
GENERAL ELECTRIC
COMPUTERS

)

CPB-1141B

I ntrod uction
to LP/600

GENERAL. ELECTRIC

INTRODUCTION TO LP/600

LINEAR PROGRAMMING SYSTEM

CP 8-11418

REFERENCE MANUAL

October 1965

Rev. April 1966

Rev. June 1967

GENERALe ELECTRIC
INFORMATION SYSTEMS DIVISION

PREFACE

The GE-625/635 Linear Programming System language, sublanguages, and features are
described in this manual. The descriptions do not go into the detail needed for a full
understanding of the entire system, but are adequate for the purpose intended, that is,
to present an introduction to the LP/600 linear programming system. This edition contains
all the information included in previous editions, but has considerably more information
about the various LP/600 linear program features. In this edition, changes in technical
content from the previous edition are not identified with the customary bar in the margin
opposite the change.

Suggestions and criticisms relative to form, content, purpose, or use of this manual are
invited. Comments may be sent on the Document Review Sheet in the back of this manual,
or may be addressed directly to Documentation Standards and Publications, B-90, Computer
Equipment Department, General Electric Company, 13430 North Black Canyon Highway,
Phoenix, Arizona 85029.

o 1965, 1966, 1968 by General Electric Company

(2M 12-67)

CPB-1141B

CONTENTS

1. INTRODUCTION '" . 1

LP /600 Input File Preparation 3
LP/600 Agenda Control Language. 4
LP /600 Format Generator Language . 7
LP /600 Output Descriptions 7
LP/600 Matrix Generator Language. 7
About This Manual 8
LP/600 Features Summary. 8
LP/600 Minimum Configuration. 10

2. AGENDA CONTROL LANGUAGE 11

Introduction .. 11
Statement Format 11

Expressions . 14
Phase Structure 14
Separation . 14
Verbs .. 15

Problem Initialization 16
I/O Device Handling 19
Data Generation 19
Data Conversion and Setup ;......... 20
Input Compatibility 20
Data Checking . 20
Restart-Restore Mechanisms 20
Problem File Changes 20
Work File Changes 21

Solution Algorithms . 21
Multiple and Partial Pricing . 22
Composite Modes 22
Primal Problems '. 23
Separable Programming . 23
Crashing Mode 23
Transportation Problems. 23
Group Problems 23
Decomposition Algorithm 24
Inversion Algorithm . 27

Postoptimal Capabilities 27
Parametric Programming : 27
Ranging. 27
Updating Algorithms : . 28
Forcing Algorithms ' 29

CPB-1141B

iii

3.

4.

Solution Controls .. 29
Required Controls . 34
Optional Controls 34
Demand Actions 34

Problem Output . 36
Standard Solution J>rints . 36
Special Report Formats 36
Solution Plotting Data 37
Solution Data Recycling. 38
Work File Displays 38
Delimiting Problem Output . 38

Agenda Control . 38
Macro Definitions 40
Logical Operations. 41

MATRIX GENERATOR LANGUAGE ... 45

Introduction 45
Matrix Generator Language Concepts and Definitions. 45

Arrays. 45
Scalar Quantities" . 46
Linear Program Matrix 46

Statement Format and Verb Usage 47
Classification of Verbs. 47

Submatrix Generation 51
Matrix Generator Language Indexing . 52

Single Element References 52
Multiple Element References. 53

Matrix Generator Language Microprogramming 54
Sample Matrix Generator Language Program 54

FORMAT GENERATOR LANGUAGE

Introduction
Statement Format

Verbs
Arithmetic Expression and Operators
Labels
Operands
Rowand Column Name Summation Convention
Special Combination Operands

Sample Format Generator Language Programming

59

59
59
59
61
61
61
62
62
63

CPB-1141B

iv

5. INPUT FILE FORMATS 67

Introduction .. 67
Matrix Input File . 67

Rowand Column Name Definition 68
Rowand Column Type Definition 68
Matrix and Rhs Element Definition . 70
Element Counts 70
Row Bounds .. 71
Bounded Variables . 71
Scaling. 71

Matrix Revision File 72
Matrix Modifications File . 73
Punch/Ldbasis File . 73
List Files ... 74
Edit Specification File and Edit File . 74

Edit File .. 76
Edit Specification File . 76
EDIT Verb . 77
Output File . 77

APPENDIXES

A. SYSTEM DATA FLOW 79

B. INPUT DECK SETUP 81

C. SAMPLE PROBLEM 89

D. PROBLEM SIZE AND STORAGE REQUIREMENTS 95

E. AGENDA CONTROL LANGUAGE VERB FORMATS 97

F. FORMAT GENERATOR LANGUAGE VERB STATEMENTS. 103

G. MATRIX GENERATOR LANGUAGE VERB FORMATS. 105

H. CARD TYPES, FORMATS, AND USAGE 109

CPB-1141B

v

II

)

1.
2.
3.
4.

ILLUSTRATIONS

Fundamental Control Language Elements
Problem Initialization Verbs
LP/600 Files
Solution Verbs

12
17
19
22

5. Refining Example: Condensation .. 26
6. Postoptimal Verbs . : 28
7 . Solution Control Verbs .. 29
8. Solution Controls ... 30

9. Demand Sequences .. 35
10. Output and Problem Display Verbs .. 37
11. Agenda Control Language Control Verbs .. 39
12. Agenda Control Language Program.:. Sample 1 .. 41

13. Agenda Control Language Program - Sample 2 .. 42
14. Matrix Generator Language Statement Classes .. 48
15. Matrix Produced by Sample Matrix Generator Language Program 57
16. Format Generator Language Verbs. .. 60

17 . Prefix Characters .. 61
18. Format Generator Language Programming Example 64
19 Matrix Input File Card Types 67
20. Rowand Column Types I. • • •• 69

21. Revise File Control Cards 72
22. Basis File Elements. .. 73
23. List Files•................... 74
24. Files Used for Translation of SHARE Standard Data to LP/600

Input File Format 75

25. Edit Specification File Card Type Definition. .. 77
26. LP/600 Input Deck Setup. .. 81
27. LP/600 Card Reader Input. .. 83
28. LP/600 Input from Card Reader, Magnetic Tape, Disc and Drum 85

CPB-1141B

vii

1. INTRODUCTION

The LP /600 Linear Programming System offers the latest advances in mathematical
techniques, and variety of approaches to the solution of linear problems. LP/600 has the
most comprehensive set of solution and post-optimal algorithms ever assembled in one
linear programming system. It operates in a compile-and-go environment -- truly a
data processing system and not merely an optimization technique as most linear programming
codes have been in the past. Although the functions performed by LP/600 are very complex,
the system is easy to use, fleXible, and comprehensive. It embodies the best of yesterday's
linear programming techniques and solution algorithms, in addition to recent advances
in computational techniques, new solution algorithms, complete problem control and
recycling methods, and integrated systems design. Also, many long-desired capabilities
such as matrix and report generator languages are included to increase the applicability
of the system.

The programming language of the LP/600 Linear Programming System is a problem­
oriented, English-like control language containing over 65 system control verbs exclusive
of those in the matrix and format generator languages. Its logiC, similar to FORTRAN,
includes looping, arithmetic and logic operations, subroutine and macro definition
capability, conditional and unconditional transfers, data definition and movement, and
operator communication. These operations combine with an extensive repertoire of linear
program verbs to give the LP /600 user all the programming capabilities required to solve
linear program models.

The Agenda Control Language is the basic language of the LP/600 system. This language
is extended to contain matrix and format generator sublanguages. The extent of sublanguage
usage depends on the level of matrix generation complexity and report sophistication.
Each of the sublanguages are complete within the linear programming functional activities
they serve.

The Agenda Control Language program is a source deck processed to form an internal
agenda control file which is compiled and interpretatively executed by LP/600. This
execution phase, together with pre-established actions, eliminates the necessity for operator
intervention, which is a must in a multiprogramming environment. This operation is more
flexible and comprehensive than ((control card" methods.

LP /600 has separate invert, primal, dual, transportation, block decomposition, and group
algorithms, with user-controlled multiple or partial pricing. It can solve up to 4,095-row
and 262,000-columnstandard problems; lOOO-order matrices can be solved in core.
A group problem may contain up to 4000 roWs in the master problem representing over
20,000 constraints. A block decomposition problem may have up to 4000 rows in the master
problem and the largest subproblem; any number of additional subproblems may be defined
containing over 16,000 additional rows. A transportation matrix may have over 20,000
rows and, columns, consisting of up to 4000 sources and 16,000 destinations, or vice versa.

CPB-1141B

1

Although models of this size have previously been outside the physical capacity of both
memory size and computational speed, they are well within the capacity of LP/600.
Previously, two constraints existed on a linear programming problem solution--problem
size and running time. In this system, the problem size restriction has effectively been
removed, and the running time problem has been minimized.

Included in the solution techniques is the ability to quickly reach a nontrivial starting
basis -- sometimes called crashing. Separable programming techniques are incorporated
for handling nonlinear constraints. Slack variables are generated automatically. Double­
precision arithmetic is used for all algorithms. Automatic controls are used to prevent
cycling and digital errors.

In addition to the solution algrithms, LP /600 provides the capability to do both dynamic
and static post-optimal analysis. Specifically, parametric programming with fully automatic
parameter stepping can be done on right-hand-sides, objective functions, matrix columns
and rows, and simultaneously the right-hand-side and objective function. Ranging can be
performed on right-hand-sides, objective functions, matrix elements and colunms and
solution values. Updated matrix rows and columns can be obtained, and basic variables
can be removed from the basic and nonbasic variables can be forced to enter.

Output capabilities consist of automatically generated restart information, standard reports,
special reports by means of the format generator language, matrix pictUring by range symbols
or coefficient values, range and tableau reports, and intermediate solution values for plotting.
The output volume can be limited by specifying particular subsets of rows and columns
or by controlling the output frequency with internal control parameters.

Agenda control programming, matrix generation and programmed data formatting open
many new approaches to problem formulation and solution control. Most notable, however,
are the opportunities intrinsic in LP/600 for generating and recycling control and problem
data during execution. Instructions in the control language permit computation and data
movement at the control language level during problem execution. This means that the
user can monitor in-progress computations and interrupt the solution cycle to generate
permanent or temporary revisions to the problem; these revisions can then be incorporated
and the solution restarted. Equally important are the facilities provided by the format
generator for recycling problem data. Format generator language subroutines may be
included in the agenda control program for producing new data in BCD format. Thus--based
upon the results of earlier processing--data revisions, modifications, or complete new
problem files may be generated and used during the execution run.

The· LP/600 Matrix Generator Language is based on the input/process/output concept.
Its entities consist of tables, arrays, lists, compound lists, and submatrices, all definable
at execution time. In particular, commonly used specification tables, transportation cost
tables, quality tables and other raw problem data can be stored in a "linear programming
data bank." The data can then be retrieved randomly, set up as the nucleus of a linear
program matrix and augmented by automatically generated cost rows, right-hand-sides,
and structual vectors and rows. Extensive manipulations can be performed on any of the
entities, including character manipulation. Furthermore, matrix generation is not a
separate process; it is a routine occurrence.

The LP /600 Format Generator Language specifies report formats which are definable during
problem execution. In particular, the LP/600 user may define BCD data, process it, and
produce it as output in almost any format. Verbs of the language allow a number of
arithmetic and other operations to be performed on current work file or problem solution
data. In addition, there are extensive capabilities within this language to perform all those

CPB-1141B

2

control operations available in the Agenda Control Language, such as looping, arithmetic
and logic operations, etc. Although intended primarily to facilitate output report formatting
and the recycling of pr.oblem data, the format generator has an unlimited number· of uses.

Careful attention has been paid to the necessity for interfaces between the LP/600 system
and user-generated FORTRAN programs; consequently, several intermediate files of
LP/600 are maintained in formats which may be read and/or written by the FORTRAN IV
input/output statements. The system files may be read by the read decimal input facility,
and/or produced as output via the write decimal output facility, both having appropriate
format statements.

LP /600 operates under the GE-625/635 General Comprehensive Operating Supervisor
(GECOS). The system thus takes full advantage of the multiprogramming and input/output
file control features of GECOS. Moreover, linear programming problems may be freely
intermixed with others which make up the normal computing work load.

Appendix A is a diagram of data flow within the system. It shows the facilities that exist
for data output and recycle during problem execution.

Each of the LP/600 programming languages are covered in a separate publication. These
publications, along with the reference manuals for LP /600 Input File Preparation and LP /600
Output Descriptions are listed below.

GE-625/635 LP/600 Input File Preparation, CPB-1222

GE-625/635 LP/600 Agenda Control Language, CPB-1262

GE-625/635 LP/600 Matrix Generator Language, CPB-1263

GE-625/635 LP/600 Format Generator Language, CPB-1264

GE-625/635 LP/600 Output Descriptions, CPB-1267

LP/600 INPUT FILE PREPARATION

Input File Preparation (CPB-1222) procedures describe:

o Matrix problem input file which defines the matrix file structure, row data, column
data, matrix elements and right-hand-side elements.

o Revisions to a matrix problem file which defines the permissible revisions along
with the revision classifications of insertions, deletions, and replacements of
matrix problem file elements.

o Modifications to a work file which defines permiSSible alterations through element
replacements.

o Basis list which defines the logical and structural vectors for the basis file.

o List file containing a list of column and/or row names/masks.

CPB-1141B

3

• Edit file which defines a problem matrix in the SHARE standard format to be
translated to the LP /600 format.

• Edit Specification file containing specifications for naming the input file generated
as a result of edit file processing. This file also specifies the number of rows
to be edited as objective functions.

LP/600 AGENDA CONTROL LANGUAGE

The Agenda Control Language (CPB-1262) consists of statements that, when executed,
provide the procedures for linear programming problem solutions. The broad range of
functions of the Agenda Control Language also provides procedures for:

• Conditional and unconditional transfers of control

• Arithmetic and logical operations

• Data definition and movement

• Subroutine linkage

• Looping

• Macro definition

• Operator comments

• Matrix snapshots

A summary of the functions of the Agenda Control Language is essentially a summary of
the major features of the LP /600 Linear Programming system. These features are
discussed below according to the classification of major functions within an Agenda Control
Language program.

1. Problem Setup

o Matrix generation and conversion: statements are available to convert
an input file to a problem file, generate a problem file from a Matrix
Generator Language subprogram, and translate an input file in SHARE
standard format to the LP /600 input file format.

o Matrix setup and identification: statements are available for creating a
work file in core storage from a problem file, allocating memory for
buffers and data regions, initializing the communication region and
establishing a problem title to be printed on each output page.

o Solution save - restore: statements are available that cause the current
solution information to be written as a save file on an input/output device
for subsequent use, the current basis to be punched on cards for subsequent
input, and the save file and starting basis file information to be restored
when needed.

CPB-1141B

4

2. Problem Revision

o Problem file changes: a statement is available to revise a'problem
file and to write the revised file on an input/output device for subsequent
use.

o Work file changes: statements are available to modify a problem file,
flag unbounded vectors to prevent their entry in the basis, generate
a pseudo-right-hand-side to cause an infeasible problem to become
feasible, flag specified vectors to keep them from being used in the solution,
and to remove the flags from specified vectors.

3. Solution Controls

o Control setting: statements are provided for setting LP/600 controls
to nonstandard values, and user-defined arguments for naming the
objective function, right-hand-side, and other argument values. Param­
eters may be set to values that delimit the scope of operation of certain
verbs. Solution control frequencies such as those to define the frequency
of printed log lines, inversion and other frequencies may be set. Switches
may be turned on or off to control special operating modes. Tolerances
may be changed to special values. Demands may be set for program
interrupts caused by formulation, computational and other errors.

o Control resetting: a statement is available to reset specified solution
controls back to standard values.

o Status-display: statements are provided to produce a listing of all
solution controls and their current values.

4. Problem Solution

o Standard linear program formulation: statements may be used to obtain
an optimal solution of the standard linear programming problem includ­
ing separable programming formulations, an optimum dual solution of
the standard problem, and a nontrivial starting basis preparatory to
obtaining an optimal solution.

o Decomposition formulation: statements are available for obtaining an
optimal solution of the transportation problem, special group problem
using a form of decomposition, and the standard problem expressed
in decomposition format.

o Inversion: a statement is available to compute a new set of product form
transformations.

5. Post-optimal

o Parametric programming: statements are provided to parameterize the
right-hand-side, objective function, matrix column, matrix row, and
simultaneously the right-hand-side and objective function.

o Ranging: statements are available to determine the range of the right­
hand-side, objective function, matrix element, and column, and the levels
of specified variables while minimizing the rates of change in the functional.

o Tableau: statements may be used to update nonbasic structural vectors,
a specified row or part of a row, and the explicit inverse of the current
basis by updating nonbasic logical vectors.

CPB-1141B

5

6. Program Control

• Arithmetic and logic operations: statements may be used to compute
the value of arithmetic and logic expressions.

o Data definition and manipulation: statements are available to define numeric
constants and logical switches, move the contents of storage locations,
control the printing of certain program comments as operator instructions,
and control the printing of the contents of locations containing defined
constants, switches, and communication region values.

I) Sequence control: statements are available which cause branches to a
specified Agenda Control Language statement or program subroutine,
returns from a subroutine via a demand condition to the statement
originating the demand, or to the next sequential statement following
the demand. A statement of this type may cause a jump from an embedded
subroutine to the statement following the one that executed the demand.
Another statement may be used to test the value of a program counter
and execute the next sequential instruction, or decrement the counter
and branch to a specified location. The Agenda Control Language program
is terminated by a statement which processes the remaining problem
output, and returns control to GECOS.

7. Output

• Standard solution print: statements are available to process problem
answers produced by the solution and parametric verbs.

• Output control: a statement may be used to define a subset of the work
file rows and/or columns for which output is produced by the standard
solution print, picture operations, and certain post-optimal statements.

o Solution plotting: statements are available to write solution values for
up to 40 primal and/or dual variables and later formatting the data in
a form suitable for plotting the change in solution values.

o Picture operations: statements may be used to produce a picture in
the usual matrix format or a subset of the matrix as defined by an output
control statement. A statement of this type can produce output for vector
subsets plus those vectors with first-order interactions with the subset;
or for all vector subsets in the basis with infeasible values plus all
vectors with first-order interactions with the infeasible subset.

o Format generation: statements may be used to generate a format skeleton
from a Format Generator Language subprogram, and later produce
output in the format defined by the skeleton.

8. Input/ Output Device Control

o Input/ output device control: statements are available to rewind and unload
specified files or erase designated files.

CPB-1141B

6

LP/600 FORMAT GENERATOR LANGUAGE

The Format Generator. Language (CPB-1264) defines report format and content. This
LP/600 sublanguage contains most all the control verbs within the Agenda Control Language
in addition to those peculiar to format generation. The Format Generator Language is .
used for the following:

o Printing regular reports

o Printing special management reports

o Generating input data to be converted as a problem file

o Generating data to revise an existing problem file

o Generating data to modify an existing work file

o Generating a specific set of delimit rows and columns to be output

o Generating Matrix Generator Language subprograms

o Generating additional Format Generator Language subprograms

Operations are provided for obtaining solution data for a report, formatting the data, and
producing the report on the printer, card punch, or magnetic tape. Solution data includes
the following:

o Values of structural variables (x-values)

o Marginal costs (pi-values)

o Costs of nonbasic vectors (dj-values)

o Slack values

o Matrix, Rhs, and cost row elements

LP/600 OUTPUT DESCRIPTIONS

Examples of output reports with detailed descriptions are provided in the GE-625/635
LP /600 Output Descriptions manual, CPB-1267.

LP/600 MATRIX GENERATOR LANGUAGE

The Matrix Generator Language(CPB-1263) provides a means of defining the operations to:

o Generate and store problem data for specification tables, transportation cost
tables, quality tables, lists, compound lists, arrays, and submatrices in an
LP /600 data bank.

o Retrieve the stored data randomly, and set it up as the nucleus of a matrix,
augmented by automatically generated cost rows, right-hand-sides, or structural
vectors or rows.

CPB-1141B

7

ABOUT THIS MANUAL

This manual is intended for use as an aid to the understanding of the principles involved
and the methods employed in the GE-625/635 Linear Programming System. It includes
an explanation of the fundamental characteristics of the system, and is not a reference
manual. Discussions cover the Agenda Control Language, the Matrix Generator---Language-;­
the-Format Generator Language, and input file formats.

This introducto-ry chapter describes the use and usefulness of several prominent LP/600
capabilities. These and new features are outlined in the following LP /600 Features Sum­
mary.

LP/SOO FEATURES SUMMARY
I : .

System Control ;(

• Compiled program

• Problem-oriented, English-like control language containing over 65 system control
verbs.

• Complete programming logic including looping, subroutine linkage, arithmetic,
and macro definition capability.

Matrix Generation

• Complete matrix generator language.

• Lists, strings, data tables, matrices, and submatrices definable at execute time.

• Special verbs for generating process-flow submatrices.

Format Generation

• Complete format generator language.

• Any BCD data format definable during problem execution.

• Definable arithmetic, dot products, and logical operations.

Problem Definition I

\
)

J ,.
f,. ' .. I'.

• Up to la-character, 3-part row and column names.

• Free or restricted variables (pOSitive, negative, or zero level).

• Row and/or column scales.

• Upper and/or lower variable bounds.

o Matrix defination in variable-field format.

., Multiple Rhs and objective functions

CPB-114IB

a

1

.,)

o Separable, group, and decomposition variables defined explicitly without special
name conventions.

• Bounded slack variables.

• Five row types.

• Seven column types.

• Element counts by row or column.

Solution Algorithms and Techniques

o Separate primal, dual, transportation, block decomposition, and group algorithms.

o User controlled multiple and/or partial pricing.

o Crashing capability to quickly reach feasibility.

o Slack variables generated automatically.

o Double-precision (72 bits) arithmetic.

o Automatic controls to prevent looping.

Dynamic Data Recycling

o Intermediate solution results.

o Work file modifications.

o Complete problem file revision capability, including linear forms, and the deletion
or insertion of any part of the matrix.

o I/O compatibility with FORTRAN programs.

Post-optimal Operations
I

i
/

o Ranging of the Rhs, objective function, solution values or an individual matrix
element.

o Parameterization of the Rhs, objective function, a matrix column, or a matrix
row.

o Simultaneous parameterization of the Rhs and objective function.

o Row, column, and inverse tableau.

o Analysis of removing basic variables and introducing nonbasic variables.

o Fully automatic parameter stepping.

o User- controlled output frequency.

o User-controlled row and column selection for output.

CPB-1141B

9

Output

.. Automatic output of restart information.

• Special tabulation format for graphing the progress of the solution-algorithms.

• Matrix picturing and tracing.

• pser-controlled delimiting of rows and/or columns for which output is required.

• User-controlled frequency of output of intermediate solution values.

LP/600 MINIMUM CONFIGURATION

LP/600 requires the following equipment configuration:

• GE-625 or GE-635 Processor with 64k storage and console

• Magnetic tape controller with one tape unit

• Disc or drum storage unit

• Card reader and printer

• Card punch (if punched output is called for).

10

CPB-1141B

2. AGENDA CONTROL LANGUAGE

INTRODUCTION

Past linear programming systems were controlled mainly by a string of agendum call
cards which were read into the system, interpreted, and executed sequentially and
individually. Because only one call card was available to the system at any given time,
little or no facility existed for modifying programming procedural changes based on
internal events.

A distinctive aspect of LP /600 is that, through compilation, the entire solution procedure-­
in the form of an agenda control program--is available throughout the execution run. Thus,
the LP /600 Agenda Control Language is a problem programming language that incorporates
instruction labeling as well as FORTRAN-like control and arithmetic statements. (The
fundamental language elements are shown in Figure 1.) The compiler produces, from
control language statements, an object program that is executed by LP/600 executive
control.

The system operates in a compile-and-go mode. A control language program always
begins with a PREPRO statement, which initiates compilation (preprocessing), and ends
with an EXECUTE statement which terminates preprocessing and immediately executes
the assembled Agenda Control Language program.

strings of matrix generator and/or format language statements may be included in the
source agenda. These, however, are not assembled at preprocess time but are placed on
the executive input device by the preprocessor for processing at execute time.

STATEMENT FORMAT

Control statement card format is as follows:

Card Columns

1-6
8-15
16-72
73-80

Field Description

Label
Verb
Parameter (variable)
Identification or sequence

Labels are required with certain verbs but may be used to identify any control statement.
The parameter field may be blank or may contain a symbol, phrase, constant, operand, or
expression, depending upon the verb used. Continuation of the parameter field to the next
statement card is indicated if the rightmost nonblank character is a comma or left
parenthesis. Comment cards, containing an asterisk (*) in column 1 and any information
in columns 2-72, may be freely commingled with control statements.

I

.Ii"
f, / CPB-1141B

11

CHARACTER SETS

Character Set Name Character Set

Numeric 0 to 9

Alphabetic A to Z

Alphanumeric 0 to 9 and A to Z

Punctuation /, = () :

Arithmetic + _ 'k / ()

CHARACTER STRINGS

String Name Structure

Identifier 1 to 18 alphanumerics, divided into one
to three parts, each part consisting of
o to 6 alphanumerics and separated from
the following part by a colon.

Symbol Any number of characters from the GE
character set.

Verb 1 alphabetic and 1 to 7 alphanumerics.

RELATIONAL OPERATORS

Equivalent
Operator Meaning Mathematical Example Expression

Notation

.GT. Greater than > SWTCH=ALPHA .GT. BETA

.LT. Less than < SWTCH=ALPHA .LT. BETA

.EQ. Equals = SWTCH=ALPHA .EQ. BETA

.LE. Less than or s;

equal SWTCH=ALPHA .LE. BETA

.GE. Greater than 2!
SWTCH=ALPHA .GE. BETA or equal

• NE. Not equal f SWTCH=ALPHA .NE • BETA

Figure 1. Fundamental Control Language Elements

CPB-1141B

12

BOOLEAN OPERATORS

Equivalent
Operator Meaning Logical Example Expression

Notation

.AND. And AnB A .AND. B

.OR. Or AUB A .OR. B

.XOR. Exclusive Or (A n B) U (A n B) A • OR. B .XOR • A .AND. B

-.ANOT. And Not AnB A .ANOT. B

.ONOT. Or Not AUB A .ONOT. B

.XNOT. Exclusive Or (A U B) n (A U B) A • OR. B • XNOT • A .AND • B
Not

TERMINOLOGY

Term Character String

Symbol Name or label (1-6 characters)

Constant Number or identifier

Operand Symbol or constant

Expression Alternating list of operands and
operators

ARITHMETIC OPERATORS

Operator Meaning Example Expression

+ Add SUM=ALPHA+BETA

- Subtract DIFF=ALPHA-BETA

/ Divide DIV=ALPHA/BETA

'1(Multiply PROD=ALPHA*BETA

Figure 1. (cont' d)

CPB-1141B

13

Expressions

An extensive set of relational and Boolean operators, as well as the necessary verbs, is
provided for generating arithmetic expressions such as those shown below.

RATIO COMPUTE
LOGIC

Q=(THETA- OTH)/(ITERNO- OIT)
SW1= Q .LE .. 01. AND .. GE. 50, OUT

FORTRAN hierarchy applies to all expressions that do not contain parentheses.
,. I

'''''''' i (' iI" .'

Phase Structure
, (

Phrases appearing in the parameter field are of the following general form:

left side = right side

They specify that the specification on the left side is to be set equal to the value of the
right side. For example,

CONVERT
SETUP
SET

SOURCE=SFILE, IDENT=SPROB
SOURCE=SPROB
RHS=A VAIL, OBJ =PROFIT

The source of the convert data is a file named SFILE. Once the data is converted, it is
assigned the name SPROB which then becomes the source of the SETUP verb. The current
Right-hand- side is assigned the name AVAIL, and the current objective function is assigned
the name PROFIT.

Permissible entries--symbols, labels, constants, etc.--in either phrase-part vary according
to the verb used.

Separation

In addition to an equal sign (=), which separates the right and left sides of a phrase, two
additional separator symbols may appear in the parameter field: a comma (,) and a
slant mark (/).

CPB-1141B

14

The comma (,) means "and" where a sequence of phrases or parameters is defined. For
example:

RESET ACTIVE, THETA, FIV, TCH, VERBSW

SET DIR1=50, DIR2=.1, PARMAX=100

The ACTIVE and THETA and FIV and TCH and VERBSW controls are all reset to their
standard setting. In the second statement, DIR1 is set to the value 50 and DIR2 to .1
and P ARM AX to 100.

The separator slant mark (/) means "on" or "through." For example:

RNGRHS RLIST=NAMES/EI

RNGRHS RLIMIT=ROW1/ROW5

The list of row names, whose right-hand-sides are to be ranged~ is file NAMES and is
located on file code EI. In the second statement, the right-hand-sides for rows ROW1
through ROW5, inclusive, will be ranged.

Verbs

Verbs of the language define the required processing action. The more than 65 verbs can be
categorized functionally as:

Problem initialization verbs--I/O device control, data generation' and conversion,
setup and identification, problem saving and restoring, work file revision
and modification.

Solution andpost-optimal verbs--Solution, inversion, crashing, parametric programming,
ranging, tableau, forcing.

Solution control verbs--Arguments, parameters, frequencies, tolerances, programmed
demands, and toggles (switches).

Output and problem display verbs--Standard solution prints, special solution prints,
solution plotting, matrix picturing.

Agenda program control verbs--Sequence control, data definition, macro definition
and call, expression generation.

CPB-1141B

15

PROBLEM INITIALIZATION

The control language includes verbs for generating and converting problem input data, setting
up a problem work file in core memory, and performing other operations that are preliminary
to problem solution. (See Figure 2.) Verbs which accomplish each step in the initialization
process are designed to give the user comprehensive, flexible, and convenient means for
coping with any problem situation.

CPB-1141B

16
"'.

"
I/O DEVICE CONTROL AND CORE DUMP

UNLOAD Rewinds and unloads a specified tape or tapes.

BLANK

) DUMP

LPDUMP

MATGEN

CONVERT

EDIT

Erases the designated file.

Dumps all core storage occupied by the
LP/600 system.

Dumps all LP/600 data regions.

MATRIX GENERATION AND CONVERSION

Creates a problem file from an input file or
Matrix Generator Language statements.

Converts an input file to a problem file.

Edits a SHARE standard linear program input
file to an LP/600 matrix input file format
for processing by CONVERT.

MATRIX SETUP AND IDENTIFICATION

SETUP Creates a work file in core storage from a
problem file, allocates devices and core
storage for buffers and data regions, and
initializes a communication region.

TITLE Establishes the problem title to be printed
on each output page.

Figure 2. Problem Initialization Verbs

17

CPB-1141B

SAVE

PUNCH

RESTORE

LDBASIS

DE SAVE

DELOAD

REVISE

MODIFY

ABOUND

, AFEAS

FLAG OUT

UNFLAG

SAVING AND RESTORING

Writes a save file composed of the current
solution information onto problem file f~r
subsequent input by RESTORE.

Punches the current basis for subsequent
input to LDBASIS.

Restores a designated save file.

Restores a starting basis produced by PUNCH
or prepared by_the user.

Writes a file composed of the current solution
information for decomposition problems, only,
for subsequent input by DELOAD.

Restores a designated DESAVE file produced
from DECOMP problems.

PROBLEM FILE CHANGES

Revises a specified problem file according to
revisions defined in the revise input file.
The revised problem file remains written
unchanged; the current work file is destroyed.

WORK FILE CHANGES

Modifies the work file according to changes
defined in a modify file.

Flags an unbounded vector to prevent it from
entering the basis.

Changes the Rhs to allow an infeasible problem
to become feasible.

Flags specified vectors to prevent them from
being used in the solution.

Removes the FLAG OUT flags from all or specified
vectors.

Figure 2. (cont' d)

18

CPB-1141B

I/O Device Handling

Input/ output devices are defined by the user, via the appropriate GECOS control cards.
A small set of reserved file names are available, and may be used as a guide for file
definition. (See Figure 3.) Any two-character GECOS file designator is acceptable;
the system will interrogate GECOS to determine the total list of files and establish its
own requirements.

File
Designator

IN

AI

PT or
VP

XP

so

XO

TB

EI

ED

Data Generation

Name

Input File

Alternate
Input File

Problem
File

Extra
Problem
File

GECOS
Output

Alternate
Output
File

Tabulate
File

Alternate
Input File

Edit File

Contents

BCD input files for processing by
CONVERT, REVISE, MATGEN, CALC,
MODIFY and RLIST type verbs.

Same as IN.

Binary results of input file processing
by CONVERT, intermediate problem
results produced by SAVE or DESAVE,
lists and tables produced by MATGEN,
and format generator language subroutines
produced by DEFINE.

Same as PT, but used for input only.

GECOS system output tape.

Problem output

Output produced by RECORD for
processing by TABULATE.

Same as IN.

SHARE Standard Linear Program files for
processing by EDIT.

Figure 3. LP /600 Files

The MATGEN verb compiles matrix generator language statements into a problem file
for setup by SETUP. The compilation occurs during problem execution, not during the
preprocessing phase; when the MATGEN verb is executed the file is generated.

CPB-1141B

19

Data Conversion and Setup

In LP /600, the process of converting BCD problem data to computational format is separated
from the process of setting up the converted matrix in core memory for solution. This
approach results in greater computational efficiency andprogramming flexibility, particularly
in runs where several problems are to be converted. For example, any number of input
files can be batched for conversion to problem files by consecutive CONVERT statements;
the problem files are simply stored on PT. Subsequently, they may be retrieved randomly,
set up in storage and solved during the same run or in subsequent runs.

Input Compatibility

The EDIT verb provides direct input compatibility with any linear programming system
that adheres to the SHARE standard format. Moreover, the conversion programs
activated by EDIT are specially designed for easy modification. This allows the LP/600
user to change the EDIT program so that it will accept other input formats similar to that
of the SHARE standard.

Data Checking

CONVER T and other LP /600 routines contain extensive tests for illegal row, column, and
element types, as well as other flaws in the problem data. The routines are designed to
process the input file completely before initiating terminal action because of data error.
Minor errors are documented and the problem is continued; major errors cause the run
to be aborted if no alternative action is programmed.

Rest a rt-Resto reM e c han ism s

The fundamental restart mechanism is provided by SETUP, since it establishes in core
storage any data file processed previously by CONVERTor MATGEN. Additionally, several
verbs are available for saving and restoring advanced problem information. Included
is the usual SAVE-RESTORE or DESAVE-DELOAD linkage, as well as PUNCH-LDBASIS,
which provides a facility for restoring a system-produced or used-prepared starting basis
in punched-card format. LP/600 contains a number of built-in sequences for executing
SAVE, DESAVE, and PUNCH whenever a problem must be aborted.

Problem File Changes

The utility of a linear programming system is based primarily on facilities available for
carrying out dynamic changes to the problem matrix. Such operational sequences· as
setup-solution-output- change- solution-output, or simply setup- change-solutiol).-output, often
mean sizable savings in formulation and soiution time.

REVISE makes virtually any change in the current problem file, including simple element
changes, the addition or deletion of entire rows or columns, and the creation of linear
combinations of rows and columns. It is useful in problem situations such as the correction
of formulation errors and systematic expansion of a basic matrix to reflect several related
problems, each of which must be solved independently.

CPB-1141B

20

I
I
\

I
i

In LP/600, however, REVISE has a more profound importance for the following reason:
using the format generator language, REVISE data can be generated during the execution
run. This means that work file data, current solution data, and new data can be analyzed,
combined, processed arithmetically, and produced in REVISE file format for immediate
use. This ability to llprogram" the REVISE file--particularly the possibilities for analyzing
the recycling solution-date--opens an unlimited number of new approaches to matrix
formulation and agenda preparation.

Work File Changes

Several verbs are provided for making temporary or exploratory changes to the work file.
For instance, FLAGOUT and UNFLAG are particularly useful for solving the problem
with and without certain specified vectors. These verbs do not change the content of the
work file, but instead simply delineate vectors which can or cannot become active in the
solution.

ABOUND, AFEAS, and MODIFY are normally used to overcome difficulties arising from
formulation errors. ABOUND locates unbounded vectors and removes them from consider­
ation. It thus allows a run to continue when an unbounded solution arises. AFEAS alters
the Rhs to allow an infeasible problem to become feasible. It might, for example, be used
in a subroutine to be executed in the event of infeasibility when the objective is to form a
feasible right-hand-side for the sole purpose of reaching optimality. Once optimality

)
is attained for the pseudo problem, P ARRHS can be used to obtain a solution for the
original problem.

i

\ Similarly, MODIFY is useful in providing a new Rhs when a no-feasible-solution condition
\ arises. MODIFY makes minor revisions to the work file, such as changing the value of
'non-null element or the addition of a new Rhs and the creation of a new Rhs as a linear

,hOmbinatiOn of vectors. Note also that data to be used by MODIFY can be generated during
the execution run.
\

SOLUTION ALGORITHMS

The . LP /600 solution algorithms described in Figure 4 are implementations of the latest
linear program techniques, including recycle capabilities for handling many nonlinear
conditions. Capable of solving problems of up to 4095 rows and specially designed to exploit
the computational superiority of the GE-600 Series computers, the algorithms offer the
LP /600 user unmatched solution power spanning a variety of problem types.

CPB-1141B

21

)
\
)
/

PRIMAL

DUAL

CRASH

TRANSP

GROUP

DECOMP

INVERT

DCINV

Obtains an optimal solution of the standard Linear Program
including separable programming formulations.

Obtains an optimum dual solution of the standard Linear
Program problem, using the dual algorithm.

Generates a nontrivial starting basis for the PRIMAL
algorithm.

Obtains an optimal solution of the transportation problem.

Obtains an optimal solution of a special group problem,
using a form of decomposition.

Obtains an optimal solution to the standard Linear Program
expressed in decomposition format.

Computes a new set of products from transformations for
the current basis for all solution algorithms except
DECOMP.

Computes a new set of products from transformations for
the current basis for DECOMP.

Figure 4. Solution Verbs

Multiple and Partial Pricing

User-controlled multiple and partial prlclng are among many solution tecniques llsed
in LP /600 to achieve utmost iterating efficiency. By means of parameters which are
established with the SET verb, the user may specify the following:

1. The number of vectors, from one to five, to be selected simultaneously for pricing.

2. The number of improvements in the selection criterion per pricing operation.
After the specified number of improvements and when the best vectors have been
selected as candidates for entering the basis, the pricing cycle is terminated.
The next pricing cycle resumes at this point.

\.:) \~ \: ;. ,
(\' \ \ ,\

'\ 1'1" \',
Composite Modes 'I ,\J,b' Ii'

\

Although the PRIMAL algorithm ordinarily solves for a specified R~s~and objective function,
it may also solve for a composite of either or both. In the comp6site modes, the effective
Rhs or objective row is of the following form:

/ \ (1
,1\/ ,i)' . \ [; ,\

/

~. L and A a are columns or rows, and P is an established value of THETA (for composite
//Rhs) or PHI (for composite objective function).
\ ,-' } ;
'-~ 1,1"

(

The composite modes are highly useful in many problem situations, either directly with
PRIMAL or indirectly with the parametric programming algorithms.

CPB-1141B

22

Primal Problems

The primal solution algorithm is based on the product form of the revised simplex method.
PRIMAL is expressly constructed to resolve digital problems automatically and to obtain
a valid optimal solution from any starting point and under any conditions of degeneracy,
linear dependence, and initial infeasibility. Solution checking and inversion are performed
automatically but may be controlled .by the user with special solution controls.

Separable Programming

An advanced feature of the primal algorithm is its ability to solve formulations employing
the separable programming technique. In formulations of this kind, linear apprOXimations
to non convex problems are represented by vector pairs within specified vector packets.
The solution discipline is such that only one vector or two adj acent vectors in a packet
may be in the basis at anyone time.

Crashing Mode

The crashing mode, implemented by the CRASH verb, permits the user to impart an added
degree of efficiency in the operation of the primal solution algorithm. The effect of crash­
ing is to produce quickly a nontrivial starting basis and ultimately, to allow PRIMAL to
reach a feasible solution in a much shorter period of time. The use of crashing techniques
has been a prominent factor in the increased speed of many recent linear programming
systems. In the LP/600 crashing algorithm, emphasis is primarily on sparseness and
secondarily on improving feasibility and/or functional value--the approach that has proved
best in reducing the number of matrix passes required to reach optimality.

Transportation Problems
. \

The classical transportation problem and related formulations are solved by a specially
designed transportation algorithm activated by the TRANSP verb.

Group Problems

. The group algorithm ranks with the primal algorithm in terms of solution power and
efficiency. It is a recently developed form of decomposition applied to problems expressed
as a general master problem and a special subproblem consisting of rows of 1's below
groups of master problem vectors.

Problems requiring such formulations arise in many industrial environments and usually
involve distribution and scheduling. The general form of the problem is as shown below .

. . ~." '-.~-.. ,-.... , -"'-~"' ..

1 1 1 1
1 1 1 1 1

1 1 1 1

CPB-1141B

23

The vector groups in the upper box constitute the master problem. and the rows in the lower
box form the subproblem. In GROUP format, the formulation is as shown below, where
gl, g2, and g3 are group values.

RHS

gl 0 0 0 0 o 0 0 0 0 g3 0 0 0 0 g4 0 0 0 0 0 0

Notice that the subproblem is implied by group vectors having nulls in all rows except
the group row, which contains the Rhs value for the sum of each group. A more realistic
example of how the GROUP approach simplifies and condenses the matrix is given by the
gasoline blending formulation in Figure 5.

Decomposition Algorithm

The concept of decomposition applied to linear program models is valid and well established,
but it has not been implemented in general form in recent major linear program systems.
With LP/600, however, DECaMP may be used to solve models formulated in general
decomposition forms such as the one illustrated on the following page.

CPB-1141B

24

(Co) (C
1

) (C)
P

(Z)

('IT 0) lAO I Al I - - - 5J t8 Era G
Xl B1

('IT 1)

('IT p) ~ ~
p

C x P 0 :L Z, minimize
p=O P

ST P
:L A x P B

O

p=O P

D x P BP
P = 1, 2, ••• , P

P

x P ?: 0 P = 0, 1, 2, ... , P

'lTOAO + Co ?: 0 ('lTp) is a row

'lTOAp + 'IT D + C ~ 0 p = 1, 2, ••• , p p p p

DECOMP is a newly developed "block product form" algorithm which overcomes difficulties
arising with other techniques in achieving efficient parametric computations and in
interpreting problem answers. These improvements, plus the over-all potential of the
decomposition technique, mean that problems not previously amenable to solution because
of their size or nature can be solved routinely by LP/600.

CPB-1141B

25

N
0)

C1
"d
IJj
I
~
IJj

~\-
\J

,,"
\

}y
r~

j

!1 i
!
I ., 'V ! ! I 1::<:

0
olr... iU U

I~ r... 0 ~j >:I
-;;;: -;;;: ~l~ ;;:l N :-< !-- ;....

f3 ! U
·UJ IX <: < ~

c.;; U U ,p., c.:; U U U

::<:
....:I U:I:I .-:: ;:J ;:J ;:J

....:I r... r... r...
UJ ~ UJ U U
U c.:; ~ ::t:::I

....:I
;:J
r...
0
>

I

'. ~ (! ~ I~· . ; .' ~
PROFT :3.0 3.0i3.1~3.1 10 .It .15 •. 16\ 0 '-2.5 i-2.5.'-2.5 i -2.5

~::: ~~:·'._~~bL25i~-.. :lJ-·~r.~ --~[=f i ..

<25:"~4 [-.21 -.351 1 I' 1 I
; j .. - ;' ~ t

VDIS

RESID , __ L=:!_:~J~.?~_~.:_~ .. ; .. , _ .. .1

,~NT~_,._, .. _~,.L_ .. _.L~_Lj,_~~L~ ___ ~~_~, .. ~, __ +"
LCCY !: 1 ' 1 :- • 3

I

1
I,

i I

~I~ ~
......
Z

r... t.!l >

a

..

-"-I"'~~-"" '

I,

i
I

.i
f

!.

V

::<: p.,'
U P::: 0

IX P::: <C
N p.,:I

8'p., .<
Z Z UJ Z;Z
> U ~ Wi>

-4
.... --~.-~ t" ." • .-'~.-.;.

!
j

1-'1'---.'
1

j I i
'--1--~-- ___ .L

'-f--"I-'''~'

------I---L..-,\-~-~·--... -'---t .. ·-'
HCCY , -.5

----~------- ~...---.-..~.--.- -;.-,-- -~--- .. ~,~--"",, .~.-... ...
CRBAL)1 'I L.5; -.5 i

~~r·--· .~ ..•.. ./ .1:
J i! ~

DSPEC

RSPEC

. l
, , ! I I !

t
r .

.~ .• - ~ -= -- -~· -~'t.·---- .. ·--· ;"--,, ~ ... ~ -.~-.;.- ... --~~ -, --.~---.,-
PSPEC

0 0
UJ >< p., p., p.,
H U N p.,
0 U Z Z Z
>:I > > U ~

-70 -4 -41 -4
, '-I'

-~.I,,~5_
, l' o

o
I _'j ,-"I"

11

o

o

1 _'c.'::."" ~-,~1"_I~~"_' __ '_'

o
.-, ~,,' ,'"-.,,',,,--- ,·1 "",-,.',-- -~-,,----, .. ,.,-

o

'?: 75

~ 30

'.~

o

" I 4] 51-3
'~-,_c", _-{._ "",! __ .. _,,~,_

~ a
-'-'-"~----'-T-T-r'---l--' ~-T -.-...
100, : :! i 46: ','

SCA;E--I--' -!"-;--I-·-----r-- '--l·-~-~~ ·~8;-j-~9-o9t
GROUP 50 Ii! 1d '

_.- i L~ -"~. ." ~. -
/

. f·- ---.'~

o I ~ ,
I --I ... ~ .. ----

I I f
, 1
, . ~

I ..

I

I~ " ~l ' \ rJ (,,:c' (' .,-
L'~\ I t_.'- -'

Figure 5. ~xample: Condensation

Inversion Algorithm

The inversion algorithm is vital to the efficiency of the entire LP/600 system and, indeed,
to any linear programming system. Used by all solution algorithms for obtaining a new
set of product form transformations, INVERT is designed for maximum computational
speed and reliability. It contains procedures for automatically recovering from several
types of computational errors, including detectable machine malfunctions.

INVERT is called and executed automatically by the solution algorithms but may also be
initiated by a control statement. More often, however, the user controls inversion
frequency by setting one or more of the applicable solution controls.

POST-OPTIMAL CAPABILITIES

Much of the real power of a linear program system and many benefits of its use originate
from problem analyses made after a basic optimal solution is reached. Indeed, the answers
needed most in many situations can come only by exploring side-cases of a solution.

By providing new ranging, parametric, and other algorithms in additon to those used
previously, LP /600 offers post-optimal capabilities exceeding those of any other existing
linear program system. (See Figure 6.) A major objective of these new developements is
to provide tools for studying the influence on the solution of any part of the problem matrix,
from a single element to several columns or rows.

Parametric Programming

P ARRHS and P AROBJ provide the parametric tools that have been most used in the past.
The other parametric verbs represent two extremes in computational power, both unique
to LP/600. At one extreme, PARRIM parameterizes the right-hand-side and the objective
function Simultaneously. At the other, PARCOL or PARROW parameterizes only one
column or row of the problem matrix; these algorithms, not previously available, have
vast potential. Since the graph of the values of the parameterized functional is itself
nonlinear, the maximum and/or minimum values may be obtained by means of an agenda
control program subroutine, activated by a settable iteration frequency parameter.

Ranging

LP/600 combines the conventional ranging algorithms, RNGOBJ and RNGRHS, with two
new algorithms of significant impact. ,RNGAIJ determines the range over which a specific
matrix coefficient can be varied without requiring a basis change. It can be used to answer
important questions about the sensitivity of technological coefficients. "What if" questions
directed at a set of optimal variables are answered with the RNGSOL verb. This algorithm
first computes the minimum rate of change in the functional as the level of a specified
variable is changed, and then it computes the range of variation of the level without a change
of basis.

CPB-'l141'B

27

PARRHS

PAROBJ

PARRIM

PARCOL

PARROW

RNGRHS

RNGOBJ

RNGAIJ

RNGSOL

COLOUT

ROWOUT

INVOUT

FORCE

REMOVE

PARAMETRIC PROGRAMMING

Parameterizes the right-hand-side.

Parameterizes the objective function.

Simultaneously parameterizes the right-hand side and the
objective function.

Parameterizes a matrix column.

Parameterizes a matrix row.

RANGING

Ranges the right-hand-side.

Ranges the objective function.

Ranges a matrix element.

Ranges the levels of specified variables, minimizing
the rates of change in the functional.

TABLEAU

Updates nonbasic structural vectors.

Updates a specified row or part of a row.

Produces the explicit inverse of the current basis
(updates nonbasic logical vectors).

FORCING

Introduces into the basic nonbasic variables having
a relative cost less than a specified tolerance.

Computes the effect of removing optimal variables
having a value less than a specified tolerance.

Figure 6. Post-optimal Verbs

Updating Algorithms

The updating algorithms produce information for analyzing the effect on each basic variable
of introducing a nonbasic variable into the solution. COLOUT is perhaps the most
frequently used of the three verbs, since it provides this information for all nonbasic
structural vectors. INVOUT produces the same information for nonbasic logical vectors.
ROWOUT produces the COLOUT and INVOUT information arranged in row order. These
three verbs, plus the DELIMIT verb, offer the user a unique capability for not only selecting
vectors to be updated, but also for defining the format and amount of output produced.

CPB-1141B

28

Forcing Algorithms

The forcing algorithms are useful in exploring alternate optimal or near-optimal solutions.
FORCE introduces into the solution each nonbasic variable whose relative cost is less
than a specified tolerance. Feasibility is maintained, but optimality is not. Conversely,
REMOVE determines the effect of removing basic variables whose activity levels are less
than a specified tolerance. Optimality, or dual feasibility, is maintained; but primal
feasibility is not.

SOLUTION CONTROLS

Through solution controls, the LP /600 user exercises personal control of computations
performed by individual verbs. These controls fit the computation to the individual
requirements of the problems to be solved. Verbs which pertain to the solution controls
are explained in Figure 7. The controls themselves are explained in Figure 8. They are
di vided into the following classes:

Arguments
Parameters
Frequencies
Tolerances
Demands
Toggles

LP /600 contains standard, preset values for all controls in each class. Thus, to execise
special control, the user must define the controls to be exercised with the required values.
This is done by one or more phrases in a SET statement; each sucth phrase contains the
name of the control followed by the special value as illustrated below.

SET OBJ =PROFT, RHS=SPEC, VERBSW=ON, FCHK=75

Once set, the special values remain effective until they are changed by a subsequent SET
statement or rescinded by a RESET statement. For example, the following RESET state­
ment resets the verb print s,witch to OFF and resets all frequencies to their standard
values:

RESET VERBSW, FRQS

VERB DESCRIPTION

SET Sets required and optional parameters, tolerances,
frequencies, toggles and demands.

RESET Resets settable quantities to standard values.

STATUS Lists all values settable by the SET verb and the
values for each that are currently effective.

Figure 7. Solution Control Verbs

CPB.:.1141B.

29

Standard
Name Value

PARS (group name)
THETA 0.0
PHI 0.0
PSI 0.0
PARMAX CX)

SCALE 1.0

SSCALE 0.0

EPSLN .00001

MVDI 5
MSHSZ 1
NVMP 5
NIPP 5

Standard
Name Value

FRQS (group name)
FIV 75
FTY CXl

FIRI CXl

DIRI CXl

FIR2 CXl

DIR2 CXl

FREC CXl

DREC CXl

FCHK 75

Standard
Name Value

TOLS (group name)

TMC 1. x 10-5

TRJ 1. x 10-5

TZE 1. x -8 10_ 10 TPV 1. x 10+10 TCH 1. x 10

TABS 1. x 10-12

TERR 1. -5 x 10_
8 TFLT 1. x 10

TFR 1. x 10-8

TIV 1. x 10-8

TCK 1. -7
x 10+5 TMX 1. x 10_

5 TMN 1. x 10

PARAMETERS

Description

All parameters.
Multiplier of CRHS, for PRIMAL, PARRHS, PAROBJ, etc.
Multiplier of COBJ, for PRIMAL, PARRHS, PAROBJ, etc.
Multiplier for PARRIM, PARCOL, PARROW.
Maximum value for THETA, PHI, or PSI in parametric
algorithms.
Scale factor to control sense (and degree) of
optimization.
Scale factor for composite reduction of primal and
dual infeasibilities.
Value used to perturb RHS in the event of digital
cycling during infeasibility.
Maximum number of vector drops in INVERT.
Mesh size for separable programming packets.
Maximum number of vectors for multiple pricing.
Number of improvements required for partial pricing.

FREQUENCIES

Description

All frequencies.
Frequency of inversion.
Frequency of typed log when ANPSW=ON.

Frequency of iteration interrupt 1.
Delta value for delta, interrupt 1.
Frequency of iteration interrupt 2.
Delta value for delta, interrupt 2.
Frequency of RECORD.
Delta parameter for RECORD.
Frequency of solution check.

TOLERANCES

Description

All tolerances.

Small pivot modified choice in INVERT.
Small pivot vector reject in PRIMAL.
Primal or dual infeasibility criterion.
Smallest denomination for ratios.
Maximum absolute characteristic difference after linear
form (round-off noise).
Absolute zero for packing.
Solution check tolerance; larger error gives CHK demand.
Smaller values are output in floating point if
greater than TZE.
Relative cost tolerance (dj) for FORCE
and the value tolerance for REMOVE.
Smallest pivot iterating verbs.
Primal or dual check error report criterion.
Largest magnitude acceptable as input.
Smallest nonzero magnitude acceptable as input.

Figure 8. Solution Controls

30

CPB-1141B

Name

ARGS

OBJ

COBJ

RHS

CRHS

BCOL

CCOL

BROW

CROW

ACTIVE

Standard
Value

(group name)

blank

blank

blank

blank

blank

blank

blank

blank

blank/blank

ARGUMENTS

Description

All arguments.

Name of the current objective
function (OBJ).

Name of the change cost row to
be used for PAROBJ or the composite
OBJ mode.

Name of current right-hand-side (RHS).

Name of the change RHS column for
PARRHS or the composite RHS mode.

Name of the base column for PARCOL.

Name of the change column for PARCOL.

Name of the base row for PARROW.

Name of the change row for PARROW.

Names of the first and last vectors in

in the set to be used in iterating verb.

Figure 8. (cont; d)

CPB-1141B

31

Name

TOGS

CRHSW

CCLSW

COBSW

},.f
- .,.-............

EPSSW \

PKTSW

,- .:-:.~ CRWSW

ANPSW

VERBSW

RIMSW

J' DUMPSW

DETAIL
\
\.

Standard Value

(Toggle group
name)

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

TOGGLES

Description

All toggles

Composite RHS switch

Composite column switch for PARROW

Composite objective function switch

Epsilon switch for RHS loading

Packet switch for separable programming
mode

Composite row switch for PARCOL

Analyst present switch

Verb print switch

Composite RHS and OBJ switch for PARRIM

Dump on abort switch

Eliminate detailed printouts (infeasible
solution dumps, etc.) switch

Figure 8. (cont'd)

CPB-1141B

32

'I'.' \

i

I

I

Name

DEMS

NFS

UNB

.~~~.

NOMAX

NARGM

SUNK

MIER

PIER

SING

CHK

RFl

RF2

RDl

RD2

NOFILE

PROER

DOINV

OOPRI

DOPRN

\ NO~
\ DCINV
\

Standard Value

(group name)

TERM

TERM

TERM

TERM

ABJOB

ENDLP

ENDLP

ENDLP

TERM

TERM

NEXT

NEXT

NEXT

NEXT

NEDLP

ENDLP

DINV

DPRI

DPRN

ENDLP

DDINV

DEMANDS

Description

All demands

No feasible solution

Unbounded solution
(,'

Premature maximum on parameter

No maximum for parameter

Necessary argument missing

Source file unknown

Major input error

Possible input error

Number of vectors dropped during INVERT
exceeds MVDI parameter value

Error greater than tolerance during check

Reached frequency of interrupt 1

Reached frequency of interrupt 2

Reached delta interrupt 1

Reached delta interrupt 2

Work file not SETUP

Agenda program procedure error

Demand for inversion

Demand for PRIMAL-CURRENT

Demand for PRIMAL-NEXT (initiated
automatically by DUAL)

Insufficient disc storage assigned

Demand for DECOMP inversion

Figure 8. (cont' d)

CPB-1141B

33

Required Controls

Generally, solution controls have two functions. First, they define values that are required
for the execution of certain verbs. Second, they define values that are not required by the
system but may be set at the option of the user to meet particular needs.

The most prominent of the required controls are the arguments OBJ and Rhs, which define
the objective function and Rhs to be used by the solution algorithms, post-optimal algorithms,
and certain other verbs. In problems involving parametric algorithms, other controls
must be set to define the change row or column, and, optionally, the maximum parameter
value and a starting parameter value. For example, if a PRIMAL-PAROBJ-PARRHS
sequence is programmed, the SET statement must contain minimally the following phrases:

SET

Optional Controls

OBJ=row name,RHS=column name,CRHS=column name,
COBJ=row name

Any number of optional control phrases may be added to SET phrases which establish
required controls. Among the optional controls are frequencies, demands, tolerances,
and toggles. Unlike the required controls, these contain standard values, that is, the related
verbs would operate normally without a special value. They would, therefore, be set
only to meet a specific processing requirement.

Demand Actions

The LP /600 demands are one of the powerful features of the control language. They allow
the user to define the procedure to correct, compensate for, or bypass any of a number
of undesirable conditions which may arise during execution. They are, in fact, conditional
solution controls that become effective only under certain circumstances.

As is shown by Figure 8, each demand has a standard demand action that is taken if the
demand condition arises. For example, in the event of an unbounded solution (UNB demand),
LP /600 would normally execute the action TERM. The significance of TERM and all
other demand actions is defined in Figure 9.

For each demand, the user may define special actions to be taken in preference to the
standard actions. This is normally done by phrases in the SET statement. For example,
to change the action for UNB to NEXT, the following SET phrase would be used:

SET UNB=NEXT

Using this approach, any demand action shown in Figure 9 may be defined for any of the
demands. However, when the demand actionS are not suitable, the user may program
subroutines for execution, if any demand condition arises.

CPB-1141B

34

Sequence Name Verb Sequence

TERM OUTPUT

SAVE

PUNCH

ENDLP

ABJOB SAVE

PUNCH

ENDLP

ENDLP ENDLP

DUMPN DUMP

NEXT

NEXT NEXT

LPDUMP LPDUMP

JUMP

DINV INVERT

CURRENT
.......... , ~- " •.. -- .. -... - ...

CURNT CURRENT

DPRI PRIMAL

CURRENT

DPRN PRIMAL
.. <.:.. "

-~ .. "'-_.~.~ - I , - - -

JUMP JUMP

DDINV OCINV

CURRENT

1<'/, .C_·· /'~'" "

Figure 9. Demand Sequences

35

"J "

'(
. I .

, I. .), ; I " (

r' (,.(, ..

Ii (.' '/
c) ('

I J., ,

l ,

.. " .. '.' Ir~-> (:.~;i.~·.-:,
:i

. .I"

)

-'.',:.1., .. .:".)
[/

I. t' . ,':

• ...1

.;. . (. (... ~", "-:::i;-;-'-".-, -r'
--'1 .. " ll'· .. (\.,,',.,

. '(
II

il. (,\,.,.:,
... ' .. - ',. 'I,

CPB-1141B

The name of each demand is actually an LP/600 communication region location containing
the associated demand action. Thus, by simply setting the contents of the communication
region location to an instruction label in the agenda program, the user may program any
special computation to be carried out if the demand condition arises.

An instruction can also be set by the SET verb. For example, if a subroutine beginning
with a statement labeled CHNG is to be executed in the event of a no-feasible-solution
(NFS) situation, the SET statement would read:

SET

CHNG TRACE
OUTPUT
ENDLP

NFS=CHNG

By either of these two methods, or combinations of both, the user is given almost unlimited
capabilities for coping with untoward situations which frequently occur during problem
execution.

PROBLEM OUTPUT

The LP/600 user may obtain problem output of several types in an almost unlimited number
of formats for meeting a variety of needs. Gross problem answers may be obtained in
standard formats or in any format specified by the user in the format generator language.
In addition, verbs for limiting output quantity, producing solution plotting information,
and displaying the original problem matrix provide outstanding analytical tools, several
of which are unique to LP/600. The problem output verbs are explained in Figure 10.

Standard Solution Prints

Standard solution prints produced by OUTPUT show problem answers in compact and
easily intelligible formats. The output formats for TRANSP,GROUP, and other solution
algorithms are designed to emphasize the most significant results of the problem type.
In all solution prints, structural and logical variables are clearly distinguished; symbols
show whether a bounded variable is in the solution at upper bound, lower bound, or an
intermediate level. By including the PDSOL phrase in the OUTPUT statement, the user may
suppress output for all nonbasic variables except those at bound.

Special Report Formats

Facilities for generating special output reports are indispensable in any modern linear
programming systen-J.. In LP /600 they are provided by DEFINE and CALC. The format
generator language provides a means for processing and formatting solution results and
other data to meet any reporting need. The format generator language statements are
compiled by DEFINE into a report skeleton, which is stored on a mediary device. The
skeleton may then be accessed and used repeatedly by CALC in formatting and printing
the report.

CPB-1141B

36

)

OUTPUT

DEFINE

CALC

DELIMIT

RECORD

TABULATE

PICTURE

TRACE

SOLUTION PRINTS

Processes problem answers produced by the solution and
parametric verbs.

Compiles a format skeleton from Format Generator Language
statements for later use by the CALC verbs.

Produces output in the format defined by a format skeleton
compiled by DEFINE.

Defines a subset of the work file rows and/or columns for
which output is produced by OUTPUT, PICTURE, TRACE, and
certain postoptima1 verbs.

SOLUTION PLOTTING

Writes solution values for up to 40 primal and/or dual
variables for formatting by TABULATE. The frequency of
output for the RECORD operation is controlled by the
solution controls DREC and FREC.

Reformats the RECORD data in a format suitable for plotting
changes in solution values over a number of solutions.

PICTURE OPERATIONS

Produces a picture of the original work file ma~ix, or a'
subset of the matrix defined by DELIMIT. The output appears
in usual matrix format including row and column names.

Produces in TABULATE format one of the following: (1) all
vectors in the DELIMIT subset plus vectors with first-order
interaction with the subset, (2) if no DELIMIT has been
specified, all vectors in the basis with infeasible values,
plus vectors with first-order interaction with the
infeasible subset.

Figure 10. Output and Problem Display Verbs

Solution Plotting Data

The RECORD and TABULATE verbs give the LP/600 user a unique facility for obtaining
information for plotting a series of solutions, such as those produced during parametric
programming operations. At each basis change, RECORD writes the solution values for
up to 40 primal and! or dual variables into the LP /600 communication region locations.
By exercising the DREC and FREC controls, the user may cause these values to be produced
periOdically as output to a mediary device for subsequent processing by TABULATE.
At the end of the problem, TABULATE lists the names of the variables on the left side
of the print page and prepares each recorded solution as a column, with up to eight solutions
per page. ThUS, the activity of any variable can be plotted over any number of solutions.
And, if solution plotting is not an objective, the TABULATE verb is often a highly useful
means of obtaining a concise display of the solutions.

CPB-1141B

37

Solution Data Recycling

In addition to providing output for TABULATE, RECORD serves another highly significant
function. Since RECORD stores the current solution in the CR (Communication Region),
solution values are constantly available for use in MOVE, COMPUTE, and LOGIC statements
in agenda program subroutines. This means that the user may control the course of the
agenda according to solution values obtained at any point in the run.

Work File Displays

Displays in matrix format of the current work file are produced by TRACE and PICTURE.
Each output page from PICTURE contains the names of 20 to 40 rows and 50 columns,
with symbols denoting· the sign and magnitude of all nonzero coefficients. The output
from TRACE is in TABULATE format, giving actual values.

PICTURE is often an invaluable aid in checking the over-all accuracy of new formulations.
TRACE, on the other hand, is designed to aid in determining the sources of known errors,
particularly infeasibilities. Depending on the use of the DELIMIT verb, TRACE will
produce as output (1) all vectors in the current problem basis with infeasible values or
(2) all vectors in a subset defined by DELIMIT plus vectors with first-order interaction
with the subset. In both cases, additional vectors having nonzero elements in a row in
which a vector in the subset also have a nonzero element are produced as output.

Delimiting Problem Output

DELIMIT may be used to restrict output produced by OUTPUT, FORCE, TRACE, and
the tableau algorithms to a defined subset of vectors. The user may select anyone of the
methods below for delimiting the subset:

1. The names of the beginning and ending vectors may be specified when the subset
comprises contiguous vectors.

2. Each vector may be named individually in a vector names list.

3. Vector name masks may be supplied when all vectors in a class or classes are
to be selected.

AGENDA CONTROL

The extensive repertoire of agenda control verbs injects true programming logic into
agenda preparation and is an outstanding and unique feature of LP/600. Included are
verbs for sequence control, data definition and manipulation, macro-definition, and
arithmetic and logical operations. (See Figure 11.) All are based upon the best known
problem-oriented programming languages and have been expressly designed to fit the
netds of the linear programming user.

CPB-1141B

38

" I.

',I ,','

COMPUTE

LOGIC

DC

DSW

MOVE

NOTE

DISPLAY

GOTO

PERFORM

CURRENT

NEXT

TALLY

ENDLP

JUMP

ARITHMETIC AND LOGICAL OPERATIONS

Computes the value of an arithmetic expression.

Computes the value of'a logical expression.

DATA DEFINITION AND MANIPULATION

Defines one or more numeric constants.

Defines one or more logical switches.

Moves the contents of one or more locations in
the ACL program to other locations.

Contains program comments, which are printed when
the statement is executed.

Prints the contents of specified Agenda Control
Language (ACL) defined constants/switches.
communication region locations.

SEQUENCE CONTROL

Branches to a specified Agenda Control Language
(ACL) statement.

Branches to an ACL program subroutine.

Returns from a subroutine entered via a settable
demand to the statement that originated the
demand.

Returns from a subroutine entered via PERFORM
or a settable demand, to the next sequential
statement following PERFORM or the statement
that originated the demand.

Tests the values of a program counter and either
executes the next sequential instruction, or
decrements the counter and branches to a specified
instruction.

Processes the remal.nl.ng problem output; pauses for
tape dismounting, and returns control to GECOS.

Jumps from an embedded subroutine to the statement
following the first PERFORM or any other verb which
executed a settable demand.

Figure 11. Agenda Control Language Control Verbs

CPB-1141B

39

MACRO

\ ENDM
I

Macro name

Macro-Definitions

MACRO DEFINITION AND CALL

Initiates the definition of a macro skeleton which
may be called upon later by using the name in the
variable field as a verb.

Terminates the macro skeleton. All macros must be
defined prior to their use.

The name in the verb field is the name of a previously
defined macro. All macros defined in the same program
must be defined before being used--that is, earlier in
the card sequence. Labels may be used as required.

Figure 11. (Cont' d)

The facility for defining macro-operations has many applications in the linear program­
ming environment. An example is shown in Figure 12, where a problem is to be converted
and solved by the statement sequence CONVERT, SETUP, SET, PRIMAL, and OUTPUT.

The Agenda Control Language program is considerably shortened because of the macro­
operations and is, therefore, simpler and less time-consuming to prepare. These are,
of course, the major benefits of macro-operations; in large and complex Agenda Control
Language programs, such benefits become increasingly important.

CPB-1141B

40

LOCATION ~ OPERATION ADDRESS, MODIFIER OOMMENTS
0

1 2 617 8 14 i1;'; 16 132

IJHfi: IJHO

MACRO SOLVE

CONVER" SOURCE#l/IN IDENT= ~1

SETUP SOURCE=#l

ISET RHS~#2 OB.J =#3
IPRIMAI

IUUTPU'I

ENDM
ITITLE ISAMPLE 1
SOLVE SFILE AVAIL PROFIT

TITLE SAMPLE 2

SOLVE SFILE 2 AVAIL PROFIIr

ENDLP

EXECUTE

--

Figure 12. Agenda Control Language Program - Sample 1

Logical Operations

Other verbs in the program-control set provide for subroutine linkage, looping, conditional
and unconditional transfers, Boolean functions, and other logical operations. The sample
Agenda Control Language program in Figure 13 includes examples of how most of the logical
verbs are used

As defined in the program shown in Figure 13.

1. To convert and solve the problem.

2. To output results from. a parametric Rhs operation each time THETA reaches
0.1.

CPB-1141B

41

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS
0

1 2 6 1 8 14 1516 32

PREPRO

TITLE SAMPLE PROBLEM 6

CONVER1 SOURCE=SAM6/IN IDE NT,-:SAM6
SETUP SOURCE=SAM6

SET RHS=A V AIL. OBJ =PRO ~IT

PRIMAL

COMEIJTI ~ ITERNO=O_

PERFORl\ INIT
OUTPUT
SET CRHS=CHANGE, DIR1=. 1, RD1=R. PARMAX=1. 0

PARRHS

SET [fHETA=1.1 CRHS=CNC 2

COMPUTI ITERNO=O

PERFORfv [NIT

PARRHS

ENDLP
R ~OMPUTI Q=(THETA-OTH)/(ITEF NO-OIT)

!LOGIC SW1=Q, LE 01 AND 11 ERNO GE 50 OU~ --
tMOVE OTH OTH1 1
MOVE OIT.OIT1 1

MOVE QTH2. THETA.l

MOVE OIT2 ITERNO 1

Figure 13. Agenda Control Language Program - Sample 2

CPB-1141B

LOCATION ? OPERATION ADDRESS, MODIFIER CDMMENTS
0

1 2 6" 8 14 1~116 32

ICHI'I'J.lIJ'l PU:SUL

('TTRRfi:N

OUT OUTPUT

NEXT
INIT MOVE OTH1, THETA,1

I MOVF. IOTH2 THETA 1

MOVE OTH. THETA. 1

MOVE OIT ITERNO 1
MOVE OIT1.ITERNO.1

I MOVF. IOIT2 l'l'.I!.;.l{NU ~

NEXT

OTH DC 0
OTH1 DC 0

OTH2 DC 0

OIT DC 0
OIT1 DC 0

OIT2 DC 0

~- DC 0

SW1 DSW OFF
EXl:!;t 'U'll:!

Figure 13. (cont'd)

CPB-1141B

43

'\
)

3. MATRIX GENERATOR LANGUAGE

INTRODUCTION

The Matrix Generator is an integral part of the LP/600 system for generating linear
program matrices from other types of arrays and data which are selectively combined
via a program of Matrix Generator Language statements (MGL program). This program
exists initially as an input file that is read and processed by a MATGEN statement in
the Agenda Control Language (ACL) program. The other arrays from which matrices are
constructed are called lists, strings, and tables. An MGL program can also produce
compound lists for use by a subsequent Format Generator Language (FGL) program.

The Matrix Generator Language contains more than forty verbs, flexible variable field
syntax, and a number of modifiers and pre-empted identifying words. Words which are
common to MGL, FGL, and ACL have the same meaning in all three languages.

MATRIX GENERATOR LANGUAGE CONCEPTS AND DEFINITIONS

The Matrix Generator Language combines a nwnber of computing and data processing
facilities. Although its major purpose is to produce linear program matrices from data
arrays, it is quite possible to use it for computing tables which can be processed for
output by DEFINE and CALC. The concept of a rectangular table is central to MGL.

Arrays

An array is a general term used to describe a table, list, or string. Tables are defined
as rectangular arrays of numbers (elements) arranged in rows and columns. All entries
are assumed to be non-null: the absence of an entry is equivalent to a value of zero.
The columns are named by a zero-th line of symbols called a "heading." The rows are
named by a zero-th column of symbols called a "stUb." The "zero, zero" entry is the
name of the table. For example, a multiplication table up to 4 x 4 and having the name MULT
would be defined as follows:

TABLE MULT :: COL1, COL2, COL3, COL4
LINE1 :: 1, 2, 3, 4
LINE2 :: 2, 4, 6, 8
LINE3 :: 3, 6, 9, 12
LINE4 :: 4, 8, 12, 16

Either the stub or the heading of a table constitutes a (simple) list. Lists may exist
separately and are the simplest form of array handled by MGL. The elements of a list
are one-part identifiers, up to 6 characters in length.

CPB-1141B

45

The third type of array used with MGL is called a string. A string is used for more efficient
specification and recording of a sparse array. It is a list of triplets of the form:

row ID: column ID = value.

Only triplets whose value is non-null need be specified. All identifiers are single part.

A fourth type of array, called a compound list, may be generated and output for later use in
DEFINE and CALC. A compound list is a list of three-part identifiers such as those used
throughout LP /600 for matrix row and column names. No other use is made of compound
lists in MGL.

Arrays may be input directly as part of the MGL program, or remotely, or they may be
constructed by the MGL program from other arrays of the same or different types.

Scalar Quantities

In MGL, scalar quantities are defined as non-array data. These are of three types:

1. constants, either fixed- or floating-point numbers
2. switches, Boolean quantities (0 or 1 values)
3. alphanumeric character strings

They may be input directly as part of the MGL program or computed by the MGL program.
There are no remote scalars in MGL.

Linear Program Matrix

The final linear program matrix that is to be solved consists of rows, columns, and right­
hand-sides. Each of these constituents is identified by a three-part identifier (of which
one or two parts may be void).

Much of the real power of MGL is derived from its ability to produce entire submatrices
from single statements which operate on tables or strings (and lists, indirectly). The
language is also designed to provide simplicity in matrix definition. In particular,
individual matrix elements may be defined on a one-to-one basis, and the type and order
of logical and structural variables may be specified. The general scheme in producing
a matrix is as follows:

• Input and/or compute tables and strings from other tables and strings, lists,
and scalars.

• Form submatrices from tables and strings.

• Fill in special matrix constituents with direct matrix definition statements.

CPB-1141B

46

STATEMENT FORMAT AND VERB USAGE

The format of MGL statements is the same as the Agenda Control Language statement
format. Each verb and its usage is described briefly in Figure 14 and in the following
paragraphs.

Classification of Verbs

It is convenient and useful to separate the MGL verbs into seven classes, as follows:

1. Control Verbs

2. Direct Data

3. Scalar Operations

4. Array
Transfo rma tions

5. Micro-operations

6. Matrix Construction -

7. Remote Data

these eight verbs provide for program control, macro
definition, and final exit back to the ACL program.

these six verbs introduce the definition of scalars
and arrays as a part of the MGL program. These
verbs are executable, not mere static pseudo-operations.

these five verbs produce scalar results either from other
scalars or from arrays. Powerful indexing arrangements
are provided for accessing table elements. One of
these verbs (LOGIC) is also a control verb, taking
the role of IF.

these seven verbs modify arrays and transform one
type of array to another.

these two verbs, COMPOSE and FUNCT, provide
microprogramming capability for dealing with lists and
strings. Together with their numerous modifiers, they
virtually amount to a sublanguage of MGL. By defin­
ing macros involving these verbs, the user may create
special operations of the most diverse kinds.

these ten verbs form three subclasses:

o Five verbs for direct specification of matrix
consti tuents.

o Four verbs for constructing submatrices from
tables according to pre-defined expansions of
general applicability.

• One verb for direct insertion of a table or
string as a submatrix.

two of these three verbs output and read arrays. The
third is for constructing and outputting a compound
list.

CPB-1141B

47

PERFORM

NEXT

GOTO

TALLY

MACRO

ENDM

EXIT

DUMP

SETCON

SETSW

NAME

LIST

STRING

TABLE

PROGRAM CONTROL

Branches to an MGL program subroutine.

Returns from an MGL program subroutine to the
statement following the last PERFORM executed.

Branches to a specified MGL statement.

Controls repetitive execution of a series of
MGL statements (looping control).

Introduces and identifies a macro prototype
definition.

Terminates a macro prototype definition.

Exits from the MGL program to the statement
following MATGEN in the ACL program.

Outputs lists, strings, tables, and SETCON,
SETSW, and NAME arrays as a debugging aid.

DIRECT DATA

Defines the value of one or more numeric constants.

Defines the value of one or more logical variables
(switches) •

Defines an n-character string of alphanumeric data.

Introduces the first card of a list array.

Introduces the first card of a string array.

Introduces the first card of a table array.

NOTE: Array names are given on the first card. The
a~ray is terminated by the next verb.

DIMEN

INDEX

MOVE

COMPUTE

LOGIC

SCALAR OPERATIONS

Obtains the extent (number of entries) of a
column or row of a table, a list, or a string.

Places the index of a table row or column in a
specified MGL program location.

Moves data between MGL program locations.

Computes the val1le of an arithmetic expression.
(See section on indexing Modes for Array Elements.)

Computes the value of a logical or relational
expression, and either branches to a specified
statement or executes the next sequential
statement. (See section on Indexing Modes for Array
Elements.)

Figure 14. Matrix Generator Language Statement Classes

48

CPB-1141B

I

,I
I

ALTER

DECLARE

RENAME

EXPAND

EXTRACT

ENPAC

ERASE

COMPOSE

FUNCT

ROW

LGL

STR

VECT

RHS

ARRAY TRANSFORMATIONS

Replaces an element of a list, or appends to it
a specified (indexed) element from another list.

Uses two lists to form the stub and heading of a
new table.

Replaces the heading or stub of a table with a
list.

Reformats a string (or its transpose) into a
table.

Creates a list from the heading or stub of a
table or from the row or column names in a string.

Reformats a table (or its transpose) into a string.

Releases storage occupied by an array. (Does not
affect an array which has been ENFILE'd.)

MICRO-OPERATIONS

The defined list operation is performed on two
argument lists with corresponding character masks,
and a result list with character mask. Character
matching and manipulation is permitted with
detailed control of the resulting specification.

The defined string operation is executed with two
argument strings and corresponding character masks,
and result string with character mask. Character
matching and manipulation is permitted, together
with an arithmetic operation and detailed control
of the resulting specification including a second
arithmetic operation.

MATRIX CONSTRUCTION

Rowand Column Generation

Defines coefficients for a specifiec row.

Defines a logical variable, and therefore a row;
also, its type and scale, if any.

Defines a structural variable, and thus a column;
also, its type, scale, and translation, if any.

Defines coefficients for a specific column.

Defines coefficients for a right side.

Figure 14. (cont'd)

49

CPB-1141B

YIELD

QUALS

SYNTH

SUBMAT

TRANSP

READ

ENFILE

JOIN

MATRIX CONSTRUCTION (continued)

Submatrix Generation

Builds a submatrix from a table whose heading
specifies input streams and whose stub indicates
output streams. The table elements are the
proportions of output per unit of input.

Builds a submatrix from a table of quality
coefficients. The heading specifies the input
components, and the stub indicates qualities.

Builds a submatrix from a table \vhose heading
specifies output streams and whose stub indicates
input streams. The elements are the proportions
of input per units of output.

Builds a submatrix from a table or string.

Builds a submatrix from a table of transportation
costs. The heading specifies the sources; the
stub specifies the destination.

REMOTE DATA

1. Reads a card image file of one or more lists,
strings, or tables from its associated unit
(EI, AI, IN).

2. Reads a packed file of string or table data
from its associated unit (PT, XP).

Outputs a packed file of string or table data
onto the PT for later access by READ.

Creates a compound list from three lists and
enfiles it onto the PT for later use by DEFINE

Figure 14. (cont'd.)

50

CPB-1141B

SUBMATRIX GENERATION

Submatrices are generated from tables by the verbs QUALS, YIELD, SYNTH, SUBMAT, and
TRANSP. The verbs produce a submatrix containing the following:

1. Rowand column names that are concatenated from names in the tables.
2. The table values as submatrix elements.
3. Unit elements as required.

The functions of each verb are best shown by defining a table and then showing a statement
using each verb and the resultant submatrix. A sample table is shown below and the
submatrices generated by various statements are described in the following discussion.

TABLE A= CI,
RI = V11,
R2 = V21,

YIELD statement: YIELD

YIELD Submatrix:

CI::
C2::
C3::
R1::
R2::

QUALS statement: QUALS

QUALS Submatrix:

C1::
C2::
C3::
R1:N2:N3
R2:N2:N3

SYNTH statement: SYNTH

SYNTH Submatrix:

C1::
C2::
C3::
R1::
R2::

C2,
V12,
V22,

:N2:N3=A

C1:N2:N3

1

-V11
-V21

:N2:N3=A

C1:N2:N3

1

V11
V21

N1:N2:=A

N1:N2:C1

-1

V11
V21

51

C3
V13
V23

C2:N2:N3

1

-V12
-V22

C2:N2:N3

1

V12
V22

N1:N2:C2

-1

V12
V22

C3:N2:N3

1
-V13
-V23

C3:N2:N3

1
V13
V23

N1:N2:C3

-1
V13
V23

CPB-1141B

SUBMA T statement: SUBMAT NR1:NR2:$1,NC1:$2:NC2 = <A,$1,$2>

SUBMAT Submatrix:

NR1:NR2:R1
NR1:NR2:R2

NC1:C1:NC2

V11

NC1:C2:NC2

V12
V22

NC1:C3:NC2

V13
V21 V23

TRANSP statement: TRANSP ::N3=A(COST)

TRANSP Submatrix:

C1:R1:N3 C1:R2:N3 C2:R1:N3 C2:R2:N3 C3:R1:N3 C3:R2:N3

C1:: 1 1
C2:: 1 1
C3:: 1 1
R1:: -1 -1 -1
R2:: -1 -1 -1
COST V11 V21 V12 V22 V13 V23

MATRIX GENERATOR LANGUAGE INDEXING

Reference to elements of a table is made by COMPUTE and LOGIC statements. Very
extensive indexing capability is provided for this purpose.

Single Element References

Individual table element reference makes use of the following general syntax:

where T is the table name,

R is the row identifier (if non-numeric) or the row index,

and C is the column identifier (if non-numeric) or the column index.

The option for specifying an index in lieu of an identifier carries through nearly all modes
and is referred to as the index option.

ThE: above references are direct. References may also be indirect, with or without the
index option. Indirect reference means that a storage cell (SETCON or NAME) in the
MGL program is spEcified in place of R or C. This is indicated by an asterisk prefixing
the cell label. Contents of the cell can be either:

1. A non-numeric row or column identifier, or
2. A numeric index.

CPB-1141B

52

For example, the reference

refers to the element in column C of table T whose row is specified in cell Xl.

References may also be remote and remote indirect. A list is used for this purpose and
the syntax is nested. For example:

refers to the element in column C of table TI whose row identifier is the third entry in
list Ll. Note that the index option is mandatory here. The construction

is remote indirect and refers to the element in row R of table TI whose column identifier
(not index) is found as the n-th entry of list LI where the index n is stored in cell A.

Multiple Element References

For COMPUTE (but not for LOGIC), a single reference construction may imply use of
several or even all elements of a table. There are two forms of multiple element
references: name-matching and automatic indexing. Either may be direct or remote
(but not indirect). The index option does not apply.

In the <T ,RC> syntax, the Rand C symbols are replaced with dummy symbols of the
form It =n" for name matching and U$n" for automatic indexing, where n is an integer. The
symbolic integer n is used to indicate parallel substitution for equal values of n; unequal
n-values give nested substitution with the smallest n-value being the outermost loop.
For example, the statement

COMPUTE <TI,RI, =p> = <T2,R2, =~

means replace all those elements in row RI of table TI with elements from row R2 of
table T2 wherever column identifiers match in both tables. If it is desired to move all
elements, regardless of identifiers, then the statement would be

COMPUTE <JI,RI,$t> = <T2,R,$J»

If TI and T2 do not have the same number of columns, then the number of elements moved
will be the smaller column extent of the two.

Remote multiple references are achieved by substituting it =n" or U$n" for the index of a
list. Both forms have the same effect insofar as the list is concerned but one or the other
is used depending on the intent of the rest of the statement. For example,

COMPUTE <TI,RI,<LI, =~= <T2,R2, =t>
Means to replace all those elements of row RI of table TI with elements from row R2
of table T2 where column identifiers of TI occur in both T2 and in list Ll. The list acts
as a selection mechanism.

CPB-114IB

53

References to values of a string entry can utilize the single element subset of the table
reference syntax with the following changes:

o The index option is meaningless and hence not permitted.

• Rowand column identifiers are separated by a colon instead of a comma.

Both table and string references may occur in the same statement. For example,

COMPUTE <5'1,$1,$2> = <S1,R1:Cl>

replaces every element of table T1 with the value for the entry in string S1 which has
identifiers R1:Cl. A table is distinguished from a string with the same name by means
of the colon used to separate the identifiers of the string.

MATRIX GENERATOR LANGUAGE MICROPROGRAMMING

Detailed manipulation capability is provided in MGL for lists and strings. This is in
addition to the ability of the previously discussed general verbs to access or store an
individual array entry - which can be incorporated in user defined loops, subroutines,
etc. The verbs COMPOSE and FUNCT provide microprogramming on lists and strings
respectively; the result of such operations is an entire list or string. The operations
are symmetrical in the sense that the result is always the same kind of entity as the
operands.

Both character string manipulation and arithmetic are involved in these operations. The
terms II composition" (COMPOSE) and llfunction" (FUNCT) are arbitrarily associated
with lists and string arrays, respectively, simply for purposes of discrimination. Both
operations are quite similar in philosophy.

SAMPLE MATRIX GENERATOR LANGUAGE PROGRAM

Refer to Figure 15 following the program listing. The following information describes the
matrix produced by the coding shown in the listing.

The macro-instruction BLEND is defined following creation of the tables CRUDE, CATPLT,
GASOQ, DISTQ, FUELQ, and COST, and the string AVAIL. The first COMPUTE generates
ones in the first four columns of the table CRUDE, row PSTILL. The second COMPUTE
increases by .25 the entries on the PROFIT row of CRUDE. SUBMAT then generates from
CR UDE the first four columns of the matrix.

The YIELD statement generates the next three columns from the table CATPLT, and then
BLEND is called. In BLEND, a row type is assigned; then ones are filled in the BAL row
of the current tablE; then three or four columns of the matrix are generated; finally a
:SPEC column is defined along with its range or h'anslation. BLEND is repeated four
times, generating a total of 17 contiguous columns (from VNAPl :PREM to FUEL:SPEC).

Finally the Right-hand-side is generated from the AVAIL string by a SUBMAT, and several
rows are typed by LGLs.

CPB-1141B

54

Note the use of a translation for PREM:SPEC and DIST:SPEC eliminates the need for require­
ments rows for these variables. Otherwise, for example, one would have a constraint
of the form:

PREM:SPEC AVAIL

PREM:REQ 1 ;:: 75

and a similar one for DIST:SPEC.

CPB-1141B

55

Location Verb

FILE
TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

STRING

MACRO
LGL
COMPUTE
QUALS
VECT
STR
ENDM

COMPUTE
COMPUTE
SUBMAT
YIELD
BLEND
BLEND
BLEND
BLEND
SUBMAT
LGL
LGL
LGL
LGL
LGL
EXIT

EN D,',"',,',

Variable

SAMPRO:2
CRUDE=CR1F,CR2F,CR1D,CR2D
CR1=1,-.5,1,-.5
CR2=,l, ,1
VNAP1=-.1, ,-.15,
VNAP2= ,-.2, ,-.2
VDIST=-.25,-.2,-.4,-.35
RESID=-.6,-.5,-.4,-.3
PSTILL=
PROFIT= ,
CATPLT=VDIST,LTYCL,HVYCYL
CATNAP=.7,.6,.3
LTCYL=.3, ,.7
HUYCYL=.5,.5
CATCAP=-1.6,-1.2,-1.1
PROFIT=-.1,-.15,-.16
RESID=-.1, ,
GASOQ=VNAP1,VNAP2,CATNAP
OCTANE=85,84,92
BAL= , ,
DISTQ=VDIST,VNAP2,LTCYL
CONTAM=54, 50, 65
BAL= , ,
FUELQ=HVYCYL,LTCYL,VDIST,RESID
RATIO=-9, , ,1
BAL= , , ,
COST=CR1F,CR2F,CR1D,CR2D
PROFIT-2.75,2.85,2.75,2.85
AVAIL=PSTILL:AVAIL=100,CATCAP;AVAIL=46,
VDIST:AVAIL=11,LTYCL:AVAIL=-11
CR2:AVAIL=75,PROFIT:AVAIL=70
BLEND
4/4 :4f2 (4/6)
<411, BAL, $1>=1.0
:#2:=#1
#2:SPEC,PROFIT=#3,#4:#2=#5,BAL:#2=-1
4f2 : S PEc4f7

<CRUDE, PST ILL , $1>=1.
<CRUDE, PROFIT,=l>=<COST, PROFIT,=1>+.25
$1::,$2:PSTILL:=<CRUDE,$1,$2>
:CATPLT:=CATPLT
GASOQ;PREM;-5;OCTANE;-89;MINUS;,TRANSL=25
GASOQ;REGLR;-4.5;OCTANE;-85;MINUS;(RANGE=10)
DISTQ;DIST;-4;CONTAM;-55;PLUS;,TRANSL=30
FUELQ;FUEL;-2.5;RATIO;0;PLUS;(RANGE=50)
$1.$2(RHS)=<AVAIL,$1:$2>
PSTILL (PLUS)
CATCAP(PLUS)
CR1(PLUS)
CR2 (PLUS)
PROFIT (FREE)

CPB-1141B

56

c.n
-:J

(')
'"d
tJj
I
~
~
~
~
tJj

CR1

CR2

VNAP1

VNAP2

VDIST

RESlD

PSTILL

PROFIT

LTCYL

HVYCYL

CATNAP

CATCAP

OCTAVE: PREll

BAL:PRElI

OCTANE: REGLR

BAL:REGLR

CONTAM: DIST

8AL:DlST

RATIO: FUEL

RAL:FUEL

CR1F CR2F CR1D CR2D
PSTILL PSTILL PSTILL PSTILL

-.5 -.5

-1 -.15

-.2

-.25 -.2 -.4 -.35

-.6 -.5 -.4 -.3

3.0 3.1 3.0 3.1

I'DIST ILTCYL HUYCYL \-'NAPl \~AP2 CAn:AP PREN \~~API \~:\P2 CATNAP REGLR VDIST VNAP2 LTCYL DIST HUYCYL LTCYL VDIST RESID FlTI.
CATPLrjCATPLT CATPLT PRE}! PRE}! PRHl SPEC REGLR R~GlR REGLR SPEC DIST DIST DIST SPEC FoEL FLU FLU flU SPEC IA\'AIL

(T=25) (R-10) (T-30) (R-50)

I ~ 75

1 1 1 1 1 1 I I I I I I I I I 11 I I I I I I 11 1 1 11

.1

~ 100

.1 .15 .16 -5 -4.5 -4 -2.5 :> -70

-.3 -.7 -11

-.5 -.5

-.7 -.6 -.3

1.6 1.2 1.1 I

9Z -89

-1

85 84 9Z -85

1 1 1 -1

54 50 65 -55

1 1 1 -1

I' I
1 1-9

I I 1 I 1 I 1 I 1 I -1

Figure 15. Matrix Produced by Sample Matrix Generator Language Program

4. FORMAT GENERATOR LANGUAGE

INTRODUCTION

Format generator language statements define the format and content of BCD output. Within
the context of LP/600, this output may be any of the following:

1. The problem solution in a special report format.

2. Problem input data for processing by CONVERT.

3. A REVISE file containing revisions to a problem file.

4. A MODIFY file containing revisions to a work file.

5. A set of DE LIMIT rows and/or columns.

6. Matrix generator language or format generator language statements.

Data used in producing the output may be:

1. Data taken from an existing problem solution.

2. Data taken from the current work file.

3. New data provided within the context of the format generator language.

From format generator language statements, the DEFINE verb produces a format skeleton
on the problem device (PT). Subsequently, the CALC verb may be used to execute the
formatting operations specified in the skeleton. Both the DEFINE and CALC verbs are
executed at problem execution time. They may occur at any point in the agenda program
and may be used repeatedly.

STATEMENT FORMAT

The card format of format generator language statements is the same as that for the
Agenda Control Language statements.

Verbs

Verbs in the format generator language ~re described in Figure 16.

CPB-1141B

59

COMPUTE newvar/position.d=arithmetic expression

"Newvar" is the user's symbol for the quantity to be computed. "pl)sition" is the
print or punch card column number for the units position of tIle results, and". d"
denotes a decimal number with d digits in the fraction. The". d" is omitted for
integers and "/position.d" is omitted for an intermediate result not to be
produced as output. If the computational result is to be produced as output but
not retained, "newvar" may be omitted. "Arithmetic expression" follows the rules
for the control language COMPUTE verb, subject to the requirements for prefix
characters on operands.

LOGIC switch=Boolean expression, label

Gl1TO

"Switch" is the user's symbol in which the value (0 for true, 1 for false) of the
Boolean expression is stored,and "Boolean expression" follows the rules for the
control language verb LOGIC, except that all operands must be prefixed. If the
value of "switch" is set to 1, a jump to the statement "label" is executed.

label

Unconditional jump to the statement identified by lab<:l.

PERFORM label

NEXT

ALPHA

Similar to GOTO, but a subsequent NEXT causes return to the statement following
PERFORM; used to enter subroutines.

Return to the statement following the most recently executed PERFORM; used for
subroutine return.

n, any character string

Defines BCD data; "n" is the length of the character string.

INSERT label, position.n

Makes up output lines; "label" designates an ALPHA statement, "position" is the
left-most print or punch position of the insertion, and ".n" (optional) is the
number of characters to be inserted from the ALPHA statement, if the output is
less than the full length of ALPHA.

LINOUT cc, label

~CALE

LXIT

Produces a print or punch line as output. The "cc" symbol is thE required
carriage control character. "Label" is optional; if used, it refers to an ALPHA
statement which will be printed or punched as is, without clearing. If no label
is given, the standard print line (built with previous statements) will be
printed and cltared to blanks.

prefix=constant

"Prefix" is ont of the set-defining prefix characters, causing all quantities of
the type specified to be multiplied by the constant before use.

Ter~inates the FGL Program and causes return to the statement following the
CALC statement in the ACL Program.

nACRO Introduces and identifies a MACRO prototype.

nl\.CRO CALL Calls and executes the prototype named in the verb field using the
ar~um~nts specified in the variable field.

I:NDM Signals thE: end of a MACRO prototype definiti<'n.

Figure 16. Format Generator Lant=;uage Verb~

CPB-1141B

60

Arithmetic Expression and Operators

The COMPUTE and LOGIC verbs are fWlctionally identical with the corresponding Agenda
Control Language verbs. The same aritlunetic, relational, and Boolean operators may be
used.

Labels

Statement labels may be any string of from 1 to 6 legal characters, the first of which
must be non-numeric.

Operands

Operands may be decimal numbers, in standard format as shown by the examples below,
identifiers, or names.

3.1416
10
1

-13.62

Non-numeric operands are limited to intermediate results or switch variable names,
legitimate row and column identifiers, or commWlication region names. Furthermore, a
prefix character must be attached to each such identifier or name to identify its type and
usage properly. The set of prefix characters is shown in Figure 17 below.

Prefix

x

P

D

L

A

B

c

N

K

Resulting Identification of Attached Identifier or Name

A structural vector identifier denoting a variable whose value is to
be used.

A row identifier denoting a pi-value.

A structural vector identifier denoting a relative cost factor (d.).
J

A row identifier denoting a logical variable whose value is to be
used.

A structural vector identifier followed by a comma and a row identifier,
indicating an element of the A-matrix.

A row identifier indicating an element of the current right side.

A structural vector identifier indicating an element of the current
cost row.

An intermediate result name previously computed or to be computed.

A communication .region location name.

Figure 17. Prefix Characters

CPB-1141B

61

Rowand Column Name Summation Convention

Rowand column identifiers have the following form:

a (0: =P,L,B)

and

C l :C z :C 3 (f! =X,D,C)

a and f are reference types, and the r 1 and C 1 are subnames of 0 to 6 characters: an
r 1 or C 1 may be blank; it is then interpreted as being null. If a subname is given as
asterisk (*), then summation over the full subname is implied. Thus, the usage:

COMPUTE Value = Pr l :rz :*

has the meaning:

L
Value = i n i'

for all rows whose first and middle names are r l and r 2 , respectively, regardless of
the last name. Similarly the usage:

COMPUTE Value = DC l :*:C 3

means:

",

Value = i dj ,

for all columns whose first and last names are C 1 and C 3' respectively, regardless of
the middle name.

Special Combination Operands

To facilitate the output of special products, two combination operands are included. The
first of these is the scalar (dot) product operand:

or

<f- r l:r 2: r 3'C 1 :Cz:C 3>
where 0' , f3, r l' and C 1 are as defined above, including use of *. For example the usage:

COMPUTE Value = Dr l:r z :r 3'C 1 :C 2 :C 3

means:

CPB-1141B

62

\
J

where the i and j are row and column indices over all those subnames with value of *.
Similarly, if a= P,

L L i Value =. . a. 17 •
1 J J 1

The second special operand is the element sum operand:

denoting

Value = ~ ~ i
1 J a j ,

for all i and j with subname values of *.

SAMPLE FORMAT GENERATOR LANGUAGE PROGRAMMING

The sample programming in Figure 18 illustrates how the format generator language is
used to produce an output report from the results of a linear program run. Note part­
icularly the structural names in the COMPUTE and LOGIC statements, along with their
identifying prefix characters.

CPB-1141B

63

LOCATION P OPERATION ADDRESS, MODIFIER OOMMENTS
0

1 2FIL~ 'sNAME14 1516 32

GOTO START

Al NAME 24 P~PESTILL OPERATIONS
A2 NAME 12 PER CENT OF

A3 NAME 42 TYPE MB/D TOTAL CRUDE

IA4 NAME 30 CRUDE 1 FUEL

IA5 NAME 1,2

IA6 NAME 10 DISTILLATE

ST'ART INSERT k\1. 10

INSERT k\2.60

LINOUT

INSERT It\3 37 ,

LINOUT

COMPUTE trCR=X*:PSTILL:* /100.

LINOUT

C1F f""OMPUTE tz/49. 3=X CR1:PSTILL: Ii'UEL

LOGIC NZ LE 0 C2F

~ERFORlV p

LINOUT --
C2F COMJ:-'UT~ 7./49 3:-:XCR2~PSTILI' li'UEI

!LOGIC NZ LE 0 CID

iPERFORlV p

NSERT ~5 17

~INOUT

Figure 18. Format Generator Language Programming Example

CPB-1141B

64

LOCATION ..5 OPERATION ADDRESS, MODIFIER COMMENTS
0

1 2 6 t 8 1.4 11516 132

ICltD ICOMpu'l ZL49 3=XCR1' PSTILL' DIST
LOGIC NZ.LE. 0, C2D

PERFORI\ P

INSERT A6 30

LINOUT

IC2D COMPUTl ~ Z/49.3=XCR2:PSTILL:)IST

LOGIC NZ. LE. O~ CAT

PERFORI\ P

INSERT A6,30

INSERT A5 17

LIN(HIT

GOTU ICAT
,lN~~t{T A4 11

COMPUTl ~ 64 3=NZ/NTCR

NEXT

CAT
END***

f----

Figure 18. (cont' d)

CPB-1141B

65

5. INPUT FILE FORMATS

INTRODUCTION

LP /600 input file structure introduces many new approaches to matrix definition. All
are intended to give the user the utmost flexibility and convenience in defining his particular
problem matrix, or in defining revisions to a problem file or work file.

MATRIX INPUT FILE

A matrix input file defines a problem for processing by CONVERT. The card types used
are described in Figure 19. Each card type is identified by a designator, beginning in
column 1, and contains problem data in variable-field format beginning in column 8. With
certain exceptions, cards within the file may appear in any desired sequence. The variable
field format and the absence of stringent card sequencing requirements are outstanding
features of LP /600.

Type
Indicator

FILE

LGL or L

STR or S

HATRIX or A

RH3 or B

BLOCK

ENDGRP

END·'dd.

Description

Contains the file name and is the first card in file.

Specifies a logical variable, and hence, a row.
Optionally, a row element count, a row scale, and a
row type may be specified.

Specifies a structural variable, and hence, a column.
Optionally, a column element count, a column
translation, a column scale, and a column type may
be specified.

Defines a matrix element.

Defines an RHS element.

Introduces a series of cards defining a matrix "block"
for the DECOMP algorithm. Blocks must be in ascending
order. A block is a complete subfile within a matrix
input file.

Ends the last GROUP. Not required if another GROUP­
type column definition card follows.

The last card in every file deck.

Comment card. May be used anywhere.

Figure 19. Matrix Input File Card Types

67

CPB-1141B

Rowand Column Name Definition

Rowand column names may be defined in one to three parts, each separated by a colon
and consisting of a maximum of six characters. Names may be constructed from the
characters A-Z, and the numbers 0-9. The use and utility of three-part, 18-character
names, particularly for depicting row and column significance in process flow matrices,
was shown in earlier discussions of the matrix generator language.

In the input file, row names are defined by their appearance in an LGL card or a MATRIX
card. Column names are defined by their appearance in an STR card or a MATRIX card.
Thus, except for certain row and column types which require LGL and STR cards, matrix
rows, columns, and coefficients may be defined entirely in MATRIX cards. In most cases,
LGL and STR will be used only to name specific rows and columns for inclusion in the work
file, or to define the required order of rows and columns in the file.

Rowand Column Type Definition

LP/600 row and column type designators are described in Figure 20. They permit any
row relation and row or column bound to be defined explicitly without increasing matrix
size. Except for RANGE, GROUP and PACKET, which require user-defined values and
must appear in a particular card type, types are defined at the point of name definition.
The examples below show name and type definitions in LGL and STR cards.

LGL
LGL

STR
STR
STR

PROFIT(FREE)
GASO:REF1:(ZERO)

GASO:REF1 :AREA1(PL US)
DIST:REFl:AREAl(PLUS)
MFG:PROFIT (ZERO)

If the rows and columns were defined in MATRIX cards, the format would be:

MATRIX PROFIT(FREE) ,GASO:REFl :AREA1(PLUS)=4. 78

MATRIX GASO: REF 1: (ZERO), GASO: REFl :AREAl (PLUS) =1

To provide an added convenience in matrix definition, all rows are assumed to be type
ZERO unless a type is specifically given.

CPB-ll41B

68

Type
Indicator

(ZERO)

(PLUS)

(MINUS)

(FREE)

(RANGE)

Type
Indicator

(ZERO)

or (Z)

or (P)

or (M)

or (F)

or (R)

or (Z)

nIlNUS) or (M)

(FREE) or (F)

(RANGE) or (R)

(GROUP) or (G)

(PACKET) or ('1')

Modifier

SCALE

COUNT

TRANSL

ROW TYPES

Description

Equality row; logical variable must be zero.

Less-than-or-equal row; logical variable must be nonnegative.

Greater-than-or-equal row; logical variable must be nonpositive.

The logical variable may take on any value; used for functionals.

Bound row; requires a positive numerical value. If vi is the
specified value and b

1
is the Will element for this row, then the

logical variable must lie in the range [O,v
1
]; that is, the row

must satisfy the following restraints:

bi_vij~a~xt';:bi .
J J

COLUMN TYPES

Description

Variable must be zero; column never enters the basis.

Variable must be nonnegative.

Variable must be nonpositive. The column is multiplied by -1
and given a scale of -1. The variable is then treated as PLUS
type until output time.

Variable can take on any value. Once in the basis the column is
never removed.

This requires either one or two specified numerical values. If
only one is given, the other is assumed to be zero.

Pseudo column which precedes a group; the stated value applies
to the right-hand-side element.

Pseudo column which precedes a packet; the stated value is the
extent of the packet.

TYPE MODIFIERS

Description

Scaling factor for a row or a column. A scale may not be used
when the column type is RANGE or when the row type is RANGE or
FREE. Scales affect internal computations but are compensated
for at output. A negative scale in effect changes a MINUS type
to PLUS or vice-versa.

Presumed count of the number of elements used as input for the
row, column, or right-hand-side.

Translation factor for the column. A translation may not be used
for rows, or when the column type is RANGE. Translations affect
internal computations but are compensated for at output.

Figure 20. Rowand Column Types

CPB-1141B

69

Similarly, a column is assumed to be type PLUS. Further, repetition of card type indicators
is not necessary, since a card without an indicator is assumed to be the last named type.
(NOTE: In examples herein, all row type and card type indicators are defined explicitly.)

Matrix and Rhs Element Definition

Matrix elements are defined by phrases in MATRIX cards. The structure of the phrases
is intended to relieve the user of the need to repeat row and/or column names. For
instance, the right side of the phrase always contains the value of a coefficient; the left
side must contain one name, but may contain both a row and column name, and type
designators. If either name is omitted, the coefficient is assumed to pertain to the last
named row or column.

For example, in the card below, the comma preceding the name indicates the absence of
a row name.

MATRIX ,GASO: REF1 :AREA1=1

The element is presumed to pertain to the last named row. In the example above, if the
leading comma were omitted, the program would assume that the name given was a row
name; in this case, the coefficient would pertain to the last named column.

RHS elements are defined in the same manner. For example,

RHS

Element Counts

GASO:REF1,RHS01=1. p
,RHS02=2.0
DIST: REF 1, RHSO 1 =2. 4

A count of the number of elements in a row, column or RHS may be included in LGL,
STR, or RHS cards at the option of the user for checking during CONVERT. The count
is usually defined at the time the related row or column is defined; that is, at the first
appearance of the row or column name. For example,

LGL PROFIT(FREE),COUNT=67

STR GASO:REF1:AREA1(PLDS),COUNT=49

RHS . GASO:REF1,RHS01=2.4,COUNT:::35

CPB-1141B

70

/

Row Bounds

The "value" of a less-than-or-equal row may be constrained within the range of two
values by placing a bound on the logical vector. This is done by defining the row as type
RANGE in an LGL card and providing a range value. This value is the difference between
the lower value and the upper value (which is the RHS value) in the desired range. For
example, to assign a lower bound of 25 and an upper bound of 100, the row would be defined
as follows:

LGL rowname(RANGE=75)

RHS rowname,RHS name = 100

The effect is to bind the value of the logical within the range 0-75 and, hence, the row
value between 25-100.

Bounded Variables

Upper and/or lower bounds for a variable are easily definable within the STR card. If
both upper and lower bounds are required, the column is defined as type RANGE and the
bounds are defined. For example,

STR GASO:REF1:AREA1(RANGE=10,20)

If only one bound is required, the variable is defined as either PLUS or MINUS and a
translation value is specified. For example,

STR GASO:REF1:AREA1(PLUS), TRANSL=20

Scaling

Automatic scaling is used internally for RANGE and MINUS row or column types. An
AUTO-SCALE option is also available during problem SETUP to improve digital accuracy.
In addition, LP/600 enables the user to specify rowand/or column scales of his choice.
Any scaling, whether automatically generated or user supplied, is compensated for in all
output. For example,

STR GASO (PLUS), SCALE = 17

CPB-1141B

71

MATRIX REVISION FILE

The matrix revision file contains changes to a problem file to be made by the REVISE
verb. Control cards which define the required revisions are described in Figure 21.
Cards containing the revision data are identical with those used to define a matrix input
file.

The comprehensive matrix revision capability of LP/600 is one of the most useful features
of the system. Any desired revision may be made to a problem file, including the linear
combination of existing rows or columns.

Indicator

INSERT

DELETE

RPLACE

RFORM

CFORN

Description

Specifies that trailing LGL, STR, MATRIX, RHS, CFORM, or RFORM
data is to be inserted in input order into the problem file
immediately following the row, column, or RHS specified in the
variable field of the INSERT card. To make an insert at the
b~ginning of the section of logical (rows), structural (columns),
or right-hand-side elements, the programmer must place '000000'
in the variable field of the INSERT card. If the name is ''i~~hb'dd~',
insertion takes place at the end of the designated section.

Specifies that the row, column, or RHS named in the variable field
is to be deleted from the problem. Any cards following the DELETE
card are treated as though they followed an INSERT card; that is,
the rows or columns named are inserted at the point at which the
deletion occurred.

Specifies that the trailing LGL, STR, MATRIX, and rulS data is to
replace existing problem file data containing corresponding row
or column names.

Specifies that a row is to be computed as a linear combination of
a set of one or more existing rows and an additive constant, which
are defined in the variable field.

Specifies that a column is to be computed as a linear combination
of a set of one or more existing columns and an additive constant,
which are defined in the variable field.

Figure 21. Revise File Control Cards

CPB-1141B

72

MATRIX MODIFICATIONS FILE

In addition to the capability for creating an updated problem file by means of the REVISE
verb, temporary modifications can be specified in a matrix modifications file for execution
by the MODIFY verb. The modifications file is similar to the revisions file, utilizing
all of the revisions file control cards except RFORM and DELETE. The following modi­
fications can be made:

1. The type of any row or column may be changed.

2. Any non-null structural element value, scale, or translation may be changed.

3. Any RHS element may be changed. A new RHS may be added to the existing
matrix.

4. A new RHS may be added as CFORM columns.

In addition, all permissible changes may be cascaded by means of multiple, repeated use
of MODIFY verbs in a single problem run.

PUNCH/LDBASIS FILE

The basis from a particular solution to aproblem may be punched and subsequently reloaded
to provide an advanced start for a modified or revised problem. The format consists
of a symbolic file; that is, the first card is FILE and the last is END***. The data consists
of a list of logical and/or structural vector names separated by commas. Each data card
has a type indicator which identifies all the vectors on that card as being the basis or at
bound and shows whether the names refer to logical or structural vectors (see Figure 22).

Type Description

LGL Logical vectors in the basis.

LAB Logical vectors not in the basis, but at bound.

STR Structural vectors in the basis.

SAB Structural vectors not in the basis but at bound.

Figure 22. Basis File Elements

CPB-1141B

73

LIST FILES

Several of the ranging, tableau, solution print, and work file change verbs can call for a
list of row (or column) names or masks to denote the set to be used. Such lists are treated
as a symbolic file in the format shown in Figure 23.

Indicator Description

FILE Contains the file name and is the first card of the file.

MASK Gives the names or masks (separated by commas) used to specify
the required set. Masks are denoted by an asterisk (~,,) for any
character whose value is immaterial. Multiple trailing asterisks
are not required within a name part.

END;';~',~', The last card in every file deck.

Figure 23. List Files

Several masks and their meanings are given below:

Mask

ABC

A*BC

ABC:*:*

Meaning

The vector whose name is ABC::.

Any vector whose second and third names are blank and whose first
character is A, third character is B, fourth character is C, and
fifth and sixth characters are blank. The second character of the
first name may be any character due to the *.

Any vector whose first name is ABC.

EDIT SPECIFICATION FILE AND EDIT FILE

Data in the SHARE standard format is acceptable as input to the LP/600 system, adding
new dimensions to the total versatility of the system. The, input file containing this data
is translated to an LP/600 input file (convert file) as an initial step to the processing
of the data.

Controls for the translation and identification of the SHARE standard data file are provided
through the combined use of the Agenda Control Language EDIT verb, an edit specification
file, and GECOS control cards. The translation process requires the user to define three
files: the edit file, the edit specification file, and the output (convert) file. The inter­
relationship of these files is illustrated in Figure 24.

CPB-1141B

74

DESCRIPTION

Output File

Edit File

Edit Specification
File

EDIT Verb

{
{

DECK SETUP RELATION

$ TAPE {~}
$ { TAPE} ED:=l DATA

Blocking
factor for
the Edit File

$ { TAPE}
DATA {~}

FILE filename
IDENT=LP40 / 90 filename, FUNCTS=n

SKIP i

EDIT

File code and
file name must
be identical

SPEC=fil!name/~~~I,
File codes
must be
identical TYPE=G~~g} ,

ompm=~}~... _I
Figure 24. Files Used for Translation of SHARE Standard Data to LP /600 Input File Format

CPB-1141B

75

Edit File

The edit file which contains the SHARE standard input data must be in the IBM character
set and formatted in one of the record blocking factors discussed below. This file will
normally be on magnetic tape, but may be on cards. The input device is designated by the
GECOS file code ED. The $ TAPE or $ DATA card is the interface with LP /600 and provides
the sole link between the source data (SHARE standard data files) and the LP/600 system.
If the SHARE standard data files are on cards, they must follow the $ DATA card within
the LP /600 input deck setup.

A linear programming data file prepared on tape for LP90 (7090) has a blocking factor of
one card per record. A file for LP40 (7040) has a blocking factor of three cards per
record. Either file contains BCD card images at 84 characters per card. For those
SHARE standard data files that are input from the GE-625/635 card reader via a $ DATA
card or from a tape produced by the GE-625/635 Bulk Media Conversion program, the
blocking factor is 320 words per record. The TYPE phrase given on the EDIT verb informs
the LP/600 system which of the .three blocking factors above apply to the Edit file (see
Figure 24). It should be noted that SHARE standard data files do not conform to the rules
followed by all other LP /600 files. That is, they do not begin with a FILE card and file
name, and terminate with an END*** card.

The input device may contain one or more edit files to be translated for output and sub­
sequent input to the Agenda Control Language CONVERT verb. Each edit file is translated
with individual file indentification via multiple IDENT phrases in the Edit Specification
File (see Figure 25).

Edit Specification File

The edit specification file contains the name assigned by the user to each translated
SHARE data file along with the number of objective functions in each problem. This file
may also specify the number of files to be skipped; it is actually an extension of the EDIT
verb variable field.

The edit specification file bears the name assigned in the EDIT verb SPEC phrase and
must be located on the GECOS file code which is also given in that phrase (see Figure 24).
Since the edit specification file is normally on cards, a $ DATA card must precede the file.
However, the file may be on tape, in which case the $ TAPE card is used.

,The Edit Specification file must follow LP/600 rules for fil~ structure. It must begin with
a FILE card and end with an END*** card. One or more IDENT cards may follow the
FILE card and may be interspersed with SKIP cards. The IDENT card specifies the name
to be assigned to the corresponding file (problem) in the SHARE standard input data file
(ED), and the number of objective functions in that problem. The SKIP card specifies the
number of files (problems) to skip on device ED. The naming and skipping of these SHARE
files (problems) must be in a strict one-to-one correspondence with the problems in the
order they appear on ED.

CPB-1141B

76

FILE

IDENT

SKIP

EDIT Verb

Identifies the edit specification file and provides the file
name which is identical to the name used in the EDIT verb
SPEC phase.

Contains the name to be assigned to a translated SHARE data
file, and the number (n) of functionals (FUNCTS) in the
problem. An IDENT card must be provided for each edit file
on the ED input device to be translated.

Causes EDIT to skip a specified number of files (problems)
on the input tape.

Terminates the edit specification file.

Figure 25. Edit Specification File Card Type Definition

The function of the Agenda Control Language (ACL) EDIT verb is to translate SHARE
standard data files on the ED device to the convert file format for processing by the
ACL CONVERT verb. The EDIT verb does not check the SHARE data files for proper
structure and content. It is assumed that the files have been used and checked by the
linear programming system for which they were prepared.

Output File

The output file contains the SHARE standard data translated to an LP /600 format ready
for processing by the ACL CONVERT verb. The GECOS file code given on the $ TAPE
card must be identical to the file code given in the OUTPUT phrase of the EDIT verb.

CPB-1141B

77

APPENDIX A.

SYSTEM DATA FLOW

MATGEN

Set

Solve

Punch -
Dynamic

Post

Tabulate

79

Convert

Static

Post

CALC

Define

Revise

Modify

See explanatory notes on the
following page for AI, EI, IN,
XP&PT and TB definitions.

CPB-1141B

NOTES

Files EI, AI, or IN may be interchanged. However, for purposes of depicting system flow,
the following definitions apply:

AI symbolic data which can be read by FORTRAN

EI = symbolic data which can be written by FORTRAN

IN symbolic data which can be written by FORTRAN

XP&PT = binary data for LP/600 input

TB = binary data which may be read by FORTRAN

CPB-1141B

80

APPENDIX B.

INPUT DECK SETUP

The LP/600 basic system is executed as a one-activity job under control of the GE-625/635
Comprehensive Operating Supervisor (GECOS). As shown in Figure 26, the deck setup
consists of GECOS control cards, LP /600 input files which may be input from tape or from
the card reader, and the Agenda Control Language program cards.

$ TAPE H.':

$ EXECUTE

$ USE

$ ENTRY

$ ENo.JOB

___ LP/600 Agenda Control
Language Program

LP/600 Input Files

____ optionally ___ ($ DRUM

Figure 26. LP/600 Input Deck Setup

CPB-1141B

81

SUMMARY OF GECOS CONTROL CARDS

The following control cards are used by GECOS:

Beginning columns

Col. .L JL

$ SNUMB

$ IDENT

$ USE

$ ENTRY

$ EXECUTE

$ LIMITS

$ SYSOUT

$ TAPE

$ {
DRUM}
DISC

$

$

***EOF

DATA

ENDJOB

Job identifier, urgency

Account number, identification

Program Name

Program Name

Time, storage requirements, number of print lines

SO

File code, logical unit designator, second logical unit
designator, file serial number, reel sequence number,
file name

File code, logical unit designator, storage requirements

File code, options

blank

(GECOS end-of-file)

INPUT FILES (ED, IN, AI OR EI)

The LP/600 files (edit, convert, revise, modify, basis, or list) may be input as ED, IN,
EI, or AI from the card reader, tape, disc, or drum that was written with the GE Bulk
Media Conversion program. (See CPB-I096.) The user must define file code assignments
to be consistent with file code specifications used in the SOURCE phrases in the Agenda
Control Language program. Input of the file is initiated by execution of the corresponding
Agenda Control Language program statement.

Card Reader Input

When a file(s) is input through the card reader, the file(s) must be preceded (in the job
control deck) by a $ DATA card containing ED, IN, EI, or AI in the file code field. The
file(s) may appear anywhere in the deck following $ EXECUTE, as shown in Figure 27.

CPB-1141B

82

\
)

$ ENIlJOB

Agenda Control - - - - --~_~E;~.LJ Language Program I'

Input Files

$ TAPE H~',

$ LIMITS
$ EXECUTE

$ USE

$ ENTRY

$ IDENT

$ SNUMB

Figure 27. LP /600 Card Reader Input

Magnetic Tape Input

The GE-625/635 Bulk Media Conversion program may be used to put card images onto
magnetic tape for input to LP/600. (See CPB-I096, GE-625/635 Series Bulk Media
Conversion manual.) SHARE Standard LP data may also be input from magnetic tape
(IBM tape in BCD mode). The logical assignment of the tape at execution time must be
defined in a $ TAPE card having IN, ED, EI, or AI in the file code field and a logical
unit designator and disposition code. Other $ TAPE card information may be included
at the option of the user:

$ TAPE IN,A3D"reel #"INPUT

CPB-1141B

83

When files are to be input on tape from ED, EI, IN and AI, a $ TAPE card is required for
each file, and may appear anywhere in the deck setup following the $ EXECUTE card. For
example:

$ TAPE EI, A5D,reel #"INPUTl

$ TAPE ED,A4D"reel #"EDIT INPUT

$ TAPE IN,A3D"reel #"INPUT2

$ TAPE AI,A2D"reel #"AUXINP

Disc or Drum Input

The GE-625/635 Bulk Media Conversion program may be used to put card images onto
disc or drum for input to LP/600. (See CPB-I096, GE-625/635 Bulk Media Conversion.)
The logical assignment of the disc or drum at execution time must be defined in a $DISC
or $DRUM card having IN, EI, ED, or AI in the file code file, and a logical unit designator,
disposition code, and the number of links:

$ DISC IN,A3,lOL

Note that disc and drum files must be specified as linked (L). files. When files are to be
input on disc or drum from ED, EI, IN, and AI, a $DISC or $DRUM card is required for
each file, and may appear anywhere in the deck setup following the $EXECUTE card.
For example:

$ DISC IN,A3,lOL

$ DRUM AI,A4, 5L

$ DRUM EI,A5,15L

$ DISC ED,A6, 7L

Card Reader, Magnetic Tape, Disc and Drum Input

When files are input from cards, tape, disc and/or drum, procedures given above for each
input type must be followed. A typical arrangement is shown in Figure 28.

CPB-1141B

84

Agenda Control __ _
Language Program

Card Reader Input

Magnetic Tape Input

Figure 28. LP/600 Input from Card Reader, Magnetic Tape, Disc and Drum

PROBLEM FILES (PT, VP, AND XP)

Problem file data is produced and automatically written onto PT by the AFEAS, CONVERT,
DEFINE, DESAVE, REVISE and SAVE verbs (for further details, see CPB-1262, LP/600
Agenda Control Language). Unless assigned to tape, the problem file data is written
automatically to the disc or drum areas allocated by $DISC and $DRUM cards in the control
deck. If the problem file is to be saved, it must be assigned to tape and specified as either
"valid" or "invalid."

CPB-1141B

85

Tape Valid

When new problem file data is to be added to a problem tape which contains valid information
produced during another run, and that information is not to be overwritten, it must be
assigned to file code VP:

$ TAPE VP,A4D"REEL NO."OLD PT VALID

This assignment is made only for control reading and writing: a reference to PT in the
Agenda Control Language program will be equated automatically to VP. The VP file
code is external to LP/600 and cannot be used in an Agenda Control Language program
statement.

When the problem tape contains valid information produced during another run, and new
problem file data is to be written on a new PT, it must be assigned to XP:

$ TAPE XP ,A5D"REEL NO. "OLD PT

If the new problem file data is to be saved, then PT must be assigned to tape with another
$TAPE card.

Tape Invalid

When the problem tape does not contain valid problem files (that is, a new PT is being
written), it must be assigned as PT:

$ TAPE PT,A4D" TAPE NO. "NEW PT

Note that VP and PT refer to the same physical device; assignment of a PT and a VP
is illegal. The distinction is made only to control reading and writing; a reference to PT
in an Agenda Control Language program statement is equated automatically to the file
code used in the $TAPE card.

OUTPUT FILES (XO, SO, AND TB)

Standard Output

LP/600 automatically writes all output on file code SO which normally is assigned as
$ SYSOUT SO or, optionally, as tape, disc, or drum if it is desirable to use the GE-625/635

. Series Bulk Media Conversion program. (See CPB-I096, GE-625/635 Bulk Media
Conversion.) For example, SO may be assigned one of the following:

$ TAPE SO,A2S""SO-OUTPUT
$ DISC SO,A2S,90L
$ DRUM SO,A2S,90L

and printed by means of BMC as the second activity:

$ CONYER
$ TAPE IN,A2R""SO-OUTPUT
$ INPUT NLABEL
$ PRINT OT,A2R

86

CPB-1141B

If SO is assigned to disc or drum, the $TAPE card above would be replaced by:

$,{ DDIRSUMC } IN,A2R,90L

The PUNCH verb causes output to be in card image format. IF SO is not assigned to
SYSOUT, the XO option should be specified as the output file for PUNCH.

Auxiliary Output

The XO file code is an auxiliary output file and is used in conjunction with the large report­
producing verbs such as PICTURE, TABULATE, TRACE, and others, if the GECOS output­
line limit is to -be exceeded. XO may be assigned to tape, disc, or drum, and printed
by means of BMC as the second activity (see SO above for sample assignments). XO
should also be used as the output file designator for the PUNCH verb only if SO is not
assigned to SYSOUT, in order that BMC may be used to punch the card images.

Output of Intermediate Results

The TB file code is used only by the RECORD and TABULATE verbs. RECORD writes
intermediate results on TB, and TABULATE reads (from TB), formats, and outputs those
results.

CPB-1141B

87

APPENDIX C.

SAMPLE PROBLEM

The sample problem which follows is described in fourteen sections:

Q GECOS control cards

G) Convert file row descriptions

o Convert file column descriptions

® Convert file matrix element descriptions

o Convert file Rhs definitions

G) LDBASIS file (punched by a previous run)

® Revise file

G) Modify file

o Delimit list file for rows

@ Delimit list file for columns

@ Agenda Control Language program to solve first part of problem

@ Agenda Control Language program to solve second part of problem

@ Agenda Control Language program to solve third part of problem

@ Second activity -- Bulk Media Conversion control cards to print TRACE reports
from XO.

CPB-1141B

89

$ IOENT XXX,JOHN OOE,LP/600
$ ENTRY .LHSF
$ USE .LHSF
$ EXECUTE
$ LIMITS 20,45000,,10000
$ TAPE H~': ,AID" TAPE NO., ,LP/600 SYSTEM TAPE
$ TAPE XO,A2S""XO-OUTPUT
$ SYSOUT SO

CD $ DISC KF ,AI, lOR
$ DISC KG,A2, lOR
$ DISC KH,A3, lOR
$ DISC KI,A4, lOR
$ DISC KK,AS, lOR
$ DISC KL,A6, lOR
$ DISC ZR,A7, lOR
$ DISC ZS,A8, lOR
$ DISC ZT,A9, lOR
$ DATA IN
FILE LP600:SJ~PLE:PROBLEM
·k ROW 10 SEGMENT
LGL CRI (PLUS)
LGL CR2 (PLUS)
LGL VNAPI (ZERO)
LGL VNAP2 (ZERO)
LGL VDIST (ZERO)
LGL RESID (ZERO)
LGL PST ILL :CAP (PLUS)
LGL CATNAP (ZERO)
LGL LTCYL (ZERO)
LGL HVYCYL (ZERO) CD LGL TOTAL : CAT :FEED (PLUS)
LGL RATIO :FUEL (PLUS)
LGL FUEL : DEMAND (PLUS)
LGL CONTAM :DIST (PLUS)
LGL DIST :BAL (ZERO)
LGL OCTANE :REGLR (MINUS)
LGL REGLR :BAL (ZERO)
LGL OCTANE :PREM (MINUS)
LGL PREM :BAL (ZERO)
LGL DIST : DEMAND (MINUS)
LGL REGLR : DEMAND (PLUS)
LGL PREM : DEMAND (MINUS)
LGL PROFIT (FREE)
-;'\ COL 10 SEGMENT
STR CRI :PSTILL :FUEL (PLUS)
STR CR2 :PSTILL :FUEL (PLUS)
STR CRI :PSTILL :DIST (PLUS)
STR CR2 :PSTILL :OIST (PLUS)
STR VDIST :CATPLT (PLUS)
STR LTCYL :CATPLT (PLUS)
STR HVYCYL :CATPLT (PLUS)
STR HVYCYL :FUEL (PLUS)
STR LTCYL :FUEL (PLUS)
STR VDIST :FUEL (PLUS)
STR RESID :FUEL (PLUS ') CD STR VOIST :DIST (PLUS)
STR VNAP2 :DIST (PLUS)
STR LTCYL :DIST (PLUS)
STR VNAPI :REGLR (PLUS)
STR VNAP2 :REGLR (PLUS)
STR CATNAP :REGLR (PLUS)
STR VNAPI :PREM (PLUS)
STR VNAP2 :PREM (PLUS)
STR CA'INAP :PREM (PLUS)
STR DIST :SPEC (PLUS)
STR REGLR :SPEC (PLUS)
STR PRfJll :SPEC (PLUS)

CPB-1141B

90

'";'~ MATRIX SEGMENT
MATRIX CR1 CR1 :PSTILL :FUEL =1.0
MATRIX VNAP1 CR1 :PSTILL : FUEL =-.1
MATRIX VDIST CR1 : PST ILL :FUEL =-.25
MATRIX RESID CR1 :PSTILL :FUEL =-.6
MATRIX PST ILL :CAP CR1 :PSTILL :FUEL =1
MATRIX PROFIT CR1 :PSTILL :FUEL =3.00
MATRIX CR1 CR2 :PSTILL :FUEL =-.5
MATRIX CR2 CR2 :PSTILL :FUEL =1.
MATRIX VNAP2 CR2 :PSTILL :FUEL =-.2
MATRIX VDIST CR2 :PSTILL :FUEL =-.2
MATRIX RESID CR2 :PSTILL :FUEL =-.5
MATRIX PST ILL :CAP CR2 :PSTILL :FUEL =1
MATRIX PROFIT CR2 :PSTILL :FUEL =3.10
MATRIX CR1 CR1 :PSTILL :DIST =1.
MATRIX VNAP1 CR1 :PSTILL :DIST =-.15
MATRIX VDIST CR1 :PSTILL :DIST =-.4
MATRIX RESID CR1 :PSTILL :DIST =-.4
MATRIX PSTILL :CAP CR1 :PSTILL :DIST =1.
MATRIX PROFIT CR1 :PSTILL :DIST =3.0
MATRIX CR1 CR2 :PSTILL :DIST =-.5
MATRIX CR2 CR2 :PSTILL :DIST =1.
MATRIX VNAP2 CR2 :PSTILL :DIST =-.25
MATRIX VDIST CR2 :PSTILL :DIST =-.35
MATRIX RESID CR2 :PSTILL :DIST =-.3
MATRIX PST ILL :CAP CR2 :PSTILL :DIST =1.
MATRIX PROFIT CR2 : PST ILL :DIST =3.1
MATRIX VDIST VDIST :CATPLT =1.
MATRIX RESID VDIST :CATPLT =.1
MATRIX CATNAP VDIST :CATPLT =-.7
MATRIX LTCYL VDIST :CATPLT =-.3
MATRIX HVYCYL VDIST :CATPLT =-.5

(£) MATRIX TOTAL : CAT :FEED VDIST :CATPLT =1.6
MATRIX PROFIT VDIST :CATPLT =.1
MATRIX CATNAP LTCYL :CATPLT =-.6
MATRIX LTCYL LTCYL :CATPLT =1.
MATRIX HVYCYL LTCYL :CATPLT =-.5
MATRIX TOTAL : CAT :FEED LTCYL :CATPLT =1.2
MATRIX PROFIT LTCYL :CATPLT =.15
MATRIX CATNAP HVYCYL :CATPLT =-.3
MATRIX LTCYL HVYCYL :CATPLT =-.7
MATRIX HVYCYL HVYCYL :CATPLT =1.
MATRIX TOTAL : CAT :FEED HVYCYL :CATPLT =1.1
MATRIX PROFIT HVYCYL :CATPLT =.16
MATRIX HVYCLY HVYCYL :FUEL =1.
MATRIX RATIO :FUEL HVYCYL :FUEL =-9
MATRIX FUEL : DEMAND HVYCYL :FUEL =1.
MATRIX PROFIT HVYCYL :FUEL =-2.5
MATRIX LTCYL LTCYL : FUEL =1.
MATRIX FUEL : DEMAND LTCYL :FUEL =1.
MATRIX PROFIT LTCYL :FUEL =-2.5
MATRIX VDIST VDIST :FUEL =1.
MATRIX FUEL : DEMAND VDIST :FUEL =1.
MATRIX PROFIT VDIST :FUEL =-2.5
MATRIX RESID RESID :FUEL =1.
MATRIX RATIO :FUEL RESID :FUEL =1.
MATRIX FUEL : DEMAND RESID :FUEL =1.
MATRIX PROFIT RESID :FUEL =-2.5
MATRIX VDIST VDIST :DIST =1.
MATRIX CONTAM :DIST VDIST :DIST =54
MATRIX DIST :BAL VDIST :DIST =1.
MATRIX VNAP2 VNAP2 :DIST =1.
MATRIX CONTAM :DIST VNAP2 :DIST =50

CPB-1141B

91

HATRIX DIST :BAL VNAP2 :DIST = 1.
~IATRIX LTCYL LTCYL :DIST =1.
HATRIX CON TAN :DIST LTCYL :DIST =65
HATRIX DIST :BAL LTCYL :DIST =1.
HATRIX VNAPI VNAP1 :REGLR =1.
MATRIX OCTANE :REGLR VNAP1 :REGLR =85.
MATRIX REGLR :BAL VNAP1 :REGLR =1.
HATRIX VNAP2 VNAP2 :REGLR =1.
NATRIX OCTANE :REGLR VNAP2 :REGLR =8lf.

MATRIX REGLR :BAL VNAP2 :REGLR =1.
MATRIX CATNAP CATNAP :REGLR =1.
MATRIX OCTANE :REGLR CATNAP :REGLR =92.
MATIUX REGLR :BAL CATNAP :REGLR =1.
f-IATRIX VNAP1 VNAP1 :PREM =1.
MATRIX OCTANE :PREM VNAP1 :PREM =85.
~.ATRIX PREM :BAL VNAPI :PREM =1. CD MATRIX VNAP2 VNAP2 :PREM =1.
MATRIX OCTANE :PREM VNAP2 :PREM =84.
MATRIX PREM :BAL VNAP2 :PREM =1.
MATRIX CATNAP CATNAP :PREM =1.
NATRIX OCTANE :PREN CATNAP :PREM =92.
MATRIX PREM :BAL CATNAP :PREM =1.
MATRIX CONTAM :DIST DIST :SPEC =-55.
MATRIX DIST :BAL DIST :SPEC =-l.
MATRIX DIST : DEMAND DIST :SPEC =1.
MATRIX PROFIT DIST :SPEC =-4.0
MATRIX OCTANE :REGLR REGLR :SPEC =-85.
MATRIX REGLR :BAL REGLR :SPEC =-1.
MATRIX REGLR : DEMAND REGLR :SPEC =1.
MATRIX PROFIT REGLR :SPEC =-4.5
MATRIX OCTANE :PREM PREM :SPEC =-89.
MATRIX PREM :BAL PREM :SPEC =-1.
MATRIX PREM : DEMAND PREM :SPEC =1.
MATRIX PROFIT , PREM :SPEC =-5.0
"k RHS SEGMENT
RHS CR2 STIPUL :ATIONS =75.
RHS VDIST STIPUL :ATIONS =11.
RHS PSTILL :CAP STIPUL :ATIONS =100.
RHS LTCYL STIPUL :ATIONS =-ll.

0) RHS TOTAL : CAT :FEED STIPUL :ATIONS =46.
RHS FUEL : DEMAND STIPUL :ATIONS =50.
RHS DIST : DEMAND STIPUL :ATIONS =50.
RHS REGLR : DEMAND STIPUL :ATIONS =10.
RHS PREM : DEMAND STIPUL :ATIONS =25.
RHS PROFIT STIPUL :ATIONS =-70.
EN D~b·,";~:
FILE OLDBAS:SAMPLE:PROBLM
LGL CR2,FUEL:DEMAND,CONTAM:DIST,REGLR:DEMAND,PREM:DEMAND,PROFIT
SIR CR1:PSTILL:DIST,CR2:PSTILL:DIST,VDIST:CATPLT,HVYCYL:CATPLT CD STR HVYCYL:FUEL,RESID:FUEL,VDIST:DIST,VNAP2:DIST,LTCYL:DIST
STR VNAP2:REGLR,CATNAP:REGLR,VNAP1:PREM,VNAP2:PREM,CATNAP:PREM
STR DIST:SPEC,REGLR:SPEC,PREM:SPEC
END~'d:~':

} CD $ DATA AI
FILE REVISE :PT :FILE } RPLACE CD RHS FUEL: DEMAND, STIPUL :ATIONS=75. 0
END~'ddr

} FILE NODIFY:WORK:FILE

CD RPLACE
RHS PREM:DEMAND,STIPUL:ATIONS=125.0
El\D>bb',

CPB-1141B

92

$
FILE
MASK
END~'dd:

FILE
MASK
END~':~b"

$

DATA EI
DELIMT:FILE:ROWS
~', :DEMAND:~", ~': :BAL :~':, OCTANE :~" ,CONTAM:DIST

DELIMT:FILE:COLS
CR~': : ~', : ~': , ~': : FUEL, ~': : DIST , ~': : SPEC

DATA I~'

PREPROCESS
TITLE INTRODUCTION TO LP/600 SAMPLE PROBLEM
CONVERT SOURCE=LP600:SAMPLE:PROBLM/IN,IDENT=PTF
SETUP SOURCE=PTF
LDBASIS SOURCE=OLDBAS:SAMPLE:PROBLM/IN
SET OBJ=PROFIT,RHS=STIPUL:ATIONS
DELIMIT ALL
TRACE DELIMIT,XO
PRIMAL
OUTPUT

~': REVISE PROBLEM AND RESOLVE
REVISE SOURCE=REVISE:PT:FILE/AI,IDENT=NEWPTF,PFILE=PTF
SETUP SOURCE=NEWPTF
SET OBJ=PROFIT,RHS=STIPULATIONS
DELIMIT ALL,RLIST=DELIMT:FILE:ROWS/EI
TRACE DELIMIT,XD
PRIMAL
OUTPUT

~': MODIFY PROBLEM AND RESOLVE

$
$
$
$
$
~b'd:EOF

MODIFY SOURCE=MODIFY:WORK:FILE/AI
DELIMIT CLIST=DELIMT:FILE:COLS/EI,

RLIST=DELIMT:FILE:ROWs/EI
TRACE DELIMIT,XO
PRIMAL
OUTPUT
ENDLP
EXECUTE
CONVER
TAPE XO,A2R, , , ,XO-OUTPUT
INPUT NLABEL
PRINT OT,A2R
ENDJOB

93

} CD
} CD
} @)

CD

@

@

@

} @

} CD

CPB-1141B

APPENDIX D.

PROBLEM SIZE AND STORAGE REQUIREMENTS
.~ ~"l I.'') t,.,,,) {t;·;~,·-1(,.\.-. ... \ V .\jV\.r. .~, \' t .

Q (, ~.- .. J~.' ,~f'-l.) , \. ," ~ t..\ .. t} ~ ,.,' I I.' I.' ~., ~-':'"

!~l

CORE REQUIREMENTS FOR NORMAL LINEAR PROGRAM SOLUTION

Problem Minimum Minimum Approximate Storage
Rows Storage Storage N=2M

(M) (1) (2) Z=3 Z=10 Z=15

100 20,000 20,000 21,000 31,000 36,000
200 14,000 15,000 31,000 49,000 61,000
300 15,000 16,000 40,000 68,000 85,000
500 18,000 18,000 59,000 105,000 134,000
700 20,000 21,000 77,000 142,000 183,000

1,000 23,000 25,000 104,000 197,000 256,000
1,500 29,000 32,000 144,000 - -
2,000 35,000 39,000 196,000 - -
2,500 40,000 45,000 242,000 - -
3,000 46,000 52,000 - - -
3,500 51,000 58,000 - - -
4,000 57,000 65,000 - - -

(1) Without PARRIM, PARCOL, PARROW, RNGSOL, (N=2M)

(2) With PARRIM, PARCOL, PARROW, RNGSOL, (N=2M)

M=Prob1em Size (Rows)
N=No. Structural Columns
Z=Avg. no. nonzeros per column

CORE REQUIREMENTS FOR DECOMP

Total Rows In Master + Largest Submatrix
Rows (M) 200 500 1000 2000

500 14,400 - - -
1,000 14,400 17,000 - -
2,000 16,400 17,000 22,000 -
5,000 22,400 23,000 24,000 32,000

10,000 32,400 33,000 34,000 36,000
15,000 42,400 43,000 44,000 46,000
20,000 52,400 53,000 54,000 56,000
25,000 62,400 63,000 64,000 66,000
50,000 112,400 113,000 114,000 116,000

95

4000

-
-
-

52,000
52,000
52,000
60,000
70,000

120,000

for In-Core Solution
N=4M

Z=3 Z=10 Z=15 .

24,000 36,000 45,000
36,000 60,000 78,000
48,000 84,000 111,000
72,000 132,000 176,000
96,000 180,000 242,000

132,000 252,000 -
192,000 - -
252,000 - -

- - -
- - -
- - -
- - -

CPB-1141B

APPENDIX E.

AGENDA CONTROL LANGUAGE VERB FORMATS

.--/- [label] ABOUND [blank or conunents]

[label] AFEAS RHS=co1name [,CRHS=co1name]

[1abe 1J BLANK {~}

./// [labe1J CALC SOURCE=fi1ename [I {P} J [, t~ENT=fi1ename [I Gn} J

'-/

/

[label] COLOUT

ALL
CLIMIT=co1name/co1name
CMASK=mask [/mask •• ~

CLIST=fi1ename [I ~l} J

]

[label] COMPUTE symbol = arithmetic expression

[labe1J CONVERT SOURCE=fi1ename [/~~}J ,IDENT=fi1ename [,EDITJ

[,TRANSPJ [, ~~~~~} [, ~~:~g~}
[1abe 1J CRASH [r ~~IT=C01name I C01name}]

'\i>ELIMIT

[label] CURRENT [comments]

label DC value [,value •••]

[1abe 1J DCINV [conunents J

[label] DECOMP

~::::::~ename [J~ \ , IDENT=filename , , ~~j [label] DEFINE

97

CPB-1141B

/
~ .. ,~

..-

DELIMIT [

ALL
CLIMIT=colname/colname
CMASK=mask [/mask ...]

CLIST=filename [! C~}]
NONE

[label] DELOAD SOURCE-filename [I C~}]

[label] DE SAVE IDENT=filename

[label] DISPLAY symbol [,symbol •..]

labe 1 DSW C g~F} .(g~F} [...]
[label] DUAL [blank or comments]

] [

ALL
RLIMIT=rowname/rowname
RMASK=mask [/mask ...]

[C~}

7090 IN
[label] EDIT SPEC=fi1ename [! {~] ~ ~ ~~ ,TYPE= ~~40 ,OUTPUT= :

blank ENDM [comments]

[label] ENDLP [comments]

EXECUTE

ALL ALL
CLIMIT=colname/colname RLIMIT=rowname/rowname

[label] FLAGOUT CMASK=mask [/mask ...] ,[RMASK=mask [/mask •••]

CLIST=filename [/~~}] RLIST=filename [I ~?r}]
NONE NONE

[label] FORCE [\;~iMIT=COlname/COlname:r] [\; ~IMIT=rowname Irownam}]
CMASK=mask [/mask •••] RMASK=mask [/mask •.•]
NONE NONE

[label] GOTO label

[label] GROUP [comments]

CPB-1141B

98

/"

, .. /' [label] INVERT comments

ALL

E label] INVOUT RLIMIT=rowname/rowname]
[RMASK=mask [/mask •••]

RLIST=fi lename [I {~}
[label] JUMP [comments]

/~[label] LDBASIS SOURCE=filename [I{?J]
[label] LOGIC [symbol =] logical expression [, label]

[label] MACRO name

[label] MATGEN SOURCE=filename [/{?~] ,IDENT=filename

[label] MODIFY SOURCE=filename [/~~]

[label] MOVE Symbol 1 [+ offset] symbol 2 [+ offset], n

[label] NEXT [comments]

[label] NOTE comments

[label] ~DELIMIj OUTPUT [PDSOL.]
ALL ~SO {)} [, XO IN]

~DENT=filename. [/ ~.i]
[label] PARCOL [comments]

[label] PAROBJ [comments]

[label] PARRHS [comments]

[label] PARRIM [comments]

[label] PARROW [comments]

CPB-1141B

99

L-/

[label] PERFORM label

[label]

blank

/ [label]

[label]

[label]

[label]

[label]

[label]

PICTURE

PRE PRO

PRIMAL

PUNCH

U
ALL

}

DELIMIT
[BASIS [,RLIMIT=rowname/rowname]]

ACTIVE [,RLIMIT=rowname/rowname]
RLIMIT=rowname/rowname
CLIMIT=colname/colname [,RLIMIT=rowname/rowname]

[connnents]

[connnents]

{PO [IDENT=filename [I{~}~J
RECORD ti::~~::}[, ...]

D=colname
C=colname

REMOVE [{~~~IT=COlname/COlnamJ]
CMASK=mask [/mask •••]
NONE

[RLIMIT=rowname/rowname]
{

ALL }

RMASK=mask [/mask •••]
NONE

RESET [

ALL
TOLS
ARGS
PARS
FRQS
TOGS
DEMS

] [, ...]

solution control name

RESTORE SOURCEofllename [I C~ } J

100

CPB-1141B

[label] REVISE SOURCEofilename [/~~~l ,IDENT=filename

PFILE=filename [I f~}
[label] RNGAIJ rowname,colname

rm J CLIMIT=colname/colname
[label] RNGOBJ [CMASK=mask [/mask ...]]

CLISTo fi lename [I {ID]

fLL } [label]
RLIMIT=rowname/rowname

RNGRHS [RMASK=mask [/mask ...]]

RLIST=filename [/{~~l

ALL

[label] RNGSOL [CLIMIT=colname/colname]
CMASK=mask [/mask ...]

CLISTofilename [I{~~l

ALL
RLIMIT=rowname/rowname

--[label] ROWOUT [RMASK=mask [/mask ...]

RLIST=filename [/{~~l

[label] SAVE (BASIS ~ [IDENT=filename [,BASIS]]

)

CPB-1141B

101

[labe 1J

.// [label]

[1abe 1J

[label]

[label]

[1abe1J

[1abe1J

[labe1J

[1abe1J

parameter=value
frequency=value
tolerance=value

SET argument = {~~:::: } [, .•. J
co1name/colname

{~;F}
label

SETUP SOURCE=filename [I (ri}] [,REGNS=value]

[,AUTOSCALEJ [,KJLISTJ [,TROBJ=rownameJ

STATUS [comments]

TABULATE [U~)
TALLY label, xloc, value, increment

TITLE [alphameric run titleJ

TRACE [~INFEAS ~] DELIMIT [,U~}
TRANSP [commentsJ

ALL ALL
CLIMIT=co1name/co1name RLIMIT=rowname/rowname
CMASK=mask [mask ... J RMASK=mask C/mask •.. J

UNFLAG
CLIST=filename [! {~}] J [[1m} RLIST=filename

NONE

J

[label] UNLOAD

CPB-1141B

102

(J

.~--'\

; '\
\''-/

VERBS

EDIT

DELIMIT --~->~.·FLAGOU~
~ UNFLAG)

TITLE

UNLOAD

VARIABLE FIELDS

SOURCE=name/f, IDENT=name/u

[{

CLIMIT=name/
nam1] [~RLIM~=name/namJ~ CMASK=mask/.... RMASK=mask/ ••••

CLIST=file [2'u ' RLIST=file ~~
ALL

Any string of legal BCD characters, columns 16-69.

(only at end of problem)

The following verbs require no variable field:

---STATUS
~RIMAL
.--INVERT
..---PARRHS
----PAROBJ

.PARRIM
/'" PARCOL

PARROW
............ DUAL

/TRANSP
/GROUP

____ DECOMP
.__-ABOUND

For syntactic purposes, there are several subgroupings of the reserved files indicated by f and
u. The f files are linked input files, and the u files are linked output files, as follows:-

0°)

Phase

AFEAS

ALL

AUTOSCALE

BASIS

BLANKS

CLIMIT

CLIST

CMASK

DELIMIT

IDENT

INFEAS

KJLIST

NONE

PDSOL

PRHS

REGNS

RLIMIT

RLIST

RMASK

SELCOL

SELROW

SOURCE

TRANSP

Meaning

Construct a pseudo RHS for which the current basis is feasible

Use all vectors

Scale all unsealed rows and columns

Use only the basis

Do not suppress blank lines

Column limits

Same column list source

Column masks

Use the delimit set only

Identify output

Use only the infeasible set

Produce the list of names versus vector numbers as output

Use nothing

Use only nonzero prime or dual number values

Pseudo right-hand side

The maximum number of regions to be used

Row limits

Row list source

Row masks

Select only those columns with STR cards

Select only those rows with LGL cards

The source of the input

The matrix is in the special transportation problem format giving
only cost matrix by demands and supplies.

Figure 24. Variable Field Vocabulary

('~ , ,
\. J

/~)

APPENDIX F.

FORMAT GENERATOR LANGUAGE

VERB STATEMENTS

label ALPHA n,data

[label] COMPUTE [name] [/ ~os~t~on,n}
posl.tl.on = arithmetic expression

blank ENDM [comments J

[label] EXIT [comments]

[label] GOTO label

[labe1J INSERT 1abe1,position [.n]

[labe1J LINOUT [cc] [,label]

[label] LOGIC [switch =J logical expression [,label]

[labe1J MACRO name

label NAME argument #1 [;argument #2; ... argument #9J

(The above format is for a MACRO call statement.)

[label] NEXT [comments]

[label] PERFORM label

[labe1J SCALE prefix=constant [, ...]

103

CPB-1141B

)

APPENDIX G.

MATRIX GENERATOR LANGUAGE
VERB FORMATS

~. .!..:§.. 8-15 16-72

[label] ALTER list [, index1] =list2, index2

[labe11 COMPOSE list3 [/ccl' [,cc2']] =listl [/ccl]

{MATCH ~ NOMATCH .
[(UNION)1~st2 [/cc2] ,DUP =

DIFFER

~RROR) DELETE
SURVIVE

[label] COMPUTE table reference = arithmetic expression ~ symbol :1
string reference

[label] DECLARE table3=listl,list2

{!EXT (list name) :f
[label] DIMEN LOC= CEXT (table name)

REXT (table name)
SEXT (string name)

fIST 1 STRING

[label] TABLE [= name] DUMP [SETCON]
SETSW
NAME

blank ENDM [comments]

CPB-1141B

105

Cols. ~ 8-15 16-72

[labelJ ENFILE C TABLE} =
STRING

{TABLE} name [, STRING name, .•. J

[labelJ ENPAC stringname tablename [/TJ

trST J trST J [labe lJ ERASE STRING =name [, STRING name, .•. J
TABLE TABLE

[labelJ EXIT [comments]

[label] EXPAND tablename stringname [IT]

[label] EXTRACT listname fbienamel {~~ING~
stringnamel {PARTl}

PART2

+

[labelJ FUNCT str3 [/r:cl'] strl [Jr:c1[(MATCH I

[label] GOTO

[label] INDEX

[label] JOIN

[label] LGL

[label] LIST

[label] LOGIC

[label] MACRO

[label.l name

(The above

label

MIN
MAX
REPLACE

NOMATCH

DELETE
SURVIVE

str2 [/r:c2] [, REPLACE]]
SUM

location= <tablename, ~owname.~ > O,colname

ident=listl:list2:list3

FERO) } (PLUS)
rowname [(MINUS)] [,SCALE=value]

(FREE)
(RANGE=value)

name = entryl [,entry2, ••.]

[switch=] logical expression [, label]

name

argumentfll [;argumentfl2; ... argumentflnJ

format is for a macro call statement.)

106

CPB-1141B

Co1s. !.:§. 8-15 16-72

[1abe1J MOVE 1abell [+offset1J = 1abe12 [+offset2J ,n

[1ab.e1J NAME location = n,data

[1abe 1J NEXT [conunentsJ

[1abe 1J PERFORM label

[1abe1J QUALS modifier = tab1ename

[1abe 1J READ SOURCE filename{~}
[1abe1J RENAME CS

TUB J . tab1ename (/ HEADING J =11stname

[1abe1J RHS rhs,row1=va1ue,row2=va1ue, ...

[1abe1J ROW row, co11=va1ue, co12=va1ue [, ..• J

label SETCON symbo1=va1ue [,va1ue, ... J

[1abe1J SETSW symbol = {~~F) [, {~~F} , ••. J

\:ZERO :l PLUS
[1abe1J STR co1name [MINUS J [SCALE va1ueJ

(FREE)
RANGE = value, value

[,TRANSL = va1ueJ

[1abe1J STRING name = part11:part21-va1ue1,

[part12:part22=va1ue2, •.• J

[labe1J SUBMAT row modifier, col modifier

[(~MATR1)] ~ t T,R,C D RHS < S,R,C >

[labe1J SYNTH modifier = tab1ename

[1abe1J TABLE name = head1 ,head2 , •••

blank blank stub1 va1ue(1,1) [,value (1,2), .•• J

blank blank stub2 va1ue(2,1) ,value (2,2), ••• J

[1abe1J TALLY label, index, constant [,incrementJ

[1abe1J TRANSP modifier = tab1ename (costrow)

[1abe1J VECT co1uIDn,row1 = va1ue,row2 = value, .•.

[1abe1J YIELD modifier = tab1ename

\
J

CPB-1141B

107

APPENDIX H.

CARD TYPES, FORMATS, ANP USAGE

BLOCK block name

CFORM colname= [constant]

. CFORM rhsname= [constant]

, colname [r ffi l..]
, l(B>j

{(S)~ ,colname [(L)]
(B)

*value [, .•. J

*value [, ..•]

{

L [GL 1 =rowname [, rowname] }
DELETE S [TR] =colname [,colname]

{~S) =colname [, colname]

blank or comments

ENDGRP blank or comments

FILE filename

INSERT S [TR] =colname ~
[GL] =rowname}

{~S} =colname

INSERT

LAB

RFORM

RPLACE

SAB

STR

rowname [, ...]

~
z [ERO]) J (P [LUS])

rowname [(M [INUS])],colname=value
(F [REE])
(R [ANGE] =value)

[,COUNT=value] .

rowname [~~! ~~~~L J] =value [,COUNT=value]
(F [REE])
(R [ANGE] =value)

,colname=value [,COUNT=value]

rowname [(XRHS)] = [constant],rowname*value [, ...]

colname [, ...]

colname [, .•.]

109

Convert File

Revise File

Modify File

Revise File

All Files

Convert File

All Files

Revise File

Modify File

Basis File

Convert File

Convert File

Convert File

Revise Fi Ie

Revise & Nodify File

Basis File

Basis File

CPB-1141B

~
p [LUS]) [,SCALE=value]

(Z [ERO]) [,SCALE=value]
(M [INUS]) [, SCALE=value]

colname (F [REE]). [,SCALE=value]
(R [ANGE] =value [,value])
(G [ROUP] =value)
([PACKE]T =value)

[,COUNT=valuel
[,COUNT=value]
[,COUNT=value]
[,COUNT=value]
[,COUNT=value]

[, TRANSL=va lue]
[,TRANSL=valueJ

[,TRANSL=valueJ

1
{~~ t~ ~ f :~~~~:~:~~:5 }

rowname [(M [INUS]) [,SCALE=value]]
(F [REE])

[,COUNT=value]

(R [ANGE] =value [,value])

LGL rowname [, ..•]

MASK {~~~::.:" [, ..•]
name-mas~

]

(
MATRIX) {~~ Ei~~j~ } {~~ f~~~n

A rowname [(M [!NUS. J)] , colname [(M [INUS])
(F [REEl) (F [REE])
(R [ANGE] =value), (R [ANGE] =value

}
]=value

[, value])

{

(Z [IDillJ) }
MATRIX (P [LUS1) fA) rowname [(M [INUS])]

~ (F [REE])
(R ~ANGEl =value)

=value

fl'IATRIX) 1.. A ,colname
{

(P [LUS]) }
(Z [ERO;)

[(M. C INUS]) J
(F [REEJ)
(R [ANGE] =value [,value])

=value

110

Convert File

Convert File

Basis File

List File

Convert File

Convert File

Convert File

CPB-1141B

I
I
I
I
I
I
I
I
I
I
I
I

OJ

I c

(/) I ..c

en I c
0
~ I
::J

I ()

OJ
(/)

I
ro
OJ

a.

I
I
I
I
I
I
I

DOCUMENT REVIEW SHEET

TITLE: Introduction to LP/600

CPS #: _l_l_4_lB __ _

FROM'

Name:

Position:

Address:

Comments concerning this publication are solicited for use in improving future
editions. Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

CO~~illNTS: __ _

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

ST A P L E

FOLD

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
COMPUTER EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA - 85029

ATTENTION: DOCUMENTATION STANDARDS AND PU8LICATIONS 8-90'

~ ... ,: . ..:....~~.' . :., ... " .. ; .~ .. ~ .. ,

FOLD

STAPLE

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

1+oglW$ Is 0",. AI()s! Imp()rl.1l1f '!+otlllCl'

GENERAL. ELECTRIC
INFORMATION SYSTEMS DIVISION

LITHO U.S.A.

