
Telescript Language Reference

October 1995

General Magic, Inc.
420 North Mary Avenue

Sunnyvale, CA 94086

The Telescript Language Reference

© 1991 - 1995 General Magic, Inc.
All rights reserved ™

Copyright and Trademark
The general idea of a remote programming language is in the public domain. Anyone is free
to formulate his or her own expression of this idea by devising a unique language structure,
syntax and vocabulary. However, General Magic exercised a great deal of original
expression when choosing the structure, syntax and vocabulary of the Telescript language.
Therefore, General Magic believes that it owns the copyright in the structure, syntax and
vocabulary of the Telescript programming language. General Magic believes that no one
else can create a Telescript language interpreter without violating its copyright. General
Magic is also seeking patent protection on some of the novel inventions in the Telescript
architecture and software agent functionality. Finally, General Magic owns the trademark
“Telescript,” which has been registered in the U.S. and many other jurisdictions. General
Magic uses the “Telescript” trademark to identify General Magic’s Telescript software.

General Magic wants to promote the use of the Telescript language as an enabling
technology for creating “smart” networks. Therefore, we have an open, non-discriminatory
policy on licensing our Telescript software for research and development, and commercial
purposes. We also encourage you to write programs in the Telescript language. Feel free to
incorporate any of the sample programs contained in this document into your programs.

General Magic, the General Magic logo, the Magic Cap logo, the Telescript logo, Magic
Cap, Telescript, and the rabbit-from-a-hat logo are trademarks of General Magic, and
may be registered in certain jurisdictions. All other trademarks and service marks are the
property of their respective owners.

Limit of Liability/Disclaimer of Warranty
THIS BOOK IS PROVIDED TO YOU “AS IS.” Even though General Magic has
reviewed this book in detail, GENERAL MAGIC MAKES NO REPRESENTATION
OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK.
GENERAL MAGIC SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES
OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
AND SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES, EVEN IF
MAGIC KNOWS OR SHOULD KNOW OF THE POSSIBILITY OF SUCH
DAMAGES . Some states do not allow for the exclusion or limitation of implied
warranties or incidental or consequential damage. So, the exclusions in this paragraph might
not apply to you. This warranty gives you specific legal rights. You may also have other rights
which vary from state to state.

Important to Someone
Restricted Rights. For defense agencies: Use, duplication, or disclosure is subject to the
restrictions set forth in subparagraph (c)(1)(ii) of DFAR section 252.227-7013 and its
successors. For civilian agencies: Use, duplication, or disclosure is subject to the restrictions
set forth in subparagraphs (a) through (d) of FAR section 52.227-19 and its successors.
Unpublished—rights reserved under the copyright laws of the United States.

General Magic, Inc.
420 North Mary Avenue
Sunnyvale, CA 94086 USA

Tel.: 408 774 4000
Fax: 408 774 4010
E-mail: dev-info@genmagic.com
URL: http://www.genmagic.com/

Patent Pending
Portions of the Magic Cap software and the Telescript software are patent pending in the
United States and other countries.

ii General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphaii

Table of Contents

Table of Contents

Preface..... xi

Introduction.. 1
About the technology... 1

Telescript model 1
Telescript language 2
Telescript engine 3
Telesphere 4

About this manual... 4
Audience 4
Informal conventions 5
Formal conventions 5
References 5

Part One—Language Concepts... 7

Object composition.. 8
Operations... 8

The operation concept 8
Defining an operation’s interface 8
Defining an operation’s implementation 9
Implementing a method with a block 9
Maintaining local variables 10

Attributes... 10
The attribute concept 10
Defining an attribute’s interface 10
Defining an attribute’s implementation 11
Maintaining properties 11

Constraints... 11
The constraint concept 11
Defining a constraint’s type 12
Defining a constraint’s passage 12
Specifying a class 12
Searching for a class 13

Object manipulation... 14
Object references... 14

The reference concept 14
Acquiring a protected reference 14
Acquiring a voided reference 14
Protecting objects 15

Object manipulation.. 15
Copying an object 15
Destroying an object 16

Object ownership... 16
The ownership concept 16
Isolating an object 17
Locking an object 17
Freezing an object 17
Thawing an object 18
Transferring ownership 18

Object aggregation... 19
Class definitions... 19

The class concept 19
The class family concept 19

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha iii

The Telescript Language Reference

Specifying a class’s interface 19
Specifying a class’s implementation 20
Elaborating upon inheritance 20

Class relationships.. 21
Relating one flavor to another 21
Relating one mix-in to another 21
Relating one class to another 22
Ordering a class and its superclasses 22
Searching a class and its superclasses 22

The constructor.. 23
The constructor concept 23
Deciding the constructor’s formal arguments 23
Deciding the constructor’s actual arguments 23
Performing the constructor 24

Object terminology.. 25

Part Two—Language... 27

Basic constructs .. 28
Statements and expressions... 28
Operation and cascade requests... 28
Objects and their identifiers... 28
Global variables... 29

Definitions.. 30
Module definitions.. 30
Interface definitions.. 30
Class definitions... 31

Defining a class 31
Defining a class’s formal parameters 31
Defining a class’s immediate superclasses 32
Defining a class’s features 32
Defining features’ requesters 32
Defining features’ responders 33
Defining attributes or properties 33
Defining operations 33
Sealing features 33

Attribute definitions.. 34
Defining an attribute 34
Defining an attribute’s signature 34
Defining an attribute’s getter or setter 35

Operation definitions.. 35
Defining an operation 35
Defining an operation’s signature 35
Defining an operation’s expected arguments 36
Defining an operation’s named arguments 36
Defining an operation’s unnamed arguments 37
Defining an operation’s method 37
Defining a block 38

Constraint definitions.. 38
Defining a constraint 38
Defining a constraint’s type 38
Defining a constraint’s passage 39
Defining a class specifier 39

Statements.. 40
Basic statements.. 40

Using an expression as a statement 40
The do statement 40
The if statement 40

iv General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphaiv

Table of Contents

The if-else statement 41
The return statement 41

Iterative statements... 41
The loop statement 41
The while statement 42
The repeat statement 42
The for-to statement 42
The for-in statement 42
The continue statement 43
The break statement 43

Exception statements... 43
Declaring catchphrases 43
The try statement 44
The throw statement 44

Process statements.. 44
The own statement 44
The restrict statement 44
The use statement 45

Expressions.. 46
Basic expressions... 46

Accessing an object 46
Assigning an object 47
Asserting an object’s type 47

Operator expressions... 47
Applying a prefix operator 48
Applying an infix operator 48

General operation expressions.. 49
Specifying the responder 49
Specifying the arguments 50
Requesting a cascade of operations 50
Requesting an operation 51
Requesting a setter 51

Special operation expressions... 51
Requesting the new operation 52
Requesting a get operation 52
Requesting a set operation 52
Requesting a getter 53
Escalating the current operation 53

Literal expressions.. 53
Denoting a bit 54
Denoting a bit string 54
Denoting a boolean 54
Denoting a character 54
Denoting an identifier 54
Denoting an integer 54
Denoting nil 55
Denoting an octet 55
Denoting an octet string 55
Denoting a real 55
Denoting a string 55

Escape expressions... 56

Programs...... 57
Abstract programs... 57
Source programs.. 57

Including a preprocessing directive 57
Including a break 57
Including a comment 58
Including an escape sequence 58
Including a reserved word 59
Including a character category 59
Including a character 60

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha v

The Telescript Language Reference

Object programs... 62

Part Three—Predefined Class Concepts.......................... 63

Places.... 64
Organizing the telesphere... 64

Organizing a region 64
Organizing an engine 64

Addressing a place... 65
Specifying a region 65
Specifying a place 65
Specifying routing advice 65

Managing occupants... 65
Entering a place 65
Exiting a place 66
Keeping track of occupants 66

Agents .. 67
Traveling to other places... 67

Constructing a ticket 67
Satisfying a ticket 68
Receiving a ticket stub 68
Going to another place 68
Sending clones to other places 68

Selecting a route.. 69
Ensuring a route 69
Using reservable means 69
Using existing connection means 69

Meeting other agents.. 70
Constructing a petition 70
Satisfying a petition 70

Managing meetings.. 71
Beginning a meeting 71
Ending a meeting 71
Keeping track of acquaintances 71

Processes... 72
Defining a process.. 72

Branding a process 72
Phasing a process 72
Activating a process 72
Prioritizing a process 73
Terminating a process 73

Naming a process... 73
Specifying an authority 74
Specifying a process 74

Contacting a process through an operation.. 74
Contacting a process through a package.. 74

Offering packages 74
Searching packages for objects 75

Contacting a process through an event.. 75
Categorizing an event 75
Sending a signal 76
Enabling or disabling a signal 76
Receiving a signal 76

Contacting a process through a resource... 76
Using a resource 77
Using a resource exclusively 77
Using a resource conditionally 77

Losing contact with a process.. 77

vi General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphavi

Table of Contents

Permits.. 78
Defining a permit... 78

Granting an action 78
Granting a resource 78
Granting a form of recognition 79

Receiving a permit.. 79
Receiving a native permit 79
Receiving a regional permit 80
Receiving a local permit 80
Receiving a temporary permit 80

Reconciling permits.. 81
Intersecting two permits 81
Ordering two permits 81
Ordering two capabilities 81
Increasing or decreasing a capability 81

Enforcing the current permit.. 81
Determining the current permit 82
Violating the current permit 82
Exhausting the current permit 82

Patterns... 83
Defining and using a pattern.. 83

Defining a pattern 83
Using a pattern 83

Requiring a match... 83
Requiring a match 84
Requiring an anchored match 84
Requiring successive matches 84
Requiring a repeated match 84
Requiring a single match 84

Requiring a character.. 85
Requiring a character with certain attributes 85
Requiring a character in a certain list 85
Requiring a character not in a certain list 86
Requiring a character in a certain interval 86
Requiring a character with a certain name 86
Requiring a character 86

Calendar times... 87
Defining a calendar time.. 87
Accessing a calendar time... 87

Accessing the time 87
Accessing the date 87

Normalizing a calendar time.. 88
Normalizing the time 88
Normalizing the date 88

Part Four—Predefined Classes....................................... 91
Legend.. 92

Agent.. 93
Authenticator... 95
Bit.. 96
Bit String... 97
Boolean... 98
Calendar Time ... 99
Cased 102
Character ... 103
Class..... 105

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha vii

The Telescript Language Reference

Class Exception... 107
Class Name 108
Collection.. 109
Collection Exception... 112
Compared 113
Death Event ... 114
Dictionary 115
Engine Place 118
Equal... 120
Event... 121
Event Process... 122
Exception.. 124
Execution Exception 125
Existing Connection Means... 127
Exit Event ... 128
Identifier... 129
Integer ... 130
Iterator... 132
Kernel Exception... 133
List.... 135
Means.. 139
Meeting Agent 140
Meeting Exception.. 141
Meeting Place... 142
Miscellaneous Exception 144
Named... 145
Nil..... 146
Number.. 147
Object.. 150
Octet.. 154
Octet String.. 155
Ordered.. 157
Package.. 158
Package Process.. 160
Part Event ... 163
Pattern 164
Permit.. 166
Permit Process.. 169
Petition... 172
Place 174
Primitive... 177
Primitive Exception 178
Process ... 179
Process Event... 182
Process Exception.. 183
Programming Exception... 185
Protected... 186
Real ... 187
Reservable Means.. 188
Resource... 189
Same...... 191
Set..... 192
Stack... 194
String 196

viii General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphaviii

Table of Contents

Teleaddress.. 198
Telename 199
Ticket ... 200
Ticket Stub.. 202
Time.. 203
Trip Exception.. 205
Uncopied.. 207
Unmoved.. 208
Verified.. 209
Way..... 210

Appendix: Safety weaknesses .. 211
Masquerade... 211
Leakage or loss of data.. 211
Denial of service... 211
Other weaknesses.. 212

Index.. 213

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha ix

The Telescript Language Reference

x General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphax

Preface

Preface
The personal computer has flourished because it is an open platform. On
that platform thousands of independent software developers have built a
wealth of standalone applications. Because of their work, anyone—engineer,
mathematician, financier, writer, or musician—can find applications that
make the personal computer an indispensable tool.

The same cannot be said of networks. Rather than a wealth of distributed,
or communicating, applications, one finds for the most part only the familiar
remote filing, remote printing, electronic mail, and database applications.

Today’s networks—especially public networks—pose an insurmountable
barrier to the development of communicating applications. Such applications
have a functional need to distribute themselves among the computers of
individual users and those that users share, the servers. However, such
distribution is impossible for reasons of logistics, portability, and safety.

General Magic has developed a software technology that removes the barrier
to developing communicating applications. Conceived for a new breed of
consumer electronics product, the personal intelligent communicator,
Telescript technology enables a new breed of network, a network that is a
highway for mobile agents and thereby an open platform for developers.

The economic and social consequences of public networks that are platforms
potentially dwarf those of the personal computer. A network equipped for
mobile agents makes possible an electronic marketplace in which the agents
of providers and consumers of goods and services can find and interact with
each other. New forms of electronic commerce and community will result.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha xi

The Telescript Language Reference

xii General Magic, Inc. Telescript Language Reference. TDE 1_0 Alphaxii

Introduction

Introduction
Telescript technology integrates an electronic world of computers and the
networks that link them. This world is filled with Telescript places that are
occupied by Telescript agents. Each place or agent in the electronic world
represents an individual or organization in the physical world, its authority.

Both agents and places are software objects. A place is stationary, but an
agent can travel from place to place at will. The agent can do this whether
the two places are in the same computer or in different computers. If they are
in different computers, a network is involved.

The electronic world of Telescript technology can be called an electronic
marketplace because within it the agents of providers and consumers of
goods and services can find and interact with one another. Thus Telescript
technology makes possible a new generation of electronic commerce.

Note. For a fuller exploration of the applications of Telescript technology, see the
General Magic white paper, Telescript Technology: Mobile Agents.

About the technology
This section describes the Telescript model; the Telescript language, which
implements the model; the Telescript engine, which implements the
language; and the telesphere, which links engines.

Telescript model
The Telescript model is the view of computers and computer communication
suggested earlier and illustrated here—that is, an electronic world composed
of places, each occupied by agents, which can travel from place to place.

The power represented by an agent’s mobility is counterbalanced by permits,
which a programmer or administrator can use to grant only particular
capabilities to particular agents or places on particular occasions.

A place’s or agent’s authority in the physical world is revealed by its
telename, which it can neither falsify nor withhold from another place or
agent. A place, but not an agent, also has a teleaddress, which designates its
location in the electronic world and reveals the authority of the individual or
organization that is operating the computer in which the place exists.

As in the previous illustration, the typical place is permanently occupied by
an agent of the place’s authority, and is temporarily occupied, or visited, by
agents of other authorities. For example, a theater ticketing place might be

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 1

The Telescript Language Reference

occupied by a ticketing agent that provides information about theater events,
and sells tickets to them as well. Agents of other authorities would visit the
ticketing place to use the services the ticketing agent offers.

The typical agent travels to obtain a service offered remotely. For example,
an agent might go from a place in a user’s personal communicator to the
ticketing place to obtain theater tickets from the ticketing agent. In general,
an agent travels to meet and interact with a remote agent. The agents
interact programmatically, using object-oriented techniques.

Because agents don’t interact at a distance, the model employs remote
programming (RP) rather than remote procedure calling (RPC). RP improves
upon RPC by enabling computers to interact without communicating; this
improves the performance of their interactions by reducing their latency. RP
also lets computers customize one another by stationing their own agents—
and thus in effect themselves—in each others’ domains.

Note. In fact, the need for a place to be permanently occupied by an agent of the
place’s authority is so common that the model lets this one agent’s functionality
be incorporated in the place, so that a separate agent isn’t required.

Telescript language
The Telescript language is
an object-oriented remote
programming language. It
supplements, rather than
replaces, systems
programming languages
like C and C++. As
illustrated, only the parts
of an application that move
from place to place (the agents) or host visiting agents (the places) are
written in this language.

The language has the following characteristics:

• Safety. The language prevents an agent from directly manipulating its
host computer, exceeding its permit, or interacting with other agents
without their approval. This helps prevent the spread of viruses.

• Portability . The language makes no concessions to the hardware or
software constraints or peculiarities of a particular computer. This
means that an agent or place can be executed anywhere in a network.

• Extendability. The language gives to classes of information object that
the programmer defines the stature of classes that are built into the
language. This lets the language be extended for particular purposes.

• Elevation. The language makes no distinction between volatile and
nonvolatile storage. Every information object is persistent. This increases
an agent’s level of abstraction and decreases its size.

The Telescript language is communication-centric. Just as PostScript is
designed for describing complex images, and Mathematica for performing
complex mathematics, the Telescript language is designed for doing complex
networking tasks such as navigation, transportation, and authentication.

2 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha2

Introduction

The language’s go operation lets an agent travel. The agent merely presents
a ticket, which identifies its destination. An agent executes the go operation
when it needs to get from one place to another. The next instruction in the
agent’s program is executed at the agent’s destination, not at its origin. In a
sense, the language reduces networking to one program instruction.

The language’s meet operation lets two agents meet. One agent presents a
petition, which identifies the other agent, which must agree to a meeting. An
agent executes the meet operation when it needs assistance from another
agent. By meeting, the two agents receive references to one another. The
references let the agents interact as peers, using object-oriented techniques.

Notes.

• Because it is for remote programming, the language includes concepts that
span the realms of languages, operating systems, and networks.
Conventionally separate, in this language these areas are brought together.

• Often, as above, the term language refers broadly to both the Telescript
programming language and the Telescript predefined classes, which provide
much of the technology’s functionality (for example, the go operation).
Sometimes the term refers narrowly to the programming language alone.

Telescript engine
A Telescript engine is a computer program that executes the language’s object
programs. An agent or place is powerless without an engine. An engine can
execute two or more—typically many—object programs concurrently.

As illustrated, an engine designed for portability draws upon the resources of
its computer via application programming interfaces (API s). A storage API
provides access to the computer’s nonvolatile storage, which the engine uses
to preserve places and agents in case of a crash. A transport API provides
access to the computer’s communication media, which the engine uses to
send agents to, and receive agents from, other engines. An external
applications API lets the parts of an application written, for example, in C
create and interact with the parts written in the Telescript language.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 3

The Telescript Language Reference

An engine designed to support the places and agents of many authorities
implements privileged escapes from the language, which make possible the
construction of operational, administrative, and managerial (OAM) tools
external to the engine. Such tools are important to the success of large-scale
communication systems—for example, those offered as public services.

Telesphere
The telesphere is composed of one or more interconnected engines, each of
which provides places between which agents can travel, subject to access
controls. This requirement makes the telesphere homogeneous with respect
to the processing as well as the structure of information.

As illustrated, engines are interconnected so that they can transport agents
between them whenever the agents request the go operation. An agent is
transported as an octet string using suitable communication protocols. The
sending engine encodes the agent to produce the octet string. Encoding the
agent entails encoding the lesser objects of which the agent is constructed.
The receiving engine decodes the octet string to reconstruct the agent. All
engines encode, decode, and execute agents in the same way.

About this manual
This section provides context for the manual.

Audience
This manual is two books under one cover, both written for the Telescript
programmer. The first defines the Telescript language itself. The second book
defines the Telescript predefined classes. Thus the manual has four parts:

• Part One—Language Concepts

• Part Two—Language

• Part Three—Predefined Class Concepts

4 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha4

Introduction

• Part Four—Predefined Classes

The manual also has an appendix which lists the known shortcomings of
this version of the language and its predefined classes from a safety
standpoint.

This reference manual demands much of the reader. A book that makes the
technology more widely accessible is being written.

Informal conventions
This manual observes the following informal conventions:

• A class is denoted by its identifier (“Boolean”). If it’s several words
(“MeetingPlace”), a space is inserted between words (“Meeting Place”).

• A class member is denoted by its identifier, but with its first character
lowercase (“boolean”). If the identifier is several words (“MeetingPlace”),
a space is inserted between words (“meeting place”).

• An actual parameter is denoted by its formal parameter followed by the
word “parameter” (“the Item parameter”).

• An actual argument is denoted by its formal argument followed by the
word “argument” (“the ticket argument”).

• An attribute is denoted by its identifier followed by the word “attribute”
(“the length attribute”).

• An operation is denoted by its identifier followed by the word “operation”
(“the copy operation”).

• An exception is referred to as follows. If X is the identifier of Exception or
a subclass thereof, “throws X” means “throws a member of X.”

• As here, the term identifier sometimes denotes an identifier’s text, rather
than the identifier as a whole. This is a mere economy of expression.

Formal conventions
This manual uses Backus-Naur Form (BNF) to describe strings and octet
strings. In such descriptions, the manual observes the following conventions:

• “|” separates syntactic alternatives.

• “[” and “]” surround a syntactic option.

• ““” and “”” surround a terminal that is a string (rather than an octet
string). Whether the terminal is uppercase or lowercase is significant.

• If two or more segments of a string or an octet string could satisfy a
nonterminal, the longest segment is taken to satisfy it.

• In prose, for example, “ Match” is shorthand for “the characters that
satisfy the Match nonterminal”.

References
This manual incorporates by reference the following documents:

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 5

The Telescript Language Reference

• The Unicode Standard: Worldwide Character Encoding, Volume 1,
Version 1.0, The Unicode Consortium, Addison-Wesley, 1991.

• Unicode Technical Report #4, The Unicode Standard,
Version 1.1 (Prepublication Edition), Unicode Inc., 1993.

• File System Safe UCS Transformation Format (FSS_UTF),
X/Open Preliminary Specification, Document Number P316, X/Open.

• IEEE Standard for Binary Floating-Point Arithmetic,
754-1985 (Reaff 1991), American National Standards Institute (ANSI).

Hereafter and in companion documents, the language manual is the present
document, the Unicode specification the first two documents cited above.

6 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha6

Language Concepts

Part One—
Language Concepts

This part of the manual defines the major concepts—in particular, the object
and class abstractions—that underlie the language.

Chapters are devoted to the following topics:

1. object composition, which describes how an object’s externally visible
interface and externally invisible implementation are defined.

2. object manipulation, which describes how objects are manipulated.

3. object aggregation, which describes how objects with the same interface
and implementation are defined collectively rather than individually.

4. object terminology, which introduces some important terminology.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 7

The Telescript Language Reference

Object composition
An object is the unit of both information and information processing. It has
an externally visible interface, consisting of operations and attributes, and
an externally invisible implementation, consisting of methods and properties.

Note. An object can be simple (for example, a boolean) or complex (a dictionary),
passive (a string) or active (an agent or a place).

Operations
This section introduces the concept of an operation and describes how an
operation’s interface and implementation are defined.

The operation concept
An operation is a task that one object performs at a second’s request. The
object that requests the operation is the requester. The object that performs
it is the responder. The requester and the responder may be the same.

When an operation is requested, the requester provides the responder with
zero or more objects, the operation’s actual arguments (or arguments). The
first zero or more arguments are fixed in number. The remaining zero or
more, which the operation may not allow, are varying in number. A
constraint (see “Constraints”) is placed individually upon each argument
fixed in number and collectively upon each argument varying in number.

When an operation is performed, it either succeeds or fails. If the operation
succeeds, the responder may return to the requester a single object, the
operation’s result. A constraint is placed upon the result. If the operation
fails, the responder throws to the requester a single object, an exception. The
requester can catch the exception. Unless it does so, the engine propagates
the exception by effectively causing the requester to throw it.

An operation is private or public. An object performs a private operation—to
which the engine, rather than the object itself, controls access—only at its
own request. An object performs a public operation at either its own request
or that of another object. (Thus public operations let objects interact.)

An operation that an agent or place performs is sponsored or unsponsored.
An agent or place performs a sponsored operation under its own authority,
which the engine instates at the performance’s start and withdraws at the
finish. An unsponsored operation is performed with no change in authority.

Note. The choice between private and public and the choice between sponsored
and unsponsored are orthogonal.

Defining an operation’s interface
An operation has an interface which dictates how the requester and the
responder interact. The interface specifies the following:

• An identifier that distinguishes the operation from the others the object
performs and the attributes it gets and sets (see “Defining an attribute”).

• How many fixed arguments the requester supplies and the constraints
that are placed upon those arguments individually (see “Constraints”).

8 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha8

Language Concepts

• Whether the requester supplies varying arguments and, if so, the
constraint that is placed collectively upon each of those arguments.

• Whether the operation returns a result and, if so, the constraint that is
placed upon that result.

• Whether the operation is private or public and, if the responder is an
agent or place, whether the operation is sponsored or unsponsored.

Defining an operation’s implementation
An operation has an implementation which dictates how the responder
performs the operation. The implementation takes the form of a method.
Like the operation it implements, a method is performed and succeeds or fails.

There are three kinds of method. A predefined method is part of the engine. A
user-defined method, written in the language, is part of an object program
that the engine interprets. An out method is part of system or application
software outside the engine and accessible to it by means of its API s.

Notes.

• For example, an object some of whose operations have out methods might
provide access to an information service offering news, weather forecasts,
stock market results, and other information from outside the engine.

• Because a reference to the same object can be conveyed to any number of
agents and places, an object’s methods must be prepared in general for the
object’s operations to be requested any number of times concurrently.

Implementing a method with a block
A block, the typical method, is a list of statements (see “Statements”) and
variable declarations. A variable declaration defines the identifiers and type
of one or more local variables. A variable declaration may also initialize the
variables it introduces by assigning the same object to all of them.

The scope of a local variable is defined in terms of variable declaration
segments. A variable declaration segment is one or more variable declarations
with no adjacent variable declarations and with no intervening statements.
A local variable’s scope extends from the beginning of the segment in which
it’s declared to the end of the block. Even if declared in different segments,
two local variables declared in the same block shall have different identifiers.

Besides declaring local variables explicitly as described above, a block may
declare local variables implicitly . Any implicit variable declarations effectively
precede the first item of the block. A block shall not declare explicitly a local
variable whose identifier is that of a local variable it declares implicitly.

A block is executed by executing its items from left to right. A statement is
executed as discussed elsewhere (see “Statements”). A variable declaration is
executed by initializing any of its local variables that require initialization. A
block’s value is as follows. If the block’s last item is a statement, the block’s
value is that statement’s value. Otherwise the block’s value is null.

Notes.

• Statements and variable declarations may be freely intermixed.

• A block’s context determines the local variables (if any) it declares implicitly.
In particular, the blocks that figure in methods, catchphrases, the for-to
statement, and the for-in statement declare local variables implicitly.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 9

The Telescript Language Reference

Maintaining local variables
The internal state of one performance of a method is zero or more objects, the
method’s local variables. They’re set to nil before the method is performed
and discarded after. In between the method can get and set them.

A constraint is placed upon a local variable just as it is upon an argument or
a result. However, the constraint’s passage is disregarded and its type is
enforced by the compiler but not by this version of the engine.

Attributes
This section introduces the concept of an attribute and describes how an
attribute’s interface and implementation are defined.

The attribute concept
An attribute is an object that one object gets or sets at a second’s request. The
object that requests the attribute is the requester. The object that gets or
sets it is the responder. The requester and the responder may be the same.

An attribute is the product of two operations, its getter and setter, which the
attribute’s requester requests and the attribute’s responder performs. The
getter gets the attribute. It has no arguments but has the attribute as its
result. The setter sets the attribute. It has no result but has the attribute as
its sole argument, an argument fixed in number. The same constraint (see
“Constraints”) is placed upon the getter’s result and the setter’s argument.

An attribute may be read only. A read only attribute—to which the engine,
rather than the object itself, controls access—cannot be set. A read only
attribute has no setter and so is the product of its getter alone.

Note. Like any operation, the getter or setter is private or public and may be
sponsored or unsponsored. The choices made for the getter and the choices made
for the setter are orthogonal, although this version of the compiler links them.

Defining an attribute’s interface
An attribute has an interface which dictates how the requester and the
responder interact. The interface specifies the following:

• An identifier which distinguishes the attribute from the others the object
gets and sets and the operations it performs.

• Whether the attribute is read only.

• The constraint placed upon the getter’s result. (Unless the attribute is
read only, the setter’s argument is subject to the same constraint.)

• Whether the getter is private or public and, if the responder is an agent
or place, whether the getter is sponsored or unsponsored.

• Unless the attribute is read only, whether the setter is private or public
and, if the responder is an agent or place, whether the setter is
sponsored or unsponsored.

Note. The manual sometimes speaks as if an attribute’s getter and setter had
different identifiers. These different identifiers are fictions of the exposition.

10 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha10

Language Concepts

Defining an attribute’s implementation
An attribute has an implementation which dictates how the responder gets
and sets the attribute. The implementation takes the form of a method for
the attribute’s getter and, unless the attribute is read only, one for its setter.

An attribute’s getter and setter may have predefined methods that maintain
the attribute as a property of the responder (see “Maintaining properties”).
The property has the attribute’s identifier. The setter discards the property
and substitutes its argument for it. The getter returns the property as its
result, thus giving to its requester the object that the setter received most
recently.

A predefined attribute has the above predefined methods for its getter and
setter if it isn’t read only. The manual notes the few exceptions to this rule.

A user-defined attribute has the above predefined methods for its getter and
setter according to the following rule, which requires information in later
subsections: a concrete user-defined class has predefined methods for the
getter and setter of a user-defined instance attribute if, collectively, the class
and its implementation superclasses provide a method for neither operation.

Notes.

• Getting the typical attribute—unless it’s passed byCopy (see “Defining a
constraint’s passage”)—exposes its property to ongoing examination.

• Getting the typical attribute—unless the attribute is passed byCopy or
byProtectedRef or the responder accesses the property with a protected
reference—exposes its property to ongoing modification.

• If the typical attribute is required by its type to be, for example, a member of
Event, and an instance of a subclass of Event is given to the setter, the
getter later returns that instance of that subclass, not an instance of Event.

Maintaining properties
An object’s internal state is zero or more objects, its properties. They’re set to
nil before the constructor is performed and discarded when the object is
destroyed. In between the methods the object performs can get and set them.

Each of an object’s implementation member classes (see “Specifying a class’s
implementation”) defines zero or more of the object’s properties. The methods
that a particular implementation member class defines can get and set the
properties defined by that class but not those defined by other classes.

A constraint is placed upon a property just as it is upon an argument or a
result. However, the constraint’s passage is disregarded and its type is
enforced by the compiler but not by this version of the engine.

Constraints
This section introduces the concept of a constraint and describes how a
constraint’s type and passage are defined.

The constraint concept
A constraint dictates an object’s type as well as its passage between an
operation’s requester and responder. An object subject to the constraint is
checked (statically by the compiler and dynamically by the engine) to ensure
that it satisfies the specified type. Then the object is passed as specified.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 11

The Telescript Language Reference

Note. Constraints are imposed upon attributes, the arguments and results of
operations, and properties; types alone are imposed upon local variables and upon
objects in certain other roles in statements and expressions. However, the
passage of a property is disregarded and the type of a property or a local variable
is enforced by the compiler but not by this version of the engine.

Defining a constraint’s type
A type, a generalization of a class, is a predicate that certain objects satisfy.
A type identifies, by means of a class specifier (see “Specifying a class”), a
base class, whose instances satisfy the type, and two booleans, isSubclassOK
and isNilOK, which may identify other objects that satisfy the type. If the
isSubclassOK boolean is true, instances of interface subclasses of the base
class satisfy the type. If the isNilOK boolean is true, nil satisfies the type.

Types are related in the following ways. A supertype of one type is a second
type, satisfied by the objects that satisfy the first type, but perhaps satisfied
by other objects as well. The first type is a subtype of the second. One type is
compatible with another if the first type’s base class is compatible with the
second’s. A class is compatible with itself and with its interface superclasses.

Defining a constraint’s passage
A form of passage dictates how the engine conveys an object between an
operation’s requester and responder (including a getter’s or setter’s). The
forms of passage are defined in terms of references (see “Object references”).

The following table defines the forms of passage. Throughout the table, S is
the reference that the object’s source gives to the engine. D, which the engine
derives from S, is the reference the engine gives to the object’s destination.

Passage Definition
byRef D is S.

byProtectedRef D is a protected reference to the referent of S.

byUnprotectedRef D is S. However, if S is a protected reference, the engine
throws Reference Protected.

byCopy The engine copies the referent of S and passes byOwner
the resulting reference to the resulting copy.

byOwner D is S. However, unless the referent of S is an agent or
place, the engine transfers ownership of its closure
between the current owner and the responder’s owner
(see “Transferring ownership”).

An object’s passage is explicit in a constraint and implicit elsewhere in the
language. The passage of an operation’s argument or result is explicit, that
of an operation’s responder or thrown exception implicit. An operation’s
responder is passed byRef. A thrown exception is passed byOwner. However,
a lightweight primitive is always passed byCopy no matter what its passage.

Specifying a class
A class specifier denotes a class using identifiers. If the class is derived from a
class family, an identifier denotes the class family, a class specifier each
parameter used in the derivation. Otherwise an identifier denotes the class.

12 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha12

Language Concepts

The identifier used in a class specifier denotes a class listed below. Each list
item describes zero or more classes to which identifiers are bound. The items
appear in order of decreasing precedence. Of all the classes the list includes,
the identifier denotes the one of highest precedence with that identifier:

1. If the current class (see “Current objects”) was derived from a class
family, the classes that constitute the parameters used in the derivation.

2. If the current class or its class family was defined in a module, the
classes in the module (which include the current class or its class family).

3. The predefined classes.

Thus the compiler knows of the predefined classes. In fact, the compiler
exhibits knowledge of certain predefined features beyond their signatures.
For example, the predefined copy operation’s signature is Object !Object
but the compiler regards it as ("t.(t !t))(obj.class), for any object, obj.

Note. Further examples are given elsewhere (see “Applying an infix operator”).

Searching for a class
A class specifier identifies a class to the compiler. Sometimes a class must be
identified to the engine so that the engine can find it at runtime. The engine
must find classes upon which classes to be constructed depend, the classes of
which instances are to be constructed, and other classes in other situations.

While classes, like other objects, can be exchanged as the arguments and
results of operations, the engine provides a more systematic means of class
distribution and uses it for the above purposes. When offered a type and zero
or more members of the predefined Package class, the class search algorithm
looks among the following classes for one that satisfies the type. If one or
more satisfy the type, the algorithm produces one. Otherwise it produces nil:

• The predefined classes.

• The values of the packages.

• The classes that can be derived from the class families among the above.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 13

The Telescript Language Reference

Object manipulation
An object is accessed with a reference. Once accessible in this fashion an
object can be manipulated in several ways. An object is owned by an agent
or place. An object can be manipulated in some ways only by its owner.

Object references
This section introduces the concept of a reference and describes how a
reference can let an object be examined, examined and modified, or neither.

The reference concept
A reference is what provides access to an object, its referent. There is at least
one reference to every object, but there may be any number of them.

Notes.

• The predefined new operation returns a reference to a new object. Many
other predefined operations return references to new or existing objects.

• The predefined isSame operation discloses whether two references provide
access to the same object, that is, have the same referent.

Acquiring a protected reference
A reference is either protected or unprotected. A protected reference lets its
referent be examined. An unprotected reference lets its referent be examined
and modified. To examine an object is to obtain a reference to an object in its
closure. To modify an object is to modify or replace such an object. An object’s
closure is the object, the object’s properties, and their properties, recursively.

An operation whose responder is accessed by a protected reference is limited
as follows. If the operation would examine the responder, the engine replaces
with a protected reference the reference otherwise obtained. This prevents
the operation’s requester from modifying the responder later. If the operation
would modify the responder, the engine throws Reference Protected.

Notes.

• The predefined new operation returns an unprotected reference to a new
object unless the object is a member of the predefined Protected class.

• The predefined isProtected attribute discloses whether a reference is
protected. The predefined protect operation exchanges an unprotected
reference for a protected one. (Of course, the reverse exchange is impossible.)

• Modifications made to an object (by means of an unprotected reference) are
visible by means of all references to that object, protected or unprotected.

• In normal situations, objects ultimately modify themselves. In special
situations, an object is modified by another object or by the engine itself.
Isolation, locking, freezing, and thawing are among these special situations.

Acquiring a voided reference
A voided reference no longer provides access to its referent. A reference is
voided in circumstances prescribed by the predefined classes, some of which
make the voiding appear spontaneous to the object that holds the reference.

14 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha14

Language Concepts

A reference is voided, among other reasons, if it would span too great a
distance in the place hierarchy established by the predefined classes. An
operation’s requester and responder can be owned by one agent or place, by
two occupants of one place, or by a place and an occupant. In any other
situation, the engine voids the reference used to designate the responder.

Whether the reference to an operation’s responder is voided before the
operation is requested, when the operation is requested, or during the
performance of the requested operation, the engine throws Reference Void.
However, the predefined discard operation doesn’t throw this exception.

Protecting objects
A protected object, a member of the predefined Protected class, cannot be
modified because all references to it are protected references.

A protected object is unlocked while it performs the constructor (see
”Performing the constructor”). This lets the object initialize itself. The object
is locked (see “Locking an object”) when the new operation succeeds.

Notes.

• The predefined isSame operation considers two protected objects to be the
same object if they’re copy-equal. Therefore the two objects are the same.

• While a protected object can’t be modified in normal situations, it can be
modified as a consequence of isolation, freezing, or thawing.

• Locking a protected object doesn’t modify it because it’s locked already.

• The protected objects include (but are not limited to) members of the
predefined Package, Class, and Primitive classes.

Object manipulation
This section defines basic forms of object manipulation.

Note. The most basic forms of object manipulation are examination and
modification which are discussed elsewhere (see “Object references”).

Copying an object
To copy an object is to create another with certain similarities to the original.
Two objects are copy-equal if one could have been created by copying the
other. Interface members of the predefined Uncopied class cannot be copied.

A copy is created from the original as follows. The objects in the closures of
the original and the copy can be paired so that one object in each pair is a
copy of the other. Let O be any object in the closure of the original, and let O’
be the object in the closure of the copy that is paired with O. Let R be the
reference that links to O any of its properties, and let R’ be the reference that
links to O’ the corresponding property. The copy is created so that R and R’
access paired objects. If these objects are protected or uncopied objects, R’ is
unprotected if and only if R is unprotected. Otherwise R’ is unprotected.

For purposes of copying and thus determining copy-equality, the attributes
that the predefined classes define are implemented as instance properties
except as noted in specializations of the predefined copy operation.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 15

The Telescript Language Reference

Notes.

• The predefined copy operation copies its responder. The predefined isEqual
operation discloses whether its responder and its argument are either the
same object or copy-equal (without distinguishing between the two cases).

• The original and the copy are instances of the same class.

• Agents and places are uncopied objects.

Destroying an object
To destroy an object is to void all references to it; discard the object’s
references to its properties; and, if the object is an agent or a place, destroy
the other objects it owns. An object’s size, which can vary from one engine to
another, is the approximate amount of storage in octets thereby released.

An object is not destroyed upon request. The engine destroys any object that
would be excluded from its owner’s closure if the owner were isolated. For
purposes of this rule, an object’s properties include the following:

• While performing an operation, an object includes among its properties
any argument of that operation that was passed byOwner.

• While designated the current owner, an agent or place includes among its
properties any object that is created, by construction or by copying, or
that is passed byOwner as the result of an operation other than a getter.

• While performing a sponsored operation at the engine’s request, an agent
or place includes among its properties the responder, stack, and local
variables for each method entailed by its activation for that purpose.

Notes.

• In the simplest case, the engine destroys an object to which all references
have been either voluntarily discarded or forcibly voided.

• The current object can destroy any object it can put in the required position.
For example, if the reference that makes an object a property of the current
object is the only reference that includes the property in its owner’s closure,
replacing the property (for example, with nil) provokes its destruction.

Object ownership
This section introduces the concept of object ownership and lists an agent’s
or place’s privileges while the current owner (see “The own statement”).

The ownership concept
Every object is owned by an agent or place. An agent or place owns itself. Any
other object is owned by the agent or place that is designated the current
owner when the object is created, whether by construction or by copying.

An agent or place can isolate, lock, freeze, and thaw objects it owns. The
current object can exercise these ownership privileges of the current owner.

Notes.

• The owner global variable provides an unprotected reference to the agent or
place designated the current owner. The predefined isOwned attribute
discloses whether its responder is owned by the current owner. The
predefined owner attribute, which is private, discloses to an object its owner.

16 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha16

Language Concepts

• The predefined Package class grants the current object the additional
privilege of constructing new packages authorized by the current owner.

• Ownership isn’t to be confused with authority.

Isolating an object
The current object can isolate objects that the current owner owns. To isolate
an object, O, is first to reduce the closure of O by voiding any references the
closure includes to objects that the owner of O doesn’t own, which leaves O
uniformly owned, and then to void all references outside the resulting closure
that access objects—other than O itself—inside the closure. An object is
uniformly owned if all objects in its closure have the same owner.

Notes.

• The predefined isolate operation isolates its responder.

• An agent or a place, like any other object, can be isolated. The predefined
partAll operation, among other things, isolates an agent.

Locking an object
The current object can lock objects that the current owner owns. To lock an
object is first to isolate it and then to make it subsequently treat
unprotected references to itself as though they were protected references.

Notes.

• The predefined lock operation locks its responder. Although a locked object
can’t be unlocked, the predefined unlockedCopy operation creates an
unlocked copy of its responder even if the responder is locked. Finally, the
predefined isLocked attribute discloses whether its responder is locked.

• Locking an object doesn’t lock its properties.

• Locking an object prevents its subsequent modification.

Freezing an object
The current object can freeze objects that the current owner owns. To freeze a
locked object is to discard its properties. This is done in the presence of a
member of the predefined Package class whose values include an adequate
substitute for the object. A class is an adequate substitute for itself. An
adequate substitute for any other object is an unfrozen object that matches.

An object is dysfunctional while frozen. The engine throws Object Frozen if
the object is asked to perform any but a handful of predefined operations. If
the object is a class, the engine throws the same exception if the operation is
requested of a member of the class. The operations that a frozen object or a
member of a frozen class can perform are the isolate and protect
operations and the getters for the isLocked, isOwned, isProtected, and
isFrozen attributes (the last of which reveals whether the object is frozen).

Notes.

• The predefined freeze operation freezes objects. The predefined isFrozen
attribute discloses whether its responder is frozen.

• A frozen object is a placeholder for the unfrozen object, dramatically less
functional but often dramatically smaller in size in return. To reduce its size
in transit, an agent can freeze some of the objects it owns just before it
departs on a trip and can thaw them just after it arrives at its destination.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 17

The Telescript Language Reference

Thawing an object
The current object can thaw objects that the current owner owns. To thaw a
frozen object is to instate as its properties those of another object. This is
done in the presence of a member of the predefined Package class whose
values include an adequate substitute for the object. A class is an adequate
substitute for itself. An adequate substitute for any other object is a value
whose key and the name of whose package are copy-equal to the key and the
name of the package of the value that proved suitable at freezing.

Notes.

• The predefined thaw operation thaws objects.

• In practice, a thawed object is copy-equal to the object that was frozen.

Transferring ownership
The current object can acquire or relinquish ownership of an object and its
closure, on behalf of the current owner, by passing the object byOwner.

Passing byOwner an object, O, other than an agent or place transfers
ownership of its closure. If O is an argument, ownership is transferred from
the current owner (see “Current objects”) to the responder’s owner. If O is the
result of an operation other than a getter, ownership is transferred from the
responder’s owner to the current owner. However, in either case, if neither of
the two uniformly owns O, the engine throws Object Unowned. If O is a
getter’s result, the engine behaves as though its passage were byRef.

18 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha18

Language Concepts

Object aggregation
As an economy, objects with the same interface and implementation are
defined and implemented together as a class. As a further economy, classes
whose members have different but systematically similar interfaces and
implementations are defined and implemented together as a class family.

Class definitions
This section introduces the concepts of a class and a class family, describes
how a class’s interface and implementation are defined, and introduces
many ancillary concepts, most of which have to do with inheritance.

The class concept
A class determines a set of objects, its instances, and specifies the interface
and implementation of each of them. An object’s interface or implementation
consists of the interfaces or implementations of its features. An object’s
features are the operations it performs and the attributes it gets and sets.

A class, an object itself, specifies its own interface and implementation as
well as those of its instances. Thus a class specifies class and instance
features, class and instance methods, and instance properties. (There are no
class properties because classes, once constructed, are immutable.) A class
feature is requested of the class, an instance feature of an instance thereof. A
class method is performed by the class, an instance method by an instance
thereof. An instance property is maintained by an instance of a class.

A class is either predefined or user-defined. A predefined class is a universally
available extension to the language. It represents a kind of object available
to every Telescript programmer. A user-defined class is defined by a particular
Telescript programmer. It extends the language for a particular purpose.

Note. Instance features or methods far outnumber class features or methods.

The class family concept
A class family is a class-producing template or function. The function is
defined using one or more identifiers, the formal parameters of the class
family. The function is applied with the aid of as many classes, the actual
parameters (or parameters) of the derived class. Both defined by lists, the
formal and actual parameters agree in order as well as number. To apply
the function is to substitute the actual parameters for the formal ones.

Besides a source of classes, a class family is itself a class, the one derived
using default actual parameters (or default parameters). If the class family is
predefined and an actual parameter is limited to a certain class or interface
subclass thereof, the default parameter is that class. Otherwise it’s Object.

Specifying a class’s interface
Each of the two interfaces that a class specifies is the composite of one native
interface and zero or more inherited interfaces. The class defines the native
interface and inherits the inherited interfaces which other classes specify.

The following terms describe the relationships among classes. A class is an
immediate interface subclass of the classes that specify the interfaces it
inherits. The class is an interface subclass of the classes that define the

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 19

The Telescript Language Reference

native interfaces of which the inherited interfaces are composed. A class is an
immediate interface superclass of its immediate interface subclasses, an
interface superclass of its interface subclasses.

The following terms describe the relationships between classes and objects.
An object is an interface member of its class and its interface superclasses, all
of which are interface member classes of the object.

Notes.

• Object has no immediate interface superclasses.

• An object’s interface member classes collectively define all of it operations
and attributes, both predefined and user-defined.

• This section is the same as the next except that “interface” appears in one
and “implementation” in the other.

Specifying a class’s implementation
Each of the two implementations that a class specifies is the composite of one
native implementation and zero or more inherited implementations. The
class defines the native implementation and inherits the inherited
implementations which other classes specify.

The following terms describe the relationships among classes. A class is an
immediate implementation subclass of the classes that specify the
implementations it inherits. The class is an implementation subclass of the
classes that define the native implementations of which the inherited
implementations are composed. A class is an immediate implementation
superclass of its immediate implementation subclasses, an implementation
superclass of its implementation subclasses.

The following terms describe the relationships between classes and objects.
An object is an implementation member of its class and its implementation
superclasses, all of which are implementation member classes of the object.

Notes.

• Object has no immediate implementation superclasses.

• An object’s implementation member classes collectively define all of it
methods and properties, both predefined and user-defined.

• This section is the same as the previous except that “interface” appears in
one and “implementation” in the other.

Elaborating upon inheritance
A class can be a mix-in rather than a flavor. A mix-in cannot have instances.
Every immediate subclass of a mix-in is a subclass of a class the mix-in
designates as its anchor. The anchor or its anchor, recursively, is a flavor.

A class or feature can be sealed. A sealed class cannot have user-defined
immediate subclasses. A sealed feature cannot be implemented by user-
defined subclasses of the class that defines it. A class is sealed by itself. A
feature is sealed by a class that defines or inherits an implementation of it.

A class or feature can be abstract rather than concrete. An abstract class
cannot have instances. Hence the class and its implementation superclasses
need not collectively implement all features that the class defines or inherits.
An abstract feature cannot be implemented by the class that defines it.

20 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha20

Language Concepts

Notes.

• Flavors provide single inheritance, mix-ins a limited form of multiple
inheritance. Informally, flavors act as nouns, mix-ins as adjectives.

• A flavor is either abstract or concrete. A mix-in is effectively abstract.

Class relationships
This section describes how classes are related to one another. It introduces
the concepts of the class graph, canonical order, and escalation.

Relating one flavor to another
A tree, illustrated, defines the interface inheritance relationships among
flavors, a second tree the implementation inheritance relationships.

Either tree is interpreted as follows. The tree’s nodes represent flavors, the
arc between two nodes the (interface or implementation) inheritance
relationship between those two flavors. The tree’s root represents Object.

Each destination node reached by
an arc that emanates from any
source node represents an
immediate subclass of the flavor the
source node represents. Thus the
source node represents an
immediate superclass of the flavor
the destination node represents.

Object

Place

Home Shop

Credit
Card

Process

Agent

Buyer Seller

Business
Card

Each destination node reached by
one or more arcs in succession
represents a subclass of the flavor
the source node represents. Thus
the source node represents a
superclass of the flavor the destination node represents.

Note. This version of the compiler and this version of the engine require that the
interface tree and the implementation tree be one and the same.

Relating one mix-in to another
A tree, illustrated, defines the interface inheritance
relationships among a mix-in and its zero or more
interface superclasses, a second tree the implementation
inheritance relationships.

Qualified
Buyer

Business
Carded

Credit
Carded

Either tree is interpreted as follows. The tree’s nodes
represent mix-ins, the arc between two nodes the inverse
(interface or implementation) inheritance relationship
between those two mix-ins. The tree’s root represents the
mix-in.

Note. This version of the compiler and this version of the engine require that the
interface tree and the implementation tree be one and the same.

Relating one class to another
A directed graph, illustrated, defines the interface inheritance relationships
among classes—predefined and user-defined classes, flavors and mix-ins. A
second graph defines the implementation inheritance relationships.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 21

The Telescript Language Reference

Object

Place

Home Shop

Credit
Card

Process

Agent

Buyer Seller

Business
Card

Business
Carded

Credit
Carded

Qualified
Buyer

This class graph is constructed in two steps. First, each arc in each mix-in
tree is reoriented to represent the inheritance relationship, rather than its
inverse. Second, the altered mix-in trees are grafted onto the flavor tree.

Notes.

• This version of the compiler and this version of the engine require that the
interface graph and the implementation graph be one and the same.

• The language provides the basis for one universal class graph. However, the
graph changes over time and is known only in part at any particular place.

Ordering a class and its superclasses
A tree, illustrated, defines the canonical
order of a class and its interface
superclasses, a second tree that of a
class and its implementation
superclasses.

Object

Business
Carded

Credit
Carded

`

´ ˆ

˜

Process

Agent

Buyer

Qualified
Buyer

¹

¯

˘

Either tree is interpreted as follows. The
root represents the class, its other nodes
the (interface or implementation)
superclasses, and the arc between two
nodes the inverse inheritance
relationship between the two classes.

The canonical order is a depth-first walk
of the tree in which a class’s immediate superclasses are visited in their
canonical order (see “Defining a class’s immediate superclasses”).

Note. This version of the compiler and this version of the engine require that the
interface tree and the implementation tree be one and the same.

Searching a class and its superclasses
An object’s class and its implementation superclasses can define methods for
an operation that the object performs. Thus several methods for the same
operation can (and often do) arise. The engine selects for an operation the
first method it finds by searching the following four locations in order:

1. If the responder is a class, its class methods.

2. If the responder is a class, the class methods of its implementation
superclasses, searched in canonical order.

3. The instance methods of the responder’s class.

22 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha22

Language Concepts

4. The instance methods of the implementation superclasses of the
responder’s class, searched in canonical order.

A method for an operation can request either that same operation again or
another operation of the same object in a way that constrains the choice of
methods. In either case, the operation is said to be escalated. In the former
case, the search for a method begins immediately after the current class (see
“Current objects”). In the latter case, the search begins with a specified class,
either the current class or an immediate implementation superclass.

The constructor
This section introduces the concept of the constructor and describes how the
constructor differs from other operations.

The constructor concept
An object is constructed by asking its class, an instance of Class, to perform
the predefined new operation. If all actual arguments (if any) are nil, the
object is a basic instance of its class.The class in turn asks the object under
construction to perform the predefined initialize operation, often called
the constructor, whose main purpose is to initialize the object’s properties.

Because of its special role in the construction of objects, the constructor
differs from other operations in several important respects. These differences
help ensure that object construction is orderly and predictable.

Note. Not every object can be constructed using the new operation. Some of the
objects that cannot be so constructed are literals of the language. Others are
created by constructing and then modifying other instances of their classes.

Deciding the constructor’s formal arguments
The constructor, defined by Object, is redefined by every other class. A class
redefines the constructor’s arguments so that using them the class’s method
for the constructor can initialize the class’s properties of the responder.

A class other than Object redefines the constructor either explicitly or
implicitly. A flavor’s implicitly redefined arguments are the (explicitly or
implicitly) redefined arguments of the flavor among the flavor’s immediate
interface superclasses. A mix-in’s implicitly redefined arguments are none.

Deciding the constructor’s actual arguments
The constructor is escalated by all methods for it except that defined by
Object. This lets all implementation member classes of the object under
construction initialize the object’s properties that they define. If a method for
the constructor fails to escalate it, the engine throws Object Uninitialized.

A class’s method for the constructor escalates it with arguments that meet
the combined expectations of all immediate implementation superclasses—
as if the superclasses had declared the constructor’s arguments collectively
rather than individually. Arguments occur in the collective declaration in the
order in which they occur in their individual declarations. Superclasses
contribute their arguments to the collective declaration in canonical order.

Performing the constructor
The constructor is performed to the exclusion of other operations. If an object
requests an operation of an object that is performing the constructor and

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 23

The Telescript Language Reference

either the requester and responder differ or the method making the request
has not escalated the constructor, the engine throws Object Uninitialized.

The constructor’s performance affects the selection of methods for other
operations. If a method for the constructor, after escalating the constructor,
requests another operation of its responder, that operation is implicitly
escalated. The current class is the starting point for the method search.

The engine, by throwing Feature Unavailable, prevents the constructor from
being requested or escalated other than as described in this section.

Note. A method for the constructor can freely use the features of other objects.

24 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha24

Language Concepts

Object terminology
At any point in a program’s execution, certain objects play roles sufficiently
important to warrant the introduction of terminology for them. The following
table lists these objects and the terms the manual uses to refer to them.

Term Definition
current object The object that’s performing the current operation.

current class The class that defines the current method. However,
during the construction of a class, that class.

current operation The operation that’s being performed most immediately.

current method The user-defined (and not the predefined) method that’s
being performed most immediately.

current stack The stack for the performance of the current method. The
stack is relevant only to telescript escapes.

current process The agent or place performing the method for a sponsored
operation that most loosely encloses the current method.

current sponsor The agent or place performing the method for a sponsored
operation that most tightly encloses the current method.

current owner The owner of the object requesting performance of the
predefined own operation most tightly enclosing the
current method. If there’s none, the current process.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 25

The Telescript Language Reference

26 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha26

Language

Part Two—Language
This part of the manual defines the Telescript language. 1

Chapters are devoted to the following topics:

1. basic constructs, a brief introduction to the language.

2. definitions, which include those of modules.

3. statements, which are the constituents of methods.

4. expressions, which are the constituents of statements.

5. programs, which typically define modules.

This part of the manual defines the syntax and semantics of Telescript
programs. While the syntax rules are given in BNF to the extent possible,
many rules are given in prose. Throughout the prose, the word “ shall”
emphasizes a rule whose violation is a compile-time error.

1 This part of this manual is ©1991-1995 AT&T and General Magic, Inc.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 27

The Telescript Language Reference

Basic constructs
The Telescript language provides the following constructs among others. A
discussion of these constructs provides a brief introduction to the language.

Statements and expressions
The language provides both statements and expressions. A statement is
executed to take actions and possibly to produce a value. An expression is
evaluated to produce a value and possibly to take actions.

A statement’s or expression’s value either is a reference to an object or is
null , the latter signifying the absence of an object. Where the nature of the
reference is irrelevant or is known a priori, the manual uses “value” as if the
term denoted the object, rather than a particular reference to the object.

An expression generally combines other, lesser expressions. Evaluating the
overall expression entails evaluating some or all of the subexpressions. In
general, the order in which subexpressions are evaluated is undefined.

Note. The distinction between statements and expressions is intentionally
blurred. Any statement can serve as an expression provided it’s enclosed in
parentheses. Any expression can serve as a statement directly.

Operation and cascade requests
The language’s fundamental combining form, “ x.f (y, z,...)”, requests an
operation, f, of an object, x, the responder, and supplies x with zero or more
objects, y, z, etc., the arguments of f. Most other combining forms provide
more conventional or convenient notation for specific operations or situations.

Among the other combining forms is one that requests a cascade. A cascade
is a sequence of two or more operations performed by the same object which
is produced (by expression evaluation) only once. The cascade’s responder is
the object that performs all of the operations. The cascade’s result is that of
the operation performed last. If that operation has no result, the cascade has
no result. Any results of preceding operations are discarded.

Objects and their identifiers
Many objects are accessed, and in some cases assigned, with identifiers. The
following table lists categories of identified object and objects in each
category. For each category, the identifiers of the listed objects shall differ.

Category Objects in category with different identifiers
Global variable All global variables.

Local variable All local variables defined by a block.

Property All properties defined by a class.

Class All classes defined by a module, or all predefined classes.

Parameter All formal parameters defined by a class family.

28 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha28

Language

Class feature All class features defined by a class or an interface
superclass. This version of the compiler doesn’t allow an
identifier to denote both a class and an instance feature.

Instance
feature

All instance features defined by a class or an interface
superclass. This version of the compiler doesn’t allow an
identifier to denote both a class and an instance feature.

Argument All formal arguments defined by an operation.

The first character of an identifier’s text, which is a string, shall be an
alphabetic character. Each of the text’s remaining characters shall be
anything but a control, private use, punctuation, space, or special character.

Notes.

• The predefined classes use identifiers for additional purposes.

• The compiler can assign an identifier whose text’s first character is “ _”.

Global variables
Among the objects accessed with identifiers are global variables. A global
variable is an object that provides context for the evaluation of an expression
(see “Expressions”). Global variables are assigned by the engine and
accessed (see “Accessing an object”) by user-defined methods.

The following table defines the global variables. The first column gives their
identifiers, the second gives their definitions, and the third states whether
the engine provides protected or unprotected references to them.

Identifier Global variable Reference protected?
client The current operation’s requester or,

if the requester’s the engine, nil.
If that used to request the
enclosing operation was.

self The current object. If that used to request the
current operation was.

here The place the current process
occupies or, if the current process is
the engine place, nil.

No.

place The place the current process
occupies or, if the current process is
a place, that place.

No.

process The current process. No.

sponsor The current sponsor. No.

owner The current owner. No.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 29

The Telescript Language Reference

Definitions
The typical Telescript program defines a module, a member of the predefined
Package class. A module’s values are classes, its keys their identifiers.

Defining a module entails defining the module’s classes, the interfaces upon
which the definitions of the classes depend, the attributes and operations
that the classes define, and the constraints placed upon the attributes and
upon the arguments and the results of the operations.

Note. A package is both a dictionary and a protected object. The constructor locks
a package’s keys and values before it adds them to the package.

Module definitions
A module is defined as follows:

Module ::= ID “:” “module” “=” “(” [ModuleItems] “)”

ModuleItems ::= ModuleItem
| ModuleItems “;” ModuleItem
| ModuleItems “;”

ModuleItem ::= Interface | Class | Escape

The module is formed as follows. An Interface adds nothing to the module.
A Class adds its value. An Escape (see “Escape expressions”) adds to the
module as would zero or more Interface’s and Class’s.

All ModuleItems shall introduce different identifiers, except that a definition
of the interface of a class can precede a backward compatible definition of the
class itself. One ModuleItem can use the identifier another ModuleItem
introduces without regard for the lexical order of the two ModuleItems.

This is an expression (see “Expressions”) whose value is the module.

Notes.

• The classes in the typical module are functionally related (for example, they
implement a single communicating application).

• In this version of the language, a class in one module can use the identifier
of a class in another only if the first module redundantly defines the second
class’s interface. The redundant interface definition is unauthenticated.

• One may view the “ ;” as either a separator or a terminator. It is mandatory
between ModuleItems but is optional after the last ModuleItem.

Interface definitions
An interface is defined as follows:

Interface ::= ID “:” [“sealed”] [“abstract”|“mixin”]
“interface” [FormalParameters]
[Superclasses] “=” “(” [Features] “)”

30 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha30

Language

Interface defines a class as would Class (see “Defining a class”), but may
not define all of the properties and methods that Class would define.

This is an expression (see “Expressions”) whose value is null.

Note. An Interface is easily included in any number of Module’s with the aid of
the C preprocessor’s #include directive.

Class definitions
Defining a class entails defining the class itself; if the class is a class family,
its formal parameters; the class’s immediate superclasses; and the class’s
features. Defining a class also entails identifying any sealed features.

Defining a class
A class is defined as follows:

Class ::= ID “:” [“sealed”] [“abstract”|“mixin”]
“class” [FormalParameters]
[Superclasses] “=” “(” [Features] “)”

In the discussion that follows, let C be the defined class. If C is a class
family, let D be any class derived from C. Otherwise let D be C itself.

C and D are as follows. ID denotes C for purposes of a ClassID. If “sealed”
occurs, D is sealed. If “ abstract” occurs, D, a flavor, is abstract not
concrete. If “ mixin” occurs, D is a mix-in. If FormalParameters occurs, it’s
the formal parameters of C, a class family. Otherwise C isn’t a class family.
If Superclasses occurs, it denotes the immediate superclasses of D.
Otherwise they’re Object alone. If Features occurs, it’s the features, but
also the methods and properties, that D defines. Otherwise D defines none.

To find each class upon which C depends (for example, one of its immediate
implementation superclasses), the engine follows the class search algorithm
using packages that the requester’s owner offers privately (see the class
manual). If the algorithm fails, the engine throws Class Unavailable.

This is an expression (see “Expressions”). If Class occurs as a ModuleItem,
its value is C. Otherwise its value is a module that includes C alone.

Defining a class’s formal parameters
A class’s formal parameters are defined as follows:

FormalParameters ::= “[” FormalGroups “]”

FormalGroups ::= FormalGroup | FormalGroups “;” FormalGroup
FormalGroup ::= Identifiers “:” “Class” [“<:” ClassID]

Identifiers ::= ID | Identifiers “,” ID

The formal parameters are the Identifiers in the FormalGroups. If
ClassID occurs in a particular FormalGroup, each actual parameter whose
formal parameter is among the Identifiers in that FormalGroup shall be
the class that ClassID denotes or an interface subclass thereof.

Notes.

• The compiler but not the engine knows of any such parameter constraints.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 31

The Telescript Language Reference

• A derived class’s functionality can depend upon the actual parameters used in
its derivation by the mechanism described in “Defining a class specifier”.

Defining a class’s immediate superclasses
A class’s immediate superclasses are defined as follows. If a class family is
being defined, the class is any derived from it:

Superclasses ::= “(” ClassIDs “)”

ClassIDs denotes the immediate interface and implementation
superclasses alike in reverse canonical order. However, if the class is a mix-
in, the first ClassID denotes its anchor. If the class is a flavor, the first
ClassID shall denote a flavor using an ID other than a formal parameter.

Note. In this version of the language, a class’s immediate interface and
implementation superclasses must be the same classes.

Defining a class’s features
A class’s features, but also its properties and methods, are defined as
follows. If a class family is being defined, the class is any derived from it:

Features ::= Feature
| Features Feature
| Features “;”

Feature ::= RequesterDecl
| ResponderDecl
| AttributeDecl
| OperationDecl
| SealingDecl

The compiler processes Features from left to right to produce the following
effects. RequesterDecl’s and ResponderDecl’s qualify later
AttributeDecl’s and OperationDecl’s. AttributeDecl’s define native
attributes, implement native and inherited attributes, and define properties.
OperationDecl’s define native operations and implement native and
inherited operations. SealingDecl’s seal inherited features.

Defining features’ requesters
Features’ requesters are defined as follows:

RequesterDecl ::= “private” | “public”

RequesterDecl leaves in force whichever of the two keywords occurs, the
keyword “ private” being in force before the first RequesterDecl.

Notes.

• The keywords find use elsewhere (see “Defining an attribute” and “Defining
an operation”).

• Private features are protected in the C++ sense.

Defining features’ responders
Features’ responders are defined as follows:

ResponderDecl ::= “instance” | “class” | “property”

32 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha32

Language

ResponderDecl leaves in force whichever of the three keywords occurs, the
keyword “ instance” being in force before the first ResponderDecl.

Note. The keywords find use elsewhere (the first two in “Defining an attribute”
and “Defining an operation”, the third in “Defining attributes or properties”).

Defining attributes or properties
Attributes or properties are defined as follows:

AttributeDecl ::= Identifiers “:” Attribute “;”

AttributeDecl either declares or redeclares each attribute that
Identifiers denotes and that Attribute defines. A class declares a new,
native attribute to define it and perhaps to define a method for its getter, a
method for its setter, or both. A class redeclares an existing, inherited
attribute to define a method for its getter, a method for its setter, or both.

Any redeclaration of an attribute must be compatible with its declaration
(and with any previous redeclaration). The redeclared type of the setter’s
argument shall be the declared type or a supertype thereof. The redeclared
type of the getter’s result shall be the declared type or a subtype thereof.

AttributeDecl may find the keyword “ property” in force. If it does, it
defines properties, rather than attributes, and all of Attribute but the
Type in its Constraint is ignored. A property’s type is enforced by the
compiler but not by this version of the engine. A property’s passage is byRef.

Note. Properties are private in the C++ sense.

Defining operations
Operations are defined as follows:

OperationDecl ::= Identifiers “:” Operation “;”

OperationDecl either declares or redeclares each operation that
Identifiers denotes and that Operation defines. A class declares a new,
native operation to define it and perhaps to define a method for it. A class
redeclares an existing, inherited operation to define a method for it.

Any redeclaration of an operation must be compatible with its declaration
(and with any previous redeclaration). The redeclared type of any argument
shall be the declared type or a supertype thereof. The redeclared type of any
result shall be the declared type or a subtype thereof.

OperationDecl shall not find the keyword “ property” in force.

Sealing features
Features are sealed as follows:

SealingDecl ::= Identifiers “:” “sealed” “;”

SealingDecl seals each feature that Identifiers denotes. Each feature
shall be inherited by, rather than native to, the defined class.

Note. A native feature can be sealed at its declaration. A class seals a feature to
prevent the class’s interface subclasses from defining methods for it.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 33

The Telescript Language Reference

Attribute definitions
Defining an attribute entails defining the attribute itself, the attribute’s
signature, and possibly the attribute’s getter and setter.

Defining an attribute
An attribute is defined as follows:

Attribute ::= [“abstract”|“sealed”] [“sponsored”]
AtSignature [“with” “(” GetterSetters “)”]

The interfaces of the attribute’s getter and setter are as follows. If
“abstract” occurs, both operations are abstract not concrete. If “ sealed”
occurs, both are sealed. If “ sponsored” occurs, both are sponsored. If
“private” not “ public” is in force, both are private not public. If “ class”
not “ instance” is in force, both are performed by the defined class, not an
interface member thereof. The attribute’s signature is AtSignature.

The implementations of the attribute’s getter and setter are as follows. If
GetterSetters occurs, it defines user-defined methods for the getter, the
setter, or both. Otherwise none is provided (here).

Notes.

• The typical attribute has predefined, not user-defined, methods.

• In this version of the language, the getter and setter must be categorized
together, rather than separately, as either abstract or concrete, sealed or
unsealed, sponsored or unsponsored, and private or public.

• The compiler but not the engine knows whether an attribute is abstract.

Defining an attribute’s signature
An attribute’s signature is defined as follows:

AtSignature ::= [“readonly”]
Constraint [“throws” ClassIDs]

The signatures of the attribute’s getter and setter are as follows.
Constraint constrains both the setter’s argument and the getter’s result. If
“readonly” occurs, the attribute has no setter. If ClassIDs occurs, it
denotes the classes whose interface members the getter, the setter, or both
purportedly throw. Otherwise they purportedly throw no exceptions.

Each class that ClassIDs denotes shall be Exception or an interface
subclass thereof. Furthermore, none of the classes shall be derived from a
class family.

Note. In this version of the language, the compiler enforces the second
requirement but not the first. The compiler doesn’t even insist that the class
identifiers be defined.

Note. The engine doesn’t have access to the exception class identifiers.

Defining an attribute’s getter or setter
An attribute’s getter or setter is defined as follows:

34 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha34

Language

GetterSetters ::= GetterSetter
| GetterSetters “;” GetterSetter
| GetterSetters “;”

GetterSetter ::= ID “:” Operation

GetterSetter shall occur at most twice. If there are two occurrences, in one,
ID shall be “ get” and Operation shall define the getter and a method for it.
The type of the getter’s result shall be compatible with the attribute’s type.
In the other, ID shall be “ set” and Operation shall define the setter and a
method for it. The attribute’s type shall be compatible with the type of the
setter’s argument. If there is one occurrence, it shall be either of these two.

If “abstract”, “sealed”, or “sponsored” occurs in Operation, it is ignored.

Note. One may view the “ ;” as either a separator or a terminator. It is mandatory
between GetterSetters but is optional after the last GetterSetter.

Operation definitions
Defining an operation entails defining the operation itself; the operation’s
signature; the operation’s expected arguments, named and unnamed; and
perhaps the operation’s method, which usually takes the form of a block.

Defining an operation
An operation is defined as follows:

Operation ::= [“abstract”|“sealed”] [“sponsored”]
OpSignature [“=” Method]

The operation’s interface is as follows. If “ abstract” occurs, the operation is
abstract not concrete. If “ sealed” occurs, it’s sealed. If “ sponsored” occurs,
it’s sponsored. If “ private” not “ public” is in force, it’s private not public. If
“class” not “ instance” is in force, it’s performed by the defined class, not
an interface member thereof. The operation’s signature is OpSignature.

The operation’s implementation is as follows. If Method occurs, it’s a user-
defined method for the operation. Otherwise none is provided (here).

Note. The compiler but not the engine knows whether an operation is abstract.

Defining an operation’s signature
An operation’s signature is defined as follows:

OpSignature ::= “op” “(” [ExpectedArguments] “)”
[Constraint] [“throws” ClassIDs]

The operation’s signature is as follows. If ExpectedArguments occurs, it
constrains and may identify the operation’s arguments. Otherwise the
operation accepts no arguments. If Constraint occurs, it constrains the
result. Otherwise the operation returns no result. If ClassIDs occurs, it
denotes the classes whose interface members the operation purportedly
throws. Otherwise it purportedly throws no exceptions.

Each class that ClassIDs denotes shall be Exception or an interface
subclass thereof. Furthermore, none of the classes shall be derived from a
class family.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 35

The Telescript Language Reference

Note. In this version of the language, the compiler enforces the second
requirement but not the first. The compiler doesn’t even insist that the class
identifiers be defined.

Note. The engine doesn’t have access to the exception class identifiers.

Defining an operation’s expected arguments
An operation’s expected arguments are defined as follows:

ExpectedArguments ::= NamedArguments
| UnnamedArguments
| FixedGroups [“;” UnnamedArguments]

The operation’s expected arguments are as follows. If NamedArguments
occurs, it assigns formal arguments to all expected actual arguments. If
UnnamedArguments occurs, it assigns formal arguments to none. If
FixedGroups occurs (see “Defining an operation’s named arguments”), it
assigns formal arguments to all expected actual arguments it encompasses.

Note. Thus the arguments varying in number and the last zero or more arguments
fixed in number may (but needn’t) be left without formal arguments.

Defining an operation’s named arguments
An operation’s named arguments are defined as follows:

NamedArguments ::= FixedGroups
| VaryingGroup
| FixedGroups “;” VaryingGroup

FixedGroups ::= FixedGroup | FixedGroups “;” FixedGroup
FixedGroup ::= Identifiers “:” Constraint

VaryingGroup ::= ID “:” [Constraint] “...”

If FixedGroups occurs, the operation has arguments fixed in number. The
formal arguments are the Identifiers in the FixedGroups. Each actual
argument is subject to the Constraint that a FixedGroup associates with
the Identifiers that includes the corresponding formal argument.

If VaryingGroup occurs, the operation has arguments varying in number.
The formal argument is ID. If Constraint occurs, it’s the constraint upon
each actual argument. Otherwise the constraint is defined by “ ref Object”.

A formal argument is an identifier that denotes either one actual argument
fixed in number or all actual arguments varying in number. Associated with
each formal argument is a constraint upon the actual argument it denotes.

The formal arguments of an operation, as defined or redefined by a certain
class, shall differ from the identifiers of properties native to that class. The
constructor is exempted from this rule (see “Defining an operation’s method”).

Note. An operation’s formal arguments don’t affect the interface of the class that
defines the operation. However, they do affect the implementation of any class
that defines a method for the operation (see “Defining an operation’s method”).

Defining an operation’s unnamed arguments
An operation’s unnamed arguments are defined as follows:

36 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha36

Language

UnnamedArguments ::= FixedItems
| VaryingItem
| FixedItems “;” VaryingItem

FixedItems ::= FixedItem | FixedItems “;” FixedItem
FixedItem ::= Constraint

VaryingItem ::= [Constraint] “...”

If FixedItems occurs, the operation has arguments fixed in number. The
number and lexical order of the Constraint’s are those of the actual
arguments, each of which is subject to the Constraint thus paired with it.

If VaryingItem occurs, the operation has arguments varying in number. If
Constraint occurs, it’s the constraint upon each actual argument.
Otherwise the constraint is defined by “ ref Object”.

Note. The use of UnnamedArguments is denigrated. Some or all arguments must be
unnamed if either the operation’s method is an Escape not a Block (see “Defining
an operation’s method”) or the method escalates the operation with its arguments
already on the current stack (see “Escalating the current operation”).

Defining an operation’s method
An operation’s method is defined as follows:

Method ::= Block | Escape

Method is normally Block but may be Escape, in which case the arguments
and result are handled as described elsewhere (see “Escape expressions”).

The operation’s named arguments are assigned to implicitly declared local
variables before Block is executed. If there are named arguments fixed in
number, Block declares one variable for each such argument. The variable’s
identifier is the formal argument. The variable’s type is the type associated
with it. If there are named arguments varying in number, Block declares
one variable for all such arguments collectively. The variable’s identifier is
the formal argument. The variable’s type is that satisfied only by interface
members of List[T , Equal], T being the required type of each such
argument.

The constructor’s named arguments are treated a bit differently. If a formal
argument is the identifier of a property of the class that defines the
method—even the property that the predefined method for an attribute’s
getter or setter employs—the argument fixed in number or the list of
arguments varying in number is assigned to that property; no local variable
is implicitly declared. The property’s type shall allow the assignment.

The operation’s unnamed arguments are left on the current stack.

The operation’s result is as follows. If Block executes the return
statement, that statement determines the result. Otherwise if Block’s value
isn’t null, the result is that value. Otherwise there’s no result.

Defining a block
A block is defined as follows:

Block ::= “{” [BlockItems] “}”

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 37

The Telescript Language Reference

BlockItems ::= BlockItem
| BlockItems “;” BlockItem
| BlockItems “;”

BlockItem ::= VariableDecl | Statement

VariableDecl ::= Identifiers “:” Type [“=” Expression]
| Identifiers “:” “=” Expression

The block is as follows. If BlockItems occurs, it’s the items of the block.
Otherwise there are none. Each VariableDecl explicitly declares the local
variables that Identifiers denotes. If Type occurs, the type of each local
variable is Type. Otherwise the type of each is that of Expression’s value.
If Expression occurs, it’s evaluated once for purposes of initialization.

Notes.

• The relationship between blocks and statements is circular. A block can be
constructed of statements. A statement can be constructed of blocks.

• One may view the “ ;” in BlockItems as either a separator or a terminator. It
is mandatory between BlockItems but is optional after the last BlockItem.

Constraint definitions
Defining a constraint entails defining the constraint itself, the constraint’s
type and passage, and the type’s class specifier.

Defining a constraint
A constraint is defined as follows:

Constraint ::= [Passage] Type

The constraint is as follows. The type is Type. If Passage occurs, the
passage is Passage. Otherwise the passage is byRef.

In the definition of a predefined but not a user-defined class, a comment that
occurs after Type formally augments Type in this sense: the engine throws
Argument Invalid or Result Invalid unless the augmented type is satisfied.

Defining a constraint’s type
A type is defined as follows:

Type ::= ClassID [“!”] [“|” “Nil”]

The type is as follows. ClassID denotes the base class. If “ !”occurs, the
isSubclassOK boolean is false. If “|” occurs, the isNilOK boolean is true.

Defining a constraint’s passage
A passage is defined as follows:

Passage ::= “ref”
| “protected”
| “unprotected”
| “copied”
| “owned”

38 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha38

Language

The passage is byRef if “ref” occurs, byProtectedRef if “protected” occurs,
byUnprotectedRef if “unprotected” occurs, byCopy if “copied” occurs, and
byOwner if “owned” occurs.

Defining a class specifier
A class specifier is defined as follows:

ClassID ::= ID | ID “[” ClassIDs “]”

ClassIDs ::= ClassID | ClassIDs “,” ClassID

The denoted class is as follows. If ID occurs alone, the class is the one that it
denotes. Otherwise the class is the one derived from the class family that it
denotes using as parameters the classes that ClassIDs denotes.

ID shall denote a class in one of the categories listed elsewhere (see
“Specifying a class”). Unless ID occurs alone, it shall denote a class family.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 39

The Telescript Language Reference

Statements
Statements fall conveniently into the following categories. Basic statements
evaluate expressions, execute blocks both unconditionally and conditionally,
choose among alternative blocks, and provide the results of operations.
Iterative statements enable and control indefinite, conditional, and bounded
iteration with or without a control variable. Exception statements throw and
catch exceptions. Process statements execute blocks under specified
conditions of object ownership, object permission, and object synchronization:

Statement ::= BasicStmt
| IterativeStmt
| ExceptionStmt
| ProcessStmt

Basic statements
A basic statement is one of the following:

BasicStmt ::= ExprStmt
| DoStmt
| IfStmt
| IfElseStmt
| ReturnStmt

Using an expression as a statement
An expression is used as a statement as follows:

ExprStmt ::= Expression

Executing this statement evaluates Expression.

The statement’s value is Expression’s value.

The do statement
The do statement is written as follows:

DoStmt ::= “do” Block

Executing this statement, whose value is null, executes Block.

Note. This statement typically introduces local variables with restricted scope.

The if statement
The if statement is written as follows:

IfStmt1 ::= “if” Expression Block [“else” IfStmt2]

Executing this statement, whose value is null, evaluates Expression. The
value of Expression shall be a boolean. If the value is true, Block is
executed. Otherwise IfStmt2, if it occurs, is executed.

The if-else statement
The if-else statement is written as follows:

40 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha40

Language

IfElseStmt1 ::= “if” Expression Block1 ElseClause

ElseClause ::= “else” Block2 | “else” IfElseStmt2

Executing this statement evaluates Expression. The value of Expression
shall be a boolean. If the value is true, Block1 is executed. Otherwise
Block2 or IfElseStmt2 is executed.

The statement’s value is the executed Block’s value. However, if the last
statement in any Block whose value is null is neither return, throw, nor a
loop statement enclosing no break statement, the statement’s value is null.

The type of the statement’s value, if not null, is as follows. Let S be the least
common interface superclass of the statement’s non-null Block values. If
none of these values is nil, the type is that satisfied only by interface
members of S. If each of them is nil, the type is that satisfied only by nil.
Otherwise the type is that satisfied only by interface members of S or by nil.

The return statement
The return statement is written as follows:

ReturnStmt ::= “return” [Expression]

Executing this statement, whose value is null, stops the performance of the
current operation in such a way that it succeeds. If Expression occurs the
operation’s result is its value. Otherwise there’s none. If the operation
requires a result, Expression shall occur and its value shall not be null.

Iterative statements
An iterative statement is one of the following:

IterativeStmt ::= LoopStmt
| WhileStmt
| RepeatStmt
| ForToStmt
| ForInStmt
| ContinueStmt
| BreakStmt

An iterative statement either executes a block, the controlled block, under
specified conditions or stops execution of the controlled block of the most
tightly enclosing iterative statement and perhaps that statement itself.

The loop statement
The loop statement is written as follows:

LoopStmt ::= “loop” Block

Executing this statement, whose value is null, executes Block—the
controlled block—repeatedly.

Note. Only a break, return, or throw statement can halt the repetition.

The while statement
The while statement is written as follows:

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 41

The Telescript Language Reference

WhileStmt ::= “while” Expression Block

Executing this statement, whose value is null, executes Block—the
controlled block—repeatedly. Expression is evaluated before each execution
of Block. The value of Expression shall be a boolean. If the value is true,
Block is executed. Otherwise the break statement is executed.

The repeat statement
The repeat statement is written as follows:

RepeatStmt ::= “repeat” Expression Block

Executing this statement, whose value is null, executes Block—the
controlled block—repeatedly. Expression is evaluated once. The value of
Expression shall be an integer. If the value, n, is greater than zero, Block
is executed n times. Otherwise Block isn’t executed at all.

The for-to statement
The for-to statement is written as follows:

ForToStmt ::= “for” ID [“:” Type] “to” Expression Block

Executing this statement, whose value is null, executes Block—the
controlled block—repeatedly. Expression is evaluated once. The value of
Expression shall be an integer. If the value, n, is greater than zero, Block
is executed n times. Otherwise Block isn’t executed at all.

A counter is set to one before the first execution of Block, increased by one
before every other execution, and assigned to the local variable or property ID
denotes (see “Accessing an object”) before every execution. If Type occurs, the
Block implicitly declares, for this purpose, a variable whose type is Type.
An integer shall satisfy the type of the specified local variable or property.

Note. The new variable and a similarly introduced variable in C++ differ in scope.

The for-in statement
The for-in statement is written as follows:

ForInStmt ::= “for” ID [“:” Type] “in” Expression Block

Executing this statement, whose value is null, executes Block—the
controlled block—repeatedly. Expression is evaluated once. The value of
Expression shall be a collection. The collection’s predefined iterator
attribute is gotten. Block is executed once for each item of the iterator.

The next item is assigned to the local variable or property ID denotes (see
“Accessing an object”) before every execution of Block. If Type occurs, the
Block implicitly declares, for this purpose, a variable whose type is Type.
An item shall satisfy the type of the specified local variable or property.

Note. The new variable and a similarly introduced variable in C++ differ in scope.

The continue statement
The continue statement is written as follows:

ContinueStmt ::= “continue”

42 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha42

Language

Executing this statement, whose value is null, stops the execution of the
controlled block of the most tightly enclosing iterative statement, but not
execution of that statement itself. Any items remaining in the block are
skipped.

The break statement
The break statement is written as follows:

BreakStmt ::= “break”

Executing this statement, whose value is null, stops the execution of the
controlled block of the most tightly enclosing iterative statement, but also
execution of that statement itself. Any items remaining in the block are
skipped.

Exception statements
An exception statement is one of the following:

ExceptionStmt ::= TryStmt
| ThrowStmt

Declaring catchphrases
Catchphrases are written as follows:

CatchPhrases ::= CatchPhrase [CatchPhrases]
CatchPhrase ::= “catch” [ID “:”] Type Block

| “catch” “(” ID “:” Type “)” Block

A catchphrase, which is essentially a block, handles a thrown exception. The
engine executes the catchphrase by executing the block. The catchphrase’s
value is the block’s. If the block throws an exception, the catchphrase can’t
handle it (but a catchphrase not at the same level, but at a higher one, can).

A Catchphrase can handle any exception that satisfies Type. The base
class of Type shall be Exception or an interface subclass thereof. Its
isSubclassOK boolean shall be true. Its isNilOK boolean shall be false.

The Catchphrase accesses as follows the exception it handles. If ID occurs,
the exception is assigned to the local variable ID denotes (see “Accessing an
object”) before Block is executed. A variable whose type is Type is implicitly
declared for this purpose. If ID doesn’t occur, the exception is discarded.

Notes.

• The try and restrict statements are defined in terms of catchphrases.

• The two forms of CatchPhrase serve the same purpose, but with only the first
can one avoid implicitly declaring a local variable to receive the exception.

The try statement
The try statement is written as follows:

TryStmt ::= “try” Block CatchPhrases

Executing this statement executes Block and, if Block throws an exception,
does the following. If one or more Catchphrases can handle the exception,
the exception is caught and the lexically first such Catchphrase is executed.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 43

The Telescript Language Reference

The statement’s value is the executed Catchphrase’s value. However, if no
Catchphrase is executed, the statement’s value is null.

Note. Catching an exception passes it to the current method byOwner.

The throw statement
The throw statement is written as follows:

ThrowStmt ::= “throw” Expression

Executing this statement, whose value is null, throws the value of
Expression. The value of Expression shall be an exception.

Process statements
A process statement is one of the following:

ProcessStmt ::= OwnStmt
| RestrictStmt
| UseStmt

The own statement
The own statement is written as follows:

OwnStmt ::= “own” Block

Executing this statement, whose value is null, notes the current owner, P;
instates the owner of the current object as the current owner; executes
Block; and reinstates P as the current owner, whether or not Block throws
an exception.

The restrict statement
The restrict statement is written as follows:

RestrictStmt ::= “restrict” Expression Block [CatchPhrase]

Executing this statement, whose value is null, instates as a temporary
permit the value of Expression, which shall be a permit; executes Block;
and deinstates the temporary permit even if Block throws an exception.

The statement can handle a permit violation as follows. If Block violates
the current permit (which reflects the temporary permit), it necessarily
throws Permit Violated. If Catchphrase occurs, the statement handles the
exception by executing Catchphrase. The Type in CatchPhrase shall be
one whose base class is Permit Violated or an interface superclass thereof,
whose isSubclassOK attribute is true, and whose isNilOK attribute is false.

The use statement
The use statement is written as follows:

UseStmt ::= “use” Expression1
[“shared”] [Condition] Block1 [TimeOut]

Condition ::= “when” Expression2

TimeOut ::= “after” Expression3 Block2

44 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha44

Language

Executing this statement, whose value is null, acquires use of the value of
Expression1, which shall be a resource; executes Block1, a conditional
critical region; and relinquishes use of the resource even if Block1 throws an
exception. The resource’s use is acquired only on the following terms:

• If “shared” occurs, the use is shared. Otherwise the use is exclusive.

• If Condition occurs, the resource’s condition must match an item of the
value of Expression2, which shall be a set of identifiers matching items
of the resource’s conditions attribute. If the resource has only the one,
distinguished, undefined condition, Expression2 shall not occur.

• If TimeOut occurs in the statement and the statement would have to
wait longer than the number of seconds that is the value of
Expression3, which shall be an integer, for the two foregoing terms to be
met, the statement executes Block2 rather than Block1.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 45

The Telescript Language Reference

Expressions
Expressions fall conveniently into the following categories. Basic expressions
get and set local variables and properties; get global variables and classes;
and assert objects’ types. Operator expressions offer the customary syntax
for requesting arithmetic and logical operations and have their results as
values. General operation expressions request arbitrary operations, including
getters and setters, and have their results as values. Special operation
expressions provide concise syntax for requesting commonly used operations
and have their results as values. Literal expressions have primitives and
selected collections as values. Escapes provide direct access to the engine:

Expression ::= Assignment | Operand

Operand ::= Operator | Object

Object ::= Module
| ModuleItem
| “(” Statement “)”
| Access
| Assertion
| GeneralRequest
| SpecialRequest
| Literal
| Escape

Note. Even though they’re described in other chapters of this manual, modules,
module items, and (parenthesized) statements qualify as expressions.

Basic expressions
A basic expression is one of the following.

Accessing an object
An object is accessed as follows:

Access ::= “*” | ID

The expression’s value is as follows. If “ *” occurs, the value is an unprotected
reference to the current object. Otherwise the value is the object ID denotes.

ID shall denote an object described by the following table. Each row describes
zero or more objects to which identifiers are bound. The rows are arranged in
order of decreasing precedence. Of all the objects the table describes, ID
denotes the one of highest precedence with that identifier.

Category Objects in category
Global
variable

The global variables.

Local
variable

The local variables declared in the visible variable declaration
segments of the enclosing blocks—from the block that is most
tightly enclosing to the block that is the current method.

Property The properties of the current object the current class defines.

46 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha46

Language

Classes The classes that ID may denote (see “Specifying a class”).

Note. The arguments of the current operation to which the operation’s
declaration assigns identifiers are accessible as local variables (see “Defining an
operation’s method”).

Assigning an object
An object is assigned as follows:

Assignment ::= ID “=” Expression
| SetterRequest
| SetRequest

The first form of assignment is defined as follows. The object that ID denotes
(see “Accessing an object”) is replaced with the value of Expression. ID shall
denote a local variable or a property, and the value of Expression shall not
be null. The value of Assignment is the value of Expression.

The second and third forms of assignment are defined in “General operation
expressions” and “Special operation expressions”, respectively.

Asserting an object’s type
An object’s type is asserted as follows:

Assertion ::= Object “@” [ClassID]

The expression’s value is Object’s which shall not be null. However, the
compiler (but not the engine) considers the expression’s value to be an
interface member of an asserted class. If ClassID occurs, the asserted class is
the class it denotes. Otherwise it’s inferred from the expression’s context.

The asserted class shall relate to the actual class, that of which the compiler
considers the value of Object to be an interface member, in one of two ways:

• The asserted class shall be the actual class or an interface subclass of it.

• The asserted and actual classes shall be derived from the same class
family. Each parameter used in one derivation shall be the corresponding
parameter used in the other or an interface subclass thereof.

Notes.

• For example, the first point above allows here to be considered an interface
member of Meeting Place rather than Place.

• For example, the second point allows an interface member of List[Integer,
Equal] to be considered an interface member of List[Number, Equal], but
also vice versa.

Operator expressions
A prefix or infix operator is applied as follows:

Operator ::= PrefixOperator | InfixOperator

Note. An operator isn’t to be confused with an operation. An operator is mapped
during compilation into one or more operations performed during execution.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 47

The Telescript Language Reference

Applying a prefix operator
A prefix operator is applied as follows:

PrefixOperator ::= «prefix» Operand

This metarule, which represents all prefix operators, abbreviates a family of
rules which introduce operator symbols and a nonterminal syntactic class.
The form “ •x ” abbreviates the form “ x.id ()”. • is the prefix operator, x the
Operand, and id the identifier of an operation which • determines.

The expression’s value is the result of an operation in the following table—
the operation that the table associates with the prefix operator. Operand’s
value shall be an interface member of a class that defines that operation.

Operator Definition
!x x.not()

-x x.negate()

The prefix operators are left-associative and higher in precedence than the
infix operators (see “Applying an infix operator”).

Notes.

• The direct use of the predefined operations in the table is denigrated.

• The table operations may be either the predefined ones or user-defined
operations with the same identifiers and suitable arguments and results.

Applying an infix operator
An infix operator is applied as follows:

InfixOperator ::= Operand1 «infix» Operand2

This metarule, which represents all infix operators, abbreviates a family of
rules which introduce operator symbols and a corresponding hierarchy of
nonterminal syntactic classes, one per precedence level (see below). In the
simplest cases, the form “ x•y ” abbreviates the form “ x.id (y)”. • is the
infix operator, x is Operand1, y is Operand2, and id is the identifier of an
operation which • determines. In more complex cases, several operations are
involved, the result of one serving as an argument for the next.

The expression’s value is the result of an operation in the following table—
the operation that the table associates with the infix operator. Where the
table associates several operations with an infix operator (as it does, for
example, with “ <”), the expression’s value is the result of the operation
performed last. The value of Operand1 shall be an interface member of a
class that defines that operation. The value of Operand2 shall not be null.

Operator Definition
x*y x.multiply(y)

x/y x.divide(y)

x+y x.sum(y)

x-y x.difference(y)

48 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha48

Language

x is C x.isMember(C)

x is C! x.isInstance(C)

x<y x.compare(y) == before

x>y x.compare(y) == after

x<=y !(x>y)

x>=y !(x<y)

x==y x.isEqual(y)

x!=y !(x==y)

x&&y if x {y} else {false} (that is, conditional and)

x||y if x {true} else {y} (that is, conditional or)

The sections of the table are arranged in order of decreasing operator
precedence. The operators within a section all have the same precedence.

The compiler treats most operations that Number defines as if Integer and
Real defined them, and specializes accordingly the types of their results and,
for Integer, their arguments. Thus, for example, if the divide operation’s
intended responder is an integer but its argument is a real, the programmer
must convert the integer to a real before requesting the operation of it.

Note. The infix operator “ is” is defined by two rows of the table, but could be
defined instead by a single row as “ x is T”, where T is a type whose isNilOK
boolean is false (and whose isSubclassOK boolean is either true or false).

Notes.

• The direct use of the predefined operations in the table is denigrated.

• The table operations may be either the predefined ones or user-defined
operations with the same identifiers and suitable arguments and results.

General operation expressions
An individual operation or a cascade of operations is requested as follows:

GeneralRequest ::= CascadeRequest
| OperationRequest

Specifying the responder
The responder is specified as follows:

Responder ::= Object | Self “::” [ClassID]

Self ::= “*” | “self”

The responder and how it performs an operation are as follows:

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 49

The Telescript Language Reference

• Normal. If Object occurs, its value, which shall not be null, performs the
operation normally (that is, the method search begins with the
responder’s class). If the operation is private, Object shall be Self.

• Escalated. If Object doesn’t occur, the current object escalates the
operation. If ClassID occurs, the method search begins with the class it
denotes, which shall be the current class or an immediate
implementation superclass thereof. Otherwise the search begins with the
class among the latter that is last in canonical order.

Note. Responder appears directly in OperationRequest and indirectly in
CascadeRequest.

Specifying the arguments
The arguments are specified as follows:

ArgumentList ::= “(” [Arguments] “)”

Arguments ::= FixedGroups
| VaryingGroup
| FixedGroups “,” VaryingGroup

The arguments fixed in number are the values of the Expressions in
FixedGroups, none of which shall be null. Each actual argument shall
satisfy the type associated with the like-positioned formal argument. The
actual and formal arguments shall agree in number. However, the last one or
more arguments fixed in number may be unspecified and so taken to be nil:

FixedGroups ::= Expressions

Expressions ::= Expression | Expressions “,” Expression

The arguments varying in number are the items of the value of the
Expression in VaryingGroup, which shall be a list. Each actual argument
shall satisfy the type associated with the formal argument:

VaryingGroup ::= Expression “...”

Notes.

• For the constructor, the rule above that lets arguments be left unspecified
has in view the arguments as declared by the current class’s immediate
implementation superclasses collectively (see “Deciding the constructor’s
actual arguments”).

• ArgumentList appears directly in OperationRequest and CascadeRequest.

Requesting a cascade of operations
A cascade of operations, but not setters, is requested as follows:

CascadeRequest ::= OperationRequest Others

Others ::= Other | Others Other

Other ::= “&.” ID
| “&.” ID ArgumentList

The expression’s value is the cascade’s result. If the cascade has no result,
the expression’s value is null. The cascade’s responder and the cascade’s first

50 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha50

Language

operation and its arguments are given by OperationRequest. Every other
operation and its arguments are given by an Other in the same way.

The syntax rules for CascadeRequest, more complicated than indicated
above, handle with a minimum of parentheses—yet without ambiguity—the
intermixing of general requests for operations, special requests for the get
operation, and type assertions. They recognize “ e@ID[...]” as an assertion
involving a class family, “ (e@ID)[...]” as a request for the get operation.

Notes.

• The following exemplifies a cascade of getters. “ o.ID1 &.ID2... &.IDn ”
abbreviates “ o.ID1; o.ID2;... o.IDn ” but evaluates o only once.

• The following exemplifies a cascade of operations other than getters.
“o.ID1(e1) &.ID2(e2)... &.IDn(en)” abbreviates “ o.ID1(e1); o.ID2(e2);...
o.IDn(en)” but evaluates o only once.

Requesting an operation
An operation, but not a setter, is requested as follows:

OperationRequest ::= Responder “.” ID
| Responder “.” ID ArgumentList

The expression’s value is the operation’s result. If the operation has no
result, the expression’s value is null. The responder and how it performs the
operation are specified by Responder. The operation’s arguments are
specified by ArgumentList. If ArgumentList occurs, the operation is the
one ID denotes. Otherwise it’s the getter of the attribute ID that denotes. In
either case, the operation shall be one that the responder performs.

Requesting a setter
A setter is requested as follows:

SetterRequest ::= GeneralRequest “=” Expression

The expression’s value is Expression’s, which shall not be null. The
attribute that GeneralRequest denotes is set to that value.

The primary use of the GeneralRequest rule is to request an operation
other than a setter (as described in the preceding subsections). In the present
context, the requested operation, or the last operation in the requested
cascade, shall be an attribute’s getter. However, the GeneralRequest is
understood to request the setter, rather than the getter, for that attribute.

Notes. SetterRequest is an Assignment, not a GeneralRequest. Nevertheless it’s
presented in this section because of its affinity with GeneralRequest.

Special operation expressions
Any of certain commonly used operations is concisely requested as follows:

SpecialRequest ::= NewRequest
| GetRequest
| GetterRequest
| Escalation

The expression’s value is the operation’s result. If the operation has no
result, the expression’s value is null.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 51

The Telescript Language Reference

Requesting the new operation
The predefined new operation can be requested as follows:

NewRequest ::= ClassID ArgumentList

NewRequest abbreviates OperationRequest. The new operation is
requested, not escalated, with the arguments that ArgumentList specifies.
The responder is the class that ClassID denotes, which shall be concrete.

To find the class, the engine follows the class search algorithm using
packages that the current object’s owner offers privately (see the class
manual). If the algorithm fails, the engine throws Class Unavailable.

Note. Requesting the new operation using OperationRequest, rather than
NewRequest, is denigrated because the constructor’s arguments are not checked.

Requesting a get operation
A get operation can be requested as follows:

GetRequest ::= Responder “[” Expressions “]”

GetRequest abbreviates OperationRequest. The get operation is
requested or escalated—whichever Responder requires—with no arguments
varying in number and with the values of Expressions, none of which shall
be null, as the arguments fixed in number. However, the last one or more
arguments fixed in number may be unspecified and so taken to be nil. The
responder, which Responder specifies, shall be an interface member of a
class that defines a get operation with arguments as above.

Notes.

• “o[e1,... en]” abbreviates “ o.get(e1,... en)”.

• Dictionaries, lists, and package processes qualify as responders.

Requesting a set operation
A set operation can be requested as follows:

SetRequest ::= Responder “[” Expressions “]” “=” Expression

SetRequest abbreviates OperationRequest. The set operation is
requested or escalated—whichever Responder requires—with no arguments
varying in number and with the values of Expressions and Expression,
none of which shall be null, as the arguments fixed in number. However, the
last one or more arguments fixed in number may be unspecified and so taken
to be nil. The responder, which Responder specifies, shall be an interface
member of a class that defines a set operation with arguments as above.

Notes.

• “o[e1,... en] = en+1” abbreviates “ o.set(e1,... en, en+1)”.

• Dictionaries and lists qualify as responders.

• SetRequest is an Assignment, not a SpecialRequest. Nevertheless it’s
presented in this section because of its affinity with GetRequest.

Requesting a getter
A getter can be requested if the responder isn’t nil as follows:

52 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha52

Language

GetterRequest ::= Responder “?.” ID

GetterRequest abbreviates and extends OperationRequest. The getter of
the attribute ID denotes is requested or escalated—whichever Responder
requires—with no arguments. The responder is specified by Responder. If
the responder is nil, the getter isn’t requested; nil supplants its result.

Escalating the current operation
The current operation can be escalated as follows:

Escalation ::= “^” [ArgumentList]

Escalation abbreviates OperationRequest. The current object escalates
the current operation so as to begin the method search with the current
class’s immediate implementation superclass first in canonical order. If
ArgumentList occurs, it specifies the arguments. Otherwise a telescript
escape (see “Escape expressions”) must have left them on top of the current
stack.

In this version of the language, if a mix-in among the class’s immediate
implementation superclasses redefines the constructor to have arguments
varying in number, the class’s method shall supply the arguments using a
telescript escape and shall escalate the constructor as described here.

Note. Arguments are pushed onto the current stack using an Escape. The
compiler can’t check the types of arguments supplied in this way. The use of
Escape and thus of the form of Escalation that requires it is denigrated.

Literal expressions
A primitive or collection is denoted as follows. Of the language’s wide variety
of collections, only bit strings, octet strings, and strings are literally denoted:

Literal ::= Bit
| BitString
| Boolean
| Character
| Identifier
| Integer
| Nil
| Octet
| OctetString
| Real
| String

The expression’s value is the primitive or collection it denotes. The reference
to that primitive or collection is a protected reference.

Denoting a bit
A bit is denoted as follows:

Bit ::= BIT

A BIT—for example, %1—is “%” followed by either “ 0” or “1”. “%0” denotes
zero. “ %1” denotes one.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 53

The Telescript Language Reference

Denoting a bit string
A bit string is denoted as follows:

BitString ::= BITSTRING

A BITSTRING—for example, %"0111000101"—is “%” followed by zero or more
characters enclosed in “ "”. Each character encodes a bit as it would in a BIT
and is similarly constrained. The expression denotes a bit string whose
items are the encoded bits; the i th character encodes the bit at position i.

Denoting a boolean
A boolean is denoted as follows:

Boolean ::= “true” | “false”

“true” denotes true. “false” denotes false.

Denoting a character
A character is denoted as follows:

Character ::= CHARACTER

A CHARACTER—for example, ’a’—is either a single character or an escape
sequence enclosed, in either case, in “ ’”. If a single character occurs, the
expression denotes that character. If an escape sequence occurs, the
expression denotes the character that the escape sequence denotes.

Denoting an identifier
An identifier is denoted as follows:

Identifier ::= ATOM

An ATOM—for example, ’copy—is “’” followed by the text of an identifier. The
identifier is mentioned, not used, during the program’s compilation.

In contrast to an ATOM, an ID—for example, copy—is the text of an identifier.
The identifier is used, not mentioned, during the program’s compilation.

Denoting an integer
An integer is denoted as follows:

Integer ::= INTEGER

An INTEGER—for example, 123—is a sequence of one or more characters, each
in “0” through “9”. The expression denotes the non-negative integer that the
digits encode. (The negate operator yields negative integers.)

Denoting nil
Nil is denoted as follows:

Nil ::= “nil”

“nil” denotes nil.

Denoting an octet
An octet is denoted as follows:

54 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha54

Language

Octet ::= OCTET

An OCTET—for example, $ff—is “$” followed by a character pair. Each
character in the pair is in “0” through “9”, “A” through “F”, or “a” through “f”.
The expression denotes the octet whose Bits 4-7 the first character encodes
and whose Bits 0-3 the second character encodes.

Denoting an octet string
An octet string is denoted as follows:

OctetString ::= OCTETSTRING

An OCTETSTRING—for example, $"6789ab"—is “$” and zero or more character
pairs enclosed in “ "”. Each pair encodes an octet as it would in an OCTET and
is similarly constrained. The expression denotes an octet string whose items
are the encoded octets; the i th pair encodes the octet at position i.

Denoting a real
A real is denoted as follows:

Real ::= REAL

A REAL—for example, 314.159E-2 or 1e6—encodes a mantissa, m, and
perhaps an exponent, e, which if not encoded is 0. The expression denotes
the non-negative real, m x 10 e. (The negate operator yields negative reals.)

m is encoded as one or more characters, each in “ 0” through “ 9”, optionally
preceded or separated by “ .”. (If “.” occurs, at least one character follows it.)
If “.” occurs, the encoding of e is optional. Otherwise it’s mandatory.

e is encoded as “ e” or “E”, optionally followed by “ +” or “-”, mandatorily
followed by one or more characters, each in “0” through “9”. If “ -” doesn’t
occur, e is the non-negative integer that the characters in “0” through “9”
encode. Otherwise e is the arithmetic negation thereof.

Denoting a string
A string is denoted as follows:

String ::= STRING

A STRING—for example, "abc"—is zero or more characters and escape
sequences enclosed in “ "”. Each character or escape sequence denotes a
character as it would in a CHARACTER and is similarly constrained. The
expression denotes a string whose items are the denoted characters. The i th

character or escape sequence denotes the character at position i.

Escape expressions
A telescript escape is denoted as follows:

Escape ::= ESCAPE

An ESCAPE is zero or more characters surrounded by “ <<” and “ >>”. The
characters encode as a character telescript zero or more items of an object
program. The compiler includes the items in the object program it produces.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 55

The Telescript Language Reference

The expression’s zero or more values are the objects by which execution of the
above object program items increases the length of the current stack. If
execution decreases the current stack’s length, the expression’s value is null.

Among the roles that an Escape can play are those in the following table. In
any of these roles, an Escape shall have the indicated objects as its values.
In any other role, an Escape shall satisfy requirements that are beyond the
scope of this manual (and that depend upon the compiler’s implementation).

Role Values
ModuleItem The definition of zero or more classes.

Method The definition of a method whose performance changes
the current stack as the operation’s signature
requires.

An argument One object.

The right-hand side
of an assignment

One object.

A statement No objects.

Notes.

• In an ESCAPE a reserved word is used as an ID without a prefix.

• The use of Escape is denigrated.

56 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha56

Language

Programs
A Telescript program has two forms, source and object. Both source and
object programs, as well as programs in the abstract, are described below.

Abstract programs
A Telescript abstract program, a list of statements, is executed by executing
the statements from left to right, discarding the values of all but the last,
and taking the value of the last statement as the abstract program’s value.

An abstract program is defined as follows:

Program ::= Statements

Statements ::= Statement
| Statements “;” Statement
| Statements “;”

Notes.

• The value of the typical abstract program is a module.

• Executing an abstract program whose value is a module executes none of the
statements in the methods defined by the classes in the module. Execution of
those statements is deferred (see “Defining an operation’s method”).

• One may view the “ ;” as either a separator or a terminator. It is mandatory
between Statements but is optional after the last Statement.

Source programs
A Telescript source program is a string (of Unicode characters) that encodes a
Telescript abstract program by following the syntactic and semantic rules of
this manual. The string itself is encoded by following the syntactic and
semantic rules of File System Safe UCS Transformation Format (FSS_UTF).

A source program can include preprocessing directives, breaks, comments,
escape sequences recognized as single characters, and reserved words
recognized as identifiers. These possibilities are defined below.

Including a preprocessing directive
A source program is compatible with the C preprocessor.

Note. Thus one can include text and define abbreviations using the familiar
#include and #define directives, respectively.

Including a break
A source program can include breaks. A break is one or more characters that
either separate program tokens or format the source program without
altering the abstract program. Each break character is “ SPACE”, “HT”, or “LF”.

A break can occur before the first program token, after the last, or between
adjacent tokens. A break must occur between tokens that consist only of
characters in “ 0” through “ 9”, “A” through “ Z”, and “ a” through “ z”.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 57

The Telescript Language Reference

Including a comment
A source program can include comments. A comment is a sequence of
characters that annotates the abstract program without altering it.

A comment takes one of the following two forms:

1. “/*”, one or more characters excluding “ */”, and “ */”.

2. “//”, one or more characters excluding “ LF”, and “ LF”.

One or more comments can occur before the first program token, after the
last, or between adjacent tokens. (None, of course, are required.)

Notes.

• A comment of the first form can include “ /*” or “//” without special meaning
and thus can include a comment of the second form. A comment of the second
form can include “ /*”, “*/”, or “//” without special meaning and thus can
include a comment of the first form. A comment of the second form can’t be
followed on the same line by other tokens; the comment would include them.

• The syntax rules for comments are those of C++.

Including an escape sequence
A source program can include escape sequences in its denotations of strings
and characters. An escape sequence is two or more characters of a STRING (see
“Denoting a string”) that denote a single character, or two or more characters
of a CHARACTER (see “Denoting a character”) that denote the sole character.

The escape sequences are defined by the following two tables. The first
columns list the escape sequences, the second the characters they denote.
The characters in the first table shall occur only in escape sequences.

Escape sequence Character
“\a” or “\A” “BEL”

“\b” or “\B” “BS”

“\f” or “\F” “FF”

“\n” or “\N” “LF”

“\r” or “\R” “CR”

“\t” or “\T” “HT”

“\v” or “\V” “VT”

“\\” “\”

“\?” “?”

“\’” “’”

“\"” “"”

Escape sequence Character

58 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha58

Language

“\xh...h” or
“\Xh...h”

The character whose Unicode value is h...h16.

“h...h” stands for one or more characters—each in “ 0”
through “ 9”, “A” through “ F”, or “a” through “ f”—which
express an unsigned integer in hexadecimal.

“\o...o” The character whose Unicode value is o...o8.

“o...o” stands for one, two, or three characters—each in “ 0”
through “ 7”—which express an unsigned integer in octal.

“\c” The character c.

“c” stands for any character other than “ x”, “X”, “0”
through “ 7”, and those characters that occur in the escape
sequences in the first column of the previous table.

Note. The escape sequences are those of ANSI C.

Including a reserved word
A source program can include reserved words in a way that allows the
compiler to recognize them as identifiers rather than keywords. A reserved
word is a terminal that must be prefixed with “ _” to be recognized as an ID.

The reserved words are the following:

abstract
after
break
catch
class
client
continue
copied
do
else
false
for
here
if

imports
in
instance
interface
is
loop
magiccap
mixin
module
nil
op
own
owned
owner

place
private
process
property
protected
public
readonly
ref
repeat
restrict
return
sealed
self
shared

sponsor
sponsored
throw
throws
to
true
try
unprotected
use
when
while
with

Notes.

• For example, “ _abstract” is the ID whose text is “ abstract”.

• The identifiers of predefined classes and their features aren’t, in general,
reserved words. Such identifiers are reserved words only as listed above.

Including a character category
The following table lists and defines the categories of Unicode character to
which the language and the predefined classes collectively refer.

Character category Definition
alphabetic characters The characters that are neither control, decimal

digit, nonspacing mark, private use, punctuation,
space, nor special characters nor noncharacters

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 59

The Telescript Language Reference

ASCII characters Section 3.1 of the Unicode specification

control characters Section 2.4 of the Unicode specification

decimal digit characters Section 4.1 of the Unicode specification

lowercase characters Section 5.5 of the Unicode specification

noncharacters The characters with Unicode values U+FFFE and
U+FFFF (see p. 123 of the Unicode specification)

nonspacing mark
characters

Section 4.5 of the Unicode specification

private use characters Section 3.5 of the Unicode specification

punctuation characters • “ !” through “ /”
• “ :” through “ @”
• “ [” through “ ^”
• “ `”

• “ {” through “ ~”
• “ ¡” through “ ¿”
• “ ×” and “÷”
• U+2000 through U+2FFF

space characters Section 4.2 of the Unicode specification

special characters Section 3.6 of the Unicode specification

uppercase characters Section 5.5 of the Unicode specification

Including a character
The following table lists and defines the individual Unicode characters to
which the language and the predefined classes collectively refer.

The manuals show the typical images of various Unicode characters in
quotation marks (for example, “ *”). The table lists the Unicode names and
the Unicode values in hexadecimal of these characters.

Unicode value Typical image Unicode name
0000 NUL NULL

0007 BEL BELL

0008 BS BACKSPACE

0009 HT HORIZONTAL TABULATION

000A LF LINE FEED

000B VT VERTICAL TABULATION

000C FF FORM FEED

000D CR CARRIAGE RETURN

0020 SPACE SPACE

0021 ! EXCLAMATION MARK

0022 " QUOTATION MARK

60 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha60

Language

0023 # NUMBER SIGN

0024 $ DOLLAR SIGN

0025 % PERCENT SIGN

0026 & AMPERSAND

0027 ’ APOSTROPHE-QUOTE

0028 (OPENING PARENTHESIS

0029) CLOSING PARENTHESIS

002A * ASTERISK

002B + PLUS SIGN

002C , COMMA

002D – HYPHEN-MINUS

002E . PERIOD

002F / SLASH

0030...0039 0...9 DIGIT ZERO... DIGIT NINE

003A : COLON

003B ; SEMICOLON

003C < LESS-THAN SIGN

003D = EQUALS SIGN

003E > GREATER-THAN SIGN

003F ? QUESTION MARK

0040 @ COMMERCIAL AT

0041...005A A...Z LATIN CAPITAL LETTER A... LATIN CAPITAL
LETTER Z

005B [OPENING SQUARE BRACKET

005C \ BACKSLASH

005D] CLOSING SQUARE BRACKET

005E ^ SPACING CIRCUMFLEX

005F _ SPACING UNDERSCORE

0060 ` SPACING GRAVE

0061... a LATIN SMALL LETTER A

007A z LATIN SMALL LETTER Z

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 61

The Telescript Language Reference

007B { OPENING CURLY BRACKET

007C | VERTICAL BAR

007D } CLOSING CURLY BRACKET

007E ~ TILDE

00A1 ¡ INVERTED EXCLAMATION MARK

00BF ¿ INVERTED QUESTION MARK

00D7 × MULTIPLICATION SIGN

00DF # LATIN SMALL LETTER SHARP S

00F7 ÷ DIVISION SIGN

Object programs
A Telescript object program is the result of compiling a Telescript source
program. While its detailed nature is beyond the manual’s scope, an object
program takes either of two equivalent forms. A binary telescript encodes an
object program as an octet string. A character telescript encodes it as a string.

The predefined classes define operations for converting certain objects to
elements of binary and character telescripts and for converting such elements
to such objects. These operations are summarized in the following table.

To binary telescript
From binary telescript

To character telescript
From character telescript

From integer
To integer

—
—

• Integer’s asString
• String’s asInteger

From real
To real

—
—

• Real’s asString
• String’s asReal

From string
To string

• String’s asOctetString
• Octet String’s asString

—
—

Note. The use of the operations in the table is denigrated, at least to the extent
that such use assumes knowledge of the formats of the telescripts involved.

62 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha62

Predefined Class Concepts

Part Three—
Predefined Class Concepts

This part of the manual defines the major concepts—in particular, the agent
and place abstractions—that underlie the predefined classes.

Chapters are devoted to the following topics:

1. places, which provide venues for agents and lets them interact.

2. agents, which can transport themselves from one place to another.

3. processes, which include places and agents.

4. permits, which determine the capabilities of processes.

5. patterns, tools for analyzing and modifying strings.

6. calendar times, tools for analyzing and modifying times.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 63

The Telescript Language Reference

Places
A Telescript place is a process (see “Processes”) that provides a venue for
other processes (its occupants) and that may allow them to interact. This
chapter discusses how places relate to one another and to other processes.

Organizing the telesphere
The telesphere is the universe of places. The telesphere is divided, for
operational reasons, among one or more regions. The places of a region are
divided, for computational reasons, among one or more engines.

Organizing a region
A region consists of the places that are sustained by the engines that are
operated by a particular person or organization, the region’s authority .

Notes.

• A region can be as large as a public value-added network (for example, the
AT&T PersonaLink Service). Such a region, whose authority is that of the
service operator (in this case, AT&T), might contain many engines.

• A region can be as small as a user’s personal intelligent communicator. Such
a region, whose authority is that of the user, might contain a single engine.

Organizing an engine
An engine consists of one engine place and zero or more virtual places. A
virtual place occupies another place; an engine place doesn’t.

One place may occupy another. The first of these two places is an immediate
subplace of the second; the second is the immediate superplace of the first. If
the second place occupies a third place, the first and second places are
subplaces of the third; the third is a superplace of the first and second.

A tree, the place hierarchy, illustrated,
defines the occupancy relationships
among an engine place and its
subplaces. The tree’s nodes represent
places, and the arc between two nodes
represents the occupancy relationship
between those two places. The source
node represents the immediate
superplace of the place that the
destination node represents. The
tree’s root represents the engine place.

Engine Place

Marketplace Management

Ticketron$ Macy’s$

Electronics Sporting
Goods

CosmeticsNot all occupants of a place are
necessarily places themselves. Zero or
more agents occupy each place as well.

A place can be visualized as “containing” its occupants. In the tiny electronic
marketplace depicted in the next illustration, the outer rectangle represents
an engine place, while other rectangles represent virtual places in the role of
merchant. In the same illustration, the white circles represent agents in the
role of seller, while the black circles represent agents in the role of buyer.

64 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha64

Predefined Class Concepts

Engine Place

Marketplace

Ticketron$ Macy’s$

M
an

ag
em

en
t

El
ec

tro
ni

cs

Sp
or

tin
g

G
oo

ds

Co
sm

et
ics

Addressing a place
All places have distinctive names (see “Naming a process”). Advertised places
also have distinctive addresses, which locate them in the telesphere. Engine
places are advertised. A virtual place is advertised at its region’s discretion.
An unadvertised place has the address that its immediate superplace has.

A teleaddress purports to denote one advertised place or all advertised places
in a given region. In the first case, the teleaddress is an assigned teleaddress.

Specifying a region
A teleaddress specifies a region with an octet string—the octet string with
which a telename specifies the region’s authority (see “Naming a process”).

Specifying a place
A teleaddress specifies an advertised place with an octet string. Chosen
using an algorithm that is region-specific, the octet string distinguishes the
advertised place from other advertised places in the region.

Specifying routing advice
A teleaddress offers routing advice. Routing advice specifies zero or more
transit regions in a preferred order. Whenever an agent indicates its travel
destination using the teleaddress (see “Constructing a ticket”), the go or
send operation considers routing the agent through one of those regions.

A teleaddress specifies a transit region with the octet string with which a
telename specifies the transit region’s authority (see “Naming a process”).

The assigned teleaddresses of all places in an engine give the same advice.

Managing occupants
A place is occupied by other processes—agents, places, or both. This section
describes how occupants come and go and how the place keeps track of them.

Entering a place
A process comes to occupy a place by entering it. A process can enter a place
by being constructed there either by the place itself or by an agent already
among its occupants. Also, an agent can enter a place by taking a trip there.

The engine mediates the entry of a process to a place. The engine requests
the entering operation of the place. The operation’s arguments identify the

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 65

The Telescript Language Reference

process. If the operation succeeds, entry occurs. Otherwise entry fails and the
engine hides or reveals the place’s existence—whichever the place requests.

The engine doesn’t serialize the entry of processes to a place. Even if a place
is already performing the entering operation, the engine isn’t deterred from
requesting the operation again on behalf of other processes.

Note. The place can provide its own serialization (for example, using a resource).

Exiting a place
A process comes to no longer occupy a place by exiting it. A process can exit a
place either by completing performance of the live operation or by being
terminated. Also, an agent can exit a place by starting a trip.

The engine mediates the exit of a process from a place. The engine sends a
signal, a member of Exit Event, whose source and intended destination alike
are that place. The place receives the signal when and if it chooses.

Note. The engine requests the entering operation and sends an exit event even
if the origin and destination of an agent’s trip are one and the same place.

Keeping track of occupants
A place designates an object as its record of a particular occupant. The place
supplies the object to the engine as the result of the entering operation.
The engine supplies the object to the place as an attribute of the exit event.

Note. From time to time a place may modify its record of an occupant so that the
object reflects the state of the place’s interaction with that occupant.

66 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha66

Predefined Class Concepts

Agents
A Telescript agent is a process that can transport itself from one place in the
telesphere to another. Often an agent makes such a trip to meet with
another agent. This chapter discusses how agents travel and meet.

Traveling to other places
An agent can take a trip from one place, its origin, to another or the same
place, its destination. If the trip succeeds, the agent is left at its destination.
If the trip fails, the agent is left either at its origin or in a third place. The
third place is either in the same region as the origin or in a different region.

In principle, but rarely in practice, a trip can result in an agent’s duplication.
A duplicate of an agent is an inadvertent copy that arises from travel. If its
isPossibleDuplicate attribute is true, an agent might be a duplicate.

Note. An agent’s trip can take a long time because it may involve transporting
the agent by means of physical, not just logical, communication media.

Constructing a ticket
A ticket defines a trip that an agent might take. The ticket’s main purpose is
to identify the agent’s destination.

A ticket’s attributes provide information drawn from the following table. The
first column identifies the attributes; the second describes them.

Identifier Attribute
destinationAddress The teleaddress required of the destination.

destinationClass The interface member class required of the
destination.

destinationName The telename required of the destination.

destinationPermit The local and regional permits desired at the
destination.

wayOut The required way, and thus perhaps the required
means, of travel from the agent’s origin toward its
destination (see “Selecting a route”).

desiredWait The desired maximum duration of the trip.

maximumWait The required maximum duration of the trip, after
which the ticket expires. (The same effect can be
achieved using a temporary permit.)

notes The agent’s notes concerning the trip.

Notes.

• The destination is the one place with a given name; any place of a given
authority; any place at a given address; any place in a given region; or any
place of a given class. These constraints can be combined.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 67

The Telescript Language Reference

• Defining the desired maximum duration of a trip helps the telesphere decide
how to distribute its communication resources among agents in transit.

Satisfying a ticket
A ticket constrains an agent’s destination, but not necessarily to a single
place. A ticket is satisfied in principle by any place with the name, address,
and class that the ticket specifies. The ticket is satisfied in practice by the
one place (if any) that agrees to the agent’s entry before the ticket expires.

The language doesn’t require the engine to wait for a ticket to expire before
ending its search for places that satisfy the ticket in principle. Thus a place
constructed after the ticket is presented but before it expires may not qualify.

The engine asks places that satisfy the ticket in principle to perform the
entering operation (see “Entering a place”). The engine approaches these
places one after another, rather than in parallel; approaches them in an
undefined order; and approaches each place at most once.

Receiving a ticket stub
An agent receives a ticket stub when it completes a trip. The main purpose
of the ticket stub is to provide the agent with a way back to its origin.

A ticket stub’s attributes provide information drawn from the following table.
The first column identifies the attributes; the second describes them.

Identifier Attribute
wayBack A way that the agent can take to return to its origin.

(This can involve an existing connection means.)

isConstrained True if the trip succeeded, but resulted in a local or
regional permit that is more constraining than the one
that the agent requested by means of its ticket.

notes The agent’s notes concerning the trip, as supplied
originally in the agent’s ticket.

Going to another place
An agent, using the go operation, can travel to the place specified by a ticket.

Note. The language’s go and send operations are its most distinctive and powerful
aspect. In most network architectures, processes are stationary and communicate
by exchanging messages. In this one, some processes are stationary but others
are mobile. The former communicate by means of the latter.

Sending clones to other places
An agent, using the send operation, can cause clones to be constructed and
to travel concurrently to the places specified by one or more tickets.

The send operation returns once to the agent and once again to each clone. If
the operation throws an exception other than Trip Exception, no clones have
been constructed and only the agent experiences the failure. Otherwise the
agent experiences the operation’s success, and each clone separately and
independently experiences the operation’s success or failure.

A clone of an agent is a second agent that is a copy of the first, except that
the identity, but not the authority, of the second differs from that of the first;

68 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha68

Predefined Class Concepts

the permanent permits of the second may differ as well. For purposes of
copying, the agent includes as properties the objects the agent owns.

Note. If several clones are sent to places that a particular engine sustains, the
send operation transports a single encoding of the agent to that engine. Further
savings (for example, of space) may be achieved at that engine.

Selecting a route
An agent can select, or help to select, the route it takes when it travels. The
agent exerts such influence, as described in this section, using its ticket.

Ensuring a route
To travel with certainty between two places in the same region, an agent
supplies on its ticket the destination’s assigned telename and assigned
teleaddress. If the destination is advertised, its teleaddress isn’t required. In
every case, the information above is sufficient to properly route the agent.

To travel with certainty between two places in different regions, an agent
supplies routing advice by means of the assigned teleaddress. However, this
information isn’t sufficient in every case to properly route the agent.

As discussed earlier, a ticket may specify the way to a place. A way in turn
may specify both a means of communication and the authenticator that the
two engines that are engaged in communication use to identify one another.

Notes.

• Therefore the telesphere may have only an imperfect ability to route agents
between places, especially places that are far removed from one another.

• Two subclasses of Means are defined next. Other subclasses are user-defined
and perhaps region-specific, as are subclasses of Authenticator. A means may
call for a particular wireless communication medium, for example.

Using reservable means
A reservable means is a means that can, but needn’t, be reserved. A
reservation is a statement of intent to use a means for one or more trips. A
reservation expedites any trips that are actually made using the means.

The reserve operation cancels an existing reservation. If the reservation
interval in seconds supplied as an argument is positive, the operation also
makes a new reservation. If the operation is requested during a prior
reservation interval, the new interval begins at once. Otherwise the new
interval begins when the means is first actually used for a trip. The means is
reserved before or during, but not after, the reservation interval.

A reservable means is merely a token for a reservation whose scope is the
engine that constructs the means. Moving the means to another engine
leaves the reservation inaccessible, and makes any indication of a
reservation that the means might give subsequently unreliable.

Using existing connection means
An existing connection means is a reservable means that involves a previously
established connection between two engines. However, the connection may no
longer exist when a trip is actually taken using the means because neither of
the two engines is obligated to maintain the connection on an ongoing basis.
The connection is denoted using a connection identifier.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 69

The Telescript Language Reference

An existing connection means is merely a token for a connection whose scope
is the engine that constructs the means. Moving the means to another engine
leaves the connection identifier undefined and the connection inaccessible.

Notes.

• By reserving the means, it is possible to increase the likelihood that the
connection underlying an existing connection means will continue to exist.

• An engine can provide operations that manipulate the connection that a
connection identifier denotes, but no such operation is part of the language.

Meeting other agents
One agent, the petitioner, can try to meet another agent, the petitionee, if the
two occupy the same place. The meeting that results if the attempt succeeds
gives each agent a reference to the other; thus the two agents can interact. At
any time, either agent can part from the other, thereby ending their meeting.

An agent that meets with other agents is typically a member of Meeting
Agent. Other agents behave as though they were meeting agents, but ones
whose method for the meeting operation simply throws Meeting Denied.

Constructing a petition
A petition defines a meeting that an agent might ask to be arranged. The
petition’s main purpose is to identify the petitionee.

A petition’s attributes provide any or all of the information in the following
table. The first column identifies the attributes; the second describes them.

Identifier Attribute
agentClass The interface member class required of the petitionee.

agentName The telename required of the petitionee.

maximumWait The required maximum duration of the meeting
arrangement, after which the petition expires. (The same
effect can be achieved using a temporary permit.)

Note. The petitionee is the one agent with a given name; any agent of a given
authority; or any agent of a given class. These constraints can be combined.

Satisfying a petition
A petition constrains the petitionee, but not necessarily to a single agent. A
petition is satisfied in principle by any agent with the name and class that
the petition specifies—provided the agent occupies the place that the
petitioner occupies. The petition is satisfied in practice by the one agent (if
any) that agrees to meet with the petitioner before the petition expires.

The language requires the engine to wait for a petition to expire before
ending its search for agents that satisfy it in principle. Thus an agent that
enters after the petition is presented but before it expires may qualify.

The engine asks agents that satisfy the petition in principle to perform the
meeting operation (see “Beginning a meeting”). The engine approaches these
agents one after another, rather than in parallel; approaches them in an
undefined order; and approaches each agent at most once.

70 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha70

Predefined Class Concepts

Managing meetings
An agent is acquainted with the agents it meets. This section describes how
acquaintances come and go and how the agent keeps track of them.

Beginning a meeting
An agent, using the meet operation, can meet the agent a petition specifies.

The engine mediates the beginning of a meeting. The engine requests the
meeting operation of the petitionee. The operation’s arguments identify the
petitioner. If the operation succeeds, the meeting occurs. Otherwise it doesn’t

The engine doesn’t serialize the beginnings of meetings with an agent. Even
if the agent is already performing the meeting operation, the engine isn’t
deterred from requesting the operation again on behalf of other petitioners.

Note. The agent can provide its own serialization (for example, using a resource).

Ending a meeting
An agent, using the part operation, can concurrently part from one or more
acquaintances or, using the partAll operation, can part from all of them.

The engine mediates the ending of a meeting. The engine sends a signal, a
member of Part Event, whose source and intended destinations are the
acquaintances. Each acquaintance receives the signal when and if it chooses.

Note. If both the petitioner and the petitionee ask to part from one another, the
earlier of the two requests ends the meeting, and thus the later request has no
effect. Therefore only the agent whose request has no effect is sent a signal.

Keeping track of acquaintances
An agent designates an object as its record of a particular acquaintance. The
petitioner supplies the object to the engine as an argument of the meet
operation, while the petitionee supplies the object to the engine as the result
of the meeting operation. The engine supplies the object to the petitioner or
the petitionee—whichever is the case—as an attribute of the part event.

Note. From time to time an agent may modify its record of an acquaintance so that
the object reflects the state of the agent’s interaction with that acquaintance.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 71

The Telescript Language Reference

Processes
The telesphere would be devoid of life if it weren’t filled with agents and
places. Both agents and places are processes. This chapter discusses
processes, including how they identify and interact with one another.

Defining a process
A process is an object that can act autonomously and persistently. If the
engine fails and later recovers, each process and the objects it owns have
been preserved; the only effect upon them is their temporary unavailability.

Branding a process
A process has a brand, a mark a region applies to one or more processes. A
region applies a new brand to each agent that enters the region from outside
and an existing brand to each process constructed in the region—the brand of
the process requesting its construction. Thus a brand denotes an agent that
entered the region and any processes constructed in the region as a result.

The engine controls access to brands. A process’s brand is its regionalData
attribute. If the current sponsor is of the region’s authority, an object can get
or set the attribute of any process. Otherwise an object can get but not set it.

Note. Brands make possible a variety of process-tracking mechanisms but no such
mechanism is provided by either the language or its predefined classes.

Phasing a process
A process has a lifetime which is divided into the following three phases:

1. The process performs the constructor at the request of its class. The class
makes the request during its own performance of the new operation.

2. The process performs the live operation at the request of the engine.
The argument is nil, which indicates that the process is being started.

3. The process is terminated by the engine.

The first phase can be interrupted. If the constructor throws an exception,
the new operation fails. The process wasn’t successfully constructed.

The second phase can be interrupted if the first phase isn’t. If the live
operation throws an exception, the engine terminates the current process (see
“Terminating a process”) unless the intersection of its permanent permits
entitles it to be restarted, in which case the engine requests the live
operation of it again, this time with the exception as argument.

Activating a process
A process has one or more activations, that is, threads of execution. When
the engine asks a process to perform the live operation, the engine
activates the process for that purpose. Thus the process passes through its
second and third phases (but not its first) concurrently with other processes.

A process can have any number of concurrent activations and thus any
number of execution threads. The engine activates a process to perform any
sponsored operation that the engine requests of the process (for example, the

72 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha72

Predefined Class Concepts

entering or meeting, as well as the live, operation). The activation
ceases when the performance ends, whether successfully or unsuccessfully.

Note. A process isn’t activated when an object asks it to perform a sponsored
operation. The engine itself must make the request.

Prioritizing a process
A process has a priority which influences how quickly the process is executed.
A process’s priority is the minimum of its desiredPriority attribute and
the priority attribute of the permit current when the process is current.

The engine preemptively schedules all processes except those that are
blocked (for example, performing the wait operation). Thus the engine
divides its computational resources among the various processes. Only if two
processes differ in priority does the engine favor one over another.

The normal priority is 0. The priority of a process that the engine schedules
only if it can schedule no higher-priority process is –20.

Note. Some regions let an OAM process exceed in priority any user process.

Terminating a process
The engine terminates the current sponsor, S, if the current object exhausts
the current permit. The engine takes the following steps for every process
activation that entails a method performed by S or an object it owns:

1. Redefine the current permit, as described elsewhere (see “Determining
the current permit”), to rely upon the owner of the current object.

2. Throw Permit Exhausted. (This resumes performance of whatever
method catches the exception. If S owns the object that performs that
method, the engine simply throws the exception again.)

3. Return to Step 1 unless the activation no longer meets the above criteria.

The engine isolates and destroys S once it’s not active. If the OAM policy in
force requires, S is presented for diagnostic analysis before it’s destroyed.

Whenever it terminates and doesn’t restart a place, the engine terminates
the occupants of that place as well as the place itself.

Note. Termination safeguards each object involved with S but not owned by it.
Throwing an exception at each of the object’s methods gives the object the
opportunity to reestablish its invariant. Redefining the current permit in terms
of the object’s owner gives the object the resources it needs to do this.

Naming a process
A process has an assigned telename to distinguish it from other processes.
More generally, a telename purports to denote either a single process (if the
telename is assigned) or a set of peers, that is, processes of one authority.

A process’s authority is the person or organization responsible for its actions.
An engine place’s authority is that of the region that contains it. The
authority of any other process is that of a region, but not necessarily the one
that contains the process: a region may host processes of other authorities.

Note. In other contexts, telenames denote packages, rather than processes.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 73

The Telescript Language Reference

Specifying an authority
A telename specifies an authority with an octet string. Chosen using the
same algorithm throughout the telesphere, the octet string distinguishes the
authority from other authorities—past, present, or future.

Note. Telescript technology recommends a particular algorithm for this purpose.
Although beyond this manual’s scope, the recommended algorithm mathematically
computes the octet string, which is thus meaningless to a human being.

Specifying a process
A telename specifies a process with an octet string. Chosen using the same
algorithm throughout the telesphere, the octet string distinguishes the
process from other processes of the same authority.

Note. Telescript technology recommends a particular algorithm for this purpose.
Although beyond this manual’s scope, the recommended algorithm mathematically
computes the octet string, which is thus meaningless to a human being.

Contacting a process through an operation
Processes can come into contact through operations. The passage of each
argument or result of such an operation lets one process convey to the other
either a reference to, a copy of, or the ownership of an object.

Note. This direct interaction is possible only if one process has a reference to the
other. This isn’t necessarily the situation. However, processes can also interact
by means of packages, events, and resources.

Contacting a process through a package
Processes can come into contact through packages. A package is a dictionary
that is protected and thus locked, and whose keys and values are locked as
well. Like a process, a package has an assigned telename.

Note. Packages represent a means of multicast communication among processes
within the scope of the same engine place.

Offering packages
A process can offer a package, either privately or publicly. A package that a
process offers privately is available to that process alone. A package that a
process offers publicly is available to that process but to other processes also.

The packages that a process offers privately form a list, the list that would
result from appending to the process’s privatePackages attribute the list
of packages that the process offers publicly.

The packages that a process offers publicly form a second list, the list that
would result from appending to the process’s publicPackages attribute the
list of packages offered publicly by the place the process occupies.

The packages that a process offers publicly or privately form an effective
package whose keys reflect the union of the packages’ keys. A key (and the
associated value) in one package is included in the effective package in
preference to a matching key (and value) in a package listed after it.

74 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha74

Predefined Class Concepts

Searching packages for objects
The following operations search offered packages for objects in general:

• Encoding or decoding. The encode operation seeks objects that match
objects that the operation might omit. The decode operation seeks
objects whose names equal those of objects that are omitted. Both
operations search packages that the current owner offers publicly.

• Freezing or thawing. The freeze operation seeks objects that match
objects that the operation might freeze. The thaw operation seeks objects
whose names equal those of objects that are frozen. Both operations
search packages that the responder offers privately.

• Upon request. The get, getPackage, find, or findPackage operation
seeks a specified object. All four operations search packages that the
responder offers to the requester’s owner.

All the operations discussed above search only the offered packages that two
arguments select. The first, or packages, argument is either a set of
telenames or nil. A set of telenames designates only the packages that the
telenames denote. Nil designates all of the packages. The second, or
isNotInPackages, argument is either a boolean or nil. False or nil selects
the designated packages. True selects the undesignated packages.

The operations that search for objects upon request limit the two arguments.
The get and find operations limit the packages argument to either a
single telename or nil, and don’t let the isNotInPackages argument be
supplied, regarding it as nil instead. The getPackage and findPackage
operations let neither argument be supplied, regarding both as nils.

Note. Other operations search offered packages for classes in particular.

Contacting a process through an event
Processes can come into contact through events. An event is an incident or
condition as a particular process reports it by means of a signal.

Note. Events represent a means of multicast communication among processes
within the scope of the same engine place.

Categorizing an event
Events fall into categories. Each category is denoted by Event or a subclass of
Event. An event that falls into the category that a certain class denotes also
falls into the categories that its interface superclasses denote.

An event selector selects zero or more events from among all events possible.
A member of Event, an event selector selects events in the category that its
class denotes. The event selector may include a telename. In this case, the
event selector excludes signals sent by processes other than those named.

A signal is an event selector that reports an event by identifying a category
into which the event falls; the process that sent the signal, identified by its
assigned telename; and the time that the process sent the signal.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 75

The Telescript Language Reference

Sending a signal
One process sends a signal to zero or more processes. The one process is the
source of the signal; the zero or more processes are its intended destinations.

A signal is sent using the signalEvent operation. The current sponsor is
considered the source of the signal. The signal’s intended destinations are
defined, relative to the operation’s responder, by the signal’s scope.

The following table shows the possible scopes of a signal. The first column
identifies the scopes; the second defines them.

Identifier Definition
responder The responder.

responderDeep The responder. If the responder is a place, its occupants
and their occupants, recursively, as well.

occupants If the responder is a place, its occupants. Otherwise no
processes at all.

occupantsDeep If the responder is a place, its occupants and their
occupants, recursively. Otherwise no processes at all.

Enabling or disabling a signal
A process enables a signal it wishes to receive. Any one of a signal’s intended
destinations is an actual destination of that signal if that process enabled
the signal before it was sent and didn’t disable it later.

A process records the signals it currently enables as a set of event selectors.
Two items in the set match if they are of the same class and restrict a
signal’s source in the same way. At any time the process can include an
event selector in the set using the enableEvents operation, or exclude an
event selector from the set using the disableEvents operation.

Receiving a signal
Whenever a process is sent a signal that the process currently enables, the
engine includes that signal in a first-in first-out queue, which the engine
maintains for the process. The signal remains in that queue indefinitely.

At a time it chooses, a process receives such a signal using the getEvent
operation, thereby excluding the event from the first-in first-out queue of the
process. The process presents an event selector and receives the selected
signal that has been in the queue the longest. Alternatively, the process can
empty the queue using the clearEvents operation.

Note. Thus the engine acts as an intermediary between a signal’s source and its
actual destinations.

Contacting a process through a resource
Processes can come into contact through resources. Although the engine
performs atomically every predefined method except those for the meet and
wait operations (either of which can block the current process), the engine
doesn’t necessarily perform user-defined methods with that assurance. A
user-defined method can compensate for its lack of atomicity using a resource.

76 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha76

Predefined Class Concepts

Notes.

• Resources represent a means of multicast communication among processes
within the scope of the same engine place.

• The engine performs even the go and send operations atomically.

Using a resource
A process (more precisely, a process activation) uses a resource to prevent
other processes from using it in conflicting ways. To use a resource a process
must present an unprotected reference to it. A process that requests use of a
resource may be blocked until no other past or present use conflicts with its
intended use. When several processes await conflicting use of the same
resource, the engine grants use of the resource on a first-in first-out basis.

Note. Resources make possible the definition of critical conditional regions.

Using a resource exclusively
A process can make either shared or exclusive use of a resource. The shared
use of a resource by one process conflicts with its concurrent exclusive use by
another process, but not with its concurrent shared use. The exclusive use of a
resource by one process conflicts with its concurrent use by another process,
whether the latter use is shared or exclusive.

If a process asks for a resource’s use while using it already, the second use is
denied unless both uses are shared. If the second use is granted, the first
use continues when the second use is completed, recursively.

Using a resource conditionally
At any moment in time a resource has a condition, which is among one or
more possible conditions, each denoted by an identifier, that are defined
when the resource is constructed. A process can examine a resource’s
condition at any time, but can set it only while using the resource exclusively.

A process can use a resource either conditionally or unconditionally. The
conditional use of a resource by a process conflicts with a past or present use
that left the resource in a condition other than one or more specified
conditions. The unconditional use of a resource conflicts with a past or
present use only under circumstances that are unrelated to condition.

Losing contact with a process
Two processes lose contact with one another when the engine voids all
references in the closure of one to objects owned by the other.

Two processes lose contact with one another under various circumstances.
When with the go operation an agent exits the place it occupies, it loses
contact with all other processes. When with the send operation an agent’s
clone exits the place the agent occupies, it loses contact with all other
processes. When with the part or partAll operation an agent parts from
one or more acquaintances, it loses contact with those acquaintances. When
a process is destroyed, it loses contact with all other processes.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 77

The Telescript Language Reference

Permits
Processes have considerable power in principle. In practice, that power is
limited by means of permits. Programmers and administrators use permits
to grant only certain capabilities to certain processes on certain occasions.
This chapter discusses the capabilities that permits control.

Note. The principal purpose of permits is to prevent processes from consuming
computer and communication resources in unintended amounts. This benefits
both users, who construct the processes and perhaps pay for them, as well as
providers, who provide the resources that the processes consume.

Defining a permit
The capabilities represented by the bulk of the language (for example, the
arithmetic operations) are granted to every process implicitly. However, some
capabilities are granted explicitly to certain processes but not to others.

A permit grants certain capabilities to a process, the permit’s subject. These
capabilities involve the subject’s actions, resources, and forms of recognition.

Granting an action
Some capabilities grant actions to the subject. Such a capability is expressed
as a boolean: true allows the action, while false disallows it.

A permit’s attributes grant any or all of the actions in the following table.
The first column identifies the attributes; the second describes the actions
they control.

Identifier Action
canGo Go to another place.

canSend Construct clones and send each to another place.

canCreate Construct a peer process.

canRestart Be restarted upon termination.

canCharge Charge another process teleclicks (see “Granting a resource”).

canGrant Grant a capability to any of certain other processes.

canDeny Deny a capability to any of certain other processes.

If it exhausts the current permit, the current process isn’t restarted.

Note. The OAM policy in force may prevent the engine from restarting a process
that it would otherwise have restarted.

Granting a resource
Some capabilities grant resources to the subject. Such a capability is
expressed either as an integer or as nil. An integer grants a resource in the
specified amount. Nil grants a resource in unlimited amount.

78 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha78

Predefined Class Concepts

A permit’s attributes grant any or all of the resources in the following table.
The first column identifies the attributes; the second describes the resources
they control.

Identifier Resource
age The number of seconds since the subject was constructed.

charges The permit’s allowance—that is, the number of teleclicks that are
charged to the subject after its construction.

extent The number of octets that is momentarily the subject’s size.

Notes.

• The first of the three listed resources is elapsed time. Thus a permit can
impose upon its subject a maximum lifetime.

• The expense in teleclicks of a particular service, whether rendered to one
process by another or by the engine itself, can vary from place to place and
time to time. The charges for some services (for example, space) can be
assessed per unit of time.

• The resources described in the table aren’t to be confused with members of
the Resource class.

Granting a form of recognition
Some capabilities grant forms of recognition to the subject. Such a capability
is expressed either as an integer or as nil. An integer grants recognition at
the specified level. Nil grants recognition at the maximum level.

A permit’s attributes grant any or all of the forms of recognition in the
following table. The first column identifies the attributes; the second
describes the forms of recognition they control; and the third defines, as
mathematical intervals, the levels of recognition they admit.

Identifier Form of recognition Levels
authenticity The subject’s authenticity. [0, 40]

priority The subject’s priority. [–20, 20]

Receiving a permit
Several permits impinge on a process. Some of these permits are relatively
permanent; others are more temporary. The permanent permits of a process
are its native, regional, and local permits. The temporary permits of a
process are discussed in “Receiving a temporary permit” later in this section.

Receiving a native permit
The native permit of a process, recorded by its nativePermit attribute,
grants capabilities to the process as long as the process exists.

The native permit is set when the process is constructed. The current permit
intervenes: the native permit must be equal to or before the current permit,
and the native permit’s allowance must be equal to or before what remains
of the current permit’s allowance. Provided it is finite, the native permit’s
allowance is charged to the current sponsor.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 79

The Telescript Language Reference

The engine limits access to native permits. An object can get or set the native
permit of the current sponsor or any of its peers. However, only if the current
permit grants the capability to grant or deny capabilities can setting the
permit increase or decrease a capability, respectively. Furthermore, only the
permit’s allowance can be increased, and only by an amount that is equal to
or before what remains of the current permit’s allowance. If finite, the
amount of the increase is charged to the current sponsor.

Note. Thus teleclicks are transferred between processes.

Receiving a regional permit
The regional permit of a process, recorded by its regionalPermit attribute,
grants capabilities to the process as long as the process is in a region.

The regional permit is set when the process enters the region. If the new
operation causes the process to enter, its regional permit is set to that of the
current sponsor. If the go or send operation does so, the region sets the
permit. The regional permit of an engine place is set to a basic permit.

The engine limits access to regional permits. If the current sponsor has the
region’s authority, an object can get or set the regional permit of any process.
However, only if the current permit grants the capability to grant or deny
capabilities can setting the permit increase or decrease a capability,
respectively. If the current sponsor has another authority, an object can get
only the current sponsor’s regional permit and can set no regional permits.

Note. The language leaves undefined how the region initially sets the regional
permit of a process that enters the region as a result of the go or send operation.

Receiving a local permit
The local permit of a process, recorded by its localPermit attribute, grants
capabilities to the process as long as the process occupies a place.

The local permit is set when the process enters the place. If the new
operation causes the process to enter, its local permit is set to that of the
current sponsor. If the go or send operation does so, the place sets the
permit. The local permit of an engine place is set to a basic permit.

The engine limits access to local permits. An object can get the local permit of
the current sponsor or any occupant of the current sponsor. An object can set
the local permit of any occupant of the current sponsor. However, only if the
current permit grants the capability to grant or deny capabilities can setting
the permit increase or decrease a capability, respectively.

Note. A place initially uses the entering operation to set the local permit of an
occupant.

Receiving a temporary permit
A temporary permit of a process activation, recorded by none of the process’s
attributes, grants capabilities to the activation throughout its execution of a
specified sequence of instructions. Temporary permits can be imposed in a
nested fashion. Thus any number of such permits can be in force.

Note. Using a temporary permit, a process can hold in reserve a portion of its
allowed amounts of resources. If it exhausts the bulk of any of those resources,
the process can use the portion it held in reserve to take emergency action.

80 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha80

Predefined Class Concepts

Reconciling permits
Sometimes the several permits that impinge on a process must be reconciled
or altered. Reconciliation and alteration make use of the following concepts.

Intersecting two permits
Two permits can be intersected. The intersection is itself a permit, each of
whose capabilities, C0, is derived from the corresponding capabilities, C1 and
C2, of the permits. Each capability is expressed as a boolean, integer, or nil.

C0 is derived from C1 and C2 by the following steps:

1. If C2 is nil, C0 is C1.

2. If C1 is nil, C0 is C2.

3. C0 is the minimum of C1 and C2.

Ordering two permits
Two permits can be ordered (see “Ordered”) by the following steps:

1. One permit is equal to the other if each capability of the first is equal to
the corresponding capability of the second.

2. One permit is before the other if each capability of the first is either
equal to or before the corresponding capability of the second.

3. One permit is after the other if each capability of the first is either equal
to or after the corresponding capability of the second.

4. The two permits are unordered.

Ordering two capabilities
Two capabilities are ordered as follows (see “Ordered”). In practice, two
ordered capabilities concern the same action, resource, or form of recognition.

Two capabilities that concern an action are ordered as are the associated
booleans. Any other two capabilities are ordered as are the associated nils or
integers. However, if one capability is nil and the other an integer, the result
is as though an integer one greater were substituted for the nil.

Note. Thus one capability is before, equal to, or after another. Under no
circumstances are two capabilities unordered.

Increasing or decreasing a capability
A capability is increased if replaced by another capability that is before it,
decreased if replaced by another capability that is after it.

Enforcing the current permit
The engine enforces the one permit that results from reconciling the several
permits that affect a process. That permit is defined and enforced as follows.

Determining the current permit
The current permit—except for its age capability—is the intersection of the
permanent permits of the current sponsor and the temporary permits in force

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 81

The Telescript Language Reference

from the performance of the most tightly enclosing sponsored operation.
However, during the current sponsor’s termination, the current permit is the
intersection of the permanent permits of the current object’s owner.

The current permit’s age capability is the age capability of the intersection of
the permanent permits of all processes performing operations as part of the
current process activation and the temporary permits in force from the
performance of the most tightly enclosing sponsored operation.

Violating the current permit
The current object violates the current permit if it tries to do any of the
following, in which case the engine throws Permit Violated:

• Take an action that the current permit forbids.

• Use a resource in an amount that is after the amount that the current
permit allows, without also exhausting the permit.

• Use more than what remains of the current permit’s allowance, without
also exhausting the permit.

Note. Capabilities that concern forms of recognition are irrelevant.

Exhausting the current permit
The current object exhausts the current permit by trying to do either of the
following, in which case the engine terminates the current sponsor:

• Use a resource in an amount after that allowed by the intersection of the
permanent permits upon which the current permit is based.

• Use more than what remains of the allowance of that intersection.

Note. Capabilities that concern actions and forms of recognition are irrelevant.

82 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha82

Predefined Class Concepts

Patterns
This chapter describes the means the language provides for lexically
analyzing and modifying strings.

Defining and using a pattern
A pattern is defined and used as follows.

Defining a pattern
A pattern lexically analyzes any given string, the pattern’s subject. A certain
pattern embodies a certain lexical requirement. The pattern can determine
whether the subject satisfies the requirement and thus matches the pattern.
The requirement itself takes the form of a string, the text of the pattern.

This section defines a pattern’s text as a series of tokens, each zero or more
characters. The text is formed by simply concatenating the tokens.

In general, the text of a pattern is a Match (see “Requiring a match”). The
text of the simplest pattern is one character other than a metacharacter. The
pattern matches a string that consists of only that one character. Presented
individually throughout this chapter, metacharacters have special meanings.

Note. The metacharacters are “ $”, “%”, “(”, “)”, “*”, “+”, “–”, “.”, “?”, “[”, “\”, “]”,
“^”, “|”, and the characters that can appear in source programs only in escape
sequences.

Using a pattern
A pattern performs the following three operations. The first operation
searches a string for one substring that matches the pattern, the second and
third for any number in succession. A substring is a sublist of a string:

• The find operation finds the first matching substring.

• The split operation finds all matching substrings.

• The substitute operation finds all matching substrings and
substitutes for each a string perhaps tailored to the substring.

The split and substitute operations adhere to the following rules:

• The longest substring that could match does.

• No two matching substrings overlap.

• Even if the length of one matching substring is 0, the search for the next
begins at the next position.

Requiring a match
A pattern’s text can express the following matching requirements each of
which is satisfied by zero or more characters of the pattern’s subject.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 83

The Telescript Language Reference

Requiring a match
The requirement for a match is encoded as follows:

Match ::= AnchoredMatch [“|” Match]

This requirement is satisfied by any character that satisfies the requirement
that an AnchoredMatch encodes.

Requiring an anchored match
The requirement for an anchored match is encoded as follows:

AnchoredMatch ::= [“^”] SuccessiveMatches [“$”]

This requirement is satisfied by any substring that satisfies the requirement
that SuccessiveMatches encodes. If “ ^” or “$” occurs, the substring must
begin or end the subject, respectively.

Requiring successive matches
The requirement for successive matches is encoded as follows:

SuccessiveMatches ::= RepeatedMatch [SuccessiveMatches]

This requirement is satisfied by as many contiguous substrings as there are
RepeatedMatch’s if each substring satisfies the requirement that the
corresponding RepeatedMatch encodes.

Requiring a repeated match
The requirement for a repeated match is encoded as follows:

RepeatedMatch ::= SingleMatch [“*”|“+”|“?”]

This requirement is satisfied by as many contiguous substrings as the
following table dictates if each substring satisfies the requirement that
SingleMatch encodes.

Terminal Number of Substrings
“*” 0 or more

“+” 1 or more

“?” 0 or 1

None 1

Requiring a single match
The requirement for a single match is encoded as follows:

SingleMatch ::= “(” Match “)”
| CharacterWithAttribute
| CharacterInList
| CharacterNotInList
| CharacterWithName
| Character

This requirement is satisfied by any substring that satisfies the requirement
that the occurrence of one of the six nonterminals identified above encodes.

84 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha84

Predefined Class Concepts

Requiring a character
A pattern’s text can express the following matching requirements each of
which is satisfied by a single character of the pattern’s subject.

Requiring a character with certain attributes
The requirement for a character with certain attributes is encoded as follows:

CharacterWithAttribute ::= “%” Attribute

Attribute ::= “A”|“D”|“L”|“P”|“S”|“U”|“7”
| “a”|“d”|“l”|“p”|“s”|“u”

This requirement is satisfied by any character satisfying the predicate that
Attribute selects from the following table. Each predicate decides whether
the one, or both of the two, identified attributes of a character are true.

Character Predicate
“A” isAlphabetic

“D” isDecimalDigit

“L” isLower

“P” isPunctuation

“S” isSpace

“U” isUpper

“7” isASCII

“a” isASCII and isAlphabetic

“d” isASCII and isDecimalDigit

“l” isASCII and isLower

“p” isASCII and isPunctuation

“s” isASCII and isSpace

“u” isASCII and isUpper

Requiring a character in a certain list
The requirement for a character in a certain list is encoded as follows:

CharacterInList ::= “[” List “]”

List ::= Item [List]
Item ::= CharacterInInterval

| CharacterWithName

This requirement is satisfied by any character that satisfies the requirement
encoded by one of the Item’s in the List.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 85

The Telescript Language Reference

Requiring a character not in a certain list
The requirement for a character not in a certain list is encoded as follows:

CharacterNotInList ::= “[” “^” List “]”

This requirement is satisfied by any character that satisfies the requirement
encoded by none of the Item’s in the List.

Requiring a character in a certain interval
The requirement for a character in a certain interval is encoded as follows:

CharacterInInterval ::= CharacterWithName1 “-” CharacterWithName2

This requirement is satisfied by any character that is neither before the
character that CharacterWithName1 requires nor after the character that
CharacterWithName2 requires.

Requiring a character with a certain name
The requirement for a character with a certain name is encoded as follows:

CharacterWithName ::= “\” METACHARACTER | NONMETACHARACTER

This requirement is satisfied by either the metacharacter that METACHARACTER
encodes or the non-metacharacter that NONMETACHARACTER encodes.

Notes.

• A metacharacter immediately preceded by a “ \” avoids its special meaning.

• When a pattern’s text occurs in a source program (in the denotation of a
string), each “ \” in the text must be doubled. Thus “ \\.”, not “ \.”, denotes a
character.

Requiring a character
The requirement for a character is encoded as follows:

Character ::= “.”

This requirement is satisfied by any character.

86 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha86

Predefined Class Concepts

Calendar times
This chapter describes the means the language provides for lexically
analyzing and modifying times.

Defining a calendar time
A calendar time identifies a date and time of day to the precision of 1 second.
It uses Coordinated Universal Time (UTC) for this purpose. A calendar time
also records a local time zone’s permanent offset in minutes from UTC and its
seasonal offset in minutes from its permanent offset. A seasonal offset other
than 0 signifies Daylight Savings Time (DST).

Notes.

• UTC is effectively what used to be known as Greenwich Mean Time (GMT).

• Because some engines internally represent times more compactly than
calendar times, times are better for storing and transporting dates and times.

Accessing a calendar time
A calendar time exposes to individual examination and modification the year
in the Gregorian calendar, the month of that year, the day of that month, the
hour of that day, the minute of that hour, the second of that minute, the
permanent and seasonal offsets, and the days of the week and year.

Accessing the time
A calendar time’s attributes expose to examination and modification the
facets of the time in the following table. Each attribute is either an integer or
nil. The first column of the table identifies the attributes; the second
describes the facets they represent; and the third gives the mathematical
intervals into which the attributes normally fall when they are integers.

Identifier Facet Interval
hour The hour of the day. [0, 23]

minute The minute of the hour. [0, 59]

second The second of the minute. [0, 60] 1

zone The permanent offset. [–720, 720]

dst The seasonal offset. [–720, 720]

1 Second 60 accounts for leap seconds.

Accessing the date
A calendar time’s attributes expose to examination and modification the
facets of the date in the following table. Each attribute is either an integer or
nil. The first column identifies the attributes; the second describes the facets
they represent; and the third gives the mathematical intervals into which the
attributes normally fall when they are integers.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 87

The Telescript Language Reference

Identifier Facet Interval
year The year in the Gregorian calendar

(for example, 1995).
[%,%]

month The month of the year. [1, 12]

day The day of the month. [1, 31]

dayOfWeek The day of the week. Sunday is 1, Monday is
2, Tuesday is 3, Wednesday is 4, Thursday
is 5, Friday is 6, and Saturday is 7.

[1, 7]

dayOfYear The day of the year. [1, 366] 1

1 Day 366 accounts for leap years.

Normalizing a calendar time
A facet of a calendar time can lie outside its normal interval. For example, a
calendar time might identify the date as September 32, meaning October 2,
as the result of adding 2 to the day of the month. Such abnormalities are
useful but must be eliminated before the calendar time can be considered
correct. A calendar time is made correct in this sense by normalization.

A calendar time is normalized by normalizing the time and then the date.

Normalizing the time
The time is normalized by the following steps:

1. If nil, the hour, minute, or second is made 0. If nil, either offset is made
that of a normalized calendar time that denotes the current time.

2. The permanent or seasonal offset is replaced by the result of transposing
into the closed interval [–720, 720] the remainder left by dividing the
offset by 24*60.

Note. Even if, for example, the unnormalized and normalized dates disagree as to
whether DST is in effect, the seasonal offset isn’t further adjusted.

Normalizing the date
The date is normalized by the following steps:

1. If nil, the year, month, or day is made 1.

2. The second is placed in its normal interval by doing one of two things
repeatedly: adding 60 to the second and subtracting 1 from the minute,
or subtracting 60 from the second and adding 1 to the minute.

3. The minute is placed in its normal interval by doing one of two things
repeatedly: adding 60 to the minute and subtracting 1 from the hour, or
subtracting 60 from the minute and adding 1 to the hour.

4. The hour is placed in its normal interval by doing one of two things
repeatedly: adding 24 to the hour and subtracting 1 from the day, or
subtracting 24 from the hour and adding 1 to the day.

88 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha88

Predefined Class Concepts

5. The month is placed in its normal interval by repeatedly either adding
12 to the month and subtracting 1 from the year, or subtracting 12 from
the month and adding 1 to the year. Then the day is placed in the
interval [1, K] by either adding K to the day and subtracting 1 from the
month, or subtracting K from the day and adding 1 to the month. K is
the number of days in the subject month in the subject year. If one
addition or subtraction of K doesn’t place the day in [1, K], this entire
step is repeated.

6. The days of the week and year are set correctly.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 89

The Telescript Language Reference

90 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha90

Predefined Classes

Part Four—
Predefined Classes

This part of the manual defines the language’s predefined classes. The
classes form the following module. The ellipsis in the module’s definition
stands for the interface definitions that appear in the following chapters:

Telescript: module = (...);

The predefined classes are positioned in the class graph as follows:

Object
• Authenticator
• Calendar Time
• Class (Protected)
• Class Name
• Collection (Compared)
• • List (Ordered)
• • • Bit String
• • • Octet String
• • • Stack
• • • String (Cased)
• • Set (Verified)
• • • Dictionary
• • • • Package (Named and Protected)
• Event
• • Process Event
• • • Exit Event
• • • • Death Event
• • • Part Event
• Exception
• • Meeting Exception
• • Programming Exception
• • • Class Exception
• • • Collection Exception
• • • Kernel Exception
• • • • Execution Exception
• • • Miscellaneous Exception
• • • Primitive Exception
• • • Process Exception
• • Trip Exception
• Iterator
• Means
• • Existing Connection Means (Reservable
Means)
• Pattern
• Permit
• Petition
• Primitive (Protected)
• • Bit (Ordered)
• • Boolean (Ordered)
• • Character (Cased and Ordered)
• • Identifier (Ordered)
• • Nil
• • Number (Ordered)
• • • Integer
• • • Real
• • Octet (Ordered)
• Process (Named Package Process

Cased
Compared
• Equal
• Same
Event Process
Meeting Agent
Meeting Place
Named
Ordered
Package Process
Permit Process
Protected
Reservable Means
Uncopied
Unmoved
Verified

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 91

The Telescript Language Reference

Legend
The classes on the left above are the predefined flavors. A flavor’s immediate
interface superclasses are indicated as follows. If the superclass is itself a
flavor, it appears above the class and indented one degree less. If the
superclass is a mix-in, it appears beside the flavor enclosed in parentheses.

The classes on the right are the predefined mix-ins. A mix-in’s immediate
interface superclasses appear above it and indented one degree less.

The predefined classes are defined individually and in alphabetical order in
the chapters that follow. Each chapter, after relocating its class in the class
graph, includes as needed some or all of the sections in the following table.

Section Purpose
Class Defines the class, apart from its features, and how the class

implements and thus specializes inherited features.

Subclasses Defines the predefined immediate subclasses that don’t have
their own sections of the manual.

Constructor Explicitly redefines the constructor for class instances.

Attributes Defines the native attributes of the class.

Operations Defines the native operations of the class except for
conversions.

Conversions Defines the instance operations that perform conversions.

Sealings Identifies any inherited features that the class seals.

92 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha92

Predefined Classes

Agent
Object
• Process (Named, Package Process, Permit Process, and Uncopied)
• • Agent

Class
Agent: abstract interface (Process) =

(
private

see go, send
);

A process that can move from place to place.

Specialization. The responder’s contacts attribute consists of unprotected
references to the responder’s acquaintances. The engine includes a reference
when a meeting begins, and excludes any such reference when the meeting ends.

Operations
go: sealed op (ticket: owned Ticket) TicketStub

throws PermitViolated, ProcessNotControlled,
ReferenceProtected, TripException;

Takes the responder on the trip the ticket argument defines. Returns the
ticket stub that documents the trip.

Exceptions.

• Throws PermitViolated if the current permit forbids the go operation.

• Throws ProcessNotControlled unless the current process is the responder
not only for the sponsored operation that it performs at the engine’s request,
but also for all operations entailed by that operation.

• Throws ReferenceProtected if the responder is protected.

• Throws TripException if the trip fails.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 93

The Telescript Language Reference

send: sealed op (
tickets: owned List[Ticket, Equal];
charges: Integer /* nonnegative */ |Nil) TicketStub|Nil
throws PermitViolated, ProcessNotControlled,

ReferenceProtected, TripException;

Takes clones of the responder on the trips the tickets argument defines.
Returns nil to the responder and a ticket stub to each clone. A clone’s native
permit equals the current permit except for its charges attribute; the
operation sets that attribute to the charges argument.

Exceptions.

• Throws PermitViolated if the current permit forbids the send operation or
its charges attribute is insufficient.

• Throws ProcessNotControlled unless the current process is the responder
not only for the sponsored operation that it performs at the engine’s request,
but also for all operations entailed by that operation.

• Throws ReferenceProtected if the responder is protected.

• Throws TripException if or the trip fails.

94 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha94

Predefined Classes

Authenticator
Object
• Authenticator

Class
Authenticator: interface =

(
public

see initialize, securityRegime
);

An object that determines how the telesphere authenticates an agent—for
example, as the agent passes between regions in the course of a trip.

Constructor
initialize: op (securityRegime: Telename /* assigned */);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
securityRegime Yes –

Attributes
securityRegime: Telename /* assigned */ ;

The security regime that the responder dictates.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 95

The Telescript Language Reference

Bit
Object
• Primitive (Protected)
• • Bit (Ordered)

Class
Bit: sealed interface (Primitive, Ordered) = ();

A lightweight primitive with two possible values, zero and one.

Specializations.

• The copy operation regards the responder’s value as its only property.

• The order operation relates zero and one as it does integers 0 and 1.

96 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha96

Predefined Classes

Bit String
Object
• Collection (Compared)
• • List (Ordered)
• • • Bit String

Class
BitString: sealed interface (List[Bit, Equal]) =

(
public

see asOctetString, initialize
);

A list whose items are bits.

Specialization. The order operation relates two bit strings as though first enough
zero bits were prepended to one bit string to make it equal in length to the
other. A bit string is unrelated to an instance of any other class.

Constructor
initialize: op (

bits: protected Object /* Bit|BitString */ ...);

Sets the responder’s items to the bits the arguments contribute. The
positions of the items reflect their order of contribution. A bit contributes
itself. A bit string contributes its items in order of increasing position. The
arguments contribute in order of increasing signature position.

Conversions
asOctetString: op () OctetString;

Returns an octet string whose length is i where the responder’s length, n, is
in the interval [8 i–7, 8 i]. Bit j of the octet at position k is determined as
follows. If (8 k– j) & n, the bit equals that at position (8 k– j). Otherwise the bit
is zero.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 97

The Telescript Language Reference

Boolean
Object
• Primitive (Protected)
• • Boolean (Ordered)

Class
Boolean: sealed interface (Primitive, Ordered) =

(
public

see and, not, or
);

A lightweight primitive with two possible values, false and true.

Specializations.

• The copy operation regards the responder’s value as its only property.

• The order operation relates false and true as it does integers 0 and 1.

Operations
and: op (boolean: Boolean) Boolean;

Returns the logical conjunction of the responder and the boolean argument.

not: op () Boolean;

Returns the logical negation of the responder.

or: op (boolean: Boolean) Boolean;

Returns the logical disjunction of the responder and the boolean argument.

98 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha98

Predefined Classes

Calendar Time
Object
• Calendar Time

Class
CalendarTime: interface =

(
public

see asTime, day, dayOfWeek, dayOfYear, dst, hour, initialize,
minute, month, normalize, second, year, zone

);

An object that identifies a date and time of day to the precision of 1 second
using UTC . A calendar time also identifies a time zone and to what extent, if
any, DST is in effect in that zone at the indicated time.

Constructor
initialize: op ();

Sets the responder’s attributes according to the following table.

Attribute Argument Default
day – nil
dayOfWeek – nil
dayOfYear – nil
dst – nil
hour – nil
minute – nil
month – nil
second – nil
year – nil
zone – nil

Attributes (date)
day: Integer|Nil;

The day of the month the responder identifies.

dayOfWeek: Integer|Nil;

The day of the week the responder identifies.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 99

The Telescript Language Reference

dayOfYear: Integer|Nil;

The day of the year the responder identifies.

month: Integer|Nil;

The month of the year the responder identifies.

year: Integer|Nil;

The year in the Gregorian calendar the responder identifies.

Attributes (time)
dst: Integer|Nil;

The seasonal offset in minutes the responder identifies.

hour: Integer|Nil;

The hour of the day the responder identifies.

minute: Integer|Nil;

The minute of the hour the responder identifies.

second: Integer|Nil;

The second of the minute the responder identifies.

zone: Integer|Nil;

The permanent offset in minutes the responder identifies.

Operations
normalize: op () Boolean

throws ReferenceProtected;

Normalizes the responder. If the responder is thereby modified, returns true.

Exception. Throws ReferenceProtected if the responder is protected.

100 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha100

Predefined Classes

Conversions
asTime: op () Time;

Returns the time the responder would identify if it were normalized.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 101

The Telescript Language Reference

Cased
Cased

Class
Cased: mixin interface =

(
public

see isLower, isUpper, makeLower, makeUpper
);

An object that incorporates characters and that lets the distinction between
uppercase and lowercase characters be observed.

Attributes
isLower: abstract readonly Boolean;

True if the responder includes any lowercase characters.

isUpper: abstract readonly Boolean;

True if the responder includes any uppercase characters.

Operations
makeLower: abstract op () Cased;

Returns a copy of the responder in which all uppercase characters have been
replaced with their lowercase equivalents.

makeUpper: abstract op () Cased;

Returns a copy of the responder in which all lowercase characters have been
replaced with their uppercase equivalents.

102 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha102

Predefined Classes

Character
Object
• Primitive (Protected)
• • Character (Cased and Ordered)

Class
Character: sealed interface (Primitive, Cased, Ordered) =

(
public

see asInteger, isAlphabetic, isASCII, isDecimalDigit,
isPunctuation, isSpace

);

A lightweight `primitive whose possible values are the Unicode characters.
The class has one instance for each of the 65,535 possible Unicode values.

Note. The instances of this class include two noncharacters.

Specializations.

• The copy operation regards the responder’s value as its only property.

• The isLower and isUpper attributes and the makeLower and makeUpper
operations use the responder’s case.

• The makeUpper operation, if requested of “ #”, returns “ S”, not two of those
characters as Unicode requires.

• The order operation relates two characters as it does the integers that are
their Unicode values.

Attributes
isAlphabetic: readonly Boolean;

True if the responder is an alphabetic character.

isASCII: readonly Boolean;

True if the responder is an ASCII character.

isDecimalDigit: readonly Boolean;

True if the responder is a decimal digit character.

isPunctuation: readonly Boolean;

True if the responder is a punctuation character.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 103

The Telescript Language Reference

isSpace: readonly Boolean;

True if the responder is a space character.

Conversions
asInteger: op () Integer /* [0, 65535] */ ;

Returns the responder’s Unicode value.

104 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha104

Predefined Classes

Class
Object
• Class (Protected)

Class
Class: sealed interface (Object, Protected) =

(
public

see initialize, isSubclass, isSubclassByName, name, new
);

An object that defines other objects, the instances of the class.

Specialization. The copy operation, if the responder is defined, regards the
responder’s immediate interface and implementation superclasses as properties. If
the responder is derived, the operation regards its class family as a property.

Constructor
initialize: op ()

throws FeatureUnavailable;

Exception. Throws FeatureUnavailable if the feature is requested.

Attributes
name: readonly protected ClassName!;

The responder’s class name.

Operations
isSubclass: op (_class: Class) Boolean;

Returns true if the responder is the class argument or an interface subclass
thereof.

isSubclassByName: op (_class: protected ClassName) Boolean;

Returns true if the responder is the class argument’s subject or an interface
subclass thereof.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 105

The Telescript Language Reference

new: op (parameters: Object ...) Object
throws ClassAbstract, Exception, ObjectUninitialized;

Returns the new instance of the responder defined by the parameters
arguments, the arguments of the constructor as redefined by the responder.

If the responder is a class family, the operation behaves as though it were
requested of the class derived with the default parameters.

Exceptions.

• Throws ClassAbstract if the responder is abstract.

• Throws Exception if the constructor fails.

• Throws ObjectUninitialized if the constructor fails.

106 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha106

Predefined Classes

Class Exception
Object
• Exception
• • Programming Exception
• • • Class Exception

Class
ClassException: abstract interface

(ProgrammingException) = ();

A programming exception thrown during the construction of a class.

Subclasses
SuperclassesInvalid: interface (ClassException) = ();

The class definition designates superclasses invalidly or inconsistently.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 107

The Telescript Language Reference

Class Name
Object
• Class Name

Class
ClassName: sealed interface =

(
public

see classDigest, initialize
);

An object that denotes a class, its subject, distinguishing the class from all
other classes, predefined or user-defined.

Constructor
initialize: op (classDigest: owned OctetString);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
classDigest Yes –

Attributes
classDigest: owned OctetString;

An octet string that denotes the responder’s subject.

Note. Telescript technology recommends a particular algorithm for choosing this
octet string. The recommended algorithm is beyond this manual’s scope.

108 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha108

Predefined Classes

Collection
Object
• Collection (Compared)

Class
Collection: interface[Item: Class; Match: Class<:Compared]

(Object, Match) =
(

public
see asList, clear, examine, exclude, include, initialize,

iterator, length, shallowCopy
);

An object that includes zero or more objects, the collection’s items. The class
doesn’t order the items, but a subclass can do so. The number of items is the
collection’s length. The length of an empty collection is 0.

This is a class family. The Item parameter is the required interface member
class of each item of every member of a derived class. The Match parameter
is the interface member class required to decide whether two items match.

Note. A collection’s length is unbounded.

Specialization. The copy operation regards the responder’s items as properties.
Two collections are copy-equal if their items can be paired so that the two items
in each pair are copy-equal.

Constructor
initialize: op (items: Item ...);

Sets the responder’s items to the arguments using the include operation.

Attributes
length: readonly Integer /* nonnegative */ ;

The responder’s length.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 109

The Telescript Language Reference

Operations (modification)
clear: op ()

throws ReferenceProtected;

Removes from the responder and discards all of the responder’s items.

Exception. Throws ReferenceProtected if the responder is protected.

exclude: op (item: protected Object) Item|Nil
throws ReferenceProtected;

Excludes from the responder and returns any of the items that match the
item argument. If there are no such items, returns nil.

Exception. Throws ReferenceProtected if the responder is protected.

include: op (item: Item)
throws ReferenceProtected;

Includes the item argument in the responder as a new item.

Exception. Throws ReferenceProtected if the responder is protected.

Operations (examination)
examine: op (item: protected Object) Item|Nil;

Returns any item of the responder that matches the item argument. Leaves
the responder unchanged. If there are no such items, returns nil.

iterator: op () unprotected Iterator[Item];

Returns a new iterator whose items are the responder’s.

Modifying the responder or transporting it to another place renders the
iterator internally inconsistent: subsequently, the iterator can fail to produce
an item it would have produced, can produce an item a second time, or both.

Note. The result’s class, a subclass of Iterator, is undefined.

shallowCopy: op () Collection[Item, Match];

Returns a second instance of the responder’s class that has the same items.

110 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha110

Predefined Classes

Conversions
asList: op () List[Item, Match]!;

Returns a list whose items are those of the responder.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 111

The Telescript Language Reference

Collection Exception
Object
• Exception
• • Programming Exception
• • • Collection Exception

Class
CollectionException: abstract interface

(ProgrammingException) = ();

A programming exception thrown by a collection.

Subclasses
KeyInvalid: interface (CollectionException) = ();

A purported dictionary key isn’t actually a key, or two proposed keys match.

PositionInvalid: interface (CollectionException) = ();

A purported list position isn’t actually a position.

StackDepleted: interface (CollectionException) = ();

The length of a stack prevents its manipulation.

112 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha112

Predefined Classes

Compared
Compared

Class
Compared: mixin interface =

(
public class

see compare
);

An object that decides whether two objects match.

Specialization. The compare operation behaves as it does for Equal.

Operations
compare: op (object1, object2: protected Object)

Identifier /* as enumerated */ ;

Returns the identifier that relates the object1 argument to the object2
argument. The identifier is one of those defined by Ordered. For example, if
the first argument is before the second, the identifier is before.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 113

The Telescript Language Reference

Death Event
Object
• Event
• • Process Event
• • • Exit Event
• • • • Death Event

Class
DeathEvent: interface (ExitEvent) =

(
public

see exception, initialize
);

An exit event that involves the termination of a process.

Constructor
initialize: op (source: Telename|Nil; time: Time|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
source Yes nil
time Yes nil
exception – nil
record – nil

Attributes
exception: readonly Exception|Nil;

The exception that caused the process termination that the responder
involves. If the process terminated voluntarily, nil.

114 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha114

Predefined Classes

Dictionary
Object
• Collection (Compared)
• • Set (Verified)
• • • Dictionary

Class
Dictionary: interface[Key, Value: Class; Match: Class<:Compared]

(Set[Key, Match]) =
(

public
see add, drop, find, get, initialize, rekey, set, transpose

);

A set whose items are associated one-to-one with other objects. The items
are the dictionary’s keys; the other objects are its values. If its reference to a
key is ever voided, a dictionary automatically excludes that key and its
value.

This is a class family. The Key parameter is the required interface member
class of each key of every member of a derived class. The Value parameter is
the required interface member class of each value. The Match parameter is
the interface member class required to decide whether two keys match.
Equal decides whether two values match.

Specializations.

• The clear operation removes and discards the responder’s keys and values.

• The copy operation regards the responder’s keys and values as properties.
Two dictionaries are copy-equal if their keys can be paired so that the two
keys in each pair are copy-equal and if their values are copy-equal as well.

• The difference, exclude, or intersection operation excludes from the
responder the value of each excluded key.

• The include operation uses the set operation to make the included key’s
value nil. If the responder rejects nils, the operation throws an exception.

• The shallowCopy operation uses neither the new nor the include operation
to construct its result, which includes the same keys and values as the
responder includes.

• The union operation includes in the responder each included key’s value. If
the argument isn’t a dictionary, the operation throws Argument Invalid.

Constructor
initialize: op (keysAndValues: Object ...

/* (even numbered) key: Key; value: Value */);

Sets the responder’s keys and values to the arguments. The keys and values
are added, using the set operation, in order of increasing signature position.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 115

The Telescript Language Reference

Operations (modification)
add: op (key: Key; value: Value)

throws KeyInvalid, ReferenceProtected;

Includes the key and value arguments in the responder as a new key and
its value, respectively.

Exceptions.

• Throws KeyInvalid if the new key matches an existing key.

• Throws ReferenceProtected if the responder is protected.

drop: op (key: protected Key) Value
throws KeyInvalid, ReferenceProtected;

Excludes from the responder and discards the key that matches the key
argument. Excludes and returns the value associated with the discarded key.

Exceptions.

• Throws KeyInvalid if the object doesn’t match an existing key.

• Throws ReferenceProtected if the responder is protected.

rekey: op (currentKey: protected Key; newKey: Key)
throws KeyInvalid, ReferenceProtected;

Discards the responder’s key that matches the currentKey argument and
substitutes for that key the newKey argument.

Exceptions.

• Throws KeyInvalid if the currentKey argument doesn’t match an existing
key or the newKey argument does.

• Throws ReferenceProtected if the responder is protected.

set: op (key: Key; value: Value)
throws ReferenceProtected;

Includes the key and value arguments in the responder as a new key and
its value, respectively. Before doing so, excludes and discards any existing
key that matches the new key and discards the associated value.

Exception. Throws ReferenceProtected if the responder is protected.

116 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha116

Predefined Classes

transpose: op (key1, key2: protected Key)
throws KeyInvalid, ReferenceProtected;

Interchanges the keys that match the key1 and key2 arguments.

Exceptions.

• Throws KeyInvalid if either specified key doesn’t match an existing key.

• Throws ReferenceProtected if the responder is protected.

Operations (examination)
find: op (value: protected Value) Key|Nil;

Returns any key of the responder whose value matches the value argument.
Leaves the responder unchanged. If there is no such key, returns nil.

get: op (key: protected Key) Value
throws KeyInvalid;

Returns the value of the responder whose key matches the key argument.
Leaves the responder unchanged.

Exception. Throws KeyInvalid if there is no such key.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 117

The Telescript Language Reference

Engine Place
Object
• Process (Named, Package Process, Permit Process, and Uncopied)
• • Place (Unmoved)
• • • Engine Place

Class
EnginePlace: interface (Place) =

(
public

see initialize
private

see dst, zone
);

A place that represents an engine.

118 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha118

Predefined Classes

Constructor
initialize: op (

name: copied Telename /* assigned */ ;
address: copied Teleaddress /* assigned */ ;
zone, dst: Integer /* [–720, 720] */ |Nil)

throws AddressInvalid, FeatureUnavailable;

Sets the responder’s attributes according to the following table.

Attribute Argument Default
name Yes –
address Yes –
zone Yes 0
dst Yes 0
age – 0
assignments – 0
charges – 0
contacts – empty
desiredPriority – 0
isPossibleDuplicate – false
localPermit – basic
nativePermit – basic
privatePackages – empty
publicPackages – empty
regionalData – nil
regionalPermit – basic

Note. The language doesn’t expose the aspects of Place that let the constructor
set the name and address attributes of a place arbitrarily.

Exceptions.

• Throws AddressInvalid if the authority attributes of the name and address
aren’t copy-equal.

• Throws FeatureUnavailable if an engine place exists already.

Attributes
dst: Integer /* [–720, 720] */ ;

The seasonal offset in minutes of the time at the responder.

zone: Integer /* [–720, 720] */ ;

The permanent offset in minutes of the time at the responder.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 119

The Telescript Language Reference

Equal
Compared
• Equal

Class
Equal: mixin interface (Compared) =

(
public class

see compare
);

A compared object that matches objects that are copy-equal.

Sealings
compare: sealed;

If the objects are copy-equal, return equal. Otherwise return unordered.

120 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha120

Predefined Classes

Event
Object
• Event

Class
Event: interface =

(
public

see initialize, source, time
);

An object that selects zero or more events or reports one of them.

Constructor
initialize: op (source: Telename|Nil; time: Time|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
source Yes nil
time Yes nil

Attributes
source: sealed Telename|Nil;

The source of the events the responder selects.

time: sealed Time|Nil;

The time of the events the responder selects.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 121

The Telescript Language Reference

Event Process
Event Process

Class
EventProcess: mixin interface (Process) =

(
public

see signalEvent
private

see clearEvents, disableEvents, enableEvents, getEvent
);

A process that can be sent signals and that can receive them.

Specialization. The constructor empties the responder’s set of event selectors and
the responder’s first-in first-out queue of signals.

Operations (enabling and disabling)
disableEvents: sealed op (selector: protected Event|Nil)

throws ReferenceProtected;

Excludes from the responder’s set of event selectors any item that matches
the selector argument. If nil is supplied, the set is emptied.

Exception. Throws ReferenceProtected if the responder is protected.

enableEvents: sealed op (selector: protected Event)
throws ReferenceProtected;

Includes the event selector argument in the responder’s set of event
selectors unless the event selector matches an existing item of that set.

Exception. Throws ReferenceProtected if the responder is protected.

Operations (sending and receiving)
clearEvents: sealed op ()

throws ReferenceProtected;

Empties the responder’s first-in first-out queue of signals and makes the
responder subsequently disregard any event sent before the current time.

Exception. Throws ReferenceProtected if the responder is protected.

122 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha122

Predefined Classes

getEvent: sealed op (
maximumWait: Integer|Nil /* nonnegative */ ;
selector: Event|Nil) Event|Nil

throws ReferenceProtected;

Removes from the responder’s first-in first-out queue and returns the signal
first included in the queue. If the selector argument isn’t nil, considers for
removal only signals that report events that the event selector selects.

If the maximumWait argument isn’t nil, the operation waits for a signal the
specified number of seconds. If a signal remains unavailable, the result is
nil. If the argument is nil, the result isn’t: the wait is indefinite.

Exception. Throws ReferenceProtected if the responder is protected.

signalEvent: sealed op (
selector: protected Event;
scope: Identifier /* as enumerated */ |Nil)

throws ReferenceProtected;

Sends the signal formed by copying the selector argument, setting its
source and time attributes authentically, and locking the modified copy.
However, if the time attribute is a time in the future, the operation delays
sending the signal until that time. The signal has the scope that the scope
argument specifies. If the argument is nil, the scope is responderDeep.

Exception. Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 123

The Telescript Language Reference

Exception
Object
• Exception

Class
Exception: abstract interface = ();

An object that describes the failure of an operation.

124 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha124

Predefined Classes

Execution Exception
Object
• Exception
• • Programming Exception
• • • Kernel Exception
• • • • Execution Exception

Class
ExecutionException: abstract interface

(KernelException) = ();

A kernel exception that indicates that the engine can’t execute an object.

Subclasses
ArgumentInvalid: interface (ExecutionException) = ();

An argument of an operation doesn’t satisfy its type.

ArgumentMissing: interface (ExecutionException) = ();

An argument of an operation is missing.

AttributeReadOnly: interface (ExecutionException) = ();

An attribute is read only and thus can’t be set.

ClassUnavailable: interface (ExecutionException) = ();

A class is unavailable.

EscalationInvalid: interface (ExecutionException) = ();

A feature is escalated improperly.

FeatureUnavailable: interface (ExecutionException) = ();

A feature is undefined or private and the responder isn’t nil.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 125

The Telescript Language Reference

InternalException: interface (ExecutionException) = ();

The engine doesn’t implement some aspect of the language.

Note. Ideally, the engine never throws a member of this class. Practically, the
engine’s specification states under what conditions the engine does so.

PermitExhausted: interface (ExecutionException) = ();

The current permit is exhausted.

PropertyUndefined: interface (ExecutionException) = ();

A property identifier is undefined.

ReferenceProtected: interface (ExecutionException) = ();

A reference is protected and thus the object can’t be modified.

ReferenceVoid: interface (ExecutionException) = ();

The reference to an operation’s responder is voided.

ResponderMissing: interface (ExecutionException) = ();

An operation’s responder is missing.

ResponderNil: interface (ExecutionException) = ();

A feature is undefined or private and the responder is nil.

ResultInvalid: interface (ExecutionException) = ();

An operation’s result doesn’t satisfy its type.

ResultMissing: interface (ExecutionException) = ();

An operation’s result is missing.

VariableUndefined: interface (ExecutionException) = ();

A local variable identifier is undefined.

126 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha126

Predefined Classes

Existing Connection Means
Object
• Means
• • Existing Connection Means (Reservable Means)

Class
ExistingConnectionMeans: interface

(Means, ReservableMeans) =
(

public
see connectionID, initialize

);

A reservable means that involves a previously, but not necessarily presently,
established connection between two engines.

Constructor
initialize: op ()

throws FeatureUnavailable;

Exception. Throws FeatureUnavailable if the feature is requested.

Attributes
connectionID: OctetString;

The connection identifier of the connection that the responder involves.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 127

The Telescript Language Reference

Exit Event
Object
• Event
• • Process Event
• • • Exit Event

Class
ExitEvent: interface (ProcessEvent) =

(
public

see initialize, record
);

A process event that involves the exit of a process from a place.

Constructor
initialize: op (source: Telename|Nil; time: Time|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
source Yes nil
time Yes nil
record – nil

Attributes
record: Object;

A record of the process whose exit the responder involves. The record is that
maintained by the place the process has exited.

128 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha128

Predefined Classes

Identifier
Object
• Primitive (Protected)
• • Identifier (Ordered)

Class
Identifier: sealed interface (Primitive, Ordered) =

(
public

see asString
);

A primitive that distinguishes one object from others.

Specializations.

• The copy operation regards the responder’s text as its only property.

• The order operation relates two identifiers as it does their texts.

Conversions
asString: op () String;

Returns a copy of the responder’s text.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 129

The Telescript Language Reference

Integer
Object
• Primitive (Protected)
• • Number (Ordered)
• • • Integer

Class
Integer: sealed interface (Number) =

(
public

see modulus, quotient
);

A number whose values are mathematical integers.

Specializations.

• The asCharacter operation returns the character whose Unicode value is the
responder. If the latter isn’t in the interval [0, 65535], throws Conversion
Unavailable.

• The asInteger operation returns the responder.

• The asOctet operation returns the responder’s unsigned encoding. Bit i
encodes 2 i. If the latter isn’t in the interval [0, 255], throws Conversion
Unavailable.

• The asOctetString operation returns the responder’s twos complement
encoding. The encoding’s length is the smallest integer, n, that places the
responder in the open interval [–2 8n–1, 2 8n–1). The encoding’s bits are as
follows. Bit 7 of the octet at position 1 encodes –2 8n–1. Any other Bit j of the
octet at position i encodes 2 8(n–i)+ j.

• The asReal operation returns the real that arithmetically equals the
responder.

• The asString operation returns a string that would represent the responder
in a character telescript.

• The copy operation regards the responder’s value as its only property.

• The difference, multiply, or sum operation returns an instance of the
argument’s class.

• The divide operation returns a real.

• The magnitude or negate operation returns an integer.

130 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha130

Predefined Classes

Operations
modulus: op (divisor: Integer) Integer

throws DivisionByZero;

Returns the arithmetic remainder of the responder, the dividend, and the
divisor argument, the divisor. The sign of the result is that of the dividend.

Note. This operation isn’t defined as it is defined in number theory.

Exception. Throws DivisionByZero if the divisor is 0.

quotient: op (divisor: Integer) Integer
throws DivisionByZero;

Returns the arithmetic quotient of the responder, the dividend, and the
divisor argument, the divisor.

Exception. Throws DivisionByZero if the divisor is 0.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 131

The Telescript Language Reference

Iterator
Object
• Iterator

Class
Iterator: abstract interface[Item: Class] =

(
public

see current, isDone, next
);

An object that produces zero or more objects, the iterator’s items.

This is a class family. The Item parameter is the required interface member
class of each item of every member of a derived class.

Note. A nil item makes the current and next attributes difficult to interpret.

Attributes
current: abstract readonly Item|Nil;

The item the responder produced last. If the responder has produced no
items or has been asked to produce another after producing them all, nil.

isDone: abstract readonly Boolean;

True if the responder has produced all of its items.

next: abstract readonly Item|Nil
throws ReferenceProtected;

The item the responder produces next. Each act of getting this attribute
produces another item. If the responder has produced all of its items, nil.

Exception. Throws ReferenceProtected if the responder is protected.

132 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha132

Predefined Classes

Kernel Exception
Object
• Exception
• • Programming Exception
• • • Kernel Exception

Class
KernelException: abstract interface

(ProgrammingException) = ();

A programming exception in the processing of an object or in execution.

Subclasses
ClassAbstract: interface (KernelException) = ();

A new object is requested of an abstract class.

ConversionUnavailable: interface (KernelException) = ();

A requested conversion is undefined.

EncodingInvalid: interface (KernelException) = ();

An encoding of an object is invalid.

EncodingUnavailable: interface (KernelException) = ();

An object can’t be encoded because it is an uncopied object.

MarkMissing: interface (KernelException) = ();

A stack’s items don’t include a mark.

ObjectFrozen: interface (KernelException) = ();

An object can’t be used because it is frozen.

ObjectUninitialized: interface (KernelException) = ();

A method for the constructor violates a restriction to which it is subject.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 133

The Telescript Language Reference

ObjectUnowned: interface (KernelException) = ();

An object is manipulated by a process other than its owner.

134 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha134

Predefined Classes

List
Object
• Collection (Compared)
• • List (Ordered)

Class
List: interface[Item: Class; Match: Class<:Compared]

(Collection[Item, Match], Ordered) =
(

public
see add, append, drop, find, get, reposition, set, splice,

transpose
);

A collection whose items are associated one-to-one with the integers in the
interval [1, n], the items’ positions, where n is the collection’s length.

This is a class family. The Item parameter is the required interface member
class of each item of every member of a derived class. The Match parameter
is the interface member class required to decide whether two items match.

A sublist is zero or more items at successive positions in a list. A sublist is
sometimes defined by an operation’s initialPosition (P1) and
beyondFinalPosition (P2) arguments. The sublist consists of the items at
positions in the open interval [P1, P2). Nil signifies that P1 is 1 or that P2 is
n+1, where n is the list’s length. The open interval [1, 1) consists of the zero
items before the item, if any, at position 1. The open interval [n+1, n+1)
consists of the zero items after the item, if any, at position n. If P1 or P2 isn’t
in the interval [1, n+1] or P2 is less than P1, the interval is malformed.

Specializations.

• The constructor makes the signature positions of its arguments the positions
of the corresponding items in the responder.

• The asList operation positions the items in the result as in the responder.

• The copy operation regards the responder’s items as properties. Two lists are
copy-equal if their like-positioned items are copy-equal.

• The exclude operation decreases by one the positions of items positioned
after the excluded item.

• The include operation positions the included item at the responder’s new
length.

• The iterator operation produces the responder’s items in order of increasing
position.

• The order operation considers the like-positioned items of two lists in order
of increasing position. If the relationship between two items isn’t equal, the
lists are related or unrelated as those two items are. Otherwise if the lists
are equal in length, the lists themselves are equal. Otherwise the shorter
list is before the longer, and the longer is after the shorter.

• The shallowCopy operation preserves the order of the responder’s items.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 135

The Telescript Language Reference

Operations (modification)
add: op (position: Integer; item: Item)

throws PositionInvalid, ReferenceProtected;

Includes the item argument in the responder as a new item whose position
is the position argument. The operation increases by one the position of
each item whose position is equal to or after that of the included item.

Exceptions.

• Throws PositionInvalid if the position is invalid.

• Throws ReferenceProtected if the responder is protected.

append: op (items: List[Item, Match])
throws ReferenceProtected;

Includes the items of the items argument in the responder as new items
whose positions exceed the responder’s length, when the operation is
requested, by their argument positions. Leaves the argument unchanged.

Exception. Throws ReferenceProtected if the responder is protected.

drop: op (position: Integer) Item
throws PositionInvalid, ReferenceProtected;

Excludes from the responder and returns the item whose position is the
position argument. The operation decreases by one the position of each
item whose position is after that of the excluded item.

Exceptions.

• Throws PositionInvalid if the position is invalid.

• Throws ReferenceProtected if the responder is protected.

reposition: op (currentPosition, newPosition: Integer)
throws PositionInvalid, ReferenceProtected;

Moves an item of the responder from one position to another, adjusting the
positions of other items as required. The currentPosition argument gives
the item’s existing position, the newPosition argument its new position.

Note. Both positions are interpreted before the responder is modified.

Exceptions.

• Throws PositionInvalid if either position is invalid.

• Throws ReferenceProtected if the responder is protected.

136 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha136

Predefined Classes

set: op (position: Integer; item: Item)
throws PositionInvalid, ReferenceProtected;

Includes the item argument in the responder as a new or replacement item
whose position is the position argument. If an item occupies that position
in the responder already, the operation first excludes and discards that item.
Otherwise the position is the responder’s length and the item is appended.

Exceptions.

• Throws PositionInvalid if the position is invalid.

• Throws ReferenceProtected if the responder is protected.

splice: op (
initialPosition, beyondFinalPosition: Integer|Nil;
items: List[Item, Match]|Nil) List[Item, Match]|Nil

throws PositionInvalid, ReferenceProtected;

First constructs an empty list as a candidate result. If the result remains
empty after the processing described next, the operation returns nil instead.

Processes certain items of the responder, in order of decreasing position, by
dropping them from the responder and adding them to the result at position
1. The items, a sublist, are those at positions in the open interval [I, F). I is
the initialPosition argument, F the beyondFinalPosition argument.

If the items argument isn’t nil, the operation continues by processing all
items of the argument, in order of decreasing position, by adding them to the
responder at position I. The operation leaves the argument unchanged.

Exceptions.

• Throws PositionInvalid if the sublist interval is malformed.

• Throws ReferenceProtected if the responder is protected.

transpose: op (position1, position2: Integer)
throws PositionInvalid, ReferenceProtected;

Interchanges the items of the responder at two positions. Leaves the
positions of other items unchanged. The position1 argument gives one
item’s existing position, the position2 argument the other’s.

Exceptions.

• Throws PositionInvalid if either position is invalid.

• Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 137

The Telescript Language Reference

Operations (examination)
find: op (initialPosition: Integer; item: protected Item)

Integer /* positive */ |Nil
throws PositionInvalid;

Returns the position in the responder of the item that both matches the
item argument and is at a position neither before the initialPosition
argument nor after that of another item that satisfies the first two criteria.
Leaves the responder unchanged. If there is no such item, returns nil.

Exception. Throws PositionInvalid if the position is invalid.

get: op (position: Integer) Item
throws PositionInvalid;

Returns the item of the responder whose position is the position argument.
Leaves the responder unchanged.

Exception. Throws PositionInvalid if the position is invalid.

138 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha138

Predefined Classes

Means
Object
• Means

Class
Means: abstract interface = ();

An object that identifies a means of communication (for example, the public
switched telephone network) (for example, for beginning a trip).

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 139

The Telescript Language Reference

Meeting Agent
Meeting Agent

Class
MeetingAgent: mixin interface (Agent) =

(
public

see meeting
);

An agent that plays the role of petitionee in a meeting that a meeting place
arranges. Provided that it doesn’t prompt the event itself, a meeting agent
senses a meeting’s beginning by providing a method for the meeting
operation, and senses its end by receiving a signal, a member of Part Event.

Specialization. The meeting operation returns nil.

Operations
meeting: sponsored op (

agent: protected Telename /* assigned */ ;
_class: protected ClassName!;
petition: protected Petition) Object|Nil

throws FeatureUnavailable, MeetingDenied;

Requested by the engine with the desired priority of the petitioner whose
petition is the petition argument, whose name is the agent argument,
and whose interface member classes include the one the class argument
denotes. The result is the responder’s record of the meeting.

If the operation throws any exception other than Meeting Denied, the engine
throws Meeting Denied in its place.

Exceptions.

• Throws FeatureUnavailable if the requester is not the engine. The engine,
not a method for the operation, throws the exception.

• Throws MeetingDenied if the meeting is denied.

140 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha140

Predefined Classes

Meeting Exception
Object
• Exception
• • Meeting Exception

Class
MeetingException: abstract interface (Exception) = ();

An exception thrown when a meeting fails.

Subclasses
MeetingDenied: interface (MeetingException) = ();

The petitioner is denied a meeting.

MeetingDuplicated: interface (MeetingException) = ();

The petitioner and the petitionee are the same agent or are already meeting.

PetitionExpired: interface (MeetingException) = ();

The petitioner can’t meet the petitionee in the maximum time allowed.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 141

The Telescript Language Reference

Meeting Place
Meeting Place

Class
MeetingPlace: mixin interface (Place) =

(
public

see meet, part, partAll
);

A place that uses a certain protocol, embodied by the features native to
Meeting Place and Meeting Agent, to arrange meetings between occupants.

Operations
meet: op (

petition: protected Petition;
record: Object|Nil) Agent

throws MeetingException, PlaceNotCurrent,
ProcessNotControlled, ReferenceProtected;

Arranges the meeting that the petition argument defines between the
current sponsor, the petitioner, and the operation’s result, the petitionee.
The record argument is registered as the petitioner’s record of the meeting.

Exceptions.

• Throws MeetingException if the meeting fails.

• Throws PlaceNotCurrent if the current sponsor doesn’t occupy the responder.

• Throws ProcessNotControlled unless the current sponsor, an agent, is the
responder not only for either the sponsored operation that the current
process performs at the engine’s request or one of the operations it entails,
but also for all operations entailed by that operation.

• Throws ReferenceProtected if the responder is protected.

142 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha142

Predefined Classes

part: op (agent: Telename)
throws PlaceNotCurrent, ProcessNotControlled,

ReferenceProtected;

Ends any meetings between the current sponsor and any agents that the
agent argument identifies.

Exceptions.

• Throws PlaceNotCurrent if the current sponsor doesn’t occupy the responder.

• Throws ProcessNotControlled unless the current sponsor, an agent, is the
responder not only for either the sponsored operation that the current
process performs at the engine’s request or one of the operations it entails,
but also for all operations entailed by that operation.

• Throws ReferenceProtected if the responder is protected.

partAll: op ()
throws PlaceNotCurrent, ProcessNotControlled,

ReferenceProtected;

Ends all meetings that involve the current sponsor, and isolates the sponsor.

Exceptions.

• Throws PlaceNotCurrent if the current sponsor doesn’t occupy the responder.

• Throws ProcessNotControlled unless the current sponsor, an agent, is the
responder not only for either the sponsored operation that the current
process performs at the engine’s request or one of the operations it entails,
but also for all operations entailed by that operation.

• Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 143

The Telescript Language Reference

Miscellaneous Exception
Object
• Exception
• • Programming Exception
• • • Miscellaneous Exception

Class
MiscellaneousException: abstract interface

(ProgrammingException) = ();

A programming exception thrown by a calendar time or a pattern.

Subclasses
PatternInvalid: interface (MiscellaneousException) = ();

A pattern’s proposed text is syntactically in error.

144 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha144

Predefined Classes

Named
Named

Class
Named: sealed mixin interface =

(
public

see initialize, name
);

An object that has an assigned telename.

Constructor
initialize: op (identity: owned OctetString|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
name Yes. Sets the identity

attribute to the identity
argument.

Defaults the identity argument to
a newly assigned octet string. Sets
the authority attribute as specified
by Package and Process.

Attributes
name: sealed readonly protected Telename /* assigned */ ;

The responder’s telename.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 145

The Telescript Language Reference

Nil
Object
• Primitive (Protected)
• • Nil

Class
Nil: sealed interface (Primitive) = ();

A lightweight primitive with one possible value, nil . Nil is used to indicate
the absence of an instance of another class.

146 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha146

Predefined Classes

Number
Object
• Primitive (Protected)
• • Number (Ordered)

Class
Number: abstract interface (Primitive, Ordered) =

(
public

see asCharacter, asInteger, asOctet, asOctetString, asReal,
asString, ceiling, difference, divide, floor, magnitude,
multiply, negate, round, sum

);

A lightweight primitive that can perform basic arithmetic operations.

Specialization. The order operation relates two numbers mathematically.

Operations (binary)
difference: abstract op (subtrahend: Number) Number;

Returns the arithmetic difference between the responder, the minuend; and
the subtrahend argument, the subtrahend.

divide: abstract op (divisor: Number) Number
throws DivisionByZero;

Returns the arithmetic quotient of the responder, the dividend; and the
divisor argument, the divisor.

Exception. Throws DivisionByZero if the divisor is 0.

multiply: abstract op (number: Number) Number;

Returns the arithmetic product of the responder and the number argument.

sum: abstract op (number: Number) Number;

Returns the arithmetic sum of the responder and the number argument.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 147

The Telescript Language Reference

Operations (unary)
ceiling: abstract op () Integer;

Returns the smallest integer not arithmetically less than the responder.

floor: abstract op () Integer;

Returns the largest integer not arithmetically greater than the responder.

magnitude: abstract op () Number;

Returns the responder’s absolute value.

negate: abstract op () Number;

Returns the responder’s arithmetic negative.

round: abstract op () Integer;

Returns the integer that is arithmetically nearest to the responder. If two
integers are equally near, which one the operation returns is undefined.

Conversions
asCharacter: abstract op () Character

throws ConversionUnavailable;

Returns a character that reflects the responder.

Exception. Throws ConversionUnavailable if there is no such character.

asInteger: abstract op () Integer;

Returns an integer that reflects the responder.

asOctet: abstract op () Octet
throws ConversionUnavailable;

Returns an octet that reflects the responder.

Exception. Throws ConversionUnavailable if there is no such octet.

asOctetString: abstract op () OctetString;

Returns an octet string that reflects the responder.

148 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha148

Predefined Classes

asReal: abstract op () Real;

Returns a real that reflects the responder.

asString: abstract op () String;

Returns a string that reflects the responder.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 149

The Telescript Language Reference

Object
Object

Class
Object: abstract interface =

(
public

see class, copy, encode, initialize, isEqual, isFrozen,
isInstance, isInstanceByName, isLocked, isMember,
isMemberByName, isolate, isOwned, isProtected, isSame,
lock, protect, size, unlockedCopy

private
see owner

);

A unit of information and information processing.

Specialization. The copy operation doesn’t consider the responder’s isOwned,
isProtected, or owner attribute to be among its properties. The copy’s isOwned
and owner attributes reflect the copy’s owner. If the responder and thus the copy
are protected objects, the isProtected attribute of the copy is true.

Constructor
initialize: op ();

Sets the responder’s attributes according to the following table.

Attribute Argument Default
class – As required
isFrozen – false
isLocked – If a protected object, true
isOwned – true
isProtected – If a protected object, true
owner – As required
size – As required

Attributes (booleans)
isFrozen: sealed readonly Boolean;

True if the responder is frozen.

150 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha150

Predefined Classes

isLocked: sealed readonly Boolean;

True if the responder is locked.

isOwned: sealed readonly Boolean;

True if the current owner owns the responder.

isProtected: sealed readonly Boolean;

True if the reference to the responder is protected.

Attributes (other)
class: sealed readonly Class;

The responder’s class. However, if the responder is Class, so is this attribute.

owner: sealed readonly Process;

The responder’s owner.

size: sealed readonly Integer /* nonnegative */ ;

The responder’s size in octets.

Operations (booleans)
isInstance: sealed op (_class: Class) Boolean;

Returns true if the responder is an instance of the class argument.

isInstanceByName: sealed op (_class: protected ClassName)
Boolean;

Returns true if the responder is an instance of the class argument’s subject.

isMember: sealed op (_class: Class) Boolean;

Returns true if the responder is an interface member of the class argument.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 151

The Telescript Language Reference

isMemberByName: sealed op (_class: protected ClassName)
Boolean;

Returns true if the responder is an interface member of the class
argument’s subject.

Operations (referencing)
isSame: sealed op (object: protected Object) Boolean;

Returns true if the object argument is the responder.

protect: sealed op () protected Object;

Returns a protected reference to the responder.

Operations (copying)
copy: sealed op () Object;

Returns a copy of the responder.

isEqual: sealed op (object: protected Object) Boolean;

Returns true if the object argument is the responder or is copy-equal to it.

Operations (locking)
lock: sealed op ()

throws ObjectUnowned, ReferenceProtected;

Locks the responder. If it is locked already, the operation has no effect.

Exceptions.

• Throws ObjectUnowned if the current owner doesn’t own the responder.

• Throws ReferenceProtected if the responder isn’t locked but is protected.

unlockedCopy: sealed op () Object;

Returns an unlocked copy of the responder.

152 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha152

Predefined Classes

Operations (other)
encode: sealed op (

packages: protected Set[Telename, Equal]|Nil;
isNotInPackages: Boolean|Nil) OctetString

throws EncodingUnavailable;

Returns an octet string that encodes a copy of the responder according to the
encoding rules. The encoding may omit any objects in the copy’s closure for
which the packages that the packages and isNotInPackages arguments
select provide replacements (see “Searching packages for objects”).

Exception. Throws EncodingUnavailable if the responder is an uncopied object.

isolate: sealed op ()
throws ObjectUnowned, ReferenceProtected;

Isolates the responder.

Exceptions.

• Throws ObjectUnowned if the current owner doesn’t own the responder.

• Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 153

The Telescript Language Reference

Octet
Object
• Primitive (Protected)
• • Octet (Ordered)

Class
Octet: sealed interface (Primitive, Ordered) =

(
public

see asInteger
);

A lightweight primitive each of whose values consists of 8 bits. For reference
purposes, the bits are designated Bit 7 through Bit 0. A zero is 00 16.

Specializations.

• The copy operation regards the responder’s value as its only property.

• The order operation relates two octets as it does the two lists that consist of
the bits of the two octets, arranged so that Bit i of an octet is in position (7–
i+1) of a list.

Conversions
asInteger: op () Integer /* [0, 255] */ ;

Returns the integer whose unsigned encoding is the responder. Bit i of the
encoding represents 2 i.

154 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha154

Predefined Classes

Octet String
Object
• Collection (Compared)
• • List (Ordered)
• • • Octet String

Class
OctetString: sealed interface (List[Octet, Equal]) =

(
public

see asBitString, asInteger, asString, decode, initialize
);

A list whose items are octets.

Specialization. The order operation relates two octet strings as though first
enough zeros were prepended to one octet string to make it equal in length to
the other. An octet string is unrelated to an instance of any other class.

Constructor
initialize: op (

octets: protected Object /* Octet|OctetString */ ...);

Sets the responder’s items to the octets the arguments contribute. The
positions of the items reflect their order of contribution. An octet contributes
itself. An octet string contributes its items in order of increasing position. The
arguments contribute in order of increasing signature position.

Operations
decode: sealed op (

packages: protected Set[Telename, Equal]|Nil;
isNotInPackages: Boolean|Nil) Object

throws ClassUnavailable, EncodingInvalid;

Returns the object that the responder encodes according to the encoding
rules. The encoding may omit any objects in the object’s closure for which the
packages that the packages and isNotInPackages arguments select
provide replacements (see “Searching packages for objects”).

Exceptions.

• Throws ClassUnavailable if the encoding omits an object for which none of
the packages provides a replacement.

• Throws EncodingInvalid if the encoding is invalid.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 155

The Telescript Language Reference

Conversions
asBitString: op () BitString;

Returns a bit string whose length is 8 n. n is the responder’s length. The bit
at position (8 i+j) is Bit (8– j) of the octet at position i. In the above, i and j are
integers, i is in the open interval [0, n), and j is in the interval [1, 8].

asInteger: op () Integer;

Returns the integer whose method for the asOctetString operation returns
the responder.

asString: op () String
throws ConversionUnavailable;

Returns a string whose characters the responder’s octets would represent in
a binary telescript (see String’s asOctetString operation).

Exception. Throws ConversionUnavailable if the responder is malformed.

156 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha156

Predefined Classes

Ordered
Ordered

Class
Ordered: mixin interface =

(
public

see maximum, minimum, order
);

One of a set of objects that are partially ordered. Any object in the set is
before, equal to, after, or unordered with respect to any other of the
objects. The indicated identifiers denote the four possible relationships.

Two objects are unordered if either or both aren’t ordered objects. Also, two
members of different immediate subclasses of Ordered are unordered.

Operations
maximum: op (object: Ordered) Ordered;

If the responder is after the object argument, returns the responder.
Otherwise returns the object.

minimum: op (object: Ordered) Ordered;

If the responder is before the object argument, returns the responder.
Otherwise returns the object.

order: abstract op (object: protected Ordered)
Identifier /* as enumerated */ ;

Returns the identifier that relates the responder to the object argument.
For example, if the responder is before the object, the identifier is before.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 157

The Telescript Language Reference

Package
Object
• Collection (Compared)
• • Set (Verified)
• • • Dictionary
• • • • Package (Named and Protected)

Class
Package: interface[Key, Value: Class; Match: Class<:Compared]

(Dictionary[Key, Value, Match], Named, Protected) =
(

public
see compatibles, initialize

);

A dictionary that is protected and thus locked, whose keys and values are
locked, that is denoted by an assigned telename, and that may assert
backward compatibility with certain other packages of the same authority.

This is a class family. The Key parameter is the required interface member
class of each key of every member of a derived class. The Value parameter is
the required interface member class of each value. The Match parameter is
the interface member class required to decide whether two keys match.
Equal decides whether two values match.

Specializations.

• The examine, find, or get operation effectively passes its result byCopy.

• The iterator operation’s result passes its current or next attribute byCopy.

Constructor
initialize: op (

identity: owned OctetString|Nil;
compatibles: owned Set[OctetString, Equal]|Nil;
keysAndValues: owned Object ...

/* (even numbered) key: Key; value: Value */);

Sets the responder’s attributes according to the following table. Sets the
responder’s keys and values to the arguments. Locks them before adding
them, using the set operation, in order of increasing signature position.

Attribute Argument Default
name Yes. Sets the

identity attribute
to the identity
argument.

Defaults the identity argument to a
newly assigned octet string. Sets the
authority attribute to that of the name
attribute of the current owner.

compatibles Yes empty

158 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha158

Predefined Classes

Attributes
compatibles: sealed readonly Set[OctetString, Equal];

The identity attributes that distinguish, from the responder’s name
attribute, the name attributes of packages assertedly forward compatible
with the responder. The language leaves “forward compatible” undefined.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 159

The Telescript Language Reference

Package Process
Package Process

Class
PackageProcess: sealed mixin interface =

(
public

see find, findClass, findPackage, get, getPackage,
initialize

private
see freeze, privatePackages, publicPackages, thaw

);

A process that offers packages.

Constructor
initialize: op ();

Sets the responder’s attributes according to the following table.

Attribute Argument Default
privatePackages – empty
publicPackages – empty

Attributes
privatePackages: sealed readonly List[Package, Equal];

The responder’s private packages.

publicPackages: sealed readonly List[Package, Equal];

The responder’s public packages.

Operations (packages)
findPackage: sealed op (value: protected Object)

protected Telename /* assigned */ |Nil;

Returns the telename of the package that the find operation would choose if
the value argument were its first argument and nil were its second. If no
package would be chosen, returns nil.

160 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha160

Predefined Classes

getPackage: sealed op (key: protected Object)
protected Telename // assigned

throws KeyInvalid;

Returns the telename of the package that the get operation would choose if
the key argument were its first argument and nil were its second.

Exception. Throws KeyInvalid if no package would be chosen.

Operations (searching)
find: sealed op (

value: protected Object;
packages: protected Telename|Nil) copied Object|Nil;

Returns any key whose value matches the value argument. The operation
searches the packages that the packages argument selects (see “Searching
packages for objects”). If there is no such key, the operation returns nil.

findClass: sealed op (_class: protected ClassName) Class|Nil;

Returns the class argument’s subject.

To find the class, the operation follows the class search algorithm using
packages that the responder offers the requester’s owner. If the algorithm
fails to produce the class, the operation returns nil.

get: sealed op (
key: protected Object;
packages: protected Telename|Nil) copied Object

throws KeyInvalid;

Returns any value whose key matches the key argument. The operation
searches the packages that the packages argument selects (see “Searching
packages for objects”).

Exception. Throws KeyInvalid if there is no such key.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 161

The Telescript Language Reference

Operations (freezing and thawing)
freeze: sealed op (

object: Object;
packages: protected Set[Telename, Equal]|Nil;
isNotInPackages: Boolean|Nil);

Freezes the object argument or other objects in its closure. If the current
owner doesn’t own the argument, the operation has no effect. Otherwise if
the argument is locked and is represented by a value in one of the packages
that the packages and isNotInPackages arguments select (see “Searching
packages for objects”), the operation freezes the argument. Otherwise for
each property of the object (including its class) the responder performs the
operation again after making the property the operation’s object argument.

thaw: sealed op (
object: Object;
packages: protected Set[Telename, Equal]|Nil;
isNotInPackages: Boolean|Nil);

Thaws the object argument or other objects in its closure. If the current
owner doesn’t own the argument, the operation has no effect. Otherwise if
the argument is frozen and is represented by a value in one of the packages
that the packages and isNotInPackages arguments select (see “Searching
packages for objects”), the operation thaws the argument. Otherwise for each
property of the object (including its class) the responder performs the
operation again after making the property the operation’s object argument.

162 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha162

Predefined Classes

Part Event
Object
• Event
• • Process Event
• • • Part Event

Class
PartEvent: interface (ProcessEvent) =

(
public

see initialize, record
);

A process event that involves the parting of two agents.

Constructor
initialize: op (source: Telename|Nil; time: Time|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
source Yes nil
time Yes nil
record – nil

Attributes
record: Object;

One agent’s record of its acquaintance with another. The latter agent is the
one that initiated the parting that the responder involves.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 163

The Telescript Language Reference

Pattern
Object
• Pattern

Class
Pattern: interface =

(
public

see find, initialize, split, substitute
);

An object able to lexically analyze and modify strings.

Specialization. The copy operation the responder’s text as its only property.

Constructor
initialize: op (text: copied String)

throws PatternInvalid;

Sets the responder’s text to the argument.

Exception. Throws PatternInvalid if the text is invalid.

Operations
find: op (

subject: protected String;
initialPosition, beyondFinalPosition: Integer|Nil)

List[Integer, Equal] /* two positive integers */ |Nil
throws PositionInvalid;

Searches the subject argument for the first substring that matches the
responder. The search is confined to the substring of the argument that
consists of the items at positions in the open interval [I, F). I is the
initialPosition argument, F the beyondFinalPosition argument.

If it finds a matching substring, the operation returns the integers, r1 and r2,
such that the open interval [r1, r2) defines the matching substring. Otherwise
it returns nil.

Exception. Throws PositionInvalid if the subject’s interval is malformed.

164 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha164

Predefined Classes

split: op (
subject: protected String;
includeMatches: Boolean;
repetitions: Integer /* nonnegative */ |Nil)

List[String, Equal];

Searches the subject argument for the first substrings that match the
responder. If there are no matches, the operation returns a copy of the string.

If the repetitions argument isn’t nil, the operation finds at most the
number of substrings the argument specifies. Otherwise it finds them all.

A search that finds n matches thereby divides the subject into 2* n+1
substrings. The substrings with even ordinal numbers are the matches. The
others are, in order, the substring before the first match, the substrings
between matches, and the substring after the last match.

The operation returns, as the items of a list, the substrings into which the
search divides the subject. However, if the includeMatches argument is
false, the list excludes the matching substrings themselves.

substitute: op (
subject: unprotected String;
replacement: protected String;
repetitions: Integer /* nonnegative */ |Nil)

Integer /* nonnegative */ ;

Searches the subject argument for the first substrings that match the
responder and returns the number it finds.

If the repetitions argument isn’t nil, the operation finds at most the
number of substrings the argument specifies. Otherwise it finds them all.

The operation replaces each matching substring, mi, with a modified copy of
the replacement argument, which is modified as follows. Wherever “ &”
occurs in the copy in an escape sequence, the preceding “ \” is deleted.
Wherever else “ &” occurs in the copy, the “ &” is replaced with a copy of mi.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 165

The Telescript Language Reference

Permit
Object
• Permit

Class
Permit: sealed interface =

(
public

see age, authenticity, canCharge, canCreate, canDeny, canGo,
canGrant, canRestart, canSend, charges, extent,
initialize, intersection, priority

);

An object that grants capabilities to a process, the permit’s subject.

Constructor
initialize: op (

age, charges, extent: Integer /* nonnegative */ |Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
age Yes nil
charges Yes nil
extent Yes nil
authenticity – nil
canCharge – true
canCreate – true
canDeny – true
canGo – true
canGrant – true
canRestart – true
canSend – true
priority – nil

Attributes (integers)
age: Integer /* nonnegative */ |Nil;

The maximum age in seconds of the responder’s subject. If none, nil.

166 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha166

Predefined Classes

authenticity: Integer /* [0, 40] */ |Nil;

The maximum authenticity of the responder’s subject. If none, nil.

charges: Integer /* nonnegative */ |Nil;

The maximum charges in teleclicks of the responder’s subject. If none, nil.

extent: Integer /* nonnegative */ |Nil;

The maximum size in octets of the responder’s subject. If none, nil.

priority: Integer /* [–20, 20] */ |Nil;

The maximum priority of the responder’s subject. If none, nil.

Attributes (booleans)
canCharge: Boolean;

True if the responder’s subject can request the charge operation.

canCreate: Boolean;

True if the responder’s subject can request the new operation of a subclass of
Process.

canDeny: Boolean;

True if the responder’s subject can decrease the capabilities of other
processes under certain circumstances (see “Receiving a permit”).

canGo: Boolean;

True if the responder’s subject can request the go operation.

canGrant: Boolean;

True if the responder’s subject can increase the capabilities of other processes
under certain circumstances (see “Receiving a permit”).

canRestart: Boolean;

True if the responder’s subject can be restarted.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 167

The Telescript Language Reference

canSend: Boolean;

True if the responder’s subject can request the send operation.

Operations
intersection: op (permit: protected Permit) Permit;

Returns the intersection of the responder and the permit argument.

Note. The responder is left unchanged.

168 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha168

Predefined Classes

Permit Process
Permit Process

Class
PermitProcess: sealed mixin interface =

(
public

see age, assignments, charge, charges, initialize,
localPermit, nativePermit, permit, priority,
regionalPermit

private
see desiredPriority

);

A process that is subject to permits.

Constructor
initialize: op (

nativePermit: copied Permit;
localPermit: copied Permit|Nil;
desiredPriority: Integer /* [–20, 20] */ |Nil)

throws OccupancyDenied;

Sets the responder’s attributes according to the following table.

Attribute Argument Default
nativePermit Yes –
localPermit Yes basic. See “Receiving a local permit”
desiredPriority Yes That of the current sponsor
age – 0
assignments – 0
charges – 0
regionalPermit – See “Receiving a regional permit”

Exception. Throws OccupancyDenied if the responder is denied occupancy.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 169

The Telescript Language Reference

Attributes (past)
age: sealed readonly Integer // nonnegative

throws FeatureUnavailable;

The responder’s actual age in seconds.

Exception. Throws FeatureUnavailable if the current sponsor isn’t the
responder’s peer.

assignments: sealed readonly Integer // nonnegative
throws FeatureUnavailable;

The responder’s actual charges in teleclicks assigned to child processes.

Exception. Throws FeatureUnavailable if the current sponsor isn’t the
responder’s peer.

charges: sealed readonly Integer // nonnegative
throws FeatureUnavailable;

The responder’s actual charges in teleclicks.

Exception. Throws FeatureUnavailable if the current sponsor isn’t the
responder’s peer.

Attributes (future)
permit: sealed readonly copied Permit;

The responder’s effective permit.

priority: sealed readonly Integer /* [–20, 20] */ ;

The responder’s actual priority.

Attributes (permits)
desiredPriority: sealed Integer /* [–20, 20] */ ;

The responder’s desired priority.

localPermit: sealed copied Permit
throws FeatureUnavailable;

The responder’s local permit.

Exception. Throws FeatureUnavailable if the current sponsor doesn’t satisfy the
criteria for accessing this feature (see “Receiving a local permit”).

170 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha170

Predefined Classes

nativePermit: sealed copied Permit
throws FeatureUnavailable;

The responder’s native permit.

Exception. Throws FeatureUnavailable if the current sponsor doesn’t satisfy the
criteria for accessing this feature (see “Receiving a native permit”).

regionalPermit: sealed copied Permit
throws FeatureUnavailable;

The responder’s regional permit.

Exception. Throws FeatureUnavailable if the current sponsor doesn’t satisfy the
criteria for accessing this feature (see “Receiving a regional permit”).

Operations
charge: sealed op (charges: Integer /* nonnegative */)

throws PermitViolated;

Increases the responder’s actual charges by the charges argument.

Exception. Throws PermitViolated if the current permit forbids the charge
operation or the responder’s effective permit would be exhausted as a
consequence.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 171

The Telescript Language Reference

Petition
Object
• Petition

Class
Petition: interface =

(
public

see agentClass, agentName, initialize, maximumWait
);

An object that defines a meeting from the viewpoint of the petitioner. The
petition’s main purpose is to identify the petitionee.

Constructor
initialize: op (

agentName: Telename|Nil;
agentClass: ClassName|Nil;
maximumWait: Integer /* nonnegative */ |Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
agentName Yes nil
agentClass Yes nil
maximumWait Yes nil

Attributes
agentClass: ClassName|Nil;

An interface member class of any agent that plays the role of petitionee in
the meeting that the responder defines. If no requirement is imposed, nil.

agentName: Telename|Nil;

A name for any agent that plays the role of petitionee in the meeting that the
responder defines. If no requirement is imposed, nil.

maximumWait: Integer /* nonnegative */ |Nil;

The number of seconds after which the meet operation fails if the meeting
the responder defines isn’t arranged. If no requirement is imposed, nil.

172 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha172

Predefined Classes

Place
Object
• Process (Named, Package Process, Permit Process, and Uncopied)
• • Place (Unmoved)

Class
Place: abstract interface (Process, Unmoved) =

(
public

see address, entering, initialize
);

A process that other processes can occupy.

Specializations.

• The contacts attribute consists of unprotected references to the responder’s
occupants. The engine includes a reference when a process enters, excluding
any such reference when the process exits.

• The entering operation returns nil.

• The size attribute excludes those of the responder’s occupants.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 173

The Telescript Language Reference

Constructor
initialize: op (

nativePermit: copied Permit;
localPermit: copied Permit|Nil;
desiredPriority: Integer /* [–20, 20] */ |Nil;
location: OctetString|Nil)

throws AddressInvalid, OccupancyDenied, PermitViolated;

Sets the responder’s attributes according to the following table.

Attribute Argument Default
nativePermit Yes –
localPermit Yes Basic; see “Receiving a local permit”
desiredPriority Yes That of the current sponsor
address Yes. Sets the

location
attribute to
the location
argument.

Defaults the location argument to
that attribute of the address
attribute, A, of the responder’s
immediate superplace. Sets the
authority and routingAdvice
attributes to those of A.

age – 0
assignments – 0
charges – 0
contacts – empty
isPossibleDuplicate – false
name – Sets the authority attribute to that

of the name attribute of the current
sponsor, the identity attribute to
one newly assigned.

privatePackages – empty
publicPackages – empty
regionalData – That of the current process
regionalPermit – See “Receiving a regional permit”

Exceptions.

• Throws AddressInvalid if the responder’s teleaddress is rejected.

• Throws OccupancyDenied if the responder is denied occupancy.

• Throws PermitViolated if the current permit forbids the new operation or is
inadequate.

Attributes
address: sealed readonly protected Teleaddress /* assigned */ ;

The responder’s teleaddress.

174 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha174

Predefined Classes

Operations
entering: sponsored op (

occupant: protected Telename /* assigned */ ;
_class: protected ClassName!;
permit: unprotected Permit;
ticket: protected Ticket|Nil) Object

throws DestinationUnknown, FeatureUnavailable,
OccupancyDenied;

Requested by the engine with the desired priority of the prospective occupant
whose ticket is the ticket argument, whose name is the occupant
argument, and whose interface member classes include the one the class
argument denotes. The result is the responder’s record of the occupancy.

The permit argument is the intersection of the occupant’s native, regional,
and requested local permits, except that its age and charges attributes are
the seconds and teleclicks that remain to the occupant, not its actual age
and charges. The responder can modify the permit, thus indirectly altering
the occupant’s local permit to grant or deny the occupant capabilities.

The ticket argument is the ticket the occupant used to reach the responder,
except that the engine has set its destinationPermit and notes
attributes to nils. If the occupant is constructed locally, the ticket is absent.

If the operation throws a member of either subclass of Trip Exception listed
under “Exceptions” below, the engine constructs an instance of that class and
sets its ticketStub attribute authentically. If the operation throws any
other exception or no trip is involved, the engine throws Occupancy Denied.

Exceptions.

• Throws DestinationUnknown if occupancy is denied.

• Throws FeatureUnavailable if the requester is not the engine. The engine,
not a method for the operation, throws the exception.

• Throws OccupancyDenied if occupancy is denied.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 175

The Telescript Language Reference

Primitive
Object
• Primitive (Protected)

Class
Primitive: sealed abstract interface (Object, Protected) =

(
public

see initialize
);

An object that can’t be constructed using the new operation.

Constructor
initialize: op ()

throws FeatureUnavailable;

Exception. Throws FeatureUnavailable if the feature is requested.

176 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha176

Predefined Classes

Primitive Exception
Object
• Exception
• • Programming Exception
• • • Primitive Exception

Class
PrimitiveException: abstract interface

(ProgrammingException) = ();

A programming exception thrown by a primitive.

Subclasses
DivisionByZero: interface (PrimitiveException) = ();

A divisor is 0.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 177

The Telescript Language Reference

Process
Object
• Process (Named, Package Process, Permit Process, and Uncopied)

Class
Process: sealed abstract interface (Object, Named,

PackageProcess, PermitProcess, Uncopied) =
(

public
see initialize, isPossibleDuplicate, live, regionalData,

wait, who
private

see contacts
);

An object that embodies an autonomous computation.

178 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha178

Predefined Classes

Constructor
initialize: op (

nativePermit: copied Permit;
localPermit: copied Permit|Nil;
desiredPriority: Integer /* [–20, 20] */ |Nil)

throws OccupancyDenied, PermitViolated;

Sets the responder’s attributes according to the following table.

Attribute Argument Default
nativePermit Yes –
localPermit Yes basic. See “Receiving a local permit”
desiredPriority Yes That of the current sponsor
age – 0
assignments – 0
charges – 0
contacts – empty
isPossibleDuplicate – false
name – Sets the authority attribute to that of

the name attribute of the current
sponsor. Sets the identity attribute to
a newly assigned octet string.

privatePackages – empty
publicPackages – empty
regionalData – That of the current process
regionalPermit – See “Receiving a regional permit”

Exceptions.

• Throws OccupancyDenied if the responder is denied occupancy.

• Throws PermitViolated if the current permit forbids the new operation or is
inadequate.

Attributes
contacts: sealed readonly

Dictionary[Process, Object, Equal];

The responder’s records of processes with which the process is in contact.

Note. The engine includes processes in, and excludes processes from, this
attribute as specified by Agent’s and Place’s specializations of it.

isPossibleDuplicate: sealed readonly Boolean;

True if the responder is a possible duplicate.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 179

The Telescript Language Reference

regionalData: sealed protected Object
throws FeatureUnavailable;

The responder’s brand.

Exception. Throws FeatureUnavailable if the current sponsor doesn’t satisfy the
criteria for accessing this feature (see “Branding a process”).

Operations
live: abstract sponsored op (cause: Exception|Nil)

throws Exception, FeatureUnavailable;

Requested by the engine with the desired priority that the new operation
prescribes. If the cause argument isn’t nil, the responder is restarted after
throwing that exception. Otherwise the responder is started.

Exceptions.

• Throws Exception if the responder wishes to be restarted.

• Throws FeatureUnavailable if the requester is not the engine. The engine,
not a method for the operation, throws the exception.

wait: sealed op (seconds: Integer /* nonnegative */)
throws ProcessNotCurrent;

Blocks the current process for the number of seconds that the seconds
argument specifies.

Exception. Throws ProcessNotCurrent if the responder isn’t the current process.

who: sealed op () Object|Nil;

Returns the requester’s owner’s record of its meeting with or occupancy by
the responder. If there is no such record, returns nil.

180 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha180

Predefined Classes

Process Event
Object
• Event
• • Process Event

Class
ProcessEvent: interface (Event) = ();

An event in the life of a process.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 181

The Telescript Language Reference

Process Exception
Object
• Exception
• • Programming Exception
• • • Process Exception

Class
ProcessException: abstract interface

(ProgrammingException) = ();

A programming exception in the processing of a process.

Subclasses
AddressInvalid: interface (ProcessException) = ();

A place’s assigned teleaddress is rejected, or an engine place’s assigned
telename and assigned teleaddress differ in authority.

ConditionUnavailable: interface (ProcessException) = ();

A resource’s condition is set without the resource’s use.

ConditionUndefined: interface (ProcessException) = ();

A resource’s proposed condition is undefined.

PackageUnavailable: interface (ProcessException) = ();

A requested package is unavailable.

PermitViolated: interface (ProcessException) = ();

The current permit is violated.

PlaceNotCurrent: interface (ProcessException) = ();

The current sponsor doesn’t occupy a feature’s responder.

ProcessNotControlled: interface (ProcessException) = ();

An agent isn’t in a state that allows performance of the go, send, meet,
part, or partAll operation. (See those operations for specific limitations.)

182 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha182

Predefined Classes

ProcessNotCurrent: interface (ProcessException) = ();

A feature’s responder isn’t the current process.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 183

The Telescript Language Reference

Programming Exception
Object
• Exception
• • Programming Exception

Class
ProgrammingException: abstract interface (Exception) =

();

An exception that indicates that a programming mistake was made in the
provision or use of a feature.

184 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha184

Predefined Classes

Protected
Protected

Class
Protected: mixin interface = ();

An object that, while unlocked throughout its performance of the constructor,
is permanently locked at the moment that the new operation succeeds.

Specialization. The isSame operation returns true if the objects are the same or
copy-equal.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 185

The Telescript Language Reference

Real
Object
• Primitive (Protected)
• • Number (Ordered)
• • • Real

Class
Real: sealed interface (Number) = ();

A number whose values are real numbers and whose behavior with respect
to them conforms to IEEE Standard for Binary Floating-Point Arithmetic.

Specializations.

• The asCharacter, asOctet, or asOctetString operation behaves as would the
integer the responder would return if it performed the asInteger operation.

• The asInteger operation discards the responder’s fractional part so as to
arithmetically truncate the responder toward 0.

• The asReal operation returns the responder.

• The asString operation returns a string that would represent the responder
in a character telescript.

• The copy operation regards the responder’s value as its only property.

• The difference, divide, magnitude, multiply, negate, or sum operation
returns a real.

186 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha186

Predefined Classes

Reservable Means
Reservable Means

Class
ReservableMeans: mixin interface (Means) =

(
public

see initialize, isReserved, reserve
);

A means that can be reserved.

Constructor
initialize: op ();

Sets the responder’s attributes according to the following table.

Attribute Argument Default
isReserved – false

Attributes
isReserved: readonly Boolean;

True if the responder is presently reserved.

Operations
reserve: op (interval: Integer /* nonnegative */)

throws ReservationUnavailable;

Reserves the responder for the interval in seconds that the interval
argument specifies, overriding any existing reservation of the responder.

Exception. Throws ReservationUnavailable if no reservation can be made.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 187

The Telescript Language Reference

Resource
Object
• Resource

Class
Resource: interface =

(
public

see condition, conditions, initialize
);

An object that can control its concurrent use by multiple processes.

Specialization. The copy operation behaves as though neither uses nor awaited
uses of the responder affect its properties. Thus no processes initially use, or
await use of, the result of the copy operation.

Constructor
initialize: op (

condition: Identifier|Nil;
conditions: copied Set[Identifier, Equal]|Nil)

throws ConditionUndefined;

Sets the responder’s attributes according to the following table.

Attribute Argument Default
condition Yes An undefined identifier
conditions Yes A set that consists of that identifier

Exception. Throws ConditionUndefined if the condition argument doesn’t match
an item of the conditions argument.

Attributes
condition: sealed Identifier

throws ConditionUnavailable, ConditionUndefined;

The responder’s present condition.

Exceptions.

• Throws ConditionUnavailable if the attribute is being set and either the
current process doesn’t have use of the responder or the use is shared.

• Throws ConditionUndefined if the attribute as set wouldn’t match an item of
the conditions attribute.

188 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha188

Predefined Classes

conditions: sealed readonly
protected Set[Identifier, Equal];

The responder’s possible conditions.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 189

The Telescript Language Reference

Same
Compared
• Same

Class
Same: mixin interface (Compared) =

(
public class

see compare
);

A compared object that matches objects that are one and the same.

Sealings
compare: sealed;

Returns equal if the objects are the same. Otherwise returns unordered.

190 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha190

Predefined Classes

Set
Object
• Collection (Compared)
• • Set (Verified)

Class
Set: interface[Item: Class; Match: Class<:Compared]

(Collection[Item, Match], Verified) =
(

public
see difference, intersection, union

);

A collection no two of whose items match upon their inclusion.

This is a class family. The Item parameter is the required interface member
class of each item of every member of a derived class. The Match parameter
is the interface member class required to decide whether two items match.

Note. The modification of one item in situ can cause it to match another. In that
case, the set is considered internally inconsistent.

Specializations.

• The constructor uses the include operation to include its arguments in order
of increasing signature position.

• The include operation first excludes from the responder and discards any
item that matches the included item.

• The verify operation requires that no two items match.

Operations
difference: op (set: protected Set[Item, Match])

throws ReferenceProtected;

Excludes from the responder and discards every item that matches an item
of the set argument. However, if the responder or the set is internally
inconsistent, the operation’s behavior is undefined.

Exception. Throws ReferenceProtected if the responder is protected.

intersection: op (set: protected Set[Item, Match])
throws ReferenceProtected;

Excludes from the responder and discards every item that doesn’t match an
item of the set argument. However, if the responder or the set is internally
inconsistent, the operation’s behavior is undefined.

Exception. Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 191

The Telescript Language Reference

union: op (set: protected Set[Item, Match])
throws ReferenceProtected;

Includes in the responder as a new item each item of the set argument that
doesn’t match an existing item of the responder. However, if the responder or
the set is internally inconsistent, the operation’s behavior is undefined.

Exception. Throws ReferenceProtected if the responder is protected.

192 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha192

Predefined Classes

Stack
Object
• Collection (Compared)
• • List (Ordered)
• • • Stack

Class
Stack: interface[Item: Class; Match: Class<:Compared]

(List[Item, Match]) =
(

public
see pop, push, pushItems, roll, swap

);

A list that can be manipulated last-in first-out. The stack’s top is position 1.
The stack’s bottom is the stack’s length.

This is a class family. The Item parameter is the required interface member
class of each item of every member of a derived class. The Match parameter
is the interface member class required to decide whether two items match.

Operations
pop: op () Item

throws ReferenceProtected, StackDepleted;

Excludes from the responder and returns the item at the responder’s top.

Exceptions.

• Throws ReferenceProtected if the responder is protected.

• Throws StackDepleted if the responder is empty.

push: op (item: Item)
throws ReferenceProtected;

Includes the item argument in the responder as a new item at its top.

Exception. Throws ReferenceProtected if the responder is protected.

pushItems: op (items: List[Item, Match])
throws ReferenceProtected;

Includes the items of the items argument in the responder as new items at
the same positions—that is, at the top. Leaves the argument unchanged.

Exception. Throws ReferenceProtected if the responder is protected.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 193

The Telescript Language Reference

roll: op (shifts: Integer; items: Integer /* nonnegative */)
throws ReferenceProtected, StackDepleted;

Shifts the items at the top of the responder. The items argument is the
number of items, I, to be shifted, the absolute value of the shifts argument
the number of positions, P, each item is to be shifted. If either is 0, the
operation has no effect. If the latter is positive, the items are shifted toward
the responder’s top; if negative, they are shifted toward its bottom.

To shift the topmost I items one position upward is to change to I the
position of the topmost item and decrease by one the other shifted items’
positions. To shift the items one position downward is to make topmost the
item at position I and increase by one the other shifted items’ positions.

Exceptions.

• Throws ReferenceProtected if the responder is protected.

• Throws StackDepleted if the responder’s length is less than I.

swap: op ()
throws ReferenceProtected, StackDepleted;

Interchanges the responder’s items at positions 1 and 2. Leaves the
positions of other items unchanged.

Exceptions.

• Throws ReferenceProtected if the responder is protected.

• Throws StackDepleted if the responder’s length is less than 2.

194 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha194

Predefined Classes

String
Object
• Collection (Compared)
• • List (Ordered)
• • • String (Cased)

Class
String: sealed interface (List[Character, Equal], Cased) =

(
public

see asIdentifier, asInteger, asOctetString, asReal,
initialize, substring

);

A list whose items are characters.

Specializations.

• The isLower, isUpper, makeLower, and makeUpper operations use the cases of
the responder’s items.

• The makeUpper operation, if requested of a string that includes “ #”, returns a
string in which “ #” is replaced by two occurrences of “ S” as Unicode requires.

• The order operation relates two strings as though first enough occurrences
of “NUL” were appended to one string to make it equal in length to the other.
A string is unrelated to an instance of any other class.

Constructor
initialize: op (

characters: protected Object /* Character|String */ ...);

Sets the responder’s items to the characters the arguments contribute. The
positions of the items reflect their order of contribution. A character
contributes itself. A string contributes its items in order of increasing
position. The arguments contribute in order of increasing signature position.

Operations
substring: op (

initialPosition, beyondFinalPosition: Integer|Nil) String
throws PositionInvalid;

Returns a string whose items are those in the substring of the responder
that the open interval [I, F) defines. I is the initialPosition argument. F
is the beyondFinalPosition argument. Leaves the responder unchanged.

Exception. Throws PositionInvalid if the substring interval is malformed.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 195

The Telescript Language Reference

Conversions
asIdentifier: op () Identifier;

Returns the identifier whose text copy-equals the responder.

asInteger: op () Integer
throws ConversionUnavailable;

Returns the integer the responder would represent in a character telescript.

Exception. Throws ConversionUnavailable if the responder is malformed.

asOctetString: op () OctetString;

Returns an octet string whose octets would represent the responder’s
characters in a binary telescript (see Octet String’s asString operation).

asReal: op () Real
throws ConversionUnavailable;

Returns the real the responder would represent in a character telescript.

Exception. Throws ConversionUnavailable if the responder is malformed.

196 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha196

Predefined Classes

Teleaddress
Object
• Teleaddress

Class
Teleaddress: interface =

(
public

see authority, initialize, location, routingAdvice
);

An object that purports to denote one advertised place or all advertised
places in a given region.

Constructor
initialize: op (

authority, location: owned OctetString|Nil;
routingAdvice: owned List[OctetString, Equal]|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
authority Yes That of the address attribute of the place the

current process occupies
location Yes nil
routingAdvice Yes empty

Attributes
authority: owned OctetString;

The octet string that denotes the region that the responder specifies.

location: owned OctetString|Nil;

The octet string that denotes the advertised place that the responder
specifies. If the responder doesn’t specify an advertised place, nil.

routingAdvice: owned List[OctetString, Equal];

The octet strings that denotes the transit regions that the responder
specifies. The regions are listed in order of decreasing preference.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 197

The Telescript Language Reference

Telename
Object
• Telename

Class
Telename: interface =

(
public

see authority, identity, initialize
);

An object that purports to denote either one process, all processes of a given
authority, one package, or all packages of a given authority. Whether a
particular telename denotes processes or packages is known from context.

Constructor
initialize: op (

authority: owned OctetString;
identity: owned OctetString|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
authority Yes –
identity Yes nil

Attributes
authority: owned OctetString;

The octet string that denotes the authority that the responder specifies.

identity: owned OctetString|Nil;

The octet string that denotes the process or package that the responder
specifies. If the responder doesn’t specify a process or package, nil.

198 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha198

Predefined Classes

Ticket
Object
• Ticket

Class
Ticket: sealed interface =

(
public

see desiredWait, destinationAddress, destinationClass,
destinationName, destinationPermit, initialize,
maximumWait, notes, wayOut

);

An object that defines a trip from the viewpoint of the agent that takes the
trip. The ticket’s main purpose is to identify the agent’s destination.

Constructor
initialize: op (

destinationName: Telename|Nil;
destinationAddress: Teleaddress|Nil;
destinationClass: ClassName|Nil;
maximumWait: Integer /* nonnegative */ |Nil;
wayOut: Way|Nil;
notes: Object|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
destinationName Yes nil
destinationAddress Yes nil
destinationClass Yes nil
maximumWait Yes nil
wayOut Yes nil
notes Yes nil
desiredWait – nil
destinationPermit – nil

Attributes (destination)
destinationAddress: Teleaddress|Nil;

An address for the destination of the trip that the responder defines. If no
requirement is imposed, nil.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 199

The Telescript Language Reference

destinationClass: ClassName|Nil;

An interface member class of the destination of the trip that the responder
defines. If no requirement is imposed, nil.

destinationName: Telename|Nil;

A name for the destination of the trip that the responder defines. If no
requirement is imposed, nil.

destinationPermit: Permit|Nil;

The local and regional permit that the agent requires at the destination of
the trip that the responder defines. If no requirement is imposed, nil.

Attributes (waiting)
desiredWait: Integer /* nonnegative */ |Nil;

The desired maximum duration in seconds of the trip that the responder
defines. If no requirement is imposed, nil.

maximumWait: Integer /* nonnegative */ |Nil;

The number of seconds after which the go or send operation fails if the trip
the responder defines isn’t completed. If no requirement is imposed, nil.

Attributes (other)
notes: Object|Nil;

The agent’s notes about the trip that the responder defines.

wayOut: Way|Nil;

The way from the origin of the trip that the responder defines to the
destination. If no requirement is imposed, nil.

The go or send operation sets this attribute to nil.

200 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha200

Predefined Classes

Ticket Stub
Object
• Ticket Stub

Class
TicketStub: interface =

(
public

see initialize, isConstrained, notes, wayBack
);

An object that documents a trip, after the fact, from the viewpoint of the
agent that took the trip. A ticket stub is derived from a ticket.

Constructor
initialize: op (wayBack: Way|Nil; notes: Object|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
wayBack Yes nil
notes Yes nil
isConstrained – false

Attributes
isConstrained: Boolean;

True if the trip the responder documents succeeded but resulted in a local or
regional permit more constraining than the one the agent requested.

notes: Object|Nil;

The agent’s notes about the trip the responder documents.

wayBack: Way|Nil;

A way by which the agent that made the trip that the responder documents
can return to the agent’s origin from the agent’s actual destination. If the
engine provides no way back even though such a way may exist, nil.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 201

The Telescript Language Reference

Time
Object
• Time (Ordered and Protected)

Class
Time: interface (Object, Ordered, Protected) =

(
public

see adjust, asCalendarTime, interval, localize
);

An object that identifies a date and time of day to the precision of 1 second
or finer using UTC .

Note. A time identifies neither a time zone nor to what extent DST is in effect.

Specializations.

• The constructor makes the responder the current time.

• The copy operation regards as the responder’s only property the integer that
is the arithmetic difference between the responder (the minuend) and a fixed
time (the subtrahend).

• The order operation relates two times as it does their properties.

Operations
adjust: op (seconds: Integer) Time;

If the seconds argument is negative, returns a time that is N seconds before
the responder. If the argument is positive, returns a time that is N seconds
after the responder. In either case, N is the argument’s absolute value.

interval: op (subtrahend: Time) Integer;

Returns the arithmetic difference in seconds between the responder, the
minuend; and the subtrahend argument, the subtrahend.

localize: op () CalendarTime;

Returns a normalized calendar time that denotes the same second in time as
the responder and that reflects the permanent and seasonal offsets of the
place that the current process occupies.

202 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha202

Predefined Classes

Conversions
asCalendarTime: op () CalendarTime;

Returns a normalized calendar time that denotes the same second in time as
the responder and that reflects permanent and seasonal offsets of 0.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 203

The Telescript Language Reference

Trip Exception
Object
• Exception
• • Trip Exception

Class
TripException: abstract interface (Exception) =

(
public

see initialize, ticketStub
);

An exception thrown when a trip fails.

Constructor
initialize: op (ticketStub: TicketStub|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
ticketStub Yes nil

Attributes
ticketStub: sealed readonly TicketStub|Nil;

The ticket stub for the unsuccessful trip that the responder documents. If the
responder is used in a context other than that of an unsuccessful trip, nil.

Subclasses
DestinationUnavailable: interface (TripException) = ();

A place is temporarily unreachable.

DestinationUnknown: interface (TripException) = ();

A place can’t be identified and thus is permanently unreachable.

OccupancyDenied: interface (TripException) = ();

A place denies the process entry.

204 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha204

Predefined Classes

ReservationUnavailable: interface (TripException) = ();

A reservable means can’t be reserved.

TicketExpired: interface (TripException) = ();

A place is unreachable in the maximum time allowed.

WayUnavailable: interface (TripException) = ();

A place lacks the required way out.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 205

The Telescript Language Reference

Uncopied
Uncopied

Class
Uncopied: mixin interface = ();

An object that can’t be copied.

Specializations.

• The copy operation returns a reference to the responder, rather than create
a copy. If the supplied reference is protected, so is the returned reference.

• The encode operation throws Encoding Unavailable.

206 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha206

Predefined Classes

Unmoved
Unmoved

Class
Unmoved: mixin interface = ();

An object that can’t be moved from place to place. If owned by an agent or its
clone, an unmoved object is destroyed when the agent or clone moves.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 207

The Telescript Language Reference

Verified
Verified

Class
Verified: mixin interface =

(
public

see verify
);

An object that can become internally inconsistent in ways that depend upon
the object’s other member classes.

Operations
verify: abstract op () Boolean;

Returns true if the responder is consistent.

208 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha208

Predefined Classes

Way
Object
• Way

Class
Way: interface =

(
public

see authenticator, entity, initialize, means
);

An object that identifies and provides access to an entity, the way’s subject.
The subject may be, but needn’t be an object itself.

Constructor
initialize: op (

entity: Telename|Nil;
means: Means|Nil;
authenticator: Authenticator|Nil);

Sets the responder’s attributes according to the following table.

Attribute Argument Default
entity Yes nil
means Yes nil
authenticator Yes nil

Attributes
authenticator: Authenticator|Nil;

How to authenticate oneself to the responder’s subject. If no requirement is
imposed, nil.

entity: Telename|Nil;

A telename of the responder’s subject. If no requirement is imposed, nil.

means: Means|Nil;

How to reach the responder’s subject. If no requirement is imposed, nil.

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 209

The Telescript Language Reference

Appendix: Safety Limitations
This appendix lists the known safety limitations of this version of the
language and its predefined classes.

Masquerade
• This vresion doesn’t authenticate a class’s name, authenticate, or

identify a class’s author. By including in its publicPackages attribute a
class falsified in either respect, a place can alter the behavior of any
occupants, of the place and its subplaces, that employ that class.

• The current object can exercise the privileges the language grants to
either the current sponsor or the current owner. In general, the current
object cannot request a feature of another object without allowing the
latter, while the current object, to exercise those same privileges.

Leakage or loss of data
• The encode operation exposes the responder’s properties to examination

by including representations of them in the octet string it returns.

• One object cannot request an operation of another without giving the
latter access to the information represented by the global variables. Such
access allows the operation to have possibly unwanted side effects.

• By exercising its ownership privileges (see “Object ownership”), a process
can modify objects it owns—and objects that other processes own that
refer to those objects—in ways that adversely affect other processes.

Note. One can program processes to avoid or cope with the conditions above.

Denial of service
• A ticket’s destinationPermit attribute is a request not a demand.

Any place that satisfies an agent’s ticket can let the agent enter without
granting the capabilities the ticket requests (see the isConstrained
attribute of a ticket stub). The destination region can do the same. The
place or region can reduce the agent’s capabilities thereafter. This puts
the agent at risk, while in that place or region, of exhausting its permit.

• A region (rather than the language) assigns particular numbers of
teleclicks to the expenditure of particular resources in particular
amounts. A region’s assignment of unexpectedly large numbers puts an
agent at risk, while in that region, of exhausting its permit.

• A ticket cannot express, except by means of its destinationAddress
attribute, an agent’s possible unwillingness to leave the current region.

• One agent can force another to expend resources (however minimal) by
trying to meet with it, thereby making it perform the meeting operation.
In a similar way, an agent can compel a place to expend resources by

210 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha210

Appendix

trying to enter it, thereby making it perform the entering operation. In
this way the agent or place is put at risk of exhausting its permit.

• A subclass of Agent or Place can control the native permit and the
requested local permit of a newly constructed agent or place. Even if the
subclass’s author represents that certain arguments of the constructor
are used for those purposes, the subclass’s method for the constructor is
free to disregard those arguments when it escalates the constructor.

• A subclass of Meeting Place, which can define its own method for the
(unsealed) meet operation, need not arrange meetings as the language
describes. For example, it need not request the meeting operation of a
petitionee or update the petitioner’s or petitionee’s contacts attribute.

• An agent engaged in a meeting can exit the place it occupies without
ending the meeting. In this situation, the engine does not signal a part
event. Hence the agent’s acquaintances are not notified of its departure.

• The current object can signal a process event (and thus an exit event or a
part event). Although the defined semantics of such events imply that
only the engine can signal them, there is no such restriction.

Other limitations
• A place’s method for the entering operation controls entry to that place

but does not control entry to its subplaces. Each subplace’s method for
the entering operation independently controls entry to that subplace.

• Neither an agent constructed by an agent that is a possible duplicate nor
a clone of an agent that is a possible duplicate is itself marked as a
possible duplicate (see the isPossibleDuplicate attribute).

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 211

Index

Index
This index encompasses the terms and identifiers that the manual defines.
In general, only the defining occurrence of each term or identifier is indexed.

A byProtectedRef 12
byRef 12abstract 20
byUnprotectedRef 12abstract program 57
Cacquainted 71

activations 72 calendar time 87actual arguments 8 CalendarTime 99actual class 47 canCharge 167actual destination 76 canCreate 167actual parameters 19 canDeny 167add 116, 136 canGo 167address 175 canGrant 167AddressInvalid 183 canonical order 22adjust 203 canRestart 167Advertised places 65 canSend 168after 157 cascade 28age 166, 170 Cased 102agent 67, 93 catch 8agentClass 172 catchphrase 43agentName 172 ceiling 148agents 1 Character 103allowance 79 character telescript 62alphabetic characters 59 charge 171anchor 20 charges 167, 170and 98 class 19, 105, 151append 136 class family 19ArgumentInvalid 125 class feature 19ArgumentMissing 125 class graph 22arguments 8 class method 19asBitString 156 class search algorithm 13asCalendarTime 204 class specifier 12asCharacter 148 ClassAbstract 133ascii characters 60 classDigest 108asIdentifier 197 ClassException 107asInteger 104, 148, 154, 156, 197 ClassName 108asList 111 ClassUnavailable 125asOctet 148 clear 110asOctetString 97, 148, 197 clearEvents 122asReal 149, 197 clone 69asserted class 47 closure 14assigned teleaddress 65 Collection 109assigned telename 73 CollectionException 112assignments 170 comment 58asString 129, 149, 156 compare 113, 120, 191asTime 101 Compared 113attribute 10 compatible 12AttributeReadOnly 125 compatibles 159authenticator 69, 95, 210 concrete 20authenticity 167 condition 77, 189authority 1, 64, 73, 198, 199 conditional use 77
B conditions 190

ConditionUnavailable 183base class 12
ConditionUndefined 183basic instance 23
connection identifier 70before 157
connectionID 127binary telescript 62
constraint 11Bit 96
constructed 23BitString 97
constructor 23block 9
contacts 180Boolean 98
control characters 60bottom 194
controlled block 41brand 72
ConversionUnavailable 133break 57
copy 15, 152byCopy 12
copy-equal 15byOwner 12

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 1

The Telescript Language Reference

current 132 executes 43
current class 25 ExecutionException 125
current method 25 exhausts 82
current object 25 existing connection means 69
current operation 25 ExistingConnectionMeans 127
current owner 25 ExitEvent 128
current permit 82 exiting 66
current process 25 expires 67, 70
current sponsor 25 explicitly 9
current stack 25 expression 28

D extent 167

Fday 99
dayOfWeek 100 fails 8, 9
dayOfYear 100 false 98
DeathEvent 114 features 19
decimal digit characters 60 FeatureUnavailable 125
decode 155 find 117, 138, 161, 164
decodes 4 findClass 161
decreased 81 findPackage 161
default actual parameters 19 fixed in number 8
default parameters 19 flavor 20
defines 19, 20 floor 148
derived class 19 formal argument 36
desiredPriority 170 formal parameters 19
desiredWait 201 freeze 17, 162
destination 67 GdestinationAddress 201

get 10, 11, 117, 138, 161destinationClass 201
getEvent 123destinationName 201
getPackage 161destinationPermit 201
gets 10DestinationUnavailable 205
getter 10DestinationUnknown 205
global variable 29destroy 16
go 93Dictionary 115
Hdifference 147, 192

disable 76 handles 43
disableEvents 122 host 73
divide 147 hour 100
DivisionByZero 178

Idrop 116, 136
dst 87, 100, 119 identifier 5, 129
duplicate 67 identifiers 28

E identity 199
immediate implementation subclass 20

effective package 74 immediate implementation superclass 20
electronic marketplace 1 immediate interface subclass 20
empty 109 immediate interface superclass 20
enableEvents 122 immediate subplace 64
enables 76 immediate superplace 64
encode 153 implementation 9, 11, 19
encodes 4 implementation member 20
EncodingInvalid 133 implementation member classes 20
EncodingUnavailable 133 implicitly 9
engine 64 in force 32, 33
engine place 64 include 110
EnginePlace 118 increased 81
entering 65, 176 inherited implementations 20
entity 210 inherited interfaces 19
Equal 120, 157 inherits 19, 20
escalated 23 initialize 95, 97, 99, 105, 108, 109, 114, 115,

119, 121, 127, 128, 145, 150, 155, 158, 160,
163, 164, 166, 169, 172, 175, 177, 180, 188,
189, 196, 198, 199, 200, 202, 205, 210

EscalationInvalid 125
escape sequence 58
evaluated 28
event 75, 121 instance feature 19
event selector 75 instance method 19
EventProcess 122 instance property 19
examine 14, 110 instances 19
exception 8, 114, 124 Integer 130
exclude 110 intended destinations 76
exclusive use 77 interface 8, 10, 19
executed 9, 28, 57 interface member 20

2 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha2

Index

interface member classes 20 minimum 157
InternalException 126 minute 100
intersection 81, 168, 193 MiscellaneousException 144
interval 203 mix-in 20
isAlphabetic 103 modify 14
isASCII 103 module 30
isConstrained 202 modulus 130
isDecimalDigit 103 month 100
isDone 132 multiply 147
isEqual 152 NisFrozen 150

name 105, 145isInstance 151
Named 145isInstanceByName 151
native implementation 20isLocked 151
native interface 19isLower 102
native permit 79isMember 151
nativePermit 171isMemberByName 152
negate 148isNilOK 12
new 106isolate 17, 153
next 132isOwned 151
Nil 146isPossibleDuplicate 180
noncharacters 60isProtected 151
nonspacing mark characters 60isPunctuation 103
normal priority 73isReserved 188
normalize 100isSame 152
normalized 88isSpace 104
not 98isSubclass 105
notes 201, 202isSubclassByName 105
null 28isSubclassOK 12
Number 147isUpper 102
Oitems 109, 132

iterator 110, 132 object 8, 150
K object program 62

ObjectFrozen 133KernelException 133
ObjectUninitialized 133KeyInvalid 112
ObjectUnowned 134keys 115
OccupancyDenied 206

L occupied 65
language 3 occupy 64
language manual 6 Octet 154
length 109 OctetString 155
lightweight primitive 12 offers 74
List 135 one 96
live 181 operation 8
local permit 80 or 98
local variables 10 order 157
localize 203 Ordered 157
localPermit 170 origin 67
location 198 out method 9
lock 17, 152 owned 16
lose contact 77 owner 151
lowercase characters 60 P
M package 74, 158
magnitude 148 PackageProcess 160
makeLower 102 PackageUnavailable 183
makeUpper 102 parameters 19
MarkMissing 133 part 70, 143
match 109, 113, 115, 135, 158, 192, 194 partAll 143
matches 83 PartEvent 163
maximum 157 passage 12
maximumWait 173, 201 pattern 83, 164
means 69, 139, 210 PatternInvalid 144
meet 2, 70, 142 peers 73
meeting 70, 140 performed 9
MeetingAgent 140 permanent offset 87
MeetingDenied 141 permanent permits 79
MeetingDuplicated 141 permit 78, 166, 170
MeetingException 141 PermitExhausted 126
MeetingPlace 142 PermitProcess 169
metacharacters 83 permits 1
method 9 PermitViolated 183

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 3

The Telescript Language Reference

petition 3, 70, 172 responder 8, 10, 28
petitionee 70 ResponderMissing 126
petitioner 70 ResponderNil 126
PetitionExpired 141 result 8, 28
place 64, 174 ResultInvalid 126
place hierarchy 64 ResultMissing 126
PlaceNotCurrent 183 return 8
places 1 roll 195
pop 194 round 148
PositionInvalid 112 Routing advice 65
positions 135 routingAdvice 198
predefined class 19 Spredefined method 9

Same 191Primitive 177
satisfied 68, 70PrimitiveException 178
satisfies 83priority 73, 167, 170
satisfy 12private operation 8
sealed 20private use characters 60
seasonal offset 87privately 74
second 100privatePackages 160
securityRegime 95process 72, 179
send 94processes 72
sends 76ProcessEvent 182
set 10, 11, 116, 137, 192ProcessException 183
sets 10ProcessNotControlled 183
setter 10ProcessNotCurrent 184
shall 27produces 132
shallowCopy 110ProgrammingException 185
shared use 77propagates 8
signal 75properties 11
signalEvent 123PropertyUndefined 126
signature 34, 35protect 152
size 16, 151Protected 186
source 76, 121protected object 15
source program 57protected reference 14
space characters 60public operation 8
special characters 60publicly 74
specifies 19, 20publicPackages 160
splice 137punctuation characters 60
split 165push 194
sponsored operation 8pushItems 194
Stack 194

Q StackDepleted 112
quotient 131 statement 28

R String 196
subject 78, 83, 108, 166, 210

read only 10 sublist 135
Real 187 subplaces 64
receives 76 substitute 165
record 66, 71, 128, 163 substring 83, 197
reference 14 subtype 12
ReferenceProtected 126 succeeds 8, 9
references 3 sum 147
ReferenceVoid 126 SuperclassesInvalid 107
referent 14 superplace 64
region 64 supertype 12
regional permit 80 swap 195
regionalData 181

TregionalPermit 171
rekey 116 teleaddress 1, 65, 198
reposition 136 teleclicks 79
request 8, 10 telename 1, 73, 199
requester 8, 10 Telescript 91
reservable means 69 Telescript engine 3
ReservableMeans 188 telescript escape 56
reservation 69 Telescript language 2
reservation interval 69 Telescript model 1
ReservationUnavailable 206 telesphere 4, 64
reserve 188 temporary permit 80
reserved 69 terminates 73
reserved word 59 text 29, 83
resource 77, 189 thaw 18, 162

4 General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha4

Index

this version 4, 10, 11, 12, 21, 22, 29, 30, 32, 33,
34, 36, 53, 211

utc 87

Vthrows 8
value 9, 28, 43, 57ticket 2, 67, 200
values 115ticket stub 68
variable declaration 9TicketExpired 206
variable declaration segment 9TicketStub 202, 205
VariableUndefined 126time 121, 203
varying in number 8top 194
Verified 209transpose 117, 137
verify 209trip 67
violates 82TripException 205
virtual places 64true 98
visited 1type 12
voided reference 14

U
Wunconditional use 77
wait 181Uncopied 207
way 69, 210Unicode specification 6
wayBack 202uniformly owned 17
wayOut 201union 193
WayUnavailable 206unlockedCopy 152
who 181Unmoved 208
Yunordered 157

unprotected reference 14 year 100
unsponsored operation 8

Zuppercase characters 60
user-defined class 19 zero 96, 154
user-defined method 9 zone 100, 119
uses 77

General Magic, Inc. Telescript Language Reference. TDE 1_0 Alpha 5

