RCP-129

GE-PAC 30
CONTROL COMPUTER

PROGRAMMING
~ MANUAL

GENERAL @ ELECTRIC

*Registered Trademark of General Electric Company

GE 29-013R03

PCP-129 B
8/70 (300)

GE-PAC 30

CONTROL COMPUTER

PROGRAMMING
MANUAL

General Electric reserves the right
to make changes in the equipment or
software, and its characteristics or
functions, at any time without notice.

GENERAL @D ELECTRIC

REVISION RECORD

PUBLICATION: PCP-129B
GE-PAC 30 PROGRAMMING MANUAL

REVISION OR PAGE NO.

DATE

Under INTRODUCTION Tab
All Pages

Under DEVICE DESCRIPTION Tab
Selector Channel Programming Manual Section
Page 5
Eliminate Page 6
Eliminate Appendix 1

Under LOADER Tab
All Sections and Appendices

Under TEST PROGRAMS Tag

GE-PAC Model 30-1 Test Program Description and
Operating Instructions

Page 1
Page 2

Operating Instructions For the ASR 33 and ASR 35
Teletypewriter Test Program

Page 1
SECTIONS ADDED:

Operating Instructions For the Teletypewriter /Terminate

Test Programs

Appendix 1

Operating Instruction for the High Speed Paper Tape

Reader Test Program

Appendix 1

High Speed Paper Tape Punch Test Prograrrf
Appendix 1

Card Reader Test
Appendix 1

8 /170

CONTENTS

INTRODUCTION
DEVICE DESCRIPTIONS
LOADERS

ASSEMBLER

FORTRAN

EDITOR

DEBUG

MATH LIBRARY

TEST PROGRAMS

TABLE OF CONTENTS

INTRODUCTION

HEXADECIMAL NOTATION
GLOSSARY OF TERMS

THE 50 SEQUENCE, 68 SEQUENCE
PROGRAM PREPARATION

PROGRAMMING CONVENTIONS

Page No.

29-013

GENERAL DESCRIPTION

1. INTRODUCTION

This manual describes standard programs avail-
able from GE-PAC* 30, and how to use these pro-
grams, The manual is intended as a reference for
programmers who are familiar with GE-PAC 30
Digital System, and as an introduction for pro-
grammears who have not used GE-PAC 30 Systems
previously. Sections which describe system
operation procedures, a typical programming
sequence, and listings of which programs may be
used with which equipment complement are pro-
vided before the actual program descriptions.
Note that programs described in this manual are
normally supplied with the manual in the form of
punched paper tapes.

2., HEXADECIMAL NOTATION

GE-PAC 30 documentation uses hexadecimal nota-
tion extensively. The letter X denotes that the
following alphanumeric characters, enclosed in
single quote marks, form a hexadecimal number.
Thus, X'50' indicates 5015. Table 1 lists the
decimal and binary equivalents for each valid
hexadecimal character.

In some contexts, hexadecimal notation is used
exclusively. For example, CLUB, the interactive
debug program, uses hexadecimal numbers only.

Also, a program listing as generated by the
assembler, describes the binary form of the pro-
gram in hexadecimal. In these cases, the X'---!
notation is not used, and all numbers are assumed
to be hexadecimal. In general, memory locations
and program starting addresses are also defined in
hexadecimal,

3. GLOSSARY OF TERMS

This section explains some terms and concepts
used in GE-PAC 30 programs and program docu-
mentation. The terms are arranged in alphabetical
order for easy reference.

50 Sequence The 50 Sequence resides in core
memory from X'50' to X'7F*' and
contains an 8-bit loader and a Device
Definition Table. These 24 half-
words must be manually entered into
memory. This area of core memory
should be reserved for the 50 Se-
quence; once keyed into memory,
this sequence normally remains there
available for use.

b

The 68 Sequence (o GE-PAC 30-2
only) is a short form of the 50 Se-
quence. It makes use of the 30-2

68 Sequence

TABLE 1. HEXADECIMAL NOTATION

: Hex Decimal Binary

Character Equivalent Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

" Registered Trademark of General Electric Company

absolute

assembler

bias

Autoload instruction.

Programs designed to occupy a fixed
set of locations in the core memory
are called absolute programs. For
example, an absolute program de-
signed for bytes 80-99 in memory
will not execute correctly if moved
(relocated) to bytes 180-199 in
memory.

The assembler program translates
the source form of a program into a
form which can be conveniently loaded
into the system by a loader program.
GE-PAC 30 provides an assembler
program which converts assembly =
language tapes into binary object
tapes. See object and source.

The base value used by the REL or
General Loader to load a relocatable
program is called the bias. The bias
value is added to all relocatable
quantities during the loading process.
See General Loader.

bootstrap tapes

editor

Fast Format

Certain program tapes are provided
with the appropriate loaders on the
tape itself. These tapes are loaded
into memory using the 50 Sequence
Loader or 68 Sequence Loader. All
bootstrap tapes have a part number
with an M10 designation. See 50
Sequence, 68 Sequence and Fast
Format,

An editor is a program which mani-
pulates symbolic or textual informa-
tion. It facilitates the creation, ex~
amination, and modification of
character oriented data. Such a pro-
gram is useful for the creation and
editing of source tapes. See source.

Bootstrap tapes for large absolute
programs, such as FORTRAN or the
Assembler, employ a Fast Format
for data organization., This format
is essentially an 8-bit format which
minimizes loading time on slow de-
vices. Fixed length records are
used, however, to facilitate check-
sum procedures. A transfer address
is specified in the first record of a
Fast Format tape. See bootstrap.

firmware

floating “point

FORTRAN

General Loader

listing

loader

Micro-programs which are
written for a Read-Only-Memory
(ROM) are called firmware, as
opposed to conventional machine
language programs which are
called software. See micro-

program.

A method of representing num-
bers with a mantissa or fraction
and an exponent or characteris-
tic. For example, in the number
.5 X 103 the .5 is the mantissa
and the 3 is the exponent of the
base 10, GE-PAC 30 systems
represent floating -point numbers
in a floating hexadecimal format
using a 24 bit fraction and a 7
bit exponent of the base 16.

The FORTRAN language permits
the statement of arithmetic prob-
lems in an algebraic-type format.
The GE-PAC 30 FORTRAN sys-
tem is an interpreter which per-
mits problems to be created and
executed in an inter-active
manner.

The General Loader in the lar-
gest and most comprehensive of
the GE-PAC 30.loaders. This
loader handles absolute or relo-
catable programs with external
program linkages and forward
reference definitions, which occur
on object tapes from one-pass
assemblies. The loader bias and
error messages are printed on the
teletypewriter for operator con-
venience: See one-pass and bias.

The assembler inputs a source
tape and generates an object tape
and a listing., The object tape
contains the binary information
to be loaded into memory. The
listing is a printed record which
shows each source statement,
and the binary information gener-
ated for that statement. The
binary information is represented
in hexadecimal form.

A loader is a type of program
which, when executed by the
machine, reads information from

a peripheral device and loads the
core memory with instructions and
data.

micro-programs
GE -PAC 30 machines involve a Read-
Only-Memory (ROM) used to control
basic Processor operations. The
sequence of commands which reside
in the ROM is called a micro-program.
See firmware.
object Object tapes are binary tapes pro-
duced by the assembler. For each
source tape assembled, there is an
object tape. A loader reads the
object tapes and places the corres-
ponding instructions and data in core
memory. See assembler, loader,
and source.

one-pass The assembler takes one, two, or
three passes across the source tape

to complete an assembly., The num-
ber of passes is controlled by an option
control statement in the source pro-
gram. When so directed, the assem-
bler will make an assembly - complete
with listing and object tape - in one
pass. In this case, the resulting
object tape must be loaded by the
General Loader. See General Loader.

part number Each program is identified by a part
number which defines the type of
program, the revision level, and the
tape format. For example, the part
number for the assembler is
03-001RO1M10, In this number, the
03-001 identifies the assembler, the
RO1 indicates the revision level, and
the M10 indicates that the program
is available in bootstrap form. In
general, an M08 designation means
a relocatable program in standard
binary object format., An M09 des-
ignation means an absolute program
in standard binary object format. The
MO8 and M09 tapes require the REL
or General Loader to be loaded into
memory. Any bootstrap tape with
designation M10 is loaded using the
8-bit loader at 50 or 68. Tapes with
other designations may require spec-
ial loading procedures.

program A program is a set of machine instruc-

tions which, when executed by the

machine, nerforms some useful

function.

relocatable Programs designed to be loaded
anywhere in core memory are
called relocatable. For exam-
ple, a program which occupies

26 bytes could be loaded into
X'80'-X'99" or X'180' - X'199'
and executed from either location.

Relocating Loader
The REL Loader is appropriate
for loading absolute or reloca-
table binary object tapes on
which all data is defined. This
loader is not appropriate for
linking to external programs or
for loading object tapes from
one-pass assemblies. See re-
locatable and one-pass.

source A source is a mnemonic or easy-
to-read representation of a pro-
gram. Assembly language or
FORTRAN can be used to gener-
ate a source form of a program.
The source is often prepared as

a source paper tape, or source
deck of punched cards. See
object.

4, THE 50 AND 68 SEQUENCES

The 50 Sequence in the name of the basic 8-bit
loader and Device Definition Table which resides
in memory from X'50' to X'7F'., The 50 Sequence
can be used on any GE-PAC 30 Processor. The
68 Sequence performs the same function as the

50 Sequence, but uses the 30-2 Autoload instruc-
tion, thus requiring less care space (X'68' to
X17F1). It has one other advantage: The 50 Se-
quence requires tapes to be placed in the reader
exactly on the first character. The 68 Sequence
bypasses leading blank tape, so does not have this
requirement. One of these Sequences must be
manually entered into memory when a Processor
is first turned on. The Sequences serve two basic
functions:

1. The 8-bit loader is used to pull bootstrap,
or self-loading, tapes into memory.

2. The Device Definition Table is used to
provide a limited degree of device inde-
pendence by specifying which devices are
to be used by standard programs.

Listings of the two sequences are shown in Table
2. Note that the 8-bit loader portion is standard
for all memory sizes. The Device Table, from
X1178' to X'7F' is changed according to the device
configuration at hand. The sequences shown in

TABLE 2. 50, 68 SEQUENCE

P

.20 SEQUENCE LOADER e
FOR ALL GE=PAC 30 PROCESSURS

* kb ok

050 Cs20 . LOAD LHI 2 A'OO’ . LOADS TAPE FROM X2807 .

AJ

0080
0054 Ce30. ... JHI 3,0 THRU X’CF’ . .
0CU1
Cobu CB40 . LHI 4.K’CF’
D0Cr
005C D3A0 .. LB
007¢
CO&0 DZIAU
075
0004 YOAE SzNsz. S
0066 ugtE
COoow 4230
udd4
QuulC JoA2 . RD S 10,002)
C000
007C Cleau
U064
0074 4300
00390 SRS
Co7s G294 slwNdv DC R202947 CEVICE DEFINITIONS A
COTA 0293 20UIDVY DC K202987 FOR TTY '
Q0TC 0294 SINIV. DC . K220 4% e
CO7= U2¥s - SuUIDV uC X?752937
Tk

2y
O
c
p—q
<:

- NOTE THAT LOCATION X’/5A7

O

W10,5153v+1.”MwmwguSIuaEWCHANGES;EQR ALL

40404 414 . TEST PROGRAM._TAPES,
14,14
o 3,8ENSsE

Y
=i
O W

L2,8ENSE

oY,
e
Tf"‘
m

AB07

s

A
i

63 SEQUENCE LUADER
I‘UI“E 30"'2 k'?()bf:”"’).?% \)‘\YY

RS

Juod uRu X’68’ ST T

0060 o330 : LLHI 3 , LOADS TAPE £dQW o X28C2. THxJ .
0a0 1 : ‘

006C D3AU Lo 10,3I8DV... .. X?2Ck7, LOCATION X2727. . .
0073

Q0700200 o AL 0,X2Ce2 AUST 3E CHANGED FUR.ALL.

~ 0OCF
0074 4300 o X’807 . i14 TEST PRNORAX TAPES
3980

*
L‘ 8]
1
<<
—
(@)
f‘l
o
i1
T
bt

2
-y
o
—
s
O]
o
>y

Il

SAHE AS £(R 30 3EQUzZNCE.

bk

HIGH S3SPETU PAPER TAPE PUNCH= “W2A (odulDV)'
LCARD RoAlcR= 020 (SINDVY
ANH=RE nN= DEVIZz HNUMBER

T

AlGHd SPELD PAPER TARE RZADER= MY (SINDVGSINIVY o

lable 2 are appropriate for teletypewriter input/
output. i

Note that these sequences are also used to load
device test programs. When this happens, the
following locations must be changed as indicated
in the test program descriptions:

X'5A
Xr72r

50 Sequence
68 Sequence

The 8-bit loader stores 8-bit data bytes into mem-
ory from X'80' to X'CF' and transfers to X'80',
This loader, and all GE-PAC 30 loaders, use the
binary input device as defined in X'78'. When
using the 8-bit loader at X'50' | three special
steps are required:

1., The first data character on the tape must
be placed over the read fingers or the
photo diodes of the tape reader. Fail-
ure to observe this first-character
restriction will cause the wrong data to
be stored into memory.

2. When loading from a teletypewriter the
tape motion must be started manually.
After the loader is started at X'50' | with
an ASR-33 toggle the reader switch to
START. With an ASR-35, put the reader
switch in RUN with the Teletypewriter
Mode Switch in the KT position.

When using the 8-bit loader at X'68!
2 is required.

, only step

The device Definition Table contains four half-

words. Each halfword specifies one device as
follows:
0 718 15
Device No., Output Cmnd.

The left byte contains the device number. The right
byte contains the output command required to
start that device. The four half-words are used as

follows:

X781 BINDV Binary Input Used by
loaders to se-
lect the load
device

X'7A* BOUTDV Binary Output Used by assem-
bler to select the
punch device.

XmCr SINDV Source Inputs Used by assem-

bler to select
the source in-
put device.

X'7TE' [LISTDV Symbolic

Outputs

Used by assem-
bler to select
the list device.

During loading operations, therefore, only BINDV
at X'78' is used. During assembly operations,
the other three halfwords are used. As other
programs are created or revised by GE-PAC 30,
they also will reference the appropriate halfword
in the Device Table for device selection.

The range of devices that can be used may vary
with different programs. One rule applies to all
programs: device number 2 implies a teletype-
writer. Special steps are taken, whenever device
number 2 is specified, to handle the idiosyncrasies
of a teletypewriter, Device Table entries for other
devices are shown in Table 3. The device numbers
shown are the ones normally assigned to these
devices.

5. PROGRAM PREPARATION

The steps required to prepare a program are
summarized in this Section. The first step in
implementing a program is to write the program
using assembly language statements as described
in the Assembler section of this manual. Given

a symbolic description of a program, the prepara-
tion process involves 10 steps as follows:

1. Enter the 50 or 68 Sequence into memory
if necessary.

2. Load the REL Loader or General Loader.
3. Load the TIDE (Editor) program,

4. TUse the TIDE to prepare program source
tapes.

5. Load the appropriate Assembler program.
6. Assemble the source tapes.

7. Re-load the REL or General Loader.

8. Load the object tapes.

9. Load Hex Debug (CLUB).

10. Test the object program and punch new
tape if desired.

These 10 steps are summarized in Figure 2.
These steps are discussed in the following para-
graphs.

Step Comments
1 If the 50 Sequence is not already in core,
it must be manually entered as follows:

Program Function Table Location Device Table Entry

Loaders Loading BINDV at X'78¢ Teletypewriter 0294

High Speed Tape 0399
Reader
Assembler Punching BOUTDV at X'7A! Teletypewriter 0298
Object H High Speed Tape 139A
Punch
Assembler Reading SINDV at X'7C! Teletypewriter 0294
Source High Speed Tape 0399
Reader
Card Reader 0420
Assembler Listing LISTDV at X'TE" Teletypewriter 0298
High Speed Tape 139A
Punch
TABLE 3. DEVICE DEFINITION TABLE ENTRIES
Comments Step Comments

A, Set the Data/Address switches to D. Set the MODE CONTROL to RUN,

X150' , set the MODE CONTROL to and depress EXECUTE.
ADRS, and depress EXECUTE.
E. If a teletypewriter is in use, start

B. Set the MODE CONTROL to MEMW. the tape moving by toggling the

reader switch to Start or Run.

C. Set the Data/Address switches to .
X'C820' , and depress EXECUTE. ¥, If errors are detected during the
This enters the first halfword into load, the tape will stop. In this
memory. case, reposition the tape to the pre-

° ~ vious record gap and depress

D. Set the Data/Address switches to EXECUTE. Refer to the Loader
X10080' , and depress EXECUTE, - Descriptions for details on error
This enters the second halfword into recovery procedures.
memory. .

G. The load is complete when the tape

E. Continue this process until all 24 has been read to the end, and the
halfwords of the 50 Sequence, as Processor halts with the EXECUTE
described in Section 5, have been light on.
entered into memory. 3 Now that the loader is in memory, the

In order to get the TIDE (Editor) Program
into memory, the REL Loader, Part
Number 06-024M10, is required. The
loader is entered into memory as follows:

A,

B. Set the Data/Address switches to
X150 or X'68', set the MODE CON-
TROL to ADRS, and depress EXECUTE.
C. Depress INITIALIZE,

Put the proper loader tape in the tape
reader, observing the first character
allignment,

TIDE program can be loaded. This is
done as follows:

Put the TIDE tape in the tape reader

E

A,
placing the read fingers under any
portion of the blank loader.

B. Depress EXECUTE. This should
start the tape moving.

C.

If errors are detected during the
load, the tape will stop. In this
case, reposition the tape to the
previous record gap and depress
EXECUTE.

197}
b

WRITE PROGRAM
I

1 MANUALLY ENTER 8 BIT LOADER
I
2 LOAD REL LOADER BOOT STRAP

il
3 LOAD RELOCATABLE TIDE

|t

rEP]

e |
TYPE PROGRAM IN
ASSEMBLYTLANGUAGE

| PUNCH SOURCE TAPE |

ALL SOURCE
TAPES PUNCHED

5 LOAD ASSEMBLER BOOT
STRAP TAPE

jj >
|

NO

6 ASSEMBLE SOURCE TAPE AND
PUNCH OBJECT TAPE

ALL OBJECT
TAPES PUNCHED

7 LOAD APPROPRIATE LOADER
BOOT STRAP

LOAD PROGRAM OBJECT TAPE

ALL OBJECT
TAPES LOADED

LOAD HEX DEBUG (CLUB) |

la

([TEST AND CORRECT PROGRAM
WITH CLUB

10 PROGRAM

O.K.

PUNCH NEW ABSOLUTE OBJECT
TAPE WITH CLUB

. ®

Fig. 2 Program Preparation Sequence

Comments

D. The load is complete when the tape
has been read to the end, and the
Processor halts with the EXECUTE
light illuminated.

Now that TIDE is in memory, the source
tapes can be prepared. For details on

the use of TIDE refer to the Editor section
of this manual.

Given the source tapes, as prepared by
TIDE, the next step is to assemble the
tapes. For this step, the TAPE Assem-
bler, Part Number 03-001M10, must be
loaded into memory as follows:

A. Put the assembler tape into the tape
reader, observing the first charac-
ter allignment.

B. Set the Data/Address switches to
X'50' or X'68'. Set the MODE CON-
TROL to ADRS, and depress EXE-
CUTE.

C. Depress INITIALIZE,

D. Set the MODE CONTROL to RUN,
and depress EXECUTE.

E. If ateletypewriter is in use, man-
ually start the tape moving.

F. If errors are detected, the tape will
stop. In this case, reposition the
tape to the previous record gap and
depress EXECUTE,

G. The load in complete when the tape
has been read to the end, and the
Processor halts with the EXECUTE
light illuminated.

The use of the Assembler is described in

_ the Assembler Section of this manual .

For each source tape assembled, the
Assembler generates an object tape.
These object tapes must now be loaded
into memory. The object tapes may be
absolute or relocatable, depending on

how the program was written. If the
programs involve ENTRY's or EXTRN's,
the General Loader, Part Number
06-025M10, is required. Object tapes
from l-pass assemblies also require the
General Loader. If the object tapes are
relocatable or absolute either the REL
Loader or the General Loader can be used.

Step

10

Comments

The version of Hex Debug to be used also
affects the choice of loader. See Step 9.
The proper loader should be entered into
memory, using the same procedure as
described under Step 2.

With the loader in memory, the object
tapes can be loaded. The loading process
is described in detail in the Loader Des-
criptions section of this manual.

If it is necessary to test or debug the
programs just loaded, the Hex Debug
Program (CLUB) may be useful. Three
versions of CLUB are available. They
are:

A. Relocatable with output, 03-002MO08.

B. Relocatable without output, 03-003MO08.

C. Relocatable with output and disassem-
bly, 03-MO8.

The output feature in CLUB enables a
portion of memory to be punched as an
absolute binary object tape. If it is not
necessary to punch a new tape, the CLUB
without output can be used since it requires
less memory space. Note that CLUB
loaded at X'80' occupies memory from
X180' to X'5B8' without output, from
X180' to X'7D2' with output, and from
X'80' to X'*A4E' with output and disas-
sembly. If other programs need memory
in this area, relocatable CLUB can be
loaded into some other area of core mem-
ory. The relocatable CLUB tapes re-
quire the REL or General Loader for
loading. The use of CLUB should be con-
sidered in Step 7 when selecting the load=
er to be used.

The use of CLUB is described in the De-
bug section of this manual.

6. PROGRAMMING CONVENTIONS

This Section summarizes some of the conventions
used in programs and documentation supplied by
GE-PAC 30.

Convention

hex notation

Comments

Hexadecimal notation is used
exentsively,” This notation is
explained in Section 3.

Convention_

ASCII codes

low core

tape formats

Comments

Standard programs supplied

by GE-PAC 30 represent
characters in ASCII code. This
character code is defined in the
GE -PAC 30 Reference Manual
(PCP-125A). The ASCII code
represents each character with
8-bits in which the high-order
bit is available for parity. The
parity bit may change according
to the input/output devices in
use. Internal to the Processor,
most programs mask the high
order bit to zero, and handle the
character in terms of the 7-bit
codes. The assembler generates
the 7-bit form of ASCII codes for
characters.

The general registers in a 30-01
Processor reside in core memory.
Refer to the GE-PAC 30 Refer-
ence Manual for details. GE-
PAC 30 programs, as a rule,
never refer to general registers
by their absolute address in core
memory. This rule is essential
for program capability between
the GE-PAC 30-01 and 30-02
Processors.

GE-PAC 30 programs are nor-
mally supplied as binary object
tapes in one of four formats.
These formats, and the corres-
ponding part number designa-
tions are:

MO8 - Relocatable
MO9 - Absolute
M10 - Bootstrap
M14 - 8-Bit Binary

The M08 and M09 tapes are
never generated from 1 - pass
assemblies, and require the
General Loader only when
ENTRY'S or EXTRN'S are in-
volved. The Math Library tapes
do require the General Loader
since they use ENTRY'S. Other
MO8 and M09 tapes are loadable
by the ABS or REL Loaders.
The M10 and M14 tapes are
loaded by the 8-bit loader at
X150,

Convention Comments

device number 2 Some GE-PAC 30 programs, such
as CLUB and the test programs
assume that device number 2 is
a teletypewriter. This device
is used for keyboard inputs and
message printouts. The ABS,
REL, and General Loader take

Convention

Comments

special steps when device num-
ber 2 is specified in the Binary
Device Definition at X'78' .
These special steps involve XON
and XOFF characters which
control tape motion.

GE-PAC 30-01

CORE MEMORY ALLOCATION FOR
GENERAL REGISTERS AND PROGRAM STATUS WORDS

Hexadecimal Memory Address

Register Assignment

General Registers

00-01 .« .o ccooeooaooomsoaoalhooso
02-03 2 c o » c e« o0 06202 coaooosoeoaca
04 -05 2 o o a s 0005 0e006cooosesacoe.s
06 =07 ¢ 6 o c o o o0 06060aooaaecosoaso
08~-09 o o o o o0 0aooocooooanaesoaooao
OA-0B: o o oo asvoo00eooosaeanoeooonoa
OC ~0D. oo o s 0o 006v500000oao06o0o0a
OE = O0F o o o o o ¢« o 0o 2 00008 0e00oaaoso0
10—11oooaonvnooopbnonobo.oo
12-13 o oo oo ov0o0poocooooocsosaoon
14 =15 o o o o0 000 s e0ceaooaoosoeso
I6 =17 o o o a6 o 60 06 00 0060000006000

].8"'19 ® @ ¢ 0 ®» 0 0 O ¢ ®& $ O O©0 O S O 0 0 0 ©6 O o

l.A_lBooooooeonobnno-.o-oo-»on

].C_].D-oovoon-ontoo!n.aoobono

].E"].Fooooooo'oonopnanopoqoo

Micro-Processor Registers

20 - 21 o » 0 0 @ ¢ 0 0 0o 0 0 O & 0 @ P © P O P O O Q
22 - 23 © e 06 0 © 0 @ 0 o 6 © © 0 o e 0 0 s 0 a5 0 o
24 - 25 ® @ p © © » © 0 0 © 0 O & © o © © & 9 © O O0 O

26_27ooonaoeoooonoooqaaobuoo

28_2Fnooonoq.noootonnoiaobo

Program Status Words

30-330.510..ooono.aoowunoooue

34"37«:0-09.«0«9:ooeooo‘o-o-

38-3Baooaooooooo--novov.owo
3C"3Fnco.-oo.oooonooo.eo--o

40-43ncnooooonnon-ovo-oo'oo
4:4_47ono'ooocuooo-noaooacno

48_4Bopo-nooooooo-ooooa;on-
4C-4Focaooq-oooo.oaocaaovek

50o’abnbao-o-Ooononnonoooao

10

EREE

R4

R6
R7

R10
Rll
R12
R13
Rl4
R15

Instruction Register

Instruction Address Register

Current PSW: Status and Condition Code
Current PSW: Instruction Address Counter
Reserved for Micro-Processor

Old PSW: Illegal Instruction Interrupt
New PSW: Illegal Instruction Interrupt

Old PSW: Machine Malfunction Interrupt
New PSW: Machine Malfunction Interrupt

Old PSW: External Device Interrupt
New PSW: External Device Interrupt

Old PSW: Divide Fault Interrupt
New PSW: Divide Fault Interrupt

First user available memory location

GE-PAC 30-02

CORE MEMORY ALLOCATION FOR REGISTERS
AND PROGRAM STATUS WORDS

Hexadecimal Memory Address Register Assignment

Floating-Point Registers

00~03 o ¢ c c s s oaoooeasccseacaeasoss RO
04 =07 . c o ¢ o c0s00acoeosssaonoeaessas R2
08=0B ¢ c o0 a5 500 e00se0000eas+00. R4
OC-0F c.c o ¢ « » s a6 a o s o osoosesssos RO
10-13 o ¢ oo coooooesooeasoosecss RS
14-17 ¢ ¢ oo oo oo cao0acoooooesososs RO
I8 =1B ¢ ¢ o c e v 000000 aaoeossasoseo R2
IC=1F o 6 c 569 obaoocsooocsssocosss R4

Micro-Processor Registers

2021l 4, o 6 ¢ a0 6 6 s a0 s 00 as 0 s s oo o HighSpeed Interrupt Pointer

22 =23 o . o s s e 0o a s 0 e a0 e a0 o0 e« Register Save Pointer

24 =25 o s o 6 s a6 o0 00 00 0 s aaesw s o Current PSW: Status and Condition Code
26 =27 4 o o 0 o0 005« 50 s 00000 a2s s« Current PSW: Location Counter

Program Status Words

28 =2B o o o o 5 s e 5 s 000 av oo anssss OldPSW Flp Divide Fault Interrupt
20=-2F ¢ c o s s s o 006005 eess o0 NewPSW Flp Divide Fault Interrupt

30 =33 4 oo s 6o essc0s00smeosen s OldPSW Illegal Instruction Interrupt
34 =37 o ¢ c o e v 0ee0c0oeaosoassase NewPSW Illegal Instruction Interrupt
38 =3B 4+ v e o2 :c0s00c0o6oseses e s OldPSW Machine Malfunction Interrupt
BC = 3F 4 o s c s s 06as060s0aaoosaoaosa NewPSW Machine Malfunction Interrupt
40 =43 ¢ o 4 e e o c o s o0 o as oo aen o s o OldPSW External Device Interrupt

44 =47 5 4 o o e o 600 s 0ceoeeaaoasaso s« NewPSW External Device Interrupt

48 4B . ¢ c o o s s o 005 000 e e ee e OldPSW Fix Divide Fault Interrupt
4C = 4F v ¢ ¢ e o 0 s a s o s c o0 6 s a » s v o s o« New PSW Fix Divide Fault Interrupt

50 » o a o e s e as s asesesoes s eo o FirstUser Available Memory Location

PSW STATUS FIELD ASSIGNMENTS

Bit Set Meanin
0 Wait State
1 External Device Interrupt
2 Machine Malfunction Interrupt
3 Fixed-Point Divide Fault Interrupt
4 Reserved
5 Floating-Point Divide Fault Interrupt
6 through 11 Unassigned

11

TABLE OF CONTENTS

DISPLAY PANEL PROGRAMMING MANUAL GE 29-010R01
1. INTRODUCTION
2. OPERATOR CONTROLS
3. DEVICE NUMBER
4. STATUS FORMAT
5. MODE COMMAND
6. DATA INPUT
7. DATA OUTPUT
8. INITIALIZATION

TELETYPEWRITER OPERATION GE 29-011RO01
AND PROGRAMMING MANUAL

1. DEVICE DESCRIPTION

2. POWER CONTROL

3. STATUS AND COMMANDS
4. DEVICE NUMBER

’ 5. INTERRUPTS

6. INITIALIZATION

7. ASR-35 FEATURES

8. PAPER TAPE READER

9. PAPER TAPE PUNCH

10. DATA FORMATS

APPENDIX 1 SAMPLE PROGRAM LISTINGS

APPENDIX 2 TELETYPEWRITER/ASCII/HEX CONVERSION TABLE

APPENDIX 3 35 ASR OPERATING MODES

HIGH SPEED PAPER TAPE READER/PUNCH
OPERATION AND PROGRAMMING MANUAL

1. INTRODUCTION
2. GENERAL DESCRIPTION
3. STATUS AND COMMAND
4., INTERRUPTS
5. INITIALIZATION
6. PUNCH POWER CONTROLS
7. MODE SWITCHING
8. DEVICE NUMBER
9. SAMPLE PROGRAMS
CARD READER OPERATION AND PROGRAMMING MANUAL
. GENERAL DESCRIPTION
2., OPERATOR CONTROLS
3. STATUS INDICATOR LIGHTS
4. STATUS AND COMMAND BYTES
5. DATA FORMAT
6. INTERRUPTS
7. INITIALIZATION
8. OPERATOR PROCEDURES
9. PROGRAMMING

APPENDIX 1 SAMPLE PROGRAM

ii

GE 29-016

GE 29-008R02

APPENDIX 2 ASCIHI TO CARD CODE CONVE RSION
HOLLERITH TO ASCII CONVERSION PROGRAM DESCRIPTION GE 07-019Al2
1. INTRODUCTION
2. PROGRAM TAPE
3. CALLING SEQUENCE
4. OPERATION
5. TIMING
SELECTOR CHANNEL PROGRAMMING MANUAL GE 29-036
1. INTRODUCTION |
2. PROGRAMMING CONSIDE RATIONS
3. SPECIFICS
4. DEVICE NUMBER
5. INITIALIZATION
6. SAMPLE PROGRAM

APPENDIX 1 SAMPLE PROGRAM

iii

GE 29-011R0O1

TELETYPEWRITER OPERATION AND PROGRAMMING MANUAL

1. DEVICE DESCRIPTION

Model Numbers -~ ASR-33 and ASR-35
Data Rate - 10 characters per sec.
Printer Width - 72 characters max.
Character Set - see Appendix 2

Paper Feed - pin feed

Note that this description applies to tele-
typewriter with Teletypewriter Controller,
Part Number 32-062. Figure 1 shows the
teletypewriter keyboard layout.

2. POWER CONTROL

A three position power switch is located to
the right and below the keyboard. When
rotated left to the position marked LINE,
power is applied to the teletypewriter and
the device is logically corrected to the Pro-
cessor. When rotated to the right to the
position marked LOCAL, the unit is power-
ed, but disconnected from the Processor.

3. STATUS AND COMMANDS

Table 1 illustrates the teletypewriter
status and command byte coding.

A Sense Status Instruction (SS or SSR) is
used to transfer the status byte from the
device controller to the Processor. The
least significant four bits (4 - 7) of the
status byte are copied into the condition
code during the Sense Status operation.
Branch instructions can test these four
bits directly.

Note that the status byte from teletype-
writer with the Controller, Part Number
32-004, involved a DRR bit in bit position
3. Programming appropriate to one tele-
typewriter controller may not be appropriate
to another. For example, during READ
operations, it is necessary to test the DRR
and BSY bits in one case, while the BSY bit
is sufficient in the other case. In general,
testing the status byte for all bits zero dur-
ing RE AD operations is compatible with all
teletypewriter controllers.

OOOOOOOOOOOO®
(WEOLWEEELLEOEO®@EE
LOBOOLOOEO®
LOOOOLOLOOO

Q SPACE BAR

)

Figure 1. Teletypewriter Keyboard Layout

GE 29-010R01

DISPLAY PANEL PROGRAMMING MANUAL

1. INTRODUCTION

This document pertains to the General Pur-
pose Display Panel and Display Panel Con-
troller, Part Number 32-061. The General
Purpose Display Panel facilitates console
operation and operator interaction with the
machine. The console operating procedures

are discussed in Chapter 3 of the GE-PAC 30

Systems Reference Manual, Publication
Number 29-004.

In addition to its role as a console control
panel, the General Purpose Display Panel
can be programmed like a typical peripheral
device. This discussion describes the pro-
gramming aspects of the device.

2. OPERATOR CONTROLS

The Display Panel includes six distinct ele-
ments:

1. Control Switches: POWER, INI-
TIALIZE, and EXECUTE,

2. MODE CONTROL rotary switch.

3. SPEED CONTROL rotary switch.
4. REGISTER DISPLAY rotary switch.
5. Dafa/Address switches.

6. Two 16-bit halfword display regis-
ters.

With normal input-output instructions, a
program can sense the state of the MODE
CONTROL rotary switch and the REGISTER
DISPLAY rotary switch, read the Data/Ad-
dress switches, and output data to the dis-
play registers.

3. DEVICE NUMBER

The Device Number of the Display Panel is
1. Unlike most peripheral device control-
lers, this Device Number is hard-wired and
cannot be changed.

4. STATUS FORMAT

The status of the Display Panel can be deter-
mined with an SS or SSR instruction. The
meaning of each bit in the 8-bit status byte
is shown in Figure 2.

5. MODE COMMAND

Within the Display Panel Interface, Part
Number 32-061, are two counters which
control the data transfer to and from the
Display Panel. The output counter, which
is 2 bits in length, determines which byte
of the Register Display is the destination
for data bytes transferred to the display.
The input counter, which is only 1 bit, con-
trols which half of the Data/Address switches
is used when data is read from the display.
The order of bytes transferred to or from
the display registers and switches is shown
in Figure 1. The appropriate counter is
incremented following each transfer to or
from the Display Panel.

There are two modes associated with the
Display Panel: the Normal Mode and the
Incremental Mode. In the Normal Mode,
the control counters in the interface are
cleared (set to zero) every time the Dis-
play Panel (Device Number 1) is addressed.
In this mode, only byte 0 of the registers
or switches is accessible by program since
each Write Data (WD or WDR) or Read

Data (RD or RDR) instruction addresses
the specified device every time the instruc-
tion is executed. The re-addressing of
Device Number 1 keeps the control counters
at zero in this mode.

Display

Display
2

7 8 9 110 1l 12 13 14 18

) (
J . BRI |

FIGURE 1.

In the Incremental Mode, the control counters
are cleared when the mode is selected, but
not cleared when the device is addressed.
This mode allows subsequent Read Data or
Write Data instructions to increment the
Control counters, and access subsequent
bytes of the registers or switches.

The Output Command (OC or OCR) instruc-
tion is used to control the mode. The
command byte is as follows:

Norm | Incr

ORDER OF BYTE TRANSFER

Select Normal Mode
Select Incremental Mode

Norm
Incr

The remaining bits of the command byte are
not used. The control counters are cleared
following a command to select the Incremen-
tal Mode.

6. DATA INPUT

One byte of the Data/Address switches, as
specified by the input control counter, is
read when an RD or RDR instruction is exe-
cuted for Device Number 1. A bit of the
data byte is a 1 if the corresponding switch
is depressed.

ol1l 2]l als]|s]v

MODE REG
MODE CONTROL Switch
Model 3 Model 4
VARI VARI FIX ol1] o0} o
VARI FLT ol1]1fo
HALT HALT FIX 1]1}J0}o0
HALT FLT 1]1]1{o0
RUN RUN 1]o]lolo
ADRS ADRS olof1]1
MEMR MEMR olol1]o
MEMW MEMW 0]JoJ ol REGISTER DISPLAY Switch
0olojJo]o OFF
oloJof1 Register Display
ojol1]o INST
ol1]o0o]o PSW
1fo]Jo]o RO/1
1]oJo]1 R2/3
1]o0]1]0 R4/5
1]0]1]1 R6/7
1/1]0]o0 R8/9
1]1]0]1 R10/11
1]1]1]o0 R12/13
1]l1]1f1 R14/15

Figure 2. Status Byte
7. DATA OUTPUT

One 8-hit data byte is transferred to that
section of the display registers, as speci-
fied by the output control counter, when a
WD or WDR instruction is executed to De-
. vice Number 1. The indicator in that reg-
ister section is lit if the corresponding bit
of the data byte is a 1. The remaining
sections of the display registers are
unchanged.

8. INTERRUPTS

There are no interrupts associated with the
Display Panel.

9. INITIALIZATION

Depressing the INITIALIZE button on the
Display Panel puts the Display Panel inter-
face in the Normal Mode.

NOTE

After data transfers to or from the
Display Panel in the Incremental
Mode, the program should return
the Display Panel to the Normal
Mode. The micro-program which
supports the Display Panel in most
GE-PAC 30 Processors assumes
that the Display Panel is in the
Normal Mode.

TABLE 1
TELETYPEWRITER STATUS AND COMMAND BYTE DATA
HEX ADDRESS 02

BIT

NUMBER 0 1 2 3 4 5} 6 7

STATUS

BYTE BRK BSY EX DU

COMMAND PWR | PWR

BYTE DISABLE | ENABLE | UNBLOCK | BLOCK | WRT | READ ON OFF

BRK The Break bit is set when the Break key on the Teletypewriter is depressed,
or the Teletypewriter is logically disconnected from the Processor.

BSY The significance of the Busy bit depends upon whether a Read or a Write
operation is in progress. During Write mode, BSY is normally low, and
goes high only while data is being received by the device. During Read
mode, BSY is normally high, and goes low only when data has been re-
ceived from the device, but not yet been transferred to the Processor.
During Read mode, BSY goes high again as soon as the Processor accepts
the data.

EX The Examine bit is set whenever BRK is set.

DU The Device Unavailable bit is set whenever the Teletypewriter power is off,
the Teletypewriter is in LOCAL mode, or power is not connected to the Tele-
typewriter.

DISABLE This command disables the Device Interrupt to the Processor from the
Device Controller.

ENABLE This command enables the Device Interrupt to the Processor from the
Device Controller.

UNBLOCK This command enables the printer to print data entered via either the key-
board or the tape reader.

BLOCK This command disables the feature described above.

WRT The Write and Read commands are used to define the significance of the

READ BSY bit.

PWR ON The Power On and Power Off commands are significant only with those Tele-

PWR OFF typewriters provided with an optional Power Control Box. The option permits

the Teletypewriter power to be enabled or disabled under program control.

4. DEVICE NUMBER

Teletypewriters are normally assigned
Device Number 2. The device number -
can be changed, or additional teletype-
writers added, as needed by a minor
change to the teletypewriter controller.
Refer to the Maintenance Manual for
details.

5. INTERRUPTS

The interrupt associated with the tele-
typewriter is a data-ready, or ready-
to-transfer interrupt. That is, when
enabled, an interrupt is generated by
the teletypewriter controller when-
ever it is ready to execute a data trans-
fer with the Processor. In the WRITE
mode, an interrupt occurs when the
controller is ready for another char-
acter to send to the teletypewriter.

In the READ mode, an interrupt oc-
curs when the controller has assem-
bled a character for transfer to the
Processor.

Note that when changing from the
READ mode to the WRITE mode with
interrupts enabled, an interrupt oc-
curs as soon as the controller is
ready to receive the first character
for output.

6. INITIALIZATION

When the INITIALIZE button on the
Processor Display Panel is depres-
sed, the following occurs:

1. The DSBL, BLK. and READ com-
mand functions are set.

2. The BSY status bit is set.

3. The BRK, EX, and DU status
bits are reset.

4. Any pending interrupts are
cleared.

7. ASR-35 FEATURES

The ASR-35 is a ruggedized or heavy-duty
version of the ASR-33. The programming
of an ASR-35 is identical to an ASR-33,

The operation of an ASR-35 is similar to an
ASR-33 with the following exceptions:

1. The Tape Reader and Tape Punch
controls are different as explained
later in this description.

2. The ASR-35 has a mode control
switch to the left of the keyboard.
The meaning of the 5 positions of
this switch is illustrated in
Appendix 3.

3. Several additional keys, such as
Local Line Feed, are provided.
The meaning of these kevs is self-
explanatory.

8. PAPER TAPE READER

The tape reader is controlled by a three-
position switch on the reader. The three
positions are START, STOP, and FREE.
When the switch is moved to the START
position, any tape in the reader is advanced
continuously at a 10 character per second
rate. Tape motion continues until the
reader switch is moved to the STOP position.

In the STOP position, tape motion can
be controlled by program, assuming
the teletypewriter power switch is in
the LINE position. The specific con-
trol characters which affect the reader
are X-ON (X'91'") which starts the tape
motion, and X-OFF (X'93') which
stops tape motion.

The programmed stepsrequired to start
the reader are as follows:

OC DEV, WRITE Set Write Mode
WAIT1 SS DEV, STATUS Wait for BSY =0

BTC DBSY,WAIT1

WD DEV,XON Start Tape

OC DEV,READ Set Read Mode
WAIT2 SS DEV, STATUS Wait for BSY = 0

‘ BTC BSY,WAIT2
RD DEV,DATA Read a Char

The programmed steps required to stop the
reader are as follows:

OC DEV,WRITE Set Write Mode
WAIT3 SS DEV,STATUS Wait for BSY =0

BTC BSY,WAIT3

WD DEV,XOFF Stop the Tape
Note that when stopping the tape reader un-
der program control, the tape may advance
1 or 2 characters hetween the time the XOFF
character is issued and the tape comes to a
complete halt. Similarly on starting a tape,
1 or 2 characters may be missed before
synchronization is attained. Therefore,
tapes to be read under program control
should be formatted to account for the start/
stop characteristics of the reader.

The above procedures apply to both the
ASR-33 and the ASR-35 teletypewriters.
The ASR-35 tape reader is enabled,
however, only when the ASR-35 Mode
Switch is in the KT, T, or TTS posi-
tions. See Appendix 3 for details.

9. PAPER TAPE PUNCH

The ASR-33 tape punch can be manually
turned on at anyv time by depressing the
LOCK "ON'" button on the punch unit. Once
turned on in this fashion, all data output

to the teletypewriter is unconditionally
printed and punched. Note that non-
printing characters transferred to the
teletypewriter will be punched, but no
image will be printed, and the printer

carriage will not advance. To manually
turn the punch off on an ASR-33, the
following steps are required:

1.. Turn the power switch to LOCAL
mode.

2. Depress the UNLOCK key on the
tape punch.

3. Strike the FABE key while the
CTRL key is depressed.

If the ASR-33 is not in a LOCK "ON'" mode
(depress UNLOCK to release the LOCK
"ON" mode), and the power switch is in the
LINE position, the tape punch can be con-
trolled via program.

The specific control characters which affect
the punch are TAPE ON (X'92"), which
starts the punch, and TAPE OFF(X'94"),
which stops the punch. The punch controls
are achieved by outputting the appropriate
character to the teletypewriter. Note
that the TAPE OFF character will

get punched on the tape.

The tape punch can be manuallyv started in
an alternate way. If the punch is not al-
ready on, strike the TAPE key with the
CTRI. keyv depressed, and the power switch
in LOCAL mode. This technique is equiva-
fent to transferring a TAPE ON character
to the teletvpe from the Processor.

The ASR-35 tape punch is enabled only when
the ASR-35 Mode Switch is in the KT or
TTR position. In these modes, the punch
is controlled via TAPE and #APE keys, and
TAPE ON and TAPE OFF characters as de-
scribed above. Refer to Appendix 3 for
details. Following the program transfer of
a TAPE ON character to start the ASR-35
tape punch, the program should output 2 or
3 rubout characters (X'FF') to achieve data
syvnchronization prior to punching the data.

10.

DATA FORMATS

The format of data transferred to and from
the teletypewriter is as follows:

1.

When reading data from a tape,
each 8-bit tape character is
transferred to the Processor
as one 8-bit data byte.

When reading data from the
keyboard, one data byte is
transferred for each key de-
pressed. The data is the
ASCII code for the particular
character, in which the most
significant bit for the charac-
ter is a one or zero to achieve
even parity for that character.
In general, programs which
read teletypewriter data mask
the most significant bit to
zero, and manipulate 7-bit
ASCII codes in memory.

3. When transferring characters
from the Processor to the
teletypewriter printer, the
most significant bit of each
character can be either one
or zero since it has no ef-
fect on the teletypewriter,.

4. When transferring characters
from the Processor to the tele-
typewriter punch, each 8-bit
data byte is punched as one
tape character. The most
significant bit is punched as
specified in the data byte.

11. PROGRAM EXAMPLES

Typical routines for transferring data
to and from the teletypewriter are
shown in Appendix 1.

0000R

0000R €830
0002

0004R DE30
0012R

0008R 9D34

000AR 42F0
0008R

00OER 9B34

0010R 030F

0003

0004

000F

0012R A400

0002

0014R

DEVNO 0002
INPUT 000OR
R15 000F
R3 0003
R4 0004
SENS 0008R
UNBLOK 0012R

APPENDIX 1
SAMPLE PROGRAM LISTINGS

OPT PASS2,PRINT,NOPNCH,STOP
*INPUT

*
*

*A BYTE WILL BE INPUT TO R4 FROM THE TELETYPEWRITER
*REGISTERS R3,R4,R15 WILL BE USED

*THE CALL IS BAL R15,INPUT

*

*

ENTRY INPUT

INPUT LHI R3,DEVNO LOAD DEVICE NUMBER
0cC R3,UNBLOK SET DEVICE MODE
SENS SSR R3,R4 INPUT STATUS
BTC X'F',SENS LOOP IF NOT READY
RDR R3,R4 INPUT BYTE
BR R15 RETURN TO CALL
R3 EQU 3
R4 EQu 4
R15 EQU 15
UNBLOK DC X'A400' DISABLE ,UNBLOK,READ
DEVNO EQU 2
END

P0A0OR
P20AR

000 4R

2008R
MP2AR

POBER
2010R
0003
2004
eans
200 F
aep2
PA12R
2ol 4R

BLOCK
DEVNO
OUTPUT
R15

R3

R4

R5
SENS

ca3o
2202
DE3®
2012R
9D35
42 19
AGA8]R
9A34
Q30F

98en

PO12R
a2
A020R
00 F
2003
0A04
2205
P2A8’R

OPT PASS2,PRINT, NOPNCH, STOP
* QUTPUT
*
*
«A BYTE WILL BE OUTPUT FROM R4 TO THE TELETYPEWRITER
«THE CALL 1S BAL R15,0UTPUT
*
*

ENTRY OUTPUT

OUTPUT LKI R3,DEUNO LOAD DEVICE NUMBER
oC R3,BLOCK SET DEVICE MODE
SENS SSR R3,RS INPUT STATUS
BIC X°F*,SENS LOOP IF NOT PDY
WDR R3,R4 OUTPUT BYTE
BR RIS RETURN TO CALL
R3 EQU 3
R4 EQU 4
RS QU 5
RIS EQU 15
DEVNO EQU 2 |
BLOCK DC X*58@p° DISABLE,BLOCK, WRITE
EN

-~ DEVNO @892

POCAR
000aR

ABA 4R
2208R
P@BCR

P018R
B12R

2016R
2A1 AR

801 ER
2028R

P02 4R

PR3
2004
20a5
2026
- 0P0F
2002
0028R

@P2AR -

BLOCK

R15
R3
R4
RS
R6

486F
eooa
485%
2002
c830
2002
DE3®
2028R
9D3 4
42 FY
P312R
DA3 S
2000
CA6P
peol
8565
4280

OPT

PASS2,PRINT, NOPNCH,STOP

* TTY OUTPUT EXAMPLE DISABLE,BLOCK,WRITE

* TYPOUT

*
&

A SERIES OF BYTES WILL BE OUTPUT
*AS DETERMINED RY THE CALLING SEQUENCE

%*

*REGISTERS R3,R4,R5,%6,R15,WILL BE USED

* THE CALLING SEQUENCE IS
BAL RIS5,TYPOUT
DC A(MESS) STARTING ADDRESS
DC ACEND) ENDING ADDRESS+!

*

* * X »

TYPOUT

SENS

6010R

430 F
P02 4

95800

2028R

GO0 F
003
ges A
2205
2286

ENTRY TYPOUT

LH RE,B(RIS5)
LH R5,2 (R15)
LHI R3,DEVNO
oC R3,BLOCK
SSR R3,RA4

BTC X'F',SENS
WD R3,8(R6)
AHI R6, I

CLHR R6,RS

BTC X'8',SENS
BFC 8,4(R15)
FQU 3

EQU 4

EQU 5

QU 6
EQU 15
EQU 2

DC X*9800"
END

GET STARTING ADRS
GET ENDING ADRS

LOAD DEVICE NUMBER

SET MODE

INPUT STATUS
TEST STATUS

OUTPUT DATA
INCREMENT ADRS

TEST FOR END
LOOP IF NOT

" 'RETURN TO CALL

SENS
= TYPOUT

201 0R
P000R

APPENDIX 2. TELETYPEWRITER/ASCI/HEX CONVERSION TABLE

HEX (MSD) — 5 9 A B|C|D|E|F

(LSD) | Teletype- 8 Depends upon parity
writer
Tape 7 0 0 0 0l1 {1111
Channels ™| ¢ 0 0 1 BERERERE

5 0 1 0 101]0]1

413121

9 0 {0] 0] 0| NULL |DC, SPACE | 0 | @ | P

1 0o ol 1] SuM X-ON ! 1| A]|Q

2 0 lol1} o] EOA (T);:PE " 2 | B|R

3 0 /0|1 1| EOM |X-OFF # 3|1C|s

4 0 {10} 0| EOT (1;?:1? $ 4 | D|T

5 0 |1]0| 1| WRU |[ERR o 5| E| U

6 o|l1]1] 0o]RU SYNC & 6 | F|V

7 0 |1 1! 1| BELL |LEM y 71 G| W

8 1 0] 0!1 0] FEq S0 (8 | H| X

9 1 |00l 1| HT/SK |S) 9|1 |Y

A 1 (of1! o] LF So * J |z

B |1 o1 1]vr sy v [

C 1 {10 0] FF S4 , < L |\ ACK

D 1|10 1]CR S5 - | M|] QB%E
1 |1 1] 0fsO Sg . > | N |1 ESC
1 |1 1] 1]sI S7 / 21O |- DEL

APPENDIX 3. 35 ASR OPERATING MODES
MODE LINE LOCAL
[(KB} —{Printer]
K (Keyboard) Computer
(Printer;——
KT (Keyboard Tape) (
Computer
h——
Punch 4 Punch
T (Tape) (Reader }——
Computer
!
Off
[KB] Line (KB} «Punch]
TTs Reader Computer
Off
(Tape to Tape Send) Line Not Applicable
Non ASCII Tapes Not Used
TTr Computer
(Tape to Tape Rev) Not Applicable
[Reader]
Not Used
Non ASCII Tapes

OPT PASS2,PRINT,NOPNCH,STOP

*

* THIS SUBROUTINE STARTS THE TAPE MOVING AND READS

* CALL BAL R15,SEARCH

PR *
*
*

P0P0R C838 SEARCH LHI
. @@®3
PPAPAR DE3@ oC

P81 ER
POABR 9D34 SENSE SSR
POBAR 42F@ BTC
POAKR
_ @QQER SB34 _ _RDR_
Q¢1AR C540 CLHI
BOFE N
PB14R 4232 BNE
P2008R
"@1’R DE3@ - 0oC
— .. DOIFR e
AAICR 230F - BR
2003 R3 EQU
P00 4 R4 - EQU
200F _ ‘RI15 EQU
@81 ER 9520 RUN DC
__@QQIFR____ ___ _STOP EQU
*
%
*
*
*x
*
*
*
*
PA20R END
R15 POOF
R3 0003
R4 P204
RUN P01 E
SEARCHE202
SENSE p@@g
SToP @B1IF

R3,3

R3,RUN

R3,R4
X'F',SENSE

R3,R4
R4,X'@BFE"®

SENSE
R3,STOP
R15

3

4

15

X's520°
RUN+1

" UNTIL CHARACTER X'FE' IS DETECTED

LOAD DEVICE NUMBER
START READER

OBTAIN STATUS
LOOP UNTIL CHAR AVAILABL

INPUT CHARACTER
TEST FOR STOP CHARACTER

STOP READER
RETURN TO CALLING ROUTIN

DISABLE,RUN,SLEW,FWD
STOP

APPENDIX A PAGE |

HiaGi

i. INTRODUCTION

This manual provides information on
the operation and programming of the
High Speed Paper Tape Reader, the

SPEED PAPER TAPE READER/PUNCIH
OPERATION AND PROGRAMMING

Publication Number 29-016RO01

Note, that with the Combination Reader/
Punch, since there is only one device con-
troller, the devices cannot be used simul-
taneously. To read and punch tapes at the
same time, it is necessary to use sep-
arate device controllers for each device.

High Speed Paper Tape Punch, and the

Combination High Speed Reader/Punch. 9

GENERAL DESCRIPTION

Included in this document are a general
description, a table of status and com-

mand bytes, and sample programs for

each device.

Table 1 lists general characteristics
of the Reader and Punch,

TABLE 1. READER AND PUNCH CHARACTERISTICS

Characteristies

Reader Punch

Type

Tape Width

speed

i Tape haundling

Stop time

Read/Load Lever

Power Switch

Remote Switeh

photo-electric electro-inechanical

adjustable tape guides fixed width of 1"
for 2", 11/16¢", and 1"

tape

maximum of 300 char-
acters-per-second

paper, paper-mvlar,
and myvlar

capable of stopping on
a character (approxi-
mately 1 millisecond)

allows loading or chang-
ing of tapes of varying

widths

applies AC power to
Reader motor

docs not apply

maximum of 63.3 char-
acters-per-second

same as the Reader

will punch the next
character and stop

does not apply

applies AC power to
Punch motor

puts the Punch on-line
with the Processor

S.0 STATES AND COMMAND

Table 2 provides status and command byte
data for the HSPTR/P.

4. INTERRUPTS

When enabled in the READ Mode, the device
controller generates an external device in-
terrupt when a data character is present in
the controller, waiting to be transfertred to
the Processor. When enabled, in the WRITE
Mode, the device controller generates an ex-
temal devicee interrupt when the controller
is ready for another character to be punched.

5. INITIALIZATION

When the INI'TIALIZE pushbutton on the

Processor is depressed, the following occurs:

1. Interrupts of all kinds are disabled.

2. The BSY, NMTN, and EX status
bits arce sct.

3. The DISABLE, STOP. INCR, and
READ com mand functions are set.

1. The punch power is turned off un-
less the POWER pushbutton is de-
pressed (focked on).

6. PUNCH POWER CONTROLS

There are two pushbuttons on the front panel
ol the High Speed Paper Tape Punch, The
top button, labeled REMOTE, determines
the state of the Punch in reference to the
Processor. If this pushbutton is released,
the Punceh is off-line with the Processor and

is said to be in a LOCAL Mode. [If the button
is depressed, the Punch is on-line with the
Processor and is said to be in a REMOTE
Mode. The POWER pushbutton is located di-
rectly below the REMOTE pushbutton. With
the POWER Switch released, and the REMOTE
Switch depressed, Punch power may be turned
on by the program via the command RUN bit.
The power may also be turned off by the pro-
gram via the command STOP bit. Figure 1
illustrates when the power is on/off as a
function of programmed and manual controls.
The letter B represents the POWER button
depressed, B means the POWER button is
released. The letter P represents program-
controlled power on. P means program-
controlled power off.

7. MODE SWITCHING

With a Combination Reader/Punch, care
must be used when switching modes. The
following is an example of switching from
the WRITE to the READ Mode.

WD DEVICE, BUFFER

WAIT SSR DEVICE, STATUS
BTC 8, WAIT
OC DEVICE, READ

P P B P B P
REMOTE off on on on
LOCAL off off on on

Ficure 1,

Punch Power

A-196

TABLE 2. READER/PUNCH STATUS AND COMMAND BYTE FORMA'T
STATUS
BYTE ov NMTN| BSY EX DU

BIT
NUMBER 0 1 2 4 5 6 7
COMMAND

BYTE DISABLE | ENABLE STOP INCR | SLEW | WRITE READ

STATUS RIT DESCRIPTIONS

P READER PUNCH

oV The Overflow bhit is set The Overflow bit is always in a
when the Buffer Register reset condition in the WRITE
is loaded from the Read- mode.
er before the previous
character has been trans-
ferred. This condition
can only happen in the
SLEW mode.

NMTN The No-Motion bhit is set The No-Motion bit is always in a
when the Reader has heen reset condition in the WRITIE
issued a STOP command mode.
and the tape has stopped
on the next character.

BSY The BUSY bit is set when The BUSY bit is set when the Buf-
the Buffer Register is emp- fer is full, waiting to transfer to the
ty, waiting for a character Punch.
from the Reader.

EX The Examine bit is set when- The Examine bit is always reset in
cver OV=1 or NMTN=1. the WRITE mode.

DU The Device Unavailable The Device Unavailable bit is set

hit is set when the power

to the Reader motor is off,
or the Read/Load lever is

in the Load position (straight
up).

-

when the power to the Punch motor
is off, or the REMOTE switch is
released, or a low tape condition
exists on the tape reel. There is
no low tape sensor on the fan fold
bins.

TABLE 2.

ner
DISABLE

ENABLE

STOP

RUN

INCR

SLEW

WRITE

READ

A-197

READER/PUNCH STATUS AND COMMAND BYTE FORMAT (Continued)

COMMAND BIT DESCRIPTION

READER

This command inhibits In-
terrupts from the Device
Controller from interrupt-
ing the Processor.

This command permits In-
terrupts from the Device
Controller to interrupt the
Processor. '

This command halts the
motion of the tape after

the next character has been
read. The next character
to be read is positioned
over the sensc lights when
the tape stops.

This command starts the
tape moving and leaves the
controller in the RUN mode.

In this mode of operation,
the tape is advanced one
character when the control-
ler is in the RUN mode and
BSY=1. The tape stops af-
ter reading one character.
The tape remains stopped
until a Read Data instruction
is issued to the Processor,
which will reset BSY and
start the tape moving.

In this modce of operation,
the tape is advanced,
recading continuous charac-
ters, until stopped.

Designatles the High Speed
Paper Tape Reader.

PUNCH

Same as the Reader.

Same as the Reader.

This command halts the tape after
the next character is punched.
The Punch motor is also turned
off, unless the Power Switch on
the panel is depressed.

This commands starts the Punch
motor, unless the REMOTE Switch
on the panel is released.

Not used.

Not used.

Designates the High Speed
Paper Tape Punch.

The sense loop is required o insure that

the fast character in the bulfer register is
punched prior to issuing the Output Com- -
mand READ. 1f the READ command is

given Loo soon, the last character is inter-
ferred with, This is because the command
READ causes the character on the tape, un-.
der the sense lights to be strobed into the
buffer register. The logic behind this is

that when the Reader has heen issued a com-
mand STOP (Output Command WRITE causes
a stop action also),the tape stops with the
next character to be read under the sense
lichts. Thus, a RUN/STOP action will not
cause a skipping of characters on tape. Be-
cause of this feature, there is no need to
sense status and check for BSY =1 in switch-
ing [rom the READ Mode to the WRITE Mode.

Appendix 1 shows a sample program for the
Combination Reader/Punch which reads a
block of characters and punches a block of
characters.

8. DEVICE NUMBER

The High Speed Reader/Punch device
controller is normally assigned ad-

dress X'03' il using a Reader only, If using -
a Punch only, or both a Reader and a Punch,
address X'13' is normally assigned. These
device numbers are easily changed by a min-
or modification to the device controllers.

9. SAMPLE PROGRAMS

Appendix 2 is a sample program using the
High Speed Paper Tape Reader in the Incre-
mental Mode. The Output command for this
mode of operation is X'99".

Appendix 3 is a sample program using the
High Speed Paper Tape Reader in the Slew
Mode. The Output command for this mode
of operation is X'95',

Appendix 4 is a sample program using the
High Speed Paper Tape Punch. The Output
command for this operation is X'92"',

P200R
POA4AR
A0B8R

@PACR
PR ER

@012R
P21 4R

201 8R
PO1CR

2020R
PO22R

PO26R
2028R

P02CR
PO3OR

@03 4R
PB36R

PR3 AR
A23 ER

@0 42R
@B44R
@0 A6R
9204

2205

PO 48R
POACR

BUFFER
DEVICE
INPI
INPUT
OUTI
OUTPUT
READ

Cc840
P003
c830
2064
Cc820
2001
2711
DEA40
B042R
9D49d
4280
#0312R
DB4]
2048R
Cl112
2012R

2711
DE49
@044R
9D45
4230
BO26R
DA 4]
PB48R
Cile
PO26R
SD45
4280
#034R
DE4@
@0BA46R
4300
POB CR
9999
9292
2020

PB4A8BR
P04

0212R
P0OCR
@B26R
P0O20R
PB42R

APPENDIX 1

SAMPLE PROGRAM
READER/PUNCH COMBINATION

OPT

%

PASS2 ,NOPNCH,PRINT,5TOP

* SAMPLE PROGRAM USING THE HSPTR/MSPTP IN MODE SWITCHING

%

START LHI
LHI
LHT
INPUT XHR
oc
INPI SSR
BTC
RD
BXLE
.
*
OUTPUT XHR
oc
ouTl SSR
-~ BTC
WD
BXLE
WAIT SSR
BTC
oc
B
READ DC
WRITE DC
STOP DC °
DEVICE EQU
STATUS EQU
BUFFER DS
END

DEVICE, 3 SET DEVICE NUMBER
3,100 SET HIGH LIMIT AND
2,1 1OV LIMITS OF THE
1,1 ~ BUFFER AREA
DEVICE,READ READ MODE

DEVICE, STATUS

8, INPI T

'DEVICE,BUFFER(1) INPUT CHAR.

1, INPI
1,1 CLEAR LOW LIMITS
DEVICE,WRITE WRITE MODE
DEVICE,STATUS

8,0UT1 ‘

DEVICE,BUFFER(1) OUTPUT CHAR.
1,0UTI

DEVICE,STATUS WAIT UNTIL LAST
8,WAIT CHAR. IS PUNCHED

DEVICE,STOP TURN PUNCH OFF
INPUT

X*9999°
X*s292°
X‘'2020"°
4

5

100

Al1-2

START
STATUS
STOP
WAIT
WRITE

0080R
2085

PB46R

203 4R
BB 44R

STATUS
STOP
TEMP
TROBLE

D310
2078
DE1?
2879
9D12
4250
2018R
4280

PABZR

2800

PO20R

C2080
P21CR
8200
@P0O0R

0078
0001
000@R
0020R
200]R
0002
@21 CR
0003
0018R

x
*

*
INPUT

SENSE

*
TROBLE
STOP

*

DEV
STATUS

TEMP

*
BINDV
*
PROCES

oPT

LB
m .

SSR
BTC

BTC

RDR

LPSW
-
EQU
EQU
EQU.
EQU

EQU
END

APPENDIX 2

SAMPLE PROGRAM
READER-INCREMENTAL MODE

PASS2, NOPNCH,PRINT,STOP

DEV,BINDV
DEV,BINDWI

DEV,STATUS
5,TROBLE

8,SENSE
DEV, TEMP
PROCES

STOP

T X*'8088°,A(INPUT)

* SAMPLE PROGRAM FOR HSPTR C(INCREMENTAL MODE)

SELECT DEVICE NUMBER

_ISSUE OUTPUT COMMAND

GET STATUS OF READER
DU OR EX=!:; ERROR

BSY=1; WAIT

READ ONE CHAR. FROM TAPE

PROCESS THIS CHARACTER

TROUBLE CORRECTED; RETURN
T9 INPUT ROUTINE

DEVICE NUMBER X°13°

HOLDS STATUS BITS

TEMPORARY STORAGE

OUTPUT COMMAND IS X°39°

POAAR
PA22R

PAO6R

008 AR
@00 CR

@018R

@21 4R
2A316R

221 AR
2! ER
@022R
@02 6R

P02AR
@02CR

P038R

0001
0002
0003
0004
oneT
0078
003 4R
183 4R

8744
D310
0078
DE! 2
2079
9012
4250
202CR
4289
POOAR
9BI3
C530
0O FF
4330
P026R
4034
P03 4R
C140
020AR
DEI®
183 4R
2307
c200
0@30R
8000
P002R

20280

oPT
., T
*SAMPLE P
x*
XHR
_INPUT LB
oc
SENSE SSR
BTC
R
RDR
CLHI
BE
STH
BXLE
STOP _OC
BR
TROBLE LPSW
HALT DC
*
DEV EQU
STATUS EQU
CHECK EQU
INDEX EQU
RETURN. EQU
BINDV EQU
BUFFER DS
DONE DC
END

1836R

BINDV
BUFFER
CHECK
DEV
DONE
HALT
INDEX
INPUT
RETURN
SENSE
STATUS
STOP

TROBLE

2078
P034R
2003
p0R1
183 4R
PB30R
P00 4
P0B2R
2007
POBAR
2002
PR26R

PB2CR

APPENDIX 3

SAMPLE PROGRAM
READER-SLEW MODE

PASS2 ,NOPNCH, PRINT,STOP -

ROGRAM FOR HSPTR (SLEW MODE)

* READ TAPE UNTIL X'FF' CHARACTER IS ENCOUNTERED

INDEX, I NDEX ZERO INDEX |
DEV,BINDV _ _SELECT DEVICE NUMBER
DEV,BINDWI ISSUE OUTPUT COMMAND
DEV,STATUS CHECK STATUS

5, TROBLE DU OR EX=1; ERROR

8,SENSE 'BSY=l; WAIT -
DEV, CHECK READ FIRST CHAR FROM TAPE
CHECK,X"FF* IS IT DELIMITING CHARACTER
STOP _ YES, STOP TAPE MOTION

CHECK,BUFFERCINDEX) STORE& GET NEXT CH

INDEX,SENSE READ TAPE UNTIL DELIMITOR
DEV,DONE ~ OUTPUT COMMAND X°208°
RETURN GO BACK TO MAIN PROGRAM
HALT TROUBLE CORRECTED; RETURN

X'8000°,ACINPUT) TO INPUT ROUTINE

l DEVICE NUMBER X'13°

2 ' HOLDS STATUS BITS

3 REG USED TO CHECK FOR DELI
4 INDEX VALUE

7T , _ S
X*18° OUTPUT COMMAND IS X'95°
4096 BUFFER SIZE

X'2020° STOP COMMAND

APPENDIX 4
SAMPLE PROGRAM
PUNCH

OPT PASS2 ,NOPNCH,PRINT,STOP

*

* SAMPLE PROGRAM FOR THE HIGH SPEED PAPER TAPE PUNCH
*

0000R 0722 XHR COOUNT , COUNT ZERO LOW LIMITS

0002R D300 OUTPUT LB DEV,BOUTDV SELECT DEVICE NUMBER
007A

0006R DEOO 0cC DEV,BOUTDV+1 ISSUE OUTPUT COMMAND
0078

000AR 9D01 SENSE SSR DEV,STATUS CHECK STATUS

000CR 4210 BTC 1,TROBLE DU=1; STOP
0026R

0010R 4280 BTC 8,SENSE BSY=1; WAIT
000AR

0014R DAOZ WD DEV,BUFFER(COUNT) OUTPUT CHARACTER
002ER '

0018R C120 BXLE COUNT ,SENSE DO UNTIL DONE
000AR

001CR 9D01 WAIT SSR DEV,STATUS WAIT FOR LAST

001ER 4280 BTC 8,WAIT CHAR TO BE OUTPUT
001CR

0022R DEOO 0C DEV,OFF TURN PUNCH MOTOR OFF
102ER

0026R C200 TROUBLE LPSW STOP TROUBLE CORRECTED; RETURN
002AR :

002AR 8000 STOP DC X'8000' ,A(OUTPUT) TO OUTPUT ROUTINE
0002R

002ER . BUFFER- DS 4096

* .

0000 DEV EQU 0 DEV. NUM. X'13'

0001 STATUS EQU 1 HOLDS STATUS OF THE PUNCH

0002 COUNT EQU 2 : HOLDS LOW LIMIT OF BUFFER

0005 RETURN EQU 5 RETURN TO MAIN PROG.

007A - BOUTDV EQU X'7A" OuT. COMD. X'92'

102ER 2020 OFF DC X'2020"

1030R END

BOUTDV 007A
BUFFER 002ER

COUNT 0002
DEV 0000
OFF 102ER

OUTPUT 0002R
RETURN 0005
SENSE 000AR
STATUS 0001

STOP 002AR
TROBLE 0026R
WAIT 001CR

GE 29-008R02

CARD READER OPERATION AND PROGRAMMING MANUAL

1. GENERAL DESCRIPTION

The 7-510 Card Reader employs a photoelec-
tric read station and a vacuum throat feed
assembly. A special 'wide strobe' read
technique is used to preclude loss of data,
even on cards which have been mispunched

by as much as plus or minus one-half column.

The card read rate is in excess of 200 cards
per minute with a 500 card capacity for both
the input hopper and the output stacker.
Throughout the read operation light current
checks, dark current checks, and card mo-
tion checks are continuously performed to
verify the performance of the Card Reader.

2. OPERATOR CONTROLS
2.1 POWER

The lighted POWER pushbutton applies AC
power to all circuits. The pushbutton is lit
when. the power is on.

2.2 MOTOR Start

The lighted MOTOR pushbutton starts the
drive motor if no error indicator lights are
lit. The pushbutton is lit when the drive
motor is running.

2.3 Read START

The lighted START pushbutton clears all
error indicators and advances the Card
Reader to the 'ready'" state to begin a read

». cycle upon receipt of the proper signal. The
- pushbutton is lit when the switch is depressed
and no errors have been detected.

2.4 Read STOP

The lighted STOP pushbutton inhibits further
read cycles until Read START is again de-
pressed. Read STOP action is delayed until
the current read cycle is completed. The
pushbutton is lit when the switch is depressed,
or if the Card Reader is stopped due to an

" error detection.

3. STATUS INDICATOR LIGHTS

3.1 Power On

The indicator on the POWER Switch is illum-
inated when power is applied to the Card
Reader.

3.2 Motor On

The MOTOR Switch indicator is illuminated
when the motor is running.

3.3 Read Start

The START Switch is illuminated when the
switch is depressed and no malfunctions
have been detected.

3.4 Read Stop

The STOP Switch is illuminated when the
switch is depressed or the Card Reader has
stopped due to a trouble detection, as de-
scribed in the following paragraphs.

3.5 PICK FAIL

If a card fails to be picked upon command,
the PICK FAIL indicator is illuminated.

A-147
TABLE 1
CARD READER STATUS AND COMMAND BYTE DATA
(HEX ADDRESS 04)

BIT

NUMBER 0 1 2 3 4 5 6 7

STATUS

BYTE EOV TBL HE NMTN BSY EX EOM DU

COMMAND ‘

BYTE DISABLE | ENABLE | FEED

EOV The EOV bit is set when the data is not taken from the Device Controller
buffer before the next column of data arrives from the read station. This
bit is reset by a FEED Command.

TBL/DU These bits are set when the Card Reader fails to pick a card upon command,
or when an error condition occurs in the Card Reader. The error conditions
are:

1. Card Motion Error

2. Light Current Error

3. Dark Current Error
These error conditions prevent the reading of any more cards until manually
reset by the operator.

HE The HE bit is set when the Iast card in the input hopper has been read. When
HE sets, NMTN is set. The HE bit must be manually reset by the operator.

NMTN The NMTN is set except for the time between a FEED command and the time
it takes for a card to pass through the read station.

BSY The BSY bit is set while the Device Controller is awaiting data from the Card
Reader. It resets when the data is available to be transferred.

EX The EX bit sets when any one of the upper four (4) bits of the Status byte is
set.

EOM The EOM bit is set whenever NMTN is set, and when the input hopper becomes
empty. '

DISABLE This command disables the Card Reader Device Interrupt.

ENABLE This command enables the Card Reader Device Interrupt.

FEED Thisbommand initiates a new card feed cycle; however, no action occurs if

[3]

TBL, DU, or HE is set.

3.6 CARD MOTION Error

If the interval between the time the selected
card enters the read station and the time the

card leaves, does not correspond to 85 +1/3

columns (the total card width), the CARD
MOTION indicator illuminates.

3.7 LIGHT CURRENT Error

When all photo-read-cells do not conduct
whenever a card is not in the read station,
the LIGHT CURRENT indicator illuminates.

3.8 DARK CURRENT Error

The DARK CURRENT indicator illuminates
if all photo-read-cells do not go dark for
some instant between the beginning of the
card and column 1, or between column 80
and the end of the card.

4. STATUS AND COMMAND BYTES

Table 1 illustrates the status and command
byte coding for the Card Reader.

5. DATA FORMAT

A card Feed command causes the card to
move over the photo-read-cells column by
column, starting with column 1. Every
column read (blank columns are read as
all bits zero) generates a data strobe for
that column and initiates a data transfer

reads the top six rows of the column; the
second Read Data instruction reads the
bottom six rows of that column. Figure
1 is an example of the data byte format.

6. INTERRUPTS

When enabled (Bit 1 of the COMMAND byte
set), the Card Reader Device Controller
generates an external device interrupt for
each column read. The interrupt indicates
to the Processor that data is available for
transfer.

7. INITIALIZATION

When the INITIALIZE pushbutton on the
Processor is depressed, the following
occurs:

1. The NMTN and EOM bits are set.
2. The EOV bit is reset.
3. The BSY and EX bits are set.

8. OPERATOR PROCEDURES

After applying power to the Card Reader,
allow it a few minutes to warm up. Cards
should be placed face down in the hopper
with the 12-edge toward the operator. Ad-

cycle. The first Read Data instruction ditional cards may be added to the hopper
without interferring with the operation.
ROW NUMBER 12 11 0 1 2 3 | First Data
Byte
BIT NUMBER 0 1 2 3 4 5 6 7
ROW NUMBER 4 5 6 7 8 9 | Second Data
Byte

NOTE: Bit numbers 0 and 1 should always be zero.

Figure 1. Data Byte Format

9. PROGRAMMING

A sample card input routine is shown in
Appendix 1. In the sample program, note
that the HE bit (hopper empty) is checked
before other bits. This bit does not become
set until the last card is read. If 80 columns
are not read from each card, there is a
Card Reader malfunction, as all blank col-
umns should be read as zeros.

Code conversion is required when reading
conventional Hollerith cards. A GE-PAC
30 subroutine (HTASCV, Program Num-
ber 07-019) is available for this purpose.
The subroutine converts the 12 bits of binary
data from one column to the corresponding
7-bit ASCII code.

Appendix 2 provides a table of the Hollerith
punched-card codes for the ASCII character
set.

APPENDIX 1
SAMPLE PROGRAM

*
T UUTTOPT PASS2,PRINT,PUNCH,STOP
*
x NON-INTERRUPT CARD READER ROUTINE
%
reol DEVNUM EQU 1
_epe2 STATUS EQU 2
0073 INDEX ~ EQU 3
eena INCR EQU &
eeas LIMIT EQU 5
2eQF RETURN EQU 15
E 3
_ #PP@R @733 READ XHR INDEX,INDEX ZERO INDEX VALUE
ANAOR CRAD LHI1 INCR,2 " SET UP INCREMENT
A0e2 _
OPASR C85¢ " LHI LIMIT,158 SET UP LIMIT
PASE
APRAAR D310Q LB DEVUNUM,SINDV SET DEVICE NUMBER
227C
@ARER 9DI2 T WATT 8BRDEVNUM,STATUS © ‘
PAIBR 4320 , BFC 2,WAIT IF EOM NOT SET-HANG
DA ER '
P214R C420 NHI STATUS,X'2@° HOPPER EMPTY CHECK
0020
__eeolgr 423¢ BNZ EMPTY
P238]R
% .
@MICR DEI2 FEED oc DEVNUM,SINDW I
227D
AB2¢R 9DI2 SENSE SSR DEVNUM,STATUS
AP22R 4279 BIC 7,ERROR ~~ BITS SHOULD NOT BE SET
e v LD 0 oE2REL
ARPER 4220 ~ BTC &,SENSE BUSY BIT SET-HANG
CA20R
?32AR DBI3 RD DEVNUM,BUFFER(INDEX) FIRST CHAR, (ROWS |
AA3IRR
282 FR DB13 RD DEVNUM,BUFFER+] (INDEX) SECOND CHAR (ROWS
SA3oR , _SECOND CHAR (ROW
00328 C13a ~ BXLE INDEX,SENSE 8@ COLUMNS READ
@A2OR
* - I._. L. - - _
% DO HOLLERITH TO ASCII CONVERSION ROUTINE
*
TR LT SRR RN e e
xK
#p7C SINDV EQU X°7C° 5@ SEQUENCE
. * : _
PR3 2R EMPTY EQU = INPUT HOPPER EMPTY
K
2238R ERROR EQU x ERROR ROUTINE T
3k
038R BUFFER DS 160
P2 DR END

CTLIMIT Pees

BUFFER @Q38R
PEUNUM deel
EMPTY AA32R

ERROR AN38R

FEED A21CR

INCR 2004

INDEX 223

READ 2000R
RETURN 0Q00F
SENSE @C2@R
SINDV @227C
STATUS @022

- UAYT S EEmER T

APPENDIX 2
ASCII TO CARD CODE CONVERSION

8-BIT 7-BIT - 8-BIT 7-BIT

ASCII AscCH CARD ASCI ASCII CARD

GRAPHIC CODE CODE CODE GRAPHIC CODE CODE CODE
SPACE A0 20 0-8-2 @ Co 40 §-4
! Al 21 12-8-7 A C1 41 12-1
" A2 22 8-17 B c2 42 12-2
A3 23 8-3 C c3 43 12-3
$ A4 24 11-8-3 D C4 44 12-4
U A5 25 0-8-4 E CH 45 12-5
& A6 26 12 F Cé6 46 12-6
' AT 27 8-5 G ok 47 12-7
(A8 28 12-8-5 H lof: 4% 12-%
) A9 29 11-8-5 I C9 49 12-9
* AA 2A 11-8-4 J CA 4A 11-1
+ AB 2B 12-8-6 K CB 4B 11-2
: AC 2C 0-8-3 L ccC 4C 11-3
- AD 2D 11 M CD 4D 11-4
. AE 2E 12-8-3 N CE 4E 11-5
/ AF 2F 0-1) CF 4F 11-6
0 B0 30 0 2 DO 50 11-7
1 Bl 31 1 Q D1 51 11-%
2 B2 32 2 R D2 52 11-9
3 B3 33 3 S D3 53 0-2
4 B4 34 4 T D4 54 0-3
5 B5 35 5 U D5 55 0-4
6 B6 36 6 A% D6 56 0-5
7 B7 37 7 W D7 57 0-6
8 BS 38 8 X D8 58 0-7
9 B9 39 9 Y D9 59 0-8
: BA 3A 8-2 Z DA 5A 0-9
; BB 3B 11-8-6 [DB 5B 12-8-2
< BC 3C 12-8-4 \ DC 5C 11-8-1
= BD 3D 8-6] DD 5D 11-8-2
> BE 3E 0-8-6 4 DE 5E 11-8-7
? BF 3F 0-8-17 «— DF 5F 0-8-5

GE 07-019A12

HOLLERITH TO ASCII CONVERSION
PROGRAM DESCRIPTION

1. INTRODUCTION

The Hollerith to ASCII Conversion (HTASCV)
subroutine is used to convert 12-bits of
binary data read from one column of a
punched card to the corresponding 7-bit
ASCII code.

2. PROGRAM TAPE

The tape for HTASCV (07-019MO038) is
relocatable, and can be loaded with
the General Loader (06-025M10), The
subroutine requires X'CE' bytes of
memory.

3. CALLING SEQUENCE

The calling sequence required to use this
routine is as follows:
EXTRN HTASCV

LH 10, DATA USE R10 FOR
| ARG
'LOC BAL 15,HTASCV USE RI5 FOR
RETURN
B ERROR RETURN HERE
ON ERROR
STB 10, RESULT RETURN HERE
IF OK

Control returns to LOC + 4 if the binary
data presented in register 10 does not cor-
respond to a proper card code. On the er-

ror return, register 10 holds X'20', the
ASCII code for a space character. On a
normal return, register 10 holds the ASCII
code for the proper character.

4. OPERATION

The HTASCV routine uses registers 10 -15.
These registers are not restored to their
initial state on return to the calling program.
The card code specified in register 10 is
converted with a table look-up procedure.
The table used is shown on Table 1.

Card codes for unspecified entries in the
table (e.g. 1-8) are converted to ASCII
spaces. These table entries could be de~
fined with other codes if needed for special
applications.

Refer to Table 2 for a definition of the card
code for all ASCII characters.

5. TIMING

The code conversion requires the execution
of 19 -43 instructions. Assuming a uniform
distribution of card codes, the average code
conversion requires approximately 30 in-
struction times.

TABLE 1. CONVERSION TABLE
Rows 12, 11, 0, 8
Rows 1-7,9 blank 0 8 0-8 11 12 11-8 12-8

blank | B 0 8 Y - & Q H
1 1 / J A N\
2 2 S : B K B] L
3 3 T # , L C & .
4 4 Ul @l % M D * <
5 5 \' ! - N E) (
6 6 W = > (0] F ; +
7 7 X " ? p G 4 !
9 9 Y R I
B = ASCII space character (X'20'")

TABLE 2 :
ASCII TO CARD CODE CONVERSION

8-BIT 7-BIT 8-BIT 7-BIT
ASCII ASCI CARD : ASCII | ASCII | CARD
GRAPHIC CODE CODE CODE GRAPHIC CODE CODE | CODE
SPACE - A0 20 0-8-2 @ Co . 40 8-4 .
! Al 21 12-8-7 A C1 41 12-1
" A2 22 8-7 B Cc2 42 | 12-2
A3 23 - 8-3 C C3 43 12-3
$ Ad 24 11-8-3 D c4 44 12-4
% A5 25 0-8-4 E C5 45 12-5
& A6 26 12 F ce6 | 46 12-6
! A7 27 8-5 G C7 47 12-7
(A8 28 12-8-5 H cs “48 12-8
) A9 29 11-8-5 I C9 49 12-9
* AA 2A 11-8-4 J CA | 4A | 11-1
+ AB 2B 12-8-6 K CB 4B 11-2
R AC 2C 0-8-3 L cc | 4C 11-3
- AD 2D 11 M CD 4D 11-4
. AE 2E 12-8-3 N CE 4E 11-5
/ AT 2F 0-1 0) CF 4F 11-6
0 BO 30 0 P DO 50 11-7
1 Bl 31 1 Q D1 51 11-8
2 B2 32 2 R D2 52 11-9
3 B3 . 33 3 S D3 53 0-2
4 B4 34 4 T D4 54 0-3
5 B5 35 5 U D5 55 0-4
6 "B6 | 36 6 \'% D6 56 0-5
7 B7 37 7 w D7 57 0-6
3 B8 38 8 X D8 58 0-7
9 BY 39 9 Y D9 59 0-8
: BA 3A 8-2 Z DA 5A 0-9
; BB 3B 11-8-6 L DB 5B | 12-8-2
< BC 3C 12-8-4 \ DC 5C 11-8-1
= BD 3D 8-6] DD sD 11-8-2
> BE 3E 0-8-6) DE 5E | 11-8-7
? BF 3F 0-8-7 <~ DF 5F 0-8-5
— |

GE 29-036

SELECTOR CHANNEL PROGRAMMING MANUAL

1. INTRODUCTION

The Selector Channel controls the transfer
of data between I/0O devices and core mem-
ory at rates of up to 500K bytes per second.
Up to 25 I/O devices can be connected to the
Selector Channel, but only one device can
transfer data at a time. The advantage
gained in using the Selector Channel is that
other program processing can occur simul-
taneously with the transfer of data between
the I/O device and core. This is accom-
plished by allowing the Selector Channel and
the Processor to access memory on a cycle-
stealing basis. In some instances, the exe-
cution times of the program in process will
be affected, while in others, the eifect will
be negligible. This depends upon which
model GE-PAC 30 Processor is in use and
the rate at which the Selector Channel and
Processor both compete for access to mem-
ory. A GE-PAC 30 sales engineer can
supply exact details upon request.

This description applies to Selector Channel
Controller Boards, Part Numbers 32-030
and 32-03l. Figure 1l is a block diagram
which shows the incorporation of the Selec-
tor Channel into the GE-PAC 30 peripheral
system.

2. PROGRAMMING CONSIDERATIONS

Programming a device on the Selector Chan-
nel consists of setting up the device, setting
up the Selector Channel, and sending a GO
command to the Selector Channel. When

all devices on the Selector Channel are idle,

the Selector Bus becomes a part of the
Multiplexor Bus. This provides the path
to set up the device and the Selector Chan-

/

nel. The last device addressed prior to sen-
ding the GO command is the device the Selec-
tor Channel controls, assuming that the
device is connected to the Selector Channel.
The program must, therefore, address the
desired Selector Channel device, set up the
Selector Channel, and then send the Go com-.
mand before addressing any other devices.

~ CORE
MEMORY

it

< HIGH SPEED MEMORY BUS(HALF WORD) >

0 2 L7

PROCESSOR SELECTOR [DIRECT MEMORY
ULTIPLEXOR|
CHANNEL

ACCESS
CHANNEL

CHANNEL
SELECTOR
EUS (BYTE)
‘ v

(DMAC)

MULTIPLEXOR

BUS (BYTE)
v f* i
DEVICE
CONTROLLER
-] oevice DEVICE
TROLLER CONTROLLER
DEVICE DEVICE
CONTROLLER CONTROLLER
Figure 1 Systems Interface,

Block Diagram

During the data transfer, the Selector Chan-
nel provides a direct data path between the
device and core memory. Until the trans-
fer is completed, no I/0 instructions can

be issued to any device on the Selector Chan-
nel, including the device transferring data.

If devices on the Selector Channels are ref-
erenced while the Channel is busy, the False
Sync (V condition code) bit will be set. The
setting up or the initialization of the device
is accomplished by executing an Output
Command (OC or OCR) instruction. Refer
to the Programming Manual for the device

to be controlled for the bit configuration of
the Output Command. Note that the Selec-
tor Channel has a unique device number just
like all other I/O devices. Output Commands,
as with all input/output instructions, affect
only the device addressed.

The Selector Channel has a 16-bit incre-
menting address register and a 16-bit final
address register. The user program loads
the starting core address into the incre-
menting register and the final core address
into the final address register. Transfer

is completed when the incrementing address
register matches the final address register.
The address limits are expressed inclusive-
ly; transfers begin and end on the addresses
placed in the starting and final address
registers.

Core memories in most GE-PAC 30 Proces-
sors are addressed on halfword boundaries;
that is, each time memory is accessed two
bytes or a halfword are obtained. A sixteen
bit address register is used, with the least
significant bit, bit 15, being used to deter-
mine the byte desired. See Figure 2.

CORE WMEMORY

0 718 15
RALFV/ORD
EVEN BYTE OCD BYTE
BYTE BYTE
BYTE BYTE
BIT,I550 BITIBSI
0 14 |15
MEMORY ADDRESS REGISTER

BIT 18 SPECIFIES ODD OR EVEN EYTE———/

Figure 2. Memory Addressing

SAME VALUE
<] 7T({8 \ 18

2 BYTE BYTE \e
\—usr BYTE SPECIFIED

Each time the Selector Channel accesses
core memory, two bytes (a halfword) are
transmitted. It is mandatory that data
transfers begin on a halfword boundary
and end on either halfword or byte boun-
daries. This is accomplished by setting
bit 15 to zero in the starting register and
bit 15 to a one in the final address regis-
ter for halfword boundaries and zero for
byte boundaries. The following will re-
sult if data transfers are ended on byte
boundaries:

l. Write Mode (Core to Device) -
End on byte boundary (bit 15 = 0)
- no effect

2. Read Mode (Device to Core) —
End on byte boundary (bit 15 = 0)
- The previous contents of the
last odd byte in core is written
into the current odd byte in core.
See Figure 3.

NEXT TO LAST " BOTH BYTES HAVE

HALF WCRD

s EVEN BYTE 1 0DD BYTE \v

LAST HALF WORD

Figure 3. Core Memory Configuration,
End on Byte Boundary

The user program specifies the mode, eithe1
Read or Write, and gives the GO command.
The following sections provide details for
programming the Selector Channel.

NOTE

When executing programs that

involve the use of the Selector
Channel, the Processor may {
not be run in the Variable Mode.

3. SPECIFICS

3.1 Transmission of Starting and
Final Addresses

Four successive bytes are required to spec-
ify the starting and final addresses. Either
the Write Data (WD or WDR), or Write
Block (WB or WBR) instructions may be
used to send the starting and final addresses
to the Selector Channel Controller. Figure
4 illustrates the meaning of four bytes used
for addressing.

STARTING AUDDRESS
: 0 €| GH ——> 7 | 8 W | O W} ———— |5

i— 3 4
FiNAL ADDRESS '

1. Starting Address High (bits 0~7)
2. Starting Address Low (bits 8-15)
3. Final Address High (bits 0-7)
4. Final Address Low (bits 8-15)

Figure 4. Meaning of the Data Bytes
When Setting Start and Final
Address

3.2 Status and Commands

Table 1 illustrates the Selector Channel
Status and Command byte coding. A Sense
Status instruction (SS or SSR) is used to
transfer the status byte from the Selector
Channel Device Controller to the Processor.
The least significant four bits (4-7) of the
status byte are copied into the condition
code during the Sense Status operation.
Branch instructions can test these four bits
directly.

The Output Command instruction (OC or OCR)
is used for transmitting the command byte

to the Selector Channel Controller. Table 1
also describes the command byte.

3.3 Termination

Data transmission between the Selector
Channel and the Device presently connected
to it will be halted if any of the following
conditions occur:

1. The starting address matches the
final address. This would be con-
sidered a normal termination.

2. The starting (incrementing) address
goes from all ones to zero (maxi-
mum count). In this case, no
match occurred and this would be
considered an abnormal termina-
tion.

3. Any of the DU, EOM, or EX status
bits of the device presently connec-
ted to the Selector Channel changes
to a ONE. This is also an abnor-
mal termination.

4. A STOP command is sent to the
Selector Channel Controller via a
user program.

The termination condition is determined one
of two ways: by a status scan, or by the in-
terrupt method. The methods are described
in the following paragraphs.

1. Status Scan. The status of the
Selector Channel Controller may
be examined by issuing a Sense
Status (SS or SSR) instruction.

The Busy Bit is a 1 while trans-
mission is in process, and zero
when no transmission is in effect.
One method of testing for termina-
tion would be to continually or per-
lodically test the Busy Bit of the
Selector Channel Controller. The
change from one to zero would
then indicate the termination of a
data transfer. When the Selector
Channel is busy, only the busy bit

TABLE 1
SELECTOR CHANNEL STATUS AND COMMAND BYTE DATA

BIT NUMBER 0 1 | 2 3 4 | s 6 7
STATUS BYTE BSY |
COMMAND BYTE | READ| GO |sToP|

BSY

GO

STOP

This bit is set when the Selector Channel is in the process of transferring data.

This command changes the mode of the Selector Channel from WRITE to
READ. In the READ mode, data is transmitted from the active device on
the Selector Channel and written into core memory. Whenever a data
transmission has been completed, the Selector Channel is placed in the
WRITE mode. Each time a READ operation is required, a READ Com-
mand must be issued.

This command initiates a data transmission. This command can be issued
at the same time the READ/WRITE mode is established.

This command halts any data transmission in process and initializes the
Selector Channel for starting a new operation.

(bit 4) is present in the status byte
and all other bits are zero. At
termination, the status of the de-
vice is presented in the status byte,

except for the Busy Bit which is zero.

2. Interrupt Method. When data trans-
mission is initiated on the Selector
Channel, the interrupt is effectively
enabled. If external device inter-
rupts are permitted (bit 1 of the
PSW set) to enter the Processor,
at termination, the Processor will
be interrupted. The acknowledge
interrupt (AI, AIR) instruction will
cause the device number of the Se-
lector Channel (normally X'FO'")
and status of the peripheral device
to be brought into the Processor,
and also clear the interrupt for the
Processor. The Busy Bit is trea-
ted in the manner described pre-
viously for Status Scan.

3.4 Reading the Final Address

The last Processor core location either
written into or read from amy be obtained
by executing a pair of Read Data (RD or
RDR) instructions or a Read Block (RB or
RBR) instruction. This information will
permit a user program to verify a success-
ful data transmission or determine at what
address termination occurred.

Figure 5 illustrates the meaning of the order
in which the data is read into the Processor.

FINAL ADDRESS

"/ | 0 @———HIGH ———o 7

4. DEVICE NUMBER

The Selector Channel is normally assigned
device number X'FO', but may easily be
changed by a minor wiring modification on
the Selector Channel device controller board.
Refer to the Maintenance Manual for specific
details.

5. INITIALIZATION

Whenever the INITIALIZE pushbutton on the
Processor is depressed, the following ac-
tions occur:

l. Any data transmission in process
is halted and the stop mode is
effected.

2. The Selector Channel is placed in
the Write Mode.

3. The Selector Channel is made idle.

4. The Selector Channel interrupt is
reset.

6. SAMPLE PROGRAM

Appendix 1 presents a sample program
for a magnetic tape unit connected to the Se-
lector Channel. The purpose of this sample
program is to show the program instruction
used to control the Selector Channel and the
order in which they may be executed.

8 Qe LOW

—~| 8

!

l. final Address High (bits 0-7)
2. TFinal Address Low (bits 8-15)

Figure 5.

Order in Which Read Data

Instructions are Executed

- APPENDIX 1

OPT PASSEZsPRINTLPUNCH, STOP,LAB=MTSMP3

¥ SAMPLE PHOGHAM FOH MAGNETIC TAPE A —
* EQF/ WRITE/ BACKSPACE/ KEAD/ COMPARKE~- 9 TRACK @ &00 BPI
¥ USES SELECTOR CHANNEL e
*
* GENERATES AN END-OF-FILE MAHK, WRITES THE
* CONTENTS OF CORE (X'S00' TO X'FFF') ON THE TAPE,
* BACKSPACES 1 RECORD, HEREADS THE KECOKD AND
* COMPARES IT WITH WHAT WAS THEKE.
* IF THE RECORD 1S CORRECT, ANOTHER
* END-OF-FILE MARK IS WRITTEN
%
* ASSUMES TAPE WILL NOT ENCOUNTER BOT OR EOT
* .
0000 MT EQU O
0001 5C EQU 1
0003 STAT EQU 3
0004 INDEX EQU 4
0005 INCR EQU 5
000é LIMIT EQU 6
0007 TEMP EQU 7
0008 RETURN EQU 8
%
* WRITE CORE ON TAPE
O0O0OR C8&00 DUMP LHI MT»X'85" MAG TAPE DEV NO
0085 '
0004R C810 LHI SCsX'FO' SEL CHNL DEV NO
Co¥0 JLrbNL U
0008R 41F0 BAL 15, WAIT WAIT FOR NMTN=1
O00D4R :
000CR DEOQO ocC MT» WRTEOF EOF COMMAND
0106R .
0010R 9D13 BSY SSK SC»STAT WAIT FOR SEL CHNL NOT BUSY
0012R 4280 BTC 8,BSY
0010R
0016K DE10 ocC SC» STOP RESET SEL CHNL ADDRESSES
0105R
O01AR DA10 WD SC,WLIMS INTT SEL CHNL "ADDRESSES
OOF8R
O01ER DA10 WD SCs WL IMS+1
: O00F9R _
0022R DA10 WD SC, WLIMS+2
OOFAR
0026R DA1O WD SC,WLIMS+3
OOFBR
"002Ak 41F0 BAL 155 WAIT N VATT FOR NMTN=1
00D4R
002ER DEOO oc MTs WRITE NAC TAPE TO WRITE
0100K
SEAEETELS B ST VET SELCENLTO—veo+—
0102K
0036R 9DI 3 WATTI SSKSCS STAT WATT FOR SEL CHENL NOT BUSY
0038R 4280 BTC &, WAITI
0036R

o ® N 0V N T o &~

8o~mr\~onvn-éo

N W A 0 N ™ o

ol s PR

0O03CK 9D03 WAIT2 SSR MT»STAT WAIT FOR EOM=1
OO0O3ER 4320 . - § Y 2y WAlT<2
003CR :
T 0042K C430 NHI STAT,»X"Cl " ERREOF>DU MUST =0
0ocC1
0046R 4230 BNZ SUBRI
OOEOR .
004AK DB10 RD SC,HIADRS READ "BACK "SEL "CHNL "ADDR
0108R '
004ER DBI10O RD SC5>LOBDRY
0109R
0052R 4870 LH TEMPs» HIADRS
O108R
0056R 4570 CLH TEMP, WL INS+2
OOFAR
005AR 4230 BNE SUBRZ HIADKS "BAD
OOE4R
* BACKSPACE 1 RECORD
OOSER 41FO0 BAL 15, WAIT WAIT FOR NMTN=1
O0D4R
0062K DEOO oc MT,BKSP
o O104R :
* READ THE RECORD JUST WRITTEN :
0066R DEI10 0C SC5 STOP INTT SEL CHNL
010Sk
SCEAT DATO S R TR SR UP SEL - CHNL - ADDRESSES
O0OFCR
006ER DA10 WD SCLRLTIMS+1
OOFDR .
0072R DA10 WD SC»RLIMS+2
OOFER
0076R DA10 WD SCHRLIMS+3
OOFFR
007AR 41F0 BAL I8, WATT WATT FOK NMTN=1
OO0D4R ‘ ,
00 7ER DEOO ocC MT»READ MAG TAPE T0 READ
O101R
0082R DE1O 0cC SC» GOKD SEL CHNL TO "GO
: 0103R
0086R 9D13 ~WATITS SEK SC>STAT WATIT FOK SEL CENL NOT BUSY
O0&8R 4280 BTC 8>WAIT3
00 &6k)
00&CR 9D03 WAIT4 SSR MTsSTAT WAIT FOR EOM=1
O0BER 4320 BFC Sy WATTA
00 8CR »
0092K C430 NH1 STAT>XKCT™ ERRSEOF, DU MUST=0
00cC1
0096R 4230 BNZ SUBR3
OOES&R '

- 009AR DBI0 RD SC>HIADRS READ "BACK "SEL CENL ADDR
. O10&R :
T009ER DBIO RD SCLLOADRS

- 010SER :
00A2k 4870 " LE TEMP, HIADRS

00AEER 4570 CLH TEMPsHLIMS+2
OOFER
00AAK 4230 ENE SUBR4 BPIADES BAD
OOECK .
* COMPARE READ/WRITE BUFFEKS
O0AER 0744 XHK INDEXs» INDEX
O0OBOR C850 LHI INCEs 2
0002
00B4K C&€0 LHI LIMIT, XVAFFY
OAFF
OOB&R 4874 COMPAR LH TEMP, WEBUFF CINDEX)
0500
OOBCK 4574 CLH TEMP> RBUFF CINDEX)
1000
00COK 4230 BNE SUBRS DOES NOT MATCH
OO0FOR
00Cak €140 BXLE TINDEX, COMPAR LOOP
O0OBS&R
* WRITE END-OF-FILE MARK
OOCE&R 41F0 BAL 15, GWAIT WAIT FOK NNIN=1
SODaR NE
00OCCk DEOO ocC MT»> WRTEOF END=OF=FILE COMMAND
GTGEE , il
OO0ODOR 4300 B DUMP RESTAKT PKO GRAM
0000k -
%
%
E
OOD4R 9D03 WAIT SSR MTs STAT
O0OD6R C430 NHI STATsX'10"
0010
OODAR 4330 BZ WAIT WAIT FORK NMTN=1
S 3L
OODER 030F Bk 15 RETURN
* ENTKIES FOR ERKOR LOGIC
OOEOR 0000 SUBKI1 DC 050 WRITE ERROR
, 0000
OOE4R 0000 SUBR2 DC 050 SC WRT ADRS BAD
5666 e _
O0OE8&R 0000 SUBR3 DC 050 READ ERROR
0000 ,
. OOECR 0000 SUBR4 DC 050 SC READ ADRS BAD
0000 .
O0OFOR 0000 SUBKS DC 050 COMPARE EKROR
0000
O0F4R 0000 SUBR6 DC 050 DEVICE UNAVAILABLE
0000
, * CONSTANTS» TEMFOKARY STORAGE
OOF&R 0500 WL IMS DC WBUFF
OOFAR OFFF DC WBUFF+X 'AFF *
O0FCR 1000 RLTIMS be REBUFF
OOFER 1AFF DC RBUFF+X'AFF '
0500 WBUFF EQU X500
1000 RBUFF EQU X'1000"

o ® N WV OV ¥ O~

Q & ® N © © X o o = 2

OTOOR AZAIL WRITE DC XTAZAT™ DIS>FWD5 WR
O101R READ EQU *-1 DIS>FuwDs KD
0102R 1030 GOWRT DC X'1To30™ WRITE SELCENL™
0103kR ‘ GORD EQU k-] READ SEL CHNL
O1TU4R™9108 BKSP DC X'T9108™ BACKSPACE "COMMAND
O0105R STOP EQU *=1 INIT SEL CHNL
0106R 3030 WHETEOF DC Xv3030" END=0OF=FILE COVMNMAND
O10&R HIADRS EQU *
O01T09R LOADRS "EQU HIADRS#T
O010&R END
BKSPF 0104k
BSY 0010k
COMPAR O0OOBSK
DUOMP 0000k
GORD 0103K
SOTHET T 0105E
HIADKS O0108R
—NEE - DEGE
INDE X 0004
LIMIT 000€
LOADKS 0109k
MT 0000
RBUFF 1000
READ 0101k
RETURKN 0008
KL IMS OOCFCR
SC 0001
STAT 0003
STOP 0105K
SUBEK1 OOEOR
SUBR2 O0OE4Kk
SUBK3 OOE&R
SUBK4 O0ECR
SUBKS O0FOR
SUBE6 O0F4k
TEMP 0007
WAIT O0D4K
WAITI 0036k
WAIT2 003CR
WAIT3 00&ér
WAIT4 O0&CR
WBUFF 0500
WL IMS O0F8R
WRITE 0100k
WRTEOF O0106R

O w & o N ® 0
; ; PR

TABLE OF CONTENTS

LOADER DESCRIPTIONS

1.

2

3.
.4‘

5

60

INTRODUCTION

FEATURES IN COMMON

OBJECT TAPE FORMAT
PROGRAM RELOCATION
GENERAL LOADER FEATURES
5.1 BIAS Printout

5.2 Messages

5.3 ENTRY/EXTRN Handling

5.4 Forward Reference Definitions

LOADER TAPE FORMAT

7. OPERATION
BOOTSTRAP PROGRAMS AND PROCEDURES
1. INTRODUCTION '

2. GENERAL DESCRIPTION

3. FAST FORMAT

4, TAPE PREPARATION
APPENDIX 1 SUMMARY
APPENDIX 2 50, 68 SEQUENCE
APPENDIX 3
APPENDIX 4
APPENDIX 5

APPENDIX 6

GE 06-025A12

GE 06-030A12

LISTING OF THE RELOCATING BOOTSTRAP
ABS BOOT FRONT END LISTING

FAST FORMAT LOADER LISTING

FAST FORMAT PUNCHER LISTING

GE 06-025A12

LOADER DESCRIPTIONS

1. INTRODUCTION

Two loaders are available for loading standard
format binary object tapes as generated by the
Assembler or Hex Debut Program (CLUB). The
three loaders are:

Loader Program Part No.
The Relocating (REL) 06-024
Loader
06-025

The General Loader

These loaders are compatible, but vary in size
and the number of features provided. The Gen-
eral Loader is the most comprehensive, with
facility for ENTRY and EXTRN handling, forward
reference definitions, label processing, relocation,
etc. The REL Loader handles program relocation,
but all data must be defined; i.e. no ENTRY's,
EXTRN's, or object tapes from 1-pass assemblies
are handled. Tapes with undefined data can be
loaded since the REL Loader will skip the appro-
priate items., Standard binary object tapes
supplied by GE-PAC 30 have an M08 part designa-
tion for relative tapes, and an M09 part designa-
tion for absolute tapes.

Appendix 1 provides a summary of the important
loader features.

2. FEATURES IN COMMON
The following features are common to both loaders.

1. All loaders are provided in relocatable
bootstrap form (M10 part designation),
These tapes are loaded with the 50 loader,

NOTE

The 30-2 instruction set includes the
Autoload instruction which allows the use
of the 68 Loader (a shorter form of the
50 Looader which allows leading blank
tape to be bypassed). Appendix 2 con-
tains listings of both loaders.

Each loader tape contains a relocating
bootstrap sequence followed by the actual
loader in normal relocatable object for-
mat. The relocating bootstrap sequence
causes the REL or General Loader to be
loaded into the top of available core mem-
ory.

2. The input device for loading is definced by
the Binary Input Device in the Device
Definition Table in low core. Specifically,
the halfword at X'78' is interpreted as

follows:
7”10 718 15
Dev No Command

This halfword for various devices is
shown below:

Teletypewriter 0294
High Speed Paper Tape
Reader 0399

3. When reading binary data from tape,
blank tape and illegal characters are
skipped. The set of legal tape charac-
ters is defined in Section 3.

4, Checksums and sequence numbers are
checked after each binary record is read.
Appropriate error halts are used when
errors are detected.

5. The first location (ORG) of each loader
is the starting location. Starting proce-
dures are discussed further in Section 4.

6. While a tape is being read, the loaders
output the data bytes to the console lights
for confirmation of loader operations.

7. The console lights are used to identify
the meaning of loader halts. The light
' patterns used are:

XX00 for normal end

XXO0F for checksum or
sequence number
error

XXFn for improper loader
control item where
n is the 4-bit item

Refer to Appendix 1 for a summary of
improper control items

8. The loaders transfer to the program
loaded, if specified on the object tape.

3. OBJECT TAPE FORMAT

Standard format binary object tapes are divided
into records: records are separated by 12 blank

characters. Each record contains 108 bytes of
information. The first four bytes are organized
as follows:

0 15
Sequence Number

Byte 1 and 2

Byte 3 and 4 “Checksum

The sequence numbers are negative integers -1,
-2, -3, etc. represented in two's complement
form. The first record in a program must have
sequence number -1, Subsequent records must
be in proper order to be loaded.

The checksum is an odd parity Exclusive OR sum
of all words in the record, except itself, plus a
word of all ONE's, When a checksum error is

detected during input, the loaders halt with XX0F.

indicated on the console lights.

The remainder of the record is a sequence of
items; an item is 4-bits or a half-byte. There are
two types of items: control items and data items.
There are 16 different control items, each of
which is followed by a certain number (which
might be zero) of data items.

The control items, and their meaning are listed
on Table 1, :

Each character punched on paper tape represents
one item of information. The least significant

four bits of the row are used for data, the most
significant four bits control the ASR 33 zones. The
zones have been selected to produce a non-print-
ing set of ASCII characters and to avoid the charac-
ters XON, XOFF! TON, TOFF and WRU. Since
each record consists of 108 bytes of memory and
control data, there are 216 rows punched in the

‘tape for each record. The rows punched and their

hexadecimal equivalent are as listed on Table 2.

TABLE 1. CONTROL ITEM DEFINITIONS
number of data
Control Item Meaning items following
m —= e —
0 Read next record 0
1 End of program 0
2 Define chain 0 |
3 Toggle abs/rel mode 0
4 Load transfer address 4
5 Load program address 4
6 Load reference address 4
7 i Load definition address 4
8 Data, 2 bytes absolute 4
9 Data, 2 bytes relative 4
A Data, 4 bytes absolute 8
B Data, 4 bytes relafive 8
C Symbol, reference 12
D Symbol, definition 12
E Unused 0
F Program Label 12

TABLE 2. TAPE CODES
e e ——— — — —
ZONE DATA
%==ﬁ
1001 0000
1000 0001
1000 0010
1000 0011
1000 0100
1001 0101
1001 0110
1001 - 0111
1001 1000
1001 . 1001
1001 . | 1010‘
1001 1011
1001 1100
1001 1101
1001 1110
1001 : 1111

The tape therefore appears as shown on
Figure 1.

s L
s P s
8 R @
QO ©O00000)*F] geQUENCE NUMBER OF FIRST
O Q00000 *F) pecorD=—IOR xgnrr' WHICH
o gg :8%8 :: IS TWO BYTES OR FOUR ROWS
§ :o :i CHECKSUM FOR EACH RECORD
O ©O o000 =7[USES FOUR ROWS

. £y)
8 ooo 88 : 3 FIRST CONTROL (ABS/REL SWITCH)
O O 60 O} =8_ SECOND CONTROL (LOAD ADDRESS)
(o] [o 2] s 0
(o] @ Of+)) ADDRESS TO BE LOADED I8 X'0100'
(o] O e =0
(o] O e s

RECORD I3 CONTINUED TO
108 BYTES OR 216 ROWS

FIGURE 1. TAPE FORMAT

4. PROGRAM RELOCATION

The binary tapes generated by the Assembler
can be absolute or relocatable, which
can be loaded by either the

REL Loader or the General Loader. With
these loaders, a pointer called the BIAS
identifies the first location (lowest address)
to be used for a relocatable program.

When the REL or General Loader is execu-
ted at its starting address (ORG), the BIAS
value is set to X'80'. This BIAS value is
used during program loading to adjust any
relocatable data values., Note that absolute
data is stored at the absolute location speci-

, fied for the data; absolute programs have no
effect on BIAS. Relocatable programs are
stored from the location indicated by BIAS

~upward into memory. After a program has
been loaded, the BIAS value is adjusted to

" point to the next available location. To in-
dicate that the load is complete, the loader
halts with the Wait light illuminated, and
with XX00 contained in the display register.

At this time, the adjusted BIAS value is held

in Register 0. This register can be exam-
ined by rotating the MODE CONTROL switch
to HALT, rotating the REGISTER DISPLAY
switch to R0O/R1, and depressing EXECUTE.

If more programs are to be loaded, place
the next tape in the reader, put the MODE
CONTROL switch in RUN, and depress
EXECUTE. This procedure starts the
loader executing at ORG + 1A, which is the
Continue Location. The continue operation
uses the current value of BIAS, and does
not reset it to X'80'. Multiple relocatable
tapes are thus loaded one after another into
adjacent areas of core memory.

If it is desired to load a relocatable program
at an arbitrary point in core memory, it is
necessary to redefine the BIAS value. To

‘adjust the BIAS pointer, use the following

procedure.

1. Change the halfword at ORG + A
in the loader to the desired BIAS
value.

2. Start the loader executing at
ORG + 8, rather than the nor-
mal start or continue location.

Note that the value at ORG + A remains un-
til changed to a new value. The loader can
always be restarted at ORG + 8 which resets
the BIAS to the value contained in ORG + A,

5. GENERAL LOADER FEATURES

In addition to the capabilities already dis-
cussed, the General Loader provides various
features not available with the REL
Loader,

5.1 BIAS Printout

At the start of every load operation, the
General Loader types on the teletype-
writer the current value of the BIAS
pointer, This printout occurs prior

to reading the first record of a new
program, and the message is of the
form

BIAS. = XXXX

where the XXXX represents the current
BIAS value in hexadecimal form.

5.2 Messages

Other messages which are typed on the
teletypewriter are as indicated in
Table 3.

5.3 ENTRY/EXTRN Handling

Programs generated by the assembler can
use ENTRY's or EXTRN's to achieve cross-
referencing and linkage with external pro=
grams. In this case, the object tape for
these programs contains the symbolic names
declared as ENTRY's or EXTRN's. The
General Loader uses a symbol table to re-
member these names when a program is
loaded. This symbol table builds downward
in core memory from the origin (ORG) of
the loader. Each entry in the loader symbol
table requires 8 bytes of memory.

Since the loader symbol table is building
downward into memory, and the programs
being loaded are building upward into mem-
ory, the loader checks to see that the loading
program does not over-write the symbol
table. If the loading program requires data
stored above the current bottom of the sym-
bol table, a memory full message is gener-
ated, and the loader halts.

When the General Loader is initially entered

-into memory, the symbol table contains 3

entries which are global symbols relevant to
the General Loader itself. These global
symbols and their meanings are:

LOAD This symbol represents the
origin of the General Loader.
Given this symbol, an ex-
ternal program can deter-
mine the start, continue,
and bias-redefinition loca-
tions.

BIAS This symbol represents the
halfword in the loader which’
contains the current BIAS
value.

CRNT This symbol represents the
halfword in the loader which
contains a pointer to the cur-
rent bottom of the symbol
table. Given this pointer,
an external program can test
and/or alter the size of the
loader symbol table. To
clear the table, a program

_should load the halfword
CRNT with the value LOAD
-8. To clear the table of
all symbols except the 3
global symbols, a program
should load the halfword
CRNT with the value LOAD
-X'20".

Note that no program can define an ENTRY
point with the name LOAD, BIAS, or CRNT,
because such a definition would conflict with
the global symbols in the General Loader.

When the Genceral Loader is executed at its
start location (ORG) or its bias - redefini-
tion location (ORG + 8), the symbol table is
cleared of all names except the 3 global sym-
bols. Executing the General Loader at its
continue location (ORG + 1A) does not change
the state of the symbol table.

TABLE 3.

ERROR MESSAGES

m’

I

Message

Meanin,

m

CKSM ERR

SEQ NUM ERR

MEMORY FULL

NORMAL END

A checksum error was detected after reading
the previous record. Reposition the tape to the
beginning of the record and push EXECUTE to
reread the record.

A sequence number error was detected after
reading the previous error. Reposition the tape
to the proper record and push EXECUTE to try
again. This error usually occurs when the tape.
is improperly positioned following a checksum
error.

This message is caused by a conflict between
the General Loader and the loading program.

The program being loaded has not been loaded
to conclusion. The alternatives are:

A. Load fewer programs

B. Make absolute tapes of the programs to be
loaded and then use REL Loader which
requires much less memory. _

C. Eliminate some EXTRNS and ENTRYS
to reduce size of symbol table.

D. Purchase more memory.

Note that the General Loader cannot load programs
above itself in memory.

This case occurs when a program has success-
fully loaded and no END transfer address has

been specified or if undefined external references
remain. All undefined external references will be
listed on the printer preceded by a U prior to
printing the NORMAL END message. If a transfer
address is specified and no undefined symbols re-
main, the Loader transfers directly to the address
specified, and no NORMAL END message occurs.

LOAD ERR

TABLE 3. ERROR MESSAGES

(Continued)
W‘
Message Meaning

W)
This message results if a control item E is de-
tected during load. Push EXECUTE to ignore

the control item and proceed with the load. Note
that this control item should not occur in general.
This message, therefore, may be indicative that
something is wrong. In this case, it is recommen-
ded that the loading procedure be restarted.

At the end of cach program load, the symbol
table is scanned for undefined symbols. Any
undefined symbols are typed in the form

U XXXXXX

where XXXXXX is the symbol name. All
such undefined names are printed preceding
the normal end message. An undefined sym-
bol results from the fact that the symbol was
declared as an EXTRN in some program,
and no program yet loaded has declared that
same symbol as an ENTRY. As soon as
some loading program declares that symbol
as an ENTRY, the symbol becomes defined.
If more than one program declares a symbol
an ENTRY, the message

M XXXXXX

where XXXXXX is the symbol name, is
typed at the time the multiple definition oc-
curs. In this case, the first value defined
remains in the symbol table, and the second
definition value is ignored.

At the end of each program load, the loader
transfers immediately to the program
loaded, only if a transfer address is speci-
fied on the tape, and if the symbol table

contains no undefined symbols. If any sym-
bols in the table are undefined at the end of

a load, those symbols are listed, NORMAL
END is printed, and the loader halts, wait-
ing to load the next program.

5.4 Forward Reference Definitions

Program object tapes generated by 1-pass
assemblies involve forward references to
symbols which are defined later in the pro-
gram. The General Loader uses a chaining
procedure for satisfying any forward refer-
ences at the time the symbol definition is
encountered. Therefore, 1-pass assemblies
are possible, provided the General Loader
is used to load the object tape. Note that

“the REL: Loader cannot perform

this forward reference definition function.

An example of a forward reference in a pro-
gram is:

OPT ~ PASS1, PUNCH
LH 3, SAM
BR 5
SAM DC 3
END

In this case, the reference to SAM occurs
before SAM is defined. There are several
restrictions on the use of forward references
during 1-pass assemblies, and on the use of
symbols which are ENTRY's or EXTRN's
for the program to be loaded properly. The
restrictions are: ‘

1. Such symbols must not be com-
bined in arithmetic expressions

such as
LH 3,SAM+2

2. Such symbols must not be used
in the R1 or R2 field for an in-
struction such as

LH 3,2(SAM)

3. Such symbols must not be used
with assembler pseudo-ops such
as DO, EQU, END, etc; for ex-
ample '

DO SAM

5.5 Label Handling

Programs generated by the assembler can _
be labelled through the use of the OPT Com-
mand such as:

OPT PASS2, PUNCH, LAB=ABCDEF

The program label can be up to 6 characters.
The first character must be a letter; sub-
sequent characters can be letters or digits.
The object tape, in this case, contains the
program label in symbolic form. When the
Gencral Loader detects a program label,

the label is typed in the form

I.LABEL = ABCDEF

If object tapes which contain labels are
loaded by the REL Loader,

an error halt occurs with XXFF on the Dis-
play Panecl. In this case, push EXECUTE
to proceed with the load.

8

e e

J

RELOCATING BOOT IN 8 £IT FORMAT

. CONSISTS OF LOADER # ND CHECKSUM
SEQUENCE, TOP-OF-CORI SEARCH,
AND REL LOADER,

o BLANK TAPE

AL

LOADER PROGRAM iN STANDARD
BINARY OBJECT TAPE FORMAT,
" RECORDS ARE 216 CHARACTERS
LONG AND SEPARATED EY 12 BLANKS

|

FIGURE 2. LOADER TAPE FORMAT

6. LOADER TAPE FORMAT

The loaders are provided in a relozating
bootstrap form. The format of the tapes is
illustrated in Figure 2. The tapes consist
of two segments: the boot portion in 8-bit
format, and the actual loader in stindard
binary object tape format. When tae tape

is loaded using the 8-bit loader at X'50',

the following sequence of events tazes place.

1. The 8-bit loader at X'50' reads
another loader into X 30' 1o X'CF!
and transfers to X'80'.

2. The program at X'80' reads the
balance of the 8-bit data into
X'DO' to X'34F"', which includes
a REL Loader.

3. An arithmetic checksum on the
information from X'DO' to X'34F"'
is then tested. If the checksum
is correct, the process continues.
If the checksum is not correct,
the tape is stopped and the pro-
gram halts.

4. The top-of-memory is then
determined with a search tech-
nique, and the REL Loader
BIAS is set a fixed distance
from the top-of-core. The
REL Loader is
placed X'300' from the top-
of-core. The General Loader
is placed X'600' from the top.

5. The REL Loader then reads
the loader program, which is
in relocatable form, and re-
locates it into the top portion
of core memory.

6. The REL Loader computes
checksums on each record,
and halts whenever a checksum
error is detected. In this case,
reposition the tape to the pre-
vious record gap and push EXE-
CUTE to re-read the record.

7. When the entire tape has been
loaded, the Processor halts
with the Wait light illuminated.
Press EXECUTE to transfer
control to the loader just loaded.

. This sequence requires that the proper 50
/ Sequence is used, including the Binary Input
Device Definition in X'78'. The 50 Sequence

is shown in Appendix 2. Listings for the
relocating oot sequence, including the REL
Loader, arc shown in Appendix 3.

Since the loader portion of each tape is a
relocatable object tape, it is possible to put
the loaders anvwhere in memory. This can
be done by using a bootstrap load to get the
REL or General Loader into the top of mem-
ory. The BIAS can then be adjusted and any
loader can then be relocated to any arbitrary
point in memory. Once relocated, CLUB
can be used to «iinp an absolute tape of the
loader in thai location.

CAUTION

Note that when loading the
bootstrap loader tapes, mem-
ory from X'80' to X'3BF' is
used. Any programs in this
area of memory will be over-
written,

7. OPERATION

The steps required to load and operate the
loaders are summarized below.

1. Manually enter the 50 sequence
into memory if it is not already
there. Specify the device to he
used for loading X'78', the Bi-
nary Input Device definition.
See Appendix 2 for a listing of
the 50 sequence.

2. Place the loader tape in the tape
reader, with the first data char-
acter over the read fingers, or
photo diodes. If program linkage
is required, or one-pass ohject
tapes are to be loaded, the Gen-
eral Loader must be used.
Otherwise, the REL Loader can
be used.

Enter X'0050' into the console
switches, select ADRS Mode and de-
press EXECUTE.

Depress INITIALIZE. Select
RUN Mode, and depress EXE-
CUTE. ‘

If an ASR 33 Teletypewriter is
being used as the input device,
it is necessary to toggle the
reader switch to START, which
starts the tape moving. If an
ASR 35 Teletypewriter is in
use, the mode switch should
be in the T position, and the
reader switch should be put

in RUN to start the tape. 1If a
high speed paper tape reader
is in use, the tape will start
by itself.

If no input errors occur, the
entire tape will be read to
the end, at which time the
Processor will halt with
XXO00 in the console lights.

If checksum errors are detected
during tape input, the tape will

stop and the Processor will halt
with XX0F contained in the con-
sole lights. When this occurs,
reposition the tape to the previous
record gap, and push EXECUTE
to re-read the record. If the
error halt occurs after the first
record on the tape, restart the
entire load procedure.

Put the tape to be loaded into the
tape reader. If the tape to be
loaded is relocatable, and a spec-
ific BIAS value is required, enter
the BIAS value into ORG + A, and
set the starting address to ORG +
8. If the tape to be loaded is ab-

“solute, or if the current BIAS value

10

10.

11.

12.

is satisfactory, set the starting
address to ORG. Depress INITIA-
LIZE. Select RUN Mode and depress
EXECUTE.

If improper control items are

detected during the load, the

tape will stop, and the Proces-

sor will halt with XXFn contained
in the console lights where n is
the bad control item. When this
occurs, it must be determined if
the right loader is being used.
That is, if the object tape involves
ENTRY's or EXTRN's or for-
ward references, the General
Loader must be used. If the
loader is appropriate, and the tape
is proper, push EXECUTE to

skip the improper data and pro-
ceed with the load.

If checksum errors are detected
during the load, the tape will stop
and the Processor will halt with
the Wait light illuminated and
XXOF contained in the console
lights. Reposition the tape to
the previous EXECUTE to re-
read the record.

When the load is complete, the

tape will stop. H no transfer ad-
dress is specified on the tape,

the Processor will halt with the
XX00 contained in the display reg-
ister, If a transfer address is
specified, the REL Loader will
transfer directly to the location
specified. The General Loader
transfers only if the symbol table
contains no undefined symbols.

If more tapes are to be loaded,
return to step 8 and repeat the
process. This loading process
is summarized in Figure 3.

SET ADDRESS
SWITCHES TO
OR@

CHANGE

SELECT ADDRESS
MODE

PUSH EXECUTE

SELECT RUN MODE

O—

PUT TAPE IN READER

O—

PUSH EXECUTE

SET
ADDRESS
SWITCHES
TO ORG+8

—

TAPE I8 READ ONE
RECORD AT A TIME

18 THIS TAPE OK,

FIGURE 3. OPERATING PROCEDURE

ORE PROGRAM
TO LOAD

BACK UP TAPE
| RECORD

NO

-(NOT POSSIBLE)

ABORT LOAD)

11

GE 06-030A12

BOOTSTRAP PROGRAMS AND PROCEDURES

1. INTRODUCTION

Certain absolute programs, such as
FORTRAN and the Assembler are
provided in absolute bootstrap form
(M10 designation). This tape format
provides the following features.

1. The tapes are self-loading,
requiring only the 50 or
68 Sequence to load the
tape into memory.

2. The loading time is minimized.

3. The tape is organized in blocks.
This format enables error checks
to be made while the tape loads.

4. At the completion of the load,
control is transferred to the
loaded program.

This tape format is appropriate for absolute
programs only. Relocatable programs, such
as the standard loaders, are provided in
other formats which permit relocatability.
This document discusses programs and pro-
cedures associated with absolute bootstrap

- tapes.

2. GENERAL DESCRIPTION

Absolute bootstrap tapes consist of two major
segments:

1. The bootstrap portion, in 8-bit
format, which contains a front-
end intermediate loader, and a
Fast Format Loader.

2. The actual program to be
loaded, represented in fast
format.

The two major segments of the tape are
separated by several inches of blank tape.
See Figure 1.

When an absolute bootstrap tape is loaded,
the following sequence of events takes place.

1. The 8-bit loader at X'50' or X'68!
reads the front-end intermediate
loader into locations from X'80'
to X'CF', and then transfers to
X'80°'.

2. The front-end intermediate
loader at X'80' reads the
Fast Format Loader, which
is the balance of the 8-bit
data, into locations from
X'1D00' to X'1E01', and
computes an arithmetic
checksum in the process.

3. The arithmetic checksum
on the information from
X'1D00' to X'1E01' is then
tested. If the checksum is
not correct, the tape is
stopped and the program
halts. If the checksum is
correct, the process con-
tinues, and control is trans-
ferred to X'1D00', the
starting location of the
Fast Format Loader.

This operation requires that the proper 50
Sequence is used, including the Binary De-
vice Definition at X'78'. Listing of
both sequences are shown in Appendix
1. A listing for the front-end routine
is in Appendix 2. Fast Format Loader
and Puncher listings are in Appendices

BOOTSTRAP PORTION IN 8 BIT FORMAT, 3 and 4
 CONSISTS OF FRONT~-END LOADER AND .
THE FAST FORMAT LOADER, 3. FAST FORMAT
Z Fast format tapes are organized into 260
. character records, separated by 8 blank
 BLANK TAPE characters. Each character on the tape
: contains 8-bits, or 1 byte of information.
3 The first two characters in each record

- define a sequence number. Sequence num-
bers are negative integers -1, -2, -3, -4,
etc, represented in two's complement bi-
nary form. The third and fourth characters
in each record define an arithmetic check-
sum. This checksum is generated when the
tape is punched, and checked when the tape

ABSOLUTE PROGRAM N PAST FORMAT. is loaded. '

> RECORDS ARE 260 CHARACTERS LONS,
AND SEPARATED BY 6 BLANKS.

The first record of a fast format tape con-
tains 3 addresses immediately following the
checksum characters. Each address takes
2 characters. The addresses, in the order
in which they appear on the tape, are as
follows:

A - - - -

1. Starting (lowest) address for
the program.

2. Final (highest) address for the

Figure 1. Absolute 'Bootstrap Format program.

3. Transfer address at the end-

of-load.
4. The Fast Format Loader
then reads the program. At
the completion of the load,
the Fast Format Loader The remainder of the first record, and the
transfers to the loaded entire contents of all subsequent records, are|

program. ‘ ~ absolute 8-bit data bytes for the program.

The Fast Format Loader checks the check- : 4.
sum during loading. If an error is detected,

the tape is stopped, and the Processor halts.

with XX0F displayed on the console

lights. In this case, reposition the

tape to the previous record gap and 5.
depress EXECUTE to reread the pre-

vious record.

A listing for the Fast Format Loader isb
provided in Appendix 3.

4. TAPE PREPARATION
Bootstrap tapes are produced in two steps:

the first step generates the bootstrap por-
tion, which includes the Fast Format

1.

Loader; the second step reduces the de-

sired program to fast format.

The first step is accomplished as follows:

‘ . . 2.
1. Load the Absolute Boot Front
End from X'80' to X'CF".

3.

2. Load the Fast Format Loader
in the appropriate location.

3. Compute the arithmetic check-
sum of the Fast Format Loader
and enter the computed check- 4,
sum into the location at X'A2'.

Adjust the PLOW, PHGM, and
PSTRT values in the Front-End
routine.

Punch the Front-End routine
and the Fast Format Loader

in 8-bit format in one conse-
cutive block on tape, using the

CLUB Q diregtive.

The second step includes the following:

Load the object program into
memory.

Load the Fast Format Puncher.

Set up the necessary parameters
for the Fast Format Puncher
program. (See Appendix 4.)

Punch the program in fast
format.

APPENDIX 1
SUMMARY

The following Console indications are common to all loaders.

Console Lights ' Condition
XX00 Normal End
XXO0F Input Error
XXFn Load Error

Comment

Load complete

A checksum or sequence
number error was detected
after reading the last record.

‘Reposition tape and push

EXECUTE to reread.

Improper control item detected where
n is the bad item. Push EXECUTE to
ignore the data and continue. Refer
to Section 3 for a definition of loader
control items.

REL Loader General Loader

Starting address

after boot load* nD00 nAo00

Restart address

in general ORG ORG

‘Bias define

address ORG + 8 ORG + 8

Bias definition value ORG + A ORG + A

Continue address ORG + 1A , ORG + 1A

Loader size X12B6* X'538'

Illegal control

items 2,6,7,C,D,E, F E

Ignored control

items _ emme———— mee—ee
*n=0,1,2,3, ... for memory sizes 4K, 8K, 12K, 16K, etc.

General Loader Restart - sets BIAS to X'80'

- clears symbol table of all but LOAD, BIAS, CRNT
- clears any transfer address

Al-1

~
N W A 0 o NTE ‘e

© O O N VvV WV ¥ M N ~ O O O N © O - ™

APPENDIX 2.
50, 68 SEQUENCE
*
* N
* 50 SEQUENCE LOADER
*
0056 ORG X450
0050 9§ZO LOAD LHI 2,X780” LOADS TAPE FROM X/80”
0054 (€830 LHI 3,1 THRU X’CF”/
0058 (840 LHI 4,X’Cr”
00€t
005C 9259 LB 10, BINDV NOTE THAT LOCATION X’/5A’
OUTO . -
0060 DEAQ 0cC 10, BINDV#+1 MUST BE CHANGED FOR ALL
Uuily . .
0064 9DAE SENSE SSR 10,14 M14 TEST PROGRAM TAPES
~~~~~~~~~~~~~~~ @066 ‘GBEE“““LHR14 . i 4
0068 4230 BIC  3,SENSE
0064
006C DBAZ2 RD 10,0(2)
0000 ;
Q070 C120 BXLE 2,SENSE
0064
0074 4300 B X280
0078 0294 BINDV DC X20294~ DEVICE DEFINITIONS ARE
007A .............. 0298 B()UTDV - DC - x '0298' e F()R TTY
007C 0294 SINDV DC X2 02947
*
k.3
* 5 bEQUENCE LOADER
* FOR 30=2PROCESSORS ONLY
*
0068 ORG—X*68+
0068 (830 LHI 3,1 LOADS TAPE FROM X480/ THRU
0001 '
006C Déﬁg LB 0,BINDV X?CF’. LOCATION X’72°
UUTr o ‘
0070 D500 AL 0,X’CF’ MUST BE CHANGED FOR ALL
00CF :
0074 4300 B X280 M14 TEST PROGRAM TAPES
0080
* DEVICE DEFINITIONS ARE SAME AS FOR 50 SEQUENCE
— e ————
*
*.—-
* HIGH SPEED PAPER “TAPE READER= NN99 (BINDV SINDV)
* HIGH SPEED PAPER TAPE PUNCH=_ NNQK'fBUUTﬁV) T
* CARD READER= 'NN20 (SINDV)
* —WHERE “NN= DEVICE NUWBER -
*

A2-1







APPENDIX 8

LISTING OF THE BELOCATING BOOTSTRAP

This Appendix consists of two listings:
1. The Bootstrap Front End at X'80".

2. The REL Loader at X'108'.

A3-1



0989

g9y
g34F
g99Dy
C493

pp8p
pp84

0088
PP B8A
pp8cC
PP8E

P092
0994
ppa96
$098

ppacC

PPAQ

PPA4
PPAS8
pPAC
pPBO

pPB4

A3-2

C82¢
0pDQ
C84p
P34F
9755
9DAE
PSEE
4230
PP8A
9BAB
PA5B
9A3B
D2B2
0000
C129
008A

C550
C493
4330
peDY
DEA®
PPCB
C5A0
ppp2
4230
ppC2
OOCH

OPT .

PASS2, PRINT, PUNCH, STOP

IGNORE CHECKSUM ERROR AND CONTINUE EXECUTION.

SET PROGRAM LIMITS
R3 MUST HOLD 1
CLEAR R5 FOR CHECKSUM

SENSE STATUS
TAPE SHOULD BE MOVING

READ ONE CHAR
BUMP CHECKSUM
DISPLAY CHAR
STORE CHAR

CHECK THE CHECKSUM
GO TO PROGRAM IF OK

STOP TAPE IF NOT OK

Sk
* BOOTSTRAP FRONT END ,
#* CONSISTS OF 8-BIT LOADER AND CHECKSUM LOOP.
* APPEARS IN 8-BIT FORMAT.
* ASSUMES THAT-REG 3=1
%* ASSUMES THAT-REG 10 = DEV NUMBER
* ASSUMES THAT-TAPE IS MOVING ,
* ASSUMES THAT-ALL CHARS ON TAPE ARE LEGAL
* IF CHECKSUM ERROR DETECTED, LOADER STOPS
* THE TAPE AND HALTS. AFTER PROCESSOR HALTS.
* RESTART BOOTSTRAP LOAD, OR PUSH EXECUTE TO
sk
E3
E
ORG X'80!
H'
*
PLOW EQU X'DQ!
PHGH EQU X'34F"
PSTRT EQU X'D@!
CKSUM EQU X1C493!
&
sk
START LHI 2, PLOW
LHI 4, PHGH
XHR 5,5
SENSE SSR 10,14
LHR 14,14
BNZ SENSE
RDR 10,11
AHR 5,11
WDR 3,11
STB 11,0 (2)
BXLE 2, SENSE
£
£ 3
CLHI 5, CKSUM
BE PSTRT
ocC 19, STOP
CLHI 10,2
BNE HALT
ocC 1p, TWRT

IF DEV NO = 2



poB8
P9BA

P9BE
poc2
p9Cs

POCA
P0CB
ppccC
P9CD
PPCE

ppDY
pPD4
. ppD38
r0¢DC
POED
PPE4
PPES
poEC
Y
PPF4
POF8
ppEC
0109
P14

_ 0300
0198

9DAE
4299
ppBS8
DAA®
¢oCD
C209
ppCe
8009
ppoDY

98A9

9193

)

Cc810
0400
Cc82¢
FFFF
4831
0000
4921
0000
4841
P00
4330
PpFC
4031
0000
CA10
0400
4230
ppD38
C200
PPF8
8000
0PDY
CB1¢
0309
4010
9112
4300
8119

HALT

TWRT
STOP
XON
XOFF

¥R ¥ ¥

SSR
BTC

WD
LPSW

DC

DC
EQU
DC
EQU
DC

TOP-OF-CORE SEARCH
REQUIRES LENGTH PARAMETER

10, 14
9, *-2

19, XOFF
s 4

X'8pp0', PSTRT

X'98A9'
*-1
X'9193!
*-1

9

* FOR REL LOADER SET-UP

%*
SRCH

SCAN

LOST

FOUND

*
%*

LENGTH
RELORG

LHI

LHI

LH

STH

LH

- BZ

STH
AHI
BNZ
LPSW
DC
SHI

STH

EQU
EQU
END

1,X'400!

2, X'FFFF!

3, 0(1)
2,0(1)
4,@(1}
FOUND
3,0(1)
1,X'400'
SCAN

LOST

X'800pp', A(SRCH)

1, LENGTH
1,RELORG+19

RELORGT*8

X'300!
*

PUT TTY IN WRITE MODE
AND ISSUE XOFF

HALT

GO TO PROGRAM ON EXECUTE

WRITE, STOP COMMA NDS
XON, XOFF CHARACTERS

FILLER

SET PNTR TO 1K

TEST DATA

SAVE CURRENT DATA
WRITE TEST DATA

READ TEST DATA

IF ZERO, TOP IS FOUND
RESTORE CURRENT DATA

BUMP PNTR BY 1K

PNTR ZERO = TROUBLE

ADJUST FOR PROG LENGTH

SET UP REL LOADER

JMP TO REL LOADER

A3-3



CKSUM
FOUND
HALT
LENGTH
LOST
PHGH
PLOW
PSTRT
RELORG
SCAN
SENSE
SRCH
START
STOP
TWRT
XOFF
XON

A3-4

C493
pgFC
ppcC2
P399

POF8
P34F
ppDY
pPDP
p108

pPD8
pp8A

~ p¢DY

0089

pPCB
ppCA
ppCD
ppccC



S

T T

eee!
peo2
Paol
0084
2005

esa7
2ens
8039
BOBA
2008

- eBeE

200D
0O E
200 F
0078

2A008R
200 4R

_ PO20e8R

C8AQ
2080
4300
PBBCR
Cg8AQ

- P@ACR
801@R

@21 6R

BCIAR O

" @BICR
201 ER

pO22R

0026R
PB2AR

. PA2CR.

2230R
PO34R
2e238R

pego
40AD

1 1 B

@242R

40A8
#2 46R

U

EQU

OPT
b 3
x BASIC REL
x B6-024
x
Y
RI EQU
R2 EQU
RS QU
BYTE  EQU
PICK  EQU _
SEANUM ~ EQU
ONE EQU
VO EQU
FOUR  EQU
A EQU
¢ EQU
D EQU
E EQU
ABSF  EQU
BINDV  EQU
X A
* - .
START  LHI
B
__REDEF  LHI
STH
STH
e __SHR .
STH
CONT  SHR
SHR
LHI
o LHI
LHI
NEXT  SHR
o BAL .
LHI
CXH

.. LHI

X = v el = (O ) 3 VAN B OO

e D UGN =

PASS2 ,PRINT,PUNCH,STOP

LOADER

=

X'78°

A,X'88°

*+8

_A,X'88°

A,LOC
A,BIAS

AA

A,LOCX

SEQNUM, SEQNUM

ABSF,ABSF
ONE, |

TWo,2

FOUR, 4

SEQNUM, ONE
R2 , INPUT

C,X'FFFF"
c,BUFF
A,102

INITIALIZE LOC,BIAS

'BIAS REDEFINITION

CLEAR EXECUTE ADRS

CLEAR SEQNUM
SET REL MODE

SET CONSTANTS 1»294‘

'DECR SEQ COUNT
_INPUT ONE RECORD

© A3-5



A3-6

soés

PP3CR 47CA CKIT XH C,BUFF+4(A) COMPUTE CHECKSUM
#24CR .
PO 4ACR OBAS SHR_”‘ﬁ.TWO
PB42R 4380 BNL CKIT
o PR R e L
@B4A6R 45CO CLH C,BUFF+2 COMPARE CHECKSUM
... B24AR , ,
PG AAR 4230 BNE ERROR
o PP98R o _ - . .
OB AER 4560 CLH  SEQNUM,BUFF COMPARE TO SEQ NUM
. P248R ' _ o
9B52R 4230 BNE ERROR -
~ 0898R B . , .
@P56R C850 LHI PICK,BUFF+4 ~ADJUST PICK,BYTE
N24CR ,
PBSAR C849 LHI BYTE,12
__B@BC e B
*
2@S5ER C550 LOOP CLHI PICK,BUFF+108 TEST IF RECORD DONE
@2B4R .
PB62R 4320 ~ BNL NEXT ‘
BO24AR : :
_PO66R 48A5 . LH__ A,B(PICK) ____ EXTRACT NEXT COMMAND
pe0o . ' . ,
QB6AR 4110 BAL R1,EXTR . )
@1 8ER . -

@B6ER QBEA LHR E,A SAVE CONTROL BYTE
2R TAR AAAA AHR Ay,A : ,
BBT2R 48BA _ . . LH _ B,JUMP(A) - GO.TO COMMAND ROUTINE

PBT8R v ‘ * ,
@PT6R 038B _ BR B ‘ , v
. T ,
#278R @82AR ' JUMP DC  'NEXT,END,ERR@,FLIP
APAGR 1 o . _
_ .BO@DAR . . . _ e . .
70 EBR :
AA8GR 2100R DC LDX,LDL, ERRI ,ERRI
218CR
PO DER
@0 DSR .
_Be88R 2118R DC _ UNAB,UNRL,DUAB,DURL
B128R
B13AR
2150R -
B399R @OCER DC ERR3 ,ERR3, ERR® ,ERR3
B8CER
PBDAR _ . . R
@@CER
" . . _
A298R ng% ERROR LHI A,X'000F"' DISPLAY X'OF' TO
) ‘ \
BR9CR SATA WDR ONE,A SHOW INPUT ERROR
ACS ER C2@0 LPSW %x+4 .



GeA2R

@0A2R 8000 DC  X'8000°,A(NEXT+2)
MB2CR |
* .
BOAGR 48AD END LH  A,LOC END OF PROGRAM
0242R )
‘@BAAR @8FF LHR  ABSF,ABSF - UPDATE BIAS WITH
BAACR 4330 37 FIXB THE REL LOC COUNTER
@0BAR
@CBOR 48AQ LH  A,LOC+2
22 44R
. @PBAR 40p8  FIXB ~ STH  A,BIAS
" @246R
@0BSR 48AQ o LH  A,LOCX JUMP TO PROGRAM
82 40R
@OBCR 423A | BNZ  @(A) IF LOCX IS NOT ZERO
0200 _
_@PCOR 9A7A __ WDR ONE,A DIAPLAY @8 TO
@CC2R 4800 LH R?,BIAS ~ SHOW NORMAL END ™ -
B246R
2eC6R C200 LPSW *+4 LEAVE BIAS IN RO
@OCAR
BOCAR 8000 DC  X'8000°,A(CONT) HALT
e PRIAR
b3
@BCER 4120 ERR3  BAL  R2,WORD SKIP OVER ANY
o1 76R
Q8RR 4120 ERR2  BAL  R2,WORD REF,DEF,CHAIN,ETC
61 76R
__@ODSR 4129  ERRlI. =~ BAL R2,WORD
@1 16R
@BDAR CGE@  ERRO OHI  E,X'Fg’ HALT AND DISPLAY
00 Fo
g@DER SATE WDR  ONE,E ~ BAD CONTROL BYTE
@O ERR C200 LPSW *+4
e UPBEAR
GOEAR 8000 DC  X*8@08°,LOOP
@05ER
*
CBEBR CTFO FLIP.  XHI  ABSF,X'FFFF' FLIP THE ABS FLAG
: FFFF '
__@PECR 48A@ - . LH _ . A,LOC . _FLIP LOC COUNTERS
72 42R
00 FOR 48B@ _ LH  B,LOC+2
8244R :
@OF4R 49AC  STH _ A,LOC+2
02 44R . |
Q¢FBR 40B8 . _ . _STH . B,LOC
#242R
@8 FCR 4300 B LOOP
@BSER |
%k
0108R 4138 LDX BAL R3,GETT SET EXECUTION ADRS
Q166R _ _ _ o

A3-7



T 8T | Rk

024PR
P108BR 43028
P@5SER

% .
.- P1OCR 41309 . LDL

P166R

@L18R 40D8

@242R
@114R 4300
POSER

- TR dise =

. BIT6R

@11CR 4300
2128R

Q120R 4120

P124R AADD
P246R

@128 48C0
@2 42R

@12CR 40DC

- 2nee

#13BR BACS

P132R 40C0
B242R

P136R 4300
@ASER

‘@13AR 4120

_ @1T76R.
@13ER 48C0

82 42R

A142R 40DC
— 1
@146R BACS8
@1 48R 40CO

#242R
21 4CR 4308
2118R

@156R 4120

- B1T6R
P154R 48CO
02 42R
2158R 406DC
v . 0000
215CR BACS
?15ER 40C@
0242R
21 62R 4300
@120R

A3-8

UNAB

UNRL
PIT6R

UNRX

AR

*

DURL

STH

B

_ _BAL __R3,GETT

STH  D,LOC
B LOOP
BAL  FB,W0RD
B " UNRX
BAL  R2,WORD
- B1AS
LH c,L0C
_STH  D,a(C)
R TV
STH  C,LOC
B LOOP
'BAL  RZ2,WORD
LH c,L0C
STH  D,8(C)
AR
STH C,LOC
B UNAB
AL WORE
LK C,L0C
STH  D,@(C)
AHR  C,TWO |
STH C,LOC
B UNRL

B, L06K

'LOOP

 SET LOAD LOCATION

LOAD 2 BYTES ABS

LOAD 2 BYTES REL

'BUMP LOAD LOCATION

LOAD 4 BYTES ABS

'LOAD 4 BYTES REL



~ P166R 4128  GETT BAL  R2,WORD - GET 2 BYTES OF DATA

@176R .
@1 6AR @8FF LHR  ABSF,ABSF AND ADD BIAS TO IT
@1 6CR 4233 - BNZ  @(R3) IF IN REL MODE
P000 : - |
~_B170R 4ADO AR  D,BIAS
#246R :
@174R 0303 BR R3
%
@1 76R P8CS WORD LHR  C,FOUR ASSEMBLE | WORD OR
@1 78R 48A5 WORD!  LH A,B(PICK) TWO BYTES OF DATA
O . o N o '
""BITCR 4110 BAL  RI,EXTR INTO REG D,
#I8ER
@180R CDD@ SLHL D,4
0004 _
@184R B6DA OHR  D,A
__@186R @BCT ~ _SHR _C,ONE
C188R 4230 BNZ ~ WORDI
@178R
#18CR 0302 BR R2
* . , _
#18ER CCA4  EXIR SRHL A,B(BYTE) EXTRACT ONE FOUR BIT
2000 e ,
"TTOI92R CAA® T TNHI T A X'FT BYTE FROM THE DATA
000 F o
@156R 8B4 SHR  BYTE,FOUR IN REG A,
@198R 4311 BNM  @(RI1)
pneo '
_B1S5CR C840 . LHI  BYTE,12 UPDATE PICK AND BYTE
e00c .
@1ABR BAS8 = AHR  PICK,TwO
@142R 02321 BR Rl
3
@1A4R D3D2  INPUT LB D,BINDV PICK UP DEV NUMBER
B0 T8 _
@1 ASR 85D8 CLHR D,TWO
BIAAR 4230 - BNE IN
@1BCR ,
@1AER DEDE oc D,TWRT IF TTY,SET WRITE MODE
: P202R . '
__@IB2R 9DDE __INl  _ SSR _DeE .. . AND OUTPUT XON .
@1B4R 4290 BTC  9,INI
@1B2R S .
@1BSR DADO wD D,XON
. B2R4R e o
#1BCR DED® IN oc D,BINDWI START DEVICE
BB e
@1COR C8AQ LHI  A,BUFF SET BUFF POINTER
P248R , ‘ . ‘ _ -
B1CAR 4110 IN3 BAL  R1,CHAR GET 2 CHARS AND
P206R , , : _ _
@1C8R CDB@ SLHL B,4 ASSEMBLE 8-BIT BYTE
0004 ) e B |

A3-9



“ slccR @8CB 0 LHR  €,B

@1CER 4110 BAL Rl ,CHAR
@2086R
@1 2R C4B0 NHI = B,X'F’
POOF - cn
“““%f%%% %S%E : STB  C,B8(A) STORE BYTE
_ 2000 , 4
@1DCR BAA7 | AHR  A,ONE
@1 DER C5AQ ~ CLHI A,BUFF+108 READ 198 BYTES
@2 B4R
_ _@IFPR 4280 . ... . BL__ 1IN3
#1C4R
@1 ESR @5D8 ~ CLHR D,TWO TEST IF TTY
@1 EBR 4330 . BE IN4
@1 F2R -
@1 ECR DED@ oc D,STOP STOP DEVICE
o B2P3R L
@1 FBR 2302 BR R2 |
@1 2R DED? INe  OC D, TWRT SET WRITE MODE AND
@202R
@1F6R SDDE  IN5  SSR D,E 1SSUE XOFF
21 FBR 4290 BTC 9,INS , _
... _ BLIFSR | o
@1FCR DADO WD D,XOFF
P205R
@280R 0302 BR R2
*
@282R 98A9 TWRT DC X'98A9"
__P2P3R STOP  EQU  TWRT+1
@204R 9193 XON DeC X*9193"
G20 5R ~ XOFF EQU  XON+!
@286R SDDE CHAR SSR D,E READ ONE CHAR
P208R PSEE LHR  E,E
@2BAR 4230 BNZ  CHAR ACCEPT CHAR IF HEX
... @B206R ‘ o
@28 ER SBDB RDR D,B 1-4,18,15-1F
@21@8R SATB WDR  ONE,B DISPLAY DATA
" @212R C4B@ NHI  B,X°7F'
. eRIF -
@216R 4330 BZ CHAR SKIP ALL OTHER CHARS
@21 AR C5B2 CLHI B,x'2a°
2020
@21ER 4382 BNL  CHAR
@206R
@222R C5B2 CLHI B,X'l5* )
2015 :
@226R #38] BFCR 8,Rl
@228R CSBO CLHI B,X'i1"*
2011
@22CR 4388 BNL  CHAR
cy @20 6R .
@230R C5B3 CLHI B,X'10°

A3-10



- eol10

P234R 0331 BFCR 3,RI
'9236R C5SBO CLHI B,X'@5"
2005

B23AR 438C BNL CHAR
P23 R 2301 BR R1
P240R 0000 LOCX DC (]

P2 A2R 00280 LOC DC X'80°
P244R 0000 DC %)}

A2 AGR 0080 BIAS DC X'80"
@248k BUFF DS 108
@2 B4R DS 2
#28B6R END

A Q20A

ABSF PO F

0goB_

BIAS ~ ©@246R
BINDV @878
BUFF  B8248R
BYTE 0004
C 00aC
_ CHAR _ 02@6R
CKIT = @@3CR
CONT  B@IAR
D 200D
DUAB P13AR
DURL  @15@R
__E . @0QE
END B2A6R
ERR®  @ODAR
ERRI @@ D6R
ERR2 ~ @2I2R
ERR3  B@CER

____ERROR _Q@@98R . _ _

EXTR P18ER
FIXB. POBAR
FLIP PO ERR

FOUR 20029
GETT P166R .
INL . 8IB2ZR . L - -
e @1BCR
IN3 €1C4R
IN4 g1 F2R
INS P1F6R

INPUT  O1A4R
_JUMP._ _@@78R .

LOL A12CR
LDX 2100R
LocC #242R

LOCX  024@R
LOOP PO5ER
CNEXT  P@2AR. ..



ONE 0007
PICK 0085
RO 0000
RI 2001
R2 0002
O R3__ BOB3 e
REDEF  @@@8R o
SEQNUM 0006
START  P@@OR
STOP 0203R.
WO 0008 -
_ TWRT  @202R . o .
UNAB @1 18R
UNRL  @120R
UNRX  @128R
WORD  ©@176R
WORDI @1 78R
__XOFF_ _@205R ... ... .. ... ... | o
XON P204R | T

— s o s s i e S 4 % i e St s 24 e e g e e —— -
— - S — SR - Je— -

A3-12



APPENDIX 4
ABS BOOT FRONT END LISTING

A4-1

ABS BOOTSTRAPY
FRONT END t
. .. OPT __ PASSZ ,PRINT,PUNCH,STOP _ - |5/6/68 :
* - =
*x BOOTSTRAP FRONT END S _ ;
x CONSISTS OF 8-RIT LOADER AND CHECKSUM LOOP. ”
*x APPEARS IN 8-BIT FORMAT.
*x ASSUMES THAT-REG 3= | "
B - % ASSUMES THAT-REG 10= DEV NUMBER ) ?
* ASSUMES THAT-TAPE IS MOVING ;
*x ASSUMES THAT-ALL CHARS OM TAPE ARE LEGAL
x 1F CHECKSUM ERROR DETECTED, LOADER STOPS 4
% THE TAPE AND HALTS. AFTER PROCESSOR HALTS, ‘
* RESTART BOOTSTRAP LOAD, OR PUSH EXECUTE TO
i ....x IGNORE CHECKSUM ERROR AND CONTINUE EXECUTION,
*
- v,*._.- - . .
apen ORG X'ea”'
b3
R
s B PLOY  EQU  X'"i1DAg’ ) o
1501 PHGH ERU  X'1E2l Y -
1070 "PSTRT  RQU  Xx'1Dee’
6071 CK’HM B X'eapl”
. vm;umA_m | ~
_ 2222 (229 START LHI  2,PLOW _SET PROGRAM LIMITS
1022 -
oPga €243 ~ LHI  4,PHGH 'R3 MUST HOLD |
1 =71
°pg2 @755  XHR 5,5 ~ CLEAR R5 FOR CHECKSUM
ACRA  9DAE SENSE SSR 12,14 SENSE STATUS
peeC 28 EE LHR 14,14 TAPE SHOULD BE MOVING
3025 4230 BNZ  SENSE
aaeA
AP92  9BAB RDR  1¢,1!1 READ ONE CHAR
"A94 @AASB.  AHR 5,11 ___BUMP CHECKSUM
AM9E  9AZR WDR 3,11 DISPLAY CHAR
_ mApoa  pnro STB  11,8¢2) STORE CHAR
2020
- amoC  Clo@  BXLE 2,SENSE
Aa2A v
* o o
. X .
RAAD C550 CLHI _ 5, CXSUM CHECK THE CHECKSUM -
571
@OA4 4337 BE __ PSTRT _ __GO TO PROGRAM IF OK
1020
a%A8 DEAQ oc  1e,STOP ~ STOP TAPE IF NOT OK
. 0OCB ' :
___Q@AC_ C5A¢ _ . CLHI _1@4,2 S e
2pe2
RARA 4237 BNE  HALT
aace
#0384  DEAQ oc 1#, TWRT IF DEV NO = 2
A0 CA '



fOB8

_9DAE

PPBA
2PBE

g c2

4290
2PB8
DAAD
ANCD
co00
20C6

HALT

SSR 1@,14

WD 18,XO0FF

LPSW  %+4

BT TS A T

PUT TTY IN
~ AND TSSUE XOFF =

HALT

AACE

2730@

1Dag

AACA
70C8

98A9

TWRT
STOP

DC X'8009 ", PSTRT

DC  X'98AS°
EQU %=

aace
@3CD
20 CE
I

9193

oaen

XON
XOFF

plo X791
JEQU k=1
nc o

_END

 WRITE,STOP COMMANDS

WRITE

MODE

ot - et e i

GO TO PROGRAM ON EXECUTE

XON,XOFF CHARACTERS =~

~ FILLER

CKsuM 502l - - e e
HALT race
PHEM 1Bl
PLOW 1 e
CPSTRT 1000 .
SENSE  272A
_START __0@Rp _ .
STOP zeCh
TYRT PaCA
XOFF ABCD
XOn. eecCc .

L A4-2




APPENDIX 5

FAST FORMAT LOADER LISTING

OPT

b3

PASS2,PRINT,PUNCH,STOP

* FAST FORMAT LOADER

CLEAR SEQNUM
SET CONSTANTS 1,2

NEXT BLOCK
'PICK UP DEV NO

N.f_. .._I_hz e - e e et i i o s a1+ it s e o paonn e i e

IF TTY, SET WRITE MODE

““AND OUTPUT XON

START DEVICE

*x
ponnA RO EQU @
pary Rl QU )
ANA2 R2 EQU 2
AACAY R3 EQU 3
nee 4 LOC EQU ~ 4
705 LAST EQU " 5
20008 GOTO EQUY 6
aan SEQNUM  EQU 7
d kst ONE EQU g
el deds TWO EQU 9
aan A EQU 1@
PO2R BT EQU IT T T
307C C EQU 12
230D 9 CEQU 13
sl ol E EQU 14
ApOw F EQU” 15
2072 BINDV EQU x°'78°
N7 LENGTH EQU 262
b 3
* .
ZAAPR @BT7 CONT SHR SEQNUM, SEQNUM
ZAPO2R CR2P LHI ONE,!
2R3
edeen G~ T LRI CTWO,R < -
2an2 o
p2¢AR 2B78  NEXT SHR SEQNUM,ONE
223CR D3 D@ INPUT . LB D,BINDV
312 ’ '
PO1PR 25D ~CLHR TWO
AGI2R 423¢
- PQ24R o )
281 6% DEDR oc D, TWRT
‘ @2 FER o
201 AR SDDE INI SSR DO,E
A@ICR 429¢  BTC 9,INl
221 AR '
22272% DADD WD D,XON
2120R
MB24R DEDB  INZ ~0C  D,BINDV+I
2279 :
 Pg2erR CRA@ LMl A,BUFF
A1E2R
2C2CR 4110 IN3 BAL R1,CHAR
@0 ECR
A23CR 4330 Bz IN3
2A2CR
36§48“928A¢m”,lN&LW“m“§I§M_§lﬂ(&l"““
2020
CC33R JAAR AHR A, ONE
2738R C5AR CLHI A,BUFF+LENCTH

SET BUFF POINTER

 SKIP LEADER

- s it b

READ 26@ CHARS
STARTING AT FIRST

e ot e s 1o 2 s o e, . o b

- A5-



77 4AR
2n4cR

pASAR

B254R

B7259R

2ASCR
~PSER

aneoR

N2¢GER
43920

A74AR

4110
AAECR
4300
A23 4R
7509
4331

1nN32

A58

DED?
20 FFR
4300
ABSSR
DEDA

AP FER

9DDE
4092
2450
N DA

eleirR

&R D3CA

A5-2

#122R
D3 Be
A1A3R
?ACH

CoAR

A1AEGR

: D3BA

¢ere
AACB
DAAR

A206R
428¢

PZT4R.

45Ca
ML 74R

R 4230

AR DER
4572
2192R
42372

P2DER

Cc2Aa0
21¢8R
C579

FFFF

4237
A2BAR
4247
P106R

IN4

IN5

csuM

CKIT

. l CS‘A.@.HM. B

STORE

LB C,BUFF  COMPUTE CHECKSUM

CLHTC ALBUFFe4

BNL IN32 ~ NON-BLANK
BAL  RI,CHAR ”‘fnwm-wnnwmnﬂmwumw._
B IN31 ’

CLHR D, TWO
BE IN4 -

¢  D,STOP ~ STOP DEVICE
B CSUM |

_oC__D,TWRT _ _IF TTY, SET WRITE ™ODE

SSR  D,E ~ AND OUTPUT XOFF

BTC 9,IN5

wh  D,XOFF

LB B,BUFF+]

AHR C,B

LB B,a(A) " "CHECKSUM 1S ARITHMETIC

AHR C,B SUM OF ALL BYTES EXCEPT
AHR A, ONE . THE CHECKSUM AT BUFF+2

~ CLHYI A,BUFF+LENGTH
BL CKIT

CLH C,BUFF+2

BNE ERROR T T

CLH SEQNUM,BUFF
BNE ERROR

LHI  A,BUFF+4  STORE DATA

CLHI SEQNUM,-1

BNE  LOOP o
LH  LOC,BUFF+4 IF FIRST BLOCK



CPAAR AR50
?128R
PAAIR A4RED
G1CAR
2#ACR C8AD
¢17CR
AARAR 42BA
e200
AOAB4R APBA
il
20BRR AAAS
AABAR 0545
AA3CR 4380
ABCER
PACPR DA4S

e

22@6R
ZrCER 42120
PABAR

APCAR 4300

 PC7AR

ATCER 7266
20DPR 7236
AAPR 727CC
A2DAR SARC
@ZD6R €207

AODAR

Z2DAR cgpe
CO2AR

Z2DER C2CO
.. Reek

27 2R 9ARC
2AZ4R C207

29 ERR
ACERR 2000
@2aCR

CARECR 9DDET

PeEER 22:ZE
ZAFOR 4230
2AECR
¢2F4R 98DR
2¢ FER SA%B

BAFRR C4B2

ACLF
A7 EFCR 72331

2OFER S2A9
A2 FFR

713e% 9183

A1AIR

LOOP

END

CHALT

- ERROR

CHAR

%

TWRT
STOP

R oN -
XOFF

*

LH  LAST,BUFF+&
LH  GOTO,BUFF+8
LHI A,BUFF+1g
LH  B,AcA)
STH B, 2(LOC)
AHR A, TWO
CLHMR LOC,LAST
BNL END
_AHR LOC,TWO
CLHI A,BUFF+LENGTH ~
BL  LOOP
B NEXT
LH?  60T0,GOTO
BTCR 3,60T0
XHR C,C
WDR ONE,C
LPSW *+4
DC X'e@e2',A(CONT)
LHI C,X'F'
WDR ONE,C
LPSW *+4
“DC X"200a°,ACINPUT)
sy
_ LHR E,E
BNZ CHAR
RDR D,B
DR ONE,B
NHT B, X FF?
BR Rl
DE  X'98A9°
JEQU  TWRT+!
DC X*9193°
EQU  XON+1

SET BEG,END,AND
- TRANSFER ADDRESS

STORE HALFWORD

STOP WHEN LAST

HALFWORD FILLED
READ NEXT BLOCK
WHEN RUFF EMPTY

DISPLAY X'02°'
FOR NORMAL END

DISPLAY X*2F' TO
SHOW INPUT ERROR

-~ REAT ONECHER - —

AND DISPLAY IT

A5-:



2e2R
N2A86R
020%R

A

B
BINDV
RUFF

S C
CHAR
CKIT
CONT
csum

D;
T

FND
ERRNR
T
GOTN
HALT
N
12
143
131
1432
M4
1%5
CINPUT
LAST
LENG TH
LoC
LNNP
NEXT
e

20

R1

RO

n3

SES UM
STHP
STORE
797
TURT
XOFF
XON

A5-4

AO0A
7008
AR78
2102

_.e2eC
¢eEC

074
2000
6066
200D

BUFF

aeoE

AeCE
AFDE
PARFE
2226
eaDs
eaLA

“mpsg T

ap2C
334
aaan
rps5e
AAr5C
ell Iy
n225
2174
P07 4
2037
ACPA

rARA
2021
rAC2
27203
ena7

AOFE

Ar3 4
AA29
2OFE
2121

a1ae

CpppE

DS  LENGTH
DS 2
END



APPENDIX 6

FAST FORMAT PUNCHER LISTING
OPT PASS2,PRINT,PUNCH,STOP

*
* FAST FORMAT PUNCHER
*
* THIS PROGRAM PUNCHES A BLOCK OF CORE
* IN FAST FORMAT. BLANK LEADER AND
* TRAILER IS PUNCHED. THE PROGRAM HALTS
* PRIOR TO AND AFTER PUNCHING TO ALLOW
* THE PUNCH TO BE- TURNED ON AND OFF.
*
* ORG = LOW LIMIT
* ORG+2 = HIGH LIMIT (LAST HALFWORD IN BLOCK)
* ORG+4 = TRANSFER ADRS (MAKE @ FOR NO TRANSFER)
* ORG+6 = UNUSED
* ORG+8 = STARTING LOCATION
*
* THE DEVICE NUMBER IS TAKEN FROM 7A
* THE OUTPUT COMMAND IS TAKEN FROM 7B
*
pppl R1 EQU 1
ppp2 R2 EQU 2
0pp3 LOC EQU 3
0004 SEQN\UM  EQU 4
PORA ' A EQU 10
pppB B EQU 11
pRaC c EQU 12
ppgD CHAR EQU 13
POPE DEV EQU 14
PPOF STAT EQU 15
PR7A BOUTDV ~ EQU  X'7A'
p1p4 LENGTH  EQU 260
ppps . GAP EQU 8
*
POOOR PPPP LOWADR DC @
POP2R POAP HGHADR  DC @
PPPAR PPPP XFRADR ~ DC @
PPA6R PPOO Dc 9
PPOSR C20D - STRT LPSW WAIT
PPPCR
PPOCR 80PP WALT BC  X'8000',A(G0GO)
PP1OR
PP1PR 412D GOGO BAL  R2,LEADER PUNCH LEADER
. PRABR
PP14R PBA44 SHR  SEQNUM,SEQNUM CLEAR SEQNUM
POI6R 4839 LH  LOC,XFRADR
poORAR
PP1AR 4030 STH  LOC,BUFF+8 SET XFER ADRS
PPDER
PPLER 483p LH  LOC,HGHADR
PPP2R |
PP22R 493p STH  LOC,BUFF+6 SET HIGH LIMIT
PPD4R
PP26R 4839 LH  LOC,LOWADR
PPPAR

A6-1



#P2AR 4p3p STH  LOC,BUFF+4 SET LOW LIMIT
PPD2R

PP2ER C8AD LHI  A,BUFF+10
PPD8R
PP32R CBAP BLOK SHI ~ SEQNUM,1 DECR SEQNUM
pL
PP36R ﬁ§4p STH  SEQNUM,BUFF
PPCER
PP3AR 48B3 MOVE LH  B,p(LOC) MOVE DATA INTO
p . .
PO3ER ﬁggA STH  B,@(A) BUFFER UNTIL THE
00pp
PP42R CA3p AHI  LOC,2 BUFFER IS FULL
ppp2 :
PP46R CAAD AHI © A,2
2002
PP4AR C5AQ CLHI A,BUFF+LENGTH
P1D2R '
PPAER 4280 BL  MOVE
PP3AR
*
PP52R D3CP CSUM LB C,BUFF COMPUTE
PPCER ‘
PP56R D3BQ LB B,BUFF+1 ARITHMETIC
@QCFR
Q@5AR C8AQ LHI  A,BUFF+4 CHECKSUM
P@D2R
PP5ER QACB AHR  C,B
PP6PR D3BA CKIT LB B,0(A)
pooQ
PP64R PACB AHR C,B
PP66R CAAP AHI  A,1
ppp1
PP6AR C5AQ CLHI -A,BUFF+LENGTH
P1D2R
OP6ER 4280 BL  CKIT
PP6OR
Pe72R 40CO ‘ STH C,BUFF+2 PUT CSUM INTO BUFF+2
@@DAR
*
P@76R C8AD LHI  A,BUFF
@BCER
@B7AR gggs GETS LB CHAR,d(A) PUNCH BUFFER
PB7ER 4110 BAL  R1,PUNCH IN: 8 BIT BYTES
@dBCR
@@82R CAAQ AHI AL
god1 .
@@86R C5AP CLHI A,BUFF+LENGTH+GAP
@1DAR 4
PPSAR 4280 BL  GET8
dad7AR
@@8ER 48AQ LH  A,HGHADR
gaa2r

A6-2



PPI92R P5A3
PP94R 428D
POADR
PP98R C8AD
PPD2R
PPOCR 43pP
PP32R

PPAPR 412D
PPASBR

PPAAR 430D
POPBR

PPASR H7DD
DPAAR CSAD
pp64
POAER 411
PPBCR
PPB2R CBAD

pppl
PPBER 423D

PPAER
PPBAR p302
PPBCR D3EP
oI
PPCOR DEEP
pO78
PPC4AR 9DEF
DOC6R 4290
PPC4AR
POCAR 9AED
POCCR P3p1
PPCER
P1D2R
P1D2R pPOp
DID4R PPOP
PLD6R POPP
DIDER POP
DLDAR POpP

O1DCR OOOP
O1DER 0000

" P1EOR ppop
P1E2R

A DOOOA
B 0008
BLOK 0032
BOUTDVAP7A
BUFF  POCE
C popc
CHAR PPPD
CKIT @p60
CSUM  pP52
DEV  PPPE

TERM

*

LEADER

PUNCH

BUFF

CLHR A, LOC
BL TERM

LHI  A,BUFF+4
B BLOK

BAL  R2,LEADER
B STRT

XHR  CHAR,CHAR
LHI * A,1pp

BAL  R1,PUNCH

SHI  A,1
BNZ  *-8
BR R2

LB DEV,BOUTDV

0C  DEV, BOUTDV+1
SSR  DEV,STAT

BTC 9,*-2
WDR  DEV,CHAR
BR R1

DS LENGTH
DO GAP

DC p

END

TERMINATE WHEN
ALL DATA PUNCHED

PUNCH LEADER

PUNCH CHAR

A6-3




GAP  pp@8
GET8 P7A
GOGO  p@1p
HGHADR Ppp2
LEADER (PA8
LENGTH p1p4

LoC  ppp3
LOWADR 9pp@
MOVE  PP3A
PUNCH P@BC
R1 ppp1
R2 ppp2
SEQNUM ppp4
STAT  PPPF
STRT  ppp8
TERM  PPAD
WAIT  pppc

XFRADR ppp4

A6-4



TABLE OF CONTENTS

ASSEMBLER PROGRAM MANUAL GE 03-001R03Al2
1. INTRODUCTION
2. ASSEMBLY PROCEDURES
3. THE ASSEMBLER LANGUAGE
3.1 Source Statements
3.1.1 Instruction Statements
3.1.2 Comment Statements
3.1.3 Character Set
3.2 Assembler Language Structure
3.2.1 Symbols
3.2.2 Instruction Constants
3.2.3 Expressions
3.2.4 Relocatable and Absolute Expressions
3.2.5 L>ocation Counter
4. MACHINE INSTRUCTIONS FORMAT
5. ASSEMBLER INSTRUCTIONS (PSEUDO-OPS)

5.1

5.2

5.3

Symbol Definition Instructions

5.1.1 EQU - Equate Symbol

5.1.2 ENTRY - Identify Entry-Point Symbol
5.1.3 EXTRN - Identify External Symbol

Data Definition Instructions

5.2.1 DC - Define Constant

5.2.2 DS - Define Storage
Assembler Control Instructions
5.3.1 OPT — S[;ecify Obtions
5.3.2 ORG - Set Location Counter

5.3.3 DO - Conditional Assembly



5.3.4 END - End Assembly
APPENDIX 1 SUMMARY OF MACHINE INSTRUCTIONS
APPENDIX 2 SUMMARY OF ASSEMBLER INSTRUCTIONS
ASSEMBLER OPERATING INSTRUCTIONS GE 03-001R01Al16
1. GENERAL DESCRIPTION |
2. CONFIGURATION
3. TAPE FORMAT
4. ASSEMBLER TAPES
5. LOADING PROCEDURES
6. DEVICE SELECTION
7. SOURCE TAPE FORMAT
8. OPERATING PROCEDURES
9. SYMBOL TABLE SIZE
10. ASSEMBLED OBJECT TAPE FORMAT
APIPEND]X 1 INSTRUCTIONS RECOGNIZED ONLY BY 30-2 ASSEMBLERS

APPENDIX 2 PROCEDURES FOR USER-DEFINED MNEMONICS

ii



GE 03-001R03A12

ASSEMBLER PROGRAM MANUAL

1. INTRODUCTION

GE-PAC 30 Digital Systems involve Proces-
sors which can be programmed to solve a
wide range of problems. The program to be
executed by a Processor consists of binary
coded instructions and data which are stored
in a core memory. The instructions, and
their binary code, which are recognized by
the GE-PAC 30 Processors, are defined in
the GE-PAC 30 Reference Manual, Pub-
lication Number 29-004.

To assist the process of defining and gener-
ating a program, the user can write his pro-
gram in a symbolic way, using what is called
assembly language. In the assembly language,
programs are represented using symbols and
mnemonic abbreviations for the instructions
and data in the program. The statements in
the assembly language which represent the
program constitute the source form of the
program. Table 1 is an example of an as=-

sembly language program that searches an
area of core memory for the first occurrence
of the number 15.

The translation from the symbolic source
program to the binary object program is
done by the assembler. The assembler
reads the source program, statement by
statement, from punched paper tape or cards.
As the statements are read, a symbol table
is accummulated. This table contains every
symbol and the value of the location counter
where the symbol was encountered. For
the previous example, the symbol table
after reading the source program once,
would be as shown in Table 2.

The assembler generates both an object
tape and a listing. The object tape con-
tains the binary information to be loaded
into memory. The listing is a printed
record which shows each source statement
and the binary information generated for
that statement. The binary information on
a listing is always represented in hexadeci-
mal form. '

TABLE 1. TYPICAL SOURCE PROGRAM
Name Operation Operand Comment
ORG X'100' SET THE LOCATION COUNTER
BEGIN LHI 2, TOP TOP OF DATA TABLE
LHI 3,2 HALFWORD INCREMENT
LHI 4, BOTTOM BOTTOM OF DATA TABLE
LHI 10,15 SEARCH VALUE OF 15
LOOK CLH 10, 0(2) COMPARE
BE FINI BRANCH ON EQUAL TO FINI
BXLE 2, LOOK NOT FOUND GO LOOK FURTHER
IFINI LPSW WAIT STOP THE PROGRAM
WAIT ‘ DC X'8000', A(BEGIN)
TOP DS 1000
BOTTOM DS 2
END BEGIN




TABLE 2. TYPICAL SYMBOL TABLE

Szmbol Value Sin hexadecimal!
BEGIN 0100
LOOK 0110
FINI 011C
WAIT 0120
TOP 0124
BOTTOM 050C

It is important to note that this assembler
processes assembly language statements
for user programs which are to reside in
core memory. Assemblers which process
micro-programs for a Read-Only Memory,
which are related to the internal structure
of the GE-PAC 30 Processor, are dis-
cussed in other publications, such as the
GE-PAC 30-1 Micro-Programming Manual,
Publication Number 29-021.

There are a number of versions of the As-
sembler Program available, each tailored
to specific machine configurations. Certain
versions of the assembler read source state-
ments from a card reader, and other ver-
sions read source statements from tape de-
vices such as paper tape or magnetic tape.
Only certain versions of the assembler pro-
vide means for generating floating-point
instructions and data. For a description of
the various versions, and the differences
between them, refer to the Assembler Oper-
ating Procedures, Publication Number 03-
001A16,

2. ASSEMBLY PROCEDURES

The assembler takes one, two, or three
passes across the source tape to complete
the assembly. The number of passes is
controlled by an option control statement

in the source program. Refer to the OPT
pseudo opcration for details. When so di-
rected, the assembler makes an assembly -
- complete with listing and object tape -- in
one pass. In this case the assembly time is

minimized, but the resulting object tape must
be loaded with the General Loader (part num-
ber 06-025).

With two pass-assemblies, the first pass is
devoted to development of a symbol table.
On the sccond pass, the listing is printed
and the object tape is punched. Assemblies
are normally performed using two passes.
The two-pass procedure is appropriate ex-
cepl where the input-output device configura-
tion prohibits punching and printing on the
same pass. In this case, the three-pass
assembly can be used. With a three-pass
assembly, the symbol table is built on pass
one, the listing is printed on pass 2, and
the object tape is punched on pass 3.

The assembly listing is produced as part of
the assembly process. The listing contains
the source statements and the data genera-
ted from each statement. Table 3 indicates
the assembly listing for the previous exam-
ple.

The first four hexadecimal digits represent
the value of the location counter or values
of symbols resulting from EQU asscmbler
statements. The next four hexadecimal
digits represent the data generated hy the
assembler from the source statement.

Error flags may precede the location coun-
ter values. These flags indicate that an
error was encountered in interpreting the
statement. The meaning of each flag is as
follows:



TABLE 3. SAMPLE ASSEMBLY LISTING

Location Data Name Operation Operand . Comments
0100 : ORG X'100' SET THE LOCATION COUNTER
0100 C820 BEGIN LHI - 2, TOP TOP OF DATA TABLE
0124 '
0104 C830 LHI 3,2 HALFWORD INCREMENT
0002 _
0108 C840 LHI 4, BOTTOM | BOTTOM OF DATA TABLE
050C ’ '
010C C8A0 LHI ) 10,15 SEARCH VALUE OF 15
000F '
0110 45A3 LOOK CLH 10, 0(2) COMPARE
0000 \
0114 4330 BE FINI BRANCH ON EQUAL TO FINI
011C
0118 c120 BXLE 2, LOOK NOT FOUND GO LOOK FURTHER
0110 ‘
011C C200 FINI LPSW WAIT STOP THE PROGRAM
0120
0120 8000 WAIT DC X'8000', A(BEGIN)
0100
0124 TOP DS 1000
050C BOTTOM| DS 2
050E » END BEGIN
BEGIN 0100
BOTTOM 050C
FINI 011C
LOOK 0110
TOP 0124
WAIT 0120
F Format error Whenever an invalid op error (O) occurs,
M - Multiple defined symbol the assembler always advances the location
(0] Operation mnemonic invalid counter by four bytes so that the program
T Truncation error, a constant can be patched casily for debugging.

or expression has over-
flowed the specified limits
R Relocation error, a meaning-
less combination of reloca-
table symbols in an expres-

A flag immediately following the data gen-
erated by the assembler indicates whether
the data is relocatable, absolute, or a for-
ward reference. The flags are:

sion BLANK Absolute data
S Symbol tahle overflow R Relocatable data
U Undcfined symbol F Forward refercence data




The symbol table that was accummulated
during PASS1 is printed following the END
assembly pscudo-op. Any statements con-
taining symbols preceded by an error flag
of U (Undefined symbol) can be corrected

at this time and repeat PASS1 of the assem-
bly process.

The symbol table is again printed following
the END assembly pseudo-op after PASS2,
The symbols are listed alphabetically with
their values. If the symbol is defined; the
value is followed by an R if that value is re-
locatable. If the symbol is undefined, the
last value of the location counter for a state-
ment referencing the undefined symbol is
printed.

Preceding cach symbol is a field for error

flags. These lags ave as follows:
* - FExternally defined symbol
U -  Undefined symbol

3. THE ASSEMBLER LANGUAGE
3.1 Source Statements

There arc two basic kinds of source state-
ments, instruction statements and comment
statements. Instruction statements are used
for machine instructions and assembler in-
structions. The instruction statements may
have the following information fields:

- Name

- Operation
- Operand

- Comments

Comment statements, which begin with *,
should not be confused with the comment
ficld of the instruction statement. Com-
ment statements can occupy the entire state-
ment line.

3.1.1 Imstruction Statements.
The comment and instruction statemcents
are wrilten by the programmer on a coding
form that has the various ficlds clearly
marked. Sce Figure 1. This form, when

filled out, is used to generate the source
paper tape or source cards that are read
by the assembler during the assembly pro-
cess. As shown on Figure 1, the Name
begins in column 1, the Operation begins in
column 10, the Operand begins in column
16, and Comments are usually in 35-60.
The fixed field positions are a convenience
for the programmer only, and are not re-
quired by the assembler. The assembler
simply requires that fields be separated by
one or more spaces. The fields are de-
scribed in the following paragraphs.

Name

A name is from one to six characters in
length. The name must be written with the
first character in column 1, and it must

not contain any blanks. Names are used hy
the programmer to identify data and instruc-

‘tions in the program. The first character

must be a letter; the remaining five can be
letters or numbers. Typical names are:

Name Operation

START
ARG1
LOOP2
GO

Operation

The operation field specifies a machine in-
struction mnemonic that is translated by the
assembler to machine code, or it specifies
an assembler instruction mnemonic to con-
trol the assembly process. An operation is
always required in an instruction statement,
and should be written on the coding form
beginning in column 10. No blanks may be
used within the operation. Typical opera-
tions are:

Name Operation Operand

ORG
LHI
AHR
DC



NAME OPERATION OPERAND COMMENTS gg&r"ng:non Tes

1 8 1o L 20 3 30 » 40 48 50 55 60 ] T T3 80
JSARRNRNEN T T BEPTIT I T AEEER
! 1 ] N
' ‘
1

'.
z
m

i

1 1 [ I : 1 i o

i
Ll
T .. P

® NG W~

o Snenan it}

P G — R SR S S

OSSN 5 D

R NREG TP S .

[FoncrRwG WSTRUCTIONS =i - e B

GRAPHIC

PUNCH 1 -

Figure 1. Coding Form

Operand C omment

Opcerands identify the data to be used by the Comments are descriptive text. Comments
instruction. The type of operand and the are printed on the assembly listing, along
number of operands required depend on the with the name, operation, and operand of
particular instruction appearing as the opera- the source statement. Comments are writ-
tion. No blanks may appear within, or be- ten beginning after the first blank in the
tween, operands., Typical operands are: operand, and can contain 26 characters. In
' general, columns 36-61 are used. Typical
comments are:

Name Operation Operand .
) Opcrand Comment
AH R6, TEMP ’
BL ouT : R6, TEMP  FETCH FIRST VALUE
STH R6, TABLE(R5) A(START) TABLE AREA
B IN sTOP ERROR STOP

[



3.1.2 Comment Statements.
Comment statements are descriptive text
that can occupy the entire source statement
line. Comment statements are written with
an asterisk (*) in column 1, followed by any
descriptive text the programmer desires
and can contain 55 characters in addition to
the *. Any number of comment statements
may be used at any place in a program.
Comment statements do not produce binary
object information and are used only as doc-
umenting aids. Several comment statements
are:

*THIS IS A COMMENT STATEMENT,
*IT CAN BE USED ANYWHERE IN A
* PROGRAM AS A PROGRAMMER

* AND DOCUMENTATION AID

* .

*X<OR == Y/Z? IF SO, GO ON

3.1.3 Character Set. All source
statements arc written using the following
characters:

Alphabetics A through Z
Numerics 0 through 9
Special characters + -, =*"' () blank

and all charac-
ters printable on
a teletypewriter

3.2 Assembler Language Structure

The source instruction statement consists
of:

- A name

- An operation
- An operand
- A comment

Each entry in a source statement may be
composcd of one or more items depending

on the kind of source statement being written.

- A name, when present, must be a
symbol

6

- An operand may be composed of
one or more expressions, which
in turn are composed of symbols,
constants and arithmetic combina-
tions of symbols and constants

- An operation, always present, must
be a machine instruction Mnemon-
ic or an assembler instruction
Mnemonic

3.2.1 Symbols. "A symbol is
used as a name or as an operand. In either
case, symbols consist of from one to six
characters. The first character must he
alphabetic. The characters that can he
used for a symbol are:

A through Z
0 through 9

Alphabetics
Numerics

The following symbols are valid and could
be used as a name or as an operand.

T2
LOOP25
N

STOP

The following symbols are invalid for the
reasons given:

2TOP First character is not
alphabetic

COMMAND More than 6 characters

AtoD Contains a bhlank

X4.2 Contains a special char-

acter, a period

3.2.2 Instruction Constants.

Instruction constants appear as an operand
for both machine instructions and assem-
bler instructions. An instruction constant
can be one of thrce types:

- Deccimal
-  Hexadecimal
- Character



In general, instruction constants define 16-
bits or a halfword of information. The type
of constant is identified by a prefix code.

Code Constant Type
None Decimal

H Halfword Decimal
X Hexadecimal

C Character

Decimal constants can be from one to five
decimal digits, not to exceed 32, 767 maxi-
mum or -32, 768 minimum, and are written
as:

125
32765
-15

cle.

Hexadecimal constants can be from one to
four digits. The hexadecimal digits are:

0,1,2,3,4.5,6,7,8,9, A, B,
C, D, E, F

The hexadecimal constant must be enclosed
in single quotation marks and be preceded
by the letter X. Leading zeros are not
necessary. The hexadecimal constants are
right justified to form 16-bit halfwords.
Examples are:

X' or X'000F'
X'AE' or X'0D4E'
X'030' or X'0030'

Character constants used in the operand
field of an instruction statement can be
from one to two characters. . The permis-
sable characters are:

Alphabetics
Numevrics
Special characters

A through Z

0 through 9

+, -, =* () blank
and all ASCII coded
characters print-
able on the teletype-
writer except the
single quote (').

The character constant must be enclosed in
single quotation marks and he preceded by
the letter C. A single character within the
quotes is right justified to form a 16-bit
halfword. Each character is translated
into a byte of seven hit ASCII code.

C'*'.  generates X'002A'
C'12' generates X'3132'
C'XY' generates X'5859'

3.2.3 Expressions. An expres-
sion is a symbol, a constant, or a series of
such items separated by the arithmetic op-
erations + (addition), and - (subtraction).
Examples of valid ¢xpressions are:

SAM

5

LOODP+4
" TABLE+X'12A°

STOP-GO+2

C'A'+1

~-TROG

3.2.4 Relocatable and Absolute
Expressions. An expression is absolute if
its value is absolute. Similarly, an abso-
lute expression does not change as a function
of the physical location of the program in the
machine. The value of a relocatable ex-
pression does change when the location of
the program changes. The relocatable
value will change by the differcnce in byte
locations between the originally assigned
area of storage and the newly assigned area
of storage.

An expression, when evaluated, produces a
value which is considered absolute or relo-
catable according to the rules outlined in
Table 4.

3.2.5 Location Counter. The
value of the location counter can be refer-
enced by using an * which means "current
value of location counter'". Addressing
relative to the location counter is on a byte
basis. To specify an address that is one-
RX instruction forward, the correct expres-
sion would be *+4,




TABLE 4., ABSOLUTE AND RELOCATABLE EXPRESSION RULES

A is absolute, B is absolute

A is absolute, B is relocatable

A is relocatable, B is absolute

A is relocatable, B is relocatable

A'B A-B
Absolute Absolute
Relocatable Invalid
Relocatable Relocatable
Invalid Absolute

In both examples below, the Branch instruc-
tion transfers to the instruction labelled
L.OOP25, :

B 18
LHI  R6,0
LOOP25 LB R5, TABLE(R6)

B *+-6
SHR  R6,R6
LOOP25 LB R5, TABLE(RG6)

The proper alignment of the location counter
to halfword memory boundaries is provided
by the assembler. If a character data con-
stant specification is followed by an instruc-
tion or halfword data, halfword alignment is
forced. The value of the location counter is
absolute or relocatable depending on the op-
erand entry of the assembler ORG instruction.
If the expression appearing as the operand is
relocatable, the location counter value (*) is
relocatable: if the expression is absolute, the
location counter value is absolute. If no ORG
is specified in a program, the location counter
starts at relocatable zero.

4. MACHINE INSTRUCTIONS FORMAT

The assembler provides the facility for
representing all the machine instruction
operation codes with mnemonics. The bi-
nary instruction is generated by the assem-
bler (rom the operation mnemonic and the
operand.  Table 5 summarizes the formats
uscd.

The mnemonic in the operation licld speci-
fies the desived function, i.c., Add. Each
instruction has a unique mnemonic that is
uscd as the operation.  These mmemonics
and their‘m(‘zming’s are listed in Appendix 1.
Some insiruction examples are:

RR - Format Instructions

Name  Operation Operand
GO LHR 1,2
BALR R15,R12
LOOP12 AHR 3,3
DHR DEND, ISOR
RX - Format Instructions
Name Operatioh Operand
TEST1 STH R7, TEMP
© MH 13, TABLE (3)
LH TWELV, 0(X7)
AH X'B', TOP+4(5)
RS - Format Instructions
Name Operation Operand
LHI 0, X'9DAE'
FINI AHI R7,1
BXLE R4, LAST1
SLHL - R12,8

5. ASSEM BLER INSTRUCTIONS
(PSEUDO-OPS)

Assembler instructions are used to control
the assembly process, define symbols, and
generate data. Assembler instruction state-
ments do not always generate data as the

‘machine instruction statements do. The

following paragraphs describe the assembler
instructions.



TABLE 5. INSTRUCTION FORMAT SUMMARY

Applicable
Machine Format _ Assembly Format Instructions
Bits 8 4 4 16 OPERATION OPERAND
OP R1 R2 oP R1,R2 All RR except branches|
OoP M1 R2 : oP M1, R2 BTCR or BFCR
(0] % R2 oP R2 BR or NOPR
oP R1 X2 A oP R1, A(X2) All RX emcept branctes
opP M1 X2 A oP M1, A(X2) BTC or BFC
OP X2 A OoP A(X2) B or NOP or Extended
Branch Mnemonics
oP R1 X2 A oP R1, A(X2) All RS except LPSW
OoP X2 A OP A(X2) LPSW
5.1 Symbhol Definition Instructions 5.1.2 ENTRY - Identify Entry-
Point Symbol
5.1.1 EQU - Equate Symbol
- i O d
Name Operation = Operand Name Operation peras
' . Not used ENTRY One or more
A s_y@bol EQU an expression symbols separ-
required

ated by commas
The . EQU assembler instruction is used to

equate a symbol to the value of an expres- The utility of symbolic register designations
sion. Symbols used in the expression must " is in the ease with which registers can be
be previously defined. The value of the reassigned without extensive recoding. To
symbol is relocatable or absolute as deter- _change from General Register 6 to General

- mined hy the expression. Register 1 requires changing only the R6

The EQU assembler instruction is used to EQU 6 assembler statement.

equate symbolic General Register names to

their appropriate value. Other‘v examples are:

Name Operation Operand Name Operation Operand
RG EQU 6 LOOP EQU LOOP1
R7 . EQU 7 TOP EQU END-64
. DELTA EQU BOTTOM-TOP
. , HERE EQU *
' START EQU X'01FE'

LHR R6, R7 BLANKS EQU C'



The ENTRY assembler instruction identifies
syvmbols that are defined in this program
and may he used by some other program.
This permits programs that arce assembled
separately to communicate with each other.
Only those symbols identified as entry sym-
bols are available to other separately as-
sembled programs. All ENTRY statements
must precede any symbol definitions in the
program.

An example is:

Name Operation Operand
ENTRY SIN, COSIN
SIN LHI R7, TEMP2

]

COSIN LHI

R8, TEMP3
.l'INl)
5.1.3 EXTRN - Identify Ex-
ternal Symbol
Name Operation Operand

Not used EXTRN One or more
symbols separ-

ated by commas

The EXTRN assembler instruction idehtifies_

syvmbols that arc defined in another program

that will be referenced by this program.
This permits programs that are assembled
separately to communicate with each other.
Only those symbols identified as ENTRY
svmbols in another program should be iden-
tified as externally defined in this program.
All EXTRN statements must precede any
symbol definitions in the program.

10

An example is:

Name Operation Operand
EXTRN SIN, COSIN
[ ]
BAL R15, SIN
L]
BAL R15, COSIN
END

Any symbols declared as EXTRN's must be
used with the following restrictions:

1. EXTRN symbhols must not be
combined in arithmetic expres-
sions; i. e.

LH 3, SIN+2

2. EXTRN symbols must not be
used in the R1 or R2 field of
an instruction; i. e.

LH  3,2(SIN)

3. EXTRN symbols must not be
used with assembler pseudo-
ops such as DO, EQU, END,
etc.

The utility of the ENTRY, EXTRN assem-
bler instructions is realized when subrou-
tines are written. Rather than having to
assemble the main program and its sub-
routines at the same time in order to
establish correct communication, the ENTRY
EXTRN permits the main program to be as-
sembled and then loaded with the previously
asscembled subroutines. The symbols iden-
tifiecd by ENTRY and EXTRN statements are
then linked at load time by the General
Loader. The ability to assemble and debug
the subroutines and main programs in a
modular fashion is very convenient.



Consider the following two hypothetical

programs:

Name Opcration Operand

* MAIN PROGRAM

*

* .
EXTRN RIPLE, DABB

START  LHI R7,7
LHI R15,X'FOF0'
STH R1, DABB
BAL R7, RIPLE
B START
END

* SUBROUTINE RIPLE
ENTRY RIPLE, DABB

START ~ LH R2, DABB
AHI R2,C'*-!
BR R7

DABB DS 2

RIPLE EQU START
END

The symbols RIPLE and DABB are used by
the main program, but their values are not

known at assembly time.

Since they are

defined as EXTRN's, the symbols RIPLE
and DABB and the location at which they

arc referenced in the main program, are
punched on the object tape or cards along
with the rest of the assembled main pro-

gram.

In a similar fashion, when the sub-

routine is assembled, the symhols RIPLE
and DABB and their values are punched
along with the subroutine.

As the main program and subroutines are
loaded, the loader accumulates a table of
relerences to symbols and their values.
This information is used by the loader to
link the main program and subroutine hy
replacing every reference to RIPLE and
DABDB by the values passed on from the
subroutinc by the ENTRY assembler instruc-
tion. Note that the General Loader must be
used to load the object tape for any program
involving ENTRY's or EXTRN's.

5.2 Data Definition Instructions

There arce two data definition instructions,
the DC and the DS, These assembler in-
structions provide a convenicnt means to
define and reserve data storage.

5.2.1 DC - Define Constant

Name Operation Operand

A symbol DC
optional

One or more
operands separ-
ated by commas

The DC assembler instruction is used to deQ

~fine constants and generate actual data.

These constants may be hexadecimal, deci-
mal, character, address, or floating-point

constants. The type of constant is indicated
by a prefix code.

Code Constant Type Machine Format

C Character 8-bit character code

X Hexadecimal 16-hit binary

H Decimal 1G-bhit binary

A Address 16-hit hinary

E Floating-Point 32-bit binary
5.2.1.1 C - Character Constant

The character constant can be any length.
It must be enclosed in single quotation marks
and preceded by a C.

Name Operation Opcerand
MESG1 DC C'LOAD THE TAPE'
DC C'EXECUTE AT 19FE'

Each character is translated into one 8-hit
byte of storage. If an odd numbher of char-
acters is specified, a hlank character is
automatically appended. This maintains
halfword boundary alignment for any following
machine instructions. If only one character
appears hetween the quote marks, the 8-hit
byte is left justified in the halfword, with the
code for blank X'20' in the right half. In

11



general, all characters are translated into
7-bit ASCII code. with the most significant
hit zcro. As an cxample of this alignment,
process, the following two data definition
instructions arc equivalent. Each instruc-
tion generates 14 bytes of data.

Name Operation Operand

DC C'AN ODD NUMBER'
DC C'AN EVEN NUMBER'

5.2.1.2 X - Hexadecimal Constant

A hexadecimal constant can be from one to
four digits. The hexadecimal digits are:

O, 1,2, 3, 4,5, 6,7, 8,9, A, B,
C.on, K

The hexadecimal constants must be enclosed
in single quotation marks and preceded by an
X. Examples are:

Name Operation Opecrand
DATAL nCe X'1FE'
DC X'C800'

The hexadecimal constant is converted to a
properly aligned 16-bit halfword. If fewer
than four digits are specified, the digits are
right justified and leading zeros generated.
For example, the following data constants
arc equivalent and result in a 16-bit data
constant,

Name Operation Operand
DC X'1c!
DC X'01C!
DC X'001C’
h.2.1.3 H - Halfword Decimal
Constants

A decimal constant can be from one to five
digits plus sign. They cannot exceed

+32, 767 maximum or -32, 768 minimum.
The decimal digits are enclosed in single
quotation marks and preceded by the letter
H.

12

DC - H'-792', H'-30000'

The decimal constant is converted to a prop-
cerly aligned, right justified 16-bit integer.

5.2.1.4 A - Address Constant

An address constant is a storage address
that is translated into a constant. It is a
relocatahle or ahsolute constant as deter-
mined by the combination of symbols and
constants in the expression. Unlike other
constants, the address constant is enclosed
in parentheses and preceded by the letter A.

DC A(LOOP+2)
DC A(TABLE)
DC A(TOP-BOTTOM)

The constant stored is relocatable or abso-
lute as determined by the rules given in
Table 4. ‘

The following examples show how a single
DC instruction can be used to define differ-
ent types of data. Each operand is separ-
ated from the next with a comma.

Name Operation Operand

DATUM1 DC X'0F00',C'ABCD'
MSG2 DC C'A MESSAGE', H'132'

DC A(ARGA1l), A(HEX-16),X'39'

Decimal constants and address constants can
be created without the H' ' and A( ) nota-
tion if desired. For example:

DC 123, H'123"

DC SAM, A (SAM)

DC TOP+39,X-Y

©5.2.1.5 1 - TFloating Point
Constant

The floating-point constant consists of a
decimal number, as formatted below, en-
closed in single quotes and preceded by an
E. The format of the decimal number is as
follows:



3
1.  An optional leading plus sign or
a minus sign.

2.  One or more decimal digits that
may include a decimal point.

3. An optional E character followed
by an optional leading plus sign
or a minus sign and one or two
decimal digits, denoting a power
of ten.

If, however, more than six digits are speci-
fied, (for example E'1234567E3"'), the proper
order of magnitude will result, but only six
digits of precision are maintained. That is,
numbers in the range from approximately
5.4 x 1077 to 7.2 x 1075 can be repre-
sented in the above format with six digits

of precision. '

Each floating-point DC data constant entry
is translated by the assembler into a float-
ing-point number in a specified binary
representation requiring two halfwords.
Refer to the GE-PAC 30 Reference Manual,
Publication Number 29-004 for a detailed
explanation of the floating-point binary
representation generated.

There cannot be any blanks within or be-
tween E constants, and they must be separ-
ated from each other with a comma as in =
the last example below.

Examples: DC E'7,2E+75' approximate

maximum

DC E'5.4E-79' approximate
minimum

DC. E'7,1E+75'

DC E'5.5E-79'

DC E'+127.47E-45'

DC. E'-4.007E0'

DC E'123456'

DC E'.123456E6'

DC E'1E-74', E'1E-75"

The assembler will produce an error flag
when any of the following occur:

Error Flag Error

F Multiple decimal points occur
before the number is termin-
ated, or an E is encountered.

- F Any decimal point occurs af-
ter the E is encountered.

T The specified power of ten is
not in the range -99 to 99.

Illegal Examples: Error Flag
- DC E'10.03.49 F (Format
Error)
DC E'10.03E4.0' F
DC E'2DASE-30' F
DC E'10,000' F

DC E'1E-100' T (Truncation
Error)

CD FE'478E+100' T

Numbers whose magnitude exceeds the
largest possible number are converted to
the largest floating-point number which is
X'"TFFF', X'FFFF' for positive values,

and X'FFFF', X'FFFF' for negative values.
Numbers whose magnitude is less than the
smallest possible number are converted to
true floating-point zero, which is X'0000',
X'0000'. )

Examples: DC E'7.3E+75'
DC E'5.3E-79'
DC E'l1E-99'
DC E'lE+99"
DC E'T3E+76'
DC E'123456E83'
5.2.2 DS - Define Storage
Name Operation Opcrand
A symbol DS An cxpression
optional

13



The DS asscmbler instruction is used to
reserve storage arcas. The value of the
expression in the operand entry determines
the number of bytes reserved. If a symbol
appears as a name, the value of the symbol
is the location of the first byte reserved,
No data is generated and the storage area
reserved is not set to zero.

Example:
Name Operation Operand
INAREA DS 80
ouTpPruT DS TABLE1-TABLE2
5.3 Assembler Control Instructions

Assembler control instructions are used to
control the location counter, the number of
passes, between pass stops, printing and
punching, conditional assembly, and assem-
bly termination. Nonc of these assembler
instructions generate machine code instruc-
tions or constants in the object program.

5.3.1 OPT - Specify Options
Name Operation Operand
Not usced OPT One or more

operands separ-
ated by commas

The OPT statement must be the first state-
ment in the program. The OPT assembler
instruction is used to specify the following
assembly options.

- Number of Passes: PASS1, PASS2,
PASS3

- Printing: PRINT, NOPRNT

- Punching: PUNCH, NOPNCH

- Belween Pass Stop: STOP, GO
- Proviam Label: TLADB=ABCDEIT
The options can appear in any order in the

OPT statement.,

14

If no OPT statement or specification of a
particular option appears, the assumed op-
tions are as follows:

PASS1
PRINT
NOPNCH
STOP

Typical OPT statements might be:

Name Operation Operand

OPT PASS2, PUNCH, GO
OPT PUNCH, NOPRNT, PASS1

OPT STOP, PRINT, PASS3, PUNCH

OPT PUNCH, LAB=PROG3
-PASS1, One-Pass assembly option.

Specifying the PASS1 option, causes the
source tape or cards to be read by the as-
sembler once. The printed assembly listings
and punched object tape are produced in ac-
cordance with the punching and printing
options that have been specified.

For example:

Name Operation Operand

OPT PUNCH, PRINT, PASS1

will produce an assembly listing, punch the
object code, and halt after one pass over the
source statements. Object tapes from one-
pass assemblies must be loaded by the Gen-
cral Loader. Therefore, PASS1 assemblies
should only be specified when it is feasible
to use the General Loader at load time.

-PASS2, Two-Pass assembly option.

Specifying the PASS2 option causes the
source tape or cards to be read by the as-
sembler twice. The printed assembly list=
ing and punched object are produced during
the second pass. As with the PASS1 option,

. they are produced in accordance with the

punching and printing options that have becn
specified. ’



-  PASS3. Three-Pass assembly
option.

Spcecifving the PASS3 option causes the
source tape or cards to be read by the as-
sembler three times.  The principle use of
the PASS3 option is to produce two pass
assemblies of a program using the'teletype~
writer. The three pass assembly is identi-
cal to the two pass except that the assembly
listing is produced during the second pass

and the ohject punched during the third pass.

PRINT, Print asscembly listing
option

Specifving the PRINT option will cause the
assembly listing to be printed during:

- the first pass of a one-pass
assembly

- the second pass of a two-pass
assembly

- the second pass of a three-pass
assembly ‘

- NOPRNT, No printing option

Specifying the NOPRNT option suppresses
any printing of the assembly listing.

- PUNCH., Punch object option.

Specifying the PUNCH option causes the
object program to be punched during:

- the first pass of a one-pass
assembly : '

- the sccond pass of a two-pass
assembly

- the third pass of a three-pass
assembly

- NOPNCH, No punching option

Specifying the N()PNC H option suppresses
punching ol the object program.

- STOP, Stop after each pass option.

Specifying the STOP option causcs the as-
sembler to stop after each pass of the
assembly.

- GO, Go to the next pass option,

Specifying the GO option causes the assem-
bler to go immediately to the next pass of
the assembly without operator intervention.
This is useful when bhatching assemblies.

- LADB = nnnnnn

A program label can be 1 Lo 6 characters:
the first character must he a letter, sub-
sequent characters can be letters or digits.
The program label is punched on the object
tape in symholic form. When using the
General Loader. program iabels are typed
at load time. Note that program labels are
appropriate onlv when the General Loader
is used. 4

5.3.2 ORG - Set Location Counter

Name Operation Operand

A relocatable or
absolute expres-
sion

Not used ORG

The ORG assembler instruction is used to
control the location counter. The ORG
causes the location counter to be set to the
value of the expression in the operand entry.
The value is relocatable or ahsolute as deter-
mined by the expression.

The location counter is initialized to zero
before each assembly. If no ORG assembler
instruction appears at the beginning of the
program, the location counter will hegin at
relocatable zero.

Svmbols appearing in the operand of the
ORG must be previously defined.

15



The ORG assembler instruction assures
proper hallword alignment for any following
machine instructions by always forcing the
value ol the location counter to be even.
For example, the following two ORG state-
ments produce a location counter value of
X'019C".

Name Operation Operand
ORG X'019D'
ORG X'019C'

To obtain a relocatable program, no ORG
statement is necessary. A program can be
madce absolute at any time by using an ORG
with an absolute operand, like ORG X'100°',
Oncce a program is absolute, it can be made
relocatable again by referring to a previously
defined relocatable symbol.  For example:

opPT

START EQU * REL PORTION
ORG X'1000’ ABS PORTION
ORG START +100 REL PORTION

END
n.3.3 DO - Conditional Asserhbly
Nn me Opcration Operand
A symhol DO A single expres-
oplion sion

The DO assembler instruction causes the
statement immediately fol]bwing the DO
statement to be processed as many times
as specified by the value of the expression
in the operand entry. If the value is zero,
the next statement is skipped. The condi-
tional assembly of instructions and genera-
tion of data is often used to conligure
standard programs at asscembly time.

16

For example:

DO CNFGRI1
BAL R15,SUBR1
DO 1-CNFGR1

BAL R1,SUBR3

If CNFGR1 has a value of 1, the branch to
SUBR1 will be generated. If the value of
CNFGR1 is 0, the branch to SUBR3 will be
generated.

5.3.4 END - End Assembhly

Name Operation Operand

An absolute or
relocatable ex-
" pression (optional)

A symbol END
optional .

The END assembler instruction terminates
the assembly of the program. The value of
the expression, if present, designates the
place in the program where control is trans-
ferred after the program has been loaded.

If an expression is not presént, no automatic
transfer of control takes place after loading.

An example follows:

Name Operation Operand
ORG 100
PLACE1 LHI R3,DATA2
L]
LAST END PLACE1

The optional symbol, LAST, points to the
next sequential halfword address beyond
the object program. After loading this ex-
ample program, Processor control is auto-
matically transferred to location X'0100'
(PLACE1).



APPENDIX 1

SUMMARY OF MACHINE INSTRUCTIONS

OPERAND

INSTRUCTION TYPE MNEMONIC FORMAT OP CODE
Acknowledge Interrupt RR AIR R1,R2 9F
Acknowledge Interrupt RX Al R1,AX2) DF
Add Halfword RR AHR R1,R2 0A
Add Halfword RX AH R1,AX2) - 4A
Add Halfword Immediate RS AHI R1,AX2) CA
Add with Carry Halfword . RR ACHR R1,R2 OE
Add with Carry Halfword " RX ACH R1, AX2) 4E
AND Halfword RR NHR R1,R2 04
AND Halfword RX NH R1,A(X2) 44
AND Halfword Immediate RS NHI R1, A(X2) C4
Autoload** RX AL R1, A(X2) D5
Branch and Link ‘RR BALR R1,R2 01
Branch and Link RX BAL R1, A(X2) 41
Branch on False Condition RR BFCR M1, R2 03
Branch on False Condition RX BFC M1, AX2) ‘43
Branch on True Condition RR BTCR M1, R2 02
Branch on True Condition RX BTC M1, AX2) 42
Branch on Index Low or Equal RS BXLE R1, A(X2) Ci
Branch on Index High RS BXH R1, AX2) Co
Branch Unconditional* RR BR M1, R2 030
Branch Unconditional* RX B AX2) 430
Branch on Overflow* RX BO AX2) - 424
Branch on Zero* RX BZ A(X2) 433
Branch on Not Zero* RX BNZ AX2) 423
Branch on Equal* RX BE - AX2) 433
Branch on Not Equal* RX BNE A(X2) v 423
Branch on Plus* RX BP A(X2) 422
Branch on Not Plus* RX BNP - AX2) 432

*FExtended Branch Mnemonics
*¥GE-PAC 30-2 Instruction Only

Al-1



APPENDIX 1

*Extended Branch Mnemonics
**GE-PAC 30-2 Instruction Only

Al-2

(Continued) OPERAND
INSTRUCTION TYPE MNEMONIC FORMAT _ OP CODE
Branch on Low* RX BL AX2) 428
Branch on Not Low* RX BNL AX2) 438
Branch on Minus* RX BM AX2) 421
Branch on Not Minus* RX BNM A(X2) 431
Branch on Carry* RX BC AX2) 428
Compare Logical Halfword RR CLHR R1,R2 05
Compare Logical Halfword - RX CLH R1, A(X2) 45
Compare Logical Halfword Immediate RS CLHI R1, A(X2) C5h
Divide Halfword RR DHR R1,R2 0b
Divide Halfword RX DH R1, A(X2) 4D
Exclusive OR Halfword RR XHR R1,R2 07
'Exclusive OR Halfword RX XH R1, A(X2) 47
Exclusive OR Tlalfword Tmmediate RS XHI R1,A(X2) . Cc7
Floating-Point Add** RR AER R1,R2 2A
Floating-Point Add** RX AE R1,A(X2) 6A
Floating-Point Compare** RR CER R1,R2 29
Floating-Point Compare** RX CE R1, A(X2) 69
Floating-Point Divide** RR DER R1,R2 2D
Floating-Point Divide** RX - DE R1, A(X2) 6D
Floating-Point Load** RR LER R1,R2 .28
Floating-Point Load** RX LE R1, A(X2) 68
Floating-Point Multiply** RR MER R1,R2 2C
Floating-Point Multiply** RX ME R1, A(X2) 6C
Floating-Point Store** RX STE R1,AX2) 60
Floating-Point Subtract** RR SER R1,R2 2B
Floating-Point Subtract** RX SE R1, A(X2) 6B
" Load Lyte RR LBR R1,R2 93
Load Byte RX LB R1, A(X2) D3



APPENDIX 1

( Continued)

OPERAND

INSTRUCTION TYPE MNEMONIC FORMAT OP CODE
Load Halfword RR " LHR R1,R2 08
Load Halfword » RX LH R1,AX2) 48
Load Halfword Immediate RS LHI R1, A(X2) C8
Load Multiple** RX LM R1, A(X2) D1
Load Program Status Word RX LPSW AX2) Cc2
Multiply Halfword RR MHR R1,R2 0oC
Multiply Halfword RX MH R1, AX2) 4C
No Opcration* RR NOPR R2 020
No Operation* RX NOP A(X2) 420
OR Halfword RR OHR R1,R2 06
OR Halfword RX OH R1, AX2) 46
OR Halfword Immediate RS OHI R1,AX2) - Cé6
Output Command RR OCR R1, R2 9E
Output Command RX ocC R1, A(X2) DE
Read Block RR RBR R1,R2 97
Read Block RX RB R1, A(X2) D7
Read Data RR RDR R1,R2 9B
Read Data RX RD - R1,AX2) DB
Sense Status RR SSR R1,R2 9D
Sense Status RX SS R1, A(X2) DD
Shift Left Arithmetic RS SLHA R1, AX2) CF
Shift Left Logical RS SLHL R1, A(X2) CD
Shift Right Arithmetic RS SRHA R1, AX2) CE
Shift Right Logical RS SRHL R1, A(X2) CC
Store Byte RR STBR R1,R2 92
Store Byte RX STB R1, AX2) D2

*Extended Branch Mnemonics
**GE-PAC 30-2 Instruction only

Al-3



APPENDIX 1

(Continued)

: OPERAND
INSTRUCTION TYPE MNEMONIC FORMAT OP CODE
Store Halfword RX STH R1, A(X2) 40
Store Multiple ** RX STM R1,A(X2) DO
Subtract Halfword RR SHR R1,R2 0B
Subtract Halfword RX SH R1, AX2) 4B
Subtract Halfword Immediate RS SHI R1,A(X2) CB
Subtract with Carry Halfword RR SCHR R1,R2 oF
Subtract with Carry Halfword RX SCH R1,AX2) 4F
Unchain** RR UNCH R1,R2 90
Write Block " RR WBR R1,R2 96
Write Block RX WB R1,AX2) D6
Write Data RR WDR R1,R2 9A
Write Data RX WD R1, A(X2) DA

**GE~PAC 30~2 Instruction Only

Al-4



APPENDIX 2
SUMMARY OF ASSEMBLER INSTRUCTIONS

Symbol Definition Instructions

EQU ' Equate Symbol
ENTRY Identify Entry-Point Symbol
EXTRN Identify External Symbol

Data Definition Instructions

DC Define Constant, used to specify the
following data types '

-C Character Constant

-X. - Hexadecimal Constant

-A Address Constant

-H Halfword Decimal Constant
-E Floating-Point Constant

DS Define Storage

"Assembler Control Instructions

OPT Specify Options

- PASS1 One Pass Assembly
- PASS2 Two Pass Assembly
- PASS3 Three Pass Assembly

- PUNCH Punch Object Tape
- NOPNCH No Punching of Object Tape

- PRINT Print Assembly Listing
- NOPRNT No Printing of Assembly Listing

- STOP Stop After Each Pass

- GO Go, After Each Pass, to the next Pass
ORG .Set Location Counter
DO Conditional Assembly
END End Assembly

A2-1






GE 03-001R01A16

ASSEMBLER OPERATING INSTRUCTIONS

1. GENERAL DESCRIPTION

The Assembler accepts source statements as
described in the Assembler Manual, Publica-
tion Number 03-001R03A12. Refer to the
Assembler Manul for an explanation of the
source language. This document describes
the operation procedures for the Tape Assem-
bler, which accepts source statements from
either a teletypewriter or a high speed tape
reader. The operation of the Card Assem-
bler is the same, except that source state-
ments must be entered through a card reader.

2. CONFIGURATION

Both the Tape and Card Assemblers run on
any GE-PAC 30 Processor with 8K or more
of core memory. The Tape Assembler oper-
ates with either teletypewriters or high speed
paper tape equipment for input-output. The
Card Assembler requires a card reader for
source inputs. The High Speed Arithmetic
instruction repertoire is not required.

3. TAPE FORMAT

The Assemblers are provided as bootstrap
tapes, as indicated by the M10 designation
in the object tape part number. These tapes
are loaded using the 8-bit loader at X'50'.
Refer to the Bootstrap Programs and Proce-
dures, Publication Number 06-030A12, for
an explanation of the tape organization and
loading sequence.

4. ASSEMBLER TAPES

There are four variations of the Assembler
as follows:

Name Tape Number

Tape Assembler/30-1 03-001R03M10

Card Assembler/30-1 03-004R03M10
Tape Assembler/30-2 03-008R0O3M10

Card Assembler/30-2 03-009R03M10

The Tape Assemblers read source input from
a tape device: teletypewriter or high-speed
paper tape reader. The Card Assemblers
read source input from a card reader and
are appropriate only with a Soroban Column-
strobing card reader.

The 30-1 suffix implies that only 30-1 mnemon-
ic op-codes, as defined in the Assembler Man-
ual, Publication Number 03-001R03A12, are
recognized. However, both 30-1 Assemblers
can run on a 30-2 Processor.

The 30-2 suffix implies that in addition to rec-
ognizing the 30-1 mnemonic op-codes, the
30-2 Assemblers also recognize 30-2 mnemon-
ic op-codes. See Appendix 1 for a summary

of mnemonic op-codes that are pertinent only
for 30-2. The 30-2 Assemblers also recognize
the Assembler pseudo op Floating-Point Data
Constant (DC); for example, DC E'789. 163E-
56'. Because of the memory required to ex-
pand the 30-2 Assembler's capability, the 30-2
Assembler Symbol Table is proportionately
smaller than thosce of the 30-1 Assemblers.
Refer to Table 2 under Section 9. Both 30-2
Assemblers run on a 30-1 Processor.

NOTE

Both 30-1 Assemblers and both 30-2 Assem-
blers run on any standard GE-PAC 30 Pro-
cessor with 8K or more memory. The High
Speed option is not required.

5. LOADING PROCEDURES

The Assembler bootstrap tapes should be
loaded with the 8-bit loader at X'50'. The 50
Sequence, which includes this loader, is dis-
cussed in the first part of the Programming
Manual, Publication Number 29-013. Prior
to loading, the 50 Sequence must be entered
into memory. Also the Binary Input Device
Definition at X'78' must be set to select the
desired loading device. Given the 50 Scquence
in memory, the steps required to load the
Agssemblers arc:

1. Place the bootstrap tape in
the tape reader with the first



character over the read
fingers or just preceding
the photo diodes.

Set Data/Address Switches
to X'50', set MODE CON-
TROL to ADRS, and depress
EXECUTE.

Depress INITIALIZE.

Set the MODE CONTROL
to RUN, and depress EX-
ECUTE.

If a teletypewriter is be-
ing used as the load device,
manually start the tape
motion by moving the read-
er switch to Start or Run.
When approximately a foot
of tape has been read, the
lower half of Display Reg-
ister 2 flashes to indicate
that the tape is actually
loading. If this does not
occur, check to see that
the loading procedures were
followed correctly.

If the reader stops and the
Processor halts before the
end of the tape is reached,
an error has been detected.
In this case, reposition the
tape for the previous record
gap and push EXECUTE to
reread the previous record.

When all of the program has
been loaded, the tape will
stop, and Processor control
is transferred directly to the
Assembler at X'80'. The As-
sembler then halts, with the
Wait light illuminated.

Note that during the bootstrap loading pro-
cess, memory locations from X'1D00' to
X'1F07" are used.

6. DEVICE SELECTION

The Assemblers use three halfwords in the
Device Definition Table as follows:

Name Location Used For
BOUTDV XMA? selection of the punch
device
SINDV Xmce selection of the
‘ source input device
LISTDV XME! selection of the list

device

These halfwords must be set up prior to start-

- ing the assembler. These halfwords should

contain information in the form:

0 7T 8 15
l Device No. l Output Command l

The appropriate halfwords for various de-
vices are shown below.

Teletypewriter Input 0294
Teletypewriter Output 0298
High Speed Paper Tape Input 0399

High Speed Paper Tape Output 039A
Card Input 04A0

Line Printer 0780

Various configurations are as follows:

XA 0298 Teletypewriter punch de-
vice
xXmc! 0294 Teletypewriter source

input device



XME! 0298 Teletypewriter list de-
vice

XA 039A High Speed tape punch
device

Xmc! 0399 High Speed tape input
device

XME! 0780 Line Printer

XA 039A High Speed tape punch
device

Xmc! 04A0 Card reader source
input device

XME! 0298 Teletypewriter list de

vice

In the third configuration above, one of the
Card Assemblers is required to handle source
inputs from a card reader.

7. SOURCE TAPE FORMAT

Source statements can be any number of char-
acters followed by a carriage return character.
The characters should be represented in
ASCII code, as defined in the Reference Man-
ual, Publication Number 29-004. The most
significant bit of each character is ignored by
the assembler; therefore, either the 7-bit or
8-bit form of ASCII is acceptable.

The carriage return character terminates each
statement. Line feed characters, and any non-
printing characters are ignored by the assem-
bler. Statements longer than 60 characters

are truncated on input. That is, all characters
between the sixieth character and the terminat-
ing carriage return are ignored. However,

due to the listing format, no more than 56 char-
acters per source statement are printed.

Statements should be separated on the source
tape by at least 5 or 6 non-printing characters.
This statement separation is required due to
the start/stop characteristics of a teletype-
writer tape reader. Source tapes typically
used 10-12 rubout characters between records.

Actually, any non-printing character other
than carriage return will suffice.

The first statement in a program should be
an option control (OPT) statement. This
statement defines options from the following
list:

PASS1,PASS2, PASS3
PRINT, NOPRNT
PUNCH, NOPNCH
STOP, GO

LAB XXXXXX

If no OPT statement is provided, the Assem-
bler assumes PASS1, PRINT, NOPNCH,
STOP, and provides no program label.

The last statement in a program must be an
END statement. When operating, the Assem-

bler reads the source tape until an END
statement is encountered.

8. OPERATING PROCEDURES

Following the load of a bootstrap Assembler

tape, control is transferred directly to the
Assembler. The Assembler in this case
performs some initialization and halts; push

EXECUTE on the Display Panel to proceed
with the assembly.

If the Assembler needs to be restarted, use
the following procedure:

1. Set the Data/Address switches to
X'80"'.

2. Set the MODE CONTROL to ADRS.
3. Depress EXECUTE.
4. Set the MODE CONTROL to RUN.

5. Dcpress EXECUTE. The Assem-
bler will halt.

6. Dcpress EXECUTE again.



When started, the Assembler prints the
message

PASS1

on the list device, advances the paper sev-
eral lines, and halts. Push EXECUTE to
proceed with the assembly. Once the as-
sembly is started, the procedures vary
according to the number of passes specified
in the OPT statement. Theses procedures
are summarized in Figures 1, 2, and 3.

Prior to each pass, the Assembler types a
message to identify which pass is next; also
the message PREPARE PUNCHoccurs pre-
ceding the punch pass. After printing these
messages, the Assembler advances the
paper several lines and halts. At this point,
the operator should place the source tape in
the reader, adjust the list device to top-of-
form if printing is going to occur, prepare
the punch if punching is going to occur, and
depress EXECUTE on the Display Panel.

Operator

Assembler

Start at X'30'
Halts ety

Depress ©XECUTE '
Clears symbol
table, types

PASS 1 and
halts

Bring paper to

top-of-form, pre-

parc punch device,

putl source tape in

reader, and depress

EXECUTE

Reads source
tape and does
1-pass opera-
tion until END
statement, prints
out symbol table

then ———

Ficure 1. Operating Procedure -

1 Pass Assembhly

NOTE

A1l punch devices are actually
turned on under program con-
trol of the Assembler. The
message PREPARE PUNCH im-
plies only that the punch device
be prepared. That is, the punch

~ device must have tape inserted,
and ample leader must be punch-
ed, etc.

The Assembler then reads the source tape
and performs the operations appropriate to
the current pass, as shown on Table 1.

Each pass proceeds until an END statement
is encountered. When this occurs, the cur-
rent pass is completed. When the END

'statement is read during PASS1, the Assem-

bler prints out the Symbol Table. All unde-
fined symbols are preceded by an error flag
of U. The source program can be corrected
at this time and a PASS1 restarted.

If an excess number of symbols is read by
the Assembler, Symbol Table overflow is
shown by listing the source statement that
caused the overflow. These source state-
ments are flagged with an S error flag. The
printout on overflow occurs during PASS1
and also the print pass, when the PRINT
option has been specified in the OPT state-
ment.

If the current pass was not the final pass of
an assembly, the next pass is identified with
a message, and the assembler halts. The
above procedures are repeated for each pass.
If the completed pass was the final pass, the
Assembler halts. In this case, if EXECUTE
is depressed, the symbol table is cleared,
the Assembler prepares itself for another
assembly, prints PASS1 and halts. Rather
than proceed with another program, however,
the Assembler can be restarted on PASS?2

or PASS 3 if desired. The restart addresses
are as follows:

PASS 1 X'80"
PASS 2 of 2 X'AB"
PASS 2 of 3 X'AE!
PASS 3 of 3 X'Ce!



TABLE 1. ASSEMBLER OPERATIONS
ASSEMBLY TYPE
PASS NUMBER PASS | PASS 2 PASS 3

READ SOURCE
| PRINT LISTING
PUNCH TAPE

READ SOURCE

READ SOURCE

READ SOURCE
PRINT LISTING

PUNCH OBJECT

READ SOURCE
PRINT LISTING

READ SOURCE
PUNCH OBJECT

Operator
Start at X_'80'

Depress EXECUTE

Put source tape
in reader, and
depress EXECUTE

Bring paper to

top-of-form, pre-
pare punch device,
put source tape in

reader, and depress

EXECUTE

Assembler

Halts e——

Clears symbol
table, types
PASS 1, and
halts

Reads source
tape until END,
prints out sym-
bol table, types
PASS 2, types
PREPARE
PUNCH, and
halts. '

Reads source
tape, does 2nd
pass operations
until END state-
ment, then ————

Figure 2.

Operating Procedure -

2 Pass Assembly

Operator

top-of-form,

device, put

Start at X'80'

Depress EXECUTE

Put source tape
in reader, and
depress EXECUTE

Bring paper to

put source tape
in reader and
depress EXECUTE

Prepare punch

source tape in
reader, and de-
press EXECUTE

Assembler

Halts e—nr————

Clears symbol
table, types
PASS 1, and
halts

Reads source
tape until END,
prints out sym-
hol table, types
PASS 2, and
halts.

Reads source
tape, does 2nd
pass operations
until END, types
PASS 3, PRE-
PARE PUNCH,
and halts

Reads source
tape, does 3rd
pass operations
until END state-
ment, then

Figure 3.

Operating Procedure -
3 Pass Assembly



Restarting a pass may be appropriate if the
tape breaks during punching, the paper jams
during printing, cte.

9. SYMBOL TABLE SIZE

The symbol table limits are defined as
follows:

X'82! contains a pointer to the
top of the symbol table,
normally X'1FFF'

X'8A" contains a pointer to the

bottom of the symbol table

With all versions of the Assembler, the top
of the symbol table is defined to he X'1FFF'

which is the maximum address in an 8K mem-

ory. The bottom of the symbol table varies
with cach version of the Assembler as indi-
cated in Table 2.

b

T'o change the symbol table limits, load the
halfwords at X'82' and X'8A® with the desired
limits and restiart the Assembler at X'80°',
The bottom limit of the table should not be
lowered, since the Assemblers require from
X'80' to the hottom limit shown in Tabhle 2.

The maximum number of symbols that can
be defined depends on the length of the sym-
bols. One or two character svmbols require
6 bytes of table space, three or four char-
acter symbols require 8 bytes, and five or
six character symbols require 10 bytes.

10. ASSEMBLED OBJECT TAPE FORMAT

The assembled object tape is in standard
loader format. Refer to Loader Descriptions
Publication Number 06-025A12, under OBJEC
TAPE FORMAT for a detailed description of
standard loader format. The tape is absolute
when an ORG statement is present with an ab-
solute argument; otherwise the tape is
relocatable.

TABLE 2

Version

Symbol Table
Bottom Limit

Approximate
Number of 4
character sym-
bols permissable

Tape Assembler/ 30-1
03-001R03

Card Assembier/ 30«1
03-0041R03

Tape Assembler/ 30-2
3-008R03

Card Assembler/ 30=-2
03-0091R03

X '1800'

X'1940'

X'1A10'

X'1B40'

256);,

(216)1,

(190)1

(152)10




INSTRUCTIONS RECOGNIZED ONLY BY 3p-2 ASSEMBLERS

Instruction
Autoload

Floating-Point Add
Floating-Point Add

Floating-Point Compare
Floating-Point Compare

Floating-Point Divide
Floating-Point Divide

Floating-Point Load
Floating-Point Load

Floating-Point Multiply
Floating-Point Multiply

Floating-Point Store

: Floating—Poiht Subtract
Floating-Point Subtract

Load Multiple

Store Multiple

Type
RX

RR
RX

" RR

55

%5

% oHE B OHE

=
»

APPENDIX 1

Mnemonic

AL

AER .
AE

CER
CE

DER
DE

LER
LE

MER
ME

STE

SER
SE

LM

STM

Op-Code
D5

24
6A.

29
69

2D
6D

28
-+ 68

2C
6C

60

2B
6B

D1

DO

Al-1






APPENDIX 2
PROCEDURES FOR USER-DEFINED MNEMONICS

A feature has been added to the assembler that permits the user to define his own mnemonics
for machine op-codes. This feature is especially useful for those users who have generated
the micro-programming necessary for developing new machine instructions for the GE-PAC
30 Processors. This feature also permits the user to assign different mnemonics to al-
ready existing machine op-codes.

The method used to define new mnemonics to the assembler is the EQU statement. The for-
mat of the statement is as follows: -

Name Operation Operand

New Mnemonic EQU A Constant

The name field of the EQU statement contains the user's desired new mnemonic. The new
mnemonic may then be used in the operation field of any succeeding instruction statements.
The user's new mnemonic may consist of from one to five characters, the first of which must
be a letter and the others must be either letters or numbers. It cannot contain any special
characters or blanks between characters.

The operand field of the EQU statement contains a constant, which when interpreted by the
assembler, must have a 16-bit halfword value of the form (in hexadecimal):

nnxy

where nn = hexidecimal digits of an op-code.

and x=0, y=8 for one word (RR) instruction
or x=0, y=2 for two word (RX or RS) instruction,
or y=C for one word extended (RR) instruction
in which x is the condition code,
or y=3 for two word extended (RX or RS) instruction
in which x is the condition code.
NOTE

It is suggested that the choice of nn = FO be restricted
to allow compatibility with the HEX-DEBUG programs'
use of F000 for breakpoints.

A2-1



APPENDIX 2

Legal Examples

Name Operation Operand

LOOP1 EQU X'2208'
LOOP1 5,6

MOVE EQU X'3302"
MOVE 4,3(7)

oP EQU X'89AC'
oP 4

LINK EQU X'41F3!
LINK 2

UNCII EQU X'900C'
UNCH 0

Illegal Examples

SAM

"ROG

opP

CALV[J

EQU
SAM

EQU
FROG

EQU
oP

EQU
CALL

(Continued)

Generates in
Object Program

X'2256'

X'3347',X'0003'

X'89A4'

X'41F0',X'0002'

X'9000'

The UNCH instruction associated with the High
Speed Interrupt Option in the 30-2 is not in-
cluded in the Assembler Op-Code Table. In
order to use the UNCH mnemonic, it must be
defined by the user in an EQU statement as in

the last example above.

X'1238'
5,6

X'5555"
3

4, 3(7)

-

b

X'89AC'
4,5

X'41F3'
SAM (100)

Because

Third hex digit not 0.

Fourth hex digit not legal.

Too many arguments.

Index value greater than 15.



CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

'GE 29-014R02

TABLE OF CONTENTS

GENERAL DESCRIPTION...... s ere it ettesenraseaans ceeree 1-1
1.1 INTRODUCTION.......... Cresssesctcacanesnns et enonnns 1-1
1.2 FEATURES......... P L1
- 1.3 SCOPEOFMANUAL ....... Ceeeeaeiieseseeesacanaonns 1-2
ELEMENTS OF THE SYSTEM.......... e |
2.1 INTRODUCTION..... Cerectcsenaas trecesccesassosesnaans 2-1
2.2 NUMBERS....... Ceeereteceensasnns cecoscssetenaan eeees2-1
2.2.1 Extemal Number Representatlon For Input . vese.2-1
2.2.2 External Number Representation For Output........2—2
2.2.3 Internal Number Representation..........ccvcvuun. 2-2
2.3 VARIABLES.......... ceeeeeenas ceecssesantaans eeoenas 2-2
2.4 EXPRESSIONS Ceeeesssccecassereaanenns ceeeen eeee2-3
2.5 ARRAYS........ccvvuen ceceectertenens ceeenn coeeteacenees2-4
2.6 FUNCTIONS............ Creesossaanens Ceseeccaanes eeoes2=F
2.7 STATEMENTS .....ciicvronsccncanonas soeeretseaneenens 2-5
2.8 PROGRAMS...... teecseceneanennn cieeeaes Ceeeoesreaes 0u2-T
FORTRAN OPERATIONS ......... ettt esee e P
3.1 INTRODUCTION......oetnevenaes Bt e e et 3-1
3.2 CONTROLOPERATIONS ...... T L 4
3.2.1 CALLP......... Ctetesaciea ettt 3-2
3.2.2 RETURN........ Cetceesscauettcenannann cesesanans 3-2
3.2.3 GO TO Nuivivierennsooeocnoesonsananasnsssasnsons 3-2
3.2.4 GOTO (N1,N2,...), Xt ieiiireennconnannsonssnnns 3-3
3.2.5 TF (X) N1,N2,N3..... ceeees ceteesanas coeceesassad=d
3.2.6 DO N V=L1,L2...c0000uvennes .
3.2.7 CONTINUE............ seeens Cetetccersaerenonans 3-4
3.3 DECLARATIONS...... Geesssesasascasassaceenseeennoaus 3-4
3.3.1 DIMENSION A(L), B(M N)y eee teeecoessocnnnsss 3-4
3.3.2 Other Declarations...ceeoveoceceeecncannoaess ese.3-5
3.4 ASSIGNMENTS....cco0vveeee -
3.5 INPUT AND OUTPUT....c.co0ecevescenncnnns tesesenssaad=D
3.5.1 TYPE A, B,... .tcceevecccocnns eesesecasenns eee.3-6
3.5.2 ACCEPT A, B,... ..ceicoctcencecseasnsoconns .
3.5.3 WRITE X, A, B,... ..... B L
3.5.4 READ X, A, B,.v.  tiieveeennenennns ceceeasans 3-8
3.5.5 FUNCTION (X, A, B), C, D,... ...iiiven.. aese3-8
USE OF THE SYSTEM........... ceeenen teeteecsaessesseossessd-l
4.1 INTRODUCTION...... eeesesasssasnann O |
4.2 PROGRAM EDITING..... Ceeerereeeaetesastsacnosteennn 4-1
4.2,1 SUBROUTINE A............. S
4,2,2 OPEN N.......... Cetoseececctsscesscessescsseesd-d
4.2.3. LIST e v vt it i et ettt s e nneanenenes veo.o4-4
4.2.4 DELETE. . ¢ . i ittt ittt it et it eeeeeennns 4-5



ii

TABLE OF CONTENTS (continued)

4.2.5 END.......cccu0.. Cericereaaas iesoeasaes ceoene 4-5

4.3 SYSTEM COMMANDS....... Ceteaeeieeretenaen Ceneeaas 4-5

4.3.1 CLEAR......... eteeaeaas crecsnnees cereeesanas 4-5

4.3.2 PROGRAMS........... T

4.3.3 VARIABLES........ - L

4.3.4 ERASE A.......ciiiiiinenenn Cetteetecicaenens 4-6

4.3.5 FREEZE/UNFREEZE....... ceraans Ceeeeecaeians 4-6

4.4 CONSOLE PROCEDURES. .......eivvevnnn. B

4.4.1 Teletypewriter Features ............... e .4-7

4.4.2 Direct’™ode Operations ......ceeeeeeeencacnenes.d=T

4.4.3 Program Execution .............. corseaecaen ee..4-8

4.4.4 Paper Tape Operations........... B

4.5 ERROR MESSAGES........... cteteeracacnanas eteeoaes 4-9

4.6 SYSTEM CAPACITY...... cesteecacreeans R - e |
APPENDIX1 SUMMARY.....cvevonununnnn ctecttaeanes tereaeanans Cereseans Al-1
APPENDIX 2 SAMPLE PROGRAM.......... ettt e et ettt A2-1
APPENDIX3 REFERENCES................ ceesececnaanes ceecsassosace s A3-1



CHAPTER 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

This manual describes the interactive FOR-

TRAN system which operates on GE-PAC 30

digital systems. The system provides a
direct mode for on-line evaluation of arith~
metic expressions, and an editing mode for
the creation and manipulation of stored
programs. The system combines the con-
venience of a desk calculator with the
programming power of FORTRAN.,

In many FORTRAN systems designed for
small computers, the programming is
simple, but the mechanics of program
preparation are complex. This is especial-
ly true of paper tape oriented machines for
which it is necessary to go through the
phasecs of compiling, object tape loading,
and system subroutine loading. The hand-
ling of the paper tapes becomes laborious,

. when the whole procedure needs repeating
for cvery program correction. In contrast,
the GE=-PAC 30 system needs no program
preparation other than the entry of the
source information; corrections can be
made while the programs remain in core
memory.

1.2 FEATURES

The system provides a set of FORTRAN
operations and a set of system commands
for cditing, debugging, and control. The
FORTRAN set is chosen to provide the
greatest computational power for the least
core space required for its implementation.
The system is designed expressly for on-
line use. The user communicates with the

system through a teletypewriter. Fea-
tures which assist the interaction be-
tween man and machine are:

Single character indications
which request input and re-
flect the mode of the system
are as follows:

< direct-mode input request
*  edit-mode input request
= data input request

All inputs are terminated by
a carriage return. Until the
terminating carriage return
is received, no processing
takes place, and the input
line can bhe corrected or
changed at will.

Command directives and
FORTRAN operations can be
abbreviated during input to
minimize typing.

Commands are provided for
listing all defined variables

-and for listing the names of

all defined programs.

Commands for program crea-
tion, editing, and exccution
can be freely intermixed.

Error messages indicate the
point in a program at which
an error occurrcd during exe-
cution.

1-1



1-2

A performance improvement
feature called FREEZE is
provided. This operation al-
ters the stored programs so

that they become '"more com-
piled", and results in a sub-
stantial decrease in execution
time.

The system is designed to op-
erate in systems with 8K bytes

or more of core memory, suf-
ficient working space is available
for the user to creatc and execute
a FORTRAN program with 50-100
statements and 10-50 variables.
Any available memory above 8K
is used to expand the user's work-
ing space for more programs and
data.

1.3 SCOPE OF MANUAL

This manual describes the GE-PAC 30
Interactive FORTRAN system for program-
mers who are familiar with FORTRAN.
(For a tutorial discussion of FORTRAN in
general, refer to one of the references
listed in Appendix 3 of this manual.) For
general information on programming
GE-PAC 30 Digital Systems, refer to the
Reference Manual (Publication Number

29-004) and the Programming Manual (Pub-
lication Number 29-013R01). Chapter 2 of
this manual describes the various elements
of this FORTRAN system. Chapter 3 ex-
plains the FORTRAN operations available.
Chapter 4 describes the use of the system.
Appendices provide a summary of instruc-
tions and some typical programs. ’




CHAPTER 2

ELEMENTS OF THE SYSTEM

2.1 INTRODUCTION

This Chapter describes the basic elements
provided in the GE-PAC 30 Interactive
FORTRAN System. A thorough knowledge

of these elements is required in order to
appreciate the Chapters which follow on
FORTRAN Operations and Use of the System.

2.2 NUMBERS

The principal advantage of a FORTRAN
system is its ability to manipulate numbers.
The FORTRAN system described here uses
rcal numbers only.  There is no distinction
made between integer, real, or complex-
type numbers, and no special type-declara-
tions are required.

Real numbers appear in various forms in
this FORTRAN system. First there is the
internal form that the computer uses. This
affects speed and accuracy, but does not
directly concern the programmer. Secondly,
there is the external form used for input.
This is the form that the programmer must
use whenever he explicitly enters numbers.
Finally, there is the external form used

for output. This is the form that the system
uses whenever it generates a number for the
outside world. The external form for out-
put is a subset of the external form for input.
The forms of number representation are de-
scribed in the following paragraphs.

2.2.1 External Number Representation
For Input

"Externally, numbers are represented in

decimal in FORTRAN 'E format'. A deci-
mal input number consists of an optional
sign, up to six decimal digits that may in-
clude a decimal point, and an optional
character 'E' followed by one or two deci-
mal digits denoting a positive power of ten,
or a minus sign and onc or two decimal
digits denoting a negative power of ten. A
number field is terminated by any charac-
ter than cannot legitimately occur in that
field.

With this representation, the programmer
has great freedom in specifying numbers.
Typical numbers for input are:

=27
3.426
. 06097
45
78.0

36.29E04  meaning 36.29%10%
-.0056E-8 meaning -. 0056*10~8

2-1



2.2.2 External Number Representation

For Output

On output, numbers are also represented

in decimal using 'E format'.

However,

for each internal number, there is one
single output representation, and the rules
for forming it are as follows:

1.

N
.

A minus sign is written for a
negative number. Nothing is
written to denote the signof a
positive number.

If the number is in the range
.1 through 109, the number
is represented without an 'E’.

The number so represented

is written using six or fewer
digits, with a decimal point
between the appropriate digits.

Trailing zeros are suppressed,
as is a trailing decimal point.

For numbers outside the range
. 1 through 109, an 'E' is uscd.
The number is expressed in
the range .1 through 1, with a
multiplying power of ten. In
this case the part other than
the power of ten is represented
as indicated in Rule 3.

Some examples are:

-27.32

219000

. 123037

-406. 561

Decimal point and trailing
zZeros suppressed.

Two trailing zeros sup-
pressed.

Decimal point suppressed.

.127E-21 Three zeros suppressed and
'E' used.
.231427E17  'E' used.

2.2.3 Internal Number Representation

All numbers are represented internally in
floating hexadecimal form. This form uses
a sign-and-magnitude representation, with
a 24 hit fraction and a seven bit exponent.
This number representation gives between
six and seven decimal digits of precision.

The range of numbers stored internally is
approximately 10#76. Whenever the result
of a computation exceeds the largest pos-
sible number, that result is forced to
+.723704x10*776, which is the largest
possible number. Whenever the result
becomes less than the smallest possible
number, that result is set to zero.

2.3 VARIABLES

The term variable is used in FORTRAN to
denote a quantity that is referred to by
name rather than be the appearance of a
specific number. The value of a variable
can be changed and is not restricted to one
value. All variables -- like all humbers
used in this system -- are real, and there
is no distinction between real variables, in-
teger variables, complex variables, etc.

The names of variables can be chosen by
the programmer, but the following rules
must be obeyed.

1. Variable names can be 1 or
2 characters in length.

2. The first character must be
a letter.

3. The second character can
bhe a letter or a digit.



4. A variable name should not
duplicate an array name.
Arrays pertain to subscripted
variables and are discussed
later.

Examples of proper variable names are:

X
Al
FF
R9

Variables are given a specific value with
an assignment statement. For example:

A=1.5
B=-3E6

Assignment statements are discussed in
Chapter 3. Once a variable has been as-
signed a value, that variable can be used

to represent that value whenever it is
necded. For example, if the variable A
were assigned a value as above, the assign-
ment

C=A
makes the variable C have the same value.

Note that the two character restriction on
variable names is to conserve memory
space. If a name longer than two charac-
ters is used, that name is truncated on in-
put and only the first two characters are
used. Names longer than two characters
may be used therefore, providing no two

names have the same first pair of characters.

2.4 EXPRESSIONS

The five basic arithmetic operations are
represented with the symbols:

addition +
subtraction -
multiplication *
division /
cexponentiation *k

These operation symbols can be used in
combination with numbers, variables, and
parentheses to form expressions. Ex-
amples of expressions are:

A+5.1

37*(X-3)

N**-3
(-X*4)**(4/ (A+B))

Parentheses can be used to denote group-
ings and to define the order of operations
to be performed. The meaning of the
parentheses conforms to ordinary mathe-
matical usage. For example, 2-3+4 = 3
and 2-(3+4) = -5.

Note that the minus sign can be used with-

"out a preceding operand or immediately

following another operation symbol. This
use of the minus is called unary minus
since it operates on only one operand. The
unary minus has the same effect as a mul-
tiplication of the operand hy a negative onec.
For example:

3*-4 - -12
-8/-2 4
4**-1 = .25

When the order of operations is not com-
pletely defined by parenthescs, unary
minus operations occur first, followed by
exponentiations, then all multiplications
and divisions, and lastly additions and
subtractions. Within a sequence of conse-
cutive multiplications and divisions, or
additions and subtractions, in which the
order is not fully defined by parentheses,
the operations are performed from left to
right. For example:

2%*3%4 = 32
2%*(3*4) = 4096
3-4/2+2 = 3

3-4/(2+2) = 2
3-(4/2+2) = -1
(3-4)/2+2 = 1.5
(3-4)/(2+2) = -.25



Some special cases are as follows:

1. Dividing any number by zero
will result in +. 723704E76,
the largest possible number.

2. Raising zero to any power
will result in zero.

3. Raising a negative value to
a power

-V**P where V > 0

results in V**P if P is with-
in .5 of an even integer, and
-(V**P) if P is within .5 of
an odd integer. Note that
this is an approximation,
since a negative number
raised to a non-integer pow-
er mathematically can yield
a complex result.

2.5 ARRAYS

Arrays arc used in FORTRAN to manipu-
late veetors and matrices. An array has a
name by which it is referenced, and a set
of values called clements of the array.
Each clement is identified by a number
called a subscript. For this reason, ar-
rays arc often called subscripted variables.
Arrays with this FORTRAN can use 1 or 2
subscripts; that is they can have one or two
dimensions.

A typical reference to an array element is:
X(1,2)

where X is the name of the array. The
numbers 1 and 2 are subscripts, and the
presence of two subscripts indicates that
X is a two dimensional array. Note that
no space charvacter or operator symbol ap-
pears between X and the following left

parenthesis.  The juxtaposition of the name
and the lelt parenthesis is significant, and
cannot be overlooked. For example X*(2)

21

is an expression while X(2) is a reference
to the 2nd element of the one dimensional
array named X.

The rules for naming arrays are similar to
the rules for variable names. They are:

1. Array names can be 1 or 2
characters in length.

2. The first character must be
a letter.

3. The second character can
be a letter or a digit.

4. Array names should not
duplicate variable names
or function names. Func-
tions are discussed later.

All arrays in this FORTRAN are real, and
there is no distinction between floating-
point, integer, or complex-type arrays.
Array elements are given a specific value
with an assignment statement. For ex-
ample:

X(1,2) = 45.3

The purpose of array elements is so that a
single program or process can be repeated
for many data values by putting the program
inside a loop. Using arrays, different data
values can be referenced simply by changing
the value of the subscripts.

Note that subscript values can be specified
with any expression. Typical references
to array elements are

C5(N)
PQ(I-1.J+2)
Z(A*BC, 4)

As these examples suggest, it is the ability
to identify subscripts with symbolic refer-
ences or general expressions that makes
arrays useful and convenient.



Array subscripts are, in general, integers.
If the value specified is not an integer, how-
cver, the system rounds it to the nearest
integer before it is used. Each resulting

integer must be in the range of 1 to N, where

N is the upper limit for that subscript de-
fined with a DIMENSION statement. No
array element can be defined or referenced

until the size of the array has been specified.

A typical DIMENSION statement is

DIMENSION A(2,4), B(50)

in which the array A is defined as two-di-
mentional, with 8 elements, and subscript
limits 2 and 4; the array B is defined as
one-dimensional with 50 elements and sub-
scripts in the range of 1 to 50. Note that
the first subscript value is always 1, and
the DIMENSION statement defines only the
upper limit. DIMENSION statements are
discussed further in Chapter 3.

2.6 FUNCTIONS

FORTRAN includes some built-in routines
for the evaluation of certain mathematical
functions. The functions can be utilized by
referring to the name of a specific function
and specifying an argument enclosed in
parentheses. For example

COS(. 5)

refers to the Cosine function and specifies
the value .5 as the argument of the function.
Note that the name must correspond exactly
to the FORTRAN name for the given func-
tion; also, no spaces or operation symbols

~ can appear between the name and the left
parenthesis. The argument, however, can
be specified by a single number, a symbolic
variable, or any expression. The expres-
sions in fact, can contain other references
to functions. In other words, it is possible
to nest function references. For example

COS(-. 5)
COS(3*A+D)
COS(2*PI-COS(. 3))

The functions provided in this FORTRAN
are as follows:

FORTRAN Name Function

SIN Sine, Argument
in Radians

COS Cosine, Argu-
ment in Radians

ATN Arctangent, Re-
sult in Radians

LOG Natural Logarithm
EXP Exponential to
Base ¢

Note that:

SIN(X) and COS(X) should be avoided for
X > 1000.

LOG((X) is illegal for negative X, and will
result in an error message.

EXP(X) is evaluated as . TE76, the largest
positive number, for all X greater than
174.

Note that no explicit square root function is
provided. The square root of a number N

can be computed by N** 5, or by using the

expression

EXP(LOG(N)/2)

In general, the Rth root of N can be com-
puted by

EXP(LOG(N)/R)

2.7 STATEMENTS

In FORTRAN, the unit of expression is the
statement. There are two basic types of
statcments: system command and FOR-
TRAN operations. The system commands

2-hH



are directives associated with program
editing, debugging, and general use of the
system. Thesec statements are discussed
in Chapter 4. FORTRAN operation state-
ments are concerned with numbers, vari-
ables, arrays and expressions as discussed
in this Chapter. The specific FORTRAN
operations are discussed in the next
Chapter.

Both types of statements have certain
properties in common as follows:

1. Statements consist of a string
of characters; the character
set is that found on a teletype-
writer keyboard.

[N

Statements are of variable
length, the end of the state-
ment being indicated by a
carriage return character
(RETURN key on the key-
board).

3. The maximum length of a
statement is 50 characters
including the terminating
carriage return, but ex-
cluding leading spaces; no
means for statement con-
tinuation is provided.

1. Any statement beginning with
the letter C followed by a
blank character (space bar on

the teletypewriter) is treated
as a comment and is not pro-
cessed in any way. The com-
ment statement allows the
programmer to write help-
ful remarks. Comments are
of value in those cases where
programs are prepared off-
line. The system ignores
comments, and comment
statements are neither stored
internally, nor subsequently
listed.

5. The use of blank characters
(spaces) is significant in the
system, and attention must
be paid to their use. Note
that a string of consecutive
blanks is always treated the
same as a single blank. In
general, leading blanks and
trailing blanks are permitted,
and have no affect on the pro-
cessing of a statement. Blanks
must be used following FORTRAN
operation names, statement num-
bers, and within certain opera-
tion statements. In general,
blanks should only he used where
called for by the format of a speci-
fic command or operation. Refer
to Chapter 3 and 4 for details.

A FORTRAN operation statement can in-
clude a statement number, which serves as
a label so that other statements can refer
to it. The cross-reference between state-
ments is important for the transfer of con-
trol within a FORTRAN program. Programs
are discussed in the next section. Note that
the statement number is optional. When
used, statement numbers must have the fol-
lowing properties:

1. Statement numbers can have
one or two characters. Both
characters should be decimal
digits. The number 00 should
not be used.

2. The statement number must
appear first in the statement
and be followed by one or
more blanks. Blanks also can
precede the statement number.

3. No two statements in a pro-
gram should have the same
number. Note that ON is
equivalent to N. Also,
there is no sequencing
implied by the statement
number.



Some examples of statements with statement A program can be of any length; that is a

numbers are: program can contain any number of FOR-
TRAN operation statements. The end of a
31 X=5+N program is identified by the system com-
7 DIMENSION A(5) mand END. Details of a program creation
99 A(3)=2 and system commands are discussed in
9 N=N+1 Chapter 4. A basic assumption in program
organization is that statements are executed
System Command statements never use sequentially unless the flow of control is
statement numbers. specifically changed.

2.8 PROGRAMS

Figure 2-1 shows a sample program which
provides the general solution to two simul-
taneous linear equations as follows:

A program is a set or series of FORTRAN
operation statements. In this system,
statements can be arranged and stored in
groups called subroutines; the terms
program and subroutine are equivalent.
Each subroutine in the system has a name.
Subroutines are identified by the SUBROU-
TINE system command. For example:

AX + BY
DX + EY

C
F

1l

where X and Y are the unknowns. In the
program, if there is no solution for the
values given (if AE - BD = 0), the pro-

SUBROUTINE AB gram will input a new set of values. The
meaning of cach FORTRAN operation is
The argument of the SUBROUTINE com- discussed in the following chapter.

mand, in this case AB, is the program
name. Program names must adhere to the
following rules:

SUBROUTINE Q1

1. Program names can be 1 or 3 ACCEPT A,B,C
2 characters in length. ACCEPT D,E,F
N=A*E-B*D
IF (N) 5,67,5
67 TYPE 'NO SOLUTION, TRY AGAIN'

2. The first character must be

GO TO 3
a letter.

5 X=(C*E-B*F)/N
Y=(A*F-C*D)/N
TYPE 'X=",X,' Y=",Y
3. The second character can END ‘
be a letter or a digit.

4, No two programs should
have the same name. . FIGURE 2-1. SAMPLE FORTRAN PROGRAM

2-7






CHAPTER 3

FORTRAN OPERATIONS

3.1 INTRODUCTION

This chapter describes the FORTRAN oper-
ations provided with this system. There.
are four types of operations: control,
declarations, assignments, and input-output
transfers. Table 3-1 summarizes the
operation names in each class.

These operations are discussed in detail in
the sections that follow. Arguments for
these operations might be expressions,
variable names, array names, program
names, or statement numbers. It is im-

portant to note for each operation what
type of arguments are appropriate.

This system provides two distinct modes
of operation. In the direct mode, state-
ments are immediately evaluated and the
specified operation takes place. All
system commands and some FORTRAN
operations can be performed in the direct
mode. In the edit mode, FORTRAN state-
ments are not executed, but rather are
stored for later execution. The edit mode
is explained more fully in Section 4. 2.
The description of each operation states
whether that operation can he executed in
the direct mode. ‘

TABLE 3-1. FORTRAN OPERATIONS

]

Type FORTRAN Name Purpose
Control CALL Execute a Program
RETURN Exit From a Program
GO TO Transfer To a Statement
IF Compare an Expression to Zero
DO Define a Set of Statements to Execute
Repeatedly in a Loop
CONTINUE Define End of a '""DO Loop"
Declaration DIMENSION Define Name and Size of Arrays
Assignment Name=Value Assign a Value to Named Variable or
_ Array Element
Input-Output TYPE Print Values or Character Strings on
the Teletypewriter Printer
ACCEPT Input Numbers From Teletypewriter
Keyboard and Assign to Variables or
Array Elements.
WRITE Transfer to assembly language output routine
READ Transfer to assembly language input routine
FUNCTION Transfer to assembly language function

routine

3-1



3.2 CONTROL OPERATIONS
3.2.1 CALLP

This causes the subroutine named P to be
executed. The word CALL must be followed
by a blank. The argument P must be the
name of a defined subroutine. If the sub-
routine named is not defined, the CALL
operation will not be executed. If the

called program executes a RETURN opera-
tion, control returns to the statement
immediately following the CALL statement.

The CALL operation may be used in direct
mode, and is the means for starting pro-
gram execution. A RETURN in the program
called from direct mode causes control to
return to the user at the keyboard. The
system will then type < to indicate it is
ready for new direct mode commands.

The CALL operation can refer to subroutines
which themseclves call subroutines. This
techmique is known as nesting. Subroutines
can be nested to a level of 5, which means

5 successive CALL operations can be exe-
cuted before a RETURN is required. An
example of nesting is shown in Figure 3-1.

3.2.2 RETURN
This operation, as suggested previously,
terminates the execution of the current
subroutine, and causes control to return
to the point from which the subroutine was
called. The RETURN operation requires
no arguments. There is an implicit RE-
TURN statement following the last statement
of every stored program. A RETURN state-
ment is necessary, therefore, only when it
is desired to exit from a subroutine at some
place other than the last statement. RETURDNM
should never be used in direct mode.

3.2.3 GOTON

This causes control to transfer to statement
N in the present program. The words GO
and TO must be followed by a blank. The
argument N must be a proper statement
number, .and that statement number must
appear in the program If the statement
number referenced does not appear in the
program, the system will not execute the
program. Specific error messages are
discussed in Chapter 4. If the referenced
statement number appears more than once
in a program, the first one in the program
will be utilized. The GO TO operation should
never be used in direct mode. A typical GO
TO statement is:

GO TO 37

- CALL A \SUBROUTINE A
- X=X+1

CALL B
Z=Y-1

SUBROUTINE
-_-~"““‘*--~.Yaz*x_1

RETUR;~f-$-‘““‘“‘*—-RETURN

IFIGURE 3-1.

3-2

NESTING EXAMPLE



3.2.4 GO TO (N1,N2,...), X

This statement, known as a computed GO
TO, causes control to transfer to the state-
ment indicated by N1 if the rounded value
of the expression X has the value of 1.

The words GO and TO must be followed by
blanks. The arguments N1, N2, etc. must
be proper and defined statement numbers.
The argument X can be any arithmetic ex-
pression. If the rounded value of X is less
than 1, or larger than the number of state-
ment labels provided, the operation is not
performed and an error message results.
The computed GO TO statement should
never be used in direct mode. A sample
program using the GO TO operation is
shown below.

N=N+1
GO TO (3,4,5),N
3 R=N
GO TO 9
4 R=3*N-1
GO TO 9
5 R=5*N**2-4*N+3
9 T=R/2

3.2.5 IF (X) N1, N2, N3

This operation compares the value of the
expression X to zero. If the value is less
than zero, the statement indicated by N1 is
exccuted next; if the value is equal to zero,
statement N2 is executed next; if the value
is greater than zero, statement N3 is exe-
cuted next. The word IF and the expres-
sion in parentheses must be followed by
blanks. The argument X can be any ex-
pression. The arguments N1, N2, and N3
must be proper and defined statement
numbers. If the statement numbers refer-
cenced do not appear in the program, the

system will not execute the program. If
the referenced statement numbers appear
more than once in the program, the first
one in the program will be utilized. The
IF statement should never be used in di-
rect mode. A program using IF is as
follows:

92 N=N+1
IF (N-6) 92,92,3
3 K=N**2

3.2.6 DO N V=11, L2

This statement defines a set of statements,
from the one immediately following this -
statement down to and including the state-
ment indicated by N, to be executed repeat-
edly in a loop. The statement numbered N
must be a CONTINUE statement. The
number of times to repeat the loop is de-
fined by assigning to the index variable V

a lower limit L1 and an upper limit L2.
For the first execution of the statements,
V has the value L1; for each succeeding
iteration of the loop, V is incremented by
1. The loop continues until the statements
have been executed, with V having the lar-
gest value satisfying the expression:

V £ L2+.5.

where V and L2 are rounded to the nearest
integer for purposes of the comparison.

The word DO and the statement numher N
must be followed by blanks. The argument
N must be a proper and defined statement
number. The argument V can be any pro-
per variable name or array clement. The
arguments L1 and L2 can he any expression.
The argument L2 must be less than 65, 536.

An example using the DO operation is shown
below.

DO 3 I=1,5
A(D)=T**2
3 CONTINUE

In the example, the loop is repeated for
I=1,2,....,5. Observe that thc index
variable (in this case I) can be referenced
within the loop. It is this featurc that
makes the DO statement very powcerful.
Another example is:

DO 81 B=1.3,9.6

X=X+B
81 CONTINUE



In this example, the loop is repeated for
B=1.3, 2.3, ..... , 10.3. As this example
shows, while the increment value is always
the integer 1, the lower and upper limits do
not need to be integer values. Another ex-
ample is:

N=3
DO 17 P= -2, N+1
X=X*P
N:=N+1
17 CONTINUE

As seen above, the limit values can be posi-
tive or negative. In this case, the loop is
repeated for P=-2,-1,0,....,4. Note that
the limit values are calculated and fixed
when the DO statement is first encountered.
Even though the variable N changes its value
in the loop, the upper limit remains at 4.
Also, if the termination condition is im-
mediately satisfied when the DO statement
is first encountered, the statements follow-
ing it are executed once.

DO statements may be nexted to a maximum
of four levels. A nested DO is one that lies
wholly within the range of another DO loop.
This, conliguration is very common when
programming matrix operations. It is illegal,
however, to have an inner DO whose termina-
ting CONTINUE statement lies beyond the
corresponding statement of the outer DO.

It is also illegal to transfer control into
range of a DO from outside, unless control
got outside in the first place by means of a
transfer from within the range of the DO. A
single CONTINUE statement can terminate

a set of nested DO loops. An example is:

DO 3 I=1,4 I Loop
DO 3 J=1,4 J Loop
N=4*(I-1)+]

DO 6 K=1,3 K Loop
A, J)=A(, J)+B(K)

6 CONTINUE
C(N) :A(,d)
3 CONTINUE

3-4

3.2.7 CONTINUE

This operation, as shown above, defines
the end of a DO loop. No arguments are
required with this statement. CONTINUE
can be used any place in a program, inde-
pendent of DO loops. When not associated
with any DO loops, the statement is treated
as a null operator, and it has no effect on
the program. A CONTINUE statement can
be identified with a statement number just
like any other statement. Neither CON-
TINUE nor DO should be used in direct

mode.

3.3 DECLARATIONS
3.3.1 DIMENSION A(L), B(M,N),...

This operation defines the names of arrays,
their dimensions, and the number of ele-
ments per dimension for each named array.
The word DIMENSION must be followed by
a blank, and no other blanks should be used
with this statement. The names A, B, etc.
must be proper array names; the arguments
L, M, N, etc. can be any expression. The
system will round the value of the expres-
sions to the nearest integer when the state-
ment is executed. The rounded values must
be equal to or greater than one. - Arrays can
be either one or two dimensional.

Some examples are:

DIMENSION R(35)
DIMENSION AR(3, N+6), BR(X*N)

When the DIMENSION statement is executed,
the system checks to see whether the arrays
referenced are already defined. If the ref-
erenced array is not defined, the system
determines if enough space is available in
memory to store all the elements of that
array. If insufficient memory is available,
the necessary memory space is allocated
for the array and the system then repeats
the process for the next array named.



If the named array is already defined when
DIMENSION is executed, the current mem-
ory allocation is not changed. If more ele-
ments are indicated than the system has
space for, an error message results. If
the specified number of elements fit into the
allocated space, memory is unchanged and
no message occurs.

To change the size of a defined array-,' first
ERASE the entire array, and then DIMEN-
SION it to the new size. The ERASE opera-
tion is discussed in Section 4.3. The
DIMENSION statement can be used in direct
mode.

3.3.2 Other Declarations

No other declarations are required in this
FORTRAN system. The declarations

REAL ----

INTEGER ----
COMMON ----
FORMAT ----

which are required in some FORTRAN
systems are ignored if they occur, and
have no effect on the system. This means
that a FORTRAN program written for a
more comprechensive system could be exe-
cuted on this system as well, providing no
conflicts exist with variable names.

3.4 "ASSIGNMENTS
Assignment statements have the form
V=X

where V is the name of a variable or array
clement, and X is any arithmetic expres-
sion. This statement tells the system to
replace the value of the variable named on
the left with the value of the expression on
the right. No blanks should be used in the
arithmetic statement. A blank character
following the name V or the equals sign
will cause the assignment to be improper.
Typical assignment statements are:

X3=2*3.14/N
A(3)=H+SIN(X)
Q(I, J-1)=I*J-3

An array should be defined with a DIMEN-
SION statement prior to assigning a value
to any elements of the array. If an array
was previously defined, the system checks
the subscript to see if it is within the de-

fined size of the array. If it is not, no

assignment is made and the user is informed
with an error message. If the named array
was not defined prior to the assignment opera-
tion, the system will then define an array
with the name and size indicated. Note that
after an array A is defined, referring to A
without subscripts implies the first element
of that array. That is:

A=A(1)=A(1,1)

Assignments can he made any time in direct
mode or in stored programs. When an as-
signment statement is used in a stored
program, however, the specificd assignment
is not made until the program is executed;
the assignment does not occur when the state-
ment is first entered into the program.

An alternate way of assigning values to vari-
ables or array elements is with the ACCEPT
statement which reads numbers from the
teletypewriter keyboard. This operation
is discussed in the next section.

3.5 INPUT AND OUTPUT

Input and output for the teletypewriter is
performed using the statements ACCEPT
and TYPE. For all other devices, the
statements READ, WRITE, or FUNCTION
can be used for linking to assembly lan-
guage routines which drive the devices.

3-5



Input and output is performed without the
use of FORMAT statements.  Input formats
‘are free, and output formats are implied.
For compatibility, FORMAT statements
which may occur because a program has
been run on another system are skipped
over, and ignored.

The FORTRAN system is constructed so
that as peripheral units are attached to the
computer, they can be operated with READ,
WRITE, or FUNCTION statements. These
units may be conventional peripheral devices
such as magnetic tape units, or they may be
A-to-D converters, multiplexors, etc. The
basic FORTRAN, however, does not contain
any of the required I/0 driver subroutines.

Note that there are several versions of FOR-
TRAN available, each tailored to certain
machine configurations. The capability for
linkage to user-supplied assembly language
routines via READ, WRITE, or FUNCTION
statements is not available in all versions
of FORTRAN. This capability is provided
by a supplement called the RWF Expansion.
For a definition of the various versions of
FORTRAN, refer to the Operating Instruc-
tions for Interactive FORTRAN, Publica-
tion Number 03-005A18. For a discussion
of the details of the assembly language
linkage, refer to Operation Procedures for
FORTRAN W/RWF Expansion, Publication
Number 03-011A16.

All input-output operations can be performed
in direct mode cxcept where noted.

3.5.1 TYPE A,B,...

This operation causes one line of informa-

tion to be printed on the teletypewriter.
Each line is followed by a carriage re-
turn and line feed. The word TYPE
should be followed by a blank. The ar-
guments A, B, etc. can be expressions
_or character strings enclosed in quote
(') marks. For example:

TYPIS X,2*N,'FT PER SEC!

For cach expression, the system types out
the value of the expression. For cach char-

acter string, the system types the characters

exactly as they appear between the quotes.

Each value to be printed is allocated a
field of 18 spaces on the teletypewriter
printer. Each value appears in decimal
output format as defined in Section 2. 1.2,
the decimal format requires from 1 to

12 spaces depending on the value. For
example, an integer printout ‘

1

requires only once space, while the number

-.12345E-12

requires 12 spaces. After the value is typed,
and if another value is to be typed immediat-
ely following, the system spaces over to
satisfy the 18 space field width. If the next
argument of the TYPE statement is a char-
acter string, however, no spaces follow the
value and the character string begins im-
mediately.

For example, the statement

TYPE 2*2,1/3,4-6

yields the output

4 . 333333 -2

with 17 spaces between the first two values

and 11 spaces between the last two values.
The statement

TYPE 2%*2,'ABC',1/3,4-6
yields
4ABC. 333333 -2

with no spaces after the 4, no spaces after
the C, and 11 spaces after the last 3.

A typical type statement, where X=5, is:
TYPE 'X=',X,' UNITS'
which results in the print out:

X= 5 UNITS



Some restrictions on the TYPE statement
are:

1. TYPE with character string
arguments cannot be used in
direct mode.

2. If only expression arguments
are used, no more than four
arguments can appear with
one TYPE statement since the
teletypewriter printer is 72
characters wide.

3. If expression and character
string arguments are mixed,
no more than seven arguments
can be used with one TYPE
statement.

4. A TYPE statement with no
arguments should be avoided.
Use TYPE ' ' to achieve a
blank line print out.

3.5.2 ACCEPT A,B,...

This operation causes the system to read
one line of data from the teletypewriter.
The numbers specified by the data are as-
signed to the variables A, B, etc. The

word ACCEPT must be followed by a blank.

The arguments A, B, etc. can be variable
or array element names. When the AC-
CEPT statement is executed, the system
types an equal sign (=) at the left margin
of the teletypewriter to indicate that one
line of data is needed. The data can con-
tain one or more numbers; numbers must
be separated by a blank or a comma. In
general, the data entered from the key-
board should correspond to the number
of arguments in the ACCEPT statement.
That is, if the ACCEPT statement spe-
cifies 4 arguments, the data line should
include 4 numbers. Up to seven argu-
ments can be used with each ACCEPT
statement. As an example, when the

v statement

ACCEPT X, P(1)

is executed, the teletypewriter entry
54.5,-.2E6

followed by a carriage return results
in setting the variable X to 54.5 and
the array element P(1) to -. 2E6.

A TYPE statement can be used pre-
ceding an ACCEPT statement to iden-
tify the variable name. For example,

' the statements

TYPE 'DEFINE N'
ACCEPT N

would appear on the teletypewriter as

DEFINE N

- after which the value for N could be typed.

An array should be defined with a DIMEN-
SION statement prior to referencing any
array elements with an ACCEPT statement.
No provision is made for reading all the
elements of an array with one statement.

A DO loop must be used for this purpose.
For example, the program

DIMENSION P(10)
DO 3 I=1,10
TYPE 'P(',1,")
ACCEPT P(l)

3 CONTINUE

reads 10 values and assigns them to the
elements of the array P.

3.5.3 WRITE X,A,B

The WRITE statement is similar to the TYPE
statement, except the output is performed by
an assembly language driver routine supplied
by the user. The argument X is used as a
switch or device number that the user's pro-
gram decodes. A buffer of ASCII characters
is gencrated for the values of the arguments
A, B, ... . The argument X must be an
expression with a numeric value. The argu-
ments A, B, ... can be symbol names, num-
eric literals, expressions, or character
strings.

3-7



When the WRITE statement is executed,
FORTRAN generates a buffer of characters
for the arguments A, B, etc. The data
format conforms exactly to that of the
TYPE statement. The value of the argu-
ment X is evaluated and integerized to
facilitate testing by the user. FORTRAN
then gives control to an assembly language
routine whose address is contained in ORG
+ X'E', where ORG is the first location of
FORTRAN. The user supplies this program
and sets this address.

When the user-supplied program is entered,
all the parameters of interest are supplied
in the machine registers. Refer to Publica-
tion Number 03-011A16 for details.

3.5.4 READ X,A,B

The READ statement is similar to the AC-
CEPT statement, except the input is per-
formed by an assembly language routine
supplied by the user. The argument X is
used as a switch or device number that

the user decodes. The data read is stored
as values of the arguments A, B, etc. The
arguments X, A, B, ctc. must all be vari-
able'names or references to array elements;
they cannot be literals, expressions, or
character strings.

When the READ statement is executed, the
value of X is integerized to facilitate test-
ing by the user. FORTRAN then gives con-
trol to the assembly language routine whose
address is contained in ORG + X'C', where
ORG is the first location of FORTRAN.

The user supplies this program and sets
this address. The user-written routine
should rcad a record of information into

a buffer. This data will be processed ex-
actly the same as with an ACCEPT state-

3-8

ment. When the user program is entered,
all parameters of interest are supplied in
machine registers. Refer to Publication
Number 03-011A16 for details.

3.5.5 FUNCTION (X,A,B,...),C,D,...

The FUNCTION statement is for use in link-
ing to any general purpose machine language
routine. The first group of arguments (X, A,
B, ...) must be variable names or references
to array elements. The second group of argu
ments C,D,... can be any expression - vari
able names, numeric literals, character
strings, etc. If the first group contains only
one argument, no parentheses are required.

Examples of proper FUNCTION statements
are:

FUNCTION (X, BF), 3.5, SIN(2)
FUNCTION (X, V1, V2), 4*N
FUNCTION X,3.5, 'HELP'

When a FUNCTION statement is executed,
all arguments are processed, and an argu-
ment list is generated according to the
arguments provided. Each argument from
the first group is converted to an address
which locates the specified variable or ar-
ray element in memory. Each argument
from the second group is evaluated and con-~
verted to a value. FORTRAN then gives
control to the assembly language routine
whose address is in ORG + X'10', where
ORG is the first location of FORTRAN.
The user supplies this program and sets
this address. When the user program is
entered, all parameters of interest are
supplied in machine registers. Refer to
Publication Number 03-011A16 for details.



CHAPTER 4

USE OF THE SYSTEM

4.1 INTRODUCTION

This interactive FORTRAN is operated
and controlled from the teletypewriter
keyboard. The system presents two
distinct modes to the user. The direct
mode, which is characterized by the ar-
row character () in the left margin,
permits on-line assignment of variables,
evaluation of expressions, etc. The edit
mode, which is characterized by an as-
terisk (*) in the left margin, allows the
creation and modification of stored pro-
grams. When the system is started, the
user is given control at the keyboard in
direct mode.

The user converses with the system in
statements - either FORTRAN operation
statements or system commands. Until
the RETURN key, which terminates a state-
ment, is depressed, no processing takes
place, and the input line can be corrected
or changed at will. The left arrow ( « )
key can be used anytime to erase the last
character in the line. The RUB OUT key
can be used anytime to erase the current
line. When RUB OUT is depressed, the
system types a hash mark (#) to confirm
the'erasure, and advances one line so that
the current statement can be retyped.

This chapter discusses the details of pro-
gram editing, system command, error
messages, etc.

4.2  PROGRAM EDITING

The commands used for program editing
arc:

Definc a new subroutine or
refer to existing subrou-
tine.

SUBROUTINE

OPEN Refer to a specific state-
ment of referenced sub-
routine.

LIST List either entire subrou-
tine or one statement of a
subroutine

Delete either entire subroutine
or one statement of a subrou-
tine

DELETE

END Terminate editing sequence

These commands, except for SUBROUTINE,
can be abbreviated to the first two characters
to minimize typing. The SUBROUTINE com-
mand can he abbreviated to the first four
characters (SUBR).

The basic procedure for creating a new pro-
gram of name AB is to enter the command:

SUBROUTINE AB

This command defines a new program with
name AB, and puts a single RETURN state-
ment in the program. The RETURN state-
ment is then established as the open
statement, which places the system in the
edit mode. The system then types * to in-
dicate the edit mode. Note that the cdit
mode implies that some statement in a stored
program is open.

In the edit mode, the insertion of statements
is implicit. That is, whenever a FORTRAN
operation statement is entered during edit
mode, that statement is inserted immediately

before the open one. Further, the same

statement remains the open one, allowing a
set of statements to be inserted at the chosen
place. The END command returns the sys-
tem to direct mode.

1-1



A typical editing sequence is

<« SUBROUTINE AB
* 5 ACCEPT N
*  X=3+EXP(N)

* TYPE X

* END

-

The final < typed by the system im-
plies direct mode which means no
statement is open. To list the sub-
routine, the command

SUBROUTINE AB

should be used to identify the program

of interest. This time, since a program
of name AB already exists, a new defini-
tion is not necessary, and no statement
is opened. Rather, the subroutine as a
whole is considered open. The command
LIST then lists the entire program.

< SUBROUTINE AB

e LIST
SUBROUTINE AB
: 5 ACCEPT N
X=3+EXP(N)
TYPE X
END
-

Observe that the last RETURN statement
is listed as END. After the LIST opera-
tion, the entire program is still considered
open. A specific statement can be opened
with the command

OPEN 5§

which opens statement 5. The following
scquence shows how to insert a new state-
ment after the TYPE statement.

4-2

< OPEN 5,3

END
* GO TOS
* END

In this sequence, the OPEN statement speci-
fies the 3rd statement after statement 5.

The system listed this statement accordingly,
and left the statement open, placing the sys-
tem in edit mode. The GO TO statement is
then inserted, and the END command brings
the system back to direct mode.

To ~hange a statement, it must be opened
and then deleted. The new statement can
then be inserted in its place. For example

<« SUBROUTINE AB
«—OPEN 5,1
X=3+EXP(N)
* DELETE
TYPE X
* X=EXP(N+3)
* END

-

Again, the OPEN statement specifies the
first statement after statement 5. This
statement is listed by the system and it
remains open. The DELETE command
then deletes the open statement, after
which the system opens the next statement
and lists it. The new assignment state-
ment is inserted and the END command re-~
stores the direct mode. The resulting
subroutine is listed as follows:

<«—  SUBROUTINE AB

«—  LIST
SUBR AB
5 ACCE N
X=EXP(N+3)
TYPE X
GO TO 5
END

«—  DELETE



After the LIST operation, the whole sub-
routine is open. In this case, the DELETE
command, as shown, deletes the whole
program from memory.

Table 4-1 shows a sequence of editing
operations. Each of the editing commands
is described in later paragraphs.

4.2.1 SUBROUTINE A

The word SUBROUTINE must be followed
by a blank. The argument A must be a
proper name. The rules governing pro-
gram names are discussed in Section 2. 8.
The effect of this command depends on
whether program A already exists.

TABLE 4-1. SAMPLE EDITING SEQUENCE

Editing Sequence Explanations
E
«— C SAMPLE PROGRAM Comments are Ignored.
<«— SUBROUTINE A Define Program A.
* END Return to Direct Mode.
<«— SUBROUTINE A List Program A.
«— LIST
SUBR A
END
«— OPEN 0 Open First Statement.
END
X=X+1 Insert 2 Statements.
TYPE X
OPEN 0 Open First Statement.
X=X+1
*  DELETE Delete It.
TYPE X
* X=0 Insert 2 More.
* 3 X=X+1
*  LIST List Statement After the Open Statement.
END
*  IF (X-10) 3,3,4 Insert 2 More.
* 4 TYPE 'OK' ,
* END Return to Direct Mode.
<«— SUBROUTINE A
~e— LIST List Complete Program.
SUBR A
X=0
3 X=X+1
TYPE X
IF X-10) 3,3,4
4 TYPE 'OK'
-— END




If no such program exists, a program with
name A is defined. In the new program, a
single RETURN statement is established.
This RETURN statement is always shown
as END when the program is listed. The
RETURN statement is made the open state-
ment, and the system types * to reflect
the edit mode. ‘

If a program named A already exists,
the system remains in the direct mode,
but the whole program is opened. This
particular state of the system, when an
entire program is open rather than any
particular stored statement, can be
thought of as a special case of the di-
rect mode. In this state:

LIST lists the entire program
and leaves the state of the
system unchanged.

OPEN opens a particular state-
ment within the open pro-
gram and puts the system
into the edit mode.

DELETE deletes the entire program
and leaves the system in
direct mode with no pro-
gram open.

END closes the open program

and leaves the system in
direct mode with no pro-
gram open.

4.2.2 OPEN N

This statement opens the statement la-
beled N in the open program. The
opened statement is listed on the tele-
typewriter and the system is left in the
edit mode. The OPEN command can be
used in the edit mode, or in the direct
mode if a whole program has been
opened with a SUBROUTINE statement.
The word OPEN should be followed by
a blank. The argument N should be a
proper statement number. The state-
ment OPEN 0

-4

will open the first unlabeled statement in the
open program following the SUBROUTINE
statement. An alternate form of the state-
ment is

OPEN N,X

in which X can be any expression. The
value of X, which is rounded by the system
to the nearest integer, must be positive or
zero. This command opens the Xth state-
ment past that which has the statement
number N,

For example,
OPEN 67,2

opens the second statement past the 6né with
label 67.

When a statement is open, the system is
in the edit mode, as shown by the * char-
acter printed on the teletypewriter. Any
FORTRAN operation statements typed in
this mode are inserted into the stored
program immediately before the open

statement.

4.2.3 LIST

The effect of this command depends on the
state of the system. If a whole program
has been opened with a SUBROUTINE
statement, that program is listed in its

entirety. The state of the system is un-

changed after the LIST operation. If the
system is in the edit mode with a partic-
ular statement open, the next statement
is opened and listed on the teletypewriter.
In the edit mode, therefore, a succession
of LIST commands causes successive
statements of the program to be listed.

When statements are listed, they are moved
over several spaces and lined up for read-
ability. The listed version of a statement
may differ from its input form in the follow-

- ing ways:



1. All variable names, array
names, and statement num-
bers are truncated to two
characters.

Do

All numbers are expressed

in the output format. (see
Section 2. 2. 2) which, in

some cases, differs from

the input format. For ex-
ample, the entered number

5. 6ET7 will be listed as . 56ES8.

3. The FORTRAN operation
names may be abbreviated
to save time and space.

The form in which statements are listed is
suitable for input. When an entire program
is listed, the first line is a SUBROUTINE
statement, and the last line is an END
statement. The system also accepts the

abbreviated form of FORTRAN operation
names, Listing a program with the tele-
typewriter punch turned on will produce a
paper~tape copy of the program, The
paper-tape can be used later to reload the
program into memory. Refer to Section
4,4,4 for details.

4.2.4 DELETE

~-The effect of this command also depends on
the state of the system. If a whole program
has been opened with a SUBROUTINE state-
ment, the entire program is deleted. The
system is left in direct mode with no pro-
gram open. If the system is in edit mode
with a particular statement open, the open
statement is deleted. The next statement
is then opened and listed. In the edit mode,

. therefore, a succession of DELETE com-

~mands causes successive statements of the
program to be deleted.

4.2.5 END

This command terminates an editing se-
quence. Any open programs or statements
are closed, and the system returns to di-
rect mode. If there is ever any doubt as

to the current state of the system, the END
command can be used to unconditionally re-
store the direct mode.

4.3 SYSTEM COMMANDS

The previous section discusses those sys-
tem commands associated with program
editing. Other system commands are:

CLEAR Delete all stored programs,
arrays, variables, etc.

PROGRAMS List the names of all pro-
grams currently in memory.

VARIABLES List the names and values
of all defincd variables
and arrays.

ERASE Delete a specific variable
or array from memory.

FREEZE Specify "Freeze' mode for
faster program execution.

UNFREEZE Specify normal "unfrozen"
mode for program debug-
ging convenience.

These commands are recognized in either
direct or edit mode. The names of these
system commands can be abbreviated to
the first two characters to minimize typing.

4.3.1 CLEAR

This command deletes all programs, vari-
ables, and arrays from memory, and re-
turns the system to an initialized state in
direct mode.



4.3.2 PROGRAMS

This command lists the names of all pro-
grams currently in memory. The names
are listed in alphabetical order. If no pro-
grams are defined, nothing is printed. This
operation does not change the state of the
system. That is, if this command is used
in edit mode, the namcs are listed, and the
system remains in the edit mode. For ex-
ample

< PROGRAMS
AB

K9

X

-

4.3.3 VARIABLES

This command lists the names and values of
all defined variables in alphabetical order,
one per line. TFor arrays, the array name
is repeated for each element of the array.
The names and values are spaced over on
the page for readability. TFor example:

<+ VARIABLES

A-45, 6

B3 -2

' - RT=. 345E6
If no variables are defined, nothing is
printed. This operation does not change
the state of the system. If the command is
used in edit mode, the names and values
arc listed and the system remains in the
edit mode.

4.3.4 ERASE A

This command deletes the variable or ar-
ray named A from memory. The word
ERASE should be followed by a blank. The
argument A should be a proper variable or
array name. If the referenced variable or
array is not defined when this command is
used, the memory is unchanged. Only one
argument can be specified with cach ERASE
command. The system always returns to
dircet mode after an ERASE operation.

4-6

Note than when A is an array name, the en-
tire array is deleted, not just one element
of the array. This operation is useful if it
is necessary to change the size of a defined
array. In this case, the array first must
be deleted with an ERASE command, and
then redefined with a DIMENSION statement.
This command also is useful for regaining
memory space used by variables and arrays
that are no longer needed.

4.3.5 FREEZE/UNFREEZE

A special mode known as the Freeze mode, .
in which program execution is speeded up,
is provided. Since programs are stored in
symbolic form, all names and statement
numbers have to be repeatedly looked up in
memory during program execution in the
normal "unfrozen' mode.

When programs are executed with the Freeze
mode in effect, however, they are scanned
and all symbolic references are replaced
with address references. The resulting
program can be executed at a much faster
rate. When the execution terminates, the
symbolic references are automatically re-
established. To the user, the program
always appears in symbolic form.

When the system is initialized, or when

the CLEAR command is used, the mode is
set to normal. The FREEZE command

puts the system into the Freeze mode. The
UNFREEZE command restores the normal
mode. Note that the FREEZE command
simply defines the mode. The program is
not actually altered (frozen) until execution
begins. Thus, programs can be edited
freely even though the Freeze mode prevails.

To execute a program in Freeze mode, all
variables and arrays must be defined prior
to the CALL operation which starts the exe-
cution. For arrays, the DIMENSION state-
ment must be executed, but all the elements
need not be defined. If all variables and
arrays arc not defined, an error message



will result from the CALL statement, and
the program will not be executed. Refer

to Section 4.5 for details on error messages.

Onc way to define all variables and arrays
used within a program is to execute the
program. Another way would be to use
DIMENSION and assignment statements in
direct mode before executing the program.
In general, the best strategy is to create
and debug programs in the normal mode.
Once a program is operational, use
FREEZE for faster execution.

4.4 CONSOLE PROCEDURES

This FORTRAN is designed especially for
on-line use. The primary advantage of an
interactive system is the ability to inter-
mix the creation, debugging, and execution
phases of a programming task.

With the features provided, the user can
converse freely without fear of making
mistakes. When a typing error is made,
the user can correct it easily. When pro-
gramming errors occur, the user is in-
formed with an error message. In no case
can a programmer cause loss of control or
interferc with the integrity of the system.
Details of the user-machine interaction are
discussed in this section.

4,4,1 Teletypewriter Features

Single character indicators are used to re-
quest input and reflect the mode of the sys-
tem. They are:

< direct mode input
*  edit mode input
= data input

Statements, which can be variable 1ength,
are terminated with a carriage return.

Until the RETURN key is depressed, no
processing takes place and any typing errors
can be corrected.

The left arrow ( « ) key can be used any
time to erase the last character. The
RUB OUT key can be used any time to

erase the current line. The system will
type # in response to RUB OUT {o confirm
that the line was erased.

The LINE FEED character is always ignored
on input. The LINE FEED can be uscd anv-
time for page formatting without ill effect.
Similarly, a null statement (single RETURN
only) is ignored by the system.

Should an illegal character (such as $ or @
be used by accident, the system will detect
this when the line is processed and inform
the user by typing a question mark (?).

Many commands can be abbreviated to mini-
mize typing. Acceptable abbreviations are:

DIME for DIMENSION
CONT CONTINUE
RETU RETURN

GO GO TO

ACCE ACCEPT
WRIT WRITE

FUNC FUNCTION
SUBR for SUBROUTINE
oP OPEN

LI LIST

DE DELETE

EN END

CL CLEAR

VA VARIABLES
PR PROGRAMS
ER ERASE

FR FREEZE

UN UNFREEZE

4.4.2 Direct Mode Operations

Certain of the FORTRAN operations can be
used in direct mode as well as in stored
programs. This feature effectively pro-
vides a desk calculator with the arithmetic
power of the FORTRAN language. The
FORTRAN operations that can be used in
direct mode are:



CALL execute a program

DIMENSION define arrays

Name=Value variable or array as-

signment

TYPE output values

ACCEPT input numbers

WRITE execute assembly language
output routine

READ execute assembly language

input routine
execute assembly language
function routine

FUNCTION

Note that character string arguments are
not appropriate with TYPE operations in
direct mode. Examples of direct mode
operations are:

- X=2.4

- TYPE  X*X-2*X+3
3.96

- CALL P

- TYPE N
153.2

-

All variables and arrays in this system are
glohal; that is, the variables or arrays
created in one program or in direct mode
can be refercnced by any other program.
This fact means that variables used within
a program can be set to initial values in
direct mode prior to execution. Similarly,
after program cxecution, the status of the
program variables can be interrogated with
TYPE or VARIABLES operations in direct
mode. The global nature of variables can
be very helpiul during program debugging.

4.4.3 Program Execution

Before crcating any stored programs, the
CLEAR operation should be used to erase
.the previous user's programs from mem-
ory. After a program has been entered

into memory, it can be executed with a

CALL statement. When the CALL occurs
in dircet mode, the system scans the pro-

grams in memory for certain logical errors.

The specific errors it looks for are:

1-8

1. A stored CALL statement
which refers to an undefined
program.

" 2. A stored GO TO, IF or DO
statement which refers to
an undefined statement.

If any errors of this sort are found, the
system responds with an error message
and will not execute the program specified.
Details of the error message are discussed
in Section 4.5. Note that the system scans.
all programs in memory for these errors,
not just the one called for execution.

When a program is executing, the user can
interrupt at any time to regain control at
the keyboard. The procedure for interrup-
ting a program execution is to depress
Switch 15 on the Processor Display Panel.
The system tests for this switch at certain
points in the execution cycle. When the
system senses that Switch 15 is set, exe-
cution terminates, an error message is
typed, and control returns to direct mode.
After regaining control, Switch 15 should
be released.

4.4.4 Paper Tape Operations

Some teletypewriter terminals have a-
paper tape reader and punch, With
this type of terminal, programs can
be saved on paper tape, and later re-
loaded from the tape. The procedure
for making a tape is:

1. Identify the program with a
' SUBROUTINE statement.

2. Type LIST and before de-
pressing the RETURN key,
turn on the tape punch.

3. Depress RETURN. The
program will then be listed
and punched.

4. When the operation is com-
plete, tear off the tape, and
turn off the punch.



Tape input is possible because whenever
the system secks input, it attempts to start

the reader. Therefore, whenever a tape is '
put in the teletypewriter reader, it will be

read as soon as the system seeks input,
The program loading procedures are:

1. Make sure no program of
the same name is currently
defined.

2. When the system is in direct
mode, and after the <« has
been typed, put the program
tape in the reader.

3. Momentarily put the reader
switch into the start position,
which starts the tape moving.

4. After the program has been
recad, remove the tape from
the recader.

Data inputs can also be entered from tape
using a similar procedure.

4.5 ERROR MESSAGES

Error messages can occur at the following
times during system use: after direct or
edit mode entries, at CALL time, or during
program execution. -

Direct mode errors are indicated by a ques-
tion mark (?). The statement causing the
crror is not processed, and the system re-
mains in direct mode. For example:

< TYPE LOG(-1)
?
‘.—

In this case the error resulted because the
LOG function is undefined for negative argu-
ments.

Errors within a stored program arc indica-
ted by a question mark (?) followed by the
name of the program. On the next line,

the specific offending statement is listed.
The system then returns to direct mode
with the indicated program open. In this
state, the LIST operation can be used to
examine the program, or OPEN can be used
to examing a single statement within the
program. For example:

<« CALL P
? P
DIMENSION  (A(-3)

<« LIST
SUBROUTINE P
DIMENSION A(-3)
END

-

In this case the error occurred because the
array definition involved a negative value.
The LIST operation caused all of P to be
printed.

!
Inserting a statement into a stored program,
assigning a value to a variable, or defining
an array, requires a sufficient amount of
core memory. Whenever these operations
are called for, if enough memory is not
available, the system types an exclamation
point (!). If the operation was within a
stored program, the program name and
statement are also listed. For example:

<« CALL Q
'Q

N=3
-

In this case, since the assignment statement
was the culprit, there was not cnough mem-
ory available to store away the name and
value of the variable N.

4-9



Some special cases are:

4-10

1.

When CALL is used in direct
mode to start execution, all
programs in memory are scan-
ned for improper program
name and statement number
references. If any reference
is made to an undefined name,
the system types an error
message and lists the offending

statement. For example:
'« CALL P
? Q
DO 3 I=1,5
-

This message implies that state-
ment 3 is undefined in program Q.

If the FREEZE mode is in effect,
the system also checks for de-
fined variables.

The DIMENSION opcration checks
that sufficient memory space is
available for the array. For ex-
ample:

DIMENSION  A(100)

This message says that not enough
memory is available. When this
happens, however, a variable
named A may get defined. In this
case, the variable should be erased
before another DIMENSION opera-
tion is attempted for the array A.

When program execution is inter-
rupted by the user depressing
Switch 15, the system types an
error message indicating the
statement at which the break oc-
curred. In this case, there is no
aclual error as the message
might suggest.

Some sources of error messages are sum-
marized below:

1.

10.

11.

12.

Illegal characters used, such
as @, $, etc.

Input statement too long. Limit
is 54 characters.

Undefined variable or array
referenced.

Expressions improper or too
complex due to nested paren-
theses, etc. Limit is 14
nested explicit or implicit
parentheses.

DO loops nested too deeply.
Limit is 4.

Subroutines nested too deeply.
Limit is 5.

Improper number of argu-
ments used, such as DO
5 I=1,2,3.

LOG used with a negative
argument.

SIN or COS used with argument
greater than 1000.

TYPE '"CHARACTERS' used in
direct mode.

Edit commands such as OPEN,
LIST, or DELETE used when
no program is open.

OPEN N used and the open pro-
gram contains no statement with
label N.

CALL P used with P not a pro-
per or defined name.



14. The statements DO, IF, GO
use improper statement num-
ber arguments.

15. A computed GO TO executed
with the index value out of
range.

16. READ, WRITE operations
attempted with no driver
routines available.

4.6 SYSTEM CAPACITY

This system operates in 8K bytes or more
of core memory. The FORTRAN processor
itself occupies approximately 6. 5K bytes of
memory. Inan 8K memory, this leaves a
1. 5K working space for user's stored pro-
grams and data. Any available memory
above 8K can be used to expand the working
space.

Working space in memorv is used as follows:

1. Stored statements require 20
bytes per average statement.

2. Defined variables require G
bytes each.

3. Defined arrays require 6+4N
bytes where N is the number
of elements in the array.

Each 1000 bytes of working space an hold 50
average statements, over 150 variables, or
a 15 X 15 two dimensional array.

4-11






'APPENDIX 1
INTERACTIVE FORTRAN SUMMARY

< dircct mode input
edit mode input
data input

? error

! memory full

*

i

Numbers

real only, E format
- precision 6-7 digits

- range *76

Variables - 2 char. names, letter first
- global, real only

Arrays - 2 char. names, letter first
- 1 or 2 dimensions
- global, real only
- subscripts 1,2,....,N

Expressions - use (,),+, -, *,/, ¥*
Functions - SIN, COS, EXP, LOG, ATN

Statements - 2 digit statement numbers
- terminate with RETURN char.
- 54 char. max, no continuations

Programs - 2 char. names, letter first
- nesting to level of 5
- implicit RETURN at end

Operations- CALL P
- RETURN
- GOTO N
- GOTO (N1,N2,...),X
- IF (X) N1,N2,N3
- DO N V=L1,L2
- CONTINUE
- DIMENSION A(L),...
- V=X
- TYPE A B,...
~ ACCEPT A,B,...
- WRITE X,A B,...
- READ X,A,B,...

- FUNCTION (X,A,B,...),C,D,..

Erase previous character with -
Erase line with RUB OUT
Interrupt execution with Switch 15

Editing Commands
SUBR or SUBROUTINE A

oP OPEN N, X
LI LIST

DE DELETE
EN END

System Commands
CL or CLEAR

PR PROGRAMS

VA VARIABLES
"ER ERASE A

FR FREEZE

UN UNFREEZE

Direct Mode Operations
CALL P
DIMENSION A(L),...
V=X
TYPE A B, ...
ACCEPTI A B, ...
WRITE X, A DB, ...
READ X,A B,...

FUNCTION (X,A,B,...),C,D,...

Ignored
C COMMENTS
REAL
INTEGER
COMMON
FORMAT

Memory Usage
20 bytes per statement
6 bytes per variable
G14N bytes per array

Features
- 2 character names
Free format input/output
2 dimensional arrays
All values real and global
FREEZE mode for spced-up

Al-1






APPENDIX 2
. SAMPLE INTERACTIVE FORTRAN PROGRAM

C PROGRAM TO SHOW ARRAYS AND DO
SUBROUTINE T1
DIMENSION A(5,7), B1(10,7)
L=7
DO 20 1-1,5 -
DO 20 J-1,L
A(1,J)=10*1+J
GO TO 9
20 CONTINUE
DO 35 I-L-6,2*L-4
DO 36 J=1,7
TYPE B(l.J)

36 CONTINUE

<>

35 (‘,()N'l‘lNl_!ﬁ
C EXAMPLE OF EXPRESSION AS SUBSCRIPT
A(2,3) 5
B(1,1) =999
TYPE 'ELEMENT VALUE IS', B(A(2, 3)-4, A(2, 3)*A(2, 3)/6-3)
RETURN
C EXAM PLEV OF JUMP OUT OF DO
9 B2*I-1,J)=A(I,J)
B2*1. J)=10*(A(1. J)*A(1.J))/A(1.J)
10 TO 20

END -

A2-1






APPENDIX 3
FORTRAN REFERENCES

Refer to the following publications for a description of FORTRAN in general:

1. Farina, Mario V., FORTRAN IV Self Taught, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1966.

2. Golden, James T., FORTRAN IV Programming, Prentice Hall
Inc., Englewood Cliffs, New Jersey, 1965.

3. Jamison, Robert V., FORTRAN Programming, McGraw-Hill Book
Company, New York, 1966.

4., McCracken, Daniel D., A Guide to FORTRAN Programming, John
Wiley & Sons, New York, 1966,







GE 03-005R03A 16

OPERATING INSTRUCTIONS
FOR INTERACTIVE FORTRAN

1. GENERAL DESCRIPTION

The FORTRAN system is discussed in detail
in the User's Manual For Interactive FOR-
TRAN, Publication Number 29-014. There
are several versions of FORTRAN, each
tailored to specific machine configurations.
One of the versions involves a READ-WRITE-
FUNCTION Expansion for linking assembly
language routines to FORTRAN. Details of
this Expansion are discussed in Operating
Procedures For FORTRAN With The RWF
Expansion, Publication Number 03-011A16.
This document describes the procedure for
loading, starting, and usmg the various
FORTRAN tapes.

2. VARIATIONS

There are four variations bf FORTRAN as
follows:

Number Name

03-005R02M10 FORTRAN - requires
high speed
option
- provides no
RWF Expan-
sion

03-006R02M10 FORTRAN - no high speed

W/TRAP option re-
quired
- no RWF

Expansion

Number Name
03-007M10 FORTRAN/ - requires high
30-2 speed option
- requires
floating-point
option
- provides
RWF Expan-
sion
03-011M10 FORTRAN - requires high
W/RWF speed option

- provides RWF
Expansion

All variations require at least 8K bytes
of core memory. All variations assume
a teletypewriter is interfaced to the Pro-
cessor as Device Number 2, The high
speed option, mentioned above, is the
High Speed Arithmetic Instruction Rep-
ertoire, The floating~point option is the
High Speed Arithmetic Instruction Rep-
ertoire, which is available on the 30-02
only, Note that the amount of working
space available for user programs and
data varies with each of the above. Refer
to Figure 1 for details. The FORTRAN
W/TRAP includes the multiply and divide
TRAP subroutine for machines without
the high speed option., Since the TRAP
arithmetic operations require more exe-
cution time than hardware instructions,
this version of FORTRAN runs slower
than the others. Also, due to the size

of the TRAP routine, the working space
is considerably reduced, and this version
requires more than 8K of memory to be
generally useful.



80

oC

BOTTOM

TOP

LOADER,ETC,

ez

SEE BELOW

FORTRAN PROGRAM

WORKING SPACE

UNUSED

ez

PROGRAM
NUMBER BOTTOM VALUE TOP VALUE
03 -008R02 X 1B70 XIFFE'
03-006RO2 x'ipso’ X'IFFE'
03-007 x'194a0' X'IFFE'
03-01l x'icoo’ x'IFFE'
80
B START LOCATION
START
84 .
8 RESTART POSITION
RESTART
88
BOTTOM POINTERS WHICH DEFINE
8A ToP WORKING SPACE.
ac
8E POINTERS ASSOCIATED
%0 WITH RWF EXPANSION.
92

94
98
98
%A

[

s
/// ] TABLE OF POINTERS

"~~~ | 7y ASSOCIATED WITH

////7 RWF EXPANSION.
//

IFigurce 1. Memory Allocation

GENERAL REGISTERS,8BIT

3. TAPE FORMAT

The FORTRAN tapes are bootstrap tapes.
Refer to Bootstrap Programs and Proce-
dures, Publication Number 06-030A12, for
an explanation of the tape organization. The
bootstrap tape is loaded by using the eight-
bit loader at X'50'. Note that memory loca-
tions from X'1D00' to X'1FFF' are used
during the bootstrap loading process.

New features in the above versions of FOR-
TRAN are as follows:

1. A problem concerning referencing
of undefined subroutines is cor-
rected.

2. The left arrow character ( < )
is recognized during keyboard in-
puts for purposes of deleting the
last character in the line.

The starting location is X'80'. A
restart location is provided at
X'84'., Refer to Section 5.

(W]
.

4. The Illegal instruction interrupt
pointer is set when FORTRAN is
started. See Section 5.

4. LOADING PROCEDURES

FFORTRAN tapes are loaded using the eight-
bit loader at X'50'. The 50 Sequence, which
includes the eight-bit loader, is described in
the first section of the Programming Manual,
Publication Number 29-013. Assuming that
the 50 Sequence has heen entered into mem-
ory, FORTRAN is loaded as follows:

1. Put the tape into the tape reader.
Be sure the first data character is
over the read fingers or photo
diodes.

2. Set the Data/Address Switches to
X'50', set the MODE CONTROL to
ADRS, and depress EXECUTE.

3. Depress INITIALIZE.



1. Set the MODE CONTROL to RUN,
and depress EXECUTE.

<
.

If a teletypewriter is in use as
the input device, manually start
the tape by moving the reader
switch to Start or Run.

6. The tape should be read until the
end. If errors are detected on in-
put, the tape will stop, and the
Processor will halt with the Wait
light lit. In this case, reposition
the tape to the previous record gap
and depress EXECUTE to reread
the record.

7. When the tape has been entirely
loaded, control is automatically
transferred to FORTRAN. FOR-
TRAN indicates it is ready for use
by printing < on the teletypewriter,

5. STARTING PROCEDURES

Set the display switches to X'0080'. Select
ADRS mode and depress EXECUTE. Select
RUN mode and depress EXECUTE. The
system will typc an arrow ( < ) to indicate
it is ready for commands from the keyboard.

When cxecution is started at X'0080', the
system is initialized as follows:

1. The Illegal instruction PSW in
locations X'34' - X'37' is set.

2. The limits of the working space
are established, .and the working
space is cleared which erases any
stored programs and variables.

~o
.

The system is set to unfrozen
state in Direct mode.

_Torestart the FORTRAN program without
,fclcaring the working space, start execution
“at X'0084', Refer to Figure 2.

6. MEMORY ALLOCATION

Figure 1 shows a memory map ol the sys-
tem. The limits of the working space, as
shown, are established whenever the pro-
gram is started at X'0080', or the CLEAR
operation is used. After the FORTRAN tape
has been loaded, the limits of memory avail-
able for working space can be changed as
follows:

1. The halfword at X'0088' contains
the lower limit. This limit is the
address of the first halfword with-
in the working space. This limit
can be changed with memory write
(MEMW) operations on the display
panel to any desired value.

2. The halfword at X'008A' contains
the upper limit. This limit, which
is the address of the last halfword
within the working space, is de-
fined as X'1FFE' when the tape is
loaded. This limit can be changed
with memory write (MEMW) opera-
tions on the display panel to any
desired value,

After changing the upper or lower
limits, start execution at X'0080'
as described previously in Section 5.

w
.

Redefinition of the working space limits may
be desirable if more than 8K of memory is
available or if it is necessary to keep other
programs in memory with FORTRAN.

7. PAPER TAPE PROCEDURES
Whenever FORTRAN seeks input from the

teletypewriter, a single character is typed

to reflect the type of input needed., The
characters are:

- for direct mode input
* for edit mode input

= for data input



START

x's0’

SET ILLEGAL INSTRUCTION
INTERRUPT POINTER

CLEAR
OPERATION

SET UP WORKING SPACE LIMITS
AND CLEAR THE WORKING SPACE

ILLEBGAL

INSTRUCTION
RESTART INTERRUPT
x'sa’ ( * )
HALT
EXECUTE

AN\
PROGRAMS YES
FROV

NO

UNFREEZE
PROGRAMS

SET DIRECT MODE

SEEK INPUT
FROM KEYBOARD

Figure 2.

Following the character, the program issues

an XON character, which starts the tape
rcader if it contains a tape. This means that
whenever a tape is in the Reader, and the
program secks input, the tape will advance
and be read.

All inputs to the system are terminated by a
carriage return (RETURN key). Whenever
the system deteets a RETURN character, it
issucs an XOI'F character, which stops the
tape reader. Note that a tape may move 1

or 2 characters after XOFF is issued. Simi-
larly, a tape may move 1 or 2 characters
after XON is issued before proper synchroni-
zation is obtained. Tor this reason, a num-
ber of blank or space characters must separ-
ate cach line on the paper tape.

#* NOTE:

IN FORTRAN W/TRAP, NO. 03-008RO2MIO,
THE ILLEGAL INSTRUCTION INTERRUPT IS
LINKED TO THE TRAP ROUTINE,

Starting Procedures

When no tape is in the Reader, and inputs
are given through the keyboard, the extran-
eous XON and XOFF characters will make
a slight click, but have no other effect.

To punch a tape, the tape punch on the tele-
typewriter must be turned on manually,
While the tape punch is turned on, all char-
acters typed are also punched. By doing a
LIST operation with the punch turned on,
therefore, the program listed will also be
punched. Recall that statements are indente
several spaces when listed by the system.,
These leading spaces serve to separate prop‘
erly the lines on paper tape.



The procedure for reading a program tape
is as lollows:

|8

Make sure the system contains no
programs with the same name as
those to be loaded.

After the system types <« to re-
quest another direct mode input,
put the tape in the reader. The
leading spaces prior to the first
statement should be placed over
the read fingers.

3.

Momentarily push the reader
switch to the Start position. The
tape will be read, stopping and
starting again after cach line.

When all of the program has been
read, remove the tape from the
reader.

To read a tape with a Model ASR-35

Teletypewriter, it is necessary to use
the KT Teletypewriter mode.






OPERATING PROCEDURES FOR FORTRAN
WITH RWF EXPANSION

Publication Number 03-011A16

1. GENERAL DESCRIPTION

FORTRAN with RWF Expansion, Program
Number 03-011, is equivalent to FORTRAN,
03-005R02, supplemented with a READ-
WRITE-FUNCTION interface. This version
of FORTRAN runs on any GE-PAC 30
Processor with 8K bytes or more of core
memory and the high-speed arithmetic
instruction repertoire. FORTRAN, with
the READ-WRITE-FUNCTION Expansion,
allows users to expand the FORTRAN pro-
gram with their own routines for input,  out-
put, and arithmetic functions. The program
interface provided is sufficiently general
that, with the proper precautions, any assem-
bly language routine can be successfully
linked with FORTRAN.

It should be noted that FORTRAN with RWF
Expansion takes more core memory than
other versions of FORTRAN. While the pro-
gram runs in 8K, therefore, very little space
- remains for user's programs. More memory
is required, therefore, for this program to
be used effectively.

2. TAPE DESCRIPTION

FORTRAN with RWF Expansion is available
in two tape formats.

1. Tape 03-011M10 is a bootstrap tape,
and is loaded using the eight-bit
loader at X'50'. Refer to Publication
Number 06-030A12 for details.

GE 03-011A16

2. Relocatable tapes for FORTRAN
with RWF are available. Several
tapes are required, and they must
be loaded and linked together by
the General Loader (06-025). Be-
cause of the loaders required, it
is essential to have more than 8K
of memory to use these tapes.

3. FEATURES

This program involves several pointers at
the beginning of the program as follows:

ORG + 0 B START

Start here and
clear memory

+ 4 B RESTART Start here and

+ 8 A(BOTTOM)

+ A A(TOP)

+ C A(READ)

+ E A(WRITE)

+ 10 A(FUNC)

preserve memory
Pointer to bottom
of working space
Pointer to top of

- working space

Pointer to READ
routine
Pointer to WRITE

“routine

Pointer to FUNC-
TION routine

The working space pointers arc initially set

to:

A(BOTTOM)
A(TOP)

i

X'1CO0’
X'1FFE'



The READ, WRITE, FUNC pointers initially
point to the error routine in the FORTRAN
program. User-written routines are linked
to FORTRAN by adjusting these pointers
accordingly.

Another feature in this version of FORTRAN
is the use of the left arrow character (< )
during user inputs for single character de-
letes. That is, the user typing

X-e= 2

followed by a carriage return causes the
system to delete the minus character (-) and
perform X=2,

The FORTRAN statements relevant to the
READ, WRITE, and FUNC operations are
described below. Note that this description,
while not always in agreement with the FOR-
TRAN User's Manual, Publication Number
03-005A12, tells it like it really is with this
particular version of FORTRAN.

4. READ STATEMENT

READ X, A B, C, ...

The READ statement provides all the
facilities of the ACCEPT statement
but, in addition, it permits use of de-
vices other than the Teletypewriter,
Data is read into FORTRAN by user-
written device driver routines,

The data read is stored as the values of A,

B, C, etc. X is used as a switch or a de-
vice number that the user's program decodes.
This allows READ to operate with several
input devices that the user interfaces.

X, A, B, C, ... are all elements, This
means that they can be symbol names or
references to array elements; they cannot
be literals or expressions. This should be
noted particularly with respect to X.

When the READ statement is executed, the
FORTRAN gives control to that program
whosc address is in ORG + X'C', where

ORG is the first location of FORTRAN. The
user supplies this program and sets this
address.

The program must be written to read a
record of information into the FORTRAN
buffer, This record will subsequently be
processed exactly as a teletypewriter line
is processed following an ACCEPT state-
ment,

When the program is called, all the para-
meters of interest are supplied in the mach-
ine registers. This allows the user to write
the program without knowledge of the FOR-
TRAN system.

The execution of READ causes numbers that
have been read into the FORTRAN buffer by
the user's program to be stored as values of
the symbols A, B, C, ... etc.

X, which must be given as an "element'' in

the READ statement, is fetched from the sym-
bol table, integerized, and placed in a con
venient register. The user's input program
may use this integer to determine which of
several possible input routines should be

used. This allows the READ statement to

seek input from one of several devices that

the user has interfaced.

The user supplies characters to the buffer
in eight-bit ASCII code (high-order bit set),
and terminates the record by placing a car-

"~ riage return character at the end of the data.

The rules concerning what characters are
used to represent numbers and their separ-
ators, are exactly the rules that apply to
the ACCEPT statement. The user must
not enter more than 70 characters.

When control is given to the user-written
program, the registers contain their values
and addresses that are indicated in Table 1.



TABLE 1

REGISTER ALLOCATION

ON TRANSIFER TO USER PROGRAM

Register Mnemonic
Number Name Contents

0 SIX 6

1 FOUR 4

2 TWO 2

3 ONE 1

4 LOC Address of first entry in list containing high-order part of
arguments.

5 oP Address of first entry in list containing low-order part of
arguments. _

6 AHI Pointer to character position in buffer where first charac-
ter is stored. Subsequent characters are stored in
succeeding locations.

7 ALO Undefined.

8 BHI Rounded integerized value of X, expressed as an integer.

9 BLO Undefined.

A SIZE Address of a table containing addresses of useful subrou-
tines.

B CUR (a) Count of characters for output in WRITE program

(N characters mean count is set at N+2),
(b) Count of arguments for FUNC program
(N arguments mean count is set at 2*N),

C Z1 Rounded integerized value of X, expressed in floating-
point; high-order half.

D Z2 Rounded integerized value of X, expressed in floating-
-point; low-order half.

E BACK Return address for returning to FORTRAN system.

F ERROR Address of universal error routine in FORTRAN system.

5. WRITE STATEMENT

ment allows output of data from the FOR-
TRAN system to devices that the user

WRITE X, A B, C, ... interfaces for himself.
The data written are the values of the vari-
The WRITE statement is for use by a user ables A, B, C, ... etc. X isusedasa
who wishes to exercise the facilities of the switch or device number that the user's
TYPE statement, but who wishes to have program decodes. This allows WRITE to
the output performed on a device whose driv- operate with several output devices that the

er program he wishes to write.

This state- user interfaces.




X, A, B, ¢, ... arcall "values". This
means they can be symbol names, numeric
literals, expressions, or character strings.
Note that X should not be a character string.

When the WRITE program is executed, the
FORTRAN first generates a buffer full of
characters. It then gives control to that pro-
gram whose address is in ORG + X'E', where
ORG is the first location of FORTRAN. The
user supplies this program and sets this
address.

The function of the program must be to write
out a record of information for the FORTRAN
buffer to the user's device. The record that
is written, is exactly the same as the record
that is written to the teletypewriter by the
TYPE statement, and printed as a line,
The information in the buffer does not in-
clude any carriage return or line feed
characters,

When the program is entered, all the para-
meters of interest are supplied in the mach-
ine registers. This allows the user to write
programs without knowledge of the FORTRAN
systém.

X is given as a "value'. The WRITE state-

ment causes it to be integerized and placed

in a convenient register. The user's output
program may use this integer to determine
which of several possible output routines
should be uscd.

The characters in the buffer are in eight-bit
ASCIT code (high-order bit set). The format

of the numbers and characters in the buffer

is exactly the same as for the TYPE statement.

When control is given to the user-written
program, the registers contain those values
that are indicated in Table 1. The number
of characters to be output (the exact number
plus two) is contained in register CUR. The
exact number will never exceed 72.

6. FUNC STATEMENT

FUNC X,Y, ...),A,B, ...

The FUNC statement is for use by a user
who wishes to write his own machine-lang-
uage function program, and insert it into the
FORTRAN system.

The arguments are a group of "elements' '
and a group of "values'. The "elements"
are passed to the user-written program as
addresses, and the ''values' are passed as
hexadecimal numbers. The "elements",
the first arguments in the statement, are
indicated by being surrounded by parantheses
There must be at least one ""element". If
there is exactly one "element", no paren-
theses are required. Examples of proper
FUNC statements are:

FUNC X, 3.5, SIN@2)
FUNC (X, BF),4*N
FUNC (X,Y,Z),1, EXP(P), 'HELP'

The user provides a program whose address
must be put in location ORG + X'10', where
ORG is the first location of FORTRAN. When
FUNC is executed, control is passed to the

.user's program. All the information the

user needs is passed in the registers as is
shown in Table 1. The arguments are
passed in two tables; the first holds the high-
order parts, and the second the low-order
parts. The starting locations of this table
are held in registers LOC and OP. The
number of arguments (the exact number
multiplied by two) is held in register CUR.

The rounded and integerized value of X is
held in register BHI. It may be used by the
user to steer the function program to a num-
ber of other subprograms. X however, is
also held in the argument tables as the first |
argument,



7. REGISTER ALLOCATION

The constants 1, 2, 4, 6 arec supplied in four
registers for the user's convenience, and
they may be used freely. However, thesc
registers must be properly restored by the
user if he alters them.

The address in register ERROR is the ad-
dress of a FORTRAN routine for handling
errors. It the user's program is written

to test for errors, their occurrence should
cause control to go to that place. This reg-
ister must also be saved and restored if it
is used by the user program.

Arguments that were specified with the

FUNC statement, occur as four byte items.
The high-order two bytes occur in a table
whose first address is held in LOC: the low-
order two bytes occur in a table whose first
address is held in OP. Successive arguments
are in successive halfwords.

If an argument is a "value', the four bytes
that represent it are its floating hexadeci-
mal value, providing the argument is
numeric.

The value may, however, be a character
string. In this case, the first two bytes
consist of X'F000' and the second two bytes
are the address of the first character of the
character string in core. The character
string is preceded by a halfword containing
the character count plus four, followed by
the ASCII characters of the string. See
Figure 1.

If an argument is an "element", the two high-
order bytes that represent it, form the ad-
dress of the location in core where the value
of the argument is stored. This value is

numeric and consists of four bytes. The
address that is pointed to, is the one that
contains the low-order half of the value.
See Figure 2,

(In the event that an array name is used as
an argument, the address obtained is the
address of the location where the first ele-
ment of the array is stored.)

If an argument is merely a name, the two
low-order bytes that represent it, contain
auxiliary information. The name may be
the name of a variable or of an array. The
low-order part contains the address of the
first byte in the symbol table that represents
the variable or array. (A knowledge of the
symbol table structure shows that the ad-
dress in the high and low part differ by ten
for arrays and by four for variables. See
Figure 3.

If, however, the argument is an element of
an array, the two low-order bytes that rep-
resent it contain zero.

8. OPERATION

It is the responsibility of the user to gener-
ate each assembly language routine appro-
priate to his needs. Each routine must be
loaded into memory in some locations that
do not conflict with FORTRAN itself. If
need be, the BOTTOM AND TOP pointers

-~ which define the working space, should be

adjusted.

When FORTRAN transfers control to a user-
provided routine, care should be taken to
restore the appropriate registers prior to
returning control to FORTRAN,

For a discussion of the Floating-Point data
format used within FORTRAN, refer to
Publication Number 07-020A12,

Good luck!

o



HI-ORDER /
ARG LIST 7/
x'F000’
: .
N+ 4
CHAR x'a7’ ¢,
LO-ORDER
A (CHAR) Ca
1] L]
Cn-2 X'at

The halfword preceding CHAR contains the value N+4, where N = the number of charac-
ters in the character string including the apostrophe (') characters. Note the X'AT7' is the
character code for apostrophe ('). ’

Figure 1. Character String Argument



wove

A (VALY)

e e e o o

SYMBOL TABLE

L
L]
* -y
LO-ORDER
ARG LIST r Q
TYPICAL ENTRY
X PQbi P FOR VARIABLE
NAMED PQ.
PQlo
-
: z z
: z2znl
L]
IZle

If the argument in the statement is an element, the high-order argument list contains a
pointer to the symbol table entry for that element. In the case shown above, the element
is a variable named PQ, and the pointer points to the low-order portion of the value of
PQ. In this case, X = A(VALU) - 4.

Figure 2. Variable Arguments



DIMENSION B (3)
FUNC (X,8),2

Hi- ORDER LO- ORDER
ARGS AReS
[ 4 [
[ [ ]
x'4120' x'0000'
sYmMsoL
TABLE

o(l)

DIMENSION 8 (3)
FUNC (Xx,B(3)),2

4 [
¢ x'0000"
x'4120' 4 %0000}

8(2)
8(3)
d
. X
L4
Figure 3.

A

=}

° ,// X

8s7
FUNC (X,8),2

x'4120°

1x‘'0000’

Sample FUNC Statements




TABLE OF CONTENTS

EDITOR (TIDE) PROGRAM MANUAL
1. INTRODUCTION
2. PROGRAM STRUCTURE

1

. . .
(o2} (2 BEEY ~N L BN AV

2.
2.
2
2.
2
2
2

.7

Operating Modes
Basic Unit

Line Addressing
Command Formats
Commands
Command Examples

Errors

3. OPERATING PROCEDURES

3.1
3.2
3.3

Loading
I1/O Device Selection

Starting Location

3.4 Tape Format
3.5 Text Buffer Size

APPENDIX 1

TIDE RESPONSES

GE 29-082






EDITOR (TIDE) PROGRAM MANUAL

.Publication

1. INTRODUCTION

TIDE, Program Number 06-014, is an
interactive text editor program. It is
designed to create and modify char-

acter-oriented text material which is
stored on paper tape, or input through
the teletypewriter keyboard. The text
may be an assembly language program,
a FORTRAN program, or any text in
the literal sense.

TIDE is directed by an operator through
the keyboard of a teletypewriter terminal.
Upon receiving a keyboard input directive,
the editor will read text from a specified
input device into a designated area of core
memory. The editor allows the user to
examine, change, delete, and/or modify
the text while it remains in core memory.
When the editor receives a keyboard out-
put directive, the revised text can then be
output to the specified output device.

2. PROGRAM STRUCTURE

2.1 Operating Modes

TIDE has two modes of operation: Com-
- mand and Edit. The program indicates
the current mode by printing, in column
one on the teletypewriter, a left (+) for
the Command Mode or an asterisk (%)

for the Edit Mode. In the Command Mode,
the program accepts keyboard commands
which specify an editing procedure, or
which specify a text input or output oper-
ation. From an edit command, TIDE en-
ters the Edit Mode. Edit Mode allows
the user to insert, append, or modify
the text, after which control returns to
the Command Mode.

Number 29-082

2.2 Basic Unit

The basic unit of the stored text is a varia-
ble length line from 1 to 67 ASCII code char-
acters long including the line terminating
carriage return (CR). Each line of input is
stored in a line buffer until thg CR fermin-
ates the input. The line buffer contents are
then moved to the text buffer. If the text
buffer contains a symbolic source program,
each source statement is one line of text.
The statements, or lines, have unique deci-
mal addresses which are sequenced in as-
cending order; the first statement in the
buffer has address number one (1). This
allows editing of any statement by line ad-
dress rather than core location address.

2.3 Line Addressing

A specific line can be referenced by its
decimal number address n. To examine
line n, type the decimal number followed
by a carriage return. The teleprinter will
list:

n Z2Z72...7

where n is the line number, and Z the text
contained in line n. This becomes the line
currently available for examination or modi-
fication and is called the open line. All
forms of line examinations are exclusive
to the Command Mode ( < ) and will never
cause transfer to the Edit Mode (*). How-
ever, any attempt to examine a line not
contained in the buffer, or to reference a
nonexistent line, will result in an error
message (see Section 2. 7).



The exccution of some TIDE commands will
change the position of a line in the text buf-
fer, and conscquently change the line num-
ber. This line number change does not af-
fect the contents of the line. (See Section
2.6, Command Examples.)

To facilitate line addressing and determine
the number of bytes used in the text buffer,

the symbols in Table 1 have been implement-

ed. A CR delimiter following the symbol is
used as described for decimal number ad-
dressing. Editing convention, howcver,
eliminates the CR after a Line Feed (LF)

or CR itself. All of the symbols with the
exception-of the arrow ( § ) cause the listed

line to become the open linc.

2.4 Command Formats

Commands are entered through the keyboard
in one of the following general formats:

TERMINATING
FORMAT - CHARACTER DESCRIPTION

X - CR Editor performs
, Command X.
Xn CR Editor performs
Command X on
n lines.
X a,b CR Editor performs

Command X on
lines a through

b inclusive. Both
a and b must be
positive with b
not less than a.

where n, a, and b are decimal numbers
hereafter called arguments, and Command
X directs the editor to perform the specific
operations described later in the manual in
Table 3. All command formats are termin-
ated by a CR. If there is an error in the
command format (Section 2. 7), no action is
taken and program control returns to the
Command Mode ( = ). One or more spaces
should separate the arguments from the
command.

TABLE 1. LINE ADDRESSING

TERMINATING
SYMBOL CHARACTER FUNCTION
n CR Opens and lists line number n (a deci-

mal number).

Carriage Return None Opens and lists the line preceding the
current open line.

Line Feed None Opens and lists the line following the
current open line.

* (asterisk key) CR Lists the current open line.

. (period key) CR Lists the last line in the text buffer.

4 (uppcr arrow key) CR Lists the byte count of the contents
of the text buffer. The count is
shown in decimal.




Line addressing (Section 2. 3) and command
arguments can involve arithmetic using ad-
dition and subtraction. Some sample for-
mats are shown in Table 2. When using line
arithmetic with two argument commands
(general format X a,b), the rules for a and
b still apply.

2.5 Commands

The three main functions of the editor are
input, rhodification, and output. The input
commands are used to enter text into the
buffer. The modify commands direct var-
ious manipulations of the text stored in the
text buffer, The output commands produce

a hard copy of the text on the command-
specified output device. Table 3 contains
the definitions for the command repertoire.
The Tabulate (T) command causes print and
list operations to use a format similar to the
Assembler. The command-specified output
devices will be explained in Section 3. 2.
Following all of the output commands except
List (L), the computer stops to allow time
to prepare output device; to continue depress

the EXECUTE Switch. Commands which
are terminated by the break key (BK) may
also be halted by setting the Display Panel
Data/Address Switch 15.

2.6 Command Examples

See Table 3 for command definitions.

a. Append
ok
*  APPEND LINES TO (CR)
*  THE TEXT BUFFER (CR)
*
-~
~b. Print - Print lines one through

five without tabs.

< P 1,5CR

LINE ONE STILL LINE NUMBER ONE
LINE TWO DELETED IN EXAMPLE C
LINE 3 NUMBER WILL CHANGE
LINE 4 NUMBER WILL CHANGE
LINE 5 NUMBER WILL CHANGE

-

TABLE 2. - LINE ARITHMETIC
SAMPLE TERMINATING
FORMAT CHARACTER DESCRIPTION

2+7 CR Lists line number 9.

.-8 CR Lists the eighth line before the last
line in the text buffer.

F CR Lists the line indicated by subtracting
the decimal number address of the cur-
rent open line from the decimal number
address of the last line in the text buffer.

X *+3 CR Editor performs command X on the
third line following the current open
line.

X *+3,.-6 CR Editor performs command X on lines

' (*+3) through (. -6), inclusive.

2 @ Refers to a non-printing keyboard
input.




| TABLE 3 )
COMMAND REPERTOIRE

UNCTION | KEYBOARD | RESPONSE | DEFINITION | DESCRIPTION
INPUT
COMMAND

Input ,‘ A * ~ Append |The editor enters the Edit Mode (*) and
‘ accepts input from the keyboard. The
typed text line is appended following the
last line of text (if any) in the buffer.
Each line of input is terminated with a
CR. After an * response, the Append
operation is terminated by depressing
BK. After termination, the last line in-
put, now the open line, and its decimal
’ : number address are printed. TIDE re-
turns to the Command Mode ( = ).

Input An none Append TIDE enters the Edit Mode after which n

n lines lines are read from the Source Input De-
vice, specified in location X'7C'1. This
read operation may be halted when an end
of line is reached by depressing BK. Af-
ter either manual or normal termination,
this command continues as the A command.

Input I * Insert The editor enters the Edit Mode (*) and
accepts text lines from the keyboard to
be inserted preceding the open line. In-
sertions are made in the order in which -
lines are input. Each line is terminated
by depressing CR and the operation is
terminated by depressing BK. Upon
termination, the open line with its cor-
rected decimal address will be printed
and control goes to the Command Mode
(o).

Input In none Insert Control transfers to the Edit Mode after
n lines which n lines of text are read from the
Source Input Device specified in location
X'7C'l; and are inserted into the text buf-
fer as described for the I command. The
insertion may be terminated when the end
of a line is reached by depressing BK.
Upon either manual or normal termination,
the open line with its corrected line num-
ber will be printed and control goes to the
Command Mode ( < ).




TABLE 3

(Continued)

FUNCTION

KEYBOARD
INPUT
COMMAND

RESPONSE

DEFINITION

DESCRIPTION

Modify

Modify

Modify

Modify

Output

D

Da,b

Ca,b

none

none

Processor
Halt

Delete

Delete
lines a
through b

Change

Change lines
a through b

Print

The editor deletes the current open line.
The line following the deleted line is now
the open line and will be printed along
with its corrected line number. Control
returns to the Command Mode (< ). If
the last line in the buffer is the open line
and it is deleted, the new last line is now
the open line and it is listed.

Lines a through b inclusive are deleted.
Line b+l becomes the open line and is
printed along with its corrected decimal
address. TIDE remains in the Command
Mode (< ). I line b + 1 is non-existent,
the last line is opened and listed.

The open line is deleted. Control then
goes to the Edit Mode (*) through which
insertions can be made as in the I Com-
mand. After insertions are made, the
command is terminated by depressing

BK. The line following the deleted line
becomes the open line and is printed along
with its corrected decimal number address.
Control transfers to the Command Mode

( « ). If the last line in the buffer is the
open line and it is changed without inser-
tion, the new last line is now the open line
and it is listed.

This command deletes lines a through b
inclusive then continues as the C com-
mand.

This command must be preceded by the T
or N command.3 The P command prints
the contents of the text buffer in T or N
unnumbered line format on the device
specified in location X'7E'l. Printing
may be terminated when the end of a line
is reached by depressing BK. Upon man-
ual termination, the open line and its
decimal address are printed. The editor
remains in the Command Mode ( <« ).

(93]



TABLE 3 (Continued)
UNCTION | KEYBOARD| RESPONSE DEFINITION| DESCRIPTION
INPUT
COMMAND
Output Pa,b Processor Prints lines | Lines a through b inclusive are printed
Halt a through b | as in the P Command.
Output O Processor Output The entire text buffer is punched in the
Halt punched standard source tape format 2 on the de-
tape vice specified in location X'7A'l., Out-
put may be halted at the end of a line
by depressing BK. Upon manual ter-
mination, TIDE prints the open line and
its decimal address. TIDE remains in
the Command Mode ( <« ).
‘Output Oa,b Processor Output lines | This command punches lines a through
Halt a through b | b inclusive and continues as the O
on punched Command.
tape
Output L none List The contents of the text buffer are
printed in T or N numbered line for-
mat on the teleprinter. Printing may
be terminated by depressing BK after
which the open line and its decimal ad-
dress are printed. The editor remains
in the Command Mode ( = ).
Output L a,b none List lines Lines a through b inclusive are printed
a through b | and terminated as in the L. Command.
Setup T - Tabulate Sets the tabulate flag for format control.
' output Output will be similar to the Assembler
format.
Setup N - Untabulated | Resets the tabulate flag for no format
output control. Output spacing will be as in
the text buffer. This flag state is N
when TIDE is started at the origin.
Setup K TIDE Kill text This command starts TIDE at the ORG
- buffer as described in Section 3.3, Starting

Location.




TABLE 3

(Continued)

FUNCTION

KEYBOARD
INPUT

COMMAND ,

RESPONSE

DEFINITION

DESCRIPTION

Other

Other

Other

- Other

R

Sn

Processor
Halt

Processor
Halt

none

none

Reproduce

~a punched

tape

Duplicate
n lines of
punched
tape.

Skip

Skip n
lines

‘Mode (= ).

This command duplicates a punched paper
tape. The input device is specified in lo-
cation X'7C'1 and the output device in lo-
cation X'7A'l. No information from the
tape will enter the text buffer. Duplica-
tion may be terminated when the end of a
line is reached by depressing BK. After
manual halt, the open line and its line
number will be printed. After the entire
tape is reproduced, the last line reproduced
is printed. TIDE remains in the Command
ASCII codes X'00' through
X'1F' are not duplicated.

The number of lines specified in the argu-
ment are duplicated on punched paper tape.
The I/0 devices and break key (BK) ter-
mination are as stated for the R command.
No information from the tape enters the
text buffer. H n lines are reproduced,

the last line punched is printed. TIDE
remains in the Command Mode ( < ).

The device specified in location X7c'1
will advance until halted, when the end
of a line is reached, by depressing BK.
After manual halt, the open line and its
number are printed. The editor remains
in the Command Mode ( « ).

The number of lines specified in the argu-
ment are skipped as in the S Command. If
n lines are skipped, the last line skipped is
printed. If the operation is terminated with
a BK, the open line and its number are listed.

1. See Section 3. 2,I/0 Device Selection
2. See Section 3.4, Tape Format

*3. See Table 3

where:

T, N

n a decimal number
a first argument, a decimal number
b  second argument, not less than a, a decimal number.




¢, Change - Jrom example b the
open line is number
two. Insert two lines.
Open line number four
is printed.

~C

* INSERT A LINE CR)

* INSERT ANOTHER LINE CR)
*BK)

4 LINE 3 NUMBER WILL CHANGE

-

d. List - List lines one through five
for example c aftér C
Command execution.
Note the change in line
numbers.

- L 1,5CR)

LINE ONE STILL LINE NUMBER ONE
INSERT A LINE

INSERT ANOTHER LINE

LINE 3 NUMBER WILL CHANGE

5 LINE 4 NUMBER WILL CHANGE

ey

Ll ]

2.7 Errors

The error message for an improper TIDE
command entry or for a line of text (from
any input device) which exceeds the charac-
ter limit, is the question mark (?). If a
command entry error is made, no action

is taken upon the information in the text
buffer, TIDE responds with an error mes-
sage (?), and remains in the Command
Mode (< ). If the text line exceeds 67
characters, the error message (?) will be
printed and program control is transferred
to the Command Mode ( = ). None of the
characters in the line will be entered into
the text buffer. If the error occurs in either
the command or text entry, and is discovered
before depressing the CR, the mistake may
be corrected. Corrections are made by typ-
ing a left arrow (< ) which deletes the last

character in the line, or by typing a Rubout
(RO) which delctes the entire line. The edi-
tor responds to the RO with a # symbol and
control remains in the current mode of
operation.

Another TIDE error flag is the exclamation
point (!) which means the text buffer has
overflowed. When this happens, the line
which caused overflow is not entered into
the text buffer and the text buffer is un-
changed. TIDE returns to the Command
Mode (< ). To enter more information,
it is necessary to delete one or more lines
from the buffer. To reread the line which
caused overflow, it is necessary to back-
space the input tape one line, and adjust the
buffer contents to make more room.

Section 3.4, Tape Formats, explains errors
caused by incorrect input tape formats.

3. OPERATING PROCEDURES

3.1 Loading

TIDE, Program Number 06-014MO08, is a
relocatable program which requires X'0E56'
bytes of memory including a text buffer of
1000 bytes. To load TIDE, use the Reloca-
table Loader, Program Number 06-024, or
the General Loader, Program Number 06-
025. Refer to Loader Descriptions, Publica-
tion Number 06-025A12 for use of these
loaders.

3.2 1I/0 Device Selection

Prior to TIDE execution, the appropriate
halfwords in the 50 Sequence device defini-
tion table should be set in the following
format:

0 718 15
Device Number Output Command




‘The device definition halfwords are:

Teletypewriter inputs no X'0294'
printing

Teletypewriter inputs with X'02A4"
printing

Teletypewriter outputs X'0298!
High Speed Paper Tape input X'0399!
High Speed Paper Tape output X'0392!
Line Printer X'0780'

Device selection locations in the 50 Sequence
device definition table appropropriate to
TIDE are:

Use With TIDE

Location Symbol Operations?!

XA BOUTDV Reproduce,
Output

X'7C! SINDV Append, Insert,
Reproduce, Skip

X'7TE' LISTDV Print

3.3 Starting Location

If the execution of TIDE is started at the
origin (ORG), the text and line buffer point-
ers are set to the first locations of the buf-
fers. Registers and appropriate locations
are initialized, and the message TIDE along
with the Command Mode ( = ) are printed.

If TIDE is started at location ORG + 4, no
initialization occurs, the current state of the
buffers and pointers is unchanged, and the
Command Mode ( < ) is printed.

1. Refer to Table 3

3.4 Tape Format

Punched tapes produced by the Output (O)
command of TIDE are always in the standard
source tape format. Each line of text is
punched followed hy a CR, LF, and eight
rubouts (RO). The format for each charac-
ter is seven bit ASCII code except for the RO
which is eight bit ASCII code.

Input tapes for TIDE should be in the stand-
ard source tape format; however, the mini-
mum tape format requirements are that each
line must be terminated by a carriage return.
and contain no more than 67 characters in-
cluding the carriage return. In addition,
successive statements must be separated

by at least five or six non-printing charac-
ters. If a line length error (?) (Section 2. 7)
occurs, the tape must be manually adjusted
to the next line. If the text buffer capacity
is exceeded (error !), manually backspace
the tape one line. In the latter case, editing
can be done on the text already in the text
buffer.

3.5 Text Buffer Size

When loaded, TIDE provides a text buffer
for 1000 characters. The user may adjust
the size of the text buffer by inserting the
beginning and ending absolute addresses into
locations X'0008'R and X'000A'R respectively.
The text buffer may be located anywhere in
core providing it does not overwrite TIDE or
the 1/0 device selection addresses. When
started at ORG, TIDE tests the text buffer
limits and if they overwrite TIDE, forces
them to the locations originally specified in
the editor. The first text buffer location in
the editor is X'0A6E'R and the last location
is X'0E54'R.

9



P



A-277

APPENDIX 1
TIDE RESPONSES

SYMBOL DEFINITION
- Command Mode
* Edit Mode
? Error Message
# Rubout Acknowledgement
! Text Buffer Overflow

- - - - —— o o o~ o — — — - - — - ——— o - —

TELETYPE TIDE CONTROL

KEY! DEFINITION/ACTION

* Lists the open line.

. Lists the last line in the test buffer,

’ Lists the byte count of the current contents of the

text buffer.

LF Opens and lists the line following the current
open line.

CR Opens and lists the line preceding the current
open line.

RO Erase the line just typed from the keyboard,
cancels an incorrect command.

- Deletes the last character typed.

BK Halts I/0O. See Table 4.

~ 1. Section 2.3 describes these symbols as used in line addressing.

SPECIAL TIDE ADDRESSES

HEXADECIMAL
LOCATION DEFINITION
0000 + Bias Starting location. Program will initialize
and reset buffer pointers.
0004 + Bias Restart location. Program will not initia-
lize and buffer pointers are not reset.

0008 + Bias Location which defines the first address of
' the text buffer. This address must not over-
write the TIDE program.

Al1-1

e



Al1-2

HEXADECIMAL
LOCATION

000A + Bias

X'0AGE' + Bias

X'0E54' + Bias

A-278

APPENDIX 1 (Continued)

DEFINITION

Location which defines the last address of
the text buffer. This address must be with-
in core limits and greater than the starting
address of the text buffer.

TIDE defined first address of text buffer.

TIDE defined last address of text buffer.



TABLE OF CONTENTS

MATH ROUTINE LIBRARY ABSTRACTS AND DESCRIPTIONS

1.

00 g3 O Ul B w N
o e e e e e .

10.
11.
T 12,
13.

INTRODUCTION

7-001 BINARY TO BCD (INTEGER) - SINGLE PRECISION
7-002 BINARY TO BCD (FRACTIONAL) - SINGLE PRECISION
7-003 BCD TO BINARY (INTEGER) - SINGLE PRECISION
7-004 BCD TO BINARY (FRACTIONAL) - SINGLE PRECISION
7-005 MULTIPLY - SINGLE PRECISION

7-006 DIVIDE - SINGLE PRECISION

7-007 SQUARE ROOT - SINGLE PRECISION

7-008 LOG BASE 2, E, 10 - SINGLE PRECISION

7-010 SINE /COSINE - SINGLE PRECISION

7-011 ARCTANGENT - SINGLE PRECISION, RESTRICTED
7-012 ANGLE CONVERSION - SINGLE PRECISION

7-018 ARCTANGENT - SINGLE PRECISION, UNRESTRICTED

FIXED-POINT MULTIPLY /DIVIDE TRAP SUBROUTINE

1.
2.

INTRODUCTION

INSTRUCTION FORMATS

2.1 Multiply Halfword

2.2 Divide Halfword

OPERATION

NON-MULTIPLY /DIVIDE INSTRUCTIONS
USE OF TRAP SUBROUTINE

FLOATING POINT PACKAGE DESCRIPTION

1.

2
3
4,
5

INTRODUCTION
DATA FORMAT
ARITHMETIC ROUTINES
CONVERSION ROUTINES
OPERATION .

GE 29-007R01

GE 07-021A12

GE 07-020A12



GE 29-007R01

MATH ROUTINE LIBRARY ABSTRACTS AND DESCRIPTIONS |

1. INTRODUCTION

This publication provides programming information on the GE-PAC 30
Math Routine Library. An abstract and a brief program description are
provided for each subroutine. To aid in locating data on a particular

subroutine, the following index is provided.

INDEX

Subroutine
Binary to BCD (Integer) - Single Precision
Binary to BCD (Fractional) - Single Precision
BCD to Binary (Integer) - Siﬁgle Precision
BCD to Binary (Fractional) - Single Precision
Multiply - Single Precision
Divide - Single Precision
Square Root - Single Precisic;n
Log Base 2, E, 10 - Single Precision
Sine/Cosine - Single Precision
Arctangent - Single Precision, Restricted
Angle Conversion - Single Precision

Arctangent - Single Precision, Unrestricted

11

13

17

19

23

25

.27

29



2. 7-001 BINARY TO BCD (INTEGER) - SINGLE PRECISION

2.1 Abstract
This subroutine converts a halfword binary integer number, in two's
complement form, to its BCD equivalent (ASCII) sign plus five digit
form.
The argument is divided by 10, and the quotient forms one of the decimal
digits. The remainder is again divided by 10 to form another decimal
digit. This process is continued until five decimal digits have been formed.
The conversion introduces no errors in the result.
The average execution time of this subroutine is 3.3 millisecondé.
The subroutine occupies X'C8' bytes of memory.

2.2 Description

2.2.1 Calling Sequence.

BAL 15,SIBTOD
DC A(ARQG)
DC A(RESULT)

A(ARG) is the address that contains the halfword argument to be converted.
A negative number must be represented in two's complement form. The
argument is assumed to be an integer number.

A(RESULT) is the starting address in which the resultant binary coded
decimal number is stored. Six bytes must be reserved for storage of the
result. The first byte contains the sign, the next byte contains the most
significant decimal digit, etc. Five BCD digits plus sign are developed.
All resultant digits and sign are in Teletypewriter ASCII code.

Upon completion of the subroutine, control is returned to the first in-
struction following the calling sequence.



2.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

2.2.3 Algorithm. The algorithm consists of continued division
of the argument by 10% , The quotient formed after each division is equal
to the binary coded decimal digit. The decimal position of the digit is de-
noted by the exponent of 10 used in the division. The exponent of 10 is
decremented by one, and divided into the remainder to form the next BCD
digit. This is repeated until five BCD digits have been formed. If the
argument is negative, the two's complement of the number is formed be-
fore conversion is attempted. A negative sign is then affixed to the
resultant BCD number. Positive arguments result in a plus sign being .
affixed to the resultant BCD number.

2.2.4 Accuracy. The conversion introduces no error. Five
decimal digits plus sign are developed.

2.2.5 Timing. The conversion requires 3.2 milliseconds for
a positive argument, and 3.4 milliseconds for a negative argument.

2,2,6 Size. This subroutine requires X'C8' bytes of memory.



3. 7-002 BINARY TO BCD (FRACTIONAL) - SINGLE PRECISION
3.1 Abstract

This subroutine converts a halfword binary fractional number, in two's
complement form, to its BCD equivalent (ASCII) sign plus five digit
form. : ’ -

The argument is multiplied by 10 and the integer portion of the product
(formed in the most significant halfword) forms one of the decimal digits.
The least significant half of the product is again multipled by 10 to form
another decimal digit. This process is continued until five decimal digits
are formed.

The result of the conversion is accurate to five decimal digits plus or
minus one (+1) in the least significant digit. This is because the decimal
equivalent of a rational binary number may be irrational. Truncation is
performed, rather than rounding.

The average execution time of this subroutine is 2. 8 milliseconds.

The subroutine occupies X'CO0' bytes of memory.

3.2 Description

3.2.1 Calling Sequence.

BAL 15, SFBTOD
DC A(ARQG)
DC A(RESULT)

A (ARG) is the address that contains the halfword argument to be converted.
A negative number must be represented in two's completment form. The
argument is assumed to be a fractional number.

A (RESULT) is the starting address in which the resultant binary coded
decimal number is stored. Seven bytes must be reserved for storage of
the result. The first byte contains the sign, the next byte contains a deci-
mal point followed by the most significant decimal digit, etc. Five BCD
digits plus sign and decimal point are developed. All characters are in
Teletypewriter ASCII code.

Upon completion of the subroutine, control is returned to the first instruction
following the calling sequence.



3.2.2 Register And Processor Status, The General Registers
are not affected. The condition code of the PSW is modified.

3.2.3 Algorithm. The algorithm consists of continued multi-
plication of the argument by 10, When the argument is multiplied by 10,
the most significant half of the product forms the most significant decimal
digit. The least significant half of the product is again multiplied by 10 to
form the next decimal digit. This process is continued until five decimal
digits have been formed. If the argument is negative, the two's comple-
ment of the number is formed before conversion is attempted. A negative
sign is then affixed to the resultant BCD number. Positive arguments
result in a plus sign being affixed to the resultant BCD number. In any
case, a decimal point follows the sign.

3.2.4 Accuracy. The results of the conversion are accurate
to five decimal digits plus or minus one (t+1)inthe least significant digit.
This error occurs when the argument to be converted is irrational in the

base 10 system.

3.2.5 Timing. Canversion requires 2,62 milliseconds for a
positive argument and 2. 85 milliseconds for a negative argument,

3.2,6 Size. The subroutine occupies X'C0' bytes of memory.



4, 7-003 BCD TO BINARY (INTEGER) - SINGLE PRECISION
4,1 Abstract

This subroutine converts a BCD integer number, in sign magnitude form,
to its binary equivalent in two's complement form. The absolute magnitude
of the BCD number may not exceed +32, 767 or -32, 768, since these are the
largest numbers which can be expressed in 16 bits.

The algorithm used in the couversion is successive multiplication and ad-
dition., Let ABCDE be five decimal digits, and Y be equal to the binary
equivalent. Then:

2

- v 3 4
Y2 = E10+ Dlo(lOZ)l + C10(102) + B].O”OZ) + AlO(IOZ)

The conversion introduces no errors in the result. The average execution
time of this program is 3.2 milliseconds.

The subroutine occupies X'E4' bytes of memory.
4.2 Description

4.2.1 Calling Sequence.

BAL 15,SIDTOB
DC A(ARG)
DC A(RESULT)

A(ARG) is the starting address of a sign plus five binary coded decimal
(BCD) integer digit argument. Leading zeros, if any, must appear. The
argument occupies six consecutive bytes. Negative numbers are repre-
sented in sign magnitude form. The Teletypewriter (ASCII) minus char-
acter is used to denote negative arguments, The argument appears as
+NNNN.

A(RESULT) is the address that contains the result of the conversion. The
resalt is one halfword (2 bytes) long. Negative results are expressed in
two's complement form.,

4,2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.




4.2.3 Algorithm. The algorithm consists of successive
multiplication and addition, The most significant digit of the argument
is multiplied by 104, the next most significant digit by 103, etc. The
products are then added to form the equivalent binary number. If the
argument was negative, the two's complement of the result is formed.
Since the result must be represented by a maximum of 16 bits, an at-
tempt to convert a BCD number outside the range -32, 768 to +32, 767
results in a register overflow and the operation is not performed. This
is determined, in the algorithm, by testing the result for negative
values (before complementing). If the value is negative, an overflow
has occurred and the subroutine exits without modifying the cells at

/(RESULT).

4.2.4 Accuracy. The counversion algorithm introduces no
errors. If the range of the argument is -32, 768 to +32, 767, 5 decimal
digits are converted to 16 binary bits with no error. If the number is
outside this range, no equivalent binary number is generated.

4,2.5 Timing. This subroutine requires 3.1 milliseconds for
a positive argument, and 3.25 milliseconds for a negative argument.

4.2.6 Size. This subroutine requires X'E4' bytes of memory.



5. 7-004 BCD TO BINARY (FRACTIONAL) - SINGLE PRECISION
5.1 Abstract

This subroutine converts a BCD fractional number, in sign magnitude
form, to its binary equivalent in two's completment form.

The algorithm used in the conversion is successive division and ad-
dition. Let Y(10)=. ABCDE. Then:

Y(2)= A + B + C + D + 1/8E
§00)) (10) 2 (10) 3 (10) 4 (10) 4
10 10 10 10 10

The error introduced by this approximation is no more than +1 in the
least significant digit. A cancelling error of 1 in the least significant
digit may occur in trunction error when the last remainder is ignored.
The total error generated by this conversion is no more than +1 in the
least significant bit.

Thevaverage execution time of this program is 3.8 milliseconds.
The subroutine occupies X'FC' bytes of memory.

5.2 Description

5.2.1 Calling Sequence.

BAL 15, SFDTOB
DC A(ARG)
DC A(RESULT)

A(ARG) is the starting address of a sign plus five binary coded decimal
(BCD) fractional digit argument. Leading zeros, if any, must appear. The
argument occupies six consecutive bytes. Negative numbers are represented
in sign magnitude form. The Teletypewriter (ASCII) minus character is used
 to denote negative arguments. The argument appears as tNNNNN.

A(RESULT) is the address that contains the result of the conversion. The
result is one halfword (2bytes) long. Negative results are expressed in
two's complement form.

Upon completion of the subroutine, control is returned to the first instruction
following the calling sequence.



5.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

5.2.3 Algorithm. The algorithm consists of successive division
and addition. The BCD digits are aligned before division so that the first
digit of the result, be it zero or one, will occur in the 214 binary position.
The most significant BCD digit is then divided by 10 and the quotient is stored.
The next BCD digit is fetched, the remainder from the previous division is
added to the new digit, and the result is properly aligned. The shifted result"
is then divided by 10% etc. The last digit should be divided by 105, however,
this can not be represented in 16 bits., The last digit is effectively shifted
right 3 places which divides it by 8 so that it will be divided by 80, 000, rather
than 100, 000 in converting the last digit. This results in an answer that is
larger than it should be (but will differ only by the least significant bit). The
error is partially cancelled by truncation of the last remainder, which
tends to make the result smaller than it should be. When all five digits have
been divided, the resulting quotients are added and the result is a 16 bit
binary representation of the BCD fractional number. If this BCD number
was negative, the two's complement of the result is taken.

5.2.4 Accuracy. The total error is no more than +1 in the
least significant bit.

5.2.5 Timing. This subroutine requires 3. 74 milliseconds for
a positive argument, and 3. 92 milliseconds for a negative argument.

5.2.6 Size. This subroutine requires X'FC' bytes of memory.

10

PN



¢. 7-005 MULTIPLY - SINGLE PRECISION

6.1 Abstract

This subroutine performs a binary multiplication of two halfword (2 byte)
operands and yields a fullword (4 byte) result,

Negative operands must be in two's complement form. Negative results
are in two's complement form.

The multiplier (OP1) is shifted right. If the bit shifted out is a one, the
multiplicand is added to the partial product and the result is shifted right
once. If the bit shiited out is a zero, the partial product is right shifted
once without adding. This is repeated until all bits of the multiplier have
teer. scanned. Upoun completion of the scan, the result is in the registers
which have been accumulating the partial product.

The two's complement of negative operands is taken. If the resultis to
be negative, the two's complement of the result is taken.

The subroutine introduces no errors in'the result.
The average execution time of the subroutine is 4.4 milliseconds.
The subroutine occupies X'106' bytes of memory.

6.2 Description

6.2.1 Calling Sequence.

BAL 15,SMULT
DC A(OP1)
DC A(OP2)
DC A(RESULT)

A(OP1) is the address of the first operand (multiplier).

A(OP2) is the address of the second operand (multiplicand). The operands
are halfword (2 byte) arguments which, when negative, are represented in
two's complement form.

A(RESULT) is the address in which the result will be stored. The result
is a fullword (4 bytes). Negative results are represented in two's comple-

ment form.

11



6.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

6.2.3 Algorithm. Multiplication is performed by successive
addition and shifting according to the basic definition of multiplication.
The multiplier (OP1) is shifted right once. If the bit shifted out is a one,
the multiplicand is added to the partial product and the result is shifted
right once. If the bit shifted out is a zero, the partial product is right
shifted once without adding. This process is repeated 16 times. At this
point all bits of the multiplier have been scanned. Operands which are
negative are complemented. If the result is to be negative, the two's
complement of the result is taken.

The algorithm introduces no error., A 32 bit (fullword) product is
developed. '

6.2.4 Timing. The average execution time of the subroutine is
4.4 milliseconds. The worst case execution time is 5,60 milliseconds. The

‘ best case time is 3.8 milliseconds.

6.2.5 Size. The subroutine occupies X'106' bytes of memory.

12

Pr N



7. 7-006 DIVIDE - SINGLE PRECISION

7.1 Abstract

This subroutine performs a binary division of a full word dividend (OP1)
by a halfword divisor (OP2) and yields a halfword quotient and a halfword
remainder.

Negative operands must be in two's complement form. Negative results
are in two's complement form.

The divisor is subtracted from the dividend. If the subtraction can be made
without generating an overflow (sign of the result changes) a one is placed in
the quotient register and the difference and quotient registers are left shifted
once. If the subtraction results in an overflow the dividend is restored, a
zero is placed in the quotient register and both are shifted left once. This
process is repeated 16 times. Upon completion, the 32 bit dividend has been
replaced by a 16 bit quotient and a 16 bit remainder.

The two's complement of negative operands is taken. If the resultis negativev.
the two's complement of the quotient is taken. If the dividend was negatwe,

the two's complement of the remainder is taken,

If the arguments are such that the quotient will exceed register limits, eg
Q> 21 -lorQ <« 215, an error return is made.

The subroutine introduces no errors in the result.
The average execution time of the subroutine is 7. 0 milliseconds.
The subroutine occupies X'164' bytes of memory.

7.2 Description

7.2.1 Calling Sequence,

BAL 15,SDIV

DC A(OPI)

DC A(OP2)

DC A(RESULT)
ERRRTN DS 4

13



A(OP1) is the address of the first operand (dividend). The dividend is
a fullword (4 byte) argument.

A(OP2) is the address of the second operand (divisor). The divisor is
a halfword (2 byte) argument. Both arguments, if negative, must be in

two's complement form.

A(RESULT) is the address in which the quotient and remainder are stored.
Since both the quotient and remainder are two bytes long, four bytes (a
fullword) must be reserved. The remainder is stored first, followed by
the quotient. In the event of a divide overflow, no result is stored.

ERRRTN is the address which the subroutine returuns to if the quotient
can not be represented in 16 bits (divide overflow). Generally, the
programmer uses these 4 bytes to store a branch or BAL so that some
correction to the operands may be made.

7.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

7.2.3 Algorithm. Division is performed by successive subtraction
and shifting according to the basic definition of division. The divisor is
subtracted from the dividend. If the subtraction can be made without generating
an overflow (sign of the result changes) a one is placed in the quotient register
and both are shifted left once. This process is repeated 16 times. Upon
completion, the 32 bit dividend has been replaced by a 16 bit quotient and a 16
bit remainder.

Operands which are negative are two's complemented. If the result is to be
negative, the two's complement of the quotient is taken. If the dividend was

negative, the two's complement of the remainder is taken.

If the arguments are such that the quotient will exceed the register limits;
eg: Q> 2151 or Q< —215, to an error return is, made. ’

The algorithm is the implementation of the basic definition of divide.
7.2.4 Accurac%. The subroutine introduces no errors if Q lies in

the range -215 € Q < 2%°. A 16 bit quotient and a 16 bit remainder are
developed.

14



7.2.5 Timing. The average execution time of this subroutine is
7.0 milliseconds. The worst case execution time is 7.81 milliseconds.
The best case execution time is 6.5 milliseccnds,

7.2.6 Size. The subroutine occupies X'l64' bytes of memory.

15/16






8. 7-007 SQUARE ROOT - SINGLE PRECISION
8.1 Abstract

This subroutine extracts the square root of a halfword argument, Negative
arguments are complemented before root extraction,

The algorithm used in this conversion is the Newton-Raphson approximation.
The argument is prescaled so that it lies in the range 1> X21/4., Upon com-

pletion, the resultant root is postscaled to its correct value.

The maximum error generated by this subroutine is two places in the last
decimal digit. The maximum relative error is , 00003,

The average execution time of this subroutine is 3.1 milliseconds.
The subroutine occupies X'F0' bytes of memory.
8.2 Description

8.2.1 Calling Sequence.

BAL 15,SSQRT
DC A(ARQG)
DC A(RESULT)

A(ARQG) is the address of the halfword argument. The argument is considered

to be a fractional halfword (16 bit) binary number. Negative numbers, in two's
complement form, are treated as positive quantities and a positive real root is
extracted.

A(RESULT) is the address where the resultant root will be stored. The root is
one halfword in length. '

8.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

17



8.2.3 Algorithm. The argument is prescaled by the subroutine
so that it lies in the range 1>X21/4. The argument is scaled within this
range so that the scale factor is even, If X=A2S thenlX = JA2%8/2 (where
s is the scale factor). If the argument is negative, its two's complement
is taken before root extraction is attempted.

Three successive Newton-Raphson approximations are used to defermine
A trial root is first developed using the equation: Zo =1/2 + 1/2X

the root.
Three successive approximations are then made

where X is the argument.
using the equation: Zi + 1 =1/2 (X/Zi-Zi) + Zi.

8.2.4 Timing. The average execution time of the subroutine is
(3.1 4+ .1695L) milliseconds. The worst case execution time is (3.3 +
.1695L) milliseconds. The best case execution time is (2.9 + . 1695L)
milliseconds. Where L is the number of shifts necessary to scale the number

to the range 1<XS1/4,

8.2.5 Size. The subroutine occupies X'F0' bytes of memory.

18



9. 7-008 LOG BASE 2, E, 10 - SINGLE PRECISION

9.1 Abstract
This subroutine calculates the log to base two, epsilon or 10 of a halfword
positive argument scaled as a fraction with an exponent. The base and ex-

ponent is supplied to the subroutine in the calling sequence.

Negative arguments cause the subroutine to make an error exit and the
operands are not changed.

The result of this subroutine is a halfword negative (in two's complement
form) log properly scaled as determined by the fractional argument.

The log is calculated by means of a polynomial expansion employing
Chebyshev coefficients,

The maximum error generated by this subroutine is five places in the last
decimal digit. The maximum relative error is . 00005,

The average execution time of this subroutine is 2. 75 milliseconds.
The subroutine occupies X'16A' bytes of memory.
9.2 Description

9.2.1 Calling Sequence.

BAL 15, SLOG
DC A(ARGQG)
DC A(EXP)
DC A(BASE)
DC A(RESULT)
DS 4 ERROR RETURN

A(ARG) is the address of the halfword argument. The argument is considered
to be a fractional positive halfword (16 bit) binary number. Negative argu-
ments cause an error return.



A(EXP) is the address of the halfword which contains the exponent of the
argument so that any number in the range 215.1 to 2-15.3 may be represented.
For example, proper scaling will cause, the arguments 0.7, 7,0, 70.0 etc,

to appear in A(ARG) as X'599A' = 0. 7. A(EXP) would contain 0 for 0.7, 1 for
7.0, 2 for 70,0 etc. Negative exponents must be in two's complement notation,

A(BASE) is the address of a halfword whose contents determine t6 which base
the log will be taken. For base two, A(BASE) must contain 0000. For base
epsilon A(BASE) must contain X'0004'. For base ten A(BASE) must contain
X'0002'. ‘

A(RESULT) is the halfword address which contains the resultant log. A(RESULT)
contains the characteristic and the next halfword A(RESULT)+2 contains the
mantissa. Negative logs are represented in two's complement notation.

9.2.2 Register And Processcr Status. The General Registers
are not affected. The condition code of the PSW is modified.

9.2.3 Algorithm. The argument is first prescaled so that it lies
in the range. 1>X21/2. This is done by shifting the argument left and accum-
ulating the number of shifts as a scale factor 'b'. The scale factor is then
added to the exponent. The effective argument (U) is then formed.

U =x+1/2
X -fi72

The log to the base twc is then approximated by means of a polynomial ex-
pansion employing Chebyshev coeffiecients.

2
LOG, X ={ R Cp1 UZK-Y  _1/2 where C| = 2.88523
1 C3 = 0.98353

The log is then converted to its proper base by use of the identity.
LoG, M =(.LOGc M)(LOGy, C)

The negative log is then added to the sum of the scale factor and exponent
to form the true mantissa and characteristic.

9.2.4 Accuracy. The relative accuracy of this subroutine is +
. 00005 where Ei.el = APPROX-FUNCT The last decimal digit may be in error
by five places. FUNCTION

20



9.2.5 Timing. The average execution time of the subroutine is
2.75 milliseconds plus scaling time for arguments less than 1/2 (log base 10).
Scaling time is equal to 120N microseconds where N is equal to the number
of shifts necessary to make the argument fall in the range 1>X21/2. Worst
case execution time is 3. 45 milliseconds plus scaling time (log base epsilon).
Best case time is 2.5 milliseconds plus scaling time (log base 2).

9.2.6 Size. The subroutine occupies X'16A' bytes of memory.

21/22






10, 7-010 SINE/COSINE - SINGLE PRECISION

10.1 Abstract
This subroutine generates the sine and cosine of an argument angle. The
argument is supplied to the subroutine in fractions of a degree, eg. each

degree is broken into one hundred parts.

The sine and cosine are generated by polynomial approximation employing
Chebyshev coefficients.

SINIEX = CjX + C,X3 + CgX° where -1<X<

and C;| = 1.57063
C3 = -.64323
C5 = ,07271

Cos];—rX = sml'zf(%-xy

The maximum relative error introduced by this subroutine is +.00004. The
result will be in error by no more than 4 in the fifth decimal digit.

The average execution time is 2.3 milliseconds.
The subroutine occupies X'100' bytes of memory.
10.2 Description

10.2.1 Calling Sequence.

BAL 15,SINE BAL 15, COSINE
DC A(ARG) or DC A(ARG)
DC A(RESULT) DC A(RESULT)

A(ARG) is the address that contains the halfword argument angle. The angle
is expressed as an integer in hundredths of a degree, for example 131,24
degrees = 13124x10-2 = X'3344', The hex number X'3344' would be the argu-
ment for 131,24 degrees, Arguments greater than 180 degrees are expressed
as negative angles less than 180 degrees, for example 228. 76 degrees =
-131.24 degrees = X'CCBC'. The two's complement hex number X'CCBC'
would be the argument for -131, 24 degrees.

23



A(RESULT) is the address that contains the halfword result. Negative values
are expressed in two's complement form.

10.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

10.2.3 Algorithm. A polynomial approximation using Chebyshev
coefficients is used to calculate the sine. If the cosine function is called for,
the complement of the argument angle is taken as the effective argument to the
sine routine. The argument is reduced to an angle in the range -1<X<l if
necessary by subtraction of 90 degrees.

siN Tx = ¢;x + C3X3 + CgX® where -1<X <l

and C; = 1.57063 -
Cy = -.64323
Cg = . 07271

10.2.4 Accuracy. " The maximum relative error (ER) introduced
by the subroutine is +.0004, ER = (APPROXIMATION-FUNCTION)/FUNCTION
The result will be in error by no more than 4 in the fifth decimal digit.

10.2.5 Timing. The average execution time of this subroutine is
2.3 milliseconds. The worst case time is 2.6 milliseconds. The best case
time is 2.0 milliseconds.

10.2.6 Size. The subroutine occupies X'100' bytes of memory.

-

24



11, 7-011 ARCTANGENT - SINGLE PRECISION, RESTRICTED

11,1 Abstract

This subroutine calculates the arctangent for any tangent argument which lies
in the range 1> X2-1. The resultant angle lies in the range JZI>0_>_ -:2"-.

For arguments -1>X21, the unrestricted arctangent (7-018) subroutine must
ke used. (See Section 13.)

Both the argument and the result are one halfword in length (16 bits). Negative
numbers are represented in two's complement notation.

The algorithm used in this subroutine is approximation by polynomial expansion
using Chebyshev coefficients.

The relative accuracy of this subroutine is +. 00005 which provides four and
one half decimal digits of accuracy.

The execution time of this subroutine is 1. 95 milliseconds.
The subroutine occupies X'82' bytes of memory.
11.2 Description

11.2,1 Calling Sequence.

BAL 15, ARCTAN
DC A(ARQG)
DC A(RESULT)

A(ARG) is the halfword address which contains the tangent argument. The
argument (X) must lie in the range 1>X2-1, Negative values are represented

in two's complement notation.

A(RESULT) is the halfword address which contains the resultant angle expressed
in radians. Negative results are in two's complement notation,

25



11.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified.

11.2.3 Algorithm. The algorithm used in this subroutine is
approximation by polynomial expansion using Chebyshev coefficients.

i=3 ,
ARCTAN X = $ Cyiy X211 where 1>x2-1
1=0
C, = .999215
C3 = -.321182
C, = +. 146277
Co = -.038993

11.2.4 Accuracy. The relative error (ER) of this subroutine is
+.00004 where ER = APPROX-FUNCTION . This subroutine provides four and
FUNCTION
one half decimal digits of accuracy.

11.2.5 Timing. The execution time of this subroutine is 1. 95
milliseconds.

11.2.6 Size. The subroutine occupies X'82' bytes of memory.

26



12. 7-012 ANGLE CONVERSION - SINGLE PRECISION

12.1 Abstract

This subroutine converts an angle expressed in radians to decimal degrees
for use in the sine/cosine subroutine.

The argument is a compound number, the integer portion occupies a halfword
and the fraction the next halfword. Negative arguments are not defined, and

result in an incorrect result. The argument must lie in the principal range
2T>X 20.

The subroutine converts the argument to decimal degrees. Anungles larger
than 180 degrees are represented as negative angles less than 180. Negative
angles are represented in two's complement form. The result occupies one
halfword (16 bits).

The subroutine has a relative accuracy of +.00003,

The average execution time of the subroutine is 2.5 milliseconds.

The subroutine occupies X'B6' bytes of memory.

12.2 Description

12.2.1 Calling Sequence.

BAL 15, RADDEG
DC A(ARQG)
DC A(RESULT)

A(ARG) is the halfword address which contains the integer part of the radian
argument. The next halfword A(ARG)+2, contains the fractional part of the
radian argument. Negative arguments are not defined, and result in an in-
correct answer. The argument must be a principal value, eg. 2F>X20.

A(RESULT) is the halfword address which contains the argument expressed
in decimal degrees. Arguments greater than JT result in negative angles less
than 180 degrees. For example 3ﬂ/2 converts to -90, 00 degrees. The result
is of proper form for entry to the sine or cosine routines. '

27



12.2.2 Algorithm. The argument, if greater thanTl, is first
scaled by subtracting T so that it lies in the range W > X20. The scaled
radian argument is then multiplied by 57.2958 to convert to degrees. If
the original argument was greater than 1T, the result is subtracted from
360 degrees and the two's complement formed. The result is packed to a
halfword such that 18000> ANGLE IN HUNDREDTHS 20.

12.2.3 Accuracy. The relative error of this subroutine is +.00003
where ER = APPROX-FUNCTION

FUNCTION

12.2.4 Timing. The best case execution time of this subroutine is

2.3 milliseconds. The average execution time is 2.5 milliseconds. The worst

case execution time is 2.9 milliseconds.

12,2.5 Size. The subroutine occupies X'B6' bytes of memory.

28



13, 7-018 ARCTANGENT - SINGLE PRECISION, UNRESTRICTED

13.1 Abstract

This subroutine calculates the arctangent for any ratio (R) such that
215_12R>-215, The resultant angle (®) is such that 21>920,

The arguments are one halfword (16 bits) in length and if negative are
represented in two's complement notation.

The result is one fullword in length. The integer and fractional portions of
the result each occupy one halfword. -

The algorithm used in this subroutine is approximation by polynomial expansion
using Chebyshev coefficients.

The relative accuracy of this subroutine is +. 00005 which provides four and
one half decimal digits of accuracy.

The average execution time of this subroutine is 3.3 milliseconds.
The subroutine occupies X'I1DC ' bytes of memory.
13.2 Description

13.2.1 Calling Sequence.

BAL 15, ATANUR
DC A (Y)
DC A (X)
DC A (RESULT)

A (Y) is the halfword address that contains the Y value (DIVIDEND) of the
tangent ratio. Negative values are represented in two's complement form,

A (X) is the halfword address that contains the X value (DIVISOR) of the tangent
ratio. Negative values are represented in two's complement notation.

A(RESULT) is the halfword address that contains the integer portion of the
resultant angle. A (RESULT) +2 is the halfword address that contains the
fractional portion of the resultant angle. The angle is expressed in radians and
will lie in the range 2W>62 0,

29



13.2.2 Register And Processor Status. The General Registers
are not affected. The condition code of the PSW is modified. /

13.2.3 Algorithm. The Y ordinate is first compared to the X
ordinate. If Y>X the cotangent is formed by taking the ratio X/Y rather
than the tangent Y/X. The signs of X and Y are noted to determine which
sector the angle will lie in. The negative arguments, if any, are then
complemented so that the effective tangent (U) lies in the range 1>U20.

The effective arctangent is then calculated by means of a polynomial approxima-
tion using Chebyshev coefficients.

1X1 o, 171
Y1 TIXI

such that 1>U20

i=3

- 2i+1 -

ARCTAN U = -30 C,iU where U =
1=

C,= . 999215
Cy= -.321182
Cg= +.146277

Co=-.038993
The angle is then relocated to its correct sector and subtracted from:-g.if
the cotangent was formed.

13.2.4 Accuracz. The relative error (ER) of this subroutine is
+.00005 where ER = APPROX-FUNCT. The subroutine provides four and
FUNCTION
one half decimal digits of accuracy.

13.2.5 Tirning. The worst case execution time of this subroutine
is 3.8 milliseconds. The average execution time is 3.2 milliseconds. The
best case execution time is 3.1 milliseconds.

13.2.6 Size. The subroutine occupies X'IDC' bytes of memory.

P

30



GE 07-021A12

FIXED-POINT MULTIPLY/DIVIDE TRAP SUBROUTINE

1. INTRODUCTION

This subroutine, which is intended for
linkage to the illegal instruction inter-
rupt, is appropriate for those GE-PAC

30 processors without fixed-point mul-
tiply/divide instructions. The High

Speed option provides Multiply, Divide,
Read Block, and Write Block instructions.
In processors without the High Speed Op-
tion, the execution of a Multiply or Divide
instruction causes an Illegal Instruction
Interrupt. This TRAP Subroutine, when
linked to the Illegal Instruction Interrupt,
performs the multiply or divide operation
as specified by the particular instruction
executed.

2. INSTRUCTION FORMATS
The TRAP subroutine implements Multiply
Halfword and Divide Halfword instructions

as described in the following paragraphs.

2.1 Multiply Halfword

MHR R1, R2 [RR]
0 718 2 15
gC R1 | R2
MH R1, A(X2) [Rx]
0 7|8 112 ___15}16 3l
4C RI | X2 A

The 16-bit second operand is multiplied with
the General Register specified by R1 + 1,
The first operand, R1, must specify an even
numbered register. The resulting 32-bit
product is contained in R1 and R1 + 1, an
even-odd pair; the second operand is un-

- changed. The sign of the product is deter-

" mined by the rules of algebra.

(R1, R1 + 1) @— (R1+1)* (R2) [RR]

(R1, R1 + 1) «— (R1+1)*(A+(X2)) [RX]

Resulting Condition Code:

Unchanged.

Programming Note:

After multiplication, the most significant 15
bits with sign are contained in R1, The
least significant 16 bits arc contained in

R1 + 1.

2.2 Divide Halfword

DHR R1, R2 [RR]

(0] 718 12 15 .
gD R1 | R2

DH R1, A(X2) [Rx]

0 718 1112 15116 3!
4D R1 | x2 A

The 16-bit second operand is divided into the
32-bit dividend contained in the General Reg-
ister specified by R1 and R1 + 1, The first
operand, R1, must specify an even numbered
register. The resulting 15-bit quotient with
sign is contained in R1 + 1; a 15-bit re-
mainder with sign is contained in R1, the
second operand is unchanged. The sign of
the result is determined by the rules of
algebra; the sign of the remainder is the same
as the sign of the dividend.

(R1 + 1) @#=——— (R1, R1 + 1)/(R2) RR]
(Rl) @#——— Remainder

(R1 + 1) «=—— (R1, R1+1)/(A+(X2)) RX]
(R1) @ Remainder



Resulting Condition Code:
Unchanged.
Programming Note:

A quotient which cannot be expressed in 16
bits will cause an Arithmetic Fault interrupt
if enabled by bit 3 of the Program Status
Word. The operands will remain unchanged.

3. OPERATION

The subroutine is organized as shown in
Figure 1, and contains seven principal parts.
These parts are used as follows:

1. The first part consists of the first
four halfwords in the subroutine.
These halfwords contain pointers
which are useful for expanding the
subroutine to handle other than
multiply and divide operations. Ex-
pansion for non-multiply divide ops
is discussed in a later section.

2. The sccond part begins at the fifth
halfword (SAVE) which is the entry
point for the subroutine. This part
saves all registers in a data area
called BLOK, and sets up some
useful constants.

3. The next part of the subroutine
picks up the operands for the in-
struction which caused the Illegal
Instruction Interrupt and tests the
illegal op-code. If the op-code is
not a multiply or divide instruction,
the subroutine executes a LPSW
TRAP instruction, which loads the
Current PSW with the first two
halfwords in the subroutine. Unless
changed to some other value, these
halfwords contain 8FFF/FFFF and
the Processor halts since the Wait
Bit in the Current PSW gets set.

4. The Multiply routine is used when
the illegal op-code specifies a
multiply operation.

5. The Divide routine is used when
the illegal op-code specifies a
divide operation.

6. The EXIT part of the subroutine
places the return address (RETN)
which is in Register 0, into the
halfword at X'32', restores all
registers from the data area (BLOK).
and executes a LPSW X'30°'.

7. The last part, the data area (BLOK),
is used to save all 16 General
Registers.

The operation of the subroutine is illustrated
in Figure 2.

During the divide operation, if an overflow
occurs, the subroutine performs the appro-
priate Divide-Fault Interrupt if specified in
the Old PSW at location X'30'. I the Divide-
Fault Interrupt is not enabled, the control is
returned to the point immediately following
the divide instruction with the operands
unchanged.

4. NON-MULTIPLY/DIVIDE INSTRUCTIONS

The TRAP Subroutine is designed for expan-
sion to handle other than multiply and divide
instructions. To facilitate this expansion,
the symbolic name of the first location in
the subroutine (TRAP) is declared as an
ENTRY. This means that other programs
can refer to the name TRAP and the loader
will link the programs accordingly. The
two halfwords at TRAP (SFFF/FFFF) are
used by the subroutine (LPSW TRAP) when
a non-multiply/divide op is detected. In
addition, the next two halfwords contain
pointers to the restore routine (EXIT) and
the data area (BLOK).



r TRAP
8 F F F :
LPSW TRAP |F OPS NOT MUL OR DIV,
F F F F
PART | 4
A(EXIT) POINTER TO EXIT ROUTINE,
A (BLOK) POINTER TO REGISTER SAVE AREA,
P SAVE 9
PART 2 . SAVE IS SUBROUTINE STARTING POINT,
SAVE ALL 16 REGISTERS IN BLOK.
o “
PART 3 o > OPERAND PICK UP AND OP CODE TESTING.
> “
PART 4 < > MULTIPLY SUBROUTINE.
> g
PART 6 < > DIVIDE SUBROUTINE,
F EXIT >
PART € > SET RETN INTO X'32', RESTORE ALL 16 REGISTERS FROM BLOK, AND LPSW X'30".
> BLOK 4
RO
R
R2
[ ]
[
PART 7T . > 16 HALFWORD DATA AREA FOR SAVING CONTENT OF REGISTERS.
[ ]
[ ]
L]
[}
RIS
- 4

Figure 1. Organization of Fixed-Point Multiply/Divide Trap Subroutine



INCLUDES INDEXING
IF REQ'D BY X2 FIELD
NOT ZERO

Figure 2. Operation of Fixed-Point Multiply/Divide Trap Subroutine (Sheet 1 of 2)

SAVE

SAVE ALL
REGISTERS
iN BLOK

]

SET UP FIVE
CONSTANTS

$

SET POINTER TO
INSTRUCTION (PIN) FROM

ADDRESS PORTION
OLD PSW AT X'30

3

SET RETURN ADODRESS
RETN @— PIN

RX YES

NO

SET POINTER TO
2ND OPERAND
(poP2)

'

RETN @«—RETHN + 4

| >

SET POINTER TO
2ND OPERAND
(rorP2)

RETNe— RETN +2

.

SET POINTER
TO IST OPERAND
{POP 1)

3

PICK UP
2ND OPERAND
(opr2)

)

PICK UP 32 BIT
IST OPERAND
(oPIN, OPIL)

¥

SET OC WITH
OP CODE BITS 0-7

AND CLEAR BIT |

‘

TO SNEET 2




RO = RETN
R| = POPI
R2 = POP2
R3=sPIN
R4 = OC
RS = OP2
RE = OPINH
R7 = OPIL
[

FROM SHEET |

YES

[
RI10O s 0000
Ril s0001
Ri2 = 8000
RI3 s O0OF

LPSW TRAP

DIVIDE

DIVIDE
OPiIH,OPIL 8Y OP2

IS BIT 3 IN
OLD PSWAT x'30'

pivioe
OVERFLOW

MULTIPLY
OPiL BY OP2

lTOll

STORE RESULTS
OPIN, OPIL

EXIT
AT

STORE RETN IN
ADDRESS PORTION OF

OLD PSW AT X'S0’

OVFL
m—
PUT OLD PSW AT X'30' RESTORE REGISTERS
INTO OLD PSW AT X'48' FROM BLOK
1
LPSW X'S0'

PUT NEW PSW AT X'4C
INTO OLD PSW AT X'30'

Figure 2. Operation of Fixed-Point Multiply/Divide Trap Subroutine (Sheet 2 of 2)

MULTIPLY




T VD 5 TR TR P

To extend the TRAP routine, the first two
halfwords (8FFF/FFFF) in the subroutine
should be sct to enable transfer to some
routine which further tests the op-code. At
the time the LPSW TRAP instruction is exe-
cuted, the register contents arc as shown

in Table 1.

Note that the instruction is assumed RR type
if bit 1 = 0, and RX type otherwise. There-

fore, in the op-code (OC), bit 1 is cleared,
since it is no longer needed. If RS instruc-

tions are handled, the pointer to operand 2
(POP2), which is the address of the operand
in RR and RX instructions, contains the ac-
tual value of the operand.

5. USE OF TRAP SUBROUTINE

The program tapc 07-021MO08 is a relocatable
tape and must be loaded with either the Re-
locating Loader 06-024 or the General Load-
er 06-025. Since the name TRAP is declared
as an ENTRY point, the Relocating Loader
will halt at one point with the display panel
lights indicating an Improper Control Item.

This crror halt can be ignored. (See Loader
Descriptions, Publication Number 06-025A12
for details).

To use the TRAP subroutine, the New

PSW location for illegal instructions at
X'34" must be set to point to the TRAP
subroutine entry point (TRAP + 8). This
PSW is established when the TRAP routine
is loaded. During program debugging, it
may be necessary to re-establish this PSW
pointer if it gets changed.

Note that the TRAP routine is designed with
a single-level save/restore mechanism.
This means that any processing of illegal
instructions, external to the TRAP routine,
should not involve other illegal instructions
unless the NEW PSW for the ILLEGAL IN-
STRUCTION INTERRUPT (X'34') is changed.
If this pointer is not changed, the Illegal
Instruction Interrupt will cause program
control to be transferred to location SAVE
in the TRAP routine, and the register con-
tents in BLOK will be destroyed.

TABLE 1. REGISTER CONTENTS

_Contents

Register . Name
0 RETN
1 POP1
2 POP2
3 PIN
4 oC
5 OoP2
6 OP1H
7 OP1L
8 RS
9 R9

10 0000
11 0001
12 8000
13 000F
14 FFFF
15 R15

Return Address

Pointer to Operand 1

Pointer to Operand 2

Pointer to Illegal Instruction

Op-Code Right Justified with
Bitl = 0

The Second Operand

The First Operand, High Order

The First Operand, Low Order

Undefined

Undefined

Constant = 0
Constant = 1
Constant = bit 0 only
Constant = 15
Constant = -1
Undefined




Note that CLUB, the debug program, also
uses the PSW location for illegal instruc-
tions. Care should be exercised, therefore,
when using CLUB in memory at the same
time as the TRAP subroutine. It may be
necessary to repeatedly set the PSW loca-
tion to point to TRAP whenever transferring
control out of CLUB to another program.
This procedure will inhibit the use of con-
ventional CLUB breakpoints.

The 30-01 execution times required for

. the TRAP routine are as follows:

Multiply ops 7.3 msec.
Divide ops 8.2 msec.
Other ops 1.5 msec.

The TRAP routine requires 210;¢ or 5281
bytes of core memory.






GE 07-020A12

FLOATING POINT PACKAGE DESCRIPTION

1. INTRODUCTION

The Floating Point Package, 07-020, pro-
vides in subroutine form, the basic pro-
grams required for the manipulation of
floating-point numbers in any GE-PAC 30
system with the high speed option, but with-
out any {loating-point instructions per se.
The Floating Point Package provides four
arithmetic operations: addition, subtraction,
multiplication, and division; and four data
conversion operations: fixed to floating-
point, [loating-point to fixed, decimal to
binary, and binary to decimal. All opera-
tions arc performed by calling an appro-
priate subroutine, where the name of each
subroutine is identified as an EXTRN. The
I'loating Point Package, therefore, can be
linked to an assembly language program by
using the General Loader.

The basic approach to the use of this pack-
age is to load the operands of interest into
specific general registers, and to call the
appropriate subroutine. On exit from the
subroutine, the result is left in specified
general registers; other general registers
‘are restored to their original value.

The GE-PAC 30 format for single-pre-
cision, floating-point data represents
numbers in the range from 5.4 X 10-79
to 7.2 X 1079, with six digits of pre-
cision,

For systems without the high-speed option,
the Floating Point Package can be used by
emploving software multiply/divide subrou-
tincs which are linked to the illegal instruc-
tion trap in the machine.

2. DATA FORMAT

A floating-point number consists of a signed
exponent and a signed fraction. The quantity
expressed by this number is the product of
the fraction and the number 16 raised to the
power of the exponent. The exponent is ex-
pressed in excess 64 hinary notation: the
fraction is expressed as a hexadecimal num-
ber having a radix point to the left of the high
order digit.

Each floating point value requires two half-
words. The floating point format is:

01 78 15

X A
B
wherc S = sign of the fraction
X = exponent, in excess 64 code
AB = fraction

Sign and magnitude representation is used,
in which the sign bit S is zero for positive
values, and one for negative values. The
fraction AB contains six hexadecimal digits
as shown below.

(O 78 15

X F) F2

F3 Fa Fs Fe

The value of a floating point fraction can be
expressed as:

- -2 -3, o .16-6
Fpe16714F, - 16724F 5= 1674+ o o« +F g 16



Sample values are shown in Table 1.

TABLE 1. SAMPLE
FLOATING-POINT VALUES

Data in Hexadecimal] Value

4110 1.0
0000

C110 -1.0
0000 »

4198 9.5
0000

C080 - .5
0000

0000 0
0000

FFFF -(1-167%) . 1663

FFFF

8010 -16-65
0000

4019 .1 + 1676
999A

A normalized floating-point number has a
non-zero, high-order hexadecimal fraction
digit (I*}). If one or more high-order frac-
tion digits (11 Fy--+) are zero, the number
is said to be unnormalized. The range of
the magnitude (M) of a normalized floating-
point number is:
16760 < M <

1 - 1676 . 1663

or approximately
5.4 + 10079 < M < 7.2 ¢ 1075

The floating-point value in which all data
bits are zero is called true zero. A true
zero may arise as the result of an arithme-
tic operation due to exponent underflow, or
when a result fraction is zero due to loss of

significance. In general, zcro valucs partici-

pate as normal numbers in all arithmetic
operations. If the resultant exponent of an
addition, subtraction, multiplication, or
division overflows, all hits of the exponent
and fraction are sct, and the correct sign is
generated.

3. ARITHMETIC ROUTINES

The subroutine names for arithmetic opera-
tions are:

FADD addition
FSUB subtraction
FMUL multiplication
FDIV division

Each of these subroutines expects two oper-
ands, A and B, and generates the result

B = Aop B, whereop = +, -, *, or /
depending on which subroutine was used.
Prior to calling the subroutine, the A oper-
and should be placed in Registers 6 and 7,
and the B operand should bhe placed in Regis-
ters 8 and 9. The subroutine, when called,
computes A op B, and leaves the result in
place of the B value in Registers 8 and 9.
All other registers, including the A value in
Registers 6 and 7, are unchanged. The
condition code may be changed, however,

although the flags are not set in any meaning-

ful way.

The subroutine for the arithmetic operations
expect normalized operands, and generate
normalized results. If the data is not nor-
malized prior to calling the subroutine, the
result may be incorrect.

/1



The arithmetic subroutines will gencrate
true zero on exponent underflow and the
maximum value on exponent overflow.  No
[Mags are set to indieate that overflow or
underflow occurred. There are no error
returns associated with arithmetic subrou-
tines.

The calling sequence for each subroutine fol-

lows. The EXTRN declarations should appear

once at the beginning of the program.

EXTRN FADD
r PUT A VALUE IN REGISTERS 6, 7
: PUT B VALUE IN REGISTERS 8, 9

BAT. 15, FADD Be— A+B

RESULT LEFT IN REGISTERS 8, 9
¥ ALL OTHER REGISTERS UNCHANGED

EXTRN FSuUB

PUT A VALUE IN REGISTERS 6, 7
PUT B VALUE IN REGISTERS 8, 9

% ¥ % ¥

BAL 15, FSUB Be A-B

RESULT LEFT IN REGISTERS &, 9
ALL OTHER REGISTERS UNCHANGED

* X ¥ X x

EXTRN FMUL

PUT A VALUE IN REGISTERS 6, 7
PUT B VALUE IN REGISTERS 8, 9

*¥ ¥ X X

BAL 15, FMUL B e A*D

RESULT LEFT IN REGISTERS 8, 9
ALL OTHER REGISTERS UNCHANGED

* %

EXTRN DIV
* PUT A VALUE IN REGISTERS 6, 7
* PUT I VALUE IN REGISTERS &, 9

BAL 15, FDIV B+ A/B

RESULT LEFT IN REGISTERS 8, 9
ALL OTHER REGISTERS UNCHANGED

* ¥ X ¥ ¥

The execution times for these routines are
as follows.

Subroutine 30-01 30-02
FADD 4.4 msec .55 msec
FSUB 4.4 .55
FMUL 4.9 . 65
FDIV 7.0 .95

The exceution times for FADD and FSUB

arec average figures, since these times de-
pend significantly on the amount of pre-
equalization and post-normalization involved.
The times for FMUL and FDIV are quite
constant since these operations depend very
little on the data involved.

4. CONVERSION ROUTINES

The subroutinc names for the conversion
operations arec:

FFIX floating-point to [ixcd-
point

FILOAT fixed-point to floating-
point

FDBCNV floating dccimal to
binary

FBDCNV floating binary to dec-
imal



The [FIX routine converts the floating-point
value (B) in Registers 8, 9 to a fixed-point
16 bit integer in two's complement notation.
The fixed-point result is left in Register-8.
A floating-point form of the integer value is
returned in Register 12, 13. An error re-
turn is made if the fixed-point integer will
not fit in 16 bits.

The FILOAT routine converts a fixed-point,
two's complement integer in Register 8 to a
floating-point quantity. The floating-point
result is left in Registers 8, 9.

The FDBCNV routine converts a string of
ASCII characters which define a decimal
number to the corresponding floating-point
value. T'he decimal number is located by
loading Register 11 with a pointer to the
first ¢charvacter in the ASCII string. The
characters can be represented in either. 7-
bil or 8-bit ASCII code. The floating-point
result is feft in Registers 8, 9.

The format of the decimal numbers is that
of the "E'" format as used in FORTRAN,
The decimal format consists of the following.

1. An optional leading plus or minus
sign

2. Up to six digits that may include a
decimal point

3. An optional E character followed
by an optional plus or minus sign
and one or two decimal digits, de-
noting a power of ten.

The decimal number is terminated by any
of the following:

[. Any character not a digit, decimal
point, E, plus sign, or minus sign.
The second letter E encountered.
Any plus sign or minus sign that

is not cither first, or immediately
following the first E character.

e .
[ N

Examples of numbers in decimal [ormat are:

=27
3.426

. 00097
45.
-36.2E-3
+. 07TE27
1.5E+6

If more than six digits are specified, the
proper order of magnitude will result, but
only six digits of precision are maintained.
An error return is provided with the deci-
mal to floating conversion. The error exit
is taken when any of the following occur:

1. Multiple decimal points occur
before the number is terminated,
or an E is encountered.

o

Any decimal point occurs after
an F is encountered, but hefore
the number is terminated.

3. The specified power of ten is not
in the range -29 to +99.

When an error return is taken, the pointer
in Register 11 indicates the character which
caused the error. On a normal return, the
pointer indicates the character which termi-
nates the number.

The FBDCNV routine converts a floating-
point value in Registers 8, 9 to the corres-
ponding decimal number as an ASCII
character string. The destination for the
ASCII characters is indicated by Register 11,
which contains a pointer to the first charac-
ter position in memory. The subroutine
generates ‘7-bit ASCII characters in which
the most significant bit is zero.

The format of the decimal number is similar
to the "E'" format as used in FORTRAN. The
number of characters generated varies from
1 to 12, The shortest number is a simple
integer, like 3, and the longest number is

.



of the form -.123456E-12. The rules for
generating the decimal number are as

follows:

1.

[9V]

A minus sign is generated for a
negative number, no sign for a
positive number.

If the number is in the range .1
to 106, the number is represen-
ted without an E. Six or fewer
digits are generated, with the
decimal point between the appro-
priate digits. Trailing zeros and
decimal point are suppressed.

For numbers outside the range
.1t0 106, an E is used. The
number is expressed in the range
.1 to 1 with a multiplying power
of ten. In this case, trailing
zeros are also suppressed.

Some examples are:

15
-27.32
219000

. 123037
-406. 56

. 127E-21

. 231427E17
0

There is no error return from the ¥F BDCNV
routine. On return from the subroutine,
Register 11 points to the character position
immediately following the last character
generated. Registers 8, 9 arc not preserved.

The calling sequences for each subroutine
are as follows. The EXTRN declarations
should appear once at the beginning of the
program.

EXTRN FFIX

PUT FLOATING VALUE B IN REGISTER 8, 9

BAL 15, FFIX
B ERROR
B OK

R I R

EXTRN FFLOAT

FIX B
ERROR RETURN
NORMAL RETURN

2'S COMPLEMENT, FIXED-POINT INTEGER LEFT IN REGISTER 8
FLOATING-POINT INTEGER LEFT IN REGISTERS 12, 13
ALL OTHER REGISTERS UNCHANGED

*  PUT 2'S COMPLEMENT, FIXED-POINT INTEGER IN REGISTER 8

BAL 15, FFLOAT

NO ERROR RETURN

¥R K X X ¥

FLOAT B

FLOATING-POINT RESULT LEFT IN REGISTERS 8, 9
ALL OTHER REGISTERS UNCHANGED



EXTRN FDBCNV

* PUT POINTER TO ASCII CHAR STRING IN REGISTER 11
*

BAL 15, FDBCNV

B ERROR
B OK

¥ ¥ X x X

X

EXTRN FBDCNV

o S . S

BAL 15, FBDCNV

NO ERROR RETURN

* Ok X X K X *

DECIMAL TO FLOATING
ERROR RETURN
NORMAL RETURN

FLOATING-POINT RESULT LEFT IN REGISTERS 8, 9
REGISTER 11 POINTS TO TERMINATING CHARACTER
ALL OTHER REGISTERS UNCHANGED

PUT POINTER TO CHAR BUFFER IN REGISTER 11
ALLOW SPACE FOR 12 ASCII CHARACTERS
PUT FLOATING VALUE IN REGISTER 8, 9

FLOATING TO DECIMAL

REGISTER 11 POINTS TO LAST GENERATED CHAR +1
REGISTERS 8, 9 DESTROYED
ALL OTHER REGISTERS UNCHANGED

The execution times for the routines are:

30-01 30-02 _

Subroutine

FIIX 3.6 msec
FFLOAT 3.5 msec
FFDBCNV  20-100-500 msec
FBDCNV  20-100-500 msec

.45 msec
.44 msec
2.5-12, -62.msec
2.5-12.-62. msec

The excecution times for FDBCNV and FBDCNV
are minimum - average - maximum figures.
The variation depends on the number of digits
involved, and the magnitude of the floating-point
cxponent.

6

5. OPERATION

The Floating Point Package, 07-020, is pro-
vided as a relocatable tape with part number
07-020M08. This tape includes the names
FADD, FSUB, FMUL, FDIV, FFIX, FFLOAT
FDBCNYV, and FBDCNV, which are declared
as ENTRY points. This tape therefore, must
be loaded with the General Loader, 06-025M1(
This tape is self-contained, and requires no
additional routines or tapes.

The Floating Point Package requires 6B0 /
16 ¢
or 1712; bytes of core memory.



TABLE OF CONTENTS

GE-PAC MODEL 30-1 TEST PROGRAM DESCRIPTION
AND OPERATING INSTRUCTIONS

1. INTRODUCTION

2. OPERATING INSTRUCTIONS

3. DESCRIPTION OF TESTS

APPENDIX 1 LISTING
OPT PASS2, PRINT, PUNCH, STOP

GE-PAC 30-2 TEST PROGRAM DESCRIPTION AND
OPERATING INSTRUCTIONS

1. INTRODUCTION
2. OPERATING INSTRUCTIONS

3. DESCRIPTION OF TESTS

APPENDIX 1 LISTING
OPT PASS2, PRINT, PUNCH, STOP

FLOATING-POINT TEST PROGRAM OPERATION
MANUAL

1. INTRODUCTION
2. OPERATING INSTRUCTIONS
3. SECTION AND TEST DESCRIPTIONS

APPENDIX 1 FLOATING-POINT TEST PROGRAM

MEMORY TEST PROGRAM OPERATION MANUAL
1. INTRODUCTION
2. OPERATION
3. PROGRAM DESCRIPTION
4, TEST DESCRIPTIONS

APPENDIX 1
50 LOADER FOR LOADING MEMORY TEST

OPERATING INSTRUCTIONS FOR THE ASR 33 AND
ASR 35

FUNCTION

. PROGRAM TAPE

LOADING TEST TAPE

TEST PROGRAM DESCRIPTION
OPERATOR INSTRUCTIONS

N N

MARK III MEMORY TEST PROGRAM OPERATION
MANUAL

1. INTRODUCTION

2 PROGRAM TAPES

3. OPERATION

4, INDICATIONS

5., CONTINUOUS RUNNING FEAT URE

APPENDIX 1
50 LOADER FOR LOADING MEMORY TEST

APPENDIX 2
STANDARD MARK III MEMORY TEST LISTING
OPT PASS2, PRINT, PUNCH STOP

APPENDIX 3
AUTO LOAD MARK III MEMORY TEST LISTING
OPT PASS2, PRINT. PUNCH, STOP

GE-PAC 30 OPERATING INSTRUCTIONS FOR THE
TELETYPEWRITER /TERMINET TEST PROGRAMS

1. DESCRIPTION
2, LOADING INFORMATION
3. OPERATING INSTRUCTIONS

APPENDIX 1

OPT PASS2, PRINT, PUNCH, STOP ASR TELE-
TYPEWRITER TEST PROGRAM

OPERATING INSTRUCTIONS FOR THE HIGH SPEED
PAPER TAPE READER TEST PROGRAM

1. FUNCTION

2. TAPE FORMAT

3. LOADING PROCEDURE
4, PROGRAM DESCRIPTION

APPENDIX 1
OPT PASS2, PRINT, PUNCH

HIGH SPEED PAPER TAPE PUNCH TEST PROGRAM
1. PURPOSE
2. TAPE FORMAT
3. LOADING PROCEDURE



4, PROGRAM OPERATION

APPENDIX 1
PROGRAM LISTING

CARD READER TEST
1. INTRODUCTION
2. TAPE FORMAT
3. LOADING PROCEDURE

ii

SWITCH OPTIONS

.  SWITCH PRIORITY

ERROR MESSAGES AND THEIR MEANINGS
ERROR COUNTS

USER NOTE

TEST DECK

© ®© 3 O O b

APPENDIX 1
CARD READER TEST PROGRAM LISTING



GE-PAC MODEL 30-1
TEST PROGRAM DESCRIPTION AND OPERATING INSTRUCTIONS

1. INTRODUCTION

The function of the 30-01 Test Program is
to determine whether the Processor is capa-
ble of executing all instructions properly.
Each instruction is exercised and the result
is compared to an expected result.

If no failures are detected, the program
prints out ''GE-PAC MODEL 30-11S A OK"
at the conclusion of the tests and halts. De-

press EXECUTE to begin the test again, start-

ing at location X'80'. If a failure is encoun-
tered, the testing is halted and an attempt is
made to print out 'FAILURE" and the hexa-
decimal number of the test that failed.

The program is divided into twenty sections.
Each section is designated by a hexadecimal
number from zero to fourteen. Each sec-

tion tests all formats within a given instruc-
tion type. For example, in the test of the

OR instruction, both the RR and RX formats
are tested. ‘

When a failure occurs, the Processor is
placed in the Wait state. Standard mainten-
ance procedures can be used to isolate and
remedy the source of the failure.

Notethat the starting location of the test is
X'80'. If it is desired, the test will per-
form a continuous loop if it is started at
location X'80', but the I/O instructions will
not be tested if started at this location.

TABLE 1. LOADER PROGRAM

Liocation Numbers to Insert Program
9959 cs82¢ g8y LHI 2, X'8¢ START
gg54 Cc83¢ g9l LHI 3,1 INCRE
#g58 c84y geF7 LHI 4, X'6FT' END
agsCc D3Ag g8 LB 19, BINDV DEVNUM
goeg DEA( g979 ocC 1¢, BINDV+l COMD
#4964 9DAE SSR 10, 14 STATUS
gp66 J8EE LHR 14, 14
9068 4239 0964 . BTC 3,X'64' TEST
ggec DBA2 pagg RD 19, 9 (2)
9979 ' ci2¢ po64 BXLE 2, X'64'
Ao 4300 ppep B X'8g
gae #294 (TTY) BINDV DC X'0298' TTY
gge 9399 (HSPTR) DC X'¢g399' HSPTR




A listing of the 30-01 Test Program is
provided later in this publication.

OPERATING INSTRUCTIONS

Manually insert the loader pro-
gram listed on Table 1 beginning
at location X'50'.

Verify that the program was cor-
rectly inserted by examining each
core location that was written.

On the Teletypewriter, place the
LINE-OFF-LOCAL rotary switch
in the LINE position. On the Model
ASR 35, place the MODE selector
in the KT position.

Place the Test Program paper
tape in the reader, being careful
to place the first character over
the sensing fingers.

If the High Speed Paper Tape Read-
er (X'399') is used. remember that
the first character must be placed
over the photo diodes, also.

Initialize and Address the Pro-
cessor to location X'50', the first
address of the loader program.

Start the 30-01 Processor run-
ning by selecting the RUN mode
and pushing the EXECUTE button.
Then operate the START-STOP-
FREE switch to start the paper
tape advancing through the reader.

After the last character has been
loaded, the program is executed.

9. If the Processor is functioning
correctly, the program will print
out 'GE-PAC MODEL 30-11IS A
OK'". If the Processor is equipped
with multiply and divide, either the
OK printout or the W, R, U print-
out occurs about 30 seconds from
the time the program is executed.
If the High Speed Arithmetic Option
is not installed, the printout should
occur almost immediately after the
program is executed.

10, If the Processor is not functioning
the program will attempt to print
out "FAILURE" and the hexadeci-
mal number of the failing test.

3. DESCRIPTION OF TESTS

3.1 Condition Code Bit Test
Section 0

The three forms of the LH instruction (LH,
LHI and LHR) are executed to test setting
and resetting condition code bits G and L.
The Branch instructions verify the correct
setting of the condit ion code bits. The test
section number is placed into a memory lo-
cation referred to as FAILNU. It is the con-
tents of this location that is printed if a
machine instruction fails.

3.2 Add Instruction Test
Section 1

Each of the five add instructions (AH, AHR,
AHI, ACHR, and ACH) are exercised by this
section. After each add instruction is exe-
cuted, the condition code bits are tested
using branch instructions. Add operations
that generate overflow and carry are in-
cluded. A final test involves an add with
carry instruction using two registers. The
condition code bits are set to reflect the
number contained in both registers.



3.3 Subtract Instruction Test
Section 2

Each of the five subtraction instructions
(SHR, SH, SHI, SCHR, and SCH) is exer-
cised by this section. After each subtract
instruction is executed, the condition code
bits are tested using Branch instructions.
A final test involves a subtract with carry
instruction using two registers. The con-
dition code bits are set to reflect the num-
ber contained in both registers.

3.4 Exclusive OR Instruction
Section 3

This section tests the operation of the
three forms of the Exclusive OR Instruction
(XH, XHR, and XHI). Each of the three
forms of Exclusive OR Instruction is tested
employing various constants. After each
execution, the condition code bits reflect
the result of the operation. The Branch
instructions verify the setting of the con-
dition code bits.

3.5 Logical AND Instruction Test
Section 4

This section tests the operation of the three
forms of the Logical AND Instruction (NH,
NHR, and NHI). Each of the three forms of
Logical AND Instruction is tested employing
various constants. After each execution,
the condition code bits reflect the result of
the operation. The Branch instructions
verify the setting of the condition code bits.

3.6 Logical OR Instruction Test
Section 5

This section tests the operation of the three
forms of the Logical OR Instruction (OR,
OHR, and OHI). Each of the three forms

of Logical OR Instructions is tested employ-
ing various constants. After each execution,
the condition code bits reflect the result of
the operations. The Branch instructions
verify the setting of the condition code bits.

3.7 Branch Instruction Test
Scction 6

This section tests the Branch instruction's
ability to act as an unconditional Branch
(BR) and to serve as a Non-Operation
(NOPR) Instruction. A failure in the mach-
ine's interpretation of the unconditional
Branch instruction leads to the error rou-
tine for all other test sections. The error
subroutine prints out the message " FAILURE"
and the section number of the test that fails.
It then enters the Wait state.

3.8 Branch Instruction Test
Section 7

This section test the RR format of the
Branch instruction's ability to act as an
unconditional Branch. ‘A failure in the
machine's interpretation of the Branch
instructions results in branching to the
error subroutine.

3.9 Comparce lLogical Instruction Test
Section 8

This section tests the operation of the three
forms of the Logical Compare instruction
(CHL, CLRH, and CLHI). Each of the Com-
pare instructions uses an address in the test
program to compare against. The results
of the comparisons are reflected in the set-
ting of the condition code bits which the
Branch instructions test.

3.10 Store Byte Instruction Test
Section 9

Both forms of the Store Byte instruction
(STBR and STB) are tested. The destina-
tion location or registers as specified in
the Store Byte instruction are tested to

" insure that after the execution of this in-

struction, bits 8-15 are unchanged. This
section also checks that this instruction's
execution did not affect the setting of the
condition code bits.



3.11 Shift Instruction Test
Section 10

The four shift instructions: Shift Left and
Right Arithmetic, and Shift Left and Right
Logical, are examined. The propagation
of ones to the right using the Arithmetic
Shift, the shift into the carry bit from eith-
er end of a register, and a shift of 16 are
checked. The condition code bits are tested
after each shift operation using Branch
instructions.

3.12 Load Byte Memory Instruction
Test - Section 11

In this section, the RX form of the Load
Byte (LB) instruction is tested. The instruc-
tion's action of zeroing bits 0 through 7 in
the Destination register as specified by the

instruction, is verified. In addition, the in-

struction's action of not affecting the condi-
tion code bits is also checked.

3.13 Load Byte Register Instruction
Test - Section 12

In this section, the RR form of the Load
Byte (LBR) instruction is tested. The test
operates in a similar manner to that de-
scribed above for the RX form of the Load
Byte instruction.

3.14 Load Program Status Word
Instruction - Section 13

The specialized action of the Load Program
Status Word (LPSW) instruction is tested by
this section, If the Processor fails to exe-
cute this instruction porperly, a transfer to
the error subroutine is executed.

3.15 Branch and Link Instruction Test
Section 14

Both forms of the Branch and Link instruc-
tion (BAL and BALR) are tested. The
loading of the designated link register with

the correct link address is verified. In ad-

dition, the Processor's ability to branch to
the specified location is also checked.

3. 16 Branch on Index High, Low, or
Equal Instruction Test -
Section 15

The two Branch on Index Instructions,
Branch on Index High (BXH) and Branch
Low or Equal (BXLE) are tested. The
three required registers are set to a value
and the BXH and BXLE instructions execu-
ted. An improper execution of the BXH
and BXLE leads to the error subroutine.

3.17 Index Instruction Test
Section 16

A Load instruction, indexed, is used to test
indexing. The contents of the indexed value
is then compared to a known value to verify
that the indexing operation was properly
completed.

3.18 Illegal Instruction Test
Section 17

In this test, an illegal instruction is execu-
ted. The Illegal Instruction New PSW is set
to an address in this test section. After the
illegal instruction is executed, the address
in the Old Illegal Instruction PSW is tested
to check if it contains the address of the
illegal instruction.

3.19 Multiply and Divide Instruction
Test - Section 18

As some 30-01's are not equipped with
the High Speed Option (Multiply, Divide,
Read Block or Write Block), the Illegal
Instruction Interrupt New PSW is first set
to test program address "TWENTY!1".
When a Multiply instruction is attempted,
program control will branch to location
"TWENTY1", thus by-passing all of Section
18 and 19.



The multiply and divide test consists of a
loop in which that same numbers are multi-
plied together (squared). The product is
then divided into the multiplier. The result
of the division yields the original number.

All integers from 1 to 65, 534, progressing
one unit at a time, are multiplied and divided.

The second part tests the signs obtained
from the multiplication and division of all
the possible combinations of signed operands.

The third part tests the Divide Fault Inter-
rupt. Two numbers are selected such that
the answer of the division cannot be ex-
pressed in a 16 bit register. A verification
is provided to check that both the Divide Fault
Interrupt occurs and that the divisor remains
unchanged. ’

3.20 Read Block/Write Block Instruc-
tion Test - Section 19

The Write Block instruction will cause a
message type out on the teleprinter which

says "DEPRESS KEYS W, R, U". The Read
Block instruction accepts these inputs (W,
R, U) and then compares the data output to
the user input. If the user does not input
correctly (W comma R comma U), the
30-01 test program will respond with

the error message. It is important that
five (5) characters be input or the Proces-
sor will hang in a Read Block loop.

3.21 Input/Output Instructions,
Acknowledge Interrupt, and
Test for False Sync Test -
Section 20

Part one (1) of this test follows the same
procedure as described in Section 19.

Part two (2) tests the Acknowledge Interrupt
instruction without an interrupt pending.
When this happens, Rl should contain zeros
and R2 or A+(X2) should contain a four
(0004) which is the False Sync bit.






pp8p

pp8p
p084
P88
gp8c

4@9g
pasz

9096
pPIA

PPOE
PPA2
@PA6
@OAA
@@AE
@oBR2
(oB6
GOBA
(3BE
gac2
paca
Pgce
GOCA
gocc
PACE

ppDp
. opD2

4300
pR8C
4200
g00p
4300
@PA2
DEAQ
g6B4
9DAE
4280
IED)
DAAD

p68C

C82p
FFFF

4300

PA6
Chos

P00
4020
@6FA
C800
@18C
4000
0936
c820

0000

4929
0034
4020
g6F8
4830
06A6
9319
P2EQ
c81¢
gga1
@320
p2Dp
#9833
p31p
P2ED

APPENDIX 1 LISTING
OPT PASS2,PRINT ,PUNCH,STOP

06-PP5RP2 GE-PAC 30-01 TEST PROGRAM

* ¥ % X

ORG  X'8p' BEGIN EXECUTION AT LOC 8¢

* ¥

WITH A LITTLE LUCK THE POINTER WILL SET TO ZERO
*

*0 0 O @ @ CONDITION CODE BIT TEST

* , »

*

B ROUND ENTER HERE FOR EXECUTING
NOP P RB & WR INSTRUCTIONS
B SKIPEN ENTER HERE FOR LOOPING
ROUND 0C  RIP,WDATA THIS SUBROUTINE IS
RND SSR  R1P,R14 USED TO ISSUE A XOFF
BTC  8,RND CHARACTER TO STOP TAPE REA
WD R1P,XOFF |
ZERO LHI  R2,X'FFFF'
B ZEROA
SKIPEN  LHI  R2,0
ZEROA STH  R2,SKIPTS
LHI  RO,ERRORA
STH RO,X'36" STORE ERROR ADDR IN ILLPSW
LHI  R2,P CLEAR FAIL REGISTER PIR
STH R2,X'34'
STH  R2,FAILNU STORE FAIL TEST NUMBER
LH  R3,FOXES “LOADS 'FFFF' INTO R3
BFCR 1,ERROR TEST COND. CODE L=1
BTCR X'E',ERROR TEST COND.CODE C, V, G=p
LHI  R1,X'1 PLACE 1 IN Rl
BFCR 2,ERROR TEST COND. CODE G=1
BTCR X'D', ERROR TEST COND. CODE C,V,L=p
LHR  R3,R3 USED TO SET COND. CODE
BFCR 1,ERROR TEST COND. CODE L=1
BTCR X'E',ERROR

TEST COND. CODE C,V,G=0

Al-



poD4
poD8

PODA
panc

POED
POE2
PPE4

PPES
POEA
PPEC

g
PPF2
poF4

POF6
poF8
PPFA

PPFE
p1op
p1p2
p1p4

| p1p6
p1p8

p1pc

p11p
p112
p114
p116
p118

Al-2

C830
P00
P2Fp

PA21
4020
P6F8
p2Dp
P32
CA1p
7FFF

p350
P2AD
4A19
P6A4

P3CP
p23p
PE11

p320
p20p
4E3P
P6A8

p32p
p2Dp
p833
p2rp

pA21

4929
P6F8
CB3p
popl
P390
p26p
PB33
p2rp
4B3p
P6A6

* % ¥ % F F ¥

LHI
BTCH

1111

* % ¥ % % % F

ONE AHR
STH

BTCR
BFCR
AHI

BFCR
BTCR
AH

BFCR
BTCR
ACHR

BFCR
BTCR
ACH.

BFCR

BTCR

LHR
“BTCR

2 2 2 2

TWO AHR
STH

SHI

BFCR
BTCR
SHR
BTCR
SH

R3,0
X'F' ,ERROR

ERROR POINTER NOW SET TO 1

USED TO SET COND. CODE
TEST COND. CODE C.V.G,L=0

1 ADD INSTRUCTION TEST

R2,R1 SETS ERROR POINTER TO 1

R2,FAILNU STORE FAIL TEST NUMBER

X'D' ,ERROR TEST COND. CODE G=1

2,ERROR TEST COND. CODE C,V,L=§

R1,X'7FFF' CHANGES R1FROM '7FFF' TO
1] 8Q¢ﬂ 1

5,ERROR TEST COND CODE L,V=1

X'A' ,ERROR TEST COND CODE C,G=0

R1,EIGTH CHANGE R1 FROM '8p@p' TO
'"P0pP' WITH CARRY

X'C' ,ERROR TEST COND CODE V,C=1

3,ERROR TEST COND CODE L, G=0

R1,R1 CHANGE R1 FROM 'pppp' TO
'poptt

2,ERROR TEST COND CODE G=1

X'D' ,ERROR TEST COND CODE C,V,L=0

R3,NADA TESTS COND CODE REFLECTS
ANSWER OF R3 AND R1

2,ERROR TEST COND CODE G=1

X'D',ERROR TEST COND CODE C,V,L=0

R3,R3 TESTS R3 REMAINED ZERO

X'F' ,ERROR TEST COND CODE C,V,G,L=0

ERROR POINTER NOW SET TO 2

2 SUBTRACTION INSTRUCTION TEST

R2,R1
R2,FAILNU

R3,1

9,ERROR
6,ERROR
R3,R3
X'F',ERROR
R3,FOXES

SETS ERROR POINTER TO 2
STORE FAIL TEST NUMBER

 CHANGES R3 TO 'FFFF'

TEST COND CODE L,C=1
TEST COND CODE V,C=0
CHANGES R3 TO @

TEST COND CODE C,V,G,L=0
CHANGES R3 TO 1



p11C
O11E
@120
9122
p124
0126

d12A
612C

012E
0130

#132
p134

p138

p13C
P13E
p140
9142
P144

p148

H14A

014C
f150

0154
0156

p15A
p15C
P15E
0160

0164

P3AP
0250
@F33
0390
260
4F 30
B6Ad
208
6320

0833
6230

PA21
4029
P6F8
C730

FFFF -

#3190
@2ED
#733
p2Fp
473p
P6A2
9320

BA21
4020
06F8
C430
A5AS
02FpD
€730
FFFF
0433
0319
D2ED
4430
D6A8
p2FpD

* % X % *

*

*

THREE

* % % % F X *

-
o
.=
=

BFCR
BTCR

SCHR
BFCR
BTCR
SCH

BTCR
BFCR

LHR
BTCR

3 3 3 3 3

AHR
STH

XHI

BFCR
BTCR
XHR
BTCR
XH

BFCR

4 4 4 4

AHR
STH

NHI

BTCR
XHI

NHR
BFCR
BTCR
NH

BTCR

X'A',ERROR
5,ERROR
R3,R3
9,ERROR
6,ERROR
R3,ALMFX

X'D',ERROR
2,ERROR

R3,R3

3,ERROR

ERROR POINTER NOW SET TO 3

TEST COND CODEC,G=1
TEST COND CODE V,L=0

CHANGES R3 TO'FFFF'
TEST COND CODE C,L=1
TEST COND CODE V,G=0
CHANGES R3 TO ZERO

TEST COND CODE C,V,L=0
TEST COND CODE G REFLECT
SUBTRACT WITH CARRY

R3 REMAINS ZERO

TEST COND CODE G,L=§

EXCLUSIVE OR INSTRUCTION

R2,R1
R2,FAILNU

R3,X' FFFF'

1,ERROR
X'E',ERROR
R3,R3
X'F',ERROR
R3,ALT

2,ERROR

ERROR POINTER NOW SET TO 4

SETS ERROR POINTER TO 3
STORE FAIL TEST NUMBER

CHANGES R3 to 'FFFF'

TEST COND CODE L=1

TEST COND CODE C,V.G=p
CHANGES R3 TO ZERO

TEST COND CODE C,V,G,L=0
CHANGES R3 TO 'BAS5A'

TEST COND CODE G=1

LOGICAL AND INSTRUCTION TEST

R2,R1
R2,FAILNU

R3,X"'A5A5"

X'F' ,ERROR
R3,X' FFFF

R3,R3
1,ERROR
X'E',ERROR
P3,NADA

X'F',ERROR

SETS ERROR POINTER TO FOUR
STORE FAIL TEST NUMBER

CHANGES R3 TO ZERO

TEST COND CODE C,V,G,L=p
CHANGES R3 TO 'FFFF'

R3 REMAINS WITH 'FFFF'
TEST COND CODE L=1
TEST COND CODE C,V,G=p
CHANGES R3 TO ZERO

TEST COND CODE C,V,G,L=p

Al



P166
P168

p16C
P16E
p17p
p174
p176
P178
p17C

P17~
p18p

p182
0184

0188

p18C
£190
p194
198

P19C
p1Ap
P1A4

P1A8
P1AA

P1AE
p1B2

Al-4

PA21
4020
P6F8
p633
@92F0
€630
A5A5
p319
p2EP
4630
P6A2
p31p
PA31
p279

pA21
4020
P6F8

4300
P23A

4p10
p71C
4p3p
P71E
4p4g
p72p
4050

p722
4999
P724
4pAD
@726
4DFD
p728
PB55
C83p
pop4
4849
P6F8
CC43

* ERROR POINTER NOW SET TO 5

* 5

FIVE

% % %k % % % ¥ ¥ F

IX

ERRORA

CONVRT

5 5 5

AHR
STH

OHR
BTCR
OHI

BFCR
BTCR
OH

BFCR
AHR
BTCR

6 6 6 6

AHR
STH

BFC

STH
STH
STH
STH

STH
STH
STH

SHR .

LHI
LH
SRHL

LOGICAL OR INSTRUCTION TEST

R2,R1
R2,FAILNU

R3,R3
X'F',ERROR
R3,X'A5A5'

1,ERROR
X'E' ,ERROR
R3,ALT

1,ERROR
R3,R1
X'7' ,ERROR

ERROR POINTER NOW SET TO 6

SETS ERROR POINTER TO 5
STORE FAIL TEST NUMBER

R3 REMAINS ZERO
TEST COND CODE C,V,G,L=0
CHANGES R3'TO 'A5A5'

TEST COND CODE L=1
TEST COND CODE C,V,G=p
CHANGES R3 TO 'FFFF"

TEST COND CODE L=1
CHANGES R3 TO ZERO
TEST COND CODE V,G,L=0

BRANCH INSTRUCTION TEST

R2,R1
R2,FAILNU .

?,AROUND

R1,SAVE
P3,SAVE+2
R4, SAVE+4
RS ,SAVE+6

R9,SAVE+8
R10,SAVE+10
R15,SAVE+12

R5,R5
R3,4

R4,FAILNU
R4,0(3)

LET US SEE IF THE BRANGH INSTRUCTIONS HAVE BEEN WORKING

SETS ERROR POINTER TO 6
STORE FAIL TEST NUMBER

TEST OF UNCONDITIONAL
BRANCH INSTRUCTION



p1B6
P1BA
P1BE
picz
p1ce
@1CA
P1CE
-P1D2
p1D6
@1DA
P1DE
P1E2
P1E6

P1EA
p1EC

p1Fp

p1F4
p1F6

P1FA
P1FE
p2p2
P206
P2pA
P2pE
p212
p216
P21A
p21E

P00
C44p
PPPF
C549
POOA
4280
p1C6
CA4p
P07
CA4p
PR3P
D245
p6C8
CA50
P01
CB3p
poga
4319
P1AE
C8AP
pop2
C810
ppp1
C8FP
P6BE
DEAQ
poB4
9DAE
42FQ
P1E6
DAAF
popp
PAF1
C5FP
P6CA
428p
P1E6

4890

P6FA
433p
D2pE
€899
PPIA

43pp
p212
€890
PPA2
4999
p238
4810
p71cC
4830
P71E
4840

SENS

RETRN3
RETRN4

NHI
CLHI
BL
AHI
AHI
STB
AHI
SHI
BNM
LHI
LHI
LHI
0C

SSR
BTC

WD

AHR
CLHI

BTC
LH
BZ
LHI

LHI
STH
LH
LH
LH

R4,X'F'
R4, X'A!
*+8

R4,7

R4, X'3p"
R4,TESTNU(5)
R5,1

R3,4
CONVRT+4
R19,2
R1,1
R15,MESS
R1@,WDATA

R1Q,R14
X'F',SENS

R1p,@(R15)

R15,R1
R15,MESS1

8,SENS
R9,SKIPTS
RETRN3
R9,ZERO
RETRN4
R9,SKIPEN
R9,ERRWAT+2
R1,SAVE
R3,SAVE+2
R4 ,SAVE+4

LOAD TTY DEVICE NUM

START OF FAILURE MSG
TTY TO WRITE MODE

TEST STATUS BYTE OF TTY
WHEN BUSY IS ZERO

SEND CHARACTER TO TTY

INCREMENT INDEX
TEST SENT LAST CHARACTER

RETURN TO SENSE STATUS
TEST START LOCATION

Al-



¥

p222
p226
p22A

p22E

p232
0236
p23A
023C
023E

p242
0244

0248
024A

@g24cC
@24E

#9252
#9256
#9258
g25A

925E
9260

9262
0264

0268

Al-6

gA21
4920
g6F8
€830
@25A
7303

#4300
C830
0262

g223
9300

UA21
4920
06F8
4530

LH
LH
LH
LH
LPSW
ERRWAT  DC

*

AROUND  BTCR
LHR
BTC

BFCR
BY1 BFC

BFCR
BTCR

-
nN

7 7 7 7

* % % % F X % % ¥ O

SEVEN AHR
STH

LHI

BFCR

BFCR
THERE LHI

BTCR
BFCR

ERROR POINTER
8 8 8 8

* % % ¥ *

EIGHT AHR -
STH

CLH

R5,SAVE+6
R9,SAVE+8
R1Q,SAVE+1Q
R15,SAVE+12
ERRWAT

THIS STOPS PROGRAM

X'8pP@"' ,A(ZERO) SHOULD JAM IF IT DOES NOT

@,ERROR
R3,R2
2,BY1

@,ERROR
X'D', BY2

@,ERROR
X'D',ERROR

MUST HAVE DONE SOMETHING RIGHT
ERROR POINTER NOW SET TO 7
BRANCH INSTRUCTION

R2,R1
R2,FAILNU

R3,THERE
@,R3
@,ERROR
R3,EIGHT

2,R3
¥,ERROR

NOW SET TO 8

STOP

TEST OF A NOP
CHANGES R3 TO 6
TEST COND CODE G=1

THIS BRANCHES TO ERROR
TEST COND CODE C,V,L=0

THIS BRANCHES TO ERROR
TEST COND CODE C,V,L=@

TEST (RR FORM)

SETS ERROR POINTER TO 7

. STORE FAIL TEST NUMBER

LOAD ADDR 'THERE' INTO R3

TESTS UNCONDITIONAL BRANCH
TO THERE

THIS BRANCHES TO ERROR
LOADS ADDR 'EIGHT'INTO

R3
TEST COND CODE G=1
THIS BRANCHES TO ERROR

COMPARE LOGICAL INSTRUCTION TEST

R2,R1
R2 ,FAILNU

R3,THERE+2

SETS ERROR POINTER TO 8
STORE FAIL TEST NUMBER

COMPARES CONTENTS OF R3



026C
p26E

p272
p274

p278
P27A

p27C
P27E

p282

P286
P28A
p28C
P28E
p29p

P294

P298 .

@29A
P29E

P2A2
P2A6
P2A8
P2AC

p2Bg
p2B2

925C

p2rp
€530
0263

p380
c849
p261

p534
p20p

PA21
4020
P6F8
4p4p
P6FC

4830
P6FC
0543

p2Fp
PB33
4p3P
P6FC
4849
P6FC
p2Fp
C83p
5AA5
D230
p6FC

4849

P6FC .

p31p
D249
P6FC

4849
P6FC
P2FpP
D23
P6FD

ERROR
9 9

* % oF F * * %

NINE

BTCR
CLHI

BFCR
LHI

CLHR
BTCR

POINTER
9 9

AHR

STH

STH

LH
CLHR
BTCR
SHR
STH
LH

BTCR
LHI

STB

LH
BFCR
STB
LH

BTCR
STB

X'F',ERROR

R3,EIGHT +1

8,ERROR
R4 ,EIGHT-1

R3,R4
X'D',ERROR

NOW SET TO 9

WITH CONTENTS OF LOC
THERE +2, SHOULD BE EQUAL
TEST COND CODE C,V,G,L=p
COMPARES CONTENTS OF R3

WITH THE VALUE 'EIGHT +1'
R3 SHOULD BE LESS

TEST COND CODE C=1

LOADS THE VALUE 'EIGHT-1'

INTO R4
COMPARES R3 WITH R4
TEST COND CODE C,V,L=p

STORE BYTE INSTRUCTION TEST

“R2,R1
R2,FAILNU.

" R4,TEMP

R3,TEMP
R4,R3
X'F',ERROR
R3,R3
R3,TEMP

R4 ,TEMP

X'F',ERROR
R3,X'5AA5'

R3,TEMP

R4 ,TEMP
1,ERROR
R4, TEMP
R4, TEMP

X'F' ,ERROR
R3,TEMP+1

SETS ERROR POINTER TO 9
STORE FAIL TEST NUMBER

STORE CONTENTS R4 1IN

MEMORY
LOAD SAME LOC INTO R3.

TEST R4 CONTAINS SAME AS
R3

TEST COND CODE C,V,G,L=0
CHANGES R3 TO ZERO
STORES R3 IN MEMORY

LOAD SAME LOC INTO R4

CHANGES R3 TO '5AA5'

STORE BITS @-7 OF R3 INTO

MEMORY
CHANGES R4 TO 'A509'

TEST COND CODE L=1
STORE BITS @-7 OF R4 INTO

MEMORY NOW CONTAINS ZERO
CHANGES R4 TO ZERO

TEST COND CODE C,V,G,L=0
STORE BITS @-7 OF R3

Al1-7



P2B6

P2BA
P2BC
P2BE
p2Cp
p2Cc2
p2ca
p2C6

P2CA

p2CC
P2CE

p2D2
p2D4

@2D8
P2DA
p2DC

P2EP
P2E2
p2E4

P2E8
P2EA
P2EC

p2Fp
P2F2
P2F4

P2F8
P2FA
P2FC

p30p
p3p2
P3pa

308
P3PA

Al1-8

4849
P6FC
p2DP
P32
gB44
9243
p833
p32p
C730
5ApP
pzrp

PA21
4020
P6F8
PA31
CD3p
POPF
p31p
P2EP
CE3p
POPE
p31p
P2ED
CF3p
PPOF
P390
p260
CF3p
popl
p31p
P2ED
CD3p

g po
1p
P2ED
CC3P
PPOF
p32p
p2Dp
CC3p
poo1
p38p
p279

* O F *

* % ¥ * F F *

TEN

LH

BTCR
BFCR
SHR
STBR
LHR
BFCR
XHI

BTCR

AA A A

AHR
STH

AHR
SLHL

BFCR
BTCR
SRHA

BFCR
BTCR
SLHA

BFCR
BTCR
SLHA

BFCR
BTCR
SLHL

BFCR
BTCR
SRHL

BFCR

BTCR -
SRHL.

BFCR
BTCR

R4 ,TEMP

X'D' ,ERROR
2,ERROR

R4 ,R4
R4,R3
R3,R3
2,ERROR
R3,X'5A00"

X'F',ERROR

ERROR POINTER NOW SET TO A

('A5*) INTO BITS 8-15 OF
MEMORY

('A5') INTO BITS 8-15 OF
MEMORY

CHANGES R4 TO 'PPA5'

TEST COND CODE C,V,L=p
TEST COND CODE G=1
CHANGES R4 TO ZERO
CHANGES R4 TO PPA5

USED TO SET COND CODE
TEST COND CODE G=1
CHANGES R3 TO 'pppp'

TEST COND CODE C,V,G,L=0

SHIFT INSTRUCTION TEST

R2,R1
R2,FAILNU

R3,R1
R3,15

1,ERROR
X'E',ERROR
R3,15

1,ERROR
X'E',ERROR
R3,15

9,ERROR
6,ERROR
R3,1

1,ERROR
X'E',ERROR
R3,0

1,ERROR
X'E',ERROR
R3,15

2,ERROR
X'D',ERROR
R3,1

8,ERROR
7 ,ERROR

SETS ERROR POINTER TO 'A'
STORE FAIL TEST NUMBER

CHANGES R3 TO 'ppp1'
CHANGES R3 TO '8ppp'

TEST COND CODE L=1
TEST COND CODE C,V,G=p
CHANGES R3 TO 'FFFF'

TEST COND CODE L=1
TEST COND CODE C,V,G=p
CHANGES R3 TO '8ppp'

TEST COND CODE C,L=1
TEST COND CODE V,G=p
CHANGES R3 TO '8ppp’

TEST COND CODE L=1
TEST COND CODE C,V,G=p
NO CHANGE TO R3 = '8ppp'

TEST COND CODE L=1
TEST COND CODE C,V,G=p
CHANGES R3, TO 'ppp1’

TEST COND CODE G=1
TEST COND CODE C,V,L=p
CHANGES R3 TO 'pppp’

TEST COND CODE C=1
TEST COND CODE V,G,L=p



p3pC
D3PE

p312
314
P316
318

p31C
P31E

p32p

p324
326
p328
P32

P32E
p33p

P332
0334

$338
p33C

P33E
p34p

p344

D348
P34A
- P34C

p35p
p352

@356
P358

PA31
CE3p
pppl
038D
p27p
PE33
CF3p
PPPE
p32p
p2Dp
CD3p

pp

p3gp
p27p
PE33
ccap
pp1p
p32p
p2op

PA21
4920
P6F8
D330
0356
pz2pp
p32p
CD39
ppp8

D33p
$359

D2ED
p31p
C53p

POFF

p2Fp
43pp
Pp35A
FFDP
POFF

* % ¥ F F * ¥

AHR
SRHA

BFCR
BTCR
ACHR
SLHA

BFCR
BTCR
SLHL

BFCR
BTCR
ACHR
SRHL

BFCR
BTCR

ERROR POINTER

B B B B

ELEVEN  AHR

STH
LB
BTCR

BFCR

SLHL

LB

BTCR
BFCR
CLHI

BTCR
B

ONES DC
ONES1 DC

*

* * *

ERROR POINTER NOW SET TO C

R3,R1
R3,1

8,ERROR
7,ERROR
R3,R3
R3,14

2,ERROR
X'D',ERROR
R3,2

8,ERROR
7,ERROR
R3,R3
R3,16

2,ERROR
X'D',ERROR

NOW SET TO B

R2,R1
R2 ,FAILNU

R3,0NES

X'D' ,ERROR
2,ERROR

R3,8

R3,0NES1+1

X'E',ERROR
1,ERROR
R3,X'FF'

X'F"',ERROR
TWELV

X'FFpg’
X' PPFF"

CHANGES R3 TO '@pp1'
CHANGES R3 TO 'Qppp'

TEST COND CODE C=1
TEST COND CODE V,G,L=0
CHANGES Q3 TO '@pp1'
CHANGES R3, TO '4ppp'

TEST COND CODE G=1
TEST COND CODE C,V,L=p
CHANGES R3,TO 'pppp'

TEST COND CODE C=1
TEST COND CODE V,G,L=p
CHANGES R3 TO 'ppp1’
P3 REMAINS 'ppp1’

TEST COND CODE G=1
TEST COND CODE C,V,L=0

LOAD BYTE INSTRUCTION

SETS ERROR POINTER TO 'B'
STORE FAIL TEST NUMBER

CHANGES R3 TO '@@FF'

TEST COND CODE C,V,L=p
TEST COND CODE G=1
CHANGES R3 TO 'FF@Q'

NOTE-THIS CHANGES COND
CODE
CHANGES R3 RO '@@FF'

P-8

TEST COND CODE C,V,C=0
TEST COND CODE L=1

TEST R3 FOR HAVING '@QFF'

TEST COND CODE C,V,G,L=0
GO TO NEXT TEST

USED IN ABOVE TEST
USED IN ABOVE TEST

LB INSTRUCTION ZERO'S BITS

A1-9



P35A
p35C

p360

0364
P366
0368
@36A

p36C
P36E

372
p376
0378

P37A
p37C

p38p

0382
p384

p388
p38C

P38E
P390

P394
p396

Al-10

pA21
4020
P6F8
CD3p
pPP8

9333
p31p
@833

p2Fp.

pA21
4020
P6F8
c2pP
p378
p300

pPOF
p37C
42FP
9382

p300

pA21
4020
P6F8
c83p
p390
P143
p3pp
C54p
P38E

p2rp
4149
p39C

* C C CC

TWELV.  AHR
STH
SLHL

LBR
BFCR
LHR
BICR

ERROR POINTER
D D DD

* ¥ ¥ % %

THIRT AHR
STH

LPSW
BFCR
GO DC

DC
GO1 - BTC

*

BFCR

ERROR POINTER
E E E E

* ok % %k F ¥ ¥ X

FOURT AHR
STH

LHI

BALR
BFCR
BRANCH CLHI

*

BTCR
BAL

LOAD BYTE REG INSTRUCTION TESTS

R2,R1 SETS ERROR POINTER TO 'C'
R2,FAILNU STORE FAIL TEST NUMBER
R3,8 CHANGES R3 TO 'FF@Q'
THIS INSTRUCTION SETS COND
CODE .
R3,R3 CHANGES R3 TO @009
1,ERROR TESTS COND CODE L=1
3,3 - USED TO SET COND CODE
X'"F',ERROR TEST COND CODE C,V,G,L=0

NOW SET TO D
LOAD PSW INSTRUCTION S

R2,R1 SETS ERROR POINTER TO ‘D'

R2,FAILNU STORE FAIL TEST NUMBER

GO PROG SHOULD BRANCH TO GO1

P ,ERROR LAND HERE IF PREVIOUS
INSTRUCTION FALSE

X' 0PQF' USED FOR LPSW INSTRUCTION.

A(GO1) USED FOR LPSW INSTRUCTION

X'F',*+6 UNCONDITION BRANCH TO NEXT
TEST

#,ERROR LAND HERE IF PREVIOUS

INSTRUCTION FAILS

NOW SET TO E

BRANCH AND LINK INSTRUCTION TEST
INSTRUCTION TEST

R2,R1 SET ERROR POINTER TO 'E'
R2,FAILNU STORE FAIL TEST NUMBER
R3,BRANCH LOAD ADDR 'BRANCH'INTO R3
R4,R3 BRANCH TO ADDR IN R3

@ ,ERROR LAND HERE ONLY ON ERROR
R4 ,BRANCH-2 TEST LINK ADDRESS IN @4

| SAME AS 'BRANCH -4'

X'F' ,ERROR - TEST COND CODE C,V,G,L=p
R4 ,BRAN2 BRANCH TO 'BRAN 2



P39A (300 BFCR @ ,ERROR LAND HERE ONLY ON ERROR

39C  C540 BRAN2  CLHI  R4,BRAN2-2 TEST LINK ADDR IN R4
P39A
* SAME AS 'BRAN2-4'
P3A9  P2FP BTCR  X'F',ERROR TEST COND CODE BITS
* C,V,6,L=p
*
*
* ERROR POINTER NOW SET TO F
* .
* F F F F BXLE&BXH INSTRUCTION T
*
*
P3A2  PA21 AHR  R2,R1 SETS ERROR POINTER TO 'F'
. @3A4 4020 STH  R2,FAILNU STORE FAIL TEST NUMBER
P6F8
P3A8  C83p LHI  R3,2 CHANGE R3 TO 'pp@2’
pop2
P3AC  CB84P LHI  R4,X'FFFF' INCREMENT FOR BXLE+BXH
FFFF |
* INSTRUCTION
p3Bp  C85p LHI  R5,p END VALUE FOR BXLE+BXH
p000
* INSTRUCTION
p3B4  C139 BXLE  R3,ERRORA SHOULD NOT BRANCH, R3
p18C
* CHANGE TO '0001®
p3B8 (P3P BXH  R3,ERROR CHANGE R3 TO 'p@@p’
p18C |
P3BC  PA31 AHR  R3,R1 CHANGE R3 TO 'p@p1
P3BE  CI13p BXLE  R3,*+6 SHOULD BRANCH CHANGE R3
p3c4
, * TO 'pppp’
p362 9309 BFCR  @,ERROR LAND HERE IN ERROR
p3C4  CP3P BXH  R3,*+6 SHOULD BRANCH CHANGE P3
P3CA
4 * TO 'FFFF'
p3C8  P3gP BFCR  @,ERROR LAND HERE IN ERROR
. .
*
* ERROR POINTER SET TO 10
*
*19 1p 1p 19 . INDEXING INSTRUCTION TEST
*
* 1p 190 19 19 TEST INDEXING ON RS RX
*
*
P3CA  PA21 AHR  R2,R1
p3CC 4920 STH  R2,FAILNU STORE FAIL TEST NUMBER
P6F8
P3P  C830 LOC1  LHI  R3,LOCI TEST RS WITHOUT INDEXING
P3DP
p3D4  C53p CLHI  R3,LOCl CHANGES R3 TO VALUE LOC1
p3DP

Al1-11



p3D8
P3DA

@3DE

A3E2
P3E4

P3E8

P3EC
P3EE

P3F2
P3F6

p3F8
P3FA

P3FE

pag2

p406
PAPA

papE
palp
p414

p418

p41c
P41E

pazz

Al-12

p230
€831
P30
€530
@301
p230
4839
@68E
C53p
pop1
p230
4832
P68E
€530
p1pp
p23p

PA21
4020
P6F8
C83p
popp

4p3p
P34

C83¢
p41p
4030
PP36

Foop

4830
PP32
C53p
p4gE

4330
P41E
p3pp
€839
P18C
4p3p
PP36

11

* F % % % X % F %

OK1

ILL
*
NEXTH

EIGHTN

BTCR
LHI

CLHI

BTCR
LH

CLHI
BTCR

CLHI
BTCR

11 11 11

AHR
STH

LHI
STH

LHI
STH

BFC

BFCR
LHI

STH

3,ERROR
R3,LOC1(R1)

R3,L0C1+1

3,ERROR
R3,DIAGN

R3,1

3,ERROR
R3,DIAGN(R2)

R3,X'100'
3,ERROR

ERROR POINTER NOW SET TO 11

TEST RS WITHOUT INDEXING
CHANGES R3 TO VALUE LOCI+1

TEST RX WITHOUT INDEXING
CHANGES R3 TO OCNTENTS OF

LOC DIAGN
TEST RX WITH INDEXING

CHANGES R3 TO CONTENTS OF
OF LOC DIAGN+R2

ILLEGAL INSTRUCTION TEST

R2,R1
R2.,FAILNU

R3,9

R3,X'34"

R3,NEXTH
R3,X'36'

X'F000'
R3,X'32'
R3,ILL

3,EIGHTN

@ ,ERROR"
R3,ERRORA

R3,X'36'

FOR TRAP,0TPSW SHOULD CONTAIN ADRS OF ILL

SETS ERROR POINTER TO '11'
STORE FAIL TEST NUMBER

SET CONDITION CODE PORTION

OF
ILLEGAL INSTR INTERRUPT

NEW PSW TO ZERO
LOADS ADDR INTO ADDR PART

OF NEWPSW ILLEGAL
INSTRUCTION INTERRPUT
THIS ILLEGAL INSTRUCTION
CAUSES AN INTERRUPT

TEST ADDR OF ILLEGAL
INSTRUCTION PLACED IN OLD
PSW ILLEGAL INTERRUPT
ADDRESS IS CORRECT GO

ON TO NEXT TEST

SET ADDR TO ERROR



P426
p4a28

pazc
P430

P434
P436

P43A
P4 3E

p442
paas
446
p44s
PA4A

pa4c

pasp
p452

pas6

P45A
PAaSE
P462

p466
P46A
P46E

PA21
40929
P6F8
C83p
P5A4
4030
PP 36

PB33

4p3p
pp34

C86p
popl
€890
poo1
PC86
pD86
P888
p2rp
$596

433p
p452
p30p
CA6P
o001
CA9P
pop1
C560
FFFF
433p
P466

4309

pa42

4850
POAA
4000

pP36
4C49

12 12 12 12
MULTIPLY & DIVIDE TEST:

* % ok % Ok % % ¥ ¥ *

AHR R2,R1
STH R2,FAILNU

LHI R3,TWNTY1
STH R3,X'36'

SHR R3,R3
STH R3,X'34'

MUDVT LHI R6,1

LHI RO,1 -
LOOP1  MHR R8,R6
DHR R8.R6
LHR  R8,R8
BTCR  X'F',ERROR
CLHR  R9,R6
*
BFC 3,0K
BFCR  @,ERROR
0K AHT R6.1
AHI R, 1

CLHI R6,X'FFFF'
BFC 3,FINT1
BFC f,LO0P1

MULTIPLY & DIVIDE INSTRUCTION TEST
MULTIPLIER AND DIVIDEND IN R6

SFTS ERROR POINTER TO 12
STORE FAIL TEST NUM

STORE ADDR OF NEXT
TEST IN NEW PSW ILLEGAL
INSTRUCTION

BECAUSE ALL PROCESSORS
DO NOT

HAVE MULT AND DIVIDE

INSTRUCTIONS
LOADS MULTIPLIER

LOADS MULTIPLICAND

FORM X SQUARED

DIVIDE PREVIOUS STEP
CHECK FOR ZERO REMAINDER
COMPAR DIVIDEND WITH
MULTIPLIER

SHOULD BE EQUAL

NOT, GO TO ERROR
INCREMENT MULTIPLIER

INCREMENT

TEST fF FINISHED

IF SO, JUMP TO NEXT PART
NOT, CONTINUE THIS PART

* THIS TEST MULTIPLIES AND DIVIDES POSITIVE
* ° AND NEGATIVE NUMBERS AND CHECKS THE SIGNS

* OF THE RESULTING VALUES.
FINT1 LH R5,PLUS1

STH Pp,X'36'
MH R4 ,PLUS1

STORE ERROR ADDR IN ILLPSW
MULT PLUS 1 TIMES PLUS 1

A1-13



Q472
0476
p478
@47A
paic
pasp
0484

488
P48A

P48E
p4a9p

P494
p498

P49C
P49E

0aA2
paAs

P4A8
P4aAC
paBp
9482
p4B4
P4B6
p4B8

P48BC

pace

paca
p4ce

P4CA
pacc

papp
p4D4

Al-14

P6AA
4550
P6AA
023
844
p230
4850
P6A6
4C40
P6AA
4549
P6A6
p23p
4550
P6A6
p23p
4850
P6AA
4Ccap
P6A6
45409
P6A6
p23p
4550
P6A6
p23p
4850
P66
4C4p
P6A6
4550
P6AA
p23p
p844
p23p
@B44
4850
poBp
4D4p
P6AC

4549
P6AA
p23p
4559
P6AA
p23p
4849
P6A6
485p
p6B2
4D4p
P6AC

CLH
BTCR
LHR
BTCR
LH
MH
CLH

BTCR
CLH

BTCR
LH

MH
CLH

BTCR
CLH

BTCR
LH

MH
CLH
BTCR
LHR
BTCR
SHR
LH

DH

CLH

BTCR
CLH

BTCR

" LH

LH
DH

R5,PLUS1
3,ERROR
R4,R4
3,ERROR
R5,MINUS1
R4,PLUS1
R4 ,MINUS1

3,ERROR
R5,MINUS1

3,ERROR
R5,PLUS1

R4,MINUS1
R4,MINUS1

3,ERROR
R5,MINUS1

3,ERROR
R5,MINUS1

R4 ,MINUS1
R5,PLUS1
3,ERROR
R4 ,R4
3,ERROR
R4,R4
R5,PLUS3

R4 ,PLUS?

R4,PLUS1

3,ERROR
R5,PLUS1

3,ERROR
R4 ,MINUS1

R5,MINUS3
R4 ,PLUS?2

R5 SHOULD HAVE PLUS 1
TESTING FOR CORRECT QESPON

R4 SHOULD BE ZERO
TESTING FOR CORRECT RESPON

MULT PLUS 1 TIMES MINUS 1

TESTING FOR CORRECT RESPON
TESTING FOR CORRECT RESPON

MULT MINUS1 TIMES PLUS1
R4 SHOULD HAVE MINUS 1

TESTING FOR CORRECT RESPON
R5 SHOULD HAVE MINUS1

TESTING FOR CORRECT RESPON

MULT MINUS1 TIMES MINUS1
R5 SHOULD HAVE PLUS 1
TESTING FOR CORRECT RESPON
R4 SHOULD HAVE ZERO
TESTING FOR CORRECT RESPON
R4+R5=+3

DIVIDE POSITIVE INTO

POSITIVE NUMBER
TEST FOR POSITIVE REMAINDE

TESTING FOR CORRECT RESPON
TEST FOR POSITIVE QUOTIENT

TESTING FOR CORRECT RESPON

RA+R5=-3
DIVIDE POSITIVE INTO
NEGATIVE NUMBER

PN



p4D8

panc
P4DE

P4E?2
P4AE4
P4E6
PAEA
PAEE

PaF?2
- P4F4

P4F8
PAFA

~ PAFE
9502

P506

P50A
p5pC

p51p
9512

@516
P518

P51C
p520

p524

9528
P52A
P52C

p53p
534

4549
P6A6
p23p
4550
P6A6
p23p
gB44
4850
peBp
4D4p
@6AE
4549
P6AA
p23p
4550
P6A6
p23p
4849
P6A6
4850
P68B2
4D4p
P6AE

454p
P6A6
0230
4550
P6AA
p23p

C869
po0Y
pB77
4060
ppac

C869
$538
4060
PP4E

C20p .

528

1000
p52C
C860
2000
c88p

4000
pD68

*

*

ENABLE
HERE

THIS SECTION TESTS DIVIDE FAULT

CLH R4 ,MINUS1
BTCR 3,ERROR
CLH R5,MINUS1
BTCR 3,ERROR
SHR R4, R4

LH R5,PLUS3
DH R4 ,MINUS 2
CLH R4,PLUS1
BTCR 3,ERROR
CLH R5,MINUS1
BTCR 3,ERROR .
LH R4 ,MINUS1
LH R5,MINUS3
DH R4 ,MINUS2
CLH R4 ,MINUS]
BTCR 3,ERROR
CLH R5,PLUS1
BTCR 3,ERROR
LHI R6,0

SHR R7,R7
STH R6,X'4C"
LHI R6,0VREC
STH R6,X'4E"
LPSW ENABLE

DC X'1000"
DC A(HERE)
LHI R6,X'2000'
LHI R8,X'4000"
DHR R6,R8

TEST FOR NEGATIVE REMAINDE

TESTING FOR CORRECT RESPON
TEST FOR NEGATIVE QUOTIENT

TESTING FOR CORRECT RESPON
R4+R5=+3

DIVIDE NEGATIVE INTO

TEST FOR POSITIVE REMAINDE

TESTING FOR CORRECT RESPON
TEST FOR NEGATIVE QUOTIENT

TESTING FOR CORRECT RESPON

R4+R5=-3
DIVIDE NEGATIVE INTO

NEGATIVE NUMBER
TEST FOR NEGATIVE REMAINDE

TESTING FOR CORRECT RESPON
TEST FOR POSITIVE QUOTIENT

TESTING FOR CORRECT RESPON
LOADS ZERO IN REG6 -

STORE VALUE IN CC PART OF
NEW PSW DIVIDE FAULT
INTERRUPT

STORE INTERRUPT ADDR IN
NEW PSW DIVIDE FAULT

INTERRUPT
ALLOW DIVIDE FAULT

INTERRUPT TO OCCUR
ENABLE FOR DIV

LOADS DIVIDEND
LOADS DIVISOR -

DIVIDE SHOULD CAUSE
INTERRUPT

Al-15



0536
0538

P53C
P53E

p5ap
542

p544

P548
P54A
P54E
P552
9556
P55A
P55E

0562
p564

568

p56C
P56E

P572

p576
p578

p57¢C
ps8p

0582
p584

Al-16

P3P0
C569

2000

p2Fp
p877

perp
pD68

4ppp
poaE

PA21

4p2p
p6F8

483p
P6FA
433p
P5AG
c8cp
opp2
DECP
P6B4
D6CP
P6B6
P2Fp
C84p
P6EE
C85p
P6F7
96C4
DECP
P6B5
D7CP
P6BA
P2FP
C84p
P6FF
c85p
p70p
97C4
P2FP
C84p
pa7F

NOT, GO TO ERROR
TEST OPERANDS HAVE NOT

CHANGED

IF SO, GO TO ERROR
TEST NO REMAINDER
GENERATED

TEST DIVIDING BY ZERO DOES
NOT CAUSE PROCESSOR TO
LOOP HERE

STORE FAIL TEST NUMBER

LOADS TTY DEVICE NUMBER

TEST WB INSTRUCTION

TEST WBR INSTRUCTION

TEST RB INSTRUCTION

TEST RBR INSTRUCTION

BFCR @,ERROR

OVREC CLHI R6,X' 2000}

. .
BTCR X'F',ERROR
LHR R7,R7

*
BTCR X'F',ERROR
DHR R6 ,R8

*

*

*
STH RO, X'4E'

*

*

* ERROR POINTER SET TO 13

*

* 13 13 13

*

*

NINTN AHR R2,R1
STH R2,FAILNU

* READ BLOCK-WRITE BLOCK INSTRUCTION TEST
LH R3,SKIPTS
BZ TWNTY

WRTBLK  LHI R12,2
0C R12,WDATA
WB R12,FSTLOC
BTCR X'F',ERROR
LHI R4 ,DATA3
LHI P5,DATA4
WBR R12,P4
0C R12,RDATA
RB R12,THDLOC
BTCR X'F',ERROR
LHI R4,TEMP+3
LHI R5,TEMP+4
RBR R12,R4
BTCR X'F',ERROR
LHI R4,X'7F"



2522 CR52 LHI R5,=5 INITIALIZE LOOP COUNT

FFFB
T @sac D365  TESTA LB R6, TEMP+5(R5)  LOADS TTY CHAR IN Q5§
2191
#5990 D375 L8 R7,DATA3+1@(R5) TEST CHARS RECEIVED
a6Fg
2594 0464 NHR  R6,R4 STRIP PARITY BIT
2596 0567 CLHR R6,R7 MATCH CHARS IN TARLE
Topssg #%3@ 77 BTCR  3,ERROR
#59A @ASI AHR  R5,RI INCREMENT LOOP COUNT
@55C 4230 BNZ  TESTA
853C
ASAR 4300 B TWNTY
2586
%
b 3
*ERROR POINTER NOW SET TO FOURTEEN
%
* INPUT/OUTPUT, ACKNOWLEDGE INTERRUPT, AND FALSE SYNC
*x 14 14 14 TEST wD,WDR,RD,RDR,SS,SSR
e e A TR T TR TR
*
B5A4  BA21 TUNTY! AHR  R2,R| INCREMENT ERROR POINTSER Qv
2506 0A?1 TWNTY AHR  R2,RI
25A8 4020 STH R2,FAILNU STORE FAIL TEST NUMBER
06Fe
TTPSAC ABI®TT LR R3,SKIPTS
AEFA
258@ 4330 BZ END
?65A A
@584 CR’CO LHI  R12,2 LOAD TTY DEVICE NUMRER
per2
T @sEE DECS T T TTToC R12,WDATAC  TEST OC INSTRUCTION
?6B4 .
@58C €830 | LKI ~ R3,DATAI
BSEA4
@5C? C840 " LHI R4,
0001
S TE ST LAY RS DATAS
BEFT
@5C8 9SDC6  STAT4 SSR  .RI2,R6 TEST SSR INSTRUCTION
@5CA 42 FB BTC X'F',STAT4
35C8 | '
@5CE DAC3 WD RI2,8(R3) TEST OF WD INSTRUCTION
Al __Ri2,6(R3)  TEST OF WD INSTRUCTIO!
@5D2 DDCO STATS SS  RI12,TEMP TEST SS INSTRUCTION
B6FC
2506 42 FB BTC  X'F',STATS
85D2
...@5DA @A31  AHR  R3,RI
#5DC D363 LB R6,B(R3)
0000
BSE®  SACE WDR  RI2,R6 TEST WDR INSTRUCTION
@5E2 C13@ BXLE R3,STAT4

A-17



B5ES

B5EA
B5EC

B5F0
e5F2

ASFE
@5FA
g5FE

2602
0624
YA

B6OA
eeac

AR
2612

2616
261 A

@61 E

0622

626
P27
262A
g62C

B62E

A632
0634

- p632

263C

A-18

25C8
D330
26B5
SEC3
cs3n
@6FC
9DCS6
42 F0

G5Fe

DBC3
2000
C539
2700
43829

- @616

2A31
9DC6
42 0
P62 4
9BC6

STATS

STAT?

pes

0000
PA31

4300

A5FQ
CRA4Q
A TF
CR5@a
FFFB
D3 55
p721
% 75

CHART

TESTB

AeFg

2464
8567
p230
PASI
4230

B6I1E

S F3 4
C830
FEFFE

L TT

FFFF
DF3 3
A6FD
D342

_@&FD

LB

OCR
LHI

SSR
BTC

RD
CLHI
BNL
AHR
SSR
BTC

RDR

- STB

AHR

LHI
LHI
LB

LB

NHR
CLHR
BTCR
AHR

~BNZ

R3,RDATA

R12,R3
P3,TEMP

R12,R6
X*'F',STATE

R12,08(R3)
R3, TEMP+4
CHART
R3,RI
R12,R6
X'F',STAT7

R12,R6
R6,0(R3)

R3,R1
STATG

R4,X"TF°

R5,=5

R6, TEMP+5(R5)
R7,DATA3+18(R5)
R6,R4

R6,R7

3 ,ERROR
R5 ,R1

TESTB

TEST OF OCR INSTRUCTION

TEST RD INSTRUCTION

" TEST RDR INSTRUCTION

MASK FOR PARITY
INITIALIZE LOOP COUNT
LOADS TTY CHAR IN R6
TEST CHARS QECEIVED

STRIP PARITY BIT
MATCH CHARS IN TABLE

INCREMENT LOOP COUNT

* THIS IS A COMBINED TEST OF THE AIR AND Al
* INSTRUCTIONS AND A TEST OF THE FALSE SYNC

T

2004
p23a
Cr3@

AIR
LHI

LHI

Al
LB
CLHI

BTCR
LHI

R3,R4
R3 ,X 'FFFF’

R4, X*FFFF"
R3 , TEMP+1
R4, TEMP+] -
R4, 4

3,ERROR
R3 ,X'FFFF'

REMOVE PENDING INTERRUPTS
SET R3 BITS TO ALL ONES

SET R4 BITS TO ALL OMNES

THIS GENERATES FALSE SYNC
BIT 13 SHOULD GET SET
TEST FOR THIS

SET R3 BRITS TO ALL ONES



264E

2652
2654

nes592
AL5A
"AST

"RE2

2666
N

@66E
2670

1674
7672
"6 1C
7620
2624
reae

262C
PERE

265

882

BES 4
#6956
pese
25SA
726SC
6SE
A6AD
PEA?
26R4
ACAE
acag
BEAA
AEAC
PEAE
76BA

FFFF
242
FFFF
9F34
C542
rAB4
#2350

c83a
76Ca
crae
a0l
CR5a
@EES

cace

P22
DEC@A
A&B4
SDCE
42 72

ACER

DAC3
gace
Cl30
76 SA
4220
*EFA
4332
reA2
C2oe
peeQ
2202
2AA9A
59393
72021

ppe2

T T

o8
fe10
P222
R4

eose
ose.

FFFE
5A 5A
RP20
FFFF
nn0o

xz

~ooeT

rae2
FFFE
2203

zND

STAT3

OKWAIT

XOFF
DIAGN
b 3

*

ALMFX
ALT
TICTH
FOXES
NADA
PLUS]
PLUS2
MI NUS2
PLUS3

LHI

AlIR
CLHI

BTCR
LHI
LH1
LH1
LHY
nc

SSR
BTC

WD
BXLE
LH
BZ
LPSW
DC

DC
DC

DC

DC
DC
2C
DC
DC
DC

DC
DC
DC
neC
DC
DC
DC
DC
DC

R4, X FFFF®

R3,R4
R4, 4

3,ERROR

R3 ,MESS]
R4,

R5 ,MESSP -1
R12,2
R12,WDATA

R12,R14
X'F*,STAT3

R12,7(3)
R3,STAT3

R? ,SKIPTS

~SKIPEN

OKWAIT

X *'RANA"* ,A(ZEROD)

X*9393"
X'’

X2

X"4'
x'g’
X'10"
x'29"
X'48"
x'8p"’
x'1ea’
X°'FFFE"
X'5A54 "
X*'8000"°
X'FFFF®

N - D

2]

(€ 2 |

SET R4 BITS T ALL OMNESG

THIS GENERATES FALSE SYNC
8IT 13 SHOULD GET SET

LOAD DEV MUN OF TTV
TTY TO WRITE Y0ONE
TEST STATUS ®’YTE OF TTY

OUTPUT 0K MESSAGE

THIS TARLE IS USED TO
PROPAGTE
A OME THRU A FIELD OF. ZERO

AND
A ZERO THRU A FIELD OF ONE

A-19



7682
A6A 6
PER4
2685
A686
AE€BR
A6BA
263C
@6BE

AECR
76ca
26CC

26E4
A6E4

O6ED
BEEE

Q&F7
PEFg
26FA
B6FC
2000
pren
eael
2202
2023
2024

AR@s5

aaee
eeer
ArAR

A-20

FFFD

SRA4

PEE4
26ED
AcFC
@6FE

8 DEA

4641

494C
5552
452¢

2DEA
4745
2D50
4143
204D
4F44
454C
2033
302D
3120
4953
204l
45 4R

DA
4445
55?2
4553
5320

4345
5953
2057
2052

EERET

271C

MINUS3
MINUSI
WDATA

RDATA

FSTLOC
SECLOC
THDLOC
FORLOC
MESS

TESTNU
MESS]

MZSS2
DATAI

DATAZ
DATA3

DATAA4
FATLNU
SKIPTS
TEMP
SA VE

ERROR

RO
R1

R2
R3
R4
R5
R6
R7
R

DC
EQU
DC
QU
DC
DC
nC
DC
ne

DS
nC
DC

EQU

EQU
DC

EQU
DS

DS

DS

DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

N gOVD NN —D

-3

FOXES

X'9RA4"

WNATA+I

DATAI

DATAZ

TEMP

TEMP+2
X'®DRA*,C'FAILURE"

2
X'2DRA’
C *GE=PAC MOD EL 30=1

x*

X*&DA ", C*DEPRESS"

*e
C°'KEYS W,R,U"*

NN *
]

[ RO

IS ROK'®



2N
eaA
M2RR
eazC
aean
Aae =
200 F
P44
2RI
273C

ALMFX
ALT
AROUND
SRA NP
BHANCH
oy
BY?
CHART
CONVRT
DA TAL
DA TA2
A TAZ
NATA4
MTAGH
SIGHT
TIGHTN
EIGTH
ELEVEN
THQRLE
TND
ERROR
FRRORA
TRRWAT
FATLN
FINTI
F1VE
FORLOC
FOUR
FOURT
FOXES
FSTLOC
60

ol

T HERE
TLL
LOCI
LOOPI
MESS
MESS]
MESS?2
I N1S)
w1 N1ISP
MI YUS3

A6AD
ASA2
A23A
?3sC
235¢
22 44
22 4A
2618
a1 AA

PEEL

26ED
ASEE
26F7

A6RE

7262

galE

NEA4
7332
B521%
2E5A
2000

2236
AcFa
2466
2166
@6BC

AL AA

2382
P6A6
06B6
7372
337C
#52C
B40E
A3 e
2442
B6RE
ASCA
P6EA
AEAG
ASAE

A6B?

R
R0
Rl
Q12
R13
Rl 4
R15

NIPSW
OTRPSW

a18C

U
EQU
QU
QU
EQU
EQU
EQU
EQU
EQU

"END .

XK X KX KK AKX O
€ @€ € o ® « @ o
NS TR0 D
DD o e @e e e



MUDVT
N4
NA DA
MEXTH
NI NE
NINTY
NIPSW
0K
K1
OKWAIT
ONE
ONES
INESI
NTRPSW
NVUREC
PLUSI
PLUS2
PLUS3
RA
R1
R
R11
12
R13
Rl 4
RIS
R?2
R3