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Preface 

Special Issue on Cellular Array 
Processor AP1000 

4fr s~ 
Shigeru Sato 
Managing Director 
FUJITSU LABORATORIES LTD. 

The d ynamic nature of c urrent research into parallel processing - a 

technique whe r e hundred s to thousand s processors do computation in paraJle l -

comes in part from the r ealization that s ing le -processor computing is nearing its 

limit and in part from the n eed for high-peformance compute r s in a g rowing 

numbe r o f new scie ntific area s s uch as qua ntum chromod y na mics (QCD) , 

c limatological simulation, and human genome analysis . 

The research proceed s a c tivel y throughout the world: Japan's Mini s try of 

Education, for example, i s sponsoring a massively paralle l computing research 

project partic ipated in b y leading unive r sities in Japan. A numbe r of prog rams 

on parall e l processing and its applications in computational scie nce, ne ural 

network, ph ysics, molecular scien ce, and earth scie nce are now und e t· way at the 

Edinburg h P a raJlel Computing Cente r in Scotland. In the US, r esearch proceed s 

for high-pe rform a nce computers and high-sp eed ne tworks to access the m from 

organizations around the country. 

The idea of para]]e l processing is not ne w, of course, and has been 

approach ed in diffe r ent ways since the compute r 's invention. R ecent advances in 

semiconduc tor technology have made possible paralle l compute r s that uses 

hundred s to thousands processors. S uch paraUel compute t·s have b een marke ted 

al r eady, and the l a tte r half of the 1990s is expected to see the advent of seve ral 

TFLOPS machines. 

This s pecial issues of the Fujits u Sc ie ntific & T echnical Journal focu ses on 

the APlOOO, a hi ghl y paralle l MIMD compute r d eveloped at Fujitsu Laboratories 
Ltd. Fujits u Laboratories' firs t project in parallel compute r s in 1983 d eaJt with 

cellular array processors, including CAP-256 d e veloped in 1987. The APlOOO 

was d eveloped in 1990, and has an architecture diffe re nt from that o f the 

CAP-256. The APlOOO sys te m we nt into co mme rc ialization in 1992 as a platform 

for parallel process ing research. 

The firs t articl e r e vie ws parallel processing. The n ext four arti cles di scuss 

the APlOOO's architecture, pe rformance evaluation, and prog ramming 

e nvironme nt. Because increa sing the number of processor ele m ents u sed in a 

paraJlel processing tends to lowe r e ffici e ncy due to communication ove rhead and 

load inbalances, fa s t communication is extre m e l y important. The APlOOO's 

software e nvironment imple m ents a debugging utility, a run-time monitor, and a 
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performance analyzer for d eveloping and tuning parallel prog rams a nd to 

maximize computation potenti a l. The nex t two articles explain vis ualization on 

the A PlOOO - an important m ean s for unde rs tanding the simulation r esults for 

huge amounts of data, and desc ribe a vid eo / disk option board connected to each 

processor to e nhance compute r g raphics and fil e 1/ 0 pe dormance, a nd volume 

v isualization techniques for 3-dimensio nal data. 

The n ext five pape r articles d ea l with parall e l processi ng a pplications in 

linea r algebra, e lectroni cs CAD a nd co mputati o nal phys ics - BLAS-3 and 

LINPACK, paralle l circuit simulation, LSI mask p a tte rn gen e ration, QCD 

simula tion, and the application to data anal ysis in hi gh-e ne rgy ph ysics 

exp e riments. 

The last articl e introduces F ujitsu P a ralle l Computing R esea r ch Facilities 

which makes paralle l computing e nvironments available to r esearche rs to 

promote paralle l co mputing R & D. 

In this s pecial issue, three articles from the Australian National U niversity 

(ANU) are included, which a1·e co nce rned with Fujitsu-ANU collaborative 

reaea rch s tarted in 1989. 

The pa rallel processing is a k ey technology in 90's and it will open a new 

progrnmming paradigm. But in orde r for unfamiliar p eople to use the technology 

widel y, R & D into software d evelopment tool and paralle l algorithms are 

necessa1·y. Fujitsu is co ntinu a lly improving the technology and c rea ting an 

adva nced co mpute r sys tems. 

FUJITSU Sci. Tech. J., 29 , 1, (March 1993 ) 



UDC 681.322 

Advantages of Massively Parallel 
Processors 

• Mitsuo Ishii 
(Manuscript received October2, 1992) 

Massively parallel processors are cost-effective and have many other attractive 
features; for example, high linear-speed, suitability in a wide range of applications, 
ability to solve large-scale problems, high-reliability, and a heterogeneous structure . 
These features are expected to be more fully exploited in the next decade. This paper 
looks at some of the features of massively parallel processors. 

1. Introduction 
Progress in large-scale integration and the 

development of the microprocessor have opened 
the way to inexpensive and powerful computing 

systems. Originally, massively parallel processor 
used single-bit computing elements, now nearly 
all such processors use 32-bit general-purpose 
microprocessors. These microprocessors include 

high-speed RISC microprocessors, floating-point 
processors, and dedicated communication chips. 
Inexpensive microprocessors with built-in vector 
processors, which have been available since 1990, 

upgrade microprocessor performance to the level 
of pipeline supercomputers 1 

> • These systems 

have been made possible by the development of 
highly-integrated chips. However, the develop­

ment of applications for these advances has been 
slow, with the result that massively parallel 
processors are not yet as popular as they should 
be. 

This paper outlines some of the advantages 
of these massively parallel processors m an 
effort to help remedy the above situation. 

2. Potential advantages 
2.1 Increased linear speed 

Theoretically, the processing speed of the 
massively parallel processor is proportional to 

the number of processors being used. For 
example, one thousand processing elements, each 
having the ability to perform 10 MFLOPS, can 

FUJITSU Sci. Tech. J., 29 , 1, pp. 3-5 (March 1993 ) 

theoretically achieve 10 GFLOPS. The total 
processing speed can be increased without being 
restricted by semiconductor device speeds. This 

means that a parallel processor using conven­

tional technology has potentiality to process 
data faster than a single processor that uses the 
most advanced semiconductor technology. 

In practice, however, the speed of a parallel 

processor does not increase linearly with the 
number of processors. Overcoming this difficulty 
will require, at the least, a parallel algorithm 
that distributes loads uniformly among 

processors and a high-throughput, low-latency 
interprocessor communication architecture. 

2.2 Diverse applications 
By looking at the characteristics of 

application programs (see Fig. 1), we can see 
that the multi microprocessor excels in particle 
simulation and image-processing programs 
consisting of many independent tasks. For 
example, by using ray tracing techniques that 
generate real images, a parallel processor can 
simultaneously process all the picture elements 

of a screen. Task programs are suitable for 
execution on a scalar computer because they 
consist mainly of IF statements and serial 
programming logic. Because of the above, we 

can expect an increase in the number of 
application programs written for massively 
parallel processing environments. 

3 
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Fig. 1 - Characteristics of application programs. 

2.3 Large-scale problems 
The amount of calculation that must be 

carried out to solve a problem tends to increase 

with the scale of the problem. With 
combinational problems, the amount of calcu­
lation increases exponentially with the number 

of parameters in the problem. For example, the 
calculation time for circuit analysis problems is 

proportional to the number of transistors to the 
power of 1.5. This means that large-scale 

problems often take too much time to solve. 

A good parallel algorithm, however, can 
greatly reduce the calculation time. For 
example, the simple task of determining the 

shortest path from points S to T on the 

two-dimensional mesh shown in Fig. 2 requires 
64 (8 X 8) serial operations on a serial processor 
but only 8 on a parallel processor 2

> • T hat is, the 
calculation time is reduced from the second 
power to the first power of the distance between 
the two points . Therefore, the parallel processor 
is suited to large-scale problems that take too 
much time to solve on a serial processor. 

2.4 Heterogeneous systems 
Massively parallel processors use a number 

of different processing schemes. In the single­

program multiple-data scheme, each processor 
executes the same program. This scheme can be 
applied to the large scale numerical calculations, 
as the simulation of fluid dynamics. On the other 
hand, m the multiple-program multiple-data 
scheme, each processor executes a different 
program. In one example of a multiple-program, 
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one processor receives data from an external 

device, retrieves data from internal files, another 

performs numerical calculations, and the 
remainder generate rmages (see Fig. 3). Each 
processor transfers its output to the next 
processor via the network. 

Programs are easy to write for this 
multiple-program scheme even in a complicated 
heterogeneous system because different 
processes are assigned to different processors. 
Besides that, each process can be carried out 
very efficiently by determining the number of 
processors required for the processing load. 

2.5 Hig hly reliable systems 
The reliabili ty of the massively parallel 

processor is generally lower than that of a single 
processmg element by a factor equal to the 
number of processors. 

H owever, reliability can be improved by 
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usmg built-in redundancy. In this method, the 
processors are backed up by secondary proces­
sors that execute the same programs off-line. If 
an on-line processor fails, it is automatically 
replaced by its secondary processor without the 
need to stop the system. 

3. Conclusion 
This paper has discussed some of the 

features of the massively parallel processor and 
its potential ad vantages over serial processors. 

Mitsuo Ishi i 

Parallel Computing Research Center 
FUJITSU LABORATORIES, 
KAWASAKI 
Bachelor of Electrical Engineering 
Nagoya Institute of Technology 1966 
Dr. of Engineering 
Tokyo Institute of Technology 1988 
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M. Ishii: Advantages of Massively Parollel Processors 

The massively parallel processor is still in its 
infancy, and we can be sure that it will be used 
in many more applications in the near future. 
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Architecture for the AP1000 
Highly Parallel Computer 

• Hiroaki Ishihata • Takeshi Rorie • Toshiyuki Shimizu 
(Manuscript received August 11, 1992) 

This paper describes an architecture and its implementation for the AP1000 highly 
para llel computer which consists of 64 to 1 024 processing elements and three 
independent communication networks. A high throughput, low latency 
communication network and hardware support for message handling, data 
distribution/collection, and barrier synchronization are the key technologies in 
high-performance parallel computing. A new routing scheme developed for the 
AP1 OOO 's torus topology network reduces latency, avoids deadlock, and achieves 
high throughput. The message controller (MSC ) on each processing element reduces 
message handling overheads for data transfer / reception setup. Dedicated 
communication networks between processor elements and host reduce overheads for 
data distribution and collect ion, and for barrier synchronization. 

1. Introduction 

Many distributed memory parallel 
processors (DMPP) have been proposed. The 
Cosmic Cube 1> , Mark IIIfp 2 >, and J-Machine 3 > 

have been developed for research purposes, and 
the iPSC 4>, nCube, and Transputer have been 

developed as commercial products. In a larger 
parallel computer, the DMPP is easily expand­

able and is cost effective. However, it is not easy 
to obtain good results for many applications. 
Some algorithms require a lot of parallel 
communication when there are many processing 
elements. To run a program efficiently, com­
munication time should be minimized. Minimiz­
ing communication latency and widening com­
munication throughput are critical issues in 
DMPP development. 

The first generation DMPPs used store and 
forward message passing 1 > · 5 

> • In every node on 

the routing path, the message was copied to 
memory by a Direct Memory Access (DMA) 
controller, then re-transmitted toward the 
destination. The communication latency time 

was O(N X D ), where N is the message length 
and D is the distance. It usually took several 
milliseconds, making software overheads a 

6 

mmor concern. To reduce the routing overhead 
at routing nodes, various small diameter net­
works were studied. 

The second generation DMPPs employed 

message-routing hardware to reduce network 
latency 6> · 7> . Some new routing schemes were 

proposed, such as wormhole and cut-through 
routing. In wormhole routing, for example, the 

messages moving through the network are 
viewed as worms which travel from the source 
to destination processors. These developments in 
communication networks have reduced network 
latency time to O(N + D). Since N is usually 
greater than D, path length is no longer a 
significant problem. 

Unfortunately, large message handling over­
heads prevented optimal use of low latency 
networks. Conventional DMPPs had poor per­
formance for communicating small messages, 
because it usually took more than several tens of 
microseconds for message handling such as 
message assembly / disassembly and interrupt 
handling. Most communication time is used for 
message handling. As the grain size of parallel 
computers decreases, message size becomes 
small and communication setup time becomes 

FUJITSU Sci . Tech. J., 29 , 1, pp. 6-14 ( March 1993 ) 
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more important. 

Message handling overheads also exist for 
communication between processing elements and 
the host computer. In data parallel programs, 
data must be distributed from the host computer 

to processing elements before calculation. After 
calculation, results dispersed m processing 
elements must be collected by the host computer. 
In both cases, the host computer must interact 

with many processing elements. The overhead 

for data transfer setup in the host computer 
increases in proportion to the number of 
processing elements. The problem becomes more 

serious for systems with several hundred 
processing elements. 

The same goes for the large overheads 
involved in barrier synchronization and broad­

casting. In conventional DMPPs, these commu­
nication functions were emulated by passing 

several point-to-point messages. Although they 
are used frequently in parallel programs, many 

machines lack the hardware to perform them 

efficiently. This makes synchronization and 
broadcasting very expensive. 

This paper is organized as follows: Chapter 

2 presents the APlOOO design concepts. Chapter 3 
describes the system and processing element 
configuration in detail. Chapter 4 describes the 

message controller which supports fast message 
handling. Chapter 5 explains the configuration of 
the three networks in the APlOOO. 

2. Design concepts 
This system incorporates the following 

design concepts: 
1) High throughput, low latency communication 

network 
According to recent studies, wormhole 

routing on low-dimensional networks with wide 
channels provides lower latency and less 
contention than on high-dimensional networks 
with narrow channels 8

) . However, simple worm­
hole routing has the drawback that it may cause 
deadlocks and reduce throughput because the 
channel used for message transfer is blocked 

during the transfer. A new routing algorithm 
which routes multiple messages concurrently 
without causing any deadlocks is needed. 

FUJITSU Sci. Tech. J., 29, 1, (March 1993 ) 

2) Fast message handling 

Network latency can be reduced to a few 
microseconds using wormhole routing. It takes 
much more time for message handling such as 

message assembly / disassembly or data transfer/ 
reception setup for communication. To reduce 
the message receiving overhead, it is important 
to receive messages without interrupt processing 
in the processing elements. To reduce the 

message sending overhead, it is also important 

to utilize the cache memory which all current 
high-performance CPUs have. 

3) Efficient data distribution and collection 

For data distribution and collection, the host 
computer must interact with many processing 
elements. The time for data transfer setup and 
message assembly I disassembly at the host 

computer should not increase as the number of 
processing elements increases. To reduce the 
load on the host computer, data distribution and 
collection should be done in a single message 

transfer. Extracting data from the message for 

each processing element and composing the 

message from data in each processing element 
must be done automatically. 

4) Fast barrier synchronization 
Message passing takes a time of at least 

O{log (p)} to execute barrier synchronization in 

a conventional message passing computer, where 
pis the number of processing elements. Adding a 
dedicated network to the system for barrier 

synchronization is worthwhile, since this reduces 
point-to-point communication network conten­
tion m addition to reducing the barrier 
synchronization overhead. 

To realize these concepts, we developed a 
schemas called structured channel routing on a 2D 
torus topology network. This scheme provides 
low latency message routing between arbitrary 
processing elements without decreasing through­
put and causing deadlock. To reduce message 
handling overheads, we developed a message 
controller (MSC) and a B-net interface (BIF). 

The message handler in the MSC sends messages 
directly from cache memory and automatically 

receives messages in its circular buffer. The BIF 
supports data distribution/ collection and fast 
barrier synchronization. 

7 
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3. AP1000architecture 

3.1 System configuration 
Figure 1 shows the APlOOO system configu­

ration 9 l · 
1 oJ Processor elements, called cells, are 

connected by three independent communication 
networks. These are the torus network (T-net) 
for point-to-point communication between cells, 
the broadcast network (B-net) for 1-to-N commu­
nication in data distribution and collection, and 
the synchronization network (S-net) for barrier 
synchronization. 

The B-net connects all cells and the host 
computer and is used for broadcasting, data 
distribution, and data collection. The B-net uses 
compound networks including hierarchical 
common buses and a ring network. The B-net 
consists of a 32-bit data path and some control 
signals such as reset, attention, and arbitration. 

Cell processor 

Fig. 1 - System configuration. 

,tpJ(J(}fJ I • 

50cm 

Fig. 2 - System photograph (256 cells) . 

8 

The B-net uses pipelined handshaking control 
and has a data transfer rate of 50 Mbyte / s. 

The T-net uses a two dimensional torus 
topology network. Each port of the T-net has a 
16-bit data path, a few control signals, and a 
data transfer rate of 25 Mbyte / s. It also uses 
pipelined handshaking control. 

All cells and the host computer are also 
connected by the S-net. The S-net has a tree 
topology and is used for barrier synchronization. 

A Sun-4/ 330 workstation acts as the host 
computer. The host interface consists of a 
VME-bus interface, B-net interface, and 32 
Mbytes of local memory. Figure 2 shows a 
photograph of a system with 256 cells. The 
maximum (1 024-cell) configuration uses four 
frames in the shape of a cross. 

3.2 Cell config uration 
Figure 3 shows the cell hardware 

configuration. Each cell has an integer unit (IU), 
floating point unit (FPU), a message controller 
(MSC), a routing controller (RTC), B-net 
interface (BIF), and 16 Mbytes of dynamic 
memory. The IU, FPU, and 128 Kbytes of cache 
memory are connected to the MSC. During 
normal operation, the MSCs work as a direct­
mapped cache memory controller with a copy­
back policy. The linesize is four words. 

DRAM 
controller 

DRAM 

16 Mbyte 

25 Mbyte/s 

25 Mbyte/s 

B-net 50 Mbyte/s 

S-net 

SPARC 
IU + FPU 

25 Mbyte/s 

Fig. 3 - Cell configuration. 
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The MSC, RTC, BIF, and DRAMC in each 
cell are connected via the LBUS, a 32-bit 
synchronous bus. Each cell has an external 
LBUS connector. This enables the installation of 
various hardware options such as a high-speed 
I/O interface, disk interface, vector processor, 
and additional memory. 

The DRAMC controls 16 Mbytes of memory 
which consists of forty 4-Mbit DRAM chips. The 

DRAMC detects double bit errors and corrects 
single bit errors. Quadruple interleaving control 
speeds up access to consecutive addresses. It 
takes 160 ns for word write access and 400 ns for 
4-word block write access. Since wait cycles are 
inserted at read access, it takes 400 ns for word 
read access, and 640 ns for 4-word block read 
access. Thus the maximum data transfer rate 
from memory to device is 25 Mbyte / s and from 
device to memory is 40 Mbyte/s. 

Figure 4 shows a wiring board; each board 
accommodates two cells. To reduce the number 
of components, complex logic is implemented on 
a set of four CM OS gate arrays. 

4. MSC message controller 
The MSC 1 1

' consists of a cache controller, 
a pair of message handlers, and four channel 
DMA controllers. These MSC features reduce 
the overheads for data transfer setup and for 
releasing the IU from data transfer processing. 
Figure 5 shows the MSC configuration. 

Fig. 4 - Cell wiring board. 

FUJITSU Sci. Tech . J., 29 , 1, (March 1993 ) 

4.1 Line sending 
A line sending function sends a cache line 

message in a manner similar to a cache flush. 
The DMA is activated automatically, even when 
there is no specified data in the cache. The 
arrows in Fig. 6 indicate the data flow: HIT 
when there is data in the cache, and MISS when 
there is not. For comparison, the figure also 
shows a normal cache flush (FLUSH). 

Line sending is initiated by a simple store 
instruction, similar to cache memory control. 
The six most significant address bits are 
decoded as commands. This operation is 
different from sending by program mode, which 
reads data from memory to a register and then 
writes data to the device. Rather than loading 
and sending, line sending specifies the address of 
data. Cache line data is sent by a store 
instruction. 

Address 

RDP : Read pointer 
WTP: Write pointer 
Cmp Comparator 

CPU 

Wbuf: Write buffer 
R/W : Read/Write control 
Done : Transfer done 

Fig. 5 - MSC configuration. 

CPU 

Cache 

+ 
: HIT 

-.------- t-
: MISS : 

M emoc, 8 
Fig. 6 - Data movement during line sending. 
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When a CPU initiates a line sending 
command, the MSC checks the tag memory to 
see if the data is m the cache or m mam 
memory. It simultaneously checks the output 
network device status to see if the device can 
accept the data, whether the local bus is ready, 
and that no other DMA is about to write to the 
same network device. If all the devices are ready 
and there is data in the cache, that data is read 
and written to the Wbuf (HIT). If there is no 
data in the cache, the DMA to one cache line is 
invoked, and the data is read from main memory 
and written to the device (MISS). 

The CPU is blocked until the status has 
been checked and data has been moved from the 
cache to Wbuf, or a DMA is initiated. The CPU 
does not wait for all the data to be written to 
the device. To implement this mechanism, the 
devices must have a FIFO deeper than the cache 
line size. Because it is not known when a whole 
line is sent to the ne twork, the MSC checks the 
FIFO status to see whether there is room for the 
message. 

If the devices are busy, a data access 
exception is reported to the CPU, and a trap 
occurs. This trap enables the CPU to retry line 
sending and avoid deadlock. 

Line sending will not invalidate the cache 
entry or write back to main memory. Because 
this data may be accessed again, invalidation 
might lose the newest data, and flushing is 
expansive. Programs often modify a part of the 
messages and send them again. 

4.2 Buffer receiving 
Buff er receiving (see Fig. 7) corresponds to 

any asynchronous data trans£ er request using the 
ring buffer in main memory. Hardware monitors 
the ring buffer for overflow, notifies the CPU of 
such an error by an interrupt, or stops trans­
ferring until data reading produces a receive 
area in the buffer. The accessed area is released 
and returned to the MSC as a receive buffer by 
modifying the register. 

Data movement is done in 4-word aligned 
blocks - in the same cache line to facilitate fast 
LBUS access. 

The BASE, write pointer (WTP), and read 
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Fig. 7 - Buffer receiving. 

pointer (RDP) are registers (see Fig. 5). The 
BASE holds the buffer address. A pair of 
pointers to the circular buffer, WTP and RDP, 
point to data that has been received from other 
processors but has not yet been read by the CPU. 
The W TP points to the address where the next 
received data is to be stored. It is updated by 
hardware after each data storage. The RDP 
points to the address that the CPU is currently 
accessing. The CPU updates the RDP to dispose 
of data which is no longer needed. The buffer 
size can be between 64 Kbytes and 512 Kbytes. 

When data arrives from a network, the MSC 
checks that the WTP value does not exceed the 
RDP contents. If WTP and RDP hold the same 
value, no more data can be received, and the 
MSC suspends transfer or notifies the CPU by 
generating an interrupt. 

A received message is not written to the 
cache memory directly. This is because it may 
overwrite cached data which is being used. 

4.3 Stride DMA 
The stride DMA function assembles the 

regularly dispersed data items from memory into 
a message, as shown in Fig. 8, and trans£ ers this 
message to the RTC or BIF. The function also 
regularly stores m memory the messages 
received from the RTC or BIF. The shaded 
areas m Fig. 8 indicate data items actually 
transferred. 

These areas are specified using the Addr, 
Size, Hskip, V skip, V cnt, and Rent parameters. 
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Vent= 3 

Fig. 8 - Stride DMA. 

Fig. 9 - T-net routing scheme. 

5. Communication networks 
5.1 T-net 

Hcnt= 2 

The T-net has a two-dimensional torus 
topology. The message routing scheme is 
si,ructured channel routing. In wormhole routing, 
the intermediate node stores only a few bytes 

called a flit . When a routing node receives the 
message header, the node selects the channel of 
the next route. The node then transfers all 
subsequent flits for that message header to the 
route selected. Although wormhole routing has 
the advantage of low latency, deadlock may 
occur and throughput may suffer. This is 
because message transfer blocks the channel. 

To minimize throughput deterioration and 
to avoid deadlock, the routing scheme employed 
incorporates the structured buffer pool algorithm 
into wormhole routing 1 zJ . With this algorithm, a 

message does not block the channel it is using 
while it is being transferred. Figure 9 shows an 
example of this routing scheme. Each node has a 
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a) Double side b) Single side 

Fig. 10 - Local broadcast in the T-net. 

buffer. These buffers can store flits equal to the 

maximum internode distance plus one. For 

example, if five nodes are connected by a 
unidirectional channel, each node has a buffer 
that can store five flits. 

After a flit has been stored in the buffer, it 

is transferred to the next node. The data class is 
transferred along with the data itself. A flit of 
any data class can be transferred, and the data 
class can vary for each flit transferred. If more 

than one flit is to be transferred, the routing 
node determines which one to send. The 

algorithm avoids deadlock conditions because a 
transfer from class 1 to class 5 does not form a 

closed loop. Note that there is only one physical 
channel between nodes. 

The RTC handles routing and flow control 
of communications between cells. It routes 

messages in a fixed way, first in the x direction 
and then in they direction. The RTC can route 
at a rate of 160 ns/ word. Provided there is no 
contention in the network, the latency is 

specified by 160 X (D + N X 4 + 1) ns, where D 
is communication distance and N is the message 
size in bytes. The maximum network size for the 
RTC is 32 by 32, a restriction imposed by the 
capacity of the RTC message buffer. 

In addition to point-to-point communication, 
the R TC has a broadcast function on the T-net. 
Even though broadcast communication can 

consist of a series of point-to-point message 
routes, this is not practical since their latency 
would be unacceptably high. Using this function, 
a cell can broadcast its data to other cells. 
Figure 10 shows the path of a broadcast message 
in the RTC. The extent of the broadcast is 
restricted by encoding the address header of the 
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messages as the address of the node farthest 

from the sour ce node. T here are two patterns in 
broadcast messages - one for broadcast to both 
sides, and the other for broadcast to one side. A 
broadcast message and point-to-point commu­

nication messages can be transferred concur­
rently. 

5.2 B-net 
The B-net 1 3 l performs communication 

among cells, and between cells and the host 
computer. The B-net consists of hierarchical 
common buses and a ring network. Up to eight 
cells share the lowest level bus. Four buses are 
connected to the ring node which is connected to 
the ring network. Thus up to 32 cells form a 

hierarchical common bus which is connected 
with a ring node. Since the host computer is also 

connected by a host interface, which looks like 
one of the ring nodes, the host computer and 
cells are equivalent. 

The B-net protocol is similar to that of a 
simple common bus. Before data transfer, a cell 
or host trying to transfer data must flag a 
request to the B-net controller, then wait until 

the request is granted. After the B-net is granted 
to the requester, data transfer can begin. 

A B-net interface (BIF) consists of read and 
write F IFO buffers and a scatter/ gather 

controller. Data transfer is performed efficiently 
using the eight-stage FIFO buffers in BIF. 

In many parallel programs, data must be 
distributed from the host computer to cells and 
results must be collected from the cells to the 
host computer (see Fig. 11). In a conventional 
machine, the host computer must interact with 
many cells. The time for data transfer setup 
increases as the number of cells increases. For 
efficient data distribution and collection, the BIF 
provides scatter and gather functions. 

For broadcast, all data on the B-net from 
the host is written into the FIFO buffer in each 
cell and then the cells' MSC or IU reads it out. 

For scatter, data on the B-net from the host 
is selected by the scatter/ gather controller in 

each cell. In some cells, the data is selected and 
written into the FIFO buffer, then the MSC or 
IU in each cell reads it out from the F IFO 
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Fig. 11 - Scatter and gather operation. 
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buffer. In other cells, the data is not selected and 

is disposed of. Centralized data in the host is 
thus regularly dispersed to cells. 

For gather, all cells try to output the data 
on the B-net. However, only data selected by the 
scatter/ gather controller goes out on the B-net. 
The data not selected is held in the cells' F IFO 
buffer until selected. Then the DMA controller 
or host reads the data on the B-net. Regularly 
dispersed data among the cells is thus collected 
in a proper sequence. The data selection patterns 

are parameterized in the same format as the 

stride DMA pattern in the MSC. 

5.3 S -net 
The S-net has a tree topology and data is 

transferred serially. Data from each cell goes up 
to the root of the S-net along the tree topology. 
At intermediate nodes, data is merged by the 
logical AND operation. The logical AND of all 
the data is thus calculated at the root node. The 
result is then distributed to all cells along the 
tree from the root of the S-net. 

The BIF also has a synchronization and 
status control block which executes barrier 
synchronization and status checking. It consists 
of 40 sets (8 system sets and 32 user sets) of a 

synchronization request register (SYRR), syn­
chronization detection register (SYDR), status 
register (S TR), and status detec tion register 
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(STDR). The output from the request register of 

each set is time multiplexed and sent out to the 
S-net. Data received from the S-net is then 

demultiplexed and used to update the detection 
registers. 

Barrier synchronization is executed using 
the SYRR and SYDR. If all cells have set their 
SYRR, the SYDR is set and the SYRR is cleared 

according to the data from the S-net. The IU 

waits for synchronization detection by interrupt 
report or from SYDR polling. 

Status checking is executed using the STR 

and STDR. The IU can set or reset its STR any 
time. The contents of the STDR are updated 

according to data from the S-net, and at any 
time the IU can sense the ANDed result of the 
STR value for all cells. 

The synchronization and status control 
block also provides a combined operation for 

barrier synchronization and status checking. 
This operation provides status data only when 

barrier synchronization is detected. The 
overhead for barrier synchronization is 1.6 f.1 s 
(system) to 5.2 µs (user). 

6. Conclusion 
A low latency, high throughput, and dead­

lock-free communication network is essential for 

highly parallel computers. The structured channel 
routing scheme used for the T-net meets these 
requirements. 

For fast message communication, it is 
important to employ not only a fast commu­

nication network, but also fast message handling 
functions. Line sending and buff er receiving 
functions implemented in the MSC reduce 
message handling overheads. Line sending can 
initiate message transfer directly and immedi­
ately, and can be started in the same way 
whether data is cached or not. 

The scatter and gather functions and barrier 
synchronization are implemented in the BIF for 
efficient data distribution and collection. The 
overheads for these functions do not increase 
even if the number of cells in the system 
mcreases. Without the scatter and gather 
controller in the BIF, the overhead for data 
transfer setup m host-cell communication 
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dominates actual data transfer time in a highly 

parallel computer with a large number of cells. 

The BIF also reduces the overhead of barrier 
synchronization. 

Using these fast communication features, the 

APlOOO achieves high efficiency in fine grain 
parallel processing such as LU decompo-
sition 1 4

> -
1 

GJ . The development of parallel 

programs is strongly influenced by available 
hardware. We believe that providing a powerful 

machine will motivate many programmers to 
develop applications on the APlOOO. 
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This paper evaluates the performance of the functions provided by the AP1000 for 
fast. parallel program execution. These functions include message handling, 
broadcasting, barrier synchronization, and gather/scatter functions . Message 
handling supports low-latency communication between processing elements, barrier 
synchronization allows all processing elements to be synchronized, and the 
gather/scatter functions support effic ient communication between multiple 
processing elements. These functions were benchmarked at the user-library level. 
Also, this paper discusses the impact of library function speed on the performance of 
large standard benchmarks such as UNPACK, SLALOM, and SCG. 

1. Introduction 

Parallel processing on a distributed memory 
parallel processor (DMPP) includes message 

passing. DMPP performance depends on commu­
nication performance. To enhance system per­
formance by increasing the number of processing 

elements (cells), more communication is required. 
The setup time for message passing becomes 
very important for DMPP system performance 

because increasing the number of processors 
increases the amount of message passing and 

decreases the size of messages. 
Ordinary DMPPs, for example, the Intel 

iPSC 1 ' , do not take the management of large 
numbers of processing elements into considera­
tion and have too much overhead for message 
passing. Except when solving very large 
problems, their performance is limited, even 
when many processing elements are used. 

The APlOOO has several unique structures 
that enable efficient parallel processing in a 
variety of applications. These structures include 

two message handling techniques (line-sending 
and buffer-receiving), broadcasting facilities for 
cell communication, fast barrier synchronization 
among cells, and scatter and gather mechanisms 
for host-cell communication 2 ' - 5 J • 

Message handling sends messages directly 
from cache memory and receives them automa-
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tically at the circular buffer in mam memory. 
The broadcasting facilities send a message to 

cells in a rectangular region specified by .zy 

coordinates. The specified region has a 2-D torus 

topology. Barrier synchronization is performed 
using a tree network. The scatter mechanism 
enables efficient distribution of data in the host 
memory. The gather mechanism collects data 
distributed in the memories of the cells m a 
single step. 

We evaluated the effectiveness of this 
architecture in a variety of applications. In 

Chap. 2 we describe the APlOOO architecture. In 

Chap. 3 we summarize the basic performance 
using user-level libraries. In Chap. 4 we evaluate 
the performance of some standard benchmarks 
and analyze the effects of the APlOOO archi­
tectural support. 

2. AP1000architecture 
Figure 1 shows the APlOOO system config­

uration. The APlOOO is a distributed memory 

parallel processor (DMPP). Each processing 
element, or cell, is connected by three inde­
pendent networks: the S-net, B-net, and T -net. 

The T-net is used for inter-cell communi­

cation. This net has a two-dimensional torus 
topology, uses wormhole routing, and is con­

structed using the routing controller (RTC) 4
' . 
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Host 

Fig. 1 - APlOOO system configuration. 

The broadcasting facility is implemented on the 
T-net. 

To send and receive messages on the 
APlOOO, line-sending and buffer-receiving are 
used 5 > • In this paper, these techniques are 

referred to as XY-transfer. Line-sending sends a 
message directly from the cache memory. If 
there is no message in the cache, line-sending 
moves a message from main memory auto­
matically. Line-sending is activated in a way 
that is similar to cache flushing, and its setup 

overhead is quite small. When a message arrives, 
buffer-receiving moves the message from the 

network device to the circular buffer allocated 
in main memory, thus eliminating setup times 

such as processing interrupts. 
The S-net is used for inter-cell synchro­

nization. This net has a tree topology and is 
time-multiplexed. Cell requests for synchro­
nization are merged or logically ANDed at the 
root of the S-net. The result is distributed to all 
cells connected to the S-net. Because of these 
mechanisms, synchronization is achieved quickly 
and the synchronization time does not depend on 
the number of cells. In conventional parallel 
processors, cell synchronization is done using 
message passing and the synchronization time is 
a function of the number of cells. 

Scatter and gather mechanisms are imple­
mented on the B-net. B-net connection is done 
via the bus interface (BIF). To distribute data 
from a host to cells, the host initiates a transfer 
to write all data at the same time. The data 
which appears on the B-net is selected and 
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Fig. 2 - Pingpong performance. 

received by the BIF in each cell. To gather data 
from cells, each cell's BIF monitors the B-net to 
determine when the cell puts data on the B-net. 
Data is then merged on the B-net and collected. 

3. Performance of basic functi ons 
This chapter evaluates the performance of 

basic functions using user-level libraries. We use 
the APlOOO in the 2-D torus configuration, which 

is the APlOOO's physical configuration. 

3.1 Communication latency 
The APlOOO uses the T-net for inter-cell 

communication and incorporates wormhole 
routing. This routing and XY-transfer provide 
low-latency communication. To determine the 
communication latency between cells, the times 
taken to send messages of various lengths from 
a master cell to a slave cell and then back were 
measured. This test is known as the pinpong 

benchmark 7 >. During this test the other cells are 
idle and have no effect on the communicating 
cells. Half of the time for this test is used to 
evaluate the overall latency, which includes 
latency in the network and the message handling 
overhead. 

Figure 2 shows the message handling time 
versus message size in bytes. In this figure, 
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Regularl shows the tunmg of ordinary Direct 

Memory Access (DMA) transfer functions 

La.send( ) and crecv( ). XYl and XY24 show the 
results for an XY-transfer distance of 1 and 24, 
respectively. The times taken to send x bytes 
over a transfer distance of 1 and 24 are T XY1 = 

0.18 X x + 19 fJB and T XY2A = 0.18 X x + 24 /JB, re­
spectively. The differences in the times for the 
various inter-cell distances concur with the 

hardware specification of 160 ns/ unit-distance. 

The XY-transfer setup time is very small 

because a great deal of overhead is eliminated. 
Total throughput is about 5.5 Mbytes/s. 

Throughput is slightly lower than with Regularl 
because xy _recv( ) copies the receipt message to 
a user-specified bufferNote). When xy _crecv( ) 

(referred to as CXYl) is used, the time is T CXYI 

= 0.05 X x + 18 µs. A throughput of about 20 
Mbytes/ s is obtained because xy _crecv( ) elimi­
nates copying at reception. LSl shows the speed­
up that results when message handling is switch­

ed from ordinary DMA to XY-transfer by spec­
ifying the - LSEND option at runtime. Regularl 

and LSl use the same object, but the runtime 
options are different. The time for LSl is T l.531 = 

0.04 X x + 31 µ s. The setup time is required for 
runtime parameter conversion. 

3.2 Broadcasting 
X, Y, and XY directional broadcasting are 

done on the T -net. We measured the Y-direc tion 
broadcasting performance of 8 and 16 cells 

aligned in the Y direction. In this experiment, 
cells whose Y cell-id is 0 broadcast the same 
data in the Y direction to 7 or 15 cells. The 
results of X-direction and XY-direction broad­
casting are the same. In Fig. 3, y _brd16 shows 
the timing of a 256 (16 X 16) cell configuration 
and y _brd8 shows the timing of a 64 (8 X 8) cell 
configuration. ybrd16 and ybrd8 are the results 
of a simulation using point-to-point commu­

nication. The timing results are T y.J:rd 8 = 0.11 X 

x + 2.8 µs, T y.J:rdl6 = 0.13 x x + 2.7 µs, T ybrrl8 

Note: Regular copies a message when sending. This 
copying is faster than reading from main 
memory, which causes a cache miss in the 
xy _recv( ) function. 
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Fig. 3 - Broadcasting. 

0.20 x x + 27 µ s, and T ybrrl 16 = 0.27 X x + 
36 µ s, where x is the number of broadcast bytes. 

The setup time is smaller than that required 
for the test described in Sec. 3.1. Throughput is 
higher because sending cells aiways send 
messages and receiving cells always receive 

messages; therefore, sending and receiving are 
pipelined by multiple (1 000) trials . 

By comparing the y _brd and ybrd results, 

we can see that the broadcasting mechanism 
reduces the setup time by about 90 % and 

doubles the throughput. 

3.3 Global functions 
Global functions, for example, xy _damax( ) 

and xy _dsum( ), are used to compute the maxi­
mum values and summations of all data for all 
cells. These functions are implemented using 
binary tree communication. The return values 
for all cells are the same. 

xy _dsum( ) computes an 8-byte double-pre­

cision real summation for all data in all cells. 
xy _damax( ) finds the absolute maximum value 

in double-precision real value of data in all cells. 
These functions use short messages in the 
16-byte format shown in Table 1. DAT A index 
in Table 1 indicates which cell held the selected 
data. 
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Table 1. Message format for global functions 

Offset Field Size (bytes) 

0 Routing header 4 

4 DATA index 4 

8 DAT A(float,int,double) 8 

Table 2. Completion times for global functions (in µ s) 

Cells 

x _damax / y_damax 
xy _damax 
x_dsum/ y _dsum 
xy _dsum 

4 x 4 8 x 8 16 x 16 

30 
58 
23 
44 

40 
78 
30 
59 

52 
104 
39 

79 

Since messages in this format only occupy 
one cache line, communication is efficient. The 

nine least-significant bits of the routing header 
specify the type of global function. Table 2 

shows the completion times for global functions. 
Since xy _damax( ) performs more calcula­

tions, for example, indexing, xy _dsum( ) is faster 
than xy _damax( ). 

Although xy _dsum( ) and xy _damax( ) cal­

culate only one element, some applications 
perform element-wise calculation of a vector, for 
example, summation, and find the maximum 

value. The performance results for vector 
calculation are shown in Fig. 4. 

Figures 5 and 6 show programs used to 
measure performance. These programs calculate 
element-wise vector summation in the Y-direc­
tion. The program shown in Fig. 5 gives the 
y _dsum results, and the program in Fig. 6 gives 
the btree results. The numbers 16 and 32 in Fig.4 
indicate the number of cells in the Y-direction 
(ncely). Function xy _send(rx, ry, type, msg, size) 

sends a message (msg) from the cell-id in 2-D 
representation (cidx, cidy) to the cell of (cidx + 
rx, cidy + ry). 

In Fig. 4, we can see that the y _dsum and 

btree performances intersect at vector lengths of 
3 and 4. y _dsum( ) is faster because the message 
length is limited to 16 bytes (including headers), 
and only one library call is needed. Since the 
xy _send( ) function appends a 32-byte header to 
the message, the amount of data to be exchanged 

18 

';;; 
3 

"' 
~ 

600 1- )i 
500 f-

32y_ds7 • 

• 
• ~y-dsum,. ... " 

/ ,.../~ 
• Jf' 

400 

. / ,. ... P'/,. 

/ 

,. 32 ~i:_e_:_ -a 

p -- I ...... ....o----0 .... 
/ • .... --:13~~--a............ · --· 

300 

200 .-o'J"_-a ....... _,... ----·-·---
0-----0-~· -/.-·- • 16 btree 

LOOf-

·-·7 _;,., 

~;/ 
. ...... 
d' 

6 

Vector length 

8 

Fig. 4 - Binary tree and y _dsum performance. 

I* 
** Global sum of each vector element. 

*/ 
for (i=O; i < vlen; ++i) /* vlen: vector length */ 

/* sum of y- direction *f 
y _dsum( results [i] ,&results[i]); 

Fig. 5 - Global function (y _dsum). 

/* 
** Global s um of each vector element . 
** Binary tree sum and broadcast 

*/ 
length= vlen * sizeof(double); 
for (i = 1; i < ncely; i += i) { 

} 

if (cidy & i) { 

} 

k = xy...send(O, -i, MSGTYP, results , length) ; 
break; 

else if (i+cidy < ncely) { 
k = xy_recvs(O, i, MSGTYP, tmp, length); 
qadd_(tmp, resu lts, vlen) ; 
/* vector add: resu lts += tmp */ 

y_brd(cidx,results, length) ; /* broadcast*/ 

Fig . 6 - Binary tree sum and broadcasting. 

10 
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when the vector length is 4 equals that for the 
y _dsum. The results show that the main 
contribution to efficient implementation from 
y _dsum is the incorporation of specially format­
ted messages. 

3.4 Scatter and gather functions 
Scatter and gather functions are imple­

mented on the B-net. Host data is distributed to 
cells and distributed data is collected by single 
operations. 

Figure 7 shows the performance of distrib­
ution (Scat) and collection (Gathc, Gathf) from 
cells on 64 and 512 cell systems. The x axis 
indicates the total data size to be collected or 
distributed. The y axis gives the performance 
time. 

In Fig. 7, Poll64 shows the timing for polling 
(with no support from gather mechanisms) 
realized by the host-cell communication function 
in a 64-cell system. The results for a 512-cell 
system are not shown because they required too 
much time to obtain. The number of cells does 
not affect the results of Gath or Scat. 
Performance is limited by the speed of the 
memory. Gathf shows the result of systematic 
fine-scale data collection in which each cell puts 
out 4-byte data. Gathc shows the result of coarse 

350 

300 

250 

<;; 
200 s 

"' E 
f:: 

150 

100 

50 

Scat : 43 ' x+ 4.9 ms 

3 
Data size (Mbytes) 

Fig. 7 - Scatter and gather performance. 
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data collection in which each cell puts out all of 
its data at the same time. For coarse data 
collection (Gathc), large data blocks are read 
from cell memory and performance is limited by 
the cell memory speed. For fine data collection, 
the data in each cell's BIF FIFO is merged into 
the B-net and sent to the host. Since this 
approach is similar top-way interleaved access, 
where p is the number of cells, good performance 
is obtained. The data transfer rate is 38 
Mbytes/ s, which is very close to the host 
interface's design specification of 40 Mbytes / s 
for memory writing. 

The times required to gather x bytes of data 
for the host are T Gathf = 0.027 X x + 3 800 fl s, 
T Gatl-c = 0.041 x x + 4 200 /.1 s, T S:at = 0.043 x x 
+ 4 900 fl s, T Ftll 64 = 0.047 x x + 130 000 fl s, and 
T Ftll 512 = 0.16 X x + 1 900 000 fl s. (T R:XI 512 is the 
time required for a 512-cell system.) It is 
time-consuming to collect data without gather 
functions, especially for large numbers of cells. 

To simulate the Gathf function using the Poll 
function, the received data should be rearranged 
after communication. The scatter function also 
reduces interaction between cells. To simulate 
the scatter function by ordinary host-cell 
communication, the number of interactions is the 
same as the number of cells. 

It is essential to reduce the number of 
interactions between the cells and a host. A 
SU 4/ 330 running under UNIX 'ote) is used as 

the APlOOO host. The setup time is very large. 

3.5 Barrier synchronization 
Ordinary DMPP uses message passmg for 

synchronization. This method, however, is very 
slow and transfer data and synchronization 
messages can be mixed, causing confusion. 

The APlOOO incorporates a private network 
for synchronization to solve the above problems. 
The synchronization time is 10.6 /.1 s and does 
not vary with the number of cells. For 
synchronization with message passmg, the 

Note: The UNIX operating system was developed 
and is licensed by UNIX System Laboratories, 
Inc. 
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Fig. 8- Synchronization time. 

synchronization time is T xwr = 33 X log (p) + 6.8 
/1 s, where p is the number of cells. 

4. Benchmark results 
We benchmarked some programs using user­

lev el libraries, and investigated the effects of the 
message handling, broadcasting, and gather/ 
scatter functions. The following sections briefly 

describe the benchmarks and our results: 

4.1 UNPACK 
The LINPACK 8 ) program solves dense 

systems of equations using LU decomposition. 
The problem size, n , is for an n X n matrix. We 
measured the Gaussian elimination and back­
ward substitution parts as in the LINP ACK 
benchmark 9 ) • Matrix generation and result 
output were not done. 

Blocked LU decomposition is used here with 
partial pi voting. Global functions (xy _damax) 
are used to find the pi vat row. To send pi vat 

row data to other cells and to perform backward 
substitution, X- or Y-directional broadcast func­
tions (x _brd, y _brd) are used. 

Table 3 shows the analysis of library calls. 

Results are shown for square matrix sizes of 
1 000, 2 000, and 4 000 using 64 or 256 cells. BRD, 
GLB, and XY stand for broadcasting, global 
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Table 3. Analysis of library calls for LINPACK 
benchmark 

Cells 

64 

256 

500 

400 

(f) 
0.. 3 300 
(:.. 

~ 

200 

JOO 

Size BRD GLB XY L ( %) 

1 000 6 861 1 000 17 
1.3 0.2 - 32 

2 000 13 679 2 000 22 
4.0 0.42 - 18 

4 000 27 493 4 000 32 
14.0 1.2 - 9 

1000 6 972 1008 11 
1.1 0.2 - 49 

2 000 11868 2 000 17 
4.0 0.38 - 39 

4 000 27 721 4 000 22 

9.0 0.91 - 20 

ALL • -•- : 
--o-- : XY+ BRD .P 

,; 
,; --·-- : XY ,; 

,; -•- : Regular GLB 

50 100 150 200 250 

Number of cell s 

Fig. 9 - LINP ACK performance. 

T (s) 

3.59 
4.67 

22.5 
25.0 

159 
164 

1.4 
2.5 

7.0 
9.5 

45 

50 

300 

functions, and XY-transfer data, respectively. 
The top figures are the average counts of library 
calls, and the lower figures are the average 
times, in seconds, consumed in that library. L is 

the time consumed by communication as a 
percentage of the total time for calculation. Tis 
the time required to perform the benchmark. 
(The T values of 4.67 and 25.0 in the table 
include the function trace delay, and the T 
values of 3.59 and 22.5 do not include the trace 
delay.) The trace overhead can be determined 
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from the trace and benchmark times. 

Figure 9 shows the FLOPS results for the 
1 000 X 1 000 LINPACK benchmark. In this fig­
ure, Regular shows the results when ordinary 
message passing functions (Lasend and crecv) 
are used. Broadcasting and global functions are 
simulated by ordinary message passing. XY 
shows the results for XY-transfer (xy _send, 
xy _recv ). XY + BRD shows the results when 
XY-transfer and broadcasting are used. ALL 
shows the results when XY-transfer, broad­
casting, and global functions are used. 

XY-transfer and broadcasting greatly affect 
benchmark speed. The Regular results show that 
unless XY-transfer and broadcasting are done, 
increasing the number of cells does not increase 
speed. The effects of global functions are not 

outstanding because the number of global 
function calls is small. The number of XY­
transfers is also small, but these functions are 
used to simulate broadcast and global functions. 
Therefore, the performance of XY-transfer is 
very important. 

4.2 sa; 
SCG solves 2-D Poisson equations using the 

scaled conjugate gradient method. n is the size 
of the mesh to be partitioned (n x n). This prob­
lem is equivalent to solving a sparse n 2 x n 2 

matrix. 
In this program, global functions are used to 

calculate the summation of inner-products. Table 
4 shows the analysis of library calls. The mesh 
size is varied from 100 X 100 to 400 X 400. The 
statistics are arranged as in Table 3. 

Figure 10 shows the FLOPS performance for 
the solution of a 200 X 200 mesh. This figure 
shows a trend similar to that observed for 
LINPACK. The difference between XY and 
XY + BRD is that the latter uses the broad­
casting function to simulate global functions. In 
simulation, we use an algorithm similar to the 
one shown in Fig. 6. Unlike the LINPACK case, 
using global functions here does make a 
difference because global functions consume 
large amounts of time. 
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Table 4. Analysis of SCG benchmark 

Cells Size GLB XY L ( % ) T (s) 

100 445 888 0.64 
0.10 0.21 34 0.93 

64 
200 893 1 784 4.1 

0.27 0.66 19 4.8 

400 1 789 3 576 43 
1.2 2.5 8 45 

100 445 1332 0.25 
0.10 0.24 54 0.64 

256 
200 893 2 662 1.3 

0.32 0.69 45 2.3 

400 1 789 3 576 8.3 
0.86 1.8 27 9.6 

600~---------------~ 

<fl 
0.. 
0 
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400 

~ 300 
~ 

200 

100 

- o- : ALL 
--o-- : XY + BRD 

--•-- : X Y 
-•- : Regular 

XY 

100 200 300 400 

Number of cells 

Fig. 10 - SCG performance. 

4.3 SLALOM 

500 600 

SLALOM is a standard benchmark program 
that finds the optical radiosity of the interior of 
a box 1 0 >. The walls of the box are divided into 
patches, and the color is calculated for each 
patch. This benchmark evaluates the overall 
calculation, from the reading of initialization 
data to the output of results. The results are 
given as the number of patches calculated in 60 
seconds. 

The program can be divided into four parts: 
initial file reading, matrix generation, solution 
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by the LDL method, and answer file output. 
Initial file reading takes about 0.2 seconds. 

The calculation order for matrix generation is 
0 (n 2 Ip), where n is the number of patches and p 

is the number of cells. This part consumes 10 % 

to 30 % of the computation time. The calcula­

tion order of the LDL solution is 0 (n 3 Ip). This 
part consumes 70 % to 90 % of the computation 
time. The results are collected by the host from 

cells and written to the answer file . The gather 
function is used to collect the answer. If the 
gather function is not used, the host commu­
nicates ../ii times with the diagonal cells which 

contain the answer, where p is the number of 
cells. This part consumes about 5 % of the com­
putation time. Table 5 shows the analysis of 
library calls. 

Regular in Fig. 11 shows the results when 
only ordinary message communication functions 
are used. Gath shows the results when the gather 
function is used. XY + Gai,h shows the results for 

XY-transfer when the gather function is used. 
ALL shows the results when all functions, 
including the broadcasting function, are used. 
The problem size is set to the number of patches 

that ALL can calculate in about 60 seconds. 
Without the gather function, we cannot 

increase the number of patches by adding cells 
because the amount of answer data becomes 

excessive and host-cell interaction increases. 
When the number of patches is increased, 

XY-transfer is used to increase the computation 
speedup ratio to compensate for the consequent 
increase in the amount of communication. Since 
broadcasting does not consume much time, the 
contribution by the broadcast function is not 
significant. However, exchanging the Regular 
and XY-transfer simulation functions makes a 

Table 5. Analysis of SLALOM benchmark 

Cells Size BRD XY Gath L ( % ) T (s) 

1163 7 800 2 400 1 58 
16 

5.8 1.8 0.007 14 69 

1943 12 387 2 200 1 59 
64 

10 2.8 0.004 22 68 

3110 19 243 1 850 1 58 
256 

16 4.1 0.003 31 72 

22 

significant change. This is also true of other 

benchmarks. 
Table 6 summarizes the benchmark results. 

5. Conclusion 
We evaluated the effects of AP l OOO 

architectural support of application programs by 

running several benchmarks. 

- •- : Regular • 
85 - •- : Gal/1 

- o- : XY +Gath 

- •- : ALL 

80 

3 75 Gath 

" /' E 
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70 
3 110 patches 
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65 
• 
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XY 
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D --0 11- • • 
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Number of cell s 

Fig. 11 - SLALOM performance. 

Table 6. Benchmark summary 

Benchmark 
Cells Problem Results Time 

size (MFLOPS) (s) 

8 x 8 1 000 190 3.51 
8X8 2 000 237 22.5 

LI PACK 
8 X 8 4 000 268 159 

16 x 16 1 000 505 1.36 
16 x 16 2 000 755 7.07 
16 x 16 4 000 951 44.9 

16 x 16 100 212 0.251 
16 x 16 200 341 1.26 

SCG 
16 x 16 400 412 8.32 
16 x 32 100 267 0.200 
16 x 32 200 536 0.799 
16 x 32 400 678 5.06 

4 x 4 1163 27.8 58.0 
SLALOM 8 x 8 1943 119 58.7 

16 x 16 3110 474 57.9 
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We showed that minimizing the sending and 

receiving overhead reduces the computation 
time. When a problem is small, the percentage of 

total time consumed by message passing is large. 
Therefore, reducing the overhead for message 
passing makes a significant improvement. When 
the number of cells increases, the amount of 
communication increases, messages become 
small, and the message passing setup time can 

affect performance. Broadcast functions have an 

effect similar to a reduction in the amount of 

communication, and therefore reduce execution 
time. 

To solve a large problem, good commu­
nication performance between cells and a host is 
very important during initialization and output. 
Since the APlOOO has scatter and gather 

functions on the B-net, these processes can be 
done efficiently. Speed is limited, however, by 
the B-net's bandwidth (50 Mbytes/ s) and the 
memory bandwidth of the host interface (host­

to-cell: 25 Mbytes / s, cell-to-host: 40 Mbytes/s). If 
we use local disks and frame buffers on each cell 
as option boards, these limitations can be 
removed. 

Fast barrier synchronization is achieved, 
regardless of the number of cells. The bench­
marks we evaluated do not explicitly use barrier 
synchronization, and we did not evaluate its 
effect on applications. However, synchronization 

mechanisms do allow message communication to 
be isolated from the network, enabling the easy 
isolation of problem synchronization and mes­

sages. In fact, in program development and 

debugging, synchronization is extensively used 
and a fast barrier is very valuable. 

Low-latency communication, broadcasting, 
and the gather and scatter functions supported 
by the APlOOO are used for fast execution of 
applications, especially when an increase in the 
number of cells increases the effects of these 
mechanisms and therefore maintains scalability. 
Without these support mechanisms, some 
applications would not speed up, even with an 
increased number of cells. 

The programs we evaluated are good from 
the perspectives of load balancing and the 
balance of calculation and communication times. 
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Benchmark program performance can be 

increased for large problems. However, to assess 
the performance of a wide range of applications, 

we evaluated various kinds of overhead. 
Accordingly, we limited the problem size to keep 
the overhead components visible. 

The architectural supports provided by the 
APlOOO environment clearly facilitate efficient 
execution of parallel programs. Also, these 

supports can speed up a program for a variety of 
applications. 
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for Parallel Programming 

• Takeshi Horie • Morio Ikesaka 
(Manuscript received August 11, 1992) 

Programs for massi vely parallel computers are very difficult to write , debug, and 
tun e. M ost of the tools developed to support parallel program development are for 
parallel systems with fewer than 100 processors. The runtime monitor shows the 
processor status and load at run time . The performance analyzer evaluates program 
execution statistics and presents a graphic display of program behavior. The parallel 
debugger is used to debug programs running simultaneously on multiple processors. 
This paper describes the software environment of the AP1000 , a programming model 
for the AP1000, and tools that support parallel programming . 

1. Introduction 

Programs for massively parallel computers 
are very difficult to write, understand, and 

debug. One of the performance tuning and 
program debugging tools developed to support 
parallel programming is Malony and Reed's 
HYPERMON hardware system, which captures 
and records software performance traces 

generated on the Intel iPSC/ 2 hypercube 1' · 
2

' • 

Malony and Reed have also studied the 
instrumentation perturbations of software event 

tracing on the Alliant FX/ 80 vector multi­
processor3 ' . Sharma has developed a prototype 

run-time performance monitoring environment 

for the Cedar multiprocessor 4
' • Rover et al. 5 ' 

have demonstrated the utility of performance 
visualization for fine-tuning algorithms and for 
the study of phenomena using software tools 
developed for distributed memory machines. 
Then, they applied their findings to the 
SLALOM program. Couch has described a way 
to organize and present debugger output 6

' . 

Parallel computers with more than 100 

processors, for example, the iPSC/ 27 ' , the 
parallel computers developed by the Touchstone 
project 8

' , nCUBE/ 29
' , and the APl000 1 0

' have 
been used in diverse applications. However, most 
of the performance tuning tools and debuggers 
concentrate on systems with fewer than 100 
processors, and their application to larger 
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systems seems to be difficult. 
The following problems must be considered 

when applying performance and debugging tools 
to parallel systems with more than 100 proces­
sors: 
1) Displaying the processor status and load on 

the fly necessitates on-the-fly information 
gathering from the processors. This is likely 
to cause perturbations in execution because 
data gathering makes heavy demands on the 
network. 

2) Performance data gathering and analysis for 
performance tuning is time-consuming be­
cause of the large amounts of trace data that 

must be accumulated. This data cannot be 

loaded to the host computer. For example, 
even if each processor produces only 100 
Kbytes of trace data, the amount of data 
produced by 512 processor is 51 Mbytes. 
Therefore, trace data must be collected and 
analyzed as efficiently as possible. 

3) It is possible to display the data for debug­
ging and performance tuning for small 

parallel systems. For large systems, however, 
we cannot display all the data at once to 
easily find bottlenecks and bugs in parallel 
programs. Therefore, we must extract and 
display only data which will ensure meaning­
ful performance analysis and debugging. 
We developed the runtime monitor and 
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performance analyzer for the APlOOO. The 
runtime monitor shows the processor status and 
load at run time and is used for debugging and 
rough evaluation of program execution. The 
performance analyzer evaluates trace data 
recorded during execution and presents a 
graphic display through the X Window interface. 
The information displayed includes the processor 
status, the number of active processors, and the 
message transfer ratio. These displays make it 
easier to determine the location of bottlenecks 
so that performance can be optimized. 

To debug parallel programs at run time, we 
must consider how to display the values of 
variables. We developed a parallel source 
debugger for the APlOOO which is based on GNU 
gdb. This debugger can display multiple data 
and allows breakpoints to be set in all proces­
sors at the same time. 

In this paper we describe the software 
environment in which parallel programs are 
developed on the APlOOO. In Chap. 2, we give an 
overview of the software environment for the 
APlOOO. Chapter 3 describes the design and 
implementation of the runtime monitor, perform­
ance analyzer, and parallel debugger on the 
APlOOO. 

2. AP1000 architecture 

2.1 Hardware 
The APlOOO is a distributed-memory parallel 

computer that uses 16 to 1 024 processing ele­
ments (PEs) (see Fig. 1). The host is a SUN 

workstation. The AP 1000 has the following 

three independent networks: 
1) The T-net, which provides point-to-point and 

local broadcast communication. 
2) The B-net, which provides broadcast com­

munication and data distribution-collection 
between processors or between the host and 
processors. 

3) The S-net, which provides barrier synchroni-
zation and status checking. 

To reduce the overhead for message sending and 
receiving, the message controller interfaces be­
tween the networks and processors. 

Performance analysis tools on parallel 
systems need a global hardware clock for all 
processors to ensure precise analysis of the 
interactions between processors. Malony devel­
oped the special HYPERMON hardware because 
iPSC/ 2 does not have a global clock 1>. The 
APlOOO operates synchronously and each proces­
sor has a timer resolution of 1.28 /1 s. This timer 
is synchronized among all processors and allows 
us to efficiently implement performance analyzer 
tools. 

2.2 Software 
This section describes a parallel program­

ming model and the software configuration of 
the APlOOO. The CASIM software simulator is 
also described. 

2.2.1 Programming model 
To develop a wide range of parallel applica-

tions, a flexible parallel programming interface 
must be prepared so that application program­
mers can implement a variety of parallel 
algorithms. We therefore adopted a computation 
interface model based on message passing. 

Host Application programmers develop parallel 

T-net 

Fig. 1 - APlOOO configuration. 
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programs for the APlOOO in the following 
sequence: 
1) Parall_el algorithms are translated into 

parallel programs based on the APlOOO 
parallel programming interface. 

2) Programs are excuted, debugged, and evalu­
ated on the workstation using the APlOOO 
parallel software simulator, CASIM. 

3) The application is executed, debugged, and 
evaluated under the APlOOO operating sys-
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tern. 

The APlOOO provides a computation model 
that is focused on task and message commu­
nication. A task is a basic unit which can be 
executed in parallel, can memorize its own 

internal states, and can act according to received 
messages. Tasks cooperate to solve problems by 
exchanging messages. 

For high-speed processing, a strategy is 

needed for task di vision. Parallel processing 
based on data parallelism is an important 
strategy, especially in large-scale, parallel sys­

tems. The APlOOO has a message communication 

interface to facilitate divided data access. 
Application programmers create their 

parallel algorithms based on the above parallel 
programming interface. Applicatiop programs 
can be written in C or Fortran. Parallel 
processing functions, for example, communica­

tion and synchronization, can be represented by 
the APlOOO parallel library, which supports 

various types of message communication for 
easy implementation of data parallel algorithms. 

2.2.2 Software configuration 
Figure 2 shows the software configuration 

for the APlOOO. A user program consists of a 
process on the host computer and tasks in each 
processor. CAREN is a server which initializes 
the APlOOO hardware, sets the execution 
environment, creates tasks, and controls message 

UIO 

User 
process 

Debugger 

CAREN 
server 

Runtime Runtime 
monitor 
(Load) 

monitor monitor 
(Status) (Status) 

Device 
driver 

Host 

PEs 

Fig. 2 - APlOOO software configuration. 
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transfer. Processes such as a user host program, 

debugger, runtime monitor, and UIO (a process 
for user interaction) communicate with the 
server process using a UNIX pipe. 

A CellOS, light-weight, message-based oper­
ating system was developed to support parallel 
program execution on the APlOOO. CellOS 
resides in each processor and has the following 
three features : 

1) Support of intertask communications, both 
within processors and between processors. 

2) Performance of multitask processing within 

a processor. 

3) Support of basic functions for debugging and 
evaluation. 

CellOS provides a multitask processing environ­
ment for the processors so that they can execute 
different functions. Trace data for the perform­

ance analyzer is recorded in CellOS. 
Tasks are activated by messages received 

from other tasks, and procedures based on these 

messages are executed. After completing a 

procedure, a processor becomes inactive and 
remains so until it is activated by another 
message. Tasks are scheduled at each message 

reception or synchronization request. Each task 
has a priority, and CellOS gives the excution 
right to the highest priority task. This task 
scheduling makes CellOS simple and light-weight 

by decreasing the overhead for context switches. 

2.3 Software simulator: CASIM 
We developed a parallel software simulator, 

CASIM, to support the development of parallel 
programs on the APlOOO. CASIM has the follow­
ing three features: 
1) Configuration can be done on a workstation 

so that application programmers can use a 
wide variety of programming tools, for 
example, useful window systems and power­
ful debuggers provided by the workstations. 

2) Simulation of parallel processing supported 
by the APlOOO parallel library. Application 
programmers can verify parallel processing 

functions such as message communication 

and synchronization. 
3) Guarantee of a parallel programming inter­

face, providing the same parallel program-
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mmg interface as the APlOOO, so that 
parallel programs developed using CASIM 

can be executed on the APlOOO without 
changing source programs. 
2.3.1 CASIM configuration 
CASIM runs on Sun workstations (see Fig. 

3). Tasks on the APlOOO correspond to work­
station processes. CellOS functions are supported 
by the CASIM server process. The CASIM 

server handles communication, synchronization, 
and other service requests to CellOS. CASIM 
uses interprocess communication by TCP / IP to 
establish an interface between tasks and CellOS. 

2.3.2 Specifying the process execution 
window 

CASIM executes task processes in an X 
Window environment. The standard output from 

processes is displayed on the windows corres­

ponding to each process. Processes are debugged 
using source debuggers such as dbx and gdb. 

CASIM can also be accessed through the 
network from remote hosts (i.e. from other than 
the workstation where CASIM is installed). 
Process execution is checked using the windows 
on the remote host. 

3. Software development tools 
This chapter describes our three software 

development tools: the runtime monitor, per­

formance analyzer, and parallel debugger. 

3.1 Runtime monitor 
The runtime monitor presents a graphic 

runtime display of the process status and load of 
each processor. This tool is used to debug and 
evaluate parallel programs on the APlOOO. 

In each processor, CellOS sends processor 
information to the host, which gives the 

information at runtime on the X Window 
system. The following information is displayed: 
1) The status of tasks in processors (e.g. RUN, 

READY, and WAIT) 

2) The load for each processor (in graphic 
form) 

3) The messages written to the standard output 
of processors 

The runtime displays of each processor's status 
make it easy to grasp the behavior of multiple 
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Fig. 3 - CASIM. 

Fig. 4 - Runtime monitor. 

processors during execution. Graphics capability 
greatly aids programmers in the debugging of 
parallel programs, especially m large-scale 
parallel systems. 

The runtime monitor has two windows: one 
for the processor status and one for the load. 
The processor status window shows the status of 

each task, and the load window shows the load 
of each processor and the average processor 
load. If there is more than one task in each 
processor, several status windows are displayed. 
Figure 4 shows an example of a runtime monitor 
display. The boxes in this display represent the 
processors, and the colors of the boxes indicate 
the status of each processor. There are three 
tasks (task IDs 10, 20, and 30) in each processor. 
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In addition to the processor status, the runtime 

monitor displays messages written to the 
standard output of the processors and invokes a 
parallel debugger. The load window shows the 

load of each processor and the average 
processor load. 

When gathering information from proces­
sors, the runtime monitor uses the APlOOO B-net, 
which has special hardware for data distribution 
and collection. Without this hardware, each 

processor would send information independently, 
resulting in excessive data being sent to the host 
computer. Processor data is gathered through 

the B-net. The host receives this data as a single 
message, so the overhead for data reception at 
the host does not increase with the number of 

processors. We believe that large parallel sys­
tems require hardware support when gathering 
data from processors. 

3.2 P erforma nce analyzer 

The performance analyzer evaluates trace 
data recorded during execution and displays it in 

graphic form. We developed two types of 
performance analyzer. The first type stores trace 

data in the processor memory and then analyzes 
it. The second type calculates trace-data 
statistics during execution. The second type is 
useful when extracting only statistical trace 

information such as the number of messages 
sent. It can also be used for extensive executions 
because it does not store trace information. The 
drawback with this type of analyzer is that it 

has a large trace overhead and does not provide 

a graphic output. We will therefor e focus on the 
first type of analyzer. 

During execution of an application program, 
all event traces are recorded. After execution, 
instead of being sent to the host, the traces are 
left in processor memory because it is too 
expensive to collect them. For example, the 

traces recorded by a LI PACK benchmark 
execution using 512 processors constitute 657 

Mbytes of data. Our performance analyzer runs 
on the processors and the host. The analyzers 

running on the processors read the trace data 
directly and analyze it in parallel, enabling fast 
analysis. The host analyzer gathers the results 
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from the processors and displays it in an X 
Window. 

The performance analyzer displays the 
fallowing information: 

1) Tabular statistical information (minimum, 
maximum, and average) 
i) Event and time 
ii) Times for execution, interrupts, and idling 
iii) Communication distance 
iv) Transferred message size 
v) Network activity ratio 
vi) Time for message and barrier synchroni­
zation wait 

2) Graphs 

i) Processor activities 
ii) Overhead (e.g. idle time, communication 

time) 
iii) Processor status 
iv) Message information (e.g. data amount, 

communication distance) 
3.2.1 T r ace data 

We use two kinds of events for trace data. 

T he first type includes the start and end of 
communication library use, the start and end of 
communication interruption, and task switching. 

The second event is mainly used for 
message communication. When a message is 
sent, the following are recorded: the destination 
processor ID and task ID, type, size, and source 

processor ID and task ID of a message and the 
time the message was sent. When a message is 
received, the following are recorded: the source 
processor ID and task ID, type, size, and 

destination processor ID and task ID of a 
message and the time the message was received 
and the message waiting time. Barrier synchro­
nization events and their times are also 
recorded. 

3.2.2 Gr aphic display 
A graphic representation of execution per­

formance can provide a greater insight than 

tables of statistics. Figure 5 shows a perform­
ance analyzer display. This display is for a 

parallelized LINP ACK benchmark program that 
was executed using 512 processors. The execu­

tion took 1.081 seconds. The distribution of the 
execution, idling, and communication time is 
50.97, 22.61, and 26.42 percent, respectively. 
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Fig. 5 - Performance analyzer display. 

In this display, the graphs in the three main 
windows use the same scale for the horizontal 
time axis and show (from top to bottom) the 

number of active processors, the number of 

idling or communicating processors, and the 
status of each processor at each execution step. 

The number of active processors drops dramat­
ically at fairly regular intervals because the 
program uses a blocked Gaussian elimination 
method. This display clearly illustrates the 

behavior of a program. 
In the middle graph, idling processors are 

shown in dark blue and communicating proces­
sors are shown in light blue. In the bottom 

graph, various colors are used to indicate the 
status of each processor, for example, execution, 
communication, or interrupt. The example 
shown in Fig. 5 shows the status of only 16 
processors. The graph to the right of the status 
window shows the total amounts of time each 
processor spends in each status. 

The bottom window shows event inform­
ation. This information is specified by clicking 
on the status window. In this example, the trace 
event is Y _BRD, in which processor 25 broad­

casts a 16-byte message along the row axis. 

Users can change the time scale of the display. 
Message information can be displayed in the 

overhead window. Figure 6 shows the display for 
the size of messages in each transfer. This 
display shows how the message size decreases as 
the decomposed matrix becomes smaller. 
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Fig. 6 - Message size. 

Fig. 7 - Parallel debugger. 

3.3 Parallel debugger 
The source debugger we developed for 

debugging tasks running in parallel is imple­

mented using the remote facilities of GNU gdb, 
so all GNU gdb functions are accessible. In 
addition to debugging programs running on one 

processor, the parallel debugger can be used to 
set breakpoints and display the values of 

variables simultaneously for multiple processors. 
The command for the parallel debugger is the 
same as that for the debugger of a single 
processor. The parallel debugger has two modes. 
In the first mode the debugger commands are 
effective for all processors. In the second mode 
the commands are effective only for one 
specified processor. 

The parallel debugger displays the values of 
a specified variable and the point where the 
program stops. Figure 7 shows an example 

display of the parallel debugger. The boxes in 
this display represent the processors, and the 
colors of the boxes indicate the values of the 
specified variable for each processor. The data 
maximums are green and the minimums are 

yellow. If all data sets except one are the same, 
the odd one out is clearly distinguishable. 
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The WHERE command prints a backtrace 
of the entire stack. If all processors stop at the 
same point, the color of each box is the same. 

4. Conclusion 
This paper described the APlOOO software 

environment. The parallel programing interface 
of the APlOOO is based on message transfer and 
allows application programmers to easily write 
parallel programs. 

The runtime monitor shows the processor 
status and load during execution to enable 
program debugging and performance tuning. The 
performance analyzer analyzes program execu­
tion statistics and presents a graphic display of 
program behavior during execution using traces 
recorded during application execution. The 
parallel debugger is used to debug programs 
running simultaneously on multiple processors. 
The parallel software simulator, CASIM, sup­
ports parallel software development for the 
APlOOO. CASIM runs on workstations and 
simulates the APlOOO parallel library. 

The APlOOO provides a high-speed 
processing environment for applications and 
research. 
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The new class of MIMD computers with a thousand or more processors (kilo-processor 
machines) is over-reaching the available program development support tools . One 
such machine is the Fujitsu AP1000 . The LERP project at the Australian National 
University aims to assit the AP1000 programmer with essential monitoring and 
debugging tools . LERP is based on off- line analysis and replay of an event trace 
which includes both low level system events and user-defined events. In this paper 
we address the issues of extracting humanly usable information from large event 
traces with a new compound event analysis tool , suited to machines of the AP 10 0 0 
scale. 

1. Introduction 

The Fujitsu APlOOO is a pioneering member 
of a class of MIMD wormhole message-passing 
machines with many hundreds of processors 

(each of which is a general purpose micro­
processor with significant speed and memory in 
its own right), connected by three communi­
cations networks 1 > • We may term this class the 
"kilo-processor" machines ~otel. It provides signif­

icant challenges to programmers who need to 
develop correct and efficient multiprocessor 
parallel programs. As it is a new machine, it 
lacks extensive software debugging aids for the 
programmer. The LERP project at the 
Australian National University aims to assist the 
programmer by producing the essential monitor­
ing and debugging tools for the APlOOO. 

Traditional debugging methods that are 
used on sequential machine programs are less 
effective on multiple processes and distributed 
memory. The usual methods for parallel 
debugging fall into three classes: playback, 

This work is supported by the AND-Fujitsu 
Joint Research Agreement. 
Note: The relationship to the term "killer-micros" to 

describe these machines is not accidental. 
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breakpoint, and static an.al;ysis 2
> • LERP is based 

on off-line analysis and replay of an event trace. 
Preliminary stages in its design are described in 
previous papers 3 > · 4 >. 

Most parallel debuggers and performance 
analysers are basically visualisation aids: they 

present an animation or complete timeline view 
of one or many aspects of program execution 

such as message passing events, processor 
busy/idle state, etc. {see UPSHOT and PICL/ 
PARAGRAP IT, for example 5 > - 7 > }. To make use of 
them the programmer must replay or display the 
program behaviour, possibly filtered, and extract 
anomalous or significant behaviours from the 
animation by observation. The tools become 
markedly less effective as the number of 
processors rises past 30 
devices and the human 
overloaded, as does the 

or so: the graphics 
eye both become 
human ability to 

integrate and differentiate time-based behaviours 
or spatial patterns. 

An alternative model of debugging is 
provided in the Belvedere system8 >, which 
expects the user to specify expected behaviours 

in a formal Event Description Language 9 >. It is 
apparent that many programmers do not have 
such a formal view of their program's expected 
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behaviour, and that such facilities are not useful 
to them. On the other hand, a description of 

program behaviour in these terms is a useful 

start to debugging and understanding the 
program's actual behaviour. In this paper we 

describe a method for extracting significant 
compound events automatically, with acceptable 
efficiency, which has application to useful 
classes of programs. 

Tools for debugging and performance 
monitoring and analysis exist to aid 

programmers in the task of farming and testing 

hypotheses about the program's behaviour. 

Kilo-processor machines present the specific 
problem of compressing the information that is 

available from the machine to humanly usable 
quantity. By attaching existing conventional 

debugging and monitoring tools to the APlOOO 
we are able to support part of the debugging 
activity, but at the same time we demonstrate 
these tool's inadequacy for large numbers of 

processes. Debugging on such machines requires 
extending the abstractive power of the tools 
further along the spectrum from detailed internal 

state examination (dbx-like), and beyond internal 
and external state transition and message flow 
(like P ARA GRAPH and U PS HOT). The LERP 
compound event recognition tool, and the 
associated ability to cluster process behaviours, 
are an advance along this spectrum that 
provides the user with a more abstract gestalt 
view of the program's behaviour. 

The problem is not only in the large number 

of processes but in the shift in viewpoint that in 
needed, from considering internal program states 
alone in sequential debugging, to seeing both 
internal and external states m distributed 
parallel programs, up to broader pictures of 
state changes and behaviour. Conventional 
debugging systems are unable to handle the 
larger sequential programs of today, such as a 

complete X-windows application, or layered OSI 
application, through all their layers, multi­
parameter interfaces, and semi-hidden internal 
states. It is not surprising that they are also 
unable to cope with the kilo-processor. 

Our answer is to provide two kinds of 
selective focus to the user: 

FUJITSU Sci . Tech. J., 29, 1 (March 1993 ) 

1) focus in time or space taking subsets of the 
execution timeline, and of the set of tasks; 

2) defocusing on def.ail abstracting whole pro­

gram behaviour to reduce the information 
load. 

Programmers use several layers of abstrac­
tion m constructing their programs, both 
explicitly represented in higher-level language 
constructs and implicitly contained in their 
coding. The compound event recogniser is the 

first stage in attempts to capture some abstract 
patterns in program behaviour and present them 

in ways that the users can relate to their designs. 

The alternative of requiring programmers to 
specify formal event descriptions ahead of time 
is unproductive: programmers rarely formulate 
their designs precisely enough to be able to give 

exact specifications of the expected behaviour. 
By viewing behavioural abstractions extracted 
from actual behaviour programmers can be 
alerted to discrepancies between processors, and 

can gain new understanding of their programs to 
help them refine their algorithms and 
implementations. 

2. Trace collection 
LERP provides a common event trace 

format for both low level system events and 
user-defined events. The event trace makes no 
assumptions about the style of programming: 
each event is associated with a particular task 

and cell. Every event logged in the trace includes 
a cell-based timestamp, the type of event (send, 

receive, broadcast, configure, synchronise, 
user-event etc.), and in some cases the identifier 
of a second cell that participates in the event 
(e.g. a receive event also records the sender). We 
have implemented event trace collection by 
modifying the APlOOO cell operating system, 
both in the kernel and in the library code. Events 
are logged into cell memory for selected 
operating system traps. The accumulated event 

log is sent to the host for collection into a 
combined disk file, either at the end of 
processing or at synchronised regular intervals 

during execution. 
The events that are traced are those we 

term e:xternal to a process: sending or receiving 
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a message, synchronisation, network configura­
tion, etc. A typical program's event trace thus 
includes some tens or hundreds of events per 

processor per second. 
LERP presents traces to the user through a 

growing set of both graphical and text-based 
tools, controlled by a common graphical driver. 

Selective focusing on subranges of time and of 
processes will be by user-selected filters on the 

trace. The tools include both static analysis of 
the execution that is recorded in the trace, and 
some animated tools that allow the user to 
visualise the flow of events, message traffic, and 

computation load, over time. 
The static tools include virtual channel 

anaf;ysi,s of message traffic and compound event 
recognition to reduce the trace to a humanly 

manageable volume of meaningful information. 
This volume reduction can be achieved for 

traces both within individual tasks, by replacing 
sequences of atomic events with derived simple 

regular expressions, and within a collection of 
tasks, by imposing appropriate equivalence 
relations on the collection. The dynamic replay 
tools include our own replay debugger. 

A number of event trace analysis tools are 
available for other parallel computing systems. 
In the case of two existing tools, PICL/P ARA 

GRAPH and UPSHOT, the prC!gram model is close 
enough to the APlOOO that it is simple and 

worthwhile to interface them to the APlOOO 
event trace format. The interaction of these 
tools is described elsewhere 1 Ol • 

3. Compound event trace analysis 
3.1 Motivation 

Existing tools such as P ARA GRAPH and 
UPSHOT are ineffective for viewing or analysing 
logs of parallel programs with a large number of 
tasks/ processes. Indeed, many existing tools 

have soft-wired limits to the number of 
tasks/ processes that can be viewed (for example, 
16). Moreover, an extensive search of the 
literature together with discussions with a 
number of other researchers in the area of 

parallel program debugging and performance 
monitoring indicates that few researchers have 
considered the problems associated with 
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massively parallel architectures where hundreds 

or even thousands of processors might be 
involved - the kilo-processors. 

When the number of processors exceeds 
some small number the user of a parallel 

debugging or performance monitoring tool faces 
the problem of "bandwidth", or of "not being 

able to see the forest for the trees" or vice verro. 
The mass of information makes it easy to miss 

important individual events (e.g., anomalous or 
pathological events), and makes it hard to see an 
overall execution pattern (e.g., topology) 

amongst the processes that make up the 
program. 

Symbolic debuggers are especially useful for 
understanding the exact nature of an anomaly, 
and in the case of exception-induced process 

termination (e.g., fatal errors), the approximate 

location of an anomaly. But in the case of 
parallel systems, especially message-passing 
architectures, non-fatal or indirectly fatal errors 

can reside in processes other than the one that 
terminates with an error condition. 

Animation tools provide approximate, im­
pressionistic depictions of "patterns" within and 

between event streams, but do not provide 
pattern descriptions which exactly describe 
event streams. Human visual processing can 

detect only a few of these patterns; the human 
must be assisted by automatic pattern recogni­

tion. 
Such exact descriptions can be used for the 

deduction of similarities between processes and 
parts of a single process, and these can lead, in 
turn, to the detection of anomalous individual 
events within a stream, the analysis of the 
topology of a program, and the selection of a 
manageable number of "representative" tasks 
for closer examination. 

3.2 Compound event recognition 
3.2.1 Alg orithm 
In a LERP log the events that constitute a 

particular processor I task event stream are 
dispersed throughout the log. However, for the 
purposes of compound event recognition, we will 
separate individual processor I task event 
streams, and we will order events within a 
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particular stream according to time. 

Assume then that we have logged a program 

using p processors each having t tasks per 
processor giving a total of n = p X t separate 

event streams. Each event stream, n ;, is a 

time-ordered sequence of events. Where n i = 

< e}, .. ·, e~ > , we can now define a compound 

event as a complete subsequence of an event 
stream, < e j , · · ·, e j + d > . A compound event is a 

structure having the following fields: 

1) a type-identifier, which maps to the sequence 
of primitive event types that constitute that 
subsequence 

2) a start-time, being the timestamp of the event 
e c 

I 

3) an end-time, being the timestamp of the 
event e; +d 

4) a count, the meaning and use of which will 
be explained later. 

Note that in our terminology a compound 

event does not span or relate events from 
different tasks (e.g., a SEND from task A and its 
matching RECEIVE in task B). 

However, we do not want just any arbitrary 
subsequence of an event stream to constitute a 
compound event. Ideally, we want to select those 
subsequences that correspond, in some meaning­
ful sense, with actual "modules" or "blocks" 
within a task; for example, a SEND followed by 

an ACKNOWLE:r::GEMENT followed by a CUE. 
In the absence of clues provided by the user, we 
can use two criteria for determining which 

subsequences form natural blocks: 

1) the subsequence recurs frequently within a 
particular event stream, or between different 
event streams 

2) the subsequence is bounded by another 
compound event, or lies exactly between 
other compound events, or occurs repeatedly 
so as to indicate a loop. 
In addition, we would like to recognise 

larger sequences as compound events before 
smaller sequences, everything else being equal. 

These considerations lead to assigning a 
value to every subsequence of every event 

stream, where this value is determined by the 
formula: 
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Value = (total frequency of occurrence) X 

log 1 0 (/,ength of subsequence) X 

repeat_count 

where the repeaLcount is the number of times 
the subsequence is immediately followed in an 

event stream by an instance of itself. 
Compound event recognition proceeds by 

identifying subsequences of events in each task's 
event stream, between specified length limits, 

and computing adjacency count,s for repeated 

adjacent instances of subsequences. The highest 
Valued subsequence is chosen as a compound 
event, given the start- and end-times of its first 

and last constituent events, and subsequence 
identification is repeated after substituting a 
compound event and count, for the constituent 
subsequences. This is called colYl[XLCtion. So, the 

algorithm for selecting a subsequence as a 
compound event can be stated as follows: 
1) partition the LERP event log into separate 

event streams for each processor I task 

2) scan each stream, identifying subsequences 
of events having length, L, between certain 
minimum and maximum values 

3) calculate the frequency of occurrence for 
each such subsequence within all streams; 
call this value A 

4) calculate the number of times each sub­
sequence occurs adjacent to itself; call this 

value B, the adjacency value of a subsequence 
5) assign a value, V, to each subsequence, 

equal to A X B X log1 0 (L) 
6) select the sequence, S = < e 1, .. ., e. > , with 

the highest value of V as a compound event 

C; 
7) replace all occurrences of S within all event 

streams by a single event, of a new event-type 

C;, and assign a start-time being the 
timestamp of the first event, e 1 in this 
instance of subsequence S and an end-time 

being the timestamp of the last event, e., in 

this instance of S 
8) if an occurrence, S;, of S is immediately 

followed in a sequence by another occurrence 
of S, S i , then (i) increment the count field of 

S;, (ii) replace the end-time of S; with the 
end-time of S i , and (iii) delete Si. Let us call 
this process colYl[XLCtion. 
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This algorithm is repeatedly applied to 

successively refined event stream sequences, and 
a new highest-valued subsequence is selected as 
the next compound event for substitution and 
compaction within the event stream sequences. 
Nate that, because of compaction, eventually an 
iteration of the algorithm will fail to find any 

subsequence with a non-zero adjacency value. 
Consequently, at this iteration, all values of V 

for all subsequences will be 0, and we can 
terminate iterating the algorithm. 

At termination, we will have recognised a 
small number of compound event types. These 
compound event types represent frequent pat­
terns of adjacent event subsequences. 

Users can control the efficiency and power 

of this process by setting parameters such as 
minimum and maximum subsequence length, 
whether compound events can themselves be 
compounded, or can only be a compound of 
primitive event types, and terminating when a 

Primitive event sequence-Cell 2 Compound event sequence-Cell 2 

Event T ime 

I info 000 1 

Cue 0004 Event: CE2 = (!info, Cue, 

Rec vs 0006 Rec vs, Recvd, 

Recvd 0012 Cue, Sync, Cue) 

Cue 0015 Start 0001 

Sync 0030 End 0035 

Cue 0035 Count: 1 

Fsend 0100 

Ack 0110 

Rec vs 0134 

Recvd 0178 

Ack 0213 

Fsend 03 11 Event: CE! = (Fsend , Ac k, 

Ack 0320 Recvs, Recvd, Ack) 

Rec vs 0349 Start 0100 

Recvd 040 1 End 0791 

Ack 04 29 Count: 3 

Fsend 0498 

Ack 0523 

Rec vs 0538 

Recvd 0556 

Ack 0791 

Pstat 0923 Event: CE3 = (Pstat, Ack, 

Ack 0932 Csend, Ack, Exit) 

Csend 0955 Start 0923 

Ack 1020 End : 1093 

Exit 1093 Count : l 

Signature : CE2, CE1 (3), CE3 

given number of the best compound events have 

been found. 
An example of two primitive event traces 

from tasks m the one program and the 
compound events that are recognised by this 
algorithm is in Fig. 1. Note that the timestamp 

values have been idealised. 
3.2.2 Implementation details 
Scanning an event stream for all sub­

sequences of lengh between min-l,ength and 
max-1ength is computa tionally expensiv e, but for 
all practical purposes can be done for actual 
LERP logs in reasonable time (e.g., less than 5 
seconds per scan in a 1.5 Mbyte LERP log). 

These speeds are achieved by keeping all 
subsequence data (such as the list of primitiv e 
event types in the subsequence, the frequency of 

occurrence, the adjacency value, the length and 
the merit-value) in hashed records, where the 
hash value is a function of the primitive event 
types in the subsequence. 

Primitive event sequence-Ce ll 6 Compound event sequence-Cell 6 

Event Time 

I in fo 0002 

Cue 0004 Event: CE2 = (!info, Cue, 

Rec vs 0006 Recvs, Recvd, 

Recvd 001 2 Cue, Sync, Cue) 

Cue 0015 Start 0002 

Sync 0030 End 0038 

Cue 0038 Count : l 

Fsend 0105 Event : CE! = (Fsend, Ack , 

Ack 011 0 Recvs, Recvd, Ack) 

Rec vs 0134 Start 0105 

Recvd 0178 End 02 18 

Ack 02 18 Count : l 

Fsend 03 17 Event : CE4 = (Fsend , Ack , 

Ack 0320 Recvs, Recvd, Cue) 

Rec vs 0349 Start 0317 

Recvd 0401 End 0428 

Cue 04 28 Count: l 

Fsend 0493 Event: CE! 

Ack 0523 Start 0493 

Rec vs 0538 End 0797 

Recvd 0556 Count: I 

Ack 0797 

Pstat 0923 Event : CE3 = (Pstat . Ack, 

Ack 0932 Csend, Ack , Exit) 

Csend 0955 Start 0923 

Ack 1020 End 1094 

Exit 1094 Count : I 

Signature: CEZ, CE!. CE4, CEI , CE3 

Fig.1 - Corresponding primitive and compound events (idealised timestamps). 
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3.3 Generalised compound events 

A simple extension of the compound event 
recognition capabilities permits some recognition 

and analysis of compound events that span 

across task streams, given some indication of the 
expected geometry of interprocessor communica­
tions. The technique involves extending the 
number of types of primitive events by sub­
categorising existing primitive event types. For 

example, rather than just have a CSEND and an 

ISEND event type, we identify the source and 
destination of the message within the event type 

as a new type such as SEND (s _type, from, to), 
where s _type is the type of send (e.g. CSEND or 

ISEND), from is the task identifier for the 
sending task and to is the task identifier for the 

receiving tasks (similarly, for receive event 
types). 

The user can then specify whether SENDs 

with different s _type values should be distin­

guished as different event types or not, whether 
the from or to fields should distinguish, and if 

so, whether on the basis of the from and to 
values taken literally or via some mapping based 
on a user-supplied topology {e.g. in an 8 X 82 
dimensional mesh topology, both SEND 
(CSEND, 3, 11) and SEND (ISEND, 6, 14) become 
SEND (Any, Self, South)} . Many programs use 

one of a small set of topologies (linear, ring, 
mesh, torus, hypercube) that make it feasible to 
use an enumerative approach to specify this; the 

CCONFIG event in the APlOOO system contains 

additional indication of the mesh dimensionality, 
for instance, and we may add further inform­
ation about other significant structure (such as 
that column or row relationships matter in the 
program, or that some subset of processors can 
be regarded as equivalent, e.g. Tuple server cells 
in a distributed Linda implementation). 

3.4 Partitioning tasks into equivalence classes 

After recognising compound events, we have 
reduced the event stream for each task to a 
more compact, yet exact, description of the 
original, by substituting compound events for 
large subsequ ences of other events, and 
compacting adjacent instances of a compound 
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event into the one record. 

If we ignore the time information in each 
event stream, and explicitly tag each occurrence 
of a compound event with its count, the resulting 
event stream description is a regular expression 

representing the sequence of event types of 
events in the original event stream. Let us call 
such a description the signature of an event 
stream for a given task. Signatures for the two 
tasks are shown underneath Fig. 1. 

Now, we can partition the set of tasks 
associated with a particular program using 
equivalence relations defined in terms of task 

signatures. Where two tasks have identical 
signatures, we call them identical tasks. We can 
also ignore the count tag in the signatures, 
thereby getting a description which we call the 
reduced signature of a task. Where two tasks 
have identical reduced signatures, we call them 
cognate t.asks. Clearly, these identities give rise to 

equivalence classes. 
In the example there are two equivalence 

classes of identical tasks among the whole group 
of tasks (the signatures of the other tasks were 

not shown above): 
SIG A TURE for cells 

Q ... 5, 7 ... 13, 15 .. . 21, 23 .. . 29, 31 ... 37, 

39 .. . 45, 47 ... 53, 55 ... 61, 63 

: CE2 CEl (3) CE3 

SIGNATURE for cells 
6, 14, 22, 30, 38, 46, 54, 62 

: CE2 CEl CE4 CEl CE3 

Having automatically partitioned all tasks 

into equivalence classes, the user can: 
1) determine whether the topology induced by 

the set of equivalence classes corresponds to 
the intended topology. 

2) identify tasks which may have anomalous 
events by examining singleton equivalence 

classes. 
3) examine the signature for a task or set of 

tasks to see whether the "block" structure 
appears to reflect the intended substructuring 

of the task. 
4) select a subset of tasks, typically one or two 

from each equivalence class, for viewing 
using available tools (such as UPSHOT or 
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those provided via PARA GRAPH), or for ex-

amining using a symbolic debugger. 
In our example the topology of the identical 

tasks corresponds to a single column of an 8 X 8 

cell array, as shown here. 

0 1 2 3 4 5 6 7 

8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63 

if 
The topology of processor classes is clearly 

that the column of cells 6, 14, 22, etc. behaves 
differently from the rest. We can offer no ex­

planation in this case. 

3.5 XCERT - an X-based tool for topology ­
specification , compound event recognition , 
and topology analysis 
The capabilities discussed in the previous 

sections have been integrated into a single tool, 
XCERT (X-based Compound Event Recognition 

T ool). 
XCER T is an X-based tool that enables a 

user to specify a LERP log and to graphically 
specify the topology that the user expected the 

program that generated the log to obey (known 
as the expected topowgy). Various run-time 
options for compound event analysis can also be 
set. Compound events are then derived, along 
with the topological equivalence classes that 
these lead to. 

In the example outlined above the expected 
topology {2 dimensional, 8 X 8 configuration, 
relative addressed (mesh topology)} is indicated 
by a menu selection. Three selections are 
currently implemented in XCERT, each allowing 
a further choice of communications addressing: 

I 1-dimensional I 2-dimensional I Other I 

I Relative I Absolute I 

The other topologies mentioned in Sec. 3.3 have 
not yet been implemented. 
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XCERT displays a graphic map of the cells 

in this topology. The configured size is obtained 

automatically by inspecting the event trace. 
Selecting Other allows users to specify the 

expected topology by partitioning the cells into 

two or more classes. A user-defined short label 
can be given to each class for mnemonic 
purposes, and the display reacts to show the 
partitioning as the user develops it. In the ANU 

C-Linda implementation, for example 1 1 >, there 

are two classes of cells that are expected to 

behave quite differently: a small number of cells 
are chosen to act as "Tuple Space servers", the 

remainder as "evaluation servers". The XCERT 
user can select the five to eight Tuple servers as 
a class marked T, the evaluation servers as 
another, marked E. 

After the user has set the other run-time 
options mentioned in Sec. 3.3, the tool runs the 

CERT algorithm over the event trace. As well as 
displaying these derived compound events, task 

signatures and equivalence classes, XCERT 
displays the derived topology actually exhibited 
by the program. These equivalence classes of 

cells are displayed on an overlaid rendition of 
the graphic cell map, with the equivalence 
classes shown as colours. The user can compare 
the derived and expected topologies visually, and 

reset the CERT parameters to run further 

analyses if necessary. The resulting matches -
and mismatches - are a valuable debugging aid 
to understanding actual program behaviour. 
Where the derived topology does not match the 
expected the user can turn to other tools in the 
LERP suite to investigate the anomaly. 

As well as displaying these derived 
compound events, task signatures and 
equivalence classes, XCERT displays the derived 
topology actually exhibited by the program. It 
does this by graphically overlaying the derived 
topowgy over the expected topology, thereby 
allowing the user to easily compare expected 
program behaviour with actual program 
behaviour. 

3.6 Determining phases of a process 
Reduced signatures, to the extent that they 

each reflect a natural, abstracted "block" 
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structure within each task, also reflect the 

computational "phases" of that task, with phase 

boundaries corresponding to abstracted 
compound event boundaries. With cognate tasks, 
these phases will be common. We can view the 

phases of a class of cognate tasks (or, indeed, of 
all tasks) by representing a particular phase as 
an UPSHOT state, and inserting dummy events 
into the log to mark the boundaries of each 
phase. 

4. Conclusion 
Future directions for this work will extend 

the approach that we have taken in providing a 
multi-layer, multi-view toolset, with au tomatic 

behavioural analysis, guiding manual selective 
focusing. We identify the need to include the 
whole program view in debugging and analysis: 

reductionism will not be successful in kilo­
processmg. 

Extensions planned in the near future in­

clude: 
1) recognismg and highlighting clustering in 

patterns of decomposition and event be­
haviour 

2) discriminating between otherwise similar 
compound events on the basis of signif­

icantly different duration over time (clas­
sical Clustering Analysis techniques can then 
be applied). 

3) determining equivalence classes of tasks, 
and the phases of tasks, using signatures and 
reduced signatures, more generally by 

taking relations other than identity. This 
will require more powerful pattern analysis 
methods such as local optimisation (e.g. 
using simulated annealing techniques); some 
of the techniques of Genome Analysis can be 
applied. Certain types of events (such as 
SYNC) can thus be given more significance 
than others in an inexact comparison of 
similarity and in the derivation of com­
putational phases. 
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To use the highly parallel AP1000 computer in visual computing, we developed video 
hardware having a 400 Mbytes / s peak transfer rate and the ability to display HDTV 
images generated by processors at 30 frames / s, and parallel disk hardware that uses 
a 3.5- inch disk drive for each cell. providing a large capacity and high aggregate 
transfer speed . We also developed parallel visualization software CaVis, 
implementing it with a pipeline of task programs, each of which represents a 
visualization phase. We appl ied this to th e visual simulat ion of molecula r dynamics, 
global climates, and ray tra cing . 

1. Introduction 

Large amounts of date are often best 
understood visually. "Scientific visualization"-a 

major topic of interest in supercomputing -

involves converting multidimensional arrays of 
numeric data to visual images. Visualization 
cannot be accomplished efficiently with vector 
processing due to irregular data structures and 
complex calculations. Massively parallel 
computers such as the APlOOO should help speed 

up visualization, since parallelizing the computa­
tion and visualization tasks and running them 
concurrently on the same machine eliminates 
data transfer between the computing and 

visualization machines. Users can also interact 
with the programs more easily than when using 
separate systems. 

To improve the APlOOO's I/O performance 
and apply it to visual computing, we developed a 
video and parallel disk hardware option. The 
video hardware ou tputs HDT V-resolution im­
ages distributed in processor memory in real­

time, and the parallel disk hardware processes 
large amounts of data at high speed. Visualiza­
tion software Ca Vis uses parallel processing to 
visualize at high speed. 

2. Video and parallel disk option hardware 

The distributed-memory, highly parallel 
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APlOOO 1
' • 

2
' (see Fig. 1) can be configured from 

16 to 1024 cell processors. To take advantage of 

this parallelism, the I/O subsystems for the 

APlOOO should be scalable. When I/O subsystems 
are connected to a single cell processor or a 
front-end workstation, multiple cell access to I/O 
devices is serialized, often becoming a bottl­
eneck. To avoid this, we designed a distributed 
I/O subsystem for image display and data access 
to disks. 

For the video subsystem, image memory is 
distributed to processors, each of which directly 

Two-dimensional torus network (T-net) 

Cell : Cell processor RTC : Routing controller 
BIF : Broadcast network interface 

Fig. 1 - APlOOO architecture. 
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Fig. 2 - Video and disk option. 

Fig. 3 - APlOOO with parallel disk frame . 

accesses its own llllage memory. To output 
distributed image data to a high-resolution 

monitor, we designed special hardware for 
collecting images. Disks are also distributed to 
processors to obtain scalable data transfer speed. 

The hardware we developed provides the 

basic APlOOO with: 
1) Real-time output (30 frames per second) of 

HDTV-and NTSC-resolution data 

2) Large-capacity, high-speed parallel disks 

3) Animated display of consecutive image data 

partitioned and stored on parallel disks 

The hardware consists of optional units, 

disk drives, and display frame memory (DFM) 

units (see Fig. 2). Each optional unit is connected 

to a cell via the cell's local bus (LBUS), a disk 
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Table 1. Video and disk specification 

Parameter Specifications 

Display resolution NTSC 720 x 486 
f--~~-+~~~~~~~~~ 

(pixels) HDTV 1 920 x 1 035 

Video interface 

NTSC D-1 component digital 
RGBA component 

digital 
RGBAS analog 

HDTV Component digital 
RGBA component 

digital 
RGBAS analog 

Nunber of outputs One or two 

Pixel gradation 

Display mode 

8 bits per r , g, b, and a attribute 
(total of 32 bits/ pixel) 

Single/ double buff er 

Display refresh PFM to DFM: 400 (peak) 

rate (Mbyte / s) Disk to PFM: 3 per drive 

Disk drivers 
(Mbyte) 

System 
configuration 

500 each 

16, 32, 64, 128, 256, and 512 
options 

(# options must be less than or 
equal to # cells) 

drive via an SCSI bus, and DFM units via the 

video bus (VBUS). Specifications of the video 

and disk hardware are listed in Table 1. Figure 3 
is the APlOOO with the option hardware with a 
cell cabinet (right) and a disk cabinet (left). This 
basic cabinet set holds up to 128 cells and 128 

optional units. 

2.1 Parallel disk 
Each cell has access to a 500-Mbyte 3.5-inch 

hard disk. The SP ARC integer unit (IU) in each 

optional unit controls the SCSI interface 

(SCSI-IF) for the drive. The maximum transfer 

rate is 3 Mbytes/s per drive. Data transfer is 

possible between a disk, the cell processor's main 
memory, partitioned frame memory (PFM), and 

IU memory. 

2.2 Video 
PFM contains image data generated by each 
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cell, which reads from and writes to its own 
PFM. The image distributed among the PFMs is 
written to display frame memory (DFM) via the 
VBUS. Each PFM consists of two 1-Mbyte 
banks of three-port memory used for double 
buffering. One bank is accessed by the cell and 
the other transfers image data to DFM. When 
only one bank is used, it acts as a single buffer. 

The 8-channel, VBUS ring data bus 
transfers data between PFM and DFM. Each 
channel has a 50 Mbytes/s peak transfer rate. 
The VBUS has a maximum transfer rate of 400 
Mbytes/ s, which is fast enough to display HDTV 
resolution (1920 x 1035 pixels) images in realtime 
(30 frames/s). 

The DFM has 16 Mbytes of memory divided 
among 8 groups, each consisting of two 1-Mbyte 
memory banks used for double buffering. One 
bank is accessed by the VBUS, and the other is 
used for display. The video interface provides 
analog and digital image signals in HDTV and 
NTSC formats. 

2.3 Image display 
The hardware image display is diagrammed 

in Fig. 4. Images are distributed to PFMs in 
vertical lines as shown in the figure. The Nth of 
P processors handles Xth vertical lines such that 
N = X modulo P. In Fig. 4, Pis 16. Processor 0 
thus handles vertical lines of X addresses for 
0, 16, 32, .. ._ Processor N handles of N, N + 16, 

N + 32, ·· ·. 
The DFM consists of 8 channels. An image 

Partitioned frame memory 
Cell 8 8 24 Display frame memory 

Cell O 

Cell 9 

Cell 1 

Cell 16 

Cell 7 

Fig. 4 - Hardware image display . 
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frame is distributed by vertical line division with 
fixed 8-line intervals. 

Display is accomplished as follows. 
1) Writing image to PFM 

Each cell generates a part of the vertically 
divided frame image and writes image data to 
its own PFM. PFMs are double buffered with 
the foreground (writable) sides used for writing. 
2) Data transfer from PFM to DFM 

When a display request is issued by all 
processors, data is transferred in parallel from 
PFM to DFM using the 8 channels. In each 
channel, data is transferred from the first to the 
last processor in the VBUS ring. Iri Fig. 4, for 
example, cells 0 and 8 are grouped and 
connected in the channel 0 ring. Cell 0 first 
transfers data to DFM through the VBUS, then 
cell 8 transfers data. This is done simultaneously 
in all 8 channels. 
3) Image display 

After a new image frame is written to DFM, 

the foreground (writable) and background 
(readable) sides of DFMs are exchanged to 
display a new image frame. Each DFM has a 
first-in-first-out (FIFO) buffer. Image data is 
read from the DFM and written to these buffers. 
This data is then read in display sequence at the 
appropriate clock timing and multiplexed every 
8 pixels. Output data is then converted to analog 

video signals. 
4) Animated display using the parallel disk 

Image data distributed among cells is stored 
on the parallel disk. The images are broken 
down into vertical lines in the same way as that 
for image display. Image data in each cell is 
written in continuous sectors on each disk to 
obtain the maximum I/O speed. When display 
commands are issued from all cells, IUs in 
optional units read image data from disks and 
transfer it to PFM using DMA. Images can then 
be displayed. This is done for successive image 
frames in animation. TSC resolution has a 
30-frame/s display rate with 16 options. HDTV 
resolution has a 15-frame/ s display rate with 64 
options, or a 30-frame/ s rate with 128 options. 

2.4 Basic video and parallel disk sof tware 
Software includes optional system, image, 
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and standard disk I/ 0 libraries. 
The optional system library is a collection 

of low-level functions not available to applica­

tion programmers. 
The rmage library is a set of functions 

called by application programs in cells. All cell 
programs are assumed to call the same function 
at the same time. Functions for displaying, 

saving, and loading image data are supported. 

The standard disk I/O library is a set of 
UNIX-compatible I/O functions. Each cell 
program opens, closes, reads from, and writes to 
its own disk drive. 

3. CaVis 

The scientific visualization software called 
Ca Vis we are developing has the same set of 

programs residing m all cells and generates 
images in parallel. These images are displayed 
and stored on the parallel disk. 
Ca Vis design objectives are: 

1) High-performance visualization usmg data 
parallel algorithms 
Visualization is speeded up by partitioning 

and distributing the data space to all the 
processors based on algorithms suited for 
massively parallel processing. 
2) Creation of programs that are easy to 

develop, maintain, and use 

Visualization programs tend to be complex 

and are difficult to use and maintain. Ca Vis uses 
modular programming3

' to rmmm1ze these 
problems. 
3) Integration with computational programs 

The visualization program is required to run 
concurrently with computational programs in all 
cells. Integrating computation and visualization 
makes it possible to construct interactive visual 
simulation systems where users control the 
simulation. Animation is also easier. 

Numeric Geometric Image 
Numerical data Data primitive data 
simulation f-=--- conversion f--'------ Rendering t------1 Animation 

F ig. 5 - Visual computing. 
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3.1 Program s tructure 
3.1.1 Visualization process flow mode 
In visual computing, the numeric 

computation phase produces arrays of numeric 
values (see Fig. 5). 

The data conversion phase converts numeric 
data to geometric primitives such as polygons 
and lines renderable using scanline conversion 

and a hidden-surface removal algorithm based 

on a depth buffer 4
' . If the physical value at each 

grid point is a scalar, such as temperature, 
pressure, or density, numeric data is often 
converted to contour lines for two-dimensional 

field data. For three-dimensional data, displaying 
a cross section is the simplest way to visualize 
volume data. Another common method is to 
generate isosurfaces from a scalar field as 

proposed in Ref. 5. 
3.1.2 Visualization task pipeline 

We mapped the visual computing flow onto 
a cell task sequence which we call the 

visualization pipeline. This is somewhat similar 
to a UNIX command pipe. Data is fed to the 
first task, processed, and passed on to 
subsequent tasks (see Fig. 6). 
The rendering phase is split into object and 
image tasks to render geometric objects usmg a 
z-buffer-based hidden-surface algorithm. Various 
visualization pipelines can be constructed using 
available tasks. Data transfer from one task to 

another sometimes include interprocessor com­
munication. 

3.2 Visualization pipeline implementation 
The functions and implementation of 

individual CaVis tasks are explained m the 
sections that follow. 

3.2.1 Conversion task 
The conversion task produces geometric 

primitives such as vectors, polygons, and spheres 

l 

Simulation j--+ Conversion I--- Object I--- Image H Animation 

Fig. 6 - Example of visualization pipeline tasks. 
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to represent two- or three-dimensional field data 

with contour lines and isosurfaces. Two­

dimensional scalar field data can be visually 
represented in many ways {see Fig. 7a)}. The 
conversion task supports the following: 

1) Color: Triangles are formed from two­

dimensional grids {see F ig. 7b)}. Color 
values are given to the vertices to be 
rendered in the object task. T he pixels 

inside each triangle are produced by 
interpolating values at the ver tices. 

2) Contour line: Contour lines are generat­
ed {see Fig. 7c) }. 

3) Filled contour line: T he areas between 
contour lines are filled with a color. 

4) Height field: Physical values are translated 

into height values. Each vertex coordinate 
of the triangles has an x and y coordinate 
plus a z value corresponding to its physical 
value. 

5) Translucency: P hysical values are translated 

into color and opacity values at the vertices. 
A lower physical value results in a lower 
color intensity and opacity value and reveals 
hidden objects when rendered with other 
objects. 

a) Two-dimen­
sional data 

b) Triangles c) Contour lines 

Fig. 7 - Conversion task functions . 

-+ Selector 

Fig. 8 - Example of an isosurface for a voxel. 
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Isosurfaces for three-dimensional scalar field 
data are extracted using the marching cube 
algorithm 5 ) • Conversion task is designed so that 

unit data elements are processed independently. 
For two-dimensional array data, a rectangle 

with four corner-grid points is processed as a 
unit. For three-dimensional volume data, a voxel 
with eight corner-grid points is processed as a 
unit (see Fig. 8). T his makes data distribution 
very flexible. 

3.2.2 Object task 

The object task generates subimages for 
geometric objects such as vectors, polygons, and 
spheres. The subimages are made up of pixels 
which have the attributes of color intensity, cov­
erage, opacity (called an alpha value), and a z 
value, which is the distance between the eye and 
surface points corresponding to the pixel 6 ) • The 

coverage is an 8 by 4 bit mask which represents 
subpixel coverage of the object on that pixel and 
is used for antialiasing in the image task. 

A Ca Vis task consists of a sequence of 
lower level parts called filters. These are similar 

to tasks but are implemented as C functions and 
pass data by function parameters. 

The object task consists of many filters. The 
start and end filters have special functions 
related to data distribution. The optional 
selector filter at the top selects a part of the 
geometric primitive sent from either the previous 

task or the host process. When all geometric 
data is sent from a previous state, as when all 
data is broadcast from the host, this selector 

filter is used to select part of the primitives for 
each cell. Primitives are selected cyclically by 
processors, that is, when N = 0 modulo P, the 
object is selected, where N is the processor 

Pretrans f- Clipping f- Posttrans I- Scanconv I- Distribute +--

Fig. 9 - Filter pipeline in object task. 
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number, 0 the object primitive number, and P 
the total number of processors. 

The subimages generated in the object task 
are divided into horizontal segments and are 
distributed among processors by horizontal 

scanline. The distribute filter in the object task 
buffers pixel data and sends it when the buffer 
becomes full or is flushed by an end-of-frame 
command. The torus network of the APlOOO is 

used to transfer data. 
Intermediate filters are standard graphic 

pipeline functions for rendering geometric 
primitives such as polygons, vectors, and 
spheres 4 l . The pretrans filter translates vertex 
coordinates into a normalized coordinate system 
before the clipping filter clips the screen 

windows. Coordinates of vertices are then trans­
formed into screen coordinates by the posttrans 

filter. The scanconv filter then performs scan 
conversion with a shading calculation for each 
pixel. 

3.2.3 Image task 
In the image task, hidden-surface removal, 

translucent blending between surfaces, and 
antialiasing is done pixel by pixel using an alpha 
buffer algorithm 6

) . 

There are many possibilities for dividing image 
space (see Fig. 10). Ca Vis uses either horizontal 
or vertical lines for the images because it is easy 

and effectively balances the load and minimizes 
computation cost. When video hardware is used, 
the vertical line mode is used to suit PFM. 

The image task stores pixel information in 
an alpha buffer. Pixel segment data, i.e., 
intensity, depth, opacity, coverage, and object 
number, is sorted by depth. After all objects are 
processed, the final visible intensity is calculated. 
When the pixel segment nearest the eye is 
opaque, that pixel segment is visible and its 
color intensity is output to the frame buffer. 
When pixel segments are translucent, they are 

merged with later pixel segments. Antialiasing 
takes into account the coverage of each pixel 

segment. 
3.2.4 Animation task 
The animation task controls displaying 

images stored on the parallel disk. A control 
panel on the front-end workstation window is 
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Screen areas 

a) Block b) Dot 

c) Horizontal lines d) Vertical lines 

Fig. 10 - Examples of image space di vision. 

Animation 

Fig. 11 - AMBER molecular dynamics simulation. 

used to interactively control animated display. 

4. Appl icat ion examples 

Three examples of visualization follow. 

4.1 Molecular dynamics 
The AMBER 7

) molecular dynamics pro­
gram, which calculates the dynamics of protein 
molecules, was parallelized for the AP1000 8

l . 

We used protein molecules soaked in water for 
test data. One of the objectives of the simulation 
was to study the protein dynamics at a 
microscopic level. Protein motion is observed by 
animation to understand its behavior. 

The AMBER task calls Ca Vis to display 
atoms as spheres and bonds as vectors; object 
data is then fed to the object and image task 
pipeline (see Fig. 11). 

AMBER uses particle di vision in which 
atoms are distributed randomly to processors for 
balancing the load. Each task receives data from 
the AMBER task of the same cell. Figure 12 is 
an example of a rendered image. 
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Fig. 12 - A rendered image of a lysozyme protein 
in water. 

This model contains a human lysozyme with 130 
amino acid residues (2 041 atoms) at the center of a 
pressure control cube (7.0 X 5.9 X 5.4 nm) filled 
with 6 208 water molecules. 

Fig. 13 - Visual simulation timing for molecular 
dynamics. 

Figure 13 shows results for the visual 

simulation for AMBER. The time is for 5 steps 

of molecular dynamics calculation. A 1 920 by 

1 035 pixel resolution image is rendered for each 

time step. All 20 665 atoms and bonds are render­
ed in each frame. Task and communication 
library run times are shown for each task. For 
example, amber-task time is the AMBER task 
run time and amber-lib time is the communica­
tion library time by the AMBER task. The 
null-task time shows the idle time. Overall task 

time is decreased by increasing the number of 

cells and the total performance is improved. 

Communication overhead is very small. 

4.2 Global climate simulation 
Global climate simulation was executed on 

the Fujitsu VPX240 vector computer and 

FUJITSU Sci. Tech. J., 29, 1 (March 1993) 

SUN4 r--------------, 
GCM 

1 

control : 
~~~~ r~~~~l 

Animation 1 
control 1 

I 
---------J 

In cells r-- ----------------------, 
1 1 
1 I 
I Conversion Object Image Animation 1 
1 task task task task 1 
I 1 L _______________________ J 

Fig. 14 - Global climate simulation. 

Fig. 15 - A rendered image of global climate 
simulation. 

From the top, snow on the ground, sea ice, and the 
ground temperature are displayed. The results of 
two simulations with different initial conditions 
are displayed in one image frame. An animated 
sequence containing 577 HDTV image frames was 
made. The picture is the last image frame, after 19 
months of simulation. 

visualization was done on the APlOOO (see Fig. 

14). The VPX240 and the APlOOO host work­

station are connected via the FDDI link. The 

global circulation model (GCM) program and 
APlOOO host processes communicate via a UNIX 
socket interface. VPX240 simulation is monitor­
ed visually on the APlOOO. The user controls the 
GCM program by issuing various commands 
from the SUN4 workstation. 

The GCM program took 2.7 seconds for 

every one-hour step calculation on the VPX240. 

It took 2.9 seconds to transfer 1.7 Mbytes of data 

from the VPX240 to the SUN 4 workstation. 
Using 64 cells, it took 1.2 seconds to render the 

earth's ground temperature distribution in a 

frame of 1 920 by 1 035 pixels with antialiasing. 

The time includes receiving data from the 
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Table 2. Timing results of ray tracing 

Execution time (s) 

Scene (Performance ratio) 

SUN4/ 260 Transputer-32 APl000-64 APl000-512 Speed increase 

Water drop 1 9 159.8 1 093.8 37.1 15.0 129.3 (1.0) (8.3) (246.9) (611.0) 

Water drop 2 5 421.1 956.8 98.9 19.4 305.2 
(1.0) (5.7) (54.8) (280.0) 

Quark 113 872.9 6 780.4 1 095.1 155.2 
437.5 (1.0) (16.8) (104.0) (733.7) 

Execution time includes loading geometric data and saving the image to the host. 
The screen resolution is 1 024 X 1 024 pixels. 

Reflection 

Objects 

Pixel 

Screen 

View point 

Transmission 

" 

I 
I 

I 
/ 

Screen area 

//f--~~~~~~~--i 
I 

Horizontal line 

Fig. 16 - Ray tracing-. 

For each pixel on the screen, rays are traced along 
the directions from which the light comes. The 
first point on the object surface that the ray's 
strike is the visible point and the intensity for this 
pixel is calculated taking into account lighting, 
reflection, and transmission. 

workstation. A frame contains 7 200 triangles 

and 7 000 vectors. The VPX240 and APlOOO that 

were run in pipelined and ground-temperature 

images for one-hour step calculations were 

updated every 5.2 seconds when 64 cells were 

used. 

Figure 15 is the result of global climate 

simulation using MRI-GCM. 

4.3 Ray tracing 
A ray tracing program developed by Fujita 

et al 9 >. was ported to the APlOOO. The screen 

space is divided in horizontal line mode (see Fig. 

16). Table 2 lists the timing results of the ray 
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Fig. 17 - Quark scene generated by ray tracing. 

The screen explains the creation of a "black hall". 
Nucleus of atoms are destroyed by strong gravity 
and split into quarks. Colored spheres represent a 
variety of "quarks". 

tracing program for three examples. Figure 17 
shows an image for a quark scene. 

With 512 cells, the APlOOO performed ray 

tracing 280 to 734 times faster than the 

SUN4/ 260. The speed increase ratio, compared 

with a single processor, is 129.3 to 437.5 for the 

same scene. 

5. Conclusion 
The video and parallel hardware we 

developed enables high-speed image data output 

and efficient handling of large amounts of data. 

The data transfer speed between disks and cell 

processors is scalable with the number of 

disk-connected cells. 

FUJITSU Sci. Tech. J., 29, 1 (March 1993) 
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Ca Vis software speeds up visualization using 
parallel processing. Task pipelining provides a 
flexible way to build up task configurations. 
Two application examples, molecular dynamics 
and global climate simulation, were implemented 
with slightly different task pipeline configura­
tions. 

With the video and parallel disk hardware 
and Ca Vis visualization software, the APlOOO is 
well suited for visual computing. Parallel disk 
hardware is useful for any application which 
handles large amounts of data. 
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Visualizing 3-Dimensional Data on the 
AP1000 
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Recent advances in computer technology have made it feasible for scientists and 
engineers to work with sampled data representing the variation of physical 
quan t ities throughout a 3-dimensional volume . The FUJITSU AP1000 has the 
memory capacity and processing speed to handle large 3-dimensional data sets and 
generate images from these data sets at interactive or near-interactive rates . We 
have implemented parallel versions for the AP1000 of two basic techniques for 
visualizing 3-dimensional scalar data sets: volume rendering and isosurface 
gene ration . The key issues in parallel izing these algorithms are the data distribution 
and work distribution. This paper describes the distribution methods used and the 
tradeoffs involved, and presents results obtained with example data sets. 

1. Introduction 

Many scientific and engineering disciplines 
generate large masses of data describing the 
variation of quantities as a function of position 

within a three-dimensional volume. This data 
can come from physical measurements or 
computational simulations, and from a wide 
variety of fields including atmospheric studies, 

aeronautics, medicine, geophysics, and many 
others. A volume data set consists of quantized 
values of one or more scalar fields that have 
been sampled at positions throughout a 
3-dimensional volume. The sampling can be 
performed on a regular or irregular grid, with 
data set sizes ranging from kilobytes to 
gigabytes. These large masses of data are far 
too complex to be understood by examining the 
individual sample values. Visualization, the 

process of translating the data from its numeric 
form to a visual form, can be of immense 

assistance in the process of understanding the 
data. 

The size and number of volume data sets 
that are being produced today, and will be 
produced in the future, present a challenge to 
current rendering architectures and techniques. 
The demand for better and faster algorithms 
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increases faster than the speed and sophistica­
tion of the hardware and software. T he demand 
for interactive visualization also drives the need 
for better and faster algorithms, as researchers 

need to use visualization techniques for steering 
their simulations and exploring their results. 
Batch oriented visualization is no longer a 
feasible option. One solution to this problem is to 

use scalable, massively parallel architectures to 
perform the visualization tasks. By usmg a 
scalable architecture, increases in the size and 
number of the volume data sets can be dealt 
with by scaling the architecture with the 
problem size. 

Two of the most common techniques for 
visualizing three-dimensional scientific data are 
volume rrwdeling and vow me rendering. volume 
modeling is the creation of geometric models of 
areas of interest within a three-dimensional 
volume. One common technique for this is the 

Marching Cubes isosurface extraction techniqu e 
described by Lorensen and Cline 1 l • An 
isosurface is analogous to a contour line on a 
map - it has the characteristic that the field 

value is the same at all points on the isosurface. 
Isosurface display is particularly useful in 
situations where valu es of the scalar field can be 

FUJITSU Sci . Tech. J ., 29 . 1, pp. 50-60 (March 1993 ) 
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Fig.1 - Two nested isosurfaces of an electron den­
sity function. 

Fig.2 - Volume-rendered image of atmospheric car­
bon-dioxide concentration data. 

related to discrete classifications of the material 

being represented, for example, different tissue 
types in a medical Magnetic Resonance Imaging 
(MRI) image. Figure 1 is an image of two nested 

isosurfaces from an electron density function of 

a simple molecule. The outer isosurface is 
rendered as semi-transparent so that the inner 
isosurface can be seen. 

Volume rendering is the process of 
generating an image directly from the volume 
data without the generation of an intermediate 
geometric model2 ) - 7 ) • Typically this is done by 
mapping the sample values in the volume to the 

colour and opacity of an imaginary semi­
transparent material, and then rendering an 
image of this material. Sample values of interest 
can be assigned high opacity values and a 

specific colour to highlight their location within 
the volume while other sample values can be 
assigned low opacity values to reduce their 

FUJITSU Sci. Tech. J., 2 9, 1, (March 199 3) 

visual importance. It is also possible to render 
geometric and volumetric primitives together, 
allowing the inclusion of geometric primitives 

such as coordinate axes and reference objects 
such as isosurfaces. This technique is useful for 

displaying relationships between areas of 
interest that are not well defined in a geometric 
sense. It is also useful for displaying the volume 
around areas of geometric interest, such as the 
volume near an isosurface. 

Figure 2 is a volume-rendered image of a 
data set obtained from a global atmospheric 

simulation model. The model simulates the 

emission, transport and absorption of carbon 
dioxide (C0 2 ) in the atmosphere, and the image 
represents the distribution of carbon dioxide in 
the atmosphere at a single time point in a full 

year's simulation. Moderate to high concen­
trations of CO 2 are rendered as yellow to red, 
while low concentrations of C0 2 are rendered as 
blue. Intermediate values are rendered as 

transparent so that the areas of high and low 
concentration are visible. A geometric reference 
plane containing a polygonal map of the earth is 
rendered beneath the volume to give recog­

nizable reference points to the data. 

2. Volume rendering using ray casting 
Although volume rendering using ray 

casting is one of the most compute-intensive 
methods for rendering three-dimensional data, it 
is still a very widely used technique. The main 

reasons for this are that it generates high quality 

images, and that it makes it possible to render 
both volume data and geometric primitives. 
Through the use of parallel architectures, it is 
possible to perform volume rendering using ray 
casting at interactive rates. The computational 
power and memory capacity of the AP1000 8 l · 9 l 

makes it ideal for rendering very large 
three-dimensional data sets using this technique. 

2.1 The ray-casting algorithm 
Performing volume rendering with ray 

casting is conceptually straightforward. A ray is 

cast from the view point, through the pixels in 
the image plane, and into the volume data. As 
the ray passes through the volume it is sampled 
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at evenly spaced intervals. The value at a 

sample point is obtained by trilinear inter­
polation of the values at the corners of the 
volume element that contains that point. (Tri­
linear interpolation involves interpolating linear­
ly between sample points along each coordinate 
axis.) The sample values are then translated to 
colours and opacities through a mapping func­

tion. The contributions of the samples are 

accumulated until the opacity level becomes 
sufficiently close to unity or the ray leaves the 
volume. At this point a final colour for the ray, 
and therefore the pixel that the ray passed 

through, can be computed. We have implemented 
a ray-casting volume renderer as an extension to 
an existing ray-tracing geometry renderer. Ray 
tracing is more sophisticated than ray casting, as 

additional rays are traced to simulate shadows 

and the light interactions with complex mate­
rials. In this fashion we can include geome­
trically defined structures such as coordinate 

axes and reference objects that make the volume 
data easier to understand. More details on the 
basic structure of the renderer can be found in 
other work 1 o J · 1 1 > • 

2.2 Work distribution and load balancing 
The ray-tracing program has been 

parallelized using an image SJXLCe subdivision and 
the worker-farm paradigm, in which a master 

process (the host or a cell) issues work items 
(rectangular blocks of pixels) to worker proc­
esses (the cells). Initially the master assigns each 
worker cell a work item to render. As a cell 
completes its assigned work item it transmits it 
back to the master, which then sends that cell 
the next work item to be rendered. Below we 
present an algorithm that is based on earlier 
work performed on the APlOOO 1 OJ , except that 

instead of using scan lines as the work items, 
square pixel blocks are used. Square pixel blocks 
are preferable to scan lines because of the 
potential for exploiting dol.a coherency while 
rendering. Data coherency refers to the fact that 
nearby pixels tend to use much the same data in 
the rendering process, particularly when render­
ing volume data. Similarly, various acceleration 
techniques used in ray tracing make use of 

52 

cached results to avoid duplicated computa­
tion 1 zJ . These caches are much more likely to 

contain useful data when rays are traced in 

contiguous blocks. 
Just as adjacent pixels are likely to use 

much the same data in the rendering process, 
they are also likely to require a similar amount 
of computation. Thus there is an unavoidable 

trade-off between exploiting data coherency and 

obtaining a good load balance. There is also a 

trade-off between load balance and communi­
cation. Small work items require more communi­

cation (since two messages are required for each 
work item) but giv e better load balance. Large 
square work items require less communication 
and exploit data coherency effectively, but can 
result in extremely poor load balance. To obtain 

a better load balance using square pixel blocks, 

we have developed an adaptive extension to the 
worker-farm algorithm, using timeouts for each 
pixel block. If a cell is rendering a pixel block 

and the timeout period expires, the cell sends the 
master a message describing how much of the 
block has been completed. If there are no more 
pixel blocks to be rendered and there are idle 
cells, the master subdivides the pixel block 
among the idle cells (including the cell that just 

completed the block). If there are no idle cells, 
the master simply sends the block back to the 

cell for completion. 

2.3 Data distribution and distributed virtual 
memory 
With the work distribution system described 

above it is not possible to determine a priori 

which pixel blocks a cell will be required to 
render. It is therefore necessary for each cell to 
be able to render any portion of the image, 
which in turn makes it necessary for each cell to 
have access to any part of the volume data at 
any time. Since volume data sets can be very 
large and the memory on each cell is limited, we 
have implemented a distributed virtual memory 
system to provide that access. During the 
rendering process, when a cell requires volume 

data which it does not have, it requests it from 
another cell. This increases the amount of 
communication required for the rendering proc-
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ess and results in a slower overall rendering 
time. The implementation goal of the distributed 
virtual memory system ls to minimize this 
communication. 

The implementation of distributed virtual 
memory described below is loosely based on the 
work performed by Green and Paddon 1 3 > · 1 4 >. 

The implementation for our renderer divides the 
APlOOO into a set of neighbourhoods of one or 
more adjacent processing cells. The volume data 
set is subdivided into approximately square 
subblocks of volume data of less than 256 
Kbytes. Each neighbourhood contains the entire 
volume data set, with the data set distributed 
over the cells in that neighbourhood. The 
algorithm used to divide an APlOOO with N cells 
into neighbourhoods is described below: 

Given a parallel machine with N cells, divide 
it up into N neighbourhoods of 1 cell each. 
Determine whether the entire data set will fit in 
one of these neighbourhoods. If it does, distribute 
the data set across all of the cells in each 
neighbourhood. If the data set does not fit, 
double the size of each neighbourhood (halving 
the number of neighbourhoods). Repeat this 
process until the entire data set fits in the 
available memory of a neighbourhood. 

When rendering is being performed, if a 
given cell needs a portion of the data set that it 
does not have locally, it can retrieve the required 
data from one of the cells in its neighbourhood. 
Neighbourhoods minimize the communication 
required by keeping as much of the data set on 
each cell as possible (ideally all data is kept on 
each cell so no communication is needed) and by 
localizing the communication required (to reduce 
network contention). 

In addition to the volume subblocks that 
each cell serves, each cell contains a Least 
Recently Used (LRU) cache of volume subblocks 
that it needs to perform the rendering it has been 
assigned. This LRU scheme exploits the data 
coherency of the volume data very effectively. 
When a cell is rendering a square pixel block, 
most of the rays cast through adjacent pixels 
will require approximately the same volume 
blocks to render those rays, resulting in fewer 
cache misses and therefore less communication 
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overhead. See Corrie and Mackerras 1 1 i for more 
details on this caching algorithm. 

2.4 Results 
The two key issues in developing a parallel 

volume rendering system are the work and data 
distributions. These two issues involve very 
important tradeoffs in general, and are especial­
ly important when considering an image space 
work distribution of a ray-casting renderer 
combined with a distributed virtual memory. It 
has been shown that dot rrwde work distribution 
is useful for obtaining a good load balance 1 5 i . 

This technique does not work well with our data 
distribution technique, as it does not take 
advantage of the data coherence that lS 
available in rendering a volume data set. 

In Table I we see the statistics obtained 
while rendering a geometric object database of 
approximately 10 000 polygons (image resolution 
of 512 X 512 pixels, rendered on a 128-cell 
APlOOO). Note that with a work item timeout of 
one second a very low kud imhalance results for 
all pixel block sizes. In both Table 1 and Table 
2, the load imbalance is the average time cells 
spend idle waiting for the last cell to finish. In 
general, the load imbalance will be less than the 
block timeout value, except in extreme cases. 
The slightly higher item delay overheads (the 
average time spent waiting for work items) for 
2 x 2, 30 X 30, and 40 X 40 pixel blocks (1 
second timeout) are a result of the large number 
of work items that are generated for these cases. 
The 2 X 2 pixel block case generates a large 
number of work items because of the small pixel 
block size. The 30 x 30 and 40 X 40 pixel block 
cases generate a large number of work items 
because of the large amount of pixel block 
subdivision that must occur at the end of the 
rendering to achieve a good load balance. The 
rendering time is the average time it takes to 
perform the actual rendering, and should be 
approximately the same for all situations. The 
important factor to note is that even with the 
item delay overheads, the total times (the time 
from when the rendering starts until the last cell 
finishes) are very close for all block sizes that 
use a one second timeout. Note that when the 
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Table 1. Rendering statistics for work item timeouts 

Work item Timeout Item delay Load imbalance Rendering Total 

size (seconds) (seconds) (seconds) (seconds) (seconds) 

2 x 2 1 8.3 0.0 13.2 25.2 
5 x 5 1 0.5 0.0 12.6 13.1 
lO X 10 1 0.1 0.2 12.5 13.1 
20 X20 1 0.6 0.1 12.4 13.2 
30 X30 1 2.0 0.0 12.4 14.5 
40 X40 1 4.8 0.2 12.4 17.8 

lO X 10 00 0.1 0.2 12.5 12.8 
20 X20 00 0.0 2.9 12.4 15.4 
30 X30 00 0.0 9.4 12.4 22.1 
40 X40 00 0.0 29.7 12.4 42.1 

1 XlOO 00 0.1 0.0 12.7 12.9 
2 X200 00 0.0 0.3 12.5 12.9 
3 X300 00 0.0 1.5 12.5 14.0 
4 X400 00 0.0 9.8 12.5 22.4 

Table 2. MRI rendering statistics 

Work Render Cache Item delay Load imbalance Total Cache 
item (seconds) (seconds) (seconds) (seconds) (seconds) misses 

Dot 144.6 116.2 

2 x 2 139.6 164.8 
5 x 5 144.0 41.0 
lO X 10 144.4 18.1 
20 X 20 144.4 12.1 
40 X40 144.0 18.1 

1 x 4 137.0 258.7 
1 x 25 143.5 79.5 
1 x 100 144.6 41.7 
1 X400 144.6 31.1 
4 X400 144.5 19.4 

adaptive work item subdivision is disabled 

(timeout = 00 ), high load imbalance results are 
associated with large pixel blocks, resulting in 

long total rendering times. 

Determining an effective compromise be­

tween work and data distribu tion techniques is 

essential to the implementation of a practical 

parallel volume rendering system. Minimizing 

the amount of data communication that is 
required for data distribution is done by 

exploiting the data coherency of volume data. 

The top half of T able 2 shows the rendering 

times obtained using both the dot mode and 

square adaptive pixel block algorithms on a 
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1.8 

22.9 
2.6 
1.4 
1.2 
1.3 

31.6 
5.0 
2.1 
1.6 
1.6 

6.4 270.4 559 

0.2 327.6 835 
0.4 188.2 187 
0.8 164.8 84 
1.7 160.8 57 
1.5 164.9 86 

0.2 430.6 1 298 
0.2 229.6 380 
0.4 188.8 197 
0.7 178.1 147 
2.0 167.5 91 

256 X 256 x 109 volume data set. It is a standard 

data set from the University of orth Carolina 
at Chapel Hill's volume rendering test data set, 

and is a Magnetic Resonance Imagery (MRI) 

study of a human skull. The volume was stored 

as 32 bit floating point data, resulting in over 27 

Mbytes of volume data. Note that dot mode and 

2 X 2 pixel block work items have a large 

number of cache misses and a large amount of 

cache time dedicated to serving those misses. The 

number of cache misses is the average number of 

times (per cell) that a cell has to request volume 

data from a cell in its neighbourhood. The cache 

time is the average time a cell spends either 
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waiting for cache miss to be serviced or serving 

a cache miss from another cell. The load balance 
of all block sizes (including dot mode) is quite 

good, and the factors that determine the overall 

rendering performance are the time spent 
servicing cache misses and the item delay 
overhead involved in dealing with a large 
number of small work items (i .e. the 2 X 2 work 
items have a large item delay overhead). 

The importance of data coherency is demon­
strated in the timings from Table 2, as we can 

see that small pixel blocks that are not adjacent 
to one another (dot mode, 2 X 2, 1 X 4, 5 X 5, 

1 X 25 pixel blocks) result in relatively large 
cache time overheads. In the bottom half of 
Table 2, we render the data set with an 
elongated pixel block work distribution with 

pixel block sizes equal to the square pixel block 
sizes from the top half of Table 2. Nate that the 
large thin pixel blocks have relatively high 

cache miss results, as a long line of pixels covers 
a large number of volume subblocks. The 4 X 

400 pixel block gives the best results since it is 
more than one pixel in width and therefore takes 

advantage of the data coherency to a higher 

degree than the other elongated pixel blocks. 
Even when large pixel blocks such as these are 
used for rendering, the adaptive work distribu­
tion algorithm provides a reasonably small load 
imbalance. The marginally longer load imbal­
ance time of the 4 x 400 block (1.3 seconds 
greater than 1 X 400 pixel blocks) is outweighed 

by the savings in decreased cache time (11.7 

seconds less than 1 X 400 pixel blocks). 

3. lsosurface generation 

Isosurfaces are usually represented as 
geometric objects (typically a mesh of small 
triangles) which can be rendered using standard 
techniques 1 Gl · 1 i l . Such an isosurface represen­
tation does not depend on the direction of 
view - having generated the isosurface repre­

sentation, the user can render an image of it 
from any desired point of view. The 'Marching 
Cubes' algorithm 1 

l is an efficient algorithm for 
generating a polygonal description of an 
isosurface of 3-dimensional data sampled on a 
rectangular grid. The polygons are in general 
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non-planar, but can be converted into a triangle 
mesh for rendering. 

We have implemented a parallel version of 
the Marching Cubes algorithm for the APlOOO, 
together with a simple parallel 2-buffered 

renderer for viewing the results. This section 
describes our parallel Marching Cubes imple­
mentation and briefly outlines our parallel 
2-buffered renderer implementation. For further 
details, the reader is referred to Mackerras 1 s l • 

3.1 Outline of basic algorithm 
Our parallel isosurf ace program for the 

APlOOO is based on an efficient serial implemen­
tation of a modified version of the Marching 
Cubes algorithm. The sampled volume data is 
divided into one or more contiguous blocks. 
Each cell processor of the APlOOO is allocated 
one or more blocks of data, and runs the serial 
Marching Cubes code (essentially unchanged) on 
each block, producing a list of triangles. The 

complete surface is obtained simply by concate­

nating these lists of triangles. 
The Marching Cubes algorithm considers 

each unit cube defined by a 2 X 2 X 2 grid of 

sample points. If some of the samples at the 
corners of the cube are above the isosurface 
value and some are below, then the isosurface 
passes through the cube. For all such cubes, the 

algorithm uses linear interpolation to find the 
intersections of the surface with the edges of the 
cube, and then connects the intersections up 
into polygons. These polygons are then con­

verted into a triangle mesh. In addition, the 
gradient :\otel of the 3D scalar data field is 
optionally calculated (using a simple central­
diff erence formula) at each triangle vertex for 
use as the surface normal in the renderer's 
shading calculations. 

Except at the boundaries of the volume, 
each sample point is shared between eight 

cubes,each edge between four cubes, and each 
face between two cubes. The Marching Cubes 
algorithm makes use of these facts to minimize 

Note: The gradient of a scalar field is a vector in 
the direction in which the field increases 
most rapidly. 
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the amount of computation required; data com­

puted for the corners, edges and faces of one 
cube are used in the adjacent cubes without 

recompu tation. 
The original Marching Cubes algorithm can 

generate surfaces with incorrect topology 

(surfaces with holes or other flaws) in some 
circumstances. Various modifications to the 
algorithm have been suggested to overcome this 
deficiency 1 9 l · 2 

o ) • Our implementation ensures 

that the generated isosurface is self-consistent 
and topologically similar to the isosurface of the 
field obtained by trilinear interpolation between 

the sample points. 

3.2 Data and work distribution 
The unit of work in the Marching Cubes 

algorithm is the unit cube defined by a grid of 
2 X 2 X 2 sample points; the algorithm makes 

decisions about the topology of the isosurface 
within the cube based on the values of all 8 
sample points. Furthermore, the choice of 
topology within one unit cube does not influence 
the topology within adjacent cubes, except 
insofar as sample values are shared. 

Thus a parallel implementation can assign 
any set of unit cubes to each processor. Each 
processor will need the sample points defining 

the unit cubes which it has been assigned (plus 

some neighbouring samples if gradient values 
are to be calculated), and will calculate the 
portion of the isosurface which lies within those 
unit cubes. The complete isosurface is obtained 
by aggregating the polygons from each of the 
unit cubes, just as it is in the serial Marching 
Cubes algorithm. 

The optimizations which are possible in the 
Marching Cubes algorithm represent a kind of 

data coherency which makes it more efficient to 
allocate a connected volume of unit cubes to a 
processor than to allocate the same number of 
unit cubes in a scattered fashion. When a given 
processor is allocated adjacent cubes, it can 
optimize by storing each sample point only once, 
instead of once for each unit cube which requires 
that sample point. Similarly, values which are 
computed for the faces, edges and sample points 
of one cube can easily be used for adjacent cubes 
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without recomputation if the adjacent cubes are 

allocated to the same processor. (If the adjacent 
cubes are allocated to a different processor, it is 

possible to avoid recomputation by transmitting 
the results from one procerssor to another; 
however, the cost of the communication required 

would be likely to be greater than the cost of 
re-computing the values. Also, the algorithm 
would be complicated by the need for each 

processor to process its cubes in an order which 
both avoids lengthy waits for data from other 

processors, and makes data available to other 
processors in a timely fashion.) 

These considerations would lead to a data 
and work subdivision in which each processor is 
assigned a single large block of the volume. 
However, such a subdivision can have poor 

load-balance properties. Typical volume data 
sets often have a region of interest near the 

middle of the volume, with the result that cubes 
near the center of the volume are more likely to 

be intersected by the isosurface than cubes near 
the boundaries of the volume. Since the proc­
essing for a cube which is intersected by the 
isosurface is more expensive than for one which 
is not, this can lead to considerable load 

imbalance. 
To overcome this problem, we divide the 

volume into more blocks than there are cell 

processors, and assign a small number of blocks 
to each processor, allocated such that each 
processor has some blocks near the middle of the 
volume and some near the boundaries. This is 
done in a dot-mode fashion : our implementation 
divides the X-Y plane into nxCx X n yCy blocks 
for an APlOOO processor array of dimension 
Cx X Cy, where nx and ny are the 'degrees of 
interleaving' in the X and Y dimensions respec­

tively (the Z dimension is not divided). These are 
assigned in an interleaved fashion to the 

processors; cell processor (i, j) receives blocks 
(i + lCx,J + mCy), forO ~ l < n x, O ~m < ny. 

In our APlOOO implementation, the volume 
data are broadcast to the cell processors by the 
host as a series of X-Y planes of data. Each cell 

receives each complete plane and copies those 
samples which are required for processing the 
cubes which it has been assigned. This was 
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found to be considerably more flexible than the 

APlOOO scatter operation, and no slower. The 

triangles generated can be sent to the host 
processor for storage in a disk file, or alter­

natively rendered by the cell processors using 
the Z-buffer renderer described in the next 
section. 

3.3 Z-buffer renderer 
We have found in practice that while the 

APlOOO can generate millions of triangles in a 
few seconds, it takes much longer (up to 100 

times longer) to transmit these triangles to the 

host processor for storage, display or other 
processing. Clearly it is necessary to implement 

as much as possible of the further processing of 
the triangles on the cell processors. To this end, 

we have implemented a simple distributed 
Z-buffered triangle renderer on the cell proc­

essors. The rendered image still has to be 
transmitted to the host processor for display, but 

this is often a much smaller amount of data than 
the triangles. 

Our renderer uses an adaptive hybrid image­

space I object-space subdivison technique to 
parallelize the rendering process. Image-space 
subdivision requires each processor to have the 
full list of triangles, whereas object-space sub­
division requires each processor to have a 

full-sized Z buffer. Our subdivision technique 
divides the processors into groups, each of which 
has (collectively) a full-sized Z-buffer. Object­
space subdivision is used between groups, and 

image-space subdivision within the group. When 
each group has finished rendering its triangles 
into its Z buffer, the Z buffers are merged 
between groups in a bitonic Z-buffer merge 
phase. The image is then gathered to the host 
processor for display. Further details are given 
in Mackerras 1 s i . 

3.4 Results 

time taken by the slowest cell processor. 

2) Average time taken by the cell processors to 
generate their portion of the isosurface. 

3) Load balance: the ratio of 2) to 1). 

4) Speedup: the total time taken by a single cell 
processor divided by 1). 

Figure 3 shows how the total time and load 
balance vary with the degree of interleaving for 
a typical volume data set. The times shown are 

for generating an isosurface of 46 266 triangles 
from a volume of 256 X 256 X 40 samples on 
8 X 16 processor APlOOO. The height of each 
column shows the total time taken for the cell 

processors to perform the isosurface operation 
{item 1) above}, including gradient calculations, 
and synchronize. The darker portion of each 
column shows the average time per processor 

taken to compute the isosurface (excluding 
synchronization time). The lighter portion shows 
the load imbalance, measured as the average 
time spent waiting for synchronization. The 
minimum time taken to synchronize was 0.55 ms 
in each case. The results were quite consistent 

over several runs. 
The results show an interesting effect: a 

modest degree of interleaving reduces the total 
time for the isosurface generation although it 
increases the average time per cell, which is a 
measure of the total amount of computation 

performed. That is, assigning a small number of 
blocks (around 8) to each cell improves the load 
balance to a sufficient extent to outweigh the 
extra computation required by the division into 

400 

Ul 300 
E. 
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LJ : Load imbalance 

CJ : Computation time 

The performance of our parallel Marching ioo 
Cubes implementation has been measured on 
several example volume data sets using the 
following measures: 
1) Total time taken to generate the isosurface 

(excluding time to load the data). This is the 
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Degree of interleavi ng 

Fig.3 - Measured execution times as a function of 
interlerving. 
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smaller blocks. 
The time taken for a single cell processor to 

perform the isosurface operation was 30.1 
seconds, giving a speedup of 133 for the fastest 
case (nx X nv == 4 X 2). This is greater than the 

number of processors due, we believe, to cache 
effects: the complete machine has a total of 16 
Mbytes of cache memory, enabling it to keep 
more of the volume data in cache than a single 

cell processor can. 

4. Discussion 
The parallel implementations of volume 

rendering and isosurface generation described 
here represent contrasting approaches to paral­
lelization: one uses dynamic work distribution 
with a distributed virtual memory scheme to 

make the necessary data available when requir­
ed; the other uses a static work distribution with 
a static data distribution. Yet there are simi­
larities between the requirements of the 

algorithms: they both have quite a small unit of 
work (one pixel, one unit cube), and they both 
have significant optimizations which are 
available when adjacent work units are assigned 

to the same processor. Both operate on volume 
data which is potentially large enough that it 
cannot be stored on a single processor. Why then 
have we employed such different parallelization 

schemes? 
The answer lies in some quite significant 

differences in the requirements of the two 
algorithms. 
1) A static load balance is more effective for 

the isosurface generation algorithm than for 
the volume rendering algorithm, because the 
difficulty of individual work units varies less. 
The ratio of longest to shortest times for an 

individual work unit is less than 9 for the 
isosurface g·eneration algorithm, whereas it 
can be 10 000 or more for ray-casting volume 

rendering. 
2) In the isosurface algorithm, there is a very 

straightforward relationship between the 

work units which a processor has been 
assigned and the set of data which it 
therefore requires. Furthermore, a relatively 
small amount of that data will overlap with 

58 

other cell processors. The static work 

distribution we have used enables us to use a 
static data distribution which is simple, 
efficient - no time is consumed transmitting 
data from one cell to another, and 

scalable - volume data approaching the total 
memory size of the machine can be handled. 

In contrast, the relationship between a pixel's 
position and the set of volume data which 

are required to render that pixel is a 

complex, viewpoint-dependent function. This 
makes a distributed virtual memory scheme 

attractive as a way to make the necessary 
data available when required without requir­

ing a complex and time-consuming a priori 
analysis of data requirements, which would 
probably take a substantial fraction of the 

rendering time. Thus a static work distribu­
tion offers no advantage in terms of a simple 
data distribution. The dynamic work dis­

tribution scheme described above is relative­

ly simple to implement and provides much 
better load balance than a static work 
distribution. 

5. Conclusion 
In this paper we have described two ap­

proaches to visualizing volume data: ray-casting 
volume rendering and isosurface generation and 

display. Implemented on the APlOOO, these 

techniques enable the user to interactively 
explore large scale volume data sets. The 
concept of data coherency was used to motivate 
the implementation of an adaptive worker-farm 
work distribution and a distributed virtual 
memory. The results presented above show that 
this is an efficient method of utilizing the 
inherent data coherency between neighbouring 

pixels that exists in rendering three-dimensional 
volume data sets. Using this technique, it should 
be possible to directly render large volume data 

sets that could not be rendered on a normal 
workstation. A simple technique was used to 
parallelize the isosurface generation algorithm; a 
dot-mode distribution of relatively large blocks 

of volume data gives reasonable load balance 
while still exploiting the data coherence 
available. 
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Our implementations demonstrate that the 
APl OOO architecture is well-suited to handling 
the problems of visualizing large 3-dimensional 
data sets. In particular, they demonstrate that 
both volume rendering (using ray casting) and 
isosurface generation and display can be 
parallelized effectively on distributed-memory 
MIMD machines such as the APlOOO. Further­
more, they provide evidence that these machines 
will scale well on this class of problems. Both 
the processing speed and the data-set size which 
can be handled increase approximately linearly 
with the number of processors; in some cases we 

have actually observed super-linear speedup, due 
we believe to the increase in total cache memory 
size with the number of processors. 
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This paper describes an implementation of Level 3 of the Basic Linear Algebra 
Subprogram (BLAS-3) library and the UNPACK benchmark on the Fujitsu AP1000. 
The performance of these applications is regarded as important for distributed 
memory architectures such as the AP1000. We discuss the techniques involved in 
optimizing these applications without significantly sacrificing numerical stability. 
Many of these techniques may also be applied to other numerical applications. They 
include the use of software pipelining and loop unrolling to optimize scalar processor 
computation , the utilization of fast communication primitives on the AP1000 
(particularly row and column broadcasting using wormhole routing ), blocking and 
partitioning methods, and 'fast' algorithms (using reduced floating point operat ions ). 
These techniques enable a performance of 85-90 % of the AP1000 's theoretical peak 
speed for the BLAS Level 3 procedures and up to 80 % for the UNPACK benchmark . 

1. Introduction 

The Basic Linear Algebra Subprogram 
(BLAS) library is widely used in many super­
computing applications, and is used to implement 
more extensive linear algebra subroutine 
libraries, such as LINPACK and LAPACK. To 
take advantage of the high degree of parallelism 
of architectures such as the Fujitsu APlOOO, 
BLAS Level 3 routines (matrix-matrix oper­
ations) should be used where possible. 

The LINP ACK benchmark involves the 

solution of a nonsingular system of n linear 

equations in n unknowns, using Gaussian 
elimination with partial pi voting and double­
precision (64-bit) floating-point arithmetic. The 
performance of the LINPACK benchmark and 
the BLAS-3 are both regarded as good indicators 
of a parallel computer's potential in numeric 
applications. 

The APlOOO I)· 
2

) is a distributed memory 

MIMD machine with up to 1 024 independent 

SP ARC processors which are called cells con­
nected via a toroidal topology using wormhole 
routing. Each processor has a 128 Kbyte direct­
mapped copy-back cache, 16 Mbytes of memory 
and a FPU of theoretical peak of 8.3 MFLOPs 
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(single precision) and 5.6 MFLOPs (double 
precision). Details of the APlOOO architecture 
and software environment are discussed in this 
issue 3 l · 4 l • 

High level design issues, most importantly 
the distribution of matrices over the APlOOO, are 
discussed in Chap. 2. Techniques for the opti­
mization of matrix computations on single 
APlOOO cells are given in Chap. 3. Chapter 4 
describes the implementation of parallel matrix 
multiply-add operations on the APlOOO, discus­

sing issues such as communication, cache, non­
square matrix shapes, and so-called 'fast' multi­
plication methods. The implementation of the 
LINPACK benchmark is discussed in Chap. 5, 
emphasizing the need for 'blocking' together 
small computations into larger ones. The 
application of this and techniques from Chap. 4 
to the similar problem of BLAS-3 triangular 

matrix update is given in Sec. 5.3. Conclusion is 
given in Chap. 6. 

1.1 The BLAS Level 3 
The BLAS Level 35 l implement matrix­

matrix operations, which, for n X n matrices, 
involve 0 (n 3

) arithmetic operations on 0 (n 2
) 
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data items. This yields a higher ratio of 

arithmetic operations to data than for the BLAS 
Level 2 (BLAS-2) 6

' , although degenerate cases 
of the BLAS-3 routines yield all BLAS-2 
routines. The use of BLAS-3 is attractive on 

parallel machines such as the APlOOO because 
the cost of a data transfer may be amortized 
over the cost of 0 (n) arithmetic operations. 

The BLAS-3 perform multiply-add opera­

tions of the form: 

C a.AB + /3C 
where A can be either A or Ar (and similarly for 
B); multiply-add operations for symmetric matri­

ces, eg.: 
C .,_ a AA r + f3 C, C .,_ a A r A + f3 C 

where C is symmetric; and triangular matrix 
update operations of the form: 

B .,_ a AB, B .,_ a BA 

where A is triangular and A can be A, A r, A - 1 

or A -r. Matrices may be general rectangular, 

symmetric or triangular but there is no special 
form of "packed" storage for symmetric or 
triangular matrices. 

1.2 The LINP ACK benchmark 
The LINPACK benchmark involves the 

solution of a nonsingular system of n linear 
equations in n unknowns, using Gaussian elimi­
nation with partial pivoting and double-precision 

(64-bit) floating-point arithmetic. Three cases are 

considered: 
1) n = 100: the original benchmark. 
2) n = 1 000: gives more opportunity for vector 

pipeline machines (and to some extent 
parallel machines) to exhibit high perform­
ance. 

3) n as large as desired: gives maximum oppor­
tunity for vec tor pipeline and parallel 
machines to exhibit high performance. 

We are only concerned with the cases 2) and 3) 
here, since case 1) is trivial to solve on a 

machine as powerful as the APlOOO. 

1.3 Con ventions and restrictions 
We use the C language for implementation, 

as it permits better access to the low-level 
details of the APlOOO, which is useful for 
optimizations. Thus, we use C conventions for 
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matrices, stored in row-major ordering with 

indices starting from 0. Associated with the 
row-major storage scheme for an m X n (cell 
sub-) matrix A is the last dimension of A, 

denoted ldA, where n < = ldA . This enables A to 
be identified as sub-matrix of a larger m' X ldA 
matrix A', where m < = m ' . Let A; denote the 

ith row and A .; denote the jth column of the 
matrix A. 

Let N x(N 1 ) be the number of cells across a 

row (column) of an APlOOO configuration, and 
P = N 1 N , be the total number of processors. 
Our algorithms will be first described for a 
square (N, X N,) APlOOO, and then generaliza­
tions to other APlOOO configurations will be 
given. A minor restriction is that for an m X n 

matrix to be distributed over the APlOOO, we 

must have N 1 Im and N , I n (if necessary, matri­
ces can be padded with 'dummy' rows and 

columns to satisfy this restriction). 

2. High-level design issues 
On non-distributed memory machines, calls 

to the BLAS-3 and LINPACK routines reference 
global matrices; to achieve the same effect on a 
distributed memory machine, we must have all 
APlOOO cells calling, in SPMD mode, the 
corresponding routine with references to the 
cell's respective sub-matrix of the global matrix. 

This unfortunately means that uniprocessor 
codes involving these routines cannot be directly 
ported to APlOOO cell programs. 

To consider the optimal matrix distribution 
strategy, let us first consider what communica­
tion patterns are needed for these applications. 
These include, most importantly, (grouped) 
row I column broadcasts, row I column send/ 
receive (for pivot row interchange for LINP ACK 
and matrix rotation for 'systolic' matrix 
multiply) and finally row/ column scan (e.g. 
vector maximum for LINP ACK). 

For reasons of symmetry, high bandwidth 
for the row and column broadcasts, and good 
load balancing (especially for operation on 
triangular matrices and contiguous sub-blocks of 
larger global matrices), matrices are distributed 
over APlOOO cells by the cut-and-pile or scaftered 

strategy, rather than storage by rows, by col-
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umns, or by contiguous blocks. In the scattered 
strategy, matrix element a; j is stored in cell 
(i mod N , , j mod N. ), assuming that there are 
N, X N, cells in the APlOOO array. 

A generalization of all these distribution 
strategies is the 'blocked panel-wrapped' 
strategy, which is sufficient for all dense linear 
algebra applications in practice 7 > • We have not 
implemented our algorithms for this more 
general strategy, as it introduces considerable 
coding difficulties. Also, due to the relatively 
low communication startup overheads on the 
APl OOO, it would not yield significantly better 
performance. 

3. Optimizing computation on SPARC proces­

sors 

To optimize floating point computation on 
APlOOO cells, we have implemented kernels 
which are essentially a subset of uniprocessor 
BLAS-2 and BLAS-3 routines, optimized for the 
SPARC architecture used in APlOOO cells and 
written in SP ARC assembly language. For this 
purpose, the following techniques were used: 
1) write SPARC "leaf" routines to minimize 

procedure call overheads 8 >. 

2) keep all variables and array elements in 
registers, · to re-use as much as possible; this 
enables a low load/ store to floating point 
operation ratio (denoted R). 

3) use software pipelining, i.e. separate loads, 
multiplies, adds, and stores which depend on 
each other by a sufficiently large number of 
instructions so that their operands are 
always available when needed. 

Techniques 2) and 3) were achieved by using typ­
ically a 4 X 4 (for single precision) and a 4 X 2 
(for double precision) loop unrolling. 

The most important of such kernels was the 
Level 3 UpdateRect ( ) routine which, for single 
precision, involves a matrix multiply-add C .,..._ C 
+ AB where A is 4 X k and B is k X 4. This 
routine would initially load C into the FPU 
registers, and, upon the ith iteration, update it 
using A j B j , 0 :S i < k. 

UpdateRect ( ) has R = 0.375 (double pre­
cision) and R = 0.25 (single precision); the latter 
can be effectively reduced further to R = 1 I 6 
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using the SP ARC load double word instruction. 
When used to perform an n X n matrix 
multiplication (with a 'warm' cache), UpdateRect 
() can sustain 7.7 MFLOPs (80 :S n :S 160) for 
single precision, and 5.1 MFLOPs (56 :S n :S 120) 
for double precision. 

The next most important kernel is the Level 
2 Rankl Update ( ), which implements the multi­
ply-add c .,_ c + ah where a is m x 1 and bis 

1 X n. A naive implementation would have 
R = 1.5; however, for single precision, using a 4 
X 4 loop unrolling, this can be reduced to 1.125, 
again effectively reducible to slightly less than 
unity using the load double word instruction. 
RanklUpdate ( ) can sustain 5.9 MFLOPs 
(64 :S n :S 128) for single precision, and 4.0 
MFLOPs (48 :S n :S 100) for double precision. 

The other Level 2 routines, vector-matrix 
multiply and matrix-vector multiply, can sustain 
7.3 MFLOPs (single precision) and 5.0 MFLOPs 
(double precision) for matrix multiplication. 

These routines can achieve about the same 
percentage of the theoretical peak on the 
SP ARC Station 1 + and SP ARC 2 processors. An 
exception is Rankl Update ( ), which operates 
about 25 % slower on these architectures, due to 
their 'write-through' caches. 

The implications of these results for the 
following sections are as follows: 
1) use UpdateRect ( ) wherever possible, even if 

it requires re-organization of the algorithm. 
2) using UpdateRect ( ) to perform C .,..._ C + AB 

means that only A and B are significant with 
respect to the cache. This make good cache 
utilization much easier. For parallel algo­
rithms, it is better to choose an algorithm not 
involving the communication of C, as mes­
sage receipt of C may then displace either A 
or B from the cache. 

4. Implementing BLAS-3 parallel matrix multi­

ply-adds 

In this chapter, parallel matrix multiply-add 
operations, e.g. C .,..._ C + AB where A, B, C are 
matrices distributed over the APlOOO cells, are 
considered, firstly for an N, X N, APlOOO, and 
then for a general APlOOO configuration (Sec. 
4.4). The simplest parallel matrix multiplication 
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Table 1. Speed in MFLOPs I cell of parallel 
multiply-add methods on an 8 X 8 
APlOOO with n X n matrices (single 
precision) 

C +- C+ AB by c ~ c + A TBby 
(-systolic) method: (-systolic) method: 

n / N , 

Full- Semi- Non-
Semi- Non-

(implicit) (explicit) 

16 4.2 4.4 4.4 4.3 4.1 

32 5.8 6.0 6.0 5.9 5.8 

64 6.5 6.7 6.8 6.7 6.7 

96 7.0 6.9 7.0 6.9 6.9 

128 7.1 7.2 7.2 7.1 7.1 

160 7.1 7.2 7.1 7.1 7.1 

algorithm, which we call the 'non-systolic' 
method, is as follows: 

for (k = 0, k <N,, k + + ) 
y-broadcast B cell sub-block from row k; 

x-broadcast A cell sub-block from column k; 
perform local cell sub-block multiplication; 

A variation is the 'semi-systolic' method 9 J where 

B cell sub-blocks are broadcast from the kth 
diagonal (instead of from the kth row), and each 

A cell sub-block is shifted right one unit (instead 
of broadcast). A third variation is the 'full­
systolic' method (also known as Cannon's 

algorithm) in which both A and B sub-blocks are 
rotated at each step; this however has the 
overhead that both A and B must be initially 
'aligned'. 

Table 1 indicates the relative efficiency of 
each method for single precision. The overhead 
of the initial matrix alignment of the 'full­
systolic' method makes it the slowest. 

To compute C +---- C + A TE without using 

explicit transposlt10n, variations of the 
'semi-systolic ' and the 'systolic' methods can be 
used where C's cell sub-blocks are communicated 
in place of those of B (similarly for C +---- C + 
ABT). This has a small overhead in extra 
disturbance of the cache, as explained in Chap. 3. 

For explicit matrix transposition, the simpl­

est method of exchanging matrix sub-blocks 
between cells appears to be the most efficient. 
The bottleneck for this algorithm is at the 
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diagonal cells, through each of which N, - 1 
messages must pass and change direction, so 
that the time is expected to be proportional to 
N , - 1 (for constant n / N , ). Transposition has a 

communication rate of 1.4 Mbytes/ s per cell for 
an 8 x 8 APlOOO (64 ::; n / N , ::; 256), which im­
plies a small relative overhead (for n /N, :::: 128, 

the overhead is about 1 % ). 

Table 1 indicates that for square matrices, 

these is little difference between the explicit and 
implicit methods, except for small matrices, 
which favour the implicit method. This is due to 
the high relative speed of the APlOOO communi­

cation routines, which make the choice of 
communication patterns less critical. 

4.1 Effect of communication 
Comparison of Table 1 with the results of 

Chap. 3 shows that the effect of communication 
on performance is appreciable, at least for 
moderate matrix sizes. 

In the APlOOO's xy communication routines, 
copying of matrices is avoided on message send; 
however, upon message receipt, messages are 
copied from a 'ring buff er' to user space. 
Message copying creates a twofold overhead, 
since message transfer (in hardware) on the 
APlOOO is almost as fast as a corresponding 
memory transfer, and message copying may 

disturb the cache. We made slight modifications 
to the xy routines so that the A and B cell 
sub-blocks were accessed directly from the nng 
buffer, thus a voiding the copy. 

The performance of this optimization was 
tested for the non-systolic multiply-add method, 
and generally halved the communication over­
head. Thus, for n / N , = 128, a performance of 
7.5 MFL?Ps/ cell (single precision) was achieved, 
90 % of the theoretical peak. 

4.2 Optimizing cache utilizat ion and partition­
ing 
BLAS-3 routines generally operate on 

sub-blocks of larger matrices, rather than whole 
matrices as such. Using the scattered distribution 
strategy, these sub-blocks are generally not 
contiguous in memory when mapped to the 
APlOOO cells, which is inconvenient for both 
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A 'o1 8 /j A '11 A '21 .. . A (m'/k, - l)I 

Fig. 1 - The workspace for a partitioned multiply­
add operation. 

Table 2. Speed in MFLOPs I cell of parallel c~ 
C +AA using the non-systolic method on 
an 4 X 4 APlOOO with n X n matrices 
(single precision) 

Partitioning Strassen's 
n /N , 

method Yes No 

128 7.18 7.23 7.2 (7.2) 

256 7.44 5.4 6.9 (7.9) 

384 7.52 5.7 -

512 7.58 5.5 6.8 (8.8) 

640 7.60 - -

728 7.59 - -

896 7.63 - -

1024 7.65 - 6.7 (10.0) 

message passmg and cache management. 
Furthermore, the matrix multiply-add operation 
may involve scaling by constants a and (3 . 

Finally, distributed implementations of the 
BLAS-3 C ~ a AA r + (3 C imply copying of A 
cell sub-blocks, even if a = 1. 

These problems can be most easily over­
come by copying (parts of) the A, B and in some 

cases C sub-blocks into contiguous blocks in a 
BLAS-3 'workspace' area, where they may then 
be scaled if necessary. However, the workspace 
need not be 0 (n 2 ) for n X n matrices; below we 
present an 'outer product'-based 0 (n ) workspace 
partitioning method, capable of high asymptotic 
performance by full utilization of the cache. 

Consider an m X k global matrix A having 
an m ' X k'(sub-) matrix A'on a particular 
APlOOO cell, where m ' = m !N,, k' = k /N,. Par­

tition A ' into k 0 x k 0 sub-blocks denoted A '. i 

where 0 :S i < rm' l k o l. 0 :S j < rk ' l ko l and 
the optimal block size k 0 = 128 (for single preci­
sion) is chosen from Table 1. Let B be a k x n 
global matrix partitioned in a similar way. 
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The method involves at step l copymg the 
'block-column' A~ 1 , A; 1, ... , A'c.,,• - i i / into a 
contiguous workspace, for l = 0, ... , k' /k 0 - 1. 
On the jth sub-step (j = 0, .. . , n ' /k 0 - 1), B ; i is 

copied to the workspace and is multiplied by 
each of the k ' /k 0A' sub-blocks already there. 

The layout of these sub-blocks in the workspace 
is shown in Fig. 1. H ere, one can see that A '. , 
and B; i map into different areas of the APlOOO's 

128 Kbyte direct-mapped cache. For this reason, 
almost half of the workspace is unused. The 
total size of the workspace is k 0 (m ' + n' - 1) 

words per cell, and it can be seen that the cost of 

copying (with scaling, if needed) a sub-block into 
the workspace is amortized over the k ' / k 0 times 
it is used to perform a multiply-add. 

This idea can easily be integrated into the 
parallel 'non-systolic' multiply-add, thus amortiz­
ing communication costs. The performance of 
this partitioning method is given in Table 2. As 
the maxunum matrix size corresponds to 

4 Mbytes, results for a 4 X 4 APlOOO are given; 
however the results for an 8 X 8 APlOOO appear 

identical for the corresponding matrix sizes. 
These results indicate the performance achiev­

able for the BLAS-3 general multiply operation 
C ~ a AB + (3 C, over 90 % of the theoretical 
peak on the APlOOO. 

It is possible to use partitioning without 
workspaces, where the overall matrix multiply is 
split into a series of sub-multiplications that 
minimize cache conflicts 1 o i . However, with a 

direct-mapped cache this cannot always yield 

maximum performance (e.g. a k X n matrix B 
with kld 8 exceeding the cache size will mean 
that some elements in a single column of B will 
map into the same place in the cache). 

4.3 'Fast' methods 
The above implementations are all based on 

standard 0 (n 3 ) matrix multiplication algorithms; 

however, with an 'acceptable' loss of numerical 
stability (in terms of the BLAS-3 error 
bounds 1 1 

i ), it is possible to implement matrix 
multiply algorithms with a reduced number of 

arithmetic operations. One such algorithm, Stras­
sen's method 1 1 

i , has asymptotically 0 (n 2 8 1
) 

operations. 
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In Strassen's method, matrices are split into 

4 sub-matrices; products of the sums and 
differences of these sub-matrices may be 
combined in such a way that only 7 (instead of 8) 
sub-matrix multiplies need be computed. Thus, 

considerable workspace area is needed. If the 
matrix dimensions are powers of 2, this process 
can be easily repeated recursively. However, for 
n X n matrices, we have found it more efficient 

to apply only the first log 2 {n/ (N,k 0 )} stages of 

the method, where k 0 is defined in Sec. 4.2, and 
hence it is only appropriate for large matrices. 
Table 2 gives the results of our implementation; 

in parentheses are the MFLOPs rating if 2n 3 

arithmetic operations are assumed. The actual 
efficiency decreases primarily because the FPU 
can operate at no more than half speed during 
the matrix addition and subtraction operations. 

4.4 Adaption to a general A PlOOO configu­
ration and the BLAS Level 2 limit 
We now describe an implementation of C .,.___ 

C + AB, where C ism X n, A ism x k and Bis 
k X n, for general N, X N, APlOOO configu­
ration; this implementation is also efficient in the 

cases where a matrix becomes a vector, hence 
the term 'BLAS Level 2 limit'. 

In these cases, it is important to communi­

cate the smaller of the matrices, so as to reduce 

communication costs. This may require trans­

position of the matrix beforehand (cf. the 
implicit transpose operations· of Chap. 4). An 
efficient matrix transpose operation A' .,.___ A r is 

nontrivial if N, """ N , , and involves blocking 
and permuting matrix segments 1 0 >. Our imple­
mentation, for a 1 000 X 1 000 matrix, achieves 
speeds on a 4 X 8, 7 X 8 and 8 X 8 configu­
rations of (respectively) 1.02, 0.59 and 1.30 
Mbytes I s per cell. 

The following three algorithms, based on the 
'non-systolic' multiply-add of Chap. 4, are each 

suited to particular matrix shape: 
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A (for small k) perform k rank-1 updates to C, 
i.e. C .,.___ C + IA i B i . The cells in column 
J mod N, of the APlOOO broadcast A i 

horizontally, the cells in row j mod N ; of the 
APlOOO broadcast B i . vertically. Each cell 
accumulates a moderate number w of these 

Table 3. Speed (MFLOPs I cell) of matrix multi-
ply-add on rectangular APlOOO configu-
rations (single precision) 

m k n 4 x 8 7 x 8 8 x 8 

1 1000 1 000 4.1 3.5 3.8 

10 1 000 1000 4.8 4.6 4.6 

1000 1 1000 3.1 3.0 2.9 

1000 10 1 000 5.7 5.4 5.5 

1 000 1000 1 4.2 3.5 3.8 

1000 1000 10 5.0 4.6 4.5 

1000 1 000 1 000 6.2 6.4 6.8 

broadcasts and then performs a single rank­
w update. The 2k broadcast startup over­

heads involved here can be reduced by 
grouping if GCD(N,, N , ) > 1. 

B (for small n) transpose B, then broadcast 
each row of B r. Each cell computes a local 

matrix-vector product, and the vector results 
are summed horizontally. 

C (for small m) is simply the dual of B 
In Table 3 we give speeds for the combination of 

methods A, B, and C on three different con­
figurations. The speed exceeds 50 percent of the 
theoretical peak speed (8.33 MFLOPs/ cell) 
except for the case min(m, n, k) = 1. 

5. Implement ing the UNPACK benchmark 
Suppose we want to solve a nonsingular n 

by n linear system: 
Ax = b, ......... (1) 

on an N, X N, AP1000. The augmented matrix 
[A I b ] is stored using the scattered represen­
tation. 

It is known 1 2
> • 

1 3 > that Gaussian elimina-

tion is equivalent to triangular factorization. 
More precisely, Gaussian elimination with 
partial pi voting produces an upper triangular 

matrix U and a lower triangular matrix L (with 
unit diagonal) such that: 

PA = LU, .. ...... . (2) 

where P is a permutation matrix. In the usual 
implementation A is overwritten by L and U (the 
diagonal of L need not be stored). If the same 
procedure is applied to the augmented matrix 
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A =[A lb] , weobtain 

PA = LU, .... .. ···(3) 

where U = [ U I b ] and Equation (1) has been 

transformed into the upper triangular system 

Ux = b. ··· ··· ··· (4) 
In the following we shall only consider the 
transformation of A to U, as the transformation 
of b to b is similar. 

If A has n rows, the following steps have to 
be repeated n - 1 times, where the kth iteration 

completes the computation of the kth column of 
U: 
1) Find the index of the next pivot row by 

finding an element of maximal absolute 
value in the current (kth) column, considering 
only elements on and below the diagonal. 

2) Broadcast the pivot row vertically. 

3) Exchange the pivot row with the kth row, 
and keep a record of the row permutation. 

4) Compute the "multipliers" (elements of L) 

from the kth column and broadcast hori­
zontally. 

5) Perform Gaussian elimination (a rank-1 up­
date using the portion of the pivot row and 

the other rows held in each cell). 

We can estimate the parallel time T P involved: 
T P::: an 3 /N; + (3n 2 /N, + rn, ········· (5) 

where the first term is due to the 2n 3 / 3 + 0 (n 2 ) 

floating point operations, the second term is due 

to the total volume of communication, and the 
third due to the communication startup (e.g. 
0 (n ) row/ column broadcasts). The terms are 

additive as it is difficult to overlap computation 

with the APl OOO's xy communication. As we 

would expect the time on a single cell to be 
T ::: an 3 , the efficiency E P is: 

1 Ep ::: ---~-~--
l + (l + yl n ') (3 I n ' 

1 ... (6) 
l + n •• 11 / n ' 

where (3 = (31 a is proportional to the ratio of 
computation to communication speed, r = r I (3 
measures the importance of the communication 
startup time, n ' = n !N,, and n •• 11 = (3N, is the 
problem size givmg efficiency 0.5 (this 
approximation is valid if r is negligible). From 

Equation (6), the efficiency is close to 1 only if 
n ' )> B. 

We omit details here of the "back- substitu-
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tion" phase, ie. the solution of the upper tri­

angular system Equation (4), because this can be 
performed in time much less than Equation (5), 
(see Refs. 14 and 15): For example, with n = 

1 000 on an 8 X 8 APlOOO, the back-substitution 

phase takes 0.1 s as opposed to the LU 
factorization phase, which takes 3.5 s. A 
generalization of the back-substitution phase 
(with the vector b becoming a matrix) will be 
disussed in Sec. 5.3. 

To adapt this algorithm to an N , X N, 
APlOOO with N, = 2N,, our ad hoc solution was 
to simulate a N, x N, APlOOO by each physical 

APlOOO cell simulating two virtual cells in the 
x-direction. This ensured full processor utiliza­
tion and optimal communication speed, but due 
to the significant costs of context switching on 
APlOOO cells, the simulation was hard coded 
rather than using two tasks per cell. 

5.1 The need for blocking 
As discussed in Chap. 3, peak performance 

cannot be reached using rank-1 updates. It is 

possible to reformulate Gaussian elimination so 
that most of the floating-point arithmetic is 
performed in matrix-matrix multiplications, 
without compromising the error analysis. Partial 
pivoting introduces some difficulties, but they 
are surmountable. The idea is to introduce 
a "blocksize" or "bandwidth" parameter W . 

Gaussian elimination is performed via rank-1 

updates in vertical strips of width w. Once w 
pivots have been chosen, a horizontal strip of 

height w can be updated. At this point, a 
matrix-matrix multiplication can be used to 
update the lower right corner of A. The optimal 
choice of w is best determined by experiment, 

but 
w ::: n' / 2 

is a reasonable choice, with w a multiple of N,. 
Here, we take advantage of each APlOOO 

cell's relatively large memory (16 Mbytes) and 

save the relevant part of each pivot row and 
multiplier column as it is broadcast during the 
horizontal and vertical strip updates. The block 
update step can then be performed independently 
in each cell, without any further communication. 
Each cell requires working storage of about 
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2wn 1Nx floating-point words, in addition to the 

{n 2 + 0 (n)} /N~ words required for the cell's 
share of the augmented matrix and the tri­
angular factors. If 2wn 1Nx exceeds the cache 
size, partitioning methods for the matrix multi­

ply need to be employed (see Sec. 4.2) 
The effect of blocking is to reduce the 

constant a in Equation (5) at the expense of 

increasing the lower-order terms. Thus, a 

blocked implementation should be faster for 
sufficiently large n, but may be slower than an 
unblocked implementation for small n. This is 
what we observed - with our implementation 

the crossover occurs at n == 40N,. 

5.2 Results 
The benchmark programs perform Gaussian 

elimination with partial pivoting (and check the 

size of the residual). All results are for double­
precIB10n. Single-precision is about 50 percent 
faster. 

As discussed in Table 3 of Ref. 16, a gain in 
efficiency of up to 40 % is achieved by blocking 
over non-blocking for large matrices. Also, a 
version of the blocked algorithm was implement­

ed where the APlOOO's hardware-supported row I 
column broadcast and scan operations were 
simulated in software. This version ran 7 % 

slower even for large matrices, indicating the 

need for hardware support for these operations. 
The results in Table 4 are for n = 1 000 and 

should be compared with those in Table 2 of Ref. 
17. The results in Table 5 are for n almost as 
large as possible (constrained by the storage of 
16 Mbytes / cell), and should be compared with 
those in Table 3 of Ref. 17. 

The results for the APlOOO are good when 
compared with reported results for other 
distributed memory MIMD machines such as the 
nCUBE, Intel iPSC/ 860, and Intel Delta, if 
allowance is made for the different theoretical 
peak speeds. For example, the 1 024-cell nCUBE 
2 achieves 2.59 s for n = 1 000 and 1.91 GFLOPs 

for n = 21 376 1 7
> with r P•ak = 2.4 GFLOPs. Our 

results indicate that a P-cell APlOOO is 
consistently faster than a 2P-cell nCUBE 2. The 
512-cell Intel Delta achieves 13.9 GFLOPs but 
this is less than 70 percent of its theoretical peak 
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Table 4. LINPACK benchmark results for n = 1 000 

Time for 
Cells Time (s) Speedup E fficiency 

one cell 

160 512 1.10 147 0.29 
160 256 1.50 108 0.42 
160 128 2.42 66.5 0.52 
160 64 3.51 46.0 0.72 
160 32 6.71 24.0 0.75 
160 16 11.5 13.9 0.87 
160 8 22.6 7.12 0.89 
160 4 41.3 3.90 0.97 
160 2 81.4 1.98 0.99 

Table 5. LINPACK benchmark results for large n 

Cells 
r max nmar n half r peak r max I 

GFLOPs order order GFLOPs r peak 

512 2.251 25 600 2 500 2.844 0.79 
256 1.162 18 000 1 600 1.422 0.82 
128 0.566 12 800 1 100 0.711 0.80 
64 0.291 10 000 648 0.356 0.82 
32 0.143 7 000 520 0.178 0.80 

nmax : the problem size giving the best perfo rmance 
rm ax 

n ha/f : the problem size giving performance r max I 2 
r P•ak: the theoretical peak performance (ignoring 

everything but the speed of the floating-point 
units) 

of 20 GFLOPs 1 B> . The 128-cell Intel iPSC/ 860 

achieves 2.6 GFLOPs, slightly more than the 

512-cell CAP, but this is only 52 percent of its 
theoretical peak of 5 GFLOPs. For large n the 
APlOOO consistently achieves in the range 79 to 
82 percent of its theoretical peak (with the ratio 
slightly better when the number of cells is a 
perfect square, e.g. 64 or 256, than when it is 
not). 

An encouraging aspect of the results is that 

the APlOOO has relatively low nhal f. For 
example, on the 64-cell APlOOO at A U we 

obtain at least half the maximum performance 
(i.e. at least 145 MFLOPs) for problem sizes m 
the wide range 648 ::; n ::; 10 000. (On the 64-cell 
Intel Delta, the corresponding range is 
2 500 ::; n ::; 8 000 1 8 1 

). As expected from Equa­
tion (6), n half is roughly proportional to pi / Z. 

Because of the influence of the cache and 
the effect of blocking, the Equation (5) gives a 
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good fit to the benchmark results only if n is 

sufficiently small and w is fixed (or blocking is 
not used). 

5.3 Optimizations for BLAS-3 triangular 
matrix updates 
If Bis an m X n matrix, to form B ~ A - 1B, 

where A is an m X m upper triangular matrix 
with unit diagonal, we can perform the corres­
ponding (parallel) rank-1 updates: 

B ~ B - A · B for;· = m - 1 · · · · · · 1 
,,...,,_, .J J . ' ' ' ' 

where A = A - I. A straightforward ('unblock-
ed') implementation on the APlOOO uses 
row/ column broadcasts and rank-1 updates. 
However, performance can be improved by 
grouping w updates together, as described in 
Sec. 5.1. 

Table 6 gives results for this computation 
for single precision, with w = 4N,-/n / (2N,). 
For the unblocked algorithm, the performance 
does not even approach that of Rankl Update( ), 
due to communication overheads (for small n) 

and the fact that rank-1 update is a Level 2 
operation and hence makes poor use of the cache 
(for large n). For the blocked algorithm, 
performance is better but still does not approach 
that of UpdateRect( ), due to fact that the 
optimal w is a tradeoff between seeking a higher 
proportion of the computation in UpdateRect( ) 
(needing a low w) and seeking a high number of 
iterations in each call to UpdateRect( ) (needing 
a high w). 

Table 6. Speed in MFLOPs I cell for B +-A - 1 B for 
n X n matrices on the APlOOO (single 
precision), for N , = 1, 2, 8 

Unblocked 
n lN , 

Blocked Super-blocked 

1 2 8 1 2 8 1 2 8 

32 4.6 3.8 3.8 4.0 3.8 4.0 4.2 3.6 3.7 

64 5.4 5.0 5.0 5.6 5.6 5.6 5.8 5.3 5.5 

128 5.2 5.1 5.1 6.3 6.4 6.4 6.6 6.4 6.5 

180 5.5 5.4 5.4 6.5 6.4 6.6 6.8 6.7 6.8 

256 4.3 4.2 4.3 6.7 6.8 6.2 6.8 6.8 6.9 

360 3.8 3.7 3.7 6.8 6.9 6.5 7.1 7.1 7.2 
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A value of w ::: k 0 (Sec. 4.2) is optimal for 

UpdateRect( ). The tradeoff mentioned above 
can be overcome by recursively applying the 
blocking process described in Sec. 5.1, for w ::: k 0, 

k 0 12, k 0 I 4, etc. As larger values of w are now 

used, the partitioning methods of Sect. 4.2 must 
also be employed. The performance for moder­
ate sized matrices of this 'super-blocked' scheme 
is given in Table 6; for larger matrices, perform­
ance steadily improves up to 7.3 MFLOPs for 
n /N, = 1 024. These results indicate that the 
A Pl 000 can perf arm BLAS-3 triangular matrix 
updates at 85 % of the its theoretical peak speed. 

While the coding of such a recursive 
blocking scheme is complex, it could be similarly 
applied to the more complex LINP ACK bench­
mark, with similar improvements in performance 
to be expected. 

6. Conclusion 
In this paper, we have described implement­

ations of the BLAS-3 and the LINP ACK bench­
mark on the Fujitsu APlOOO. Many of the 
techniques presented, such as the design of 
SP ARC BLAS-2 and BLAS-3 kernels (Chap. 3), 
partitioning methods for direct-mapped caches 
(Sec. 4.2), and blocking (Secs. 5.1 and 5.3) are 
also applicable to the implementation of other 
linear algebra applications, on the APlOOO and 
on similar architectures. 

The LINPACK benchmark and BLAS-3 
results show that the APlOOO is a good machine 
for numerical linear algebra, and that on 
moderate to large problems we can consistently 
achieve close to 80 % of its theoretical peak 
performance, for the former, and 85-90 % for the 
latter. They signify that the APlOOO architecture 
is well balanced on all levels, with respect to 
floating point computation. The main reason for 
this is the high ratio of communication speed to 
floating-speed compared to machines such as the 
Intel Delta and nCUBE. The high-bandwidth 
hardware row/ column broadcast capability of 
the APlOOO, extremely useful in linear algebra 
applications, and the low latency of the send/ 
receive routines are also significant. As shown in 
Table 1, the speed of the former make the use of 
'systolic' versions of linear algebra algorithms 
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unnecessary. The large, direct-mapped cache, 
while requiring extra effort for full optimization, 
and the large cell memory are also very 
important features. 
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This paper presents a parallel circuit simulator called PARACS that runs on the 
AP1000 parallel computer. In parallel circuit simulation, a circuit is partitioned into 
the same number of subcircuits as processors to produce a bordered-block-diagonal 
(BBD) matrix. A new parallel BBD matrix solution is devised to achieve high-speed 
parallel circuit simulation . The interconnection block of the BBD matrix as well as 
the diagonal blocks are solved in parallel using all processors. The PARACS 
simulator implements this approach, and simulated a test circuit of 3 192 transistors 
on the AP1000 up to 10 .6 times faster than on an 54 / 1 + workstation . 

1. Introduction 

Circuit simulation is one of the most critical, 

time-consuming tasks in VLSI circuit design, 
especially for large memory VLSI circuits. One 
simulation may require several hours or even 

days on a mainframe. Before manufacture, 
additional simulations must be performed to 
guarantee that the circuit will function correctly 
and meet the specifications over a wide range of 

process variations. 
Circuit simulators can be divided into two 

types: direct and relaxation-based. Direct method 
simulators such as SPICE 1 ) are reliable and 

accurate, but slow and limited. Circuit designers 
are restricted by the number and size of 
simulations which can be performed due to the 
time required and the available computer 
resources. On the other hand, relaxation-based 
simulators 2

> are impressive for certain classes of 
circuits, bu t are of limited use as a general­
purpose simulation tool. 

High-performance direct method simulation 
is possible with the new generation of parallel 
processing systems. Some experimental parallel 

circuit simulators have been successfully 
developed on parallel processing systems with 
less than a dozen processors :n - s>. To obtain 

better performance than a mainframe, a highly 
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parallel circuit simulator on a highly parallel 

processing system is needed. 

A severe problem arises, however, with 
highly parallel circuit simulation. For parallel 
simulation, the circuit must be partitioned into 

the same number of subcircuits as processors to 
produce a bordered-block-diagonal (BBD) ma­
trix. Block diagonals are easily solved in 
parallel, but the interconnection (IC) matrix of a 
BBD matrix is not so easy. Unfortunately, highly 
parallel circuit simulation increases the size of 

the IC matrix. 
We have developed a parallel circuit 

simulator called P ARACS that runs on the 
APlOOO parallel computer. To achieve high­
speed circuit simulation, we devised an approach 
to solving the BBD matrix in parallel: both the 
diagonal blocks and the IC matrix of a BBD 
matrix are solved in parallel using all proces­
sors. 

In this paper, first we present circuit 
partitions and discuss problems with highly 
parallel circuit simulation. Next, we describe our 
approach to solving a BBD matrix in parallel. 
The program structure of P ARACS which 

implements this approach is introduced. Finally, 
some statistics on parallel simulation times for 
the APlOOO are shown. 
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2. Circuit simu lation outline 

2.1 Flow 
A system composed of electrical elements is 

described by a set of nonlinear, differential 
algebraic equations of the form: 

! (dx l di, x, t ) = o. .... . -(1) 

At the new time point of analysis t n + I' 

stiffly stable integration formulas are used to 
make the analysis discrete. This process yields a 
set of nonlinear, algebraic difference equations 
of the form: 

g (x) = 0, ... ·· -(2) 

where x is the vector of node voltages at t" + 1 • 

These equations are solved using a damped 
N ewton-Raphson algorithm to yield a set of 
sparse linear equations of the form: 

Ax = b, ... ···(3) 

where A is a matrix related to the Jacobian of 
g (x). In general, less than a few percent of the 
entries in A are nonzero. These equations are 
then solved using direct methods for solving 

linear equations such as the sparse LU (Lower 
and Upper triangular matrices) decomposition 
algorithm. 

The major tasks of the simulation include 
model evaluation for transistors, Jacobian 
loading, matrix solving, and truncation error 

evaluation for the next time step. Of these, about 
70 percent to 80 percent of the simulation time is 
spent on model evaluation and Jacobian loading, 
whereas about 10 percent is taken for solving the 
matrix. 

As the circuit size grows, it takes longer to 
solve the matrix. The time required for the 
matrix solution phase has been found m 
experiments to increase as 0 (N 1 

· 
5

) , where N is 
the number of equations. However, the time 
required for tnodel evaluation and Jacobian 
loading increases linearly with the number of 
transistors. 

2.2 Node tearing approach 
The node tearing approach 6 > is well suited 

to parallel circuit simulation on a message-based 
parallel system, because the amount of informa­
tion that must be passed between processors is 
relatively small. The basic idea of node tearing 
is to divide the circuit into a set of subcircuits, 
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Subcircuit I 

2 

3 

Fig. 1 - A circuit partition and its BBD matrix. 

producing a BBD matrix as shown in Fig. 1. 

Each diagonal block represents a subcircuit, and 
the bottom block represents the interconnection 

between subcircuits. 
A BBD matrix can be solved by the 

following formula 6 > : 

vo = Yo1io - Ya1C1(C2Ya1C1 - Y1t 1 

(C2Yo 1io - i1). ····· ·(4) 
where Y0 , C 1, C2, and Y 1 are admittance ma­

trices, v 0 is a node voltage vector, and i 0 and i 1 

are current source vectors. 
This formula is evaluated by the following 

procedure: 
Step 1: Solve each subcircuit independently. 
Step 2: Gather step 1 results from all processors 

to form an IC matrix. 
Step 3: Solve the IC matrix. 

Step 4: Broadcast step 3 results to all processors 
of each subcircuit. 

Step 5: Superimpose the IC matrix effect on each 
sub circuit. 

This procedure makes the model evaluation 
and Jacobian loading in step 1 run in parallel 
without problems. The success of parallel 
simulation depends on two critical consider­
ations: the size of the IC matrix and the load 
balance between subcircuits. The size of the IC 
matrix should be kept as small as possible to 

reduce the number of communication tasks. The 

granularity of subcircuits must also be well 
balanced; otherwise, the parallel gain will be 
limited. 

3. Parallel circuit simulation 

3.1 Circuit partitioning 
In parallel circuit simulation, a circuit 
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Fig. 2 - Interconnection nodes increase with circuit 
partitions. 

should be partitioned to minimize the IC matrix 

size while keeping the numbers of transistors in 

the subcircuits almost equal. 
We developed a circuit partition program in 

which transistors are clustered based on inter­
connection strength and the number of tran­

sistors in a cluster. Once the number of clusters 
equals the number of processors, transistors are 
moved between clusters to balance the numbers 
of transistors in the subcircuits. 

A sample circuit with 3 192 transistors and 
1 891 nodes was partitioned into 4, 16, 36, and 64 
subcircuits. As can be seen in Fig. 2, the number 
of IC nodes increases with the number of 

partitions. When the circuit is partitioned into 64 
subcircuits, the size of the IC matrix is 202, while 
the average size of the diagonal matrix is 26. 
This implies that the time taken to solve the IC 
matrix as part of the BBD matrix solu tion is too 
long to be neglected, and becomes more critical 
in highly parallel circuit simulation. 

3.2 Parallel BBD matrix solution 
As noted previously, the key to highly 

parallel circuit simulation is the parallel solution 
of the IC matrix of a BBD matrix. It is also 
important to gather the entries of the IC matrix 
efficiently through processor communication. 

Our approach features a data structure for 

FUJITSU Sci. Tech. J., 29 , 1, (March 1993 ) 

c,, 

! 
IC matri x 

a) Discrete b) Superim- c) Dispersed 
solution of position solution of 
each sub- from all the IC 
circuit subcircuits matrix 

Fig. 3 - Parallel BBD matrix solution 

parallel subcircuit processing. As shown in Fig. 

3, i-th processor contains a diagonal block (Y 0;) 
with its border blocks (C 1 ;, C2 ;) by appending 
the IC node vector to its internal node vector. 
We call this a subcircuit matrix. This matrix 
enables us to execute subcircuit model evalua­
tion and Jacobian loading, and to solve the 
subcircuit matrix independently. 

Our approach to parallel matrix solution 

involves two steps. In the first step, the diagonal 
block of a subcircuit matrix within a processor 
is solved using the LU-decomposition algorithm. 
During this procedure, the fill-ins from the 
border blocks to the IC matrix are sent to the 
designated processor asynchronously. The IC 
matrix is formed by superimposing the fill-ins 
from all subcircuits. We call this procedure 
"discrete parallel solution" for a subcircuit 

matrix. 
In the second step, the IC matrix is solved 

by applying the "dispersed parallel solution" 

using all processors. Nonzero entries in the IC 
matrix are allocated to all processors in dot-wise 
order. The IC matrix is solved, pivot by pivot, by 
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1) y- broadcast 

i 
4) LU update 

a) LU decomposition b) Forward substitution 

Fig.4 - Dispersed solution of an IC matrix. 

m w 
~ w 

(0, 1, 2, 3 : Processor number) 

a) Interconnection 
matrix 

b) Right-hand-side 
vector 

Fig. 5 - Multi-pivot allocation of an IC matrix into 
all processors. 

broadcasting a sparse row/ column vector to the 
next row I column as shown in Fig. 4. The 

calculation tasks between processors must be 
well balanced because the entries of an IC 

matrix are allocated in dot-wise order. 

3.3 Multi-pivot allocation 
The details of the time required to solve a 

dense 1 000 by 1 000 matrix in a dot-wise parallel 
matrix solution on the APlOOO have been 
reported elsewhere 7 l • The time required for 
interprocessor communication accounts for 28 
percent of the total solution time during LU 

decomposition and 67 percent during forward 
and backward substitutions. In circuit simula­

tion, an IC matrix is sparse (70-80 percent are 
zeros) and the size is usually in the order of 
several hundred. Communication speed is thus 

critical. 
To reduce communication time, we allocate 

an IC matrix to processors in block-wise order 
as shown in Fig. 5. The IC matrix allocated 

74 

Circuit parti t ion 

Load subcircuits 

i- th processor 

Model evaluation 

Jacobian loading 

Matri x solution 
Diagonal 

r-------------, 1 Interconnection , ___ _ 
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Host 
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Fig. 6 - Parallel circuit simulation flow. 

m this manner is solved by usmg the 
LU-decomposition algorithm shown in Fig. 4. 
The calculations for LU decomposition, and 
forward and backward substitutions are per­
formed on a block in a processor, and then the 
updated block is sent to the next processor. We 
call this "multi-pivot allocation." 

Multi-pivot allocation reduces the commu­
nication time by a factor of between 6N to ?Ni n 
at each matrix solution, where N is the size of 

the IC matrix and n is the size of the allocation 
blocks. The allocation block size can be changed 
to balance the calculation speed of a processor 
with the block data communication capacity of a 
parallel computer system. 

We do not require a host or special co­
processor to solve the IC matrix. Our approach 
uses all of the processors in parallel, and there 
are no communication bottlenecks. 
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3.4 P ARACS program structure 
We developed a new parallel circuit 

simulator, PARA CS, that runs on the APlOOO. 

The program structure of PARACS is shown in 
Fig. 6. The circuit to be simulated is partitioned 

into subcircuits automatically, and the sub­
circuits are loaded onto the processors for 

parallel processing. Each subcircuit is simulated 
by a direct method, general-purpose circuit 
simulator that was originally developed for 

mainframes. The simulation flow for a subcircuit 
is the same as a serial circuit simulation, as 
outlined in Sec. 2.1. 

PARA CS implements the parallel BBD 

matrix solution described above. Processors 
must be synchronized to solve the IC matrix, to 
check Newton-Raphson iteration convergence, 

and to select the next time step. The outputs 
from all processors are sent to the host at each 
time step. 

4. Results 
Some test circuits were simulated by 

P ARACS on the APlOOO. The host system was a 
SUN4/ 330 workstation. 

One of the test circuits, Circuit #1, was a 
control circuit of a memory LSI with 297 nodes. 
This circuit contains 544 transistors, as well as 
capacitors and resistors. The simulation was for 

an operation period of 250 ns. There were 9 502 
ewton-Raphson iterations to simulate during 

the period. Another circuit, Circuit #2, containing 
3 192 transistors was simulated for an operation 

period of 4 000 ns with 4 275 N ewton-Raphson 
iterations. 

The parallel simulation statistics for Circuit 
#1 and Circuit #2 are listed in Table 1. To 
provide a reference, these circuits were also 
simulated by the original circuit simulator using 

serial codes on an S4/ 1 + workstation. The 
performance of the S4/l + is almost the same as 
on a single processor of the APlOOO. The highest 
increase in speed was 10.6 times, which was 
obtained for Circuit #2 using 36 processors. 

Figure 7 details parallel simulation times. 
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Fig. 7 - Parallel circuit simulation time details. 

40 

80 

Table 1. Parallel simulation results 

Serial P ARACS on the APlOOO (Number of processors) 
Transistors Iterations 

on 84/ 1 + 4 9 16 25 36 64 

Circuit #1 23 m 12 s 14 m 57 s 13 m 29 s 14 m 21 s 15 m 47 s 
(speedup) 

544 9 502 1h18 m 43 s 
( x 3.4) ( x 5.3) ( x 5.8) ( x 5.5) ( x 5.0) 

Circuit #2 1 h 9 m 56 s 42 m 35 s 30 m 1 s 27 m 10 s 24 m 20 s 26 m 42 s 
(speedup) 

3 192 4 275 4 h 18 m 37 s 
( x 3.7) ( X6.l) ( x 8.6) ( x 9.5) (X 10.6) ( X9.7) 

FUJITSU Sci . Tech. J., 29 , 1, (March 1993 ) 
75 



T. Kage et al.: Highly Parallel Circuit Simulator on the APJOOO: PARACS 

800 

x: I-pivot allocation solution 
o: 2-pivot allocation solution 

•: 4-pivot a llocation solution 

600 

3 
OJ x-E 

·.;::; 

//x/ 
c 400 
·~ 
" 0 

<fl 

200 

Processors 

Fig. 8 - Parallel matrix solution times for Circuit 
#1 when the allocation size is changed. 

This figure shows that the times for both model 
evaluation and Jacobian loading decrease with 
the number of processors. The effectiveness of 
parallel processing for solving the matrix is 

demonstrated by Circuit #2: the bigger the 
circuit, the greater the benefit, and the times for 
saving output increases linearly. This can be 

reduced by sending outputs in pipeline from 
processors at each time step. 

The times required to solve the matrix for 
Circuit #1 for various allocation block sizes are 
shown in Fig. 8. The sizes allocated were 1 by 1, 
2 by 2, and 4 by 4. This figure shows how 
effectively multi-pi vat allocation works m 

solving the IC matrix, especially in highly 
parallel processing. 

5. Conclusion 
Highly parallel circuit simulation was tested 

on the APl OOO parallel computer by partitioning 
circuits into subcircuits to produce a BBD 
matrix. The critical part of the simulation was 
found to be the solution of the IC mat~ix of the 
BBD matrix. 

To attain high-speed circuit simulation on a 
highly parallel computer, we devised a parallel 
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BBD matrix solu tion which solves not only the 

diagonal blocks but also the IC matrix in 
parallel. We allocated an IC matrix block-wise 
into all processors to balance the calculation 
speed of the processors with the block data 

communication capacity of the parallel computer 

system. 
A new parallel circuit simulator, PARA CS, 

was developed to implement this approach. A 

test circuit with 3 192 transistors was simulated 
on the APlOOO (36 processors), and the 

simulation speed was 10.6 times faster than on 
an S4/ 1 + workstation. We plan to simulate 

circuits with several tens of thousands of 
transistors to further evaluate the benefits of 
highly parallel circuit simulation. 
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A parallel mask data conversion software system to be run on AP1000 is proposed. 
To accomplish this, two new algorithms are introduced: one is to balance the load of 
each processor, and the other is to minimize communication overhead. This parallel 
system remarkably increases performa nee be ca use all processing parts can be run 
in parallel except 1/ 0 and some small sequential parts. The CPU performance is over 
20 times faster than exist ing Fujitsu M-780 systems . 

1. Introduction 
An electron beam exposure system is widely 

used for LSI mask making, or direct writing for 
ASICs. Prior to electron beam exposure, the 
pattern data has to be converted from CAD data 
format (GDS II stream format) to the electron 
beam exposure format 1 

) • 

With the increasing complexity of LSI 
circuits, enormous CPU time will be required for 
data conversion. At the current state of CAD 
tool performance, tasks such as mask-making 

have proven to be expensive bottlenecks in the 

VLSI design process. If the advances in the 
complexity of VLSI chips are to keep pace with 
advances made in VLSI process technology, then 
we must make substantial improvements to the 
software tools used to design those chips 2

) • 

To accomplish mask data convers10n 
rapidly, we developed a mask data conversion 
system on a multi-processor. The high 
performance of a 32-bit MPU is favorable 
because of its low cost. However, the expected 
high performance of the multi-processor cannot 
always be obtained because of its commu­

nication and I/O overhead. Furthermore, the 
reduction of sequential operations in parallel 
processing with this multi-processor presents a 
significant problem. Thus, to attain high 
performance, we introduce two new algorithms: 
one is to balance the load of each processor, and 
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the other is to rmmrmze communication over­

head. 
In this paper, we describe a developed mask 

data conversion system on a multiple instruction 
multiple data stream (MIMD) type parallel 
processor, PRANCER (PaRAllel processiNg 
system for mask data Con v ERsion). We describe 

the method for a parallel mask data conversion 
in Chap. 2. The results of our parallel mask data 
conversion when applied to VLSI are shown in 
Chap. 3. 

2. Mask data conversion on MIMD paralle l 
processor AP1000 

2.1 System overview 
PRANCER works on Fujitsu's highly­

parallel computer, the cellular-array processor, 
the APlOOO. Processing elements, called cells, are 
configured in a two-dimensional array. The 
system can be increased to up to 1 024 cells. 

All cells and the host computer are 
connected by a common bus. This enables 
efficient data transfer by broadcasting from the 

host computer to all cells or from a single cell to 
all the other cells. All cells are identical. Each 
cell is a microprocessor system with four 
specially designed VLSI chips, a 32-bit RISC 
SP ARC (Scalable Processor Architecture) pro­
cessor and a high-speed Floating-Point Processor 
Unit (FPU). Its peak performance is 15 MIPS 

FUJITSU Sci. Tech. J., 29 , 1, pp. 78-83 (March 1993 ) 
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CAD system 

1) D Fil Inputting CAD data 

~ liiil 
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fo rmation 
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3) lnkss1 Resizing 
(Enlargement or reduction) 

t 

4) Qo Decomposition 
into rectangles 

t 

5) 00 Proximi ty effect 
correction 

6) Formatting 

Electron beam exposure system 

Fig. 1 - General flow of data con version. 

12.5 MFLOPS. 
Mask data, as shown in Fig. 1, are converted 

by the following procedure; 
1) inputting CAD data (GDS II), 

2) removal of overlaps between shapes to pre­
vent multiple exposure, 

3) resizing, such as enlargement or reduction, to 

compensate for process biases, 

4) decomposing polygons into rectangles for use 
with a rectangular beam, 

5) correction of the exposure to compensate for 
the proximity effect 3 >, and 

6) formatting for the exposure machine. 
In general, CAD data has a hierarchical 

structure. CAD data is composed of a group of 
several figures and the nested r eference of a 

group of several figures. Nested reference 
figures are placed on other figures. When a 

nested reference figure is placed, additional 
transformations such as mirroring, rotating, and 
scaling act on it. This action makes the CAD 
data compact. 

FUJITSU Sci. Tech. J., 2 9, 1, (March 1993 ) 
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Fig. 2 - Subdivision of a chip area into sub-area 

The hierarchical CAD data is input into a 
host processor. The host processor partially 

expands the hierarchical construction, and 
makes data groups. The data are broadcast to 
each cell according to the number of patterns in 
the data group. Each cell expands the 
hierarchical construction. Then, each cell 
executes mask data conversion as shown in Fig. 

1, and broadcasts the result to the host 

processor. The host processor outputs the result 
received from each cell. 

Consequently, massively parallel systems 
can be utilized because all processing parts can 
be run in parallel except communication, I/O, 

and a small sequential part. 

2.2 Method of mask data conversion on a 
parallel processor 
In a multi-processor system, to achieve 

efficient parallel processing, the loading among 
cells must be balanced and the communication 
among cells minimized. 

In steps 2) to 6) in Fig. 1, to implement mask 
data conversion on a parallel processor, we 
divide the chip area into sub-areas by boundary 
lines as shown in Fig. 2. We divide the chip area 
so each cell can process one data group 
independently of the other cells. However, the 
information on the boundary lines between 
neighboring cells must be communicated. 

Otherwise, some data will not be converted 
correctly. For example, suppose pattern A exists 

near the shaded area around the sub-area. In 
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this case, the influence of neighboring pattern B 
outside the sub-area must be considered when 
removing the overlaps and making the proximity 
effect correction. As a result, communication 

overhead will increase. 
T hus, to rmmrmze communication and 

convert mask pattern data correctly, the cell 

handles pattern data in the overlapped area and 
the divided area when each cell converts the 

mask data in each divided area. 
By this method, pattern data near the 

boundary line will be converted correctly. Also, 

overhead will be reduced since communication is 
minimized. 

2.3 Balancing the load of each processing 
element 
One cell processes one data group in the 

divided sub-area. To balance the load among 
cells, the data groups must be divided so each 

cell processor processes as many equivalent 

number of patterns as possible. The data groups 
are created by dividing the sub-area into small 
variable areas according to the number of 
pattern data in the sub-area. 

2.4 Parallel processing proximity effect correc­
tion 
When a resist on a substrate is exposed to 

an electron beam, electrons scatter in the resist 
and are reflected back from the substrate. This 
electron scattering m the resist and the 
substrate, commonly known as the proximity 
effect 3 

> in electron beam lithography, leads to 
undesired pattern sizes and is a serious problem 
when patterns are closely spaced. 

The proximity effect must be compensated 
for in order to achieve accurate delineation of 
patterns with dimensions and spacings below 
1 µm. The proximity effect is generally compen­
sated for by adjusting the exposure 4 > and 

pattern size 5 >. The problem with proximity 
effect correction is that the computation process 
is computer resource intensive, and requires a 
long computing time, a large memory, and disk 
storage. Proximity effect correction consists of 
four steps as shown in Fig. 3. 

Exposure intensity for each pattern is 
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l 
Calculation of exposure intensity J 

....... 
B 

[ Data sorting to sub-area J 

... 
_;:,, 
1..? 

[ Prox irnity effect correction J 
... 
~ l Correction of boundary area J 

--...... • Repetit ion of processing in sub-area 

--[> : Repetition of processing in small area 

Fig. 3 - Flow of proximity effect correction. 

calculated by integrating over the irradiated 
area usmg the double Gaussian proximity 
function 3 > • The calculated exposure intensity is 
then tabulated s J • The correction value for the 
proximity effect is obtained by this table. 

The chip area is divided into sub-areas when 

the correction value for all patterns in the chip 

area is determined. The influence of neighboring 
patterns leads to undesired pattern sizes because 

of electron scattering in the resist and the 
substrate. Nate that the influence of pattern in 
the boundary area must be considered when the 
pattern exists near the sub-area. 

Figure 4 shows the structure of the paral­
leled proximity effect correction program 
(PROX-AP). 

Pattern data are extracted into the 
correction area and the boundary area from the 
original data. Extracted pattern data are 

broadcast to the cell processor as pattern data 
dealt in the cell processor. The cell program is 
the same in all cell processors. 

The proximity effect correction procedure in 
the PRANCER system is as follows. 
1) To balance the loads among processing ele­

ments, the sub-area is divided into a small 
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area as shown in Fig. 5. Cell pattern data, 
which is the pattern data in the cell 
processor, consist of pattern data in several 
small areas. The number of small areas 
varies (see Fig. 5). Pattern data are 

extracted into the correction area and the 
boundary area from the original data 
according to the number of pattern data in 
the small area. Extracted pattern data are 
broadcast to the cell processor as pattern 
data dealt with in the cell processor. 

2) The pattern data in the cell processor are 
broadcast before the message from the cell 
processor to minimize waiting status in the 
cell processor arrives. 

3) In this parallel algorithm method, the 
performance of the host program and I/ 0 
overhead are the limit of speed-up by parallel 
processor. As the number of cell processors 
decreases, the host processor has an 
increasing number of non-broadcast cell 
pattern data files, and the host processor 
enters the waiting status. Also, when the 
number of cell processors is large, the 
broadcast time and cell data creation in the 
host processor mcreases. Therefore, all 
processing parts are run in parallel except 
communication, I/O and small sequential 
part. 

4) The cell processor can handle between 10 2 to 
10 4 pattern data. In general, the number of 
pattern data exceeds the number of cell 
processors. So, we adopted the static assign 
method. In this method, the pattern data in 
the cell processor are first broadcast as 
two-cell data into all cell processors, then 
they are broadcast into the cell in which data 
processing has been completed. 

5) Cell data broadcast from the host processor 
contain data in the small area for correction 
and data in the boundary area. 
However, only the data in the small area for 
correction are broadcast from the host pro­
cessor in order to minimize the commu­
nication. 

6) The dedicated access functions are used to 
access memory. 
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Table 1. Application to VLSI pattern results 

~ 
PRANCER 

SUN4/ 
M-780 

330 64 128 256 512 
cell cell cell cell 

Phase 1 
882 26 31 28 28 120 

(s) 

Phase 2 
38 764 695 320 247 226 5 408 

(s) 

Total(s) 39 646 721 351 275 254 5 528 

Speed-up 
ratio 

1 54.99 112.95 144.17 156.07 7.17 

Efficiency 
100 86 88 56 31 

(percent) 

3. Results of parallel processing 
The developed PRANCER system was 

applied to VLSI patterns to evaluate perform­
ance. Table 1 shows the results of this new 
method when applied to a VLSI pattern. The 
number of patterns for the target VLSI is 144 
million. In Table 1, phase 1 shows the time 
needed to calculate exposure intensity and its 
communication. Phase 2 shows the time for 
pattern data sorting, proximity effect correction, 
boundary area correction, and communication. 

The host computer of APlOOO is a 
SUN4/ 330 workstation. VLSI patterns were 
processed by a mask data conversion program in 
serial codes on a SUN4/ 330 for reference. The 
performance of the SUN4/ 330 is almost the 
same as a single processor of the APlOOO. The 
speed-up was 156 times when 512 cells were used. 
This performance was over 20 times faster than 
the Fujitsu M-780 conversion system. 

Parallel efficiency was 88 percent on 128 
cells, which is a satisfactory result. The parallel 
efficiency was lowered to 31 percent on 512 cells 
for 144 million patterns. Thus, if a large number 
of pattern data are assigned to the small areas in 
Fig. 5, higher parallel efficiency may be obtained 
on more than 256 cells. 
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4. Conclusion 
A parallel system for mask data conversion, 

PRANCER, has been developed and imple­
mented on APlOOO. Two new algorithms were 
introduced: one is to balance the load among 
cells, and the other is to minimize commu­
nication overhead. 

In PRANCER, all processing parts can be 
run in parallel except I/O and some small 
sequential parts. It has been confirmed from a 
benchmark on a VLSI with 144 million patterns 
that the CPU performance of PRANCER on 
APlOOO is over 20 times faster than that of an 
existing Fujitsu M -7 80 sys tern. This result 
suggests that the turn around time (TAT) for 
mask data conversion may be reduced from the 
curren t one week to several ten minutes, if the 
PRANCER system is applied to 50-100 million 
gate VLSI patterns. 
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Quantum Chromodynamics (QCD ) simulations in the quench approximation have 
been performed on the AP1000 highly parallel , distributed memory computer. New 
parallelization techniques have been developed and studied. These techniqu es have 
provided a new parallelization algorithm for an update program using a Monte Carlo 
method, a renormalization program, and a hadron spectroscopy program . The details 
and physical results are reported here . 

1. Introduction 

The rapid progress m computer technology 
during the past decade has made it possible to 
realistically simulate quantum field theories 
having infinite degrees of freedom and non 
-trivial interactions. The lattice formulation by 
Wilson 1> is an elegant discretization of the 
models that realize gauge symmetry with high 
frequency cut-off. Numerical simulation is a 

powerful tool for studying non-perturbative 

features of lattice gauge theories. In lattice 
Quantum Chromodynamics (QCD) in particular, 
there are many successful projects that use 
conventional vector supercomputers. There are 
also several successful, but limited, QCD projects 
that use new parallel machines 2 >. 

This paper reports on quench QCD 
calculations that were performed on the APlOOO 
highly parallel, distributed memory computer. 
These calculations were performed by the QCD 
on Thousand cell ARray processor for 
Omni purpose research project (QCD - TARO), 

which is part of a three nation collaboration 
between Germany, Switzerland, and Japan. 

Chapter 2 presents the background of the 
QCD simulation. Chapter 3 briefly reviews the 
APlOOO system and the APlOOO features that are 
especially relevant to the QCD calculation. 
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Chapter 4 describes the parallelism and 

performance of the QCD program. Chapter 5 
briefly discusses the results obtained and their 
physical implications. The last chapter, Chap. 6, 
is devoted to concluding remarks. 

2. Background of OCD simulation 

In the quench approximation, the Feynman 
path integral for the lattice QCD has the 
following form 1 > : 

< O > = f O[u; ] e- s ITdU1 

f e- s fidU1 ' 

S = 2: Epia£/ , 
pia£/uelte 

······ (2) 

where 0 is an observable, and U 1 is defined on 
links in the four-dimensional hyper cubic lattice. 

The action, S, is the sum of Eriia£/., which is the U 1 

multiples on the minimal closed loops, i.e. 
squares on the lattice called plaquettes 3 >. To 

simulate the system, sets of U 1 with probability 
density e- s are successively constructed by using 
an update procedure, then 0 is measured. 

Epia£/. is a multiple of four 3 X 3 complex 
matrices, called SU(3) matrices, and requires 

many operations to calculate. To calculate Epia£/., 

we need U 1 values from only the neighboring 

FUJITSU Sci. Tech . J. , 29 , 1. pp . 84-96 (March 1993 ) 
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Fig. 1 - Growth of lattice size in QCD simulations. 

Growth of average lattice size, L, of QCD simu­
lations (volume is L 4

) for quenched simulations. 
The most recent point shows the size for this 
QCD - TARO project. 

areas, which makes its interdependency low. 
Therefore, if lattice link variables U, are 

distributed between processors judiciously, each 
processor can work completely in parallel and 
needs to communicate only with its nearest 
neighbors. 

In the latest QCD studies, a large lattice, i.e. 
a large memory, was used. Figure 1 shows how 
the size of the calculated lattice in quench QCD 
simulations grew from 1980 to 1991 4 >. The most 

recent point in Fig. 1 shows the size for this QCD 

- TARO project. The memory required for all 
link variables on a lattice of volume V (i.e. the 
total number of points on a four dimensional 
lattice) is 4 X 18 X V words; for example, our 
32 4 lattice requires 75 Mwords. The working 
space, which is used, for example, for the 
direction and residual vectors of the conjugate 
residual (CR) rou tine, takes up about the same 
amount of memory as the U, values. Therefore, 

a total of hundreds of mega words are required 
for calculations with a 32 4 lattice. 

These characteristics of the QCD calculation 
suggest that highly parallel computers with 
distributed memory may give higher perform-

FUJITSU Sci. Tech. J., 29 , 1, (March 199 3) 

ance than conventional vector supercomputers. 

Many dedicated parallel machine projects have 
aimed for high performance at relatively low 
cost and have produced useful results 5 >. How­
ever, in all of these highly parallel machines, 

communication between widely separated pro­
cessors is slow. This means that parallel 
computers cannot be used efficiently for some 

QCD calculations. For example, the conjugate 
gradient/residual algorithm that is now indispen­
sable for the calculation of quark propagators 
involves the summation of data in all processors, 

i.e. global summation. Moreover, when calculat­

ing complicated physical quantities, long 
distance communication must not cause a bottle­
neck. More flexible distribution of the lattice 
among the processors is possible if fast 

communications between any two processors can 
be guaranteed. 

The QCD - TARO project was started at the 
end of 1990. This project is a Monte Carlo 

renormalization study and a hadron spectro­
scopy study of large lattices using the APlOOO. A 
Monte Carlo renormalization, which had seemed 
difficult on a distributed memory parallel 

computer, was performed by taking advantage 
of the APlOOO's low-latency, high-throughput 
communication network and its large memory 
and flexible system configuration. Also, using 
the APlOOO enabled improvements to be made in 
the method of QCD updating and hadron 
spectroscopy in the quench approximation. 

3. Implementation of QCD simulation on the 

AP1000 highly parallel computer 
The APlOOO supports Fortran and C 

languages. In this project, most sections of each 
program were written in Fortran. A section 
which generates a task to handle files on disk 
was written in C. The SU(3) matrix multi­
plication part was written in Fortran, then its 

optimized code was tuned by hand using 
assembler language. All programs in this paper 
were initially developed on the CASIM APlOOO 
software simulator. 

As discussed in Chap. 2, QCD simulations 
require a lot of memory. For example, at least 
450 Mbytes of memory is required for a 32 3 X 48 
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lattice calculation, making it difficult for a 
conventional vector supercomputer to calculate. 
A shortage of main memory causes frequent 

input-output operations and results m an 
increase in job execution time. A highly parallel 

computer with a distributed memory has an 
advantage here. Each cell processor in the 
APlOOO has 16 Mbytes of memory and a user 
programmable memory space of 14.5 Mbytes 6 >. 

In total, 7.4 Gbytes of memory are available to 

the user in a 512-cell system, which enables up to 
a 48 3 X 64 lattice calculation. In this simulation, 
a 32 3 X 48 lattice calculation is performed on 

the 512-cell system. 
QCD calculations take at least several days 

and they need a system with high reliability, 
especially hardware reliability. If the reliability 

is low, data must be frequently backed up on 
files, which increases the computer resource 
requirement. High reliability is one of the most 
important requirements for highly and massively 
parallel computers and is also one of the most 

difficult to achieve. The high reliability of the 
APlOOO was proved by the fact that there were 
only two hardware system-downs in six months 
of the first stage of our project 7 > · B> • This 

reliability made it possible to produce useful 
results after only one and a half years. 

In general, the communication schemes and 
communication speed available decide the 

algorithm and parallelization strategy for a 
target program. Because the QCD calculation is 
performed on a distributed memory parallel 
processor, data broadcasting and scattering 
between the host computer and all cell 
processors is necessary. Also necessary is data 
exchange between adjacent cell processors and 
global summations using all cell processors. The 
amount of data is enormous, for example, 450 
Mbytes in the case of a 32 3 X 48 lattice. 
Therefore, data is broadcasted, and distributed 

and summed between more than 500 processors, 
which means that high speed communication is 
essential. Fast and random cell-cell processor 
communication makes complicated calculations 
such as renormalization possible on a parallel 
computer. On the APlOOO, the network hardware 
and routing scheme (a wormhole routing with a 
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Fig. 2 - Cell communication speed (1). 

Communication time as a function of communica­
tion distance for data lengths of 10, 100, 1 000, and 
10 000 bytes. Data was sent from a cell at (0, 0) to 
another cell at (x, y). The distance, s, is x + y. The 
timers were in the Fortran program and not in the 
system communication libraries. Therefore, these 
times are effective communication times as seen 
by the application program. 

structured buffer pool algorithm) achieves high 
throughput and low latency communication via a 
T-net 6 >. 

Figure. 2 shows the results of a test program 
that measured the time required to transfer data 
from one cell to a distant cell. This figure 
clearly shows that the transfer . speed is 
independent of distance. When 10 Kbytes of data 

are transferred, the transfer speed of the T-net 
as seen by the application program is 6.3 
Mbytes/ s. 

Figure 3 shows the cell communication 
speed when all cells simultaneously exchange 
data with cells at the same distance. This 
communication pattern imitates random cell-cell 
communication, and is the kind of pattern found 
in complicated programs like the renormaliza­
tion program. These results show the latency 

due to network congestion. The typical data 
length in a renormalization calculation is 1 
Kbyte, and the effect of congestion is estimated 
to be negligible from these results. 

The nature of the communication scheme 
makes a renormalization calculation possible on 
the APlOOO parallel computer. Moreover, to 
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Fig. 3 - Cell communication speed (2). 

Communication time as a function of communica­
tion distance for data lengths of 10, 100, 1 000, and 
10 000 bytes. All cells at (x , , y , ) simultaneously 
transmitted data to cells at (x , + /::,.x, y , + /::,. y), and 
simultaneously received data. The distance, s, is 
/::,.x + /::,.y. For example, all cells send data to their 
west neighbor and receive data from their east 
neighbor. The distance is 1. 

enable short messages to be transferred with 

little overhead, the APlOOO employs a new 

concept called line sending, in which messages 

are sent directly from cache memory to the 
network 6

) . Line sending is very useful when 

passing link variables between cells. A fast 

global summation function, whose system library 
name is C2DSUM, helps speed up the conjugate 

residual algorithm 8 
> • 

Finally, a flexible cell configuration is also 

necessary. The APlOOO has a user programmable 
cell configuration interface. The user can 
construct any two-dimensional cell configuration 

N cell 1 X N cell 2 provided the product of N cell 1 and 
N cell 2 is less than the total number of cells. This 
means that the lattice size is not tightly 
constrained by the physical cell configuration . 

4. Structure and performance of the OCD sim­

ulation program 

In this chapter, we describe the paralleliza­

tion techniques used m our current QCD 

simulation and describe the simulation's 

performance. 

FUJITSU Sci. Tech. J., 29 , 1, (March 1993 ) 

4.1 Overall structure of the simulation 
The fundamental ingredient of lattice gauge 

theories is link variables, U"(x), where x is a site 

on a four dimensional lattice and µ (1, 2, 3, 4) 

represents the direction of the link. A set of link 

variables is called a configuration. The Monte 
Carlo steps that are performed to produce a 

configuration are called sweeps. In the case of 

lattice QCD, U"(x) corresponds to gluonic degrees 
of freedom. 

The QCD simulation system consists of the 

Update, Blocking, and Hadron programs. The 

Update program makes configurations for the 

Blocking and Hadron programs. The Blocking 

program is the development program for 

simulating renormalization. This program blocks 

lattice sizes from 32 4 to 16 4
, 16 4 to 8 4

, 8 4 to 4 4
, 

and 4 4 to 2 4, and calculates physical values after 

the Upda te program performs 10 sweeps. For 

hadron spectroscopy, the Hadron program reads 

the configurations roughly every thousand 

sweeps to avoid correlations between them, and 

calculates physical values. The APlOOO's large 

memory allows numerical experiments to be 

performed using a 32 3 X 48 lattice. 

4.2 Update program 
This section describes the basic equation, 

parallelization technique , and performance of the 

update program. 

4.2.1 Basic equation 
Update uses a Monte Carlo method to 

produce configurations with the following 

probability: 

... ···(3) 

where 

Z = f e - s [UµCx>] rrrr dUµ(X). 
x µ 

.. . ·· ·(4) 

In lattice gauge theories, the multiple of U"(x) 
along a minimum square, called a plaquette, is 

the simplest gauge invariant object. The action, 

S, is the sum of these terms: 

S = /3 pta~tte E plaq. ' ... ···(5) 

where the plaquette energy, E plaq. , is written as 

follows: 
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x+ ell 

Fig. 4 - Link variables and plaquettes. 

Link variables on the lattice which comprise a 
plaquette. A link variable belongs to twelve 
different plaquettes {six different planes in four 
dimensions (x - y, x - z, x - t, y - z, y - t, z - t)}. On 
each plane, U. (x) is the edge of two plaquettes. 
Therefore, a link variable couples other link 
variables in its neighborhood via the plaquettes, 
but not necessarily using the nearest links. This is 
an essential feature of gauge theories. 

Figure 4 shows how E plaq. is constructed on 
the lattice. Link variables U/;c) are 3 X 3 SU(3) 

matrices. The SU(2) subgroup parts are replaced 

by new ones with probability P{ U u(x)} using a 
pseudo heatbath algorithm 9 > • 1 Dl • Update should 
be executed for much longer than the auto 
correlation time, which depends on the update 
algorithm. Although, for the lattice QCD 
simulation without matter fields, the pseudo 
heatbath method is more efficient than others 
such as Metropolis or Langevin, it slows down 

drastically near the continuum limit. As a result , 

the auto correlation time becomes larger and 

more Monte Carlo steps are required. In order to 

rmmrmze this effect, an over-relaxation 

algorithm is used 1 1 
l • This algorithm drastically 

changes Uu(x) {actually, its SU(2) subgroup 

parts} by maintaining the value of the action, S. 
4.2.2 Parallelization 
This subsection describes the data mapping 

method, communication method, and perform-
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Fig. 5 - Mapping link variables onto cells. 

A link variable is updated by referencing only its 
neighboring link variables, some of which must be 
fetched from the six neighboring cells. This com­
munication is necessary on distributed memory 
computers. It is important to adapt the model to 
the network architecture to make this commu­
nication as efficient as possible. 

ance of Update. 

1) Data mapping 

For the hadron program, a 323 X 48 lattice 

is mapped onto 512 (16 X 32) cells, so the lattice 

size of one cell (x, y, z, t) is (2, 1, 32, 48). For the 
blocking program, a 32 4 lattice is also mapped 
onto 512 cells. The whole lattice is divided into 
pieces in the .x;y-plane, and each piece is mapped 
onto a cell. This mapping method is called 
xy-partition. 
2) Improved method for communication 

A link variable is updated by referencing 

only the link variables on the six neighboring 

cells (see Fig. 5). However, this way of defining 

and referencing variables does not always suit 

the network architecture of the APlOOO. This 

fetch operation is therefore realized by commu­

nication with only the four nearest cells. By 

arranging the order of communication, the 

communication time can be improved. Link 

variables on the north-west and south-east cells 

are transported by the following two steps: 
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Table 1. Performance for one update sweep on a 
512-cell system 

Pseudo Over-
heatbath relaxation 

---....... (s) (s) 

Calculation 8.94 5.74 
Communication 1.61 1.61 

(Send-receive, i dle) (0.37) (0.37) 
(Buff erring) (1.24) (1.24) 

Total time 10.55 7.35 
Performance 2.52 µ. s / link 1. 75 µ. s/ link 

Time for one sweep of a 32' lattice on a 512-cell 
system for the pseudo heatbath over-relaxation 
algorithms. The calculation row shows the net 
calculation time. The communication row shows 
the communication time. The communication time 
is the sum of the idling time for sending and 
receiving data, the buffering time, and the net 
communication time. (The bufferring time is the 
time required to copy data to and from the system 
buffer memory for communication.) 

1) Each cell sends data to its north and south 

cells and receives data from its north and 

south cells. 

2) Each cell sends data to its east cell via the 

data of its north cell and receives data from 

its west cell. Sending to the west cell 

involves the same operation as sending to 

the east cell. 

The communication time m the T-net 

increases as the number of messages on a 

communication channel increases. Therefore, the 

above communication scheme is faster than 

direct communication between six cells. 
4.2.3 Performance 
T able 1 shows the performance of one 

update sweep of a 32 1 lattice on the 512-cell 
APlOOO system. One sweep takes 10.55 s for the 

pseudo heatbath algorithm and 7.35 s for the 
over-relaxation algorithm. From this, the time 

required to update one link variable is calculated 

to be 2.52 µ s for the pseudo heatbath algorithm 

and 1.75 µ s for the overrelaxation algorithm. 

The performance is defined as follows: 

Performance (µs / link) = 

(Total time each sweep)/ 

(Lattice size times direction). ···(7) 
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The communication time for one sweep is 

the same for the pseudo heatbath algorithm and 

the over-relaxation algorithm because the data 

length for both is the same. The actual 

communication time is very short, 0.37 s, which 

is 3.5 percent (pseudo heatbath) and 5 percent 

(over-relaxation) of the total time. When the 

buffering time (time required to copy data in the 

continuous area for reception into the distributed 

area of the array) is included, the communica­

tion time is 1.61 s. This buffering time is a 

significant part of the total time and can be 

reduced by analyzing the system architecture. 

Despite this overhead, the pseudo heatbath 

algorithm compares favorabley with the dedicat­

ed QCDPAX machine developed at Tsukuba 

University 5>. The peak performance of 

QCDPAX is 14 GFLOPS (10 9 floating operations 

per second). The peak performance of the 512-

cell APlOOO is 3.3 times slower than this, but the 

one-link update time is only 1.8 times slower. 

Consequently, the one-link update time per node 

(cell) on the APlOOO is 1.8 times faster than on 

the QCDP AX. Also, the APlOOO has a Fortran 

and C programming environment which reduces 

the development time and increases program 

reliability. The APlOOO therefore provides a high 

performance environment for QCD simulation 

that rivals a dedicated QCD machine. 

4.3 Blocking program 
4.3.1 Basic equation 
The real space renormalization method 

integrates the higher frequency parts in the path 

integral and defines a new action, S ' ; + 1 > , from 

the old one, S (i > , as follows: 

e-Sli+ 1>[ U /1+ 1>J= .. 

f l»[u l»J 
o [ U ?+ I ) - B(U?) )] e-s I II dU /i) . 

... ···(8) 

In this formula, u (i+ I ) is derived from u ( i ) , i.e. 
u ( i + I ) = B (U ( i ) ), and u ( i ) is integrated.Bis 

the blocking operation and is defined as the 

following two steps: 

1) Xis the sum of products along a set of paths 

connecting two block sites: 
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Table 2. Mapping for blocking in two dimensions 

Lattice size 32 4 16' 8 4 

Cells used 512 256 64 
(16 x 32) (16 x 16) (8 x 8) 

Lattice size / cell 2 x 1 x 32 x 32 1 x 1 x 16 x 16 1 x 1 x 16 x 16 

When the lattice is smaller than 32 ', efficiency is very low because some of the 512 cell processors are not 
working. 

X = Uµ<'' (x)Uµ<' ' (x + µ) 

+ ~ ~µU.<i' (x)U.<'' (x + v)Uµ<'' (x + µ + v) 

U "(i ' t (x + 2 v ), .. .... (9) 

2) x is then mapped onto an SU(3) element, 
u "(i + I ) (X). 

Blocking starts from a 32 4 lattice. After 
each blocking step, the lattice size is reduced by 
a facter of 2 (i.e. from 32' to 16 4 to 8' to 4' to 
2'). 

4.3.2. Parallelization 
This subsection discusses the mapping of a 

lattice onto cells. At first, it seemed impossible 
to parallelize the blocking. If blocking uses the 
xy-partition employed in the update program, 

the blocked lattices (16 4
, 84

, 4 4
, and 2 4

) cannot 
be mapped onto the cells (see Table 2). This is 
why blocking was previously done only on 
vector machines and parallel machines were only 

used for updating. Blocking does however use 
enormous amounts of memory and CPU time, so 
only small scale studies have been done on 
vector machines. In the QCD - TARO project, a 
parallel machine is being used to successfully 
handle the large lattice size of 32'. 

Updating and blocking for a renormalization 
study using the APlOOO was achieved by 
ensuring that the programs fully exploit the 
APlOOO's flexibility. Two types of blocking, 32 4 

to 8 4 and 8 4 to 2 4 , were considered. 
Figure 6 shows the general-flow of blocking. 

The first type of blocking reduces the lattice size 
from 32 4 to 8 4

• First, all cells are divided into 
eight groups of 64 cells (8 X 8); each group is 
called a super cell (see Fig. 7). The whole lattice 
is divided, perpendicular to the z-axis, into eight 
pieces, each of which is mapped onto a super 
cell. These pieces are then partitioned in the .xy 
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Blocking 

Two dimensions c:> Three dimensions 

Store 32' configurat.ion 

Fi rst type of block ing (32' c:> 8') 

no 

Second type of blocking (8' c:> 2') 

Restore 32' configuration 

T hree dimensions c:> Two dimensions 

Return 

D : Includes cell-cell communication 

Fig. 6 - General flow of blocking. 

Each cell has a piece of the 32 4 configuration. 
Forty-eight 8' configurations are produced by a 
blocking procedure from 32 4 to 8' . After the first 
type of blocking has been repeated ten times (from 
32 4 to 8 4 

), the second type of blocking (from 8 4 to 
2 ') starts on 480 processors. 

-plane, and each partition is mapped onto cells in 
the super cell. This method is called xyz 

-partition. As discussed in Chap. 2, the T-net's 
communication performance is only slightly 
influenced by distance. 
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, = 25- 28 z = 21-24 z = 17-20 
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Fig. 7 - Mapping of lattice onto super cells. 

All cells are divided into eight super cells. The 
whole lattice is sliced perpendicular to the z-axis 
into eight pieces, and each piece is mapped ontoa 
super cell. Each piece is cut in the super cell in the 
zy-plane. 

This super cell arrangement does not work 
when the lattice is smaller than 84

• After 

blocking from 32 4 to 8 4
, which is scattered over 

all 512 cells, the 8 4 configuration is compressed 
into one cell. The original 32 4 configuration 
becomes 48 configurations of 8 '1• The blocking 

process from the 32 4 to 84 lattice is repeated ten 
times, giving 480 cells with an 8 4 configuration. 

The second type of blocking starts to block 
from 8 4 to 24 on each cell. Because the APlOOO 
has about 14.5 Mbytes of user memory for each 
cell, the 32 4 configuration data can be kept in 
memory to continue the update program. When 
blocking is complete, the 32 4 configuration data 
is restored, mapping is changed from three­
dimensional mapping (xyz-partition) back to 
two-dimensional mapping, and updating starts 
again. In this way, full blocking from 32 4 to 24 

can be performed. Communication between cells 

in three-dimensional mapping is achieved using a 
subroutine called XGA THER. Each cell 
constructs a look-up table of all indices of link 
variables, and uses it to find a partner for 
communication. 

4.3.3 Performance 
Table 3 shows the performance of the 

Blocking program for one sweep. The first type 
of blocking, from 32 4 to 84, which calculates one 
configuration for the 512 cells, takes 68.5 s. The 
second type of blocking, from 84 to 24

, which 

processes 480 configurations using 480 cells, 
takes 147.9 s. The performance of the commu­
nication subroutine, XGA THER, was measured 
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Table 3. Performance of blocking program for 
one sweep 

Lattice size 

Total time (s) 

XGATHER 
(8 848 repititions) 
(Buffering) 
(Synchronization and idle) 
(Communication) 

68.5 147.9 

44.3 

(17 .97) 

(26.28) 
(0.05) 

The first type of blocking (from 32 4 to 84
) 

calculates one configuration for each lattice size 
using 512 cell processors. The second type of 
blocking (from 84 to 24

) processes 480 configura­
tions for each lattice size using 480 cell processors. 
The communication routine, XGATHER, is only 
called by the first type of blocking. 

during the first type of blocking. In the second 
type of blocking, XGA THER is not called since 
each cell calculates only one configuration. In 
one sweep, XGA THER is called 8 848 times and 

runs for a total of 44.3 s (buffering time: 17.97 s, 

synchronization and idle time: 26.28 s, and 
communication time: 0.05 s). The synchroniza­
tion and idle times are very large because cells 

send the results to the host before XGA THER is 
called, which delays the start of the XGA THER 

subroutine. 

4.4 Hadron program 
The matter fields m the QCD system are 

degrees of freedom of quarks. The quarks live 
on sites and have 12 components (three color 

components X four Dirac components) on each 
site. The propagator of hadrons is a two point 
correlation function between hadronic operators 
composed of quark fields and quantum numbers 
corresponding to the hadrons. For example, the 
meson propagator has the following form: 

m (z) = w ~ . • (z) r w µ . • (z), """(10) 

where 

"" " (11) 

The values of r are scalar, vector, tensor, 
axial vector, and pseudo scalar, respectively. 
The propagator can be expressed in the path 

integral representation as follows: 
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< h(x)h(y) > 

= f h(x)h(y)e - s[Uµ<zl]-smatter [wi .0 <z) . 'l'µ,a<z >] X 

II II dU.(z) II d W L (z)d W •.• (z) , ··· ··· (12) 
z µ a 

where Smaller is a Euclidean action of quark 
fields, 

smaller= L w! .• (x)W"" · ab (x,y)W ".b (y). ···(13) 
µ, v. a , b 

The Wilson fermion is taken as follows: 

W (i, i) = I, ·· · · · ·(14) 

W (i, j) = - K (1 - r . )U(i, j) (j = i + /1 ), 

.. . ··· (15) 

w (i, J) = - K (1 + r . )ut (j, i) (j = i - µ ), 
... ···(16) 

others = 0. ·· · ··· (17) 

The path integration of the fermionic part 
can be performed analytically. For example, a 

meson propagator can be written as follows: 

< h(x)h(y) > = Tr < w- I (y, x) r w-1 (x, y) r detW >. 
... ···(18) 

From here on, detW is set to unity, i.e. it 
becomes a quenched approximation. The same 
type of expression can be obtained for baryons. 
The sum over all spatial sites is taken to extract 
zero spatial momenta and measure the propa­
gator along the Euclidean temporal direction as 
follows: 

<h(t)h(t ' ) > = L <h(t, x )h(t ' , y )> . 
y 

. .. ···(19) 

From these expressions, it can be said tha t 
the propagators of hadrons are constructed by a 
set of rows of the inverse matrix of the Wilson 
fermion corresponding to the origin, x. The 
propagators of hadrons are obtained by solving 

Wx = b 12 times with b's of unity in one column 

and zeros for all other elements. The Wilson 
fermion is a function of link variables produced 
by the Update program described earlier. The 
hadron propagators are measured on each 
configuration to provide a statistical analysis. 
The hadron program consists of two parts. One 

part solves the linear equation and the other 
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calculates hadron propagators from the solu­

tions. The most time consuming part is the 

conjugate r esidual (CR) routine used when 
solving the linear equation. Because the QCD 
contains only local interactions, the Wilson 
fermion has only eight non-zero off-diagonal 
elements in each column from a kinetic term. 

The matrix is however very large, i.e. (number 
of lattice points) X (number of Dirac components) 

x (number of color components), and obtaining 
the product of this large, sparse matrix and a 

vector comprises the main part of the calcula­
tion. Moreover in the CR method, we must 

frequently calculate y = W • x type matrix vec­
tor multiplications. 

4.4.1 Parallelization 
From the concrete form of the Wilson 

fermion matrix, it can be seen that the product 
of the matrix and a vector x can be divided into 
eight parts. y , (y at site i) is constructed in the 

CR method from the sum of x , and W,. •±• . X; ±µ 

where W, . , ± µ is a 12 X 12 block matrix that 
connects sites i and i ±µ, and fl = x, y , z and r . 
This calculation process can be implemented on 
the APlOOO in the following two steps: 

i) y , ± " are constructed from the sum of x, ±" 

and W , ±µ. , ·x,. 
ii) For calculating the boundary data y, on 

each cell, the data of x , ±• and W, ± µ . , ·x , are 
transfered from the nearest cells usmg 
T-net. 
In this procedure, to reduce data 

communications and the required amount of 
memory, the products w ;±µ, i ·x, are calculated 
on the nearest cells before communications. This 
method is generally applicable to matrices of the 
same type. The conjugate residual routine needs 
global sums to calculate the inner products of 
vectors whose components are scattered among 
the cells. An efficient system library routine, 
C2DSUM, calculates the total sum over all cells. 

The solver part of this routine is executed only 
on cells and does not perform communications 
between cells and host. 

Figure 8 shows the flow of the conjugate 

residual method in the Hadron program. 
4.4.2 Performance 
The kernel of the product of the Wilson 
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Fig. 8 - Flow of conjugate residual method m 
Hadron program. 

Only C2DSUM and CNSEND are necessary to 
transfer data when the quark propagators are 
constructed using the conjugate residual algorithm. 
C2DSUM is a fast routine which sums a variable 
on each cell and distributes the result to all cells. 
This routine avoids any cell-host communication in 
the solver. CNSEND handles the communication 
with the nearest cell. 

fermion matrix and a vector is coded m 

assembler. Using the CR method, the speed of 

the solver is 1.78 ,us/ site for each iteration. Table 

4 breaks down the calculation time for one CR 

iteration for a 32 3 X 48 lattice configuration of 

512 cells. The C2DSUM subroutine is called 24 

times for one iteration and uses only 12 ms of 

the total time. C2DSUM is very efficient, and the 

global sum takes only a small proportion of the 

CR calculation time. 
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Table 4. Performance for one iteration of conju­
gate residual (CR) method 

Process 

Matrix solver 
Sum over all cells 
Others 

Total time 

Time (s) 

19.4 
0.012 
4.5 

23.912 

The simulation is for a 32 3 X 48 lattice on 512 
processors. The sum for all cells is done by the 
C2DSUM routine, which is called 24 times per 
iteration. 
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Fig. 9 - b, /3 as a function of /3 . 

The lattice distance is halved when the coupling 
parameter changes from /3 - b, /3 to /3 . The dot­
ted line is a prediction by the continuum theory. 
Our Monte Carlo data are plotted together with 
the old data. A point at /3 = 6.8 is calculated on a 
32' configuration. All other points are calculated 
on a 16' configuration. A new point at /3 = 6.8 is 
stable and indicates a slow approach to the 
continuum limit. 

5. Physical results 

5.1 Monte Carlo study of renormalization 
group 
The lattice simulation attempts to approxi­

mate the continuum theory. The best way to see 

whether a lattice theory is reaching the correct 

continuum limit is to perform a real space 

renormalization group study. Repeating the 

renormalization group transformation changes 

the action, S, as follows: 
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s = 5 c1i ~s c z i ~s < 3 > ~ . ····· ·(20) 

and one expects to reach the renormalization 
trajectory originating from the correct fixed 
point corresponding to continuous QCD. 

The real space renormalization group trans­
formation changes the cut-off from A = Tr I a to 
n Iba, where b = 2. The corresponding change in 
the coupling, g, is governed by the /3-function, 

!3r "" c = AdgldA = - adglda. . .. ··· (21) 

In the two loop calculation, the /3 function is 
given as: 

... ···(22) 

From these equations, one can calculate the 
change in /3 = 61 g 2 after one renormalization 
group transformation. The two-loop prediction 

of /J. /3 is shown in Fig. 9 as a dotted line. 
To evaluate /J. /3 in the numerical simulation, 

six operators at /3 on a 32 lattice and at /3 ' on a 
16 4 lattice at each blocking level are calculated. 
The expectation value at level l as calculated 
using this method is merely the expectation 
value in Equation (1) with S ui instead of S. 
Therefore, if we are near the renormalized 
trajectory and /3' = /3 - /J. /3, all expectation val­
ues at level l on a 16 4 lattice match those at 
level l + 1 on a 32 4 lattice. To determine !J./3, 
blocking at /3 = 6.8 and 7.0 on the 32 4 lattice and 
at many values of /3' on the 16 4 lattice are 

performed. Figure 9 shows our results and those 
of the CERN-DESY-Edinburgh collabora­
tion 1 z i · 1 3 i , which were obtained on 16 4 and 8 4 

lattices. Note that above /3 = 6.5, the configura­
tions generated on 16 4 are in the deconfinement 
phase. 

5.2 Hadron spectroscopy 
Meson and baryon spectroscopy with Wilson 

fermions in the quenched approximation were 

studied. In this equation, unnecessary quark 
doublers have higher masses (of the order of 1/a) 
and hadron wave functions can be constructed 
from point like Dirac fermions in a normal way. 

The Wilson fermion action has a troublesome 
chiral breaking term that is proportional to the 
higher order of a. However, this term is expected 
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to become negligible at the continuum limit, and 

the pion is expected to behave as a proper 
Goldstone boson corresponding to the chiral 
symmetry. It is therefore quite important to 
study hadron spectroscopy at smaller lattice 

distances, a. This means, as stressed in the 
introduction, that large lattices must be handled. 

Hadron propagators along the r -direction, 
which has more lattice points than spatial 

directions, were measured. All other spatial 
directions are integrated, which sets a zero 

spatial momentum, and point like operators were 
chosen as sources. Boundary conditions are 
periodic in all directions. With just a single pole 

in the spectral function, the propagator behaves 
like cash (m r ). If the lattice is large enough, and 
excited states are well separated, this type of 

behavior like cash (m r ) is seen. Using the 21 
most distant points, an X 2 -fit of the cash type is 
performed, and the data fits well with that of a 

single mass. 
Although /\, = 0.140 is far from the critical 

value of /\, , a rough estimate of the critical 
hopping parameter is around 0.151. The {J mass 
in the chiral limit gives a lattice spacing of 
about a = 0.071 fm, so our lattice covers 2.3 fm 
in the spatial direction and 3.4 fm in the 
temporal direction. 

The plot of mp /mp versus m, I m p is often 
used to present results. Figure 10 shows a curve 

estimated by Ono 1 4
' . Clearly m p/mp still seems 

large and /\, = 0.150 is not close enough to the 
chiral limit. The values show good agreement 
with the curve within a single pole fit. 

6. Conclusion 

This paper reported on a parallelization 
study of QCD simulation that was done as part 
of the QCD -TARO project. This study was done 
using the APlOOO highly parallel, distributed 
memory computer. 

A new algorithm and improved method for a 
Monte Carlo renormalization study, and hadron 
spectroscopy in the quench approximation were 
discussed. The APlOOO's low-latency, high 

-throughput network and flexible system config­
uration were fully exploited. The quench QCD 
calculation with the largest lattice size was 
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Fig.10 - Edinburgh plot for hadron masses. 

(Nucleon mass/ p meson mass) versus ( n mass/ p 
mass) (Edinburgh plot) with an empirically esti­
mated curve by Ono. The p meson - n meson 
mass ratio is still higher than the experimental 
value. The data agrees well with the curve, which 
suggests that a non-relativistic quark model works 
well. 

performed by using the large mam memory of 
the APlOOO. The combination of our new 
algorithm and a super cell technique makes it 

possible to perform a renormalization study on a 
highly parallel computer. 

The highly parallel computer has proved to 
be a viable alternative to the conventional vector 
supercomputer, despite the complicated 
programs that are usually required to investigate 
interesting observables. Improvements in the 
update and hadron spectroscopy programs, such 

as our data mapping strategy, enable us to 
perform one of the fastest and largest 
calculations in this field on a highly parallel 
computer. Also, because of the excellent pro­
gram development support environment and high 
reliability of the APlOOO, the first stage of the 
QCD-T ARO project has already produced useful 
results with a lattice close to the continuum 
limit. 
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A scalable, high-bandwidth connection mechanism between FUJITSU's AP1000 highly 
parallel computer and the M-series mainframe has been designed to provide the 
AP 10 0 0 with an input / output system that matches its computing ca pa bi lity. 
A prototype input / output system using Fiber Distributed Data Interface (FOOi ) 
network with a TCP/ IP interface, and a dedicated hardware interface board which 
interfaces the local bus of the processor nodes with the VME bus have been 
developed. 
A software system for this connecti on has also been developed to facilitate porting 
the input / output procedures of the ma inframe-orig inated appl ication programs to the 
processor-nodes. This system greatly reduces the parallelization programming 
workload . 

1. Introduction 

Recently, many attempts have successfully 
proven that the microprocessor-based highly 
parallel processors are cost-effective for provid­
ing high and scalable CPU power to the parallel 

computations of various areas. However, the 
effective performance of parallel processors 
depends much on the degree of parallelism, 

granularity, load-balancing, and the way of using 

the interprocessor network by each application 

program. In addition, to extract the effective 
computational scalability from highly parallel 
processors, a well-balanced input/ output band­
width has to be attached to highly parallel 
processors so as to meet their high CPU 
performance. 

A highly parallel processor without suffi­

cient input/ output bandwidth will show effec­
tively low CPU performance or poor scalability 
to the number of processors even for the highly 
parallelizable applications such as the high 

energy physics experimental data analysis, the 
large-scale gene analysis, and signal processings 
of the remote sensing. 

FUJITSU Sci. Tech. J., 29 , 1, pp. 97-111( March 1993 ) 

The background of this work is in the 

application of parallel processors to the high 

energy physics experimental data analysis. 
Computations for current high energy physics 
experiments have already been heavily CPU 

demanding. For example, the experiments of 
TRISTAN accelerator held at the National 
Laboratory for High Energy Physics requires 

more than 100 MIPS of computing power for the 

offline data analysis. Furthermore it is planned 

to boost the accelerator experiment by trans­
ferring to higher beam intensity and energy as 
shown in the Appendix. As the necessary amount 
of computations will explode drastically far 
beyond the present level, it is obvious that only 
the parallel processing approach has a possibility 
to provide the required amount of computer 

power for the coming experiments. 
According to a preliminary study, experi­

mental data analysis programs used heavily in 
the high energy physics computation can be 

perfectly parallelized thanks to the independent 
nature of each particle collision event (the event 
parallelism) 1 > • However, the application requires 
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large amount of data-access to external file 

systems during the course of event-parallel 
processing. This will result in the I/ 0-bounded 
processing of highly parallel processors. 

The APlOOO is a highly parallel processor 
system developed by Fujitsu Laboratories Ltd .. 
Because this system has only a single host 
processor, i.e., the SUN4 workstation which has 
to handle all the input/ output requests from the 
cells, the total I/ O bandwidth is determined by 
that of the host processor. For example, given 
the average size of experimental data for one 
event and the average computational time for 
the analysis of it , one experimental data analysis 
program requires approximately 530 Kbytes/ s 
and 2.2 Mbytes/ s of the effective I/ O throughput 
so as to balance the CPU capability of the 
APlOOO with the configuration of 128 nodes and 
512 nodes, respectively. Therefore, because 
input-output bandwidth of the host processor is 

about 500 Kbytes /s, no more performance 
increase can be expected in this particular case 
beyond a configuration of approximately 120 

nodes 1>. Relatively five times heavier I/O band­
width requirement to this has been observed in 
another experimental data analysis program. 

The amount of the experimental data 
involved in high energy physics computations is 
enormous, and frequent access to this data by 
CPU demanding jobs and various other analyses 
by using an archive facility must be possible. 
Therefore, experimental data analysis requires 
large capacity DASDs and high speed channels 
such as are found in a mainframe. It seems that 
the only choice for the major component of an 
APlOOO external data-file system for experi­
mental data analysis computations is a main­
frame. Therefore, the APlOOO/ mainframe con­
nection will be a key issue in the practical 
application of the APlOOO in experimental data 
analysis computations. 

This paper describes a study on a scalable, 
high-bandwidth connection between the APlOOO 
and the Fujitsu M-series mainframe for high 
energy physics computations. Chapter 2 discusses 
the connection in terms of the input / output 
bandwidth and exploitation of hardware 
resources. Chapter 2 also describes in detail the 
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implementation of the prototype hardware. 
Chapter 3 describes the programming issues 
regarding reuse of mainframe-originated experi­
mental data analysis programs. Chapter 3 also 
describes the design of the data transfer 
software and its implementation. Chapter 4 
discusses the effectiveness of the connection. 
Finally chapter 5 looks at the future plans for 

work in this area. 

2. Hardware design of the mainframe / AP1000 

connection 

2.1 APlOOO archit ecture 
The APlOOO highly parallel computer is a 

multiple-instruction multiple-data (MIMD) 
computer with distributed memories. A node 
processor of APlOOO, called the cell, consists of a 
SP ARC microprocessor and a specially designed 
communication interface. Program loading, 
input/ output processing, and control of cell 
program is done using a workstation called the 
host. The APlOOO has three communication 
networks: the synchronization network (S-net), 
which is used for inter-cell and host-cell 
synchronization, the broadcast network (B-net), 
which is used for host-cell and inter-cell 
broadcasting, and a two-dimensional torus 
network (T-net), which is used for inter-cell 
communication 2 > · 3 > . 

Each network uses a different structure and 
mechanism to enable efficient data transfer. 
Communication on the T -net has a low latency 
and is virtually deadlock free due to a unique 
message routing technique which consists of the 
wormhole routing and the structured buffer pool 
algorithm 2 > · 3 >. Because of this technique, the 
communication throughput between a pair of 
distant cells is not so different from that 
between an adjoining cell-pair. The peak 
communication throughput of the hardware is 25 

Mbytes/ s. 
The B-net is an exclusive-access bus which 

allows only one sender to start communication 
at a time. The peak hardware throughput for 
inter-cell communication is 50 Mbytes / s. How­
ever, the host-cell data transfer rate is restricted 
to slightly below 2 Mbytes/ s because of the 
VME bus data transfer speed of the host 
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workstation. 

The programming model of the APlOOO 
consists of message passing and the synchro­
nization. The communication library routines for 
inter-cell and intra-cell communication, host-cell 
communication, synchronization, and initializa­
tion can be used in C or Fortran programs. 

2.2 Characteristics of mainframe input / output 
The mainframe has high-speed channels for 

external input / output connections. By using 
multiple channels, the total input and output 
throughput currently reaches 1 Gbytes/ s. The 

mainframe channel supports a variety of 
large-scale, high-speed, external storage systems, 
for example, tape-robot systems, array disks, 
and large-storage optical disks. These features 
make the mainframe a suitable data-file storage 
for experimental data analysis computations. 

2.3 Candidates for hardware configuration of 
APlOOO/mainframe connection 
The purpose of the APl OOO/ mainframe 

connection is to provide the APlOOO with a 
scalable high bandwidth and a large-capacity 
data-file storage by using a mainframe as an 
external file system. The practical approach for 
this purpose is to make the connection between 
the APlOOO and a mainframe multiple. 

The candidates for the connection configura­
tion with respect to the APlOOO network 
organization are as follows: 
1) Multiple full sets of small-scale AP1000 

systems connected to the mainframe via 
hosts {see Fig. la)}, 

2) a single APlOOO system multiply connected 
to the mainframe via B-net and its network 
interface {see Fig. lb)}, and 

3) a single APlOOO system whose multiple cells 
are connected directly to the mainframe {see 
Fig. le)}. 

In the second and the last configuration, it is 
appropriate for each data path to supply data to 
one cell-cluster which contains certain number of 
cells. 

The first connection configuration relieves 
communication traffic between the cells and 
mainframe. However, this configuration is the 

FUJITSU Sci. Tech . J., 29, 1, (March 1993 ) 

APlOOO 

APlOOO Mainframe 

APlOOO 

a) Multiple sets of APlOOO connected via their 
hosts 

Mainframe 

APlOOO 

b) B-net connected to mainframe via multiple 
interfaces 

Mainframe 

T-net 
APlOOO 

c) Cells connected to mainframe via multiple 
options 

Fig. 1 - APlOOO/mainframe connection 
configurations. 

least flexible because virtually no cooperation is 
possible among individual APlOOOs with their 
hosts. This feature might be disadvantageous in 
certain computations of the experimental data 
analysis, for example, statistical analysis over 
all events. Also, there is a hardware redundancy 
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if multiple full-sets of APlOOO systems are to be 
used to run a single job. 

The second configuration relieves only the 
traffic between the network interface and the 
mainframe. This configuration will complicate 
network control of access to the B-net by 
multiple cells and multiple network interfaces. 
As m the first configuration, the second 
configuration does not use the T-net to reduce 

input / output communication traffic. 
The third configuration can disperse 

input/ output communication traffic by using the 
T-net and by connecting multiple cells to the 
mainframe. With this configuration, communica­
tion without inter-cluster interference is possible 
because each cluster has its own mainframe 
connection. Therefore, the third configuration 
enables an input / output system whose data 

Circuit board ·in VME cabinet ,---, 

Address 
decoder/ 

,...--- converter Bidirectional 
buffer 
,...---[> 

,...---
[> Data/ 

Address Address [> address 
buffer !+------< t--1 

<] ~ <J 
'---

,_______ 
Address 

,...-----, register 

[> 
Data Data ~~ buffer 

Buffer <J ..__ 

~Data }-register 

<J 
Buffer 

Data J Status }-j · l register Bidirectional 
buffer 

Control/ 

transfer throughput is scalable with respect to 

the number of cells. 
It is therefore decided to use the third 

configuration. 

2.4 Design of connection hardware 
1) Prototype configuration of cell I/O system 

The communication network chosen for the 
prototype APlOOO/ mainframe connection is an 

APl OOO 

Mainframe 
VME bus 

Cell 

1/0 FDDI SPARC L-bus/ Cell local 
channel FDDI I/F CPU VME bus board l/F 

Fig. 2 - Prototype hardware configuration. 
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Interrupt Interrupt 
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Fig. 3 - L-bus/ VME interface circuit configuration. 
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optical fiber link network (FDDI: Fiber 

Distributed Data Interface of the American 
National Standards Institute) which provides a 
comparatively high communication throughput 
and is easily connected to a mainframe. The 
hardware functions of the APlOOO can be 
extended by adding optional hardware to cell's 
local bus (L-bus). This extendable feature is used 
to connect the FDDI interface to the cells. 

The cell input/output system has to provide 
the following two functions. One function 
distributes and gathers data to and from multi­
ple cells for the input / output requests of an 

application program. The other function com­
municates with mainframe, which performs the 
actual data-file input / output operations. 

To achieve high-performance input / output 
system, communication with the mainframe 
should be done simultaneously with the proces­
sing for the distribution and gathering of data to 
and from the computing cells. Therefore, a 

SP ARC CPU board is used to control FDDI 
interface. The SP ARC CPU board, which can be 
operated by the SUN OS, also makes it easier to 

b) L-bus-side 
10 cm 

Fig. 4 - Option board. 
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develop software for network communication 
using TCP / IP (Transmission Control Protocol 
/ Internet Protocol). 

The VME bus is a good choice for the 
common bus of cell input/ output system because 
the available FDDI network interfaces and 
SP ARC CPU boards use a VME bus for their 
external interface. However, to connect the 
FDDI network interface to a cell, an interface to 
convert bus communication protocol between 
L-bus and VME bus is necessary. 

The cell input/ output system consists of the 
cell, an L-bus/ VME interface, VME bus, SP ARC 
CPU board, FDDI interface, FDDI optical fiber 
link network, and mainframe (see Fig. 2). 
2) Design of L-bus/ VME interface hardware 

A dedicated interface circuit board is 
designed for the connection to APlOOO cells (see 
Fig. 3). This interface makes VME peripherals 
act as cell slaves. Because the L-bus is a 
synchronous data-address multiplexed bus while 
the VME bus is an asynchronous data-address 
separated bus, bus-timing adjustments and 
protocol conversions are indispensable. 

The interface circuit consists of two parts 

connected via bus buffers that compensate for 
differences in bus timings. The VME-side circuit 
controls VME bus protocol and VME interrup­
tion, and the L-bus-side circuit controls L-bus 
protocol and L-bus interruption. This latter 
circuit contains an 8 Kbytes first-in first-out 
(FIFO) memory to compensate for the differ­
ences in the data transfer speeds of two buses 

(see Figs. 3 and 4). 
3) Function of L-bus/ VME interface hardware 

The L-bus/ VME interface is designed to 
enable transparent mutual access to the address 
spaces of the VME bus and L-bus. If accesses 
from the VME bus and L-bus occurs 
simultaneously, the interface inhibits the access 
from the VME bus. Because of the mutual 
address mapping function of the interface, the 
direct data transfer between L-bus and the VME 
bus will be inefficient; therefore, a design to 
enable a data transfer via the FIFO memory is 
employed. The VME bus and L-bus can access 
the FIFO memory independently without disturb­
ing each other. A data transfer from the L-bus to 
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the FIFO memory can be performed by a direct 

memory access (DMA) to cell memory. This 

DMA transfer is controlled by the empty/ full 
status of the FIFO. For mutual notification of 
events on the busses, the master of each bus can 

interrupt the other bus. 

3. Software design of the mainframe / AP1000 
connection 

3.1 Input / output processing structure of exper­

imental hig h energy physics data analysis 

High energy physics experimental data can 
be analyzed independently in an event-by-event 

manner by analysis codes. This parallelism has 
high potential for highly efficient parallel 
processing. Meanwhile, the experimental data is 

stored in a single data-file to be analyzed in a 

single batch. Therefore, even if the data is to be 
concurrently processed, it is unavoidable to 
distribute data to or gather data from cells both 

in an event-by-event manner. 

Here, data di vision and combination must be 

done in an event-by-event manner. This type of 
data division requires deciphering of the data-file 
contents because of the complicated data 

organization, the structure of which is written in 

the data-file. T he complicated data organization 
is unavoidable because of the different data 
types, namely, character, integer, and floating 

point, and the great differences in the amount of 

data among events. 

3.2 Problems related to message passing pro­
g r amming 

Existing programs for the current experi­
mental data analysis are based on a procedure­
call programming model of mainframe's single­
addressing programming view. This means that 

all process communications and data transfers 
involved in procedure-calling are done via shared 
memory, e.g. , common blocks, or via shared 

resources that can be accessed by using ordinary 
read and write instructions. 

On the other hand, the programming model 
of the APlOOO distributed memory machine is 

message passing with synchronization. This 
means that all process communication, host-cell 

data transfer, and control of host and cell 
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Fig. 5 - Parallelization on distributed-memory 
machine APlOOO. 

processes are to be performed via explicit 
description of message passing primitives. This 

difference in programming model causes the 

machine porting problem described below. 

To run a data analysis program on 
computation cells which have no peripheral for 

input / output, the input/ output procedures for 

serial programs ported from the mainframe must 
be separated as shown in Fig. 5. Figure 5 also 

shows how these procedures should be distri­
buted among the input/ output cells described in 

chapter 2. To make this programming modifica­

tion, the structure of data allocation among 
shared resources, namely the main memory and 
disk fil e, must be clearly defined. 

However, it is very difficult to analyze this 

data structure, partly because the input / output 
programming of our applications have the high 
energy physics-specific file-access procedure, and 
partly because common blocks are extensively 
used as a data interface between the data-file 
read/ write subroutine and the other subroutines. 
For our applications, the programming modifica­
tion is not an easy task because it requires huge 

amounts of replacements of the data interfaces 
for shared memory by the data interfaces for 
message communications. 

3.3 P rogramming wit h server -cl ient m odel 
There are two programming models, the 

master-slave and the server-client, applicable to 
the file-accesses to a single data-file by multiple 
processors. When these programming models are 
applied to the event-independent parallel proces-
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smg of the experimental data analysis, concur­

rent computations have the following character­
istics. 

1) Data division: 

In the case of the master-slave model, the 
decipherment for division of the input file into 
individual event data must be done by the 
master. In the case of the server-client model, 
this decipherment can be done both by the server 
and the clients. 

2) Balancing computational loads among cells: 
Usually, to realize highly efficient parallel 

processing, some management is required to 
achieve a uniform computational load among 
cells. In the case of the server-client model, no 
explicit control is necessary to balance the load, 
while monistic control by the master is required 
in the case of master-slave model. 

Because of these characteristics, the server 
function for the server-client model has a 
generality that makes application-specific server 
program unnecessary; whereas, for the 
master-slave model, a master program must be 
developed individually for each application. 

In addition, from the viewpoint of parallel 
programming workload, the two programming 
models can be compared as follows: 
3) Separation of input / output procedures from 

the analysis programs: 
Because actual input / output must be 

performed on remote processors other than 
computational cells, the input / output procedure 
must be separated from the program. If this 

read 

1 [9 

I [9 

I [9 

separation is to be done at the Fortran syntax­
level, the programming workload, as mentioned 
above, is very large. 

The only practical and effective way to 
reduce the programming workload for separat­
ing the input/ output procedures from the 
analysis program is to do it not at the Fortran 
syntax-level but at the level of input / output 
mechanism servicing to Fortran programs. This 
approach makes it practical to perform the 
decipherment for the above mentioned data 
division on the computation cells, as is the case 
for the server-client model. However, in the case 
of the master-slave model, a data division 
decipherment by the slaves on the computation 
cells has no use on the actual data di vision. 
Hence, separating the input / output procedure at 
the input / output mechanism-level is feasible for 
the server-client model, but not for the master­
slave model. 

From the viewpoint of reducing user's work­
load, abov e characteristics suggest that input/ 
output processing should be based on server­
client model. 

3.4 Mechanism to realize server -client model in 
input/ output processes 
Based on the server-client model, the 

input / output functions of analysis programs are 
replaced by cooperative functions of the server 
and the client. This server-client-based file­
access can be realized by the distributed 
file-access mechanism 4 > , namely by distributing 

read 

CD 
@ 

® 
i 
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[9 - CD 
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write 

a) Class-1: Reading in batches b) Class-2: Reading ev ent-by-event c) Class-3: Writing event-by-event 

Fig. 6 - Patterns of file-access from the experimental data analysis programs. 
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input/ output processes between computation 

cells and input / output cells. In this mechanism, 
the client makes input/ output requests to the 

server which resides in the remote input / output 
cell, and the server executes the actual disk 

input / output processes. In the actual implement­
ation of this mechanism, a file-access manage­

ment by using a file buffer and a buffer pointer 

is required. 
For multiple clients to be able to request the 

server to read / write data from/ to a single 
data-file, a control over concurrent requests is 

necessary. The type of control to be used 

depends on the file-access pattern. In the 
experimental data analysis, the file-access 
patterns are classified as follows: 

Class-1: In a "batched manner" when the same 

data stream is read by multiple clients from 
a single data-file {see Fig. 6a)} 

Class-2: In an "event-by-event manner" when 

data different from client to client is read 

from a single data-file {see Fig. 6b)} 
Class-3: In an "event-by-event manner" when 

data different from client to client is written 
to a single data-file {see Fig. 6c)} 

An example of a class-1 file-access is the 
input of analysis parameters which have to be 
read at the beginning of the program. An 
example of a class-2 file-access is the input of 

experimental raw data. Examples of a class-3 
file-access are outputs of analysis results and 
messages. 

To replace the processing of these three 
file-accesses classes with concurrent processing 
among multiple clients and a single file server, 
input and output system must have the following 
mechanisms: 

Mechanism-1: For a class-1 file-access, the 
server waits until all clients 
have requested data input. It 
then broadcasts the requested 
data and updates the buffer 
pointer {see Fig. 7a)} . 

Mechanism-2: For a class-2 file-access, when 
the server receives an access 
request from a client, the 
server locks the buff er so that 
other clients can not access it 
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{see Fig. 7b)} . After the 
accessing client has finished 
the access, the server unlocks 
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the buffer upon a request from 

the client so that another client 
can access it. 

Mechanism-3: For a class-3 file-access, outputs 
from the user program are 
stored in the buff er on the side 
of client. After all outputs for 
the analysis of one event data 
have been written in the client 
buffer, the server locks the 
server buffer on receiving a 
request from the client. Then, 
the client flushes the contents 
of the client buffer to the server 
buffer followed by unlocking of 
the server buffer {see Fig. 7c)}. 

If the file-access is uniformly distributed 
over the analysis of an event, as is the case for 
the message output, the exclusive file-access 
mechanism serializes not only the file-access but 
also the analysis procedures. Fortunately, 

because a class-3 file-access is a write access, the 
buffering-and-flush mechanism described above 
can rmmrmze the ill effect caused by 
serialization. 

3.5 Clusterization of input / output fun ction 
1) Serialization and the distributed file-access 

mechanism 
As mentioned in the previous section, the 

input/ output processes must be serialized for 
experimental raw data and analyzed data. The 
control for exclusive file-access by the 
lock/ unlock mechanism is to guarantee this 
serialization. This means that input/ output 
procedures between lock and unlock operations 
must be serialized from client to client. 
Therefore, the maximum number of clients that 
can be supplied with data without a waiting time 
in average, is limited not only by the data 
transfer-speed but also by the time taken by 
input / output procedures. 

Ne = Tc I ( Td + Tp) 
N e : Maximum effective number of clients 
T c : Time for computation, excluding input / 

output procedures 
Td : Time for data transfer 
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Tp: CPU-time for input / output procedures 

Therefore, the maximum number of clients 
effective to derive performance from cells is 
limited by the ratio T c over Tp, which is mostly 
independent of cell and input / output perform­
ance. Actually, in one experimental data analysis 
program, the ratio T c over T p is about 110. This 
means that an effective CPU power of a cell 
configuration having more than 110 cells will not 
exceed that of 110 cells. 

When server-client-based file-access is appli­
ed to an application program which requires 

input / output serialization, to achieve scalable 
CPU power, multiplication of the server is 
necessary. 
2) Hierarchical server function 

In general, the mainframe to be used as an 
external file system of the APlOOO is run in a 
multi-programming mode. In this mode, the 
execution right is transferred from one job to 
another at every file-access. If the server-client 

communication with short data length and 
congested traffic is directly extended to the 
mainframe, the communication will not be 
efficient. Therefore, we employed a decomposi­
tion of the server into two parts to improve 
communication efficiency. One server, called the 
cell-cluster server, resides in the input / output 
cell of the cell-cluster described in Chap. 2, 
which directly processes requests from clients 
(see Fig. 8). The other server, called the main­
frame server, resides in the mainframe, which 
processes requests for file-access and data 
transfer from the cell-cluster server (see Fig. 8). 
The configuration of cell-cluster server is 

1.. 
1.. 

Cell cluster 1/0 cell 

Computation cells I Cluster server I 
_I 

l Buffer 2J Mainframe 

ll [ Buffer !J 
Application Additional 

~ I- SPARC CPU program Board r--w-
t- t-pP Cell 1/ 0 , [ Ma.inframe r-HJ--' 

client client v 
Fig. 8 - Task assignment to hardware. 
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described below. 
To achieve a high processing performance, 

the sending of requests to the mainframe and 
their incidental processing, and the reception of 
requests from clients on computation cells and 

their incidental processing should be parallelized 
as much as possible. Therefore, the server task 
that serves clients in cells and the client task 

that makes requests to the mainframe file server 

(called the mainframe client) are made to act 
asynchronously. This is done by making them 

independent processes and by using double buffer 
that is accessible both from the client and server 
processes. The cell-cluster server process resides 
in the input/output cell, and the mainframe 
client process resides in the SP ARC CPU board 
(see Fig. 8). To assist the parallel action of the 

two processes, the client process makes request 
to mainframe before requests are issu ed by the 

cell clients in input mode. 

3.6 Implementations 
The software components that organize the 

mechanisms described in the previous sections 
are the cell clients, the cell-cluster server, the 
mainframe client, and the mainframe file server. 

The cell clients consist of replacements for 
system-call and user-callable modules. The 

replacements of system-call that are called from 
Fortran object code issue requests for data 

transfer using the Fortran input/output buffer as 
a transfer unit. These requests are made to the 
cell-cluster server by sending messages using 
communication library routines. For an 
exclusive file-access in mechanism-2 (described 
in the section 3.4), user callable modules to run 
on computation cells which lock or unlock the 
server buffer are prepared. For the buffering and 
flushing functions in mechanism-3, a user­
callable module which changes the size of the 
Fortran input/ output buffer, and a user-callable 

module which flushes the Fortran input/ output 
buffer contents are prepared. 

These user-callable modules and replace­
ments of system-call manage all of Fortran 

input/ output operations m the application 
program by referencing and updating the 
file-access information table. This table contains 
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information to identify the file in the server and 

information to count the length of the already­

accessed part of the buffer. In the read mode, the 
replacements of input / output system call not 
only receive input data from the server, but also 

notify the server of the length of data that has 

been read from the Fortran input/ output buffer 

by the application program. 
On the cell-cluster server side, the server 

manages the switching of buffers from file to file 

or from one side of a doubled server buffer to 

the other side. Also, the server processes 
requests from clients based on the file-access 

information table on the cluster-server side. This 
table contains the following: information that 
identifies files in the server or the mainframe, 
information about the file-access pattern, 

information about file organization in the server 

and the mainframe, and the buffer pointers. 

Control of exclusive access to a double 
buffer is done between the cell-cluster server 

process and the mainframe client process. On the 
mainframe client-process side, request commands 
are sent to the mainframe file server. 

On the mainframe file server side, file 
opening, reading, wntmg, and closing are 

performed on request from the mainframe client. 
Also, conversion between the mainframe OS and 
UNIX Note) of the file organization and the data 

format, for example, character or floating point, 

is performed by the mainframe file server. 
The communication between cell-cluster 

server and mainframe client is done on a 
message passing-basis by using dedicated device 
driver routines. The communication between the 
mainframe file server and the mainframe client 
is performed by using the socket of the connec­
tion-type which is appropriate for commu­
nication of large amount of data. 

Additionally, a function that reads the 

definition file which contains the file-access 
information and a function that sends the 
file-access information to the cell inpu t / output 
clients and cell-cluster server are required. A 

Note: The UNIX operating system was developed 
and is licensed by UNIX SystemLaboratories, 
Inc. 
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module which is callable from the host program 
is pr epared for these functions. 

4. Effectiveness of the system 
1) Use of mainframe as an external file system 

of the AP lOOO 

The hardware and software we developed 

enable us to use a mainframe as an external file 
system of the APlOOO. 

The input/ou tput performance of the system 
can be greatly upgraded by the above-mentioned 
configuration because the distribu tion of input/ 

outpu t processes resolves data-transfer bottle­

necks on the APlOOO side. H owever , bottlenecks 

on the mainframe side, for example, bottlenecks 
in the mainframe inpu t / output and FDDI optical 
fiber link network, may become a problem 

depending on the required CPU power and the 

input/ output throughput for the data analysis. 
Moreover, for a configuration with multiple 

cell-cluster servers, a single data-file on the 

mainframe side must be divided corr esponding to 

multiple cell-cluster servers. T his data-file 

di vision can only be performed by a user-defined 
program because the organization of data-file 

records varies from user to user. If data-file 
di vision is to be performed by the mainframe file 

ser ver, uniformity will be lost because the 
mainframe file server will contain a part which 

does not follow the server-client model. There­
fore a dedicated mainframe file server for each 

program is necessary in this case. 
2) Input/output performance 

Because the input/ output hardware option 
for APlOOO cells is still under development, the 
hardware performance and software overhead 
have not yet been measured. 

Evaluation of the APlOOO input / output 
performance using the prototype option con­
nected to the mainframe via the FDDI optical 
fiber link network are planned for the near 
future. This evaluation will include the measur­
ing of the communication performance between 

the SP ARC CPU board and a cell and the effect 
of the buffer size of the cell-cluster server on the 

mainframe SP ARC CPU board communication 
overhead. T he evaluation results will be used to 
improve the system by optimizing the software. 
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parameter (maxd=25000) 
common a(maxd),b(maxd),nc(S),m,mb 
integer evnum 
equivalence ( b(l),evnum ) 
read( 5, 100 ) ( nc(i),i=l,5 ) 

100 format( Si4 ) 
open( unit=70,file='evdatain', 

& access='sequential',form='unformatted') 
open( unit=80,file='evdataout', 

& access='sequential',form='unformatted') 
do 10 i=l,100000 
read( 70, end=999 ) m,( a(j)j=l,m ) 

c----- event reconstruction subroutine 
call reconst 
write( 80 ) mb,( b(j)j=l,mb ) 
write( 6, 200 ) evnum 

200 format(' Event number ',iS,' processed.') 
10 continue 

999 close ( 70 ) 
close ( 80) 
stop 
end 

Fig. 9 - Simplified model program of experimental 
data analysis programs. 

3) Parallel programming 

Owing to the distributed file-access system, 

virtually no modification of the input/ output 
processes is required for parallelizing the high 
energy physics experimental data analysis 

programs. 
To demonstrate the effectiveness of the new 

environment, a model program of the high 
energy physics experimental data analysis that 
has been simplified by focusing on the input / 
output is used (see Fig. 9). If this program is 
parallelized by using the usual communication 
primitives, for example, send and receive, the 

number of source lines will increase considerably 

and extra complexity will be introduced as 
shown in Fig. 10. T he parallelized version of this 
program by using the new file-access environ­
ment is shown in Fig. 11. As can be seen, no 
rewriting is necessary except for the addition of 
only five statements. The contents of the file 
used to notify the system of the file-access type 
and the file name is shown in Fig. 12. Simplicity 
m handling input / output processes of the 
parallelized program will be much helpful for 
large, real-world application programs. 
4) Parallel processing efficiency 

In concurrent input / output processes based 
on the server-client model, cell programs that 
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SUBROUTINE CHMAIN 
parameter (maxd=25000) 
common a(maxd),b(maxd),nc(S),m,mb 
integer evnum 
equivalence ( b(l),evnum ) 
CALL CCNFXY( 64,1. ) 
CALL CCREAT( CC, 'CCMAIN.OUT', 30) 
read( 5, 100) ( nc(i)~=l,5 ) 

100 format( Si4 ) 
CALL CBROAD( 30, 1, NC, 4*5, CC) 
open( unit=70,file= 'evdatair:i', 

& access='sequential',form='unformatted') 
open(unit=80,file='evdataout', · 

& access='sequential' ,form='unformatted' ) 
D05 I=0,63 
READ( 70, END=9999) M,(A(J)J=l,M) 
CALL CLASND(l, 30, 1, M, 4, CC) 
CALL CLASND(l, 30, 1, A, 4*M, CC) 

5 CONTINUE 
READ( 70, END=9999) M,(A(J)J=l,M) 
do 10 i=l,100000 

CALL CRECV( CID) 
CALL CRDMSG( CID, 4, NRSIZE) 
CALL CLARCV( CID, 30, 1, MB) 
CALL CRDMSG( MB, 4, NRSIZE) 
CALL CLARCV( CID, 30, 1, B) 
CALL CRDMSG( B, 4*MB, NRSIZE) 
CALL CLASND( CID, 30, 1, M, 4, CC) 
CALL CLASND( CID, 30, 1, A, 4*M, CC) 
read( 70, end=99 ) m,( a(j)j=l,m ) 
write( 80 ) mb,( b(j)j=l,mb ) 
write( 6, 200 ) evnum 

200 format( ' Event number ' ,iS,' processed.' ) 
10 continue 

99 DO 20 1=0,63 

CALL CRECV( CID) 
CALL CRDMSG( CID, 4, NRSIZE) 
CALL CLARCV( CID, 30, 1, MB) 
CALL CRDMSG( MB, 4, NRSIZE) 
CALL CLARCV( CID, 30, 1, B) 
CALL CRDMSG( B, 4*MB, NRSIZE) 
WRITE( 80) MB,( B(J)J=l,MB) 
WRITE( 6, 200) EVNUM 

20 CONTINUE 
999 close ( 70 ) 

close ( 80) 
return 
end 

SUBROUTINE CCMAIN 
parameter (maxd=25000) 
common a(maxd),b(maxd),nc(S),m,mb 
integer evnum 
equivalence ( b(l),evnum ) 
CALL CGTID( CID) 
CALL CHRECV( 1, NC) 
CALL CRDMSG( NC, 4*5, NRSIZE) 
do 10 i=l,100000 

CALL CHRECV( 1, M) 
CALL CRDMSG( M, 4, NRSIZE) 
CALL CHRECV( 1, A) 
CALL CRDMSG( A, 4*M, NRSIZE) 

c----- event reconstruction subroutine 
call reconst 
CALL CHSEND( 1, CID, 4, CC) 
CALL CHSEND( 1, MB, 4, CC) 
CALL CHSEND( 1, B, 4*MB, CC) 

10 continue 
return 
end 

Fig. 10 - Host and cell programs using message passing mechanism. 

have finished analyzing an event receive new 

data in turns. As a result, the computational 
load, by itself, is evenly distributed among cells 
except during job start-up and termination. 
Therefore, for long jobs in which the job start-up 
time and termination time are negligible, a good 
load-balance and highly efficient parallel proces­
sing within the cell-cluster can be expected. 

5. Fu ture plans 

5.1 Functions to be developed in the future 
1) Multi-user function 

In general, the abundant CPU resources of 
highly parallel computers must be shared 
effectively among multiple users. Our applica­
tions of highly parallel computers require a 
function that properly starts and terminates the 
user's application programs and allocates the 
file-access system to multiple cell-clusters in 
accordance with the number of cell-cluster 
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servers. 

In our applications, the appropriate number 

of cells for each cluster can be evaluated based 
on a property of the application program, 
namely the ratio of CPU-time required for 
input / output procedures to the time required for 
numerical computation. (This ratio is called the 
input / output procedure ratio.) The maximum 
number of effective cells in one cell-cluster that 
can be used without deteriorating parallel 
processing efficiency is determined by serializa­
tion of the input / output procedures among cells. 
This maximum number varies with the input/ 

output procedure ratio of each program. 
Operability will be improved very much by a 

multi-user function that enables configurations 
having differing numbers of cells and enables 

configuration changes without the need to 
physically move the cell option. 
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SUBROUTINE CCMAIN 
parameter (maxd=25000) 
common a(maxd),b(maxd),nc(S),m,mb 
integer evnum 
equivalence ( b(l),evnum ) 
read( S, 100) ( nc(i),i=l,5 ) 

100 format( Si4 ) 
open( unit=70,file='evdatain', 

& access='sequential',form='unformatted') 
open( unit=80,file='evdataout', 

& access='sequential' ,form='unformatted') 
do 10 i=l,100000 

CALL CFPROT( 70, CC) 
read( 70, end=999 ) m,( a(j)j=l,m ) 

CALL CFFREE( 70, CC) 
c--··· event reconstruction subroutine 
call reconst 
write( 80 ) mb,( b(j)j=l,mb ) 
write( 6, 200 ) evnum 

200 format( ' Event number ',iS,' processed.' ) 
CALL CFLUSH(6,CC) 
CALL CFLUSH(80,CC) 

10 continue 
999 close ( 70 ) 

close ( 80 ) 
return 
end 

Fig. 11 - Parallel program using distributed I/O 
mechanism. 

unlocal = h 
task = 30 
stdin :cardinp ::unlocal,synch 
evdatain :rawdata ::unlocal,read 
evdataout :dstdata ::unlocal,write 
stdout :outlist ::unlocal,write 

Fig. 12 - Description of file acces information. 

2) Operational function 
At present, since most users are familiar 

with mainframe computers, they should be able 
to choose an operating environment which 
enables them to use a parallel processor as if it 
were a mainframe. Or, users should be able to 
choose an operating environment which enables 
batch-job management through a supervisor on a 
mainframe. To this end, we are now developing 

a prototype tool which enables execution of user 
programs on a parallel processor by submitting 
a batch job to a mainframe. 
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5.2 Expected uses in computations of experi­
mental high energy physics 
In Japan, our system will be used in 

experiments at the B-Factory project as exten­
sion of the TRISTAN accelerator and at the 

Japan Linear Collider project, which collides 
electrons and anti-electrons having energies of 

one terra-electron volts are planned 1 ' • In these 
experiments, the amount of experimental data 

and the required amount of computation for data 
analysis are expected to be 100 to 1 000 times 

greater than the level of previous experiments. 
The main part of the data analysis system for 

these experiments is expected to be built by a 

highly parallel processor with our system or its 
follow-on systems. 

6. Conclusion 

An input / output system that enables a 
mainframe to be used as an external file system 
of APlOOO has been designed for the high energy 

physics experimental data analysis. Prototype 
input / output hardware for the APlOOO cells is 

now being built. The input/ output system 
software enables parallelization of the analysis 
programs with virtually no modification and 
with autonomous balancing of computational 
loads among cells. Also, the input/ output system 
software enables the application programs on 

the APlOOO cells to access mainframe files via 
the prototype hardware. We expect to achieve 
scalability of input / output performance with 
respect to the number of computation cells, and 

therefore scalability of the effective computa­

tional power, by using multiple links between the 
cell-clusters and the mainframe channels via the 
input / output system. The system will be used in 
experiments in the near future. 
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8. Appendix 
The computations for the current in high 

energy physics experiments have already been 
heavily CPU demanding. For example, the 30 
GeV + 30 GeV e- e+ collision experiments of 

the TRISTAN accelerator at KEK (National 
Laboratory for High Energy Physics, Japan) 
require more than 100 MIPS of computing power 
for the offline data analysis. This means that 
typical event reconstruction from the raw data 
requires 0.5 seconds per event on a 50 MIPS class 
of computers. A typical detector simulation 
using the Monte Carlo method takes from 5 to 10 
seconds per event on the same machine. Also, 
online data acquisition by the VAX-clustered 
DAQ system requires 0.2 seconds 

KEK is now involved in the following 
accelerator activities: 
1) TRISTAN data analysis for higher-intensity 

runs starting from 1991, 
2) the B-Factory project at KEK, as an exten­

sion of TRISTAN activities, 
3) participation in the world-wide collaboration 

for the SSC (Superconductive Super 

Collider) 20 TeV + 20 TeV proton-proton 
collision experiments that will start at 
Dallas in Texas in 1999, 

4) the Japan Linear Collider at KEK (1 TeV + 1 
TeV e- e+ collision). (This collider is cur­

rently under feasibility study.) 
Since all of these experiments will treat 

higher energy phenomena involving larger 
numbers of events and particles with higher 

resolution detectors, the required amount of 
computations will be far beyond the present 
level. (For example, 100 to 1 000 times that 
required m offline processing of today's 

TRISTAN experiments, and considerably more 
than 100 000 times that for online processing.) It 
is therefore obvious that only the parallel 
processmg approach has a possibility of 
providing the required computer power for these 
experiments. The physical and computational 
dimensions of two future accelerators, the 
B-Factory and the SSC, are compared with those 
of TRISTA in Table 1. 

Table 1. Experimental high energy physics computations 

----------- TRISTAN B-Factory SSC 
(KEK 1986) (KEK 199X) (SSC Lab.1999) 

BEAM energy 
(e- , e+) (e - , e+) Proton 

30 X30 GeV 8 X3.5 GeV 20 X 20 TeV 

Circumference 3km 1.2 km 87 km 

Collision frequency 5 /.1 s 10 ns 16 ns 

No. signal channel 30 000 80 000 1 000 000 

No. particles/ event 10 5 300-500 

Data size / event 20 Kbytes 30 Kbytes 1 000 Kbytes 

Trigger rate 2 Hz 200 Hz 
10-100 kHz 
(2nd Level) 

Data rate 
Raw data 50 Kbytes/ s 6 Mbytes/s 10-100 Mbytes/ s 

500 Gbytes /year 60 Gbytes/ year 100-1 000 Tbytes / year 

DST data 5 Kbytes/ s 3 Mbytes/ s 
50 Gbytes/ year 30 Tbytes/ year 

Required computer power 
1 MIPS 3 000 MIPS 

100 000-1 000 000 MIPS 
Online processing (Event pre-processing) 

Offline processing 100 MIPS 10 000 MIPS 10 000-100 000 MIPS 

FUJ ITSU Sci. Tech. J., 29, 1, (March 1993 ) 
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The Fujitsu Parallel Computing Research Facilities (FPCRF ) offers an optimal 
environment for researchers in parallel processing and its applications. Paralle l 
processing is a promising technique for high-speed, large-scale computation that 
uses hundreds to thousands of interconnected processors. This paper gives an 
overview of FPCRF and the research into parallel software and algorithms being done 
the re. 

1. Introduction 
There are growing demands for high-speed 

large-scale computation, especially m the 
scientific and engineering fields. For example, 

problems in quantum chromodynamics (QCD) 
require some 10 1 7 floating point operations 1 

> • 

Even a 1-GFLOPS computer would require 
several years to solve such a problem, but the 
performance of single-processor computers is 
nearing a limit, that parallel processing is 

expected to overcome. 
The performance of parallel processors 

does, in general, not increase linearly with the 

number of processors due to interprocessor 
communication overhead and load imbalance, 
i.e., the difference in the workload of different 
processors. 

Before parallel processing can become a 
widely-used technology, more research is needed 
into the special algorithms and programs 

required to bring out the full potential of parallel 
processing. 

Fujitsu Parallel Computing Research Facili­
ties (FPCRF) was set up to provide an envi­

ronment for research into tools for developing 
efficient programs and application domain speci­
fic algorithms. 

2. Fujitsu Parallel Computing Research Facil­

ities (FPCRF) 
The FPCRF officially opened in June 1992 

112 

for the purpose of promoting parallel processing 

research and its applications, accumulating para­

llel processing techniques, and evaluating the 
architectural effectiveness of parallel computers. 

Highly parallel APl OOO computers 2
> developed 

by Fujitsu Laboratories Ltd. have been installed 
as platforms for parallel computing research. 
The research environment is offered to re­
searchers in universities and national laborato­

ries. 
FPCRF's activities are as follows: 

1) Administration 

Administration includes user support, re­
source scheduling, information logging, and user 
registration. 
2) Technical information exchange 

Annual meetings encourage FPCRF users to 
exchange ideas on the use of parallel computers 
and communicate results of their work in 
parallel computing techniques. User seminars are 
also held for discussing parallel processing 
techniques in specific user applications. 
3) Research in parallel algorithms and software 

Parallel processing techniques in various 

applications and evaluation of our parallel 
computers have been studied based on technical 
exchange and reports contributed by users. 
FPCRF also maintains a library for research 

results , including programs and documents, 
accessible to FPCRF users and Fujitsu re­
searchers. 

FUJITSU Sci. T ech. J., 29 , 1, pp. 112-11 7 (March 1993) 
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Fig. 1 - System configuration. 
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The first phase of this project will be 
completed in March 1995. 

2.1 Equipment 
The APlOOO, an MIMD parallel computer 

with an architecture based on message passing, 
consists of up to 1 024 processor elements called 
cells. Each cell is connected to a broadcast 
network (B-net), which distributes programs and 
data from a host to the cells, and a torus 
network (T-net), for point-to-point communi­
cation between cells. FPCRF currently has five 
APlOOO systems - one with 512 cells, another 
with 128 cells and the other three with 64 
cells - connected to a local area network (LAN) 
via S-family workstations (SUN4/ 330) (see Fig. 
1). A 30-gigabyte file server on the LAN contains 
user programs and data. The LAN is connected 
via gateways to the academic networks in Japan 

and abroad. 

2.2 Network 
FPCRF is accessed using the Widely Inte­

grated Distributed Environment (WIDE) internet, 
connected via a 64-kb / s line using the TCP / IP 
protocol. The internet was constructed under the 
direction of Associate Professor Jun Murai of 
Keio University. The WIDE internet connects 
universities and companies participating via 
operation centers in Sendai, Tokyo, Fujisawa, 
Kyoto, Osaka, and Fukuoka. 

FPCRF ls also accessed via JUNET, 
connected to the APlOOO systems via a 9.6-kb/ s 
line usmg the unix-to-unix copy protocol 

FUJITSU Sci . Tech. J., 29 , 1, (March 1993 ) 

Austra lia 
Melbourne 

University 

Japanese Uni x Network 
Widely Integrated Distributed Environment 

Germany 

JU N ET 
WIDE 
PACCOM: 
NSFNET : 

Pacific Area Computer Communication Infrastructure 
National Science Foundation Network 

Fig. 2 - International academic network. 

Client 
host 

User 
programs 

Requests 

Termination 
message 

File transfer 

Fig. 3 - Batch operation. 

(UUCP). Since communication data ls relayed 
through nodes at fixed intervals in the same way 
as E-mail, this network is accessed in batches 
rather than online. 

The WIDE operation center in Fujisawa is 
connected to the University of Hawaii via a 
192-kb/s submarine cable. This network is part 
of the PACCOM project, setting up a linked 
computing environment for research activities 
along the Pacific Rim. Hawaii is connected to 
the US mainland, Australia, and New Zealand, 
and European countries can access FPCRF via 
the US (see Fig. 2). 

2.3 Operation 
The APlOOOs at FPCRF run 24 hours a day. 

They are currently available for open use in the 
daytime and for batch operation at night. Open 
use means that users at FPCRF or via a network 
have exclusive use of the parallel computing 
systems for a fixed amount of time. This helps 
users who require lots of processing time and 

113 



T. Saito, and K. Inoue: Activities in the Fujitsu Parallel Computing Research Facilities 

Overseas universities 
10 % 

Japanese national 
laboratories 

13 % 
Total : 90 user groups (Aug. 1992) 

Fig. 4 - FPCRF users. 

have very large data files. A reservation lS 
required and operations are scheduled monthly. 

Requests to compile and run a program in 
batch mode are queued by the queuing host (see 
Fig. 3) and processed automatically by the 
running host during batch operation. Batch-mode 
users, who can request jobs at any time without 
a reservation, are notified automatically by 
E-mail when their programs hav e terminated. 

2.4 FPCRF users 
Among the organizations using FPCRF (see 

Fig. 4), there are eleven Japanese national and 
public research institutes, including the ational 
Laboratory for High Energy Physics and the 
Na ti on al Institute of Genetics, and fifty-four 
universities. There are also eight overseas 
organizations including the University of 
Heidelberg, the Federal Institute of Technology 
at Zurich, and the University of Manchester 
Institute of Science and Technology (UMIST) . 

3. Parallel computing applications 
About one third of the research usmg 

FPCRF is in parallel systems such as paral­
lelizing compilers and parallel languages, and 
about two thirds is in methods for solving 
parallel application problems (see Fig. 5). 

3.1 Computational physics 
Research in QCD 1 ) · 

3
l ls one of the most 

active application fields at FPCRF. QCD is a 
quantum physics theory that describes the 
behavior of fundamental particles such as quarks 
and gluons. The QCD time-space field lS 
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represented by a four-dimensional lattice where 
sites (lattice points) and links connecting sites 
are associated with quark and gluon fields. QCD 
simulation is done using the Monte Carlo 
method. Statistical correlations between the 
links are then evaluated to obtain properties 
such as hadron masses. This method requires 
large amounts of calculation, and researchers 
have applied parallel processing by mapping the 
lattice onto the two-dimensional processor 
elements of the APlOOO. Details are reported in 
this special issue~ ) . 

The Monte Carlo method has also been 
applied to radiative heat transfer analysis 5 ) , 

molecular gas dynamics 6
) , and radiation shield­

ing analysis 7 l with interesting results. 

3.2 Computational chemistry 
In molecular dynamics calculations, the 

macroscopic nature of molecules is studied by 
simulating particles at the molecular or atomic 
level. The force applied to an atom is calculated 
as the sum of forces resulting from other atoms. 
The velocity and position of an atom are then 
calculated from the force. In principle, each step 
of a molecular dynamics (MD) simulation 
requires N (N - 1)/ 2 force calculations - an am­
ount that increases enormously with the number 
of atoms. 

In the parallel processing of AMBER 8 ) · 
9

l , 

an MD simulation program, particle di vision is 
used to group particles equally and assign them 
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to processors to balance the load of calculations. 
During experiments using human lysosyme (20 
thousand atoms) and hemoglobin (88 thousand 
atoms), the APlOOO achieved a performance 10 
to 20 times fa.Ster than Fujitsu's M-780 
mainframe. 

Another parallelization method, domain de­
composition, has been used for MD simulation. 
This splits the space occupied by the particles 
and assigns a processor to perform calculations 
for the particles in an individual area. This is 
effective for large-scale particle systems with 
short-range interaction 1 O) • 

3.3 Fluid dynamics 
Fluid dynamics, used in wide range of fields 

such as civil engineering and the design of 
airplanes and automobiles, analyse fluid motion 
based on calculation of Na vier-Stokes equations 
at grid points in three-dimensional space. To 
mcrease the simulation precision and to 
approximate the results of flow phenomena 
require a fine grid space, e.g., 10 1 

' to 10 1 6 grid 
points for turbulence analysis 1 1

) • Space di vision 
used for parallel processing maps divided grids 
onto the processors. In wind engineering, the 
highly parallel processing achieved by reducing 
the communication overhead and using SOR 
methods is very promising 1 Z) • 

3.4 Electronics CAD 
The following parallel methods' J ) are 

known for generating test patterns for logic 
circuits: 
1) Fault partitioning 

Faults in a logic circuit's fault list are 
divided into groups. Each processor calculates 
circuit inputs that can detect the assigned fault 
group. 
2) Search space partitioning 

The several combinations of inputs to a 
logic element that could detect a fault form a 
search space tree. Each branch of the tree is 
assigned to a processor. 
3) Topological partitioning 

A logic circuit is divided into parts, each 
assigned to a processor. 

A new method' 4
) under study, which deals 

FUJITSU Sci. Tech. J., 29 , 1, (March 1993 ) 

with error propagation paths, generates fault 
lists without fault simulation. Other applications 
of parallel processmg m electronics CAD, 
including circuit simulation and LSI mask 
pattern generation, are discussed in this special 
issue 1 5 ) • 1 s ) 

3.5 Climate simulation 
To predict long-term changes in the earth's 

climate, atmospheric models are created and 
studied. These models range from a simple 
radiative-convective model to the three-dimen­
sional general circulation model (GCM), which is 
based on equations of fluid motion, the first law 
of thermodynamics, and the law of conservation 
of mass. To simulate the model, the earth's 
atmosphere region is divided longitudinally, 
latitudinally, and vertically into a lattice, and 
the equations are solved on these lattice points. 
For parallelizing climate model MRI-GCM, 
developed by the Meteorological Research 
Institute, Japan, two mapping methods have 
been studied to balance computational load: the 
block partitioning, the assignment of each 
cluster of lattice points to a processor, and the 
dot partitioning, the assignment of each point to 
a processor. 

3.6 Genetic information analysis 
A protein is a folded three-dimensional 

ammo acid sequence created based on 
information in the DNA. The properties of a 

protein are predicted using information found in 
similar proteins. Sequences have been analyzed 
to better understand the traces of evolution, 
which the sequence reflects. Genetic information 
analysis' 7

) uses a homology search and multiple 
alignment to compare each sequence with tens of 
thousands of the sequences in a database. The 
computation can be suitably performed m 
parallel because the large number of combi­
nations to be checked are independent. Execu­
tion on the APlOOO using 512 processors to ana­
lyze 15 233 sequences is estimated to be about 9 
times faster than that on Fujitsu's VP2400 
supercomputer' 8

) . A large cell memory and 
direct disk access from each cell are necessary 
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for analyzing long sequences and reducing the 

need for data transfer from a host. 

4. Conclusion 
The Fujitsu Parallel Computing Research 

Facilities promotes the study of parallel proces­
sing by providing a state-of-the-art computing 
environment for researchers. User softwares 
developed there are registered at FPCRF as 
freewares for all users. Such softwares, in 
particular parallel programrmng languages, 
parallelizing compilers, and numerical computa­
tion libraries, will enhance the research environ­
ment. Parallel processing techniques in different 
fields have been studied through discussion with 
users, and the results will be fed back to parallel 
computer R&D-one of FPCRF's major activities. 
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Fuji tsu M ic roelectro ni cs Pac ific Asia Ltd . 
Fuj its u New Zea la nd Ltd . 
F uj itsu (Si nga po re) Pte. Ltd . 
Fuji tsu (Th a il a nd ) Co., Lt d . 
F uji tsu T radi ng Ltd . 

NORTH AM ERICA 

Fuj itsu A mer ica, Inc. 

Fujitsu Business Commun ica t io n System , Inc. 

Fuji tsu C a nad a, Inc. 
Fuj itsu Co mputer Pac kagi ng Tec hn o log ies, Inc. 

Fujitsu Co mpute r Products o f America, Inc. 

Fujitsu Mi croe lectro ni cs, Inc. 
Fuji tsu Netwo rk Switchin g of Ameri ca , Inc. 

Fuj itsu Netwo rk T ra nsmiss io n Sys tems, Inc. 
Fujitsu Systems Bus in ess of Ameri ca, Inc. 

F uj it su Deu tsch la nd G m b H 

F uji tsu Es pan a, S.A . 
Fuji tsu Europe Ltd . 
Fujit su Eu ro pe Te leco m R& D Centre Ltd . 
F uj it su F in a nce (U .K.) P LC 
F ujitsu Fra nce S.A . 
F uj it su Intern a ti o na l F in a nce (Neth er la nds) B. V. 

F uj itsu It a li a S.p. A . 
F uji tsu M icroe lectro ni cs Ire la nd Ltd . 
F uji tsu M icroelectro nics It a li a S.r. I. 

F uji tsu Mi croelectro ni cs Ltd . 
F ujit su Mi kroe lek tro nik G mbH 

F ujitsu No rdi c AB 
F uj itsu Systems Busin ess o f Eu ro pe Ltd . 

Fu lcrum C o mmun ica ti o ns Ltd . 

LATIN AM ERICA 

F uj it su d o Brasil Ltd a. 
F uj it su Vito ri a Co mput ad o res e Serv i ~o s Ltd a. 



FUJITSU LIMITED 
6-1, Marunouchi 1-chome, Chiyoda-ku , Tokyo 100, Japan 
Phone: National (03) 3216-3211 International (lnt'I Prefix) 81 -3-3216-3211 Telex: J22833 Cable: "FUJITSULIMITED TOKYO" 
Fax: National (03) 3213-7174 International (lnt'I Prefix) 81 -3-3213-7174 
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