord is pressed after the
keys for the first keychord have been released.

A key sequence is
written one after
indicates that the
pressed, and then
key is pressed.

represented
the other.
Ctrl key is
-- after the

by the keychords and keys
The printed form Ctrl-X 2
held down while the X key is

keychord is released -- the 2

For convenience, a number of edit commands bound to keychords
or key sequences have also been bound to the function keys on
the IBM PC keyboard. To invoke one of these commands, you do
not have to use the keychord or key sequence, but can use the
function key instead. (See section 2.5, "Table of Function
Keys.")

A few other special keys -- the cursor motion keys, Rubout,
Home and End, and Delete invoke editing actions in GMACS,
rather than representing characters for insertion into the
buffer (unless they have been shifted by the NumLock key to
implement the numeric keypad).

2.1.s GMACS Help

At any time while in the GMACS environment, you can invoke
on-line help about GMACS.

CHAPTER 2: The GMACS Editor 35

To invoke the GMACS on-line help facility, type Alt-H. (This
keychord always appears at the right-hand end of the GMACS
mode line.) This invokes the command HELP-DEADEND, which
displays in the mini-buffer a short menu of options and how to
invoke them:

GMACS
Help

Vl.00 MAIN: null pathname Alt-H =HELP
?=Help guide D=Document command T=Teach GMACS
A=Apropos K=Keychord binding

Please enter your selection:

The ? option invokes the help guide, a display of more
detailed descriptions of the options:

These kinds of GMACS on-line help are available.
To invoke one of them, type Alt-H followed by A, D, K, T, or ?.

A "Apropos" - Displays the keychords for all GMACS
commands that contain a specified string.
Prompts for the string.

D "Documentation" - Displays documentation on all
GMACS commands containing a specified string.
Prompts for the string.

K "Keychord binding" - Displays the GMACS command bound
to a specified keychord. Prompts for the keychord.

T "Teach GMACS" - Invokes the GMACS on-line tutorial.

? Displays this guide.

8
The help guide appears in a type-out window. So does the Help
information which is displayed when you request it via one of
the listed options. To invoke one of the options, type the

8. Note that when a type-out window has been displayed, you
are prompted to type a space character to continue. Use the
space bar, because any other input will be executed as a GMACS
command. For example, any self-inserting character will be
inserted into the current edit buffer.

36 GOLDEN COMMON LISP USERS' GUIDE

appropriate key (A, D, K, T, or ?) at the prompt.
access to an option, you can invoke it directly
sequence without waiting to see the menu:

For rapid
by a key

Alt-H A

Alt-H D

Alt-H X

Alt-H T

Alt-H ?

ED-APROPOS
Prompts you for a character string, and
displays in a type-out window all GMACS
commands which contain in their name the
specified string.

ED-DOC
Prompts ~ou for a character string, and
displays in a type-out window the on-line
documentation for all GMACS commands which
contain in their.name the specified string.

ED-KEY CHORD
Prompts you for a keychord, and displays in a
type-out window the command associated with
the specified keychord.

ED-TEACH
Invokes the GMACS on-line tutorial.

ED-HELP
Displays the help guide consisting of
descriptions of the options listed in the help
menu.

2.1.9 Aborting GMACS Commands

It is sometimes convenient to abort an editing command, rather
than letting it complete. Two special GMACS commands let you
do this.

Esc

Ctrl-G

DEAD END
The Esc key ("escape") aborts the current
command, rings the terminal bell, and returns
you to normal GMACS command entry.

ED-BEEP
This command aborts the current command, rings
the terminal bell, and returns you to normal
GMACS command entry.

Note that Esc has other
commands. Esc operates as
cases (described in the
commands elsewhere in this

meanings in certain other GMACS
DEADEND except in these specific
documentation of the particular

chapter).

CHAPTER 2: The GMACS Editor 37

2.2 Manipulating Buffers and Files

The edit buffer and the file being edited were described in
section 2.1.4, "Buffer, File, Window, and Screen". The
current section summarizes the relation between buffer and
file, and describes the GMACS commands for manipulating
buffers and files.

When you have finished editing in a buffer for the time being,
you can copy ("save" or "write") the contents of the buffer to
a disk file for more permanent storage. To modify an existing
file, you can copy ("read") the file into an edit buffer.

When you edit an existing file, you edit only the copy of it
that has been read into the buffer. If you decide not to keep
the changes you make while editing, you can delete the buffer
instead of returning it to disk storage. If you want to keep
both the earlier version of the file and the newly edited
version, you can write the new version to disk with a new name
and it becomes a separately stored file.

The commands for all of these operations are described below.

2.2.l How Buffers and Filenames are Related

When you read a disk file into a buffer, or when you write out
the contents of a buffer to a file, GMACS associates the file
and the buffer by name.

At any time, the filename currently associated with a buffer
is the name of the file most recently read into or written out
from the buffer. This name changes only when you specify
another filename for reading from or writing to.

This association is maintained by GMACS during your editing
session (and even between sessions, as described in section
2.1.2 above). You can see the complete list of names of your
existing buffers and the filenames associated with them by
using the LIST-BUFFERS command described in the next section.

If GMACS has newly created a buffer and the buffer is empty,
then there is no file associated with the buffer, and the
designation "null pathname" appears in the mode line.

38 GOLDEN COMMON LISP USERS' GUIDE

2.2.2 Displaying Buffer Names

Because buffers stay in GMACS until you delete them, you may
need to know what buffers currently exist. You may also need
to know whether the contents of a buffer have been written out
to a file after the most recent changes made to the contents.

To find out these
invoked with the key
lists {in a type-out
the name of the file

things, use the LIST-BUFFERS command,
sequence Ctrl-X ctrl-B. This command
window) the name of each edit buffer and
associated with it.

An asterisk (*) appears next to the filename if the buffer has
been modified since it was last saved or written to disk with
a SAVE-FILE or a WRITE-FILE command, as described below.

2.2.3 Marking a Buffer Unmodified

To mark a buffer unmodified, use the command ctrl-X u. This
directs GMACS to regard the buffer contents as having been
unchanged since the most recent READ, WRITE, or SAVE of the
buffer contents. In response to the command, GMACS clears the
buffer-status {*) in the mode line. (You would use this
command when you edit a buffer, modifying its contents, and
then decide that you do not want to save the changes; or when
you change the buffer contents by a typing mistake.) Note
that the modifications are not undone by this command. The
only action GMACS takes is to clear the buffer-status.

2.2.4 Selecting a New current Buffer

Recall that the current buffer is where editing is done at any
given time. There is always a current buffer.

To select a different buffer to be the current buffer, use the
SELECT-BUFFER command, invoked by pressing ctrl-X B. This
command prompts for the name of the buffer to switch to.

The command SELECT-PREVIOUS-BUFFER {Ctrl-X P)
buffer in which you were last editing before
current buffer.

2.2.s Reading a File

selects
entering

the
the

To read a specific file into some buffer other than the
current buffer, or into a new edit buffer, use the FIND-FILE
command, executed with the key sequence Ctrl-X Ctrl-F. The
command prompts you for the filename of the desired file.

CHAPTER 2: The GMACS Editor 39

If a buffer exists that is associated with this file, it is
selected as the current buffer and nothing is read into it.
The point is positioned where it was last located when that
buffer was last the current buffer.

Otherwise, GMACS looks among the existing buffer names for a
buffer named after this file. (When a buffer is named after a
file, the buffer name is the name of the file without the
"extension" part, if any, of the filename. By this rule, a
buffer would be named CONSOLE for either the file CONSOLE.CON
or CONSOLE.LSP.)

If you have specified FIND-FILE for the file CONSOLE.CON and a
buffer named CONSOLE is already in use but CONSOLE.CON is not
associated with the CONSOLE buffer, then GMACS will create a
new buffer named CONSOLEX and read CONSOLE.CON into it. In
other words, a new buffer will be created for the requested
file, and its name will be the filename with an "X" appended
(and without the extension) •

If no buffer is associated with the filename, and there is no
buffer named after the file, then the command creates a new
buffer named after the file and reads the file from disk into
the new buffer.

To read a specific file into the current buffer, use the
READ-FILE command, invoked with the key sequence Ctrl-X
ctrl-R. You are prompted for the name of the file to read.

Whatever is already in the current buffer is written over
(lost) by the reading in of the file. If you have made
changes to the current buffer since you last wrote it to disk
(via SAVE-FILE or WRITE-FILE), READ-FILE warns you and Offers
the option of cancelling the command.

Note that, as a result of this behavior, FIND-FILE is a safer
command than READ-FILE. READ-FILE will destroy the current
contents of an existing, unmodified buffer without warning
you, while FIND-FILE will not destroy the current contents of
any buffer.

2.2.6 Writing a File

After you have edited a file in a buffer, or typed text into
an empty buffer, you transfer the buffer's contents to a disk
file (unless you decide not to save the editing you have
done).

To put the buffer's contents to a file, use either the
SAVE-FILE command or the WRITE-FILE command. SAVE-FILE is
executed with the key sequence Ctrl-X ctrl-S. This command
writes the contents of the buffer to a file with the name
currently associated with the buffer. This replaces the old

40 GOLDEN COMMON LISP USERS' GUIDE

version of the file with the new, edited version. If the
buffer has not been associated with a disk file, you will be
prompted to name a file where you want to save the contents of
the buffer.

If you do not want to replace an existing file with the
contents of the buffer, use the WRITE-FILE command, executed
with the key sequence ctrl-X ctrl•W. This command prompts you
for a filename and writes the contents of the buffer as a file
with the new filename.

2.2.7 Deleting a Buffer

To eliminate a buffer, use the KILL-BUFFER command, invoked
with the keychord ctrl-X K. This command prompts you for the
name of a buffer and erases the buffer with that name. If you
press the ENTER key without entering a buffer name, the
command deletes the current buffer and returns you to the
previous buffer.

If the buffer has been modified since it was last written to a
file, you will be asked to verify the KILL-BUFFER operation.
If you decide not to complete the command, press Ctrl-G.

2.2.8 Directory Operations

While in GMACS, you can read or write files in the working
directory. You may want to change the working directory; or
you may want to examine the contents of this directory or of
some other directory. The following two commands enable you
to do that.

Ctrl-X Ctrl-D

Ctrl-X C

DISPLAY-DIRECTORY
Use this command to obtain a listing of the
names of files in any particular directory.
You are prompted for the pathname of the
directory you want. You can specify either a
directory or a filename, or a set of filenames
using the "*" wild-card convention, just as in
the DOS dir command. The directory listing is
displayed in a type-out window.

CHANGE-DIRECTORY
Use this command to change the
directory to the directory you
response to the prompt displayed
this command.

working
name in
following

CHAPTER 2: The GMACS Editor 41

2.3 Editing Text

All of the GMACS commands in the following subsections are
useful for editing general text files. The many commands
designed specifically to edit LISP forms are described in
section 2.4 and its subsections.

2.3.l Inserting and Deleting Text

The simplest editing consists of inserting and deleting
individual characters in an edit buffer.

You insert single characters by typing the character keys on
the keyboard. As you press individual keys, the characters
they represent are entered into the buffer one after the
other.

The edit window shows the results, character by character.
The point moves along as you type. The cursor is always one
character position ahead of the character that was last
typed. If there are characters in the buffer ahead of the
point, they are shifted one character ahead with every new
character inserted.

To erase a character you have just typed, press the Rubout
key. This is the key labeled with a left-pointing arrow
(<--), located in the top row of keys on the IBM PC keyboard,
just northeast of the alphabetic keys.

For example, here is a line before and after typing the Rubout
key:

LISP is the language of AE

LISP is the language of A_

Here, the underlines show
positions.

the before-and-after cursor

To delete the character at the cursor position (rather than
the preceding character) , invoke the DELETE-CHAR command by
pressing ctrl-D or Del. The character at the cursor
disappears, and all characters following the cursor move one
character backward.

Two special-purpose commands can be used to delete extra
spacing in the text:

42 GOLDEN COMMON LISP USERS' GUIDE

Ctrl-\ DELETE-HORIZONTAL-SPACE
This deletes any spaces or tabs adjoining the
point on either side.

DELETE-INDENTATION
This deletes any indentation at the beginning
of the current line, and the preceding newline
character. This action appends the current
line to the preceding line.

2.3.2 Words and Lines

Many GMACS commands specify an operation on a word or on a
line. You need to know exactly is meant by a word or a line
in order to use the commands effectively.

To GMACS, a line consists of the sequence of characters from
one newline character to the next (including the ending
newline). There may be more characters in this line than can
fit in a single line of the display screen. Then more than
one display line will be used to display the line.

Such a line in the edit buffer is called a wrapped line on the
display, because the line "wraps around" the end of one
display line and continues on the next. GMACS informs you
that a display line is wrapped by placing an exclamation mark
(!) in the right-most display position:

This line wraps onto the next line and the!
next line wraps onto the line after it. Th!
ere is no newline character in the text.

To GMACS, a word is any string of alphanumeric characters:
that is, letters or digits. So the end of a word is marked by
any other character: a punctuation symbol, any other special
character, or white space: a space, tab, or newline
character.

When a GMACS command specifies an operation on a "word", such
as FORWARD-WORD, it means that the operation should be applied
to the nearest string (in the correct direction) which
satisfies this meaning. Thus, FORWARD-WORD means: find the
first alphanumeric character in the forward direction, and
place the point at the end of the "word" that begins with that
character.

CHAPTER 2: The GMACS Editor 43

2.3.3 About the Cursor Motion Commands

These commands enable you to move the point around in the edit
buffer. This is needed when you want to make insertions or
deletions somewhere other than the current point, or to view
some other part of the edit buffer.

There are commands to move the cursor over a character, a
word, a line, a screen, or an entire buffer. The commands
come in pairs: for each unit of movement, one command moves
the cursor forward and one command moves it backward. (For
lines, there are two pairs of commands; see below.)

When the point is already at one end of the window and a
cursor motion command attempts to move it "off the end", the
window will be scrolled -- moved over the edit buffer -- so
that the needed new area of the edit buffer appears in the
window and the point moves as desired.

The NEXT-LINE (Ctrl-N) and PREVIOUS-LINE (Ctrl-P) commands
move the point up and down in the edit window by one buffer
line. The point moves up or down the window in the same
column where it began; but when a shorter line is encountered,
the point moves to the end of the line. If a line is wrapped,
a NEXT-LINE, PREVIOUS-LINE, BEGINNING-OF-LINE, or END-OF-LINE
command may move the cursor over several display lines.

The commands END-OF-BUFFER and BEGINNING-OF-BUFFER set the
current mark (see section 2.3.9). This behavior enables you to
return quickly to where you were before giving the command.

2.3.4 Table of Cursor Motion Commands

The following list summarizes the cursor motion commands. It
also lists the cursor motion keys, or keychords involving
these keys, which will execute these commands.

The command keychords should be used in preference to the
cursor-motion keys or keychords. The keys that make up a
command keychord are closer to the usual position of your
hands centered in the keyboard, while the cursor motion keys
are off to the right. once the editing commands are familiar
to you, typing will be faster if you use the command
keychords. Over the course of many repetitive editing
operations, this will save time.

Ctrl-F or Right Arrow
FORWARD-CHAR
Moves the cursor to the right (forward) one
character.

44 GOLDEN COMMON LISP USERS• GUIDE

Ctrl-B or Left Arrow
BACKWARD-CHAR
Moves the cursor to the left (backward) one
character.

Alt-F or Ctrl-Riqht Arrow
FORWARD-WORD
Moves the cursor forward one word.

Alt-B or Ctrl-Left Arrow
BACKWARD-WORD

Ctrl-E

ctrl-A

Moves the cursor backward one word.

END-OF-LINE
Moves the cursor to the end of the current
line.

BEGINNING-OF-LINE
Moves the cursor to the beqinninq of the
current line.

Ctrl-N or Down Arrow
NEXT-LINE
Moves the cursor to the next line (down one).

ctrl-P or Up Arrow
PREVIOUS-LINE

Ctrl-V or PqDn

Alt-v or PqUp

Ctrl-L

Moves the cursor to the previous line (up
one).

NEXT-SCREEN
Moves the window forward in the edit buffer by
about one window-lenqth (one edit screen).
The window is positioned on the edit buffer so
that the previous last line in the window
becomes the new first line. (This makes it
easier to locate yourself for editing in the
new window.)

PREVIOUS-SCREEN
Moves the window backward in the edit buffer
by about one window-length (one edit screen).
The window is positioned in the edit buffer so
that the previous first line in the window
becomes the new last line.

REDISPLAY-SCREEN
This command redisplays the entire screen so
that the current line is near the middle of
the edit window. Given a number n as
argument, the current line will be the nth
line from the top in the redisplay if n is
positive, and nth from the bottom if n is

CHAPTER 2: The GMACS Editor

negative.

ctrl-z > or End
END-OF-BUFFER
Moves the cursor to the end of the buffer.

ctrl-Z < or Home
BEGINNING-OF-BUFFER

45

Moves the cursor to the beginning of the
buffer.

2.J.5 Inserting New Lines

You can insert a new line of text with the OPEN-LINE command,
executed with Ctrl-o. This command inserts a newline
character at the point, and leaves the point before the
newline character:

(before ctrl-0)

line one
line two
line-three

(after ctrl-0)

line one
line
two-

line three

If you are in the middle of a line and want to add text, use
Ctrl-0.

If you are at the end of a line and want to continue with
another line, use the ENTER key. This inserts a newline
character at the point, and leaves the point at the beginning
of the new line:

(before <ENTER>) (after <ENTER>)

line one line one
line two line
line-three two

line three

2.3.6 Numeric Arguments (Repeat Counts)

You will often want get the effect of executing a GMACS
command a certain number of times one after the other. For
example, you may want to move the cursor forward exactly 65
characters. It would be a nuisance to repeat a cursor-motion
command this often. Instead, you can invoke the single

46 GOLDEN COMMON LISP USERS' GUIDE

command with a numeric argument which specifies how often the
command is to be repeated.

To do this, precede the command with the key sequence:

Ctrl-U <number>

That is: type Ctrl-U, then the numeric argument,
command. In this context, the number is called
count for the command which follows it.

For example, to advance the cursor 65 characters:

Ctrl-U 65 Ctrl-F

and then the
the repeat

ctrl-U alone, without a numeric argument specified, performs
the command 4 times. In other words, there is a "default
repeat count" of 4. To advance the cursor 4 characters:

Ctrl-U Ctrl-F

Any additional ctrl-U which follows the repeat count argument
multiplies the repeat count by 4. This input advances the
cursor by 64 characters:

Ctrl-U 16 ctrl-U Ctrl-F

Since the default repeat count is 4, this input does the same:

Ctrl-U Ctrl-U Ctrl-U Ctrl-F

That is: the two "extra" ctrl-U keychords multiply by 16 the
default repeat count of 4.

Since a repeat count can result in a large change in the
buffer contents, it's important to type the key sequence with
care -- especially the value of the repeat count. To help you
verify your typing, the value of the count appears in the form
<number>: in the echo area as you type it.

Remember that
self-inserting
character A".
buffer:

the ordinary characters of the keyboard are
input: typing the character A means "insert the
Thus, to insert a row of 65 asterisks into the

ctrl-U 65 •

With some commands, the Ctrl-U prefix
behavior unrelated to a numeric argument.
be made explicit in the descriptions
commands.

causes different
This behavior will

of the particular

CHAPTER 2: The GMACS Editor 47

2.3.7 Setting Upper-Case and Lower-case

To aid you in formatting text, GMACS has commands for setting
the case of alphabetic characters to upper-case (capitals) or
lower-case (small letters).

The first
the case
"all-caps".
region (see

KEY

Alt-C

Alt-L

Alt-U

three following commands are convenient for setting
of a word to "initial-caps", "all-small", or

The other two commands set the case of an entire
section 2.3.9, "Manipulating Regions and Marks").

COMMAND

UPPERCASE-INITIAL
capitalizes the letter (if any) following the
point, and lower-cases the rest of the word.
(that is, initial-caps the word starting at
the cursor).

LOWERCASE-WORD
Lowercases the word starting at the cursor.

UPPERCASE-WORD
Uppercases the word starting at the cursor.

Ctrl-X Ctrl-U UPPERCASE-REGION

ctrl-X ctrl-L

Puts all the letters in the current region in
upper-case.

LOWERCASE-REGION
Puts all the letters in the current region in
lower-case.

2.3.8 Search and Replace Commands

You often need to locate a particular character string, for
example a particular word, within a text. You may want to
delete the word, or replace it with another, or do other
editing at that location. You may want to do this at only one
instance of the word; or at every instance of the word; or at
selected instances of the word.

The FORWARD-SEARCH, REVERSE-SEARCH, QUERY-REPLACE, and
GLOBAL-REPLACE commands make these operations easy:

Ctrl-S

Ctrl-R

FORWARD-SEARCH
Repositions the point at the next instance of
a character string that you specify.

REVERSE-SEARCH
Repositions the point at the preceding

48 GOLDEN COMMON LISP USERS' GUIDE

instance of a character string that you
specify.

Alt-% or Alt-s

Alt-• or Alt-a

QUERY-REPLACE
Finds every instance of the string between the
point and the end of the buffer; and allows
you to selectively replace each such instance
with another pre-specified string.

GLOBAL-REPLACE
Replaces every instance of the string between
the point and the end of the buffer, with
another pre-specified string.

Thus, QUERY-REPLACE and GLOBAL-REPLACE can perform actual
editing in the buffer. FORWARD-SEARCH and REVERSE-SEARCH only
reposition the cursor to a place where you want to edit.

When any of these commands is given, you are prompted (in the
mini-buffer) to enter the search string. The commands are not
case-sensitive to the search string you specify: a search for
"LISP" will also find "Lisp" and "lisp".

Each of the commands automatically re-positions the edit
window as necessary to show the located string. However, if
the command finds no instance at all of the specified search
string, the cursor is not moved from its original position.
Also, when QUERY-REPLACE or GLOBAL-REPLACE has searched to the
end of the buffer (whether it finds instances along the way or
not), the cursor is returned to its original position. (This
happens also if you abort QUERY-REPLACE.)

When QUERY-REPLACE finds an instance of the string, it halts
and prompts you with four options. Your choices are:

type Y (to replace that instance and continue searching)

type N (to leave that instance unchanged and continue
searching)

type I (to replace all remaining instances to the end of
the buffer, without further prompting)

type Ctrl-G (to abort the command -- no more searching or
replacing)

CHAPTER 2: The GMACS Editor 49

2.3.9 Manipulating Regions and Marks

The editing operations described so far have included
insertions on characters, words, and lines. These are natural
units to manipulate with the editor. Often, however, it's
convenient to manipulate larger blocks of text: to move, copy,
or delete paragraphs or other large units.

GMACS enables you to define and manipulate text in blocks of
any size, called regions. Unlike a character or a word or a
line, a region is not "naturally" defined: it is not delimited
by blanks or newlines, for example. The limits of a region
are completely up to you.

You specify one end of a region by moving the cursor there and
then giving the SET-POP-MARK command (Ctrl-@) • This sets a
mark at the point. The mark doesn't show in the edit window;
but the message "Mark set" appears in the message area.

To specify the other end of the region, move the cursor there
(either backward or forward from the mark). Then execute the
command to do the desired particular operation on the region,
which consists of the area of the buffer between the mark and
the point.

Three basic operations can be performed on a region:

A case operation, already described in section 2.3.7

The command KILL-REGION (Ctrl-W)

The command SAVE-REGION (Alt-W)

The KILL-REGION and SAVE-REGION commands are useful in
deleting, copying, or moving the contents of the region (see
section 2.3.10, "Killing and Recovering Text").

You can also specify a sequence of marks for immediate or
later use. GMACS keeps a list of these, the mark pdl -- "pdl"
for "push-down list". You can add a mark to this list; throw
away a mark from the list; or recover and use a mark which is
currently on the list. You should think of the list as a
stack of marks, which you manipulate with the following
commands:

Ctrl-@ SET-POP-MARK
The command SET-POP-MARK defines a mark (at
the current location of the point) ; and puts
the mark on the top of the stack. Each mark
already on the stack is "pushed down": the top
mark becomes the second, the second becomes
the third, and so on. The top mark is also

so GOLDEN COMMON LISP USERS' GUIDE

called the current mark.

Ctrl-U Ctrl-@ SET-POP-MARK
This "gives you the top mark": it gets the
current mark and places the point at that
position. The mark is taken off the stack.
All the remaining marks, if any, are moved up
one: the former second mark is now the current
mark, etc.

ctrl-u ctrl-U ctrl-@
SET-POP-MARK
This command takes the current mark off the
stack without placing the point at the mark.
All the remaining marks, if any, are moved up
one.

These three commands enable you to define, store, recover, and
delete marks whenever you like. Besides using a mark to
delimit a region, you may want to use a mark simply as a way
to mark a point in the buffer to which you will want to return
at some later time for further editing.

One additional command enables you to move the point quickly
to the current mark, without changing the region and without
discarding the mark:

Ctrl-Z Ctrl-X or Ctrl-Z space
EXCHANGE-POINT-AND-MARK
This exchanges the point and the current
mark.

The cursor motion commands END-OF-BUFFER and
BEGINNING-OF-BUFFER (see section 2.3.4) set the current mark.
This behavior enables you to return quickly to where you were
before giving the command.

2.3.10 Killing and Recovering Text

In section 2.3.l, you met the DELETE commands ctrl-D and
Rubout, which operate on individual characters. Text deleted
from the buffer with one of these commands is not saved
anywhere: so it can't be recovered.

All other commands that remove text, the "kill commands", save
the deleted text so that it can be recovered. GMACS maintains
the special area where the deleted text is saved: it is called
the kill history.

The kill commands operate on words, lines, and regions.
is the set of kill commands:

This

CHAPTER 2: The GMACS Editor 51

Alt-D

Ctrl-Rubout

Ctrl-K

Alt-K

Ctrl-W

Alt-W

Ctrl-Z Y

Ctrl-Z 0

KILL-WORD
Moves the current word (from the point forward
to the end of a word) to the kill history.

BACKWARD-KILL-WORD
Moves the current word
backward to the beginning
kill history.

KILL-LINE

(from the point
of a word) to the

Moves to the kill history the text forward
from the point to the end of the current line,
excluding the terminating newline character
(unless there is nothing else on the line to
the right of the point) .

BACKWARD-KILL-LINE
Moves to the kill history the text backward
from the point to the beginning of the current
line.

KILL-REGION
Moves to the kill history the text between the
current mark and the point.

SAVE-REGION
Copies the text between the current mark and
the point to the kill history, without
deleting the text from the buffer.

DISPLAY-KILL-HISTORY
Displays in a type-out window all entries
contained in the kill history. An arrow marks
the current "top entry".

APPEND-NEXT-KILL
Causes the next kill command to either append
or prepend the killed text to the entry at the
top of the kill history. A "backward kill"
prepends, and a "forward kill" appends, when
the killed object is a word or a line.
Similarly for KILL-REGION and SAVE-REGION
(where "backward" means a region backward from
the point to the mark, and "forward" means a
region forward from the point to the mark) .

If you give a sequence of kill commands without having given
any intervening commands except cursor-motion commands, then
the texts being killed are contiguous in the edit buffer.
They will be automatically strung together in the kill history
also (appended or prepended to the first-killed text). The
single entry in the kill history which is thus built up will
therefore be a copy of the entire block of text in the buffer
that was killed by the sequence of commands.

52 GOLDEN COMMON LISP USERS' GUIDE

The kill history is a push-down list somewhat like the mark
pdl; but there are important differences. Each entry is a
piece of text; and each entry was put on the list by a kill
command. A new entry pushes down the existing entries.
However, there is a maximum of five entries; if there are five
entries and a new entry is made, then the fifth -- the oldest
entry -- is lost.

The YANK and YANK-POP commands recover entries from the kill
history. The overall effect of YANK or YANK-POP is to copy a
text entry from the kill history to the current point in the
edit buffer. Neither command changes either the contents or
the order of the entries in the kill history.

The general idea of using these commands is that you use YANK
to recover the top entry from the kill history; and you use a
series of YANK-POP commands to recover a lower-down entry. In
detail, YANK and YANK-POP operate as follows:

ctrl-Y

Alt-Y

YANK
This command copies
the kill history to
buffer).

the top
the point

text entry from
(in the edit

YANK-POP
There are three different cases, depending on
what preceded the YANK-POP command:

The preceding command was not YANK or
YANK-POP. Then YANK-POP has the same
effect as YANK.

The preceding command was YANK. Then
YANK-POP copies the second entry in the
kill history to the edit buffer,
replacing the text of the first entry
which was copied to the edit buffer by
YANK.

The preceding command was YANK-POP. Then
YANK-POP copies the next-lower entry in
the kill history to the edit buffer,
replacing the text of the preceding entry
which was copied to the edit buffer by
the preceding YANK-POP command. That is:
if a YANK-POP command had copied the
second entry, then another immediate
YANK-POP command would copy the third
entry. If the preceding entry is the
lowest entry in the kill history, then
YANK-POP copies the highest entry.

CHAPTER 2: The GMACS Editor 53

The net effect of the kill collll!lands and the YANK and YANK-POP
collll!lands is to enable you to delete, move and copy any block
of text at all by first moving it to the kill history with a
kill collll!land, and then recovering it, if wanted, to the same
location or a new one with a YANK or YANK-POP collll!land.

The following example illustrates killing and recovering
texts. Two lines (marked Ll and L2) in an edit buffer are
deleted one after the other, and then returned to the buffer
by YANK and YANK-POP. Note that in this series of diagrams
the cursor is moved only once, between the two executions of
the KILL-LINE collll!land (i.e., between the second and fourth
frames). Thus the three last collll!lands YANK and two
YANK-POP collll!lands -- are given without moving the cursor.

54

Ll
L2

GOLDEN COMMON LXSP USERS' GUXDE

EDIT BUFFER KILL HISTORY

KILL-LINE (Ctrl-K]

1---->I Ll I I _____ _
I I ________ I I _____ _

NEXT-LINE (Ctrl-N]

1---->1 Ll
L2 I I _____ _

I I ________ I I _____ _

KILL-LINE [Ctrl-K]

1---->I L2
I I
I I Ll
I I

YANK (Ctrl-Y]

l<----1 L2
L2_ I I

I I Ll
I I

YANK-POP [Alt-Y]

I L2
Ll_ I I

l<----1 Ll
I I

YANK-POP [Alt-Y]

l<----1 L2
L2_ I I

I I Ll
I I

CHAPTER 2: The GMACS Editor SS

2.3.ll Editing in Two Windows

You can split the edit-window area on the edit screen into two
edit windows. All of the editing commands will apply to only
one window at a time. Then it is easy and fast to edit almost
simultaneously in the two windows.

Each window has an edit buffer associated with it. The two
buffers may be the same buffer; or they may be different
buffers, enabling you to edit two different files.

At any particular time, the cursor will be in
windows, called the current window. Any input that
applies to the current window and the current point.

one of the
you type

To work in the other window, give the OTHER-WINDOW command
(Ctrl-X O). This makes the other window the current window.
GMACS maintains any needed information about the inactive
window so that when you return there, you can pick up where
you left off, In particular, the point is maintained. There
is also a mark pdl (see section 2.3.9) for each buffer; so,
there are two mark pdl's unless the two windows have the same
buffer. However, GMACS maintains only one kill history, which
is accessible in both windows. This feature is one of the
main reasons for editing in two windows: it enables you to
merge text between two buffers with minimum effort.

Here are the commands for two-window manipulation:

Ctrl-X 2

Ctrl-Z V

Ctrl-X 0

Ctrl-X l

TWO-WINDOWS
Splits the edit window into two windows, with
the upper window showing the buffer which was
in the single window, and the lower window
showing the previously-edited buffer, if any.
(If there is none, the two windows show the
same buffer.) The upper window becomes the
current window.

SCROLL-OTHER-WINDOW
Scrolls the other window forward by
screen.

OTHER-WINDOW

one

Moves the cursor to the other window, which
becomes the current window.

ONE-WINDOW
Returns the screen to single window display.
If no prefix is used, the current window
becomes the single window; with the prefix
ctrl-U, the other window becomes the single
window.

56 GOLDEN COMMON LISP USERS' GUIDE

2.4 Editing LISP

This section describes those GMACS commands which are designed
specifically to manipulate LISP language constructs. The
language constructs which can be edited by these commands are
the basic ones in LISP: symbols and lists and other
s-expressions. The facility for these manipulations, and for
evaluating LISP code directly from within GMACS (also
described in this section), constitutes a significant
interactive program-development tool.

since LISP code is written as lines of text, all of the GMACS
commands already described in this chapter can of course also
be applied to lines of LISP code. However, the special
feature of the commands in this section is that they apply to
lists and other s-expressions as the basic objects of
manipulation, rather than to words or lines.

Several of the commands refer to "the end of the current
list", or "the beginning of the current s-expression", or
similar points. For this to make sense, it's necessary to
know what the "current" item means for an s-expression or a
function definition or a list: The current item is the
lowest-level item of that kind containing the point. The
"next" item is the first item of that kind encountered, in one
search direction or the other (the search direction is always
specified) •

The "beginning" and "end" of an item need to be defined also.
Beginning and end are marked in LISP code by delimiting
characters; for the items of interest, these are as follows:

For an atom: parentheses or white space (the space, tab,
or newline character)

For a list: parentheses

If a command specifies an action on a current or a previous or
a next item, and there is no such item in the edit buffer,
then GMACS rings the bell and does not move the point. (In
other words, the command has no effect in that instance except
to ring the bell.)

CHAPTER 2: The GMACS Editor 57

2.4.1 Cursor Motion

These commands move the cursor to the beginning or the end of
the current s-expression.

Ctrl-Z B

Ctrl-Z F

BACKWARD-SEXP
If the preceding character is not (,), or
white space, the point is moved to just left
of the first character of the current
s-expression.

If the preceding character is), the point is
moved to just left of the matching (.

If the preceding character is white space, the
point is moved to just left of the first
character of the preceding s-expression.

If the preceding character is (, the point
moves to the left of it.

FORWARD-SEXP
If the next character is not (,), or white
space, the point is moved to just right of the
last character of the current s-expression.

If the next character is (, the point is moved
to just right of the matching).

If the next character is white space, the
point is moved to just right of the last
character of the next s-expression.

If the next character is), the point moves to
the right of it.

These commands move the cursor to the beginning or the end of
the current list.

Ctrl-Z P

Ctrl-Z N

BACKWARD-LIST
Searches backward, positioning the point just
before the first open parenthesis encountered
at the same level.

FORWARD-LIST
Searches forward, positioning the point just
after the first close parenthesis encountered
at the same level.

58 GOLDEN COMMON LISP USERS' GUIDE

The command DOWN-LIST enables you to move the point into a
list nested within the current list.

Ctrl-Z D DOWN-LIST
Searches forward, positioninq the point just
after the next open parenthesis within the
current list. Beeps and does not move the
point if a close parenthesis is encountered
first.

These two sample screens illustrate the effect of DOWN-LIST:

(before DOWN-LIST command)

(±a (+ b (+ c d)))

(after DOWN-LIST command)

(+a (± b (+ c d)))

Note that DOWN-LIST is a forward move.
"backward-down-list" command.

There is no

These two commands enable you to move the cursor from the
current nested list to the list which contains it:

Ctrl-Z (

Ctrl-Z)

BACKWARD-UP-LIST
Searches backward, positioninq the point just
before the first unmatched open parenthesis.

FORWARD-UP-LIST
Searches forward, positioninq the point just
after the first unmatched close parenthesis.

If the point is not currently within a list, then the terminal
beeps and the point is not moved.

CHAPTER 2: The GMACS Editor 59

These two sample screens
FORWARD-UP-LIST command:

show the effect of the

(before FORWARD-UP-LIST command)

(+a (± b (+ c d)))

(after FORWARD-UP-LIST command)

(+a (+ b (+ c d)))_

These two commands enable you to move the point to the
beginning or to the end of the current function definition.
(It's assumed that a function definition (and any other form
which is not nested within another form) always begins in
column 1 of a line.)

Ctrl-Z A

ctrl-z E

BEGINNING-OF-DEFINITION
Searches backward, positioning the point just
before the first open parenthesis encountered
in column l of a line.

END-OF-DEFINITION
If the point is currently in a function
definition, performs a BEGINNING-OF-DEFINITION
and then a FORWARD-SEXP, leaving the point
just after the close parenthesis matching the
definition's first open parenthesis. If the
point is not in a current definition, the
point is moved to the end of the next
definition.

2.4.2 Convenience Aids to Writing in LISP

Three miscellaneous GMACS features aid you in writing LISP
programs. They are the MAKE-EMPTY-LIST command; and the
paren-flash and paren-beep features (which are not commands).

Alt-9 MAKE-EMPTY-LIST
Inserts matching
point.

parentheses around the

60 GOLDEN COMMON LISP USERS' GUIDE

Whenever the point is just to the right of a close
parenthesis, the corresponding open parenthesis blinks on the
screen (if it appears in the window). This is the paren-flash
feature. It is enabled automatically in GMACS. To disable
it, give the GCLISP command (setf *flash-mode* nil) after
starting up GMACS. (That is, leave GMACS, give the command,
and re-enter GMACS. Another way to disable the feature is to
put this command into the GMACS initialization file
GMINIT.LSP.) To re-enable paren-flash, give the GCLISP
command (setf *flash-mode* t).

Whenever a close parenthesis is typed, your terminal will
beep, and the message No matching open parenthesis will be
printed, if there is no matching open parenthesis anywhere in
the buffer. (The matching open parenthesis need not be
visible in the window.) This is the paren-beep feature.

2.4.3 Indenting LISP Expressions

These commands enable you to indent a line of LISP code to
reflect the nesting level of the current form.

ctrl-z Q

Ctrl-I

INDENT-SEXP
Corrects the indentation of the s-expression
to the right of the point.

INDENT-TO-LEVEL
Indents the current line to the appropriate
level with respect to the preceding line,
moving the code on the line to the right or
left as needed. The position of the point is
left unchanged in relation to the text.

Ctrl-J or Ctrl-ENTER
INDENT-NEWLINE

Alt-3

Inserts a newline character at the point and
then performs an INDENT-TO-LEVEL on the new
line thus created.

INDENT-FOR-COMMENT
If the current line has no comment, moves the
point out to the comment column (inserting
spaces as necessary) and inserts a
semi-colon. If the line already has a
comment, the comment is indented the correct
number of spaces and the point is positioned
to the right of the semi-colon.

CHAPTER 2: The GMACS Editor 61

2.4.4 Displaying Information About LISP Code

Several commands enable you to display on-line documentation
about LISP functions. The documentation comes from the text
which would be displayed in response to the GMACS help command
ED-DOC (invoked by Alt-HD).

ctr1-z L

Ctrl-Z ?

Alt-2

DISPLAY-LAMBDA-LIST
Displays in the echo area the lambda list of
the current function (the function at the
beginning of the currents-expression).

DISPLAY-DOCUMENTATION
Displays in a type-out window the full Help
documentation of the current function.

DISPLAY-MACROEXPANSION
Displays in a type-out
macro-expansion of the
immediately to the right of the

window the
s-expression

point.

2.4.5 Killing and Recovering LISP Code

These commands enable you to kill s-expressions and comments.
As described earlier, "killing" text means removing it from
the edit buffer and moving it to the kill history. Like any
entry in the kill history, it can then be recovered by YANK
and YANK-POP commands for insertion, if desired, elsewhere in
the buffer or in another buffer. See section 2.3.10, "Killing
and Recovering Text".

Ctrl-Z K

ctrl-z Rubout

Ctrl-Z

KILL-SEXP
Moves to the kill history the characters from
the point forward through the end of the
s-expression immediately to the right. The
command has the same effect as the command
sequence SET-POP-MARK (Ctrl-@), then
FORWARD-SEXP, and then KILL-REGION.

BACKWARD-KILL-SEXP
Moves to the kill history the characters from
the point backward to the beginning of the
s-expression immediately to the left.

KILL-COMMENT
Moves to the kill history any comment on the
current line (that is, all of the characters
from the first semi-colon through the last
character before the newline).

62 GOLDEN COMMON LISP USERS• GUIDE

2.4.6 Evaluating LISP Code from the Editor

Without leaving the GMACS environment, you can call on GCLISP
to evaluate LISP code you are editing and print the results to
the screen. The effect is virtually the same as if the code
were being loaded from an existing file in the interpreter
environment. This facility saves you the time and trouble of
writing out the code from the edit buffer to an on-line file,
leaving GMACS, loading the file, and returning to GMACS. The
result is much faster program editing and debugging.

The evaluation results are printed to a type-out window. If
there is an error in the code, or if you type ctrl-Break
during the evaluation (or if the break function is part of the
code), the evaluation behavior is the same as if you were
typing the code form-by-form interactively. Evaluation and
printing of results are suspended; a new level of the listener
is invoked; and you can then perform debugging operations:
viewing the current values of variables, tracing the execution
stack, and so forth. You continue via ctrl-G (from an error)
or Ctrl-P (from a break), as always in the listener.

Whether there was an error or not, GCLISP returns to the GMACS
environment only when evaluation and printing are complete.
You can then pick up editing where you left off in
particular, revising the forms where errors were found.

These are the commands which invoke evaluation.

Alt-1

Ctrl-Z C

EVAL-SEXP
Invokes evaluation of the s-expression to the
right of the point. The point is not moved.

EVAL-DEFINITION
Evaluates the current function
which would be found by
BEGINNING-OF-DEFINITION). The
moved.

(the function
the command
point is not

CHAPTER 2: The GMACS Editor 63

2.5 Table of Function Keys

The following table lists the IBM PC keyboard function keys
and the GMACS commands which they invoke.

KEY COMMAND NAME

Fl EXIT-EDITOR

F2 ED-HELP

F3 SELECT-BUFFER

F4 SELECT-PREVIOUS-BUFFER

PS LIST-BUFFERS

F6 DISPLAY-DIRECTORY

F7 FIND-FILE

F8 READ-FILE

F9 SAVE-FILE

FlO WRITE-FILE

64 GOLDEN COMMON LISP USERS' GUIDE

2.6 Table of cursor Motion Keys

This table shows the GMACS commands invoked by the IBM PC
keyboard cursor motion keys and the Insert and Delete keys.
All of these keys are bound to GMACS commands; and six of them
also invoke GMACS commands in a keychord with the ctrl key.

KEY COMMAND NAME

Home BEGINNING-OF-BUFFER

Up Arrow PREVIOUS-LINE

Pq Up PREVIOUS-SCREEN

Left Arrow BACKWARD-CHAR

Right Arrow FORWARD-CHAR

End END-OF-BUFFER

Down Arrow NEXT-LINE

Pq Dn NEXT-SCREEN

Ins OPEN-LINE

Del DELETE-CHAR

ctrl-Left Arrow
BACKWARD-WORD

ctrl-Riqht Arrow
FORWARD-WORD

Ctrl-Pq Up

Ctrl-Pq Dn

Ctrl-Home

Ctrl-End

BACKWARD-SEXP

FORWARD-SEXP

BEGINNING-OF-DEFINITION

END-OF-DEFINITION

CHAPTER 2: The GMACS Editor 65

2.7 Summary GMACS Command Reference (by Topic)

This section provides a summary listing of GMACS editor
commands, with their key bindings and meanings. The commands
are grouped by topic (e.g., search and replace commands).

2.7.l Cursor Motion Commands

KEY COMMAND NAME AND FUNCTION

Ctrl-F or Right Arrow
FORWARD-CHAR
Moves the point one character position to the
right (forward).

ctrl-B or Left Arrow
BACKWARD-CHAR
Moves the point t6
character position.

the left (back) one

Alt-F or ctrl-Right Arrow
FORWARD-WORD
Moves the point forward to the end of the
current word.

Alt-B or ctrl-Left Arrow
BACKWARD-WORD

ctrl-A

Ctrl-E

Moves the point backward to the beginning of
the current word.

BEGINNING-OF-LINE
Moves the point to the beginning of the
current line.

END-OF-LINE
Moves the point to the end of the current
line.

ctrl-N or Down Arrow
NEXT-LINE
Moves the point forward to the same column in
the next line.

Ctrl-P or Up Arrow
PREVIOUS-LINE
Moves the point backward to the same column in
the preceding line.

GOLDEN COMMON LISP USERS' GUIDE

Ctrl-Z < or Home
BEGINNING-OF-BUFFER

Ctrl-Z > or End

Positions the point before the first character
in the edit buffer.

END-OF-BUFFER
Positions the point after the last character
in the edit buffer.

2.1.2 Edit Window Commands

KEY

ctrl-V or PgDn

Alt-v or PqUp

Ctrl-X 2

Ctrl-X 0

ctrl-z v

Ctrl-X 1

Ctrl-L

COMMAND NAME AND FUNCTION

NEXT-SCREEN
Moves the window forward in the
about one window-length {one
The window is positioned on the
that the previous last line
becomes the new first line.

PREVIOUS-SCREEN

edit buffer by
edit screen) •
edit buffer so
in tl).e window

Moves the window backward in the edit buffer
by about one window-length {one edit screen).
The window is positioned on the edit buffer so
that the previous first line in the window
becomes the new last line.

TWO-WINDOWS
Splits the edit window display area into two
windows, with the upper window showing the
current buff er and the lower window showing
the previous buffer. The upper window becomes
the current window.

OTHER-WINDOW
Moves the cursor to the other window, which
becomes the current window.

SCROLL-OTHER-WINDOW
Scrolls the other window forward one screen.

ONE-WINDOW
Returns the editor display to one window by
expanding the current window to the size of
the terminal display.

REDISPLAY-SCREEN
Completely redisplays the screen, leaving the
point near the middle of the edit window.

CHAPTER 2: The GMACS Editor 67

2.7.3 Text Deletion Commands

DY

Ctrl-D or Del

COMMAND NAME AND FUNCTION

DELETE-CHAR
Deletes the character to the right of the
point.

Ctrl-H or Rubout
RUBOUT

Ctrl-\

Alt-D

ctrl-Rubout

Ctrl-K

Alt-It

Ctrl-W

Deletes the character to the left of the
point.

DELETE-INDENTATION
Deletes the newline character and any
indentation at the beginning of the current
line. This action appends the current line to
the preceding line.

DELETE-HORIZONTAL-SPACE
Deletes any spaces or tabs adjoining the point
on either side.

KILL-WORD
Moves the word to the right of the point to
the kill history.

BACKWARD-KILL-WORD
Moves the word to the left of the point to the
kill history.

KILL-LINE
Moves all characters to the right of the point
on the current line to the kill history, not
including the terminating Newline character.
(If Newline is the only character to the right
of the point on the current line, it is moved
to the kill history.)

BACKWARD-KILL-LINE
Moves all characters to the left of the point
on the current line to the kill history.

KILL-REGION
Moves the characters between the current mark
and the point to the kill history.

68 GOLDEN COMMON LISP USERS• GUIDE

2.7.4 Buffer and File Commands

KEY COMMAND NAMB AND FUNCTION

ctrl-X ctrl-F or F7
FIND-FILE
Searches the set of edit-buffer names for a
specified filename. Selects the buffer with
that filename if there is one. Otherwise,
creates a buffer with that name and reads the
file into the new buffer from disk. The
command prompts you for the filename.

ctrl-X ctrl-R or F8
READ-FILE
Reads a specified file into the current
buffer, overwritinq the existinq contents of
the buffer. The command prompts for the
filename.

ctrl-X ctrl-S or F9
SAVE-FILE

ctrl-X B or F3

Ctrl-X K

Ctrl-X P or F4

Copies the contents of the current edit buffer
into disk storaqe under the current file
name. If a file with that name already exists
on disk, the command copies over the existinq
file.

SELECT-BUFFER
Selects a specified buffer and displays it in
the edit window. The command prompts you for
the name of the desired buffer. Pressinq the
ENTER key without enterinq a buffer name
selects the previous buffer. If the buffer
does not exist, a new buffer is opened havinq
no current file.

KILL-BUFFER
Prompts for the name of a buffer and removes
it from the list of buffers known to the
editor.

SELECT-PREVIOUS-BUFFER
Selects the previous buffer.

ctrl-X ctrl-B or :rs
LIST-BUFFERS
Lists the names of all existinq buffers in a
type~out window, toqether with the name of
associated files, if any. Modified buffers

CHAPTER 2: The GMACS Editor 69

Ctrl-X U

are marked with the buffer-status (*) .

UNMODIFY-BUFFER
Marks the current buffer as unmodified since
it was last read from a file or written to a
file. Clears the buffer-status (*) in the
mode line.

Ctrl-X Ctrl-W or PlO
WRITE-FILE

Ctrl-X C

Writes out the contents
to the specified file.
you for the filename.

of the current buffer
The command prompts

CHANGE-DIRECTORY
Prompts for a directory name,
current default directory to
with that name.

and changes the
the directory

ctrl-x ctrl-D or P&
DISPLAY-DIRECTORY
Prompts for a pathname and displays a list of
all files that match it.

2.7.5 Search and Replace Commands

KEY

Ctrl-S

Ctrl-R

Alt-%

Alt-•

COMMAND NAME AND FUNCTION

FORWARD-SEARCH
Searches forward from the point for a
specified character string. The point moves
to the end of the first instance found. The
command prompts you for the string.

REVERSE-SEARCH
Searches backward from the point for a
specified character string. The point moves
to the beginning of the first instance found.
The command prompts for the string.

QUERY-REPLACE
Replaces selected instances of a character
string from the point to the end of the
buffer, with another specified string. At
each occurrence, you are queried as to whether
or not to replace it. The command prompts for
both strings.

GLOBAL-REPLACE
Replaces all instances of a specified string
with another string, from the point to the end
of the buffer. The command prompts for both
strings.

70 GOLDEN COMMON LISP USERS' GUIDE

2.7.6 case-setting Commands

KEY

Alt-C

Alt-L

Alt-U

Ctrl-X Ctrl-U

Ctrl-X Ctrl-L

2.7.7 Commands

KEY

Ctrl-Z K

ctrl-Z Rubout

Ctrl-Z

COMMAND NAME AND FUNCTION

UPPERCASE-INITIAL
Capitalizes the first letter of the word to
the right of the point and puts the other
characters in lowercase.

LOWERCASE-WORD
Puts the word to the right of the point in
lowercase.

UPPERCASE-WORD
Puts the word to the right of the point in
uppercase.

UPPERCASE-REGION
Puts all the letters in the region in
uppercase.

LOWERCASE-REGION
Puts all the letters in the region in
lowercase.

for Editing LISP

COMMAND NAME AND FUNCTION

KILL-SEXP
Moves to the kill history the characters
forward from the point through the end of the
current s-expression.

BACKWARD-KILL-SEXP
Moves to the kill history
backward from the point to
the current s-expression.

KILL-COMMENT

the characters
the beginning of

Moves to the kill history any comment on the
current line (that is, all of the characters
from the first semi-colon through the last
character before the newline).

ctrl-Z F or ctrl-PqDn
FORWARD-SEXP
Moves the point to the end of the s-expression
to its riqht.

CHAPTER 2: The GMACS Editor 71

ctrl-Z B or ctrl-PgUp
BACKWARD-SEXP

ctrl-z N

ctrl-Z P

Ctrl-Z D

Moves the point to the beginning of the
s-expression to its left.

FORWARD-LIST
Moves the point to the end of the list to its
right. The command searches for a close
parenthesis and positions the point just after
it.

BACKWARD-LIST
Moves the point to the beginning of the list
to its left. The command searches for an open
parenthesis and positions the point just to
the left of it.

DOWN-LIST
Moves the point forward in the edit buffer
until it is just to the right of the next open
parenthesis.

Ctrl-Z U, Ctrl-Z (
BACKWARD-UP-LIST

Ctrl-Z)

Searches backward for an unmatched open
parenthesis and positions the point to the
left of the first one encountered.

FORWARD-UP-LIST
Searches forward for an unmatched close
parenthesis and positions the point to the
right of the first one encountered.

Ctrl-Z A, ctrl-z [, ctrl-Home
BEGINNING-OF-DEFINITION
Moves the point backward to the beginning of
the current LISP function.

Ctrl-Z E, ctrl-Z], Ctrl-End
END-OF-DEFINITION

Alt-!

Ctrl-Z C

Ctrl-Z Q

Moves the point forward to the end of the
current LISP function.

EVAL-SEXP
Evaluates the s-expression to the right of the
point.

EVAL-DEFINITION
Evaluates the current function.

INDENT-SEXP
Corrects the indentation of the s-expression
to the right of the point.

72 GOLDEN COMMON LISP USERS' GUIDE

ctrl-I INDENT-TO-LEVEL
Indents the current line correctly.

Alt-3 INDENT-FOR-COMMENT
If the current line has no comment, moves the
point out to the comment column (inserting
spaces as necessary) and inserts a
semi-colon. If the line already has a
comment, the comment is indented the correct
number of spaces and the point is positioned
to the right of the semi-colon.

ctrl-J or ctrl-Enter
INDENT-NEWLINE

Alt-9

Ctrl-Z L

Ctrl-Z ?

Alt-2

Inserts a newline character at the current
point, moves the point to the new line, and
inserts white space to correctly indent the
new line. The point is placed to the right of
the indentation.

MAKE-EMPTY-LIST
Inserts matching
point.

DISPLAY-LAMBDA-LIST

parentheses around the

Displays in the echo window the lambda-list of
the current function definition.

DISPLAY-DOCUMENTATION
Displays in a type-out window the full Help
documentation of the current function
definition.

DISPLAY-MACROEXPANSION
Displays in a type-out window the
macro-expansion of the current s-expression.

2.7.8 Region and Kill History Commands

UY COMMAND NAME AND FUNCTION

ctrl-X ctrl-X or ctrl-z space
EXCHANGE-POINT-AND-MARK

ctrl-@

Exchanges the point and the current mark.

SET-POP-MARK
Puts a mark where the point is and puts it at
the top of the mark pdl (making it the current
mark). Prefixed with Ctrl-u, the command
positions the point at the current mark and
pops that mark from the pdl. Prefixed with
ctrl-U ctrl-U, the command just pops the
current mark from the mark pdl.

CHAPTER 2: The GMACS Editor 73

Alt-W

Ctrl-Y

Alt-Y

Ctrl-Z 0

Ctrl-Z Y

SAVE-REGION
Moves a copy of a region to the kill history
without erasing it from the edit buffer.

YANK
Inserts the entry at the top of the kill
history into the current buffer at the point.

YANK-POP
If the last command was YANK or YANK-POP, the
text returned to the buffer by the last
command is replaced in the buffer by the next
lower entry in the kill history. Otherwise
the command has the same effect as YANK.

APPEND-NEXT-KILL
Causes the next kill command to
killed text to the entry at the
kill history.

DISPLAY-KILL-HISTORY

append
top of

the
the

Displays in a type-out window all entries
contained in the kill history.

2.7.9 Miscellaneous Commands

KEY COMMAND NAME AND FUNCTION

Ctrl-X Ctrl-C or Fl
EXIT-EDITOR
Exits the GMACS environment and returns you to
the GCLISP environment from which you entered
GMACS.

Ctrl-Break (Break to listener)

Esc DEADEND
Aborts the current command and returns you to
normal GMACS command entry.

Ctrl-G, Ctrl-X ctrl-G, F2 G, Alt-H G
ED-BEEP

Alt-H or F2

Aborts the current command, rings the terminal
bell, and returns you to normal GMACS command
entry.

HELP-DEADEND
Displays a help menu that
for accessing information
commands and key bindings.

lists the options
relating to GMACS

74 GOLDEN COMMON LISP USERS' GUIDE

Alt-H ?, Alt-H H, F2 ?, F2 H
ED-HELP

Alt-H A or F2 A

Alt-H K or F2 K

Alt-H D or F2 D

Alt-H T or F2 T

Alt-X

Enter or ctrl-M

Ctrl-0 or Ins

Ctrl-U

Displays the help guide consisting of
descriptions of the options listed in the help
menu.

ED-APROPOS
Prompts you for a character string, and
displays in a type-out window every GMACS
command which contains the specified string in
its name.

ED-KEYCHORD
Prompts you for a keychord, and displays in a
type-out window the command associated with
the specified keychord.

ED-DOC
Prompts rou for a character
displays in a type-out window
documentation for every GMACS
contains the specified string in

ED-TEACH

string, and
the on-line

command which
its name.

Invokes the GMACS on-line tutorial.

EXTENDED-COMMAND
Any LISP function not requiring an argument,
and any GMACS command, including those GMACS
commands not bound to a keychord or key
sequence, can be invoked by entering ctrl-X
and typing the name of the command.

NEWLINE
Inserts a newline character at the point. Any
characters to the right of the point move to
the new line. The point is moved to the first
position of the new line.

OPEN-LINE
Inserts a newline character after the point
(unlike <ENTER>, which inserts the newline
before the point) .

NUMERIC-ARG
Used as a command prefix
count for the command
commands). Prefixed by

to establish a repeat
(valid for most
ctrl-U, a command

CHAPTER 2: The GMACS Editor 75

Ctrl-Q

Ctrl-T

executes 4 times (the default repeat count is
4). Prefixed by Ctrl-U <n>, a command executes
<n> times. If <n> is negative and there is a
meaningful "opposite" version of the command,
that is executed positive-<n> times. (For
example, the command to move the cursor down
by -4 lines will move the cursor up by 4
lines.) Repetitions of ctrl-U following the
numeric argument <n>, if any, multiply the
repeat count by 4 each time.

QUOTED-INSERT
Used for inserting as text those characters
which otherorise act as editing commands. The
character typed after ctrl-Q is inserted into
the buffer.

EXCHANGE-CHARACTERS
Transposes the two characters to the left of
the point.

76 GOLDEN COMMON LISP USERS' GUIDE

2.8 GMACS Commands: Quick-Reference Table

This section lists the key bindings and command names of GMACS
editor commands for quick referencing.

2.8.l Cursor Motion Commands

KEY COMMAND NAME

Ctrl-F or Right Arrow
FORWARD-CHAR

ctrl-B or Left Arrow
BACKWARD-CHAR

Alt-F or ctrl-Right Arrow
FORWARD-WORD

Alt-B or Ctrl-Left Arrow
BACKWARD-WORD

ctrl-A BEGINNING-OF-LINE

ctrl-E END-OF-LINE

Ctrl-N or Down Arrow
NEXT-LINE

ctrl-P or Up Arrow
PREVIOUS-LINE

Ctrl-Z < or Home
BEGINNING-OF-BUFFER

ctrl-z > or End
END-OF-BUFFER

2.8.2 Edit Window Commands

KEY COMMAND NAME

ctrl-V or PgDn
NEXT-SCREEN

Alt-v or PgUp PREVIOUS SCREEN

CHAPTER 2: The GMACS Editor 77

Ctrl-X 2 TWO-WINDOWS

Ctrl-X 0 OTHER-WINDOW

Ctrl-Z v SCROLL-OTHER-WINDOW

ctrl-X 1 ONE-WINDOW

Ctrl-L REDISPLAY-SCREEN

2.8.3 Text Deletion Commands

KEY COMMAND NAME

Ctrl-D or Del DELETE-CHAR

Ctrl-H or Rubout
RUBOUT

ctrl-A DELETE-INDENTATION

ctrl-\ DELETE-HORIZONTAL-SPACE

Alt-D KILL-WORD

ctrl-Rubout BACKWARD-KILL-WORD

Ctrl-K KILL-LINE

Alt-K BACKWARD-KILL-LINE

Ctrl-W KILL-REGION

2.8.4 Buffer and File Commands

KEY COMMAND NAME

Ctrl-X ctrl-F or F7
FIND-FILE

Ctrl-X Ctrl-R or FS
READ-FILE

Ctrl-X ctrl-S or F9
SAVE-FILE

Ctrl-X B or F3
SELECT-BUFFER

Ctrl-X K KILL-BUFFER

78 GOLDEN COMMON LISP USERS' GUIDE

Ctrl-X P or F4
SELECT-PREVIOUS-BUFFER

Ctrl-X Ctrl-B LIST-BUFFERS

Ctrl-X U UNMODIFY-BUFFER

Ctrl-X Ctrl-W or FlO
WRITE-FILE

Ctrl-X C CHANGE-DIRECTORY

Ctrl-X Ctrl-D DISPLAY-DIRECTORY

2.8.5 search and Replace Commands

DY

Ctrl-S

Ctrl-R

Alt-%

Alt-*

2.8.6

DY

Alt-C

Alt-L

Alt-U

Ctrl-X

Ctrl-X

2.8.7

DY

Ctrl-Z

Ctrl-Z

ctrl-z

COMMAND MAME

FORWARD-SEARCH

REVERSE-SEARCH

QUERY-REPLACE

GLOBAL-REPLACE

Case-Setting Commands

COMMAND NAME

UPPERCASE-INITIAL

LOWERCASE-WORD

UPPERCASE-WORD

Ctrl-U UPPERCASE-REGION

Ctrl-L LOWERCASE-REGION

Commands for Editing LISP

COMMAND NAME

It KILL-SEXP

Rubout BACKWARD-KILL-SEXP

KILL-COMMENT

CHAPTER 2: The GMACS Editor

Ctrl-Z F or Ctrl-PgDn
FORWARD-SEXP

Ctrl-Z B or Ctrl-PgUp
BACKWARD-SEXP

Ctrl-Z N FORWARD-LIST

ctrl-Z P BACKWARD-LIST

ctrl-Z o DOWN-LIST

ctrl-Z u or ctrl-Z (
BACKWARD-UP-LIST

Ctrl-Z FORWARD-UP-LIST

ctrl-Z A, Ctrl-Z [, or Ctrl-HOME
BEGINNING-OF-DEFINITION

Ctrl-z E, ctrl-Z], or ctrl-END
END-OF-DEFINITION

Alt-1

Ctrl-Z C

Ctrl-Z Q

Ctrl-I

Alt-3

EVAL-SEXP

EVAL-DEFINITION

INDENT-SEXP

INDENT-TO-LEVEL

INDENT-FOR-COMMENT

Ctrl-J or ctrl-Enter
INDENT-NEWLINE

Alt-9 MAKE-EMPTY-LIST

ctrl-z L DISPLAY-LAMBDA-LIST

Ctrl-Z ? DISPLAY-DOCUMENTATION

Alt-2 DISPLAY-MACROEXPANSION

2.8.8 Region and Kill History Commands

KEY COMMAND NAME

ctrl-X Ctrl-X or Ctrl-Z Space
EXCHANGE-POINT-AND-MARK

Ctrl-@ SET-POP-MARK

79

80 GOLDEN COMMON LISP USERS' GUIDE

Alt-W SAVE-REGION

Ctrl-Y YANK

Alt-Y YANK-POP

Ctrl-Z 0 APPEND-NEXT-KILL

ctrl-Z Y DISPLAY-KILL-HISTORY

2.8.9 Miscellaneous commands

DY COMMAND NAME

ctrl-x ctrl-c or Fl
EXIT-EDITOR

ctrl-Break

Esc

(Break to listener)

DEADEND

Ctrl-G or ctrl-X ctrl-G or Alt-H G or F2 G
ED-BEEP

Alt-H or F2 HELP-DEADEND

Alt-H ? OR F2 ?
ED-HELP

Alt-H A or F2 A
ED-APROPOS

Alt-JI K or F2 K
ED-KEY CHORD

Alt-JI D or F2 D
ED-DOC

Alt-JI T or F2 T
ED-TEACH

Alt-X EXTENDED-COMMAND

Enter or Ctrl-M
NEWLINE

ctrl-o or Ins OPEN-LINE

Ctrl-U NUMERIC-ARG

ctrl-Q QUOTED-INSERT

CHAPTER 2: The GMACS Editor 81

Ctrl-T EXCHANGE-CHARACTERS

Chapter 3

on-Line Help Facilities

This chapter describes the main
GCLISP. These facilities are
constructing a GCLISP program
particular functions or symbols.

on-line help facilities of
there to aid you when you are
and need information about

When you press Alt-H, the resulting display shows the types of
help available and how to invoke them:

I
I
I
I To invoke one of the following GCLISP applications,
I type the indicated keychord:
I
I Alt-E The LISP Explorer, an on-line tutorial
I Ctrl-E The GMACS Editor
I
I To get help in one of the following areas,
I type the indicated keychord:
I
I Alt-K "Keys" - Displays a list of the actions
I invoked by special keys and keychords.
I
I Alt-A "Apropos" - Lists all symbols whose names
I contain a specified string. Prompts for the string.
I
I Alt-D "Documentation" - Displays the on-line documentation
I for a specified function, variable, or type name.
I Prompts for the name.
I
I Alt-L "Lambda-List" - Displays the arguments for a
I specified function. Prompts for the function name.
I
I *
!~~~~~~~~~~~~~~~~~~

Alt-A, Alt-D, and Alt-L give detailed information about GCLISP
functions and symbols. These specific help options correspond
to GCLISP functions:

"Apropos": the apropos function

CHAPTER 3: on-Line Help Facilities 83

"Documentation": the doc function

"Lambda List": the lambda-list function

That is, you can get each kind of help either by typing the
keychord -- for example, Alt-A -- or by a function call -- for
example, (apropos string). The sections of this chapter
describe each of these options under its function name. (No
GCLISP function corresponds to Alt-K, the "Keys" help
(described in section l. 4, "Keychord Commands to the
Interpreter") .)

84 GOLDEN COMMON LISP USERS' GUIDE

3.1 APROPOS

apropos prints to the screen the names of all LISP symbols
that contain the string specified as the apropos argument.
This function is particularly useful for looking up LISP
symbols with names you cannot remember.

The type of each LISP symbol (e.g., "function") is also
printed.

There are no
particular, you
the names of
printed to the
every name.
<ENTER>.)

restrictions on the string argument. (In
can give the null string as the argument; then
all currently-defined LISP symbols will be

screen, because the null string is contained in
This has the same effect as typing Alt-H A

By way of illustration, suppose that we give the symbol foo
the following function definition:

I
I * (defun foo (a b) (+ a b))
I FOO
I *
'~~~~~~~~~~~~~~~-

If we now apply apropos to the symbol foo, this screen
appears:

I
I * (apropos 'foo)
I FOO - function, arglist: (A B)
I
I NIL
I *
'~~~~~~~~~~~~~~

The response shows that f oo is currently the
whose print-name contains the sequence of
Furthermore, the symbol foo is a function

9
arglist is (AB).

9. Another name
"LAMBDA-LIST".

for lambda-list. See

only LISP symbol
letters "FOO".
name; and its

section 3.3,

CHAPTER 3: on-Line Kelp Facilities 85

The function apropos returns the value nil, as shown above.
(The LISP names that apropos prints to the screen are not
returned values.)

With foo already defined as a function, we can further define
foo as a variable and assign it the string "foe adds two
numbers" as follows:

(setf foo 11 foo adds two numbers")

If apropos is now applied to the string "foe", the response is
different from before:

I
I
I * (apropos 'foe)
I FOO - bound
I FOO - function, arglist: (A B)
I
I NIL
I *
I
I~~~~~~~~~~~~~~

The new entry for f oo in this display indicates that f oo is a
variable bound to some value. The previous entry for the
function foo appears as the second line in the display.

If the string argument in the apropos function call is not
contained in any GCLISP print-name, apropos simply prints the
string with no information, as in this example:

I
I
I * (apropos 'baz)
I BAZ
I
I NIL
I *
I
I~~~~~~~~~~~~~~

3.1.1 Using APROPOS to Find the Right Function

You may want to call apropos with the name of a particular
GCLISP function as argument for the purpose of seeing what
related functions are available.

For instance, you may be developing a LISP program in which a
series of GCLISP objects should be put into a list. To see
the names of functions, one of which might perform this task,

86 GOLDEN COMMON LISP USERS' GUIDE

use the string "list" as an argument to apropos:

I
I
I * (apropos "list")
I MULTIPLE-VALUE-LIST - special form
I *PACKAGE-ALIST* - bound
I LISTP - function
I COPY-ALIST - function
I VALUES-LIST - function
I LIST - function
I APROPOS-LIST - function
I *LISTENER-NAME* - bound
I MAKE-LIST - function
I : LISTEN - bound
I DOLIST - special form
I IE-LAMBDA-LIST - function, arglist: (&OPTIONAL BUF IGNORE)
\ LIST-LENGTH - function
I SETPLIST - function
I SYMBOL-PLIST - function
I LIST* - function
I LISTENER - function
I : LISTENER - bound
I MAPLIST - function
\ LAMBDA-LIST - macro
I COPY-LIST - function
I
I NIL
I *
I
\~~~~~~~~~~~~~~~~~~

Every currently-defined GCLISP symbol that contains the string
"list" in its name appears in the display (including the names
of functions and variables you may have defined, as well as
the names of GCLISP interpreted functions).

An arglist is included in the display produced by apropos only
if the name names an uncompiled function. In the current
example, every function entry except ie-lambda-list is a
compiled function. (To find the arglist of a compiled
function, use the doc function.)

The empty list -- the list () -- appears as the arglist of any
function which accepts no arguments.

To find out what each of the functions listed in this example
actually does, use the doc function, described next.

CHAPTER 3: On-Line Help Facilities 87

3.2 DOC

The doc function can help you in the way a dictionary helps
you with unfamiliar words: It provides definitions of
individual functions and variables.

The doc function call takes a LISP name as its argument, as in
this example:

I
I
I * (doc 'listp)
I
I LISTP is a Function.
I (LISTP object) -> BOOLEAN
I
I
I
I
I
I
I
I

This function is a predicate which is true
if and only if OBJECT is is of type LIST.
An object is of type LIST if and only if it
is either of type CONS or type NULL.

(LISTP object) <=> (OR (CONSP object)
(NULL object))

I NIL
I *
I
!~~~~~~~~~~~~~~~-

In this example, the first line printed to the screen says
that the object named by "listp" is a function. The second
line gives the syntax for the function listp. It says that a
function call on listp has one argument, which can be any LISP
object; and that the return value of the function call is a

10
boolean. A description of what the function does follows in
the display. The last item printed is the nil return value
from doc.

10. These conventions for describing LISP syntax are specified
in Chapter l of the GCLISP Reference Manual.

88 GOLDEN COMMON LISP USERS' GUIDE

The apropos function will display the names of
pre-defined and user-defined LISP symbols. doc, however,
display information only about pre-defined functions
variables, not user-defined functions and variables:

I
I
I * (doc 'foo)
J No documentation found for FOO
I
I NIL
I *
I
I~~~~~~~~~~~~~~~

both
will

and

CHAPTER 3: on-Line Help Facilities 89

3.3 LAMBDA-LIST

The function lambda-list is useful for finding the input
requirements of a given function. lambda-list accepts a LISP
symbol as an argument, and takes an optional second argument.
If the symbol names a function, then lambda-list returns the
function's lambda-list: a list of the input parameters to the
function.

lambda-list behaves differently based
function named by its symbol argument:

upon the type of

If the argument names an interpreted function,
lambda-list returns the function's lambda-list and nil.
The optional second argument is unused.

If the argument names a compiled function and the
optional argument is nil (or is not given), lambda-list
searches the on-line documentation for the function, and:

* if on-line documentation for the function is found,
lambda-list returns the documented lambda-list and
nil;

* if the function's documentation is not found,
lambda-list returns the symbols nil and :not-found.

If the argument names a compiled
optional argument is present and not
returns nil and :not-found.

function and the
nil, lambda-list

If the argument does not name a function, lambda-list
returns nil and :not-found.

90 GOLDEN COMMON LISP USERS' GUIDE

To illustrate lambda-list with an interpreted
suppose that foo is defined as follows:

(defun foo (ab) (+ab))

function,

When lambda-list is applied to this function, the result is:

I
I * (lambda-list 'foo)
I (A B)
I NIL
I *
I~~~~~~~~~~~~~~

lambda-list returned (AB), the lambda-list of the function
foo.

Here is lambda-list applied to a non-interpreted function (a
compiled function) :

I
I
I * (lambda-list 'listp)
I (lobjectl)
I NIL
I *
I
I~~~~~~~~~~~~~~

lambda-list returned (lobjeetl), the lambda-list for listp as
it appears in the on-line documentation.

Here is lambda-list applied to a symbol baz which does not
name a function:

I
I
I * (lambda-list 'baz)
I NIL
I :NOT-FOUND
I *
I
I~~~~~~~~~~~~~~

CHAPTER 3: Debuqqinq in GCLISP

Chapter 4

Debuqqinq in GCLISP

91

While buildinq a LISP program, you may want to test it
periodically to make sure that the various components function
properly. If the program does not work the way you intend,
you will have to find the source of the problem and correct
it.

To locate problems, use the GCLISP debugging utilities. There
are five of these:

break or ctrl-Break

backtrace or Ctrl-B

trace

step

pprint

In this chapter we discuss how to use these functions,
individually and in combination, to debug your programs.

92 GOLDEN COMMON LISP USERS• GUIDE

4.1 BREAK

The function break suspends the current listener and starts a
new one. At this new listener, you have all of the services
available at Top-Level, the level-0 listener.

break can be invoked by calling it or by depressing the
keychord Ctrl-Break. A second type of program suspension may
occur when the evaluator encounters an error. To illustrate,
we use a function foo that takes two arguments, and apply it
to only one.argument. foo is defined as follows:

(defun foo (a b) (+ a b))

When we evaluate foo with only one argument, the results are
as follows:

* (foo 2)

ERROR:
Not enough arguments for: FOO
While evaluating: (FOO 2)
l>

The new listener level is identified by the new prompt, l>.
The number used with a prompt always tells you which listener
level you are on. (The Top-Level prompt is the asterisk.) If
you make an error at level l, another listener is established,
with the prompt 2>.

To return from this error level to the
the function clean-up-error, which you
keychord ctrl-G. The following screen
from an error using clean-up-error:

I
I * (foo 2)
I
I ERROR:
I Not enough arguments for: FOO
I While evaluating: (FOO 2)
I l> (clean-up-error)
I Back to: Top-Level
I *

previous listener, use
can invoke with the

illustrates recovering

!~~~~~~~~~~~~~~-

CHAPTER 4: Debugging in GCLISP 93

clean-up-error places you back at Top-Level with the asterisk
prompt.

In this example, the error is straightforward enough that you
probably do not need any further information to understand and
correct it. However, in cases where this is not true, you can
obtain information about the interrupted evalution. One way
to access this stored information is with the function
backtrace (see section 4.2, "BACKTRACE").

You can use break for debugging or testing your own LISP
programs by including a call to break in your program. When
break is called, it suspends the processing of your program
and starts a new listener level, where you can perform other
LISP evaluations. When you are ready, you can resume the
evaluation of your program by entering the function continue,
or the keychord ctrl-P.

You can include a message as an argument to break, which
prints to the screen when the break level is invoked. This
message can remind you of where you are in your program, what
you want to test, etc. You can also include the values of
variables in the break message. To do this, use the -s
directive of the format function for each variable, and
include the variable names for each -s as separate arguments
to break:

(break "message with a=-s and b=-5" a b)

Note that you must enclose your message in quotes and include
the format arguments (e.g., a and b) in the order of their
appearance in the message.

To illustrate break, we define the following simple program:

I
I
I
I

* (defun foo (a b)

I
I
I FOO
I *

(setf a (+ a 1))
(setf b (+ b 1))
(break "in foe with
(* a b))

a=-S and b=-S" a b)

!~~~~~~~~~~~~~~~-

This program simply adds one to the
arguments. The new values for
displayed in a break message. When
the break, it multiplies the new
the result.

values of its two numeric
the variables are then

the program continues from
values together, returning

94 GOLDEN COMMON LISP USERS' GUIDE

If we apply foo to the numeric values 3 and 5, we obtain the
following:

* (foo 3 5)
in foo with a=4 and b=6
l>

At the new listener level you can carry out whatever
evaluations you wish. If you had not included the values of a
and b in the break message, you might evaluate a and b.

Once you have concluded whatever evaluations you want to
perform at the break level, type (continue), or ctrl-P, to
resume evaluation of the program. The following sample screen
illustrates continue using the simple program from the last
example:

I
I * (foo 3 5)
I in foo with a=4
I l> (continue)
I 24
I *

and b=6

'~~~~~~~~~~~~~~

break and continue do not
much as create conditions
more easily obtainedo
information is backtrace.

display debugging information so
whereby debugging information can be

One function that obtains such

CHAPTER 4: Debugging in GCLISP 95

4.2 BACKTRACE

The procedure backtrace displays LISP forms that have not
completed evaluation. backtrace can be used at any time, but
is most helpful at a break or error level. The keychord
Ctrl-B may also be used to initiate a backtrace. If used at
Top-Level, it prints only itself as the LISP form which is
incomplete in its evaluation. When there is more than one

11
incomplete form, as is the case at a break or error level,
the form encountered most recently prints first, the preceding
form prints second, and so on. Following the display of
forms, backtrace always returns the value nil.

We can illustrate backtrace with the same program used to
illustrate break. We defined the program as follows:

(defun foo (a b)
(setf a (+ a 1))
(setf b (+ b 1))
(break "in foo with a=-s and b=-S" a b)
(* a b))

If we execute backtrace at the break level produced by foo, we
obtain the following:

* (foo 3 5)
in foo with a=4 and b=6
l> (backtrace)
(BACKTRACE)
(BREAK "in foo with a=-S and b=-S" A B)
(FOO 3 5)
NIL
l>

In the series of LISP forms that print to the
backtrace itself is first because it is the most
encountered form that has not completed evaluation.
to break is the next form that prints, since it is

screen,
recently
The call
the form

11. There will always be at least two incomplete functions
when break is invoked at a break level: backtrace and break.

96 GOLDEN COMMON LISP USERS' GUIDE

encountered prior to backtrace that is incompletely
12

evaluated. foo is the last incompletely evaluated form that
prints. It beqan the evaluation process that produced the
break level. The last object to print is nil because nil is
the value backtrace returns.

The procedure backtrace can be particularly useful in cases
where there is a problem within a series of nested functions.
If the most deeply nested function calls break or produces an
error, you can then evaluate backtrace at the break level to
see the arquments for each of the nested functions. In many
situations this will help you locate the source of the
problem.

12. The evaluation of break will not complete until the
function continue is typed.

CHAPTER 4: Debuqqinq in GCLISP 97

4.3 TRACE

The trace procedure dynamically displays the input values and
the output values (i.e., the arquments and the returned
values) of functions. This facility is useful when it is not
clear that the interfaces between your procedures are
correctly implemented.

To use trace, include the function you want to test as an
arqument. Then, each time the specified function is
evaluated, its input and output values print to the screen, as
in this example with the function append:

* (trace append)
T
* (append 1 (12) 1 (34))
Entering: APPEND, Arqument list: ((12) (34))
Exiting: APPEND, Value: (12 34)

(12 34)

*

Caution: Apply trace carefully to frequently-used system
functions such as first, rest, and cons, as this can severely
slow down computation time. Also, tracing the function trace
will cause the system to loop as trace tries to trace itself.

You may turn trace off
currently being traced,
traced:

either for a particular function
or for all functions currently being

* (untrace append)
(APPEND)
* (trace neons append)
T
* (untrace)
(NCONS APPEND)

*

Each of these untrace calls returns a list of the names of the
functions being turned off. (untrace append) turned off the
trace of append initiated in the preceding screen. The list
(neons append) shows that (untrace) turned off the trace of
neons and append, and that no other functions were currently
being traced.

98 GOLDEN COMMON LISP USERS' GUIDE

4.4 STEP

The GCLISP step procedure allows you to
evaluation of a LISP form and control
evaluation.

view each step in the
the progress of the

To use step, enter it with the form in
argument. For example, to evaluate the
using the step macro, enter the fol.lowing:

(step (+ 1 (+ 2 3)))

question as its
form(+ 1 (+ 2 3))

step prints the form to the screen before any evaluation takes
place. With the above sample form, the screen would appear as
follows:

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3))_

Once you have entered the step function, you have a series of
options which allow you to continue the computation. Each
time an option completes, you may again choose among them
until evaluation of the entire form completes. All the
options for the step function are executed with the cursor
motion keys located at the right of the keyboard. Note: Check
to be sure that the NumLock key has not been pressed to shift
the cursor motion keys to numeric keypad. If it has, press it
again to undo the effect.)

If you are not sure what option you want or cannot remember
what all of the options are, you can type '?' and a list of
the options will appear on the screen as follows:

* (step (+ l (+ 2 3)))
(+ l (+ 2 3)) <?>
STEP commands are:

arrow-dn ==>
arrow-rt ==>
arrow-up
arrow-lt
Ctrl-Break

END

(+ l (+ 2 3))_

==>
==>
==>
==>

Step to next level down
Value of this form
Step to next level up
PrettyPrint this form
Enter Break Level
Complete without more Stepping

CHAPTER 4: Debugging in GCLISP 99

4.4.1 The arrow-dn Option

The option invoked with arrow-dn (the down-arrow key) proceeds
through evaluation with the smallest sub-forms. If the
current form (i.e., the one last printed to the screen) is
such a sub-form, it is evaluated, and the next form prints to
the screen. If the current form can be divided into further
sub-forms, the next smallest sub-form prints to the screen.

If we use just the arrow-dn option for evaluating the sample
form (+ 1 (+ 2 3)), the response is as follows:

1. The first sub-form 1 prints to the screen with the first
execution of arrow-dn.

2. With the second execution of arrow-dn, the first
sub-form 1 evaluates (since this form cannot be divided
into any further sub-forms) and the next form, which is
(+ 2 3), prints to the screen.

3. Since (+ 2 3) divides into sub-forms, the first sub-form
within (+ 2 3), which is 2, prints on the third
execution of arrow-dn.

4. On the fourth execution, the form 2 evaluates and the
form 3 prints, as the next sub-form within (+ 2 3).

5. On the next evaluation of arrow-dn, the form 3
evaluates. Since this is the last sub-form of (+ 2 3),
(+ 2 3) also evaluates; since (+ 2 3) is the last form
in the overall form, the overall form evaluates too.

The screen display for this process is as follows:

I
I
I
I
I
I
I
I

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <arrow-dn>
1 <arrow-dn>

1 = 1
(+ 2 3) <arrow-dn>
2 <arrow-dn>

2 = 2
\ 3 <arrow-dn>
I 3 = 3
I (+ 2 3) = s
I (+ 1 (+ 2 3))
I 6
I *

6

'~~~~~~~~~~~~~~~~

100 GOLDEN COMMON LISP USERS• GUIDE

4.4.2 The arrow-rt Option

The arrow-rt option evaluates the current form (i.e., the one
last printed to the screen) and prints the next form onto the
screen.

At the beginning, the entire form is the current form. If we
choose arrow-rt as the first option, the entire form is
evaluated and the return value prints to the screen. If we
begin instead with the arrow-dn option, which prints the form
l to the screen, and then choose the arrow-rt option, it
evaluates the form l as the current form and prints the next
form to the screen. If we again select the arrow-rt option,
it evaluates the current form (i.e., (+ 2 3)), and because it
is the last form in the overall form, the evaluation for the
entire form prints to the screen too.

Here is how the screen looks in response to the sequence of
options just discussed:

I
I * (step (+ l (+ 2 3)))
I (+ l (+ 2 3)) <arrow-dn>
I l --> l <arrow-rt>
I (+ 2 3) --> 5 <arrow-rt>
I C+ l (+ 2 3)) = 6
I 6
I *
!~~~~~~~~~~~~~~~~

The initial arrow-dn option prints the form l that appears
directly below the printing of the entire form. The
evaluation of l (represented by the arrow to its right and the
l to the right of the arrow) and the printing of the next fonn
(i.e., (+ 2 3)) occurs with the first execution of the
arrow-rt option. When this option is chosen again, it
evaluates the current fonn (i.e., (+ 2 3)) and, because it is
the last form in the overall fonn, evaluates the entire fonn
too.

CHAPTER 4: Debugging in GCLISP 101

4.4.3 The arrow-up Option

Arrow-up evaluates the current form (i.e., the one printed on
the screen) and the enclosing form.

If we again start with the arrow-dn option and then continue
with the arrow-up option, first arrow-dn prints the form 1 1

then arrow-up evaluates l (the current form) and (+ 2 3) (the
next form) • This completes evaluation of the entire form,
which prints to the screen. The following sample screen
illustrates:

I
I * (step (+ l (+ 2 3)))
I (+ l (+ 2 3)) <arrow-dn>
I l <arrow-up>
I (+ l (+ 2 3)) = 6
I 6
I *
!~~~~~~~~~~~~~~~~~

4.4.4 Other Options

There are three other options with the step function not
specifically associated with evaluation. One of these,
arrow-lt, pretty prints the current form (i.e., prints it
again in a human readable format; see section 4.5, "PPRINT,"
for an explanation of pretty printing).

Another option, ctrl-Break, establishes a new listener level.
At the listener, the following variables are available for
evaluation: step-form, which is bound to the current form;
step-values, which is bound to the values list returned from
the stepped evaluations completed thus far; and step-value
(without the "s"), which is bound to (first step-values).

102 GOLDEN COMMON LISP USERS' GUIDE

The following sample screen shows the ctrl-Break option used
after two executions of the arrow-dn option. At the listener,
each of the special variables for this option is evaluated.

* (step (+ 1 (+ 2 3)))
(+ 1 (+ 2 3)) <arrow-dn>
1 <arrow-dn>

1 = 1
(+ 2 3) <Ctrl-Break>

STEPPER BREAK
l> step-form
(+ 2 3)
l> step-values
(1)
l> step-value
1
l> (continue)
Back to STEP with form:
(+ 2 3)_

Notice that step-values in this case returns a list of only
one value (the value of step-value). This is because the
previous form (i.e., 1) did not return multiple values.

The last option, end, turns off evaluation by steps and causes
the entire form to be evaluated. The following sample screen
shows the end option after an initial execution of the
arrow-dn option.

I
I * (step (+ 1 (+ 2 3)))
I (+ 1 (+ 2 3)) <arrow-dn>
I 1 <end>
I
I 6
I *
'~~~~~~~~~~~~~~~~

CHAPTER 4: Debugging in GCLISP 103

4.5 PPRINT

The pretty printer displays text in an easily-read format. It
enables you to analyze components of a LISP function more
easily. Suppose you have entered this function definition:

I
I
I
I
I
I
I
I
I

* (defun foe (a &optional b c)
(do ((x a (+ l (first b)))

(y b (rest b))
(zc(restc)))

((null y) (print "stopped"))
(print l)
(print 2)
(print 3)))

I FOO
I *
!~~~~~~~~~~~~~~~~~~~

The function symbol-function displays the function definition
of foo with no regard for the program structure:

* (symbol-function 'foe)
(LAMBDA (A &OPTIONAL BC) (DO ((X A (+ l (FIRST B)))
(YB (REST B)) (Z C (REST C))) ((NULL Y) (PRINT "stopped"))
(PRINT l) (PRINT 2) (PRINT 3)))
*

For a clearer representation, use the pprint function:

I
I * (pprint (symbol-function 'foe))
I
I
I
I
I
I
I
I
I
I

(LAMBDA (A &OPTIONAL B C)
(DO ((X A (+ 1 (FIRST B)))

(Y B (REST B))
(Z C (REST C)))

((NULL Y)
(PRINT "STOPPED"))

(PRINT 1)
(PRINT 2)
(PRINT 3)))

I *
!~~~~~~~~~~~~~~~~

104 GOLDEN COMMON LISP USERS' GUIDE

4.5.l Formatting Rules Used with PPRINT

The GCLISP pprint function prints objects in accord with the
following set of rules.

l. Individual numbers and symbols print just as they do
with the ordinary prinl function.

2. Lists have various formats depending on the first
element of the list. If the first element is a symbol,
then pprint looks at its pprint property, which
determines how the list will pretty print.

3. When there is no value associated with pprint on the
symbol's property list (i.e., when (get (first list)
pprint) =>nil), then pprint assumes that the list has
no special format requirements and prints it on a single
line if possible. If the list will not fit on one line,
then each element prints on a separate line, all
indented the same number of spaces.

4. If the value of the pprint property is a symbol, the
function pprint assumes the symbol names a function,
which it calls to print the list. When pprint calls
this function, it passes its argument list to it. The
following sample screens illustrate the process of:

assigning the name of a print function to the
pprint property of a symbol;

defining that print function; and

pretty printing a list whose first element has as
the value of its pprint property the defined print
function.

First the pprint property for a symbol foo is set to the
value foo-pprinter:

I
I * (setf (get 'foo :pprint) 'foo-pprinter)
I FOO-PPRINTER
I *
'~~~~~~~~~~~~~~~~

This causes the function pprint to call foo-pprinter any
time its argument is a list whose first element is the
symbol foo. foo-pprinter then prints the list that
begins with foo.

CHAPTER 4: Debugging in GCLISP

The function foo-pprinter is defined as follows:

I
I
I
I
I
I

* (defun foo-pprinter (object)
(prinl 'foe)
(dolist (I (rest object))

(terpri)
(prinl I))

I l
I FOO-PPRINTER
I *

105

!~~~~~~~~~~~~~~~~~~~~~

First foo-pprinter calls prinl to print "foo. 11 Then
dolist is called and isolates successive elements of the
list represented by objecr, which consists of the
arguments pprint passes to foo-pprinter. For each
element, the function terpri ("terminate print") sends a
Newline character, so that the element is printed on a
new line by prinl.

Thus, if we pretty print the list (foo l 2 3), the
result is as follows:

I
I * (pprint '(foe l 2 3))
I FOO
I 1
I 2
I 3
I NIL
I * ! ________________________________ __

pprint calls foo-pprinter, which prints foo and then
prints each of the other elements in the list on
successive lines. Finally, the pprint function returns
the value nil.

Thus, using a function name as the value of the pprint
property of the first element of a list enables you to
control how pprint formats the printing of the list.
You can define formatting routines for special lists, or
even completely redefine the pprint facility.

106 GOLDEN COMMON LISP USERS' GUIDE

5. If the value of the pprint property is not a symbol, it
must be a list (called a template) that provides control
information for the system-supplied pprint function.
The template is really a list of sub-lists, with each
sub-list controlling a separate component of the form in
question (i.e., the argument to pprint). For example,
the do special form is composed of three parts: The
iterators, the termination clause, and the body of the
do. The symbol do contains on its property list an
entry for the pprint property as follows:

((do-bindings 5) (prog-body 5) (prog-body-rest 2 T))

The keywords

do-bindings, prog-body, and prog-body-rest

specify the display
sub-forms of do.
keyword specify the
each sub-form.

for the first, second, and remaining
The numbers associated with each
number of characters indented for

Note that the file \LISPLIB\PPRINT.LSP, provided in your
GCLISP package, contains a detailed specification of the
variables and functions available to user-defined pprint
functions. This file includes the full specification of the
keywords for templates, as well as a list of all forms which
pprint supports. Please refer to this file for information
needed to modify and extend the GCLISP pretty print facility.

Chapter 5

An Application: The PIANO Program

Now that you have some familiarity with the GCLISP
environment, you are ready to build GCLISP applications. In
this chapter we present the development of a sample GCLISP
program, which you can use as a model to get started.

For this sample application, we choose a program that alters
the function of several keyboard characters, because this type
of program has a general usefulness. Even though you may not
have particular interest in the application developed here, it
is likely that you will eventually want to alter the functions
assigned to keyboard characters.

The program we present here turns the PC keyboard into a piano
keyboard. To sidestep the difficult hardware interface
required for this program, we start with certain GCLISP
functions that produce elements of music. Discussion of these
functions (and the hardware interface they require) also
appears in this chapter, but after the general discussion of
the program has concluded. This way, you may choose not to
read it without having to skip pages. Finally, we have tried
to orient the discussion toward ideas that may help you in
developing GCLISP applications.

Note: After reading this chapter, you can invoke the PIANO
program by calling the function piano.

108 GOLDEN COMMON LISP USERS' GUIDE

5.1 Elements of the Piano Keyboard Program

To build a program that defines the computer keyboard as a
piano keyboard, we must call a routine that plays notes each
time certain keyboard characters are typed. From this
functional description we can identify three elements that we
need for our piano keyboard program:

1. a routine that plays musical notes;

2. a mapping of keyboard characters to musical notes; and

3. a program structure that reads keyboard characters and
calls the music routine to play the note mapped to that
particular keyboard character.

The first of these three components to our program is provided
through a function called play, which takes three different
kinds of arguments:

keyword designations for notes (e.g., :c for the musical
note C);

octave values that raise and lower the octave in which
the notes play; and

time values for the duration a note plays.

We analyze the structure of play at the end of this chapter
(sections 5.2.6 - 5.2.7). For now we concentrate on defining
the second and third elements of the piano keyboard program.

5.1.l Mapping Keyboard Characters to Notes

To define the terminal keyboard in a way that approximates a
piano keyboard, we can pick two rows of keys: one for the
whole tones (the white keys on the piano) and one for the half
tones (the black keys on the piano). Further, we can let the
upper row of keys -- the ones closer to the top of the
keyboard represent the black keys, and the lower row of
keys represent the white keys. This way, the terminal keys
representing the black piano keys are both in-between and
recessed from the terminal keys representing the white keys,
as on a piano.

Since there are not 88 keys on the computer keyboard, as there
are on a piano keyboard, we need to define a particular set of
keys on the computer keyboard that can be used to play all (or

CHAPTER S: An Application: The PIANO Program 109

most) of the notes on a piano. For this we have recourse to
the twelve notes of the conventional musical scale. A scale
provides an appropriate subset of notes, because the piano
keyboard is such that any row of twelve keys plays one full
scale. Each scale of twelve notes is exactly one octave
higher or lower than the one next to it. Therefore we can use
twelve notes and a set of octave values to cover the range of
notes on a piano. That is, we can raise or lower the octave
value of any of the twelve notes on a scale so as to play any
of the eighty-eight keys on the piano. For instance, if we
define the note C of our scale as middle c on the piano, we
can change the octave value to play the other c notes on the
piano keyboard.

If we start by mapping note c of the scale to the A-key on the
keyboard, mapping C# to the W-key, and so on moving up the
scale and across the keyboard from left to right, our piano
keyboard will have the correlation between notes and keyboard
characters shown in Figure l.

KEY NOTE

A ---> c
w ---> C#
s ---> D
E ---> D#
D ---> E
F ---> F
T ---> F#
G ---> G
y ---> G#
H ---> A
u ---> A#
J ---> B
K ---> c

FIGURE l. The Mapping Between Keyboard Keys and Musical Notes

5.1.2 Reading Keyboard Characters

Now that we have defined the keyboard as a piano keyboard, we
can proceed to the third element of the program: developing a
program structure that reads keyboard characters and calls the
play function to produce the note associated with that
character. Since this really involves two steps -- reading
the characters and calling the play routine -- we can treat
each separately.

110 GOLDEN COMMON LISP USERS' GUIDE

We begin with reading characters from the terminal. To read a
character from the keyboard, we can use the read-char
function. Since we will want to read every keystroke to the
program (assuming only keys that have been defined as notes
will be pressed), we set up a loop that repeatedly reads a
character.

The GCLISP function for building such a loop is do. The
syntax for do can sometimes be complex, but for our purposes
it can be relatively simple. Since the initial function call
is read-char and the successive function calls are also
read-char, all we need do to set up a do loop is pick a
variable name for the character read by read-char. If we use
the symbol char as this variable name, then our do routine
looks like this:

(do ((char (char-upcase (read-char))
(char-upcase (read-char))))

(...) ...)
This form reads a character from the terminal and assigns its
upper-case value to the variable char.

The meta-form (•••) is for the end test for the do loop. For
the time being, we leave this test out. The three dots and
the final parenthesis indicate that the body of the do is also
unspecified as yet.

5.1.3 Representing Keyboard Characters in ASCII Code

When the GCLISP function read-char returns the character it
reads, it transforms it into ASCII code form. This means that
the value assigned to the variable char (each time a keyboard
character is read) is the ASCII representation of that
character. Because the value of char needs to be matched with
another character, that other character has to be in ASCII
format also.

Instead of looking up ASCII code for characters to do this, we
can use the sharp-sign-backslash macro(#\). When this macro
precedes an alphanumeric character, it signals the GCLISP
reader to produce the ASCII code for the character. That is,
to represent the character A in ASCII code, we write:

#\A

5.1.4 The Program Structure for Calling the PLAY Routine

To formulate the basic program structure for our piano
keyboard, we need to be able to call the function play with
the appropriate note or octave change for each keystroke. For
this, we need to set up a conditional structure that tests

CHAPTER 5: An Application: The PIANO Program 111

which keyboard character was struck and invokes the play
routine with the appropriate argument (note, octave, etc.).

Remembering from our do loop that the symbol char represents
keyboard characters, we write a conditional statement that
calls the play routine when A is struck on the keyboard:

(cond ((eq char #\A) (play :c)) •••)

This condition specifies that the note C plays whenever the
read-char function returns the ASCII code for the character A.

To shift the octave value, we can call the play routine with
the argument :od to lower the octave and the argument :au to
raise the octave. If we choose the character "-" to lower the
octave value, the conditional expression looks like this:

(cond ((eq char#\-) (play :od)) •••)

This condition shifts the octave down each time the minus key
(-) is pressed. No note plays -- only the octave for the next
note shifts down. We can write an analogous expression for
raising the octave using the character "+".

If we put together the conditional structures we have just
developed with the do loop into a single program structure
defining the function piano, we get something like this:

(defun piano ()
(do ((char (char-upcase (read-char))

(char-upcase (read-char))))
(...)

(cond ((eq char #\Al
((eq char #\Wl
((eq char #\S)
((eq char #\El
((eq char #\D)
((eq char #\Fl
((eq char #\Tl
((eq char #\G)
((eq char #\Yl
((eq char #\Hl
((eq char #\U)
((eq char #\J)
((eq char #\Kl
(play :ou)
(play :c)
(play :od))

((eq char #\-)
((eq char#\+)

(speaker :off)))

(play : c))
(play :cs))
(play :d) l
(play :ds))
(play : e))
(play : f))
(play :fs))
(play :g))
(play :gs))
(play : a))
(play :as))
(play :b))

(play :od))
(play :ou)))

Note: S represents a sharp sign in the notation for the
musical notes. Thus, :as stands for A#.

112 GOLDEN COMMON LISP USERS• GUIDE

5.l.5 Putting in an End Test

Aside from the note keys, we also have to establish an exit
key. (Remember that we left the end test for the do form
incomplete.) If we choose the character "X" for exit, then
the end test for the program would be as follows:

(eq char #\X)

and the entire piano program looks like this:

(defun piano ()
(do ((char (ohar-upcase

(char-upcase
((eq char #\X)

11 Nice tune!")
(cond ((eq char #\A)

((eq char #\W)
((eq char #\S)
((eq char #\El
((eq char #\D)
((eq char #\Fl
((eq char #\Tl
((eq char #\G)
((eq char #\Y)
((eq char #\H)
((eq char #\U)
((eq char #\J)
((eq char #\K)
(play :ou)
(play : C)
(play :od))

((eq char#\-)
((eq char#\+)

(speaker :off)))

(read-char))
(read-char))))

(play : c))
(play :cs))
(play : d))
(play : ds))
(play :e))
(play : f))
(play : fs))
(play :g))
(play :gs))
(play :a))
(play :as))
(play :bl)

(play :od))
(play : OU)))

5.l.6 Modifying and Revising the PIANO Program

There are several types of things we could do to improve our
program. We could, for instance, add to the ease with which
other people could use it. For example, we might write
someplace on the screen that "X" is the exit key.

We might otherwise wish to modify our function to give
ourselves greater flexibility. For example, instead of
hard-coding the duration value for the notes, we could include
conditional statements for tempo values, just as we do now for
notes and octaves.

CHAPTER S: An Application: The PIANO Program 113

Another type of modification is in programming style. We
could improve upon the elegance of our program by using the
case special form instead of the cond special form. The next
section, which explains various music functions, can help you
make some of these modifications.

114 GOLDEN COMMON LISP USERS' GUIDE

5.2 Musical Functions and Variables

The GCLISP program piano transforms the computer keyboard into
a piano keyboard. piano calls the function play in order to
carry out the actual playing of notes. The source code for
piano, play, and their sUbordinate functions may be found in
the file \EXAMPLE\MUSICPGM.LSP. This section gives
explanations of each of the functions and variables used to
implement the play function. (Several of these functions
involve the hardware interface necessary for providing the
elements of music. For more information regarding hardware
features of the IBM PC, consult the IBM PC Technical Reference
Manual.)

5.2.1 Musical Global Variables

The following function calls establish a series of global
variables and constants for the GCLISP music environment:

(defvar •music-octave• 2)

(defvar •music-scale•
1 (:c 494 :cs 466 :d 440 :ds 415 :e 392 :f 370

:fs 349 :g 330 :gs 311 :a 294 :as 277 :b 262))

(defvar •music-time• 5)

(defconstant speaker-control-port #x61)

(defconstant timer-select-port #X43)

(defconstant frequency-set-port #x42)

The three defined variables -- •music-octave•, •music-scale•,
and •music-time• -- represent values that define aspects of
music. •music-octave• and •music-scale• together define the
pitch or frequency value for a note, and •music-time• is used
to define tempo, or time value for a note.

You can think of these three variables as the three components
of a note. The three constants represent the mechanics of
actually producing sound:

•music-scale* defines twelve notes by associating
keywords (:C, :D, :E, etc.) with integer values that
produce the frequencies for the notes represented by the
keywords. (Note: The integer values themselves are not

CHAPTER 5: An Application: The PIANO Program 115

the frequency values for the notes. Rather, they modify
a standard frequency generated by the timer chip to
produce the scale frequencies. See the sethertz function
description in section 5.2.3 below.)

•music-octave• represents an octave value. It is used as
a parameter for the lsh function to change the frequency
value of a note to one octave higher or lower.

•music-time• refers to the duration a note sounds. The
•music-time• value you give to a quarter note (for 4/4
and 3/4 time) establishes a tempo. The unit of duration
is defined by the sleep function discussed below. The
time it takes the GCLISP interpreter to evaluate a single
empty dotimes loop is the value for •music-time•
represented by the integer l.

You can think of speaker-control-port, timer-select-port, and
frequency-set-port as components of an instrument that plays
music. These three components all define IBM-PC specific,
8-bit ioports which provide program interfaces to hardware
features of the PC.

5.2.2 The OCTAVEMOVE Function

(defun octavemove (action)
(case action

(:ou
(decf •music-octave•))

(:od
(incf •music-octave•))
))

This function raises or lowers the current value of the global
variable •music-octave• by l. If a value :ou is given for the
parameter action, the value for the variable decreases by one;
if the value of action is :od, the variable value increases by
one. Thus, this function enables new notes to play an octave
higher or lower than the current octave. (Note: When the
value of •music-octave• decreases, the next note plays an
octave higher {and vice versa).)

5.2.3 The SETHERTZ and SPEAKER Functions

These functions control the
musical notes. speaker turns
allows individual notes to
frequency generator used to
utilize the %ioport primitive

mechanics of actually producing
on or off the speaker, which
sound. sethertz controls the
produce notes. Both functions
(discussed below).

116 GOLDEN COMMON LISP USERS• GUIDE

The sethertz function is as follows:

(defun sethertz (hertz)
(%ioport timer-select-port #xOB6 nil)
(%ioport frequency-set-port (logand hertz #xOFF) nil)
(%ioport frequency-set-port (lsh hertz -8) nil)
)

This function sends an integer value to ioport
frequency-set-port in order to generate the frequency for a
note. The note frequency is equal to the frequency of the
timer chip divided by the integer sent to the ioport. The
hertz parameter represents integer values that divide into the
value of the timer chip frequency to produce the frequencies
for musical notes. The integer values defined by the global
variable •music-scale• provide a set of such hertz values for
the notes of a scale.

To understand the sethertz function in greater detail, we need
to understand the %ioport primitive. This primitive has three
parameters:

the ioport address (e.g., frequency-set-port,
timer-select-port)

the ioport data value (e.g., #xOB6)

the indicator for a 16 bit ioport data value (e.g., nil)

Essentially, the %ioport primitive sends the ioport data value
to the ioport address. The primitive can only send 8 bits at
a time, so the third parameter (the indicator of a 16 bit data
value) should always be nil.

The sethertz function, then, sends an ioport data
(#xOB6) to timer-select-port that opens that ioport.
the ioport timer-select-port is open, the integer value
new note is sent to ioport frequency-set-port as the
data value.

value
After

for a
ioport

Because integer values are 16 bits and the %ioport function
only sends the low-order 8 bits, sending the integer requires
two executions of the %ioport function. First, the low-order
8 bits of the integer are sent, by masking the upper 8 bits
using the logand function and the mask #xOFF. Second, the
upper a bits of the integer are sent by right-shifting them
into the region of the lower 8 bits.

CHAPTER S: An Application: The PIANO Program 117

The note frequency produced by sethertz can only sound,
however, if the speaker is on. The function that turns the
speaker on and off is as follows:

(defun speaker (switch
&aux (val (%ioport speaker-control-port

nil

(case switch
(:on

nillll

(%ioport speaker-control-port (logior val 3) nil))
(:off
(%ioport speaker-control-port (logand val #xOFC) nil))
))

The parameter switch accepts the values :on or :off.
the low-order two bits of speaker-control-port on
affecting the other six bits). :off clears these
(without affecting the other six bits).

The sethertz and speaker functions are used in the
of the beep function in section 5.2.5 below.

5.2.4 The SLEEP Function

(defvar •tempo• 1)

(defun sleep (time)
(dotimes (i time)
(dotimes (j •tempo•) (dotimes (k 1000)))
))

:on sets
(without

two bits

definition

This function sets up a wait loop that defines the duration of
a note. Actually, sleep defines three nested loops. The
innermost loop is an empty loop that iterates one thousand
times. The intermediate loop repeats the number of times set
by the variable •tempo•. And the outer loop iterates the
number of times represented by time.

You might test a value of 1 for time as
sixteenth note, 2 the value of an eighth note,
slower pieces and faster pieces the values for
note (quarter, eighth, etc.) would increase
respectively.

the length of a
and so on. For
a given type of

and decrease,

118 GOLDEN COMMON LISP USERS' GUIDE

5.2.5 The BEEP Function

(defun beep (tone time)
(sethertz tone)
(speaker :on)
(sleep time))

This function plays a note by putting together the function
that produces a frequency for a note, the function that
defines a duration period, and the function that turns on and
off the speaker. sethertz produces the frequency for the
note, which sounds for the time duration produced by the
evaluation of sleep. beep does not turn the speaker off, thus
allowing the caller to either change the tone or turn off the
speaker.

5.2.6 The PLAY Function

(defun play (music &optional (time •music-time*))
(if (numberp music)

(setq •music-time• music)
(case music

))

(:r (sleep time))
(:ou (octavemove :ou)) ;octave UP
(:od (octavemove :od)) ;octave DOWN
(otherwise
(let ((freq (getf •music-scale* music)))

(when (null freq)
(error "Unknown frequency: -s" freq))

(beep (lsh freq •music-octave•)
•music-time•))

))

play does one of four different things:

l. It raises or lowers the octave within which a note
plays;

2. It resets the duration for the note;

3. It plays (another) note; or

4. It rests.

The parameter music governs how play behaves:

l. If the value of music is :ou or :od, then play changes
the octave;

CHAPTER 5: An Application: The PIANO Program 119

2. If the value is a number, then play resets the duration;

3. If the value ie a note (e.g., :c or :d), then play plays
that note;

4. If the value is :r, then play rests for the duration.

The optional parameter time temporarily overrides the duration
used for playing a note. If time is omitted, the specified
note plays for duration •music-time•.

This function puts together the functions we have discussed
already: octavemove, sleep, and beep.

5.2.7 The PLAYLIST Function

Like play, playlist puts together functions already built.
playlist utilizes play in a dolist loop to play a sequence of
notes:

(defun playlist (notelist)
(dolist (note notelist) (play note))
(speaker :off))

The notelist parameter includes the same three elements used
as arguments to play: notes (:c, :d, :e, etc.); octave changes
(:ou and :od); and time values. The dolist loop evaluates
play for each element of notelist.

5.2.8 Putting Together Music Programs

One way to think of composing music is as the putting together
of notes into phrases which are repeated in variation. You
can implement this technique for musical composition by using
playlist to create phrases and lines of notes and then putting
these lines together. For instance you could have one
function composed of several executions of playlist using the
following format:

(defun music ()
(playlist (•••))
(playlist (•••))
(playlist (•••)) ...)

You could also use dotimes loops to repeat phrases defined by
playlist. For example:

(dotimes (i 3) (playlist • (5 :gs :e :qs :e)))

You can put together these dotimes loops into functions and
put those functions together as programs (or larger composite

GOLDEN COMMON LISP USERS' GUIDE

functions) and in this way build musical compositions in the
same step-by-step, component-by-component fashion used to
develop the music functions themselves.

alphanumeric 42
alphanumeric character 110
Alt key 34

Index

apropos - function 82, 84, 88
apropos - help option 82
arglist 84, 86
ASCII code 110
backslash 22, 24
backtrace - function 95
bound 10
bound to key 34
break 17, 62, 92
break - function 92
break level 95
break message 93
buffer - current 29, 33, 38
buffer-status 31, 33, 38
case - upper lower 8, 47
case-sensitive 48
clean-up-error - function 16, 92
colon 24
command processor - DOS 4
continue 17
continue - function 93, 94, 96, 102
ctrl key 34
current item 56
cursor 32, 33
cursor motion 43
debugging utilities 91
defun 12
doc - function 82, 87
doc - help option 82
dos - function 4
DOS - operating system 2, 4
echo area 31, 33
ed - function 27
edit buffer 27, 28, 29, 33, 37
edit command 33
edit screen 29, 30, 31
edit window 29, 30, 33
edit window - commands 66
edit window - current 55
editing LISP 25, 56
editor 21
EMACS 25
end test 110, 112
enter 2
environment - GCLISP 2

error 16, 18
error level 92, 95
error message 18, 20
Esc key 36
eval - function 8
evaluation 9, 62
evaluator 8
file 29, 37
filename 37, 38, 40
format directive 93
frequency value 114
function call 19
GMACS 21, 25
GMACS tutorial 26
help - on-line 3, 6, 82
indenting LISP 60
interpreter l
key sequence 25, 34
keychord 3, 6, 25, 34
kill commands 50, 61
kill history 50, 52, 55, 61
killing text 50
lambda list - help option 82
lambda-list 89
lambda-list - function 83, 89
language conventions 24
line 42
LISP l
LISP object 8
list processing l
listener 8
listener level
loading files
loading GMACS
mark 49

16, 92
21
27

mark - current 49
mark pdl 49, 52, 55
message area 31, 33
mini-buffer 33
mode line 31, 33
modifier key 34
numeric argument 45
NumLock key 34
octave value 108, 111
paren-beep 59
paren-flash 59
parentheses 24
pathname 22, 31, 40
piano program 107, 111, 112
play - function 108, 109, 114, 118
point 32, 33
pprint - function
pprint - property
print - function
print-name 85

103
104

8

prompt 2
push-down list 49 1 52
quote marks 24
read - function 8
read-char - function 110
read-eval-print 8, 22
reader 8
region 49
repeat count 46
s-expressions 56
scroll 43
self-evaluating form 9
self-inserting input 46
semi-colon 24
setf - function 11
sharp-sign-backslash macro - #\ 110
shift key 34
single quote 24
step - function 98
step - options 98, 101
symbol 10
template 106
tempo 112, 114, 117
timer chip 115, 116
Top-Level 16
trace - function 97
type 84
type-out window 33, 35
untrace - function 97
variable 10
vertical bars 24
white space 10, 42
word 42
working directory 2, 40
wrapped line 42

GOLDEN COMMON LISP
REFERENCE MANUAL

Version l.Ol

Table of Contents

Chapter 1 Introduction

1.1 Purpose
1.2 Notational Conventions
1.3 This Manual's Conventions

1

1
3
3

1.3.1 Description of Values 3
1.3.2 Capitalization in Special Form and Macro

Call Descriptions 4
1.3.3 Notes 5
1.3.4 List of Conventions 5
1.3.5 Conventions Used in Examples 8

Chapter 2 Data Types

2.1 Numbers

2.1.1 Integers
2 .1. 2 Ratios
2.1.3 Floating-point Numbers
2.1.4 Complex Numbers

2.2 Characters

2.2.1 Standard Characters
2.2.2 Line Divisions
2.2.3 Non-standard Characters
2.2.4 Character Attributes
2.2.5 String Characters

2.3 Symbols
2.4 Lists and Conses
2.5 Arrays

2.5.1 Vectors
2.5.2 Strings
2.5.3 Bit-Vectors

2.6 Hash Tables
2.7 Readtables
2.8 Packages
2.9 Pathnames
2.10 Streams
2.11 Random-states
2.12 Structures
2.13 Functions
2.14 Unreadable Data Objects
2.15 Overlap, Inclusion, and Disjointness of

Types

9

9

9
10
10
10

10

11
11
11
11
12

12
13
14

14
15
15

15
16
16
16
17
17
17
18
19

19

Chapter 3 Scope and Extent

Chapter 4 Type Specifiers

4.1 Type Specifier Symbols
4.2 Type Specifier Lists
4.3 Predicating Type Specifiers
4.4 Type Specifiers that Combine
4.5 Type Specifiers that Specialize
4.6 Type Specifiers that Abbreviate
4.7 Defining New Type Specifiers
4.8 Type Conversion Function
4.9 Determining the Type of an Object

Chapter 5 Program Structure

5.1 Forms

5.1.1 Self-Evaluating Forms
5.1.2 Variables
5.1.3 Special Forms
5.1.4 Macros
5.1.5 Function Calls

5. 2 Functions

5.2.1 Named Functions
5.2.2 Lambda-Expressions

5.3 Top-Level Forms

5.3.1 Defining Named Functions
5.3.2 Declaring Global Variables and Named

Constants
5.3.3 Control of Time of Evaluation

Chapter 6 Predicates

6.1 Logical Values
6.2 Data Type Predicates

6.2.1 General Type Predicates
6.2.2 Specific Data Type Predicates

6.3 Equality Predicates
6.4 Logical Operators

Chapter 7 Control structure

7.1 Constants and Variables

7 .1.1 Reference
7.1.2 Assignment

7.2 Generalized Variables

20

22

22
22
23
23
23
23
24
24
25

26

26

27
27
27
28
29

29

29
30

31

31

31
33

34

34
35

35
36

41
44

47

47

47
51

53

7.2.1 Defining New Generalized Variables

7.3 Function Invocation
7.4 Simple Sequencing
7.5 Establishing New Variable Bindings
7.6 Conditionals
7.7 Blocks and Exits
7.8 Iteration

7.8.l Indefinite Iteration
7.8.2 General Iteration
7.8.3 Simple Iteration Constructs
7.8.4 Mapping
7.8.5 The "Program Feature"

55

56
58
59
61
65
67

67
67
69
70
74

7.9 Multiple Values 76

7.9.l Constructs for Handling Multiple Values 76
7.9.2 Rules Governing the Passing of Multiple

Values 79

7.10 Dynamic Non-local Exits 79
7.11 Closures 81
7.12 Stack Groups 82

7.12.1 Stack Group Structure 82
7.12.2 Creating and Initializing a Stack Group 84
7.12.3 Resuming a Stack Group 85
7.12.4 Dynamic Bindings and Stack Groups 87
7.12.5 Stack Group Variables 88

Chapter 8 Macros

8.1 Macro Definition
8.2 Macro Expansion

Chapter 9 Declarations

9.1 Declaration Syntax
9.2 Declaration Specifiers
9.3 Type Declaration for Forms

Chapter 10 Symbols

10.1 The Property List
10.2 The Print Name
10.3 Creating Symbols

Chapter 11 Packages

11.1 Consistency Rules
11.2 Package Names
11.3 Translating Strings to Symbols
11.4 Exporting and Importing Symbols
11.5 Name Conflicts

89

89
91

92

92
93
93

94

94
97
97

100

100
100
100
100
101

11.6 Built-in Packages
11.7 Package System Functions and Variables
11.8 Modules

Chapter 12 Numbers

12.l Precision, Contagion, and Coercion
12.2 Predicates on Numbers
12.3 comparisons on Numbers

12.3.l Comparisons on Unsigned Fixnums

12.4 Arithmetic Operations

12.4.l Unsigned Fixnum Arithmetic

12.5 Irrational and Trancendental Functions

101
101
109

110

110
lll
112

114

115

ll8

ll9

12.5.l Exponential and Logarithmic Functions 119
12.5.2 Trigonometric and Related Functions 120
12.5.3 Branch Cuts, Principle Values, and

Boundary Conditions in the Complex
Plane 121

12.6 Type Conversions and Component Extractions
on Numbers 121

12.7 Logical Operations on Numbers 123
12.8 Byte Manipulation Functions 126
12.9 Random Numbers 126
12.10 Implementation Parameters 126

Chapter 13 Characters

13.l Character Attributes
13.2 Predicates on Characters
13.3 Character Construction and Selection
13.4 Character Conversions
13.5 Character Control-Bit Functions

Chapter 14 Sequences

14.l Simple Sequence Functions
14.2 Concatenating, Mapping, and Reducing

Sequences
14.3 Modifying Sequences
14.4 searching Sequences for Items
14.5 sorting and Merging

Chapter 15 Lists

15.l Conses
15.2 Lists
15.3 Alteration of List structure
15.4 Substitution of Expressions
15.5 Using Lists as Sets
15.6 Association Lists

127

127
127
129
130
131

133

133

134
135
136
136

137

137
142
148
149
150
152

Chapter 16 Hash Tables

16.l Hash Table Functions
16.2 Primitive Hash Function

Chapter 17 Arrays

17.l Array creation
17.2 Array Access
17.3 Array Information
17.4 Functions on Arrays of Bits
17.5 Fill Pointers
17.6 Changing the Dimensions of an Array
17.7 Array Leaders
17.8 Copying the Contents of an Array

Chapter 18 Strings

18.l String Access
18.2 String Comparison
18.3 String Construction and Manipulation

Chapter 19 Structures

155

155
155

156

156
157
158
158
159
160
160
161

162

162
162
165

167

19.l Introduction to Structures 167
19.2 How to Use Defstruct 167
19.3 Using the Automatically Defined Constructor

Function 168
19.4 Defstruct Slot-Options 168
19.5 Defstruct Options 168
19.6 By-position Constructor Functions 168
19.7 Structures of Explicitly Specified

Representational Type 168

19.7.l Unnamed Structures 168
19.7.2 Named Structures 168
19.7.3 Other Aspects of Explicitly Specified

Structures 169

Chapter 20 The Evaluator

20.l Run-Time Evaluation of Forms
20.2 The Top-Level Loop

Chapter 21 Streams

21.l Standard streams
21.2 Creating New Streams
21.3 Operations on Streams
21.4 Using Streams as Functions
21.5 User Written Streams
21.6 Window Streams

Chapter 22 Input/Output

170

170
172

177

177
179
180
180
182
183

184

22.l Printed Representation of Lisp Objects

22.l.l What the Read Function Accepts
22.1.2 Parsing of Numbers and Symbols
22.l.3 Macro Characters
22.l.4 Standard Dispatching Macro Character

Syntax
22.l.5 The Readtable
22.l.6 What the Print Function Produces

184

184
184
184

184
184
185

22.2 Input Functions 187

22.2.1 Input from Character Streams 187
22.2.2 Input from Binary Streams 189

22.3 Output Functions 189

22.3.l output to Character Streams 189
22.3.2 Output to Binary Streams 191
22.3.3 Formatted output to Character Streams 191

22.4 Querying the User 193

Chapter 23 File System Interface 195

23.l File Names 195

23.l.l Pathnames 195
23.l.2 Pathname Functions 195

23.2 Opening and Closing Files
23.3 Renaming, Deleting, and Other File

Operations
23.4 Loading Files
23.5 Accessing Directories

Chapter 24 Errors

200

201
202
203

205

24.l General Error-Signalling Functions 205
24.2 Specialized Error-Signalling Forms and

Macros 206
24.3 Special Forms for Exhaustive Case Analysis 206
24.4 Error Handling 206

Chapter 25 Miscellaneous Features

25.l The Compiler
25.2 Documentation
25.3 Debugging Tools
25.4 Environment Inquiries

25.4.l Time Functions
25.4.2 Other Environment Inquiries

25.5 Identity Function
25.6 Implementation Specific Procedures and

208

208
208
209
213

213
214

215

Variables

25.6.l Storage Management Functions
25.6.2 Operating system Interface Functions
25.6.3 IBM PC Specific Functions
25.6.4 Low-Level Functions

215

215
218
220
221

Chapter 1

Introduction

GOLDEN COMMON LISP (or
COMMON LISP designed to
including those found in
IBM PC (TM).

more briefly, GCLISP) is a dialect of
work on a variety of processors,
commercial microcomputers such as the

1.1 Purpose

GCLISP was designed with the following goals in mind (not in
order of importance):

Commonality

Portability

Power

Expressiveness

GCLISP is designed according to the COMMON
LISP core specification. COMMON LISP is
intended to serve as a common dialect, shared
by many different implementations.

GCLISP programs which restrict themselves to
those features specified as part of the COMMON
LISP core may be easily transported to other
COMMON LISP implementations.

In addition, the GCLISP environment is
designed to be easily transported to various
host environments.

GCLISP attempts to provide the most powerful
features of COMMON LISP while leaving out
those features which are of limited
usefulness. At the same time, powerful
concepts found in other LISP dialects (e.g.,
ZETALISP's stack groups), but which are not
(yet) part of COMMON LISP, have been
included.

GCLISP also provides a complete interface
(both low and high level) to the host hardware
and operating system.

Although GCLISP does not provide every feature
specified in COMMON LISP, most of the omitted

2

Compatibility

Efficiency

Stability

GOLDEN COMMON LISP REFERENCE MANUAL

features can be easily defined in GCLISP.

GCLISP is a compatible subset of the COMMON
LISP core specification. It also incorporates
various ZETALISP concepts.

In order to reduce the processing power and
memory demands on the programmer, LISP puts
great demands on the processing power and
memory of the computer. Therefore, efficiency
was one of the primary concerns in the design
and implementation of GCLISP.

GCLISP will evolve toward full implementation
of the COMMON LISP standard. Software
designed with the COMMON LISP specification in
mind will be compatible with future versions
of GCLISP.

This document is a language reference manual. As such, its
basic purpose is to specify the syntax and semantics of the
various language constructs. It is not intended to be a
language tutorial nor a system users' guide. Therefore, it
addresses itself to the intended practical use of a particular
construct only to the degree that such a description may
elucidate its semantics.

Readers of this manual should have a good understanding of
programming in general and LISP in particular. Those who want
to learn how to program in LISP should turn to the book LISP
(Winston and Horn, 1984) which is included in the GCLISP
package. Those who want information on the actual use of
GCLISP should turn to the GCLISP Users' Guide.

This manual is designed to be used in conjunction with the
COMMON LISP Reference Manual (Steele, 1984) (hereafter
referred to as the CLRM). Therefore, this manual adopts, as
much as possible, the format and notational conventions of the
CLRM. In fact, this manual uses the same chapter, section,
and subsection numbering as the CLRM.

Many of the features described in this manual are described
at greater length in the CLRM. Readers who are totally
unfamiliar with COMMON LISP may find it helpful to peruse the
CLRM before reading this manual.

Many of the entries in this manual are also available via
GCLISP on-Line Help. Because of this, some of the entries may
repeat information provided in other entries.

This manual was written with the following goals in mind (in
order}:

Precision Precision is
First, this

necessary for two reasons.
manual is responsible for

CHAPTER l: Introduction 3

Clarity

Concision

specifying the exact behavior of every GCLISP
entity. Secondly, when GCLISP diverges from
the COMMON LISP specification, it often does
so in ways which would not be apparent in an
informal description.

Hopefully, this is a self-explanatory goal.
It is secondary to precision since this is a
language reference manual, not a language
tutorial. In a language tutorial, precision
is secondary to clarity.

Because most of the features of GCLISP are
described in depth in the CLRM, this manual is
designed to be a concise summary of the CLRM.
In addition, since much of this document is
accessible via GCLISP On-Line Help, brevity is
of practical concern.

Readers are strongly encouraged to suggest areas in which
this manual falls short of these goals. A comment card is
included in the GCLISP package for this purpose.

1.2 Notational Conventions

The notational conventions used in this manual are, as much
as possible, identical to those used in the CLRM. The next
section provides a brief summary of the CLRM's conventions and
this manual's variations.

1.3 This Manual's Conventions

1.3.l Description of Values

In the CLRM, the first line of function,
form, and variable entries specifies the
arguments of the entity. This manual adds a
the values returned by the entity. Figure l
typical entry.

macro, special
name and any

description of
illustrates a

Figure l: Sample Function Entry

[Function]

4 GOLDEN COMMON LISP REFERENCE MANUAL

sample-function integerl integer2 => sum difference

This function returns the sum and the difference of integerl
and integer2.

As the example shows, the result of the function call is
indicated by an evaluation arrow (=>) followed by one or more
names which describe the returned values. (The first line of
the description of a function or special form which does not
return any values (e.g., go) does not contain an evaluation
arrow.)

The names of
possible. The
conventions:

boolean

result

results

last-form

results
following

are intended to be as descriptive as
list describes the result naming

The result name boolean refers to a result
which may be either true (t) or false (nil) .

Result names which contain the
indicate that only a single
returned.

word result
value is

Result names which contain
indicate that multiple
returned.

the word results
values may be

Result names which contain the word last-form
indicate that the results of the last (i.e.,
rightmost) subform are returned. Forms
containing an implicit progn typically have
this type of result.

last-evaled-form

nil/ ••.

Result names which contain the word
last-evaled-form indicate that the results of
the last (i.e., rightmost) subform which was
evaluated are returned. Control structures
such as case and cond typically have this type
of result.

Result names with the prefix nil/ indicate
that either nil or some other result will be
returned. In general, a / separates
alternative results.

1.3.2 Capitalization in Special Form and Macro Call
Descriptions

Special forms and macro calls are more difficult to describe
than function calls since their syntactic components may or
may not be evaluated. To lessen this confusion, this manual
adopts the following typographic convention:

CHAPTER 1: Introduction

In the first line of macro and special form
entries, the syntactic components which are never
evaluated are capitalized, while components which
may or may not be evaluated (e.g., the subforms in
the special form and), are in all lower case (just
like function parameter names) •

5

For example, the first line of the entry for the setq
special form looks something like Figure 2:

Figure 2: First Line of setq Entry

[Special form]

setq {Symbol form}* => last-form-result

The component Symbol begins with a capital letter since it
is never evaluated. On the other hand, the component form is
always evaluated, so it is in all lower case.

1.3.3 Notes

As in the CLRM, this manual defines two special types of
notes: Compatibility notes and Implementation notes.

In the CLRM, a Compatibility note points out where COMMON
LISP is either particularly compatible or incompatible with
its predecessors; while in this manual, a Compatibility note
always points out where GCLISP differs from the COMMON LISP
core specification.

An Implementation note in the
implementation strategies; while
Implementation note points out the
strategy used in GCLISP.

1.3.4 List of Conventions

CLRM suggests possible
in this manual, an

particular implementation

The following list summarizes the typographical and
notational conventions used in both this manual and the CLRM.
For more detailed explanations of the various conventions, see
Chap. l of the CLRM.

entity-name The names of all functions, special forms,
macros, global variables, and named constants
appear in the same typographical style as
entity-name.

6

parameter-name

GOLDEN COMMON LISP REFERENCE MANUAL

The names of all function parameters and the
names of special form and macro components
appear in the same typographical style as
parameter-name.

(example-function s •foo)

=>

=>

<=>

[••• J

{ ... } *

{ ••• }+

(first • rest)

(... l

All examples of actual code appear in the
typographical style of example-function.

This sign appears between a form and its
values, indicating that the evaluation of form
results in values.

This sign appears between a macro-call form
and its expansion.

This sign appears between two forms,
indicating that they are semantically
equivalent. In other words, the evaluation of
one of the forms results in the same values
and side effects as the evaluation of the
other form.

Brackets enclose an optional component in the
description of special forms and macros.

Braces with a trailing asterisk enclose a
component which may appear zero or more
times. This convention is used in the
description of special forms and macros.

Braces with a trailing plus-sign enclose a
component which may appear one or more times.
This convention is used in the description of
special forms and macros.

Within braces, the vertical bar separates
mutually exclusive alternatives.

The dotted-list notation is used in some
examples. The dot informs the reader that
rest denotes the remaining elements (i.e., the
rest or cdr) of the list, not the last
element.

Parentheses delimit a list of elements. Lists
may contain any number of elements of any type
(including lists).

The single
acute or an
which is not
•object is

quote (also known as an
apostrophe) precedes an
intended to be evaluated.

an abbreviation for

accent
object

Thus,
(quote

CHAPTER 1: Introduction 7

" "
\

I • • • I

#'

#\

#(•••)

#X

#o

#b

object).

The semicolon precedes a comment (which
extends to the end of the line). Comments are
ignored by the LISP reader; their sole purpose
is the enlightenment of the human reader.

Double quotes delimit character strings.

The backslash character is a single escape
character. The character which it precedes
loses any special significance it may have to
the LISP reader; it is treated as an ordinary
letter.

Vertical bars delimit symbols whose
print-names are to be taken literally. The
vertical bar is a multiple escape character.
Such names may contain special characters
(e.g., parentheses, whitespace). Note that a
single vertical bar used in a macro or special
form description has a different meaning.

The number sign (also known as the sharp sign,
the pound sign, the hash mark, and the
oglethorpe) followed by a single quote
precedes an object which names a function.
The evaluator does not evaluate the object,
rather it returns the function named by the
object. Thus #'object is an abbreviation for
(function object).

The number
precedes a
(e.g., Tab)
object.

sign followed by a backslash
character or a character name

which is to be read as a character

Parentheses preceded by a number sign enclose
the elements of a simple general vector. (The
elements of the vector may be of any type.)

The number sign followed by the letter x
precedes a number in hexadecimal (i.e.,
radix-16) notation.

The number sign
precedes a number
notation.

followed by the
in octal (i.e.,

The number sign followed by the
precedes a number in binary (i.e.,
notation.

letter o
radix-8)

letter b
radix-2)

The colon character is a package marker. The
name preceding it is the name of a package,

8 GOLDEN COMMON LISP REFERENCE MANUAL

while the name following it is the name of a
symbol in that package. If no name precedes
the colon then the name following the colon is
a keyword.

1.3.5 Conventions Used in Examples

The examples of code which appear throughout the manual are
primarily intended to demonstrate the counter-intuitive
effects or results of a given function, macro, or special
form.

All examples consist of a single form (which may contain
more than one subform) followed by either the evaluation arrow
(=>) and the resulting values or some text describing what
action is taken (e.g., signals an error).

All symbols (other than those which name predefined
functions, variables, etc.) used in the examples (e.g., foo,
bar) are intended to be unbound, to have no function
definition, and to have an empty property list.

Every effort was made to keep the number of auxiliary
functions, special forms and macros to a minimum, so that the
point of an example would not be obscured by an unfamiliar
supporting function.

The following is a list of the special forms, macros, and
functions (other than the entity being explained of course)
which are used extensively throughout the examples:

* + < =
> and append car cdr
cons de fun first float gensym
if in cf lambda let list
member not null progn setf
setq unless values when)

If the reader is familiar with most of these, the examples
should be easily understood.

2."i Numbers

number

Chapter 2

Data Types

[Type]

COMMON LISP defines three subtypes of number: rational, float,
and complex.

Compatibility note: GCLISP currently supports two subtypes of
number: fixnum (a subtype of inteqer) and float. The
followinq types of numbers are not currently supported:
complex, rational (except for its subtype tixnum), ratio, and
biqnum.

2.1.1 Inteqers

[Type]

inteqer

This type is a subtype of number. COMMON LISP defines two
subtypes of inteqer: fixnum and biqnum.

compatibility note:
currently supported,
supported.

fixnum is the only
i.e., objects of type

type of
biqnum

inteqer
are not

[Type]

10 GOLDEN COMMON LISP REFERENCE MANUAL

fixnum

This type is a subtype of inteqer.

Implementation note: Integers
(inclusive) are fixnums.

15
in the range -2 to

15
2 -1

2 . l. 2 Ratios

Ratios are not currently supported.

2.1.3 Floating-point Nwnbers

float

This type is a subtype of number. COMMON LISP
following subtypes of float: short-float,
long-float, and double-float.

[Type]

defines the
sinqle-float,

Implementation note: Both single-float and double-float
formats are provided. short-float and lonq-float are
equivalent to single-float and double-float, respectively.

2.1.4 Complex Numbers

Complex numbers are not currently supported.

2.2 Characters

[Type]

character

Objects of type character represent printed glyphs, e.g.,
letters (in various styles and of various alphabets and
writing systems), icons, and text formatting operations.
Characters have three attributes: code, bits, and font.
COMMON LISP defines one subtype of character: string-char.

CHAPTER 2: Data Types 11

Implementation note: Non-zero fonts are not supported.
Control and Meta bits are supported. The code attribute of a
character conforms to the ASCII code.

Compatibility note: The type character is a subtype of
fixnum. In other words, characters are represented by fixnums
(as they are in ZETALISP).

2.2.1 Standard Characters

[Type]

standard-char

This type is a subtype of string-char. Objects of type
standard-char make up the COMMON LISP standard character set.
This character set is equivalent to the 95 standard ASCII
printing characters plus a newline character. All COMMON LISP
implementations must support the standard character set.

Implementation note: The semi-standard characters
#\Backspace, #\Tab, #\Linefeed, #\Page, #\Return, #\Rubout
are supported.

2.2.2 Line Divisions

In GCLISP (as in COMMON LISP), a single character,
#\Newline, serves as a line delimiter.

Implementation note: The GCLISP
MS-DOS) reads an ASCII CR/LF pair
#\Newline as an ASCII CR/LF pair.

interface to PC-DOS (or
as #\Newline, and writes a

2.2.3 Non-standard Characters

GCLISP supports the entire ASCII
all non-printing characters). The
character given a name (besides those
semi-standard COMMON LISP characters)

2.2.4 Character Attributes

character set (including
only ASCII control

which are standard or
is #\Escape.

GCLISP supports the Control and Meta bits attributes.
GCLISP does not currently support non-zero font attributes.

12 GOLDEN COMMON LISP REFERENCE MANUAL

2.2.5 String Characters

(Type]

string-char

Objects of this type are characters which can appear in
strings, i.e., vectors of string-chars. COMMON LISP defines
one subtype of string-char: standard-char.

2.3 Symbols

[Type]

symbol

Objects of this type are data structures with the following
components: a print-name (also called pname), a property-list
cell, and a package cell. (A cell is a component which can
hold a LISP object.)

A symbol is usually stored in a package, where it can be found
via its print-name.

Symbols are most commonly used as names of variables. They
are also used as the names of functions, special forms, and
macros.

Implementation note: Symbols have two additional components: a
value cell and a function cell. These cells facilitate the
symbol's role as a variable and a function name. They are
used to hold the variable's current value and functional
definition, respectively.

A symbol has no print-name cell, i.e., the print-name of a
symbol is not stored as a LISP string. Thus, functions which
return a symbol's print-name (e.g., symbol-name) actually
create a string that is a copy of the print-name.

CHAPTER 2: Data Types 13

2.4 Lists and Conses

[Type]

cons

This type is a subtype of list. Objects of this type are data
structures with two alterable components. These components
have traditionally been named car and cdr (though COMMON LISP
also names them first and rest). conses are used to make
singly-linked list structures, the fundamental LISP
data-structures.

Note: The empty list '()' (i.e., the object nil) is not of
type cons (even though it is a legal argument to the functions
car and cdr). This makes sense since a cons is defined to
have two alterable components, and the empty list has no
alterable components.

[Type]

null

This type is a subtype of both list and symbol. There exists
only one object of this type: nil, i.e., the empty list,
I() I•

list

The list is the basic data structure of LISP.
either a cons or the empty list, 1 () 1 , i.e., nil.

[Type]

A list is

Throughout the GCLISP documentation, the term list refers to
what COMMON LISP calls a true list. Thus, the phrase "must be
a list" should be read as "must be a true list." A true list
is either the empty list, or a cons whose cdr is a true list.
Note that this is a recursive definition.

14 GOLDEN COMMON LISP REFERENCE MANUAL

A dotted-pair list is a list which is not a true list, i.e.,
it is not terminated by nil.

2.5 Arrays

[Type]

array

Objects of this type are data structures with a user-definable
number of components, which are arranged according to a
rectilinear (i.e., Cartesian) coordinate system. The
components can be accessed and updated in constant time.

One dimensional arrays, i.e., vectors, may be defined to have
an additional attribute: a fill pointer.

An array which may contain elements of any type is called a
general array. An array which has no special attributes
(e.g., a fill pointer) is called a simple array.

Implementation note: Arrays may be defined to have an array
leader (as in ZETALISP). An array leader functions as a
simple general vector prepended to the main array. The leader
is accessed and updated independently of the main array.

Compatibility note: Only vectors are currently supported.
Adjustable arrays, displaced arrays, and bit-vectors are not
supported. Also, array leaders are not part of COMMON LISP.

2.5.l Vectors

[Type)

vector

This type is a subtype of array. Objects of this type are
one-dimensional arrays.

The user may define the size of the vector (i.e., the number
of components), the type of objects which a component may
contain (e.g., string-char), and the existence of a fill

CHAPTER 2: Data Types 15

pointer.

A vector which may contain elements of any type is called a
general vector. A vector which has no special attributes
(e.g., a fill pointer) is called a simple vector.

Implementation note: Two subtypes of
more space-efficiently than general
(vector (unsigned-byte 8)),

vector are represented
vectors: strinq and

Vectors may be defined to have an array leader
.ZETALISP). An array leader functions as a simple
vector prepended to the main vector. The leader is
and updated independently of the main vector.

(as in
general

accessed

Compatibility note: Adjustable vectors, displaced vectors, and
bit-vectors are not currently supported. Also, array leaders
are not part of COMMON LISP.

2.s.2 Strinqs

[Type]

strinq

This type is a subtype of vector. More specifically, it is a
specialized vector whose elements are of type strinq-char.

Implementation note: Strings may have an array leader (as in
ZETALISP),

2.5.3 Bit-Vectors

Bit-Vectors are not currently supported.

2.6 Hash Tables

Hash Tables are not currently supported.

16 GOLDEN COMMON LISP REFERENCE MANUAL

2.7 Readtables

A readtable defines a mapping from character objects to
character types (e.g., constituent, whitespace, macro, etc.).

Implementation note: GCLISP supports a single readtable.

2.s Packages

[Type]

package

A package represents a name space (i.e., a mapping from print
names to symbols). All printed representations of symbols
that are read by the LISP reader are mapped to their
respective symbols via some package. Packages allow related
symbols to be grouped apart from other symbols in order to
reduce name space conflicts.

2.9 Pathnames

[Type]

pathname

Objects of this type are structures which are used to name
files in an implementation-independent manner. Files are not
LISP objects; they belong to a file system which is
implementation dependent and external to LISP.

In spite of the differences among file systems,
differences in file naming, certain attributes
most file systems. The components of a pathname
these attributes. A pathname consists of six
host, a device, a directory, a name, a type, and

and he.nee the
are common to
correspond to
components: a
a version.

CHAPTER 2: Data Types 17

One should think of a pathname as a name of
(which may contain zero, one, or many actual
vary over time.

a group of files
files) which may

Compatibility note: The PC-DOS (or MS-DOS) version of GCLISP
does not currently support the host or version components.

2.10 Streams

[Type]

stream

Objects of this type are sources and/or sinks of data (e.g.,
characters, bytes, and LISP objects). streams serve as an
implementation-independent interface to files and devices
external to LISP.

Implementation note: GCLISP's streams are
ZETALISP's streams. For example, user-written
supported.

similar to
streams are

Compatibility note: User written streams are not part of
COMMON LISP.

2.11 Random-States

Objects of this type are not currently supported.

2.12 Structures

[Type]

structure

An object of this type is a composite data structure,

18

analogous to
user-defined
having its
functions.

GOLDEN COMMON LISP REFERENCE MANUAL

a record structure in Pascal. Any number of
structure subtypes may be created, each one

own set of constructing, accessing, and typing

2.13 Functions

[Type]

function

An object is of type function if it may legally appear as the
first argument to funcall or apply. function has the
following subtypes: compiled-function, closure, symbol,
stream, and stack-group. Also, a lambda-expression (a list
whose first element is the symbol lambda) is an object of type
function.

[Type]

compiled-function

This type is a subtype of function. An object of this type is
a compiled-code object. Most of the standard GCLISP functions
are compiled-function objects.

[Type]

closure

This type is a subtype of function. Objects of this type are
functions combined with state information (as in PL/I
procedures with local static variables, or Smalltalk objects
with instance variables).

compatibility note: The variables closed over by a closure are
not shared by any other closure, even one defined in the same
binding environment.

CHAPTER 2: Data Types 19

[Type]

stack-qroup

This type is a subtype of function. Objects of this type are
used to represent the state of a LISP computation. They can
be used to implement advanced control structures such as
co-routines and generators.

Implementation note: GCLISP's stack-groups are quite similar
to ZETALISP's stack groups.

Compatibility note: Stack groups are not part of COMMON LISP.

2.14 Unreadable Data Objects

The printed representation of an unreadable data object
which GCLISP produces, conforms to the COMMON LISP standard.

2.15 Overlap, Inclusion, and Disjointness of Tvpes

The data type supported by GCLISP are arranged in a
subtype/supertype hierarchy that conforms to the COMMON LISP
standard except for the following differences:

In GCLISP, the
number, while
disjoint.

type character is a subtype of the type
in COMMON LISP, the two types are

In GCLISP, the types closure and compiled-function are
subtypes of the type common, while in COMMON LISP they
are not.

In GCLISP, the type array is a subtype of the type common
even though the type array contains array objects with
leaders, which are not of type common.

Chapter 3

scope and Extent

Naming something and then referring to that thing by its
name at some other place or time is a fundamental part of
every language; be it a natural language like English, or an
artificial language like COMMON LISP. Although English and
COMMON LISP are very different languages, their basic concepts
of naming and referring (or referencing) are quite similar.

In COMMON LISP, every entity can have a name. When one
wants to refer to an entity, 0 one uses its name. As in
English, a name may refer to different entities at different
places and times. The word President exemplifies the
context-sensitive nature of names in English. President
refers to a different person in different places (e.g., Gold
Hill Headquarters, Washington, D.C., Paris). Within the same
place, President may also refer to different people over the
course of time. For example, within a single business meeting
(held in 1984), President may refer to Stan Curtis, Ronald
Reagan, and Francois Mitterand over the course of the the
meeting.

In COMMON LISP, the region in which a name refers to a
particular entity is called the the scope of the name. The
interval of time during which a name refers to a particular
entity is called the extent of the name. Scope concerns the
spatial, textual, or lexical representation of a LISP form
(e.g., its appearance on a piece of paper). Extent concerns
the time during which the form is being evaluated.

Before a name can refer to an entity, however, a
correspondence between the name and that entity must be
established. Only functions and certain special forms (e.g.,
let) are able to establish names. The scope and extent of a
name are relative to the form which established it. The scope
of the name can be limited to or independent of the textual
region which the establishing form encloses. Likewise, the
extent of the name can be limited to or independent of the
interval of the time during which the establishing form is
being evaluated.

These various kinds of scope and extent are defined in
COMMON LISP as follows:

Lexical Scope A name which has lexical scope can only be
used within the lexical (i.e., textual) region

CHAPTER 3: Scope and Extent 21

of the establishing form.

Indefinite Scope
A name which has indefinite scope can be used
anywhere, regardless of the lexical region of
the establishing form.

Dynamic Extent
A name which has dynamic extent can only be
used during the interval of time between the
start and finish of the evaluation of the
establishing form.

Indefinite Extent
A name which has indefinite extent can be used
at any time after being established,
regardless of whether the establishing form is
still in the process of being evaluated.

Currently, GCLISP differs from COMMON LISP in the following
way:

The CLRM states that some variable names (i.e.,
local variable names) have lexical scope and
indefinite extent. In GCLISP, all variable names
have indefinite scope and dynamic extent. In other
words, all variables in GCLISP are special
variables.

The CLRM also states that all
have lexical scope and dynamic
all block and tag names have
dynamic extent.

block and tag names
extent. In GCLISP,
indefinite scope and

In general, wherever the CLRM uses the
lexical scope, the GCLISP user should
indefinite scope.

words
read

These differences will be eliminated in the near future, so
the user should not write code which relies upon them.

This means that the user should use declare (or defvar,
defparameter, etc.) to declare those variables that are
intended to be special variables. GCLISP programs which use
undeclared special variables will not work correctly when run
on other COMMON LISP implementations.

This also means that the user should not use go, return, or
return-from to execute a non-local exit; throw should be used
instead.

For a more in-depth explanation of scope and extent, the
user should read Chapter 3 of the CLRM.

Chapter 4

Type Specifiers

Every object in COMMON LISP is a member of at
type. Every type in COMMON LISP has a specifier
name). This chapter describes these specifiers
functions which deal with them.

4.1 Type Specifier Syml?ols

least one
(i.e., a
and the

The predefined data types in GCLISP are named by symbols.
These symbols are listed in Table 4-1.

Table 4-1: GCLISP Standard Type Specifer Symbols

array
atom
character
closure
common
compiled-function
cons
double-float
fixnum
float
function

integer
keyword
list
long-float
nil
null
number
package
pathname
random-state
sequence

4.2 Type Specifier Lists

short-float
single-float
stack-group
standard-char
string
string-char
structure
symbol
t
unsigned-byte
vector

A type specifier may also take the form of a list. The
first element of a type specifier list is always a symbol.
The rest of the list provides additional type information.

CHAPTER 4: Type Specifiers 23

4.3 Predicating TyPe Specifiers

Predicating type specifiers are not currently supported.

4.4 TyPe Specifiers that Combine

Combinatorial type specifiers are not currently supported.

4.5 TyPe Specifiers that Specialize

The specializing type specifier (vector element-type size)
is supported. This type specifier denotes the set of
one-dimensional arrays of length size whose elements are of
type element-type.

element-type must be present and must be one of the
following type specifiers: t, string-char, or (unsigned-byte
8). size is optional and if present, must be a non-negative
integer.

4.6 TyPe Specifiers that Abbreviate

Since GCLISP supports a specialized vector containing only
unsigned 8-bit bytes, the following abbreviated type specifier
is provided:

(unsigned-byte 8)
Specifies the set of non-negative integers
which can be represented by an a-bit byte.
This type specifier is an abbreviation for
(integer o 255).

24 GOLDEN COMMON LISP REFERENCE MANUAL

4.7 Defining New TyPe Specifiers

When defstruct is used to define a new type of structure, it
also defines the name of the structure as a type specifier
symbol. currently, this is the only way of creating a new
type specifier, since the deftype macro is not supported.

4.8 Type Conversion Function

[Function]

coerce object result-type => result-type-object

This function returns an object of type result-type that is
equivalent to object.

If object is already of type result-type, object is simply
returned unchanged. Otherwise, an equivalent object is
created and returned. The following result-types are
supported:

list

vector

string

character

string-char

object must be a sequence subtype (e.g.,
string, vector). A list whose elements are
eql to the elements of object is returned.

object must be a sequence subtype (e.g., list,
string). A simple general vector whose
elements are eql to the elements of object is
returned.

object must be a sequence subtype (e.g., list,
vector) whose elements are all of type
character (i.e., characterp is true of each
element). A string whose elements are eql to
the elements of object is returned.

object must be either a string of length 1 or
a symbol whose print-name is of length 1. The
single character which composes the string or
print-name is returned.

Same effect as character except that the
returned character contains no bits or fonts

CHAPTER 4: Type Specifiers

attributes.

float, short-float or sinqle-float
object must be a number. An
sinqle-float number is returned.

double-float or lonq-float
object must be a number. An
double-float number is returned.

25

equivalent

equivalent

t object (which may be of any type) is simply
returned.

4.9 Determining the TyPe of an Object

type-of object => type-specifier

This function returns the name of a
type-specifier to which object belongs.

type

The following type-specifiers may be returned:

closure
compiled-function
cons
double-float
fixnum

pathname
sinqle-float
stack-qroup
symbol
(vector t Ii')

null
package

(vector string-char Ii')
(vector (unsiqned-byte 8) Ii')

[Function]

(i.e., a

In addition, the name of a named structure (defined using
defstruct) is the type-specifier for that structure.

Chapter s

Proqram Structure

COMMON LISP
conceptual (or
expressions to
This chapter
expressions and

objects are used to represent three basic
abstract) entities: data to be manipulated,
be evaluated, and functions to be applied.

deals with COMMON LISP objects viewed as
functions.

5.1 Forms

A form
evaluated.
a form is
evaluated,

is a COMMON LISP object which may legally be
A more perspicuous but less accurate definition of
the following: A form is an expression which, when

returns a value.

Forms may be divided into the following semantic categories:

Self-Evaluating Form
Represented by its value.

Variable Represented by a symbol.

Special Form Represented by a list whose first element is a
symbol which names a special form.

Macro Call Represented by a list whose first element is a
symbol.

Function Call Represented by a non-empty list.

The following pseudo-code algorithm roughly
the algorithm used by the evaluator to map
above cateqories:

(cond
,, self-Evaluatinq Forms
((or (numberp object) (strinqp object))
object)

;; variables
((symbolp object)
(symbol-value object))

corresponds
objects to

to
the

CHAPTER s: Program structure 27

((listp object)
(let ((name (first object)))

(cond

(t

;; Special Form
((and (syml:lolp name) (special-form-p name))

;; Process the special form
... l

; ; Macro Call
((and (syml:lolp name) (macro-function name))

;; Process the macro call
... l

;; FUnction Call
(t
;; Process the function call ...))))

;; Error: Invalid form
))

As the pseudo-code illustrates, the only syntactically valid
forms are numbers, strings, symbols, and lists.

The following subsections describe (conceptually) the
evaluation of forms.

5.l.l Self-Evaluating Forms

When a self-evaluating form is evaluated, the form itself is
simply returned. All numbers and strings are self-evaluating
forms. The symbols t and nil and all keyword symbols can be
considered self-evaluating forms.

5.1.2 Variables

A variable is represented by a symbol. When a symbol is
evaluated, the value of the variable named by the symbol is
returned. In GCLISP, a symbol always names a special
(dynamic) variable (See Chapter 3).

compatibility Note: COMMON LISP specifies that a symbol can
represent either a lexical or special variable, depending on
the context in which it is used.

5.1.3 Special Forms

When a non-empty list is evaluated, the evaluator checks the
first element of the list. If the first element is a symbol
which appears in Table 5-1, then the list is a special form.
Each spe_cial form is evaluated in its own particular way.

28 GOLDEN COMMON LISP REFERENCE MANUAL

Table S-1: GCLISP Special Form Names

and
block
case
catch
cond
condition-bind
declare
de fun
do
do*
do list
dotimes
eval-when
function
qo

if
ifn
iqnore-errors
labels
let
let•
loop
macro
multiple-value-bind
multiple-value-list
multiple-value-proql
multiple-value-setq
or
proq
proq•

proql
prog2
proqn
proqv
psetq
quote
return
return-from
setq
throw
unless
unwind-protect
when

Compatibility Note: The following names are defined as
macros in COMMON LISP:

and
case
cond
de fun
do
do*
dolist

dotimes
loop
multiple-value-bind
multiple-value-list
multiple-value-setq
or
proq

proq•
proql
prog2
psetq
return
unless
when

Currently, no equivalent macros for these special forms are
provided. The following names are not defined in COMMON LISP
(either as special forms or macros), they are GCLISP
extensions: condition-bind, ifn, iqnore-errors, macro.

5.l.4 Macros

If the first element of a non-empty list is a symbol which
is not the name of a special form, the evaluator checks to see
if the symbol has a macro definition. If the symbol is
defined as a macro (e.g., via defmacro), the non-empty list is
a macro-call form.

The evaluator applies the macro's macro-expansion function
to the macro-call form. The result of this application is a
new form. This new form is evaluated and the results are
returned as the results of the original macro-call form.

CHAPTER s: Program Structure 29

5.1.5 Function Calls

If the first element of a non-empty list is neither the name
of a special form nor the name of a macro, the non-empty list
is a function-call form.

The evaluator assumes that the first element in
function-call form names a functional object and that the
of the elements are forms to be evaluated (in order from
to right) to provide arguments to the functional object.

First, the evaluator evaluates each argument form,
creates an argument list containing the first value of
form.

the
rest
left

and
each

Secondly, the functional object named by the first
of the function-call form is obtained. (The actual
used is logically identical to that defined by the
form function.)

element
method

special

Thirdly, this functional object is applied (see apply) to
the argument list.

Finally, the results of the application are returned as the
results of the function-call form.

Note that the above description is a logical one; the actual
algorithm used to evaluate a function-call form may be quite
different.

5.2 Functions

The first element in a function-call form should be a
function name. A function name is either a symbol which has a
function definition or it is a lambda-expression. As
mentioned above, the functional object named by the function
name may be obtained using the function special form.

5.2.l Named Functions

A symbol can be given a function definition using the
special form defun.

30 GOLDEN COMMON LISP REFERENCE MANUAL

5.2.2 Lambda-Expressions

A lambda-expression is a human-readable description of a
functional object. In other words, a lambda-expression is a
program. A functional object is a machine executable
algorithm combined with local variable binding information.
When applied to a list of arguments, the functional object
computes zero or more values.

Since a lambda-expression is a LISP object, and is therefore
executable, it is also a functional object. In other words,
the printed representation of a lambda-expression serves as a
user-readable program, while the internal LISP representation
of a lambda-expression serves as a functional object.

Lambda-expressions are not the only kind of functional
objects; closures, compiled-functions, and stack groups are
also functional objects. A functional object is not a form.
A form is evaluated, while a functional object is applied.

A lambda-expression is a list which has the following
syntax:

(lambda lambda-list • body)

The first element must be the symbol lambda. The symbol
lambda does not name a function. Its presence at the
beginning of the list is merely an indicator to procedures
such as apply and function that the list is a
lambda-expression.

When the functional object described by a lambda-expression
is applied to a list of arguments, the following occurs (in
order):

1. The lambda-list is matched against the argument list
(described in more detail below).

2. The body is evaluated as an implicit progn.

3. The results of the implicit progn (i.e., the results of
last form in the body) are returned as the results of
the application.

The syntax of the lambda-list is as follows:

({Var}* [&optional {Var I (Var [initform])}*]
[&rest Var]
[&aux {Var I (Var [initform])}*])

CHAPTER 5: Program structure 31

The matching of the argument list to the lambda list is
performed almost exactly as described in section 5.2.2 in the
CLRM. The only differences are as follows:

No supplied-p parameters (i.e., svar variables) are
supported.

Neither keyword parameters nor the &key lambda-list
keyword are supported.

All parameters are bound as special (dynamic) variables.

5.3 Top-Level Forms

The following forms are normally evaluated at Top-Level.
Although the GCLISP evaluator will evaluate them correctly at
locations other than Top-Level, a COMMON LISP compiler may not
compile them correctly at other than Top-Level.

5.3.1 Defining Named Functions

[Special form]

defun Name Lambda-list {Declaration I Doc-string}*
{Form}* => name

This special-form makes name the global name of the function
specified by the lambda-expression

(lambda lambda-list
{declarationjdoc-string}*
(block nil {form}*))

Compatibility note: The body of the defined function is not
enclosed in a block construct.

5.3.2 Declaring Global Variables and Named Constants

32 GOLDEN COMMON LISP REFERENCE MANUAL

[Macro]

defvar Name [init-value [doc-string]] => name

This macro is normally used at Top-Level to assign a global
value to a variable. defvar suggests to the reader that value
of the variable will be changed by the program during program
execution.

name must be a symbol, which names
init-value must be a form. If name is
is evaluated and the result is assigned
the value of name is left unchanged,
unevaluated.

The symbol name is returned.

a special variable.
valueless, init-value
to name. Otherwise,
and init-value is left

[Macro]

defparameter Name init-value [doc-string] => name

This macro is normally used at Top-Level to assign a global
value to a variable. defparameter suggests to the reader that
the value of the variable will be set by the user before
program execution in order to modify the program's behavior.

name must be a symbol,
init-value must be a form.
result is assigned to name.

which names a special variable.
init-value is evaluated and the

The symbol name is returned.

(defparameter name init-value)
<=> (setf name init-value)

[Macro]

defconstant Name init-value [doc-string] => name

This macro is normally used at Top-Level to assign a global
value to a variable. defconstant suggests to the reader that
the value of the variable will not be changed.

name must be a symbol,
init-value must be a form.

which names a
init-value is

special
evaluated

variable.
and the

CHAPTER S: Program Structure 33

result is assigned to name. The symbol name is returned.

(defconstant name init-value)
<=> (setf name init-value)

5.3.3 Control of Time of Evaluation

eval-when is not currently supported.

Chapter 6

Predicates

A predicate is a function which tests its argument(s) for a
certain property or relationship. For example, the predicate
symbolp tests whether its argument is a symbol, while the
predicate eq tests whether the identity relationship holds
between its two arguments.

If the test succeeds, the predicate is (or returns) true;
otherwise, the predicate is (or returns) false. In COMMON
LISP, a predicate always returns the symbol nil for false and
usually returns the symbol t for true (exceptions to the
latter rule are always clearly indicated). The value name
boolean indicates that a predicate always returns either t or
nil.

6.1 Logical Values

[Constant]

nil => nil

This symbol represents two unrelated things: the logical value
false, and the empty list.

The empty list may also be represented by the notation 1 ()'.

The LISP reader interprets both nil and 1 () 1 as referring to
the constant nil.

nil is the only member of the type null, which is a subtype of
both symbol and list.

[Constant]

CHAPTER 6: Predicates 35

t => t

This symbol represents the logical value true.

In COMMON LISP, the symbol nil represents false, while
everything else, including t, represents true. Most COMMON
LISP predicates return t to represent true, e.g., numberp.

6.2 Data TyPe Predicates

6.2.l General Type Predicates

[Function]

typep object type => boolean

This function is a predicate which is true if object is of
type type.

object may be an object of any type. type must be a type
specifier.

Note that an object may be of more than one type.

Examples:

(typep nil •symbol) => t
(typep nil •list) => t
(typep •foo 'list) => nil

subtypep typel type2 => boolean certainty

[Function]

This function is a predicate which is true if typel can be
determined to be a subtype of type2.

Both typel and type2 must be type specifiers.

subtypep may be false for two reasons: typel is not a subtype
of type2, or the relationship between typel and type2 cannot

36 GOLDEN COMMON LXSP REFERENCE MANUAL

be determined. In the first case, certainty is ti in the
second case certainty is nil. (rf subtypep is true, certainty
is always t.)

Examples:

(subtype •null •symbol) => t t
(subtype •null •cons) => nil t

6.2.2 Specific Data Type Predicates

null object => boolean

[Function]

This function is a predicate which is true if object is nil
and false otherwise.

Speaking precisely, the null predicate is true if and only if
object is of type null. The only object of type null is nil,
i.e., the empty list'<>'·

(null object) <=> (eq object 1 ())

[Function]

symbolp object => boolean

This function is a predicate which is true if and only if
object is of type symbol.

[Function]

atom object => boolean

This function is a predicate which is true if and only if
object is not of type cons. Therefore, lists (excluding the
empty list) are not atoms, while everything else in COMMON

CHAPTER &: Predicates

LISP (including the empty list) is an atom.

(atom object) <=> (not (consp object))
<=> (or (null object)

(not (listp object)))

consp object => boolean

37

[Function]

This function is a predicate which is true if and only if
object is of type cons. Note: nil is not of type cons.

(consp object) <=> (not (atom object))

[Function]

listp object => boolean

This function is a predicate which is· true if and only if
object is of type list. An object is of type list if and only
if it is either of type cons or of type null.

(listp object) <=> (or (consp object)
(null object))

numberp object => boolean

[Function]

This function is a predicate which is true if and only if
object is some type of number, e.g. fixnum, single-float.

38 GOLDEN COMMON LXSP REFERENCE MANUAL

[Function]

inteqerp object => boolean

This function is a predicate which is true if and only if
object is of type inteqer.

Examples:

(inteqerp 1) => t
(inteqerp fxA) => t
(inteqerp •a) => nil
(inteqerp t\@) => t

floatp object => boolean

[Function]

This function is a predicate which is true if and only if
object is of type float.

[Function]

characterp object => boolean

This function is a predicate which is true if and only if
object is of type character.

Compatibility note: character is a subtype of inteqer.

[Function]

strinqp object => boolean

This function is a predicate which is true if and only if
object is of type strinq.

Examples:

CHAPTER 6: Predicates

(stringp "ABC") => t
(stringp •abc) => nil
(stringp #(#\A #\B #\C)) =>nil
(stringp 1111) => t
(stringp 11 a 11) => t
(stringp #\a) => nil

vectorp object => boolean

39

[Function]

This function is a predicate which is true if and only if
object is of type vector, i.e., a one-dimensional array.

Examples:

(vectorp 11ABC11) => t
(vectorp #(1 foo •bar •baz)) => t

[Function]

arrayp object => boolean

This function is a predicate which is true if and only if
object is of type array.

(arrayp object) <=> (vectorp object)

[Function]

packagep object => boolean

This function is a predicate which is true if and only if
object is of type package.

40 GOLDEN COMMON LISP REFERENCE MANUAL

[Function]

functionp object => boolean

This function is a predicate which
acceptable as the first argument of
applied to a list of arguments.

is true if object
apply, i.e., can

is
be

(functionp object)
<=> (or (sym])olp object)

(and (listp object)

Examples:

(eq (first object) •lambda))
(closurep object)
(compiled-function-p object)
(stack-qroup object))

(functionp •car) => t
(functionp •setq) => t
(functionp •(lambda (arq) (list arq))) => t
(functionp t•cdr) => t
(proqn (fmakunbound •foo)

(functionp •foo)) => t

compiled-function-p object => boolean

[Function]

This function is a predicate which is true if and only if
object is of type compiled-function.

Examples:

(compiled-function-p t•car) => t

[Function]

CHAPTER 6: Predicates 41

closurep object => boolean

This function is a predicate which is true if and only if
object is of type closure.

[Function]

stack-group-p object . => boolean

This function is a predicate which is true if and only if
object is of type stack-group.

[Function]

commonp object => boolean

This function is a predicate which is true if and only if
object belongs to a type which is specified as part of the
COMMON LISP core.

object may be an object of any type.

The only GCLISP data type which is not part of the COMMON LISP
core is stack-group.

6.3 Equality Predicates

[Function]

eq objectl object2 => boolean

This function is a predicate which is true if and only if
objectl and object2 are one and the same object.

Note: Two objects may look the same when printed and still be
different objects.

Examples:

42 GOLDEN COMMON LISP REFERENCE MANUAL

(eq (cons t t) (cons t t)) =>nil
(eq (float 3) (float 3)) => nil
(eq 65. #\A) => t
(eq 7 7) => t
(eq •foo 1 foo) => t

neq objectl object2 => boolean

[Function]

This function is a predicate which is true if and only if
objectl and object2 are not one and the same object.

(neq objectl object2)
<=> (not (eq objectl object2))

[Function]

eql objectl object2 => boolean

This function is a predicate which is true if and only if
objectl and object2 are eq, or they are numbers with the same
type and value.

Examples:

(eql (cons t t) (cons t t)) => nil
(eql 65. #\A) :> t
(eql (float 3) (float 3)) => t
(eql •foo •foo) => t

neql objectl object2 => boolean

This function is a predicate which is true if
objectl and object2 are neither eq, nor numbers

[Function]

and only if
with the same

CHAPTER 6: Predicates 43

type and value.

(neql objectl object2)
<=> (not (eql objectl object2))

[Function]

equal objectl object2 => boolean

This function is a predicate which is true if objectl and
object2 are isomorphic (of identical type and structure).

Numbers and characters are equal if they are eql.

Symbols are equal if they are eq.

conses are equal if their cars and cdrs are equal.

Arrays (other than strings) are equal if they are eq.

Strings are
characters
sensitive).

equal if they have the same length and all their
are equal (i.e, string equality is case

Structures are equal if they are of the same type and all of
their components are equal.

In most cases, if two objects have the
representation, they are equal.

same printed

Implementation note: equal does not check for circularity in
the case of structures and conses.

Examples:

(equal (cons t t) (cons t t)) => t
(equal (float 3) (float 3)) => t
(equal #(t t) #(t t)) =>nil
(equal 11abc11 11abc11) => t
(equal 11ABC11 11abc11) => nil

GOLDEN COMMON LISP REFERENCE MANUAL

6.4 Logical Operators

[Function]

not object => boolean

This function is a logical operator which is true if and only
if object is the logical value false, i.e., nil.

This predicate may be used to logically invert a boolean
object (i.e., tor nil).

(not object) <=> (null object)
<=> (not (not (not object)))

Examples:

(not O) => nil
(not nil) => t
(not 11nil11) => nil

and {form}* => nil/last-form-results

[Special form]

This special form serves as a logical operator and a control
structure.

The forms (forml ••• formn) are evaluated, one by one, from left
to right. If any form (e.g., formi) returns nil, and returns
nil without evaluating the remaining forms (formi+l ••• formn}.
Otherwise, the values of the last form are returned.

If no arguments are provided, and returns t.

(and forml form2 ••• formn)
<=> (cond ((not forml) nil)

((not form2) nil)

CHAPTER 6: Predicates

(t formn))
(and form) <=> form

Examples:

(and) => t
(values (and (setf foo 1)

(incf foo)
nil
(incf foo))

foo) => nil 2
(and (values nil t) t) => nil
(and t (values nil t)) =>nil t

45

[Special form]

or {form}* => non-nil-result/last-form-results

This special form serves as a logical operator and a control
structure.

The forms (forml ••• formn) are evaluated, one by one, from left
to right. If any form (e.g., formi) returns a non-nil value,
or returns that value without evaluating the remaining forms
(formi+l ••• formn). Otherwise, the values of the last form are
returned.

If no arguments are provided, or returns nil.

(or forml form2 ... formn)
<=> (cond (forml) (form2) (t formn))

(or form) <=> form

Examples:

(or) => nil
(or (< 1 2) (> 5 3)) => t
(or t nil t) => nil
(or (values nil •too)

(values nil •bar)) =>nil bar
(or (values nil (setf foo 1))

(values nil (iricf foo))
(incf foo)
(incf foo)) => 3

46 GOLDEN COMMON LISP REFERENCE MANUAL

Chapter 7

control Structure

GCLISP provides all of the fundamental control structures
specified by COMMON LISP.

7.1 Constants and Variables

Because LISP objects are used to represent both programs and
data, the special form quote is provided to explicitly
indicate to the evaluator that an' object is to be treated as a
constant data object (i.e., a literal).

In COMMON LISP, variables and function names have very
similar attributes:

Both are represented by symbols.

A variable has a value, while a function name has a
function definition.

Both may be bound (for example, variables via let and
function names via labels).

Both may be unbound (via makunbound and fmakunbound,
respectively).

In short, function names should be viewed as just another
category of variable, which may be referenced and manipulated
in ways analogous to ordinary variables.

7.1.1 Reference

The followi'ng functions and special forms explicitly
reference the values of constants, variables, and function
names.

[Special form]

48 GOLDEN COMMON LISP REFERENCE MANUAL

quote Object => object

This special form returns its arqument unevaluated.

quote prevents the evaluator from evaluating object as a form
(i.e., a LISP object which may meaningfully be evaluated).

Some forms are self-evaluating
themselves), and thus do not need
and strings are self-evaluating.

(i.e., they evaluate to
to be quoted. All numbers

Since quote is used so often, the single quote (') is
predefined as a macro character equivalent of quote. Thus,
•object is read as (quote object).

Examples:

(quote foo) => foo
•foo => foo
(quote (+ 2 3)) => (+ 2 3)
(car •(list 1 2)) =>list
(car (list 1 2)) => 1

function Function-name => functional-object

[Special form]

This special form returns the functional-object named by
function-name.

If function-name is a symbol, the functional-object (e.g., a
compiled-function or a lambda expression associated with that
symbol (by defun for example) is returned. If function-name
is not a symbol, it is assumed to be a lambda expression and
is returned unevaluated.

Since function is used so often, the predefined sharp-sign
macro construct, t•, has been provided as an abbreviation.
Thus l•function is read as (function function).

Compatibility note: If function-name is a lambda expression, a
lexical closure is not returned. Rather, function merely
returns the lambda expression unevaluated.

Examples:

(function (lambda (arg) (* arg 2)))

CHAPTER 7: Control Structure

=> (lambda (arq) (* arq 2))
(proqn

(defun foo (arq) (* arq 2))
(function foo))
=> (lambda (arq) (* arq 2))

(mapcar #•car •((a b) (c d) (e f)))
=> (a c e)

symbol-value symbol => value

49

[Function]

This function returns the value of the variable named by
symbol. An error is siqnalled if the variable is unbound.

Examples:

(symbol-value nil) => nil
(symbol-value (qensym)) siqnals an error
(symbol-value (setf foo •bar)) =>bar

symbol-function symbol => functional-object

[Function]

This function returns the functional-object (e.g., lambda
expression, compiled-function, closure) named by symbol. An
error is signalled if no functional-object is named by
symbol.

Examples:

(symbol-function (qensym)) siqnals an error
(labels ((foo (arq) (* arq 2)))

(symbol-function •foo))
=> (lambda (arq) (* arq 2))

[Function]

so GOLDEN COMMON LXSP REFERENCE MANUAL

boundp symbol => boolean

This function is a predicate which is true if and only if the
variable named by symbol has a value.

Examples:

(boundp nil) => t
(boundp (qensym)) =>nil
(proqn (makunbound •fool

(boundp •foo)) =>nil
(boundp (setf foo •bar)) => t

fboundp symbol => boolean

[Function]

This function is a predicate which is true if and only if
symbol has a function definition, e.g., a lambda expression, a
compiled-function, a macro.

Examples:

(fboundp •car) => t
(fboundp (qensym)) =>nil
(proqn (defun foo (arq) (* arq 2))

(fboundp •foo)) => t
(proqn (fmakunbound •foe)

(fboundp •foo)) => nil

[Function]

special-form-p symbol => nil/special-form-function

This function is a predicate which is true if and only if
symbol is the name of a special-form.

a Xnstead of returning t for true, special-form-p returns
function that can interpret a special form whose name is
symbol. When this function is applied to the rest of the
special form, the effect is identical to evaluating the whole
special form.

CHAPTER 7: control structure

(apply (special-form-p •special-form-name)
•body) <=> (special-form-name • body)

Examples:

(special-form-p •quote)
=> #<compiled-function ????:????>

(special-form-p •car) => nil
(special-form-p 1 do)

=> #<compiled-function ????:????>

7.1.2 Assignment

51

The following functions, macros, and special forms alter the
current value of a variable.

[Special form]

setq {Symbol form}* => last-form-result

This special form is the simple variable assignment statement
of LISP. Each symbol names a variable. The value of each
form is assigned to the variable which precedes it.

The assignments are performed sequentially, i.e., the nth
assignment is performed before the nth+l form is evaluated.
The value of the last form is returned (multiple values are
not passed back).

If no symbol/form pairs are supplied, nil is returned.

Examples:

(setq) => nil
(proqn (setq foo (+ 2 3))

(symbol-value •foo)) => s
(setq foo (values 2 3)) => 2
(proqn (setq foo 1 foo 2) foo) => 2
(setq foo 1 bar (+ foo ll baz <+bar lll => 3

52 GOLDEN COMMON LISP REFERENCE MANUAL

[Special form]

psetq (Symbol form}* => nil

This special form is the simple (parallel) variable assignment
statement of LISP. It is similar to setq except that the
assignments are performed in parallel, i.e., each form is
evaluated (in order from left to right), then the variables
are assigned the resulting values (in order from left to
right).

nil is always returned.

Examples:

(psetq) => nil
(values (psetq foo 666) foo) => nil 666
(proqn (psetq foo l foo 2) foo) => 2
(proqn (setq foo 1)

(psetq foo 2 bar (+ foo 2))
bar) => 3

set symbol form => form-result

[Function]

This function assigns the value of form to the variable named
by symbol. set is similar to setq, except that the former
evaluates its first argument and the latter does not.

Examples:

(proqn (set (car •(foo bar)) 5) fool=> 5
(proqn (setq foo 'bar)

(set fOO S)
(values foo bar)) =>bars

[Function]

CHAPTER 7: control structure 53

makunbound symbol => symbol

This function causes the variable named by symbol to have no
current value. A better name for this function might be
maltvalueless, since it actually does not undo the current
binding; rather it leaves the variable bound (if it already is
so) but valueless.

Examples:

(values (setf foo •value)
(let ((foo))

(boundp (makunbound foo)))
foo) => value nil value

fmakunbound symbol => symbol

[Function]

This function causes symbol to have no current function
definition. A better name for this function might be
fmakvalueless, since it actually does not undo the current
binding; rather it leaves the function name bound (if it
already is so) but undefined.

Examples:

(values (fboundp 1 1-)
(labels ((1- (int) (- 1 int))

(fmakunbound 1 1-)
(fboundp •1-))

(fboundp •1-)) => t nil t

7.2 Generalized Variables

A generalized variable is (not surprisingly) a
generalization of the concept of an ordina:Y variable.
Conceptually, an ordinary variable is defined in terms of
three entities: a data structure with a value component (i.e.,
a symbol), an access form (i.e., the symbol itself, or the
function-call form (symbol-value object)), and an update form
(i.e., (setq object new-value)).

54 GOLDEN COMMON LISP REFERENCE MANUAL

Analogously, a generalized variable is defined in terms of
three entities: a data structure, which consists of one or
more components; an access form, which obtains the value
stored in one of the data structure's components; and an
update form, which stores a new value in that same component
(and returns the new value). (Actually, GCLISP further
generalizes this concept by allowing multiple-value
generalized variables.)

For example, the access form (car cons) names a generalized
variable. The data structure is a cons, the access form is
the name of the generalized variable, and the form (rplaca
cons new-value) is the update form. (Actually, this is
somewhat inaccurate, since rplaca does not return the new
value.)

The setf macro, given the name of a generalized variable
(i.e., an access form) and a new value, returns the
appropriate update form. Therefore, the user no longer needs
to remember any update or assignment forms. A general rule of
thumb is, "If the user can access it, setf can update it."
Thus, setf makes most update and assignment procedures (e.g.,
setq, set, rplaca, etc.) obsolete. setf supports the
following access functions:

aref
array-leader
c •.• r (e.g, car, cdaar)
fill-pointer
first
get
getf
nth

nthcdr
rest
second
symbol-function
symbol-plist
symbol-value
third
values

In addition, the access function defined by defstruct can be
used with setf.

The user is strongly encouraged to use setf for any kind of
assignment.

The following generalized variable macros are also
implemented by GCLISP: getf, remf, inef, decf, push, and pop.

[Macro]

setf {place new-value}* => last-new-value-form-result

This macro produces a form which, when evaluated, updates the
value at place to new-value.

CHAPTER 7: Control Structure 55

place must be a form (e.g., a variable, a function-call)
which, when evaluated, accesses some LISP object. new-value
may be any form whose value may legally be assigned to the
location designated by place.

Most of the access functions predefined by COMMON LISP can be
handled by setf. These functions include: car and cdr and all
their combined forms (e.g., cadr, cddr, etc.), nth, get, aref,
symbol-value, and symbol-function. Also, access functions
defined by defstruct can be used with setf.

Multiple place/new-value pairs are processed
setf returns the value of the last new-value.
arguments, it returns nil.

sequentially.
If given no

Compatibility note: If place is a getf form, setf may not
return the value of new-value. Also, subforms of place may be
evaluated more than once.

Examples:

(let ((foo •(ab c)))
(setf (cadr foo) 2) too) => (a 2 c)

(let ((foo 1 #(a b c)))
(setf (aref foo 3) (+ 2 3))
(aref foo 3)) => 5

7.2.1 Defining New Generalized Variables

GCLISP allows the user to define new generalized variables
in a straight-forward manner. However, the methods used are
different from those specified by COMMON LISP and are likely
to change.

Two basic methods are provided. The first method defines
the new generalized variable by a mapping from its access form
to an expanded access form composed of one or more access
forms that are already known to setf. The second method
defines the new generalized variable by a mapping from its
access form and a new-value form to a corresponding update
form.

Both types of mappings are properties of the symbol that
names the access form (e.g., the symbol cddr). The value of
the property sett-expander is a mapping from an access form to
an expanded access form. The value of the property setf is a
mapping from an access form and a new-value form to an update
form.

Both types of mappings can be defined using the concept of a
template. In this context, a template refers to a form in

56 GOLDEN COMMON LISP REFERENCE MANUAL

which all arqument forms are represented
example, a template which corresponds to
3)) is (car foo),

by variables. For
the form (car '(1 2

If the value of the setf-expander property is a dotted-pair
(i.e., a cons), the first element is a template of the access
form being defined and the rest of the list is a template of
an equivalent, expanded access form. For example,

(get •cddr •setf-expander)
=> ((cddr list) • (cdr (cdr list)))

If the value of the setf-expander property is not a
dotted-pair, it must be a symbol which names a function of one
arqument. The function is called with the given access form
as its arqument. The function should return an expanded
access form.

The value of
manner. If the
first element is
the list is a
example,

the setf property is handled in an analogous
value of the property is a dotted-pair, the

a template of the access form and the rest of
template of the appropriate update form. For

(get •symbol-value •setfl
=> ((symbol-value symbol) • (set symbol val))

Note that in the update template, the new-value arqument form
must be represented by the variable val.

If the value of the setf property is not a dotted-pair, it
must be a symbol which names a function of two arguments. The
function is called with the given access form and new-value
form (in that order). It should return an update form.

Implementation note: setf uses
functions: aref-setf, aset, fset,
values-setf.

7.3 Function Invocation

the following
putprop, putf,

internal
setplist,

[Function]

CHAPTER 7: Control structure 57

apply function arg &rest more-args
=> function-application-results

This function applies function to a list of arguments and
returns the results of this functional application.

function may be a lambda expression, a closure, a
compiled-function, a stack-group or a symbol. If function is
a symbol, its function definition may not be a macro or
special form definition.

Conceptually, the argument list which function is applied to
is constructed by applying list• to the arguments following
function. The last argument to apply must be a list.

(apply t•fn (list argl ••• argn))
<=> (funcall t•fn argl ••• argn)

Examples:

(apply t•+ 1 (1 2)) => 3
(apply •- 10 1 (list 5 2)) => 2
(apply t•values 1 (1 2 3 4)) => 1 2 3 4
(apply t•list '())=>nil

[Function]

funcall function &rest arguments => function-call-results

This function calls function with arguments and returns the
results of this function call.

function may be a lambda expression, a
compiled-function, a stack-group or a symbol.
a symbol, its function definition may not
special form definition.

(funcall t•fn argl .•• argn)
<=> (apply #•fn (list argl •.• argn))

Examples:

(funcall #'+ 1 2) => 3
(funcall •- 3 2) => 1

closure, a
If function is
be a macro or

58 GOLDEN COMMON Lrsp REFERENCE MANUAL

(funcall #'+) => o
(funcall #'values l 2 3 4) => l 2 3 4

7.4 Simple Sequencing

[Special form]

proqn {form}* => last-form-results

This special form evaluates each form, in order from left to
riqht. It returns the values returned by the last form; the
results of the other forms are simply discarded.

Note that one of the forms may cause control to be transferred
to outside the proqn (e.q., throw, error). In this case, the
remaining forms are not evaluated.

Examples:

(progn) => nil
(proqn (setf a l)

(setf b 2)
(values ab)) => l 2

proql first-form {form}* => first-form-result

[Special form]

This special form evaluates each form, in order from left to
riqht. It returns the value returned by first-form; the
results of the other forms are simply discarded.

proql always returns a sinqle value, even if first-form
returns multiple values.

(proql al a2 an)
<=> (let ((val al)) a2 ••. an val)

Examples:

CHAPTER 7: control structure

(progn (setf foo 1)
(progl foo

(setf foo (+ foo lllll => 1

59

[Special form]

prog2 first-form second-form {form}* => second-form-result

This special form evaluates each form, in order from left to
right. It returns the value returned by second-form; the
results of the other forms are simply discarded.

prog2 always returns a single value, even if second-form
returns multiple values.

(prog2 al a2 a3 ... an)
<=> (progn al (progl a2 a3 ••• an))

Examples:

(progn (setf foo 1)
(prog2 (setf foo (+ foo 1))

foo
(setf foo (+ foo 1)))) => 2

7.5 Establishing New Variable Bindings

let ({Var I (Var value)}*)

[Special form]

{declaration}* {form}* => last-form-results

This special form establishes a binding of each specified
variable to its respective value. All bindings are dynamic
(i.e., of indefinite scope and dynamic extent).

Each variable is specified by a var, which is a symbol that
names the variable. Each variable which occurs in a (var

60 GOLDEN COMMON LISP REFERENCE MANUAL

value) pair is bound to the value returned by the evaluation
of the form value. Each var that occurs alone is bound to the
object nil.

All of the value forms are evaluated (in order from left to
right) before any of the bindings are established. Then, each
of the bindings is established in an undefined order. Once
all the bindings have been established, each form is then
evaluated, in order from left to right, and the values of the
last form are returned (i.e., the body of the let is an
implicit progn).

Examples:

(let (a (b) (c nil) (d ()) (e • ()))
(values ab c de))
=> nil nil nil nil nil

(let ((a 1) (b 2) (c 3))
(values ab c)) => 1 2 3

(let ((a 1))
(list (let ((a 10) (b (incf a)))

(list a b))
a)) => ((10 2) 2)

let• ({Var I (Var value)}*)

[Special form]

{declaration}* {form}* => last-form-results

This special form establishes a binding of each specified
variable to its respective value. All bindings are dynamic
(i.e., of indefinite scope and dynamic extent).

let• is identical to let except that the variables are bound
in sequence, i.e., valuei is evaluated and bound to vari
before valuei+l is evaluated and bound to vari+i.

Examples:

(let (a (b (cons 1 a)) (c (cons 2 b)))
(values ab c)) =>nil (1) (2 1)

(let ((a 1) (b (incf a)) (a (incf b)))
(list ab c)) => (2 3 3)

CHAPTER 7: control structure 61

[Special form]

proqv symbol-list value-list {form)* => last-form-results

This special form establishes a binding of each specified
variable to its respective value. All bindings are dynamic
(i.e., of indefinite scope and dynamic extent).

The specified variables are named by symbols which are members
of the list that is the result of evaluating the form
symbol-list. The variables' respective values are the members
of the list that is the result of evaluating the form
value-list. In other words, the variable named by the nth
symbol in symbol-list is bound to the nth value in
value-list. The order in which the bindings are established
is undefined.

Once all the bindings have been established, each form is then
evaluated, in order from left to right, and the values of the
last form are returned (i.e., the body of the proqv is an
implicit progn).

Examples:

(proqv (list a b c) (list 1 2 3)
(values ab c)) => l 2 3

labels ({(Name Lambda-list

[Special form]

{Declaration I Doc-string)* {Form)*))*) {form)*
=> last-form-results

This special form establishes locally named functions.

7.6 Conditionals

[Special form]

62 GOLDEN COMMON LISP REFERENCE MANUAL

if test then [else] => last-evaled-form-results

This special form evaluates either the then form or the else
form depending on the value of the test form.

If the result of evaluating the test form is non-nil, the then
form is evaluated and its results are returned by if.

Otherwise, if the result of evaluating the test form is nil,
the else form is evaluated and its results are returned by
if. If there is no else form, nil is returned.

(if test then else)
<=> (cond (test then) (t else))

(if test then) <=> (if test then nil)

Examples:

(if t 1 2) => 1
(if nil 1 2) => 2
(if (not t) t) => nil
(if (setf foo 1)

(incf foo)
(decf foo)) => 2

[Special form]

ifn test then [else] => last-evaled-form-results

This special form evaluates either the then form or the else
form depending on the value of (not test).

(ifn test then else)
<=> (if (not test) then else)

Examples:

(ifn t 1 2) => 2
(ifn nil 1 2) => 1
(ifn (not nil) t) => nil
(ifn (setf foo 1)

(incf foo)
(incf foo)) => 2

CHAPTER 7: Control structure 63

[Special form]

when test {form)* => nil/last-form-results

If the result of evaluating test is non-nil, this special form
evaluates each form and returns the results of the last form;
otherwise the forms are not evaluated and nil is returned.

(when test fl ••• fn)
<=> (cond (test fl ••• fn))
<=> (and test (progn fl ••• fn))
<=> (if test (proqn fl ••• fn) nil)

Examples:

(when t (values l 2 3)) => l 2 3
(when (not t) (values l 2 3)) =>nil

unless test {form)* => nil/last-form-results

[Special form]

If the result of evaluating test is nil, this special form
evaluates each form and returns the results of the last form;
otherwise the forms are not evaluated and nil is returned.

(unless test fl .•• fn)
<=> (cond ((not test) fl •.• fnll
<=> (and (not test) (proqn fl ••• fn))
<=> (if test nil (proqn fl ••• fn))

Examples:

(unless t (values l 2 3)) =>nil
(unless (not t) (values l 2 3)) => l 2 3

64 GOLDEN COMMON LISP REFERENCE MANUAL

[Special form]

cond {(test {form}*)}* => nil/last-evaled-form-results

This special form is the basic conditional form of COMMON
LISP. It is analogous to the if-then-elsif statement of other
languages. Each (test forml ••• formn) component is called a
clause. The clauses are tested sequentially, in order from
left to right. The first clause that has a test which
evaluates to a non-nil result is selected. None of the
subsequent clauses are tested.

forml ••• formn of the selected clause are evaluated, and the
results of formn are returned as the result of cond (i.e.,
forml ••• formn constitute an implicit progn). If no forms
follow the test in the selected clause, the single value of
the test is returned as the result of cond.

If no clause is selected (i.e., no test is true), cond returns
nil.

Examples:

(cond) => nil
(let ((x 1)) (cond ((> x O) •positive)

((< x O) •negative)
(t •zero))) =>positive

case keyform {({({Key}*) I Key} {form}*)}*
=> nil/last-evaled-form-results

[Special form]

This special form is a conditional control structure that
selects at most one of its clauses, the selection being based
on a key.

A clause has the following structure:

(key-spec forml ••• formn)

The key-spec must be one of the following: a list of keys
(which may be objects of any type), the symbols t or
otherwise, or a single key (which cannot be a list or the
symbols tor otherwise). The symbols t and otherwise may only

CHAPTER 7: control Structure 65

appear in the last clause. Duplicate keys are not allowed.

First, keyform is evaluated to produce a selector-key. Then
the key-spec of each clause is tested against the
selector-key. A key-spec satisfies the test if key-spec is a
list of keys and (member selector-key key-spec) is true; or
key-spec is a single key and (eql selector-key key-spec) is
true; or key-spec is either the symbol t or the symbol
otherwise.

The order in which clauses are checked is undefined; except
that if a clause with t or otherwise as a key-spec occurs, it
is checked last.

The first clause that contains a key-spec which satisfies the
test is selected: its forms are -evaluated and the results of
the last form are returned, i.e., the forms are evaluated as
an implicit progn. A clause containing no forms (other than
the key-spec), returns nil.

If no clause is selected, case returns nil.

Examples:

(case t
((t nil) (values 1 t))
(t (values 2 nil))) => 1 t

(case ll => nil
(case (+ 1 1) ((2 4 6 8 10) •even)

((1 3 s 7 9) •odd)
(otherwise 1 >10)) => even

7.7 Blocks and Exits

block Name {form}* => last-form-results

[Special form]

This special form establishes name as the name of the block
and then evaluates each form in order from left to right.

If return-from form that specifies name is evaluated within
the extent of the block, block immediately returns the results
specified in the return or return-from form. (If name is nil,
return may be used instead of return-from.) Otherwise, block
returns the results of the last form.

66 GOLDEN COMMON LISP REFERENCE MANUAL

Compatibility note: The name established by block has dynamic
scope.

[Special form]

return-from Name result

This special form causes the most recently established block
form named name to be immediately returned from, returning the
values of result.

Implementation note: An error occurs if a
(return-from name •••) is attempted outside the scope or
extent of the block named name.

compatibility note: The scope of a name is dynamic.

Examples:

(block foo
(return-from foo (values 1 2 3))
(values "Never Happens")) => 1 2 3

return result

[Special form]

This special form causes the most recently established block
form named nil (e.g. do, proq) to be immediately returned
from, returning the values of result.

(return form) <=> (return-from nil form)

CHAPTER 7: Control structure 67

7.8 Iteration

7.8.1 Indefinite Iteration

[Special form]

loop {form}*

This special forl!l repeatedly evaluates forml formn in
order from left to right until some forl!l which exits the loop
(e.g., throw) is evaluated.

loop establishes an implicit block named nil, so a return will
exit the loop.

7.8.2 General Iteration

do ({(Var [init [step]])}*)
(end-test {end-form}*) (declaration)*
(Tag I statement)*
=> nil/last-endform-results

[Macro]

This macro is a general purpose iteration control structure.
It consists of three parts:

An index-spec:

An end-spec:

A body:

((varl initl stepl) •••
(varn initn stepn))

(end-test end-forml .•• end-formn)

tag body

First, do establishes a binding for each of the index
variables named by the symbols, varl varn. Each variable
is bound to the value of its respective init forlll, or to nil
if it has no associated init forl!l. This binding is performed
in parallel as in a let forl!l.

68 GOLDEN COMMON LISP REFERENCE MANUAL

Then, iteration begins.
following steps:

one iterative cycle consists of the

l. The end-test form is evaluated. rf the result is
non-nil, the end-forms are evaluated in order as an
implicit progn, and the results of the last form are
returned. rf there are no end-forms, nil is returned.
{Note that the end-spec has the same syntax as a cond
clause.)

2. Otherwise, if the value of end-test is nil,
following the end-spec are evaluated as
tagbody.

the forms
an implicit

3. When the end of the tagbody is reached, each index
variable is stepped i.e., assigned the value of its
respective step form. This is done in parallel as in a
psetq form. An index variable without an associated
step form is not stepped. Then the cycle is repeated,
beginning with step one.

The entire do control structure is executed within an implicit
block named nil; thus, do may be exited at any point by
executing the return form.

Examples:

(do ((a 1 (+la)) (b O))
«= a 11) bl
(setf b (+ b a))) => SS

do• {{{Var [init [step]])}*)
(end-test {end-form}*) {declaration}*
{Tag I statement}*
=> nil/last-endform-results

[Macro]

This macro is a general purpose iteration control structure.
It is identical to the do macro except that the index
variables are bound sequentially using let•. {do binds its
index variables in parallel using let.)

Examples:

(do• ((a 1 (+ 1 a)) (b a (+ b a)))
((:a 10) b)) =>SS

CHAPTER 7: control structure

7.8.3 Simple Iteration Constructs

dolist (Var listform [resultform])
{declaration}* {Tag I statement}*
=> resultform-results

69

[Macro]

This macro provides simple iteration over the elements of a
list. The body of this form, i.e., the sequence of tags and
statements, is an implicit tagbody.

First, the listform is
Then, for each element
symbol var is bound
evaluated.

evaluated and must produce a list.
in that list, the variable named by the
to that element and the body is

Finally, the resultform (which if not provided, defaults to
nil) is evaluated and its values are returned. The variable
named by var is bound to nil during the evaluation of
resultform. The dolist form may be exited at any time by
evaluating the return form. This is because the dolist form
is implicitly wrapped in a block named nil.

Examples:

(let ((foo •(ab c d)) (bar•()))
(dolist (ele foe bar)

(setf bar (cons ale bar))))
=> (d c b a)

dotimes (Var countform [resultform])
(declaration}* {Tag I statement}*
=> resultform-results

[Macro]

This macro provides simple iteration over a sequence of
integers. The body of this form, i.e., the sequence of tags
and statements, is an implicit tagbody.

First, the countform is evaluated and must produce an integer

70 GOLDEN COMMON LISP REFERENCE MANUAL

(call it count). Then, for each integer in the range o
(inclusive) to count (exclusive), the variable named by the
symbol var is bound to that integer and the body is
evaluated. If count is less than one, the body is not
evaluated.

Finally, the resultform (which if not provided, defaults to
nil) is evaluated and its values are returned. The variable
named by var is bound to count when resultform is evaluated.

The dotimes form may be exited at any time by evaluating the
return form. This is because the dotimes form is implicitly
wrapped in a block named nil.

Examples:

(let (foo)
(dotimes (cnt 3 foo)

(setf foo (cons cnt foo))))
=> (2 1 0)

7.8.4 Mapping

[Function]

mapcar function list &rest more-lists => result-list

This function successively applies the functional object,
function, to the n successive elements in each of the lists
following function (where n is the length of the shortest
list).

In other words, function is applied to the first element of
each list, then the second element of each list, and so on
until no more elements remain in one of the lists.

mapcar returns the list of the successive results of applying
function. The first argument to mapcar must be a functional
object which is acceptable to apply and which takes as many
arguments as there are remaining arguments (which must all be
lists).

Examples:

(mapcar #•list • (a b c)) => ((a) (b) (c))
(mapcar #1 list •(ab c) 1 (1 2))

=> ((a 1) (b 2))

CHAPTER 7: control structure 71

(mapcar # • + • (1 2 3) • (4 s 6)) => (s 7 9)

[Function]

maplist function list &rest more-lists => result-list

This function successively applies the functional object,
function, to the n successive sublists of each of the lists
following function (where n is the length of the shortest
list).

In other words, function is applied to all the lists, then to
the cdr of each list, then to the cddr of each list, and so on
until one of the sublists is nil.

maplist returns the list of the successive results of applying
function.

The first argument to maplist must be a functional object
which is acceptable to apply and which takes as many arguments
as there are remaining arguments (which must all be lists).

Examples:

(maplist #'(lambda (x) x)
• (a b c)) => ((a b c) (b c) (c))

(maplist #•append •(ab c) • (1 2 3))
=> ((a b c 1 2 3) (b c 2 3) (c 3))

(let ((foe 1 (1 2 7 4 6 S)))
(maplist #'(lambda (xl yl)

(< (car xl) (car yl)))
too (cdr too)))

=> (t t nil t nil)

mapc function list &rest more-lists => list

[Function]

This function successively applies the functional object,
function, to the n successive elements in each of the lists
following function (where n is the length of the shortest
list).

In other words, function is applied to the first element of

72 GOLDEN COMMON LISP REFERENCE MANUAL

each list, then the second element of each list, and so on
until no more elements remain in one of the lists.

mapc returns its second argument.

The first argument to mapc must be a functional object which
is acceptable to apply and which takes as many arguments as
there are remaininq arguments (which must all be lists).

(mapc function listl ••• listn) <=>
(proql listl

(mapcar function listl ••• listn))

Examples:

(let ((foo •(1 2 3 4 S)) (bar O))
(mapc #'(lambda (x) (setf bar(+ bar x)))

foo) bar) => 15

mapl function list &rest more-lists => list

[Function]

This function successively applies the functional object,
function, to the n successive sublists of each of the lists
followinq function (where n is the lenqth of the shortest
list).

In other words, function is applied to all the lists, then to
the cdr of each list, then to the cddr of each list, and so on
until one of the sublists is nil.

mapl returns its second argument.

The first argument to mapl must be a functional object which
is acceptable to apply and which takes as many arguments as
there are remaininq arquments (which must all be lists).

(mapl function listl ••• listn) <=>
(proql listl

(maplist function listl ••• listn))

Examples:

CHAPTER 7: control structure

(mapl t• (lambda (x)
(unless (null (rest x))
(setf (second x)

(+ (first x)
(second x)))))

1 (1 2 3 4 5)) => (1 3 6 10 15)

73

[Function]

mapcan function list &rest more-lists => result-list

This function successively applies the functional object,
function, to the n successive elements in each of the lists
following function (where n is the length of the shortest
list).

In other words, function is applied to
each list, then the second element of
until no more elements remain in one of
returns the nconc of the successive
function.

the first element of
each list, and so on
the lists. mapcan
results of applying

The first argument to mapcan must be a functional object which
is acceptable to apply and which takes as many arguments as
there are remaining arguments (which must all be lists).

(mapcan function listl ••• listn) <=>
(apply JI' nconc

(mapcar function listl •.. listn))

Examples:

(mapcan #'(lambda (1 e)
(when (member e 1) (list 1)))

• ((1 2 3) (a b c) (8 9 O) (k o p) (y u 9))
• (2 c 1 p v)) => ((1 2 3) (a b c) (k o p))

[Function]

74 GOLDEN COMMON LISP REFERENCE MANUAL

mapcon function list &rest more-lists => result-list

This function successively applies the functional object,
function, to the n successive sublists of each of the lists
following function (where n is the length of the shortest
list).

In other words, function is applied to all the lists, then to
the cdr of each list, then to the cddr of each list, and so on
until one of the sublists is nil.

mapcon returns the nconc of the successive results of applying
function.

The first argument to mapcon must be a functional object which
is acceptable to apply and which takes as many arguments as
there are remaining arguments (which must all be lists).

(mapcon function listl ••• listn) <=>
(apply IJ'nconc

(maplist function listl ••• listn))

Examples:

(mapcon #•(lambda (X)
(if (null (rest x))

(list (first x) l
(list (first x) •and)))

'(a b c d e))
=> (a and b and c and d and e)

7.8.5 The "Program Feature"

prog ({Var I (Var [init])}*) {declaration}*
{Tag I statement)* => nil

[Special form]

This special form provides the binding environment of the let
form with the ability to perform both structured and
unstructured control transfer via the return and go forms,
respectively.

prog consists of two parts: a binding-spec, specified by the
first component; and a body, specified by the remaining
components.

CHAPTER 7: control structure 75

The binding-spec establishes a binding environment exactly as
let does.

The body consists of tags, which must be symbols or integers,
and statements, which must be lists. The items in the body
are normally processed from left to right. Tags are not
evaluated, but statements are. If the end of the body is
reached, nil is returned.

A go form may be evaluated in order to transfer control to a
specified tag. A return form, may be used to exit from the
proq before the end of the body is reached.

Compatibility note: Tags are dynamically scoped.

Examples:

(prog ((arq S)) (+ arq 1)) => nil
(prog ((arq S)) (return-from nil (+ arq 1)))

=> 6
(proq () (return 1 2 3)) => 1 2 3

proq• ({Var I (Var [init]) }*) (declaration}*
(Tag I statement}* => nil

[Special form]

This special form provides the binding environment of the let•
form with the ability to perform both structured and
unstructured control transfer via the return and go forms,
respectively.

It is identical to the prog form, except that let• is used
instead of let.

Examples:

(proq• ((foo 1) (bar (+ foo 1)))
(return foo bar)) => 1 2

[Special form]

76 GOLDEN COMMON LISP REFERENCE MANUAL

go Tag

This special form is used to transfer control within a
tagbody, e.g., within a prog special form.

When the go form is
point following tag.

evaluated, control is transferred to the
tag must be a symbol or an integer.

compatibility note: Tags have indefinite scope and dynamic
extent. Therefore one can go to a tag in a tagbody from a
place within the dynamic extent of the tagbody, and yet not
within the lexical scope of that tagbody. This feature should
not be relied upon, since it will change in the future.

Examples:

(prog ()
(go skip)
(return 1)
skip
(return 2)) => 2

7.9 Multiple Values

7.9.l constructs for Handling Multiple Values

values argument &rest arguments => results

[Function]

This function returns n values when given n arguments.

Compatibility note: values requires at least one arg., i.e.,
zero values cannot be returned.

Examples:

(values 1 2 3) => 1 2 3
(values (values 1 2) (values 3 4)) => 1 3

CHAPTER 7: control structure 77

[Function]

values-list list => list-elements

This function returns, as multiple values, all the elements of
list.

(values-list list) <=> (apply t•values (or list •(nil))

Compatibility note: If list is the empty list, i.e., nil,
values-list returns a single argument, nil.

Examples:

(values-list nil) => nil
(values-list •(nil))=> nil
(values-list • (1 2 3)) => 1 2 3

multiple-value-list form => results-list

[Special form]

This special form returns a list containing the values
returned by form.

Examples:

(multiple-value-list (+ 2 2)) => (4)
(multiple-value-list (values 1 2 3))
=>(123)

multipl·e-value-progl first-form {form)*
=> first-form-results

[Special form]

This special form evaluates its argument forms in order from
left to right. It returns the values returned by first-form;
the results of the other forms are simply discarded.

78 GOLDEN COMMON LISP REFERENCE MANUAL

multiple-value-proq1 returns multiple values if first-form
returns multiple values. Thus, it is exactly like proq1,
except that proq1 always returns only a single value.

(multiple-value-proq1 fl f2 ••• fn) <=>
(let CCvlfl (multiple-value-list fl)))

f2 ••• fn (values-list vlfl))

Examples:

(multiple-value-proq1 (values 1 2 3)) => 1 2 3
(let ((fOO 2))

(multipla-valua-proq1
(values foo (* foo too))
(setf foo (+ foo lllll => 2 4

multiple-value-hind ({Var}*) values-form
(declaration}* (form}*
=> last-form-results

[Special form]

This special form establishes a binding for each specified
variable and then evaluates its body as an implicit progn.

First, the values-form is evaluated and then the variables
named by the var symbols are bound to these values (the ith
var is bound to the ith value). If there are more variables
than values, the excess variables are bound to nil. If there
are more values than variables, the excess values are
discarded. The remaining forms are then executed and the
values of the last form are returned, i.e., the body is an
implicit progn.

[Special form]

multiple-value-setq ({Var}*) form => form-result

This special form assigns the specified variables to the
values returned by form.

The variables named by the var symbols are assigned (not

CHAPTER 7: Control structure 79

bound) to the values returned by form, repectively. If there
are more variables than values, the excess variables are bound
to nil. If there are more values than variables, the excess
values are discarded.

The first value returned by form is returned.

Examples:

(let (a b c)
(multiple-value-setq (a b c)

(values 1 2 3 4))
(values ab c)) => 1 2 3

(multiple-value-setq nil (values 1 2)) => 1

7.9.2 Rules Governing the Passing of Multiple Values

GCLISP adheres to the COMMON LISP rules governing the
passing of multiple values.

7.10 Dynamic Non-local Exits

[Special form]

catch tag {form}* => throw-results/last-form-results

This special form provides a control structure (called a
catcher) which allows non-local, dynamically scoped exits via
the evaluation of a throw form.

First, the tag form is evaluated, and its value is used as the
tag of the catcher. Then the remaining forms are evaluated in
order from left to right and the values of the last form are
returned, i.e., the forms are an implicit progn.

However, if the evaluation of a throw form produces a thrower
whose tag is eq to the tag of the catcher, and the catcher is
the most recently established catcher with such a tag, then no
futher forms are evaluated, and the results specified by the
thrower are returned by catch.

80 GOLDEN COMMON LISP REFERENCE MANUAL

[Special form]

unwind-protect protected-form {cleanup-form}*
=> protected-form-results

This special form ensures that evaluation of the
protected-form will be followed by the evaluation of each
cleanup-form (in order from left to right), whether
protected-form returns normally or is exited via a return, a
throw, a go, or an error.

unwind-protect returns the values of the protected-form.

Implementation note: Events which cause a stack-group reset
(e.g., a stack-overflow error, a cons-space-full error) cause
an exit from the protected form without evaluating the cleanup
forms. ·

Examples:

(let ((foo 1 (1)))
(catch •tag (unwind-protect

(progn

foo) => (3 2 1)

(setf foo
(cons 2 foo))

(throw •tag nil))
(setf foo (cons 3 foo))))

[Special form]

throw Tag result

This special form (sometimes called a thrower) performs a
non-local transfer of control (a throw) to the most recently
established catcher whose tag is eq to the tag produced by
evaluating tag.

A catcher with a given tag is established by the evaluation of
the tag form of a catch form.

The result form is evaluated before the transfer
takes place. The values of the result form are
the catch form that established the catcher which
throw.

of control
returned by
caught the

Within the dynamic extent of the catcher, any dynamic bindings

CHAPTER 7: control structure Bl

are undone
evaluated.

and any unwind-protect cleanup-forms are

7.11 Closures

In GCLISP, functions can refer to variables that were not
bound by (or in) the function. These variables are called
free or global variables. For example, the function

(defun foo (a)
(+a *b*))

has one free variable: •b•. (Note: By convention, free
variables begin and end with an asterisk.) Normally, the
value of a free variable that is referenced within a function
depends on the binding environment that exists at the time the
function is called. Thus, the value of *b* depends on the
binding environment that exists when foo is called.

In COMMON LISP, free variables are handled differently.
Normally, the value of a free variable that is referenced
within a function depends on the binding environment that
existed at the time the function was defined. This kind of
function is called a closure since the free variable bindings
are enclosed with the function.

In GCLISP, the function closure allows the user to create a
closure. The closure can enclose with a function some or all
of the bindings of the free variables occurring in that
function. A closure can be used just like any other kind of
functional object (i.e., it can be funcall'ed and apply'ed.)

[Function]

closure variable-list function => closure

This function creates and returns a closure that encloses the
current binding of each of the variables in the variable-list
with function.

Each element of the list variable-list must
variable. closure returns a closure object
function and a copy of the bindings of the
variable-list. (This implies that two closures
variables.)

be a bound
that contains
variables in
cannot share

82 GOLDEN COMMON LISP REFERENCE MANUAL

When a closure is applied, the enclosed bindings are
temporarily established and then the function which was closed
over is applied. After the application, the enclosed bindings
are updated with their current values. (Note: This implies
that a recursive invocation of a closure will re-establish the
enclosed bindings and hence, the enclosed bindings' values at
the time of the call will not be visible.)

Examples:

(let ((*l:>* 1))
(labels ((func (a) (+ a *l:>*l l l

(setf clo (let ((*l:>* 10))
(closure '(*l:>*) # 1 func))))

(funcall clo 2)) => 12

7.12 Stack Groups

A stack group is a functional object which contains its own
evaluation state and binding-environment. It has most of the
characteristics of a task or a process. GCLISP stack groups
were inspired by and are very similar to ZETALISP stack
groups.

When GCLISP is initialized, the Top-Level read-eval-print
loop is associated with a stack group. In order to perform an
evaluation independent of this initial stack group, one must
create a new stack group (using make-stack-group), give it an
an initial function call to evaluate (using
stack-group-preset), and then start the new stack group
(using, for example, stack-group-resume).

Starting or continuing the computation of a stack group is
called resuming. Resuming a stack group suspends the current
stack group (hereafter called c) and continues the computation
of the suspended stack group (hereafter called s) at the point
s was last suspended (or starts the computation if the stack
group was just preset). Resuming is also called "switching
stack groups".

7.12.1 Stack Group Structure

A stack group contains two stacks (hence
group). One stack represents the stack
state (i.e., the state of the computation).
historically been called the regular PDL (PDL
Down List, and is pronounced like "piddle").

the name stack
group's execution
This stack has
stands for Push
The other stack

CHAPTER 7: control Structure 83

represents the stack group's binding-environment. This stack
has historically been called the special PDL. (Speaking
precisely, the special PDL contains all shadowed (i.e., saved)
variable bindings.) When creating a stack group, using
make-stack-group, one may specify the size of either PDL.

In addition to the two stacks, a stack group has a state
(which determines its resumability), a name (used in the stack
group's printed representation), a resumer (another stack
group which this stack group can resume), and other internal
state information. The state, name, and resumer of a stack
group are discussed below.

At any given time, a stack group is in one of the following
states:

active

resumable

exhausted

broken

The stack group is
group may be in
moment; this stack
stack group.

executing. Only one stack
this state at any given

group is called the current

The stack group is not currently executing;
the evaluation represented by the stack group
is suspended. The evaluation will continue
when the stack group is resumed.

The stack group is not currently executing;
the evaluation represented by the stack group
is finished (i.e., the stack group's initial
function call has been completely evaluated).
The stack group cannot be resumed (but it may
be reset by stack-group-preset) •

The stack group is not currently executing;
the evaluation represented by the stack group
signalled an error which is waiting to be
handled. The stack group cannot be resumed
(but it may be reset by stack-group-preset).

The user cannot directly set the state of a stack group;
however, it can be displayed using the function describe.

The name of a stack group is used in the printed
representation of the stack group. It is supplied by the user
when the stack group is created. It cannot be changed by the
user.

If s is resumed when c calls the function
stack-group-return, then s is said to be the resumer of c.
Each stack group has a cell which contains its resumer. If a
stack group has no resumer, this cell contains nil. The user
cannot directly modify or display the resumer of a stack
group, but it is set when a stack group is invoked as a
function.

84 GOLDEN COMMON LISP REFERENCE MANUAL

7.12.2 Creating and Initializing a Stack Group

make-stack-group name &key :regular-pdl-size
:special-pdl-size => stack-group

[Function]

This function creates and returns a stack group named name.

name may be either a symbol or a string; it is used in the
printed representation of the new stack group.
:regular-pdl-size and :special-pdl-size must be non-negative
integers; they specify the regular and special stack sizes,
respectively. They default to 200 and 500 double-words (32
bits), respectively.

The internal state information of the created stack
undefined; it must be initialized by the
stack-group-preset.

stack-group-preset
arguments =>

stack-group function &rest
stack-group

group is
function

[Function]

This function initializes stack-group so that when it is
resumed, function is applied to arguments.

function must be an
stack-group-preset
special PDLs), sets
makes

object which is acceptable to apply.
clears both stacks (i.e., the regular and
the state to resumable, and conceptually

(function • arguments)

the initial function call.

stack-group may be in any state except active; but, if
stack-group is not in the exhausted state, its current
evaluation is abandoned without any clean-up (i.e.,
unwind-protect is not honored, but bindings are undone).

The initialized stack group is returned.

CHAPTER 7: Control Structure 85

[Function]

stack-group-unwind

This function resets the currently active stack group.

First, both stacks (the regular
cleared. As they are being cleared,
and all unwind-protect cleanup fonns
correct binding environment).

and special PDL's) are
all bindings are undone
are evaluated (in the

Secondly, the function call (top-level) is made the initial
function call of the stack group.

Finally, the stack group is resumed.

Note that stack-group-unwind never returns.

7.12.3 Resuming a Stack Group

At any given time, only one stack group is active, (i.e., in
the midst of an evaluation). This active stack group is
called the current stack group. All other stack groups are
either suspended (i.e., in the resumable state), exhausted, or
broken.

The current stack group (c) can resume a suspended stack
group (s) in one of three ways:

c can call (or apply) s as a function of one argument.

c can call the function stack-group-return. In this
case, s must be the stack group that invoked c as a
function (i.e., e's resumer).

c can call the function stack-group-resume with s as the
first argument.

In addition to resuming s, these three methods allow c to
transmit an object to s (if s was just preset, the transmitted
object is ignored). Each of these three function calls does
not return until its associated stack-group is resumed. Each
function returns the object received by its stack group.

An example of resuming a stack group by invoking it as a
function is the following:

(funcall sg trans-obj)

86 GOLDEN COMMON LISP REFERENCE MANUAL

When this function call is evaluated, the following occurs:

l. The state of sg is tested. If it is not resumable, an
error is signalled. (Note that this implies that the
current stack group cannot resume itself.)

2. The current stack group (c) is suspended (i.e., put into
the resumable state).

3. c is made the resumer of sg. Thus, for example, if sg
evaluates

(stack-group-return recv-obj)

c will be resumed and the function call that resumed sg
will return recv-obj. (Note that neither the function
stack-group-resume nor the function stack-group-return
affect the resumer cell of their own stack group or the
resumer cell of the stack group they resume.)

4. The sg stack group is resumed (i.e., put into the active
state). If sg had been suspended by its evaluation of
one of the above function calls (e.g.,
stack-group-resume), then that function call will return
trans-obj as its value.

[Function]

stack-group-resume stack-group object => received-object

This function resumes stack-group, transmitting object in the
process.

stack-group must be in the resumable state.

stack-group-resume
stack group that
called) is resumed.
its stack group.

returns when its stack group (i.e., the
was active when stack-group-resume was
It returns whatever object is received by

[Function]

CHAPTER 7: Control structure 87

stack-group-return object => received-object

This function resumes the current stack group's resumer,
tranmitting object to it.

The current stack group must have a resumer (e.g., the current
stack group was resumed by being called as a function) •

stack-group-return
stack group that
called) is resumed.
its stack group.

returns when its stack group (i.e., the
was active when stack-group-return was
It returns whatever object is received by

Besides the normal ways of switching stack groups discussed
above, various events can cause a stack group switch.

One type of stack switching event is an asynchronous event
(i.e., an interrupt), such as a clock, garbage-collection, or
break event. For example, when a clock event occurs, the
value of the variable •clock-event• is funcall'ed with some
argument. If the value of such a variable is a stack group, a
stack group switch will occur.

Note also that certain severe
cons space full, etc.) cause
reset. Conceptually, resetting
involves the following steps:

errors (e.g., stack overflow,
the current stack group to be
the current stack group (c)

l. (stack-group-preset c •top-level)

2. c is resumed.

7.12.4 Dynamic Bindings and Stack Groups

Since each stack group contains its own binding environment,
the dynamic bindings of the current stack group (c) are not
available to the stack group which c resumes. This includes
the bindings of such important variables as •terminal-io•.
(Note that although bindings are not shared between stack
groups, the global value of a variable is visible to all stack
groups.)

Thus, the initial function of a stack group should provide a
means to pass the current value of each important dynamic
variable. One way to do this is to pass such values as
arguments to the initial function. Another way is to make the
initial function a closure that closes over the important
variables.

88 GOLDEN COMMON LISP REFERENCE MANUAL

7.12.5 Stack Group Variables

[Variable]

•initial-stack-group• => stack-group

The value of this variable is the stack group which is created
when GCLISP is initialized.

[Variable]

•current-stack-group• => stack-group

The value of this variable is the stack group which is
currently active. It is automatically updated when a stack
group switch is performed. The user should not alter the
value of this variable.

Chapter a

Macros

A macro call is a LISP form which is transformed into
another (usually more complicated) LISP form before beinq
evaluated. A macro de£inition (often just called a macro)
defines a mappinq between macro-call forms and their
expansions. The actual transformation is performed by an
expansion £unction that is defined by the macro definition.

The GCLISP implementation of macros adheres quite closely to
the COMMON LISP specification. The major differences are as
follows:

l. The &key, allow-other-keys, and environment lambda-list
keywords are not currently supported.

2. An embedded lambda-list must not contain any lambda-list
keywords.

3. The expansion functions macroexpand and macroexpand-1 do
not take a lexical environment as a second arqument in
GCLISP. This makes sense because GCLISP does not
currently support lexical scoping.

4. Since there is considerable overhead involved in macro
expansion (as compared to a simple function call),
GCLISP replaces (using rplacb) a macro call with its
expansion as part of the expansion process. In LISP
jargon, this type of macro is called a displacing
macro.

An in-depth explanation of macros may be found in the CLRM.

8.1 Macro Definition

[Function]

90 GOLDEN COMMON LISP REFERENCE MANUAL

macro~function symbol => nil/expansion-runction

This function is a predicate which is true if and only if the
function definition of symbol is a macro definition.

The argument must be a symbol. Instead of returning t to
indicate true, the macro expansion function is returned.

defmacro Name Macro-lambda-list
{Declaration I Doc-string}*
{Form}* => name

[Macro]

This macro makes the function definition of name a macro
definition. It also creates the associated expansion
function.

name must be a symbol that does not name a special form.

macro-lambda-list is an extended lambda-list, similar to the
lambda-list of a lambda-expression. It is matched against the
rest of the macro-call form.

The macro-lambda-list may contain the lambda-list keywords:
&optional, &rest, and &aux. 'l'Wo additional lambda-list
keywords are allowed: &body and &whole. &body is synonymous
with &rest (but more meaningful in some cases). &whole binds
the variable which follows it to the entire macro-call form.
If &whole is used, it must be the first element of a
lambda-list.

Also, any place where a normal lambda-list allows a parameter
name, macro-lambda-list allows an extended lambda-list. Each
embedded lambda-list is matched against a corresponding
sub-form of the macro-call form.

Finally, the macro-lambda-list may be a dotted-list with a
parameter name to the right of the dot. This is identical to
ending the list with &rest followed by the parameter name.

The forms constitute the body of the expansion function.

Compatibility note: The &key,
environment lambda-list keywords are
An embedded lambda-list must not
keywords.

allow-other-keys, and
not currently supported.
contain any lambda-list

CHAPTER a: Macros 91

[Special form]

macro Name (Var) {Form}* => name

This special form is the macro definition primitive.

8.2 Macro Expansion

[Function]

macroexpand form => macro-expansion boolean

This function repeatedly expands form until the resulting form
is no longer a macro-call form. It then returns the resulting
form and either t or nil depending upon whether or not the
original form was a macro call form or not, respectively.

In effect, macroexpand repeatedly calls macroexpand-1 until
the resulting form is no longer a macro call form.

[Function]

macroexpand-l form => macro-expansion boolean

This function attempts to expand a macro call form into its
macro expansion.

form is checked for being a macro call form. (A macro call
form is a list whose first element is a symbol that has a
macro definition associated with it.)

If form is a macro call form, the expansion
associated with the macro is called with form as
argument. The result (the expansion of the macro
the symbol t are returned by macroexpand-1.

function
its only

call) and

Otherwise, form is not a macro call and form and nil are
returned.

Chapter 9

Declarations

A declaration associates an entity with information which
may be helpful or necessary in processing that entity.

Traditionally, in LISP, the information-needed to interpret
a given entity is manifested by the entity itself or is
manifest within its context. Thus declarations are purely
optional, and typically are only used to provide information
to a compiler so that a program can be compiled more
efficiently.

In COMMON LISP, there is one type of declaration that is not
optional: special declarations. This is due to the fact that
COMMON LISP specifies that local variables be lexically scoped
in both interpreted and compiled programs.

In GCLISP, since lexical scoping is not currently supported
and no compiler is available, all declarations are completely
optional, and in fact, are totally ignored by the
interpreter.

Programmers who wish to transport programs written in GCLISP
to other COMMON LISP implementations should adhere to the
COMMON LISP rules on declarations (e.g., all global variables
should be declared special.

9.1 Declaration Syntax

[Special form]

declare {Deel-spec}* => nil

This special form has no effect; it does not examine or
evaluate any of its arguments, and it returns nil.

It is included for compatibility with other COMMON LISP
implementations.

CHAPTER 9: Declarations 93

Compatibility note: The special declaration specifier has no
effect on the interpreter. Also, declarations (i.e., declare
special forms) are evaluated by the interpreter, but they have
no effect.

9.2 Declaration Specifiers

Currently, all declaration specifiers (including special)
are ignored by the GCLISP interpreter.

9.3 Type Declaration for Forms

GCLISP does not currently support type declarations for
forms.

Chapter 10

Symbols

Next to lists, symbols are the most fundamental LISP
objects. They are used to represent entities with various
properties, to name variables, and to name functions.

Each GCLISP symbol has the following components (sometimes
called cells):

value

property list

The current value of the variable named by the
symbol. The current value may be undefined.

A list which contains property/value pairs.

function definition

package

The current function (or macro, or
form) definition of the symbol. The
function definition may be undefined.

special
current

The package that owns this symbol (i.e., the
symbol's home package),

In addition, each symbol has a print name. The print name
is a sequence of characters which uniquely identify a symbol
within a package.

Compatibility note: A symbol's print name is not stored as
an object of type string. Thus, functions which return a
symbol's print name as a string (e.g., symbol-name) always
create a string.

10.1 The Property List

[Function]

get symbol indicator &optional default => property-value

This function returns the property-value associated with
indicator on the property list of symbol.

CHAPTER 10: Symbols 95

If there is no such indicator on symbol's property list (i.e.
indicator is not eq to some indicator on the property list),
default (which defaults to nil) is returned.

Note that there is no way to distingUish between a property
whose value is default, and a non-existent property.

[Function]

remprop symbol indicator => boolean

This function removes the property, whose indicator is eq to
indicator, from the property list of symbol.

If a property on the property list of symbol does have an
indicator eq to indicator, the property's indicator and value
are spliced out of the property list, and remprop returns t;
otherwise, the property list is unaffected, and nil is
returned.

(remprop x y) <=> (remf (symbol-plist x) y)

[Function]

symbol-plist Symbol => property-list

This function returns the property list of symbol. Note that
the actual property list (not a copy) is returned.

Examples:

(progn (setf (get •foo •frob) 7)
(symbol-plist •foe)) => (frob 7)

[Macro]

96 GOLDEN COMMON LISP REFERENCE MANUAL

getf place indicator &optional default => property-value

This macro returns the property-value associated
indicator on the property list returned by place.

with

getf is the generalized variable version of get.

If there is no such indicator on the property list (i.e.
indicator is not eq to some indicator on the property list),
default (which defaults to nil) is returned.

place must evaluate to a list.

Note that there is no way to distinguish between a property
whose value is default, and a non-existent property.

compatibility note: getf is not acceptable as a place to
setf.

[Function]

remf place indicator => boolean

This function removes the property, whose indicator is eq to
indicator, from the property list named by place.

remf is the generalized variable version of remprop.

place must be a place acceptable to setf.

If a property on the property list named by place has an
indicator eq to indicator, then the property's indicator and
value are spliced out of the property list, and remf returns
t; otherwise, the property list is unaffected, and nil is
returned.

[Function]

get-properties place indicator-list
=> indicator value nil/property-list-tail

This function searches the property-list stored at place for
an indicator that is eq to a member of indicator-list.

CHAPTER 10: Symbols 97

10.2 The Print Name

[Function]

symbol-name symbol => print-name

This function creates and returns a string that contains the
print name of symbol.

[Function]

sa.mepna.mep symboll symbol2 => boolean

This function is a predicate which is true if and only if the
print name of symboll is equal to the print name of symbol2.

10.3 Creating Symbols

[Function]

make-symbol print-name => new-symbol

Creates and returns an uninterned symbol whose print name is
print-name.

print-name must be a string.

The new symbol has no value, no functional definition, an
empty property list, and no home package.

[Function]

98 GOLDEN COMMON LISP REFERENCE MANUAL

copy-symbol symbol &optional copy-props-p => new-symbol

This function creates and returns an uninterned symbol with
the same print name as symbol.

If copy-props-pis nil (the default), the new symbol will be
unbound, have no functional definition, and have an empty
property list.

Otherwise, if copy-props-p is t, the value and function
definition of the new symbol will be the same as those of
symbol, and the property list of new symbol will be a copy of
the property list of symbol.

[Function]

qensym &optional reset => new-symbol

Creates and returns an uninterned symbol with an invented
print name.

The invented print name consists of a prefix (oriqinally "G")
followed by the decimal representation (without a decimal
point) of an inteqer (oriqinally 1 0 1). Each time (after)
qensym invents a print name, the inteqer is incremented by
one.

The optional arqument, reset, if provided, must be a string or
a non-neqative inteqer. If reset is a string, then the prefix
used by gensym is changed to that string. If reset is a
non-neqative integer, then the counter used by gensym is reset
to reset.

After resetting the prefix or the counter, gensym returns a
new symbol (with the new prefix or integer) as it normally
does.

Examples:

(values (qensym)
(gensym 64)
(gensym)
(gensym 11 foo-11)

(gensym))
=> qo g64 g65 foo-66 foo-67

CHAPTER 10: Symbols 99

[Function]

symbol-package symbol => nil/package

This function returns the home package of symbol or nil if
symbol has no home package.

[Function]

keywordp object => boolean

This function is a predicate which is true if and only if
object is a keyword symbol.

Chapter 11

Packaqes

A package represents a name space (i.e., a mapping from
print names to symbols). GCLISP provides all of the essential
COMMON LISP package functions and variables (although some
less useful ones are not currently implemented).

For an in-depth discussion of the package system, consult
the CLRM.

11.1 Consistency Rules

GCLISP adheres to the COMMON LISP consistency rules.

11.2 Package Names

GCLISP package
specification.

naming adheres

11.3 Translating Strings to Symbols

to the COMMON LISP

GCLISP's translation of strings to symbols adheres to the
COMMON LISP specification.

11.4 Exporting and Importing Symbols

GCLISP's exporting and importing of symbols adheres to the
COMMON LISP specification.

CHAPTER 11: Packages 101

11.5 Name Conflicts

GCLISP's signalling and handling of name conflicts adheres
to the COMMON LISP specification.

11.6 Built-in Packages

GCLISP provides all of the COMMON LISP specified packages.

ll.7 Package System Functions and Variables

[Variable]

•package• => current-package

The value of this variable is the current package, i.e., the
package which is used by the LISP reader to map a print name
to a symbol.

Only objects of type package may be assigned to
variable.

Its initial value is the user package.

this

[Function]

make-package package-name &key :nicknames :use => package

This function creates and returns a new package named
package-name.

package-name must be an acceptable package name (i.e., a
string or a symbol which is not used as a name for an existing
package).

102 GOLDEN COMMON LISP REFERENCE MANUAL

:nicknames must be a list of acceptable package names. Each
nickname may be used as an alternative name for the package.
:nicknames defaults to the empty list.

:use must be a list of packages (or their names). The
external symbols of each of the packages is inherited by the
new package. :use defaults to a list of one package, the LISP
package.

[Function]

in-package package-name &key :nicknames :use => package

If a package named package-name already exists, in-package
returns that package, adding any new names in the :nicknames
list or new packages in the :use list.

Otherwise, if no such package exists, in-package creates and
returns a new package just like make-package.

In either case, in-package also assigns the package that it
returns to the variable •package•.

in-package is intended to be
containing a subsystem that
package.

used at the start of a file
is to be placed into its own

[Function]

find-package name => nil/package

This function is a predicate which is true if and only if name
is the name or nickname of some package,

name must be either a string or a symbol (whose print-name is
used). Names are compared as if by string=.

Instead of returning t to indicate true, the package named by
name is returned.

[Function]

CHAPTER 11: Packages

package-name package => package-name

This function returns the name (a string) of package.

The argument must be a package (not a package name) •

103

[Function]

package-nicknames package => nickname-list

This function returns a list of nicknames (strings) of
package.

The argument must be a package (not a package name).

[Function]

package-use-list package => used-packages-list

This function returns a list of packages used by package.

The argument may be a package or the name of a package.

[Function]

package-used-by-list package => users-of-package-list

This function returns a list of packages that use package.

The argument may be a package or the name of a package.

package-shadowing-symbols package
=> shadowing-symbols-list

[Function]

This function returns package's list of shadowing symbols.

The argument may be a package or the name of a package.

104 GOLDEN COMMON LrSP REFERENCE MANUAL

Shadowing symbols are declared by the functions shadow and
shadowing-import.

[Function]

list-all-packages => all-packages-list

This function returns a list of all existing packages.

[Function]

intern string &optional package => symbol existed-p

This function returns
and which is present
whether or not the
intern.

both a symbol whose print name is string
in package, and a value indicating

symbol was created by this invocation of

The first argument must be a string (it may not be a symbol).

The second argument may be a package or the name of a package
(string or symbol). It defaults to the current package.

package is first searched for a symbol whose print name is
string= to string. (The search includes inherited symbols.)
rf one is not found, a symbol is created (as if by
make-symbol), with string as its print name, and is made
present in package. This newly created symbol is then
returned with the symbol nil.

Otherwise, if such a symbol is accessible in package, it is
returned with one of the following keywords:

:internal

:external

:inherited

The symbol was present in package as an
internal symbol.

The symbol was present in package as an
external symbol.

The symbol was inherited by package (and was
therefore accessable as an internal symbol in
package).

CHAPTER 11: Packages

find-symbol string &optional package
=> nil/symbol existed-p

105

[Function]

This function tests whether a symbol (call it s) whose print
name is string is accessible in package.

find-symbol is identical to intern except that find-symbol
never creates a new symbol. Instead, if s is not accessible
in package, both values returned by find-package are nil.
Otherwise, s is returned as the first value and the second
value is as specified for intern.

unintern symbol &optional package => boolean

This function removes symbol from package.

The first argument must be a symbol.

[Function]

The second argument may be a package or the name of a package
(string or symbol). It defaults to the current package.

If symbol is present in package, it is removed from package
and also from package's shadowing-symbols list (if it appears
there) • (Note that uninterning a shadowing symbol can uncover
a name conflict.) In addition, if package was the home
package of symbol, symbol is made homeless. unintern then
returns t.

Otherwise, if symbol is not present in package, unintern
returns nil.

[Function]

export symbols &optional package => t

This function causes each of the symbols present in package to
be accessible as external symbols.

symbols may be a single symbol or a list of symbols (with nil
representing the empty list). The symbols should be
accessible in package, an error is signalled if they are not.

106 GOLDEN COMMON LISP REFERENCE MANUAL

All packages which use
conflicts.

package are checked for name

package may be a package or the name of a package (string or
symbol) • It defaults to the current package.

[Function]

unexport symbols &optional package => t

This function changes each of the symbols which are present in
package as external symbols to internal symbols.

symbols may be a single symbol or a list of symbols (with nil
representing the empty list). The symbols should be
accessible in package, an error is signalled if they are not.
Symbols that are accessible in package but not external are
left unchanged. It is an error to unexport a symbol from the
keyword package.

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

[Function]

import symbols &optional package => t

This function causes each of the symbols to be present in
package as an internal symbol.

symbols may be a single symbol or a list of symbols (with nil
representing the empty list). import checks each symbol (call
it s) for a name conflict as follows: If s is already present
in package, import does not affect it; if a distinct symbol
with the same print name as s is accessible in package, import
signals an error (even if the distinct symbol is a shadowing
symbol).

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

[Function]

CHAPTER 11: Packages 107

shadowing-import symbols &optional package => t

This function causes each of the symbols to be present in
package as an internal symbol.

It is identical to import, except that each symbol is put on
package's shadowing-symbols list and no name conflict error is
ever signalled.

If a symbol (call it s) that is present in package has the
same print name as, but is distinct from, a symbol being
imported by shadowing-import, then s is uninterned.

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

[Function]

shadow symbols &optional package => t

This function causes symbols with the same print names as
symbols to be present in package as internal symbols and to be
placed on the shadowing-symbols list of package. A name
conflict error is never signalled.

symbols may be a single symbol or a list of symbols (with nil
representing the empty list). shadow gets the print name of
each symbol and checks to see if a symbol (call it s) with
that print name is present in or inherited by package.

If s is present in package, shadow simply adds s to the
shadowing-symbols list of package.

Otherwise, if s is inherited by package, a new symbol with the
same print name as s is created and made present in package as
an internal symbol. The new symbol is also added to the
shadowing-symbols list of package.

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

[Function]

use-package packages-to-use &optional package => t

This function adds each of the packages-to-use to the use-list

108 GOLDEN COMMON LISP REFERENCE MANUAL

of package.

packages-to-use must be a package or package name, or a list
of such. package inherits each package's external symbols,
i.e. the external symbols will be accessible in package as
internal symbols. Each external symbol is checked for name
conflicts.

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

[Function]

unuse-package packages-to-unuse &optional package => t

This function removes each of the packages-to-unuse from the
use-list of package.

packages-to-use must be a package or package name, or a list
of such. package no longer inherits each package's external
symbols, i.e., the external symbols are not accessible in
package as internal symbols.

package may be a package or the name of a package (string or
symbol). It defaults to the current package.

do-symbols (Var [package-form [Result-form]])
{declaration)* {Tag I Statement}*
=> result-form-results

[Macro]

This macro provides simple iteration over the symbols that are
accessible in a package.

var must be a symbol. package-form must evaluate to a
package. result-form must be a valid form. The rest of the
macro call is treated as an implicit tagbody.

The tagbody and the result-form are within an implicit block
and within an environment in which var is bound. For each
symbol that is accessible in the package, var is assigned that
variable and the tagbody is evaluated. (return may be used to
exit the iteration at any time.)

After the
(with var

iteration is complete, the result-form is evaluated
bound to nil) and its results are returned by

CHAPTER 11: Packages

do-symbols.

do-external-symbols (Var [package-form [result-form]])
{declaration}* {Tag I statement}*
=> result-form-results

109

[Macro]

This macro prov.ides simple iteration over the symbols that are
present in a package as external symbols. In all other
respects it is identical to do-symbols.

do-all-symbols (Var [result-form]) {declaration}*
{Tag J statement}*
=> result-form-results

[Macro]

This macro provides simple iteration over all the symbols in
every package. It functions similarly to do-symbols. Note
that symbols which are present in more than one package will
be processed more than once.

11.8 Modules

Modules are not currently supported.

Chapter 12

NUmbers

·GCLISP provides the following distinct types of numbers:
fixnums, single-floats, and double-floats.

Fixnums are the only type of integer currently supported by
GCLISP. A GCLISP fixnum is represented in two's complement

15 15
notation and may range from -2 to 2 -1 (thus a fixnum
occupies 16 bits). There are no pointers to fixnums, they are
directly represented by a variant type of pointer. An error
is signalled if an integer computation produces a result
outside this range.

Two types of floating-point numbers, of different
precisions, are provided by GCLisp. Both conform to the IEEE
"Proposed Standard for Binary Floating Point Arithmetic." To
be precise, a single precision floating-point number is
represented in Intel 8087 short real format, while a double
precision floating-point number is represented in Intel 8087
long real format. Thus, a single precision float occupies 32
bits, can represent 6 to 7 significant digits, and has a range

-37 38
from 8.43*10 to 3.37*10 , while a double precision float
occupies 64 bits, can represent 15 significant digits, and has

-307 308
a range from 4.19*10 to l.67*10 . An error is signalled
if a floating-point computation causes the exponent to
overflow or underflow.

12.l Precision, Contagion, and Coercion

GCLISP conforms to the COMMON LISP rules of coercion and
contagion.

CHAPTER 12: Numbers lll

12.2 Predicates on Numbers

Each of the following predicates requires that its argument
at least be of type number.

[Function]

zerop number => boolean

This function is a predicate which is true if and only if
number is zero (either of type integer or float).

The argument must be of type number.

[Function]

plusp number => boolean

This function is a predicate which is true if · and only if
number is strictly greater than zero.

The argument must be of type number.

[Function]

minusp number => boolean

This function is a predicate which is true if and only if
number is strictly less than zero.

The argument must be of type number.

[Function]

112 GOLDEN COMMON LISP REFERENCE MANUAL

oddp integer => boolean

This function is a predicate which is true if and only if
integer is odd (not evenly divisible by two).

The argument must be of type integer.

[Function]

evenp integer => boolean

This function is a predicate which is true if and only if
integer is even (evenly divisible by two).

The argument must be of type integer.

12.3 Comparisons on Numbers

Each of the following functions requires that its arguments
all be of type number. The arguments may be of different
subtypes; conversions will be performed according to the rules
of coercion and contagion.

[Function]

= number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are all the same number.

Each argument must be of type number. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

/= number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are all different numbers.

CHAPTER 12: Numbers 113

Each argument must be of type number. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

< number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are numbers which are monotonically increasing from
left to right.

Each argument must be of type number. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

> number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are numbers which are monotonically decreasing from
left to right.

Each argument must be of type number. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

<= number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are numbers which are monotonically nondecreasing
from left to right.

Each argument must be of type number. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

114 GOLDEN COMMON LISP REFERENCE MANUAL

>= number &rest more-numbers => boolean

This function is a predicate which is true if and only if the
arguments are numbers which are monotonically nonincreasing
from left to right.

Each argument must be of type nUlllber. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

[Function]

max number &rest more-numbers => greatest-number

This function returns the argument which is greatest (i.e.,
closest to positive infinity).

All arguments must be of type nUlllber. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

Implementation note: If any of the arguments to max is of type
float, then the result will be of the same type.

[Function]

min number &rest more-numbers => least-number

This function returns the argument which is least (i.e.,
closest to negative infinity).

All arguments must be of type nUlllber. Arguments of different
subtypes are converted according to the rules of coercion and
contagion.

Implementation note: If any of the arguments to min is of type
float, then the result will be of the same type.

12.3.1 Comparisons on Unsigned Fixnums

Each of
arguments.
integers.

the following functions requires
The fixnums are treated as

two fixnums as
16-bit unsigned

CHAPTER 12: Numbers 115

[Function]

<& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function is a predicate which is true if and only if
unsigned-fixnum-1 is less than unsigned-fixnum-2.

[Function]

>& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function is a predicate which is true if and only if
unsigned-fixnum-1 is greater than unsigned-fixnum-2.

12.4 Arithmetic Operations

Each of the following functions requires that its arguments
all be of type number. The arguments may be of different
subtypes; conversions will be performed according to the rules
of coercion and contagion.

[Function]

+ &rest numbers => sum

This function returns the arithmetic sum of its arguments. If
no arguments are given, the integer O (the identity for this
operation) is returned.

All of the arguments must be of type number.
different subtypes are converted according to
coercion and contagion.

number &rest more-numbers => difference

Arguments
the rules

of
of

[Function]

When given one argument, this function returns the negative of
that argument.

116 GOLDEN COMMON LISP REFERENCE MANUAL

When given two or more arguments, this function successively
subtracts the second through the last argument from the first
argument and returns the result.

All of the arguments must be of type number. Arguments of
different subtypes are converted according to the rules of
coercion and contagion.

(- nl n2 n3 ••• nn-1 nn)
<=> C- C- • • • <- (- nl n2)

n3) ••• nn-1) nn)

[Function]

* &rest numbers => product

This function returns the arithmetic product of its
arguments.· If given no arguments, the integer l (the identity
for this operation) is returned.

All of the arguments must be of type number. Arguments of
different subtypes are converted according to the rules of
coercion and contagion.

[Function]

/ number &rest more-numbers => quotient

When given one argument, this function returns the reciprocal
of that argument.

When given two or more arguments, this function successively
divides the second through the last argument into the first
argument and returns the result.

All of the arguments must be of type number. Arguments of
different subtypes are converted according to the rules of
coercion and contagion.

(/ nl n2 n3 ••. nn-1 nn)
<=> (/ (/ ••• (/ (/ nl n2)

n3) ••• nn-1) nn)

CHAPTER 12: Numbers 117

[Function]

1+ number => successor

This function returns the sum of number and one. It is
equivalent to,

(+number 1).

[Function]

1- number => predecessor

This function returns the difference of number and one. It is
equivalent to,

(-number 1).

[Macro]

incf place [delta] => incremented-result

This macro adds the value of delta to the number stored at
place, stores this sum back into place, and returns the sum.

place must be a form acceptable as a generalized variable to
setf. The value of the generalized variable named by PLACE
must be a number.

If the delta argument is given, it must evaluate to a number.
If it is not given, delta defaults to the integer 1.

[Macro]

118 GOLDEN COMMON LISP REFERENCE MANUAL

decf place [delta] => decremented-result

This macro subtracts the value of delta from the number stored
at place, stores this difference back into place, and returns
the difference.

place must be a form acceptable as a generalized variable to
setf. The value of the generalized variable named by place
must be a number.

If the delta argument is given, it must evaluate to a number.
If it is not given, delta defaults to the integer l.

12.4.l Unsigned Fixnum Arithmetic

Each of
arguments.
integers.

the following functions requires
The fixnums are treated as

two fixnums as
16-bit unsigned

[Function]

+& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function returns the sum of two unsigned fixnums.

[Function]

-& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function returns the difference of unsigned-fixnum-1 and
unsigned-fixnum-2.

[Function]

*& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function returns the product of two unsigned fixnums.

CHAPTER 12: Numbers 119

[Function]

/& unsigned-fixnum-1 unsigned-fixnum-2 => unsigned-fixnum

This function returns the quotient of unsigned-fixnum-1 and
unsigned-fixnum-2.

12.5 Irrational and Trancendental Functions

All of the following functions require the presence of the
Intel 8087 Numeric Processor Extension.

12.5.l Exponential and Logarithmic Functions

[Function]

exp number => number

This function returns e raised to the power number, where e is
the base of the natural logarithms,

[Function]

expt base-number power-number => number

This function returns base-number raised to the power
power-number. If both arguments are integers the result will
be an integer; otherwise, a floating-point number may result.

[Function]

log number &optional base => number

This function returns the logarithm of number in the base base
(which defaults to 0).

120 GOLDEN COMMON LISP REFERENCE MANUAL

[Function]

sqrt number => number

This function returns the principle square root of number.

12.5.2 Trigonometric and Related Functions

abs number => number

This function returns the absolute value of number.

(abs number)
<=> (if (minusp number)

(- number)
number)

[Function]

[Function]

signum number => sign-number

This function will return one
depending on whether number is
respectively.

of the numbers, -1, o, or 1,
negative, zero, or positive,

(signum number)
<=> (if (zerop number)

number
(/number (abs number)))

[Function]

CHAPTER 12: Numbers 121

sin radians => number

This function returns the sine of radians.

[Function]

cos radians => number

This function returns the cosine of radians.

[Function]

tan radians => number

This function returns the tangent of radians.

[Function]

atan y &optional x => radians

This function returns an arc tangent in radians. If given one
argument, atan returns its arc tangent. Given two arguments,
the arc tangent of y/x is returned.

12.5.3 Branch Cuts, Principle Values, and Boundary Conditions
in the Complex Plane

GCLISP does not currently support complex numbers.

12.6 Type Conversions and Component Extractions on Numbers

[Function]

122 GOLDEN COMMON LISP REFERENCE MANUAL

float number &optional template => float-number

This function converts number to a floating point number,
i.e., an object of type float.

number must be of type number. The optional argument,
template, must be of type float. If template is not given,
then number is converted to a floating point number of type
single-float; unless number is already of type float, in which
case it is simply returned. If template is given, then number
is converted to a floating point number of the same type as
template (even if number was already of type float).

[Function]

floor number => integer

This function returns the greatest integer that is less than
or equal to number, i.e., it truncates toward negative
infinity.

[Function]

ceiling number => integer

This function returns the least integer that is not less than
number, i.e., it truncates toward positive infinity.

[Function]

truncate number &optional divisor => number

This function converts a specified number to an integer by
truncating towards zero.

number must be of type
divisor, is not given,
same type as number).

number. If the optional argument,
it defaults to the number l (of the

Given two arguments, n and d, truncate returns two values, q
and r, such that,

CHAPTER 12: Numbers 123

q * d + r = n.

Where q is an integer such that (ABS q) < (ABS n), and r is
a number whose type is either integer (if both n and d are
integers) or float (if either n or d is of type float).

round number => integer

This function returns the integer that is closest
If two integers are equally close, the even
returned.

mod integer divisor => integer

[Function]

to number.
integer is

[Function)

This function returns the smallest integer remainder of
integer/divisor that is of the same sign as divisor. Both
arguments must be integers.

12.7 Logical Operations on Numbers

The following functions accept only integers (i.e., fixnums)
as arguments. They all treat an integer as a sequence of bits
which represents the value of the integer in two's-complement
notation.

logier &rest integers => integer

This function returns an integer which
bit-wise logical inclusive or of all of
arguments are given, zero (the identity
returned.

[Function)

is the result of a
its arguments. If no
for this operation) is

124 GOLDEN COMMON LISP REFERENCE MANUAL

loqxor &rest integers => integer

This function returns an integer which
bit-wise logical exclusive or of all of
arguments are given, zero (the identity
returned.

logand &rest integers => integer

[Function]

is the result of a
its arguments. If no
for this operation) is

[Function]

This function returns an integer which is the result of a
bit-wise logical and of all of its arguments. If no arguments
are given, -1 (the identity for this operation) is returned.

[Function]

logeqv &rest integers => integer

This function returns an integer which is the result of a
bit-wise logical equivalence (i.e., the exclusive nor) of all
of its arguments. If no arguments are given, -1 (the identity
for this operation) is returned.

[Function]

lognot integer => integer

This function returns an integer which is the bit-wise logical
not of INTEGER.

(logbitp index (lognot integer))
<=> (not (logbitp index integer))

CHAPTER 12: Numbers 125

[Function]

logtest integerl integer2 => boolean

This function is a predicate which is true if and only if
there is a bit in integerl and a bit in the same position in
integer2 which are both one-bits.

(logtest integerl integer2)
<=> (not

(zerop
(logand integerl integer2)))

logbitp index integer => boolean

[Function]

This function is a predicate which is true if and only if the
indexth bit of integer is a one-bit.

(logbitp index integer)
<=> (not (zerop (logand integer

(ash l index))))

ash integer count => integer

[Function]

This function arithmetically shifts integer by count bit
positions.

If count is a non-negative integer, integer is shifted count
positions to the left (filling with zeros on the right and
discarding bits on the left).

If count is a negative integer, integer is shifted count
positions to the right (copying the sign bit on the left and
discarding bits on the right).

126 GOLDEN COMMON LISP REFERENCE MANUAL

Compatibility note: since integers are of fixed size, an
arithmetic shift left can cause the sign to change.

lsh integer count => integer

This function
positions.

logically shifts integer by

[Function]

count bit

If count is a non-negative integer, integer is shifted count
positions to the left (filling with zeros on the right and
discarding bits on the left).

If count is a negative integer, integer is shifted count
positions to the right (filling with zeros on the left and
discarding bits on the right).

12.8 Byte Manipulation Functions

Byte manipulation functions are not currently supported.

12.9 Random Numbers

Random numbers are not currently supported.

12.10 Implementation Parameters

The float and fixnum parameters are not currently supplied.

Chapter 13

Characters

In GCLISP, the type character is a subtype of the type
fixnum. That is, GCLISP internally represents characters as
fixnums in the range o (inclusive) through 1024 (exclusive).

13.l Character Attributes

The current GCLISP char-code-limit is 256.

The current GCLISP char-font-limit is 1.

The current GCLISP char-bits-limit is 4.

13.2 Predicates on Characters

In the following predicates, the argument char must be an
object of type character.

[Function]

standard-char-p char => boolean

This function is a predicate which is true if and only if char
is a standard character.

Any character with non-zero bits or font attributes is not a
standard character.

[Function]

128 GOLDEN COMMON LISP REFERENCE MANUAL

alpha-char-p char => boolean

This function is a predicate which is true if and only if char
is an alphabetic character.

In the standard character set, the letters A through Z and a
through z are alphabetic.

[Function]

upper-case-p char => boolean

This function is a predicate which is true if and only if char
is an upper-case (majuscule) character.

In the standard character set, the letters A through z are
upper-case.

[Function]

both-case-p char => boolean

This function is a predicate which is true if and only if
either char is an upper-case character and it has a
corresponding lower-case character; or char is a lower-case
character and it has a corresponding upper-case character.

In the standard character set, the upper-case letters A
through z have the corresponding lower-case letters a through
z, and vice versa.

[Function]

digit-char-p char &optional radix => weight

This function is a predicate which is true if and only if char
is digit of the specified radix.

char must be a character and radix must be an integer in the
range 2 through 36 (inclusive). If not given, radix defaults
to 10. If digit-char-p is true, it returns the weight (an
integer) of the digit in the specified radix.

CHAPTER 13: Characters 129

In the standard character set, the characters o through 9 and
the alphabetic characters (A to z, a to z) are digits with
weights O through 9 and 10 through 36 respectively.

[Function]

char= char &rest more-chars => boolean

This function is a predicate which is true if and only if all
of its arguments are all the same character.

[Function]

char-equal char &rest more-chars => boolean

This function is a predicate which is true if and only if the
arguments are all the same character (ignoring differences in
case) •

[Function]

char-lessp char &rest more-chars => boolean

This function is a predicate which is true if and only if the
arguments are characters which are monotonically increasing
from left to right (ignoring differences in case).

13.3 Character Construction and Selection

char-code char => code

This function returns the code attribute of char.
be a non-negative integer less than 256.

[Function]

code will

130 GOLDEN COMMON LISP REFERENCE MANUAL

char-bits char => bits

This function returns the bits attribute of char.
be a non-negative integer less than 3.

code-char code &optional bits font => character

[Function]

bits will

[Funqtion]

This function
specified code,
character object
nil is returned.

returns a character object that has the
bits, and font attributes. If such a

is not valid within the given implementation,

The bits and font attributes default to o.

13.4 Character Conversions

[Function]

char-upcase char => up-char

This function attempts to convert char to its upper-case
equivalent.

If char is a lower-case character with an upper case
equivalent, that equivalent character is returned; otherwise
char is returned.

[Function]

CHAPTER 13: Characters lll

char-downcase char => low-char

This function attempts to convert char to its lower-case
equivalent.

If char is an upper-case character
equivalent, that equivalent character is
char is returned.

char-name char => name

with an
returned;

lower case
otherwise

[Function]

This function attempts to return the name (a string) of char.

If there is a name for char, that name is returned; otherwise
nil is returned.

The standard characters <newline>
respective names Newline and Space.

name-char name => character

and <space> have the

[Function]

This function attempts to return the character named by name
(which may be any object that can be coerced to a string).

If name matches the name of some character (using
string-equal, then that character is returned; otherwise nil
is returned.

The standard characters <newline>
respective names Newline and Space.

13.5 Character Control-Bit Functions

and <space> have the

[Function]

132 GOLDEN COMMON LISP REFERENCE MANUAL

char-bit char bit-name => boolean

This function returns t if the bit-name bit is set in char,
otherwise it returns nil.

bit-name must be one of the following: :control, or :meta.

[Function]

set-char-bit char bit-name new-value => char

This function returns char with the bit-name bit set (or
reset) to new-value.

If new-value is nil, the bit is reset; otherwise, the bit is
set.

bit-name must be one of the following: :control, or :meta.

Chapter 14

sequences

A sequence is an ordered set of elements. Since an object
of type list or an object of type vector (i.e., a
one-dimensional array) can be used to represent an ordered set
of elements, both types are considered subtypes of the type
sequence.

There are operations which
argument(s) be an ordered set of
Thus, they work equally well on
provides some of the most useful

14.l simple Sequence Functions

require only that their
elements (i.e., a sequence).
lists or vectors. GCLISP

generic sequence operations.

[Function]

subseq sequence start &optional end => subsequence

This function returns a new sequence (of the same type as
sequence) containing the elements of sequence from position
start (inclusive) to end (exclusive).

[Function]

length sequence => number-of-elements

This function returns the number of elements (a non-negative
integer) in sequence.

If sequence is a vector with a fill-pointer, the active length
of the vector is returned.

134 GOLDEN COMMON LISP REFERENCE MANUAL

[Function]

reverse sequence => reverse-sequence

This function creates and returns a new sequence of the same
type as sequence, in which the elements of sequence are stored
in reverse order.

compatibility note: The sequence argument must be a list.

[Function]

nreverse sequence => reverse-sequence

This function returns a sequence in which the elements of
sequence are stored in reverse order. sequence may be altered
in the process. The result of nreverse may or may not be eq
to sequence.

compatibility note: The sequence argument must be a list.

14.2 Concatenating, Mapping, and Reducing Sequences

The functions in this section currently operate on lists,
but not on vectors.

[Function]

some predicate sequence &rest more-sequences => nil/element

This function maps predicate over the sequence arguments. If
at some point predicate returns a non-nil value, some
immediately returns that value. If the end of one of the
sequences is reached (i.e., predicate always returned nil),
some returns nil.

Compatibility note: The sequence arguments must be lists.

CHAPTER 14: Sequences 135

[Function]

every predicate sequence &rest more-sequences => boolean

This function maps predicate over the sequence arguments. If
at some point predicate returns nil, every immediately returns
nil. If the end of one of the sequences is reached (i.e.,
predicate always returned a non-nil value), every returns t.

compatibility note: The sequence arguments must be lists.

14.3 Modifying sequences

[Function]

remove item sequence => new-sequence

This function returns a copy of sequence with all elements eql
to item removed.

remove is the non-destructive counterpart of delete.

Compatibility note: The sequence argument must be a list.

[Function]

remove-if test sequence => new-sequence

This function returns a copy of sequence with all elements
that satisfy test removed.

remove-if is the non-destructive counterpart of delete-if.

Compatibility note: The sequence argument must be a list.

[Function]

136 GOLDEN COMMON LISP REFERENCE MANUAL

delete item sequence => sequence

This function returns sequence with all elements eql to item
removed.

delete is the destructive counterpart of remove.

compatibility note: The sequence argument must be a list.

[Function]

delete-if test sequence => sequence

This function returns sequence with all elements that satisfy
test removed.

delete-if is the destructive counterpart of remove-if.

compatibility note: The sequence argument must be a list.

14.4 Searching Sequences for Items

14.S sorting and Merging

[Function]

'sort sequence predicate &key :key => sorted-sequence

This function destructively sorts sequence in the order
imposed by predicate and returns the sorted sequence.

predicate must be a function of two arguments which returns a
non-nil value if and only if the first argument is strictly
less than the second argument.

:key must be a function of one argument which, when given an
element of sequence, returns the key for that element. The
results of the :key function are given to predicate.

sort is not guaranteed •stable'.

Chapter 15

Lists

A cons (also called a dotted-pair) is a data structure that
consists of two components, named after their respective
accessor functions: car and cdr (pronounced like could-er).
(The two components are also named after the newer and more
meaningful accessor functions first and rest.) The car and
cdr components of a cons are referred to as the "car of" and
"cdr of" the cons, respectively.

A given non-empty list is represented by one or more
conses. The car of the first cons contains the first element
of the list. The car of the second cons contains the second
element of the list. In general, the car of the nth cons
always contains the nth element of a non-empty list. The cdr
of the first cons contains the second cons (actually, a
pointer to it). The cdr of the second cons contains the third
cons. In general, the cdr of the ntn cons contains the nth+l
cons.

Thus, each cons can be viewed as a sublist of the cons that
contains it. The cdr of the last cons of a list contains an
atom (i.e., a non-cons object). If the atom is the symbol
nil, the list is called a true or ordinary list; otherwise,
the list is called a dotted list.

The empty list is represented by the symbol nil (which may
also be represented by ().)

15.1 Conses

[Function]

car list => first-element

This function returns the first element (i.e., the car) of
list.

list must be either a cons or nil (i.e., it must be of type

138 GOLDEN COMMON LISP REFERENCE MANUAL

list). If it is a cons, the car (i.e., the first component)
is returned; otherwise, if it is nil, nil is returned.

[Function]

cdr list => rest-element

This function returns the rest (i.e., the cdr -- all but the
first element) of list.

list must be either a cons or nil (i.e., it must be of type
list). If it is a cons, the cdr (i.e., the second component)
is returned; otherwise, if it is nil, nil is returned.

[Function]

caar list => object

This function is equivalent to

(car (car list)).

[Function]

cadr list => object

This function returns the second element of list.
equivalent to

It is

(car (cdr list)).

[Function]

CHAPTER 15: Lists 139

cdar list => object

This function is equivalent to

(cdr (car list)).

[Function]

cddr list => object

This function is equivalent to

(cdr (cdr list)).

[Function]

caaar list => object

This function is equivalent to

(car (car (car list))).

[Function]

caadr list => object

This function is equivalent to

(car (car (cdr list))).

[Function]

140 GOLDEN COMMON LISP REFERENCE MANUAL

cadar list => object

This function is equivalent to

(car (cdr (car list))).

[Function]

caddr list => object

This function returns the third element of list.
equivalent to

It is

(car (cdr (cdr list))).

[Function]

cdaar list => object

This function is equivalent to

(cdr (car (car list))).

[Function]

cdadr list => object

This function is equivalent to

(cdr (car (cdr list))),

CHAPTER 15: Lists 141

[Function]

cddar list => object

This function is equivalent to

(cdr (cdr (car list))).

[Function]

cdddr list => object

This function is equivalent to

(cdr (cdr (cdr list))).

[Function]

cons objectl object2 => cons

This function creates and returns a cons object whose car and
cdr are objectl and object2, respectively.

If object2 is a list object, one may think of cons as adding
objectl to the front of the list.

[Function]

neons object => cons

This function creates and returns a cons object whose car is
object and whose cdr is nil.

(neons object) <=> (list object)

142 GOLDEN COMMON LISP REFERENCE MANUAL

15.2 Lists

[Function]

endp list => boolean

This function is a predicate which is true if list is the
object nil.

list must be an object of type list.

Implementation note: An error is signalled if the argument to
endp is not of type list.

[Function]

list-length list => length

This function returns either an integer which represents the
number of elements in list or nil if list is circular.

The argument must be of type list.

[Function]

nth n list => object

This function returns the nth element of list, where the first
element of list is the Oth element.

[Function]

first list => element

This function returns the first element of list. It is

CHAPTER 15: Lists 143

equivalent to car.

[Function]

second list => element

This function returns the second element of list.
equivalent to cadr.

It is

[Function]

third list => element

This function returns the third element of list.
equivalent to caddr.

It is

rest list => rest-list

This function returns
containing the 2nd
equivalent to cdr.

the rest of
through the

nthcdr n list => sub-list

list
last

[Function]

(i.e., the list
element). It is

[Function]

This function returns the nth successive cdr of list. In
other words it returns the sublist of list containing the
nth+l through the last elements. Note that the Oth cdr of a
list is the list itself.

[Function]

144 GOLDEN COMMON LISP REFERENCE MANUAL

last list => last-cons

This function returns the last cons (not the last element) of
list. Note that the last cons of nil is nil.

[Function]

list &rest objects => list

This function creates and returns a list containing all of its
arguments. Given no arguments, list returns nil.

[Function]

list• object &rest other-objects => list

This function returns a list which is created by successively
consing, from right to left, all but the last argument onto
the last argument.

In other words, the last argument is used as the cdr of the
last cons of the list constructed from all the other
arguments. This implies that if the last argument to list• is
a non-nil atom, then the list returned is a dotted-list.

[Function]

make-list size &key :initial-element => list

This function creates and returns a list of length size, all
of whose elements are the :initial-element (which defaults to
nil). size must be a non-negative integer.

[Function]

append &rest lists => list

This function concatenates the lists together. All but the
last argument to append must be a list; the last argument may

CHAPTER 15: Lists 145

be any type of object.

append does not modify any of its arguments. It copies the
top-level list structure of each argument (except the last),
replacing the cdr of each argument's last cons with the
argument to the right.

[Function]

copy-list list => list-copy

This function returns a copy of list. The copy is equal to
list but not eq.

The elements of the copy are eq to their corresponding
elements in list (i.e., only the top-level list structure of
list is copied).

list may be a dotted-list, in which case the cdr of the last
cons of the copy will be eq to the cdr of the last cons of
list.

[Function]

copy-alist a-list => new-alist

This function creates and returns a copy of a-list in which
each element of type cons is replaced by a new cons with the
the same first and rest.

[Function]

copy-tree object => object-copy

This function recursively copies every cons in object and
returns the new copy.

[Function]

146 GOLDEN COMMON LISP REFERENCE MANUAL

nconc &rest lists => list

This function concatenates all of its arguments and returns
the resulting list.

All of the arguments must be
of each non-nil argument is
argument to its right.
returned.

lists. The cdr of the last cons
replaced by the first non-nil
The first non-nil argument is

push object place => result

This macro replaces the list stored in
variable place with a list created by consing
original list.

[Macro]

the generalized
object onto the

place must be a form acceptable as a generalized variable to
setf. object may be an object of any type.

If the list stored in place is thought of as a push-down
stack, then push pushes object onto that stack.

Compatibility note: The value returned by push is undefined.

pushnew object place => result

This macro replaces the list stored in the
variable place with a list created by adjoining
the original list.

[Macro]

generalized
object onto

place must be a form acceptable as a generalized variable to
sett. object may be an object of any type. adjoin conses an
object onto a list if and only if, the object is not already a
member of that list.

If the list stored in place is thought of as a set, then
pushnew adds object to that set.

compatibility note: The
undefined.

value returned by pushnew is

CHAPTER 15: Lists 147

[Macro]

pop place => object

This macro replaces the list stored in the generalized
variable place with the cdr of that list and returns the car
of that list.

place must be a form acceptable to setf as a generalized
variable. The object stored at place must be a list.

If the list stored
stack, then pop
returns it.

at
pops

place
the

is
top

thought of as a push-down
element from the stack and

[Function]

butlast list &optional n => truncated-list

This function creates and returns a list containing all but
the last n ele~ents of list.

n must be a non-negative integer. The argument list is not
modified in any way. If list has fewer than n elements, the
empty list 1 () 1 is returned.

[Function]

nbutlast list &optional n => truncated-list

This function returns a list containing all but the last n
elements of list. list may be modified in the process.

n must be a non-negative integer. If list contains n or fewer
elements, the empty list'()' is returned and list is left
unmodified. On the other hand, if list contains more than n
elements, nbutlast replaces the cdr of the cons N+l from the
end of list with nil and returns the modified list.

[Function]

148 GOLDEN COMMON LISP REFERENCE MANUAL

ldiff list sublist => new-list

This function creates and returns a list containing those
elements of list that appear before sublist.

Both list and sublist must be lists. If one of the conses
which make up list has a cdr containing sublist, then the copy
returned by ldiff will end with' that cons (i.e., the cdr of
that cons will be nil instead of sublist). Otherwise, a
complete copy of list is returned (i.e., the copy will be
equal to list). list is not modified in any way.

ldiff may be thought of as returning the difference of two
lists.

15.3 Alteration of List Structure

[Function)

rplaca cons object => cons

This function replaces the car of cons with object and returns
(the modified) cons.

cons must be an object of type cons. object may be an object
of any type.

rplaca stands for RePLAce CAr and is pronounced replacuh.

[Function]

rplacd cons object => cons

This function replaces the cdr of cons with object and returns
(the modified) cons.

cons must be an object of type cons. object may be an object
of any type.

rplacd stands for RePLAce CDr and is pronounced replacduh.

CHAPTER 15: Lists 149

[Function]

rplacb consl cons2 => consl

This function replaces the car and cdr of consl with the car
and cdr of cons2, respectively, and returns (the modified)
consl.

consl and cons2 must be of type cons.

rplacb stands for RePLAce Both the car and cdr and is
pronounced replacbuh.

[Function]

snoc cons object => list

This function replaces the cdr of cons with the neons of
object.

15.4 Substitution of Expressions

[Function]

subst new old tree => new-tree

This function returns a tree with new substituted for every
occurence of old. The original tree is not modified in any
way.

The three arguments to subst may be objects of any type. If
old is eql to tree, then subst returns new. If tree is not of
type cons and is not eql to old, then subst returns tree.
Otherwise, tree is a cons and subst is recursively applied to
its car and cdr. subst returns a cons containing the two
returned trees. Note that this returned cons may be the
original cons only if the two returned trees are eql to their
respective originals.

This definition implies that if no substitution is
old is eql to new, the original tree may be
Otherwise, a new tree (parts of which will be

made or if
returned.

eql to the

150 GOLDEN COMMON LISP REFERENCE MANUAL

original tree) must be returned.

compatibility note: Keyword arguments are not supported.

[Function]

sublis a-list tree => new-tree

This function performs the substitutions specified by a-list
upon tree and returns the resulting tree. The original tree
is not modified in any way.

a-list must be an association list, while tree may be an
object of any type. If (assoc tree a-list) returns a cons
(i.e., is true), then subst returns the cdr of that cons;
otherwise, if tree is not of type cons, then subst returns
tree. Otherwise, tree is a cons and subst is recursively
applied to its car and cdr. subst returns a eons containing
the two returned trees. Note that this returned cons may be
the original cons only if the two returned trees are eql to
their respective originals.

In effect, sublis performs several subst operations at once.

Compatibility note: Keyword arguments are not supported.

15.5 Using Lists as Sets

[Function]

member item list &key :test => list-boolean

This function is a predicate which is true
contains an element which satisfies
(funcall test item element) is true. If
returns the tail of list beginning with
satisfying :test.

:test defaults to eql.

if and only if list
the :test, i.e.,

member is true, it
the first element

Compatibility note: Only the
supported.

:test keyword argument is

CHAPTER 15: Lists 151

[Function]

member-if test list => nil/list-tail

This function is a predicate which is true if and only if list
contains an element which satisfies test, i.e.,
(funcall test element) is true. If member is true, it returns
the tail of list beginning with the first element satisfying
test.

Compatibility note: Keyword arguments are not
supported.

tailp sublist list => boolean

currently

[Function]

This function is a predicate which is true if and only if

(nthcdr n list) => sublist

for some n (0 <= n <=(length list)).

In other words, sublist must be either nil or one of the
conses which make up list.

[Function]

adjoin item list => new-list

This function adds item to list (using cons) and returns the
resulting list only if item is not already a member of list;
otherwise, the original list is returned.

item may be an object of any type, while list must be of type
list. The original list is not modified in any way. If one
thinks of list as representing a set, then adjoin may be
thought of as adding a new item to the set.

152 GOLDEN COMMON LISP REFERENCE MANUAL

(adjoin item list)
<=> (if (member item list)

list
(cons item list))

Compatibility note: No keyword arguments are supported.

15.6 Association Lists

An association list (or a-list for short) is a list whose
elements are either nil or dotted-pairs (i.e., conses). An
a-list is used to represent a mapping.

[Function]

aeons key datum a-list => new-a-list

This function creates and returns a new association list by
adding the association pair, key and datum, to the front of
the argument, a-list.

(aeons key datum a-list)
<=> (cons (cons key datum) a-list)

[Function]

pairlis key-list datum-list &optional a-list => new-a-list

This function returns an association list formed by adding the
association pairs created by pairing each key element in
key-list with its corresponding datum in datum-list to the
front of the optional a-list.

key-list and datum-list must be lists of equal length. a-list
(which defaults to nil) must also be a list. The order in
which the association pairs are added (i.e., consed) to a-list
is undefined.

CHAPTER 15: Lists 153

[Function]

assoc item a-list &key :test => assoc-pair

This function returns either the first association pair (i.e.,
a cons) contained in a-list whose key (i.e., car) satisfies
the :test, or nil if no such pair exists.

item may be an object of any type, while a-list must be a list
all of whose elements are lists. :test (which defaults to
eql) must be a functional predicate. A key satisfies the
:test if and only if

(funcall test item key)

is true.

assoc ignores nil within the a-list being searched.

Compatibility note: Only the
supported.

:test keyword argument is

[Function]

rassoc item a-list &key :test => assoc-pair

This function returns either the first association pair (i.e.,
a cons) contained in a-list whose datum (i.e., cdr) satisfies
the :test, or nil if no such pair exists.

item may be an object of any type, while
all of whose elements are lists. :test
eq~),must be a functional predicate. A
rtest if and only if

(funcall test item datum)

is true.

a-list must be a list
(which defaults to

datum satisfies the

assoc ignores any nil within the a-list being searched.

compatibility note: Only the :test keyword argument is

l.54 GOLDEN COMMON LISP REFERENCE MANUAL

supported.

16.1 Hash Table Functions

Chapter 16

Hash Tables

Currently,
functions.

GCLISP does not support any

16.2 Primitive Hash Function

sxhash object => hash-code

hash table

[Function]

This function is a hash function. Given an object of any
type, this function returns a non-negative integer (called the
hash code of object).

sxhash
equal).

hashes on tree
This means that

structure (also called,

(equal x y) implies <= (sxhash x) (sxhash yll

hashing on

in other words, sxhash takes the entire tree structure of
object into account when generating its hash code.

Chapter 17

Arrays

17.l Array Creation

make-array dimension &key :element-type
:initial-element :initial-contents :fill-pointer
:leader-length :named-structure-symbol
=> vector

[Function]

This function creates and returns a one-dimensional array
(also called a vector).

dimension must be a non-negative integer.
length of the vector.

It specifies the

:element-type must be one of the following type specifiers: t
(the default), string-char, or (unsigned-byte 8). It specifies
what type of element may be stored in the vector. Note that
the type. specifier t allows all types.

:initial-element must be an object of the type
:element-type. If provided, each element of
vector is initialized to it.

specified by
the created

:initial-contents must be a list whose length is equal to
dimension. The elements in the list must be of the type
specified by :element-type. The nth element of the vector is
initialized to the nth element of the list.

:fill-pointer must be either t, nil (the default), or a
non-negative integer less than or equal to dimension. If
:fill-pointer is nil, then vector will not have a fill
pointer; otherwise vector will have a fill pointer which is
initialized to either the end of the vector (by specifying t)
or some particular offset (by specifying an integer).

:leader-length must be a non-negative integer. If it is
positive, vector will have an array leader of that length.

CHAPTER 17: Arrays 157

:named-structure-symbol must be a symbol.
by make-array will be of type structure.
the name of the structure.

The object returned
The symbol is made

:initial-element and :initial-contents may not both be
specified. If neither is specified, the initial values of the
vector elements are undefined.

compatibility note: Multi-dimensional arrays
supported. Not all keyword arguments are
bit-vectors are not supported. :initial-contents
list. Array-based structures can be created.

vector &rest objects => simple-general-vector

are not
supported.
must be a

[Function]

This function creates and returns a simple general vector
whose initial contents are objects.

(vector objl obj2 ••• objn)
<=> (make-array n

:initial-contents
(list objl obj2 •.. objn))

17.2 Array Access

aref vector index => array-element

[Function]

This function returns the value of the element at position
index in vector.

vector must be of type vector (i.e., a one dimensional
array) . index must be a non-negative integer less than the
dimension of vector. Note that vectors are indexed from
zero.

aref can access any element in vector ~egardless of the value
of a fill pointer for the vector (if one exists).

158 GOLDEN COMMON LISP REFERENCE MANUAL

17.3 Array Information

[Function]

array-in-bounds-p vector &rest index => boolean

This function is a predicate which is true if and only if
index is greater than O and less than the length of vector.

vector must be a vector, and index must be an integer.

[Function]

array-active-length array => length

This function returns the fill pointer of array if it has one;
otherwise, it returns the total number of elements in array.

[Function]

array-length array => length

This function returns the total number of elements in array,
regardless of the fill pointer.

17.4 Functions on Arrays of Bits

GCLISP does not currently support arrays of bits.

CHAPTER 17: Arrays 159

17.5 Fill Pointers

[Function]

array-has-fill-pointer-p array => boolean

This function is a predicate which is true if and only if
array has a fill pointer.

array must be an array.

[Function]

fill-pointer vector => integer

This function returns the fill pointer of vector.

vector must be of type vector and must
The fill pointer of a vector is always
less than the length of the vector.

have a fill pointer.
a non-negative integer

Implementation note: An error is signalled if the argument to
fill-pointer is not a vector with a fill pointer.

[Function]

vector-push new-element vector => previous-active-length

This function attempts to extend the active length of vector,
storing new-element into the new active element and returning
the previous active length.

vector must be of type vector and must
new-element must be of the type
:element-type.

have a
specified

fill pointer.
by vector's

If fill pointer is equal to the length of vector, vector is
left unmodified, and nil is returned; otherwise, new-element
is stored at the position indicated by the fill pointer, fill

160 GOLDEN COMMON LISP REFERENCE MANUAL

pointer is incremented by one, and the index where new-element
was stored is returned.

[Function]

vector-pop vector => element

This function decreases the active length of vector by one and
returns the value of the element designated by new value of
the fill pointer.

The argument to vector-pop must be of type vector and it must
have a fill pointer.

If the fill pointer is zero, an error is signalled; otherwise,
the fill pointer is decremented by one, and the value of the
element at the position specified by fill pointer is
returned.

17.6 Changing the Dimensions of an Array

GCLISP does not currently support adjustable arrays.

17.7 Array Leaders

[Function]

array-has-leader-p array => boolean

This function is a predicate which is true if and only if
array has an array leader.

[Function]

CHAPTER 17: Arrays 161

array-leader array-with-leader index => object

This function returns the indexth element of
array-with-leader's array leader.

[Function]

array-leader-length array => length

This function returns the length of array's array leader if it
has one and nil otherwise.

[Function]

store-array-leader object array-with-leader index
=> object

This function stores object in the indexth position of
array-with-leader's array leader.

object is returned.

17.8 Copying the Contents of an Array

[Function]

copy-array-contents from-array to-array => t

This function copies the contents of the from-array to the
to-array.

If from-array has more elements than to-array, the excess
from-array elements are ignored. If to-array has more
elements than from-array, its excess elements are filled with
nil (if it is a general array), or zero (if it is a
string-char or (unsigned-byte 8) array).

A fill pointer in either array is ignored.

18.l String Access

Chapter 18

strings

char string index => character

[Function]

This function returns the indexth character of string.

18.2 String Comparison

string= stringl string2 &key :startl
:endl :start2 :end2
=> boolean

[Function]

which is true if and only if the
stringl are equal to their

in string2. Strinqs of unequal

This function is a predicate
specified characters of
correspondinq characters
lenqths are not equal.

stringl and string2 must both be of type string. The keyword
arquments :startl and :endl (whose values must be non-neqative
inteqers), specify the ranqe of positions in stringl to be
included in the comparison. The ranqe has an inclusive lower
(:startl) bound and an exclusive upper (:endl) bound. The
keyword arquments :start2 and 1end2 are defined analogously
for string2.

Compatibility note: stringl and string2 cannot be symbols.

CHAPTER 18: strings

string-equal stringl string2 &key :start1
:endl :start2 :end2 => boolean

163

[Function]

This function is a predicate which is true if and only if the
specified characters of stringl are char-equal (i.e., equal
ignoring differences in case) to their corresponding
characters in string2. Strings of unequal lengths are not
equal.

stringl and string2 must both be of type string. The keyword
arguments :start1 and :end1 (whose values must be non-negative
integers), specify the range of positions in stringl to be
included in the comparison. The range has an inclusive lower
(:start1) bound and an exclusive upper (:endl) bound. The
keyword arguments :start2 and :end2 are defined analogously
for string2.

compatibility note: stringl and string2 cannot be symbols.

[Function]

string< stringl string2 &key :start1 :end1
:start2 :end2 => nil/index

This function is a predicate which is true if and only if
stringl is lexicographically less than string2.

stringl and string2 must both be of type string. The keyword
arguments :start1 and :endl (whose values must be non-negative
integers), specify the range of positions in stringl to be
included in the comparison. The range has an inclusive lower
(:startl) bound and an exclusive upper (:endl) bound. The
keyword arguments :start2 and :end2 are defined analogously
for string2.

compatibility note: stringl and string2 cannot be symbols.

string-lessp stringl string2 &key :start1
:endl :start2 :end2 => index-boolean

This function is a predicate which is true if and
stringl is lexicographically less than string2,

[Function]

only if
ignoring

164 GOLDEN COMMON LISP REFERENCE MANUAL

differences in case.

stringl and string2 must both be of type strinq. The keyword
arguments :startl and :endl (whose values must be non-neqative
integers), specify the ranqe of positions in stringl to be
included in the comparison. The range has an inclusive lower
(:startl) bound and an exclusive upper (:endl) bound. The
keyword arquments :start2 and :end2 are defined analoqously
for string2.

Compatibility note: stringl and string2 cannot be symbols.

[Function]

strinq-search key string &optional from to => nil/index

This function searches (in a case-sensitive manner) for the
strinq key in the strinq string, returning a non-nil value if
it is found and nil otherwise.

Both key and string must be strings. from is an integer that
specifies the position within string to begin the search; it
defaults to o. to is an integer that specifies the position
(exclusive) to end the search; it defaults to the length of
string.

If an instance of key is found within string, the index of the
first character of that instance is returned.

Note: The empty string ("") is a substring of every string.

[Function]

string-search• key string &optional from to => nil/index

This function searches (without regard to case) for the string
key in the string string, returning a non-nil value if it is
found and nil otherwise.

Both key and string must be strings. from is an integer that
specifies the position within string to begin the search; it
defaults to o. to is an integer that specifies the position
(exclusive) to end the search; it defaults to the length of
string.

If an instance of key is found within string, the index of the
first character of that instance is returned.

CHAPTER 18: Strings 165

Note: The empty string ('"') is a substring of every string.

18.3 String Construction and Manipulation

[Function]

string-append &rest strings => concatenated-string

This function concatenates copies of strings into a single
string.

[Function]

string-left-trim character-bag string => trimmed-string

This function returns a substring of string beginning with the
first character of string which is not contained in
character-bag.

Both arguments to string-left-trim must be of type string.
The substring returned by string-left-trim is not a displaced
array.

Implementation note: If no characters are trimmed, string
itself is returned.

compatibility note: Both arguments must be strings.

[Function]

string-right-trim character-bag string => trimmed-string

This function returns a substring of string
first character of string which is
character-bag.

ending with
not contained

the
in

Both arguments to string-right-trim must be of type string.
The substring returned by string-right-trim is not a displaced
array.

166 GOLDEN COMMON LISP REFERENCE MANUAL

Implementation note: If no characters are trimmed, string
itself is returned.

Compatibility note: Both arguments must be strings.

[Function]

string object => string

This function returns the string-type equivalent of object.
If object is of type string, it is returned. If object is of
type symbol, its print name is returned. If object is a
string character, a string containing that one character is
returned. If object is not one of the above types, an error
is signalled.

Chapter 19

structures

19.1 Introduction to structures

The GCLISP structure facility conforms to the COMMON LISP
standard except that only the the following def struct options
are currently supported:

:cone-name

:constructor

:predicate

:print-function

:type

:named

:initial-offset

19.2 How to Use Defstruct

defstruct {Name I (Name {Option}*)}
{Slot-description}+ => name

This macro defines a structured data type.

[Macro]

The following options are supported: :cone-name, :constructor,
:predicate, :print-function, :type, :named, :initial-offset.

168 GOLDEN COMMON LISP REFERENCE MANUAL

19.3 Using the Automatically Defined Constructor Function

See the COMMON LISP Reference Manual.

19.4 Defstruct Slot-options

Not currently supported.

19.5 Defstruct Options

See the COMMON LISP Reference Manual.

19.6 By-position Constructor Functions

Not currently supported.

19.7 Structures of Explicitly Specified Representational Type

See the COMMON LISP Reference Manual.

19.7.1 Unnamed Structures

See the COMMON LISP Reference Manual.

19.7.2 Named Structures

[Function]

CHAPTER 19: structures 169

named-structure-p object => nil/name

This function returns nil if object is not a named structure;
otherwise, if object is a named structure, its name is
returned.

[Function]

named-structure-symbol named-structure => name-symbol

This function returns the named-structure's name (a symbol).

19.7.3 Other Aspects of Explicitly Specified Structures

See the COMMON LISP Reference Manual.

Chapter 20

The Evaluator

20.1 Run-Time Evaluation of Forms

[Function]

eval form => object

This function is The Evaluator. It evaluates form and returns
the result of that evaluation.

form must be a valid (i.e. meaningful) form. Note that in
the evaluation of an eval function call form, the argument
form is evaluated twice: once because it is an argument to a
function, and once because that function is the evaluator.

[Variable]

•evalhook* => eval-hook-function

The value of this variable is used to replace eval in the
evaluation of forms.

If the value of this variable is nil (the default), eval is
used to evaluate forms. If the value of this variable is not
nil, then it must be a function (call it eval-func) of one
argument.

When a form is to be evaluated,
the form as an argument. The
used as the value of the form.

this eval-func is called with
value returned by eval-func is

During the evaluation of eval-func, the two
•evalhook* and •applyhook* are bound to nil.

variables

If a throw to a listener loop occurs, the same two variables
are set to nil.

CHAPTER 20: The Evaluator 171

Implementation note: If a break occurs, the hook variables are
bound to nil within the break.

Compatibility note: The eval hook function does not take an
environment argument.

[Variable]

•applyhook• => apply-hook-function

The value of this variable is used to replace apply in the
application of functions to arguments.

If the value of this variable is nil (the default), eval uses
apply to apply a function to its arguments. If the value of
this variable is not nil, then it must be a function (call it
apply-func) of two arguments.

When eval is about to apply a function to its list of
arguments, this apply-func is called (instead of apply} with
the function as the first argument and the argument list as
the second. The value returned by apply-func is used as the
value of the function call form.

During the evaluation of apply-func, the two hook variables
•evalhook* and •applyhook* are bound to nil.

If a throw to a listener loop occurs, the two hook variables
are set to nil.

Implementation note: If a break occurs, the hook variables are
bound to nil within the break.

Compatibility note: The apply hook function does not take an
environment argument. Also, the apply hook function is called
when special forms are evaluated.

[Function]

evalhook form evalhookfn applyhookfn => values

This function binds •evalhook* to evalhookfn and •applyhook*
to applyhookfn after beginning the evaluation of form but
before any subsidiary evaluations (e.g., for arguments in
form) are begun.

172 GOLDEN COMMON LISP REFERENCE MANUAL

form must be a valid form. evalhookfn and applyhookfn must
both be functions. evalhook returns the results of evaluating
form.

compatibility note: evalhook does not take an environment
argument.

(Function]

applyhook function args evalhookfn applyhookfn => values

This function. binds •evalhook* to evalhookfn and •applyhook*
to applyhookfn after applying function to args, but before any
subsidary evaluations (e.g. within the body of function) are
begun.

function and args must be acceptable as arguments
evalhookfn and applyhookfn must both be functions.
returns the results of applying function to args.

to apply.
applyhook

compatibility note: applyhook does not take an environment
argument.

20.2 The Top-Level Loop

In GCLISP, the Top-Level Loop is merely the top-most
invocation of the function listener.

[Function]

listener &optional herald-string

This function invokes a read-eval-print loop.

herald-string is bound to the global variable •listener-name•
and is printed when the read-eval-print loop is first entered
and when listener catches a throw to the tag :listener.

listener never returns a value since the read-eval-print loop
is an infinite-loop.

CHAPTER 20: The Evaluator 173

[Variable]

•listener-name• => string

The value of this global variable is a string that is printed
when the listener read-eval-print loop is first entered and
when listener catches a throw to the tag :listener.

[Variable]

+ => form

The value of this variable is the second most recently read
top-level form. In other words, during the current Top-Level
interaction, + is bound to the form read by the previous
Top-Level interaction. Before a new interaction begins, + is
assigned the current value of -

[Variable]

++ => form

The value of this variable is the third most recently read
top-level form. In other words, during the current Top-Level
interaction, ++ is bound to the top-level form read two
interactions ago. Before a new interaction begins, ++ is
assigned the current value of +.

[Variable]

+++ => form

The value of this variable is the fourth most recently read
top-level form. In other words, during the current Top-Level
interaction, +++ is bound to the top-level form read three
interactions ago. Before a new interaction begins, +++ is
assigned the current value of ++.

174 GOLDEN COMMON LISP REFERENCE MANUAL

[Variable]

=> form

The value of this variable is the most recently read top-level
form. Each time a form is read by the top-level loop, it is
assigned to -.

[Variable]

* => object

The value of this variable is the first result returned by the
most recently evaluated top-level form. In other words,
during the current Top-Level interaction, * is bound to the
(first) result of the last interaction. Each time a top-level
form is evaluated by the top-level loop, the first result is
assigned to *·

[Variable]

** => object

The value of this variable is the first result returned by the
second most recently evaluated top-level form. In other
words, during the current Top-Level interaction, ** is bound
to the (first) result of the second to last interaction.
Before a new interaction begins, ** is assigned the value of
*·

[Variable]

*** => object

The value of this variable is the first result returned by the
third most recently evaluated top-level form. In other words,
during the current Top-Level interaction, *** is bound to the
(first) result of the third to last interaction. Before a new
interaction begins, *** is assigned the value of **·

CHAPTER 20: The Evaluator 175

[Variable]

I => object

The value of this variable is a list of the results returned
by the most recently evaluated top-level form. In other
words, during the current Top-Level interaction, I is bound to
the results of the last interaction. Each time a top-level
form is evaluated by the top-level loop, a list of the results
is assigned to I· ·

[Variable]

II => object

The value of this variable is a list of the results returned
by the second most recently evaluated top-level form. In
other words, during . the current Top-Level interaction, II is
bound to a list of the results of the second to last
interaction. Before a new interaction begins, II is assigned
the value of I·

[Variable]

Ill => object

The value of this variable is a list of the results returned
by the third most recently evaluated top-level form. In other
words, during the current Top-Level interaction, Ill is bound
to a list of the results of the third to last interaction.
Before a new interaction begins, Ill is assigned the value of
II·

[Variable]

=> function

The global value of this variable is a function which is
called each time the input-editor performs a refresh.

The function must take no arguments. The values it returns

176 GOLDEN COMMON LISP REFERENCE MANUAL

are discarded. The intended purpose of the function is to
print a prompt on the •standard-output• stream. The function
may assume that its output will be printed on a fresh line.

The initial value of •prompt• is a function which prints the
string 11 • 11 on the •standard-output• stream. (Unless the
current package is not user, in which case it prints the name
of the current package followed by 11 : 11 as a prompt.)

Chapter 21

streams

21.1 Standard Streams

[Variable]

•standard-input• => input-stream

The initial global value of this variable is an input stream.
By default, the LISP Reader reads from the input stream which
is assigned (or bound) to this variable.

[Variable]

•standard-output* => output-stream

The initial global value of this variable is an
stream. By default, the LISP Printer writes to the
stream which is assigned (or bound) to this variable.

output
output

[Variable]

•error-output* => output-stream

The initial global value of this variable is an output
stream.

Compatibility note: Currently, none
functions use this stream for output.
instead.

of the error system
They use *debug-io•

178 GOLDEN COMMON LISP REFERENCE MANUAL

[Variable]

•query-io• => input/output-stream

The initial global value of this variable is an input/output
stream. The functions y-or-n-p and yes-or-no-p use the stream
that is the value of this variable. This stream should be
used for querying the user.

[Variable]

•debug-io• => input/output-stream

The initial global value of this variable is an input/output
stream that is used for interactive debugging purposes.

compatibility note: The error system functions (e.g., error
and eerror) use this stream instead of •error-output•.

[Variable]

•terminal-io• => input/output-stream

The initial global value of this variable is an input/output
stream that connects to the user's console. Normally, writing
to this stream causes the output to appear on the console
display, while reading reads the characters typed at the
console keyboard.

The value of this variable should not be changed.

[Variable]

•trace-output• => output-stream

The initial global value of this variable is an output
stream. The function trace writes to the output stream which
is assigned (or bound) to this variable.

CHAPTER 21: streams 179

21.2 Creating New Streams

[Function]

make-synonym-stream symbol => stream

This function creates and returns a synonym stream.

Whenever an operation is performed on this stream (call it a),
symbol must be bound to some stream (call it b). Any
operation performed on a will actually be performed on b.

make-string-input-stream string &optional start
end => input-stream

This function creates and returns an input stream
produce the characters contained in the substring
by start and end) of string.

[Function]

which will
(delimited

[Function]

make-string-output-stream => string-output-stream

This function returns an output stream that will accumulate
all output written to it. The accumulated output may be
retrieved using get-output-stream-string.

[Function]

get-output-stream-string string-output-stream => string

This function returns a
so far accumulated by

string containing all the characters
string-output-stream, resetting the

180 GOLDEN COMMON LISP REFERENCE MANUAL

stream to zero accumulated characters.

string-output-stream must
make-string-output-stream.

21.3 Operations on Streams

close stream => nil

be a stream produced by

[Function]

This function closes stream. A closed stream may not be read
from or written to.

compatibility note: The :abort argument is not currently
supported.

[Function]

close-all-files => list

This function closes all open streams that are connected to
files and returns a list of all the previously open files.

21.4 Using Streams as Functions

In GCLISP, streams are a type of function. Thus, besides
acting as arguments to functions such as read and print,
streams may be applied to arguments using funcall or apply.

When a stream is applied to some arguments, the first
argument must always be a keyword symbol. This keyword
indicates the operation that the stream is to perform using
the rest of the arguments. For this reason, the keyword is
often called the operation. For example, the function call,

(funcall •terminal-io• :write-char #\A)

CHAPTER 21: Streams

will perform the write-char operation
its argument) on the stream connected
that this function call is equivalent
(write-char #\A •terminal-io•).)

181

(with the letter 'A' as
to the terminal. (Note
to the function call

The above function 9all also has the flavor of a message (no
pun intended): funcall acts as the message sending mechanism,
•terminal-io• acts as the object receiving the message,
:write-char acts as the message name, f\A acts as a message
argument, and the value returned by the function call acts as
the object returned by the receiver object. In order to
encourage the message-passing metaphor, GCLISP defines the
function send.

[Function]

send function &rest arguments => function-call-results

This function calls function with arguments and returns the
results of this function call.

send is identical to funcall, but connotes the message-passing
metaphor to the user.

Input streams must
operations:

support

:read-char => nil/character

the following two basic

Inputs the next available character from the
stream. If there is no character available,
it is waited for. If the end-of-file is
reached, nil is returned.

:unread-char character => character
Pushes character (which must be the most
recently read character) back into the input
stream. This makes character the next
available character. The :unread-char
operation cannot be repeated unless a
character has been read (e.g., using
:read-char) since the previous :unread-char
operation.

Output streams need only support one basic operation:

:write-char character => character
outputs character on the stream and returns
the character written.

182 GOLDEN COMMON LISP REFERENCE MANUAL

These operations, although related
read-char, unread-char and write-char
allow the optional arguments that
functions allow.

to the functions
respectively, do not
their corresponding

All streams must support the following operation:

:which-operations => operations-list
Returns a list of keywords,
names an operation that
supported by this stream.

each of which
is explicitly

Most of the other stream operations can built up from these
basic operations using the stream-default-handler, described
below.

21.5 User Written Streams

Since streams are merely a type of function, it is possible
for users to define functions that can be used as streams.

A user-written input stream function must handle at least
three operations: :read-char, :unread-char, and
:which-operations. An example of a very simple user-written
input stream is the following:

(defun newline-input-stream (operation &optional ignore)
(case operation

(:read-char #\Newline)
(:unread-char)
(:which-operations

•(:read-char :unread-char :which-operations))
(otherwise

(error "Unknown input stream operation: -s11

operation))))

This stream produces an infinite number of Newlines.

A user-written output stream must handle two operations:
:write-char and :which-operations. The following is a very
simple example of a user-written output stream:

(defparameter •list••())

(defun list-output-stream (operation &optional arg)
(case operation

(: write-char
(setf •list•

CHAPTER 21: Streams

(append •list• (list arq))))
(:which-operations

•(:write-char :which-operations))
(otherwise

(error "Unknown input stream operation: -s11

operation))))

183

This output stream collects the actual characters output into
a list, which is the value of the qlobal variable •list•.

A simple method of extendinq the number of operations that a
user-written stream may handle is to use the function
stream-default-handler.

stream-default-handler stream operation &rest
arguments => operation-result

[Function]

This function attempts to handle operation on stream, given
arguments.

It is normally called by a user-written stream that has been
called with an operation that the user-written stream does not
explicity handle. In such a case the user-written stream
merely passes on the operation and its arquments to
stream-default-handler.

21.6 Window streams

See Appendix S. C .

Chapter 22

rnput/Output

22.l Printed Representation of Lisp Objects

22.1.1 What the Read Function Accepts

22.1.2 Parsing of Numbers and Symbols

[Variable]

•read-base• => integer

The value of this variable determines the radix in
integers will be read. The integer may be between 2
(inclusive). The initial value of this variable is 10.

22.l.3 Macro Characters

22.l.4 Standard Dispatching Macro Character Syntax

22.1.s The Readtable

which
and 36

[Function]

set-syntax-from-char to-char from-char => to-char

This function copies the readtable syntax information for
from-char to to-char and returns to-char.

Only the following syntatic type information is copied:
whitespace, constituent, single escape, multiple escape, or
macro. In addition, if a macro character is copied, its macro

CHAPTER 22: Input/Output 185

definition function is also associated with the to-char.

Compatibility note: No readtable arguments are allowed.

[Function]

set-macro-character char function => char

This function affects the readtable, causing the LISP Reader
to treat char as a macro character with function as its
associated function. set-macro-character returns t.

function must be a function of two arguments. The first
argument is the current input stream and the second argument
is char. function's only side-effect must be its affect on
the stream.

function may return one or two values. If the second value is
nil or if only a single value is returned, the first value is
immediately returned by the LISP Reader. Otherwise, if the
second value is non-nil, the macro character and any
characters read by its associated function contribute nothing
to the object being read.

compatibility note: No optional arguments are allowed.
function returns a non-nil second value to get the same effect
as returning zero values.

22.1.6 What the Print Function Produces

[Variable]

•print-escape• => boolean

The value of this variable controls whether or not the printer
includes appropriate escape characters in printed
representations. If the value is non-nil (the initial value
is t), escape characters will be included; otherwise, if the
value is nil, no escape characters will be included.

All the print functions bind this variable to the appropriate
value.

186 GOLDEN COMMON LISP REFERENCE MANUAL

[Variable]

•print-base• => integer

The value of this variable determines the radix in which
integers are printed. The integer may be between 2 and 36
(inclusive). The initial value of this variable is 10.

[Variable]

•print-radix• => boolean

The value of this variable controls the printing
specifiers. If the value is non-nil, all integers
printed with a radix specifier. For example, if the
base is decimal, numbers will be printed with a
decimal point.

of radix
will be
current

trailing

Otherwise, if the value is nil, no radix specifiers are
printed.

[Variable]

•print-level• => nil/integer

The value of this variable determines the number of levels of
a nested data structure that will be printed.

If the value is nil, every level will be printed. Otherwise,
the value must be a non-negative integer.

[Variable]

•print-length* => nil/integer

The value of this variable determines the number of elements
of a composite data structure that will be printed.

If the value is nil, every element will be printed.
Otherwise, the value must be a non-negative integer.

CHAPTER 22: Input/Output 187

22.2 Input Functions

22.2.1 Input from Character Streams

[Function]

read &optional input-stream eof-error-p
eof-value recursive-p => object

This function reads in the printed representation of a LISP
object from input-stream and returns the corresponding LISP
object (creating it if necessary).

read-preserving-whitespace &optional input-stream
eof-error-p eof-value recursive-p
=> object

[Function]

This function reads in the printed representation of a LISP
object from input-stream and returns the corresponding LISP
object (creating it if necessary).

read-preserving-whitespace is identical to read except that
the former does not discard the delimiting whitespace
character which follows an object while the latter does.

Note: If recursive-p is not nil, then
read-preserving-whitespace behaves exactly like read.

read-line &optional input-stream eof-error-p
eof-value recursive-p
=> line-string eof-p

[Function]

This function reads in characters until it reads a Newline
character or the end of file is encountered; it then returns

188 GOLDEN COMMON LISP REFERENCE MANUAL

two values: a string containing all the characters read except
for the Newline and t or nil depending upon whether or not the
end of file was encountered, respectively.

If the end of file is encountered before any characters are
read, the following occurs: if eof-error-p is nil, eof-value
is returned; otherwise an error will be signalled.

[Function]

read-char &optional input-stream eof-error-p
eof-value recursive-p => character

This function reads one character from input-stream, and
returns it as a character object.

[Function]

unread-char character &optional input-stream => character

This function puts character, which must be the character
was most recently produced by input-stream, back onto
front of input-stream. Thus, character will be the
character produced by input-stream.

that
the

next

[Function]

read-from-string string &optional eof-error-p
eof-value &key :start :end
:preserve-whitespace
=> object first-unread-char-index

This function reads in the printed representation of a LISP
object from the substring of string delimited by :start and
:end, returning the corresponding LISP object (creating it if
necessary) and the index of the first character in string that
was not read. If :preserve-whitespace is non-nil, the LISP
Reader will behave as if it had been invoked with
read-preserving-whitespace.

CHAPTER 22: Input/Output

22.2.2 Input from Binary Streams

read-byte &optional binary-input-stream
eof-error-p eof-value => f ixnum

This function reads one a-bit byte
binary-input-stream and returns it as a fixnum in
to 255 (inclusive).

189

[Function]

from the
the range O

Compatibility note: binary-input-stream may be a character
stream. binary-input-stream is optional (it defaults to
•standard-input•).

22.3 Output Functions

22.3.1 Output to Character Streams

[Function]

prinl object &optional output-stream => object

This function outputs the printed representation of object to
output-stream.

The printed representation of object output by prinl includes
the escape characters (\ and I) as necessary, in order that
they may be read in correctly.

[Function]

print object &optional output-stream => object

This function outputs the printed representation of object to
output-stream. It precedes the printed representation with a
Newline and follows it with a space.

190 GOLDEN COMMON LISP REFERENCE MANUAL

The printed representation of object output by print includes
the escape characters (\ and I) as necessary, in order that
they may be read in correctly.

[Function]

pprint object &optional output-stream => object

This function outputs a printed representation of object (to
output-stream) that is formatted for user readability.

[Function]

princ object &optional output-stream => object

This function outputs the printed representation of object to
output-stream.

The printed representation of object output by princ does not
include the escape characters(\ and J). This implies that
the printed representation may not be read in correctly.

[Function]

write-char character &optional output-stream => char

This function outputs character to output-stream and returns
character.

[Function]

terpri &optional output-stream

This function outputs a Newline to output-stream and returns
nil.

CHAPTER 22: rnput/Output 191

[Function]

flatsize object => length

This function returns the number of characters needed for the
printed representation of object (with necessary escape
characters).

[Function]

flato object => length

This function returns the number of characters needed for the
printed representation of object (without escape characters).

22.3.2 output to Binary Streams

write-byte integer &optional
binary-output-stream => integer

[Function]

This function writes integer, which represents one byte, to
binary-output-stream.

integer must be within the range of the type specified by
:element-type in the call to open that created the stream.

Compatibility note: binary-output-stream may be either a
character stream or a binary stream. The binary-output-stream
is optional (it defaults to •standard-output•).

22.3.3 Formatted Output to Character Streams

format destination control-string &rest
arguments => nil/string

[Function]

192 GOLDEN COMMON LISP REFERENCE MANUAL

This function outputs control-string, formatted according to
both the format directives embedded within control-string and
the arguments following it, to destination.

The destination must be either nil, t, or a stream. If
destination is nil, format creates a string to contain its
output and returns that string. If destination is t, format's
output is sent to the stream that is the value of
•standard-output•, and format returns nil. Otherwise, if
destination is a stream, format's output is sent to it, and
format returns nil.

The control-string must be a string. All characters which are
not part of a format directive are output as they appear in
the control-string.

A format directive consists of a tilde character(-), optional
colon (:) and atsign (@) modifiers, and a single character
(case ignored) specifing the type of directive. Most
directives output one or more of the elements in arguments
formatted according to the directive. The following is a list
of supported format directives, In each, the term arg refers
to the next element in arguments to be processed.

-A ascii.

-s a-expression.

-D decimal.

-B binary.

-o octal.

-x hexidecimal.

-c character.

-% newline.

_, freshline.

tilde.

-<newline>

arg is printed as if by princ.

arg is printed as if by prinl.

arg (which must be an integer) is printed in
decimal radix with no trailing decimal point.

arg (which must be an integer) is printed in
binary radix.

arg (which must be an integer) is printed in
octal radix.

arg (which must be an integer) is
hexidecimal radix.

arg (which must be a character) is

A #Newline character is printed.

Identical to newline.

A tilde character is printed.

The Newline character and any
whitespace is ignored. With a .,
Newline is ignored. With a @,

printed in

printed.

following
only the
only the

CHAPTER 22: Input/Output 193

-? indirection.

whitespace following the Newline is ignored.

Treats the next arg (which must be a string)
and the arg after it (which must be a list) as
a format control string and its argument list,
respectively.

-(stro-;str1-; ••• -;strn-] conditional expression.
The argth str is processed as a format control
string. If arg is out of range, none of the
strs are processed; unless the last str
separator is -:;, then the last str is
selected if arg is out of range.

-:[false-;true-] if-then expression.

-@(true-] test.

If arg is ni1, false is processed as a format
control string; otherwise true is processed.

If arg is not nil then arg is
(i.e., it remains the next
processed) and true is processed
control string; otherwise, arg is
true is ignored.

not consumed
arg to be

as a format
consumed and

Compatibility note: Not all directives are supported.
destination cannot be a string with a fill pointer.

22.4 Querying the User

[Function]

y-or-n-p &optional format-string arguments => boolean

This function is a predicate which is true if and only if the
user types a y (in upper or lower case) or a Space in response
to the message specified by format-string and arguments.

The only other valid responses are n and Rubout, both of which
cause y-or-n-p to return nil.

[Function]

194 GOLDEN COMMON LISP REFERENCE MANUAL

yes-or-no-p &optional format-string arguments => boolean

This function is a predicate which is true if
user types yes (in upper or lower case),
Newline, in response to the message specified
and arguments.

and only if the
followed by a

by format-string

The only other valid response is no, followed by a Newline, in
which case yes-or-no-p returns nil.

Chapter 23

File System Interface

23.l File Names

23.1.1 Pathnames

23.l.2 Pathname Functions

[Function]

pathname pathname => pathname

This function parses pathname and returns an equivalent
pathname object.

pathname may be a string, a symbol (whose printname is used),
or a pathname object (which is simply returned). No
defaulting is done; pathname components which are unspecified
in pathname are set to nil in the pathname object.

compatibility note: pathname cannot be a stream.

[Function]

parse-namestring pathname => pathname

This function parses pathname and returns an equivalent
pathname object.

pathname may be a string, a symbol (whose printname is used),
or a pathname object (which is simply returned). No
defaulting is done; pathname components which are unspecified
in pathname are set to nil in the pathname object.

Compatibility note: pathname cannot be a stream. No optional

196 GOLDEN COMMON LISP REFERENCE MANUAL

or keyword arguments are allowed. Only a single value
returned. Thus, parse-namestrinq is currently identical
pathname.

is
to

[Function]

parse-directory-namestrinq name => pathname

This function parses pathname as if it named a directory and
returns an equivalent pathname object.

pathname may be a string,- a symbol (whose printname is used) ,
or a pathname object (which is simply returned). No
defaulting is done; pathname components which are unspecified
in pathname are set to nil in the pathname object.

The name and type components are always set to nil.

[Function]

merge-pathnames pathname &optional defaults => pathname

This function creates and returns a new pathname object
is a copy of pathname except that unspecified (i.e.,
components are replaced with components from defaults.

that
nil)

pathname and defaults may each be a string, a symbol (whose
print name is used) or a pathname object; each is converted to
a pathname object as if by the function pathname. If defaults
is not provided, it defaults to the value of
•default-pathname-defaults•.

First, all of the specified (i.e.,
pathname are placed in corresponding
pathname object. Then any components
in the new pathname object are filled
components in defaults.

non-nil) components in
components in the new
which remain unspecified
with the corresponding

Compatibility note: The optional default-version argument is
not supported.

[Variable]

CHAPTER 23: File system Interface 197

*default-pathname-defaults• => pathname

The value of this variable is a pathname object which is the
default pathname-defaults pathname.

The value of this variable may be any object acceptable to the
function pathname.

Any pathname primitive which
argument uses the value of this
argument is not provided.

takes an
variable

make-pathname &key :device :directory
:name :type :defaults
=> pathname

optional
when the

defaults
defaults

[Function]

This function creates and returns a pathname whose components
are specified by the keyword arguments.

The component keyword arguments :device, :directory, :name,
and :type must be either strings, nil, :wild (for :name and
:type only), or symbols (in which case their print names are
used). The given component keyword arguments are placed in
corresponding components of the new pathname.

The :defaults keyword may be any object acceptable to the
function pathname. If the :defaults keyword argument is
provided, those components of the new pathname which were not
specified by the component keyword arguments are filled by the
components in the :defaults keyword argument; otherwise, no
defaulting is done.

Implementation note: The directory component may be a list of
strings, each string representing a subdirectory of the string
to its right.

Compatibility note: The :host and :version keyword arguments
are not supported.

[Function]

pathnamep object => boolean

This function is a predicate which is true if and only if
object is a pathname object.

198 GOLDEN COMMON LISP REFERENCE MANUAL

[Function]

pathname-device pathname => string

This function returns the device component of pathname.

pathname may be any object acceptable to the pathname
function. If pathname has a specified device, its name is
returned as a string; otherwise nil is returned.

[Function]

pathname-directory pathname => object

This function returns the directory component of pathname.

pathname may be any object acceptable to the function
pathname. If pathname does not have a specified directory
component, nil is returned. Otherwise, if the directory
component of pathname consists of a single subdirectory then a
string representing it is returned; otherwise, if the
directory component is composed of more than one subdirectory
(i.e., it is a hierarchy) then an ordered list of the
subdirectories (each represented by a string) is returned.

[Function]

pathname-name pathname => object

This function returns the name component of pathname.

pathname may be any object acceptable to the pathname
function. pathname-name may return either nil, :wild, or a
string, depending upon whether the name component was
unspecified, wild, or a specific name, respectively.

[Function]

CHAPTER 23: File system Interface 199

pathname-type pathname => object

This function returns the type component of pathname.

pathname may be any object acceptable to the pathname
function. pathname-type may return either nil, :wild, or a
string, depending upon whether the type component was
unspecified, wild, or a specific name, respectively.

[Function]

namestring pathname => namestring

This function returns a string which represents pathname in an
implementation dependent manner.

pathname may
function.

be any object acceptable to the pathname

file-namestrinq pathname => namestring

This function returns a string which represents the
type components of pathname in an implementation
manner.

[Function]

name and
dependent

pathname may
function.

be any object acceptable to the pathname

[Function]

directory-namestrinq pathname => namestring

This function returns a string which represents the directory
component of pathname in an implementation dependent manner.

pathname may
function.

be any object acceptable to the pathname

200 GOLDEN COMMON LISP REFERENCE MANUAL

23.2 Opening and Closing Files

[Function]

open pathname &key :direction
:element-type => stream

This function returns a new stream that is connected to an
external file named by pathname.

pathname may be any object acceptable to the pathname
function. The keyword arguments specify what kind of stream
to connect to the file, and how to handle opening the file, A
list of keyword arguments and their allowed values follows:

:direction
:input (default), :output

:element-type
string-char (default), unsigned-byte

An error is signalled if pathname is opened in the :input
direction and no such file exists.

If pathname is opened in the :output direction and such a file
already exists, it is overwritten.

compatibility note: Not all values for :element-type or
:direction are currently supported. The :if-exists and
:if-does-not-exist keyword arguments are not currently
supported. Version related features are not supported.

with-open-file
{form}* =>

(Stream pathname {option}*)
last-form-result

[Macro]

This macro establishes a connection between a stream, named by
stream, and a file, named by pathname, within which the forms
are evaluated as an implicit progn.

stream must be a symbol. The values of pathname and each

CHAPTER 23: File System Interface 201

option must be acceptable to the open function.
must be a valid form.

Each form

The file named by pathname is opened as if by open, in
compliance with the specified options. The variable named by
the symbol stream is bound to the resulting stream. Then the
forms are evaluated as an implicit progn and the value of the
last form is returned.

When with-open-file is exited, either normally
evaluation of the last form) or abnormally (e.g., due
throw), the stream named by stream is closed (which
closes the associated file).

(after
to a
also

compatibility note: If a new output file is being written to
when an abnormal exit occurs, the file is merely closed.

23.3 Renaming, Deleting, and Other File Operations

[Function]

rename-file pathname new-name
=> new-name old-truename new-truename

This function changes the name of pathname to new-name.

If the file is successfully renamed, three values are
returned: the new-name pathname with no missing components,
the old truename of pathname, and the new truename of
pathname. Otherwise, if the file cannot be successfully
renamed, an error is signalled.

[Function]

delete-file pathname => non-nil-result

This function deletes pathname from the file system.

[Function]

202 GOLDEN COMMON LISP REFERENCE MANUAL

probe-file pathname => pathname/nil

This function checks whether or not an external file named
pathname exists. If one does, the true pathname of the file
is returned; otherwise nil is returned.

pathname may
function.

be any object acceptable to the pathname

file-info pathname => attribute
filesize-hi filesize-lo
creation-date creation-time

[Function]

This function returns PC-DOS (or MS-DOS) encoded information
about the file named pathname.

23.4 Loading Files

load pathname &key :verbose :print
:if-does-not-exist => result

[Function]

This function loads the file named by pathname into the GCLISP
environment.

[Variable]

•load-verbose• => boolean

This variable provides the default value for the :verbose
argument of function load.

Implementation note: The initial value is t.
also affects the behavior of fasload.

•load-verbose*

CHAPTER 23: File system Interface 203

[Function]

fasload pathname => pathname

This function loads the compiled-code file named pathname. If
pathname has a missing type component, it defaults to fas.

If the current value of •load-verbose• is non-nil, fasload
prints the name of the file being loaded in the form of a
col!ll'llent (just like load).

[Macro]

autoload Function-name pathname => function-name

This macro causes the file named by pathname to
function-name is first used in a function call.
contain a definition of function-name. After
loaded, the evaluation of the function
normally.

23.5 Accessing Directories

directory pathname => nil/pathname-list

be loaded when
The file must
the file is

call proceeds

[Function]

This function returns a list of pathnames which match pathname
(whose components may be wild).

Examples:

(directory "*·*") => a list of all the pathnames in the
current directory

[Function]

204 GOLDEN COMMON LISP REFERENCE MANUAL

cd &optional pathname => default-pathname-defaults

This function changes the PC-DOS (or MS-DOS) current disk
drive and directory to those specified in pathname. cd also
updates the value of •default-pathname-defaults• to correspond
to the new PC-DOS current drive and directory and returns the
new value of •default-pathname-defaults• as a result.

The argument to cd must be either a pathname object or a
namestring. If pathname is a namestring, it is converted to a
pathname using parse-directory-namestring.

With no arguments, cd
•default-pathname-defaults•
PC-DOS drive and directory
•default-pathname-defaults•

merely updates the value of
to correspond to the current
and returns the new value of

as a result.

cd is identical to the PC-DOS command cd, except that the
former changes the current drive while the latter does not.

Note that all GCLISP file system functions get the default
drive and directory from •default-pathname-defaults•, not from
the PC-DOS defaults. Thus in GCLISP, there is only one
default directory, not one per drive.

Chapter 24

Errors

24.1 General Error-Signalling Functions

[Function]

error format-string &rest args

This function signals a fatal (i.e., non-continuable) error.

The error handling system will apply the function
the arguments nil, format-string, and all the args,
to produce an error message.

cerror continue-format-string error-format-string
&rest args => nil

format to
in order

[Function]

This function signals a continuable (i.e., non-fatal) error.
If the error is continued from (e.g., via the function
continue), cerror returns nil.

[Function]

break &optional format-string &rest args => nil

This function suspends the current evaluation state and enters
a new Break-Level Loop. If the break is continued from (e.g.,
via the function continue), break returns nil.

206 GOLDEN COMMON LISP REFERENCE MANUAL

[Variable]

*break-prompt• => function

The global value of this variable is a function which is
called each time through a Break-Level read-eval-print loop.

The function must take no arguments. The values it returns
are discarded. The intended purpose of the function is to
print a prompt on the •debuq-io• stream. The function may
assume that its output will be printed on a fresh line. The
function is called before read.

The initial value of •break-prompt• is a function which
prints the value of •break-level• followed by the string "> "
on the •debug-io• stream. (If the current package is other
than user, then the value of •break-level* is preceded by the
name of the current package (followed by 11 : ")).

[Variable]

•break-level* => integer

The value of this variable represents the number of nested
break points or errors that are waiting to be handled.

24.2 Specialized Error-Signalling Forms and Macros

24.3 Special Forms for Exhaustive Case Analysis

24.4 Error Handling

[Special form]

CHAPTER 24: Errors 207

iqnore-errors {form}*
=> nil/last-form-result nil/error-description

This special form is like a proqn except that it handles an
error by immediately returning nil as its first value and a
string describing the error as its second value. If no error
is signalled while ignore-errors is being evaluated, it
returns the first result of the last form as its first result
and nil as its second result.

[Function]

continue

This function continues from an error signalled by cerror or a
break caused by break.

[Function]

clean-up-error

This function returns control to the Top-Level or Break-Level
Loop that was invoked prior to the most recent error. It
ensures that all unwind-protect clean-up forms are evaluated.

Chapter 25

Miscellaneous Features

25.1 The Compiler

GCLISP does not currently support a compiler.

25.2 Documentation

[Function]

documentation symbol doc-type => doc-string

This function returns the documentation string associated with
symbol considered as a doc-type. If there is no such string,
nil is returned.

doc-type may be one of the following symbols: variable,
function, or type.

compatibility note: The doc-types structure and setf are not
supported.

[Function]

doc symbol &optional doc-type => nil

This function prints complete documentation of type doc-type
for symbol.

doc-type may be one of the following symbols: variable,
function, or type. If it is omitted, doc will attempt to
determine which doc-type symbol is documented as. If it is
documented as more than one doc-type, each type of

CHAPTER 25: Miscellaneous Features 209

documentation will be printed.

nil is always returned.

[Function]

lambda-list name &optional dont-search-p
=> nil/arglist :not-found

This function attempts to return
argument list (i.,e., lambda-list,
function named by name.

information about the
parameter list) of the

name must be a symbol. If name does not have a function
definition, two values are returned: nil and :not-found.

If name has an interpreted function definition, the actual
argument list is returned.

Otherwise, if the function definition of name is compiled, the
action taken by lambda-list depends on the value of
dont-search-p:

If dont-search-p is nil (the default), lambda-list searches
on-line documention file for the function's argument list. If
the documented argument list is found, it is returned.
Otherwise, two values are returned: nil and :not-found.

If dont-search-p is non-nil,
:not-found. are returned.

25.3 Debugging Tools

the two values nil and

[Macro]

trace {Function-name}* => t/traced-functions-list

This function causes the evaluation of each function named by
a function-name to be traced.

A function-name must be a symbol whose functional definition
is a function.

If trace is called with no arguments, a list of the currently

210 GOLDEN COMMON LISP REFERENCE MANUAL

traced functions is returned. Otherwise, t is returned.

A function may be untraced using untrace.

[Macro]

untrace {Function-name}* => list

This function undoes the effect of the trace function, i.e.,
if any of the arguments to untrace are currently traced, they
are untraced.

Each of the arguments to untrace must be a symbol. If a
symbol has a function definition which is traced, untrace
replaces that function definition with the original function
definition.

untrace returns a list containing those functions that were
actually untraced.

step form => form-results

This macro causes form to be evaluated in a way
the user to selectively observe every step of the
During the evaluation of form, the user may type a
list of interaction commands.

backtrace => nil

[Macro]

that allows
evaluation.
? to get a

[Function]

This function displays the contents of the control stack
(i.e., the regular pdl).

Each form that was given to the evaluator but which has not
yet been completely evaluated is displayed on a separate line
in reverse chronological order (i.e., the form most recently
given to the evaluator is displayed first). Currently, no
special forms are displayed.

CHAPTER 25: Miscellaneous Features 211

[Macro]

time form => form-results

This macro times the evaluation of form.

form may be any evaluable form. After it is evaluated, the
time elapsed during the evaluation is printed on the stream
that is the value of •trace-output•, then the results of form
are returned.

[Function]

describe object => nil

This function prints useful information about object.

object may be any type of object. describe prints to the
stream which is the value of •standard-output•. nil is always
returned.

[Function]

room &optional detail-p gc-p => nil

This function prints internal storage management information.

If detail-p is non-nil, detailed information is printed;
otherwise if it is nil (the default), only summary information
is printed.

If gc-p is non-nil (the default), the garbage collector is
invoked (via the gc function) before any information is
gathered; otherwise, if gc-p is nil, no garbage collection is
done.

room prints to
•standard-output•.

the stream which is
nil is always returned.

the value of

212 GOLDEN COMMON LrSP REFERENCE MANUAL

[Function]

ed &optional pathname => nil

This function invokes the GMACS editor.

rf pathname
leaving it
this is the
buffer will

is nil (the default), ed simply returns to GMACS,
in the state that existed when it was exited. rf
first time GMACS has been invoked, a default edit
be created.

Otherwise, pathname must be an actual pathname or a namestring
(which is converted to a pathname). GMACS will execute the
command find-file with the pathname as its argument.

[Function]

dribble &optional pathname => nil

This function causes all input and output from •terminal-io•
to be recorded in a file named pathname.

When called with no
recording of input and
pathname.

arguments, dribble
output and closes

terminates the
the file named

compatibility note: The streams
standard-input• are not dribbled.

•standard-output• and

[Function]

apropos string &optional package => nil

This function prints a description of each symbol whose
print-name contains string as a substring.

string may be a string or a symbol (in which case its
print-name is used) . Note that the empty string (1111) is a
substring of any string.

If the optional package is given, only the symbols
in that package are examined. Otherwise, if no
specified, all packages are examined.

accessable
package is

CHAPTER 25: Miscellaneous Features 213

[Function]

apropos-list string &optional package => list

This function returns a list of symbols whose print-names
contain string as a substring.

string may be a string or a symbol (in which case its
print-name is used) . Note that the empty string (1111) is a
substring of any string.

If the optional package is given, only the symbols
in that package are examined. Otherwise, if no
specified, all packages are examined.

*break-event• => function

accessable
package is

[Variable]

The value of this variable must be function, which will be
invoked whenever the user types the break key-sequence.

The initial value of this variable is the function name
break.

25.4 Environment Inquiries

25.4.1 Time Functions

[Function]

get-decoded-time => second minute hour date month year

This function returns the current time in Decoded Time
format.

Compatibility note: The values day-of-week,
daylight-savings-time-p, and time-zone are not returned.

214 GOLDEN COMMON LISP REFERENCE MANUAL

25.4.2 Other Environment Inquiries

[Function]

lisp-implementation-type => string

This function returns a string which identifies the generic
name of a particular implementation of COMMON LISP.

Implementation note: The string "GOLDEN Common Lisp" is
returned.

[Function]

lisp-implementation-version => string

This function returns a string which identifies the current
version of the particular implementation of COMMON LISP.

Implementation note: The implementation version string will
have the form,

"major-version.minor-version description"

where major-version and minor-version are both one or two
digit numbers and description is some text indicating some
specialization of the version (e.g., Beta Test). If no
description is provided, the space following minor-version is
omitted.

[Variable]

•features• => list

The value of this variable is a list of symbols that represent
features supported by this particular implementation.

Implementation note: The following symbols may appear in the
list of features: gclisp, 8087-fpp.

CHAPTER 25: Miscellaneous Features

25.5 Identity Function

identity object => object

This function simply returns the value of object.
primarily as a functional argument.

215

[Function]

It is used

25.6 Implementation Specific Procedures and Variables

[Variable]

•obarray• => array

The value of this variable is a general array (with a 2
element leader) which is used internally to manage the GCLISP
name space. The second leader element contains an
association-list which maps macro characters to their
respective functions.

25.6.1 Storage Management Functions

[Function]

allocate number-of-paragraphs parts-cons-space
parts-atom-space reserve-p => integer

This function allocates additional GCLISP cons and atom
storage space.

number-of-paragraphs must be an integer, which specifies the
number of 16-byte paragraphs to allocate or reserve.

parts-cons-space and parts-atom-spc.ce must both be integers.

216 GOLDEN COMMON LISP REFERENCE MANUAL

Together, they specify that the space to be
be divided according to
parts-cons-space/parts-atom-space cons space
Either integer may be zero (but not both).

allocated should
the ratio
to atom space.

If reserved-p is t, all available memory, except for
number-of-paragraphs paragraphs, is allocated to GCLISP.

If reserved-p is nil, number-of-paragraphs paragraphs are
allocated to GCLISP.

If reserved-p is an integer, number-of-paragraphs paragraphs
are allocated to GCLISP, beginning at address reserved-p.
This allows the user to specify a memory address that is
outside the range of PC-DOS (or MS-DOS) memory management,
e.g., >640K.

Once memory has been allocated
returned to the operating system.
ratio of allocated memory can only
additional memory with a different

gc => nil

to GCLISP,
Note that

be changed
ratio.

This function invokes the garbage collector.

it
the
by

cannot be
cons/atom

allocating

[Function]

If the value
function.
collection.
garbage is
returns nil.

of •gc-event• is non-nil, then it must be a
The function is called after the garbage
Otherwise, if the value of •gc-event• is nil, the
simply collected. In either case, gc simply

Also, during a garbage collection, the letters "GC" appear in
the lower left hand corner of the display screen if the value
of the global variable •gc-light-p• is non-nil.

[Variable]

•gc-light-p• => boolean/integer

The value of this variable is used to control the displaying
of the characters "GC" in the lower left hand corner of the
display screen during a garbage collection. The value may be
one of the following:

CHAPTER 25: Miscellaneous Features

nil Do not display the characters.

t Display the characters (white characters on a black
background, i.e., using IBM PC character
attribute 7).

integer integer is used as a bit vector that specifies the
IBM PC character attributes to be used in
displaying the characters.

The initial value of •gc-light-p* is #bOlllOOOO (reverse
video).

[Variable]

•go-data• => vector

The value of this variable is an unsigned 8-bit byte vector
(with a two-element leader) that contains information about
the allocation of memory.

Leader element o acts as a go-in-progress flag. If it
contains a non-nil object, then a garbage collection is
currently in progress. Otherwise, if it contains nil, then
one is not in progress. Leader element O should always
contain nil when accessed by the user.

Leader element 1 contains an integer that represents the
number of garbage collections which have been performed since
GCLISP was invoked.

The main vector consists of 9-byte groups, each of which
represents a region descriptor. Thus, elements 0 through 8
represent region o, elements 9 through 17 represent region l,
etc.

A region descriptor has the following format:

Byte 0 Region Type. The following type codes are
currently supported:

o - dynamic cons space
l - dynamic atom space
2 - static cons space
3 - static atom space

If the value of this byte is 255, then the
previous region descriptor is the last valid
descriptor. The value of the bytes following
a descriptor byte O whose value is 255 is
undefined.

218

Bytes 1-2

Bytes 3-4

Bytes 5-6

Bytes 7-8

GOLDEN COMMON LISP REFERENCE MANUAL

Segment Offset Address of Region.

Segment Base Address of Region.

Length of Region.

Number of Free Bytes Remaining After Last
Garbage Collection. If this is a dynamic cons
region descriptor then these bytes contain the
number of free conses remaining.

Note that all 2-byte quantities are stored with the most
significant byte at the higher address.

The value of this variable should not be changed in any way.

[Variable]

•gc-event• => nil/function

The value of this variable may be either nil or a function.

has been performed (e.g., due to
insufficient atom space, or the
function), the value of •go-event•

After a garbage collection
insufficient cons space,
user's invocation of the gc
is examined.

If the value is a function, it is called with no arguments.
Otherwise, the value must be nil, in which case nothing is
done.

25.6.2 Operating System Interface Functions

[Function]

gclisp [Dos-pathname] [/R regular-pdl-size]
[/S special-pdl-size] [/O obarray-size]

This PC-DOS (or MS-DOS) command invokes the GCLISP interpreter
environment when invoked at PC-DOS command level. It is not
an actual GCLISP function.

When GCLISP is invoked it creates an initial stack group and
an.obarray. The user can specify the sizes of these objects
using the /R, /S, and /O options. Their default sizes are
2000, 500, and 511 32-bit doublewords. It is recommended that

CHAPTER 25: Miscellaneous Features 219

obarray-size be one less than some power of two.

After these objects are created, the initialization file,
named init.lsp, is loaded (using load) from the current PC-DOS
directory. If the file is not present, an error is
signalled.

Once the initialization file is loaded (using LOAD), if the
dos-pathname argument is present, the file that it names is
loaded. dos-pathname must be a valid PC-DOS pathname (not a
GCLISP pathname).

[Function]

exit

This function terminates the current GCLISP environment and
returns control to whomever invoked GCLISP (e.g., the
operating system command processor).

[Function]

dos &optional command-line => nil/dos-error-code

This function invokes the PC-DOS (or MS-DOS) command processor
(e.g., command.com).

If dos is invoked with no argument, the user is placed at the
PC-DOS top level command processor. The user may return to
GCLISP by executing the PC-DOS exit function.

If dos is invoked with a string or symbol (whose print name is
used), it is passed to the PC-DOS command proceesor as a
command line. When PC-DOS ~s finished processing the command,
control returns to GCLISP.

If the PC-DOS command processor cannot be invoked (e.g., due
to insufficient memory), then the PC-DOS internal error code
is returned by dos. Otherwise, dos returns nil.

Implementation note: In order for the dos function to perform
correctly, there must be sufficient memory reserved for the
operating system (see the function allocate) and the command
processor (e.g., command.com) must be accessible.

220 GOLDEN COMMON LISP REFERENCE MANUAL

[Function]

exec program-pathname command-string => unknown

This function executes the PC-DOS (or MS-DOS) executable
program named by program-pathname, passing command-string as a
command line.

If the PC-DOS program cannot be invoked (e.g., due to
insufficient memory), then the PC-DOS internal error code is
returned by exec. Otherwise, exec returns nil.

Implementation note: In order for the exec function to perform
correctly, there must be sufficient memory reserved for the
operating system (see the function atlocate) and the specified
program must be accessible.

25.6.3 IBM PC Specific Functions

[Function]

select-page active-page => undefined

This function selects a new active display page (valid only in
IBM-PC BIOS alpha mode). active-page must be an integer in
the range O to 7 (inclusive) for 40X25 modes and must be an
integer in the range O to 3 (inclusive) for 80X25 modes.

[Variable]

•display-page• => active-page

The value of this variable is an integer which represents the
active display page. It is set by the function select-page,
and should not be set any other way.

[Function]

CHAPTER 25: Miscellaneous Features 221

8087-fpp &optional keyword => boolean

This function controls GCLISP's use of the Intel 8087 Numeric
Processor Extension.

If the argument is the keyword :use, GCLISP will assume that
the 8087 is present. (It is an error if it is not.)

If the argument is the keyword :emulate,
that the 8087 is not present, and
software.

GCLISP will
will emulate

assume
it in

Otherwise, the-argument must
which case GCLISP will check for
the 8087 is present, GCLISP will
return ti otherwise, GCLISP will
return nil.

be the keyword :automatic, in
the presence of the 8087. If
utilize it, and 8087-fpp will
emulate it, and 8087-fpp will

If no argument is given, then nil is returned if emulation is
being done and~is returned otherwise.

t

25.6.4 Low-Level Functions

The following functions do no error checking. The improper
use of any of these functions may violate the integrity of the
current GCLISP environment.

[Function]

%contents segment-base-address segment-off set-address
=> byte word higher-word

This function returns the values of the byte and word stored
at the logical address specified by the segment-base-address
segment-offset-address. %contents also returns the value of
the next highest word.

Thus, %contents effectively returns the byte, word, and
double-word at the specified address.

%contents-store segment-base-address
segment-off set-address value data-size
=> nil

[Function]

222 GOLDEN COMMON LISP REFERENCE MANUAL

This function stores value at the logical address specified by
the segment-base-address segment-offset-address.

If data-size is nil, then value is stored in the addressed
byte. If data-size is t, then value is stored in the
addressed word. Otherwise, data-size must be an integer, and
value and data-size are stored in the addressed double-word
(value is stored in the lower-addressed word).

[Function]

%ioport io-address value word-p => in-value/out-value

This function either transfers value to the output port at
io-address (and returns value), or returns the current value
of the input port at io-address.

If value is nil, %ioport returns the current value of the
input port at io-address. Otherwise, value must be an
integer, which is transferred to the output port at io-address
and returned by %ioport.

If word-p is t, a word is actually being transferred to/from
io-address+l:io-address. Otherwise, if word-p is nil, a byte
is being transferred to/from io-address.

%pointer object => segment-off set-address
segment-base-address

This function returns the logical address of object.

%structure-size object => integer

[Function]

[Function]

This function returns the physical size (in 8-bit bytes) of
object.

If object is of type fixnum, o is returned since fixnums are
represented directly as a special kind of pointer.

CHAPTER 25: Miscellaneous Features

%sysint interrupt-type ax bx ex dx
&optional ds es
=> flags ax bx ex dx

223

[Function]

This function generates a software (i.e., internal) interrupt
whose type code is interrupt-type. Basically, it executes the
Intel 8086/8088 INT intruction with interrupt-type as its
operand.

Before generating the interrupt, %sysint loads the AX, BX, CX,
DX, and optionally the DS and ES registers with ax, bx, ex,
dx, ds, and es, respectively.

Following the return from the interrupt, %sysint returns the
contents of the FLAGS, AX, BX, ex, and DX registers.

%unpointer segment-base-address
segment-off set-address => object

[Function]

This function returns the object at the logical address
specified by segment-base-address and segment-offset-address.

There must be a valid object, which has not been garbage
collected, at the specified logical address.

Index

%CONTENTS 221
%CONTENTS-STORE 221
%IOPORT 222
%POINTER 222
%STRUCTURE-SIZE 222
%SYSINT 223
%UNPOINTER 223
* 116, 174
*& 118
**• 174
*** 174
APPLYHOOK 171
BREAK-EVENT 213
BREAK-LEVEL 206
BREAK-PROMPT 206
CURRENT-STACK-GROUP 88
DEBUG-IO 178
DEFAULT-PATHNAME-DEFAULTS 196
DISPLAY-PAGE 220
ERROR-OUTPUT 177
EVALHOOK 170
FEATURES 214
GC-DATA 217
GC-EVENT 218
GC-LIGHT-P 216
INITIAL-STACK-GROUP 88
LISTENER-NAME 173
LOAD-VERBOSE 202
OBARRAY 215
PACKAGE 101
PRINT-BASE 186
PRINT-ESCAPE 185
PRINT-LENGTH 186
PRINT-LEVEL 186
PRINT-RADIX 186
PROMPT 175
QUERY-IO 178
READ-BASE 184
STANDARD-INPUT 177
STANDARD-OUTPUT 177
TERMINAL-IO 178
TRACE-OUTPUT 178
+ 115, 173
+& 118
++ 173
+++ 173

115, 174
-& 118
l+ 117

l- ll7
8087-FPP 220
ABS 120
ACONS 152
ADJOIN l5l
ALLOCATE 215
ALPHA-CHAR-P 127
AND 44
APPEND 144
APPLY 56
APPLYHOOK 172
APROPOS 212
APROPOS-LIST 213
AREF 157
ARRAY 14
ARRAY-ACTIVE-LENGTH 158
ARRAY-HAS-FILL-POINTER-P 159
ARRAY-HAS-LEADER-P 160
ARRAY-IN-BOUNDS-P 158
ARRAY-LEADER 160
ARRAY-LEADER-LENGTH l6l
ARRAY-LENGTH 158
ARRAYP J9
ASH 125
ASSOC 153
ATAN l2l
ATOM 36
AUTOLOAD 203
BACKTRACE 210
BLOCK 65
BOTH-CASE-P 128
BOUNDP 49
BREAK 205
BUTLAST 147
CAAAR 139
CAADR 139
CAAR 138
CADAR 139
CADDR 140
CADR 138
CAR 137
CASE 64
CATCH 79
CD 203
CDAAR 140
CDADR 140
COAR 138
CDDAR 141
CDDDR 141
CDDR 139
CDR 138
CEILING 122
CERROR 205
CHAR 162
CHAR-BIT 13l
CHAR-BITS 130

CHAR-CODE 129
CHAR-DOWNCASE 130
CHAR-EQUAL 129
CHAR-LESSP 129
CHAR-NAME 131
CHAR-UPCASE 130
CHARACTER 10
CHARACTERP 38
Clarity 3
CLEAN-UP-ERROR 207
CLOSE 180
CLOSE-ALL-FILES 180
CLOSURE 18, Bl
CLOSUREP 40
CODE-CHAR 130
COERCE 24
Commonality l
COMMONP 41
Compatibility 2
COMPILED-FUNCTION 18
COMPILED-FUNCTION-P 40
Concision 3
COND 64
CONS 13, 141
CONSP 37
CONTINUE 207
COPY-ALIST 145
COPY-ARRAY-CONTENTS 161
COPY-LIST 145
COPY-SYMBOL 97
COPY-TREE 145
cos 121
DECF 117
DECLARE 92
DEFCONSTANT 32
DEFMACRO 90
DEFPARAMETER 32
DEFSTRUCT 167
DEFUN 31
DEFVAR 32
DELETE 135
DELETE-FILE 201
DELETE-IF 136
DESCRIBE 211
DIGIT-CHAR-P 128
DIRECTORY 203
DIRECTORY-NAMESTRING 199
DO 67
DO* 68
DO-ALL-SYMBOLS 109
DO-EXTERNAL-SYMBOLS 109
DO-SYMBOLS 108
DOC 208
DOCUMENTATION 208
DOLIST 69
DOS 219

DOTIMES 69
DRIBBLE 212
Dynamic Extent 21
ED 212
Efficiency 2
ENDP 142
EQ 41
EQL 42
EQUAL 43
ERROR 205
EVAL 170
EVALHOOK 171
EVENP 112
EVERY 135
EXEC 220
EXIT 219
EXP 119
EXPORT 105
Expressiveness 1
EXPT 119
FASLOAD 203
FBOUNDP 50
FILE-INFO 202
FILE-NAMESTRING 199
FILL-POINTER 159
FIND-PACKAGE 102
FIND-SYMBOL 105
FIRST 142
FIXNUM 9
FLATC 191
FLATSIZE 191
FLOAT 10, 121
FLOATP 38
FLOOR 122
FMAKUNBOUND 53
FORMAT 191
FUNCALL 57
FUNCTION 18, 48
Function Call 26
FUNCTIONP 40
GC 216
GCLISP 218
GENSYM 98
GET 94
GET-DECODED-TIME 213
GET-OUTPUT-STREAM-STRING 179
GET-PROPERTIES 96
GETF 95
GO 75
IDENTITY 215
IF 61
IFN 62
IGNORE-ERRORS 206
IMPORT 106
IN-PACKAGE 102
INCF 117

Indefinite Extent 21
Indefinite Scope 21
INTEGER 9
INTEGERP 38
INTERN 104
KEYWORDP 99
LABELS 61
LAMBDA-LIST 209
LAST 143
LDIFF 147
LENG'l'H 133
LET 59
LET* 60
Lexical Scope 20
LISP-IMPLEMENTATION-TYPE 214
LISP-IMPLEMENTATION-VERSION 214
LIST 13, 144
LIST* 144
LIST-ALL-PACKAGES 104
LIST-LENGTH 142
LISTENER 172
LISTP 37
LOAD 202
LOG 119
LOGAND 124
LOGBITP 125
LOGEQV 124
LOGIOR 123
LOGNOT 124
LOGTEST 125
LOGXOR 124
LOOP 67
LSH 126
MACRO 91
Macro Call 26
MACRO-FUNCTION 89
MACROEXPAND 91
MACROEXPAND-l 91
MAKE-ARRAY 156
MAKE-LIST 144
MAKE-PACKAGE lOl
MAKE-PATHNAME 197
MAKE-STACK-GROUP 84
MAKE-STRING-INPUT-STREAM 179
MAKE-STRING-OUTPUT-STREAM 179
MAKE-SYMBOL 97
MAKE-SYNONYM-STREAM 179
MAKUNBOUND 52
MAPC 7l
MAPCAN 73
MAPCAR 70
MAPCON 73
MAPL 72
MAPLIST 71
MAX 114
MEMBER 150

MEMBER-IF 151
MERGE-PATHNAMES 196
MIN ll4
MINUSP lll
MOO 123
MULTIPLE-VALUE-BIND 78
MULTIPLE-VALUE-LIST 77
MULTIPLE-VALUE-PROGl 77
MULTIPLE-VALUE-SETQ 78
NAME-CHAR 131
NAMED-STRUCTURE-P 168
NAMED-STRUCTURE-SYMBOL 169
NAMESTRING 199
NBUTLAST 147
NCONC 145
NCONS 141
NEQ 42
NEQL 42
NIL 34
NOT 44
NREVERSE 134
NTH 142
NTHCDR 143
NULL 13, 36
NUMBER 9
NUMBERP 37
COOP lll
OPEN 200
OR 45
PACKAGE 16
PACKAGE-NAME 102
PACKAGE-NICKNAMES 103
PACKAGE-SHADOWING-SYMBOLS 103
PACKAGE-USE-LIST 103
PACKAGE-USED-BY-LIST 103
PACKAGEP 39
PAIRLIS 152
PARSE-DIRECTORY-NAMESTRING 196
PARSE-NAMESTRING 195
PATHNAME 16, 195
PATHNAME-DEVICE 198
PATHNAME-DIRECTORY 198
PATHNAME-NAME 198
PATHNAME-TYPE 198
PATHNAMEP 197
PLUSP lll
POP 147
Portability 1
Power l
PPRINT 190
Precision 2
PRINl 189
PRINC 190
PRINT 189
PROBE-FILE 201
PROG 74

PROG* 75
PROGl 58
PROG2 59
PROGN 58
PROGV 61
PSETQ 52
PUSH 146
PUSHNEW 146
QUOTE 47
RASSOC 153
READ 187
READ-BYTE 189
READ-CHAR 188
READ-FROM-STRING 188
READ-LINE 187
READ-PRESERVING-WHITESPACE 187
regular POL 82
REMF 96
REMOVE 135
REMOVE-IF 135
REMPROP 95
RENAME-FILE 201
REST 143
RETURN 66
RETURN-FROM 66
REVERSE 134
ROOM 211
ROUND 123
RPLACA 148
RPLACB 149
RPLACD 148
SAMEPNAMEP 97
SAMPLE-FUNCTION 3
SECOND 143
SELECT-PAGE 220
Self-Evaluating Form 26
SEND 181
SET 52
SET-CHAR-BIT 132
SET-MACRO-CHARACTER 185
SET-SYNTAX-FROM-CHAR 184
SETF 54
SETQ 5, 51
SHADOW 107
SHADOWING-IMPORT 106
SIGNUM 120
SIN 120
SNOC 149
SOME 134
SORT 136
Special Form 26
special POL 83
SPECIAL-FORM-P 50
SQRT 120
Stability 2
STACK-GROUP 19

STACK-GROUP-P 41
STACK-GROUP-PRESET 84
STACK-GROUP-RESUME 86
STACK-GROUP-RETURN 86
STACK-GROUP-UNWIND 85
STANDARD-CHAR ll
STANDARD-CHAR•P 127
STEP 210
STORE-ARRAY-LEADER 161
STREAM 17
STREAM-DEFAULT-HANDLER 183
STRING 15, 166
STRING-APPEND 165
STRING-CHAR 12
STRING-EQUAL 163
STRING-LEFT-TRIM 165
STRING-LESSP 163
STRING-RIGHT-TRIM 165
STRING-SEARCH 164
STRING-SEARCH* 164
STRINGP 38
STRUCTURE l 7
SUBLIS 150
SUBSEQ 133
SUBST 149
SUBTYPEP 35
SXHASH 155
SYMBOL 12
SYMBOL-FUNCTION 49
SYMBOL-NAME 97
SYMBOL-PACKAGE 99
SYMBOL-PLIST 95
SYMBOL-VALUE 49
SYMBOLP 36
T 34
TAILP 151
TAN 121
TERPRI 190
THIRD 143
THROW 80
TIME 211
TRACE 209
TRUNCATE 122
TYPE-OF 25
TYPEP 35
UNEXPORT 106
UNINTERN 105
UNLESS 63
UNREAD-CHAR 188
UNTRACE 210
UNUSE-PACKAGE 108
UNWIND-PROTECT 80
UPPER-CASE-P 128
USE-PACKAGE 107
VALUES 76
VALUES-LIST 77

Variable 26
VECTOR 14, 157
VECTOR-POP 160
VECTOR-PUSH 159
VECTORP 39
WHEN 63
WITH-OPEN-FILE 200
WRITE-BYTE 191
WRITE-CHAR 190
Y-OR-N-P 193
YES-OR-NO-P 193
ZEROP 111
I 6

GOLDEN COMMON LISP
APPENDICES

version 1.01

Table of Contents

Appendix A Error Messages

Appendix B Glossary

Appendix C The Window System

l Introduction
2 Making a GCLISP Window
3 Window Operations
4 An Example

Appendix D Compatibility Notes

2 Data Types
3 Scope and Extent
4 Type Specifiers
5 Program Structure

5.3 Top-Level Forms

7 Control Structure

7.1 Constants and Variables
7.2 Generalized Variables
7.7 Blocks and Exits
7.8 Iteration
7.9 Multiple Values

l

8

18

18
18
21
25

26

26
27
27
27

27

28

28
28
28
28
28

8 Macros 29

8.1 Macro Definition 29

9 Declarations 29

9.1 Declaration Syntax 29

12 Numbers 29

12.5 Irrational and Transcendental Functions 29
12.7 Logical Operations on Numbers 30
12.9 Random Numbers 30

13 Characters 30
14 Sequences 30

14.2 Concatenating, Mapping, and Reducing
Sequences 30

14.3 Modifying Sequences 30

15 Lists 31

15.2 Lists 31
15.4 Substitution of Expressions 31
15.5 Using Lists as Sets 31
15.6 Association Lists 31

17 Arrays 31

17.l Array Creation 31

18 Strings 32

18.2 String Comparison 32
18.3 String construction and Manipulation 32

20 The Evaluator 32

20.1 Run-Time Evaluation of Forms 32

22 Input/output 33

22.l Printed Representation of Lisp objects 33
22.3 Output Functions 33

23 File system Interface 33

23.l File Names 33
23.2 Opening and Closing Files 34

24 Errors 34
25 Miscellaneous Features 34

25.l The Compiler 34
25.2 Documentation 34
25.4 Environment Inquiries 35

Appendix A

Error Messages

This is a list of the error messages you can receive from
GCLISP, along with a short description of the cause of each
message.

DOS Error: <message>
This occurs for certain peripheral
commands. "Drive not ready" is a
<message>.

Unknown array type.

I/O DOS
typical

You have attempted to construct an array of a
type which is not supported by GCLISP.

<function>: Array reference out of bounds.
Indicates that an array index is beyond the
valid bounds of a given array. <function>
refers to the function which was called with
the improper reference.

Bad array dimension.
You have attempted to construct a
multiply-dimensioned array. GCLISP supports
only singly-dimensioned arrays.

Bad arg to STRING: <object>
Indicates that the argument <object>
converted to a string. You must
coerce function with the argument.

cannot be
use the

<function>: Arg not array or named structure: <object>
Indicates that the <function> requires an
array or named structure as its argument.

<function>: Array has no leader: <object>
Indicates that a reference to the array leader
of <object> has been made, when no leader has
been defined.

No place for named structure symbol in array.
The named-structure-symbol option was used
with make-array, and the element type is not T
(general) and the array leader size is less
than 2.

2 GOLDEN COMMON LISP APPENDICES

<function>: bad keyword: <object>
You have supplied
unrecognized keyword.

<function> with an

SUBSEQ: Inconsistent indices, START: <object>, END: <object>
Usually caused by a :START index greater than
an :END index.

Floating point overflow or underflow.
Floating point overflow
detected.

or underflow was

Fixnum overflow or underflow.
Fixnum overflow or underflow was detected.

<function>: wrong number of arguments.
The wrong number of arguments was supplied to
<function>.

<function>: wrong type argument: <object>. A <object-type>
was expected.

special stack

Regular stack

Indicates that <function> requires an argument
of type <object-type> to operate correctly.

overflow.
Indicates that the special stack has
overflowed during a computation. You are
returned to Top-Level. You may extend the
special stack space by allocating a new
stack-group with the required size.

overflow.
Indicates that the regular stack has
overflowed during a computation. You are
returned to Top-Level. You may extend the
regular stack space by allocating a new
stack-group with the required size.

BREAK, (CONTINUE) to continue.
Informs you that break processing has been
entered. You may continue the computation by
evaluating (CONTINUE).

CONTINUE not inside a BREAK.
You tried to CONTINUE (Ctrl-P) while at
Top-Level.

Can•t CONTINUE from this error, use CLEAN-UP-ERROR.
You tried to CONTINUE (Ctrl-P) from a
non-continuable error, when you should have
used CLEAN-UP-ERROR (Ctrl-G).

Back to: <error message>
Indicates that you have "cleaned-up" to a

APPENDIX A: Error Messages 3

CONS space full.

previous error level
message>.

described by <error

Indicates there is no more available CONS
space. You are returned to Top-Level. You
must either allocate more space or free some
of the CONS area.

OBJECT space full.
Indicates there is no more available ATOM
space. You are returned to Top-Level. You
must either allocate more space or free some
of the ATOM space.

OBJECT space too full.
You have requested that an object be allocated
from OBJECT space when there is not enough
contiguous free space to contain it. You are
returned to Top-Level.

Bad argument to FORMAT.
You have presented FORMAT with
first argument. This argument
output stream, t, or nil.

an improper
must be an

Bad format directive: <formatting character>
You have entered an unrecognized - formatting
character.

FORMAT: Improper nesting in -C construct: <format-string>
Indicates the -[construct in <format-string>
is nested in an improper manner.

FORMAT: non-integer arg given to -C construct

Unprintable

You have incorrectly given non-integer
arguments to the -[construct. The arguments
must be integer values. INTEGERP may be used
to insure that this requirement is met.

object, type code <object-type-code> at
<seqment:offset>
An object with an unspecified type code has
been presented to the reader. This typically
occurs when operations which return some
portion of an object's structure have been
called with the improper object type. The
integrity of the storage system may have been
compromised. This is a severe error and may
necessitate re-starting GCLISP.

Attempt to return off bottom of stack: <stack-group>
Indicates a RETURN has been attempted with an
empty stack group.

4 GOLDEN COMMON LISP APPENDICES

can•t resume <object>, it•s not a stack group
<object> is not a stack group.

<stack-group> is not a resumable stack group.
<stack-group> is not resumable (i.e., it is
empty).

MAKE-STACK-GROUP: bad argument format.
An improper argument has been given to the
function MAKE-STACK-GROUP.

Attempt to create too large a stack group.
A request has been made to allocate an object
of type stack-group which requires more memory
than is currently available.

MAKE-STACK-GROUP: bad option <option>
<option> is not a supported
MAKE-STACK-GROUP.

option for

CAR or CDR of non-LIST object: <object>
An attempt has been made to take the
CDR of something other than an object
CONS.

CAR or
of type

Bad SETF form: <form>
SETF is not available for <form>.

can•t invert SETF reference: <form>
<form> is not a valid place for SETF.

SETF: Reference is different length than pattern:<form>
The template for SETF is not matched by
<form>.

Not enough args for <function>
<function> requires more arguments.

Too many args for <function>
<function> requires fewer arguments.

Bad function <object> in internal function dispatcher.

Wrong

An invalid object has been called via an
internal funcall operation.

number of args while funcalling stack-group
<stack-group>
An improper number of arguments has been
passed to the function associated with
<stack-group>.

Unbound variable: <symbol>
<symbol> does not have a binding in the
current environment.

APPENDIX A: Error Messages 5

Illegal object in EVAL, type code: <object-type-code> at
<segment:offset>
An object with an unsupported object type code
has been encountered. Typically indicates an
internal system error, or improper use of the
low-level memory-accessor functions. The
integrity of the storage system may have been
compromised. This is a severe error and may
necessitate re-starting GCLISP.

Can't EVAL object: <object>
EVAL has been given an improper argument.

Bad function: <object> while evaluating: <form>.
<object> is not a function.

Undefined function: <symbol> While evaluating: <form>
<symbol> has no function binding.

Bad LAMBDA-list: <object> While evaluating: <form>
An improper LAMBDA form has been input to
EVAL.

THROW to non-existent tag: <tag>
THROW as been evaluated without a
corresponding CATCH outstanding for <tag>.

Illegal tag <tag> to CATCH
<tag> is not an acceptable object type for
CATCH.

COND: Bad clause: <object>
An improperly formed COND form has
evaluated.

RETURN-FROM: too many return values: <value-list>

been

The block returned to is not expecting the
number of return values in <value-list>.

RETURN-FROM: name <symbol> not found.
RETURN-FROM an un-established BLOCK.

GO: tag <symbol> not found.
A GO to an undefined LABEL
attempted.

FATAL ERROR: Stack overflow during GC.

has been

The control stack has overflowed during a
garbage collection. There is no recovery from
this error. You are returned to DOS.

Bad option to OPEN: <object>
An unsupported option of <object> has been
requested of OPEN.

6 GOLDEN COMMON LISP APPENDICES

MAKE-WINDOW-STREAM: bad option: <Object>
An unsupported option of <object> has been
requested of MAKE-WINDOW-STREAM.

Error opening file: <object>
The request to open file <object> could not be
honored. The maximum number of files may be
open already; or the file may not have been
found in the specified location.

File stream not open.

Disk full.

A request has been made to close a file which
is not open.

The current disk(ette) contains no more room
for data.

RENAME-FILE: file not found: <pathname>
A request has been made to
non-existent file.

RENAME-FILE: cannot rename file: <pathname>

rename a

A request has been made to rename a file to
the name of another, already-existing file.

can•t delete file: <pathname>
A request has been made to delete a file which
is either protected or non-existent.

Dot context error.
A "·" has been encountered in the input
stream in an illegal context.

Comma not inside backquote.
A comma is illegal except inside backquote, a
character string, or vertical bars.

Bad "#\" name: <name>
<name> is an unknown character name.

Bad #+/- feature syntax: <feature>
<feature> must be a
expression (consisting
not's).

EOF while reading s-exp.

symbol in
of and's,

a logical
or's, and

An end-of-file has been encountered while
reading an open stream.

can•t find a package named <symbol>.
An unknown package name was encountered.

<symbol> is not an external symbol <package>.
External symbols must be declared to be

APPENDIX A: Error Messages 7

external.

Attempt to divide by zero.
There was an attempt to divide by zero.

Close parenthesis read at top level.
A mis-match in parentheses has been
encountered.

Division by zero.
A division by zero has occurred.

Unknown stream operation: <object>
An unsupported stream
requested.

operation has been

End of File on Stream: <closure>
A read past the end-of-file of <closure> has
been attempted.

Undefined function: <symbol>
There is no function definition of <symbol>.

Undefined macro: <char>
<char> is not a legal macro
character.

Unbound variable: <symbol>
<symbol> is not bound to anything.

TYPE-OF: Illegal object: <Object>

dispatching

The type of <object> is unknown. The
integrity of the storage system may have been
compromised. This is a severe error and may
necessitate re-starting GCLISP.

Can•t COERCE <object> to <object-type>
COERCE does not support
conversion of type.

the requested

Appendix B

Glossary

Allocate To appropriate a computer resource, such as
computer memory or a terminal, for a specific
task or operation.

Application (of a function)
LISP is an applicative language rather than a
statement-oriented language. Applying
functions to arguments is the principal mode
of executing LISP programs.

Array A data structure that organizes the objects it
contains along a coordinate system of N
dimensions. The user may define the number of
dimensions, their sizes, and the type of
elements which the array may contain. An
array with no special attributes, such as an
array header or a fill pointer, is a simple
array. An array in which each element may be
of any type is a general array.

ASCII An acronym for American ~tandard £ode for
Information Interchange, a seven-bit code for
character data transmission. The ASCII set
includes control and graphic characters, as
well as ordinary letters, digits, punctuation
characters, and special symbols.

Association list (A-list)

Atom

Backquote·

A list of pairs in which
association between a key
car of a pair is the key,
datum.

each pair is an
and a datum. The
and the cdr is the

An elementary entity in LISP. In the early
days of LISP, symbols and numbers were atoms;
now, any LISP object except a cons is an
atom. (See also list and s-expression.)

The character "'"·
interpreter to inhibit
comma (,) is encountered.
in constructing lists.

This instructs the
evaluation until a

Backquote is used

APPENDIX B: Glossary 9

Binary

Binding

Break

Break level

Buffer

Byte

Character

A number system in base 2. In binary, numbers
are represented by strings of O's and l's.

An operation on the value of a variable which
occurs within a particular programming
construct such as a let. When the binding
occurs, the variable's old value is stored
away and the variable takes on a new value.
When the programming construct is exited, the
variable's old value is re-established.

A temporary suspension of program
invoked in GCLISP by the keychord
or the function break.

execution,
Ctrl-Break

A level of the listener established when a
break occurs.

A temporary data storage area in computer
memory. A buffer is commonly used during data
input, output, and editing operations. (See
also Edit buffer.)

A basic size unit of data storage in a
computer system. Typically eight bits make up
a byte.

A data type that includes the
of printed glyphs such as
text-formatting characters.

representations
letters and

cons A LISP data type comprised of two components,
called a car and a cdr. Conses are used
primarily to represent lists.

Control structure

co-routines

cursor

Program language elements used for organizing
data processing within a program. some
control structures govern the flow of
processing, such as catch/throw and do; others
control the program's access to variables,
such as let and label. Most LISP control
structures are written as either special forms
or macros.

Programs which can call one another and resume
processing where they left off when control is
returned to them. (See also stack group.)

A blinking mark on a terminal screen,
indicating the point where a character typed
on the keyboard will be displayed.

10

Data

Data type

Debuq

Default

Display

Dotted list

Dotted pair

Dynamic extent

Edit

Edit buffer

Editor

Element

Enter

Eq and Eql

GOLDEN COMMON LISP APPENDICES

Information represented in a manner that
allows communication, interpretation, or
processinq (by humans or machines).

A cateqory of LISP data object. Data types
include (amonq others) numbers, characters,
symbols, lists, arrays, structures, and
functions. An important feature of LISP is
that data objects, not variables, are typed.
(See also type.)

To detect, pinpoint, and correct programming
errors.

An option or value which applies when none has
been specified by the user.

A visual presentation of data.

A list whose last cons does not have nil as
the value for its cdr. (See also dotted pair
and list.)

Another name for a cons.

See extent.

To create or modify a text.
deleting, and copying characters,
lines are typical editing functions.

Inserting,
words, or

A temporary storage area
Typically, files are read
revised or modified in
returned to disk.

used by an editor.
into an edit buffer,
the buffer, and

A computer program that processes commands for
creating and modifying stored text.

An object contained in a list.

To submit (a command or function) for
processing by the computer. For a LISP
function, this means typing the command. A
DOS command requires the additional action of
pressing the Return (or Enter) key.

Operations that test for equality. Two
objects are eq if they are the same object, or
if they are fixnums with the same value. Two
objects are eql if they are the same object,
or if they are numbers (integer or floating
point) with the same value.

APPENDIX B: Glossary 11

Error level A level of the listener established when an
error occurs.

Evaluation The operation performed by the LISP function
eval. It is the process of executing a LISP
program.

Extent (of a LISP entity)
The time interval (in terms of program
execution) during which references to the
entity may occur. An entity has dynamic
extent if references may occur at any time in
the interval between establishment of the
entity and the termination of the establishing
construct. An entity has indefinite extent if
references may occur as long as the entity
continues to exist. (See also scope).

File A named physical storage area, with its name
stored in a directory. A file stores text or
a program.

Filename

Form

Function

Function call

The name of a particular file. Different file
systems (in different computers or operating
systems) have different conventions for
filenames.

A LISP language structure which is presented
to the evaluator for interpretation.

A LISP object that can be applied to other
LISP objects, the function's arguments. A
function is a procedure which typically takes
objects as input (its arguments) and returns
objects as output (its values).

The process of applying a function to its
arguments.

Garbage collection
The process of reclaiming, and making usabl7,
all unusable parts of the workspace. Space is
usable if it is available for allocation to
new LISP objects.

GMACS The GCLISP editor.

Hexadecimal

I/O stream

A number system in base
numbers are represented by
ten digits O through 9 and
through F.

See stream.

16. In hexadecimal,
sequences of the

the six letters A

12 GOLDEN COMMON LISP APPENDICES

Indefinite extent

Indefinite scope

Initialization

Input editor

Interpreter

Iteration

Keychord

Key sequence

See extent.

See scope.

The process of loading an operating system or
a software package into a computer's memory,
for the purpose of running it.

A feature of an interactive stream (i.e., a
stream which connects with the terminal) that
allows the user to edit data typed to the
screen. An important feature of the GCLISP
input editor is that it responds to a set of
keychords which invoke special actions to
interrupt the normal order of processing.

In a LISP programming system, the program
which determines how a given form is to be
evaluated.

The repetition of an action or procedure.
Iteration constitutes a basic control
structure in most programming languages. LISP
provides several iteration facilities,
including do and loop.

A combination of keys that executes a command
when pressed together. In written
descriptions in this document, a keychord is
usually represented by hyphenating the two
keys. For example, ctrl-X represents
depressing the x key while the ctrl key is
held down.

A keychord followed by a key, or by another
keychord.

Lambda-expression

Lambda-list

A procedure or function: that is, a list that
represents a functional object. The first
element of a lambda-expression is the symbol
lambda; the second element is the lambda-list:
and the rest of the elements form the body of
the lambda-expression.

In its simplest form, a list of variables.
More complex lambda-lists involve special
keywords (which start with the character
"&") •

APPENDIX B: Glossary 13

Lexical variable

List

Listener

Loading

Macro

Macro character

Mark

Memory

Memory address

Mini-buffer

See variable.

Either an empty list (represented by the
symbol nil) or a cons whose cdr component is a
list. A list is therefore either nil or a
chain of conses linked by their cdr component
and terminated by nil. (See also atom and
s-expression.)

The interactive program in the LISP
interpreter which implements the
read-eval-print loop. It reads typed input,
assembles LISP objects from the input,
evaluates the objects, and prints the
evaluation results to the screen.

In LISP, the process of reading and evaluating
files. When a file is loaded, each form it
contains is evaluated.

A LISP function which serves as a template f~r
translating a LISP form. When a macro is
called, a new form is substituted for it and
then evaluated in place of the macro call.

A character with an associated function. When
the LISP reader encounters a macro character,
the reader calls the associated function and
uses the result of the function in place of
the character. (Note that a macro character
is unrelated to a macro.)

An indicator in the GMACS edit buffer. Marks
may be used to jump quickly to different
points in the buffer and to delimit specific
chunks of the buffer for deletion, copying,
etc.

The physical part of the computer which may be
accessed by programs for storage and retrieval
of data.

In LISP, a 4-byte value of the form
11 segment:Offset11 , identifying a specific byte
location in memory. The %pointer function
will return the memory address of any LISP
object.

The bottom two lines of the GMACS screen
display. Prompts and messages are displayed
here.

14

Mode

Multiple values

Nil

Non-local exit

Number

GOLDEN COMMON LISP APPENDICES

A means of representing data and processing it
(e.g., "binary mode"). Also, a type of
environment (e.g., "input mode" or "edit
mode").

With respect to a LISP form, the
characteristic of returning more than one
object from a function call.

A constant symbol whose value is always nil.
It serves as the logical value FALSE. Nil is
also used to represent the empty list.

A facility for exiting from a complex process
(e.g., a series of nested function calls),
using the catch and throw forms.

Collective name for the data types which may
represent mathematical values: integer,
floating-point, ratio, and complex number.

Object (LISP object)

octal

Package

Pathname

Point

Predicate

Any LISP entity that belongs to one or more
types of data structure.

A number system
are represented
through 7.

in base 8. In octal, numbers
by strings of the digits o

A COMMON LISP mechanism
management of name spaces.

which provides

The full identification of a file in an
operating system with a hierarchical
file-storage system. The pathname constitutes
the complete information needed by the
operating system to locate and access the
file.

A location between adjacent characters in the
GMACS edit buffer (the position between the
current cursor position and the character
preceding the cursor). Deletion and insertion
in the buffer are done at the point.

A type of function that tests
condition involving its arguments,
the value nil if the condition is
some non-nil value, usually T,
condition is true.

for some
returning

false, and
if the

APPENDIX B: Glossary 15

Pretty-printing

Print name

The style of printing
pprint function, which
indented lines to make
to read.

implemented by the LISP
arranges LISP forms on

them easier for humans

A string of characters that identifies a
particular LISP symbol in a package.

Printed representation

Prompt

Property list

Reader

Read table

Recursion

Region

Return

s-expression

The representation of a LISP object in the
form of a printed text.

The character, or character string, displayed
on the terminal screen when an interactive
program is ready to receive typed input. It
shows where the next input entered will be
displayed. (The cursor usually appears just
to the right of the prompt character.)

One of the components of a symbol. It is a
data list that contains zero or more entries,
each of which associates a key (called an
indicator) with another LISP object (called a
value or sometimes a property).

The LISP input language parser. It reads
characters from an input stream, constructs
LISP objects, and returns them.

A data structure
containing syntax
characters.

used by the reader,
specifications for input

The replication of a form within the form
itself. An example of recursion is a function
calling itself.

In the GMACS editor, the text between the mark
and the point. Also, in the GCLISP workspace,
the unit of storage management (each region is
either a cons or an atom) •

In LISP, the action of passing control back to
the function which called the current
function.

Short for symbolic expression. Either an
atom, or a cons of two s-expressions. The
s-expression is the basic entity in all
statements in LISP.

Scope (of a LISP entity)
The spatial or textual region of a program

16

Special form

Special variable

stack group

stream

Subprimitive

Symbol

Tracing

GOLDEN COMMON LISP APPENDICES

within which references to the entity may
occur. An entity has lexical scope if
references to it can occur only within program
portions textually contained within the
language construct which establishes the
entity. An entity has indefinite scope if
references can occur anywhere in any program.
(See also extent.)

A list whose first element is a symbol (its
name) and whose syntax is idiosyncratic. Most
special forms are control structures. A
special form can be regarded as an extension
of the evaluator, since it triggers the
evaluation of other forms within the special
form during the LISP interpretive process.

See variable.

A LISP object that contains the history of a
particular LISP computation. Stack groups are
useful for implementing control structures
such as co-routines. When one co-routine
calls another, a stack group stores all of the
processing information for the first
co-routine while the other one executes.

A LISP object that serves as a source or a
sink of data. A stream may interface to an
external device for input and output
operations. It may be input-only,
output-only, or both input and output. There
are character streams for characters and byte
streams for integers. Typically a stream
connects to a file or a device.

A function which manipulates the GCLISP
environment at a very low level. Many
subprimitives are used to alter
hardware-specific features for a particular
type of personal computer. A subprimitive
usually has a name that begins with the "%"
character.

A LISP data object used to name a variable, a
functional definition, or a LISP object with
properties. A symbol has these components: a
print name, a value, a functional definition,
a property list, and a package.

A debugging technique that involves printing
to the screen the name of a function, together
with its arguments and return values, whenever

APPENDIX D: Compatibility Notes 27

stream

closure

stack-group

User-written streams are not part of COMMON
LISP.

The variables closed over by a closure are not
shared by any other closure, even one defined
in the same binding environment.

Stack groups are not part of COMMON LISP.

3 Scope and Extent

GCLISP does not currently support
there are no lexical (i.e., static,
variables are dynamic (i.e., global).

lexical scoping. Thus,
local) variables. All

In order to port a GCLISP program to another COMMON LISP
environment, all free variables (i.e., variables occurring in
a binding environment in which they were not established)
should be declared special using proclaim.

4 Type Specifiers

Currently, the only type specifier which is not a standard
type specifier symbol is (unsigned-byte 8). Also, the user
cannot define new type-specifier abbreviations.

5 Program Structure

5.3 Top-Level Forms

de fun The body of the defined function is not
enclosed in a block construct.

28 GOLDEN COMMON LISP APPENDICES

7 Control Structure

7.1 Constants and Variables

function If the argument is a lambda expression, a
lexical closure is not returned. Rather,
function merely returns the lambda expression
unevaluated. GCLISP does not currently
support true COMMON LISP closures. A similar,
but restricted, type of closure can be created
using the closure function.

7.2 Generalized Variables

GCLISP provides a simpler, more efficient facility for
defining new generalized variables than that defined by COMMON
LISP.

setf If place is a getf form, setf may not return
the value of new-value. Also, subforms of
place may be evaluated more than once.

7.7 Blocks and Exits

block

7.8 Iteration

prog

The name established by block has dynamic
scope.

Tags are dynamically scoped. Therefore one
can go to a tag in a tagbody from a place
within the dynamic extent of the tagbody, and
yet not within the lexical scope of that
tagbody. This feature should not be relied
upon, since it will change in the future.

7.9 Multiple Values

values

values-list

values requires at least one arg., i.e., zero
values cannot be returned.

If list is the empty list (i.e., nil)
values-list returns a single argument, nil.

APPENDIX D: Compatibility Notes 29

8 Macros

Currently, the expansion of a macro for the first time will
cause the macro-call form to be destructively replaced by its
expansion. Thus the macro expansion overhead is incurred only
once.

8.l Macro Definition

defmacro

9 Declarations

The lambda-list keywords &key,
&allow-other-keys, and &environment are not
currently supported. Embedded lambda-lists
may not contain lambda-list keywords. The
macro expansion function does not take an
environment as a second argument.

Since GCLISP currently has no compiler, declarations are not
necessary. The DECLARE special form exists only for
compatibility with other implementations.

9.l Declaration syntax

declare

12 Numbers

The special declaration specifier has no
effect on the interpreter. Also, declarations
(i.e., declare special forms) are evaluated by
the interpreter, but they have no effect.

12.5 Irrational and Transcendental Functions

The only functions currently supported are ABS and SIGNUM.

30 GOLDEN COMMON LISP APPENDICES

12.7 Logical Operations on Num!Jers

ash Since integers are of fixed
arithmetic shift left can cause
change.

size, an
the sign to

12.9 Random Num!Jers

Random Num!Jers are currently not supported.

13 Characters

The type character is a subtype of fixnum. In other words,
characters are represented by fixnums (as they are in
ZETALISP). Currently, the font attribute is not supported.
The Control and Meta bits are supported.

14 Sequences

Only a limited num!Jer of the generic functions on sequences
have been implemented.

14.2 Concatenating, Mapping, and Reducing Sequences

some The sequence argument must be a list.

every The sequence argument must be a list.

14.3 Modifying Sequences

remove-if

delete-if

The sequence argument must be a list.

The sequence argument must be a list.

APPENDIX D: Compatibility Notes

15 Lists

15.2 Lists

push

pushnew

The value returned by push is undefined.

The value returned by pushnew is undefined.

15.4 Substitution of Expressions

sub st Keyword arguments are not supported.

sublis Keyword arguments are not supported.

15.5 Using Lists as Sets

31

member Only the :test keyword argument is supported.

adjoin No keyword arguments are supported.

15.6 Association Lists

assoc

rassoc

Only the :test keyword argument is supported.

Only the :test keyword argument is supported.

17 Arrays

Only vectors are
displaced arrays,
array leaders are
ZETALISP.

currently supported.
and bit-vectors are
not part of COMMON

17.l Array Creation

Adjustable arrays,
not supported. Also,

LISP; they are from

make-array Not all keyword arguments are supported.
:initial-contents must be a list.

32 GOLDEN COMMON LISP APPENDICES

18 Strings

18.2 String Comparison

string= The arguments must be strings.

string-equal The arguments must be strings.

string< The arguments must be strings.

string-lessp The arguments must be strings.

18.3 String Construction and Manipulation

string-left-trim
Both arguments must be strings.

string-right-trim
Both arguments must be strings.

20 The Evaluator

20.1 Run-Time Evaluation of Forms

•evalhook• The function bound to this variable
take an environment argument.

•applyhook• The function bound to this variable
take an environment argument.
function is called when special
evaluated.

does not

does not
Also, the
forms are

evalhook evalhook does
argument.

not take an environment

applyhook applyhook does
argument.

not take an environment

APPENDIX D: Compatibility Notes 33

22 Input/Output

22.1 Printed Representation of Lisp objects

The standard characters ", (,) , •
as macro characters.

and ; are not implemented

Only the following# constructs are currently supported: •, (,
+, , • , : , B, D, o, s, X, , ·and I. Character names which
follow the# construct may be prefixed with c-, m-,.or c-m-.

Currently, only a single readtable is supported.

set-syntax-from-char
No readtable arguments are allowed.

set-macro-character
No optional arguments are allowed. The
function associated with a macro character
returns a second argument.to indicate that the
macro character should be ignored.

22.3 output Functions

'ltrite-byte

format

The binary
optional.

output stream argument is

Not all directives are supported. The
destination argument cannot be a string with a
fill pointer.

23 File System Interface

The PC-DOS (or MS-DOS) version of GCLISP does not support the
host or version components.

23.1 File Names

pathname

parse-namestring

The argument cannot be a stream.

The first
optional

argument cannot be a
or keyword arguments

stream. No
are allowed.

34

merge-pathnames

make-pathname

Only a single
parse-namestring
pathname.

GOLDEN COMMON LISP APPENDICES

value is returned. Thus,
is currently identical to

The optional default-version argument is not
supported.

The :host and :version keyword arguments are
not supported.

23.2 Opening and Closing Files

open

with-open-file

24 Errors

Not all element types are supported.
related features are not supported.

Version

If a new output file is being written to when
an abnormal exit occurs, the file is merely
closed.

Currently, all errors signalled by built-in functions are not
continuable (i.e., they are unrecoverable).

25 Miscellaneous Features

25.l The Compiler

A compiler is not yet supported.

25.2 Documentation

The user cannot add documentation to function definitions,
variable definitions, etc. (i.e., doc-strings are ignored).

documentation The doc-types structure and setf are not
supported.

APPENDIX D: Compatibility Notes 35

25.4 Environment Inquiries

get-decoded-time
Values day-of-week, daylight-savings-time-p,
and time-zone are not returned.

ALLOCATE 8
Array s
ASCII 8
Association List 8
Atom 8
Backquote 8
Binary 8
Binding 9
Break 9
Break level 9
Buffer 9
Byte 9
Character 9
Co-routines 9
Cons 9
Control structure 9
cursor 9
Data 9
Data type 10
Debug 10
Default 10
Display 10
Display page 19, 20
Dotted list 10
Dotted pair 10
Dynamic extent 10
Edit 10
Edit buffer 10
Editor 10
Element 10
Enter 10
Eq and Eql 10
Error level 10
Errors 1
Evaluation 11
Extent 11
File 11
Filename 11
Form 11
Function 11
Function application 8
Function call 11
Garbage collection 11
GMACS 11
Hexadecimal 11
I-0 stream 11
Initialization 12
Input editor 12

Index

Interpreter 12
Iteration 12
Key sequence 12
Keychord 12
Lambda-expression 12
Lambda-list 12
List 13
Listener 13
Loading 13
Macro 13
Macro character 13
MAKE-WINDOW-STREAM 18
Mark 13
Memory 13
Memory address 13
Mini-buffer 13
Mode 13
Multiple values 14
Nil 14
Non-local exit 14
Number 14
Object - LISP 14
Octal 14
Package 14
Pathname 14
Point 14
Predicate 14
Pretty-printing 14
Print name 15
Printed representation 15
Prompt 15
Property list 15
Reader 15
Readtable 15
Recursion 15
Region 15
Return 15
s-expression 15
Scope 15
Special form 16
Special variable 16
Stack group 16
Stream 16
Subprimitive 16
Symbol 16
Tracing 16
Type 17
Unbound variable 17
Unsigned byte 17
Variable 17
White space 17
Window 17, 18
Window - scrolled 19, 23
Window stream 18
Workspace 17

GOLDEN COMMON LISP
Release Note GCLOlOO - 1

November 19, 1984

copyright (C) 1984 by Gold Hill Computers

This Release Note summarizes the principal
features and known problems in Version 1.00 of
LISP.

undocumented
GOLDEN COMMON

Undocumented Features

1. LISP Explorer

1.1. Explorer "Practice World": The Top-Level interface
differs from the normal Top-Level in the following ways:

Of the special keychords displayed by Alt-H K, only
the four keychords Alt-H, Ctrl-L, Ctrl-Break, Esc,
and Rubout are in effect.

Alt-H displays a different help menu.

Ctrl-Break exits the LISP Explorer.

An error does not cause a new listener to be
invoked.

The GCLISP command (exit) exits from the Practice
World back to the LISP Explorer slides.

2. Miscellaneous

2.1. Packages are not fully implemented.
are currently supported:

The following

2. 2.

The built-in packages lisp, user, keyword, and
system.

The global variable •package*

The package functions find-package, intern, and
find-symbol.

The full symbol-qualifier syntax, i.e.
foo:bar, foo::bar, :bar, and #:bar.

Irrational and transcendental
fully implemented. exp, sin,
documented on-line and in the

functions are not
and others are
Reference Manual,

GCLISP Release Note GCLOlOO - l 2

sections 12.5.1 - 12.5.2. Of these, only abs and
signum are currently supported.

2.3. Default directory: Is the same regardless of the
drive. Thus if the current default is
A:\dirl\file.ext and you specify a pathname like
B:foo.bar, the actual pathname used will be
B:\dirl\foo.bar even though dirl may not exist on
drive B:. This feature affects GMACS, LOAD, and any
other function that uses pathname defaults.

2.4. The graphic primitive functions %draw-line and %fill
perform as described here; they are not described in
the user documentation.

(%draw-line xi yi x2 y2 pen func)

%draw-line forms a line between the display screen
coordinates (xi,yi) and (x2,y2). X is the
horizontal axis, with values increasing from left to
right. The X-range is O to 319 (for low resolution)
or O to 639 (for high resolution). Y is the
vertical axis, with values increasing from top to
bottom of the screen. The Y-range is O to 199 for
both high and low resolution. Note that all
coordinates are absolute, and must reflect the
physical coordinate space of the graphics screen.
Thus, for the IBM-PC graphics controller, the
upper-left corner of the screen is position (O,O)
and the lower-right is position (319,199) or
(639,199), for low and high resolution
respectively.

pen is an integer value from o to 3 inclusive,
designating the color of the line. pen o draws the
background color; this has limited use, since the
drawn line will be indistinguishable from the
background itself. The values 1, 2, and 3
correspond to the three colors of the current
palette. There are two palettes, each with three
colors. These represent the color palettes
supported by the IBM-PC graphics controller, one for
the background colors and one for the drawing
palette.

The func parameter overrides the pen parameter in
selecting the line color. Its allowable values are
o, 1, and 2:

2 use the background color
1 use the exclusive-OR of the current screen color
o use the color specified by pen.

GCLISP Release Note GCLOlOO - 1 3

On a monochrome monitor, use the values 3 for pen
and o for func.

(%fill xl yl pen func)

%fill fills the region around screen position
(xl,yl) with the color of pen. The region consists
of all points of the screen whose current color is
the same as the current color of (xl,yl), and which
can be reached from (xl,yl) by a path through points
whose current color is the same.

screen addressing is as in %draw-line. pen and func
have the same possible values, with the same
meanings, as in %draw-line.

Certain regions with complicated boundaries may not
be filled properly by %fill.

Known Problems

1. Installation

1.1. Neither check-files nor confiqure-gclisp handles DOS
errors. Therefore, make sure you don't leave a
diskette-drive door open or a write-protect tab on a
working (backup) diskette.

2. GMACS

2.1. Redisplay: An edit window may incorrectly display
the current edit buffer contents when:

the bottom line of the window is a wrapped line
and the point is moved to the end of the line;
or

part of a wrapped line is deleted; or

ctrl-V or Alt-v is executed, and either the
displayed window or the redisplayed window
contains a wrapped line; or

adding text to the bottom line of the window
causes the line to form a continuation line.

2.2. BEGINNING-OF-DEFINITION (Ctrl-Z A):

2.2.1. When the point is in the first line
definition, Ctrl-Z A repositions the
at the previous definition.

of a
point

GCLISP Release Note GCL0100 - 1

2.2.2. The search for the beginning
stops at ~ '(' in the
(even within a string).

4

of definition
leftmost column

2.3. INDENT-SEXP (Ctrl-Z Q): Does not indent correctly on
various forms.

2.4. S-Expression Movement: Multi-line strings are not
always handled correctly.

3. Miscellaneous

3.1. dribble: Dribbles every character typed, whether or
not it was subsequently deleted.

3.2. GCLISP.EXE: Does not take any arguments (contrary to
the Reference Manual).

3.3. macro: Does no type checking on its first argument.
Giving macro anything but an unquoted symbol as its
first argument can cause a fatal error. (macro is
used by autoload and defmacro).

3.4. allocate: Allocating less than 18 paragraphs causes
a fatal error.

GOLDEN COMMON LISP
Release Note GCLOlOl - 1

March 15, 1985

Copyright (C) 1985 by Gold Hill computers

This Release Note accompanies the release of Version 1.01 of
GOLDEN COMMON LISP.

Undocumented features and known problems of Version 1.01
include those described in Release Note GCLOlOO 1 (dated
November 19, 1984), which accompanied the release of Version
1.00. That note should be reviewed by any user of Version
1. 01.

Other undocumented features are as follows:

1. %draw-line and %fill: These graphics
(described in Release Note GCLOlOO - 1) are
until the files dline.fas and fill.fas
loaded. These files can be loaded by loading
demonstration file demo.lap. They can
explicitly "fasloaded", by these commands:

(fasload "example\\dline")
(fasload 11example\\fill")

functions
undefined

have been
the GCLISP
also be

The files demo.lap, dline.fas, and fill.fas are in the
\example directory on the GCLISP Master diskette. In a
hard-disk installation, they are in the directory
C:\gclisp\example.

2. The macros with-output-to-string and with-open-stream
are undocumented. See the COMMON LISP Reference Manual
for their specification.

3. rem and mod: The operator \\ (double-backslash) is
undocumented. It implements the COMMON LISP function
rem, except that the second argument must be an integer
and the result is always an integer. The function mod
has the same behavior as \\; it is undefined until GMACS
has been loaded.

4. allocate: if reserve-p is an integer, it represents the
starting address in paragraphs (that is, 16-byte
units). (See the GCLISP Reference Manual, pages 215 -
216.)

GCLISP Release Note GCLOlOl - l 2

These two corrections apply to the GCLISP Reference Manual:

l. Page 183, last line: for "Appendix F", read "Appendix c,
'The Window System'"·

2. Page 221, section 25.6.3, description of the 8087-fpp
function, last line: for "nil", read "t".

	00-01
	00-02
	00-03
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-01
	05-02
	05-03
	05-04
	06-00
	06-01
	06-02
	06-03
	07-0001_UGuide
	07-0002
	07-0003
	07-0004
	07-0005
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025_GMACS
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082_Help
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091_Debug
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107_Piano
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	08-0001_Reference
	08-0002
	08-0003
	08-0004
	08-0005
	08-0006
	08-0007
	08-0008
	08-001
	08-002
	08-003
	08-004
	08-005
	08-006
	08-007
	08-008
	08-009
	08-010
	08-011
	08-012
	08-013
	08-014
	08-015
	08-016
	08-017
	08-018
	08-019
	08-020
	08-021
	08-022
	08-023
	08-024
	08-025
	08-026
	08-027
	08-028
	08-029
	08-030
	08-031
	08-032
	08-033
	08-034
	08-035
	08-036
	08-037
	08-038
	08-039
	08-040
	08-041
	08-042
	08-043
	08-044
	08-045
	08-046
	08-047
	08-048
	08-049
	08-050
	08-051
	08-052
	08-053
	08-054
	08-055
	08-056
	08-057
	08-058
	08-059
	08-060
	08-061
	08-062
	08-063
	08-064
	08-065
	08-066
	08-067
	08-068
	08-069
	08-070
	08-071
	08-072
	08-073
	08-074
	08-075
	08-076
	08-077
	08-078
	08-079
	08-080
	08-081
	08-082
	08-083
	08-084
	08-085
	08-086
	08-087
	08-088
	08-089
	08-090
	08-091
	08-092
	08-093
	08-094
	08-095
	08-096
	08-097
	08-098
	08-099
	08-100
	08-101
	08-102
	08-103
	08-104
	08-105
	08-106
	08-107
	08-108
	08-109
	08-110
	08-111
	08-112
	08-113
	08-114
	08-115
	08-116
	08-117
	08-118
	08-119
	08-120
	08-121
	08-122
	08-123
	08-124
	08-125
	08-126
	08-127
	08-128
	08-129
	08-130
	08-131
	08-132
	08-133
	08-134
	08-135
	08-136
	08-137
	08-138
	08-139
	08-140
	08-141
	08-142
	08-143
	08-144
	08-145
	08-146
	08-147
	08-148
	08-149
	08-150
	08-151
	08-152
	08-153
	08-154
	08-155
	08-156
	08-157
	08-158
	08-159
	08-160
	08-161
	08-162
	08-163
	08-164
	08-165
	08-166
	08-167
	08-168
	08-169
	08-170
	08-171
	08-172
	08-173
	08-174
	08-175
	08-176
	08-177
	08-178
	08-179
	08-180
	08-181
	08-182
	08-183
	08-184
	08-185
	08-186
	08-187
	08-188
	08-189
	08-190
	08-191
	08-192
	08-193
	08-194
	08-195
	08-196
	08-197
	08-198
	08-199
	08-200
	08-201
	08-202
	08-203
	08-204
	08-205
	08-206
	08-207
	08-208
	08-209
	08-210
	08-211
	08-212
	08-213
	08-214
	08-215
	08-216
	08-217
	08-218
	08-219
	08-220
	08-221
	08-222
	08-223
	08-224
	08-225
	08-226
	08-227
	08-228
	08-229
	08-230
	08-231
	08-232
	09-001
	09-002
	09-003
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02

