s [1eve /2

FERRANTI
PEGASUS COMPUTER

LIBRARY
SPECIFICATIONS

VOLUME II

This document is a facsimile of the original book, transcribed by Christopher P
Burton of the Computer Conservation Society in 2003by the following method:

Each page scanned at 200dpi using Textbridge yielding 1-bit/pixel .tif files.
Each image was then cropped by eye to have almost no white margins.

Pages in the original (foolscap paper) which had text longer than A4 were cut and
pasted to squeeze on to A4 size.

Files were then saved as .gif image files.

Word for Windows was then used to assemble the document, inserting one .gif
image per page, with one inch left margin, 0.2 inch top margin, O right margin,
0.1 bottom margin on A4 paper. The images were ranged top left against those
margins. It was necessary to fractionally reduce the size of each image to be
dlightly less than 11.38 inches high, rather than allow automatic fitting by Word.

The document was saved and then output to an Apple Laserwriter 11 NTX but
output to file, not actually printed. Requests to fix margins were not over-ruled.
This created a PostScript file of the document, about 250 MB long.

The PogtScript file was then input to Frank Siegert's PStill program which
convertsto PDF to yield this document.

At the front of Volume 1 are loose pages of modifications.

© FERRANTI LTD 1958

The issue by Ferranti Ltd. to any person of the Library
Specifications included herein by Ferranti Ltd. carries
with it the right to that person to use without further
charge any of the programmes described therein with a
Ferranti Pegasus Computer, for purposes of computation
only.

The Library Specifications included herein by Ferranti
Ltd. may not be reproduced in whole or in part without the
prior written permission of Ferranti Ltd.

R 2500

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
17.1.57
MATRIX INTERPRETIVE SCHEME

A scheme for simplifying the programming of matrix calculations using floating
point arithmetiec.

CONTENTS
Page
1. Introduction e .o .s ‘e . .e - 3
2. Practical Points of the Scheme - e 3
2.1 Storagee e .e e . 3
2.2 Scaling .o e - .o - .. . ve ‘e o 3
2.3 Input . v .o .o .. .e .e 3
2.4 Output .e - .. .o - 4
3. Limitations of the Scheme .. .e ‘e . .. ‘e - e 4
4, How to use the Scheme ‘e . - ‘s .. . «e 5
4.1 What it does .. . e - - .. .o - . v B
4.2 How to allocate the store e .. .o e B
4,3 How to write matrix-instructions e . - - ve .. 5
4.3,1 Notation e ‘e . . .e .o s 5
4.3.2 Functions .. .- ‘e v . « 6
4,3.3 Writing the instructions . ‘e . . . |
4,3.4 Example .. . - e 1
4.3.5 Punching the tape .e . ‘e e . . «s B
4.3.6 Other Functions -. va ‘e . .e .o . .. 9
4.4 The Programme for reading matrix-instructions .o 9
4.5 How to punch dat® on the tape .. . e .o ‘e .o .. 8
4,6 The Output of Results . .e . .e - .a . . 10
4.6.1 Floating-point forme ‘e .o . 1l
4.6.2 Fixed-point form .. .e .o e . .s .e . 12
4.7 Additional Facilitieso . . ve .. 14
4.7.1 To enter machine-orders from the Scheme .. ‘e .o o 14
4.7.2 To jump in the Scheme .. .e . .s .e .o .. 15
5. Use of the Scheme with preset parameters .. .o . .o - s 15
6. Machine Operation ‘e . - . ‘e ‘e 17
6.1 Operation of the Scheme without Preset Para.meters . ‘e . 17
6.1.1 Programme Tapes .. .o e .- .o e e o 17
6.1.2 Data Tapes .se .e .e .17
6.2 Operation of the Scheme with Preset Parameters e .o .. .o 19
6.2.1 Programme Tapes .. - .e .o - .e .e e 17
6.2.2 Data Tapes . .oe .o .e .. 18
6.2.3 The Operation of the Interlude 18
6.2.4 Changing Parameters .e ‘e 19
6.2.5 Entering the Matrix Programme . .e 19
6.3 Speclal Uses of Presei Parameters .e . .o .. ‘e .o 19
6.4 Corrections to Metrix Programmes . . .e .. .o .. 19

R 2500

bage 2

7.

8.
9.
i0.
11.
12.

6.5 Gaps between Matrix Instructions .. .o
6.6 Calculation of the Address List .o ‘e
6.7 Stopse ‘e . - .e
6.7.1 During data input - . ‘e
6.7.2 During binary data input .. .s
6.7.3 During division and normalise orders
6.7.4 Matrix-instruction * (asterisk) ..
6.7.5 During Order Input .. .s .s
6.7.6 During other matrix-instructions ..
Allocation of the Store ‘ee
7.1 Transposition .e .o .n .o .e

7.2 Multiplication
7.3 Division .. .e . - .e
Speed of Operation .e e . -
The Representation of Floating-Point Numbers
How matrix-instructions are interpreted ..
Modifications to the Scheme .. .o o
Binary punching of matrix programmes .a

20
21
21
21
22
22
22
22
23
23
23
23
23
24
24
25
28
30

page 3 R 2500

1. INTRODUCTION

Many of the calculations arising in industry can be expressed in matrix
form. It is therefore important that the preparation of these calculations for a
digital computer should be as quick and easy as possible. This scheme is a means of
specifying in easy and concise terms the transformation between the matrix form of
the problem on paper and the actual operation of the machine.

The programme which carries out the operations to be described is called the
Matrix Interpretive Scheme. The problem to be solved must first be expressed in
matrix form. Then a method of solution has to be thought out and expressed as a
sequence of, elementary matrix operationsﬂ e.g. the input of a data-matrix into the
computer, or the multiplication of one matrix by another. Each of these elementary
steps is then written down as a single instruction which defines the operation
required and the positions in the computer’s store of the matrices involved. The
whole sequence of matrix-instructions is called a matrix-programme.

In use the programme of the Matrix Interpretive Scheme is first read into
the store of the computer by the Initial Orders in the ordinary way. The Interpretive
Scheme programme then reads in the tape on which is punched the matrix programme.
When the whole tape has been read and stored the individual matrix-instructions
making up the matrix-programme are examined and decoded in turn by the Interpretive
Scheme programme, which then carries out the operations called for.

The notation used for the matrix-instructions has been designed to be
simple. The aim has been to make it possible for the person originating the problem
to write the programme in this form, which is directly acceptable by the computer.

2. PRACTICAL POINTS OF THE SCHEME
2.1 Storage

The user of the scheme can visualise the store of the computer as a continu-
ous strip of 3070 locations, (3072 if he is prepared to overwrite the date and serial
number) each of which can hold one element of a matrix. The elements of a matrix
occupy a block of consecutive locations on this strip. It is a very important
practical point that a matrix consists of nothing more than its individual elements
arranged in a certain order, and that each element can stand on its own as a number.
Thus there are no row or column checksums or overall scale factors, and the dimensions
of the matrix are not stored explicitly with the data, This makes it possible to
change or extract individual elements, or groups of elements, to regard a rectangular
matrix as s number of columns, to deal relatively easily with partitioned matrices,
and in general to make efficient use of the storage space available., When a particu-
lar matrix is no longer needed the space it occupies in the store may be used again
at a later stage, giving great economy of storage space.

2,2 Scaling

An important feature of the scheme 1s that the user can consider all numbers
to be in their normal decimal form (with the decimal point wherever he wishes);
when these numbers are taken into the computer they are converted automatically into
binary floating-point form (a.2") which is used for all subsequent operations (the
converse applies on output). This eliminates difficulties in scaling or ‘overflow’
and enables the numerical data to be read into the machine in the form in which
they occur.

2.3 Input

The instructions and the numerical data are punched on to paper tape. The
elements of the matrices are punched as written, each preceded by its sign and

R 2530 page 4

During the printing of vectors in the back-substitution, row numbers will
normally be punched, but may be suppressed by setting HO = 1,

5. MONITORING

After each iteration, the current approximation to the vector is compared
with the previous one, and the following expression is computed,

LA
2 oxo-x)
=1+

where x% is the ith element at iteration a, n' is the order of the matrix upon which
the iteration is being performed.

This is a double-length quantity, and will become gradually smaller as the
vector converges, The first half of this quantity is displayed in U 0,7 for as long
as it is non-zero, and is then replaced by the second half, Which half is in fact
being displayed can be recognised by the fact that the second half has a one in the
sign digit position. This sign digit has no numerical significance, both halves
being essentially positive,

This quantity will in general not come down to absolute zero, as it is not
possible to obtain more accurate digits in the vector elements than are being kept in
the root.

The root itself is available for monitoring in a scaled-down form in U 0,0.
It is usually possible to get this to converge to the last binary digit, but in some
cases it will oscillate between two adjacent values.

6. AN ADDITIONAL FACILITY FOR SPEEDING CONVERGENCE

In addition to the Aitken process, described in Section 7 below, a further
facility for speeding up convergence is available., It is a modification of the
process described on Page 537 of Wilkinson’s paper. A fraction, p, may be set up on
the six least significant handswitches (14-19), with 14 as its sign-digit, and the
following iteration will then be performed:

(d - p A Dix,

This has the effect of moving the origin so that, if o is reasonably well
chosen, the effective convergence ratio is improved. The reason for the factor A
(which is the current approximation to the root) is to make it unnecessary for the
operator to consider the scaling inside the machine.

7. GENERAL REMARKS ON OPERATION
7.1 The Aitken Process

This is the most useful facility for speeding convergence. It should not
be applied before the root has begun to settle and the quantity in 0.7 has begun
to decrease steadily. Once it has been used a few normal iterations should be
allowed before it is employed again., It will not normally be of any assistance
once the root has almost converged, as it will by then be operating mainly on
round-off errors.

7.2 Change of Origin

This is the facllity described in Section 6.

page 5 R 2500

4, HOW TO USE THE SCHEME
4.1 what it Does

The matrix interpretive scheme enables a complete matrix operation to be
performed by writing one single matrix-instruction., To enable s complete matrix-
programme to be built up it is necessary to have certain other functions. These
have been provided for in the scheme and a complete matrix-programme, comprising
many separate matrix-instructions, can be built up quickly and easily.

The list of functions is comprehensive as far as the majority of matrix
work is concerned. A single matrix can be copied, transposed or normalised. Two
matrices can be added, subtracted, multiplied or divided. Matrix-instructions are
also used for the input and output of matrices. 1In addition to rectangular matrices,
the scheme is designed toc operate on diagonal matrices, row-vectors, column-vectors,
and scalar matrices. The row- and column- vectors are regarded simply as special
cases of rectangular matrices,

4.2 How to Allocate the Store

Each matrix element stored in the machine occupies one storage location, of
which 3,070 are available to the programmer. A matrix is stored within this space
in colums: & matrix of order m x n occupies mn storage locations. Por a diagonal
matrix, only the diagonal line is stored so that a diagonal matrix of order n x n
occupies n storage locations. A scalar or a scalar matrix is stored as a single
element. The scheme has been written so that in most operations the results may be
written over one or other of the operands; exact details of what may be done are
given later,

4.3 How to Write Matrix-Instructions
4.3.1 Notation

In each matrix-instruction it is necessary to indicate the function, the
order of the matrices and the type of matrices involved (i.e. rectangular, diagonal
or scalar) and where they are held in the store, The following notation will
serve in explaining how each instruction is to be written;

Matrices A, B, C, are the two operands and the result respectively, Na. Nb.

ﬁ% are the addresses of the storage locatjons of the initial elements of A,B,C

respectively., (N, Nb, N, lie between 1 and 3,070: 0 is the address used when it is
required to input or output a matrix)., m, n are the orders of matrices, i.e. anm x n
matrix has m rows and n columns (m, n must not be greater than 255)

m x n signifies a matrix of m rows and n columns,

m/ signifies a diagonal matrix of order m.

m x 1 signifies a column-vector of m elements.

1 x n signifies a row-vector of n elements,

No order need be specified for a scalar or a scalar matrix,

A rectangular matrix A of order m x n is written
Ny moxn)
A diagonal matrix A of order m is written

(”a; m/)

A scalar matrix A of any order is written

¥a)

R 2500 page 6

4.3.2 Functions

The functions are represented as follows:-

Copy
Input

Qutput

Transpose
Add
Subtract
Multiply
Divide

Normalise

Convert to fixed-point form

Transpose ‘in situ’

Binary Output

Binary Input

A=+ C
0=

Ax,y) » 0
(see parsgraph 4.6 for x,y)

A" C
A+B=+C

A-B=>C

AxB-»C

AB> C (i.e. A 'B goes to C)

AnB-» C
(scale largest element to 1 and store scale
factor in ¥p)

AVB - C
(store scale factor, i.e. exponent of maximum
element, in Np)

A/~ C where C = A
(For square matrices only, enables the transpose
to be formed without using working space.,)

Av—> 1

For punching out matrices which it is required
to read in later, and which need not be intel-
ligible.

The output will be preceded by about 6" of
blank tape, and when it is desired to re-input
the matrix the tape should be placed in the
reader anywhere along this blank tape. There
will be a checksum at the end of the matrix.

ov - N,
To be used in conjunction with the binary output
instruction,

A matrix which has been punched out column by column using binary output
instructions can be read in later as a complete matrix.

If it is desired to output a complete rectangular matrix and later read it
in, column by column, the output instruction must be of the form

Av — 9,

This instruction causes & checksum to be punched after every column. The
matrix may be read back columh by column, several columns at a time, or

as one complete matrix.

Certain other functions are available and are described below (Para.4,3.8),

page 7 R 2500

4.3.3 Writing the Instructions
The full instructions are written as follows:-
To copy matrix A from one location to another we write
(Ng, m x n) 2 N,
To add matrix A and matrix B we write
Ny, m xn) + (Np, mxn) >N,
To normalise a row-vector we write

Wy, 1 xn)yn (W) 2N,

N.B. If we wished to save storage space here, the normalised vector could replace
the original, and we would write

Ny 1 x n) n (Nb) -)Na
Nb signifies one storage location only and stores the scale factor.

To input a matrix, the instruction is

(O,MXH)"’NC

To output a matrix, the instruction is

Wy mxm) (x,¥) 20

4.3.4 FExample

Figure 1 gives an example to show how these matrix-instructions are written
and how a complete matrix-programme may be built up.

' R 2500 page 3

Figure 1 It is required to form the column-vector {y} given by

{y} = [erj + Q [[E] + [‘F‘J][B]]{x}.

where [E} and [B] are square matrices,

(D) is a diagonal matrix,

F is a scalar and (F) a scalar matrix, > All matrices are of order 10.

{x} is a column-vector,

w and {} are scalars.

B

For checking purposes, it is required to print out the last row and column

of the intermediate matrix

() =

0 [[E] + rF‘J][B].

The input data [E], [B], F, 2, M), w and {x} are assumed to be available at

input in this order,

(0, 10 x 10) »* 1

(0, 10 x 10) @ 101

(0) 2 201

(0) 2 202

(1, 10 x 10) + (201) = 1

(202) x (i, 10 x 10) 2 1

(1, 10 x 10) x (101, 10 x 10) > 203
(203, 10 x 10)* ? 101

(191, 10 x 1)(6) * O

(293, 10 x 1)(8) » O

(0, 10/) 2 101

(0) 2 202

(101, 10/) x (202) @ 101

(101, 10/) + {203, 10 x 10} - 203
(0, 10x 1)1

(203, 10 x 10y x (1, 10 x 1) @ 11

(11, 10 x 1)(6) 2> 0

*

Programme

Read [E] into store

Read [B] into store

Read F into store

Read (1 into store

[E] replaced by [{E] + (FJ]

[[E] + (F‘J] replaced by {} [:[E] + ['F‘J]
Form [C]

[B] replaced by [c]’, the transpose of [C]
Print out last column of [C]’

Print out last column of [C]

[c]’ replaced by (D)

il replaced by w

[DJ replaced by w(D)

{c] replaced by [erJ + [C]]

Read {x} into store

fForm {y} = [waJ + [CE] {x}

Print out {y}

Stop

page 9 R 2500

4.9.5 Punching the Tape

In punching, each instruction must be terminated by Carriage Return and Line
Feed. Spaces and erase symbols may be used in the punching and will be ignored by the
scheme. The programmer should now be able to build up any matrix-instruction which
he requires.

4.3.6 (ther Functions

There are three other instructions which are not matrix operations but help
to make the writing of a programme easier. The first is a stop-function which is
punched simply as * (asterisk) on the tape and causes the machine to stop when this
instruction is encountered in the matrix-programme (see also Section 6.7.4). Another
instruction enables the matrix-programme to be left and ordinary machine-orders to be
obeyed before re-entering the interpretive scheme. The function-character for this
is the letter O and details as to how it is used will be found below, (See ‘Additional
Facilities*), The third instruction, with function-character J, causes a jump of
control in the interpretive scheme (see ‘Additional Facilities', Section 4.7).

4.4 The Programme for Reading Matrix-Instructions

It has been shown above how to punch the instructions for the scheme. It is
necessary, however, to have certain other facilities associated with the programme
for reading these instructions, These facilities include regulating the position in
the store into which matrix-instructions are read and also the position at which the
matrix-programme is to be entered. It is also possible to enter Initial Orders
during input of the matrix-programme tape. There is room in the store for 80 matrix
instructions, these being numbered 0 to 79, Should the matrix-programme be longer
than this one can either use some of the space normally used by numerical dats or
else read in more instructions after the first 80 have been obeyed,

The following list glves the warning characters:-

I This causes entry into Initial Orders, Wwhen Initial Orders encounter
warning character L, the interpretive scheme is re-entered, and is ready to start
reading in matrix-instructions at the point it had reached when the I was read.

on This causes the scheme to start obeying the matrix-programme at matrix-
instruction n. (It should be noted that this is the (n + 1) instruction, and not
the nth). S must be followed immediately by figure-shift. If, as is normal in
practice, it is desired to start obeying the first matrix-instruction, it is suffi-
cient to punch S (followed by figure-shift).

Xn This sets the address for the next matrix-instruction to be read at n,
i,e. it becomes matrix-instruction m. X must be followed by figure shift, If =
is omitted (figure-shift still necessary), the programme will start reading matrix-
instructions into the machine from the beginning. X is not necessary at the beginning
of the tape; the programme will automatically start reading into the first
location, (i.e. at instruction 0).

4.% How to Punch Data on the Tape

The scheme is a floating-point scheme and the programme has been designed so
that data can be punched either with an exponent or simply as a fixed point number.
It is slso possible to punch an exponent for the complete matrix or for a part of
the matrix.

The following is a list of warning characters:

n This is punched to introduce an exponent which is to be carried through
the matrix. It is followed immediately by a sign and then the exponment. This will be
added to the exponent of esch number until an asterisk or another n is read. If no
exponent is put in this number will of course be zero, Space and erase will be
ignored. The exponent is terminated by CR LF.

R 2500 page 10

i It is possible to print out a title for each matrix. This is done by
printing an - on the data tape. FEach character read after this will be
printed on the output tape until two consecutive figure-shifts are
encountered.

+ These introduce a number. Spaces and erases are ignored throughout the

- punching of a number. The number is punched in decimal with a decimal

' point where required; no decimal point need be punched if the number is
an integer, The number of decimal digits which can be accommodated in
one number 1s 11; if more than this are punched they will be ignored.
Care should be taken not to punch more than 11 digits if the number is
being punched as an integer. If the number is fractional then the extra
digits will in any case be insignificant. The exponent is punched by
introducing it with a sign. It must not be greater than 77.

CR LF The number is terminated by CR LF whether or not an exponent is punched
Thus the number 1234.5 may be punched as +12,345+2CR LF or +1234.5CR LF.

= This is punched immediately before a check~-sum. Thereafter the check-sum
is punched in the same way as any cother number. A certain tolerance 1is
allowed between the check-sum computed from the elements, and the check-sum
on the tape; this tolerance depends on the number of digits actually
punched in the tape check-sum.

If the check-sum is not exact, i.,e. if the elements of which it is the sum
have been rounded orf after computing the check-sum, it should be punched

to as many digits as are punched in the element which is punched to the
fewest number of digits, disregarding zero elements, If however the check-
sum is intended to be exact, as is more common in practice, it should be
punched with two more digits than are given in the separate elements, subject
to one restriction, The restriction is that the sum of the moduli of the
checksum and the largest element should not contain more than ¢ digits.

The principle can best be illustrated by examples:-

a) +. 2031
+.101
+.123

Sum +.4271
Punch = +,427100
b) +10210
+ 320
Sum +10530
Punch = +10530.00
c) +1023

+.3641259
-1000

Sum +23,3641258
Punch = +23,36413
d) -.12345
+. 12345
Sum +, 00000
Punch +, 000000¢

1f +0 is punched, even such a gross error as the wrong sign for either
element will not be detected.

page 11 R 2500

* This must be punched after each matrix. It causes the next matrix-instruction
to he obeyed, after first checking that the correct number of elements has
been taken in.

4.6 The Qutput of Results

There are two programmes within the scheme for the output of results; they
are independent of one another, and the scheme has been written so that only one may
be in the machine at any one time, One programme prints numbers in floating-point
form, that is, with one decimal digit preceding the decimal point and the whole
argument followed by an exponent to base 10, The other programme prints numbers in
a fixed-point form with a specified number of digits before the decimal point and
an exponent for the whole matrix (which is printed first), There are thus two
matrix-schemes, identical except for form of output, and they are known as ‘floating-
point matrix scheme’ and ‘fixed-point matrix scheme’.

A tape produced by the floating-point output programme may later be read in
by the input programme, provided that not more than 9 significant figures have been
punched., If the tape has been produced by the fixed-point output programme there
may be occasional check-sum failures if 9 figures have been punched, It is therefore
not recommended that fixed-point output tapes to 9 figures should be used for re-input.
However, if this situation cannot be avoided, it would be reasonable to by-pass any
check-sum failures as described in 6.7.1,(3), since the type of error which the
check-sum is designed to bring to light should not normally occur on tapes output
by the computer. Alternatively, the modification to the scheme which avoids the
punching of check-sums (as described in 11.5(d))may be used at the stage when the
matrix concerned is output.

A titling sequence is printed to distinguish each matrix which is output.
It consists of = and a decimal number specifying which matrix instruction caused
output to occur. For example, —16 means that the 16th instruection is being obeyed.

The elements of the matrix are printed in columns, Each column is pre-
ceded by two line-feeds and the column number, which appears centrally over the
column. The column number is followed by an extra line-feed.

Each element is preceded by a row number and twe spaces. These may be
suppressed at any time during punching by setting the sign-bit of the handswitches
to one.

4.6.1 Floating—FPoint Form

Each element consists of a signed argument and a signed exponent to base 10.
The argument is printed with one decimal digit before the decimal point and (x - 1)
digits after the point, where x is & parameter, stated in the output instruction,
signifying the total number of digits required. If x is not stated, it will be
assumed to be 9. A typical element withx = 7 is, e.g,:!-

51 +2,123456 -17
where the number 51 before the sign indicates the row number.

The maximum accuracy which can be expected from the scheme, which works
throughout in floating-point arithmetic, is 9 significant decimal figures. (The
range of exponent is 177 approximately).

At the foot of each column a check-sum is printed, preceded by an extra
line-feed and an = sign. The number of decimal digits printed in the argument of
the check-sum is adjusted automatically according to the difference in magnitude
between itself and the element of meximum modulus. If the check-sum has the same
exponent as the maximum element, then the check-sum is printed to the same number
of digits. If the check-sum is greater in exponent by 2 (say), then it is printed
with two more significant figures, That is to say, the final digit printed for the

R 2500 page 12

check-sum has the same significance as the final digit of the maximum element. The
check~sums are rounded off before printing (as are the elements).

Figure 2 shows a typical matrix of 5 rows and 3 columns as printed from a
tape produced by the floating-point form of output programme.

4.0.2 Fixed-Point Form

Elements are printed with y digits (or spaces) before the decimal point,
where y is a parameter stated in the output instruction, x, the maximum number of
digits required is also stated. The number of digits which is printed after the
decimal point is (x - ¥) and this is constant throughout the mstrix; hence, the
least-significant digits of all elements are in line with one another. The sign
immediately precedes each element., The appropriate round-off constant is calcu-
lated for each element, and added to it before printing occurs. If x is not
stated it will be assumed to be 9 and ¥ will be assumed to be 1, Elements might
appear as follows (with x = 8§ and y = 4):~

51 + 1234,5678
52 —-B6. 7809

At the foot of each column a check-sum is printed, preceded by an extra
line-feed and an = sign. As for each element, the number of digits printed after the
decimal point is (x - y). The check-sum is rounded before printing. The characters
<, n, =, which are used to precede the title, exponent and check-sum respectively,
are the necessary warning characters to make a tape which is output completely
acceptable for re-input.

Figure 3 shows a typical matrix of 5 rows and 3 columns as printed from the
tape produced by the fixed-point form of output programme.

page 13 R 2500

Figures 2 and 3

Specimen Cutput

>

> 21
21 n+a

o o
o +143742 +3 o +13e742
I 4241840 +2 I +2.184
2 —7e9336 +2 2 —74934
3 =6e00l1 4o 3 ~0e0b0
4 +346100 ~10 4 +0e000
= *7e932 42 = *74932

I I
0 +246098 =1 o +oe.002
I =—Ie.II22 +o I —0e01l
2 +1.1132 +o 2 +oes011
3 *t5e3142 -2 3 +0.001
4 “t4el592 41 4 +0e416
= 444107 +12 = toe4ly

2 2
0 =8.9793 *+3 o —89e793
1 +o I +0e000
2 =—2e3846 -1 2 —~0e¢002
3 —2e06433 +1 3 —0e264
4 +8e3279 *2 4 +8e4328
= =8e1732 +3 = =8le732
*»

Figure 2. Floating-point form Figure 3. Fixed-point form

The above show the two ways in which a page printed from an output tape can
appear. In each case the same matrix of 5 rows and 3 columns has been printed.

R 2500 page 14

4.7 Additional Facilities
4.%7.1 To Enter Machine-Orders from the Scheme

There is an instruction which enables the interpretive scheme to be left
for a while to obey ordinary machine-orders and then return to the interpretive
scheme, either at the same place or at any other instruction. The order used for
this is the Q-order. That is to say it is written as a letter 0 followed immedi-
ately by a figure-shift and then the single-word address of the first machine-order
to which contreol is to be transferred. Spaces may be punched before the address.

The address written in the 0-order should be terminated by CR LF.

The block containing the first machine-order will be brought down to block
0 of the computing store and the appropriate order entered, This order must be the
first of an order-pair but can be anywhere in the main store. On entry 5, = Address
of Machine Order Entered; 5, 1s clear. Thus X5 may be used as a modifier to bring
down further blocks of programme.

To return to the interpretive scheme at matrix instruction n, the following
orders are necessary.

@ 7 40
65 [1] 72

1.2+ 0 60

The last two instructions must be a pair if they occur in U 1. To return
to the next matrix instruction, it is merely necessary to obey

61 [0 72

0.0 0 60

which must form an order pair if in U0,

If the matrix-programme requires more storage-locations than are available
then the matrix-instruction ¢ 512 may be used to cause the Order-Read programme to
be entered. This can he used to read in the next section of the matrix-programme
from the input-tape when all the matrix-instructions that are in the store have
been obeyed. In & similar way the matrix-instruction 0 4096 causes the Initial
Orders to be entered.

The machine orders may be anywhere in the main store but care must be taken
not to overwrite anything else which may be required. If there are less than 80
matrix instructions, space will become available in the first quarter of the store.
The 80 instructions occupy two words each, from B 108,0 to 127.7, thus if only 60
instructions are required, blocks 123 to 127 inclusive are available for machine
orders. Alternatively, data space may be sacrificed. Each matrix element occupies

page 15 R 2500

one location and location 1 corresponds to B 128.0; from this it can be worked out
what space will not be used by data. A third possibility is to overwrite such of the
scheme itself as is not being used. However, since much of the interpretive pro-
gramme is organisational, and the subroutines are interlinked, there will not normally
be more than a few blocks available, and this method is not recommended.

4.7.2 To Jump in the Scheme

The instruction to jump within the matrix-programme is written as a J followed
immediately by a figure-shift and then the address of the matrix-instruction to which
it is required to jump, Spaces may be punched before the address. This address should
be terminated by CR LF. Actually it must be terminated by a character other than
space or erase (both of which will be ignored) and there must be at least one character
before the next warning character. As other functions are terminated by CR LF these
should be used here also,

5. USE OF THE SCHEME WITH PRESET PARAMETERS

There is an extension to the scheme to permit the use of preset parameters.
For a problem of a given type this allows one matrix-programme to be written which can
be used with matrices of different sizes,

when this facility is to be used the programme is written in general terms,
and a small subsidiary programme (called the ‘Interlude’) is used to insert into the
matrix instructions the dimensions of all the matrices for the particular calculation
and also to allocate the storage locations,

If the matrices A, B, C of order (m; x n,), (mb X fp), (me X mg) are the
two operands and the result respectively of some operation used in the Matrix Inter-
pretive Scheme and if ¥, Nb, N_ are the addresses of the storage locations holding
the first elements of A, B, C respectively then normally

1< Ng, Np, ¥, £ 3070
1&mg, ng, my, np, m, ne < 255

When using preset parameters, however, the matrix instructions are written
in the ordinary way but the storage locations (N;, Np, ;) are specified by numbers
above 5,000 and the dimensions (mg, n,, mp, np, Mg, no) of the matrices by numbers
larger than 240. More precisely, 1f ¥ denotes any of ¥, Nb, N, and m any of the
Mg, hy, etc. appearing in the matrix instruction, then

if 1< V¥ 3070 ¥ is the address of the actual storage location
holding the first element of the matrix,

if ¥ » 5001 The actual address of the first element of the
matrix is specified separately by the programmer,

if 1 £m<g 240 m is the actual order of the matrix

but if 241 < m £ 255 the actual order of the matrix is specifled
separately by the programmer,

That is if 1 € ¥ 3070 and 1< m £ 240 the matrix Interpretive scheme
operates as usual. When the programmer is using the preset parameter scheme two
lists will be kept, an address list containing the values of ¥ and a dimensiorn list
containing the values of m; the values being appropriate to the problem to be
solved,

The matrix instructions will be written with 5001 for ¥, 241 for m ete, and
these instructions will be read into the store by the Matrix Interpretive Scheme,
The Address list and Dimension list are then read into the store. The Interlude

R 2500 page 16

programme processes the matrix instructions, replacing any addresses exceeding 5000
by the appropriate ¥ from the address list, and the orders of any matrices exceeding
240 by the appropriate m from the dimension list. The set of matrix instructions so
obtained can be obeyed in the usual manner.

The advantage of the preset parameter scheme is that the actual programme
of matrix instructions will apply to all problems of a given type. The orders of the
matrices and the storage locations which are to hold these matrices are set separately
at the last moment.

Example: Q is a matrix of order m x n mgn)

A is a matrix of order m x m
It is required to form Q'AQ for a large number of different values of m, n.

Programme of Matrix Imstructions

(0, 241 x 242) ? 1 Input @ (m x n)
(0, 241 x 241) - 5001 Input A (m x m)
(5001, 241 x 241) x (1, 241 x 242) - 5002 Form AQ (m x n)
(1, 241 x 242)* - 5001 Form @' (n x m)
(5001, 242 x 241) @ 1 Copy Q' over @
(1, 242 x 241) x (5002, 241 x 242) = 5001 Form Q'AQ (n x n)
(5001, 242 x 242) 2 0 Output Q’AQ (n x n)
Dimension List Address List
241 m 5001 (2mn + 1)
242 n 5002 (mn + 1)
The layout of the portion of the store 1
containing the matrix data can be visualised . Q@ qQf
during this problem to be as shown. . ’
mn
The above matrix programme will then -
carry out the operation Q’AQ for the values mn+1l
of m, n specified in the lists, i,e. the same
programme will work for example with . >~ AQ
m=2, n=53o0orm=10, n =46 orm= 31, n = 31 2"’"_4
Por this last example the lists would omn+1) 7
be as follows:
. LA
Dimension List Address List Pu—— Y A
241 31 5001 1923 . P‘
242 31 5002 962 3mn)
Since the number of locations available
for data with the Matrix Interpretive Scheme is 2mn.+n?)

3070 it follows that m, n must satisfy
2mn + n?2 £ 3070 in the above example.

page 17 R 2500

6. MACRINE OPERATION

6.1 Operation of the Scheme without Preset Parameters

6.1.1 Programme Tapes

Two tapes are required.
(i) Matrix Interpretive Scheme

START, RUN. Ends on 77 stop in 0.6. (Warning character Z at the end of tape).
A loop stop in 3.4 indicates an error and the tape must be read again.

(ii) Matrix Programme
STOP. RUN.
Tape should read

D

N

Name of Programme

Blank Tape

Machine Orders (if any)

J 64,0

Matrix Instructions

S n, where it is desired to start obeying matrix
instruction n.

6.1.2 Data Tapes

The first matrix order to be obeyed will normally be a data input order, and
there is an optional stop at the beginning of this type of order. The data tape should
be put into the reader at this point.

If there are further data instructions, and the corresponding matrices are
all on one tape, the optional stop may be inhibited to avoid unnecessary stops.

6.2 Operation of the Scheme with Preset Parameters

6.2.1 Programme Tapes

Three tapes are usually required to set up a matrix programme. They must
be put in the tape reader in the following order;

(i) Matrix Interpretive Scheme

As in section 6.1.1 above.

(ii) Matrix Programme

STOP, RUN.

R 2500 page 18

Contents of Tape:
D
N
Name of Programme
Blank Tape
Machine Orders
J 64,0 (Enters Matrix Order-Read)
Matrix Instructions
1 (Enters Initial Orders)
Z
Z causes a 77 stop in 0,6 at the end of the tape,

(iii) Preset Parameter Tape

Read by moving key to STOP and then to RUN.

Example from Section 5

Heading T 1600

+ii
Dimension +n
List ,
Heading T 2600

+X
Address
List ”"
Interlute 3 40.0

(or E 40.0)

T 1600
+31

+31

T 2000
+1923

+962

J 40.0

If a 77 stop is required at the end of the tape warning character E may be
used. There is an optional stop in the matrix scheme before reading data and it

is usually better to use warning character J as shown ahove.

6.2.2 Data Tapes

The use of preset parameters does not affect the rules for punching data or
the method of operating the computer. It is sometimes convenient to combine the
preset parameter tape with the data tape, but care must be taken not to read the

preset parameter tape twice.

6.2.3 The Operation of the Interlude

Preset Parameters are inserted in Matrix Orders by a short programme called
the Interlude. The Interlude is entered when J 40.0 is obeyed at the end of the

Preset Parameter Tape.

When the Interlude is obeyed it finds the address of the last matrix
instruction read in. It then processes the contents of all locations from Matrix
Instruction 0 to this last address. If anything other than a matrix instruction is

stored in these locations it may be altered by the interlude,

The first word of a matrix instruction contains three addresses, ¥,, ¥, and

Nc. During the interlude each of these numbers is compared with 5001.

Those addresses

that are less than 5001 are left unchanged but those that exceed 5000 are replaced

by the appropriate number from the address list.

page 19 R 2500

The second word of a matrix instruction contains four matrix dimensions,
Mae Mg, mp and np. Each of these numbers is compared with 241. Those dimensions
that are less than 241 are not changed but those that exceed 240 are replaced by
the appropriate number from the dimension list,

On completing the processing the Computer will obey matrix instructions,
starting at number 0 (but see 6.2.5. below). The dimension list and the address
list will usually be overwritten during the working of the matrix programme.

6.2.4 Changing Parameters

If it is desired to alter any of the preset parameters a complete new preset
parameter tape must be prepared. The matrix scheme need not be read again, but the
programme tape must be read again before the new preset parameter tape.

6.2.5 Entering the Mairix Programme

The interlude is written in such a way that the Matrix Programme is entered at
Instruction Number 0, If it is required to enter at some other instruction then
instruction number 0 should be a jump instruction. If this is not satisfactory the
Interlude can be made to jump directly to matrix instruction number n. This may be
achieved by including in the Programme Tape the sequence.

X 42.0

(@) 740

6.3 Special Uses of Preset Parameters

The parameters x and y used by the Matrix Print Routines may be preset.
x appears in the address position of the order and must be included in the address
list. y is held as a dimension and must be included in the dimension list.

If x and ¥ are to be preset it may be useful to include an optional para-
meter list in the main programme,

Example: In the following programme x and y are usually 6 and 3.
T 1602

Optional y: + 3
T 2002

Optional x: + 6
J 64,0

Programme: (0, 241 x 242) 2 1

(0, 242 x 241) - 5001

(1, 241 x 242) x (5001, 242 x 241) = 5002
(5002, 241 x 241) (5003, 243} > 0

I

Z

R 2500 page 20

If 1t were required to change x to 5 but leave y unaltered the preset para-

meter tape would read as follows:

T 1600
Dimensions + 8

+ 4

T 2000
Addresses + 33

+ 65
Value of x + 5

J 40.0
The addresses in Matrix Jump Instructions (function J), and in jumps to machine
orders (function 0), are stored as addresses and may be preset if desired.

6.4 Corrections to Matrix Programmes

Matrix Scheme Warning Character X may be used to correct Matrix Programmes
by inserting new Matrix Instructions, The effect of X is to set a Matrix Instruction
Number in the same way as Initial Orders warning character T sets a transfer address.
When using Preset Parameters it is necessary to reset the Matrix Instruction Number
at the end of the Correction Tape.

Suppose that it is required to correct a Matrix Programme of (n+1) instruc-
tions, numbered O to =, If the rth instruction has to be changed the correction tape
should read as shown on the left below:

Example

with 30 Instructions

n = 29
J 64,0 J 64.0
Xr X 12
New Instruction (5002, 243/) — 5001
X n+l X 30
I I
Z Z

The correction tepe must be read after the Programme Tape but before the
Preset Parameter Tape. If the final X n+l is omitted the Interlude will process
instructions up to number », but not beyond.

6.5 Gaps between Matrix Instructions

Matrix Instructions are normally read into consecutive locations in the main
store, starting with Instruction number 0. It is possible, by using Matrix Scheme
warning character X, to miss out some locations between Matrix Instructions, If this
is done the two locations which would have been occupied by Matrix Instructions should
be cleared, Otherwise the Interlude will find a random parameter: this may cause a
Writing with Overflow' stop or a ‘Drum Parity Failure’, after reading from a non-
existent location.

page 21 R 2500

6.6 Calculation of the Address List

If a programme is used very frequently it may be helpful to arrange for it
to calculate its own address list. The programme for this calculation could be
stored in any block beyond 128,0; it may be overwritten by data during the matrix
programme, The addresses are normally simple functions of the dimensions; any
additional parameters required could be added to the end of the dimension list,

The preset parameters tape would then read
~
T 1600

+m

Dimension List < +n

J 132.0 (say)

The address list is replaced by a J or E sequence which causes the computer
to start obeying the programme for calculating addresses. After calculating the
addresses, and, if possible, checking their sum total, the programme should store
them in location 2000 onwards. The interlude must then be entered by bringing its
three blocks into the computing store:

B 40 to UO
B 41 to Ut

B 42 to 12

and jumping to 0,0.

6.7 Stops
During the operation of the scheme the following stops may occur.

6.7.1 During data input

(1) Optional stop in 0.2 at the beginning of each data input instruction, as
already described.

(2) 77 stop in 3,5. This occurs when a character is wrongly read from the tape.
If the tape reader is at fault, or if the tape can be corrected immediately,
it may be pulled hack until the element following the last check sum is about
to be read (or, if there are no checksums on the tape, the first element of
the matrix) and the RUN key operated. (See also (7) below).

(3) Loop stop in 3.04+. Checksum failure,
If it is apparent that the checksum is at fault, a manual jump to 3.1
is permissible.

If a data element since the previous checksum is wrong and can be
corrected, the tape may be pulled back to just after the previous check-
sum, and a manual jump made to 2.7, On 77 stop in 3.5, RUN.

(4) Loop stop in 0.4, Incorrect number of elements in matrix. The excess number
of elements is given by the modifier of accumulator 5. If there is a
deficiency accumulator 5 will be negative.

If the mistake can be corrected, a short tape as follows should be prepared.
J 64,0
sSn

R 2500 page 22

where matrix~instruction n is the one which went wrong. This should be read
via Initial Orders, then on the optional stop in 0.2 the corrected data tape
should be replaced at the beginning of the relevant matrix, and RUN.

(8) Loop stop in 2.4. Exponent of number either too large or too small,

(6) Loop stop in 0.5 in the Initial Orders. This or other stops may occur if
the START key is operated (instead of the RUN key) and matrix data are read
by the Initial Orders.

(7Y Number tapes punched out by the Matrix Scheme may normally be read in again,
A difficulty may arise if names of matrices read during the programme are
repeated on the tape: they will not be preceded by an arrow and may cause
a'77 stop in 3.5. The tape should be pulled past the name sequence and the
RUN key operated,

This difficulty may be overcome either by adding an extra arrow to the
original name sequence or omitting it altogether. Names punched by the
Matrix Scheme consist only of decimal digits and do not cause a stoppage
even when the arrow is removed.

The procedures described in (2) ¢3) and (4) involving correction of tapes
whilst on the computer are not recommended unless

(a) The error can be easily found and corrected.

(by Considerable machine time would be wasted if the programme had to be
started from the beginning at some later date.

6.7.2 During binary data input
(1) Optional stop in 0.0 for tape to be put in reader.
(2) Loop stop in 0.3, Character other than erase at the head of the tape. If
the tape is moved until the erase (or preceding blank tape) is under the
tape reader, a manual jump to-0.1 is permissible.

(3) Loop stop in 0.3+. Checksum failure,

(4) Loop stop in 1.6+. Too many elements read. This usually indicates an error
in the Matrix Instruction.

6.%7.3 During Division and Normalise Orders
(1) Loop stop in 1.3. Attempting to divide by zero.
6.97.4 MNatrix—instruction * (asterisk)

This causes 77 stop in 0.7. RUN to obey the next matrix-instruction (or
may indicate end of matrix-programme).

6.9.5 During Order Input
(1) 77 stop in 3.3. Z on tape. RUN to return to Order Read.
{(2) Loop stop in 0.6+ when wrong character read at beginning of matrix instruction.

{(3) Loop stop in 2.2 when wrong character read during input of address and dimensions
of A or B matrix.

(4) loop stop in 3.2+ when wrong character read after ")", i.e. when expecting a
function such as + or -.

page 23 R 2500

(5) Loop stop in 3.7 if wrong character during C address, or if C address not
terminated by CR LF or if a non-existent function is implicit in the matrix
instruction, e.g.

(L, 2 x2)y *(5,2x2)>9
(6) Loop stop in 1.0 if X, 8, O or J not followed by @. Erase is not ignored.
6.7.6 During other matrix instructions

(1) If locations. into which no data has been put are called for by mistake, non-
standard floating point numbers may be obtained. These may lead to write
with overflow stops at various points or to peculiar output,

(2) If errors in matrix instructions occur (there is no check on conformability
on order input), looping may take place. Alternatively the machine may call
for non-existent addresses, leading to parity failures. It may obey numbers

on certain faulty matrix instructions, leading to optional stops or
unassigned order stops or other peculiar circumstances.

7. ALLOCATION OF THE STORE
It is usually possible to write the answer, C, to a matrix operation, over
one of the operands A or B, This rule is always true for functions cther than
transposition, multiplication and division; it applies also to special cases of
these functions.
7.1 Transposition C = A'
When using the function * C may never be.written over A.
When using the function / C is always written over A.
7.2 Multiplication
Scalar x Matrix
Matrix x Scalar

Diag x Matrix
Matrix x Diag

The result-may be written over
the matrix, whether the matrix
is rectangular, diagonal or a
vector.

Rect x Vector
Vector x Rect

The result may ovprwrite the first ¢olumn
of the matrix but may not overwrite the
vector,

Row Vector x Col Vector The result may overwrite any element
of the operands.
Col Vector x Row Vector

Overwritin issible.
Rect x Rect g is not permissible

—— e N— ——

7.3 Division C = A" B

A B
Square Rect A and B are both spoiled and B is
replaced by C’, The result C may
not overwrite A or B.
Square Diag A is spoiled but B is unaltered; C may
Scalar not overwrite A or B,
Square Col Vector A and B are both spoiled, B is

replaced by C’.
C may overwrite B but not A.

R 2500 page 24

Diag Rect
Bcalar Rect A is replaced by A~! but B is unaltered.
Scalar Diag e C may overwrite B but not A,
Scalar vector |
giag 3zaio -L A is replaced by A~! but B is unaltered.
88 ctor C may overwrite either A or B.
Scalar Scalar
-1

tered,

Diag Scalar A is replaced by A~ but B is unaltere

C may overwrite A but not B.

8. SPEED OF OPERATION

8.1 The times of some typical matrix-instructions are given in Figure 4.

(Pages 26, 27). The formulae given in the second column give the approximate time to
obey one order (in milliseconds). The last column gives some typical times for
vectors or square matrices of various orders (in seconds or in minutes and seconds).
The decoding of each matrix instruction takes about % second and this time has

been included.

8.2 The bulk of the calculation time in any typical problem is likely to be
occupied by multiplications of one rectangular matrix by another, and by non-trivial
division instructions (such an instruction 1s non-trivial if A is a full square
matrix); time of output may also be significant if there are many results to be
punched.

8.3 It must be emphasised that the times given are only averages, Exact times
cannot be given for two main reasons:-

(a)} The time taken by a floating point operation depends on the actual
numbers involved.

(b) Drum access times depend on the times taken by other operations, and on
the dimensions of the matrices,

It has turned out in practice, however, that times computed from the formu-
lae given are normally fairly close to the actual time, say within 10%, and the
actuzl times are usually lower than the estimated ones,

8.4 The following abbreviations have been used in Figure 4:-
Rect, Rectangular matrix.
Diag. Diagonal matrix.
Col. vector Column vector.
Scalar Scalar or Scalar matrix.

9. THE REPRESENTATION OF FLOATING-POINT NUMBERS

8.1 In the floating-point operations used with the Interpretive Scheme each
number x (i.e. each element of each metrix) is represented within the computer by
one word, the least-significant 9 bits of which are used for a binary exponent

5. The value of x is given by the exponent b and an argument 4 (numerical part);
the values of @ and b are defined as follows: -

(i) =x-= a.zb
(1i) b is an integer satisfying the relationships =256 £ b £ 255.
(1ii) either ¥ < a <k
or H<€a<

or a4 =0and b = -256.
Issue 2

page 25 R 2500

9.2 The least-significant 9 bits of the word hold not the exponent & itself, but
b + 256; this 1s non-negative. The whole of the word (39 bits) is used to give the
value of the argument a;, 1i.e. the digits of the exponent are used to round-off the
value of the argument. There is very little bias in this round-off provided the
numbers being handled are near unity in absolute value, It should be noted that if the
last 9 bits are excluded the value of a 1s given to about 9 decimal digits; as these
are very efficiently used in this type of floating-point scheme any bias in rounding
is not likely to be serious. There can be trouble in cases where the elements of the
matrices are known exactly (e.g. where they are integers) but the scheme is not
primarily intended for such cases. Another small point to note is that, with the
above conventions, zero is held in the form 0.2"256 and is represented by a ‘clear’
word, i.e. one whose digits are all zero.

2.3 When arithmetical operations are carried out on numbers in the above form

they are first ‘unpacked® into their separate exponents and arguments. The answers
are ‘packed’® just before being stored. Should an exponent ever become smaller than
~256 the number is set equal to zero; there is no check on floating point overflow.

10, HOW MATRIX- INSTRUCTIONS ARE INTERPRETED
10.1 Each matrix-instruction occupies two words, the first of which must have an

even address. The digits of these words are allotted to the various parts of the
order as follows: -

First word Chssesesaseas BEEsesesrasss seraswraecraanse
13 13 13
L i v J e]
Na ¥ b NC
Second word W erses sasasams semraees 4esaasas sesess ..
1 [8 8 8 8
L I 2 F I 2 J \]
x F ma "a mb nb

In these diagrams a dot represents a binary digit: the most-significant
digit is, as usual, on the left. The notation is as follows:-

x a spare digit (i.e. not at present used),

N&. Nb, NE the three addresses in the matrix-instruction,

F six digits indicating the function,

my the number of rows and columns in the first matrix,
My T the number of rows and columns in the second matrix.

10.2 The interpretation or decoding of a matrix instruction is effected in the
following way. First the three addresses are shifted into the modifier position in
three of the accumulators and the row and column numbers go to form counters. The
gsix function digits are then used to select a ‘link’ from a list held in the store
and this link is used to call in the appropriate subroutine to carry out the
operation called for. When the operation is complete a return is made to the
central or controlling part of the programme which extracts the next matrix-
instruction from the matrix-programme and interprets it.

R 2500 page 26
Figure 4
Operation Examples of times in seconds
f'ormula giving time in
A matrix | B matrix milliseconds 16 24 32

ADD/SUBTRACT
Rect. Rect., 16mn + 190 4,3 9.4 16.8
Diag. Diag. 16 q
Vector Vector m + 190 -8 -6 '
S
Diag 5m° + 21m + 200 1.7 3.6 6.0
Scalar } Square
Diag. Scalar
Scalar Diag. }lsm + 190 .4 .6 T
MULTIPLICATION (See note)
Rect (mxn) | Rect (nxr) [(21n + 12)r + 12} m + 150 | 1m 29.4 | 4m 57.7 1lm 41.0
Rect Col, vector 2Imn + 24m + 150 5.9 12.8 22.4
Row vector | Rect 2lmn + 12n + 170 5.7 12.5 22.0
Row vector | Col, vector 21n + 180 .5 LT .9
Col, vector | Row vector 33mn + 12m + 150 8.8 19.4 34.3
Rect, Diag. 10mn + 11n + 170 2.9 6.2 10.8
Row vector | Diag. 2In + 170 .5 LT .9
Rect. Scalar 10mn + n + 180 2.8 6.0 10.5
Row vector | Scalar 11n + 180 .3 .4 .5
Diag. ,
Scalar Rect. 12mn + 11n + 170 3.4 7.4 12.8
Diag. Col. vector 12m + 180 4 .5 .6
Scalar
Diag, Diag. 12m + 180 .4 .5 .6
Scalar Diag.
Diag. Scalar } 11lm + 180 .4 .5 .6

COPY
Vector or Diag. 5m 4+ 150 .2 .3 .3
Rect. 5mn + 150 1.4 2.9 5.3

Note:

All the multiplication times will be reduced if there are zeros in elther
the A or B matrix.

The saving can be quite substantial, being over 309
in the reetangular times rectangular case with one matrix almost all zeros,

page 27 R 2500

i Examples of times in seconds
Operation Formula giving time in ™
A matrix B matrix milliseconds 16 24 32
TRANSPOSE
Ordinary 12mn + 130 3.2 7.0 12.4
‘In situ’ 13n% + 150 3.5 7.6 13,4
NORMALISE 15mn + 190 4.0 8.8 15.6
CONVERT 12mn + 170 3.3 7.1 12.5
INPUT (See notes)
Rect. 5ms. per character read, 33.3 1m 14.9 2m 13,1
Vector including layout charac- 2.1 3.1 4,2
ters, signs etc, plus 70-
90 ms, per number
OUTPUT (See notes)
Rect, Fixed-point 30 ms. per character 1m 43.0 3m 43.5 ém 30.1
Vector 1xed-po punched, including layout 6.7 9.6 12.5
Rect. Floating- characters etc, plusabout |2m 14.6 4m 55.4 8m 36.7
Vector) point 60 ms, per number, includ- 8.7 12.5 16.3
ing checksums,
BINARY INPUT 4.0mn 10.2 23.0 41.0
BINARY OUTPUT 250mn Im 4.0 2m 24,0 4n 16.0
DIVISION
Square (nxn) Rect (nxr) | 19m?r + 8.57% + 20nr + 13174 2m 37.0 Tm 57.0 | 1Tm 52.0
+ 181n + 170
Square Col.vector | 8.578 + 150n2 + 211n + 170 [1m 17.0 3m 29.0 Tm 19.0
Diag, Rect. 12nr + 11n + 11r + 170 3.6 T.7 13.2
Diag. Diag. 2T + 180 0.6 0.8 1.0
Bcalar Rect. 12nr + 11r + 180 3.4 7.4 12.8
Notes: 1} The specimen input times assume 6 digits, sign and decimal point for
eachh number, with no checksums, row numbers etc.
2) The specimen output times assume 6 digits are punched for each number,

and that the

punching of row numbers is suppressed.

R 2500 page 28

11. MODIFICATIONS TO THE SCHENME

Some of the facilities provided by the scheme can be easily changed by
miror modifications. These modifications should normelly be read in immediately after
the scheme, before the J 64.0. A list of some of the more useful modifications follows: -

11.1 The address of the first matrix instruction is normally 108.0. It can be
changed to B.P (P must be even) by

T 63.5
B - Po 0.
0

11,2 The true address of matrix element 1 is 1024 (128.0). It can be changed to ¥ by

T 63.6

(¥-9) ~ -0 0.

0

11.3 When using preset parameters, the dimension and address lists are normally
read into 1600 and 2000, respectively, They can be changed to ¥ hy

Tz

461~

¥ --0o0,
(Address list)

T .u

¥ -0
(Dimension list}

page 29 R 2500

I11.4 The fixed-point output matrix scheme does not give true fixed-point, as
there is an overall scale-factor at the beginning of the matrix. The following
amendments (which can be used only with the fixed-point matrix scheme) will give
a true fixed point output.

T 45.4

17 010

5.4 210

5.0 211

50 [of 72

0.6+ 0 60

T 91.2

-1.0

The matrix instruction should be written

(Na. mxn) (x)=0
where x specifies the number of digits after the decimal point.

11..5% There are Several possible amendments to the output, which are not the same
for the fixed and floating point schemes. They are given in the following table:

Amendment Floating-point Fixed-point
(a) Avoid printing arrow before title. X 01,7 T 91.6
2.6 060 -1.0
{b) Avoid printing title (i.e. T 43,3 X 43.4+-53.5
instruction numbers).
-1.0 0
0
{(¢) Avoid printing column numbers. X 47.0 X 52.1
2.4+ 0 60 1.3+ 0 60
(d) Avoid printing checksums. X 55.6 X 58.6
3.0 0 60 3.0 060
{e) Avoid printing * at end of matrix. X 55.2+ X 58.2+

0 0

R 2500 page 30

(f) To give 6 LF"s before each column T 47.1 T 53.0
number. (Not compatible with
{c) above). 16 110 16 110
0.0+ 2 66 2.7+ 2 66
11.6 There is available a modification which causes each matrix instruction to be

printed out before being obeyed. It is for use in developing matrix programmes.
Its number is R 2501 and it is fully described in a separate specification.

12, BINARY PUNCHING OF MATRIX PROGRAMMES

Each matrix instruction occupies two locations of the Main Store and the
first .instruction is normally stored in B 108,0 and 108.1. It is possible to use
R 1033 to punch out matrix programmes in binary form. If the programme uses preset
parameters the contents of B 2,2 must be punched out as well as the actual instructionms.

If, for example, a matrix programme using preset parameters has 70 instructions
(0 to 69) and some machine orders in B 510, the steering tape for R 1033 would contain

A4 2.2
A4 108.0 - 125.3
A4 510.0 — 510.7

Warning Characters would be inserted by name-sequences as described in the specifica-
tion of R 1033.

The steering tape must be inserted after the matrix programme but before the
preset parameter tape. If the programme tape ends with a warning character S it will
normally be satisfactory to wait for the optional stop which occurs before reading
data. At this point START and RUN to read the steering tape. If the first matrix
instruction is not an input order it may be necessary to place a warning character 2
before S on the programme tape, then START and RUN to read the steering tape.

Perranti Ltd.,

London Computer Centre, Issue &
21, Portland Place, 17th January, 1957.
J.F.D. D. M.

LONDON. W.1.

R 2501

File as 5oz

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue !
14.3.57.
ERROR TRACER FOR MATRIX PROGRAMMES

A routine designed to assist the computer operator in following the course
of a Matrix Scheme Programme.

(R 2501 uses the Initial Orders number printing routine,)
Name : ERROR TRACER
Store: 3 consecutive blocks, which may be in any part of the Mein Store not used
by the Matrix Scheme,
plus B 42.6, 42.7 and 62.4.

Uses: U 3,4,5, X 2,3, BO.

Entry: Direct from the Matrix Scheme Master, immediately before obeying each
Matrix Scheme instruction,

Time: with all printing suppressed 80 ms per instruction
Printing instruction numbers 275 ms per instruction
Printing complete instructions 1850 ms per instruction.

1. METUOD OF USE
1.1 Insert the Matrix Scheme, R 2500, in the main tape reader. START and RUN.
1.2 Insert ERROR TRACER, R 2501, in the main tape reader. RUN.

(This tape has T 85.0 at its head. 1If the programme to be run uses the
Matrix Scheme normalise instruction, R 2501 must be stored elsewhere. If the tape is

inserted after the T 85.0, R 2501 will go into the next available block in the store,
as specified by the Transfer Address in U 5,7. See section 5.)

1.3 Set the two least significant handswitches as described in section 3.
1.4 Insert the Programme Tape, Preset Parameter Tape and Data Tape in the normal
way.

2. OPTIOGNAL STOP

There is an optional stop in 3.3 before each Matrix Instruction. At this
point the matrix instruction number is displayed as an integer in U 5,0; it will
remain there until disturbed by the operation of the matrix instruction.

The handswitches may be changed at this optional stop if required.

R 2501

page 2

3. HANDSWITCH CONTROL

3.1

3.2

3.3

If H18 =
and H 19 =
If H18=
and H 19 =
If HI18=
where t
F

Mg fg

Na

¥y

Nc

mb ?‘lb

oo

(=]

H

It

}- R 2501 will not cause any printing

} R 2501 will print CR LF i

where ¢+ is the instruction number.

R 2501 will igoore H 1P and print as shown below:

CR LF

i

Fom,

Instruction number

n, ¥ N

Punction number (see section 4)

‘Dimensions of A matrix

Address of A matrix

Address of B matrix

Address of C matrix

Dimensions of B matrix

4, THE FUNCTION NUMBER

Matrix operationsa are denoted in the Matrix Scheme by numbers,

X

™b

Rb

These numbers

are printed by R 2501 and may be interpreted by reference to the 1ist below:

M = Rectangular

0 Transpose

-

Copy
Mx M

=)

x S

X

WO =3 D R W N

| S
No= O

N oD E =T T »1 N O O =z =X =T T oW
+

o w2 nn O 2 =X T = O U n oo o=E = O

13 -
14 +
15 -
16 +
17 -
18 + M, D+ D, B+ 8
19 +
20 +
matrix

Sx8 DxD

21
22
23
24
26
26
an
28
29
30
31
32
33
34
35
36
37
38
39
10
41

M-M, D-D 85~8

D-S
5-D
Input
output
Normalise
Convert

Stop

Enter Machine QOrders

Jump
g1
!
S«l
ot

p-! s1s

iy

Y o

o = O n o = =

M—l
wis

Transpose in situ

Binary Input

Binary Output

D = Diagonal matrix

S = Scalar matrix

page 3 R 2501

5. STORAGE

5.1 If the Matrix Scheme normalise instruction is required, R 2501 cannot be
stored in B 85 to 87. In this case it will usually be convenient to store it after
the matrix data and working space, for instance in B 508 to 510.

5.2 If this part of the Store is already used, space may be obtained by reading
the Matrix Programme before R 2501. R 2501 may then be stored in B 70 to 72, over-
writing part of the Matrix Scheme Order Read.

5.3 Note that B 42 and B 65 to 69, though used for reading matrix orders,
cannot be used afterwards to store R 2501,

6. MONITORING

6.1 If it is required to examine a matrix order it should normally be printed.
It is possible to monitor an instruction but this is not recommended.

6.2 At the optional stop in 3,3 the instruction is displayed as shown below:

U 4.0 F
4.1. m
4.2, n
4.3, Nz + R
4.4, Ny +R
4.5, N, +R
4.6, mp
4.7, ny
5.0,

2.6, R, the data relativiser,
R + 1.1 = Address of first matrix data location.
Unless the Matrix Scheme has been altered by
the programmer, R will be 126.7.

.

Ferranti Ltd.
London Computer Centre, Issue 1
21, Portland Place, 14th March, 1957.

LONDON. W. 1. D. M.

R 2502

File as 502

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

MAGNETIC TAPE MATRIX SCHEME

This is a version of the Matrix Interpretive Scheme (R 2500) adapted to use
magnetic tape as a backing store. All the facilities of R 2500 are available except
the normalise instruction, but the number of ordinary matrix locations is reduced
from 3070 to 3044 (or 6118 with the 7168 word store).

Names: FLOATING MAGNETIC MATRIX SCHEME MK 4
FIXED MAGNETIC MATRIX SCHEME MK 4

Store: 111 blocks which must be as follows:
4096 word store: B 1.0 to 107.7, B 508.4 to 511.5
7168 word store: B 1.0 te 107.7, B 892.4 to 895.5
Uses: B 0 and the entire Computing Store.
Time: The table of times given in the specifications of R 2500 also applies to

R 2502. The time for transferring a matrix to or from magnetic tape
depends on the distance the tape has to move to find the first element
of the matrix.

The tape will be searched at the rate of 1 location every 2.6 milliseconds
(41 milliseconds for a 16 word section).

The matrix will be transferred to or from tape at the rate of one element
every 3.6 milliseconds.

A further 140 milliseconds should be allowed for each magnetic tape read
instruction and 260 milliseconds for each magnetic tape write instruction.

1. METHOD OF UsE

The magnetic tape matrix scheme does not carry out matrix operations directly
on matrices stored on magnetic tape, but merely uses the tape as a backing store.

Each magnetic tape may be regarded as a continuous strip of some 180,000
storage locaticns numbered from I to 180,000, Matrices may be stored on it in much
the same way as they are in the 3044 Main Store matrix loecations.

If matrices are too large to be operated upon in the 3044 (or 6116) ordinary
storage locations, they must be partitioned. The appropriste sub-matrices of the
two operands may be selected from two tapes and the results written onm a third tape.
Sometimes it is more convenient to operate on one column at a time.

The user need not be concerned with tepe sections unless he wishes to use
machine orders to operate on tape. Section 0 of tape is not used, and matrix address
1 on tape corresponds to the first word of section 1: section 1, block 0, position 0,

R 2502 page 2

2. MAGNETIC TAPE INSTRUCTIONS

The symbol n is used to denote a magnetic tape function and there is no normalise
instruction. The magnetic tape instructions are as follows:

Main Store to Tape

Ny mx (D) > Np
Tape to Main Store

(Dn¥p, mxn) 2 N,
where T = 64t (where ¢ = 1 + tape mechanism number)

NT = Magnetic tape address (1 £ Nhhs 180, 0600)

Ny N, are Maln Store matrix locations
mxn Denote the dimensions of the rectangular
or m/ or diagonal matrix to be transferred. Hcalar matrices

may be dencted by (¥, 1/ but not by X)),

3. PRESET PARAMETERS

Preset parameters may be used with the magnetic tape matrix scheme, but if
they are used all magnetic tape addresses greater than 5000 must be preset.

4. STORAGE OF INSTRUCTIONS

Magnetic tape addresses may be longer than the 13 bits allocated to ordinary
matrix addresses. For this reason T is only allowed to take values which have their
last 6 hits zero. NT may then spill over into these 6 bits, and the first word of
the matrix instruction is as follows:

Main Store to Tape

...

\ 13 ; v 7y \ 19 ;
Nu T/84 ‘VT

Tape to Main Store

\ Ty \ 19 / \ 13 /
T/64. NT HC

The second word of the instruction is as described in section 10 of the
specification of R 2500, The dimensions of a matrix being read from magnetic
tape are My X M, not m., x ng. since the marker T occupies the A-matrix position in

a
the instruction. The dimensions of a matrix being written to tape are My x R

5. ERROR TRACER

R 2501 (Error Tracer) may be used with the Magnetic Tape Matrix Scheme, but 1t
may not be stored in its usual position, blocks 85 to 87.

page 3 R 2502

The function numbers, F, for magnetic tape instructions are as follows:

F = 42 Read matrix from magnetic tape

F 26 VWrite matrix to magnetic tape

Magnetic tape address greater than 8191 will spill over into 7. The correct
address may be computed by dividing T by 64, multiplying the remainder by 8192 and
adding it to the tape address printed.

6. TAPE ADDRESS MODIFICATION

The tape address of magnetic tape matrix location 1 is normally 18 (section 1,
block 0, position 0). It may be altered to ¥ (0 £ ¥ £ 180,000) by reading in the
following sequence after R 2502:

T 85.0

+(F - 1)

© FERRANTI LTD 1959

Londen Computer Centre, Fot to be reproduced in whole or Issue 2
21, Portland Place, in part without the prior writien 14th April, 1958.
LONDON, W.1. permission of Perranti Lid. J.F.D. D. M.

R 511

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
10, 12. 57.
SOLUTION OF SIMULTANEOUS EQUATIONS
This subroutine solves the set of simultaneous linear equations

n--1

2 a..x. = b, b, b, i = 0ton-l
fuo ij 10" i1 im-1 '

in n variables with m sets of right hand sides, by triangulation and back substitu-
tion.

Name: SIM EQUNS.
Store: 15 blocks
Uses: The whole Computing Store; m Main Store locations in addition to the

space occupied by the equations. (See section 1.4).

Cues: 01 -~ normal entry, see section 1,2
02 - see section 1.3
Time: Approximately (3n + 8m) (n2 + 7 + 5) milliseconds. If the matrix of

coefficients is badly conditioned the time will be increased.

Link: Obeyed in U 5.4, Not preserved in X1,

1. Method of use

1.1 The elements of each equation should be stored consecutively in the Main
Store, all right hand sides for an equation immediately following the coefficients,
as follows:

a a , veeen a b b cie.. b
oo’ o1 on-1" 00" o1’

om~1

1.2 If cue 01 is used, and if m + n > 8, the eguations should be stored consecu-
tively in the Store, i.e. with the first element of one equation immediately following
the last right hand side of the previous equation. If m + n < 8, the equations must
start at the beginnings of successive blocks. 1In this case, the registers between

the end of one equation and the start of the next will be unaltered by the subroutine,

1.3 If cue 02 is used, the equations may be at regular intervals in the Store.
The separation, i.e. the distance between leading coefficients of successive equa-
tions, should be set in Zm. If m + n < 8, the separation of the equations must be at
least 8.

1.4 After the last equation the next m locations are required for storing scale
factors.

R 511 page 2

1.5 Before entry the accumulators should be set as follows:
:
Modifier ! Counter

1

X1 LINK
1

X2 Separation i 0 {cue 02 only)
I

X3 Address of a,, | 0
!

X4 n ' 0
]

X5 m+n ' 0
1]

2. Preset Parameter

R 511 requires one preset parameter; this should specify the action required
if the matrix of coefficients is singular. Preset Parameter 01 will be obeyed in
U 2.0 during back substitution if the triansulation process has produced a zero
diagonal element. The matrix of coefficlents will have been over-written by the
triangulated form (see section 3.2); and 4, will contain Odii — 8) where Aii is the
address of the zero element.

The parameter list should normally be punched as follows:-

RO 0-01
Title -
511 - 04 -
2.0 080 Loop Stop or cue to
0 ‘singularity’ routine.
3. Results
3.1 Each solution is written by the subroutine in place of the corresponding

right hand side. The sclutions are scaled down 1f necessary and the m locations
after the last solution contain the scaling factors, in the same order as the solu-
tions. Each such location contains, in the modifier position, the number of binary
places by which the corresponding solution has been shifted down.

3.2 The matrix of coefficients is replaced by a triangulated form of the matrix,
with zeros below the diagonal; rows may have been transposed during triangulation
since at each stage of the process the largest leading coefficient is selected. The
n-1 zeros of the last row of the triangulated matrix will have been over-written.

page 3 R 511

3.3 On exit the contents of the accumulators will be as follows:-
: B
Modifier : Counter
X2 Address of first scaling |
factor (= 1+ address of , 0
b) '
n-1,m=1 !
X3 Address of first element i
of first solution H 0
_— I
(= address of b,,) !
X4 n ' 0
|
1
X5 m+n i 0
Xe The negative modulus of the least (in modulus)

diagonal element of the triangulated matrix.

4. Method

4.1 The routine uses a standard method of elimination (triangulation) and
back-substitution,

4.2 During the triangulation process equations are exchanged in order to select
the largest pivot at each stage.

4.3 During back substitution each right hand side is scaled separately so that
overflow is prevented with minimum loss of accuracy.

5. Error

The accuracy of the solutions cannot easily be predicted in advance, but an
estimate can be obtained from the diagonal elements in the triangulated matrix. The
smallest of these elements is left in X6 on exit from the routine. If there are &
significant binary digits in this number, the solutions should be accurate to about
k- log2 n significant binary figures.

Ferranti Ltd.,

London Computer Centre, Issue 2
21, Portland Place, 10th December, 1957.
London, W.1. Copyright Reserved J. AP,

R 2530

File as 530

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
20.5.57.

LATENT ROOTS PROGRAMME

A programme for finding up to 16 real roots and vectors of matrices of
order up to 54,

CONTENTS
Page
1. Method .s .r - . .s e .oe . 1
2. Input of the matrix . . ‘e . .. ‘e . .. ‘e 2
3. The main programme -e - .e .e 3
4, The back-substitution programme . ve o e ‘s ve .e .o 3
5. Monitoring .. ve - .e .o .o e .o . .o .o 4
6. An additional facility for speeding convergenceo . . 4
7. General remarks on operation .. .s . ‘e .e . . . 4
7.1 The Aitken Process .. ‘e . .o ve - .. .e . 4
.2 Change of origin .e ‘e . . e ‘e 4
7.3 Root-removal .o . . . ‘e e . .e . 5
7.4 Complex and equal roots .. .e .e .s e . ve .e 5
7.5 Hand-key operation ' .s . ve e 5
7.6 Errors in operation . .o . .o .e . .o . 5
8. Printing o e e 5
9, Times of operations .o ‘e .s ‘e - 6
1. METHOD

The basic process is as described by J.H. Wilkinson in Proc. Camb, Phil,
Soc. 1954, Briefly, it involves repeated multiplications of an approximation to a
vector by the matrix leading ultimately to a sufficiently good vector. This
particular vector and the corresponding root are then removed, (using Methed B,
Page 548 of Wilkinson’s paper), and iteration for the next root and vector begins,
Since the order of the matrix is reduced by one each time a root is removed, all
vectors after the first are degenerate, and to obtain the true latent vectors of the
original matrix a back-substitution process is necessary when all the roots required
have been found.

Since virtually all the time used by the programme is spent doing a matrix
times vector multiplication, it is important that this part of the programme should
be as fast as possible. To this end the drum access time has been minimised by
sunitably arranging the matrix and vector in the store. This leads to a certain
amount of wastage of storage space and so to a more severe restriction on the order
of matrix which can be dealt with than would otherwise be the case.

R 2530 page 2

The programme itself falls into three main parts:«

(1> Input of the matrix
(2) Iteration, root removal etc.

(3) Back-substitution.
There are three programme tapes corresponding to these parts.

Z. INPUT OF THE MATRIX

The matrix should be punched up in matrix scheme notation, (see R 2500)
and may be by rows or by columns, It is read by a modified version of the matrix
scheme, and a steering tape consisting of 3 or 4 matrix instructions is required.

The steering tape should be as follows: -

D

N

Name

J 64.0

0, n xm)y>¥

(N, nxny /2N (Omit if matrix is punched by rows)
Mnunxmyv ()2 ¥N

0 32

S

¥ is given by the following table:-

Dimension n Address ¥
54 153
51-53 257
41-50 569
34-40 1465

For n less than 34, R 2532 should be used, but R 2530 will work
(with ¥ = 1465).

The input programme tape is read in and will come to a Z stop. Put steering
tape in reader and RUN,

Optional stop in 0.2 (decimal input) or 0,0 (binary input), as in matrix
interpretive scheme,

Put matrix in reader and RUM,
The notes on data input in the specification to R 2500 apply here.

When the matrix has been read there is a loop stop in 0,2 after several
seconds of programme (during which the matrix is rearranged in the special form
required).

If the matrix is in fact in the store of the computer rather than on tape,
it is not necessary to output and re-input. The matrix must however be left in the
appropriate location as given above, and the data input instruction should be omitted
from the steering tape. The Iatent roots input programme must still be read in
because the machine orders required are not part of the normal matrix scheme.

page 3 R 2530

3. THE MAIN PROGRAMME
The main iteration programme should now be read in.
Tape ends with ‘B’ stop.
RUN

77 stop in 0.1 if handswitches not clear. (Clear them and RUN if this
happens).

Enters iteration loop for first root.

There is an optional stop in 3,7 encountered just after each iteration. It
should normally be inhibited once the iteration has started.

The programme is now controlled by the setting of the handswitches which
are examined after each iteration. The following facilities are avasilable,

Handswitch
Setting

H 0 12345678

{1 A Normal iteration. There is an optional stop in 3.7 in the
loop, which will usually be inhibited.

1 Divennas Apply Aitken process, (Comes to 77 stop in 3.2 after a few
characters printing., Clear H.S. and RUN),

1 10...... Not now used. If set up it will cause some printing but
should not interfere with the working of the programme.

1 110..... Print current approximation to eigenvalue.

1 1110.... Remove root, and proceed to find next root. (Comes to 77
stop in 0.4, after printing out eigenvalue).
Set sign bit of H.8, = 0 if it is desired to print the
vector (degenerate after the first one) at this stage., The
vector will not be normalised, After a few seconds
programme, comes to 77 stop in 0.0 if H.S. not now clear,
Clear if necessary and RUN.
Enters iteration for next root.

1 11110... Print current approximation to vector; the vector will not
be normalised.

1 111110.. Prepare for back-substitution, Comes to loop stop in 1.5+.

4, THE BACK-SUBSTITUTION PROGRAMME

The last root required should be allowed to converge in the normal way.
Then back-substitution should be called for and not the root removal, The loop
stop in 1.5+ will occur almost immediately.

The back-substitution programme tape should then be read in by the Initial
Orders, and ends with an E sequence. On operating the RUN key, the roots will be
output as a vector, in a form suitable for re-input by the matrix scheme, There
will be a title 'ROOTS' preceded by an arrow, After the roots will be about 6 inches
of blank tape followed by a matrix of latent vectors, each one normalised to have
its largest element unity., These will be preceded by a title °‘VECTORS', and are
suitable for re-input as a matrix if it is desired te run a checking programme,
The whole process ends with a loop stop when the last vector has been output.

R 2530 page 4

During the printing of vectors in the back-substitution, row numbers will
normally be punched, but may be suppressed by setting HO = 1,

5. MONITORING

After each iteration, the current approximation to the vector is compared
with the previous one, and the following expression is computed,

LA
2 oxo-x)
=1+

where x% is the ith element at iteration a, n' is the order of the matrix upon which
the iteration is being performed.

This is a double-length quantity, and will become gradually smaller as the
vector converges, The first half of this quantity is displayed in U 0,7 for as long
as it is non-zero, and is then replaced by the second half, Which half is in fact
being displayed can be recognised by the fact that the second half has a one in the
sign digit position. This sign digit has no numerical significance, both halves
being essentially positive,

This quantity will in general not come down to absolute zero, as it is not
possible to obtain more accurate digits in the vector elements than are being kept in
the root.

The root itself is available for monitoring in a scaled-down form in U 0,0.
It is usually possible to get this to converge to the last binary digit, but in some
cases it will oscillate between two adjacent values.

6. AN ADDITIONAL FACILITY FOR SPEEDING CONVERGENCE

In addition to the Aitken process, described in Section 7 below, a further
facility for speeding up convergence is available., It is a modification of the
process described on Page 537 of Wilkinson’s paper. A fraction, p, may be set up on
the six least significant handswitches (14-19), with 14 as its sign-digit, and the
following iteration will then be performed:

(d - p A Dix,

This has the effect of moving the origin so that, if o is reasonably well
chosen, the effective convergence ratio is improved. The reason for the factor A
(which is the current approximation to the root) is to make it unnecessary for the
operator to consider the scaling inside the machine.

7. GENERAL REMARKS ON OPERATION
7.1 The Aitken Process

This is the most useful facility for speeding convergence. It should not
be applied before the root has begun to settle and the quantity in 0.7 has begun
to decrease steadily. Once it has been used a few normal iterations should be
allowed before it is employed again., It will not normally be of any assistance
once the root has almost converged, as it will by then be operating mainly on
round-off errors.

7.2 Change of Origin

This is the facllity described in Section 6.

page 5 R 2530

It is not possible to give any simple rules for establishing a good value of
A but if a root is converging slowly and the Aitken process is not proving very helpful
a certain amount of experiment is worthwhile. The best value is frequently somewhere
around 1/4 or 1/3.

7.3 Root-remowal

To ensure maximum accuracy a root should only be removed when the quantity in
0.7 has become zero, However it is not always possible to get this to happen, and if
this quantity becomes stationary or cycles it is probably best to remove the root.
A cycle may be broken by using the change of origin facility, but this will almost
certainly cause the quantity to increase at first. After a few iteretions it should
start to come back again and may drop into the same cycle. Thus one can often play
with the gquantity for some time without achieving anything, or if one is Iueky it
may eventually become zero, On the later roots especially it is probably not
worthwhile spending a long time attempting to get absolute conhvergence,

7.4 Complex and equal roots

If at any stage a complex root is next in order of magnitude of modulus,
the gquantity in 0.7 will not converge., The vectors corresponding to any roots already
obtained can be got by entering the back-substitution process; the last root and vector
printed in this case will be nonsense. Care must be taken to avoid confusing this
case with that of almost equal roots, which will show similar effects at first, but
should eventually converge., There comes a point however where the roots are too
close for the process to converge at all, although they may be distinct in theory.

7.5 Hand-key operation

The programme is liable to examine the hand-keys at any time (as far as the
operator is concerned) and as one cannot guarantee to move several keys absolutely
simultaneously, care is necessary to avoid unwanted combinations being read, A
combination should be set up from right to left e,g., if the keys (excluding the six
right hand ones, which control the change of origin facility) are clear, and one
wishes to do root removal, it is essential that HO (the sign-bit) is depressed last.
Conversely, the keys should be cleared from left to right and HO should be raised
first.

7.6 Errors in operation

If the combination 110.... is read, the letter C followed by a meaningless
number will be printed; no other harm will result.

If 1111111.... is read there will be a 77 stop in 5.7. The keys should be
re-set to a permissible combination and RUN.

8. PRINTING

During the main programme there is a certain amount of printing so that
some indication of what facilities were used is available,

This printing 1s as follows:-

Handswitch
Setting

H 0 12345678

1 Jeenenns *A* followed by the number of the iteration at which the process
was applied.

1 110..... ‘E*, followed by iteratien number and the eigenvalue.

1 1110.... R*, followed by iteration number.
L', followed by root number, and the root.

R 2530 page 6

9. TIMES OF OPERATIONS

It is impossible to give the time likely to be taken for a given size of
matrix and number of roots required with any accuracy, as it depends far too much
on the actual values obtained. Some information can be given however which will
lead to an order of magnitude figure.

Some components of the overall time are reasonably predictable, thus

Programme input (3 tapes), say 3 minutes.
Data input time can be obtained from the
specification of R 2500,

Back-substitution is almost all punching
time; allow about 0.75 seconds per element,
or about 0.67 if row numbers are suppressed,

The remainder of the time will be almost all spent in iteration. The
iteration time is given by

19.08 n [E%Z] + 43n 4 74 milliseconds.

where [] means ‘the integral part of’.

Specimen times are

n Iteration time in seconds
8 0.56
10 0, 89
20 2.00
24 2.49
30 3.685
40 5.61
50 8.90
54 9.71

The crux of the matter is how many iterations are required per root, This
depends mainly on the ratio between the root being found and the next one in order
of magnitude, but also partly on whether one gets a very small or zero quantity in
0.7 without undue trouble. In practice with a well behaved matrix one might expect
to run about 30 iterations per root, but large variations in this figure must be
expected.

On this basis, typical overall times might be
All roots of 14 x 14 matrix., 10 - 12 minutes.
First five roots of 30 x 30 matrix, 15 - 20 minutes.

First five roots of 40 x 40 matrix. 25 - 30 minutes.

Ferranti Ltd.,
London Computer Centre, Issue I

21, Portland Place, 20th May, 1957
LONDON, W.1. J.F.D.

R 2532

File as 532

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
20.5,57.

LATENT ROOTS PROGRAMME

A programme for finding up to 16 real roots and vectors of matrices of order
up to 33.

This is the same programme as R 2530 adapted to have only one programme
tape. The specification to R 2530 should be read first., The following differences
should then be noted.

The steering tape will be as in R 2530, but ¥ will be 953.

The programme tape should be read in and will come tc a Z stop (after
obeying a J sequence at the end of the tape).

The steering tape and dats tape are read as in R 2530, but the iteration
will be entered immediately without the loop stop in 0.2.

Iteration proceeds as before until back«substitution is called for, There
will then be no loop stop in 1.5+, and the roots and vectors will be printed out
immediately., After this the programme will come to a Z stop and be ready for a
further steering tape if required.

Ferranti Ltd.,

London Computer Centre, Issue I

21, Portland Place, 20th May, 1957
LONDON, W.1. J.F.D,

R 7534

File as 534

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

7168 LATENT ROOTS PROGRAMME

A programme for finding up to 16 real roots and vectors of matrices of order
up to 54.

This is the same programme as R 2530 adapted to have only one programme tape.
The specification to R 2530 should be read first. The following differences should
then be noted.

The programme tape should be read in and will come to a 77 stop in 0.5

0o 0177

0.1 0 60

after obeying a J sequence at the end of the tape.

The steering tape and data tape are read as in R 2530, but the iteration will
be entered immediately, without the loop stop in 0.2.

Iteration proceeds as before until back-substitution is called for. There
will then be no lcop stop im 1.5+ and the roots and vectors will be printed out
immediately. After this the programme will come to the 77 stop in 0.5, ready to
read a further steering tape if required.

In addition to the store used by R 2530, R 7534 uses B750.0 to B882.7.

(© FERRANTI LTD 1960

Kot to be reproduced in whole or
in part without the prior written
permission of Ferranti Lid.

London Computer Centre, Issue 1
21, Portland Place, 9th March, 1860.
LONDON, W.1. M. My.

R 550

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
28.5.57
INVERT SYMMETRIC MATRIX (FLOATING POINT)
A subroutine which replaces a symmetric matrix by its inverse.
Name: INV SYMM MAT

Store: 29 blocks (including optional parameter list.)
Also working space; see section 1 below,

Uses: The whole Computing Store.
Cues:
)] I+ :
[:] 72 Working space taken as following
5.0 0 60 the matrix,

02 0+[0] 72

Working space specified on entry.

0.2+ 0 60
Time: About 14n° + 50m2 + 11ln + 1000 milliseconds, where n is the order of
the matrix.
Link: Obeyed in 1.7. Not left in X1 on exit.
1., METHOD OF USE
1.1 For either cue, n must be set in 7. and the address of the first element of

the matrix in 6p; the rest of X6 and X7 must be clear.

1.2 The elements of the matrix should be in standard floating point form.

1.3 As the matrix is symmetric, only %n (n + 1) elements should be stored. If
this is regarded as being the upper triangle of the matrix, the elements must be

stored by columns.

For example the matrix

1 3 1
2 9
11 9 6

would be stored as 1, 3, 2, 11, 9, 6.

R 550 page 2

1.4 Two sets of working space are required by R 550:~

a) Consisting of %n (n - 1) locations, not necessarily starting at the
beginning of a block,

and b) Consisting of the integral part of % (n + 3) whole blocks.

1.5 When cue 01 is used, (a) is taken as starting immediately after the last
stored matrix element, and (b) begins at the next available whole block after (a).

1.6 When cue 02 is used, the address of the first location in (a) must be

placed in 55 and the address of the first location in (b) must be placed in 4.

The remainder of X4 and X5 must be clear. If the address in 4, is not the begin-

ning of & block, the subroutine will advance it to the beginning of the following block.

2. PRESET PARAMETER.

2.1 R 550 works entirely in single-length floating-point arithmetic as described
in the Pegasus Programming Manual and in the specifications of R 11, R 610 and other
floating point subroutines.

2.2 The number of binary digits used to represent the exponent of the floating-
point numbers is specified by a parameter list. If no parameter list is supplied
by the programmer, it will be set as 9 by an optional parameter list. If it is to
have some value, n, other than 9, a parameter list of the following form must be

supplied:
RO 0-01
550 - 04 -
_gft=1

3. METHOD OF INVERSION

3.1 The original symmetric matrix, A, is first resoclved into the product of two
triangular matrices, L and M; where L has all non-zero elements on or below the
diagonal and M has unit diagonal elements and all other non-zero elements-above the
diagonal.

A = L.M
Only %n (n — 1) off-diagonal elements of M are stored.

3.2 The elements of A~! can then be deduced by a back-substitution process from
the equations given by

Since the matrix is symmetric, it is only necessary to use the diagondl elements of
L™, which are easily found.

4. ERROR STOPS

4.1 There are five loop stops which may occur in R 550, If any of these or any
writing with overflow stops are encountered, it will normally indicate that non-floating-
point numbers are being operated on.

page 3 R 550

4.2 The loop stops are as follows: -

(a) 0.1 0 60.
(b) 0.6+ 7 81,
(¢) 1.0 2 &l,
(d) 1.0+ 1 860,

{e) 1.0+ 7T 61,

Ferranti Ltd.,

London Computer Centre,
21, Portland Place,
LONDON, W.1.

Floating point overflow on division during triangulation,
Floating point overflow during back-substitution,
Floating point overflow in forming an element of L.
Zero diagonal element of L. (Matrix singular).

Floating point overflow in forming an element of M.

Issue !
28th May, 1957
J.P.D.

R 551

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue !
4.6.57.
FLOATING POINT MATRIX DIVISION

A subroutine to evaluate the matrix A—1B where A and B are matrices in
standard floating point form in the Main Store,

Name: F.P. MATRIX DIVISION
Store: 14 blocks.
Uses: The whole Computing Store except X 1, 2, 3, 6 and 7. BO.
Cue:

0l o+ [1] 72

1.5 0 60

Time: ton’r + 8.5n° + 118n° + 181n milliseconds,
Link: Obeyed in i.1, and left unaltered in X1 on exit.

1. METHOD OF USE

Let the matrix A have dimensions n x n, and B # x r. Both matrices must be
stored by rows, requiring n°® and n.r locations respectively. The position of either
matrix in the store is thus determined by the address of its first element. The
addresses, A and B, of A and B must be placed in the modifier positions of X4 and X5
respectively before entry, with the counter positions clear. n and r must be placed
as integers in X6 and X7 respectively. Thus on entry the accumulators will contain:

X
1 LINK
2 -
3 -
4 4, 0)
5 (8, 0
6 + n.2738
7 4+ r.2"98

The result C = A~% B, (which is of dimensions n x r) will replace B.
A will be destroyed.

2., METHOD OF DIVISION

The programme is an adaptation of the division sequence in the Matrix Inter-
pretive Scheme (R 2500). The method used is pivotal condensation, with elimination

R 551 page 2

of variables above as well as below the pivotal row; thus no back-substitution process
is necessary. The programme finds and uses the largest available pivot in the pivotal
column at each stage.

3. FLOATING POINT REPRESENTATION

The standard floating point form, with 9 bits for the exponent (augmented
by 256) and 30 bits for the argument is used.

4. STOPS

a) A loop stop in 1.3 (1.3 2 60) occurs if division by zero is called for.
This implies that A is singular.

by Various writing with overflow stops may occur if non-standard floating
point numbers are encountered.

c) If any of the parameters are wrongly set, the subroutine may cycle
indefinitely.

5. ACCURACY

Standard floating point representation gives a nominal accuracy of slightly
less than 9 decimal digits. In general some of these digits will be lost dne to
rounding errors, and these errors will increase with the dimensions of the metrices
involved. However, & much more potent factor is how well or badly conditioned the
matrix A happens to be, and if it is nearly singular the subroutine may produce
meaningless results, possibly including numbers with very large exponents. This
is much more common in practice than an exactly singular matrix, which would lead
to the loop stop mentioned in section 4 above.

Ferranti Ltd.,

London Computer Centre: Issue 1

21 Portland Place, 4th June, 1957.
LONDON, W.1, J.F.D.

R 3560

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
28.5.517.

MULTIPLY SYMMETRIC MATRICES (FLOATING POINT)

A subroutine which forms the product of two symmetric matrices,

Name: MULT SYMM MAT
Store: 11 blocks (including optional parameter list).
Uses: The whole Computing Store.
Cue:

01 o+ [5) 72

5.0 0 60

Time: 26n° + 66n° + 25 milliseconds, where n is the order of the matrices.
Link: Obeyed in 0.4. Not left in X1 on exit.

1. METHOD OF USE

1.1 n, the order of each matrix, must be set in T;. If A and B are the two
symmetric matrices, the product C = AB is formed. The addresses of the first
elements of A, B and C should be set in 4,, 55 and 65 respectively. The rest of
X 4, 5, 6 and 7 must be clear,

1.2 All elements should be in the normal floating point form.

1.3 For the two symmetric matrices only %n (n + 1) elements should be stored.

If they are regarded as upper triazngles, the elements must he stored by columns.

For example the matrix

1 3 11
3 2 9
11 9 6
would be stored as 1, 3, 2, 11, 9, 6.
1.4 The product matrix C is not symmetric, and will therefore require n’

locations, It will be stored by columns,

R 560 page 2

2. PRESET PARAMETER

2.1 R 560 works entirely in single-length floating~point arithmetic &s described
in the Pegasus Programming Manual and in the specifications of R 11, R 610 and other
floating point subroutines.

2.2 The number of binary digits used to represent the exponent of the floating-
point numbers is specified by a parameter list. If no parameter list is supplied
by the programmer, it will be set as 9 by the optional parameter list. If it is to
have some value, n, other than 9 a parameter list of the following form must be

supplied:
RO 0-01
560 = 04 ~
g

3. ERROR STOP

0.3+ 7 61 | Floating-point overflow.

If this stop or writing with overflow occurs, it will normally indicate that
non-floating=-point numbers are being operated on.

Ferranti Ltd,

London Computer Centre, Issue 1

21, Portland Place, 28th May, 1957
LONDON, W.1. J.F.D.

R 370

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
27.1,58

TRANSPOSE MATRIX IN SITU - Floating Point

This subroutine transposes in situ & rectangular matrix stored in floating-
point form, or in fixed-point form subject to certain restrictions.

Name: TRANSPOSE MATRIX IN SITU-F.P.
Store: 4 blocks.
Uses: uo, 1, 2; BO.
Cue:
0+[2] 72
01

2.0 0 60
Time: (44 mm + 93) milliseconds for an m x n matrix.
Link: Obeyed in 0.0 and left unaltered in XI1.

Method of Use

The matrix has dimensions m x n (m rows, n columns). It should be stored by
columns end its position in the Main Store is given by the address 4 of its first
element. 4 must be placed in 5m with 5. clear., m and n must be placed as integers
in X6 and X7 respectively, with 6 and T clear.

The subroutine may be used only for matrices made up of standard floating-
point numbers or fixed-point numbers in the range -3 € x < 4. It makes use of the
fact that the first two binary digits of such numbers are the same.

Notes.

1. The behaviour of the subroutine, if any of the elements are not in the form
specified, cannot easily be predicted, It will almost certainly produce wrong results
and take considerably longer than the specified time, and it may be possible for it

to cycle indefinitely in some cases.

2, The subroutine can be used for transposing a matrix stored by rows by inter-
changing the parameters m and n.

3. The routine examines only the first two digits of each number and is not
affected by the number of bits used to represent the exponent.

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 27th January, 1958.
LONDON, W.1. Copyright Reserved J.F.D. J.A.H.

Issue

, R 600 ’

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

2

17.6.58.

PEGA

It is
evalu
tions
compl

SUS AUTOCODE

A conversion scheme to facilitate the programming of certain types of problem.
especially suitable for such technical and scientific calculations as the
ation of formulae, the tabulation of special functions and small ad hoc calcula-
i it can also be used in commercial and industrial work for the testing of
ex flow-digrams. The user of the Autocode need not know anything of ordinary

Pegasus programming.

Name: AUTOCODE MK 1
Store: Bl + 110 blocks.
Uses: The entire Computing Store; locations in Main Store for labels, indices,

variables and instructions. (See section 12),
Cues:

o1 35*_[]72 to enter Autocode programme from
4.4 0 60 machine orders (see section 9).

Cues 02 and 03 are partial cues containing the address of the first block

of R600 (other than Bl) in the address parts of the a-order and b-order

respectively.
Time: Input approximately 2 instructions per second. Programme' cbeyed at

approximately 15 instructions per second.
CONTENTS

Page

1. Autocode Programming ‘e e - - .o .. 2
2. Arithmetic Instructionse 2
3. Functions - .e .e - .s 4
4. Jump Instructions .o- 4
5. Modification .o .. .o .o ‘e - .. .o 6
6. Input .. e .s ve .o .o .. e .o 6
7. Output . - .e .se .o .. 8
8. Stop Instruction; Bracketed Interludes; Complete Programme - ‘e 10
9. Further Facilitieso - .. .e e 12
10. Re-entry and Alterations - ‘e ‘s 14
11. Tape Preparation .o . e ‘e . . v . .o 15
12. Storage Space and Operation - - .- ‘s .. 15
13. Error Tracinge .e - .. .e - .. 16
14. Accuracy of Functions .. e s e .e .. ‘e e .. 17
15. Organisation of Functional Subroutines ve .. .e . 17
16. Table of Instructionse .e ve e .e . 19

R 600 page 2

1. Autocode Programming

To use the Autocode on a particular problem the calculation must first be broken
down into a sequence of steps, each of which is the calculation of a number from one
or two previously calculated numbers, Each step is written as an instruction and the
whole sequence forms the programme of the calculation. The programme is punched, as
written, on & teleprinter or a keyboard perforator and the resulting tape is then
read into the computer by the Autocode scheme (instruction input section) which con-
verts the programme into a suitable internal form which is stored. At the end of the
tape are some special symbcls which cause the programme to be obeyed, At various
stages while it is being cobeyed the programme can cause printing of results (they are
actually punched and printed later) or it can read in numerical data from tapes in
either of the tape readers.

Two types of number are handled by Autocode instructions:

(a} Variables denoted by v0, viI, ¥2, 13, Variables as large as 10"° or as
small as 1077% are held with a precision of between 8 and 9 significant
decimal digits. Variables smaller than 10°7¢ (approximately) are treated as
Zero.

(variables are stored as standard, packed, floating-point numbers with
9 bits for the exponent and may therefore lie in the range

_225u $vg 225H(1 _ 2-23)-

Numbers in the range

28

257(1 _ 2-)

-2-257 ¢4 < 27
are stored as zero.)
(b) Indices denoted by n0, nl, n2, n3,
These are signed integers in the range
-8181 € n < 8191.

They are stored in the modifier position of words and are handled in fixed
point form.

Most of the numbers entering into a calculation are variables; the
indices are introduced as auxiliary quantities, mostly to facilitate counting
and modifying. The v and n symbols are available in figure~-shift on the
teleprinter; the digits which follow them are to be thought of as suffixes
although they cannot be printed as such on the teleprinter. The total
available numbers of variables and indices are adjustable (see section 12)
but they are normally fixed so that there are

(a) 1380 variables v0, v1,, v1379
(b) 28 indices n0, nl1,, n27.
2. Arithmetic Instructions
Most of the Autocode instructions take the form of an equation giving the new
value of a variable (or index) in terms of one or two numbers or previously calculated
variables (or indices). For example, the instruction
vl = v2 + 93

means that the new value of vl is to be the sum of v2 and v3. The instruction

b = v5 + vl

page 3 R 600

means that the new value of v5 is to be the sum of 1 and the old value of v5. Numbers
may be put instead of variables on the right of the equality sign; thus the instruction

v8 = w2 + 35,71

means that the new value of v8 is the sum of v2 and 35.771. As an example of a
sequence of these instructions dealing with variables let us evaluate

31.41 5 ~ (v92)% + {(~6.535 v8 + V97 — 9)/v323}

and put the result in v0. The following sequence of instructions can be used (here
we use vl as working space):

v0 = 31.41 x v5
vl = w92 x v92
0 = v0 - vl

vl = -6.535 x v8
vl = vl + v97

vl = %1 -9

vl = v1/v323

v0 = v0 + vl

Note that each instruction involves only two variables or numbers on the right. We
can also use instructions like the following ones, which have only one variable or
number on the right:

8 = 14, w6 = -v2, v6 = 43

There are similar instructions for handling indices, for example

-9 -~ n5
~1971

n3 = n8 + n3 n2
nd = 288 nd

but it should be rememhered that indices can take only integral values. In general
indices and variables cannot be mixed in the same instruction; but a few simple
instructions of this type have been provided.

The purely arithmetic instructions are summarised in Table 1. In this table
vl, v2 and v3 represent any three variables and similarly nl, »n2 and n3 any three
indices.

Variables Indices
vl = v2 vl = w2 nl = n2 nl = -n2
vl = v2 + 3 vl = 42 +v3 |nl = n2 +n3 nlt = —»n2 +n3
vl = v2 -v3 vl = w2 w3 |nl = n2-n3 nl = -n2 -n3
vl = v2 x 13 vl = -2 xv3 |nl = n2 x nd nl = 2 xn3
vl = 12/v3 vl = -v2/v3 nl = n2/n3 nl = —=,m2/n3
nl = n2 * n3 (rem) nl = -n2 *n3d

Mixed: nl = 12 nl = -2 (nearest integer)

vl = n2 vl = -n2

vl = n2/n3 vl = —n2/n3

Table 1 Autocode instructions - arithmetie

The instruction nl = n2/n3 gives the integral quotient when n2 is divided by n3
and the instruction nl = n2 « n3 gives the corresponding remsinder (zero or with the
same sign as n3). The analogous instructions with a minus sign give the same numbers
with their signs changed. In any of the instructions any variable (or index) may he
replaced by & positive number (or integer).

R 600 page 4

3. Functions

Certain elementary functions may be evaluated by a single instruction; for
example we can write

v6 SGRT 19

to evaluate a square root, or

~SIN v99

v3

to evaluate a sine, The functions available are listed in Table 2; they all apply to
variables only, except for MOD which can be used to form the modulus of an index or a
variable. Again any variable on the right may be replaced by a positive number; for
example

v37 = EXP 5.1058809

vl = MOD v2 vl = -MOD v2 modulus

vl = 1INT v2 vl = ~INT v2 integral part
vl = FRAC v2 vl = -FRAC v2 fractional part
vl = SERT v2 vl = -SQRT v2 square root

vl = SIN v2 vl = ~BIN v2 1

vl = CO0S v2 vl = =C0S v2

vl = TAN v2 vl = -TAN v2 | circular

vl = (C8C v2 vl = ~C8C v2 functions

vl = §SEC 12 vl = =SEC v2

vl = COT v2 vl = —COT v2

vl = ARCSIN v2 vl = -ARCSIN v2 .

vl = ARCCOS v2 w1 = -ARCCOS v2 | 'V¢1S° t"iim“l*"
vl = ARCTAN 2 vl = -ARCTAN 22 unctions
vl = LOG v2 vl = -LOG v2 natural log

vl = EXP v2 vl = -EXP v2 exponential

vl = EXPM v2 vl = -EXPM v2 exp (-v2)

nl = MOD n2 nl = -MOD n2 modulus

Table 2 Autocode instructions - functions

4. Jump Instructions
As usual, Autocode instructions are obeyed in the sequence in which they are
written, until a jump instruction is encountered. If a jump occurs the next instruction

to be obeyed is identified by its laobel which is simply a small positive integer written
in front of the instruction and separated from it by a right bracket. For example

T vd = -9.44/v5

is labelled 7. Any instruction can be labelled but the same label should not be used
twice. 1If reguired we can attach two or more labels to the same instruction, thus

9 2) v3 = LOG v0

The first instruction in an Autocode programme is always automatically labelled
0, there is no need to write this label in.

A jump instruction always includes an arrow, the simplest is the unconditional
jump, for example
S>7

means jump to the instruction labelled 7.

page 5 R 600

Consider the following instruction:
-8, vl > v6

This means jump to the instruction labelled 8 if v1 2 v6, otherwise carry on with the
next instruction as usual. The following three instructions resemble this one closely:

28, vl 2 -u6

58, -vl > v6

>8, -vl > 6
These four instructions can be summarised as

8, twi 2z 6

All the available jump instructions are summarised in this way in Table 3; as before
1,2,3 represent any three numbers.

-1 (unconditional jump)

2, w2 > 3 -1, w2 > 13

M, w2 = w3 1, 12 £ w3
S, 2 >3 1, M2 > M3
S, 2 = 3 1, 2 £ 3

31, w2 =«tw3 (jump if approximately equal;
more exactly, jump if the two variables agree to n0
significant binary digits - i.e. to about 0.3 x n0
significant decimal figures) (1 € n0 £ 28)

21, T2 #£+1vd (jump if not approximately equal)

Table 3 Autocode instructions - jumps

In a jump instruction any variable may be replaced by a number and any index by
an integer. For example

34, 0 >v62
28, n6 # -20

Care should be exercised in using the conditional jumps involving variables
because decimal fractions are stored in bhinary form and therefore cannot in general
be held exactly. Integers in the range —228 L v 223 may be stored exactly but
inaccuracies may arise in calculating them.

The jumps testing approximate equality are intended to allow for the effects of
the rounding errors inevitable in most floating-point work; the value of n0 must be
set before using them (e.g. by an instruction such as n0d = 20).

As an example, let us suppose that we are given two positive numbers vl and v2
and we have to replace them, respectively hy

%(vl + v2) and v(vl x v2).

This process is to be repeated until the two quantities are nearly equal, say until

they agree to about 6 decimal significant figures. The result is in fact an approxi-
mation to the Gauss arithmetico - geometric mean of the two quantities. The following
sequence of instructions can be used:

R 600 page 6

nd0 = 20

Hvd = vl

vl = wl + v2
vl = .5 x vl
v3 = 3 x v2
v2 = SQRT v3
53, vl # »v2

The first instruction sets n0 for subsequent ‘approximately equal' tests. The variable
v3 is used to hold intermediate quantities.
5. Modification

The technique of modification can be applied to any Autocode instructions
involving variables. For example, we can write the instruction

v8 = v998 4+ vné
which means that the new value of the 8th variable is the sum of the 998th variable
and the n6th variable, The n6 in vn6 is to be thought of as a suffix (v,) though
it cannot be typed in this way on a teleprinter. Thus the instruction written above
is equivalent to the instruction

v8 = wv998 + V28

if n6 = 28 at the time the instruction is obeyed. Any variable can have this kind of
suffix, for example

w0 = wvn3 + vn4
We can also write a more complicated kind of suffix, for example
v(8 + n2) = v(53 + nd) + V(-2 + nll}

in which each bracketed expression is regarded as a suffix. The integer (4 say) in
this kind of suffix must be written before the n and can have any value in the range

-2048 € h < 2047

but the result after the addition of the index » must not be negative. The index
mist be added, never subtracted,

Jump instructions can also be modified, The following are examples:
>n7, v0 > V67
>n9, -n8 2> 21
>(—4 +n8), n0£ 8B
6. Imput

A group of instructions is provided for the snput of numbers, A simple one is
the following

v6 = TAPE

This causes v6 to be set equal to a number read from the tape in the main tape reader.
The instruction

v5 = TAPE 13

causes 13 numbers to be read and placed in ¥5, v6,, viT.

page 7 R 600

The instruction
v28 = TAPE =*

causes numbers to be read and placed in ¥28, v29, v30, until an L-directive is
read. The input instructions are given in full in Table 4. It should be noted that
any input instruction has the following properties

(a) input ceases and the next instruction is obeyed when L is read.
(b} n0 is put equal to the number of numbers read in.

{(c) Directive N causes the characters following it to be copied on the output
tape as a name. As with the Initial Orders the name must be terminated by
blank tape.

(d) Directive Z causes the computer to wait on a 77 stop in 0.2. Input may be
resumed by operating the STOP/RUN key.

(¢) Directive Q sets a decimal block exponent. @ must be followed by an
integer g representing a power of 10 by which succeeding variables are
to be multiplied. All succeeding variables in that input instruction, but
not in later instructions, will be multiplied by 107 unless a second Q is
read. @ can not be used with indices.

vl = TAPE R

vl = TAPEB read one number and set in vl.
nl = TAPE . .

nl = TAPEB read one integer and set in nl.
vl = TAPE n2]| read n2 numbers and set in

vl = TAPEB n2| v, v2 n2>0)

n2 =

TAPE nl } read nl integers and set in
n2 = TAPEB nl n2, n3, (n1 >0)

vl = TAPE * | read numbers up to L on tape, set
vl = TAPEB » in v1, v2,

nl = TAPE = | read integers up to L on tape, set
nl = TAPEB * | in n1, n2,

TAPE instructions refer to the main tape reader,
TAPEB to the second tape reader.

Table 4 Antocode instructions - input

Suppose, as an example, that the instructioen
vl = TAPE »
is obeyed and that the following tape is in the main tape reader:

N

DATA 3

(blank tape}

+1.5

Q+ 10 —. 657 +0., 9876
Q- 15

+0. 55332

-13

L

R 600 page 8

when the instruction has been obeyed the following will be stored:

vl = +1.5, v2 = —0.857 x 10'°, v3 = +0.9876 x 10'°,
vd = 40.55332 x 10715, v5 = =13 x 10715, n0 = 5.

The name DATA 3 will be printed when the tape is read.

Bach number on the tape is punched as written, immediately preceded by its sign
and must be terminated by Sp or CR LF. (If indices are to be read in they must be
punched without a decimal point).

The TAPE input instructions actually read in numbers from whichever tape reader
was last selected. Since all input instructions leave the main reader selected trouble
can only occur when the Autocode programme is entered from machine orders or from
Initial Orders., 1In hoth cases care should be taken to leave the main tape reader
selected before entry,

7. Output

There are two main methods of output. The most used is a special instruction of
which the following is an example:

PRINT 6, 3045

This instruction causes the value of v6 to be printed in a way determined by the
style-number 3045. To find the style-number to write in a print instruction we must
first decide whether the number is to be printed on 2 new line or on the same line as
the previous number and whether it is to appear in floating-point form (i.e. as a
number and a decimal exponent) or in fixed-point form (with the decimal point in its
proper position). This determines the first digit (@) of the style-number which can
be found from the following table:

Floating-point Fixed-point

Print on 2 new line {(CR LF ¢b before number) a
Print on same line (Sp before number) a

1 a
2 2

3
4
The rest of the style-number is determined by the number of digits (b) to be printed
before the decimal point and after it (¢); the style-number is

10002 + 206 + ¢
so that style 3045 causes the number to be printed in fixed-point form on a new line
with two digits before the decimal peint and five after it. The number is preceded
by its sign and is rounded.

If desired an instruction of the form
PRINT v3, n9

may be written, when the current value of n9 is taken as style-number.
A similar instruction may be used for printing indices; here only the first digit of
the style number matters and the index is always printed as a 4- digit signed integer.
Thus the instruction

PRINT n3, 4000
causes the value of n3 to be printed, preceded by a single space. In all printing
non-significant zeros in the integral part are replaced by spaces, except that the

digit before the decimal point is always printed. If b = 0 then zero is printed
before the decimal point. If ¢ = 0 the decimal point is not printed.

page 9 R 600

An alternative method of output is mainly useful to provide extra printing in
the development stage of an Autocode programme. We can write XP (for printing on a
new line) or SP (for the same line) before an instruction; this causes the result
of the instruction to be printed if handswitch 0 on the computer is up when the
instruction is obeyed. No printing occurs if this handswitch is down. Thus the
instruction

XPv9 = v3 +v5

causes the new value of v9 to be printed on a new line provided handswitch 0 is in
the up position.

To help in laying out the printing an X before an instruction causes printing

of CR LF and an S causes printing of Sp, after the instruction has been obeyed. This

printing can not be suppressed by handswitch 0.

Only one of XP, SP, X, S may be written before any one instruction and only
arithmetic and function instructions can be preceded by XP, SP, X or S.

The output instructions are given in detail in Table 5.

PRINT v1, n2. Print vl in style n2 = 10002 + 200 + c.
If a = 1 print CR LF ¢ then number in floating-point form with
b digits before point and ¢ digits after point, then Sp and two
digit signed exponent, then Sp Sp. Width of printing 8 + b + ¢
unless & = 0 (width 9 + ¢) or ¢ = 0¢7 + b).
If @ = 2 print Sp then number as for ¢ = 1. Width 9 + b + ¢
unless b = O¢width 10 + ¢) or ¢ = 0(8 + b)
If a = 3 print CR LF ¢» then number in fixed-point form with
b digits before the point and ¢ digits after. Width 2 + & + ¢
unless & = 0(3 + ¢) or ¢ = 0(1 + by, If b is too small print
in floating-point form as if a = 1,
If @ = 4 print Sp then number as for a = 3. Width 3 + b + ¢
unless b = 0(4 +c¢) or ¢ = 0(2 + b). If b is too small print
as if a = 2,

PRINT nl1, n2. Print nl in style-number n2 = 1000a
If ¢ = 3 print CR LF ¢ then 4-digit index. Width 5.
If a = 4 print Sp then 4-digit index. Width 6.

XP before an instruction (arithmetical or functional) the result of
which is a variable. Obey instruction, then print CR LF ¢ and
result in floating-point form as for PRINT with a = 1, b = 0,
¢ = 9, Width 18,

XP before an instruction the result of which is an index. Obey
instruction, then print CR LF ¢ and result as four digit
integer. Width 5.

SP is similar to XP but Sp is printed instead of CR LF ¢. Width 19
for variables, 6 for indices.

Note: XP and SP only cause printing if handswitch 0 is up when the
instruction is obeyed.

before any arithmetical or functional instruction. Print CR LF
or Sp respectively, after obeying the instruction, This
printing is not affected by the setting of handswitch O.

Table 5 Autocode instructions - output

R 600 page 10

The following are typical results of some output instructions

PRINT v nl0, 1064 CR LF ¢ + 345.6789 Sp Sp + 1 Sp Sp
PRINT w3, 2064 Sp — 100, 0000 Sp Sp + 6 Sp Sp
PRINT v4, 2044 Sp + 12.3456 Sp + 12 Sp Sp

PRINT »9, 3060 CR LF ¢b - 123

PRINT v n4, 3062 CR LF ¢ Sp Sp + 2.36

PRINT v (1 + n2), 4026 Sp + 9.876543

PRINT v n6, 4063 Sp Sp Sp + 0.016

PRINT n2, 3000 CR LF ¢ Sp Sp + 12

PRINT n5, 4000 Sp - 1732

XP v4 = v3 + v2 CR LF ¢ + 0.123456989 Sp Sp + 2 Sp Sp
SPv7T =v9 + 10 Sp - 0.987654321 Sp + 11 Sp Sp

XPn3 =1+ n3 CR LF ¢ Sp + 103

Xn2=290 CR LF

Snd =n7-nl Sp

8. STOP Instruction, Bracketed Interludes, Complete Programme

The instruction STOP

causes a T7-stop in U 5,0, If the run key is operated the next Autocode instruction
will be obeyed.

The programme tape for an Autocode Programme is headed as follows:

D

N

(name of programme)
blank tape

J 1.0

The tape up to and including the J-directive is read by the Initial Orders; the
name must be terminated by blank tape. The remainder of the tape is read by the
Autocode instruction input (the Autocode itself having been read previously). The
Autocode instructions making up the programme are punched (as written) in their correct
sequence after the J 1.0. Each instruction is converted into a block of machine orders
and numbers and stored. About half a second is required to read each instruction. At
the end of the programme certain special bracketed symbols must be punched to cause the
programme to be entered.

An instruction or a group of instructions written in brackets is obeyed as soon
as it has been read. Since the first instruction in the programme is automatically
labelled 0 we can enter a programme (i.e. start obeying it) by punching

(30)

at the end of the tape. This is an unconditional jump to the beginning of the pro-
gramme and since it is written in brackets it is obeyed the moment it has been read.

page 11 R 600

A sequence such as the following may be punched:

vl = 1.76
n2 = 10
+3)

This sequence is all read and stored but a note is made of the left bracket; when the
right bracket is read the instruction after the left bracket is obeyed, then the next,
and so on, The last instruction in the example is an unconditional jump to the
instruction labelled 3 and the main programme will be entered at this point. Such a
sequence of instructions is called a bracketed interliude. If the last instruction of
the interlude does not ceuse a jump then further instructions, punched after the
interlude on the tape, will be read and will obliterate the interlude., If we wish,
the bracketed interlude can be quite a complicated programme including loops and

print instructions, for example. In fact, the whole programme could be put in
brackets, so that it would be entered when the right bracket is read.

The Autocode uses one block beyond those where the programme has been stored,to
record the right bracket and to cause more programme to be read if the last instruction
of the interlude does not cause a jump.

As an example of a complete Autocode programme, we give below & programme to read
in numbers from a tape in the main tape reader and to evaluate and print the sum of
their squares and the square root of this number,

D

N

SUM OF SQUARES

J 1,0

v = e . it
v0 = 0

2)vl = v(1l +n0) x v(l + n®)

v0 = v0 + vl accumulate sum in 20

nd = n0 -1 count numbers
22,n0# 0

PRINT 70, 1025 print sum of squares

v0 = BSQRT v0 form square root

PRINT v0, 2025 print sguare root

STOP stop at end of programme
(STOP wait for number tape

= 0) enter programme

The next example is an Autocode programme to tabulate the function
2
Z = arcsechy = -10g[{1 - (1 -y)}/y]

for y = 0.01(¢0.01)0.99. The current value of ¥ is generated by dividing an integer
nl by 100; nl will start at 1 and go up to 99. This is to prevent the accumulation
of rounding errors. An alternative procedure would have been to use a variable
ranging from 1 to 99 and to divide by 100 to give y. This would also have prevented
the accumulation of rounding errors. The numbers ¥y and 2 are printed in two columns
and an extra blank line is inserted (by printing CR LF) whenever y is a multiple of
0.05 (i.e. n2 is a multiple of 5).

R 600 page 12

D
N
TABULATE ARCSECH - AUTOCODE

J 1.0

ni = 1

print CR LF if remainder when

22, n2 # 0 nl is divided by 5 is zero

1/n2 = nl «5 }
Xn2 = 0

vl = n1/100 y = n1/100

PRINT ¥1,3022 print y
v2 = vl xvl y? .
v3 =

st Ay

v4 = 1
v5 = 1 —-v4 1-v1 -
v6 = v5/vl {1 =1 - y2}y
7 = -LOG v6 b4
PRINT 77,4027 print z
nl = nl+1
21,71 # 100
STOP stop at end of programme
(=>0) enter programme
9. Further Facilities
The instruction TAPE

causes more instructions to be read in from the input tape (in the tape reader last
selected i.e. the main tape reader unless the programmer has taken measures to select
the second reader) and to be added at the end of the programme (in fact they overwrite
the last bracketed interlude). This instruction can be used in a programme designed
to do a rather complicated calculation on a few numbers or parameters, At the end of
this calculation a TAPE instruction can be used to read a bracketed interlude such as

(ndg = 3
vl = 41,509
2>6)

This interlude can set new values of the numbers or parameters and cause the calculaticn
to be repeated.

A variant of the TAPE instruction is written, for example
TAPE 6

This reads in more instructions and puts the first one in place of the instruction
labelled 6. Similarly the instruction

TAPE 6,3

will place the first of the new instructions over the third instruction after that
labelled 6. Instructions such as

TAPE nl
TAPE n1, n2

can also be used.

page 13 R 600

It is sometimes desirable to stop obeying an Autocode programme and to start
cbeying ordinary Pegasus machine orders; after some special calculation has been
done the programmer may wish to return to the Autocode programme, either at the next
instruction or at some other specified instruction.

The instruction 2> M 939

means: start obeying machine orders at decimal address 939 (i.e. at B117.3). The
effect is similar to a J-directive with decimal address 939 so that B117 will be
trangferred to UD, the next three blocks to Ul,2 and 3 and a jump will occur to 0.3
(a-order). A link is set in X! and a special word in X2; if the link is obeyed
with C(2) undisturbed the computer will return to the next Autocode instruction
(i.e. the one after the > M 939). Similary the instruction

M 939, v2
will cause exit to machine orders at decimal address 939 but in addition the variable

v2 will be unpacked; X7 will contain its argument and X5 will contain 256 + its
exponent. Instructions such as

M n3, v5
-M 939, nl

can also be used. The last will leave nl in T With any »M instruction the settings
of the accumulators are reproduced in BO.

Entry from machine orders to an Autocode programme at the instruction labelled 15
(for example) can be done by putting 15 into X2 as an integer and obeying cue 01 to R&00:

35+ [4] 72 . 37 (4 72
4.4 0 60 i.e.nommally |, "0 5 60

Before obeying this cue a link may be set in X1; this is obeyed by the Autocode
instruction

>L
Machine orders should normally be punched after the name of the programme but
before the J 1.0 entering the Autocode. The space available for storing machine orders
may be obtained by reference to section 12, It is usually convenient to use for machine
orders the space reserved for the higher numbered variables.
The Initial Orders may be called in as a subroutine by the instruction
>10
A 1ink is set which causes return to the next Autocode instruction when an L-directive

is read, provided the contents of B0.1 and 0.2 are undisturbed. Similarly the
instruction

*10, 1200

calls in the Initial Orders after setting the Transfer Address to decimal address 1200
(i.e. to B150.0), and the instruction

210, 1200, 153

R 600 page 14

will in addition set the Relativiser to 153. Instructions such as the following may
also be used

210, ni
210, ni, n2

These various Autocode instructions are summarised in Table 6.

STOP Stop (77), proceed with next instruction when RUN key is operated.
TAPE Read ih more instructions and add them at the end of the programme,
TAPE nl Read in more instructions, the first to replace that labelled nl,

TAPE n1, n2 Read in more instructions, the first to replace the instruction n2
after that labelled nl.

>Mnl Exit to machine orders at decimal address nl
M nl, v2 The same, and leave v2 unpacked in X7 and X5
2Mnl, n2 The same but leave n2 in Tm.

2L Obey link set in X1 on entry from machine orders
210 Call in Initiel Orders as a subroutine
>10, nl The same, but set T.A. = nl

+10,nl, n2 The same and set Relativiser = n2

Table 6 Autocode instructions - miscellaneous

10. Re-entry and alterations

At the beginning of the Autocode programme tape the directive J 1.0 is punched;
this causes the input programme to treat the following instructions as a new Autocode
programme and to assign the label 0 to its first instruction. Sometimes we may wish
to restart an Autocode programme that has already been read and stored, perhaps after
changing one or two parameters or after making some alterations (this is described
below)., This can be done by reading a bracketed interlude ending with a jump, for
example

n3 = -48
21)

J 1.2 must be punched at the head of this tape; +this has the same effect as the
instruction TAPE so that any instructions read will overwrite the last bracketed
interlude. J 1.0 must not be punched at the beginning of this tape for the input
programme would then treat it as the start of a new programme and store it over the
beginning of the original programme.

Occasionally it may be necessary to alter an instruction in an Autocode
programme, This can be done by using the tape-editing equipment to alter the tape
but this may be inconvenient if the tape is long. Instead of doing this a correction
may be inserted near the end of the tape, before the bracketed interlude causing
entry to the programme. This correction is written, for example

ALTER 6,3

followed by an Autocode instruction (on a new line); this instruction will then
replace the one 3 after that labelled 6. Similarly

ALTER 6

page 15 R 600

causes the instruction lahbelled 6 to be altered. This sequence forms a kind of
Autocode directive and is not stored; it does not form a part of the programme.
When the alteration has been made the input section of the Autocode scheme returns
to read more instructions or alterations. If the alteration is to be made by a
separate tape then it should be headed J 1.2 as described above.

11. Tape Preparation

Instructions are punched exactly as written. During input CR LF, LF, Sp, ¢ and
Er are ignored between instructions. Er is ignored everywhere except between CR and LP,
Sp is ignored in instructions except among the digits of a number. Every instruction
must be terminated by CR LF.

Punching errors or tape reader errors detected during input of instructions will
cause a 77-stop in 0.2. The instruction in which the stop occurs can be read in again
by pulling the tape back to the beginning of the instruction and operating the STOP/RUN
key.

Numbers to be taken in by input instructions must be preceded by their sien and
terminated by CR LF or Sp. CR LF, LF, Sp, ¢ and Er are ignored between numbers and Er
is ignored in numbers.

Punching errors or tape reader errors during input of numbers will cause a
77 stop in 0.4. The number in which the stop occurs can be read in again by pulling
back the tape, clearing the handswitches and operating the STOP/RUN key, The input
instruction can be repeated from the beginning by first ensuring that the handswitches
are not clear. Most punching errors in numbers cause a stop immediately they are read.
It should be noted however that if the sign of a number is not punched the stop does
not occur until the terminating character is read.

12. Storage Space and Operation
Ordinarily the complete Autocode tape is read in with handswitch 1 up, and the

Autocode programme is read after it by operating the RUN key. Space in the Main Store
is then allocated as follows:-

Bl - 111.1 Autocode Scheme

B111,2 onwards Labels (see below)

B124.0 - 127.3 Indices (n0 to n27, one location each)
B127.4 -~ 299.7 variables (v0 to v1379, one location each)
B300 onwards Instructions (one block each)

There is room for 210 instructions if the date and serial number stored in B511.6
and 511,7 are not to be disturbed. Each instruction occupies one block except for the
last instruction of a hracketed interlude which takes two blocks.

The number of locations used for labels is cne more than the highest number label
used. For instance if the highest number label is 24 then the 25 locations B111,2 to
114, 2 are used.

During input of the Autoccde B126.0 to 128.6 are used temporarily for two inter-
ludes and a list of parameters.

If handswitch 1 is down a 77 stop in 2.6 occurs near the end of the tape which
gives the programmer an opportunity to change the numbers of indices, variables and
instructions available, The following tape puts the index n0 in B120.5, 0 in B123.3
and the first instruction in B250:

R 600 page 16

T128.0

120 500 O.

123 300 Q.

250 -00 O.

J126.2
A3
Z

There is then no need to read the remaining portion of the Autocode tape, The
variables must begin in or before B127.% and there must be room for at least one index
(stored before v0).

It is possible to use the Assembly facilities with the Autocode. Master programme
and subroutines may be read in by going to run after the 77 stop, taking care to set
the transfer address to leave room for the lahels used. Al must not appear on this
tape. The tape must end with

J126,2
A3
A

Alternatively programme, including directive Al, may be read in before R 600, 'The
Autocode tape must be read from after the Al directive with which it begins, The
Autocode will then occupy BO+ - B10S8+.1 and Bl. An interlude ensures that the storage
used for labels begins in B109+, 2.

13. Error Tracing

Each instruction occupies cone block in the Main Store. The number of this block
is held in 2, while the instruction is being obeyed, except sometimes during input and
output, The rest of X2 is not used, Hence, if a stop occurs while programme is being

obeyed it is quite easy to trace the instruction concerned.

The following loop stops may occur:

0.0 683 SQRT argument negative

0.0+ 760 Floating=-point division by zero, Infinite
result in SEC, CSC, COT.

0.2+ 463 ARCCOS, ARCSIN argument outside range
“1€x£1

0.3+ 660 LOG argument zero.

0.4+ 663 LOG argument negative.

1.4 060 Floating~point overflow.

A write with overflow stop is caused if the result of any index instruction overflows,

The blocks of programme are transferred into U5 before being obeyed. Hence a
punch on block transfers while the programme is being obeyed will show the whole course
of the programme by giving the block numbers of the instructions obeyed (interspersed
with some other lower block numbers).

It may sometimes be useful to put an optional stop in an instruction: to obtain,
for example a punch on block transfers after part of the programme has been obeyed.

page 17 R 600

The following is an example of how a programme tape might end in order to achieve this:

(+10)
$351.0
L

(>0)

Such an optional stop, which should be in location 0 of the block concerned, will
occur in U5,0 after the variables or indices involved have been read and unpacked but
before the rest of the instruction has been obeyed. Note that instruction number n
is in B300 + n.

If an optional stop is inserted in B44+.5 of R 600 a stop will occur between
instructions as the programme is obeyed. The number of the next instruction to be
cbeyed will be found in 23,

14. Accuracy of Functions

The function instructions give a maximum error of 1 in the eighth significant
decimal place (the maximum error is actually 272° in an argument between % and %)
with the following exceptions:

LOG with argument near 1. The answer which is near 0 is correct to eight
decimal places (not 8 significant figures).

SIN, COS, TAN, CSC, SEC and COT are evaluated by dividing the argument by 2w
and disregarding the integral part. The accuracy falls off as the argument increases,
Argument 11000 gives six decimal figures correct. These functions give the full
number of significant figures for small arguments.

15. Organisation of Functional Subroutines

The subroutines performing the function instructions occupy storage as follows:

SIN, COS, TAN, CSC, SEC, COT B77+ - 83+
LOG B84+ - 86+
SQRT (also used by ARCCOS, ARCSIN) B87+ — 88+.3
FRAC B88+.4 — 89+
EXP, EXPM, BOO+ - 93+.3
ARCCOS, ARCSIN, ARCTAN BO3+.4 - 1014+

A dictionary of functions starts in Bl04+.6, each entry occupying two words.
The first word is an integer caleculated as follows: let the function be Arxr_l... Ah'
The integer is
¥ -1
32 (31 - Ar) + 32 (31 - Ar-i) + ... + (31 - AD)

where A denotes the humerical value of the letter. The second word in the entry is
the cue to a subroutine to perform the calculation.

Consider, for example, the LOG function. L is the 12th letter of the alphabet,
0 the 15th, G the Tth

A L0G = 32731 - 12) + 32(31 - 15) + (31 - 7) = 19992

The entry in the dictionary for LOG would therefore be

+ 19692 function number
84+ 0 72
0,3 060

cue to LOG subroutine

R 600 page 18

The layout of the Autocode tape is as follows:

Al

Programme in Bl

Parameters and interludes

in B126.0 - 128.6

L

Programme headed by cue list and name

J127.0 enters an interlude which sets the
beginning of the list of labels at
the current Transfer Address

J126.0 examines handswitches

J126.2 calculates further parameters from
those supplied on Autocode tape or
by programmer.

A3

Z

The entries in the dictionary are in the order MOD, TAPE, TAPEB, EXP, EXPM, LOG,
SQRT, INT, FRAC, COS, SEC, COT, SIN, CSC, TAN, ARCCOS, ARCSIN and ARCTAN. Alterations
made to this list should be made on the Initial Orders tape before the directive J127.0.
The word in B128.3 must be altered to contain the address of the beginning of the
dictionary in the modifier position and the number of entries in the counter position.
The sign digit must be present in this word. The dicticnary must begin in an even
address.

Any subroutine written to extend the list of functions must satisfy the following
conditions: U5.0 — 5.5 and X2 must not be disturbed. Any Computing Store blocks used
must be restored, U0 from B4l+, Ul from B42+,, U4 from B45+. On entry the argument
is unpacked with (256 + exponent) in X4 and numerical part in X6 (in the case of an
index it is in Sm on entry). The result should be left unpacked in the same form,

Exit is by a jump to US.1.

The Transfer Address at the J127.0 must be the address at which the list of
labels is to begin., J127.0 enters an interlude which sets the beginning of the list
of labels at the current Transfer Address,

page 19
16. Table of Instructions
Arithmetic Instructions
vl = v vl -2 nl = n2 nl -n2
vl = vZ2+v3 vl = w2+ v3 nl = n2+ n3 nl = 4.2 +n3
vl = v2 -v3 vl = w2 -v3 nl = n2 —n3 nl = 02 -n3
vl = v2 x v3 vl = w2 x v3 nl = n2 x n3 nl = -xn2 xn3
vl = v3M3 vl = w2/v3 nl na/m3 nl = -—n2/n3
nl = n2 + n3 (remainder of n2/n3)
nl = -n2 » n3 (minus remainder of n2/n3)
nl = v2 nl = w2 (nearest integer)
vl = n2 vl = -—n2
vl = n2/m3 vl = -n2/n3
Functions Input Instructions
vl = MOD v2 vl = -MOD v2 vl = TAPE } read one
vl = INT v2 vl = =INT v2 vl = TAPEB number
vl = FRAC v2 vl = -FRAC v2 nl = read one
vi = SQRT v2 vl = =S8QRT v2 nl = TAPEB integer
vi = BSIN v2 vl = =SIN v2 vl = TAPE n2 read n2
vl = €08 v2 vl = =008 v2 vl = TAPEB n2[numbers
vl = TAN v2 vl = -TAN v2 n2 = TAPE nl } read nl
vl CsC v2 vl = -C8C v2 n2 = TAPEB nl] integers
vl = SEC v2 vl = ~SEC v2 vl = TAPE » } read numbers
vl = COT v2 vl = =COT v2 vl = TAPEB » up to L
vl = ARCSIN v2 vl = ~ARCSIN 12 nl = TAPE = } read integers
vl = ARCCOS v2 vl = -ARCCOS v2 nl = TAPEB * up to L
vl = ARCTAN v2 vl = -ARCTAN v2
vl = LOG v2 vl = -LOG v2 Notes:
vl = EXP v2 vl = EXP v2 TAPE implies main tape reader
vl = EXPM v2 vl = -EXPM v2 TAPEE implies second tape reader
nl = MOD n2 nl = -MOD n2 n0 = number of numbers read
Notes: INT v2< v2, FRAC w2 > 0
Jump Instructions
-»1 {(unconditional jump)
21, tv2 2 w3 >1, w2 > w3
21, w2 = 13 >1, tv2 # t13
21, tn2 2 in3 21, 2 > 3
21, tTh2 = tn3 >1, in2 ¥ 3
21, w2 =«1v3 (jump if approximately equal)
1, w2 #F«1u3 (jump if not approximately equal)

R 600

R 600 page 20

Output Instructions

PRINT v1, n2 (print v1 in style n2)

PRINT nl, n2 (print nl in style n2)

XP before an instruction (obey instruction and print result on new line)
SP before an instruction (as XP but print on same line)

X before an instruction (print CR LPF after obeying instruction)

5 before an instruction (print Sp after obeying instruction)

Note: XP and SP printing is suppressed if HO = 1

Printing Styles

Style number 1000a + 20b + ¢

For variables b = number of digits before the decimal point
¢ = number of digits after the decimal point

Indices are always printed as 4 digit integers

I

Floating-point

i xed-
(variables only) Fixed-point

Print on a new line (CR LF ¢ before

number) a =1 a =3
Print on same line (Sp before number) a = 2 a = 4
Miscellaneous Instructions

STOP (77 stop)

TAPE (resd more instructions to end of programme)

TAPE nl (read more instructions to nl onwards)

TAPE nl, n2 (read more instructions to replace instruction n2 after nl)

M nl (exit to machine orders at decimal address nl)

>Mnl, v2 (as 2M nl and leave v2 unpacked in X7 and X5)

*Mnl, n2 (as »M nl and leave n2 in T,)

2L (obey link set in X1 on entry from machine orders)

> 10 (call in Initial Orders as a subroutine}

10, nl {as >10 and set T.A. = nl)

210, nl,n2(as 10, nl and set Relativiser = n2)

Entry to Autocode J1.0

Re-entry Jl1.2

Entry from machine orders —cue 01 with number of label in X2

Table 7 Autocode Instructions

Ferranti Ltd.
London Computer Centre, . Issue 2
21, Portland Place, 17th June, 1958

London, W.1 Copyright Reserved G.E,P. B.C.

R 610

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
13.11.56.
FLOATING-POINT ARITHNETIC

A self-preserving subroutine with four modes of entry to carry out the operations
of addition, subtraction, multiplication and division on packed floating-point numbers.

Name: FLOATING POINT ARITHMETIC
Store: 4 blocks

Uses: U3, 4,5, Xi, 4,5, 6, 1.

Cues: 01 a-order partial cue.

02 b-order partial cue,.

See paragraph 1.1 below.

. Times: Addition 18 ms
Subtraction 18% ms
Multiplication 14 ms
Division 18 ms-

These times are approximate;
they include the two orders
needed to enter R 610.

Link: Computing store link set in Xi1. See paragraph 1.3 below.
1. Method of Use

1.1 Before any use is made of R 610 it musf be brought into blocks 3, 4, 5 of the
computing store by means of three block-transfer orders:-

These orders must be tagged so that the correct block-address of R 610 is added
to each of them; this block-address is given in cues 01 (for an a-order) and 02 (for
a b-order) of R 610. For example, suppcse that the three block-transfer orders are in
block %+ of the master-programme with the first two of them in 9+.3 and the third as
the a-order of 94+.4:-

0 [:]72
B 9+,
o 1 [:]72
2 []m
B 9+.4

Issue 2

R 610 page 2

Then the following three tags calling for cues must be punched at the head of the
master-programme; -

R9 3-01

cue 01 (a-order block-address)
610 - 01 -
RS9 3-02

cue 02 (b-order block-address)
610 - 01 -
R9 4-01

cue 01 (a-order block-address)
610 - 01 -

When R 610 has been brought in in this way it may be used repeatedly with
computing store links.

1.2 If F(6) and F(7) are the floating-point numbers in accumulators & and 7
respectively (see section 2 below), the following operations may be performed by
R 610:-

Addition F6y + F(D
Subtraction Fgy - F(
Multiplication F(8y x F(M
Division F6y / F(D

In each case the result is left in 6, which may thus be regarded as a floating-
point accumulator.

1.3 Two orders (which need not form an order-pair) are needed for each entry to
R 610, The first order sets the link in X1 and is always as follows:-

@1

where A is the computing-store address to which R 610 is to jump on exit.

The form of the second order depends on the operation to be carried ocut:-

For addition 3.0 1 66 Fey' = F@) + F(D
For subtraction 3.0 0 60 Fey' = FgY - F('D
For multiplication] 3,0+ 0 60 F6y' = F6) x F(D
For division 3.0+ 1 66 F@)' = F(6) / F(D

page 3 R 610

2. Floating-Point Numbers

2.1 A floating-point number x = A.2a is held in a single word with the least-
significant n bits representing the non-negative integer a + 2n_i, and the most-
significant 39 - n bits representing the fraction 4. If such a word is held in
register ¥ its value is written as F(¥). The number n is specified by a parameter-
list. See section 3 below,

2.2 The exponent, a, is restricted to the range
2 eag L.

If x i1s not zero then the argument, A4, satisfies

<A<y if x is positive,
or L4 <4 if x is negative,
Zero 1s represented by 4 = QOand a = —2"_1. This corresponds to a null word, 1i.e.

a word all of whose digits are zero.

2.3 The result of the operation carried out by R 610 is left in X6 in standard
backed form as described in the previous paragraph, Should the exponent become too
small (i.e. less than _2n—1; this is called underflow)or the argument become zero
then the result is automtically set equal to zero. If the exponent becomes too
large (i.e. greater than 2! — 1) overflow is said to occur and the overflow-
indicator (OVR) will be set. In these cases the result will always be zero unless
the overflow is caused by dividing by zero.

3. Preset-parameters

3.1 The value of n, i,e. the number of binary digits used to represent the
exponent part of the floating-point numbers, is specified by three preset-parameters.
The number n may be any positive integer up to 35. If no parameter-list is supplied
then n will be set equal to 9 by an optional parameter-list.

3.2 If n = 9 then the exponent may lie in the range
-256 € a £ 255,
which permits the use of numbers whose absolute values lie in the range
78

2.107°° < (%] < 2.10"° (approximately)

The argument 4 will be represented with a precision of just under 9 significant
decimal digits.

R 610 page 4

3.3 If it is desired to use a value of n other than 9 then a parameter-list of
the following form must be read in at some stage:-

RO 0-03
Title

610 - 04 -
01 -gn-1 = gt 7%

37-n 0 00 i,
02 = (37 -n).2

0

0 -2 6
03 = (37 - n).2

37-n 0 00

This parameter-list will normally form part of the master programme.

Ferranti Ltd. Issue 2
London Computer Centre, 13th November, 1956
21, Portland Place, G.E.F.

London.W. 1.

R 611

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2.
15. 9. 56.

FLOATING-POINT SQUARE ROOT
F'(8y = VF(8)

where F(6) is the floating-point number held in X86.

Name: FePe SQ. ROOT
Store: 2 blocks, plus 1 location for optional parameter-list.
Uses: vo, 1; Xi, 5, 6, 7
Cue: 01 (0+.0)
Time: About 44 m.s, It varies according to the magnitude of the number as shown
below
Argument Exponent Exponent
Even 0dd
0 6 m.s. .
0.25 44 n.s,
0.375 36 m.s. 44 m.s.
0. 499 15 m.s. '

* If the argument is zero the exponent should also be zero and therefore

even,
Link: Obeyed in 1.5
Error: The error in the square root will be less than one in the last hinary

place of the argument.
Notes: (1) A loop stop will occur in 0.1 if F(6) is negative,
(2) Unlike R 610, (Floating Point Arithmetic), R 611 is not
self-preserving,
FLOATING-POINT NUMBERS
A floating-point number x = A.2% 1s held in a single word. The least-significant
n bits represent the non-negative integer a + 2"'1. and the most significant 39-n bits

represent the fraction A. If such a word is held in register ¥ its value is written
as F(M.

R 611 page 2

The value of n is specified by a parameter list.
The exponent , a, is restricted to the range
2"t g e g 2o
If the number x is not zero, the argument , 4, satisfies
U g 4 < % if x is positive,
or -~ % € A <- 1l if x is negative,

Zero is represented by 4 = 0 and a = -2, so0 that 211 the digits of the word are
zero,

If the number F(6) is in standard floating-point form the answer vI(6) will

also be in the standard form described above. There is no possibility of overflow,
* PRESET-PARAMETER

n is the number of binary digits used to represent the exponent part of the
floating-peoint numbers; it may be any positive integer such that 2 £ n € 35. = is
set by a preset-parameter; if no parameter-list is provided n will be set equal to 9.

If n i 9 then the exponent may lie in the range

-256 £ a < 255
which permits the use of numbers whose absolute value lies in the range
2.1077% < | x | < 2.107% (approximately)

The argument 4 will be represented with a precision of just under 9 decimal digits.

If it is desired to use a value of n other than 9 a parameter-list of the
following form must bhe read in at some stage:-

RO O0-01
Title
611 - 04 -
01 —on~t
Ferranti Ltd.,
London Computer Centre, Issue 2
21, Portland Place, . i5th September, 1956

LONDCN, W.1. D. M.

R 612

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
10, 12.57.

SHORTER FLOATING-POINT ARITHMETIC

A self-preserving subroutine with three modes of entry to carry owt the opera-
tions of addition, subtraction and multiplication on packed floating-~point numbers.
There is a facility for adapting the routine to do division instead of multiplication.

It occupies only 2 blocks in the Computing Store and is faster than R 610 for
addition, subtraction and multiplication. It will not detect floating-point overflow,
and will occasionally produce slightly non-standard numbers.

Name: SHORTER F.P. ARITHMETIC

Store: 3 blocks

Uses: U4, 5; X1, 4, 5, 6, 7.

Cues: 01 to bring the routine into the Computing Store,

02 to change the rountine ready for division.
03 a-order partial cue,
04 b-order partial cue.

Times: Addition 14% ms,
Subtraction 14% ms. These times are approximate; they include
Multiplication 11% ms. the two orders needed to enter R 612.
Division 29 ms.

Link: Computing Store link set in X1. See paragraph 1.2 bhelow.

1. Method of Use

1.1 The normal way to set the routine for multiplication, addition or subtrac-
tion is by bringing the first two blocks into blocks 4 and 5 of the Computing Store.
This may be done hy obeying cue 01, which consists of the following order pair:

o+ [4] 72
1+ [5] 72

1.2 Two orders (which need not form an order pair) are needed for each entry to
R 612. The first order sets the link in X1 and is always as follows: -

1w

R 612 page 2

where A is the Computing Store address to which R 612 is to jump on exit.

The form of the second order depends on the operation to be carried out:-

For addition 4.0 1 66 F@y! = Fey + F(n
For subtraction 4.0 0 80 Fg)y' = P8 - F(D
For multiplication 4.0+ 0 60 F(6)' = F() x F(T)
(or division) : ° [Fey! = F(6) / F(nl
1.3 Once the routine is in the Computing Store, it may be set for division by

obeying cue 02:-

=3

4.4 1 10

After obeying this cue the routine may be used for addition, subtraction or division,
but not multiplication. The entries for addition and subtraction are unaltered; the
third entry is now used for division instead of multiplication.

1.4 After the routine has been set for division it may be reset for multiplica-
tion by obeying cue 01.

Alternatively the following entry may be used for the last division:

For division (::) 1 40

(resetting for Fy' = Fey 7/ Fi
multiplication) 4.0+ 1 66

After the division has been performed the routine will be reset for multiplication.

If this entry is used when the routine is already set for multiplication, it
will have the same effect as the normal multiplication entry.

2. Floating-Point Numbers

2.1 A fleoating-point number x = A.Za is held in a single word with the least-
significant n bits representing the non-negative integer @ + 2""', and the most-
significant 39-n bits representing the fraction A. If such a word is held in
register N its valve is written as F(N). The number n is specified hy a parameter-
list. See section 6 below.

2.2 The exponent, a, is restricted tc the range

n-1 n-i
- 2 £ a £ 2 - 1.

1f x is not zero then the argument, A, satisfies

Y

or -~%

NI

A < % if x is positive,
A < -Y if x is negative.

page 3 R 612

Zero is represented by A = 0 and a :__zn-1- This corresponds to a null word, i.e. a

word all of whose digits are zero.

2.3 The result of an operation carried cut by R 612 is left in X€ in standard
packed form, except as described in section 4. Should the exponent become too small
(i.e. less than _aP Y underflow is said to occur, and the answer will be set equal
to zero, If the exponent becomes too large (i.e. greater than 2=t 1y overflow is
said to occur, and the subroutine will give incorrect results.

3. Floating-Point Overflow

A check can be made on floating-point overflow (if it is likely to occur) by
obeying the following orders on exit from the subroutine:

5.7T 405 4
——— 4 61
This causes a jump if the exponent exceeds 2n_1 - 1.

4. Non-Standard Numbers

Due to the method of rounding off, the subroutine will occasionally produce
answers in which the argument is exactly equal to +% or to -%4. Such numbers are
acceptable as operands for R 612, except that if two arguments of +% are added, there
will be OVR: this unlikely event will be indicated by a 77 stop in 5.6 (see section 8),

These rare non-standard numbers are also acceptable to most other floating-
point subroutines. If they do cause a fault, it will be indicated by the OVR. An
exception to this rule is R 570, which will give incorrect results if entered with
non-standard numbers. R 2903 will print an asterisk for such numbers.

5. Exact Cancellation

If two equal numbers are subtracted the answer will not normally be zero, bhut
it will be less than 1/’1011 of the operands. It will have a positive normalised argu-
ment and a binary exponent which will be at least 37 less than that of the operands,

6. Preset-Parameters

6.1 The value of n, i.e. the number of binary digits used to represent the
exponent part of the floating-point numbers, is specified by a preset-parameter.

The number n may be any positive integer up to 10 (if n exceeds 10 the routine may
not work correctly for widely differing exponents). If no parameter-list is supplied,
n will be set equal to 9 by an optional parameter-list,

6.2 If n = § then the exponent may lie in the range
- 256 € a <€ 255,
which permits the use of numbers whose absolute values lie in the range
-78

2.10 < | x | < 2.1076 (approximately).

The argument A will be represented with a precision of just under 9 significant
decimal digits.

| R 612 ’ page 4

6.3 If it is desired to use & value of n other than 9, a parameter-list of the
following form must be read in at some stage:-

RO 0-01
Title
612 -0 4 -

01 -2 = =2 .2

This parameter-list will normally form part of the master programme.

7. A Rapid Link

The use of a Computing Store link involves a shift of 25 places, taking over
3 milliseconds at each entry. If R 612 is used repeatedly in a loop of programme,
much time may be saved by planting a link in U 5.5 before entry.

When using this method, the master programme must clear X1 before each entry
to the subroutine, The link should include the order

A 064

which will return to the master programme only if the OVR is clear., U 5.5 must he

restored to
O

0 0641

before R 612 is used with a Computing Store link.

8. Error Stops

4.0 760
4,0 Loop stop if dividing by zero.
5.6 5 01
1229 1117 T7 stop if OVR is set before or during the
5.6 routine. This may happen when working
127 7 40 with non-standard numbers.
127 7T
5.7 7 77 stop if RUN key is operated after 77
127 7 00 stop in 5.6.

Note: The contents of 5.6 and 5.7 shown above are for n = 9. The actual values are
always 277! and —2" respectively.

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, ‘ 10th December, 1957.
London, W.1. Copyright Reserved J.F.D. D.M. G.E,F.

R 630

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

COMPLEX FLOATING POINT ARITHMETIC

An interpretive scheme to facilitate the programming of operations on complex
floating point numbers, Special facilities for matrix arithmetic are provided.

Name: COMPLEX ARITHMETIC

Store: 40 blocks plus 8 4 block interlude. The interlude, which can be overwritten
when input is complete, can be beyond block 127 of the Main Store,

Uses: UL, 2, 3, 4, 5; X1, 6, T7; BO0; working space in the Main Store (see
section 1); certain blocks down from B510 (B894 on the 7168 store) if
subroutines are used (see section T7.4).

Cues: 01, 02, 03, 04, 05, (see sections 3, 7.3, 9).

Time: See section 2.3.

Exit: See end of sectien 2.3 and section 3.

CONTENTS

Section Page

1. Numbers and Store . .o .. .e .- .- - 2

2. Orders e .. . e - e e 2
2.1 General Description ‘a - .. - .e 2
2.2 Structure and Modification .. .e .s .e e ‘e - 3
2.3 Order Code .. . - -- 3

3. Entry and Exit .e ‘e .oe .. 4

4, Number Input and Output .- .. - .. - .. ‘e .o .. - 5
4,1 Input - ‘ee . 5
4,2 Qutput .. .o ‘e ‘e .. - e .. . 5

5. Preset Parameter - .. . ‘e .. e e .. .e 6

6. Example e e e e e e e e e e e 6

T. Complex Floating Point Subroutines - .. e .. 8
7.1 The Use of F76 .. ‘e e . .o . .. ‘e .o - .. 8
7.2 R 630 Subroutines - ‘e .o g
7.3 Programmer’s Subroutines .. - - 10
7.4 Notes on R 630 Subroutines .. . - - 10

8., F20 ‘e ‘.. - ‘e . e .- e .. 11

9. General Notes .e .. ‘e - .. . - . . .e e .. 13

10. Stops .. e .. -o .e - ‘e . .. e 14
10.1 During Input of Numbers .. e e - .e 14
10.2 During Outputo - - ve . 15
10.3 Arithmetic Orders e . e . ‘e - .o .. - 15
10.4 F20 ., ‘e .e e ‘e .. - .o .. .o .o 15
10.5 Fi6 .. .- e e e - .. - 16

R 630 page 2

1. NUMBERS AND STORE

Numbers are stored in the Main Store working space., They are in floating peint
form and occupy three locations; the first two locations contain the real and
imaginary arguments, while the third holds a common binary exponent as an integer.
The larger of the two arguments is in the normalised form; either or both of the
arguments may be zero, The values -4 and +% are also acceptable and may sometimes
be produced by functions 42 and 46. The address of a number refers to the first word,
the other two being at the same position in the following two blocks; this address
is relative to the start of the working space which is preset by a parameter (see
section 5).

The addresses of numbers must differ by multiples of three; preferably all
addresses should be divisible by three, starting at zero, as shown below:

Address: Contents:
0+.0 a, (real part)

.1

.2

.3 @, (real part)

.4

.5

.6 ¢, (real part)

T
1+.0 oy (imaginary part)

.1 o, (real part)

.2

.3 ay (imaginary part)

.4 @, (real part)

.B

.6 a, (imaginary part)

) e, {real part)
2+.0 €,

.1 @, {imaginary part)

.2 o, (real part)

.3 €,

.4 @, {imaginary part)

.5 @, (real part)

.6 €,

T a, (imaginary part)
a = argument € = exponent

Most operations are carried out on these numbers and the contents of the
floating point accumulator. The accumulator occupies Ul.1l, 1.3 and 1.5 and holds
numbers in the same form as the Main Store.

2. ORDERS
2.1 General Description

The basis of the scheme is the interpreted order. Interpreted orders are
written and punched in a form similar to ordinary Pegasus orders and are read in to
the Main Store by Initial Orders. When obeyed they are in UQ. The interpreting
routine examines them and performs the specified operation. In UO interpreted orders
are obeyed consecutively except when a jump takes place. The next order obeyed after
an interpreted order in 0.7+ is in 0.0, whether it is to be interpreted or not.

page 3 R 630

2.2 Structure and Modification

As with ordinary orders there are 19 binary digits to the order and thus two
orders to the word. The stop-go digit is non-functional for interpreted orders. The
orders will be described by the same letters (N, X, F, ¥,) as ordinary orders except
when the first ten digits are thought of together. In this case the ten digits as an
integer are designated S. S is usually the address (relative to the start of the
working space) of a number, while s is the number stored at this location. The
floating point accumulator will be denoted by 4 and its contents by a. a always
represents a floating point number as described in section 1. Thus, for example:

S
—
N X F X
12 - 40

means transfer the contents of S12 to 4, or a’ = 5,,. The modifier can only be

X3, X4 or X5 and these are the accumulators which can be used with the counting
functions, In all modification the thirteen digits of the modifier position of the
accumulator, ¥, are added to the first ten digits of the order (i.e. S or ¥ and 1)
which are extended by three digits. Jump orders always jump to an address in UO
however modified, Modification cannot cause overflow.

2.3 Order Code and Order Times

mean times
F Operation in milliseconds
00| a’'=a + s about 80
04 | a’ = w2 ~ 5 ”
10| a’ =a -5 about 60
14| a'l =5 - a "
20 | C'¢X) = Nth constant in list (see section 8) 32
22 | Read a number to 4 and S -
24 | Punch CRLF followed by number from 4 -
30 | Test indicator: Jump IN to ¥ if clear. Clear indicator. 24
32 { Test indicator: Jump OUT to ¥ if clear. Clear indicator. 26
34 | Count: x; =x,t8, x/=x,-1; jump IN to ¥ if xé F0 26
36 | Count: x[= Xot3, x,=x,-1; Jump OUT to ¥ if xé Z0 27
40 | a’ = s 38
42 | a’ = -5 38
44 st=aqa a7
46t s’ = g 37
50 | Block read. UQ' = N(+); jump to 0.5 34
52| a' = 8§ 25
54 | Set indicator if €, < €, 30
56 | Set indicator if max. (|ar|. |ai|} <2°% 24
60| a’' =ax s 50
62 | Interchange: a'’ =s and s’ = a 52

r=8

M| a S . 70
76 | Subroutine operation S (see section T) -

R 630 page 4

Notes:

F 30, 32, 54, 56; the indicator is the sign of U5.7; when set it is negative,
The rest of U5.7 is used for other purposes.

P 34, 36; counting does not carry from X, to x,. No jump occurs if Xy overflows,
and a jump will always occur if accumulator 0 is specified.

F 30, 32, 34, 36; jump ‘IN° means jump to an interpreted order, jump ‘OUT" means
jump to an ordinary order., The block part of the jump address is ignored: all these
functions will only jump to orders in UO.

F 30, 32; the unused X digits in the order may take any value.

F 70; loop stop in U5.0%+ on division by zero (see section 10),

F 20, 34, 36; X =3, 4 or 5 only.

Unassigned orders; extravagant effects may normally be expected on obeying
these. However, some programmes written for R 650 may be suitable for R 630, and the

following information may help with conversion:

Functions 02, 06, 12, 18, 26 have identical effects to functions
00, 04, 10, 14, 24,

Function 64 becomes a null order.

The functions have been described with the second octal F-digit even. If the
second function digit is made odd by the addition of 1, the next order is not
interpreted but is obeyed in the normal way as a machine order. This applies to the
order jumped to by F50 and to the order returned to after using a subroutine with F78.
A sequence of machine orders may also be entered by a jump using F32 or 36.

Machine orders may use UO and 4 and all the accumulators without disturbing the

interpretive routine.

3. ENTRY AND EXIT

The routine has five cues. Cues 01 and 02 bring the interpreting routine into
the Computing Store and jump to an order in U0. The address of the order must be
specified in XGC before obeying the cue, by an instruction such as:

0.P(t) 8 40

Cue 01 is used to jump to an ordinary order and cue 02 to jump to an interpreted order.

If the interpreting routine is in the Computing Store a sequence of interpreted
orders 1s entered by setting the address of the first order in X6, and jumping to
1.7+ e.g. by obeying orders

0.P(+) 6 40

1.7+ 0 60

If the order to be obeyed is in U0.0 &ll that is necessary is a jump to 1.7,

page 5 R 630

On exit from interpreted orders X2, 3, 4 and 5 will be unchanged since entry
except for the result of counting or using F20 in any of the latter three,

The total extra time for entry and exit is 4 milliseconds.

4. NUMBER INPUT AND OUTPUT
4.1 Input

Function 22 reads & real or complex number from tape in fixed or floating point
form. The number is then put in the accumulator and in working space location S.

All arguments, fixed or floating, must contain a decimal point, and all numbers,
whether argument or exponent, must be preceded by a sign. Not more than 11 decimal
digits can be accepted before a decimal point.

The routine will accept from onme to four numbers separated by any number of
spaces and terminated by CR LF. The way in which these numbers are interpreted is
given by the table below:

Read Interpreted as;
ta. b ta, b
ta.b tc ta,b x 10%¢
ta.b tc.d ta, b + i(te.d)
ta.b tc td.e ta.b x 10Y¢ + i(td. e)
ta.b tc.d te ta,b + i(te.d x 10%9)
ta.b tc dd.e f ta, b x 101¢ + 1¢xd.e x 1087

No other combinations are allowed.

CR LPF, LP and ¢ can precede the sign of the first number. One or more spaces
must occur to separate the numbers; spaces may also be punched before the first
number or after the last, before the CR LF. The decimal point may occur anywhere in
an argument: it may precede or terminate it. No exponent may contein a decimal point.
Erase may be punched anywhere except between CR and LF.

All other characters and arrangements cause a stop. (See section 10.)

Arguments may be punched with any number of digits after the decimal point:
digits beyond the eleventh are ignored. If the sum of an exponent and the number of
digits accepted after the decimal point of the argument is outside the range
-356 € x < 256 input reaches a 77-stop in 3.0 unless the argument is zero. It will,
however, continue on operating the STOP/RUN key.

BO is used during input.
4.2 Output
Function 24 punches out the number in the accumulator preceded by CR LF.

For this function, the ten binary digits of S specify the style of output.
The first five, S1' indicate the number of digits required before the decimal point
(unless S1 = 0), while the last five indicate the number required after the point.
A simple waj of writing S in the order is as the decimal number 325, + Sz'

If S1 = () the output is in the standard form consisting of a signed argument n,
where 1 £ |n| < 10, followed by a decimal exponent. The exponent is preceded by one
space (and a sign) and 1s not followed by any spaces. If the argument is zero the
exponent 1s punched as zero.

R 630 page 6

The imaginary part follows the real part on the same line, preceded by three
spaces.

OQutput is rounded and signs are always printed. Left hand non-significant zeros
are replaced by spaces except for the last in a zero integral part.

Unless a number is zero, there is a 77-stop in 4.2 (due to an order in 4.1+)
if the binary exponent of its normalised form is outside the range -512 € x < 512,
On continuing from this stop an asterisk is punched followed by zero.

If a number is greater than 1011. the standard form is used. This is done to
avoid non-significant figures in the integral part.

Not more than 12 significant digits are punched. Spaces are then punched if
necessary to complete the required number of characters after the decimal point.

Output is suitable for re-input by F22 provided the programmer ensures that
each complex number is followed by CR LF.

BO is used during output.

5. PRESET PARAMETER

R 630 requires one preset parameter. This must contain, in the a-order, the
address at which the Main Store working space is required to start, and zero in the
b-order, unless subroutines are being used during the control of F76, as described in
section 7. Thus to set the beginning of the working space at B120.0 the parameter
list required is

RO 0-01
630 - 04 -
120 0 00 O.
0

Normally it is punched with the master programme, but in any case it must be
read before R 630.

There is an optional parameter which is used if none is supplied by the programmer:

125 7 00 0.

0

This address of B125.7 1s the largest that can be set for the working space.

* 6. EXAMPLE

Given fifty sets of numbers x, y, 2, w, calculate the numbers -(x + y) / (2w + 2)
and print the answers with three digits before the point and five after.

Al
RO 1-02
630 - Ol -
ENTER——{(0.2) 6 40
0.0
2 40
@ - 52
.2
0 - 44
— [1+_0]50
.3
0
T1+
> 3 - 22
0.0
6 - 22
3 -00
.1
3 -46
6 - 22
.2
9 - 22
6 - 60
.3
0 - 00
6 - 44
.4
3 - 40
6 -0
.5
101 - 25
1.7 2 617
. 8
CHo.6+ 0 60
L
A2
A3
E2.0

This tape is followed

page T R 630

+ cue 02 to R 630

Read B1t+ and jump to 0.0

=
1l
=

a' =x ty

5,3='(x+)’)
I -
s, =2
a' = w
a' = zw

a’ = zw+ 2

s'g=zwt2
a' = -(x +y)
a’ = -(x + ¥)/(z2w t 2)

print result
jump to 0.0 as an interpreted order

locp stop

by one containing the fifty sets of numbers x, y, 2z, w.

R 630 page 8

7. COMPLEX FLOATING POINT SUBROUTINES
7.1 The use of F76

The purpose of function 76 is to simplify the use of subroutines that work in
conjunction with R 630.

If F76 is used the programmer must supply an R 630 working space parameter with
the number of different subroutine operations set in the counter position. This
parameter must he followed by an index of cue specifications for the required
operations. Each of these must hold the subroutine number and the cue number as
integers in the a-order and the b-order respectively. For example:-

RO 0-01
630 - 04 -
120 0 00 0. working space address B120.0
2 2 subroutine operations
690
R 690 cue 01
1
690
R 690 cue 02
2

The F76-order carries out the operation appropriate to the S-th specification in
the index. For example with the index as above the order

2 - 76
causes R 690 to be entered by cue 02.

When using subroutines in this way no link has to be set. After the operation
specified by the 76-order has been completed control is returned to the next order.
As with other orders, the addition of 1 to the second function digit ceuses the next
order to be treated as & machine order.

7.2 R 630 Subroutines

The following R 630 subroutines are on the same tape as R 630.

R 690: Linear combination

Store: 5 blocks

Cues: 01 u’ = ay
02u’" =u+ay

Time: cue 01, 32 + 43n milliseconds
cue 02, 32 + 63n milliseconds

Before entry set x, (u,)
X = (v, n)

The vector u is replaced by or has added to it a multiple of the vector .
The vectors have n elements and the first elements have addresses u and v
respectively.

page 9 R 630

If the elements of the vectors occupy locations that have a constant address
difference other than 3, this difference should be set in U5.4,. On exit 5.4, is
reset to 3 (see section 9).

R 691: Scalar product

Store: 3‘blocks

Cues: ol a’
02 a’

=
-+ |

uy

Time: cue 01, 147 + 91n milliseconds
cue 02, 163 + 91n milliseconds

(u,)

(v, n)

Before entry set x,

*5

o

The scalar product is formed of the vectors u and v each with n elements,
whose first elements have addresses u and v respectively.

If the addresses of consecutive elements of u do not differ by 3, the address
difference should be set in U5.4,. 5.4, is reset to 3 on exit., Addresses of
consecutive elements of v must differ by 3.

R 693: Matrix Division

Store: 8 blocks + 5 blocks for R 690
Cue: o1 ¢’ =8B! ¢

Time: 20p° + 340p% + 100p + 60p%g milliseconds

b 4 10 20 30
g=1 8 secs. 1 min. 5 min.22 secs. 15 min.
qg=p 11 secs. 2 min. 13 min. 41 min.

Before entry set x, = (c, ¢)
x. = (b, P)

The matrices B and C, which are stored by rows, have first elements at b and c.
B has dimensions » x p and C has dimensions ¢ x gq.

Unlike R 686, the matrix division subroutine normally used with R 650, this
routine uses the method of pivotal condensation, resulting in greater accuracy.

The subroutine uses R 690. a and B are destroyed.
R 694: Square root

Store: 4 blocks

Cue: 0la’=va

Mean time 270 milliseconds

R 630 page 10

R 695: Matrix Multiplication

Store: 2 blocks + 3 blocks for R 691

Cues: o1 p’
02 D'

B.C
B.C +D

1l

Time: about 95pr (¢ + 2) milliseconds

Before entry set x, = d, M
x, = (c,)
x. = (b,)

The matrices B, C and D, which are stored by rows, have first elements at
b, ¢ and d and dimensions # x g, g x r, p x .r respectively.

R 695 uses R 691 as a subroutine. D cannot he the same matrix as either B or C.
a is destroyed,

Note: Function 76 ensures that on exit from these subroutines the Computing
Store is unchanged apart from X1, 6, 7 and the accumulator A.

7.3 Programmer’ s Subroutines

Besides library subroutines, programmer’s subroutines can be used with F76.

The subreoutines may use interpreted orders and so operate on UQ (and perhaps U4)
leaving the interpreting programme undisturbed, or otherwise use any of the rest of

the Computing Store, but if Ul.1, 1.3 or 1.5 is used the accumulator will be destroyed.

A subroutine should be written in the same form as an ordinary subroutine using
assembly. The cues must be machine orders, for example

o+ [0]72

1.7 0 &0

to enter the subroutine at 0+.0 as an interpreted order. (See section 3).

During the process of entering a subroutine X1, 6, 7 are used but the rest of
the Computing Store remains unaltered.

Return from a subroutine is effected by obeying cue 05 of R 630 which is called
for in the normal way. The Computing Store, apart from Xi, 6, 7 and the accumulator A,
will be restored to its condition on entry.

The overflow indicator must be left clear on exit.

7.4 Notes on R 630 Subroutines

1. On proceeding to a ‘lower level’ with function 76, two blocks backwards
from B510 (B894 on the 7168 drum) are used temporarily to store information.

2. The binary translation of R 690, 691, 693, 694 and 695 conteins no names
of the subroutines,

3. The list of cue specifications must not be written over as it is used each
time F 76 is obeyed.

page 11 R 630

8. F 20

When using F20 the programmer must supply a list of constants following the
working-space address parameter and the subroutine index if any.

F20 puts the Nth word in the 1list into accumulator X.

V=1, 2, 3....... ete.,)
(Y =3, 4 or 5)

Example

To determine the resulting potentials in a network produced by unit voltage
applied at one point.

Given a square matrix Y and & number k, calculate the vector e = Y";L.
where the kth element of I isunity and the others are all zero, and print the anawer
e* sceled so that the kth element is unity.

The matrix is 6 x 6, and the results are required with three digits before the
point and five after,

R 630

page 12

Al

RO

630

01
01 -

00

40

4

34

b2
44 3

2¢
20

78
52

20

76

101
0.5t

5

24
35

6.7

07

0

60

+ cue 01 to R 630

3,5 3k

x’“ = (0, 8)
x’5 = (0, 36)
Input Y

Ace. = 0

Read B 1+ and jump to 0.0

Clear 1

Ace, =1
Bet 1

x', = (120, 1)

x'g = (0, 6)
e=Y"'i
Acc. = 1/e,

x’s = (120, 8)

e__. = (l/e k) €

Print answer (3 digits before the point, 5 after)

Stop

page 13 R 630

RO 0-01
630 - 04 -
100 0 ¢O 0. Working space address
2 No. of entries in index
693
R 693 cue 01
1 Subroutine
690 index
R 690 cue 01
1
120 - -0 0.
(120, 1)
1
0 --00 ©. &) Constant
' list
6
120 - -0 0.
(120, &)
6
L
A2
A3
z

The data tape begins

followed by the matrix Y, punched by rows.

9. GENERAL NOTES

1. Cues 03 and 04 contain the address of the start of R 630 in the ¥ and X
portion of the a-order and the b-order respectively.

2. U5.4 normally contains 3 x 2713 This constant is added to the specified
accumulator during functions 34 and 36 in order to step on the modifier. It can be
set from programme to any desired value. For example it can be set negatively for
working backwards through the store or perhaps to some multiple of 3 x 273 for
referring to & column or the diagonal of a matrix.

However, it is also used by the subroutines that perform matrix amnd vector
operations and must normally contain 3 x 27'° before a 78-order concerning these is
obeyed, Exceptions to this are described in section 7.2. U5.4 is reset to 3 x 2°%°
after all T6-orders.

3. Unless a jump occurs, the next order obeyed after an interpreted order in
0.7+ is in 0.0, whether it is to be interpreted or not.

R 630 page 14

4. The overflow indicator is cleared by the interpreting programme and is
always clear on exit.

5. Zero gset by F 52 or input by F 22 has an exponent of -21% gZero resulting
from the subtraction of equal numbers has an exponent 37 less than the exponent of the
numbers. The exponent of zero resulting from multiplication is 37 less than the sum of
the exponents of the operands, while for division it 18 38 less than their difference.

6. Exponent overflow 1s indicated by a loop stop in 5.0+,

7. An optional stop may be inserted in B23+,2 to facilitate the development of
programmes. The computer will reach this stop before obeying each interpreted order:
at this point 7, will contain the order number with the a/b digit reversed and repeated
up to the sign bit; X6 will contain the order pair being obeyed,

8. If the machine stops when an order is being obeyed the address of the next
order will be found in 1.6, (again the a/b digit is repeated).

9. If the programmer wants the address of the Main Store working-space, he
should call for R 630 parameters 01 or 02 which have the address in the N and X
portions of the a- and b-order respectively. (see 10 ¢).

10. The main programme of R 630 is followed by 4 blocks of interlude. These can
all be beyond B 127. While R 630 and its subroutines are being read, B 0.0 and B 0.2
are used.

The interlude ensures that R 630 subroutines are accepted. Also, if & non-
optional parameter has heen supplied:-

(a) Certain words are inserted into the main subroutine concerned with F 20
and F 78.

(b) If there is & subroutine index it is processed so that later Assembly
inserts the specified cues into it.

{c) The optional parameter is replaced by two similar words containing the
programmer’s working-space address, and the programmer’'s parameter is
overwritten by information concerned with subroutine entries. Thus the
true parameter list is always in the location of the optional 1list, while
the location of the programmer’s non-optional parameter list becomes part
of the list of subroutine entries and therefore is not available to the
programmer.

10, STOPS
10.1 During Input of Numbers

{(a) Loop stop in 4.2+ and 4.3 if no sign before number.

3.7 2662
4.2
C 6 40

4.2+ 060 2
4.3

3.4 267

page 15 R 630

(b)Y Loop stop in 4.7+ for other punching errors.

3.7 363

(l 4.7+ 0 60

4.1t 4 61

or 4.7
Cla.71+ 0 60

(¢) T7-stop in 3.0 if either of the following conditions is not satisfied:

(1) Decimal exponent + number of fractional digits accepted is inside
the range -256 € x < 2586.

(i1) Number is zero.

0 017

0 700

10.2 During Output

T7-stop in 4.1+ if exponent is outside the range -512 < x < 512.

(9) 5 40

16 5 10

10.3 Arithmetic Orders

Loop stop in 5.0+ if overflow has occurred.

5.1 064

Cl5.0+ 0 60

10.4 F 20

T7-stop in 4.6 if no parameter is supplied by the programmer. If the RUN key
is operated a loop stop will occur in 4.6+.

0 0T

4.6
4.6+ 0 60

R 630 page 18

10.5 F 6

T7-stop in 4.0 if no parameter is supplied by the programmer. This stop will be
repeated 1f the RUN key is operated.

0 077
4.0
4.0 060
Aunthor; Mr. J.G.F. Francis of the National Research Development Corporation.
@ FERRANTI LTD 1961
Ferranti Ltd.,
London Computer Centre, Kot tc be reproduced in whole or Issue 1
68, Newman Street, in part without the priorwritien 23rd May, 1981

London, W.1. parnission of Perranti Lid, J.G.F.F. M.My. T.B.W.

R 650

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
10. 7. 87.
DOUBLE~LENGTH FLOATING POINT ARITEBMETIC

An interpretive scheme to facilitate the programming of operations on double-
length floating point numbers. Special facilities for matrix arithmetic are provided.

Name: DL. FP. ARITHMETIC

Store: 32 Blocks plus a 4 block interlude. The interlude, which can be overwritten
when input is complete, can be beyond block 127 of the Main Store.

Uses: Ui, 2, 3, 4,5, X1, 6, 7; BO; working space in Main Store (see section
1); certain blocks down from B 510 if subroutines are used (see section 7.4).

Cues: 01, 02, 03, 04, 05 (see sections 3, 7.3, 9).
Time: See section 2,3.
Exit: See end of section 2.3 and section 3.
CONTENTS
Section Eggg
1. Numbers and Store . . vao ‘e .e .. 1
2. Orders - ‘e - .. e .. 2
2.1 General Descriptiono . .s .o .o 2
2.2 Structure and Modificatione .. .e ve . 2
2.3 Order Code . . .e . - . ‘e .o . 4
3. Entry and Exit ‘e ‘e - ‘e “s . .. 5
4, Number Input and Output .e ‘e - 5
4,1 Input .e - e - .. .e 5
4.2 Outputeo .e 6
5., Preset Parameter .o .oe 6
6. Examplee - .o .o .. T
7. Double-length Floating Point Subroutines .o ‘e]
7.1 The Use of F76 .. .e . .o . . e .e .o 9
7.2 R 650 Subroutinese .. - .s .o ve 9
7.3 Programmer’s Subroutines .e .e . . s . .. 11
7.4 Notes on R 650 Subroutines .. ,e .. ‘eo 11
8. F 20 N .o .o e .e - .o .e .o 11
9. General Notes ‘e ‘e . . .e .. .e 13
10, Stops - ve - ‘e - . ‘e e .. 14

1. Numbers and Store

Numbers are stored in the Main Store working space, They are in floating point
form and occupy three locations: the first two locations contain the normalized or

R 650 page 2

zero double length argument (most then least significant half) while the third holds a
binary exponent as an integer, The address of a number refers to the first word, the
other two being at the same position on the following two blocks; it is relative to
the start of the working space which is preset by a parameter (see section 5).

The addresses of numbers must differ by multiples of three, preferably all
addresses should be divisible by three, starting at zero, as shown below:

Address: Contents:

0+ .0 ay {m.s. half)
.1
.2
.3 a, {(m.s. half)
.4
.5
.6 a, (m.s. half)
i

1+.0 a, (l.s. half)
.1 Oy {m.s. half)
.2
.3 o, (1.8, half)
.4 a, (m,s, half)
.5
.6 a, (1.s. half)
T o (m.s. half)

2+.0 €,
.1 o, (l.s. half)
.2 @ (m.s. half)
.3 €,
.4 a, (1.s. half)
.5 a, (m.s. half)
.6 £,
i = (1.s. half)
a = argument €= exbonent

Most operations are carried out on these numbers and the contents of the float-
ing point accumulator. The accumulator occupies U 1.1, 1.3 and 1.5 and holds numbers
in the same form as the Main Store.

2. Orders
2.1 General Description

The basis of the scheme is the interpreted order. Interpreted orders are
written and punched in a form similar to ordinary Pegasus orders and are read into
the Main Store by Initial Orders, When obeyed they are in U0. The interpreting
routine examines them and performs the specified operation. In UO interpreted orders
are obeyed consecutively except when a jump takes place. The next order oheyed after
an interpreted order in 0.7+ is in 0.0, whether it is to be interpreted or not.

2.2 Structure and Modification

As with ordinary orders there are 19 binary digits to the order and thus two
orders to the word. The stop-go digit is non-functional for interpreted orders.
They will be described by the same leters (¥, X, F, ¥,) as ordinary orders except
when the first ten digits are thought of together. In this case the ten digits as an
integer are designated S. S is usually the address (relative to the start of the

page 3 R 650

working space) of a number while s is the number stored at this location. The
floating point accumulator will be denoted by 4 and its contents by . a always
represents a floating-point number as described in section 1. Thus for example:

S
—t—
N X F X
12 - 40

means transfer the contents of S 12 to A_or al = LIPS The modifier can only be X3,
X4 or X5 and these accumulators can be used with the counting functions. 1In all
modification the thirteen digits of the modifier position of the accummlator ¥ are
added to the first ten digits of the order (i.e. S or ¥ and X) which are extended by
three digits except in the case of F56. Jump orders always jump to an address in UO
however modified. Modification cannot cause overflow.

R 650 page 4

2.3 Order Code

. mean times
F Operation in milliseconds
00 |a' = a+s about 51
02 | 2! = a + s, set indicator if a' = a or s "
04 | a! = a+s "
06 | a’ = a + s, set indicator ita’ = aors "
10 | af = a-s about 51
12 | a! = a - s, set indicator if ¢’ = a or -s "
14 | at = s-a "
16 | ¢! = s ~ a, set indicator if a’ = s or -a "
20 | C'¢fy = Nth constant in list (see section 8) 32
22 | Read a number to 4 and S -
24 | Punch CRLF follewed by number from A -
26 | Punch two spaces followed by number from 4 -
30 | Test indicator: Jump IN to ¥ if not set. Clear indicator 24
32 | Test indicator: Jump OUT to ¥ if not set. Clear indicator 26
34 | Count: x' =x 43, x'.=x, -1; jump IN to ¥ if x’, # 0 26

PR [- -1 :

36 | Count: x', =x +3, x'. =x_ - 1; jump OUT to ¥ if x/, # 0 27
40 | a" = s 38
42 a! = -s 38
4 | s' = a 38
46 | s = -a 38
50 | Block read. UD' = N(+): jump to 0.X 34
52 al! = § 26
54 Set indicator if exponent of @ < exponent of § 30
56 | Set indicator if | a | € 2-5 24
60 | a' = a xs 48
64 | o' = integral part of a about 29
0fa =2 74

s
76 | Subroutine operation S (see section T) _ -

NOTES:

F 02, 06, 12, 16, 30, 32, 54, 56; the indicator is the sign of U5.7; when set it
is negative. The rest of U5.7 is used for other purposes,

F 34, 36; counting does not carry from X, to X No jump occurs if X overflows

and a jump will always occur if accumulator 0 is specified.

F 30, 32, 34, 36; jump ‘IN' means jump tc an interpreted order, jump ‘OUT" means
jump to an ordinary order. The block part of the jump address is not used: all these
functions will only jump to orders in UO,

F 30, 32, 64; the unused X digits in the order may take any value.

F 64; integral part of ¢ is less than or equal to a; e.g. integral part of
=2.2 1s -3.

F 70; 1loop stop with overflow in U3 and U4 on division by zero. (See section 10).

page 5 R 650

Unassigned orders; extravagant effects may be expected on obeying these.

The functions have been described with the second octal F-digit even. If the
second function digit is made odd by the addition of 1 the next order is not inter-
preted but is obeyed in the normal way as a machine order. This applies to the order
Jumped to by F50. A sequence of machine orders may alsc be entered by a jump using
F32 or 36.

Machine orders may use UQ and 4 and all the accumulators without disturbing the
interpretive routine.

3. Entry and Exit

The routine has five cues. Cues 01 and 02 bring the interpreting routine into
the Computing Store and jump to an order on U0, The address of the order must be
specified in XSC hefore obeying the cue, by an instruction such as

0.P(+) 6 40

Cue 01 is used to jump to an ordinary order and cue 02 to jump to an interpreted
order.

If the interpreting routine is in the Computing Store a sequence of interpreted
orders is entered by setting the address of the first order in XSC and jumping to
1.7+ e.g. by obeying orders

0.P(+) 6 40

1.7+ 0 60

If the interpreted order to be obeyed is in U0.0 all that is necessary is a jump to
1.7,

On exit from interpreted orders, X! contains the most significant word of the
accumulator (available for testing for sign or zero) and X2, 3, 4 and 5 will be
unchanged since entry except for the result of counting or using F20 in any of the
latter three.

The total extra time for entry and exit is 4 milliseconds.

4. Number Input and Output
4.1 Input

Function 22 reads a single number from tape and converts it to floating point
form. The number is then put in the accummlator and in working space location S.

Numbers are punched as integers, fractions or with an integral and a fractional
part and can be followed by a decimal exponent as an integer if required. Both argu-
ment and exponent must be signed and the whole number terminated by CR LP.

CR LF, LF and ¢ can precede the sign of the argument. Spaces may be punched
anywhere except between digits or between the exponent and the terminal CR LF. One
or more spaces must occur between the argument and the sign of the exponent if there
is one. A decimal point may be punched anywhere in the argument and may precede or
terminate it. Erase can occur anywhere except between CR and EF.

R 650 page 6

All other characters and arrangements cause a stop, (see section 10).

The argument may he punched with any number of digits. Up to twenty-two signi-
ficant digits are accepted and any further digits are ignored. Numbers must be in
the range 107127 < | x | < 10'?7 or be egual to zero, otherwise input reaches &
77-stop in 2,2 but will continue on operating the STOP/RUN key.

During input the accumulators are stored in BQ.

4,2 Output

Functions 24 and 26 punch out the number 1n the accumulator, 24 preceding it by
CRLE', 26 by two spaces,

For these functions, the ten binary digits of S specify the style of output.
The first five, S,, indicate the number of digits required before the decimal point
(unless S; = 0), while the last five indicate the number required after the point. A
simple way of writing S in the order is as the decimal number 325, + S,.

If S; = 0 the output is in the standard form, consisting of a signed argument
n, where 1 € | n | < 10, followed by a decimal exponent. The exponent is preceded by
one space (and a sign) and is not followed by any spaces., If the argument is zero the
exponent is punched as zero.

Output is rounded and signs are always printed. Left hand non-significant zeros
are replaced by spaces. Right hand non-significant zZeros are only replaced by spaces
if the number is an exact integer. In this case the decimal point is also suppressed.

Unless the number is zero there is a T77-stop in 2.4+ if the binary exponent is
outside the range =512 € x < 512. On continuing from this stop an asterisk is punched
followed by 0.

If the number is greater than about Hf% the standard form is used. This is done
to avoid non-significant figures in the integral part.

Net meore than 21 or 22 decimal digits are punched after and including the first
non-zero digit. Spaces are then punched if necessary to complete the required number
of characters after the decimal point.

Output is suitable for re-input by F22 provided the programmer ensures that
each number is followed by CRLF,

During output the accumulators are stored in BO.

5. Preset Parameter

R 650 requires one preset parameter. This must contain in the a-order the
address at which the Main Store working space is required to start and zero in the
b-order, unless subroutines are being used under the control of F76 as described in
section 7. Thus to set the beginning of the working space at B120.0 the parameter
list required is

RO 0-01
850 - 04 -
120 0 00 0.

page 7 R 650

There is an optional parameter which is used if none is supplied by the programmer:-

125 7 00 0.

0

This address of B125.7 is the largest that can be set for the working space.

6. Example

Given fifty sets of numbers x, y, Z, w, calculate the numbers —(x + ¥)/(zw + 2)
and print the answers with three digits before the point and five after,

R 650 page 8

Al
RO 1-02
650 - 01 -
0+
ENTER—O'O—uecw
(50) 2 40
A+ 0 + cue 02 to R 650
2| (2 - 52 al = 2
0 - 44 s'0 =2
r4£i~ 1+ 050 Read Bl+ and jump to 0.0
0
Ti+ 1+
L0y 3 2 sty=x
6 - 22 al =y
1 3 -00 a' =2 x + ¥
3 - 48 sly=~x +v)
2 6 - 22 s, ==z
9 - 22 a! = w
.3 6 - 60 a! = aw
0 - 00 al’ = zw+ 2
.4 6 - 44 sly=2w+2
3 - 40 a' = —(x +y)
.5 6 - 70 a' = ~(x + ¥y (aw + 2)
101 -~ 25 print result
L——-4EL- 1.7 2 67 jump to 0.0 as an interpreted order
C:jﬁ 0.6+ 0 60 loop stop
L
A2
A2
EZ2.0

This tape is followed by one containing the fifty sets of numbers x, y, 2z, w.

page 9 R 650

7. Double-length Floating Point Subroutines
7.1 The Use of F76

The purpose of function 76 is to simplify the use of subroutines that work in
conjunction with R 650.

If F76 is used the programmer must supply an R650 working space parameter with
the number of different subroutine operations set in the counter position. This
parameter must be followed by an index of cue specifications for the required opera-
tions. Each of these must hold the subroutine number and the cue number as integers
in the a-order and the b-order respectively. For example:-

RO 0-01
650 - 04 -
120 0 00 0. working space address B120.0
2 2 subroutine operations
680
R 680 cue 01
1
680
R 680 cue 02
2

The F76-order carries out the operation appropriate to the S-th specification in
the index. For example with the index as above the order

causes R 680 to be entered by cue 02.

When using subroutines in this way no link has to be set. After the operation
specified by the T6-order has been completed control is returned to the next order.
As with other orders the addition of 1 to the second function digit causes the next
order tc be treated as a machine order,

7.2 R 630 Subroutines
The following R 650 subroutines are on the same tape as R 650.

R 680: Linear combination

Store; 4 blocks

Cues: 01 u’ = ay
02u" = utay
Time: cue 01, 126 + 43n milliseconds

cue 02, 126 + 58n milliseconds

Before entry set xy, = (u,)
x5 (U' n)

The vector u is replaced by or has added to it a multiple of the vector yv. The
vectors have n elements and the first elements have addresses u and v respectively.

R 650 page 10

If the elements of the vectors occupy locations that have a constant address
difference other than 3, this difference should be set in 5.4,. On exit U5.4y is
reset to 3 (see section 9).

R 681: Scalar product

Store: 3 blocks

Cues: 0l a’' = wy
02a’ = g+ uy
Time: cue 01, 117 + 59n milliseconds
cue 02, 131 + 557 milliseconds
Before entry set x, = (u,
xs = (v, n}

The scalar product is formed of the vectors u and v each with n elements, whose
first elements have addresses u and v respectively.

If the addresses of consecutive elements of u do not differ by 3, the address
difference should be set in U 5.4,. 5.4y is reset to 3 on exit, Addresses of con-
secutive elements of vy must differ by 3.)

R 684: ©Square root

Store: 3 blocks

Cue: 0l a = vVa

Mean time 224 milliseconds

A loop stop (0.0t 6 63) will occur if a is negative on entry.

R 685: Matrix Multiplication

Store: 2 blocks + 3 blocks for R 681
Ceres: 01 D' = B.C

02D/ = B.C+D
Time: about 60pr (g + 3) milliseconds

Before entry set x, = (d, $)
X, = (¢, 1
X, = (b

The matrices B, C and D which are stored by rows have first elements at b, ¢
and d and dimensions $ x g, ¢ x r, ¢ x r respectively. R 685 uses R 681 as a sub-
routine. D cannot be the same matrix as either B or C. a is destroyed.

R 686: Matrix Division

Store: 5 blocks + 9 blocks for R 680, 681 and 685

Cues: 01 ¢’ = B°l,c, Bf = B*
02 ¢/ = C.B™}, B! = B*
03 ¢’ = B"l.C, given B*
04 ¢! = C.B™!, given B*

Time: B80pg (b + 3) milliseconds (+ (29 + 240) milliseconds for cues OlandOZ)

Before entry set x4y, = (¢, §)
Xg b, »

The matrices B and C which are stored by rows have first elements at & and ¢,
B has dimensions » x p, C has dimensions p x ¢ (cues 0l and 03) or ¢ x (cues 02 and
04).

The method of division is to replace the dividing matrix B by the basic informa-
tion B* required to reduce it to the unit matrix by means of straightforward

page 11 R 650

elimination above and below the dlagonal. This requires ¥n? arithmetical operations,

No search is made for pivots, This information B* is all that is required to divide
another matrix. To operate with it is similar to & matrix multiplication - and requires
n? arithmetical operations. Thus once B* has been found it can be used again by cues

03 and 04 (for example to find B™2 C). The subroutine uses R 680 and R 685. a is
destroyed.

NOTE: Function 76 ensures that on exit from these subroutines the Computing Store is
unchanged apart from X 1, 6, 7 and the floating point accumulator A.

7.3 Programmer’ 8 Subroutines

Besides library subroutines, programmer’s subroutines can be used with F76,

The subroutines may use interpreted orders and so operate on U 0 (and perhaps
U 4) leaving the interpreting programme undisturbed, or otherwise use any of the rest
of the Computing Store, but if U 1.1, 1.3, 1.5 are used the accumulator will be

destroyed.

A subroutine should be written in the same form as an ordinary subroutine using
assembly. The cues must be machine orders, for example

o+ [0 72

1.7 0 60

to enter the subroutine at 0+, 0 as an interpreted order. (See section 3).

During the process of entering & subroutine X 1, 6, 7 are used but the rest of
the Computing Store remains unaltered. (X1 will not contain the most significant word
of the accumulator at this stage.)

Return from a subroutine is effected by obeying cue 05 of R 650 which is called
for in the normal way. The Computing Store, apart from X 1, 6, 7 and the accumulator
A, will be restored to its condition on entry.

7.4 Notes on R 630 Subroutines

1. On proceeding to a ‘lower level’ with function 76 two blocks backwards from
B510 are used temporarily to store information. For example a matrix division order
will temporarily use B 505-510 if it is called in from the master programme, since
R 686 uses R 685 which uses R 681.

2. The binary translation of R 680, 681, 684, 685 and 686 contains no names of
the subroutines,

3. The 1list of cue specifications must not be written over as it is used each
time F76 is oheyed.
8. F 20

When using F 20 the programmer must supply a list of constants following the
working-space address parameter and the subroutine index if any.

F 20 puts the ¥th word in the list into accumulater X, (¥ =1, 2, 3 etc.)
Example
Given square matrices A, B and C and a vector u punched by rows in this order on

tape. The matrices are 6 x 6 and the vector 6 x 1. Find A"Y(A™'B + €)"! u and print
the answer with three digits before the point and five after.

R 650 page 12

Al
RO 1-02
650 — 01 -
0+
0.0
1] +0 + cue 02 to R 650
: 0 -223 input data
| .2
0.2 3 34
1 420 x!, = (b, 8)
.3
2 520 x'y = (a, B)
1 =76 B’ = A”!B, (A' =A%)
.4
3 520 x'. = (¢, 36)
- 52 af =1
.5
2 -6 B" = aA"B+C
4 420 x" = (u, 1Y
.6
1 520 x'y = (b, 6)
1 -78 W = @B+o)lau
.1
1+ 0 50
1 +
2 520 x's = (a, 6)
0.0
3 -6 W o= Aal@as+oiy
324 -405
.1
- 24 print answer
0.1 535
.2
] 0.2t 0 60 stop

page 13 R 650

RO 0-01

650 - 04 -
————————_——

10 O Oo o, 100 - 00 0. Working space address

3

3 No, of entries in index

686 W

630
2 \ Subroutine index

686

VAN

108 - =0 0.

d Constant list
216 - -0 0.

36

324 - 00,

L
A2
A3
E2.0

This tape is followed by the data tape,

9, General Notes

1, Cues 03 and 04 contain the address of the start of R 650 in the N and X
portion of the a-order and the b-order respectively.

2. U 5.4 normally contains 3 x 9~1? This constant is added to the specified
accumulator during functions 34 and 36 in order to stepon the modifier. It can be set
from programme to any desired value. For example it can be set negatively for working
backwards through the store or perhaps to some multiple of 3 x 2°'% for referring to
a column or the diagonal of & matrix.

However, it is also used by the subroutines that perform matrix and vector
operations and must normally contain 3 x 2=13 before a 76-order concerning these is
obeyed. Exceptions to this are described in section 7.2. U 5.4 is reset to 3 x 2712
after all T6-orders.

3. The next order obeyed after an interpreted order in 0.7+ is in 0.0, whether
it is to be interpreted or not.

R 650 page 14

4. The overflow register is cleared by the interpreting programme and is
always clear on exit.

5. Zero set by F52 or input by F22 has an exponent of -21% Zero resulting
from the subtraction of equal numbers has an exponent 76 less than the exponent of
the numbers, The exponent of 2ero resulting from multiplication or division is the
sum or difference respectively of the exponents of the two numbers concerned.

6. No allowance is made for the possibility of any exponent overflowing,

7. An optional stop may be inserted in B 23+.2 to facilitate the development
of programmes. The computer will reach this stop before obeying each interpreted
order: at this point Tm Will contain the order number with the a/b digit reversed
and X6 will contain the order pair being obeyed., On initial ernitry to the interpretive
programme the stop will occur once before X6 and 7 have been set.

8. If the machine stops when an order is being obeyed the address of the next
order will be found in l.qm.

9, If the programmer wants the address of the Main Store working space, he
should call for R 650 parameters 01 or 02 which have the address in the N and X
positions of the a- and b-order respectively.

10. The main programme of R 650 is followed by 4 blocks of interlude. These
can all be beyond B127. While R 650 and its subroutines are heing read B 0.0 and
B 0.2 are used.

The interlude ensures that R 650 subroutines are accepted. Also if a non~
optional parameter has been supplied:-

(a) Certain words are inserted into the main subroutine concerned with F20 and
F16.

(b) If there is a subroutine index it is processed so that later Assembly
inserts the specified cues into it.

(c} The two optional parameters are replaced by similar words containing the
programmer’ s working-space address, and the programmer's parameter is
overwritten by information concerned with subroutine entries., Thus the
true parameter list is always in the location of the optional list while
the location of the programmer’s non-opticnal parameter becomes part of
the list of subroutine entries and therefore is not available to the
programmer.

10. Stops
10. 1 During Input of Numbers
(a) Loop stops in 2.1, 3.4, 3.5+, 4.6+ for punching errors.
(b} 77 stop in 2.2 unless either 10727 < | x | < 10'27 or x = 0,
10. 2 During Output
77 stop in 2.4+ if the binary exponent, €, is outside the range -512 € € < 512.

10.3 Division Order

Closed cycle 4.5 - 4,7 - 3.0 - 3.1 - 4.5 etc. on division by zero.

pege 15 R 650

10.4 F20

77 stop in 4.6 if no parameter supplied by programmer. If the STOP/RUN key is
cperated a loop stop will occur in 4.6+,

10. 5 F76

77 stop in 4.0 if no parameter supplied by programmer. This stop will be
repeated if the STOP/RUN key is operated.

Author: Mr. J.G.F., Francis of the National Research Development Corporation.

Ferranti Ltd.,

London Computer Centre, Issue 2
21, Portland Place, 10th July, 1957%.
London, W,1. J.G.F.F. B.C.

R 670

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
11, 12. 57%.

ARITHMETIC WITH RATIONAL FRACTIONS

A subroutine with three modes of entry to carry out the operations of addition,
multiplication and cancellation on rational fractions.

Name: RATIONAL ARITHMETIC
Store: 5 blocks.

Uses: vo, 1; X1, 4, 5, 6, 7.
Cues: 01 Addition.

02 Multiplication,
03 Cancellation.

Times: Addition: (61 + 7m1 + 7m2) milliseconds,
Multiplication: (56 + "t'm1 + 7m2) milliseconds,
Cancellation: (14 + 7m) milliseconds,
where m, my, m, are the numbers of cycles of the Euclid algorithm
carried out in the computation. (See notes below.)

Link: Addition: obeyed in U 1,3.
Multiplication: obeyed in U 1.5. Not left in Xl.
Cancellation: obeyed in U 1.0.

1. Method of Use
1.1 Conventions

Rational fractions are represented as pairs of integers which usually lie in
successive registers. 1In the case of addition and multiplication certain restric-
tions are placed on these integers:

(iy The numerator, n, must satisfy

_zae < n < 235
(i1) The denominator must always be positive and non-zero

0o < d < 2%

{(iii) The numerator and denominator must be expressed in their lowest terms,
i.e. their highest common factor, (n, &), = 1.
The only restriction applicable to the cancellation sequence is that

_238 < pod < 238

670 page 2

Neither n nor d may be equal to —2%% pefore cancellation,

The results of each sequence satisfy the above rules and are acceptable as
operands for the other sequences.

1.2 Addition Cue 01
This sequence carries out the operatlon represented by
n
1
d
1

N

D

n2
+ —
d
2

where Ny d1 are previously put into X4 and X5 respectively, and Bos dz into X6 and
X7. The result N, D appears in X4 and X5,

The contents of X6 and 7 after the operation are 0 and D respectively.

The computation is carried out as follows:-~

et ! = 7 -
We write d1 d1 g, dz d2 g where g (dx' dz)
N = nd!® + nd'
0 12 21
Then . = ﬁn. .
D g d'd !
c 12

where the symbol (N /g). indicates that cancellation has been carried out. The
numerator of this expression is N and the denominator will be represented by g’,
ie, I = g’dl’dz'.

1.3 Multiplication Cue (2

This sequence carries out the operation represented by

n
2

. "‘_d =
2

ol =

n
1

d
1

where (as 1in the case of addition) Ry dl, Ny, d2 are previously put into accumula-~
tors X4, 5, 6, 7 respectively. The result is left in X4 and 5.

The contents of X6 and 7 after the operation are 0 and D respectively,

The computation is carried out as follows:-

W j = ! - 4 = >
e write n n'e d2 d2 g where (|n1|, d2) g 0
and n_ = n_'h, d = d'h where (|n |, d) = h > 0
2 2 1 1 2 1
The result is given by N = nl’nz’, D = dl’dgﬂ
1.4 Cancellation Cue 03

This sequence takes a pair of integers representing & rational fraction, which
may not be in the conventional form specified in 1.1, and leaves a pair with the
same numerical value which does satisfy the conventions; 1i.e. the denominator is
positive and the numerator and denominator are in their lowest terms.

page 3 R 670

The operation actually carried out corresponds toc the expressions
tgh = n, gh = |d| where g = (|n|, d > 0

and where n, d are the input pair (set in X6, 7) and N, D are the output pair (which
replace n, d in X6, 7). The minus sign on the L.H.8. is taken when d < 0. The
H.C.F. g is left in U0D.0.

The H.C.F. g of n and d 18 determined by use of the Buclid algorithm; the time
taken by the cancellation sequence (which is also used by the addition and multipli-
cation sequences) depends on the number of cycles needed to complete the algorithm.

Accumulators 4 and 5 are left unaltered by the cancellation sequence; they
may thus be used for accumulation of a sum (using the addition sequence) while the
cancellation sequence is employed for the standardisation of new fractions, which
are then added in.

2. Subtraction and Division

2.1 Subtraction of rational fractions may be carried out using cue 01 (as for
addition). The operation is represented by

n1 -n, N
d—“(d—)-'ﬁ
1 2

where n d1 and d2 are previously put into X4, 5 and 7, and -n, into X6.

1’ 2

2.2 Division of rational fractions may be carried out using cue 02 (as for
multiplication). The operation is represented by

d
Zz .
n
1 2

n N
L —
d D

where n dl, d2 and n, are in X4, 5, 6 and 7 respectively.

l'
The contents of X7 must be positive on entry. If n, is negative division must
be represented by

)

—2
-
H 2

ol =

n
1
d
n dl. -dz’ -, must be set in X4, 5, 6, 7 on entry.

3. Error Stops

1.1 5 T2 Loop stop for overflow of g’dl' or
. r ! !]
1.1+ 6 61 g'd 'd,” during addition.
82 701 Loap stop for overflow of n, 'n_ ! during
1.2 1tiplication toe
1.2+ 6 61 muitip .

R 670 page 4

1.4 1.4 66l Loop stop for overflow of dl’d,‘,’ during
7 5 00 multiplication,
1.4 1.4 760 Loop stop if denominator is zero on entry to
0.1 7 62 cancellation routine,
1.8 32 701 Loop stop for overflow of "1"!2’ + "2d1r
* during addi .
1.6+ 6 61 uring addition
Ferranti Ltd.,
London Computer Centre, Issue 1
21, Portland Place, ' 11th December, 1957.

London, W.1. Copyright Reserved A.R.E,

R 700

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
10. 4, 58

OUTPUT CONVERSION

A self-preserving subroutine to convert an integer of up to 6 digits into 6-bit
characters packed into a word, as used with the magnetic tape Bull printer.

Name: OUTPUT CONVERSION

Store: 1 block, plus 2 blocks and 2 locations for an interlude.
Uses: vo; X3, 4, 5, 6, T.

Cues: 01 a-order partial cue,

02 b-order partial cue.

Time: If n is the number of decimal digits specified and r is the number
actually present, the time is approximately

{n + 3r) milliseconds.

Link: The subroutine always exits to U 1.0 so no link is required.

1, Method of Use

The integer to be converted should be placed in X6, The subroutine can he
brought down at any time by the order

o [0]72 + R 700 cue

which must be tagged by the appropriate partial cue. It 1s self-resetting and is
entered by the order

0.1 0 60

The resulting characters will be left in X5, There will be from 2 to 6 of them, in
order of significance, with the last one at the least significant end of the word.
For example if the integer 123 is to be converted X5 will be left as

o I] 1 [|
No. of bits 3) 6 ¢ 6 i 6 | 6 . 6 | 6
|

Contents 0 0 0 0 1 2 3

R 700 page 2

2. Preset Parameter

A parameter list must be provided to specify the number of characters required.
It should take the form

RO 0-01

700 - 04 -

+n

n must be in the range 2 to 6 inclusive.

3. Zero-suppression

Non-slgnificant zeros will (ultimately) appear as spaces, since 0 is the code
for ‘space’ on the Bull printer. As the code for zero is 48 the subroutine will
replace significant zeros by 48.

The integer zero will be correctly converted into one ‘48" character preceded
by zeros, i.e. spaces.
4. Errors

If the integer in X6 has more than n digits, it will not be correctly converted
even 1f the number of digits is less than 7.

3. Stops

During the interlude there will be a loop stop if n is not in the range 2 to 6:

0.7 163 ifn<2

1.0 1 62 ifn3 "

The interlude may be stored beyond block 127 if required.

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 10th April, 1958,
LONDON, W.1. Copyright Reserved J.F.D. D. M.

l R 710

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
11, 3, 58,

INPUT CONVERSION 1

A self-preserving subroutine to convert a word of n 6-bit characters, as used
with the magnetic tape Bull printer, into an n-digit integer; where n £ 6.

Name: INPUT CONVERSION 1
Store: 2 blocks.
Uses: vo, 1; X1, 6, 7 on entry 1

vo, 1, 5; X1, 5, 6, 17 on entry 2

Cues:
0+[0] 72
01
1+[1] 72
02 a~order partial cue,
03 b-order partial cue.
Time: 13 milliseconds on entry 1
(4 + 10k) milliseconds on entry 2.
Link: A computing store link must be set in the counter position of XI1.

Method of Use:

The two blocks of subroutine can be brought down to U0 and Ul at any time by
obeying cue 01,

The subroutine is self-preserving and can be entered in the follqwing manner: -

Entry 1 Word to be converted in X6

Enter by l 0.0 0 60

The subroutine leaves the integer in X6,

R 710 ' page 2

Entry 2 Words to be converted in U5

X5 = (0.P,k); where P is the position in U5 which holds the first
word, and £ is the number of words, (P< T, k<8 -0

Enter by [6.1 0 &0

The subroutine replaces the 2 words in U5 by the corresponding
integers. It does not change any other words in U5,

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 11th March, 1958.
LONDON, W.1. Copyright Reserved C.M.B.L. R.P. 8.

Issue !
27,11, 57

F

ERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

MERGING SORT BY MAXIMUM STRING METHOD

R 720

This routine sorts into ascending order n non-negative numbers in locations 4
Locations B to B + n - 1 are used as working space.

to 4 +n - 1 of the Main Store,
The sorted sequence is left in locations 4 to 4 + n - 1,

Name:

Store:

Uses:

Cue:

Time:

MAX. SCRT

T blocks

vo, 1, 2, 3 4, 5.3 to 5.7, X2, 3, 4, 5, 6, 7, BO

Main Store locations 4 to 4 +n - 1 + €

and B

£ <
toB+n-1+¢ 0<esT

where A +n - 1+ €4 and B+n -1+ €, are the last words in the blocks
+n - 1and B+ n -1 respectively.

containing A

01

0+[0] 72

0.0 0 60

Approximately (6.5n + 80) [1gg2 %] + 6
u

where I:log ﬂi]

Ztu

For random da

(6.5n + 80) |r10g2

For data in descending order ¢ = 1;

= log2

i
t

£

R n X
§=0 if |:10g2 ?]u is even
=1 if |log 2| is odd
= i og2 7|, is o
t = Average starting gtring length.
2n
ta t = o and the formula reduces to
n+1

2

z rounded up to the next highest integer.

} + 3n + 25 + (4n + 30)8 milliseconds.
U

for data already sorted t = n.

+ 22 4+ (4n + 30)3 milliseconds

R 720 page 2

Link:
Parameters:
Notes:
(1)
(2)
(3)

Ferranti Ltd.

For random data:

n| 10 | 25 | 100 | 250 | 500 | 1000 | 2000

Time (seconds) | .56 1.1 (4.7 14 | 28 66 137

The term Eog2 g] in the formula is an estimate of the number of
u
merges required for the complete sort, When £ is not near to n?f i

the number of merges may rise to [log2 l;— + 1] . Even with random
U

data this'may happen when logzé;is close to the next highest
integer.

Obeyed in 0.7 and left in X1 on exit.

n, 4 and F are programme parameters which must be set before entry
as follows:

T
Modifier) Counter

X6 A
X7 B

n
n

EPNNIPEpE H

A and B are not restricted to the start of & block, but they
must be chosen so that there is no overlap between locations 4 to
A+n-1+ € and BtoB+n -1+ €p.

If n = 0 or 1 the routine will obey the link without having
disturbed the Main Store.

Onexit U 5.6 will contain (4, n)

If it is required to store the accumulators before entering the sub-
routine they must not be stored in BO, since this is required as
working space.

If OVR is set on entry there will be a write with OVR stop in 4.3,
due to a 73 order in 4.2+,

Numbers to be sorted may be zero but must not be negative. If nega-
tive numbers are included there may be a write with OVR stop in 2.2.
If this stop does not occur the negative numbers will cause the
routine to enter a closed loop from 0.2 to 2.7.

London Computer Centre, Issue 1
21, Portland Place, 27th November, 1957
LONDON, W,1 Copyright Reserved M.L.B.L. D. M.

R 721

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
3. 4. 58,

MERGING SORT OF KEYWORDS WITH ONE DATA-WORD

This routine sorts into ascending order n non-negative numbers in even locations
A, A+2, A+4,...., M2n-2 of the Main Store, with associated data-words in A+1,
A+3,...., M2n-1. Locations B to H+2n-1 are used as working space. 4 and B must
both be even numbered addresses. The sorted sequence is left inlocations 4 to 4+2n-1.
A maximum string merging process is used.

Name: DATA SORT
Store: 8 bloeks
Uses: vo, 1, 2, 3, 4, 5.3 to 5.7; X2, 3, 4, 5, 6, 7. BO.

Main Store locations 4 to At2n-l+ey
DLe<B
and B to B+2n-1+£B

where A+2n-1+€A and B+2n-1+eB are the last words in the blocks containing
A+2n-1 and B+2n-1 respectively.

Cue:
0+{0] 72
01
0.0 0 60
Time: % {(41n+360) [Inge +1) }u + 74(%) + 142 + (33n+100)8}milliseconds
where |:10g2(%+1)]u = logz(%+ 1) rounded up to the next highest integer.
8 = 0 if |log (2+1) is even,
¢ U
n
= =+
11f [1og2(t 1)L is odd.
t = Average starting string length.
For random data, ¢ 2-22—1- and the formula reduces to
+
% {(41n+360) [Iogz(ﬂ—23>1u +3Mm + 179 + (33n+100)8}milliseconds

For data in descending order £ = 1; for data already sorted £ =n.

R 721 page 2

Link:

Parameters:

Notes:

'Author:

For random data:

n 10 25 100 250 500 1000

Time (seconds) .82 1,66 7.7 23 46 111

The term [10g2(%+ 1):|u in the formula is an estimate of the number of merges
required for the complete sort. When ¢ is not near to-ﬁ?& the number of
merges may rise to [iogz(%%+-1) + %]u. Even with random data this may

t

Obeyed in 0.7 and left in X1 on exit,

happen when logzc—*'l) is close to the next highest integer.

n, 4 and B are programme parameters which must be set before entry as
follows:

‘Modifier : Counter
X6 n
X7 Poon

4 and B are not restricted to the start of a block, but they must be even
numbered addresses, and be chosen so that there is no overlap between
locations 4 to A+2n-1+€4 and B to Bt2n-1+ep.

Ifn =0 or 1 the routine will obey the link without having disturbed
the Main Store.

On exit U5.6 will contain (4-1.0, n).

(1) Numbers to be sorted (i.e. keywords) may be zerc but must not be
negative. There is no such restriction on data words, If negative
keywords are included the routine will enter a closed loop from
0.2 to 2.9, or write with OVR in 2.4, due to a 73 order in 2.3+.

(2) If OVR is set on entry, there will be a writing with OVR stop in
4.3, due to a 73 order in 4.2+,

{(3) If it is required to store the accumulators before entering the
routine they must not be put into B0, since this is required as

working space.

4) If 4 or B or both are odd numbered addresses the routine will enter
a large closed loop.

Mr. M.W.G. Duff of Robson, Morrow and Company.

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 3rd April, 1858
LONDON, W.1, Copyright Reserved M.W.G.0, D.M,

R 722

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
11.6. 58,

DOUBLE-LENGTH MERGING SORT

This routine sorts into ascending order n non-negative double-length numbers in
locations 4 to 4 + 2n — 1 of the Main Store. Locations B to B + 2n — 1 are used as
working space. The sorted sequence is left in locations 4 to 4 + 2n - 1. 4 and B
must both be even numbered addresses. A maximum string merging process is used.

Name: D.L. SORT
Store: 9 blocks.
Uses: The entire Computing Store except 5.1 and 5.2; BO

Main Store locations 4 to 4 + 2n — 1 + €4

and BtoB+2n ~1 4+ ¢
where A+ 2n -1 4+ ¢, and B + 2n 1 + €, are the last words in the blocks
containing 4 + 2n ~‘f and B + 2n — 1 respectively.

0€e<8B

Cue: 01 0+[o] 72
0.3 0 60
Time: Approximately (12n + 140) |:10g2 %:I + 33 1—;- + 22 + (8n + 30)8 milliseconds
u
where l:log2 %J = log2 g rounded up te the next highest integer.
_ u
8 = 0 |if [log —] is even
2 Ty
= 1 if |log 2| is odd
€ 7 u
t = Average starting string length.
For random data t = -—21- and the formula reduces to

n+1

(12n + 140) ltlog2 n ; 1} + 16n + 38 + (87 + 30)5 milliseconds.
U

For data in descending order ¢ = 1; for data already sorted ¢t = n.

R 722 page 2

For random data:

n| 10| 25 | 100| 250 | 500 | 1000

Time (seconds) | 1.1| 2,2 10| 26 | 57 | 133

The tern1[10g2 %] in the formula is an estimate of the number of
U

2
merges required for the complete sort. When ¢ is not near to ” r 1
the number of merges may rise to [log2 % + 1] . Even with random

u

data this may happen when 1og2 % is close to the next highest

integer.
Link: Obeyed in 4.7. Not left in X1 on exit.
Parameters: n, 4 and B are programme parameters which must be set before entry
as follows:
1
Medifier | Counter
]
1
X6 A ! n
X7 B I on
1

A and B are not restricted to the start of a block, but they
must be even numbered addresses, and be chosen so that there is no
overlap between locations 4 to 4 + 2n — 1 + €4 and 5 to B+ 2n -1+ €

Ifn = 0 or 1 the routine will obey the link without having
disturbed the Main Store.

On exit U 5.6 will contain (4, n)

Notes:
(1) If it is required to store the accumulators before entering the sub-
routine they must not be stored in B0, since this is required as
working space.

(2) If OVR is set on entry there will be & write with OVR stop in 1.0.

(3) Numbers to be sorted may be zero but must not be negative, 1If nega-
tive numbers are included there may be a write with OVR stop in 0.6.
If this stop does not occur the negative numbers will cause the
routine to enter a closed loop from 0.0 to 2.7.

(1) All numbers must be proper double-length numbers, with the second
half of the number positive.

(5) If A or B or both are odd numbered addresses the routine will enter
a large closed loop.

Ferranti Ltd.

London Computer Centre, Issue 1
21, Portland Place, 11th June, 1958
London, W.1 Copyright Reserved D.M.

Issue 1
11, 7.58.

R 723

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

-N-LENGTH MERGING SORT

This routine sorts into ascending order n N-length numbers in locations 4 to

4 + nN - 1 of the Main Store. Locations 5 to B + n¥ — 1 are used as working space.
The sorted sequence is left in locations 4 to 4 + n¥N = 1. A fixed string merging
process is used. If ¥ = 1 or 2, this routine is much slower than the special routines
R 720 and 722,

Name:
Store:

Uses:

Cue:

Time:

N-LENGTH SORT
9 blocks.

The entire Computing Store except X1; BO.

Main Store locations 4 ted + n¥ -1 + ?A

0L£eg 7
and BtoB+nN-1+¢ T

B
where 4 + n¥ -1 + €, and B+ n¥ -1 + €, are the last words
in the blocks containing 4 + n¥ -1 and B + n¥ - 1,

01 (0+.0) Enter Routine for sorting
02 a-order partial cue

03 b-order partial cue

{(9% + 6d + 3n +.140}{[10g2n]u + 8} + 297 milliseconds

where % *(keyword) Number of words to be compared before

numbers differ (1 €k <M

1

d (data) = N -k

1

[logzn]u logzn rounded up to the next highest integer

8

0 if [logzn]u is even

1 if Qlognl, is oda

R 723 page 2

The following table gives typical sorting times in seconds with & = % ¥

p " 10 | 25 100 | 250 | 500 | 1000
1 1.3 2.9 14 32 76 150
2 1.6 3.7 18 44 106 210
3 1.9 4.8 26 62 151 -
4 2.2 5.6 30 4 181 -
6 2.8 7.4 42 104 - -
8 3.4 9.3 54 134 - -
16 5.8 17 102 - - -
50 15 47 - - - -
127 3T - - - - -
Note that in this table a slightly more accurate
formula was used when & > 8,
Link: Obeyed in 0.7 and left in X1 on exit.

1. Programme Parameters

1.1 n, 4 and B are programme parameters which must be set before entry as follows:
1
Modifier: Counter

L
]

X6 A : n

X7 B | n
1

On exit (4,n) will be left in X6 and also in U 0.0. The sign bit of X6 and 7 may be
0 or 1 on entry, but on exit X6 will always be positive.

1.2 4 and B are not restricted to the start of a block, but they must be chesen
so0 that there is no overlap between locations 4 to A + nN - 1 + €4 and B to
B+nN-1+ €

1.3 If n =0 or 1 the routine will ohey the link without having disturbed the
Main Store.

2. Preset Parameters

2.1 ¥, the number of locations occupied by each number, is specified by Preset
Parameter 01. N may not exceed 127. The parameter list should be punched as follows: -

RO 0-01
g Title of parameter list
723 - 04 -

¥ 000
> N = Length of numbers being sorted

page 3 R T23

If no parameter list is supplied by the programmer, ¥ will be set equal to 3 by
an optional parameter list.

2.2 If it is required to change X during the programme, words 4+.0 and 6+.0 of
the subroutine must be altered.

(::) T 40 6
4+, 0 should read

0.4 761

OXE
6+.0 should read
6 7

20

The amended words may be stored by the orders

71 + partial cue

71 + partial cue

these orders being tagged by cue 02 (a-orders) or cue 03 (b-orders).

3. Restrictions on Numbers

3.1 Numbers may be all positive or all negative, where the term ‘positive’
includes zero numbers. Mixed positive and negative numbers may be sorted provided
that the difference between the smallest and largest first words does not overflow.
This means that the range of numbers, when regarded as N-length fractions, must be
less than (1.0 - 2'38). If this restriction is broken the routine may encounter

a write with OVR stop in 1.0, 1.2 or 1.6: 1if these stops do not occur the routine
will have sorted correctly.

3.2 All numbers should be proper N-length numbers, with zero sign bits in all
but the first word. If this restriction is broken the routine will not sort
correctly on the negative words, and it may encounter a write with OVR stop in
1.0, 1.2 or 1.6.

3.3 Although the routine sorts on the whole N-length numbers, it may be used
to sort k-length keywords each with d data words. The data words should still be
positive as described in section 3.2 above. The data words will be compared only
when the corresponding keywords are equal,

R 723 page 4

4. Notes

4.1 If it is required to store the accumulators hefore entering the subroutine
they must not be stored in BO, since this is required as working space,

4.2 If OVR .is set on entry there will be a write with OVR stop in 1.6.

Ferranti Ltd.,
Londen Computer Centre, Issue 1
21, Portland Place, 11th July, 1958

London, W.1. Conyright Reserved D. M.

R 138

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
11.4,58.

SUMMARISING SORT OF KEYWORDS WITH ONE DATA-WORD

This routine sorts into ascending order n non-negative keywords in locations
A, A+2, A+4,...., A+2n-2 of the Main Store, with associated data-words in A+I, A+3,
ve., 4t21-1: it combines equal keywords and adds the corresponding data-words.
Locations B to B+2n-1 are used as working space. The sorted sequence is left in locations
A to A+2m-1, where m (£n) is the number of distinct keywords. A maximum string
merging process is used.

Name: SUMSCORT 2
Stove: 10 blocks.
Uses: vo, 1, 2, 3, 4, 5.0, 5.3 to 5.7 X2, 3, 4, 5, 6, T, BO.

Main Store locations A to A+2n-ltey

; 0L£eL8
and B to B+2n-1+sB
where A+2n—1+eA and B+2n-1+eB are the last words in the blocks containing
A+2n-1 and B+2n-1 respectively.

Cue:
o+ [0] 72
01
0.0 0 860
Time: Approximately (16n + lln logzm + 1000) milliseconds for randomly arranged

keywords, providedm > 2. If m =1 all keywords are egual and no sorting,
only summarising, is required.

The following table gives typical times in seconds:

. m 1 2 8 16 32 64 | 128 | n
25 .14 1.2 2 2.3 - - - | 3.2
100 .54 3.5 6 " 8.2 9 - 10
350 | 1.4 8 13.5 | 16 19 23 | 25 | 29
800 | 4.2 23 40 49 58 67 | 76 | 99

Note that this table is based on experimental results and does not agree
exactly with the formula., If the keywords are partially sorted on entry
to the routine the time will be considerably reduced.

R 736 page 2

Link: Obeyed in 0.7 and left in X1 on exit.

Parameters: n, 4 and B are programme parameters which must be set before entry as
follows: -

T
1
Modifier 1 Counter
!
X6 : n
]
X7 : n

A and B are not restricted to the start of a block, but they must be even
numbered addresses, and be chosen so that there is no overlap between
locations 4 to A+2n-1+€, and B to B+2n-l+ep.

Ifn = 0 or 1 the routine will obey the link without having disturbed
the Main Store.

On exit X5 will contain (4, n), and X2 the final value of the necessary
modifier and counter, (4, m).

Notes: (1)

(2)

(3)

4)

(5)

Author: Mr.

Ferranti Ltd,,

Keywords may be zero but must not be negative, If negative keywords
are included the routine will enter a closed loop from 0.0 to 2.7,
or write with OVR in 0.6, 1.5 or 2.7.

Data-words may be positive or negative. If their addition causes
overflow, the routine will write with OVR in 0.6, 1.5 or 2.7.

If OVR is set on entry, there will be a writing with OVR stop in
4.3.

If it is required to store the accumulators before entering the
routine they must not be put into B0, since this is required as
working space.

If A or 5 or both are odd numbered addresses the routine will
enter a large closed loop.

M.W.G. Duff of Robson, Morrow and Company.

London Computer Centre,) Issue !
21, Portland Place, 11th April, 1958.
LONDON, W.1. Copyright Reserved M.W.G.D. D. M.

R 737

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

SUMMARISING SORT (INDEXING)

A sorting routine which requires that n single-length keywords should be
presented to it one at a time to be stored and indexed. Each keyword may have a
number of data words associated with it. If two keywords are equal an auxiliary
subroutine may be entered to combine the corresponding items, When all m such
combined items have been indexed a different section of the subroutine may be usged
to extract items one at a time in ascending keyword order. R 737 is normally slower
than R 736 but can deal with more items and more data per item.

Name: MONKEY PUZZLE MARSHAL
Store: 4 blocks.
Uses: vo, 1, 2; X1, 5, 6, 7 on cue 01

U0, 1; X1, 3, 7 on cues 02 and 03
Plus two words of Main Store for each keyword plus space for data words
(sections 1,2 and 1,5).

Cues:
0+ [0 72
01 Index keyword in X7
0.6 080
3+ [o]72
02 Extract smallest keyword
0.0 080
2+ m 12 Return from Auxiliary to
03 extract next keyword
1.0 0 60 W
04 a-order partial cue
05 b-order partial cue
Time: If n items in random keyword order are read, and if items with equal

keywords are combined to form m distinct items, the average time for
each entry to R 737 would be

Part 1 (Cue 01) .02 logm seconds (m > 1)
Part 2 (Cues 02 and 03} . 06 seconds

The total time used by R 737 would therefore be about ,02 n loggw + .06 m
geconds (this formula does not apply whenm = 1).

R 737 page 2

If the keywords are not random the time for part 1 may increase: 1in the
worst case, with keywords completely pre-sorted, the term loggm would
become Y% m.

For random data the following table gives typical times in seconds:

" 1 2 8 32 123 | 512 | 1024 |m =n
n
25 +5 .6 | 2.0 - - - - 3.8
100 | 1.6 | 2.1 | 6.5 12 - - - 20
250 | 3.8 | 5.1 16 27 43 - - 55
800 12 16 49 82 120 | 175 - 202
2000 30 40 | 120 | 200 280 | 390 | 460 | 560
10000 | 150 | 200 | 600 {1000 | 1400 {1830 | 2060 -

Link: Part 1 (Cue 01) Obeyed in U 0.6. Not left in X1.

Part 2 (Cue 02) Obeyed in U 1.7. Not left in X1.

1. READING KEYWORDS
1.1 Keywords

Keywords must be such that overflow can not occur on subtracting any one from
any other: it would be sufficient, for example, if they were all positive,

1.2 Store

The master programme has to specify an even numbered address 4 whiech is the
start of the working space for the subroutine. 4 may not be B 0,0. R 737 requires
2m locations of working space, two for each distinct keyword, plus space for
data (section 1.5).

Thus 2&A< N - 2m

where ¥ = 4096 or T168, the number of words available in the Main Store.

1.3 First Keyword

On reading the first keyword the master programme must clear location 4 and
place the keyword in location 4 + 1.

1.4 Subseguent Keywords

Subsequent keywords must be presented by obeying cue 01 to R 737 with the
following information in the accumulators:

X1 Link, must be reset before each entry.
3 Sign and counter clear
3 A First Address (Even-numbered)

X3 is not overwritten by R 737 and 4 need only be set once by the
master programme.

page 3 R 737

5 Sign and counter clear
5, B Current Address (Even-numbered)

At each entry R 737 will use locations 5 and B + ! and leave

5y = B" = B + 2. Unless the master programme is storing data after
keywords it should set 5, = B = A + 2 initially and not disturb 5,
thereafter.

7 The new keyword.

1.5 Storing Data

On each entry to R 737 by cue 01 a tagword is stored in B and the current key-
word in B + 1. On entry 5, = B; on exit 5; = B' =B + 2. In general there will be
d words of data associated with each keyword which may be dealt with in one of the
following ways:

1.5.1 Interlacing

The d data words may be stored in B’ to 8" +d - 1 provided that 5, is increased
to B’ +d + & before the next entry to R 737. & = 0 or 1 to make B’ +d + & even.
d may vary from item to item.

1.5.2 Indexing

If d is constant the d data words may be stored in D te D +d - 1, where D
is a simple function C + %d (B - 4) of B,

D=(-4¥dd)y + %d8 [=(-%dA -d) +%dB']

C = Pirst address for data.

Both 4 and B should be even-numbered addresses and the zbove formula should
therefore never give a fractional [, This method has the advantage that it is not
necessary to allocate an even number of locations for data.

2. IDENTICAL KEYWORDS

When the current keyword is found to be the same as a previous one preset
parameter 01 is obeyed.

2.1 No Merging

If identical keywords are fo be marshalled consecutively but separately, with-
out merging the associated items, preset parameter 01 should be

1.2+ 0 60

0

The identical keywords will then be marshalled in the order in which they are
presented,

2.2 Merging Items

If items with identical keywords are to be merged preset parameter 01 should be
a cue to Auxiliary 1, a merging subroutine which must be provided by the user. On
entry to Auxiliary 1 the following information will be available in the computing
store:

R 737 page 4

X1 Link to return to the master programme
(As set on entry to R 737)

2,3,4,5 As left by master programme

6 B;, where B, + 1 is the address of the previous keyword £;, which is
identical with the current keyword Eh

7 Zero

U2 The block containing X., the previous keyword (Xi can be extracted
by an order 2.1 7 00 6)

U3,4,5 As left by the master programme.
Auxiliary 1 should merge the two items and leave the date for the combined item

in the Main Store in place of the date associated with Ki' It should then return to
the master programme to read the next item by obeying the link left in X1,

It may use U0,1,2; X1,6,7 without restriction
U3,4,5; X2,4 "if not required by the master programme.
X3 only if reset before re-entry to R 737.
It may not use X5.

Note that the number of words of data in the combined item may not exceed the
number of locations allocated for the data associated with X;, which it replaces.
3. OUTPUT OF KEYWORDS
3.1 Entry

To initiate output of a set of keywords cue 02 to R 737 should be obeyed with
the address 4 in 3, and a lipk for return to the master programme in X1.

3.2 Auxiliary Output Subroutine

The user must provide Auxiliary 2, a subroutine to deal with the sorted items,
which are presented to it one at a time. For each item R 737 obeys preset parameter 02,
which must be & cue to Auxiliary 2. Auxiliary 2 will find the address B; in 3,
where Bi + 1 is the address of the keyword: it can therefore read the keyword into
X1 by the orders

o 1]70 3 OR 0 [2]723

2.1 1003

Auxiliary 2 may use the entire computing store. When it has dealt with an item
it should obey cue 03 to R 737.

3.3 Exit

When ali items have been dealt with R 737 will obey the link set in X1 by the
master programme.

4. INDEPENDENT SETS OF DATA

Two or more quite independent sets ofrdata may be handled at the input stage,
with the keys, tags and data for each set interlaced. As each keyword of a given
set is presented to R 737 the appropriate address A must be put into 3,, corresponding

page 5 R 137

to the first keyword in the set. If a different merging process is required for the
different sets, Auxiliary 1 must use 3, or some other marker to decide which procedure
to follow.

At the output stage R 737 must be entered by cue 02 once for each set, with the
appropriate address 4 in 3+ R 737 may not be used to output any one set of keywords
more than once.

5. PRESET PARAMETERS

The preparation of the parameter-list is made easier if Auxiliery 1 and
Auxiliary 2 are combined into one subroutine with two cues. The parameter list may
then be punched as part of the combined subroutine and relative addresses may be used
in parameters as follows:

RO 0-02
Title of parameter-list
737 - 04 -
+ [Cue to Auxiliary 1 (Merging)
.2+
0 60 {or 1.2+ 0 60 if no merging)
+ 72
Cue to Auxiliary 2 (Output)
0 60

Note that if the auxiliaries are made up as assembly subroutines the master
programme must include an assembly tag calling for them in order to satisfy Assembly.
If this is done the parameter-1list may be punched at the end of the programme tape,
just before L A2, and the relative addresses set by punching a C-directive before
each parameter,

6. CHANGING PARAMETERS

If it is desired to use R 737 more than once on one run it may be necessary to
change the preset parameters,

P.P.01 is planted in 1+.6
P.P.02 is planted in 3+.5

New parameters may therefore be written to these locations from X1 by obeying
the orders

T + partial cue

B 3n + partial cue

each tagged by the appropriate partial cue, 04 or 05, to R 737.

R 737 page 6

7. METHOD OF COMPUTATION
7.1 The Tree

The process can best be explained by considering e tree, with a keyword and an
associated tagword at each branch point. At each branch point there is one branch
going down and there may be two branches going up, one to the left and one to the
right.

The first keyword, together with its tagword is placed at the bottom of the
tree. The positions of all subsequent keywords can be described by three store
addresses: those of the two keywords above and the one below it in the tree. A
zero address indicates that a branch point is not occupied. These three addresses
are stored in the tagword associated with the keyword. The keywords are stored in the
Main Store in the order in which they are presented and the ‘geometry’ of the tree
is entirely defined by the addresses in the tagwords.

7.2 Climbing Up

The process of inserting a new keyword into the tree is as follows, Start at
the bottom of the tree and test the new keyword against each keyword encountered.
Go left up the tree if the new keyword is the lesser, right if it is the greater.
Carry on up the tree until a vacant branch point is found, and place the new keyword
there, inserting addresses in tagwords as required.

7.3 Climbing Down

On first entry by cue 02 the smallest keyword is found by starting at the
bottom and going up the tree, turning left always, until the end of the leftmost
branch is reached.

As each keyword is output its tagword is marked and its address is recorded for
the next entry from Auxiliary 2.

On each entry by cue 03 the routine starts from the last keyword output. It
goes upwards to the right one place if there is a keyword there and then goes up the
tree, turning left, until the end of a branch is reached.

I1f there is no keyword going upwards to the right, the routine goes down the
tree until an unmarked tagword is reached: this is the next keyword. When the
bottom of the tree is reached and the bottom tagword is already marked the process is
complete,

@ FERRANTI LTD 1960

London Computer Centre, Not to be reproduced in whole or Issue 2
68, Newman Street, in part without the prior written Tth July, 1960.
LONDCN, W.1. ternission of Ferranti Ltd. C.M.B.L. J.F.D, D, M.

COMPREHENSIVE P, A.Y.E.

R 740

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

CALCULATION

This subroutine evaluates income tax for weekly or monthly paid employees who

have the following types of tax rating: -

1. Normal Coding.

2. Low Income Staff not subject to P.A.Y.E.

3. Emergency Coding.

4. Week 1 (Month 1) Basis Coding.

5, Code ‘0.

6. Code ‘Standard Rate’.

7. Code *‘No Tax’.

Name: P.A.Y.E. - MK.Z.
Store: 23 blocks (including all constants as preset parameters).
Uses: uo, 1, 2, 4, 5; 3.3, 3.4; All Accumulators.
Cues:
o1 0 []72 Weekly entry when BO+ of R 740 is
0.1 0 60 stored in B127 or below
o [0]72
02 Monthly entry as in 01
0.1+ 0 60
03 0 E]72 2 Weekly entry when BO+ of R 740 is stored
0.1 0 60 in B128 or above. (See section 3).
o [0]72 2
04 Monthly entry as in 03
0.1+ 0 80

R 740 page 2

0+ -000. Modifier to be set in X2 before
05
0 using cue 03 or 04
Time: The following are some typical times for weekly paid employees. Times

for monthly paid employees are very similar. The values are approximate,

Normal coding (79 < t € 136) milliseconds
Emergency coding (95 € ¢ €152) milliseconds
L.I.8. 16 milliseconds
Code ‘O’ (81 € t € 97) milliseconds
Code °‘S.R.’' 81 milliseconds
Link: Must be set in X1 and is obeyed in 2.7. It is left unchanged in X1 on
exit.

1. METHOD OF USE

Cn entry to the subroutine, the current week’s (month’s) pay ?, (in pence)
must be set in X7, and the number, n, of the week must be set in 3.. Block 3 of the
Computing Store must contain the following information: -

3.1 | Tax coding } See section 2

U3.2 | 4, (pence) } Table A value for week (month) 1.

U3.3 | By, (pence) } Cumulative pay to the end of the previous week.

U3.4 | £,_, (pence) } Cumulative tax to the end of the previocus week,

On exit from the subroutine, the current week's (month’s) tax, +7,, will be held in X7.
U3.3, 3.4 will contain the cumulative pay and tax, respectively, to the end of the
present week (month). If X7 is negative on exit, a refund is due to the employee.

2. TAX CODING

2.1 The table below shows in what form the tax coding should be stored in U3.1 on
entry. Where the coding is Normal or Week (Month) 1 Normal Basis, i.e. where there

is a numerical value, n, attached to the coding, this number, which must be a positive
integer in the range 1 € n £ 228, is held in the last 8 bits of the word. In all
other cases these last 8 bits must be zeros. If the routine is entered with any

other coding, it will come to a loop stop in 2.86.

In the table below, bits that are not specified must be zeros.

Type of Coding Tax coding in binary

n
Normal Coding 0.000000. 4.0 \svsearernerseneeeesessirriii
8 bits
Low Income Staff 1.000000,0ciienenvsnenasssssasssasanans

(not subject to P.A.Y.E,)

Emergency Coding 1,1000000. ., .c000vresecnvenena Cebrtesedanens

Week 1 n
Normal Coding 1.0100000, .. iovveerornnnonssansnns Citraiss

Month 1 8 bits

page 3 R 740

Type of Coding Tax coding in binary
Code ‘0’ 1.0010000, seeoenianaeesannasasssspsnsnnans
Code Standard Rate 1,0001000. s vsvvesnranssnasasnesvannennsos
Code No Tax 1.0000100. . 000 veernsvsasvrscsannss

2.2 The binary form of the tax coding and the Table A value will normelly be stored
with the employees permanent record, Another subroutine, R 741, has been written to
form these numbers when the record is being compiled or revised.

3. ENTRY

3.1 If BO+ of R 740 is to be stored in B 127 or below in the Main Store then entry
is in the normal way using either cue 01 or 02,

3.2 If BO+ is to be stored in B128 or above then the following procedure must be
obeyed: -

Call for, but do not obey, cue 05 which is to be used as a modifier.

Place this modifier in X2

Call for cue 03 or 04

The Master Programme should therefore appear as follows:-

Tagged by a call for
+ Cue 05 } cue 05 to R 740

cue 03 or 04 to R 740

+ cue } Tagged by a call for

If cue 01 or 02 is called for when BO+ of R 740 is stored above B127, then on entry
to the subroutine, the computer will come to & T7-stop. On going to RUN it will come to
an unassigned order stop (33 order).

R 740

page 4

4.

01

02

03

04

05

a8

07

10

11

12

13

14

15

18

17

20

21

22

23

24

25

26

27

30

31

32

33

34

a6

PRESET PARAMETERS

A parameter list of the following form must be punched with the master programme:-

RO 0-314

740 -~ 04 ~

+Tx

Note:

L

e

r

J
}

Title of Parameter List

Low Income Staff } Weekly

Upper limit. } Monthly

LOOP STOP or cue to exception
routine when L.I.S.
limit exceeded

Rates of weekly pay at which steps in
the officjal tables change from
5/- to 10/- (04), and from 10/- to £1 (05)

Rates of monthly pay at which steps in
the official tables change from

5/- to 10/~ (06), from 10/- to £1 {07),
and from £1 to £2 (10).

The amount to which month 1 table

proceeds in £2 steps.

The amount to which week 1 table

proceeds in 5/- steps.

Rates of gross pay for the week at which pay
steps change from 5/- to 10/-, and 10/- to £1

Rates of gross pay for the month at which pay
steps change from 10/- to £I, and £1 to £2

First
Second
Third

Standard rate of tax (pence per pound),

Widths of the three reduced rate bands
€ - ¢ = the full rate earned
€, income relief fraction
Fi . f = the reduced rate earned
kA income relief fraction

Maximum earned income
qualifying for earned
income relief at:

} full rate
} reduced rate

Single persons personal allowance

Rate of gross pay for the month at
which pay steps change from £5 to £1

All sterling sums must be punched in pence,

reduced rates of tax (pence per pound).

1959/60
Values

+900

b e -y
S A
o e e e e nd
S EE——

= = - -

b - -]

+51

+75

+14400

+36000

+36000

T p—

+8

+9

+9

1961200

+2386800

+33600

page 5 R 740

5. STOPS
1.7 060 Loop stop if Low Income Staff
1.7 limit exceeded and no
0 exception routine provided.
2.6 560 Loop stop if unacceptable tax
2.6 ding in U3.1
0 700 coding in .1,
6. NOTES

Income Ranges for which R 740 is applicable:

Normal Coding: Tax is calculated on income up to TE (£4,005 in the 1959/60 values)
at the full rate of earned income relief, from Tj to TL (T; is £9,945 for 1959/60)
at the reduced rate of earned income relief, and above TL with no earned income relief.

Emergency Coding: Tax is calculated, as described above, on equivalent weekly or
monthly incomes, at the same rates of earned income relief,

Low Income Staff:

These employees are generally not subject to P.A.Y.E. deductions. There is an
upper limit for weekly and monthly pay in this coding, above which tax becomes
payable, These upper limits are, in the 1959/60 values, £3.15.0 per week, and
£15.10,0 per month (preset parameters 01 and 02 respectively).

If R 740 iz entered with any employee coded as Low Income Staff, having a weekly or
monthly income exceeding the limit, then preset parameter 03 will be encountered, which
can be either a loop stop as shown in the list, or can be a cue to some exception
routine written to deal with this particular case.

Inland Revenue:

It is suggested that before incorporating R 740 in any wages programme, the
user should apply to the Inland Revenue for their documents on P.A.Y.E. calculations
on electronic computers (obtainable from the Statistics and Intelligence Division),
and also for the list of associated constants for the current year, which are
required by the parameter list. It would be useful to have also the ‘Employer’s Guide
to “Pay as you Earn”’® issued by the Board of Inland Revenue, This gives details of
every aspect of P.AY.E,

(C) FERRANTI LTD 1959

Fot to be reproduced in whole or
in part without the prior written
permission of Ferranti Lid.

Ferranti Ltd., London Computer Centre, 21, Portland Place, LONDON W.1.

Issue 2 J.AH. 9th July, 1959.

R 741

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

P.A.Y.E. CODE INPUT AND TABLE A LOOK UP

This subroutine reads and converts income tax codings into the form required by
R 740 and looks up the Table A value where appropriate. The converted code is left
in X7 and the Table A value (in pence) in X6. These values would normally be stored
with the employees record and used weekly or monthly on entry to R 740.

Name: CODE READ
Store: 12 blocks.
Uses: e, 1, 2, BO;, X2, 7.
Cue:
o+ [0]72
01
0.0 0 60
Time: The following are some typical times. The values are approximate.
C n CRLF 123 milliseconds
E CRLF 97 milliseconds
W1l C n CRLF 116 milliseconds
Link: Obeyed in 2.7 and left unchanged in X1,

1. METHOD OF USE

Income Tax Table A must be held in the Main Store, each element of the table
being in pence and stored in consecutive locations. Before entering R 741, the address
of the first word of the table must be set in 2m.

Note: Code number n = 65, for which there is no Table A value, must be given
some arbitrary value to ensure that there are no discontinuities in the
table.

Table A entitled “Free Pay” is obtainable from the Inland Revenue,

2. FORMS OF PUNCHING

¢, Sp, Er, LF, CRLF are ignored before the coding. Er only is ignored between
the A at the start of the code and the terminating character. Either CRLF or Sp may
be used as a terminating character.

R 741 page 2

Note: Where the coding is Normal or Week (Month} 1 Normal Basis, i,e, where
there 15 a numerical value, n, attached to the coding, this number, which
must be an integer in the range 1 < n £ 225, is held in the last 8 bits of
the word. In all other cases these last 8 bits will be zeros.

Type of Coding Form of Punching

Normal Coding A C¢n CRLF

Low Income Staff A LI ¢ CRLF

(not subject to P.A.Y.E.)

Emergency Coding A E ¢ CRLF

Week 1 AWP1lACon CRLF
Normal Coding

Month 1 AMd1XAC¢n CRLF

Code ‘0’ A C ¢ 0 CRLF

Code Standard Rate A SR ¢ CRLF

Code No Tax A NT ¢ CRLF

3. ERROR STOPS

0.0 (0 73) A stop on writing with overflow will be encountered in 0.0
if R 741 is entered with OVR set.

0.3+ (0.3+ 5 61) If W or M not followed by ¢ 1 A C
0.4 (0.4 5 61) If coding not terminated by Sp or CRLF
0.4+ (0.4+ 5 63} If an inadmissible character before first A
1.3+ (1.34+ 5 61) If C not followed by ¢
1.4 (1.4 5 63) Ifn> 225
1.5 (1.5 760} Ifn=0 for week or month 1
1.7 (1.7 5 61) If 8§ not followed by R
2.0+ (2.0+ 4 60) If no decimal digits after A C ¢
2.2 (2.2 5 61) If an inadmissible coding,
or if L not followed by I,

or if N not followed by T.

2.5 (2.5 5 61) If incorrect terminating characters.

(C) FERRANTI LTD 1959

Not to be reproduced in whole or
in part without the prior written
permission of Ferranti Ltd.

Ferranti Ltd., London Computer Centre, 21, Portland Place, LONDON W.1.

Issue 1 J.AH. gth July, 1959.

R 761

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

FILE UPDATING MK.2

This routine deals with the magnetic tape organisation for file updating work
using variable length items. It brings each amendment item and the corresponding
main file item into the Main Store and then enters one of two auxiliary subroutines
provided by the user: an amendment subroutine and an insertion subroutine.

R 781 is not self-preserving in the Main Store, and therefore cue 01 may only
be called for once each time R 761 is read.

Name: FILE UPDATING MK.2
Store: 53 blocks.
Uses: In general the whole Computing Store, but at certain re-entry points

some parts are left undisturbed. See below.

Cues: 01 (41+.0) Initial entry
02 (21+t.2) Return 1 from 31 (section 4)
and Return 1 from S2 (section 5)
03 (21+.4) Return 2 from S1
04 (52+.0) Return 2 from S2

05 a-order partial cue
06 b-order partial cue
Time: Exact times are difficult to calculate, but the following should be a

sufficient guide.

Let 4 be the number of blocks in the Output Buffer (see section 6,
P.P.02)
8 be the number of keywords on the Main File not corresponding to
any amendment keyword.
C be the number of keywords on the Main File with corresponding
amendments.
be the number of 32-word sections on the Main File.
be the number of 32-word sections on the Amendment File.
be the total number of blocks in the Amendment Buffer (see
section 6, P.P.07).
G be the number of repeated keywords in the Amendment File.
Then the time, in milliseconds, used by R T61 is

ry by

B+ g + + + R 4+ = +
2 193C D (166 1) (133 o) 406G

As an example, for a main file of 5000 items, of average length 48 words
(almost 3000 feet of tape), with 500 amendments of average length 8 words,
all different, with reasonably long amendment and output buffers, the
time would be about 23 minutes; to this would be added the time required
for the programmer’s subroutines.

Link: Should be preset as preset parameter 21. It is obeyed in 3.4 and is not
left in X1. (R 761 is in any case not self-resetting, i.e. it may be
used once only).

R 761

Contents

page 2

General Concept . .
Organisation of Files

Form of Items
Form of Keywords

Arrangement of Files on Tape ..

End of Tape
End of File

The Master Programme
Amendment Subroutine (S1) ..

Entry . ..
Function
Repeated Keywords

and Insertion Subroutine (52) .

Entry
Error
Insertion

Preset Parameters

New Facilities ..

Quick Access Storage

Two Tape Controls .
More than Four Tape Mechanisms

Amendment Subroutine (S1)

1.
2
2.1
2.2
2.3
2.4
2.5
3.
4,
4.1
4.2
4.3
5. Error
5.1
5.2
5.3
6.
7. Stops
8.
8.1
8.2
8.3
Appendices
Al
Al. 1l
Al. 2
AL.3
Al.4
A2 Error
A2.1
A2.2

Use of the Buffer Store

Special Treatment of Frequently Repeated Keywords
Summary Operation after a Series of Repeated Keywords
Writing the C.P. item over the Amendment

and Insertion Subroutine ..
Use of the Buffer Store
Leaving the Amendment Item in Situ

Page

QO OO NDHH DD GG R R R W WW

ot s ek
oo

11
11
11
12
12
12
12
13

page 3 R 761

1. General Concept

R 761 is used with a main file, on one or more 32-word magnetic tapes,
consisting of a large number of separate items, each headed by a keyword (which, for
example, might be a part number for a stock control job). The items must be in
keyword order. There will also be an amendment file held similarly as separate items
in keyword order on 32-word magnetic tape, but this will in general be a much shorter
file as only a selection of the items on the main file will have counterparts on the
amendment file. The amendment file items may have been supplied in random order on
paper tape and have been sorted by the computer, or they may have been converted on
to magnetic tape from sorted punched cards.

The basic file updating process on magnetic tape involves scanning a brought
forward (B.F.) main file, together with the amendment file, and producing a carried
forward (C.F.) main file. This will include most of the items on the B.F. file, but
in general those for which a corresponding item exists on the amendment file will be
altered, whilst those for which there is no smendment will be copied unchanged from
the B.F. to the C.F. file. Also, some items may be deleted and others inserted.

The actual process of effecting an amendment will vary from job to job and is
dealt with by a programmer’s subroutine. R 761 deals with the scanning of the files,
the finding of coincident keywords, and the detection of end of tapes, end of job etc.

2. ORGANISATION OF FILES
2.1 Form of items

R 761 uses variable length working for both main file and amendment items.
This is described in List CS.180, but the main features will be given here.

The lengths of items are not affected by the sections on magnetic tape. Each
item must be headed by its keyword, which must be of negative sign. The remaining
words in the item must be positive (but see C8.180 if some data words represent
negative quantities).

R 761 recognises the beginning of an item by the fact that the keyword is
negative. Thus, apart from restrictions imposed by the overall size of the Main
Store, an item may be of any length up to 1023 words (127.7 blocks), provided that
this is allowed for in the preset parameters (section 6).

The keywords on the main file will generally all be different. If there is
an amendment to a keyword which occurs more than once on the main file, R 761 will
select the first of the identical keywords.

2.2 Form of keywords

Keywords should be in ascending order of magnitude; they are all to have
negative signs and the recommended procedure is to add -1.0 to each keyword (e.g. by
adding register 32).

Suppcse there are keywords 100, 102, 108 in this order. These are stored as
integers in Pegasus words, and adding -1.0 (as a fraction) to each gives

~-1.0 + 100 x 2738
-1.0 + 102 x 2°3°
-1.0 + 108 x 2738

These are still in correct order of magnitude and are all negative, thus satisfying
the requirements. (Note that if the keywords were just negated, they would be in
descending order of magnitude).

R 761 page 4

2.3 Arrangement of files on tape

A file is considered to be made up of a number of 32-word tapes. The required
starting address on tape can be preset (see section 6) and will not normally be the
first word of the first section, as at least one section will be reserved for
permanent information about the tape itself., Also, in general the information on
each tape will not go to the last available word on the tape, but a certain amount
will be left unused.

In producing a C.F. file from a B.P. one, R 761 assumes that the contents of
one tape goes on to one other tape; thus if a file tends to increase in length
through the amendment process, there must be sufficient space at the end of the C.F.
tape to take the excess. As the C.F. file from one run becomes the B.F. file for
another, this gradual growth ceannot go on indefinitely. When a tape becomes almost
full, it will be necessary to re-organise the whole file, for instance 4 almost full
tapes would have to be copied on to 5 tapes, each about 4/5 full. The re-organisa-
tion runs would, in general, be much less frequent than the updating runs.

2.4 End of tape

It is necessary for R 761 to be able to recognise the end of information on a
tape., This is done by using a keyword -1.0, which is a zero keyword with a negative
sign. The use of this as a real keyword is therefore banned. The ~1.0 will follow
immediately the last word of the last item on the tape. This will not in general be
the last word of a section, but R 761 does not examine the remainder of the section
on the B.F. file; the end of the section on the C.F. file will be made up as follows:

End of lasg item

-1.0 Marker for end of tape
10
0
) » Last section used
!
+0
—1.0J

If the last item ends in the 31st word of a section, there will be only one
-1.0 and the next section will not be written; if it ends in the last word, the next
section will contain -1.0 in the first and last words and H) in every other word.

The end of the information on an amendment tape must also be indicated by a
-1.0, and R 761 does not examine anything beyond this. However, as the amendment
tape is read several sections at a time, there must be at least n,, properly recorded
32-word sections on the tape after the final -1.0, where n,, is given by preset
parameter 11 (section 6).

2.5 End of file

There 1s no special way of indicating end of file rather than end of tape; the
number of amendment tapes is a preset parameter, and when a count on this terminates,
R 761 assumes that it is on the last main file tape, (If it is not, the remaining
tapes of the file do not require processing.)

3. THE MASTER PROGRAMME

The master programme will normally be short, as all the file updating will be
done by R 761 and associated programmer’s subroutines, It should check that the
correct reels of tape have been put on the mechanisms, using R 930 or some similar
routine, and then enter R 761 by cue 01 with the following programme parameters set:

X2 Tape mechanism number x 2°*% for C.F. file
X3 Tape mechanism number x 2 %% for B.F. file
X4 Tape mechanism number x 2”%® for amendment file

Issue 2

page 5 R 161

On return from R 761 the main job will have been completed, but it may be
necessary for the master programme to print out summary information etc.

4. AMENDMENT SUBROUTINE (S1)
4.1 Entry

The amendment subroutine (S1) will be entered from R 761 when the main file
item associated with the next amendment keyword is found. At this peint both the
amendment and the main file items will be in the Main Store.

S1 may use the entire Computing Store except the sign of X4. If it requires to
use the tape buffer it may first have to preserve it (see Appendix Al.1). On entry
the following information will be available:

X4 sign -~ if tape buffer is free
+ if tape buffer is engaged (see Apendix Al.1)

X4, Address in Main Store of main file item to be amended. The block
containing the first word (the keyword) will be in U4 as though the
order 0 4 72 4 had been obeyed.

X4, The number of words in the main file item.

X5 sign t

X5, Address in the Main Store of the amendment item. The block containing
the first word (the keyword) will be in U5 as though the order
0 5 72 5 had been obeyed.

X5, The number of words in the amendment item.

X6 The keyword on which coincidence has been found.

4.2 Function

The function of Sl is to use the information supplied in the amendment item to
alter the B.F. item, thereby forming the C.F. item. It may write the C.F. item on the
Main Store in place of the B.F. item, even if they differ in length, or it may write
it to some other part of the Main Store. It may not, in general, leave the C.F. item
in place of the amendment item even if they are identical (but see appendix Al.4).

When S1 has dealt with one amendment it will usually return to R 761 by cue 02,
For this return the only information required of it is the sign of X4, the new address
in 4, and the length in 4, of the amended main file item. The subroutine need not
move the item from its original position in the store (as the B.F. item) even if its
length is altered; in this case 4, should be left unchanged by the subroutine.
Similarly, the counter in 4. will not be changed if the item length is unaffected by
the amendment. The sign of X4 must be preserved (except as stated in appendix Al.1)

The main file item is copied out to the C.F. file using X4 as a counter; it is
thus possible to split an item into two (or more) items, provided the total length of
them is specified to R 761 in X4. (This wauld not be so if R 761 were at this point
testing the sign of each word to detect end of item.) If 4. is set equal fo zero,
the main file item will be deleted, i.e. nothing will be copied to the C.F. file.

4.3 iRepeated keywords

It may happen that there is more than one amendment item for a particular main
file item. To deal with this case, R 761, on return from S1, will test to see if the
keyword for the next amendment is the same as for the one just dealt with; if so it
will return to S1 without having written away the main file item from the Main Store.

R 761 page 6

The return may be to a different point in the amendment subroutine than the normal
entry if desired.
5. ERROR AND INSERTION SUBROUTINE (S2)
5.1 Entry

A subroutine (S2) must he supplied to deal with errors and, if appropriate,
with insertions. §S2 will be entered when R '761 finds an amendment keyword which is
not on the B.F. file (it recognises this situation when it finds that the next
keyword on the B.F. file is greater than the current amendment keyword).

On entry to S2 the following information will be available:

X4 sign - if tape buffer is free
+ if tape buffer is engaged (see Appendix A2.1)

X5 sign +
X5, Address in Main Store of amendment item
X5, Number of words in amendment item

. X6 Keyword.

Note that the first block of the amendment item will not be in the Computing Store.

52 may use the whole Computing Store, exeept that in the case of an insertion
it must preserve X5 and the sign of X4. If it requires to use the tape buffer it
may first have to preserve it (see Appendix A2.1).

5.2 Error

An amendment keyword not corresponding to an existing keyword may be an error
{the keyword may be either wrong or out of order). In this case a likely course of
action is for S2 to print an indication (such as the erroneous keyword) and to return
to R 761 via cue 02 to deal with the next amendment item. Note that the action of
cue 02 is different in this case from that described in section 4.2, and there is no
need for S2 to preserve X4 and 5 before cbeying cue 02,

5.3 Insertion

If the item is not an error it must be a new one, to be inserted into the C.F.
file. In this case S2 must copy the complete item to some other part of the Main
Store, at the same time making any desired adjustment to it. It may not leave the
amendment item in situ unless it first makes the tests described in Appendix A2.2.
52 should set the new address in 4, and the number of words in the item in 4.. The
sign of X4 must be as left by R 761 (except as stated in Appendix A2.1}. S2 should
then obey cue 04 to R 761, which will copy the new item to the C.F. file.

6. PRESET PARAMETERS

R 761 requires a parameter list of 18 parameters, numbered in octal from 01 to
22. They should be as follows:

01 Main Store Address of Input Buffer
In the modifier position, with the sign and counter clear. It must be

a multiple of 4 blocks, {i.e. it must be word 0 of a block number which is
divisible by 4).

02

03

04

05

06

07

10

page 7 R 761

The input buffer is used by R 761 to hold the incoming tape section from
the B.F. file. It may be any available sequence of ¢ blocks, subject to the
starting address being a multiple of 4 blocks, but the user must allow space
beyend the input buffer for the maximum length of main file item, rounded up to
an integral number of sections.

When a main file item requiring amendment is recognised, R 761 begins to
read it into the Main Store starting at whatever address it had reached in the
input buffer.

Main Store Address of Qutput Buffer

In the modifier position, with the sign and counter clear. It must be a
multiple of 4 blocks.

The output buffer may be any available sequence of at least 20 blocks,
but it must be a multiple of 4 blocks in length. It should be as long as
possible in order to minimise computer time. It is used to build up sections
for output to the C.F. file,

Output Buffer Warning Address

In the modifier position, with the sign and counter clear. It must be
12 blocks before the end of the output buffer, and must therefore be a multiple
of 4 blecks.

R 761 uses this warning address to detect when it is necessary to move
the incomplete section up to the top of the huffer.

Cue to S1 (first entry)

This is obeyed for the first (or only) amendment to a particular main
file item.

Cue to S1 (second entry)

This is obeyed for the second and all subsequent amendments to a particu-
lar main file item.

Cue to S2

This is obeyed for an amendment keyword without a corresponding main file
item.

Address of Amendment Buffer

In the modifier position, with the sign and counter clear. It must be a
multiplie of 4 blocks.

The amendment buffer must be at least twice as long as the longest possible
amendment, and it is suggested that it should be no less than 20 blocks, but in
any case it must be a multiple of 4 blocks in length. It is filled from tape
whenever an address is reached such that it cannot be guaranteed that the next
amendment is all in the Main Store.

Amendment Buffer Danger Address

In the modifier position, with the sign and counter clear. It must be a
multiple of 4 blocks, and should be such that the longest possible amendment
can be held in the amendment buffer above this address.

R 761

page 8

11

12

13

14

15

16

17

20

Counter for Total Number of Sections in the Amendment Buffer

In the counter position, with the rest of the word clear. Section, in
this case, means multiple of 4 blocks.

Counter for Number of Sections in the Danger Zone of the Amendment Buffer

In the counter position, with the rest of the word clear. Section, in
this case, means multiple of 4 blocks.

Number of Sections in the Normal Part of the Amendment Buffer

This should be the number of 4-block sections in the amendment huffer
before the danger address. It must be in the ¥ address position of the a-order
with the rest of the word clear, for instance: -

10 0 00 0.
1)

This implies that the normal part of the amendment buffer cannot be more than
127 sections (508 blocks) in length.

Initial Tape Address for the Main Files

In the tape address position for tape control words, with the rest of the
word clear, for instance: -

10 - --0,
0

This specifies the firast section used for file items on the main file
tapes: it may not be section 0.

Initial Tape Address for the Amendment Files

In the tape address position for tape control words, with the rest of the
word clear. This specifies the first section used for file items on the amend-
ment file tapes: it may not be section 0.

Mask for the Amendment Keyword

It has been arranged that a mask can be collated into each amendment
keyword before searching for coincidence, If this facility is not required the
mask should be -1 (all ones).

Address for Storing the Final T.C.W.s of the C.F. File
In the modifier position.

To facilitate the organisation of a multi-tape file, it has been arranged
for R 761 to store the final T.C.W. for each C.F. tape. These can then be
printed at the end of the run, so that the final tape addresses used can be
determined. The T.C.W.s will be stored in order starting at the specified
address. If they are not required an address in the isolated store may be
specified.

Counter for Number of Amendment Tapes

In the counter position. This will usually be +1.

page 9 R 761

21 Link
This is the order pair obeyed at the end of the updating.
22 Mask for Main File Xtem
A mask can be collated into each main file keyword before searching for
coincidence. If this facility is not required the mask should be -1 (all
ches).
7. STOPS
1.3t (1.3+ 6 62) Loop stop if the first word in the first section used of an
amendment tape is not negative, i.e. not a keyword.
2.3t (0 0 77 in 2.3) 77 stop to change amendment tape. At this point, the
amendment tape will be rewinding. When this has finished a new tape should be
loaded. If it is desired to remove the tape from the top spool to be rewound
later, the rewinding can be suppressed by the following sequence:-
X 49+ 2
0
If 2 new mechanism (say () is to be used to hold the amendment tape, the
following manual orders should be obeyed: -
2.3+t 0 60
2.7t (0 0 77 in 2.7 17 stop to change main file tapes. At this point both the
B.P. and C.F. tapes will be rewinding. The rewinding may be suppressed by the
sequence: -
X 47t.4t - 47+ 5
0
0
If further mechanisms are available and it is desired to use them for the next
two tapes, the following manual orders can be obeyed: -
2.7 0 60
where A and B are the mechanism numbers for the new C.F. and B.F. tapes
respectively.
3.4 The main link at the end of the updating process is obeyed in 3.4, and may be a

stop order.

8. NEW FACILITIES

R 761 can take advantage of the new facilities in Pegasus 2 as follows:-

R 761 page 10

8.1 Quick Access Storage

With BO-15 of the drum replaced by 8-word delay lines, a suitable arrangement
of buffers might be

B 0-11 Qutput buffer
B12-15 Input buffer

Note that in this special case the ocutput buffer is specified as being only 12 blocks
long, which is less than the usual minimum. Note alsc that in fact it will only use
Bl to 8, leaving BO, 9, 10, 11 available for other purposes. This might not be the
best arrangement if the maximum length of main file items were more than about twelve
blocks, as too much of the first 128 blocks of store might be used up. Each case
would have to be considered on its merits,

8.2 Two Tape Controls

Some modification to R 761 would be required as there would be 8 buffer hlocks
available, and it would be possible to segregate further the B.F. and C.F. informa-
tion. The routine could he made much faster in this case.

8.3 More than Four Tape Mechanisms

Tape mechanism numbers from 0 to 4 are provided for.

(C) FERRANTI LTD 1960

London Computer Centre, Kot to be reproduced in whole or Issue 2
68, Newman Street, in part without the prior written 24th August, 1960.
LONDON, W.1. permission of Perranti Litd. J.F.D.

APPENDIX

page 11 R 761

The following sections give details of the use of 81 and S$2 under certain

special eircumstances.

Al Amendment Subroutine {(S1)

Al. 1 Use of the Buffer Store

The sign of X4 is used to indicate whether or not the tape buffer is free for

use by S1. It will be negative if the buffer may be used.

If it is positive and 51

has to use the buffer there are two possible courses of action.

1. S1 can ensure that the buffer is left unchanged by storing it and
This may be the simplest course if S1 only needs two
blocks (e.g. to write a 16-word section).

restoring it.

2. 51 may dump the tape buffer in B28t+ — 31t of R 761 and make X4 negative

to indicate that this has been done.

This is the recommended course of

action, as R 761 normally has to dump the buffer there anyway (if it is
not free), and will thus not have to do so if S1 has done it already.

The sequence of orders required for dealing with the situation

where it becomes

0
28
1
29
2
30
3
31

32
_’,

The T3

above are optimised.

63
76
73
76
73
76
73
76
73
06

- EElEEEEEE -

necessary for S1 to use the buffer is:-

Jump if buffer is free

-

+ partial cue

+ partial cue

+ partial cue

+ partial cue

Make X4 negative

J

Dump buffer in

B28t+ to 31t

orders are to be tagged by the appropriate partisl cues. It
is recommended that the orders are written out thus rather than as a loop,
as a loop would take one drum revolution per block, whereas the 73 orders

AL 2 Special Treatment of Frequently Repeated Keywords

Where repeated keywords are frequent, it may be advantageous to use a mode of
working which does not involve returning to R 761 for each separate amendment.

The amendments are read from the amendment tape in batches. A batch will
consist of several tape sections, the number being controlled by a preset parameter.
Thus at any one time there will be a part of a batch, i.e. a number of amendment
S1 may therefore extract the keyword of the next amendment
and test to see if it is the same as the keyword of the current main file item. If
not, it will return to R 761 for the main file item to be written away, but if so it

items, in the Main Store.

can process the amendment immediately without using R 761.

If this is done it is necessary for S1 to set X4 as before, and also to set in

5, the Main Store address of the first amendment not used.

Return is then made to

R 761 by cue 03, This mode of return could be used when only one amendment has been
processed, but there is no advantage in this.

R 761 page 12

It is necessary that S1 should not attempt to use amendments which have not
been read from the tape. To ensure this the part of the Main Store allocated for
amendments (called the amendment buffer) is divided into two zones, known as the
normal zone and the danger zome. The sizes and positions of these zones are deter-
mined by preset parameters. The address of the first word of the danger zone is
termed the danger address. When S1 has dealt with an amendment and is about to
inspect the next keyword for identity with the current keyword, it must first test
the address from which the next keyword is coming aginst the danger address; if it
is greater than or equal to it, S1 should exit immediately to R 761 via cue 03, with
the address of the next keyword in 5.

In these circumstances R 761 will refresh the amendment buffer from tepe (by
moving what remains in the danger zone to the top of the normal zone, then filling
the remainder from tape). It will then, as usual, test for repeated keyword, and
return immediately to S1 if the test succeeds (with the address in Sm adjusted, as
the item has been moved).

AL. 3 Summary Operation after a Series of Repeated Keywords
If certain operations on the main file cannot be carried out until all the

relevant amendment items have been processed, it is essential for S1 to identify its
own amendments. The procedure when it is at the end of an amendment is then:-

1. Test to see whether next keyword is the same as the present one.
2. If not, perform summary operation and exit to R 761 via cue 03.
3. If so, test to see whether address is at or beyond the danger address.
4, If not, process repested amendment.
5. If so, exit to R 761 via cue 03.
Al.4 Writing the C.F. item over the Amendment

S1 should not normally leave the C.F. item in place of the amendment item,
because the amendment buffer is liable to be disturbed by R 761 before the C.F. item
is copied to magnetic tape. If, however, it is required to write the C.F. item over
the amendment the following procedure can be applied:

51 can establish whether the amendment buffer will be disturbed by
considering where the next amendment item begins: it can compute this address
from the contents of X5 (on entry to S1). If this address is less than the
amendment buffer danger address (P.P.10)}, and if the C.F. item is no longer
than the amendment item, then S1 may write the C.P. item in place of the amend-
ment item. Otherwise Sl must write the C.F. item to some other address.

A2 Error and Insertion Subroutine (S2)

Az2. 1 Use of the Buffer Store

No provision has been made for the restoration of the tape buffer on return
from 82 to R 761 by cue 02, However, on entry to S2, the sign of X4 still indicates
whether or not the buffer is in use. Thus if X4 is negative, S2 may use the buffer
freely; if it is positive and S2 needs to use the buffer, it must make arrangements
to restore the buffer before obeying cue 02 to R 761,

However, if the second return is to be used (new item, cue 04), the situation
is as with S1. X4 will be negative if the buffer is free and positive if not; in
the latter case S2 should dump the buffer in B28+ to 31+ of R 761 and mark X4 negative
before using the huffer. In any case S2 should ensure that the sign of X4 is preserved
(it may be changed from positive to negative) for R 761. For instance if S2 decides

page 13 R 761

to treat the amendment as a new item and to do no further operations (i.e. it does not
need to use the tape buffer), a possible sequence of orders might be:-

32 4 05 Preserve sign of X4

5 401 Place modifier and counter for new item in X4
5 @& 00 (4, n) for current amendment to X6

(@5) 652 (n, 0) to X8

6 501 (4 + n, n) toX5 i.e. address of next amendment

5 03 Subtract danger address (P.P.10)
B a— 5 62
+0 + cue 04 to R 761

The 5 62 order should lead to a sequence of orders moving the new item out of the
amendment buffer, and changing the address in 4,, accordingly.

A2.2 Leaving the Amendment Item in Situ

A new item cannot in general be left “in situ” in the amendment buffer as the
buffer is liable to be disturbed by R 761 before the new item is copied ocut. S2 can
establish whether the amendment buffer will be disturbed by considering where the
next amendment item begins. It can compute this address from the contents of X5 (on
entry to S2). If this address is greater than or equal to the amendment buffer
danger address, S2 will have to move the current amendment, 1l.e. the new main file
item, elsewhere and change the address in 4, accordingly. Otherwise it can safely
leave the new item in the amendment buffer, and re-enter R 761 via cue 04 with 4,
containing an address within the amendment buffer.

It would, of course, be sufficient for S2 to move the new item out of the
amendment buffer in all cases, but this may lead to a significant loss of time if
there is a large number of new items to be inserted.

R 2900

File as goo

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
18.3.57.

COMPARE TAPES

A programme which will compare two tapes placed one in each Tape Reader
and stop if they are not identicsl.

Name: COMPARE TAPES,

Store: 2 blocks.

Uses: The whole Computing Store.
Entry: E 0+ at the end of the tape.
Speed of

Comparison: About 85 characters per second.

METHOD OF USE
1. Place the tape of R 2900 in the main Tape Reader. START and RUN.

(This tape has no T-sequence on it and hence the programme will normally be
read inte Blocks 2 and 3., If it is required to preserve the contents of these blocks
the programme can be stored in any other pair of consecutive blocks, say 5 and B+1,
by setting T 5.0 on the handswitches before operating the START key. The Relativiser
-does not need to be set since there is a B warning-character on the tape.)

2. When the 77 stop on reading the E at the end of the R 2900 tape is reached,
insert the tapes to be compared one in each Tape Reader and operate the RUN key.
Providing both tapes are initially set on a leader of blank tape they need not be
lined up exactly. However, if the compariscn is to be started on any non-blank
character, then the tapes must be set on exactly corresponding characters.

3. R 2900 reads in 56 characters from each Tape Reader (ignoring only a blank
tape leader at the head of each tape) and then compares them. If the comparison

is satisfactory the process is repeated; but if there is any discrepancy a loop

stop will occur. This will be in 0.7 unless the error is in the very first non-blank
character, In this special case the stop will be in 0,3+.

4. If a loop stop im 0.7 occurs at least ome discrepancy between the tapes
within the last 5.6 inches read is indicated. Having marked the tapes at this point,
it may be required tc re-enter the Compare Tapes programme to check the remainder of
the tapes. This can be achieved by a manual E 2.0 or, in general, E B.0 where B is
the address of the first block of R 2800.

5. The comparison process is continued until one of the tapes runs out of the
Tape Reader causing an Input Busy stop. Unless the remeinder of the other tape is
blank, the last few inches should be compared visually.

Ferranti Ltd,,

London Computer Centre, Issue 1

21, Portland Place, i8th March, 195T7.
LONDON. W.1. C.R.M. E.J.D.

R 2901

File as go?

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
14,3.57.
CLEAR STORE

This routine transfers zero to every Main Store location from B0.0 to B511.3
inclusive., The date and serial number are preserved in B511.7 and 511.6.

Name: CLEAR STORE

Store: BO

Uses: The entire Computing Store and'the Main Store from B0,0 to B511.5
inclusive.

Entry: By J0.0 at the end of the tape.

Time; 1.6 seconds.

METHOD OF USE
1, Place CLEAR STORE tape in the main Tape Reader. START and RUN.

2. As soon as the CLEAR STORE tape has been read it may be replaced in the main
Tape Reader by the next tape required,

3. R 20901 clears the Main Store (except the date and serial number) and then
comes to a 77 stop in 0,6,

4, On reaching this stop the RUN key may be operated in order to read the new
tape placed in the main Tape Reader. There is no need to operate the START key
pecause R 2901 arranges to enter the START sequence of Initial Orders at this staege.

Ferranti Ltd.

London Computer Centre, sy
21, Portland Place, o, e 1T

LONDON, W.1. D. M.

R 2902

File as goz

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATICON

Issue 1
20.5.57

IDENTIFICATION

This routine is designed to assist the programmer in identifylng the origin
of words in the Store. It is especially useful in identifying the Computing Store
when a new programme is being developed. The routine writes the integers Q0 to 4093
into Main Store locations 0 to 4093. The date and serial number are preserved in
B 511.6 and 511.7.

Name: IDENTIFICATION

Store: 3 blocks.

Uses: The entire Computing Store and the Main Store from B 0.0 to B 511.5
inclusive,

Entry: By J 1+ at the end of the tape.

Time: 3 seconds,

METHOD OF USE
1. Place IDENTIFICATION tape in the main Tape Reader. START and RUN.

2. As soon as the IDENTI?ICATION tape has been read it may be replaced in the
main Tape Reader by the next tape required.

3. R 2902 writes the integer +0 into location 0, +1 into location 1 and so on
through the store, ending with + 4093 in location 4093 (511.5). It then comes to
a 77 stop in U 1,0,

4. On reaching this stop the RUN key may be operated to read the new tape
placed in the main Tape Reader, There is no need to operate the START key because
R 2002 arranges to enter the START sequence of Initial Orders at this stage.

Ferranti Ltd.,

London Computer Centre, Issue !

21, Portland Place, 20th May, 1957
LONDON, W.1. D.P. D. M.

R 2903

File as gog

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
21.5.57.

FLOATING POINT PRINT (NON-ASSEMBLY)

An independent programme to punch out floating point numbers from the Main
Store in a manner analogous to the F printing of the Initial Orders. Primarily intended
for the examination of intermediate results when developing floating point programmes.

Name: INDEPENDENT FLOATING POINT PRINT

Store: 10 blocks.

Uses: The whole Computing Store except U 4 and U 5.4 to 5.7.

Entry: By an E- or J-sequence to (4.2 to examine the handswitches or to O+, 0

to read addresses from tape. The programme tape is terminated by E 0+,2.
1, METHOD OF USE
1.1 Insert the programme tape of R 2903 in the main Tape Reader when required,

(This tape has T 500.0 at its head. If it is not convenient to store the
programme in Blocks 500 to 509, the Transfer Address should be set as required and
the tape inserted after this T-seguence.)

1.2 When the programme has been read in an E stop occurs on the sequence E 0+.2,
Ploating point numbers can now be printed under the control of either the handswitches
or a steering tape.

2. MANUAL CONTROL

2.1 Set the address of the first number required on handswitches 1 to 13 in the
same way as for a manual warning-character sequence and RUN. The setting of the five
least significant handswitches is irrelevant except in the special case described in
paragraph 2.4.

2.2 The floating point number in the specified address will then be punched out
in the form described in Section 4 below, preceded by its address if HO = 0. There
is an optional stop in 0.6 after each number has been punched. This should be
suppressed if a sequence of numbers from consecutive locations is required. The
process continues until the handswitches are changed when it will start again at

the new reading.

2.3 The address of the number currently being punched is available for monitor-
ing in U 5.3,

2.4 If it is required to print under manual control from B 0.0, it is necessary
to set something other than zero on the five least significant handswitches, other-
wise the programme will try to read tape. '

R 2903 page 2

3. TAPE CONTROL

3.1 Clear all the handswitches with the exception of HO if address printing is
to be suppressed. Place the steering tape in the main Tape Reader and RUN,

3.2 The steering tape should be punched as one or more J (+ sequences, each
being followed by a single address or by two addresses separated by & minus sign.

e.g. J O+ CR LF
16.0 - 17.7 CR LF

or J O+ CR LF
143.2 CR LF
3.3 R 2903 will print out floating point numbers from the specified location
or sequence of locations and then return control to the Initial Orders to read
more tape.
4. FORM OF PUNCHING
4.1 If HQO = 0 each number is punched as:-

CR LF Address, Sp, Argument, Sp, Decimal exponent.

If HO = 1 the form is:-
CR LF Argument, Sp, Decimal exponent.

38 +.14
4,2 The argument is printed as a signed number with nine signifi figures,
the most significant of which precedes the decimal point. If or less than
eight figures are required after the point the order inof the programme
(® 1 40) must be replaced by @ 1 40, where v is the required number of decimal
places.
4.3 The exponent is printed as a signed one or two digit integer.
4.4 Zero is printed as 40 without an exponent,
4.5 There is an extra LF between blocks.
4.6 If the argument of any number does not lie between Y% and ¥% an asterisk (*)

will be printed instead of the number. This indicates that the number is not 1in
standard floating point form.

5, FORM OF NUMBERS

5.1 This programme requires numbers to be stored in standard floating point form.
i.e. The binary exponent, a, should be held as 256 + a in the nine least signifi-
cant binary digits of the word, and must satisfy

~256 £ a £ 255

and the argument, 4, should be held as a normalized fraction in the thirty most
significant bits including the sign digit.

5.2 If n, the number of binary digits allocated to holding the binary exponent,
is to have some value other than 9, the numbers in (+256 and +511)
must be replaced by +2"! and +2" - 1 respectively. i

4.0 W4+
3.3 It should be noted, however, that this programme is not very suitable for
printing decimal exponents greater than 100, which can arise if n > 10, This is

because only two digits are allowed for in the decimal exponent. Thus an exponent

page 3 R 2903

of +102 will be printed as +2 (since + = 10). This could lead to serious confusion
in certain cases, For example Sp = 14 and © = 16, causing exponents of +142 and
+162 to be printed as + 2 and +2 respectively.

Author; Mr. H.P. Goodman of the De Havilland Aircraft Company.

Ferranti Ltd.,

London Computer Centre, Issue !

21, Portland Place,) 21st May, 1957
LONDON, W.1. H.P.G. E.J.D.

R 2904

File as gog

FERRANTI VLTD

PEGASUS LIBRARY SPECIFICATION

Issue I
20.5.57.

CLEAR MAGNETIC TAPE

This routine transfers zeros to specified sections of magnetic tapes. It
may be used to ensure that required sections on a new tape will not cause checksum
failures when read by a subsequent programme, When developing programmes it may
be useful to clear tape sections so that all entries on such sections may be
attributed to the programme under test. '

Name: CLEAR. TAPE

Store: 3 blocks.

Uses: The entire Computing Store.

Entry: By JO+ at the end of a parameter tape.

Time: Approximately 44 milliseconds per 16 word section

or 56 milliseconds per 32 word section.
plus search time for the required section on each tape,

1. METHOD OF USE

1.1 First prepare a parameter tape as described in section 2 below,.
1.2 Insert R 2904 programme tape in the main tape reader.
1.3 START and RUN to read R 2904.

(The tape has T508.0at its head. If it is required to preserve blocks 508
to 510, R 2904 must be stored elsewhere. If the tape is inserted after the T 508.0
R 2904 will go into the next available block in the store, as specified by the Transfer
Address in U 5.7.)

1.4 There is a Z stop near the end of R 2804, On reaching this the parameter
tape should be placed in the main tape reader.

1.5 Operate the RUN key to read the parameter tape.
1.6 After clearing the required tapes R 2904 will reach an optional stop in 1.4,

On operating the RUN key (or if the optional stop is suppressed) the START sequence
of Initial Orders will be entered.

2. THE PARAMETER TAPE

2.1 The parameter tape should contain up to 8 integers, specifying the section
numbers which are to be cleared. No transfer address need be punched.

R 2904 page 2

2.2 The first pair of integers refers to tape mechanism 0, the second pair to
mechanism 1, the third to mechanism 2 and the last to mechanism 3.

2.3 The first integer of each pair specifies the first tape section to be
cleared, the second specifies the last section to be cleared. All intermediate
sections will be cleared.

2.4 If the first integer of a pair is negative the corresponding mechanism will
not be operated upon.

2.5 The parameter tape must end with the warning-character sequence JO+.

2.6 If mechanisms 2 and 3 are not required, only the first four integers need
be punched on the parameter tape. The last four will be left as ~1 by an optional
parameter list.

2.7 The parameter tape is read by the Initial Orders and the integers on it
must be punched in standard I.0. form. It is convenient in practice to terminate
the first integer of a pair by Sp and the second by CR LF.

2.8 D and N-sequences may be punched on the parameter tape if required.

3. OPTIONAL PARAMETERS

3.1 There is an optional parameter list incorporated in R 2904 which has the
same effect as a parameter tape punched as shown on the left below:

Clear Sections Mechanism

CR LF

+1 8p + 200 CR L¥ 1 to 200 0

+1 Sp + 200 CR LP 1 to 200 1

~1 Sp -1 CR LF " Do not clear 2

-1 8p -1 CR LF Do not clear 3

AJ¢ 0+ CR LF Enter R 2904
3.2 If the optional parameter list is to be used the RUN key should be operated
on reaching the Z stop near the end of R 2904.
4. TAPE FAILURES
4.1 If a tape order fails it will be repeated twice.
4.2 If a tape order fails three times there will be a 77 stop in 1.6, The tape

instruction which has failed may be monitored in X4. The tape instruction may be
repeated by operating the RUN key.

Ferranti Ltd,

London Computer Centre, Issue !
21, Portland Place, 20th May, 1957.
D.M.

* LONDON, W.1.

R 2905

File as gox

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Tssue I
12, 11. 57
TESTAID BREAK-POINT

A routine to aid programme development by facilitating the printing of inter-
mediate results at specified ‘break-points' 1n a programme,

The routine should be especially useful for development by remote control, when
the programmer is not available to operate the computer himself,

Name: TESTAID D

Store: 10 blocks, including 5 blocks of working space, The first block must
not be stored beyond block 127. The other part of the programme may
occupy any 9 consecutive blocks in the Store.

Uses: The entire Computing Store, BO, and 5 blocks of werking space.

Entries: El (G.0) Set break-point.
E2 (G.4) Re-enter programme,

1. INTRODUCTION

1.1 Break-point

A break-point is a point at which it is required to interrupt the running of a
programme and to print the results obtained at that stage. Any order pair in a pro-
gramme may be used as a break-point,

1.2 Setting a Break-point

The address qf the desired break-point word is supplied by a steering tape and
Testaid is entered at a first entry point El, This stores the break-point word and
replaces it by a cue to itself, It then returns to Initial Orders Input.

1.3 1Initial Entry to the Programme

After setting the first break-point the programme may be entered in the usual
way by a warning character J on the steering tape.

1.4 Printing at a Break-point

The programme will run normally until it reaches the break-point. Testaid then
atores the whole Computing Store except U0, and replaces the Testaid cue by the
original contents of the break-point word. Control is returned to Initial Orders
Input so that ¥, I and P sequences may be used to print the required information from
the Main Store or the Computing Store.

R 2905 page 2

1.3 Next Break-point

If a further break-point is required it must be set, as described in 1.2,
before re~entry to the programme. Break-points must be spécified in the order in
which they occur and the programme normally runs from one break-point to the next.
1.3 Re~entry to the Programme

Testaid entry E2 may be used to restore the Computing Store and re-enter the
programme after a break-point., The steering tape must specify the block to be brought
into U0 and the Computing Store address at which the programme is to be entered.
2. METHOP OF USE
2.1 First prepare a steering tape as described in section 3.
2.2 The programme under development and the test data should be read by the
Initial Orders as usual, but the programme should not be entered, See also section

4.5,

2.3 Insert Testaid in the main tape reader, START and RUN to read it into
blocks 1 and 500 to 508.

(If the programme uses any of these blocks Testaid must be stored elsewhere,

It may be stored in block G (G € 127) and blocks ¥ to H + 8 by inserting a tape
reading

TG.0-Ho0

Z
Two addresses must always be punched on this tape, START and RUN to read it:. insert
Testaid after the sequence[! l.QA;HQQB.OSat its head; RUN to read it),.

Ti.0 — 80O

2.4 Insert the steering tape in the main tape reader. RUN to read it in (or
START and RUN if preferred).
3. THE STEERING TAPE
3.1 Setting a Break-point

A break-point may be set in B.P by the sequence

J G.0-B.P (Normally G = 1)

3.2 Printing
F, I and P sequences are used for printing.
The Computing Store is stored as follows:

Accumulators in B O

Ul in B A+ 1 (Normally B 501
v2 in BH +2 . 502
13 in BF+3 - 503
U4 in B H#+4 " 504

U5 in BF+5 " 505)

page 3 R 2905

3.3 Re-entry to the Programme

To bring block 4 into UO, restore the rest of the Computing Store and jump to
address (.0, the steering tape should read

J G.4 (Normally G = 1)
If required, D may be followed by + to indicate a jump to a b-order., Normally C.D
will be the position in the Computing Store formerly occupied by the break-point cue.
A will be the block containing the break-point only if the break-point was in UO.
3.4 A Typical Steering Tape

The steering tape below assumes that Testaid is stored in Bl and 500 to 508.

Tape Notes
J 1.0 - 5.3 Set break-point in 5.3.
J 2.0 Enter programme,
N
5.3 } Name of break-point.
F 0-7 Print accumulators as fractions,
P 0.3 - 0.3+ Print X3 as an order pair.
I 504,0 - 505.7 Print U4 and § as integers.
J 1.0 - 8.7 Set new break-point in B.7.
J 1.4]? Restore B4 to UO and
4 - 1.3 J jump to U 1.3.
g 7 } Name of break-point.
16 Print X6 as an integer.
P 501,0 - 501,77+ Print Ul as order pairs.
F 350.0 - 350,7 Print block 350 as fractions,
J 1.4 Restore B8 to U0 and jump
8 - 0.7 to U 0.7 to complete programme.

Punching conventions are the same as for the Initial Orders. In particular,
name sequences must be terminated by blank tape and addresses (or pairs of addresses)
by CR LF.

Relative addresses are not permitted.

4. PITFALLS

Testaid can be very helpful provided that it is used with care. Special
attention should be paid to the following limitations:-

4.1 U0 is replenished from the Main Store after each break-point. The programme
will fail if it uses UO as working space or changes orders in UQ so that they differ
from the original in the Main Store.

4,2 RO is used by Testaid and, therefore, a progranme will fail if information
left in BO is required after a break-point.

4.3 Testald break-points are usually set in the Main Store, If the required
break-point is already in the Computing Store (other than in UO) the break-point must
be set at the appropriate address in blocks # + 1 to H + 5,

(R 2905 page 4

4.4 If the main programme branches, it is only possible to put a break-point into
one of the branches. If the programme follows a different course this break-point will
not be reached and the steering tape will never be read to set the succeeding break-
points. See also paragraph 5.4.

4.5 If data is read from the main tape reader after entry to the programme, the
data tape and the steering tape must be amalgamated. The items on this tape must be
in the chronological order dictated by the requirements of the programme.

4.6 The restoring programme restores the original break-point order to its Main
Store address. This could cause a fault if that part of the programme has been
overwritten by other information.

4.7 The restoring programme also restores the original break-point order in the
Computing Store. It does this by examining the appropriate position in Ul to U5
inclusive. 1If one of these happens to contain a number equal to the order pair

A [0] 72

0.1+ 0 60

this number would be overwritten as well as the break-point cue, This unlikely
possibility need only be .contemplated when other sources of error have been exhausted.

5. ADDITIONAL FACILITIES

5.1 If the contents of U0 are not needed on re-entry after a break-point the
re-entry sequence may be punched

J G.4 (Normally G = 1)
o))
5.2 An alternative method of re-entry is to re-start from the beginning of the

programme by means of a warning character J, This will fail if data or programme is
overwritten in the Main Store.

5.3 If the same break-peint is required again in a loop of prozramme, the complete
break-point sequence must be repeated on the steering tape. If there are two or more
break-points in the loop there are no additional limitations. If there is only one
break-point and if it is in UO the break-point cue will be brought down on re-entry

and the steering tape must not jump to this. If the break-point is in Ul to 5 the
origjnal break-point order will be in the Computing Store, unless the rule given in
4.3 is applicable.

5.4 It is possible to set a break-point in 5.P by the sequence

T BF
G @72 {(Normally G = 1)

0.1+ 0 60

The original contents of B.FP. will not be restored when Testaid is entered, and it is
not usually possible to re-enter the programme after such a break-point. This method
may be used to set several break-points at once, thus partially overcoming the diffi-
culty described in section 4.4.

5.5 The operating procedure for Testaid can be simplified by joining together the
programme tape, data tape, Testaid and steering tape in that order. The operator then
has only to START and RUN at the beginning of this tape.

Ferranti Ltd.

London Computer Centre, Issue 1

21, Portland Place, 12th November, 1957
London, W.1 Copyright Reserved D.P. D. M.

R 2906

File as gob

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
9.8, 57

FAST BLOCK TRANSFER TRANSEATION

This programme translates a tape produced by depressing the punch on block
transfers key. It is about twice as fast as the Initial Orders? warning-character.
The block numbers are printed in lines across the full width of the teleprinter paper
and separated by single spaces. The greater speed and economy on paper make it
convenient to use this programme for translating long block transfer tapes.

Name: 29
Store: 2.3 blocks
Uses: The whole Computing Store.

Entry: By E 0+ at the end of the tape.

1. Method of Use

1.1 Prepare a block transfer tape in the normal way, i.e. run the programme
under development with the punch on block transfers key depressed, Then tear off the
output tape.

1.2 Return the tunch on block transfers key to its normal dosition.

1.3 START and RUN to read R 2908, (This tape has T 508.0 at its head. If it is
not convenient to store the programme in B508.0 to 510.2, the tape should be inserted
after this T-sequence, the appropriate Transfer Address having been set in Ub.7p).

1.4 On the 77 stop (E 0+) at the end of R 2906, insert the block transfer output
tape in the main tape reader and RUN,

2, Form of Output

2.1 The block numbers are printed in lines across the teleprinter page separated
by single spaces. There is a carriage return and three line feeds at the end of each
line.

2.2 Non~significant left-hand zeros in the block numbhers are omitted.

2.3 An asterisk will be punched at any point where output other than block num-
bers appears on the original block transfer tape.

Ferranti Litd.

London Computer Centre, Issue 1

21, Portland Place, 9th August, 1957
LONDON, W.1 Copyright Reserved T.F,

R 2907

File as goy

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
1.5.58.

STORE USE

This routine prints out a summary of the contents of all the blocks of the Main
Store.

Name: STORE USE

Store: BO

Uses: The entire Computing Store.

Entry: JO at the end of the tape.

Time: 20 seconds including input of the routine.

Method of Use

In order to obtain the maximum amount of information from this routine it will
usually be desirable to make use of R 2901 (Clear Store) or R 2902 (Identification)
before reading in the programme to be investigated, When the programme has reached
the point at which the investigation is to be made, place the R 2807 tape in the main
tape reader, START and RUN.

After the summary of the Store has been printed there will be a loop stop in 0.8 :
33 111

0.6 t)
0.8 0 65

One character is printed for each block of the Main Store from 0 to 511 inclusive.
They are printed in order, 20 per line in 26 lines.

If all the words in a block are zero a dash is printed, otherwise the number of
negative words will be counted and printed as a single digit. BO is an exception as
it has been overwritten by R 2907 and will always be printed as a point.

Author: Mr. J. Doughty of Babcock & Wilcox Ltd.

Ferranti Ltd.

London Computer Centre, Issue 1
21, Portland Place, 1st May, 1958
London, W.1 Copyright Reserved J.D. M. M.

R 7910

File as g10

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

PEGASUS 2 COMPARE PAPER TAPES

A programme which will compare two paper tapes placed one in each tape reader
and stop if they are not identical,

Name: PEGASUS 2 COMPARE TAPES
Store: 1 block.

Uses: The whole Computing Store.
Entry: J 0+ at the end of the tape.
Speed of

Comparison: About 300 characters per second.

Method of Use
1. Place the tape of R 7910 in the main tape reader. -START and ROUN.

(This tape has no T-sequence on it and hence the programme will normelly be read
into Block 2. If it is required to preserve the contents of this block the programme
can be stored in any other block, say B, by setting T B.0 on the handswitches before
operating the Start key.)

2. There will be a 17 stop in 0.0 after reading the JO+ at the end of the R 7910
tape; when this is reached, insert the tapes to be compared one in each tape reader
and operate the Run key. If both tapes are initially set on a leader of blank tape
they need not be lined up exactly. However, if the comparison is to be started on
any non-blank character, the tapes must be set on exactly corresponding characters.

3. R 7910 resds in a character from each tape reader (ignoring only s blank tape
leader at the head of each tape) and then compares them. If the comparison is
satisfactory the process is repeated, but if there is a discrepancy a 77 stop will
occur.

4, A Tt stop in 0.0 indicates that the last two characters read are different.
Having marked the tapes at this point, it may be required to re-enter the Compare
Tapes programme to check the remainder of the tapes. This can be achieved by
operating the Run key. The routine can also be re-entered by a manual J 2.0 {or J 5.0,
see Section 1 above).

5. The comparison process is continued until one of the tapes runs out of the
tape reader causing an Input Busy stop.

(© FERRANTI LTD 1962

London Computer Centre, ¥ot to be reproduced in whole or Issue I
68, Newman Street, in part without the prior written 9th October, 1962
London, W.1. permission of Ferranti Ltd. D.M. M.J.B.

R 2915

File as 915

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
1.5.58.

INDEPENDENT DOUBLE~LENGTH FRACTION PRINT

An independent programme to punch out double-length fractions from the Main
Store in a manner analagous to the F printing of the Initial Orders. It is primarily
intended for the examination of intermediate results during the development of double-
length programmes., The more significant half of each number must be stored in an
even-numbered address.

Name : INDEPT. D.L. FRACTION PRINT

Store: 7 blocks.

Uses: The whole Computing Store.

Entry: By an E- or J-sequence to 0+.2 to examine the handswitches or to 0+.0 to

read addresses from tape. The programme tape is terminated by E 0+.2.

1. Method of Use
1.1 Insert the programme tape of R 2915 in the main tape reader when required.

(This tape has T 500,0 at its head. If it is not convenient to store the
programme in blocks 500 to 506, the Transfer Address should be set as required and
the tape inserted after this T-sequence.)

1.2 When the programme has been read a 77 stop occurs on the sequence E 0+.2.
Double-length fractions can now be printed under the control of either the handswitches
or a steering tape.

2. Manual Control

2.1 Set the address (which must be even) of the first fraction required on hand-
switches 1 to 13 in the same way as for a manual warning character sequence, and RUN,
The setting of the five least significant handswitches ls irrelevant except in the
special case described in paragraph 2.4,

2.2 The double-length fraction starting in the specified address is then punched
out in the form described in section 4 below. There is an optional stop in 2.2 after
each number has been punched. This should be suppressed if a sequence of numbers from
consecutive locations is required. The process continues until the handswitches are
changed when it will start again at the new reading.

2.3 The address of the number currently being punched is available for monitoring
in U5.3m.

R 2915 page 2

2.4 If it is required to print under manual control from B 0.0, it is necessary
to set something other than zero on the five least significant handswitches, otherwise
the programme will try to read tape.

2.5 If an odd-numbered address is set on the handswitches there will be a loop
stop in 0.6+ (0.6+ 3 61).
3. Tape Control

3.1 Clear &ll the handswitches (with the exception of HO if address printing is
to be suppressed). Place the steering tape in the main tape reader, and RUN,

3.2 The steering tape should be punched as one or more J 04+ sequences, each being
followed by a single address or by two addresses separated by a minus sign. (All
addresses must be even).

. J 0+ CR LF
& 143.2 CR LF
J 0+ CR LF

or

16.0 - 17.6 CR LF

3.3 R 2915 will print fractions from the specified location or sequence of
locations and then return control to the Initial Orders to read more tape.

3.4 If the first tape address is odd there will be a loop stop in 0.6+
(0.6+ 3 61}, If the second tape address is odd the computer will punch indefinitely.

4. Form of Punching

4.1 If HO = 0 each number is punched as:- CR LF Address Sp Number
If HO = 1 the form is:- CR LF Number
where Number = Sign Integer . Praction
4.2 The number is signed and is printed with one figure before the point
(0 or exceptionally 1) and 23 figures after the point. The fraction is unrounded.
4.3 -1.0 is correctly printed.
1.4 If the more significant part = —-1.0 and the less significant part is < 0 the
number is correctly printed.
4.5 There is an extra LF between blocks (l.e. after every four numbers).
4.6 If less than 23 figures are required after the point the order in B 4+ .7 of

the programme ((:) 5 40) must be replaced by(:)5 40, where(:)is the required number of
decimal places,

5. Form of Numbers

This programme requires the double-length fractions to be stored with the more
significant and less significant parts in consecutive loeations in the Main Store,
with the more significant parts in even numbered locations. They need not be in the
standard double-length form, i.e. the less significant halves may be negative.

Author: Mr. H.P. Goodman of the De Havilland Aircraft Company.

Perranti Ltd.

London Computer Centre, Issue 1
21, Portland Place, 1st May, 1958
London, W.1 Copyright Reserved H.P.G. M.M.

R 2921

File as gz1

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
28. 3.58.

INITIAL ORDERS~-BINARY TRANSLATION

This routine reads a tape which is punched in Initial Orders notation and
produces a binary tape which is an exact functional equivalent of the original tape,
complete with relative addresses and warning characters. This binary tape should be
about half as long as the original tape and may be read in about one third of the
time.

The routine is primarily designed for translating library tapes. It is normally
less efficient than R 1033, Binary Punch, for master programmes which do not require
relative addresses,

Name: BINARY TRANSLATION

Store: 17 blocks.

Uses: The entire Computing Store.

Entry: By E O+ at the end of the tape,

Time: Approximately 3.2 seconds for each block translated.

1. Method of Use

Insert R 2921 in the main tape reader. START and RUN to read it into blocks

1.1
2 to 18.

(If it is required to preserve these blocks, R 2521 may be stored in blocks B
to F+16 (B <€ 111) by previously setting the transfer address equal to 5.0.)

1.2 On reaching a 77-stop in 4.0 (E 0+) at the end of R 2921, insert the tape
to be translated in the main tape reader,

1.3 Clear the handswitches and tear off previous output tape.
1.4 RUN to start the translation.
2, Stops

The usual Initial Orders stops will be encountered if there are errors on the
tape or 1f the tape reader misreads the tape being translated. In addition, the
following stops may occur:-

Loop Stops

1.2+ if there 1is more thanh one - after a relative address in an a-order.

R 2921 page 2

1.6+ if there is a - after a relative address in a b-order.

2.6 if OVR 1s set during input of an order or a number.

4.6 if a relative address in a b-order follows a relative modifier in the
a=-order,

Optional stops

3.0 on reading any warning character other thean B, J, L, R or T. RUN if the
warning character is correct.

3.0+ on reading a J sequence other than J 560.0+-4, entering an optional inter-
lude at address 4. RUN if the J sequence is correct.

71 stop

3.5 on reading any character other than CR after the blank tape following a
warning character L (A, Er and LF may be expected). Set the handswitches
as described in section 3 below, and RUN to continue the translation.

3. Manual Control

The translation routine consults the handswitches after the "7 stop in 3.5.

Handswitch Setting

HO 1234.....
0 0000.,... Handswitches clear. The warning character sequence, if any, is
reproduced.
1 1000..... Handswitches = -, The warning character sequence is read but
not reproduced.
1 0000..... Handswitches = -1.0. The warning character sequence is not read.

A blank tape and erase sequence is punched to terminate the tape;
the 77 stop in 3.5 is then encountered again.

0.8 inches of blank tape is automatically run out after each name sequence and
0.6 inches at the end of each subroutine. Additional blank tape may be run out
manually, if required, at the 77 stop in 3.5; RUN to continue the translation.

The routine may be re-entered by the equivalent to E 0+ (suppress optional
punching), when it will punch 5.6 inches of blank tape hefore starting to translate,
Alternatively E 0+, 1+ will cause only 0.8 inches of blank tape to be punched.

4, Restrictions on items which can be correctly translated

4.1 L is always translated as a transfer to Assembly, and should, therefore, not
be used for other purposes.

4.2 An interlude entered with J (but not E) must not have a fixed exit to Initial
Orders. It should exit by obeying the link set in X1 either by Initial Orders or ‘
Binary Input.

4.3 Warning characters other than B, J, L, R and T should not occur between the
name and the final L of a subroutine, unless the subroutine will never be rejected,
This is because the translated equivalent consists of an “Optional J* to Initial

Orders (J 560, 0+-522,04 in bipary), a reproduction if required of the warning character
sequence, and A0 to return to Binary Input. If the whole sequence is being rejected
the ‘Optional J' will bhe ignored and the next item, which i1s in Initial Orders nota-
tion, will be read by Binary Input.

page 3 R 2921

X sequences should therefore not be used in subroutines except while they are
being tested. The same effect could be produced by T sequences, but normally the
tape should be edited and corrections incorporated before a binary translation is
made.

4.4 If X sequences do occur they will be translated in the same way as an N
sequence: 1if the bandswitches are clear the routine will copy until it finds two
consecutive figure shifts. Blank tape must therefore be punched at the end of the
X sequence but must not occur within it, If there are several X sequences they may
be punched in one long string with blank tape at the end.

4.5 T or J warning characters followed by two addresses will not be correctly
translated except in the case of J560.0+-A(+),

4.6 The warning character R must always be preceded by CR LF.
4.7 Certain unlikely combinations of relative addresses in orders have no

counterpart in Binary Input notation: these will cause a loop stop in 1.2+, 1.6+
or 4.6, For example, the following combinations eannot be translated:-

Combination Example
0 3 00
Relative modifier in b-order,
5+ - 00
Relative modifier in a-order 2+ - 00
AND relative address in b-order. ‘ 1+)
Relative address followed by two 0+ - -0 0.
or mere minus signs, 0
Author: Mr. C.R. Merton of the National Research Development Corporation,
Ferranti Ltd.,
London Computer Centre, Issue 2
21, Portland Place, 28th March, 1958.

LONDON, W.1. Copyright Reserved C.R.M, D.M.

R 2922 i

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
29, 7. 56,

END OF LIBRARY

A programme which appears at the end of the library tape and is entered if
Assembly fails to find all it needs.

Name; EMND OF LIBRARY

Store: 4 blocks

Entry: by J on tape

1. This programme is entered if Assembly is not satisfied at the end of the

library tape, e.g. if a non-existent subroutine has heen called for or if a parameter-
list has not been supplied. It indicates the missing tags by printing their functions
and the corresponding routine numbers.

2. For example, a missing parameter-list is indicated by printing 04, and a
missing subroutine by printing 08. If a programmer's subroutine is supplied but not
called for then 01 is printed, showing that there has been no call for a cue. The
following is a typical specimen of the output:-

END OF LIBRARY

ERROR
ROUTINE MISSING
NUMBER TAG FUNCTIONS
205 08
402 04
+03 01 04
5 02
3. Function 02 shows here that an unwanted parameter-list has been provided.

Routine +03 means programmer's routine 1003. It should be noted that a missing
routine is indicated by printing 08, never 28; in addition 02 will be printed if a
parameter-list has been supplied.

4. After the printing there is a 77 stop, after which the Initial Orders are re-
entered (with the T.A. reset). This enables a missing subroutine to be supplied by
placing its tape in the second tape-reader and operating the Stop/Run key.

Ferranti Ltd. _]

London Computer Centre Issue 2
21, Portland Place, 29th July, 1956.
LONDON, W.1. G.E.F.

R 2923

File as 923

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 2
27.5.58.

BINARY - INITIAL ORDERS TRANSLATION

This routine reads a binary tape and produces a tape in Initial Orders notation,
punched in standard form, which is an exact functional equivalent of the binary tape.

If a binary tape only of a programme is available, R 2923 provides the only
convenient way of finding out what tags, optional interludes and relative addresses
the tape contains. It is also a means of preparing print-outs of a programme in a
standard form of punching,

Name: BINARY TO I.0. TRANSLATION ROUTINE

Store: 18 blocks.

Uses: The entire Computing Store.

Entry: By E 0+ at the end of the tape.

Exit: Must be made manually.

Time; Approximately 6% seconds for each block translated.

1. Method of Use
.1 Insert R 2923 in the main tape reader. START and RUN to read it into blocks
t
(If it is required to preserve these blocks, R 2923 may be stored in blocks

B to B+ 17 (B < 110) by previously setting the transfer address equal to 5.0)
1.2 On reaching a 77 stop in 4.0 (E 0+) at the end of R 2923, insert the tape
to be translated in the main tape reader and RUN.
2. Stops

Optional Stops:

0.3 on entry to R 2923.

0.3+ when R 2923 comes to the end of a binary section, or of an Initial Orders

section of tape.

Loop Stop:

3.4 If this occurs the tape

5.4 6 00 j) For checksum failure.
must be translated again.

3.4 6 61

R 2923 page 2

3. Form of Translation

R 2923 merely coples those parts of the tape to be translated which are already
in Initial Orders notation. The ordinary binary words are translated as order-pairs,
so that some numbers and pseudo-orders will not be recognizable. The routine produces
blocks of eight order-pairs, with .8 inches of blank tape between blocks. Provided
there is enough information on the original tape In the form of binary B, L and T
warhing characters, the block divisions will come in the right places.

Every J translated from binary by this routine is followed by two addresses,
i.e. is treated as referring to an optional interlude.

4. Re-entry

The routine may be re-entered by the equivalent to E 0+ (suppress optional
punching).

Ferranti Ltd.

London Computer Centre, Issue 2
21, Portland Place, 27th May, 1958
London, W.1 Copyright Reserved T.F.

LR 7924

File as g24

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

7168 CONVERSION

A routine to convert & binary punched programme tape (punched from the 4096
word store) for use with the 7168 Initial Orders., It will alter the usual sequences
calling in the Initial Orders, but will fail to detect sequences not listed in
section 5. All parts of the tape in Initial Orders notation will be copied unchanged.

Names: 7168 CONVERSION (For use onh 7168 word store)
4096 CONVERSION TO 7168 (For use on 4096 word store)
Store: 63 blocks
Uses: The entire Computing Store
Block 53+

One word for each alteration and one more for each section of binary
punching, starting at 54+.0.

Plus the Main Store space normally occupled by the programme being
converted.

Entries: 0+.0 E 512.0 (or 384.0) Convert programme
0+.1 E 512,1 (or 384.1) Punch programme already stored and converted
0+.2 B 512.2 (cr 384.2) Print record of alterations

0+.3 FE 512.3 (or 384.3) Re-entry to convert more programme, not
resetting the printing marker.

Time: Approximately 1 block of binary tape every 3 seconds.
Approximately 25 characters per second for other sections of tape.

1. Restrictions

1.1 The programme is intended for use with binary punched tapes and will not
normally work with binary translated tapes. This is because bipary translated tapes
contain many warning characters which will cause the programme to reach a loop stop.

1.2 The programme was designed for use on the 7168 word store. The 4086 version
will only work if the programme being converted does not use blocks 384 to about 445,
or some other selected section of about 60 blocks. Note that if R 2057 was used to
punch the programme it may include Assembly working space and subroutine interludes.

2. Method of Use

2.1 Insert R 7924 in the main tape reader, START and RUN to read it into blocks
512 to 564. (384 to 436 on the 4096 store).

(If required the programme may be stored elsewhere by setting the appropriate
transfer address and inserting the tape after the T 512.0 (or T 384.0) at its head.)

R 7924 page 2

2.2 There is a 77 stop (E 0+) at the end of R '7924. On reaching this stop
R 7924 should be removed and the programme to be converted placed in the main tape
reader. Operate the RUN key to commence conversion,

2.3 During conversion there may be several optional stops and 77 stops. These
may normally be inhibited, but see section 3 for a full description.

2.4 ¥hen the new programme tape has been punched, an indication of the changes
made to the programme may be cobtalned by entering R 7924 st 0+.2, by means of the
directive E 512.2 (or 384.2).

3. Amendment Stops

The following stops should normally be suppressed, Only users wishing to
monitor the progress of a conversion need study the following.

In U0.3 77 stop after amending the programme in the store. RUN to binary punch
the amended programme. X - sequences may be read after this stop if
required (see section 7).

1.3 Optional stop before making one of the standard amendments listed in
section 5.1. RUN to make the amendment, jump to 1,5+ to omit it,
Monitor: 5m Address of Order

6 0ld order
T New order
uo Block containing order.

2.4 Optional stop after binary punching a section of programme. RIN to read
and convert more tape.

2.6 77 stop after printing a list of alterations made to a programme,

2.7 77 stop if a subroutine has apparently been found but the order to be
changed is not correct. RUN to leave the order unchanged and cesase
treating that part of the programme as a subroutine.

Monitor: 2, Address of block wrongly recognised
Address of order
uo Block containing order
U1l.4 Routine number in octal.

This stop may occur if omnly part of the subroutine has been binary punched,
or 1t may be that the block “recognised’ happens to have the same sum as
the selected block of the subroutine.

3.1 Optional stop before altering an order in a subroutine. RUN to make the

alteration,
Monitor: 5y Address of order
6 0ld order palr
i New order pair
uo Block containing order

Ul.4 Routine number in octal

3.4 Optional stop after finding an order 33 X 00 not followed in the same block
by 00 72 X or 10 0 72 X. RUN to leave the order unchanged. Jump to 2.4
to change it to 37 X 00.

Monitor: 5, Address of order

6 Order 33 X 00 (In a-order position)

7 Order 33 X G0 (In a-order position)

vo Block containing order.

Note that this stop will also occur after en order 33 X 02, but the jump

to 2.4 is not then applicable.

rage 3 I R 7924 |

4, Error Stops
In U 0,7+ Loop stop if no figure shift after a warning character.
2.2+ Loop stop if there is no binary transfer address at the head of a section
of binary tape, This may occur if the tape has heen binary translated,

or binary punched using R 2054, All binary punches formed by R 2057 or
the directive Ad will be satisfactory in this respect.

3.4 Loop stop if there is a checksum failure in reading & binary tape.

;'g+ Loop stops on reading an impermissible binary directive. These can not
4‘2+ occur on binary punched tapes, but are often present on hinary translated
4:5 tapes.

5. Alterations to Programmes

5.1 The conversion programme searches for the orders listed on the left below,
and changes them to those shown on the right.

448 - 00 832 - 00 (a=order only)
449 - 00 833 - 00 (a=order only)
91 0 72 4 92 072 4
92 0 72 4 93 072 4
583 721 1003 721
33 X 00 33 X 00 (Only changed if followed by
37X o 0072X or 10072 X)

5.2 R 7924 also searches for the following subroutines and makes certain
alterations to them: -

R 4, 11, 40, 42, 53, 102, 120, 650.

Note that if the programme used R 51, the rarely used subroutine ORDER PRINT,
the order in 1+.1+ will not be changed. It will be necessary tc insert an X~sequence
to change 1+.1+ of R 51 to 13 4 40.

53 If the programme contains any other orders which require modification for
the 7168 store, these should be made by X-sequences, fed in as described in section 7.

6. Printing a record of Alterations

6.1 On entry to the printing sequence (0+.2) by E 512.2 (or 384.2), each altered
order will be listed as follows: ’

Address of order 0ld order New order

If the order has not been changed an asterisk will be printed in place of the new
order.

6.2 If the subroutine has been altered, the address printed will be the address
of its block O+, and this will be followed by the routine pumber. Standard altera-
tions to subroutines are sometimes made before the routine has been recognised by the
conversion programme: the printing described in section 6.1 will then precede the
subroutine number, but the addresses will be within the subroutine.

6.3 Binary tapes are often punched in several sections. At the end of each
section the printing sequence will print the last address of the section followed by
two Erages.

l R 7924 J page 4

7. Manual Alterations

1.1 If it is required to make alterations other than those made by the conversion
programme, & tape containing the appropriate X and T directives should be prepared.
before the programme is converted. This amendment tape should end with the directive
E 512.1 (or 384.1) to enter R 7924 at O+.1.

7.2 After the appropriate section of binary tape has been read and converted,
there will be a 77 stop in 0.3, The addresses of the first and last words of the
section to be punched will be displayed in U 5.6 and 5.7 respectively. The
programme tape should be removed from the tape reader and replaced by the amend-
ment tape. Suppress optional punching and START and RUN to read the amendment
tape. On reaching the 77 stop (E 512.1 or 384.1) at the end of the amendment
tape, replace the programme tape on the same character (which will usually be the
beginning of a section of blank tape) and operate the RUN key.

7.3 Note that if the corrections thus inserted alter the length of the section
of programme the new first and last addresses must be set in blocks 53+.6 and 53+.7
before re-entering at 0+.1.

8. Checking

Before using a programme converted for the 7168 word store it is advisable to
clear the store and then run the programme with some test date for which the results

are known,
@© FERRANTI LID 1939
London Computer Centre, Kot to be reproduced in whole or Issue 1
21, Portland Place, in part without the prior written 1st June, 19%59.

LONDON, W.1. permission of Perranti Ltd. D. M,

R 7925

File as gog

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

CONVERT PROGRAMME FOR 4096 STORE

A routine to convert a 7168 binary punched programme tape for use on the 4096
word store. This routine is the converse of R 7924: the user should first study the
specification of R 7924 and then note the following changes.

Names: 7168 CONVERSION TO 4096 (For use on 7168 word store)
4096 CONVERSION {For use on 4096 word store)

Store; 62 blocks

Uses: As R 7924 except that the list of alterations is stored in B62+.0
onwards. ‘

Entries: } As R 7924

Time:

1. Restrictions
As R 7924 but add:

1.3 It is only possible to convert programmes which do not use locations above
B511.7. Note that if R 7057 or 7059 was used to punch the programme it may include
Assembly working space near B882 and 395: these two sections of binary tape must be
omitted when the programme is converted.

2. Method of Use

As R T924,

3. Amendment Stops

It is more often necessary to monitor the progress of a conversion using R 7925,
due to the fact that an a-order 5.0 1 00 is equivalent to a modifier 833.0, used to
enter the 7168 Initial Orders Fraction Print Routine, and may be wrongly changed to
449.0. This should normally be detected from the alteration printing and prevented,
on & second run, by jumping to 1.5t after the appropriate optional stop in U 1.3.

The amendment stops are the same as for R 7924 except for the following changes
and additions

InU2.2 Optional stop before changing FAST R5 to the original version of RS5.
RUN to make the alteration. .
Monitor: 5, Address of B0t of RS
[HH] B0+ of FAST RS
Ul.4 +5 (Subroutine number)

R 7925] page 2

3.4 Optional Stop after finding an order 37 X OF where F # 0. RUN to leave
the order unchanged. Jump to 2.4 to change it to 33 X OF.
Monitor: 5, Address of Order
6 Order 37 X OF (As an a-order)
i Order 37 X OF (As an a-order)
vo Block containing order

4. Error Stops

As R 7924.

5. Alterations to Programmes

5.1 R 7925 searches for the orders listed on the left below and changes them to
those shown on the right.

832 - 00 448 - 00 (a-order only)

833 - 00 449 - 00 (a-order only)

92 072 4 91 072 4

93 01724 92 012 4

100 3721 59 3721

37 X 00 33 X00

37 X OF 37T XOF (F£ O

52 It also searches for the following subroutines and makes certain alterations

to. them:
R4, FAST RS, 11, 40, 42, 53, 120, 650.

Note that if the programme used R 51 or 58 these will not be recognised.
It will be necessary to insert appropriate X-sequences to change their non-standard
references to the Initial Orders. These X-sequences must have absolute addresses but
should otherwise be as follows:

R 51 - R b8
X 1+.1+ X ot.4
T 4 40 56 1172 4
X 0t.5 - Ot.5t
57 21724
2.6 700
X ot.6+t - O0H.7
13. 2 70 4
56 072 4

5.3 If the programme contains any cther orders which require modification for the
4096 store, these should be made by X-sequences, fed in as described in section 7 of
R 7924,

6. Printing a Record of Alterations

As R 7924 except that the layout of the printing should read:

Address of Order New Order 0ld Order

(4096) (7168)
7. Manual Alterations
. As R 7924,
8. Checking
(C) FERRANTI LTD 1960
London Computer Centre, Not to be reﬁroduced in whole or Issue 1
21, Portland Place, in part without the prior written 12th April, 1960.

LONDON, W.1. permission of Perranti Itd. D.M.

R 7927

File as gz7

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

BINARY TO MAGLIB TRANSLATION

This programme reads a binary translated subroutine tape and records the sub-
routines on 16-word magnetic tape in a form suitable for use with MAGLIB, the Magnetic
Tape Library.

Name: MAGTRANS 2
Store: 10 blocks plus BO
Uses: U0 to 5; X1 to 7; Bl0+ onwards; WO to 3 (space must be allowed from

B10+.0 onwards to store the longest subroutine in Maglib form).
Entry: By EQ+.1 at the end of the tape.

Time: Approximately 0.5 seconds per block translated.

1. Method of Use

1.1 Load a 16-word magnetic tape on the selected mechanism (see section 2,3).

1.2 Insert R 7927 in the main tape reader. START and RUN to read it into blocks
2 to 11 (and BO).

{If it is required to preserve block 2 onwards, R 7927 may be stored in
blacks B to B+9 (5 < 116) by previously setting the Transfer Address equal to B.0).

1.3 On reaching a 77 stop in 0.6 (Z-stop) near the end of R 7927, insert the tape
to be translated in the second tape reader. If a parameter tape is required (section
2} it should be inserted in the main tape reader in place of the JOt+.1 at the end of
R 79217,

1.4 Ensure that handswitch 1 is up and RUN to start the translation.

1.5 There will be an optional stop in 0.3 whenever an L or J directive is
encountered. On this stop, at the L ending a subroutine, the tape may be replaced,
if desired, by another subreutine tape.

1.6 When the optional stop in 0.3 is encountered and there is no further tape to

be read the translation must be completed by depressing handswitch 1 and operating the
RUN key.

1.7 When the translation has been completed there will be an optional stop in
1.5: on going to RUN the magnetic tape will be rewound and there will be & 77 stop
in 1.6.

2. Parameters

The operation of R 7927 is controlled by parameters set in BO. If desired some
of these may be changed by means of a parameter tape fed in after R 7927. The parameter
tape should normally be terminated by JO+.1.

R 7927 page 2

2.1 Name

The name of the subroutine library is recorded in two locations and is printed
out whenever Assembly reads the magnetic tape. The name set in B0 by R 7927 is

CR LF A MAGLIB ¢ Sp 7301
The first 8 characters (CR LF A MAGLI)} are used by Assembly for identification and

may not be altered. The last T characters are stored as 5-bit characters (register
17 code), reading from right to left, in BO.7, which contains

t |
1
} | B

| | [1 |
0 6 046. | 1! o: 3: T:Sp
[}

i
i | | | S |
59 4 00 2 0 000000¢ 110 000500 110 0111011 100 000000 O10

The number of the tape could be chaenged to 7302 for example, by punching on the
parameter tape:

X1
1 204 6.
2.2 Tape Reader

If it is desired to read the subroutine tape on the maein tape reader the para-
meter tape should be terminated by EO+.1+ instead of JO+.1.

2.3 Tape Mechanism and Section
R 7927 records the start of the first subroutine in section 512 on tape

mechanism 3, where Assembly expects to find the start of the library. This may be
altered to section A and mechansim m by punching on the parameter tape

T4
A - -9
0 o0mo1

If it is desired to set 4 = 0 the parameter tape must be terminated by JO+.Q
80 that the first three words on the magnetic tape are preserved.

2.4 Start of first subroutine

R 7927 always stores the library name (Maglib 7301) in W0.4 and 0.5 of the first
section used. It stores the start of the subroutine in W0.7 and an L-directive in
W0.6, where Assembly expects to find the start of the library.

If for some reason it is desired to store the L in W. (0 £ ! £ 15) and the start
of the subroutine in Ws (l+1 & s & 16) this may be done by punching on the parameter
tape.

T2

(s-1) - -0 0.
(H

+(s-L-1)

T5
i - =00
0

Note that if [€ 5 the name of the library will be overwritten.

page 3 R 7927

3. Restrictions

3.1 R 7927 will only accept binary translated subroutine tapes punched by R 7921
(or 2921).
3.2 Warning characters other than A0, B, J, L, N, R and T are not permitted.

Only A0 and N may appear in non-binary form.

3.3 All library subroutines except R 600 and T30 should conform to these rules,
but note that a version of R 52 has been issued which has had an Initial Orders
L~directive erroneously punched after it: this will cause a loop stop in 4.3 but
translation may be resumed by a manusl jump to 4.4.

3.4 Complete programmes may not be translated by means of R 7927.

4. Stops

U1.5 1 541 0. Optional stop when transiation complete.
RUN to rewind the tape.

Ul.6 0 07 77 stop after rewinding the tape.
1.6 0 60
U 3.4+ 3.4t 6 61 Loop stop on checksum failure in binary

tape. If this occurs the tape must be
translated again.

U 3.5 15 1 00 0. Optional stop after L or J directive. RUN
to read more tape or depress handswitch 1
and RUN to terminate the translation.

U 4.3 4.3 1 61 Loop stop on reading something other than
CR LF or AN after an L-directive.

Jump to 4.4 to ignore the impermissible
characters.

(This may occur with R 52, see section 3.3).

(C) FERRANTI LTD 1960

London Computer Centre, Fot to be reproduced in whole or Issue 1
21, Portland Place, in part without the prior written Tth April, 1960.
LONDON, W.1. permisston of Ferranti Ltd. T.F. B.C. D.M.

PEGASUS LIBRARY SPECIFICATION

CHECK MAGNETIC TAPE

Computing Store.

Name:

Store:

Uses:

Cues:

Time:

Link:

CHECK TAPE
6 blocks.

U0, 1, 2 X6, T

FERRANTI

BO;

w0, 1, 2, 3. (W = buffer block)

o+ [o] 72
01

0.2 6 66

o+ (0] 72
02

0.2 060

In milliseconds:

Check and print

Check without printing

LTD

Before running a magnetic tape programme it is vital to check that the write
and 16/32 word switches are correctly set.
computer operator, and R 930 should be used for this check.

It is not sufficient to rely on the

Oon the 7168 store there is a version of R 930 in the Initial Orders.

R 930

16~-word | 32-word
Cue 01 1200 1300
Cue 02 500 600

The times given above assume that, on entry, section 0 of the tape is

under the reading

head.

Obeyed in 1,0 and left unaltered in Xi.

1. Initial Settings

x

6

Before obeying a cue to R 930 the programme must set X6 as follows:

= m+8 + 1

This subroutine checks the settings of the write and 16/32 word switches on a
maghetic tape mechanism and leaves certain information about the tape in the
If required it will also print this information.

R 930 page 2

where m = tape mechanism number
1 = 1 if the write switch should be off (writing inhibited)
= 0 otherwise
t = 16 or 32, according to the setting of the 16/32 word switch.

The modifier and sign of X6 should normally be clear, but if it is required to
ignore the setting of the write switch the sign bit should be 1 and 7 = 0.

2. Checking

Check Tape first checks the settings of the write and 18/32 word switches on the
specified mechanism. If either is wrong there will be a 77 stop in 0.0: if the
18/32 word switch is wrong the OVR will also be set. On correcting the settings and
operating the RUN key the tape will be checked again,

A tape read failure will occur if the setting of the 16/32 word switch is not
consistent with the type of tape mounted. On correcting the fault and operating the
REPEAT key the tape will be checked again.

3. Section 0 on Magnetic Tape

Check Tape assumes that the following information has been written in the first
three words of section 0 on each magnetic tape.

0.0 +L Length of tape in feet (nominal)

0,1 +5 Serial number of tape

0.2 4 ---0. Address of last section on the tape x 2~ 16
0 (4 = Number of sections - 1)

This information will not be recorded on a tape when it is first received at s
Pegasus installation, but it should be written on section O before the tape is brought
into use. All programmes using magnetic tape should be checked to emsure that they
do not overwrite the first three words of sectiom 0.

4. Printing

If entry to R 930 is by cue 01, and if the settings of the write and 16/32
switches are correct, the following information will be printed on a new line:

m t/L/S/n=
where m = mechanism number (1 digit)
t = 16 or 32: the setting of the 16/32 word switch
L = nominal Length of tape in feet (4 digits)
S = Serial number of tape (5 digits)
n = pumber of sections on the tape {5 digits)
= indicates that the write switch is on

£ indicates that writing to the tape is inhibited

page 3 R 930

Check Tape printing occupies 22 character positions across the page, leaving
room for the master programme to print further identifying information on the same
line if required. The layout may be seen from the following example:

3 16/3000/00192/108167

5. Exit
On exit from Check Tape the contents of Section 0 will be available as follows: -
Section 0, block 0 in U2
1 in W1 (Buffer block 1)

2 in W2 if checking. 32-word
3 in %3 tape

The master programme may therefore easily transfer further identifying informa-
tion to or from section 0 and print it if required.

6. is not changed by R 930 and may afterwards be used by the master programme
to determine m and ¢, but if the sign of X6 is 1 it is not possible to use 1 to
determine the setting of the write switch.

A writing marker is left in X7 and U 1.1. This marker will be zero if writing
is inhibited but non-zero otherwise.

G, Stops

°0 0 77 stop if the 16/32 or write

v 0.0 switches are incorrect

20 713

If OVR clear, x, = %: write switch wrong
If OVR set, x, = -1.0: 16/32 switch wrong
If OVR set, %, = -¥%: both switches wrong

On correcting the fault and going to
RUN the tape will be re-checked.

o (Z)7e Tape fallure stop if the 16/32 word

U1l.0 switch is not consistent with the type
2.2 4 00 of tape mounted. On correcting the fault
and operating the REPEAT key the tape will
be re-checked.

20 711 Tape failure stop, with writing inhibited
U 1.3 OR Writing with OVR stop. These may

2 7% occur if the first three words of section 0
do not contain the information specified in
section 3.

@ FERRANTI LD 1960

London Computer (entre, Fot to be reproduced in whole or Issue 1
68, Newman Street, in part without the prior writien 7th July, 1960,
LONDON, W.1. permission of Ferranti Ltd. J.F.D. D.M. M.My.

R 7931

File as 931

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

CHECK PSEUDO OFF-LINE

R 7931 is designed to be run after & pseudo off-line operation, on completion of
or at a suitable point in the current computer programme. It reads registers 54 and
55, thus checking their parity, and prints their contents so that there is a printed
record of the correct completion of the off-line operation. It also clears register
55 to ensure that the lockouts associated with the off-line operation are lifted,

If a pseudo off-line operation is stopped before it is completed, as described
in section 11,8.2 of CS 303A and CS 333, R 7931 should be used both to check the
operation and te produce a restart tape.

Name: CHECK P.O.L.
PRINT REGISTERS 54, 55

Store; 9 bhlocks
Uses: The whole Computing Store
Entry: By EO+.0 on the programme tape.

1. Method of Use

1.1 Place R 7931 in the main tape reader, S&TART and RUN, preferably with HO = 1
to suppress optional punching.

(There is a T 885.0 at the beginning of the tape, If it is required to store the
programme in some other place in the store, the Transfer Address should be set as
required and the tape inserted after the T-sequence.)}

1.2 The computer will reach a 77-stop in 4.0 (E0+.0): RUN to enter the programme,

1.3 When R 7931 has checked the parity of registers 54 and 55, has cleared 55 and
printed out the contents of 54 and of 55 before it was cleared, there will be a 77-stop
in 0.6 on reading a Z from the programme tape.

1.4 A restart tape, if required, can be punched as follows. (It may be necessary

to run in a steering tape as described in section 3.3; this should be run into the main
tape reader by operating the Run key, after which R 7931 should be replaced in the tape
reader.) On operating the Run key the remainder of R 7931 will be read and the restart
tape will be punched out, preceded by a leader of blank tape and terminated by a blank

tape and erase sequence.

1.5 There will be a 77-stop on reading the Z at the end of R 7931,

2, Form of Printing

The contents of registers 54 and 55 will appear on the print-out as two order
pairs with the 16 most significant bits interpreted as a tape address in each case.

R 7931 page 2

3. The Restart Tape

3.1 The restart tape is punched in Initial Orders notation so that a printed
record may be obtained.

3.2 When the pseudo off-line operation is to be restarted, the restart tape should
be placed in the main tape reader and the Start and Run keys operated. This restart
programme will usually be read into B2 but may be read into any other block in the
store by setting the asppropriate Transfer Address. It is entered by EO+.2 at the end
of the tape. When the off-line operation has been started, the computer will come to

a T7-stop in 0.4.

3.3 The restart programme sets the contents of registers 54 and 55 to the values
which they had when the off-line working was stopped, except that 4; iz usually
changed. A; is the address of the next section of magnetic tape to be referred to, or,
if tape is not being used, is the number of the next transfer. If the pseudo off-line
transfers are being made to magnetic tape A; will not be altered, but otherwise it will
be reduced by 5 so that a few lines or cards are repeated as a check. If it is desired
to set back A; by some number, n, other than 5 (n may equal zero), the following
steering tape should be punched:

+n
Z

This should be inserted at the Z-stop before the restart tape is punched (section 1.4).

4, Parity Failure

If there has been a parity failure in register 54 or 55 during the pseudo off-
line working, this will be detected by R 7931 which will stop in 0.1 or 0.3 on a
computing store parity failure. If this happens the results of the pseude off-line
operation must be regarded as suspect and an engineer should be called if possible.

(©) FERRANTI LTD 1962

London Computer Centre, Not to be reproduced in whole or Issue 1
68, Newman Street, in part without the prior written 5th September, 1962.
LONDON, W.1. permission of Ferranti Ltd. M, J.B. D. M.

R 932

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

CARD READ ERROR SUBROUTINE

R 932 should be entered when register 48 i1s found to be negative during card
input. It will discover whether the fault is a check reading failure, a double
punching or a “hard fault'’, and in which character the error has occurred. Certain
information about the fault can be printed if required.

R 932 is an extended version of the error routine given in CS 303A and CS 333,
Section 11,7, 2.

Name: CARD READ ERROR S/R
Store: 6 blocks + 3 blocks if the standard printing is required for check read

fallures only + 2 further blocks if standard printing is required for
double punching.

Uses: vo, 1, 2, 4, 5, BO; plus any space used by additional programmer’'s error
routines.
Cues: 01 (0+.0)

02 a-order partial cue
03 b-order partial cue

Link; Normally set in X1 and obeyed in U2.3. Alternatively it may be preset as
P.P.04 which is again obeyed in UZ2.3,

1, Mode of Operation

1.1 R 932 decides whether or not the fault indication in register 48 can be
cleared; if it is not clearable (hard fault) a further fault routine is entered (see
Section 4).

1.2 If register 48 can be cleared, the routine searches for check read failures
and enters a check failure routine for each word which has failed (see Sections 2 and
6). After one or more check failures have been found, there will be a 77-stop in 2.2
before the link is obeyed.

1.3 If no check read failure is detected but the routine does detect a double
punching, & routine is entered to deal with double punching (see Sections 3 and 7).

I1f the standard double punching routine is used, return will be made to the TT-stop in
2.2 before the 1link is obeyed.

1.4 If R 932 fails to find either a check read failure or a double punching after

successfully clearing register 48, a fault in the checking equipment is assumed and the
part of the routine which deals with hard faults is entered,

2. Check Failure Printing

2.1 If a check read fajlure is detected R 932 will, if required, enter a print
routine. After the words CHECK FAIL the following information will be printed: the

R 932 page 2

buffer address(es) of the word(s) containing the faulty character(s), the character
number(s) in the word(s) and the corresponding character{s), in binary, from the not-
equivalent buffer, For example:

CHECK FAIL
0.6 2 #101100
5 #100001

1.7 1 #000011

2.2 As an alternative to the standard printing described above, the user may
supply his own routine to deal with check read failures {see Section 6).

3. Double Punch Printing

3.1 If a double punching but no check read failure has occurred R 932 will, if
required, enter the standard print routine to print information similar to thet for a
check read fallure. The words DOUBLE PUNCH will be printed, followed by the buffer
address(es) of the word(s) containing the double punched character(s), the character
number(s) in the word(s) and the corresponding character(s), in binary, from the not-
equivalent buffer.

3.2 As an alternative to the standard printing, the user may supply his own
routine to deal with double punching (see Section 7).

4, Action on Finding a Hard Fault

4.1 If a hard fault is present, R 932 will print HARD FAULT and come to a 77-stop
in 2.0 before restoring the accumulators and obeying P.P.0l, On operating the Run key
g loop stop in 2.1 will be encountered if the optional value of P.P.01 is used.

4.2 P.P.0l1 may be set as the cue to a further part of the error routine supplied
by the user. This piece of programme will normally be designed to store, in the Main
Store, certain informaticn which may be used to restart the card input programme after
the fault has been rectified. When P.P.01 is obeyed, R 932 will not have disturbed
the card input data buffer.

5. Preset Parameters

5.1 A parameter list of the following form may be supplied:-
RO 00 4
932 - 04 -
-
2.1 0 60
01 ¢ Loop stop or cue to hard fault routine
0

I\

+0 or cue to programmer’ s check read failure

+0
02 J routine (Section 6)
03 +0 | +0 or cue to programmer’ s double punching
routine (Section 7)
2.3 110
04 * Order pair to obey link from X1 or preset link

2.3 0 60

page 3 R 932

5.2 If no parameter list is supplied by the user an optional list will set the
parameters tc the values shown above,

5.3 If P.P.02 or P.P.03 is set to +0 as shown, the standard R 932 printing will occur
on finding a check read failure or double punching respectively. At the 77-stop in 2.2
(after printing) x2 # 0 after a check read failure but x2 = 0 after a double punching,

5.4 If no action is required on finding a check read failure and/or double
punching, P.P.02 and/or P.P.03 may be set to the order pair:

2.2 0 60

0

This will simply cause R 932 to come to a 77-stop in 2.2 before restoring the
accumulators and obeying the link. After a check read failure x3 > 0 at the 77-stop
but after a double punching x3 < 0.

6. Alternative Check Failure Routine
6.1 If the user wishes to supply & routine to deal with check reading failures it
should have the following specification., It will be entered once for each word in the
not-equivalent buffer indicating check read failure(s).

The cue should be set as P.P.02,

The routine may not use U4, 5; X2, 4; BO,

It should return to R 932 by jumping to U1,3, R 932 will then search for further

check read failures. If UG, 1, 2 have been overwritten they should be restored by
reading BO+, 1+, 2+ of R 532 respectively, using the a- and b-order partial cues.

6.2 On entry to the routine, the following information will be available:
sz, X4, Buffer address of word containing failure
X3 Faulty word from data buffer
X5, X6 Corresponding word from # buffer
U4 Block from # buffer
us Block from data buffer

The data buffer will not have been disturbed.

X4 will be positive on the first entry to the routine for a given card and
negative on subsequent entries, if any, for that same card.

6.3 If it is required to enter the routine once only, i.e. to ignore all but the
first check read failure in a card image, return may be made to R 932 by restoring

B2+ to U2, if necessary, and jumping to the 77-stop in U2.2, after which the sccumulators
will be restored and the link obeyed. In this case the routine may use any locations
except B0, Alternatively it need not return to R 932, in which case it should include

an order to restore the accumulators from BO.

7. Alternative Double Punching Routine

7.1 If a routine to deal with double punching is supplied by the user, it should
be written to the following specification, It will be entered once only for each card
containing double punching.

The cue should be set as P,P.03.

The routine may not use B0,

R 932

page 4

It should return to R 932 by restoring B2+ to U2, if necessary, and jumping to
the 77~-stop in U2.2, after which the accumulators will be restored and the link

obeyed.

Alternatively it need not return to R 932, in which case it should

include an order to restore the accumulators from BO.

On entry to the routine the following information will be available:

U4
U5 } Card image

Buffer address of faulty word,

(If there are several double punched

columns this will be the address of the last one to appear in the input

buffer.)

of faulty word

The next card will have been read into the data buffer,

The # buffer will be in B3+ and 4+ of R 932,

Writing with overflow due to T3-order in
0.1+ 1f R 932 entered with overflow set

T7-stop on finding a hard fault

Loop stop on going to RUN after stop in
2.0 if the optional value of P.P.01 is used

104 [4] 76
3+ [4]13
0 0177
0 [T12
2.1 060
0

e o017
0 [72

T7-stop before obeying the link

If a check read failure occurs, zll double punchings on that card will be

1.2
xzm
X6
8., Stops
(1
(1i)
(iii)
(iv)
9. Notes
9.1
ignored,
9,2

London Computer Centre,

If a double punching 1s detected, R 932 will not detect a check read failure
which occurs in the same word of the buffer.

68, Newman Street,

LONDON, W.1.

(©) FERRANTI LTD 1962

Kot to be reproduced in whole or Issue 1
in part without the prior written S5th September, 1962,
permission of Ferranti Lid. M.J.B. D.M.

R 951

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue I
20.5.57.

RANDOM NORMAL DEVIATES

A tape containing random normal deviates punched correct to two decimal
places.

FORM OF PUNCHING

The deviates are punched in a form suitable for reading by R 113. They are
all punched correct to two decimal places but the decimal point has been omitted.
The sign has also been omitted in the case of positive numbers. The terminating
character may be either Sp or CR LF.

SCALING

The deviates appear on the tape as integers, and would have to be divided
by +100 in order to convert them to their true value. The +100 must be multiplied
by some number not less than 4 in order to ensure that the scaled deviates are less
than one,

If the preset parameter of R 113 were set as +800, for example, the random
normal deviates would be read in with a scale factor of 273,

Example:
Normal equivalent deviate +1.64 -0,32
Number on Tape 164 ~032
Number in Computer +0.205 -0, 04

SOURCE

The deviates were taken from ‘Tracts for Computers® number XXV by Herman

Wold, published by the Department of Statistics, University College, London,

Only the first and second thousands are at present available, but others
are being prepared.

Ferranti Ltd.,

London Computer Centre, Issue 1

21, Portland Place, 20th May, 1957,
LONDON, W.1. D.M.

Issue 1.
16, 8. 56,

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

STANDARD ATMOSPHERE

A subroutine to calculate the values of the Standard Atmosphere.

Given £.27'7 in Xs,
where 0 € £ € 119, 141 ft.,

This subroutine places:
p in X5,
$.272°% in X6,
a.2”*? in X7,

where % 1s height above sea level in feet,
p is air density in slugs per ft.a,
$ is air pressure in lhs. per e, 2,

a is

the speed of sound in ft. per second.

(R 970 uses R 200 and R 220)

Store:

Uses:

Cue:

Link:

Time:

leCahall,
6 blocks for R 970 + 3 blocks for R 200 and R 220,

vo 1, Xx1,5,86,T1.
(If h =0, UL and X1 are not used.)

01 (0 +.0)
Obeved in 0.4 and left undisturbed in X1 if A =0

Obeyed in 1.1 if 0 < h £ 36, 093 ft.
Obeyed in 1.5 if 36,093 ft. < h € 119,141 ft,

Ifh=0 2 milliseconds.
If 0 <k £ 36,093 ft, 109 milliseconds.
If 36,093 ft < h £ 119,141 ft. 53 milliseconds.

Error Stop:There is a loop stop in 1.5 if kA > 119,141 ft.

Formulae

R 970 uses the following formulae to calculate p, $ and a,

=
-
1l

0 ft,

T >R

0 1117 ft. per second

a =
= p, = 2116.2 lbs, per ft.2
4

o = 0.002378 slugs per ft. 8

R 970

R 870 page 2

2. 0<h< 36,093 ft.

a

a, (1 - k)%

p=p, 1~ kh)5-25¢ @g, g p, s for £ =0

Dl
p = Pg (1 - kh)u.ZSG

where £ = 0.000,006, 8785 ft, 1

(1 kh)% is formed by using the square root subroutine, R 200.

(1 - kh)°*%5%% is formed by using the approximation:
(1 - p4)%-2%6 = 1 - 0.256 (&A) - 0.095232 (kh)?
- 0,0553615 (kh)?
- 0.0379780 (kh)"

3. 36,003 ft. < h £ 119,141 ft.

a

b

L]

ap = 968. 47
1 (h - 36,093)

472.64 exp " 20762

g = 0.000,7086,403 exp (}

1 (h - 36,093)
20762

The exponential subroutine, R 220, is used to find

o (o (h-36,093) 1
P 20762 " 4

-1¢-(h -36,093) < 0

where 2 X 20762

or 36,003 < h € 119,141 ft,

Author: Mr. B.W. Gregory of Sir W.G. Armstrong Whitworth Aircraft Ltd.

Ferranti Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 16th August, 1956.
LONDON, W.1. B.W.G. E.J.D.

R 971

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

TRIPLE EXPONENTIAL STANDARD ATMOSPHERE

A subroutine to calculate the values of the Triple Exponential Standard
Atmosphere.

Given h. 277 in X5, where 0 € h < 2® (= 524288) ft. this subroutine places
$. 2712 in Xs,
e. 2% in X7,
where h is height above sea level in feet,
£ 1s air density in slugs per ft.a,
$ is air pressure in lb, per £t 2,

(R 971 uses R 220)

Name: Triple Exponential Standard Atmosphere.

Store: 4 blocks for R 971 + 2 blocks for R 220.

Uses: vo, 1; X1, 4, 5, 6, 7.

Cue: 01 ¢ 0+,0)

Link: Obeyed in 1.0. Not left in XI.

Time: Depends on the value of 4; as A increases from 0 to about 274,000 ft.,

the time fluctuates between 92 and 103 milliseconds; as h increases
from there up to 219 £t. the time increases from 103 to 129 milliseconds.

Formulae: R 971 uses the following formulae to calculate ¢ and o (see Ref. 1 or 2):

p = b, -gp QA - e~h/Hy;
p = pehll
The values of the constants pl, £y and # are given in the following
table:
Range of values of A P, Py yif
(ft) (1b. /£t?) (slugs/ft. %) (ft.)
0 £ A < 35000 2116, 216 0. 0023769 30801
35000 < A < 140000 2728.8 0. 0040344 21016
140000 € A < 524288 818.4486 0. 0009471 26859

The value of g is taken as 32,17405 ft/sec.?,

R 971 page 2

References: 1.

Notes: 1.

2.

Author: Mr.

Royal Aeronautical Society Data Sheet 00,01,04 “Properties of
the Upper Atmosphere.” June, 1858.

R.A.E. Tech. Memo. G.W.250. *“A proposed triple exponential
standard atmosphere extending to 220,000 ft.” F.G. Chapman,
August, 1955.

The formulae used by R 971 are intended to apply only to
altitudes below 220,000 ft, (see Ref.l1l or 2). R 971, however,
uses the same formulae for all altitudes up to 21° (= 524288) ft.

In References 1 and 2 the value of p, is taken as 818.3 1b./ft.?
for 140,000 ft. £ k £ 220,000 ft. This has the drawback that the
pressure calculated from the formula is negative for A > 231,600 ft.
{(about), and the value of ﬁl has therefore been amended as shown
above to remove this anomaly. However, this introduces a discon-
tinuity of about 0.15 lb./ft.? in the calculated values of the
pressure at 140,000 ft. A version of the subroutine which uses the
original value of p, may be obtained by adding the following correc-
tion tape after the A3 on the master programme tape:-~

Cc 971
T 3+.1
- 0.00003627844

J. Stafford of Saunders-Roe Ltd.

(©) FERRANTI LTD 1959

London Computer Centre, Fot to be repraduced in whole or Issue 1

21, Portland Place,
LONDON, W.1,

in part without the prior written 12th June, 1959.
permission of Ferranti Ltd. J.5. M.J.M

R 980

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
6.8.57.

PSEUDO- RANDOM NUMBER GENERATOR

A self-preserving subroutine for the computation of seguences of pseudo-random
numbers. One number is produced each time the subroutine is entered and is left in
X2.

Name: PSEUDORANDOM NUMBERS.
Store: 1 block.

Uses: us; X1, 2, 6, 1.

Cues: 01 a-order partial cue.

02 b-order partial cue.
Time: 5% milliseconds,
Link: Computing Store link obeyed in 5.4+. The jump address must bhe set in the

modifier position of X1 before entry.
1. Method
1.1 The method used is given by the congruence

x = kx, (mod 231 _ 1y
where Xp4y is the smallest positive integer satisfying the congruence and
k= 455470 314 = 13'7 (mod 2°! - 1)

%, is an arbitrary starting number and should be a positive integer of the order of
10° but less than 23! — 1, It is specified as a preset parameter., (See section 3.)

The sequence is repeated after 23! — 2 = 9 147 483 646 steps.
1.2 Each time the subroutine is used a new value of Xy replaces the previocus
one in X2. It is always a positive integer less than 2°! — 1 = 2 147 483 647.

Bits 0-7 in this register are thus always zero. Bits 8-38 may be considered as
sources of random binary digits.
2. Instructions for YUse

2.1 R 980 is intended to be used as a Computing Store subroutine. It is brought
into U5 by the order

R 980 page 2

o [

tagged by the appropriate partial cue, 01 or 02. The subroutine is self-preserving
and is normally entered at U5.0+.

2.2 Before entering the subroutine for the first time, the starting value, x..
(already set in 5,7 as a preset parameter) must be put into X2. This may be done
either by the order 5.7 2 00 or by entry to U 5.0 instead of the usual 5.0+. The
current value x,, is left in X2 after use of the subroutine, and must be preserved

n
until the next entry. The series may be re-started at x, by jumping to 5.0.

3. Preset Parameter

The starting value Cxo) is specified as a preset parameter. The parameter
list should be punched as follows: -

RO 0~01
Title of parameter list
980 -~ 04 -
+1357916503 x, {The value shown is only an example.)
Ferranti Ltd.,
London Computer Centre, Issue 1
21, Portland Place, 6th August, 1957.

London, W.1. A.R.E.

R 981

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

Issue 1
8. 8, 57.

RANDOM NUMBERS ON DRUM

This subroutine fills a chosen sequence of locations in the Main Store with
pseudo-random digits.

Name: RANDOM NUMBERS ON DRUM

Store: 5 blocks.

Uses: vo, 1, 2 3, 4, BO.

Cue: 01 (0+.14)

Time: About 120 milliseconds per block of random digits generated.

Link: Obeyed in 0.0 and left unaltered in X1.

Notes: (1) The initial and final addresses (Bi'Pi and Ef.Pf respectively) of

the sequence of locations to be filled with random numbers are set
in X2 before entry to R 981 as a pseudo-order in the following
manner: -

B; - P00,

Bf - -- Pg

{2) All the 39 positions in the locations affected are filled with
random binary digits; 1.e. if the contents of such a location is
considered as a fraction, y; then -1.0 < y; < 1.0.

(3) The method of generation of the random numbers is similar to that
used in R 980.

(4) If the routine is entered a second time it will generate the same
sequence of random numbers. If a different set is required a new
starting value x, must be set in B4+.7 of the subroutine. x, should
be a positive integer of the order of 10%, (=2 147 483 647)
but less than 2°!' - 1. The initial value of x, set in the sub-
routine is 1 357 916 503.

Ferrantl Ltd.,

London Computer Centre, Issue 1
21, Portland Place, 6th August, 195%.
London, W.1. A.R.E,

R 990

FERRANTI LTD

PEGASUS LIBRARY SPECIFICATION

MAGNETIC TAPE READ/WRITE - 16/32 WORD SECTIONS

R 990 can be used in any part of the store to read from or write to magnetic
tape of 16~ or 32- word sections,

Name: M.T.R/W - 16/32
Store: 4 blocks which may be stored above B127.
Uses: uo, 1, 2, 3, 4, 5 B0, The accumulators are stored in BO and restored

before exit except for X2 which will be shifted up 14 places.

Cues: o1 0+ - 000. Modifier to be set in 2,
0 before obeying cue 02
0 [@722 Enter R990 with X2
02 containing cue 01
0.0 060
Link: Set in X1, obeyed in U4.5 and left unsltered in X1,
Time: About 48ms per section, reading from 16-word tape

45ms per section, writing to 16-word tape

64ms per section, reading from 32-word tape

64ms per section, writing to 32-word tape
plus search time for the required section,

METHOD OF USE

1. A subroutine modifier must be set in the moat significant 14 bits of X2. This
is effected by tagging a pseudo order-pair with cue 01. The subroutine modifier will
be added into the order-pair, which should then be copied or added into X2. The most
significant 25 bits of X2 will not be lost if the contents are shifted down 14 places
before addition of the word containing the subroutine modifier: the routine shifts

the contents of X2 up 14 places on exit.

2. A Tape Control Word, set in X6, should specify the address of the first section,
a, and the number of the tape mechanism to be used, m. The Tape Control Word should
be & “stop” order-pair 1f the tape has 16-word sections and a “go” order-pair if it
has 32-word sections.

X6
0 0mo

R 990 page 2

3. X7 should contain a Drum Control Word speclfying the address of the first
block, #, and the number of blocks, 2. The word should be set as a “stop” pseudo

order-pair if a read operation is required or a “go” order-pair if a write operation
is required.

B - 00 0(.)
X7
n

Note that n is the number of 8-word Main Store blocks and not the number of tape
sections. When writing to tape the last of the n blocks may not be the last block
in the section of tape, but the remainder of that section will be overwritten.

Author: Mr. A.J. Jones of Babcock & Wilcox, Ltd.

(© FERRANTY LD 1962

London Computer Centre,
68, Newman Street,
LONDON, Ww.1.

¥ot to be reproduced in whole or Issue 1

in part without the prior written 12th November, 1962
permission of Ferranti Lid. AJ.J. J.L.

R 2992

File as 992
FERRANTI LTD
PEGASUS LIBRARY SPECIFICATION

MAGNETIC TAPE COMPARISON

A complete programme to compare two 16 or 32 word magnetic tapes and
print a record of the sections which disagree. The corresponding error
sections are stored consecutively after the programme in the Mein Store so
that, if desired, the contents of these sections may be punched out when com-
parison of the tapes has been completed.
Name: COMPARE MAGNETIC TAPES
Store: T blocks
Uses: The entire Computing Store and 8 (or more) blocks in the Main Store.

(See sections 5 and 6).
Entry: J 0+.0 at the end of the steering tape.

Time: About 245ms for each 32 word section
160ms for each 16 word section

About 150ms for each 32 word section
90ms for each 16 word section } Using L.A. Store (Pegasus 2)

plus search time for the required section on each tape.

} Using Drum Store

METHOD OF USE

1. The programme requires a steering tape punched as shown:

T 2
+my First mechanism number
+a, Address of first section of m,

+m, Second mechanism number

ta, Address of firast section on m,
+n Number of sections to be compared
+N 16 or 32

J 0+.0

2. Place the programme tape in the main tape reader, START and RUN. (There is

no T-sequence on this tape, and hence the programme will normally be read into B2 - B5
and Bi4 - Bi16. If it is required to preserve the contents of these blocks, the
programme can be stored in any part of the store from block B onwards, by setting

T 5.0 on the handswitches before operating the Start key. The Relativizer will be

set by a warning character B on the tape.

3. When the 77 stop (Z) at the end of the tape is reached, insert the steering
tape in the main tape reader and operate the Run key.

4, The tapes are compared one section at a time and the corresponding sections

are stored temporarily in B4+, 5+, (6+, 7+) and B8+, 9+, (104, 11+) for 16 or 32
word tapes.

R 2992 page 2

5. If an error is found, there will be an optional stop in 3.0, before the number
of the section on m, 1s printed: this number will be in X7. The blocks ¢f information
currently being compared will be in U4 and 5. UI.7 will contain the address of block
B, where (B + 15) 1is the next Main Store block in which the error section will be

stored.

6. When the Run key is operated, Initial Orders Number Print is used to print the
contents of X7; and the two sections of tape are copied from B4+, 5+, (6+, T+) and
B8+, 9+ (10+, 11+) to B15+ onwards, using elther 4 (or 8) blocks for each error
section,

7. A 77 stop in 2.5 occurs when comparison 1s complete. Compariscn may be re-
commenced by inserting another steering tape in the main tape reader and operating
the Start and Run keys.

(©) FERRANTI LTD 1962

London Computer Centre, Kot to be reproduced in whole or Issue 1
68, Newman Street, in part without the prior written 12th November, 1962
LONDON, W.1. permissionof Ferranti Ltd. J.L.

END OF VOLUME 2

	Title
	Intro
	R 500
	R 501
	R 502
	R 511
	R 530
	R 532
	R 534
	R 550
	R 551
	R 560
	R 570
	R 600
	R 610
	R 611
	R 612
	R 630
	R 650
	R 670
	R 700
	R 710
	R 720
	R 721
	R 722
	R 723
	R 736
	R 737
	R 740
	R 741
	R 761
	R 900
	R 901
	R 902
	R 903
	R 904
	R 905
	R 906
	R 907
	R 910
	R 915
	R 921
	R 922
	R 923
	R 924
	R 925
	R 927
	R 930
	R 931
	R 932
	R 951
	R 970
	R 971
	R 980
	R 981
	R 990
	R 992
	R 2500
	R 2501
	R 2502
	R 2530
	R 2532
	R 2900
	R 2901
	R 2902
	R 2903
	R 2904
	R 2905
	R 2906
	R 2907
	R 2915
	R 2921
	R 2922
	R 2923
	R 2992
	R 7534
	R 7910
	R 7924
	R 7925
	R 7927
	R 7931

