PS 390 RELEASE NOTES

EVANS & SUTHERLAND

April 1987

E&S #904015-605

Rev B.

The contents of this document are not to be reproduced or copied in
whole or in part without the prior written permission of Evans &
Sutherland. Evans & Sutherland assumes no responsibility for errors
or inaccuracies in this document. It contains the most complete and
accurate information available at the time of publication, and is sub-
ject to change without notice.

PS1, PS2, MPS, PS 300, PS 330, PS 340, PS 350, and PS 390 are
trademarks of the Evans & Sutherland Computer Corporation.
DEC, VAX, UNIBUS, and ULTRIX are trademarks of Digital
Equipment Corporation. UNIX is a trademark of Bell Laboratories.
IBM VM/SP and IBM MVS/TSO are trademarks of International
Business Machines.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

CONTENTS

1. GENERAL INTRODUCTION ..t i iittenttinneteanrnneonnstnasrconeessanss 1
1.1 Notes to New Userscvivvuunneess e e e 1
1.2 Notes 10 Current USBIS . vv v vt et esttoinoranentoseaanonrsinaneesesss 2
1.3 Notes to Al USEIS vvvvitiiii ittt onas e 2
1.4 Release Package CONLENLS .+ v ovv vt vinniruesnonsoosenenssssrsssosnnnas 3
1.5 Distribution Tape Format and Installation Procedure00vv... 4
2. INTRODUCTION TO PS 390 ...ttt ittt innesnnertonesaannosns 5
2.1 Systern Hardware OVEIVIEW v vivvventtentrounisooronseenaronnnessneos 5
2.2 Operating Specifications ... oottt ittt iinttiiiieeennnnns 10
2.3 Multiplexing Box and Peripheral Connectionscivevinveerennevnns 10
3. RUNTIME MODIFICATIONS AND NEW FEATURESiivivennnenn 13
3.1 New PS 390 FUNCHOD ..ttt iiiii ittt ittt iinnentoneeeeannns 13
3.2 Viewport Considerationsoeueeei ittt rnnnens e 14
3.3 “Soft Labels” Function Networkciiiutiiiiiiiinniiineninnneennens 15
3.4 Multiple GPIO Interfacesvuiviiiiiiiiniiet it renennenens 16
3.4.1 Interface Configuration Filesvtiiiiiiiireiiietiienennnnnneeness 17
3.4.2 Ethernet/DECNET Interface ... vuiiiiuiiniurnrinnrtnnecinnonennens 20
3.5 Crash DUmMpP File o viiiit ittt ittt sttt tenneesiananenns 21
3.6 Additions t0 FiPICK . .euvteretetnen e enetetaenenennenenannnannnn, .22
3.7 UWF Runtime Code Modificationsivuiuiiiiiirininentinnneenans 23
4, PS 390 EXCEPTIONS ..t iitiitiiiiitnnirenessaesittoinnenasnsosennanns 25
Appendix A Crash Dump Informationcoiiii.... A-1

Error Types/Error NUMDErS ... vvitientiinuiurnne vt oiineennneeeenenans A-1

Crash DUmp Program . ..ou vt e inent ettt ieenenesnonnennns A-7
PART 11

Change Pages and Previous Graphics Firmware Release Notes for the PS 300
Document Set :

FIGURES AND TABLES

Figure 1. PS 390 Architectural Overiew et i e

Figure 2. PS 390 Control Unit ..
Figure 3. Back of Control Unit .
Figure 4. Port Configuration

..

Figure 5. Front View of Multiplexing Box e e

Figure 6. Rear Connections of Mux BOX ... vittiininiiiiiiininnnieeennnnnas
Figure 7. Screen Layout for the PS 390 with Soft Labelscoviviiiinnn.

Figure 8. Data in Crash File ...

--

Table 1. Possible GPIO CombInations o e oo cuceonccroesnesoeeneensnaeesness

Table 2. Required Interface Files

=T I -

16
11
16
21

19

S

PS 390 GRAPHICS FIRMWARE RELEASE NOTES
Version A2.V02

1. GENERAL INTRODUCTION

These release notes document functionality of the PS 390 and are intended as a supplement to
the PS 300 Document Set which describes the operation and programming of the PS 300 line of
computer graphics systems. These notes can be placed in the Document Set behind the Release
Notes tab in Volume 3A.

The PS 390 has a new hardware configuration with a reduced-size cabinet and a Joint Control
Processor (JCP) card, which are explained in Section 2.1 of these Notes. The hardware
configuration and calligraphic display documented in the Document Set are not applicable to the
PS 390. New users should note that a different set of peripherals is available with the PS 390
although the peripherals documented in the Document Set are also supported under PS 390.
Procedures for using the peripherals with the multiplexing box are explained in Section 2.3.

You should assume that all programming information in the PS 300 Document Set and
accompanying installation manuals (dependent on your particular configuration) is applicable to
the PS 390 unless specifically noted in these Release Notes.

Changes and additions to the PS 300 Graphics runtime firmware and host software released since
the publication of the Document Set are contained in Part II of these Notes. This section
consolidates the information from previous release notes that applies to the PS 390, and includes
formal change pages for the Command and Function Summaries and for the Graphics Support
Routines (GSRs) in the PS 300 Document Set. Please discard the old pages in your set and
replace with these new pages. Some new pages documenting specific PS 390 functionality and
other pages with new information are included and should be inserted in the appropriate place in
your Document Set.

1.1 Notes to New Users

New users should familiarize themselves with the information in these notes and in the
PS 300 Document Set and note where PS 390 information contained in this package
differs from information in the PS 300 Document Set.

Version A2.V02
Aprit 1987 Page 1

PS 390 RELEASE NOTES

1.2 Notes to Current Users

Orne of the primary concerns in developing the PS 390 runtime firmware was maintaining
compatibility with previous systems so that existing PS 300 programs would run on the
PS 390 without modification. This was almost completely achieved. However, some
incompatibilities exist because Port 2 is no longer used and there is no support for
DMR-11 interface or multi~user systems. Also, scope 0 is the only scope enabled;
therefore, Set Scope commands (both ASCII and GSR) should not be used.

The PS 390 new hardware configuration with a reduced-size cabinet and a Joint Control
Processor (JCP) card is explained in Section 2.1 of these Notes. If you have aiready
upgraded to a reduced-size cabinet, you should have already received this information.

You should also have Release Notes for Version A1.V02 and Version A2.V01 of the
graphics runtime firmware. Note that the information contained in those release notes
which reflects current functionality has been consolidated and included in Part II of these
notes.

Current PS 340 users should note that rendering capability on the PS 390 is available
only by ordering the rendering option. Without this option, you can display objects
defined as polygons on the PS 390, but you cannot perform any rendering operations.
For users with the rendering option, the PS 390 Rendering Option Release Notes are
included with the PS 390 Release Notes package.

Current PS 350 users should note that the PS 390 is plug compatible with PS 350
applications with the exceptions given in Section 4 of these Notes. Please note that the
light pen is not supported with this release. The nodes created by applications using the
Lightpen command (both ASCII and GSR) will be treated as no-operation nodes.

Some PS 390 information contained in this release package is identical to information
and change pages contained in the PS 350 User’s Manual. Please note that information
in these release notes supersedes any other documentation explaining similar or identical
capabilities of the PS 390.

1.3 Notes to All Users

As previously mentioned, a different set of peripherals is offered with the PS 390
although existing peripherals are still supported. Users of existing peripherals and users
with new peripherals must both use a rultiplexing box as there is no data concentrator on
the display. Procedures for using the new mux boxes are given in Section 2.3 of these
Notes. Documentation for the new set of peripherals is supplied as a separate document
included with this release package.

Version A2.V02
Page 2 April 1987

PS 390 RELEASE NOTES

Data formats provided for those users with the Parallel Interface or for those who access
internal data are provided in the PS 300 Advanced Programming guide included with this
release package. (PS 350 users please note that PS 390 data formats and PS 350 data
formats are identical). No new GSRs routines are provided with this release. GSR
routines supporting new PS 390 capability are planned for future releases.

Please take special note of Section 4 of these Release Notes, which documents PS 390
exceptions to existing PS 300 documentation.

Direct your questions and comments to the Evans & Sutherland Customer Engineering
Hotline 1-800-582-4375 (except Utah). Within Utah, customers should call 582-9412.

1.4 Release Package Contents

This PS 390 Release Package contains the following items.

® One copy of the Graphics runtime firmware Version A2.V02

For users with the rendering option, this is on the Visualization diskette. Instructions
for loading the firmware are contained in Volume S5 of the Document Set.
Instructions for configuring your firmware diskette according to which options you
have at your installation are contained in section 3 of these Notes.

® PS 390 host software distributed on magnetic tape including (but not limited to) the
following:

~ PS 300 Graphics Support Routines (GSRs). The files READFOR.GSR and
READPAS.GSR contain descriptions of the FORTRAN and Pascal GSR software.

- The PS 300 Host-Resident I/O Subroutines

-~ Three programming utilities: NETEDIT, NETPROBE, and MAKEFONT (For
VAX/VMS users only).

- Writeback Feature

Documentation for the Writeback feature is included in this release package. More
detail on the GSRs, I/O Subroutines, and programming utilities can be found in
Volumes 3 and 4 of the Document Set.

® One copy of the Diagnostic Utility Diskette

This diskette provides all the utility programs described in Volume 5, Section 10 of
the Document Set. Please refer to that section for instructions on using the utility

Version A2.V02

April 1987

Page 3

PS 390 RELEASE NOTES

programs for backup and file management and make note that the new Diagnostic
Utility Diskette is the only diskette that should be used to load these programs.

® PS 390 Raster Programming guide

This manual documents how to send run-length encoded pixel data to the PS 390.

e PS 300 Advanced Programming guide

This manual is intended for use by experienced programmers as a guide to writing
functions and as a reference for doing direct Physical I/Q with the Parallel Interface.

L as a1 =2 9100 i LIRLL

® PS 390 Peripherals Reference Manual

1.5 Distribution Tape Format and Installation Procedure

All PS 390 VAX/VMS sites will receive the distribution tape (PS 390 host software) in
VMS Backup format. To install the VAX PS 390 host software, first create a
subdirectory for the PS 390 software and set your default to that directory. Using the
VMS Backup Utility, enter the following commands:

Allocate MTNN:

Mount/Foreign MTNN:

Backup MTNN:PSDIST.BCK [...]*.*
Dismount MTNN:

Deallocate MTNN:

® H N Bh P

where MTNN: is the physical device name of the tape drive being used.

This will create the subdirectory A2V01.DIR which is the parent directory of the PS 390
host software.

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites will receive a
1600-bpi distribution tape with a block size of 6400 and a logical record length of 80.

All PS 390 sites that are not DEC VAX/VMS, UNIX, or IBM, will receive a variable
length ANSI format distribution tape containing the PS 390 host software. Consult your
system operation manual for instructions on reading ANSI-formatted tapes.

P p Version A2.V02
age April 1987

e

PS 390 RELEASE NOTES

2. INTRODUCTION TO PS 390

The PS 390 provides the real-time interaction capability and line quality of a calligraphic
system with the flicker-free images of a raster system, combining the desirable features of
both technologies while eliminating the disadvantages of each.

These capabilities were accomplished by the development of several VLSI chips and one
custom gate array designed for the real-time manipulation of anti-aliased raster lines
matching or exceeding the quality of calligraphic lines.

The graphics pipeline of the PS 390 is 32 bits which provides high-precision processing
required for large and complex models. The frame buffer is a 48-bit frame buffer,
double buffered.

With this version of the firmware, you can use the PS 390 monitor to display
host-generated pixel images. The PS 390 accepts raster data in run-length encoded
format. A discussion of how to accomplish this is contained in the PS 390 Raster
Programming manual included with this release package. Existing PS 340 applications
using run-length encoding to display host-generated images will run unchanged on the
PS 390.

The local capability to create, render, and shade polygonal models on the PS 390 is
available with the purchase of the rendering option. With this option, you can display
and manipulate a wireframe model in one viewport of the screen and display the same
model as a shaded image in another viewport on the screen. Capability now supported on
the PS 340 graphics system is supported on the PS 390 with the rendering option. This
includes the ability to apply sectioning, back-face removal, and hidden-line rendering
operations to wireframe models and to display static images with a wash, flat, Phong, or
Gouraud shading style.

2.1 System Hardware Overview

The PS 390 is housed in a new reduced size cabinet and contains a new Joint Control
Processor (JCP) card. The JCP replaces the Graphics Control Processor, up to two mass
memory cards, and (optionally) the PS 300 IBM 3278 GPIO card. The description of
PS 300 Control Unit in the Document Set is for systems with a larger cabinet anid a GCP.
The PS 390 has six basic circuit cards: JCP, Mass Memory (MM), Arithmetic Control
Processor (ACP), Pipeline Subsystem (PLS), Frame Buffer and Bit-Slice Processor
(FBL/BP), and Frame buffer and Video Controller (FBR/VC). The architecture for the
PS 390 is shown in Figure 1.

Version A2.V02

April 1987

Page 5

PS 390 RELEASE NOTES

T
- ETHERNET

1 RASTER
DISPLAY

IAS390002P3
JCP - JOINT (GRAPHICS) CONTROL PROQCESSOR FBL - FRAME BUFFER LEFT
MM - MASS MEMORY (1- to 4-MBYTES) BP - BITSLICE PROCESSOR
ACP - ARITHMETIC CONTROL PROCESSOR FBR - FRAME BUFFER RIGHT
PLS = PIPELINE SUBSYSTEM vC - VIDEO CONTROLLER

GPIO - GENERAL PURPOSE INTERFACE OPTICN

Figure 1. PS 390 Architectural Overview

The free-standing control unit of the PS 390 requires no clearance for operation,
provided that site-specific heat dissipation requirements are met. It is mounted on casters
for easy portability and to provide return air to the unit fan.

The control unit is approximately 53 cm (21 inches) wide, 71 ¢cm (28 inches) deep, 67
(26.5 inches) high, and weighs 55 kg (120 pounds). The top holds over 250 pounds static
weight; 180 pounds rolling load. (See Figure 2.)

Version A2.V02
Page 6 April 1987

PS 390 RELEASE NOTES

v
/%
/7
A/
7
=
1]
[YASSSUTTRRANG|
IASRSC001P2
|- | o

Figure 2. PS 390 Control Unit

There are two external controls on the PS 390 control unit. One is the ON/OFF circuit
breaker switch, located at the top right of the front panel. This switch is recessed and
surrounded by a protective frame. A RESET switch is located just left of the circuit
breaker. The RESET switch allows the system to be reset instead of powered off during a
system lock or reboot.

The PS 300 floppy disk drives are located at the front of the unit near the upper, right
corner.

The PS 390 uses a double-sided, quad-density, 5-1/4 inch minifloppy diskette capable
of storing 737,280 formatted data bytes on 160 tracks.

At the back of the control unit, above the power distribution panel, is the
communications connector panel. See Figure 3. The panel is vertically aligned, with
ports 0-5 from the top down. Connectors are externally accessible on the back of the
control unit. :

Version A2.V02

April 1987

PS 390 RELEASE NOTES

s
%%
7
%/
s B B |7
aD
an
(enns)
aD
D
O glian
® O
O 0O
a - JASRSC001P2
- |

Figure 3. Back of Control Unit

The standard PS 390 control unit comes with the cards in place. The metal casing on the
inside of the unit replaces the Faraday cage installed in some older cabinets.

The PS 390 is FCC Class A certified for emissions and will meet UL 478 and CSA 22.2
#154 safety standards.

The new Joint Control Processor (JCP) card consists of two (optionally three) sections:
Control Processor, Mass Memory, and Interface section.

The control processor (CP) section is functionally similar to the old graphics control
processor (GCP) and is based on a 683000 10 MHz microprocessor.

This differs from the GCP card documented in the Document Set in that:

- Local memory is increased from 256K to 512K.

- There is a local path to the JCP resident mass memory that is used instead of the

Common bus path (GCP systems) thus providing faster access to mass memory from
the 68000.

" - Four usable asynchronous RS-232 ports are supported (compared to five on the
GCP) which reside on the Communications Connector Panel. See Figure 4. Port 0
and Port 2 are physically present but not usable. This means that the DMR-11
interface is not available with reduced size cabinet systems nor is multi-user
functionality.

Version A2.V02
Page 8 April 1987

PS 390 RELEASE NOTES

The new port configuration for the PS 390 is as follows:

Port 1 is the host port.

Port 3 is the debug port, for diagnostic purposes.

Port 4 may be used for special interface applications, including an alternate diagnostic
port.

Port 5 is used for the peripheral multiplexing box and therefore, is not available for
your use.

PORT 0
PORT 1

Interactive B35 PORT 2
Devices E&a
PORT 4
PORT 5

;ge,':ﬁ Service

OPTIONS SCE 0

Figure 4. Port Configuration

- The Mass Memory section of the JCP card has one megabyte of memory with the
option of a second megabyte available.

- The interface section of the JCP provides a location for the optional IBM 3278
interface. This option allows the PS 390 to communicate with an IBM 3274 control
unit over a S6KB line. It is functionally equivalent to the PS 300 IBM 3278 GPIO
card. Separate GPIO cards are available for high-speed communication interfaces
other than IBM 3278.

Version A2.V02
April 1987 Page 9

PS 390 RELEASE NOTES

2.2 Operating Specifications

Operating specifications for the PS 390 are as follows.

Grounding - The PS 390 scope should share a common ground with the control unit

Power Requirements - 115V Single Phase 210% 47-63 Hz, 12 amp (max)
220V Single Phase: 7 amps (max) for the control unit

The following limitations are placed on AC power disturbances:
- A maximum of £10% of nominal power for .1 seconds occurring no more than

once every 10 seconds.

- Maximum harmonic content of 5% rms, no more than 3% rms for any single
harmonic. '

- Maximum impulse of 300V with rise time of .1 microseconds or slower, lasting no
longer than 10 microseconds total duration.

Power Consumption - 1380 watts maximum

Heat Dissipation — 4710 BTUs/hour maximum
Operating Temperature - 65° to 80°F (18° to 27°C)
Relative Humidity - 20% to 80%

2.3 Multiplexing Box and Peripheral Connections

Peripherals for the PS 390 are connected to a multiplexing box contained in a three-inch
pedestal that supports the raster scope. Mux boxes for either set of peripherals supported
by PS 390 have the same operating instructions noted here. All peripheral connections
for the mouse, function buttons, control dials, keyboard and tablet are clearly marked on
the front panel of the mux box. Figure 5 shows the front view of the mux box.

sens ovns esue w snoe
¢secssvcessas

essom %000

ﬁ_ L1_r-J LUJ) LJ_] 5

I}]]) 1

MOUSE BUTTONS DIALS KEYBOARD TABLET LlLCéI;&T POWER

Figure 5. Front View of Multiplexing Box

Version A2.V02
Page 10 April 1987

PS 390 RELEASE NOTES

The back panel of the multiplexing box has an RS232-C connection, three external
power connections and two BNC connections marked LPICK and TPSW. The BNC
connections are reserved for future use. All cables and connections are clearly marked.
To maintain EMI integrity, the screws on the RS232-C shielded cable must be tightly
turned on the connection. The rear panel of the mux box is shown in Figure 6.

s | =

o |1 O 90-130/180-250v~

2A MAX 6/3A 47-63Hz
LPICK TPSW

P GO

CONTROLLER 0000000000000 0000000000000

Figure 6. Rear Connections of Mux Box

Documentation on the new-style peripherals and multiplexing boxes is included as a
separate manual with this release. Documentation for previous peripherals is contained in
Volumes 1 and 5 of the PS 300 Document Set.

Version A2.V02

April 1987

Page 11

PS 390 RELEASE NOTES

3. RUNTIME MODIFICATIONS AND NEW FEATURES

PS 390 runtime firmware supports new PS 390 functionality and existing PS 300
functionality. Assume that all functionality described in the PS 300 Document Set is
correct and applicable to the PS 390 unless specifically noted as different in this and
following sections.

As previously mentioned, the primary concern in developing the PS 390 runtime was
maintaining user seftware compatibility with previous systems. Some incompatibilities
exist because the reduced-size control unit does not support ports 0 and 2 for use with
the DMR-11 interface or multi—user systems.

3.1 New PS 390 Function

A new initial function instance, PS390ENYV, is provided. This function sets up display
background color, and selects cursor and cursor color.

Input <1> is a trigger which accepts any data type to cause the function to run.

Input <2> is a constant which accepts a 3D vector (hue, saturation and intensity) to
specify background color. The default background color is 0,0,0 (black). Saturation
and Intensity must be in range of [0,1], otherwise an error message will be generated.
Hue is in the range of [0,360]. For any value specified outside this range, multiples
of 360 are added or subtracted to bring it into this range.

Input <3> is a constant which accepts an integer in the range [0,7] to specify the
cursor color where

0 = black

1 = blue

2 = green

3 = cyan

4 =red

5 = magenta
6 = yellow

7 = white (default)

Any value outside this range generates an error.

Version A2.V02
April 1987 Page 13

PS 390 RELEASE NOTES

Input <4> is a constant which accepts an integer to select the cursor.

<D
1]

update rate cursor (default)
system-defined refresh cursor

[y
1]

Input <5> accepts an integer to specify the video timing format, which is output from
the video connection on the back of the PS 390 control unit.

0 = 1024 x 864 non-interlaced (default required by the
PS 390 display)

2 = 1024 x 864 interlaced

3 = 640 x 484 interlaced (RS-170)

NOTE

When specifying the system~defined refresh rate cursor, you should leave
the initial viewports HVP1$ and GVPO03 unchanged in order to have the
(hardware) cursor work with picking.

3.2 Dynamic Viewpeort Considerations

Although the raster screen contains 1024 by 1024 addressable pixels, the actual
displayable area on the raster screen is a rectangle, with pixel addresses going from 0 to
1023 in X and 0 to 863 in Y, where the physical pixel address 0,0 is in the lower left
corner. A PS 300 viewport which spans (-1,1) in both vertical and horizontal directions
maps onto the full 1024 x 1024 screen so that a rectengular portion along the lower edge
of the viewport is not displayed. To avoid this situation, all viewports in the display
structure are initially concatenated with a default viewport in the top display structure
which maps to a square of 864 x 864.

The command

VPF1$:= Viewport Horizontal = -0.825:0.825 Vertical = -0.65:1 Intensity = 0:1
Then HVP1S;

in the boot-time configuration file accomplishes this.

If you want to override the default and use the entire displayable rectangular screen area,
the following command can be entered:

Configure A;
VPF1$:= Viewport Horizontal = -1:1 Vertical = -0.65:1 Intensity = 0:1

Version A2.V02
Page 14 April 1987

g

PS 390 RELEASE NOTES

Then HVP1S$;
Finish Configuration;

This will cause all the subsequent VIEWPORT commands in the structure to be
concatenated with this rectangular viewport. In doing so, however, your data must
account for the non-square viewport.

To re-establish the default viewport, use either the commands

Configure A;

VPF1$:= Viewport Horizontal = -0.825:0.825 Vertical = -0.65:1 Intensity = 0:1
Then HVP1$; ‘

Finish Configuration;

3

or

Screensave := F:Screensave;

Note that the initialize command does not restore the original viewport. Also, note that
you cannot override the default viewport with the LOAD VIEWPORT command.

3.3 “Soft Labels” Function Network

Included on the distribution tape in the PS 390 Subdirectory is the “soft labels” ASCII
file, which sets up a structure and network to use a normally unused portion of the screen
to display function key and dial labels. This file can be incorporated in your SITE.DAT
file if you have the new peripherals without LED labels. The labels appear on the
left-hand side of the screen, with the square, default, graphics viewport shifted fully to
the right. The displayed labels provide visual feedback to the user, but they are not
pickable.

The structure and network requires no application software changes, except that the
label, flabell0, no longer exists. (This is the 96 character label that goes across the entire
LED area of the standard E&S keyboard with LEDs.) Figure 7 shows this soft labels area
as it appears on the screen.

Version A2.V02

April 1987

Page 15

PS 390 RELEASE NOTES

F1

F3 ’/\Soft Labels Area
F4

FS

Fé6

F7

F8

F9

F10

F11

F12
D1 D5
D2 D6
D3 D7
D4 D8

Figure 7. Screen Layout for the PS 390 with Soft Labels

3.4 Multiple GPIO Interfaces

The PS 390 runtime firmware supports up to two GPIO interfaces of differing types as
well as asynchronous communications installed in the same system. The default
configuration is asynchronous, but you have the ability to change your default to configure
any interface when the system is booted. This is explained in the following section.

It is also possible to change the configuration without rebooting the PS 390 because the
runtime determines which of the interfaces are in the system and initializes them all. This
is achieved through runtime identification of up to two GPIOs at the first two addresses
" assigned to GPIO interface cards. (Refer to Send ‘UNIBUS’ command in 3.4.1 for an
. example of how to do this.) However, there are some limitations to the use of multiple
GPIOs. First, there cannot be two of the same type GPIOs in the same system. Second,
if the IBM 3278 option is included, then only one additional GPIO may be added. The
3278 GPIO running under previous PS 300 systems is not supported under PS 390. Table

1 shows the possible GPIO combinations.

Version A2.V02
Page 16 April 1987

g

PS 390 RELEASE NOTES

Table 1. Possible GPIO Combinations

1st GPIO 2nd GPIO
IBM 5080

IBM 3278 Parallel

(enabled on JCP)
Ethernet/DECNET
Parallel

IBM 5080 Ethernet/DECNET
IBM 5080

Parallel Ethernet/DECNET

Ethernet/DECNET |—1BM 5080
Parallel

3.4.1 Interface Configuration Files

The PS 390 runtime is distributed on two diskettes and contains more files than previous
PS 300 runtime diskettes. This is to allow for the many different combinations of
interfaces possible with the multiple GPIO operation.

When the PS 390 is booted, the system attempts to read the file, INTFCFG.DAT. If this
file is not found, the system will boot with the default interface of Asynchronous, and
display the message INTFCFG.DAT NOT FOUND. To boot with a default interface in
addition to Asynchronous, the appropriate interface file must be renamed to
INTFCFG.DAT. This can be done using the Diagnostic Disk Utility program described in
Volume 5, Section 10 of the Document Set. For example,

Rename ETHERNET.DAT INTFCFG.DAT

would rename the default interface to Ethernet so that, at boot time, the communications
interface protocol for Ethernet would be configured.

The following is a list of the file names on the diskette and which interface each file sets
up.

ASYNC.DAT Asynchronous communications
IBM3278.DAT IBM 3278 communications
IBMS5080.DAT IBM 5080 communications
UNIBUS.DAT Parallel interface communications

ETHERNET.DAT Ethernet communications (for Ethernet or Decnet)

Version A2.V02

April 1987

Page 17

PS 390 RELEASE NOTES

If your system hardware supports two interfaces, you can change the interface during a
session without rebooting by sending the name of the interface file to input <1> of
RDCFGS$. For example, the following command,

Send 'UNIBUS’ to <1>RDCFGS$;

would change the communications protocol to the UNIBUS Parallel interface to allow
parallel communications.

Table 2 shows the files contained on the PS 390 diskettes which are needed for a
particular interface.

Version A2.V02
Page 18 April 1987

Version A2.V02
April 1987

PS 390 RELEASE NOTES

Table 2. Required Interface Files

PS 390 File Name

Async

3278

5080

Unibus

Ethernet

mmdd390J.EXS

‘/

74

v

”

. ACPCODE2.DAT

P

174

v

1%

ASYNC.DAT

CHARFONT.DAT

AYAVAYA

‘/

v

\

CIRCLE.DAT

CONFIG.DAT

\

AYAYA

DINTCODE.DAT

EINTCODE.DAT

ETHERNET.DAT

FCNDICTY.DAT

FCNTABLE.DAT

AYA

ANAY

N

AYAYAYANAYA

FONTS080.DAT

ANAYAY

GPIOCODE.DAT

HMSCODE.DAT

HMSCOL.DAT

HMSVEC.DAT

ANANA

ARANAY

ANARA

AYANA

IBM3278.DAT

AYANANANAY

IBMS080.DAT

IBMASCII.DAT

IBMFONT.DAT

IBMKEYBD.DAT

| INITACP.DAT

AYAVAYA

ANAVANANAN

ANANANA

AYAYAYA

INITGPIO.DAT

LINLUT.DAT

LUT.DAT

MSGLIST.DAT

OVERLAY2.DAT

PARSECODE.DAT

PARSDICT.DAT

AYAYAYANANAS

A YA AY AN AN AN AVANAN ANAN

AYAYANAYARAY

AYAYANANANAY

PINTCODE.DAT

AYAYAYAYAYANA

SINE.DAT

THULE.DAT

X

\

AYAY

\

UNIBUS.DAT

AW AN

Page 19

PS 390 RELEASE NOTES

All of the interface files assume that the keyboard used is a VT100-style keyboard. A
FALSE is sent to the keyboard handler (either IBMKBD or KBHANDLER) at the end of
the file. To use the IBM-style keyboard, the command in the interface file must be
changed to send TRUE to the keyboard handler. For example,

Send True to <2>Kbhandler;

would accomplish this.
This also means that full VT100 support is provided with the IBM-style keyboard.

(Please note that the IBM keyboard is not supported with the initial release of the
PS 390.)

3.4.2 Ethernet/DECNET Interface

The GPIO interface hardware for Ethernet and DECNET is the same. The only
difference is the microcode that is loaded into the GPIO. Therefore, both microcode files
are distributed on each disk. The runtime attempts to load a file named
EINTCODE.DAT. Ethernet is the. default on the disk. The file for the DECNET
interface is DINTCODE.DAT. If your system supports a DECNET interface, you must
rename DINTCODE.DAT to EINTCODE.DAT to load the DECNET microcode into the
GPIO. This can be accomplished by using the Diagnostic Utility program.

NOTE

As documented in the Customer Installation and User Manual PS 300
Ethernet Interface, you must send the assigned Ethernet address to the
PS 300. The command to do this for the PS 390 is

Send ’address’ to <1>ei_o01$;

Please refer to that manual for instructions on doing this.

Version A2, V02
Page 20 April 1987

PS 390 RELEASE NOTES

3.5 Crash Dump File

Another of the new features of the runtime is the writing of a Crash Dump file to the
diskette in drive 0 when a system crash occurs. This file is always named Crash.dat;1 and
occupies only 1 block on the diskette.

If the file already exists it will be overwritten by the new crash information. If the file
doesn’t exist, it will be created. If there is insufficient room on the disk for the file, no
crash dump file will be written.

The file consists of the 8 Data, the 8 Address registers, system version, system type,
program counter, error type, error number, 59 32-bit stack entries, and the 68000 status
register. Figure 8 shows the structure of the data in the crash file. Appendix A gives
more information on some of these values.

DO
D1
D2
D3
D4
DS
D6
D7
AQ
Al
A2
A3
A4
AS
Ab
A7
Sysver
Systype
PC
Errtyp l Errnum

)
Stack (236 Bytes)
°

Unused I SR

Figure 8. Data in Crash File

Version A2.V02

April 1987

Page 21

PS 390 RELEASE NOTES

Appendix A also gives an example of a host PASCAL program that reads back the
Crash.dat file from a PS 300. This program will read the Crash.dat file from a PS 300
and display the information in a format similar to the debug port on the PS 300. This
information can be helpful in determining the cause of a crash.

The READDISK function has an added constant input <2> which accepts a boolean. If
there is a true on input <2> after the file specified on input <1> is read, the file is deleted.

One possible use of this function is that an application program on the host could read
and maintain crash file information. For example, a host program could have a start up
procedure that checks to see if a crash file exists and then logs it in a host file. By reading
and then immediately deleting this file, the program prevents the logging of crash files that
were already recorded. The existence of a crash file would indicate that a crash had
occurred since the last time the host program was run.

3.6 Additions to F:PICK

The PS 390 pick function, F:PICK, has three additional inputs. Input <4> is a real
number between 0 and 1 that defines the pick window half size for the ACP pass of the
pick . This is different from the size set by the SET_PICKing_L OCation operation node.
The Line Generator or the Frame Buffer uses the operation node to determine if a pick
has occurred, while the ACP uses input <4> to do the actual pick pass on the data.

Input <5> is an integer specifying pick pass retries. Since it is possible that the ACP will
not find the picked data during a pick pass, input <5> indicates the number of times to
add the window half-size increment on input <6> and try another pick pass.

Input <6> is a real number between 0 and 1 which specifies the amount to increase the
pick window half size on each retry of the pick pass.

The defaults for each input are:

Input <4> 6.8359E-3
Input <5> 4
Input <6> 6.8359E-3

Version A2.V02
Page 22 April 1987

PS 390 RELEASE NOTES

3.7 UWF Runtime Code Modification

The stack allocation scheme for User-written functions (UWF) has been changed. The
UWF stack is now allocated when functions are downloaded rather than when they
execute. As each function is processed by the SREC_GATHER function, the stack size
requested is checked against the size of the currently allocated stack. If the requested
stack size is the same or smaller, no action is taken. If the requested stack size is larger
than the currently allocated stack, the current stack is disposed and a new one is
allocated. All UWFs therefore use the same stack area. This allocation scheme
eliminates the time previously required to allocate and deallocate a stack block on each
execution of a UWF. Note that when UWFs are used, the one with the largest stack
request should be loaded first.

Version A2.V02

April 1987

Page 23

PS 390 RELEASE NOTES

4. PS 390 EXCEPTIONS

PS 390 functionality is the same as described in existing PS 300 documentation with the
exception of the following.

There is no support for Port 0 and Port 2 of the control unit, DMR-11 interface,
multi-user, or any scope other than scope 0.

The default viewport of the PS 390 is 864x864 centered on the raster display. You can
change this by using the commands described in Section 3.2, but you cannot modify the
this default viewport using the Load Viewport command.

Local hardcopy is not supported. Host hardcopy is available through the Writeback
feature included with this release.

Reading back of pixel data from the PS 390 to the host is not supported nor is the loading
of user-defined color lookup tables or the display of anti-aliased objects in overlay mode.
This functionality is planned for future releases.

The lightpen is not supported.

There are no vector-normalized vectors; all ASCII and GSR vector list commands which
do not specify block-normalized vectors will create 32-bit block-normalized vectors

‘internally in the PS 390. (No modifications to ASCII commands or GSR routines are

required.)

There is no “per vector” intensity specification available.
There is no color blending (color by vector) available.
Zero length vectors cannot be picked.

There is no allowance for the display of transformed data (data output by
F:XFORMDATA). However, a limited form of access to the data generated by the
F:XFORMDATA function has been provided to allow certain user—written functions (and
the CPK modeling firmware) to perform properly. Please note the following restrictions
on the use of transformed data on the PS 390:

- F:XFORMDATA outputs a non-displayable data type (vector-normalized vector
list).

- A single-precision vector list is generated by F:XFORMDATA.
— Only three-dimensional data can be transformed.

F:XFORMDATA can still be connected to F:LIST to enable the host to read the
transformed data retrieved from the PS 390.

Version A2.V02

April 1987

Page 25

PS 390 RELEASE NOTES

Existing PS 300 applications that create nodes with functionality not yet supported by the
PS 390 will be treated as no operation nodes.

Version A2.V02
Page 26 April 1987

APPENDIX A

Crash Dump Information

The System Version is a number generated indicating the date the runtime was created. For
example, a value of 111486 means the system was created on Nov. 14, 1986.

The system type is a three digit number indicating the type of system that is being used. The first
digit on the left is a 1 for GCP, 2 is reserved, 3 for JCP. The second digit, 1, is reserved, 2 is for
1320, 3 is for 330, 4 is for 340, 5 is for 350 and 6 is for 350/340. The last digit is 0 for Async or
any JCP, 1 for IBM 3278, 2 for Parallel, 3 for IBM 3250/5080 and 4 for Ethernet/DECNET.
Digit 3 will always be 0 for JCP systems. For example a value of 350 indicates JCP 350.

Error Types/Error Numbers

There are three crash error types in the PS 300. Each type has a set of error numbers associated
with the type. The three types are:

1. System Errors
2. Traps
3. Exceptions

The following is the list of errors for each type.
Type 1 - System Errors

Track number out of range
Disk drive not ready

Disk remains busy after a seek
Block number out of range

BW N e

Version A2.V02
April 1987 Page A-1

Page A-2

ocmMmHY AW wvonaoa

[el e S S T S SU U T
OW P> 0©ooaohn & o=

[ouy

QU Do oy O
~omMHUQW » oo o » MU

72
73
74
75
76
77

PS 390 RELEASE NOTES

Lost data during read

Record not found during read
Data CRC error during read
ID CRC error during read
Lost data during write

Record not found during write
Data CRC error during write
ID CRC error during write
Write fault

Disk is write protected

Lost data during format

Write fault during format

Disk drive number out of range

Seek error

Drive not ready during read

Drive not ready during write

Disk not at track @ after restore command
Disk busy after restore command

Track number out of range during format
Drive not ready during format

Disk write protected during format

Time out during read

Time out during write

Time out during format

Wait maybe called with nil argument

Wait maybe called with a non-function
Wait maybe, already a function waiting
Wait maybe, parameter function waiting elsewhere
Q ship to an unrecognized Namedentity
Msgcopy, Message type shouldn’t be copied
Msgcopy, Msg type Has structure, unknown to Msgcopy
Send, 'Me’ = nil

Send, 'Me’ not a function instance

Send, No such output port for this function
Rem_conn/Add_conn, Al = nil

Add_conn, A2 = nil

Findqueue, Named item = nil

Findqueue, illegal queue number (queue no. < @ or queue no. > no. of inputs
for function)

Allinpwait, Nmin > Nmax

Allinpwait, Nmin < 1

Tmessage, Waiting and n = @

Cmessage, Waiting and n = 0
Lookmessage, Waiting and n = @

Allinputs, Nmin > Nmax

Version A2.V02
April 1987

g

78
79
TA
7B
7C
7D
7E
7F
80
81
85
8D
8E
8F
90
91
92
93
94
95
96
97
99
9C
9D
9E
Al
A3
A9

AB
AC
AD
AF
BO
B3
B4
B8
B9
BA
BD
BF
Co
C1
C2

Version A2.V02

April 1987

PS 390 RELEASE NOTES

Allinputs, Nmin < 1

Fcnnotwait, Me = nil

Findqueue, found a nil queue!

Waitnextinput, n = @

Anyoutputs, Me = nil

Anyoutputs, illegal outset number

Anyoutputs, no outset where there should be
Fdispatch, function failed to re—queue after running
Text_text, B1 < ¢

Char_text, b< @

Error during disk read

Initial structure not correct

AnnounceUpdate List tail = nil;head < > nil
FormatUpdate Somebody’s sleeping in my bed
FormatUpdate Ready Head not nil but Tail is

Bad code file —— illegal Op

ByteIndex Invalid Acpdata type

FormatUpdate, PASCAL Head not nil but Tail is
Vec_size, Invalid Acpdata type

KillUpdate, Updfetch was < @

KililUpdate, Some one was sleeping in my bed
Vec_bias, Invalid Acpdata type

CntCapacity, Invalid Acpdata type

Unknown brand of Namedentity

Hasstructure knows something I don’t

Amuhead not a Qalphapair

AppendVector, Invalid Acpdata type
Nomemsched, Bad .Status for a fcn

Bad update list on ACP time-out

ACP Timeout during initialization

Crashprepare, Name CRASHS$ has not been defined
DecUpdsync, C_header " .Updsync < 0
FormatUpdate, Someone waiting in C_header * .Updswait already
Someone else waiting in C_header " .Killer already
Non-nil Qwait of a dying function

- Microcode won’t fit into ACP

Implementation limit on delta waits (2**31)
detected internal inconsistency

detected error (passed a bad parameter)

diskette’s parsecode table inconsistent with parser
Bad boundary on binary data xfer

default Devsts contains errors

Inwait, f is already waiting or not a function
Outwait, f is already waiting or not a function

ECO Level of GCP does not support 56K Baud Line

Page A-3

Page A-4

C3
C9
CA
CB
cC
CD
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DE
DF
EO
El

E2
ES
E6
E7
E8
E9
EA

EB
ED
EE
EF
FO
F1
F3
Feé
F7
F8
F9
FC

PS 390 RELEASE NOTES

Port 1 Configuration is invalid for 56K Baud Line Support
User generic function stack overflow

Ug_run_cnt has become negative

User generic function has bad alpha (on private queue)

Bad format of MSGLIST .DAT detected

MSGLIST (or code using it) has probably been corrupted
Apparent datastructure incompatibility

Bad MemOKindex detected

routine passed bad parm (e.g., a nil ptr)

Lines to IBM system not active

Floppy disk lile INITGPIOC.DAT; not found or unable to read
Floppy disk file GPIOCODE.DAT; not found or unable to read
Floppy disk file IBMFONT.DAT; not found or unable to read
Floppy disk file IBMKEYBD.DAT; not found or unable to read
Floppy disk file IBMASCII.DAT; not found or unable to read
IBM GPIO timeout

No. of minimum inputs is negative

No. of maximum inputs < No. of minimum inputs

No. of maximum inputs > # inputs for function

Sendlist detected a bad list

Sendmess: message to be sent is NIL

Caller did not have a lock set already

Curicn in improper state to call Getinputs

Cleanin, Curfcn in improper state to call Cleaninp (e.g., have you first called
Getinputs?)

Somebody remembered a forgotten non-fcninstance

Alpha not already locked by caller

Confusion in discarding bad message

Lock not already set by caller

Probable multiple master GCPs

RemOne, Curfcn does not have that many inputs

RemOne, Message to be deleted and message pointed to by Curinputs is not the

same

Lock not already set in Gatheraupdate call
Get2locks detected lock already set

Error in semantic routine for polygon vertex
Destination Alpha was not already locked
Parent not already locked in add/remove from set
Child not already locked in add to set

Alpha not already locked in Gpseudoaupdate
Confusion about locks or decausages

Unknown tap reason

Unanticipated state at which to see shoulder tap
Illegal number of inputs

No existing DCB found for this user

Version A2.V02
April 1987

FD
FE
FF
100
101
102
103
104
105
106
107
108
109

10A

10B
10C

10D

10E
10F
110
111
112
113

Type 2 -

Version A2.V02
April 1987

W N = O

QWP oow-aaown &

o

PS 390 RELEASE- NOTES

Timeout, Message on input 1 disappeared before fcn could get it

Error while initializing disk drive

Error while reading disk header

Error while reading disk directory

THULE.DAT not found on disk

Error while reading THULE.DAT

Curfcn was not active at entry

Viewport not in structure

Real_simple, number of digits requested out of range (n <1 orn>9)
Getnextone, illegal queue specified

Getnextone, msg on head of queue and specified by Curinput do not agree
Getnextone, no message on queue, but Curinput < > NIL

ContBlock, nil block

Timeout when waiting for all on-line GCPs

Rehash only works first time, only time now.

No processor has right to issue this tap

GetVector, Not an Acpdata block

GetVector, Not a vector Acpdata block

Invalid gpacket received

Tolerance on FCnearzero is absurd

set construct of father has no dummy control block

function code has to be of type CI to have elements included and removed
ShadeEnviron node encountered in non PS 340

Traps

No mass memory on line, or too little to come up

More OKINTs than NOINTs or > 128 NOINTs

Free storage block size bad (on request or in free list)

Attempt to Activate a non-function (or nil) or bad software detected during startup
(most commonly, incompatible datastru.sa detected but perhaps invalid startup
routine sequencing (if someone has been mucking around with it))

NEW call failed to find memory, within NOMEMSCHED

Attempt to queue where a function is already waiting

Systemerror(n)

Badfcode(Fcn)

Mass Memory Error Interrupt

Utility Routine not included in this linked system

Probable multiple DISPOSE of the same block

Block exponent not big enough

Attempt to divide with a divisor which is too small in FixLongDivide (twice the
dividend must be less than the divisor)

(Used by Motorola PASCAL)

Page A-5

PS 390 RELEASE NOTES

Type 3 - Exceptions

0 Reset: Initial SSP
1 Reset: Initial PC
‘2 Bus Error (i.e. attempt to address nonexistent location in memory)
3 Address Error (i.e. attempt to access memory incorrectly, for example an
instruction not starting on a word boundary).
4 Tllegal instruction
5 Zero Divide
6 CHK Instruction
7 TRAPV Instruction
8 Privilege violation
9 Trace
10 Line 1010 Emulator
11 Line 1111 Emulator
24 Spurious interrupt

Page A-6 Version A2.V02
April 1987

PS 390 RELEASE NOTES

Crash Dump Program

Following is an example of a Pascal host program that writes the information from the PS 300
crash file into a host file.

PROGRAM CRASH (Input,Output,OQutfile);

CONST
%INCLUDE ‘PROCONST.PAS/NOLIST’

TYPE
%INCLUDE ‘PROTYPES.PAS/NOLIST’
cheat_4 = RECORD
CASE Boolean OF
TRUE : (i : Integer);
FALSE : (¢ : Array[l..4] OF CHAR)
END;
cheat_2 = RECORD
CASE Boolean OF
TRUE : (i : [WORD] 0..1024);
FALSE : (¢ : Array[1..2] OF CHAR)
END;
Buffer = RECORD
CASE Boolean OF
TRUE : (b : P_VaryBuftype);
FALSE : ({ Length of P_VaryBuftype is in Dummy}
Dummy :[WORD] 0..1024;
Dreg :Array[0..7] of Cheat_4;
Areg :Array[0..7] of Cheat_4;
SVer :Cheat_4,; :
Stype :Cheat_4;
PC : Cheat_4;
Errtyp : Cheat_2;
Errnum : Cheat_2;
Stack : Array[1..59] of Cheat_4;
Not_Used : Cheat_2;
SR : Cheat_2)
END;
Version A2.V02 Page A-7

April 1987

PS 390 RELEASE NOTES

VAR
Devtyp: Integer;
Inbuff : P_VaryBuftype;
OutBuff: Buffer;
Found : BOOLEAN;
Outfile : text;

%INCLUDE 'PROEXTRN.PAS/NOLIST’
%INCLUDE 'VAXERRHAN.PAS/NOLIST’

PROCEDURE Init_ps300;
FUNCTIONAL DESCRIPTION:

Initialize the comm link to the PS 300

VAR
a, Modify : P_Varyingtype;

BEGIN
Write CEnter Type of Interface (1=Async, 2=Ethernet, 3=Parallel):’);
Readln(Devtyp);
Write "Enter Device name :’);
ReadIn(a); CASE Devtyp OF
1 .

Modify := "'LOGDEVNAM=" + a + '/PHYDEVTYP=ASYNC’; .
2: ;
Modify := 'LOGDEVNAMS=" + a + '/PHYDEVTYP=ETHERNET";
3:
Modify := 'LOGDEVNAM=" + a + /PHYDEVTYP=PARALLEL’
OTHERWISE :
END;
PAttach(Modify, PI_Error_handler)
END;
Page A-8 Version A2.V02

April 1987

PS 390 RELEASE NOTES

PROCEDURE Trigger_read;

FUNCTIONAL DESCRIPTION:

Create instance of function network to retrieve CRASH.DAT file from disk. The
network will convert the data block to six-bit format and break it into packets of 72
bytes which will be put on host_message.

}

VAR

a : CHAR;

PROCEDURE BREAKUP;
{ Code generated by Network Editor 1.08 }
{ This function network takes an incoming gpacket and breaks it }
{ into smaller packets to be sent over a terminal line since }
{ most terminal handlers have some limit to the input length }
{ BREAKUP }
BEGIN
{ Framel: } .
PFnInstN (’Break_sync’, 'SYNC’, 2,
PI_Error_handler);
PFnInst ("Break_route’, 'BROUTEC’,
PI_Error_handler);
PFnlnst ("Add_constant’, '"CONSTANT’,
PI_Error_handler);
PFnlnst ("Break_add’, 'ADDC’,
PI_Error_handler);
PFnlnst ('Breakup’, "TAKE_STRING’,
PI_Error_handler);
PFnInst ('In_length’, 'LENGTH_STRING’,
PI_Error_handler);
PFnlnst ("Len_compare’, 'GTC’,
PI_Error_handler);
PFniInst ("Route_string’, 'BROUTE’,
PI_Error_handler);
PFnInst ("Route_start’, 'BROUTE’,
PI_Error_handler);
PFnInst ("cvt’, 'CVT8TOS’,
PI_Error_handler);
PFnlnst ('rd’, 'READDISK’,
PI_Error_handler);

Version A2.V02 oe A-
April 1987 Page A-9

Page A-10

PS 390 RELEASE NOTES

PFnlnst ("prnt’, 'PRINT’,
PI_Error_handler);

PFnlnst ('Breakup_in3’, "CONSTANT’,
PI_Error_handler);

PConnect ('Break_sync’, 1, 1, 'Breakup’,
PI_Error_handler);

PConnect ('Break_sync’, 1, 2, 'Break_route’,
PI_Error_handler);

PConnect (’Break_sync’, 2, 2, 'Breakup’,
PI_Error_handler);

PConnect {"Break_sync’, 2, 2, 'Break_sync’,
PI_Error_handler);

PConnect ('Break_sync’, 2, 2, 'Break_add’,
PI_Error_handler);

PConnect (’Break_route’, 1, 1, 'Add_constant’,
PI_Error_handler);

PConnect (’Break_route’, 1, 2, 'Route_string’,
PI_Error_handler);

PConnect ("Add_constant’, 1, 1, 'Break_add’,
PI_Error_handler);

PConnect ('Break_add’, 1, 2, ’Break_add’,
PI_Error_handler); :

PConnect ("Break_add’, 1, 2, 'Route_start’,
PI_Error_handler);

PConnect ("Break_add’, 1, 1, 'Len_compare’,
PI_Error_handler);

PConnect (’Breakup’, 1, 1, 'cvt’,
PI_Error_handler);

PConnect ('Breakup’, 2, 1, 'Break_route’,
PI_Error_handler);

PConnect ('Breakup’, 2, 1, 'Breakup_in3’,
PI_Error_handler);

PConnect ('In_length’, 1, 2, 'Len_compare’,
PI_Error_handler);

PConnect ("Len_compare’, 1, 1, 'Route_string’,
PI_Error_handler);

PConnect ("Len_compare’, 1, 1, "Route_start’,
PI_Error_handler);

PConnect ('Route_string’, 2, 1, 'Breakup’,
PI_Error_handler);

PConnect ('Route_start’, 2, 2, 'Breakup’,
PI_Error_handler);

PConnect (’cvt’, 1, 1, 'host_message’,
PI_Error_handler);

PConnect ('rd’, 1, 1, 'Break_sync’,

=

Version A2.V02
April 1987

PS 390 RELEASE NOTES

PI_Error_handler);

PConnect ('rd’, 1, 1, 'In_length’,
PI_Error_handler);

PConnect ('rd’, 2, 1, ’prat’,
PI_Error_handler);

PConnect ('prnt’, 1, 1, 'host_message’,
PI_Error_handler);

PConnect (’Breakup_in3’, 1, 3, 'Breakup’,
PI_Error_handler);

PSndStr(CHR(36), 2, ’cvt’,
PI_Error_handler);

PSndFix (48, 3, 'Breakup’,
PI_Error_handler);

PSndFix (48, 2, 'Breakup_in3’,
PI_Error_handler);

PSndFix (48, 2, 'Add_constant’,
‘PI_Error_handler);

PSndFix (1, 2, 'Break_sync’,
PI_Error_handler);

PPutPars(’Set priority of prnt to 9; ’,
PI_Error_handler);

END;

BEGIN
IF Devtyp = 1
THEN
Breakup
ELSE
BEGIN
PFniInst ('rd’, 'READDISK’,
PI_Error_handler);
PFnlnst ("prant’, 'PRINT’,
PI_Error_handler);
PConnect ('rd’, 2, 1, ’prat’;
PI_Error_handler);
PConnect ('prnt’, 1, 1, 'host_message’,
PI_Error_handler);
PConnect ('rd’, 1, 1, "host_message’,
PI_Error_handler);
PPutPars(’Set priority of prnt to 9; ’,
PI_Error_handler);
END;
Write(" Do you want to delete CRASH.DAT after reading?’);
Readln(a); ‘
IF a="Y)OR (a="y")

Version A2.V02 -
April 1987 Page A-11

PS 390 RELEASE NOTES

THEN

Psndbool(TRUE, 2, °rd’, PI_Error_handler)
ELSE

Psndbool(FALSE, 2, 'rd’, PI_Error_handler);
Psndstr('CRASH’, 1, 'rd’, PI_Error_handler)
PPurge(PI_Error_handler);
END;

PROCEDURE Get_data_block;

{

FUNCTIONAL DESCRIPTION:

Read in data from PS 300, convert to 8 bit and put in buffer

{
VAR

i,j,Temp : Integer;
Done : BOOLEAN;

PROCEDURE Cvt_6_8
(Inblock : P_VaryBuftype;
VAR Outblock : P_VaryBuftype;
Factor : Integer);

VAR
w : cheat_4;
c_out,cycle_count,il,tc : INTEGER;
First : BOOLEAN;

BEGIN
i:=1;
First := TRUE;
Cycle_count := 1;
c_out := 4;
WHILE i <= LENGTH (Inblock) DO
BEGIN
tc := ORD(Inblock[i]) - Factor;
IF First
THEN
IFtc<O
THEN
c_out := 4 + tc
ELSE

- Version A2.V02
Page A-12 April 1987

BEGIN

PS 390 RELEASE NOTES

BEGIN

First := FALSE;

w.i = tc;

cycle_count := SUCC(cycle_count)
END

ELSE

BEGIN

w.i = w.i* 64;

w.i = wi + tc;

cycle_count := SUCC(cycle_count)
END;

IF cycle_count > 6
THEN

BEGIN

FOR il := 1 TO ¢_out DO
Outblock := Outblock + w.c[il];

cycle_count := 1;

First := TRUE
END;
i := SUCC();

END;

Done := FALSE;
Found := TRUE;
WHILE NOT Done DO

Version A2.V02
April 1987

Pgetwait(Inbuff, PI_Error_handler);
IF Inbuff = ""’'TRUE '’

Done := TRUE

IF Inbuff = *’FALSE’”’
THEN

BEGIN

Done := TRUE;
Found := FALSE
END

ELSE

IF Devtyp = 1

Page A-13

PS 390 RELEASE NOTES

THEN
Cvt_6_8(Inbuff, Outbuff.b, 36)
ELSE
FORi:= 1 TO 80 DO
FOR j := 4 DOWNTO 1 DO
Outbuff.b := Outbuff.b + Inbuff[(i-1)*4 + j];
END;

{ It is necessary to reverse Errnum with Errtyp }
{ and Not_Used with SR }
IF Found
THEN
WITH Outbuff DO
BEGIN
Temp := Errnum.i;
Errnum.i := Errtyp.i;
Errtyp.i := Temp;
Temp := Not_Used.i;
Not_Used.i := SR.i;
SR.i := Temp;
END;

END;

_ Version A2.V02
Page A-14 April 1987

PS 390 RELEASE NOTES

~amE

PROCEDURE Display_crash;

{

FUNCTIONAL DESCRIPTION:

Display Crash info on terminal

{
PROCEDURE Dumpit;

VAR
SP,j,k,sloc,cloc : INTEGER,;
tc : CHAR;
Sline : PACKED ARRAY [1..15,1..16] OF
CHAR;

BEGIN
Rewrite (Outfile);
WITH Outbuff DO
BEGIN
Writeln (Outfile);
Write (Outfile,” PC=",HEX(PC.i, 8, 8));
Write (Outfile,” SR=",HEX(SR.i, 4, 4));
Write (Outfile,” STYPE=’,Stype.i:3);
Write (Outfile,” SVER=’,Sver.i:6);
Write (Outfile,” ETYPE=",HEX(Errtyp.i, 4, 4));
Write(Outfile,” ENUM=",HEX(Errnum.i, 4, 4));
Writeln (Qutfile); Write (Outfile,’D0-D7=");
FOR j := 0 TO 7 DO
Write (Outfile,” ', HEX(Dreg[j].i, 8, 8));
Writeln (Outfile);
Write (Outfile,’ AO-A7=");
FOR j := 0 TO 7 DO
Write(Outfile,” ', HEX(Areg[j].i, 8, 8));
Writeln (Outfile);
Writeln (Outfile);
Writeln(Outfile,’STACK="); SP := Areg[7].i + 14;
FORj:=1TO 15 DO

BEGIN
Sloc := (j-1) * 4 + 1;
Cloc := 4;
FOR k := 1 TO 16 DO
BEGIN
Version A2.V02 Page A-15

April 1987

PS 390 RELEASE NOTES

IF sloc < 60
THEN
BEGIN
tc:= Stack[sloc].c[cloc];
IF tc > CHR(127)
THEN
tc:= CHR(ORD(tc) - 128);
IF (tc < CHR(32)) OR
(tc = CHR(127))
THEN
Sline[j,k] ="
ELSE
Sline[j,k] :
END
ELSE
Sline[j, k] :=".";
Cloc := Cloc - 1;
IF Cloc =20
THEN
BEGIN
Cloc := 4;
Sloc := Sloc + 1
END;
END;
Write (Outfile, HEX(SP, 8, 8),” ’);
Sloc := (j-1) * 4 + 1;
Cloc := 4;
FOR k := 0 TO 15 DO
BEGIN
IF sloc < 60
THEN
Write (Outfile,” ', HEX(ORD(Stack[sloc].c[cloc]), 2, 2))
ELSE
Write (Outfile,” 00°);
Cloc := Cloc - 1;
IF Cloc = 0
THEN
BEGIN
Cloc := 4;
Sloc := Sloc + 1
END;
END;
Write (Outfile,” ’);
FOR k :=1TO 16 DO
Write (Qutfile, Sline [j,k]);

tc

_ Version A2.V02
Page A-16 April 1987

PS 390 RELEASE NOTES

Writeln (Outfile);
SP :=SP + 16
END
END
END;

BEGIN
IF Found
THEN
Dumpit
ELSE
Writeln(’ Crash file not found ’)
END;

BEGIN

Init_ps300;

Trigger_read;
Get_data_block;
Display_crash;

PDetach(PI_Error_handler);
END.

Version A2.V02

April 1987 Page A-17

PART II

Change Pages And Previous Graphics Firmware Release Notes

A consolidation of Versions A1.V02 and A2.V01 of the PS 300 Graphics Firmware
Release Notes are included in this package. Current customers should already have this
information. Also included are change pages specific to PS 390 functionality.

The following commands and functionality have been added since the publication of the
Document Set. The new commands have been formatted as supplement pages for the
PS 300 Command Summary. The list below gives the new commands and a brief descrip-

tion.

Load Viewport
Set Blinking ON/OFF

Set Blink Rate
Set Line_Texture

Writeback

Rawblock

Loads a viewport and overrides the previous viewport (can
not be used to modify default viewport).

Creates blinking nodes to specify whether blinking is enabled
in the specified structure.

Specifies the blink rate.

Specifies pattern for hardware texturing of displayed lines.

0

Enables writeback for the data structure below the writeback
node.

Allocates memory that can be directly managed by a
user-written function, or the Parallel or Ethernet Interfaces.

GRAPHICS FIRMWARE RELEASE NOTES

Version Al.V02 - March 1985

DOCUMENTATION INFORMATION FOR ALL USERS

Important corrections to errors in the PS 300 Document Set are provided on the
following pages. Please note these changes in your document set. New pages for
previously undocumented functions are included here.

Several documents have been changed. The documents and the changes are
summarized below. If you would like to have the newest version of any of these
documents, please contact your E&S Account Executive.

e User-Written Functions: revised to correct errors in the document and

provide templates with more complete instructions, as well as more
information on writing various types of functions.

NOTE

A2.V02 - This manual has been completely revised and
included in the PS 300 Advanved Programming manual
that has been provided to you as a seperate document for
the A2.V02 release.

o NETEDIT: revised to support the new version of NETEDIT.

e Introduction to Data Driven Programming Methodology: notes have
been added to this document to clarify misleading information.

e PS 300 Application Notes: new Notes have been added.

i

GRAPHICS FIRMWARE RELEASE NOTES

Version Al1.V02 - March 1985

Information for PS 300/I1BM 3278 Interface Users

Enhancements and New Features in the PS300/I1BM 3278 Firmware

The PS 300/IBM 3278 Terminal Emulator Setup mode now includes keys that
will inhibit the display of the cursor, the PS 500 indicator characters, and
the host indicator characters. I[nhibition of these screen characters is
accessed by entering Setup mode, (ALT/GRAPH or ALT/SETUP on the IBM
3278-style keyboard, SETUP on the VT100-style keyboards) and toggling the
appropriate keys.

Once in Setup (shown by the display of the PS 300 indicator character 'S' on
the bottom line of the screen), the following new Setup features are
available:

FUNCTION KEY FEATURE

Fé Toggles the display of the PS 300 characters. Default is
the display of the characters.

F7 Toggles ‘the display of the ‘host indicator characters.
Default is the display of the characters.

F8 Toggles the display of the cursor. Default is display of
the cursor.

Function keys F9 and F10 are used in conjunction with the PS 300/IBM 3250
Interface. Information on the use of these keys is available in the
PS 300/IBM 3250 Interface User's Manual.

The adjustments made in Setup can be entered as PS 300 commands in the
SITE.DAT file to set the appropriate characteristics at boot time.

The list below shows the characters that should be entered into the
SITE.DAT file for each new feature.

For VT100-style keyboards, the appropriate character(s) must be inserted
between a 'TVo TVo' header and trailer sequence. TVo is a CTRL V

lowercase "o" sequence:

GRAPHICS FIRMWARE RELEASE NQTES

Version A1.V02 - March 1985

FEATURE CHARACTERS TO BE ENTERED INTO SITE.DAT
Set/Reset Local Indicators SEND 'tVotVfTVo' TO <1>IBMKBDI1;
Set/Reset Host Indicators SEND 'tVotVgtVo' TO <1>IBMKBD1;
Set/Reset Cursor SEND 'TVoTVhTVo' TO <1>IBMKBDI1;
Set 3250 Mode SEND 'TtVotVitVo' TO <1>IBMKBDI1;
Set PS300 Mode SEND 'tVotVjitVo' TO <1>IBMKBDI1;

For IBM-style keyboards, the appropriate characters must be inserted between
a CHAR(130)&CHAR(N)&CHAR(130) sequence, where &CHAR(n) is the

character sequence(s) for the feature:

FEATURE CHARACTERS TO BE ENTERED INTO SITE

.DAT

Set/Reset Local Indicators SEND CHAR(130)&CHAR(150)&CHAR(130) TO
Set/Reset Host Indicators SEND CHAR(130)&CHAR(151)&CHAR(130) TO

Set/Reset Cursor SEND CHAR(130)&CHAR(152)&CHAR(130) TO
Set 3250 Mode SEND CHAR(130)&CHAR{153)&CHAR(130) TO
Set PS300 Mode SEND CHAR(130)&CHAR(154)&CHAR(130) TO

<1>IBMKBD1;
<1>IBMKBD1;
<1>IBMKBDI1;
<1>IBMKBD1;
<1>IBMKBDI1;

® A kit containing keycap replacements for the 3278-style keyboard

accompanies this release. The configuration of the keyboard

has changed

with the Al.V02 Firmware to support additional keys required by some IBM

applications. The keyboard reconfiguration and keycap replace

follows:

1. The keys designated for use by IBM applicaticns are the old
TERM keys on the left-hand keypad of the keyboard. These
be replaced by blank keycaps and have no PS 300 application.

2. The old SETUP and TEST/NORM keys on the left-hand
become dual-purpose keys. The new keycap for the SETUP
GRAPH on the top and SETUP on the front of the key. To

ments are as

GRAPH and
keycaps will

keypad will
key will read
access Setup

mode, the key must be pressed in conjunction with the ALT key on the

keyboard.

The new keycap for the TEST/NORM key will read TERM on

the top and

TEST/NORM on the front. The terminal display will be toggled on and off
by pressing the key. To access TEST/NORM, the key must be pressed in

conjunction with the ALT key on the keyboard.

The keycap exchange will be made by the user. Additional instructions for

changing the keycaps are included in the kit.

GRAPHICS FIRMWARE RELEASE NOTES

Version A1.V02 - March 1985

e Two system functions (F:IBM KEYBOARD and F:IBM SETUP) have been
madified to support the new PS 300/I1BM 3250 Interface. The modifications
made to these functions are shown on the System Functions change pages.
These pages may be inserted into Volume 5 of the PS 300 Document Set.

L

The following section contains the NETEDIT Release Notes.

NETEDIT RELEASE NOTES -1

Version Al.V02 - March 1985

NETEDIT V1,08 RELEASE NOTES

A revised version of the NETEDIT programming tool is provided on the magnetic tape
distributed with the A2.V02 PS 390 Firmware. A description of changes follows. If
you wish a new version of the NETEDIT User's Guide, contact your E&S Account
Executive to order the updated documentation.

FORTRAN/Pascal GSR Code Conversion

There are now options to produce FORTRAN or Pascal code, as well as the
usual PS 300 ASCII commands, available under CONVERT NETWORK.
Selecting these options produces a subroutine or procedure which can be
compiled and linked with a user-supplied main program and the appropriate
GSR library.

The Pascal code is compatible with VAX/VMS Pascal V2; the FORTRAN code
is compatible with VAX/VMS FORTRAN-77.

The menu items ASCII QUTPUT, FORTRAN GSR, and Pascal GSR cause the
corresponding type of code to be generated. The other menu items toggle
various options on and off; you should set these before you select the item to
produce the code.

You must take special care to see that the code for all macros referenced in
your network have been converted to the same form (i.e., ASCII, FORTRAN, or
Pascal) as the code to be produced for the rest of the network. For example,
when you are generating Pascal code you cannot reference an ASCII macro.
NETEDIT will give a warning message if you attempt to do this.

The following discussion of how to compile and link the generated code with
your program assumes familiarity with the GSRs. '

The generated code is output to a file with the same name as the network, with
an extension of .PAS for Pascal, and .FOR for FORTRAN. The code is in the
form of a single subroutine or procedure with the same name as the network;
this routine takes no arguments.

Your program must perform the calls to attach and detach the PS 300
(PAttach/PDetach for Pascal, PATTCH/PDTACH for FORTRAN). You must
also supply an error handling routine, as described in the GSR documentation.

2 - NETEDIT RELEASE NQOTES

Version Al.V02 - March 1985

For FORTRAN, the error handler must be named ERR. The output file
produced by NETEDIT may be compiled independently, or included in a file
containing other FORTRAN subprograms. You must then link it with your main
program, the error handler, and the FORTRAN GSR library.

For Pascal, the error handler must be named PI Error_Handler. The suggested
method for compilation is to include the file containing the generated code in
your main program file, using the %include directive. Your program must also
include the declarations in PROCONST.PAS, PROTYPES.PAS, and
PROEXTRN.PAS. After compiling the program, you must link it with the
Pascal GSR library.

Literal PS 300 Commands Can Be Included in Network

Specially flagged labels can be used to insert random PS 300 commands in a
network. Floating comments which start with \+\ or \-\ indicate commands to
be inserted before or after the other code for the frame, respectively. These
commands are always written to the output file during code conversion,
regardless of the SUPPRESS COMMENTS setting.

The statements can be ordered by including a priority number in the flag. For
example, statements prefixed with \-I\ are guaranieed to be sent before
statements prefixed with \-2\. This is useful for sending an ordered sequence of
constants to the same input of a function, for example.

Typically, commands that should be inserted before the other code for a frame
are initialize commands or display structure definitions. Commands that should
be specified to go at the end of the code for the frame are SETUP CNESS
commands, and SEND statements. NETEDIT does not perform any syntax or
validity checking on the commands.

Names of functions, variables, and display structures that are referenced in
these commands may be prefixed with \F\ and/or \M\ to indicate that the
appropriate frame and/or macro prefix should be substituted during code
conversion.

NETEDIT RELEASE NOTES -3

Version A1.V02 - March 1985

NETEDIT Now Uses GSRs

NETEDIT has been changed to use the GSR library internally. This should result
in some increase in performance for those using high-speed lines. The device
type may be specified using the @AttachTo option in the parameter file. The
default value, for the RS-232 async line, is:

@ATTACHTO logdevnam=tt:/phydevtyp=async

See the GSR user's manuals for more information on how to specify this
parameter.

If the Pascal GSR library is not available, a library of procedures with the same
calls as the GSR routines, but which send the equivalent ASCII commands to the
parser, is provided.

Support Network Uses UWFs

Some parts of the support network have been replaced by user-written
functions. No new functionality has been added, but users may notice some
improvement in performance. NetEdit VI1.08 will not work with PS 300
firmware that does not support UWF's (i.e., pre-Al firmware).

Improved Handling of Arcs

Users should see faster response when adding arcs as a result of changes to the
host program and the support network. Adjacent colinear segments are now
combined when the arc is processed. In addition, better ways for handling arcs
when the items they are attached to have been moved should cut down on the
need to manually reroute arcs.

Improved Text Editing Facilities

NETEDIT now uses an improved line editing function for text entry. This
function behaves like a one-line screen editor, similar to EMACS in its use of
control characters for editing effects. If you are editing an existing piece of
text, you do not have to retype the entire line just to make a minor change, as
the buffer is initialized to contain the previous contents of the line being edited.

4 - NETEDIT RELEASE NOTES

Version Al.V02 - March 1985

The following control characters are used for editing effects:

TA Cursor to beginning of line

T8 Cursor left (back)

tD Delete character under cursor

TE Cursor to end of line

TF Cursor right (forward)

TK Delete to end of line

TR Retype line

TU Delete entire line

DEL Delete character to left of cursor
RET Flush buffer

NETEDIT RELEASE NOTES -5

Version A1.V0Z - March 1985 (Modified for A2 — April 1987)

Revised Installation Procedures

The PS 300 distribution tape now contains NETEDIT executables as well as
source files. This simplifies the installation procedure for sites where no
modifications to the source or data files are planned, or where no Pascal
compiler is available. Note that the executables were built on a VAX 780
running VMS 3.7, and may not work properly on other versions of the hardware
or software.

The procedure for installing NETEDIT without rebuilding it entirely is as
follows:

l. Set default to Netedit subdirectory in the A2.V0! subdirectory.

2. Edit NETUSER.COM and change the definition of NETRQOOT (marked
¥INSTALL-DEPENDENT) to the name of the directory created. Make sure
this file is readable and executable by all users. See comments in
Netuser.Com "Site Customization of Netuser.Com."

5. Copy the empty user log file, NETEDITO.USR to NETEDIT.USR. Set the
protection on this file so that it is writable by all users.

The procedure to install the editor by rebuilding the executables is essentially
unchanged. Note that there is an additional !*INSTALL-DEPENDENT
parameter in NETBUILD.COM which specifies the directory where the PS 300
Pascal GSR library resides. If you do not have this library, you may use the
dummy library supplied on the tape. See comment in NetBuild.Com "Site
Customization of NetBuild.Com."

Source files for the user-written functions used by NETEDIT, along with a
command file to build the .300 files which may be downloaded to the PS 300,
have been provided. However, to rebuild the user-written functions, you must
have the Motorola 68000 cross software, which is not supplied by Evans &
Sutherland.

2A

2A

2A

2A

section

Hands-on Experience

Command Language

Function Networks 1

Viewing Operations

KNOWN "BUGS" IN THE PS 300 DOCUMENT SET

1

14

20823

23-28

32

43

45

The command to set the line-drawing speed for CSM displays
should read:
SEND TRUE TO <1> CSM;

The command to translate the tire primitive to the front
left location should read:
Tran_FL_Tire := TRANSLATE BY .5415,-.1598,

.3357 APPLIED TO Rot_FL_Tire;

The TRANSLATE command in the definition of the front 1left
snow tire (FL-tire) should read:

TRANSLATE BY .5415, -1598, .3357;
The remainder of the structure is correct.

Figures 4 and 5 are reversed.

In BEGIN_STRUCTURE ... END_STRUCTURE commands, there should
be no semicolon following “BEGIN_STRUCTURE".

A new page is supplied to call out the names of interactive
nodes in the figure.

The integer 2 should not go to <1>Roty, but to <1>Timer.
The command should read:
SEND FIX(2) TO <1>Timer;

In the definition of Top, the viewport command should
create a viewport with dimensions 0 to 1 horizontally and
vertically. It now creates a viewport from 0 to -1
horizontally and vertically. The viewport command in Top
should read:
VIEWPORT

HORIZONTAL=0:1

VERTICAL=0:1;

The names in the last two commands on this page are wrong,
they should be Nonsquare_Window and NonSquare. The last
two commands should read:

DISPLAY Nonsquare_Window;

REMOVE NonSquare;

e

Version PS 390 A2.V02 - January 1987

Volume
2B

2B

2B

28

2B

3A

section

Conditional Referencing

Function Networks II

Function Networks II

Text Modeling

Rendering Operations

Command Summary ,

KNOWN "BUGS" IN THE PS 300 DOCUMENT SET

Page
13

17

22

39840

20

17
20

Bspline

Rational Bspline

Labels

Change Descriptign

IF LEVEL_OF_DETAIL nodes accept integers from 0 to 32767,
not from 0 to 14, as stated near the bottom of this page.

Select LEVEL OF DETAIL from the Tutorial
Programs, not ANIMATED CYLINDER.

Demonstration

A new page is supplied to call out the names of interactive
nodes in the figure.

Last command should read:
CONNECT Switch7<¢3» : <1>Rot_Lt_Elbow;

Every command must be followed by a semicolon.

Near the top,
now reads:
DISPLAY Limerick;
It should read:
DISPLAY Scale_Block;

the command to display the scaled limerick

A replacement page is supplied to correct coordinate values.

In “Object" on the bottom of page 20, polygon 2 1is an
{outer}, and polygon {5} should be defined as follows:
{non-coplanar} POLYGON 1,1,0 1,1,1

1,-1,1 1,-1,0;

The node diagram shows inputs <1>, <2>, and <3>. It should
show input <1» and input <i>. A real number sent to input
<i>» changes the knots in the curve. A 2D, 3D, or 4D vector
sent to input <i> changes the vertices in the curve.

The node diagram shows inputs <1», <2>, and <3>., It should
show input <1> and input <i>. A real number sent. to input
<i> changes the knots in the curve. A 2D, 3B, or 4D vector
sent to input <i> changes the vertices in the curve.

A 3D vector can be sent to input <i» to change the starting
location of the i-th label. This i1s not currently shown.

Volume Section

3A

3A

Command Summary

Function Summary

KNOWN "BUGS" IN THE PS 300 DOCUMENT SET

Page

Polynomial

Rational
Polynomial

XFORM

F:ACCUMULATE

F:LINEEDITOR

F: MCONCATENATE(n)

F:STRING_TO_NUM

FKEYS

TSCSM

h ription

The node diagram shows inputs <1»> and <2>. It should show
inputs <1» and <i>. An integer sent to input <1> changes
the number of chords in the curve and a vector sent to
input «i> changes the curve coefficients. The present
documentation has this information reversed.

The node diagram shows inputs <1» and <2>. It

should show inputs «<1> and <i>. An integer sent to input
<1> changes the number of chords in the curve and a vector
sent to input <i> changes the curve coefficients. The
present documentation has this information reversed.

The 4x4 matrix shown in the example does not contain enough
elements and 1is improperly formatted. In addition, the
semicolon is missing from the END_S command. The commands
should read:

TRAN := BEGIN_S {To be used while getting transformed data}
MATRIX_4x4 1,0,0,0 o,1,0,0 0,0,1,0 0,0,0,1;

INSTANCE OF 0BJ;

END_S;

The default values on inputs <3> and <4> are not given.
Input <3> defaults to 0 and input <4> defaults to 1.

Qutput <4» is incorrectly documented as an input to
<append>» of a Characters node. It should read input
<delete> of a Characters node.

This function 1is misnamed. Its correct name is F:MCAT
STRING(n).

This function converts a string of digits to a real
number. Missing from the current documentation is output
<2>. This is a Boolean value which is TRUE if the string
received can be converted and false otherwise.

This initial function instance 1is 1listed as an Qutput
function. In fact, it is an Input function.

This has been erroneously documented as TECSM.

version PS 390 A2.V02 - January 1987

Volume Section

3A

Function Summary

Firmware and Host
Software

Local Data Flow

KNOWN “BUGS" IN THE PS 300 DOCUMENT SET

Page

F:SEND

F:LIST
ONBUTTONLIGHTS
CSM

4

5-38
(5-62 IMB hosts only)

iptig
Previously undocumented. A new page is supplied.
Previously unqocumented. A new page is supplied.
Previously undocumented. A new page is supplied.
Previously undocumented. A new page is supplied.
Under "Creating and Downloading the SITE.DAT," Step 3, the
correct demuxing character and routing byte o begin the
SITE.DAT file is T™\: (1T represents the CONTROL value of
the \ key). The user-defined commands are entered after
these characters and the file must end with the demuxing
character and routing byte: 1T\;.

Table 5-1 Routing Byte Definitions is incomplete and may be
misieading. A new page is supplied.

GRAPHICS FIRMAWARE RELEASE NOTES

Version A2.VO1

Enhancements in Graphics Firmware Version A2.V01

® This release of the graphics firmware provides the new Writeback feature.

The Writeback Feature allows displayed transformed data to be sent back to
the host. This feature provides a Writeback command and a Writeback
function.

The Writeback command creates a WRITEBACK operation node and enables
the data structure below the node for writeback operations. When the
Writeback node is activated, writeback is performed for name1 (the name of
the structure for which writeback is applied). A default WRITEBACK
operation node is created by the system at initialization time.

The Writeback Function is initialized by the system and is used to send
encoded writeback data to user function networks. This function is not
activated by the normal input queue triggering mechanism. It is activated by
sending a TRUE to any writeback operation node in a display structure.

Writeback is described completely in the Writeback Feature User's Guide,
included with this release. ‘

PVecMax (PVCMax-FORTRAN) has been added to the GSRs. This procedure
sets the maximum component of a block-normalized vector list, so that
multiple calls may now be made to PVecList for block-normalized vectors.

Modifications in the Graphics Firmware

Changes to BUTTONSIN (PS 350 Only)
The initial function instance BUTTONSIN has two new inputs.

Integer <2> Enable/Disable Bit Mask
Default FIX(-1) all buttons enabled.

Boolean <3> TRUE - enable use of bit mask
FALSE - disable use of bit mask.
Default FALSE

The Buttonsin bit mask is a mapping of the bits of a 32-bit integer to the
individual buttons. The Most Significant Bit (sign bit) maps to button #1; the
least significant bit maps to button #32.

GRAPHICS FIRMAWARE RELEASE NOTES

Version A2.V01

Most Sign}fﬁcant Bit

Least Significant Bit

P

n .
Bits of the Integer 3l| 3? 2? 2? 27 26 25 24 23 22212019 18 17 16 15 14 13 12 1

P

|
Sutton Number 1.2 3. 4 5 6 7 8 910131121314 1516 17 18 1920 2

—
o —0
sadumnd]

[~

2

KR e g

? 5
26 27

321?

If the bit is set (=1), the button is enable. If the bit is off (=0), the button is

disabled.

e Changes to ONBUTTONLIGHTS and OFFBUTTONLIGHTS (PS 350 Only)

The initial function instance ONBUTTONLIGHTS/OFFBUTTONLIGHTS has one

new input.

New input
<2> Boolean

TRUE - interpret integer on input <1> as a bit mask.
FALSE - interpret integer on input <1> as a button number.

The ONBUTTONLIGHTS/OFFBUTTONLIGHTS bit mask is a-mapping of the bits
of a 32 bit integer to the individual buttons. The most significant bit (sign bit)
maps to button #1; the ieast significant bit maps to button #32. If the bit is set

(=1) the button light is on.

CHANGE PAGES TO THE DOCUMENT SET OTHER THAN
THE COMMAND SUMMARY, THE FUNCTION SUMMARY,
AND GRAPHICS SUPPORT ROUTINES

FUNCTION NETWORKS I-3

CONVERTING INPUT DEVICE VALUESTO UPDATE ANINTERACTION NODE

L}
The first step to selecting the appropriate function to convert input values into
values that can update an interaction node is to identify the type of values
needed by the node. To understand this, look at the the most common graphics
transformations—-rotation, scali{g, and translation.

Rotations and scales are done with 3x3 matrices; translations are specified with
a 2- or 3-dimensional vector. It makes sense, then, that the type of data used
by a rotation or scale node is a 3x3 matrix, and the data type for a translation
node is a vector.

Your task, if you are trying to rotate part of a model, is to find a way to make
an input device, such as a dial, send the correct 3x3 matrices to a rotate node.
In this module, this process will be represented by a "black box" (Figure 2) that
takes one kind of value and changes it into another kind.

Input Values [— 7] 3x3 Rotation i
from Dials | Black Bx | Matrices @ :
L — — |

1AS0527

Figure 2, The "Black Box"

In the "Hands-On Experience" module, you created Diamond by specifying a 45
degree rotation of Square. You did not need to work out what the 3x3 matrix
for 45 degrees was. Whenever you use a command to create a rotate or scale
node (such as Diamond), you only have to specify an angle using a real number
value and the PS 300 automatically creates the associated 3x3 matrix.

Once the node is created, however, you can only update it with the type of data
it accepts—-in this case, a 3x3 matrix. For example, look at the robot display
tree again (Figure 3) the names for the interactive nodes are supplied so you
canrefer to them.

4 - FUNCTION NETWORKS I

Trunk

i

Left_Hand.Rot

;U_
=T

._Arm.Rot

t_Arm.Rot

>Right
Arm

%ight_ﬂand.Rot

Right
Hand

ipht_Forearm.Rot

Right Forearm
Left_Foot.Rot

Pelyis

Left_Leg.Rot

Left_Lower_Leg.Ro

high

Fopt

Figure 3. Interactive Nodesin Robot Display Tree

Right Leg.Rot

°Right

R Leg

Ri

[{=]

ht_Lower_
Leg.Rot

Right
1| Lower Leg

R)Rilght_Foot.Rot

Right
Foot

/

1AS0758

FUNCTION NETWORKS II -3

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS

In "Function Networks [," you constructed a function network for the display tree
shown in Figure 1.

&
\599'3(= %
R UpperBody.Rot:) |\‘;§

Head.Rot -
.m
Left Arm.Rot 2
E1 - [
il R R & (r-)
= - R)Right Arm.Rot " righk Leg.Rot
§ Left_Leg.Rot |
‘ j=3 3 N
< .
5) .Rot~ ;
g L Right Left_Lower_Leg.Ro LRight
R s R Arm - Leg
Left_Forearm.Rot) Right_Forearm.Rot Rilght_Lower _
: Leg.Rot
- [Right Forearm LRight
§ Left Foot.Rot Lower Leg
A Pl)
Left_Hand.Rot p R g;ghtt‘_EHand.Rot 1Rg.hgt;.1_t oot.Rot
1 i
Hagd Foot
©
£<
= J)
\ 1AS0758
L

Figure 1. Robot Display Tree

4 - FUNCTION NETWORKS 1I

This function network supplied interactions for the top three nodes of the display
tree: Robot.Scale, Robot.Rot, and Robot.Tran. Seven dials were required to
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to
translate it in X, Y, and Z, and one dial to scale the model. '

Only one free dial remains, but no other interactive nodes in the robot display
tree have yet been connected to functions. To supply X, Y, and/or Z rotations
for all the other interactive nodes would require dozens of other dials. This
section illustrates how to solve this problem by making one set of eight dials
perform like many sets.

The first step in doing this is to determine exactly how many additional dials you
will need by deciding how many more interactions in the model you want to
control. In addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them
require three dials each (three rotations for X, Y, and Z). The two nodes for
elbows and the two for knees only use X rotations, requiring only one dial each.
The result is a total of 34 additional interactions. To handle these interactions,
each dial would have to be connected to about six nodes.

There is nothing to prevent you from connecting a dial to more than one
destination. For example, you could hook dial 1, already updating X rotations for
the Rabot.Rot nade, to ather rotate nodes. But of course turning that one dial
would cause multiple unrelated updates.

Following is one way the dials might logically be assigned to control the
interactions.

In Mode 1, the dials would work as presently assigned:
Whole model: 1. Xrot 2. Yrot 3. Zrot 4. Scale

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned

Mode 2:
Head: 1. Xrot 2. Yrot 3. Zrot 4, Not Assigned

Trunk: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned

Mode 3:
Right arm: 1. Xrot 2. Yrot 3. Zrot 4, Elbow Xrot

Left arm: 5. Xrot 6. Yrot 7. Zrot 8. Elbow Xrot

RENDERING OPERATIONS - 17

- Given the following object (Cube):

0,1,1 1,1,1
Y
0,1,0 1,1,0
1,0,1
,0,1 sV
0,0,0 1,0,0 X
. 1ASOUOL

Fi gurel i. Cube

A correct syntax to define this object is as follows:

Cube := POLYGON 0
POLYGON 1
POLYGON 1
POLYGON 0,
POLYGON 0
POLYGON |

Associating Outer and Inner Contours With COPLANAR

A polygon that represents a face of an object is called an outer contour.
Some polygons, known as inner contours represent cavities, holes, or
protrusion sites in an object.)

For the PS 340 to interpret inner contours properly, two things must be done.
One is to observe the vertex-ordering convention for inner and outer contours.
The other is to use the COPLANAR option in the POLYGON clause to associate
inner and outer contours.

18 - RENDERING OPERATIONS

The vertex ordering rule for inner and outer contours is as follows: vertices of
inner contours must run in the opposite sense to the corresponding outer
contour. For a solid this implies that the vertices of an inner contour run
counterclockwise while outer contours run clockwise when viewed.

The vertices of the following triangular polygon face (outer contour) with a hole
in it (inner contour) are ordered as follows.

.5,.5.0

\

i ' -\
- /33,.165,94_.66,.165,
o

"0,0, 0,1,0

1ASO405 - -

Fiqure 13, Surface With Inner/Quter Contours

A POLYGON command syntax for this object is :

Object := POLYGON 0,0,0 .5,.5,0 1,0,0 {outer contour}
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0;
{inner contour}

Note that the vertices for the inner contour in the above example are listed in
the opposite order of those of the outer contour.

LOCAL DATA FLOW AND SYSTEM NETWORKING 5-37

Version Al.V02 - March 1985

5.2 DATA RECEPTION AND ROUTING NETWORK
F:CIROUTE

Once data have passed through either instance of F:DEPACKET (described in the
previous chapter), the next function to receive it is F:CIROUTE. F:CIROUTE has two
instances, one for count mode and one for escape mode. They are functionally very
similar, and only the count mode instance, CIROUTEQ will be described. CIROUTEQ
examines the first character it receives (the character following the count bytes in
count mode and the character following the <FS> character in escape mode) to
determine where the packet message is to be sent. These characters are "routing"
bytes, and are used to select the appropriate channel for data in the PS 300. Data
channels include lines to the terminal emulator, the PS 300 command interpreter, the
Disk writing function, the Raster function (for PS 340 systems), and other system -
functions. A base character (defined on Input <2> of CIROUTEQ) is subtracted from
this routing character before it is used to select the output channel. The base
character defaults to the character zero ("0").

Qpacket,Qmorepacket-—————- >I<T> Ay |=mmme- > Qinteger
Qreset
2> | = > Qpacket,
: . Qmorepacket
Qstring ——————- >[<2>C '0' Base
Qprompt -=——=-- >1<3>C YD r—— > Qpacket,
Qreset Qmorepacket
Qinteger —————- > <4>C
CIROUTEOQ
F:CIROUTE
(count mode)

The definitions for the inputs and outputs for F:CIROUTE are described in Chapter 6
of this guide.

5-38 LOCAL DATA FLOW AND SYSTEM NETWORKING

Version Al.V02 - March 1985

5.2.1 Routing Byte Definitions

"The following table defines the routing bytes and channel parameters for assessing
internal PS 300 communication channels.

Table 5-1. Routing Byte Definitions

CIROUTE Routing Channel Description
Output Byte Parameter
3 0 1 Parser/Command Interpreter
4 1 2 Command Interpreter via READSTREAM
5 2 3 6-bit binary
) 3 4 Reset network for GSRs
7 4 5 Reserved
8 5 6 Reserved
9 6 7 Download channel for user-written functions

13 : 11 Write ASCII data to diskette
14 : 12 Close file
15 < 13 Write binary data to diskette
16 = 14 Reserved
17 > 15 Channel to terminal emulator
18 ? 16 Host message control
19 @ 17 Who (used by PSETUP)
20 A 18 Reserved
21 B 19 Raster

NOTE

("?*) is the HOST_MESSAGE request channel. <SOP>?
followed by ASCII (I or 2) requests a single

message or multiple messages from HOST
MESSAGEB.

(@) any message sent on this route triggers the WHO
function. (Refer to the PS 300 Host-Resident
I/0 Subroutine Manual for infarmation on the
WHO function.)

LOCAL DATA FLOW AND SYSTEM NETWORKING 5-61

Version Al1.V02 - March 1985

5.1.1 Data Flow Overview

The PS 300 accepts data from the IBM host line through the General Purpose Interface
Option (GPIO) card. These data will be in two forms; either data for the terminal
emulator, or graphical data that have been sent from the host using the
cross—compatibility software. The GPIO differentiates between data designated for
the terminal emulator and graphics data packaged in the Write Structured Field (WSF)
envelopes. The GPIO puts TE data directly into a Screen Buffer in Mass Memory.
Graphics data are intercepted by the GPIO for unpacking and repackaging into
Qpackets. Routing information is always included at the head of any WSF command.
The routing information and the first 238 bytes of data are put into a Qpacket by the
GPIO. All subsequent data within the same WSF command are placed into
Qmorepackets. When a WSF command is filled to capacity, or a routing change is
required, the present WSF command is terminated and a new WSF command is started
by a PS 300 low-level communication routine.

The packets of graphical data are passed to the data reception function,
F:F I1 IBM (F:F_12 IBM). IBMIl$ (an instance of F:F Il IBM) allocates new mass
memory packet buffers and puts them on a linked list for subsequent use by the GPIC.
IBMI1$ passes data through to F:CIROUTE.

FiCIROUTE

CIROUTEQ examines the first character it receives (the character following the count
bytes in count mode) to determine where the packet message is to be sent. These
characters are "routing" bytes, and are used to select the appropriate channel for data
in the PS 300. (Data channels can be chosen by the use of the parameter in the PMuxG
GSR Utility Routine. Standard GSR and PSIO calls include embedded routing bytes.)
Data channels include lines to the terminal emulator, the PS 300 command interpreter,
the disk writing function, the raster function (for PS 340 systems), and other system
functions. A base character (defined on Input <2> of CIROUTEQ) is subtracted from
this routing character before it is used to select the output channel. The base
character defaults to the character zero ("0"). The definitions for the inputs and
outputs for F:CIROUTE are described in Chapter 6 of this guide.

Qpacket,Qmorepacket-—————- <> T4 D T > Qinteger
Qreset :
(2> | === > Qpacket,
' . Qmorepacket
Qstring ——=——- >|<2>C '0' Base
Qprompt ————-— »1<3>C N> | =mmmmm > Qpacket,
Qreset Qmorepacket
Qinteger —----->{<4>C
CIROUTEQ .
F:CIROUTE

5-62 LOCAL DATA FLOW AND SYSTEM NETWORKING

Version Al.V02 - March 1985

3:1.2 Routing Byte Definitions

The following table defines the routing bytes and channel parameters for assessing
internal PS 300 communication channels.

Table 5-1. Routing Byte Definitions

CIROUTE Routing Channel Description
Qutput Byte Parameter
3 0] Parser/Command Interpreter
4 1 2 Command Interpreter via READSTREAM
5 2 3 6-bit binary
6 3 4 Reset network for GSRs
7 4 5 Reserved
8 5 6 Reserved
9 6 7 Download channel for user-written functions
[]
[]
[]
13 : 11 Write ASCII data to diskette
14 ; 12 Close file
15 < 13 Write binary data to diskette
16 = 14 Reserved
17 > 15 Channel to terminal emulator
18 ? 16 Host message control
19 e 17 Who (used by PSETUP) -
20 A 18 Reserved
21 B 19 Raster
NOTE

("?") is the HOST_MESSAGE request channel. '?'
followed by ASCII (I or 2) requests a single
message or multiple messages from HOST
MESSAGEB.

('@") any message sent on this route triggers the WHO
function.

6-28 SYSTEM FUNCTIONS

Version A1.V02 - March 1985

F:IBM_KEYBOARD

F:IBM_KEYBOARD ‘
Qpacket-—---- > <> D >Qpacket
QBoolean --->[<2> 2> SL———)Qinteger
FC DY - >Qpacket
<3 |- >Qpacket
5> |mmmm- >Qpacket
6>} ————- >QBoolean
Iy | === >Qpacket
<8>|-—==—= >QBoolean
A0 |-==-- >QBoolean
(IBMKBD1)
TR D E—— >QBoolean

F:IBM KEYBOARD accepts character packets from the keyboard on input <l> and,
based on the mode selected by the mode keys (either the LINE LOCAL key or the
HOST, LOCAL and COMMAND keys, depending on the type of keyboard used), outputs
packets for use by the function network, the line editor, or an IBM host. Packets of
characters for the function KEYBOARD are output on output <l>. Qintegers to be
sent to the function FKEYS are output on output <2>. Qpackets of characters to be
sent to the function SPECKEYS are output on output <3>. Qpackets of characters for
the line editor are output on .output <4>. Qpackets of IBM scan codes for an IBM host
are output on output <5>. A QBOOLEAN TRUE used to trigger the hardcopy functions
is output on either output <6>, output <10>, or output <ll>, based on the mode of the
keyboard.

A TRUE used to trigger the loading of the IBM 3250 function network is output on
output <7> when IBM 3250 mode is selected while in SETUP mode.

A TRUE used to trigger the deletion of the IBM 3250 function network is output on
output <8> when the PS 300 mode is selected while in SETUP.

Input <2> accepts a Boolean that indicates which type of keyboard is being used.

True = IBM style keyboard
False = VT100 style keyboard

SYSTEM FUNCTIONS 6-29

Version Al.V02 - March 1985
F:IBM_SETUP
QBoolean -—->

Qinteger --->

Qinteger —-->

<I> F:IgM_SETUP
(IBMSETUP1)

2>

<)

F:IBM_SETUP is used to change the parameters used by the IBM communications.
Input <l> accepts an integer that specifies the maximum number of packets that can
be in the pool of empty input packets.

F:IBM_SETUP is used to change certain values used by the IBM communications.

Input <1> is used to trigger the function.

Input <2> is used to specify the number of empty I/O input packets that are to be

maintained in the I/0 input pool.

Input «3> is used to specify the device address when an IBM 3250 interface is being

used.

6-10 SYSTEM FUNCTIONS

F:CI

F:CI
Qchopitems ----> <> <> ----> unused
Qprompt
2> -—-=> unused
3> ---=> error messages
4> ----> Qboolean
<5> -—--> Qprompt
6> ---=> unused
(H_CIO)
(CIO)

This function interprets commands, creating display structures and function networks.
It receives input either from a chop/parse function or a Readstream function (if using
the GSRs).

A single parameter is given when this function is instanced (for example H
CI0:=F:CI(4);). This parameter is the "CINUM" and is used to identify all names and
connections this CI makes. When the CI receives an INIT command, it destroys only
those connections it has made and only those structures associated with the names
which have its CINUM.

Note: A name is created when that name is referenced for the first time, even if it has
no associated structure. The CI that created the name is the "owner" of that name,
even if the entity it refers to is created by another CI.

-Note: Each function has an output <0> that is used to send error messages (such as
illegal input error messages). The connection from this output is made automatically by
the CI that creates the function. The CI finds the appropriate error function to connect
output <0> to by looking on its own output <3>.

Output 4 sends out a Qboolean with a TRUE value when an INIT command is entered.
This output is connected to the initial function CLEAR _LABELS to clear out the labels
on the keyboard and dials.

DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS 7-11

Version A2.V0l

7.5,3 Command Status Command
The cqgmmand:
COMMAND STATUS;

di'recis the command interpreter to print the status of the command stream. The
message output lists the number of open BEGIN...END and
BEGIN STRUCTURE...END STRUCTURE commands, and indicates if the privileged
state is operative. The message also indicates if the optimize structure model is in
effect.

7.3.4 Reboot Command
The command
REBOQT password;

reboots the PS 300 as if from power-up. If no password has been setup, then any
character string will do. Otherwise entering an incorrect password will give an error
message. The REBOQT command can appear anywhere; it can occur within
BEGIN...END and BEGIN_STRUCTURE...END_STRUCTURE as well as without. It may
be named or not. However, it cannot be within a quote or comment.

The command causes the PS 300 to reboot just as if it had been powered up (starts the
confidence tests at "A", etc.).

1.5.5 Set Priority

The command
Set Priority of name to i;

sets the execution priority of a function (name) to some integer (i) between 0 and 15.
All user instancible functions and most functions instanced by the system at boot time
have a default value of 8. Lowering a function's priority number raises its priority and
causes it to run before any functions with a larger number. A typical use of this
command is to give to a function a priority number greater than 8 so it runs only when
no other functions are running (i.e. functions at default priority 8). Assigning priority
numbers less than 8 could be potentially very "dangerous,” since their execution could
lock up the system.

Since this command will affect the execution of other functions in a function network,
careful consideration must be given to its use. E&S does not recommend the use of this®
procedure by anyone whao does not have a complete understanding of functkons and their
interrelationships.

7-12 DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS

7.5.6 Notes On Using the CONFIGURE Mode

E&S reserves the right to change the content of the CONFIG.DAT file and the
implementation of the CONFIG.DAT file without prior notice. Use of any named
entities or networks instanced in CONFIGURE mode that have names identical to any
names found in the CONFIG.DAT file will result in unpredictable system behavior. E&S
will not use any names that are preceded with the three characters CM..

9-2

SYSTEM ERROR MESSAGES

TABLE 9-1 PS 300 TRAPS and Their Meanings

NUMBER DEFINITION

10
Ll

12

Not enough available memory to come up or handle reguest.
E&S firmware error.
Memory corrupted or over-written (could be caused by UWF).

Attempt to wait on gueue when function is waiting on another device
(CLOCK, I[/OXcould be caused by UWF).

System errors (see Table 3).

Mass memory error if address on LEDs is between 200 and 300;
unexpected interrupt on a vector with no routine, if address is between
300 and 400. For example, if address on LEDs is 22C, error occurred
on memory card 200000-300000. If address is 23C, error occurred on
memory card 300000-400000 and so forth.

Utility routine was called which was not included in system link.
Memaory corrupted or over-written (could be caused by UWF).

E&S firmware error.

Pascal in-line runtime error: usually caused by Case statement in
Pascal with no Otherwise clause (could be caused by UWF).

6-38 SYSTEM FUNCTIONS

Version A2.V02

F:READDISK
F:READDISK
Qpacket —-—-->[<1> <I>|----> Qpacket
QBoolean —-—--=>{<2> ¢2>|=---=> QBoolean
(Readasciil for ASCII file)
(Readbinaryl for binary)

This function reads a file from the floppy disk and sends the data out output «<l> in
Qpackets. Input <l> accepts a Qpacket of | to 8 characters specifying the name of
the file to be read. All disk drives are searched for the file until found; if the file is
not found, an error message is produced.

A True on input <2> tells the function to delete the file after reading. Input <2> is a
constant input queue and is initialized to False.

A True is output from <2> when the file is found and read successfully. A False is
output when the file is not found.

Note: The file name sent on input <l> should not include the file extension. The file
on the disk must have the extension ".DAT",

CHANGE PAGES TO THE COMMAND SUMMARY,
THE FUNCTION SUMMARY, AND GRAPHICS SUPPORT ROUTINES

(Change pages exclusive to the Rendering Option are supplied with the
PS 390 Rendering Release Notes.)

PS 300 COMMAND SUMMARY LOAD VIEWPORT
PS 350 Command

FORMAT
name := LOAD VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namell;
DESCRIPTION

The LOAD VIEWPORT command for the PS 350 loads a viewport and overrides
the concatenation of the previous viewport. As with the standand PS 300
VIEWPORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines. It affects all objects below
the node created by the command in the display tree.

PARAMETERS

hmin,hmax,vmin,vmax - The x and y boundaries of the new v1ewport Values
must be within the -1 to | range.

imin,imax - Specifies the minimum and maximum intensities for the viewport.
imin is the intensity of lines at the back clipping plane; imax at
the front clipping plane. Values must be within the 0 to 1.

namel - The name of the structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 300 screen with full intensity range (0 to 1)
using the standard PS 300 Viewport command.

VIEWport HORizontal = -1,1 VERTical = -1,1 INTENSsity = 0:1;

LOAD VIEWPORT PS 300 COMMAND SUMMARY
PS 350 Command

(continued)

NOTES

A new VIEWport is not defined relative to the current viewport, but to the full
PS 300 screen.

If the viewport aspect ratio (vertical/horizontal) is different from the window

aspect ratio (y/x) or field-of-view aspect ratio (always) being displayed in
that viewport, the data dispiayed there will appear distorted.

DISPLAY TREE NODE CREATED

El

This command creates a load viewport operation node that has the same inputs
as the standard viewport operation node. The matrix contained in this node is
not concatenated with the previous viewport matrix.

NOTES ON INPUTS

l. For 2x2 matrix input, row | contains the hmin,hmax values and row 2 the
vmin,vmax values.

Ny
.

For 3x3 matrix input, column 3 is ignored (there is no 3x2 matrix data
type), rows | and 2 are as for the 2x2 matrix above, and row 3 contains the
imin, imax values.

PS 300 COMMAND SUMMARY RAWBLOCK

ADVANCED PROGRAMMING - Memory Allocation

Version A2.VOl

FORMAT

name := RAWBLOCK i;

DESCRIPTION

Used to allocate memory that can be directly managed by a user-written
function or by the physical I/0 capabilities of the Parallel or Ethernet Interfaces.

PARAMETERS

NOTES

i - bytes available for use.

L.

The command carves a contiguous block of memory such that there are "i
bytes available for use.

The block looks like an operation node to the ACP. The descendant alpha
points to the next long word in the block. What the ACP expects in this
word is the .datum pointer of the alpha block. (The datum pointer points to
the first structure to be traversed by the ACP. This is the address in
memory where the data associated with a named entity is located.)

To use this block, the interface or user-written function fills in the
appropriate structure following the .datum pointer. When this is complete,
it changes the .datum pointer to the proper value and points to the beginning
of the data. After the ACP examines this structure, it displays the
newly-defined data. (Use the ACPPROQOF procedure to change the .datum
pointer with a user-written function.)

More than one data structure at a time can exist in a RAWBLOCK. It isup
to the user to manage all data and pointers in RAWBLOCK.

A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 300. When a RAWBLOCK is returned to the free storage
pool, the PS 300 firmware recognizes that it is a RAWBLOCK and does not
delete any of the data structures linked to RAWBLOCK.

DISPLAY TREE NODE CREATED

Rawblock data node.

PS 300 COMMAND SUMMARY SET BLINKING ON/OFF
PS 350 Command

FORMAT

name := SET BLINKing switch
[APPLied to namell;

DESCRIPTION

This command turns blinking on and off. It affects all objects below the
node created by the command in the display tree.

PARAMETERS

switch - Boolean value. TRUE indicates that blinking will occur in the
displayed objects. FALSE turns blinking off.

namel - The name of the structure that will be affected by the command.

NOTE

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

DISPLAY TREE NODE CREATED

This command creates a set blinking on/off operation node in the display
structure that determines whether blinking will occur in the objects positioned
below it in the display structure.

INPUTS FOR UPDATING NODE

The blinking on/off operation node can be modified by sending a Boolean value
to input <l>.

PS 300 COMMAND SUMMARY : SET BLINK RATE
PS 350 Command

FORMAT

name := SET BLINK RATE n
[APPLied to namel];

DESCRIPTION

This command specifies the blinking rate in refresh cycles to be applied to all
objects below the node created by the command in the display tree.

a

PARAMETERS

n - An integer designating the duration of the blink in refresh cycles. The
blinking data will be on for n refreshes and off for n refreshes.

namel - The name of the structure to which the blinking rate is applied.

NOTE

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different,

DISPLAY TREE NODE CREATED

This command creates a set blinking rate operation node in the display tree that
specifies the blinking rate for all objects below it.

INPUTS FOR UPDATING NODE

The node can be modified by sending an integer to input <1> which will change
the blinking rate.

PS 300 COMMAND SUMMARY SET LINE_TEXTURE
PS 350 Command

FORMAT

name := SET LINe_texture [AROUnd_corners] pattern
[APPLied to namell;

DESCRIPTION

Specifies the line texture pattern to be used in drawing the vector lists that
appear below the node created by this command. There are up to 127
hardware-generated line textures possible. The parameter pattern is an
integer between | and 127. The desired line texture is indicated by the setting
or clearing of the lower 7 bit positions in pattern when represented in binary.
An individual pattern unit is l.l centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 LELLLLL Solid

124 LI e Long Dashed

122 1111010 ———— e - Long Short Dashed

106 1101010 ——_————— Long Short Short Dashed
PARAMETERS

AROUNnd_corners - Boolean value used to set a flag to indicate if the specified
line texture should continue from one vector to the next. If
ARQOUnd corners is TRUE, the line texture will continue
from one vector to the next through the endpoint. If
AROUnNd corners is FALSE, the line texture will start and
stop at vector endpoints.

pattern - An integer between | and 127 that specifies the desired line
texture. When pattern is less that | or greater than 127, solid lines
are produced.

namel - The name of the structure to which the line texture is applied.

SET LINE_TEXTURE PS 300 COMMAND SUMMARY
PS 350 Command

(continued)

DEFAULTS

The default line texture is a solid line.

NOTES

Since 7 bit positions are used, it is not possible to create a symmetric pattern.

When line-texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather than solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the
vector is displayed. If the line is smaller than the smallest element of the
pattern, then the line is displayed as solid.

The With Pattern and curve commands create multiple vectors in memory. To
the line-texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line-texturing a patterned line or curve is the same as
line-texturing a number of small segments. Curves and patterns affect
line-texturing only in that they tend to create short vectors that may be too
short to be completely textured.:

NODE CREATED

This command creates a line texture operation node with line texture to be
applied to all vectors below in the display structure hierachy. Sending a
Boolean value to input <1> of the node turns the continuous texture feature on
or off. Sending an integer value to the node changes the pattern.

PS 300 COMMAND SUMMARY VECTOR_LIST

MODELING - Primitives

Version A2.VOI1

FORMAT

DESCRIPTION

name := VECtor list [options] [N=n] vectors;

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name — Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one from
each group, and in the order specified):

L.

2‘

BLOCK_normalized - All vectors will be normalized to a single
common exponent.

COLOR - This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that vector
colors will be specified in lieu of vector intensities. When the
COLOR option is used, the optional I=i clause used to specify the
intensity of a vector (refer to the vectors parameter below) is
replaced by the optional H=hue clause, where H is a number from 0
to 720 specifying the individual vector hues. The default is O (pure
blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale, 0
represents pure blue, 120 pure red, 240 pure green, 360 pure blue
again, 480 pure red again, 600 pure green again, and 720 pure blue.
This "double color wheel” allows for color blending either clockwise
or counterclockwise around the color wheel.

Connectivity:

A. CONNECTED_lines - The first vector is an undisplayed position
and the rest are endpoints of lines from the previous vector.

VECTOR_LIST

PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.V0Ql1

(continued)

PARAMETERS (continued)

BO

C.
D.

SEParate_lines - The vectors are paired as line endpoints.
DOTs - Each vector specifies a dot.

ITEMized - Each vector is individually specified as a move to
position (P) or a line endpoint (L).

TABulated - This clause is used to specify an entry into a table
that is used for specifying colors for raster lines and for
specifying colors, radii, diffuse, and specular attributes for
raster spheres. This option is also used to alter the attribute
table itself.

When the TABulated option is used, the T=t clause replaces
the I=i clause (for intensities) and the H=hue clause (for vector
hues). The default is 127 (table entry 127).

There are 0 to 127 entries into the Attribute table. The
Attribute table may be modified via input <l4> of the
SHADINGENVIRONMENT function.

4. Y and Z coordinate specifications (for constant or linearly changing
Y and/or Z values):

Y = y[DY=delta_yl[Z = z[DZ=delta_z]]

where ¥ .and 2z are default constants or beginning values, and
delta_y and delta_z are increment values for subsequent vectors.

5. INTERNAL_units - Vector values are in the internal PS 300 units
[LENGTH]. Specifying this option speeds the processing of the vector
list, but this also requires P/L information to be specified for each
vector, and it doesn't allow default y values or specified intensities.

n - Estimated number of vectors.

PS 300 COMMAND SUMMARY VECTOR_LIST
MODELING - Primitives

Version A2.V0l (continued)

PARAMETERS (continued)

vectors -The syntax for individual vectors will vary depending on the options
specified in the options area. For all options except ITEMized, COLOR,
and TABulated the syntax is:
xcompl,ycompl,zcomplllI=i]
where xcomp, ycomp and zcomp are real or integer coordinates and 1 is
a real number (0.0 ¢ i < 1.0) specifying the intrinsic intensity for that
point (1.0 = full intensity).
For ITEMized vector lists the syntax is:
P xcompl,ycompl,zcompl][I=i]
or
L xcomp[,ycompl,zcompll[I=i]

where P means a move-to-position and L means a line endpoint.

If default y and z values are specified in the options area, they are
not specified in the individual vectors.

For color-blended (COLOR) vector lists, the syntax is:
xcompl,ycompl,zcompll{H=huel

where xcomp, ycomp and zcomp are real or integer coordinates and hue
is a real number between 0 and 720 specifying the hue of a vector.

For TABulated vector lists (TAB), the syntax is:
xcompl,ycompl,zcompll[T=t]

where t is an integer between 0 and 127 specifying a table entry.

VECTOR_LIST PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.VOl A (continued)

DEFAULTS
If not specified, the options default to:
l. Vector normalized
2. Not color blended
3. Connected
4, No default y or z values are assumed (see note 5)
5. Expecting internal units
Non color-blended vectors default to:
xcomp, ycompl,zcompl[I=i]
If i is not specified, it defaults to L.
Color-blended vectors default to:
xcomp, ycompl,zcompl[H=huel
If hue is not specified, it defaults to O (pure blue).
Tabulated vectors default to:

xcomp, ycompl,zcompl[T=t]

If the table entry is not specified, it defaults to 127 (table entry 127).

NOTES
I. If n is less than the actual number of vectors, insufficient allocation of
memory will result; if greater, more memory will be allocated than is used
(The former is generally the more severe problem.)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, z must be specified in the options area.

PS 300 COMMAND SUMMARY VECTOR_LIST

MODELING - Primitives

Version A2.VOI] (continued)

NOTES (continued)

4.

If no default is specified in the options area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z
default is specified in the same case, the vector list is a 3D vector list.

The first vector must be a position (P) vector and will be forced to be a
position vector if not.

Options must be specified in the order given.
If CONNECTED_lines, SEParate_lines, or DOTs are specified in the options
area but the vectors are entered using P/Ls, then the option specified takes

precedence.

Block normalized vector lists generally take longer to process into the
PS 300, but are processed faster for display once they are in the system.

DISPLAY TREE NODE CREATED

Vector list data node.

VECTOR_LIST PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.V0l (continued)

INPUTS FOR UPDATING NODE

name

Vector <last > Changes last vector
Integer | < clear> Clears Tist
Integer——— < delete> Deletes from end
Vector < append > Appends to end
Boolean <i> True=Line; False=Position
Vector.] Replaces i-th vector

VECTOR LIST

1AS0632

NOTES ON INPUTS

l. Vector list nodes are in one of two forms:

A. If DOTs was specified in the options area of the command, a DOT mode
vector list node is created. The Boolean input to <i> is ignored in this
case as well as the P/L portion of input vectors, and all vectors input are
considered new positions for dots.

B. All other vector list nodes created can be considered to be 2D or 3D
ITEMized with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies the
intensity.

2. If a 2D vector is sent to a 3D vector list, the z value defaults to O.

3. When you replace the i-th vector, the new vector is considered a line (L)
vector unless it was first changed to a position vector with F:POSITION_LINE.

PS 300 COMMAND SUMMARY VECTOR_LIST
MODELING - Primitives

Version A2.VOI1 (continued)

EXAMPLES

A := VECtor list BLOCK SEParate INTERNAL N=4
PLIL-I,lL-1,-1L1,-1;

B := VECtor_list n=5
1,1 =1,1 I=.5
-1,-11,-11=.75
L1

C := VECtor_list ITEM N=5
P1,l
L-1,1
L-1,-1
P1,-1
L 1,1

D := VECtor _list TABulated N=5 {for drawing raster lines}
’]"
’0’
’0’
H

t=5
t=2
t=3 .
t=4;

b4

1
)1’

rorrmo
O ——00

[en I oo I o I e I @]

PS 300 COMMAND SUMMARY WRITEBACK

SPECIAL

Version A2.V0l1

FORMAT

name := WRITEBACK [APPLied to namel];

DESCRIPTION

The WRITEBACK command creates a WRITEBACK operation node and delineates
the data structure below the node for writeback operations. When the
WRITEBACK operation node is activated, writeback is performed for namel.

PARAMETERS

namel - The name of the structure or node to which writeback is applied.

NOTES

1.

This node delimits the structure from which writeback data will be retrieved.
Only the data nodes that are below the WRITEBACK operation node in the
data structure will be transformed, clipped, viewport scaled, and sent back to
the host.

Only a structure that is being displayed can be enabled for writeback. This
means that the WRITEBACK ogperation node must be traversed by the display
processor and so must be included in the displayed portion of the structure. If
the writeback of only a portion of the picture is desired, WRITEBACK nodes
must be placed appropriately in the display structure.

Any number of WRITEBACK nodes can be placed within a structure. Only one
writeback operation can occur at a time. If more than one node is triggered,
the writeback operations are performed in the order in which the
corresponding nodes were triggered. If the user creates any WRITEBACK
nodes (other than the WRITEBACK node created initially at boot-up), these
nodes must be displayed before being triggered. If the nodes are triggered
before being displayed, an error message will result.

4, The terminal emulator and message display data will not be returned to the

host.

DISPLAY TREE NODE CREATED

The command creates a WRITEBACK operation node.

PS 300 FUNCTION SUMMARY -3

Table 1. Key to Abbreviations for Valid Data Types

KEY TO VALID DATA TYPES

Any Any message
B Boolean value
C Constant value
CH Character
I Integer
Label Data input to LABELS node
M 2x2, 3x3, 4x3, 4x4 matrix
PL Pick Tist
R Real number
S Any string
Special| Special data type
v Any vector

2D 2D vector
3D 3D vector
4D 4D vector
2x2 2x2 matrix
3x3 3x3 matrix
4x3 4x3 matrix
4x4 4x4 matrix

Conjunctive/Disjunctive Sets

Some PS 300 functions have conjunctive or disjunctive inputs and outputs. A
function with conjunctive inputs must have a new message on every input
before it will activate. A function with conjunctive outputs will send a message
on every output when the function is activated.

Conversely, a disjunctive-input function does not require a new message on
every input to activate. A disjunctive-output function may not send a message
on each output (or any output) every time it receives a complete set of input
messages.

The F:ADD function, for example, has conjunctive inputs. A value must be sent
to each of the two inputs before the function will fire. The inputs are then
added together, which produces an output that is the sum of the inputs. The
output is conjunctive. Unlike F:ADD, F:ADDC is a disjunctive-input function;
it does not require a new message on every input.

4 - PS 300 FUNCTION SUMMARY

F:BROUTE, on the other hand, is a conjunctive-input, disjunctive-output
function. Both inputs require messages to activate the function. However, a
message will be sent out only one of the outputs, depending on the value
received on input 1.

F:ACCUMULATE is an example of different sort of disjunctive output. Every
input does not produce an output. The function activates each time a new
message is received on input 1, but the output fires at specified intervals rather
than each time the function is activated.

The following notation is used in the Function Summary to indicate conjunctive
and disjunctive inputs and outputs.

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

cC conjunctive inputs, conjunctive outputs
CD conjunctive inputs, disjunctive outputs
0C disjunctive inputs, conjunctive outputs

Do disjunctive inputs, disjunctive outputs

Intrinsic Function
Data Conversion F:LIST

Version A1.V02

F:LIST
Special data -—--—-=memev >[<I> > |mmmmm > S
type from F:XFORMDATA
A > B

ccC

PURPOSE

Converts the output of the F:XFORMDATA function to an ASCII string. This
function is always used with F:XFORMDATA.

DESCRIPTION

INPUT
<l> - data output by F:XFORMDATA

OUTPUT
<l> - resulting ASCII string
<2> - Boolean (TRUE)
DEFAULTS

None.

NOTES
L. Input <l> is always connected to output <l> of F:XFORMDATA.

2. Qutput <2> is TRUE when processing is complete. There is no output
otherwise.

3. QOutput <2> should be connected to an instance of F:SYNC(2) to synchronize
F:LIST completion with the initiation of a subsequent transformed-data
request.

Intrinsic Function
Data Selection and Manipulation F:CONCATXDATA(N)

PS 340 Version A2.VOQl

F :CONCATXDATA(N)
XFORMDATAT-——-=>|<1> <> |-=—-- > to SOLID_RENDERING
XFORMDATA2---->|<2>

XFORMDATA---—- > <N>

PURPQOSE

Accepts up to 127 transformed vector lists (output from XFORMDATA functions)
and concatenates them into a single transformed vector list.

DESCRIPTION

INPUT
<l> - output of F:TRANSFORMDATA (transformed vector list)

<N> - output of F:TRANSFORMDATA (transformed vector list)

QUTPUT
¢<l> - concatenated vector list

Intrinsic Function

Data Selection and Manipulation F:CONCATXDATA(N)
Version A2.V0l1 (continued)
NOTES

L.

This function is used to avoid the maximum vector restriction imposed on the
output of F:XFORMDATA. The XFORMDATA function will return a
maximum of 2048 vectors. To obtain a rendering on the PS 340 raster display
of greater than 2048 vectors, the output of multiple instances of
XFORMDATA must be concatenated into a single transformed vector list
which can be sent to the rendering node.

Inputs «i> through <N> accept a transformed vector list output from
F:XFORMDATA.

Intrinsic Function
Miscellaneous Modified Function F:PICKINFO

PS 350 User's Manual

F:PICKINFO
PL ———-- <> K>|-=-->1
I - >1<2> C 2>|----> S
<3>{----> 2D, 3D

A>|---->1
<5>|----> B
<6>|----> R
<I>|---=>1
<8>|----> Special
<9>|----> 2D

DD

PURPOSE

Reformats picklist information for use by other functions. The output picklist
is separated into its component parts.

DESCRIPTION

INPUT
<l> - picklist
<2> - depth within structure reported (constant)

OUTPUT
<l> - index
<2> - pick identifier(s)
<3> - coordinates
<4> - dimension
<5> - coordinates reported
<6> - curve parameter, t
<7> - data type code
<8> - name of picked element
<9> - screen coordinates of the picked point

Intrinsic Function
F:PICKINFO Modified Function Miscellaneous

PS 350 User's Manual (continued)

PS 350 Modifications

Output <9> has been added to F:PICKINF(QO. This output reports the screen
coordinates of a pick.

Intrinsic Function
Data Conversion Modified Function F:PRINT

PS 350 User's Manual

F:PRINT
ANy ———em——e <> > |- > S
B —————— >|<2> C

DC

PURPQOSE

Converts any data type to string format; that is, it performs an inverse of the
operation that occurs when an ASCII string is input_to the PS 300 and is
converted to one of the data types.

DESCRIPTION

INPUT
<l> - any message
<2> - Boolean governing numeric format (constant)

QUTPUT
<l> - string

PS 350 Modification

Screen coordinates, if passed to the functionfrom F:PICKINFQO, are added to
the string output on <l>. QOutput <l> has been modified to report a pick in
which coordinate picking information is given:

For a vector declared in a VECTQOR _LIST, the output string format is:

<I><dimension><pick x> <pick_y>l«pick_z>]<t>
¢<pick ID's><screen_x><screen_y>

For a vector within a polynomial curve the output string format is:

<2>«dimension><pick_x><pick_y>[<pick_z>]¢<t>
<pick ID's><screen_x><screen_y»

e

Function
F:REFRESH_RATE

PS 350 User's Manual

F:REFRESH_RATE

I —————- >I<1>

PURPQOSE

Locks refresh rate. This function accepts an integer on input <l»>. The integer
must be in the range of 2 through 5. This is the number of ticks per refresh
frame (ticks occur at twice the line frequency). The actual refresh rate
depends on the line frequency.

Ticks 60Hz 50Hz

2 60 50
3. 40 33
4 30 25
5 24 20

Intrinsic Function' -
Data Selection and Manipulation F:SEND

Version A1.V02

F:SEND
Any ———— > <1>
S e >1<2>
I e PR
C

PURPOSE

This is the function network equivalent of the SEND command. It allows you to
send any valid data type to any named entity at any valid index.

DESCRIPTION

INPUT
<l> - message sent
<2> - name of the destination node
¢<3> - index into the destination node

~“1. This function has no output.

2. Input <l> accepts special data types that most functions do not accept,
such as the data type output by F:LABEL.

3. The SETUP CNESS command can be used to specify constant inputs as
default values.

P2

Intrinsic Function
Data. Conversion F:XFORMDATA

Version A2.VO0l

F :XFORMDATA
Any ————m—— >I< D > Special
§ ——mmmm———>[<2> C
S e >[<3> C
[- >[<4> C
I o >1<5> C
DC

PURPOSE

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.g., the host, a printer, or the screen).

DESCRIPTIGON

INPUT
<l> - any message
<2> - name of XFORM node (constant)
<3> - name of destination object (constant)
<4> - destination vector index (constant)
<5> - number of vectors (constant)

QUTPUT
<l> - special data type used exclusively as input to F:LIST

DEFAULTS

Default for input <4> is 1, default for input <5» is 2048.

Intrinsic Function

F : XFORMDATA Data Conversion
Version A2.VO1 (continued)
NOTES

L.

Input <«1> is a trigger for F:XFORMDATA. This input would typically be
connected to a function button, either directly or via F:SYNC(2), allowing
transformed data to be requested easily.

Input <2> is a string or matrix containing the name of the XFORM command in

the display tree (either XFORM MATRIX or XFORM VECtor). By referring to an

XFORM command, this input indirectly specifies the object whose transformed
data is to be sent. If the string names something other than an XFORM

command, an error message is displayed. If the string names a node which

does not exist, an error message is sent and the message is removed from

input <2>.

Input <3> is a string containing the name to be associated with the
transformed vectors. The name need not be previously defined. If this input
does not contain a valid string, the transformed matrix or vectors will be
created without a name (an acceptable situation unless the transformed
vectors need to be referenced or displayed.) The transfermed vector list can
be displayed or modified, provided a name is given on this input. The
transformation matrix cannot be used, however, so naming and sending it to
input <3> is not useful.

Input <4> is an integer index specifying the place in a vector list at which the
PS 300 is to start returning transformed data. This input is only used when
the command name at input <2> represents an XFORM VECtor command (not
an XFORM MATRIX command). The default value is l.

Input <5> is an integer number of consecutive vectors for which transformed
data is to be returned, starting at the vector specified at input <4>. This
input is only used when the command name at input <2> represents an XFORM
VECtor command (not an XFORM MATRIX command). No more than 2048
consecutive vectors may be returned. The default value is 2048.

Qutput <l> contains the transformed data in a format which can only be
accepted by input <l> of F:LIST. (F:LIST then prints out the data in ASCII
format -- either a PS 300 VECTOR_LIST command or a PS 300 MATRIX_4X4
command, depending on whether the command named at input <2> was an
XFORM VECtor or an XFORM MATRIX.)

F:XFORMDATA is used in connection with rendering lines and spheres on the
PS 340 raster display. This functionality is described in Version A2.VQl of
the PS 340 Graphics Firmware Release Notes.

Initial Function Instance
Miscellaneous CSM

Version A1.V02

CSM
(CSM2)
B - <> IQ D] > Connected to System
at initialization
ccC

PURPOSE

Sets the Color Shadow Mask (CSM) calligraphic display on or off for the
Terminal Emulator, for MESSAGE_DISPLAY and for the user's data structures.

DESCRIPTION

INPUT
<> - TRUE = CSM on, FALSE = CSM off

QUTPUT
<l> - connected to System

DEFAULT

The default is FALSE, setting the CSM off.

NOTES

l. A TRUE sent to input <l> of CSM slows the speed of the line generator for
the CSM calligraphic display. This results in lines that have brighter colors
and better end point match.

Initial Function Instance
Output ONBUTTONLIGHTS

Version A1.V02

ONBUTTONLIGHTS
(ONBUTTONLIGHTS2)
| >i<> Iy =m- > Connected to
Function Buttons
at initialization
CcC

PURPOSE

Turns on lighted buttons on the Function Buttons unit.

DESCRIPTION

INPUT
<l> - integer (1 through 32) indicating the button number

QUTPUT
<l> - connected to Function Buttons

NOTES

l. Each button may be turned on independently or all buttons may be turned
on by a single message. A zero (0) or any out-of-range integer at input <1>
turns on all button lights. An integer from | to 32 at input <l> turns on the
corresponding button light.

2. Function buttons are arranged in one row, of four, four rows of six, and
anather row of four. They are numbered from left to right starting from
the top row. The top row is numbered.l through 4; the second row 5
through 10, and so on until the last row, 29 through 32.

s

Initial Function Instance
Input Modified Function PICK

PS 350 User's Manual

PICK
(PICK2)
ANy ———e——m—— >I<> (> e > PL
B ~——mmee >[<2> C 2> === > B
I e »1<3> C (3 |-===- > B
DD

PURPQOSE

Interfaces with the hardware picking circuitry. Any message on input <l> arms
the PICK function. Once PICK is enabled, when a pick occurs, the pick list
associated with the picked data is sent out on output <l> and a Boolean FALSE
is sent on output <2>. Typically, this Boolean is used to disable picking of a set
of objects by connecting it to a SET PICKING ON/OFF node in a display tree.

DESCRIPTION

INPUT
<l> - trigger
<25 - TRUE = coordinate, FALSE = index (constant)
<35> - timeout duration (constant)

QUTPUT
<l> - pick list
<2> - FALSE = pick enabled
<3> - FALSE = ACP attempted an unsuccessful pick or timeout occurred

PS 350 Modification

As noted above, output <3> of PICK now reports a FALSE when the ACP
attempts a pick and is unsuccessful as well as when the timeout specified on
input <3> is exceeded.

Initial Function Instance
Input PICK

PS 350/PS 390
A2.V02 - April 1987

PICK

(PICK2)
Any - >1<T> D > PL
B ———————- >1<2> C 2> |===m— > B
I o »1<3>» C D > B
R —mmmmmm e > <4>
] e > <5>
R —mmmmmmmm—— > <6>

DD

PURPOSE

Interfaces with the hardware picking circuitry. Any message on input <l> arms
the PICK function. Once PICK is enabled, when a pick occurs, the pick list
associated with the picked data is sent out on output <l»> and a Boolean FALSE
is sent out on output <2>. Typically, this Boolean is used to disable picking of a
set of objects by connecting it to a SET PICKING ON/OFF node in a display tree.

DESCRIPTION

INPUT
<!> - trigger
<2> - TRUE = coordinate, FALSE = index (constant)
<3> - timeout duration (constant)
<45 - defines pick window half size for the ACP pass of the pick
<5> - retry count
<6> - half-size increment to be added to window half-size on each
retry

OUTPUT
«l> - pick list
<2> - FALSE = pick enabled
<3> - FALSE = timeout elapsed

Initial Function Instance
PICK Input

PS 350/PS 390
A2.V02 - April 1987(continued)

NOTES

l. Input <2> selects the kind of pick list that will be output on cutput <l>. A
FALSE on input <2> indicates that the output pick list will be the pick
identifier and an index into the vector list ar the character string. (The
index into the vector list identifies its position in the list; vector 3 is the
third vector in a vector list. The index into a character string identifies
the picked character by its position in the string; character 5 is the fifth
character in a string.)

2. A TRUE on input <2> indicates that the output pick list will include, in
addition to the pick identifier and the index, the picked coordinates and the
dimension of the picked vector. If the vector is part of a polynomial curve,
its parameter value, t, is supplied instead of the index.

3. Coordinate picking on a character string returns an index into the string,
not its picked coordinates.

4. Coordinate picking cannot be performed on a vector over 500 [LENGTH]
units long.

5. The pick list on output <l> is typically connected to an instance of
F:PICKINFO to convert the pick list to a locally useful format. If the pick
list is to be printed out, output <l> may be connected to F:PRINT to
convert the pick list code to printable characters.

6. When several vectors are picked, the first vector drawn by the Line
Generator is reported as picked. For example, if three vectors in a single
vector list were picked simultaneously (at a point of intersection), the first
vector listed in the object definition would be reported as picked.

The integer on input <3»> specifies a pick timeout period in refresh frames.
This pick timeout period allows the user to determine whether a pick has
occurred within the specified amount of time. Timing starts when the PICK
function is armed with a message on active input <l>. Allowable integers
for input <3> are from 4 through 60.

Initial Function Instance

Input PICK
PS 350/PS 390
A2.V02 - April 1987 (continued)

NOTES (continued)

8.

10.

I

12.

13.

EXAMPLE

If input <3»> is not used, all picks will be reported once the function is
armed because no timeout duration has been specified.

Typically, the FALSE at output <3> would be used to turn off picking in a
display tree (at a SET PICKING ON/OFF node) or to send a "NO PICK"
message (probably via F:SYNC(2)) back to the host.

The user has three means of cancelling an existing pick timeout duration:

a. Sendan INITialize command. This will remove the PICK function and
replace it with a new instance of the PICK function.

b. Send a non-integer (and ignore the "Bad message" error).

c. Send an integer less than 4 or greater than 60 to input <3»> (and ignore
the "Bad message" error).

Input <4> is a real number between 0 and | that defines the pick window
half-size for the ACP pass of the pick. This is ditferent from the size set
by the SET PICKing LOCation operation node. The Line Generator or the
Frame Buffer uses the operation node to determine if a pick has occurred;
whereas the ACP uses input <4> to do the actual pick pass on the data.

Input <5»> is an integer specifying pick pass retries. Since it is possible that
the ACP will not find the picked data during a pick pass, input <5>»
indicates the number of times to add the window increment on input <6»
and try another pick pass.

Input <65 is a real number between 0 and | which specifies the amount to
increase the pick window half size on each retry of the pick pass.

If a 10 is sent to constant input <3»>, then the PICK function is armed with a
message on input <l>. The function waits 10 refresh frames from the time the
input <l> message is received before checking to see if a pick has occurred. If
a pick has occurred within that period, the function outputs the appropriate
pick list. If a pick has not occurred, the function outputs a FALSE on output
<3>. In either case, the PICK function is disarmed and must be rearmed via
input <1> before further picking can be reported.

PS 300 Function
Initial Function Instance WRITEBACK

Version A2.VO1

WRITEBACK

| >[<1> <1>| ----Qpacket

PURPOSE

WRITEBACK is initialized by the system and is used to send encoded writeback
data to user function networks.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

DESCRIPTION

INPUT
WRITEBACK has one input queue. Input <l»> accepts integers specifying the
size of Qpackets to be output by the function. The default size is 512.
Minimum and maximum sizes are 16 and 1024. If the size specified on the
input is not within this range, the default size will be used.

QUTPUT
WRITEBACK has one output queue. Qutput <l> passes the encoded writeback
data out as Qpackets.

NOTES

WRITEBACK will return all data that are under the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback and
end-of-writeback commands. Attribute information, such as color, must be
interpreted by host code to ensure that the hardcopy plots are correct.

On the PS 350, viewport translations have not been applied to the data. To
correctly compute the position of endpoints, the host program interpreting the
writeback code must add a viewport center to each endpoint. The initial viewport
center is established with a VIEWPORT CENTER command. The VIEWPORT
CENTER command is sent following the start-of-writeback command. Any
changes to the viewport center will be indicated through this sequence of
commands: CLEAR DDA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE
POINT. The position endpoint becomes the new viewport center.

PS 300 DEC VAX/VMS PASCAL GSR » PATTACH
UTILITY PROCEDURE

Version A2.V0l1

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PAttach (%DESCR Modifiers : P_VaryingType;
PROCEDURE Error_Handler (Error : INTEGER));

DEFINITION
This procedure attaches the PS 300 to the communications channel.

If this procedure is not called prior to use of the Application Procedures, the error
code value corresponding to the name PSE NotAtt is generated, indicating that
the PS 300 communications link has not been established. :

The parameter (Modify) must contain the phrases:
LOGDEVNAM=name/PHYDEVTYP=type

where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEQ:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
PARALLEL (Parallel interface option)
ETHERNET (DECnet Ethernet option)

The parameter string must contain EXACTLY one "/" and blanks are NOT allowed
to surround the "=" in the phrases. The PAttach parameter string is not sensitive
to upper or lower case.

Example: PAttach ('logdevnam=tta2:/phydevtyp=async’, Error_Handler);

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232. :

Example: PAttach (‘logdevnam=ps:/phydevtyp=dmr-11', Error Handler);

where the physical device type is a DMR-11 interface, and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDQ: PS
$ RUN <application-pgm>

gz

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH
UTILITY SUBROUTINE

Version A2.V01

UTILITY SUBROUTINE AND PARAMETERS

CALL PAttch (Modify, ErrHnd)

where:

Madify is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine attaches the PS 300 to the communications channel. If this
subroutine is not called prior to use of the Application Subroutines, the user's
error handler is invoked with the "The PS 300 communications link has not been
established" error code corresponding to the mnemonic: PSENQOA:.

The parameter (Modify) must contain the phrases:
LOGDEVNAM=name/PHYDEVTYP=type
where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEQ:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:
ASYNC (standard RS-232 asynchronous communication interface)
PARALLEL (high speed parallel interface
ETHERNET (DECnet Ethernet option)
The parameter string must contain EXACTLY | "/" and blanks are NOT allowed to
surround the "=" in the phrases. The Pattch parameter string is not sensitive to
upper or lower case.

Example: CALL PAttch ('logdevnam=tta2:/phydevtyp=async’', Errhnd)

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR : PATTCH
UTILITY SUBROUTINE

Version A2.V01 . (continued)

Example: CALL PAttch (‘logdevnam=ps:/phydevtyp=dmr-11', ErrHnd)

where the physical device type is a DMR-1! interface and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDQ0: PS:
$ RUN capplication-pgm>

PS 300 DEC VAX/VMS PASCAL GSR) PDEVINFO
UTILITY PROCEDURE

Version A1.V02 - March 1985

UTILITY PROCEDURE. AND PARAMETERS

3
[GLOBAL] PROCEDURE PDevInfo (VAR Channel_num : INTEGER;
VAR Device_type : INTEGER;
VAR Dev_status : INTEGER;

PROCEDURE EFror‘_Hanhr (Err : INTEGER));

DEFINITION

This procedure is used to return the Q I/O channel number so that users do not
need to detach from the GSRs while doing Physical I/0.

Channel is the VAX Q I/0 channel number.

Device is the device code, where:
|l is the code for the DRM-11 interface
2 is the code for the standard asynchronous interface
3 is the code for the Parallel interface

Status is the status where:

0 is not attached
|l is attached

PS 300 DEC VAX/VMS FORTRAN-77 GSR PDINFO

e

UTILITY SUBROUTINE

Version A1.V02 - March 1985

UTILITY SUBROUTINE AND PARAMETERS

CALL PDINFO (Channel, Device, Status, ErrHnd)
where:
Channel is an INTEGER*4 that is the VAX Q I/0 channel number
Device is an INTEGER*4 that is the device code, where:
|l is the code for the DRM-11 interface
2 is the code for the asynchronous interface
3 is the code for the Parallel interface

Status is an INTEGER*4 that is the status where:

0 is not attached
| is attached

ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine is used to return the Q I/0 channel number so that users do not
need to detach from the GSRs while doing Physical I/C.

S

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

Version A2.VO1

APPLICATION SUBROUTINE AND PARAMETERS

CAtL PVcBeg (Name, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd)
where:
Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER*4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL*]| defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized

CBlend is a LOGICAL*] defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER*4 2 or 3 (2 0or 3 dimensions respectively)
*Class is an INTEGER*4 defining the class of the vector list
ErrHnd is the user-defined error-handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg
PVclLis (This may be called multiple times for vector-normalized vector
oVeEnd lists.)
Together, the above 3 subroutines implement the PS 300 command:
Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;
NOTE
The dimension must be specified in the PVCBEG

application subroutine. In the PS 300 command,
dimension is implied by syntax.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG |
Name := VECTOR_LIST (no corresponding command)

Version A2.V0I1 _ (continued)

* These mnemonics may be referenced directly by the user if PROCONST.FOR is

INCLUDED in the subroutine. See the section on Programming Suggestions for

s a description.of PROCONST.FOR. A description of the vector classes and their
INTEGER*4 value is given below.

\ Mnemaonic Meaning INTEGER*4 Value
PVCONN Connected 0
PVDOTS Dots l
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

PS 300 IBM VS FORTRAN GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg (Name, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd)
where:
Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER*4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL*! defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized

CBlend is a LOGICAL*| defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER*4 2 or 3 (2 or 3 dimensions respectively)
*Class is an INTEGER*4 defining the class of the vector list
ErrHnd is the user-defined error-handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call: -

PVcBeg

PVelis (This may be called multiple times for vector-normalized vector lists)
PVcEnd

Together, the above 3 subroutines implement the PS 300 command:
Name := VECTOR_LIST (DQOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>; :
NOTE
The dimension must be specified in the PVCBEG

application subroutine. In the PS300 command,
dimension is implied by syntax.

(Continued on next page)

PS 300 IBM VS FORTRAN GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

Version A2.VO1 (continued)

* These mnemonics may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of the vector classes and their
INTEGER*4 value is given below.

Mnemonic Meaning INTEGER*4 Value

PVCONN Connected 0
PVDOTS Dots l
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector normalized 3D vector lists.

e

PS 300 DEC VAX/VMS FORTRAN-77 GSR | PVCLIS

Name := VECTOR_LIST (no corresponding command)

Version A2.VO0l

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVclLis (NVec, Vecs, PosLin, ErrHnd)
where:
NVec is the number of vectors in the vector list and is defined: INTEGER¥*4

Vecs is the array containing the vectors of the vector list and is defined:
REAL*4 (4, NVec)
where: Vecs(l,n) = vector n x-component
Vecs(Z,n) = vector n y-component
Vecs(3,n) = vector n z-component
Vecs(4,n) = vector n intensity (or hue)
0 <= Vecs(4,n) <=1 or
0 <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive - draw/line information
for each vector. PosLin is defined : LOGICAL*! PosLin(NVec)
If PosLin(n) = .TRUE. then vector n is a draw(line) vector.

If PosLin(n) = .FALSE. then vector n is a move(position) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vectar-normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block-normalized vector list case, unless the subroutine
PVcMax is called first. To send a vector list, the user must call:

PVcBeg
PVclLis (This may be called multiple times for vector-normalized vector lists)

PVcEnd

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR_LIST (no corresponding command)

Version A2.VO0l1 (continued)

The POSLIN Array is always required, however the CLASS specified in PVcBeg
determines how it is used. For CONNECTED, DOTS, and SEPARATE, the user
need not specify the contents of POSLIN. For ITEMIZED and TABULATED, the
user-specified position/line is used.

The fourth position of Vecs is the intensity of that vector if vector-normalized,
regardless of dimension. If block-normalized, the first vector's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity when
specifying color-blended vectors (refer to PSETCB). Use the following algorithm
to convert the acceptable range of hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR
routine before sending.

e If the value is less than O or greater than 720, clamp it to the nearest
in-range value.

e- If the value is greater than or equal to 360, subtract 360.
® Divide the value by 768.

e If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the ranae (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECS is an INDEX.
Users should specify whole numbers 0¢ index <127 in this case. The GSRs will

truncate the value supplied to an integer and force the value to be in range 0 to
127.

Together, the subroutines PVcBeg, PVclis, and PVcEnd implement the PS 300
command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

PS 300 IBM VS FORTRAN GSR PVCLIS

Name := VECTOR_LIST (no corresponding command)

Version A2.V0]

APPLICATION SUBROUTINE AND PARAMETERS

" CALL PVclLis (NVec, Vecs, PosLin, ErrHnd) .
where:
NVec is the number of vectors in the vector list and is defined: IP(TEGER*&

Vecs is the array containing the vectors of the vector list and is defined:
REAL*4 (4, NVec)
where: Vecs(l,n) = vector n x-component
Vecs(2,n) = vector n y-component
Vecs(3,n) = vector n z-component
Vecs(4,n) = vector n intensity (or'hue)
0 <= Vecs(4,n) <=1 or
0 <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive - draw/line information
for each vector. PosLin is defined : LOGICAL*] PosLin(NVec)
If PosLin{n) = .TRUE. then vector n is a draw(line) vector.

If PosLin(n) = .FALSE. then vector n is a move(paosition) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vector-normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block-normalized vector list case, unless the subroutine
PVeMax is called first. To send a vector list, the user must call:

PVcBeg
PVcLis (This may be called multiple times for vector normalized vector lists)

PVcEnd

(Continued on next page)

PS 300 IBM VS FORTRAN GSR PVCLIS

Name := VECTOR_LIST (no corresponding command)

Version A2.V01 (continued)

The POSLIN Array is always required, however the CLASS specified in PVcBeg
determines how it is.used. For CONNECTED, DQOTS, and SEPARATE, the user
need not specify the contents of POSLIN. For ITEMIZEDesand TABULATED, the
user-specified position/line is used.

The fourth position of Vecs is the intensity of that vector if vector-normalized,
regardless of dimension. If block-normalized, the first’veetor's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity when
specifying color-blended vectors (refer to PSETCB). Use the following algorithm
to convert the acceptable range of hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR
routine before sending. '

e If the value is less than 0 or greater than 720, clamp it to the nearest
in-range value.

e If the value is greater than or equal to 360, subtract 360.
e Divide the value by 768.

e If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECS is an INDEX.
Users should specify whole numbers 0¢ index <127 in this case. The GSRs will

truncate the value supplied to an integer and force the value to be in range 0 to
127.

Together, the subroutines PVcBeg, PVclis, and PVcEnd implement the PS 300
~ command:

Name := VECTORLIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

e

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCMAX

Name := VECTOR_LIST (no corresponding command)

Version A2.VOl

APPLICATION SUBROUTINE AND PARAMETERS

SUBROUTINE PVCMAX (MAX, ERRHAND)

DEFINITION
This subroutine must be called before calling PVCLis if creating a creating a
block-normalized vector list with multiple calls to PVCLis. To send a vector list,
the user must call:

e PVCBeg

e PVCMax (If making calls to PVCLis and creating a block-normalized vector
list.)

e PVCLis (This may be called multiple times for vector-normalized vector
lists.)

e PVcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 IBM VS FORTRAN GSR PVCMAX

Name := VECTOR_LIST (no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

SUBROUTINE PVCMAX (MAX, ERRHAND)

DEFINITION
This subroutine must"be called before calling PVCLIis if creating a creating a
block-normalized vector list with multiple calls to PVCLis. To send a vector list,
the user must call:

e PVY(CBeg

¢ PVCMax (If making calls to PVCLis and creating a block-normalized vector
list.)

e PVCLis (This may be called multiple times for vector-normalized vector
lists.)

e PVcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.VQI1

APPLICATION PROCEDURE AND PARAMETERS
PROCEDURE PVecBegn (%DESCR Name : P_VaryingType;
VectorCount . INTEGER;
BlockNormalized : BOOLEAN;
ColorBlending : BOOLEAN;
Dimen . INTEGER;

Class . INTEGER;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PVeclList (This procedure may be called multiple times for vector-normalized
vector lists)

PVecEnd

It contains the following parametric definitions:
@ Name specifies the name to be given to the vector list
® \ectorCount is the number of vectors to be created

® BlockNormalized is TRUE for Block Normalized and FALSE for Vector
Normalized

® (olorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

® Dimenis 2 or 3 (2 or 3 dimensions respectively)

*Class corresponds to a vector class

®

Error_Handler is the user-defined error-handler procedure

(Continued on next page)

PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.VOI1 (continued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR__LIST (DQOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors»;

NOTE

The dimension must be specified in the PVECBEGN
application procedure. In the PS 300 command, dimension is
implied by syntax.

* These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemanic Meaning INTEGER Value
P_Conn Connected 0
P Dots Dots 1
P Item Itemized 2
P Sepa Separate 3
P Tab Tabulated 4

Note: If the vector list is class P_Tab, BlockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

i

PS 300 IBM PASCAL/VS GSR | PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.V0l1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecBegn (%DESCR Name : P_VaryingType;
VectorCount : INTEGER;
BlockNormalized : BOOLEAN;
ColorBlending : BOOLEAN;
Dimen : INTEGER;
Class . INTEGER;

DEFINITION

PROCEDURE Error_Handler (Err : INTEGER));

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PVecList (This procedure may be called multiple times for vector-normalized

vectar lists)

PVecEnd

It contains the following parametric definitions:

®

Name specifies the name to be given to the vector list
VectorCount is the number of vectors to be created

BlockNormalized is TRUE for Black Normalized and FALSE for Vector
Normalized

ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

Dimen is 2 or 3 (2 or 3 dimensions respectively)
*¥Class corresponds to a vector class

Error_Handler is the user-defined error-handler procedure

(Continued on next page)

PS 300 IBM PASCAL/VS GSR : PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.V0l ‘ (continued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR__LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE
The dimension must be specified in the PVECBEGN

application procedure. In the PS 300 command, dimension is
implied by syntax.

* These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemanic Meaning INTEGER Value

P Conn Connected 0
P Dots Dots l
P Item Itemized 2
P Sepa Separate 3
P Tab Tabulated 4

Nete: If the vector list is class P_Tab, BlockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

e

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

Version A2.V0Q1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList (NumberOfVectors : INTEGER;
VAR Vectors : P_VectorListType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure must be called to send a piece of a vector list. For
vectaor-normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block-normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVecList (This procedures may be called multiple times for
vector-normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTORLIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors.of the vector list.

where: Vectors [nL.V4[l] := Vector n x-component
Vectors [nl.V4[2] := Vector n y-component
Vectors [nl.V4[3] := Vector n z-component
Vectors [nl.V4[4] := Vector n intensity (or hue)
0 «= vectors [nlLVva4(s]l <=1 or 0Q«=
Vectors[nl.V4[4] «<=127 if vector class is
tabulated.

Vectors [nl.Draw := True if vector n is a draw/line vector.
Vectors [nl.Draw := False if vector n is a move/position vector.

The fourth position of Vectors 1is the intensity of that vector if
vector-normalized, regardless of dimension. If block-normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

Version A2.V01 ' (continued)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color-blended vectors (refer to PSETBLND). Use the following
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR LIST command) to the expected range of 0-1 for the PVECLIST
GSR procedure before sending.

e . If the value is less than 0 or greater than 720, clamp it to the nearest
in-range value.

e If the value is greater than or equal to 360, subtract 360.
® Divide the value by 768.

e If the original value was greater than or equal to 360, add .5 to the result of
the divisian.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
INDEX. Users should specify whole numbers O< index <127 in this case. The GSRs
will truncate the value supplied to an integer and force the value to be in range O
to 127.

If specifying P_Conn, P_Dots, or P Sepa, the vector's draw section of the vector
list is generated by the procedure. P Item and P_Tab reguire that the move/draw
nature of each vector be defined by the user.

PS 300 IBM PASCAL./VS GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

_Version A2 .VO1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVeclist (NumberOfVectors : INTEGER;
VAR Vectors : P_VectorListType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure must be called to send a piece of a vector list. For
vector-normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block-normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVeclList (This procedures may be called multiple times for
vector-normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTORLIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [nl.V4[1]:= Vector n x-component
Vectors [n].V4[2] := Vector n y-component
Vectors [n]l.V4[3] := Vector n z-component
Vectors [nl.V4[4] := Vector n intensity (or hue)
0 <= vectors [nlVva[s]l <=1 or O«<=
Vectors(nl.V4[4] «=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is a draw/line vector.
Vectors [nl.Draw := False if vector n is a move/position vector.

The fourth position of Vectors is the intensity of that vector if
. vector-normalized, regardiess of dimension. If block-normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 IBM PASCAL/VS GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

Version A2.VO1 (continued)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color-blended vectors (refer to PSETBLND). Use the following
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR LIST command) to the expected range of 0-1 for the PVECLIST
GSR procedure before sending.

e If the value is less than 0 or greater than 720, clamp it to the nedrest
in-range value.

e If the value is greater than or equal to 360, subtract 360.
¢ Divide the value by 768.

e If the original value was greater than or equal to 360, add .5 to the result of ,
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an.
INDEX. Users should specify whole numbers O¢ index <127 in this case. The GSRs

will truncate the value supplied to an integer and force the value to be in range O
to 127.

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector
list is generated by the procedure. P Item and P Tab requires that the move/draw
nature of each vector be defined by the user.

PS 300 DEC VAX/VMS PASCAL GSR PVECMAX

Name := VECTOR_LIST (no corresponding command)

Version A2.V0I]

APPLICATION PROCEDURE AND PARAMETERS

[GLOBAL, CHECK(NCBOUNDS)] PROCEDURE PVecMax (Maxcomp : REAL)
(PROCEDURE Error_Handler (Err : INTEGER));
DEFINITION
This procedure must be called to set the maximum component of a vector list for
multiple calls to PVeclist with block-normalized vectors. To send a vector list,
the user must call:

® PVecBegn

e PVecMax (If defining block-normalized vector with multiple calls to
PVecList)

e PVeclist (This may be called multiple times.)
e PVecEnd (This is called last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 IBM PASCAL/VS GSR PVECMAX

Name := VECTOR_LIST (no corresponding command)

Version A2.VOl

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecMax (Maxcomp : REAL)
(PROCEDURE Error_Handler (Err : INTEGER));
DEFINITION
This procedure must be called to set the maximum component of a vector list for
multiple calls to PVeclList with block-normalized vectors. To send a vector list,
the user must call:

e PVecBegn .

e PVecMax (If defining block normalized-vector with multiple calls to
PVeclList)

® PVeclList (This may be called multiple times.)

® PVecEnd (This is called last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n ¢vectors>;

PS 300 IBM PASCAL/VS GSR PWRTBACK
Name := WRITEBACK

Version A2.VO01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWRTBACK (CONST Name : STRING;
CONST Namel : STRING;
PROCEDURE Error_Handler (Err : INTEGER));

DESCRIF’TION

This procedure enables writeback in the data structure Namel. Writeback is
triggered by sending a TRUE to the writeback operation node created with this
procedure.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell];

PS 300 DEC VAX/VMS PASCAL GSR PWRTBACK
Name := WRITEBACK

Version A2.V0]

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack (%DESCR Name : P_VaryingType;
%DESCR Namel : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure enables writeback in the data structure Namel. Writeback is
triggered by sending a TRUE to the writeback operation node created with this
procedure.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell;

e

PS 300 FORTRAN GSR PWRTBK
Name := WRITEBACK

Version A2.VO01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PWRTBK (Name, Namel, Errhnd)
where:

Namel is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DEFINITION

This subroutine enables writeback in the data structure Namel. Writeback is
triggered by sending a TRUE to the writeback operation node created with this
subroutine.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell;

PS 300 FORTRAN GSR PSEBOF
Name := SET BLINKING ON/OFF

PS 350 User's Manual

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSEBOF (Name, OnOff, Namel, Errhnd)
where:

Name is a CHARACTER STRING

OnOff is a LOGICAL*]

Namel is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DEFINITION

-This procedure turns blinking on and off. It affects all objects below the node
created by the command in the display tree.

PARAMETERS

OnOff - TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Namel - The name of the structure that will be affected by the command.

PS 300 COMMAND AND SYNTAX

name := SET BLINKing switch
[APPLied to namell];

PS 300 IBM PASCAL/VS GSR PSETBONF
Name := SET BLINKING ON/QOFF

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetBOnf (CONST Name : STRING;
Onoff : BOOLEAN;
CONST Namel : STRING;

Procedure Error_Handler (Err : INTEGER));

DEFINITION

This procedure turns blinking on and off. It affects all objects below the node
created by the command in the display tree.

PARAMETERS

OnOff - TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Namel - The name of the structure that will be affected by the command.

PS 300 COMMAND AND SYNTAX

name := SET BLINKing switch [APPLied to namel];

PS 300 DEC VAX/VMS PASCAL GSR PSETBONF
Name := SET BLINKING ON/OFF

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS
PROCEDURE PSetBOnf (%DESCR Name : P_VaryingType; .
Onoff : BOOLEAN;
%DESCR Namel : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));
DEFINITION
This procedure turns blinking on and off. It affects all objects below the node

created by the command in the display tree.

PARAMETERS

Onoff - TRUE indicates that blinking will occur in the displayed objects.
FALSE turns blinking off.

Namel - The name of the structure that will be affected by the command.

PS 300 COMMAND AND SYNTAX

name := SET BLINKing switch [APPLied to namell;

PS 300 FORTRAN GSR PSELNT

Name := SET LINE_TEXTURE

PS 350 User's Manual

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSELNT (Name, Pattrn, Cont, Namel, Errhnd)

where:

Name is a CHARACTER STRING

Pattrn is an INTEGER*4

Cont is a LOGICAL*]

Name!l is a CHARACTER STRING

Errhnd is the user-defined error-handler subroutine

DEFINITION

This subroutine specifies the line texture pattern to be used in drawing the
vector lists that appear below the node created by this command. There are up
to 127 hardware-generated line textures possible. The parameter pattrn is an
integer between | and 127. The desired line texture is indicated by the setting
or clearing of the lower 7-bit positions in Pattern when represented in binary.
An individual pattern unit is l.l centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 1111111 Solid

124 | 0 Long Dashed

122 1111010 ——— . ——— Long Short Dashed

106 1101010 ——————— Long Short Short Dashed
PARAMETERS

Cont_ - LOGICAL value used to set a flag to indicate if the specified line

texture should continue from one vector to the next. If Cont is TRUE,
the line texture will continue from one vector to the next through the
endpoint. If Cont is FALSE, the line texture will start and stop and
the vector endpoints.

Pattrn - An integer between | and 127 that specifies the desired line texture.

When pattern is less that | or greater than 127, solid lines are
produced.

Namel - The name of the structure to which the line texture is applied.

PS 300 FORTRAN GSR PSELNT
Name := SET LINE_TEXTURE

PS 350 User's Manual (continued)

DEFAULTS

The default line texture is a solid line

NOTES
Since 7 bit positions are used, it is not possible to create a symmetric pattern.

When line-texturing is applied to a vector, the vector that is specified is
displayed as a patterned, rather that solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the vector
is displayed. If the line is smaller than the smallest element of the pattern, then
the line is displayed as solid.

The With Pattern and curve commands create multiple vectors in memory. To
the line-texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line-texturing a patterned line or curve is the same as
line-texturing a number of small segments. Curves and patterns affect
line-texturing only in that they tend to create short vectors that may be too
short to be completely textured.

PS 300 COMMAND AND SYNTAX

name := SET LINe_texture [AROUnd_corners] pattern
[APPLied to namell;

PS 300 IBM PASCAL/VS GSR PSETLINT
Name := SET LINE_TEXTURE

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetLinT « (CONST Name : STRING;
Pattern : INTEGER;
AroundCorners : BOOLEAN;
CONST Namel . STRING;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure specifies the line texture pattern to be used in drawing the
vector lists that appear below the node created by this command. There are up
to 127 hardware-generated line textures possible. The parameter pattern is an
integer between | and 127. The desired line texture is indicated by the setting
or clearing of the lower 7 bit positions in pattern when represented in binary.
An individual pattern unit is l.! centimeters in length. Some of the more
cammon patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 11111 Solid

124 Lrrme e e Long Dashed

122 1111010 —————— - Long Short Dashed

106 1101010 —_——_————— Long Short Short Dashed
PARAMETERS

AROUnd_corners - Boolean value used to set a flag to indicate if the specified
line texture should continue from one vector to the next. If
ARQOUnNd corners is TRUE, the line texture will continue
from one vector to the next through the endpoint. If
ARQOUnd_corners is FALSE, the line texture will start and
stop at the vector endpoints.
[3
Pattern - An integer between | and 127 that specifies the desired line
texture. When pattern is less that | or greater than 127, solid lines
are produced.

Namel - The name of the structure to which the line texture is applied.

PS 300 IBM PASCAL/VS GSR PSETLINT

Name

:= SET LINE_TEXTURE

PS 350 User's Manual (continued)

DEFAULTS

The default line texture is a solid line.

NOTES -

Since 7 bit positions are used, it is not possible to create a symmetric pattern.

When line-texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather that solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the
vector is displayed. If the line is smaller than the smallest element of the
pattern, then the line s displayed as solid.

The With Pattern and curve commands create multiple vectors in memory. To
the line-texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line-texturing a patterned line or curve is the same as
line-texturing a number of small segments. Curves and patterns affect
line-texturing only in that they tend to create short vectors that may be too
short to be completely textured.

PS 300 COMMAND AND SYNTAX

name := SET LINe_texture [AROUnd_corners] pattern
[APPLied to namell;

s

PS 300 DEC VAX/VMS PASCAL GSR PSETLINT

Name := SET LINE_TEXTURE

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSetLinT (%DESCR Name : P_VaryingType;

DEFINITION

Pattern : INTEGER;
AroundCorners : BOOLEAN;
%DESCR Namel : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));

This procedure specifies the line texture pattern to be used in drawing the
vector lists that appear below the node created by this command. There are up
to 127 hardware-generated line textures possible. The parameter pattern is an
integer between | and 127. The desired line texture is indicated by the setting
or clearing of the lower 7-bit positions in Pattern when represented in binary.
An individual pattern unit is 1.l centimeters in length. Some of the more
common patterns and their corresponding bit settings are shown below:

Pattern Bit representation Line Texture repeated twice

127 L1 Solid

124 O 0l Long Dashed

122 1111010 ———— e - Long Short Dashed

106 1101010 —————- Long Short Short Dashed
PARAMETERS

AROUnd_corners -

Pattern - An

Boolean value used to set a flag to indicate if the specified
line texture should continue from one vector to the next. If
ARQOUnd_corners is TRUE, the line texture will continue
from one vector to the next through the endpoint. If
ARQOUnNd _corners is FALSE, the line texture will start and
stop at the vector endpoints.

integer between | and 127 that specifies the desired line

texture. When pattern is less that | or greater than 127, solid lines
are produced.

Namel - The name of the structure to which the line texture is applied.

PS 300 DEC VAX/VMS PASCAL GSR , PSETLINT
Name := SET LINE_TEXTURE

PS 350 User's Manual (continued)

DEFAULTS
The default line texture is a solid line.

NOTES

Since 7 bit positions are used, it is not possible to create a symmetric pattern.

When line-texturing is applied to a vector, the vector that is specified is
displayed as a textured, rather that solid line. If the line is smaller than the
pattern length, then as much of the pattern that can be displayed with the
vector is displayed. If the line is smaller than the smallest element of the
pattern, then the line is displayed as solid.

The With Pattern and curve commands create multiple vectors in memory. To
the line-texturing hardware, each vector in a pattern or curve is seen as an
individual vector. Line-texturing a patterned line or curve is the same as
line-texturing a number of small segments. Curves and patterns affect
line-texturing only in that they tend to create short vectors that may be too
short to be completely textured.

PS 300 COMMAND AND SYNTAX

name := SET LINe_texture {AROUnd_cornerél pattern
[APPLied to namell;

PS 300 FORTRAN GSR PSEBR
Name := SET BLINK RATE

PS 350 User's Manual

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSEBR (Name, Rate, Namel, Errhnd)
where:

Name is a CHARACTER STRING

Rate is an INTEGER*4

Namel is a CHARACTER STRING
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine specifies the blinking rate in refresh cycles to be applied to all
objects below the node created by the command in the display tree.

PARAMETERS

Rate - An integer designating the duration of the blink in refresh cycles. The
blinking data will be on for the number of specified refreshes and off
for the specified number of refreshes.

Namel - The name of the structure to which the blinking rate is applied.

NQOTE

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

PS 300 COMMAND AND SYNTAX

name := SET BLINK RATE n
[APPLied to namell;

PS 300 IBM PASCAL/VS GSR PSETBR
Name := SET BLINK RATE

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSETBR (CONST Name : STRING;
Blinkrate : INTEGER;
CONST Namel : STRING;

PROCEDURE Error_Handler (Err : INTEGER));

DESCRIPTION

This proced'ure specifies the blinking rate in refresh cycles to be applied to all
objects below the node created by the command in the display tree.

PARAMETERS

Blinkrate - An integer designating the duration of the blink in refresh cycles.
The blinking data will be on for the specified number of refreshes
and off for the specified number of refreshes.

Namel - The name of the structure to which the blinking rate is applied.

NOTE

PS 330-style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

PS 300 COMMAND AND SYNTAX

name := SET BLINK RATE n
[APPLied to namell];

PS 300 DEC VAX/VMS PASCAL GSR : . PSETBR
Name := SET BLINK RATE

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSETBR (%DESCR Name : P_VaryingType; .
Blinkrate : INTEGER;
%DESCR Namel : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));

DESCRIPTION

This procedure specifies the blinking rate in refresh cycles to be applied to all
objects below the node created by the command in the display tree.

PARAMETERS

Blinkrate - An integer designating the duration of the blink in refresh cycles.
The blinking data will be on for the specified number of refreshes
and off for the specified number of refreshes.

namel - The name of the structure to which the blinking rate is applied.

NOTE

PS 330-style blinking, done via the SET RATE and IF PHASE ON/OFF
commands, where blinking is tied to the update rate rather than the refresh
rate, will still work, but since the update rate in the PS 350 may be slower, the
visual result may be different.

PS 300 COMMAND AND SYNTAX

name := SET BLINKING RATE n
[APPLied to namel];

PS 300 IBM PASCAL/VS GSR PVIEWL
Name := LOAD VIEWport

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PViewL (CONST Name : STRING;
Hmin . REAL;
Hmax : REAL;
Vmin : REAL;
Vmax : REAL;
Imin . REAL;
Imax : INTEGER;
CONST Namel . STRING;

Procedure Error_Handler (Err : INTEGER));;

DEFINITION

The PViewlL procedure for the PS 350 loads a viewport and overrides the
concatenation of the previous viewport. As with the standard PS 300
VIEWPORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines. It affects all objects below -
the node created by the command in the display tree.

PARAMETERS

Hmin,Hmax,Vmin,Vmax - The x and y boundaries of the new viewport. Values
must be within the -1 to | range.

Imin,Imax - Specifies the minimum and maximum intensities for the viewport.
imin is the intensity of lines at the back clipping plane; imax at
the front clipping plane. Values must be within the 0 to 1 range.

Namel - The name of the structure to which the viewport is applied.

PS 300 COMMAND AND SYNTAX

name := LOAD VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENSsity = imin:imax] [APPLied to namel];

PS 300 DEC VAX/VMS PASCAL GSR PVIEWL
Name := LOAD VIEWport

PS 350 User's Manual

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE P¥ViewL (%DESCR Name -t P_VaryingType;

Hmin : REAL;

Hmax . REAL;

Vmin . REAL;

Vmax . REAL;

Imin : REAL;

Imax . INTEGER;
%ADESCR Namel : P_VaryingType;

Procedure Error_Handler (Err : INTEGER));;

DEFINITION

- The PViewlL procedure for the PS 350 loads a viewport and overrides the
concatenation of the previous viewport. As with the standand PS 300
VIEWPORT command, it specifies the area of the screen that the displayed data
will occupy, and the range of intensity of the lines.

PARAMETERS

Hmin,Hmax,Vmin,Vmax - The x and y boundaries of the new viewport. Values
must be within the -1 to | range.

Imin,Imax - Specifies the minimum and maximum intensities for the
viewport. imin is the intensity of lines at the back clipping plane;
imax at the front clipping plane. Values must be within the 0 to |
range.

Namel - The name of the structure to which the viewport is applied.

PS 300 COMMAND AND SYNTAX

name := LOAD VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namell];

g

PS 300 FORTRAN GSR | PVIEWL
Name := LOAD VIEWport

PS 350 User's Manual

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVIEWL (Name, Hmin, Hmax, Vmin, Vmax, Imin, Imax, Namel, Errhnd)
where:

Hmin, Hmax are REAL*4

Vmin, Vmax are REAL*4

Imin, Imax are REAL*4 .

Namel is a CHARACTER STRING

Errhnd is the user-defined error-handler subroutine

DEFINITION

The PViewl. subroutine for the PS 350 loads a viewport and overrides the
concatenation of the previous viewport. As with the standand PS 300 VIEWPORT
command, it specifies the area of the screen that the displayed data will occupy,
and the range of intensity of the lines.

PARAMETERS

Hmin,Hmax,Vmin,Vmax - The x and y boundaries of the new viewport. Values
must be within the -1 to | range.

Imin,Imax - Specifies the minimum and maximum intensities for the
viewport. imin is the intensity of lines at the back clipping plane;
imax at the front clipping plane. Values must be within the 0 to 1.

Namel - The name of the structure to which the viewport is applied.

PS 300 COMMAND AND SYNTAX

name := LOAD VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namel];

PS 300 WRITEBACK FEATURE

‘The Writeback feature allows displayed transformed vector data to be sent back to the
host. The position of the writeback node in the display structure determines which
transformations will be applied to the writeback data. The system-generated writeback
node will include all transformations (viewing and modeling). Once the host has
received these data, they can be used to generate hardcopy plots or display
host-generated raster images. The user is responsible for retrieval and all subsequent
processing of data on the host system.

This guide describes how to use the Writeback feature on all members of the PS 300
family of graphics computers. Operational differences among models are specifically
noted.

This guide contains:

- ® A description of the user interface for the Writeback feature. The user interface
consists of the WRITEBACK operation node and the WRITEBACK initial function.

e Constraints on the use of the WRITEBACK operation node.
e Descriptions of the WRITEBACK function.

e A list of the commands that may need to be interpreted by host-resident code to
filter writeback data retrieved from the PS 300.

e An example of the sequence of data sent back to the host.
e An example of a host program that retrieves, processes, and files writeback data

from the PS 350.

Change-pages supporting the Writeback feature are provided in this guide for the
Command Summary, the Function Summary and the Graphics Support Routine sections
of the PS 300 Document Set.

- 2-PS 300 WRITEBACK FEATURE

Writeback User Interface

The Writeback feature is implemented by:

e C(Creating the WRITEBACK operation node (or using the system-generated
writeback node, WBS).

e Activating the WRITEBACK operation node.

e Connecting the WRITEBACK function to a function network.

WRITEBACK Operation Node

When the PS 300 is booted, a WRITEBACK operation node is created. It is named
WB$ and is placed above every user-defined display structure. This node can be
triggered if an entire displayed picture is to be included in the writeback data. If
writeback of only a portion of the picture is desired, the user must place other
WRITEBACK nodes appropriately in the display structure.

A user-defined WRITEBACK operation node is created by the command:
Name := WRITEBACK [APPlied to Name1];

The WRITEBACK node has one input. A TRUE sent to input <1> of the
WRITEBACK node triggers writeback for the data structure below the node. This
trigger is sent by the user, for example:

SEND TRUE TO <1>name;

triggers that WRITEBACK node. Of course the node could be triggered {hrough a
function network using a function key, etc.

A WRITEBACK operation node delimits the structure from which the writeback
data will be collected. Only the data nodes below the WRITEBACK operation
node in the display structure will be transformed, clipped, viewport scaled
perspective divided (as delineated by the placement of the WRITEBACK node),
and sent back to the host.

NOTE

On the PS 350, viewport translations will not be applied
to the data.

PS 300 Writeback Feature - 3

WRITEBACK Operation Node Constraints

Only a displayed structure can be enabled for writeback. This means that the
WRITEBACK operation node must be traversed by the display processor and
therefore must be included in the displayed portion of the structure. The default
WRITEBACK node WB$ is displayed as part of every displayed structure. But, if
the user creates another WRITEBACK node and if this node is triggered before
being displayed, the following error message will result:

E 8 ACP cannot find your operate node

Any number of WRITEBACK nodes can be placed within a structure. However,
only one WRITEBACK operation can occur at a time. If more than one node is
triggered, the WRITEBACK operations are performed in the order in which the
corresponding nodes were triggered.

The terminal emulator and message display information will not be returned to
the host.

Polygon data can be returned to the host only if the PS 340 has a 4K ACP.

Before triggering the WRITEBACK operation, disable the SCREENSAVE function
by entering the command "SCREENSAVE:= nil;".

The WRITEBACK Function
An initial function instance, WRITEBACK, is created by the system at boot up.

WRITEBACK

Integer specifying
size of output
Qpackets —————————- > [<> <1> | -———-> Qpackets to user
’ function network

WRITEBACK sends encoded writeback data received from the display processor.
The writeback data is prefixed by a start-of-writeback command, followed by the
encoded data, followed by an end-of-writeback or end-of-frame command.

4 - PS 300 WRITEBACK FEATURE

WRITEBACK has one user-accessible input queue. Input <1> accepts integers
specifying the size of Qpackets to be output by the function. The default size is
512 bytes per Qpacket. The minimum and maximum size are 16 bytes per
Qpacket and 1024 bytes per Qpacket, respectively. If the size specified by the
user is not within this range, the default size will be used by the system.

The input value should be chosen such that the actual size of the gpacket sent to
the I/0 port is less than or equal to the present input buffer size on the host
computer.

If the CVT8TO6 function is used to send the binary data to the host, then the
number of the bytes sent to the host is approximately 3/2 * the number of bytes
sent by the Writeback function.

For example, if the integer sent to <1> of the Writeback function is 80, the
largest Qpacket sent to the host will be 80 * 3/2 = 120. Qpackets, where the size
is not a muitiple of 4, will be padded to the next multiple of 4. For instance,
Qpacket sizes of 77, 78, and 79, sent to CVT8TO6 will all have output sizes of 120.

WRITEBACK has one user-accessible output queue. OQutput <1> passes the
encoded writeback data out as Qpackets until the end-of-writeback or
end-of-frame command is seen.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

Data Output by WRITEBACK

WRITEBACK will return all data below the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback and
end-of-writeback or end-of-frame commands.

Attribute information, such as color, must be interpreted by host code to ensure
that the hardcopy plots are correct.

On the PS 350, viewport translations will not be applied to the data. Correct
computation of the position of endpoints requires that the host program add a
viewport center to each endpoint. The initial viewport center is established with
a VIEWPORT CENTER command. The VIEWPORT CENTER command is sent
following the start-of-writeback command. Any changes to the viewport center
will be indicated through this sequence of commands: CLEAR DDA, CLEAR
SAVE POINT, position endpoint, CLEAR SAVE POINT. The position endpoint
becomes the new viewport center.

Also, on the PS 350, several commands such as ENABLE PICK and ENABLE
BLINK are sent to the host., These will not typically be needed by the host
program. However, these commands come directiy from the refresh buffer and
are not filtered by the PS 350. Host-resident code must filter the writeback data
and strip out nonessential information.

g

PS 300 Writeback Feature - 5

Data Packets Returned

Data packets sent out the WRITEBACK function contain the following

information:

e |f bit 15 of the first word is O, it signals that the data that follows is a
command. For example, if the first word is H#0200 (Hex 0200) then the Line
Generator status will follow.

bits 15]/14 0
0| command
parameter

o If bit 15 of the first word is 1, it indicates that intensity, x and y coordinate
information will follow. Intensity can range from 0 to 127. The format of the

data is:

bits 15/14/13|12 -- 6 |5 -- 0
1] d{// inten |////1/77

bits |15 - 13 |12 - 0
17177777 y coord

bits |15 - 13 |12 -- Q
11777777 x coord

NOTE

©

, then it is a DRAW
, it is a MOVE

In the illustrations of data format, the slash character is
used to illustrate blocks of data that are unused.

Command Descriptions

The following list describes the commands that the host-resident code might have
to interpret before it can recognize and filter writeback data received from the
PS 300. These commands can be intermixed with vector data.

It is important to note that each command contains at least three 16-bit words.
For example, if a command only has one parameter then the third word is unused,
but it is still sent to the host. If a command has 3, 4, or 5 parameters, then 6
words will be sent for that command.

6 - PS 300 WRITEBACK FEATURE

START-OF-WR | TEBACK code in hex = H#0B0OO
2816

Parameters:
Line texture (one word)
LGS (one word)

Marks the beginning of the writeback segment, of which there is
guaranteed to be only one.

The texture and line generator status are included here. They follow
the same format as the texture and line generator status shown below.

BOO
[/7/777//] Texture
LGS
END-QF-WR I TEBACK code in hex = H#0C00
o # 3072
Parameters:

None

Marks the end of the writeback segment. For the PS 350, the
end-of-writeback may also be indicated by the end-of-frame command.

l coo
0 | 0/1 0 = finished successfully, 1 = cannot finish
[1/17/77/77/7/7777//77 operation because of insufficient memory

The error code (0 or 1) is currentiy not present in the PS 350 systems.

LINE GENERATOR STATUS code in hex = H#0200
512

Parameters:
Status word (one word)

Indicates dot mode (bit 8) and which display is selected (bits 0-3).
Normally, only the dot mode bit must be referenced.

200
LGS
[117///77777//7/7/7/1/

PS 300 Writeback Feature - 7

Line Generator Status Register (LGS):

LIV 177\ 777\ /771777777 \SHQ\///\//7/\///////] SCOPE SELECT
L0 7 R/ /N ///////f D C B A
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit Logical Names

B A
08 SHOWENDPT Dot mode
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope)
02 BLANKC Blank scope C
01 BLANKB Blank scope B
00 BLANKA Blank scope A
COLOR code in hex = H#0400
1024
Parameters:
Color value (one word)
400
Hue | Saturation
11177717777/ 7/7/7777/
/// /// 11771777777
/// Hl HUE L0 |//// HI SAT L0 ////7//7/777

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TEXTURE . code in hex = H#0500
1280

Parameters: -
Texture value (one word)

500
///77////] Texture
[11777777177777/777

Line Generator Texture Register:

[1177777777717777777177777/7//77 Texture bit pattern
[111771171177777777/777777///77
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

H#007F or H#00FF both default to a Solid line.
For non-PS 350 users, the texture will always be H#0OFF.

8 - PS 300 WRITEBACK FEATURE

The following commands are for PS 350 users ONLY.

CLEAR DDA code in hex = H#0100
256

Parameters:

None

P1CK BOUNDARY code in hex = H#0300
768

Parameters:

Four Boundary Values (4 words)

CLEAR SAVE POINT code in hex = H#0600
1536

Parameters:

None

SET PICK ID ‘code in hex = H#0700
1792

Parameters:

Pick ID Pointer (two words)

SET LightPen MODE code in hex = H#0800
2048

Parameters:

Control Mask (1)

New X,Y (2)

Delta distance (1)

Delta frames (1) (Total five wards)

L]

ENABLE PICK code in hex = H#0900
2304

Parameters:

None

DISABLE PICK code in hex = H#0AQQ
2560

Parameters:

None

PS 300 Writeback Feature - 9

SET BLINK RATE code in hex = H#0D00
3328

Parameters:

Blink Rate (one word)

ENABLE BLINK code in hex = H#0EQOQ
3584

Parameters:

None

DISABLE BLINK code in hex = H#QF00
3840

Parameters:

Nane

END-QF -FRAME - code in hex = H#1700

_ # 5888
Parameters: :
None

Signifies that the current update cycle is completed and that any
following data is part of the next update frame. This also signifies
end of the writeback segment.

VIEWPORT CENTER code in hex = H#1800

Parameters:

x center (one word)
y center (one word)
z center (one word)
spare (two words)

bits 15, 0
coordinates 2's complement vector

This value has to be added to each x,y coordinate pair. This
information is necessary to calculate the actual coordinates of the
data which has been viewport scaled. Every time a new viewport is
traversed by the Arithmetic Control Processor, a new viewport center
command will be sent.

10 - PS 300 WRITEBACK FEATURE

NOTE
Codes H#1900 - H#1FQ0 are reserved for future

commands. Code H#0000 is defined as a no-op, and
naturally has no parameters.

EXAMPLE OF THE SEQUENCE OF DATA SENT BACK TO THE HOST

The following example illustrates the sequence of data and the data in byte
format sent to the host during a WRITEBACK operation.

s

PS 300 Writeback Feature - 11

BOO

[/1///1/// |Texture _

LGS

400

Hue [Saturation

[1777/177//777//7///7777

intensity

Y

X

200

LGS

[1177117777777/7/7/7777/777

500

////////// | Texture

[11777117777717/77/777/777

400

Hue [Saturation

[111717117771/71777//77/7

Intensity

Y
X

.
.l

00

0/1

N11/177771777777777777777

Start-of-writeback command

Color command

;mMIDVDOoO-1oOom<

Line Generator Status command

Texture command

Color command

NIJIO—~4O0Om<<

End-of-writeback command
0 = finished successfully, 1 = cannot
finish because of insufficient memory

12 - PS 300 WRITEBACK FEATURE

Data in Byte Format

0B 00 Start-of-writeback command
00 FF Texture

04 70 LGS

04 00 Color command

80 00 Hue/Saturation

00 00 Not used

00 FF Intensity

1Y FF Y
1X FF X
00 FF Intensity
2Y FF Y

2X FF X

02 00 LGS command
04 70 LGS
00 00 Not used
05 00 Texture command
00 FF Texture
¢ ¢ Not used
04 00 Color command
80 00 Calor
00 00 Not used
00 FF Intensity
Y

1X FF X

OC‘ 00 End;of-writeback command
00 00 Finshed successfully
00 00 Not used.

koo

PS 300 Writeback Feature - 13

SAMPLE WRITEBACK PROGRAM

PROGRAM Writeback(Input,Qutput,Qutfile,Devfile);

{ Program to read writeback data from a PS 350. This program sets up a }
{ function network to get the writeback data and processes the data and }
{ creates a data file on the host with the data from the PS 350. }

CONST
%INCLUDE 'PROCONST .PAS'
Max_buf = 1024;

TYPE
Int16 = -32768..32767,;

Max_line = VARYING [Max_buf] OF CHAR;

%INCLUDE 'PROTYPES.PAS'

VAR:

QUTFILE : TEXT,;
DEVFILE : TEXT;
DEVSPEC : P_VARYINGTYPE;
OQUTNAME : P_VARYINGTYPE;
WBNAME : P_VARYINGTYPE;

COMMAND : INT16;
INDEX : INTEGER;
LEN : INTEGER;

Inline : P_VARYBUFTYPE;
vx,vy,vz : REAL;
In_DDA : BOOLEAN := FALSE;

%INCLUDE 'PROEXTRN.PAS'

PROCEDURE ERR (ERROR: INTEGER);
{}
{ ERROR HANDLER ROUTINE }
{}
BE%;N { ERR }
WRITELN(' ERROR :=',ERROR);
HALT;
{3
END; { ERR }

14 - PS 300 WRITEBACK FEATURE

PROCEDURE Setup;
{ Create function network to send writeback data to host }
{ This uses F:cvt8to6 to send 6-bit data to the host }
BEGIN
PFninst('cvt','cvt8' ,Err);
Pconnect ('Writeback',1,1,'cvt’,Err);
Pconnect ('cvt',1,1,'host message', Err);
PsndStr (CHR(36),2,'cvt',Err);
PsndFix (48,1,'writeback', Err);
PNameNi!('screensave' ,Err);
PPurge(Err);
END;

{ Utility procedures}
PROCEDURE Six_to_eight(Inbuf : Max_line;
VAR Qutbuf : P_VARYBUFTYPE);
{ Data}from PS 350 is in six-bit packed format. This procedure unpacks
data

CONST Base = 36;

TYPE
Cheat_4 = PACKED RECORD CASE Bgglean OF
TRUE : (i: UNSIGNED);
FALSE : (c: PACKED ARRAY [1..4] OF CHAR); .
END;
VAR
w : Cheat_4;

c_out,cycle count buf index,il tc : INTEGER;
first : BOOLEAN;

BEGIN
buf_index := 1;
first := TRUE;
cycle_count := 1;
c_out := 4,
outbuf := '';
WHILE buf_index <= len DO
BEGIN
tc := ORD{inbuf{buf_index]) - base;
IF first THEN
IF tc < 0 THEN
c_out := 4+tc
ELSE
BEGIN
first := FALSE;
w.i := tc;
cycle_count := SUCC(cycle_count);
END { ELSE tc >= 0 }

PS 300 Writeback Feature - 15

ELSE
BEGIN
W.i =w.i * (2*%6);
w.i := UOR(w.i ,tc);

cycle_count := SUCC(cycle_count);
END; { ELSE }
IF cycle_count > 6 THEN
BEGIN
FOR il := 4 DOWNTO (5-c_out) DO
Qutbuf := outbuf + w.cl[ill;
cycle_count := 1;
first = true;

END;
buf_index := SUCC(buf_index);
END; { WHILE }
END; :

PROCEDURE Next_Block;
{ Get a block of data from the PS 350 and convert from six to eight}
{ bit format }

VAR Inbuff : Max_line;

BEGIN
PGETWAIT(Inbuff,err);
Index := 1;
Len := LENGTH(Inbuff);
Six_to_eight (Inbuff, Inline);
Len := LENGTH(Inline);

END; :

PROCEDURE Get Value(VAR a : INT16):
{ Convert two bytes of input buffer to 16 bit integer }

VAR i : INTEGER;

BEGIN { Get Value }
a :=0;
FOR i :=1T0 2 DO
BEGIN
Index := Index + 1;
IF Index > Len THEN
" Next_Block; ’
a :=a * 256 + ORD(Inline[Index]);
END;
END;{ Get_Value }

16 - PS 300 WRITEBACK FEATURE

{ Procedures for processing refresh buffer commands }

PROCEDURE Clear_DDA;

{ CLEAR DDA - %X0100 }

{ Parameters - None }

{ Indicates start of sequence to set viewport center }

{ This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE PQINT}

VAR a,b : Intl16;

BEGIN
In DDA := TRUE;
Get value (a);
Get value (b);
Writein(Outfile,'{Clear DDA}');
END;

PROCEDURE Write LGS;

{ WRITE LINE GENERATOR STATUS - %X0200 }
{ Parameters - Status word (one word) }
{ Bit 8 : Dot mode. }

{ Bit 6 : Fast sweep (Opposite of 7) }
{ Bits 5 - 4: Contrast selection (00-min,11-max)?}
{ Bits 3 0: Scope select(1 disables,0 enables)}

VAR lIgs,a : Int16;

BEGIN

Get value (Igs);

Get value (a);

erteln(0utfile,'{Wr|te LGS:' HEX(lgs) ")
END;

PROCEDURE Write Pick Bound;
{ WRITE PICK BOUNDARY - %X0300 }
{ Parameters - Left, Right, Bottom, Top }

VAR 1,r,b,t,a : Int16;

BEGIN
Get_value
Get_value
Get_value
Get_value
Get_value
Writeln(Outf

END;

FFAA/"\/\/‘\
— D) - O -
D e o o e
- ws wmE ws we wa

ile,"{Write_Pick_bound:' HEX(1),HEX(r) ,HEX(b) HEX(t),'}");

PS 300 Writeback Feature - 17

PROCEDURE Write Color; -
{ WRITE COLOR - %X0400 }

{ Parameters - Color value (oné¢ Word) }

{Bit 15 : Not Used }

{ Bits 14 - 8 : Hue (High order in 14)}

{Bit 7 Not Used 1}

{ Bits 6 - 3 : Sat (High order in 3) }

{ Bits 2 -0 : Not Used }

VAR c,a : Int16;

BEGIN

Get_value (c);

Get value (a);

Writeln(OQutfile,'{Write Color:' HEX(c),'}");
END;

PROCEDURE Write_Texture; :

{ WRITE TEXTURE - %X0500 }

{ Parameters - Texture value (one word) }
{ Bits 15 - 7 : Not Used

{ Bits 6 -0 : Texture bit pattern }

VAR t,a : Intl16;

BEGIN
Get_value (t);
Get value (a);
Writeln(Outfile,'{Write_Texture:' HEX(t),'}');
END;

PROCEDURE Clear_Save_Paoint;
{ CLEAR SAVE PQINT - %XOBOO }
{ Parameters - None }°

VAR a,b : Inti16;

BEGIN .

Get_value (a);

Get value (b);

Writeln(Qutfile, '{Clear Save Point:}');
END;

PROCEDURE Set_Pick_ld;
{ SET PICK ID - %X0700 }
{ Parameters - Pick Id Pointer (two words)}

VAR a,b : Intl16;

18 - PS 300 WRITEBACK FEA'!:URE

BEGIN

Get_value (a);

Get value (b); -

Writein(Qutfile,'{Set Pick_ld:' ,HEX(a),HEX(b),'}");
END:

PROCEDURE Set Lightpen Mode;

{ SET LIGHTPEN MODE - %X0800 }

{ Parameters - Control mask }
{ Tracking crossy }

{ Tracking cross x }

{ Deita distance }

{ Delta frames }

VAR cm,x,y,dd,df : Int16;

BEGIN
Get value

(cm
Get value g
(

1

)i
);

Get value

Get value ;
Get value (;
Writeln(Qutfile,'
HEX(dd) ,HEX(d)

cm);
X)
Yy J);
dd);
df);

d
f

END;

PROCEDURE Enable Pick;
{ ENABLE PICK - %X0900}
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value-{ a);
Get value (b);
Wruteln(Outfnle,'{Enable Pick:}');
END;

"PROCEDURE Disable Pick;
. { DISABLE PICK - %X0A00 }
{ Parameters - Nane }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get value (b);
Writein(Outfile,'{Disable _Pick:}');
END;

PS 300 Writeback Feature - 19

PROCEDURE Enable Writeback;

{ ENABLE WRITEBACK - %X0B0O }
{ Parameters - Line Texture }
{ Line Gen Status}

VAR a,b : Int16;

BEGIN

Get_value (a);

Get_value (b);

WriteIn(Qutfile,'{Enable Writeback:',HEX(a),HEX(b),'}");
END;

PROCEDURE Disable_Writeback;
{ DISABLE WRITEBACK - %X0C00 }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN
Get_value (a);
Get_value (b);
WriteIn(Outfile,'{Disable Writeback:}');
END;

PROCEDURE Set Blink Rate;
{ SET BLINK RATE - %X0D00 }
{ Parameters - Blink rate }

VAR a,b : Intl16;

BEGIN
Get_value (a);
Get_value (b);
Writeln(Outfile,'{Set Blink Rate:',HEX(a),'}");
END;

PROCEDURE Enable Blink;
{ ENABLE BLINK - %X0EQQ }
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
WriteIn(Qutfile,'{Enable Blink:}');
END;

20 - PS 300 WRITEBACK FEATURE

PROCEDURE Disable Blink;
{ DISABLE BLINK - %X0F00 }
{ Parameters - None }

VAR a,b : Int16; .

BEGIN
Get_value (a);
Get_value (b)
Writeln(Outfile,'{Disable Blink:}');
END;

PROCEDURE End_0f_Frame;
{ END OF FRAME - %X1700 }
{ Parameters - None }

VAR a,b : Int16;

BEGIN

Get_vaiue (a);

Get_value (b);
Writeln(Outfile, {End_Of Frame:}');
AN

in .
Wy

m

PROCEDURE Viewport_Center;
{ VIEWPORT CENTER - %X1800}
{ Parameters - x center }
{ 'y center }

{ <z center }

VAR xc,yc,zc,a,b : Int16;

BEGIN
Get_value
Get_value
Get_value
Get_value)
Get_value)
VX i= XC;

IF (vx >= 32768) THEN vx :
VX = Vx/32767;

OO0

)
);
);

NN N N~
O N X

vx - 65536.0;

vy = yC;
IF (vy >= 32768) THEN vy :
vy := vy/32767;
vZ = 2C;
IF (vz >= 32768) THEN vz :
vz = vz/32767;
Writeln(Qutfile,'{Viewport_Center:',vx:6:6,' ',vy:6:6,' ',vz:6:6,'}');
END;

vy - 65536.0;

vz - 65536.0;

g

PS 300 Writeback Feature - 21

PROCEDURE Process_Vector;
{ Vector - Bit 15 of command = 1 }
{ Word 1 (command) }

{ Bit
{ Bit
{ Bit
{

VAR a
un

pl
int

BEGIN

15 : A
14 : 1
s 12 -6 :
s 5-0
d2(y
its 15 - 1
its 12 -
d3 (x
its 15 - 1
its 12 -
,b 1 Int
: UNSIGN
: CHAR;
X,¥ ¢ R

Iways one for vector }

= Draw, 0 = Move }
Intensity/2 }

: Not Used 1}
coord) }
3: Not Used }
0: Y coordinate }
coord) }
3: Not Used 1}
0: X coordinate }
16;
ED;
EAL;

Get value (a);
Get value (b);

un:

=command ;

=t]t
9

pli=

IF (UAND(un,%X4000) = 0) THEN pl := 'p';

un =

int

UAND(
i= un;

un,%X1FC0);

IF In_DDA THEN
z := int/8128.0

v
ELS
1

E

nt := (int/8128.0 + vz) * 2;

un := a;
un := UAND(un,%X1FFF);
‘= un;

IF (y >= %X1000) THEN y :

y - %X2000;

IF In_DDA THEN

v
ELS
y
un
un
X

y =y /
E

%XFFF

=y / %XFFF + vy;

UAND(un,%X1FFF),
= un;
IF (x >= %X1000) THEN x :

1]

x - %X2000;

IF In_DDA THEN

v
ELS
X

B

X i1=x/
E

%XFFF

i= X / %XFFF + vx;
IF In DDA THEN

EGIN

22 - PS 300 WRITEBACK FEATURE

Writeln(Qutfile,'{New View Center:',vx:6:6,' ',vy:6:6,' ',vz:6:6,'}');
In_DDA := FALSE;
END
ELSE
Writeln(Qutfile,'{Vec ',pl," ',x,',',y," i=",int,'}');
END;

PROCEDURE Unknown;
‘'VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
Writein(Outfile, {Unknown:', HEX(command),HEX(a) ,HEX(b),'}");
END;

BEGIN { Writeback?}
Write ('Enter Output File Name:');
Readin(Qutname);
Write ('Enter Writeback Operate Node Name:{WB$ is default mode}');
ReadIn(wbname);
open{Qutfile,Outname,new);
rewrite(Qutfile);

{ Look for file specifying line for pattach procedure }
{ Example of record in PSDEV.DAT: }

{ 'logdevnam=tt:/Phydevtyp=async' }
open(devfile,'psdev',old);

reset(devfile);

readIn(devfile,devspec);

close(devfile);

PATTACH(devspec,err); { Attach to PS 350 }
Setup; { Setup writeback network }

PNAMENIL('SCREENSAVE', ERR);
PPURGE(ERR) ;
PSndBool (TRUE,1,wbname, Err); { Trigger write back operate }

Next_block; { Read in first block of writeback data}

Index := 0;

Command := 0;
VX ;
vy :
VZ

wown
DOO
DOO

{ Process writeback buffers until END OF FRAME or END WRITEBACK}
WHILE (Command <> %X0C00) AND (Command <> %X1700) DO

g

PS 300 Writeback Feature - 23

Pro

BEGIN

Get_value(Command);
|F (Command > 32767) THEN { If bit 15 of command if set}

cess_vector

ELSE
CASE (Command DIV 256) OF

E

PF
PP
{}
END.

%X01 : Clear_DDA;
%X02 : Write LGS;

%X03 : Write P|ck Bound;

%X04 : Write Color

%X05 : Write Texture
%X06 : Clear Save P04nt

%X07 : Set Pick Id;
%X08 : Set_L!ghtpen
%X09 : Enable Pick;

_Mode;

%X0A : Disable_Pick;

%X0B : Enable_Writeback;
%¥X0C : Disable_Writeback;
%X0D : Set Blink_Rate;
%X0E : Enable Blink;

%X0F : Disable_Blink;

%X17 : End_Of_Frame;

%X18 : Viewport_ Center

OTHERWISE Unknown;
ND; { CASE }

END;
NINST('SCREENSAVE',
URGE(ERR) :

{ Writeback}

'SCREENSAVE',

ERR PDETACH(ERR);

E&S CUSTOMER SERVICE TELEPHONE INFORMATION LIST

Evans & Sutherland Customer Engineering provides a central service numbered staffed by CE
representatives who are available to take requests from 9:00 a.m. Eastern Time to 5:00 p.m.
Pacific Time (7:00 a.m. to 6:00 p.m. Mountain Time). All calls concerning customer service
should be made to one of the following numbers during these hours. Before you call, please
have available your customer site number and system tag number. These numbers are on the
label attached to your PS 300 display or control unit.

Customers in the continental United States should call toll-free:

1 + 800 + 582-4375

Customers within Utah or outside the continental United States should call Dispatch at:

(801) 582-9412

If problems arise during product installation or you have a question that has not been answered
adequately by the customer engineer or the customer service center, contact the regional
manager at one of the following Customer Engineering offices:

Eastern Regional Manager Western Regional Manager
(for Eastern and Central Time Zones) (for Mountain and Pacific Time Zones)
(518) 885-4639 (916) 448-0355

If the regional office is unable to resolve the problem, you may want to call the appropriate
department manager at corporate headquarters:

National Field Operations Software Support Technical Support
(for field service issues) {for sofware issues) (for hardware issues)
(801) 582-5847, ext 4843 (801) 582-5847, ext 4810 (801) 582-5847, ext 4868

Director of Customer Engineering
(for any unresolved problem)
(801) 582-5847, ext 4840

READER COMMENT FORM _ Publication Number

Title

Your comments will help us provide you with more accurate, complete, and useful
documentation. After making your comments in the space below, cut and fold this form as
indicated, and tape to secure (please da not staple). This form may be mailed free within
the United States. Thank you for your help.

How did you use this publication?

0 General informatinn [0 As areference manual
0 Guide to operating instructions (1 Other

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR
Technical Accuracy

Is the manual technically accurate? 0 0 | 0
Completeness

Does the manual contain enough information? 0 a]]
Readability

Is the manual easy to read and understand? 0 0 0 0
Clarity

Are the instructions easy to follow? 0 0 0 0

* Organization
Is it easy to find needed information? ' o . a {1 a

lllustrations and Examples
Are they clear and useful?] a 0 0

Physical Attractiveness
What do you think of the overall appearance? {0 {1 0 0

What errors did you find in the manual? (Please include page numbers)

Name Street
Title City
Department State
Company Zip Code

All comments and suggestions become the property of Evans & Sutherland.

Fold

NO POSTAGE
NECESSARY
IF MAILED
IN THE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 4632 SALT LAKE CITY, UTAH

POSTAGE WiLL BE PAID BY ADDRESSEE

EVANS & SUTHERLAND
580 Arapeen Drive

Salt Lake City, Utah 84108

ATTN: |AS TECHNICAL PUBLICATIONS

c
z

-..|

| m

(o]

(7]

b ~
»

e

m

w

Fold

Cut along dotted line

