
April 1987
E&S #904015-605
Rev B.

PS 390 RELEASE NOTES

EV ANS & SUTHERLAND

The contents of this document are not to be reproduced or copied in
whole or in part without the prior written permission of Evans &
Sutherland. Evans & Sutherland assumes no responsibility for errors
or inaccuracies in this document. It contains the most complete and
accurate information available at the time of publication, and is sub­
ject to change without notice.

PS1, PS2, MPS, PS 300, PS 330, PS 340, PS 350, and PS 390 are
trademarks of the Evans & Sutherland Computer Corporation.
DEC, VAX, UNIBUS, and ULTRIX are trademarks of Digital
Equipment Corporation. UNIX is a trademark of Bell Laboratories.
IBM VM/SP and IBM MVS/TSO are trademarks of International
Business Machines.

Copyright © 19 8 7
EV ANS & SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake qty, Utah 84108

CONTENTS

1. GENERAL INTRODUCTION . 1

1.1

1.2

1.3

1.4

1.5

Notes to New Users

Notes to Current Users

Notes to All Users .. .

Release Package Contents•.....................................

Distribution Tape Format and Installation Procedure

1

2

2

3

4

2. INTRODUCTION TO PS 390 • . . . • . S

2.1

2.2

2.3

System Hardware Overview••..................................

Operating Specifications .. .

Multiplexing Box and Peripheral Connections

3. RUNTIME MODIFICATIONS AND NEW FEATURES

3.1

3.2

3.3

3.4

3.4.1

3.4.2

3.5

3.6

3.7

New PS 390 Function .. .

Viewport Considerations•................ ;

"Soft Labels" Function Network•.............

Multiple GPIO Interfaces

Interface Configuration Files

Ethernet/DECNET Interface

Crash Dump File .. .

Additions to F:PICK

UWF Runtime Code Modifications

5

10

10

13

13

14

15

16

17

20

21

22

23

4. PS 390 EXCEPTIONS • . 25

Appendix A Crash Dump Information . A-1

Error Types/Error Numbers . A-1

Crash Dump Program . A-7

PART II

Change Pages and Previous Graphics Firmware Release Notes for the PS 300
Document Set

FIGURES AND TABLES

Figure 1. PS 390 Architectural Overiew • . • . 6

Figure 2. PS 390 Control Unit . 7

Figure 3. Back of Control Unit • . 8

Figure 4. Port Configuration . . . • • . 9

Figure 5. Front View of Multiplexing Box . 10

Figure 6. Rear Connections of Mux Box . 11

Figure 7. Screen Layout for the PS 390 with Soft Labels . 16

Figure 8. Data in Crash File 21

Table 1. Possible GPIO Combinations . 17

Table 2. Required Interface Files • • 19

PS 390 GRAPHICS FIRMWARE RELEASE NOTES
Version A2. V02

1. GENERAL INTRODUCTION

These release notes document functionality of the PS 390 and are intended as a supplement to
the PS 300 Document Set which describes the operation and programming of the PS 300 line of
computer graphics systems. These notes can be placed in the Document Set behind the Release
Notes tab in Volume 3A.

The PS 390 has a new hardware configuration with a reduced-size cabinet and a Joint Control
Processor (JCP) card, which are explained in Section 2.1 of these Notes. The hardware
configuration and calligraphic display documented in the Document Set are not applicable to the
PS 390. New users should note that a different set of peripherals is available with the PS 390
although the peripherals documented in the Document Set are also supported under PS 390.
Procedures for using the peripherals with the multiplexing box are explained in Section 2.3.

You should assume that all programming information in the PS 300 Document Set and
accompanying installation manuals (dependent on your particular configuration) is applicable to
the PS 390 unless specifically noted in these Release Notes.

Changes and additions to the PS 300 Graphics runtime firmware and host software released since
the publication of the Document Set are contained in Part II of these Notes. This section
consolidates the information from previous release notes that applies to the PS 390, and includes
formal change pages for the Command and Function Summaries and for the Graphics Support
Routines (GSRs) in the PS 300 Document Set. Please discard the old pages in your set and
replace with these new pages. Some new pages documenting specific PS 390 functionality and
other pages with new information are included and should be inserted in the appropriate place in
your Document Set.

1.1 Notes to New Users

New users should familiarize themselves with the information in these notes and in the
PS 300 Document Set and note where PS 390 information contained in this package
differs from information in the PS 300 Document Set.

Version A2. V02
April 1987 Page 1

PS 390 RELEASE NOTES

1.2 Notes to Current Users

One of the primary concerns in developing the PS 390 runtime firmware was maintaining
compatibility with previous systems so that existing PS 300 programs would run on the
PS 390 without modification. This was almost completely achieved. However, some
incompatibilities exist because Port 2 is no longer used and there is no support for
DMR-11 interface or multi-user systems. Also, scope 0 is the only scope enabled;
therefore, Set Scope commands (both ASCII and GSR) should not be used.

The PS 390 new hardware configuration with a reduced-size cabinet and a Joint Control
Processor (J CP) card is explained in Section 2. i of these Notes. if you have aiready
upgraded to a reduced-size cabinet, you should have already received this information.

You should also have Release Notes for Version A1.V02 and Version A2.V01 of the
graphics runtime firmware. Note that the information contained in those release notes
which reflects current functionality has been consolidated and included in Part II of these
notes.

Current PS 340 users should note that rendering capability on the PS 390 is available
only by ordering the rendering option. Without this option, you can display objects
defined as polygons on the PS 390, but you cannot perform any rendering operations.
For users with the rendering option, the PS 390 Rendering Option Release Notes are
included with the PS 390 Release Notes package.

Current PS 350 users should note that the PS 390 is plug compatible with PS 350
applications with the exceptions given in Section 4 of these Notes. Please note that the
light pen is not supported with this release. The nodes created by applications using the
Lightpen command (both ASCII and GSR) will be treated as no-operation nodes.

Some PS 390 information contained in this release package is identical to information
and change pages contained in the PS 350 User's Manual. Please note that information
in these release notes supersedes any other documentation explaining similar or identical
capabilities of the PS 390.

1.3 Notes to All Users

Page 2

As previously mentioned, a different set of peripherals is offered with the PS 390
although existing peripherals are still supported. Users of existing peripherals and users
with new peripherals must both use a multiplexing box as there is no data concentrator on
the display. Procedures for using the new mux boxes are given in Section 2.3 of these
Notes. Documentation for the new set of peripherals is supplied as a separate document
included with this release package.

Version A2. V02
April 1987

PS 390 RELEASE NOTES

Data formats provided for those users with the Parallel Interface or for those who access
internal data are provided in the PS 300 Advanced Programming guide included with this
release package. (PS 350 users please note that PS 390 data formats and PS 350 data
formats are identical). No new GSRs routines are provided with this release. GSR
routines supporting new PS 390 capability are planned for future releases.

Please take special note of Section 4 of these Release Notes, which documents PS 390
exceptions to existing PS 300 documentation.

Direct your questions and comments to the Evans & Sutherland Customer Engineering
Hotline 1-800-582-4375 (except Utah). Within Utah, customers should call 582-9412.

1. 4 Release Package Contents

This PS 390 Release Package contains the following items.

• One copy of the Graphics runtime firmware Version A2.V02

For users with the rendering option, this is on the Visualization diskette. Instructions
for loading the firmware are containi!id in Volume 5 of the Document Set.
Instructions for configuring your firmware diskette according to which options you
have at your installation are contained in section 3 of these Notes.

• PS 390 host software distributed on magnetic tape including (but not limited to) the
following:

- PS 300 Graphics Support Routines (GSRs). The files READFOR.GSR and
READPAS.GSR contain descriptions of the FORTRAN and Pascal GSR software.

- The PS 300 Host-Resident 1/0 Subroutines

- Three programming utilities: NETEDIT, NETPROBE, and MAKEFONT (For
VAX/VMS users only).

- Writeback Feature

Documentation for the Writeback feature is included in this release package. More
detail on the GSRs, 1/0 Subroutines, and programming utilities can be found in
Volumes 3 and 4 of the Document Set.

• One copy of the Diagnostic Utility Diskette

Version A2. V02
April 1987

This diskette provides all the utility programs described in Volume 5, Section 10 of
the Document Set. Please refer to that section for instructions on using the utility

Page 3

PS 390 RELEASE NOTES

programs for backup and file management and make note that the new Diagnostic
Utility Diskette is the only diskette that should be used to load these programs.

• PS 390 Raster Programming guide

This manual documents how to send run-length encoded pixel data to the PS 390.

• PS 300 Advanced Programming guide

This manual is intended for use by experienced programmers as a guide to writing
fu ... 11ctions and as a reference for doing direct Physical I/O with the Parallel Interface.

• PS 390 Peripherals Reference Manual

1.5 Distribution Tape Format and Installation Procedure

Page 4

All PS 390 VAX/VMS sites will receive the distribution tape (PS 390 host software) in
VMS Backup format. To install the VAX PS 390 host software, first create a
subdirectory for the PS 390 s9ftware and set your default to that directory. Using the
VMS Backup Utility, enter the following commands:

$ Allocate MTNN:
$ Mount/Foreign MTNN:
$ Backup MTNN:PSDIST.BCK [...]*.*
$ Dismount MTNN:
$ Deallocate MTNN:

where MTNN: is the physical device name of the tape drive being used.

This will create the subdirectory A2V01.DIR which is the parent directory of the PS 390
host software.

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites will receive a
1600-bpi distribution tape with a block size of 6400 and a logical record length of 80.

All PS 390 sites that are not DEC VAX/VMS, UNIX, or IBM, will receive a variable
length ANSI format distribution tape containing the PS 390 host software. Consult your
system operation manual for instructions on reading ANSI-formatted tapes.

Version A2. V02
April 1987

PS 390 RELEASE NOTES

2. INTRODUCTION TO PS 390

The PS 390 provides the real-time interaction capability and line quality of a calligraphic
system with the flicker-free images of a raster system, combining the desirable features of
both technologies while eliminating the disadvantages of each.

These capabilities were accomplished by the development of several VLSI chips and one
custom gate array designed for the real-time manipulation of anti-aliased raster lines
matching or exceeding the quality of calligraphic lines.

The graphics pipeline of the PS 390 is 32 bits which provides high-precision processing
required for large and complex models. The frame buffer is a 48-bit frame buffer,
double buffered.

With this version of the firmware, you can use the PS 390 monitor to display
host-generated pixel images. The PS 390 accepts raster data in run-length encoded
format. A discussion of how to accomplish this is contained in the PS 390 Raster
Programming manual included with this release package. Existing PS 340 applications
using run-length encoding to display host-generated images will run unchanged on the
PS 390.

The local capability to create, render, and shade polygonal models on the PS 390 is
available with the purchase of the rendering option. With this option. you can display
and manipulate a wireframe model in one viewport of the screen and display the same
model as a shaded image in another viewport on the screen. Capability now supported on
the PS 340 graphics system is supported on the PS 390 with the rendering option. This
includes the ability to apply sectioning, back-face removal, and hidden-line rendering
operations to wireframe models and to display static images with a wash, flat, Phong, or
Gouraud shading style.

2.1 System Hardware Overview

The PS 390 is housed in a new reduced size cabinet and contains a new Joint Control
Processor (JCP) card. The JCP replaces the Graphics Control Processor, up to two mass
memory cards, and (optionally) the PS 300 IBM 3278 GPIO card. The description of
PS 300 Control Unit in the Document Set is for systems with a larger cabinet and a GCP.
The PS 390 has six basic circuit cards: JCP, Mass Memory (MM), Arithmetic Control
Processor (ACP), Pipeline Subsystem (PLS), Frame Buffer and Bit-Slice Processor
(FBL/BP), and Frame buffer and Video Controller (FBR/VC). The architecture for the
PS 390 is shown in Figure 1.

Version A2. V02
April 1987 Page 5

Page 6

PS 390 RELEASE NOTES

JCP - JO!NT (GRAPHICS) CONTROL PROCESSOR
MM - MASS MEMORY (1- to 4-MBYTES)
ACP - ARITHMETIC CONTROL PROCESSOR
PLS - PIPELINE SUBSYSTEM

IAS390002P3

FBL - FRAME BUFFER LEFT
BP - BITSLICE PROCESSOR
FBR - FRAME BUFFER RIGHT
VO - VIDEO CONTROLLER
GPIO - GENERAL PURPOSE INTERFACE OPTION

Figure 1. PS 390 Architectural Overview

The free-standing control unit of the PS 390 requires no clearance for operation,
provided that site-specific heat dissipation requirements are met. It is mounted on casters
for easy portability and to provide return air to the unit fan.

The control unit is approximately 53 cm (21 inches) wide, 71 cm (28 inches) deep, 67
(26.5 inches) high, and weighs 55 kg (120 pounds). The top holds over 250 pounds static
weight; 180 pounds rolling load. (See Figure 2.)

Version A2. V02
April 1987

PS 390 RELEASE NOTES

IASRSC001P2

Figure 2. PS 390 Control Unit

There are two external controls on the PS 390 control unit. One is the ON/OFF circuit
breaker switch, located at the top right of the front panel. This switch is recessed and
surrounded by a protective frame. A RESET switch is located just left of the circuit
breaker. The RESET switch allows the system to be reset instead of powered off during a
system lock or reboot.

The PS 300 floppy disk drives are located at the front of the unit near the upper, right
comer.

The PS 390 uses a double-sided, quad-density, S-1/4 inch minifloppy diskette capable
of storing 737,280 formatted data bytes on 160 tracks.

At the back of the control unit, above the power distribution panel, is the
communications connector panel. See Figure 3. The panel is vertically aligned, with
ports 0-5 from the top down. Connectors are externally accessible on the back of the
control unit. ·

Version A2. V02
April 1987 Page 7

Page 8

PS 390 RELEASE NOTES

111111111111111111111111111111

- IASRSC001P2

Figure 3. Back of Control Unit

The standard PS 390 control unit comes with the cards in place. The metal casing on the
inside of the unit replaces the Faraday cage installed in some older cabinets.

The PS 390 is FCC Class A certified for emissions and will meet UL 478 and CSA 22.2
#154 safety standards.

The new Joint Control Processor (JCP) card consists of two (optionally three) sections:
Control Processor, Mass Memory, and Interface section.

The control processor (CP) section is functionally similar to the old graphics control
processor (GCP) and is based on a 68000 10 MHz microprocessor.

This differs from the GCP card documented in the Document Set in that:

- Local memory is increased from 256K to 512K.

- There is a local path to the JCP resident mass memory that is used instead of the
Common bus path (GCP systems) thus providing faster access to mass memory from
the 68000.

- Four usable asynchronous RS-232 ports are supported (compared to five on the
GCP) which reside on the Communications Connector Panel. See Figure 4. Port 0
and Port 2 are physically present but not usable. This means that the DMR-11
interface is not available with reduced size cabinet systems nor is multi-user
functionality.

Version A2. V02
April 1987

PS 390 RELEASE NOTES

The new port configuration for the PS 390 is as follows:

Port 1 is the host port.

Port 3 is the debug port, for diagnostic purposes.

Port 4 may be used for special interface applications, including an alternate diagnostic
port.

Port S is used for the peripheral multiplexing box and therefore, is not available for
your use.

~GrrD
~CED
Interactive rm (i i i i ;)
Devices W.ill

Gill)
CITID

• 0 CJID
~~~:; Service'----' 

PORTO 

PORT 1 

PORT2 

PORT3 

PORT4 

PORT 5 

Figure 4. Port Configuration 

SCOPE 0 

- The Mass Memory section of the JCP card has one megabyte of memory with the 
option of a second megabyte available. 

- The interface section of the JCP provides a location for the optional IBM 3278 
interface. This option allows the PS 390 to communicate with an IBM 327 4 control 
unit over a 56KB line. It is functionally equivalent to the PS 300 IBM 3278 GPIO 
card. Separate GPIO cards are available for high-speed communication interfaces 
other than IBM 3278. 

Version A2. V02 
April 1987 Page 9 



PS 390 RELEASE NOTES 

2.2 Operating Specifications 

Operating specifications for the PS 390 are as follows. 

Grounding - The PS 390 scope should share a common ground with the control unit 

Power Requirements - 115V Single Phase ±10% 47-63 Hz, 12 amp (max) 
220V Single Phase: 7 amps (max) for the control unit 

The following limitations are placed on AC power disturbances: 

- A maximum of ±10% of nominal power for .1 seconds occurring no more than 
once every 10 seconds. 

- Maximum harmonic content of 5% rms, no more than 3% rms for any single 
harmonic. 

- Maximum impulse of 300V with rise time of .1 microseconds or slower, lasting no 
longer than 10 microseconds total duration. 

Power Consumption - 1380 watts maximum 

Heat Dissipation - 4710 BTUs/hour maximum 

Operating Temperature - 65° to 80°F (18° to 27°C) 

Relative Humidity - 20% to 80% 

2.3 Multiplexing Box and Peripheral Connections 

Page JO 

Peripherals for the PS 390 are connected to a multiplexing box contained in a three-inch 
pedestal that supports the raster scope. Mux boxes for either set of peripherals supported 
by PS 390 have the same operating instructions noted here. All peripheral connections 
for the mouse, function buttons, control dials, keyboard and tablet are clearly marked on 
the front panel of the mux box. Figure 5 shows the front view of the mux box. 

... ..... ..... ..... ... -.~~~':ii:..·.~·.,.~~~ .. .. . ............ :::: :. . ........... - ... . 

0 [QJ [QJ [QJ 

MOUSE BUTTONS DIALS KEYBOARD TAB LET LIGHT POWER 
PEN 

Figure 5. Front View of Multiplexing Box 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

The back panel of the multiplexing box has an RS232-C connection, three external 
power connections and two BNC connections marked LPICK and TPSW. The BNC 
connections are reserved for future use. All cables and connections are clearly marked. 
To maintain EMI integrity, the screws on the RS232-C shielded cable must be tightly 
turned on the connection. The rear panel of the mux box is shown in Figure 6. 

0 0 90-130/180-250v-I I 2A MAX 2A MAX 6/3A 47-63Hz 

o;:, ....... ::~ ~ ~ ~~y o 
\ CONTROLLER 00000000000000 000000000000~ j 

'-... 00000000000000000000000000°../ 

Figure 6. Rear Connections of Mux Box 

Documentation on the new-style peripherals and multiplexing boxes is included as a 
separate manual with this release. Documentation for previous peripherals is contained in 
Volumes 1 and 5 of the PS 300 Document Set. 

Version A2. V02 
April 1987 Page 11 





PS 390 RELEASE NOTES 

3. RUNTIME MODIFICATIONS AND NEW FEATURES 

PS 390 runtime firmware supports new PS 390 functionality and existing PS 300 
functionality. Assume that all functionality described in the PS 300 Document Set is 
correct and applicable to the PS 390 unless specifically noted as different in this and 
following sections. 

As previously mentioned, the primary concern in developing the PS 390 runtime was 
maintaining user software compatibility with previous systems. Some incompatibilities 
exist because the reduced-size control unit does not support ports 0 and 2 for use with 
the DMR-11 interface or multi-user systems. 

3.1 New PS 390 Function 

A new initial function instance, PS390ENV, is provided. This function sets up display 
background color, and selects cursor and cursor color. 

Input <1> is a trigger which accepts any data type to cause the function to run. 

Input <2> is a constant which accepts a 3D vector (hue, saturation and intensity) to 
specify background color. The default background color is 0,0,0 (black). Saturation 
and Intensity must be in range of [0,1], otherwise an error message will be generated. 
Hue is in the range of [0,360]. For any value specified outside this range, multiples 
of 360 are added or subtracted to bring it into this range. 

Input <3> is a constant which accepts an integer in the range [O, 7] to specify the 
cursor color where 

0 =black 
1 =blue 
2 =green 
3 =cyan 
4 =red 
5 =magenta 
6 =yellow 
7 = white (default) 

Any value outside this range generates an error. 

Version A2. V02 
April 1987 Page 13 



PS 390 RELEASE NOTES 

Input <4> is a constant which accepts an integer to select the cursor. 

0 = update rate cursor (default) 
1 = system-defined refresh cursor 

Input <5> accepts an integer to specify the video timing format, which is output from 
the video connection on the back of the PS 390 control unit. 

0 = 1024 x 864 non-interlaced (default required by the 
PS 390 display) 

2 = 1024 x 864 interlaced 
3 = 640 x 484 interlaced (RS-170) 

NOTE 

When specifying the system-defined refresh rate cursor, you should leave 
the initial view-ports HVP1$ and GVPO$ unchanged in order to have the 
(hardware) cursor work with picking. 

3.2 Dynamk Vi~'wpcrt Considerations 

Page 14 

Although the raster screen contains 1024 by 1024 addressable pixels, the actual 
displayable area on the raster screen is a rectangle, with pixel addresses going from 0 to 
1023 in X and 0 to 863 in Y, where the physical pixel address 0,0 is in the lower left 
comer. A PS 300 viewport which spans (-1,1) in both vertical and horizontal directions 
maps onto the full 1024 x 1024 screen so that a rectangular portion along the lower edge 
of the viewport is not displayed. To avoid this situation, all viewports in the display 
structure are initially concatenated with a default viewport in the top display structure 
which maps to a square of 864 x 864. 

The command 

VPF1$ := Viewport Horizontal= -0.825:0.825 Vertical= -0.65:1 Intensity = 0:1 
Then HVP1$; 

in the boot-time configuration file accomplishes this. 

If you want to override the default and use the entire displayable rectangular screen area, 
the following command can be entered: 

Configure A; 
VPF1$ := Viewport Horizontal= -1:1 Vertical= -0.65:1 Intensity= 0:1 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

Then HVP1$; 
Finish Configuration; 

This will cause all the subsequent VIEWPORT commands in the structure to be 
concatenated with this rectangular viewport. In doing so, however, your data must 
account for the non-square viewport. 

To re-establish the default viewport, use either the commands 

or 

Configure A; 
VPF1$ := Viewport Horizontal= -0.825:0.825 Vertical= -0.65:1 Intensity= 0:1 
Then HVP1$; 
Finish Configuration; 

Screensave := F:Screensave; 

Note that the initialize command does not restore the original viewport. Also, note that 
you cannot override the default viewport with the LOAD VIEWPORT command. 

3.3 "Soft Labeis" Function Network 

Included on the distribution tape in the PS 390 Subdirectory is the "soft labels" ASCII 
file, which sets up a structure and network to use a normally unused portion of the screen 
to display function key and dial labels. This file can be incorporated in your SITE.DAT 
file if you have the new peripherals without LED labels. The labels appear on the 
left-hand side of the screen, with the square, default, graphics viewport shifted fully to 
the right. The displayed labels provide visual feedback to the user, but they are not 
pickable. 

The structure and network requires no application software changes, except that the 
label, flabellO, no longer exists. (This is the 96 character label that goes across the entire 
LED area of the standard E&S keyboard with LEDs.) Figure 7 shows this soft labels area 
as it appears on the screen. 

Version A2. V02 
April 1987 Page 15 



PS 390 RELEASE NOTES 

Fl 
F'2 

F3 ~oft Labels Area 
F4 

FS 
F6 

F7 

F8 

F9 
FlO 

Fll 

F12 

Dl 05 

02 06 

03 07 

04 08 

Figure 7. Screen Layout for the PS 390 with Soft Labels 

3. 4 Multiple GPIO Interfaces 

Page 16 

The PS 390 runtime firmware supports up to two GPIO interfaces of differing types as 
well as asynchronous communications installed in the same system. The default 
configuration is asynchronous, but you have the ability to change your default to configure 
any interface when the system is booted. This is explained in the following section. 

It is also possible to change the configuration without rebooting the PS 390 because the 
runtime determines which of the interfaces are in the system and initializes them all. This 
is achieved through runtime identification of up to two GPIOs at the first two addresses 
assigned to GPIO interface cards. (Refer to Send 'UNIBUS' command in 3.4.1 for an 
example of how to do this.) However, there are some limitations to the use of multiple 
GPIOs. First, there cannot be two of the same type GPIOs in the same system. Second, 
if the IBM 3278 option is included, then only one additional GPIO may be added. The 
3278 GPIO running under previous PS 300 systems is not supported under PS 390. Table 
1 shows the possible GPIO combinations. 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

Table 1. Possible GPIO Combinations 

1st GPIO 2nd GPIO 

IBM 5080 

IBM 3278 Parallel 
(enabled on JCP) 

Ethernet/DECNET 

Parallel 
IBM 5080 Ethernet/DECNET 

IBM 5080 
Parallel Ethernet/DECNET 

Ethernet/DECNET IBM 5080 

Parallel 

3. 4.1 Interface Configuration Files 

The PS 390 runtime is distributed on two diskettes and contains more files than previous 
PS 300 runtime diskettes. This is to allow for the many different combinations of 
interfaces possible with the multiple GPIO operation. 

When the PS 390 is booted, the system attempts to read the file, INTFCFG.DAT. If this 
file is not found, the system will boot with the default interface of Asynchronous, and 
display the message INTFCFG.DAT NOT FOUND. To boot with a default interface in 
addition to Asynchronous, the appropriate interface file must be renamed to 
INTFCFG.DAT. This can be done using the Diagnostic Disk Utility program described in 
Volume 5, Section 10 of the Document Set. For example, 

Rename ETHERNET.DAT INTFCFG.DAT 

would rename the default interface to Ethernet so that, at boot time, the communications 
interface protocol for Ethernet would be configured. 

The following is a list of the file names on the diskette and which interface each file sets 
up. 

Version A2. V02 
April 1987 

ASYNC.DAT 
IBM3278.DAT 
IBM5080.DAT 
UNIBUS.DAT 
ETHERNET.DAT 

Asynchronous communications 
IBM 3278 communications 
IBM 5080 communications 
Parallel interface communications 
Ethernet communications (for Ethernet or Decnet) 

Page 17 



Page 18 

PS 390 RELEASE NOTES 

If your system hardware supports two interfaces, you can change the interface during a 
session without rebooting by sending the name of the interface file to input <1> of 
RDCFG$. For example, the following command, 

Send 'UNIBUS' to <1>RDCFG$; 

would change the communications protocol to the UNIBUS Parallel interface to allow 
parallel communications. 

Table 2 shows the files contained on the PS 390 diskettes which are needed for a 
particular interface. 

Version A2. V02 
April 1987 



Version A2. V02 
April 1987 

PS 390 RELEASE NOTES 

Table 2. Required Interface Files 

PS 390 File Name A~nc 3278 5080 Unibus 
mmdd390J.EXS ,,,,, ,,,,, ,,,,, ,,,,, 
ACPCODE2.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
ASYNC.DAT ,,,,, 
CHARFONT.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
CIRCLE.DAT ,,,,, 
CONFIG.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
DINTCODE.DAT 
EINTCODE.DAT 
ETHERNET.DAT 
FCNDICTY.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
FCNTABLE.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
FONTSO_SO.DAT ,,,,, 

_GPIOCODE.DAT ,,,,, 
HMSCODE.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
HMSCOL.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
HMSVEC.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
IBM3278.DAT ,,,,, 
IBMSOSO.DAT ,,,,, 
IBMASCII.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
IBMFONT.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
IBMKEYBD.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
INITACP.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
INITGPIO.DAT ,,,,, 
LINLUT.DAT ,,,,, ,,,,, ,,,,, ,,,,, 
LUT.DAT ,,,,, ,,,,,, ,,,,,, ,,,,,, 
MSGLIST.DAT ,,,,,, ,,,,, ,,,,,, ,,,,, 
OVERLAY2.DAT ,,,,,, ,,,,, ,,,,,, ,,,,, 
PARSECODE.DAT ,,,,, ,,,,,, ,,,,, ,,,,, 
PARSDICT.DAT ,,,,, ,,,,,, ,,,,, ,,,,, 
PINTCODE.DAT ,,,,,, 

SINE.DAT ,,,,, 
THULE.DAT ,,,,, . ,,,,,, ,,,,, ,,,,, 
UNIBUS.DAT ,,,,,, 

Ethernet 
,,,,, 
,,,,, 

,,,,, 

,,,,, 
,,,,, 
,,,,, 
,,,,, 
,,,,, 
,,,,, 

,,,,, 
,,,,, 
,,,,, 

,,,,, 
,,,,, 
,,,,, 
,,,,, 

,,,,,, 
,,,,,, 
,,,,,, 
,,,,, 
,,,,, 
,,,,,, 

,,,,,, 

Page 19 



PS 390 RELEASE NOTES 

All of the.interface files assume that the keyboard used is a VT100-style keyboard. A 
FALSE is sent to the keyboard handler (either IBMKBD or KBHANDLER) at the end of 
the file. To use the IBM-style keyboard, the command in the interface file must be 
changed to send TRUE to the keyboard handler. For example, 

Send True to <2>Kbhandler; 

would accomplish this. 

This also means that full VT100 support is provided with the IBM-style keyboard. 

(Please note that the IBM keyboard is not supported with the initial release of the 
PS 390.) 

3.4.2 Ethernet/DECNET Interface 

Page 20 

The GPIO interface hardware for Ethernet and DECNET is the same. The only 
difference is the microcode that is loaded into the GPIO. Therefore, both microcode files 
are distributed on each disk. The runtime attempts to load a file named 
EINTCODE.DAT. Ethernet is the. default on the disk. The file for the DECNET 
interface is DINTCODE.DAT. If your system supports a DECNET interface, you must 
rename DINTCODE.DAT to EINTCODE.DAT to load the DECNET microcode into the 
GPIO. This can be accomplished by using the Diagnostic Utility program. 

NOTE 

As documented in the Customer Installation and User Manual PS 300 
/Ethernet Interface, you must send the assigned Ethernet address to the 
PS 300. The command to do this for the PS 390 is 

Send 'address' to <1>ei_o1$; 

Please refer to that manual for instructions on doing this. 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

3.5 Crash Dump File 

Another of the new features of the runtime is the writing of a Crash Dump file to the 
diskette in drive 0 when a system crash occurs. This file is always named Crash.dat; 1 and 
occupies only 1 block on the diskette. 

If the file already exists it will be overwritten by the new crash information. If the file 
doesn't exist, it will be created. If there is insufficient room on the disk for the file, no 
crash dump file will be written. 

The file consists of the 8 Data, the 8 Address registers, system version, system type, 
program counter, error type, error number, 59 32-bit stack entries, and the 68000 status 
register. Figure 8 shows the structure of the data in the crash file. Appendix A gives 
more information on some of these values. 

Version A2. V02 
April 1987 

DO 
D1 
D2 
D3 
D4 
DS 
D6 
D7 
AO 
A1 
A2 
A3 
A4 
AS 
A6 
A7 

Sysver 
Systype 

PC 
Errtyp 1 Errnum 

• 
Stack (236 Bytes) 

• 
Unused I SR 

Figure 8. Data in Crash File 

Page 21 



PS 390 RELEASE NOTES 

Appendix A also gives an example of a host PASCAL program that reads back the 
Crash.dat file from a PS 300. This program will read the Crash.dat file from a PS 300 

· and display the information in a format similar to the debug port on the PS 300. This 
information can be helpful in determining the cause of a crash. 

The READDISK function has an added constant input <2> which accepts a boolean. If 
there is a true on input <2> after the file specified on input <1> is read, the file is deleted. 

One possible use of this function is that an application program on the host could read 
and maintain crash file information. For example, a host program could have a start up 
procedure that checks to see if a crash file exists and then logs it in a host file. By reading 
and then immediately deleting this file, the program prevents the logging of crash files that 
were already recorded. The existence of a crash file would indicate that a crash had 
occurred since the last time the host program was run. 

3.6 Additions to F:PICK 

Page 22 

The PS 390 pick function, F:PICK, has three additional inputs. Input <4> is a real 
number between 0 and 1 that defines the pick window half size for the ACP pass of the 
pick. This is different from the size set by the SET_PICKing_LOCation operation node. 
The Line Generator or the Frame Buffer uses the operation node to determine if a pick 
has occurred, while the ACP uses input <4> to do the actual pick pass on the data. 

Input <S> is an integer specifying pick pass retries. Since it is possible that the ACP will 
not find the picked data duririg a pick pass, input <S> indicates the number of times to 
add the window half-size increment on input <6> and try another pick pass. 

Input <6> is a real number between 0 and 1 which specifies the amount to increase the 
pick window half size on each retry of the pick pass. 

The defaults for each input are: 

Input <4> 6.8359E-3 
Input <S> 4 
Input <6> 6.8359E-3 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

3. 7 UWF Runtime Code Modification 

The stack allocation scheme for User-written functions (UWF) has been changed. The 
UWF stack is now allocated when functions are downloaded rather than when they 
execute. As each function is processed by the SREC_GATHER function, the stack size 
requested is checked against the size of the currently allocated stack. If the requested 
stack size is the same or smaller, no action is taken. If the requested stack size is larger 
than the currently allocated stack, the current stack is disposed and a new one is 
allocated. All UWFs therefore us~ the same stack area. This allocation scheme 
eliminates the time previously required to allocate and deallocate a stack block on each 
execution of a UWF. Note that when UWFs are used, the one with the largest stack 
request should be loaded first. 

Version A2. V02 
April 1987 Page 23 





PS 390 RELEASE NOTES 

4. PS 390 EXCEPTIONS 

PS 390 functionality is the same as described in existing PS 300 documentation with the 
exception of the following. 

There is no support for Port 0 and Port 2 of the control unit, DMR-11 interface, 
multi-user, or any scope other than scope 0. 

The default viewport of the PS 390 is 864x864 centered on the raster display. You can 
change this by using the commands described in Section 3.2, but you cannot modify the 
this default viewport using the Load Viewport command. 

Local hardcopy is not supported. Host hardcopy is available through the Writeback 
feature included with this release. 

Reading back of pixel data from the PS 390 to the host is not supported nor is the loading 
of user-defined color lookup tables or the display of anti-aliased objects in overlay mode. 
This functionality is planned for future releases. 

The lightpen is not supported. 

There are no vector-normalized vectors; all ASCII and GSR vector list commands which 
do not specify block-normalized vectors will create 32-bit block-normalized vectors 
'internally in the PS 390. (No modifications to ASCII commands or GSR routines are 
required.) 

There is no "per vector" intensity specification available. 

There is no color blending (color by vector) available. 

Zero length vectors cannot be picked. 

There is no allowance for the display of transformed data (data output by 
F:XFORMDATA). However, a limited form of access to the data generated by the 
F:XFORMDATA function has been provided to allow certain user-written functions (and 
the CPK modeling firmware) to perform properly. Please note the following restrictions 
on the use of transformed data on the PS 390: 

- F:XFORMDATA outputs a non-displayable data type (vector-normalized vector 
list). 

- A single-precision vector list is generated by F:XFORMDATA. 

- Only three-dimensional data can be transformed. 

F:XFORMDATA can still be connected to F:LIST to enable the host to read the 
transformed data retrieved from the PS 390. 

Version A2. V02 
April 1987 

Page 25 



Page 26 

PS 390 RELEASE NOTES 

Existing PS 300 applications that create nodes with functionality not yet supported by the 
PS 390 will be treated as no operation nodes. 

Version A2. V02 
April 1987 



APPENDIX A 

Crash Dump Information 

The System Version is a number generated indicating the date the runtime was created. For 
example, a value of 111486 means the system was created on Nov. 14, 1986. 

The system type is a three digit number indicating the type of system that is being used. The first 
digit on the left is a 1 for GCP, 2 is reserved, 3 for JCP. The second digit, 1, is reserved, 2 is for 
320, 3 is for 330, 4 is for 340, 5 is for 350 and 6 is for 350/340. The last digit is 0 for Async or 
any JCP, 1 for IBM 3278, 2 for Parallel, 3 for IBM 3250/5080 and 4 for Ethernet/DECNET. 
Digit 3 will always be 0 for JCP systems. For example a value of 350 indicates JCP 350. 

Error Types/Error Numbers 

There are three crash error types in the PS 300. Each type has a set of error numbers associated 
with the type. The three types are: 

1. System Errors 
2. Traps 
3. Exceptions 

The following is the list of errors for each type. 

Type 1 - System Errors 

Version A2. V02 
April 1987 

1 Track number out of range 
2 Disk drive not ready 
3 Disk remains busy after a seek 
4 Block number out of range 

Page A-1 



Page A-2 

6 
7 
8 
9 
B 
c 
D 
E 
F 

10 
11 
12 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
1D 
1E 
1F 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 

72 
73 
74 
75 
76 
77 

PS 390 RELEASE NOTES 

Lost data during read 
Record not found during read 
Data CRC error during read 
ID CRC error during read 
Lost data during write 
Record not found during write 
Data CRC error during write 
ID CRC error during write 
Write fault 
Disk is write protected 
Lost data during format 
Write fault during format 
Disk drive number out of range 
Seek error 
Drive not· ready during read 
Drive not ready during write 
Disk not at track 0 after restore command 
Disk busy after restore command 
Track number out of range during format 
Drive not ready during format 
Disk write protected during format 
Time out during read 
Time out during write 
Time out during format 
Wait maybe called with nil argument 
Wait maybe called with a non-function 
Wait maybe, already a function waiting 
Wait maybe, parameter function waiting elsewhere 
Q ship to an unrecognized Namedentity 
Msgcopy, Message type shouldn't be copied 
Msgcopy, Msg type Has structure, unknown to Msgcopy 
Send, 'Me' = nil 
Send, 'Me' not a function instance 
Send, No such output port for this function 
Rem_conn/Add_conn, Al =nil 
Add_conn, A2 =nil 
Findqueue, Named item =nil 
Findqueue, illegal queue number (queue no. < 0 or queue no. > no. of inputs 
for function) 
Allinpwait, Nmin > Nmax 
Allinpwait, Nmin < 1 
Tmessage, Waiting and n = 0 
Cmessage, Waiting and n = 0 
Lookmessage, Waiting and n = 0 
Allinputs, Nmin > Nmax 

Version A2. V02 
April 1987 



7S Allinputs, Nmin < 1 
79 Fcnnotwait, Me = nil 

PS 390 RELEASE NOTES 

7A Findqueue, found a nil queue! 
7B Waitnextinput, n = 0 
7C Anyoutputs, Me =nil 
70 Anyoutputs, illegal outset number 
7E Anyoutputs, no outset where there should be 
7F Fdispatch, function failed to re-queue after running 
SO Text_text, B 1 < 0 
Sl Char_text, b < 0 
S5 Error during disk read 
SD Initial structure not correct 
SE AnnounceUpdate List tail = nil;head < > nil 
BF FormatUpdate Somebody's sleeping in my bed 
90 FormatUpdate Ready Head not nil but Tail is 
91 Bad code file -- illegal Op 
92 Bytelndex Invalid Acpdata type 
93 FormatUpdate, PASCAL Head not nil but Tail is 
94 Vec_size, Invalid Acpdata type 
95 KillUpdate, Updfetch was < 0 
96 KillUpdate, Some one was sleeping in my bed 
97 Vec_bias, Invalid Acpdata type 
99 CntCapacity, Invalid Acpdata type 
9C Unknown brand of Namedentity 
90 Hasstructure knows something I don't 
9E Amuhead not a Qalphapair 
Al AppendVector, Invalid Acpdata type 
A3 Nomemsched, Bad .Status for a fen 
A9 Bad update list on ACP time-out 
AA ACP Timeout during initialization 
AB Crashprepare, Name CRASH$ has not been defined 
AC DecUpdsync, C_header A .Updsync < 0 
AD Format Update, Someone waiting in C_header A • Updswait already 
AF Someone else waiting in C_header A .Killer already 
BO Non-nil Qwait of a dying function 
B3 Microcode won't fit into ACP 
B4 Implementation limit on delta waits (2**31) 
B8 detected internal inconsistency 
B9 detected error (passed a bad parameter) 
BA diskette's parsecode table inconsistent with parser 
BD Bad boundary on binary data xfer 
BF default Devsts contains errors 
CO Inwait, f is already waiting or not a function 
Cl Outwait, f is already waiting or not a function 
C2 ECO Level of GCP does not support S 6K Baud Line 

Version A2. V02 
April 1987 Page A-3 



Page A-4 

PS 390 RELEASE NOTES 

C3 Port 1 Configuration is invalid for 5 6K Baud Line Support 
C9 User generic function stack overflow 
CA Ug_run_cnt has become negative 
CB User generic function has bad alpha (on private queue) 
CC Bad format of MSGLIST .DAT detected 
CD MSGLIST (or code using it) has probably been corrupted 
CF Apparent datastructure incompatibility 
DO Bad MemOKindex detected 
Dl routine passed bad parm (e.g., a nil ptr) 
D2 Lines to IBM system not active 
D3 Floppy disk file INITGPIO.DAT; not found or unable to read 
D4 Floppy disk file GPIOCODE.DAT; not found or unable to read 
DS Floppy disk file IBMFONT.DAT; not found or unable to read 
D6 Floppy disk file IBMKEYBD.DAT; not found or unable to read 
D7 Floppy disk file IBMASCII.DAT; not found or unable to read 
DB IBM GPIO timeout 
D9 No. of minimum inputs is negative 
DA No. of maximum inputs < No. of minimum inputs 
DB No. of maximum inputs># inputs for function 
DC Sendlist detected a bad list 
DE Sendmess: message to be sent is NIL 
DF Caller did not have a lock set already 
EO Curfcn in improper state to call Getinputs 
El Cleanin, Curfcn in improper state to call Cleaninp (e.g., have you first called 

Getinputs?) 
E2 Somebody remembered a forgotten non-fcninstance 
ES Alpha not already locked by caller 
E6 Confusion in discarding bad message 
E7 Lock not already set by caller 
E8 Probable multiple master GCPs 
E9 RemOne, Curfcn does not have that many inputs 
EA RemOne, Message to be deleted and message pointed to by Curinputs is not the 

same 
EB Lock not already set in Gatheraupdate call 
ED Get2locks detected lock already set 
EE Error in semantic routine for polygon vertex 
EF Destination Alpha was not already locked 
FO Parent not already locked in add/remove from set 
Fl Child not already locked in add to set 
F3 Alpha not already locked in Gpseudoaupdate 
F6 Confusion about locks or decausages 
F7 Unknown tap reason 
FB Unanticipated state at which to see shoulder tap 
F9 Illegal number of inputs 
FC No existing DCB found for this user 

Version A2. V02 
April 1987 



PS 390 RELEASE· NOTES 

FD Timeout, Message on input 1 disappeared before fen could get it 
FE Error while initializing disk drive 
FF Error while reading disk header 

100 Error while reading disk directory 
101 THULE.DAT not found on disk 
102 Error while reading THULE.DAT 
103 Curfcn was not active at entry 
104 Viewport not in structure 
105 Real_simple, number of digits requested out of range (n < 1 or n > 9) 
106 Getnextone, illegal queue specified 
107 Getnextone, msg on head of queue and specified by Curinput do not agree 
108 Getnextone, no message on queue, but Curinput < > NIL 
109 ContBlock, nil block 
10A Timeout when waiting for all on-line GCPs 
10B Rehash only works first time, only time now. 
10C No processor has right to issue this tap 
10D GetVector, Not an Acpdata block 
10E GetVector, Not a vector Acpdata block 
10F Invalid qpacket received 
110 Tolerance on FCnearzero is absurd 
111 set construct of father has no dummy control block 
112 function code has to be of type CI to have elements included and removed 
113 ShadeEnviron node encountered in non PS 340 

Type 2 - Traps 

Version A2. V02 
April 1987 

0 No mass memory on line, or too little to come up 
1 More OKINTs than NOINTs or > 128 NOINTs 
2 Free storage block size bad (on request or in free list) 
3 Attempt to Activate a non-function (or nil) or bad software detected during startup 

(most commonly, incompatible datastru.sa detected but perhaps invalid startup 
routine sequencing (if someone has been mucking around with it)) 

4 NEW call failed to find memory, within NOMEMSCHED 
S Attempt to queue where a function is already waiting 
6 Systemerror(n) 
7 Badfcode(Fcn) 
8 Mass Memory Error Interrupt 
9 Utility Routine not included in this linked system 

A Probable multiple DISPOSE of the same block 
B Block exponent not big enough 
C Attempt to divide with a divisor which is too small in FixLongDivide(twice the 

dividend must be less than the divisor) 
D (Used by Motorola PASCAL) 

Page A-5 



PS 390 RELEASE NOTES 

Type 3 - Exceptions 

Page A-6 

0 
1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 
24 

Reset: Initial SSP 
Reset: , Initial PC 
Bus Error (i.e. attempt to address nonexistent location in memory) 
Address Error (i.e. attempt to access memory incorrectly, for example an 
instruction not starting on a word boundary). 
Illegal instruction 
Zero Divide 
CHK Instruction 
TRAPV Instruction 
Privilege violation 
Trace 
Line 1010 Emulator 
Line 1111 Emulator 
Spurious interrupt 

Version A2, V02 
April 1987 



) 

PS 390 RELEASE NOTES 

Crash Dump Program 

Following is an example of a Pascal host program that writes the information from the PS 300 
crash file into a host file. 

PROGRAM CRASH (Input,Output,Outfile); 

CONST 

TYPE 

Version A2. V02 
April 1987 

%INCLUDE 'PROCONST.PAS/NOLIST' 

%INCL UDE 'PROTYPES .PAS/NOLIST' 

cheat_ 4 = RECORD 

CASE Boolean OF 
TRUE : (i : Integer); 
FALSE : (c : Array[L.4] OF CHAR) 

END; 

cheat_2 = RECORD 

CASE Boolean OF 

END; 

TRUE : (i : [WORD] 0 .. 1024); 
FALSE : (c : Array[L.2] OF CHAR) 

Buffer = RECORD 
CASE Boolean OF 

TRUE : (b : P _ VaryBuftype); 
FALSE : ( { Length of P _Vary Buftype is in Dummy} 

Dummy :[WORD] 0 .. 1024; 
Dreg :Array[O .. 7] of Cheat_ 4; 
Areg :Array[O .. 7] of Cheat_ 4; 
SVer :Cheat_ 4; 
Stype :Cheat_ 4; 
PC : Cheat_ 4; 
Errtyp : Cheat_2; 
Errnum : Cheat_2; 
Stack : Array(L.59] of Cheat_ 4; 
Not_Used : Cheat_2; 
SR : Cheat_2) 

END; 

•; 

Page A-7 



VAR 
Devtyp : Integer; 
Inbuff : P _ VaryBuftype; 
OutBuff: Buffer; 
Found : BOOLEAN; 
Outfile: text; 

PS 390 RELEASE NOTES 

%INCLUDE 'PROEXTRN.PAS/NOLIST' 

%INCLUDE 'VAXERRHAN.PAS/NOLIST' 

PROCEDURE Init_ps300; 

Page A-8 

FUNCTIONAL DESCRIPTION: 

Initialize the comm link to the PS 300 

} 

VAR 
a, Modify : P _ Varyingtype; 

BEGIN 
Write('Enter Type of Interface (1=Async, 2=Ethemet,· 3=Parallel):'); 
Readln( Devtyp ) ; 
Write('Enter Device name :'); 
Readln( a ) ; CASE Devtyp OF 

1 : 
Modify := 'LOGDEVNAM=' + a + '/PHYDEVTYP=ASYNC'; 

2 : 
Modify := 'LOGDEVNAM=' + a + '/PHYDEVTYP=ETHERNET'; 

3 : 
Modify := 'LOGDEVNAM=' + a + '/PHYDEVTYP=PARALLEL' 

OTHERWISE 

END; 
PAttach( Modify, PI_Error_handler) 
END; 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

PROCEDURE Trigger_read; 

FUNCTIONAL DESCRIPTION: 

Create instance of function network to retrieve CRASH.DAT file from disk. The 
network will convert the data block to six-bit format and break it into packets of 72 
bytes which will be put on host_message. 

} 

VAR 

a: CHAR; 

PROCEDURE BREAKUP; 
{ Code generated by Network Editor 1.08 } 
{ This function network takes an incoming qpacket and breaks it } 
{ into smaller packets to be sent over a terminal line since } 
{ most terminal handlers have some limit to the input length } 
{BREAKUP} 
BEGIN 
{Frame!: } 

PFninstN ('Break_sync', 'SYNC', 2, 
PI_Error_handler); 

PFnlnst ('Break_route', 'BROUTEC', 
PI_Error_handler); 

PFnlnst ('Add_constant', 'CONSTANT', 
PI_Error_handler); 

PFnlnst ('Break_add', 'ADDC', 
PI_Error_handler); 

PFnlnst ('Breakup', 'TAKE_STRING', 
PI_Error_handler); 

PFnlnst ('In_length', 'LENGTH_STRlNG', 
Pl_Error_handler); 

PFnlnst ('Len_ compare', 'GTC', 
PI_ Error_ handler); 

PFninst ('Route_string', 'BRO UTE', 
PI_Error_handler); 

PFnlnst ('Route_start', 'BRO UTE', 
PI_Error_handler); 

PFninst ('cvt', 'CVT8T06', 
PI_Error_handler); 

PFninst ('rd', 'READDISK', 
PI_Error_handler); 

Version A2. V02 
April 1987 Page A-9 



Page A-10 

PFninst ('pmt', 'PRINT', 
PI_Error_handler); 

PS 390 RELEASE NOTES 

PFninst ('Breakup_in3', 'CONSTANT', 
PI_Error_handler); 

PConnect ('Break_sync', 1, 1, 'Breakup', 
PI_Error_handler); 

PConnect ('Break_sync', 1, 2, 'Break_route', 
PI_Error_handler); 

PConnect ('Break_sync', 2, 2, 'Breakup', 
PI_Error_handler); 

PConnect ('Break_sync', 2, 2, 'Break_sync', 
PI_Error_handler); 

PConnect ('Break_sync', 2, 2, 'Break_add', 
PI_Error_handler); 

PConnect ('Break_route', 1, 1, 'Add_constant', 
PI_Error_handler); 

PConnect ('Break_route', 1, 2, 'Route_string', 
PI_Error_handler); 

PConnect (' Add_constant', 1, 1, 'Break_add', 
PI_Error_handler); 

PConnect ('Break_add', 1, 2, 'Break_add', 
PI_Error_handler); 

PConnect ('Break_add', 1, 2, 'Route_start', 
PI_ Error _handler); 

PConnect ('Break_add', 1, 1, 'Len_compare', 
PI_Error_handler); 

PConnect ('Breakup', 1, 1, 'cvt', 
PI_Error_handler); 

PConnect ('Breakup', 2, 1, 'Break_route', 
PI_Error_handler); 

PConnect ('Breakup', 2, 1, 'Breakup_in3', 
PI_Error_handler); 

PConnect ('In_length', 1, 2, 'Len_ compare', 
PI_Error_handler); 

PConnect ('Len_ compare', 1, 1, 'Route_string', 
PI_Error_handler); 

PConnect ('Len_compare', 1, 1, 'Route_start', 
PI_Error_handler); 

PConnect ('Route_string', 2, 1, 'Breakup', 
PI _Error_ handler); 

PConnect ('Route_start', 2, 2, 'Breakup', 
PI_Error_handler); 

PConnect ('cvt', 1, 1, 'host_message', 
PI_Error_handler); 

PConnect ('rd', 1, 1, 'Break_sync', 

Version A2. V02 
April 1987 



PS 390 RELEASE NOTES 

PI_Error_handler); 
PConnect ('rd', 1, 1, 'In_length', 

PI Error handler); - -
PConnect ('rd', 2, 1, 'pmt', 

PI_Error_handler); 
PConnect ('pmt', 1, 1, 'host_ message', 

PI_Error_handler); 
PConnect ('Breakup_in3', 1, 3, 'Breakup', 

PI_Error_handler); 
PSndStr(CHR(36), 2, 'cvt', 

PI _Error _handler); 
PSndFix (48, 3, 'Breakup', 

PI_Error_handler); 
PSndFix (48, 2, 'Breakup_in3', 

PI_Error_handler); 
PSndFix (48, 2, 'Add_constant', 

'PI_Error_handler); 
PSndFix (1, 2, 'Break_sync', 

PI_Error_handler); 
PPutPars('Set priority of pmt to 9; ', 

PI_Error_handler); 
END; 

BEGIN 
IF Devtyp = 1 
THEN 

Breakup 
ELSE 

BEGIN 
PFnlnst ('rd', 'READDISK', 

PI_Error_handler); 
PFninst ('pmt', 'PRINT', · .. -:.•• 

PI_Error_handler); 
PConnect ('rd', 2, 1, 'pmt'; 

PI_Error_handler); 
PConnect ('pmt', 1, 1, 'host message', 

PI_Error_handier); -
PConnect ('rd', l, 1, 'host_message', . 

PI_Error_handler); 
PPutPars ('Set priority of pmt to 9; ', 

PI_Error_handler); 
END; 

Write(' Do you want to delete CRASH.DAT after reading?'); 
Readln( a); 
IF (a = 'Y') OR (a = 'y') 

Version A2. V02 
April 1987 

Page A-11 



PS 390 RELEASE NOTES 

THEN 
Psndbool( TRUE, 2, 'rd', PI_Error_handler) 

ELSE 
Psndbool( FALSE, 2, 'rd', PI_Error_handler); 

Psndstr( 'CRASH', 1, 'rd', PI_Error_handler) 
PPurge( PI_Error_handler ); 
END; 

PROCEDURE Get_data_block; 

{ 

FUNCTIONAL DESCRIPTION: 

{ 
VAR 

Read in data from PS 300, convert to 8 bit and put in buffer 

i,j,Temp : Integer; 
Done: BOOLEAN; 

PROCEDURE Cvt_6_8 

Page A-12 

(Inblock : P _ VaryBuftype; 
VAR Outblock : P_ VaryBuftype; 
Factor : Integer); 

VAR 
w : cheat_ 4; 
c_out,cycle_count,il,tc : INTEGER; 
First : BOOLEAN; 

BEGIN 
i := 1; 
First := TRUE"; 
Cycle_count := 1; 
c out:= 4; - , 
WHILE i <= LENGTH (Inblock) DO 

~BEGIN 

tc := ORD(Inblock[i]) - Factor; 
IF First 

THEN 
IFtc<O 
THEN 

c_out := 4 + tc 
ELSE 

Version A2. V02 
April 1987 



BEGIN 
First :=FALSE; 
w.i := tc; 

PS 390 RELEASE NOTES 

cycle_count := SUCC(cycle_count) 
END 

ELSE 
BEGIN 
w.i := w.i * 64; 
w.i := w.i + tc; 
cycle_count := SUCC(cycle_count) 
END; 

IF cycle_count > 6 
THEN 

BEGIN 
FOR il := 1 TO c_out DO 

Outblock := Outblock + w.c[il]; 
cycle_count := 1; 
First : = TRUE 
END; 

i := SUCC(i); 
END; 

END; 

BEGIN 
Done := FALSE; 
Found := TRUE; 
WHILE NOT Done DO 

Version A2. V02 
April 1987 

BEGIN 
Pgetwait( Inbuff, PI_Error_handler); 
IF Inbuff = "'TRUE '" 
THEN 

Done:= TRUE 
ELSE 

IF Inbuff = '"FALSE"' 
THEN 

BEGIN 
Done := TRUE; 
Found := FALSE 
END 

ELSE 
IF Devtyp = 1 

Page A-13 



END; 

PS 390 RELEASE NOTES 

THEN 
Cvt_6_8( Inbuff, Outbuff.b, 36) 

ELSE 
FOR i := 1 TO 80 DO 

FOR j := 4 DOWNTO 1 DO 
Outbuff.b := Outbuff.b + Inbuff[(i-1)*4 + j]; 

{ It is necessary to reverse Errnum with Errtyp } 
{ and Not_Used with SR} 

Page A-14 

IF Found 
THEN 

WITH Outbuff DO 
BEGIN 

END; 

Temp := Errnum.i; 
Ermum.i := Errtyp.i; 
Errtyp.i := Temp; 
Temp := Not_Used.i; 
Not_Used.i := SR.i; 
SR.i := Temp; 
END; 

Version A2. V02 
April 1987 



/ 

\ 
) 

PS 390 RELEASE NOTES 

PROCEDURE Display_crash; 

{ 

FUNCTIONAL DESCRIPTION: 

Display Crash info on terminal 

{ 
PROCEDURE Dumpit; 

Version A2. V02 
April 1987 

VAR 
SP,j,k,sloc,cloc : INTEGER; 
tc: CHAR; 

Sline : PACKED ARRAY [1..15,1..16] OF 
CHAR; 

BEGIN 
Rewrite ( Outfile) ; 
WITH Outbuff DO 
BEGIN 
Writeln ( Outfile) ; 
Write(Outfile,' PC=',HEX( PC.i, 8, 8 )); 
Write(Outfile,' SR=',HEX( SR.i, 4, 4 )); 
Write(Outfile,' STYPE=' ,Stype.i:3); 
Write(Outfile,' SYER=' ,Sver.i:6); 
Write(Outfile,' ETYPE=',HEX( Errtyp.i, 4, 4)); 
Write(Outfile,' ENUM=',HEX( Errnum.i, 4, 4)); 
Writeln(Outfile); Write(Outfile, 'DO-D7='); 
FOR j := 0 TO 7 DO 

Write(Outfile,' ',HEX( Dreg[j].i, 8, 8)); 
Writeln ( Outfile) ; 
Write(Outfile, 'AO-A 7='); 
FOR j := 0 TO 7 DO 

Write(Outfile,' ',HEX( Areg[j].i, 8, 8)); 
Writeln ( Outfile) ; 
Writeln ( Outfile); 
Writeln(Outfile,'STACK='); SP := Areg[7].i + 14; 
FOR j := 1 TO 15 DO 

BEGIN 
Sloe := (j-1) * 4 + 1; 
Cloe := 4; 
FOR k := 1 TO 16 DO 

BEGIN 

Page A-15 



Page A-16 

IF sloe< 60 
THEN 

BEGIN 

PS 390 RELEASE NOTES 

te:= Staek[sloe] .e{cloe]; 
IF te > CHR(127) 
THEN 

te:= CHR(ORD(te) - 128); 
IF (te < CHR(32)) OR 

(te = CHR(127)) 
THEN 

Sline[j,k] := '.' 
ELSE 

Sline[j,k] := te 
END 

ELSE 
Sline[j,k] := '.'; 

Cloe := Cloe - 1; 
IF Cloe= 0 
THEN 

BEGIN 
Cloe := 4; 
Sloe := Sloe + 1 
END; 

END; 
Write(Outfile,HEX( SP, 8, 8),' '); 
Sloe := (j-1) • 4 + 1; 
Cloe := 4; 
FOR k := 0 TO 15 DO 

BEGIN 
IF sloe< 60 
THEN 

Write(Outfile,' ',HEX( ORD(Staek[sloe].e[eloe]), 2, 2)) 
ELSE 

Write(Outfile,' 00'); 
Cloe := Cloe - 1; 
IF Cloe= 0 
THEN 

BEGIN 
Cloe := 4; 
Sloe := Sloe + 1 
END; 

END; 
Write(Outfile,' '); 
FOR k := 1 TO 16 DO 

Write ( Outfile, Sline [j ,k]); 

Version A2. V02 
April 1987 



Writeln(Outfile); 
SP:= SP+ 16 
END 

END 
END; 

BEGIN 
IF Found 
THEN 

Dump it 
ELSE 

PS 390 RELEASE NOTES 

Writeln(' Crash file not found ') 
END; 

BEGIN 
Init_ps300; 
Trigger _read; 
Get_data_block; 
Display_ crash; 
PDetach( PI_Error_handler); 
END. 

Version A2. V02 
April 1987 Page A-17 





PART II 

Change Pages And Previous Graphics Firmware Release Notes 

A consolidation of Versions Al.V02 and A2.V01 of the PS 300 Graphics Firmware 
Release Notes are included in this package. Current customers should already have this 
information. Also included are change pages specific to PS 390 functionality. 

The following commands and functionality have been added since the publication of the 
Document Set. The new commands have been formatted as supplement pages for the 
PS 300 Command Summary. The list below gives the new commands and a brief descrip­
tion. 

Load Viewport Loads a viewport and overrides the previous viewport (can 
not be used to modify default viewport) . 

Set Blinking ON/OFF Creates blinking nodes to specify whether blinking is enabled 
in the specified structure. 

Set Blink Rate 

Set Line_Texture 

Write back 

Rawblock 

Specifies the blink rate. 

Specifies pattern for hardware texturing of displayed lines. 

Enables writeback for the data structure below the writeback 
node. 

Allocates memory that can be directly managed by a 
user-written function, or the Parallel or Ethernet Interfaces. 





GRAPHICS FIRMWARE RELEASE NOTES 

Version A 1. V02 - March l 985 

DOCUMENTATION INFORMATION FOR ALL USERS 

Important corrections to errors in the PS 300 Document Set are provided on the 
following pages. Please note these changes in your document set. f',Jew pages for 
previously undocumented functions are included here. 

Several documents have been changed. The documents and the changes are 
summarized below. If you would like to have the ne~vest version of any of these 
documents, please contact your E&S Account Executive. 

• User-Written Functions: revised to correct errors in the document and 
provide templates with more complete instructions, as well as more 
information on writing various types of functions. 

NOTE 

A2.V02 - This manual has been completely revised and 
included in the PS 300 Advanved Programming manual 
that has been provided to you as a seperate document for 
the A2. V02 release. 

• NETEDIT: revised to support the new version of NETEDIT. 

• Introduction to Data Driven Programming Methodology: notes have 
been added to this document to clarify misleading information. 

• PS 300 Application Notes: newNoteshavebeenadded. 



J 

.,. 



GRAPHICS FIRMWARE RELEASE NOTES 

Version Al.VOZ - March 1985 

Information for PS 300/IBM 3278 Interface Users 

Enhancements and New Features in the PS300/IBM 3278 Firmware 

· • The PS 300/IBM 3278 Terminal Emulator Setup mode now includes keys that 
will inhibit the display of the cursor, the PS FJO indicator characters, and 
the host indicator characters. [nhibicion of these screen characters is 
accessed by entering Setup mode, \ALT/GRAPH or ALT/SETUP on the IBM 
3278-style keyboard, SETUP on the VT 100-style keyboards) and toggling the 
appropriate keys. 

Once in Setup (shown by the display of the PS 300 indicator character 'S' on 
the bottom line of the screen), the following new Setup features are 
available: 

FUNCTION KEY FEATURE 

F6 Toggles the display of the PS 300 characters. Default is 
the display of the characters. 

F7 Toggles the display of the ·host indicator characters. 
Default is the display of the characters. 

F8 Toggles the display of the cursor. Default is display of 
the cursor. 

Function keys F9 and FlO are used in conjunction with the PS 300/IB!Vl 3250 
Interface. Information on the use of these keys is available in the 
PS 300/IBM 3250 Interface User's Manual. 

The adjustments made in Setup can be entered as PS 300 commands in the 
SITE.OAT file to set the appropriate characteristics at boot time. 

The list below shows the characters that should be entered into the 
SITE.DAT file for each new feature. 

For VT!OO-style keyboards, the appropriate character(s) must be inserted 
between a 'iVo iVo' header and trailer sequence. iVo is a CTRL V 
lowercase "o" sequence: 



GRAPHICS FIR MW ARE RELEASE NOTES 

Version Al.V02 - March 1985 

FEATURE CHARACTERS TO BE ENTERED INTO SITE.OAT 

Set/Reset Local Indicators 
Set/Reset Host Indicators 
Set/Reset Cursor 

SEND 'tVotVftVo' TO <l>IBMKBOl; 
SEND 1tVotVgtV0 1 TO <l>IBMKBDl; 
SEND 1 tVotVhtV0 1 TO <l>IBMKBDl; 
SEND 1tVotVitV0 1 TO <l>IBMKBDl; 
SEND 1 tVotVjtV0 1 TO <l>IBMKBDl; 

Set 3250 Mode 
Set PS300 Mode 

For IBM-style keyboards, the appropriate characters must be inserted between 
a CHAR(l 30)&CHAR(n)&CHAR(l 30) sequence, where &CHAR(n) is the 
character sequence(s) for the feature: 

FEATURE 

Set/Reset Local Indicators 
Set/Reset Host Ind1cators 
Set/Reset Cursor 
Set 3250 Mode 
Set PS300 Mode 

CHARACTERS TO BE ENTERED INTO SITE.DAT 

SEND CHARC130)&CHARC150l&CHARC130) 
SEND CHAR(130>&CHAR(l5l)&CHAR(l30) 
SEND CHAR(l30>&CHAR(152)&CHAR(130) 
SEND CHAR(l30)&CHAR(153)&CHARC130) 
SEND CHAR(130)&CHAR(154)&CHAR<l30) 

TO <l >IBMKBD1; 
TO <l >IBMKBDl; 
TO <l>IBMKBDl; 
TO <1 >IBMKBOl; 
TO <l >IBMKBDl; 

• A kit containing keycap replacements for the 3278-style keyboard 
accompanies this release. The configuration of the keyboard has changed 
with the A 1. V02 Firmware to support additional keys required by some IBM 
applications. The keyboard reconfiguration and keycap replacements are as 
fallows: 

1. The keys designated fer use by IBM applications are the old GR.A.PH and 
TERM keys on the left-hand keypad of the keyboard. These keycaps will 
be replaced by blank keycaps and have no PS 300 application. 

2. The old SETUP and TEST /NORM keys on the left-hand keypad will 
become dual-purpose keys. The new keycap for the SETUP key will read 
GRAPH on the top and SETUP on the front of the key. To access Setup 
mode, the key must be pressed in conjunction with the ALT key on the 
keyboard. 

The new keycap for the TEST /NORM key will read TERM on the top and 
TEST /NORM on the front. The terminal display will be toggled on and off 
by pressing the key. To access TEST /NORM, the key must be pressed in 
conjunction with the ALT key on the keyboard. 

The keyca-p exchange will be made by the user. Additional instructions for 
changing the keycaps are included in the kit. 



GRAPHICS FIRMWARE RELEASE NOTES 

Version Al. V02 - March 1985 

• Two system functions (F:IBM_KEYBOARD and F:IBM_SETUP) have been 
modified to support the new PS 300/IBM 3250 Interface. The modifications 
made to these functions are shown on the System Functions change pages. 
These pages may be inserted into Volume 5 of the PS 300 Document Set. 





The following section contains the NETEDIT Release Notes. 

\ 





NETEDIT RELEASE NOTES - 1 

Version Al.V02 - March 1985 

NETEDIT Vl.08 RELEASE NOTES 

A revised version of the NETEOIT programming tool is provided on the magnetic tape 
distributed with the A2.V02 PS 390 Firmware. A description of changes follows. If 
you wish a new version of the NETEDIT User's Guide, contact your E&S Account 
Executive to order the updated documentation. 

FORTRAN/Pascal GSR Code Conversion 

There are now options to produce FORTRAN or Pascal code, as well as the 
usual PS 300 ASCII commands, available under CONVERT NETWORK. 
Selecting these options produces a subroutine or procedure which can be 
compiled and linked with a user-supplied main program and the appropriate 
GSR library. 

The Pascal code is compatible with VAX/VMS Pascal V2; the FORTRAN code 
is compatible with VAX/VMS FORTRAN-77. 

The menu items ASCII OUTPUT, FORTRAN GSR, and Pascal GSR cause the 
corresponding type of code ta be generated. The other menu items toggle 
various options an and off; you should set these before you select the item to 
produce the code. 

You must take special care to see that the code for all macros referenced in 
your network have been converted to the same form (i.e., ASCII, FORTRAN, or 
Pascal) as the code to be produced for the rest of the network. For example, 
when you are generating Pascal code you cannot reference an ASCII macro. 
NETEDIT will give a warning message if you attempt to do this. 

The following discussion of how to compile and link the generated code with 
your program assumes familiarity with the GSRs. 

The generated code is output to a file with the same name as the network, with 
an extension of .PAS for Pascal, and .FOR for FORTRAN. The code is in the 
form of a single subroutine or procedure with the same name as the network; 
this routine takes no arguments. 

Your program must perform the calls to attach and detach the PS 300 
(PAttach/POetach for Pascal, PATTCH/POTACH for FORTRAN). You must 
also supply an error handling routine, as described in the GSR documentation. 



2 - NETEDIT RELEASE NOTES 

Version Al.V02 - March 1985 

For FORTRAN, the error handler must be named ERR. The output file 
produced by NETEDIT may be compiled independently, or included in a file 
containing other FORTRAN subprograms. You must then link it with your main 
program, the error handler, and the FORTRAN GSR library. 

For Pascal, the error handler must be named PI_Error_Handler. The suggested 
method for compilation is to include the file containing the generated code in 
your main program file, using the %include directive. Your program must also 
include the declarations in PROCONST.PAS, PROTYPES.PAS, and 
PROEXTRN.PAS. After compiling the program, you must link it with the 
Pascal GSR library. 

literal PS 300 Commands Can Be Included in Network 

Specially flagged labels can be used to insert random PS 300 commands in a 
network. Floating comments which start with \+\ or \-\ indicate commands to 
be inserted before or after the other code for the frame, respectively. These 
commands are always written to the output file during code conversion, 
regardless of the SUPPRESS COMMENTS setting. 

The statements can be ordered by including a priority number in the flag. For 
example, statements prefixed with \-1 \ are guaranteed to be sent before 
statements prefixed with \-2\. This is useful for sending an ordered sequence of 
constants to the same input of a function, for example. 

Typicallyt commands that should be inserted before the other code for a frame 
are initialize commands or display structure definitions. Commands that should 
be specified to go at the end of the code for the frame are SETUP CNESS 
commands, and SEND statements. NETEOIT does not perform any syntax or 
validity checking on the commands. 

Names of functions, variables, and display structures that are referenced in 
these commands may be prefixed with \F\ and/or \M\ to indicate that the 
appropriate frame and/or macro prefix should be substituted during code 
conversion. 



NETEDIT RELEASE NOTES - 3 

Version Al.V02 - March 1985 

NETEDIT Now Uses GSRs 

NETEDIT has been changed to use the GSR library internally. This should result 
in some increase in performance for those using high-speed lines. The device 
type may be specified using the @AttachTo option in the parameter file. The 
default value,. for the RS-232 async line, is: 

@A TTACHTO logdevnam=tt:/phydevtyp=async 

See the GSR user's manuals for more information on how to specify this 
parameter. 

If the Pascal GSR library is not available, a library of procedures with the same 
calls as the GSR routines, but which send the equivalent ASCII commands to the 
parser, is provided. 

Support Network Uses UWFs 

Some parts of the support network have been replaced by user-written 
functions. No new functionality has been added, but users may notice some 
improvement in performance. NetEdit V 1.08 will not work with PS 300 
firmware that does not support UWFs (i.e., pre-A 1 firmware). 

Improved Handling of Arcs 

Users should see faster response when adding arcs as a result of changes to the 
host program and the support network. Adjacent colinear segments are now 
combined when the arc is processed. In addition, better ways for handling arcs 
when the items they are attached to have been moved should cut down on the 
need to manually reroute arcs. 

Improved Text Editing Facilities 

NETEDIT now uses an improved line editing function for text entry. This 
function behaves like a one-line screen editor, similar to EMACS in its use of 
control characters for editing effects. If you are editing an existing piece of 
text, you do not have to retype the entire line just to make a minor change, as 
the buffer is initialized to contain the previous contents of the line being edited. 



4 - NETEDIT RELEASE NOTES 

Version Al.V02 - March 1985 

The following control characters are used for editing effects: 

tA Cursor to beginning of line 
tB Cursor left (back) 
tD Delete character under cursor 
tE Cursor to end of line 
tF Cursor right (forward) 
tK Delete to end of line 
tR Retype line 
tU Delete entire line 
DEL Delete character to left of cursor 
RET Flush buff er 



NETEDIT RELEASE NOTES - 5 

Version Al.V02 - March 1985 (Modified for AZ - April 1987) 

Revised Installation Procedures 

The PS 300 distribution tape now contains NETEDIT executables as well as 
source files. This simplifies the installation procedure for sites where no 
modifications to the source or data files are planned, or where no Pascal 
compiler is available. Note that the executables v-Jere built on a VAX 780 
running VMS 3. 7, and may not work properly on other versions of the hardware 
or software. 

The procedure for installing NETEDIT without rebuilding it entirely is as 
follows: 

l. Set default to Netedit subdirectory in the A2.V01 subdirectory. 

2. Edit NETUSER.COM and ·change the definition of NETROOT (marked 
!*INSTALL-DEPENDENT) to the name of the directory created. Make sure 
this file is readable and executable by all users. See comments in 
Netuser.Com "Site Customization of Netuser.Com." 

3. Copy the empty user log file, NETEDITO.USR to NETEDIT.USR. Set the 
protection on this file so that it is writable by all users. 

The procedure to install the editor by rebuilding the executables is essentially 
unchanged. Note that there is an additional !*INST ALL-DEPENDENT 
parameter in NETBUILD.COM which specifies the directory where the PS 300 
Pascal CSR library resides. If you do not have this library, you may use the 
dummy library supplied on the tape. See comment in NetBuild.Com "Site 
Customization of NetBuild.Com." 

Source files for the user-written functions used by NETEDIT, along with a 
command file to build the .300 files which may be downloaded to the PS 300, 
have been provided. However, to rebuild the user-written functions, you must 
have the Motorola 68000 cross software, which is not supplied by Evans & 
Sutherland. 





~ Section 

2A Hands-on Experience 

2A Conmand Language 

2A Function Networks 1 

2A Viewing Operations 

KNOWN ·suGs· IN THE PS 300 DOCUMENT SET 

Wii 

2 

11 

14 

20&23 

23-28 

4 

32 

43 

45 

Change Description 

The conmand to set the line-drawing speed for CSM displays 
should read: 
SEND TRUE TO <1> CSM; 

The conmand to translate the tire primitive to the front 
left location should read: 
Tran_FL_Tire :=TRANSLATE BY .5415,-.1598, 

.3357 APPLIED TO Rot_FL_Tire; 

The TRANSLATE conmand in the definition of the front left 
snow tire (FL-tire) should read: 

TRANSLATE BY .5415, -1598, .3357; 
The remainder of the structure is correct. 

Figures 4 and 5 are reversed. 

In BEGIN_STRUCTURE ... END_STRUCTURE conmands, there should 
be no semicolon following 11 BEGIN_STRUCTURE 11 • 

A new page is supplied to call out the names of interactive 
nodes in the figure. 

The integer 2 should not go to <l>Roty, but to <l>Timer. 
The comnand should read: 
SEND FIX(2) TO <l>Timer; 

In the definition of Top, the viewport conmand should 
create a viewport with dimensions o to 1 horizontally and 
vertically. It now creates a viewport from O to -1 
horizontally and vertically. The viewport conmand in Top 
should read: 
VIEWPORT 

HORIZONTAL=O:l 
VERTICAL=O:l; 

The names in the last two conmands on this page are wrong, 
they should be Nonsquare_Window and NonSquare. The last 
two conmands should read: 
DISPLAY Nonsquare_Window; 
REMOVE NonSquare; 



Version PS 390 A2.V02 - January 1987 

~ Section 

28 Conditional Referencing 

28 Function Networks II 

28 Function Networks II 

28 Text Modeling 

28 Rendering Operations 

3A Coomand Sumnary / 

KNOWN °BUGS" IN THE PS 300 DOCUMENT SET 

faG 

13 

17 

3 

22 

39&40 

20 

17 

20 

Bspline 

Rational 8spline 

Labels 

Change Oescrjptioo 

If LEVEL_Of_OETAIL nodes accept integers from o to 32767, 
not from o to 14, as stated near the bottom of this page. 

Select LEVEL OF DETAIL from the Tutorial Demonstration 
Programs, not ANIMATED CYLINDER. 

A new page is supplied to call out the names of interactive 
nodes in the figure. 

Last conmand should read: 
CONN~CT Switch7<l> : <l>Rot_Lt_Elbow; 

Every conmand must be followed by a semicolon. 

Near the top, the conmaod to display the sca·ted limerick 
now reads: 
DISPLAY Limerick; 
It should read: 
DISPLAY Scale_8lock; 

A replacement page is supplied to correct coordinate values. 

Io "Object" on the bottom of page 20, polygon 2 is an 
{outer}, and polygon {5} should be defined as follows: 
{non-coplanar} POLYGON 1,1,0 1,1,1 

1,-1,1 1,-1,0; 

The node diagram shows inputs <1>, <2>, and <3>. It should 
show input <1> and input <i>. A real number sent to input 
<i> changes the knots in the curve. A 2D, JD, or 4D vector 
sent to input <i> changes the vertices in the curve. 

The node diagram shows inputs <1>, <2>, and <3>. It should 
show input <1> and input <i>. A real number sent to input 
<i> changes the knots in the curve. A 20, 3D, or 4D vector 
sent to input <i> changes the vertices in the curve. 

A 30 vector can be sent to input <i> to change the starting 
location of the i-th label. This is not current"ly shown. 



~ 1 Section 

3A Conmand Sunmary 

3A Function Sunmary 

KNOWN "BUGS 11 IN THE PS 300 DOCUMENT SET 

~ 

Polynomial 

Rational 
Polynomial 

XFORM 

F:ACCUMULATE 

F: LINEEDITOR 

F: MCONCATENATE(n) 

F:STRING_TO_NUM 

FKEYS 

TSCSM 

Change Description 

The node diagram shows inputs <I> and <2>. It should show 
inputs <1> and <i>. An integer sent to input <1> changes 
the number of chords in the curve and a vector sent to 
input <i> changes the curve coefficients. The present 
documentation has this information reversed. 

The node diagram shows inputs <l> and <2>. It 
should show inputs <1> and <i>. An integer sent to input 
<1> changes the number of chords in the curve and a vector 
sent to input <i> changes the curve coefficients. The 
present documentation has this information reversed. 

The 4x4 matrix shown in the example does not contain enough 
elements and is improperly formatted. In addition, the 
semicolon is missing from the END_S corrrnand. The corrrnands 
should read: 

TRAN := BEGIN_S {To be used while getting transformed data} 
MATRIX_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; 
INSTANCE OF OBJ; 
END_S; 

The default values on inputs <3> and <4> are not given. 
Input <3> defaults to O and input <4> defaults to l. 

Output <4> is incorrectly documented as an input to 
<append> of a Characters node. It should read input 
<delete> of a Characters node. 

This function is misnamed. 
STRING(n). 

Its correct name is F:MCAT 

This function converts a string of digits to a real 
number. Missing from the current documentation is output 
<2>. This is a Boolean value which is TRUE if the string 
received can be converted and false otherwise. 

This initial function instance is listed as an Output 
function. In fact, it is an Input function. 

This has been erroneously documented as TECSM. 



Version PS 390 A2.V02 - January 1987 

sect1gn ~ 

3A Function SU11111ary 

5 

5 

Firmware and Host 
Software 

Loca 1 Data Fl ow 

. ·· 

KNOWN "BUGS" IN THE PS 300 DOCUMENT SET 

~ 

F:SEND 

F:LIST 

ONBUTTONLIGHTS 

CSM 

Change Descrjption 

Previously undoc~mented. 

Previously u~documented. 

Previously undocumented. 

Previously undocumented. 

A new page is supplied. 

A new page is supplied. 

A new page is supp 1i ed .. 

A new page is supplied. 

4 Under "Creating and Downloading the SITE.DAT," Step 3, the 
correct demuxing character and routing byte to begin the 
SITE.DAT file is t\: (t represents the CONTROi. value of 
the \ key). The user-defined conmands are entered after 
these characters and the file must end with the demuxing 
character and r0t,1ting byte: t\;. 

5-38 Table 5-1 Routing Byte Definitions is incomplete and may be 
(5-62 IMB hosts only) misleading. A new page is supplied . 



GRAPHICS FIRMAWARE RELEASE NOTES 

Version A2. V01 

Enhancements in Graphics Firmware Version A2.V01 

• This release of the graphics firmware provides the new Writeback feature. 
The Writeback Feature allows displayed transformed data to be sent back to 
the host. This feature provides a Writeback command and a Writeback 
function. 

The Writeback command creates a WRITEBACK operation node and enables 
the data structure below the node for writeback operations. When the 
Writeback node is activated, writeback is performed for name1 (the name of 
the structure for which writeback is applied). A default WRITEBACK 
operation node is created by the system at initialization time. 

The Writeback Function is initialized by the system and is used to send 
encoded writeback data to user function networks. This function is not 
activated by the normal input queue triggering mechanism. It is activated by 
sending a TRUE to any writeback operation node in a display structure. 

Writeback is described completely in the Writeback Feature User's Guide, 
included with this release. 

• PVecMax (PVCMax-FORTRAN) has been added to the GSRs. This procedure 
sets the maximum component of a block-normalized vector list, so that 
multiple calls may now be made to PVeclist for block-normalized vectors. 

Modifications in the Graphics Firmware 

• Changes to BUTTONSIN (PS 350 Only) 

The initial function instance BUTTONSIN has two new inputs. 

Integer <2> Enable/Disable Bit Mask 
Default FIX(-1) all buttons enabled. 

Boolean <3> TRUE - enable use of bit mask 
FALSE - disable use of bit mask. 
Default FALSE 

The Buttonsin bit mask is a mapping of the bits of a 32-l::>it integer to the 
individual buttons. The Most Significant Bit (sign bit) maps to button #1; the 
least significant bit maps to button #32. 



GRAPHICS FIRMAWARE RELEASE NOTES 

Version A2. V01 

Host Significant Bit 
I 

Least Sl1nlf1cant Bit 
I 

If the bit is set (=1), the button is enable. If the bit is off (=0), the button is 
disabled. 

• Changes to ONBUTTONLIGHTS and OFFBUTTONLIGHTS (PS 350 Only) 

The initial function instance ONBUTTONLIGHTS/OFFBUTTONLIGHTS has one 
new input. 

New input 
<2> Boolean 
TRUE - interpret integer on input <1 > as a bit mask. 
FALSE - interpret integer on input <1> as a button number. 

The ONBUTTONLIGHTS/OFFBUTTONLIGHTS bit mask is a mapping of the bits 
of a 32 bit integer to the individual buttons. The most significant bit (sign bit) 
maps to button #i; the least significant bit maps to button #32. If the bit is set 
(=1) the button light is on. 



CHANGE PAGES TO THE DOCUMENT SET OTHER THAN 

THE COMMAND SUMMARY, THE FUNCTION SUMMARY, 

AND GRAPHICS SUPPORT ROUTINES 





FUNCTION NETWORKS I - 3 

CONVERTING INPUT DEVICE VALUES TO UPDATE AN INTERACTION NODE 

' The first step to selecting the appropriate function to convert input values into 
values that can update an interaction node is to identify the type of values 
needed by the node. To understand this, look at the the most common graphics 
transformations--rotation, scali\g, and translation. 

Rotations and scales are done with 3x3 matrices; translations are specified with 
a 2- or 3-dimensional vector. It makes sense, then, that the ~of data used 
by a rotation or scale node is a 3x3 matrix, and the data type for a translation 
node is a vector. 

Your task, if you are trying to rotate part of a model, is to find a way to make 
an input device, such as a dial, send the correct 3x3 matrices to a rotate node. 
In this module, this process will be represented by a "black box" (Figure 2) that 
takes one kind of value and changes it into another kind. 

Input Values 
from Dials I 

I 
L 

---1 
Black Box 

_J 

Figure z. The "Black Box" 

3x3 Rotation 
Matrices 

IAS0527 

In the "Hands-On Experience" module, you created Diamond by specifying a 45 
degree rotation of Square. You did not need to work out what the 3x3 matrix 
for 45 degrees was. Whenever you use a command to create a rotate or scale 
node (such as Diamond), you only have to specify an angle using a real number 
value and the PS 300 automatically creates the associated 3x3 matrix. 

Once the node is created, however, you can only update it with the type of data 
it accepts--in this case, a 3x3 matrix. For example, look at the robot display 
tree again (Figure 3) the names for the interactive nodes are supplied so you 
can refer to them. 



4 - FUNCTION NETWORKS I 

Robot. Tran 

Robot.Rot 

Robot.Scale 

R. ht Left Lower Leg .Ro 
1g. - -
Arm· 

ht_Forearm .Rot 

Right Foreann 
Left_Foot.Rot 

R 

ight_Hand.Rot 

w~· 

Figure 3. Interactive Nodes in Robot Display Tree 

Right 
Leg 

t Lower 
Leg.Rot-

Right 
Lower Leg 

Lt_foot.Rot . 
Right 

Foot 

IAS0758 



FUNCTION NETWORKS II - 3 

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS 

In "Function Networks I," you constructed a function network for the display tree 
shown in Figure 1. 

.w c 
:::J. 
s.. 
r-

Robot. Tran 

Robot.Rot 

Robot.Scale 

Right 
Arm· 

ht Forearm.Rot 

· Right Forearm 
Left_Foot.Rot 

ight Hand.Rot 

Ji~~~· 

R 

Figure 1. Robot Display Tree 

Right 
Leg 

t Lower - -Leg.Rot 

Right 
Lower Leg 

Lt_Foot.Rot 
Right 

Foot 

IAS0758 



4 - FUNCTION NETWORKS II 

This function network supplied interactions for the top three nodes of the display 
tree: Robot.Scale, Robot.Rot, and Robot. Tran. Seven dials were required to 
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to 
translate it in X, Y, and Z, and one dial to scale the model; 

Only one free dial remains, but no other interactive nodes in the robot display 
tree have yet been connected to functions. To supply X, Y, and/or Z rotations 
for all the other interactive nodes would require dozens of other dials. This 
section illustrates how to solve this problem by making one set of eight dials 
perform like many sets. 

The first step in doing this is to determine exactly how many additional dials you 
will need by deciding how many more interactions in the model you want to 
control. In addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them 
require three dials each (three rotations for X, Y, and Z). The two nodes for 
elbows and the two for knees only use X rotations, requiring only one dial each. 
The result is a total of 34 additional interactions. To handle these interactions, 
each dial would have to be connected to about six nodes. 

There is nothing to prevent you from connecting a dial to more than one 
destination. For example, you could hook dial 1, already updating X rotations for 
the Robot.Rot node, to other rotate nodes. But of course turning that one dial 
would cause multiple unrelated updates. 

Following is one way the dials might logically be assigned to control the 
interactions. 

In Mode 1, the dials would work as presently assigned: 

Whole model: l. Xrot 2. Yrot 3. Zrot 4. Scale 

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned 

Mode 2: 

Head: l. Xrot 2. Yrot 3. Zrot 4. Not Assigned 

Trunk: 5. Xrot 6. Yrot 7. Zrot 8. ~~at Assigned 

Mode 3: 

Right arm: 1. Xrot 2. Vrot 3. Zrot 4. Elbow Xrot 

Left arm: 5. Xrot 6. Yrot 7. Zrot 8. Elbow Xrot 



RENDERING OPERA TIO NS - 17 

Given the following object (Cube): 

0,1,1 

1, 1, 0 

IAS0404 

Figure 12. Cube 

A correct syntax to define this object is as follows: 

Cube:= POLYGON 0,0,0 0, 1,0 l , 1,0 1,0,0 
POLYGON 1,0,0 l , 1,0 1, l, l 1,0' l 
POLYGON 1, 1, l o, i, i 0,0, 1 1,0' l 
POLYGON 0' 1, 1 0, 1,0 0,0,0 0,0, 1 
POLYGON o, 1, i 1, 1, 1 1, 1,0 0, 1,0 
POLYGON 1,0,0 1,0, 1 0,0, 1 0,0,0; 

Associating Outer and Inner Contours With COPLANAR 

A polygon that represents a face of an object is called an outer contour. 
Some polygons, known as 1 nner contours represent cavities, holes, or 
protrusion sites in an object. 

For the PS 340 to interpret inner contours properly, two things must be done. 
One is to observe the vertex-ordering convention for inner and outer contours. 
The other is to use the COPLANAR option in the POLYGON clause to associate 
inner and outer contours. 



18 - RENDERING OPERATIONS 

The vertex ordering rule for inner and outer contours is as follows: vertices of 
inner contours must run in the opposite sense to the corresponding outer 
contour. For a solid this implies that the vertices of an inner contour run 
counterclockwise while outer contours run clockwise when viewed. 

The vertices of the following triangular polygon face (outer contour) with a hole 
in it (inner contour) are ordered as follows. 

0,0,0 0,1,0 
IAS0405-

Figure 13. Surface With Inner/Outer Contours 

A POLYGON command syntax for this object is : 

Object:= POLYGON 0,0,0 .5,.5,0 1,0,0 {outer contour} 
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0; 
{inner contour} 

Note that the vertices for the inner contour in the above example are listed in 
the opposite order of those of the outer contour. 



LOCAL DATA FLOW AND SYSTEM NETWORKING 5-37 

Version Al.V02 - March 1985 

S.l DATA RECEPTION AND ROUTING NETWORK 

F:CIROUTE 

Once data have passed through either instance of F:DEPACKET (described in the 
previous chapter), the next function to receive it is F:CIROUTE. F:CIROUTE has two 
instances, one for count mode and one for escape mode. They are functionally very 
similar, and only the count mode instance, CIROUTEO will be described. CIROUTEO 
examines the first character it receives (the character following the count bytes in 
count mode and the character following the <FS> character in escape mode) to 
determine where the packet message is to be sent. These characters are "routing" 
bytes, and are used to select the appropriate channel for data in the PS 300. Data 
channels include lines to the terminal emulator, the PS 300 command interpreter, the 
Disk writing function, the Raster function (for PS 340 systems), and other system · 
functions. A base character (defined on Input < 2> of CIROUTEO) is subtracted from 
this routing character before lt is used to select the output channel. The base 
character defaults to the character zero ("0"). 

The definitions for the inputs and outputs for F:CIROUTE are described in Chapter 6 
of this guide. 



5-38 LOCAL DAT A FLOW AND SYSTEM NETWORKING 

Version Al. V02 - March 1985 

5.2.1 Routing Byte Definitions 

-The following table defines the routing bytes and channel parameters for assessing 
internal PS 300 communication channels. 

CI ROUTE 
Output 

3 
4 
5 
6 
7 
8 
9 

13 
14 
15 
16 
17 
18 
19 
20 
21 

Table 5-1. Routing Byte Definitions 

Rout1ng Channel Descr1pt1on 
Byte 

0 
1 
2 
3 
4 
5 
6 

• 
• 
• 

< -> 
? 
@ 
A 
B 

Parameter 

1 Parser/Command Interpreter 
2 Command Interpreter v1a READSTREAM 
3 6-bit b1nary 
4 Reset network for GSRs 
5 Reserved 
6 Reserved 
7 Download channel for user-wr1tten 

11 Hr1te ASCII data to diskette 
12 Close file 
13 Hrite binary data to diskette 
14 Reserved 
15 Channel to terminal emulator 
16 Host message control 
17 Hho <used by PSETUP> 
18 Reserved 
19 Raster 

NOTE 

('?') is the HOST MESSAGE request channel. <SOP>? 
followed by- ASCII (l or 2) requests a single 
message or multiple messages from HOST 
MESSAGES. 

( 1 @1) any message sent on this route triggers the WHO 
function. (Refer to the PS 300 Host-Resident 
I/O Subroutine Manual for information on the 
WHO function.) 

functions 

' 



LOCAL DAT A FLOW AND SYSTEM NETWORKING 5-61 

Version Al.V02 - March 1985 

5. 1.1 Data Flow Overview 

The PS 300 accepts data from the IBM host line through the General Purpose Interface 
Option (GPIO) card. These data will be in two forms; either data for the terminal 
emulator, or graphical data that have been sent from the host using the 
cross-compatibility software. The GPIO differentiates between data designated for 
the terminal emulator and graphics data packaged in the Write Structured Field (WSF) 
envelopes. The GPIO puts TE data directly Into a Screen Buffer in Mass Memory. 
Graphics data are intercepted by the GPIO for unpacking and repackaging into 
Qpackets. Routing information is always included at the head of any WSF command. 
The routing information and the first 238 bytes of data are put into a Qpacket by the 
GPIO. All subsequent data within the same WSF command are placed into 
Qmorepackets. When a WSF command is filled ta capacity, or a routing change is 
required, the present WSF command is terminated and a new WSF command is started 
by a PS 300 low-level communication routine. 

The packets of graphical data are passed to the data reception function, 
F:F Il IBM (F:F 12 IBM). IBMI1$ (an instance of F:F Il IBM) allocates new mass 
memory packet-buffers and puts them on a linked list for- subsequent use by the GPIO. 
IBMI 1 $ passes data through to F :CIR DUTE. 

F:CIROUTE 

CIROUTEO examines the first character it receives (the character fallowing the count 
bytes in count mode) to determine where the packet message is to be sent. These 
characters are "routing" bytes, and are used to select the appropriate channel for data 
in the PS 300. (Data channels can be chosen by the use of the parameter in the PMuxG 
GSR Utility Routine. Standard GSR and PSIO calls include embedded routing bytes.) 
Data channels include lines to the terminal emulator, the PS 300 command interpreter, 
the disk writing function, the raster function (for PS 340 systems), and other system 
functions. A base character (defined on Input < 2> of CIROUTEQ) is subtracted from 
this routing character before it is used to select the output chann·e1. The base 
character defaults to the character zero ("0"). The definitions for the inputs and 
outputs for F:CIROUTE are described in Chapter 6 of this guide. 



5-62 LOCAL DAT A FLOW AND SYSTEM NETWORKING 

Version Al.V02 - March 1985 

5.1.2 Routing Byte Definitions 

The following table defines the routing bytes and channel parameters for assessing 
internal PS 300 communication channels. 

CI ROUTE 
Output 

3 
4 
5 
6 
7 
8 
9 

13 
14 
15 
16 
17 
18 
19 
20 
21 

Table 5-1, Routing Byte Definitions 

Rout1ng Channel Description 
Byte 

0 
1 
2 
3 
4 
5 
6 

• 
• 
• 

< .. 
) 

? 
@ 
A 
B 

Parameter 

1 Parser/Command Interpreter 
2 Command Interpreter via READSTREAM 
3 6-blt bi nary 
4 Reset network for GSRs 
5 Reserved 
6 Reserved 
7 Download channel for user-written 

11 Hr1te ASCII data to diskette 
12 Close file 
13 Write binary data to diskette 
14 Reserved 
15 Channel to terminal emulator 
16 Host message control 
17 Hho Cu sed by PSETUP > · 
18 Reserved 
19 Raster 

NOTE 

('?') is the HOST MESSAGE request channel. '?' 
followed by ASCII (1 or 2) requests a single 
message or multiple messages from HOST 
MESSAGES. 

('@') any message sen"t Qn this route triggers the WHO 
function. 

functions 



6-28 SYSTEM FUNCTIONS 

Version Al.V02 - March 1985 

F:IBM_KEYBOARD 

Qpacket-----> <1> 

QBoolean ---> <2> 

F:IBM KEYBOARD 

CIBMKBDD 

<1> ----->Qpacket 

<2> ~--->Q1nteger 
<4> ----->Qpacket 

<3> ----->Qpacket 

<5> ----->Qpacket 

<6> ----->QBoolean 

<7> ----->Qpacket 

<8> ----->QBoolean 

<10> ----->QBoolean 

<ll> ----->QBoolean 

F:IBM_KEYBOARD accepts character packets from the keyboard on input < l > and, 
based on the mode selected by the mode keys (either the LINE LOCAL key or the 
HOST, LOCAL and COMMAND keys, depending on the type of keyboard used), outputs 
packets for use by the function network, the line editor, or an IBM host. Packets of 
characters for the function KEYBOARD are output on output < l >. Qintegers to be 
sent to the function FKEYS are output on output <2>. Qpackets of characters to be 
sent to the function SPECKEYS are output on output d>. Qpackets of characters for 
the line editor are output on .output <4>. Qpackets of IBM scan codes for an IBM host 
are output on output <5>. A QBOOLEAN TRUE used to trigger the hardcopy functions 
is output on either output <6>, output < 10>, or output < 11 >, based on the mode of the 
keyboard. 

A TRUE used to trigger the loading of the IBM 3250 function network is output on 
output <7> when IBM 3250 mode is selected while in SETUP mode. 

A TRUE used to trigger the deletion of the IBM 3250 function network is output on 
output <8> when the PS 300 mode is selected while in SETUP. 

Input <2> accepts a Boolean that indicates which type of keyboard is being used. 

True • IBM style keyboard 
False ==VT 100 style keyboard 



Version Al.V02 - March 1985 

F:IBryJ_SETUP 

QBoolean ---> <1> 

Qinteger ---> <2> 

Q1nteger ---> <3> 

F: IjM_SETUP 
<IB~ETUPl> 

SYSTEM FUNCTIONS 6-29 

F:IBM_SETUP is used to change the parameters used by the IBM communications. 
Input < 1 > accepts an integer that specifies the maximum number of packets that can 
be in the pool of empty input packets. 

F:IBM_SETUP is used to change certain values used by the IBM communications. 

Input < 1 > is used to trigger the function. 

Input <2> is used to specify the number of empty I/O input packets that are to be 
maintained in the I/O input pool. 

Input <3> is used to specify the device address when an IBM 3250 interface is being 
used. 



6-10 SYSTEM FUNCTIONS 

F:CI 

F:CI 

Qchopltems ----> <l> < l > ----> unused 
Qprompt 

<2 > ----> unused 

<3> ----> error messages 

<4> ----> Qboolean 

<5> ----> Qprompt 

<6> ----> unused 
<H CIO) 

<CIO) 

This function interprets commands, creating display structures and function networks. 
It receives input either from a chop/parse function or a Readstream function (if using 
the GSRs). 

A single parameter is given when this function is instanced (for example H 
CIO:=F:CI(4);). This parameter is the "CINUM" and is used to identify all names and 
connections this CI makes. When the CI receives an !NIT command, it destroys only 
those connections it has made and only those structures associated with the names 
which have its CINUM. 

Note: A name is created when that name is referenced for the first time, even if it has 
no associated structure. The CI that created the name is the "owner" of that name, 
even if the entity it refers to is created by another CI. 

. Note: Each function has an output <0> that is used to send error messages (such as 
ille~al input error messages). The connection from this output is made automatically by 
the CI that creates the function. The CI finds the appropriate error function to connect 
output <0> to by looking on its own output d >. · 

Output 4 sends out a Qboolean with a TRUE value when an INIT command is entered. 
This output is connected to the initial function CLEAR_LABELS to clear out the labels 
on the keyboard and dials. 





DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS 7-11 

Version A2.V01 

7.5.3 Command Status Command 

The C4fmmand: 

COMMAND ST A TUS; 

direc\s the command interpreter to print the status of the command stream. The 
message output lists the number of open BEGIN ••• END and 
BEGIN_STRUCTURE ••• END_STRUCTURE commands, and indicates if the privileged 
state is operative. The message also indicates if the optimize structure model is in 
effect. 

7.5.4 Reboot Command 

The command 

REBOOT password; 

reboots the PS 300 as if from power-up. If no password has been setup, then any 
character string will do. Otherwise entering an incorrect password will give an error 
message. The REBOOT command can appear anywhere; it can occur within 
BEGIN ... END and BEGIN_STRUCTURE ••. END_STRUCTURE as well as without. It may 
be named or not. However, it cannot be within a quote or comment. 

The command causes the PS 300 to reboot just as if it had been powered up (starts the 
confidence tests at "A", etc.). 

7.5.5 Set Priority 

The command 

Set Priority of name to i; 

sets the execution priority of a function (name) to some integer (i) between 0 and 15. 
All user instancible functions and most functions instanced by the system at boot time 
have a default value of 8. Lowering a function's priority number raises its priority and 
causes it to run before any functions with a larger number. A typical use of this 
command is to give to a function a priority number greater than 8 so it runs only when 
no other functions are running (i.e. functions at default priority 8). Assigning priority 
numbers less than 8 could be potentially very "dangerous," since their execution could 
lock up the system. 

Since this command will affect the execution of other functions in a function network, 
careful consideration must be given to its use. E&S does not recommend the use of this· 
procedure by anyone who does not have a complete understanding of funct?ons and their 
interrelationships. 



7-12 DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS 

7.5.6 Notes On Using the Ca N Fl GU RE Mode 

E&S reserves the right to change the content of the CONFIG.DA T file and the 
implementation of the CONFIG.DAT file witho-ut prior notice. Use of any named 
entities or networks instanced in CONFIGURE mode that have names identical to any 
names f o_und in the CONFIG.DAT file will result in unpredictable system behavior. E&S 

\ will not use any names that are preceded with the three characters CM_. 



9-2 SYSTEM ERROR MESSAGES 

TABLE 9-1 PS 300 TR A PS and Their Meanings 

NUMBER DEFINITION 

0 Not enough available memory to come up or handle request. 

E&S firmware error. 

2 Memory corrupted or over-written (could be caused by UWF). 

5 Attempt to wait on queue when function is waiting on another device 
(CLOCK, I/O)(could be caused by UWF). 

6 System errors (see Table 3). 

8 Mass memory error if address on LEDs is between 200 and 300; 
unexpected interrupt on a vector with no routine, if address is between 
300 and 400. For example, if address on LEDs is 22C, error occurred 
on· memory card 200000-300000. If address is 23C, error occurred on 
memory card 300000-400000 and so forth. 

9 Utility routine was called which was not included in system link. 

10 Memory corrupted or over-written (could be caused by UWF). 

11 E&.S firmware error. 

l 2 Pascal in-line runtime error: usually caused by Case statement in 
Pascal with no Otherwise clause (could be caused by UWF). 





6-38 SYSTEM FUNCTIONS 

Version A2.V02 

F:READDISK 

Qpacket ----> <l> 

QBoolean ----> <2> 

F:READDISK 

<1> ----> Qpacket 

<2> ----> QBoolean 

<Readasciil for ASCII file) 
<Readbinaryl for binary) 

This function reads a file from the floppy disk and sends the data out output < l > in 
Qpackets. Input < l > accepts a Qpacket of l to 8 characters specifying the name of 
the file to be read. All disk drives are searched for the file until found; if the file is 
not found, an error message is produced. 

A True on input < 2> tells the function to delete the file after reading. Input < 2> is a 
constant input queue and is initialized to False. 

A True is output from < 2 > when the file is found and read successful! y. A False is 
output when the file is not found. 

Note: The file name sent on input < l > should not include the file extension. The file 
on the disk must have the extension ".DAT". 





CHANGE PAGES TO THE COMMAND SUMMARY, 

THE FUNCTION SUMMARY, AND GRAPHICS SUPPORT ROUTINES 

(Change pages exclusive to the Rendering Option are supplied with the 
PS 390 Rendering Release Notes.) 





PS 300 COMMAND SUMMARY 

PS 350 Command 

FORMAT 

name := LOAD VIEW port HORizontal ... hm1 n: hmax 
VERTical ... vmi n: vmax 
[INTENsity = i min: 1 max] [APPLied to name 1 ]; 

DESCRIPTION 

LOAD VIEWPORT 

The LOAD VIEWPORT command for the PS 350 loads a viewport and overrides 
the concatenation of the previous viewport. As with the standancJ, PS 300 
VIEWPORT command, it specifies the area of the screen that the displayed data 
will occupy, and the range of intensity of the lines. It affects all objects below 
the node created by the command in the display tree. 

PARAMETERS 

hmi n, hmax, vmi n, vmax - The x and y boundaries of the new viewport. Values 
must be within the -1 to 1 range. 

im1n,1max - Specifies the minimum and maximum intensities for the viewport. 
1 min is the intensity of lines at the back clipping plane; i max at 
the front clipping plane. Values must be within the 0 to 1. 

name 1 - The name of the structure to which the viewport is applied. 

DEFAULT 

The initial viewport is the full PS 300 screen with full intensity range (0 to I) 
using the standard PS 300 Viewport command. 

VIEWport HORizontal ""-1,1 VERTical = -1,1INTENsity=-0:1; 



LOAD VIEWPORT PS 300 COMMAND SUMMARY 

PS 350 Command 

<continued> 

NOTES 

A new VIEWport is not defined relative to the current viewport, but to the full 
PS 300 screen. 

If the viewport aspect ratio (vertical/horizontal) is different from the window 
aspect ratio (y/x) or field-of-view aspect ratio (always 1) being displayed in 
that viewport, the data displayed there wiil appear distorted. 

DISPLAY TREE NODE CREATED 

This command creates a load viewport operation node that has the same inputs 
as the standard viewport operation node. The matrix contained in this node is 
not concatenated with the previous viewport matrix. 

NOTES ON INPUTS 

I. For 2x2 matrix input, row I contains the hmi n, hmax values and row 2 the 
vmi n, vmax values. 

2. For 3x3 matrix input, column 3 is ignored (there is no 3x2 matrix data 
type), rows I and 2 are as for the 2x2 matrix above, and row 3 contains the 
1 min, i max values. 



PS 300 COMMAND SUMMARY RAW BLOCK 

ADVANCED PROGRAMMING - Memory Allocation 

Version A2.V01 

FORMAT 

name :"' RAWBLOCK i; 

DESCRIPTION 

Used to allocate memory that can be directly managed by a user-written 
function or by the physical I/O capabilities of the Parallel or Ethernet Interfaces. 

PARAMETERS 

NOTES 

1 - bytes available for use. 

1. The command carves a contiguous block of memory such that there are "i" 
bytes available for use. 

2. The block looks like an operation node to the ACP. The descendant alpha 
points to the next long word in the block. What the ACP expects in this 
word is the .datum pointer of the alpha block. (The datum pointer points to 
the first structure to be traversed by the ACP. This is the address in 
memory where the data associated with a named entity is located.) 

3. To use this block, the interface or user-written function fills in the 
appropriate structure following the .datum pointer. When this is complete, 
it changes the .datum pointer to the proper value and points to the beginning 
of the data. After the ACP examines this structure, it displays the 
newly-defined data. (Use the ACPPROOF procedure to change the .datum 
pointer with a user-written function.) 

4. More than one data structure at a time can exist in a RAWBLOCK. It is up 
to the user to manage all data and pointers in RAWBLOCK. 

5. A RAWBLOCK may be displayed or deleted like any other named data 
structure in the PS 300. When a RAWBLOCK is returned to the free storage 
pool, the PS 300 firmware recognizes that it is a RAWBLOCK and does not 
delete any of the data structures linked to RAWBLOCK. 

OISPLA Y TREE NOOE CREA TED 

Rawblock data node. 





PS 300 COMMAND SUMMARY SET BLINKING ON/OFF 

PS 350 Command 

FORMAT 

name := SET BLINKing switch 
[AP Plied to name 1 ]; 

DESCRIPTION 

This command turns blinking on and off. It affects all objects below the 
node created by the command in the display tree. 

PARAMETERS 

NOTE 

sw1 tch - Boolean value. TRUE indicates that blinking will occur in the 
displayed objects. FALSE turns blinking off. 

namel - The name of the structure that will be affected by the command. 

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

DISPLAY TREE NODE CREA TEO 

This command creates a set blinking on/off operation node in the display 
structure that determines whether blinking will occur in the objects positioned 
below it in the display structure. 

INPUTS FOR UPDATING NODE 

The blinking on/off operation node can be modified by sending a Boolean value 
to input < l >. 



PS 300 COMMAND SUMMARY SET BLINK RATE 

PS 350 Command 

FORMAT 

name:== SET BLINK RATE n 
[APPLied to name 1 ]; 

DESCRIPTION 

This command specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

NOTE 

n - An integer designating the duration of the blink in refresh cycles. The 
blinking data will be on for n refreshes and off for n refreshes. 

namel - The name of the structure to which the blinking rate is applied. 

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

DISPLAY TREE NOOE CREATED 

This command creates a set blinking rate operation node in the display tree that 
specifies the blinking rate for all objects below it. 

INPUTS FOR UPOA TING NOOE 

The node can be modified by sending an integer to input < l > which will change 
the blinking rate. 



PS 300 COMMAND SUMMARY SET LINE_TEXTURE 

PS 350 Command 

FORMAT 

name:= SET LINe texture EAROUnd corners] pattern 
- [AP Plied to name 1 J; 

DESCRIPTION 

Specifies the line texture pattern to be used in drawing the vector lists that 
appear below the node created by this command. There are up to 127 
hardware-generated line textures possible. The parameter pattern is an 
integer between l and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7 bit positions in pattern when represented in binary. 
An individual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation 

127 
124 
122 
106 

PARAMETERS 

1111111 
1111100 
1111010 
1101010 

Line Texture repeated twice 

Solid 
Long Dashed 
Long Short Dashed 
Long Short Short Dashed 

AROUnd_corners - Boolean value used to set a flag to indicate if the specified 
line texture should continue from one vector to the next. If 
AROUnd_corners is TRUE, the line texture will continue 
from one vector to the next through the endpoint. If 
AROUnd_corners is FALSE, the line texture will start and 
stop at vector endpoints. 

pattern - An integer between l and 127 that specifies the desired line 
texture. When pattern is less that I or greater than 127, solid lines 
are produced. 

name 1 - The name of the structure to which the line texture is applied. 



SET LINE TEXTURE PS 300 COMMAND SUMMARY 

PS 350 Command 

<continued> 

DEFAULTS 

The default line texture is a solid line. 

NOTES 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line-texturing is applied to a vector, the vector that is specified is 
displayed as a _textured, rather than solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the 
vector is displayed. If the line is smaller than the smallest element of the 
pattern, then the line is displayed as solid. 

The Hf th Pattern and curve commands create .multiple vectors in memory. To 
the line-texturing hardware, each vector In a pattern or curve is seen as an 
individual vector. Line-texturing a patterned line or curve is the same as 
line-texturing a number of small segments. Curves and patterns affect 
line-texturing only in that they tena to create short vectors that may be too 
short to be completely textured.· 

NODE CREATED 

This command creates a line texture operation node with line texture to be 
applied to all vectors below in the display structure hierachy. Sending a 
Boolean value to input < 1 > of the node turns the continuous texture feature on 
or off. Sending an integer value to the node changes the pattern. 



PS 300 COMMAND SUMMARY VECTOR LIST 

MODELING - Primitives 

Version A2.V01 

FORMAT 

name :- VECtor_list [options] [N-n] vectors; 

DESCRIPTION 

Defines an object by specifying the points comprising the geometry of the object 
and their connectivity (topology). 

PARAMETERS 

name - Any legal PS 300 name. 

options - Can be none, any, or all of the following five groups (but only one from 
each group, and in the order specified): 

1. BLOCK norma 1 i zed - All vectors will be normalized to a single 
common exponent. 

2. COLOR - This option is used when specifying color-blended vectors 
(refer to SET COLOR BLENDing command) to indicate that vector 
colors will be specified in lieu of vector intensities. When the 
COLOR option is used, the optional r .. ; clause used to specify the 
intensity of a vector (refer to the vectors parameter below) is 
replaced by the optional H=hue clause, where H is a number from 0 
to 720 specifying the individual vector hues. The default is 0 (pure 
blue). 

The 0-720 scale for the H=hue clause is simply the SET COLOR 
scale of 0-360 repeated over the interval 360-720. On this scale, 0 
represents pure blue, 120 pure red, 240 pure green, 360 pure blue 
again, 480 pure red again, 600 pure green again, and 720 pure blue. 
This "double color wheel" allows for color blending either clockwise 
or counterclockwise around the color wheel. 

3. Connectivity: 

A. CONNECTED_ 1 i nes - The first vector is an undisplayed position 
and the rest are endpoints of lines from the previous vector. 



VECTOR_LIST PS 300 COMMAND SUMMARY 

MODELING - Primitives 

Version A2. VOl <continued) 

PARAMETERS (continued) 

B. SEParate 1 i nes - The vectors are paired as line endpoints. 

C. DOTS - Each vector specifies a dot. 

D. ITEMi zed - Each vector is individually specified as a move to 
position (P) or a line endpoint (L). 

E. TABul ated - This clause is used to specify an entry into a table 
that is used for specifying colors for raster lines and for 
specifying colors, radii, diffuse, and specular attributes for 
raster spheres. This option is also used to alter the attribute 
table itself. 

When the T ABulated option is used, the T =t clause replaces 
the l=i clause (for intensities) and the H=hue clause (for vector 
hues). The def au!t is 127 (table entry 127). 

There are 0 to 127 entries into the Attribute table. The 
Attribute table may be modified via input < 14> of the 
SHADINGENVIRONMENT function. 

4. Y and Z coordinate specifications (for constant or linearly changing 
Y and/or Z values): 

Y = y[DY=delta yJ[Z = z[DZ=delta zJJ - -
where y .and z are default constants or beginning values, and 
de l ta_y and de 1 ta_z are increment values for subsequent vectors. 

5. INTERNAL uni ts - Vector values are in the internal PS 300 units 
[LENGTH]. -Specifying this option speeds the processing of the vector 
list, but this also requires P/l information to be specified for each 
vector, and it doesn't allow default y values or specified intensities. 

n - Estimated number of vectors. 



PS 300 COMMAND SUMMARY VECTOR_LIST 

MODELING - Primitives 

Version A2.V01 <continued> 

PARAMETERS (continued) 

vectors -The syntax for individual vectors will vary depending on the options 
specified in the options area. For all options except ITEMi zed, COLOR, 
and TABul ated the syntax is: 

xcomp[,ycomp[,zcomp]][l=i] 

where xcomp, ycomp and zcomp are real or integer coordinates and i is 
a real number (0.0 .$.. i .$.. 1.0) specifying the intrinsic intensity for that 
point (1.0 - full intensity). 

For ITEMi zed vector lists the syntax is: 

P xcomp[,ycomp[,zcomp]J[I=i] 

or 

L xcomp[,ycomp[,zcomp]J[I=i] 

where P means a move-to-position and L means a line endpoint. 

If default y and z values are specified in the options area, they are 
not specified in the individual vectors. 

For color-blended (COLOR) vector lists, the syntax is: 

xcomp[,ycomp[,zcomp]][H=hue] 

where xcomp, ycomp and zcomp are real or integer coordinates and hue 
is a real number between 0 and 720 specifying the hue of a vector. 

For TABul ated vector lists (TAB), the syntax is: 

xcomp[,ycomp[,zcomp]J[T=tJ 

where tis an integer between 0 and 127 specifying a table entry. 



VECTOR LIST PS 300 COMMAND SUMMARY 

MODELING - Primitives 

Version A2.V01 <continued) 

DEFAULTS 

If not specified, the options default to: 

1. Vector normalized 
2. Not color blended 
3. Connected 
4. No default y or z values are assumed (see note 5) 
5. Expecting internai units 

Non color-blended vectors def a ult to: 

xcomp,ycomp[,zcompJ(I=i] 

If i is not specified, it defaults to l. 

Color-blended vectors default to: 

xcomp,ycomp[,zcompJ[H=hueJ 

If hue is not specified, it defaults to 0 (pure blue). 

Tabulated vectors default to: 

xcomp,ycomp[,zcompJ[T=tJ 

If the table entry is not specified, it defaults to 127 (table entry 127). 

NOTES 

l. If n is less than the actual number of vectors, insufficient allocation of 
memory will result; if greater, more memory will be allocated than is used. 
(The former is generaily the more severe problem.) 

2. All vectors in a list must have the same number of components. 

3. If y is specified in the options area, z must be specified in the options area. 



PS 300 COMMAND SUMMARY VECTOR_LIST 

MODELING - Primitives 

Version A2.V01 <continued) 

NOTES (continued) 

4. If no default is specified in the options area and no z components are 
specified in the vectors area, the vector list is a 2D vector list. If a z 
default is specified in the same case, the vector list is a 3D vector list. 

5. The first vector must be a position (P) vector and will be forced to be a 
position vector if not. 

6. Options must be specified in the order given. 

7. If CONNECTED_11nes, SEParate_lines, or DOTs are specified in the options 
area but the vectors are entered using P/Ls, then the option specified takes 
precedence. 

8. Block normalized vector lists generally take longer to process into the 
PS 300, but are processed faster for display once they are in the system. 

DISPLAY TREE NODE CREA TED 

Vector list data node. 



VECTOR_LIST 

Version A2.V01 

INPUTS FOR UPDATING NODE 

Vector 
Intege 
Intege 

r-

r-

<last> Changes last vector 
<clear> Clears list 
<delete> Deletes from end 
< append > Appends to end Vector 

Boolean 
Vector 

< 1 > True=Line; False=Position 
Replaces i-th vector 

VECTOR LIST 
IAS0632 

NOTES ON INPUTS 

1. Vector list nodes are in one of two farms: 

PS 300 COMMAND SUMMARY 

MODELING - Primitives 

<continued) 

A. If DOTs was specified in the options area of the command, a DOT mode 
vector list node is created. The Boolean input to d> is ignored in this 
case as well as the P/L portion of input vectors, and all vectors input are 
considered new positions for dots. 

B. All other vector list nodes created can be considered to be 20 or 30 
ITEMi zed with intensity specifications after each vector, and if a 30 
vector is input to a 20 vector list node, the last component modifies the 
intensity. 

2. If a 20 vector is sent to a 30 vector list, the z value defaults to 0. 

3. When you replace the i-th vector, the new vector is considered a line (L) 
vector unless it was first changed to a position vector with F:POSITION_LINE. 



PS 300 COMMAND SUMMARY 

MODELING - Primitives 

Version A2..V01 

EXAMPLES 

A:= VECtor list BLOCK SEParate INTERNAL N=4 
P 1,1 L--1,1L-1,-1L1,-1; 

B :== VECtor list n=S 
1,1 -1,i I•.S 
-1,-1 1,-1 I=.75 
1, 1; 

C := VECtor _list ITEM N=S 
p 1, l 
L -1, l 
L -1,-1 
p 1,-1 
L 1, l; 

0 :• VECtor list T ABulated N=S {for drawing raster lines} 
p 0,1,0-
L 0,0,0 t•S 
L 1,0,0 t•2 
p 1,1,0 t=3 . 
L 0,1,0 t=4; 

VECTOR_LIST 

<continued) 





PS 300 COMMAND SUMMARY 
SPECIAL 

Version A2.V01 

FORMAT 

name :• WRITEBACK [APPLied to name l ]; 

DESCRIPTION 

WRITE BACK 

T.he WRITEBACK command creates a WRITEBACK operation node and delineates 
the data structure below the node for writeback operations. When the 
WRITEBACK operation node is activated, writeback is performed for name 1. 

PARAMETERS 

name l - The name of the structure or node ta which writeback is applied. 

NOTES 

1. This node delimits the structure from which writeback data will be retrieved. 
Only the data nodes that are below the WRITEBACK operation node in the 
data structure will be transformed, clipped, viewport scaled·, and sent back to 
the host. 

2. Only a structure that is being displayed can be enabled for writeback. This 
means that the WRITEBACK operation node must be traversed by the display 
processor and so must be included in the displayed portion of the structure. If 
the writeback of only a portion of the picture is desired, WRITEBACK nodes 
must be placed appropriately in the display structure. 

3. Any number of WRITEBACK nodes can be placed within a structure. Only one 
writeback operation can occur at a time. If more than one node is triggered, 
the writeback operations are performed in the order in which the 
corresponding nodes were triggered. If the user creates any WRITEBACK 
nodes (other than the WRITEBACK node created initially at boot-up), these 
nodes must be displayed be fore being triggered. If the nodes are triggered 
before being displayed, an error message will result. 

4. The terminal emulator and message_display data will not be returned to the 
host. 

DISPLAY TREE NOOE CREATED 

The command creates a WRITEBACK operation node. 





PS 300 FUNCTION SUMMARY - 3 

Table 1. Key to Abbreviations for Valid Data Types 

KEY TO VALID DATA TYPES 

Any 
B 
c 
CH 
I 

Label 
M 
PL 
R 
s 

Special 
v 
20 
30 
40 

2x2 
3x3 
4x3 
4x4 

Conjunctive/Disjunctive Sets 

Any message 
Boolean value 
Constant value 
Character 
Integer 
Data input to LABELS node 
2x2, 3x3, 4x3, 4x4 matrix 
Pick list 
Real number 
Any string 
Special data type 
Any vector 
20 vector 
30 vector 
40 vector 
2x2 matrix 
3x3 matrix 
4x3 matrix 
4x4 matrix 

Some PS 300 functions have conjunctive or disjunctive inputs and outputs. A 
function with conjunctive inputs must have a new message on every input 
before it will activate. A function 'with conjunctive outputs will send a message 
on every output when the function is activated. 

Conversely, a disjunctive-input function does not require a new message on 
every input to activate. A disjunctive-output function may not send a message 
on each output (or any output) every time it receives a complete set of input 
messages. 

The F:AOO function, for example, has conjunctive inputs. A value must be sent 
to each of the two inputs before the function will fire. The inputs are then 
added together, which produces an output that is the sum of the inputs. The 
output is conjunctive. Unlike F:ADD, F:AOOC is a disjunctive-input function; 
it does not require a new message on every input. 



4 - PS 300 FUNCTION SUMMARY 

F:BROUTE, on the other hand, is a conjunctive-input, disjunctive-output 
function. Both inputs require messages to activate the function. However, a 
message will be sent out only one of the outputs, depending on the value 
received on input l. 

F:ACCUMULATE is an example of diffe·rent sort of disjunctive output. Every 
input does not produce an output. The function activates each time a new 
message is received on input 1, but the output fires at specified intervals rather 
than each time the function is activated. 

The following notation is used in the Function Summary to indicate conjunctive 
and disjunctive inputs and outputs. 

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS 

CC eonjunctive inputs, conjunctive outputs 
CD conjunctive inputs, d1sjunctive outputs 
DC disjunctive inputs, conjunctive outputs 
DO disjunctive inputs, disjunctive outputs 



Intrinsic Function 
Data Conversion 

Version Al.V02 

Special data ----------> <l> 
type from F:XFORMOATA 

PURPOSE 

F: LIST 

F: LIST· 

<1> ------> s 
<2> ------> B 

c c 

Converts the output of the F:XFORMDATA function to an ASCII string. This 
function is always used with F:XFORMDATA. 

DESCRIPTION 

INPUT 
d > - data output by F:XFORMDATA 

OUTPUT 

DEFAULTS 

< l > - resulting ASCII string 
<2> - Boolean (TRUE) 

None. 

NOTES 

1. Input < 1 > is always connected to output < l > of F:XFORMDATA. 

2. Output < 2> is TRUE when processing is complete. There is no output 
otherwise. 

3. Output <2 > should be connected to an instance of F:SYNC(2) to synchronize 
F:LIST completion with the initiation of a subsequent transformed-data 
request. 





Intrinsic Functton 
Data Select1on and Man1pulat1on F:CONCATXDATA(N) 

PS 340 Version A2.V01 

F:CONCATXDATA<N> 

PURPOSE 

XFORMDATAl----> <l> 

XFORMDATA2----> <2> 

XFORMDATA-----> <N> 

<1> -----> to SOLID_RENDERING 

Accepts up to 127 transformed vector lists (output from XFORMDAT A functions) 
and concatenates them into a single transformed vector list. 

DESCRIPTION 

INPUT 
< l > - output of F:TRANSFORMDATA (transformed vector list) 

<N> - output of F:TRANSFORMDATA (transformed vector list) 

OUTPUT 
< l > - concatenated vector list 



Intrinsic Function 
Data Selection and Manipulation F:CONCATXDATA<N> 

Version A2.V01 <continued) 

NOTES 

1. This function is used to avoid the maximum vector restriction imposed on the 
output of F:XFORMDATA. The XFORMDATA function will return a 
maximum of 2048 vectors. To obtain a rendering on the PS 340 raster display 
of greater than 2048 vectors, the output of multiple instances of 
XFORMOA TA must be concatenated into a single transformed vector list 
which can be ~ent to the rendering node. 

2. Inputs < l > through <N> accept a transformed vector list output from 
F:XFORMOA TA. 



Intrinsic Function 
Miscellaneous 

PS 350 User 1 s Manual 

PL -----> 

I ------> 

PURPOSE 

<1> 

<2> 

Modified Function 

F:PICKINFO 

< 1 > ----> 

c <2> ----> 

<3> ----> 

<4> ----> 

<5> ----> 

<6> ----> 

<7) ----> 

<8> ----> 

<9>1----> 
D D 

I 

F: PICKINFO 

I 

s 
20, 30 

I 

B 

R 

I 

Special 

20 

Reformats picklist information for use by other functions. The output picklist 
is separated into its component parts. 

DESCRIPTION 

INPUT 
< l > - picklist 
<2> - depth within structure reported (constant) 

OUTPUT 
d > - index 
<2> - pick identifier(s) 
d > - coordinates 
<4> - dimension 
<5 > - coordinates reported 
<6> - curve parameter, t 
<7> - data type code 
<8> - name of picked element 
<9> - screen coordinates of the picked point 



F:PICKINFO 

PS 350 User 1 s Manual 

PS 350 Modifications 

Modified Function 
Intrinsic Function 

Miscellaneous 

<continued) 

Output <9> has been added to F:PICKINFO. This output reports the screen 
coordinates of a pick. 



Intrinsic Function 
Data Conversion 

PS 350 User's Manual 

Any---------> <1> 

B -----------> <2> C 

PURPOSE 

Modified Function F:PRINT 

F:PRINT 

<1> ------> s 

D C 

Converts any data type to string format; that is, it performs an inverse of the 
operation that occurs when an ASCII string is input. to the PS 300 and is 
converted to one of the data types. 

DESCRIPTION 

INPUT 
< l > - any message 
<2> - Boolean governing numeric format (constant) 

OUTPUT 
< l > - string 

PS 350 Modification 

Screen coordinates, if passed to the function-·from F:PICKINFO, are added to 
the string output on < 1 >. Output < l > has been modified to report a pick in 
which coordinate picking information is given: 

For a vector declared in a VECTOR_LIST, the output string format is: 

< l ><dimension>< pick _x> <pick_y >(,;:pick _Z> ]<t > 
<pick !O's> <screen_x> <screen_y> 

For a vector within a polynomial curve the output string format is: 

<2><dimension><pick x><pick y>[<pick Z>]<t> 
<pick ID's> <screen_x; <scree<y> -





Function 
F:REFRESH_RATE 

PS 350 User's Manual 

F:REFRESH RATE 

I-------> <1> 

PURPOSE 

Locks refresh rate. This function accepts an integer on input < 1 >. The integer 
must be in the range of 2 through 5. This is the number of ticks per refresh 
frame (ticks occur at twice the line frequency). The actual refresh rate 
depends on the line frequency. 

Ticks 60Hz 50Hz 

2 60 50 
3. 40 33 
4 30 25 
5 24 20 





Intrinsic Function 
Data Selection and Manipulation 

Version Al .V02 

PURPOSE 

Any-----> <1> 

s -------> <2> 

I -------> <3> 

F:SEND 

F:SEND 

c 

This is the function network equivalent of the SEND command. It allows you to 
send any valid data type to any named entity at any valid index. 

DESCRIPTION 

INPUT 
< 1 > - message sent 
< 2> - name of the destination node 
<3> - index into the destination node 

NOTES 

<"'' l. This function has no output. 

2. Input < l > accepts special data types that most functions do not accept, 
such as the data type output by F: LABEL. 

3. The SETUP CNESS command can be used to specify constant inputs as 
default values. 





Intrinsic Funct1on 
DataConvers1on 

Version A2.V01 

F:XFORMDATA 

PURPOSE 

Any--------> <1> 

s ----------> <2> c 
s ----------> <3> c 
I ----------> <4> C 

I ----------> <5> C 
D C 

F:XFORMDATA 

<1> ------> Special 

Sends transformed data (either a vector list or a 4x4 matrix) to a specified 
destination (e.g., the host, a printer, or the screen). 

DESCRIPTION 

INPUT 
< 1 > - any message 
<2> - name of XFORM node (constant) 
<3> - name of destination object (constant) 
<4> - destination vector index (constant) 
<5> - number of vectors (constant) 

OUTPUT 
d > - special data type used exclusively as input to F: LIST 

DEFAULTS 

Default for input <4> is 1, default for input <5> is 2048. 



F:XFORMDATA 

Version A2.V01 

NOTES 

Intrinsic Function 
Data Conversion 

(continued) 

l. Input <l> is a trigger for F:XFORMDATA. This input would typically be 
connected to a function button, either directly or via F:SYNCC2), allowing 
transformed data to be requested easily. 

2. Input <2> is a string or matrix containing the name of the XFORM command in 
the display tree (either XFORM MATRIX or XFORM VECtor). By referring to an 
XFORM command, this input indirectly specifies the object whose transformed 
data is to be sent. If the string names something other than an XFORM 
command, an error message is displayed. If the string names a node which 
does not exist, an error message is sent and the message is removed from 
input <2>. 

3. Input <3> is a string containing the name to be associated with the 
transformed vectors. The name need not be previously defined. If this input 
does not contain a valid string, the transformed matrix or vectors will be 
created without a name (an acceptable situation unless the transformed 
vectors need to be referenced or displayed.) The transformed vector list can 
be displayed or modified, provided a name is given on this input. The 
transformation matrix cannot be used, however, so naming and sending it to 
input d > is not useful. 

4. Input <4> is an integer index specifying the place in a vector list at which the 
PS 300 is to start returning transformed data. This input: is oniy used when 
the command name at input <2> represents an XFORM VECtor command (not 
an XFORM MATRIX command). The default value is l. 

5. Input <5 > is an integer number of consecutive vectors for which transformed 
data is to be returned, starting at the vector specified at input <4>. This 
input is only used when the command name at input <2> represents an XFORM 
VECtor command (not an XFORM MATRIX command). No more than 2048 
consecutive vectors may be returned. The default value is 2048. 

6. Output < 1 > contains the transformed data in a format which can only be 
accepted by input < l > of F: LIST. (F: LIST then prints out the data in ASCII 
format -- either a PS 300 VECTOR LIST command or a PS 300 MATRIX 4X4 
command, depending on whether the command named at input <2> was an 
XFORM VECtor or an XFORM MATRIX.) 

7. F:XFORMDATA is used in connection with rendering lines and spheres on the 
PS 340 raster display. This functionality is described in Version A2.V01 of 
the PS 340 Graphics Firmware Release Notes. 



In1t1al Function Instance 
Miscellaneous 

Version Al .V02 

B ------> <1> 

PURPOSE 

CSM 
<CSM2) 

cc 

CSM 

<1> ------>Connected to System 
at initialization 

Sets the Color Shadow Mask (CSM) calligraphic display on or off for the 
Terminal Emulator, for MESSAGE_DISPLA Y and for the user's data structures. 

DESCRIPTION 

INPUT 
<I> - TRUE = CSM on, FALSE = CSM off 

OUTPUT 
< 1 > - connected to System 

DEFAULT 

The default is FALSE, setting the CSM off. 

NOTES 

1. A TRUE sent to input < l > of CSM slows the speed of the line generator for 
the CSM calligraphic display. This results in lines that have brighter colors 
and better end point match. 





Initial Function Instance 
Output 

Version Al .V02 

ONBUTTONLIGHTS 
<ONBUTTONLIGHTS2) 

ONBUTTONLIGHTS 

I-----> <1> <l> ----->Connected to 
Function Buttons 
at initialization 

c c 

PURPOSE 

Turns on lighted buttons on the Function Buttons unit. 

DESCRIPTION 

INPUT 
< 1 > - integer (1 through 32) indicating the button number 

OUTPUT 
< l > - connected to Function Buttons 

NOTES 

1. Each button may be turned on independently or all buttons may be turned 
on by a single message. A zero (0) or any out-of-range frit'eger at input < 1 > 
turns on all button lights. An integer from l to 32 at input < 1 > turns on the 
corresponding button light. 

2. Function buttons are arranged in one row,. of four, four rows of six, and 
another row of four. They are numbered from left to right starting from 
the top row. The top row is numbered:"! through 4; the. second row 5 
through 10, and so on until the last row, 29 through 32. 





Initial Function Instance 
Input 

PS 350 User's Manual 

Any ----------> 

B ------------> 

I ------------> 

PURPOSE 

<1> 

<2> c 
<3> c 

Modified Function PICK 

PICK 
<PICK2) 

<1 > ------> PL 

<2> ------> B 

<3> ------> B 

D D 

Interfaces with the hardware picking circuitry. Any message on input < l > arms 
the PICK function. Once PICK is enabled, when a pick occurs, the pick list 
associated with the picked data is sent out on output <l> and a Boolean FALSE 
is sent on output <2>. Typically, this Boolean is used to disable picking of a set 
of objects by connecting it to a SET PICKING ON/OFF node in a display tree. 

DESCRIPTION 

INPUT 
< 1 > - trigger 
<2> - TRUE= coordinate, FALSE = index (constant) 
d > - timeout duration (constant) 

OUTPUT 
< 1 > - pick list 
< 2> - FALSE ... pick enabled 
d > - FALSE = ACP attempted an unsuccessful pick or timeout occurred 

PS 350 Modification 

As noted above, output d> of PICK now reports a FALSE when the ACP 
attempts a pick and is unsuccessful as well as when the timeout specified on 
input d > is exceeded. 





Initial Function Instance 
Input 

PS 350/PS 390 
A2.V02 - April 1987 

Any ----------> 

B ------------> 

I ------------) 
R ------------> 

I ------------> 

R ------------> 

PURPOSE 

< l> 

<2 > 

<3> 

<4> 

<5> 

<6> 

PICK 

PICK 
CPICK2) 

< 1 > ------> PL 

c <2> ------) B 

c <3> ------> B 

D D 

Interfaces with the hardware picking circuitry. Any message on input < 1 > arms 
the PICK function. Once PICK is enabled, when a pick occurs, the pick list 
associated with the picked data is sent out on output < l > and a Boolean FALSE 
is sent out on output <2>. Typically, this Boolean is used to disable picking of a 
set of objects by connecting it to a SET PICKING ON/OFF node in a display tree. 

DESCRIPTION 

INPUT 
< l > - trigger 
<2> - TRUE= coordinate, FALSE= index (constant) 
< 3 > - timeout duration (constant) 
< 4 > - defines pick window half size for the ACP pass of the pick 
<5 > - retry count 
<6> - half-size increment to be added to window half-size on each 

retry 

OUTPUT 
< l > - pick list 
< 2 > - FALSE = pick enabled 
d > - FALSE = timeout elapsed 



PICK 
Initial Function Instance 

Input 

PS 350/PS 390 
A2.V02 - April 1987(continued) 

NOTES 

l. Input < 2> selects the kind of pick list that will be output on output < 1 >. A 
FALSE on input < 2 > indicates that the output pick list will be the pick 
identifier and an index into the vector list or the ch::iracter string. (The 
index into the vector list identifies its position in the list; vector 3 is the 
third vector in a vector list. The index into a character string identifies 
the picked character by its position in the string; character 5 is the fifth 
character in a string.) 

2. A TRUE on input < 2> indicates that the output pick list will include, in 
addition to the pick identifier and the index, the picked coordinates and the 
dimension of the picked vector. If the vector is part of a polynomial curve, 
its parameter value, t, is supplied instead of the index. 

3. Coordir:iate picking on a character string returns an index into the string, 
not its picked coordinates. 

4. Coordinate picking cannot be performed on a vector over 500 [LENGTH] 
units long. 

5. The pick list on output < l > is typically connected to an instance of 
F:PICKINFO to convert the pick list to a locally useful format. If the pick 
list is to be printed out, output < l > may be connected to F:PRINT to 
convert the pick list code to printable characters. 

6. When several vectors are picked, the first vector drawn by the Line 
Generator is reported as picked. For example, if three vectors in a single 
vector list were picked simultaneously (at a point of intersection), the first 
vector listed in the object definition would be reported as picked • 

. .•. ,, 
];.· The integer on input d> specifies a pick timeout period in refresh frames. 

This pick timeout period allows the user to determine whether a pick has 
occurred within the specified amount of time. Timing starts when the PICK 
function is armed with a message on active input <I>. Allowable integers 
for input d > are from 4 through 60. 



Initial Function Instance 
Input 

PS 350/PS 390 
A2.V02 - April 1987 

NOTES (continued) 

PICK 

<continued) 

8. If input d> is not used, all picks will be reported once the function is 
armed because no timeout duration has been specified. 

9. Typically, the FALSE at output < 3 > would be used to turn off picking in a 
display tree Cat a SET PICKING ON/OFF node) or to send a "f'.JO PICK" 
message (probably via F:SYNC(2)) back to the host. 

10. The user has three means of cancelling an existing pick timeout duration: 

a. Send an INITi a 1 i ze command. This will remove the PICK function and 
replace it with a new instance of the PICK function. 

b. Send a non-integer (and ignore the "Bad message" error). 

c. Send an integer less than 4 or greater than 60 to input < 3 > (and ignore 
the "Bad message" error). 

11. Input <4> is a real number between 0 and l that defines the pick window 
half-size for the ACP pass of the pick. This is dit ferent from the size set 
by the SET PICKing LOCation operation node. The Line Generator or the 
Frame Buffer uses the operation node to determine if a pick has occurred; 
whereas the ACP uses input <4> to do the actual pick pass on the data. 

12. Input < 5 > is an integer specifying pick pass retries. Since it is possible that 
the ACP will not find the picked data during a pick pass, input <5> 
indicates the number of times to add the window increment on input <6> 
and try another pick pass. 

13. Input <6> is a real number between 0 and l which specifies the amount to 
increase the pick window half size on each retry of the pick pass. 

EXAMPLE 

If a l 0 is sent to constant input < 3 >, then the PICK function is armed with a 
message on input < l >. The function waits 10 refresh frames from the time the 
input < l > message is received before checking to see if a pick has occurred. If 
a pick has occurred within that period, the function outputs the appropriate 
pick list. If a pick has not occurred, the function outputs a FALSE on output 
< 3 >. In either case, the PICK function is disarmed and must be rearmed via 
input < l > before further picking can be reported. 





PS 300 Funct1on 
Initial Funct1on Instance WRITE BACK 

Version Al.VOl 

WRITEBACK 

I---------> <1> <1> ----Qpacket 

PURPOSE 

WRITEBACK is initialized by the system and is used to send encoded writeback 
data to user function networks. 

This function is not activated by the normal input queue triggering mechanism. It 
is activated by sending a TRUE to any WRITEBACK operation node. 

DESCRIPTION 

INPUT 
WRITEBACK has one input queue. Input < 1 > accepts integers specifying the 
size of Qpackets to be output by the function. The default size is 512. 
Minimum and maximum sizes are 16 and 1024. If the size specified on the 
input is not within this range, the default size will be used. 

OUTPUT 

NOTES 

WRITEBACK has one output queue. Output <l > passes the encoded writeback 
data out as Qpackets. 

WRITEBACK will return all data that are under the WRITEBACK operation node. 
Host-resident code will be responsible for recognizing the start-of-writeback and 
end-of-writeback commands. Attribute information, such as color, must be 
interpreted by host code to ensure that the hardcopy plots are correct. 

On the PS 350, viewport translations have not been applied to the data. To 
correctly compute the position of endpoints, the host program interpreting the 
writeback code must add a viewport center to each endpoint. The initial viewport 
center is established with a VIEWPORT CENTER command. The VIEWPORT 
CENTER command is sent following the start-of-writeback command. Any 
changes to the viewport center will be indicated through this sequence of 
commands: CLEAR ODA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE 
POINT. The position endpoint becomes the new viewport center. 





PS 300 DEC VAX/VMS PASCAL GSR 

UTILITY PROCEDURE 

Version A2.V01 

UTILITY PROCEDURE AND PARAMETERS 

PROCEDURE PAttach < 1DESCR Mad·i f1 ers : P Varyi ngType; 
PROCEDURE Error Handler-<Error : INTEGER>>; 

DEFINITION 

This procedure attaches the PS 300 to the communications channel. 

PATTACH 

If this procedure is not called prior to use of the Application Procedures, the error 
code value corresponding to the name PSE NotAtt is generated, indicating that 
the PS 300 communications link has not been- established. 

The parameter (Modify) must contain the phrases: 

LOGDEVNAM=name/PHYDEVTYP-type 

where "name" refers to the logical name of the device that the GS Rs will 
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the 
physical device type of the hardware interface that the GSRs will communicate 
through. This last argument can only be one of the following four interfaces: 

ASYNC (standard RS-232· asynchronous communication interface) 
PARALLEL (Parallel interface option) 
ETHERNET (DECnet Ethernet option) 

The parameter string must contain EXACTLY one "/" and blanks are NOT allowed 
to surround the ",.." in the phrases. The PAttach parameter string is not sensitive 
to upper or lower case. 

Example: PAttach ('logdevnam=tta2:/phydevtyp=async', Error_Handler); 

where "tta2" is the logical device name of the PS 300, and the hardware interface 
is standard asynchronous RS-232. 

Example: PAttach ('logdevnam=ps:/phydevtyp=dmr-11 ', Error_Handler); 

where the physical device type is a DMR-11 interface, and where the user has 
informed the VAX that the logical symbol "ps" refers to the name of the logical 
device that the GSRs will communicate with using the following ASSIGN 
command: 

$ ASSIGN XMOO: PS 
$RUN <application-pgm> 





PS 300 DEC VAX/VMS FORTRAN-77 GSR 

UTILITY SUBROUTINE 

Version A2.V01 

UTILITY SUBROUTINE AND PARAMETERS 

CALL PAttch <Modify, ErrHnd) 

where: 

Modify is a CHARACTER STRING 
ErrHnd is the user-defined error-handler subroutine. 

DESCRIPTION 

PATTCH 

This subroutine attaches the PS 300 to the communications channel. If this 
subroutine is not called prior to use of the Application Subroutines, the user's 
error handler is invoked with the "The PS 300 communications link has not been 
established" error code corresponding to the mnemonic: PSENOA:. 

The parameter (Modify) must contain the phrases: 

LOGDEVNAM=name/PHYOEVTYP=type 

where "name" refers to the logical name of the device that the GSRs will 
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the 
physical device type of the hardware interface that the GSRs will communicate 
through. This last argument can only be one of the following four interfaces: 

ASYNC (standard RS-232 asynchronous communication interface) 
PARALLEL (high speed parallel interface 
ETHERNET (DECnet Ethernet option) 

The parameter string must contain EXACTLY 1 "/"and blanks are NOT allowed to 
surround the ",.." in the phrases. The Pattch parameter string is not sensitive to 
upper or lower case. 

Example: CALL PAttch ('logdevnam=tta2:/phydevtyp=async', Errhnd) 

where "tta2" is the logical device name of the PS 300, and the hardware interface 
is standard asynchronous RS-232. 

(Continued on next page) 



PS 300 DEC VAX/VMS FORTRAN-77 GSR 

UTILITY SUBROUTINE 

Version A2.V01 

PATTCH 

<continued) 

Example: CALL PAttch ('logdevnam=ps:/phydevtyp=dmr-11 ', ErrHnd) 

where the physical device type is a DMR-11 interface and where the user has 
informed the VAX that the logical symbol "ps" refers to the name of the logical 
device that the GSRs will communicate with using the following ASSIGN 
command: 

$ ASSIGN XMDO: PS: 
$ RUN <application-pgm> 



PS 300 DEC VAX/VMS PASCAL GSR 

UTILITY PROCEDURE 

Version Al .V02 - March 1985 

UTILITY PROCEDURE. AND PARAMETERS 

' [GLOBAL] PROCEDURE PDevinfo < VAR Channel num : INTEGER; 
VAR Device_type : INTEGER; 
VAR Dev status : INTEGER; 

PDEVINFO 

PROCEDURE Error_H~dler <Err : INTEGER)); 

DEFINITION 

This procedure is used to return the Q I/O channel number so that users do not 
need to detach from the GSRs while doing Physical I/O. 

Channe 1 is the VAX Q I/O channel number. 

Dev l ce is the device code, where: 

l is the code for the DRM-11 interface 
2 is the code for the standard asynchronous interface 
3 is the code for the Parallel interface 

Status is the status where: 

0 is not attached 
l is attached 



• 



PS 300 DEC VAX/VMS FORTRAN-77 GSR 

UTILITY SUBROUTINE 

Version Al.V02 - March 1985 

UTILITY SUBROUTINE AND PARAMETERS 

CALL PDINFO <Channel, Device, Status, ErrHnd) 

where: 

Channel is an INTEGER*4 that is the VAX Q I/O channel number 

Device is an INTEGER*4 that is the device code, where: 

1 is the code for the DRM-11 interface 
2 is the code far the asynchronous interface 
3 is the code for the Parallel interface 

Status is an INTEGER*4 that is the status where: 

0 is not attached 
l is attached 

ErrHnd is the user-defined error-handler subroutine. 

DEFINITION 

PO INFO 

This subroutine is used to return the Q I/O channel number so that users do not 
need to detach from the GSRs while doing Physical I/O. 



~; , .. . .. __ . 

7.'.: 

.. :· 



PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG . 
Name := VECTOR_LIST <no corresponding command> 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

~L PVcBeg <Name. VecCou, BNorm, CBlend, Dimen, Class. ErrHnd> 

where: 

f(ame is a CHARACTER STRING defining the name of the vector list 

VecCou is an INTEGER*4 specifying the total number of vectors in the 
vector list 

BNarm is a LOGICAL* 1 defined: .TRUE. for Block Normalized, .FALSE. for 
Vector Normalized 

CBlend is a LOGICAL*l defined: .TRUE. for Color Blending, .FALSE. for 
normal depth cueing 

Dimen is an INTEGER*4 2 or 3 (2 or 3 dimensions respectively) 

*Class is an INTEGER *4 defining the class of the vector list 

ErrHnd is the user-defined error-handler subroutine. 

This subroutine must be called to begin a vector list. To send a vector list, the 
user must call: 

PVcBeg 

PVclis (This may be called multiple times for vector-normalized vector 
lists.) 

PVcEnd 

Together, the above 3 subroutines implement the PS 300 command: 

Name :== VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 

NOTE 

The dimension must be specified in the PVCBEG 
application subroutine. In the PS 300 command, 
dimension is implied by syntax. 

(Continued on next page) 



PS 3qo DEC VAX/VMS FORTRAN-77 GSR PVCBEG 

Name := VECTOR_LIST <no corresponding command> 

Version A2.V01 <continued> 

* These mnemonics may be referenced directly by the user if PROCONST.FOR is 
INCLUDED in the subroutine. See the section on Programming Suggestions for 

• a description .of PROCONST .FOR. A description of the vector classes and their 
INTEGER*4 value is given below. 

\ Mnemonic Meaning INTEGER*4 Value 

PVCONN Connected 0 
PVDOTS Dots l 
PVITEM Itemized 2 
PVSEPA Separate 3 
PVT AB Tabulated 4 

Note: If the vector list is class PVT AB, then the BNorm must be FALSE 
and Dimen must be equal to 3; that is, tabulated vector lists must be 
vector-normalized 3D vector lists. 



PS 300 IBM VS FORTRAN GSR PVCBEG 

Name := VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION SUBROUTINE ANO PARAMETERS 

CALL PVcBeg <Name, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd) 

where: 

Name is a CHARACTER STRING defining the name of the vector list 

VecCou is an INTEGER*4 specifying the total number of vectors in the 
vector list 

BNorm is a LOGICAL* 1 defined: .TRUE. for Block Normalized, .FALSE. for 
Vector Normalized 

CBlend is a LOGICAL*! defined: .TRUE. for Color Blending, .FALSE. for 
normal depth cueing 

Dimen is an INTEGER*4 2 or 3 (2 or 3 dimensions respectively) 

*Class is an INTEGER*4 defining the class of the vector list 

ErrHnd is the user-defined error-handler subroutine. 

This subroutine must be called to begin a vector list. To send a vector list, the 
user must call: 

PVcBeg 

PVcUs (This may be called multiple times for vector-normalized vector lists) 
PVcEnd 

Together, the above 3 subroutines implement the PS 300 command: 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 

NOTE 

The dimension must be specified in the PVCBEG 
application subroutine. In the PS 300 command, 
dimension is implied by syntax. 

(Continued on next page) 



PS 300 IBM VS FORTRAN GSR PVCBEG 

Name := VECTOR_LIST <no corresponding command> 

Version A2.V01 <continued) 

* These mnemonics may be referenced directly by the user if PROCONST.FOR is 
INCLUDED in the subroutine. See the section on Programming Suggestions for 
a description of PROCONST.FOR. A.description of the vector classes and their 
INTEGER*4 value is given below. 

Mnemonic Meaning INTEGER*4 Value 

PVCONN Connected 0 
PVDOTS Dots 1 
PVITEM Itemized 2 
PVSEPA Separate 3 
PVT AS Tabulated 4 

Note: If the vector list is class PVT AB, then the 8Norm must be FALSE 
and Dimen must be equal to 3; that is, tabulated vector lists must be 
vector normalized 3D vector lists. 



PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS 

Name := VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PVcLis <NVec, Vecs, Poslin, ErrHnd) 

where: 

NVec is the number of vectors in the vector list and is defined: INTEGER*4 

Vecs is the array containing the vectors of the vector list and is defined: 
REAL*4 (4, NVec) 

where: Vecs(l ,n) =vector n x-component 
Vecs(2,n) =vector n y-component 
VecsO,n) =vector n z-component 
Vecs(4,n) = vector n intensity (or hue) 

0 <= Vecs(4,n) <=l or 
0 <"" Vecs(4,n) <=127 if vector 

class is tabulated. 

Poslin is the array containing the move/positive - draw/line information 
for each vector. Poslin is defined: LOGICAL*l PosLin(NVec) 

If Poslin(n) =.TRUE. then vector n is a draw(line) vector. 

If Poslin(n) = .FALSE. then vector n is a move(position) vector. 

ErrHnd is the user-defined error-handler subroutine. 

DESCRIPTION 

This subroutine must be called to send a piece of a vector list. For 
vector-normalized vector lists, this subroutine can be called multiple times to 
send the vector list down in pieces. Multiple calls to this subroutine are not 
permitted for the block-normalized vector list case, unless the subroutine 
PVcMax is called first. To send a vector list, the user must call: 

PVcBeg 

PVcLis (This may be called multiple times for vector-normalized vector lists) 

PVcEnd 

(Continued on next page) 



PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS 

Name == VECTOR~LIST <no corresponding command> 

Version A2. VOl <continued) 

The POSLIN Array is always required, however the CLASS specified in PVcBeg 
determines how it is used. For CONNECTED, DOTS, and SEPARATE, the user 
need not specify the contents of POSLIN. For ITEMIZED and TABULATED, the 
user-specified position/line is used. 

The fourth position of Vecs is the intensity of that vector if vector-normalized, 
regardless of dimension. If block-normalized, the first vector's fourth position is 
used as the entire vector list intensity. 

The fourth position of Vecs can be used to specify color in lieu of intensity when 
specifying color-blended vectors (ref er to PSETCB). Use the following algorithm 
to convert the acceptable range of hues (real numbers 0-720 for the PS 300 
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR 
routine before sending. 

• If the value is less than 0 or greater than 720, clamp it to the nearest 
in-range value. 

•·· If the value is greater than or equal to 360, subtract 360 •. 

• Divide the value by 768. 

• If the original value was greater than or equal to 360, add .5 to the result of 
the di vision. 

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and 
values in the range (360-720) to (.5-,96875). Values greater than .46875 and less 
than .5 are out of range, and are interpreted as .S (pure blue). 

If the vector class is "tabulated," the fourth position of the VECS is an INDEX. 
Users should specify whole numbers 0< index d 27 in this case. The GS Rs will 
truncate the value supplied to an integer and fOrce the value to be in range· 0 to 
127. 

Together, the subroutines PVcBeg, PVclis, and PVcEnd implement the PS 300 
command: 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N-n <vectors>; 



PS 300 IBM VS FORTRAN GSR PVCLIS 

Name :=VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PVcli s <NVec. Ve cs, Posli n, ErrHnd) 

where: 

NVec is the number of vectors in the vector list and is defined: I~TEGER*4 

Vecs is the array containing the vectors of the vector list and is defined: 
REAL*4 (4, NVec) 

where: Vecs(l,n) =vector n x-component 
Vecs(2,n) =vector n y-component 
VecsO,n) =vector n z-component 
Vecs(4,n) =vector n intensity (or·hue) 

0 <= Vecs(4,n) <=l or 
0 <= Vecs(4,n) <=127 if vector 

class is tabulated. 

Poslin is the array containing the move/positive - draw/line information 
for each vector. PosLin is defined: LOGICAL*l PosLin(NVec) 

If PosLin(n) =.TRUE. then vector n is a draw(line) vector. 

If PosLin(n) =.FALSE. then vector n is a move(position) vector. 

ErrHnd is the user-defined error-handler subroutine. 

DESCRIPTION 

This subroutine must be called to send a piece of a vector list. For 
vector-normalized vector lists, this subroutine can be called multiple times to 
send the vector list down in pieces. Multiple calls to this subroutine are not 
permitted for the block-normalized vector list case, unless the subroutine 
PVcMax is called first. To send a vector list, the user must call: 

PVcBeg 

PVclis (This may be called multiple times for vector normalized vector lists) 

PVcEnd 

(Continued on next page) 



PS 300 IBM VS FORTRAN GSR PVCLIS 

Name :. VECTOR_LIST <no corresponding command> 

Version A2.V01 <continued> 

The POSLIN Array is always required, however the CLASS specified in PVcBeg 
determines how it is .used. For CONNECTED, DOTS, and SEPARATE, the user 
need not specify the contents of POSLIN. For ITEMIZED•and TABULATED, the 
user-specified position/line is used. 

The fourth position of Vecs is the intensity of that vector if vector-normalized, 
regardless of dimension. If block-normalized, the first· v~tor's fourth position is 
used as the entire vector list intensity. 

The fourth position of Vecs can be used to specify color in lieu of intensity when 
specifying color-blended vectors (ref er to PSETCB). Use the following algorithm 
to convert the acceptable range of hues (real numbers 0-720 for the PS 300 
VECTOR_LIST command) to the expected range of 0-1 for the PVCUS GSR 
routine before sending. 

• If the value is less than 0 or greater than 720, clamp it to the nearest 
in-range value. 

• If the value is greater than or equal to 360, subtract 360. 

• Divide the value by 768. 

• If the original value was greater than or equal to 360, add .5 to the result of 
the di vision. 

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and 
values in the range 060-720) to (.5-.96875). Values greater than .46875 and less 
than .5 are out of range, and are interpreted as .5 (pure blue). 

If the vector class is "tabulated," the fourth position of the VECS is an INDEX. 
Users should specify whole numbers 0< index < 127 in this case. The GSRs will 
truncate the value supplied to an integer and fOrce the value to be in range 0 to 
127. 

Together, the subroutines PVcBeg, PVclis, and PVcEnd implement the PS 300 
command: 

Name :• VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 



PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCMAX 

Name :=VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

SUBROUTINE PVCMAX <MAX. ERRHAND) 

DEFINITION 

This subroutine must be called before calling PVCLis if creating a creating a 
block-normalized vector list with multiple calls to PVCLis. To send a vector list, 
the user must call: 

• PVCBeg 

• PVCMax (If making calls to PVCLis and creating a block-normalized vector 
list.) 

• PVCLis (This may be called multiple times for vector-normalized vector 
lists.) 

• PVcEnd (This must be last.) 

Together, the above 4 procedures implement the PS 300 command 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) 
N=n <vectors>; 





\ 
) 

PS 300 IBM VS FORTRAN GSR 

Name == VECTOR_LIST <no corresponding command) 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

SUBROUTINE PVCM~ <MAX, ERRHANO) 

DEFINITION 

PVCMAX 

This subroutine must\be called before calling PVCLis if creating a creating a 
block-normalized vector list with multiple calls to PVCLis. To send a vector list, 
the user must call: 

• PVCBeg 

• PVCMax (If making calls to PVCLis and creating a block-normalized vector 
list.) 

• PVCLis (This may be called multiple times for vector-normalized vector 
lists.) 

• PVcEnd (This must be last.) 

Together, the above 4 procedures implement the PS 300 command 

Name :=- VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) 
N=n <vectors>; 



• 

\ 



PS 300 DEC VAX/VMS PASCAL GSR 

Name := VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PVecBegn ( %DESCR Name 
VectorCount 
BlockNormalized 
ColorBlending 
Di men 
Class 

PROCEDURE Error Handler <Err 

DEFINITION 

P VaryingType; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER; 
: INTEGER)); 

PVECBEGN 

This procedure must be called ta begin a vector list. To send a vector list, the 
user must call the procedures: 

PVecBegn 

PVeclist (This procedure may be called multiple times far vector-normalized 
vector lists) 

PVecEnd 

It contains the following parametric definitions: 

• Name specifies the name to be given to the vector list 

• VectarCount is the number of vectors to be created 

• BlockNormalized is TRUE for Block Normalized and FALSE for Vector 
Norrnalized 

• ColorBlending is TRUE for Color Blending and FALSE for normal depth 
cueing 

• Dimen is 2 or 3 (2 or 3 dimensions respectively) 

• *Class corresponds to a vector class 

• Error_Handler is the user-defined error-handler procedure 

(Continued on next page) 



PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN 

Name := VECTOR LIST <no corresponding command> 

Version A2.V01 <continuedJ 

Together, the above 3 procedures implement the PS 300 command: 

Name := VECTOR_LIST (DOTS, . CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 

NOTE 

The dimension must be specified in the PVECBEGN 
application procedure. In the PS 300 command, dimension is 
implied by S¥ntax. 

* These mnemonics may be referenced directly by the user if PROCONST.PAS is 
INCLUDED in the procedure. 

Mnemonic Meaning INTEGER Value 

P Conn Connected 0 
P-Dots Dots l 
P-Item Itemized 2 
P)epa Separate 3 
P_Tab Tabulated 4 

Nate: If the vector list is class P_Tab, BlockNormalized must be FALSE, 
and Dimen must be equal to 3; that is, tabulated vector lists must be 
vector-normalized 3D vector lists. 



PS 300 IBM PASCAL/VS GSR 

Name :=VECTOR LIST <no corresponding command> 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PVecBegn < %DESCR Name 
VectorCount 
BlockNormalized 
ColorBlend1ng 
Di men 
Class 

PROCEDURE Error Handler <Err 

DEFINITION 

P_VaryingType; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
INTEGER; 
INTEGER; 
: INTEGER>>; 

PVECBEGN 

This procedure must be called to begin a vector list. To send a vector list, the 
user must call the procedures: 

PVecBegn 

PVeclist (This procedure may be called multiple times for vector-normalized 
vector lists) 

PVecEnd 

It contains the following parametric definitions: 

• Name specifies the name to be given to the vector list 

• VectorCount is the number of vectors to be created 

• Block Normalized is TRUE for Block Normalized and FALSE for Vector 
Normalized 

• ColorBlending is TRUE for Color Blending and FALSE for normal depth 
cueing 

• Dimen is 2 or 3 (2 or 3 dimensions respectively) 

• *Class corresponds to a vector class 

• Error Handler is the user-defined error-handler procedure - . 

(Continued on next page) 



PS 300 IBM PASCAL/VS GSR PVECBEGN 

Name := VECTOR_LIST <no corresponding command> 

Version A2.V01 <continued> 

Together, the above 3 procedures implement the PS 300 command: 

Name :• VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 

NOTE 

The dimension must be specified in the PVECBEGN 
application procedure. In the PS 300 command, dimension is 
implied by syntax. 

* These mnemonics may be referenced directly by the user if PROCONST.PAS is 
INCLUDED in the procedure. 

Mnemonic Meaning INTEGER Value 

P Conn Connected 0 
P-Dots Dots l 
P-Item Itemized 2 
P-Sepa Separate 3 
P_Tab Tabulated 4 

Note: If the vector list is class P_Tab, BlockNorrnalized must be FALSE, 
and Dimen must be equal to 3; that is, tabulated vector lists must be 
vector-normalized 3D vector lists. 



PS 300 DEC VAX/VMS PASCAL GSR PVECLIST 

Name == VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PVeclist ( NumberOfVectors : INTEGER; 
VAR Vectors : P VectorlistType; 

PROCEDURE Error_Handler <Err : INTEGER>>; 

DEFINITION 

This procedure must be called to send a piece of a vector list. For 
vector-normalized vector lists, this procedure can be called repeatedly to send 
the vector list down in pieces. Multiple calls to this procedure are not permitted 
for the block-normalized vector list case, unless the procedure PVecMax is called 
first. Ta send a vector list, the user must call the procedures: 

PVecBegn 

PVecUst (This procedures may be called multiple times for 
vector-normalized vector lists) 

PVecEnd 

Together, the above 3 procedures implement the PS 300 command: 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <vectors>; 

Vectors is the array containing the vectors. of the vector list. 

where: Vectors [n].V4[1] :=Vector n x-component 
Vectors [n].V4[2] :=Vector n y-component 
Vectors [n].V4[3] :=Vector n z-component 
Vectors [n].V4[4] :=Vector n intensity (or hue) 

0 <= vectors [n].V4(4] <=l or 0<= 
Vectors(n].V4[4] <=127 if vector class is 
tabulated. 

Vectors [n].Draw :=True if vector n is a draw/line vector. 
Vectors [n].Draw :=False if vector n is a move/position vector. 

The fourth position of Vectors is the intensity of that vector if 
vector-normalized, regardless of dimension. If block-normalized, the first 
vector's fourth position is used as the entire vector list intensity. 



PS 300 DEC VAX/VMS PASCAL GSR PVECLIST 

Name := VECTOR LIST <no corresponding command) 

Version A2.V01 <continued) 

The fourth position of Vectors can be used to specify color in lieu of intensity 
when specifying color-blended vectors (refer to PSETBLNO). Use the following 
algorithm to convert the acceptable range of hues (real numbers 0-720 for the 
PS 300 VECTOR LIST command) to the expected range of 0-1 for the PVECLIST 
GSR procedure before sending. 

• - If the value is less than 0 or greater than 720, clamp it to the nearest 
in-range value. 

• If the value is greater than or equal to 360, subtract 360. 

• Divide the value by 768. 

• If the original value was greater than or equal to 360, add .5 to the result of 
the division. 

This has the effect of mapping hue values in the range (0~360) to (0~.46875), and 
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less 
than .5 are out of range, and are interpreted as .5 (pure blue). 

If the vector class is "tabulated," the fourth position of the VECTORS is an 
INDEX. Users should specify whole numbers 0< index < 127 in this case. The GSRs 
will truncate the value supplied to an integer-and force the value to be in range 0 
to 127. 

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector 
list is generated by the procedure. P_Itern and P_Tab require that the move/draw 
nature of each vector be defined by the user. 



PS 300 IBM PASCAL/VS GSR PVECLIST 

Name := VECTOR LIST <no corresponding command) 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PVecl1 st < NumberOfVectors : INTEGER; 
VAR Vectors : P VectorListType; 

PROCEDURE Error Handler <Err : INTEGER>>; 

DEFINITION 

This procedure must be called to send a piece of a vector list. For 
vector-normalized vector lists, this procedure can be called repeatedly to send 
the vector list down in pieces. Multiple calls to this procedure are not permitted 
for the block-normalized vector list case, unless the procedure PVecMax is called 
first. To send a vector list, the user must call the procedures: 

PVecBegn 

PVeclist (This procedures may be called multiple times for 
vector-normalized vector. lists) 

PVecEnd 

Together, the above 3 procedures implement the PS 300 command: 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE, 
TABULATED) N=n <Vectors>; 

Vectors is the array containing the vectors of the vector list. 

where: Vectors [n].V4[1] :=Vector n x-component 
Vectors [n].V4[2] :=Vector n y-component 
Vectors [n].V4(3] :=Vector n z-component 
Vectors [n].V4[4] :=Vector n intensity (or hue) 

0 <= vectors [n].V4[4] <=l 
Vectors[n].V4[4) <=127 if vector 
tabulated. 

or 0<= 
class is 

Vectors [n].Draw :=True if vector n is a draw/line vector. 
Vectors [n).Draw :=False if vector n is a move/position vector. 

The fourth position of Vectors is the intensity of that vector if 
vector-normalized, regardless of dimension. If block-normalized, the first 
vector's fourth position is used as the entire vector list intensity. 



PS 300 IBM PASCAL/VS GSR PVECLIST 

Name :. VECTOR_LIST <no corresponding command> 

Version A2.V01 <continued) 

The fourth position of Vectors can be used to specify color in lieu of intensity 
when specifying color-blended vectors (refer to PSETBLND). Use the following 
algorithm to convert the acceptable range of hues (real numbers 0-720 for the 
PS 300 VECTOR_LIST command) to the expected range of 0-1 for the PVECLIST 
GSR procedure before sending. 

• If the value is less than 0 or greater than 720, clamp it to the nearest 
in-range value. 

• If the value is greater than or equal to 360, subtract 360. 

• Divide the value by 768. 

• If the original value was greater than or equal to 360, add .5 to the result of 
the division. 

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and 
values in the range (360-720) to (.5-. 96875). Values greater than .46875 and less 
than .5 are out of range, and.are interpreted as .5 (pure blue). 

If the vector class is "tabulated," the fourth position of the VECTORS is an. 
INDEX. Users should specify whole numbers 0< index < 127 in this case. The GSRs 
will truncate the value supplied to an integer and force- the value to be in range 0 
to 127. 

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector 
list is generated by the procedure. P)tem and P~Tab requires that the move/draw 
nature of each vector be defined by the user. 



PS 300 DEC VAX/VMS PASCAL GSR 

Name := VECTOR_LIST <no corresponding command) 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

[GLOBAL, CHECK<NOBOUNDS)] PROCEDURE PVecMax <Maxcomp REAL> 
<PROCEDURE Error_Handler <Err : INTEGER>>; 

DEFINITION 

PVECMAX 

This procedure must be called to set the maximum component of a vector list for 
multiple calls to PVeclist with block-normalized vectors. To send a vector list, 
the user must call: 

• PVecBegn 

• PVecMax (If defining block-normalized vector with multiple calls to 
PVecList) 

• PVeclist (This may be called multiple times.) 

• PVecEnd (This is called last.) 

Together, the above 4 procedures implement the PS 300 command 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) 
N=n <vectors>; 





PS 300 IBM PASCAL/VS GSR 

Name := VECTOR_LIST <no corresponding command> 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PVecMax <Maxcomp : REAL> 
<PROCEDURE Error_Handler <Err INTEGER>>; 

DEFINITION 

PVECMAX 

This procedure must be called to set the maximum component of a vector list for 
multiple calls to PVeclist with block-normalized vectors. To send a vector list, 
the user must call: 

• PVecBegn 

• PVecMax (If defining block normalized-vector with multiple calls to 
PVecList) 

• PVecLlst (This may be called multiple times.) 

• PVecEnd (This is called last.) 

Together, the above 4 procedures implement the PS 300 command 

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) 
N=n <vectors>; 





PS 300 IBM PASCAL/VS GSR PWRTBACK 

Name := WRITEBACK 

Version A2.V01 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PWRTBACK ( CONST Name : STRING; 
CONST Namel : STRING; 

PROCEDURE Error_Handler <Err : INTEGER)); 

DESCRIPTION 

This procedure enables writeback in the data structure Name 1. Writeback is 
triggered by sending a TRUE to the writeback operation node created with this 
procedure. 

PARAMETERS 

Namel - The name of the structure to which writeback is applied. 

PS 300 COMMAND AND SYNTAX 

name := WRITES ACK [APPLied to Name 1 ]; 





PS 300 DEC VAX/VMS PASCAL GSR PWRTBACK 

Name := WRITEBACK 

Version A2.V01 

APPLICATION PROCEDURE ANO PARAMETERS 

PROCEDURE PWrtBack ( %DESCR Name P_VaryingType; 
%DESCR Namel P_VaryingType; 

PROCEDURE Error Handler <Err : INTEGER>>; 

DEFINITION 

This procedure enables writeback in the data structure Name 1. Writeback is 
triggered by sending a TRUE to the writeback operation node created with this 
procedure. 

PARAMETERS 

Name 1 - The name of the structure to which write back is applied. 

PS 300 COMMAND ANO SYNTAX 

name := WRITEBACK [APPLied to Name 1 ]; 





PS 300 FORTRAN GSR PWRTBK 

Name := WRITEBACK 

Version A2.V01 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PWRTBK (Name, Namel, Errhnd) 

where: 

Name l is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DEFINITION 

This subroutine enables writeback in the data structure Namel. Writeback is 
triggered by sending a TRUE to the writeback operation node created with this 
subroutine. 

PARAMETERS 

Namel - The name of the structure to which writeback is applied. 

PS 300 COMMAND AND SYNTAX 

name := WRITEBACK [APPLied to Name l ]; 





PS 300 FORTRAN GSR 

Name := SET BLINKING ON/OFF 

PS 350 User's Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PSEBOF <Name, OnOff, Namel, Errhnd) 

where: 

Name is a CHARACTER STRING 
On Off is a LOGICAL* 1 
Namel is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DEFINITION 

PSEBOF 

·This procedure turns blinking on and off. It affects all objects below the node 
created by the command in the display tree. 

PARAMETERS 

OnOff - TRUE indicates that blinking wili occur in the displayed objects. 
FALSE turns blinking off. 

Namel - The name of the structure that will be affected by the command. 

PS 300 COMMAND AND SYNTAX 

name :==SET BUN King switch 
[AP Plied to name lJ; 





PS 300 IBM PASCAL/VS GSR 

Name := SET BLINKING ON/OFF 

PS 350 User's Manual 

APPLICATION PROCEDURE ANO PARAMETERS 

PROCEDURE PSetBOnf < CONST Name STRING; 
Onoff BOOLEAN; 

CONST Namel STRING; 

PSETBONF 

Procedure Error_Handler <Err INTEGER >>; 

DEFINITION 

This procedure turns blinking on and off. It affects all objects below the node 
created by the command in the display tree. 

PARAMETERS 

OnOff - TRUE indicates that blinking will occur in the displayed objects. 
FALSE turns blinking off. 

Name 1 - The name of the structure that will be affected by the command. 

PS 300 COMMAND ANO SYNTAX 

name : ... SET BUN King switch [AP Plied to name 1 ]; 





PS 300 DEC VAX/VMS PASCAL GSR PSETBONF 

~ Name := SET BLINKING ON/OFF 

\ 
/ 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSetBOnf C "LOESCR Name : P_Vary1ngType; 
Onoff : BOOLEAN; 

ioESCR Namel : P_Vary1ngType; 
PROCEDURE Error_Handler <Err : INTEGER>>; 

DEFINITION 

This procedure turns blinking on and off. It affects all objects below the node 
created by the command in the display tree. 

PARAMETERS 

Onoff - TRUE indicates that blinking will occur in the displayed objects. 
FALSE turns blinking off. 

Name 1 - The name of the structure that will be affected by the command. 

PS 300 COMMAND ANO SYNTAX 

name :• SET BUN King switch [AP Plied to name 1 ]; 

• 



• 



PS 300 FORTRAN GSR 

Name :. SET LINE_TEXTURE 

PS 350 User 1 s Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PSELNT <Name, Pattrn, Cont, Namel, Errhnd> 

where: 

Name is a CHARACTER STRING 
Pattrn ls an INTEGER*4 
Cont is a LOGICAL* l 
Name! is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DEFINITION 

PSELNT 

This subroutine specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127 hardware-generated line textures possible. The parameter pa ttrn is an 
integer between 1 and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7-bit positions in Pattern when represented in binary. 
An individual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation Line Texture repeated twice 

127 
124 
122 
106 

PARAMETERS 

1111111 
1111100 
1111010 
1101010 

Solid 
Long Dashed 
Long Short Dashed 
Long Short Short Dashed 

Cont_ - LOGICAL value used to set a flag to indicate if the specified line 
texture should continue from one vector to the next. If Cont is TRUE, 
the line texture will continue from one vector to the next through the 
endpoint. If Cont is FALSE, the line texture will start and stop and 
the vector endpoints. 

Pattrn - An integer between 1 and 127 that specifies the desired line texture. 
When pattern is less that 1 or greater than 127, solid lines are 
produced. 

Name 1 - The name of the structure to which the line texture is applied. 



PS 300 FORTRAN GSR PSELNT 

Name :. SET LINE_TEXTURE 

PS 350 User's Manual <continued) 

DEFAULTS 

The default line texture is a solid line 

NOTES 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line-texturing is applied to a vector, the vector that is specified is 
displayed as a patterned, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the vector 
is displayed. If the line is smaller than the smallest element of the pattern, then 
the line is displayed as solid. 

The With Pattern and curve commands create multiple vectors in memory. To 
the line-texturing hardware, each vector in a pattern or curve is seen as an 
individual vector. Line-texturing a patterned line or curve is the same as 
line-texturing a number of small segments. Curves and patterns affect 
line-texturing only in that they tend to create short vectors that may be too 
short to be completely textured • .. 

PS 300 COMMAND AND SYNTAX 

name:- SET LINe texture [AROUnd corners] pattern 
(APPLied to name 1 ]; -



PS 300 IBM PASCAL/VS GSR PSETLINT 

Name := SET LINE_TEXTURE 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSetlinT • < CONST Name STRING; 
Pattern INTEGER; 
AroundCorners BOOLEAN; 

CONST Namel STRING; 
PROCEDURE Error_Handler <Err INTEGER>>; 

DEFINITION 

This procedure specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127 hardware-generated line textures possible. The parameter pattern is an 
integer between l and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7 bit positions in pattern when represented in binary. 
An individual pattern unit is l. l centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation 

127 
124 
122 
106 

PARAMETERS 

1111111 
1111100 
1111010 
1101010 

Line Texture repeated twice 

Solid 
Long Dashed 
Long Short Dashed 
Long Short Short Dashed 

AROUnd_corners - Boolean value used to set a flag to indicate if the specified 
line texture should continue from one vector to the next. If 
AROUnd corners is TRUE, the line texture will continue 
from one vector to the next through the endpoint. If 
AROUnd_corners is FALSE, the line texture will start and 
stop at the vector endpoints • 

• 
Pattern - An integer between l and 127 that specifies the desired line 

texture. When pattern is less that 1 or greater than 127, solid lines 
are produced. 

Name 1 - The name of the structure to which the line texture is applied. 



• 

PS 300 IBM PASCAL/VS GSR PSETLINT 

Name := SET LINE TEXTURE 

PS 350 User's Manual <continued) 

DEFAULTS 

The default line texture is a solid line. 

NOTES· 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line-texturing is applied to a vector, the vector that is specified is 
displayed as a textured, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the 
vector is displayed. If the line is smaller than the smallest element of the 
pattern, then the line ·is displayed as solid. 

The With Pattern and curve commands create multiple vectors in memory. To 
the iine-texturing hardware, each vector in a pattern or curve is seen as an 
individual vector.. Line-texturing a patterned line or curve is the same as 
line-texturing a number of small segments. Curves and patterns affect 
line-texturing only in that they tend to create short vectors that may be too 
short to be completely textured. 

PS 300 COMMAND AND SYNTAX 

name := SET LINe texture [AROUnd corners] pattern 
- [APPUed to name 1 l; 



PS 300 DEC VAX/VMS PASCAL GSR PSETLINT 

Name := SET LINE TEXTURE 

PS 350 User 1 s Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSetlinT ( %DESCR Name P_VaryingType; 
Pattern INTEGER; 
AroundCorners BOOLEAN; 

%DESCR Namel P VaryingType; 
PROCEDURE Error_Handler <Err : INTEGER)); 

DEFINITION 

This procedure specifies the line texture pattern to be used in drawing the 
vector lists that appear below the node created by this command. There are up 
to 127 hardware-generated line textures possible. The parameter pattern is an 
integer between l and 127. The desired line texture is indicated by the setting 
or clearing of the lower 7-bit positions in Pattern when represented in binary. 
An lndlvidual pattern unit is 1.1 centimeters in length. Some of the more 
common patterns and their corresponding bit settings are shown below: 

Pattern Bit representation 

127 
124 
122 
106 

PARAMETERS 

1111111 
1111100 
1111010 
1101010 

Line Texture repeated twice 

Solid 
Long Dashed 
Long Short Dashed 
Long Short Short Dashed 

AROUnd_corners - Boolean value used to set a flag to indicate if the specified 
line texture should continue from one vector to the next. If 
AROUnd corners is TRUE, the line texture will continue 
from one vector to the next through the endpoint. If 
AROUnd_corners is FALSE, the line texture will start and 
stop at the vector endpoints. 

Pattern - An integer between 1 and 127 that specifies the desired line 
texture. When pattern is less that 1 or greater than 127, solid lines 
are produced. 

Name l - The name of the structure to which the line texture is applied. 



PS 300 DEC VAX/VMS PASCAL GSR 

Name :. SET LINE_TEXTURE 

PS 350 User's Manual 

DEFAULTS 

The def a ult line texture ls a solid line. 

NOTES 

PSETLINT 

<continued> 

Since 7 bit positions are used, it is not possible to create a symmetric pattern. 

When line-texturing is applied to a vector, the vector that is specified ls 
displayed as a textured, rather that solid line. If the line is smaller than the 
pattern length, then as much of the pattern that can be displayed with the 
vector is displayed. If the line is smaller than the smallest element of the 
pattern, then the line is displayed as solid. 

The W1 th Pattern and curve commands create multiple vectors in memory. To 
the llne-texturing hardware, each vector in a pattern or curve is seen as an 
individual vector. Line-texturing a patterned line or curve is the same as 
line-texturing a number of small segments. Curves and patterns affect 
line-texturing only in that they tend to create short vectors that may be too 
short to be completely textured. 

PS 300 COMMAND AND SYNTAX 

name:== SET LINe_texture [AROUnd_cornersJ pattern 
[AP Plied to name l J; 



PS 300 FORTRAN GSR 

Name := SET BLINK RATE 

PS 350 User's Manual 

APPLICATION SUBROUTINE AND PARAMETERS 

CALL PSEBR (Name, Rate, Name 1, Errhnd) 

where: 

Name is a CHARACTER STRING 
Rate is an INTEGER*4 
Name 1 is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DESCRIPTION 

PSEBR 

This subroutine specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

Rate - An integer designating the duration of the blink in refresh cycles. The 
blinking data will be on for the number of specified refreshes and off 
for the specified number of refreshes. 

Namel - The name of the structure to which the blinking rate is applied. 

PS 330 style blinking, done via the SET RATE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND ANO SYNTAX 

name :== SET BLINK RA TE n 
[APPLied to name 1 ]; 





PS 300 IBM PASCAL/VS GSR 

Name := SET BLINK RATE 

PS 350 User's Manual 

APPLICATION PROCEDURE ANO PARAMETERS 

PROCEDURE PSETBR C CONST Name : STRING; 
Bl1nkrate : INTEGER; 

CONST Namel : STRING; 
PROCEDURE Error_Handler <Err INTEGER>>; 

DESCRIPTION 

PSETBR 

This procedure specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

Bl 1 nk.rate - An integer designating the duration of the blink in refresh cycles. 
The blinking data will be on for the specified number of refreshes 
and off for the specified number of refreshes. 

Name 1 - The name of the structure to which the blinking rate is applied. 

PS 330-style blinking, done via the SET RATE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND ANO SYNTAX 

name :• SET BLINK RA TE n 
[APPLied to name 1]; 





PS 300 DEC VAX/VMS PASCAL GSR 

Name := SET BLINK RATE 

PS ET BR 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PSETBR ( %DESCR Name : P VaryingType; 
Blinkrate : INTEGER; 

%DESCR Namel : P_VaryingType; 
PROCEDURE Error Handler <Err : INTEGER)); 

DESCRIPTION 

This procedure specifies the blinking rate in refresh cycles to be applied to all 
objects below the node created by the command in the display tree. 

PARAMETERS 

NOTE 

Bl i nkrate - An integer designating the duration of the blink in refresh cycles. 
The blinking data will be on for the specified number of refreshes 
and off for the specified number of refreshes. 

name 1 - The name a f the structure to which the blinking rate is applied. 

PS 330-style blinking, done via the SET RA TE and IF PHASE ON/OFF 
commands, where blinking is tied to the update rate rather than the refresh 
rate, will still work, but since the update rate in the PS 350 may be slower, the 
visual result may be different. 

PS 300 COMMAND ANO SYNTAX 

name := SET BLINKING RA TE n 
[AP Plied to name l ]; 



• 

) 

• 



PS 300 IBM PASCAL/VS GSR PVIEWL 

Name := LOAD VIEWport 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PViewl ( CONST Name STRING; 
Hmin REAL; 
Hmax REAL; 
Vmi n REAL; 
Vmax REAL; 
Imi n REAL; 
I max INTEGER; 

CONST Namel STRING; 
Procedure Error Handler <Err INTEGER>>;; 

DEFINITION 

The PViewl procedure for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standard PS 300 
VIEWPORT command, it specifies the area of the screen that the displayed data 
will occupy, and the range of intensity of the lines. It affects all objects below 
the node created by the command in the display tree. 

PARAMETERS 

Hmi n, Hmax, Vrni n, Vrnax - The x and y boundaries of the new viewport. Values 
must be within the -1 to l range. 

Imi n, I max - Specifies the minimum and maximum intensities for the viewport. 
i min is the intensity of lines at the back clipping plane; i max at 
the front clipping plane. Values must be within the 0 to l range. 

Name l - The name of the structure to which the viewport is applied. 

PS 300 COMMAND AND SYNTAX 

name := LOAD VIEW port HORizontal = hmi n: hrnax 
VERTical = vmi n: vmax 
[INTENsity = i min: i max] [APPLied to name lJ; 





PS 300 DEC VAX/VMS PASCAL GSR PVIEWL 

Name := LOAD VIEWport 

PS 350 User's Manual 

APPLICATION PROCEDURE AND PARAMETERS 

PROCEDURE PViewL < %DESCR Name P VaryingType; 
Hmin REAL; 
Hmax REAL; 
Vmin REAL; 
Vmax REAL; 
Imin REAL; 
I max INTEGER; 

%DESCR Namel P VaryingType; 
Procedure Error_Handler <Err : INTEGER));; 

DEFINITION 

The PViewL procedure for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standand PS 300 
VIEWPORT command, it specifies the area of the screen that the displayed data 
will occupy, and the range of intensity of the lines. 

PARAMETERS 

Hmi n, Hmax ,. Vmi n, Vmax - The x and y boundaries of the new viewport. Values 
must be within the -1 to l range. 

Imi n, I max - Specifies the minimum and maximum intensities for the 
viewport. imi n is the intensity of lines at the back clipping plane; 
i max at the front clipping plane. Values must be within the 0 to 
range. 

Name 1 - The name of the structure to which the viewport is applied. 

PS 300 COMMAND AND SYNTAX 

name := LOAD VIEW port HORizontal = hmi n: hmax 
VER Tic al = vmi n: vmax 
[INTENsity = i min: i max] [APPUed to name 1]; 



• 



PS 300 FORTRAN GSR PVIEWL 

Name := LOAD VIEWport 

PS 350 User 1 s Manual 

APPLICATION SUBROUTINE ANO PARAMETERS 

CALL PVIEWL <Name, Hmin, Hmax, Vmin, Vmax, Imin, Imax, Namel, Errhnd) 

where: 

Hmin, Hmax are REAL*4 
Vmin, Vmax are REAL*4 
Imin, Imax are REAL*4. 
Name l is a CHARACTER STRING 
Errhnd is the user-defined error-handler subroutine 

DEFINITION 

The PViewL subroutine for the PS 350 loads a viewport and overrides the 
concatenation of the previous viewport. As with the standand PS 300 VIEWPORT 
command, it specifies the area of the screen that the displayed data will occupy, 
and the range of intensity of the lines. 

PARAMETERS 

Hmi n, Hmax, Vmi n, Vmax - The x and y boundaries of the new viewport. Values 
must be within the -1 to 1 range. 

Imi n, Imax - Specifies the minimum and maximum intensities for the 
viewport. i min is the intensity of lines at the back clipping plane; 
1max at the front clipping plane. Values must be within the 0 to 1. 

Name 1 - The name of the structure to which the viewport is applied. 

PS 300 COMMAND ANO SYNTAX 

name :=LOAD VIEW port HORizontal = hmi n: hmax 
VER Tic al • vm1 n: vmax 
[INTENsity = i min: i max] [APPLied to name lJ; 





PS 300 WRITEBACK FEATURE 

The Writeback feature allows displayed transformed vector data to be sent back to the 
host. The position of the writeback node in the display structure determines which 
transformations will be applied to the writeback data. The system-generated writeback 
node will include all transformations (viewing and modeling). Once the host has 
received these data, they can be used to generate hardcopy plots or display 
host-generated raster images. The user is responsible for retrieval and all subsequent 
processing of data on the host system. 

This guide describes how to use the Writeback feature on all members of the PS 300 
family of graphics computers. Operational differences among models are specifically 
noted. 

This guide contains: 

• A description of the user interface for the Writeback feature. The user interface 
consists of the WRITEBACK operation node and the WRITEBACK initial function. 

• Constraints on the use of the WRITEBACK operation node. 

• Descriptions of the WRITEBACK function. 

• A list of the commands that may need to be interpreted by host-resident code to 
filter writeback data retrieved from the PS 300. 

• An example of the sequence of data sent back to the host. 

• An example of a host program that retrieves, processes, and files writeback data 
from the PS 350. 

Change-pages supporting the Writeback feature are provided in this guide for the 
Command Summary, the Function Summary and the Graphics Support Routine sections 
of the PS 300 Document Set. 



2- PS 300 WRITEBACK FEATURE 

Writeback User Interface 

The Writeback feature is implemented by: 

• Creating the WRITEBACK operation node (or using the system-generated 
writeback node, WB$). 

• Activating the WRITEBACK operation node. 

• Connecting the WRITEBACK function to a function network. 

WRITEBACK Operation Node 

When the PS 300 is booted, a WRITEBACK operation node is created. It is named 
WB$ and is placed above every user-defined display structure. This node can be 
triggered if an entire displayed picture is to be included in the writeback data. if 
writeback of only a portion of the picture is desired, the user must place other 
WRITEBACK nodes appropriately in the display struc.ture. 

A user-defined WRITEBACK operation node is created by the command: 

Name:::: WRITEBACK [APPiied to Name1]; 

The WRITEBACK node has one input. A TRUE sent to input <1 > of the 
WRITEBACK node triggers writeback for the data structure below the node. This 
trigger is sent by the user, for example: 

SEND TRUE TO <1 >name; 

triggers that WRITEBACK node. Of course the node could be triggered through a 
function network using a function key, etc. 

A WR ITEBACK operation node delimits the structure from which the writeback 
data will be collected. Only the data nodes below the WRITEBACK operation 
node in the display structure will be transformed, clipped, viewport scaled 
perspective divided (as delineated by the placement of the WRITEBACK node), 
and sent back to the host. 

NOTE 

On the PS 350, viewport translations will not be applied 
to the data. 



PS 300 Writeback Feature - 3 

WRITEBACK Operation Node Constraints 

Only a displayed structure can be enabled for writeback. This means that the 
WRITEBACK operation node must be traversed by the display processor and 
therefore must be included in the displayed portion of the structure. The default 
WRITEBACK node WB$ is displayed as part of every displayed structure. But, if 
the user creates another WRITEBACK node and if this node is triggered before 
being displayed, the following error message will result: 

E 8 ACP cannot find your operate node 

Any number of WRITEBACK nodes can be placed within a structure. However, 
only one WRITEBACK operation can occur at a time. If more than one node is 
triggered, the WRITEBACK operations are performed in the order in which the 
corresponding nodes were triggered. 

The terminal emulator and message_display information will not be returned to 
the hast. 

Polygon data can be returned to the host only if the PS 340 has a 4K ACP. 

Before triggering the WRITEBACK operation, disable the SCREENSAVE function 
by entering the command "SCREENSAVE:= nil;". 

The WRITEBACK Function 

An initial function instance, WRITEBACK, is created by the system at boot up. 

WRITEBACK 

Integer specifying 
size of output 
Qpackets ----------> <1> <1> ----> Qpackets to user 

function network 

WRITEBACK sends encoded writeback data received from the display processor. 
The writeback data is prefixed by a start-of-writeback command, followed by the 
encoded data, followed by an end-of-writ'eback or end-of ..:frame command. 



4 - PS 300 WRITEBACK FEATURE 

WRITEBACK has one user-accessible input queue. Input <1 > accepts integers 
specifying the size of Qpackets to be output by the function. The default size is 
512 bytes per Qpacket. The minimum and maximum size are 16 bytes per 
Qpacket and 1024 bytes per Qpacket1 respectively. If the size specified by the 
user is not within this range1 the default size will be used by the system. 

The input value should be chosen such that the actual size of the qpacket sent to 
the 1/0 port is less than or equal to the present input buffer size on the host 
computer. 

If the CVT8T06 function is used to send the binary data to the host, then the 
number of the bytes sent to the host is approximately 3/2 * the number of bytes 
sent by the Writeback function. 

For example, if the integer sent to <1 > of the Writeback function is 80, the 
largest Qpacket sent to the host will be 80 * 3/2 = 120. Qpackets, where the size 
is not a multiple of 41 will be padded to the next multiple of 4. For instance, 
Qpacket sizes of 77, 78, and 79, sent to CVT8T06 will all have output sizes of 120. 

WRITEBACK has one user-accessible output queue. Output <1 > passes the 
encoded writeback data out as Qpackets until the end-of-writeback or 
end-of-frame command is seen. · 

This function is not activated by the normal input queue triggering mechanism. It 
is activated by sending a TRUE to any WRITEBACK operation node. 

Data Output by WRITEBACK 

WRITEBACK will return all data below the WRITEBACK operation node. 
Host-resident code will be responsible for recognizing the start-of-writeback and 
end-of-writeback or end-of-frame commands. 

Attribute information, such as color, must be interpreted by host code to ensure 
that the hardcopy plots are correct. 

On the PS 350, viewport translations will not be applied to the data. Correct 
computation of the position of endpoints requires that the host program add a 
viewport center to each endpoint. The initial viewport center is established with 
a VIEWPORT CENTER command. The VIEWPORT CENTER command is sent 
following the start-of-writeback command. Any changes to the viewport center 
will be indicated through this sequence of commands: CLEAR ODA, CLEAR 
SAVE POINT, position endpoint, CLEAR SAVE POINT. The position endpoint 
becomes the new viewport center. 

Also, on the PS 3501 several commands such as ENABLE PICK and ENABLE 
BLINK are sent to the host .. These will not typically be needed by the host 
program. However, these commands come directly from the refresh buffer and 
are not filtered by the PS 350. Host-resident code must filter the writeback data 
and strip out nonessential information. 



PS 300 Writeback Feature - 5 

Data Packets Returned 

Data packets sent out the WRITEBACK function contain the following 
information: 

• If bit 15 of the first word is 0, it signals that the data that follows is a 
command. For example, if the first word is H#0200 (Hex 0200) then the Line 
Generator status will follow. 

bi ts 15,14 
O comand 

0 

parameter 

• If bit 15 of the first word is 1, it indicates that intensity, x and y coordinate 
information will follow. Intensity can range from 0 to 127. The format of the 
data is: 

bits 15 14 13 
1 d // 

bits 15 - 13 
11117111 

bi ts 15 - 13 
/////Ill 

12 -- 6 lS -- 0 
inten II/Ill/// 

12 -- 0 
y coord 

12 -- 0 
x coord 

NOTE 

if d = 1, then it is a DRAW 
if d = 0, it is a MOVE 

In the i I lust rations of data format, the slash character is 
used to illustrate blocks of data that are unused. 

Command Descriptions 

The following list describes the commands that the host-resident code might have 
to interpret before it can recognize and filter writeback data received from the 
PS 300. These commands can be intermixed with vector data. 

It is important to note that each command contains at least three 16-bit words. 
For example, if a command only has one parameter then the third word is unused, 
but it is still sent to the host. If a command has 3, 4, or 5 parameters, then 6 
words will be sent for that command. 



6 - PS 300 WRITEBACK FEATURE 

START-OF-WRITEBACK 

Parameters: 
Line texture (one word) 
LGS (one word) 

code in hex = H#OBOO 
# 2816 

Marks the beginning of the writeback segment, of which there is 
guaranteed to be only one. 

The texture and line generator status are included here. They fol low 
the same format as the texture and line generator status shown below. 

BOO 
lllllll!ll Texture 

LGS 

ENO-OF-WRITEBACK 

Parameters: 
None 

code in hex = H#OCOO 
# 3072 

Marks the end of the writeback segment. For the PS 350, the 
end-of-writeback may also be indicated by the end-of-frame command. 

coo 
o I 011 

lll/l/ll//////ll//ll/ 
0 =finished successfully, 1 =cannot finish 

operation because of insufficient memory 

The error code (0 or 1) is currently not present in the PS 350 systems. 

LINE GENERATOR STATUS 

Parameters: 
Status word (one word) 

code in hex = H#0200 
# 512 

Indicates dot mode (bit 8) and which display is selected (bits 0-3). 
Normally, only the dot mode bit must be referenced. 

200 
LGS 

111111111111111111111 



PS 300 Writeback Feature - 7 

Line Generator Status Register (LGS): 

I/// Ill Ill Ill Ill Ill Ill SHO Ill Ill Ill/I/I SCOPE SELECT 
Ill Ill Ill Ill Ill Ill Ill EPT Ill Ill /////// D C B A 
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Bit Logical Names 
B A 

08 SHOWENDPT Dot mode 
03 BLANKO Blank scope D (1 blanks the scope 0 enables the scope) 
02 BLANKC Blank scope C 
01 BLANKB Blank scope B 
00 BLANKA Blank scope A 

Parameters: 
Color value (one word) 

400 
Hue I Saturation 

//l//////ll////////// 

code in hex = H#0400 
# 1024 

I/// 1111 ///////////' 
I I I HI HUE LO I I I I HI SAT LO I I I I I I I I I I I 
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

TEXTURE 

Parameters: · 
Texture value (one word) 

500 
I/Ill/II/I Texture 
////l///l/l/lllllll 

Line Generator Texture Register: 

'

///l///////l///ll/l////l/////ll 
/////////////////////////////II 

code in hex = H#0500 
# 1280 

Texture bit pattern 

• 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

H#007F or H#OOFF both default to a Solid line. 
For non-PS 350 users, the texture wi II always be H#OOFF. 



8 - PS 300 WRITEBACK FEATURE 

The following commands are for PS 350 users ONLY. 

CLEAR DOA 

Parameters: 
None 

PICK BOUNDARY 

Parameters: 
Four Boundary Values (4 words) 

CLEAR SAVE POINT 

Parameters: 
None 

SET PICK ID 

Parameters: 
Pick ID Pointer (two words) 

code in hex = H#0100 
# 256 

code in hex = H#0300 
# 768 

code in hex = H#0600 
# 1536 

code in hex = H#0700 
# 1792 

SET LightPen MODE code in hex = H#0800 
# 2048 

Parameters: 
Control Mask (1) 
New X,Y (2) 
Delta distance (1) 
Delta frames (1) (Total five words) 

ENABLE PICK 

Parameters: 
None 

DISABLE PICK 

Parameters: 
None 

• 
code in hex = H#0900 
# 2304 

code in hex = H#OAOO 
# 2560 



\ 

SET BLINK RATE 

Parameters: 
Blink Rate (one word) 

ENABLE BLINK 

Parameters: 
None 

DISABLE BLINK 

Parameters: 
None 

END-OF-FRAME 

Parameters: 
None 

PS 300 Writeback Feature - 9 

code in hex = H#ODOO 
I# 3328 

code in hex = H#OEOO 
# 3584 

code in hex = H#OFOO 
# 3840 

code in hex = H#1700 
# 5888 

Signifies that the current update cycle is completed and that any 
fol lowing data is part of the next update frame. This also signifies 
end of the writeback segment. 

VIEWPORT CENTER 

Parameters: 
x center (one word) 
y center (one word) 
z center (one word) 
spare (two words) 

bi ts 15 ..................... O I coordinates I 

code in hex = H#1800 

2's complement vector 

This value has to be added to each x,y coordinate pair. This 
information is necessary to calculate the actual coordinates of the 
data which has been viewport scaled. Every time a new viewport is 
traversed by the Arithmetic Control Processor, a new viewport center 
command wi II be sent. 



10 - PS 300 WRITEBACK FEATURE 

NOTE 

Codes H#1900 - H#1 FOO are reserved for future 
commands. Code H#OOOO is defined as a no-op, and 
naturally has no parameters. 

EXAMPLE OF THE SEQUENCE OF DATA SENT BACK TO THE HOST 

The following example illustrates the sequence of data and the data in byte 
format sent to the host during a WRITEBACK operation. 



BOO 
////////// !Texture 

LGS 
400 

Hue !Saturation 
//////////////////////// 

lntensit}'. 
y 
x 

. 
200 
LGS 

///I/I/I/I/I//////////// 
500 

Ill/I/II/I I Texture 
//////////II//////////// 

400 
Hue I Saturation 

//l///l////////ll/ll//// 
lntensit}'. 

y 
x 
. 

. 

•: 

coo 
0/1 

. /I////////////////////// 

PS 300 Writeback Feature - 11 

Start-of-writeback command 

Color command 

v 
E 
c 
T 
0 
R 
s 

Line Generator Status command 

Texture command 

Color command 

v 
E 
c 
T 
0 
R 
s 

End-of-writeback command 
0 =finished successfully, 1 =cannot 
finis~ because of insufficient memO!Y 



12 - PS 300 WRITEBACK FEATURE 

Data in Byte Format 

OB 00 
oo· FF 
04 70 
04 00 
80 00 
00 00 
00 FF 
1Y FF 
1X FF 
00 FF 
2Y FF 
2X FF 

02 00 
04 70 
00 00 
05 00 
00 FF 
co 00 
04 00 
80 00 
00 00 
00 FF 
1Y FF 
1X FF 

oc 00 
00 00 
00 00 

• 

Start-of-writeback command 
Texture 
LGS 
Color command 
Hue/Saturation 
Not used 
Intensity 

y 
x 

Intensity 
y 
x 

. 
LGS command 
LGS 
Not used 
Texture command 
Texture 
Not used 
Color command 
Color 
Not used 
Intensity 

y 
x 

End-of-writeback command 
Finshed successfully 
Not used. 



PS 300 Writeback Feature - 13 

SAMPLE WRITEBACK PROGRAM 

PROGRAM Writeback(lnput,Output,Outfi le,Devfi le); 
{Program to read writeback data from a PS 350. This program sets up a } 
{ function network to get the writeback data and processes the data and} 
{creates a data file on the host with the data from the PS 350. } 

CONST 
%INCLUDE 'PROCONST.PAS' 
Max_buf = 1024; 

TYPE 
lnt16 = -32768 .. 32767; 
Max line= VARYING [Max buf] OF CHAR; 
%INCLUDE 'PROTYPES.PAS'-

VAR· 
OUTFILE TEXT; 
DEVFILE TEXT; 
DEVSPEC P VARYINGTYPE; 
OUTNAME P-VARYINGTYPE; 
WBNAME P-VARYINGTYPE; 
COMMAND : INT16; 
INDEX : I NT EGER ; 
LEN : INTEGER; 
lnline : P VARYBUFTYPE; 
vx,vy,vz :-REAL; 
ln_DDA : BOOLEAN := FALSE; 

%INCLUDE 'PROEXTRN.PAS' 

PROCEDURE ERR (ERROR: INTEGER); 
{} 
{ ERROR HANDLER ROUTINE } 
{} 

BEGIN { ERR } 
{} 
WRITELN(' ERROR :=',ERROR); 
HALT; 
{} 

END; { ERR } 



14 .... PS 300 WRITEBACK FEATURE 

PROCEDURE Setup; 
{ Create function network to send writeback data to host } 
{This uses F:cvt8to6 to send 6-bit data to the host} 

BEGIN 
PFnlnst( 1 cvt 1 ,'cvt8' ,Err); 
Pconnect ('Writeback' ,1,1, 'cvt' ,Err); 
Pconnect ('cvt',1,1,'host message', Err); 
PsndStr (CHR(36),2,'cvt' ,Err); 
PsndFix (48,1, 'wri teback', Err); 
PNameNi l('screensave' ,Err); 
PPurge( Err); 
ENO; 

{ Uti I ity procedures} 
PROCEDURE Six_to_eight( lnbuf : Max_I ine; 

VAR Outbuf : P VARYBUFTYPE); 
{Data from PS 350 is in six-bit packed format. This procedure unpacks 

data} 

CONST Base = 36; 

TYPE 
Cheat 4 = PACKED RECORD CASE Boolean OF 

TRUE :-( i: UNSIGNED); 
FALSE : ( c: PACKED ARRAY [1 .. 4] OF CHAR); 

END; 

VAR 
w : Cheat 4; 
c_out,cycTe_count,buf_index,i I ,tc 
first : BOOLEAN; 

BEGIN 
buf index:= 1; 
first :=TRUE; 
cycle_count := 1; 
c out := 4; 
QUtbUf :: I I; 

WHILE buf index <= len DO 
BEGIN -

tc := ORDCrnbuf[buf index]) - base; 
IF first THEN -

IF tc < 0 THEN 
c out := 4+tc 

ELSE 
BEGIN 

first :=FALSE; 
w.i := tc; 
cycle count := SUCC(cycle count); 

ENO { ELSE tc >= 0 } -

INTEGER; 



ELSE 
BEGIN 

w.i := w.i * (2"'*6); 
w . i : = UOR ( w . i I t c ) ; 
cycle_count := SUCC(cycle_count); 

ENO; { ELSE } 
IF cycle_count > 6 THEN 

BEGIN 
FOR i I := 4 OOWNTO (5-c out) 00 

Outbuf := outbuf + w.c[i I]; 
cycle_count := 1; 
first :=true; 

END; 
buf index := SUCC(buf index); 

- ENO; { WHILE } -
ENO; 

PROCEDURE Next Block; 

PS 300 Writeback Feature - 15 

{ Get a block ~f data from the PS 350 and convert from six to eight} 
{ b i t format } 

VAR lnbuff : Max_line; 

BEGIN 
PGETWAIT(lnbuff ,err); 
Index := 1; 
Len := LENGTH(lnbuff); 
Six_to_eight ( lnbuff, lnline); 
Len := LENGTH(lnline); 

END; 

PROCEDURE Get Value( VAR a : INT16); 
{Convert two-bytes of input buffer to 16 bit integer} 

VAR i : INTEGER; 

BEGJN { Get Value } 
a ·- o· -.- I 

FOR i := 1 TO 2 00 
BEGIN 

Index :=Index+ 1; 
IF Index > Len THEN 
· Next Block; 
a:= a-* 256 + ORD(lnline[lndex]); 

ENO; 
END;{ Get_Value } 



16 - PS 300 WRITEBACK FEATURE 

{ Procedures for processing refresh buffer commands } 

PROCEDURE Clear DOA; 
{ CLEAR ODA ~ %X0100 } 
{ Parameters - None } 
{ Indicates start of sequence to set viewport center } 
{This sequence is CLEAR DOA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT} 

VAR a , b : I n t 16 ; 

BEGIN 
In DOA := TRUE; 
Get value (a ); 
Get~value ( b ); 
Writeln(Outfi le,'{Clear DOA}'); 

ENO; 

PROCEDURE Write LGS: 
{ WRITE LINE GENERATOR STATUS - %X0200 } 
{ Parameters - Status word (one word) } 
{Bit 8 : Dot mode. } 
{Bit 6 : Fast sweep (Opposite of 7) } 
{ c:.i.~ c 4· ""'n"'raA ... A- 1 ec"1'0- '"'O -·in •• -~--'' U I l;:. ..J - , \Ju I l ;::> t ;) c; I ~ II \ U -111 I 1 I I -!lld.A J f 

{Bits 3 - 0: Scope select( 1 disables,O enables)} 

VAR lgs,a : lnt16; 

BEGIN 
Get value ( lgs ); 
Get-value (a ); 
Writeln(Outfi le,'{Write LGS:' ,HEX(lgs),'}'); 

END; 

PROCEDURE Write Pick Bound; 
{ WRITE PICK BOUNDARY - %X0300 } 
{Parameters - Left, Right, Bottom, Top} 

VAR I , r , b , t , a I n t 1 6 ; 

BEGIN 
Get value ( i ); 
Get-value ( r ); 
Get-value ( b ) ; 
Get-value ( t ); 
Get-value ( a ); 
Writeln(Outfi le,'{Write Pick bound:' ,HEX(l),HEX(r),HEX(b),HEX(t),'}'); 

END; - -



PROCEDURE Write Color; 
{ WRITE COLOR --%X0400 } 
{ Parameters - Color value (one Word) } 
{Bit 15 : Not Used } 
{Bits 14 - 8 : Hue (High order in 14)} 
{Bit 7 : Not Used } 
{Bits 6 - 3 : Sat (High order in 3) } 
{Bits 2 - 0 : Not Used } 

VAR c , a : I n t 16 ; 

BEGIN 
Get value ( c ); 
Get-value ( a ) ; 
W r it e I n (Ou tf i I e , ' {W r i t e Co I a r : ' , HEX ( c) , ' } ' ) ; 

ENO; -

PROCEDURE Write Texture; 
{ WRITE TEXTURE-- %X0500 
{ Parameters - Texture value 
{Bits 15 - 7 : Nat Used 
{Bits 6 - 0 : Texture bit 

VAR t ,a : lnt16; 

BEGIN 
Get value ( t ); 
Get-value ( a ); 

} 
(one word) 
} 

pattern 

} 

} 

Wriieln(Outfi le,'{Write Texture:' ,HEX(t),'}'); 
ENO; -

PROCEDURE Clear Save Point; 
{ CLEAR SAVE POINT --%X0600 } 
{ Parameters - None }J' 

VAR a,b : lnt16; 

BEGIN , 
Get value ( a ); 
Get-val.ue ( b ) ; 
Writeln(Outfi le,'{Clear Save Paint:}'); 

END; - -

PROCEDURE Set Pick Id; 
{ SET PICK ID-- %X0700 } 
{ Parameters - Pick Id Pointer (two words)} 

VAR a,b : lnt16; 

PS 300 Writeback Feature - 17 



18- PS 300 WRITEBACK FEATURE 

BEGIN 
Get value ( a ); 
Get-value ( b ); 
Writeln(Outfi le,'{Set Pick Id:' ,HEX(a),HEX(b),'}'); 

END; - -

PROCEDURE Set_Lightpen_Mode; 
{ SET LIGHTPEN MODE - %X0800 } 
{ Parameters - Control mask } 
{ Tracking cross y } 
{ Tracking cross x } 
{ Delta distance } 
{ Delta frames } 

VAR cm,x,y,dd,df : lnt16; 

BEGIN 
Get value ( cm ); 
Get-value ( x ) ; · 
Get-value ( y ); 
Get-value ( dd ); 
Get-value ( df ); 
Writelr.(Outfi le,'{Set Lightpen_mode:' ,HEX(cm),HEX(x),HEX(y), 

HEX(dd),HEX(df),'}'); 
END; 

PROCEDURE Enable Pick; 
{ ENABLE PICK - %X0900} 
{ Parameters - None } 

VAR a , b : I n t 16 ; 

BEGIN 
Get va I uec.>( a ) ; 
Get-value ( b ); 
Wriiiln(Outfi le,'{Enable Pick:}'); 

ENO; -

PROCEDURE Disable Pick; 
"' { DISABLE PICK ... %XOAOO } 

{ Parameters - None } 

VAR a,b : lnt16; 

BEGIN 
Get value ( a ); 
Get-value ( b ); 
Wr iie I n(Out f i I e, '{Di sab I e Pi ck:}'); 

E~; -



PROCEDURE Enable Writeback; 
{ ENABLE WRITEBACK - %XOBOO } 
{ Parameters - Line Texture } 
{ line Gen Status} 

VAR a,b : lnt16; 

BEGIN 
Get value ( a ); 
Get-value ( b ); 

PS 300 Writeback Feature - 19 

Writeln(Outfi le,'{Enable Writeback:' ,HEX(a),HEX(b),'}' ); 
END; -

PROCEDURE Disable Writeback; 
{ DISABLE WRITEBACK - %XOCOO } 
{ Parameters - None } 

VAR a,b: lnt16; 

BEGIN 
Get value ( a ); 
Get-value ( b ); 
Writeln(Outfi le,'{Disable Writeback:}'); 

EOO; -

PROCEDURE Set Blink Rate; 
{ SET BLINK RXTE - iXODOO } 
{Parameters - Blink rate} 

VAR a,b : lnt16; 

BEGIN 
Get value (a ); 
Get-value ( b ); 
Writeln(Outfi le, '{Set Blink Rate:' ,HEX(a),'}'); 

END; - -

PROCEDURE Enable Blink; 
{ ENABLE BLINK --%XOEOO } 
{ Parameters - None } 

VAR a , b : I n t 1 6 ; 

BEGIN 
Get value ( a ); 
Get-value ( b ); 
Writeln(Outfi le,'{Enable Blink:}'); 

END; -



20 - PS 300 WRITEBACK FEATURE 

PROCEDURE Disable Blink; 
{ DISABLE BLINK --%XOFOO } 
{ Parameters - None } 

VAR a , b : I n t 16 ; 

BEGIN 
Get value ( a ); 
Get-value ( b >·i 
Wriieln(Outfi le,'{Disable Blink:}'); 

END; -

PROCEDURE End Of Frame; 
{ END OF FRAME --%X1700 } 
{ Parameters - None } 

VAR a , b : I n t 16 ; 

BEGIN 
Get va I ue ( a ) ; 
Get-value ( b ); 
Writeln(Outfi le, 1 {End Of Frame:}'); 

C~· - -
L.n&.1' 

PROCEDURE Viewport_Center; 
{ VIEWPORT CENTER - %X1800} 
{ Parameters - x center } 
{ y center } 
{ z center } 

VAR xc,yc,zc,a,b : lnt16; 

BEGIN 
Get value ( xc ) ; 
GeCvalue ( ye ) ; 
Get-value ( zc ); 
Get-value ( a ); 
Get-value ( b ); 
vx := xc; 
IF (vx >= 32768) THEN vx := vx - 65536.0; 
vx := vx/32767; 
vy :=ye; 
IF (vy >= 32768) THEN vy := vy - 65536.0; 
vy := vy/32767; 
vz := zc; 
IF (vz >= 32768) THEN vz := vz - 65536.0; 
vz := vz/32767; 
Writeln(Outfi le, '{Viewport_Center:' ,vx:6:6,' 1 ,vy:6:6,' ',vz:6:6, '}'); 

END; 



PROCEDURE Process Vector; 
{Vector - Bit 15-of command= 1 } 
{ Word 1 ( command ) } 
{Bit 15 : Always one for vector} 
{Bit 14: 1 =Draw, 0 =Move} 
{Bits 12 - 6 : lntensity/2 } 
{Bits 5 - 0 : Not Used } 
{ Word 2 ( y coord) } 
{Bits 15 - 13: Not Used } 
{Bits 12 - 0: Y coordinate } 
{ Word 3 ( x coord) } 
{Bits 15 - 13: Not Used } 
{Bits 12 - 0: X coordinate } 

VAR a,b : lnt16; 
un : UNSIGNED; 
p I : CHAR; 
int,x,y : REAL; 

BEGIN 
Get value ( a ); 
Get-value ( b ); 
un:;command; 
p I:=' I' ; 
IF (UAND(un,%X4000) = 0) THEN pl := 'p'; 
un := UAND(un,%X1FCO); 
int := un; 
IF In DOA THEN 

vz == int/8128.0 
ELSE 

int := (int/8128.0 + vz) * 2; 
un := a; 
un := UAND(un,%X1FFF); 
y := un; 
IF (y >= %X1000) THEN y := y - %X2000; 
IF In DOA THEN 

vy == y I %XFFF 
ELSE 

y := y I %XFFF + vy; 
un := b; 
un := UAND(un,%X1FFF); 
x := un; 
IF (x >= %X1000) THEN x := x - %X2000; 
IF In DOA THEN 

vx == x I %XFFF 
ELSE 

x := x I %XFFF + vx; 
IF In ODA THEN 

BEG TN 

PS 300 Writeback Feature - 21 



22- PS 300 WRITEBACK FEATURE 

Wri teln(Outfi le, '{New View Center:' ,vx:6:6,' ',vy:6:6,' ',vz:6:6, '}'); 
In DOA := FALSE; 

- END 
ELSE 
Writeln(Outfile,'{Vec ',pl,' 1 ,x, 1 , 1 ,y, 1 i=',int,'}'); 

ENO; 

PROCEDURE Unknown; 
VAR a , b : I n t 16 ; 

BEGIN 
Get value (a ); 
Ge t-va I ue ( b ) ; 
Writeln(Outfi le,'{Unknown:' ,HEX(command),HEX(a),HEX(b),'}'); 

END; 

BEGIN { Writeback} 
Write ('Enter Output Fi le Name:'); 
Readln(Outname); 
Write ('Enter Writeback Operate Node Name:{WB$ is default mode}'); 
Read I n(wbname); 
open(Outfile,Outname,new); 
rewrite(Outfi le); 

{Look for file specifying line for pattach procedure} 
{Example of record in PSDEV.OAT: } 
{ 'logdevnam=tt:/Phydevtyp=async' } 
open(devfi le, 'psdev' ,old); 
reset(devf i le); 
readln(devf i le,devspec); 
close(devfi le); 

PATTACH(devspec,err); { Attach to PS 350 } 
Setup; { Setup writeback network } 

PNAMENIL('SCREENSAVE', ERR); 
PPURGE (ERR) ; 
PSndBool(TRUE,1 ,wbname, Err); {Trigger write back operate} 

Next_block; {Read in first block of writeback data} 

Index := O; 
Command := O; 
vx := 0.0; 
vy := 0.0; 
vz := 0.0; 

{Process writeback buffers unti I ENO OF FRAME or ENO WRITEBACK} 
WHILE (Command <> %XOCOO) ANO (Command <> %X1700) DO 

,< 
[.> 



PS 300 Writeback Feature - 23 

BEGIN 
Get value(Command); 
IF (Command> 32767) THEN { If bit 15 of command if set} 

Process vector 
ELSE -
CASE (Command DIV 256) OF 

%X01 Clear DDA; 
%X02 Write-LGS; 
%X03 Write-Pick Bound; 
%X04 Write-Color; 
%X05 Write-Texture; 
%X06 Clear-Save Point; 
%X07 Set Pick Id; 
%X08 Set=lightpen_Mode; 
%X09 Enable Pick; 
%XOA Disable Pick; 
%XOB Enable Writeback; 
%XOC Disable Writeback; 
%XOO Set BI ink Rate; 
%XOE Enable BITnk; 
%XOF Disable Blink; 
%X17 End Of Frame; 
%X18 : Viewport_Center; 
OTHERWISE Unknown; 

END; { CASE } 
END; 

PFNINST('SCREENSAVE', 'SCREENSAVE', ERR PDETACH(ERR); 
PPURGE(ERR): 
{} 

END. { Writeback} 





E&S CUSTOMER SERVICE TELEPHONE INFORMATION LIST 

Evans & Sutherland Customer Engineering provides a central service numbered staffed by CE 
representatives who are available to take requests from 9:00 a.m. Eastern Time to 5:00 p.m. 
Pacific Time (7:00 a.m. to 6:00 p.m. Mountain Time). All calls concerning customer service 
should be made to one of the following numb.ers during these hours. Before you call, please 
have available your customer site number and system tag number. These numbers are on the 
label attached to your PS 300 display or control unit. 

Customers in the continental United States should call toll-free: 

1 + 800 + 582-4375 

Customers within Utah or outside the continental United States should call Dispatch at: 

(801) 582-9412 

If problems arise during product installation or you have a question that has not been answered 
adequately by the customer engineer or the customer service center, contact the regional 
manager at one of the following Customer Engineering offices: 

Eastern Regional Manager Western Regional Manager 
(for Eastern and Central Time Zones) 
(518) 885-4639 

(for Mountain and Pacific Time Zones) 
(916) 448-0355 

If the regional office is unable to resolve the problem, you may want to call the appropriate 
department manager at corporate headquarters: 

National Field Operations 
(for field service issues) 
(801) 582-5847, ext 4843 

Sof~are Support 
(for sofware issues) 
(801) 582-5847, ext 4810 

Director of Customer Engineering 
(for any unresolved problem) 

(801) 582-5847, ext 4840 

Technical Support 
(for hardware issues) 
(801) 582-5847, ext 4868 





READER COMMENT FORM Publication Number --------

Your comments will help us provide you with more accurate, complete, and useful 
documentation. After making your comments in the space below, cut and fold this form as 
indicated, and tape to secure (please do not staple). This form may be mailed free within 
the United States. Thank you for your help. 

How did you use this publication? 

0 General information 0 As a reference manual 
D Guide to operating instructions 0 Other------------

Please rate the quality of this publication in each of the following areas. 

EXCELLENT GOOD FAIR POOR 

a a a 0 
Technical Accuracy 

Is the manual technically accurate? 

Completeness 
Does the manual contain enough information? a a a a 

Readability 
Is the manual easy to read and understand? a a a a 

Clarity 
A re the instructions easy to follow? a a a a 

· Organization 
Is it easy to find needed information? 0 0 0 0 

0 
Illustrations and E>lamples 

A re they clear and useful? 0 0 a 
Physical A ttractlveness 

What do you think of the overall appearance? D 0 0 0 

What errors did you find in the manual? (Please include page numbers) _______ _ 

Street-------------

Title ------------- City _____________ _ 

State --------------Department----------
Company __________ _ 

Zip Code-------

All comments and suggestions become the property of Evans & Sutherland. 



Fold 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 4632 SALT LAKE CITY, UTAH 

POSTAGE WILL BE PAID BY ADDRESSEE 

EVANS & SUTHERLAND 
580 Arapeen Drive 
Salt Lake City, Utah 84108 

ATTN: IAS TECHNICAL PUBLICATIONS 

Fold 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

' "' I~ 

' 'O 
·! :o 
' 'O 

' "' ' :;: 
I .:: 

' "' ' ~ 

:8 
' 
' 

' 


