
FLOATING POINT
SYSTEMS, INC.

Programmable
1/0 Processor
C~IOPl Manu·a1

BS0-7350-002

by FPS Technical Publications Staff

Programmable
1/0 Processor
CPIOPl Manual

SS0-7350-002

NOTICE

3rd Edition, June 1978
Publication No. FPS 7350-02

The material in this manual is for
information purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes
no responsibility for any errors
which may appear in this publication.

Copyright © 1978 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication
may be reproduced in any fonn or by any means
without pennission in writing from the publisher.

Printed in USA

CHAPTER

1. 1
1.2
1.3
1. 4
1.4.1
1.4.2
1.4.3
1.5
1.6

CHAPTER

2.1
2.2
2. 3

CHAPTER

3.1
3.2
3.3
3.4

CHAPTER

4.1
4.1.l
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.l
4.4.2
4.5
4.6

1

2

3

4

FPS 7350-01

CONTENTS

INTRODUCTION

PURPOSE
SCOPE
GENERAL DESCRIPTION
FUNCTIONAL DESCRIPTION

Buffer Memory (FIFO)
ALU/Scratchpad Memory
CPU/Program Source Memory

MAJOR COMPONENTS
PIOP FEATURES

INSTRUCTION SET

INTRODUCTION
INSTRUCTION WORD
INSTRUCTION SET

FUNCTIONAL ELEMENTS

INTRODUCTION
TRANSCEIVER
REGISTERS
OTHER ELEMENTS

PROGRAMMING

INTRODUCTION
Programming Hints
Reference Material

USING THE TRANSCEIVER
Teransceiver Operation
Transceiver Formats
Transceiver Instructions
Transceiver Timing Considerations
Interaction of Transceiver Instructions
DMA Transfers

USING THE ALU
ALU Source (Inputs)
ALU Destination (Output)
ALU Function
Using ALU Instructions

USING THE PROGRA.i.~ SOURCE M'EMORY
Instructions That Use Program Source Memory
Branch and Jump Instructions

INTERRUPT HANDLING
COMMUNICATING WITH THE AP

iii

Page

1-1
1-2
1-3
1-6
1-9
1-11
1-13
1-16
1-17

2-1
2-2
2-4

3-1
3-2
3-4
3-9

4-1
4-2
4-3
4-4
4-4
4-7
4-9
4-13
4-21
4-22
4-25
4-30
4-30
4-31
4-32
4-34
4-37
4-40
4-44
4-46

CHAPTER 5 ASSEMBLER

5. l INTRODUCTION 5-1
5.2 THE BASICS 5-2
5.3 WRITING PROGRAMS 5-11
5.4 USING THE ASSEMBLER 5-13
5.5 SAMPLE LISTINGS 5-14

CHAPTER 6 PROGRAMMABLE I/O CHANNEL (PICC)

6.1 INTRODUCTION 6-1
6.2 CHANNEL INSTRUCTIONS 6-2
6.3 WRITING CHANNEL COMMAND PROGRAMS 6-6
6.4 ACCESSING DISK DATA USING DKl'IOC 6-10
6. 5 AP/PIOP PROCESS SYNCHRONIZATION 6-12
6. 6 PICC ERROR CONDITIONS 6-16

CHAPTER 7 FORTRAN OPERATIONS

1. l INTRODUCTION 7-1
1.2 FORTRAN CALLS 7-3
1.2.1 Load PIOP From AP MD (PPLOAD) 7-4
7.2.2 Start PIOP (PPGO) 7-5
1.2.3 Reset PIOP (PPRS) 7-6
7. 2. 4 Get PIOP Status (PPSTAT) 7-7
1.2.5 Wait for PIOP (PPWAIT) 7-8
7. 2. 6 Read PIOP Flag From AP (PPFRD) 7-9
1.2.1 Set PIOP Flag From AP (PPFSET) 7-10
1. 2. 8 Clear PIOP Flag From AP (PPFCLR) 7-11
1. 2. 9 Initialize PIOP Disk Parameters (INPPDK) 7-12
1.2.10 Read Data From PIOP Disk to AP MD (RDPPDK) 7-15
7.2.11 Write Data From AP MD to PIOP Disk (WRPPDK) 7-17
1.2.12 Write To and Read From PIOP Disk (WRDPPD) 7-19
7.2.13 Start PIOP Channel (PCGO) 7-21
7.2.14 Get PIOP Ch~nnel Status (PCSTAT) 7-23
7.2.15 PIOP Execute Loader (PEXEC) 7-25
7.3 SAMPLE PROGRAMS 7-27
7. 3.1 Fortran Subroutine Example 7-27
7.3.2 Fortran Program Example 7-30

FPS 7350-01 iv

CHAPTER 8 PIOP DEBUGGER - PPDBUG

8.1
8.2
8.3
8.3.1
8.3.2

8.3.3
8.4
8.4.1
8.4.2
8.5
a. 5.1
a. 5. 2
a. 5. 3
a. 5. 4
8.6
a. 6.1
a. 6. 2
8.6.3

APPENDIX A

APPENDIX B

APPENDIX C

c.1
c.2
c.3

APPENDIX D

D.l
D.2
D.3
D.4
D.5

FPS 7350-01

INTRODUCTION
OPERATING PROCEDURE
MONITORING REGISTERS AND MEMORY LOCATIONS

"E", Open and Examine
"+", "-", and "•" Examine Next, Last and

Re-examine
"C", Change

CHANGING INPUT/OUTPUT FORMATS
"N", Set Radix
"F", Set/Reset Floating-Point I/O

MEMORY LOADING AND DUMPING
''Y", Yank from a File
''W", Write to a File
"Z", Zero the AP
Preparing Data Files for Yanking

EXECUTING PROGRAMS
"I", Initialize the PIOP
"R", Run a PIOP Program
"X", Exit to PPDBUG

INSTRUCTION SET

PIOP INTERCONNECTIONS

SPECIAL STORAGE ELEMENTS

INTRODUCTION
FIFO MEMORY ELEMENT
STACK

SUMMARY OF PPDBUG COMMANDS

INTRODUCTION
PROGRAM EXECUTION COMMANDS
REGISTER EXAMINATION/MODIFICATION COMMANDS
MEMORY LOAD/DUMP COMMANDS
ACCESSIBLE FUNCTIONAL UNITS

v

8-1
8-2
8-2
8-3

8-4
8-5
8-7
8-8
8-9
8-12
8-12
8-13
8-15
8-15
8-17
8-17
8-17
8-17

C-l
c-2
C-4

D-1
D-2
D-3
D-4
D-5

Figure No.

1-1
1-2
1-3
1-4
1-5

1-6
1-7

2-1

3-1
3-2

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15

6-1
6-2
6-3

7-1

B-1

C-1
c-2

FPS 7350-01

ILLUSTRATIONS

Title

PIOP Used as Basic I/O Interface
PIOP Used as Main Data Management Processor
PIOP Used an an I/O Bus
PIOP - - Overall Block Diagram
Buffer Memory (Transceiver) - Simplified

Diagram
ALU/Scratchpad Memory - Simplified Diagram
CPU/Program Source Memory - Simplified Diagram

PIOP Instruction Word

Control Register (CR)
Device Command Register (DC)

Transceiver - Simplified Diagram
Transceiver Formats
IN to Empty FIFO
Multiple IN's to Empty FIFO
SETMAW Instruction
SETMAW Loop
SETMAW IN Loop
SETMAR OUT Loop
ALU Instruction Formats
ALU Logic - Block Diagram
Program Source Address Logic
Next Address Control Logic
TR PS,IOR Instruction Cycles
Program Cycles
Interrupt Timing

Channel Instruction Format
Channel Program Example 1
Channel Program Example 2

Timing for Block FFT

PIOP Interconnection Diagram

Operation of a Typical FIFO Memory
Stack Operation

vi

Page

1-5
1-5
1-5
1-7

1-10
1-12
1-14

2-3

3-6
3-7

4-5
4-8
4-13
4-14
4-15
4-16
4-18
4-20
4-25
4-28
4-34
4-36
4-37
4-38
4-45

6-2
6-8
6-13

7-32

B-2

C-3
c-5

Table No.

1-1

2-1
2-2
2-3
2-4
2-5

3-1
3-2
3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

6-1
6-2
6-3

7-1
7-2

A-1
A-2
A-3
A-4

FPS 7350-01

TABLES

Title

Applicable Publications

Shorthand Notation Conventions
PIOP Instructions
Expanded PIOP Instructions
Symbol Definitions
Cross-Reference List

ALU Status Conditions
Device Status (Assignment for Disk Interface)
Flags

Programming Subjects
I/O Word Formats
Transceiver Instructions
ALU Instructions
ALU Designations
Summary of ALU Instructions
Stack-Related Instructions
BIT IJ FIELD
Branch Instructions
Extended Branch Instructions
AP Device Instructions

Addressing Modes
Channel Instruction Operation Codes
Disk Data Format Types

Fortran Calls
Error Information

PIOP Instructions
PIOP Expanded Instructions
Symbol Definitions
Cross-Reference List

Vii

Page

1-2

2-4
2-5
2-12
2-13
2-14

3-7
3-8
3-8

4-1
4-7
4-9
4-26
4-29
4-32
4-40
4-41
4-42
4-43
4-46

6-2
6-4
6-10

7-1
7-2

A-2
A-9
A-10
A-11

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

The purpose of this manual is to provide the information necessary to
understand, program, and use the Programmable Input/Output Processor
(PIOP). ni.e PIOP is a general-purpose programmable controller that
interfaces peripheral devices to the Floating Point Systems' AP-120
Array Processor. Throughout the remainder of this manual, the Array
Processor is referred to as either the "AP-120" or "AP," and the
peripheral device is referred to as the "external device." ·

FPS 7350-01 l l

1. 2 SCOPE

This manual is a user's document and, therefore, stresses software
information related to the PIOP. Hardware information, from a
programming standpoint, is also included. A general description of the
PIOP is covered in this chapter. Subsequent chapters describe
programming, the programmable I/O channel (PIOC) which is a software
interpreter residing in the PIOP, the assembler, Fortran operations,
debugging programs, and diagnostic programs.

Although the PIOP communicates with the AP and handles transfers of
data between the AP and the external device, the AP itself is not
described in this manual. However, those AP functions that are
necessary for a complete understanding of the PIOP are included. If
more information is desired on the AP, the reader should refer to the
manuals listed in Table 1-1 below. Any of these manuals can be ordered
from Floating Point Systems, P.O. Box 23489, Portland, Oregon 97223.

Table 1-1 Applicable Publications

TITLE NUMBER

PROCESSOR ijANDBOOK 725S-02

MAINTENANCE MANUAL 7270

DlAGHOSTIC SOFTWARE MANUAL 7284-03

AP MATH LIBRARY 7288-03

PAGE SELECT MANUAL 7365

PROGRAMMERS REFERENCE MANUAL 7319

0033

FPS 7350-01 l 2

1.3 GENERAL DESCRIPTION

The programmable I/0 · processor (PIOP) is an independent parallel
processor. This processor, which can be tightly coupled to an AP, can
serve both as an auxiliary main data management· processor to the AP and
as an I/O processor for handling one or more external devices.

The PIOP can be used in a number of ways, depending on the particular
user's requirements.
management processor,
these uses is briefly

main data

Three of these uses are to serve as a main data
as an I/O interface, and as an I/O bus. Each of
described below:

management processor
Because the PIOP contains its own
parallel processor, instruction set,
and program source memory, it can
control data flow to or from the AP
.in data "bursts" of 6 MHz or in
sustained data transfers of 3 MHz.

FPS 7350-01

The PIOP can extract data from the
AP's main data memory, perform
arithmetic operations on the data,
and then return the results to the
AP main data memory. The data handled
by the PIOP is processed in parallel
with the AP's processing operations.

Although the PIOP does not have a
main memory, it has access to the
AP main data memory. This access,
coupled with the high transfer rate
between the PIOP and AP, permits the
PIOP to use the AP main data memory
for storag.e whenever required.

1 3

I/O interface

I/O bus

When functioning as an interface, the
PIOP may be connected to any external
device that is compatible With TTL
logic. Unlike other interfaces that
are hardwired to ·service a specific
unit (such as a disk), the PIOP contains
a 20-bit device register that permits
the PIOP to serve as a programmable
interface.

In other words, this device register
can be programmed in such a manner that
the PIOP generates and recognizes the
handshaking and data signals required
by the external device. Thus, microcode
within the PIOP can respond to any
type of external device. There is no
need to change the hardware when servicing
a different type of device.

The PIOP may be microprogrammed in such
a way that it generates the typical
signals of an I/O bus. When used in this
manner, the PIOP serves as an interface
between the AP and multiple external
devices.

The flexibility of the PIOP allows it to perform the above tasks as
needed, all under program control. For example, a typical PIOP
operation might begin with data transfers to and from the A£ for
processing of data, then might serve as an I/O interface to handle
transfers from the external device to the AP for processing (or from
the device to the PIOP for integer calculations), then might once again
serve as a parallel processor to the AP, then might serve as an I/O bus
for handling multiple external devices, etc.

FPS 7350-01 l 4

Although it is beyond the scope of this manual to describe hardware
configurations, four possible configurations are shown in Figures 1-1
through 1-3 in order to illustrate the flexibility of the PIOP and to
emphasize the importance of the programmer's task.

1)251

Figure 1-1 PIOP Used as Basic I/O Interface

Figure 1-2

HOST

FPS 7350-01

0252

PIOP Used as Main Data Management Processor

AP PIOP

Figure 1-3 PIOP Used as an I/O Bus

1 5

EXTERNAL
DEVICE

EXTERNAL
DEVICE

EXTERNAL
DEVICE

EXTERNAL
DEVICE

0034

1.4 FUNCTIONAL DESCRIPTION

Although it is beyond the scope of this manual to provide detailed
hardware information, it is necessary for the programmer to have a
basic understanding of the PIOP hardware, particularly the data paths.
These data paths permit information flow between the PIOP and other
devices and also interconnect major PIOP components.

Figure 1-4 is an overall block diagram of the PIOP. The major
functional units shown on the drawing are: ALU/scratchpad memory,
CPU/program source memory, and buffer memory. This buffer is a
first-in, first-out (FIFO) memory element. Other components shown in
the drawing include the formatter and APMA, device command, IOR, and
MDI registers. The following discussion of the block diagram shown in
Figure 1-4 is intended primarily to indicate the flow of data through
the PIOP. Subsequent block diagrams and related descriptions explain
why these paths are used.

The ALU/scratchpad memory consists of an arithmetic and logic unit
(ALU) and sixteen 20-bit registers that can be accessed by the
programmer. The ALU performs arithmetic and logic operations required
by the PIOP. The 16 registers serve as a scratchpad memory. Either
the output of the ALU or the contents of any one of the registers (as
selected by the programmer) can be loaded into the APMA and device
command registers.

The APMA (AP memory address) register is used to supply the address in
the AP's main data memory that is to be used when performing DMA
transfers between t~e PIOP and the AP. The device command (DC)
register performs two basic functions: it can be used to supply the
DMA address when transferring data between the PIOP and the external
device, or it can be used to supply necessary command and handshaking
signals to the device. These signals might include such commands as
start, stop, read, write, and acknowledge. Because the contents of the
device command register can be determined by the programmer, the device
command register can function as a programmable interface.

An output bus is used to send ALU status information to the CPU/program
source memory. Such status information includes sign, zero, overflow,
etc.

FPS 7350-01 l 6

trj
rel
ti.I

........
w
VI
0
I

0
.......

.......

........

- l PIOP ,- .
I
I COMMUN !CAT ION

TO MAIN DATA
I MfHORY ADOR£SS
I R£GISTER

"-1
DC

~~ <}QJ~
APMA

REGISTER ~
___ __.(AOOR£SS 20

fOR OMA) I
::1REGISHR !--- ~

, 20 (ADDRESS 1--=::=J Li!y
FOR OMA)

I

I
I

I
I
l P IOP "FRONT PANEL"

I
,---------.

I
I I

FLAGS ~rn I
I

I
I

I
I

I
I

I

INHRRUPTS / I
I I
I I

I ~ I 38

I

~)AP~/~~
I

I

I

!OR

~ 38

I
I
I
I
I
I_ - -

: ~ ~ I <)QJ L MDI -----)f\

: COMMUNICATION '-
I lfffli AP MAIN
1 DATA MLMORY
I INPUT ANO OUTl'Ul

R£GISHRS
I

- .J

Figure 1-4

~

ALU/SCRATCH

~ MEMORY

(16 x 21')

ALU STATUS

CPU/PROGRAM
SOUR([MEMORY

(2b6 x 38)

STATUS

I DATA BUS

3H

TNltllilOPT$

£XHHNAL
D£VICE K (c-- I>
STATUS STATUS J L- o

'-------IR[GISHR 1

I '" u

I~
?

I"' w
l t:

- - - - - - - -$,)7 - - - - - - - - - -

-=:> BUfffR MEMORY
(FlfO; 16 x 38)

TRANSCEIV£R SECTION or PJOP

I

~ 38 ~fORMATHR ~:
I

I

- .J
L

Oll.l~

PIOP - Overall Block Diagram

The output of the ALU/scratchpad memory can also be applied to the data
bus. This means that the output of the ALU or the contents of the
selected scratchpad register can be applied to any one of three other
components: the CPU/program source memory, the buffer memory, or the
input/output register (IOR).

The CPU/program source memory consists of a CPU and a 256-word random
access memory. This memory is used to store the instructions needed by
the PIOP while the CPU decodes the instructions and directs all data
flow by enabling the various PIOP elements as needed.

One of the functions of the CPU is to determine the address of the next
instruction. Because of this, various status and interrupt signals are
applied to the CPU. These signals include: flags and interruts from
the AP, status from the ALU, status and interrupts from the external
device, and status from the buffer memory. The CPU uses this
information to compute the required next address. In other words, one
of the jobs of the CPU is to generate the branches and jumps (computed
GO TO's) that are required.

The CPU/program source memory also receives information from the
input/output register (IOR). This register permits communication
between the PIOP and the AP and is used as a temporary storage device
when transferring information into the CPU/program source memory. This
information might be an instruction that is loaded directly into the
program source memory, or it might be an instruction that is just
decoded by the CPU for execution by the PIOP, or it might be data that
the CPU routes to the data bus at the proper time.

The buffer memory contains a 16-word by 38-bit first-in, first-out
(FIFO) element that compensates for different data rates between the
PIOP, the AP, and the external device. For example, the external
device may load the FIFO at a slow rate but the FIFO might be read by
the PIOP in a high-speed burst.

The buffer memory output buffer can be loaded from a number of sources.
If it is loaded from the data bus, it can receive information from
either the ALU/scratchpad memory or from the CPU/program source memory.
This means that the buffer could be loaded with data from the ALU, with
data from any one of the 16 scratchpad registers, with instructions
from the program source memory, or with the contents of the IOR
(through the CPU).

The buffer memory can be loaded from the AP MD bus when it is
communicating with the AP or it can be loaded from the external device
through the formatter.

The ouput of the buffer memory can be sent to the AP (through
register), to the external device (through the formatter and
data bus), or to the data bus where, under CPU control, it
loaded into any component connected to the data bus.

FPS 7350-01 l 8

the MDI
external
can be

The following paragraphs (1.4.l through 1.4.3) describe the three major
components of the PIOP: buffer memory, ALU/scratchpad memory, and
CPU/program source memory.

1.4.1 BUFFER MEMORY (FIFO)

Figure 1-5 is a simplified diagram of the buffer memory which is also
referred to as the "transceiver • 11 The main purpose of the buffer
memory is to compensate for different data rates between the AP and the
external device. The AP, for instance, can load information into the
FIFO at high speed and then the data can be retrieved by the external
device at a slower rate. The buffer memory can also be used to store
information from either the AP or the external device until the PIOP is
ready to use the information.

Data from the AP is applied directly to the input buffer register while
data from the external device is applied through the external device
formatter to the same register. The data is then loaded into the FIFO
(first-in, first-out) memory element. The FIFO location where the word
is to be stored is controlled by a pointer.

When a word is to be retrieved from the FIFO, the pointer selects the
proper word which is appplied to the output buffer register. The
output buffer can also be loaded from the data bus through its
formatter.

The contents of the output buffer register can be sent to one of three
places: to the MDI register (for transfer to the AP), to the external
device formatter (for transfer to the external device), or to the PIOP
data bus formatter (for transfer to other PIOP elements).

Notice that information on the data bus can be applied to the output
buffer register. This permits data from other PIOP components to be
loaded into the output buffer for transfer to either the AP or to the
external device.

FPS 7350-01 l 9

~
.....,
w
VI
0

6

.....

.....
0

HO BUS

HOI BUS

AP (=J\38 ,; HOI REG

Figure 1-5

STACK POINTER (SP)

CPU/PROGRAM
SOURCE MEMORY

ALU/SCRATCH
MEMORY

38

Jg

311

IB RfGIST£R

FIFO (16 x 38)

OB FORMATTER
(IN)

3

OB REGISUR

OB FOR11ATT£R
(OUT)

Buffer Memory (Transceiver) - Simplified Diagram

EXT DEVICE
FORMATTER \ ~

014~

EXTERNAL
OEV IC£

1.4.2 ALU/SCRATCHPAD MEMORY

Figure 1-6 is a simplified diagram of the ALU/scratchpad memory within
the PIOP. This component contains the ALU that performs the arithmetic
and logic functions required by the PIOP and also contains a number of
scratchpad registers that can be accessed by the programmer.

The scratchpad memory consists of sixteen 20-bit registers that can be
accessed by the programmer. Any one or two of these registers can be
selected at a time by the A and B address inputs to the memory. Notice
that the B address is fed through a multiplexer. The other input to
this multiplexer is the PSA (program source address) from the CPU.
Thus, the program source address can be used to select one of the 16
registers, if desired (used for ALU dump/load from/to the AP).

The contents of the selected register, or registers, are applied to a
multiplexer. Other inputs to this multiplexer are: all zeros, the
contents of the Q register (an internal work register), the data on the
data bus. This multiplexer, which is controlled by decoding a
double-operand instruction, selects two of the five multiplexer inputs
designated as R and s.

R and S are fed into the function ALU (F) which performs the necessary
arithmetic or logic operation on the two inputs as specified by the
CPU. The output of the ALU is then applied to another multiplexer.
The other input to this multiplexer is the contents of the scratchpad
register selected by address A.

The multiplexer output (Y) is. applied to the device control (DC)
register and to the AP memory address (APMA)° register. Thus, ~epending
on which of these two registers is enabled, the output of the ALU (or
the contents of the register selected by address A) can be used as the
address needed by the AP for DMA transfers, or it can be used as a
command word for the external device.

FPS 7350-01 1 11

1 J
,....,

SHIFT
MUX

TRANSCE l '1 ER

rt I I~
I

RAM Q

I SHIFT SHIFT

L......:..l. i::_

8 ADDRESS A ADDRESS L _jr
F Q,

RAM SCRATCH

~
MUX MEMORY ZERO Q ,......,

REG
8 ADDRESS 16 x 20

lMil_____.
CPU/ PROGRAM

SOURCE MEMORY

r----'
20

i i i I'.. (0)
A 8 ~ Q A

SA (from CPU) MUX 0 38 ?
R s '<

i ~
~ ~

I
F

FUNCTION
DATA BUS

3pJ

:l. • A F

MUX

r l
DC APMA VALUE

1J tl ~ +
EXTERNAL AP

DEVICE MUX

1
38

0146

Figure 1-6 ALU /Scratchpad Memory - Simplified Diagram

FPS 7350-01 1 12

Inputs to the final multiplexer on the drawing are: value (a
value selected by the programmer) or the output of the
multiplexer which is either the ALU output or the contents of
A. ni.e selected output is then applied to the data bus where
fed to one of the other main PIOP components connected to the

specific
previous
register

it can be
data bus.

Notice that the output of the function ALU (F) is fed back to both the
RAM shift and Q shift logic. Tii.e output of the RAM and Q shift logic
is fed to a shift multiplexer which performs any required shifts on the
scratchpad or Q registers, under control of the CPU.

1.4.3 CPU/PROGRAM SOURCE MEMORY

Figure 1-7 is a simplified diagram of the CPU/program source memory.
Tii.is component consists of the program source memory which.stores the
instructions to be executed by the PIOP, the program source address
logic which determines the address of the next instruction to be
executed, and the control buffer which decodes the instruction and
generates the control signals needed by the PIOP to perform the
specified task.

A program counter, referred to as the "program source address" or
"PSA," determines which instruction is to be executed next. Tii.is PSA
can be changed by the branch, jump, and subroutine instructions.

ni.e program source memory is loaded from the input/output register
(IOR) by means of a P!OP instruction. Tilis path is used because the
program is typically stored in the AP's main data memory and then
loaded into the PIOP's program source memory as needed.

ni.e key to the program source memory is the PSA (program source
address) which is shown on Figure 1-7 directly below the PSA
multiplexer. It is this address that determines which instruction is
to be retrieved from the program source memory. Tii.ere are five inputs
to this PSA multiplexer: the counter, the LIFO stack, the next address
control logic, the address register (AR), and the branch condition
select logic. Each of these inputs is described separately in
subsequent paragraphs.

During a typical operation of the CPU/program source memory, the
address of the instruction to be executed is placed on the data bus and
loaded into the address register (AR). Tii.is address might come from
the ALU or one of the 16 scratchpad registers, from the FIFO in the
transceiver, or from the input/output register (IOR). If the
multiplexer selects this input as its output, the contents of the
address register are used to select the appropriate instruction in
memory.

FPS 7350-01 1 13

38

u!/O SUS OF AP

0
IOR

1

11

I

1---
1----1

[_ EXTERNAL
DEVICE -

r- STATUS

~ :.-. __"! z
BRANCH

CONDITION
SELECT

:l I
INC ADDRESS

CONTROL

l
COUNTER

SP

1" _..jJ.. ..
AR

LIFO REG

P!OP - ALU - STATUS

AP - FLAGS

BRANCH
COMPUTE

(DISP FIELD)

F
I

38

8

i -t r ,__.'Z~---:1:..-.-..i~~...._~~-I..z..., ~~

~ LOGIC ~
38

38
.. "(

~SA MUX

j_
l

PROGRA'4
SOURCE

256 x 38

LOGIC

MUX

PSAQ
REG

INTERRUPT
LOGIC

B

AP - INTERRUPTS

EXTERNAL DEVICE -
INTERRUPTS

<)(>
38

38

TRANSCEIVER

ALU/RAM
SCRATCH
MEMORY
16 x 20

0147

Figure 1-7 CPU/Program Source Memory - Simplified Diagram

FPS 7350-01 l 14

When sequential memory locations are to be addressed, the PSA is fed to
an incrementer (INC) and applied through a register to the multiplexer.
When this input is used as the multiplexer output, the PSA is the next
sequential address.

Another input to the PSA multiplexer is the output of the LIFO
(last-in, first-out) subroutine stack. Whenever the program jumps to a
subroutine, the address of the next instruction in the main program is
pushed on to this stack. When the program returns from the subroutine,
the stack is popped and the former PSA is applied through the
multiplexer to the memory. Loading (pushing) and retrieving (popping)
addresses from the stack are under control of a stack pointer (SP).

Another input to the PSA multiplexer is the next address control logic
which generates a memory address based on the branch condition select
logic. In this case, inputs from the PIOP (ALU status), from the AP
(flags), and from the external device (device) are applied to the
branch condition select logic. Based on the condition tested and the
results of the test, the branch condition select logic and the next
address control logic compute the branch address needed. For example,
the PIOP may test an error status bit in the external device, and if an
error exists, branch to an error-handling routine. The address of the
error-handling routine would be computed by the next address control
logic and fed through the PSA muliplexer to the memory.

The output of the branch compute logic
multiplexer. This logic generates
displacement field. This displacement
instruction word and, therefore, under

is another input to the PSA
a branch address based on a
(DISP) field is part of the
the programmer's control.

Another source of PSA's is the interrupt logic. The interrupt logic
receives interrupt information from either the AP or the external
device. Based on the interrupt information received, the interrupt
logic generates the appropriate interrupt trap location (the first four
locations in program source memory are reserved for traps).

Once the PSA multiplexer selects the appropriate input to be used as
the PSA, the PSA is applied to the program source memory and is also
stored in the PSAQ register. When this register is enabled, the PSA is
controlled by a logic element that either sends the PSA back to the
branch compute logic as an input, or places the PSA on the data bus.
When placed on the data bus, the PSA can be sent to any one of four
places: back to the address register, to the ALU/scratchpad memory, to
the transceiver, or to the IOR.

The instruction selected by the PSA is retrieved from the program
source memory and applied through logic to a control buffer (CB) and to
a multiplexer. The control buffer decodes the instruction and provides
all of the control signals needed by the PIOP logic elements. Either
the instruction or the contents of the IOR can be selected by the
multiplexer for application to the data bus.

FPS 7350-01 1 15

1.5 MAJOR COMPONENTS

The major components of the PIOP are listed below and described in
detail in Chapter 3 of this manual.

program source memory

ALU registers

Q register

address register

control register

I /0 register

device colll!Dand register

device status inputs

ALU status

A2 memory address
register

FIFO hardware element

LIFO stack

transceiver

ALU

FPS 7350-01

38-bit by 256-word writable control store
used for program instructions

sixteen 20-bit RAM registers that are part
of the ALU. Typically used to hold
arguments for PIOP instructions.

20-bit RAM register that is also part of
the ALU. Used as a work register.

used for programmed jump and branch
addresses

20-bit register that selects transceiver
format, indicates PIOP status, and arms
interrupts

used for communication between the AP and
the PIOP; can be accessed by either
system

20-bit register that contains address
and/or command information for the external
device

8 sense lines that indicate external
device status

8 bits that indicate status of the
PIOP's ALU. These status bits appear as
conditions which can be tested, and as
bits in the PIOP control register.

used by the OMA logic to save
the A2 main data address

first-in, first-out hardware structure used
for burst data handling. Can hold sixteen
38-bit words.

4-word stack used for subroutine linkage

formats and buffers data being transferred
between the A2 and the external device

performs the arithmetic and logic functions
required by the PIOP.

l 16 .

1.6 PIOP FEATURES

Some of the features of the PIOP that may be of interest to the
programmer are briefly described below:

LIFO stack

FIFO element

format handling

instructions

expanded formats

FPS 7350-01

A 4-level subroutine stack that permits
nesting of subroutines. Stack pointer
operation is automatic. This stack is
used with both jump to subroutine and
return from subroutine instructions.

A 16-word, first-in, first-out element
that permits synchronous transfers of
data between the AP and the PIOP at a 6
MHz rate. The write pointer is advanced
automatically when writing data while
a program instruction is used to advance
the read pointer. Both pointers can be
reset under program control.

The transceiver can transfer data between
the device and the AP in any one of four
different formats. The format to be used
can be selected by the programmer •. Subfield
addressing within each format is possible.

The instruction set is used in a micro
programmed format (38-bit instruction word)
to allow parallel processing of multiple
microinstructions.

In the macro format, 4 bits of the
instruction word can select l of 16
arithmetic or logic operations. In the
expanded format, bit positions are
redefined so that arithmetic operations
can be selected by 12 bits (five fields)
which increase the number of operations
that can be performed.

Other fields in the instruction word may
also be redefined. This permits the
programmer to use only those instructions
needed for a particular job and makes
programming simpler and more effective.

l 17

data transfer
instructions

branching

interrupt arming

interrupts

FPS 7350-01

Separate instructions are provided for:
a. transfers between the PIOP and

the external device
b. transfers between the PIOP and

the AP's main data memory
c. transfers between PIOP elements

This permits multiple transfers to take
place in one instruction cycle.

The PIOP instruction set includes four
unconditional jump instructions and
seven conditional branch instructions.
Jumps may be either relative or absolute
while branches are always relative.

In addition to the capability of enabling
or disabling interrupts, the PIOP also
permits interrupts to be "armed" or
"disarmed." If an interrupt occurs when
an interrupt is disabled but "armed,"
the interrupt is not serviced but is,
however, stored for future use. This
interrupt can then be acted upon once
it is enabled.

Four interrupts trap to specific locations
in program source memory. These traps
occur only if the particular interrupt is
armed and enabled.

1 18

In addition to the PIOP features, the software supplied with the system
also permits easier and more efficient programming. Three such
examples are:

programmable I /0
channel

assembler

Fortran calls

FPS 7350-01

A software interpreter (residing in the PIOP)
that interprets channel programs stored in main
data memory. Channel program instructions
are structured in 4-word blocks. The
first word is the op code and addressing
modes, and the next three words contain
arguments. One of three addressing modes
(immediate, normal, and indirect) can be
used with each argument. (See Chapter 6.)

The assembler provided with the PIOP is
a 2-pass assembler written in Fortran IV.
P!OP assembly language (PPAL) instructions
are assembled for subsequent use by the
PIOP debugger or from Fortran.

A number of Fortran calls are available
for communication with the PIOP, the
AP disk, and the PIOP disk channel. In
addition, there is a Fortran call for
an executive loader.

l 19

CHAPTER 2

INSTRUCTION SET

2.1 INTRODUCTION

This chapter introduces the instruction set so that the reader is
exposed to the instruction word format and the various instructions and
arguments that are used when programming the programmable I/O processor
(PIOP).

It is not the purpose of this chapter to provide detailed descriptions
of individual instructions but simply to present an overview so that
the reader can become familiar with the structure of the instruction
word and the mnemonics used for individual fields and instructions.
Detailed information on individual instructions is presented in
subsequent chapters of this manual.

The complete PIOP instruction set is presented in tabular form in
Appendix A of this manual in order to provide a quick reference when
using the PIOP instruction set.

FPS 7350-01 2 1

2.2 INSTRUCTION WORD

The PIOP uses a 38-bit instruction word (bits 2 through 39) which is
shown in Figure 2-1. When looking at the instruction word, it must be
remembered that the PIOP is a parallel processor. 'nlerefore, all
operations selected by the entire instruction word are performed
simultaneously.

Note that the basic fields in the instruction word may be redefined for
other uses. Thus, for example, if the EXPAN field contains an octal
14, then bits 20 through 39 are redefined and become the VALUE field
rather than the fields shown in the basic word. Because octal 14
happens to be the TCVR instruction (transmit VALUE to control
register), this means that the programmer can load any desired value
into the control register by placing the appropriate number in the
VALUE field.

When using the assembler, the number to be loaded in the VALUE field is
indicated by a literal following the instruction. For instance, if the
programmer wants to load the number 40000 into the VALUE field, he or
she would use the instruction, TCVR 40000. The literal must be a
20-bit positive number. The only other instruction that is used to
load the VALUE field when using the assembler is the TVDB instruction
(transmit VALUE to data bus).

The redefined fields shown in Figure 2-1 permit great versatility in
programming. For example, although both unconditional jump
instructions and conditional branch instructions are defined by the PSA
CONTROL field, jump and branch instructions use different
displacements. If the PSA CONTROL field contains a jump instruction,
then the instruction uses the DISPS field (8-bit displacement). This
jump can be either an absolute or relative jump. In either case, the
appropriate number is taken from the DISPS field. On the other hand,
the PSA CONTROL field uses the BIT # and DISP5 (5-bit displacement)
fields if a branch instruction is used. In this case, the branch
instruction tests a flag or status bit that has been specified by the
BIT # field and then, if the proper condition is met, performs a
relative branch based on the value in the DISP5 field.

Instruction word fields are used for commands and arguments. For
example, the ALU field may use either one or two arguments. If only
one argument is to be used, it is specified by either the A or B field.
On the other hand, if two arguments are to be used, they are specified
by the A ~ the B field.

Although a zero in certain fields results in no operation for that
field, there is only one NOP (no operation) instruction. This
instruction is all O's in the entire PIOP instruction word. The NOP
instruction is not listed in the instruction set but is available when
using the assembler.

FPS 7350-01 2 2

1-.;j
'-cl
Ul

~
UI
0
I

0
~

N

w

DAL~ BUS
ALU GROUr GRllUP

z 3 4 5 6 r a 9 10 11 12 13 _,.,_14 15 16 17 IO t9'20~ 26 27 28 2') JO ll

51' Ill G~llUP

;-----··r---::-:::-.-----··- .•
t!_o I

32 3l H ~ 11 3<1 l'l

I IO~HO I : E~PA< I : ~ : I _:_ ~ ~ - I ~- ~LU : . , sRc . , , osT HORD P0SA cqurn~-- -~~--i.··--- ---~~--~ ~u~~~~ ,y-.-TRAOOar-: I ; I .---.--r L ' y--[' bl ~·;_i
I I

I

17 , .. ,--,- -,--~

I Sf j CF·. s UH

tlOTE 2
A B ALUSRC

EXPANOEO DATA BUS TRANSFER GROUP

I l I I I I I I

ALUOST ALUFCN Sii c

I I

I I I

BIT •

BIT 4

BIT ~

I I
I

I

-~
I

I : TVDB; TVCR:. TVERI • I : : : : I I I I I VA~UE
I --,·

L--l .l--'---J----1- I J ·r--1

FIELD NAMES

A - REGISTER A
ALUOST - ALU DESTINATION COM14ANO
ALUFCN - ALU FUNCTION COHMANO
ALU - ALU INSTRUCTION
'LUSRC - ALU SOURCE COl-V1ANO
8 - REGISTER B
BIT # - BIT NUttBER
c - CARRY IN
OST - DATA BUS OESTitlATIOll
SRC - DATA BUS SOURCE
OISP5 - OISPLACEMENT 5
OISP8 - DISPLACEMENT B
EX PAN - EXPANSION
1/0 - IHPUT /OUTPUT
IOCMO - 1/0 COl·V-IAtlO

PSA - PROGRA.'l SOURCE ADO:lESS COtlTROL
Sii - SHlfT
SPEC - SPECIAL
SPIN - SPIN
VALUE - VALUE
WOflO - WOllD

Figure 2-1

I I
I
PS ACCESS GROUP

r~~--:-----1

I

I If ~RC =71

I I I

' ' SPEC I ----.

r.:::l ._ '°", 3 ·-~-~-·---,
L'.'J ' [°'"~~I

I
I

BIT f I J_ }Q • _,_ I I
I

TRUNCATED VALUE GROUP I
.---- ·--- -- .-------- --- -----i

------------------· [~--:-~~~-~-=-~~
I I

~·~HP, ~MPA I ~~--~-0~~===~. l
-~--·-·--------__)

,Jt1p GllOIJP

NOTES

l. BIT #conflicts are not flagged if BIT ~·s are equal

2. Pro9ra11111ing of ALU exp.inded 11111emo11ics impl ie> 17 in EXPllU field 3. Pro9rdnt11in9 of Til Hiii, PS; TR PS, IOI! implies o 1 in SPEC field

0031

PIOP Instruction Word

2.3 INSTRUCTION SET

The entire PIOP instruction set is presented in tabular form. The
tables are broken down according to instruction word fields.

The particular conventions that apply to the "shorthand notation"
column only are listed in Table 2-1 below.

Table 2-1 Shorthand Notation Conventions

SYMBOL MEANING EXAHPlE REMARKS

() contents af source • (8) Source equals the contents of
register 8.

source • PSA Source equals the progr1111
source address.

>or c moved into A > CA The contents of ttie register
specified by the A field
is moved into the CR register.

PSA < PSA +l The progran source address ts
incremented and moved into the
progr111 source address.

' deferred address write C.APMA Write data into the location
which has the addres.s specified
by the contents of the APMA
register.

0038

The complete PIOP instruction set is presented in the following tables:

Table 2-2 Basic PIOP Instruction
Set

Table 2•3 Expanded PIOP Instruction
Set

Table 2-4 Symbols Used For Expanded
Format

Table 2-5 Cross-Reference List

FPS 7350-01 2 4

Lists all of the instructions
in the basic format.

Lists the instructions avail
able in the expanded format.

Defines the symbols used in
Table 2-3.

Lists all of the instructions
(basic and expanded) in
alphabetical order.

Table 2-2 PIOP Instructions

OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC HEAN ING DESCRIPTION NOTATION (ARGUMENT)

IOCJ10 0 - - No operation. - -
1 SETMAR fil!!!.emory lnitates a OMA read cycle to fetch Read P APMA -

!,ddress, data from the All's main data memory
read at the address specified by the ALU

output. Data is not available unttl
6 cycles later. The sequence is:

1. SETMAR instruction
Z. MDCR2• true (request to Al' OMA

channel)
3. MOCA2 true (acknowledge frcm

AP OMA channe 1)
4. WAIT
s. OCH02 (loads data into FIFO

input buffer)
6. FIFO
7. DATA AVAILABLE (If FIFO was

empty)

z SETMAW ill !!!.emory Initiates a OMA write cycle at the Write ' APMA -
!,ddress, location specified by the ALU output.
~rite Data is written into the AP's main

data memory. Data is available in
memory after the third cycle. The
sequence is:

1. SETMAW instruction I

Z. CYCLE REQUEST (data in FIFO
output buffer taken)

3. CYCLE ACKNOWLEDGE (data now in
(memory)

3 SETDA l_et .!!,evice Loads the device control ALU > OVOID -
!,ddress register with data present on the

ALU bus at the end of the instruction
cycle. The device control register
fs a write-only register.

0039

FPS 7350-01 2 5

Table 2-2 PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND FIELDS

Fl ELD CODE MNEMONIC MEANING DESCRIPTION NOTATION (ARGUMENT)

1 EXPAN 0 - - No operation. - -
l CF A £.I ear !,1 ag Clears the flag specified by A (A is Clear flag BIT Ii BIT ii

specified in the BIT f field).

2 RFF r.eset f.If.O Resets the FIFO pointers. Causes - .
DATA VALID and FIFO FULL to go false
(clear).
New data entering FIFO (through IN or
SETMAR instructions or external
handshake) falls through to the
output buffer and causes DATA VALID
to be true (set).

3 AFF !dvanc:e f.I.f.O Advances FIFO read pointer; New data is . .
written into FIFO output buffer at the
end of the instruction cycle. If no
valid words are in the FIFO, DATA VALID
goes false (clear).

4 SF x 1et flag Sets the flag specified by x (xis Set flag BIT • BIT !i
specified in the BIT ii field).

5 SHIT x 1et 1!!.terrupt Sets interrupt x. The interrupt that Set interrupt BIT • is set executes in the second cycle BIT 4
after the SINT instruction.

6 EN!NT enable Enables interrupt logic. Pending - .
interrupts interrupts start executing on the

next cycle.

7 OISINT disable Disables interrupt logic. - .
filerrupts

10 NOP . No operation. . .
~

11 START !lit:! Begin program execution at current Start .
PSA location.

12 HALT !!ill Stop immediately. Nothing else PSA < PSA + l .
in the instruction executes.

13 PSAB e.rogram Causes tl!e four least significant PSA > B .
source bits of the PSA to be used as ALU
iddress, register address 8. Can be used for
register ! sequential loading of ALU registers

while PIOP is halted.

14 TVCR x transmit Transfers the value x (from VALUE VALUE > CR VALUE
value to field) on to the data bus and loads
control the c~ntrol register (CR) with that
regi Ster value at the end of this cycle.

15 TVDS x transmit Transfers the value x (from VALUE VALUE > OB VALUE
value to field) on to the data bus.
1ata g_us

16 . . Not used. . .
17 . . Indicates expanded ALU instruction

[
. ALU EXPAN

fonnat.

0040

FPS 7350-01 2 6

Table 2-2 PIOP Instructions (cont.)

1--! 1 OTHER
I OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION I USED

A 1-17 I - - Contains address of one of 16
I - -! internal ALU registers. i

B 11-17
I

- - Contains address of one of 16 -
I

-
internal ALU registers.

I ALU 0 - - No operation. - -
l MOVO B ~£ata Move data bus contents to ALU OB > B B

register B. ALU output is that
data.

2 ACCO A,B add g,ata Add the data bus contents to the DB + A > B A,3
contents of register A and store
results in register B. ALU output
is (DATA)+(A).

3 rNDO A,S logical 11!!!!:!.ll Logically "and" the data bus DB ~ A > B A,B
of g,ata contents with the contents of

I
register A and store results in
register B. ALU output is
(DATA)"and"(A).

4 ORD A,B logical uor,. Logica 1 ly "or" the data bus DB Q!. A > B A,B
of !4_ata contents with the contents of

register A and store results 1n
register B. ALU output is
(DATA)"or"(A).

5 XORD A,B logical Logi ca 11 y "exc 1 us i ve or" the DB ~ A > 9 A,B
"exclusive or 11 data bus contents with the
of £ata contents of register A and store

results in register B. ALU output
is (DATA)"xor"(A).

6 PAS SD pass £ata Data on data bus passes through DB > y -
the ALU unchanged and unsaved. The
data appears on ALU outputs.

7 ?ASSA A,B pass register &,. Data in register A is gated to ALU A > y A,S

I

outputs. Data in register B is B > s
written in to itself. PASSA is a I
fast ALU path.

10 INCB B increment Increment register B contents. B + l > y B
register ! ALU output is (B) + l.

11 DECB B decrement Decrement the ALU register B B - 1 > y B
register ~ contents. ALU output is (B) - 1.

12 !NCO increment Increment data on the data bus (D) DB + t > y -g,ata bus and pass through the ALU (not
saved).

13 DECO decrement Decrement data on the data. bus (0) DB - 1 > y -
g,ata bus and pass through the ALU (not

saved).

14 ADO A,3 add register Add register A to register 8, A ... a > y A,B
Ato register B store the results in register B.

ALU outputs= (A) + (B).

I 15 SUB A,B subtract Subtract register A from register a - A > y A,B
register A from B and store results in register

I 16

register B B. ALU outputs ~ (6) - (A).

I PASSB pass register !! Pass register B contents unchanged B > y B
on to the Y bus.

17 PASSQ pass register g_ Pass Q register contents to ALU Q > y -
BUS (Y).

0041

FPS 7350-01 2 7

Table 2-2 PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEA.'iING DESCRIPTION NOTATION USED

TRANSFER 0 TR ALU._ arithmetic and Source of the data bus 1s DB < Y -(SRC) Iog1c J!llit the ALU output (Y}.

1 TR (DISP9 .!tl.!J> 1 acement !. Source of the data bus 1s OB < DISPB DISP8

·- the contents of the OISP8
field.

NOTE 1 z TR FF,_ f.If.O Source of the data bus 1s OB < IB -FIFO input buffer.

3 TR· IOR,_ input/output So11rce of the data bus is DB < IOR -
legister the contents of the I/0

register.

4 TR PSA,_ J!.rogram 1ource Source of the data bus is DB < PSA -!ddress the program source address
register.

5 - - - - -
6 TR CR,_ s.ontrol r,egister Source of the data bus is

the contents of the control
DB < CR -

register.

7 - - Indicates that the SPEC GO TO SPEC -(special) field is to be used
as the nut fhld in the
instruction word.

TRANSFER 0 - - No operation. - -(OST}

l - . - - -
NOTE Z

z TR_,~ FF !,If,O Destination is the FIFO DB > OB -
output buffer.

3 TR_, IOR input/output Destination is the 1/0 DB > IOR -
leg1ster register.

4 TR_, AR !ddress r.egister Destination is the address o8 > AR -register· of the CPU.

5 - - - - -
6 TR_, CR .s,ontrol r,egister Destination is the· control OB > CR -register.

7 - . . -
SPEC 0 TR PS. IO .e.rogram 1011rce, Transfers progra1.1 source IOR <PS PSA CONTROL

!,nput/g,11tp11t word into the l/0 ":lister
r,egister (Z•cycle instruction •

l TR IOR,PS see above Transfers contents of I/0 PS < IOR PSA CONTROL
register to program source
(2-cycle instruction).

NOTES

1. Source loaded on data bus at beginning of cycle.
2. Destination loaded on data bus at !!!!!. of cycle.

0042

FPS 7350-01 2 8

Table 2-2 PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION USED

PSA 0 - - Ho Operation. - -
CONTROL

1 JMPAR J.ump to !_ddress Absolute jUllll> to address contained in PSA < AR -
!_egi ster the PIOP address register (AR).

Address. re9i s ter can be 1 oaded as a
data bus destination. The contents of
the register is the 8 LSB's of the
data bus.
This instruction uses no other fields
and is, therefore, useful for tight
loops and computed GOTO's.

2 JM PST i~ to stack Jump to address at top of stack. Does PSA < ST -
not change stack contents so is not a
Siibroutine return instruction. TiiiS
instruction uses no other fields.

3 JMPA V J.u!!.!2. !_bsolute Jump to absolute address V which is PSA < OISP6 DIS PB
contained in the OISPS field.

4 POP 22!!. the stack Advance subroutine return stack to - -
the next address. This instruction
does !!!!!. change PSA.

5 PUSH push the stack Enter the current address p 1 us one PSA + 1 > ST -
in to the subroutine return stack.
This instruction does not change the
PSA. -

6 RTN .r:.e!urn. Jump to address at the top of the POP AND JMPST -
stack and advance the stack to the
next address (POP the stack).

7 JSR V j_ump to Jump by the relative location v as PSA < PSA + OISPS , O!SPB
subroutine, specified by the OISPB field. Enter PUSH
!:elative the current location plus one into

the stack.

10 BOSC x, y branch if device If device status BIT I x is clear, BIT #, OISPS
Itatus is f:lear branch relative as specified by y. The

maximum displacement is +17 to -20 octal
locations. If t•7, then a high level on
ose1• was sampled at the beginning of
this instruction. 1 may be specified
as a relative argument.

~
OSB7* is one of eight sense 11nes
(OSB9* - 0517*) that allow the PIOP

to be controlled
externally.

11 BDSSx •. y branch 1f device Same as above except BIT I x must be BIT ~. DISP5
!tatus is !et set for the branch to occur (D597*

line low if x•7).

12 BFC x, y branch if .f.lag If flag BIT Ix is clear, branch rela- If condition is BIT#, DISPS
f:lear tive as specified by y (DISP5). The true, then:

maximum displacement is +17 to -2D
octal locations.)P5A < PSA + DISPS

13 BFS x, y branch if flag Same as above, except branch occurs If condition is BIT I, OISPS
!et if flag is set. !!!!!. true , then:

14 BISC x, v branch if Al.U If internal status BIT Ix 1s clear PSA < PSA + 1 BIT I, OISPS
!tatus rs slear (zero), branch as specified byy

(DISP5). MaxiJllUlll displacement is +17
to -20 octal locations.
Internal status BIT I is defined as
follows:

If set: Q • FIFO data valid
1 • FlFO full
2 • R shift out
3 " Q shift out
4 • ALU carry
5 • Al.U zero
6 • ALU sign
7 " ALU overfi ow

Hate that bits 2 through 7 above also
appear in the control register (CR).

FPS 7350-01 2 9 0043

Table 2-2 PIOP Instructions (cont.)

1-- OTHER

I
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION USED

PSA 15 BISS x, y branch if ALU Same as B !SC except that status If condition BIT •, DISP5
CONTROL 1 ftatus Ts 1et must be set (ll for the branch is true, then:

to occur.
These instructions are alternate mnemonics

PSA < PSA " OISP5

for the eight BISS and eight BISC mnemonics. If condition is
~ true, then:

BFV OISP Branch if FIFO data valid PSA < PSA .+ l

I
BFF DISP Branch if FIFO full

I BFOT DISP Branch if R-shift output = l

I
BQOT DISP Branch if Q·shift output = l

I BC D!SP Branch if carry set

BZ OISP Branch if ALU=O I
BM O!SP Branch if ALU is minus

I
BOVF OISP Branch if overflow = 1

BNFV D!SP Branch if FlFO data~ valid I

BNFF OISP Branch if FIFO~ full !
BNFOT D!SP Branch if R·shift output • 0
BNQOT O!SP Branch if Q·shift output = 0

BNC O!SP Branch if ALU carry out is 0

BNZ OISP Branch if ALU is not 0
BP D!SP Branch if ALU is positive

BNOVF OISP Branch if ALU overflow = 0

16 BNZST branch if ALU If ALU output is non-zero, branch to the I ?SA < ST .
~at 3_ero, .ttack location at the top of the stack. For

example:

TVOB 11'; MOVO CNT
PUSH

I DEC CNT
BNZST
HALT I

The above loops 10 times .before halting.

17 JMP X J.U!!!2. Jump unconditionally to the relative PSA < PSA " O!SP8 DISP8
address specified by X.

C044

FPS 7350-01 2 10

OCTAL
FIELD CODE

10 a
l

2

3

SPIN BIT 37

BIT 38

BIT 39

FPS 7350-01

MNEMONIC

OUT

IN

IORST

SDSC x

SDSS x

SDAV

Table 2-2

MEANING

2!!!Jlut

input/output
!:e1e1 -

_!Pin until
device status rs £_]ear

,!Pin until
aevice status
'fs ,!It -

_!Pin until
data
!vailable

FIELD

WORD

PIOP Instructions (cont.)

DESCRIPTION

No operation.

Places FIFO output buffer contents on external
device bus (DEY92* throu9h OEY39*) and advances
fonnat logic. The fonnat is specified by the
FORMAT field in the control r99ister.

Loads the FIFO input buffer with data on the
external device bus (DEY92* through DEV39*)
at the end of the present cycle. This instruction
also advances the format lo9ic. The fonnat is
specified by the FORMAT field in the control
ft9ister.

Causes PIDRST* (PIOP reset) to 90 true (law)
which, by convention, resets all devices
connected to the PIDP bus.

Spin until device status (BIT I) is clear. PIOP
spins (waits) until device status line
referenced by x (1n BIT I field) is clear (high
level) and then executes the remainder of that
instruction. Device status state is sampled at
the beginning of the instruction cycle.

I lllMt I UMllDll

11151:.alQlt

(l(CUf(I 1Ut
111$llllC11!11

SllSC 1

...... -1--·;--1

Only INTI (interrupt 9) interrupts spins. If
interrupted, the remainder of the instruction is
not executed. Upon return from the interrupt, the
next instruction is executed. The SPIN is not
reentered. -

Same as above, except the DS07* level is
inverted.

Spin until FIFO data is available. The PIOP spins
(waits) until the FIFO contains valid data.

SETMAR; PASSB BUF; RFF
SDAV; TRFF ,08; WORD 3; MOYD 9; AFF

The above instruction sequence puts valid data
fro111 the AP's main data location (buffer) into ALU
re91ster 9 and then the AFF resets the data valid
flag. The spin is a mini11111111 of five cycles.

INPUT /OUTPUT DATA FORMAT

CODE WORD OB TRANSFERS BITS

0 WORD 0 law mantissa (ML) 24-3g
1 WORD l hi911 mantissa (MM) 12-23
2 WORD 2 exponent 2-11
3 WORD 3 full word 2·39

2 11

OTHER
SHORTHAND FIELDS
NOT AT I OH USED

BIT I

BIT I

0045

Table 2-3 Expanded PIOP Instructions

OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION USED

ALUSRC D AQ - A > R. Q > s A

l AB - A > R. B > s B

z ZQ - All of these codes are used to I> R, Q > s -
select the data source for the

3 ZB - R and S input fields of the ALU. I> R, B > s B

4 ZA - Note that A and B fields are I > R. A > s A
deferred. That is. the A (or B)

5 DA - field selects one of 16 DB > R, A > s A
registers. The contents of the

6 DQ - selected register is then moved DB > R, Q > s -
into either the S or R input

7 DZ - field of the ALU. DB > R, I > S -
ALUDST 0 Q Interna 1 work

register F > Q, F > y ALUFCN

1 NP - All of these codes are used to F > y ALUFCN
select the destination that is

2 A A field to receive the ALU output F > B • A > y A, ALUFCN
function.

3 F ALU function F > B • F > y B, ALUFCN
Mnemonics are:

4 RQ Right shift Q F/2 > B • Q/2 >
Q • internal work register Q • F > y B, ALUFCN

5 RF Right shift F " ALU function
ALU function F/2 > B , F > Y B, ALUFCN

Y • ALU output bus
6 LQ Left shift Q 2F > B I 2Q >

Note that a right sMft is a Q , F > y B, ALUFCN
divide by 2 while a left shift

LF 7 Left shift is a multiply by z.
ALU function 2F > B ·, F > Y B, ALUFCN

ALUFCN 0 AD add F•R+S+C ALUSRC. ALUOST

l SB subtract F • S - R ALUSRC, ALUtlST

2 SR subtract. These codes are the function F • R - S ALUSRC. ALUOST
reverse performed by the ALU.

3 OR logical "or• R and S are ALU Input operands. F•Rgr_S ALUSRC, ALUDST

4 AN logical "and" The ALUSRC field selects the F • R ~S ALUSRC, ALUOST
source for R and S; the ALUOST

s NA logical •nand" selects the destination for the F • "!!.!!!" R and S ALUSRC, ALUDST
ALU output after the selectlld

6 XO exclusive •or• function has been perfonned. F•RmS ALUSRC. ALUOST

1 XH "exclusive •nor• F • •not• R !!!. S ALUSRC, ALUOST

SH 0 - default Shift in zeros - -
1 H - Shift in ones. - -
z R r.otate Rotate (shift out becomes shift in) - -
3 A aritllllletic Sign extend on right shift; fill - -

shift with ieros on left shift.

c 0 - default - F • F ALUFCN

l I - - F • F + l ALUFCN

0046

FPS 7350-01 2 12

Table 2-4 Symbol Definitions

SYMBOL DESCRIPTION

A Register A - one of 16 internal registers {scratch-
pad memory of Al.U). The specific register to be
used is specified by a 4-bit binary number in the
A field.

8 Register B address - one of 16 internal registers
{scratchpad memory of ALU). The specific register
to be used 1s specified by a 4-bit binary number
in the 8 field.

!!Qil.
The same 16 registers are used by
both A and 8 fields. For
example, the A field may specify
register #2 while the B field
may specify register 114.

Data Bus - the bl-directional bus connecting
08 the transceiver to the other P!OP circuits.

The mnemonic DB is also used for data bus.

Q Register Q - an internal work register.
--

R ALU Input Register R - one of two inputs to
the ALU. Designates the left-hand input in a
double-operand statement.

s ALU Input Register S - One of two inputs to
the ALU. Designates the right-hand input in a
double-operand statement.

y ALU Output Bus Y - indicates the output bus of
the ALU. More specifically, the output of tne
ALU Bus Select Logic.

z Represents binary O's. For example, the
expression Z > R indicates that all zeros
are loaded into the ALU R input register.

F Results of the ALU function which are applied
to the ALU destination.

0047

FPS 7350-01 2 13

Table 2-5 Cross-Reference List

OClAL SHORTHAND
MNEMONIC FIELD CODE NOTATION

OCTAL SHORTHAHO
MNEMONIC FIELD CODE NOTATION

A AlUDST 2 F > B, A > Y EN INT EXPAN 6 -
A SH 3 -
AB AlUSRC 1 A > R, B > S F ALUOST 3 F > B, F > Y

AD AlUFCN 0 R + S + C

ADD AlU 14 A+ I> B HALT EXPAN 12 Halt, PSA < PSA + l

ADDO AlU 2 DB+A>B

AFF EXPAN 3 - IN 10 l -
AH ALUFCN 4 R !m!, S INCB AlU 10 8 + 1 > B

ANOD ALU 3 OB !m!, A> B INCD AlU 12 08 + 1 > y

AQ ALUSRC 0 A > R, Q > S IORST IO 7 -

BDSC PSA lD JMP PSA 17 PSA < PSA + DISPB

BOSS PSA 11 If condition is JMPA PSA 3 PSA < OISPB
true. then:

BFC PSA 12 PSA < PSA + DISPS JMPAR PSA l PSA < AR

BFS PSA 13 If condition is JMPST PSA 2 PSA < ST

BISC PSA 14
not true. then:
P'ti<PSA+l JSR PSA 7 PSA < PSA + DISPB, PUSH

BISS PSA 15

BNZST PSA 16 PSA < ST LF ALIJDST 7 2F > 8, F > Y

LQ ALU DST 6 ZF > 8, ZQ > Q, F > Y

CF EXPAff 1 clear flag BIT I

MOYD AlU 1 DB > 8

DA ALUSRC 5 DB> R, A> s
08 DST 0 - N SK l -
OECB AlU 11 B - l > B NA ALUFCN s • !!2!" R and S

DECO AlU 13 DB • 1 > Y HP ALU DST 1 F > y

DIS INT EXPAN 7 -
DQ AlUSRC 6 DB > R, Q > S

DZ ASUSRC 7 DB > R, t > S

0048

FPS 7350-01 2 14

Table 2-5 Cross-Reference List (cont.)

OCTAL SHORTHAND OCTAL SHORTHANO
MNEMONIC FIELD CODE NOTATION MNEMONIC f'IELD CODE NOTATION

OR ALUFCM 3 R ~ S TR ALU, •• TR(~RC) 0 DB < Y

ORD ALU 4 08 2! A> B TR,CR, -- TR(SRC) 6 DB < (CR)

OUT IO 2 - TR(DISPB) ,-- TR(SRC) l OB < (DISPB)

TR FF, -- TR(SRC) 2 08 < (18)

PASSA ALU 7 A>Y,B>B TR IOR, -- TR(SRC) 3 D8 < (IOR)

PASSB ALU 16 B > y TR IOR, PS SPEC 1 PS < (IOR)

PASSD ALU 6 08 > y TR PS, !OR SPEC 0 (!OR) < PS

PASSQ ALU 17 Q >Y TR PSA, ·- TR(SRC) 4 DB < (PSA)

POP PSA 4 - TR --, AR TR(DST) 4 DB > (AR)

PSAB EX PAN 13 PSA > B TR --, CR TR(OST) 6 OB > (CR)

PUSH PSA 5 PSA + l >ST TR --, FF TR(DST) 2 OB > (08)

TR--, !OR TR(DST) 3 DB > (!OR)

Q ALUDST 0 F > Q, F > Y TVCR EXPAN 14 VALUE > CR

TVOB EX PAN 15 VALUE > DB

R SH 2 - TVEX EXPAN 16 VALUE > EXP

RF ALUDST 5 F/2 > B, F > y

RFF EX PAN 2 - WORD 0 WORO 0 -
RQ ALUOST 4 F/2 > B, Q/2 > Q, F > y WORD l WORD l -
RTN PSA 6 POP and JMPST WORD 2 WORD 2 -

WORD 3 WORD 3 -
SB ALUFCN l S - R

SDAV SPIN - - XM ALUFCN 7 "net" R fil S

sosc SPIN - - XO ALUFCN 6 R !,2!. S

soss SPIN - - XORD ALU 5 DB !,2!. A > B

SETOA IOCMO 3 ALU > OVatD

SETMAR IOCMO l Read APMA ZA ALUSRC 4 ll > R, A > S

SETMAW IOCMO z Write APMA ZB ALUSRC 3 ll > R, B > S

SF EXPAN 4 Set flag BIT I ZQ ALUSRC 2 ll > R, Q > S

SINDC 10 4 -
SINDS 10 3 -
SINT EX PAM s Set interrupt BIT I

SOTOC 10 6 -
SOTOS 10 s -
SR ALUFCN z R - S

START EXPAM 11 Start

SUB ALU 15 8 - A > B

0049

FPS 7350-01 2 15

CHAPTER 3

FUNCTIONAL ELEMENTS

3.1 INTRODUCTION

As an aid in understanding the programmable I/O processor (PIOP), brief
descriptions of the major functional elements of the system are
presented in the following paragraphs. These paragraphs cover: the
transceiver, the registers, and other PIOP elements. Note, however,
that it is not the intent of this chapter to describe all PIOP
functional elements but only those elements that are of interest to the
programmer. All of the elements described are shown in the block
diagrams in Chapter 1 of this manual.

FPS 7350-01 3 l

3.2 TRANSCEIVER

The transceiver portion of the PIOP formats and buffers the data
transferred between the external device and the AP. Thus, the
transceiver can compensate for different device speeds.

A brief description of the transceiver and the associated FIFO
(first-in, first-out) memory element is given below:

transceiver

FPS 7350-01

Formats and buffers data transferred
between the AP main data memory and
the external device. The transceiver
is under PIOP program control.

The transparent transceiver can transfer
38-bit words between the PIOP and the
external device in one of four formats:
full 38-bit word, three 16-bit words,
two 16-bit words with truncated mantissa,
or two 16-bit words with truncated
exponent.

When transferring data between the
transceiver and other PIOP elements,
the full 38-bit word or the EXP, MR, ML
fields.

When transferring data, the FIFO memory
provides automatic word sequencing. However,
the length of time it takes a word to
sequence through the FIFO must be considered
during programming to ensure that data is
available at the proper time.

The transceiver contains input and output
format logic, input and output buffer
registers for the FIFO memory, and the
FIFO (first-in, first-out) memory element•
This memory element is described below.

3 2

transceiver FIFO
memory element

FPS 7350-01

A first-in, first-out (FIFO) memory used
for data transfers. This memory can hold
up to sixteen 38-bit words.

Data may be loaded into the FIFO input
buffer from either the external device
bus (DEV) or from the AP's main data
memory bus (MD). Data is entered one word
at a time. The FIFO output can be advanced
under program control in order to "skip"
words.

One application of the FIFO can be to
compensate for different data rates
between the PIOP, the AP, and the
external device. For example, the
external device may load the FIFO at a
slow rate but the FIFO can be read by
the PIOP in a high-speed burst.

3 3

3.3 REGISTERS

The PIOP contains various registers that can be used for such functions
as loading addresses, reading status bits, issuing commands to external
devices, loading operands for arithmetic and logical operations, etc.

A brief description of each of these registers is given below:

ALU registers
(scratchpad memory)

Q register

address register (AR)

I/O register (IOR)

16 individual 20-bit RAM registers in
the ALU. These registers store operands
for the ALU operations.

Specific registers are accessed by
addresses in the A and B fields as
specified by the ALU instruction
currently being executed.

A 20-bit internal work register in the
ALU. Loaded by the ALU instructions in
the expanded format (ALUSRC and ALUDST
fields).

An 8-bit register used for computed
GO TO's. The register contents are
used by the JMPAR instruction as an
absolute address.

A 38-bit register used for communication
between the AP and the PIOP. This
register can be accessed by either the
AP or the PIOP.

This register is also used as an
intermediate storage device during
program source fetch/store instructions.

This register appears to the AP as device
address 100.

All of the previously-mentioned registers are used for addresses or
data. The remaining registers are used primarily for command and
status functions as described below. In addition, sense lines and
individual register bits that provide status information are also
described.

FPS 7350-01 3 4

control register (CR)

device command
register (DC)

ALU status

device status (DS)

flags

FPS 7350-01

A 20-bit read/write register used for
internal PIOP control functions and
status indications. The control register
can be loaded by the TVCR VALUE
instruction (transfer value to control
register). The bit pattern for the
control register is shown in Figure 3-1.

A 20-bit write-only register that contains
address and/or command information for
controlling an external device. This
register can be specified as a destination
by the DST portion of the TRANSFER field.

The meaning of each bit in this register
is both program and device dependent. A
typical bit assignment is shown in
Figure 3-2.

5 bits in the control register are used
to indicate the status of the ALU. These
bits can be tested by the BISS and BISC
(branch if status set and branch if status
clear) instruction. The individual ALU
status bits in the control register along
with other ALU status bits are listed in
Table 3-1.

8 sense lines that indicate the status
of the external device used with the
PIOP. The specific meaning of each line
is dependent on the particular application.

These sense lines can be tested by the
BDSS, BDSC, SDSC, and SPIN
instructions. A typical example of these
lines when used as a disk interface is
shown in Table 3-2.

8 flags that can be accessed by both the
AP and the PIOP. These flags are
defined by the program. A typical example
is shown in Table 3-3.

The flags can be set by the SF instruction,
cleared by the CF instruction, and tested
by the BFS and BFC instructions.

3 5

20 21 22 23 24

INTERRUPT ARM p

FIELD fill

INTERRUPT ARM 20

21

22

23
B!Tf

ALU STATUS 24

26

27

7 28

6 29

30

4 31

32

2 33

34

JS

FIFO I/O
HANDSHAKE ENABLES 36

37

FORMAT SELECT 38,39

FPS 7350-02

25 26 27 28 29 30 31 32 33 34 35 36

6 ALU STATUS DATA F H
VALID FULL OUT

~ ~ ~

!NT0 When set. arms interrupt zero which is the
highest priority interrupt.

JNTl When set, arms interrupt one.

!NT2 Hhen set. arms interrupt two.

INTJ When set, arms interrupt three.

Enable FIFO pass feature.

Indicates state of format logic.

Indicates state of format logic.

OVERFLOW When set, indicates that the output of the
ALU is an overflow condition.

1/0 SIGN Indicates the sign of the ALU output.
(l'l •positive~ 1 •negative.)

F•il When set, indicates that the output of
the ALU function is zero.

CARRY When set, indicates that the ALU function
resulted in a carry bit.

l/l'l Q-SHlFT .OUT Contains the bit that was shifted out during
a Q-shift operation. Note that a Q-shift can
be either a left or right shift.

1/0 R-SHIFT OUT Contains the bit that was shifted out during
an R-shift {R.~-shift) operation.

DATA VALID Indicates that data is valid.

F'IFOFULL Indicates that the FIFO is full.

Wtten set, enables the ~ut handshake feature.

\1hen set, enables the .!!!Put handshake feature.

"ii iransceiver format 0 (fu 11 words l
11 l Transceiver fonnat 1 ~EXP, MH, ML)
l 9 Transceiver format 2 high word, low word)
l 1 Transceiver format 3 {high word, low word)

!!ill
A ~ore thorough description
of transceiver formats is
given in chapter 4.2.3.

Figure 3-1 Control Register (CR)

3 6

37 38 39

H
IN

FORMAT

can be
used for
conditional
branch
instructions

0050

0

CR
BIT

33

32

31

30

29

28

FPS 7350-01

4

9!T

p - 10

ll

12 - 15

16

17

18

19

6

UNUSED

VALUE

0/1

3 9 10 ll 12 13 14 15 16 17 18 19

/STROBE r:1

I !ADDIJ thru
/!ADD3

/Ii'HT '.iR!i~

/ABORT

I !NIT READ

/FIFO ~CK

Si
I~

Unused.

!ADD

FUNCTION

!HIT AB IN!T ACK
WRT RD

'•hen set, transfers data between the PIOP
and the disk input buffer.

When a soecific bit is set, selects the
address of one of four disk registers.

When set, initiates a write operation (data
from P!OP is to be written into disk buffer).

When set, aborts the current disk operation.

t>hen set, initiates a read operation (data
from disk is moved into disk buffer).

When set, provides an acknowledge signal that
is part of the disk/P!OP handshaking sequence,

1. The / before each co1T111and is a convention used
with a disk.

2. The above is only a representative example of
of how the OVCMO re~ister ls used with an
external device. ln this example, a disk
storage device is used.

Figure 3-2 Device Command Register (DC)
(Assignment for Disk Interface)

Table 3-1 ALU Status Conditions

ill! VALUE NAME FUNCTION

0 DATA VALID 'llhen set, indicates that the
FIFO output buffer has been
loaoed. Reset by RFF or by
advancing FIFO more times than
it was loaded.

FIFO FULL When set, indicates that the
FIFO is full.

2 SH I FT OUT FROM When set, indicates that there
F REGISTER was a shift out of the function

register of the ALU.

3 SH I FT OUT FROM When set, indicates that there
Q REGISTER was a shift out of the ALU's

Q register (internal work register).

4 CARRY When set, indicates that the ALU
function resulted in a carry.

ZERO When set, indicates that the ALU
function resulted in a zero.

6 il/l SIGN Indicates the sign of the result
of the ALU operation.

0 = positive
1 = negative

OVERFLOW When set, indicates that the ALU
operation resulted in an overf1 ow
condition.

3 7 0052

Table 3-2

!!I
0

4

6

FPS 7350-01

Device Status (Assignment for Disk Interface)

!!I
n - 4

OPEN CABLE

6 VERIFY

7 FIFO REQ

Table 3-3

AP DEVICE
SIGNAL ~

FLAG 0 110

FLAG l lll

FLAG 2 112

FLAG 3 113

FLAG 4 114

FLAG 5 115

FLAG 6 116

FLAG 7 117

3

llnused

Wnen set, indicates that an
open cable condition exists.

When set, indicates that the
disk is performing a verify
operation.

When set, provides the FIFO
request handshaking signal.

0053

Flags

REMARKS

AP - set by OUT
c 1 eared by rN
When QA is set,
flag is gated to [QROY.

PIOP • Flag set by SF
Flag cleared by CF

0054

8

3.4 OTHER ELEMENTS

Other PIOP functional elements are listed below along with a brief
description of each element. A more thoroug~ discussion is contained
in Chapter 4 of this manual.

program source
memory

instruction register

PSA multiplexer

FPS 7350-01

A 256-word by 38-bit writable control
store which can be used to store data
or program instruction words.

This memory is addressed by PSA (program
source address) logic. Data is entered by
means of the TR IOR,PS instruction and
retrieved by the TR PS,IOR instruction.
The selected word is decoded by the
control buff er during execution time.

During run time, decodes data from either
the program source memory or from the
I/O register (IOR) if the deposit is
made from an AP program (SNSA, DA=lOO).
The latter is explained more fully in
paragraph 4.6.

The program source address (PSA) is
determined by the output of a.multiplexer.
This multiplexer has the following six
input sources:

a. program counter
b. (DISP8) - the contents of the

DISP8 field in the instruction
word

c. PSAQ + (DISP8) modulo 256 -
the PSA register plus contents
of DISP8

d. PSAQ + (DISP8) biased - the
same as above but biased
rather than modulo 256

e. subroutine stack
f. interrupts

3 9

ALU

FPS 7350-01

Performs the arithmetic and logic operations
required by the PIOP. In addition, contains
16 registers that can be accessed by the
programmer.

In addition to the normal instructions used
to select arithmetic or logic operations
(such as ADD and OR), the ALU field can be
expanded.

The expanded field provides eight double
operand instructions for selecting the
two ALU inputs, eight instructions for
selecting the function to be performed,
and eight instructions for selecting the
destination that is to receive the output
of the ALU.

3 10

CHAPTER 4

PROGRAMMING

4.1 INTRODUCTION

This chapter provides the basic information needed to program the
programmable I/O processor (PIOP) and is divided into five basic parts
as shown in Table 4-l. Although this chapter is devoted to software,
explanations of hardware are included where necessary for a complete
understanding of the programming techniques. Although the reader was
briefly exposed to the instruction set in Chapter 2, this chapter
provides more detailed information on individual instructions.

The purpose of this chapter is to provide only the information needed
for PIOP interface programming. However, because the PIOP is used with
the array processor, information related to A:P programming is included
whenever necessary. If more detailed information on A:P programming is
desired, the reader should refer to the applicable publications listed
in Chapter 1 of this manual.

Before referring to the subjects listed in Table 4-1, it is recommended
that the reader consult the programming hints given in paragraph 4.1.1.

Table 4-1 Programming Subjects

--,

SUBJECT PARAGRAPH DESCRIPTION

TRANSCEIVER 4.2 Describes basic operation of the transceiver
and FIFO memory element, word formats, the
8 instructions used in programming the
transceiver, timing considerations, and
OMA transfers.

ARITHMETIC 4.3 Defines the ALU registers that can be accessed
& LOGIC UNIT by the progranmer, describes ALU operation,

and explains how to use the ALU instructions
in either the normal or expanded format.

PROGRAM SOURCE 4.4 Describes the program source memory, the
MEMORY address control logic used with the memory,

instructions related to program source memory,
and the branch and jump instructions.

INTERRUPT 4.5 Covers the instructions and timing used for
HANDLING handling interrupts.

COMMUNICATING l 4.6 Describes how the P!OP communicates with the AP.
WITH THE AP

0055

FPS 7350-01 4 1

4.1.1 PROGRAMMING HINTS

The following hints are provided to aid the programmer in writing
efficient programs for the PIOP. Each of the items described below is
discussed more fully in the appropriate part of this chapter.

timing

traps

FPS 7350-01

Certain timing constraints must be considered when
programming the PIOP. Because of the parallel nature
of the PIOP, it is possible to write a microinstruction
that appears to be valid but is actually illegal.

For example, a single instruction might request data
and also request processing of that data. This is
illegal because the entire instruction is executed
in one cycle which means that the requested process
does not have valid data to act upon. Therefore,
certain PIOP instructions take two or more cycles
to execute properly.

Instructions of this type fall into tt.To categories:
instructions that transfer data in and out of the
PIOP, and instructions that transfer data in and out
of the program source memory.

a. Transferring Data In/Out of the PIOP

The instructions affected by timing are
listed below and described more fully·
in paragraphs 4.2.4 through 4.2.6.

IN
OUT
SETMAR
SETMAW
SETDA

b. Transferring Data In/Out of the PS Memory

The instructions affected by timing are
listed below and described more fully in
paragraph 4. 4.

TR. PS,IOR
TR. IOR,PS

Always start programs at program source memory
location 4 or higher because locations 0 through 3
are reserved for interrupt traps.

4 2

armed
interrupts

subroutines

Always disarm interrupts in order to initialize
the interrupts. Disarming clears unwanted
interrupts that may be queued.

Make certain to end all subroutines with an RTN
(return) instruction in order to return to the
proper place in the main program.

4.1. 2 REFERENCE MATERIAL

Reference material that may aid the programmer is included in the
appendices of this manual. The following material is included:

Appendix A

Appendix B

Appendix C

FPS 7350-01

Instruction word diagram and instruction set
tables. Same as those included in Chapter 2
but reproduced in the appendix for quick
reference.

Interconnection diagram. Illustrates the various
lines connecting the PIOP to the AP and to the
external devices.

Describes operation of the FIFO element and
the subroutine return stack for those readers
who might not be familiar with these concepts.

4 3

4.2 USING THE TRANSCEIVER

The transceiver basically consists of a FIFO (first-in, first-out)
memory element and related logic such as f orma~ting logic and input and
output buffers. This 16-word memory element is used to provide
buffering in order to synchronize transfers of data. For example, the
external device might load up to 16 words in the FIFO in a fast data
transfer and then these words might be retrieved from the FIFO, one
word at a time, for transfer into the AP's main data memory. On the
other hand, the external device might load the words at a slow rate and
the PIOP might then retrieve the words in a high-speed transfer. The
FIFO memory element may be used by either the external device or the
AP.

The following paragraphs provide a
operation, a discussion of the
transceiver, and an explanation
programming the transceiver.

general description of transceiver
various word formats used with the

of the instructions used when

A brief description of FIFO memory elements is contained in Appendix B
of this manual.

4.2.l TRANSCEIVER OPERATION

Figure 4-1 is a simplified diagram of the transceiver. Data from
either the external device or the AP's main data memory is applied
through a FIFO input buffer (!B) to the FIFO memory element. This
memory element is capable of storing sixteen 38-bit words. Because of
the memory's operation (first-in, first-out), the first word loaded
into the memory is always the first word retrieved from the memory.

The word that is retrieved from the FIFO memory element enters the FIFO
output buffer (OB). The output of this buffer can then be applied to
one of three places: to the PIOP, to the external device, or to the
main data input register (MDI) which supplies the data to the AP's main
data memory.

FPS 7350•01 4 4

FPS 7350-01

(TR_, FF)
FROM PIOP

1
DB 02- 39

(TR FF,_
TO PIOP

NOTE

I
i. -it

THE INSTRUCTIONS WHICH
IMPLEMENT THE PATHS
ON THE FIGURE ARE
SHOWN IN PARENTHESES.

(IN) (~llMAH)

EXTERNAL
DEVICE MAIN

DEV 02-39 ~ATA

l _l
FIFO !NPUT SUFFER

REGISTER (18)

FIFO
(FF)

(RFF) l AFF
...t.

FIFO OUTPUT BUFFER
REGISTER (OB)

I r I
\ SETMAW)

MAIN DATA INPUT
REGISTER (MDI)

MAIN
DATA

.. (OUT)
TO EXTER~lAL

DEVICE
DEV 02-39

0056

Figure 4-1 Transceiver - Simplified Diagram

4 5

As shown in the figure, data from the PIOP can also be applied directly
to the FIFO output buffer (OB) for transfer to either the external
device or through the MDI register to the main data memory.

The instruction mnemonics shown in parenthesis on the figure indicate
the specific instruction that implements a particular data path. For
example, the input buffer can receive data from the external device by
means of the IN instruction or can receive data from the AP's main data
memory by means of a SETMAR instruction.

Loading and retrie~ing data from the FIFO memory is controlled by two
pointers: a write pointer and a read pointer. The write pointer is
the address of the location to receive the next word when the FIFO is
loaded. The read pointer is the address of the next word that is to be
read. If both pointers are equal (read and write addresses identical),
then the FIFO memory is either empty or full.

In order to understand the first-in, first-out operation of the FIFO
memory, assume that both pointers are initially pointing to the first
location in an empty FIFO. As each new word is loaded, the write
pointer advances to the next sequential location but the read pointer
does not move. The write pointer continues advancing as long as words
are being loaded into the FIFO. When data is retrieved, the read
pointer advances to the next location after the word has been read.
Thus, when retrieving data, the first word out of the memory is the
first word that had been loaded into memory.

It should be noted that there are two PIOP instructions directly
related to the pointers used with the FIFO memory in the transceiver:
RFF and AFF. A brief explanation of each of these instructions is
given below:

RFF Reset FIFO

AFF Advance FIFO

FPS 7350-01

Resets ~ the read and write
pointers by returning them to
the first address in the memory.

Advances the FIFO ~ pointer to
the next sequential location in
the memory. (The write pointer is
advanced automatically whenever
the low mantissa portion of the
FIFO input buffer is written.)

4 6

4.2.2 TRANSCEIVER FOR..."1.ATS

Although the transceiver always deals with a 38-bit A2 floating-point
word, the word may be transferred betwee~ the transceiver and the
external device in any one of four different formats. Thus, the 38-bit
word may be transferred as one full word, as three separate 16-bit
words, as two separate 16-bit words with a truncated mantissa, or as
two separate 16-bit words with a truncated exponent. Transfers can
occur in either direction (from the external device to the transceiver
or vice versa). It should be noted that these formats do B.2.E. apply
when transferring words between the transceiver and the internal data
bus (DB).

The four possible transceiver formats are listed in Table 4-2 below and
illustrated in Figure 4-2.

Table 4-2 I/O Word Formats

DATA TYPE FORMAT DESCRIPTION

38-bit AP ~ Full word is transferred. l
I

floating-point word
(10-bit exponent; 1 Full word transferred as three l
28-bit signed mantissa) separate 16-bit words. These

words are: low mantissa, high
mantissa, and exponent.

I 2 Mantissa truncated and remainder i
of word transferred as two 16-bit

J I
words. These two words are: low
word and high word.

I

l
3 Exponent truncated and remainder

j of word transferred as two 16-bit
words. These two words are: low
word and high word.

0057

FPS 7350-01 4 7

D£'<0 2 d 9 11 12 13 17 18 23 24 33 34 DE'/39

EXPONENT I s I MANTISSA FORMAT a
(AP-l20B)

I I I I
0£Vil 130 I 391 28 391 24 DEV39

EXPONENT HIGH MAN IT SSA LOI> MANTISSA FORMAT l

I I FIRST WORD SECOND \olORD THIRD WORD
DEV 124 I 39 I 24 I DEV39

HIGH llORD LOW WORD I FOR~1AT 2

I F !RST1 WORO I SECOND !iORD
DEV 124 I 125 39 I 24 D£V39

BIAS EXTEND ON INPUT HIGH WORD LOW \IORD FORMAT J

IN/OUT WORD DEFINITIONS DB TRANSFERS
(REGARDLESS OF SELECTED FORMAT)

FORMAT 9J - N/A

FORMAT l - lst = EXPONENT
2nd = HIGH MANTISSA
3rd = LOW MANTISSA

(advance word pointer)

FORAMT 2 • lst = HIGH WORD
2nd = LOW \IORD

(advance word pointer)

FORMAT 3 · lst = HIGH \olORD
2nd = LOW WORD

~

AUTOMATIC
SEQUENGING

l. AFF INSTRUCTION MAY SE USED TO ADVANCE FIFO READ POINTER.

2. OB TRANSFERS CAN SET "DATA VALID" BUT llILL NEVER ADVANCE
READ OR WRITE POINTERS.

WORD 9J - LOW MANTlSSA

WORO l - HIGH MANTISSA

llORD 2 - EXPONENT

llORO 3 • FULL tiORO

3. POINTERS lo!ILI. ADVANCE WITH ANY FULL WORO OR Lml BYTE TRANSFER
(!NCI.UC lllG MO).

4. WORD FIELD ONLY AFFECTS DATA BUS TRANSFERS.

Figure 4-2 Transceiver Formats

FPS 7350-02 4 8

0058

4.2.3 TRANSCEIVER INSTRUCTIONS

There are eight instructions that are directly related to transceiver
operation. These instructions are listed .in Table 4-3 below and
described in the following paragraphs~

Table 4-3 Transceiver Instructions

INSTRUCTION FIELD DESCRIPTION

IN IO Input. Oata transfer into the P!OP,

OUT ID Output. Data transfer out of the P!OP.

SETMAR !00!0 Set memory address, read. Performs a OMA read

I from main data memory.

SETMAW !OCMO Set memory address, write. Performs a OMA
write to the main data memory. Advances the
read pointer.

AFF EX PAN Advance FIFO. Advances the FIFO read ~ointer,

RFF EXPAN Reset FIFO. Resets FIFO read and write pointer~.

TR FF.OS SKC Assembler mnemonic. Transfer contents of the
output buffer (OS) to the data bus.

TR OS,FF DST Assembler mnemonic. Transfer data on the data
bus to the input buffer (IS). Sets the data
valid bit (F!FOHT• goes false).

0059

IN - This instruction is used for data transfers into the transceiver.
The IN instruction transfers a data word from the external device
into the FIFO input buffer (IB). The format is determined by the
state of bits 38 and 39 (FORMAT field) in the control register
while the particular word to be transferred is determined by the
format logic.

In the cycle following the IN instruction, the contents of the
input buffer (IB) are written into the FIFO memory. If the
FIFO is empty at this time (that is, at the beginning of the
instruction cycle after the IN instruction), then the valid data
word is available in the FIFO output buffer (OB) at the beginning
of the next cycle.

FPS 7350-02 4 9

For example:

RFF

IN

NOP

TR FF,DB

"reset FIFO pointers

"load word into IB from device bus

"data word from the IB is available
"in the OB. DATA VALID is true •

OUT - This instruction is used for data transfers out of the trans
ceiver. During the cycle in which the OUT instruction occurs,
the contents of the OB are gated to the external device data
lines according to the data format type selected by the control
register FORMAT field (bits 38 and 39) and the data word as
selected by the transceiver format logic.

For example:

OUT "transfer word on to device bus from
"FIFO output buffer. At the end of the
"cycle, advance to the next word as
"determined by the format

SETMAR - This instruction initiates a DMA cycle to fetch data from the
location specified by the ALU output. Five cycles later,
data enters the input buffer (IB). This 38-bit data
overwrites the previous contents of the IB. If the FIFO
memory is empty, then data is available in the output buffer
(OB) after the next cycle.

For example:

RFF "reset FIFO pointers

SETMAR;ADD 0,1 "load APMA with (REG 0) (REG l)

NOP "cycle request

NOP "cycle acknowledge

NOP "wait

NOP "data is written into input buffer

NOP "data passes through FIFO

TR FF,DB "data is available here

FPS 7350-02 4 10

SE'n1AW - This instruction determines the memory address for a write
operation. The SETMAW instruction initiates a DMA write
cycle at the location specified by the ALU output. Data
is taken from the FIFO output buffer .COB) at the end of
the next cycle. Three cycles later, the data arrives in
main data memory at the specified address. The FIFO is
advanced on the cycle after the SETMAW instruction.

For example:

TR IOR,FF;INCB CNT;SETMAW "load APMA with (CNI)+l; load

NOP

NOP

"FIFO output buffer (OB) from IOR
"cycle request; during this cycle,
"data is read from the OB. The FIFO
"pointer is advanced •
"cycle acknowledge

AFF - This instruction advances the FIFO pointer (the FIFO write
pointer is advanced whenever the low mantissa portion of the
input buffer is written). When this instruction is used, the
output buff er contains a new word at the beginning of the next
cycle. If no word was written, tpe word is not valid.

For example:

RFF

IN

IN

NOP

AFF

TR FF,DB

FPS 7350-02

"reset FIFO pointers

"load a word into the input buffer (IB)

"load a second word into the IB

"DATA VALID true. Word transferred by
first IN instruction is available here.

"advance FIFO read pointer; the word
transferred by the first IN instruction
is still available here.

"word transferred by second IN instruction
is available here.

4 11

RFF - This instruction resets both FIFO pointers so that the FIFO
memory appears to be empty. It also initiates the format control
logic to input or output the first word of the selected format.

For example (assume full word format selected):

IN

IN

IN

RFF

IN

IN

NOP

TR FF,DB;AFF

TR FF,DB

"transfer first word into input buffer (IB)

"transfer second word into IB

"transfer third word into IB

"reset FIFO pointers

"transfer fourth word into IB

"transfer fifth word into IB

"fourth word available here (first through
third words no longer available because
of RFF)

"fourth word still available here

"fifth word available he.re

TR FF,DB - This instruction transfers the contents of the output
buffer (OB) to the data bus according to the word specified
by the WORD field in the PIOP instruction word.

TR OB,FF - This instruction loads the FIFO output buffer (OB) from the
data bus according to the format specified by the FORMAT
field in the control register and the word specified by the
WORD field in the PIOP instruction word.

A RFF instruction should always follow a TR DB, CR instruction before
data is transferred to/from the external device.

Interaction of these eight transceiver-related
described in subsequent paragraphs.

FPS 7350-02 4 12

instructions is

4.2.4 TRANSCEIVER TIMING CONSIDERATIONS

When using certain PIOP instructions that are related to the
transceiver, the sequence of actions begun by one instruction may
overlap the sequence of actions begun by another instruction. In
addition, data from one instruction may not be available until a few
cycles later, depending on the condition of the FIFO memory.
Therefore, it is important to know the instruction timing
considerations in order to program the PIOP properly. The instructions
that require consideration of timing are the instructions which
interact with external devices. These instructions are:

IN
OUT
SETMAR
SETMAW

Strobes data at the end of the instruction cycle
Places data on to the output bus
Initiates a DMA read cycle
Initiates a DMA write cycle

Instruction timing is
typical examples. If
instructions, refer to

covered in this section
it is necessary to

paragraph 4.2.4.

by providing a number of
review the transceiver

Examole 1

FPS 7350-02

Using an IN instruction with an empty FIFO memory

The timing for this example is shown in Figure 4-3.
This example shows the timing of an IN instruction
when the FIFO memory is empty. Note that the data
requested by the IN instruction is not available
for the PIOP until two cycles later.

167 ns

IN

I ''---...-~' I _____ _,

DATA STROBED __1 J
INTO INPUT BUFFER

DATA PASSES
THRU FIFO

DATA STROBED INTO
OUTPUT BUFFER. DATA
'IALID GOES TRUE

DATA AVAILABLE
FOR PIOP

NOTE

OATA VALID TESTED av
FOLLOWING INSTRUCTIONS:

BISS 0 - BRANCH IF
B!SC 0
SDAV

Figure 4-3 IN to Empty FIFO J060

4 13

Example 2

IN

FPS 7350-01

t

Multiple IN instructions with an empty FIFO memory

The timing for this example is shown in Figure 4-4.
This example shows the timing .when the FIFO memory
is empty and a number of IN instructions are used.
Note that the data read by the first IN instruction
is available at the beginning of the thi~d cycle.
This word is still available at the beginning of the
sixth cycle. By the time the sixth cycle begins, two
subsequent words have been stored in the FIFO memory.

IN NOP IN AFF

! ! •

t
•

A 'llORD IS STROBED INTO THE
INPUT BUFFER ON EACH OF
THESE CYCLES

WORD READ BY FIRST
"IN AVAILABLE" HERE

FIRST 'llORD STILL AVAILABE.
r.io SUBSEQUENT WORDS ARE
STORED IN THE FIFO AND CAN
BE ACCESSED BY .AN AFF
INSTRUCTION.

~ATA FROM SECOND "IN"
LOADED INTO FIFO
OUTPUT BUFFER (OS)
BY AFF INSTRUCTION.

Figure 4-4 Multiple IN's to Empty FIFO
0061

4 14

Example 3

FPS 7350-02

SETMAW Instruction

The timing for this example is shown in Figure 4-5.
This example assumes that there is a valid word in
the FIFO memory. This word could be there already, or
it could be placed there by one of the following
methods:

a. an AFF instruction in the same cycle
b. a TR DB,FF instruction in the same cycle
c. an IN instruction in the previous cycle

Note that the data to be written by the SETMAW
instruction is not written into the MDI register
until the end of the second instruction cycle.

FIFO ADVANCED

.-------...
I

SETMAW NOP

Figure 4-5

4

l
MOCR2
TRUE

i
DATA STROBED
INTO MDI REG
NEW \IORO rN OS

SETMAW Instruction

15

0062

Example 4 3 MHz IN Instruction, SETMAW Loop

The timing for this example is shown in Figure 4-6.

DATA LOADED
INTO FIFO BY Ill

DATA WRITTEN
INTO FIFO

lst '.<ORD
TAKEN BY AP

l
------...:
I I

2nd 'IORO
TAKEN BY AP

l
.-----.....
I I

I
I RFF IN SETMAW IN SETMAW IN SETMAW

i
r

i
r

4

i l
DATA FROM DATA FROM DATA FROM

1st IN 2nd IN 3rd IN I LOADED INTO LOADED [NTO LOADED [NTO
FIFO OB DATA FIFO OB DATA FtFO OB DATA

(AUTOMATIC) FROM FROM FROM
DATA VALID 1st iN 2nd IN 3rd IN
GOES TRUE INTO MO! INTO MDI INTO MDI

REGIS TE!! REGISTER REGISTER

(BY SETMAW)
HISTRUCT!ON

(BY SETMAW)
INSTRUCTION

CODE ILLUSTRATED ABOVE: RFF
IN
SETMAW
IN
SETMAW
IN
SETMAW

~
NO ADDRESS GENERATION IS
SHOWN FOR <;ETMAW !N<;TRlll':TION

Figure 4-6 SETMA.W Loop

FPS 7350-02 4 16

3rd .'.~ORO
TAKEN BY AP

l
.-------....
I I

0063

Example 5

FPS 7350-02

SETMAW IN Loop

The timing for this example is shown in Figure 4-7.
The figure illustrates the following program. Note
that it is assumed that DSOO* goes low to indicate
external device data ready. Also, the program
assumes that APMA • ALU register O.

IN;SDSS 0

NOP

SETMAW;IN;SDSS O;INCB 0

NOP

SETMAW;IN;SDSS O;INCB 0

JMP .-1

4 17

"IN to initialize
FIFO memory

"Perform DMA write to
"AP main data memory;
"wait for device
"ready; increment ALU
"register 0

"Perform DMA write to
"AP main data memory;
"wait for device
"ready; increment ALU
"register 0

"Loop to previous
"instruction

FPS 7350-02

IN*

I
I
I
I

1157 ns JMP .-1

note 2

I
I
j +-TYPICAL OF LOOP

I
I

J-

OA00* -----. -------;) f-

i
SPIN

BEGINS

~OS00* SYNCHRONIZED

r---
SPil'l L INSTRUCTION
ENDS ACTUALLY

EXECUTES

NOTES

OSila MUST BE TRUE)j{TH!N 125 ns OF !:I* GOING Lm'
TO GET THE NEXT CYCLE.

2 DS00 MUST BE FALSE '..iITH!N 125 ns OF iN* GOING HIGH
O:l THE NEXT CYCLE ?ROCEEDS 'il!THOUT HANDSHAKING.

DATA MUST REMAIN VALID UNTIL IN GOES FALSE.

0064

Figure 4-7 SETMAW IN Loop

4 18

Example 6

FPS 7350-02

SETMAR OUT Loop

The timing for this example is shown in Figure 4-8.
The figure illustrates the following program. Note
that it is assumed that DSOO* goes low to indicate
valid data. Also, the program assumes that APMA =ALU
register o.

SETMAR; INCB 0

NOP

SETMAR; INCB 0

NOP

SETMAR;INCB 0

NOP

SDSS O;SETMAR;INCB O; OUT

JMP .-1

4 19

"Set up a buffer of
"data to cover up the
"access time

"Spin out, initiate
"read for later. OUT
"advances the FIFO
"to the next word

FPS 7350...01

INSTRUCT! ON 7 INSTRUCTION 8
,--~~....-.....~~---~

CYCLE l CYCLE 2 1 CYCLE 3

OUT* --it:\ot~ l • f L
\~ ')note 2

DS08* --~~,___.,l.___.,e;r-----'
\._STATUS

SYNCHRONIZED

r
SPIN
BEGINS

r
SPIN
ENOS

.
t___ INSTRUCTION

ACTUALLY
EXECUTES

fill.ill.
0500 MUST BE TRUE WITHIN 125ns OF OUT*
GOING LOW TO GET NEXT CYCLE.

2 OS00 MUST BE FALSE WITHIN l25ns OF OUT*
GOING HIGH OR THE NEXT CYCLE PROCEEDS
WITHOUT HANDSHAKING

3 DATA IS VALID DURING TIME OUT* IS LOW

0065

Figure 4-8 S E!MAR OUT Loop

4 20

4.2.5 INTERACTION OF TRANSCEIVER INSTRUCTIONS

Interaction between some of the transceiver instructions occurs when
the sequence of actions begun by one instruction· overlaps the sequence
of actions begun by another instruction.

Instruction interaction is best described by using a few examples. It
is assumed that the reader is already familiar with the transceiver
instructions and timing considerations as described previously.

Example 1

Example 2

SETMAR
NOP
NOP
RFF
NOP
NOP
TR FF,DB

TR l, FF; SETMAW
TR 2,FF

Example 3 RFF
IN
IN
NOP
SETMAW;AFF

Example 4 RFF

FPS 7350-01

IN
IN;AFF
SETMAW

4

"data is written here

"l is written into main data
"because 2 is not gated into the
"output buffer until the end of
"the cycle after the output buff er
"is gated into the MDI register

"this writes data from the second IN
"because data is in the output buffer
"after SETMAW is loaded into the MDI
"register

"data from second IN is written into
"main data. This is similar to
"example 3 except the AFF was placed
"before SETMAW

21

Example 5 IN;RFF
IN

NOP
TR FF,DB

"at this point the FIFO is empty;
"therefore, the output buffer is
"overwritten in the next cycle
"first IN data available in the
"output buffer second IN data
"available in the output buffer

4. 2. 6 DMA TRANSFERS

All data transfers between the AP and the PIOP are direct memory access
(DMA) transfers. The direction o.f transfer is determined by either a
read (SETMAR) or write (SETMAW) instruction. Regardless of the
direction of data transfer, the output of the ALU is moved into the
PIOP's AP memory address register (APMA) which indicates the address
used for the data transfer. When transferring data, data is moved
between the AP and the FIFO memory in the transceiver portion of the
PIOP.

The SETMAR and SETMAW instructions each perform two basic operations.
The first operation sets up the main data memory address by loading the
output of the ALU into the APMA register. The second operation is the
DMA transfer of data.

The APMA register is loaded from the ALU each time a SETMAR or SETMAW
instruction is executed. Five cycles later, the 38-bit data word
appears in the FIFO input buffer (IB). At this point, the data is
available for gating on to the data bus or for transmission to the
external device. Therefore, it takes six cycles before the results of
a OMA read operation can be used. However, because a OMA request can
be made every other cycle, the effective rate can be as high as one
word every two cycles.

The six cycles that occur after a DMA read (SETMAR) instruction are:

0 • Sl!:TMAR
l • cycle request
2 • cycle acknowledge
3 • wait
4 • DCHOl
5 •FIFO
6 • data valid at the beginning of this cycle

Because the APMA is loaded from the ALU, it is necessary for the
programmer to know the output of the ALU. This is normally handled by
setting up the ALU with the proper value when using either a SEn1AR or
SETMAW instruction.

FPS 7350-01 4 22

As an example of how to set up the ALU with the proper value, assume
that it is desired to read data from location 12 in the AP's main data
memory. The following instruction could be used:

TVDB 12.; PASSD; SETMAR

The TVDB 12. instruction transmits the value in the VALUE field (which
is decimal 12 in this example) to the data bus. The PASSD instruction
moves the data on the data bus (D) to the ALU output bus. Therefore,
the value 12. becomes the ALU output when these two instructions are
executed. The SETMAR instruction then takes the ALU output (which is
now 12.) and loads it into the APMA. Because SETMAR reads data from
the address specified by the contents of the APMA, data is read from
main data memory location 12 when the SETMAR is executed.

Another method of setting up addresses for DMA transfers is to load the
starting address in one of the ALU's internal registers. Assume, for
example, that register 6 has been loaded with a starting address of
200. Sequential DMA transfers could be made by using the following
instructions:

PASSB 6; SETMAR
NOP "cannot execute two SETMAR's in a row
INCB 6; SETMAR
JMP .-1

The PASSB 6 instruction moves the contents of register 6 to the ALU
output bus. Thus, the APMA points to location 200 for the first DMA.
The INCB 6 instruction increments the contents of register 6 and the
JMP .-1 causes the program to go back to the first instruction.
Because register 6 has been incremented, the SETMAR instruction now
reads the contents of main data memory location 201. This process is
repeated and data is read from sequential memory locations.
Unfortunately, this results in a never-ending loop. Therefore, a more
realistic example is given in the next paragraph.

One method of performing DMA read or write transfers from or to
sequential memory locations is to set up three internal ALU registers
as follows:

register 1 • counter (number of words to be transferred)
register 2 • starting address (first memory location to be read or

loaded)
register 3 = increment value

For the sake of this example, assume that register 1 is loaded with 7,
register 2 with 200, and register 3 with 1.

FPS 7350-01 4 23

Once these registers have been set up, the following instructions can
be used to perform sequential DMA transfers:

ADD 3,2; SETMAR

DEC l

BNZ .-2

HALT

"Adds the increment value to the starting
"address and moves the resul·tant value into
"register 2. Because the result of an ADD is
"on the ALU output bus, the value now in
"register 2 is loaded into the APMA register.

"Because this instruction is set up as part
"of a loop, register 2 should actually be
"loaded with the starting address minus the
"increment value. Therefore, the first time
"the instruction is executed, it performs the
"DMA read at the correct starting address.

"Decrements the counter to indicate one word
"had been transferred.

"If the counter is not zero, branches back
"to the first instruction and repeats the
"sequence.

"If the counter is zero, indicating all 7 words
"were transferred, the program stops. The A:2 can
"test to see if the program is running or not.

Typically, the first instruction in the above example would have an OUT
following the SETMAR as shown below:

ADD 3,2; SETMAR; OUT

With the OUT instruction added, DMA transfer is first made by the
SETMAR and then data is transferred to the external device by the OUT
instruction. However, there are timing constraints that must be
followed because the data must be in the FIFO output buffer at the time
of the OUT instruction (refer to paragraph 4.2.5, Timing
Considerations).

FPS 7350-01 4 24

4.3 USING THE ALU

The arithmetic and logic unit (ALU) in the PIOP not only performs the
arithmetic and logical operations required by the PIOP, but also
contains 17 registers that can be accessed by the program.

Operations performed by the ALU may be specified in either the normal
format or in the expanded format as shown in Figure 4-9.

16 17 18 19

I' '1 AL~ r', NORMAL
FORMAT

I ' / '
I '

" ' / ' I ' / ' I ' , 16 17 18 19 20 21 22 23 24 25 26 27 '

I ~LUSR~ ~Luos! ~LUFC~ s~ I c I EXPANDED
FORMAT

ALU = ALU ALUFCN • ALU function
ALUSRC = ALU source SH= shift
ALUDST • ALU destination C = carry in

0066

Figure 4-9 ALU Instruction Formats

In the normal format, the four bits making up the ALU field can be used
to select l of 16 arithmetic or logical operations. In the expanded
format, the ALU field is expanded into 12 bits which make up the
ALUSRC, ALUDST, ALUFCN, SH, and C fields.

When using the normal format, fewer operations can be used than in the
expanded format but less instruction word bits are used. The bits that
are thus saved are used to make up the data bus source (SRC) and data
bus destination (DST) fields so that data bus transfer fields can be
implemented in the same cycle as the ALU operation.

When using the normal format, the 4-bit ALU field is used
the operation to be performed. The 16 instructions
selected by this ALU field are listed in Table 4-4.

FPS 7350-01 4 25

to specify
that can be

Table 4-4 ALU Instructions

Octal II Octal I 1 Code Mnemonic Meaning Code Mnemonic 1 Meaning i

a NOP no operation
lf

10 INCB increment register 8
l MOVD move aata 11 DEC8 decrement register B
2 ADDO add data ii 12 !NCO increment data bus
3 ANDO logical '1 and 11 ll !3 DECO decrement data bus
4 ORO logical "or" ii 14 ADD add reg. A to reg. B
5 XORO logical "xor"

ii
15 SUS subtract reg.A from reg. B

6 PASSO pass data 16 PAS SB pass register B
7 PASSA pass r"eg. A [17 PAS SQ pass register" Q

0067

A complete description of each of the above 16 instructions is given in
Chapter 2 of this manual which describes the PIOP instruction set.

When using the expanded ALU format, it is necessary for the programmer
to have a basic understanding of the ALU logic. A simplified block
diagram of the ALU is illustrated in Figure 4-10 and described in the
following paragraphs.

Each of the 16 addressable RAM registers shown on the drawing can be
selected by either the A or B address input which corresponds to the A
and B fields of the PIOP basic instruction word. The contents of the
selected register are gated to the ALU data source selector. This
selector, which functions as a multiplexer, receives inputs from: the
ALU registers, the Q register, the direct data in line (which comes
from the PIOP's data bus), and logic that inputs all O's to the
selector.

The information that is to be gated from the ALU data source selector
is determined by instructions in the ALUSRC (ALU source) field of the
expanded ALU format. Two outputs (R and S) are selected and applied to
the R and S inputs of the ALU itself. Both of these ALU inputs are
selected by a single instruction. For example, the ALUSRC field
instruction "AQ" indicates that the register A contents are applied to
the ALU R input and that the Q register contents are applied to the ALU
S input.

Once information is loaded into the ALU, the particular function
performed is determined by instructions in the ALUFCN (ALU function)
field. These instructions include arithmetic operations such as ADD
and SUB and logical operations such as AND and OR.

FPS 7350-01 4 26

The ALU output (which is labelled "F" for function) may be applied to
the output data selector, or back to the Q register, or back to the RAM
shift logic. The output data selector logic selects either the
function (F) from the ALU or the output of the A register as an output
(labelled ''Y"). The ALUDST field selects the app.ropriate function that
is to be applied to the Y output of the output data selector.

This Y output of the ALU logic can be selected as the source of the
data bus by using the ALU instruction in the DBSRC field of the basic
instruction word.

FPS 7350-01 4 27

CLOCK

DIRECT
DATA IN

CARRY IN

OUTPUT
ENABLE ---

~ICROINSTRUCTJON DECODE

RAMO RAM SHIFT RAM3

, B' DATA IN

'A' ADDRESS CP I

RAM I
16 ADDRESSABLE REGISTERS

'B' ADDRESS
'A'

DATA
OUT

R

'B'
DATA

OUT

ALU DATA SOURCE
SELECTOR

S-FUNCT!ON ALU

A F
OUTPUT DATA SELECTOR

y

DATA OUT

CP

L
iJ Qo

LJ 0-SH I FT

Q

Q REGISTER

Q

~~
CN+4
F3 (SIGN)
OVERFLOW
F=OOOO

Figure 4-10 ALU Logic - Block Diagram

FPS 7350-01 4 28

I
I

~ I
Ql

I I I
I I

I
I

I
I
I

I
I

I
I

I

0068

Subsequent descriptions of ALU programming use letter
represent the ALU registers, inputs, outputs, and the
letters, along with a brief description, are listed in

designations to
data bus. These
Table 4-5 below.

Table 4-5 ALU Designations

SYMBOL DESCRIPTION REMARKS

A Register A • one of 16 internal registers. The
specific register to be useo is speci.fied by a
4-bit binary numoer in the A field.

B Register B address • one of 16 internal regis-
Source or desti· ters. The specific register to be used is speci·

fied by a 4-bit binary number in the B field. nation address
for ALU operands

HOTE or results

The same 16 registers are used by

l
both A and s fields. For

I
J

example, the A field may specify
register #2 while the B field
may specify register #14.

0

I
Data Bus • the bi-directional bus connecting

I or the transceiver to the other PIOP circuits. .
OB The mnemonic DB is also used for data bus.

Q I Register Q • an internal work register. .
-- I

I
R

I
ALU Input Register R • one of two inputs to
the ALU. Designates the left-hand input in a I double-operand statement. These are outputs

of the ALU operand

s ALU Input Register S • One of two inputs to multiplexer
the ALU. Designates the right-hand input in a
double-operand statement.

y ALU Output Bus Y - indicates the output bus of
the ALU. More specifically, the output of the .
ALU Bus Select Logic.

z Represents binary O's. For example, the
expression Z > R indicates that all zeros -
are loaded into the ALU R input register.

F Results of the ALU function which are applied .
to the ALU destination.

0069

A description of the instructions that are used when the expanded ALU
format has been selected is given in the following paragraphs. These
paragraphs cover the ALU source (inputs to the ALU), destination
(information used as ALU output), and function (selected operation of
the ALU).

FPS 7350-01 4 29

4.3.l ALU SOUR.CE (INPUTS)

The ALUSRC (ALU source) field contains a double-operand instruction
that specifies which two inputs are to be applied to the ALU. The five
possible inputs are:

A = register A
B = register B
D = data bus
Z = binary O's
Q .. register Q

The first letter in the 2-letter statement (double-operand statement)
represents the R input to the ALU while the second letter represents
the S input to the ALU. For example:

ZQ .. binary O's applied to R input;
contents of Q register applied to S input

It is important to remember that not all possible 2-letter combinations
are valid. For instance, the combination "AZ" is not a valid
instruction although the combination "ZA" is a valid instruction.

The permissible operand combinations are:

AQ
AB
ZQ
ZB
ZA
DA
DQ
DZ

A complete description of each of the above combinations is given in
the instruction set explanation (refer to Chapter 2).

4.J.2 ALU DESTINATION (OUTPUT)

The ALUDST (ALU destination) field contains one of eight instructions
that specifies where the output of the ALU is to be set. The ALU
output is labelled "F" (for ALU function).

FPS 7350-01 4 30

The eight instructions that can be selected in the ALUDST field are as
follows:

Q = F-7Q, F-7Y
NP = F~Y

A = F-7B, A-7Y
F = F~B, F--7Y

RQ =Right shift Q and F, depending on SH (shift)
field with F~Y. For example:

F/2-7B, Q/2~Q, F~Y
RF =Right shift F, depending on SH (shift) field

with B~Y. For example:
F/2~B, F~Y

LQ = Left shift F and Q, depending on SH (shift)
field with B--7Y. For example:

2F~B, 2Q~Q, F"'Y
LF = Left shift F, depending on SH (shift) field

with F~Y. For example:
2F~B, F~Y

Note that the selected
the following: the
output bus), or the B
selected by the REG B

destination for the above instructions is one of
Q register (internal work register), Y (the ALU
register (one of 16 internal ALU registers

field in the instructio~ word).

4.3.3 ALU FUNCTION

The ALUFCN (ALU function) field contains one of eight instructions that
specifies which arithmetic or logical operation the ALU is to perform.
The result of the selected function is labelled "F." Thus, when a
particular operation is selected, the result of that operation
(function) is sent to the destination specified by the ALUDST field.

The eight functions that can be selected by the ALUFCN field are listed
below. Note that "R" and "S" indicate the two inputs to the ALU and
"C" indicates the carry bit as specified by the C (carry) field.

add
subtract
subtract, reverse
logical "or"
logical "and"
logical "nand"
exclusive "or"
exclusive "nor"

F==R+S+C
F = R - S - NOT C
F = S - R - NOT C
F = R "or" S
F = R "and" S
F = NOT R "and" S
F = R "xor" S
F = NOT R "xor" S

A complete description of each of the above instructions, including
appropriate octal codes, is given in the instruction set explanation
(refer to Chapter 2).

FPS 7350-01 4 31

4.3.4 USING ALU INSTRUCTIONS

One of the advantages of the expanded format is that a number of
different ALU operations can be executed in a single cycle. For
example, the ALU source, destination, and function can all be selected
by the expanded format and then executed in a single instruction word
cycle.

The available ALU instructions are summarized in Table 4-6.

Table 4-6 Summary of ALU Instructions

FIELDS IN EXPANDED FORMAT
OCTAL
CODE ALUSRC ALU OST ALUFCN SHIFT CARRY

0 AQ Q AD - -
I l AB NP SB N I

2 ZQ A SR R - I 3 za F OR A - I
4 ZA RQ AN - -

I 5 DA RF NA - -
6 DQ LQ XO - - I
7 DZ LF XN - - I

I

0070

When using this expanded format, the function field (ALUFCN) represents
the basic op code and the shift and increment fields (SHIFT and C) are
condidered extensions of this code.

Either two, three, or four arguments may be used with the basic op
code. If two arguments are used, they are always source (ALUSRC) and
destination (ALUDST). If three arguments are used, then the third
argument is either register A or register B (REG A or REG B). If four
arguments are used, then the third argument is always register A (REG
A) and the fourth argument is always register B (REG B).

The function, extensions, and arguments must always be expressed in the
following order:

function-increment-shift source,destination,register A,register B

In other words, the instruction fields must be defined in this order:

ALUFCN-SRIFT-C ALUSRC, ALUDST, REG A, REG B

When defining REG A and REG B, they
number from 0 to 15 in order
register that is used.

FPS 7350-01 4

should always be reduced to a
to specify the particular internal

32

The following is an example of a combined ALU instruction with four
arguments:

function "'-
/AD/AB,F\,3~ ~ister B

register A
source

destination

The above instruction indicates that:

AD = an addition is to be performed

AB • the two sources for the ALU (the values to be added) are
the contents of register A and the contents of register B

F a the destination of the result is the ALU output bus and
register B (in other words: A + B~B)

3 • register A is ALU internal register number 3

4 • register B is ALU internal register number 4

Note that no extensions (shift or increment) were used in the above
example.

Some other examples of ALU combined instructions are:

AD ZQ,NP

AD ZB,LQ 5

ADN AB,RF, 7

ADI AB,F,8,9

ADIR DQ,Q

OR ZA,F,2,3

FPS 7350-01

basic op code plus two arguments (source and
destination); no extensions

three arguments (source, destination, register);
the register number (5) can be specified in either
the REG A or REG B field

basic op code with one extension (N); extension
indicates to shift in all l's

basic op code with one extension (increment) and
four arguments (source, destination, register A,
register B)

basic op code with two extensions (I and R); I
indicates an increment and R indicates a rotate

move register 2 to register 3

4 33

4.4 USING PROGRAM SOURCE MEMORY

The program source memory in the PIOP is a writable control store that
holds the program instructions that are to be executed. A program
counter, referred to as the "program source address," determines which
instruction is to be executed next. The contents of this program
counter can be changed by the branch, jump, and subroutine instructions
in the PSA CONTROL field of the PIOP instruction word.

Figure 4-11 is a simplified block diagram of the logic that controls
the program source memory. When an instruction word is decoded, the
instruction register (which performs the decoding) sends the
appropriate signals to the next address control logic. Based on these
signals, this logic then performs one of two operations: increments
the current address to point to the next sequential instruction, or
computes a completely new address for the next instruction if required
because some type of jump or branch instruction has been decoded.

FPS 7350-01

TO
DATA

BUS

PROGRAM
SOURCE
MEMORY

256 x 38

.._

CONTROL
BUFFER

PSAQ

Figure 4-11

l
J

~IEXT

~DORE SS
CONTROL

I 8
{PSA)

J

INTERRUPT
LOGIC

0071

Program Source Address Logic

4 34

After the appropriate address has been generated by the next address
control logic, the address is applied to both the program source memory
and the PSAQ register. Once the program source memory has been
addressed, then the selected instruction word is applied to the control
buffer for decoding.

Notice that the output of the PSAQ register is fed back to the next
address control logic. This line is used only when stepping through
sequential memory locations. The current address is fed back to the
address control logic, incremented, and then used for the next address.

If a computed jump or branch address is required, or if an interrupt
occurs, then the address control logic uses different input data to
compute the next address.

It is necessary to remember the difference between the terms "PSA" and
"PSAQ." The term PSAQ is used for the address of the currently
executing instruction while PSA is used for the address of the ~
instruction.

NOTE

The term "PSA" refers to a condition while the
term "PSAQ" refers to a register that can be
loaded and read. Unless otherwise specified,
both this manual and the assembler use ~
terms to indicate the register (PSAQ).

Figure 4-12 is a block diagram of the next address control logic.
logic contains the address register (AR) which is normally loaded
the PSAQ. However, this register can also be loaded from the data
by using the AR instruction in the DST field.

This
from
bus

The figure also shows the 4 x 4 subroutine stack and related stack
pointer which are used with the JSR, RTN, PUSH, and POP instructions in
the PSA CONTROL field of the instruction word.

FPS 7350-01 4 35

REGISTER
ErlABl.E

Rr

DIRECT
INPUTS

D

So

r----------,
I

I

'---------i-4-~

AR REGISTER

4

D AR

MULTIPLEXER

S1

,------- Xo X1 X2
I

I OR3
I ORz

OR1
ORo ' ·-------

4

~PC

X3

P1JSH/POP STACK ENABLE

INC REMENTER

I

srncK POINTER

4 x 4 STACK

MICROPROGRAM
COUNTER REGISTER

CLOCK

0072

Figure 4-12 Next Address Control Logic

FPS 7350•01 4 36

The multiplexer shown in Figure 4-12 selects one of four inputs as the
output to be applied to the program source memory. The D input (direct
inputs) is the displacement value required for jump and branch
instructions. The displacement is selected by either the DISPS or
DISP8 fields. The AR input represents the contents of the address
register (which contains the current address). The F input is the word
from the top of the stack. The uPC (microprogram) input represents the
incremented address necessary when addressing sequential memory
locations.

The output of the multiplexer is applied to output control elements for
gating to the program source memory and to the PSAQ register. If
sequential addressing is being used, then the output is also fed to the
incrementer.

Subsequent paragraphs cover the special instructions that use program
source memory and the branch and jump instructions.

4.4.1 INSTRUCTIONS THAT USE PROGRAM SOURCE MEMORY

There are two instructions in the SPEC (special) field that can use the
program source (PS) memory. The input/output register (IOR) is the
only element that can be used as a source or destination for these PS
operations. The two instructions are: TR PS,IOR and TR IOR, PS. Both
of these are 2-cycle instructions. These cycles are shown in Figure
4-13.

FPS 7350-01

INSTRUCT! ON ~ INSTRUCTION 1 INSTRUCTION 2

~ CYCLE 1 CYCLE 2 ~

EXECUTE l) SP IN EXECUTE 1st EXECUTE 2nd

FETCH
TR !OR, PS

INSTRUCTION INSTRUCTION
(REST OF IT)

OR FETCH/STORE FETCH 2nd FETCH 3rd
TR PS, !OR DATA t INSTRUCTION INSTRUCTION

INSTRUCTION REQUESTING PS DATA FETCHED IN CYCLE 0 ·

PS DATA NOT AVAILABLE UNTIL lNSTRUCT!ON 2

Figure 4-13
0073

TR PS,IOR Instruction Cycles

4 37

As shown in the figure, the TR PS,IOR (or TR IOR,PS) portion of the
instruction is executed during the first cycle. The rest of the
instruction is executed in the second cycle. There is no data on the
data bus during the second cycle. The !OR can be gated to the data bus
in the ~ instruction for use in that instruction.

The address of the operation is forced by the PSA CONTROL field. For
example:

TR IOR,PS; JMPA 15.

The above instruction uses program source (PS) location 15. to store
the contents of the IOR. Note that the program counter is always
incremented during a PS fetch/store instruction.

As an example of how to use the TR IOR,PS instruction correctly, assume
that it is desired to store the sum of ALU registers 0 and 1 in program
source memory location 255 and then return. This could be done by
using the following program:

ADD O, l; TR ALU, IOR

TR IOR,PS; JMPA 255

RTN

"Add the contents of registers 0
"and 1; move the result to the
"I/O register

"Transfer the contents of the I/O
"register to program source memory
"location 255

"Return from subroutine

The above program takes four PIOP cycles for execution. The four
required cycles are shown in Figure 4-14.

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

I

FETCH 2nd STORE !OR I FETCH 3rd FETCH 4th
INSTRUCTION !N PS 255 1 INSTRUCTION INSTRUCTION

I
I
I
I

EXECUTE 1st SPIN I NOP EXECUTE 3rd
INSTRUCTION INSTRUCTION

0074

Figure 4-14 Program Cycles

FPS 7350-01 4 38

As shown in Figure 4-14, the first instruction (ADD 0,1; TR ALU,IOR)
is executed during cycle 1. The second instruction (TR IOR,PS; JMPA
255) is fetched during this cycle. During the second cycle, the
contents of the IOR are stored in PS location 255. The third
instruction (RTN) is not fetched until the third cycle
executed until the fourth cycle.

and is not

As an example of how to use the TR PS,IOR instruction correctly, assume
that it is desired to read data from the program source memory at the
absolute address contained in the address register (AR) and then store
this data in ALU register Q. This could be done by using the following
program:

TR PS,IOR; JMPAR

TR IOR,DB; MOVD O; RTN

"Transfer the contents of the program
"source memory location specified by
"the address register to the I/O
"register

"Transfer the contents of the I/O
"register to the data bus; move data
"on data bus to ALU register O;
"return from subroutine

The above program is executed in three cycles. During the first cycle,
the first instruction is fetched. During the second cycle, the first
instruction is executed and the second instruction is fetched. During
the third cycle, the second instruction is executed.

The following is an example of incorrect usage of the program source
instruction!

TR PS, IOR; MOVD 0
RTN

In the above example, the first instruction indicates that data from
program source memory is to be transferred to the I/O register and that
data on the data bus is to be moved into ALU register o.

There are two problems with the above program. First of all, the
desired data ends up in the IOR in the first cycle and the MOVD 0
instruction executes in the second cycle. Therefore, moving data from
the data bus into register 0 causes invalid data to be moved into the
register because the IOR is not gated on to the data bus automatically.

The second problem is that no address was forced by the PSA CONTROL
field; therefore, the data accessed is the RTN instruction.

FPS 7350-01 4 39

4.4.2 BRANCH AND JUMP INSTRUCTIONS

The PSA CONTROL field in the PIOP instruction word can be used to
select l of 15 instructions. There are four unconditional jump
instructions, seven conditional branch instructions (plus 16 extended
versions), and four instructions that manipulate the subroutine return
stack. Jumps may be made to relative or absolute addresses while all
conditional branches are made to relative addresses.

The subroutine return stack provides · return address linkage when
executing subroutines. These two instructions are JSR (jump to
subroutine) and RTN (return from subroutine). Because the stack is a
4-word stack, up to four subroutines can be nested. The programmer
should always end every subroutine with a RTN instruction.

Two other instructions, PUSH and POP, are also used with
return stack. These instructions, as well as the
instructions, are briefly described in Table 4-7 below.

Table 4-7

INSTRUCTION

JSR

RTN

PUSH

POP

Stack-Related Instructions

DESCRIPTION

Branches to the location specified by the
contents of the DISP8 field (relative to
the current location). The current
PSA + l is pushed on to the stack.

Branches to the address at the top of
of the stack and advances the painter.

Forces the address of the next sequential
instruction on to the stack.

Advances the stack pointer, thereby
discarding the value at the top of the
stack.

0075

the subroutine
JSR and RTN

When using branch instructions, the instruction first tests some
condition and then branches according to the results of the test. The
BIT # field selects the number of condition to be tested while the
instruction itself determines the type of condition. For example, the
BFS instruction (branch if flag set) tests a flag. The flag number is
specified by the value in the BIT # field. The possible items that can
be specified by the BIT # field are listed in Table 4-8.

FPS 7350-01 4 40

Table 4-8 BIT ii FIELD

BIT ,; FIELD

r FLAG !I

OS ii

STATUS

DESCR !PT ION

Specifies the number of the flag to be
tested. Any one of eight flags (0 - 7)
can be selected.

Specifies the external device status line
to be tested. Any one of eight lines can
be selected.

Specifies the internal status bit to be
tested. Any one of the following eight
bits can be selected.

0 •FIFO data valid
l = FIFO full
2 = R-shift out
3 = Q-shift out
4 = ALU carry
5 = ALU zero
6 • ALU sign
7 • ALU overflow

0076

A list of all standard branch instructions, along with a
description of each instruction, is given in Table 4-9.
extended instructions are presented in Table 4-10.

FPS 7350-01 4 41

brief
The 16

Table 4-9 Branch Instructions

TYPE INSTRUCTION MEANING I DESCRIPTION

I I

JUMP JMP relative jump Causes an unconditional jump to a relative location. ! Jumps can be made in either direction and can be up
to 256 locations from the current location. The i
effective address is the sum of the 8-bit OISP8 field I and the current address.

JMPA absolute jump I Causes an unconditional jump to an absolute address. I
I This address is the contents of the DISP8 field. ;

;

JMPAR absolute jump Causes an unconditional jump to an absolute address.
I This address is the contents of the address register (AR).

JMPST jump to stack Causes an unconditional jump to the top of the stack.
J

I
BRANCH BOSC l branch if device I I

status is clear I

I

I
' All branch instructions cause conditional I BOSS branch if device jumps to a relative location. This location I

I status is set is the sum of the contents of the S·bit I

I
biased DISPS field and the current address. I BFC branch if flag

is clear The maximum number of locations that can be I I used are 16 locations forward (+16) or 17
I locations backwared (-17) from the current

I BFS br~nch if flag I address.
is set ! When testing a register bit for a branch !

BISC branch if AlU condition, the bit is specified in the !
status is clear BIT f field of the P!OP instruction word.

i
I

I

BISS branch if ALU I
' i status is set J

l BNZST branch if ALU Conditional branch to the top of the stack. In :
is not zero effect, this is a conditional JMPST instruction. J

r SUB- T
I

JSR jump to The current program counter (PSA) is pushed on to the I
ROUTINE I subroutine stack and the jump is then made to a relative location I which is the sum of the O!SP8 field and the current

address.

l
RTN return from The stack is popped (the former program counter is

subroutine retrieved) and the program jumps to the address
specified by the contents of the word just popped.
In effect, this is a POP and JMPST instruction. -

STACK PUSH push the stack No jump. The program counter
the top of the stack.

(PSA) +l is pushed onto j
POP pop the stack No jump. Retrieves the contents from the top of the stack. I

J
0077

FPS 7350-01 4 42

Table 4-10 Extended Branch Instructions

r
BASIC
BRANCH 'IARIATION DESCRIPTION

BISS variations BFV DISP Branch if FIFO data va 1 id
BFF DISP Branch if FIFO full
BFOT DrsP I Branch if R-shift output = 1
BOOT D!SP Branch if Q-shift output = 1

BC D!SP Branch if carry set
BZ DISP Branch if ALU=O
BM DISP Branch if ALU is minus
BOVF DISP Branch if overflow • 1

BISC variations BNFV DISP Branch if FIFO data !!.Ql valid
BNFF DISP Branch if FIFO !:!Q.1 full
BNFOT DISP Branch if R-shift output = 0
SNQOT DISP Branch if Q-shift output = 0
BNC DISP Branch if ALU carry out is 0
BNZ DISP Branch if ALU is not 0
BP DISP Branch if ALU is positive
BNOVF DISP Branch if ALU overflow = O

0078

FPS 7350-01 4 43

4.5 INTERRUPT HANDLING

The PIOP contains four interrupt lines that are connected to the
external device (INTO* through INT3*). Interrupt receivers are "armed"
by the control register (CR) to activate that particular input line.

In general, interrupt lines are enabled or disabled depending on
whether or not the programmer wants to be int.errupted at that
particular time. Armed interrupts are queued if the interrupt is
disabled. Interrupts are activated by a high-to-low transition on the
associated interrupt line.

The four interrupt lines (INTO* through INT3*) trap
memory locations 0 through 3, respectively. These
the interrupts are armed and enabled. Interrupt
priority interrupt and interrupt 3 is the lowest
Only interrupt 0 can interrupt spins.

to program source
traps occur only if
0 is the highest
priority interrupt.

Interrupts are armed/disabled by setting/clearing bits 20 th,.rough 23 in
the control register. Interrupts are enabled/disabled under program
control. There are three instructions related to interrupt handling.
These instructions are:

SINT
EN INT
DIS INT

set interrupt as specified by BIT # field (test purposes)
enable the interrupts
disable the interrupts

The AP instruction SNSA with device address (DA) 102 causes interrupt
3.

When an interrupt is received, the instruction at the appropriate
interrupt address is fetched and executed and then normal program
execution continues from the point where it was interrupted. If a
multiple instruction service routine (interrupt handling subroutine) is
required, a JSR instruction in the interrupt location saves the correct
return address in the subroutine return stack. The return address that
was saved is the location after the last instruction executed before
the interrupt. Note that the saved address is !12£. the location after
the interrupt instruction.

FPS 7350-01 4 44

The interrupt timing shown in Figure 4-15 below assumes that interrupts
have been armed and disabled.

INTil0*

In summary:

167 ns

--------CYCLE l

I
I CYCLE 2 I CYCLE 3 I

1~1~1

I LEXECUTE INTERRUPT

t
INSTRUCTION

INTERRUPT
SYrlCHRONIZEO

Figure 4-15

.___ __ FETCH INTERRUPT INSTRUCTION;
INHIBIT PSA CLOCKS

0079

Interrupt Timing

a. Individual interrupts are armed by bits 20 through 23
the PIOP control register {CR). Interrupts occurring while
disarmed are lost.

b. Interrupts are enabled by the ENINT instruction. The
interrupts remain enabled until disabled (DISINT instruction).
Interrupts occurring while disabled are executed normally
when enabled, provided they have been armed previously.

c. The interrupt return address is saved by executing a
JSR instruction in the interrupt location. This JSR saves
the location which would have been executed next had there
been no interrupt.

FPS 7350-01 4 45

4.6 COMMUNICATING WITH THE AP

When the AP communicates with the PIOP, the AP first loads a value into
its device register (DA). This value represents the address of the
external device that is to communicate with the AP. Table 4-11 below
lists the device addresses used to communicate with the PIOP, the
instructions that can be used with these addresses, and the function of
the instructions.

Table 4-11 AP Device Instructions

ADDRESS IN AP I DEVICE ADDRESS (DA) AP
REGISTER INSTRUCTION FUNCTION

I 100 (!OR) IN gates !OR to IOBUS
OUT gates !OR from IOBUS
SNSA deposits !OR into PIOP control buffer
SNSB executes instruction in control

I
buffer. Instruction remains in

I
control buffer. PSA increments

101 SNSA O - PIOP running I l - PIOP not running

I
SNSB resets P!QP
OUT sets interrupt 3 (AP interrupt of

I
PIOP - lowest priority interrupt)

m
BUSY gated to IOOROY
in both cases· above

110 (FLAG 7)
I - -
I lll (Fl.AG 6) SNSA reads specified flag

ll2 (FLAG 5) SNSB clears specified flag
113 (Fl.AG 4) OUT

I
sets specified flag

114 (FLAG 3) - -
US (FLAG 2) - -
116 (Fl.AG l) - -
ll7 (FLAG Bl - -

0080

Two examples of programs that communicate between the AP and the P!OP
are presented in the following paragraphs.

FPS 7350-01 4 46

Example 1

In this example, it is assumed that main data memory location 10
contains the following instruction: PASSB O; TR ALU,IOR.

LDDA; DB•lOO
LDMA; DB=lO
NOP
NOP
OUT; DB=MD
SNSA
SNSB
IN; DPX<DB; DB=INBS

"Load DA to access IOR
"Get instruction
"Wait
"Wait
"Load PIOP IOR
"Deposit instruction
"Execute instruction
"Read IOR which contains ALU register 0

If a START instruction is executed, execution begins at PSA. The
following instruction sequence is illegal:

FPS 7350-01

SETMA or INCMA or DECMA or LDMA
SNSB (in the next instruction)

4 47

Example 2

"EXAMPLE: CALL PPLOAD(l00,0,50)

"
II

II

II

STORES INTO PIOP PROGRAM SOURCE MEMORY LOCATIONS
0,1, ••••• ,48,49 THE CONTENTS OF AP MAIN DATA
LOCATIONS 100,101, ••• ,148,149.

"ENTER WITH FOLLOWING S-PAD PARAMETERS:
II NAME NUMB ER

APA $EQU 0
PPA $EQU 1
N $EQU 2

"BASE ADDRESS IN AP120B MAIN DATA MEMORY
"BASE ADDRESS IN PIOP PROGRAM SOURCE MEMORY
"WORD COUNT

"LOCAL VARIABLE:
TMPl $EQU 0 "TEMPORARY

"
PPLOAD: JSR PPWAIT "BE SURE PIOP NOT RUNNING

MOV APA,APA;SETMA "GET FIRST MD WORD
LDSPI TMPl;DB=377 11 8 BIT MASK
DEC PPA; "BACK UP ADDR BECAUSE OF PIOP H/W

DPX<O "CLEAR DPX(O)
AND TMPl,PPA "MASK ADRESS TO 8 BITS
LDSPI TMPl;DB•l400 "CODE FOR 'JMPA' COMMAND

OR TMPl,PPA;DPX<DB;DB•SPFN;WRTMAN "FOR..\! 'JMPA PPA' COMMAND
LDSPNL TMPl;RPSA;BR .+2 "GET PSA OF THIS INSTRUCTION

"BRANCH AROUND NEXT INSTRUCTION
$VAL 0,0,16,40000 "THIS IS A PIOP 'TR IOR,PS' INSTRUCTION
INC TMPl;SETTMA "SETUP TMA TO OUTPUT INSTRUCTION LATER
RDA;LDSPNL TMPl "SAVE DA
LDDA;DB•lOO "DA TO PIOP I/O REGISTER
OUT ;DB-DPX "SET IOR TO 'JMPA PPA' COMMAND
SNSA "DEPOSIT COMMAND INTO PIOP CTL BUF
SNSB "EXECUTE 'JMPA PPA' COMMAND
RPSFT;OUT "SET IOR TO 'TR IOR,PS' COMMAND
SNSA "DEPOSI! COMMAND INTO PIOP CTL BUF
INCMA "GET SECOND MD WORD
OUT ;DB=MD "FIRST PIOP WORD TO IOR

LOOP: INCMA; "l. GET NEXT MD WORD
SNSB ; " EXECUTE ''IR IOR, PS '

" P!OP ADDR INCREMENTS ALSO
DEC N " DECREMENT COUNT

OUT; DB=MD; "2. SET !OR TO MD WORD
BGT LOOP " LOOP UNTIL DONE

RETURN;LDDA;DB•SPFN;MOV TMPl,TMPl ''RESTORE DA AND EXIT
$END

FPS 7350--01 4 - 48

CHAPTER 5

ASSEMBLER

5.1 INTRODUCTION

This.chapter describes how to use the P!OP assembler for writing
programs and is divided into three major parts:

basics

writing
programs

using the
assembler

FPS 7350-01

describes the instruction format,
constants, symbols, expressions,
pseudo ops, and op codes

describes comments, concatenation,
labels, and errors

describes the assembler loading
procedure and also includes sample files

5 1

5.2 I!!! BASICS

The PIOP assembler is referred to as PPAL (PIOP Program Assembly
Language). This assembler is written, in Fortran IV and provides a
powerful tool for developing programs for the · PIOP. By using this
assembler, instructions having many components can be easily encoded.

As an example, . the following
instructions:

instruction has seven

SETMAR;DISINT;XORD O, l;TR FF,DB;WORD l;JMPST;SINDS 6

The above instruction expresses the following:

a. read from main data memory

b. disable all interrupts

c. "exclusive-or" register a with data on the
data bus and store result in register 1

d. transfer the contents of the FIFO internal
buffer (IFFB) to the data bus

e. format the FIFO transfer as a WORD 1 type

f. jump to the location given by the top of
the LIFO stack if the ALU output is not zero

g. spin until device status bit is 6, then
do an IN transfer

component

The remainder of this paragraph is devoted to a discussion of PPAL
assembler basics and covers such items as: instruction format,
constants, symbols, expressions, pseudo ops, and op codes.

FPS 7350-01 5 2

Instruction Format

An instruction consists of an op code and 0-4 operands. The
op code is separated from the operands by one or more spaces;
the operands are separated from each other by commas. There
are no column restrictions.

Example: ADD 1, 2

Constants

A constant is a decimal, octal, or hex integer. A number is
octal by default (as in AP code), unless immediately followed
by a point (.) to indicate decimal, or immediately preceded
by an X and a zero (XO) to indicate hex. Note that this
places a restriction on symbols and labels, i.e. they may
not begin with "XO".

Example:

Symbols

400
400.
X0400

(=256)
(=400)
(•1024)

Symbols may contain up to 6 alpha-numeric characters, beginning
with a letter. Symbols represent 16-bit integers.

Example: ADD REG1,REG2

Expressions

Expressions consist of constants and/or symbols separated by
the operators plus (+) and/or minus (-). They are
evaluated left to right, and may begin with a minus. No
parentheses are allowed. A period in the place of a constant
or symbol indicates the current location counter.
Expressions may be used wherever a constant may be used.

Example:

FPS 7350-01

-400.+cHECK+IT-X020
.+2

5 3

PSEUDO OPS

$END

This must be at the end of each program.

$EQU

This equates a symbol to a 16-bit integer. The symbol
precedes $EQU by one or more spaces; an expression
follows $EQU by one or more spaces. Any symbol used
in THIS expression must have been previously defined.

Example:

$LOC

REG2 $EQU 2
HERE $EQU •
BIAS $EQU 20.
EXP $EQU 12+BIAS

This changes the current location counter to the value
of the expression following $LOC. The value should not
exceed 255. A label may precede $LOC (WITHOUT a colon).

Example:

$VAL

HERE $LOC 15
THERE $LOC HERE+lO
$LOC .+l

This uses one word of the PIOP program source memory,
filling it directly with values provided by the programmer.
A label may precede $VAL (again, no colon with pseudo ops),
and it must be followed by 3 consecutive expressions,
separated by commas. The 3 expressions represent the 3
pieces of the 38-bit PS word: the top 10 bits, the
middle 12 bits, and the bottom 16 bits.

Example:

$SUB

$VAL O,LABEL-1,12.+XOlO
LA.BEL $VAL .+1,7777,-1

This establishes the name of the Fortran subroutine
output (see the section on output). It is not required
when the Fortran output is not desired, and will be
ignored if present. This pseudo-op can be put anywhere
in the program prior to the $END statement.

Example: $SUB TEST

FPS 7350-01 s 4

OP CODES

Branch· Field

0 (nop)
1 JMPAR
2 JMPST
3 JMPA
4 POP
5 PUSH
6 RTN
7 JSR
8 BDSC
9 BOSS
10 BFC
11 BFS
12 BISC
13 BISS
14 BNZST
15 JMP

abs. loc.

8-bit disp.
bit #,5-bit disp.
bit #,5-bit disp.
bit #,5-bit disp.
bit #,5-bit disp.
bit #,5-bit disp.
bit #,5-bit disp.

8-bit disp.

Extended Branch Mnemonics

(see extended branch mnemonics)
(II II II II)

Instruction Represents

BFV 5-bit disp. BISS 0,5-bit disp. Branch if FIFO data valid
BFF 5-bit disp. BISS 1, 5-bit disp. Branch if FIFO· full
BFOT 5-bit disp. BISS 2,5-bit disp. Branch if R-shift output = 1

.!.

BQOT 5-bit disp. BISS 3, 5-bit disp. Branch if Q-shift output = 1
BC 5-bit disp. BISS 4,5-bit disp. Branch if carry set
BZ 5-bit disp. BISS 5,5-bit disp. Branch if ALU = 0
BM 5-bit disp. BISS 6, 5-bit disp. Branch if ALU is minus
BOVF 5-bit disp. BISS 7, 5-bit disp. Branch if overflow = 1

BNFV 5-bit disp. BISC O, 5-bit disp. Branch if FIFO data not valid
BNFF 5-bit disp. BISC 1, 5-bit disp. Branch if FIFO not full
BNFOT 5-bit disp. BISC 2,5-bit disp. Branch if R-shift output = 0
BNQOT 5-bit disp. BISC 3,5-bit disp. Branch if Q-shift output = a
BNC 5-bit disp. BISC 4,5-bit disp. Branch if ALU carry out is a
BNZ 5-bit disp. BISC 5, 5-bit disp. Branch if ALU is not zero
BP 5-bit disp. BISC 6, 5-bit disp. Branch if ALU is positive
BNOVF 5-bit disp. BISC 7, 5-bit disp. Branch if ALU overflow = O

FPS 7350-01 5 - 5

Branch op codes have 0-2 arguments. For branches with
one argument, the argument is either an 8-bit absolute
location or an 8-bit relative displacement, depending on
the op code. For branches with 2 arguments, the first
is an expression of value 0-7, representing a bit #
or flag# (same field), and the second is a S~bit
relative displacement biased by 20 (octal).

Example: RTN
POP
JSR SUBR
JMPA 10
BFS 3,CHOICE
BISS S, LABEL
BZ LABEL (same as preceding instruction)

Control Field

0 (nop)
1 CF
2 RFF
3 AFF
4 SF
S SINT
6 ENINT

expression

expression
expression
expression

7 DISINT expression
8
9 START
10 HALT
11 PSAB
12 TVCR expression
13 TVDB expression
14 TVER expression
15 (set by use of expanded ALU ops)

For the op codes with one argument, the argument should be
an expression reducing to either 0-7 (using the bit # field)
or to a 20-bit positive number (using the value field).

Example:

FPS 7350-01

START
SF 3
TVDB 40000.
FLAGl $EQU 1
CF FLAGl

5 6

Data Bus Transfer

source dest

0 ALU DB
1 (disp) ER
2 FF FF
3 IOR IOR
4 PSA AR
5 TM TI1
6 CR CR
7 * TMA

* indicates use

spec

0 PS, IOR
1 IOR,PS
2 APMA,DB
3 DVCHD,DB
4 APMA, IOR
5 DVCMD, IOR
6 ER, IOR
7 TMA,IOR

of the SPEC field

These instructions all have the format TR argl,arg2
Any single source can be combined with any single destination:
TR src,dest The operand pairs must be in the given order.
The 8-bit displacement field is used for TR expression,dest

Example:

FPS 7350-01

TR ALU,ER
TR TM,TI1
TR 12, 1'M.A
TR APMA,DB
TR ER, IOR
SYM $EQU XOl 4
TR SYM+S.,DB

5 7

I/O Fields

I/O

0 (nop)
l OUT
2 IN
3 IORST -

SDSC

0 (nop)
l SDSC bit Ii

SDSS

0 (nop)
l SDSS bit IF

SDAV

0 (nop)
l SDAV -

For the op codes requiring an argument, it should be an
expression reducing to 0-7 (using the bit #field).

Example:

Word Field

IN
IORST
SDSS 5
BIT $EQU 3
SDSC BIT+l
SDAV

0 WORD expression
l WORD expression
2 WORD expression
3 WORD expression

These take the form: WORD arg
where "arg" is an expression reducing to 0-3.

Example:

Addr Bus Field

0 (nop)
l SETMAR -
2 SETMAW -
3 SETDA -

WORD 2
ONE $EQU l
HERE $LOC 2
WORD ONE-. +3

There are no arguments.

Example: SETMAR

FPS 7350-01 5 8

Alu Macro Field

0 (nap)
1 MOVD B
2 ADDD A,B
3 ANDO A,B
4 ORD A,B
5 XORD A,B
6 PAS SD
7 PAS SA A,B
8 INCB B
9 DECB B
10 INCD
11 DECD
12 ADD A,B
13 SUB A,B
14 PASSB B
15 PASSQ

For those with one argument, the argument should be
an expression reducing to 0-15. For those with 2
arguments, both should be expressions reducing to
0-15, and A always precedes B.

Example:

FPS 7350-01

INCD
REGl $EQU 7
REG2 $EQU 5
INCB REG2
ADD REG1,REG2

5 9

Extended ALU Field

func inc shift src dest

0 AD ** * AQ Q
l SB I N AB NP
2 SR R ZQ A
3 OR A ZB F
4 AN ZA RQ
5 NA DA RF
6 XO DQ LQ
7 XN DZ LF

* default shift zeroes
** default no increment

The basic op codes may have one or 2 extensions
(increment and shift, in that order if both are
desired), and have 2-4 arguments. The first
argument is src , the second is dest. These
determine the necessity for 0-2 more arguments.
The third argument, if there are only 3, represents
A or B. If there are 4 arguments, they are expressed
in the following order:

func-inc-shift src,dest,A,B
Both A and B should be expressions reducing to 0-15.

Example:

FPS 7350-01

AD ZQ,NP
AD ZB,LQ,5
AD AB,F,3,4
AON ZB,RF, 7
ADI AB,F, 8., 9.
ADIR DQ,Q

5 10

S. 3 WRITING PROGRAMS

Comments

A comment on a line is indicated by a double quote.
Everything following the quote on the same line is
considered a comment.

Example: ADD 1, 2 "this is a comment

Concatenation

As with AP code, semi-colons concatenate instructions
within the same Program Source (PS) word. A semi-colon
at the end of a line (preceding any comments) indicates
that the following line is part of the same PS word.
If the following line has only a comment, the line
after that is still part of the same word.

Example: PASSQ; POP; "comment 1
"comment 2
TR ALU,DB

(This is all in the same PS word.)

Labels

A label is followed by a colon (except for pseudo ops).
Another label and colon may follow, ad infinitum.
Any labels must precede any code on the same LINE.
A PS word which uses more than one line may have
labels on each line.

Example:
LABl: LAB2: PASSQ; "COMMENT
LAB3: POP

(This is all in the same PS word.)

FPS 7350-01 5 11

Errors

Errors detected by Pass 1 of the assembler are printed
preceding the regular listing in the following format:

LOCATION n *** error message ***

An error detected during Pass 2 is printed following the
line in which it was detected.

Although an attempt by the programmer to use the same
field more than once within a single PS word is normally
an error, it is permitted in cases where the contents
of that field is the same for all usages within the word.

Example: CF 5; SDSS 5
(Both instructions use the bit # field, but its contents
would be the same for both anyway, so this is legal.)

Example:

PASS 1
LOCATION 0000 *** INCORRECT LABEL FORMAT ***
PASS 2
0000 000000 LA#: PASSQ

000360
000000

0001 000000 NOOP
000000 *** ILLEGAL
000000

0002 000002 $VAL 2,3
000003 *** MISSING
000000

$END

**** 3 ERRORS ****

SYMBOL VALUE

FPS 7350-0l

OP-CODE ***

EXPRESS ION ***

5 12

5.4 USING THE ASSEMBLER

When started ri.mning, the assembler asks for 3 filenames
(source file, load module file, and listing file,
respectively), for a radix, for the type of listing,
and for the type of load module desired (see below).
The radix refers to the object code and location
counter printed on the listing, and is available
in octal, decimal, or hex. The listing may be a
full listing or an error-only listing (for making
small changes in big programs).

OUTPUT: THE LOAD MODULE

There is no linker for the PIOP. All necessary subroutines
must be assembled together. The regular load module outputted
by the PIOP assembler is similar in format to that
outputted by APLINK using the "E" command (i.e. output
suitable for APSIM). The first number in the load
module file is the number of locations to be loaded
(in F4.0 format), up to 256. Each following line
represents one 38-bit PS word, in 3 pieces
(10- , 12- , and 16-bit) in 3F7.0 format.

The alternate format of the PIOP load module is a Fortran
subroutine consisting mainly of data statements (similar
to the "A" command output from APLINK). The PIOP code
becomes a Fortran-callable, self-loading, optionally
self-starting program when used in conjuction with the
AP program PEXEC, which this Fortran subroutine calls.
See Appendix D for an example.

The parameters of this Fortran subroutine are as follows:

MDADR - AP main data address at which the PIOP code
will be loaded.

PPSA - PIOP program source address at which the PIOP
code will be loaded (if desired).

FLAG - 0 through 3:
0 load into AP only
1 load into AP, thence into PIOP
2 load into AP and PIOP, and start PIOP

running at beginning of loaded routine
3 load into AP and start channel program

SIZE - number of PIOP words

The call would be:
CALL name(MDADR,PPSA,FLAG,SIZE)

SIZE is an output parameter; the rest are input
parameters. PPSA is not used if FLAG• 0 or 3.

FPS 7350-01 5 13

5.5 SAMPLE LISTINGS

The following are samples of: a source file, a listing file, a load
module file, and a Fortran subroutine output.

Sample Source File

$SUB SAMPLE
"
LABO: PASSQ; "COMMENT
LABl: WORD 2 "COMMENT
LAB2: SETMAR; "COMMENT
LAB3: WORD 2; "COMMENT
LAB4: PASSA 12., 1 "COMMENT
LAB 5: TR FF, FF ; "COMMENT
LAB6: PASSA 12, 10.; "COMMENT
LAB 7: IORST; "COMMENT
LABS: SETMAW "COMMENT

JMPA XOAB; "COMMENT
PAS SQ "COMMENT

S'YM $EQU 10 "COMMENT
$LOC S'YM "COMMENT
MOVE $VAL • , 2, S'YM "COMMENT
$END

FPS 7350-01 s 14

Sample Listing File

PASS 1
PASS 2

$SUB SAMPLE

"
0000 000000 LABO: PAS SQ; "COMMENT

000360 LABl: WORD 2 "COMMENT
020000

0001 000414 LAB2: SETMAR; "COMMENT
000560 LAB3: WORD 2; "COMMENT
020000 LAB4: PASSA 12.,1 "COMMENT

0002 001012 LABS: TR FF,FF; "COMMENT
005164 LAB6: PASSA 12,10.; "COMMENT

0003

0010

100030 LAB7: IORST;
LABS: SETMAW

000000 JMPA XOAB;
000360 PASSQ
001653

000010 SYM $EQU 10

$LOC SYM

"COMMENT
"COMMENT

"COMMENT
"COMMENT

"COMMENT

"COMMENT

0010 000010 MOVE $VAL •, 2, SYM "COMMENT
000002
000010

$END

**** 0 ERRORS ****
SYMBOL VALUE

LABO 000000
LABl 000000
LAB2 000001
LAB3 000001
LAB4 000001
LABS 000002
LAB6 000002
LAB7 000002
LABS 000002
SYM 000010
MOVE 000010

FPS 7350-01 5 - 15

Sample Load Module File

9.
o. 240. 8192.

268. 368. 8192.
522. 2676. 32792.

o. 240. 939.
o. o. o.
o. o. o.
o. o. o.
o. o. o.
8. 2. 8.

Sample Fortran Subroutine Output

c

c

SUBROUTINE SAMPLE(MDADR,PPSA,FLAG,SIZE)

INTEGER PPSA,FLAG,SIZE,PIECE(3)
REAL CODE(9,3)

DATA CODE(l,l),CODE(l,2),CODE(l,3)/0.,240.,8192./
DATA CODE (2, 1) ,CODE (2, 2) ,CODE (2, 3) /268., 368., 8192./
DATA CODE(3,l),CODE(3,2),CODE(3,3)/522.,2676.,32792./
DATA CODE(4,l),CODE(4,2),CODE(4,3)/0.,240.,939./
DATA C0DE(5,l),CODE(5,2),CODE(5,3)/0.,0.,0./
DATA CODE(6,l),CODE(6,2),CODE(6,3)/0.,0.,0./
DATA CODE(7,l),CODE(7,2),CODE(7,3)/0.,0~,0./
DATA CODE(8,l),CODE(8,2),CODE(8,3)/0.,0.,0./
DATA CODE(9,l),CODE(9,2),CODE(9,3)/8.,2.,8./
M=MDADR-1
SIZE•9
DO 20 I•l,9
DO 10 J=l, 3

10 PIECE(J)=IPFIX(CODE(I,J))
CALL APDEP(PIECE,14,M+I)

20 CONTINUE
IF (FLAG.LE.O .OR. FLAG.GT.3) RETURN
CALL PEXEC(MDADR,PPSA,FLAG,SIZE)
RETURN
END

FPS 7350-01 5 - 16

CHAPTER 6

PROGRAMMABLE I/O CHAi.~EL (PIOC)

6.1 INTRODUCTION

The PIOP programmable I/O channel (PIOC) is a software construct that
permits many I/O operations to be carried out by the PIOP without
having to program the PIOP itself. The PICC allows the AP to process
in parallel with the PIOP and provides a means of communication between
the PIOP and the AP in order to synchronize the processing where
desired. The PIOC also provides for I/O operations between the AP main
data memory and a device such as a disk controller interfaced to the
PIOP.

The PIOC operates by interpreting a channel command program which
resides in AP main data memory. A channel command program is written
as a series of channel instructions, each of which contains information
about the PIOP operation to be performed and appropriate parameters
needed to carry out the operation. Channel instructions are described
in detail in paragraph 6.2

Two versions of the PIOC interpreter are available from Floating-Point
Systems. The first, referred to as DKPIOC, is used when the PIOP is
interfaced to the Systems Industries SI9500 Disk Controller. The
second, called GPIOC, is a general channel construct, with specific
handshaking conventions that allow the PIOP to communicate with a
variety of external devices, such as A/D converters and bulk memories.

The form of the channel command programs and many of the channel
instructions are the same for both versions of the PIOC. Certain
channel instructions may apply to only one or the other of the
versions, or their interpretations may be somewhat different, depending
on the version. Differences, where they exist, will be noted in the
chapter and indicated by "(DKPIOC)" or "(GPIOC)."

The following paragraphs describe the channel command language, give
some programming examples, and describe channel error conditions.

FPS 7350-01 6 l

6.2 CHANNEL INSTRUCTIONS

A channel instruction consists of four 38-bit words in the format shown
below in Figure 6-1.

2

OP CODE

24
I

11 I 12 23 I 24 31 33 34 36 37 39

I M2 I M3 I
20 39

WORD l

V,/;'./:_'./:_/,__.~ / /v_..~ % %_~ 2 2..___..___AR_GuM_EN_T _1 ---' WORD 2

ARGUMENT 2 WORD 3

ARGUMENT 3 'oORD 4

0081

Figure 6-1 Channel Instruction Format

The first word of the instruction contains the operation code of the
operation to be performed and three fields, Ml, M2, and M3, which
select the addressing mode for argument 1, argument 2, and argument 3,
respectively. The three arguments occupy the right-most 20 bits of
instruction words 2, 3, and 4.

One of three addressing modes - immediate, normal, or indirect - can be
selected for each of the three arguments. A description of the three
modes is given in Table 6-1.

Table 6-1 Addressing Modes

Ml, M2, or MJ ADDRESS
CODE MODE DESCRIPTION

0 I l11111edi ate

I
Argument contains operand itself.

l I Normal Argument contains address of operand.
2

l
[ndirect Argument contains pointer to address

I of operand.

0082

FPS 7350-01 6 2

Channel instructions must reside in AP main data memory to be executed
by the PIOP channel interpreter. Consequently, all addresses referred
to by channel instructions are 8P ~~memory addresses.

To illustrate the difference in
following example. Suppose we are
locations and contents:

MAIN DATA ADDRESS

100
2000

addressing
given the

modes, consider the
folloWing main data

CONTENTS

2000
4751

Suppose argument 1 = 100. Then the operand used in connected with
argument 1 depends on the addressing mode selected. In particular:

Ml ~ OPERAND 1 COMMENTS

0 Immediate 100 The argument itself is the operand.

1 Normal 2000 The argument itself contains the
address (100) of the operand.

2 Indirect 4751 The argument contains a pointer to
this address (2000) of the operand.

The operand codes determine the PIOP operation to be performed by the
channel instruction. A list of operation codes, together with the
functions they perform, is given in Table 6-2 below. Mnemonics are
included with each code for convenience. Where the operation is
applicable only to either the DKPIOC or GPIOC., an appropriate
indication is made next to the op code number. Operand 1 is
abbreviated: OPl. OP2 = OPl + OP2 means that operand 2 is replaced by
the sum of operand 1 and the current value of operand 2. Remember that
all operations such as ADD, SUB, RSR, etc., produce a 20-bit integer
result in the AP main data memory. Zeros are written into the high 18
bits (bits 2-19) by these operations.

All instructions, even those requiring fewer than three arguments
(e.g., ADD, MOV, etc.), must be written in the 4-word format.
Arguments not needed by an instruction can contain arbitrary data.
Since the channel does not use these words, they are available for
other programming uses such as temporary storage.

FPS 7350-01 6 3

f OP CODE

I

0

l

2

3

4

5

5

10

11

12

13

14

15
(OKP!OC)

15
(DKPIOC)

17
(DKP!OC)

20
(OKPIOC)

21
(OKP!OC)

22
(OKP!OC)

23
(OKP!OC)

24
(OKP !OC)

FPS 7350-01

Table 6-2

MNEMONIC

ADD

SUB

MOY

ANO

!OR

XOR

RSH

JMPC

JMP

SF

CF

WFS

HALT

READ

WRITE

!NIT 300

!NIT 80

SEEK

FORMAT

RO REG

WRTREG I

Channel Instruction Operation Codes

TITLE FUNCTION

Main Data Add OP2 = OPl + OP2

Main Data Subtract OP2 = OP2 - OP!

Main Data Move OP2 = OPl

Main Data And OP2 = OPl and OPZ

Main Data Or- OP2 = OPl or OP2

Main Data Exclusive Or OP2 = OPl xor OP2

Main Data Logical Right Shift OP2 = OPl shifted right 1 bit with a 0 in
the most signficant bit.

Conditional Jump If OPl and OP2 ~ 0, then jump to OP3
(i.e., execute the corimand instruction
beginning at main data address OP3),
else execute the next sequential instruction.

Unconditional Jump

Set Flag

Clear Flag

Wait On Flag Set

Halt Channel

Disk Read

Disk Write

Disk Initialization
(300 MB)

Jump to OP3 (i.e., execute the cornnand
instruction beginning at main data
address OP3) .

Set PIOP flag OPl to l (flags 0 thru 6 can
be used).

Clear PIOP flag OPl to O (flags O thru 6 can
be used).

PIOP waits until flag OP! is set to 1 by
the AP (flags 0 thru 6 can be used).

Stops PIOP execution.

Transfer a b 1 ock of OPl 38-bi t ·,.ords from
the disk, beginning at logical record number
OP2 through the PI OP to AP main data memory.
beginning at address OP3.

Transfer a block of OPl 38-bit words from
AP main data memory, beginning at address
OP3, through the P!OP to the disk. beginning
at logical record number OP2.

Define the physical parameters of the disk
corresponding to logical record number 0.
The disk formatter control register is set
to OPl. The port and cylinder numbers are
set by OP2, and the head and sector numbers
are set by OP3. (Refer to paragraph 6.4 for
details of the bit meanings.) !NIT 300 must
be executed prior to any REAO or WRITE co11111and
on a 300 megabyte disk.

Disk Initialization
(SO MB)

Oisk Seek

Disk Data Format

Read Register

Write Register

6 4

Same as above except for an 80 megabyte disk.

Causes the disk to be p.os it i oned to the
port/cylinder address set in OPl.

Defines the data format for transfer of data
to/from the disk where the format type and
number is specified in OPl. The four possible
format types are listed in Table 6-3.

Read disk register specified by OPl into
address OP2

OPl = O = disk control register
20 = data buffer

100 = port/cylinder register
140 = seek status register
200 • word count register
220 = conmunication reg. (dual CPU)
240 = error register
300 • head/sector register
340 • seek address re9ister

Write OP2 to the disk register specified
by OPl.

0083

A convention used with the AP to describe a 38-bit word is to break the
word into three pieces as follows:

BITS

2-11
12-23
24-39

exponent
high mantissa

low mantissa

Thus, if in the first word of a channel instruction the op code= 7, Ml
= 2, M2 = O, and M3 = l, then this word could be expressed as

7, 0, 201

If, in the second word of a channel instruction, argument 1 = 1234,
then this would be written as

O, 0, 1234

This convention is used in writing channel programs in the following
chapters.

FPS 7350-01 6 5

6.3 WRITING CHANNEL COMMAND PROGRAMS

A channel command program consists of a series of channel instructions
which must be loaded into AP main data memory in order to be executed
by the PIOP. Normally, the command program will occupy a block of
consecutive words in main data memory. Channel instructions are
executed sequentially, except where jump instructions (JMP, JMPC) are
involved. A channel program can be started by a call to PCGO either
from the Fortran level, i.e., call PCGO, or from APAL, i.e., JSR PCGO.
A command program is normally stopped by executing a channel HALT
instruction (op code 14), although certain error conditions such as an
improper op code, or a disk hardware error, can cause the channel
program to halt prematurely. Such conditions are described in Chapter
6.6

Consider a simple example to illustrate the way that channel command
programs are structured.

Example 1

Suppose that we want to use the PIOP to add the integer values in the
right-most 20 bits of AP main data locations 1009 through 105g and
store the results in location 2009. (Obviously, this can be done more
efficiently with AP instructions, but we're illustrating the PIOC.)

The major steps to be performed are:

1. initialize the sum to zero
2. add a 20-bit value to the sum
3. update pointer to next value
4. decrement count
S. if count not zero, go back to step 2
6. store result
7. halt

Let us now write a channel program for the PIOP to add these numbers.
Let the program reside in main data, beginning at location 0 (although
any location would do).

FPS 7350-01 6 6

AD INSTRUCTION

0 1,0,000
l 0, o, 0
2 0,0,0
3 0,0,0

4 0,0,110
s 0,0,100
6 0,0,2
7 0,0,0

3. 10 0,0,010
11 O, O, l
12 o, o, s
13 0,0,0

4. 14 1, O, 000
15 0,0,1
16 0,0,6
17 0,0,0

s. 20 7,0,010
21 O, O, 7
22 O, O, 16
23 O, O, 4

6. 24 2, O, 110
25 0,0,2
26 O, O, 200
27 0,0,0

7. 30 14,0,0
31 o, 0, 0
32 o, 0, 0
33 O, O, 0

COMMENT

Clears location 2 by subtracting location
2 from itself. Contents of 1, 2 and 3 are
arbitrary. Location 2 will be used as
the sum.

Adds the contents of the word pointed to
by MOS (initially 100) to the sum in
M02. Contents of M07 are arbitrary. MOS
will be incremented on each pass through
the loop.

Adds 1 to the address pointer, MOS.
Contents of M013 are arbitrary.

Decrement the loop counter, M016
which was initially 6.

Test (by means of a logical AND) if
counter M016 is zero. If not, go back
to step 2, M04. If zero, then proceed
to step 6, MD24.

Store the sum in location 200.·

Halt the PIOP. Contents of MD31,
32, 33 are arbitrary.

As an aid in writing channel programs, the PPAL assembler can be used.
Mnemonics can be defined to identify op codes, addresses, and
constants, making the program more readable. In addition, the PPAL
assembler provides a Fortran program output for the channel program
that can be called at runtime to load the channel program into AP main
data, beginning at a specified address. (Refer to the PIOP assembler,
Chapter S.) A PPAL program for the above example is shown in Figure
6-2.

FPS 73SO-Ol 6 7

$SUB EXAMPl
"
II -- ABSTRACT --
"THIS PIOP CHANNEL PROGRAM ADDS THE INTEGER VALUES IN THE RIGHTMOST
"20-BITS OF AP MAIN DATA LOCATIONS 100 THROUGH 105 (OCTAL) AND STORES
"THE SUM IN LOCATION 200 (OCTAL).
"
"DEFINE THE

ADD
SUB
MOV
JMPC
HALT

OP CODES
$EQU 0
$EQU 1
$EQU 2
$EQU 7
$EQU 14

BY MNEMONICS:

II

"THE CHANNEL PROGRAM EXPECTS TO BE LOADED BEGINNING AT MD ADDRESS O,
"BUT THAT CAN BE CHANGED BY EDITING THE VALUE FOR OFFSET BELOW AND
''REASSEMBLING.·

OFFSET· $EQU 0 ''MD ADDRESS FOR FIRST WORD OF CHANNEL
"PROGRAM

"DEFINE DATA ADDRESSES:

II

MDA $EQU 100
RESULT. $EQU 200

"DEFINE CONSTANTS:
ONE $EQU 1
N $EQU 6
ZMASK $EQU 7

"ADDRESSING MODES:
MOOO $EQU 0
MOlO $EQU 10
MllO $EQU 110

II

"ADDRESS OF FIRST DATA WORD
"ADDRESS FOR RESULT

"USED FOR INCREMENT /DECREMENT
"WORD COUNT
''MASK FOR COUNTER

"MODE Ml=O, M2=0, M3•0
"MODE Ml==O, M2=1, M3=0
"MODE Ml•l, M2=1, M3•0

"THE PROGRAM CAN BE LOADED INTO MD FROM FORTRAN AND STARTED BY THE
"FOLLOWING:
" CALL GPIOC(lOOO,O,l,I) /LOADS PIOC INTERPRETER (COULD BE DKPIOC)
II ,

II ,
II ,
II CALL EXAMPl(0,0,3,I) / LOADS CHANNEL PROGRAM BEGINNING AT

/ MDO AND BEGINS EXECUTION "
"

,
II ,
II

Figure 6-2 Channel Program Example 1

FPS 7350-01 6 - 8

"HERE BEGINS THE CHANNEL PROGRAJ.'1:
"
EXAMPl

SUM

"

$VAL SUB,0,MOOO
$VAL O, O, 0
$EQU • +oFFSET
$VAL O, O, 0
$VAL 0, O, 0

"1 • CLEARS LOCATION USED FOR SUM

" NEXT LOCATION IS USED FOR SUH

"THIS IS THE BEGINNING OF THE CHANNEL PROGRAM LOOP
"
LOOP

MDPTR

"

"

CTR

"

"

II

II

$EQU .+oFFSET
$VAL ADD, O,MllO
$EQU • +oFFSET
$VAL 0,0,MDA
$VAL 0,0,SUM
$VAL O, O, 0

$VAL ADD,0,MOlO
$VAL O, O, ONE
$VAL O, O,MDPTR
$VAL O, O, 0

$VAL SUB,0,MOOO
$VAL 0, 0, ONE
$EQU • +oFFSET
$VAL 0, O,N
$VAL O, 0, 0

$VAL JMPC, O,MOlO
$VAL O, 0,ZMASK
$VAL O, O,CTR
$VAL O, 0, LOOP

$VAL MOV, O,MllO
$VAL 0,0,SUM
$VAL 0, 0, RESULT
$VAL 0, 0, 0

$VAL HALT,0,0
$VAL 0,0,0
$VAL O, 0, 0
$VAL 0,0,0

"2. ADDS VALUE TO sm1
" NEXT LOCATION POINTS TO DATA

"3. UPDATES POINTER TO DATA

"4. DECREMENT COUNTER

"

"S.
"

NEXT LOCATION IS USED AS COUNTER

BRANCH BACK TO LOOP
IF NOT DONE

"6. STORE THE SUM

"7. HALT THE PIO P

$END "END OF PROGRAM

Figure 6-2 Channel Program Example 1 (cont.)

FPS 7350-01 6 9

6.4 ACCESSING DISK DATA USING DKPIOC

Physically, the data on a disk is located through the PIOP disk
interface by specifying a port, cylinder, head, and sector address.
One sector contains 256 16-bit words.

The DKPIOC interpreter allows the user to access the disk by means of
"logical records", where one logical record is defined to be 256 AP
words. Prior to read/write calls to the disk, the user specifies the
port, cylinder, head, and sector which will be called logical record 0
for subsequent reads and writes. In a channel program this is done by
means of the disk initialization instruction (INIT 80 or INIT 300).
The instruction used depends on whether an 80 megabyte (CDC 9762) or
300 megabyte disk (CDC 9766) is being used. INIT 80 can be used for a
40 megabyte disk (CDC 9760) and INIT 300 for a 150 megabyte disk (CDC
9764).

Prior to read/write calls, the user specifies 1 of 4 formats by which
data is to be transferred between the disk and the AP main data memory.
In a channel program, this is done by means of a formatting instruction
(FORMAT). The four possible formats are summarized in Table 6-3. Note
that one logical record occupies one disk sector in fortnat 0, three
disk sectors in format 1, and two disk sectors in formats 2 and 3.

Logical records
initialization.
logical record
3, then logical
6.

are defined relative to the most recent record 0
For example, if format type l is specified and if

0 is defined as disk port 1, cylinder 4, head 2, sector
record 1 refers to port 1, cylinder 4, head 2, sector

Table 6-3 Disk Data Format Types

DISK WORDS
TYPE NAME PER AP WORD DESCRIPTION

D 16-bit l Only the low mantissa 16 bits of MD
(bits 24.39) is transferred to the di:<.

l 38-bit 3 The 38·bit AP word is transferred to
the disk in three parts:

a. low mantissa (bits 24-39)
b. high mantissa (bits 12-23)
c:. exponent (bits 2-11)

2 32-bit 2 The mantissa of the AP word is trunca::d
truncated and the remaining 32 bits transferred
mantissa in two parts:

a. low word (bits 18-33}
b. high word (bits 2-17)

3 32-bit 2 The exponent of the AP word is trunca::d
truncated and the remaining 32 bits transferrec
exponent in two parts:

a. low word (bits 24-39)
b. high word (bits 8-23)

j253

FPS 7350-0l 6 10

The INIT 80 or !NIT 300 instruction requires that contents be specified
for three 16-bit disk formatter registers as follows: (Bits here are
numbered 15 to O, left-to-right. Unspecified bits are not used.)

Disk formatter control register:

Bit 3 - verify
9 - format enable

11 - strobe late
12 - strobe early
13 - off set -
14 - offset +

Port/cylinder address register:

9-0 - cylinder number
(0-410 if CDC 9760 or 9764)
(0-822 if CDC 9762 or 9766)

Head/sector address register:

Bits 9-5 - head number
(0-4 if CDC 9760 or 9762)
(0-18 if CDC 9764 or 9766)

4-0 - sector number (0-31)

Generally, all control register bits can be set to zero. Thus, to
initialize logical record 0 to port 1, cylinder 4, head 2, sector 3,
the channel instruction for an 80 megabyte disk is:

14, 0, 0
O, O, 0
O, O, 2004
O, O, 103

FPS 7350-01 6 11

6. 5 AP /PIOP PROCESS SYNCHRONIZATION

It is important to remember that the AP and the PIOP can run in
parallel. A comm.on requirement using this capability is evident when
the PIOP is bringing new data from a device such as a disk into AP main
data memory while the AP is processing data previously transferred from
the device. For processes such as this, the eight PIOP communication
flags provide a convenient means of synchronization of AP and PIOP
processing.

To illustrate a synchronized process between the AP and the PIOP,
consider the following example:

Example 2

Suppose that 100 blocks of floating point data, each 1024 38-bit words
long, reside on an 80 megabyte disk, beginning at port 1, cylinder 7,
head 3, sector 2. We want to do a real to complex FFT on each block
and accumulate the auto-spectrum of all blocks. In the interest of
speed, the data transfer and the computation should be overlapped,
thus, we should double buffer the data in main data memory.

Calling the two data buffers in main data memory A and B, and calling
two PIOP flags AFLAG and BFLAG, we can conceive of the two processes as
follows:

PIOP Process

Sets AFLAG, BFLAG
Initialize pointers, etc.

PPLOOP: Wait until AFLAG set
Read into buff er A
Clear AFLAG
Wait until BFLAG set
Read into buffer B
Clear BFLAG
Go to PPLOOP

AP Process

Start DKPIOC

Initialize block counter

APLOOP: Wait until AFLAG clear
Process buff er A
Set AFLAG
Wait until BFLAG clear
Process buff er B
Set BFLAG
Decrement count
Go to APLOOP if not zero
If done, turn off PIOP

A channel program to perform the PIOP double buffering process is shown
below in Figure 6-3.

FPS 7350-01 6 12

$SUB EXAMP2
"
" -~ ABSTRACT ---
"THIS PIOP CHANNEL PROGRAM READS BLOCKS OF N 38-BIT WORDS FROl1 &'i 80-HEGABYTE
"DISK AND ALTERNATELY PUTS THEM IN TWO DIFFERENT BUFFERS IN AP ~1AIN DATA
"MEMORY. THE READS BEGIN FROM LOGICAL RECORD O.
II

"FOR PURPOSES OF ILLUSTRATION:
II N = 1024
II FWA BUFF A = 2048
II , B = 4096
II

II AND LOGICAL RECORD 0 IS DEFINED AS PORT 1, CYLINDER 7, HEAD 3, SECTOR 2.
II

II

"
II

FORMAT 1 IS USED (38-BIT DATA TRANSFER AS 3 WORDS: LOW MANTISSA, HIGH
MANTISSA, AND EXPONENT).

"9 MAIN DATA LOCATIONS IMMEDIATELY FOLLOWING THE BODY OF THE CHANNEL PROGRAM
"ARE INITIALIZED TO REFLECT THESE VALUES, BUT THEY COULD BE EASILY MODIFIED
"AS A GROUP FROM ANOTHER AP PROGRAM (OR APPUT) PRIOR TO CALLING THE CHANNEL
"PROGRAM.
"
"THE CHANNEL PROGRAM EXPECTS TO BE LOADED BEGINNING AT MD ADDRESS 64., BUT
"THAT CAN BE CHANGED BY EDITING THE VALUE FOR OFFSET BELOW AND REASSEMBLING
"THE PROGRAM WITH PPAL.
II

OFFSET $EQU 64. "MD ADDRESS FOR FIRST WORD OF CHANNEL PROGRAM
II

"FOR COMMUNICATION WITH THE AP, PIOP FLAGS 0 AND 1 ARE USED.
AFLAG $EQU 0
BFLAG $EQU 1

"AFLAG IS CLEARED BY THE CHANNEL PROGRAM TO INDICATE DATA HAS BEEN READ
"INTO BUFFER A. THE CHANNEL PROGRAM EXPECTS AFLAG TO BE SET BY THE AP
"WHEN PROCESSING ON BUFFER A IS COMPLETE AND READY FOR NEW DATA TO BE
"LOADED INTO BUFFER A. BFLAG IS USED SIMILARLY WITH RESPECT TO BUFFER B.
II

"THE CHANNEL PROGRAM WILL CONTINUE UNTIL STOPPED BY THE AP, E.G. BY JSR PPRS.
II

"MNEMONICS FOR CHANNEL OP CODES:
ADD $EQU 0 "ADD
SUB $EQU 1 "SUBTRACT
JMP $EQU 10 "JUMP
SF $EQU 11 "SET FLAG
CF $EQU 12 "CLEAR FLAG
WFS $EQU 13 "WAIT UNTIL FLAG SET
HALT $EQU 14 "PIOP HA.LT
READ $EQU 15 "DISK READ
INIT80 $EQU 20 "DISK INITIALIZE LOGICAL RECORD 0
FORMAT $EQU 22 "FORMAT DATA

"CONSTANTS FOR ADDRESSING MODES
MOOO $EQU 0 "MODE Ml=O, M2=0, M3=0
MlOO $EQU 100 "MODE Ml=l, M2=0, M3=0
M110 $EQU 110 "MODE Ml=l, M2=1, M3=0
M111 $EQU 111 "MODE Ml=l, M2=1, M3=1

"
Figure 6-3 Channel Program Example 2

FPS 7350-01 6 - 13

"HERE BEGI~S THE CHANNEL ?ROGR.A.."1
"
EXAMP2

It

"

"

"

"

$VAL SF, 0,MOOO
SVAL O, 0,AFT..AG
$VAL 0,0,0
SVAL 0,0,0

$VAL SF, 0,MOOO
$VAL 0,0,BFLl.G
$VAL O, O, O
$VAL 0,0,0

$VAL FOR..."1AT, O,MlOO
$VAL FMT, 0, 0
$VAL O, 0, O
$VAL 0, 0, 0

$VAL IlUISO, 0,Mlll
$VAL 0,0,CR
$VAL 0,0,PC
$VAL 0,0,HS

$VAL SUB, O,MllO
$VAL 0, 0, LR
$VAL 0,0,LR
$VAL 0,0,0

"INITIALLY SET AFU.G

"L.'i!TIALLY SET BFLAG

"SPECIFY DATA FORMAT TYPE

"INITIALIZE DISK PARAMETERS
"FOR LOGICAL RECORD 0

"START READL'iG AT RECORD 0

"HERE BEGINS THE LOOP TO READ INTO BUFFERS A Ai.XID B
"
PPLOOP $EQU • -+OFFSET

$VAL WFS, O,MOOO
$VAL O, 0,AFLAG
$VAL 0,0,0

"

II

"

"

"

"

$VAL 0,0,0

$VAL READ, O,Mlll
$VAL O, O,N
$VAL 0,0,LR
$VAL O, 0,A

$VAL CF,0,MOOO
$VAL O, 0,AFLAG
$VAL O, 0, 0
$VAL 0, O, 0

$VAL ADD, O,MllO
$VAL O, O, LRINC
$VAL O, 0, LR
$VAL 0, O, O

-$VAL WFS,O,MOOO
$VAL O, 0,BFtAG
$VAL 0, O, 0
$VAL 0,.0,0

$VAL READ,0,Mlll
$VAL 0,0,N
$VAL 0,0,I.R
$VAL 0, O,:S

"WAIT FOR An.AG TO BE SET BY A.P

"READ N WORDS FROM DISK TO BUFFER A

"CLEAR A.FLAG

"UPDATE LOGICAL RECORD NUMBER

"WAIT FOR BFLAG TO BE SET BY AP

"READ N WORDS IliTO BUFFER B

Figure 6-3 Channel Program Example 2 (cont.)

FPS 7350-01 6 .. 14

"

If

"

$VAL CF, 0,MOOO
$VAL 0,0,BFLAG
$VAL 0,0,0
$VAL 0,0,0

$VAL ADD, O,MllO
$VAL o, 0,LRmc
$VAL 0,0,LR
$VAL O, 0, 0

$VAL JMP,0,MlOO
$VAL O, O;PPLOOP
$VAL O, 0, 0
$VAL O,O,O

"CLEAR BFLAG

"UPDATE LOGICAL RECORD NUMBER

"GO BACK TO BEGINNING OF LOOP

"PARAMETER STORAGE:

"
A

"
B

"
N

II

FMT

II

CR

If

PC

If

HS

II

LRINC

II

LR

If

If

$EQU .+oFFSET
$VAL O, O, 2048.

$EQU .+oFFSET
$VAL O, O, 4096.

$EQU • +oFFSET
$VAL O, O, 1024.

$EQU • +oFFSET
$VAL O,O,l

$EQU .+oFFSET
$VAL 0,0,0

$EQU • +oFFSET
$VAL 0,0,2007

$EQU • +oFFSET
$VAL 0,0,142

$EQU • +oFFSET
$VAL 0,0,4

$EQU • +oFFSET
$VAL O, 0, 0

"ADDRESS OF BUFFER A

"ADDRESS OF BUFFER B

"WORD COUNT

"FOR.~T TYPE 1 (38-BITS, 3 PARTS)

"DISK CONTROL REGISTER WORD

"PORT 1, CYLINDER 7

"HEAD 3, SECTOR 2

"RECORDS PER DATA BLOCK

"CURRENT LOGICAL RECORD NUMBER

$END "END OF CHANNEL PROGRAM

Figure 6-3 Channel Program Example 2 (cont.)

FPS 7350-01 6 - 15

6.6 PIOC ERROR CONDITIONS

The PIOC uses eight consecutive main data locations to hold status
information about the channel program performance. Following
termination of the channel program, the user can examine the contents
of these words to determine whether the pr'ogram was successfully
completed or whether the channel program was abnormally terminated.

The channel program is normally started by using the AP subroutine
PCGO, which can be called either from Fortran or from the APAL program.
Calling parameters for PCGO are, 1) the starting address of the channel
program, and, 2) the first word address of the 8-word status buffer.

The first word of the status buff er contains a 0 if the channel program
was successfully completed, otherwise the first word contains the main
data address of the channel instruction whether the error occurred.

If a channel error occurs, status buffer words two through eight
contain information relating to the particular error. For example, if
a disk hardware error occurs using DKPIOC, then the following
information is stored in the status buffer:

word 1 Address of channel instruction where error occurred

word 2 Disk controller error register

word 3 Disk controller seek status register

word 4 Disk controller port/cylinder register

word 5 Disk controller head/sector register

word 6 Disk controller control register

word 7 Disk word count

word 8 Reserved for future use

Conditions which can cause a channel program to terminate abnormally
are:

a. Illegal op code

b. Disk hardware error (DKPIOC) or drive not
connected (open cable)

FPS 7350-0l 6 16

CHAPTER 7

FORTRAN OPERATIONS

7.1 INTRODUCTION

There
with
PIOP,

are a number of Fortran level calls that are available for
the PIOP. These calls can be used for communication with:
the AP disk, or the PIOP disk channel.

use
the

The available Fortran calls are listed in Table 7-1. In addition, a
description of each call is presented later in this chapter.

Table 7-1 Fortran Calls

FORTRAN
GENERAL PURPOSE CALL OESCR I PT! ON

COMMUN I CATI ON PPL DAO Load PIOP from AP-120 main data memory.
1-lITH PIOP PPGO Start PIOP.

!
PPRS Reset PIOP.
PPSTAT Get P!OP run/halt status.
PPWAIT Wait for PIOP to halt.
PPFRD Read a PIOP flag from the AP-120.
PPFSET Set a PIOP flag from the AP-120.
PPFCLR Clear a PIOP flag fl'OAI the AP-120.

COMMUNICATION INPPDK Initialize PIOP disk parameters.
WITH AP DISK RDPPDK Read data from PIOP dfsk to AP-120

main data memory.
WRPPOK Write data from AP-120 main data

memory ta P!OP disk.
WRDPPD Write data to, and then read data

from, the PIOP disk.

COMMUNICATION PCGO Start PIOP channel program.
WITH P!OP DISK PCSTAT Get PIOP channel error status. CHANNEL

OTHER PEXEC PIOP executive loader.

0089

FPS 7350-01 7 1

The PIOP assembly code programs are identified by subroutine name. The
assembler produces a Fortran subroutine of that name which contains the
38-bit PIOP instruction words in DATA statements. The subroutine is
called at run time with a parameter that causes one of the following
actions to occur:

a. The 38-bit instruction words are loaded into the
AP main data memory.

b. The 38-bit instruction words are loaded into the
PIOP program memory through the AP main data memory.

c. The 38-bit instruction words are loaded into PIOP
program memory and the PIOP begins execution of
the loaded instructions (that is, load and go).

d. If the 38-bit instruction words constitute a
channel program, then the words are loaded into
the AP main data memory and start the PIOC
interpreter (previously loaded into the PIOP)
to execute the loaded channel program (that is,
load channel and go).

When using Fortran level calls that communicate with the AP disk, the
calls execute through DKPIOC (the P!OP disk channel interpreter). This
is loaded into the P!OP from the Fortran level by calling DKPIOC.
(Refer to item c. above.)

Error information for the PIOP channel is returned in an 8-word channel
status buff er in the AP main data memory. This error information is
listed in Table 7-2:

FPS 7350-01

Table 7-2 Error Information

WORD ERROR INFORMATION

0

2

4

6

Word • O if channel operation was successfully
completed.

Word = address in channel program of operation
being attempted when error occurred.

Disk controller error register.

Disk controller seek status register.

Disk controller port/cylinder address register.

Disk controller head/sector address register.

Disk controller control register.

Word count register.

Reserved far future use.

7 2

1

0254

7. 2 FORTRAN CALLS

A description of each of the 15 available PIOP Fortran calls is
presented in subsequent paragraphs. The description of each call
follows the same format which contains the following information:

PURPOSE:

FORTRAN CALL:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

EXECUTION TIME:

PROGRAM SIZE:

APAL CALL:

SCRATCH:

EXIERNALS:

In addition to the Fortran calls, examples of Fortran subroutines
created by the PIOP assembler are presented in paragraph 7.3.

A description of the conventions used in the calls is presented in
Chapter 3 of the Math Library Manual (FPS 7288-03).

FPS 7350-01 7 3

7.2.l LOAD PIOP FROM AP MD (PPLOAD)

PURPOSE: To loaa the PIOP program source memory
from the AP-1206 main data memory.

FORTRAN CALL: CALL PPLOAOtA,C.~>

PARAMETERS:

FORMULA:

A = Source vector oase address <AP ~Q)

C = Destination vector base aadress
<PIOP PS>

N = Element count

C<m> = ACmJ for rn=O to N-1

DESCRIPTION: Moves N 38-bit words oeginning at AP main data
aocress A to PIOP program source memory oeginning at
aaciress c.

EXAMPLE:

EXECLiTION
TIME/LOOP:

(US)

PROGRAM SIZE:
<AP words>

CALL PPLOAD<lOO.Gt50>
Stores into PlOP program source memory locations
0,1, •••• ,48,49 the PIOP orogram stored in A? main
data locations ioo.101, •••• 148,149.

BEST TYPICAL WORST SETUP<us>
0.3 0.3 0.3 4.7 <1&7 ns memory>
o. 3 o.3 0.3 4.7 <333 ns 111emory>

32 (1&7 ns memory>
32 <333 ns memory>

---APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

JSR PPLOAO
SPco-2.1~.15>tDPX<O>.MD
PPWAIT

7 - 4

7.2.2 START PIOP (PPGO)

PURPOSE! To start the PIOP running.

FORTR~N CALL! CALL PPGO<A>

?ARAMETE~s: A = PIOP program starting aacress
CPIOP PS>

FORMULA: N/A

DESC~IPTION~ Starts the PIOP running beginning at PIOP program
source address A. This routine assumes that the program
has Deen loaded previously <see PPLOAC>.

EXA~PLE! CALL PPLOAOClQO,lu.50>
CALL PPGO<lO>

D<ECUT I ON
TIME::

(us)

PROGRAM SIZE:
CAP woras>

A 50-word PIOP program is Loaaed fro~ AP main data
memory locations ioo.101, ••• ,148,149 into PIOP program
memory locations ic,11, •••• 58,59 by PPLC~C. PPGO then
causes the PIOP to start executing the ~rograrn, be;inning
at PIOP program location lJ•

BEST TYPICAL OiORST SETU?<us>
3.7 3.7 3.7 ru A Clf7 ns memory>
3.7 3.1 3.7 N/A (333 ns memorv>

22 '167 ns memory>
22 (333 ns memory l

----------------------------------~--------------------------------APAL CALL:
S\:RATCH:
EX TE'R r~ALS:

FPS 7350-01

JSR PPGO
SP(0tltl4t15ltDPX<O>
PPWAIT

7 5

7.2.3 RESET PIOP (PPRS)

PURPOSE: To reset the PIOP.

FORTRA~ CALL! CALL PPRS

PARAMETERS: N/A

FORMULA: ~/A

DESCRIPTION: Stops the PlOPt clears the PIOP interruotst and
issues a reset com~and to the interface between
the PIOP and the external device.

EXAMPLE: CALL PPRS

EXECUTION
Tii4E:

<us>

PROGRAM SIZE:
<AP woras)

APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

Stops the PIOPt clears the PIOP interrupts, and
issues a reset commanc to tne interface between
the PIOP and the external aevice.

BEST
0.1
0.1

4
4

JSR PPRS
SP<O>
None

TYPICAL IJORST
0.1 0.1
0.1 0.1

7 6

SETUP<us>
NIA <167 ns memory)
N/A (3.33 ns memory.i

<167 ns memory>
<333 ns memor'Jl

7.2.4 GET PIOP STATUS (PPSTAT)

PURPOSE: To test the run/halt status of the PIOP.

FORTRAN CALL: CALL PPSTAT

PARA~ETERS: N/A

FOi<MULA: SP<lS> = l if PlOF running
0 if PICP halted

DESCRIPTION: Tests the run/halt status of the PIOP. lf the

EXA~PLE:

EXECUTION
TIME!

Cus>

PROGRAM SIZE:
tAP woros>

AFAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

PIOP is running, SPC15> is set to l. If the PIOP is
not running, 5Pt15> is set to o.

CALL PPSTAT
CALL APCHK<I>
The run/halt status of the PIOP is tested by PPSTAT.
The status is returned in integer variable I by APCHK.
If the PIOP was running, I=l• otherwise I=c.

BEST TYPICAL
i.o
i.o

e,
e,

JSR PPST AT
SP<l'+>
None

i.o
i.o

i.IORST
1.0
1.0

7 - 7

SETUPtus>
NIA l le, 7 ns memory}
NIA <333 ns merno ry >

<167 ns memory>
<3.33 ns memoryl

7.2.5 WAIT FOR PIOP (PPWAIT)

PURPOSE: To wait for the PICP to halt.

FORTRAN CALL! CALL PPWAIT

PARAMETER~: NIA

FORMULA! N/A

DESCkIPTION: Waits until the PlOP has halted. This routine
shoula oe followed oy a call to A?~R.

EXAMPLE: CALL PPwAIT
CALL APl.IR

EXECuTION
TIME:

(us)

PPwAIT waits until the PIOP has halted betore continuing.
AP•R waits until the AP12C8 has halted before continuing.

BEST TYPICAL SETUPCus>
NIA <1~7 ns memory)

~.# 1.1 #.# ~/A C333 ns ~e~ory>
<Execution time decends on when the PIOP halts. The
routine is completed within 2.5 us after the PlOP
halts.>

PROGRAM SIZE: 10 Cl67 ns memory>
<3.33 ns memory> <AP 1o1oras>

APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

10

JSR PPwAIT
SP<l4,15>
PP STAT

7 8

7. 2. 6 READ PIOP FLAG FROM AP (PPFRD)

PURPOSE: To read one ot the eight PIO~ communication fla~s
from the AP.

FORTRAN CALL: CALL PPFRO<N>

PARAMETERS: N : PIOP flag number <J to 7>

FORMULA: SPC15> = PIOP FLAG <N> •here N is from 0 to 7
and the flag value is either 0 or 1

DESCRIPTION: Causes the AP to read the value ot PIOP
communication flag N, and out the value into SPf15>.
The value read will be either O or 1.

EXAMPLE:

EXECUTION
TIME:

(US)

PROGRAM SIZE:
<AP words>

Any of the 8 FIOP com~unicaticn flags can oe set,
cleared, or read from either the A? or the PIOP.

CALL PPFRC<'t>
CALL APCHKCI>
The value of PIOP flag 4 is put into SPC15> by
PPFRD. APCHK then puts the value into integer
variable lt which will be 1 if tne flag •as set,
0 if the flag was cleared.

BEST TYPICAL WO~ST SETUP<us>
1·2 1.2 1.2 NI A <167 ns memory>
1·2 i.2 1·2 NI A (333 ns memory>

7 (167 ns memory>
1 C333 ns memory>

--------------------------~--APAL CALL:
SCRATCH!
EXTERNALS:

FPS 7350-01

JSR P?FRO
SP ll'h 15 >
None

7 - 9

7.2.7 SET PIOP FLAG FROM AP (PPFSET)

PURPOSE: To set one cf the eight PIQP communication f Lags
from the AP.

FORTRAN CALL: CALL PPFSET<N>

?ARAi'!ETERS: N = PIOP flag numoer c: to 7>

FORriULA: PIOP FLAG <NJ = 1 where N is trom J to 7

DESCRIPTION: Causes the AP to set the value of PIOP
communication flag number N to 1, ~here
N must be from O to 1.

EXAMPLE:

EXECUTION
TIME:

(US)

PROGRAM SIZE:
<AP •ords>

Any ot tne 8 PIOP communication flags can oe zet,
clearea~ or read from either the AP or the PIO?.

CALL PPFSETC4>
The value of PlOP flag ~ is set to 1 by the AP.

BEST TYPICAL t.IORST SETUP<us>
o.a o.a o.a NIA <167 ns memory>
a.a a.a o.a NIA (3 33 ns memory>

5 (167 ns memory>
5 (3~.3 ns m emo'!'"v >

------~---~---------~----APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

JSR PPFSET
SPC1 1h15>
None

7 - 10

7.2.8 CLEAR PIOP FLAG FROM AP (PPFCLR)

PURPOSE: To clear one of the eight PIOP com~unicaticn flags.

FORTRAN CALL: CALL PPFCLRCN>

PARAMETERS: N = PIOP flag number <C to 7>

FORMULA: PIOP FLAG <N> : O where N is from C to 7

DESCRIPTION: Causes the AP to clear the value of PIOP
communication flag number N to c, ~here
N must be from O to 1.

Any of the 8 PIOP communication flags can oe set,
cleared, or read from either the AP or the PIOP.

EXAMPLE:: CALL PPFCLR(4)
The value of PIOP flag 4 is clearea tc 0 Of
the AP.

EXECUTION BEST TYPICAL ~ORST SETUP<us>
TIME: a.a o.a a.a N./A (1 Ei 7 ns memory>

(US) 0.8 o.a o.a NI A <333 ns memory)

PROGRAM SIZE: 5 <1E7 ns memory>
<AP words) 5 <333 ns memory>

--~----------------------~---APAL CALL: JSR PPFCLR
SCRATCH: SPC14tl5>
EXT£RNALS: None

FPS 7350-01 7 - 11

7.2.9 INITIALIZE PIOP DISK PABAMETERS (INPPDK)

PURPOSE: To specify the disk type, the data format, and
the physical parameters for PIOP disK logical
record J. These parameters are used oy suoseQuent
disk read/write calls which are made through the
PIOP disk channel interpreter program.

FORTRAN CALL: CALL" INPPOK<DKTYPEtFMTtCRtPCtHStWKA>

PARAMETERS:

FPS 7350-01

OKTYPE : Disk type flag
= O - CDC 9760 or 9762 d1sk
= 1 - CDC 9764 or 9766 disk

FMT = Data format type
= 0 - Lo~ mantissa portion of MD

<bits 2~-59> only
Cl disk word = l AP word>

= 1 - Comclete 38-bit AP •Ord in
3 parts:

Low mantissa <cits 24-3~>
-- High mantissa <bits 12-23>
-- Exponent <bits 2-11>
<3 disk words = l AP word>

= 2 - Mantissa truncated with remaining
32 bits transferred in 2 parts:

Low word <bits 18-33>
High word <cits 2-17>

<2 disk words = 1 AP word>
= 3 - Exoonent truncated with remaining

32 bits transferred in 2 carts:
-- Low word <bits 24-39>
-- High word <bits 8-23>

<Note: Sits numoereo 2-3~• left to right.>

CR = Contents for disk formatter
control register
Bit 3 - verify

9 - Format Enable
11 - Strobe Late
12 - Strobe Early
13 - Off set-
14 - Offset+

PC = Contents for port/cylinder
address register
Bits 11-10 - Port number <0-3>

9-0 - Cylinaer number
co-~10 if CDC 97&0. 9764>
C0-822 if CDC 9762• 97;6>

= 1024*Port + Cylinaer

7 - 12

7.2.9 INITIALIZE PIOP DISK PARAMETERS {INPPDK) (cont.)

HS = Contents tor head/sector
aaaress register
oits 9-5 - Head numoer

<~-4 if CDC 9760• 9762>
<0-18 if CDC 976~. 9766>

4-n - Sector number <0-31>
= 32*Head + Sector

<Note: For CR. ?C. and HS• bits numbered 15-n
left to right. Unspecified bits not used.>

~KA = Base address in AP ~O of 20-word
work butter
~ords 0-7 Channel status butter

• 8-19 - cnannel program

FORMULA: N/A

DESCRIPTION: Selects the type of disk to be used. Specifies
the format by which data will be transferred between
the dis~ and AP main data memory. Specifies the
contents' of the disk formatter control register <~hi ch
handles such special control functions as format enable.
read verify after write. data strote delays, and heao
position offsets>. Initializes the physical location of
logical record O on the disk in terms of the port/cylinder
number. and the head/sector number. A logical record
is cef ineo as 25& AP main data words. Depending on the
format selected, a logical record will occupy l• 2• or 3
256-word sectors on the disk.

A 20-•ord work buffer in AP main data ~emory, beginning
at address WKAt is used by the routine. The first 3
words are for the channel error stdtus butter, ~hile the
last 12 are used for a channel program ~hich the routine
generates.

After generating the channel program. the routine calls
the PIOP disk channel interpreter to execute it.
The PIOP aisk channel interpreter program DKPIOC must
have been loaded into the PIOP program memory prior to
the call to INPPDK.

All carameters defined by INPPDK are valid tor
subsequent disk read/write calls <e.g. RDPPOK, WRPPDK>
as long as DKPIOC remains resident in the PIOP program
memory.

FPS 73SQ-Ol 7 13

7.2.9 INITIALIZE PIOP DISK PARAMETERS (INPPDK) (cont.)

EXECUTION
TIME:

(US)

PROGRAM SIZE:
CAP wo ras >

disk is soecitieo. Suosequent data transfers ~ill
be made in format 1, whereoy 38-bit AP woras ar~
transferred.to/from the disk as .5 16-bit words <low
mantissa, high mantissa. and exponent>. For this
format a logical record occupies 3 25~-word disk
sectors. Thus logical record 1. would refer to
port lt cylinaer 4, head 2, sector a. AP12vB main
data memory locations 100-119 are used as a work area.

BEST TYPICAL ii OR ST SETUP<us>
c;.a 9.8 9.8 N/A Cl67 ns memory)

10.a 10.8 io.a NIA (333 ns memory>

~5 CH:7 ns memory>
45 <3.53 ns memory>

---------~-----------------------------~--------------------~----~-APAL CALL:
SCRATCH:
EXTERNALS:
EXAMPLE:

FPS 7350•01

JSR INPPOK
SP<Otltl4tl5ltDPXCJ),QPY<Cl
PCGOtPCSTAT
CALL DKPIOCto.0.2,rsIZE>
CAL~ INPPDK<o.1.o.1028to9•100>
The cill to DKPIOC brings the PIOP aisk channel
interpreter program through AP120S main data locations
a-<ISIZE-1> and into PIOP program memory locations
O-<ISIZE-1>• INPPDK specifies that disk port 1•
cylinder 4t head 2. sector 5 •ill define Logical
record C for subseQuent read/write calls to the
disk <e•9•• ROPPOK, WRPPOK>. A CDC 9762 <8G megaoyte>

7 14

7.2.10 READ DATA FROM PIOP DISK TO AP MD (RDPPDK)

PURPOSE:

PARAMETERS:

To cause the PIOP to read a block of data from
the PIOP cisk into AP120B main data ~emory.

MDA =
L~ =
N :

WKA =

Base address CMG> for data from cisk
Logical record on di SK where oat a
oegins
•ord count <MD words>
base address (~0> of 16-word work
butter
~oras 0-7 - Channel status butter

<see PC$0>
0 8-19 - Channel program

MODE= Exit moae flag
MOOE : C - Exit after PIOP halts

= l - Exit after PIOP starts

FORMULA: N/A

DESCRIPTION: Causes the PIOP to read a block of N words into AP

EXAMPLE:

FPS 7350-01

main data memory, beginning at address MOA, from the
PIOP disk, beginning at lo~ical record LR. The format
by which data is transferred from the disk must have
been specified by a call to INPPDK prior to calling
ROPPQK. A logical record is definea to be 256 AP main
oata words long. Depending on the format, either lt 21
or 3 16-oit disk words will be stored into each AP main
oata word. The physical disk location of logical record
0 is defined DY INPPOK.

The routine sets up a 8-wcrd channel program in
the 16-~ord work area, and starts the PIOP aisk
channel interpreter program DKPIOC which initiates
the data transfer. If MOCE=O• the ROPPDK will ~ait
until the PIOP stoos <transfer complete or an error
condition> before returning to the calling orogram.
If MODE:1, RDPPDK will return to the calling prcgraa
immediately after starting the PIOP.

CALL DKPIOCto.o,2,1sIZE>
CALL lNPPDK<OtltOtl028t69tlDO>
CALL ROPPOK<lOOOt0t5001lOOtO>
The call to OKPIOC brings the PIOP disk channel
interpreter program through AP1208 main data locations
o-<ISIZE-1> and into PIOP program memory locations
O-<ISIZE-1>• INPPOK specifies that disk port lt
cylinder 4, heao 2. sector 5 will oefine logical
recora O for subsequent reaa/write calls tc the
disk <e.g., RCPPOKt WRPPO~>. A CCC 9762 <AO megaoyte>

7 - 15

7.2.10 READ DATA FROM PIOP DISK TO AP MD (RDPPDK) (cont.)

EXECUTION
TlMt.:

(US)

PROGRAM SIZE:
<AP words>

disk is specified. Subseouent data transfers ~ill
oe mace in format 1, whereby 38-bit AP words are
transferred to/from the disK as 3 16-bit •ores <low
mantissa, high mantissa, and exponent>. For this
format a logical record occupies 3 256-worc disk
sectors. Thus logical record 1 woula refer to
port lt cylinder q, head 2• sector 8. ROPPOK then
causes the PIOP to read 500 38-bit words <1500 1~-bit
aisk woras> form the disk beginning at logical reccra
o, ano stores them into AP main data locations lOOC-
1~99. Main data locations 100-115 are used as a -ark
ared by RDPPOK. RDPPOK wiats until the PIOP stops
and returns the error status in SP<lS> ana in AP
locations 100-1C7. It the data is to be immediately
transferrea to the host without an intervening AP
processing call <e.g. VAOD• RFFTt etc.>• then CALL APWR
should follow ROPPOK.

BEST TYPICAL wORST SETUP<us>
6.:J 6.0 6.0 N/A Cl &7 ns memory>
G.5 6.5 6.5· N/A <333 ns memory>
<Execution time is for MOOE=l>

42 <167 ns memory>
~2 <333 ns memory>

---~-------~~--APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

JSR RDPPOK
SP<Otltl4tl5>tDPX<O>
PCGO,PCSTAT

7 16

7.2.11 WRITE DATA FROM A2 MD TO PIOP DISK (WRPPDK)

Pt.iRPOSE: To cause the PIOP to write a block ct data from
AP 1 2 OB m a i n d a t a memo r y t o t h'e P I O P d i s k •

FORTRAN CALL: CALL MRPPOK<MOAtL~,N.~KAtMOOE>

PARAMETERS: MOA =
LR =
N =
•KA =

ease address <MO> for data for c:isk
Logical record on disk where a a ta
begins
iilor d count (MO words>
Base address <MD> of 16-wora work
out fer

•ords 0-7 - Channel status buffer
<see PCGO>

• 8-19 - Channel program
MODE= Exit moae flag

MOOE : 0 - Exit after PIOP halts
= 1 - Exit after PIOP starts

FORMULA: NIA

OES~RIPTION: Causes the PIOP to write a block of N •ords from AP
main data memory, oeginning at adcress MOA, into the
?IOP disK, beginning at logical record LR. The format
oy which data is transferred to the disK must have
been specified by a call to INPPOK prior to calling
~RPPQK. A logical record is defined to oe 25& AP main

EXAMPLE:

FPS 7350-01

data words -long. Depending on the format, either l• 2.
or 3 16-oit disk words will be stored tor each AP main
aata word. The pnysical disk location of logical record
O is aef ined oy INPPOK.

The routine sets up a 8-word channel program in
the 16-word work area. and starts the PlCP dis~
channel interpreter program OKPIOC which initiates
the data transfer. If MOD£:o, the ~RPPCK will wait
until the PIOP stops <transfer complete or an error
condition> before returning to the calling oro~ram.
If MOOE=l• •RPPOK will return to the calling program
immediately after starting the PIOP.

CALL OKPIOC<O.Ot2tISIZE>
CALL INPPOK<o.1,o.102a.09tlOO>
CALL WRPP0~<1000.a,soa.100.o>
The call to OKPIOC brings the PIOP disk channel
interpreter program through AP120d main data locations
o-CISIZE-1> ana into PIOP orogram memory Locations
O-<ISIZE-1>. INPPOK specifies that disk port lt
cylinder 4, head 2, sector 5 will oefine logical
record 0 tor suoseQuent read/write calls to the
disk <e.g., RDPPDK• ~aPPOK>. ~ CDC 9762 <80 megabyte>

7 - 17

7.2.11 WRITE DATA FROM AP MD TO PIOP DISK (WRPPDK) (cont.)

EXECUTION
TIME:

(US)

PROGRAM SIZE:
<AP -.ioras >

disk is specified. Subseauent data transfers will
be ~ade in format l• whereoy 38-bit AP woras are
trans1erred to/fro~ the disk as 3 16-bit words <low
mantissa. high mantissa. and exponent>. For this
format a Logical recora occupies 3 256-woro disk
sectors. Thus logical record 1 would refer to
port l• cylinder 4, heao 2, sector a. wRPPOK then
causes the PIOP to write 500 38-bit words ClSCO 16-bit
disk words> to the disk beginning at logical recora
o, from AP main data locations 1000-1~99. Main data
locations 100-115 are used as a work area by wRP?O~.
WRPPOK ~aits until the PIOP stoos and ~eturns the
error status in SP<l5> anc in AP locations 100-107.

BEST TYPICAL WORST SETUP<us>
6.0 6.0 6. (l NIA <167 ns memory>
G.5 6.5 &.5 NI A (333 ns memory)
<Execution time is for MOOE=l>

42 <167 ns memory>
~2 <333 ns memory>

--~--~-------~~---~-------~---------~--~------------------------~--
APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

JSR WRPPOK
SP<O•l•l4•15>.DPX<J>
PCGO.PCSTAT

7 18

7. 2.12 WRITE TO AND READ FROM PIOP DISK (WRDPPD)

?UR.POSE:

PARAMETERS:

To cause the PIOP to -rite a block of Gd~a to
the PlOP disk from AP1208 main data memory. ana
then to read a (possibly differentl block of
data fro~ the disk into AP1209 main data memory.

MD Aw = Base aadress <MD> for data
for disk write

LR. iii = Logical recora on dis iC.

for a i s ic. write
N~ = Word count (~0 words>

for dis I<. write
MD AR = Base address <MD> tor data

from di sic read
LRR = Logical record on disk

f 0 r disk read
NR = :Jord count <MD words>

tor disk re a a
WKA = Base address <MD> of 2.C-word WO rK

buffer
:Jords 0-7 - Channel status buffer

<see PCGO>
" 8-19 - Channel program

MOOE= Exit mode flag
MODE : J - Exit after PIOP halts

: 1 - Exit after PIOP starts

FORMULA: N/A

DESCRIPTION: Causes the PIOP to •rite a block of N• words from AP
main data memory. beginning at aadress MCA•, into the
PIOP aisk, beginning at logical record LR•• anc then
read a block of NR words into AP main data memory.
oeginning at adaress MOAR, from the disk, beginning
at logical record LRR. The format oy wnich

FPS 7350-01

oata is transferred to and from the aisk must have
been soecified by a call to INPPUK orior to calling
~RDPPD. A loyical record is defined to be 25& AP main
data words long. Oeoending on the for~at, either lt 2,
or 3 16-bit ais~ words will be stored for each AP main
aata word. The physical disk Location of logical record
0 is defined by INPPOK.

The routine sets up a 12-word channel program in
the 20-word work area, and starts the PIOP disk
channel interpreter program DKPIOC which initiates
the data transfer. if MODE=o, the ~ROPPD will ~ait

until the PIOP stops ctranster complete or an error
condition> before returning to the calling orogram.

7 19

7.2.12 WRITE TO AND READ FROM PIOP DISK (WRDPPD) (cont.)

EXAMPLE!

EXECUTION
TIME:

<us>

PROGRAM SIZE:
<AP wo res>

It MODE=l• WRGPPD will return to the callinQ program
irnmeoiately atter starting the PIOP.

CALL OKPIOC<OtOt2tISIZE>
CALL INPPOK<o.1,o.1028,69tlOO>
CALL WROPPC<lOOO.c,soc.2000,6,S00.100,1>
The call to OKPIOC brings the PIOP aisk channel
interpreter program throu~h AP120B main data Locations
O-<ISIZE-1> ana into P!OP program memory Locations
O-<ISIZE-1>• lNPPOK soecifies that disK port l•
cylinder ~. head 2, sector S will oefine Logical
record 0 for subseGuent read/write calls to the
disk te.g., ROFPO~, ~~OPPO>. A CDC 97&2 C80 megabyte>
disk is soecified. suoseQuent data transfers will
oe made in format l• whereoy 38-bit AP woros are
trdnsferrea to/from the disk as 3 16-bit words <low
mantissa. high mantissa. and exponent>. For this
format a logical record occuoies 3 25&-wora aisk
sectors. Thus logical record l wculd refer to
port lt cylinder 4, head 2, sector B. ~ROPPD then
causes the PIOP to write 500 38•bit words <15CO 16-bit
disK words> to the disk oeginning at logical record
o, from AP main data locations 1000-1499, and
to reac 800 38-bit words <240J lo-bit disk .orosl
from the disk beginnin~ at logical recora 6
<port lt cylinder 4t head 2, sector 23> into main
data locations 2000-2739. After starting the PlOP,
~RDPPO returns immediately to the calling program.
Main data locutions 100-119 are used as a work area
by WROPPO. The channel status canoe examinec·later
by calling PCSTAT, or by reading main data locations
100-101.

BEST TYPICAL l.IORST SE:TUP<us>
fu 7 6.7 fa 7 NIA. <167 ns memory)
1.1 1. 7 1.1 NIA <3 3.S ns memory>
<Execution time is tor MODE=l>

46 <1&7 ns memory>
46 C333 ns memory>

--~--~----~-------------~---~-----------~---~-~~-------------------APAL CALL.:
SCRATCH:
EXTERNALS!

FPS 7350-01

JSR ':JRDPPC
SPtOtl•l4tl5ltDPX<O>
PCGO,PCSTAT

7 - 20

7.2.13 START PIOP CHANNEL (PCGO)

PURPOSE: To start running a PIOP Channel <PICC> oro9ram.

FORT~AN CALL: CALL PCGO<A,S>

PARAMETERS: A = Base address of channel program
in AP MO

S = Base address of 8-word channel status
bu1fer in AP MD

FORMULA: N/A

DESCRIPTION: Starts running the PIOP Programmable I/O Channel <PIOC>
interpreter <OKPIOC or GPIOC>• ~hich interprets and
executes a channel program located in AP12CB main data
memory, beginning at address A. A channel orogram is
written as a series of channel instructions, each of
which contains information about the PIOP operation

FPS 7350-01

to Ce performed and appropriate parameters neeoed to
carry out the operation.

Status information regarding the channel is
returned by the interpreter in a a-word butfer
beginning at address S in ~ain data. Following
termination of the channel program. the routine
PCSTAT can be used to determine if the program was
completed successfully. If an error occurred,
the status information can be ootained by Looking
in the a-word oufter. Status information is
PIOP configuration dependent.

For the PIOP disk interface configuration:
S<O> = 0 if channel program was completed, or

= Address <MD> of cnannel instruction
where error occurred

S<l> = Disk controller error register
S<2> = " • seek status register
$(3) = • • port/cylinder address register
SC~> = " • head/sector address register
S<S> = • • control register
$(6) = • • •ord count
S<7> = <unused>

Prior to execution of PCGO, the PIOC interpreter program
COKPIOC or GPIOCJ must be loaded into the PIOP orogram
memory, and the channel program must be in AP120B main
data memory, beginning at aadress A.

Operation of the PIOC is describea in detail in the
PIOP Manual <FPS-7350>, chapter 6.

7 - 21

7.2.13 START PIOP CHANNEL (PCGO) (cont.)

EXAMPLE:

EXECUTION
TIME:

(US)

PROGRAM SIZE:
<AP words)

CALL DKPIOC<OtOt2tLINT>
CALL CHANPG<lOOOtOtOtLCH>
CALL PCGO<lOOQ,992>
CALL PCSTAT<992>
CALL APCHK<I>
The call to OKPIOC brings the PIOP disk channel
interpreter program through AP120B main data locations
O-<LINT-1> and into PIOP program memory locations
o-<LINT-1>. Suppose the channel program to be executed
is called CHANPG. (Channel programs are normally written
in using PPAL -- see PlOP Manual, section b.3.J ihen
the call to CHANPG loads the channel program into AP
main data locations 1000-<lOOO+LCrl-l>. Tnen PCGO causes
the PIOP to execute the channel program CHAN?G. AP
main data locations 992-999 are useo to return channel
status information. PCSTAT •aits for the PIOP to stop,
and sets SP<15> to indicate if channel errors occurred.
APCHK reads S?<15> and sets integer variaule I to o
if no channel errors were detected, or to the address
of the channel instruction where errors occurred.

BEST TYPICAL W-ORST SETUPCus>
3.7 3.1 3.7 N/A (167 ns memory>
3.7 3.7 3.7 NIA C333 ns memory>

22 (167 ns memory>
22 <333 ns memory>

---APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

JSR PCGO
SP<Otl4tl5>•DPX<~>
PPiilAIT

7 - 22

7.2.14 GET PIOP CHANNEL STATUS (PCSTAT)

PURPOSE: To aetermine whether a PIDC ~hannel program
has oeen successfully run.

FORT~AN CALL: CALL PCSTAT<S>

PARAMETERS:

FORMUL~:

S = Base address of 8-word channel status
buffer in AP MO

SP<l5> = S<O> = 0 if channel program completed, or
= address C~D> of channel instroction

where error occurred

DESCRIPTION: Waits for PIOP to stop running and then sets SPC15)
to indicate channel status. If the channel program
has been completeo successfully, then SP<l5>=0•

EXAMPLE:

FPS 7350-01

if not. then SP<lS> equals the address of the
channel instruction being executed cy the PIOC
when the error occurred. If an error occurred,
the status information can be obtained by Looking
in the 8-wora ouffer. Status information is
PlOP configuration dependent.

For the PIOP oisk interface configuration:
S<O> = O if channel program was comoletec. or

= Address <MD> of channel instruction.
where errqr occurred

S<l>
S<2>
SC3>
$(4)
$(5)
$(6)
S<7>

= Oisk controller error register
= • •
= • •
= R n

= R •
= • •
= <unused>

CALL DKPIOC<OtOt2tLINT>
CALL CHA~PG<lOOO,o,o.~CH>
CALL PCGO<l000,992>
CALL PCSTATC992>
CALL APCHKCI>

seek status register
port/cylinder address register
head/sector address register
control register
word count

The call to DKPIOC brings the PIOP aisk channel
interpreter program through AP1208 main aata locations
o-<LINT-1> and into PIOP program memory locations
o-<LINT-1>. Suooose the channel program to be executed
is called CHANPG. <Channel programs are normally written
in using PPAL -- see PIOP Manual, section 6.3.> Then
the call to ChANPG loads the channel program into AP
main data locations 1000-<lOOO+LCH-1>. Then PCGO causes
the PIOP to execute the channel program CHANPG. AF
main data locations 992-999 are usea to return channel
status information. PCSTAT waits for the PIOP to stop,

7 23

7.2.14 GET PIOP CHANNEL STATUS (PCSTAT) (cont.)

EXECUTION
TIME:

(US)

and sets SP<IS> ta inaicate if channel errors occurrea.
APCHK reads SP<l5> and sets integer variable I to O
if no channel errors were detectea. or to the address
of the channel instruction where errors occurred.

BEST
ii. It

WORST
:: • ii

SETUPtus>

#e# #.# u.#
CExecution time depends on when
routine is comoleted within 3.2
halts.>

NIA <167 ns memory>
N/A <333 ns memory>
the PIOP halts. The
us after the PIOP

PROGRAM SIZE: 15 <167 ns memoryl
<333 ns memory> <AP 11ords> 15

APAL CALL:
SCRATCH:
EXTE;NALS:

FPS 7350-01

JSR PCSTAT
SP< l 4 >
PPWAIT

7 24

7.2.15 PIOP EXECUTE LOADER (PEXEC)

T2 cxec~tt on':- ct the tollcwi::c:; options with respect
tG or~~ crcgr~~s ir ~air a~ta ~~mcrv: 1> Lead th~
orc:ra~ into FIGP crogram memory, 2J lc~c the
~roJra• ir~o ~ICP oro0ram mc~ory ana start the
crcP program, ~J start tbe PIOP channel intercretcr.

~~~J\lTERs: MO~ = Base a~crcss <~~> ~t Pi0P ccae 
PPSA = Sa~e accrcss f PICPJ for PIOF ccce 
FL~G = Lcadin1 sccuence flag 

FPS 7350-01 

=1 - Luaa 3P-Dit wcras frcm AP Mr 
i"1tO PIGP ?S 

=2 - loJd ~8-bit ~crcs from AP MO 
f"1tc PIOF cs ara start PIOP 

=3 - Start PIOP charnel interpreter 
usinJ ~A-~it ~ords 1n AF MC 
as ch~~nel crc;ra~ <IOCL> 

N = ~er~ count <38-cit ~ores> 

This r~~tire ~crforms one cf three loacin~ ootions 
on 38-cit PIO~ instruction ~ores stcrea in AP128R 
mnin data memory, ~eginning at adarcss MDA. It 
FLAG=l• the in!tructic~ words are lcaoed into C!OP 
orosrnm memory, oeginning at aodress PPSA. If 
FL~G=2• t~e i~structior wcrds are loacea irtc CJOF 
oro;ram memory, D~ginning at audress P 0 s~, anc the 
?IOP is starteo at orogram aacress ~PS~. If FLAG=~• 
the instr~ction ~crds are treated as a PIOP chdnnel 
program l/D ccTmana li~t <IDCLl, ard the PIOP channel 
interoret~r is stdrtec. Then the interpreter, which 
must oe lcadec crier tu the call tc PEXEC, bea1~s 

executin£ the channel ~rogram at AF12JE milin data 
aooress r~cii. 

Every PICF pro~ram which is as~e~clea by the 
PIOF ~sse~cler tPPAL) into a Fortran subroutine 
coGtains a CALL ?EXEC statement. The callin; 
s~~uence for the Fortran subrautine is: 

Th~ su~rc~tine. wnen executea, will loac the 3P-bit 
orc1r2~ wcrcs from the hos: into A~12CB mdin 
data memo r . ., , ::; e gin r; in :J at a o cl res s :~ 0 A. The rum o er 
Jf ~oras leaded, \• is passea back to t"e calling 
ororyr3T, and to PE~Ec. which is callee with pilrameters 
MGA, oosA. FLAG, and\, i+ FLAG ecu~ls 1, 2, or 3. 

7 25 



1.2.1s PIOP EXECUTE LOADER (PEXEC) (cont.) 

EXA!'-1PLE: 

EXECUTION 
TI1-1E: 

(US) 

CALL PEXEC<100,sa.2,40> 
Loads the PIOP program stored in AP120B 
main data Locations 100-139 into PIOP 
program memory locations 5G-89t and starts 
the PIOP running at orogram memory Location 
50. Control returns to the calling orogra~ 
immediately after the PIOP stdrts. 

BEST 
1.7 
1.7 
(Add 
PPGO 

TYPICAL WORST SETUPCus> 
1.7 1.7 N/A tl67 ns memory> 
1.7 1.7 NIA <333 ns memory> 

execution time for PPLOAD it FLAG:!, PPLOAO and 
if FLAG=2• or PCGO if FLAG=3.l 

PROGRAM SIZE: 70 <167 ns memory> 
<333 ns mernoryl <AP woras> 70 

-------------------------------------------------------------------APAL CALL! 
SCRATCH: 
EXTE.RNALS: 

FPS 7350-01 

JSR PEXEC 
SP<0-2,4,5,14,15>,CPXCO>tMD 
PPLOAO,PPGOtPCGO 

7 - 26 



7.3 SAMPLE PROGRAMS 

As an aid to the programmer, two sample Fortran programs are presented 
in the following paragraphs. Til.ese programs are: 

Fortran subroutine Provides the following sample 
listings: 

a. PIOP assembly code source 
b. Assembled listing 
c. Fortran subroutine created 

by the PIOP assembler 

Fortran program to run 
both the A2 and the 
PIOP with a disk 

Provides the following: 

a. Program listing 
b. Timing explanation for the 

program (Figure 7-1) 

7.3.l FORTRAN SUBROUTINE EXAMPLE 

The following three examples of a Fortran subroutine are: PIOP 
assembly code source listing, assembled listing, and the subroutine 
listing as created by the PIOP assembler. 

Example 1 - PIOP Assembly Code Source 
ssua TEST 

FPS 7350-01 

ssu:i TE.ST 
LABO: PASSG; "COH~ENT 

LAdl: ~O~~ 2 "NUH~ER 1 
LAB2: SET~AR; "N~M 2 
LAd3: ~OR~ 2; "NU~ 3 
LA~-: PAS~A l?.•l •NUM 4 
LABS: TR FF,FF; •NUM 5 
LA86: PASSA 12,10.; •NUM c 
LAo7: IOR!",;T; "r-JUM 7 
LA&8: SETMA~ "NUM 8 
LAb9:JMPA XOAe; "NUM 9 
LA~lO: PA5SQ "NU~ 10 
SYM SE:l.IU 10 
:i!OVE :SLOC SY:~ 

ivAL •• 2.sYM 
$(NO 

7 27 



Example 2 - Assembled Listing 
?ASS 1 

~ASS 1 
iJA~S 

., 
" 

~SU::: 

0000 000000 LABJ: 
0003SO LABl: 
020000 

0001 000414 LAB2: 
000560 LAB3: 
0200CO LAc4: 

0002 OC1012 LA&~: 

TEST 

PASSG; "COMMENT 
.tOhD 2 8 NUM5ER 1 

SEP.UR; "NUM 2 
)JQRO 2; "NUM "% _, 

PA SSA 12 •• 1 n ~~UM 4 

TR FF,FF; "NUM 5 
00516'+ L.AElE.: PA SSA 12.10.; "NUM 
100030 LA67! !OF.ST; "~JUM 7 

LA88: SETMAW "NUM 8 

0003 000'.lOO L.i:..69!JMFA XSAS; "NUM 9 
000.!.'"10 LA810! Pt..SSQ "NUM lC 
0016:.3 

000010 SY~ :fE.GU 1 (1 

0010 MOVE. SLOC ::>YM 

0010 000010 1VAL •• 2,SYM 
000002 
000010 

sEr,,u 

**** G E..f..ROKS "*'"*'** 

SYMBOL 'YALU;;. 

LAdO 000000 
i..Aol noooco 
LAB2 000001 
LAb3 000001 
i..Ao4 000001 
LAd5 G00002 
LAoo u 0 0 0 'J 2 
L4o7 r00002 
LAc8 o o o a c 2 
LAc9 l.iOOOC3 
LAolO uOOOC3 
SYM Ot'OOlG 
,'\OVE 000010 

FPS 7350-01 7 - 28 

(j 



Example 3 - Fortran Subroutine Created by PIOP Assembler 

c 

c 

~~~RGUTlNf TEST<M~ADRtPPSA,FLA~,SIZE> 

INTEGER PPSA,FLAG,SIZE,PIE~E<3>

REAL CODE<9t3>

OATA COOE<ltl>tCODL<lt2>tCOOE<lt3>/0.,240.,8192./
DATA CODE<2tl>,COD£<2t2>tCOOE<2•3>/268.,368.,8192./
DATA COOEC3,l>tCOOE<3t2>tCODE<3t3>1S22.,2676.,32792./
DATA CvD£<4tl>tCODE<4t2>tCODEC4,3)/Q.,24Q.,939./
DATA CuOE<5tl>tCOD£C5t2>tCOOE<5.3)/Q.,a •• o./
DATA COuE<6tl>,COOE<6t2>tC00((6t3l/O •• o •• o./
DATA CODEC7,l>tCODEC7t2>,COOE<7,3)/0.,0.,0./
DATA CODEC8tl>tCOOEC8t2>tCGOECbt3)/Q.,o •• o./
DATA CODE<9tlltCODE<9t2>tCOCEC5t3>/S.,2.,s./
M:MOAOK-1
Sli~=9
DO 20 1:1,5
DO 10 J:1,3

10 PIECE<J>=IPFIX<CODE<I,J>>
CALL APOEP<PIECEtl4tM+I>

20 CONTINJE

FPS 7350-01

IF CFLAG.LE.O .OR. FLAG.GT.3> RETURN
CALL PEXECCMDAORtPPSA,FLA&tSIZE>
~ETURN

7 - 29

7.3.2 FORTRAN PROGRAM EXAMPLE

The following is a sample Fortran program that runs both the AP and the
PIOP with a disk. This program performs a block FFT (fast Fourier
transform). An explanation of program timing is given in Figure 7-1.

SUBROUTINE BLKFFT(N,M)
c
C ROUTINE TO DEMONSTRATE USE OF AP120B WITH PIOP DISK INTERFACE AND
C FORTRAN CALLABLE PIOP DISK CHANNEL SOFTWARE.
c
C THIS ROUTINE READS AN N BY N ARRAY OF COMPLEX FLOATING POINT NUMBERS, M
C COLUMNS AT A TIME, COMPUTES THE COMPLEX FFT OF EACH COLUMN, AND W'RITES THE
C FFT RESULTS BACK ONTO THE DISK. THUS AT THE COMPLETION OF THE ROUTINE
C THE N BY N COMPLEX ARRAY HAS BEEN REPLACED BY THE N BY N COMPLEX ARRAY
C RESULTING FROM TAKING THE FORWARD COMPLEX FFT OF EACH OF THE N COLUMNS
C OF THE ORIGINAL ARRAY. THE ROUTINE COULD BE USED TO PROCESS DATA
C IN ONE-DIMENSION WHEN PERFORMING A 2-D FFT OPERATION.
c
C CONDITIONS UPON ENTRY:
c
C ORIGINAL N BY N COMPLEX ARRAY IS STORED ON DISK BEGINNING AT LOGICAL
C RECORD 0
c
C N = DIMENSION OF THE ARRAY
C M • NUMBER OF COLUMNS TO BE PROCESSED IN AP IN ONE PASS
c
C CONDITIONS UPON EXIT:
c
C ORIGINAL ARRAY REPLACED WITH N BY N COMPLEX ARRAY RESULTING FROM
C TAKING COMPLEX FFT OF EACH OF THE N COLUMNS
c
c
C EXAMPLE:
c
c

SUPPOSE N•l024, SO THAT 1024 X 1024 X 2 = 2097152 FLOATING-POINT
WORDS RESIDE ON THE DISK. IF WE CHOOSE M=8, I.E. DO 8 COMPLEX
1024-POINT FFTS ON EACH PASS, THEN

c
c
c
c

NWD =16384
NPASS= 128
NREC = 64

C INITIALIZE AP120B
CALL APCLR.

C INITIALIZE PIOP
CALL PPRS

C LOAD PIOP DISK CHANNEL INTERPRETER THRU AP MAIN DATA INTO PIOP
CALL DKPIOC(0,0,2,ISIZE)

C DEFINE DATA FORMAT 1 (38-BITS IN 3 PARTS) ON 80 MEGABYTE (CDC
C DEFINE DISK LOGICAL RECORD 0 (PORT/CYLINDER O, HEAD/SECTOR 0)
C ONE WGICAL RECORD EQUALS 256 AP WORDS.

CALL INPPDK(0,1,0,0,o,o)
C INITIALIZE LOGICAL aECORD POINTERS FOR READING AND WRITING

LR.R=O
LRW•O

C NUMBER OF FLOATING-POINT NUMBERS TO BE READ EACH PASS
NPN=N+N
NWD=NPN*M

C NUMBER OF LOGICAL RECORDS EACH PASS
NREC-NWD /256

FPS 7350-01 7 - 30

9762) DISK

Fortran Program Example (cont.)

C NUMBER OF PASSES
NPASS=NPN /M

C ALLOCATE AP MAIN DATA FOR DOUBLE BUFFERING AND A WORK AREA
IA=O
IB=NWD
IW=IB+NWD

c
C BEGIN PROCESSING BY READING FIRST BLOCK FROM DISK INTO BUFFER A

CALL RDPPDK(IA,LRR,NWD,IW,l)
LRR•LRR+NREC

C READ NEXT BLOCK INTO BUFFER B
CALL RDPPDK(IB,LRR,NWD,IW,l)
LRR•LRR+NREC

c
C NOW WE CAN GET INTO MAIN LOOP, WHICH WILL READ, PROCESS, AND WRITE
C TWO BLOCKS OF DATA--ONE IN BUFFER A, THE OTHER IN BUFFER B. PIOP
C AND AP OPERATIONS ARE OVERLAPPED TO A GREAT EXTENT.
c

DO 100 I•l,NPASS,2
c
C PROCESS BUFFER A IN MD WITH AP

CALL PROCES(IA,N,M)
C WRITE FFT RESULTS FROM BUFFER A TO DISK, READ NEW BLOCK INTO BUFFER A

CALL WRDPPD(IA,LRW,NWD,IA,LRR,NWD,IW,l)
LRW•LRW-+NREC
LRR=LRR+NREC

C PROCESS BUFFER B IN MD WITH AP
CALL PROCES(IB,N,M)

C WRITE FFT RESULTS FROM BUFFER B TO DIS~ READ NEW BLOCK INTO BUFFER B
CALL WRDPPD(IB,LRW,NWD,IB,LRR,NWD,IW,l)
LRW=LRW+NREC
LRR=LRR+NREC

100 CONTINUE
c
C END OF PROCESSING LOOP
c
C WAIT FOR PIOP TO COMPLETE FINAL DATA TRANSFER

CALL PPWAIT

C EnT
CALL APWR

RETURN
END

SUBROUTINE PROCESS(IBUF,N,M)
c
C ROUTINE PERFORMS M N-POINT COMPLEX FFTS OF DATA IN AP MAIN DATA
C BEGINNING AT ADDRESS IBUF.
c

IADR=IBUF
DO l I•l,M
CALL CFFT(IADR,N,l)

1 IADR•IADR+N+N
RETURN
END

FPS 7350-01 7 - 31

Figure 7-1 illustrates the timing for the program given on the previous
pages.

ASSUMPTIONS:

LET:

AP PROCESSING
TIME:

OMA TRANSFER RATE:
(WRITE & READ)

1. Slow (333ns) main data memory.
Z. Disk transfer rate of 200,000 38-bit words/sec

(600,000 16-bit words/sec).
3. Disk cyliner-to-cylinder time of 7ms.
4. Disk latency of 8.3ms
5. Host system APEX overhead of 2ms per call.
6. OMA cycle-stealing interference of 10%.

N = 1024
M = 8

1024-point CFFT in 8.7ms

8 x CFFT = 69.6ms
10% OMA interference 7.0
8 x host overhead " 16.0

92.6ms

2 x 1024 x 2 x a words • 163.Bms
1 x OMA 1 nterference 7. 0
l x host overhead
2 x disk access
2 x disk latency

2.0
14.0

= 16.6

203.4ms

PROCESSING LOOP TIMING:

WRITE/READ 203.4 203.4

PROCESS A 92.5 92.6

~!TE/READ A 203.4

PROCESS B 92.6

Figure 7-1 Timing for Block FFT
'

FPS 7350-01 7 32

0091

CHAPTER 8

PIOP DEBUGGER - PPDBUG

8.1 INTRODUCTION

PPDBUG provides an interactive facility for checking PIOP programs.
PPDBUG is initiated from within the AP debug program A:iDBUG by the "J"
command, which causes A:iDBUG to call PPDBUG. When the debugging
session is complete, the "X" command returns control to A:iDBUG. In
this way, debugging of both AP and PIOP code can be accomplished from
A:iDBUG.

PPDBUG has commands to:

1. Examine and/or change memory locations and registers inside
the PIOP.

2. Examine and/or change AP main data memory locations.

3. Examine contents as program words, integers, or floating
point numbers.

4. Run PIOP programs.

FPS 7350-01 8 1

8.2 OPERATING PROCEDURE

Debugging is the process of detecting, locating, and removing mistakes
from a program. When the programmer wishes to debug a PIOP program, he
loads the program into PPDBUG. The user may then control program
execution, causing the program to breakpoint at selected program
locations so that he can examine the contents of registers or memory
locations. Contents may be examined as program words, integers, or
floating-point numbers.

PPDBUG types a "*" when ready for user input.
typed when an error is detected.

8.3 MONITORING REGISTERS AND MEMORY LOCATIONS

An error message is

Registers and memory locations in the PIOP may be opened, examined, and
modified using one of the following commands:

E open and examine locations in the PIOP (or AP main data memory)

+ examine the next higher location in a PIOP memory (or AP main
data memory)

examine the next lower location an a PIOP memory (or AP main
data memory)

C change the open location

re-examine the currently open location

Z zeros out all PIOP memories

A register in the PIOP is opened with an "E" (exam), "+" (next), or"-"
(last) cot11111and. PPDBUG gets the value of the desired location in the
PIOP and types out the value on the user console. If desired, the
contents of that location may be changed with a "C" (change) command.
A"·" (re-examine) types the contents of the open register.

FPS 7350-01 8 2

8. 3. 1 "E", Open and Examine

To open and examine a register in the PIOP:

E (er)
name (er)

where NAME is the name of the desired register.

To open and examine a memory location in the PIOP:

E (er)
name (er)
location (er)

where NAME is the memory name and LOCATION is the desired
memory location.

A list of the examinable registers and memories is given in Appendix D,
page D - 5. For the purposes of PPDBUG, all functional units of the
PIOP which have addresses are considered "memories." This includes
PIOP program source memory, the PIOP ALU registers, as well as the AP
main data memory.

Some examples:

1. Examine main data memory location 23.

*
E (er)
MD (er)
23 (er)
-234.0000000

*
MD location 23 contains -234.0.

2. Examine the address register.

*
E (er)
AR (er)
40

*
MA contains 40.

FPS 7350-01 8 3

8.3.2 "+", "-", and "·" Examine Next, Last and Re-examine

To open and examine the next higher sequential memory location
above a currently open memory location:

+ (er)

To open and examine the next lower sequential memory location
below a currently open memory location:

- (er)

To re-examine the currently open memory location:

• (er)

Examples:

1. Examine AP main data memory locations 23 and 24.

*
E (er)
MD (er)
23 (er)
-234.0000000

*

MD location 23 contains -234.0, now examine MD location 24.

* .
+ (er)
MD 000024
789.0000000

*
MD location contains 789.0

2. Examine ALU registers 7 and 6.

*
E (er)
SP (er)
7 (er)
000027

*

FPS 7350-01 8 4

ALU register 7 contains 27. Now examine register 6.

*
- (er)
SP 000006
.::!l§.
*

ALU register 6 contains -136.

8.3.3 "C", Change

To change the contents of a currently "open" register or memory
location to a specified value:

C (er)
value (er)

where VALUE is an integer(s) or floating-point number (depending
upon what register or memory is "open"). (See paragraph 9.4)

To change a register or MEMORY location, the user must first
"open" it by doing an "E", "+", or "-" command.

Examples:

l. Examine AP main data memory location 20 and then change its
value to -97. 5.

*
E (er)
MD (er)
20 (er)
76.00000000

* C (er)
-97.5 (er)

*

Main data memory location 20 contained 76.Q. The user changed it
to contain -97.5.

FPS 7350-01 8 5

2. Now change main data memory location 21 to -63.4.

* -+ (er)
MD 000020
-3.000000000

*
C (er)
-63.4 (er)

*

MD location 21 contained -3.0 and was changed to contain -63.4.

3. Examine ALU register 3 and change its value to 17.

*
E (er)
ALU (er)
3 (er)
1§.

* c (er)
17 (er)

*
ALU register 3 contained 56 and was changed to contain 17.

To examine locations 156 and 157 of PIOP program source memory,
type:

*
E (er)
PS (er)
156 (er)
000400 000216 001507

* -+ (er)
PS 000157
001700 000140 000000

*

FPS 7350-01 8 6

8.4 CHANGING INPUT/OUTPUT FORMATS

The input and output format used when examining and changing registers
and memory locations may be selected using the .following commands:

N sets the radix for integers

F sets the format for input/output of 38-bit wide registers
and memory words

PPDBUG selects the proper format for input/output depending upon the
word size of the particular register or memory location that is open
and the setting of the above two flags:

1. 16-bit words: (includes the 8-bit registers AR, FLAG, and PSA)
These locations are examined or changed as integers in the
radix as selected by "N".

2. 38-bit words: AP, main data memory, PIOP program source memory,
etc. These locations are examined or changed as either
floating-point numbers, or as three integers, depending
upon the "F" flag. 20-bit registers, such as ALU and CR, are
displayed in 38-bit format.

The listing of accessible PIOP registers and memories on page D 5
specifies the width of each as:

16-bit (integer word)
or 38-bit (floating-point word or program word)

FPS 7350-01

NOTE

Integer output is always unsigned on the
range 0-177777 (octal), or 0-65536
(decimal), or 0-FFFF (hexadecimal).
Thus, negative two's complement numbers
will be typed out as their 16-bit
unsigned equivalent. For example (in
octal), -1 would be output as 177777, and
-2 as 177776, and so forth.

8 7

8.4. l ''N" Set Radix

To set the radix for all integers input/output to PPDBUG:

N (er)
radix (er)

where the radix is either 8, 10, or 16 for octal, decimal, or
hexadecimal radices, respectively. (Note that the radix number
is always in decimal.)

The contents of 16-bit wide registers (AR, FLAG, and PSA) are examined
and changed using the integer radix as set by the "N" command. In
addition, memory addresses are also entered using the current radix.

On type-outs, octal numbers may be recognized as having six digits,
decimal numbers as having five digits, and hex numbers as having four
digits.

The default radix is either octal or hex depending upon the conventions
of the host computer.

Examples:

l. Examine S-pad register 10 (decimal) in all three radices
(starting in decimal).

* E (er)
AR (er)
ill
*
N (er)
8 (er)

*
(er)

1QQ.
* N (er)
16 (er)

* (er)

The value of the AR register is 256 (decimal), or 200
(octal), or 80 (hexadecimal).

FPS 7350-01 8 8

8.4.2 "F" Set/Reset Floating-Point I/O

To select floating-point input/output of 38-bit registers
and memory words:

F (er)
1 (er)

To select integer (in the current integer radix) input/output
of 38-bit wide registers and memory locations:

F {er)
0 {er)

38-bit wide registers are split into three pieces: 10-bit
exponent, 12-bithighmantissa (bits 0-11), and 16-bit low
exponent (bits 12-27) for integer I/O.

Main data memory, PIOP program source memory, and ALU
registers are among the registers and memories whose I/O
is governed by the "F" flag.

Both examining and changing of 38-bit registers are effected
by the "F". The default setting of the "F" switch is 1 for
floating-point I/O.

1. Examine command output formats:

F=l: (floating-point number)

F=O: (exponent) (high mantissa) (low mantissa)

2. Change command input formats:

F=l: c (er)
(floating-point number) (er)

F=O: c (er)
(exponent) (er)
{high mantissa) (er)
(low mantissa) (er)

Legal floating-point numbers are of the following form:

+or-XX:.YYE+or-ZZ

where XX is the integer part
YY is the fraction part
ZZ is the exponent

FPS 7350-01 8 9

Any of the three parts may be omitted, except in the case when an
exponent is used. In this case, either an integer part or a fraction
part must also be included. The signs may be omitted if "+" is used.
The decimal point may be omitted if not needed. No spaces are allowed
inside floating-point numbers.

The following are all legal floating-point inputs.

Examples:

-2. 3E6
• 7E-3

-2
3. 65
.7

l. Examine main data address six in both floating-point and
integer. (Assume the integer radix is 16.)

*
E (er)
MD (er)
6 (er)
-1.000000000

*
F (er)
0 (er)

*
(er)

MD 0006
0200 0400 0000

*

MD register six contains -1.0. Its exponent is 200 (hexadecimal)
which has an exponent value of zero (0). The fraction part is
4000000 (hexadecimal) which is a fraction of -1.0

FPS 7350-01 8 10

2. Now change the exponent to 204 and the fraction to 2000000
and set "F" to l:

*
C (er)
204 (er)
200 (er)
0 (er)

*
F (er)
l (er)

*
(er)

MD 0006
8.000000000

*

FPS 7350-01 8 11

a.s MEMORY LOADING AND DUMPING

Blocks of memory locations may be loaded and dumped to and from files
with the following commands:

Y yank (load) into a memory from a file
W write out the contents of a memory to a file
Z zero all the PIOP memories

The user should be aware that the procedure for typing in filenames
varies greatly according to the respective system. In some systems,
the notion of user files is nonexistent. In these cases, a logical
unit number referring to an I/O device, which was opened previously by
JCL control statements must be entered in place of a filename. Other
systems allow access to disk files, line printers and terminals by
symbolic names. Thus, what must be entered for a filename depends on
the convention of each respective system. The examples given below are
only meant to be representative and may not be legal on a given system.

8. S. l ''Y", Yank from a File

To load a memory from a file:

Y (er)
memory name (er)
starting location (er)
filename (er)

where MEMORY NAME is an AP or PIOP memory, the beginning memory
address is loaded at the STARTING LOCATION. The name of the file
from which the data is to be read is called FILENAME. The
filename must, of course, be in the proper form as determined
by the particular host operating system.

Yank is typically used to load programs into PIOP program memory
and data into AP main data memory. Some examples:

l. Load a program into PS location Q. The program is assumed
to be in a file named MYPROG which was made using the
output from PPAL.

*
Y (er)
PS (er)
0 (er)
MYPROG (er)

*

FPS 7350-0l 8 12

2. Load data into MD starting at location 20 from a file
called DATA.

* y (er)
MD (er)
20 (er)
DATA (er)

*

8. 5. 2 ''W", Write to a File

To write the contents of a memory into a file:

W (er)
memory name (er)
starting location (er)
ending location (er)
filename (er)

where MEMORY NAME is an AP or PIOP memory, STARTING LOCATION
is the initial address to be written, ENDING ADDRESS is the
last address to be written and FILENAME is the name of the
file into which the data is to be written.

Some examples:

l. Write main data memory locations 20 through 40 into a
file called DUMP.

* w (er)
MD (er)
20 (er)
40 (er)
DUMP (er)

*

FPS 7350-01 8 13

2. Write main data locations 3 through 6 to the line printer
(first, in floating-point format, and second, in integer
format). (Strictly as an example, the line printer is called
LP:.) Note that data pad may be dumped only from HWDBUG.

*
F (er)
l (er)

* w (er)
MD {er)
3 {er)
6 (er)
LP: (er)

*
F (er)
0 {er)

* w (er)
MD {er)
3 (er)
6 {er)
LP: {er)

*

If the user mistypes a ''W" command, he as several options to abort the
command. If the wrong memory name or starting address was typed, then
the ~ommand may be cancelled by entering an ending address (which is
lower than the starting address). In PPDBUG, an unwanted dump already
underway (for example, when a location 1000 was typed, whereas location
100 was wanted) can be aborted by a USER BREAK. How this is
accomplished varies from system to system. Typically, on single-user
mini-computer systems, it is accomplished by raising the most
significant bit of the host switch register.

FPS 7350-01 8 14

8. 5. 3 "Z", Zero the AP

The "Z" command zeros out all the ALU registers and program source
memory locations in the PIOP. This is accomplished by:

Z (er)

8.5.4 Preparing Data Files for Yanking

Data files may be prepared by the user for loading into MD and PS by
using PPDBUG. The format of the data files is as follows:

data count
data item Ill
data item #2
data item /IN

All entries must be left justified, one entry per line.

The data count is the number of memory locations to be filled and
written as a real number (with a decimal point). Thus, if there were
three data items, the count would be "3".

The format is determined by the "F" switch setting for 38-bit memories.
For integer formats, the radix is determined by the N (radix) setting.
When floating point numbers are used they appear one per line. Also,
integers must appear one per line in the file. Thus, for 38-bit
memories written in integer format (FaO), three integers (exponent,
high mantissa, low mantissa) written on three separate . lines must be
included for each memory location.

Some examples:

1. Four element floating point data file:

4.
1.2
.3

-6E7
2. 3E-5

FPS 7350-01 8 15

2. Three element integer data for a 38-bit wide memory which will
load three integers into the low mantissa.

3
0
0
1
0
0
2
0
0
3

FPS 7350-01 8 16

8.6 EXECUTING PROGRAMS

PIOP program execution may be controlled with the following commands:

I initialize the PIOP
R run a PIOP program
X exit to the host operating system

8.6.l "I", Initialize the PIOP

To initialize (reset) the AP:

I (er)

In PPDBUG, an interface reset is done to the AP. This is necessary to
stop a program that has "run away."

8. 6. 2 ''R", Run a PIOP Program

To run a PIOP program:

R {er)
location (er)
R (er)
10 {er)

*
PPDBUG signals program return merely by a "*"·

8. 6. 3 ''X." > Exit to PPDBUG

To complete a PIOP debugging session and exit to APDBUG:

X (er)

PPDBUG types "EXIT PPDBUG".

FPS 7350-01 8 17

APPENDIX A

INSTRUCTION SET

This appendix presents the PIOP instruction set in tabular form as
follows:

Table A-1 (7 pages) Basic Instruction Set

Table A-2 (1 page) Expanded Instructions

Table A-3 (1 page) Symbols for Table A-2

Table A-4 (2 pages) Cross-Reference Set

FPS 7350-01 A 1

Table A-1 PIOP Instructions

r

f I I I SHORTHAND
OTHER

OCTAL I FIELDS
FIELD CODE MNEMONIC MEANING DESCRIPTION j ~OTATION I (ARGUMENT) I

I
IOCMO 0 - . No opera~ion. I . -

l SETMAR set memory Initates a OMA read cycle to fetch Read @ AilMA .
address. data from the AP's main data memory
!:ead at the address specified by the ALU

output. Data is not available until
6 cycles later. The sequence is:

1. SETMAR instruction
2. MDCR2• true (request to AP OMA

channel)
3. MOCA2 true (acknowledge from

AP OMA channel)
4. WAIT

I s. DCH02 (loads data into FIFO
input buffer)

6. FIFO
7. DATA AVAILABLE (If FIFO was

I empty)

I
2 SETMAW set !!!_emery Initiates a OMA write cycle at the Write @ APMA .

!ddress, location specified by the ALU output.
'!!.rite Data is written into the AP's main

data memory. Data is available in
memory after the third cycle. The
sequence is:

l. SETMAW instruction
2. CYCLE REQUEST (data in FIFO

output buffer taken)
3. CYCLE ACKNOWLEDGE (data now in

(memory)

3 SET DA set device
!ddress

Loads the device control ALU > DVCMO .
register with data present on the
ALU bus at the end of the instruction
cycle. The device control register
is a write-only register.

0039

FPS 7350-01 A 2

Table A-1 PIOP Instructions (cont.)

r I OCTAL I 1 I OTHER
I

I I
I FIELD

SHORTHAND I FIELDS I
CODE MNEMONIC MEANING DESCRIPTION .~QT A Tl ON I (ARGUMENT) I

I
I I EXP~N 0 - - No opention. - -

l I CF A s_l ear flag Clears the flag soecified by A (A is Clear flag B1T " BIT •
specified in the BIT• field).

2 RFF ~es et [I [O Resets the FIFO oointers. Causes - - .
DATA VALID and FlFO FULL to go false

I (clear).
I New data entering FIFO (through IN or

SETMAR instructions or external
handshake) falls through to the
output buffer and causes DATA VALID
to be true (set).

3 AFF !dvance [1£..0 Advances FIFO read pointer. ~ew data is - -
written into FIFO output buffer at the
end of the instruction cycle. If no
valid words are in the FIFO, DATA VALID
goes false (clear).

4 SF x §_et flag Sets the flag specified by x (x is Set flag BIT . BIT ii

specified in the BIT• field).

5 S rtlT x ~et .!.!!.terrupt Sets interrupt x. The interrupt that Set interrupt BIT il

is set executes in the second cycle BIT •
after the SINT instruction.

6 ENINT enable Enables interrupt logic. Pending - -
interrupts interrupts start executing on the

next cycle.
I 7 DIS INT disable Disables interrupt logic. - -

interrupts

10 NOP - No operation. - -
11 START start Begin program execution at current Start -

PSA location.

12 HALT l!ill Stop inmediately. Nothing else PSA < PSA + l -
in the instruction executes.

13 PSAB e.rogram Causes the four least significant PSA > 9 -
source bits of the PSA to be used as ALU
!ddress, register address 6. Can be used for
register J!. sequential loading of ALU registers

while PIOP is halted.

14 TVCR x transmit Transfers the value x (from VALUE VALUE > CR VALUE
value to field) on to the data bus and loads
control the control register (CR) with that
~gister value at the end of this cycle.

15 TVOB x transmit Transfers the value x (from VALUE VALUE > OB VALUE
value to field) on to the data bus •
iata l!_us

16 - - Not used. - -
17

I - - indicates expanded ALU instruction - ALU EX PAN
fo,,.,nt. I

0040

FPS 7350-01 A 3

Table A-1 PIOP Instructions (cont.)

I OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION USED

A 1-17 - - Contains address of one of 16 - -internal ALU registers.
' a 1-17 - - Contains address of one of 16 - - · 1 internal ALU registers.

ALU 0 - - No operation. - -
1 MOVO B ~.!!_ata Move data bus contents to ALU OB > B 8

register B. ALU output is that
data.

2 ADDO A,B add £ata Add the data bus contents to the OB + A > B A,B
contents of register A and store
results in register B. ALU output
is (DATA)+(A).

3 ~NOD A,B logical "and" Logically "and" the data bus OB !!21 A > B A,8
of £ata contents with the contents of

register A and store results in
register B. ALU output is
(OATA)"and"(A).

4 ORO A,B logical ''2!." Log lea 11 y "or" the data bus DB 2!. A > a A,B
of £ata contents with the contents of

register A and stare results in
register B. ALU output is
(OATA)"or"(A).

5 XORO A,8 logical Logically "exclusive or• the DB ~ A > a A,B
"exclusive 2!." data bus contents with the
of .!!_ata contents of register A and store

results in register a. ALU output
is (OATA)"xor"(A).

6 PASSO pass !!_ata Data on data bus passes through
the ALU unchanged and unsaved. The

OB > y -
data appears on ALU outputs.

7 PASSA A,B pass register 6. Data in register A is gated to ALU A > y A,B
outputs. Data in register a is a > a
written in to itself. PASSA is a
fast ALU path.

10 INCB B Increment Increment register B contents. B + l > y a
register ! ALU output is (B) + l.

11 OECB B decrement Decrement the ALU register B B - 1 > 1 a
register! contents. ALU output is (B} - 1.

12 INCO increment Increment data an the data bus (0) DB + 1 > y -
~ta bus and pass through the ALU (not

saved).

13 DECO decrement Decrement data on the data bus (0) OB - l > y -
¥ta bus and pass through the ALU (not

saved).

14 ADD A,B add. register Add register A to register B, II + a > y A,B
Ato register B stare the results in register B.

ALU outputs = (Al + (B).

15 SUB A,B subtract Subtract regtster A from register a - A > y A,B
register A from Band store results in register
register B B. ALU outputs = (B) • (A).

16 PASSB pass register ! Pass register B contents unchanged
on to the Y bus.

B > y B

17 PASSQ J!!ll. register Q. Pass Q register contents to ALU Q > y -
BUS (Y).

0041

FPS 7350-01 A 4

Table A-l PIOP Instructions (cont.)

I OCHL
FIELD CODE MNEMONIC MEANING OESCR l PT!ON

!
1

SHORTHAND
I NOTATION

OTHER
FIELDS

USED

TRANSFER
(SRC)

llOTE l

TRANSFER
(DST)

NOTE 2

SPEC

0 TR ALU,_ arithmetic and
Iogic ~nit

l TR (DlSPS ~lacement ~

·-
2 TR FF,_

3 TR !OR,_

f..If.O

input/output
!:egister

4 TR PSA ,_ e.rogram 1ource

5

6

7

0

2

3

4

5

6

7

TR CR,_

TR_, FF

TR_, !OR

TR_, AR

TR_, CR

!_ddress

£Ontrol !_egister

f.If.O

input/output
'Eegi ster

!ddress !_egister

£Ontrol !_egister

0 TR PS, IO e,r-ogram 1ource,
input/output
f:egi ster

l TR !OR, PS see above

Source of the data bus is
the ALU output (Y).

Source of the data bus is
the contents of the D!SPB
field.

Source of the data bus is
FIFO input buffer.

Source of the data bus is
the contents of the l/0
register.

Source of the data bus is
the program source address
register.

DB < Y

08 < DISP8 OlSP8

DB < !R

DB < !OR

DB < PSA

Source of the data bus is DB < CR
the contents of the control
register.

Indicates that the SPEC GO TO SPEC
(special) field is to be used
as the next field in the
instruction word.

No operation.

Destination is the FIFO
output buffer.

Destination is the l/0
register.

Destination is the address
register of the CPU.

Destination is the control
register.

Transfers program source
word into the l/0 register
(2-cycle instruction).

Transfers contents of !/0
register to program source
(2-cycle instruction).

NOTES

i

OB > OB I
I

DB > !OR I

I OB > AR

DB > CR

!OR < PS PSA CONTROL

PS < toR I PSACOMTROL

l. Source loaded on data bus at beginning of cycle.
2. Destination loaded on data bus at ~of cycle.

0042

FPS 7350-01 A 5

Table A-1 PIOP Instructions (cont.)

,- -- ··1--· T--,--
, I I
I I OCTAL S~ORTHANO I FIELDS

FIELD CODE ~1NEMONIC I MEANING DESCi<IFTl ON I ~lOTATION I
us;:~

---r-
1

PSA T 0 - - No Operation. T . I .
CONTROL I I I

I l I JMPAR l_ump to !ddress Absolute jump to address contained in PSA < AR -
!:.egi ster the PIOP address register (AR).

Address register can be loaded as a
data bus destination. The cante~ts of

I
the register is the 8 LSB's of the
data bus.
This instruction uses no other fields I I and is, therefore, useful for tight

I
I loops and computed GO TO's.

2 JMPST l.u!!!!!. ta g,ack Jump to address at tap of stack. Does PSA < ST .
not change stack contents so is not a
Siibroutine return instruction. TiiTS
instruction uses no other fields.

3 JMPA V l.W.!!l!. !bsolute Jump to absolute address V which is PSA · O!SP& O!SPll
contained in the OISPS field.

4 POP ~the stack Advance subroutine return stack to - -
the next address. This instruction I does !!2.! change PSA.

5 PUSH push the stack Enter the current address plus one PSA + l > ST -
in to the subroutine return stack.
This instruction does not change the
PSA. -

6 RTN !:.e1ur!l, Jump to address at the top of the
stack and advance the stack to the
next address (POP the stack).

POP ANO JMPST -

7 JSR V l_ump to Jump by the relative location V as PSA < PSA + OISP8 , OISPB
subroutine, specified by the OISPB field. Enter PUSH
:Eelative the current location plus one into

the stack.

lO BDSC x, y branch if device If device status BIT 4 x is clear, BIT :, O!SP5
itatus is £)ear branch relative as specified bv y. The

maximum displacement is +17 ta· ·20 octal
locations. If x=7, then a high level on
OS07* was sampled at the beginning of
this instruction. y may be specified
as a relative argument.

NOTE
I

0507* is one of eight sense lines i (0500* - 0507*) that allow the PIOP
to be controlled
ex terna 11 y.

11 BOSS x, y branch if device Same as above except a IT ~ x must be BIT •, OISP5
itatus is !et set for the branch to occur (OS07*

line low ifx•7).

12 BFC x, y branch if f.lag If flag BIT # x is clear, branch rela· If condition is BIT '· OISPS
£:1ear tive as specified by y (OISP5). The true, then:

maximum displacement is +17 to -20
octal locations. PSA < PSA + OISP5

)

13 BFS x, y branch if flag Same as above, except branch occurs If condition is BIT •. OISP5
!et if flag is set. !!2.! true , then :

14 BISC x, v branch if ALU If internal status BIT ~ x is clear PSA < PSA + l BIT •, O!SP5
itatus Ts £.Jear (zero) , branch as specified by y

(DISP5). Maximum displacement is +17

I
to -20 octal locations.
Internal status BIT # is defined as
follows: I

If set: O •FIFO data valid I

l = FIFO full I
2 = R shift out
3 " Q shift out
4 • ALU carry

I 5 • ALU zero
6 .. ALU sign
7 • ALU overflow

j Note that bits 2 through 7 above also
appear in the control register (CR).

FPS 7350-01 A 6 0043

Table A-1 PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND FIELDS

FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION USED

PSA 15 BISS x, y branch if ALU Same as SISC except that status If condition IBIT 11, DISPS
CONTROL ~tatus is let must be set (1) for the branch is true, then:

to occur.
These instructions are alternate mnemonics

PSA < PSA + OISPS

for the eight BISS and eight BISC mnemonics. lf condition is

I
not true, then:

BFV OISP Branch if FIFO data valid PSA < PSA + l
BFF DISP Branch if FIFO full I

BFOT DISP Branch if R-shift output • l

I
BQOT OISP Branch if Q-shift output • l
BC DISP Branch if carry set

I

I BZ OISP Branch if ALU"=O

I
BM DISP Branch if ALU is minus

BOVF DISP Branch if overflow = l

BNFV DISP Branch if FIFO data not valid

BNFF OlSP Branch if FIFO !!2! full
BNFOT OlSP Branch if R·shift output =a I
BNQOT OlSP Branch if Q-shift output = a I
BNC DISP Branch if ALU carry out is 0

I BNZ OlSP Branch if ALU is not 0
BP DISP Branch if ALU is positive
BNOVF DISP Branch if ALU overflow = 0

15 BNZST branch if ALU If ALU output is non-zero, branch to the PSA < ST
!!:ot 1ero, g_ack location at the top of the stack. For

example:

TVOB 10; MOVO CNT I
PUSH
DEC CNT
BNZST
HALT

The above loops 10 times before halting.

17 JMP X J..ll!!!l!. Jump unconditionally to the relative ?SA < PSA + OISPB OISPB
address specified by X.

0044

FPS 7350-01 A 7

I OCTAL
FIELD I CODE

IO 0

1

3

SPIN BIT 37

I

BIT 38

BIT 39

MNEMONIC

OUT

IN

IORST

SDSC x

SDSS x

SDAV

FPS 7350-01

1
Table A-1

MEANING

~ut

J1!put

input/output
~eie! -

3Jin until
device status
is £.Jear

1
I

PIOP Instructions (cont.)

DESCRIPTION

No operation.

Places FIFO output buffer contents on external
device bus (DEV02* through DEV39*) and advances
format logic. The format is specified by the
FORMAT field in the control register.

Loads the FIFO input buffer with data on the
external device bus (CEV02* through OEV39*)
at the end of the present cycle. This instruction
a 1 so advances the format 1 ogi c. The format is
specified by the FORMAT field in the control
register.

Causes PIORST* (PIDP reset) to go true (low)
which, by convention, resets all devices
connected to the PIOP bus.

Spin until device status (BIT #) is clear. PIOP
spins (waits) until device status line
referenced by x (in BIT # field) is clear (high
level) and then executes the remainder of that
instruction. Device status state is sampled at

·the beginning of the instruction cycle.

SOSC I l Ei!CUU
itEMAIKDUI

Of
lNSTR&JCTIOfll

I EJECUT[l l't[J:f
JaSTRUCTT~

I IPIM I

3Jin until
device status
is iet -

3Jin until
data
!vailable

FIELD

WORD

I

Only !NT0 (interrupt 0) interrupts spins. !f
interrupted, the remainder of the instruction is
not executed. Upon return from the interrupt, the
next instruction is executed. The SPIN is not
reentered. -

Same as above, e~cept the DS07* level is
inverted.

Spin until FIFO data is available. The PlOP spins
(waits) until the FIFO contains valid data.

SETMAR; PASSB BUF; RFF
SDAV; TRFF,DB; WORD 3; MOVO 0; AFF

The above instruction sequence puts valid data
from the AP's main data location (buffer) into ALU
register 0 and then the AFF resets the data valid
flag. The spin is a minimum of five cycles.

INPUT/OUTPUT DATA FORMAT

CODE WORD DB TRANSFERS BITS

a WORD 0 low mantissa (ML) 24-39

l WORD l high mantissa (MH) 12-23

2 WORD 2 exponent 2-11

3 WORD 3 ful 1 word 2-39

A 8

1 SHORTHAND I NOTATION

OTHER
FIELDS

USED

BIT •

SIT ~

0045

Table A-2 PIOP Expanded Instructions

I

OCTAL I I
I I OTHER

I SHORTHAND l FIELDS
I FIELD CODE MNEMONIC MEANING DESCRIPTION I NOTATION USED

i
I

I I I I
I I ALUSRC 0 AQ - I i A > R' Q > s

I
A

! i

I

l AB -
I

I A > R, B > s I
B I

I 2 ZQ - All of these codes are used to I 0 > R, Q > s I -
i select the data source for the

i I
3 ZB - R and S input fields of the ALU. 0 > R, B > s a

I 4 ZA - Note that A and 8 fields are 0 > R, A > s A
deferred. That is, the A (or B)

I 5 DA - field selects one of 16 DB > R, A > s A
I registers. The contents of the

I I 6 DQ - selected register is then moved DB > R, Q > s I -I into either the S or R input I 7 DZ - field of the ALU. 08 > R, l'l > S I -
ALUOST 0 Q Internal work l

register F > Q, F > y ALUFCN

l NP - All of these codes are used to F , y ALUFCN
select the destination that is

2 A A field to receive the ALU output F > B • A > y A, ALUFCN
function.

3 F ALU function F > a • F > y 8, ALUFCN
Mnemonics are:

4 RQ Right shift Q F/2 > B • Q/2 >
Q = internal work register

I
Q • F > y B, ALUFCll

5 RF Right shHt F = ALU function I
ALU function I F/2 > B , F > Y B, ALUFCN

Y = ALU output bus
I 6 LQ Left shift Q 2F > a • 2Q >

Note that a right shift is a

I
Q • F > y B, ALUFCN

divide by 2 while a left shift
7 LF Left shift is a multiply by 2.

ALU function 2F > B , F > Y B, ALUFCN

ALUFCN 0 AO add F=R+S+C ALUSRC, ALUOST

l SB subtract F " S - R ALUSRC, ALUOST

2 SR subtract, These codes are the function F • R - S ALUSRC, ALUOST

I
reverse perfonned by the ALU.

3 OR logical "or" R and S are ALU input operands. F=R!!!:.S ALUSRC, ALUDST

4 AN logical "and11 The ALUSRC field selects the F " R !!!!!, S ALUSRC, ALUOST
source for R and S; the ALUDST

5 NA logical 11 nand 11 selects the destination for the F" "~' Rand S ALUSRC, ALUOST
ALU output after the selected

5 XO exclusive "or" function has been perfonned. F=R3.2!,S ALUSRC, ALUDST

7 XN "exclusive "nor" F 2 11 not 11 R 3.2!, S ALUSRC, ALUOST

SH 0 - default Shi ft 1 n zeros - I -I
1 N - Shift in ones. - I -
2 R r,otate Rotate (shift out becomes shift in) - i -
3 A arithmetic Sign extend on right shift; fill - I -

shift with zeros on left shift.
;
i c 0 - default - F " F ALUFCN

I 1 I - - F = F + 1 ALUFCN

0046

FPS 7350-01 A 9

Table A-3 Symbol Definitions

SYMBOL DESCRIPTION j

A Register A - one of 16 internal registers (scratch-I
pad memory of ALU). The specific register to ~e j
~sed is specified by a 4-bit binar.'f number in the
A field. J

B Register B address - one of 16 internal registers l (scratchpad memory of ALU). The specific register
to be used is specified by a 4-bit binary number
in the B field.

NOTE

The same 16 registers are used by
both A and 8 fields. For
example, the A field may specify
register •Z while the B field
may specify register #14.

DB
Data Bus • the bi-directional bus connecting
the transceiver to the other PIOP circuits.
The mnemonic DB is also used for data bus.

Q Register Q - an internal work register.
--

R ALU Input Register R - one of two inputs to
the ALU. Designates the left-hand input in a
double-operand statement.

s ALU Input Register S - One of two inputs to
the ALU., Designates the right-hand input in a
double-operand statement. .

y ALU Output Bus Y - indicates the output bus of
the ALU. More specifically, the output of the ·
ALU Bus Select Logic.

z Represents binary O's. For example, the
expression Z > R indicates that all zeros
are loaded into the ALU R input register.

F Results of the ALU function which are applied
to the ALU destination.

0047

FPS 7350-01 A 10

Table A-4 Cross-Reference List

OCTAL SHORTHAND OCTAL SHORTHAND
MNEMONIC FIELD CODE NOTATION MNEMONIC FIELD CODE NOTATION

A ALUOST 2 F > B, A > Y EN!NT EX PAN 6 -
A SH 3 -
AB ALUSRC l A > R, B > S F ALU DST 3 F > B, F > Y I
AO ALUFCN a R + S + C

ADD ALU 14 A + B > B HALT EXPAN 12 Halt, PSA < PSA + l I
ADDO ALU 2 OB + A> B

AFF EXP AN 3 - IN IO l -
· AN ALUFCN 4 R and S INCB ALU 10 B + 1 > B

ANDO ALU 3 DB and A > 8

AO ALUSRC 0 A > R, Q > S

!NCO ALU 12 DB + l > V

IORST 10

I
7 -

BOSC PSA lO JMP PSA 17 PSA < PSA + DISPB

BOSS PSA ll If condition fs JMPA PSA 3 PSA < OISPB
true, then:

BFC PSA 12 PSA < PSA + OISPS JMPAR PSA 1 PSA < AR

BFS PSA 13 If condition is JMPST PSA 2 PSA < ST

BISC PSA 14
not true, then:
P5A < PSA + l JSR PSA 7 PSA < PSA + OISPB, PUSH

BISS PSA 15

SNZST PSA 16 PSA < ST LF ALU DST 7 ZF > B, F > Y

LQ ALU DST 6 2F > B, 20 > Q, F > y

CF EXPAN l clear flag BIT f

MOVO ALU 1 DB > 8

DA ALUSRC s OB> R, A> s

08 OST 0 - N SH 1 -
OECB ALU ll B • l > B NA ALUFCN 5 "!12!'.' R and S

DECO ALU 13 OB - 1 > Y NP ALUDST 1 F > y

OISINT EX PAN 7 -
!iQ ALUSRC 6 OB > R, Q > S

oz ASUSRC 7 OB > R, ~ > S

0048

FPS 7350-01 A ll

Table A-4 Cross-Reference List (cont.)

OCTAL SHORTHAND
~NEMONIC FIELD CODE NOTATION l

I
OCTAL SHORTHAND

MNEMONIC FIELD CODE NOTATION

OR

I
ALUFCN 3 R 9.!. S

ORO ALU 4 DB 9.!. A > B I

OUT IO 2 -

TR ALU, •• TR(SRC) 0

I
DB < Y

TR,CR, -- TR(SRC)

I
5 DB < (CR)

TR(DISPS) , .• TR(SRC) l DB < (DISP8)

TR FF, -- TR(SRC) 2 DB < (IB)

PASSA ALU 7 A>Y,B>B TR !OR, -- TR(SRC) 3 DB < (!OR)

PASSB ALU 16 B > y TR !OR, PS SPEC l PS < ([QR)

PASSO ALU 6 DB > Y TR PS, !OR SPEC 0 (IOR) < PS

PAS SQ ALU 17 Q > y TR PSA, •• TR(SRC) 4 OB < (PSA)

POP PSA 4 - TR .• , AR TR(DST) 4 DB > (AR)

PSAB EX PAN 13 PSA > B

PUSH PSA 5

I

?SA + l >ST

Q ALUOST 0 F > Q, F > Y

TR --, CR I TR(DST) 6 DB > (CR)

TR --, FF TR(DST) 2 DB > (OB)

TR --, !OR TR(OST) 3 DB > (!OR)

TVCR EXP AN 14 VALUE > CR I
TVDB EXP AN 15 "'ALLIE > DB

I

R SH 2 - TVEX EX PAN 16 I VALUE > EXP

RF ALUOST s F/2 > B, F > Y I
RFF EX PAN 2 - WORD 0 WORD 0 -
RO ALU OST 4 F/2 > B, Q/2 > Q, F > Y WORD 1 WORD 1 -
RPI PSA 6 POP and JMPST WORD Z WORD 2 -

WORD 3 WORD 3 -
I

SB ALUFCN l S - R

SOAV SPIN - - XN ALUFCN 7 "not" R ~ S

sosc SPIN . - XO ALUFCN 6 R ~S

soss SPIN - - XORO ALU 5 08 ~A> B

SETOA IOCMD 3 ALU > OVCMD

SETMAR IOCMD l Read APMA ZA ALUSRC 4 0 > R, A > S

SETMAW IOCMO 2 Write APMA ZB ALUSRC 3 0 > R, 8 > S

SF EX PAN 4 Set flag BIT " zo ALUSRC 2 0 > R, Q > S

SINOC IO 4 -
S!NDS [0 3 -
S[NT EX PAN 5 Set interrupt BIT ~

SOTOC IO 6 -
SOTOS IO s -
SR ALUFCN 2 R - S

START EXP AN 11 Start

SUB ALU l 15 6 • A > B

0049
FPS 7350-0l A 12

APPENDIX B

PIOP INTERCONNECTIONS ·

Figure B-1 illustrates the lines and buses that connect the PIOP to the
AP and that connect the PIOP to the external device. Tilis diagram is
not intended to be a complete schematic but 9 rather 9 is presented to
aid the programmer in understanding how the PIOP communicates with the
outside world.

FPS 7350-01 B 1

~
Cll

~
VJ
l.A
0

b
N

b:I

N

AP

OA 100 (IOR)
OUT (DPBS - IOR)

IN (IOR - INBS)

PROGRAMMED SNSA (DEPOSIT)
SNSB (EXECUTE)

1/0

DAIOI
BUSY TO IOORDY

OUT SETS INT3
SNSB RESETS PIOP

OAllO - OAl17 (FLAGS)
FLAG GATED TO IODROY

OUT SETS FLAG
SNSB RESETS FLAG

ANY AOORESS
IORST RESETS PIOP

FIFO
..1'. 18

OMA MOIJ2• - M039*) FULL
WORDS

(SEE AP MAINTENANCE
MANUAL FOR BUS

<
flfO

CllARACTERIST ICS) OB
MOlil2 - MOl 39 FULL

WO ROS
)

MOCR2• 4-
MOCA2
DCll02

MOWRT• ...

PIOP EXTERNAL DEVICE
-----!

-) SETDA -t> oc00• - oc 19• COMMA NO

r i.._
I'"

srnsrn r-
BY

soss ~
sosc I
BOSS

It-eosc

'
OUT A JI. IN K 0Ev02• - OEV39• & HANOSllAKE

ENABLES IN "f -v
THE PIOP

CONTROL REG

+5

{"'""
lK TYP

IF ARMED TO
ANU PSI' le--ENABLED PSl

PS2 L.._

PS3

) SETMAR
SET MAW

....

...
r ...

DEVICE CONTROL
REGISTER OUTPUTS
(B641 OUTPUTS)

os00•

7414 INPUTS

0SgJ7•

DEVICE DATA BUS
OUTPUT FROM FIFO OB
LOAOEO INTO FIFO 18
(FORMAT OEPtNOENT)

8641 ll•"UT
t5 OUTPU'

! 3D

l 35)

INTil
INTl
INT2
INTJ

+5

7414 INPUTS t IK

PIORST•
OA•
ACK*
18 BUSY*
18 LOAO*

·is 330
74538

390
..,-

~1()92

Figure B-1 PIOP Interconnection Diagram

APPENDIX C

SPECIAL STORAGE ELEMENTS

c.l INTRODUCTION

Certain hardware elements are used to store data in a specific
One such element stores data on a first-in, first-out basis
therefore, referred to as a FIFO memory element. Another such
stores data on a last-in, first-out basis and is referred
"stack."

manner.
and is,
element
to as a

Both of these elements are used in the PIOP. One element is the FIFO
memory which is part of the transceiver. The other element is the
subroutine return stack. Each of these elements is discussed in a
subsequent paragraph.

FPS 7350-01 c 1

C.2 FIFO MEMORY ELEMENT

A first-in, first-out (FIFO) memory element allows information to be
retrieved in the same sequence as it was stored. Thus, a FIFO memory
might be thought of as a buff er between elements that operate at
different speeds. One element might load the memory slowly while
another element might retrieve data from the memory in a high-speed
transfer. A FIFO me!llory is often referred to as a "fall through"
memory because data is entered at the top of the memory and is allowed
to "fall through" to the bottom of the memory where it can then be
retrieved.

If;

Operation of a FIFO memory is dependent on two pointers: a write
pointer and a read pointer. Whenever data is to be loaded into the
memory, the write pointer indicates the first available memory
location. After the data is loaded, the pointer moves to the next
sequential location. This process is repeated as often as necessary to
load the required data, or until the memory becomes full. During read
operations, the read pointer is initially positioned at the memory
location where the first data item has been stored. After the data
item is read, the read pointer moves to the next sequential memory
location. This process is continued until all of the required data
items have been read.

Operation of a typical FIFO memory is shown in Figure C-1. As shown on
the figure, both the read pointer (RP) and the write pointer (WP) are
initially equal.

As shown in Step l in the figure, the first data item (lst) is loaded
into the memory location indicated by the.write pointer (WP) and then
the pointer is incremented to move it to the next sequential location.
Note that the read pointer (RP) never moves during a write operation.

During Step 2, the second data item (2nd) is loaded and then
pointer· is incremented to move it to the next sequential
During Step 3, the third data item is loaded and the pointer
again. This operation can continue as long as data items
entered or until the memory is full.

the write
location.

advanced
are to be

When unloading the memory (reading), the first data item is read
(retrieved from memory) and the read pointer (RP) is then incremented
to advance it to the next location. This process is continued until
all items have been read. Note that the data items are read in the
same order as they were written. That is, the data loaded first (lst)
is the data that is unloaded first.

FPS 7350-01 c 2

·······~ : RP ; ls t
....... , 2nd 0 ,. ·.· .. ~ '. RP : !st

· · 2nd

~

............
; lst ' RP ,.·

2nd

3rd i 3rd ,__ __GJ

~--1-st _ _,

2nd

3rd
1-----; /''" ,

: WP t .__ __ ___.,, ... -•

2nd

3rd 3rd ____ ... ·"'··--
< WP: .__ __ ___. ·.1······

___ __,.1 ,
:· WP ; ____ ___.

0093

Figure C-1 Operation of a Typical FIFO Memory

FPS 7350-01 c 3

C.3 STACK

A last-in, first-out stack is used to provide return address linkage
when executing subroutines. This type of stack allows items to be
added in sequential order and then be retrieved· or deleted from the
stack in the reverse order. It is not necessary for the programmer to
keep track of the actual locations that data is loaded into; this is
handled automatically by a "stack pointer."

A last-in, first-out stack is also referred to as a "pushdown" stack.
As each item is added to the stack, the previous item is "pushed" down
into the stack, and the last item added takes the top position on the
stack. The words "push" (moved down into the stack) and "pop"
(retrieve the most recently stored item from the top of the stack) are
used to describe stack operations.

JSR saves
Once the

to the

Whenever a subroutine call is made (a JSR) instruction, the
the current program counter by pushing it on to the stack.
program counter is saved, the JSR causes the program to jump
specified location.

Whenever a return from subroutine call is made (an RTN instruction),
the RTN instruction pops the stored program counter from the top of the
stack and then causes the program to jump to the location specified by
the popped word. In other words, the program jumps back to the same
location it was prior to the JSR execution.

When a subroutine call is made within a subroutine, it is referred to
as "nesting." In this case, the program counter from the first
subroutine call is pushed on the stack first, then the program counter
from the second subroutine call is pushed on the stack, etc. When
returning to the main program, the last program counter stored is
popped first to return to the last subroutine called. Then the next
program counter is popped, etc. The last word to be popped is the
first program stored. Because a 4-word stack is used in the PIOP, up
to four subroutines can be nested.

Figure C-2 illustrates how the stack functions. Note that unlike the
FIFO memory, the stack has only one pointer which is referred to as the
"stack pointer" or "SP." This pointer initially points to some
location. When a word is loaded into this location, the pointer moves
down to the next sequential location. This process may continue until
the stack is full.

When a word is to be popped, it is retrieved from the current location
of the stack pointer and the pointer then moves to the preceding
location. This process may continue until the stack is empty. Note
that the last word pushed on to the stack (4th word) is the first word
popped from the stack.

FPS 7350-01 c 4

FPS 7350-01

. ls t

2nd

3rd

, __ 4_t_h_..I~

1st

2nd

L---3r_d _ _,~

lst lst
2nd 2nd

3rd ~

lst l
2nd l
3rd J
4th I~

DIRECTION Q
OF STACK
POINTER

Figure C-2

c

lst

DIRECTION
OF STACK
POINTER

Stack Operation

5

0094

APPENDIX D

SUMMARY OF PPDBUG COMMAND~

D.l INTRODUCTION

Abbreviations used in the following appendix:

Symbol

(er)
loc
count
val
fpn
mem
reg

Meaning

carriage return
an integer location number
an integer count
an integer value
a floating-point number in form acceptable to FORTRAN
the name of a PIOP internal memory (or AP main data memory)
the name of a PIOP internal register

Debug types an "*" when ready for further action. An "ERROR ~ESSAGE"
is typed when a command is not understood.

FPS 7350-01 D 1

D.2 PROGRAM EXECUTION COMMANDS

I (er) Initialize. Reset the PIOP before program execution
is resumed next.

R (er) Run. Begin program execution at PIOP program source
loc (er) location LOC.

x (er) Exit to APDBUG.

FPS 7350-01 D 2

D. 3 REGISTER EXAMINATION /MODIFICATION COMMANDS

E
reg

E
mem
lac

+

F
val

c
val

N
VAL

z

(er)
(er)

(er)
(er)
(er)

Examine register. Print out the contents of PIOP
register REG.

Examine memory. Print out the contents of PIOP
memory MEM (or APMD), location LOC.

(er) Re-examine the currently open register or memory
location (the last location examined).

(er) Examine the next higher sequential memory location
of the memory that is currently open.

(er) Examine the next lower sequential memory location
of the memory that is currently open.

(er)
(er)

(er)
(er)

(er)
(er)

(er)

Floating Point Flag, affects the input/output of
38-bit wide registers and memory locations.

VAL=O

VAL=-1

3 integers (exponent, high mantissa, low
mantissa)

floating-point.

Change. Change the contents of the currently open
register of memory location to VAL. The format of
VAL depends on the width of the current open locations
as follows:

16-bit wide registers: an integer of the current radix

38-bit wide registers:

F=O VAL (er) three integers in the current radix
VAL (er) which represents the exponent, high
VAL (er) mantissa, and low mantissa

F=l: FPN (er) a floating point number legal to FORTRAN

Number radix. Set the radix for integer user
I/Oto VAL, which must be 8 (for octal), 10 (for
decimal) or 16 (for hexadecimal).

Zero. Zero out all ALU registers and PIOP program
source memory.

FPS 7350-01 D 3

D.4 MEMORY LOAD/DUMP COMMANDS

y

MEM
LOC
filename

w
MEM
START
STOP
filename

FPS 7350-01

(er)
(er)
(er)
(er)

(er)
(er)
(er)
(er)
(er)

Yank. Load memory ME1 start::!.ng at location
LOC from an external data FILENAME.

Write. Dump memory MEM starting at location
(START) and ending at location (STOP) to
external data FILENAME.
MEM can be PS or MD.

D 4

n.s ACCESSIBLE FUNCTIONAL UNITS

AP Functional Units that may be examined or changed with PPDBUG:

~MORIES

Mnemonic Name Width

PS PIOP program source memory 38.
MD AP main data memory 38
ALU ALU registers 20

REGISTERS

Mnemonic

AR
FF
FLAG

!OR
PSA
CR
Q

FPS 7350-01

Name Width

address register 8
FIFO register 38
8 PIOP flags 8
(flags 0-7, left-to-right)
I/O register 38
program source address 8
control register 20
Q register 20

D 5

Notice to the Reader

• Help us improve the quality and usefulness
of this manual.

Your conments and answers to the following
READERS COMMENT form would be appreciated.

1 io mail: fold the form in three perts so
that Floating-Point Systems 1

mailing address is visible for
the post office carrier; seal.

Thank You

READERS COMMENT FORM

Document Tit le -------------

Your comments and answers will help
us improve t.~e quality and usefulness
of our publications. If your answers
require qualification or additional
explanation, please comment in the
space provided below.

How did you use this manual?

{) AS AN INTRODUCTION TO THE SUBJECT
() AS AN AID FOR ADVANCED TRAINING
() TO LEARN OF OPERATING PROCEDURES
() TO INSTRUCT A CLASS
() AS A STUDENT IN A CLASS

) AS A REFERENCE MANUAL
() OTHER ----------

Did you find this ~aterial . I I

YES NO

• USEFUL? () ()
I COMPLETE? {) ()

I ACCURATE? () ()

• WELL ORGANIZED? () ()

• WELL ILLUSTRATED? () ()

• WELL INDEXED? () ()
t· EASY TO READ? () ()

• EASY TO UNDERSTAND? () ()

Please indicate below whether your
comment pertains to an addition,
deletion, change or error; and, where
applicable, please refer to specific
page numbers.

Page Descr1Ption of error or deficiency

From:
Name _______________ ~
Firm _________ _

Address
Telephone

Title ---------
Department-------
City, State--------Date ____________________ _

__________ .__. ____ .._. _____________________________ _

BUSINESS REPl.Y
i.o ~·sumo ,,.. • ...,., if mail-S in U'I• United SWH

Ft..OATlNG POINT SYSTEMS, INC.

F.O. 8cx23489.
Portland, Or1:9on 9722:3

Attention: Teehnicai Pubiications

First C:u.
?9nnit No. A-n::'

i=t'Jntand.
Oregon

------~------------------------

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-54 7-1445
PO. Box 23489, Portland, OR 97223
(503) 641 -3151 , TLX: 360470 FLOATPOINT PTL

