
GE-PAC.*30
CONTROL COMPUTER

REFERENCE
MANUAL

GENERAL fl ELECTRIC

*Registered Trademark of Genera I Electr i c Company

PCP-125A

GE 29-004ROI

GE-PAC 30
CONTROL COMPUTER

REFERENCE
MANUAL

General Electric reserves the right
to make changes in the equipment (or
software) and its characteristics (or
functions) at any time without notice.

GENERAL fj ELECTRIC

TABLE OF CONTENTS

CHAPTER 1 SYSTEM ARCHITECTURE

CHAPTER 2

1. 1
1. 2
1. 3

1. 4

INTRODUCTION.
SCOPE OF MANUAL
PROCESSOR ORGANIZATION.
1. 3.1 General Registers.
1. 3. 2 Arithmetic/Logical Unit.
1. 3. 3 Control Unit
1. 3. 4 Memory . .
STORAGE WORD FORMATS
1. 4. 1 Hexadecimal Notation
1. 4. 2 Arithmetic Data
1. 4. 3 Logical Data •
1. 4. 4 Information Positioning .

1. 5 INSTRUCTION WORD FORMATS.
1. 6 GENERAL REGISTERS AND STORAGE ADDRESSING.

1. 6. 1 General Registers . . . • .
1. 6. 2 Storage Addressing
1. 6. 3 Address Modification By Indexing.

1. 7 PROGRAM STATUS WORD
1. 7. 1 Status
1. 7. 2 Condition Code.
1. 7. 3 Instr-uction Address
1. 7. 4 Instruction Execution

1. 8 INTERRUPT SYSTEM ..
1. 8. 1 Interrupt Procedure .
1. 8. 2 A cknowleclgement of External Interrupts
1. 8. 3 Intcrnn 1 Interrupts .
1. 8. 4 Power Failure . .
1. 8. 5 High Sp(~Pd Interrupt Option .

1. 9 INPUT /OUTPUT SYSTEM. .
1. 9. 1 Basic Input/Output Programming .
1. 9. 2 Program Controlled Input/Output .
1. 9. 3 Interrupt ('.ontrolled Input/Output .
1. 9. 4 Block Input/Output Programming.
1. 9. 5 Condition C:ocle for Input/Output
1. 9. 6 Direct M(•llH>r'y Access Channel
1. 9. 7 Selector < 'hannel. .

1. 10 REGISTER SAVE l'OINTER.
1. 11 CORE MEMORY A I .I .OCATION.
INSTRUCTION REPERTOllU<:.

2. 1
2.2

2.3

INTRODUCTION.
LOAD AND STORE INS'L'H.UCTIONS.
2. 2. 1 Load Halfword .
2. 2. 2 Store Halfword.
2. 2. 3 Load Byte.
2. 2. 4 Store Byte
2. 2. 5 Load Multiple
2. 2. 6 Store Multiple
2. 2. 7 Floating-Point Load
2. 2. 8 Floating-Point Store .
2. 2. 9 Load Program Status Word
2.2.10 Autoload
FJXED POINT ARITHMETIC INSTRUCTIONS
2. 3. 1 Add Halfword. • • • • • . • •

1-1

1-1
1-2
1-2
1-2
1-2
1-4
1-4
1-4
1-5
1-5
1-6

1-6
1-7
1-9
1-9
1-9
1-9
1-9

. 1-10

. 1-10

. 1-10

. 1-11

. 1-11

. 1-11

. 1-12
• 1-12
. 1-12
. 1-13
. 1-14
. 1-15
. 1-15
. 1-15
. 1-16
. 1-16
. 1-16
. 1-17
. 1-17
. 1-17

2-1

2-1
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-9

2.4

2.5

2.6

2. 7

2. 8

2. fl

2. 10

TABLE OF CONTENTS (Continued)

2. 3. 2 Add With Carry Halfword ••.
2. 3. 3 Subtract Halfword . • •
2. 3. 4 Subtract With Carry Halfword .
2. 3. 5 Multiply Halfword .•..•..
2. 3. 6 Divide Halfwori:l•..
FLOATING-POINT ARITHMETIC INSTRUCTIONS.
2. 4. 1 Floating-Point Add .•.
2. 4. 2 Floating-Point Subtract
2. 4. 3 Floating-Point Multiply
2. 4. 4 Floating-Point Divide
LOGICAL INSTRUCTIONS.
2. 5. 1 AND Halfword
2. 5. 2 OR Halfword•
2. 5. 3 Exclusive OR Halfword
2. 5. 4 Compare Logical Halfword
2. 5. 5 Floating-Point Compare .•
SHIFT INSTRUCTIONS .•..... ..
2. 6. 1 Shift Left Halfword Arithmetic
2. 6. 2 Shift Right Halfword Arithmetic .
2. 6. 3 Shift Left Halfword Logical .
2. G. 4 Shift Right Halfword Logical .
llltl\NCH INSTRUCTIONS .•....
2. 7. 1 Branch on True Condition .
2. 7. 2 Branch on False Condition
2. 7. 3 Branch Unconditional
2. 7. 4 No Operation
2. 7. 5 Branch On Index High . . .
2. 7. 6 Branch On Index Low or Equal.
2 .. 7. 7 Branch J\ nd Link
EXTENDED MNEMONIC CODES FOR .BRANCH
ON CONDITION
2. 8. 1 Branch on Zero ..
2. 8. 2 Branch On Not Zero
2. B. :~ Branch On Plus ...
2.8.4
2. ll. 5
2.8.6
2.B.7
2.8.8
~- n. f)

Branch On Not Plus
Branch On Minus ..
Branch On Not Minus
Branch On Carry .•
Branch On Overflow
Branch On Low. . .

2. :i. 1.0 Branch On Not Low
:J.. B. 11 Hr:mch On Equal .•
2. B. 12 Jlr:mch On Not Equal.
D.1•:v.1c I·: IN'n;n,HUPT AND CONTROL INSTIUTCTIONS
2. 9. 1 :\cknowledge Interrupt.
2. 9. 2 S1•nsc Status
2. 9. 3 < lttlput Command .•..•
INPUT/< lll'I' l'lfT INSTRUCTIONS .
2. 10. 1 !lead Data .
2. 10. 2 Write Dnt:"t .
2. 10. :1 !~cad Block .
2. 10. 4 Write Block

CHAPTER 3 CONSOLE 01' l~RA TION AND DISPLAY .

ii

3. 1
3.2

INTRO!) UC TION
CONTROL SWITCHES .

. 2-9
2-10
2-10
2-11
2-11
2-12
2-12
2-13
2-14
2-15
2-15
2-15
2-16
2-16
2-17
2-17
2-18
2-19
2-19
2-20
2-20
2-21
2-22
2-22
2-23
2-23
2-24
2-24
2-25

2-26
2-27
2-2~
2-28
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-32
2-32
2-33
2-34
2-34
2-35
2-36
2-37
2-37
2-38
2-38

3-1

3-1
3-1

3.3
3.4
3. 5
3. 6
3. 7
3.8
3.9

TABLE OF CONTENTS {Continued)

MODE CONTROL SWITCH ..
SPEED CONTROL SWITCH . .
REGISTER DISPLAY SWITCH.
DATA /ADDRESS SWITCHES .
REGISTER DISPLAY
CONSOLE OPERA TING PROCEDURES .
DISPLAY PANEL PROGRAMMING

APPENDJX 1 SUMMARY OF INSTRUCTIONS - ALPHABETICAL BY NAME

APPENDIX 2 SUMMARY OF INSTRUCTIONS - NUMERICAL BY OP CODE

APPENDJX 3 ARITHMETIC REFERENCES ..

APPENDIX 4 INPUT /OUTPUT REFERENCES

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
3 -1

ILLUSTRATIONS
GE-PAC 30 Digital Systems, Typical Block Diagram
System Block Diagram . . .
Storage Word Formats ...
Fixed-Point Word Formats .
Floating-Point Word Format
Floating-Point Word Layout .
Instruction Word Formats ..
Program Status Word Format.
Status Byte Format
Interrupt Chaining .
Display Panel . . .

3 -2
3 -2
3 -2
3-3
3 -3
3 -3
3-4

Al-1

A2-1

A3-l

A4-1

1-1
1-3
1-5
1-5
1-5
1-6
1-7

.1-10

.1-12

.1-14

. 3 -1

iii

CHAPTER l

SYSTEM ARCHITECTURE

1.1 INTRODUCTION

GE-PAC>:<30 Digital Systems are modularly
structured to p_rovide a high degree of
flexibility in configuring application oriented
systems. The building blocks used in the
organization of a system are the Processor,
Memory Modules, interface to peripheral
devices, and system modules. See Fig-
ure 1-1.

GE-PAC 30Digital Systems are designed
for the user who has small-scale yet sophis­
ticated requirements, and provide maximum
system flexibility to solve a wide range of
industrial control and scientific computa­
tional problems.

These third generation units use dual in-·
line integrated circuits to provide excellent
reliability. The systems are modular,

Core Memory Modules

Read-only
Memory

Processor

Memory Bus

General
Registers

Multiplexor Bus (byte, 256 devices)

Standard peripheral
devices and system components

Selector
Channel

Selector Bus (byte)

Direct
Memory Access

Channel

' I

Special
Device

(Halfword)

u

Figure 1-1. GE-PAC 30Digital Systems, Typical Block Diagram

Hcgistered Trademark of General Electric Company 1-1

furnishing the user with an expandable
building block structure that can be adapted
to a variety of system requirements. Stand­
ard units can easily be configured into
operational systems for specialized require­
ments. This modularity and field expand­
ibility, especially in the 1/0 area, provides
a system which may be easily and econom­
ically adapted to changing system require­
ments.

Features of these systems include a mem­
ory that is addressable and alterable to the
8-bit byte level. Memory is field expand­
able from 1024 bytes to 65, 536 bytes.

All memory is directly addressable with the
primary instruction word; no paging or in­
direct addressing is required.

Sixteen 16-bit general purpose registers can be
us<'d as accumulators or index registers.

Register-to-register instructions permit
operations between any two of the 16 General
Registers, eliminating redundant loads and
stores.

A comprehensive instruction set includes ef­
ficient byte processing instructions, single
instructions for loop control which incre­
ment, test and branch on indexing values,
as well as instructions that test the condition
code and branch directly to any location in
memory.

Logical and arithmetic shift instructions can
shift up to 1 !"i hit positions with a single
instruction.

A flexible Systems Interface includes an
integrated priority interrupt facility and
provides for connecting up to 256 devices.

GE-PAC 30 Digital Systems have third
generation data compatibility including ASCII
and EBCDIC information codes.

1.2 SCOPE OF MANUAL

This manual is intended as a general ref­
erence to all GE-PAC 30 Digital Systems.
Because of this general nature, all inf orma­
tion provided does not apply equally to all
GE-PAC 30Models. On the contrary,

1-2

some features described are optional, and/
or only available on the more sophisticated
systems.

1.3 PROCESSOR ORGANIZATION

The various elements of the system are or­
ganized around the primary controlling
unit - The Processor. The Processor con­
tains facilities for:

1. Arithmetic and logical processing
of data

2. Sequencing instructions in the re-
quired order

3. Fetching and storing information

4. Addressing memory

5. Initiating or controlling communi­
cations with external devices

6. Changing states in response to
interrupts

The Processor consists of a group of six­
teen 16-bit General Registers, an Arithmetic/
Logical Unit (ALU), and a Read-Only-Memory
(ROM) control unit. Figure 1-2 is a block
diagram of a GE-PAC 30 Digital System.

1.3. l General Registers

The General l{egisters can be used as ac­
cumulato1·s in fixed-point arithmetic and
logical operations, or as index registers
in address arithmetic and indexing opera­
tions. Each register has a capacity of six­
teen binary digits, which is one halfword.
For some operations, such as multiplica­
tion and division, two adjacent registers
arc coupled to [orm a 32-bit fullword. In 8-
bit byte operations the rightmost 8 bits of
a General Register are used.

1.3.2 Arithmetic/Logical Unit

The Arithmetic/Logical Unit (ALU) processes
binary integers, floating-point fractions, and
logical information. The operands are lo­
cated in the General Registers and/or core

SELECTOR CHANNEL

MAGNETIC TAPE

0

CORE MEMORY

15

----PROCESSOR
II 12 I 16

STATUS cc LOCATION
COUNTER

PROGRAM STATUS WORD

INSTRUCTION REGISTER

FRACTION

31

31

REGISTERS
1-+-~~t--~(8)~~~~--1

LINE PRINTER

ARITHMETIC
AND

LOGICAL UNIT

PAPER TAPE

-]
I

15 I
~-------1 I

I
I
I
I
I
I

---------.. ..------1
_ _J

CARD READER

DIRECT
EMORY ACCESS

CHANNEL

SPECIAL
DEVICE

TELETYPE­
WRITEIO. DISPLAY PANEL

Figure 1-2. System Block Diagram

memory. .Fixed-point data is treated as
signed, 15-bit integers in the halfword for­
mat, or as signed, 31-bit integers in the
fullword format. Positive numbers are ex­
pressed in true binary form with a sign bit of
zero. Negative numbers arc represented in
two's complement form with a sign bit of one.
The numeric value of zero is always repre­
sented as positive. Table 1-1 shows several
examples of the fixed-point number repre­
sentation used in GE-PAC 30 Systems.

TABLE 1-1. EXAMPLES OF FIXED-POINT
REPRESENTATION

Number Decimal Binary

215-1 32767 0111 1111 1111 1111
20 1 0000 0000 0000 0001

0 0 0000 0000 0000 0000
-(20) -1 1111 1111 1111 1111
-(215) -32768 1000 0000 0000 0000

1-3

All fixed-point operations are performed
upon one operand in a General Register
with the other operand in either a General
Register or a core memory location.

Multiple-precision arithmetic operations
are made convenient by the two's comple­
ment representation, and by recognition of
the carry /borrow from one operation to
another.

Some GE-PAC 30 Digital Systems· provide
the capability for floating-point arithmetic
operations. The GE-PAC 30 format for
single-precision, float4ig-point data is iden­
tical to that used in the IBM System/360.
This format represents numbers in the range
from 5. 4 X 10-79 to 7. 2 X 1075, with six
digits of precision.

A floating-point number consists of a signed
exponent and a signed fraction. The quantity
expressed by this number is the product of
the fraction and the number 16 raised to the
powt' r of the exponent. The exponent is ex­
preH:::>cd in exces8 <M binary notation; the
fraction is expressed as a hexadecimal num­
ber having· a radix point to the left of the high
order digit. Table 1-2 provides several
examples of the floating point number repre­
sentation.

TABLE 1-2. EXAMPLES OF FLOATING­
POINT NUMBER REPRESENTATION

Value Binary

LO 0100 0001 0001 0000
0000 0000 0000 0000

-1.0 1100 0001 0001 0000
0000 0000 0000 0000

9.5 0100 0001 1001 1000
0000 0000 0000 0000

-0.5 1100 0000 1000 0000
0000 0000 0.,00 0000

-(1-16-6)· 1663 1111 1111 1111 1111
1111 1111 1111 1111

_15-65 1000 0000 0001 0000
0000 0000 0000 0000

0.1 + 16~6 0100 0000 0001 1001
1001 1001 1001 1010

1-4

1.3.3 Control Unit

The Processor operates under the direction
of a control unit which has a pre-wired
micro-program contained in the Read-Only­
Memory (ROM). The micro program is a
sequence of micro operations which fetches
the Processor instructions, decodes them,
and processes the operands located in the

. General Registers and core memory
locations.

For example, to fetch an instruction, the
micro-program loads the memory address
register with the instruction address, com­
mands a memory read operation, and when
the memory data is ready, transfers the
content of the memory data register to the
working register.

1.3 .4 Memory

GE-PAC 30 Systems provide for connection
of multiple memory blocks on a Memory Bus
to the Processor. Each memory block con­
sists of a magnetic core memory plane with
independent Read/Write Control.

The 16-bit halfword data register permits
all 16-bit instructions and arithmetic or
logical data to be handled in a single mem­
ory cycle. Multiple halfword data requires
an additional memory cycle for each 16-bit
halfword. Byte operations are performed
by seledi vely manipulating the right or
left 8 bib> of the 16-bit halfword.

Memory elements can be expanded to a
maximum dynamic addressing range of
65, :i3Ci K-bit bytes or 32, 768 16-bit
halfwords.

The optional Memory Parity feature pro­
vides for checking of all data transfers in
and out of memory.

1.4 STORAGE WORD FORMATS

The GE-PAC 30Instruction Set manipu­
lates data of three different word lengths:
8 bit bytes, 16 bit halfwords or 32 bit full­
words. In each format the bits are num-

bered from left to right, starting with the
number zero. The format for each word
length is shown on Figure 1-3.

BYTE

l° j
HALFWORD

lo 718 =J
FULLWORD

lo 718

Figure 1-3. Storage Word Formats

1.4.1 Hexadecimal Notation

Binary information is expressed in hexa­
decimal notation (base 16) in the GE-PAC
30 Systems. Four Binary bits of
information can be expressed by a single
hexadecimal digit. Thus, byte information
can be expressed by a string of two hexa­
decimal digits, halfword information by four
hex digits, and fullword information by 8
hex digits. Table 1-3 lists hexadecimal,
binary, and decimal equivalents.

TABLE 1-3. HEXADECIMAL NOTATION

Hexadecimal Binary Decimal
-

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

1.4.2 Arithmetic Data

The basic fixed-point arithmetic operand is
the 16-bit halfword. In multiply and divide
operations, 32-bit fullwords are manipulated.
See Figure 1-4.

INTEGER

15

INDEX QUANT I TY

FULLWORD

l~I' INTEGER PRODUCT

DIVIDEND

Figure 1-4. Fixed-Point Word Formats

The halfword arithmetic operand matches
the address field of an instruction, permitting
fixed-point arithmetic instructions to be used
for address arithmetic. Arithmetic, logical,
and shift instructions can also be used for
address manipulation or computation.

Each floating-point value requires two half­
words. The floating-point format is shown
in Figure 1-5.

s
x =

AB

~I x A

B

sign of the fraction
exponent, in excess 64 code
fraction

Figure 1-5. Floating-Point Word Format

Sign and magnitude representation is used,
in which the sign bit S is zero for positive
values, and one for negative values. The
fraction AB contains six hexadecimal digits
as shown in Figure 1-6. The value of a
floating-point fraction can be expressed as:

-1 -2 -3 -G
F 1 .16 +F2 .16 +F3 .16 + +F6 .1G

1-5

II 12 15

Fl F2

F3 F4 F~ F6

Figure 1-6. Floating-Point Word Layout

A normalized floating-point number has a
non-zero, high-order hexadecimal fraction
digit (F1). If one or more high-order frac­
tion digits (F1F2 ...) are zero, the number
is said to be unnormalized. The range of
the magnitude (M) of a normalized floating­
point number is:

16-65 5 M 5 (1 - 16-6) . 1663

or approximately

5.4 · 10-79 5M5 7.2 · 1075

All floating point numbers are assumed to be
normalized prior to their use as operands.
No pre-normalization is performed, all re­
sults are post-normalized. The floating­
point load instruction will normalize un­
normalized floating-point numbers.

Exponent overflow is defined as a resultant
exponent greater than +63. Exponent under­
flow is defined as a resultant exponent less
than -64. The Overflow flag is set whenever
exponent overflow or underflow is detected.
If overflow, the exponent and fraction of the
result are set to all ones. The sign of the
result is not affected by the overflow. If un­
derflow, the sign, exponent and fraction of
the sum. are set to zero.

The floating-point value in which all data
bits are zero is called true zero. A true
zero may arise as the result of an arithme­
tic operation due to exponent underflow, or
when a result fraction is zero due to loss of
significance .. In general, zero values partici­
pate as normal numbers in all arithmetic
operations. If the resultant exponent of an
addition, subtraction, multiplication, or
division overflows, all bits of the exponent
and fraction are set, and the correct sign is
generated.

1-6

The floating-point registers have even num­
bers. The register address specified by the
Rl and R2 fields should be even numbers (0,
2,4,6 etc.) otherwise the next lower even
register will be used. There are eight 32-
bit floating-point registers available. The
floating-point registers are separate from
the general registers and are addressable
only by floating-point instructions.

1.4.3 Logical Data

Logical information is handled as 16-bit half­
words or as 8-bit bytes. Halfword operations
are performed on all 16 bits of an operand
located in memory or a General Register.
Logical data is subject to such operations as
AND, OR, EXCLUSIVE OR, and COMPARE
LOGICAL.

Load Byte and Store Byte instructions are
provided to facilitate byte manipulation.
These instructions, when combined with
indexed addressing, enable the processing
of input/output character strings.

. 1.4.4 Information Positioning

Core memory locations are numbered con­
secutively, beginning at location. 0000, for
each eight bit byte. Since the address field
of an instruction word is 16-bits in length,
each of the GG, 536 bytes in memory is
directly addressable with the primary in­
struction word.

The GE-PAC 30 System transmits binary
information between memory and the Proc­
essor as 16-bit halfwords. The instruction
being performed determines if the address
specified is that of a byte, a halfword or a
fullword. If a byte of information is de­
sired, either the left or right byte of the
halfword read from memory is manipulated
as determined by the specific address. If
a halfword of information is desired, the
entire 16 bits read from memory are used.
If a fullword is desired, a second 16 bits
is read from memory and combined with
the original halfword.

Bytes of information are addressed by their
specific hexadecimal address. A group of bytes
combined to form a halfword or a full word are
addressed by the leftmost byte in the group.
Halfwords are positioned so that the address

is a multiple of 2. Fullwords are positioned
so that the address is a multiple of 4. Table
1-4 illustrates the addressing scheme. Table
1-5 lists the valid last hexadecimal digits for
each type of addressing.

TABLE 1-4. MEMORY ADDRESS DATA

Hexadecimal Address

0050 0051 0052 0053 0054 0055 0056 0057
Hexadecimal

01
Contents

23 45 67 89 AB CD EF

- v - v v v - v v

Byte Byte Byte Byte Byte Byte Byte Byte
Word Length ~~~~
Positions Halfword

Fullword

TABLE 1-5. PERMISSIBLE ADDRESSES

Word Length Last Hex
Desired Digit of Address

Byte any

Halfword 0,2,4, G, 8,A,C,E

Fullword 0,4,8,C

Refer to Table 1-4. If the address specified
were 0050:

1. A byte oriented instruction would
extract the data constant 0116 as its
operand.

2. A halfword oriented instruction
would extract the data constant

3. 012316 as its operand.

3. A fullword oriented instruction
would extract the data constant
01234567 16 as its operand.

1.5 INSTRUCTION WORD FORMATS

Instructions in GE-PAC 30 Systems have
three formats:

1. Register to Register [RR]

2. Register to Indexed Memory [RX]

3, Register to storage [RS]

Halfword Halfword Halfword --
Fullword

In general, each format specifies three
things: The operation to be performed, the
address of the first operand, and the ad­
dress of the second operand. The first
operand is normally a General Register
which contains the result of a previous op­
eration. The second operand is normally
the contents of a General Register, the
contents of a core memory location, or a
data constant used as the other participating
operand.

A 16-bit halfword format is used for reg­
ister to register operations. A 32-bit full­
word format is used for the register to
indexed memory, and the register to storage
formats. The specific formats arc shown
on Figure 1-7.

16-BIT HALFWORD

REGISTER-TO-REGISTER

lo OP 718R1 llr2R2151

32-BIT FULLWORD

REGISTER TO INDEXED MEMORY

lo OP 718 R 1111'2 X215r6

[RR]

A

A

Figure 1-7. Instruction Word Formats

1-7

The 8-bit OP field in all three formats
specifies the machine operation to be per­
formed. The operation code can be written
as two hexadecimal characters.

The 4-bit Rl field in the three instruction
formats specifies the address of the first
operand. The Rl field is normally the ad­
dress of a General Register and is written
as one hexadecimal character.

The 4-bit R2 field in the RR instruction
format specifies the address of the second
operand. The R2 field is always a register
address and is written as one hexadecimal
character.

The 4-bit X2 field in the RX and RS formats
specifies a General Register whose content
is used as an index value. The X2 field is
always the address of a General Register
and is written as a single hex character.

The 16-bit A field specifies a memory ad­
dress in the HX format, or contains an inte­
ger value to l>e used as an immediate operand
in the RS format. It is written as a string of
four hex characters.

The RR instructions are used for operations
between two registers. The first operand
is the contents ot the register specified by
the Rl field of the instruction word. The
second operand is the contents of the register
specified by the R2 field.

The HX irn-;tructions are used for operations
between a register and memory with the op­
tion of indexing. The first operand is the re­
gister specified by the Rl field of the instruc­
tion word. The second operand is the contents
of the memory location specified by the A
field of the instruction word, or by the sum
of the A field and the contents of the General
Register specified by the X2 field if indexing·
is specified.

In the RS instructions, the first operand is
the contents of the General Register specified
by the IU field of the instruction word. The
second operand is the number contained in the
A field, or the number generated by adding
the A field to the contents of the General

1-8

Register specified by the X2 field if indexing
is specified. The second operand of an RS
instruction specifies the number of bit posi­
tions in shift instructions, or forms the sec­
ond operand in immediate instructions. An
immediate operand is two bytes of data used
as an operand and carried in the halfword
address field itself. The value in the ad­
dress field is treated as a signed integer
instead of a memory location address.

For the Branch on Condition instructions the
first operand is the Ml field. This field is a
4-bit mask which is to be tested against the
condition code contained in the Program Status
Word.

Table 1-6 summarizes the first and second
operand designations for each instruction
format.

TABLE 1-6. DESIGNATIONS FOR
FIRST AND SECOND OPERANDS

First The contents of RR, RX
Operand: the register and RS

specified by the
Rl Field (Rl).

The Ml Field RR and RX,
Branch on
Condition.

·-- ·-

SC('(\l1d The contents of RR
Ope rand: the register

- s pccified by the
ll2 Field (R2).

The contents RX
of the address
deriYed by
adding the A
field am! the
contents of the
General llq!;istl'r
specifivd by the
X2 fit>ld.
[A+ (X2)]

The .\ field plus RS
the contl'nts of the
Ge1wral Register
spccifil'd by the
X2 fil'ld,
A+ (X2)

All instructions ::tre aligned on halfword
boundaries. The RR instruction format is
a 16-bit halfword; the RX and RS formats
are 32-bit fullwords which are treated as
two halfwords for alignment purposes.
This permits mixing of halfword and full­
word instructions without the requirement
of halfword No Operation instructions to
force fullword instruction alignment.

1.6 GENERAL REGISTERS AND
STORAGE ADDRESSING

1.6. l General Registers

The sixteen General Registers function as
accumulators or index registers in all
arithmetic and logical operations. Each
General Register is a 16-bit halfword con­
sisting of two 8-bit bytes. For arithmetic
operations, bit zero (leftmost position) is
considered the sign bit. Bit one is the
most significant bit.

The General Registers ar~ numbered from
zero to fifteen (decimal) whi~h is written
in hexadecimal notation as 0, 1 2 3 4 5

' ' ' ' ' 6, 7 , 8, 9, A, B, C , D, E , and F. General
Register addresses are only permitted in the
Rl, R2 and X2 fields of an instruction word.

The General Registers have not been given
specific functional assignments. However,
the following operational restrictions should
be noted:

1. It is not possible to use General
Register zero as an index register.
In the RX and RS instruction for­
mats, a zero entry in the X2 field
indieates that no indexing is to
take place.

2" The first operand (Rl) must specify an
even numbered General Register for
multiplication and division operations.

3. The first operand (Rl) for the
Branch on Index instructions speci -
fies the first of three general reg­
isters. General Hegister D is the
maximum value for Rl in this case.

1.6.2 Storage Addressing

Locations in core memory are addressed by
the RX instruction. The address portion A ' '
of the instruction is a 16-bit halfword, making
it possible for the address field to specify all
65, 536 bytes, the maximum available memory.

If an address specified is greater than the
highest memory location available, no mem­
ory access takes place, and a word consisting
of all zeros is used in place of the word nor­
mally read from memory.

Programs cannot be looped from the highest
memory location back to location 0000.

1.6.3 Address Modification by Indexing

The General Registers in GE-PAC 30sys­
tems facilitate address modification, Fifteen
different General Hegistcrs may be used as in
index registers for this purpose.

If the contents of the A f icld of an instruction
word are to be modified, the address of the
General Register, whose content is to be
used as the modifier, is placed in the X2
field of the instruction word. During decoding
of the instruction word, the contents of the
specified index register is added to the A
field to obtain the effective address of the
second operand. The index value in a Gen­
eral Register may be signed to permit indexing
in either direction.

All of the General Registers except General
Register Zero may by used as index registers.
If the X2 field of the instruction word 'is zero

'
no indexing is specified, and the A portion
of the instruction word is not modified. Thus,
General Register Zero cannot be used as an
index register.

1.7 PROGRAM STATUS WORD

The 32-bit Program Status Word (PSW)
contains the information required for pro­
gram execution. The PSW has a 12-bit
Status field, a 4-bit Condition Code field '
and a 1 G-bit Instruction Address field.
Sec Figure 1-8.

1-9

PSW
0 JI 12

STATUS
1516 31

cc INSTRUCTION ADDRESS

Figure 1-8. Program Status Word Format

In general, the Program Status Word is
used to control instruction sequencing and
to store indications of the status of the sys­
tem in relation to the program currently being
executed. The active or controlling PSW is
referred to as the current PSW. When a
program interrupt occurs, the current
PSW is automatically preserved for sub­
sequent reinstatement or inspection. By
loading a new PSW, the status of the
Processor can be changed.

1.7 .1 Status

The status of the current user program is
defined by bits 0 through 11 of the Program
Status Word. When bit 0 is set the Processor
is halted in a high Hpeed, interruptable wait
loop during which interrupts will be recog­
nized immediately. When bit -0 is reset, the
Processor is active and interrupts which are
enabled will be recognized after execution of
the current instruction. Bits 1 through 11
are mask bits for interrupts.

Assignment of the Status bits is listed on
Table 1-7.

1.7 .2 Condition Code

The 4-bit Condition Code (CC) of the Program
Status Word is sot after execution of arithmetic,
logical, shift, and input/output instructions.
fu general, the condition code bits 12 through
15 indiCate Garry, Overflow, Greater, and
Less, in that order. The condition code set­
ting has a different interpretation when set
by an input/output instruction and is described
in that section.

Following an arithmetic operation the con­
dition code indicates whether the result was
greater or less than zero, whether a carry
or borrow took place, and whether an over­
flow has occurred.

1-10

TABLE 1-7. PSW STATUS BIT
ASSIGNMENTS

PSW bit Assignment

0 Wait state

1 External Interrupt Enable

2 Machine Malfunction
Interrupt Enable

3 Fixed-point Divide Fault
Interrupt Enable

4 Reserved

5 Floating-point Divide
Fault Interrupt Enable

6
thru Not Assigned
11

Assignment of Condition Code bits is listed
on Table 1-8.

TABLE 1-8. PSW CONDITION CODE
BIT ASSIGNMENTS

PSW Bit Assignment Symbol

12 Carry /Borrow (C)

13 Overflow (V)

14 Greater than zero (G)

15 Less than zero (L)

1.7 .3 Instruction Address

Tho 16-bit Instruction Address field of the
Program Status Word specifies the location
of the next instruction to be fetched and
processed. The sixteen bit address field
has the capability of addressing the maxi­
mum core memory of 32, 768 halfwords.

After instruction execution, the instruction
Address Field is incremented by 2 if the
executed instruction was in the halfword RR
format (2 bytes). The Address Field is in­
cremented by 4 if the executed instruction
was in the fullword RX or RS format (4
bytes).

i

I

'I

1.7 .4 Instruction Execution

During normal processing of a program, in­
structions are fetched from the location
specified by the Instruction Address, the
instruction is executed, the Instruction
Address is incremented, and anothm fetch
and execute cycle begins.

This sequence can be changed when a two-way
conditional choice is required, for entrnr .. ce
and return to and from a subroutine, or for
iterative groups of instructions, called loops.

Subroutine linkage provides for the introduc­
tion of a new Instruction Address and preser­
vation of the incremented current Instruction
Address as the location for return to the main
program. The instruction that provides this
facility is the Branch and Link instruction.

Decision making is implemented by the Branch
on Condition instructions which inspect the
setting of the 4-bit Condition Code (PSW 12:15)

Loop control can be performed by the condi­
tional branch when it tests the outcome of
arithmetic and counting operations. For
frequent combinations of such tests, the
Branch on Index instructions provide a con­
venient means of performing these tasks.

1.8 INTERRUPT SYSTEM

System interrupts are provided to detect the
presence of illegal instructions, machine
malfunctions, divide faults, and requests
for service from external devices. The
control of interrupts centers around the
Status field of the Program status Word
(PSW (0:11)). A zero in this field disables
an interrupt; a one in this field enables an
interrupt.

The PSW which defines the operating status
of the Processor is called the current PSW.
There are five additional Program status
Words, each associated with a specific class
of interrupt. The new PSW defines the ac­
tion to be taken for each type of interrupt;
the old PSW is a reserved storage area in

which the current PSW is placed when an
interrupt is recognized.

Each new PSW re-defines the status of the
machine, usually inhibiting interrupts of its
own class, or possibly all interrupts. The
instruction address field of each new PSW
specifies the starting location of the sub­
program to service the interrupt condition.
Exit from an interrupt service sub-program
is accomplished by the Load Program status
Word instruction specifying the stored old
PSW. This restores the machine status and
the instruction address which was current
at the time the interrupt occurred.

1 he Dedicated core locations of the rc­
definitive Program Status Word Pairs varies
from model to model and is given in sepa'"""
rate documents pertinent to a particular
system.

1.8. 1 Interrupt Procedure

After execution of each instruction, the
Processor interrogates for interrupts. If
an interrupt is found pending and the ap­
propriate bit in the Status Field of the PSW
is a one (enabled) the interrupt will take
place. The current PSW is automatically
stored as the old PSW for the class of inter­
rupt which is to be serviced and the new
PSW for the class of interrupt being serv­
iced becomes the current PSW. After the
sequence of instructions servicing the in­
terrupt has been completed, the old PSW
for the class of interrupts being serviced is
normally loaded and becomes the current
PSW.

Note that the new PSW location is not altered
by this interrupt procedure, so that subse­
quent interrupts of the same class will be
serviced in the same manner. The old PSW
location serves as a temporary storage
register for exit from the interrupt service
sub-program and may vary each time an
interrupt request is processed.

If an interrupt request occurs and the ap­
propriate bit in the status Field of the PSW
is a zero (disabled) an interrupt will not
occur and the request is ignored.

1-11

External interrupt requests from peripheral
devices remain pending, that is the interrupt
request will be repeated after execution of
each instruction, until enabled by the. PSW
and serviced by the program. Pr.ogram re­
start use of the Initialize switch cle,a:rs pend­
ing interrupts from external devices.

1.8.2 Acknowledgement of External
Interrupts

The Acknowledge Interrupt instruction
clears the interrupt request and returns
the device address ahd statt1s byte from the
peripheral causing the interrupt. The right­
most 4 bits of the status byte are copied
into the condition code (PSW 12: 15) while
the leftmost 4 bits of the status byte have
meanings unique to each peripheral device.
See Figure 1-9. Thedevice number and
device status byte provide sufficient infor­
mation to determine the cause and action
required by any external interrupt.

tu
I ~C j r-. to(PSW (12: 15))

bits

STATUS I
BYTE

Figure 1-9. Status Byte Format

1.8.3 Internal Interrupts

Interrupts which originate in the Processor
a re the Illegal Instruction, Machine Mal­
function, and Divide Fault Interrupts.

The Illegal Instruction interrupt is not rep­
resented by an enabling bit in the PSW, and
is therefore always operative. An illegal
instruction is defined as an operation code
which cannot be decoded into a legal repre­
sentation for processing. No attempt is
made to execute the illegal instruction, nor
is the instruction address field of the PSW
incremented. Therefore, the old PSW
stored as a result of the illegal instruction
interrupt points to the address of the illegal
instruction.

1-12

The Machine Malfunction Interrupt, enabled
by bit 2 of the Program Status Word, is in,...
dicative of a Processor failure fromwhich
no programmed recovery can be made. The
Machine Malfunction Interrupt is generated
by Memory parity error. When the memory
parity option is present in the Processor, a
parity bit is appended to each byte of mem­
ory. The parity bit is set to maintain odd
parity. That is, if a memory byte contains
an odd number of ones the parity bit is zero;
if the memory byte contains an even number
of ones, the parity bit is one.

Parity is recomputed for each byte transfer,
and the parity bits of the transferred byte
and the original byte are compared. If the
parity bits are different, and bit 2 of the Pro­
gram Status Word is set to enable the inter.;_
rupt, a Machine Malfunction Interrupt is
generated.

The fixed-point Divide Fault interrupt,
enabled by bit 3 of the Program Status Word,
is indicative of quotient overflow. The in­
terrupt takes place prior to alteration of the
operand registers, permitting the interrupt
service subroutine to examine these values.

The floating-point Divide Fault interrupt, if
enabled by bit 5 of the current Program
Status word, results from a floating-point
division by zero.

1.8.4 Power Failure

When power failure is detected, the instruc­
tion being executed is completed and the
Processor and memory are put in a locked
state. Power up will initialize the Proc­
essor to the status at the time of power
failure. The Processor will be placed in
the Halt mode, from which normal execu­
tion may proceed.

1.8.5 High Speed Interrupt Option
(GE-PAC 30-2 only)

Core location X'0020 (the High Speed Interrupt
Pointer) contains the starting address of an eight
byte block defined as follows:

PSW (save)

LOC (save)

The first fullword is a save area for the current
PSW when a High Speed Interrupt is taken. The
next full word is the next instruction to be per
formed. This instruction should be a branch to a
service subroutine as an automatic "push-down"
takes place when High Speed Interrupts occur. Lo­
cation X'0020' is incremented by eight every time
the interrupt takes place, defining another eight
byte block. For example, if location X'0020' con­
tains the address X'l300', when the High Speed In­
terrupt is taken, the Current Program Status Word
is saved in location X'l300'; the Pointer (location
X'0020') is incremented by eight; the hardware
PSW is set to zero (disabling all other categories
of interrupts) and the location counter is set to
X'l304'. Fullword X'l304' should contain a branch
to a service subroutine. If, during this service sub­
routine, another High Speed Interrupt occurs, the
same actions take place and another service sub­
routine is entered. As many interrupt service
subroutines as the programmer anticipates may be
so nested. (See CAUTION)

When a service subroutine is completed, those un­
finished subroutines entered earlier must be com­
pleted before the main program is re-entered.
This reversal of the "push-down" process is done
through the Un-Chain (UNCH) instruction.

The Un-Chain instruction has the following format:

UNCH Rl, R2 (RR)

lo
90 Rl R2

The Un-Chain instruction decrements _the High
Speed Interrupt Pointer (location X'0020') by eight
and loads the Program Status Word from the full­
word core location specified by the new value of
location X'0020'.

The first and second operands (Rl and R2) may in­
dicate any register. Neither operand will be
changed.

The following is a sample of "push-down" stack
programming.

HSINTA DS 2
DS 2
B SRVCA

HSINTB DS 2
DS 2
B SRVCB

HSINTC DS 2
DS 2
B SRVCC

If the UNCH instruction is terminating service sub­
routine SRVCC, the PSW is loaded from location
HSINTC which returns program control to the re­
mainder of SRVCB.

Figure 1-10 depicts a three level chain and un-chain
process which eventually returns control to the main
program with the High Speed Interrupt Pointer back
to its original value.

The High Speed I/O Interrupt, availal>le as an option
on GE-PAC 30-2, operates on a priot'ity above the
normal I/O Interrupt. If I/O Attention and Fast
I/O Attention occur simultaneously, the Fast I/O
Interrupt is serviced first. There is no enabling
bit in the PSW for Fast I/O Interrupt.

1-13

Main
Program

-- - ---- -

PSW (SAVE)

LOC (SAVE)

BRANCH

PSW (SAVE)

LOC (SAVE)

BRANCH

PSW (SAVE)

LOC (SAVE)

BRANCH

\.
I (SRVCA) (SRVCC)

Service
Subroutine

Service
Subroutine

A B

I

I

I
I

I l
_J

c

I
...... - - ./

.... z __ ,.. High Speed Interrupt

Interrupt Chaining

- - - - - ~ Interrupt Un-Chain Path

Figure 1 -10 Interrupt Chaining

The fact that th<' I ligh Speed Interrupt cannot be dis­
abled in the l'rocessor presents some interrcsting
consequences. Too many interrupts or a steady
interrupt (always active) will rapidly fill: memory
with 11push-down" stacks unlcst> a procedure sim­
ilar to that shown below is implemented.

DS
DS
B

DS
DS
UNCH

1-14

X'2'

X'2'

SRVCZ

XI 21

X'2'

0,0

Last Service Subroutine

The hardwar·e guarantees that the instruction fol­
lowing the l'SW save area will be performed before
High Speed Interrupts are again accepted;

The UNCll int>truction, therefore, will cause an
immediate r-cturn to the point of interruption in
the last service subroutine, effectively ignoring
all cxc<~ss interrupts.

1.9 INPUT/OUTPUT SYSTEM
GE- I'/\ C 30 Systems can transfer
informntion betwct~n the Processor
and pel"ipheral devices in several
modes:

1. A single 8 -bit byte at a
time through the General
Registers.

2. A single 8-bit byte at a time
through core memory.

3. A block of information at a time
(string of bytes) under Processor
control.

4. A block of information directly
from, or to memory and the
peripheral device under control of
an optional Selector Channel.

1.9.1 Basic Input/Output Programming

In general, any data transfer requires a
series of operations concerned with the
device or system with which information is
being transferred. Byfore data can be
transferred, the device or system must be
able to accept a command. The Output
Command instructs the device to perform
such functions as: switch to send mode,
switch to receive mocj.e, go forward, etc.
Once the device is in the correct mode of
operation, the data transfer can take place.

There are two methods of input/ output pro­
gramming. The first method, called pro­
gram controlled, interrogates the device to
determine if it is ready to transfer data,
and waits if necessary until transfer can
take place. The second method, called in­
terrupt controlled, permits the device to
demand service when the device itself is
ready for data transfer.

Either method of input/output, program
controlled or interrupt controlled, can be
used with the Read Data and Write Data
instructions to transfer information to or
from the General Registers or core
memory.

1.9.2 Program Controlled Input/Output

Program controlled data transfer can be
accomplished in many ways. The exact
sequence of instructions depends on the
pa iticular device with which data transfer
iH to take place. The following steps
describe the general approach to program
conti·olled data transfer.

1. An Output Command which specifies
the function to be performed is
sent to the device.

2. A Sense Status instruction sets the
condition code, indicating the state
of the device, i.e., busy, device
unavailable, etc.

3. A Branch on True Condition in­
struction waits for the not true
condition. In this case the branch
is taken back to the Sense Status
instruction. The effect of this is to
produce a wait loop until the device
is able to transfer data.

4. When the Branch on True Condition
fails, the device is ready to trans­
fer data. Tho next instruction,
Read Data or Write Data, causes
the data transfer to take place.

5. If more than a single byte of infor­
mation is to be transferred,
additional steps are required for
indexing. A typical procedure
would be:

1. Initialize general registers
with an index value and
increment

2. Output Command

3. Sense Status

4. Branch on True Condition to
sense status if not ready

5. Read Data, indexed

6. Branch on Index to cause in­
crement and test for number
of characters input.

1.9.3 Interrupt Controlled Input/Output

Interrupt controlled data transfer involves
the same basic principles used for pro­
gram controlled data transfer. The im­
portant difference is that the device is
permitted to interrupt when ready to
transfer data. The wait loop is eliminated
and the time saved can be used for inter­
nal processing. The following steps de-

1-15

scribe the general approach to interrupt
controlled data. transfer.

1 . Device signals Processor with
an interrupt request.

2. An Acknowledge Interrupt in­
struction returns the device
address and status byte to the
Processor.

3. A Read/Write Data instruction
causes data transfer to take place.

1.9.4 Block Input/Output Programming

The Optional Read Block and Write Block in­
structions greatly simplify programming of
strings of data. The single instruction
causes information to be transferred be­
tween a device and sequential locations in
co1·e memory. Transfer is terminated when
a pl'e-detorminod location is reached, or
when an unusun I device status is encountered.

Prior to hlock transfer, an Output Com­
mand :111d Sense Status instruction are used
to specify the function and test the status
of the device. The block transfer in­
struction can then perform all remaining
steps of input/output. Note that the com­
plete attention of the processor is given to
the data block transfer and that normal
processing will not resume until comple­
tion of this instruction.

l.9.5 Condition Code for Input/Output

The 4-bit Condition Code (CC) of the Pro­
gram Status Word is set after execution of
input/output instructions and the device in­
terrupt and control instructions. The inter­
pretation of the condition code after ~
input/output instruction differs from tho
setting caused by arithmetic and logical
operations.

Following an input/output or device control
im;truction, the condition code indicates the
device response such as available, busy, or
unavailable. It is important to note that data
transfer cannot take place until all bits of the
condilion code are zero.

1-16

Assignment of Condition Code bits for input/
output is shown on Table 1-9.

TABLE 1-9. PSW CONDITION CODE BIT
ASSIGNMENTS I/O INSTRUCTIONS

PSW Bit Assignment Mnemonic

12 Device busy (BSY)

13 Examine status (EX)

14 End of medium (EOM)

15 Device unavailable (DU)

The Device Busy condition indicates that the
device is not available or ready for transfer
of data.

An Examine Status condition indicates that
the leftmost 4-bits of the device status byte
must be tested to fully determine the device
condition.

If, after a Sense Status or Acknowledge
Interrupt instruction, the examine bit of the
condition code is set, and the leftmost 4 bits
of the status byte are zero, an improper
device response has occurred or a power
down is in process. The data transfer is
aborted and the device is released. If the
examine bit is sot after a Read or Write,
or Output Command Instruction, an im-
proper device response has occurred or a ·
power down is in process. A Sense Status
instruction should be executed and the left­
most 4 uits of the status byte tested to de­
termine the nature of the failure.

The End Of Medium condition is caused by
the presence of a code or indicator at the
end of a punched card, or paper or mag­
netic tape.

The Device Unavailable condition indicates
that the device is mechanically unable to
transfer data.

1.9.6 Direct Memory Access Channel

The optional Direct Memory Access Channel
provides high speed data transfer between

core memory and a single external device.
Data is transferred 16 bits in parallel at
up to the cycle rate of the memory.

The DMAC operates on a cycle stealing
basis; that is, when the channel is ready
to transfer data, a memory service re­
quest is generated causing the memory to
service the DMAC at the conclusion of its
present cycle. The transfer takes place
autonomously, the Processor having no
awareness of the transfer, and with no ap­
parent interruption to normal processing.

1.9.7 Selector Channel

The optional Selector Channel provides
GE-PAC 30 Digital Systems with the cap­
ability for block data tr an sf er between an
I/O device and memory. Once initiated, the
transfer is performed automatically by the
Selector Channel. No further control by the
Processor is required. The Processor
initiates the transfer by specifying the de­
vice address, whether to read or write, the
starting address in memory, and the final
address in memory. The Processor is then
free to continue with its program while the
Selector Channel completes the transfer.
When the transfer is _completed successfully,
or terminated due to a fault, the Processor
is notified via an interrupt.

1.10 REGISTER SAVE POINTER
(GE-PAC 30-2 only)

The halfword in core location X'0022'
contains the starting address of the
save area in core for storing the
fixed-point General Registers. When
the Processor is initialized - either

manually or due to a power failure -
the General Registers are automat­
ically stored in this save area. For
example, if the Pointer contains the
address X'lFEO', RO is stored in
location X'lFEO', Rl is stored in lo­
cation X'1FE2 ', ... H14 is stored in
location X'lFFC ', and H15 is stored
in location X'lFFE'. When power is
restored or the initialize sequence
terminates, the General Registers
are fetched from the save area and
loaded into the hardware registers.
The address placed in the Register
Save Pointer should be selected so
as not to overwrite current res
programs, or the dedicated core
area. On machines without the
floating-point option, it is convenient
to store the fixed-point registers in
the area normally used by the ±1oa t -
ing-point registers. This is done
setting the halfword at location X'22'
to zero. I Ialfword core location
X '0024' is used to save the current
PSW Status and Condition Code dur -
ing initialize sequences. Location
X'0026 1 is used to save the Current
PSW Location Counter during initial­
ize sequences.

1.11 CORE MEMORY ALLOCATI N

The micro-program uses the first 80
bytes of core memory. TABLE 1- 1

shows the allocation of core mem­
ory for the (~E-PAC 30-01. TABLE
1-11 shows t:he allocation for the
GE - Pl\ C :30 - O 2 .

1-17

TABLE 1-10
GE-PAC 30-1

CORE MEMORY ALLOCATION FOR
GENERAL REGISTERS AND PROGRAM STATUS WORDS

IIcxadecimal Memory Address Register Assignment

General Registers

00 - 01
02 - 03
04 - 05
06 - 07
08 - 09
OA - OB .
oc - on
OE - OF
10 - 11
12 - l::l
14 - 15
16 - 1 7
18 - 19
lA - 1B .
lC - 1D .
lE - lF .

Micro-Processor Registers

20 - 21
22 - ')"

~ ,)

24 - ') r-
~.l

'.2G - '.27
:rn - 2F

Program Status Words

30 - 33
34 - 37

3C - :; I•' .

40 - 4:3
44 - 47

48 - 4B .
4C - 4F .

50

1-18

RO
Rl
R2
R3
R4
R5
R6
R7
RS
R9
R10
Rll
R12
R13
R14
R15

Instruction Register
Instruction Address Register
Current PSW: Status and Condition Code
Current PSW: Instruction Address Counter
Reserved for Micro -Processor

Old PSW: Illegal Instruction Interrupt
New PSW: Illegal Instruction Interrupt

Old PSW: Machine Malfunction Interrupt
New PSW: Machine Malfunction Interrupt

Old PSW: External Device Interrupt
New PSW: External Device Interrupt

Old PSW: Divide Fault Interrupt
New PSW: Divide Fault Interrupt

First user available memory location

Hexadecimal Memory Address

Floating-Point Registers

00 . 03 .
04 - 07 .
08 - OB •
OC - OF.
10 - 13 .
14 - 17 .
18 - 1B .
lC - lF.

Micro -Processor Registers

20 - 21
22 - 23
24 - 25
26 - 27

Program Status Words

28 - 2B .
2C - 2F .
30 - 33 .
34 - 3 7 .
38 - 3B .
3C - 3F .
40 - 43 .
44 - 47 .
48 - 4B .
4C - 4F.

50 .•..

Bit Set

0
1
2
3
4
5

TABLE 1-11
GE-PAC 30-2

CORE MEMORY ALLOCATION FOR REGISTERS
AND PROGRAM STATUS WORDS

Register Assignment

. RO

. R2

. R4
• R6
. RS
.RlO
. R12
• R14

. High Speed Interrupt Pointer

. Register Save Pointer

. Current l'SW: Saved Status and CC

. Current PSW: Saved Location Counter

. Old PSW Flp Divide Fault Interrupt

. New PSW Flp Divide Fault Interrupt

. Old PSW Illegal Instruction Interrupt

. New PSW Illegal Instruction Interrupt

. Old PSW Machine Malfunction Interrupt

. New PSW Machine Malfunction Interrupt

. Old PSW External Device Interrupt

. New PSW External Device Interrupt

. Old PSW Fix Divide Fault Interrupt

. New PSW Fix Divide Fault Interrupt

. First User Available Memory Location

PSW STATUS FIELD ASSIGNMENTS

Meaning

Wait State
External Device Interrupt
Machine Malfunction Interrupt
Fixed-Point Divide Fault Interrupt
Reserved

6 through 11
Floating-Point Divide Fault Interrupt
Unassigned

1-19

' ~ ..

CHAPTER 2

INSTRUCTION REPERTOIRE

2.1 INTRODUCTION

The instruction repertoire has been grouped
by function in this Chapter. The use and

1. The name of the instruction.

2. Instruction word chart for every
format the instruction uses, in­
cluding: mnemonic operation code,
and first and second operand desig­
nations in the correct assembler
format. The format type is desig­
nated by [RR] , [RX], or [RS]. An
instruction diagram with hexa­
decimal operation code and the
locations of all fields is also
provided.

3. A description of instruction
operation.

4. A diagrammatic representation of
instruction operation.

5. A chart illustrating the possible
variations of the condition code in
the Current Program Status Word
as a result of performing the in­
struction. A 1 indicates set, a
zero indicates reset. It is impor­
tant to note that any instruction
which changes the condition code
can change all four bits. The con­
ditions listed on the chart are only
those conditions which are meaning­
ful after a particular instruction.
other bits may be changed, but
their condition is not meaningful.

G. A programming note to provide ad­
ditional pertinent or clarifying
information.

I
operation of each instruction is presented in
the following format:

1. ADD HALFWORD

AH R 1, A(X2)

[RR]

[RX]
2. lo 718 Rl llr X215r6 =J 4A A

AH! R 1, A(X2)

lo
CA

718 Rl 111'2 X215116
t-\

The 16-bit second operand is algebrai­
cally added to the General Register

3. specified by Rl. The resulting sum is
contained in Rl, the second operand is
unchanged.

(Rl) (Rl) + (R2)

4. (Rl)

(Rl)

(Rl) +[A + (X2)]

--- (Rl) + A + (X2)

[RR]

[RX]

[RS]

5.

6.

RESULTING CONDITION CODE:

12 13

c v

l
1

1415

G L

0 0
0 1
1 0

Sum is zero.
Sum is less than zero.

Sum is greater than zero.
Arithmetic overflow.

Carry

PROGRAMMING NOTE

The ADD HALFWORD IMMEDIATE
(AHI) instruction produces a value which
is the algebraic sum of the address field
itself plus the content of a General
Register index (X2), plus the first oper­
and General Register (Rl).

[RS]

21

2-1

The symbols and abbreviations used in the
instruction diagrams are defined as follows:

2-2

()
[]

Parentheses or Brackets. Read
as "the content of ... ".

Arrow. Read as "is replaced
by ... " or "replaces ... ".

A The 16-bit halfword address
which is a part of the RX and
RS instructions.

Rl The register address desig­
nated as the first operand.

R2 The register address desig­
nated as the second operand
of an RR instruction.

X2 The address of a General
Register the content of which
is used as an index value.

Ml

(0:7)
(8:15)
(lG::Jl)

Mask of 4 bits specifying
Branch on Condition testing.

A bit gTouping within a byte,
a halfword, or a fullword.
Head as ''O thru 7 inclusive",
"liit.s K thru 15inclusive", etc.

PSW Program Status Word of 32
bits containing the Status,
Condition Code, and current
instruction address.

cc

c

v

G

L

Condition Code of 4 bits con­
tained in the PSW.

Carry Bit contained in the
condition code (bit 12 of PSW).

Overflow Bit contained in the
condition code (bit 13 of PS\V).

Greater Than bit contained in the
condition codl' (bit 14 of PS\V).

Less Than bit containt>d in the
condition code (bit l;) of PSW).

Arithmetic operations - Add,
Subtract, Multiply, and Divide
respectively"

Logical comparison

2.2 LOAD AND STORE INSTRUCTIONS

The load and store instructions transfer in­
formation between core memory and the
General Registers or the Program Status
Word. Load and store operations are per­
formed on 8-bit bytes, 16-bit halfwords, or
32-bit fullwords.

2.2.1 Load Halfword

LHR Rl, R2

lo 08 718 R l llr2 R2151

(RR]

LH Rl, A(X2)

I° 48 718 Rl llr2 X2151'6 A

LHI Rl, A(X2)

lo cs 718 R l 111'2 X215r6
A

The 16-bit second operand is loaded into the
General Register specified by Rl. The
second operand is unchanged.

(Rl) (R2)

(Rl) [A + (X2)]

(Rl) A+ (X2)

Resulting Condition Code:

12 13

c v
14 15

G L

0 0
0 l
l 0

Operand is zero.
Operand is less than zero.
Operand is greater than zero.

Programming Note:

(RR]

[RX]

[RS]

The LOAD HALFWORD IMMEDIATE (LI-II)
instruction produces a value which is the
algebraic sum of the value of the address
field itself and the content of a General
Register index (X2).

2.2.2 Store Halfword

A

The 16-bit first operand is stored in the
core memory location specified by the
second operand. The first operand is
unchanged.

(Rl) --- [A + (X2)] [RX]

Resulting Condition Code:

Unchanged.

2-3

2.2.3 Load Byte

LBR Rl, R2

I° 93
7

18 R l
11r2 ~~5 1

(RR)

LB Rl, A(X2)

lo 03 71sRl 111'2x215['6
A

The 8-bit second operand is loaded into the
rightmost (least significant) 8 bits of the
General Register specified by Rl. The left­
most (most significant) 8 bits of Rl are set
to zero. The second opera;nd is unchanged.

[lU (8:15)] --[R2 (8:15)] [RR]

[IU (0:7)] ---Zero

[JU (8:Hi)] ---[A + (X2)] [RX]

[Rl (0:7)] ---Zero

Resulting Condition Code:

Unchanged.

2-4

2.2.4 Store Byte

STBR Rl, R2

I° 92 718 Rl ll2 R2151

[RR)

STB Rl, A(X2)

lo .02 718 Rl 111'2 X215r6
A

The rightmost (least significant) 8-bit byte
of the first operand is stored in the General
Register or co.re memory location specified
by the second operand. The first operand
is unchanged.

[Rl (8:15)J---[R2 (8:15)]

[Rl (8:15)) [A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

[RR]

[RX]

In the register-to-register (RR) form of this
instruction the leftmost byte, R2(0:7), is
unchanged.

2.2.5 l.oad Multiple

A

Sequential halfwords from memory are
loaded into successive General Registers,
beginning with the General Register speci­
fied by the Rl field. The first halfword is
defined by[A+(X2)]. The operation is ter­
minated when Rl5 is loaded from memory.

Note that any number of sequential General
Registers can be loaded in this manner.

1. (Rl)- [A + (X2)]

2. Rl: X'F'
if Rl = X'F', the instruction is

finished
if Rl -/ X'F', then:

3. Rl + 1-Rl

4. A + 2 -A, return to equation 1

Resulting Condition Code:

Unchanged.

2.2.6 Store Multiple

STM Rl, A(X2)

Loo 71a Rl "1'2 x2 '5l1s
(RX]

A
311

Successive General Registers are stored
sequentially into memory, beginning with
the General Register specified by the Rl
field. The first storage address is deter­
mined by[A + (X2)] . The operation is
terminated when R15 is stored in memory.
Note that any number of sequential General
Registers can be transferred in this manner.

1. (Rl)- [A + (X2)]

2. Rl: X'F'
if Hl .~~ X'F', then instruction is

finished
if Rl -/ X'F', then:

3. Rl + 1-- Rl

4. A+ 2 -A, return to equation 1

Resulting Condition Code:

Unchanged.

2-5

2.2.7 Floating-Point Load

LER Rl, R2

lo 28 718 Rl 111'2R2151

A

The floating-point second operand is normal­
ized and placed in the floating-point register
specified as the first operand. During nor­
malization, the fraction is shifted left hexa­
decimally (4 bits at a time) until the most
significant hexadecimal digit is not .zero.
The exponent is decremented by one for
each hexadecimal shift required. Zeros
arc shifted into the least significant hexa­
decimal digit of the fraction. The second
operand is unchanged.

If the normaliz.ation causes exponent under­
flow, the entire floating-point result is set
to zero and the overflow flag is set.

(Rl)--- (R2)

(Rl) [A + (X2)]

Resulting Condition' Code:

12 13

c v

1

2-6

14 15

G L

0 0
0 l
l 0

Zero
Less than zero.
Greater than zero.
Exponent underflow.

(RR)

(RX)

2.2.8 Floating Point Store

STE Rl, A(X2)

L 60 119 Rl lr2 x2'5r
(Rx)

A

The floating-point first operand is placed
in the core memory location specified by
A + (X2). The first operand is unchanged.

(Rl) [A + (X2)] (RX)

Resulting Condition Code:

Unchanged.

311

2.2.9 load Program Status Word

A

A 32-bit operand is loaded into the Current
Program Status Word. The operand is
unchanged.

[PSW (0:31)]-- [A + (X2)] [RX]

Resulting Condition Code:

Determined by PSW loaded by the instruction.

2.2.10 Autoload

Al A(X2)

lo D5 A

The AUTOLOAD instruction loads memory
with a block of data from a byte oriented in­
put device (e. g. teletype, photo-electric
paper tape reader, magnetic tape, etc.).
The data is read a byte at a time and stored
in successive memory locations starting
with location X'80 1• The last byte is load­
ed into the memory location specified by
the address of the second operand, A + (X2).
Any blank or zero bytes that are input prior
to the first non zero byte are considered to
be leader and are therefore ignored; all other
zero bytes are stored as data. The input
device is specified by memory location X178 1 •

The device command code is specified by
memory location X179 1 , this is the normal
binary. input device specification.

1. (X'80') - byte #1

2. (X'7F' + n)- byte #n

3. if A + (X2) < X'SO' + n, instruction
is finished, otherwise return to
equation 2.

Resulting Condition Code:

12 13

c v
0 0
l

l

1415

G L
0 0

l
l

Data transfer completed correctly.
Device Busy (BSY)
Examine Status (EX)
End of Medium (EOM)
Device Unavai !able (DU)

2-7

2.3 FIXED POINT ARITHMETIC
INSTRUCTIONS

The Fixed Point Arithmetic instructions
provide for addition, subtracti<>n, multipli­
cation and division of halfword operands.
Multiple precision arithmetic operations are
performed by the add/subtract with carry
halfword instructions.

2-8

2.3. l Add Halfword

AHR Rl, R2

I° 0A 718 R 1 "1'2 R2151

AH Rl, A(X2)

lo 4A 718R1 111'2 X2 151'6

[RR)

A

A

The 16-bit secona operand is algebraically
added to the General Register specified by
Rl. The resulting sum is contained in R1,
the second operand is unchanged.

<Rl)---- (Rl) + (R2)

\iU)---- (Rl) +[A + (X2)]

(Rl)---- (Rl) +A + (X2)

Resulting Condition Code:

12 13

CV

1
1

1415

G L

0 0
0 1
1 0

Sum is zero.
Sum is less than zero.
Sum is greater than zero.
Arithmetic overflow.
Carry

Programming Note:

[RR]

[RX]

[RS]

The ADD HALFWORD IMMEDIATE (AHI)
instruction produces a Value which is the
algebraic sum of the address field itself plus
the content of a General Register index (X2),
plus the first operand General Register (Rl).

2.3.2 Add With Carry Halfword

ACHR Rl, R2

lo .0E
71~ R 1

111'2 R2
151

ACH R 1, A(X2)

lo 4E 718 Rl 111'2 X2 15,16

[RR)

[Rx)

A j
The 16-bit second operand and the carTy bit of
the condition code are algebraically added to
the General Register specified by R1. The re­
sulting sum is contained in Rl, the second
operand is unchanged.

[RR] (Rl) ---- (Rl) + (R2) + C

(Rl)----1.IU) +[A + (X2)] + C [RX]

Resulting Condition Code:

12 13

CV

1
1

1415

G L

0 0
0 1
1 0

Sum is zero.
S1Jm is less than zero.
Sum is greater than zero.
Arithmetic overflow.
Carry

Programming Note:

Multiple precision addition operations require
a carry forward from the least significant oper­
ands to the most significant. To accomplish
this, the locations containing the least signifi­
cant portions of the two operands are summed
using the Add Halfword instruction. A carry
forward, if it occurs, is retained in the carry
bit position of the condition code (PSW 12).

The locations containing the next least signifi­
cant portions of the two operands are then
summed using the Add With Carry Halfword
instruction. The carry bit contained in the
condition code (set from the previous addition)
participates in this sum; the carry bit position
is then set to reflect the new result.

The Add With Carry Halfword instl'l.Jction is
I

used on succeeding pairs of operan$ until the
most significant operands of the multiple pre­
cision words have been summed. The result­
ing condition code is valid for testing the
multiple precision word.

2-9

2.3.3 Subtract Halfword

[RR]

A

A

The 16-bit second operand is subtracted·
from the General Hegister specified by Rl.
The difference is contained in Rl, the
second operand is unchanged.

(Rl) ---- (Rl) - (R2)

(JU) (Rl) - [A + (X2)]

(IU) (JU) - A + (X2)

Resulting Condition Code:

12 13

c v

1
1

14 15

G L

0 0
0 1
1 0

Difference is zero.
Difference is less than zero.
Difference is grea.ter than zero.
Arithmetic overflow

Borrow

Programming Note:

[RR}

[RX]

[RS]

The SUBTRACT HALFWORD IMMEDIATE
(SHI) instruction produces a value which is
the difference between the first operand
General Register (Rl) loss tho sum of the
address field itself and tho content of a
General Register index (X2).

2-10

2.3.4 Subtract With Carry Halfword

[RR]

A

The 16-bit second operand with the carry
(borrow) bit is subtracted from the General
Register specified by Rl. The difference
is contained in Rl, the second operand is
unchanged.

(Rl) ---- (Rl) - (R2) - C [RR]

(Rl) ---- (Rl) - [A + (X2)]-C [RX]

Resulting Condition Code:

12 13

c v

1
1

14 15

G L

0 0
0 l
1 0

Difference is zero.
Difference is less than zero.
Difference is greater than zero.
Arithmetic overflow.
Borrow

Programming Note:

Seo Add with Carry Halfword.

2.3.5 Multiply Halfword

[RR]

MH R l, A(X2) [RX]

L._4_c ___ 1_js_R_1 _' '_j'_2_x_2_'5_l'_6 _____ A_ ~----=-3j

The 16-bit second operand is multiplied
the contents of the General Register specif icd
by Rl + 1. The first operand, the contents
of the General I~cgister specified by IU, must
specify an even numbered register. The re­
sulting 32-bit product is contrrined in Hl and
Rl + 1, an even-odd pair; the second operand
is unchanged. The sign of the product is deter­
mined b.v the rules of algebra.

(IU, Rl + 1)-(IU + l)*(R2) [RR]

(Rl, IU + 1)- (Rl + l)*[A + (X2)] [RX]

Resulting Condition Code:

Unchanged.

Programming Note:

After multiplication, the most significant 15
bits with sign arc contained in Rl. The least
significant 16 bits arc contained in Rl + 1.

2.3.6 Divide Halfword

(RR] OHR Rl, R2

lo 00 718 Rl llr2 Rt]

DH Rl, A(X2) [Rx]

lo 40 718 Rl 11112 X215,16 -___ A ______ j~'

The 16-bit second operand is divided into the
32-bit dividend contained in the General Reg­
ister specified by Hl and Hl + 1. The first
operand, Rl, mll~;i ~;pccify an even
register. The n;;rnl ting 15--bit
sign is contained i 11 1 a + 1; a l:"'i-bit re­
mainder with Hjgn i ,c; contained in IU the
second operand i '" u1\changed. The sign
the result is dcterrninud by thu rules of
algebra; the sign of the remainder is the same
as the sign of the dividend.

(Rl + 1) --- (Rl, Rl + l)/(R2) [RR]

(Rl) ~----- Remainder

(Rl + 1) ----­ (Rl, Rl + 1)/[A + (X2~[RX]

(Rl) ncmainder

Resulting Condition Code:

Unchanged.

Programming Note:

A quotient which cannot be expressed 16
bits will cause a Divide Fault interrupt
enabled by bit 3 of the Program status
Word. The operands will remain unchanged.

2-11

2.4 FLOATING-POINT ARITHMETlC
INSTRUCTIONS

The Floating-Point Arithmetic instructions
provide for addition, subtraction, multiplica­
tion, and division of floating-point operands.
These instructions are normally used to per­
form calculations on operands with a wide
range of magnitude, and yield results which
are scaled to preserve precision.

NOTE

Floating-Point Registers

The eight Floating-Point Registers
are used as nccumulators in float­
ing-point arithmetic operations.
Each r·cgistcr is thirty-two bits, or
one f'llllword, long. Bit 0 is the sign
bit of tlw fraction, bits 1 through 7
are the exponent of the fraction, and
bits 8 through 31 contain a fraction
expressed and manipulated in hexa­
decimal.

The Floating-Point Registers are
assigned consecutive byte addresses
beginning at address X '0000 '. The
address in memory is equal to twice
the register number (only even num­
ber· aclclr·cs:.:H:s ;11·e permitted). For
example, l•'loating-Point Register 6
is maintairwcl in the fullword core
location at addn~s s X 'OOOC '.

2-12

2.4.1 Floating~Point Add

,AER Rl, R2 r 2A 718 Rl llr2R2151
[RR]

AE R 1, A(X2)

lo 6A 718Rl111'2 x2'51's
[RX]

=J A

The exponents of the two operands are com­
pared. If the exponents differ, the fraction
with the smaller exponent is right shifted
hexadecimally (4 bits at a time) and its ex­
ponent is incremented by one for each hexa­
decimal shift until the two exponents agree.
The fractions are then algebraically added
and if a carry results, the exponent of the
sum is incremented by one and the fraction
(result) is shifted right one hexadecimal
position (4 bits). The carry is shifted into
the most significant hexadecimal digit of the
fraction. If an exponent overflow results,
the exponent and fraction of the result are
set to all ones and the Overflow flag is set.
The sign of the result is not affected by the
overflow.

If no carry results from the addition of frac­
tions, the sum is normalized. During nor­
malization, the fraction is shifted left hexa­
decimally (4 bits at a time) until the most
significant hexadecimal digit is not zero.
The exponent is decremented by one for
each hexadecimal shift required. Zeros
are shifted into the least significant hexa­
decimal div;it of the fraction.

If the normalization causes exponent under­
flow, the sig-n, exponent and fraction of the
sum arc set to zero and the Overflow flag is
set. If a ir,cro sum is generated from adding
two equal magnitudes with unlike signs, the
entire floating-point result is zeroed.

(Hl) ---(IU) + (R2)

(JU) (IU) +[A + (X2)]

(RR)

(RX)

2.4.1 Floating-Point Add (Continued)

Resulting Condition Code:

12 13

c v

1

14 15

G L

0 0
0 l
1 0

Sum is zero.
Sum is less than zero.
Sum is greater than zero.
Exponent overflow or underflow.

2.4.2 Floating-Poin1 Subtract

(RR]

A

The exponents of the two operands are com­
pared. If the exponents differ, the fraction
with the smaller exponent is right shifted
hexadecimally (4 bits at a time) and its ex­
ponent is incremented by one for each hexa­
decimal shift until the two exponents agree.
fhe fractions are then algebraically subtrac­
ted. If a carry results, the exponent of the
difference is incremented by one and the frac­
tion (result) is shifted right one hexadecimal
position (4 bits). The carry is shifted into
the most significant hexadecimal digit of the
fraction. If an exponent overflow occurs,
the exponent and fraction of the result are
set to all ones and the Overflow flag is set.
The sign of the result is not affected by the
overflow.

If no carry results from the subtraction of
fractions, the difference io normalized by
shifting the fraction left hexadecimally (4
bits at a time) until the most significant
hexadecimal digit is not zero. The expon­
ent is decremented by one for each hexa­
decimal shift required. Zeros are shifted
into the least significant hexadecimal digit
of the fraction.

If the normalization causes exponent under­
flow, the entire floating-point result is set
to zero and the Overflow flag is set.

(Rl) (Rl) - (R2) (RR)

(Rl) (Rl) - [A+ (X2)] (RX)

Resulting Condition Code:

12 13

c v

1

1415

G L

0 0
0 l
l 0

Difference is zero.
Difference is less than zero.
Difference is greater than zero.
Exponent overflow or underflow.

2-13

2.4.3 Floating-Point Multiply

MER RI, R2

I° 2C 718R1 llr2 R2151

(RR]

ME R 1, A(X2)

I° 6C 718Rl111'2x2 15116
A

The exponents of the two operands are ad­
ded to produce the exponent of the result.
The resultant exponent is readjusted to ex­
cess 64 notation. If an exponent overflow
occurs, the exponent and fraction of the
product are set to ones and the Overflow
flag is set. The sign of the product is de­
termined by the rules of algebra. If an
exponent underflow occurs, the entire
floating-point result is set to zero and the
Overflow flag is set.

If an exponent overflow or underflow does
not occur, the multiplication takes place.
If the product is zero, the entire floating­
point result is zero. If the result is not
zero, normalization may occur. During
normalization, the fraction is shifted left
hexadecimally (4 bits at a time) until the
most significant hexadecimal digit is not
zero. The exponent of the result is decre­
mented by one for each hexadecimal shift
rcqui red. After normalization, the pro­
duct is rnuncled to 24 bits.

If normalization t:auses the exponent to un­
derflow, the enli re floating point result is
set to zero and the Overflow flag is set.

(Rl) .,....___ (1U)*(H2)

(Hl) (Hl)*[A + (X2)]

Resulting Condition Code:

12 13 14

c v G

0
0
l

l
l

2-14

15

L

0
l
0

Product is zero.
Product is less than zero.
Product is greater than zero.

Exponent overflow or underflow.

(HH)

(RX)

2.4.4 Floating-Point Divide

DER

lo
[RR]

DE Rl, A(X2)

lo 6D 718 R1111'2x2'5f6

(RX]
311

A

The exponents of the two operands are sub­
tracted to produce the exponent of the result.
The resultant exponent is readjusted to ex­
cess 64 notation. If an exponent overflow
occurs, the exponent and fraction of the
quotient are set to all ones and the Overflow
flag is set. The sign of the quotient is de­
termined by the rules of algebra. If an ex­
ponent underflow occurs, the entire floating­
point result is set to zero and the Overflow
flag is set. If the divisor (the second oper­
and) is zero, a floating-point divide fault
interrupt is caused if enabled by bit 5 of the
Program Status Word, and the operands are
unchanged.

If the exponent overflow or underflow does
not occur, and if the divisor is not zero,
the second operand is divided into the first
operand . Division continues until the quo­
tient is normalized, adjusting the exponent
for each additional division required. If an
exponent underflow occurs, the entire float­
ing-point result is set to zero and the Over­
flow flag is set.

No remainder is returned to the user. The
quotient is rounded to compensate for the loss
of the remainder.

(Hl)---(Rl)/(R2)

(Rl) (Rl)/[A + (X2)]

Re su I ting Con di ti on Code:

12 13 14 15

C V G L

0 0 Quotient is zero.

0 l Quotient is less than zero
l 0 Quotient is greater than zero

1 Exponent overflow or underflow

L.____.L_,__ . __ L__

(RR)

(RX)

2.5 LOGICAL INSTRUCTIONS

The Logical instructions operate bit by bit
on the first operand and its corresponding
bit in the second operand. These operations
provide for masking selected portions of a
halfword, or comparison for relative
magnitude.

2.5.1 AND Halfword

NHR Rl, R2

I° 718 Rl 111'2 R2151
04

[RR]

NH R 1, A(X2)

lo 44
718 R 111r2 X2151'6

A

NHI Rl, A(X2)

lo
C4

718 R l 11112 X215r6
A

The logical product of the 16 -bit
operand and the content of the General Reg­
ister specified by Rl replaces the content
Rl. The 16-bit product is formed on a bit­
by-bit basis.

(Rl) ---- (Rl) AND (R2) [RH]

(Rl) ---- (Rl) AND [A+ (X2)] [RX]

(Rl) (Rl) AND A+ (X2) [RS]

Resulting Condition Code:

12 13

CV

1415

G L

0 0
0 1 ~
l 0 f

Logical product is zero.

Logical product is not zero.

Programming Note:

The AND HALFWORD IMMEDIATE (NHI) in~
struction produces a value which is the logi
cal product of the address field itself plus
the content of a General Register index (X2)
with the first operand General Register (Rl).

The truth table for the AND function is:

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

2-15

2.5.2 OR Halfword

OHR Rl, R2

lo 06 718 R l 111'2 R~51
(RR)

OH Rl, A(X2)

I° 46 718 Rl 111'2 X215r6
A

A

The logical sum of the 16-bit second operand
and the content of the General Register spec­
ified by Rl replaces the content of Rl. The
16-bit sum is formed on a bit-by-bit basis.

(Rl)---- (Rl) OR (R2) [RR]

(IU) (Rl) OR [A+ (X2)] [RX]

(Rl) (Hl) OR A+ (X2) [RS]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 Logical sum is zero.
0 l
l 0

t L . I . f og1 ca sum 1 s not zero.

Programming Note:

The OR HALFWOHD IMMEDIATE (OHI) in­
struction produces a value which is the logical
:mm of the address field itself plus the content
of a General Register index (X2) with the first
operand General Register (Rl).

l'he truth table for the OR function is:

2-16

0 OR 0 = 0

0 OR 1=1

1 OR 0 = 1

1 OR 1=1

2.5.3 Exclusive OR Halfword

XHR Rl, R2

1
0 7

1
8 llr2 15

1 . 07 _ 'Rl R2

(RR)

A

A

The Logical difference of the 16-bit second
operand and the General Register specified
by Rl replaces the content of Rl. The 16-bit
difference is formed on a bit-by-bit basis.

(Rl) ---- (Rl XOR (R2) [RR]

(Rl) (Rl) XOR[A + (X2)][RX]

(Rl) (Rl) XOR A + (X2) [RS]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 Logical difference is zero.
0 l
l 0 } Logical difference is not zero.

Programming Note:

The EXCLUSIVF~ OR HALFWORD IMME­
DIATE (XIJI) instruction produces a value
which it:; the logical difference of the address
field iti;t~lf plus the content of the General
Registt~ r index (X2) with the first ope rand
Gene1·al llcgistcr (IU).

The truth table for the EXCLUSIVE OR func­
tion h.;:

0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 == 0

2.5.4 Compare Logical Halfword

CLHR Rl, R2

!0
05

1
18 Rl

11
1'

2 ~
(RR]

CLH Rl, A(X2)

I° 45 718 Rl 111'2 X2151'6 A

A

The first operand specified by Rl is com­
pared logically to the 16-bit second operand.
The result is indicated by the setting of the
condition code (PSW 12:15); both operands
remain unchanged.

(CC) ----(Rl) (R2) [RR]

[RX]

[RS]

(CC) (Rl) [A+ (X2)]

A + (X2) (CC) (Rl)

Resulting Condition Code:

12 13 14 15

c v G L

0 0
0 1
l 0

l
0

First operand equal to second operand.

} First operand not equal to second operand.

First operand less than second operand.
First operand equal to or greater than
second operand.

Programming Note:

The logical comparison is performed by sub­
tracting the second operand from the first
operand. The result is in the condition code
setting, the operands are not modified.

The COMP ARE LOGICAL HALFWORD IM­
MEDIATE (CLHI) instruction produces a
value which is the logical comparison of the
:1dcl rcss field itself plus the content of a
< ;cnL' rnl Register index (X2) with the first
ope 1·and General Register (IU).

2.5.5 Floating-Point Compare

CER Rl, R2

lo 29 718 R l 11112 R2 151
[RR]

CE R l, A(X2) [RX]

69 A
,

The first operand is compared to the second
operand. Comparison is algebraic, taking
into account the sign, fraction, and
of each number. The result is indicated
the setting of the condition code (PSW12
Both operands remain unchanged.

(CC)------(R1) :(R2)

(CC) (IU):[A + (X2)] (RX)

Resulting Condition Code:

12 13 14 15

c v G L
0 0
0 1
1 0
0

0

l

First operand equals second operand
First operand is less than the second
First operand is greater than the second operand
First operand is less than or equal to the

second operand
First operand is greater than or equal to the

second operand
First operand is less than the second operand

2-17

2.6 SHIFT INSTRUCTIONS

The Shift instructions provide for arithme- ·
tic and logical manipulation of information
contained in the General Registers. Bits
shifted out of the high or low order end of a
General Register are passed through the
carry bit position of the condition code
(PSW 12). After execution of a shift in­
struction, the last bit which was shifted out
is contained in the carry position.

The number of bit positions shifted is speci­
fied by the sum of the value A with the con­
tent of the General Register index (X2).
Note that the address field of the instruction

2-18

(A) is not interpreted as a memory location
address but as an unsigned integer. The
value of A may be form 0 to FFFF.

A shift of zero positions causes the condi­
tion code to be set properly with no altera­
tion to the information contained in the
General Register.

A shift specification of more than 15 bit posi­
tions will give meaningful results, since only
the four least significant bits of the sum of A
plus (X2) are used to specify the number of
positions to be shifted.

2.6.1 Shift Left Halfword Arithmetic

A

I'he content of the first operand (Rl) is
shifted left the number of bit positions
specified by the second operand. Bits 1
through 15 are shifted, the sign bit is un­
changed. High order bits shifted out of
position 1 are shifted thru the carry bit of
the PSW and then lost. Zeros are shifted
into position 15.

(R l)

10 I sl 151

• (C)

Resulting Condition Code:

12 13

c v

~1

14 15
G L

0 0
0 l
1 0

Result is zero.
Result is less than zero.
Result is greater than zero.
Last bit that was shifted out was a zero.
Last bit that was shifted out was a one.

2.6.2 Shift Right Halfword Arithmetic

SRHA R 1, A(X2) [RS]

l~o~_C_E~-7~'8~R_l_"~l'2_X_2_1~51~16~~~~-A~·~

The content of the first operand (Rl) is
shifted right the number of bit positions
specified by the second operand. Bits 1
through 15 are shifted, the sign bit is un­
changed. Low order bits shifted out of
position 15 are shifted thru the carry bit of
the PSW and then lost. The sign bit is pro­
pogated right into position 1.

(R l)

10 I si 151

I
+

(C)

Resulting Condition Code:

12 13
c v

0
1

14 15
G L

0 0
0 l
1 0

Result is zero.
Result is less than zero.
Resu It is greater than zero.
Last bit that was shifted out was a zero.
Last bit that was shifted out was a one.

2-19

2.6.3 Shift Left Ma:tfword ·Logica.I

SLHL Rl, A(X2) tRS]
lo CD 7LR1 111'2XlJ5,16

A
31"1

The content ·of the first operand (Rl) is
shifted left the number of positions specified
by the second operand. All 16 bits :of the
halfword are shifted. High order :bits shifted
out of position 0 are shifted thru the carry
bit of the PSW and then lost. Zeros a'I';e
shifted into position 15.

(Rl)

lo

(C)

Resulting Condition Code:

12 13 14:15

c v G L

0 0
:Q l
ro

0
1

2-20

Resul.t is .zero.
Result is less than zero.
:Result is ·greater than zero.
'Las;t bit that was shifted out was a zero.
Last bi·t that was shifted out was a one.

:SR:HL. Rl, A(X2) {RS)

r cc 7rRl 11['2xi"~[JO
A

~r,

The content -of the fi:rst operand (R1) is
shifted right the number of bit positions
specified by the second operand. All 16 bits
of the halfword are shifted. Low order bits
shifted out of position 15 are shifted thru the
carry bit of the PSW and then lost. Zeros
are shifted into position zero.

(R 1)

lo

+
(C)

Resulting Condition Code:

12 13

c v

0
1

1415

G L

0 0
0 1
1 0

Resu It is zero.
Result is less than zero.
Result is greater than zero.
Last bit that was shif.te.d out was .a zero.
Last bit that was shifted out was a one.

2.1 BRANCH INSTRUCTIONS

Branch instructions are programmed decisions
providing entry to subprograms, as well as
testing the result of arithmetic logical, or
indexing operations.

Many Processor operations result in setting
of the Condition Code in the Program Status
Word (PSW (12:15)). The Branch on Condition

instructions implement the testing of the
Condition Code through use of a mask field
contained in the instruction itself (Ml field).

The 4-bit Ml field is not a register address,
but rather an imaµ;e of the condition code to
be tested.

2-21

2.7. l Branch on True Condition*

[RR]

A

The condition code field of the Program Status
Word [PSW (12:1G)] is tested for the conditions
specified by the mask field (Ml). If any of
the conditions tested are found to be true, a
Branch is executed to the 16-bit address
specified by the second operand. If none of
the conditions tested arc found to be true the
next sequential instruction is executed.

Tested Condition True:

[PSW (lG::n)J--- (H2) [HH]

Tested Conditi()ll Not True:

[PSW (lG::H)J---[PS\V (16:31)]+ 2

Tested Condition True:

[PSW (1G:3l)J--- A+ (X2) [RX]

Tested Condition Not true:

[PSW (16:31) J--- [PSW (1G:31)] + 4

Programming Note:

A logic:il J\Nll is performed between each bit
in the conclitio11 code and its corresponding
bit in the Ml fie Id. If any resultant bit is a
one, the branch \\'i 11 occur. The condition
code (PSW (12:1G)) is not changed.

Example: (Branch occurs)

cc 1010

Ml

AND
1100

1000 ETC !'<'Sult: Branch if L bit remains after AND.

2.7.2 Branch on False Condition*

(RR]

A

The condition code field of the Program Status
Word [PSW (12:15)] is tested for the condition:'
specified by the mask field (Ml). If all
conditions tested are found to be false, a
Branch is executed to the 16-bit address
specified by the second operand. If any of
the conditions tested are found to be true,
the next sequential instruction is executed.

Tested Condition False:

[PSW (1G:3l)J--- (R2) [RR]

Tested Condition Not false:

[PSW (16:31)]---[(PSW (16:31)]+2

Tested Condition False:

[PSW (16:31) J---- A + (X2) [RX]

Tested Condition Not false:

[PSW (16:31)]--- [PSW (16:31)] +4

Programming Note:

A logical AND is performed between each bit
in the condition code and its corresponding
bit in the Ml field. If any resultant bit is a
one, the Ii ranch will not occur. The condi­
tion code (PSW (12:15)) is not changed.

Example: (Branch does not occur)

cc 1010

Ml 11 00

1000

T

AND

BFC result: Branch
if no bit remains after

AND I
*Refe1· to S<'ction 2. 8 for information on Entcnded Mnemonic Codes for conditional
branch instructions.

2-22

2 .7 .3 Branch Unconditional

BR R2

I° 718 0 llr2 R2151
03

[RR]

B A(X2)

lo 43
718 0 111'2 X2151'6

A

The 16-bit address specified by the second
operand is transferred to the ,instruction ad­
dress field of the Program Status Word
(PSW (16:31)). The next instruction executed
will be accessed from the location specified
by the new instruction address.

[PSW (16:31)]-- (R2)

[PSW (16:31)]--- A+ (X2)

Programming Note:

[RR]

[RX]

The Branch Unconditional instruction is a
form of the Branch on False Condition in­
struction where no condition is specified for
testing.

2.7.4 No Operation

NOPR R2

lo 02 718 0 llr2 R2151

[RR]

NOP A(X2)

lo 42 718 0 11112 X215r6
A

The second operand is ignored and therefore
may assume any value. The (Ml) field is
zero. The instruction address field of the
Program Status Word (PSW (16:31)) is
incremented and the next sequential instruc­
tion is accessed for execution.

[PSW (16:31) J-­

[PSW (16:31)]---

Programming Note:

[PSW (1G:31)] + 2 [RR]

[PSW (16:31)] + 4 [RX]

The No Operation ins·truction is a form of the
Branch on True Condition instruction where
no condition is specified for testing. The No
Operation instruction is useful to replace 16
or 32 bits of erroneous or redundant coding
or to reserve memory locations within a
program for anticipated future coding. This
instruction may also be employed as an
inactive instruction in timing sequences.

2.7 .5 Branch on Index High

BXH R l, A(X2) (RS]

~'o __ c_0 __ 1~1a_R_1_'~1,_12_x_2_'5 l'_s __ ~_A ___ j
Prior to execution of this instruction, the
General Register specified by the first oper­
and (Rl) must contain a 16-bit final address,
Rl + 1 must contain a 16-bit decrement
value, and Rl + 2 must contain a 16-bit
comparand value (limit or starting address).
All values may be ,signed.

Execution of this instruction causes the final
address (Rl) to be decremented by (Rl + 1)
and logically compared to the limit (Rl + 2).
As long as the count (Rl) is greater than the
limit (Rl + 2), the 16-bit address specified
by the Ht'COJHI opt•rand is transferred to the
instruction addn·ss field of the Program
Status Word (PSW I fi:31). The next
instruction cxt>('ttkd will be accessed from
the location specified by the new instruction
address.

When the count is not greater than the index
limit, the instruction following Branch on
·Index High will be executed.

(Hl) (Rl) + (Rl + 1)

(Rl) : (Rl + 2)

if (Rl) > (Rl + 2)

[PSW (16:31)]---A + (X2)

if (Rl) ~ (Rl +2);

[PSW (16:31)]---[PSW (1G:31)] + 4

Programming Mote:

[RS]

General Register 13 is the m:Lximum speci­
fication for the Rl field, since a block of
three consecutive General Rcg'isters is re­
quired.

A logical comparison treats all 16-bits of
the halJword as magnitude bits.

2-24

2.7.6 Branch on Index Low or Equal

A

Prior to execution bf this instruction, the
General Register.specified by the first oper­
and (Rl) must contain a 16-bit count value
(starting address), Rl + 1 must contain a
16-bit increment value, and Rl 7 2 must
contain a 16-hit, oorrwarand (limit or final
address). All values may be signed.

Execution of this instructidn causes the count
(Rl) to be incremented by (Rt· + 1) arid logi-
c ally compared to the index limit. As long
as the count (Rl) is equal to or less than the
limit (Rl + 2), thel6-bit address ~pecified .
by the second operand is transferred to the
instruction address field of the Program ,
Status Word (PSW 16:31). The next instruc­
tion executed will· be acc~ssed frbm the lo­
cation specified by the ·new instruction .
address.· When the starting address is greater
than the limit, the instruction following -Branch
on Index Low will be ~xecuted.

(Rl) (Rl) + (Rl + 1)

(Rl) : (Rl + 2)

if (Rl) ~ (Rl + 2)

[PSW (l(i::H)J--- A+ (X2)

if (Rl) > (Rl + 2) ;

[PSW (Ui::n)J--- [PSW (16:31)] + 4

Programming Note:

[RS]

General Register 13 is the maximum speci­
fication for the Rl field since a block of
three consecutive General Registers is
requi1•ed.

A logical comparison treats all 16-bits of the
halfword as magnitude bits.

2.7.7 Branch and Link

[RR]

A

The Branch and Link instruction is executed
in two phases. The instruction address field
of the ProgTam Status Word [PSW (16:31)]
is incremented and transferred to the General
Register specified by the first operand. (Rl).
Then the second operand is loaded into the
instruction address field [PSW (16:31)]. The
next instruction executed will be accessed
from the location specified by the new
instruction address.

(Rl) -- [PSW (16:31)] + 2 [RR]

[PSW (16:31)] -­ (R2)

(Rl) -- (PSW (16:31)] + 4 [RX]

[PSW (16:31)] -- A+ (X2)

Programming Note:

The Branch and Link i_nstruction is required
for entry to sub-programs. It differs from
the Branch Unconditional instruction in that
the current instruction address field is
preserved in a specified General Register
to be used as the sub-program exit address.
Exit from the sub-program is effected by a
Branch Unconditional instruction through the
General Register in which exit address
has been maintained.

2-25

2.8 EXTENDED MNEM.ONIC CODES FOR
BRANCH QI CONDITION

To simplify the coding of conditional branch
instructions for the programmer, an ex­
tended set of mnemonic codes has. been
provided in the Symbolic Assembler. The
most frequently used branch instructions
have been provided with mnemonics which
are not a part of the machine language

2-26

instruction set, but are translated by the
assembler into the proper operation code
and Ml field combinations.

The extended mnemonic codes are for in­
structions in the RX format.

2.8. l Branch on Zero

BZ A(X2) (RX]

~'o--4-3--7~1s_3_11,12 X2 151'6 A =J
The Condition Code field of the Program
Status Word [PSW (12:1S)] is tested for the
zero condition. H this condition is met, a
Branch is executed to the lG-·bit address
specified by the second operand. If the con-·
dition is not met, the next sequential
instruction is cxccutccl.

CC ' l::cro: [PSW (lG::n)J-A t (X2) [RX]

CC I l::cro: [PS\\/ (1G:31)]- [PSW (1G:31)] + 4

Condition Code Tested:

12 13 14 15

c v G L

0 0 Branch
0 l
l 0 } No Branch

Valid After:

LH, LE
AH, ACH, SH, SCH, AE, SE, ME, DE
SLHA, SRHA, SLHL, SRHL
NH, OH, XH

2.8.2 Branch on Not Zero

BNZ

lo A

The Condition Code field of the Program
Status Worcl [PSW (12:15)] is tested for the
not zero condition. If this condition is met,
a Branch is executed to the 16-bit address

specified by the second operand. If the con­
dition is not met, the next sequential
instruction is executed.

CC f Zero; [PSW (16:31)]- A+ (X2) [RX]

CC== Zero; [PSW (Hi:31)J- [PSW (16:31)] + 4

Condition Code Tested:

12 13

c v
14 15

G L

0 0
0 l
l 0

No branch

} Rranch

Valid After:

LH, LE
AH, ACH, SH, SCH, AE, SE, ME, DE
SLHA, SRHA, SLHL, SRHL
NH, OH, XH

2-21

2.8.3 Branch on Phis

A

The Condition Code field of the Program
Status Word [PSW (12:15)] is tested for th.e
plus condition. If this condition is met, a
Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met,. the next sequential
instruction is executed ..

CC= Plus; [PSW (16:31)J-A+(X2) [RX]

CC f. Plus; [PSW (16:31)]-[PSW (16:31)] + 4

Condition Code Tested:

12 13 14 15

c v G L

0 0
0 l
l 0

Valid After:

LH, LE

} No branch

Branch

AH, ACH, SH, SCH, AE, SE,ME, DE
SLHA, SRHA, SLHL, SRHL
NH, OH, XH

2-28

2.8.4 Branch on Not Plus

A

The Condition Code field of the Program
Status Word [PSW (12:15)] is tested for the
not plus condition. If this condition is met,
a Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC f. Plus; [PSW (16:31)]- A+(X2) [RX]

CC = Plus; [PSW (16:31)l'\"'-[PSW (16:31)] + 4

Condition Code Tested:

12 13 14 15

c v G L

0 0
0 l } Branch

l 0 No Branch

Valid After:

LH, LE
AH, ACH, SH, SCH, AE,SE, ME, DE
SLHA, SRHA, SLHL, SRHL
NH,OH, XH

2.8.5 Branch on Minus

BM

lo A

The condition code field of the Program
Status Word [PSW (12:15)] is tested for the
minus condition. If the condition is met, a
Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC= Minus; [PSW (16:31)]-A+ (X2) [RX]

CC t Minus; [PSW (16:31)]- PSW (16:31) + 4

Condition Code Tested:

12 1314 15

c v G L

0 0
0 l
l 0

Valid After:

No branch
Branch
No branch

LH, LE
AH,ACH,SH,SCH,AE,SE,ME, DE
SLHA, SRHA, SLHL, SRHL
NH,OH, XH

2.8.6 Branch on Not Minus

A

The condition code field of the Program
Status Word [PSW (12:15)] is tested for the
not minus condition. If the condition is met,
a Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC t Minus;[PSW (16:31)]-A+(X2) [RX]

CC =Minus; [PSW (1G:31)]-IPSW (16:31)] + 4

Condition Code Tested:

12 13 14 15

CV G L

0 0
0 l
l 0 ,_

Valid After.:

LH, LE

Branch
No branch
Branch

AH, ACH, SH, SCH, AE,SE,ME, DE
SLHA, SRHA, SLHL, SRHL
NH,OH, XH

2-29

2.8.7 Branch on Carry

[RX]

A 1
The condition code field of the Program
Status Word[PSW (12:1G)] is tested for the
carry condition. If the condition is met, a
Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC ~ Carry;[PSW (16:31)]- A+ (X2) [RX]

CC Ji' Carry; [PSW (16:31)].-[PSW (16:31)] + 4

Condition Code Tested:

12 13 !4 15

c v G L

l Branch

0 No Branch

Valid After:

AH, ACH, SH, SCH
SLHA, SRHA, SLHL, SRHL

2-:rn

2.8~8 Branch on Overflow

A

The condition code field of the Program
Status Word [PSW (12:15)] is tested for the
overflow condition. If the condition is met,
a Branch is executed to the 16-bit address
specified by the secDnd operand. If the
condition is not met, the next sequential
instruction is executed.

CC =Overflow;[PSW (16:31)J-A+(X2)[RX]

CC f Overflow;[PSW (16:31)]-[PSW (16:31)]+ 4

Condition Code Tested:

12 13 14 15

c v G L

1 Branch

0 No Branch

Valid After:

AH,ACH,SH,SCH,AE,SE,ME,DE, LE

2.8.9 Branch on Low

A

The condition code field of the Program
Status Word [PSW (12:15)] is tested for the
low condition. If the condition is met, a
Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC = Low; [PSW (16:31)]- A+ (X2) [RX]

CC f- Low; [PSW (16:31)]-[PSW (16:31)] + 4

Condition Code Tested:

12 13 14 15

c v G L

l Branch
0 No branch

Valid After:

CLH, CE

2.8.10 Branch on Not Low

BNL A(X2)

lo 43 718 8 11112 X2 151'6
A

The condition code field of the Program Status
Word [PSW (12:15)] is tested for the not low
condition. If the condition is met, a Branch
is executed to the 16-bit address specified
by the second operand. If the condition is
not met, the next sequential instruction is
executed.

CC =Not low; [PSW (16:31)]-A + (X2) [RX]

CC f- Not low;[PSW (16:31)]-[PSW (16:31)]+4

Condition Code Tested:

12 13 14 15

CV G L

0 Branch
l No Branch

Valid After:

CLH,CE

2-31

2.8.11 Branch on Equal

BE A(X2) [RX):
lo 43 718 3 111'2 X2 151'6

A
311

The condition code field of the Program
Status Word [PSW (12:15)] is tested for the
equal condition. If the condition is met, a
Branch is executed to the 16-bit address
specified by the second operand. If the
condition is not met, the next sequential
instruction is executed.

CC =0 Equal; [PSW (16:31)]-A+ (X2} (RX]

CC of Equal; [PSW (16:31)]-[PSW(l6:31)]+4

Condition Code Tested:

12 13 14 15

c v G L

0 0 Branch
0 1
1 0

} No Branch

Valid After:

CLH,CE

2-32

2.8 .. 12 Branch on Not E:qua:I

[RX]

A
311

The condition code field of the Program Status
Word [PSW (12:15)] is tested for the not equal
condition. If the conditi;on is met,. a Branch
is executed to the 16-bit address specified by
the second operand~ If the condition is not
met, the next sequential instruction is
executed.

CC= Not equal; [PSW (16:31)~ A+(X2) [RX]

CC of Not equal;. [PSW (16:31)]--[(PSW(16:31)1+'

Condition Code Tested:

12 13 14 15

c v G L

0 0
0 1
1 0

Valid After:

CLH,CE

No Branch

} Branch

2.9 DEVICE INTERRUPT AND CONTROL
INSTRUCTIONS

The Interrupt and Control instructions pro­
vide for Processor interrogation and control
of peripheral devices in the system.

2-33

2.9. l Acknowledge f.nt-errupt

AIR Rl, R2

1° 9F
1

1
8

Rl
11r2

R;
5
1

[RR]

Al Rl, A(X2)

lo DF 718 Rl llll\215,16 A

The address of the interrupting device re­
places the content of the 16-bit General
Register specified by the first operand (Rl).
The 8-bit device status byte replaces the
content of the location specified by the
second operand. The Condition Code is set
equal to the right-most four bits of the device
status byte. The device interrupt condition
is then cleared.

[Rl (8:Li)]---Device address

[Rl (0:7)]--- l::cro

[H.2 (8:15)]--- Status byte

[R2 (0:7)]---- Zero

[PSW (12:15)]- Status byte (4:7)

[JU (8:15)]1--- Device number

[lU (0 :7)]1-.---- l::ero

[A + (X2)]1.--- Status byte

[PSW (12:15)]- Status byte (4:7)

Resulting Condition Code:

12 13 14 15

c v G L

l 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2-34

Device busy (BSY)

Examine status (EX)
End of medium (EOM)
Device unavai I able (DU)

[RR]

[RX]

2.9.2 Sense Status

SSR Rl, R2

I° 9D 718 Rl 111'2 R2151

(RR]

SS Rl, A(X2)

lo DD 718 Rl 111'2 X215,16
A

The 16-bit General Register specified by the
first operand (Rl) contains the device ad­
dress. The device is addressed and the 8-
bit device status byte replaces the content of
the location specified by the second operand.
The Condition Code is set equal to the right­
most four bits of the device status byte.
The first operand is unchanged.

[R2 (8: 15)]---- Status byte

[R2 (0:7) J---- Zero

[PSW (12:15)]- Status byte (4:7)

[A + (X2) J--- Status byte

[PSW (12:15)]- Status byte (4:7)

Resulting Condition Code:

12 13 14 15

c v G L

1 0 0 0
0 l 0 0
0 0 l 0
0 0 0 l

Device busy (BSY)
Examine Status (EX)
End of Medium (EOM)

Device unavailable (DU)

[RR]

[RX]

2.9.3 Output Command

OCR Rl, R2

I° 9E 718R1 llr2 R2151

[RR]

OC Rl, A(X2)

lo DE 718Rl llr2X215r6
A

The 16-bit General Hegister specified by the
first operand (HJ) contains the device ad­
dress. The device is addressed and the
8-bit device command byte specified by the
second operand is transmitted to the ad­
dressed device. Both operands remain
unchanged.

Device----- [R2 (8:15)] [RR]

Device ----- [A + (X2)] [RX]

Resulting Condition Code:

12 13 14 15

c v G L

0 1 0 0 Examine Status (EX)

Programming Note:

The Examine Status bit 1s set if the device
cannot complete the command action.

2-35

2.10 INPUT /OUTPUT INSTRUCTIONS

The Input/Output instructions provide for
transfer of 8-bit byte information between
the Processor and peripheral devices in the
system.

2-36

2.10.1 Read Data

[RR]

A

The 16-bit General Register specified by the
first operand (Rl) contains the device ad­
dress. The device is addressed and a single
8-bit data byte is transmitted from the device
replacing the content of the location specified
by the second operand.

[R2 (8:15)]---Data byte

[R2 (0:7)]--- Zero

[A+ (X2)J--- Data byte

Resulting Condition Code:

12 13 14 15

CV G L

l E::xamine Status (EX)

[RR]

[RX]

2.10.2 Write Data

WDR Rl, R2

1° 9A
1
1
8

Rl
11r R ~5 1

[RR]

WD Rl, A(X2)

lo DA 718 Rl 111'2 X215r6 A

The 16-bit General Register specified by the
first operand (Rl) contains the device ad­
dress. The device is addressed and a single
8-bit data byte is transmitted to the device.
Both operands remain unchanged.

[R2 (8: 15)]----(Device)

[A + (X2)] ---(Device)

Resulting Condition Code:

12 13 1415

c v G L

l Examine Status (EX)

[RR]

[RX]

2-37

2.10.3 Read Block

[RR]

[RX]

A
311

The 16-bit General Register specified by the
first operand (Rl) contains the device ad­
dress. The 16-bit second operand location,
(R2) or [A + (X.2) l contains the starting ad­
dress of the data buffer to be transferred.
The next sequential halfword, (R2 + 1) or
[A + (X2) + 2] contains the ending address of
the data buffer. The starting address must
be equal to, or less than, the ending address.
Data transfer is inclusive of the buffer limits.

The READ BLOCK instruction causes trans­
fer of 8-bit data bytes from a device to
consecutive memory locations. No other
instructions are executed during transfer of
the data block. The condition code portion
of the Program Status Word{PSW (12:15)]
will be set to zero after a normal transfer.
In the event of an abnormal block data trans­
fer, the condition code will not be zero.

Resulting Condition' Code:

12 13

c v
0 0
l

1

2-38

14 15

G L

0 0

l
1

Block data transfer completed correctly.
Device busy (BSY)
Examine status (EX)
End of medium (EOM)
Device unavailable (DU)

2.10.4 Write Block

WBR Rl, R2

I° 96 718 Rl llr2R2151
[RR]

WB R 1, A(X2)

lo 06 718 Rl 111'2 X215r6
A

The 16-bit General Register specified by the
first operand (Rl) contains the device ad­
dress. The 16-bit second operandJocation,
(R2) or [A+ (X2)] contains the starting ad­
dress of the data buffer to be transferred.
The next sequential halfword (R2 + 1) or
[A + (X2) + 2] contains the ending address of
the data buffer. The starting address must
be equal to, or less than, the ending address.
Data transfer is inclusive of the buffer
limits.

The WRITE BLOCK instruction causes trans­
fer of 8-bit data bytes from consecutive mem­
ory locations to a device. No other instruction
are executed during transfer of the data block.
The condition code portion of the Program
Status Word [PSW (12:15)] will be set to zero
after a normal transfer. In the event of an
abnormal block data transfer, the condition
code will not be zero.

Resulting Condition Code:

12 13
c v
0 0
l

l

14 15

G L

0 0

l
l

Block data transfer completed co.rrectly.
Device busy (BSY)
Examine status (EX)
End of medium (EOM)
Device unavai I able (DU)

CHAPTER 3
CONSOLE OPERATION AND DISPLAY

3.1 INTRODUCTION
The discussion which follows pertains to a typical
Display Panel, shown on Figure 3-1, and the oper­
ating controls associated with it. Different models
may vary.

The control console is comprised of six distinct ele­
ments:

1. Control Switches: POWER, INITIALIZE,
and EXECUTE.

2. MODE CONTROL rotary switch.

3. SPEED CONTROL rotary switch.

4. REGISTER DISPLAY rotary switch.

5. Sixteen Data/ Address switches.

6. Display of two 16-bit halfword registers.

7. Stripes above the display lights are mem­
ory aids for displayed information.

each of the elements is described in the following
sections. Console operating procedures are pro­
vided following the descriptions.

3.2 CONTROL SWITCHES

The latching POWER switch applies power to the
Processor and device controllers. An indicator
lamp is associated with the POWER switch.

I
I
A

/ ' ,,,--- ----- ------ -- - ----- -- -- - - -- - ------- -- ------ - --,
I I ROT RU R 4 IC2:)¥CMAIACTEllSTIC I I FIASJ!DN I l REGISTER DISPLAY

SPEED CDITROL

llODE CONTROL

0 0
EXECUTE POWER

INITIALIZE

GE-PAC 30

\ . H 1 .I FIAC 1N ! /
'-------- ------- -- - - - - - ------ --------- --- _____________ .,,,,,.

INSTRUCTION ll YDDl~UON CODE

10 THRU 114
RI THRU R 15

MEMORY
HAD/WRITE

EBllMUill

Figure 3-1. Display Patwl

llfMI Ei:Jc:fffJCd
CQND!T!ON SOQE

10 II 12 13 14 IS

GENERAL- ELECTRIC

3-1

The momentary INITIALIZE switch resets
peripheral device interrupts and certain
other functions in the Processor. After
initialization, the Processor is left in the
Halt mode.

The momentary EXECUTE switch causes
the Processor to perform the function
selected by the MODE CONTROL switch.
The associated indicator lamp is on when
the Processor is in the interruptable Wait
state or Halt mode; the lamp is off when
the Processor is in the Run mode.

3.3 MODE CONTROL SWITCH

The rotary MODE CONTROL switch selects
the following modes of operation which be­
come effective when the EXECUTE switch
is depressed:

RUN:

HALT:
(FIX)

HALT:
(FLP)

VARI:
(FIX)

VARI:
(FLP)

3-2

the Processor continuously exe­
cutes instructions at rated speed.

instruction execution is stopped at
the moment the EXECUTE switch
is depressed and the Processor is
placed in the Wait state. The reg­
ister displays are operative in this
mode.

The HALT FLP position is similar
to the HALT (or HALT FIX) posi­
tion except that in Processors
equipped with optional floating­
point hardware, the selected regis­
ters are displayed in the floating­
point format.

the Processor executes instructions
at the rate sekcted by the variable
SPEED CONTl{()L. The register
displays are ope1·:1Uve in this mode.

The VAIU FLP position is similar
to the VARI (or VAIU FIX) position
except that in Procossors equipped
with the optional floating-point
hardware, the selected registers
are displayed in the floating-point
format.

ADRS: selects the instruction location
address portion of the Program
Status Word (PSW(16:31)). The
new address is entered in the six­
teen Address Switches below the
register display.

MEMR: the Memory Read mode permits
display of memory data in the
register display.

MEMW: the Memory Write mode permits
entry of data into memory from
the sixteen Data Switches below
the register display.

3.4 SPEED CONTROL SWITCH

The variable SPEED CONTROL switch pro­
vides a dynamically changing display when
in the Variable mode. The rate of display
can vary from 1 to 1000 cps by rotating
the control clockwise from SLOW to FAST.
When in the SNG L position, a single in­
struction is executed and displayed each
time the EXECUTE switch is depressed.

3.5 REGISTER DISPLAY SWITCH

The REGISTER DISPLAY switch selects
pairs of 16-bit registers for display in the
lighted panel positions labeled DISPLAY 1
and DISPLAY 2. Beginning at the one
o'clock position and moving clockwise, the
registers displayed are:

INST:

PSW:

RO/l:

OFF:

(Dl) The current instruction.
(D2) The Address field of the cur­

rent instruction if RX or RS
format.

(Dl) The Program Status and
Condition Code.

(D2) The location address of the
cur rent instruction.

(Dl) General Register O.
(D2) Coneral Register 1.

(Note: the seven succeeding pairs
of General Registers are selected
similarly.)

(Dl) and (D2) are blank.

3.6 DATA/ ADDRESS SWITCHES

The 16 Input Register latching pushbutton
switches provide a means of entering infor­
mation manually. An address set in the
switches is entered into the instruction loca­
tion address portion of the Program Status
Word (PSW (16:31)) when the ADRS mode is
selected and the EXECUTE switch is de­
pressed.

Data set in the switches is written into
memory when the MEMW mode is selected
and the EXECUTE switch is depressed.
The halfword location written into is speci­
fied by the instruction address portion of
the PSW.

3.7 REGISTER DISPLAY

The two 16-bit halfword register displays
are operative when the V ARiable Mode or
when MEMR or MEMW have been selected.
The display registers remain static when in
the RUN mode.

3.8 CONSOLE OPERATING PROCEDURES

. To bring up power and initialize the system:

1. Depress the latching POWER
switch.

2. Depress the momentary
INITIALIZE switch.

To shut down power to the system:

1. Set the Mode Control switch to
HALT.

2. Depress the momentary EXECUTE
switch.

3. Release the latching POWER switch.

To begin execution of a program:

The system must be in the Halt mode.

1. Set the Mode Control switch to
ADRS.

2. Enter the program starting address
in the 16 address switches.

3. Depress the momentary
EXECUTE switch.

4. Set the Mode Control switch to
RUN.

5. Depress the EXECUTE switch.

To halt execution of a program:

1. Set the Mode Control switch to
HALT.

2. Depress the EXECUTE switch.

To read memory from display registers:

The system must be in the Halt mode.

1 . Set the Mode Control switch to
ADRS.

2. Enter the memory read starting
address in the 16 address
switches.

3. Depress the EXECUTE switch.

4. Set the Mode Control switch to
MEMR.

5. Depress the EXECUTE switch •

6. The memory data is read from
display register 2 (D2). The
memory address of the data be­
ing displayed is in display regis­
ter 1 (Dl).

7. Depress the EXECUTE switch to
display memory data from suc­
cessive memory locations. The
memory address is automatically
incremented each time the
EXECUTE switch is depressed.

To write into memory:

The system must be in the Halt mode.

1. Set the Mode Control switch to
ADRS.

2. Enter the memory write starting
address in the 16 address switches.

3. Depress the EXECUTE switch.

3-3

4. Set the Mode Control switch to
MEMW.

5. Enter the data to be written' into
memory in the 16 data switches.

6. Depress the EXECUTE switch.

7. The memory data entered is dis­
played in display register 2 (D2).
The memory address which was
written into is displayed in display
register 1 (Dl). To write into
successive memory locations re­
peat from Step 5~ The memory ad­
dress is automatically incremented
with each depression of the
EXECUTE switch.

To display the Instruction Register, Pro­
gram Status Word or General Regicscters:

The system must be in the Halt mode.

1. Set the Register Display switch to
select the registers desired for
display.

2. Depress the EXECUTE switch.
The registers selected for display
will appear in Dl and D2.

To display registers ilf the: V·ARlable speed
mode:

The system must be in the Halt mode.

3-4

1. Set the Mode, Control switch to
ADRS.

2. Enter the starting memory loca­
tion address in the 16 address
switches.

3. Depress the EXECUTE switch.

4. Set tli<> Mode Control switch to
VARL

5. Set the Speed Control switch to
SINGL or to a SLOW - FAST
setting.

6. Set the REGISTER DISPLAY switch
to select the registers desired for
display.

7. Depress the EXECUTE switch to
begin operation of the program
with display of the selected regis­
ters. If SNGL step was selected,
the EXECUTE switch is depressed
to cause single step execution of
successive instructions.

8. The REGISTER DISPLAY switch
setting can be changed during
operation in the variable speed
mode. The SPEED CONTROL
switch can also be changed from
SNGL to a SLOW-FAST setting
without halting operations.

3.9 DISPLAY PANEL PROGRAMMING

The Display Panel may also be accessed by
program as a peripheral device. The Data/
Address Switches may be read (Byte O =
Bwitches 8 through 15, Byte 1 = Switches 0
through 7) and the Display Registers may be
loaded as follows: Byte 0 = Display Register
2-bits 8 through 15, Byte 1 = Display Reg­
ister 2-bits 0 through 7, Byte 2 = Display
Register 1-bits 8 through 15, and Byte 3 =
Display Register-1 bits 0 through 7. Two
modes· of operation are available, Normal
and Incremental. In Normal mode, Byte 0
is accessed each time the Display is ad­
dressed. In incremental mode, the Bytes
are accessed successively by each Write Data
or Read Data instruction. The status of the
MODE CONTROL and REGISTER DISPLAY
Rwitches may be read via a Sense Status in­
struction. See Appendix 4, page A4-1.

APPENDIX 1

SUMMARY OF INSTRUCTIONS - ALPHABETICAL BY NAME

INSTRUCTION TYPE MNEMONIC OP CODE

Acknowledge Interrupt RR AIR 9F
Acknowledge Interrupt RX AI DF

Add Halfword RR AHR OA
Add Half word RX AH 4A
Add Half word Immediate RS AHI CA

Add with Carry Halfword RR ACBR OE
Add with Carry Halfword RX ACll 4E

AND Halfword RR NIIR 04
AND Halfword RX NH 44
AND Halfword Immediate RS NHI C4

Auto load RX AL D5

Branch and Link RR BALR 01
Branch and Link RX BAL 41

Branch on False Condition RR BFCR 03
Branch on False Condition RX BFC 43

Branch on True Condition RR BTCR 02
Branch on True Condition RX BTC 42

Branch on Index Low or Equal RS BXLE Cl
Branch on Index High RS BXH co
Branch Unconditional RR BR 03
Branch Unconditional RX B 43

Branch on Overflow* RX BO 424

Branch on Zero* RX nz 433
Branch on Not Zero* RX BNZ 423

Branch on Equal* RX BE 433
Branch on Not Equal* RX BNE 423

*Extended Mnemonics - See Section 2. 8

Al-1

INSTRUCTION TYPE MNEMONIC OP CODE

Branch on Plus* RX BP 422
Branch on Not Plus* :f1X BNP 432

Branch on Low* RX BL 428
Branch on Not Low* RX BNL 438

Branch on Minus* RX BM 421
Branch on Not Minus* RX BNM 431

Branch on Carry* RX BC 428

Compare Logical Halfword RR CLHR 05
Compare Logical Halfword RX CLH 45
Compare Logical Halfword Immediate RS CLHI C5

Divide Halfword RR DHR OD
Divide Halfword RX DH 4D

Exclusive OR Halfword RR XHR 07
Exclusive OH Halfword RX XH 47
Exclusive OH Halfword Immediate RS XHI C7

Floating-Point Add RR AER 2A
Floating-Point Add RX AE 6A

Floating-Point Compare RR CER 29
Floating-Point Compare RX CE 69

Floating-Point Divide RR DER. 2D
Floating-Point Divide RX DE 6D

Floating-Point Load RR LER 28
Floating-Point Load RX LE 68

Floating-Point Multiply RR MER 2C
l" loating--Point Multiply RX ME 6C

Floating-Point Store RX STE 60

Floating-Point Subtract RR SER 2B
Floating-Point Subtract RX SE 6B

Load Byte RR LBR 93
Load Byte RX LB D3

Load Half word RR LHR 08
Load Halfword RX LH 48
l,oacl Halfword Immediate RS Lill cs

..

*I·:xtcnded Mnemonic - See Section 2. 8

Al-2

INSTRUCTION TYPE MNEMONIC OP CODE

Load Multiple RX LM Dl

Load Program Status Word RX LPSW C2

Multiply Halfword RR MHR oc
Multiply Halfword RX MH 4C

No Operation RR NOPR 020
No Operation RX NOP 420

OR Halfword RR OHR 06
OR Halfword RX OH 46
OR Halfword Immediate RS OHI C6

Output Command RR OCR 9E
Output Command RX oc DE

Read Block RR RBH. 97
Read Block RX RB D7

Read Data RR RDR 9B
Read Data RX RD DB

Shift Left Arithmetic RS SLHA CF

Shift Left Logical RS SLHL CD

Shift Right Arithmetic RS SRHA CE

Shift Right Logical RS SRHL cc
Store Byte RR STBR 92
Store Byte RX STB D2

Store Halfword RX STH 40

Store Multiple RX STM DO

Subtract Halfword RR SHR OB
Subtract Halfword RX SH 4B
Subtract Halfword Immediate RS SHI CB

Subtract with Carry Halfword RR SCHR OF
Subtract with Carry Halfword RX SCH 4F

Sense Status RR SSR 9D
Sense Status RX SS DD

Write Block RH WBR 96
Write Block RX WB D6

Write Data Hit WDR 9A
Write Data HX WD DA

Al-3

APPENDIX 2

SUMMARY OF INSTRUCTIONS - NUMERICAL BY OP CODE

OP CODE TYPE MNEMONIC INSTRUCTION

01 RR BALR Branch and Link
02 RR BTCR Branch on True Condition
03 RR BFCR Branch on False Condition
04 RR NHR AND II alfword
05 RR CLHR Compare Halfword
06 RR OHR OR Iblfword
07 RR XHR Exclusive OH. II'1lfword
08 RR LHR Load lI alf word
OA RR AHR Add II alf word
OB RR SHR Subtract Half word
oc RR MHR Multiply Halfword
OD RR DHR Divide Halfword
OE RR ACHR Add with Carry Halfword
OF RR SCHR Subtract with Carry Halfword
28 RR LER Floating-Point Load
29 RR CER Floating-Point Compare
2A RR AER Floating-Point Add
2B RR SER Floating-Point Subtract
2C RR MER Floating-Point Multiply
2D RR DER Floating-Point Divide
40 RX STH Store Halfword
41 RX BAL Branch and Link
42 RX ETC Branch on True Condition
43 RX BFC Branch on False Condition
44 RX NH AND Halfword
45 RX CLH Compare Logical Halfword
46 RX OH OR Halfword
47 RX XH Exclusive OR Halfword
48 RX LH Load Halfword
4A RX AH Add Halfword
4B RX SH Subtract Halfword
4C RX MH Multiply Halfword
4D RX DH Divide Halfword
4E RX ACH Add with Carry Halfword
4F RX SCH Subtract with Carry Halfword
60 RX STE Floating-Point Store

A2-1

OP CODE TYPE MNEMONIC INSTRUCTION

68 RX LE· Floating-Point Load
69 RX CE Floating-Point Compare
6A RX AE ·· Floating; Point .J\dCf'
6B RX SE Floating-Point Subtract
6C RX ME Floating-Point Multiply
GD RX DE Floating-Point Divide
92 RR STBR Store Byte
93 RR LBR Load Byte
96 RR WBR Write Block
97 RR RBR Read Block
9A HR WDR Write Data
9B RR RDR Read Data
9D HR SSR Sense status
~)E IlR OCR Output Command
9F IUl AIR Acknowledge Interrupt
co HS BXH Branch on Index High
Cl RS BXLE Branch on Index Low or Equal
C2 HX LPSW Load Program status Word
C4 HS NHI AND Halfword Immediate
C5 HS CLHI Compare Logical Halfword Immediate
C6 ns OHi OR Halfword Immediate
C7 IlS XHI Exclusive OR Halfword Immediate
cs HS LHI Load Halfword Immediate
CA llS AHi Add Halfword Immediate
CB llS SHI Subtract Halfword Immediate
cc J{S SRHL Shift Right Logical
CD HS SLHL Shift Left Logical
CE HS SRI-IA Shift Right Arithmetic
CF RS SLHA Shift Left Arithmetic
DO HX STM Store Multiple
Dl HX LM Load Multiple
D2 llX STB Store Byte
D3 llX LB Load Byte
D5 llX AL Autoload
D6 llX WB Write Block
D7 llX RB Read Block
DA llX WD Write Data
DB llX RD Read Data
DD HX SS Sense Status
DE HX oc Output Command
DF RX AI Acknowledg-c Interrupt

A2-2

APPENDIX 3

ARITHMETIC REFERENCES

TABLE OF POWERS OF TWO

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 o.ooo 976 562 5
2 048 11 0.000 488 281 25

4 096 12 o.ooo 244 140 625
8 192 13 o.ooo 122 070 312 5

16 384 14 o.ooo 061 035 156 25
32 768 15 o.ooo 030 517 578 125

65 536 16 o.ooo 015 258 789 062 5
131 072 17 o.ooo 007 629 394 531 25
262 144 18 o.ooo 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 o.ooo 000 476 837 158 203 125
4 194 304 22 o.ooo 000 238 418 579 101 562 5
8 388 608 23 o.ooo 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 o.ooo 000 029 802 322 387 695 312 5
67 108 864 26 o.ooo 000 014 901 161 193 847 656 25

114 217 728 27 o.ooo 000 007 450 580 596 923 828 125

268 435 456 28 o.ooo 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 45

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 o.ooo 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 o.ooo 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 o.ooo 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 o.ooo 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 o.ooo 000 000 007 275 9.57 614 183 425 903 320 312 5
274 877 906 944 38 o.ooo 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 o.ooo 000 000 001 818 989 403 545 856 475 830 078 125

l 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

A3-1

1

17

281

4 503

72 057

1 152 921

A3-2

TABLE.OF POWERS OF
SIXTEEN

16n

4

65

1 048

16 777

268 435

4 294 967

68 719 476

099 511 627

592 186 044

474 976 710

599 627 370

594 037 927

504 606 846

Decimal Values

n

1 0

16 1

256 2

096 3

536 4

576 5

216 6

456 7

296 8

736 9

776 10

416 11

656 12

496 13

936 14

976 15

HEXADECIMAL ADDITION TABLE

1 2 3 4 5 6 7 8 9 A B c D E F

1 2 3 4 5 6 7 8 9 A B c D E F 10 1

2 3 4 5 6 7 8 9 A B c D E F 10 11 2

3 4 5 6 7 8 9 A B c D E F 10 11 12 3

4 5 6 7 8 9 A B c D E F 10 11 12 13 4

5 6 7 8 9 A B c D E F 10 11 12 13 14 5

6 7 8 9 A B c D E F 10 11 12 13 14 15 6 .
7 8 9 A B c D E F 10 11 12 13 14 15 16 7

8 9 A B c D E F 10 11 12 13 14 15 16 17 8

9 A B c D E F 10 11 12 13 14 15 16 17 18 9

A B c D E F 10 11 12 13 14 15 16 17 18 19 A

B c D E F 10 11 12 13 14 15 16 17 18 19 lA B

c D E F 10 11 12 13 14 15 16 17 18 19 lA lB c

D E F 10 11 12 13 14 15 16 17 18 19 lA lB lC D

E F 10 11 12 13 14 15 16 17 18 19 lA lB lC lD E

F 10 11 12 13 14 15 16 17 18 19 lA lB lC lD lE F

1 2 3 4 5 6 7 8 9 A B c D E F

A3-3

HEXADECIMAL MULTIPLICATION TABLE

1 2 3 4 5 6 7 s 9 A B c D E F

1 1 2 3 4 5. . 6 7 s 9 A B c D E F 1

2 2 4 6 s A c E 10 12 14 16 lS lA lC lE 2

3 3 6 9 c F 12 15 lS lB lE 21 24 27 2A 2D 3

4 4 s c 10 14 lS lC 20 24 2S 2C 30 34 3S 3C 4

5 5 A F 14 19 lE 23 2S 2D 32 37 3C 41 46 4B 5

6 6 c 12 lS lE 24 2A 30 36 3C 42 4S 4E 54 5A 6

7 7 E 15 lC 23 2A 31 3S 3F 46 4D 54 5B 62 69 7

s s 10 lS 20 28 30 3S . 40 4S 50 5S 60 6S 70 7S s
'.

9 9 12 lB 24 2D 36 3F 4S 51 5A 63 . 6C 75 7E S7 9

A A 1'1 lE 2S 32 3C 46 50 5A 64 6E 7S S2 SC 96 A

.. B B lG 21 2C 37 42 4D 5S 63 6E 79 S4 SF 9A A5 B

c c lS 24 30 3C 4S 54 60 6C 7S S4 90 9C AS B4 c

D D lA 27 34 41 4E 5B 6S 75 S2 SF 9C A9 B6 C3 D

E E lC 2A 3S 46 54 62 70 7E SC 9A AS B6 C4 D2 E

F F lE 2D 3C 4B 5A 69 7S S7 96 A5 B4 C3 D2 El F

1 2 3 4 5 6 7 s 9 A B c D E F

A3-4

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

STATUS:

VARI (FJX)
VARI FLT

MODE RUN
CONTROL HALT (FIX)

APPENDIX 4

INPUT /OUTPUT REFERENCES

DISPLAY STATUS AND COMMAND BYTE DATA
HEX ADDRESS 01

0 1 2 3 4 5 6

MODE REGISTER DISPLAY

NORM INC

0 1 0 0
0 1 1 0
1 0 0 0
1 1 0 0

7

SWITCH HALT FLT
MEM WRITE
MEM READ

1
0
0

1
0
0

1 0
0 1
1 0

ADRS
OFF

0 0 1 1
0 0 0 0

REG DISPLAY 0 0 0 1

REGISTER INST
DISPLAY PSW
bWITCH RO, Rl

R2, R3
R4, R5
R6, R7
RS, R9
RlO, Rll
R12, R13
R14, R15

COMMAND:

NORM

INC

0 0 1 0
0 1 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

In the Normal Mode, Byte 0 of the registers or switches is accessed
each time an I/O operation is directed to the Display Panel.

In the Incremental Mode, subsequent I/O operations access subsequent
bytes of the registers or switches.

A4-1

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

BRK

BSY

EX

DU

DISABLE

ENABLE

UNBLOCK

BLOCK

WRT
READ

PWR ON
PWR OFF

A4-2

TELETYPEWRITER STATUS AND COMMAND BYTE DATA
HEX ADDRESS 02

--,,-

0 1 2 3 4 5

BRK BSY EX

.I

DISABLE ENABLE UNBLOCK BLOCK WRT READ
{_

6 7

DU

PWR PWR
ON OFF

The Break bit is set when the Break key on the Teletypewriter is depressed,
or the Teletypewriter is logically disconnected from the Controller.

The significance of the Busy bit depends upon whether a Read or a Write
operation is in progress. During Write mode, BSY is normally low, and goes
high only while data is being received by the device. During Read mode,
BSY is normally high, and goes low only when data has been received from th
device, but not yet been transferred to the Processor. During Read mode,
BSY goes high again as soon as the Processor accepts the data.

The Examine bit is set whenever BRK is set.

The Device Unavailable bit is set whenever the Teletypewriter is in the OFF
or LOCAL mode, or power is not connected to the Teletypewriter.

This command disables the Device Interrupt to the Processor from the Device
Controller.

This command enables the Device Interrupt to the Processor from the Device
Controller.

This command enables the printer to print data entered via either the key­
board or the tape reader.

This command disables the feature described above.

The Write and Read commands are used to define the significance of the
BSY bit.

The Power On and Power Off commands are significant only with those Tele­
typewriters provided with an optional Power Control Box. The option permit

ching Teletypewriter power under program control.

HIGH SPEED PAPER TAPE READER STATUS AND COMMAND BYTE DATA
HEX ADDRESS 03

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

OVERFLOW

NMTN

BSY

EX

DU

DISABLE

ENABLE

STOP

RUN

INCR

SLEW

REV

FWD

0 1 2 3 4 5 6 7
-···---··

OVERFLOW ' NMTN BSY EX DU

-··

DISABLE ENABLE STOP RUN INCR SLEW REV FWD

The Overflow bit is available for use with paper tape readers which operate
in the Slew mode. The bit is set if the next character is read before a Data
Request (DR) is received for the present character.

The No Motion bit is set any time the tape is not moving

The Busy bit is set anytime there is a character in the buffer and no Data
Request (DR) has been received from the Processor.

The Examine bit is set whenever either Overflow or NMTN is set.

The Device Unavailable bit is set if Reader Power is off, or if the LOAD/
READY lever on the reader is in the LOAD position.

This command disables the Device Interrupt.

This command enables the Device Interrupt_.

The Stop command stops reader tape motion.

The Hun command starts the reader tape motion.

The Increment command directs the reader to read in Increment mode.
The tape is stepped to the next character after each character is input to
the Processor.

The Slew command applies only to readers capable of operation in the Slew
m<xlt'. In Slew mode the tape is started and continues to run until a
particular character or string of characters on the tape is sensed.

The lleverse command applies only to bi-directional tape readers.

The Forward command directs the reader to move the tape forward.

A4-3

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

CARD READER STATUS AND COMMAND BYTE DATA
CHEX ADDRESS 04)

0 1 2 3 4

EOV TBL HE NMTN BSY

DISABLE ENABLE FEED

5 6 7

EX EOM DU

EOV The EOV bit is set when the data is not taken from the Device Controller
buffer before the next column of data arrives from the read station. This
hit is reset by a FEED Command.

TBL/DU

HE

NMTN

BSY

EX

EOM

DISABLE

ENABLE

FEED

These bits are set when the Card Reader fails to pick a card upon command,
or when an error condition occurs in the Card Reader. The error conditions
are:

1. Card Motion Error
2. Light Current Error
3. Dark Current Error

These error conditions prevent the reading of any more cards until manually
reset by the operator~

The IIE bit is set when the last card in the input hopper has been read. When
HE sets, NMTN is set. The HE bit must be manually reset by the operator.

The NMTN is set except for the time between a FEED command and the time
it takes for a card to pass through the read station.

The BSY bit is set while the Device Controller is awaiting data from the Card
!leader. It resets when the data is available to be transferred.

The EX bit sets when any one of the upper four (4) bits of the Status byte is
set.

The EOM bit is set whenever NMTN is set, and when the input hopper becomes
empty. Reset when FEED command is issued.

This command disables the Card Reader Device Interrupt.

This command enables tlw Card Reader Device Interrupt.

This command initiates a new card feed cycle; however, no action occurs if
TBL, DU, or l!E is set.

TELETYPEWRITER/ ASCII/HEX CONVERSION TABLE

HEX (MSD) 8 9 A B c D E F
'

(LSD) f Teletype- 8 DEPENDS UPON PARITY
writer
Tape 7 0 0 0 0 1 1 1 1
Channels-

!
6 0 0 1 1 0 0 1 1

5 0 1 0 1 0 1 0 1

4 I 3 2 1
I

0 0 0 0 0 NULL DC 0 SPACE 0 @ p

1 0 0 0 1 SUM X-ON ' 1 A Q

2 0 0 1 0 EOA
TAPE

"
ON

2 B R

3 0 0 1 1 EOM X-OFF # 3 c s

4 0 1 0 0 EOT
TAPE

$
OFF

4 D T

5 0 1 0 1 WRU ERR % 5 E u

6 0 1 1 0 RU SYNC & 6 F v

7 0 1 1 1 BELL LEM ' 7 G w

8 1 0 0 0 FE 0 So (8 H x

9 1 0 0 1 - HT/SK s1) 9 ·I y

A 1 0 1 0 LF Sz * : J z
B 1 0 1 1 VT 83 + ; K [

c 1 1 0 0 FF S4 ' < L \ ACK

D 1 1 0 1 CR S5 M J ALT. - = MODE

E 1 1 1 0 so s6 . > N i ESC

F 1 1 1 1 SI S7 I ? 0 <---- DEL

A4-5

ASCH/ CARO C01J£ CONVERSION TABLE

S-BIT 7-BIT S-BIT 7-BIT
ASCII ASCil CARD· ASCll ASCII CARD

GRAPHIC CODE CODE CODE GRAPHIC CODE CODE CODE

SPACE AO 20 O-S-2 @ co 40 8-4
Al 21 12-S-7 A Cl 41 12-1

" A2 22 S-7 B C2 42 12-2
A3 23 S-3 c C3 43 12-3
$ A4 24 11-S-3 D C4 44 12-4
% A5 25 0-8-4 E C5 45 12-5
& A6 26 12 F C6 46 12-6

A7 27 S-5 G C7 47 12-7
(AS 2S 12-S-5 H cs 4S 12-S
) A9 29 11-S-5 I C9 49 12-9

* AA 2A 11-S-4 J CA 4A 11-1
+ AB 2B 12-S-6 K CB 4B 11-2

AC 2C O-S-3 L cc 4C 11-3
AD 2D 11 M CD 4D 11-4
AE 2E 12-S-3 N CE 4E 11-5

I AF 2F 0-1 0 CF 4F 11-6
0 BO 30 0 p DO 50 11-7
1 Bl 31 1 Q Dl 51 11-S
2 B2 32 2 R D2 52 11-9
3 B3 33 3 s D3 53 0-2
4 B4 34 4 T D4 54 0-3
5 BG 35 5 u D5 55 0-4
6 BG 36 6 v D6 56 0-5
7 B7 37 7 w D7 57 0-6
s B8 3S 8 x DS 5S 0-7
9 m) 39 9 y D9 59 0-S

BA 3A 8-2 z DA 5A 0-9
BB 3B 11-8-6 [DB 5B 12-8-2

< BC 3C 12-8-4 ' DC 5C 11-S-l
= BD 3D 8-6] DD 5D 11-S-2
> BE 3E 0-8-6 t DE 5E 11-S-7
? BF 3F 0-8-7 +-- DF 5F 0-8-5

A4-6

READER COMMENTS

The General Electric Company solicits your help in providing complete and accurate technical

publications covering our Process Computer equipment. Please answer the questions listed

here by checking the appropriate block. If your answer to any of these questions is 11 N0 11 , please

explain in "Comments" section below. Your comments and suggestions become the property of

General Electric Company.

PC 228

YES NO

• Is this publication adequate for your needs? D D
• Is the material

Presented in clear text? D D
Conveniently organized? D D
Adequate detail? D D
Adequately illustrated? D D
Suitable for the technical level de sired? D D

• What is your computer application?

• What is your position? (Supervisor, Programmer,

Technician, etc.)

• How is this publication used:

Familiarization of the subject? D
For training purposes? D
Other (explain)

As reference material? D
For maintenance of equipment? D

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• Please give complete references (page number, line, etc.) with your comments. 

Please indicate if a reply is desired and include your proper mailing address. 

• Your cooperation will be appreciated. 

COMMENTS: 

No postage necessary if mailed in the U. S. A. 



Fold 

YOUR ASSISTANCE, PLEASE 

This document has been generated to help us serve you better. Your answers to the questions 
on the reverse side of this form, together with comments and recommendations, will be of great 
value to us in providing the best possible publications for your use. Your answers and comments 
will be carefully reviewed by the person who generated this publication, and may result·in a 
revised publication. Your comments and recommendations become the property of General 
Electric Company. 

Communications concerning Technical Publications should be directed to: 

Manager, Technical Publications 
GE Process Computer Department 
2255 West Desert Cove Road 
Phoenix, Arizona 85029 

Staple 

I 
I 

Fold J 

-1 
....-~~~~~~~~--

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ••• 

GENERAL ELECTRIC COMPANY 
PROCESS COMPUTER DEPARTMENT 
2255 West Desert Cove Road 
Phoenix, Arizona 85029 

FIRST CLASS 
Permit No. 4091 

Phoenix, Arizona 

Attention: Technical Publications 

Fold Fold 

:slUaWWO;) reuOJl'J'.PPV 

.. 
::) 

u 



'Progress Is Ovr Most lmporl11nf Protlvcf 

GENERAL. ELECTRIC 

PROCESS COMPUTER DEPARTMENT 

PHO EN IX , ARIZONA 


