ISSN 0016-2523

O
FUJITSU

SCIENTIFIC & TECHNICAL
JOURNAL

Summer 1993 vo. 102

FUJITSU Sci. Tech. J., 29, 2, pp.119-192 , Kawasaki, Summer, 1993

The Issue’s Cover :

ﬁ 4“6 (Flowering)

FUJITSU Scientific & Technical Journal is published quarterly by FUJITSU
LIMITED of Japan to report the results of research conducted by FUJITSU
LIMITED, FUJITSU LABORATORIES LTD., and their associated companies in
communications, electronics, and related fields. It is the publisher’s intent that
FSTJ will promote the international exchange of such information, and we
encourage the distribution of FSTJ on an exchange basis. All correspondence
concerning the exchange of periodicals should be addressed to the editor.

FSTJ can be purchased through KINOKUNIYA COMPANY LTD., 38-1,
Sakuragaoka 5-Chome, Setagaya-ku, Tokyo 156, Japan, (Telephone
+81-3-3439-0162, Facsimile : +81-3-3706-7479).

The price is US$7.00 per copy, excluding postage.

FUJITSU LIMITED reserves all rights concerning the republication and pub-
lication after translation into other languages of articles appearing herein.

Permission to publish these articles may be obtained by contacting the
editor.

FUJITSU LIMITED Tadashi Sekizawa, President
FUJITSU LABORATORIES LTD. Mikio Ohtsuki, President

Editorial Board

Editor Shigeru Sato

Associated Editors Hajime Ishikawa Hideo Takahashi
Editorial Representatives

Sadao Fuijii Tetsuya Isayama Yoshihiko Kaiju
Masasuke Matsumoto Yoshimasa Miura Makoto Mukai
Junzo Nakajima Yasushi Nakajima Koichi Niwa
Hajime Nonogaki Juro Ohga Shinji Ohkawa
Shinya Okuda Teruo Sakurai Yoshio Tago
Shozo Taguchi Kunihiro Tanigawa Makoto Saito
Takaki Shimura Mitsuhiko Toda Takao Uehara

Akira Yoshida

Editorial Coordinator
Yukichi Iwasaki

FUJITSU LIMITED 1015 Kamikodanaka, Nakahara-ku,
Kawasaki 211, Japan

Cable Address : FUJITSULIMITED KAWASAKI

Telephone : +81-44-777-1111

Facsimile : + 81-44-754-3562

Printed by MIZUNO PRITECH Co., Ltd. in Japan
©) 1993 FUJITSU LIMITED (June 15, 1993)

o8
FUJITSU

SCIENTIFIC & TECHNICAL
JOURNAL

Summer 1993 VOL.29,NO.2

CONTENTS

119

128

137

146

154

161

169

180

189

ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems
® Seiichi Aikawa ® Mlayumi Kamiko ® Takashi Chikayama

A Practical Teat Program Generator Based on Attributed Grammer
® Hiroshi Kawata @® Hiroshi Saijo @® Chikao Shioya

Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

® Masahiro Fujita ® Yusuke Matsunaga
Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K
®Kazuo Sukegawa @® Seiichiro Kawamura

Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown
® Toshiro Nakanishi ® Sadahiro Kishii ® Akira Ohsawa

QPSK Burst Demodulator for Satellite Communications Systems
® Makoto Uchishima ® Yoshiharu Tozawa ® Toshio Kawasaki

Gas-Source MBE Growth of AlGaAs and GaAs for HBT Applications
® Toshio Fujii ® Hideyasu Ando ® Adarsh Sandhu
® Naoya Okamoto

Service Creation Environment Based on Application Oriented Specification Language
® Jun Maeda ® Moo Wan Kim ® Hideo Yunoki

Interactive Music Composer Based on Neural Networks
® Masako Nishijima ® Kazuyuki Watanabe

UDC 519.68:681.326

ParaGraph: A Graphical Tuning Tool
for Multiprocessor Systems

® Seiichi Aikawa @ Mayumi Kamiko @ Takashi Chikayama

(Manuscript received November 30, 1992)

Distributing computational load to many processors is a critical issue for efficient
program execution on multiprocessor systems. Finding a good load distribution
algorithm is one of the most important research topics for parallel processing. Tools
for evaluating load distribution algorithms are very useful for this kind of research.
This paper describes a system called ParaGraph that gathers periodical statistics of
the computational and communication load of each processor during program
execution, in both the higher level of programming language and lower level of
implementation, and presents them graphically to the user.

1. Introduction

In the Japanese Fifth Generation Computer
Systems Project, parallel inference systems have
been developed for promoting parallel software
research and development. The system adopts a
concurrent logic programming language KL.1" as
the kernel and consists of a parallel inference
machine, PIM? and its operating system,
PIMOS?.

For efficient program execution, the compu-
tational load must be appropriately distributed
to each processor. On scalable loosely-coupled
multiprocessor systems, load balancing and
minimization of communication overhead are
essential, but become more difficult compared to
tightly-coupled systems as communication costs
increase. Although many load distribution algo-
rithms have been developed” *, none have been
sufficient to execute every program effectively.
Finding a good load distribution algorithm is one
of the most important research topics for
parallel processing.

Tools for evaluating load distribution
algorithms are very useful for this kind of
research. The objective of the ParaGraph system
is to help programmers design and evaluate load
distribution algorithms on loosely-coupled multi-
processor systems. ParaGraph gathers profiling

FUJITSU Sci. Tech. J., 29, 2, pp. 119-127 (June 1993)

information during program execution on the
parallel inference machine, PIM, and displays it
graphically based on the X window system®.
Many performance displays have been de-
vised for utilization, communication, and task
information™ ¥. For example, graphical meters”
represent processor-utilization and graphical
animation on a processor configuration map®
represents interprocessor-communication of mes-
sage-passing programs. Such specialized views
provide an intuitive feeling for dynamic behav-
ior, but it is difficult to determine where the
performance bottlenecks are. Because the
execution of parallel programs often raise
complex phenomena, simple observation of each
phenomena can not provide full information
needed to detect performance bottlenecks. For
example, suppose that when tasks are not
mutually independent and must communicate
with each other closely. The program is less
efficient because of communication overhead.
But graphical meters may show processors work
hard, although most of processing time must
have been consumed on message-handling. In this
case, it is useful to compare the activity of
processors with frequencies of sending and
receiving messages along execution time. Thus,
bottlenecks are often determined by comparing

119

S. Atkawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

with some pieces of profiling information each
other. In ParaGraph system, every kind of
profiling information can be displayed based on
three common axes to be easy to compare.
Because such profiling information can be
viewed as having three axes: what, when, and
where.

In chapter 2, how load distribution can be
described in KLL1 on PIM are described. Chapter
3 describes the implementation of the ParaGraph
system and graphical representation of program
execution, and chapter 4 discusses how useful
graphical displays are to detect performance
bottlenecks with examples of various programs.

The contents of this paper partially overlap
the subject of a previous paper”.

2. Load distribution algorithms
2.1 Load distribution in KL1

The parallel inference machine runs a
concurrent logic programming language called
KL1"»- " A KL1 program consists of a
collection of guarded Horn clauses of the form:

H: =000 G | Bijsess,. By s, mo= 1),
where H, Gj;, and B; are atomic formulas. H is
called the head, G;, the guard goals, and B, the
body goals. The guard part consists of the head
and the guard goals and the body consists of
body goals. They are separated by the
commitment operator “| 7. A collection of
guarded Horn clauses whose heads have the
same predicate symbol P and the same arity N,
define a procedure P with arity N. This is
denoted as P/N.

The guard goals wait for instantiations to
variables (synchronization) and test them. When
the guard part of one or more clauses succeed,
one of those clauses is selected and its body
goals are called. These body goals communicate
with each other through their common variables.
If variables are not ready for testing in the
guard part because the value has not been
computed yet, testing is suspended.

In addition to the above basic mechanism,
there is a mapping facility which includes load
distribution specification. The programmer can
annotate the program by attaching pragmas to
the body goals to specify a processor {specified

120

next queen(N,I,J,B,R,D,BL):- J>0, D=0 |
BL = {BLO,BLl1},
R = {RO,R1},
BLO = [get (Proc) |BL2],
try_ext(N,I1,J,B,R0,D,BL2)@node (Proc),
next. queen(N,I,J-1,B,R1,D,BL1).

processor specification

Fig. 1 — An example of a KL1 program.

by Goal@node (Proc)}. The programmer must
tell the KL1 implementation which goals to
execute on which processors.

Figure 1 shows a part of a KL1 program. If
the goal next_queen/7 1s committed to this
clause, its body goals are called. The goal
try_ext/7 has a processor specification, and it is
to be executed on processor number “Proc”.
This processor number can be dynamically
computed.

2.2 Design issues

Load balancing derives maximum perform-
ance by efficiently utilizing the processing power
of the entire system. This is done by partitioning
a program into mutually independent or almost
independent tasks, and distributing tasks to
processors. Many load balancing studies have
been devised, but they are tightly coupled to
particular applications. Therefore, programmers
have to build load distribution algorithms for
their own applications.

To distribute the computational load
efficiently, the programmer should keep in mind
the following points. Since load distribution is
implemented by using goals, the programmer
should understand the execution behavior of
each goal. When goals are executed on a
loosely-coupled multiprocessor, the programmer
should investigate the load on individual proces-
sors and the communication overhead between
processors.

For evaluating load distribution algorithms,
tools must provide many graphic displays for the
programmer to understand the computational
and communication load of each processor in
both the higher program and lower implementa-
tion levels. No single display and no single
profiling level can provide the full information

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

needed to detect performance bottlenecks.

3. System overview
3.1 Gathering information

To statistically profile large-scale program
execution, KL1 implementation provides infor-
mation gathering facilities, low-level profiling
and higher-level profiling. KI.1 implementation
provides these facilities as language primitives,
to minimize the undesirable influence to the
execution behavior of programs. These facilities
have been implemented at the firmware level.
The profiling facilities are summarized as
follows.

1) Low-level profiling

Profiles the low-level behavior of the proces-
sor, such as how much CPU time went to the
various basic operations required for program
execution.

2) Higher-level profiling

Profiles the higher-level behavior of the
processor, such as how many times each piece of
the program was executed.

To minimize the perturbation, the gathered
profiling information resides in each processor’s
local memory during program execution, and
after execution, ParaGraph collects this infor-
mation and converts into some standard form.
Since profiling information 1is automatically
produced by the KL1 implementation, program-
mers do not have to modify the application
programs.

3.1.1 Low-level profiling

The basic low-level activities can be catego-
rized into computation, communication, garbage
collection, and idling. Computation means
normal program execution such as goals’ reduc-
tions and suspensions, communication means
sending and receiving inter-processor messages,
garbage collection means itself, and finally,
idling means doing nothing.

The processor profiling facility measures
how much time went to each category for each
processor. Such information can be periodically
gathered to show gradual changes of behavior.
The profiling facility can also measure frequen-
cies of sending and receiving various kinds of
interprocessor messages'’ ',

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

1) A throw_goal message transfers a KLl goal
with a throw goal pragma to a specified
processor.

2) A read message requests for some value
from the remote processor when a clause
selection condition requires it.

3) An answer_value message replies to a read
message when the request value becomes
available.

4) A unify message requests body unification
(giving a value to a variable).

3.1.2 Higher-level profiling

KL1 provides a mechanism for grouping
goals and controlling their execution in a
meta-level. This mechanism can be considered to
be an interpreter for the KL1 language. It also
provides profiling facility at a higher level than
processor profiling. Low-level profiling gathers a
number of important statistics from many
aspects that help analyzing performance bottle-
necks, but it provides no information on where
in the program is the root of such a behavior.

To correlate execution behavior with a
portion of the program, higher-level profiling
measures how many times goals associated with
each predicate are reduced or suspended (due to
unavailability of data required for reduction).
Transition of behavior can be observed by
periodically gathering the information.

3.2 Graphic displays

The profiling information can be viewed as
having three axes: what, when, and where. In
sequential execution, “where” is a constant and
the “when” aspect is not important, since the
execution order is strictly designated. There-
fore, simple tools like gprof provided with
UNIX Not) guffice. However, all three axes are
important when parallel execution is concerned.

If such massive information is not presented
carefully, the user might be more confused than
informed. Therefore, ParaGraph provides
graphic displays based on three axes. We named

each representation using the terms “What,”

Note: The UNIX operating system was developed
and is licensed by UNIX System Labiratories,
Inc.

121

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Fig. 2—Examples of graphic displays: a What X
When view (top-left), an overall What X
Where view (top-right), and a When X
Where view (bottom-left) and a menu-
oriented user interface (bottom-left).

“When,” and “Where.” The term “What” is the
visualization target corresponding to the type of
profiling information such as low-level processor
behavior, higher-level processor behavior, and
interprocessor message frequencies. The term
“When” and “Where” indicate time expressed by
a cycle number and the processor number
respectively.

Figure 2 shows the graphic displays of
ParaGraph. These
behavior of all solution search program of N
queen problem.

displays are execution

Every type of profiling information can be
easily displayed with the views described below
with a menu-oriented user interface such as the
bottom-right window in Fig. 2. If the window
size 1s too small to display everything in detail,
coarser display aggregating several cycles or
several processors together is possible to see the
overall behavior at a glance. Scrolling on the
vertical and horizontal directions are also
possible if details are to be examined. It is also
possible to display only selected “What” items.

3.2.1 A What X When view

There are two kinds of views in terms of
“What” and “When” items. One is a What X
When view which shows the behavior of each

122

“What” item during execution. A graph 1is
displayed of a “What” item in order of the total
volume. The x axis is the cycle numbers, and the
y axis is the rate of processor utilization, the
number of messages, and the number of
reductions or suspensions corresponding to the
type of profiling information. Since every graph
is drawn with the same scale on the vertical
axis, it is easy to compare with “What” items.

The other is an overall What X When view
which shows the behavior of all “What” items
during execution. Each “What” item is stacked
in the same graph and displayed by a line. The y
axis represents the average rate of processor
utilization, the total number of messages, and
the total number of reductions and suspensions
corresponding to the type of profiling inform-
ation.

These views are helpful for example, if a
program has sequential bottlenecks such as tight
synchronization. In this case, the number of goal
reductions will be down at some portion during
program execution. Such a problem will be
detected easily by observing program execution.

The top-left window in Fig. 2 shows
received message frequencies on all processors
with What X When view. In this window, four
kinds of receiving message frequencies are
displayed on each graph. These messages are
displayed in order of the total number of
received messages. The other messages are
displayed by scrolling vertically.

From this, we know that each received
message frequency on all processors is less than
2 500 times/an interval (an interval is 2 second).
As this program is divided mutually independent
subtasks, communication message frequency is
very low.

3.2.2 A When X Where view

A When X Where view shows the behaviors
of all “What” items on each processor. Each
processor is displayed with various color pat-
terns that indicate volume. The relationship
between color patterns and volume are shown in
the bottom right corner. The brighter the
pattern, the busier the processor. Volume means
the rate of processor utilization, the number of
messages, and the number of reductions or

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

suspensions that correspond to the type of
profiling information. It’s also possible to display
only selected “What” items instead of all of
them.

The bottom-left window in Fig. 2 is a When
X Where view. The x axis is the cycle number,
and the y axis is the processor number. This
view displays the execution behavior of all goals
on a 32-processor machine. The color patterns
indicate the number of reductions. The relation-
ship between the number of reductions and color
pattern is displayed on the bottom right corner.

From this, we know that the work load on
each processor was well balanced, and this pro-
gram was executed about 70 000 reductions/an
interval on each processor at each moment in
time.

3.2.3 A What X Where view

There are two kinds of views in terms of
“What” and “Where” items. One is a What X
Where view which shows the load balance of
each “What” item on each processor. A bar
chart is displayed of a “What” item in order of
total volume. The x axis represents the processor
numbers, the y axis represents the rate of
processor utilization, the number of messages,
and the number of reductions or suspensions that
correspond to the type of the profiling inform-
ation. All bar charts are drawn with the same
scale on the vertical axis, so it is easy to
compare with the volume of each “What” item.

The other is an overall What X Where view
which shows the load balances of all “What”
items on each processor. Each “What” item is
stacked in the same bar chart and displayed by a
certain color pattern. The y axis represents the
average rate of processor utilization, the total
number of messages, and the number of total
reductions or suspensions that correspond to the
type of profiling information. The relationship
between each category and color pattern 1is
displayed on the top-right corner.

The top-right window in Fig. 2 shows the
low-level behavior of the processor with an
overall What X Where view. In this window, each
categories of low-level behavior is displayed
with several color pattern.

From this, the average of computation took

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

more than 80 % of total execution time, and the
average of communication on processor No. 0
was about 10 %, and the others were less than
5% . Since processor No. 0 collected answer val-
ues from the others, it took higher average.
Thus, this view shows most of the processors run
fully, and this example program was executed
very efficiently on each processor.

4. Examples

This chapter discusses which views to use to
view various performance bottlenecks. For
efficient program execution on multiprocessor
systems, the following phases are usually
repeated until a solution is reached:

1) a program is partitioned into subtasks,

2) the subtask is mapped to each processor
dynamically, and

3) each processor runs subtasks while commu-
nicating with each other.

Various problems are often encountered
when executing a program on multiprocessor
systems. We will show how graphic displays in
both the higher program and lower implemen-
tation levels are helpful with performance
problems.

4.1 Uneven partitioning

When the granularity between subtasks is
very different, it is useful to observe the low-
level processor behavior with a When X Where
view and the higher-level processor behavior
with a What X Where view. From the When X
Where view, we will find which processors run
fully and which are idle. From the What X Where
view, we will determine which goals caused the
load imbalances.

The left window in Fig. 3 shows the low-
level behaviors on each processor with a When
X Where view, while the right window in Fig. 3
shows the higher-level behaviors of the same
processors with a What X Where view on a
21-processor machine. An example program is a
logic design expert system which generates a
circuit based on a behavior specification. The
strategy of parallel execution is that first, the
system divides a behavior specification into
sub-specifications, next designs subcircuits based

123

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Fig. 3— The low-level processor behavior (left) and
execution behavior of goals (right).

on the sub-specifications on each processor, and
finally gathers partial results together and
combines them. The When X Where view
suggests that most of processors run almost
equally, but processors No. 3 and No. 6 run fully,
and processors No. 0, No. 2, and No. 5 were
idle. The What X Where indicates the which
goals were executed on each processor.

From this, we know that processors No. 3
and No. 6 were allocated very complicated
tasks, and processors No. 0, No. 2, and No. 5
were allocated very tiny tasks, that is, uneven
partitioning of behavior specification must cause
a bottleneck in performance.

4.2 Load imbalance

If a mapping algorithm has problems such
as allocating subtasks to the same processor, it
is useful to observe low-level behavior of the
processor with a When X Where view and
higher-level behavior with a What X Where view.
From the Whenx Where view, we see which
processors run fully or which are idle, and from
the What X Where view, we see the load balance
of each goal. Using both views, we can
determine how to distribute the goals that are
imbalanced to each processor.

The bottom-left window of Fig. 4 shows
low-level behavior of the processor with a When
X Where view, the top-left window and the
top-right window show the higher-level behavior
of the processor with an overall What X Where
view, a What X Where view respectively. An
example program is a part of the theorem
prover which evaluates whether an input
formula is a tautology. The strategy consists of 2

124

185%
° Node
waynl - wt, dethibefore_rew| te_are/5

Fedhction

i snzu[
1

D

Fig. 4—Low-level processor behavior (bottom-left),
the load balances of all goals (top-left),
and the load of each goal (top-right).

steps:

1) convert an input formula to clause form (i.e.
conjunctive normal form),

2) evaluate its clause form and determine
whether it is a tautology.

The step 1 is executed in parallel as follows.
First, main task partitions an input formula into
subformulas. Second, it generates subtasks to
convert subclause forms, and finally, distributes
subtasks to many processors dynamically. These
steps are repeated recursively until subformulas
are converted to subclause forms. The step 2 is
executed in sequential on processor No. 0.

The When X Where view of the bottom-left
window suggests that only certain processors
(processor No. 6-15 and No. 23-31) run fully and
that the others were mostly idle. The overall
When X Where view of the top-left window also
suggests most of the goals were executed on the
same processors, especially the number of reduc-
tions of top five goals were higher than the other
goals.

We can check the load of each goal on each
processor from the What X Where view of the
top-right window. These goals were executed on
certain processors and were the cause of the
load imbalances. From this, we have to change
its mapping algorithm to be flatten the shape, to

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

S. Aikawa et al.: ParaGraph.: A Graphical Tuning Tool for Multiprocessor Systems

Fig. 5—The load balances of goals (left) and
low-level processor behavior (right).

use all processors efficiently.

4.3 Large communication overhead

When subtasks are not mutually independent
and must communicate with each other closely,
the program is less efficient because of
communication overhead. In this case, the
low-level behavior of the processor with an
overall What X Where view and frequencies of
sending and receiving messages with a What X
Where view are helpful. From the overall What
X Where view, we will learn how much time has
been consumed on message handling for each
processor, while the What X Where view shows
us what kind of messages each processor has
sent or received.

Figure 5 displays an execution behavior of
an improved version of the program described in
section 4.2. The left window shows the load
balances of all goals on a 32-processor machine
with an overall What X When view. This view
shows that the work load on each processor was
balanced in overall execution, but was not
efficient because of large communication over-
head. It will be proved from low-level behavior
of the processor with an overall What X Where
view shown in the right window.

Figure 6 shows the same program execution
as Fig. 5. The left window shows the receiving
and sending message handling time rate with
What X Where view, the right window shows the
frequencies of four received inter-processor mes-
sages with a What X When view. The right win-
dow of Fig. 5 suggests the load average on each
processor was about 80-85 %, but the average of
computation on each processor was about 20 %.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

Eowoawo

BRRNNEE

Fig. 6 —Low-level processor behavior about mes-
sage handling (left) and message frequen-
cies (right).

Most of the processing power was consumed
sending and receiving message handling time
more than 60 % of total execution time.

The left window of Fig. 6 shows the mes-
sage handling time on each processor at each
moment in time was almost equally. The right
window in Fig. 6 shows that the read message
was received about 185 000 times, answer_value
message was about 170 000 times, unify message
was 100 000 times, and throw_goal message was
about 66 000 times per interval on all processors.
The tasks generated in this program commu-
nicated with each other closely among proces-
sors as compared with the result of N queen’s
message frequencies (see the top-left window of
Fig. 2).

From this, we know that as work loads are
distributed more and more, it becomes easier to
balance work loads on each processor, but
communication overhead also increases and
performance is thus lowered. As a result, we
have to redesign or improve how to divide into
subtasks. Because the generated subtasks that
were not mutually independent caused such a
problem we mentioned above.

5. Conclusion

We developed the ParaGraph system on
parallel inference machines to provide graphic
displays of processor utilization, interprocessor
communication, and execution behavior of par-
allel programs. Experiments with various pro-
grams have indicated that graphic displays are
helpful in dividing work loads evenly and deter-
mining where the bottlenecks are on multi-

125

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

processor systems.

We released a version last year as a tuning
tool of PIMOS, but have experienced some
problems. In the future, we will improve the
system considering the following points. First,
real-time performance visualization tools are
needed. Although displaying execution behavior
in real-time perturbs the program being moni-
tored, 1t 1s useful not only in early tuning but
also in debugging such as detecting deadlock
status and infinite loops. To develop such a tool,
low overhead instrumentation techniques and
new displays that are easy to understand for
programmers appearing 1in real-time must be
devised.

Second, tools which can visualize the portion
of the performance bottlenecks directly are
needed. Massively parallel machines that have
thousands of processors and programs for long
runs produce a large amount of profiling
information, but it is difficult to process or
display for simple expansion of our system
because of a vast quantity of information. To
solve such problems, analysis techniques indi-
cating bottlenecks directly will be needed. We
will study automatic analysis techniques and
graphical displays of its result (we call this
bottleneck visualization). One such approach is
critical path analysis'”, which identifies the path
through the program that consumed the most
time.

6. Acknowledgment

The work described in this paper was done
under Institute for New Generation Computer
Technology (ICOT) contract as a part of the
R&D of the Fifth Generation Computer Systems
Project. We thank all researchers of ICOT and
other companies who tested our tool. We also
thank K. Nakao and H. Kubo who helped us to
develop this tool.

References

1) Ueda, K., and Chikayama, T.. Design of the
Kernel Language for the Parallel Inference
Machine. The 33, 6, pp.
494-500 (1990).

2) Goto, A., Sato, M., Nakajima, K., Taki, K., and

Computer Journal,

126

6)

)

10)

11)

12)

13)

Parallel
Inference Machine (PIM) Architecture. Proc.
Fifth Generation Computer Systems 1988, 1,
Tokyo, pp. 208-229.

Chikayama, T. Sato, H., and Miyazaki, T.
Overview of the Parallel Inference Machine
Operating System (PIMOS). Proc. Fifth Genera-
tion Computer Systems 1988, 1, Tokyo, pp.
230-251.

Furuichi, M., Taki, K., and Ichiyoshi, N.. “A
Multi-Level Load Balancing Scheme for OR-
Parallel Exhaustive Search Program on the
Multi-PSI”. ICOT TR-526, Tokyo, ICOT
Research Center, 1989.

Kimura, K., and Ichiyoshi, N.. Probabilistic
Analysis of the

Matsumoto, A.. Overview of the

Optimal Efficiency of the
Multi-Level Dynamic Load Balancing Scheme.
Proc. Sixth Distributed Memory Comput. Conf.,
1989.

Scheifler, R. W., and Gettys, J.: The X Window
system. ACM Trans. Graphics, 5, 2, pp. 79-109
(1986).

Malony, A. D., Reed, D. A., and Rudolph, D. C.:
Data
and Visualization”.

“Integrating Performance Collection,

Analysis, Performance
Instrumentation and Visualization, 1st ed., N.Y.,
ACM Press, 1990, pp. 73-97.

Heath, M. T., and Etheridge, J. A.: Visualizing
the Performance of Parallel Programs. IEEE
Software, 8, 5, pp. 29-39, (1991).

Aikawa, S., Kamiko, M., Kubo, H., Matsuzawa,
F., and Chikayama, T.: ParaGraph: A Graphical
Tuning Tool for Multiprocessor Systems. Proc.
Fifth Generation Computer Systems 1992, 1,
Tokyo, pp. 286-293.

Ichiyoshi, N.: in Parallel
Knowledge Information Processing”. ICOT
TM-0822, Tokyo, ICOT Research Center, 1989.
Inamura, Y. Ichiyoshi, N.,
Chikayama, T., and Nakashima, H.: Distributed
Implementation of KL1 on the Multi-PSI/V2”.
Proc. Sixth Int. Conf. Logic Prgmg. 1989.
Nakajima, K., and Ichiyoshi, N.: “Evaluation of

“Research Issues

Nakajima, K.,

Inter-processor Communication in the KL1
Implementation on the Multi-PSI”. ICOT
TR-531, Tokyo, ICOT Research Center, 1990.

Miller, B. P., Clark, M., Hollingsworth, J.,
Kierstead, S., Lim, S., and Torzewski, T.: IPS-2:

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

S. Aikawa et al.: ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

The Second Generation of a Parallel Program 1, 2, pp. 206-217 (1990).
Measurement System. [EEE Trans. Par. Distr. Syst.,

Seiichi Aikawa received the B.S.
degree in electronics from Gunma
University, Gunma, Japan, in 1985.

He joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1985 and has been
engaged in reseach and development
of programming environment in the
Fifth Generation Computer Systems
project.

He is a member of Information Pro-
cessing Society of Japan.

Mayumi Kamiko received the B.S.
degree in Information Eng. from
Shinshu University, Nagano, Japan, in
1987.

She joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1987 and has been
engaged in reseach and development
of operating system and programming
environment in the Fifth Generation
Computer Systems project.

She is a member of Information Pro-
cessing Society of Japan.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

Takashi Chikayama received his
bachelor degree in mathematical engi-
neering in 1977 and his doctoral
degree in information engineering in
1982, both from the University of
Tokyo.

He joined Fujitsu Laboratories Ltd.,
and then Institute for New Generation
Computer Technology (ICOT) in 1982.
He has been conducting research and
development in the Fifth Generation

Computer Systems project since, mainly in programing
language and operating systems area.

127

UDC 519.682:681.326

A Practical Test Program Generator
Based on Attributed Grammer

® Hiroshi Kawata @ Hiroshi Saijo @ Chikao Shioya

(Manuscript received December 1, 1992)

This paper presents a test program generator called TPGEN, which is based on
attributed grammar. TPGEN generates a wide variety of test programs mainly for
programming language processors. The generated test programs are executable and
have self-checking code for validating execution results. The generated test programs
are assured that they have specific testing covevage.

TPGEN simulates the execution of a test program being generated and if an
abnormal event such as zero divide or infinite loop is detected, TPGEN back-tracks to
the specified position and selects an alternative production rule to avoid such
abnormal execution. Introduction of this mechanism has succeeded in generating a
wide variety of programs with complex structures.

1. Introduction

In the past, the formal definition of
programming languages has been of interest
mainly for the automatic generation of language
processors such as compilers, interpreters and
syntax-directed editors”. There have also been
studies on its application to automatic genera-
tion of test cases or test programs?”. Automatic
generation of test programs typically defines test
grammar in a formal way, such as BNF, and
generates test programs from this description. It
is a relatively simple task to randomly generate
test programs according to a syntax description
of the language, but the generation of practical
executable programs requires solutions to sever-
al problems.

The first problem is to resolve contextual
dependencies when generating correct programs.
Duncan” has resolved this problem using attrib-
uted grammar and has developed a test program
generator using a parser generator technique.
But in our experience, the use of a general
parser generator technique requires the descrip-
tion of all the information regarding attributes
and the passing of attributes and thus results in
a large and unwieldly description.

The second problem is in the generation of

128

test programs with self-checking code. Confirma-
tion of test results requiring a large amount of
manpower reduces the benefit of automatic
generation. Reports” ¥ show how to describe the
semantics of language elements and give
predicted execution results, but include no
mechanism for automatic checking of execution
results. D. L. Bird and C. U. Munoz” have
described the automatic generation of test pro-
grams which are as executable and self-check-
able as possible, although there are some
restrictions on generated program structures.

The third problem concerns functional
coverage. To assure adequate coverage we must
be able to generate executable programs with
complex structures such as loops. The reports
that have been published so far describe
relatively simple cases” *.

Other reports® '” have pointed out that
PROLOG is very useful when prototyping a test
case or test data generator. We implemented
TPGEN in LISP because of LISP’s facilities
such as manipulation of pointer variables and
complex data structures which were necessary to
make our tool more practical.

Our test program generator, TPGEN, has
been in use for software product inspection for

FUJITSU Sci. Tech. J., 29, 2, pp. 128-136 (June 1993)

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

more than three years. In this paper, we present
how TPGEN generates executable test programs
with self-checking code, how it assures testing
coverage, and how it improves the quality of
generated programs and some empirical results
obtained in comparison with conventional meth-
ods.

2. Outline of generation principle of TPGEN

In a syntax-directed definition, each produc-
tion rule A —> a has associated with it a set of
semantic rules of the form b : = f (c,, c,, ... cp),
where f is a function, b is a synthesized attribute
of A or an inherited attribute of one of the
grammar symbols on the right side of the
production, and c¢,, c,, cp are attributes
belonging to the grammar symbols of the
production. Functions in semantic rules are often
written as expressions. Occasionally, the only
purpose of a semantic rule in a syntax-directed
definition is to create a side-effect. Such
semantic rules are written as procedure calls or
program segments. They can be thought of as
rules defining the values of dummy production".
An attribute grammar is a syntax-directed
definition in which the functions in semantic
rules cannot have a side-effect.

The semantic definition of TPGEN consists
of two descriptions: one resolves context-depend-
ency to generate grammatically correct pro-
grams and the other simulates execution of
generated programs. In generating a proper
expression, for example, its type is passed to the
production rule of an expression as an inherited
attribute. The value attribute is introduced to
each non-terminal so that the generated program
can be simulated. Introduction of such attributes
is not enough to complete the semantic definition
of TPGEN, which will be explained later.

We will now explain how TPGEN generates
test programs from the language definition.
Figure 1 shows a simplified definition of a small
subset of FORTRAN (see the appendix for more
details). In this figure, symbols enclosed by
< and > mean non-terminals and symbols sur-

rounded by “ and ” mean terminals.

If we select production rules in Fig. 1 in the
order of (1), (2-2), (4), (6-1), (7-1), ..., then parts (a)

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

<program> -> <stmt> & <o (1)
<stmt> -> <assign-stmt> ! cee(2-1)
<if-stmt> & <44 (2-2)
<assign-stmt> -> <var> "=" <expr>
(insert-checking-routine) & ---(3-1)
<if-stmt> => "IF (" <b-expr> ") THEN" <stmt>
"ELSE” <stmt> "ENDIP” & - (4)
<expr> -> <primary> I - (5-1)
<primary> "+" <primary> ! ... (5-2)
<primary> "-" <primary> & ... (5-3)
<b-expr> -> <primary> ".GT.” <primary> ! --.(§-])
<primary> ”".LT.” <primary> ! ... (g-2)
. <primary> ".BEQ.” <primary> & ---(§-3)
<primary> => Lref-vard> | o (7-1)
<const> & < (7-2)

Fig. 1— A simplified example of language defini-
tion (syntax only).

[JK1 = 150 niesle)
IF (IJKI .GT. 100) THEN Seala)
[JK1 = [JKL - 60 -+ +(a)
CALL CHECK(1, 90, IJK1," ASSIGN STMT INVALID")- - -(b)
ELSE - +(a)
1JK2 = 30 -+ +(a)
CALL CHECK(2, 30, IJK2,” ASSIGN STMT INVALID’)- - -(b)
ENDIF - +(a)
STOP
END
a) Example (1)
1JK1 = 150 <)
IF (IJKL .GT. 100) THEN +=«(3)
[JKL = IJKL - 60 - (a)
ELSE -+ +(a)
1JK2 = 30 -+ +(a)
ENDIF cleki(q)

CALL CHECK(1, 90, IJK1, " ASSIGN STMT INVALID') ---(b)
STOP
END

b) Example (2)

Fig. 2— Examples of generated text.

and (b) of Fig. 2a) will be generated. Part (b) of
Fig. 2a) is generated based on the description of
‘insert-checking-routine’, and part (c) is an
initialization statement which is generated with
a declarative statement.

The procedure adopted by TPGEN to
generate executable test programs with self-
checking code is as follows:

1) TPGEN selects production rules randomly
or considering functional coverage, if
specified, starting from <program> and

129

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

generates source text. Usually, we define a
<program> so that it includes several
executable statements with several declara-
tive statements and initialization statements.
Number of statements included in a <pro-
gram > is determined randomly within speci-
fied minimum and maximum integers.

2) TPGEN generates source text based on the
selected production rules, and each time a
production rule is applied, generated text is
simulated. If an abnormal event such as an
overflow 1s detected, some alternative is
selected. If all alternatives result in abnor-
mal execution, TPGEN back-tracks to the
parent production rule of the current
production rule and continues processing.
Confirmation of execution results is done by
generating self-checking code according to
the ‘insert-checking-routine’.

3) A source text for a <program> is gene-
rated by the above procedure. If a generated
program includes a complex program
structure such as a loop, there are several
problems to be resolved, which will be
explained later.

2.1 Resolving context-dependency

If a test program is generated by selecting
production rules completely at random, variables
or functions defined in the declaration portion
will not coincide with those wused in the
execution portion. In order to resolve such
context-dependency, information concerning de-
clared variables must be easily retrieved. In
TPGEN, system functions are available which
make it easy to store and retrieve information
concerning declared variables.

Such information is considered to belong to
a specific non-terminal ($PROGRAM in the
appendix). For example, if a variable is declared
in a declarative statement, its name, data type
and other information is registered to that
non-terminal using a system function. If a
variable i1s assigned a value by an assignment
statement, the value of that variable is updated
using another system function.

In generating an expression, the specific
data type is passed to the production rule of an

130

expression as an inherited attribute. In
generating a subscript expression, its range or
expected value is passed to the rule of an
expression and if the value of the generated
expression is not appropriate, we usually specify
generation for a fixed period of time until it is
appropriate. A back-tracking mechanism is very
useful in such a situation. This will be explained
later.

The production rule of subroutines is
invoked from the semantic definition of the
“CALL” statement, receives the necessary
information (subroutine name and parameters)
from it, and generates an appropriate subroutine.
Normal execution of that subroutine is assured
for the current “CALL” statement by simulating
its execution at the time of generation.

The production rule of the “CALL” state-
ment includes two alternatives. One 1is to
generate a “CALL” statement for already
generated subroutines, and the other is for a new
subroutine. When a new subroutine is generated,
to generate it must be stored with its name in a
global variable so that other “CALL” statements
for it can be generated later.

The generation of a subroutine at the time
of generating a “CALL” statement, however,
requires placing that subroutine at an appropri-
ate point inside the generated test program. This
problem is resolved by separating text genera-
tion and its arrangement. Syntax definition of
such a production rule simply states the
arrangement of generated text (syntax elements),
and the generation of text is done by semantic
definition (see the appendix).

2.2 Self-checking code

Automatic checking of execution results is
very important in the inspection and testing of
our software. We have been using checking
routines for many years, before TPGEN was
introduced. We have checking routines for each
type of variable and for each target language.
The checking routines themselves are coded in
each target language. In Fig. 2, they receive, as
parameters, a sequential number to identify
erroneous text, a simulated value of the variable
to be checked, the variable to be checked, and

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

error message text.

A test program generated by TPGEN is
executable once it 1s link-edited with the above
checking routines.

Although TPGEN understands values of all
variables, users of TPGEN must specify the
position where the self-checking code should be
inserted, and the way it should be inserted. One
reason is that TPGEN does not understand the
structure of the target language. For example, if
the “THEN” g (11
consists of one assignment statement, insertion
of the self-checking code inside the “THEN”
clause may require, in some languages, grouping
of these statements. But the current TPGEN
does not understand the target language to that

clause of an statement

extent.

Insertion of a self-checking routine is done
for specified variables based on the definition of
the ‘insert-checking-routine’ as shown in Fig. 1
or CHECK, which is described in the appendix.
Figure 1 specifies the self-checking code to be
inserted at the end of each assignment state-
ment. In Fig. 2a), such code is inserted in the
“THEN” “ELSE” The

“ELSE” clause is not executed in this example,

clause and clauses.
but such an msertion is done assuming the
“ELSE” clause will be executed. Another test
program designer may specify the insertion of
the end of the “IF”
statement for all variables whose values are
“IRn
statement. In this case, he should know the

checking routines at
changed during the execution of the

variables whose values change according to the

DO I =1, 1000, 1
J =17+ 100000 =

"DO” <vary "="<expr> ",” <expr> ", <expr>

{stmt>

— <assign-stmt> |
<if-stmt> | S
(do-stmt> | <var -

Pt

<assign-stmt>

B

=) back-track =)

difference between the value of variables on
entrance to the “IF” statement and the value of
variables on exit from the “IF” statement and a
program described in Fig. 2b) is generated.

If the assignment statements in Fig. 2a) are
included in a loop, the definition of CHECK in
the appendix is not enough to generate a correct
self-checking code. Insertion of a self-checking
code inside a loop requires to identify repetition
in addition to the value of the variable at that
repetition and this information must be included
in the definition of ‘insert-checking-routine’.

Validation of the contents of external files is
done by validation of variables when they
retrieve a record from that file.

Test programs generated by TPGEN thus
have self-checking code, and if a test program is
executed correctly, such a program is discarded
and only the information concerning what kind
of functional test was done is stored in the data-
base.

3. Characteristics of TPGEN

TPGEN generates test programs as descri-
bed above. also added the
following features in order to make the quality
of generated test programs closer to that of
those generated manually.

However, we

3.1 Preventing abnormal execution by back-
tracking
In TPGEN, an expression is evaluated each
time a production rule is applied, and if an
abnormal event is detected, TPGEN randomly

DO I =1, 1000, 1
IF J .GT. 50 THEN
J =1+ 100
ENDIF

(select
alternatives)

{expr>)

~
27N Calie
7 N F N
/ N\ ’ N
Lo e s N lninisimn W

Fig. 3— An example of back-tracking caused by a loop.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

131

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

selects an alternative rule, excluding already
selected rules. If an abnormal event is detected
for all such selections, TPGEN back-tracks to its
parent production rule, and text generation and
its simulation continue. But this approach has
some problems. One problem is that even if some
selection, for example, (5-2) of Fig. 1 results in
abnormal execution, it may be executed
normally if it is selected more than twice,
because a different <primary> will be selected.

A similar problem exists when such an
expression is included inside a loop. In a loop
(see Fig. 3), an assignment statement is gener-
ated so that no abnormal execution will occur
for the first repetition. But the “DO” statement
may cause abnormal execution for that assign-
ment statement, at a later repetition. If it does,
TPGEN considers that the “D0O” statement, not
the assignment statement, is executed abnor-
mally. So, if the back-tracking point is specified
inside the production rule of the “DO” statement,
as in Fig. 3, the generation environment is
resumed to the specified point, and the “DO”
statement (body of the “DO” statement) is
generated and simulated for a fixed number of
times wuntil it is executed normally. If a
back-tracking point is specified at the top of the
“DO” statement, generation of the “DO”
statement itself is repeated for a fixed number of
times until it 1s executed normally. If no
back-tracking point is specified for the “DO”
statement, some statement other than the “DO”
statement will be selected as an alternative to
the current “DO” statement.

To specify back-tracking points is delicate
work. Users must make the scope of back-
tracking as narrow as possible so that a wide
variety of programs will be generated, and they
must at the same time, reduce the frequency of
back-tracking to improve generation efficiency.

Detection of infinite loops is done by
counting repetition numbers. Since the introduc-
tion of “GOTO” statements makes it difficult to
design test programs with no infinite loops, we
usually design test programs which include
“GOTO” statements separately.

132

3.2 Assuring functional coverage of generated
programs
The combinations of selecting production

rules can become enormous, even infinite,
because of the nested or recursive structure of
the target language. Thus, generation of test
programs based on a random selection of
production rules cannot answer such questions
as; “are the generated test programs enough to
cover the functionality of the target language?”.

In addition to random selection of produc-
tion rules, TPGEN tries to assure the following
coverage of generated programs:

Condition-2 (2 level combination): For each
alternative of each production rule, TPGEN tries
to assure generation of all combinations of all
alternatives of non-terminals which are included
in that rule. For example, consider the
<if-stmt> in Fig. 1. Each <b-expr> and
<stmt> of the “THEN” clause, and the
<stmt> of the “ELSE” clause consists of three
alternatives, so twenty seven combinations
should be selected for <if-stmt >.

This metric is based on syntax definition
only, and it is usually not possible to generate
test programs so that they satisfy condition-2 for
all production rules. We adopted condition-2 for
the following reasons:

1) As we cannot do complete functional
testing, the second best approach is to make
clear what kinds of functional tests are done
by the generated programs.

2) Condition-2 above 1s, in a sense, close to the
method which is actually used in designing
test cases manually' '”. Thus, we can
expect that the quality of test programs
generated by TPGEN 1is close to that of
those made manually.

3.3 Other features

The following additional features have been
introduced to make TPGEN more practical.
1) Weights

A facility to control weights or relative
frequency of each of the possible alternatives is
introduced in the reports” ®. If one particular
type of statement has a high weight, it will
appear densely in the generated text. In TPGEN,

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

weights are introduced in the following way:

<stmt>—> W1 <assign-stmt > |

W2 <if-stmt> &

where W1/ X Wi is the probability of selecting
< assign-stmt > .
Here, W1 and W2, may be expressions, and may
be changed dynamically:

<stmt>—> 200 <assign-stmt> |

(E : SELECT : INIT 100 : IF-SELECTED

(—30)) <if-stmt> &
The weight of <if-stmt> is read as follows: the
relative frequency is set to 100 initially, then it is
decreased by 30, each time <if-stmt> is
selected. This enables us to change the selection
frequency of <if-stmt> to zero at the time the
nesting level of the IF statement reaches the
maximum allowed by the target language
processor.
2) Special terminals for formatting control

In FORTRAN, each line must start at
column 7. We usually use indentation for nested
IF statements. To cope with these matters,
TPGEN has special terminals for controlling the
position of generated text. This also improves
the readability of generated text.

4. Evaluation of TPGEN

TPGEN has been used for more than 3 years
in our quality assurance department for several
language processors, including FORTRAN, C,
LISP, PROLOG, Al-oriented shell, sort-merge,
and COBOL-embedded SQL. At the time of their
functional enhancement, these products were
inspected partially, using TPGEN with about
2 800 production rules and more than 20 million
LOCs (line of codes) of generated programs.

1) Applicable range of TPGEN

TPGEN is effective for generating test
programs which execute normally. In the case of
FORTRAN, about 80 % of the normal function-
al testing can be done using TPGEN. TPGEN is
not effective for functional testing of special
functions such as I' function and special files
such as VSAM files.

In the case of SQL, most of the functional
testing for data manipulation language (DML)
could actually be done using TPGEN, but
TPGEN 1is not effective for data definition

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

language (DDL). In the case of DML, the test
program 1s designed based on a database whose
structure 1s predetermined by a test case
designer, but testing of DDL requires making a
variety of databases, and it is difficult in our
current environment to make simple few self-
checking routines for such a varying data
structure.

2) Quality of generated test programs

The functional coverage of TPGEN is
basically the same as our conventional method,
but we found that test programs generated by
TPGEN have better bug-detection characteris-
tics. The main reason, we think, is the
complexity of generated programs. We analyzed
test programs generated by TPGEN against
those made by conventional methods for SQL
test programs and found that the number of
tokens included in a single SQL statement 1is
about 3.5 times more than those made by
conventional means. We also found that the
number of phases, predicates, and the depth of
nested expressions also increased.

In designing test cases manually, we often
specify that some testing factor may be optional,
because we think such a factor is not important
for such a test case. But this is potentially a big
problem, and bugs often exist in places where we
think there are no problems. TPGEN generates
test programs randomly without any precon-
ceived ideas. This is the key point of a random
testing tool.

3) Efforts required to make test programs
using TPGEN

Our experience shows that making test
programs using TPGEN is five times easier than
conventional methods. Using TPGEN, most of
our labors is devoted to designing test cases. The
simple tedious work of coding the test programs
is left to TPGEN, and our time can be spent on
other work such as inspecting the ease of use
and performance.

4) Performance

TPGEN requires a fair amount of CPU time
and memory. It takes two or three seconds of
CPU time on Fujitsu’s large computer M-780 to
generate test programs of about 1 kilo LOCs for
a programming language which has no loops

133

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

sSiaieXisisnie Laiwince K win v il s e R R s S e T s
000001 $PROGRAM ->
000002 STMT "QRNL"
000003 "’STOP”" ""@RNL"
000004 ""END" #2
000005 (EZEXP-R STMT :IN-TERM "@RNL") &
000006 STMT ->
000007 200 ASSIGN-STMT !
000008 100 IF-STMT &
000009 ASSIGN-STMT ->
000010 VAR =" EXPR ""@RNL"
000011 CHECK £ 24
000012 (EZEXPL VAR)
000013 (EZEXPL EXPR)
000014 (M2SEM (F:VAR-SET VAR.V EXPR.V))
000015 (EZEXPL CHECK VAR.V "ASSIGN STMT INVALID) &
000016 IF-STMT ->
000017 “IF (" B-EXPR ") THEN" "QTAB+"
000018 STMT#1 "aTAB-"
000019 “ELSE" ""dTAB+"’
000020 STMT#2 ""8TAB-""
000021 "ENDIF" #2%
000022 (EZEXPL B-EXPR)
000023 (IF (NOT B-EXPR.V) (F:EFFECT-PART-CUT))
000024 (EZEXPL STMT#1)
000025 (IF B-EXPR.V (F:EFFECT-PART-CUT))
000026 (EZEXPL STMT#2) &
000027 EXPR ->
000028 PRIMARY !
000029 PRIMARY#1 "’+'" PRIMARY#2 X (F:V-SET (+ PRIMARY#1.V PRIMARY#2.V)) !
000030 PRIMARY#1 "-'" PRIMARY#2 X (F:V-SET (- PRIMARY#1.V PRIMARY#2.V)) &
000031 B-EXPR ->
000032 PRIMARY#1 ".GT."” PRIMARY#2 X (F:V-SET (> PRIMARY#1.V PRIMARY#2.V)) !
000033 PRIMARY#1 “.LT."” PRIMARY#2 X (F:V-SET (< PRIMARY#1.V PRIMARY#2.V)) !
000034 PRIMARY#1 ".EQ.” PRIMARY#2 X (F:V-SET (= PRIMARY#1.V PRIMARY#2.V)) &
000035 PRIMARY ->
000036 REF-VAR X (F:V-SET (F:VARV REF-VAR)) !
000037 CONST &
000038 CHECK(VAR COMMENT) ->
000039 "CALL CHECK(’" ITEM-NO ",” A ",” B ","” C '")" #X
000040 (EZEXPL ITEM-NO)
000041 (EZPN A (F:VARV VAR))
000042 (EZPN B VAR)
000043 (EZPN C COMMENT) &
000044 VAR ->
000045 #P (CAR (F:RANDOM-SELECT (F:ALL-DECL-VAR))) !
000046 #P (GENSYM "IJK') (F:DECL PO.V #'INTEGERP) &
000047 REF-VAR -> #P (CAR (F:RANDOM-SELECT (F:ALL-VAR))) &
000048 CONST -> #P (F:RANDOM 1 200) &
000049 ITEM-NO ->
000050 A #%
000051 (IF (NOT ITN) (SETQ ITN 1))
000052 (E:PN A ITN)
000053 (SET@ ITN (1+ ITN)) &
000054 (SETQ %CVSx "(ITN))

Fig. 4 — Test program specification written in TPGEN for a small subset of FORTRAN.

such as SQL, and about 10 seconds for a
programming language such as FORTRAN,
where we need heavy testing of loops which

often require back-tracking for selecting

alternative production rules.

5. Conclusion

The test program generator TPGEN, which
is based on attributed grammar, has succeeded
In generating test programs which assure a
specific testing coverage and have testing quality

134

as good as or better than manually produced
ones.

Additional merits of TPGEN in our
practical work is important. In our quality
assurance work, we sometime find that a

software product has poor quality. We request
the development group to take drastic measure
to correct it. Later, when we receive the revised
softwave product, we inspect it again. The same
set

test loses some capabilities for quality

assurance in this case. With TPGEN, however,

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

we can generate another test set. Thus we can
easily check the quality of the new product.
Testing using TPGEN is so-called ‘black
box’ testing. We usually need to employ many
kinds of tests including ‘white box’ testing, for
software products testing. We have not evalu-
ated TPGEN from the point of view of ‘white
box’ testing. And simple definition of syntax and
semantics of programming language is not
enough as input to TPGEN, and the current
TPGEN

insertion of checking routines and the specifica-

requires descriptions such as the
tion of back-tracking positions.

Authors are grateful to Dr. Tokuda of
Tokyo Institute of Technology for his helpful
comments and suggestions on an earlier version

of this paper.

6. Appendix

A detailed definition of a small subset of
FORTRAN is shown in Fig. 4. The following is
an explanation of this figure.
1) The

initialization are omitted.

data declaration and its related

2) The syntax definition is on the left side of
“%” or “#%” and the semantic definition is
on the right side of “%” or “#%”7. The
numbers at the top of the syntax definition
(see the definition of STMT) define the
relative selection frequency of that rule
(default is 100).

3) “@RNL” specifies the column where the
generated text is placed. “@TAB+" and
“@TAB—" indicate a carriage return and a
shift of output position by a specified
number of columns (default is 2) to the right
or left, respectively.

4) In the case of “%”, text
according to the syntax definition, and then

is generated

the semantic definition is evaluated. The
semantic definition of EXPR (line 29) means
that the value attribute of the non-terminal
EXPR should be set to the sum of the value
attribute of PRIMARY#1 and that of
PRIMARY#2. “F : V-SET” i1s a system
function which evaluates the value of its
and registers it value

argument as a

attribute of left side non-terminal. The “#n”

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

o)

6)

1s a sequential number to identify some
non-terminal which appears more than twice
in one syntax definition. If no semantic
definition is described, as in line 28, the
value attribute of the left side non-terminal
is set to that of right side non-terminal.

In the case of “#%”, the semantic definition
1s evaluated first, and then the text is
arranged according to the syntax definition
using text which is generated in the course
of the evaluation of the semantic definition.
Such semantic definition includes descrip-
tions which control expansion of production
rules. For example, semantic definition of
$PROGRAM specifies to expand STMT
randomly more than once (each STMT is
separated by “@RNL”).

In our actual
which
execution of the generated text must be
explicitly stated by writing the “M : SEM”
function as described in line 14, because such

implementation, semantic

definition specifies to simulate

a definition may be executed more than
once 1f the generated program includes a
loop. But such description is omitted in this
example except line 14.

Semantic definition of I[F—STMT is a little
bit complicated, because it contains a clause
which is not executed. Simulation of such a
not-executed clause 1s done in the same way
as an executed clause, but the simulation
environment (values of generated variables)
must be resumed, on exit from such a
not-executed clause, to those which is on
entrance to the not-executed clause. Saving
and restoring such simulation environment is
specified by “F : EFFECT - PART - CUT".
Line 23 means that if the value of B—EXPR
1s false, then save current simulation
environment and restore simulation environ-
ment after having evaluated line 24.

In the definition of the assignment state-
ment, the value attribute of the left side
(VAR) 1s
variable and the value attribute of ex-
pression (EXPR) 1s the value of that
expression. On line 14, “F : VAR-SET” is a
system function which retrieves the spe-

non-terminal name of some

135

H. Kawata et al.: A Practical Test Program Generator Based on Attributed Grammer

9)

cified variable (VAR . V) among the infor-
mation which is stored to $PROGRAM and
sets its value field by the second argument
(EXPR . V). Line 15 expands CHECK by
passing two parameters (value attribute of
VAR and string constant “ASSIGN STMT
INVALID”).

The definition of CHECK is read as follows:
the CALL statement is expanded according
to the syntax definition after evaluation of
the semantic definition, which expands
ITEM—-NO (a sequential number that
identifies the self-checking code), then A 1is
set by the simulated value of VAR, B is set
by VAR, and C is set by COMMENT.

References

1)

2)

4)

Aho, A. V. Sethi, R, and Ullman, J. D.
Compilers-Principles, Techniques,
Addison-Wesley, 1986, pp. 279-289.
Ince, D. C.: The Automatic Generation of Test
Data. Computer Journal, 30, 1, pp. 63-69 (1987).
Duncan, A. G., and Hutchison, J. S.. Using
Attributed Grammars to Test Designs and
Implementation. Proc. 5 th ICSE, 1981, pp.
170-178.

Bauer, J. A., and Finger, A. B.. Test Plan

and Tools.

Hiroshi Kawata received the B.E.
degree in electrical engineering from
Kyushu Institute of Technology,
Fukuoka, Japan, in 1964 and Dr.
degree in electrical engineering from
the University of Tokyo, Tokyo, Japan,
in 1970.

He joined Fujitsu Ltd., Kawasaki, in
1970 and has been engaged in
development of compiler, database
system, and various software tools.

He is a member of Information Processing Society of Japan.

136

Hiroshi Saijo received the B.E. in
physical engineering and the M.E.
degree in tnformation engineerng from
Tohoku University, Sendai, Japan, in
1977 and 1980.

He joined Fujitsu Ltd., Kawasaki, in
1980 and has been working on quality
assurence of software products.

He is a member of Information
Processing Society of Japan.

(<))
=

7

8)

10)

11)

12)

Generation using Formal Grammars. Proc. 4th
ICSE, Munich, 1979.

Mauer, P. M. Generating Test Data with
Enhanced Context-free Grammars. [EEE Soft-
ware, 7, pp. 50-55 (1990).

Bird, D. L, C. U.. Automatic
generation of random self-checking test cases.
IBM Syst. J., 22, 3, pp. 229-245 (1983).

Bazzichi, F., and Spadafora, 1.. An Automatic

and Munoz,

Generator for Compiler Testing. [EEE Trans.
Software Eng. SE-8, 4, pp. 343-353 (1982).
Seaman, R. P.. Testing high level language
compilers. Proc. IEEE Comput. Syst. and Tech.
Conf., 1974, pp. 366-375.

Pesh, H., Schnupp, P., Schaller, H., and Spirk,
A. P.: Test Case generation Using PROLOG.
Proc. 8th ICSE, 1985, pp. 252-258.

Boug, L., Choquet, N., Fribourg, L., and Gaudel,
M. C.. Application of PROLOG to Test Sets
Generations. Lect. Notes Comput. Sci., 186, pp.
261-275 (1985).

Tatsumi, K.: Test Case Design Support System.
Proc. Int. Conf. Quality Control (ICQC ’87),
JUSE, 1987, pp. 615-620.

Tatsumi, K.: Conceptual Support for Test Case
Design. Proc. COMPSACS87, 1987, pp. 285-290.

Chikao Shioya received the B.E.
degree in electrical engineering from
Keio University, Yokohama, Japan, in
1985.

He joined Fujitsu Ltd., in 1985 and has
been working on quality assurence of

software products. His Interest in-
cludes artificial intelligence.
He is a member of Information

Processing Society of Japan.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

UDC 621.3.011.7:681.32

Variable Ordering of Binary Decision
Diagrams for Multi-Level Logic

Minimization

® Masahiro Fujita ® Yusuke Matsunaga

(Manuscript received November 27, 1992)

Binary Decision Diagram (BDD) is now widely used in CAD fields, especially in
formal verification and logic synthesis. In this paper, variable ordering methods of
BDD for the application of multi-level logic minimization are presented. The variable
ordering algorithm for sum-of-products representation is based on cover patterns

and selects most binate variables first,

and the one for multi-level logic

representation is based on depth first traversal of circuits. In both cases, the
obtained variable orderings are optimized by exchanging a variable with its neighbor
in the ordering. Experimental results show the effectiveness of our methods.

1. Introduction

In logic synthesis, multi-level logic minimi-
zation plays a very important role in order to
increase the quality of synthesized circuits in
terms of area and testability. There have been
many efforts in developing effective and efficient
multi-level logic minimization methods, and
several logic synthesis systems which include
multi-level logic minimization have been devel-
oped ", In all of them, the key point of
multi-level minimization is the use of don’t care
sets; 1e., people have been paying lots of
attention to how to effectively use don’t care
sets and how to keep the size of don’t care sets
manageable. We have developed a multi-level
logic minimization program® based on the
transduction method” wusing Binary Decision
Diagram (BDD)” as an internal representation of
logic functions. BDD is a canonical repre-
sentation of logic functions. BDD has obtained
much attention, since it can represent practical
logic functions like the ones used in ALUs much
more compactly than other representations, such
as sum-of-products representation. Much larger
circuits can be minimized using BDD compared
with the original transduction method” which

FUJITSU Sci. Tech. J., 29, 2, pp. 137-145 (June 1993)

uses truth tables to represent logic and per-
missible functions. We also developed a Boolean
resubstitution algorithm with permissible func-
tions”, which can be considered as an extension
of the transduction method. Permissible func-
tions are defined on each gate and express don’t
care sets which do not change the values of
primary outputs. We used BDD to represent
permissible functions compactly and get equal or
superior performance compared with other
multilevel logic minimization programs, such as
MIS and BOLD, especially for large circuits.

The performance of our synthesis method,
however, highly depends on sizes of BDDs. Sizes
of BDDs greatly depend on the variable
orderings used, especially for large circuits. In
this paper, we present methods to find good
variable orderings for BDDs with application to
logic synthesis in mind. The problem of finding
the best variable ordering is NP-hard”, and a
couple of heuristics for good variable ordering
were proposed 7' ¥+ 'V, In Refs. 9 and 10 variable
ordering methods based on network topology
were developed. Here we use the approach that
we first generate an initial variable ordering and
then try to optimize it.

137

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

Initial variable orderings are generated in
two different ways; if the synthesis program
receives circuit descriptions in sum-of-products
representation, the variable orderings are gene-
rated by analyzing cover patterns, and if the
synthesis program receives circuit descriptions in
multi-level logic representation, the variable or-
derings are generated by traversing the circuits
in depth-first way as shown in Ref. 9. Both these
situations can happen in logic synthesis. In some
cases, specification for a circuit is in a truth
table format, and in other cases, designers want
to specify circuits with many intermediate vari-
ables which are actually multi-level logic repre-
sentation. Sometimes designers want to optimize
their circuit designs using multi-level logic
minimization methods, in which case the mput to
logic synthesis systems is also in multi-level logic
representation.

The initial orderings are optimized in the
following way: First we construct BDDs for
logic functions using the initial orderings, and
then minimize sizes of BDDs by exchanging a
variable with its neighbor in the ordering. The
resulting orderings are used to calculate permis-
sible functions for multi-level minimizations.

Since sizes of BDD highly depend on
variable orderings, minimization time are also
drastically influenced by the variable ordering
used, although the quality of minimization
results does not change. The required time for
generation of initial orderings and optimization
of them is much less than that for multi-level
minimization. We present experimental results
and show that we can get large speed-up by the
presented methods.

In chapter 2, we briefly review permissible
functions expressed in BDDs. In chapter 3, we
pres:ent the method for initial ordering genera-
tion. In chapter 4, we present the method of BDD
minimization after constructing BDDs for logic
functions. Chapter 5 shows experimental results,
and finally chapter 6 gives concluding remarks,

2. Boolean resubstitution with permissible
functions and BDD
In this chapter, we briefly review the two
key issues used in our multi-level logic minimiza-

138

@ & = | @ G
(—t

PF, = [00**)]

F | Fy

0 0 5 i

ol o PF;: A set of permissible

L functions
0|1
1

—o~o|D

— - o

Fig. 1— An example of permissible functions.

tion methods: permissible functions and BDD. As
for the details, please see Refs. 5-7.

2.1 Permissible functions

The key concept of permissible functions is
that each node in a circuit is an incompletely-
specified logic function of the primary inputs due
to the don’t care sets obtained from network
topologies, and permissible functions represent
possible implementations at such nodes". Permis-
sible functions are defined on each node (a
primary input, a gate, or a primary output) in
the circuit. They are defined as follows. Assume
v, 1s an intermediate node in a network. The
logic function of any output variable in the
network may not change even when the logic
function F; of node v, is replaced with another
logic function PF;. Then the logic function PF,
is called a permissible function of node v ;.

Usually, there is more than one permissible
function for a node. Therefore, the don’'t care
mark () is used to represent a set of permis-
sible functions. Figure 1 shows an example of
permissible functions. In this figure, v, and v,
are input nodes, v, is an output node, and v, is
an intermediate node. The F'; vector in the truth
table represents a logic function of each node v;.
G, 1s an OR gate. Since the first and second
values of F', are Os, the first and second values
of F'; must remain to be 0s. The third and fourth
values of F, are 1s and the third and fourth
values of F', are 1s. Thus, the third and fourth
values of F'y may be either 0 or 1, and the logic
function of F; does not change even when logic
function F, is replaced with a logic function in

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Fyjita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

Fig. 2— BDD representation of F' = v, & v, + v,.

PF,. Then PF, is the set of permissible functions
of v;. Though the logic functions and permissible
functions in this figure are represented in terms
of truth tables, in our implementation these are
represented in BDD (see below). Permissible
functions can be calculated by traversing net-
works from outputs to inputs. The details can be
found in Refs. 4 and 5,

2.2 Binary decision diagrams

BDD or sometimes called Ordered BDD
were proposed by Bryant”. A BDD is a kind of
decision graph for representing logic functions
with restrictions on the ordering of variables in
the graph. Boolean functions are represented by
directed, acyclic graphs with a vertex set
containing two types of vertices. A non-terminal
vertex has as attributes an input variable index
and two children. A terminal vertex has as
attributes a constant value 0 or 1 (to express
permissible functions, we added one more
constant ‘*’ to express don’t care value).
Ordered means that if x; < x; then all nodes
with x; precede all nodes with x;. A path from
the root to the terminal vertex with value 0 (or
1) gives a condition when logic function f = 0 (or
f =1,

Figure 2 shows an example of BDD repre-
sentation of a logic function F = v, & v, + vy,
where “&” represents AND and “+ " represents
OR. In this figure, a rectangle indicates a
terminal node with a logical value, and a circle
indicates a non-terminal node containing the
variable index with the two children indicated
by branches labeled 0 and 1. The variable
ordering of this graph is v, < v, < v,. Bryant
developed efficient procedures for the operations

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

a)

b) Worst case

Fig. 3— Variable ordering.

of BDDs"”. Those operations take time propor-
tional to the sizes of BDDs.

Although BDD seems to be very promising,
there is a big problem which must be resolved
before we apply BDD to various areas. It is the
variable ordering problem. The graph size heav-
ily depends on the variable ordering. Figure 3
shows two different BDDs for the same logic
functions using different variable ordering. In
Fig. 3a), the best variable ordering is used, and
in Fig. 3b), the worst variable ordering is used.
As can be seen in the figure, as the number of
2-input AND gates increases (the number of
input variables also increases proportionally),
the size of the resulting BDD (the number of
vertices in BDD) increases exponentially with
the worst ordering, while these increase can be
restricted to polynominal order if we use the
best ordering. With a good ordering, BDD
remains reasonably small for logic functions

139

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

Fi=a&b+~a&~b F,=a&~b+~a&b

a a

b b b b
0 0 1 1
1 1 0 0
0 1 0 1
a) BDD
F F, F
F,
a 1 a
1
0 A 0 1
b b
0 0
1 1 0 1
0 1 1
b) Shared BDD c¢) Shared BDD with

negative edges

Fig. 4— Shared BDD with negative edges.

which need exponential sizes in sum-of-products
representation.

A graph can be shared with many logic
functions and permissible functions, and the
negative edge can be used to indicate an
complemented logic”. This improvement enables
the graph to be copied only by operating the
pointer. The effective use of graph sharing and
negative edges reduces CPU-time and memories
significantly”. Figure. 4 shows an example of
shared BDD with negative edges.

Although we use shared BDD with negative
edges in real implementation, original BDD
representation will be used in the following
presentation for simplicity.

3. Generation of initial variable orderings

In the minimization process, BDDs for both
logic functions and permissible functions are
constructed and used. Generally, sizes of BDDs
for logic functions are much (around 10 to 100
times) smaller than sizes of BDDs for permissible

140

functions. Also, we can say by experiments that
a variable ordering which gives smaller BDDs
for logic functions also gives smaller BDDs for
permissible functions. This means if we can get
good variable orderings for BDDs of logic
functions, we can also use them for BDDs of
permissible functions effectively.

Here, we first construct BDDs for logic
functions using the initial variable orderings
generated by the heuristics, and then minimize
sizes of BDDs by exchanging a variable with its
neighbor in the ordering. In this chapter, we
show the methods to generate initial variable
orderings.

We have developed a variable ordering
algorithm based on the heuristics: to minimize
the number of net crossing when a circuit
diagram 1s drawn, which is experimentally
proved to be powerful”. This method is proven
to be very effective for multi-level circuits by
applying it to ISCAS test generation benchmark
circuits.

Here we use two different methods for
different circuit types; if the circuits are initially
given in sum-of-product representation, we use
the method which analyzes cover patterns, and
most binate variables are ordered first. If the
circuits are initially given in multi-level logic
representation, we use the above heuristics?.

The variable ordering method for circuits in
sum-of-products representation is very simple; it
first compute how binate each variable is in
minimized cover expressions, i.e., how many
complemented and uncomplemented variables
appear in sum-of-products representation for

) 3)

circuit functions” . Os and 1s appear in each
column of the cover representation for circuit
functions. So we first minimize a given sum-of-
products representation by ESPRESSO™ and get
its minimized representation in cover format,
which is matrix representation of sum-of-pro-
ducts representation'”. We count up the number
of 0s (which correspond to complemented vari-
ables) and 1s (which correspond to uncomple-
mented variables). Here 2s which correspond to
don’t care value in cover format are not counted
up. Then each variable is ordered with its
binateness, i.e., most binate variables are ordered

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

> 0 1 0 1 *
0 1 0 1
A Lo A S h AN e

b) Case 2

first. The most binate variable is the variable
having the most number of 0s and 1s. If there is
a tie, original ordering (appeared in the original
benchmark circuit data) is used. Although this is
very simple heuristic, it is proven to be very
powerful by the experimental results shown in
chapter 5.

4. Optimization of variable orderings

In this chapter we present a method to
optimize variables orderings by exchanging a
variable with its neighboring one. As we show in
the following that we can easily get BDD for the
variable ordering where only neighboring two
variables are exchanged, if the BDD for the
original variable ordering is given. This is
because what we have to do is only to traverse
and modify nodes relating to the two variables
being exchanged.

Now suppose that we are exchanging the
variable of i-th order with the variable of
(1 +1)-th order. Since BDDs are canonical forms,
sub-BDDs having only nodes whose variable
indices are from 1 to (1—1)-th and sub-BDDs
having only nodes whose variable indices are
from (i+2)-th to n-th remain unchanged even
after the variables exchange. So, what we have
to do 1s to modify parts of BDDs relating to the
nodes whose variable indices are i-th or (i +1)-th.

There are several cases in the topology of
those parts of BDDs, which are shown in Fig. 5.
In this figure, f,, f., f1, f1 represent different
logic functions (or, in terms of BDDs, they point
to different nodes). The first and simplest case is
case 1 of Fig. 5; in the original BDD, only nodes
whose variable index is (i +1)-th exist and there
are no nodes whose variable index is i-th. In this
case we only change the variable indices of the
nodes, or in practical, there is no change in the
BDD structure. The same situation hold for the
case 2 of Fig. 5, where only nodes whose
variable index is i-th exist.

The general case is shown in Fig. 5¢). In this
case, we change edges from the nodes of i-th and
(t+1)-th variables as well as the variable indices
of the nodes. However, if two of f,, f,, f5, and f,
are the same, we may eliminate some nodes, as
shown in Fig. 5d). We can easily check it by

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

a) Casel

d) Case 4

Fig. 5— Exchange between i-th and (i + 1)-th
variables.

examining which ones are the same. After
changing parts of BDDs as above, we execute
the reduce operation in Ref. 7 only to those
modified parts of BDDs. This procedure is the
same for both BDDs and Shared BDDs.

A variable exchange example is shown in
Fig. 6. In this figure, i-th and (t +1)-th variables
are exchanged. We traverse from the root nodes,
and when we first arrive in a node whose
variable index is i-th or (¢ +1)-th (in the figure,
nodes A, B, C, D, we apply the above procedure
to modify parts of BDDs (when traversing, we
first arrive the node D from the node E directly).
For example, the node A is a case of Fig. 5d),
the nodes B and C are reverse cases of Fig. 5d),
and D is a case of Fig. 5a). So, the resulting BDD
becomes the one as shown in the bottom of
Fig. 6.

The above procedure is applied, and sizes of

141

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

Fig. 6 — An example of ordering exchange.

BDDs before and after application of the pro-
cedure are compared. If there are some gains
(the size of BDD after the application of the
procedure is smaller), we really execute the
variable exchange {we call here this procedure
as Var_exchange (i)}. Var_exchange (t) is repeat-
edly applied by incrementing ¢ until no improve-
ment is made. We can say that if i-th and
(i +1)-th variables can be exchanged, then in the
resulting BDD, there is a possibility that those
exchanged variables can be further exchanged
with their neighbors. So, we mark those variable
indices, and we apply Var_exchange (1) only to
those marked ones. This control procedure 1is
shown in Fig. 7.

Var_exchange_control()

for each i {s[i] = 1}
i= 1,
while (some sfi] is 1) {
if (s[i] == 1) { /* only flaged index is tried */
s[i] = 0;
if (Var_exchange(i) == 1) { /* exchange index i with i+1, if gained */
sli-1]=1; /* maybe exchangeable */
s[i+1] =1; /* maybe exchangeable */
}
}
i=i+1;
if i ==n-1)i=1; /* nis the number of primary inputs */
}
}

Fig. 7— Variable exchange sequence control
procedure.

Table 1. Results of variable ordering methods applied to benchmark circuits in sum-of-products
— Sizes of BDD for logic and permissible functions —

Nodes for logic functions Nodes for permissible functions
Circuits name
Original Heuristic Exchange Original Heuristic Exchange

Apex| 228 331 4 893 4 596 = 38 891 37 586
Apex2* 20 563 12 530 9 652 1 158 526 71068 52293
Apex3 = 5621 5635 ‘ - 40 956 41 163
Seq 258 595 7424 5 869 = 39 665 32 386
Planet** 5296 2 247 2247 24 468 8595 8 595
Sand 9635 2315 2209 65 928 12779 11 035
Styr 3928 2428 2309 17 987 10 379 11115
Scf 8 285 4000 4 068 50 542 16 321 15 694

* : Subset of don’t cares (similar to Ref. 2) are used in minimization.
#x : There is no improvement by variable exchange.

Machine: SUN4/260

142

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Fuyjita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

Table 2. Results of variable ordering methods applied to benchmark circuits in sum-of-products

— Synthesis quality and time —

Synthesis time (ratio: exchange = 1.0)

Circuits name | Final literals

Original Heuristic Exchange
Apex1 1139 = [=) 3256 (1.04) 3132 (1.0)
Apex2” 189 1094 (4.01) 384 (1.41) 273 (1. 0)
Apex3 1117 = L) 3131 (1.01) 3107 (1. 0)
Seq 795 == 5089 (1.18) 4318 (1. 0)
Planet** 513 1 350 (3. 64) ; 371 (1.00) 371 (1.0)
Sand 421 3194 (7. 46) ‘ 503 (1.18) 428 (1. 0)
Styr 403 774 (2.03) 393 (1.03) 381 (1.0)
Scf 830 900 (3. 03) \ 297 (1. 00) 297 (1. 0)

*: Subset of don’t cares (similar to Ref. 2) are used in minimization.

**: There is no improvement by variable exchang.
Machine: SUN4/260
CPU time: second

Table 3. Results of variable ordering methods applied to benchmark circuits in multi-level logic
e Nodes for logic functions Finial ‘ Synthesis time (ratio)
Circuits name T y

Original Heuristic Exchange literals " Original Heuristic Exchange
Apex6 5962 3 141 2 625 754 = (-) 341 (1. 05) 326 (1.0)
ApexT 7748 948 926 279 84 (2.21) 43 (1..13) 38 (1.0
Rot 207 302 65 876 44 376 1193 =1 =} - (-)] 2328(1.0)
C432 11 262 11262 8 387 194 | 72.2(1.46) | 72.2(1.46)| 49.6(1.0)
(880" - 27 656 24 763 413 — L =) 208 (1. 06) 196 (1. 0)
C2670* - 129 587 91434 | 853 = (-)| 3803¢(1.35)| 2811(1.0)
C5315" = 162 232 73 962 i 2061] =) — (-)| 7451 €1.0)

* : Subset of don’t cares (similar to Ref. 2) are used in minimization.

Machine: SUN4/260

5. Experimental results
We have applied the variable ordering
methods presented earlier to logic synthesis
benchmark circuits. Tables 1 and 2 show the
results when applied to sum-of-products repre-
sentation of the benchmark circuits. The second,
third, and fourth columns in Table 1 show the
number of nodes in BDDs for logic functions by
the original variable ordering, the heuristic
variable ordering presented in chapter 3, and the
variable orderings after optimization of chapter
4, respectively. The fifth, sixth, and seventh
columns show the number of nodes in BDDs for
permissible functions in the similar way. We can
see from the table that the variable ordering
heuristic gives much better orderings than
original orderings and those orderings can be
exchange

further 1mproved by the variable

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

method 1n chapter 4.

Tables 2 and 3 show the synthesis times for
each variable ordering. The synthesis times in
the columns of “exchange” include those for
variable exchanges. Table 2 shows the results
when applied to sum-of-products representation
of the benchmark circuits whereas Table 3
shows the results when applied to multi-level
representation of the benchmark circuits. Note
that there is a strong correlation among the sizes
of BDDs for logic and permissible functions and
the synthesis times. The performance presented
here 1s better than other synthesis tools in terms
of synthesis speed and quality.

6. Conclusions

We have presented variable ordering meth-
ods of BDD. We used the approach that we first

143

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

generate an initial variable ordering and then

optimize it. Initial variable orderings are

generated by hueristics and the generated
orderings are further optimized by exchanging
variable orders. The experimental results by
benchmark circuits show that our methods give
very good ordering.

The presented method for optimizing vari-
able ordering only exchange orderings for the
neighboring two variables. It can be easily
extended to change orderings for neighboring
k-vartiables. If k is large, there is a chance to get
much better orderings, although it can be very
time consuming. There is a trade-off and it is
one of the future research topics. Also, we plan
to apply the methods to other application areas,
such as sequential circuit verification and test
generation.

References

1) Bartlett, K. A., Brayton, R. K., Hachtel, G. D,,
Jacoby, R. M., Morrison C. R., Rudell, R,
Sangiovanni-Vincentelli, A. L., and Wang, A.
Multi-Level Logic Minimization Using Implicit
Don’t Cares. [EEE Trans. Computer- Aided
Design, CAD-7, 6, pp. 723-740 (1988).

2) Saldanha, A., Wang, A. R., Brayton, R. K., and
Sangiovanni-Vincentelli, A.: Multi-Level Logic
Simplification using Don’t Cares and Filters.
Proc. 25th Design Automation Conf., 1989,
pp. 277-282.

3) Bostick, D., Hachtel, G. D., Jacoby, R. M.,
Lightner, M. R., Moceyunas, P., Morrison, C. R.,
and Ravenscrofit, D.: The boulder optimal logic
design system. Proc. IEEE Int. Conf. Comput.
Aided Design’87, Santa Clara, 1987, pp. 62-65.

4) Muroga, S., Kambayashi, Y., Lai H. C, and
Culliney, J. N. The Transduction Method-
Design of Logic Networks based on Permissible

144

10)

11)

12)

Functions. IEEE Trans. Comput., C-38, 10, pp.
1404-1424 (1989).

Matsunaga, Y. and Fujita, M.: Multi-level Logic
Optimization Using Binary Decision Diagrams.
Proc. IEEE Int. Conf. Comput. Aided Design’89,
Santa Clara, 1989, pp. 556-559.

Sato, H., Yasue, Y., Matsunaga, Y., and Fujita,
M.: Boolean resubstitution with permissible
functions and Binary Decision Diagrams. Proc.
27th ACM/IEEE Design Automation Conf., 1990,
pp. 284-289.

Bryant, R. E.. Graph-based algorithms for
boolean function manipulation. [EEE Trans.
Comput., C-35, 8, pp. 667-691 (1986).

Friedman, S. J. and Supowit, K. J.: Finding the
Optimal Variable Ordering for Binary Decision
Diagrams. Proc. 24th ACM/IEEE Design Auto-
mation Conf., 1987, pp. 348-355.

Fujita, M., Fujisawa, H., and Kawato, N.: Eva-
luations and Improvements of a Boolean
Comparison Method Based on Binary Decision
Diagrams. Proc. IEEE Int. Conf. Comput. Aided
Design’88, Santa Clara, 1988, pp. 2-5.

Malik, S., Wang, A. R., Brayton, R. K., and
Sangiovanni-Vincentelli, A.: Logic Verfication
using Binary Decision Diagrams in a Logic
Synthesis Environment. Proc. IEEE Int. Conf.
Comput. Aided Design’88, Santa Clara, 1988,
pp. 6-9.

Minato, S. Ishiura, N., and Yajima, S.: Shared
Binary Decision Diagram with Attributed Edges
for Efficient Boolean Function Manipulation.
Proc. 27th ACM/IEEE Design Automation
Conf., 1990, pp. 52-57.

Brayton, R. K., Hachtel, G. D., McMullen, C.,,
and Sangiovanni-Vincentelli, A Logic
Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984, 193p.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Fujita, and Y. Matsunaga: Variable Ordering of Binary Decision Diagrams for Multi-Level Logic Minimization

dth

Processing Society (IPS) of Japan.

Masahiro Fujita received B.E. degree
in Electrical Engineering, M.E. degree
and Doctor degree in Information
Engineering from the University of
Tokyo, Tokyo, Japan, in 1980, 1982,
and 1985, respectively.

Since he joined Fuijitsu Laboratories
Ltd. in 1985, he has been working on
the research and development of the
CAD for digital systems.

He is a member of Information

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

munication Engineers

Society (IPS) of Japan.

Yusuke Matsunaga received B.E.
and M.E. degrees in Electronics and
Communication Engineering from
Waseda University, Tokyo, Japan, in
1985 and 1987, respectively.

He joined Fujitsu Laboratories in
Kawasaki, Japan, in 1987 and he has
been involved in research and deve-
lopment of the CAD for digital
systems. He is a member of Institute
of Electoronics, Information and Com-
(IEICE) and Information Processing

145

UDC 621.3.049.771.14

Performance and Hot Carrier Effects of
Ultra-Thin-Film SOI/pMOSFET’s at
90-300 K

® Kazuo Sukegawa @ Seiichiro Kawamura
(Manuscript received December 8, 1992)

This paper describes the characteristics and hot carrier effects of ultra-thin-film
SOI/pMOSFET's between 90 and 295 K, and compares them with those of bulk
MOSFET’s. Decreasing the operating temperature further suppresses the short
channel effects of ultra-thin-film SOI/pMOSFET's and improves their excellent
current drivability. However, the positive threshold voltage shift caused by electrons
that are trapped in the buried oxide during stressing is especially noticeable at low
temperatures. Provided the supply voltage can be reduced, ultra-thin-film
SOI/MOSFET's are promising candidates for deep-submicron MOSFET's operating at

low temperatures.

1. Introduction

Compared with bulk MOSFET’s, silicon-on-
insulator (SOI) MOSFET’s have no latch-up, a
low parasitic capacitance, and enable a greater
packing density. Moreover, ultra-thin-film SOI/
MOSFET’s have several additional advantages,
for example, suppression of short channel
effects, excellent subthreshold characteristics,
and a greater carrier mobility" ?. These advant-
ages make ultra-thin-film SOI/MOSFET’s candi-
dates for deep-submicron MOSFET’s”. Because
scaled down MOSFET’s require a reduction in
supply voltage to maintain device reliability, the
operation temperature must be reduced to
maintain a sufficient on/off margin of gate
voltage. In this respect, ultra-thin-film SOI/
MOSFET’s are especially attractive because
they offer the above advantages even at low
temperatures.

This paper compares the characteristics and
hot carrier effects of ultra-thin-film SOI/pMOS
FET’s between 90 and 295 K with those of bulk
pMOSFET’s.

2. Experiments

2.1 Fully depleted SOI/MOSFET’s
Unlike bulk MOSFET’s and conventional

146

SOI/MOSFET’s, the Si film in the channel
region of fully depleted SOI/MOSFET’s is fully
depleted under operational conditions, and the
depth of the source/drain junction is equal to the
Si film thickness (see Fig. 1). The advantages of
ultra-thin-film SOI/MOSFET’s mentioned in
Chap. 1 are due to these features.

2.2 Device processing

In this study, separation by implanted
oxygen (SIMOX) wafers with Si-films of 80-100
nm and a buried oxide layer of 520 nm were
used. Single drain p-channel MOSFET’s were
fabricated on these wafers by the process
described below. The active regions were defined
by LOCOS isolation. Phosphorus ions were
implanted into the channel region at energies
between 30 and 40 keV at doses between 1.6 X
10" and 2.0 X 10" em~ 2. The 10 nm gate oxide
was grown at 1100 °C in O,/Ar. An N* poly-Si
gate electrode was patterned using RIE etching.
BF, ions were implanted into the source/drain
regions at energies between 35 and 50 keV at
doses between 8.0 X 10" and 1.0 X 10" ecm™2.
Implantation was followed by annealing for 20
minutes at 850 °C in N,. Bulk MOSFET’s were
also fabricated on n-type, 10 Qem (100) Si wafers

FUJITSU Sci. Tech. J., 29, 2, pp. 146-153 (June 1993)

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

Source Gate Drain

)

N-well

P-type Si-substrate

a) Bulk MOSFET

RN s

b) Conventional SOI/MOSFET

c¢) Ultra-thin-film SOI/MOSFET

- : Buried oxide

1 : Depletion layer thickness

DZ P*source/drain
[:: Field oxide

Fig. 1 —Cross sections of MOSFET’s.

using the same process and channel control
doping. The junction depth, Xj, of bulk devices
was estimated by process simulation to be about
0.35 £m. The Xj of SOI devices is equal to the Si
film thickness, and was 80-100 nm in this study.

2.3 Measurement

The effective channel length, L., 1s
obtained by using the Laux method”. In this
study, devices with Lyy = 04-10 um and a
channel width of 20 gm were used. The
characteristics of the SOI and bulk devices were
measured at temperatures between 90 and 295 K.
The characteristics in the linear region were

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

-13
id 12 -
90 K
[p—1
e 150 K
T 200K
& "
—1F g 250 K
= il 205K
N I /‘).:./o/o'—
-08F
- SIMOX pMOSFET
Tsor = 80 nm
—0.6F Tox = 10nm
W = 20pm
—0.4 ! 1 1 1 l 1 s
0 1 2 3 3.5
Lest (#m)
a) SOI/MOSFET
~16
—1.4F 90K —
e @ =
/./. . 150 K B
B ;/'/./’ 200 K
i 250 K
- -
—-12F /o’./././o x 295K i
= ,° ./o ./o
= I A
. /./
- 1 -
Bulk pMOSFET
L Tox = 10nm
W =20 um
—08F
=07 1 1 1 1 1
.35 : 1 7 3 35
Legs (2m)

b) Bulk MOSFET

Fig. 2— Threshold voltage versus Leff for various
temperatures.

measured at a drain voltage of —0.1 V and a
back gate voltage of 0.0 V. In order to
investigate the hot carrier effect, both devices
were stressed at 90 K and 295 K with a drain
voltage between —6.5 and —7.5 V and a back
gate voltage of 0.0 V.

147

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

SIMOX pMOSFET

0.4F Tox = 10nm
W =20pm
Tsor = 80 nm
E 0.3F Channel doping
) —O0—: 2x10"cm™
n
=] —_—0— 2 X 10"
e’ 0.2 \D
30
|
S
it 0.1F

=01 1 |
0 100 200 300
Temperature (K)
a) SOI/MOSFET
0.5
Bulk pMOSFET
0.4F Tox = 10 nm
W =20 pm

E 03k Channel doping
5 0 cm™
o : 2% 10"
S ;g e

g 02F i
<

|
)

£ 01
~

0F O
8—B8—7<
—01 ! !
0 100 200 300

Temperature (K)

b) Bulk MOSFET

Fig. 3— Temperature dependence of effective chan-
nel length.

3. Results and discussion
3.1 Short channel effects

Figure 2 shows how the threshold voltage,
Vi, changes with Ly for various temperatures
for SOI and bulk devices having a channel

148

doping of 2.0 X 10" em 3. When Lefr 1s reduced,
the Vi, of both devices becomes more positive.
Although short channel effects in SOI devices
are greatly suppressed at low temperatures,
short channel effects in bulk devices are
independent of temperature. This difference can
be explained by considering the temperature
dependence of L in SOI and bulk devices.

Figure 3 shows the differences between the
Lee at 295 K and the Ler at temperatures
between 90 and 295 K for various levels of
channel doping. In low-doped devices of both
types, Ler increases at low temperatures. For
example, reducing the temperature from 295 K
to 90 K, increases L by 0.40 £ m in SOI devices
with a channel doping of 2.0 X 10%cm™?, and by
0.08 £ m in their bulk counterparts. On the other
hand, short channel effects in bulk devices with
a high channel doping are slightly dependent on
temperature. These results show that in devices
with a low channel doping, the gate controls the
channel region more effectively at temperatures
below 295 K.

It is known that low temperature operation
suppresses short channel effects in bulk devices
with a low channel doping”. As the temperature
is reduced, the Fermu level of Si approaches the
band edge (conduction band edge in this case).
This increase in the Fermi level, 4E;, increases

the depletion layer thickness, 4, as follows (see
Fig. 4):

lg (MOS) << (2-4E;)' 72,
lg (pn) o< (4Ep)' 72,

These relations indicate that the channel region
1s effectively controlled by the gate at low
temperatures. In devices with a lower channel
doping, Er is larger; therefore, the suppression of
short channel effects is more pronounced.

We will now discuss the reasons for the
suppression of short channel effects in SOI
devices (see Fig. 5). S, and S, represent the
depletion region controlled by the gate and the
depletion region controlled by the source/drain,
respectively. Points A, B, C, and D in the
SOI/MOSFET shown in Fig. 5 are assumed to
have the following characteristics:

FUJITSU Sci. Tech. J., 29, 2, (June 1€93)

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

Gate

Source Drain

a) Room temperature

Si ¢ Depletion layer controlled by the gate

Gate

Source

S,

b) Low temperature

.. Depletion layer controlled by the source/drain

Fig. 4— Charge sharing in bulk MOSFET.

Gate

A D

Source Drain

Buried oxide

Si-substrate

Assumptions for points A, B, C, and D:
a) Lateral electric field is zero.
b) Ei=E.

Fig. 5—Charge sharing model for SOI/MOSFET.

1) The lateral electric field 1s 0 V/cm.
2) The Fermi level i1s equal to the intrinsic
Fermi level.
However, regardless of the correctness of these
assumptions, the calculated charge sharing
coefficients” for both devices {S,/(S,+ S,)} is
independent of temperature. This implies that
the two-dimensional charge distribution sup-
presses short channel effects in SOI devices.
Reducing the junction depth, Xj, further
suppresses the short channel effects. The Xj for
SOI devices (80-100 nm) is much smaller than
that of bulk devices (350 nm). Therefore, at low
temperatures, short channel effects are
suppressed more effectively in SOI devices than

in bulk devices.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

(% 10%
20

pMOSFET

Tox = 10nm
W = 20um
L =20pm

SIMOX T'soi = 80 nm

see (cm?/Vs)

1 I | L L
60 80 100 200 300 400

Temperature (K)

Fig. 6 — Temperature dependence of field effect
mobility.

3.2 Carrier mobility

Figure 6 shows the dependence of field
effect mobility, 1+, on temperature as deter-
mined from the transconductance, gm, In the
linear region of devices with a channel doping of
2.0 X 10" em~?. The i+ of SOI devices is larger
than that of the bulk devices throughout the
temperature range. The . of SOI devices
changes more noticeably with temperature than
the /£ + of bulk devices. The 1+ of SOI devices

149

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

S0OI

§ . Gate oxide
Gate oxide
% /
P 9 Buried |Si-sub. Si-sub.
: Bg}‘d : oxide
I diagram | —
il oA &
— 1
S -
Qa 11 | ! & l
sop | !] ! bulk) ff 1|
fesnacas N . |
I Charge i i : ' I
! distribution ! Dol ! |
. || L=

Fig. 7—Band diagram and charge distribution for
MOSFET.

increases from 155 to 1000 ecm?/Vs over the
range from 295 to 90 K. The change in bulk
devices over the same range is from 130 to 630
cm?/Vs. Assuming that g ¢ 1s proportional to
T-*, x 1s 1.8 for SOI devices and 1.5 for bulk
devices, indicating that the u -+ of SOI devices at
low temperatures is larger than that of bulk
devices.

Since both devices in the figures have the
same channel doping, ionized dopant scattering
affects the i of both devices to the same
degree. Therefore, it can be assumed that the
difference between the g of SOI and bulk
devices 1s due solely to charges that form an
inversion layer and establish an electric field, Fk,
that is perpendicular to the channel direction.
We will now discuss the effect of Es on ¢
based on calculations for a one-dimensional
MOS structure (see Fig. 7). The total induced
charge, @4, which forms the inversion layer is
related to Es by the following formula:

ES = Qd/me.

As FE increases, (L decreases”. The @4 values

for SOl and bulk devices at various tem-

peratures are shown in Table 1. The table shows

that:

1) At any temperature, the @4 for SOI devices,
®4(SOI) 1s less than that for bulk devices,

Qa(bulk).
2) The ratio @Qybulk)/@4(SOI) is inversely

150

Table 1. Total charge density required to form an
inversion layer

T (K) | Qi(SOI) | Qa(bulk) | Qd(bulk)/Qq(SOI)
90 1.94 4.62 2.38
150 1.90 4.40 2.32
200 1.88 4.22 2.24
250 1.85 4.02 2117
295 1.83 3.89 2.13

(unit) @¢: X10"'/ecm?

proportional to temperature.
The first of the above observations explains why
the s of SOI devices is greater than that of
bulk devices at any temperature. The second
observation explains why this difference in ¢
1s enhanced at low temperatures.

3.3 Subthreshold characteristics

Figure 8 shows the dependence of subthre-
shold swing, S, on temperature for SOI and bulk
devices. The dashed lines in the figure show the
theoretical limits for S, 1.e. (kT/q) « In10 at each
temperature. The difference between the theo-
retical limits and experimental values for SOI
devices 1s independent of temperature, but the
difference for bulk devices decreases when the
temperature decreases.

In general, S is given by the following
equation®:

S=kT/g) +Iln10+ {1+ (Cqy + Cit)/Cox},

where Cy and C; are the depletion layer
capacitance and equivalent interface state capa-
citance, respectively. Since Cy for SOI devices is
almost zero, S for SOI devices at 295 K is nearly
equal to the theoretical value. However, the
value of S for SOI devices may be partially
determined by the effects of the interface states
at the front gate (gate oxide/SOI) and the
interface states at the back gate (SOI/buried
oxide).

The ratios of the experimental values to the
theoretical limits, i.e. {1+(Cy +Cy)/Cyy} in the
above formula, are shown in Fig. 9. When the
temperature decreases, the ratio for SOI rapidly
increases, especially at 90 K. This can be
attributed to the effects of the interface states at
the back gate. The electrical characteristics of

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

80

SIMOX pMOSFET
. Tsor = 80nm L)
O R
o Tox = 10nm ,/‘
W = 20um ° //
Lest = 1.8 um //
o pd
S e/
o 7’
> 40F
g -~
-~ i
o) .,
7z
7
7’
7
[]
201 pad
e
s, \
(kT/q)+ n10
1] I |
0 100 200 300

Temperature (K)

a) SOI/MOSFET

80
°
Bulk pMOSFET
60 Tox = 10nm 4
W = 20 um o 7
Lo = 2.1 pm /,
s’
- ’
s o 7
= e
= 40k 7
E S
% e/
7’
s,
s’
7’
,/
20 e,
,<\\\
(kT/q)+ n10
0 L !
0 100 200 300

Temperature (K)

b) Bulk MOSFET

Fig. 8 — Temperature dependence of subthreshold swing.

1.5
pMOSFET
L= Tox = 10nm Channel doping
W = 20 pm 2x10%cm™
L =20pm
I 191
by e .
g Buk g
= e REET
g0 T
2 SIMOX
E 1 Tsor = 80 nm
7
0.8

1 |
0 100 200 300
Temperature (K)

Fig. 9— Temperature dependence of normalized
subthreshold swing.

the buried oxide used in this study, which is
formed by implanting O* into the Si substrate,
seem to be inferior to those of the thermal oxide.
When the temperature decreases, FE; and
therefore the surface potentials at the front and
back gates increase. Therefore, the increase in
surface potential at the back gate interface at

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

low temperatures may cause the subthreshold
characteristics of SOI devices to deviate more
rapidly from the theoretical than is the case for
bulk devices.

3.4 Hot carrier effects

Hot carrier effects were investigated for
both devices with an Legr of 1.5 #m and a chan-
nel doping of 2.0 X 10" em~?%. Since the changes
in the characteristics of bulk devices that are
caused during stressing are most noticeable at
the maximum gate current, /,”, we chose a stress
condition for both devices such that I, was
maximum at Vy4s = —6.5 V. The polarity of I
shows that it is an electron current. This
indicates that the electrons which are generated
by impact ionization near the drain edge are
injected into the gate oxide, and that some of
them are trapped in the gate oxide.

Figure 10 shows how 4 gn/gmo changes with
the stress time at 295 K and 90 K. For
both devices, 4g/gmo 1s positive and is larger at
90 K than at 295 K. At both temperatures, the
A4 8m/gmo values for SOI devices are larger than
those for bulk devices. The 4gm/gmo values are
positive because of the reduction in L¢g due to
fixed negative charges that are produced in the

151

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

10° ‘

pMOSFET Tox = 10nm Vg = —65V Channel doping
W =20pgm Vi (l: max) 2x107em™
Lest = 1.Opum

r—-o-o—O—oQ—-."".'..—' e

S a-u-1 a—u-n-2-N0-Ea—
%
Sy
!-.E
=
—0
11:/12"0 DD
T8 K} SIMOX T = 100 nm
—m— . 0K, o
—a— 295K} B

1“—1 1 1‘ 1 .
1 10 10? 10° 10

Stress time (s)

Fig. 10— Change in transconductance versus stress

time.
1
PMOSFET Tox= 10nm Vi = —65V Channel doping
W = 20pm Vi (le: max) 2%107cm™
Ler = 1.5p4m Tso = 100 nm
107
E:;
= 295K SIMOX
S

— -0 %
—0-0-0-00*% " '\ siniox

1 1 1
1 10 10 10° 10*
Stress time (s)

Fig. 11 — Change in threshold voltage versus stress
time.

gate oxide by the electron injection performed
during stressing. Analysis of the 4 g, /gmo of SOI
devices that were stressed for 1000s indicated
that L was reduced by between 0.10 and 0.15
(Lm.

Figure 11 shows how V, changes with the
stress time. Although 4V, can be detected only
for SOI devices, this cannot be explained by the
short channel effects caused by the reduction in
Lt

The hot carrier effects in SOI devices are
associated with the electrons injected during
stressing and become trapped in the buried
oxide. The effect of charges in the buried oxide

162

W/L et = 20 pm/2.0 pm, Tox = 10nm, Vis= —75V
oy ProNy SIMOX pMOSFET
T8 o ~
\v— \\\\
10k R 0

Charge coupling effect

AL es = 0.116 pm

Agm/8mo (%)

0.084 #m

0.105 zm ’ 0.078 m
Reduction of channel length

0 1 1
—0.5 ~J =15 =2 =25 =3 =35

Vs (V)

Fig. 12— Effects of trapped electrons in gate and
buried oxide on transconductance.

on the front gate characteristics is equivalent to
the effect of substrate bias in bulk devices.
Hereafter, this equivalent substrate bias effect
will be called the charge coupling effect'.
Trapped electrons cause a positive 4V in SOI
devices. The trapped electrons in the buried
oxide Increase the g of SOI devices because
they reduce Ey'". Therefore, trapped electrons in
both the gate oxide and the buried oxide affect
A8m/gmo. Figure 12 shows how the effects of the
front gate and the buried oxide are separated by
the method described in Ref. 11. The changes in
SOl device characteristics occur not only
because of the reduction of Ly due to trapped
electrons in the front gate, but also because of
the charge coupling effect due to the electrons
that are trapped in the buried oxide during
stressing.

4. Conclusion

The characteristics and hot carrier effects of
ultra-thin-film SOI/pMOSFET’s at low tempera-
tures were studied and then compared with those
of bulk pMOSFET’s.

At low temperatures, the suppression of
short channel effects is greater in SOI devices
than in bulk devices having the same channel
doping. This occurs because, at low tempera-
tures, Legr in SOl devices increases more rapidly
than in bulk devices and because the Xj of SOI
devices i1s much smaller than that of bulk
devices. The low-temperature carrier mobility of
SOI devices increases more rapidly than that of

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

K. Sukegawa, and S. Kawamura et al.: Performance and Hot Carrier Effects of Ultra-Thin-Film SOI/pMOSFET’s at 90-300 K

bulk devices. The above 1is supported by
calculations which show that the total charge
required to form an inversion layer is less for
SOI devices than for bulk devices. The deviation
from the theoretical value of the subthreshold
swing of SOI devices at low temperatures may
be due to the effect of the back gate interface,
which is caused by changes in the Fermi level of
Si with temperature.

The changes in the characteristics of SOI
devices which are due to hot carrier effects are
larger than in bulk devices. Also, the changes in
the characteristics of SOI devices are larger at
lower temperatures. Stressing in SOI devices
traps electrons in the gate oxide and buried
oxide. The trapped electrons in the buried oxide
cause not only a positive shift in Vy, but also
increase gm due to the charge coupling effect.
From the viewpoint of reliability, the supply
voltage of SOI devices must be reduced when
they are operated at low temperatures. Provided
the supply voltage can be reduced, ultra-thin-film
SOI devices are promising candidates for
deep-submicron MOSFET’s operating at low
temperatures.

References

1) Colinge, J. P.: Some properties of Thin-Film
SOl MOSFET’s [EEE Circuits and Devices
Magazine, 3, pp. 16-20 (1987).

2) Yoshimi, M., Hazama, H., Takahashi. S., Wada,
T., Kato, K., and Tango, H.: Two- Dimensional
Simulation and Measurement of High-Perfor-
mance MOSFET’s Made on a Very Thin SOI
Film. IEEE Trans. Electron Deuvices, ED-36, pp.
493-503 (1989).

Kazuo Sukegawa received the B.S.,
and M.S. degrees in electrical engi-
neering from Hokkaido University,
Sapporo, Japan, in 1985 and 1987,
respectively. In 1987, he joined Fujitsu
Ltd., Kawasaki, Japan, where he has
been engaged in SOl device and
process technology development.

He is a member of the Japan Society
of Applied Physics.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

3) Kamgar, A., Hillenius, S. J., Cong, H. L, Field,
R. L, Lindenberger, W. S, Celler, G. K.
Trimble, L. E., and Sheng, T. T.. Ultra-Fast
(0.5- £m) CMOS Circuits in Fully Depleted SOI
Films. IEEE Trans. Electron Devices, ED-39, pp.
640-647 (1992).

4) Laux, S. E.: Accuracy of an Effective Channel
Length/External Resistance Extraction Algo-
rithm for MOSFET’s. [EEE Trans. Electron
Devices, ED-31, pp. 1245-1251 (1984).

5) Kamgar, A.. Miniaturization of Si MOSFET’s
at 77K. [EEE Trans. Electron Devices, ED-29, pp.
1226-1228 (1982).

6) Yau, L. D. A Simple Theory to Predict the
threshold Voltage of Short-Channel IGFET’s.
Solid-State Electronics, 17, pp. 1059-1063 (1974).

7) Watt, J. T., and Plummer, J. D.: Universal
Mobility-Field Curves for Electrons and Holes
in MOS Inversion Layers, VLSI Tech. Dig., pp.
81-82 (1987).

8) Rideout, V. I. Gaensslen, F. H., and LeBlanc, A.:
Device Design Consideration for Ion Implanted
n-Channel MOSFET’s. IBM J. Res. Develop., 19,
pp. 50-59 (1975).

9) Ng, K. K., and Taylor, G. W.. Effects of
Hot-Carrier Trapping in n- and p-Channel
MOSFET’s [EEE Trans. Electron Devices,
ED-30, pp. 871-876 (1983).

10) Lim, H. K., and Fossum, J. G.: Threshold
Voltage of Thin-Film Silicon-on-Insulator (SOI)
MOSFET’s. [EEE Trans. Electron Devices,
ED-31, pp. 1244-1251 (1984).

11) Sukegawa, K., and Kawamura. S.. Effects of
Hot Electron Trapping in Ultra-Thin-Film
SOI/SIMOX pMOSFET’s [EICE Trans.
Electron., E75-C, pp. 1484-1490 (1992).

Seiichiro Kawamura received the
B.S. degree in Applied Physics from
the University of Tokyo in 1974, and
the M.S. degree in Solid State Physics
Z from Princeton University, Princeton,
4 % NJ, USA, in 1978. He joined the IC
Development Division, Fujitsu Ltd. in
1978, where he has been engaged in
research and development of VLSI
processing and device technologies.
Since 1989, he has served on the

-
technical program committees of the Symposium on VLSI
Technology.

163

UDC 621.3.049.771.14:621.923

Influence of Silicon Surface Roughness
on Time-Dependent Dielectric

Breakdown

® Toshiro Nakanishi @ Sadahiro Kishii

® Akira Ohsawa

(Manuscript received December 7, 1992)

The effects of mechanochemical polishing on the surface flattening and the
reliability of MOS diodes have been studied. Surface microroughness was observed
with TOPO-2D, XTEM, STM, and AFM. The Fowler-Nordheim tunneling current,
time-dependent dielectric breakdown (TDDB), surface state density, and flat band
voltage under stress after fabricating MOS diodes on the polished wafers were

measured.

It is confirmed that polishing leads to excellent TDDB characteristics, because the
polishing reduces the surface roughness atomically, which decreases the tunneling
current through the oxide. Polishing also lowers the surface state density and
decreases a flat band voltage shift under constant current stress.

1. Introduction

State-of-the-art techniques in the study of
surface morphology —e.g. high-resolution trans-
mission (HRTEM)" ¢,
reflection electron microscopy (REM)” ", spot

electron microscope

profile analysis of low-energy electron diffrac-
tion (SPA-LEED)” ¥, scanning tunneling micros-
copy (STM)®, and atomic force microscopy
(AFM)"” —have shed new light on what happens
when tunneling occurs in the thin oxide layers in
VLSI circuits.

Roughness at the Si-Si0, interface was
observed with HRTEM" . The peaks of the
interface roughness for 4.1 nm oxides grown at
900 °C were about 1.4 nm. These degrade the
dielectric breakdown strength. The interface
roughness measured by SPA-LEED affects the
fixed oxide charge density, interface state
density, and Hall mobility”. Ordinary SC-1
solution (NH,0H : H,0s : H; O = 1 : 1 3 5)
causes microroughness to degrade dielectric
breakdown characteristics'”.

Using STM, AFM, XTEM, and TOPO-2D
(optical interferometry), we observed the sur-
faces of silicon wafers after different polishing

154

treatments and investigated the effects of the
roughness on the reliability of MOS diodes.

2. Wafer polishing

Figure 1 shows the mechanochemical poli-
shing configuration. Mechanochemical polishing
flattens silicon wafers without causing surface
damage. Polishing uses a polyurethane pad and
an alkaline solution containing a silica powder
with particles 0.024m in diameter. The fine
particles of colloidal silica mechanically remove

Polishing solution

Wafer Plate

Turntable

Polishing pad

Adhesion Polishing

Fig. 1 — Wafer polishing system. The wafers are
attached to the rotating plate and the
polishing pads to the rotating turntable.

FUJITSU Sci. Tech. J., 29, 2, pp. 154-160 (June 1993)

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

Table 1. The dependence of the surface roughness
and the sillicon removal on the second
polishing time

3 e -

econd poll'shmg time 0 5 60
(min)

Silicon removal (nm) 0 31 483

Roughness (nm) 1.59 1.05 0.26

protruding atoms as the polishing plate rotates.
The alkaline solution chemically etches the
surface layer damaged by mechanical treatment.
After polishing, the wafers’ surfaces become
mirror-like and flat on an atomic scale across
the wafer surface.

In this experiment, we wused 4-inch
boron-doped 10-ohm-cm (100) CZ-Si wafers. The
polishing solution was Glanzox 3 000 diluted 10
times, and the polishing pad was a Ciegal
7355-000. The pressure was 90 g/em?. After
prepolishing on both sides, wafers were polished
for 0, 5, and 60 minutes. Silicon removal is
proportional to the polishing time (see Table 1).

3. Microroughness evaluation
3.1 Optical profilometer

The TOPO-2D optical profilometer can
determine the roughness over 0.65 ym in a
lateral direction using an interferometer. The
incident light (A = 650 nm) is split in two, and
one beam is directed to the sample surface. The
light intensity is changed by the surface
roughness and the two beams are then
recombined. The height of the protrusions is
determined from the resulting light intensity.
The detection limit was 0.12 nm and the
repeatability 0.03 nm. The lateral resolution was
0.65 gm. To compare the roughness of each
sample, the root mean square roughness (Rymns)
was calculated by the following equation,

ers _ L}jf(f{h(x)}zdx’ (1)

where L is the measured distance and h(x) is the
height at x (see Fig. 2).

The Rmns was 1.59 nm after the first pol-
ishing, but the surface became much flatter as
the second polishing time increased (Table 1).

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

Incident beam Reflected beam

Sample surface
h(x)

Virtual plane

Fig. 2— Measurement of the surface roughness
with an optical interferometer.

e Sl L
(AT 2 (o

c) Rrms= 0.26 nm

e om—
5nm

Fig. 3— XTEM images of the interface roughness.

The mean distance between protrusions was 100
(L1,

3.2 XTEM

High-resolution XTEM gives the position of
each atom from its lattice image (see Fig. 3).
The samples were thinned by argon ion milling
for 30 to 35 hours. The acceleration voltage was
200 keV and the magnifying power 4 x 10%. We
observed undulations 2 to 3 atoms high at the

155

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

a) Rr[ns = 1.59 nm

b) Rrms= 1.05 nm

Fig. 4—STM images of the silicon surface.
Scan area was 10 nm X 10 nm.

Si-Si0, interface of the 1.59-nm R ms sample,
but the interfaces of the 1.05- and 0.26-nm
samples were comparatively flat.

The XTEM samples were very thin, but
they were still a few nm thick in the direction of
the incident beam. The images are affected by
the total thickness, so it is difficult to observe

the true surface of the sample.

3.3 STM

STM produces a two dimensional profile.
The sample must be conductive, because STM
monitors the tunneling current. The STM images
were taken in air immediately after surface
oxides were removed with a 5 percent HF
solution (see Fig. 4). While the surface of the
1.05nm sample was atomically flat and no

156

Data take
Buffer 4(

b) Rrms= 1.05 nm

Data take
Buffer 3(14

Fig. 5— AFM images of the silicon surface.
Scan area was 500 nm 500 nm.

protrusion was detectable, the surface of the
1.59-nm sample showed protruding atoms. The

protrusions of over 1 nm high were seen. The

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

Table 2. Comparison of methods

Method Interval (nm) Height (nm)
TOPO-2D ~ 1X10° 1.59 (Rrms)
TEM ~ 25 ~ 0.8
STM ~ 2 0.3-0.7

height of the protrusions and distance varied
between them.

STM shows that mechanochemical polishing
can, with time, flatten the wafer surface.

3.4 AFM

AFM uses the atomic force between the tip
of the probe and the sample surface, therefore,
the sample need not be conductive. The AFM
observation was done immediately after oxide
removal to avoid surface contamination. The
scan area of AFM profiles (see Fig. 5) 1s 2.5 X
10° nm?, which is 2 500 times as large as that of
the STM profiles (see Fig. 4).

The maximum heights of the protrusions on
the 1.59-, 1.05-, and 0.26-nm samples, which are
shown in Figs. 5a), b), and ¢) respectively, were
about 2-, 1-, and 1-nm. AFM also shows that
polishing flattens the wafer surface of samples.

3.5 Comparison of methods

The estimated intervals between protrusions
and heights of the 1.59-nm R.,s sample obtained
using the above methods are listed in Table 2.
Although the difference in protrusion heights is
small, the distance between protrusions obtained
by the various methods are quite different. To
observe the roughness which affects the increase
in electrical field in Si0,, it is necessary to use
the method which has the resolution less than
the Si0, thickness.

TOPO-2D catches the roughness over an
interval of approximately 100 ygm. Even high-
resolution XTEM merely catches protrusions
about 25 nm apart which is more than the
thickness of the oxide layer. XTEM showed that
the oxide apparently formed uniformly along
such a long-term protrusion. In this experiment,
only STM reveals the effect of the roughness on
the local thinning of the oxide layer on a nm

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

9MV/cm
481

461

Current density (zA/cm?)

| |

1
0 0.5 1.0 1.5 2.0
Rims (nm)

Fig. 6 — Fowler-Nordheim current for three surface
roughnesses.

order.

4. Electrical properties

To determine the effects of polishing on the
reliability of the MOS diodes, diode arrays were
fabricated on the wafers. After acid cleaning,
oxide layers 11 nm thick were thermally grown
at 900 °C. Poly Si gates were deposited after gate
oxidation. The samples were 5 percent H,/
N,-annealed at 450 °C, and gold contacts were
evaporated onto the back of the wafers.

4.1 Fowler-Nordheim current

The Fowler-Nordheim (FN) current densi-
ties obtained with an electric field stress of 9
MV/em were measured (see Fig. 6). The FN
current through the oxides gradually decreased
as the surface was flattened.

The FN current s through a flat interface
is described as'”:

Jiat = AE? exp (—B/E), e 2)

where A, E, and S are the proportional factor,
the electrical field and the exponential factor
respectively. Assuming that the surface rough-
ness has a sinusoidal wave form, the FN current
Jrough through a rough interface is expressed by
the following equation'?,

er()ugh = CJl'lalv """" (3)

157

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

C=1+1/12(@* + 4a + 6)e?, o (4)

where @ = B/E, € = 4/d,. 4 is the amplitude
of the sinusoidal wave form and d, is the
average thickness of the oxide. The increasing
factor of the surface roughness C can be
estimated using Equation (4). Substituting the
roughness height 2 4shown in Table 2 into Equa-
tion (4) when E = 9 MV/cm, 8= 3.2 X 10* em/
MV, d, = 11 nm, we calculated that C = 1.16
for 2 4 = 0.8 nm from XTEM image, C = 1.12
for 2 4 = 0.7 nm from the maximum value of the
STM image, and C = 1.02 for 2 4 = 0.3 nm from
the minimum value of the STM image.

The measured FN current shows that Jrough
= 1.09 Jpja¢ in the rough (Ryms = 1.59 nm) and the
smooth (Rmms = 0.26 nm) wafers (see Fig. 6). An
increasing factor of 1.09 reflects the morphology
shown by the STM images. The oxide layer
could not form evenly on the 1.59-nm sample
observed in the STM image. The oxide might be
thinned at the protrusions to increase the FN
current. Mechanochemical polishing decreases
the FN current by the atomically flattening
effect.

4.2 Time-dependent dielectric breakdown

(TDDB) characteristics

The TDDB characteristics for three samples
with different surface roughnesses were mea-
sured under a constant field of 9 MV/cm (see
Fig. 7). We found that the degradation starts
earlier, and the cumulative failure is higher as
the surface gets rougher. The time taken to
reach a cumulative failure rate of 10 percent for
the 0.26-nm sample was 1500 times as long as
that for the 1.59-nm sample. The relationship
between the TDDB lifetime 714 and the applied
field E is expressed by the following equation for
the MOS diodes with uniform interfaces'':

Td = Bexp {(B+ H)/E}, e)

where B and H are the proportional factor and
the exponential factors in impact 1onization
coefficient respectively'”. Although Equation (5)
cannot express the difference between Tnd for
samples with different roughnesses quantita-
tively, the increase of E due to the local thinning

158

70f R s (nm) E=9MV/
5= 94 cm
60 —f— : 159
°\5 50 —hA— 105 ./l
v 40F —0— : (.26 ./I’X/
=]
8 30F ././Aff
2 o A¢.
5 20 =" e
=i
E i
O N / '
10} " A /
<7 A—A—a—A
u P o—0
A/ ././
5 A/l 1 1 1 I | L
107 1072 107! 1 10 10? 10* 10¢ 10°
Time (s)

Fig. 7— Time-dependent dielectric breakdown
characteristics for three surface rough-
nesses.

10

Rms (nm)
w— 0 1.59
- 1.05

- .26

(421
T

Surface state density (x 10"eV~lem™)

-=7. 10"

T Il | L

0 0.5 1.0
Surface potential (eV)

Fig. 8 — Surface state density for three surface
roughnesses when constant current is
injected.

reduces 7Thd significantly.

We deduced the TDDB degradation mecha-
nism from the roughness observations and the
FN characteristics. Protrusions shown in the
STM image (see Fig. 4) cause a local thinning of
the oxide, which increases the FN current (see
Fig. 6). When a high field is applied at this point,
injected tunneling electrons are accelerated and
become hot electrons. These hot electrons form
hole traps in the oxide by impact ionization and,
In time, oxide breakdown may develop at local
thinning spots.

Mechanochemical polishing significantly im-
proves the reliability of MOS diodes.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

TS

\~\ —l— : 159
- 02 T \~\. e - 2 105
I AN —e— : (.26

E \\x

2—0.4f \q,‘
= 2
Tt NS

T
. e

—0.6

1 1 1
10 10" 10 10 10%
Nips (cm™)

—0.8L—f

0

Fig. 9—Flat band voltage shift under constant
current stress.

4.3 Surface state density

The surface state densities of the surface
roughnesses of the three samples were almost
the same when the injected carrier density (Vi)
was 1 X 10" em ? (see Fig. 8). Small differences
appeared, however, when the Nj,; was 1 x 10"
cm % surface state density increases with surface
roughness. When Nj,; was 1 X 10" cm?, the
maximum surface state density at mid-gap was
obtained by the roughest wafer. We think this
increase on a rough wafer is caused by an
aberration from the (100) crystal orientation at
the rough interface. A (111) surface has a surface
state density twice as high as a (100) surface
under the same carrier injection'’. Rough
interfaces allow more dangling bonds to form at
the Si-Si0, interface than smooth interfaces and
this increases the surface state density.

4.4 Flat band voltage shift

Figure 9 shows the flat-band voltage shift
(4V ;) caused by constant current stress. Large
roughness increases 4V, for injected carrier

!, The accumulation of

densities over 10" cm-
positive charges increases in the oxide layer with
the large rough interface. Polishing 1is also

effective on 4V, decreasing.

5. Conclusion
We studied the effects of wafer polishing on
the reliability of MOS diodes. We found that

flattening the wafer surface by polishing

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

decreases the Fowler-Nordheim current, and
increases the TDDB life time under stress. If
large protrusions are left on the surface, they
form local thinning spots after oxidation. When
a high field is applied at this point, injected
tunneling electrons are accelerated and become
hot electrons. These hot electrons form hole
traps in the oxides by impact ionization and, in
time, oxide breakdown may develop at local
thinning spots.

We also found that polishing lowers the
surface state density and decrease a flat band
voltage shift under constant current stress. The
increase of the surface state density on a rough
surface is caused by aberrations in the (100)
crystal orientation.

References

1) Carim, A. H. and Bhattacharyya, A.. Si/SiO,
Interface, Roughness: Structural Observations
and Electrical Consequences. Appl. Phys. Lett.,
46, pp. 872-874 (1985).

2) Bhattacharyya, A., Vorst, C., and Carim, A. H.:
Improved Electrical Breakdown Characteristics
of Thin SiO, Films Processed by a Two-step
Oxidation Treatment. 3rd VLSI Science and
Technology, pp. 374-383 (1985).

3) Goodnick, S. M., Gann, R. G., Sites, J. R., Ferry,
D. K., Wilmsen, C. W., Fathy, D., and Krivanek,
O. L. Surface Roughness Scattering at the
Si-Si0, Interface. J Vacuum Sci. Technol. B1,
pp. 803-808 (1983).

4) Goodnick, S. M., Kerry, D. K., Wilmsen, C. W.,
Liliental, Z., Fathy, D., and Krivanek, O. L.
Surface Roughness at the Si (100)-SiO,
Interface. Phys. Rev., B32, pp. 8171-8186 (1985).

5) Honda, K., Ohsawa, A., and Toyokura, N.
Silicon Surface Roughness-Structural Observa-
tion by Reflection Electron Microscopy. Appl.
Phys. Lett., 48, pp. 779-781 (1986).

6) Nakanishi, T. Honda, K. Kishii, S., and
Ohsawa, A.. Degradation of Time-dependent
Dielectric Breakdown Characteristics of MOS
Capacitors by Silicon Surface Roughness. Proc.
1989 Int. Symp. VLSI Technol. Sys. Appl., pp.
79-84.

7) Hahn, P. O. and Henzler, M.. The Si-SiO,
Interface: Correlation of Atomic Structure and

159

T. Nakanishi et al.: Influence of Silicon Surface Roughness on Time-Dependent Dielectric Breakdown

8)

9)

10)

11)

160

‘.

Electrical Properties. J Vac. Sci. Technol., A2,
pp. 574-583 (1984).

Hahn, P. O., Grundner, M., Schnegg, A., and
Jacob, H.: Correlation of Surface Morpho-
logy and Chemical State of Si Surfaces to
Electrical Properties. Appl. Surf. Sci., 39, pp.
436-451 (1989).

Pietsch, G. J., Henzler, M., and Hahn, P. O..
Continuous Roughness Characterization from
Atomic to Micron Distances: Angle-resolved
Electron and Photon Scattering. Appl. Surf. Sci.,
39, pp. 457-472 (1989).

Ohmi, T., Miyashita, M., Itano, M., Imaoka, T.,
and Kawanabe, 1.: Dependence of Thin-oxide
Films Quality on Surface Microroughness. IEEE
Trans. Electron Devices, ED-39, pp. 537-545
(1992).

Miura, Y., Yamabe, K., Komiya, Y., and Tarui,

Toshiro Nakanishi received the B.E.
and M.E. degrees in electrical engi-
neering from Kobe University, Kobe,
Japan, in 1981 and 1983.

He joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1983 and has been en-
gaged in research of silicon dioxide
and silicon material.

He is a member of the Institute of
Electronics, Information and communi-
cation Engineers of Japan, and the

‘

Japan Society of Applied Physics.

Sadahiro Kishii received the B.E.
degree in nuclear energy engineering
from Osaka University, Osaka, Japan,
in 1984.

He joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1984 and has been en-
gaged in research and development of
semi-conductor polishing.

He is a member of the Japan Society
for Precision Engineering and the
Japan Society of Applied Physics.

12)

13)

14)

Y.. The Effect of Hot Electron Injection on
Interface Charge Density at the Silicon to
Silicon Dioxide Interface. J Electrochem., Soc.
127, pp. 191-194 (1980).

M. and Snow, E. H. Fowler-
Nordheim Tunneling into Thermally Grown
S510,.J. Appl. Phys., 40, pp. 278-283 (1969).
Honda, K. and Nakanishi, T.: Influence of Ni
impurities at the Si-Si0O, Interface on the MOS
Appl. Phys. Lett. (to be

Lenzlinger,

Characteristics.
published).

Chen, I. C. and Hu, C.: Accelerated Testing of
Breakdown of SiO,. I[EEE

Time-dependent

Electr. Dev. Lett., EDL-8, pp. 140-142 (1987).
Chen, I. C., Holland, S. E., and Hu, C.: Electrical
Breakdown in Thin Gate and Tunneling Oxides.
IEEE Trans. Electron Devices, ED-32, pp. 413-422
(1985).

Akira Ohsawa received the B. S. de-
gree in material science from the U-
niversity of Electro-Communications,
Tokyo, Japan, in 1970. He received
M.A. and Dr. degrees in Physics from
Tohoku University, Sendai, Japan, in
1975. He joined Fujitsu Laboratories
Ltd., Kawasaki, in 1976. and engaged
in research and development of silicon
crystal technology.

He is a member of the Japan Society

of Applied Physics, and the Electrochmical Society.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

UDC 621.376.24:621.396.946

QPSK Burst Demodulator for Satellite
Communications Systems

® Makoto Uchishima @ Yoshiharu Tozawa @ Toshio Kawasaki

(Manuscript received November 30, 1992)

This paper describes a digital signal processing quadrature phase shift keying
(QPSK) burst demodulator for satellite communications that uses a new technique
which sequentially changes the receive filter. By changing the filter bandwidth
according to the signal preamble pattern, the proposed technique improves the
recovered carrier S/N and the recovered symbol clock S/N. The demodulator’s low
unique word miss probability (Pmiss) and its low cycle-skip rate for the recovered
carrier and symbol clocks at very low E,/N, (3 dB or less) will ease the design of
very small aperture terminal (VSAT) systems. A governmental communications
application for the system is briefly discussed.

1. Introduction

Communication satellites such as the Japan
Communication Satellites (JCSATs) and the
Space Communication Satellites (SCSs)” have
been launched in Japan recently. Their
availability stimulated the development of very
small aperture terminal (VSAT) communication
systems.

These systems usually consist of many
VSATs and a central hub station” *. Although
the VSAT’s relatively small antenna of 0.8 to 1.2
meters, is a great cost advantage, it also makes
the signal quality very low (E,/N, = C/2N = 3
dB or less). Therefore, high coding gain forward
error correction (FEC) is indispensable to
improve the bit error rate (BER).

A high coding gain forward error corrector,
such as a Viterbi decoder having a constraint
length (k) of 7" ¥, requires a burst demodulator
that operates at very low bit-energy to noise
ratios (Ey/N,), that has a low unique word miss
probability (Pmiss), and has a low cycle-skip rate
(P.s)” ®. Since both carrier and clock synchro-
nizing performance must be improved to meet
these requirements, practical designs convention-
ally adopt the following three techniques:

1) loop-bandwidth-variable carrier recovery

FUJITSU Sci. Tech. J., 29, 2, pp. 161-168 (June 1993)

(CR) and symbol timing recovery (STR)

circuits'®'?,

2) binary phase-shift keying (BPSK) demodula-
tion instead of QPSK during the preamble to
increase the E,/N,'"" ', and

3) a kick-off circuit for STR to prevent
hang-up'.

Our digital signal processing (DSP) QPSK de-

modulator also uses these techniques. However,

to take advantage of recent FEC advances such
as a k = 9 Viterbi decoder”, a concatenated

Reed-Solomon/Viterbi (¢ = 7) decoder' ™, or a

sequential decoder'® ', additional techniques

will be required to improve Pniss and Pgs.

To meet these strict requirements, we
propose a technique to change the receive filter
bandwidth according to the preamble pat-
tern'® ', Theoretically, this technique should
result in a recovered carrier S/N improvement of
1 dB and a recovered symbol clock S/N
improvement of at least 3 dB. Measurement
verified that the DSP demodulator improves
Phiss by a factor 100 over that of a conventional

DSP demodulator.

2. Major requirements
Of the major performance requirements fora

161

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

Table 1. Performance requirements

Modulation system

Symbol rate

Carrier frequency error
Carrier cycle-skip rate

Clock cycle-skip rate

Unique word miss probability

QPSK

480k symbols/s

+ 4 kHz

10? times/symbol at 0 dB Ey /N,
10~* times/symbol at 0 dB Ey /N,
1077 times/symbol at 3 dB E}, /N,

burst demodulator (see Table 1), we must first
consider the cycle-skip rate. This should be on
the order of 10~° at an E,/N, of 0 dB™ *". Thus,
if the VSAT system uses a Viterbi decoder (¢ =
9, R = 1/2), the BER augmentation due to cycle
skip should be less than 0.1 % at 0 dB. We must
next consider Pniss and assume that its target
value is 10°7 at an E,/N, of 3 dB for a unique
word length of 32 symbols and a tolerance of 14
bits. This means only one lost burst (2 kbits) per
86 hours at a 64 kb/s data rate. This Piss value
eases VSAT system design.

3. Conventional burst demodulation methods

This chapter briefly describes conventional
carrier and clock synchronization methods. The
burst data format is shown in Fig. 1 for ref-
erence.
1) CR and STR noise-bandwidth variation

During the data and unique word portion of
the data burst, the CR noise-bandwidth upper
bound (Bu.) is determined by the carrier
cycle-skip rate. However, since a wide CR noise
bandwidth (Bl..) is needed for initial carrier
acquisition, we vary Bl several times during the
CR portion and the last Bl.. must be below Bu,,
before the data portion begins. This is easily
done using ROM-stored parameters to determine
Bl., and is easily implemented in theCR and
STR blocks.
2) BPSK demodulation

The preamble consists of CR and STR
portions. In the CR portion, the I and Q-channel
signals are all 1s. During the STR portion, both
channels consist of alternate 1s and 0s. There-
fore, this is BPSK modulation, rather than
QPSK. We use BPSK demodulation to increase
E,/N,. Before the unique word is received,
demodulation method must be changed from
BPSK to QPSK by selecting the QPSK CR phase

162

Preamble Data
200 symbols 60 i 92 1000-3 000

Data CR STR Uw Data
Receive) . o 1

filter Type 1 Type 2 T'ype 3

Fig. 1—Burst data format.

detector.
3) Kick-off

The STR block
phenomenon that causes STR hesitation before a

exhibits a hang-up

phase lock is obtained and which is dependent on
the initial phase condition between the receive
and STR clocks. As a result, the decrease in
Priss 1s small even if the Ey/N, exceeds the
critical level. Kick-off is often used to prevent
hang-up, which can be detected by integrating
the receive filter output signal at the STR timing
over a 10-symbol period during the STR portion
of the burst format. If hang-up is detected, the
symbol clock is inverted to cancel it.

4. New burst demodulator
4.1 Receive filter changing technique

To increase the signal-to-noise ratios of
the CR loop (SNl.) and STR loop (SNl
we propose a new technique to sequentially
change the bandwidth of receive filter according
to the preamble pattern. Three types of filters
are used (see Fig. 2). Type 1 is a low-pass filter
(Bw << Br/2) used during the CR portion. Type 2
is a bandpass filter (Bw << Br/2) used during the
STR portion, and type 3 is a root-rolloff filter
(Bw = Br/2) as is commonly used in a demodula-
tor. Because the preamble consists of a station-
ary pattern, noise power is reduced without loss
of signal power by using the receive filter
appropriate for the signal preamble pattern.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Uchishima et al.:

=
B

Buw

Attenuation (dB)

®PSK Burst Demodulator for Satellite Communications Systems

Br/2

a) Typel b)

Fig. 2—Receive filters.

Filter modification is easy to implement.
Since a DSP demodulator usually uses a finite
impulse response (FIR) receive filter, it is called
a digital transversal filter (DTF). The DTF’s
characteristics are changed by changing its
coefficients, and we have only to prepare three
sets of coefficients, one for each receive filter.

1) Low-pass filter (Bw <<Br/2) for the CR

(type 1 filter)

Before proceeding, we must clarify the
relationship between the signal-to-noise ratio of
the receive filter output (SNR:) and the
signal-to-noise ratio of the loop bandwidth (SN).
For carrier recovery, the signal-to-noise ratio of
the CR loop (SNl.,) is given by

SNl = SNpder * B2, e (1)
Blor

where Br is the symbol rate, Bw the receive filter
bandwidth, and SNpd.- the signal-to-noise ratio
of the CR phase detector output. This relation-
ship is based on the work of F. M. Gardner®’.
SNpd.: depends on both SNR: and on the order
of the phase detector. During the CR portion, the
CR has second-order nonlinearity because BPSK
demodulation is used, and SNpd.r 1s given by

__SNRi______ SNRi
SNpder= pp (SNRi) P @
5-SNRi

where Rb(SNR:) is the loss caused by nonline-
arity®".

We have already noted that phase detector
nonlinearity degrades SNl.- {see Equations (1)
and (2)}. If there is no nonlinearity {Rb(SNRi) =
1}, the type 1 filter cannot improve SN, and
SNl 1s given by

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

Br/2
Type 2 c) Type3
1.8
1.6 —]—: Bw= Br/8
—@— : Buw= B/16

——: Buw= Br/32

1
0 1 2 3 4
SNKRi (dB)

Fig. 3—Rate of increase of SNlcr.

SNRi-Bw _ SNR:i'-Br _ Ksn
Bl 2Bl Bl

SNler=) (3)

SNR’ = 2+ Ey/Ny, e @)

where SNRi’ is SNRi while using the type 3 filter
(Bw = Br/2) with Ksn constant. Bw does not
contribute to SNlg;.

In practice, some second-order nonlinearity
exists {see Equation (2)}, and SNl is given by

Ksn/Bly Ksn/Blg
Rb(SNRi) Rb(Ksn/Bw)"

SNlcr =

Bw contributes to SNle.. Therefore the rate of
increase of SNy, Ger, 1s given by

163

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

4.8
—Wl— . Bw= By/8
—— . Bw= Br/16
|
—@—: Buw= Br/32
44 -\
)
=
40k
3.6
0 1 2 3 4
SNRi (dB)
Fig. 4—Rate of increase of SNlr.
G Rb(SNRi’) A1+ (2-SNRi’)-'}
{4

= Rb(SNRi) {1+ (SNRi-Br/Bu)- T}

Figure 3 shows Gq.
2) Passband filter (Bw << Br/2) for STR and
kick-off circuits (type 2 filter)

STR has almost the same second-order
nonlinearity as CR. Moreover, the attenuation of
the type 3 filter at DC is 8 dB less than at Br/2
by virtue of the type 3 root-rolloff (filter.
Therefore, SNl is given by

SNlsiy = 2+SNpdstr* Bw/Blg

 2-Ksn/Bls: 2-Ksn/Bla:
“"Rb(SNRi)) _ Rb@-Ksn/Bw): (D

The rate of increase of SN, Gsir, is given by

2-Rb(SNRi’) 2-{1+(2-SNRi’)"'}
Rb(SNRi) {1+ (SNRi’-Br/Bw)" '}’

Gstr =

SNl increases by more than 3 dB. Figure 4
shows Giir.

4.2 Hardware configuration

The DSP demodulator consists of DTF,
STR, CR, and kick-off circuits (see Fig. 5). The
DTF, CR and STR circuits are implemented in
highly integrated chips.

164

o 25 L 4/ DTF |
I ch
IF
oA H CR
Q ch
—~

> ~ | A/D |—={ DTF -~

n/2 @ STR
Kick-off

Fig. 5— DSP demodulator.

[nput T T, S Ta Ta \l
ROM table

T 1 R !
Adder
lOutput

Fig. 6 — Digital transversal filter.

1) Digital transversal filter (DTF)

The DTF 1s a FIR filter consisting of an IC
and two ROMs (see Fig. 6). The input signal rate
1s 4 samples/symbol and the output signal rate is
2 samples/symbol. The coefficients are symme-
trical, and 12 out of 25 have the same value
because the phase/frequency characteristic is
linear. The ROMs hold three addressable sets of
filter coefficients.

2) Symbol timing recovery (STR)

The frequency stability of the clock source
oscillator must be very high for satellite
communications. Since the clock frequency error
i1s negligible, the STR need only recover the
clock phase. The STR 1is a digital PLL
controlling the dividing ratio N of a digital VCO
(see Fig. 7). The STR consists of an IC and an
external clock running at 64 times the symbol
rate. The loop filter generates a control signal
for the VCO when the accumulated clock phase
error exceeds the =K, threshold. The threshold
is varied during the STR portion and, for

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

Input I ;
o B oop filter
—_— Phase detector (threshold + Ky)
s e e e &
Output : I
+ N ~ |
X-OR | }
: N=64+16 f=Brx64
R - RuE S A N J
") Digital VCO
Kick-off signal
Fig. 7—Symbol timing recovery.
T
—Q
Input /
Complex BPSK phase
multiplier detector
Input @ I—.
Selector
| QPSK phase
detector
Numerically
controlled Lo_op)
Sl filter
oscillator
Fig. 8 — Carrier recovery.
Input
—
f(//
Output

Fig. 9—CR loop filter.

initial acquisition, the VCO output is exclu-
sive-ORed with the kick-off signal and inverted.
3) Carrier recovery (CR)

The carrier recovery IC uses Costas PLL
(see Fig. 8). Its loop filter is shown in Fig. 9. The
noise bandwidth is a function of x and vy, both of
which are varied during the CR portion of the
burst. The phase detector is switchable between
BPSK and QPSK: BPSK is used during the
preamble portion, QPSK during the data portion.

4.3 Performance

Figure 10 shows the Py,iss performance of the
demodulator at Bwe, (the type 1 filter bandwidth)
= Br/12, Bwsy (the type 2 filter bandwidth) =

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

107}

. Ideal
1074 —A— Type 3

\ —O—: Typel,3
1074

—@— Typel 2.3
10~

1072
1o~

1077

107

£,/ N, (dB)

Fig. 10 — Improvements in unique word miss proba-
bility.

Br/10, Br = 480k symbols/s, Bu. (the CR upper
bound of the noise bandwidth) = 1 kHz, and
Bug, (the STR upper bound of the noise
bandwidth) = 17 kHz. Both Bu.- and Bug, are
given by Equation (9)"". These Bu values mean
that P.; should be less than 107° at an E,/N, of
0 dB*.

P, = exp(—m*SNI)« Bu/Br. = = 9)

A conventional demodulator with a type 3
filter only has hang-up problems because Phiss
often jumps in value. A DSP demodulator with
type 1 and type 3 sequentially changing filters
eliminates hang-up and decreases Ppjss to about
5 % at an E,/N, of 3 dB. A DSP demodulator
sequentially changing all three filter types
decreases Pniss to about 0.5 % (see Fig. 10).
Measured data meets the requirements given in
Chap. 2.

5. Application to the VSAT system for city and
prefectural governments
A VSAT system for city and prefectural
governments which uses our DSP demodulator is
shown in Fig. 11. Its system parameters are
listed in Table 2. Figure 12 shows the DSP

165

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

Table 2. System parameters
Voice Broadcast Channel control
facsimile Inbound l Outbound Inbound Outbound
Satellite DA-FDMA PA-TDMA PA-TDMA RA-TDMA PA-TDMA
. QPSK QPSK QPSK QPSK QPSK
Modulation P :
burst burst continuous burst continuous
Symbol rate 35k 35k 35k 35k 35k
I“frc;rt:‘a“o“ RS 32 kb/s 32 kb/s 32 kb/s 32 kb/s 32 kb/s
B G Viterbi Viterbi Viterbi Viterbi Viterbi
rror correction b= 17 gl b= 17 b= 1 b=

Satellite

g

O

Hub station VSAT stations

Fig. 11-VSAT system.

demodulator.

The purpose of this VSAT system is to
reliably transmit administrative information and
gather local information at any time, even in a
disaster.

One of the system's features is a voice
activation technique® in the voice channel to
enable efficient use of the satellite’'s power.
Voice data is transferred as burst data, even if
the satellite uses frequency division multiple
access (FDMA).
stability burst demodulators than is needed by

This system requires higher
other VSAT systems for low E},/N, operation.

6. Conclusion

Achieving a low unique word miss probabili-
ty (Pmiss) at a low cycle-skip rate is a significant
task in all satellite communications systems. We
propose an effective solution to this problem in a
technique which improves the initial acquisition
of both the CR and the STR circuits. The
method increases the S/N of the CR loop by

166

10 cm

Fig. 12— DSP demodulator.

about 1 dB and that of the STR by at least 3 dB.
This means that the unique word miss probabili-
ty of our demodulator is at least 100 times less
than that of a conventional demodulator at an
Eyw/N, of 3 dB. The DSP demodulator enables
VSAT systems to employ advanced FEC and
voice activation techniques.

References

1) Simon, B.. Japan’s Satellite Program. Via
Satellite, 7, 1, pp. 32-40 (1992).

2) Evans, B. G.: “Very small aperture terminals”.
Satellite systems, 1st ed.,
London, U. K., Peter Peregrinus Ltd., 1987, p.
223.

3) Tsujioka, T., Take, dJ.,, Valdez, C. and
Shimamoto, S.: Experimental Projects on VSAT

communication

Communications. (in Japanese), [EICE Tech.

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

4)

7)

9)

10)

11)

12)

13)

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

Rep., SAT91-93, pp. 13-18 (1991).

Darkin, J.: “Why Small Dishes ?”. Satellite
communications, 1st ed., Pinner, UK., Online
Conferences Ltd., 1984, pp. 63-74.

Yamashita, A., Nakamura, T., and Katoh, T.: A
New Path Memory for Viterbi Decoders.
FUJITSU Sci. Tech. J., 25, 1, pp. 37-43 (1989).
Kubota, S., Kato, S., Ishitani, T., and Nagatani,
M.: Compact, High-Speed and High-Coding-Gain
General Purpose FEC Encoder/Decoder—
NUFEC CODEC - . Proc. ICC’89, Boston, U.S.A.,
1989, pp. 798-803.

Wolejsza, Jr. I. J.: Simulation and Design of A
Burst Demodulator for A Random-
Access TDMA Packet Terminal. Proc.
ICDSC’86, Munich, Germany, 1986, pp. 683- 689.
Namiki, J., Ohtani, S., and Yasuda, Y.. 0dB
Eb/No Burst Mode SCPC Modem with High
Coding Gain FEC. Proc. ICC'86, Toronto,
Canada, 1986, pp. 1792-1796.

Kato, S., Umehira, M., Miyo, T., and Seta, M.:
Low C/N MODEM for Satellite TDMA
Network Use. Proc. ICC’'86, Toronto, Canada,
1986, pp. 1797-1802.

Suzuki, H., Takahashi, H. Tajima, M. and
Kudoh, K.: MODEM and FEC LSIs for Highly

Simple

Functional Compact Earth Station. Proc.
GLOBECOM’87, Tokyo, dJapan, 1987, pp.
281-285.

Nawata, H., and Otani, S.: Burst Demodulator
for Offset QPSK. (in Japanese), Spring Natl.
Conv. Rec. IEICE, 1991, p. SB-3-5.

Murakami, K., Miyake, M., Fuji, T., Moritani,
Y., Fujino, T., and Takahata, F.: FEC Combined
Burst-Demodulator for Business Satellite. Proc.
GLOBECOM’87, Tokyo Japan, 1987, pp. 274-280.
Yamashita, A., Nakamura, T. Katoh, T,
Moriwake, M., and Shimada, H.. Variable
Constraint Length Viterbi Decoder LSI. (in

Japanese), Spring Natl. Conv. Rec. IEICE, 1988,

FUJITSU Sci. Tech. J., 29, 2, (June 1993)

14)

15)

16)

17)

18)

19)

20)

21)

22)

p. SB-3-7.
Fujino, T., Morita, Y. Miyake, M., and
Shibuya, A.: Development of a Concatenated
Reed-Solomon/Viterbi FEC Combined Modem
and Its Field Test Via 14/11GHz Satellite. Proc.
GLOBECOM’89, Dallas, U.S.A., 1989, pp.
1080-1087.

Kubota, S., Honda, S., Morikura, M., and Kato,
S.. Concatenated Coding Scheme Employing
Soft Decision for Outer Codes. Proc. ICC91,
Denver, U.S.A., 1991, pp. 221-225.

W. W, and Weldon, JR. E. J.
“Sequential decoding”. ERROR-CORRECT-
ING CODES, 2nd ed. Cambridge, U.K., MIT
PRESS, 1972, pp. 421-424.

Shimada, K., Yamashita, A Katoh, T., and

Peterson,

Ageno, Y. New Recovery Method for
Sequential Decoder Buffer Overflow. Proc.
GLOBECOM’86, Houston, U.S.A., 1986, pp.
1708-1712.

Uchishima, M., Tozawa, Y. Miyo, T. and
Takenaka, S.: Burst Demodulator for Low Ej
/N, Operation. Proc. ICC91, Denver, U.S.A.,
1991, pp. 226-230.

Lee, L-N., Sheoy, A., M. K.
Digital Signal Processor-based Programmable
BPSK/QPSK/offset-QPSK modems. COMSAT
Tech. Rev., 19, 2, pp. 195-234 (1989).

Tozawa, Y. Furukawa, H., Takenaka, T,
Miyo, T. and Takenaka, S.. Low Cycle
Skipping Rate DSP Modem for Very Small
Earth Stations. Proc. GLOBECOM’89, Dallas,
U.S.A., 1989, pp. 1100-1104.

Gardner, F. M.: “Data Synchronizers”. Phase-
lock Techniques, 2nd ed., New York, U.S.A., A
Wiley-Interscience Pub., 1979, pp. 215-230.

Satoh, T.
Satellite Communication. (in Japanese), 1st ed.,
Tokyo, Japan, IEICE, 1986, p. 160.

and Eng,

“Voice Activation”. Maritime

167

M. Uchishima et al.: QPSK Burst Demodulator for Satellite Communications Systems

Makoto Uchishima received the B.E.
and M.E. degrees in aeronautics from
Nihon University, Japan, in 1984 and
1986.

He joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1986 and has been
engaged in research and development
of demodulators and FEC circuits for
satellite communication systems.

He is a member of the Institute of
Electronics, Information and Communi-
cation Engineers (IEICE) of Japan.

Yoshiharu Tozawa received the B.E.
degree in electronics engineering from
Nagoya Institute of Technology, in
1979, and the ME. degree from
Nagoya University, Nagoya, Japan in
1981.

He joined Fujitsu Laboratories Ltd.,
Kawasaki, in 1981 and has been
engaged in research and development
of microwave circuits and burst mo-
dem for satellite and mobile communi-
cations systems. He is a member of the Institute of
Electronics, Information and Communication Engineers (IEICE)
of Japan.

Toshio Kawasaki graduated from
Kochi Technical College, Kochi, Japan
in 1983.

He joined Fujitsu Ltd., Kawasaki, in
1983 and has been engaged in deve-
lopment of satellite communication
systems.

FUJITSU <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>