
PS 390 DOCUMENT SET 

TOOLS AND TECHNIQUES 1-10 

The contents of this document are not to be reproduced or 
copied in whole or in part without the prior written permission 
of Evans & Sutherland. Evans & Sutherland assumes no 
responsibility for errors or inaccuracies in this document. It 
contains the most complete and accurate information 
available at the time of publication, and is subject to change 
without notice. 

PS 300, PS 330, PS 340, PS 350, PS 390, and Shadowfax are 
trademarks of the Evans & Sutherland Computer Corporation. 

Copyright © 19 8 7 
EVANS & SUTHERLAND COMPUTER CORPORATION 

P.O. Box 8700, 580 Arapeen Drive 
Salt Lake City, Utah 84108 



TOOLS AND TECHNIQUES 

The Tools and Techniques (TTJ-10) volume contains programming aids for the 
PS 390 user. It includes information such as application notes, helpful hints, how 
to use the various editors, using the GSRs, and using the ASCII-to-GSR converter. 

Tfl Application Notes 

This section contains a collection of applications for PS 390 users. Contri­
butions to this section come from users inside and outside of Evans & 
Sutherland. 

TI2 Helpful Hints 

This section contains task-oriented information such as defining break keys, 
using the SITE.DAT file, and name suffixing. This section assumes a good 
working knowledge of the PS 390 and some programming experience. 

TI3 Using the GS Rs 

This section is an introduction to using the graphics support routines 
(GSRs). The GSRs are a set of host-resident software routines that are the 
standard vehicle for communication to the PS 390 from the host. The GSRs 
can be used with the FORTRAN, Pascal and UNIX/C programming lan­
guages. 

Tf 4 Function Network Editor 

This section describes NETEDIT which permits the user to create a function 
network using a diagram on the PS 390 display rather than directly input­
ting commands to a file. 

TIS Functiion Net work Debugger 

This section describes NETPROBE which is used as a guide in preparing a 
user-written network debugging program. 

TI6 Data Structure Editor 

This section describes STRUCTEDIT which is a graphical display structure 
editor for the PS 390. 



TI7 Character Font Editor 

This section describes MAKEFONT which is a program that allows a user to 
edit an existing character font or create a new one. 

TIS ASCII to GSR Converter 

This section describes the ASCII-to-GSR conversion program which allows a 
user to combine ASCII programming with the faster data communication 
speeds available through the GSRs. 

TI9 Transformed Data and Writeback 

This section provides information on how to retrieve transformed data such 
as a matrix or vector-list representation of transformation operations. 

Til 0 Crash Dump File 

This section explains how to read back the crash dump file which is created 
when a system crash occurs. 





Tfl. APPLICATION NOTES 

CONTENTS 

1 CURSOR REDEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2 DEFINING A DYNAMIC CURSOR . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

3 WORLD-SPACE ROTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

4 OBJECT-SPACE ROTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

5 RATIONAL POLYN01\1IAL COMMAND USAGE . . . . . . . . . . . . . . 10 

6 PROPORTIONAL SCALING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

7 LOCAL INKING OF TABLET COORDINATES . . . . . . . . . . . . . . . . 14 

8 LOCAL RUBBER BANDING OF TABLET COORDINATES . . . . . 15 

9 LOCAL GRID BANDING OF TABLET COORDINATES . . . . . . . . 17 

10 TRANSLATION NET\VORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

11 ANIMATION SEQUENCING WITH CLOCK FUNCTION . . . . . . 21. 



12 FRAME-BY-FRAME ANIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

13 MENU SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

14 ROTARY SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

15 SHIFT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

16 FUNCTION NETWORK SEQUENCING . . . . . . . . . . . . . . . . . . . . . 29 

17 IF-THEN-ELSE CONSTRUCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

18 A REALTIME ANALOG AND DIGITAL CLOCK . . . . . . . . . . . . . 33 

19 BLINKING USING SET RATE EXTERNAL . . . . . . . . . . . . . . . . . . 36 

20 LOCAL INKING OF TABLET COORDINATES . . . . . . . . . . . . . . . 38 

21 INTEGER INPUT VIA NUMERIC KEYPAD . . . . . . . . . . . . . . . . . 40 

22 MATRIX TRANSPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

23 LASER DISK CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

24 HIGH SPEED COMMUNICATION . . . . . . . . . . . . . . . . . . . . . . . . . 49 

ll 



ILLUSTRATIONS 

Figure 1-1. World-Space Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Figure 1-2. World-Space Rotation Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Figure 1-3. Object-Space Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Figure 1-4. Object-Space Rotation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Figure 1-5. Proportional Scaling Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Figure 1-6. Inking Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Figure 1-7. Rubber-Banding Network................................... 16 
Figure 1-8. Grid-Banding Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Figure 1-9. Translation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Figure 1-10. Animation Sequencing On-The-Fly . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Figure 1-11. Animation Replay and Reset Network . . . . . . . . . . . . . . . . . . . . . . . 22 
Figure 1-12. Frame-by-Frame Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Figure 1-13. Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Figure 1-14. Menu Selection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Figure 1-15. Rotary Switch Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Figure 1-16. Shift Register Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Figure 1-17. Function Network Sequencing.............................. 29 
Figure 1-18. Sequential Executing Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Figure 1-19. IF-THEN-ELSE Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Figure 1-20. Clock Network............................................ 34 
Figure 1-21. Analog Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Figure 1-22. Blinking Network......................................... 36 
Figure 1-23. M:BLINK Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Figure 1-24. Inking Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
Figure 1-25. Keypad Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Figure 1-26. Matrix Transpose Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Figure 1-27. Hardware Diagram for PS 390/Laser Disk Configuration . . . . . . 44 
Figure 1-28. Laser Disk Controller Network............................. 46 



Section Til 

Application Notes 

The PS 390 Application Notes is a collection of useful information and applications 
for PS 390 users. Contributions to the PS 390 Application Notes come from inside 
and outside of Evans & Sutherland. Each note includes the author's name and 
company. The notes are numbered arbitrarily for referencing only. 

Users will develop ways of using the PS 390 that may be valuable for a wide range 
of applications. By publishing PS 390 Application Notes, Evans & Sutherland is act­
ing as a clearinghouse to make your ideas and techniques generally available to 
other users. These notes have been written by PS 390 users and have not been 
rigorously tested. If you encounter errors or bugs in these Application Notes when 
you use them, please notify Evans & Sutherland. 

These notes might describe an intricate function network that performs an impor­
tant operation, show a new and useful way of structuring data, or they may provide 
something as simple as programming conventions or debugging methods that have 
helped you. In other words, almost any idea that you think may be useful for other 
PS 390 users is a candidate for the PS 390 Application Notes. 

Please submit an Application Note for each idea you have to Evans & Sutherland. 
We will compile them and distribute them periodically to all PS 390 sites. We may, 
of course? not be able to publish every note submitted to us. Following is a descrip­
tion of the format we have used for this release of the Application Notes. Please 
follow the same format when you submit an Application Note. Submit your Appli­
cation Notes and comments you may have to: 

Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Format Note 

When actual code appears in an Application Note, the PS 390 commands are writ­
ten with essential syntax in caps. Non-essential syntax is in lower case. For exam­
ple, BEGJN_Structure indicates that it is necessary to enter only BEG!N_S. 

Application Notes TFl-1 



ITJ-2 

PS 390 Application Note Fonn Instructions 

Your Name 
Department 
Company 
City 
Date 

Categories 

(Title of Note Here) 

List all possible categories for this note, for example: data structuring, 
function networks, command usage, host communications, animation, trans­
formations, etc. Your note may fall into different categories. 

Description 

Briefly describe the function or application and tell why the new application 
is useful: what need it fills, what new thing it does, or what old thing it does 
in a new and easier way. 

Implementation 

Insert specific details about using the application. If the procedure is com­
plex, describe it "top-down": 

• First explain the "big picture?! or supply a block diagram 

• Then describe in detail each piece of the overall description or block 
in the diagram. 

Do not start at the level of greatest detail unless the application is extremely 
simple. 

Notes, Examples 

Include an example of the application. For users, this could mean the differ­
ence between understanding and not understanding how to use your applica­
tion when they can't find their way through the Description and Implemen­
tation. 

Also put here any warnings or side notes you think might help someone to 
understand and use your application. 

Tools and Techniques 



Kerry Evans 
Evans & Sutherland 
Salt Lake City, Utah 
December 19 81 

Categories 

Application Note 1 

Cursor Redefinition 

Screen cursor, data structuring 

Description 

This describes how the screen cursor may be redefined to be a symbol other 
than the default cursor, which is an "X". 

Implementation 

The default cursor is defined as a vector _list by a command of the form: 

CURSOR := VECtor_list ITEMized n = 4 
p -.035, -.035 
L .035, .035 
p -.035, .035 
L .035, -.035; 

To redefine the cursor as a square, simply redefine "CURSOR'~ in the fol­
lowing manner: 

CURSOR := VECtor list ITEMized n = 5 
-.035, -.035 

Notes, Examples 

-.035, .035 
.035, .035 
.035, -.035 

-.035, -.035; 

The original cursor definition is lost until redefined in its original form by 
the user or until the PS 390 is powered on again. The INITialize command 
does not restore the default cursor definition. 

Application Notes TTJ-3 



Kerry Evans 
Evans & Sutherland 
Salt Lake City, Utah 
December 1981 

Categories 

Application Note 2 

Defining a Dynamic Cursor 

Screen cursor, data structuring 

Description 

The screen cursor may be redefined! to provide two different shapes - one 
when the data tablet pen tipswitch is up or open, and another when it is 
down or closed. 

Implementation 

Redefine the cursor as 

CURSOR := BEGIN Structure 
UP_DOWN SET conditional BIT 1 OFF; 

IF conditi0nal BIT 1 is ON THEN C_SQUARE; 
IF conditional BIT 1 is OFF THEN C_CROSS; 

END Structure; 

C_SQUARE := VECtor_list ITEMized n 5 
-.035, -.035 
-.035, .035 

.035, .035 

.035, -.035 
-.035, -.035; 

C CROSS := VECtor list ITEMized n = 4 
p -.035, -.035 
L .035, .035 
p .035, -.035 
L -.035, .035; 

TI'l-4 Tools and Techniques 



Now connect the data tablet tipswitch Boolean value (output 2) to control 
which cursor symbol is displayed: 

CONNect Tabletin<2>:<l>CURSOR.UP_DOWN; 

Notes, Examples 

The original cursor definition is lost until redefined in its original form by 
the user or until the PS 390 is powered on again. The INITialize command 
does not restore the default cursor definition. 

Application Notes Tfl-5 



ITJ-6 

Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
February 1982 

Categories 

Application Note 3 

World-Space Rotations 

World-space rotations, object-space rotations, screen-space rotations 

Description 

A very desirable way of performing three-dimensional rotations is to know 
beforehand just what direction the object you are rotating is going to move. 
One way of doing this is to perform world-space (world-centered) rotations 
-that is, when you turn, say, the X rotation dial, you know the rotation will 
be about the world-space X axis. Likewise, of course, for Y and Z rotations. 
(See also object-space rotations.) 

Wy 

Wz 

Wx 
IAIOll7 

Figure 1-1. World-Space Rotations 

Tools and Techniques 



Implementation 

To get true world-space rotations, the rotations need to be processed in the 
order that they come in (that is, they need to be post-concatenated to the 
current matrix). The network to do this is shown in the diagram below. 

DIALS(i) 

180 
c 

DIALS(j) 

180 
c 

DIALS(k) 

180 ~ 

WS....xmulc 

F:MULC 

W!Lymulc 

F:MULC 

W5_zrnt1/C 

F:MULC 

ws_rt1st1I 

F:XROTATE i--------, 

~~ 
c F:~ (l}(Rotatian clata node) 

(Initialize (t)Jf"S'_rotate to the identity 
rnat'rix by sending 0 to ( 1 )WS_rese t) 

IAS0228 

.Figure 1-2. World-Space Rotation Networks 

The output of the last function should also be connected to the appropriate 
rotation node in the data structure. 

Notes, Examples 

If you are rotating an object about the world-space axes and viewing it from 
the negative Z axis, the space screen coordinates and world-space coordi­
nates will coincide - the space-screen rotations will in effect be the same as 
the world-space rotations. 

There should only be one rotation node in the data structure (not one each 
for X, Y, and Z rotations). This node can be created with the ROTate X, 
ROTate Y, or ROTate Z commands. 

To reset the network and rotation node in the data structure, just put an 
identity matrix on input <1> of WS_Rotation. This can be done by connect­
ing an instance of F:XROTATE to it and sending a 0 to input <1> of 
WS Reset. 

Application Notes TTI-7 



TTJ-8 

Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
February 1982 

Categories 

Application Note 4 

Object-Space Rotations 

Object-space rotations, world-space rotations, data-space rotations 

Description 

A very desirable way of performing three-dimensional rotations is to know 
beforehand just what direction the object you are rotating is going to move. 
One way of doing this is to perform object-space (object-centered) rotations; 
that is, when you turn, say, the X rotation dial, you know the rotation will 
be about the X axis of the original object definition space. Likewise, of 
course, for Y and Z rotations. (See also world-space rotations). 

Wy 

Oy 

~ 
I 

·--~Wz 
' 
tlr(Ox 

Wx 
IAIOID 

Figure 1-3. Object-Space Rotations 

Tools and Techniques 



Implementation 

To get true object space rotations, the rotations need to be processed in the 
reverse order that they come in (that is, they need to be pre-concatenated to 
the current matrix). The network to do this is shown in the diagram below. 

OS:.....Xnvlc 

DIALS(i) 05-Xrolole 

F:MULC F:XROTATE (Initialize (f)OS_Rofate to the identity 

180 
c nntrix by sending 0 to {1)0S_reset) 

os_Ymulc 

DIALS(j) os_Yrolale Os..J?olole 

F:MUj l (f)(Rotation data node} 
F:MULC F:YROTATE 

180 
c 

c 

05-Z!TX.1 I c 

DIALS(k) OS.....Zrololt1 

F:MULC F:ZROTATE 
180 

c 

O!L.Rssel 

~ROTATE 
IAS0230 

Figure 1-4. Object-Space Rotation Network 

The output of the last function should also be connected to a rotation node 
in the data structure. 

Notes, Examples 

There should only be one rotation node in the data structure (not one each 
for X, Y, and Z rotations). This node can be created with the ROTate X, 
ROTate Y, or ROTate Z commands. 

To reset the network and rotation node in the data structure, put an identity 
matrix on input <1> of OS_Rotation. This can be done by connecting an 
instance of F:XROTATE to it and sending a 0 to input <1> of OS_Reset. 

Application Notes D'/-9 



Application Note 5 

Rational Polynomial Command Usage 

Marty Best, Bill Armstrong 
Evans & Sutherland 
Salt Lake City, Utah 
April 1982 

Categories 

Circles, ellipses, curve generation, RATIONAL POLYNOMIAL 

Description 

The Polynomial commands that are available on the PS 390 offer a power­
ful means of building curve shapes without transmitting large numbers of 
vectors. Unfortunately, use of the Polynomial commands requires an under­
standing of curve generation and a routine for computing the curve parame­
ters to be sent to the PS 390. Only users experienced in curve generation, 
for the most part, will find a specific use for them. 

Some basic curve shapes, however, can be adapted to many applications 
and are simple to implement. 

The command detailed below can be modified to draw a circle of a given 
radius, or an ellipse of a specified size. Of course, these primitives can be 
instanced by any other structure and translated, rotated, or scaled. 

Implementation 

TTJ-10 

A circle must be defined in two parts using a RATIONAL POLYNOMIAL 
command. It can then be included in a BEGIN Structure ... END Structure - -
and referenced as a single entity. The syntax is as follows: 

Tools and Techniques 



CIRCLE BEGIN_Structure 
RATional POLYnomial 

2r, 0, 0, 2 
-2r, -2r, 0, -2 

0, r, 0, 1 

CHORDS=25; 
RATional POLYnomial 

2r, 0, 0, -2 
-2r, -2r, 

0, r, 

CHORDS=25; 
END_Structure; 

0, 2 

0, -1 

where r is the desired radius of the circle. The number of chords have been 
set at 25 to give a smooth appearance. 

Notes, Examples 

The two RATIONAL POLYNOMIAL commands given above define the 
right and left semicircles of the circle and can be made the top and bottom 
semicircles by exchanging the X and Y columns (Columns 1 and 2). 

The above circle can be modified to give an ellipse as :follows: 

ELLIPSE .- BEGIN_Structure 
RATional POLYnomial 

2a, 0, 0, 2 
-2a,-2b, 0, -2 

0, b, 0, 1 

CHORDS=25; 
RATional POLYnomial 

2a, 0, 0, -2 
-2a,-2b, 0, 2 

0, b, 0, -1 

CHORDS=25; 
END_Structure; 

where a and b are the major and minor axes of the ellipse. Again the num­
ber of chords has been chosen for smoothness. 

Application Notes 1Tl-ll 



Application Note 6 

Proportional Scaling 

Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
September, 1982 

Categories 

Scaling 

Description 

TIJ-12 

A dial is usually used to accumulate the scale factor in standard scaling 
networks. It's hard to control scaling this way, though, since the current 
scale factor becomes very small or very large in proportion to the new dial 
value. For example: 

Current Scale Factor New Dial Value 

0.01 .1 

100.00 .1 

New Scale Factor 

0.11 
100.10 

% Increase 

1000.0 
0.1 

When the current scale factor is small, the effect of a turn of the dial is 
large, and vice versa. 

The network shown below will correct this problem by making the effect of 
the dial proportional to the current scaling factor. Using this network the 
chart shown above will look like: 

Current Scale Factor New Dial Value 

0.01 .1 
100.00 .1 

New Scale Factor 

0.011 
110. 00 

% Increase 

10 
10 

Tools and Techniques 



Implementation 

DIALS(i) 

1 

100 

. 01 

Application Notes 

Prop__Sco!e 

( 1) l 
i 

c i 
(2) I 

c 
F:DSCALE 

(1) r-
1( 3) 
I 

c J( 4} 
(2) f----

I 
c J( 5 > 

(1)(Scale node) 

IAS0231 

Figure 1-5. Proportional Scaling Network 

ITI-13 



Application Note 7 

Local Inking of Tablet Coordinates 

Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
June 1982 

Categories 

Inking, F:XOR 

Description 

Inking is the technique of using an input device (usually the data tablet) to 
sketch "freehand." This application note describes a function network that 
will allow the user to do inking with the data tablet. 

Implementation 

The network is as follows. Data structure A should be DISPiayed and be 
created with a command such as: 

A := VEC n=lOOO 0,0; 

(The n=1000, or some other number, allocates a block of memory for the 
vector list). 

TABLET IN 

(1--------- (APPEND>A 

l) (2 INK....Polnls INK.J'o~ !1111 /N/(_J_ /n8 

F:CBROUTE F: POS ITION_LINE F:CONSTANT 
T c 

(e 
/N/(_Pos 

F: BROU:J-----

F c ~~-
IAS0232 

Figure 1-6. Inking Network 

Notes 

TIJ-14 

To use this, press and release the data tablet pen to start inking and then 
press and release it again to stop inking. Do this as many times as needed. 

Tools and Techniques 



Application Note 8 

Local Rubber Banding of Tablet Coordinates 

Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
June 1982 

Categories 

Rubber banding, grid banding 

Description 

This note describes a function network to do rubber banding using the data 
tablet. 

Rubber banding is the technique of displaying a line segment that extends 
from some fixed point to the data tablet cursor and moves along with the 
cursor until some indication is given (such as pressing the data tablet pen 
switch) to fix the line segment at the current position. This way you can see 
the lie of the line before you finish positioning it. 

Implementation 

The network is as follows. Data structure A should be DISPiayed and be 
created with a command such as: 

A := VEC n=lOOO 0,0; 

(The n=1000, or some other number, allocates a block of memory for the 
vector list). 

Application Notes ITI-15 



TABLBTIN 
(1 

J) <• 
a) (I 

(3) (4 

4) (II 

<• 

(APPENO)A 

P:CO!iSTANT 1 :POS ITIOR..LINI: 

(LAST)A 

Figure 1-7. Rubber-Banding Network 

(LAST)A 

Tah...XY 

VARIABLE 

IAS0233 

Notes 

ITJ-16 

To use this network, press and release the stylus on the data tablet to fix the 
first position. Moving the stylus around on the tablet now will create a rub­
ber band line from the initial position to the cursor. 

Pressing and releasing the stylus again will fix this line segment, and a new 
rubber band line will start from this last point to the next point you press 
down on and so on. To break this continuous line and start a new series of 
rubber band segments, you must move the stylus away from the tablet sur­
face. This will cause the current rubber band line to disappear; a new one 
will start as soon as a new starting position is selected. 

Tools and Techniques 



Application Note 9 

Local Grid Banding of Tablet Coordinates 

Kerry Evans 
Evans & Sutherland 
Salt Lake City, Utah 
April 1982 

Categories 

Grid banding, rubber banding, function networks, data tablet 

Description 

This note describes a function network which takes 2D coordinates from the 
data tablet and constrains the points to fall on grid points of a user-defined 
grid - that is, it performs rubber banding to discrete points on a grid. We 
call this grid banding (see also Application Note 8.) 

Implementation 

Use the same network as that for rubber banding (Application Note 8), but 
instead of connecting the tablet xy position (TABLETIN <1>) to the POSI­
TION __ LINE Function directly, connect the output of the DIVC Function in 

the network shown below to the POSITION LINE Function. 

Specify the number of grid points per unit by sending a real to input <1> of 
the NOP function. For example, sending 10 causes the vectors output from 
the DIVC function to lie on grid points 0.1 unit apart in X and Y. 

Application Notes TTJ-17 



CILAlvlc C!LPart:r CB....Xrovna' CILXf/~at CfLOr'lfC 

(l F:ROUND F:FLOAT 
F:MULC F:DIVC (1)Rubber_po!nt 

(I 
(Sea App. Note IB) I) P:PARTS C8-Yrovnd CILYfloat 

J':ROUND F:FLOAT 

IAS0234 

Figure 1-8. Grid-Banding Network 

Notes, Examples 

771-18 

Use just like rubber banding (Application Note 8). This is an easy way of 
doing rubber banding without having to be as accurate with pen positioning, 
especially if you are doings things like schematics or block diagrams. 

Tools and Techniques 



Kerry Evans 
Evans & Sutherland 
Salt Lake City, Utah 
April 1982 

Categories 

Application Note 10 

Translation Network 

Translation, F:ACCUMULATE 

Description 

This application note shows an example of how the ACCUMULATE func­
tion may be used to build translation vectors from the dials. Since ACCU­
MULATE can accept real numbers or vectors, it is a simple matter for it to 
accumulate "position." 

Implementation 

The following function network allows Dials 1, 2, and 3 to control the X, Y, 
and Z components of the Translate vector, respectively. 

DIALS(! F:XVECTOR 

Tran_Y 

DIALS{j 

Tro/1-? 
DIALS(k)~-VE-C-TO-R--. 

Trans/al• 
1} 

lnitia.L position or reset--------1c(ll) 

Mininun change in position per output c (s> 

Scale factor for input 1 (Real or V3D) c(.c.) 
F : ACCUMULATE < 1 (f)(Tra;nsla.tion data node) 

Upper limit (Real or l'3D) c (II) 

Lower Li:mi t (Real or Y3D)---------ic· (11} 

Figure 1-9. Translation Network 

Application Notes 

IAS0235 

TTJ-19 



Notes, Examples 

TTJ-20 

The X, Y, and Z vector functions build 3D vectors from the dial values, 
which get scaled by input <4> of ACCUMULATE and accumulated on input 
<2>. ACCUMULATE may be reset by sending the initial translation value to 
input <2>. But no output will be generated until input is received on <l>. 
This may be the result of turning a dial or sending a Boolean value to <1>. 

Scale factor and upper and lower limit may be real numbers (if uniform 
scaling and limiting in X, Y and Z is desired) or they may be vectors, in 
which case the components are applied individually in each dimension. In­
put <3> specifies the amount by which the accumulated sum must change 
before an output is generated. This amount is a real number greater than or 
equal to 0. 

Tools and Techniques 



Application Note 11 

Animation Sequencing with CLOCK Function 

Gary Cannon, Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
May 1982 

Categories 

Animation, F:CLCSECONDS 

Description 

This shows a method for using a series of clock functions 
(F:CLCSECONDS, F:CLFRAMES, and/or F:CLTICKS) to run through a 
sequence of actions. 

Implementation 

A clock can control some motion for a given time span, then stop and trig­
ger the start of the next clock in sequence, which controls some other mo­
tion. 

(I 

F :CLCSECONDS <• 

(Boo I ~!~1 : :~ 
Tr I 99 er ~====-=--=--=--=-~~-_-_---:__, 

------

(!! 

Controi network 
for fat sequence 

(i')-C I) 

(i,) c 11) 

Fa 1 se-c :1) 
(J 

TS!. l :CLCSf:CONDS <• 

• '~:_.__:_:_:~--~~~~----------_(_,I___, 

(,i' - Time interval 
j,j' - Sequence dur«t1on (#of ttmie intervals) 
k,k' - Adding value 
i, l' - Initial accurutator v~Cue 

Figure 1-10. Animation Sequencing On-The-Fly 

Application Notes 

Control network 
/or 2nd. sequence 

IAS0236 

ITJ-21 



Notes, Examples 

The actions best suited for this type of animation sequence are those that 
can use the summing outputs <1> or <2> to modify the currently displayed 
data structure. An example of this would be using output <2> to feed a 
rotation network that then modifies a rotation node in the displayed data 
structure. When output <3> of the clock generates a FALSE, a network 
could also be triggered to change the level of detail and change the data 
structure being viewed. 

To cycle repetitively through the sequence, input <2> of each of the timers 
needs to be reset to the initial value. This could be clone by having the NOT 
function of the last sequence trigger the following network (note that this 
network will also trigger the sequence to start over again "n" times). 

(iJ-~--t\l) 

(<. i--+-~----i<•> 

: : l':SYNC(N+l) 

<1ir--~(2) T lmer-5equ1nc:e1 

<• (Z)T ll'l'l9r-5tquenc:e2 

TSfl.Jlol ((• )----1---1c-.----t<"> <•ir----..--+-+--(2)T lmar....Sequencen 

• • • ~-+----+-+------:_(n+_1> ___ ___, S11/tn:Lf Add11r !),.,,, 

TTJ-22 

F:BROUTEC 
1 c 

n - Mlrbn· of tinwr• 
m - Ht.no/Jn• of tvnu '" r1e110 h 
<.1. •, ... (• - Dtu·ciHon o/ •ciah C'invr 

Figure 1-11. Animation Replay and Reset Network 

IAS0237 

Tools and Techniques 



Neil Harrington 
Evans & Sutherland 
Salt Lake City, Utah 
August, 1982 

Categories 

Application Note 12 

Frame-by-Frame Animation 

Animation, F:CLCSECONDS, F:MODC, Level-of-Detail 

Description 

This shows a method for using a clock function (F:CLCSECONDS, 
F:CLFRAMES, or F:CLTICKS) to cycle through a series of previously cal­
culated frames. Typically, each frame would consist of different transforma­
tions applied to the same objects. The modulo function allows for the ani­
mation to recycle indefinitely. 

Implementation 

F romt1_ T !ms r 

c, )~ 4) 

( Q )-----..C (II} 

True c 6) 

t - T-&ne. interval per frame 
n - Ntrnber of /ramsB 

Anlmotron 

( n) c 

Figure 1-12. Frame-by-Frame Animation 

Application Notes 

IAS0238 

TTl-23 



Notes 

TTJ-24 

1. Input <1> of Frame_Timer could be dynamically altered to change 
the speed of the animation sequence. 

2. Input <4> of Frame_ Timer could be dynamically altered to skip 
frames in the animation sequence. 

3. The clock could be stopped and a value sent to input <1> of 
Frame_Modulo to look at a particular frame in the sequence. 

Tools and Techniques 



Gary Cannon 
Evans & Sutherland 
Salt Lake City, Utah 
August, 19 82 

Categories 

Menus 

Description 

Application Note 13 

Menu Selection 

This function network allows you to do menu picking from a defined menu 
in a specific area of the screen. It uses simple math to produce a "box 
number" from the tablet X and Y coordinates. 

The menu boundaries are shown below as they would appear in a full 
screen viewport on the screen: 

1 l 2 I 3 I 4 

5 l 6 l 7 l 8 

Figure 1-13. Menu 

Application Notes TTl-25 



Each of the numbers shown is a value produced by the network when the 
screen cursor is in the menu box with that number and the stylus is pressed 
down on the tablet. Of course, these numbers should be replaced by de­
scriptive names for the real menu. 

Implementation 

The menu selection network is shown below: 

Figure 1-14. Menu Selection Network 

Notes 

With modifications to this network, menus of other sizes and shapes can 
easily be created. 

IAS0239 

TI'l-26 Tools and Techniques 



Carl Ellison 
Evans & Sutherland 
Salt Lake City, Utah 
August 1982 

Categories 

Application Note 14 

Rotary Switch 

Switching, Multiplexing, F:SYNC(n), F:ROUTE(n) 

Description 

The simplest form of multiplexing breaks a stream of items into a collection 
of streams by sending the first item to destination 1, the second to destina­
tion 2 ... , the nth to destination n, the (n+l) back to destination 1, and so on. 
As long as n<=20 the function network shown below can do that job. 

Im pl em en ta ti on 

Prir-nE with list of 
RS_Rolor 

switch output nurnhe·rs--~ 
F:SYNC(2) 

Data to be routed-i 

RS_Mu I I ip lexer 
~- (lt-

(2!1--

F:ROUTE(n) 

(n-1~ 

(n)r--

IAS02lt1 

Figure 1-15. Rotary Switch Network 

Application Notes ITJ-27 



Carl Ellison 
Evans & Sutherland 
Salt Lake City, Utah 
August, 1982 

Categories 

Shift register, F:SYNC(n) 

Description 

Application Note 15 

Shift Register 

F:SYNC(n) can be used to act as a shift register. It can be used, for exam­
ple, to achieve scrolling by feeding character strings to CHARACTER dis­
play nodes. 

Implementation Shl fl_Regisler 

(1) (1} 

(2) (2) 

Prime with 
---!------ (3) 

F:SYNC(N) 
in i ti a l v a l ue s (n-21 

(n-1) (n-q 

(n) (n} 

i_______ -

11\50242 

Figure 1-16. Shift Register Network 

Notes 

These F:SYNC functions could be cascaded to shift or scroll more than 20 
lines if needed. 

TTJ-28 Tools and Techniques 



Carl Ellison 
Evans & Sutherland 
Salt Lake City, Utah 
August, 1982 

Categories 

Application Note 16 

Function Net work Sequencing 

Function network sequencing, F:SYNC(n), function loops, synchronization 

Description 

This application note describes how to control when a function network, or 
series of networks, runs. The sequencing schemes described here are based 
on the use of a "GO" token which is passed around among F:SYNC(n) 
functions, controlling the activation of sub-networks. 

This type of network implementation can be safer, also, since it will not 
allow new tokens into a network until it has completely processed the cur­
rent tokens. 

Implementation 

The network shown below has its inputs and outputs controlled by 
F:SYNC(n) functions. This allows the network to "execute" completely be­
fore accepting new inputs: 

(Inputs For Nel 
( 1) 

(I} 

F:SYNC(I+1) 

< 1 > 

"GO"- (i+l} 

Application Notes 

(!!.e!_w'!.._1"1!) ______ -· __ _ 

I Arbitrary function network I 

I (possibly Including loops) 1 

I wl th I inputs and J outputs I 
--I I 

---------------' 
(i+l}r--------------·-------1(j+1} 

Figure 1-17. Function Network Sequencing 

F : SYNC (J + 1 ) 

(j+1} 

IAS0243 

ITl-29 



The network shown below shows an arbitrary number of sub-networks 
linked together. This forces the sequential processing of these networks. 

f
lJll F"!:__~f 1 

(1 
(1!.' !..~! I} - - - - - - - - - ,f~!."!'! nJ - - - - - - - - - "'1~ llf, F•r !NI II 

(I 

.I. 
I .t.rb It rory f"""""" notwork I 
I (poulbly Including loopo) I 
I wl th I lnpJh and J outpu lo I 

I 
________________ ! 

•
00
·1i:'. .. ,,: .. , 

~~~~·~~~~~~-

(I (I 

(I 

P :llYNC(J+I) 

(k 

(J•l) ("'') 

I) (1 

I Arbitrary fuROt Ion n•t-rk I 
0 <• I (poultly I no I ud Ing loop•) I 

I with K lnpult and L outp .. ta I : F:!l'YNC(L+I) 
I 

I> (I _______________ ! 

l+l) (1+1) 

IAS0244 

Figure 1-18. Sequential Executing Networks 

TTJ-30 Tools and Techniques 



Carl Ellison 
Evans & Sutherland 
Salt Lake City, Utah 
August, 1982 

Categories 

Application Note 17 

IF-THEN-ELSE Construct 

lF-THEN-ELSE, Boolean switch, F:BROUTE 

Description 

This application note shows how to implement an JF-THEN-ELSE construct 
using PS 390 functions. It assumes "i" values are input to test some 
Boolean relation. The values are then routed to one of two networks depend­
ing on the Boolean value that is output from the expression. This implemen­
tation is similar to the general programming statement: 

Application Notes 

IF <expression> THEN statementl 
ELSE statement2; 

TTI-31 



Implementation 

Input 
Varloble'I 

-------''<0° - - - - - - - - I 
-----'_:<•> Net'Wl:>rk to I 

:I : tJvaluatt! (1 

·I . tJEprl!Jsslon I 
I 

--.---+-+--!(I) 

----------' 

(Boo lean} 

I '-.Swl lcll f 

F:BROUTE 

,---------1--------'r) ( l}t--

IJ
(ll) Net.,,ork to c2-t-­

. eveluate . I . 
: statt!$~ntf :': 

I L.Swl lch2 

F:BROUTE 

I LS11·/ lcl111 

F:BROUTE 

<~> o-t--_________ , 
,---------

'--+--r> < 1}t--

.____-+----+<!) Network to (l!~ 
·I· evaltu1ie .1. 
·I . statement2 ·I · 

(~) <~>~ 
---------' 

THEN 
OUTPUTS 

ELSE 
OUTPUTS 

IAS0245 

Figure 1-19. IF-THEN-ELSE Network 

Note 

1Tl-32 

This application shows how F:BROUTE can be used as a Boolean switch 
function. 

Tools and Techniques 



Application Note 18 

A Realtime Analog and Digital Clock 

Patrick Fitzhorn, David Ferguson 
Center for Computer-Assisted Engineering 
Colorado State University 
Ft. Collins, Colorado 
October, 1982 

Categories 

F:CLTICKS 

Description 

Frequently it is useful to display a realtime clock on the PS 390 screen. The 
network described here has, as an end result, both an analog clock compo­
nent (rotations in degrees for the hour, minute, and second hands) and a 
digital component. 

Implementation 

The network is based on F:CLTICKS with constant input of 120 on input 
<1>. This generates an integer at output <2> once per second, which is 
incremented by one each tick. The clock is based on a 12-hour cycle, so 
F:MODC resets the clock after 43,200 seconds. 

An initialization network is provided that changes standard hour, minute, 
and seconds input into seconds. This value is then sent to input <5> of 
F:CLTICKS, which serves as a new starting value for the clock. The network 
diagram is shown in the following figure. 

Application Notes TTJ-33 



B 

ITJ-34 

Clock ln:ltlalizatlon Ne\irorll: 

(1i0) C I> 

(0 c I) 

ro I• c o 
(I-

(t} c O F:CLTICXS 
0 - (43200 c 

Clock Timer Nelwo:rl< 

At:JfqvrLJl/vtT 
At:..../ft1~~t1falt1 

( 1 )J.NALOG.....CLOCK. HOURS 

.A.nalo& Clook Network 

/X:._S111L..Noo'c: 1)~11c:ondJL.Prlnf 

,,, . ~,..,.~,,,.~,.;._]---~~~·~~~~~~~~~~~~~~~~~~~ 
Dl1ltal Cloolc Nct..-orl: 

Figure 1-20. Clock Network 

An example of the data structure for the analog clock face is: 

ANALOG_CLOCK .- BEGIN_Structure 

r : CONC.i. t'INJ. TE ( 1 ) rLABBL12 

IAS0246 

VIEWport HORizontal=-.1: .5454 VERtical=-1:1; 
SECONDS .- ROTate 0 := THEN SECOND_HAND; 
MINUTES ROTate 0 THEN MINUTE_HAND; 
HOURS := ROTate 0 THEN HOUR_HAND; 

SECOND_HAND 
MINUTE HAND 

END_Structure; 

SCALE .025,1 THEN BASIC_HAND; 
SCALE .05, .8 THEN BASIC_HAND; 

HOUR_HAND :=SCALE .075, .5 THEN BASIC_HAND; 
BASIC_HAND .- VECtor list N=5 0,0 1, .25 0,1 -1, .25 0,0; 

Tools and Techniques 



Evans & Sutherland 

Figure 1-21. Analog Clock 

Notes 

The digital clock's display is of the form: (hours):(minutes):(seconds) with 
a maximum of eight digits. 

The output can be connected to a character node in a display data structure 
or to a function key LED label, if so desired. In the current dig~tal compo­
nent, leading zeros for minutes and seconds do not appear, so that 9:05:05 
is displayed as 9:5:5. This has not proved to be much of a hardship. If a 
standard 8-digit output is required, one could test the minute and second 
outputs and, if less than 10, concatenate a leading zero. The clock starts out 
at time 00:00:00. To set the clock, the following commands are used: 

store fix(h) to <l>hours 
store fix(m) to <l>minutes 
store fix(s) to <l>seconds 

where, 

h integer between 1 and 12 

m, s integer between 1 and 60 

Application Notes ITJ-35 



Gary Cannon 
Evans & Sutherland 
Salt Lake City, Utah 
January, 1985 

Categories 

Application Note 19 

Blinking Using SET RATE EXTERNAL 

Data Structuring, SET RATE EXTERNAL 

Description 

This data structure and function network allow blinking when appropriate 
without requiring two separate structure paths. This will use the SET RATE 
EXTERNAL command. 

Implementation 

ITJ-36 

The network is as follows: 

[' "'" 
1------l' 

2
r:ROUTE(12) ! 2

r:CONSTANT 

10 

12 

IAS0766 

Figure 1-22. Blinking Network 

The data structure should be displayed and be created with commands such 
as: 

A := Set Rate External then B; 
B := If Phase ON then OBJECT; 

M:BLINK is a macro which is expanded in the following figure. 

Tools and Techniques 



1---------- ----·-------------·--·------·--·------·-------·--

(Duration must be odd) 

F',"""" 11--=~~;::-:"'>~~-,~ queue)---~'~~''-~'-'~"' 
'•10 c ~~~eE::~-----~~ -Jr~~t ~"r~<BtR_Do:Tc~sct<.£!1!~] 

DETECT ----- -- -----
'---------------~---·---------'-==· --------------------=-~-~ ---------- --

Figure 1-23. M:BLINK Macro 

Application Notes ITJ-37 



Dan Harlin 
Evans & Sutherland 
Salt Lake City, Utah 
December, 1982 

Categories 

Application Note 20 

Local Inking of Tablet Coordinates 

Inking, F:EDGE_DETECT 

Description 

This application note is a variation of Application Note 7. To do inking with 
the network of Application Note 7, the user began by pressing and releasing 
the pen, and ended by pressing and releasing the pen again. With this net­
work, the user presses the pen to begin, and releases the pen to end inking. 

Im plemen ta ti on 

The network is as follows: 

I 

~TABLEY!N 

!nit. 

I 

1-------..-=c--+---JZ f 1 CBROIJTE 

1 

2 f:EOGE_ 
DETEC-

,_____,1 
2

f:POSITIOH_ 
LI NE 

Figure 1-24. Inking Network 

TI'l-38 

1---~--JI 
2

f1CONSTAHl 

IAS0768 

Tools and Techniques 



The data structure should be displayed and be created with a command 
such as: 

A := VECTOR_LIST N=lOOO 0,0; 

Notes, Examples 

To ink, press the data tablet pen. Continue to press the pen while inking. To 
stop inking, release the pen. 

Application Notes TI'l-39 



Application Note 21 

Integer Input Via Numeric Keypad 

Michael F. Werner 
Performance Analysis 
Aerospace Corporation 
El Segundo, CA 
May 4, 1984 

Categories 

Function Keys, F:CHARCONVERT 

Description 

The most straightforward use of the PS 390 keyboard as an input device 
involves the use of the 12 function keys in conjunction with the FKEYS 
initial function instance. The integers 1 through 36 can be generated with 
the function keys and the SHIFT or CTRL keys on the keyboard. 

Many PS 390 applications require the use of a large number of function 
keys. Use of the 12 keys becomes cumbersome in these applications. The 
function network below allows the numeric keypad on the keyboard to be 
used as an input device in a manner similar to the function keys. 

Implementation 

TTJ-40 

The network diagrammed converts a two-key sequence on the numeric key­
pad into an integer between 0 and 99 inclusive. 

Nor••lir• 
>--~~I t--~~~I 

KEYBOARD 
2 F:CHARCONVERT 

1
F1SUBC 

[='" ~ix(/) [ I I I 

2 F:SYNC(2) 
2 2

f:ROUTEi2) 

I-----.,,,---; 1 
2

fd1ULC 

Figure 1-25. Keypad Network 

I 

2
f1AOO 

IAS0769 

Tools and Techniques 



Notes, Examples 

This network can be used in applications where a large number of objects or 
perhaps 50 overlays of a single object must be toggled off and on. A list of 
2 digit codes corresponding to each overlay must be provided until the 
codes are memorized. This approach is easier to use and requires less code 
than re-programming the function keys or developing a series of menus. 

The user is cautioned that as long as the keyboard is enabled as an input 
device, this network will attempt to convert any 2 character ASCII sequence 
into an integer. 

Note that this network is easily expandable to handle 3 digit sequences. 

Application Notes 7Tl-41 



Application Note 22 

Matrix Transpose 

Thomas Hern 
Department of Computer Science 
University of North Carolina 
New West Hall 035-A 
Chapel Hill, NC 27514 

and 

Department of Mathematics & Statistics 
Bowling Green State University 
Bowling Green, OH 27514 
January, 1985 

Categories 

Transformations, matrices 

Description 

This function network produces the transpose of the 3x3 matrix, which is 
the input to the network. Hence, the matrix which is the output of the net­
work (F:MATRIX3, specifically) has as its rows the columns of the input. 
This network operates very quickly in this form. 

Implementation 

The network is as follows: 

PJ 

Figure 1-26. Matrix Transpose Network 

TTJ-42 Tools and Techniques 



Notes, Examples 

The inverse of an orthogonal matrix is its transpose, so this network can 
often make calculating an inverse unnecessary. Such an inverse may be 
needed in some rotation nodes. 

This implementation is for 3x3 matrices only, but adding (or deleting) 
COLn functions and changing the SEND statements will adapt the network 
to any size. 

Application Notes TTJ-43 



Application Note 23 

Laser Disk Controller 

Mike Grannan 
Evans & Sutherland 
Saint Louis, MO 
January 10, 1985 

Categories 

Animation, PS 390 raster, laser disk 

Description 

TTJ-44 

A function network for automatic generation of separate PS 390 frames of 
an animation sequence for storage onto laser disk is documented. A 
Panasonic TQ-2022FC laser disk is attached to the PS 390. Recording com­
mands are sent from the PS 390 to the laser disk via RS-232 communica­
tions; the picture is transmitted from the PS 390 to a color encoder, which 
converts an ROB signal to the NTSC format required by the laser disk. 

PS 390 RGB NTSC 

Out l l - Panasonic laser ~ Display 
Disk Regular T.V. 

In Out Monitor 

[ color encoder J 

PS 390 
port 4 RS-232-C 

Control 
Unit 

Figure 1-27. Hardware Diagram for PS 390/Laser Disk Configuration 

The following function network can be used to enhance any PS 390 shading 
network to store multiple renderings onto laser disk for playback later. It is 
intended for purposes where high-quality shaded animation sequences are 
desired. Since the PS 390 uses a static raster display, each frame of the 
animation sequence is precalculated, and the laser disk is given the com­
mand to store each frame as it is generated. 

Tools and Techniques 



Implementation 

1. Laser disk communications 

The particular laser disk used is connected to port 4 of the PS 390 control 
unit, and requires configuring port 4's serial I/O parameters to 9600 baud, 
odd parity, and seven bits per character. A few simple functions can then be 
created for laser disk communications. The Panasonic laser disk accepts 
single character commands preceded by a byte with the value X'02' and 
followed by X'03'. For example, "G" is the command to record a frame at 
the current frame counter location, and increment the frame counter. Thus, 
a function can be created to save the next frame in a sequence (current 
picture on the raster display) when triggered in the following manner. 

SAVE NEXT FRAME 

any message--------1 
char(2) & 'G' & char(3)---

- -

F:CONSTANT 1----> <1>04$ 

Similarly, functions for ENABLE_RECORDING and DISABLE_RECORD­
ING can be created. (The laser disk does transmit status messages, which 
will be ignored in this example for purposes of simplicity.) 

2. Transformational updates between frames 

Of course, to obtain a moving sequence on laser disk, updates to data-struc­
tures will have to occur between renderings. Thus the controlling network 
will define two functions, UPDATE_TRANSFORMATION, whose first and 
only output fires after completion of a rendering, and UPDATE_COM­
PLETED, which must receive any message on its first input to signal com­
pletion of data-structure updates, so the network can continue and start 
rendering the next frame. 

UPDATE TRANSFORMATIONS<1 >--- user network for r-<1 >UPDATE COMPLETED 
update of data 
structure between 
frames 

3. Controlling network for multiple frame generation 

Application Notes TTJ-45 



.._ 
I 

N 
Oo 

1 

2 r:CONSTANT 

f'i x(-1) 

r•ntl•r_t1antrol 

I 

----12 r: BRO UTE 

f'r•••-inlt 
I 
2 r:COHSTANT 

f'r••• lne:r 
I 

2 r1 CONSTMH 

cl>dl••hl•_r•cordlng 

init_rout•r router 

....... -----11 
2 f:CONSTANT 

f'ix(I) 

t 
2 f,BROUTEC 

I 
2

f:PRINT 

.,,. 

upd•t•_to•plet•d 
I 

2
f:SYNC(2) 

i----.....-"-lt I 
2

f:CROUTE(J) ~ 

I I 
2

r:CCOHCAT[NAt 

-------ii 

I 

2 r:&EC 

2 f:CONSTANT 

·-------ii 
2

f:CONSTANT 

••~•-hidden_r•nd•rin-• 

I 
2 f:CBROUTE 

IAS0770 



Notes 

The controlling network can easily be incorporated into the shading network 
described in Section GT 13 by noting that the name of the rendering node in 
that network is WORLD.RENDERING. (This same network appears on 
PS 340 Al firmware diskette B as the file "test340" .) Just name the render­
ing node in the controlling network above WORLD.RENDERING when cre­
ating it. 

CONN UPDATE_COMPLETED<2>:<1>WORLD.RENDERING; 
CONN SAVE_HIDDEN_RENDERINGS<l>:<l>WORLD.RENDERING; 
CONN WORLD.RENDERING<l>:<l>RENDER_SUCCESS; 

Also, pass the current rendering style of the shading network (hidden, flat, 
etc.) as chosen by function key 3 to the controlling network. 

CONN STYVAL<1>:<2>RENDERSTYLE; 

Single frames can be rendered at will without affecting the controlling net­
work. To invoke the animation control network, perform the following steps. 

1. Make sure your user data-structure update network is in place and 
referencing the functions UPDATE_TRANSFORMATION and UP­
DATE COMPLETED. 

2. If the storage of each hidden-line picture generated during the ren­
dering process as separate vector lists is desired, SEND TRUE TO 
<l>SA VE_HIDDEN_RENDERINGS. While the network is designed 
for raster animation, this mechanism is included to allow storage of 
the calligraphic renderings as vector lists. If used, the network will 
name these vector-lists HO,Hl, ... ,Hn where n = #frames - 1. The 
frame by frame animation technique described in Application Note 
12 could be used to implement a hidden-line animation sequence on 
the calligraphic display. BY DEFAULT, hidden-line pictures are not 
saved. 

3. SEND FIX(#-of-frames) TO <2>NUM __ FRAMES; 

4. To invoke the frame generation process, SEND any-message TO 
<1 >HIDDEN_ ANilvIA TION; 

Application Notes ITJ-47 



Example 

1Tl-48 

Once the controlling network is incorporated into a shading network, the 
only code remaining is the user data-structure update network. An example 
of a network to rotate a model 45 degrees (1 degree per frame) is listed 
below. 

{the following network rotates the model about its own data-space} 
{Z-axis} 

TESTCONS:=F:CONS; 
TESTADDC:=F:ADDC; 
testzrot:=F:ZROTATE; 

{cause update of rotation to occur when triggered by} 
{UPDATE_TRANSFORMATION} 

CONN UPDATE_TRANSFORMATION<l>:<l>TESTCONS; 
CONN TESTCONS<l>:<l>TESTADDC; 
SEND FIX(l) TO <2>TESTCONS; 
SEND FIX(-1) TO <2>TESTADDC; 
CONN TESTADDC<1>:<2>TESTADDC; 
CONN TESTADDC<l>:<l>testzrot; 
CONN testzrot<l>:<l>OBJECT; 

{signal completion of update network by triggering UPDATE_COMPLETED} 

CONN testzrot<l>:<l>UPDATE_COMPLETED; 

{modify object manipulated to be model referenced by z rotation-matrix} 

OBJECT:=ROT z 0 THEN scaled_mbb; 
scaled_mbb:=scale by .0005 then smoothmbb; 

{ render 45 ps340 frames } 

SEND FIX(45) TO <2>NUM_FRAMES; 

{After these commands are executed, the command to initiate the} 
{rendering process is 

SEND TRUE TO <l>HIDDEN_ANIMATION; 

Tools and Techniques 



Application Note 24 

High Speed Communication 

Erik K. Antonsson, Assistant Professor 
Department of Mechanical Engineering 
Division of Engineering and Applied Science 
California Institute of Technology 
Pasadena, CA 91125 
August, 1985 

Categories 

Physical I/O using the parallel interface to a VAX/VMS host to send Qreals 
from a PS 300 variable to the Host. 

Description 

Frequently it is important to obtain a value from the PS 300 sent to the host 
very quickly. The normal routes of using HOSTOUT or HOST_MESSAGE 
are very slow for occasions where a single value is needed to close a compu­
tation or control loop at high speed or in real time. An example might be an 
aircraft flight simulation where a control dial input will be sent to the host 
to vary a parameter of the aircraft flight dynamics, and the simulation needs 
to obtain that single value and update the simulation (and the display struc­
ture) in real time, or near real time. 

This solution exploits physical I/O using the Parallel Interface on a VAX 
111750 running VMS Version 4.1. The approach is to read the address and 
then the value at that address of a PS 300 Variable in PS 300 memory and 
send the value back to the host. This is done using VMS QIOs to find the 
address of the PS 300 named entity (Variable), then locate the address of 
the value, and then read the value. Since the address of the entity doesn't 
change, that address fetch need only be done once for each variable to be 
read. However, the structure of the PS 300 is such that when anything in 
memory is updated from a function network, the updated value is written 
into a free spot in PS 300 memory, and then the pointer to the value is 
updated in the block of data associated with the named entity. Thus two 
QIOs (physical I/O) are necessary for each "Read:" one to get the current 

Application Notes ITJ-49 



address of the value in the block of data at the address and read the value. 
Occasionally the PS 300 updates the value in-between the two QIOs. When 
this happens, the value extracted is invalid. The subroutines shown here 
take that into account, and have a Re-Try parameter. The subroutines will 
re-try an operation (address fetch, or value read) up to the number of times 
specified in the Re-Try argument. Thus the time to get a change in value is 
unpredictable. 

Getting single real value (PS 300 Qreal) using the serial interface and the 
HOSTOUT function instance, and a Fortran Read was timed to take ap­
proximately 20 milliseconds for 8 bytes. This does not include the time 
necessary to convert the Qreal to an ASCH string on the PS 300 nor that 
ASCII string into a real number on the host. 

Getting a single real value using the GSRs and the Parallel Interface and the 
l-IOST_MESSAGE function instance took about 26 milliseconds for 7 bytes 
(also not including the ASCII conversions). 

The subroutines shown here take 10.3 milliseconds per "read" of a PS 300 
Qreal. 

A future Application Note will describe an asynchronous version of these 
subroutines permitting several "reads" to be stacked up in a queue, or to 
allow other processing to occur in the 10 milliseconds required to get the 
real value. 

Implementation 

7Tl-50 

The subroutine set is based on the VMS system service $QIO and $QIOW 
(available from Fortran as QIO and QIOW). The subroutines are callable 
from Fortran, and adhere to the VMS calling standard. None of the values 
input to the subroutines are modified during the call. A test routine 
(PS3_PHY_TEST) is included showing how two different PS 300 Variables 
can be monitored, and a simple PS 300 function network to accumulate two 
dials into two variables is also included. 

The subroutine's names are: 

PS3 PHY ATIACH - -
(Attaches an I/O channel to the PS 300 for physical I/O) 

PS3 PHY GET ADDR - - -
(Gets the address of a PS 300 named entity) 

Tools and Techniques 



PS3_PHY_READ_VAR 
(Reads the value of a variable at an address previously fetched) 

PS3 PHY DETACH - -
(Detaches the VO channel used for Physical VO) 

The subroutines are heavily commented to explain the calling procedure 
and arguments as well as usage. The main test program demonstrates a 
typical calling sequence. 

C PS3 PHY TEST -- A test routine of Physical I/O Variable Reads 
C using the Parallel Interface. 
c 
C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech 
c 

PROGRAM PS3 PHY TEST 
c 
C Assign the Data Types required 
c 

c 

c 

Integer*4 Ichan 
Integer*2 Iadrhil,Iadrlol 
Integer*2 Iadrhi2,Iadrlo2 
Character*80 Labell,Label2 

2 write(5,1002)7 
1002 format('$Enter the number of times to read each variable. ' 

& '[zero=indefinite]: ',lal) 
read(5,1003,end=500,err=2)nloop 

1003 format(i6) 
if(nloop.lt.O)goto 2 

C Input the Character String Names of the PS300 Named Variables 
c 

5 write(5,1005)7 
1005 format('$Enter the Name of the first PS300 Variable to 

& monitor: ',lal) 
read(5,1010,end=500,err=5)labell 

1010 format(a) 
15 write(5,1015)7 

1015 format('$Enter the Name of the second PS300 Variable to 
& monitor: ',lal) 

read(5,1010,end=500,err=15)label2 

Application Notes ITl-51 



c 
C Attach to the PS300 for Physical I/0 (ONCE) 

c 

c 

Call PS3 PHY ATTACH(Ichan) 
Iretry=lO 

c Get the Address of the first PS300 Variable 
c 

Call PS3 PHY GET ADDR(Labell,Iretry,Ichan,Iadrhil,Iadrlol) 

c 
C If an invalid address is returned, Exit 

c 
If(Iadrhil.eq.O.and.Iadrlol.eq.O)goto 450 

c 
C Get the Address of the second PS300 Variable 
c 

Call PS3 PHY GET ADDR(Label2,Iretry,Ichan,Iadrhi2,Iadrlo2) 
c 
C If an invalid address is returned, Exit 
c 

c 

c 

If(Iadrhi2.eq.O.and.Iadrlo2.eq.O)goto 450 

write(5,1020) 
1020 format(//) 

iloop=O 
Iretry=lO 

C LOOP to READ the Variables Values 
c 

25 Continue 
iloop=iloop+l 

c 
C Read the First Variable 
c 

c 

Call PS3 PHY READ VAR ( Ichan, Iadrhi 1, Iadr lol, 
&Iretry,Rvaluel,Ivalid) 

C Exit if Invalid data is returned 
c 

If(Ivalid.le.O)goto 400 
c 
C Read the Second Variable 
c 

c 
c 

TTJ-52 

Call PS3 PHY READ VAR(Ichan,Iadrhi2,Iadrlo2, 
&Iretry,Rvalue2,Ivalid) 

Exit if Invalid data is returned 

Tools and Techniques 



c 
If(Ivalid.le.O)goto 400 

c 
C Write the PS300 Variable/s Values to the Terminal Screen 
c 

write(5,1200)Iloop,Rvaluel,Rvalue2 
1200 format(/+/ ,I6,1PG20.10,1PG20.10) 

c 
C LOOP again if the loop count (nloop) has not been exceeded 
c 

c 

if (nloop.eq.O)goto 25 
if (iloop.ge.nloop)goto 500 
goto 25 

!If nloop=O, Loop Forever 

C ERROR Messages 
c 

c 

400 type *,/INVALID OR IMCOMPATABLE DATA RETURNED/ 
goto 500 

450 type *,/ADDRESS FETCH FOR PS300 NAMED ENTITY FAILED/ 
goto 500 

C On EXIT be sure to Detach the PS300 from the Physical I/0 Channel (ONCE) 
c 

500 Call PS3 PHY DETACH(Ichan) 
c 

c 

Application Notes 

call exit 
end 

{PS3_PHY_TEST.300}; 

variable dialOl; 
printl := f:print; 
conn printl<l>:<l>message_display; 
suml := f:accumulate; 
conn suml<l>:<l>printl; 
conn suml<l>:<l>dialOl; 
send 0. to <2>suml; 
send 1. to <4>suml; 
conn dials<l>:<l>suml; 
send 0. to <l>suml; 
variable dial02; 
sum2 := f:accumulate; 
conn sum2<1>:<1>dial02; 
send 0. to <2>sum2; 
send 1. to <4>sum2; 
conn dials<2>:<1>sum2; 
send 0. to <l>sum2; 

TTJ-53 



c 
c 
c 

PS3_PHY_ATTACH A Subroutine to Attach the PS300 Parallel Interface 
and Open a Channel and return a Channel Number 

C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech 
c 
C This routine should be called ONCE in a program that uses the other 
C PS3 PHY * routines. This routine attaches the PS300 Parallel Interface 
C and assigns a channel number for subsequent communications. If the 
C user also plans to use the PS300 GSRs, the GSR routine PATTCH must 
C ALSO be called to attach the PS300 and open a channel for GSR 
C communication. 
c 
C This routine Attaches to the Logical Device PS3PI: rather than 
C a physical device (PIAO:). So be sure to make the logical assignment 
C before executing this routine. This assignment allows the user to 
C execute the code on different devices (PIAO: or PIAl:, etc.) without 
C having to modify the code, only the logical assignment. 
c 
C Note that all the PS3 PHY * routines will work ONLY with the 
C PS300 PARALLEL INTERFACE. 
c 
C Usage: 
c 
C INTEGER*4 Ichan 
c CALL PS3_PHY_ATTACH(Ichan) 
c 
C The argument Ichan is RETURNED by the routine, and contains the 
C channel number to use for subsequent PS3 PHY * communication. rt must 
C be declared INTEGER*4. 
c 

c 

c 

SUBROUTINE PS3 PHY_ATTACH(Ichan) 

INTEGER*4 SYS$QIO,SYS$WAITF'R 
INTEGER*4 SYS$ASSIGN,SYS$QIOW 
INTEGER*4 ICHAN,ISTATUS,IVALUE 
INTEGER*2 IOSB(4) 

C get a channel number 
c 

c 

ISTATUS=SYS$ASSIGN(%descr('PS3PI:'),ICHAN, ,) 
IF(ISTATUS.EQ.1) GO TO 10 
TYPE *,'BAD ASSIGN! -- ',ISTATUS 
goto 500 

C Detach first for safety: 34 --> detach function code 
c 

TTJ-54 Tools and Techniques 



10 ISTATUS=SYS$QIOW(,%VAL(ICHAN),%VAL(34),IOSB,,,,,,, ,) 
c 
C Attach: 33 --> attach function code 
c 

c 

ISTATUS=SYS$QIOW(,%VAL(ICHAN),%VAL(33),IOSB,,,,,,, ,) 
IF(ISTATUS.EQ.1) Return 
TYPE *,~BAD ATTACH! -- ~,!STATUS 

C Detach: 34 --> detach function code 
c 

c 
c 
c 
c 

500 ISTATUS=SYS$QIOW(,%VAL(ICHAN),%VAL(34) ,IOSB,,,,,,, ,) 
ichan=O 
return 
end 

PS3_PHY_GET_ADDR A routine to get the address of a named entity 
in the PS300 memory using the Parallel Interface 
and Physical I/O. 

C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech 
c 
C This routine will get the PS300 physical memory address of a PS300 
C named entity. The named entity must be set up in the PS300 BEFORE this 
C routine is called. If the named entity is not in PS300 memory before, 
C the routine will return an address of zero (0) (both High and Low 16 
C bits are zero). 
C This routine should be called ONCE per named entity whose address 
C is desired. As long as the named entity remains in the PS300 memory 
C its address will not change. This routine can be called multiple 
C times to access multiple entities in the PS300 memory. If several 
C addresses are required, different address variables must be used 
C for each one. 
c 
C Usage: 
C CALL PS3_PHY_GET_ADDR(Label,Iretry,Ichan,Iadrhi,Iadrlo) 
c 
C Arguments: 
C Label: A Character String with the Name of the Entity. 
c 
c 
c 
c 
c 
c 
c 

!retry: An Integer containing the number of times to retry 
the address retreival if unsuccessful. 

Ichan: The I/0 Channel Number (From PS3_PHY_ATTACH) [Integer*4] 
Iadrhi: The high 16 bits of the PS300 entity Address [Integer*2] 
Iadrlo: The low 16 bits of the PS300 entity Address [Integer*2] 

Iadrhi and Iadrlo are RETURNED by this routine. 

C The !:retry argument is to allow the subroutine to retry the address 
C fetch if it is unsuccessful. If the !retry argument is set to zero (0) 

Application Notes ITJ-55 



C then PS3_PHY_GET_ADDR will retry the fetch indefinitely, until a 
C successful and valid address is returned. 
C If the subroutine is Unsuccessful in Iretry tries, it will return 
C zeros (0) in both Iadrhi and Iadrlo. 
C If Ichan is zero (0) when this routine is called, it will Return 
C and take no action. 
c 

SUBROUTINE PS3_PHY_GET_ADDR(Label,Iretry,IchanA,Iadrhi,Iadrlo) 

c 

c 
c 

c 

INTEGER*4 SYS$QIO,SYS$WAITFR 
INTEGER*4 SYS$ASSIGN,SYS$QIOW 
INTEGER*4 ICHAN,ISTATUS,IVALUE 
INTEGER*4 ICHANA 
INTEGER*2 IOSB(4) 
integer*2 IrBUF(4),IrdBUF(8),Irdbu2(12) 
integer*2 iad2lo,iad2hi,iadrlo,iadrhi 
INTEGER*2 ILabel(40) 
BYTE Blabel(80) 
Character*(*) Label 
Equivalence (Blabel,ILabel) 

If(IchanA.eq.O)return 
lablen=len(label) 

C Truncate string length if greater than 80 characters 
c 

if(lablen.gt.80)lablen=80 
c 
C Move Character String into a Byte array 
c 

c 

do 12 iq=l,lablen 
blabel(iq)=ichar(label(iq:iq)) 

12 continue 

C Strip Trailing blanks (etc) from String 
c 

do 14 iq=lablen,1,-1 
if ( (blabel ( iq). gt. "40). and. (blabel ( iq) .1 t. "177)) goto 15 

14 continue 
iq=O 

15 lablen=iq 
c 
C Get the PS300 addresses of the entity to update 
C 43 --> lookup named entities function code 

c 
20 continue 

TTJ-56 Tools and Techniques 



c 

c 

iloop=O 
21 Continue 

Ichan=IchanA 
ISTATUS=SYS$QIOW(, %VAL ( ICHAN), %VAL ( 43), IOSB, , , ILabel, 

&%VAL(lablen),%VAL(l)'' ,) 

IF(ISTATUS.EQ.1.AND.IOSB(l).EQ.1.AND. 
&(IOSB(3).0R.IOSB(4)) .NE.0) GOTO 24 

iloop=iloop+l 
if(iretry.le.O)goto 21 
if(iloop.lt.iretry)goto 21 
TYPE *,/BAD ENTITY ADDRESS FETCH! <STAT,IOSB> -- / ,ISTATUS,IOSB 
goto 500 

C Get the address from out of the IO status block (IOSB) 
c 

c 

c 

24 continue 
iadrlo=iosb(3) 
iadrhi=iosb(4) 
RETURN 

500 continue 

C Detach: 34 --> detach function code 
c 
c 
c 
c 
c 

Ichan=IchanA 
ISTATUS=SYS$QIOW(,%VAL(ICHAN),%VAL(34),IOSB, I I'''',) 

ichanA=O 

iadrlo=O 
iadrhi=O 
return 
end 

c 
c 
c 
c 

PS3_PHY_READ_VAR A routine to retrieve and decode a Qreal number 
from a PS300 VARIABLE using the Parallel Interface 
and Physical I/O. 

C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech 
c 
C This routine will ONLY return a valid number if the entity whose 
C address is contained in Iadrhi and Iadrlo is a PS300 VARIABLE. 
C The PS300 Variable can be any named variable containing any real 
C value. However, if the variable contains a value other than a 
C PS300 Real (Integer, Character_String, Vector, Matrix) the subroutine 

Application Notes TIJ-57 



C will retry the read until the Iretry argument count is reached, and 
C if no valid PS300 real data was returned, the subroutine will return 
C a zero (0.0) Rvalue and a negative Ivalid. 
C It is especially important to be sure that an initial Qreal is sent 
C to the PS300 Variable to be read so that on the first read, this 
C subroutine does not return an Invalid data condition. 
C The routine will return one REAL*4 Rvalue each time it is called. 
C This routine takes approximately 10 micro seconds to return a value. 
c 
C Useage: 
C CALL PS3_PHY_READ_VAR(Ichan,Iadrhi,Iadrlo,Iretry,Rvalue,Ivalid) 
c 
C Arguments: 
c Ichan: I/0 Channel Number from PS3_PHY_ATTACH 
C Iadrhi: High 16 bits of PS300 Entity (Variable) address 
C [Integer*2] 
C Iadrlo: Low 16 bits of PS300 Entity (Variable) address 
C [Integer*2] 
C Iadrhi and Iadrlo are from PS3_PHY_GET_ADDR 
C Iretry: The number of times to retry the read if unsuccessful 
C (a zero argument here (0) will allow an unlimited 
C number of retrys) 
C Rvalue: The REAL*4 RETURNED variable(with the PS300 Qreal 
C value from the named Entity (Variable)). 
C Ivalid: An indicator of valid returned data (Rvalue) 
C Less than zero (0): INVALID Rvalue 
C Greater than zero (0): VALID Rvalue 
c 
C If Ichan is zero (0) , or Iadrhi AND Iadrlo are both zero (0) this 
C routine will Return and take no action. 
c 

c 

c 

TTJ-58 

SUBROUTINE PS3_PHY_READ_VAR(IchanA, Iadrhi, Iadrlo, 
&IretryA,RVALUE,Ivalid) 

INTEGER*4 SYS$QIO,SYS$WAITFR 
INTEGER*4 SYS$ASSIGN,SYS$QIOW 
INTEGER*4 ICHAN,ISTATUS,IVALUE 
Integer*4 IchanA 
Integer*4 Ia 
Integer*2 Ival2(2) 
INTEGER*2 IOSB(4) 
integer*2 IrBUF(4),IrdBUF(8) ,Irdbu2(12) 
integer*2 Iad2lo,Iad2hi,Iadrlo,Iadrhi 
Equivalence (Ivalue,Ival2) 

If (IchanA.eq.O)return 

Tools and Techniques 



c 

c 
c 
c 

c 

If((Iadrlo.eq.0).and. (iadrhi.eq.O))return 
ia="l7777777777 
Fia=float(ia) 
iloop=O 
Iretry=IretryA 

25 IrBUF(l)=l 
irbuf (2)=iadrlo 
irbuf (3)=iadrhi 

Get 4 words (Actually will get 4 words + 8 bytes 

irbuf (4)=4 

16 bytes 8 words) 

C Do a read phy At the Entity Address to get Address of Variable Value 
c 
c 
c 

39 
IOSB 

--> Read Physical function code 
--> IO status block 

C IrBUF --> Address buffer (actually address of buffer, by reference) 
C 8 --> Address buffer BYTE count (4 words) 
C IrdBUF --> Data Buffer to Fill 
C 16 --> Size of Read Buffer to Fill in Bytes (8 words) 
c 

c 

c 
c 
c 

c 

Ichan=IchanA 
ISTATUS=SYS$QIOW(,%VAL(ICHAN),3VAL(39) ,IOSB,,, 

&IrBUF,3VAL(8),IrdBuf,3VAL(16)' ,) 
IF(ISTATUS.EQ.l) GOTO 200 

150 TYPE *,'BAD POINTER READ! -- ',ISTATUS,IOSB 
goto 400 

200 continue 
IF(IOSB(l) .NE.1) GO TO 150 
IF(IOSB(3) .ne.16) GOTO 150 
IrdBUF(l)=l 
irdbuf (2)=irdbuf (7) !LOW Address 
irdbuf (3)=irdbuf (6) !HIGH Address 

Get 8 words (Actually will get 8 words + 8 bytes 24 bytes 

irdbuf (4)=8 !Get 8 words 

12 words) 

C Do a read phy At the Variable Value Address to get the Variable Value 

c 

Application Notes 

Ichan=IchanA 
ISTATUS=SYS$QIOW(,3VAL(ICHAN),3VAL(39) ,IOSB,,, 

&IrdBUF,%VAL(8) ,IrdBu2,%VAL(24), ,) 

ITJ-59 



c 

c 

IF(ISTATUS.EQ.1) GOTO 205 
202 TYPE *,'BAD VALUE READ! -- ',ISTATUS,IOSB 

goto 400 

205 continue 
IF(IOSB(l) .NE.1) GO TO 202 
IF(IOSB(3) .ne.24) GOTO 202 

C Check to be sure Valid Data has been retrieved. A 4 always preceeds 
C a valid QReal number 
c 

c 

iloop=iloop+l 
if(irdbu2(7).eq.4)goto 300 
if(Iretry.le.O)goto 25 
if(iloop.lt.Iretry)goto 25 
goto 500 

300 continue 

C Convert from MC68000 Floating Long Format to VAX Real*4 
c 
C Irdbu2(8)-1024 is the Exponent 
C Irdbu2(9) is the most significant 16 bits of the fraction 
C Irdbu2(10) is the least significant 16 bits of the fraction 
C Ivalue is an Integer*4 equivalenced to Ival2 
C A 16 bit approximation to the fraction can be obtained 
C using only Irdbu2(9) and dividing by "100000 
C Fia is a Real*4 equal to "17777777777 

c 
Ival2(1)=Irdbu2(10) !Swap Order of the Words 

c 

TFl-60 

Ival2(2)=Irdbu2(9) !in the 32 bit Fraction 
Rvalue=(float(Ivalue)/Fia)*(2.0**float(Irdbu2(8)-1024)) 
ivalid=l 
return 

400 continue 
write(5,1020)(iosb(iq) ,iq=l,4) Octal 
write(5,1021)(iosb(iq) ,iq=l,4) Decimal 

1020 format (' IOSB: ', 408,' Octal ') 
1021 format(' IOSB: ',4I8,' Decimal ') 

500 Rvalue=O.O 
ivalid=-1 
return 
end 

Tools and Techniques 



c 
c 
c 

PS3_PHY_DETACH A Routine to Detach the PS300 Parallel Interface 
from the Open Channel and to Close the I/O Channel 

C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech 
c 
C This routine should be called ONCE in a program that uses the other 
C PS3 PHY * routines. This routine detaches the PS300 Parallel Interface 
C and frees the channel number. If the user is also using the PS300 
C CSRs, the CSR routine PDETCH must ALSO be called to detach the PS300 
C from CSR communication. 
c 
C Useage: 
c 
C INTEGER*4 Ichan 
C CALL PS3_PHY_DETACH(Ichan) 
c 
C The argument Ichan is Input to the routine, and contains the channel 
C number used for PS3_PHY_* communication. It must be declared 
C INTEGER*4. If this routine determines that the Ichan Argument is zero 
C (0) it will return, and take no action. Other PS3_PHY_* routines may 
C set Tehan to zero (0) if an error was detected, and the communication 
C is detached. 
c 

c 

SUBROUTINE PS3_PHY_DETACH(IchanA) 
INTECER*4 ICHAN,ISTATUS 
Integer*4 IchanA 
INTECER*2 IOSB(4) 

C Detach: 34 --> detach function code 
c 

Application Notes 

If(IchanA.eq.O)return 
Ichan=IchanA 
ISTATUS=SYS$QIOW (,%VAL (I CHAN) , %VAL ( 34) , IOSB, , , , , , , , ) 
return 
end 

ITI-61 





TT2. HELPFUL HINTS 

CONTENTS 

1. HOW TO MAKE A SITE.DAT FILE......................... 1 

2. HOW TO DEAL WITH NAMING CONVENTIONS 
AND CONFIGURE MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

3. HARDCOPY NETWORKS USING WRITEBACK . . . . . . . . . . . . . . 10 

4. HOW TO DEAL WITH XFORMDATA . . . . . . . . . . . . . . . . . . . . . . . 12 

5. HOW TO RENDER SPHERICAL AND LINE DATA TYPES . . . . 17 

6. PHYSICAL 110 GSR ISSUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

7. HOST COMMUNICATION DATA FLOW -
HOW THE INTERFACES DEAL WITH RUNTIME............ 23 

8. HOW TO COPY FILES BETWEEN 
THE HOST AND THE PS 390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

9. ROUTING BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

10. HOW TO DO PATTERNED AND TEXTURED VECTOR LISTS 35 

11. DISCUSSION OF INPUTS TO DISPLAY STRUCTURES . . . . . . 37 

12. HOW TO DO RUN LENGTH ENCODED PROGRAMMING . . 39 

13. HOW TO DEFINE A BREAK KEY . . . . . . . . . . . . . . . . . . . . . . . . . 41 

14. HO\iV TO DEBUG A FUNCTION NETWORK . . . . . . . . . . . . . . . . 43 

15. INTENSITY SETTINGS ON THE PS 390 . . . . . . . . . . . . . . . . . . . . 46 

16. SOFI'LABELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

17. CPK RENDERING....................................... 49 



ILLUSTRATIONS 

Figure 17-1. Function Network Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Figure 17-2. Synchronization of XFORMDATA . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Figure 17-3. F:XFNORM Network for 'Window Scaling . . . . . . . . . . . . . . . . . . 59 
Figure 17-4. Function Network for PS 390 Display and CPK Renderings . . . 61 



Section Tf2 

Helpful Hints 

1. How to Make a SITE.DAT File 

Categories: 

SITE.DAT file 

Description: 

The SITE.DAT file is an optional command file created by the system man­
ager. It can be used to tailor the PS 390 system default parameters to the 
specific requirements of a site. The commands in a SITE.DAT file are auto­
matically read from the firmware diskette and executed when the system 
boots. The SITE.DAT file may be used to store the following types of infor­
mation across power-up sequences: 

• Host/PS 390 communications node address (DECNET or Ethernet 
interface) 

• Host/PS 390 communications identity number (IBM interface) 

• PS 390 Port Setup values 

• Terminal Emulator keyboard and display features 

• Special Site Configuration Commands 

The SITE.DAT file is assumed to contain a string of ASCII commands. The 
file should be as compact as possible due to limited space on the diskette. 

Helpful Hints 

NOTE 

You should make a backup copy of the graphics firm­
ware diskette before the SITE.DAT file is downloaded 
to the diskette. If this is a new system, the PS 390 con­
trol unit, display and keyboard must be installed before 
you can create and download the SITE.DAT file. 

TT2-l 



TT2-2 

Analysis And Implementation: 

There are three methods for creating and installing the SITE.DAT file: 

1. Creating the SITE.DAT file (an ASCII file) on the host and down­
loading to the PS 390 over an asynchronous line. 

2. Entering the PS 390 command mode and typing the SITE.DAT com­
mands directly to the diskette from the PS 390 keyboard. This 
method is not recommended since it involves writing directly to disk­
ette and therefore does not provide for error correction. 

3. Using GSRs. 

NOTE 

All PS 390 commands in SITE.DAT must be termi­
nated with a semicolon. 

The SITE.DAT file is executed in configure mode. This 
means the appropriate suffix must be attached to each 
function name. 

Creating the SITE.DAT File on the Host and Downloading 

You may create a text file on the host that contains the desired SITE.DAT 
commands and three special routing characters. The routing characters 
direct the PS 390 to write the ASCII commands to the SITE.DAT file on the 
firmware diskette, close the file and return control to the PS 390 Terminal 
Emulator. 

The file you create on the host contains the following commands: 

"\: 

PS390 command; 

"\; 

The file must begin with the demuxing character 
"\ (control key and \ pressed simultaneously) 
and the routing byte : which causes the ASCII 
commands to be written on the firmware diskette. 

The command(s) you are using to configure your 
system. Note that each command must end with a 
semicolon. 

The demuxing character "\ and routing byte 
must precede the command to close the file 
on the diskette. 

Tools and Techniques 



CLOSE SITE; The command that closes the file on diskette. 

"\> The demuxing character "\ and the routing byte > 
restore output to the terminal emulator. 

Once the SITE.DAT file exists on the host, boot the PS 390 from your 
backup disk and access Terminal Emulator mode, then enter the command 
to type the host file, as follows: 

F'or VMS type site.dat 

P'or UNIX - stty raw -echo; cat site.dat; stty cooked echo; 

The routing bytes channel the commands to the SITE.DAT file on the disk­
ette. You now reboot the system using the newly created SITE.DAT. 

NOTE 

Your text editor controls the method you use to insert 
the control character "\ in an ASCII file. For example, 
the VMS editor EDT uses the key sequence: 

gold-28-gold-specins 

or the EDT.INI command file line: 

define key control \as "(28asc)" 

to define the "\ character as ASCII 28. 

The following is an example of a SITE.DAT file created on the host. 

"\: 
SEND '042E' TO <l>ei_o1$; 
SEND 'any welcome message' TO <l>ES_TEl; 
SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF; 
"\; 
CLOSE SITE; 
"\> 

Helpful Hints TF2-3 



TF2-4 

The commands send the hexidecimal DECNET node address for a PS 390 
JCP node # 1.46, and sets Port 4 to a baud rate of 2400 and enables it to 
use X ON X OFF. - -

Installing the SITE.DAT File Directly from the PS 390 Keyboard 

This method is not recommended since it involves writing directly to disk­
ette and does not provide for error correction. However, if you cannot com­
municate with the PS 390 over an asynchronous line, the SITE.DAT infor­
mation required to use an Ethernet interface may be entered directly from 
the PS 390 keyboard as follows. 

Boot the PS 390 from your backup diskette. 

Access command mode on the PS 390 keyboard by simultaneously pressing 
the LINE LOCAL key and the CTRL key, then push RETURN. The com­
mand mode prompt @@ should appear. Enter the following command lines: 

CONFIGURE A; 
SEND 'SEND ''042E'' TO <l>EI_01$;' TO <l>WDAO; 
SEND 'CLOSE SITE;' TO <l>WDACO; 
FINISH CONFIGURATION; 

Where: 

• The A in the first line must be replaced by the appropriate password 
if one exists. 

• The hexidecimal DECNET address for node #1.46 denoted by 
'' 042E'' must have two single quotes before and after it. 

• The 0 in EI_ 01$ is the alphabetic character. 

• The Os in WDAO and WDACO are zeros. 

If you enter a command incorrectly from the keyboard and have not yet 
entered the line: 

SEND 'CLOSE SITE;' TO <l>WDACO; 

you can reboot the system and start over. However, if you have sent the 
CLOSE SITE command, you must delete the SITE.DAT that now exists on 
the diskette before you reboot and begin again. 

Once the commands have been entered correctly, reboot the system using 
the diskette which now contains the SITE.DAT file. 

Tools and Techniques 



The following commands demonstrate the same sequence to provide a 
UNIX Ethernet PS 390 JCP node address for a node # 192.6.10.8. 

CONF' I GURE A; 
SEND 'SEND ''C0060A08'' TO <l>EI_01$;' TO <l>WDAO; 
SEND 'CLOSE SITE;' TO <l>WDACO; 
FINISH CONFIGURATION; 

Refer to the Customer Installation and User Manual for your particular in­
terface for a discussion of node addressing. 

Installing the SITE.DAT File Using GS Rs 

The GSR software source files must be loaded on the host and linked to 
each user application program. 

The following examples demonstrate the basic GSR calls needed to create 
the SITE.DAT file using the Fortran and Pascal GSRs on a system with 
asynchronous communication. The GSR commands do the following: 

1. Enable PS 390/host communications 

2. Define the demuxing channel to diskette 

3. Send one (or more) SITE.DAT commands out the demuxing channel 

4. Define the channel to close the file 

5. Close the file 

6. Detach the PS 390 from host communications. 

FORTRAN GSRs: 

EXTERNAL ERR 

CALL PATTCH('LOGDEVNAM=TT:/PHYDEVTYP=ASYNC') 
CALL PMUXG(ll,ERR) 
CALL PPUTG(' SEND CHAR(65) TO <l>MESSAGE._DISPLAYl;', 37, ERR) 
CALL PPUTG('SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF;' ,44,ERR) 
CALL PMUXG(l2,ERR) 
CALL PPUTG('CLOSE SITE;' ,11,ERR) 
CALL PDTACH(ERR) 
END 

SUBROUTINE ERR(ERROR) 

INTEGER*4 ERROR 

Helpful Hints IT2-5 



172-6 

WRITE(6,1) ERROR 
FORMAT('ERROR = ',15) 
STOP 
END 

PASCAL GSRs: 

PROGRAM SITE(INPUT,OUTPUT); 

CONST 
%INCLUDE PROCONST 

TYPE 
%INCLUDE PROTYPES 
%INCLUDE PROEXTRN 

PROCEDURE ERR; 

BEGIN 
WRITELN('ERROR IS: ' ERROR); 
HALT; 
END; 

BEGIN 
PATTACH('LOGDEVNAM=TT:/PHYDEVTYP=ASYNC'); 
PMUXG ( 11, ERR) ; 
PPUTG('SEND CHAR(65) TO <l>MESSAGE_DISPLAYl;' ,ERR); 
PPUTG('SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF;' ,ERR); 
PMUXG(12,ERR); 
PPUTG('CLOSE SITE;' ,ERR); 
PDETACH (ERR); 
END 

Further Information: 

Helpful Hints Topic 2, How to Deal With Naming Conventions And Configure 
Mode. 

Section RM 10, Terminal Emulator 

Tools and Techniques 



2. How To Deal With Na1ning Conventions and Configure Mode 

Categories: 

naming conventions, configure mode 

Description: 

Naming conventions 

When you instance a function or name something, the command interpreter 
assigns a specific suffix to that name corresponding to the suffix assigned 
to that instance of the command interpreter. Name suffixing is used to dis­
tinguish system level names and instances from user-defined names and 
instances. The following suffixing scheme is used for the PS 390: 

0 suffix for system related functions associated with the user. The 
names with this suffix are not accessible in command mode. 

1 suffix for user-defined and accessible names associated with The 
user. All names with this suffix are accessible to the user. 

(If the command interpreter is suffixed with a 0 or a 1, it 
will suffix names that it creates with a 1.) 

Configure Mode 

Name suffixing automatically occurs in command mode, but it does not 
automatically occur in configure mode. Configure mode is a privileged 
mode of operation that the command interpreter uses to create or modify 
system functions. You must suffix any function that is instanced whenever 
you are working in configure mode, whether you are using system-level or 
user-level names. You must also properly suffix the command interpreter to 
assure that other functions created by the command interpreter will have the 
appropriate suffix. Configure mode is provided as a way to protect 
system-level names and functions from being erroneously modified. 
Therefore, you cannot access any system-level names or functions without 
being in configure mode. 

Helpful Hints 7T2-7 



TT2-8 

Analysis And Implementation: 

Naming Conventions 

Name suffixing is handled by the command interpreter when you are in 
command mode, and is completely invisible to you. For example, when you 
are in command mode on a single-user system and instance: 

ADD := F:ADD; 

The command interpreter creates an instance of the function F:ADD with 
the name of ADD1 (a suffix of 1 is used because ADD is a user-defined 
name created with the system command interpreter, called CIO). If you were 
to send: 

SEND 2.5 TO <l>ADD; 

to the function that you just instanced, the command interpreter would send 
the value 2.5 to the function ADDl. 

Configure mode 

You can only access system-level names and functions in configure mode, 
in which you have the capability of reconfiguring system functions. Use the 
following command to set up a password for configure mode: 

@@ SETUP PASSWORD password; 

Where password is the password to enter into configure mode. This com­
mand allows you to establish and modify the password required to enter 
configure mode. This command can be included in the SITE.DAT file, or 
may be set up at any time thereafter (there will be no password established 
prior to you issuing this command). 

The commands that allow you to enter and exit configure mode are as 
follows: 

@@ CONFIGURE password; (issue in command mode to enter configure mode) 

Where password is the established string. If no password has been defined, 
any string can be entered for the password. 

@@ FINISH CONFIGURATION; 

Tools and Techniques 



This command takes the PS 390 out of configure mode back into command 
mode. This command must be· entered after any modifications to 
system-level functions or names have been made. 

When you boot your PS 390 with the appropriate firmware, a file called 
CONFIG.DAT is read from your firmware diskette. This file contains the 
initial instances of system-level commands and functions. While reading this 
file, the command interpreter is in configure mode. 

The last thing that the CONFIG .DAT network does is search for a file called 
SITE.DAT on your firmware diskette. If a SITE.DAT file is found, it is read 
and processed. You must perform all name suffixing when you create a 
SITE.DAT file to be read from your firmware diskette. The SITE.DAT file 
is read by the CONFIG.DAT while in configure mode. For example, if you 
created a SITE.DAT file which had a command in it to change the back­
ground color to red, you would need to write: 

@@ SEND V3D (120.0,1.0,1.0) TO <2>PS390ENV1; 
@@ SEND TRUE TO <l>PS390ENV1; 

While if you wanted to change the background color to red from command 
mode, the command would need to be: 

@@SEND V3D (120.0,1.0,l.O) TO <2>PS390ENV; 
@@ SEND TRUE TO <l>PS390ENV; 

Further Information: 

Helpful Hints Topic 1, How to Make a SITE.DAT File. 

Helpful Hints TI2-9 



3. Hardcopy Networks using Writeback 

Categories: 

writeback, plotters 

Description: 

Writeback allows you to receive picture information from the PS 390. The 
writeback node, defined by WB$, occurs at the top level of the display struc­
ture. Picture information is a description of the transformed vectors located 
beneath the writeback node and can be converted to instructions for a plot­
ter. There are two ways to convert the information: 

• Running a program from the host. 

• Running a function net program on the PS 390. 

Analysis And Implementation: 

TF2-10 

Running a program from the host 

When you run the plotinfo.exe program, you create two files of picture 
instructions on the host. These files are talked about in the plotinfo.doc file. 
These host files are then converted into plotter commands for the 
appropriate plotter. The plot routines in the plot directory supports three 
plotters: 

• Hewlett Packard 7550A 

• Apple Laser Writer 

• Tektronix 4510 rasterizer hooked to a 4691 jet plotter 

The programs to do these conversions are described in the following files: 

• hpplot.doc 

• lwplot.doc 

• tekplot.doc 

Running a function net program on the PS 390 

A network defined in plot.fun allows you to trigger the writeback feature 
with the PS 390 hardcopy key. This network has the WB$ node connected to 
a Plotinfo function. The Plotinfo function puts out generic picture com­
mands for a plotter function. 

Tools and Techniques 



NOTE 

The only plotter function supported by the PS 390 is 
the Hpplot user-written function for the Hewlett Pack­
ard hp 77 5 Oa plotter. 

The Hpplot function receives commands from the Plotinfo function and puts 
out commands to the port to which it is connected. The Plot.Fun file con­
nects the plot function to output port 4. Both the Plotinfo and Hpplot func­
tion are User-written functions that need to be loaded down to the PS 390. 
The functions are defined in the Plotinfo.uwf and Hpplot.uwf files. These 
functions are described in the Plotinfouwf .doc and Hpplotuwf.doc files. 

Further Information: 

Section RM2 Intrinsic Functions, RM 14 GSR Internals 

Helpful Hints IT2-ll 



4. How to Deal with XFORMDATA 

Categories: 

XFORM VECTOR, XFORM MATRIX 

Description: 

1T2-12 

Before reading this, thoroughly read the Section 1T9 Transformed Data and 
Writeback. You should be familiar with the information contained in that 
section. 

Note the following restrictions on the use of transformed data on the 
PS 390: 

• The PS 390 does not allow the display of transformed data 
(F:XFORMDATA outputs a non-displayable data type 
vector-normalized vector list). 

• A single-precision vector list is generated by F:XFORMDATA. 

• Only three-dimensional data can be transformed. 

• F:XFORMDATA can still be connected to F:LIST to enable the host 
to read the transformed data retrieved from the PS390. 

XFORM VECTOR affects all transformations applied to the data node(s), 
whether these transformations are above or below the XFORM VECTOR 
node. 

XFORM MA TRIX affects only those transformations above the XFORM 
MATRIX node. XFORM MATRIX should be placed immediately above the 
data node(s) to include all transformations applied to the data node(s). 

There is a limit of 2048 vectors that may be read back with single trigger of 
the XFORM VECTOR node. 

Tools and Techniques 



Analysis And Implementation: 

The following examples show how XFORM MATRIX and XFORM 
VECTOR might be used. As the code is, an output is not produced because 
the LIST<l> is not connected to another function. Output of LIST<l> can be 
verified in one of three ways: 

• LIST<l> can be connected to a debug port (if available) 

• LIST<l> can be connected to the function ES TE 

• LIST<l> can be connected to the function HOST_MESSAGE, and 
messages may be polled from HOST_ MESSAGE via 
FORTRAN/Pascal GSR programs. 

You can verify the XFORM VECTOR example is functional by removing 
the displayed data and displaying the transformed data: 

@@ REMOVE XFORM; 
@@ DISPLAY XDATA; 

Example Of XFORM MATRIX 

init; 

xform .- begin_structure 
x .- set conditional_bit 1 on; 

if conditional_bit 1 is on then 
if conditional bit 1 is off then 
end_s; 

{Set up conditional 
view; {referencing so that 
tran;{the viewing, etc. can 

{be replaced by the 
{identity matrix. 

tran .- begin_structure 
matrix_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; 
instance of obj; 

end_s; 

{structure to be } 
{transformed- no } 
{viewing, etc. } 
{applied } 

view .- begin_structure 
window x = -5:5 y = -5:5; 
instance of obj; 

end_s; 

{structure to be displayed­
{all viewing, etc. applied 

obj .- begin_structure 

Helpful Hints 

trans := translate by 0.2,0.4,0.0; 
xform_request := xform matrix; 
instance of data; 

end_s; 

{xform matrix request - } 
{note that it is just } 
{prior to the data node } 

TF2-l 3 



data:= vec item n=2 -.5,.5,0 .5,-.5,0; 

xformdata := f:xformdata; 
sync2 := f:sync(2); 
list := f:list; 
conn sync2<1>:<1>xformdata; 
conn xformdata<l>:<l>list; 
conn list<2>:<2>sync2; 
conn list<2>:<1>xform.x; 
send 'go' to <2>sync2; 
send 'obj.xform_request' to <2>xformdata; 
send 'xdata' to <3>xformdata; 
display xform; 

{The 
{two 
{ 

following network sets up function key 1 such that it performs the } 

{ 
{ 

commands: 
@@ send false to <l>xform.x; 
@@ send false to <l>sync2; 

{which triggers the conditional bit 1, and then triggers the xform 
{vector node to return the transformed data. 

sync := f:sync(2); 
false := £:constant; 
route := f:route(12); 
send 'xform' to <l>flabell; 
send false to <2>false; 
conn fkeys<l>:<l>route; 
conn fkeys<1>:<2>route; 
conn route<l>:<l>false; 
conn fkeys<l>:<l>sync; 
conn false<l>:<l>xform.x; 
conn false<1>:<2>sync; 
conn sync<2>:<1>sync2; 

This example should produce the following from LIST <1>: 

XDATA .- MATRIX_4X4 1.000000E+O,O.OOOOOOE+O,O.OOOOOOE+O,O.OOOOOOE+O 
O.OOOOOOE+O,l.OOOOOOE+O,O.OOOOOOE+O,O.OOOOOOE+O 
O.OOOOOOE+O,O.OOOOOOE+0,1.000000E+O,O.OOOOOOE+O 
1.999999E-l,3.999999E-1,0.000000E+O,l.OOOOOOE+O; 

} 
} 
} 
} 
} 
} 

TT2-14 Tools and Techniques 



Example Of XFORM VECTOR 

init; 

xf orm begin_structure 
x .- set conditional_bit 1 on; 

if conditional_bit 1 is on then view; 
if conditional_bit 1 is off then tran; 

end_s; 

tran .- begin_structure 

{Set up conditional } 
{referencing so that } 
{the viewing, etc. can } 
{be replaced by the } 
{identity matrix. } 

matrix_4x4 l,0,0,0 0,1,0,0 0,0,l,O 0,0,0,l; 
instance of obj; 

{structure to be } 
{transformed- no } 

end_s; {viewing, etc. } 
{applied } 

view .- begin_structure 
instance of obj; 

end s; 

obj .- begin_structure 

{ structure to be displayed- } 
{ all viewing, etc. applied } 

xform_request := xform vector; 
instance of data; 

end_s; 

{xform vector request - note } 
{that it is just prior to the } 
{data node } 

data .- vec item n=2 -.5, .5,0 .5,-.5,0; {Only three-dimensional data can 
{be transformed on a PS390 

xformdata := f :xformdata; 
sync2 := f:sync(2); 
list:= f:list; 
conn sync2<1>:<1>xformdata; 
conn xformdata<l>:<l>list; 
conn list<2>:<2>sync2; 
conn list<2>:<1>xform.x; 
send 'go' to <2>sync2; 
send 'obj.xform_request' to <2>xformdata; 
send 'xdata' to <3>xformdata; 
display xform; 

{The following network sets up function key 1 such that it performs 
{the two commands: 
{ @@ send false to <l>xform.x; 
{ @@ send false to <l>sync2; 
{ 
{which triggers the conditional bit 1, and then triggers the xform 
{vector node to return the transformed data. 

Helpful Hints 

} 
} 
} 
} 
} 
} 
} 

7T2-l 5 



sync := f:sync(2); 
false := f:constant; 
route:= f:route(12); 
send 'xform' to <l>flabell; 
send false to <2>false; 
conn fkeys<l>:<l>route; 
conn fkeys<1>:<2>route; 
conn route<l>:<l>false; 
conn fkeys<l>:<l>sync; 
conn false<l>:<l>xform.x; 
conn false<1>:<2>sync; 
conn sync<2>:<1>sync2; 

This example should produce the following from LIST<l>: 

XDATA : = VECTOR_LIST ITEMIZED N=2 P --0. 500000, 0. 500000, 0. 000000 I=O. 992188 
L 0.500000,-0.500000,0.000000 I=0.992188; 

Further Information: 

Section TT9 Transformed Data and Writeback 

TT2-16 Tools and Techniques 



5. How to Render Spherical and Line Data Types 

Categories: 

rendering 

Description: 

Spherical renderings on the PS 390 use input <5> of the surface/solid 
rendering node and transformed data node information. To change 
definitions of the spherical renderings in the attribute table, you need to 
create a tabulated vector list that contains spherical definitions. 

Analysis And Implementation: 

To render a sphere, perform the following: 

Helpful Hints 

1. Place an instance of the surface/solid rendering node in the main 
structure of the object to be rendered. The rendering node should be 
placed below the instance of the vector data to be used for the 
spherical rendering. 

2. Create spherical data definition using tabulated vector lists where 
each X,Y,Z coordinate specification represents the spherical center 
of the rendered sphere. The tabulated value represents the spherical 
attributes associated with the table value as loaded in the attribute 
table. The following is an example of spherical vector data definition 
with the default system attribute table: 

raster_spheres := vector list tabulated n = 3 
P 1,0,0 t=5 {yellow sphere} 
L 1,1,0 t=4 {blue sphere} 
L 0,1,0 t=2 {red sphere} 

Because the transformed data function uses vector normalized vector 
data, two definitions of the spherical data must be established in 
mass memory that are identical in value. One list is used for display 
information and is block normalized.The other list follows a trigger 
of the ALLOW VECNORM function and is a vector normalized vec­
tor list in mass memory. This vector list is not displayed since the 
PS 390 does not display vector normalized vector lists. 

TI'2-l 7 



Tf2-18 

3. Setup transformed data node to provide transformed data informa­
tion to the rendering node and connect output <1> of the xformdata 
node to input <4> of the rendering node. 

4. Send the name of the spherical vector list data to input <5> of the 
rendering node. 

5. Trigger the rendering xformdata node and the rendering node to pro­
duce the rendering. 

NOTE 

To avoid timing problems, use a SYNC(2) function 
from the function keys to simultaneously trigger the 
rendering xformdata node and the rendering node. 
Connect sync function output <1> to the xformdata 
function and output <2> to the rendering node. 

Reloading the Attribute Table 

To change the definitions of the spherical renderings in the attribute setup a 
vector list similar to the following: 

ATTRIBUTE_TABLE_VEC := VECTOR LIST TABULATED N = 6 
0,1,1 
120,1,1 
240,1,1 

2,. 5, 4 T=5 
4.0,0.8,9 T=6 
3.0,0.3,2 T=7; 

Where each table entry is specified by two X, Y, Z vector components. The 
first X, Y, Z, component is for hue, saturation, and intensity, and the sec­
ond X, Y, Z component is for radius, diffuse, and specularity of that entry. 

Update the table by entering the command: 

@@ send 'attribute_table_vec' to <14>shadingenvironment; 

NOTE 

When rendering spherical data, the sphere will not be 
rendered if the vector list is defined or transformed 
such that the front or back clipping planes clip the 
radius of the rendered sphere. Be sure front and back 
clipping planes are setup so as not to interfere with the 
spherical rendering. 

Tools and Techniques 



The following is an example of basic raster __ spheres rendering network. 

init; 

reserve_working_storage 300000; 

allow := f :allow_vecnorm; 

display render_sphere; 

render_sphere := begin_s 
set depth_clipping on; 
set contrast O; 
window x = -5:5 y=-5:5 front = -10.0 back 10; 
instance of disp_sphere; 
rendering surface_rendering; 
{instance of polygon objects} 

end_s; 

disp_sphere := begin_s 
linexform := xform vector; 
{ viewing, windowing, etc. } 
{ rotate, scale, translate } 
instance of sphere_vecn,sphere_blockn; 

end._s; 

sphere_blockn := vector tabulated n=8 
P 1,0,0 t=2 {red sphere} 
L 1,1,0 t=5 {yellow sphere} 
L 0,1,0 t=4; {blue sphere} 

{allow following vector definition to be vector normalized } 
send true to <l>allow; 
give_up_cpu; 
give_up_cpu; 
give_up_cpu; 
give_up_cpu; 

sphere vecn vector tabulated n=3 -
p 1,0,0 t=2 {red sphere} 
L 1,1,0 t=5 {yellow sphere} 
L 0,1,0 t=4; {blue sphere} 

send false to <l>allow; 

{ setup xformdata node } 
linexformdata := f:xformdata; 
send 'disp_sphere.linexform' to <2>linexformdata; 

Helpful Hints TT2-19 



conn linexformdata<1>:<4>render_sphere.rendering; 
send 'sphere_vecn' to <5>render_sphere.rendering; 

{ setup network to turn on the display upon render completion } 
con := f :constant; 
send fix(O) to <2>con; 
conn render_sphere.rendering<l>:<l>con; 
conn con<l>:<l>turnondisplay; 

{setup render trigger to be any function key} 
rsyn := f:sync(2); 
conn fkeys<l>:<l>rsyn; 
setup cness true <2>rsyn; 
send fix(7) to <2>rsyn; 
conn rsyn<l>:<l>linexformdata; 
conn rsyn<2>:<1>render_sphere.rendering; 

{ initialize shadingenvironment function } 
send v3d(l20,0,500) to <3>shadingenvironment; 
send fix(l) to <5>shadingenvironment; 

Further Information: 

Section TT9 Transformed Data and Writeback 

TT2-20 Tools and Techniques 



6. Physical 1/0 GSR issues 

Categories: 

Ethernet interface, parallel interface, 1/0 commands 

Description: 

The physical 1/0 commands permit the host to directly access the internal 
contents of any node or PS 390 structure. The 1/0 commands take full 
advantage of the speed of the Ethernet or parallel interfaces to modify the 
contents without any node swapping, pointer juggling, memory 
management, or command interpretation. For a more complete description 
of the physical 1/0 commands refer to Section AP4 of the PS 390 Document 
Set and the appropriate Customer Installation and User Manual for your 
interface. 

Analysis And Implementation: 

The following is a high level description of a physical 1/0 programming 
example. This programming example can be run over the Ethernet or 
parallel interfaces. To run this program read the file phy_example.doc 
located on the host software tape in the miscellaneous sub-directory. 

The source for this program is located in the phy_example.for file. 

The program updates two matrices that rotate two objects, one around the Y 
axis, the other around the Z axis. These two matrices are double buffered. 
The double buffering is accomplished by having two paths through the dis­
play structure. 

Pathl has one copy of the Y and Z matrices, path2 has the other copy of the 
matrices. The names of the Y rotation matrices are pathl.yrot and 
path2.yrot. The names of the Z rotation matrices are pathl.zrot and 
path2.zrot. The conditional pivots.bit controls whether pathl matrices or 
path2 matrices are used. 

Helpful Hints 1T2-21 



The program first gets the physical address of these five entities and then 
continuously switches updates of path 1 and path2 matrices. Each time an 
update is done the conditional bit is also updated so the appropriate path is 
taken in the display structure. The result is smooth rotations of the objects 
around the Y and Z axis. 

Further Information: 

IT2-22 

Advanced Programming, AP 1-9 and the Customer Installation and User 
Manual for your interface 

Tools and Techniques 



7. Host Communication Data Flow - How the Interfaces 
Deal with Runtime 

CATEGORIES: 

communication interface, runtime environment 

DESCRIPTION: 

The host system communicates with the PS 390 runtime environment via a 
communication interface. The communication interface uses two types of 
communication packets, count mode and escape mode. 

Count mode 

Count mode packets begin with the start of packet (SOP) character ( 6), 
followed by two bytes of count data, followed by the data. The first byte of 
data should be a muxing byte that tells the PS 390 where the data goes. 

As an example, a sample count mode packet, in hex, might look like: 

06 00 06 30 49 4E 49 54 3B 

Where: 

06 signifies the beginning of a packet 

00 06 signifies there are 6 bytes following 

30 signifies that this is an ASCII command which needs to go to the 
chopper/parser 

49 4E 49 54 3B are the ASCII character codes for "INIT;" 

This type of packet is generated automatically by the GSRs and is the stan­
dard method of communication with the PS 390. 

Escape mode 

Escape mode packets start with an ASCII FS character (Hex 1C), followed 
by the muxing byte, followed by data. Since there is no count associated 
with an escape mode packet, the system assumes that all data is part of the 
current packet until another SOP character is received. The escape mode 
packet is commonly used when you place the FS and the mux bytes directly 
in the data file destined for the PS 390 and use a host system command 
such as TYPE or COPY to transfer the file to the PS 390 over the 
asynchronous line. 

Helpful Hints TT2-23 



Analysis And Implementation: 

TT2-24 

I 

The runtime communication environment can be conceptually divided into 
five function boxes. 

I input handling I depacket 1------->I ciroute 1----> 
I function I I function I I function 1----> 

-->I accepts data 1----->I breaks host I I routes data I 
I from host I I data into I I to various I . 
I I I Qpackets and 1---- I system I . 
I I I Qmorepackets I I I functions 1----> 

================ I =============== 
DEPACKETO I CIROUTEO 

I 

I ================== ================ 
I I another I I another 1----> 
---->I depacket 1----->I ciroute 1----> 

I function I I function I 
I I I I 
I I I I 
I I I 1----> 

DEPACKET20 CIROUTE20 

The input handling function is a generic description of a function that ac­
cepts data from the host and passes it to the next function in line: 
DEPACKETO. 

DEPACKETO is a count mode version of the F:DEPACKET function. When 
DEPACKETO receives data that is not a count mode packet, it sends the 
data to the second F:DEPACKET function: DEPACKET20. When 
DEPACKETO receives a count mode packet, it consumes the SOP and count 
bytes and sends out a Qpacket, followed by Qmorepackets, to CIROUTEO. 

CIROUTEO looks at incoming data packets and does one of two things; if a 
QPACKET is received, CIROUTEO looks at the first byte, which should be a 
muxing byte, then changes the output path to match the mux byte. Data 
following the mux byte goes out this path. If a Qmorepacket is received, 
CIROUTEO does not change the output path, and sends the data out the 
current output path. The various paths out of CIROUTEO are connected to 

Tools and Techniques 



such system functions as a chopper/parser to handle ASCII commands, as 
well as a path to handle binary data commands. 

DEPACKET20 is similar to DEPACKETO, except it looks for escape mode 
packets. DEPACKET20 consumes the SOP character from an escape mode 
packet and breaks the data up into Qpackets and Qmorepackets and sends it 
out output 1 to CIROUTE20. If the data is not an escape mode packet, 
DEPACKET20 sends the data out output 2. 

CIROUTE20 functions like CIROUTEO, including a complementary set of 
output paths. 

The appropriate packets must be built on the host side before sending to the 
PS 390. The common way to send ASCII PS 390 commands across an asyn­
chronous link is to build a file using the editor which has the desired com­
mands and required FS characters followed by mux bytes. The file is then 
sent to the PS 390 with an operating system command such as TYPE or 
COPY. 

However, the standard way to communicate with the PS 390 is via the GSR 
library. The GSR library builds packets for all PS 390 commands in binary 
and ASCII format, handles efficiency considerations such as buffering of 
data, and knows how to deal with all the supported communication interface 
options such as asynchronous 9 parallel, Ethernet, and IBM 3278. 

To reset CIROUTE and CIROUTE3 to their previous configuration type in 
the following commands: 

Configure a; 

disconnect cirouteO<lO>:<l>rasstrO; 
disconnect cirouteO<ll>:<l>hpolystrO; 
disconnect ciroute30<10>:<1>rasstr30; 
disconnect ciroute30<ll>:<l>hpolystr30; 
send fix(4) to <4>ciroute0; 
send fix(4) to <4>ciroute30; 

Finish configuration; 

FURTHER INFORMATION: 

Section RMS Host Communications and Section RM7 Local Data Flow 

H e!pful Hints TT2-25 



8. How to Copy Files Between the Host and the PS 390 

Categories: 

Description: 

You can copy files from the host to a PS 390 diskette and from the PS 390 
diskette to the host. You need to connect a debug terminal to your system 
and use the UTILITY routines booted from the diagnostic utility diskette 
except when downloading a file over an asynchronous line. 

Analysis And Implementation: 

1T2-26 

Copying Files from Host to PS 390 Diskette 

There are two methods for copying an ASCII file from the host to the 
PS 390: 

1. Adding appropriate routing bytes to the ASCII file on the host and 
downloading to the PS 390 over an asynchronous line. 

2. Booting from a PS 390 diagnostic disk and using the UTILITY com­
mand TRANSFER. 

Downloading an ASCII File from the Host Using Routing Bytes 

You must add three special routing bytes to your text file on the host. These 
routing bytes direct the PS 390 to write the host file to the firmware disk­
ette, close the new file and return control to the PS 390 terminal emulator. 

The file you create on the host contains the following special characters: 

~\: 

FILE BODY 

The file must begin with the demuxing character 
~\ (control key and \ pressed simultaneously) 
and the routing byte : which causes the following 
lines of the file to be written on the firmware 
diskette. 

The file lines are assumed to be ASCII. 

The demuxing character ~\ and routing byte 
must precede the command to close the file on 
the diskette. 

Tools and Techniques 



CLOSE<filename>; The PS 390 command that closes the file on 
diskette. Note you DO NOT ADD A FILE EXTENSION 
HERE. When you use this method, the system will 
automatically append the extension .dat to the file 
name you give here. 

The demuxing character A\ and the routing byte > 
restore output to the terminal emulator. 

Once the routing bytes have been added to the file that exists on the host, 
boot the PS 390 and enter terminal emulator mode. Give the command to 
type the host file: 

For VMS 
For UNIX -

type <filename.> 
stty raw -echo; cat <filename.>; stty cooked echo; 

The routing bytes channel the commands to the filename.dat file on the 
diskette. 

NOTE 

You must insert a space at the start of each line since 
the first character of each line is lost. The method you 
use to insert the control character A\ in an ASCII file 
depends on the text editor you are using. For example, 
the VMS editor EDT uses the sequence: 

gold-28-gold-specins key 

or the edt.ini command file line: 

define key control\ as "(28asc)" 

to define the A\ character as ASCII 28. 

The following example shows a file containing the necessary routing bytes. 

Helpful Hints 

A\: 

These two lines of text will be copied onto the PS 390 diskette. 
The file will be labeled: SAMPLE.DAT. 
A\; 

CLOSE SAMPLE; 
A\> 

TF2-27 



172-28 

Using Utility Routines for Uploading and Downloading 

You use the TRANSFER utility routine to copy files from the host to a 
PS 390 diskette, and the SENDBACK routine to copy files from the PS 390 
diskette to the host. You need to connect a debug terminal to your system to 
fully use the UTILITY routine screen prompts and messages. 

To transfer a file, boot your system from the diagnostic utility diskette. If 
you have a data tablet connected to your system, be sure the puck is not on 
the tablet when booting. When the debug terminal indicates the diagnostics 
have completed through 'O', hold the control key down while you slowly 
type the letter 'p' 5 or 6 times. The system should respond by identifying the 
operating system, disk name and the message: type HELP for additional 
help, followed by the = prompt. When you see the = prompt type: 

utility <er> 

You then get the utility> prompt and are ready to begin the file transferring 
process. 

Checking Host Communications Settings 

The first step in checking the communication settings is to ensure the 
default communication parameters between your host and the PS 390 are 
compatible. The MODIFY utility routine displays the current settings and 
allows you to modify those that are not correct. At the utility> prompt type: 

modify <er> 

The MODIFY routine lists a menu of all the setting selections when you 
enter the number 0. Select menu number 1 to see the current default 
settings for all the parameters. 

NOTE 

Generally, you only need to verify that the baud rate 
(#4) is appropriate, and that the sendback (#7) and 
transfer (#9) strings and terminator strings (#8, #10) 
are compatible with your host. For example, on VMS, 
the appropriate transfer string: 

Tools and Techniques 



TYPE <fn><cr> 

is the VMS command that will cause the host to send 
the file <fn> to the PS 390. The appropriate terminator 
string is the VMS prompt "$ " which indicates that the 
file transfer has been completed. 

If the default settings are compatible with your host, you may exit from the 
MODIFY utility by typing a carriage return and proceed with the file copy­
ing as described in the next sections. If one or more of the default settings 
needs to be changed, refer to the section on Modifying Host/PS 390 Com­
munication Parameters under this topic before attempting the copy proce­
dures. 

Copying from Host to PS 390 Using the TRANSFER Utility 

If the communication parameters displayed by the MODIFY utility are ap­
propriate for your host, you may proceed to copy a file of up to 30,000 
bytes from the host to the PS 390 diskette as follows: 

Helpful Hints 

1. At the Utility> prompt, type: 

terminal <er> 
<er> 

to log onto the host account containing the file to be transferred. This 
places the PS 390 in terminal emulator mode and causes the system 
to prompt for your login. 

2. After you have logged onto the appropriate account, set the terminal 
to NOECHO. If you fail to turn the echo off, your newly copied file 
will contain the transfer string as its first line. The commands to turn 
character echoing off are: 

For VMS - set term/noecho 

For UNIX - st ty raw -echo 

3. Simultaneously press the control key and letter A to return to the 
PS 390 utility prompt. At the utility> prompt type: 

transfer <er> 

4. The transfer utility will prompt you for: 
• The name of the file exactly as it appears on the host. 

TI'2-29 



TT2-30 

• The name of the file to be created on the PS 390. File names may 
contain 1 to 8 alphanumeric characters plus an extension .DAT 
(data), .TXT (text) or .COM (communication ). 

• The type of transfer (ASCII or S-record). 

• The date in the format dd--mmm-yy. 

The file transfer starts when you have supplied the above information. A 
dot appears for each line transferred, then a message stating the transfer 
was successful appears when the transfer is complete. At the utility> prompt 
and you can repeat the process for another file. If you return to terminal 
emulator mode, you should set the character echo back on as follows: 

For VMS - set term/echo 

For UNIX - stty cooked echo 

Copying from the PS 390 to the Host Using the SEND BACK Utility 

If the communication parameters displayed by the MODIFY utility are ap­
propriate for your host (including the XON/XOFF characters), you may 
copy a file from the PS 390 diskette to the host as follows. 

1. At the Utility> prompt, type: 
terminal <er> 
<er> 

to log onto the host account to which the file will be transferred. This 
places you in terminal emulator mode and causes the system to 
prompt for your login. 

2. After you have logged onto the appropriate account, set the terminal 
to host synchronization. If the host computer does not send XON/ 
XOFF signals data may be lost. Setting the host synchronization as­
sures that the buffers of the host computer do not overflow. The 
VMS command to turn host synchronization on is: 

SET TERM/HOSTSYNC 

3. To return to the utility prompt, type: 

<CONTROL> A 

4. At the utility> prompt type: 

sendback <er> 

Tools and Techniques 



5. The sendb.ack utility prompts you for: 

• The name of the file exactly as it appears on the PS 390. 

• The name and extension of the file to be created on the host, 
including the full path name if the file is to be copied to a direc­
tory other than the one where you are currently logged on. 

• The type of transfer (ASCII or S-record) 

The file transfer starts when you have supplied the above information. A 
message stating that the transfer was successful appears when the transfer 
is complete. At the utility> prompt you can repeat the process for another 
file. When you return to terminal emulator mode, you should set VMS host 
synchronization off as follows: 

SET TERM/NOHOSTSYNC 

Modifying Host/PS 390 Communication Parameters 

Successful file transfers require that the default communication parameters 
between your host and the PS 390 are compatible. The utility routine 
MODIFY displays the current settings and allows you to modify those that 
are not correct. At the utility> prompt type: 

modify <er> 

The MODlFY routine lists a menu of all the setting selections when you 
enter the number 0. Select menu number 1 to see the current default set­
tings for all the selections. 

Enter the number 0 to return to the selection menu at any time or enter the 
menu number of the specific setting you wish to change. 

When you select a specific parameter, the MODIFY utility shows the current 
setting for the parameter and prompt you step by step through the 
modification process. 

As an example, the following steps describe how to modify the sendback 
string (#7) to shorten the transfer string to TY instead of TYPE and choose 
the # delimiter. 

Helpful Hints IT2-31 



TI'2-32 

1. The system prompts: 

Enter a number 

You type: 

9 <er> 

The current transfer string is displayed and you are prompted ·to 
enter the new tr an sf er string: 

Current transfer string is: "TYPE <fn><cr>" 

Enter a delimiter (any character but <Cr>), then the message, and the 
delimiter again. 

2. Then type: 

#TY (CONTROL F) <er># 

The change is made as soon as you type the final delimiter. 

3. You are prompted to enter another number and repeat the process, 
or you can return to the main menu by typing a 0. Verify your 
changes by entering number 1. If they are not correct, repeat the 
process. 

4. Exit the MODIFY utility by typing a carriage return and proceed with 
the file copying as described in the previous sections. 

Tools and Techniques 



9 .. Routing Bytes 

CATEGORIES: 

routing bytes, F:CIROUTE 

DESCRIPTION: 

A routing byte (also called a mux byte) is that portion of a PS 390 commu­
nication packet that determines where the commands and/or data are sent. 
It is one byte in length. The intrinsic function F:CIROUTE uses the routing 
byte to determine where data following the routing byte is sent. Outputs of 
F:CIROUTE are connected to other functions such as CHOP to process 
ASCII commands, READSTREAM to process binary commands, and 
SREC __ GATHER to process user written function code. 

ANALYSIS AND IMPLEMENTATION: 

There are three ways to specify routing bytes: 

1. Insert the routing byte within an ASCII file with an editor. This byte 
must be preceded by the FS character (hex 1 C) and all data follow­
ing the routing byte is routed to the designated path until another FS 
routing byte sequence is encountered. 

2. Use the special GSR routines PMuxG and PPutG. PMuxG sets the 
generic output channel according to the value of its parameter and 
subsequent calls to PPutG send data to the generic output channel. 

3. The most common technique is to let the GSR' s implicitly build com­
munication packets and set the routing bytes for you. 

Following is a table showing the F:CIROUTE function, its output connec­
tions and the routing bytes necessary for each output path. The connections 
of CIROUTEO are subject to change. 

Helpful Hints TI'2-33 



routing bytes 
CIROUTEO output connection ascii I pmuxg 

================= ------------------
<1> <1> reserved N/A N/A 

<2> <l>BADROUTEO N/A N/A 

<3> <l>H CHOPO 0 1 

<4> <l>READSTREAMO 1 2 

<5> <l>SIXTOEIGHTO 2 3 

<6> <l>RESET_RSl 3 4 

<7> unused 4 5 

<8> unused 5 6 
<9> <l>SREC GATHERO 6 7 

<10> <l>RASSTRO 7 8 
<11> <l>HPOLYSTRO 8 9 
<12> unused 9 10 

<13> <l>WDAO 11 

<14> <l>WDACO 12 

<15> <l>WDBCO < 13 

<16> unused 14 
<17> <l>ES TEl > 15 
<18> <l>TRIGGER CONVBl ? 16 
<19> <l>WHOl @ 17 

<20> unused A 18 

<21> <l>RASSTRO B 19 

================= 

FURTHER INFORMATION 

IT2-34 

Helpful Hint Topic 7, Host Communication Data Flow/How the Interfaces Deal 
with Runtime 

Tools and Techniques 



10. How to do Patterned and Textured Vector Lists 

CATEGORIES: 

patterned vector lists, textured vector lists 

DESCRIPTION: 

Textured vector lists 

The texture command is used to apply a hardware generated texture to a 
vector list. Textures are drawn in the same direction as the vector list was 
specified. 

Patterned vector lists 

A pattern may be applied to a vector list by specifying up to 32 integers 
between 0 and 128 that represent the relative lengths on the pattern 
segments (lines and spaces). 

ANALYSIS AND IMPLEMENTATION: 

Textured vector lists 

The texture command has the form: 

Name := set line_texture [around_corners] pattern [applied to x] 

Where pattern is an integer in the range of 1 to 127 specifying a texture to 
be applied to a vector list. The texture applied is calculated by the binary 
representation of the of the integer given in the lower 7 bits. All textures 
start with a one (dash) in bit 8 of the texture. 

Example 1: 

Helpful Hints 

Plain vec := vector_list -1,0,0 1,0,0; 
texture vec := set line_texture 122 then plain_vec; 
Display texture_vec; 

Integer 122 which is 01111010 in binary 
would produce a texture ----- - ----- - ----- -
over 3 intervals. 111110101111101011111010 

I 1 I 2 I 3 I 

IT2-35 



TT2-36 

Example 2: 

Plain_vec := vector_list -1,0,0 1,0,0; 
texture_vec := set line_texture 25 then plain_vec; 
Display texture_vec; 

Integer 25 which is 00011001 in binary 
would produce a texture 
over 3 intervals. 100110011001100110011001 

I 1 I 2 I 3 I 

Patterned vector lists 

The command to apply a pattern to a vector list is: 

name := pattern i [around corners] [match/nomatch] length r; 

Where i represents the integers that specify the pattern and r represents the 
interval over which the pattern is to be repeated. The pattern is applied to 
the vector list with the PATI'ERN WITH command. 

Example: 

lineX := vector_list -1,0,0 1,0,0; 
Patternl := pattern 5,2,2,5 length 1; 
Pattern linex with patternl; 
Display linex; 

Produces a patterned vector list over three intervals as shown below: 

5 2 2 5 5 2 2 5 5 2 2 5 

Tools and Techniques 



11. Discussion of inputs to display structures 

CATEGORIES: 

vector nodes, character nodes, label nodes 

DESCRIPTION 

The vector, character, and label data structures can be updated via inputs to 
their node in the display structure. Following are examples of updates. For 
complete documentation on inputs for vector 9 character, and label nodes, 
refer to Section RMI, Command Summary. 

ANALYSIS AND IMPLEMENTATION: 

The following program uses an update to delete the top vector of a box. The 
third item in the vector list is changed from a move command to a position 
command. 

vector .- vec n=4 
0,0,0 
0,. 5 ,0 

• 5 I• 5 ,0 
.5,0,0 
0,0,0; 

display vector; 
send false to <3>vector; 

The following program uses an update to replace the last character (g) of a 
string with another character (a). 

charl :=char /test string/; 
seal := scale by .05, .. 05 applied to charl; 
display seal; 
send /a/ to <last>charl; 

The following programming example uses an update to replace the last 
string in a label block (stringl) with another string (new string). 

Helpful Hints TT2-37 



lab .- labels 0,0,0 'string 1' 
0,-1.5,0 'string 2' 
0,-3,0 'string 3'; 

seal := scale by .05, .. 05 applied to lab; 
display seal; 
send 'new string' to <3>lab; 

FURTHER INFORMATION: 

RM 1, Command Summary 

1T2-38 Tools and Techniques 



12. How to do Run Length Encoded Programming 

CATEGORIES: 

raster programming 

DESCRIPTION 

The PS 390 raster system outputs static images to a 1024 (column) by 864 
(row) pixel raster display. Each pixel is 24 bits deep for addressing into a 
red-green-blue color lookup table that is 24 bits deep. The PS 390 accepts 
raster data from the host in run-length encoded format. A description of 
this data format and how to address the various pixels on the PS 390 is 
contained in Section GTJ 4, PS 390 Raster Programming. The following is an 
example from GTJ 4. The program displays a flag of red, white, and blue 
blocks. 

ANALYSIS AND IMPLEMENTATION: 

Helpful Hints 

1. Load a black background color. This is done through the PRasEr call 
with the red, green, and blue entries having a value of 0. 

2. Display a red rectangle. This rectangle will be 200 pixels wide by 440 
pixels high. The block is located between pixel number 20 and 219 in 
the X direction and pixel number 20 and 459 in the Y direction. The 
location of the block is given in the PRasLd call. The number of 
pixels and the color of these pixels are stored in the matrix MAT. 
This matrix is used in the PRas WP call for writing down pixel 
information. 

3. Display a white rectangle. This rectangle will be 200 pixels wide by 
440 pixels high. The block is located between pixel number 220 and 
419 in the X direction and pixel number 20 and 459 in the Y direc­
tion. The location of the block is given in the PRasLd call. The num­
ber of pixels and the color of these pixels are stored in the matrix 
MAT. This matrix is used in the PRasWP call for writing down pixel 
information. 

7T2-39 



4. Display a blue rectangle. This rectangle will be 200 pixels wide by 
440 pixels high. The block is located between pixel number 420 and 
619 in the X direction and pixel number 20 and 459 in the Y 
direction. The location of the block is given in the PRasLd call. The 
number of pixels and the color of these pixels are stored in the 
matrix MAT. This matrix is used in the PRasWP call for writing 
down pixel information. 

5. Exit program. 

FURTHER INFORMATION: 

GTJ 4, Raster Programming 

1T2-40 Tools and Techniques 



13. How to Define a Break Key 

CATEGORIES: 

break key 

DESCRIPTION: 

A break sequence is useful for getting the attention of the host across an 
asynchronous line for such purposes as requesting a logon prompt. PS 390 
users have control over which key is defined as the break key, as well as the 
duration of the break sequence. 

Any key may be used as a break key except the following: 

• SETUP 

• Function Key Fl 

• GRAPH Key 

• TERM Key 

• LINE/LOCAL Key 

Any other function key, HARDCOPY, CLEAR/HOME, or any key on the 
right-hand keypad can be designated as the break key. The break key can be 
designated as the key, the shift value of the key, or the control value of the 
key. 

ANALYSIS AND IMPLEMENTATION: 

Defining the break key 

You must be in setup mode to define the break key. To define a break key, 
perform the following: 

• Press Function Key Fl 0 

• Press the key your designating as the break key 

• Press Function Key Fl to indicate the break key has been selected 

After entering this sequence press the setup key to exit setup mode. 

Setting the duration of the break sequence 

Use the SETUP INTERFACE command to set the duration of the break 
sequence. For example, to set the break time on port 1 to be 50 
centiseconds, enter the following command: 

Helpful Hints 1T2-41 



IT2-42 

SETUP INTERFACE PORT:O/BREAK_TIME=SO; 

The default break time is 10 centiseconds and the maximum is 127. All 
values are in centiseconds. 

NOTE 

The break key is only functional m the terminal 
emulator mode of operation. 

Tools and Techniques 



14. How to Debug a Function Network 

CATEGORIES: 

DESCRIPTION: 

There are two ways to debug the function network; use the PS 390 Debug, 
or tap into the function network in different places and examine the data to 
see if it is correct at that point. 

ANALYSIS AND IMPLEMENTATION: 

PS 390 Debug 

It is suggested that you do not attempt to use Debug except when other 
methods for debugging a function network have failed. To use Debug, you 
must be familiar with PS 390 data types and formats. For more information 
on the PS 390 debugger, refer to AP7. 

Tapping into the Function Network 

Print function 

The F:PRINT function converts any data type to string format; it performs 
an inverse of the operation that occurs when an ASCII string is input to the 
PS 390 and is converted to one of the data types. 

Most of the data retrieved from a function network must first be translated 
by the F:PRINT function to an ASCII string so that it can be printed in a 
readable form. 

Unprintable to printable data 

The F:NPRT_PRT function converts strings containing nonprintable charac­
ters to strings with printable characters, as in: 

"L to <FF> 

If the F:NPRT_PRT input is connected to the function receiving input from 
the host, and the F:NPRT_PRT output connected to the terminal emulator, it 
allows all data that enters the PS 390 from the host to be printable. 

He !pful Hints IT2-43 



TT2-44 

Debug port: 03$ 

If you have a debug terminal, you can dump function network data to the 
terminal by making a connection (in configure mode) to 03$. 

NOTE 

This is the letter 0, not the number zero. 

03$ is a system function that corresponds to output port 3 on your PS 390. 
Port 3 is initially configured to be a debug port, as follows: 

• 9600 baud 

• 8 bits per character 

• 1 stop bit 

• No parity 

• Nontransparent mode that accepts all X_ON and X_off protocol 
characters 

• 8 48-byte buffers with 0 STOP buffers and 1 GO buffer 

• Debug break enabled 

This configuration may be changed by using the SETUP INTERFACE 
command. 

For example, if your transformed data network is not returning the expected 
messages to your host program from HOST_ MESSAGE, look at the data 
that is returned from the LIST function (the LIST function sends·the data to 
the HOST_MESSAGE function). Use the following commands to look at the 
list function data on the debug terminal. 

@@ CONFIGURE A; 
@@ CONN LIST1<1>:<1>03$; 
@@ FINISH CONFIGURATION; 

Note that F:LIST is a special function that converts the output of 
F:XFORMDATA into a PS 390 ASCil command string suitable for storage 
on the host computer. The data output by F:LIST does not need to be sent 
through F:P~T. 

Tools and Techniques 



ES TE and MESSAGE DISPLAY initial function instances - -

ES TE is the terminal emulator display handler that displays the input on 
the PS 390 screen. 11ESSAGE _DISPLAY is a function that corresponds to 
the bottom line of the PS 390 display and is used to display error messages 
and information messages. Both of these functions are user-accessible and 
may be connected to any printable output of any function. 

ES TE uses the next available line on the screen and then scrolls this line 
as does a terminal emulator. However, 11ESSAGE _DISPLAY is restricted to 
one line, so output to this function overrides what is already on the bottom 
line of the display. 

The following are possible networks for debugging your function network: 

PS390 printable data --> F:PRINT--> ES_TE, MESSAGE_DISPLAY, or 03$ 

PS390 non-printable data--> F: NPRT _PRT --> ES_ TE, MESSAGE_ DISPLAY, or 03$ 

ASCII data------------> ES_TE, MESSAGE_DISPLAY, or 03$ 

FURTHER INFORMATION: 

RM 1, Command Summary 

Helpful Hint Topic 2, How to deal with configure mode and naming conven­
tions. 

AP7, Advanced Programming 

Helpful Hints 1T2-45 



15. Intensity Settings on the PS 390 

CATEGORIES: 

SET INTENSITY node 

DESCRIPTION: 

When you display an object consisting of many lines drawn closely together 
on the PS 390 you occasionally observe a "roping effect" on the lines. The 
roping effect gives lines a jagged appearance similar to that of a braided 
rope. The roping effect is due to the intensity saturation of pixels as lines 
are drawn very close to each other. You can restore the line crispness by 
lowering the overall intensity level of the display; however, this results in a 
trade off between crisp lines and bright intensity. 

To minimize the effect of lower display intensity, you can build flexible 
intensity settings into the display structure. Then, if the roping effect occurs, 
you can decrease the intensity in stages until crispness is achieved or return 
it to full brightness when desired. 

ANALYSIS AND IMPLEMENTATION: 

IT2-46 

To create a flexible display intensity, place a SET INTENSITY node at the 
very top of the display structure and use input from a function key or dial to 
cycle through several levels of intensity values. 

The following PS 390 commands could be added to a PS 390 program to 
cycle through five levels of intensity using the Fl 1 function key. The num­
ber of intensity levels and the actual intensity range values should be modi­
fied to meet your requirements. 

NOTE 

This example is not intended as a complete program 
and will not run independently. For demonstration 
purposes, it assumes your top level display structure is 
named IMAGE and that it includes an enabled SET 
INTENSITY node named INTENS at the top. Each time 
the Fl 1 key is pushed, the intensity range of the 
IMAGE.INTENS node is modified and the intensity is 
cycled to the next level. 

Tools and Techniques 



{ Instance and connect the necessary functions. INTENS_SELECT and } 
{ INTENS_LABEL will hold cycling queues of maximum intensity values } 
{ to be sent on input from the Fll key. INTENS_RANGE will send a 2-D } 
{ intensity range vector of ( 0.0, current maximum ) to the } 
{ IMAGE. INTENS node. } 

INTENS_SELECT := F:SYNC(2); 
INTENS LABEL := F:SYNC(2); 
INTENS_RANGE := F:CVEC; 
KEY_ROUTE : = F: ROUTEC ( 12) ; 

CONN FKEYS <1>:<1> KEY_ROUTE; 
CONN KEY_ROUTE <11>:<1> INTENS_SELECT; 
CONN INTENS_SELECT <2>:<2> INTENS_RANGE; 
CONN INTENS_RANGE <1>:<2> IMAGE.INTENS; 

{ Set maximum intensity values on a cycling queue. } 
SEND .15 TO <2> INTENS_SELECT; 
SEND .25 TO <2> INTENS_SELECT; 
SEND .4 TO <2> INTENS_SELECT; 
SEND .7 TO <2> INTENS_SELECT; 
SEND 1 TO <2> INTENS_SELECT; 
CONN INTENS_SELECT <2>:<2> INTENS_SELECT; 

{ Label the Fll key with the current maximum intensity. } 
CONN KEY_ROUTE <11>:<1> INTENS_LABEL; 
CONN INTENS_LABEL <2>:<1> FLABELll; 
SEND "INT=.15" TO <2> INTENS_LABEL; 
SEND "INT=.25" TO <2> INTENS_LABEL; 
SEND "INT=.4" TO <2> INTENS_LABEL; 
SEND "INT=. 7" TO <2> INTENS_LABEL; 
SEND "INT=l" TO <2> INTENS_LABEL; 
CONN INTENS_LABEL <2>:<2> INTENS_LABEL; 
SEND "INT_SEL" TO <1> FLABELll; 

{ Set minimum intensity to a constant 0. } 
SEND 0 TO <1> INTENS_RANGE; 

{ Accept Fll key output } 
SEND TRUE TO <2> KEY_ROUTE; 

Helpful Hints TT2-47 



16. Softlabels 

CATEGORIES: 

softlabels, function key labels, dial labels 

DESCRIPTION: 

The softlabels network redefines the dynamic viewport on the PS 390 to 
allow the left edge of the display to be used as a display area for the func­
tion key labels (FLABELS) and dial labels (DLABELS). 

ANALYSIS AND IMPLEMENTATION: 

TI'2-48 

The network is loaded from diskette B with the following command: 

@@SEND 'SLABEL' TO <l>READASCII; 

This command can be added the the SITE.DAT file so that the network is 
automatically loaded at boot time, as follows: 

SEND 'SLABEL' TO <l>READASCIIl; 

There is also a copy of the softlabel network on the host distribution tape 
under the the PS 390 subdirectory. 

The softlabels are accessed by sending a character string to <1> of FLABEL 
1-12 as well as <1> of DLABEL 1-8. FLABEL 0 is not supported by the 
softlabel network. 

The softlabels network allows for two lines of descriptive characters for 
each label block. The second line is accessed by sending a character string 
to <1> of the FLABEL 1-12h or DLABEL 1-8h functions. 

An INITIALIZE command clears the displayed labels. The underlying net­
work is protected from the initialize command. 

You can toggle the display of the labels on and off by pressing the LEFT 
ARROW key when then the system is in application mode. 

Tools and Techniques 



17. CPK Rendering 

CATEGORIES: 

Rendering 

DESCRIPTION: 

Enhanced CPK firmware includes new shading and lighting options for CPK ren­
derings and the integration of lines as a raster primitive. 

With this release, you can now specify multiple, colored, and movable light 
sources. The color of each light source may be specified by the parameters hue, 
saturation, and intensity. The direction of the light source may be specified as any 
3D vector. Previous to this release, you were only allowed to define one light 
source, which was fixed at the eyepoint and assumed to be white. 

The specification of diffuse and specular attributes for spheres is also a new capa­
bility now available with enhanced CPK firmware. These two attributes can be 
adjusted to produce the appearance of different types of surfaces. A high diffuse 
value and a low specular value produces a dull, plastic appearance. A low diffuse 
value and a high specular value produces a shiny, metallic appearance. 

As before, you use an attribute table with color and radius for each atom in your 
CPK rendering. A default attribute table is provided with the firmware. You are 
also allowed to define your own attribute table. 

ANALYSIS AND IMPLEMENTATION: 

Spherical rendering and raster lines are represented as vector lists instead 
of an explicit PS 390 data type. Spheres are shaded consistent with the 
Phong shading style, allowing multiple colored light sources, specular re­
flections, and depth cueing. Hidden-element removal has been accom­
plished with a common z-buffer algorithm. 

17.1 DEFINING SPHERES AND LINES 

A table for rendering attributes for 12 7 atom types is referenced by the 
rendering node. The seven-bit intensity field or the TABulated field for a 
vector is used as an index into the attribute table. Thus, you must store an 
appropriate value in the field depending on which atom type a particular 
vector represents. Either the intensity or the TABulated option may be used 
to specify this field in the vector. 

Helpful Hints 7T2-49 



The ITEMized option in the vector list command allows specifying this in­
tensity field as a real number between 0 and 1. For example, to specify that 
an atom is to have index 12, you would need to divide 12 by 128 (0.09375) 
and use the result in the "i = " clause of the vector list command: 

v := vec ITEMized n = 1 
0,0,0 i = 0.09375; { for atom type 12 (12 / 128) } 

The T ABulated option in the VECtor _list command allows specifying this 
seven bit value as an integer between 0 and 126: 

v := vec TABulated n = 1 
0,0,0 t = 12; { for atom type 12 } 

Both of the above examples create the same vector list and either option 
may be used in conjunction with CPK renderings. If you have been using the 
ITEMized option, there is no need to switch to the tabulated option. 

These vector lists must be tied to F:XFORMDATA functions whose output 
is used by the PS 390 SOLID_ RENDERING node to perform CPK render­
ings. Previous CPK firmware used the F:CPK function to perform render­
ings. The SOLID _RENDERING node, which was previously used only for 
rendering polygons, is now also used to render raster spheres and lines. 
(Refer to section 17.3 for more details on the SOLID_RENDERING node.) 

NOTE 

Since there are no explicit PS 390 data types for repre­
senting spheres or raster lines, you do not place sphere 
or raster-line data under a rendering operation node. 

17 .2 Specifying Attributes for Spheres and Lines 

172-50 

The attributes for spheres (radius, diffuse, specular, color) and lines (color) 
are stored in a default table created at system boot up. This table can be 
modified via input <14> of the SHADINGENVIRONMENT function. 

The table has the following components: 

Hue Saturation Intensity Radius Diffuse Specular 

Tools and Techniques 



Hue is a real number in the range 0 to 360. Saturation and intensity are real 
numbers in the range 0 to 1. Radius is a real number greater than 0. Diffuse 
is a real number in the range 0 to 1. Specular is an integer in the range 0 to 
255. The table is initialized as follows: 

INDEX Hue Sat Intensity Radius Diffuse Specular 

0 0 0 0.5 1.8 0.7 4 (Gray) 

1 0 0 1 1.2 0.7 4 (White) 

2 120 1 1 1.35 0.7 4 (Red) 

3 240 1 1 1.8 0.7 4 (Green) 

4 0 1 1 1.8 0.7 4 (Blue) 

5 180 1 1 1. 7 0.7 4 (Yellow) 

6 0 0 0.7 1.8 0.7 4 (Gray) 

7 300 1 1 2.15 0.7 4 (Cyan) 

8 60 1 1 1.8 0.7 4 (Magenta) 

Spheres use all six components per entry. Lines use only the hue, saturation 
and intensity components. 

The t field of each 3D tabulated vector is used as an index into this table. 
The table contains 127 entries (0-126). Entries 9-126 are not initialized. 

For example, the following vector list represents three spheres with the 
color indicated. 

Sphere:= VECtor list TABulated N = 3 
P 1.866,1.5,0 t 5 {yellow sphere} 
L 1.787,2.833,0 t 6 {gray sphere} 
L .822,3.282,0 t 7 {cyan sphere} 

The following example represents a square with sides of the indicated col­
ors. 

Rasterline := VECtor_list TABulated N 5 
p 0,1,0 

Helpful Hints 

L 0,0,0 
L 1,0,0 
L 1,1,0 
L 0,1,0 

t 
t 
t 
t 

= 

= 

5 

2 

3 

4 

{yellow} 
{red} 
{green} 
{blue} 

TT2-S I 



NOTE 

Lines use the tabulated index of the point drawn "to" 
and not the point drawn "from." 

The attribute table may be updated by encoding the table entries into a 
PS 390 tabulated vector list and then sending the name of the vector list to 
input<14> of SHADING ENVIRONMENT. The six table components are 
encoded into two consecutive 3D vectors of the vector list. Hue, saturation, 
and intensity are encoded into the first X,Y,Z respectively. Radius, diffuse, 
and specular are encoded into the second X,Y,Z respectively. The table 
index is encoded into the t field of the second vector. When an entry is 
updated, each of the six components must be specified. For example, the 
following vector list could be used to update attribute table entry 5: 

ATTRIBUTE_TABLE := VEC TAB N = 2 
150,0.5,1 { Hue, Saturation, Intensity } 
5.0,0.3,2 t = 5 { Radius, Diffuse, Specular, Index } 

Updating would be accomplished by the command: 

@@SEND 'ATTRIBUTE_TABLE' TO <14>SHADINGENVIRONMENT; 

More than one table entry may be encoded into a vector list. The following 
vector list would be used to update attribute table entries 5, 6, and 7: 

ATTRIBUTE_TABLE := VEC TAB N = 6 
0, .1, .1 2.0,0.5,4 t 5 
120,1,l 4.0,0.8,9 t 6 
240,1,1 3.0,0.3,2 t = 7 

17.3 Rendering Spheres and Lines 

IT2-52 

The rendering node created with the PS 390 SOLID RENDERING com­
mand is used to perform the rendering of raster spheres and lines. The 
rendering node has five inputs and acts somewhat like a PS 390 function. 

Input <1> accepts a fix(7) to trigger the rendering. Input <2> is only used 
for polygons and has a default value which is adequate for raster spheres 
and lines. Input <3> accepts a transformed vector list and interprets the 

Tools and Techniques 



vectors as "moves" and "draws" for raster-line renderings. Similarly, input 
<4> of the rendering node accepts a transformed vector list and interprets 
each vector as an X,Y,Z spherical center for raster rendering. Input <5> of 
the rendering node accepts the name of the original vector list representing 
the spherical data to be rendered. The rendering node must have access to 
the original data to enable accurate scaling of the sphere(s). The name is 
represented as a string in single quotes. 

17.4 Function Network Considerations 

A function network to display a CPK rendering must contain at least the 
following: 

• Instance of F:XFORMDATA to transform the data 

• Instance of SOLID RENDERING 

• Instance of F:SYNC(n) to guarantee that the rendering node is not 
triggered until all the constant inputs of the rendering node are up­
dated. 

In some situations, an instance of F:XFNORM or F:CONCATXDATA(n) is 
required. 

If a non-cubical window is used, an instance of F:XFNORM is required to 
normalize the coordinates. F:XFNORM is a user-written function described 
in section 17.9. 

If multiple instances of F:XFORMDATA are required for rendering either 
spheres or lines, an instance of F:CONCATXDATA(n) must be used to 
create a single vector list for spheres or a single vector list for lines. 

The function network for CPK renderings must also accommodate potential 
timing problems triggering the rendering node and certain window and 
viewing restrictions. These function network considerations are detailed in 
the following sections. 

The diagram in Figure 17-1 shows a general flow of data through a function 
network to the rendering node. 

Helpful Hints TT2-53 



I 

I 
I 
I 

\ 
\ 

/ 

I 

\ 

Sphere 
VECLIST 

Line 
VECLIST 

F:XFORMDATA 

___.. <1> <1 
'LINESXF' ., <2> 

--- <3> 

--- <4> 

--- <5> 

~FORMDATA c <1> <1 
'SPlffRESXF' <2> 

<3> 
-It <4> 

F:SYNC(3) 

<1> <1 :::t-___,_ 

<2> <2-,..---

<3> <3 

I 

/ 

/ 

I 

'\. -It _<_5>_~ I 

'------------------------~ 

Figure 17-1. Function Network Diagram 

SOLID RENDERING 

17. 5 Triggering the Rendering Node 

1T2-54 

Two potential timing problems exist with triggering the rendering node. In­
put <1> of the rendering node is the only active input. Inputs <3> and <4> 
accept transformed data to render lines and spheres. Since inputs <3> and 
<4> are constant inputs, you must guarantee that they have been updated 
before the trigger is sent to input <1> of the rendering node. This is accom­
plished using the F:SYNC(n) function. 

Tools and Techniques 



The second potential t1mmg problem deals with the triggering of 
F:XFORMDATA. An instance of F:XFORMDATA must not be triggered 
while it or any other instance of F:XFORMDATA is still active. Thus, when 
using multiple instances of F:XFORMDATA, one instance should be used 
to trigger the next. This is explained in more detail in section 17.7. 

17.6 Notes on Using F:CONCATXDATA(n) 

F:CONCATXDATA(n) accepts up to 127 transformed vector lists (output 
from XFORMDATA functions) and concatenates them into a single trans­
formed vector list. This function is used to avoid the maximum vector re­
striction imposed on the output of F:XFORMDATA. The XFORMDATA 
function will return a maximum of 2048 vectors. This restriction passes on 
to the rendering node since the output of the XFORMDATA function is 
normally connected directly to the rendering node. To obtain a rendering of 
greater than 2048 vectors or (spheres), the output of multiple instances of 
XFORMDATA must be concatenated into a single transformed vector list, 
which can then be sent to the rendering node (see Figure 17-2). Note that 
the number of inputs to an instance of F:CONCATXDATA is specified in 
the parameter (n) when the function is instanced. 

17.7 Notes on Using F:XFORMDATA 

As previously mentioned, when multiple instances of F:XFORMDATA are 
used to provide input for F:CONCATXDATA(n), they must be connected in 
a way which ensures that one instance completes before the next one com­
mences. This synchronization is accomplished by linking instances of 
XFORMDATA together so that the output of the first instance triggers the 
second instance, and the output of the second instance triggers the third, 
and so forth. For example, assume that in the following network, the vector 
list SPHERES contains 5,000 vectors. 

FORCPK := BEGIN_STRUCTURE 
GETXF := XFORM VEC; 
INSTANCE OF SPHERES; 

END_STRUCTURE; 

One instance of XFORMDATA could retrieve the first 2048 transformed 
vectors of SPHERES (vectors 1-2048). A second instance of XFORMDATA 
could retrieve the second 2048 transformed vectors (vectors 2049 - 4096). 
A third instance of XFORMDATA could retrieve the last 904 vectors (vec­
tors 4097 - 5000). Figure 17-2 shows an illustration of this network. 

Helpful Hints TI2-55 



F:XFORMDATA 
__... <1> 

<1> 
FORCPK.GETXF <2> 

<3> 

<4> 

2048 <5> 

F:CONCATXDATA(n) 
<1> 

FORCPK. GETXF <2> <1> <1> 

<3> <2> 

2049 <4> <3> 

2048 <5> 

<1>------' 
FORCPK. GETXF 

4097 

904 

Figure 17-2. Synchronization of XFORMDATA 

There is one other restriction that you must be aware of when using 
F:XFORMDATA. Input <3> of F:XFORMDATA typically allows you to 
specify a name for the transformed data. However, when using 
F:XFORMDATA in conjunction with the rendering node, this input MUST 
be left blank. 

CAUTION 

Naming the transformed data and then sending it to a 
rendering node, will result in a system failure. 

17. 8 Window and Viewing Restrictions 

1T2-56 

The following window and viewing restrictions apply to CPK renderings. 

The rendering node assumes that the transformed data it receives on input 
<4> comes from an orthographic projection (i.e., PS 390 WINDOW com­
mand). Each sphere is rendered with the radius specified in the attribute 
table, regardless of the sphere's distance from the viewpoint. 

Tools and Techniques 



Spherical renderings with perspective projections (FIELD_ OF_ VIBW or 
EYE BACK) should not be used. Non-cubical windows for spheres are al­
lowed but require special handling. If non-cubical windows are allowed by 
the applications program, F:XFNORM must be used to ensure correct map­
ping of the coordinates. This new function is explained in the following 
section. 

17.9 Using F:XFNORM 

This function filters, maps, and clips transformed sphere and line data for 
enhanced CPK renderings. If the PS 390 WINDOW in effect for a rendering 
is non-cubical, transformed data will return non-uniformly mapped coordi­
nates which result in incorrect renderings. The F:XFNORM function com­
pensates for this non-uniform mapping, by applying an inverse mapping. 

Spheres which are outside of the Z-clipping planes are rejected before map­
ping. Under user control, the function either rejects or clips lines which 
have exactly one endpoint outside of the Z-clipping planes before mapping. 

Following is a summary of F:XFNORM. 

F:XFNORM 

xformdata <1> 
4x4 Matrix <2> C 

Boolean ---<3> C 
Boolean <4> C 

Input <1> accepts transformed data. 

<1> xformdata 

Input <2> accepts the output of F:WINDOW. The WINDOW function used 
to update the WINDOW node in the display structure should be connected 
to input <2> of F:XFNORM. 

Input <3> accepts a Boolean value indicating whether the transformed 
vector list is to be used for rendering spheres or for rendering lines. A True 
indicates that the vector list is to be used for spheres. A FALSE indicates 
that the vector list is to be used for lines. 

Helpful Hints TT2-57 



Input <4> only pertains o transformed vector lists used for rendering lines 
(i.e. when input <3> is FALSE). Input <4> is ignored for vector lists used 
for rendering spheres, but must have a Boolean value in order for the 
function to trigger. Input <4> accepts a Boolean value indicating whether 
lines with exactly one endpoint outside of the Z clipping planes are to be 
clipped or rejected entirely. 

17.10 Mapping 

TT2-58 

F:XFNORM first compares the WINDOW's dx against its dy. If dx is not 
equal to dy, then the window is scaled down in the appropriate dimension to 
correct the non-uniform transformation. Then if dz is not equal to the new 
normalized dxldy value, the WINDOW is scaled in Z to correct it in that 
dimension. In doing so, some possible problems are introduced. 

In some instances, when F:XFNORM scales up and transforms the data, it 
places some points out of the clipping planes which were previously be­
tween the clipping planes. Because of this, certain spheres and lines may be 
clipped-out in the rendering which ARE NOT Z-clipped in the wireframe 
model, even with depth clipping enabled. There is little that can be done 
about this. 

Similarly, in other situations. .XFNORM scales down and transforms a 
point into the range between clipping planes which was previously outside 
of the clipping planes. Because of this, certain spheres and lines may be 
rendered which are Z-clipped in the wireframe display of the model. This 
problem can be solved, howeveL For spheres, those points which are 
Z-clipped (before mapping) are tagged, and are not rendered. 

One additional problem exists. Assume that a model would "fit" in a cubi­
cal window but is being viewed in a window with Z-planes that are scaled 
out some distance. Since there is a non-uniform WINDOW mapping in Z, 
F:XFNORM will compensate in this case by scaling up the vectors' Z-com­
ponents. Assume also, that the model is near either the front or back clip­
ping plane. Since the Z-components of the model's vectors are already near 
a clipping plane, scaling them up will place them outside of the clipping 
plane and nothing will be rendered. To reduce this problem, the function 
also centers the model in Z. Figure 17.3 shows a function network using 
F:XFNORM. 

Tools and Techniques 



I 
I 

I 

\ 

I 

\ 

LINESXF: =XFORM VEC; 

/ Sphere SOLID_RENDERING 
/ VECLIST 

Line 
VECLIST 

\ 

F:XFORMDATA F:XFNORM F:SYNC(3) 
-... <1> 

'LINESXF' <2> <1>•------ <1> 
<2> 1-------'9"4 <1> < 1 

<3> F <3> <2> <2~---1~ 
<4> .IJF <4> 
<5> 

<3> 
<4> 
<5> 

F:XFNORM 

<1~-----<1> 

L_ <2> 
_:_r <3> 
TIF <4> 

<3> <3 

I 
___ / 

I 
I 

Figure 17-3. F:XFNORM Network for Window Scaling 

I 

/ 

/ 

17.11 Viewport Considerations 

On the PS 340, only the following raster viewport should be used. 

Xlef t = 64 
Ybottom = -32 

Xright = 575 
Ytop = 479 

The command "SEND V3D(64,-32,511) TO <3>SHADINGENVIRONMENT;" will 
set this raster viewport. 

Helpful Hints 



On the 390, the following viewport for CPK renderings must be used. 

Xleft = 256 Xright = 767 
Ybottom = 176 Ytop = 687 

The command "SEND V3D(256,176,511) TO <3>SHADINGENVIRONMENT;" will 
set this raster viewport. 

17.12 Using CPK on the PS 390 

TT2-60 

The PS 390 cannot display vector-normalized data, so by default, the system 
converts it to block-normalized data. Enhanced CPK firmware is dependent 
on vector-normalized data to perform renderings, so some programming 
adjustments have to be made to account for this. 

An intrinsic user function, F:ALLOW _ VECNORM allows vector-normalized 
vector lists to be created locally or downloaded from the host to the PS 390. 
Function networks for the display of CPK renderings need to have a node 
for both the block-normalized vector (to allow display of the data on the PS 
390) and a vector- normalized vector list of the same data (required by the 
XFORMDATA function). The function network in figure 17-4 gives an ex­
ample of this. 

Following is a summary of F:ALLOW _ VECNORM. 

A Boolean TRUE sent to input <1> of F:ALLOW _ VECNORM allows vector­
normalized data to be created by the PS 390. A Boolean FALSE on input 
<1> will reset the PS 390 and cause vector-normalized data to be converted 
to block-normalized data. The Boolean TRUE sent from output <1> of 
F:ALLOW _ VECNORM when the function has run to completion may be 
connected to user function networks. 

Because F:XFORMDATA cannot selectively choose only vector-normalized 
vector lists, any block-normalized vector lists that are sent to the rendering 
node unintentionally will be discarded. 

Tools and Techniques 



F:ALLOW_VECNORM 

Boolean-~BQolean TRl:JE -L_J when completed 

I 

I 

.... 
' ' \ 

\ - \ 
/ SPHEREVNORM I 

I (Vector normalized) I 
SPHEREBNORM 
(Block normalized 

for display) 

I \ 

I \ 

\ \ 

\ 
\ 

\ 
\ 

' 

TRANSFORMATIONS 

LINESXF: =XFORM VEC; 

] 
LINEBNORM ,' LINEVNORM 

(Block normalized 
/ 

(Vector normalized) 
for display) 

/ F:XFORMDATA 
, _..., <1> To SOLID _rendering node 

'LINESXF' <2> <1> 

<3> 

<4> 

<5> 

F:XFORMDATA 
<1> <l To SOLID _rendering node 

- ~ -===~~<2> 

<3> 

<4> 

<5> 
To SOLID _rendering node 

Figure 17-4. Function Network for PS 390 Display and CPK Renderings 

There is a potential timing problem when using the F:ALLOW _ VECNORM 
function: if the Boolean TRUE to trigger F:ALLOW _ VECNORM is sent 
from the host and then immediately followed by a vector list to be defined 
as a vector-normalized vector list, F:ALLOW _ VECNORM may not have 
executed before the vector list definition begins. If this should happen, the 
resulting vector list would be the wrong type. To prevent this from 
occurring, the command GIVE_UP _CPU; may be used. GIVE_UP _CPU 
causes the command interpreter to terminate execution temporarily, 
allowing other functions to be activated. To ensure that other functions are 
activated, GIVE_ UP_ CPU should be sent four times after sending a value to 
F:ALLOW VECNORM. 

Helpful Hints TI2-61 



The sequence that should normally be followed when downloading vectors 
lists to the PS 390 is: 

1. Download the vector lists from the host to be displayed 
(block-normalized vector lists). 

2. Send Boolean TRUE to input <1> of an instance of 
F:ALLOW VECNORM. 

3. Execute the GIVE UP CPU command four times. 

4. Download the vector lists from the host for CPK renderings (PS 390 
will create vector-normalized vector lists). 

5. Send Boolean FALSE to input <1> of the same instance of 
F:ALLOW _ VECNORM (resets the default condition of converting to 
block-normalized data). 

6. Execute the GIVE UP CPU command four times to make sure 
F:ALLOW _ VECNORM is reset to the default condition before any 
more vector lists are sent. 

NOTE 

Although vector-normalized lists will not be displayed 
on the PS 390, they can still be transformed using 
F:XFORMDATA and sent to the rendering node with­
out any additional modification. 

17.13 Using F:COPY_ VECNOR1\1_BLOCK 

TI'2-62 

F:COPY VECNORM BLOCK - -

STRING <1> 

STRING <2> 

The user-written function F:COPY VECNORM BLOCK accepts the name - -
of an existing vector-normalized vector list on input <1> and creates the 
corresponding block-normalized vector list with the name specified on 
input <2>. 

Tools and Techniques 



This function is to be used in conjunction with the intrinsic user function 
F:ALLOW _ VECNORM for enhanced CPK renderings on the PS 390. CPK 
renderings require the use of vector-normalized vector lists, but the PS 390 
will only display block-normalized vector lists. To avoid having to transmit 
both types of vector lists from the host, the user may transmit only the 
vector~normalized list and use F:COPY_ VECNORM_BLOCK to locally 
generate a block-normalized vector list. 

17.14 MASS MEMORY REQUIREMENT 

The RESERVE_ working_ storage command must be issued at least once to 
enable enhanced CPK renderings. This command reserves a block of mass 
memory to perform the rendering. (Refer to the RESERVE_working_storage 
command summary at the back of this manual for more details.) For 
polygonal renderings, this number is typically large, at least 100000 bytes. 
For CPK or ball-and-stick renderings 1000 bytes is sufficient. 

FURTHER INFORMATION: 

RM 1, Command Summary 
RM2, Intrinsic Functions 
RM3, Initial Function Instances 

Helpful Hints 1T2-63 





TI3. USING THE GSRS 

CONTENTS 

1. VAX and IBM FORTRAN GRAPHICS SUPPORT ROUTINES . . 1 

1.1 FORTRAN GSR Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Utility and Application Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.5 Programming Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2. VAX and IBM PASCAL GRAPHICS SUPPORT ROUTINES . . . . 10 

2.1 Pascal GSR Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.1.1 Pascal V2........................... . . . . . . . . . . . . . . . . . . 10 
2.1.2 PascalNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.2 Utility and Application Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
2.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
2.5 Programming Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

3. UNIX/C GRAPHICS SUPPORT ROUTINES . . . . . . . . . . . . . . . . . . 17 

3.1 The Lint library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3.2 UNIX/PS 390 Communication Channels . . . . . . . . . . . . . . . . . . . . 18 
3.2.1 Automatic device typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3.2.2 Parallel Interface Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3.2.3 PS 390/Ethernet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3.2.4 RS-232 Asynchronous serial channels . . . . . . . . . . . . . . . . . . . . 19 
3.2.5 Output to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 



3.3 UNIX/C GSR Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.3.1 Names of user callable GSR library routines . . . . . . . . . . . . . . 20 
3.3.2 Data types of GSR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.3.3 Strings and Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
3.3.4 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
3.3.5 Floating Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
3.3.6 Other Special Types and Constants . . . . . . . . . . . . . . . . . . . . . . 21 
3.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
3.4.1 The Default Error Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
3.4.2 User provided Error Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
3.4.3 Error Handler Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
3.5 Special Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
3.5.1 Specifying Transformation Matrices . . . . . . . . . . . . . . . . . . . . . . 23 
3.5.2 Miscellaneous notes on using the GSRs................... 23 
3.5.3 Using the PGetWait routine in the GSR library . . . . . . . . . . . . 25 
3.6 Ethernet Interface 110 Operations . . . . . . . . . . . . . . . . . . . . . . . . . 25 
3.6.1 The PSNETIO Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

APPENDIX A - FORTRAN-77 EXAMPLE PROGRAM . . . . . . . . . . . 33 

APPENDIX B - VS FORTRAN EXAMPLE PROGRAM . . . . . . . . . . . 48 

APPENDIX C - PASCAL V2 EXAMPLE PROGRAM............. 61 

APPENDIX D - PASCALNS EXAMPLE PROGRAM............. 75 

ll 



Section Tf3 

Using The Graphics Support Routines 

The Graphics Support Routines (GSRs) are a set of host resident software routines 
that are the standard vehicle for communication to the PS 390 from the host. They 
are a collection of FORTRAN, Pascal or UNIX/C routines that preparse and pack­
age data on the host computer. Typically, the routines are used for the following 
applications: 

• Attach to the graphics device 

• Create and modify display structures 

• Create, connect and modify function networks 

• Receive data from the graphics device 

This section is a guide to the FORTRAN, Pascal and UNIX/C GSRs. It contains 
information on the conventions and definitions used in the GS Rs. Section RM 4 
contains the FORTRAN, Pascal and UNIX/C GSRs listed in alphabetical order 
according to the FORTRAN GSR. The GSRs corresponding to a PS 390 command 
are grouped together. The GS Rs are listed in the following order: VAX and IBM 
FORTRAN, VAX Pascal, IBM Pascal and UNIX/C. A description of the GSR, the 
PS 390 command syntax and cross references follow the listing of the GSRs. 

Section RM4 also contains error tables which define the possible error codes used 
to identify warning, error or fatal error conditions that may arise while using the 
GSRs. 

1. VAX and IBM FORTRAN Graphics Support Routines 

The PS 390 VAX FORTRAN GSRs are written in FORTRAN-77 and re­
quire a FORTRAN-77 compiler. The GSRs are supported under PS 390 
Graphics Firmware Release A2.V02 and higher. There are no specific hard­
ware requirements. 

The PS 390 IBM FORTRAN GSRs are written in VS FORTRAN and are 
compatible with IBM VM/CMS and TSO environments. The GS Rs are 

Using the GSRs nJ-1 



IT3-2 

supported under PS 390 Graphics Firmware Release A2.V02 and higher. 
There are no specific hardware requirements. 

The UNIX/C routines are written in C and are supported under PS 390 
Graphics Firmware Release A2.V02 and higher and UNIX BSD 4.2 running 
on a DEC VAX host system. 

Appendix A contains a FORTRAN--77 network creation example program, 
and Appendix B contains a VS FORTRAN network creation example pro­
gram. Both programs contain an error handling routine. 

1.1 FORTRAN GSR Conventions 

The FORTRAN-77 GSRs make extensive use of the following data type 
definitions: 

Boolean 
Integer 
Real 
String 

Logical value true/false, generally LOGICAL*l. 
Integer value always INTEGER*4. 
Real ( floating point ) number generally REAL*4. 
Character string, CHARACTER*N. 

The VS FORTRAN GSRs make extensive use of the following data type 
definitions: 

Boolean = Logical value true/false, generally LOGICAL*l. 
Integer = Integer value generally INTEGER*4. 
Real =Real (floating point) number generally REAL*4. 
String = Character string, CHARACTER*N. 

For the FORTRAN version of the GSRs, character strings require a 
delimiter character for length determination. Double quote ( ") is the default 
delimiter. This delimiter may be changed using the PDEL1M routine. A 
description of PDEL1M is found in Section RM4. The GSRs use LEN 
(String) to determine the maximum length of a string. Therefore, if the 
delimiter is not specified, all characters up to LEN (String) will be used. 
Because of this, quoted strings may be used without delimiters, i.e ... Tl-IlS" 
is treated the same as .. THIS " " . 

1.2 Utility and Application Routines 

Utility Routines are specific to the operation of the GSRs. These routines 
are used to attach the PS 390, set the string delimiting character, select 
multiplexing channels, send and receive messages, and detach. 

Tools and Techniques 



Application Routines correspond almost one for one with the standard 
PS 390 Commands. In most cases, the names for the application routines 
were derived by choosing an abbreviation of the PS 390 commands and 
prefixing it with a P. Parameter ordering generally coincides with the 
PS 390 commands as well. Examples of some of the application routines 
are shown below. 

EXAMPLE 1 

For commands which build operate display structures, such as 

Name:= operate parameterl,parameter2, ... , then apply; 

the routine call is: 

CALL Poper('name',parameterl,parameter2, ... ,'apply', ErrHnd) 

where: 

oper is an abbreviated form of the PS 390 command such as rotate 
in x - Protx 

'name' is a character string containing the name to be associated 
with the operate 

parameterl,parameter2, ... , are the parameters to be used in com­
puting the operation. These may be logicals, integers, reals, vec­
tors, or matrices. 

'apply' is a character string containing the name of the object to 
which this operate applies. 

ErrHnd is the user-defined error handler routine. 

EXAMPLE 2 

For commands to send to functions or display structures, such as 

Send datum to <input>dest; 

the routine call is: 

CALL PSNtyp(datum,input,'dest', ErrHnd) 

where: 

Using the GSRs 

typ is an abbreviated form of the PS 390 command such as 
PSNFIX, PSNM2D, ... 

ITJ-3 



TTJ-4 

datum is what is to be sent. It may be logical, integer, real, charac­
ter string, vector, or a REAL "'4 two-dimensional array. 

input is an integer which specifies which input of the destination is 
being sent to. 

'dest' is a character string containing the name of the display 
structure or function. 

ErrHnd is the user-defined error handler routine. 

Note that the function names in the GSRs are specified without the "F:" 
prefix that is used in the standard PS 390 command language. 

EXAMPLE 3 

For commands which create functions and connections such as: 

Name := f:genfcn; 
Name:= f:genfcn(n); 
Conn name<output>:<input>dest; 
Disc name<output>:<input>dest; 

the routine calls are: 

CALL PFN 
CALL PFNN 
CALL PCONN 
CALL PDI 

where: 

'name', 'genfcn', ErrHnd ) 
'name', 'genfcn', n, ErrHnd 
'name' ,output,input,'dest', ErrHnd 
'name',output,input,'dest', ErrHnd 

'name' is a character string containing the name associated with 
the function instance. 

'genfcn' is a character string containing the name of the system 
generic function. 

n is an integer specifying the number of input/outputs for this func­
tion instance. 

output,input are integers specifying the output and input numbers. 

'dest' is a character string containing the name of the display 
structure or function. 

ErrHnd is the user-defined error handler routine. 

Tools and Techniques 



1.3 Exceptions 

To be fully specified using GSRs, three PS 390 commands require three 
separate calls to routines. The commands are LABEL, VECTOR_LIST, and 
POLYGON. 

For example, to create, specify and complete a label block, the user must 
call: 

PLaBeg - To create and open a label block 
PLaAdd - May be called multiple times to add to a previously 

opened label block 
PLaEnd - To complete the creation of a label block. 

Together these three routines implement the PS 390 command: 

Name .- LABELS x, y, z, 'string' 

x, y, z, 'string'; 

In the same way, the user must call PVcBeg to begin a vector list, PVcLis to 
send a piece of a vector list, and PV cEnd to end a vector list. 

An example of a call that varies slightly from the PS 390 command is the 
PBSPL call. In the BSPLlNE command, some of the parameters are 
optional. In the routine they are all required. This is also the case for the 
PRBSPL, PPOLY, and PRPOLY routines. 

The PS 390 syntax allows for instancing multiple display entities and for 
creating multiple variables. In the PS 390 command language the com­
mands would be: 

NAME := INSTANCE a,b,c,d; 

for instancing multiple display entities, and 

VARIABLE s,y,z,w,t,q; 

for multiple variables. 

To perform the equivalent instancing of multiple display entities or for cre­
ating multiple variables, the following GSRs should be used. 

Using the GSRs TTJ-5 



1.4 

ITJ-6 

For the multiple instance case: 

CALL PIN ST ('NAME' , , A'' ErrHnd) 

CALL PINCL('B', 'NAME', ErrHnd) 

CALL PINCL ( 'C', 'NAME', ErrHnd) 
CALL PINCL ( 'D' , 'NAME', ERRHND) 

For the multiple variable case: 

CALL PVAR (, s, ' ERRHND) 
CALL PVAR ( 'Y' ' ERRHND) 
CALL PVAR (, z, ' ERRHND) 
CALL PVAR ( 'W'' ERRHND) 
CALL PVAR (, T' ' ERRHND) 
CALL PVAR (, Q' ' ERRHND) 

Error Handling 

An error handling scheme has been employed to catch errors detected by 
the GSRs. Examples of errors detected by the GSRs are: 

• Prefix not followed by an operate. 

• Follow not followed by an operate. 

• Multiple calls to PVcLis for block-normalized vector list data. 

• Invalid characters in a name. 

Command Interpreter errors and warnings are not detected by the GS Rs. 
Examples of these errors are: 

• Destination does not yet exist. 

• Message rejected by destination. 

• Connection not made. 

Error checking will be performed within the GSRs to ensure that only valid 
characters are sent within names, and that routines are called in the proper 
order, in cases where order is required. No attempt has been made to cap­
ture errors and/or warnings from the Command Interpreter. 

Each routine call includes an argument that specifies the user-written error 
handler. This error handler is of the form: 

Routine ERRHND (ercode) 

where ercode is an integer error code corresponding to one of the errors. 

Tools and Techniques 



CAUTION 

It is critical that the user specify the error handler as 
EXTERNAL in all routines that make calls to the 
GSRs. Otherwise, the address of a real variable will be 
passed as a routine address and unpredictable results 
will occur if the error handler is called. 

It is the responsibility of the user to provide an error handling routine to 
decide what action should be taken when an error is detected. The GSRs do 
not attempt to terminate execution or log errors. 

The name, description, and error code of each detectable error is given in 
tables in Section RM4. An example error handler routine appears in the 
example programs in Appendix A and Appendix B. It is a sophisticated 
error handler that may be incorporated by the user into an error handling 
scheme, or used as an example of what an error handler should look like. 

1. S Programming Suggestions 

The file PROCONST.FOR contains definitions for constants used by the 
FORTRAN-77 GSRs. The file PROCONSF FORTRAN contains definitions 
for constants used by the VS FORTRAN GSRs. It is often convenient to 
think of these constants by name rather than by remembering numbers. 
Specifically, in the usual PS 390 command syntax, inputs to display struc­
tures are often referred to by name such as <append> and <clear> for vec­
tor _lists and <position> and <step> for character strings. There are also 
<delete>, <last>, and others. Other useful constants such as values for con­
ditional tests for level of detail, and vector list class are obtainable from 
PROCONST.FOR or PROCONSF FORTRAN. PROCONST.FOR or 
PROCONSF FORTRAN also contain a complete set of error/warning code 
definitions. These values are given in the error table in Section RM4 and 
may be referenced by name by the user routine if PROCONST.FOR or 
PROCONSF FORTRAN is included in the routine. 

The following is an abbreviated list derived from PROCONST.FOR or 
PROCONSF FORTRAN of the constants which should be most useful to the 
user. 

Using the GSRs 7T3-7 



IT3-8 

GSA constant declarations: 

PIAPP: 
PIDEL: 
PICLR: 
PI STEP: 
PIPOS: 
PILAST: 
PI SUBS 
PCLES: 

Meaning 

<Append> input number. 
<Delete> input number. 
<Clear> input number. 
<Step> input number. 
<Position> input number. 
<Last> input number. 
<Substitute> input number. 
"Less" level of detail comparison operator. 

PCEQL: 
PCLEQL: 
PCGTR: 
PCNEQL: 
PCGEQL: 
PVCONN: 

"Equal" level of detail comparison operator. 
"Less-equal" level of detail comparison operator. 
"Greater" level of detail comparison operator. 
"Not-equal" level of detail comparison operator. 
"Greater-equal" level of detail comparison operator. 
Vector list "Connected" class type. 

PVDOTS: Vector List "Dots" class type. 
PVITEM: Vector List "Itemized" class type. 
PVSEPA: Vector List "Separate" class type. 

INTEGER*4 
PIAPP, PIDEL, PICLR, 

& 

& 

& 

PISTEP, PIPOS, PILAST, PISUBS, PCLES, 
PCEQL, PCLEQL, PCGTR, PCNEQL, PCGEQL, 
PVCONN, PVDOTS, PVITEM, PVSEPA 

PARAMETER 

& 

& 

& 

& 

PI APP = 
PICLR = 
PI SUBS = 
PCGTR = 
PVDOTS= 

0, PIDEL = 
-2, PI STEP= 
-6, PCLES 
3, PCNEQL= 
1, PVITEM= 

-1, 
-3, PIPOS = -4, PI LAST= 

= 0, PCEQL = 1, PCLEQL= 
4, PCGEQL= 5, PVCONN~ 

2, PVSEPA= 3, PVT AB= 

The following example illustrates the use of PROCONST .FOR. 

Send to a vector list. 

c 

PROGRAM TEST 
INCLUDE / PROCONST.FOR / 
LOGICAL*l PL (100) 
DIMENSION VECS( 4,100 ) , AVEC( 3 ) 
REAL*4 VECS, AVEC 

C Always declare user error handler external 
c 

EXTERNAL ERRHND 

-5, 
2, 

0, 

4' ) 

Tools and Techniques 



c 
C Create a vector list named VLIST containing 100 connected vectors 
C PVCONN is defined in PROCONST.FOR 
c 

c 

CALL PVCBEG 
CALL PVCLIS 
CALL PVCEND 

/VLIST/, 100, .FALSE., .FALSE., 3, PVCONN, ERRHND ) 
100, VECS, PL, ERRHND ) 
ERRHND ) 

C Send a 3d vector to <append> of vecs. 
C PIAPP is defined in PROCONST.FOR. 
c 

CALL PSNV3D ( AVEC, PIAPP, /VLIST/, ERRHND ) 
c 
C Delete 2 vectors from VLIST. 
C PS 390 command: Send fix(2) to <delete>vlist; 
C PIDEL is defined in PROCONST.FOR. 
c 

CALL PSNFIX ( 2, PIDEL, /VLIST/, ERRHND ) 

END 

The following example illustrates the use of PROCONSF FORTRAN. 

Send to a vector list. 

c 

PROGRAM TEST 
INCLUDE ( PROCONSF FORTRAN ) 
LOGICAL*l PL (100) 
REAL*4 VECS( 4,100 ), AVEC( 3 

C Always declare user error handler external 
c 

EXTERNAL ERRHND 

c 
C Create a vector list named VLIST containing 100 connected vectors 
c PVCONN is defined in PROCONSF' FORTRAN 
c 

CALL PVCBEG /VLIST/, 100, .FALSE., .FALSE., 3, PVCONN, ERRHND ) 
CALL PVCLIS 100, VECS, PL, ERRHND ) 
CALL PVCEND ERRHND ) 

Using the GSRs T/'3-9 



c 
C Send a 3d vector to <append> of vecs. 
c PIAPP is defined in PROCONSF FORTRAN. 
c 

CALL PSNV3D ( AVEC, PIAPP, 'VLIST', ERRHND ) 
c 
C Delete 2 vectors from VLIST. 
C PS 390 command: Send fix(2) to <delete>vlist; 
C PIDEL is defined in PROCONSF FORTRAN. 
c 

CALL PSNFIX ( 2, PIDEL, 'VLIST', ERRHND) 

END 

2. VAX and IBM Pascal Graphics Support Routines 

The PS 390 VAX Pascal GSRs are written in Pascal V2 and are supported 
only in a V AXNMS environment. The GSRs are supported under PS 390 
Graphics Firmware Release PS .V03 and higher. There are no specific hard­
ware requirements. 

The PS 390 IBM Pascal GSRs are written m IBM Pascal/VS and are 
compatible with IBM VM/CMS and TSO environments. They require an 
IBM PascalNS compiler, Release 2.0. The GSRs are supported under 
PS 390 Graphics Firmware Release P5.V03 and higher. There are no 
specific hardware requirements. 

Appendix C contains a Pascal V2 network creation example program, and 
Appendix D contains a Pascal/VS network creation example program. Both 
programs contain an error handler routine. 

2.1 Pascal GSR Conventions 

2.1.1 Pascal V2 

The Pascal V2 version of the GSRs make use of the following 
program-defined Pascal TYPE definitions. 

P_VaryingType =VARYING [P_MaxVaryingSize] OF CHAR; 
P_VaryBufType = VARYING [P_MaxVaryBufSize] OF CHAR; 
P_KnotArrayType =ARRAY [l .. P_MaxKnots) OF REAL; 
P_MatrixType =ARRAY [1 .. 4, 1 .. 4) OF REAL 

1T3-l O Tools and Techniques 



P_VectorType RECORD 
Draw BOOLEAN; 
V4 ARRAY [1 .. 4] OF REAL; 
END; 

P _vectorListType ARRAY [1 .. P __ MaxVecListSize] OF 
P_VectorType; 

P_PatternType =ARRAY [1 ... 32] of INTEGER; 

2.1.2 PascalNS 

The PascalNS version of the GSRs make use of the following 
program-defined Pascal TYPE definitions. 

P_KnotArrayType 
P_MatrixType 
P_VectorType 

ARRAY (.1 .. P_MaxKnots) OF SHORTREAL; 
ARRAY (.1 .. 4, 1 .. 4.) OF SHORTREAL; 
RECORD 
Draw BOOLEAN; 
V4 ARRAY (.1 .. 4.) OF SHORTREAL; 
END; 

P_VectorListType PACKED ARRAY (.1 .. P_MaxVecListSize) OF 
P_VectorType; 

P_PatternType 
P_MaxK.nots 

ARRAY (.1 ... 32.) of INTEGER; 
10; This parameter can be changed by the user 

to any appropriate value WITHOUT 
recompiling the GSRs. 

P MaxVecListSize 100; This parameter can be changed by the user 
to any appropriate value WITHOUT 
recompiling the GSRs. 

The Pascal V2 and PascalNS versions of the Graphic Support Raster 
Routines make use of the following program-defined Pascal CONST ANT 
definitions: 

P_MaxRunclrSize 

P_ColorType 

End; 

Using the GSRs 

User specified maximum length run color array 

RECORD 
RED 
GREEN 
BLUE 

INTEGER; 
INTEGER; 
INTEGER; 

IT3-ll 



P_RunColorType =RECORD 

End; 

P_RunClrArrayType 

COUNT INTEGER 
RED INTEGER; 
GREEN INTEGER; 
BLUE INTEGER; 

ARRAY [l .. P_MaxRunclrSize] of P_RunColorType; 

The following parameters can be changed by the user to any appropriate 
value without having to recompile the GSRs: 

P MaxK.nots 
P_MaxVecListSize 
P_MaxVaryingSize 
P_MaxVaryBufSize 

10 
200 
255 
512 

2.2 Utility and Application Routines 

1T3-12 

Utility Routines are specific to the operation of the GS Rs. These calls are 
used to attach the PS 390, select multiplexing channels, send and receive 
messages, and detach. 

Application Routines correspond almost one for one with the standard 
PS 390 Commands. In most cases, the names for the Application Routines 
were derived by choosing an abbreviation of the PS 390 command and 
prefixing it with a P. Parameter ordering generally coincides with the 
PS 390 commands as well. Examples of some of the Application Routines 
are below. 

EXAMPLE 1 

For commands which build operation display structures, such as 

Name:=operate parameterl,parameter2, ... , then apply; 

The routine call is: 

Poper("name" ,parameterl,parameter2, ... ,"apply", Error_Handler); 

where: 

oper is an abbreviated form of the PS 390 command such as rotate 
in x - Protx 

'name' is a character string containing the name to be associated 
with the operate 

Tools and Techniques 



parameterl,parameter2, ... , are the parameters to be used in com­
puting the operation. These may be boolean values, integers, real 
numbers, vectors, or matrices. 

'apply' is a character string containing the name of the object to 
which this operate applies. 

Error Handler is the user-defined error handler routine. 

EXAMPLE 2 

For commands to send to functions or display structures, such as 

Send datum to <input>dest; 

The routine call is: 

PSNDtyp(datum,input,'dest', Error_Handler); 

where: 

'typ' is an abbreviated form of the PS 390 command such as 
PSndFiX, PSndM2D, ... 

datum is what is to be sent. It may be Boolean, integer, real, char­
acter string, vector, or matrix. 

input is an integer which specifies which input of the destination is 
being sent to. 

'dest' is a character string containing the name of the display 
structure or function. 

Error_Handler is the user-defined error handler routine. 

EXAMPLE 3 

For commands which create functions and connections such as: 

Name := f :genfcn; 
Name := f:genfcn(n); 
Conn name<output>:<input>dest; 
DISCONN name<output>:<input>dest; 

The routines are: 

Using the GSRs 

PFNINST 
PFNINSTN 
PCONNECT 
PD I SC 

'name', 'genfcn', Error_Handler ); 
'name', 'genfcn', n, Error_Handler ) ; 
'name' , output, input,' dest' , Error_Handler ) ; 
'name',output,input,'dest', Error Handler); 

JT3-13 



where: 

'name' is a character string containing the name associated with 
the function instance. 

'genfcn' is a character string containing the name of the system 
generic function. 

n is an integer specifying the number of input/outputs for this func­
tion instance. 

output,input are integers specifying the output and input numbers. 

'dest' is a character string containing the name of the display data 
structure 

Error Handler is the user-defined error handler routine. 

Note that the function names in the GSRs are specified without the "F:" 
prefix that is used in the standard PS 390 command language. 

2.3 Exceptions 

TI'J-14 

To be fully specified using GSRs, three PS 390 commands require three 
separate calls to routines. The commands are LABEL, VECTOR_LIST, and 
POLYGON. 

For example, to create, specify and complete a label block, the user must 
call: 

PLabBegn - To create and open a label block 
PLabAdd - May be called multiple times to add to a previously 

opened label block 
PLabEnd - To complete the creation of a label block. 

Together these three routines implement the PS 390 command: 

Name := LABELS x, y, z, 'string' 

x, y, z, 'string'; 

In the same way, the user must use PVecBegn to begin a vector list, 
PVecList to send a piece of a vector list, and PVecEnd to end a vector list. 

An example of a routine that varies slightly from the PS 390 command is 
PBSPL. In the BSPLINE command some of the parameters are optional. In 
the routine they are all required. This is also the case for the PRBSPL, 
PPOLY, and PRPOLY routines. 

Tools and Techniques 



The PS 390 syntax allows for instancing multiple display entities and for 
creating multiple variables. In the PS 390 command language the com­
mands would be: 

NAME:= INSTANCE a,b,c,d; 

for instancing multiple display entities, and 

VARIABLE s,y,z,w,t,q; 

for multiple variables. 

To perform the equivalent instancing of multiple display entities or for cre­
ating multiple variables, the following GSRs should be used. 

For the multiple instance case: 

PINST('NAME', 'A', Error_Handler); 
PINCL('B'' 'NAME'' Error_Handler); 
PINCL('C', 'NAME', Error_Handler); 
PINCL('D', 'NAME', Error_Handler); 

For the multiple variable case: 

PVAR (, s, ' Error_Handler); 
PVAR ( 'Y'' Error _Handler) ; 
PVAR (, Z' ' Error_Handler); 
PVAR ( 'W'' Error_Handler); 
PVAR (, T' ' Error_Handler); 
PVAR (, Q' ' Error_Handler); 

2.4 Error Handling 

An error handling scheme has been employed to catch errors detected by 
the GS Rs. Examples of errors detected by the GS Rs: 

• Prefix not followed by an operate. 

• Follow not followed by an operate. 

• Invalid characters in a name. 

Command Interpreter errors and warnings are not detected by the GSRs. 
Examples of these errors are: 

• Destination does not yet exist. 

• Message rejected by destination. 

• Connection not made. 

Using the GSRs ITJ-15 



Error checking will be performed within the GSRs to ensure that only valid 
characters are sent within names, and that routines are called in the proper 
order, in cases where order is required. No attempt has been made to cap­
ture errors and/or warnings from the Command Interpreter. 

Each routine call includes an argument that specifies the user-written error 
handler. This error handler is of the form: 

PROCEDURE Error_Handler (Error : INTEGER) ; 

where ERROR is an integer error code corresponding to one of the errors. 

It is the responsibility of the user to provide an error handling scheme to 
decide what action should be taken when an error is detected. The GS Rs do 
not attempt to terminate execution or log errors. 

The name, description, and error code of each detectable error is given in 
tables in Section RM4. An example error handling routine appears in the 
example programs in Appendix C and Appendix D. It is a sophisticated 
error handler that may be incorporated by the user into an error handling 
scheme, or used as an example of what an error handler should look like. 

2.5 Programming Suggestions 

TT3-16 

The file PROCONST.PAS contains definitions for constants used by the 
GSRs. It is often convenient to think of these constants by name rather than 
by remembering numbers. Specifically, in the usual PS 390 command syn­
tax, inputs to display structures are often referred to by name such as <ap­
pend> and <clear> for vector _lists and <position> and <step> for character 
strings. There are also <delete>, <last>, and others. Other useful constants 
such as values for conditional tests for level of detail, and vector list class 
are obtainable from PROCONST .PAS. 

PROCONST.PAS also contains a complete set of error/warning code 
definitions. These values may be referenced by name by the user routine if 
PROCONST.PAS is INCLUDED in the routine. The Error Tables in Section 
RM4 provide a list of the mnemonics and error codes. Using the mnemonics 
provides an easy way of checking for the correct error code value. 

There are two other files that must be INCLUDED by the user. These 
additional files and their descriptions are: 

PROTYPES.PAS - contains the GSR Pascal TYPE definitions 

PROEXTRN.PAS - contains the VAX GSR EXTERNAL Routine Definitions 

Tools and Techniques 



The following is an abbreviated list derived from PROCONST.PAS of the 
constants which should be most useful to the user. 

GSR private constant declarations: 

Name 

P_Append 
P_Delete 
p Clear -
P_Step 
p Position -
p Last 
p Substitute -
p LES 
p _EQL 
p _LEQL 

p GTR -
p _NEQL 
p GEQL -

p Conn -
P_Dots 
p Item -
P_Sepa 
p Tab -

Value 

o· 
' 

-1; 

-2; 

-3; 
-4; 

-5; 
-6; 

O; 
1· 

' 
2; 

3; 
4; 

s· 
' 

o· 
' 

1 

2; 
3· 

' 
4• 

' 

Meaning 

<Append> input number. 
<Delete> input number. 
<Clear> input number. 
<Step> input number. 
<Position> input number. 
<Last> input number. 
<Substitute> input number. 
"Less" level of detail comparison operator. 
"Equal 11 level of detail comparison operator. 
"Less-equal" level of detail comparison 
operator. 

"Greater" level of detail comparison operator. 
"Not-equal" level of detail comparison operator. 
"Greater-equal" level of detail comparison 
operator. 

Vector list "Connected" class type. 
Vector List "Dots" class type. 
Vector List "Itemized" class type. 
Vector List "Separate" class type. 
Vector List "Tabulated" class type. 

3. UNIX/C Graphics Support Routines 

The GSR Library provides C functions for each command accepted by the Com­
mand Interpreter. It is assumed that the E&S software distribution has been loaded 
into subdirectories of a directory named /usr/ps300/dist/es. 

The object code for the PS 390 GSRs exists as the library archive file, libgsr.a in 
the lib subdirectory. Application programs using the GSRs should be linked with 
this library and must include gsrext.h from the include subdirectory. There are 
other header files in the include subdirectory, which may be used by programs 
which need access to the lower levels of the GSR library. They are pidefs.h and 
netdefs.h. Programs which call the piqiow and psnetio routines directly should 
include pidefs.h and netdefs.h respectively. These files define constants and data 
types, and declare external routines used in the corresponding modules. The 
pidefs.h file defines the data types and symbolic errors and other constants used 
by the parallel interface device driver. The netdefs.h file defines constants and 
macros used by the psnetio function. 

Using the GSRs IT3-17 



3.1 The Lint library 

The GSR library passes through the lint analyst without errors. Application 
programs should make use of the objects defined in the header files and the 
analysis of lint. The lint library llib-lgsr.ln is provided so that lint may 
analyze the usage of the GSRs in a user application program. This file 
exists in the lib subdirectory. The GSR lint library will be automatically 
updated whenever the GSR library is modified. 

3.2 UNIX/PS 390 Communication Channels 

TI'3-J 8 

The V AX/UNIX/C GSRs support communication with a PS 390 over an 
asynchronous serial line, the PS 390!UNIBUS parallel interface and the 
PS 390/Ethernet Interface. The synchronous serial interface device 
(DMR-11) is not supported. Output to disk files instead of the PS 390, is 
also supported. Application programs specify the communication channel 
using the PAttach routine in the GSR library, as shown below: 

PAttach( devname ); 

where devname is a character string specifying a device special file. A 
hyphen (" -") is a special case and is assumed to specify the stdout file. 

3.2.1 Automatic device typing 

Regardless of the device specified by the application program for I/O to the 
PS 390, the type of the device being used (parallel, RS-232 line, or Ethernet 
node) is automatically determined by the GSR package at the time of 
initialization. For example, if stclout was specified in the application 
program (in the PAttach routine) and was redirected to a PS 390 parallel 
interface special file (regardless of the name of that special file) it will be 
recognized as such and controlled appropriately. 

3.2.2 Parallel Interface Device 

The GSR user needs only to know the name of the UNIX special file which 
is used to access the device. The recommended name pattern is /dev/pi?O. 
The second to last character in the name is a character in the range 11 a 11 

through 11 z 11
, identifying one of possibly several picture processors. 

3.2.3 PS 390/Ethernet Interface 

To use the PS 390 on the customer's Ethernet, its Official Host Name or an 
alias (found in /etc/hosts) should be specified as the "devname" to the 

Tools and Techniques 



PAttach. For example, the shell scripts in the test subdirectory of the 
distribution assume that the /etc/hosts file contains an entry for a node 
named "net_300_1" and pass "net_300_1" to the test programs, which is 
used in the PAttach call. 

Other facts to remember about the PS 390 Ethernet interface are: 

• Dual line operation of the PS 390 is precluded. 

• The 4.2 BSD UNIX trailer protocols must be turned off for the 
PS 390 Ethernet interface to work. 

3.2.4 RS-232 Asynchronous serial channels 

The GSR, PAttach, attempts to set up the communication line properly for 
asynchronous communications. However, some special precautions should 
be taken when using the async lines with the GSRs to communicate with the 
PS 390. If the tty being used for the PS 390 is not the same as the process's 
controlling tty(i.e., the PS 390 is operating in dual line mode or a separate 
terminal is being used) then logins must not be enabled for the device (i.e., 
no getty running on it). You may disable logins permanently for such a line 
by editing its entry in /etc/ttys (change the first character on the correspond­
ing line to "O") and sending a hangup signal to init (with a "kill-HUP 1 ") or 
rebooting the system. Alternately, if your site has implemented enable/dis­
able commands to do this more gracefully as required, you can disable the 
line dynamically upon each use. Note that anything written to stderr (as the 
standard GSR error handler does) will be sent to your terminal ( i.e., the 
PS 390, probably in the middle of some binary data packet) unless you take 
steps to redirect it elsewhere. 

3.2.5 Output to Files 

Any file may be specified to receive the output of the GSRs for examination 
during debugging or delayed transmission to the PS 390. In this case, the 
output is formatted with the same type of headers used for asynchronous 
serial lines so that the file may simply be copied (e.g., with cat) to a PS 390 
at a later time. Care must be taken to ensure that the asynchronous commu­
nication line is set up properly since the PAttach/PDetach calls usually take 
care of this for you. When directing output to a file other than a real 
PS 390, it is important to note that any GSR operations which require read­
ing from the PS 390 will return nothing and generate a call to the error 
handler indicating a PSF _ PHYGETFAI condition. In general, this can cause 
problems in the program's operation and is not recommended. 

Using the GSRs TTJ-19 



3.3 UNIX/C GSR Conventions 

TI'J-20 

3.3.1 Names of user callable GSR library routines 

The actual names of the user callable routines in the GSR library consist of 
upper and lower case letters and digits. However, application programs 
which use the GSRs may call these routines using all lower case letters 
provided the symbol "LOWERCASE_ GSR" is defined when the C 
preprocessor processes the mandatory gsrext.h header file. 

3.3.2 Data types of GSR parameters 

The number, ordering, and function of parameters to the GSR library is, in 
general, the same as in the VMS Pascal implementation. There are a few 
exceptions as noted in the sections below. The type and/or structure of some 
of the parameters have also been changed as described in the following. 

3.3.3 Strings and Bytes 

All character string and byte buffer parameters are of the type string (i.e., 
pointer to a char) in C, whereas in the Pascal version they are 
P _ VaryingType and P _ VaryBufType. In C, this is equivalent to an array of 
char or to a quoted literal text string. When these are strings of ASCII 
characters, the C convention of terminating the string with a null character 
is assumed, requiring no explicit indication of length. There are three rou­
tines in the C version which make an exception to this convention and re­
quire explicit specification of length since they treat a string as a general 
purpose byte buffer which may contain the value zero (the conventional 
string terminator) as valid data. These routines are: 

PPutG(buffer, actual_length) 
string buffer; 
int length; 

int PGet(buffer, max_length) 
string buffer; 
int max_length; 

int PGetWait(buffer, max_length) 
string buffer; 
int max_length; 

In all three cases, the buffer pointer is followed by an integer length value. 
The length parameter to the PPutG routine is the number of bytes of valid 

Tools and Techniques 



data in the buffer. However, in PGet and PGetWait, the length parameter 
indicates the size of the buffer in bytes (i.e., the maximum number of bytes 
which may be returned in the buffer ). The PGet and PGetWait routines 
return the number of bytes read from the PS 390 as their function value. 

3.3.4 Booleans 

A Boolean type definition (with values of TRUE and FALSE) 1s used m 
place of Pascal's built-in boolean type. 

3.3.5 Floating Point Numbers 

The 4.2 BSD C compiler and most others perform all floating-point 
operations in double precision, treat all f.p. constants as double precision, 
and convert all f.p. expressions and actual parameters to routines to double 
precision, and implicitly declare all formal f.p. parameters as double 
precision. For this reason, the C GSRs use the type double in place of the 
Pascal type REAL. 

3.3.6 Other Special Types and Constants 

The other special types used in the Pascal version have been converted to C 
with essentially no change in structure. They are: 

typedef enum (P_Conn=O,P_Dots,P_Item,P_Sepa,P_Tab) P_vector_class; 
typedef long int P_PatternType[32]; 
typedef double P_KnotArrayType[]; 
typedef double P_MatrixType[4] [4]; 

typedef struct { 
boolean Draw; 
double V4[4]; 
} P_yectorType; 

typedef P_VectorType P_VectorListType(]; 

typedef struct 
unsigned short red; 
unsigned short green; 
unsigned short blue; 
} P_ColorType; 

Using the GSRs TT3-21 



typedef struct 
int count; 
unsigned short red; 
unsigned short green; 
unsigned short blue; 
} P_RunColorType; 

typedef P_RunColorType P_RunClrArrayType[]; 

The set of P :Max ... constants used in Pascal as limits for the variable 
length arrays in Pascal are unnecessary in C due to the flexibility in passing 
arrays of different lengths as parameters. 

All of the defined constants used in Pascal for specifying symbolic values 
for certain integer parameters (e.g., P _Delete, P _LES, P _Dots etc.,) are also 
available in the C GSRs. 

3. 4 Error Handling 

TI'3-22 

All errors which were detected in the VMS version are likewise detected in 
the UNIX/C version (except for the VMS-specific errors). A few 
UNIX-specific errors have been added using the same scheme for error 
code assignment. Error handling in the C implementation is more efficient 
and more flexible. A standard error handler is provided in the GSR library 
which is used by default if an alternate one is not specified. The application 
program may provide its own error handling routine(s) at various points in 
the program. Passing an error handler routine to each of the GSRs has been 
eliminated. The symbolic names of GSR errors are defined in the header 
file gsrerror.h in the include subdirectory of the distribution. 

3.4.1 The Default Error Handler 

The default error handling routine provided by the GSR library is: 

gsr_std_err_handler(error) 
P_gsr_error_type error; 

This routine prints a message on the stderr file, giving the integer error code 
passed to it. 

3.4.2 User provided Error Handlers 

An application program using the GSRs may provide its own error handling 
routine, even though the gsr _std_ err_ handler routine is in effect by default. 

Tools and Techniques 



An alternate error handler may be specified using the set_gsr _err_ handler 
routine as shown below. 

set __ gsr _err _handler (new_handler) 
int ( * new_ handler) () ; 

where new handler is the alternate error handler routine which should take 
one parameter of P _gsr_error_type which will be passed the current error 
code when called. If the set_gsr_err_hancller routine is called with a null 
pointer (i.e., zero) it will revert back to the use of the default handler. 

3.4.3 Error Handler Parameter 

The address of an error handler is passed as a parameter to every routine in 
the VMS Pascal version of the library. However, since the C version 
provides a standard error handler and a mechanism for specifying 
user-supplied error handlers, this parameter has been eliminated. Whatever 
error handler is in effect is invoked directly at the site of the error detection. 

3.5 Special Notes 

3.5.1 Specifying Transformation Matrices 

The following GSR library routines require the input of a transformation 
matrix: 

PMat2x2 PMat3x3 PMat4x3 PMat4x4 PSndM2d PSndM3d PSndM4d 

The GSR library can be built for input of transformation matrices in ROW 
MAJOR or COLUMN MAJOR mode by specifying the rowmajor or the 
columnmajor option when invoking the make utility which generates it. The 
default is the rowmajor option. The library archive libgsr.a which is distrib­
uted on magtape is built using the rowmajor option. 

3.5.2 Miscellaneous notes on using the GSRs 

There is no easy way for an application program to know when the PS 390 
has completely processed the GSR equivalent of a PS 390 command and is 
in a quiescent state. The absence of such a general facility could be the 
source of some unpredictable program behavior unless the appropriate pre­
cautions are taken. A typical situation for such behavior is illustrated by the 
following segment of an application program. 

Using the GSRs TTJ-23 



IT3-24 

char dummy[256]; 

/* use the parallel interface*/ 

PAttach("/dev/piaO"); 
Pini t (); 

/* Connect Function Key 1 to HOST_MESSAGE so that when it is hit, 

PGetWait will wakeup*/ 
PConnect("FKEYS",1,1,"HOST_MESSAGE"); 
PFninst("inst_of_print","PRINT"); 

/* Create a character data node*/ 

CharSca("object", 0.04, 0.04, "charnode"); 
PChars("charnode",0.2,0.83,0.0,l.0,0.0,""); 

/* Connect inst_of_print to the substitute input of the character 
data node*/ 

PConnect("inst of print",1,-6,"object"); 
PSndStr("Hello",l,"inst_of_print"); 
PDisplay("object"); 

/* Wait for PS 390 user to hit key Fl */ 

PGetWait( dummy,256 ) ; 

/* At this point, the string "Hello" would appear on the PS 390 
display. Now let us try to disconnect inst_of_print from object and 
send the string "ABC" to it and THEN connect it again to object.*/ 

PDisc ( "inst_of_print", l, "object") ; 
PSndStr("ABC",l,"inst_of_print"); 
PConnect("inst_of_print",1,-6,"object"); 

/* Wait for PS 300 user to hit key Fl */ 

PGetWait( dummy,256 ); 

/* It seems reasonable to expect that "ABC" should not be displayed 
because the functions were disconnected prior to sending "ABC". 
However, because of the way some commands are interpreted by the CI, 
it is very likely that the string "ABC" ended up on the input of 
inst_of_print AFTER the connection was made the second time, thus 
making"ABC" appear on the display! */ 

One could invent a specific solution to each situation of this kind which 
would satisfactorily take care of the problem. In the case above, we could 
resort to a crude solution by which the application program could wait for a 

Tools and Techniques 



reasonably long time, say 1 second, after sending the string "ABC" but 
before doing the PConnect again as shown below: 

PDisc ( "inst_of_print", 1, "object") ; 
PSndStr("ABC",1,"inst_of_print"); 

/* Give enough time for the string to end up on the input of 
inst_of_print before making the connection again*/ ! 

sleep(l); 

/* sleep for 1 second */ 

PConnect("inst_of_print",1,-6,"object"); 
PGetWait( dummy,256 ) ; 

/* Wait for Fl key */ 

3.5.3 Using the PGetWait routine in the GSR library 

The PGetWait routine is called by host application programs when they 
want to wait for some input from the PS 390, typically sent back via the 
HOST_MESSAGE function. However, when the application program uses 
an asynchronous communication line to the PS 390, all keys typed on the 
PS 390 keyboard in Terminal Emulator mode will also be sent to the host 
(bypassing HOST_ MESSAGE). This means that the application program 
may receive unexpected input and behave in an unexpected manner. The 
solution is to make sure that the PS 390 keyboard is not in Terminal Emula­
tor mode when PGetWait is used to wait for input from the PS 390. This 
situation does not arise when the VAX/UNIBUS Parallel Interface or the 
Ethernet Interface is used to communicate with the PS 390 because the Ter­
minal Emulator uses only the async line. 

3.6 Ethernet Interface 110 Operations 

The PS 390 Ethernet Interface allows a PS 390 to be connected to an 
Ethernet local area network. The E&S software for this option consists of 
(a) PS 390 firmware which implements full duplex byte stream 
communications over an Ethernet and (b) the GSR library which provides 
easy access to the networked PS 390. The DoD TCP/IP is used in the initial 
release; a simpler E&S protocol may also be supported in the near future. 

Using the GSRs IT3-25 



TI'3-26 

Application programs which use the GSR library can access the networked 
PS 390 by specifying its node name or an alias to the PAttach function as 
shown: 

PAttach("PS 390nodeName"); 

The name of the PS 390 node and its aliases can be found in the /etc/hosts 
file. 

Application programs may communicate with the networked PS 390 by call­
ing the psnetio function in the devlib.c module of the GSR library. This 
function hides the protocols used and relieves the programmer of some 
housekeeping chores in handling the interface. More importantly, the physi­
cal I/O operations of the interface will be accessible only by calling psnetio 
directly. 

3.6.1 The PSNETIO Function 

The psnetio function allows the caller to issue logical, physical and diagnos­
tic I/O requests to the PS 390/Ethernet Interface. The request parameter is 
an integer code passed to psnetio from the calling program. The need for 
and the meaning of the argpl and argp2 parameters depends on the re­
quest. The request codes available and the corresponding parameter list are 
described below: 

PSNET ATT 

This request is issued to create a communication socket and to establish a 
virtual circuit between this socket and a socket on the PS 390 node. The 
argp! parameter is a pointer to the name of the PS 390 node or one of its 
aliases from the /etc/hosts file. There is no argp2 parameter for this re­
quest. If the connection is established successfully, a file descriptor value 
is returned; otherwise -1. 

PSNET DET 

This request is issued to shutdown the virtual circuit established by the 
PSNET_ATT request. Further communication with the PS 390 node 
would be possible only after a new PSNET_ATT request. There are no 
other parameters for this request. 

A 0 is returned if the call succeeds; -1 if it fails. 

Tools and Techniques 



PSNET LWRITE 

This request is issued to send data to the function network in the PS 390 
node. The argp 1 parameter is a pointer to a user buffer which has the 
following format: 

opcode (8 bits) 
flags (8 bits) 
be (16 bits) 
lwdata (be bytes) 

The fields of this buffer are: 

opcode 

Not written or read by psnetio's caller. 

flags 

be 

The F _ WRITESW AP bit should be set if the bytes in each 16-bit word of 
the lwdata field should be swapped by the PS 390 before passing them to 
the function network. 

The F _READSW AP bit should be set if the bytes should be swapped in 
each 16-bit word sent to the host for a PSNET _ LREAD request. (See 
below.) 

Number of bytes of data in lwdata. This does not include the opcode, 
flags and be fields. 

lwdata 

Data to be sent to the function network. 

The number of bytes of data sent, excluding the opcode, flags and be 
fields, is returned as the function value. A -1 is returned in case of an 
error. There is no argp2 parameter for this request. 

Using the GSRs 

NOTE 

A PSNET_LWRITE request throws away any data from 
the PS 390 which still remains unread. 

nJ-27 



ITJ-28 

PSNETLREAD 

This request is issued to read data from the function network in the 
PS 390 node. The argp 1 parameter is a pointer to a user buffer which has 
the following format: 

opcode (8 bits) 
flags (8 bits) 
be (16 bits) 
lrdata (be bytes) 

The fields of this buffer are: 

opcode 

Not written or ~ead by psnetio's caller. 

flags 

be 

Bit mask returned by the PS 390. If the F _S\V APPED bit is set, the order 
of bytes in each 16-bit word of the lrdata field is the opposite of the way 
they are stored in PS 390 memory. 

Size of the lrdata field, in bytes. This field is modified by psnetio. On 
return, it contains the number of bytes of data received from the PS 390. 

lrdata 

All or part of the data received from the PS 390 function network. 

The number of bytes of data, excluding the opcode, flags and be fields is 
returned as the function value. A --1 is returned in case of an error. There 
is no argp2 parameter for this request. 

NOTE 

(1) If the order of data bytes from the PS 390 is to be 
reversed, it should have been specified by setting the 
F READSWAP bit in the most recent PSNET LWRITE - -
request prior to the read. 

(2) Psnetio may be called repeatedly to recover all of 
the data received from the PS 390. 

(3) Any data remaining unread after a PSNET_LREAD 
will be thrown away by requests other than a 
PSNET LREAD. 

Tools and Techniques 



PSNET PREAD 

This request is issued to read data directly from PS 390 mass memory. 
The argpl and argp2 parameters are pointers to two user buffers; the 
first contains a set of descriptors for the physical read operation and the 
second receives the data read from mass memory and a copy of the 
descriptors from the first buffer. The argp 1 buffer has the following 
format: 

opcode (8 bits) 
flags (8 bits) 
be (16 bits) 
N (16 bits) 
Block #1 mmaddr ( 32 bits) 
Block #1 WC (16 bits) 
Block #2 mmaddr (32 bits) 
Block #2 WC (16 bits) 
Block #N mmaddr (32 bits) 
Block #N WC (16 bits) 

The fields of this buffer are: 

opcode 

Not written or read by psnetio's caller. 

flags 

be 

N 

The F _READSWAP bit should be set if the bytes should be swapped in 
each 16-bit word read from PS 390 mass memory before being sent to 
the host. 

Number of bytes in the rest of the buffer. 

Number of blocks of mass memory to read in this request. Each block is 
specified by a mass memory address and a word count. 

mmaddr 

Source mass memory address. 

WC 

Number of 16-bit words to read beginning at mmaddr. 

Using the GSRs ITJ-29 



7T3-30 

The argp2 buffer receives the physical read data and a copy of the other 
fields from the argp 1 buffer. It has the following format: 

opcode 
flags 
be 
N 
Block #1 mmaddr 
Block #1 WC 

Block #1 mmdata 
Block #2 mmaddr 
Block #2 WC 

Block #2 mmdata 
Block #N mmaddr 
Block #N WC 

Block #N mmdata 

(8 bits) 
(8 bits) 
(16 bits) 
(16 bits) 
(32 bits) 
(16 bit.s) 
(per we) 
(32 bits) 
(16 bits) 
(per we) 
(32 bits) 
(16 bits) 
(per we) 

The fields of the argp2 buffer are: 

opcode 

Not written or read by psnetio's caller. 

flags 

be 

Bit mask returned by the PS 390. If the F _SWAPPED bit is set, the order 
of bytes in each 16-bit word returned in mmdata is the opposite of their 
order in PS 390 memory. 

Size of the rest of the buffer, in bytes. This field is modified by psnetio. 

mmaddr 

Copied by the PS 390 from the argp 1 buffer. 

WC 

Copied by the PS 390 from the argpl buffer. 

mmdata 

Physical data read from mass memory. 

The number of bytes of data returned in the argp2 buffer is returned as 
the function value. This count excludes the opcode, flags, be, N, mmaddr 
and we fields. A -1 is returned in case of an error. 

NOTE 

Any physical data remaining unread after a 
PSNET _PREAD request is thrown away by the first re­
quest other than a PSNET_PREAD. 

Tools and Techniques 



PSNET PWRITE 

This request is issued to write data directly to PS 390 mass memory. The 
argp 1 parameter is a pointer to a user buffer containing the target mass 
memory addresses, \YOrd counts and the data for the physical write op­
eration. The buffer has the following format: 

opcode (8 bits) 
flags (8 bits) 
be (16 bits) 
N (16 bits) 
Block #1 mmaddr (32 bits) 
Block #1 WC (16 bits) 
Block #1 mmdata (per we) 
Block #2 mmaddr (32 bits) 
Block #2 WC (16 bits) 
Block #2 mmdata (per we) 
Block #N mmaddr (32 bits) 
Block #N WC (16 bits) 
Block #N mmdata (per we) 

The fields of this buffer are: 

opcode 

Not written or read by psnetio's caller. 

flags 

be 

N 

The F _ WRITESW AP bit should be set if the bytes should be swapped in 
each 16-bit word of mmdata before being written to PS 390 mass 
memory. 

Size of the rest of the buffer, in bytes. 

The number of blocks of mass memory to write in this request. Each 
block is specified by a mass memory address, the number of 16-bit words 
of data to write and the data. 

mmaddr 

Destination mass memory address. 

WC 

Number of 16-bit words to write, beginning at the mass memory address 
specified in mmaddr. 

Using the GSRs TI3-31 



173-32 

mmdata 

Data to be written to mass memory. 

The number of bytes of data sent to the PS 390 is returned as the func­
tion value. This count excludes the opcode, flags, be, N, mmaddr and we 
fields. A -1 is returned in case of an error. 

NOTE 

Any physical data remaining unread after a 
PSNET PREAD request is thrown away by the 
PSNET_PWRITE request. 

PSNETLOOKUP 

This request is issued to get the named entity pointer (i.e., the mass 
memory address) of a PS 390 object. The argpl parameter is a pointer to 
a character string containing the name of the object. It has the following 
format: 

opcode 
flags 
be 
name 

(8 bits) 
(8 bits) 
(16 bits) 
(be bytes) 

The fields of the buffer are: 

opcode 

Not written or read by psnetio's caller. 

flags 

Not read or written by psnetio's caller. 

be 

Number of characters in name. 

name 

Character string specifying the name of the PS 390 object whose address 
is to be looked up. 

NOTE 

The order in which the characters in the name are sent 
is assumed to be the order in which the PS 390 expects 
them. In other words, the PS 390 does not swap the 
bytes before looking up the name. The pointer to the 
named entity is returned as the function value. A -1 is 
returned in case of an error. 

Tools and Techniques 



Appendix A - FORTRAN-77 Example Progra1n 

This appendix contains a network creation example program that illustrates the use 
of the PS 390 DECN AX FORTRAN-77 Graphics Support Routines. The program 
contains an error handler routine example. 

PROGRAM BlkLevF 

INCLUDE 'PROCONST.FORINOLIST' 

c 
C Main program: 
c 

Using the GSRs 

REAL*4 Deg_rad 
PARAMETER (Deg_rad = 0.017453292) 

REAL*4 
& 

Theta, DTheta, Front (4, 100), 
Vecs (4, 100), Zero_vec (3), 

& Y_Up (3), At (3), From (3)' Up (3) 
INTEGER*4 i, k, 1, Times 
CHARACTER Name*63, DeviceSpec*l, DeviceName*5, 

& AttachParameter*80 
LOGICAL*l PFront (100), PVecs (100) 

CHARACTER Uppercase*l 
EXTERNAL Err, Uppercase 

DeviceSpec = ' ' 

DO WHILE ((DeviceSpec .NE. 'A') .AND. 
& (DeviceSpec .NE. 'E') .AND. 
& (DeviceSpec . NE. 'P')) 

WRITE (6, 1) 'Device Interface type 
& II '(Parallel, Ethernet, Asynchronous): 

READ (5, 2) DeviceSpec 
DeviceSpec = Uppercase (DeviceSpec) 
IF ( (DeviceSpec . NE. , A') . AND. 

& (DeviceSpec .NE. 'E') .AND. 
& (DeviceSpec .NE. 'P')) THEN 

WRITE (6, *) 'Invalid device type specified.' 
END IF 

END DO 
DeviceName 
DO WHILE (DeviceName .EQ. ' ') 

WRITE (6, 1) 'Physical device name (i.e. TT, ' 

1T3-33 



1 

2 
3 

TT3-34 

& II 'TTA6, XMDO): 
READ (5, 3) DeviceName 
FORMAT ( , , A, $) 

FORMAT (lA) 
FORMAT (5A) 

END DO 
IF ((DeviceName (2:2)) .EQ. , ') THEN 

DeviceName (2:) = ':' 
ELSE 

IF ((DeviceName (3:3)) .EQ. , ')THEN 
DeviceName (3:) = ':' 

ELSE 
IF ((DeviceName (4:4)) .EQ. , ') THEN 

DeviceName ( 4:) '· ,. 

ELSE 
DeviceName (5:) 

END IF 
END IF 

END IF 

, . ,. 

IF ( (Uppercase (Dev iceSpec) ) . EQ. 'P') THEN 
AttachParameter = 'Logdevnam=' II DeviceName 

& II 'IPhydevtyp=PARALLEL' 
ELSE 

IF ( (Uppercase (Dev iceSpec) ) . EQ. 'E') THEN 
AttachParameter = 'Logdevnam=' II DeviceName 

& II 'IPhydevtyp=Ethernet' 
ELSE 

AttachParameter = 'Logdevnam=' II DeviceName 
& II 'IPhydevtyp=Async' 

END IF 
END IF 
CALL PAttch (AttachParameter, Err) 
At (1) 0.3 

At (2) = 0 

At (3) = 0 
From (1) 0 

From (2) 0 
From (3) -1 

Up (1) 0. 3 

Up (2) = 1 
Up (3) = 0 
Y_up (1) 0 
Y_up (2) 1 
Y_up (3) 0 
Zero vec (1) 0 
Zero_vec (2) O 
Zero vec (3) 0 
CALL Pinit ( Err 

Tools and Techniques 



Using the GSRs 

CALL Peyebk ( 'eye'' 1.0, 0.0, 0.0, 2.0, 0.0, 
& 1000.0, 'inten', Err ) 

CALL Pseint ( 'inten', . TRUE. , 0. 5, 1. 0, 
& 'look', Err) 

CALL PLooka 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL Pfn 
CALL PfnN 
CALL Pfn 
CALL Pconn 
CALL Pconn 
CALL Psnboo 
CALL Pfn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Pconn 
CALL Psnv3d 
CALL Psnv3d 
CALL Psnv3d 
CALL Pconn 
CALL Pfn 
CALL Pconn 
CALL Pconn 
CALL Psnv3d 
CALL Psnv3d 
CALL Pinst 

'look', At, From, Up, 'pie', Err ) 
'atx', 'xvec', Err 
'aty', 'yvec', Err ) 
'atz', 'zvec', Err ) 
'fromx', 'xvec', Err 
'fromy', 'yvec', Err 
'fromz', 'zvec', Err 
'ac_at', 'accumulate', Err ) 
'ac_from', 'accumulate', Err 
'add_up', 'addc', Err ) 
'sync_up', 'sync', 3, Err ) 
'fix_sync', 'nop', Err ) 
'sync_up', 3, 1, 'fix_sync', Err 
'fix_sync', 1, 3, 'sync_up', Err 
.TRUE., 3, 'sync_up', Err ) 
'look_at', 'lookat', Err ) 
'dials', 1, 1, 'atx', Err ) 
'dials', 2, 1, 'aty', Err ) 
'dials', 3, 1, 'atz', Err) 
'dials', 5, 1, 'fromx', Err 
'dials', 6, 1, 'fromy', Err 
'dials', 7, 1, 'fromz', Err 
'atx', 1, 1, 'ac_at', Err 
'aty', 1, 1, 'ac_at', Err 
'atz', 1, 1, 'ac_at', Err 
'fromx', 1, 1, 'ac_from', Err 
'fromy', 1, 1, 'ac_from', Err 
'fromz', 1, 1, 'ac_from', Err 
'ac_at', 1, 1,· 'sync_up', Err 
'ac_at', 1, 1, 'add_up', Err 
'add_up' ,1, 2, 'sync_up', Err 
'sync_up" , 1, 1, 'look __ at' , Err 
'sync_up', 2, 3, 'look_at', Err 
'ac_from', 1, 2, 'look __ at', Err 
At, 2, 'ac_at', Err ) 
From, 2, 'ac_from', Err ) 
Y_up, 2, 'add_up', Err ) 
'look_at', 1, 1, 'look', Err 
'fix_at', 'const', Err) 
'ac_from', 1, 1, 'fix_at', Err 
'fix_at', 1, 1, 'ac_at', Err ) 
Zero_vec, 2, 'fix_at', Err ) 
Zero_vec, 1, 'ac_from', Err ) 
'pie','"', Err) 

ITJ-35 



ITJ-36 

Dtheta = 10.0 * Deg_rad 
Theta = -Dtheta 
DO i = 1, 36 

Theta = Theta + Dtheta 
CALL Computewave (Theta, Vecs, PVecs) 
DO k=l, 50 

DO l=l, 4 
Front (1, k) = Vecs (1, (k-1)*2+1) 
PFront (k) = PVecs ((k-1) * 2 + 1) 

END DO 
END DO 
CALL Computename ( i, Name ) 
CALL Pbegs ( Name, Err ) 
CALL Pser ( '"' 1, 35, .FALSE.' i, 
CALL Pifpha """, . TRUE. , """, Err ) 

, ",, Err 

CALL Pvcbeg 
& 

,, It,. I 100' . FALSE. ' . FALSE. ' 3 ' 
PVsepa, Err ) 
100, Vecs, PVecs, Err ) 
Err ) 

& 

CALL Pvclis 
CALL Pvcend 
CALL Pvcbeg ,. II,.' 50' . FALSE. ' . FALSE. ' 3' 

PVconn, Err ) 
CALL Pvclis 
CALL Pvcend ( 
CALL Pends ( 

50, Front, PFront, Err ) 
Err ) 

Err ) 
CALL Pincl ( Name, "pie", Err ) 

END DO 
CALL Pdisp "eye", Err ) 

CALL PSnSt , X" I 1, "Dlabell', Err 
CALL PSnSt "Y"' 1, "Dlabel2', Err 
CALL PSnSt ,. Z' I 1, "Dlabel3", Err 
CALL PSnSt "Look At', 1, "Dlabel4", 
CALL PSnSt ,. X' I 1, "Dlabel5', Err ) 

CALL PSnSt "Y"' l, "Dlabel6", Err ) 

CALL PSnSt ,. Z' I 1, 'Dlabel7', Err ) 

CALL PSnSt "From", 1, 'Dlabel8', Err 
CALL Pdtach ( Err ) 

END 

SUBROUTINE Computename (Nameid, Name) 
INTEGER*4 Nameid 
CHARACTER Name*(*) 

INTEGER*4 j, L_name 

Name = "ListOOO"" 
L_name = Nameid 

Err ) 

Tools and Techniques 



Using the GSRs 

j = 7 
DO WHILE (L_name .GT. 0) 

Name (j:j) =CHAR (MOD (L_name, 10) +!CHAR (/0/)) 
L_name = L_name/10 
j = j - 1 

END DO 
RETURN 
END 
SUBROUTINE ComputeWave (Theta, VecList, PosLin) 
REAL*4 Theta, VecList (4, 100) 
LOGICAL*l PosLin (*) 

Amp, Alpha, Beta REAL*4 
PARAMETER 

& 

(Amp 0.8, Alpha -0.02, 
Beta 0.2513274123) 

INTEGER*4 i, IAddr 

Iaddr = -1 
DO i = 0, 49 

Iaddr = Iaddr + 2 
Veclist (1, Iaddr) i I 50.0 
Veclist (2, Iaddr) Amp * EXP (Alpha * i) 

& * cos (Theta - Beta * 
Veclist (3, Iaddr) 0 
Veclist (4, Iaddr) 1 - i/150.0 
PosLin ( Iaddr) .TRUE. 
Veclist (1, Iaddr+l) Veclist (1, Iaddr) 
Veclist (2, Iaddr+l) 0 
Veclist ( 3' Iaddr+l) 0.5 
Veclist (4, Iaddr+l) Veclist (4, Iaddr) 
PosLin ( Iaddr+l) .TRUE. 

END DO 
RETURN 
END 

CHARACTER*l FUNCTION Uppercase (Chara) 
CHARACTER Chara*(*) 
IF ( ( (Char a ( 1 : 1 ) ) . GE . / a/ ) . AND . 

& ((Chara (1:1)) .LE. /z/)) THEN 

i) 

Uppercase CHAR (!CHAR (Chara (1:1)) - 32) 
ELSE 

Uppercase 
END IF 
RETURN 
END 

Chara 

TFJ-37 



IT3-38 

c 
c 
c 
C The following Error Handler demonstrates the general 
C overall recommended form that the user/s own error 
C handler should follow. 
c 
C This error handler upon being invoked writes ALL 
C messages to the data file: /PROERROR.LOG/. Error 
C and warning explanation messages are written to 
C a data file for 2 reasons: 
c 
c 
C 1. The error handler should not immediately 
C write information out on the PS 390 screen 
C since the explanatory text defining the error 
C or warning condition may be taken as data by 
C the PS 390 and therefore wind up not being 
C displayed on the PS 390 screen (as in the 
C case of a catastrophic data transmission 
C error). 
c 
C 2. The logging of errors and warnings to a 
C logfile allows any errors and/or warnings 
C to be reviewed at a later time. 
c 
c 
c 

SUBROUTINE ERR (ERRCOD) 

c 
C Procedural Interface (GSR) error handler: 
c 

c 
c 

INCLUDE 
INTEGER*4 
INTEGER*4 
LOGICAL 
DATA 
EXTERNAL 

/PROCONST.FOR/NOLIST/ 
ERRCOD 
PsVMSerr 
FILOPN 
FILOPN /.FALSE./ 
PsVMSerr, DETERH, PIDCOD 

IF (FILOPN) GOTO 1 

Open error file for logging of errors: 

Tools and Techniques 



c 

& 

& 

OPEN (UNIT=lO, FILE='PROERROR.LOG', STATUS='NEW', 
DISP='KEEP', ORGANIZATION=' SEQUENTIAL', 
ACCESS='SEQUENTIAL', CARRIAGECONTROL='LIST') 

FILOPN = .TRUE. 
C END IF 

1 CALL PIDCOD (ERRCOD) 
IF (ERRCOD .LT. 512) GOTO 3 

WRITE (10, *) 'PS-I-ATDCOMLNK: Attempting to ' 
& II 'detach PS 3901Host communications ' 
& II 'link.' 

c 
C When we attempt to perform the Detach, use a 
C different error handler so as not to get caught 
C in a recursive loop if we consistently get an 
C error when attempting to detach. 
c 

c 
c 
c 

c 

c 
2 

CALL PDTACH (DETERH) 
CLOSE (UNIT=lO) 
IF ((ERRCOD .LT. PSFPAF) .OR. 

& (ERRCOD .GT. PSFPPF)) GOTO 2 

Identify VMS error if there was one 

CALL LIB$STOP (%VAL (PsVMSerr ())) 
GOTO 3 

ELSE 
STOP 

END IF 
C END IF 

c 

3 RETURN 
END 

SUBROUTINE DETERH (ERRCOD) 

C Main Error handler Detach error handler: 
c 

INTEGER*4 ERRCOD 
EXTERNAL PIDCOD 

WRITE (10, *) 'PS-I-ERRWARDET: 
& II 'trying to Detach 

Error/warning 
, 

& II 'the communications' 

, 

WRITE (10, *) 'link between the PS 390 and the host.' 

Using the GSRs TTJ--39 



c 

CALL PIDCOD (ERRCOD) 
RETURN 
END 

SUBROUTINE PIDCOD (ERRCOD) 

C PIDCOD: Identify Procedural Interface (GSR) Completion 
C code. 
c 

c 

c 

c 

1 

2 

'PROCONST.FOR/NOLIST' 
ERRCOD 
VMSDEF*133, PIDEF*133 
PsVMSerr 
MSSG1*55, MSSG2*67 

& 

INCLUDE 
INTEGER*4 
CHARACTER 
INTEGER*4 
CHARACTER 
PARAMETER (MSSGl = 'PS-W-UNRCOMCOD: Procedural ' 

II 'Interface ' 
& 

EXTERNAL 
II '(GSR) completion') 

PsVMSerr 

WRITE (10, *) 'PS-I-PROERRWAR: Procedural ' 
& // 'Interface warning/' 
& // 'error completion code was ' 

WRITE (10, *) 'received.' 
IF (ERRCOD .NE. PSWBNC) GOTO 1 

WRITE (10, *) 'PS-W-BADNAMCHR: Bad character 
& II 'in name was , 

& II 'translated to: II II , 

GOTO 1000 
ELSE 
IF (ERRCOD .NE. PSWNTL) GOTO 2 

WRITE (10, *) 'PS-W-NAMTOOLON: Name too , 

& II 'long. Name was , 

& II 'truncated to , 

WRITE (10, *) '256 characters.' 
GOTO 1000 

ELSE 
IF (ERRCOD .NE. PSWSTL) GOTO 7 

WRITE (10, *) 'PS-W-STRTOOLON: String too , 

& II 'long. String ' 
& II 'was truncated ' 

WRITE (10, *) 'to 240 characters.' 
GOTO 1000 

ELSE 

, 

7 IF (ERRCOD .NE. PSWAAD) GOTO 8 
WRITE (10, *) 'PS-W-ATTALRDON: Attach , 

IT3-40 Tools and Techniques 



& 

& 

II 'already done. ' 
II 'Multiple call to PAttch without' 

WRITE (10, *) 'intervening PDtach call ignored.' 
GOTO 1000 

C ELSE 
8 IF (ERRCOD .NE. PSWAKS) GOTO 9 

WRITE (10, *) 'PS-W-ATNKEYSEE: Attention key ' 
& II 'seen (depressed).' 

CALL PIBMSP 
GOTO 1000 

C ELSE 
9 IF (ERRCOD .NE. PSWBGC) GOTO 10 

WRITE (10, *) 'PS-W-BADGENCHR: Bad generic 
& II 'channel character. Bad ' 

WRITE (10, *) 'character in string sent via: 
& II 'PPutGX was translated to ' 

WRITE (10, *) 'a blank.' 
CALL PIBMSP 
GOTO 1000 

C ELSE 
10 IF (ERRCOD .NE. PSWBSC) GOTO 11 

WRITE (10, *) 'PS-W-BADSTRCHR: Bad ' 
& II 'character in string was ' 
& II 'translated to a blank.' 

CALL PIBMSP 
GOTO 1000 

C ELSE 
11 IF (ERRCOD .NE. PSWBPC) GOTO 12 

WRITE (10, *) 'PS-W-BADPARCHR: Bad parser , 
& II 'channel character. Bad ' 
& II 'character in string sent to' 

WRITE (10, *) 'PS 390 parser via: PPutP 
& II 'was translated to a blank.' 

CALL PIBMSP 
GOTO 1000 

C ELSE 
12 IF (ERRCOD .NE. PSEIMC) GOTO 13 

WRITE (10, *) 'PS-E-INVMUXCHA: Invalid ' 
& II 'multiplexing channel ' 
& II 'specified in call to:' 

WRITE (10, *) 'PMuxCI, PMuxP, or PMuxG.' 
GOTO 1000 

C ELSE 
13 IF (ERRCOD .NE. PSEIVC) GOTO 14 

WRITE (10, *) 'PS-E-INVVECCLA: Invalid ' 
& II 'vector list class ' 
& II 'specified' 

WRITE (10, *) 'in call to: PVcBeg.' 

Using the GSRs TT3-41 



GOTO 1000 
c ELSE 

14 IF (ERRCOD .NE. PSEIVD) GOTO 15 
WRITE (10, *) 'PS-E-INVVECDIM: Invalid 

, 

& II 'vector list dimension 
, 

& II 'specified in call to' 
WRITE (10, *) , PVcBeg., 

GOTO 1000 
c ELSE 

15 IF (ERRCOD .NE. PSEPOE) GOTO 16 
WRITE (10, *) 'PS-E-PREOPEEXP: Pref ix , 

& II 'operator call was 
, 

& II "expected.' 
GOTO 1000 

c ELSE 
16 IF (ERRCOD .NE. PSEFOE) GOTO 17 

WRITE (10, *) 'PS-E-FOLOPEEXP: Follow ' 
& II 'operator call was 

, 

& II 'expected.' 
GOTO 1000 

c ELSE 
17 IF (ERRCOD .NE. PSELBE) GOTO 18 

WRITE (10, *) 'PS-E-LABBLKEXP: Call to 
, 

& II 'PLaAdd or PLaEnd was 
, 

& II 'expected. ' 
GOTO 1000 

c ELSE 
18 IF (ERRCOD .NE. PSEVLE) GOTO 19 

WRITE (10, *) 'PS-E-VECLISEXP: Call to , 

& II 'PVcLis or PVcEnd , 

& II 'was expected.' 
GOTO 1000 

c ELSE 
19 IF (ERRCOD .NE. PSEAMV) GOTO 20 

WRITE (10, *) 'PS-E-ATTMULVEC: Attempted ' 
& II 'multiple call , 

& II 'sequence to PVcLis is NOT' 
WRITE (10, *) 'permitted for BLOCK ' 

& II 'normalized vectors.' 
GOTO 1000 

c ELSE 
20 IF (ERRCOD .NE. PSEMLB) GOTO 21 

WRITE (10, *) 'PS-E-MISLABBEG: Missing ' 
& II 'label block begin call. , 

& II 'Call to PLaAdd or PLaEnd' 
WRITE (10, *) 'without call to: PLaBeg., 

GOTO 1000 
c ELSE 

1T3-42 Tools and Techniques 



21 IF (ERRCOD .NE. PSEMVB) GOTO 22 
WRITE (10, *) 'PS-E-MISVECBEG: Missing , 

& II 'vector list begin ' 
& II 'call. Call to PVcLis' 

WRITE (10, *) 'or PVcEnd without call ' 
& II 'to: PVcBeg.' 

GOTO 1000 
C ELSE 

22 IF (ERRCOD .NE. PSENUN) GOTO 23 
WRITE (10, *) 'PS-E-NULNAM: Null name ' 

& II 'parameter is not allowed.' 
GOTO 1000 

C ELSE 
23 IF (ERRCOD .NE. PSEBCT) GOTO 24 

WRITE (10, *) 'PS-E-BADCOMTYP: Bad ' 
& II 'comparison type operator ' 
& II 'specified in ' 

WRITE (10, *) 'call to: PifLev.' 
GOTO 1000 

C ELSE 
24 IF (ERRCOD .NE. PSEIFN) GOTO 25 

WRITE (10, *) 'PS-E-INVFUNNAM: Invalid ' 
& II 'function name. ' 
& II 'Attempted PS 390' 

WRITE (10, *) 'function instance failed ' 
& II 'because the named ' 
& II 'function cannot possibly' 

WRITE (10, *) 'exist. The function name ' 
& II 'identifying the ' 
& II 'function type to instance' 

WRITE (10, *) 'was longer than 256 characters.' 
GOTO 1000 

C ELSE 
25 IF (ERRCOD .NE. PSENNR) GOTO 26 

WRITE (10, *) 'PS-E-NULNAMREQ: Null name ' 
& II 'parameter is ' 
& II 'required in operate node' 

WRITE (10, *) 'call following a PPref or 
& II 'PFoll procedure call.' 

GOTO 1000 
C ELSE 

26 IF (ERRCOD .NE. PSETME) GOTO 27 
WRITE (10, *) 'PS-E-TOOMANEND: Too , 

& II 'many END_STRUCTURE calls ' 
& II 'invoked.' 

GOTO 1000 
C ELSE 

27 IF (ERRCOD .NE. PSENOA) GOTO 28 

Using the GSRs TT3-43 



1T3-44 

WRITE (10, *) 'PS-E-NOTATT: The PS 390 ' 
& II 'communications link ' 
& II 'has not ' 

WRITE (10, *) 'yet been established. ' 
& II 'PAttch has not been ' 
& II 'called or failed.' 

GOTO 1000 
C ELSE 

28 IF (ERRCOD .NE. PSEODR) GOTO 38 
WRITE (10, *) 'PS-E-OVEDURREA: An ' 

& II 'overrun occurred during ' 
& II 'a read operation.' 

WRITE (10, *) 'The specified input buffer ' 
& II 'in call to: PGET 
& II 'or: PGETW' 

WRITE (10, *) 'was too small and ' 
& II 'truncation has occurred.' 

GOTO 1000 
C ELSE 

38 IF (ERRCOD .NE. PSEPDT) GOTO 39 
WRITE (10, *) 'PS-E-PHYDEVTYP: Missing , 

& II 'or invalid physical ' 
& II 'device type' 

WRITE (10, *) 'specifier in call to PAttch.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
39 IF (ERRCOD .NE. PSELDN) GOTO 40 

WRITE (10, *) 'PS-E-LOGDEVNAM: Missing , 
& II 'or invalid logical ' 
& II 'device name' 

WRITE (10, *) 'specifier in call to PAttch.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
40 IF (ERRCOD .NE. PSEADE) GOTO 41 

WRITE (10, *) 'PS-E-ATTDELEXP: Attach , 
& II 'parameter string ' 
& II 'delimiter' 

WRITE (10, *) '"I" was expected.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
41 IF (ERRCOD .NE. PSFPAF) GOTO 42 

WRITE (10, *) 'PS-F-PHYATTFAI: 
& II 'Physical attach operation ' 
& II 'failed.' 

GOTO 1000 

Tools and Techniques 



C ELSE 
42 IF (ERRCOD .NE. PSFPDF) GOTO 43 

WRITE (10, *) /PS-F-PHYDETFAI: Physical / 
& II /detach operation / 
& II /failed./ 

GOTO 1000 
C ELSE 

43 IF (ERRCOD .NE. PSFPGF) GOTO 44 
WRITE (10, *) /PS-F-PHYGETFAI: Physical / 

& II /GET operation failed./ 
GOTO 1000 

C ELSE 
44 IF (ERRCOD .NE. PSFPPF) GOTO 45 

WRITE (10, *) /PS-F-PHYPUTFAI: Physical / 
& II /PUT operation failed./ 

GOTO 1000 
C ELSE 

45 IF (ERRCOD .NE. PSFBTL) GOTO 46 
WRITE (10, *) /PS-F-BUFTOOLAR: Buffer / 

& II /too large error in / 
& II /call to: PSPUT./ 

WRITE (10, *) /This error should NEVER / 
& II /occur and indicates a / 
& II /Procedural Interface (GSR)/ 

WRITE (10, *) /internal validity check./ 
CALL PVAXSP 
GOTO 1000 

C ELSE 
46 IF (ERRCOD .NE. PSFWNA) GOTO 47 

WRITE (10, *) /PS-F-WRONUMARG: Wrong / 
& II /number of arguments / 
& II /in call to Procedural/ 

WRITE (10, *) /Interface (GSR) low-level / 
& II /IIO procedure / 
& II /(source file: PROIOLIB.MAR) ./ 

WRITE (10, *) /This error should NEVER / 
& II /occur and indicates a / 
& II /Procedural Interface (GSR)/ 

WRITE (10, *) /internal validity check./ 
CALL PVAXSP 
GOTO 1000 

C ELSE 
47 IF (ERRCOD .NE. PSFPTL) GOTO 48 

WRITE (10, *) /PS-F-PROTOOLAR: Prompt / 
& II /buffer too large / 
& II /error in call to: PSPRCV./ 

WRITE (10, *) /This error should NEVER / 
& II /occur and indicates a / 

Using the GSRs TTJ-45 



1T3-46 

& // 'Procedural Interface (GSR)' 
WRITE (10, *) 'internal validity check.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
c 
C Unknown error message error message. 
c 

48 

c 
49 

c 
50 

c 
c 

51 

IF (ERRCOD .GE. 512) GOTO 49 
MSSG2 = MSSGl I I 'warning' 
GOTO 51 

ELSE 
IF (ERRCOD .GE. 1024) GOTO 50 

MSSG2 = 
GOTO 51 

ELSE 
MSSG2 

END IF 
END IF 
WRITE (10, 
WRITE (10, 
WRITE (10, 

& 

& 

MSSGl II 'error ' 

MSSGl // 'fatal error ' 

*) MSSG2 
*) 'code is unrecognized.' 
*) 'Probable Procedural ' 
II 'Interface (GSR) Internal ' 
// 'validity check error.' 

C END IF 
1000 IF ((ERRCOD .LT. PSFPAF) .OR. 

& (ERRCOD .GT. PSFPPF)) GOTO 2000 
CALL PSFVMSERR ( VMSdef, Pidef ) 
WRITE (10, *) 'DEC VAX/VMS Error , 

& II 'definition is:' 
WRITE (10, *) VMSdef 
WRITE (10, *) 'Procedural Interface ' 

& II '(GSR) Interpretation of' 
& //'DEC VAX/VMS completion code:' 

WRITE (10, *) Pidef 
WRITE (10, *) 'DEC VAX/VMS Error code , 

& II 'value was: ', PsVMSerr () 
C END IF 

c 

2000 WRITE (10, *) 
RETURN 
END 

SUBROUTINE PIBMSP 

C PIBMSP: Write the "IBM version specific" 
C message to the Error handler file. 

Tools and Techniques 



c 

WRITE (10, *) 'This error/warning is 
& II 'applicable ONLY to the IBM ' 
& II 'version of the' 

WRITE (10, *) '~rocedural Interface (GSR) .' 
RETURN 
END 

SUBROUTINE PVAXSP 

c 
c PVAXSP: Write the "DEC VAX/VMS Version 
C specific" message to the Error 
C handler file. 
c 

Using the GSRs 

WRITE (10, *) 'This error/warning is 
& // 'applicable ONLY to the DEC ' 
& // 'VAX/VMS version of' 

WRITE (10, *) 'the Procedural Interface (GSR) .' 
RETURN 
END 

ITJ-47 



Appendix B - VS FORTRAN Example Program 

This appendix contains a network creation example program that illustrates the use 
of the PS 390/IBM VS FORTRAN Graphics Support Routines. The program con­
tains an error handler routine example. 

TT3-48 

PROGRAM BLKLEVF 

INCLUDE (PROCONSF) 

c 
C MAIN PROGRAM: 
c 

REAL*4 DEGRAD 
PARAMETER (DEGRAD = 0.017453292) 

REAL*4 
& 

THETA, DTHETA, FRONT (4, 100), 
VECS (4, 100), ZERVEC (3), 

& YUP (3), AT (3), FROM (3), UP (3) 
INTEGER*4 I, K, L, TIMES 
CHARACTER NAME*63 
LOGICAL*l PFRONT (100), PVECS (100) 

EXTERNAL ERR 

CALL PATTCH ('"', ERR) 
AT (1) 0.3 
AT (2) = 0 
AT (3) = 0 
FROM (1) = 0 
FROM (2) = 0 
FROM (3) -1 
UP (1) 0. 3 

UP (2) = 1 
UP (3) = 0 
YUP (1) 0 
YUP (2) = 1 
YUP (3) = 0 
ZERVEC (1) = 0 
ZERVEC (2) 0 
ZERVEC (3) 0 
CALL PINIT ( ERR 
CALL PEYEBK ( 'EYE', 1.0, 0.0, 0.0, 2.0, 0.0, 

& 1000.0, 'INTEN', ERR ) 

Tools and Techniques 



Using the GSRs 

CALL PSEINT 
& 

CALL PLOOKA 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFN 
CALL PFNN 
CALL PFN 
CALL PCONN 
CALL PCONN 
CALL PSNBOO 
CALL PFN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PCONN 
CALL PSNV3D 
CALL PSNV3D 
CALL PSNV3D 
CALL PCONN 
CALL PFN 
CALL PCONN 
CALL PCONN 
CALL PSNV3D 
CALL PSNV3D 
CALL PINST 

" I NTEN" , . TRUE . , 0 . 5 , l . 0 , 
"LOOK", ERR ) 
"LOOK", AT, FROM, UP, "PIC", ERR ) 
"ATX", "XVEC", ERR ) 
"ATY", "YVEC", ERR ) 
"ATZ", "ZVEC", ERR ) 
"FROMX", "XVEC", ERR 
"FROMY", "YVEC", ERR 
"FROMZ", "ZVEC", ERR 
"AC_AT", "ACCUMULATE", ERR ) 
"AC_FROM", "ACCUMULATE", ERR 
"ADD_UP", "ADDC", ERR ) 
"SYNC_UP" , "SYNC", 3, ERR ) 
"FIX_SYNC", "NOP", ERR ) 
"SYNC_UP", 3, 1, "FIX_SYNC", ERR 
"FIX_SYNC", 1, 3, "SYNC_UP", ERR 
.TRUE., 3, "SYNC_UP", ERR ) 
"LOOK_AT", "LOOKAT", ERR ) 
"DIALS", 1, 1, "ATX", ERR ) 
"DIALS", 2, 1, "ATY", ERR ) 
"DIALS", 3, 1, "ATZ", ERR ) 
"DIALS", 5, 1, "FROMX", ERR 
"DIALS", 6, 1, "FROMY", ERR 
"DIALS", 7, 1, "FROMZ", ERR 
"ATX", 1, 1, "AC_AT", ERR ) 
"ATY", 1, 1, "AC_AT", ERR ) 
"ATZ", 1, 1, "AC_AT", ERR 
"FROMX", 1, 1, "AC_FROM", ERR 
"FROMY", 1, 1, "AC_FROM", ERR 
"FROMZ", 1, 1, "AC_FROM", ERR 
"AC_AT", 1, 1, "SYNC_UP", ERR 
"AC_AT", 1, 1, "ADD_UP", ERR 
"ADD_UP" ,1, 2, "SYNC_UP", ERR 
"SYNC_UP", 1, 1, "LOOK_AT", ERR 
"SYNC_UP", 2, 3, "LOOK_AT", ERR 
"AC_FROM", 1, 2, "LOOK_AT", ERR 
AT, 2, "AC_AT", ERR ) 
FROM, 2, "AC_FROM", ERR ) 
YUP, 2, "ADD_UP", ERR ) 
"LOOK_AT", 1, 1, "LOOK", ERR 
"FIX_AT", "CONST", ERR ) 
"AC_FROM", 1, 1, "FIX_AT", ERR 
"FIX_AT", 1, 1, "AC_AT", ERR ) 
ZERVEC, 2, "FIX_AT", ERR ) 
ZERVEC, 1, "AC_FROM", ERR ) 
,, PIC" ',,II,,' ERR ) 

DTHETA = 10.0 * DEGRAD 

TT3-49 



TT3-50 

THETA = -DTHETA 
DO I = 1, 36 

& 

THETA = THETA + DTHETA 
CALL COWNVAV (THETA, VECS, PVECS) 
DO K=l, 50 

DO L=l, 4 
FRONT (L, K) = VECS (L, (K-1)*2+1) 
PFRONT (K) = PVECS ((K-1) * 2 + 1) 

END DO 
END DO 
CALL COMNAM 
CALL PBEGS 
CALL PSER 
CALL PIFPHA 
CALL PVC BEG 

CALL PVCLIS 
CALL PVC END 
CALL PVC BEG 

I I NAME ) 
NAME, ERR 
,, ", 1 I 3 5 I • FALSE . I I ' ,, II ,, ' ERR 
,, II ,, ' • TRUE . ' ,, " ,, , ERR ) 

,, II,,' 100' . FALSE., . FALSE.' 3' 
PVSEPA, ERR ) 
100, VECS, PVECS, ERR ) 
ERR ) 

& 

""", 50, .FALSE., .FALSE., 3, 
PVCONN, ERR ) 

CALL PVCLIS 50, FRONT, PFRONT, ERR ) 
CALL PVCEND ( ERR ) 
CALL PENDS ( ERR ) 
CALL PINCL ( NAME, "PIC", BRR ) 

END DO 
CALL PDISP 
CALL PSNST 
CALL PSNST 
CALL PSNST 
CALL PSNST 
CALL PSNST 
CALL PSNST 
CALL PSNST 

"EYE" I ERR ) 
"X", 1, "DLABELl" I ERR 
"Y"' 1, "DLABEL2" I ERR 
"Z", 1, "DLABEL3", ERR 
"LOOK AT", 1, "DLABEL4", ERR ) 
"X", 1, "DLABEL5", ERR ) 
"Y", 1, "DLABEL6", ERR ) 
"Z" I 1, "DLABEL7" I ERR ) 

CALL PSNST 'FROM", 1, "DLABEL8", ERR 
CALL PDTACH ( ERR ) 
END 

SUBROUTINE COMNAM (MANEID, NAME) 

INTEGER*4 NAMEID 
CHARACTER NAME*(*) 

INTEGER*4 J, LNAME 

NAME = "LISTOOO"" 

Tools and Techniques 



LNAME = NAMEID 
J = 7 
DO WHILE (LNAME .GT. 0) 

NAME (J:J) =CHAR (MOD (LNAME, 10) + ICHAR (/0/)) 
LNAME LNAME/10 
J = J - 1 

END DO 
RETURN 
END 

SUBROUTINE COwrNAV (THETA, VECLIS, POSLIN) 

REAL*4 THETA, VECLIS (4, 100) 
LOGICAL*l POSLIN (*) 

AMP, ALPHA, BETA REAL*4 
PARAMETER 

& 

(AMP 0.8, ALPHA -0.02, 
BETA 0.2513274123) 

INTEGER*4 I, IADDR 

IADDR = -1 
DO I = 0, 49 

I I 50.0 

& 

IADDR = IADDR + 2 
VECLIS (1, IADDR) 
VECLIS (2, IADDR) 

VECLIS (3, IADDR) 
VECLIS (4, IADDR) 

AMP * EXP (ALPHA * I) 
* COS (THETA - BETA * I) 

0 

PO SL IN 

VECLIS 
VECLIS 
VECLIS 
VECLIS 
PO SL IN 

END DO 
RETURN 
END 

(1, 
(2, 
(3, 
(4, 
( 

IADDR) 
IADDR+l) 
IADDR+l) 
IADDR+l) 
IADDR+l) 
IADDR+l) 

1 - I/150.0 
.TRUE. 

VECLIS (1, IADDR) 
0 
0.5 
VECLIS (4, IADDR) 
.TRUE. 

C THE FOLLOWING ERROR HANDLER DEMONSTRATES THE 
C GENERAL OVERALL RECOMMENDED FORM THAT THE USER/S 
C OWN ERROR HANDLER SHOULD FOLLOW. 
c 
C THIS ERROR HANDLER UPON BEING INVOKED WRITES ALL 

Using the GSRs TTJ-51 



TI'3-52 

C MESSAGES TO THE DATA FILE ASSOCIATED WITH THE 
C FORTRAN LOGICAL UNIT NUMBER OF 10. ERROR AND 
C WARNING EXPLANATION MESSAGES ARE WRITTEN TO 
C A DATA FILE FOR 2 REASONS: 
c 
c 
C 1. THE ERROR HANDLER SHOULD NOT IMMEDIATELY 
C WRITE INFORMATION OUT ON THE PS 390 
C SCREEN SINCE THE EXPLANATORY TEXT 
C DEFINING THE ERROR OR WARNING CONDITION 
C MAY BE TAKEN AS DATA BY THE PS 390 AND 
C THEREFORE WIND UP NOT BEING DISPLAYED ON 
C THE PS 390 SCREEN (AS IN THE CASE OF A 
C CATASTROPHIC DATA TRANSMISSION ERROR). 
c 
C 2. THE LOGGING OF ERRORS AND WARNINGS TO A 
C LOGFILE ALLOWS ANY ERRORS AND/OR WARNINGS 
C TO BE REVIEWED AT A LATER TIME. 
c 
c 
c 

SUBROUTINE ERR (ERRCOD) 
c 
C PROCEDURAL INTERFACE ERROR HANDLER: 
c 

INCLUDE (PROCONSF) 
INTEGER*4 ERRCOD 

1 CALL PIDCOD (ERRCOD) 
IF (ERRCOD .LT. 512) GOTO 3 

WRITE (10, *) 'PS-I-ATDCOMLNK: ATTEMPTING ' 
& II 'TO DETACH PS ' 
& // '300/HOST COMMUNICATIONS LINK.' 

c 
C WHEN ATTEMPTING TO PERFORM THE DETACH, USE 
C A DIFFERENT ERROR HANDLER TO AVOID RECURSIVE 
C SUBROUTINE CALLS 
c 

c 
c 
c 

CALL PDTACH (DETERH) 
CLOSE (UNIT=lO) 

INVOKE TRACEBACK 

Tools and Techniques 



CALL ERRTRA 
STOP 

C END IF 

c 

3 RETURN 
END 

SUBROUTINE DETERH (ERRCOD) 

C MAIN ERROR HANDLER DETACH ERROR HANDLER: 
c 

c 

INTEGER*4 ERRCOD 

WRITE (10, *) 'PS-I-ERRWARDET: ERROR/WARNING ' 
& // 'TRYING TO DETACH ' 
& // 'THE COMMUNICATIONS' 

WRITE (10, *) 'LINK BETWEEN THE PS 300 AND ' 
& II 'THE HOST.' 

CALL PIDCOD (ERRCOD) 
RETURN 
END 

SUBROUTINE PIDCOD (ERRCOD) 

C PIDCOD: IDENTIFY PROCEDURAL INTERFACE 
C COMPLETION CODE. 
c 

INCLUDE (PROCONSF) 
INTEGER*4 ERRCOD 
CHARACTER MSSG1*55, MSSG2*67 
PARAMETER (MSSGl = 'PS-W-UNRCOMCOD: PROCEDURAL ' 

& // 'INTERFACE (GSR) COMPLETION ') 
WRITE (10, *) 'PS-I-PROERRWAR: PROCEDURAL ' 

& // 'INTERFACE WARNING/' 
& // 'ERROR COMPLETION CODE WAS ' 

WRITE (10, *) 'RECEIVED.' 
IF (ERRCOD .NE. PSWBNC) GOTO 1 

WRITE (10, *) 'PS-W-BADNAMCHR: BAD CHARACTER ' 
& II 'IN NAME WAS ' 
& II 'TRANSLATED TO: " " , 

GOTO 1000 
C ELSE 

Using the GSRs 7T3-53 



TTJ-54 

1 IF (ERRCOD .NE. PSWNTL) GOTO 2 
WRITE (10, *) "PS-W-NAMTOOLON: NAME TOO " 

& II "LONG. NAME WAS " 
& II "TRUNCATED TO " 

WRITE (10, *) "256 CHARACTERS." 
GOTO 1000 

C ELSE 
2 IF (ERRCOD .NE. PSWSTL) GOTO 7 

WRITE (10, *) "PS-W-STRTOOLON: STRING TOO " 
& II "LONG. STRING " 
& II "WAS TRUNCATED " 

WRITE (10, *) "TO 240 CHARACTERS." 
GOTO 1000 

C ELSE 
7 IF (ERRCOD .NE. PSWAAD) GOTO 8 

WRITE (10, *) "PS-W-ATTALRDON: ATTACH " 
& II "ALREADY DONE. " 
& II "MULTIPLE CALL TO PATTCH WITHOUT" 

WRITE (10, *) "INTERVENING PDTACH CALL IGNORED." 
GOTO 1000 

C ELSE 
8 IF (ERRCOD .NE. PSWAKS) GOTO 9 

WRITE (10, *) 'PS-W-ATNKEYSEE: ATTENTION KEY " 
& II "SEEN (DEPRESSED)." 

CALL PIBMSP 
GOTO 1000 

C ELSE 
9 IF (ERRCOD .NE. PSWBGC) GOTO 10 

WRITE (10, *) "PS-W-BADGENCHR: BAD GENERIC " 
& II "CHANNEL CHARACTER. BAD " 

WRITE (10, *) "CHARACTER IN STRING SENT VIA: 
& II "PPUTGX WAS TRANSLATED TO " 

WRITE (10, *) "A BLANK." 
CALL PIBMSP 
GOTO 1000 

C ELSE 
10 IF (ERRCOD .NE. PSWBSC) GOTO 11 

WRITE (10, *) 'PS-W-BADSTRCHR: BAD " 
& II 'CHARACTER IN STRING WAS " 
& II 'TRANSLATED TO A BLANK." 

CALL PIBMSP 
GOTO 1000 

C ELSE 
11 IF (ERRCOD .NE. PSWBPC) GOTO 12 

WRITE (10, *) 'PS-W-BADPARCHR: BAD PARSER " 
& II 'CHANNEL CHARACTER. BAD ' 
& II 'CHARACTER IN STRING SENT TO' 

Tools and Techniques 



WRITE (10, *) 'PS 300 PARSER VIA: PPUTP 

& II 'WAS TRANSLATED TO A BLANK.' 

CALL PIBMSP 

GOTO 1000 
c ELSE 

12 IF (ERRCOD .NE. PSEIMC) GOTO 13 
WRITE (10, *) 'PS-E-INVMUXCHA: INVALID ' 

& II 'MULTIPLEXING CHANNEL ' 
& II 'SPECIFIED IN CALL TO:' 

WRITE (10, *) 'PMUXCI, PMUXP, OR PMUXG.' 
GOTO 1000 

c l'~LSE 

13 IF (ERRCOD .NE. PSEIVC) GOTO 14 
WRITE (10, *) 'PS-E-INVVECCLA: INVALID ' 

& II 'VECTOR LIST CLASS ' 
& II 'SPECIFIED' 

WRITE (10, *) 'IN CALL TO: PVCBEG.' 
GOTO 1000 

c ELSE 
14 IF (ERRCOD .NE. PSEIVD) GOTO 15 

WRITE (10, *) 'PS-E-INVVECDIM: INVALID ' 
& II 'VECTOR LIST DIMENSION ' 
& II 'SPECIFIED IN CALL TO' 

WRITE (10, *) 'PVCBEG.' 
GOTO 1000 

c ELSE 
15 IF (ERRCOD .NE. PSEPOE) GOTO 16 

WRITE (10, *) 'PS-E-PREOPEEXP: PREFIX ' 
& II 'OPERATOR CALL WAS ' 
& II ' EXPECTED . ' 

GOTO 1000 
c ELSE 

16 IF (ERRCOD .NE. PSEFOE) GOTO 17 
WRITE (10, *) 'PS-E-FOLOPEEXP: FOLLOW ' 

& II 'OPERATOR CALL WAS ' 

& II ' EXPECTED . ' 
GOTO 1000 

c E:LSE 
17 IF (ERRCOD .NE. PSELBE) GOTO 18 

WRITE (10, *) 'PS-E-LABBLKEXP: CALL TO ' 
& II 'PLAADD OR PLAEND WAS ' 
& II ' EXPECTED . ' 

GOTO 1000 
c ELSE 

18 IF (ERRCOD .NE. PSEVLE) GOTO 19 
WRITE (10, *) 'PS-E-VECLISEXP: CALL TO ' 

& II 'PVCLIS OR PVCEND ' 

Using the GSRs TI'J-55 



& I I 'WAS EXPECTED. " 
GOTO 1000 

c ELSE 
19 IF (ERRCOD .NE. PSEAMV) GOTO 20 

WRITE (10, *) "PS-E-ATTMULVEC: ATTEMPTED " 

& II "MULTIPLE CALL " 
& II "SEQUENCE TO PVCLIS IS NOT" 

WRITE (10, *) "PERMITTED FOR BLOCK " 
& II "NORMALIZED VECTORS." 

GOTO 1000 
c ELSE 

20 IF (ERRCOD .NE. PSEMLB) GOTO 21 
WRITE (10, *) "PS-E-MISLABBEG: MISSING " 

& II 'LABEL BLOCK BEGIN CALL. , 

& II 'CALL TO PLAADD OR PLAEND" 
WRITE (10, *) 'WITHOUT CALL TO: PLABEG.' 
GOTO 1000 

c ELSE 
21 IF (ERRCOD .NE. PSEMVB) GOTO 22 

WRITE (10, *) "PS-E-MISVECBEG: MISSING " 
& II 'VECTOR LIST BEGIN " 
& II 'CALL. CALL TO PVCLIS' 

WRITE (10, *) 'OR PVCEND WITHOUT CALL " 
& II 'TO: PVCBEG." 

GOTO 1000 
c ELSE 

22 IF (ERRCOD .NE. PSENUN) GOTO 23 
WRITE (10, *) 'PS-E-NULNAM: NULL NAME " 

& II 'PARAMETER IS NOT ALLOWED.' 
GOTO 1000 

c ELSE 
23 IF (ERRCOD .NE. PSEBCT) GOTO 24 

WRITE (10, *) 'PS-E-BADCOMTYP: BAD ' 

& II 'COMPARISON TYPE OPERATOR " 
& II 'SPECIFIED IN , 

WRITE (10, *) 'CALL TO: PIFLEV." 
GOTO 1000 

c ELSE 
24 IF (ERRCOD .NE. PSEIFN) GOTO 25 

WRITE (10, *) 'PS-E-INVFUNNAM: INVALID ' 
& II 'FUNCTION NAME. , 

& II 'ATTEMPTED PS 300' 
WRITE (10, *) 'FUNCTION INSTANCE FAILED ' 

& II 'BECAUSE THE NAMED ' 
& II 'FUNCTION CANNOT POSSIBLY' 

WRITE (10, *) 'EXIST. THE FUNCTION NAME ' 
& II 'IDENTIFYING THE ' 

IT3-56 Tools and Techniques 



& II /FUNCTION TYPE TO INSTANCE/ 

WRITE (10, *) /WAS LONGER THAN 256 CHARACTERS./ 

GOTO 1000 
c ELSE 

25 IF (ERRCOD .NE. PSENNR) GOTO 26 
WRITE (10, *) /PS-E-NULNAMREQ: NULL NAME / 

& II /PARAMETER IS / 

& II /REQUIRED IN OPERATE NODE/ 

WRITE (10, *) /CALL FOLLOWING A PPREF OR / 

& II /PFOLL PROCEDURE CALL./ 

GOTO 1000 
c ELSE 

26 IF (ERRCOD .NE. PSETME) GOTO 27 
WRITE (10, *) /PS-E-TOOMANEND: TOO / 

& II /MANY END_STRUCTURE CALLS / 

& II /INVOKED./ 

GOTO 1000 
c ELSE 

27 IF (ERRCOD .NE. PSENOA) GOTO 28 
WRITE (10, *) /PS-E-NOTATT: THE PS 300 / 

& II /COMMUNICATIONS LINK / 

& II /HAS NOT / 

WRITE (10, *) /YET BEEN ESTABLISHED. / 

& II /PATTCH HAS NOT BEEN / 

& II /CALLED OR FAILED./ 

GOTO 1000 
c ELSE 

28 IF (ERRCOD .NE. PSEODR) GOTO 38 
WRITE (10, *) /PS-E-OVEDURREA: AN / 

& II /OVERRUN OCCURRED DURING / 

& II /A READ OPERATION./ 

WRITE (10, *) /THE SPECIFIED INPUT BUFFER / 

& II /IN CALL TO: PGET 
& II /OR: PGETW/ 

WRITE (10, *) /WAS TOO SMALL AND / 

& II /TRUNCATION HAS OCCURRED./ 
GOTO 1000 

c ELSE 
38 IF (ERRCOD .NE. PSEPDT) GOTO 39 

WRITE (10, *) /PS-E-PHYDEVTYP: MISSING / 

& II /OR INVALID PHYSICAL / 

& II /DEVICE TYPE/ 

WRITE (10, *) /SPECIFIER IN CALL TO PATTCH./ 
CALL PVAXSP 
GOTO 1000 

c ELSE 
39 IF (ERRCOD .NE. PSELDN) GOTO 40 

Using the GSRs TTJ-57 



WRITE (10, *) 'PS-E-LOGDEVNAM: MISSING ' 
& II 'OR INV AL ID LOGICAL ' 
& II 'DEVICE NAME' 

WRITE (10, *) 'SPECIFIER IN CALL TO PATTCH.' 
CALL PVAXSP 
GOTO 1000 

c ELSE 
40 IF (ERRCOD .NE. PSEADE) GOTO 41 

WRITE (10, *) 'PS-E-ATTDELEXP: ATTACH ' 
& II 'PARAMETER STRING ' 
& II 'DELIMITER' 

WRITE (10, *) '"I" WAS EXPECTED.' 
CALL PVAXSP 
GOTO 1000 

c ELSE 
41 IF (ERRCOD .NE. PSFPAF) GOTO 42 

WRITE (10, *) 'PS-F-PHYATTFAI: 
& II 'PHYSICAL ATTACH OPERATION ' 
& II 'FAILED.' 

GOTO 1000 
c ELSE 

42 IF (ERRCOD .NE. PSFPDF) GOTO 43 
WRITE (10, *) 'PS-F-PHYDETFAI: PHYSICAL ' 

& II 'DETACH OPERATION ' 
& II 'FAILED.' 

GOTO 1000 
c ELSE 

43 IF (ERRCOD .NE. PSFPGF) GOTO 44 
WRITE (10, *) 'PS-F-PHYGETFAI: PHYSICAL ' 

& II 'GET OPERATION FAILED.' 
GOTO 1000 

c ELSE 
44 IF (ERRCOD .NE. PSFPPF) GOTO 45 

WRITE (10, *) 'PS-F-PHYPUTFAI: PHYSICAL ' 
& II 'PUT OPERATION FAILED.' 

GOTO 1000 
c ELSE 

45 IF (ERRCOD .NE. PSFBTL) GOTO 46 
WRITE (10, *) 'PS-F-BUFTOOLAR: BUFFER ' 

& II 'TOO LARGE ERROR IN ,, 

& II 'CALL TO: PSPUT.' 
WRITE (10, *) 'THIS ERROR SHOULD NEVER ' 

& II 'OCCUR AND INDICATES A ' 
& II 'PROCEDURAL INTERFACE (GSR)' 

WRITE (10, *) 'INTERNAL VALIDITY CHECK.' 
CALL PVAXSP 
GOTO 1000 

TI3-58 Tools and Techniques 



C ELSE 
46 IF (ERRCOD .NE. PSFWNA) GOTO 47 

WRITE (10, *) 'PS-F-WRONUMARG: WRONG ' 
& II 'NUMBER OF ARGUMENTS ' 
& II 'IN CALL TO PROCEDURAL' 

WRITE (10, *) .. :INTERFACE (GSR) LOW-LEVEL' 
& II 'IIO PROCEDURE ' 
& II '(SOURCE FILE: PROIOLIB.MAR) .' 

WRITE (10, *) 'THIS ERROR SHOULD NEVER ' 
& II 'OCCUR AND INDICATES A ' 
& II 'PROCEDURAL INTERFACE (GSR)' 

WRITE (10, *) 'INTERNAL VALIDITY CHECK.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
47 IF (ERRCOD .NE. PSFPTL) GOTO 48 

WRITE (10, *) 'PS-F-PROTOOLAR: PROMPT ' 
& II 'BUFFER TOO LARGE ' 
& II 'ERROR IN CALL TO: PSPRCV.' 

WRITE (10, *) 'THIS ERROR SHOULD NEVER ' 
& II 'OCCUR AND INDICATES A ' 
& II 'PROCEDURAL INTERFACE (GSR)' 

WRITE (10, *) 'INTERNAL VALIDITY CHECK.' 
CALL PVAXSP 
GOTO 1000 

C ELSE 
c 
C UNKNOWN ERROR MESSAGE ERROR MESSAGE. 
c 

48 IF (ERRCOD .GE. 512) GOTO 49 
MSSG2 = MSSGl II 'WARNING' 
GOTO 51 

C ELSE 

c 

49 IF (ERRCOD .GE. 1024) GOTO 50 
MSSG2 = MSSGl II 'ERROR ' 
GOTO 51 

ELSE 
50 MSSG2 MSSGl II 'FATAL ERROR ' 

C END IF 
C END IF 

51 WRITE (10, *) MSSG2 
WRITE (10, *) 'CODE IS UNRECOGNIZED.' 
WRITE (10, *) 'PROBABLE PROCEDURAL ' 

& II 'INTERFACE (GSR) INTERNAL ' 
& II 'VALIDITY CHECK ERROR.' 

C END IF 
1000 WRITE (10, *) 

Using the GSRs TT3-59 



1T3-60 

c 

RETURN 
END 

SUBROUTINE PIBMSP 

C PIBMSP: WRITE THE "IBM VERSION SPECIFIC" 
C MESSAGE TO THE ERROR HANDLER FILE. 
c 

WRITE (10, *) 'THIS ERROR/WARNING IS ' 
& II 'APPLICABLE ONLY TO THE IBM ' 
& II 'VERSION OF THE' 

WRITE (10, *) 'PROCEDURAL INTERFACE (GSR) . , 

RETURN 
END 

SUBROUTINE PVAXSP 

c 
C PVAXSP: WRITE THE "DEC VAX/VMS VERSION 
C SPECIFIC" MESSAGr: TO THE ERROR 
c 
c 

HANDLER FILE. 

WRITE (10, *) 'THIS ERROR/WARNING IS ' 
& // 'APPLICABLE ONLY TO THE DEC ' 
& II 'VAX/VMS VERSION OF' 

WRITE (10, *) 'THE PROCEDURAL INTERFACE (GSR).' 
RETURN 
END 

Tools and Techniques 



Appendix C - Pascal V2 Example Progra1n 

This appendix contains a network creation example program that that illustrates 
the use of the PS 390 DECN AX Pascal V2 Graphics Support Routines. The 
program contains an error handler routine example. 

PROGRAM BlkLevp (INPUT, OUTPUT); 

CONST 
Deg_rad = 0.017453292; 
%INCLUDE 'PROCONST.PAS' 

TYPE 
%INCLUDE 'PROTYPES.PAS' 

VAR 
Front P_VectorListType; 
Vecs P_VectorListType; 
Zero_vec P_VectorType; 
Y_Up P_VectorType; 
At P_VectorType; 
From P_VectorType; 
Up P_VectorType; 
Name P_VaryingType; 
Theta REAL; 
DTheta REAL; 
i INTEGER; 
k INTEGER; 
1 INTEGER; 
Times INTEGER; 

%INCLUDE 'PROEXTRN.PAS' 

{ The following Error Handler demonstrates the 
{ general overall recommended form that the user's 
{ own error handler should follow. 

This error handler upon being invoked writes ALL 
messages to the data file: 'PROERROR.LOG' for 2 
reasons: 

1. The error handler should NOT immediately 

} 

} 
} 

} 
} 
} 
} 
} 

} 

{ 
{ 
{ 
{ 

{ 
{ 
{ 
{ 
{ 

write information out on the PS 390 screen } 
since the explanatory text defining the } 
error or warning condition may be taken as } 

Using the GSRs 1T3-61 



1T3-62 

{ data by the PS 390 and therefore wind up } 

{ not being displayed on the PS 390 screen } 

{ (as in the case of a catastrophic data } 

{ transmission error. } 

{ } 
{ 2. The logging of errors and warnings to a } 

{ logf ile allows any errors and/or warnings } 

{ to be reviewed at a later time. } 

PROCEDURE Err ( Error_code: Integer); 

VAR 
VMSdef, Pidef 
Error_Log 
ErrorFileOpen 

P_VaryingType; 
[STATIC] TEXT; 
[STATIC] BOOLEAN .- FALSE; 

[EXTERNAL] PROCEDURE LIB$STOP 
(%IMMED CompletionCode 

PROCEDURE IBM_Specific; 
BEGIN 

INTEGER); EXTERN; 

WRITE (Error_Log, "This error/warning is "'); 
WRITE (Error_Log, "applicable ONLY to the IBM"'); 
WRITELN (Error_Log, "version of the"); 
WRITELN (Error_Log, "Procedural Interface (GSR) ."'); 

END; 

PROCEDURE 
BEGIN 

WRITE 
WRITE 
WRITELN 
WRITE 
WRITELN 

END; 

VAX_Specific; 

(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 

"This error/warning is"'); 
"applicable ONLY to the DEC"'); 
"VAX/VMS version of"); 
"the Procedural Interface"'); 
"' (GSR) . "') ; 

PROCEDURE UnknownError; 
BEGIN 

WRITE (Error_Log, "PS-W-UNRCOMCOD: "'); 
WRITE (Error_Log, "Procedural Interface "'); 
WRITE (Error_Log, "(GSR) completion"'); 
IF Error_code < 512 

Tools and Techniques 



THEN WRITE (Error_Log, 'warning') 
ELSE IF Error_code < 1024 

THEN WRITE (Error_Log, 'error ') 
ELSE WRITE (Error_Log, 'fatal error'); 

WRITELN (Error_Log, 'code is unrecognized.'); 
WRITE (Error_Log, 'Probable Procedural'); 
WRITE (Error_Log, 'Interface (GSR) Internal'); 
WRITELN (Error_Log, 'validity check error.'); 

END; 

PROCEDURE IdentifyCompletionCode 
(Error_code: INTEGER); 

BEGIN 
WRITE 
WRITE 
WRITE 

(Error_Log, 'PS-I-PROERRWAR: Procedural '); 
(Error_Log, 'Interface (GSR) warning/'); 
(Error_Log, 'error completion code was'); 

Using the GSRs 

WRITELN (Error_Log, 'received.'); 

{ Identify warning codes } 

IF Error_Code < 512 THEN CASE Error __ Code OF 
PSW_BadNamChr: 
BEGIN 

WRITE (Error_Log, 'PS-W-BADNAMCHR: Bad'); 
WRITE (Error_Log, 'character in name was'); 
WRITELN (Error_Log, 'translated to: 11 11

• '); 

END; 
PSW_NamTooLon: 
BEGIN 

WRITE (Error_Log, 'PS-W-NAMTOOLON: Name too'); 
WRITE (Error_Log, 'long. Name was truncated to '); 
WRITELN (Error_Log, '256 characters.'); 

END; 
PSW_StrTooLon: 
BEGIN 

WRITE (Error_Log, 'PS-W-STRTOOLON: String too'); 
WRITE (Error_Log, 'long. String was truncated '); 
WRITELN (Error_Log, 'to 240 characters.'); 

END; 
PSW_AttAlrDon: 
BEGIN 

WRITE (Error_Log, 'PS-W-ATTALRDON: Attach'); 
WRITE (Error_Log, 'already done. Multiple call '); 
WRITELN (Error_Log, 'to PAttach without'); 
WRITE (Error_Log, 'intervening PDetach call'); 
WRITELN (Error_Log, 'ignored.'); 

TI'J-63 



1T3-64 

END; 
PSW_AtnKeySee: 
BEGIN 

WRITE (Error_Log, 'PS-W-ATNKEYSEE: Attention'); 
WRITELN (Error_Log, 'key seen (depressed).'); 
IBM_Specific; 

END; 
PSW_BadGenChr: 
BEGIN 

WRITE (Error_Log, 'PS-W-BADGENCHR: Bad generic'); 
WRITE (Error_Log, 'channel character. Bad'); 
WRITELN (Error_Log, 'character in string sent via:'); 
WRITE (Error_Log, ' PPutGX was translated to'); 
WRITELN (Error_Log, 'a blank.'); 
IBM_Specific; 

END; 
PSW_BadStrChr: 
BEGIN 

WRITE (Error_Log, 'PS-W-BADSTRCHR: Bad'); 
WRITE (Error_Log, 'character in string was'); 
WRITELN (Error_Log, 'translated to a blank.'); 
IBM_Specific; 

END; 
PSW_BadParChr: 
BEGIN 

WRITE (Error_Log, 'PS-W-BADPARCHR: Bad parser'); 
WRITE (Error_Log, 'channel character. Bad'); 
WRITELN (Error_Lbg, 'character in string sent to'); 
WRITE (Error_Log, 'PS 300 parser via: PPutP '); 
WRITELN (Error_Log, 'was translated to a blank.'); 
IBM_Specific; 

END; 
OTHERWISE UnknownError; 

END 

{ Identify errors } 

ELSE IF Error_code < 1024 THEN CASE Error_Code OF 
PSE_InvMuxCha: 
BEGIN 

WRITE (Error_Log, 'PS-E-INVMUXCHA: Invalid '); 
WRITE (Error_Log, 'multiplexing channel'); 
WRITELN (Error_Log, 'specified in call to:'); 
WRITELN (Error_Log, 'PMuxCI, PMuxP, or PMuxG.'); 

END; 
PSE_InvVecCla: 
BEGIN 

Tools and Techniques 



Using the GSRs 

WRITE (Error_Log, 'PS-E-INVVECCLA: Invalid '); 
WRITE (Error_Log, 'vector list class specified'); 
WRITELN (Error_Log, 'in call to: PVecBegn.'); 

END; 
PSE_InvVecDim: 
BEGIN 

WRITE (Error_Log, 'PS-E-INVVECDIM: Invalid '); 
WRITE (Error_Log, 'vector list dimension'); 
WRITELN (Error_Log, 'specified in call to'); 
WRITELN (Error_Log, 'PVecBegn.'); 

END; 
PSE_PreOpeExp: 
BEGIN 

WRITE (Error_Log, 'PS-E-PREOPEEXP: Prefix'); 
WRITELN (Error_Log, 'operator call was expected.'); 

END; 
PSE_FolOpeExp: 
BEGIN 

WRITE (Error_Log, 'PS-E-FOLOPEEXP: Follow'); 
WRITELN (Error_Log, 'operator call was expected.'); 

END; 
PSE_LabBlkExp: 
BEGIN 

WRITE 
WRITE 

(Error_Log, 'PS-E-LABBLKEXP: Call to'); 
(Error_Log, 'PLabAdd or PLabEnd was '); 

WRITELN (Error_Log, 'expected.'); 
END; 
PSE_VecLisExp: 
BEGIN 

WRITE (Error_Log, 'PS-E-VECLISEXP: Call to '); 
WRITE (Error_Log, 'PVecList or PVecEnd was '); 
WRITELN (Error_Log, 'expected.'); 

END; 
PSE_AttMulVec: 
BEGIN 

WRITE 
WRITE 
WRITELN 
WRITELN 

(Error_Log, 'PS-E-ATTMULVEC: Attempted '); 
(Error_Log, 'multiple call sequence to'); 
(Error_Log, 'PVecList is NOT permitted'); 
(Error_Log, 'for BLOCK normalized vectors.'); 

END; 
PSE_MisLabBeg: 
BEGIN 

WRITE (Error_Log, 'PS-E-MISLABBEG: Missing '); 
WRITE (Error_Log, 'label block begin call. '); 
WRITELN (Error_Log, 'Call to PLabAdd or PLabEnd'); 
WRITELN (Error_Log, 'without call to: PLabBegn.'); 

END; 

1T3-65 



ITJ-66 

PSE_MisVecBeg: 
BEGIN 

WRITE (Error_Log, 'PS-E-MISVECBEG: Missing'); 
WRITE (Error_Log, 'vector list begin call. '); 
WRITELN (Error_Log, 'Call to PVecList or PVecEnd'); 
WRITELN (Error log, 'without call to: PVecBegn.'); 

END; 
PSE NulNam: 
BEGIN 

WRITE (Error_Log, 'PS-E-NULNAM: Null name '); 
WRITELN (Error_Log, 'parameter is not allowed.'); 

END; 
PSE_BadComTyp: 
BEGIN 

WRITE (Error_Log, 'PS-E-BADCOMTYP: Bad'); 
WRITE (Error_Log, 'comparison type operator '); 
WRITELN (Error_Log, 'specified in call to:'); 
WRITELN (Error_Log, 'PifLevel.'); 

END; 
PSE InvFunNam: 
BEGIN 

WRITE (Error_Log, 'PS-E-INVFUNNAM: Invalid '); 
WRITE 
WRITELN 
WRITE 
WRITE 
WRITELN 
WRITE 
WRITE 
WRITELN 

(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 
(Error_Log, 

'function name. Attempted PS'); 
'300 function instance failed'); 
'because the named function '); 
'cannot possibly exist. The'); 
'function name identifying the'); 
'function type to instance'); 
'was longer than 256 '); 
'characters.'); 

END; 
PSE_NulNamReq: 
BEGIN 

WRITE (Error_Log, 'PS-E-NULNAMREQ: Null name'); 
WRITE (Error_Log, 'parameter is required in'); 
WRITELN (Error_Log, 'operate node call following'); 
WRITE (Error_Log, 'a PPref or PFoll procedure'); 
WRITELN (Error_Log, 'call.'); 

END; 
PSE TooManEnd: 
BEGIN 

WRITE (Error_Log, 'PS-E-TOOMANEND: Too many'); 
WRITELN (Error_Log, 'END STRUCTURE calls invoked.'); 

END; 
PSE_NotAtt: 
BEGIN 

WRITE (Error_Log, 'PS-E-NOTATT: The PS 300 '); 

Tools and Techniques 



Using the GSRs 

WRITE (Error_Log, "communications link has not "); 
WRITELN (Error_Log, "yet been established."); 
WRITE (Error_Log, "PAttach has not been called"); 
WRITELN (Error_Log, "or failed."); 

END; 
PSE_OveDurRea: 
BEGIN 

WRITE (Error _Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITELN (Error_Log, 

END; 
PSE_PhyDevTyp: 
BEGIN 

"PS-E-OVEDURREA: An overrun"); 
"occurred during a read"); 
"operation."); 
"The specified input buffer"); 
"in call to: PGET or: PGETW"); 
" was too small and truncation"); 
"has occurred."); 

WRITE (Error_Log, "PS-E-PHYDEVTYP: Missing or "); 
WRITE (Error_Log, "invalid physical device type "); 
WRITELN (Error_Log, "specifier in call to PAttach."); 
VAX_Specific; 

END; 
PSE_LogDevNam: 
BEGIN 

WRITE (Error_Log, "PS-E-LOGDEVNAM: Missing or"); 
WRITE (Error_Log, "invalid logical device name "); 
WRITELN (Error_Log, "specifier in call to PAttach."); 
VAX_Specific; 

END; 
PSE_AttDelExp: 
BEGIN 

WRITE (Error_Log, "PS-E-ATTDELEXP: Attach"); 
WRITE (Error_Log, "parameter string delimiter"); 
WRITELN (Error_Log, ""/"was expected."); 
VAX_Specific; 

END; 
OTHERWISE UnknownError; 

E:ND 

{ Identify fatal errors } 

ELSE Case Error_Code OF 
PSF_PhyAttFai: 
BEGIN 

WRITE (Error_Log, "PS-F-PHYATTFAI: Physical"); 
WRITELN (Error_Log, "attach operation failed."); 

END; 

TT3-67 



TT3-68 

PSF_PhyDetFai: 
BEGIN 

WRITE (Error_Log, 'PS-F-PHYDETFAI: Physical'); 
WRITELN (Error_Log, 'detach operation failed.'); 

END; 
PSF _PhyGetFai: 
BEGIN 

WRITE (Error_Log, 'PS-F-PHYGETFAI: Physical'); 
WRITELN (Error_Log, 'get operation failed.'); 

END; 
PSF_PhyPutFai: 
BEGIN 

WRITE (Error_Log, 'PS-F-PHYPUTFAI: Physical'); 
WRITELN (Error_Log, 'put operation failed.'); 

END; 
PSF_BufTooLar: 
BEGIN 

WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITELN (Error_Log, 
VAX_Specific; 

END; 
PSF_WroNumArg: 
BEGIN 

WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 
WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 

'PS-F-BUFTOOLAR: Buffer too '); 
'large error in cal 1 to: ') ; 
'PSPUT. ') ; 
'This error should NEVER'); 
'occur and indicates a'); 
'Procedural Interface (GSR)'); 
'validity check.'); 

'PS-F-WRONUMARG: Wrong'); 
'number of arguments in call'); 
'to Procedural Interface (GSR)'); 
'low-level I/0 procedure'); 
'(source file: PROIOLIB.MAR) .'); 
'This error should NEVER'); 
'occur and indicates a '); 
'Procedural Interface (GSR) '); 

WRITELN (Error_Log, 'validity check.'); 
VAX_Specific; 

END; 
PSF_ProTooLar: 
BEGIN 

WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 

WRITE (Error_Log, 
WRITE (Error_Log, 
WRITELN (Error_Log, 

'PS-F-PROTOOLAR: Prompt'); 
'buffer too large error in '); 
'call to: PSPRCV.'); 
'This error should NEVER'); 
'occur and indicates a'); 
'Procedural Interface (GSR) '); 

Tools and Techniques 



WRITELN (Error_Log, /validity check./); 

VAX_Specific; 
END; 
OTHERWISE UnknownError; 

END; 

IF (Error_code >= PSF_PhyAttFai) AND 
(Error_code <= PSF_PhyPutFai) THEN BEGIN 

Psvmserr ( VMSdef, Pidef ); 
WRITELN (Error_Log, /DEC VAX/VMS Error definition is:/); 
WRITELN (Error_Log, VMSdef ); 
WRITE (Error_Log, /Procedural Interface (GSR) /); 
WRITE (Error_Log, /Interpretation of/); 
WRITELN (Error_Log, /DEC VAX/VMS completion code:/); 
WRITELN (Error_Log, Pidef ) ; 
WRITE (Error_Log, /DEC VAX/VMS Error code value /); 
WRITELN (Error_Log, /was: /, Psvmserr ); 

END; 
WRITELN (Error_Log); 

END; 

PROCEDURE DetachErrorHan (Detach_Error : INTEGER) ; 
BEGIN 

WRITE (Error_Log, /PS-I-ERRWARDET: Error/warning /); 
WRITE (Error_Log, /trying to Detach /); 
WRITELN (Error_Log, /the communications link between/); 
WRITELN (Error_Log, /the PS 300 and the host./); 
IdentifyCompletionCode (Detach_Error); 

END; 

BEGIN 
IF NOT ErrorFileOpen THEN BEGIN 

{ Open error file for the logging of errors 

OPEN (Error_Log, /Proerror.log/, History:= NEW); 
REWRITE (Error_Log); 
ErrorFileOpen := TRUE; 

END; 
IdentifyCompletionCode (Error_Code) ; 
IF Error code >= 512 THEN BEGIN 

Using the GSRs 

WRITE (Error_Log, /PS-I-ATDCOMLNK: Attempting/); 
WRITE (Error_Log, /to detach PS 300/); 
WRITELN (Error_Log, //Host communications link./); 

TTJ-69 



ITJ-70 

{ Use different error handler so as 
{ not to get caught in a recursive 
{ loop if we consistently get an 
{ error when attempting to detach 

PDetach (DetachErrorHan); 
CLOSE (Error_Log) ; 
IF (Error_code >= PSF'_PhyAttFai) AND 

(Error_code <= PSF'_PhyPutFai) 
{ identify VMS error if there was one 

THEN LIB$STOP (PsVMSerr) 
ELSE HALT; 

END; 
END; 

FUNCTION Uppercase (Chara : CHAR) : CHAR; 
BEGIN 

IF (Chara>= 'a') AND (Chara<= 'z') 
THEN Uppercase .- CHR (ORD (Chara) - 32) 

ELSE Uppercase := Chara; 
END; 

PROCEDURE Attach; 

VAR 

DeviceSpec 
DeviceName 
AttachParm 

BEGIN 

CHAR; 
VARYING [5] OF CHAR; 
P_VaryingType; 

DeviceSpec :=' '; 
REPEAT 

IF DeviceSpec <> , , THEN 

WRITELN (OUTPUT, 'Invalid device type specified.'); 
WRITE (OUTPUT, 'Device Interface type= (PARALLEL, '); 
WRITE (OUTPUT, 'Ethernet, Asynchronous): '); 
IF EOLN (INPUT) 

THEN DeviceSpec .-
ELSE DeviceSpec .- Uppercase (INPUTA); 

READLN (INPUT); 
UNTIL (DeviceSpec 

(DeviceSpec 
'P') OR (DeviceSpec = 'E') OR 
, A') ; 

Tools and Techniques 



REPEAT 
WRITE (OUTPUT, 'Physical device name (i.e. '); 
WRITE (OUTPUT, 'TT, TTA6, PS390): '); 
READLN (INPUT, DeviceName); 

UNTIL LENGTH (DeviceName) > O; 
AttachParm := 'Logdevnam=' + DeviceName + ':/Phydevtyp='; 
IF Uppercase (DeviceSpec) = 'P' 

THEN AttachParm := AttachParm + 'PARALLEL' 
ELSE IF Uppercase (DeviceSpec) = 'E' 

THEN AttachParm := AttachParm + 'Ethernet' 
ELSE AttachParm := AttachParm + 'Async'; 

Pattach (AttachParm, ERR); 
END; 

PROCEDURE Computename 

VAR 
j 

BEGIN 

INTEGER; 

Name := 'ListOOO'; 
j := 7; 

Name Id 
VAR Name 

WHILE (Nameid > 0) DO BEGIN 

INTEGER; 
P _VaryingType); 

Name [j] := CHR (Nameid MOD 10 +ORD ('0')); 
Nameid := Nameid DIV 10; 
j : = PRED ( j ) ; 

END; 
END; 

PROCEDURE ComputeWave Theta 
VAR VecList 

CONST 
Amp 0.8; 
Alpha -0.02; 
Beta 0.2513274123; 

VAR 
i INTEGER; 
Addr INTEGER; 
Iaddr INTEGER; 

BEGIN 
Iaddr := O; 
FOR i := 0 TO 49 DO BEGIN 

Iaddr := SUCC (Iaddr); 

Using the GSRs 

REAL; 
P_VectorListType); 

ITJ-71 



IT3-72 

VecList [Iaddr]. V4 [l] i I 
VecList [Iaddr] .V4 [2] .- Amp 

VecList [Iaddr] .V4 [3] .- O· , 
VecList [Iaddr] .V4 [4] .- 1 -

VecList [Iaddr] .Draw := TRUE; 
Iaddr := SUCC (Iaddr); 

50.0; 

* EXP (Alpha * i) 

* cos (Theta - Beta * i) ; 

i/150.0; 

VecList [Iaddr] .V4 [1] .- VecList [PRED (Iaddr)] .V4 [1]; 
VecList [Iaddr] .V4 [2] .- O; 
VecList [Iaddr] .V4 [3] .- 0.5; 
VecList [Iaddr] .V4 [4] .- VecList [PRED (Iaddr)] .V4 [4]; 
VecList [Iaddr] .Draw := TRUE; 

END; 
END; 

BEGIN 
Attach; 
At.V4 [1] .- 0.3; 
At.V4 [2] .- O; 

At.V4 [3] .- O; 

From.V4 [1] .- O; 

From.V4 [2] := O; 
From.V4 [3] := -1; 
Up . V 4 [ 1] 0 . 3 ; 

Up. V4 [ 2] : = 1; 
Up.V4 [3] := O; 
Y_Up.V4 [l] .- O; 
Y_Up.V4 [2] := 1; 
Y_Up.V4 [3] := O; 
Zero_vec.V4 [l] .- O; 
Zero_vec.V4 [2] := O; 
Zero_vec.V4 [3] := O; 
Pinit Err); 

{ Do the Attach } 

PEyeBack 'eye', 1.0, 0.0, 0.0, 2.0, 0.0, 

PSetint 
PLookat 
PFninst 
PFninst 
PFninst 
PFnlnst 
PFninst 
PFninst 
PFninst 
PFninst 
PFninst 
PFninstN 
PFninst 

1000.0, 'inten', Err ) ; 
'inten', TRUE, 0.5, 1.0, 'look', Err); 
'look', At, From, Up, 'pie', Err ) ; 
'atx', 'xvec', Err); 
'aty', 'yvec', Err); 
'atz', 'zvec', Err ) ; 
'fromx', 'xvec', Err ) ; 
'fromy', 'yvec', Err ) ; 
'fromz', 'zvec', Err); 
'ac_at', 'accumulate', Err ) ; 
'ac_from', 'accumulate', Err); 
'add_up', 'addc', Err ) ; 
'sync_up', 'sync', 3, Err ) ; 
'fix_sync', 'nop', Err); 

Tools and Techniques 



PConnect "sync_up", 3, 1, "fix _sync", Err ) ; 

PConnect "fix sync", 1, - 3, "sync_up", Err ) ; 

PSndBool TRUE, 3, "sync_up", Err ) ; 

PFninst "look _at", "looka t" , Err ) ; 

PConnect "dials", 1, 1, "atx", Err ) ; 

PConnect "dials", 2, 1, "aty", Err ) ; 

PConnect "dials", 3, 1, "atz", Err ) ; 

PConnect "dials", 5, 1, "fromx", Err ) ; 

PConnect "dials", 6, 1, "fromy", Err ) ; 

PConnect "dials", 7, 1, "fromz", Err ) ; 

PConnect "atx", 1, 1, "ac at", - Err ) ; 

PConnect "aty", 1, 1, "ac_at", Err ) ; 

PConnect "atz", 1, 1, "ac_at", Err ) ; 

PConnect "fromx", 1, 1, "ac_from", Err ) ; 

PConnect "fromy", 1, 1, "ac_from", Err ) ; 

PConnect "fromz", 1, 1, "ac_from", Err ) ; 

PConnect "ac_at", 1, 1, "sync_up", Err ) ; 

PConnect "ac _at", 1, 1, "add _up" ' Err ) ; 

PConnect "add _up" ,1, 2, "sync_up", Err ) ; 

PConnect "sync_up", 1, 1, "look at" 
- ' Err ) ; 

PConnect "sync_up", 2, 3, "look at" - ' Err ) ; 

PConnect "ac_from", 1, 2, "look at" - ' Err ) ; 

PSndV3D At, 2, "ac _at", Err ) ; 

PSndV3D From, 2, "ac_from", Err ) ; 

PSndV3D Y_up, 2, "add _up" ' Err ) ; 

PConnect "look at" - ' 1, 1, "look", Err ) ; 

PFninst "fix _at", "const", Err ) ; 
PConnect "ac_from", 1, 1, "fix at" - ' Err ) ; 

PConnect "fix at" - ' 1, 1, "ac_at", Err ) ; 

PSndV3D Zero _vec, 2, "fix at" - ' 
PSndV3D Zero _vec, 1, "ac from" - ' 
Pinst "pie", "" Err 

' 
Dtheta := 10.0 * Deg_rad; 
Theta := -Dtheta; 

) ; 

FOR i := 1 TO 36 DO BEGIN 
Theta := Theta + Dtheta; 
Computewave (Theta, Vecs); 
FOR k := 1 TO 50 DO BEGIN 

Err ) ; 

Err ) ; 

FOR 1 := 1 TO 4 DO Front [k] .V4 [l] 
:= Vecs [SUCC (PRED (k) * 2)] .V4 [l]; 

Front [k] .Draw := Vecs [SUCC (PRED (k) * 2)] .Draw; 
END; 
Computename ( i, Name ) ; 
PBegins ( Name, Err ) ; 
PSetR 1, 35, FALSE, i, 

TRUE , " " , Err ) ; 
Err ) ; 

Pif Phase 
PVecBegn 100, FALSE, FALSE, 3, P_Sepa, Err); 

Using the GSRs TJ'J-73 



TIJ-74 

PVecList 
PVecEnd 
PVecBegn 
PVecList 
PVecEnd 
PEnds 
Pincl 

END; 
PDisplay 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
Pdetach 

END. 

100, Vecs, Err ) ; 
Err ) ; 

50, FALSE, FALSE, 3, P_Conn, Err); 

50, Front, Err); 
Err); 
Err); 
Name, 'pie', Err ) ; 

'eye', Err ) ; 
'X', 1, 'Dlabell', Err); 
'Y', 1, 'Dlabel2', Err); 
'Z', 1, 'Dlabel3', E:rr ); 
'Look At', 1, 'Dlabel4', Err ) ; 
'X', 1, 'Dlabel5', Err); 
'Y', 1, 'Dlabel6', Err ) ; 
'Z', 1, 'Dlabel7', Err); 
'From', 1, 'Dlabel8', Err ) ; 
Err); 

Tools and Techniques 



Append:ix D - PascalNS Example Program 

This appendix contains a ne!work creation example program that illustrates the use 
of the PS 390/IBM PASCALNS Graphics Support Routines. The program contains 
an error handler routine example. 

PROGRAM BlkLevp (INPUT, OUTPUT); 

CONST 
Deg_rad = 0.017453292; 
%INCLUDE PROCONST 

TYPE 
%INCLUDE PROTYPES 

VAR 
Front P_VectorListType; 
Vecs P_VectorListType; 
Zero_vec P_VectorType; 
Y_Up P_VectorType; 
At P_VectorType; 
From P_VectorType; 
Up P_VectorType; 
Name STRING ( 10) ; 
Theta SHORTREAL; 
DTheta SHORTREAL; 
i INTEGER; 
k INTEGER; 
1 INTEGER; 
Times INTEGER; 

%INCLUDE PROEXTRN 

{ The following Error Handler demonstrates 
{ the general overall recommended form that 

the user's own error handler should follow. 

} 
} 
} 
} 

{ 
{ 
{ 
{ 
{ 
{ 
{ 
{ 

This error handler upon being invoked } 
writes ALL messages to the data file } 
associated with the PASCAL/VS identifier of: } 
'ErrorLog'. The messages are written to a 
data file for two reasons: 

Using the GSRs 

} 
} 
} 

ITJ-75 



TI'3-76 

{ 1. The error handler should NOT } 
{ immediately write information out } 
{ on the PS 390 screen since the } 
{ explanatory text defining the error } 
{ or warning condition may be taken } 
{ as data by the PS 390 and therefore } 
{ wind up not being displayed on the } 
{ PS 390 screen (as in the case of a } 
{ catastrophic data transmission } 
{ error). } 
{ } 
{ 2. The logging of errors and warnings } 
{ to a logfile allows any errors } 
{ and/or warnings to be reviewed at a } 
{ later time. } 

PROCEDURE Err ( Error_code: Integer); 

STATIC 
ErrorFileOpen 
ErrorLog 

BOOLEAN; 
TEXT; 

VALUE 
ErrorFileOpen .- FALSE; 

PROCEDURE IBM_Specific; 
BEGIN 

WRITE (ErrorLog, 'This error/warning is '); 
WRITE (ErrorLog, 'applicable ONLY to the IBM'); 
WRITELN (ErrorLog, 'version of the'); 
WRITELN (ErrorLog, 'Procedural Interface (GSR).'); 

END; 

PROCEDURE VAX_Specific; 
BEGIN 

WRITE 
WRITE 
WRITELN 
WRITE 
WRITELN 

END; 

(ErrorLog, 
(ErrorLog, 
(ErrorLog, 
(ErrorLog, 
(ErrorLog, 

'This error/warning is'); 
'applicable ONLY to the DEC'); 
'VAX/VMS version of'); 
'the Procedural Interface'); 
' (GSR) . ') ; 

Tools and Techniques 



PROCEDURE UnknownError; 
BEGIN 

WRITE 
WRITE 
WRITE 

(ErrorLog, /PS-W-UNRCOMCOD: /); 
(ErrorLog, /Procedural Interface /); 
(ErrorLog, /(GSR) completion/); 

IF Error code < 512 
THEN WRITE (ErrorLog, /warning /) 
ELSE IF Error code < 1024 

THEN WRITE (ErrorLog, /error /) 
ELSE WRITE (ErrorLog, /fatal error /); 

WRITELN (ErrorLog, /code is unrecognized./); 
WRITE (ErrorLog, /Probable Procedural /); 
WRITE (ErrorLog, /Interface (GSR) Internal /); 
WRITELN (ErrorLog, /validity check error./); 

END; 

PROCEDURE IdentifyCompletionCode 
(Error_code: INTEGER); 

BEGIN 
WRITE 
WRITE 
WRITE 

(ErrorLog, /PS-I-PROERRWAR: Procedural/); 
(ErrorLog, /Interface (GSR) warning//); 
(ErrorLog, /error completion code was /); 

Using the GSRs 

WRITELN (ErrorLog, /received./); 

{ Identify warning codes } 

IF Error_Code < 512 THEN CASE Error __ Code OF 
PSW_BadNamChr: 
BEGIN 

WRITE (ErrorLog, /PS-W-BADNAMCHR: Bad/); 
WRITE (ErrorLog, /character in name was/); 
WRITELN (ErrorLog, /translated to: 11 11 • /); 

END; 
PSW_NamTooLon: 
BEGIN 

WRITE 
WRITE 

(ErrorLog, /PS-W-NAMTOOLON: Name too/); 
(ErrorLog, /long. Name was truncated to /); 

WRITELN (ErrorLog, /256 characters./); 
END; 
PSW_StrTooLon: 
BEGIN 

WRITE (ErrorLog, /PS-W-STRTOOLON: String too/); 
WRITE (ErrorLog, /long. String was truncated/); 
WRITELN (ErrorLog, /to 240 characters./); 

END; 
PSW_AttAlrDon: 

IT3-77 



TTJ-78 

BEGIN 
WRITE (ErrorLog, 'PS-W-ATTALRDON: Attach'); 
WRITE (ErrorLog, 'already done. Multiple call '); 
WRITELN (ErrorLog, 'to PAttach without'); 
WRITE (ErrorLog, 'intervening PDetach call'); 
WRITELN (ErrorLog, 'ignored.'); 

END; 
PSW_AtnKeySee: 
BEGIN 

WRITE (ErrorLog, 'PS-W-ATNKEYSEE: Attention'); 
WRITELN (ErrorLog, 'key seen (depressed).'); 
IBM_Specific; 

END; 
PSW BadGenChr: 
BEGIN 

WRITE (ErrorLog, 'PS-W-BADGENCHR: Bad generic , ) ; 

WRITE (ErrorLog, 'channel character. Bad , ) ; 

WRITELN (ErrorLog, 'character in string sent via:'); 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
IBM_Specific; 

END; 
PSW BadStrChr: 
BEGIN 

, PPutGX was translated 
'a blank.'); 

WRITE (ErrorLog, 'PS-W-BADSTRCHR: Bad'); 

to 

WRITE (ErrorLog, 'character in string was '); 
WRITELN (ErrorLog, 'translated to a blank.'); 
IBM_Specific; 

END; 
PSW BadParChr: 
BEGIN 

, ) ; 

WRITE (ErrorLog, 'PS-W-BADPARCHR: Bad parser'); 
WRITE (ErrorLog, 'channel character. Bad '); 
WRITELN (ErrorLog, 'character in string sent to'); 
WRITE (ErrorLog, 'PS 300 parser via: PPutP '); 
WRITELN (ErrorLog, 'was translated to a blank.'); 
IBM_Specific; 

END; 
OTHERWISE UnknownError; 

END 

{ Identify errors } 

ELSE IF Error_code < 1024 THEN CASE Error_Code OF 
PSE_InvMuxCha: 
BEGIN 

WRITE (ErrorLog, 'PS-E-INVMUXCHA: Invalid'); 

Tools and Techniques 



Using the GSRs 

WRITE (ErrorLog, 'multiplexing channel'); 
WRITELN (ErrorLog, 'specified in call to:'); 
WRITELN (ErrorLog, 'PMuxCI, PMuxP, or PMuxG.'); 

END; 
PSE_InvVecCla: 
BEGIN 

WRITE (ErrorLog, 'PS-E-INVVECCLA: Invalid'); 
WRITE (ErrorLog, 'vector list class specified'); 
WRITELN (ErrorLog, 'in call to: PVecBegn.'); 

END; 
PSE_InvVecDim: 
BEGIN 

WRITE (ErrorLog, 'PS-E-INVVECDIM: Invalid'); 
WRITE (ErrorLog, 'vector list dimension'); 
WRITELN (ErrorLog, 'specified in call to'); 
WRITELN (ErrorLog, 'PVecBegn.'); 

END; 
PSE_PreOpeExp: 
BEGIN 

WRITE (ErrorLog, 'PS-E-PREOPEEXP: Prefix'); 
WRITELN (ErrorLog, 'operator call was expected.'); 

END; 
PSE_FolOpeExp: 
BEGIN 

WRITE (ErrorLog, 'PS-E-FOLOPEEXP: Follow'); 
WRITELN (ErrorLog, 'operator call was expected.'); 

END; 
PSE_LabBlkExp: 
BEGIN 

WRITE 
WRITE 

(ErrorLog, 'PS-E-LABBLKEXP: Call to '); 
(ErrorLog, 'PLabAdd or PLabEnd was'); 

WRITELN (ErrorLog, 'expected.'); 
END; 
PSE_VecLisExp: 
BEGIN 

WRITE (ErrorLog, 'PS-E-VECLISEXP: Call to'); 
WRITE (ErrorLog, 'PVecList or PVecEnd was'); 
WRITELN (ErrorLog, 'expected.'); 

END; 
PSE_AttMulVec: 
BEGIN 

WRITE (ErrorLog, 'PS-E-ATTMULVEC: Attempted'); 
WRITE (ErrorLog, 'multiple call sequence to'); 
WRITELN (ErrorLog, 'PVecList is NOT permitted'); 
WRITELN (ErrorLog, 'for BLOCK normalized vectors.'); 

END; 
PSE_MisLabBeg: 

TI'J-79 



TT3-80 

BEGIN 
WRITE 
WRITE 

(ErrorLog, 'PS-E-MISLABBEG: Missing'); 
(ErrorLog, 'label block begin call. '); 

WRITELN (ErrorLog, 'Call to PLabAdd or PLabEnd'); 
WRITELN (ErrorLog, 'without call to: PLabBegn. ') ; 

END; 
PSE_MisVecBeg: 
BEGIN 

WRITE (ErrorLog, 'PS-E-MISVECBEG: Missing'); 
WRITE (ErrorLog, 'vector list begin call. '); 
WRITELN (ErrorLog, 'Call to PVecList or PVecEnd'); 
WRITELN (ErrorLog, 'without call to: PVecBegn.'); 

END; 
PSE_NulNam: 
BEGIN 

WRITE (Error Log, 'PS--E-NULNAM: Nul 1 name ' ) ; 
WRITELN (ErrorLog, 'parameter is not allowed.'); 

END; 
PSE_BadComTyp: 
BEGIN 

WRITE (ErrorLog, 'PS-E-BADCOMTYP: Bad'); 
WRITE (ErrorLog, 'comparison type operator'); 
WRITELN (ErrorLog, 'specified in call to:'); 
WRITELN (ErrorLog, 'PifLevel.'); 

END; 
PSE InvFunNam: 
BEGIN 

WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 

END; 
PSE_NulNamReq: 
BEGIN 

'PS-·E-INVFUNNAM: Invalid ') ; 
'function name. Attempted PS'); 
'300 function instance failed'); 
'because the named function'); 
'cannot possibly exist. The'); 
'function name identifying the'); 
'function type to instance'); 
'was longer than 256 '); 
'characters.'); 

WRITE ( ErrorLog, 'PS--E-NULNAMREQ: Nul 1 name ' ) ; 
WRITE (ErrorLog, 'parameter is required in'); 
WRITELN (ErrorLog, 'operate node call following'); 
WRITE (ErrorLog, 'a PPref or PFoll procedure'); 
WRITELN (ErrorLog, 'call.'); 

END; 
PSE_TooManEnd: 
BEGIN 

Tools and Techniques 



Using the GSRs 

WRITE (ErrorLog, 'PS-E-TOOMANEND: Too many'); 
WRITELN (ErrorLog, 'END_STRUCTURE calls invoked.'); 

END; 
PSE_NotAtt: 
BEGIN 

WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 

END; 
PSE_OveDurRea: 
BEGIN 

WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITELN (ErrorLog, 

END; 
PSE_PhyDevTyp: 
BEGIN 

'PS-E-NOTATT: The PS 300 '); 
'communications link has not '); 
'yet been established.'); 
'PAttach has not been called'); 
'or failed.'); 

'PS-E-OVEDURREA: An overrun'); 
'occurred during a read'); 
'operation.'); 
'The specified input buffer '); 
'in call to: PGET or: PGETW'); 
'was too small and truncation'); 
'has occurred.'); 

WRITE 
WRITE 

(ErrorLog, 'PS-E-PHYDEVTYP: Missing or'); 
(ErrorLog, 'invalid physical device type'); 

WRITELN (ErrorLog, 'specifier in call to PAttach.'); 
VAX_Specific; 

END; 
PSE_LogDevNam: 
BEGIN 

WRITE (ErrorLog, 'PS-E-LOGDEVNAM: Missing or'); 
WRITE (ErrorLog, 'invalid logical device name '); 
WRITELN (ErrorLog, 'specifier in call to PAttach.'); 
VAX_Specific; 

END; 
PSE_AttDelExp: 
BEGIN 

WRITE (ErrorLog, 'PS-E-ATTDELEXP: Attach'); 
WRITE (ErrorLog, 'parameter string delimiter'); 
WRITELN (ErrorLog, '"/"was expected.'); 
VAX_Specific; 

END; 
OTHERWISE UnknownError; 

END 

{ Identify fatal errors } 

1T3-81 



TTJ-82 

ELSE Case Error_Code OF 
PSF_PhyAttFai: 
BEGIN 

WRITE (ErrorLog, 'PS-F-PHYATTFAI: Physical '); 
WRITELN (ErrorLog, 'attach operation failed.'); 

END; 
PSF_PhyDetFai: 
BEGIN 

WRITE (ErrorLog, 'PS-F-PHYDETFAI: Physical '); 
WRITELN (ErrorLog, 'detach operation failed.'); 

END; 
PSF_PhyGetFai: 
BEGIN 

WRITE (ErrorLog, 'PS-F-PHYGETFAI: Physical'); 
WRITELN (ErrorLog, 'get operation failed.'); 

END; 
PSF_PhyPutFai: 
BEGIN 

WRITE (ErrorLog, 'PS·-F-PHYPUTFAI: Physical ') ; 
WRITELN (ErrorLog, 'put operation failed.'); 

END; 
PSF BufTooLar: 
BEGIN 

WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITELN (ErrorLog, 
VAX_Specific; 

END; 
PSF_WroNumArg: 
BEGIN 

WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITE (ErrorLog, 
WRITE (ErrorLog, 
WRITELN (ErrorLog, 
WRITELN (ErrorLog, 
VAX_Specific; 

END; 

'PS-F-BUFTOOLAR: Buffer too'); 
'large error in call to: ') ; 
'PSPUT. ') ; 
'This error should NEVER'); 
'occur and indicates a'); 
'Procedural Interface (GSR)'); 
'validity check.'); 

'PS--F-WRONUMARG: Wrong ' ) ; 
'number of arguments in call '); 
'to Procedural Interface (GSR)'); 
'low-level I/O procedure'); 
'(source file: PROIOLIB.MAR) .'); 
'This error should NEVER'); 
'occur and indicates a'); 
'Procedural Interface (GSR) '); 
'validity check.'); 

Tools and Techniques 



PSF_ProTooLar: 
BEGIN 

WRITE 
WRITE 
WRITELN 

(ErrorLog, 
(ErrorLog, 
(ErrorLog, 

'PS-F-PROTOOLAR: Prompt'); 
'buffer too large error in'); 
'call to: PSPRCV.'); 

WRITE 
WRITE 
WRITELN 
WRITELN 

(ErrorLog, 
(ErrorLog, 
(ErrorLog, 
(ErrorLog, 

'This error should NEVER'); 
'occur and indicates a'); 
'Procedural Interface (GSR) '); 
'validity check.'); 

VAX_Specific; 
END; 
OTHERWISE UnknownError; 

END; 
WRITELN (ErrorLog); 

END; 
PROCEDURE DetachErrorHan (Detach_Error: INTEGER); 
BEGIN 

WRITE (ErrorLog, 'PS-I-ERRWARDET: Error/warning 
WRITE (ErrorLog, 'trying to Detach , ) ; 

WRITELN (ErrorLog, 'the communications 
WRITELN (ErrorLog, 'the PS 300 and the 
IdentifyCompletionCode (Detach_Error); 

END; 

BEGIN 
IF NOT ErrorFileOpen THEN BEGIN 

link between 
host.'); 

{ Open error file for the logging of errors } 

REWRITE (ErrorLog); 
ErrorFileOpen := TRUE; 

END; 
IdentifyCompletionCode (Error_Code); 
WRITE (ErrorLog, 'PS-I-PASTRABAC: PASCAL/VS'); 
WRITELN (ErrorLog, 'Traceback follows:'); 

{ Display PASCAL/VS traceback } 

TRACE (ErrorLog); 
WRITELN (ErrorLog); 
IF Error_code >= 512 THEN BEGIN 

Using the GSRs 

WRITE (ErrorLog, 'PS-I-ATDCOMLNK: '); 
WRITE (ErrorLog, 'Attempting to detach PS 300'); 
WRITELN (ErrorLog, '/Host communications link.'); 

{ Use different error handler so as 
{ not to get caught in a recursive 

, ) ; 

, ) ; 

TT3-83 



{ loop if we consistently get an 
{ error when attempting to detach 

PDetach (DetachErrorHan); 
CLOSE (ErrorLog); 
HALT; 

END; 
END; 

PROCEDURE Computename Nameid 

VAR 
j 

BEGIN 

INTEGER; 

Name:= 'ListOOO'; 
j := 7; 

VAR Name 

WHILE (Nameid > 0) DO BEGIN 

{stop} 

INTEGER; 
STRING); 

} 
} 

Name (.j.) := CHR (Nameid MOD 10 +ORD ('0')); 
Nameid := Nameid DIV 10; 
j : = PRED ( j ) ; 

END; 
END; 

PROCEDURE Computewave Theta 
VAR VecList 

CONST 
Amp 
Alpha 
Beta 

VAR 
i 
Addr 
Iaddr 

BEGIN 
Iaddr := O; 

0.8; 

-0.02; 
0.2513274123; 

INTEGER; 
INTEGER; 
INTEGER; 

FOR i := 0 TO 49 DO BEGIN 
Iaddr := succ (Iaddr); 

SHORTREAL; 
P_VectorListType); 

VecList (.Iaddr.).V4 (.1.) .- i / 50.0; 
VecList (.Iaddr.).V4 (.2.) .- Amp* EXP (Alpha* i) 

* COS (Theta - Beta * i); 
VecList (.Iaddr.).V4 (.3.) .- O; 
VecList (.Iaddr.).V4 (.4.) .- 1 - i/150.0; 

TI'J-84 Tools and Techniques 



VecList (.Iaddr.).Draw :=TRUE; 
Iaddr := SUCC (Iaddr); 
VecList (.Iaddr.) .V4 (.1.) .- VecList (.PRED (Iaddr) .) .V4 (.1.); 
VecList (. Iaddr.). V4 (. 2.) . - 0; 

VecList (.Iaddr.) .V4 (.3.) 0.5; 
VecList (.Iaddr.).V4 (.4.) .- VecList (.PRED (Iaddr).).V4 (.4.); 
VecList (.Iaddr.).Draw :=TRUE; 

END; 
END; 

BEGIN 
PAttach ('',Err); 
At.V4 (.1.) .- 0.3; 

At.V4 (.2.) := O; 

{ Do the Attach } 

At.V4 (.3.) := O; 
From.V4 (.1.) .- O; 
From.V4 (.2.) := O; 
From.V4 (.3.) := -1; 
Up.V4 (.1.) .- 0.3; 

Up.V4 (.2.) := 1; 
Up.V4 (.3.) := O; 
Y_Up.V4 (.1.) .- O; 
Y_Up.V4 (.2.) := 1; 
Y_Up.V4 (.3.) := O; 
Zero __ vec. V4 (. 1. ) . - O; 
Zero _ _vec . V 4 ( . 2 . ) . - O ; 
Zero_vec.V4 (.3.) .- O; 
Pinit (Err); 
PEyeBack 'eye', 1. 0, 0.0, 0.0, 2.0, 0.0, 

1000.0, 'inten', Err ) ; 

PSetint 'inten', TRUE, 0.5, 1.0, 'look', 
PLookat 'look', At, From, Up, 'pie' I Err 
PFninst 'atx', 'xvec', Err ) ; 
PFninst 'aty' I 'yvec', Err ) ; 

PFninst 'atz', 'zvec', Err ) ; 
PFninst "fromx', 'xvec', Err ) ; 

PFninst 'fromy', 'yvec', Err ) ; 

PFninst 'fromz', 'zvec', Err ) ; 
PFninst 'ac_at', 'accumulate', Err ) ; 
PFninst 'ac from' 

- I 
'accumulate', Err ) ; 

PFninst 'add _up' I 'addc' , Err ) ; 

PFninstN 'sync_up' , 'sync', 3, Err ) ; 

PFninst 'fix _sync', 'nop', Err ) ; 

PConnect 'sync_up', 3, 1, 'fix _sync', Err 
PConnect 'fix _sync', 1, 3, 'sync_up', Err 
PSndBool TRUE, 3, 'sync_up', Err ) ; 

Using the GSRs 

Err 
) ; 

) ; 

) ; 

) ; 

7T3-85 



TTJ-86 

PFninst 'look at"', - 'lookat', Err ) ; 

PConnect 'dials', 1, 1, 'atx', Err ) ; 

PConnect 'dials', 2, 1, 'aty', Err ) ; 

PConnect 'dials', 3, 1, 'atz', Err ) ; 

PConnect 'dials', 5, 1, 'fromx', Err ) ; 

PConnect 'dials', 6, 1, 'fromy', Err ) ; 

PConnect 'dials', 7, 1, 'fromz', Err ) ; 

PConnect 'atx', 1, 1, 'ac at', Err ) ; 
-

PConnect 'aty', 1, 1, 'ac at', - Err ) ; 

PConnect 'atz', 1, 1, 'ac_at', Err ) ; 

PConnect 'fromx', 1, 1, 'ac from' , Err ) ; 

PConnect 'fromy' , 1, 1, 'ac from', Err ) ; -
PConnect 'fromz', 1, 1, 'ac from' , Err ) ; 

PConnect 'ac at', 1, 1, 'sync_up', Err ) ; -
PConnect 'ac at', 1, 1, 'add _up'' Err ) ; -
PConnect 'add _up' ,1, 2, 'sync_up' , Err ) ; 

PConnect 'sync_up', 1, 1, 'look _at', Err ) ; 

PConnect 'sync_up', 2, 3, 'look at', - Err ) ; 

PConnect 'ac - from', 1, 2, 'look at', - Err ) ; 

PSndV3D At, 2, 'ac at' 
- ' Err ) ; 

PSndV3D From, 2, 'ac_from', Err ) ; 

PSndV3D Y_up, 2, 'add _up'' Err ) ; 

PConnect 'look - at', 1, 1, 'look', Err ) ; 

PFninst 'fix at' 
- ' 'const', Err ) ; 

PConnect 'ac from', 1, 1, 'fix at', Err ) ; - -
PConnect 'fix at' - ' 1, 1, 'ac _at', Err ) ; 
PSndV3D Zero _vec, 2, 'fix _at', 
PSndV3D Zero _vec, 1, 'ac_from', 
Pinst 'pie', '', Err ) ; 
Dtheta := 10.0 * Deg_rad; 
Theta := -Dtheta; 
FOR i := 1 TO 36 DO BEGIN 

Theta := Theta + Dtheta; 
Computewave (Theta, Vecs); 
FOR k := 1 TO 50 DO BEGIN 

Err ) ; 
Err ) ; 

FOR 1 := 1 TO 4 DO Front (.k.).V4 (.1.) 
:= Vecs (.SUCC (PRED (k) * 2) .) .V4 (.l.); 

Front (.k.) .Draw:= Vecs (.SUCC (PRED (k) * 2) .).Draw; 
END; 
Computename ( i, Name ) ; 
PBegins ( Name, Err ) ; 

PSetR ( 1, 35, FALSE, i, Err ) ; 

Pif Phase , , TRUE, , , Err ) ; 
' ' 

PVecBegn , , 100, FALSE, FALSE, 3, p Sepa, Err ) ; 
' -

PVecList 100, Vecs, Err ) ; 

PVecEnd Err ) ; 

PVecBegn , , 50, FALSE, FALSE, 3, P_Conn, Err ) ; 
' 

Tools and Techniques 



PVecList 
PVecEnd 
PEnds 
Pincl 

END; 
PDisplay 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
PSndStr 
Pdetach 

END. 

Using the GSRs 

50, Front, Err); 
Err ) ; 
Err); 
Name, 'pie', Err ) ; 

'eye', Err); 
'X', 1, 'Dlabell', Err); 
'Y' , 1, 'Dlabel2' , Err ) ; 
'Z', 1, 'Dlabel3', Err ) ; 
'Look At', 1, 'Dlabel4', Err ) ; 
'X', 1, 'Dlabel5', Err); 
'Y', 1, 'Dlabel6', Err ) ; 
'Z', 1, 'Dlabel7', Err); 
'From', 1, 'Dlabel8', Err ) ; 
Err ) ; 

'/T3-87 





TT4. FUNCTION NETWORK EDITOR 

NETEDIT 

CONTENTS 

1. INTRODUCTION TO THE FUNCTION NET\VORK EDITOR . . . 1 

1.1 E:clitii1g a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.1 Network Diagram Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.2 Constructing the Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1.3 Generating the PS 390 Command File . . . . . . . . . . . . . . . . . . . . 3 

2. GEITING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2.1 Restarti11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 Para111eter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

3. GENERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

3.1 Display Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
3.2 Ct1rsor Sl1a1>es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
3.3 J\1e11u Selectio11s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
3.4 Permanent J\fonu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3.5 Ft111ctio11 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3.6 Co11trol Dials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
3.7 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.8 J\1acros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.8.1 Instancing J\1acros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.8.2 Compiling and Prefixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.8.3 Prefixing Constants, Variables and External References . . . . . 16 
3.8.4 Date Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
3.9 User-,Vritten Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4. I~:DI'I'ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4.1 AIJJ) 1'1'1~1\1 • • • • • . . . . . . • • • . . . . • . . . . • • . . . . . . . . . . . . . . . • . . . . 16 



4.1.1 Detail Frame . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
4.1.2 Functions . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
4.1.3 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
4.1.4 Input Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
4.1.5 Output Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
4.1.6 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
4.1.7 Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
4.1.8 In-External . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
4.1.9 Out-External . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
4.1.10 Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
4.1.11 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
4.2 MOVE................................................. 23 
4.3 MOVE AREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
4.4 DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
4.5 DELETE AREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4.6 OPfIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4.6.1 Change Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4.6.2 Redraw Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4.6.3 Replace Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4.6.4 Update Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

5. FILE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

5.1 Select Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
5 .2 Backup Net work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 
5.3 Scratch Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
5.4 Recover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
5.5 Rename Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

6. CONVERT NETWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

6.1 ASCII Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
6.2 FORTRAN GSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
6.3 Pascal GSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
6.4 Use Frame Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
6.5 Use Macro Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
6.6 Compile Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
6. 7 Suppress Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

APPENDIX A INSTALLATION INSTRUCTIONS . . . . . . . . . . . . . . . . 32 

1. Installation without Rebuilding the Executables . . . . . . . . . . . . . . . 32 

2. Installation with Rebuilding Required . . . . . . . . . . . . . . . . . . . . . . . . 32 

2. l Distribution Tape Format and Installation Procedure . . . . . . . . 33 

ii 



2.2 Customizing the Command Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
2.3 Installing the Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

3. Files that are Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

4. Error Handling 36 

5. User Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

6. User-Written Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

APPENDIX B SAMPLE EDITING SESSION . . . . . . . . . . . . . . . . . . . . 37 

iii 



ILLUSTRATIONS 

Figure 4-1. Function Network Editor Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Figure 4-2. The HELP and HISTORY Display . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Figure 4-3. Selecting the Network File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
Figure 4-4. Placing Functions With the Cross-Hairs Cursor . . . . . . . . . . . . . . . 39 
Figure 4-5. Creating Strings to Label the Dials . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Figure 4-6. Connecting Constants to Inputs With Arcs . . . . . . . . . . . . . . . . . . . 41 
Figure 4-7. Crea ting Detail Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Figure 4-8. Editing Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
Figure 4-9. Adding Input and Output Frame Connectors to a Detail Frame . 44 
Figure 4-10. Placing Functions in the Detail Frame . . . . . . . . . . . . . . . . . . . . . . 45 
Figure 4-11. The Complete Detail Frame for Rotations . . . . . . . . . . . . . . . . . . . 46 
Figure 4-12. The Next Highest Frame in the Hierarchy . . . . . . . . . . . . . . . . . . . 47 
Figure 4-13. The Complete Detail Fram1e for Zooming . . . . . . . . . . . . . . . . . . . . 48 
Figure 4-14. The Complete Detail Fram1e for Panning . . . . . . . . . . . . . . . . . . . . 49 
Figure 4-15. Using MOVE to Reposition Items in the Diagram . . . . . . . . . . . . 50 
Figure 4-16. The Top-Level Frame of the Complete Diagram . . . . . . . . . . . . . . 51 

iv 



Section TT4 

Function Network Editor 

NETEDIT 

This software package is distributed by Evans & Sutherland as a convenience to 
customers and as an aid to understanding the capabilities of the PS 390 graphics 
systems. Evans & Sutherland Customer Engineering supports the package to the 
extent of answering questions concerning installation and operation of the pro­
grams, as well as receiving reports on any bugs encountered while the programs 
are running. However, Evans & Sutherland makes no commitment to correct any 
errors which may be found. 

The NETEDIT Function Network Editor is a program to aid in the creation of 
PS 390 function networks. Networks are created as diagrams using a drawing pro­
gram with menu selections. Symbols representing functions are placed in the dia­
gram and their inputs and outputs are connected much as in a wiring diagram. 
Constants and variables can be specified. Items can be named and annotations can 
be added freely. When the diagram is complete, the Editor allows you to generate 
a file of the corresponding PS 390 ASCII commands and comments or of FOR­
TRAN or Pascal Graphics Support Routines (GSRs). Hardcopies of diagrams can 
be obtained with the PS 390 system Writeback feature (refer to Section TT9 Trans­
formed Data and Writeback). 

L Introduction to the Function Network Editor 

The Network Editor currently runs under VAX VMS 3.3 and higher, uses 
Pascal V2.2 and higher source code, and uses version A2 and higher of the 
PS 390 firmware. Files are distributed on magnetic tape and are installed as 
explained in Appendix A. 

Command files display menus which let you start the Editor and restart if a 
crash occurs. A log file is kept each time the Editor is started and this is 
used in recovery. A parameter file can be created to specify user-definable 
options, such as directory names and file extensions. 

Function Network Editor TT4-l 



1T4-2 

1.1 Editing a File 

NETEDIT stores the diagram of the networks as a hierarchical data struc­
ture in a sequential file. It allows single files to represent extended function 
networks with external contact points to other function networks or nodes in 
a display structure. It also allows you to use macros (references to libraries 
of other networks) and user-written functions. 

You can edit a file by making menu selections with the data tablet or in 
some cases with the function keys. Selections let you place items in the 
display area to create the network drawing, or change the drawing as 
needed. Other selections display HELP information, access other files, and 
generate ASCII or GSR files from the network diagram. 

1.1.1 Network Diagram Primitives 

Intrinsic functions, initial function instances, user-written functions, and 
macros are represented as boxes with numbered inputs and outputs. 
Functions are selected and placed in the display area and named using the 
Labels selection. This results in name:=F:Function_name; statements or 
equivalent GSR calls in the code file that is generated. 

Connections corresponding to CONNECT name<i>:<j>name; commands 
and equivalent GSRs are made by routing arcs from one connection point to 
another. Connecting arcs are shown as lines much like wires in a wiring 
diagram. A connector is an arc endpoint. It may be an input queue to a 
function and so part of the function box, or one of several free-floating 
types of endpoints. 

Constant connectors can be placed in the diagram and connected to function 
inputs. The value associated with the constant is entered also. This results in 
SEND value TO <i>:name; statements or equivalent GSR calls in the code 
file. 

Variables are created as connectors also. These correspond to instances of 
the VARIABLE namel; command or equivalent GSR calls. 

Tools and Techniques 



1.1.2 Constructing the Diagram 

Since the display area is limited and networks are often quite extensive, 
most diagrams will be broken up into pages. The Editor allows you to 
construct a diagram hierarchically by creating a "frame" for each page and 
by letting you create "detail frames," which represent lower pages in the 
hierarchy. 

Detail frames are shown as pseudo-3D boxes with inputs and outputs. They 
represent different functional blocks of a network. For example, the parts of 
a network which handle input from the dials can be shown as a detail frame 
within a page that shows a general network of peripherals and display ma­
nipulation. When you move into that detail frame the actual functions which 
comprise the detail will be shown. Details can be nested to any level. 

The hierarchical nature of the network diagram means you can create a 
network top down or bottom-up. Detail frames can be created first and their 
contents specified later, or parts of the diagram can be moved into or de­
leted from detail frames. The diagram can be constructed and restructured 
however you want. You navigate between frames using function keys. 

1.1.3 Generating the PS 390 Command File 

When the diagram is completed, selections from the menus allow you to 
generate a file of PS 390 ASCII commands or of FORTRAN or Pascal GSRs 
which instance the functions, connect inputs and outputs, declare variables, 
and send data as shown in the diagram. 

A sample ASCII file generated by the Editor is included in Appendix B. 

2. Getting Started 

The Network Editor is started and entered through menu selections dis­
played by a command file. After the Network Editor and associated files 
have been installed and the command files NETUSER.COM and NET­
BUILD.COM have been customized (refer to Appendix A), enter the follow­
ing command: 

$ @[HomeDir]NETUSER 

Function Network Editor TT4-3 



IT4-4 

For [HomeDir], substitute the name of the directory in which NETEDIT 
resides. This command file brings up the following Initial Menu. 

O) Exit 

Evans & Sutherland PS 300 Utilities V1 .08 
Initial Menu 

1 ) Initialize the PS 300 
2) Send a file to the PS 300 
3) Run NetProbe - Function Network Debugger (Menu) 
4) Run NetEdit - Function Network Editor (Menu) 
5) Character Font Utilities (Menu) 

Select option 4 to bring up the following NETEDIT Menu of options specific 
to running the Network Editor. 

0) Exit 

Evans & Sutherland Function Network Editor 
Maintenance Command File V1 .08 

NetEdit: PS 300 Function Network Editor Menu 

1) Start NetEdit from scratch, download support net 
2) Start NetEdit without full in it, but download support net 
3) Restart NetEdit without downloading support net 
4) Read the current release notes 
5) Start NetEdit without full init from floppy disk 
6) lnit from floppy 

Selection 1 initializes the PS 390 and loads NETEDIT. This is the selection 
most often made when the Editor is run. Selection 2 loads NETEDIT with­
out initializing the PS 390. Selection 3 restarts the Editor after a crash or an 
aborted session. Selection 4 lets you review the current release notes. Selec­
tion 5 allows you to load NETEDIT from a floppy diskette. Selection 6 in­
itializes the PS 390 from a floppy diskette. This must be done if NETEDIT 
was loaded from a floppy diskette. 

To start NETEDIT for the first time, use selection 1 or 2. When the Editor 
display appears, pick SELECT NETWORK and you will be prompted for the 
name of the file you want to edit. 

Tools and Techniques 



A sample editing session is included in Appendix B. You may wish to glance 
through this before reading the following sections. 

2.1 Restarting 

Should the program crash while you are editing or should you deliberately 
abort the current session using CTRL C, the network editor may be re­
started without reloading the support network and display structures by us­
ing the menu selections or typing the following command. 

$ @[HomeDir]NETUSER 4 3 

For [HomeDir], substitute the name of the directory in which NETEDIT 
resides. The parameters 4 3 make the menu selections for you. Note that all 
selections from the command file menus can be given as parameters to 
bypass the menu displays. 

2.2 Parameter File 

A parameter file permits each user to customize the Editor by describing a 
working set of directories and selecting some options. 

Create· a parameter file called NETPARMS.TXT. In this file, list the directo­
ries (up to 30) that you want to have in your working set. List them in order 
of preference, since the directories will be searched in this order. 

The parameter file can also contain other operating parameters. Currently, 
these consist of the following. 

@EXTENSION .300 

This sets the ASCII output file extension to .300, and may be changed to 
any other extension. GSR output files have the extension .FOR for FOR­
TRAN and .PAS for Pascal. These extensions cannot be changed in the 
parameter file. 

@SYSTEMPRIVILEGE 

The Editor is set by default to use the user/primitive function data base 
but may be changed to use system privileged functions. 

Function Network Editor TT4-5 



TT4-6 

@PRIMITIVEPROMPT ON/OFF 

Enables/disables prompting for function names immediately as they are 
instanced and placed. 

@ATTACHTO 

This specifies a parameter which is passed to the GSRs when the Editor 
starts up. The parameter contains the logical device name and physical 
device type (asynchronous, parallel). The format of the parameter is ex­
actly what the PATTACH GSR expects: 

LOGDEVNAM=name/PHYDEVTYP=type 

For more information consult the PATTACH description in the PS 390 
DEC VAXNMS Pascal GSR summary. 

The parameter file is expected to reside in the directory NETUSERDIR. You 
must make this logical assignment either manually or by inserting the fol­
lowing line into your login or similar file. 

@ASSIGN [UserHomeDir] NETUSERDIR: 

[UserHomeDir] should be replaced with the directory in which you keep 
your parameter file. This ensures that the Editor can find your parameter 
file from wherever it may be run. 

3. General Characteristics 

3.1 Display Organization 

The Editor display is divided into three sections. 

The main section is the diagram DISPLAY AREA in which you assemble 
and edit the network diagram. This is made up of two parts: a header bar, 
which describes the frame, and a work area. 

The header bar includes the name and prefix of the current frame, the file 
name, a page number, the total number of pages, and the date the file was 
last modified. The name and prefix in the header can be modified by pick­
ing the item from the bar and entering a new value. 

Tools and Techniques 



The work area is an oblong of a size which allows hardcopy to fit neatly on 
8 1/2 by 11 inch paper. Panning and zooming using the Control Dials can be 
performed in the display area. The header bar is unaffected by panning and 
zooming. 

On the right edge of the display is the MENU AREA in which the different 
Editor menus are displayed. Up to three menus may be present at a time, 
depending on where you are in the hierarchy of menu options. 

At the bottom of the screen is the MESSAGE AREA, two lines in which 
messages are displayed. The top line serves as a PROMPT and text entry 
line, and the second line displays warning and STATUS messages. The ab­
breviations I - information, W - warning, E - error are used to indicate the 
relative severity of the message. 

Figure 4-1 shows the initial Network Editor display. 

Function Network Editor IT4-7 



1T4-8 

Evans & Sutherland PS300 FunctLon Network EdLtor V1. 06 

Help 
[xi t 

Hi story 

f lie Control 
[di ting 
Convert lthorl 

·r IL£ rnmoL 
Se I ect Nehork 

Backup Nehork 
Scratch Network 

Re com 
Renm Nehork 

IS T AT US : NE M SES S I 0 N : P l ea s e~s e::...!l~e-=-c t~_.:_f...:...l ~l e::___:_f.::_o r:___::e=d..:....l t~l:...:...:n~g---------,-~---i=.--' 
IAS05$3 

Figure 4-1. Function Network Editor Display 

Function key Fl, the VIEWMENU function key, is used to alternate between 
the diagram/menu display for editing and the diagram only display for 
hardcopy and closer inspection. 

The HELP and HISTORY selections also change the display. When these 
functions are chosen, the display is as shown in Figure 4-2 

Tools and Techniques 



Evans & Sutherland PS300 FunctLon Network Edttor V1.06 
~--. -,-._--,------------~~ .... 

rllall ... 1 t1M.CC1 
..... "••Ufl-41 ll·.NM•1'14 "'"•ti.It 1.r.1•1 ........ ... .. _ .. ! •• v.u .... 1 I 

~---------~------------=:----~~==-~==-------~-----~ 

._,,,..~ 

~ 
.,..,.,..~ 

~ .... .,.~ 
£Nt•rn•I tll•pl•y •tructu,.••1 

·-m•·~ tr•n• 1• TllANSLAT£ BY 0,0,0 APPLl£0 TO Jtrot 
~ Nrot I. fl0TAT£ IN x 0. 0 APPLl£0 ro yrot; 

'"""''"~' yrot 1 • fl0TAT£ IN Y 0. 0 APPL/£0 TO zrot1 
"'"" :.rot 1 • "·flOTA TE IN Z O. 0 APPL IEO TO 1c•l•1 

1c•1- ,. • SCALE BY I. 0 APPLIED TO v1•r_cl•t•1 

Help Peg• 1 

---------------! I 
I f:ACCUMULATE I 
I I 

R. 20. 30. rn. B • - • • > : c 1 > c 1 >: · · · · - > R. 

R, 20, 30. 10 -·····->1<2> C I 
I I 

R • - • - - • • - • • • • • • • • - ··>I< 3 > C I 
I I 

R, 20. 30, 10 ···-···•:•1> C : 

R, 20. 30, 10 ···--··•:•5> C : 

R. 20. 30, 10 · • · · · -> : < 6 > C : 

I 0 C I 

I----------------- I 

20. 30, 40 

l 
Help 
[xit 
History 

·Aon mM 
Detail Frm 

1 r unctions J 
Connector 
Arc 
label 

'S[L[C!JKANIPUlAH 
!Aceu1ulate I 
Atscale 

Boo I eanJhoose 

BRoute 

BRouteC 

CBRoute 

[Route 

[Select 

CS1i tch 

Del ta 
lntegerJhoose 

lnputs_(hoose 
1:.:+ 

c=========================================~ 
lsTATUS: IAS0554 

Figure 4-2. The HELP and HISTORY Display 

3.2 Cursor Shapes 

You interact with the display through a combination of tablet and keyboard 
actions. The cursor shows not only the current location at which you are 
pointing but also the current state of the program by changing the cursor 
shape for different actions. The most basic cursor shapes indicate when 
only a menu selection is permitted (a chevron), when no action is yet per­
mitted (hourglass), when keyboard entry is permitted (downward pointing 
hand), and when an object may be placed9 moved, or deleted (various 

Function Network Editor TT4-9 



shapes). A clock shape with sweeping arm appears for extended periods of 
waiting. This will help you judge the progress of the operation. 

With most cursor shapes, an asterisk (*) indicates exactly at what point on 
the shape the stylus tip is, which is the point at which object or menu "pick­
ing" is performed. Where an asterisk is not present, as with the arrow cur­
sor shapes, the tip of the arrow corresponds to the point of the stylus. 

Cursor shapes are described in the course of the documentation as appro­
priate. An optional cross-hair may be displayed at the cursor position by 
toggling function key F2. This cross-hair is useful for aligning objects on the 
display. 

3.3 Menu Selections 

IT4-10 

The MENU AREA is divided into three main menus: the PERMANENT 
MENU (HELP, EXIT, HISTORY); the MAIN MENU (editing selections and 
further options); and the SUBMENU (object categories, file options) which 
appear as needed. The permanent menu is always present and may always 
be selected from. When a permanent menu option has been invoked, that 
option is highlighted. All cursor shapes except the hourglass or clock may 
be used to select from the menu at any time. Any incomplete action is 
canceled by making another selection. This includes keyboard entry and 
object placement. 

The main and submenus are arranged as a hierarchy which will sometimes 
display two different levels (MAIN and SUBMENU) and at other times just 
one level (MAIN). You move from menu to menu by picking selections with 
the data tablet and stylus or pressing certain function keys. The first item in 
all but the top level menu is in capital letters and preceded by a chevron (") 
to signify that it is both the title of the menu and the entry point to move 
back up. Selecting it will reset the menu display accordingly. 

Many submenus are particularly long. When a submenu is displayed it may 
be scrolled up or down by means of the first dial on the control dials unit. 
At the bottom of the submenu is a long string of dashes to indicate that you 
have moved off the bottom and that you should scroll upwards to find the 
submenu. 

Tools and Techniques 



The menu hierarchy is as follows. 

Function Network Editor 

HELP 
EXIT 
HISTORY 

FILE CONTROL 
SELECT NETWORK 
BACKUP NETWORK 
SCRATCH NETWORK 
RECOVER 
RENAME NETWORK 

EDITING 
ADD ITEM 

Detail Frame 
Functions 
Connector 

Input Frame 
Output Frame 
Constants 
Variable 
In-External 
Out-External 

Arc 
Labels 

MOVE 
MOVE AREA 
DELETE 
DELETE AREA 
OPTIONS 

Change Scale 
Redraw Frame 
Replace Functions 
Update Macros 
Print Page 
Print Page Set 

CONVERT NETWORK 
ASCII OUTPUT 
FORTRAN GSR 
PASCAL GSR 
USE FRAME PREFIX 
USE MACRO PREFIX 
COMPILE MACRO 
SUPPRESS COMMENTS 

IT4-ll 



3.4 Permanent Menu Items 

HELP 

The HELP selection provides information on individual functions, menu se­
lections, and a variety of other topics. To get information on menu selec­
tions, select HELP and then pick the menu item. To get help on a function, 
pick EDITING, then ADD ITEM, then Functions, and pick the name of the 
function you are interested in. The scrolling dial, Dial 3, can be used to 
scan forwards and backwards through long descriptions. 

EXIT 

EXIT saves any existing network that has been edited, closes all open files, 
returns the keyboard to terminal emulator mode, and exits from the 
program. If the file name is incorrect, EXIT will not allow you to leave the 
program. When this occurs, you must either scratch or rename the network 
and select EXi! again. Note that EXIT must be picked twice before it is 
selected. 

HISTORY 

This selection allows you to view the last ten pages of status messages. This 
can be useful when a code conversion produces errors and the messages 
have moved past faster than they could be read. The scrolling dial, Dial 3, 
can be used to scan forwards and backwards through the pages. 

3. 5 Function Keys 

1T4-12 

Currently, 11 of the 12 function keys are programmed to perform specific 
operations. Most keys perform only one function, but keys F8, F9, and F10 
have double functions. The keys are programmed as follows. 

Key Fl - VIEWMENU 

Changes the display for closer inspection and for hardcopy of diagrams. 
Removes the MENU area and MESSAGE area and displays just the dia­
gram at a size that produces 8 1/2 by 11 inch hardcopies. 

Key F2 - CROSS 

Displays a cross-hair to help place objects in the diagram. 

Tools and Techniques 



Key F3 - GO UP 

Moves you up one level in the diagram hierarchy from the current frame 
(context) to its parent frame. The frame you were just in appears as a 
detail frame in the new display. If you are in the top frame, you are 
notified that you cannot move higher. 

Key F4 - OUTLINE 

Displays a page which shows the structure of the diagram file. All frames 
in the file are listed, and indentation shows the hierarchical dependen­
cies. The frame currently being edited is highlighted. The outline can be 
scrolled using Dial 2. You may also pick a frame in the outline and 
proceed directly to that frame without going through the intermediate 
frames. 

Key FS - GO DOWN 

Moves you down to a detail frame in the context frame you are currently 
editing. If more than one detail frame is present, a large down-pointing 
arrow is displayed to allow you to select the detail frame you want to 
enter. 

Key F6 - FULL VIEW 

Resets the display after zooming and panning has taken place with the 
control dials. 

Key F7 - BY NAME 

Allows you to select an intrinsic function, initial function instance, mac­
ro, or user-written function by name. Press this key and then enter the 
name at the PROMPT line at the bottom of the screen. For primitive 
functions, you may place multiple copies before selecting another primi­
tive. For macros and user-written functions, you are prompted after each 
placement. 

Key F8 - MOVE (double function) 

Allows you to select MOVE or MOVE AREA without picking from the 
menu. One press selects MOVE, two presses select MOVE AREA. 

Key F9 - DELETE (double function) 

Allows you to select DELETE or DELETE AREA without picking from 
the menu. One press selects DELETE, two presses select DELETE 
AREA. 

Function Network Editor TI'4-l 3 



Key FJO - ARC/TEXT (double function) 

Allows you to place an arc or edit labels without picking from the menu. 
One press selects ARC, two presses select LABELS. 

Key Fll 

This key is currently unused. 

Key Fl2 

This key is currently unused. 

3.6 Control Dials 

1T4-14 

The Editor uses 6 of the 8 Control Dials to help in building and viewing 
network diagrams. The dials are programmed as follows. 

Dial 1 - SUBMENU 

Scrolls a submenu up and down. 

Dial 2 - OUTLINE 

Scrolls the diagram outline page forwards and backwards. 

Dial 3 - FLIPPAGE 

Scans forwards and backwards through HELP or HISTORY pages. 

Dial 4 

This dial is currently unused. 

Dial 5 - ZOOM 

Zooms in and out of the diagram. 

Dial 6 - HORIZNTL 

Pans left and right in the diagram after zooming. When panning, you 
cannot move out of the diagram work area. 

Dial 7 - VERTICAL 

Pans up and down in the diagram after zooming. Again, you cannot move 
out of the diagram work area. 

Dial 8 

This dial is currently unused. 

Tools and Techniques 



3.7 Text 

There are two types of text used in a network diagram: permanent text and 
notations. Any textual information which is in italics on the diagram is con­
sidered as notations and may be altered interactively by using the ADD 
ITEM/Labels selection. Any text shown in the standard font is permanent. 
When you are prompted for text entry (the downward pointing hand), either 
type in the string you want followed by a carriage return, or select another 
menu item to change your mind. Any text entered but not followed by a 
return will have no effect on the display or current status. 

3.8 Macros 

Macros are a means of incorporating code into a network file which is de­
scribed in another file. They may be referenced repeatedly in the same file 
and may be nested to any level. When a macro is instanced, it appears in 
the diagram exactly as a function would, except that the name is preceded 
by M: instead of F:. Any existing network file that has been created by the 
Editor can be referenced as a macro. The macro description is derived from 
the top level frame of the network file, using the list of directories set up in 
your parameter file. 

Since the Editor allows you to generate output files in ASCII, FORTRAN 
GSR, and Pascal GSR form, you must ensure that the code for all macros 
referenced in a network has the same form (i.e. ASCII, FORTRAN, Pascal). 
If you attempt to reference incompatible macros, (for example, an ASCII 
macro when you are generating Pascal code), the Editor gives a warning. 

3.8.1 Instancing Macros 

To instance a macro, use the BY NAME function key (F7) just as you do for 
selecting a primitive function, but enter the file name of the source network 
file instead of a function name. If the name does not conflict with an exist­
ing primitive function, the editor will try to find the file. 

3.8.2 Compiling and Prefixing 

Macros must be compiled using the Compile Macro option of the menu 
selection CONVERT NETWORK. Macros may be prefixed with the Use 
Macro Prefix option to distinguish multiple uses of the same macro. Com­
piling a macro produces a .MAC file, which may be incorporated into the 
code for another file with proper instancing and connections. 

Function Network Editor TI'4-15 



3.8.3 Prefixing Constants, Variables and External References 

Since final names of constants, variables, and external references may not 
be known until the final level code conversion, you can flag them to indicate 
where prefixes should be placed. By adding \M\ at the beginning of the 
name within the string, the macro prefix will be added as needed in place of 
it, but no frame prefix will be included. By adding \F\, both macro and 
frame prefixes will be added. 

3.8.4 Date Checking 

Each macro instance is flagged with the date that the source file was last 
modified. This allows the Update Macro option to check against the original 
source file for changes. Macro code which is compiled is flagged with the 
last date the source file was edited and the date the code was compiled. A 
warning is given during code compilation if the .MAC file was generated 
from a different version of the source file than it was instanced from. The 
Updating Macros selection brings the instance into agreement with the 
source file, and recompiling brings the macro code into agreement with the 
source file. 

3.9 User-Written Functions 

User-written functions are referenced the same as macros. The name of a 
user-written function is indicated on the diagram as U :name, even though it 
is instanced in the code as F:name. If a network file contains no arcs, primi­
tives, or detail frames, then it is automatically assumed to represent a user­
written function. This allows you to create a description of the user-written 
function with named inputs, outputs, and internal comments which can later 
be used as a help item on that function. No macro code need be compiled 
for user-written functions, since they generate instances exactly as primitive 
functions do. 

4. Editing 

4.1 ADD ITEM 

1T4-16 

The ADD ITEM selection allows objects to be placed into the diagram space 
to construct a diagram. Generally the object appears at the cursor shape and 
is placed by pushing down the stylus when it is in the desired location. The 
asterisk shows where the stylus tip actually is. To "discard" the object that 

Tools and Techniques 



you are moving, merely select another menu item. Note that while objects 
are seen completely before they are placed, they will be clipped against the 
boundary of the display space once placed. 

The ADD ITEM selection offers the following options: Detail Frame, Func­
tions, Connector, Arc, and Labels. 

4.1.1 Detail Frame 

A frame is a portion of the hierarchical representation of the diagram, 
equivalent to a "page" of the complete network diagram. There are two 
types of frames: the one you are in (context frame) or a subsidiary frame 
within the context frame which refers to a lower level of the diagram hierar­
chy (detail frame). A context frame is a diagram page and the program may 
handle up to 100 frames within a file, though this may be an impractical 
size for memory and load/save speeds. 

Context frames are bounded by a box outline corresponding to a higher 
level detail frame box. You can place Input Frame or Output Frame connec­
tors on this outline in the context frame to create connection points between 
the context frame you are working in and the higher level detail frame 
which references it. Each context frame has a PREFIX (upper left-hand 
corner) which can be changed one level higher on the detail frame represen­
tation. The prefix is (optionally) used before the function names to maintain 
unique naming between frames. The prefix can be edited in the current 
frame by picking the prefix in the header bar while in Labels mode. Each 
context frame also has a NAME which is used to provide a more descriptive 
identifier while editing. 

Frames are created in two ways. When a new file is created, the top level 
frame is created at the same time. From there on, the ADD ITEM/Detail 
Frame selection will add a symbol for the detail frame and also create the 
accompanying frame. 

Detail frames are displayed as pseudo-3D boxes to indicate that they in­
clude more detail at a lower level. Initially all detail frames have 0 inputs 
and outputs and are created as a minimum size detail symbol. As connec­
tors are added in the corresponding frame below, the detail symbol will be 
updated to reflect its new description. The detail frame includes a single 
line label which may be edited exactly as a function box label. 

Function Network Editor 7T4-17 



IT4-18 

Input/Output Frame connectors may be attached to the left and right edges 
of the context frame (outside box), respectively. They may later be moved 
or deleted as necessary, at which time the detail and its attached arcs will 
be modified as needed. 

Before a frame can be deleted, you are asked to verify the delete. Then the 
frame is deleted along with all contained detail frames and objects. 

To move between frames, there are three function keys: UP, DOWN, and 
OUTLINE. UP will reset the current context frame to the parent of the one 
you were working in. DOWN will move into a detail frame in the current 
context. If there is more than one, a large down pointing arrow will appear 
to allow you to select the desired detail frame. By hitting the OUTLINE 
function key, an outline page will appear for selecting any frame in the 
current file; indentation indicates the tree structure of the file. The frame 
currently being edited will be highlighted. The outline is implemented as a 
page in the diagram and may be scrolled using Dial 2. 

4.1.2 Functions 

A function is an intrinsic function or initial function instance supported by 
the PS 390 Command Language. When the menu item Functions is se­
lected, a submenu of function classes appears, organized by class. Since the 
list of classes is long, some are off the bottom of the display and may be 
seen by turning the dial marked SUBMENU to scroll up and down. When a 
class is selected, its list of functions will appear in place of the class sub­
menu for selection. When a function is chosen, its box representation will 
appear. 

A function may also be selected by name. This may be a faster method for 
many sessions. Press the BY NAME function key (F7) and you will be 
prompted for the name of a function. After the name is entered, the func­
tion box will appear and may be placed. The same box will appear at the 
cursor after one has been placed, and may be placed as often as needed. 

You must enter the complete name of the function. For "n" type functions 
such as F:SYNC(n), you are prompted for the number of outputs. 

The BY NAME key can also be used for instancing macros and user-written 
functions. Unlike intrinsic functions or initial function instances, only one 
instance of the macro or user-written function can be placed at a time. After 
one instance is placed, you are prompted for another name. 

Tools and Techniques 



A function consists of a box; a set of up to 50 inputs, which appear on the 
left edge; a set of up to 50 outputs; the name of the function type (F:func­
tion_name) on the top half of the box, and a user label, initially assigned by 
the system as P(n), written in italics (e.g. Pl). For initial function instances, 
there is no user label and the function name appears as TABLETIN, or 
whatever. This user label may be altered interactively at any time (see La­
bels below). Long names are broken at an underscore if one is present in 
the name. 

The function box should be placed within the context frame. At any point 
that arcs are being drawn, the function's inputs and outputs will be activated 
for picking as appropriate. 

The PRIMITIVEPROMPT ON/OFF option in the parameter file 
NETPARMS.TXT can be set to enable or disable prompting for function 
names immediately as they are instanced and placed. 

4.1.3 Connectors 

There are various types of connectors, but all are basically similar in func­
tion to the primitive inputs and outputs. They serve as the source or destina­
tion of an arc, which establishes a data path between two points. Currently 
there are the following types of connectors: Input Frame, Output Frame, 
Constant, Variable, In-External, and Out-External. 

The connector shapes are indicated by the direction of the arrow and a 
contained letter (C for Constant, V for Variable, E for External) and may 
be freely placed anywhere in the diagram. For connectors containing text, 
you will be prompted for an initial value and then a copy of the shape and 
the value will be fixed at that location. 

4.1.4 Input Frame 

Input Frame connectors are attached to the left-hand side of the surrounding 
box outline in the frame and represent input to the frame. When you select 
a frame connector, the system will assign a name to it. This can be changed 
using the ADD ITEM/Labels menu selection or function key Fl 0 (TEXT). 
Names will be reflected in the detail frame above as soon as you have 
finished adding them and moved to another action. Up to 50 of these may 
be placed. 

Function Network Editor TT4-19 



TI'4-20 

4.1.5 Output Frame 

Output Frame connectors are attached to the right-hand side of the sur­
rounding box outline and represent an output channel from the frame's 
contents. They are treated the same as Input Frame connectors. 

4.1. 6 Constants 

Constant connectors allow a line of text to be SENT to another point in the 
network. You will immediately be prompted for the value that you wish to 
SEND. Enter this string exactly as it would appear in the normal PS 390 
command syntax. Note that syntax checking is not currently performed by 
the Network Editor. You must then route an arc from the constant connector 
to the intended input. 

4.1.7 Variable 

Variable connectors create variables to hold values apart from primitives. 
The variable will be instanced using the optional prefix in the name if \M\ 
or \F\ are included in the name. Any connections going to these variables 
will be added when code is generated. 

4.1.8 In-External 

In-External connectors are a means of making connections to external net­
works or display structures freely. They are input points from outside 
sources of data. You should be careful in using them to make sure that 
when the code is downloaded, these connections already exist if they are 
data outputs. Also when prompted for the connection name, you should 
enter the complete reference including the port number (e.g. INNAME<l>). 

4.1.9 Out-External 

Out-External connectors are output points to external destinations. Make 
sure that when the code is downloaded these connections already exist if 
they are data outputs, though this is not as important as it is with in-external 
connectors. Also when prompted for the connection name, you should enter 
the complete reference including the port number (e.g. <append>Out­
VecList). 

Tools and Techniques 



4.1.10 Arc 

An arc is a line indicating a pathway along which data tokens are expected 
to move during execution. They are much like wires between the inputs and 
outputs of integrated circuits. They correspond to the CONNECT or SEND 
statement in the PS 390 Command Language. Arcs must start at a data 
source (frame or external input, a constant, a primitive or detail output) and 
terminate at a data target (frame or external output, a variable, or primitive 
or detail input). An arc may follow a circuitous route, making as many turns 
as necessary. You start the arc as needed and then manually route the arc to 
the desired endpoint. The pathway is automatically grid locked and bent to 
horizontal or vertical lines. If the arc is not completed by making another 
menu selection before completion, it is canceled. 

When Arc is selected, the cursor changes to an Arc Start Arrow: a single 
arrow which points to the left. Once the arc is started, the cursor changes to 
an Arc End Arrow-an arrow pointing to the right. A corner shape will 
appear at the last bend to indicate in what directions a turn can be made. 
Arcs can only be routed in horizontal and vertical segments. The point of 
bending is indicated by a four-way corner shape. Each time a new corner is 
added, this corner shape moves. Once terminated, the arc will flash once 
and then become a permanent part of the diagram, and all corners will be 
rounded off to more easily distinguish the arcs from the other squared off 
shapes and lines around them. 

Arcs are homed into the starting or ending connector. 

When an arc is placed, the editor checks the types of the output and input 
connectors and beeps and issues a warning if they are incompatible. An arc 
placed between incompatible connector types will be highlighted. These arcs 
will remain in the diagram and must be deleted explicitly. Note that connec­
tion type checking is only performed on connections between primitives. 
Connector symbols such as Constants and Variables which have editable 
strings are not checked currently. 

Duplicate arcs are deleted when a second connection is made between the 
same pair of connectors. There is no need to explicitly delete the old arc. 

Note that Arc can also be selected by pressing function key Fl 0 once. 

Function Network Editor TI'4-2 l 



TT4-22 

4.1.11 Labels 

Labels are any text strings in the diagram which can be edited. Labels ap­
pear in italics to distinguish them from text which cannot be edited. The 
first shape that appears is an arrow which points to the upper right. This is 
used to pick either a point in space at which to place a free-floating label 
(comment) or to pick any object which has a label associated with it such as 
a function box, or a previously defined label. If a new point is picked, then 
a new comment label will be placed there. Otherwise the already existing 
label will be replaced by the new value. 

Labels are limited to 80 characters. Any label larger than that is truncated 
to 80. 

Once a selection is made, the text-entry hand shape appears and is frozen in 
position where you have pointed. A second, dimmer copy of the hand will 
move about, allowing you to cancel the action by making another menu 
selection. The hand indicates that keyboard entry of text is expected. As you 
type on the keyboard, the text will appear in place at either the position of 
the previous label or at the point at which you are pointing. A second copy 
of what you are editing appears at the prompt line. 

To correct mistakes, use the DELETE key on the PS 390 keyboard, and 
deleted characters will be erased. Once the string is complete, press the 
RETURN key and the new value will be stored. You will remain in text-en­
try mode so that more strings can be entered until you enter a return. In this 
way, you can create text as a block. To change from the Labels selection, 
pick another item from the menu. 

The text editor uses the following control characters for editing effects: 

CONTROL-A Moves the cursor to the beginning of the line. 

CONTROL-B Moves the cursor back (left) one character. 

CONTROL-D Deletes the character at the cursor position. 

CONTROL-E Moves the cursor to the end of the line. 

CONTROL-F Moves the cursor forward (right) one character. 

CONTROL-K Kills (deletes) to the end of the line. 

CONTROL-R Retype line 

CONTROL-U Deletes the entire line. 

DELETE Deletes the character to the left of the cursor. 

RETURN Signals completion and disconnects the keyboard. 

Tools and Techniques 



Note that Labels can also be selected be pressing function key Fl 0 twice. 

Specially flagged labels can be used to insert random PS 390 commands in 
a network. Floating comments which start with \+ \ or \-\ indicate com­
mands to be inserted before or after the other code for the frame, respec­
tively. These commands are always written to the output file during code 
conversion, regardless of the SUPPRESS COMMENTS setting. 

The statements can be ordered by including a priority number in the flag. 
Statements prefixed with \-1 \ are guaranteed to be output before state­
ments prefixed with \-2\. This is useful for sending an ordered sequence of 
constants to the same input of a function. 

Typically, commands that should be inserted before the other code for a 
frame are 1NITIALIZE commands or display structure definitions. Com­
mands that should be specified to go at the end of the code for the frame 
are SETUP CNESS commands, and SEND statements. NETEDIT does not 
perform any syntax or validity checking on the commands. 

Names of functions, variables, and display structures that are referenced in 
these commands may be prefixed with \F\ and/or \M\ to indicate that the 
appropriate frame and/or macro prefix should be substituted during code 
conversion. 

4.2 MOVE 

All of the diagram objects may be moved once they have been included in 
the diagram, except arcs which are only moved by moving what they are 
attached to. A four-directional arrow will appear to indicate that you may 
move objects. You may pick any of the above objects for moving at any 
point in their symbol. An identical "ghost" copy will then appear to help 
you accurately place the object again. If the ghost-symbol is not placed 
within the diagram, no movement will occur. The four-way arrow will also 
shrink to indicate that you have successfully picked an object up and are in 
the second half of moving an object. Any placement rules that apply to that 
object, such as placing a connector on the frame, still apply during move­
ment. 

Function Network Editor IT4-23 



To move an object or set of objects to another frame, pick the detail frame 
that you wish to move into, or pick the outer box outline to move up into the 
parent frame of the current context frame. The frame display will change to 
the selected context and you can repeat this process until you do NOT pick 
a frame or detail. At this point you can place the object or set of objects as 
if they were still in the original frame. Arcs which have had both of their 
endpoints moved are carried along while arcs for which only one endpo~nt 
has been affected will be stretched if the move is within the same frame, 
and destroyed if the move has jumped into another frame. A detail frame 
cannot be moved down into itself, even though it may originally have been 
picked up or included in the selected area. The frame outline will automati­
cally be restructured to reflect the change made due to the move operation. 

MOVE may also be selected by pressing function key F8 once. 

4.3 MOVE AREA 

By selecting MOVE AREA and indicating any two opposite corners of an 
area box, you can move the items contained within the area. A large lower­
left angle (first point) and a large upper-right angle (second point) set the 
area. Select the lower-left and then the upper-right corners and then move 
the box to a third point. Objects within will be shifted to the new location of 
the area box. 

Detail frames must be completely contained within the area box if they are 
to be moved. Connectors and primitives need only have their placement 
point (the center of the cursor shape you notice when moving the item) 
within the area. Arcs are moved if their connection points are moved; they 
will be bent if only one endpoint is moved, but moved completely if both 
endpoints are moved. MOVE AREA will not allow you to position items 
outside of the frame area. 

MOVE AREA can also be selected by pressing function key F8 twice. 

4.4 DELETE 

TI'4-24 

Any object in the diagram may be deleted. When DELETE is selected, the 
cursor changes to a large X shape which can be used to pick any of the 
diagram objects. The object picked will be removed from the display to­
gether with any attached arcs. 

Delete can also be selected be pressing function key F9 once. 

Tools and Techniques 



4.5 DELETE AREA 

As with MOVE AREA, you can delete all items in an area by indicating any 
two opposite corners of the area box. Objects within will be deleted from 
the diagram with the same inclusion rules as in MOVE AREA. Arcs are 
deleted if either of their connection points are deleted. 

DELETE AREA can also be selected by pressing function key F9 twice. 

4.6 OPTIONS 

The OPTIONS area of the EDITING menu offers selections that are less 
often used. These are: Change Scale, Redraw Frame, Replace Functions, 
and Update Macros. 

4.6.1 Change Scale 

Change Scale is used to change the overall size of the working page from 
the current size (size 2) up to size 20, which gives 10 times the working 
space. The selected size is noted in the frame data record and is automati­
cally reset when you enter the frame. This allows you to have different sized 
frames within the same file. Frame connectors are moved automatically to 
the outer edge of the frame box. 

4.6.2 Redraw Frame 

This option will clear and redraw the frame if for any reason the display 
contains errors or was partially lost in transmission to the PS 390. 

4.6.3 Replace Function 

This selection lets you pick an existing function in the diagram and replace 
it with another. You are prompted for the name of the replacement func­
tion. The replacement can be any valid type of function: Initial Function 
Instance, primitive function, macro, or User-Written Function. When func­
tions are swapped, existing arcs are checked. They are highlighted if the 
connector types are incompatible with the new function. Arcs leading to 
inputs no longer available in the new function are deleted. 

Function Network Editor 1T4-25 



4.6.4 Update Macros 

This option locates all macros used in the file and compares them to the 
original network file from which they were derived. If the file has since been 
edited, the macro is updated. First, the display is set to the page containing 
the macro to allow you to see the related changes. Then, as with changes to 
detail frames, the existing connections are moved or deleted if the corre­
sponding frame connectors in the top level of the source file have been 
changed. When updating is complete, the display returns to the original 
page. 

Note that updating is based on the internal ID of the original frame connec­
tors. If you delete the connector, connections to it are lost even if you re­
name a new connector to the same name. This allows you to change names 
without losing the original connection, but if you delete the original connec­
tion, the editor will also delete all connections to it in the corresponding 
usage as a macro. 

5. File Control 

A network file is a structured ASCII file with an extension of .NET which is 
created and edited by NETEDIT. The FILE CONTROL selection offers the 
following options: SELECT NETWORK, BACKUP NETWORK, SCRATCH 
NETWORK, RECOVER, and RENAME NETWORK. 

5 .1 Select Net work 

TT4-26 

This selection lets you enter the name of an existing file which you want to 
edit or lets you create a new file. You may use directory names or logical 
names preceding the filename. Do not give the file an extension (.NET is 
assumed by the Editor). 

NOTE 

File names are truncated to nine characters. Before a 
new file is created, the directory list in your parameter 
file is searched from beginning to end to see if the file 
name already exists. 

Tools and Techniques 



5.2 Backup Network 

During the course of editing, you can back up the file by selecting BACKUP 
NETWORK which will save the current network file you are working in. 
Backup also happens automatically when EXITing or SELECTing a new 
network file. Backup will not occur if no editing has taken place. Simply 
pressing the MOVE function key is sufficient to "touch" a file and consider 
it edited. 

5.3 Scratch Network 

If you wish to abandon the network you are currently working on without 
saving any of it, select SCRATCH NETWORK. As a precaution against 
stray menu picks, you must select this twice before the network is scratched. 

5.4 Recover 

A log file with an extension of .LOG is kept for every edit of a file. Log 
files are purged after a normal exit from the editor, but only in the current 
working directory. If a crash occurs during editing, the log file can be used 
to recover editing that was done between saves of the file. 

Use the RECOVER selection to rerun the editing operations that were per­
formed before the crash. DO NOT LOAD THE ORIGINAL NETWORK. 
The RECOVER selection loads the network automatically. Then, if a log file 
is found with the correct name, it is read in and executed as if the com­
mands were coming from the PS 390. The diagram is reconstructed step by 
step. When the recovery is complete, a message is displayed. At this point, 
select BACKUP NETWORK to close the current log file and open another. 

If the crash was caused by the Editor, or if you wish to undo the last few 
commands that you gave, edit the log file and remove the last few lines 
before you select RECOVER. 

5.5 Rename Network 

This selection lets you rename the file you are currently working on. Note 
that the editor does not check to see if the file name you enter already 
exists. 

Function Network Editor TI'4-27 



6. Convert Network 

TT4-28 

This option will produce an output file from the diagram structure currently 
in memory. An ASCII file has an extension of . 300. A FORTRAN or Pascal 
file has an extension of .FOR or .PAS. In all cases, the name of the file is 
the same as the name of the network file. Other extensions for ASCII files 
can be set up in your parameter file NETPARMS.TXT. However, the pa­
rameter file cannot be used to change the extensions of GSR files. 

Primitives result in name := F:function name; statements. The selection 
optionally adds the prefix in each frame to the primitives within it. Arcs 
between sources and targets produce CONNECT namel<l>:<l>name2; 
connection statements or equivalent GSR calls. Constants are sent to targets 
with SEND value TO <l>name; commands or equivalent GSR calls. VARI­
ABLE connections cause the creation of the needed variables. External in­
put and output connections are connected, expecting the external code to 
already be resident in the PS 390. Free-floating labels in the diagram are 
added as comments within the code. Labels flagged with \+ \ or \-\ become 
literal PS 390 commands inserted before or after the other code for the 
frame in which they are included. 

NOTE 

This selection will use the file currently in memory, 
which may be more recent than the accompanying dia­
gram file unless you have just loaded or backed up the 
file. 

The following options are available: ASCII Output, FORTRAN GSR, Pascal 
GSR, Use Frame Prefix, Use Macro Prefix, Compile Macro, and Suppress 
Comments. Options are selected by being picked once and canceled by be­
ing picked again. When an option has been selected, it is highlighted. Some 
options are present by default. Before you select the output file type (ASCII, 
FORTRAN, Pascal) be sure to toggle the other options to the selections you 
want. 

Tools and Techniques 



6 .1 ASCII Output 

This selection generates an ASCII file from the network diagram. Choose 
this selection after selecting the other options as you wish. If an item is 
highlighted, it is selected; if not, it is disabled. The file generated will have 
the same root name as the source file and an extension of . 300 or the 
user-selected extension in the parameter file. 

6.2 FORTRAN GSR 

This selection generates a FORTRAN subroutine from the network diagram. 
The FORTRAN code is compatible with V AXNMS FORTRAN-77. Choose 
this selection after selecting the other options you want. If an item is high­
lighted, it is selected; if not, it is disabled. The subroutine file produced will 
have the extension .FOR. 

To compile and link the generated code, the host program must perform 
calls to attach and detach the PS 390 (PATTCH/PDTACH). You must also 
supply an error-handling routine, as described in the DEC V AXNMS FOR­
TRAN GSR documentation, called ERR. 

The output file generated by the Editor may be compiled independently or 
included in a file containing other FORTRAN subproGrams. You must then 
link it with your main program, the error-handler, and the FORTRAN GSR 
library. 

6.3 Pascal GSR 

This selection generates a Pascal procedure from the network diagram. The 
code is compatible with VAXNMS Pascal V2. Choose this selection after 
selecting the other options you want. If an item is highlighted, it is selected; 
if not, it is disabled. The procedure file produced will have an extension of 
.PAS. 

To compile and link the generated code, the host program must perform 
calls to attach and detach the PS 390 (PATTACH)/PDETACH). You must 
also supply an error-handling procedure as described in the DEC VAX/VMS 
Pascal GSR documentation, called PI_Error __ Handler. 

To compile the procedure, it is recommended that you include the file in 
your main program using the "% include" directive. Your program must 
also include the declarations in PROCONST.PAS, PROTYPES.PAS, and 
PROETRN.PAS. After compiling the program, you must link it with the 
Pascal GSR library. 

Function Network Editor 1T4-29 



6.4 Use Frame Prefix 

Each context frame has a prefix (upper right-hand corner) which can be 
changed by going one level higher on the detail frame representation or by 
picking the prefix from the header bar. The prefix is (optionally) used 
before the function names to maintain unique naming between frames. This 
selection lets you specify whether or not frame-prefixes are used with 
function names. If you do not select this option, prefixes will NOT be used. 

6.5 Use Macro Prefix 

This selection controls the inclusion of a special macro prefix in the ASCII 
code file in several ways. The prefix (Ml$, M2$, M3$, etc.) is used to 
distinguish multiple uses of the same macro. If this option is selected when 
the original macro is compiled, then the prefix will always be used later. 
You should use this selection if you intend to make multiple uses of a 
macro. If the option is off ·when the macro is compiled, then use of the 
prefix is optional. 

If the option is selected during final code generation, then all macros will 
include the Mn$ prefix. Otherw1.se, only those macros that were compiled to 
force inclusion of the prefix will use the prefix. 

Prefixes are a way of making multiple copies of a macro with unique 
names. At the same time, by making these optional, the user has the flexi­
bility of controlling the function names completely. 

6.6 Compile Macro 

TI'4-30 

A macro must be compiled before it can be included in the code of a net­
work that instances it. 

Macros are compiled into an intermediate form of ASCII code which is 
different from the code which the PS 390 normally expects. This form of 
output is selected by the Compile Macro option. When this is selected, the 
ASCII output is written to a macro file with an extension of .MAC which is 
specially generated to allow later inclusion as a macro. Codes are embedded 
(\n \) which can later be interpreted to provide unique prefixes and allow 
arbitrary nesting of macros. 

These codes make the ASCII code unreadable to the PS 390. In addition, 
the connections from the top frame connectors are listed at the end of the 

Tools and Techniques 



file to allow a network that instances the macro to be hooked up to the right 
inputs and outputs within the file. When one macro is compiled, other mac­
ro files are merged in with the special codes updated to allow unique prefix­
ing later. 

6. 7 Suppress Comments 

This selection lets you decide whether or not comments and frame headers 
are included in the output file of ASCII commands or GS Rs. If you choose 
this selection, no comments will be generated. If you do not choose Sup­
press Comments, comments and headers will be generated in the file. Com­
ments are included in an arbitrary order, but they are placed with the code 
for that frame. 

NOTE 

Literal PS 390 commands which are flagged with /+/ or 
/-/ are written to the output file whether or not you 
choose the Suppress Comments selection. 

Function Network Editor IT4-31 



Appendix A 

Installation Instructions 

NETEDIT is distributed on magtape along with NETPROBE, the function network 
debug program, and MAKEFONT, the character font editor program. The tape 
contains executables as well as source files. This simplifies the installation proce­
dure for sites where no modifications to the source or data files are planned, or 
where no Pascal compiler is available. Two sets of installation instructions are 
supplied below. The first is simpler and assumes you have already used the VMS 
Backup Utility to copy the distribution tape to the host. 

1. Installation without Rebuilding the Executables 

The procedure for installing NETEDIT without rebuilding it entirely is as 
follows: 

1. Set default to NETEDIT subdirectory in the A2.V02 subdirectory. 

2. Edit the NETUSER.COM and change the definition of the 
NETROOT (marked !*INSTALL-DEPENDENT) to the name of 
the directory created. Make sure this file is readable and executa­
ble by all users. See comments in Netuser.com "Site Customiza­
tion of Netuser. Com." 

3 Copy the empty user log file, NETEDITO.USR to NETEDIT.USR. 
Set the protection on this file so that it is writable by all users. 

2. Installation with Rebuilding Required 

1T4-32 

The files are installed in three stages. First, the files are transferred onto the 
VAX system. Then two menu-driven command files, NETBUILD.COM and 
NETUSER.COM are edited to customize the home directory in which the 
files are to reside. Finally, NETBUILD.COM is run to compile and link all 
of the files. 

Tools and Techniques 



2.1 Distribution Tape Format and Installation Procedure 

PS 390 VAX/VMS sites receive the distribution tape (PS 390 host software) 
in VMS Backup format. To install the VAX PS 390 host software, first 
create a subdirectory for the PS 390 software and set your default to that 
directory. Using the VMS Backup Utility, enter the following commands: 

$ Allocate MTNN: 
$ Mount/Foreign MTNN 
$Backup MTNN:PSDIST.BCK [ ... ]*.* 
$ Dismount MTNN: 
$ Deallocate MTNN: 

where MTNN: is the physical device name of the tape drive being used. 

This will create the subdirectory A2V02 .DIR which is the parent directory of 
the PS 390 host software. 

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites 
will receive a 1600-bpi distribution tape with a block size of 6400 and a 
logical record length of 80. 

2.2 Customizing the Command Files 

A menu-driven command file called NETBUILD.COM is provided to help 
you install the files. Another command file, NETUSER.COM, displays a 
programming utility menu from which NETEDIT, NETPROBE, and 
MAKEFONT are accessed. Both command files must be edited to set up the 
home directory in which the utility program files will reside. With a text 
editor, enter NETBUILD.COM and NETUSER.COM and change the entries 
which are marked with !*INSTALL-DEPENDENT*. These are the name of 
the directory in which the files will reside, the UIC reference, and the direc­
tory where the Pascal GSR library resides. 

2.3 Installing the Files 

When the changes have been made to NETBUILD.COM, start the command 
file by typing the following command. 

$ @[HomeDir]NETBUILD.COM 

[HomeDir] is the name of the directory in which the files reside. The fol­
lowing menu is displayed. 

Function Network Editor TI'4-33 



Evans & Sutherland PS 300 Utilities Maintenance 
Command File V1 .08 Main Menu 

0) Exit 
1) Initial installation - interactive 
2) Initial installation - submit as batch job 

To install the network editor files, select 1 or 2 for interactive or batch 
compilation and linking of the entire system. Note that compilation will only 
occur if the object code is missing or if the source code or related files have 
been updated. 

The other selections on the menu display further menus of options for up­
dating programs individually (selection 3), updating the data base (selection 
4), and miscellaneous support activities (selection 5). 

3. Files that are Loaded 

IT4-34 

The following is a list of all the files that are loaded from the distribution 
tape. The files are ordered by logical groupings and in the same way they 
would appear if you were working in a multiple directory. 

WORK: 
NetParms.TXT 
Init.300 
NetBuild. COM* 
NetUser.COM* 
NELinker.COM 
NEPascal.COM 
NEFileLst.DAT 
NEFileDbg.DAT 
NetProbe.PAS 
NetProbe.COM 
NetProbe.300 
NetProbeA.300 
NetEditO.Usr 

PROG: 
NEComm.MOD 
NEControl. MOD 
NEConvert.MOD 
NEDraw.MOD 
NEEdit.MOD 

A sample parameter :file 
ASCII command file to initialize the PS 300 
The NetEdit maintenance command file 
The shared user utility command file 
A command file to link programs with NEUtil library 
A conditional Pascal compilation command file 
The list of files needed for NetEdit distribution 
The list of files needed for NetProbe distribution 
The NetProbe debugger source program file 
The NetProbe maintenance command file 
The NetProbe debugger control network 
Command file to label function keys 
A dummy NetEdit usage log file-copied automatically 

PS 300 communications 
Intermediate level database management 
Network->ASCII command file conversion 
Object graphics 
High level editing control 

Tools and Techniques 



NEError.MOD 
NEGraph.MOD 
NEinfo.MOD 
NEMain.MOD 
NEParse.MOD 
NERecord.MOD 
NEUtil.MOD 
NEUtilCon.DCL 
NEUtilTyp,DCL 
NEUtilVar.DCL 
NEUtilExt.DCL 
NEError.DCL 
NetEdit.DCL 
NetEdit.PAS 
NetEdit.EXT 
DBASE: 
Config.TXT 
D*. * 
GrandCF.OLD 
GrandCF.TXT 
InitD.PAS 
NetData .. PAS 
NetFcn.PAS 
NetLoad.PAS 
NetResolv.PAS 

OldToNew.PAS 
ParsUser.PAS 
PS300Man.DOC 
FNEUser.Man 

DOC: 
Announce.DOC 
Database.DOC 
Vl08 .DOC 

MENU: 
Menu.DOC 
NetMenu.DAT 
NetMenu.PAS 

NETW: 
Editor.300 
Editor.Net 
EdMenuMgr.Net 
EdPlace.Net 
EdSysMgr.Net 

Function Network Editor 

Error handling management (see also NEUtil) 
Generic graphics support 
Function and Help database interface 
Top control loop and file control 
Parsing routines 
Low-level database management and I/0 
Shared library of string routines and file handling 
NEUtil Constants 
NEUtil Types 
NEUtil Variables 
NEUtil External declarations 
Error codes 
Global declarations 
Top-level program for NetEdit 
Global external declarations 

Configuration file function list 
Digit vectors for 1-9 input and output on functions 
PS function database 
Al function database 
Merge digits into sets of 1-9 
Generate main function database files (user, system) 
Parse the function appendix file into a database 
Bind output of NetData and NetFcn together 
Merge function and help databases and cross 
reference 
Compare PS and Al databases and produce change list 
Parse the users manual and produce indexed file 
PS 300 User's Manual appendix on functions 
Function Network editor's manual 

Announcement of new release 
Function and Help Database notes 
Vl08 release notes 

Menu construction information 
Menu outline file 
Menu construction program 

ASCII version of network editor support 
Top network file-host communications and integration 
Menu manager network-menu display and highlighting 
PointLine placement network-Drawing 
System management network-Hardcopy, Memory Alloc 

1T4-35 



EdText.Net 
FetchPr.Net 
HNet.Net 
PickMgr.Net 
Timer.Net 
*.MAC 
Editor .Doc 
Editor.DSP 
Net!ni t. 300 
NetEnd.300 
DRAW: 
NetDraw.PAS 
NETran.PAS 
NetDraw.300 
NeCursors.300 

Text entry network 
Fetch and print network-used in EdSysMgr 
Help page control-dials 
Pick manager 
Clock display timer control 
Ma~TO code versions of net files 
Description of network contents 
Main display structure 
Front end for network editor network 
Tail end for network editor network 

Simple drawing program used to draw cursors 
Translate and scale drawings 
NetDraw support network 
Combined library of cursor shapes-must be broken 
into individual cursor files for editing. 

4. Error Handling 

Should the program crash, the current routine stack will be recorded auto­
matically in NETEDIT .ERR. An error message will appear on the status line 
at the bottom of the screen, and the terminal will be reset to the normal 
terminal emulator mode. After a crash, you should save the error file, along 
with the log file that is kept during a session (Filename.LOG) and your data 
file (Filename.NET) as they are so that they are available for later examina­
tion during attempts to identify the problem. 

5. User Log File 

NETEDIT. USR is a log file that is kept to indicate who uses NETEDIT and 
when. This file may become long and should be cleared occasionally by the 
system manager. If you have no use for the log file, it can be disabled in the 
NETUSER.COM command file. 

6. User-Written Functions 

1T4-36 

Source files for the user-written function used by NETEDIT are also pro­
vided, along with a command file to build the .300 files which may be 
downloaded to the PS 390. However, to rebuild the user-written functions, 
you must have the Motorola 68000 cross software, which is not supplied by 
Evans & Sutherland. 

Tools and Techniques 



Appendix B 

Sample Editing Session 

In this sample session, NETEDIT is used to design a simple function network 
which allows the control dials to be used to rotate, translate, and scale displayed 
objects. The transcript illustrates the sequence of operations used in creating the 
network, and shows how to place functions, constants and arcs; create and manipu­
late detail frames; and make connections to external display structures. 

When NETEDIT is started, it will ask you to select the network to be edited. In 
Figure 4-3, the SELECT NETWORK menu item has been selected and the name of 
the network (DIALNET) typed in. The network file will be called DIALNET.NET 
and the file containing the ASCII code will be named DIALNET.300, unless speci­
fied otherwise in the parameter file. 

Function Network Editor IT4-37 



TI'4-38 

Evans"& Sutherland PS300 Functi..on Network Edi.tor V1. 06 

Hrlp 
£xi t 
History 

file Control 
Edi ting 
Convert Mehork 

·r 1u comoL 
j Se I tct Network I 
Backup Nettotk 

Scratch Nehork 

Recover 

Renm Nehork 

[Enter NetworkNeme: is Jn~'!:.__ 

(S"TATUS 
1Aso555 

Figure 4-3. Selecting the Network File 

In Figure 4-4, the menu items for EDITING, ADD ITEM, and FUNCTIONS 
have been selected to get the Functions menu. Here, functions are being 
placed in the top-level frame. All of the functions that have been added here 
are Initial Function Instances, so they have not been assigned user-defined 
names as primitive functions are. The cross-hairs cursor has been turned on 
to help align the function boxes. 

Tools and Techniques 



Evans & Sutherland PS300 Functi.on Network Edi. or v 1. 06 

N•11e 1 rre11• t Pref •x: Fl_ 
flleN•~•: O!ALNET Help 
D•t• Hodl1ted: 1·JUN·198+ 01,21,s~.ss Tote! Pegee: I Par•nt: .. P~goNo: l 

-----------1 [x[t 

History 

' ' 2
DIAL9 ' . . 

·Aoo IHH I . , 
Detail rme I 

lruncti~-~ 

fioum1 J 
[onnector 

Arc 

Ii DLAB[L2 ·1 label 

li DLA!Cll J F==== == 

·1Nlll~L OU1PU!i 
~ OLAB[L~ ·1 Ol abe 11 

Olabe 11 
~0LAB[L5 1 Ol abe 13 

Ii OLAB[L6 ·1 
Olabe If 

~~' --·-- lllili.eli 

J ! ~ DLA BEL b I Olabe I b ~ i 
I Olabe l 1 
I 

r ·-
0Label8 

! OSetl 

L 
0Set2 

I 

DSet3 

i 1 ~5eH 
l J ~=-----. 

Figure 4-4. Placing Functions With the Cross-Hairs Cursor 

In Figure 4-5, the CONST ANT item has been selected from the EDITING 
menu to allow placement of constants, corresponding to PS 390 SEND com­
mands. The user is prompted for the value to be sent as each constant is 
positioned. Note that the constants are not connected automatically to func­
tion inputs. Here, strings to label the dials according to their functions are 
being created. 

Function Network Editor TF4-39 



TI'4-40 

Evans & Sutherland PS300 Functi..on Network Edi.tor v 1. 06 
N•~•: f~• •1 Pl'ef l x1 f" 1 _ 

ot• l P•g••: 1 Parent: Pa;•Na: 1 
Help 
[xit 

rt loN•~•: 0 ALNtT 
D•t• Hodtf t• : 1·JUN·1'184 07: 21: 54. SS 

History 

I 
2 

DI LS 

"ADO mK 
Detail f rm 
r unctions 
I Connector =:J 
~re 

Label 

"CONNECTOR 
Input frm 

Output Frm 

!Constant I 
Yar[able 

ln ·External 

OuHxterna I 

--
I SCALE 

Figure 4-5. Creating Strings to Label the Dials 

Arcs have been added to connect the constants to the function inputs in 
Figure 4-6. Arcs may be inserted either by selecting the Arc menu item or 
from the ARC/TEXT function key. 

Tools and Techniques 



Evans & Sutherland PS300 Functl.on Network Edi.tor v 1. 06 

Ne,.•: Fre11e 1 Prefix: r1_ 
fi. leNa••: OJALNET Help 
D•'t• Hodi.f~ed: 1-JUN·1'184 07:21:54.SS Tot• I Pagee: I Pllr•nt: -· PegeNo: 1 

[x(t 

History 

2
DIALS I 

I . 
·Aoo I !EH I 

I 

: Detail frm 

r unctions 
'KllOTA1£ • C 1 

J Connector 
~ OL.Alltl I 

jArc I 
'Yf/OfATE ' ~1 

·1 label : OLA8CL2 

'UOTATE ' 1 l ~ Dl.AICL.l 

' SCAl.l' 1 

J iouerL4 

'liORIZNTl' 1 1 ' ~DL.ABCLS 

'YCIPT/CAL' ~1 

!ouaCL6 ·1 

lsHTUS: 
IAS0558 

Figure 4-6. Connecting Constants to Inputs With Arcs 

Detail frames are being created in Figure 4-7. Instead of putting on one 
page all the functions to turn input from the dials into transformation matri­
ces, using detail frames allows the details to be split up into logically inde­
pendent blocks. Notice that all detail frames initially have no inputs or out­
puts; the names and prefixes are assigned default values automatically. 

Function Network Editor TI'4-41 



IT4-42 

Evans & Sutherland PS300 FunctLon Network EdLtor V1. 06 
Ne11e 1 r re11• I 
fi loNeru: OIALNET 
Dete ModlHed' 1-JUN-1984 07,21•54.55 Totol Peg••,.2 

' 2
DIAL5 

·x110TA1£ ' 1 

~ DLAllCL 1 

[=============== 
~TATU 5_: ______ _ 

Figure 4- 7. Creating Detail Frames 

Help 
[xit 

History 

·Ano mK 
IDetall Frm 

r unctions 

Connector 

Arc 

La be I 

IAS0559 

The prefixes and names of detail frames, along with all other text which is 
displayed in italics, may be edited by selecting the Labels menu item and 
picking the text to be edited. Text can also be edited by pressing the ARC/ 
TEXT function key twice. This feature can also be used to add "floating" 
comments. Labels are being added in Figure 4-8. 

Tools and Techniques 



Evans & Sutherland PS300 FunctLon Network EdLtor Vl. 06 
~-~~~~~~~~~~~~~~~~-~~~-~~~~~ 

Neine: Fremel PT.fl )C: f 1 

Help 

[xit 

fi leNa~e: OIALN[T 

O•t• Modifiod l·JUN-1'184 07:21:54.55 Total P•ge•: 4 P•rent · · PageNo: 1 

History 

~ PoOO 
I fr ... ; _ 

.ADO llEH 
Detail f rm 

f unc tlons 
[onnector 'XROTAT£ ' C l 

~ Ol.AB[L 1 

Arc 
'r!WTA!£ '~I 

~ DU.8(L2 JLabel I 
'ZRO!ATE ' C 1 

~OLAB£L3 -----= 

'SCALE '~ 1 
! OU.BEU 

'HOR/?NTL' r 1 

~ DLABEL5 

'VCllTICAL' ~I 
! OLA8tL6 

an 

(iiATUS: 
IAS0560 

Figure 4-8. Editing Labels 

In Figure 4-9, the GO DOWN function key has been pressed and the "rota­
tions" detail frame has been selected to edit the "inside" of the detail box. 
This frame will have three inputs (from the dials for X, Y, and Z rotations) 
and three outputs (for the corresponding rotation matrices). Input and out­
put frame connectors have been placed by selecting the INPUT FRAME and 
OUTPUT FRAME items from the CONNECTOR menu. These items may 
be placed only on the left and right edges of the frame, respectively. 

Function Network Editor TT4-43 



1T4-44 

Evans & Sutherland PS300 FunctLon Network EdLtoll' v 1. 06 

Ne11e1 ,.,. .... 2 Proefixt rootatione 
f'l leNe1H1 DI ALNt.T .·• Help 
Dete Hodlfled1 4•JUN·1984 07109154.70 Tot•I Pagee:4 Parenti t Paga No I 2 

[ii t 

Hiatory 

·Aon mN 
~, 4~ Detail f rm 

r unctions 
I Connector I 
A re 

~1 I~ label 

"CONNECTOR 

~, '~ 
Input r rm 

!Output F rm I 
[onstant 
II o 

"'Ii mrnrr 
ln·[xternal 

OuHxternal 

!STATUS: 
-

IAS0561 

Figure 4-9. Adding Input and Output Frame Connectors to a Detail Frame 

In Figure 4-10, the input and output frame connectors have been assigned 
descriptive names using the LABEL function. Functions are now being 
placed in the detail frame. Since these are intrinsic functions, they are as­
signed default names by the Editor as they are instanced. These may also be 
edited using the LABEL function. 

Tools and Techniques 



Evans & Sutherland PS300 F!.Jnctl.on Network Edl.tor v 1 ' 0 6 

Name: Freme2 Prefl><: rotat~one 
f\ leNanie: D l AL NET He Ip 
D•te Mod<fied: 4·JUN·l<184 07:0<1:54.70 Total P•9ea:4 Pe rant: 1 Pa9roNo: 2 

Exit 
H[ story 

P6 'AOO lfEH 
~6'•}U 1t 

r~r, DXROTA TE 1 
JJt l"Ot•tlon~ 

Oeta[] frm 
jr unctlons J 
Connector 

I Arc 
~--r~_lt• y 

f 
y rot•tion .L.L. I 

I ~ LOV<l 

~F OYR'OTAH 

i 

I 
'JRANSfORWJON 

\ CRotate 
~o'olt• , I rot•tlon~ 

CS ca I e 

OS ca I e 

OXRotate 

[Iifuit_e -~ 
OZRotate 

Sea I e 

XRotate 

YRotate 

ZRotate 

I 
I 
I 
I 
I 

lsTATUS: 
IAS0562 

Figure 4-10. Placing Functions in the Detail Frame 

Constants and arcs have been drawn. Figure 4-1 lshows the completed de­
tail frame for handling the rotations. 

Function Network Editor 

I 

1T4-45 



IT4-46 

Evans & Sutherland PS300 FunctLon Network EdLtor Vl. 06 
Name: freme2 Pre:fi.x: rotet~ons 

fi leName: D!ALNET 

O;ite Modified: 4-JUN-1'184 07:0q:S4.70 Tot•l Pag0G:4 Parent: 1 PeggNo: 2 
He Ip 

[x(t 

H L story 

P8 'ADO IHH 
Oetat! frm 

functlons 

Connector 

pp 
jArc I 

ti.<>'•lt• y 

o.o~,ornm~ 100. 0 • 

l abe I 

PIO 

00~~ 
100.0 ' ~ 

~~lt• ii' 

l. ___ '_______, 

[iiiTUS: 

__ =:-] 
~ 

IAS0563 

Figure 4-11. The Complete Detail Frame for Rotations 

Figure 4-12 shows that when the GO UP function key is selected, the next 
higher-level frame in the context tree is displayed again. Notice that the box 
for the "rotations" detail frame has grown and that the input and output 
connectors that were placed inside now appear. The connectors appear in 
the same order at both levels; the size of the detail frame box on the higher 
level is adjusted automatically, depending on the number of connectors. 

Tools and Techniques 



Evans & Sutherland PS300 FunctLon Network EdLtor V1 06 
Name: Framal 

F• leName: DIALN[T 

Oa1e Modd[ed i-JUN·l984 07:09:54 70 To1a l Pages· 4 Parent · · PageNo: 1 

/'. rat•tlan• 

':.'ROTA1£ ' [ 1 

~ OL AB[ L 1 

1 

~ 0LAB£L6 

lsTATUS: 

Figure 4-12. The Next Highest Frame in the Hierarchy 

He Ip 

Exlt 
H (story 

"ADO I fEH 

De tall F rane 
F unct(ons 

[onnector 

E=--===-_J 
l abe I 

The detail frame for "zoom" has been created in much the same way. 
Figure 4-13 shows the completed frame. 

Function Network Editor TT4-47 



1T4-48 

Evans & Sutherland PS300 Functlon Network Edltor V1 .06 
NeM•: fra11•3 
filaNaMe: OIALNET 
Oat• Modlft•d: 4-JUN-1984 07:09:54 70 Total Peg..,i:4 

i I 

/. 0 
I. 0 

1000. 0 
o. 0 

~-------

c============== 
lsTA_TU_S_:~~~~~~ 

Prefl><1 zoo11 

Perent1 1 Pag•No: 3 

___ ,J 

I 

Figure 4-13. The Complete Detail Frame for Zooming 

Help 
[x( t 

History 

·Aoo 1m 
Detai J ·f rm 
functions 

Connector 

!Arc 
La be I 

IAS0565 

Figure 4-14 shows the completed detail frame for "pan"-horizontal and 
vertical translation. The output of the detail box is a 3D vector. 

I 

Tools and Techniques 



Evans & Sutherland PS300 Functlon Network EdLtor Vl. 06 
Name; Fra111e4 Pref(~: pen 

fl leNarae: DIALNET 
Oat" Mod'1'Led: 4-JUN-1984 07:41:2'1 87 Tot•l Pegea 4 

Plf 

_fl ;-l_rt------,,--------11 I 

T f 1 XVECTOR vJd((J, IJ. /J. 'I> r. ACCll"Ul~f[ /J. O~I S . 

I. 0 4 

1000. 0 • 
P1' -10/JO 0 4 

~d-•f_U~y~-----1' I 1----~ 1 r1 YY[CTOA 

He! p 

hit 
H[story 

"AOO lfEH 
Oeta. l f rm 
f unct[ons 

Connector E----.1 
label 

[ 
[·~ST~A~T=U=S=================================================================~1 

Figure 4-14. The Complete Detail Frame for Panning 

Because the sizes of the detail frame boxes change as they are edited, it is 
often necessary to adjust the layout of the diagram after they have been 
completed. In Figure 4-15, the MOVE feature is being used to reposition a 
function box. 

Function Network Editor 174-49 



TT4-50 

Functi.on Network Edi.tor VI 06~-
PreflX: rl_ 

He Ip 
t •I P•g.r• 4 Parent: ·- PegeNo, , 

hit 

Evans & Sutherla d P5300 

Name: f rem• I 

flleN11ru: DIALN[T 

D•t• Hodif<•d: 4·JUN·1984 12:15:09.05 To 

Hi story 
~~~p 2/ 

r r,. ••• 2 
2

DIAL 5 d•lt• " x rot•tion 

d•7 r• y y rett• tlon [itttijt-·----
d•I t• 1 1 rot•f'ion 

Add lte, 

E~ 
~ ! 

J Move Area 
•c•I• •• tri x 

Oe 1 ete 

'XROTA!E ' C 1 

~ OL"8CL 1 

@3 
Delete Area . Optlons 

x tr•n•l•'fi. an 

y 

'Yl10TA1C ' T 

! OLABEL2 

'UIO!Af£ ' C 1 

~ OLAB(L J 

' SCAlC ' 1 

~ OLABCL• 

'HOR/ZNTL' C 1 

~ DU.B(LS 

'Y£RT/CAl' !?-J' 
: DLA8EL6 

i 

! 

c==-~=--·---=====+==-=-----------·--------[SJil u 5 ------------·---------------·----~-- =1 
,____ _________ ___,_______ I AS0566 

Figure 4-15. Using MOVE to Reposition Items in the Diagram 

Figure 4-16 shows the top level frame of the completed diagram. Arcs have 
been inserted to route the output from the dials to the appropriate places. 
Connectors to external display structures were added. The floating com­
ment, added using the Labels feature, describes how to set up these display 
structures. 

Tools and Techniques 



N e t w o r k E d l. t o r V 1 . 0 61 :•l~-----
P ref, x. fl_ 

Help 
P•rent - - PageNo 1 

Exit 

Evans & Sutherland PS300 Functl.ori 

1-N-;~~ Fr arn e 1 

r

f,!eNarne IJIALNET 

Cate Mod,fl~d 4 JUN 1984 12: 15:09.05 Total Pege,.-4 

----~----

11

---------,0,-.-... _=:,___0n•~P -2--­

r,. ••• ; 

I I 1 1-------------4 d•lt• }( 

1

1

11

! ~'O_l_ALS-~j, =-~[ ~:~:~:~: :_y ,_ot•~'~~'°'-r 
·,tROTAf{" '~ 

I i v J~DLABELI •col• .. rrlx 

. I 

I 

I ''""". "i• __ L•a_cu_'I 
I 'ZROTATE: ' [ I 

I : DLABEL l 

i 

~OLABEL5 

External display structures: 
trans : = TRANSLATE Bl 0, 0, 0 APPL JED TO xrot, 
xrot : = ROTATE IN X O. 0 APPL /ED TO yrot; 

., 'HOR/ZNTL' [ I 

'I yrot : = ROTA TE IN Y O. o APPL JED TO zrot; 
zrot : = ROTA TE IN Z 0. 0 APPL /£D TO scale; 

~--- scale · = SCALE BY I. 0 APPL. /ED TO user_data; 

Hi story 

"AOO IIEH 

Oeta. I f me 
functions 

Connector 

Arc 

jLabe I 

[==================================================1 [s TATU S 
IAS0567 

Figure 4-16. The Top-Level Frame of the Complete Diagram 

Here is a listing of the ASCII code produced by selecting the CONVERT 
NETWORK menu item. 

To generate the file, the following options were selected. 

• Use Frame Prefix (off) 

• Suppress Comments (off) 

• Use Macro Prefix (off) 
{ Code generated by Network Editor 8 } 
{ DIALNET } 

Function Network Editor 1T4-51 



TT4-52 

{ Frame-Prefix Macro-Prefix } 
{ Frame2:rotations } 

rotationsP8:=F:DXROTATE; 
rotationsP9:=F:DYROTATE; 
rotationsPlO:=F:DZROT>\TE; 

SEND 100.0 TO <3>rotationsP10; 
SEND 0.0 TO <2>rotationsP10; 
SEND 100.0 TO <3>rotationsP9; 
SEND 0.0 TO <2>rotationsP9; 
SEND 100.0 TO <3>rotationsP8; 
SEND 0.0 TO <2>rotationsP8; 

{ Frame3:zoom } 

zoomPll:=F:DSCALE; 

SEND 0.0 TO <5>zoomP11; 
SEND 1000.0 TO <4>zoomP11; 
SEND 1.0 TO <3>zoomPll; 
SEND 1.0 TO <2>zoomP11; 

{ Frame4:pan } 

panP12:=F:XVECTOR; 
panP13:=F:YVECTOR; 
panP14:=F:ACCUMULATE; 

CONN panP12<1>:<1>panP14; 
CONN panP13<1>:<1>panP14; 

SEND -1000.0 TO <6>panP14; 
SEND 1000.0 TO <5>panP14; 
SEND 1.0 TO <4>panP14; 
SEND 0.001 TO <3>panP14; 
SEND v3d(0,0,0) TO <2>panP14; 

{ Framel:Fl 
{External display structures:} 
{ trans := TRANSLATE BY 0,0,0 APPLIED TO xrot; } 
{ xrot .- ROTATE IN X 0.0 APPLIED TO yrot; } 
{ yrot := ROTATE IN Y 0.0 APPLIED TO zrot; } 
{ zrot := ROTATE IN z 0.0 APPLIED TO scale; } 
{ scale := SCALE BY 1.0 APPLIED TO user_data; 

CONN DIALS<l>:<l>rotationsP8; 

Tools and Techniques 



CONN DIALS<2>:<1>rotationsP9; 
CONN DIALS<3>:<1>rotationsP10; 
CONN DIALS<4>:<1>zoomP11; 
CONN DIALS<5>:<1>panP12; 
CONN DIALS<6>:<1>panP13; 

CONN rotationsP8<1>:<1>xrot; 
CONN rotationsP9<1>:<1>yrot; 
CONN rotationsPlO<l>:<l>zrot; 

CONN zoomPll<l>:<l>scale; 
CONN panP14<1>:<1>trans; 

SEND "VERTICAL' TO <l>DLABEL6; 
SEND "HORIZNTL' TO <l>DLABEL5; 
SEND " SCALE " TO <l>DLABEL4; 
SEND "ZROTATE " TO <l>DLABEL3; 
SEND "YROTATE " TO <l>DLABEL2; 
SEND "XROTATE " TO <l>DLABELl; 

Function Network Editor IT4-53 





TIS. FUNCTION NETWORK DEBUGGER 

NETPROBE 

CONTENTS 

1. GETIING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2. ADDITIONAL FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.1 ASCII Network File - Original Input . . . . . . . . . . . . . . . . . . . . . . . . 4 
2.2 Active Output Name File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 
2.3 Debugging Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

APPENDIX A INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Distribution Tape Format and Installation Procedure . . . . . . . . . . . . . 7 
Customizing the Command Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Compiling and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Files that are Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

APPENDIX B CUSTOMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

APPENDIX C PORTING TO OTHER MACHINES . . . . . . . . . . . . . . 11 



Section TIS 

Function Network Debugger 

NETPROBE 

This software package is distributed by Evans & Sutherland as a convenience to 
customers and as an aid to understanding the capabilities of the PS 390 graphics 
systems. Evans & Sutherland Customer Engineering supports the package to the 
extent of answering questions concerning installation and operation of the pro­
grams, as well as receiving reports on any bugs encountered while the programs 
are running. However, Evans & Sutherland makes no commitment to correct any 
errors which may be found. 

One of the most critical aspects of the PS 390 graphics programmers' job is isolat­
ing and correcting problems in function networks. NETPROBE, developed at Evans 
& Sutherland, can be used as a function network debugger or as a guide in writing 
your. own network debugging program, allowing you to see the data values the 
network generates as it runs. NETPROBE is written in DEC Version 2 Pascal for 
use on a VAXNMS 3.3 and higher system. 

The NETPROBE host program works in two stages: it first reads an ASCII function 
network file and produces a list of the actively used outputs; it uses this list to 
create the debugging network and display structure for up to 300 outputs. It can 
then be downloaded on top of the network to be debugged, and data from the 
function outputs are displayed. The user can optionally edit the list of outputs to 
reorder or modify the display, or generate a list to focus on particular segments of 
a function network. Each function output used in the network is displayed on a 
separate display line in a 15-item page, showing the name of the function and 
number of the output, the value of the last output, and optionally, a count of how 
many times the output has fired. Function keys provide control over which of 
twenty pages are displayed, clear the currently displayed values, and disable the 
display. 

NETPROBE is invoked through a VMS command file (NETUSER.COM) which 
allows the user to initialize the PS 390, download the ASCII command files, run 

Function Network Debugger ITS-I 



ITS-2 

the Function Network Debugger, and run the Function Network Editor (if 
installed). 

1. Getting Started 

Installation instructions for NETPROBE are contained in Appendix A. When 
all of the files have been installed, run NETPROBE using the NETUSER 
command file. 

To bring up the initial menu of the PS 390 utility programs enter: 

$@[HomeDir]NETUSER 

where the name of the directory in which NETPROBE is installed is substi­
tuted for HomeDir. 

Evans & Sutherland PS 300 Utilities V1 . OB 
Initial Menu 

O) Exit 
1) Initialize the PS 300 
2) Send a file to the PS ~300 
3) Run NetProbe - Function Network Debugger (Menu) 
4) Run NetEdit - Function Network Editor (Menu) 
5) Character Font Utilities (Menu) 

Use Option 2 or an equivalent procedure of your own to first download your 
ASCII function network file to the PS 390. This must be done before the 
debugging network can be sent to the PS 390. Then select Option 3. You 
will be presented with the following Debug Menu: 

Evans & Sutherland Function Network Utility Command File V1 .06 
NETPROBE: Function Network Debugger 

0. Exit 
1 . Prepare a debug module - complete and sorted 
2. Prepare a debug module in stages 
3. Send a debug module to the PS 300 
4. Label the control function keys. 

Option 1 creates a list of output names and uses the list to create a debug­
ging network, performing both operations in a single pass and producing a 

Tools and Techniques 



sorted debug display for all the outputs in the network. This is useful for 
small files. The command file prompts you for a file name, runs 
NETPROBE and outputs a list, and then uses the VAX Sort utility to sort 
the list. It immediately runs NETPROBE again and prepares the debugger 
network and display structure. The default extension for input file names is 
.300, and the extension for the output name list is .PRB. 

Option 2 allows you to directly run NETPROBE to generate an output list or 
to use a list to create a debugging network. You are presented with the 
following menu: 

NETPROBE: Please provide a source file in one of two formats 

Original PS 390 ASCII Network commands (any extension) 
Assumes CONNECTS are contained on single lines and are the 
first non blank words on the line 

OR 

Output name list: (no extension or .PRB) 
a list of output names and comments (" " or "{") 

OR 

1. Turn Counting Option ON (OFF) 
Enter filename, Option, or RETURN to exit: 

If any extension other than .PRB (the output list extension) is used, it is 
assumed the filename you provide is an ASCII network file and an output 
list is created. If no extension or .PRB is used, it is assumed you are provid­
ing an output list and a debugging network is created from it. 

If you enter "1", the count option is toggled so the debugging network 
counts the number of times the output is fired and displays the current 
count. A counted debugging network is slow and should be used only for 
small numbers of outputs. 

After using NETPROBE to generate an output list, you can also edit the list 
to reduce the number of outputs, improve the quality of printing, or add 
some outputs. To do this, exit the NetUser command file and using the text 
editor, edit the .PRB file you have just produced. Re-enter NetUser and the 
Debug Menu and select Option 2 to create a debugging network using the 
modified output list. 

Function Network Debugger 1T5-3 



1T5-4 

Option 3 sends both the debugger control network and the debugging net­
work just produced to the PS 390. During the download of the debug struc­
ture, status messages appear on the bottom line of the display, including an 
end message. The debug control network includes the standard support net­
work for any of the debugging structures, and includes the top-level display 
structure and implementation of the function key controls. You must then 
press SHlFT/LINE LOCAL (PS 300 Style) or CTRL/LOCAL (PS 390 Style) 
to enable the function keys properly. 
Once the network and the debugging network are downloaded to the 
PS 390, the function keys can be used to control the debug display as 
follows: 

Shift-FKey 9: 
Shift-FKey 10: 
Shift-FKey 11: 

Shift-FKey 12: 

PAGE -
PAGE + 
CLEAR 
SHOW Y/N 

Display previous debug page 
Display next debug page 
Clear the current values and counts 
Enable or disable the debug display 

You must press SHlFT and then the associated key. If you are not actively 
using these function keys for your own function network, you can download 
labels for the function keys by selecting Option 4. 

2. Additional Features 

2.1 ASCII Network File - Original Input 

NETPROBE reads in PS 390 command files and generates a list of the func­
tion outputs that appear in CONNECT statements. For example: 

CONNECT a<1>:<2>b; 

produces 

a<l> 

in the output list. 

The CONNECT commands must be coded on single lines with no comments 
or other commands preceding the CONNECT command on the same line. 
For lines in which the CONNECT command follows a comment or another 
command on the same line, the outputs are not listed. For example, in: 

{Comment} CONNECT a<l>:<l>b; 

the output a<l> is not listed. 

Tools and Techniques 



In: 

CONNECT a<l>b; CONNECT b<l>:<l>c; 

the output b<l> is not listed. 

Commands that have been commented out are ignored. 

Some versions of Pascal may not tolerate a null line at the end of a file and 
may produce an error in reading the file. In this case, the last line should 
contain at least a space. 

2 .. 2 Active Output Name File 

You can either run NETPROBE in one pass (Debug Menu, Option 1), or in 
stages (Option 2) which allows you to edit the output name file (.PRB). You 
might want to edit the output name file to improve the way the debug 
display appears, to increase the efficiency of the debugging network, and to 
reduce delays caused by very active networks and frequently sampled 
peripherals. 

The output name file may contain blank lines to separate sets of display 
items or it may contain comments. Any line beginning with a space or left 
curly brace ({) is treated as a comment and empty lines (O characters) are 
ignored. 

Sorting facilitates lookup. The NETPROBE program discards duplicate 
output names whether the list is sorted or not. 

The debug structure may result in a large and slow network bogged down by 
frequently sampled interactive devices (tablet and dial). To reduce the 
traffic during debugging, either edit the output name file and remove some 
of the outputs being monitored, or cut the sampling rate of the tablet and 
dials. 

NETPROBE generates extensive code for each output. With moderate to 
large networks (over 100 outputs) in which a lot of activity is expected, split 
the output name intermediate file into sections and create debugging net­
works for each of these separately for debug sessions focused on different 
network segments. 

The output name file can be used to check for spelling errors by listing its 
contents. 

Function Network Debugger 7T5-5 



ITS-6 

2.3 Debugging Network 

The debugging network and display file are downloaded on top of your 
network and compete with it for memory, display capacity, function execu­
tion, and object names. 

Memory can be reduced and function execution enhanced by shortening the 
output name file to focus on limited sections of the network. All 
NETPROBE-generated named entities (function and display structures) use 
a D$ prefix to help reduce naming conflicts, e.g., D$pr_1. Please do not use 
this prefix in your own files. 

Once a debugging network has been passed to the PS 390, to eliminate it 
use the INIT command (refer NetUser1 Option 1) and retransmit the 
function network. 

Tools and Techniques 



Distribution Tape Format and Installation Procedure 

Appendix A 

Installation 

PS 390 VAX/VMS sites receive the distribution tape (PS 390 host software) 
in VMS Backup format. To install the VAX PS 390 host software, first 
create a subdirectory for the PS 390 software and set your default to that 
directory. Using the VMS Backup Utility, enter the following commands: 

$ Allocate MTNN: 
$ Mount/Foreign MTNN 
$Backup MTNN:PSDIST.BCK [ ... ]*.* 
$ Dismount MTNN: 
$ Deallocate MTNN: 

where MTNN: is the physical device name of the tape drive being used. 

This will create the subdirectory A2V02 .DIR which is the parent directory of 
the PS 390 host software. 

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites 
will receive a 1600-bpi distribution tape with a block size of 6400 and a 
logical record length of 80. 

Customizing the Command Files 

To modify the two command files NETPROBE.COM and NETUSER.COM: 

1 Using a text editor, search for and change the entries which are 
marked !"'INSTALL-DEPENDENT"'. These identify the home direc­
tory in which the NETPROBE files are installed. 

2 In the NETUSER.COM file, if you don't intend to install the NetEdit 
file, comment out Option 4 in Top_ Menu. 

3 Exit from the text editor. 

Compiling and Linking 

NETPROBE is automatically compiled and linked when NETBUILD.COM is 
run to install the Function Network Editor. (Refer to Appendix A of 

Function Network Debugger TI'S-7 



ITS-8 

Function Network Editor for instructions on running NETBUILD.COM.) 
NETPROBE is compiled and linked on its own as follows: 

Enter: 

$@[HomeDir]NETPROBE 

where the name of the directory in which NETPROBE is installed is 
substituted for HomeDir. 

The Main Menu is presented: 

Evans & Sutherland Function Network Debugger 
Maintenance Command File Vl06 

Main Menu 

0. Exit 
1. Compile Debugger (NonDebug) 
2. Compile Debugger (Debug) 
3. Copy Debugger to Tape 
Enter selection (0-3) 

Select Option 1 to compile and link NETPROBE and its utility library. Op­
tion 2 prepares a debugging version of NETPROBE if you want to debug 
modifications to NETPROBE. Opti0n 3 copies the necessary files (listed in 
NEFileDbg .DAT) to tape for further distribution. 

Files that are Loaded 

The following is a list of all the NETPROBE files that are loaded from the 
distribution tape (other files may be loaded that are used for NETEDIT). 
The files are ordered by logical groupings and in the same way they would 
appear if you were working in a multiple directory. 

Init.300 

NetUser.Com+ 
NELinker.Com 

NEPascal.Com 
NEFileDbg.Dat 

NetProbe.Pas 
NetProbe.Com+ 
NetProbe.300 

An initialization file for the PS 390, used by 
NetUser 
The user command file 
A command file to link NETPROBE after 
compilation 
A conditional Pascal compilation command file 
The list of files needed in NETPROBE 
distribution 
The NETPROBE source program file 
The maintenance command file 
The debugger control network 

Tools and Techniques 



NetProbeA.300 
NEUtil.Mod 

NEUtil* .Del 

Command file to label function keys 
A library of support routines needed by 
NETPROBE 
Shared declarations between NEUtil and 
NETPROBE 

NOTE 

The +'d files must be edited upon installation. NEUtil* 
is shared in common with the Network Editor. 

Function Network Debugger 1T5-9 



Appendix B 

Customization 

The NETUSER. COM command file is set up to assume a default extension of 
'.300'. This can be modified without side effects to meet user conventions. 

ITS-10 

CAUTION 

In editing the NETPROBE. 300 debug control network 
file, check to see if any portion of the PS 390 com­
mands you intend to alter are referenced in 
NETPROBE.PAS. The commands are described in the 
NETPROBE. 300 file header. (Ref er to Appendix A for 
a summary of the files included in the distribution 
tape.) 

The following are changes that ca11 easily be made to NETPROBE.PAS: 

• Items per page: change the PageSize constant. 

• Maximum items: change the Max.Probes constant and also modify 
the display structure in NETPROBE.300 to include more pages. 

NOTE 

If there are more than 512 lines, add more 
D$clear_all_N functions which can handle 128 outputs 
each. 

• Placement of display structure: change the display structure in 
NETPROBE.300 and reset the VSpace constant if you are changing 
the scale of the display. 

Tools and Techniques 



Appendix C 

Porting to Other Machines 

NETPROBE is written in Pascal and has been made as machine independent as 
possible. It is limited to standard Pascal with the following exceptions of DEC 
Pascal, Version 2: 

1. Attributes: Attributes are ANSI extentions to Pascal which qualify 
how routines and constants are used and shared and include [EX­
TERNAL], [GLOBAL], [ASYNCHRONOUS], [ENVIRONMENT], 
and [INHERIT]. These must be edited out if the destination Pascal 
cannot handle them. 

2. Condition handlers: File errors are trapped by a condition handler 
called OpenError, which helps to recognize nonexistent or protected 
files and allows the user to try again. This can either be reimple­
mented if possible, or commented out if you are unable to provide a 
condition handler and can tolerate a crash on such a condition. Ig­
nore EHandler, another condition handler; it is used only in the Net­
work Editor, NETEDIT. 

NETPROBE consists of the debugger source program, NETPROBE.PAS, 
and NEUTIL.MOD, a library of support functions that it shares with 
NETEDIT. If you do not have NETEDIT, you do not have to worry about 
how modifications to NEUTIL will affect it. If you do have NETEDIT, you 
should rename it if you are going to make extensive changes to NEUTIL. 

Some of the routines in NEUTIL are not needed and can be commented out 
when converting to another version of Pascal or another language. If you are 
unable to support modules, these two files can be merged together and the 
associated * .DCL files can be merged into the declaration section to provide 
a single support file. If you do merge files, then also modify 
NETPROBE.COM to directly compile and link as a single file rather than 
compiling and linking in the library. 

Function Network Debugger TTS-11 





Tf6. DATA STRUCTURE EDITOR 

STRUCTEDIT 

CONTENTS 

1. RUNNING STRUCTEDIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Files and Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Manipulating the Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.4 Helpful Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.5 Init Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.6 Converting Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2. COMMAND DESCRIPTIONS - BUFFERS . . . . . . . . . . . . . . . . . . 8 

3. COMMAND DESCRIPTIONS - FILES . . . . . . . . . . . . . . . . . . . . . . 8 

4. COMMAND DESCRIPTIONS - EDITING . . . . . . . . . . . . . . . . . . . 11 

5. COMMAND DESCRIPTIONS - ADDING NODES . . . . . . . . . . . . 14 

ILLUSTRATIONS 

Figure 6-1. Command Menu Example . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Figure 6-2. Fill-in-the-Blank Menu Example . . . . . . . . . . . . . . . . . . . . . 6 



Section TT6 

Data Structure Editor 

STRUCTEDIT 

STRUCTEDIT is a graphical display structure editor for the PS 390. This program 
allows you to sketch out your display structure, and then converts the diagram into 
ASCil PS 390 commands or a routine you can include as part of a FORTRAN, 
Pascal, C, or LISP program. 

Unlike the PS 390 Function Network Editor, described in TF4, STRUCTEDIT lets 
you concentrate on designing the semantics of your PS 390 program, rather than 
requiring you to spend a lot of time designing the graphical layout of the diagram. 
STRUCTEDIT does the graphical layout for you, and commands are mostly con­
cerned with conceptual operations such as inserting nodes into the display struc­
ture, copying structure, etc. 

To support the automatic layout, some restrictions have been made on what you 
can do. The major one is that each diagram page is drawn as a strict display 
structure; that is, each node must have exactly one parent. Sharing of structure is 
achieved through the use of stubs, which are references to names which are de­
fined elsewhere. 

Another restriction has nothing to do with layout, but rather with enforcing that 
your PS 390 program is valid. This is that operation nodes must always be fol­
lowed by a THEN or APPLIED TO node. (Note that the Graphics Support Routines 
will signal an error if this is not the case.) In general, STRUCTEDIT will insert 
stubs when rn.~cessary. You can replace the stub with another node. 

1. Running Structedit 

This section gives some general information about how the user interface 
works. Specific commands are discussed in sections 2 through 5. 

1.1 Files and Pages 

When you start up STRUCTEDIT, the first thing it will do is ask you for the 
name of the file you want to edit. It will assume a file type of ".data" if you 
do not supply an extension. If it can find the file, it will read it in; other­
wise, it will assume you want to create a new file. 

Data Structure Editor TT6-l 



TT6-2 

A file contains one or more pages. There is no implied hierarchy among the 
pages; they just provide a convenient way to break up a large program into 
manageable parts. There is no limit on how much you can fit on a page, 
although if you try to fit too much on a page it will get scaled down so much 
you will have a hard time reading the diagram. Using the default diagram 
scale, you can fit approximately 9 nodes across and 7 nodes down on the 
screen. 

Many of the editing commands make use of a kill buffer. Generally, 
whenever you delete a large part of your diagram, it is saved in the kill 
buffer. Until you delete another part, you can paste the deleted subtree back 
into your diagram from the kill buff er. This also provides a handy 
mechanism for moving parts of structure between pages, or for making 
copies of structure. 

1.2 Manipulating the Display 

The PS 390 screen is divided into three parts. The upper part is used for 
displaying the current page diagram, the middle part is used for displaying 
menus, and the bottom of the screen is where messages appear. Figure 6-1 
and Figure 6-2 show typical screen displays. You can use dials 1, 2, and 3 
to translate and scale the diagram display, and dial 4 to scroll the menu 
area. (Nearly all the menus are small enough so that you do not need to 
scroll them.) 

The function keys are used to manipulate the display in various ways. Most 
of them are used to control what menu appears in the menu window. Fol­
lowing is a summary of the function keys. 

Key Fl - DATAEDIT 
This displays the current fill-in-the-blank menu, used for editing various 
kinds of data, in the menu window. See the next section for more infor­
mation on how to use these menus. Normally, the menu will be displayed 
whenever the host program is expecting you to use it. 

Key F2 - BUFFERS 
This displays a menu listing the various pages or buffers in the file cur­
rently being edited. You can switch to a different buffer by picking its 
name from the menu. 

Key F3 - FILES 
This menu lists various commands pertaining to file operations. 

Key F4 - EDITING 
This menu contains miscellaneous editing commands. 

Tools and Techniques 



Key FS - DATANODE 
This menu contains commands for inserting the various kinds of data 
nodes into your diagram. 

Key F6 - TRANSFRM 
The TRANSFORMATIONS menu contains commands for inserting vari­
ous kinds of transformation nodes into your diagram, such as SCALE 
and ROTATE. 

Key F7 - COND REF 
The CONDITIONAL REFERENCE menu contains commands for insert­
ing various kinds of conditional reference nodes into your diagram. For 
example, CONDITIONAL_BIT and LEVEL_OF_DETAIL are found here. 

Key F8 - ATI'RIB 
The ATTRIBUTES menu contains commands for inserting miscellaneous 
operation nodes into your diagram. Most of these nodes set various at­
tributes such as COLOR, PICKING, and so on. 

Key F9 - DIAGRAM 
The DIAGRAM function key resets the scale and translate for the main 
diagram window to the defaults for the current page. (These defaults are 
calculated whenever you select a page from the buffers menu. If you 
have added or deleted a lot of structure from the current page, reselect 
the page from the buffers menu to recompute the scale factor.) 

Key FJO - DISPLAY 
This function key toggles between the normal screen setup and a view of 
your model. Note that the picture of your model is only updated when 
you explicitly request it. 

Key F 11 - FULLMENU 
Some of the fill-in-the-blank menus are rather large. You can use this 
function key to toggle between the normal screen setup and a full-screen 
view of the fill-in-the-blank menu window. 

1.3 Menus 

All of the menus controlled by the function keys are command menus. You 
can always pick a command from one of these menus; this will abort 
whatever other command is currently in progress. When you pick an item 
from a command menu, a box will be drawn around it to help you keep 

Data Structure Editor 1T6-3 



1T6-4 

track of what the host program is currently doing. Most commands require 
you to enter some other data on a fill-in-the-blank menu, or to pick things 
from the diagram display. In addition, some commands loop, or introduce 
modes. Figure 6-1 shows a typical command menu. 

File name: 
Page root: 
Description: 

frame 

VECTOR_LIST 

BIKE.DATA (Page 1 of 2) 
tricycle 
Tricycle model 

handlebars 

VECTOR_LIST 

wheel 

VECTOR_LIST 

Add Transformation Node 
SCALE BY ROTATE IN X ROTATE IN Y jROTATE IN Z 

TRANSLATE MATRIX_3x3 MATRIX_4x3 MATRIX_4x4 

EYE BACK LOOK AT FIELD_ OF_ VIEW VIEWPORT 

LOAD VIEWPORT WINDOW CHARACTER ROT A TE CHARACTER SCALE 

TEXT SIZE MATRIX_2x2 CANCEL XFORM XFORM MA TRIX 

XFORM VECTOR WRITE BACK 

Adding ROTATE IN Z node; pick where to insert it_·-------------------~ 

Figure 6-1. Command Menu Example 

Tools and Techniques 



Fill-in-the-blank menus are used extensively for things like editing the name 
and parameters associated with a structure node. When the host is expect­
ing you to edit something in a fill-in-the-blank menu, it will automatically 
display the menu for you in the menu window. You can use the function 
keys to return to a command menu. 

There are three different kinds of items that can appear on a fill-in-the­
blank menu. The first is a multiple-choice menu. An asterisk (" * ") will 
appear next to whatever item in the menu is selected. Picking an item se­
lects it. The second kind of submenu is a toggle menu. This looks like a 
multiple-choice menu, except that you can have more than one item se­
lected. Picking an item toggles its status. The third type of submenu is a text 
menu. If you pick an item from a text menu, the keyboard is connected to it 
so you can type in a new value. If you pick something else while the text 
menu is active, it will get reset to its initial value and disconnect the key­
board. Typing a carriage return signals completion and also disconnects the 
keyboard. If there is more than one text item in the menu, the keyboard will 
automatically connect itself to the next item at this point, to reduce the 
amount of switching between the keyboard and tablet you need to do. 

The text editor uses the following control characters for editing effects: 

CONTROL-A 

CONTROL-B 

CONTROL-D 

CONTROL-E 

CONTROL-F 

CONTROL-K 

Moves the cursor to the beginning of the line. 

Moves the cursor back (left) one character. 

Deletes the character at the cursor position. 

Moves the cursor to the end of the line. 

Moves the cursor forward (right) one character. 

Kills (deletes) to the end of the line. 

CONTROL-U Deletes the entire line. 

DELETE 

RETURN 

Deletes the character to the left of the cursor. 

Signals completion and disconnects the keyboard. 

Fill-in-the-blank menus generally have an item marked "Pick this to con­
tinue" at the top. Picking that item indicates that you are satisfied with all of 
the values you have been asked to edit, and allows the command to com­
plete. Until then, you can go back and change values you have set previ­
ously. A fill-in-the-blank menu for editing the parameters associated with a 
viewport node is shown in Figure 6-2. 

Data Structure Editor IT6-5 



IT6-6 

In a few cases, STRUCTEDIT needs you to supply just a single string. Here, 
you do not have to pick anything, and the host program will take whatever 
you have typed in as soon as you hit the carriage return. 

grid 

VECTOR_LIST 

Edit VIEWPORT Data 
Pick to continue 

Name: top 

Viewport Parameters 

X Min -1 

I Min 0 

File name: 
Page root: 
Description: 

X Max 1 

I Max 1 

Please edit the node data. 

BIKE.DATA (Page 2 of 2) 
top 
Viewing and positioning 

Y Min -1 

Figure 6-2. Fill-in-the-Blank Menu Example 

Y Max 1 

Tools and Techniques 



1.4 Helpful Hints 

Many editing commands require you to pick nodes from the diagram display 
window. In this case, you will see a message indicating that you should do 
so. 

The cursor shape also indicates what input mode you are in. An arrow 
shape pointing to the left and up indicates that the only valid actions are 
picks from a command menu. An arrow shape pointing to the right and up 
indicates that the program is waiting for a diagram pick. An asterisk-shaped 
prompt indicates that there is a fill-in-the-blank menu active. 

Occasionally, you will see a message indicating that garbage collection is in 
progress, and the program will seem to go dead for several seconds. This is 
completely normal; the program is just recycling its heap storage. Another 
message will be displayed when the garbage collection is finished. 

1.5 lnit Files 

You can use an init file, SYS$LOGIN:STRUCTEDIT.JNI, to alter some of 
the parameters used by the editor. A typical use of the init file is to config­
ure the Graphics Support Routines if you are using something other than an 
async line. 

The structure editor is written in LISP so you can actually put any random 
LISP code you want into your init file. However, the following are the only 
things that are really useful. 

(setq *device-type* 'async) 
This establishes the device type for use by the Graphics Support Rou­
tines. Valid values are 'async, 'parallel, or 'ethernet. 

(setq *device-name* 11 tt: 11
) 

This establishes the name of the device used by the Graphics Support 
Routines. 

(setq *add-node-edit* nil) 
Normally, as you insert nodes into your diagram, you will be given a 
chance to edit the name and other parameters associated with each node. 
If you prefer to add all of the nodes first and then go back and edit the 
data as necessary, you can use this option. The new nodes will get unique 
names and appropriate defaults for their parameters. 

Data Structure Editor TT6-7 



1T6-8 

(setq *ascii-file-type* 11 300 11
) 

(setq *pascal-file-type* 11 pas 11
) 

(setq *fortran-file-type* 11 for") 

(setq *c-file-type* 11 c 11
) 

(setq *lisp-file-type* 11 cl 11
) 

These variables provide default values for the file type (or extension) 
used by the various code conversion options. If you want to use some 
other extension, just provide another value for the appropriate variable. 

1. 6 Converting Existing Models 

Your existing . 300 files can be converted to data files that the structure 
editor can understand using the PS 390 ASCII-to-GSR conversion program 
described in Section IT8. Specify an output format of DATA. 

The conversion process basically works by trying to insert as many nodes as 
possible on each diagram page. Nodes that are defined but never referenced 
become the root nodes of the pages. You will probably want to rearrange 
some parts of the diagram to get a clearer picture. 

PS 390 commands that do not represent namable objects are thrown away 
with a warning message. However, the converter does understand BE­
GIN ... END and BEGIN_STRUCTURE ... END_STRUCTURE sequences. 

You should avoid converting very large models, particularly if there are long 
vector lists or polygon lists. In these cases, the model should be broken into 
smaller files. 

2. Command Descriptions - Buffers 

The BUFFERS menu allows you to select the current page from the pages 
you have defined in the file you are currently editing. The menu lists the 
name of the root node and the description text for each page in the file. 
Pick the name of the page you want to switch to. 

Selecting a page from the buffers menu displays that page and also recom­
putes the default scale factor used by the DIAGRAM function key. 

3. Co1nmand Descriptions - Files 

The FILES menu contains various commands pertaining to file operations. 

Tools and Techniques 



READ FILE 
This command prompts you for the name of the file to read. The file 
currently being edited is saved, then the new file read in. 

WRITE FILE 
This command writes out a backup copy of the file currently being ed­
ited. It is suggested that you save your work from time to time, since the 
structure editor does not have any kind of journaling or autosave feature. 
It does recover automatically from most program errors. It will simply 
abort whatever command was in progress when the error occurred, and 
return you to the command loop. 

MERGE FILE 
This command is used to merge or include another diagram file into the 
current file. The pages in the included file are simply added to those 
already defined in the current file; no checks are made for name con­
flicts. It prompts you for the name of the file to read. 

RENAME FILE 
Use this command if you want to change the name of the current file. 
This command does not actually rename the file, but simply changes the 
name that will be used by WRITE FILE or EXIT. 

PLOT CURRENT PAGE 
This causes a screen dump of the current diagram page to be sent back to 
the host for plotting. The plot is written to a file with the same name as 
the file being edited, but with an extension of "plot." 

The scale and translation are not reset; the diagram will appear in the 
plot just as it does on the screen. Menus are not plotted. 

Particularly if you have a lot of structure displayed on the page or are 
using the RS-232 async interface, transferring the plot dump to the host 
can be a rather slow process. The program beeps when it is finished. 

The plot data is formatted in such a way that it can be easily processed 
by an external plot program. Each point is written to the plot file as two 
integer coordinates (X ranging from 0 to 2398, and Y from 0 to 2998), 
plus a 0 for move and 1 for draw. You can change the scale factor from 
the default by sending a 2D vector to <2>m$_P315. 

Data Structure Editor IT6-9 



TT6-10 

PLOT ENTIRE FILE 
This command causes a plot dump for each page in the current file to be 
written. The plot for each page is written to a file with the same name as 
the current file, but with extensions of "plotl," "plot2," etc. The scale 
and translation are reset for each page, so that the entire contents of each 
page will appear in the resulting plots. The program beeps when all of 
the pages have been plotted. 

CODE CONVERSION 
This command is used to produce a file containing ASCII PS 390 com­
mands or a FORTRAN, Pascal, C, or LISP routine containing calls to the 
Graphics Support Routines library, that you can use to download the 
model you have created with the structure editor. You will be asked to 
select what kind of output you want. 

The output code will be written to a file with the same name as the file 
being edited, but with a different extension: "300" for ASCII, "pas" for 
Pascal, "for" for FORTRAN, "c" for C, and "cl" for Common LISP. 
(You can change the defaults in your init file; see above.) The output file 
contains a single procedure, with the same name as the file. 

The code generator uses a postorder traversal so that code is generated 
from the bottom up. That is, the leaf nodes are defined first, then the 
nodes that reference them, and so on up to the root node of the page. 
The reason for this is that if you have OPTIMIZE STRUCTURE turned 
on when the model is downloaded, the PS 390 cannot make any op­
timizations unless the descendants of a set node are defined before the 
set node itself. Note that the code generated by the structure editor does 
not turn on OPTIMIZE STRUCTURE; that it is not possible for one part 
of the structure defined in a single file to be optimized and another part 
not; and that the order in which pages are processed is not guaranteed. 

EXIT (saving file first) 
This saves the current file, then exits the program. You will be asked to 
verify that you want to exit. 

QUIT (without saving) 
This exits the program without saving the current file. You will be asked 
to verify that you want to quit. 

Tools and Techniques 



DOWNLOAD FILE TO PS 390 
This command, which downloads an ASCII file to the PS 390, is useful in 
conjunction with the DISPLAY MODEL command. An extension of 
".300" is assumed if you do not supply one explicitly. The file should not 
contain muxing bytes, as it is downloaded through the Graphics Support 
Routines. This option should only be used to download display structure 
definitions. Downloading a function network may interfere with the op­
eration of the structure editor. 

4. Command Descriptions - Editing 

The EDITING menu contains the following miscellaneous editing 
commands. 

DELETE NODE 
This is a splicing delete; a single node is deleted from the diagram. The 
deleted node is not saved in the kill buffer. You will be asked to pick a 
node to delete. This command loops; you will remain in delete mode until 
you pick another command. 

The behavior of this command depends on what kind of node you are 
deleting. If you delete a data node, STRUCTEDIT will replace it with a 
stub to maintain the correctness of the structure. If you delete an opera­
tion node, it will just splice the display structure tree together around the 
deleted node. This also happens if you delete an instance node that does 
not have more than one descendant. (You cannot delete an instance node 
with several descendants because it is generally not possible to splice in 
more than one descendant node. Use CUT SUBTREE or REMOVE 
FROM in this case.) 

CUT SUBTREE 
This command moves the subtree rooted at the selected node to the kill 
buffer, and replaces it with a stub with the same name as the root node 
of the deleted subtree. (This makes it convenient if you are using CUT 
and PASTE to move a subtree to a new page; the original display struc­
ture still points to the same name.) This command loops, so you will be 
asked to pick another subtree. 

PASTE SUBTREE 
This command replaces the subtree rooted at the selected node with a 
copy of the subtree in the kill buffer. The original subtree is not saved in 

Data Structure Editor TT6-l l 



1T6-12 

the kill buffer; this allows you to insert multiple copies of a display struc­
ture at various places in your diagram. Note that the names of the nodes 
copied from the kill buffer are not changed, so you may need to edit the 
names if you are inserting multiple copies of structure. Again, this com­
mand loops. 

Insert INSTANCE Node 
This command is used to insert an instance node into your diagram. See 
the discussion of adding nodes in 5 .. 

INCLUDE IN 
Use this command to add another descendant (a stub) to an instance 
node. This command will loop, asking you to pick another instance node. 
The stub will be added as the rightmost descendant of the instance node. 

Note that it is possible to change the the left-to-right order of the descen­
dants of a set node, if you wish to do so. First use INCLUDE IN to add a 
new node on the far right. Then use REMOVE FROM and PASTE SUB­
TREE to replace the stub with one of the other dependants of the set 
node. 

REMOVE FROM 
Use this command to delete a descendant subtree from an instance node. 
The deleted subtree is saved in the kill buffer. Again, this command 
loops, asking you to pick the root node of the subtree to be removed. 

CHANGE NAME PREFIX 
When you add nodes into your diagram, the structure editor gives them 
default names generated from a prefix and a counter. The default prefix 
is T, so the names look like Tl, T2, etc. You can give a file a different 
prefix string using this command. Note that the prefix only affects subse­
quent nodes added, not those already part of the diagram. Use EDIT 
NODE DATA to change the names of these nodes. 

EDIT NODE DATA 
This command allows you to edit the name and other data associated 
with a node. A fill-in-the-blank menu will be displayed after you have 
picked the node you want to edit. This command loops, asking you to 
pick another node to edit. 

DISPLAY MODEL 
This command downloads commands to the PS 390 to display your struc­
ture. You can use function key 10 to toggle between the model display 

Tools and Techniques 



and the usual menu/diagram display. Note that the model display is only 
updated when you specifically request it using this command. 

Since the support network and display structures of the structure editor 
share the same name space as the display structures in your model that 
are downloaded by DISPLAY MODEL, you must exercise some caution 
to avoid conflict with the structure editor when you use this feature. To 
make this easier, all of the names used by the structure editor are pre­
fixed with "m$." 

CREATE NEW PAGE 
This creates a new diagram page in the current file, and makes it the 
current page. The page contains a stub as its root node. You will be given 
a chance to edit the description of the page. 

DELETE CURRENT PAGE 
This command deletes the current page. Its contents are moved to the kill 
buffer. You will be switched to another page in the same file. Note that 
every file must have at least one page. If you try deleting the only page in 
your file, it will create a new page containing only a stub and switch you 
to that instead. 

REDRAW CURRENT PAGE 
If the display becomes corrupted, use this command to redraw the cur­
rent page. 

EDIT PAGE DESCRIPTION 
This command allows you to edit the description of the current page. 

FIND NAMED NODE 
This command prompts for a node name, and switches to the page where 
the node with that name is defined. Note that stubs are name references, 
not definitions, and are ignored in the search. 

Wildcard characters "%," "*," and "+" may appear in the search string, 
to match any single character, a sequence of zero or more characters, or 
a sequence of one or more characters, respectively. A backslash acts as 
an escape character to allow these characters to be searched for as 
literals. 

Data Structure Editor 7T6-13 



5. Command Descriptions - Adding Nodes 

1T6-14 

The DATANODE, TRANSFRM, COND REF, and ATTRIB menus contain 
commands for inserting nodes into your diagram. You will be asked to pick 
the place in the diagram where you want the node to be inserted, and then a 
fill-in-the-blank menu will let you edit the name or other data associated 
with the node. These parameters are initialized with reasonable default val­
ues (including an automatically generated name), so in many cases you will 
not need to change anything. 

These commands loop; that is, after you have completed the operation, it 
will ask you to insert another node of the same type. 

The exact behavior of these commands depends on what kind of node you 
are inserting. If you are adding an operation or instance node, it gets spliced 
into the diagram just in front of the node you selected. If you are adding a 
stub or data node, the subtree rooted at the node you selected is deleted 
(and placed in the kill buffer), and the entire subtree is replaced with the 
new node. 

The editing menus provided by the structure editor only allow you to modify 
values, and, for data nodes such as vector list and labels, add or delete 
items from the end of the command. Since data node definitions tend to 
contain a lot of textual information and very little structure, you will prob­
ably find a text editor a better alternative for defining large vector lists or 
polygon lists. You can reference these externally defined names inside the 
structure editor using a stub. 

A few of the data node menus also put slight restrictions on ~yntax. For 
BSPLINE and RATIONAL BSPLINE, you cannot specify an explicit knot 
vector (the default knot sequence is always assumed). For POLYGON lists, 
you can only specify ATTRIBUTES, OUTLINE, and whether or not you 
want to use vertex normals and color-by-vertex at the beginning of the poly­
gon list, and these values apply to all polygons within the list. 

Tools and Techniques 





TI7. CHARACTER FONT EDITOR 

MAKE FONT 

CONTENTS 

1. RUNNING MAKEFONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. MAIN CONTROL MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

3. EDIT MENU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 

4. DOWNLOADING STANDARD FONTS . . . . . . . . . . . . . . . . . . . . . . 7 

S. FONT STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

ILLUSTRATIONS 

Figure 7-1. The Main Control Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Figure 7-2. The Edit Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 



Section TI7 

Character Font Editor 

MAKEFONT 

This software package is distributed by Evans & Sutherland as a convenience to 
customers and as an aid to understanding the capabilities of the PS 390 graphics 
systems. Evans & Sutherland Customer Engineering supports the package to the 
extent of answering questions concerning installation and operation of the pro­
grams, as well as receiving reports on any bugs encountered while the programs 
are running. However, Evans & Sutherland makes no commitment to correct any 
errors which may be found. 

MAKEFONT is a program that allows character fonts for the PS 390 to be de­
signed or modified. Files may be read and written in formats for both standard 
fonts (the default font loaded when the PS 390 is booted) and user-defined alter­
nate character fonts (a BEGJN_FONT ... END_FONT sequence). MAKEFONT it­
self runs on a PS 390 under VAX/VMS. 

Either a 128-character or 256-character font may be created. There are features 
allowing merging or modification of existing fonts, as well as for creation of new 
characters. In addition, files can be read and written in the format used for user­
defined alternate fonts. 

This document provides descriptions of the commands available within 
MAKEFONT. It also provides a detailed description of the standard font file for­
mat and instructions for downloading standard fonts. 

The files needed to run MAKEFONT are loaded from the same distribution tape as 
the NETEDIT (Function Network Editor) and NETPROBE (Function Network 
Debugger) files. For installation instructions, refer to Appendix A of Section TF4. 

L Running MAKEFONT 

MAKEFONT is run from the command file NETUSER.COM. To bring up 
the menu from which MAKEFONT is selected, enter the following 
command. 

Character Font Editor TF7-l 



TI'7-2 

[HomeDir]NETUSER.COM 

[HomeDir] is the name of the directory in which MAKEFONT resides. The 
following menu is displayed. 

0) Exit 

Evans & Sutherland PS 300 Utilities V1 .08 
Initial Menu 

1) Initialize the PS 300 

2) Send a file to the PS 300 

3) Run NetProbe - Function Network Debugger (Menu) 

4) Run NetEdit - Function Network Editor (Menu) 

5) Character Font Utilities (Menu) 

Select option 5 to bring up the Character Font Utilities Menu. 

O) Exit 

Evans & Sutherland PS 300 Utilities V1 .08 
MakeFont: PS 300 Character Font Utilities Menu 

1) Run MakeFont character font editor program 

2) Convert standard font file to PS 300 S-record format 

Select option 1 to start the MAKEFONT program. Option 2 prompts for the 
name of a standard font file and produces an S-record file (a file in a 
format which the PS 390 can read). This file can then be downloaded to 
diskette as the default character font. This is explained in Section 4. 

When MAKEFONT is run, it first downloads menus and initializes the font. 
A "Ready" message appears when the host has completed the initialization, 
but because of delays due to things such as buffering, it takes about five 
minutes for the PS 390 to be ready to accept commands. The program is 
actually "Ready" when it responds to menu picks. 

2. Main Control Menu 

The main control menu for MAKEFONT consists of a character selection 
grid on the top half of the screen, and text strings representing various 
functions on the bottom half of the screen. Although only 128 characters at 
a time can be displayed on the character selection grid, you can edit a font 
with 256 characters by using function key Fl to toggle between the display 
of characters 0-127 and 128-255. (This action is carried out locally, so this 

Tools and Techniques 



has no effect on what MAKEFONT is doing on the host.) Figure 7-1 shows 
the Main Control Menu when MAKEFONT is first entered. 

Use the data tablet and stylus to select menu items from the bottom half of 
the screen. Some of the functions available (DISCARD, DELETE, COPY, 
SWAP, and EDIT) require you to select one or more characters from the 
grid to operate on. For example, if you pick the menu item DELETE, you 
will be prompted to select a character to delete. You may then pick any 
number of characters from the selection menu to be deleted. To stop delet­
ing, pick another function from the bottom menu. The remaining functions 
perform a single action; when complete, MAKEFONT will return to the 
"Ready" state. 

DISCARD DELETE COPY SWAP EDIT 

RE AD_S·:rD WRITt_STD REAO_ALT WR I TE_AL T 

INIT_127 INIT_255 QUIT 

IAS0449 

Figure 7-1. The Main Control Menu 

Character Font Editor TT7-3 



TT7-4 

The Main Control Menu functions are described below. 

DISCARD 

This function is useful for combining characters from two or more fonts 
into a single font. When a character font is read in from a file, only those 
characters in the current font which are marked for discard will be over­
written by the character definitions being read in. A discarded character 
has a large 'X' drawn through it on the character selection menu. When 
the DISCARD menu item is picked, the discard flags for all characters 
are reset. Selecting a character while in DISCARD mode complements its 
current discard status. 

DELETE 

This function is used to delete character definitions from the current font. 
Any characters which are picked while in DELETE mode are removed 
from the font. 

COPY 

The COPY function is used to duplicate a character definition at a loca­
tion corresponding to a different ASCII code. After selecting COPY, you 
will be prompted to select the character you wish to copy, and then to 
select the character location to copy it to. When the copy is complete, you 
will be prompted to select another character to copy. 

S\VAP 

The SW AP function is used to exchange two character definitions. After 
selecting SW AP, you will be prompted to select the two characters you 
wish to exchange, and the character stroke definitions for the two charac­
ters will be interchanged. As with the COPY function, when the swap is 
complete, the operation may be repeated. 

EDIT 

The EDIT function allows you to define or modify the stroke definition of 
a character. After selecting EDIT, select the character to be modified. 
The character edit menu (described in Section 3) will then appear. After 
picking EXIT or RETURN on the edit menu, you will be returned to the 
main control menu; at this point, another character may be selected for 
editing. 

READ STD 

This function reads a standard font from a file. Only characters which 
are marked for discard will be overwritten. After selecting the function, 

Tools and Techniques 



you will be asked for the name of the file; type in a valid V AXNMS file 
specification or a logical name. 

WRITE STD 

Selection of this menu item writes the current font to a file, using the 
format for standard fonts. After selecting the function, you will be asked 
for the name of the file; type in a valid VAX/VMS file specification or a 
logical name. 

READ ALT 

This function reads a user-defined alternate font from a file. The file is 
assumed to contain a single BEGIN_FONT ... END_FONT command. 
Only characters which are marked for discard will be overwritten. After 
selecting the function, you will be asked for the name of the file; type in 
a valid VAX/VMS file specification or a logical name. 

WRITE ALT 

Selection of this menu item writes the current font to a file, using the 
BEGIN_FONT ... END _FONT format. After selecting the function, you 
will be asked for the name of the file; type in a valid V AXNMS file 
specification or a logical name. 

INIT 127 

This function initializes a 128-character font (containing definitions for 
characters corresponding to ASCII 0 to 127). All characters are deleted 
and marked for discard when this function is selected. (This happens 
automatically when MAKEFONT is started.) 

INIT 255 

This function initializes a 256-character font (containing definitions for 
characters corresponding to ASCII 0 to 255). All characters are deleted 
and marked for discard when this function is selected. 

QUIT 

Selection of this menu item causes MAKEFONT to terminate; control is 
returned to the operating system. 

3. Edit Menu 

A separate menu is used to design individual characters in EDIT mode. This 
menu consists of the character design grid on the upper part of the screen, 

Character Font Editor IT7-5 



TT7-6 

and text strings representing various functions on the lower part of the 
screen. The Edit Menu is shown in Figure 7-2. 

MOVE_ TO DRAW_ TO ORIGIN ERASE EXIT RETURN 

MOVE_ TO 
Editing character 103 IAS0450 

Figure 7-2. The Edit Menu 

The design grid coordinates range from -64 to 64 in both X and Y. (This 
is because of the way the standard text fonts are defined. User-defined 
fonts are actually defined as real numbers between 0 and 1, but 
MAKEFONT does a conversion internally to integer coordinates.) Nor­
mally, characters are drawn within a "unit square" that corresponds to 
the upper right quadrant of the design grid. If the strokes defining the 
character extend beyond this area, this may cause overlap between adja­
cent characters. 

If very large characters are being edited, Control Dial 1 may be used to 
adjust the scale of the grid. 

Notice the blinking box on the design grid. This marks the position of the 
last "move" or "draw" in the character definition. 

If the tablet stylus is pressed within the character design grid, a stroke 
will be added to the character definition. The stroke will be either a 
"move" or a "draw", depending on the current state. 

Tools and Techniques 



MOVE TO 

Selecting this menu item causes the current state to be set to "move". 
Selecting a position in the character design grid will then cause a "move" 
stroke to be added to the character. This is the default state upon enter­
ing EDIT mode. 

DRAW TO 

Selecting this menu item causes the current state to be set to "draw". 
Selecting a position in the character design grid will then cause a "draw" 
stroke to be added to the character. 

ORIGIN 

This selection adds a stroke to the character which causes a move to the 
origin. This is useful since all characters in a standard font should have 
the last position at the origin. If this rule is not observed, the characters 
will be drawn with incorrect spacing (although this can be a feature of 
the font, not a problem). 

ERASE 

This function causes the last stroke to be erased from the character defi­
nition. This function may be selected multiple times to erase several 
strokes. There is no way to erase strokes except from the end of the list. 

EXIT 

Selecting EXIT updates the definition of the character being edited in the 
font and returns the user to the Main Control Menu. 

RETURN 

Selecting RETURN returns the user to the Main Control Menu without 
saving any changes that were made to the character being edited. 

4. Downloading Standard Fonts 

Files containing alternate fonts (BEGIN_FONT ... END_FONT structures) 
created by MAKEFONT may be sent to the PS 390 parser in the usual 
manner. 

To define and download a standard font to the PS 390, the following steps 
should be performed: 

1. Use MAKEFONT to write the font in standard font format. The file 
containing the standard font definition is named CHARFONT.DAT. 

Character Font Editor TT7-7 



TF7-8 

2. Convert this file to S-record format using MAKEFONT menu selec­
tion 2. By convention, the S·-record file is called CHARFONT.SR. 

3. Download the S-record format to the PS 390 floppy using the Diag­
nostic Utility Program TRANSFER routine. The file must be named 
CHARFONT .DAT on the floppy to ensure that the previous version 
is overwritten. (Note: You may want to make a copy of the floppy 
using the Utility Program COPYDISK before overwriting the font.) 

4. Boot the PS 390 using the floppy with the new font. 

5. Font Storage 

MAKEFONT stores a font internaJly as an array of pointers to character 
definitions. A NIL pointer indicates that the associated character has not 
been defined. 

Character definitions are records with two fields: an integer to keep track of 
how many strokes there are, and an array containing the strokes. Strokes 
are also records containing the absolute X and Y (integer) coordinates and a 
Boolean indicating whether it is a move or draw. The maximum number of 
strokes per character (the dimension of the stroke array) is 64, but as this is 
a symbolic constant it can be changed if needed. 

The primary advantage in using this format for internal storage of the char­
acter definitions is the ease with which characters can be changed. For 
instance, swapping two characters involves only swapping the two pointers 
in the font array. 

The font files are stored on the host as ASCil text. Each record of a font file 
consists of a 7-digit octal number. These numbers are decoded in various 
ways. 

The first record in the file is an integer, giving the size of the "stroke table", 
in 16-bit words. 

The second record in the file is an integer describing how many characters 
are in the font: either 128 or·256. (This number will be referred to as 'n'). 

The remaining records in the file comprise the "stroke table". The first 'n' 
of these records are integers which give the offset of the corresponding 
character definition in the stroke table. A zero value indicates that a charac­
ter has not been defined. 

Tools and Techniques 



Then there are a some zero records in the file, generally five. After these 
come the actual character definitions. 

Suppose that, for example, the value in location 68 of the stroke table were 
599. That would mean that the definition for character 67 (68-1) begins at 
location 599 in the stroke table. Then the value at location 599 would be the 
number of strokes (moves/draws) defining the character. If location 599 had 
a value of 10, then locations 600 to 609 would contain the move/draw in­
structions for the character. 

The move/draw instructions are stored with the X and Y displacements at 
RELATIVE distances between -63 and 63. The information is packed into a 
16-bit word as follows: 

Bit 0 
Bi ts 1--7 

Bit 8 

Bi ts 9--15 

move/draw information (O=move, l=draw) 
Y-displacement 
unused 
X-displacement 

Each character definition has to end with a zero word. Also, character defi­
nitions have to be aligned on longword boundaries. This means that words 1 
to 'n' in the stroke table must all have ODD values, so that the first stroke 
definition command of each character has an EVEN off set. More zero 
words are added here and there in the stroke table to fill it out. 

Character Font Editor 7T7-9 





ITS. ASCII-TO-GSR CONVERTER 

CONTENTS 

1. FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. CONVENTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

3. ERROR REPORTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

4. NAME PREFIXING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 



Section Tf8 

ASCII -to-GSR Converter 

The ASCII-to-GSR conversion program is a host-resident PS 390 option which 
allows a programmer to combine the advantages of ASCII programming with the 
faster data communication speeds possible through the PS 390 GSRs. Specifically, 
the conversion program converts a file of ASCII PS 390 commands into a 
procedure which the programmer can link into a host-resident program. When the 
procedure is executed, the commands are downloaded to the PS 390 via the GSRs. 
Contact your Evans & Sutherland Account Executive for distribution and 
installation details. 

l. FILES 

When you run the ASCII-to-GSR Converter, it prompts you regarding the 
name of the ASCII file to convert and for the format of the output file. 
There are several options which are described in Table 8-1. 

Output Option 

PASCAL 

FORTRAN 

c 

LISP 

DATA 

ASCII 

Table 8-1. Output Options 

File Type 

.pas 

.for 

.c 

. cl 

.data 

.asc 

Generates a Pascal procedure with 
embedded calls to the VMS Pascal GSRs. 
Generates a FORTRAN subroutine with 
embedded calls to the VMS FORTRAN GSRs. 
Generates a C function with embedded 
calls to the UNIX c GSRs . 
Generates a Common LISP function with 
embedded GSR calls. 
Generates output in a format which can 
be read by the PS 390 Data Structure 
Editor. 
Generates a file containing ASCII 
PS 390 commands. This is primarily a 
debugging operation. 

Two files are produced, and any errors are reported to your terminal. The 
first file is a listing file having the same name as the input file but with a 

ASCll-to-GSR Converter TT8-l 



TT8-2 

".lis" extension. This file contains a line-by-line listing of the input file, 
along with any error or informational messages. The ".lis" file is for debug 
purposes and may be deleted once the ASCII file has been converted suc­
cessfully. The second file contains the output of the converter. 

A sample ASCII input file and output files in Pascal, FORTRAN and C 
formats are included in the distribution. 

2. Conventions 

If you do not explicitly specify a file extension for the input file, the con­
verter will use a . 300 extension. There is no restriction on the size of an 
input file, but it is recommended that files be under 2000 lines. Long vector 
or polygon lists may cause a heap-exhausted fatal error. Extremely long 
procedures may also be refused by the VMS Pascal compiler. The input file 
should P-ot contain muxing bytes as these may cause a fatal error. 

The converter recognizes most command abbreviations such as CONN for 
CONNECT or VEC for VECTOR_LIST. If a valid abbreviation is not recog­
nized, use the longer form of the same name. 

The main program is responsible for issuing the GSR call for connecting to 
the PS 390. The sample programs included in the distribution (pdriver. pas, 
fdriver.for, and cdriver.c) illustrate how to set up a minimal program which 
connects the PS 390 and calls the generated procedure. 

It is assumed that all error handlers have the standard names: 
ERROR HANDLER for Pascal and ERR for FORTRAN. No error handler is 
required for C. Error handlers should be provided separately and linked in 
with the generated procedure. Refer to the sample programs for examples 
of how to do this. 

It is also assumed that you have not changed the constant declarations that 
establish array sizes in the linking file "proconst. pas," residing in the GSRs 
library. 

3. Error Reporting 

The converter issues diagnostic messages which are self-explanatory. Note 
that it does not attempt to convert !RESET, units, or other commands which 
have no corresponding GSR, but it does issue an appropriate warning 

Tools and Techniques 



message. In a few cases, it may produce unexpected output which will need 
to be corrected. For example, because no direct equivalents exist in the 
GSRs library, lNSTANCE OF commands with multiple descendants nested 
inside structures actually expand into several unnamed lNSTANCE nodes. 
WlTH_PATTERN ... VECTOR_LIST is treated as an ordinary vector list. 

Syntax errors in the input file are usually reported, and processing is contin­
ued. Unrecoverable errors indicate serious problems with the input file. Ad­
ditional messages referring to garbage collection may also occasionally ap­
pear, indicating that the program is just recycling its heap storage. 

4. Name Prefixing 

The converter provides an optional feature which allows you to attach a 
prefix to all PS 390 names. The prefix is applied to all object labels and 
function labels. It is not applied to names of generic functions, such as 
F:ACCUMULATE; to names of initial function instances, such as 
TABLETlN; or to pick ID's. 

To attach a name prefix, you need to create an initialization file in your 
main login directory, called "parser.ini" for VMS, or ".parserrc" for UNIX. 
This file should contain the following line: 

(setq parser: :*name-prefix* t) 

The parser program then prompts you for a name prefix before processing 
the input file. 

If you want to prefix names with some exceptions, you may specify those 
exceptions by adding another command to your initialization file which lists 
the names to protect. For example, if you want to protect the names "cube" 
and "knots," add the additional command: 

(setq parser:: *reserved-names* "("cube" "knots")) 

White space is ignored, so the list of names may extend to more than one 
line; but be sure that string quotes and parentheses are matched properly. 
For example, the following is equivalent to the command above: 

(setq parser: :*reserved-names* 
" ("cube" 

"knots" 
) ) 

ASCII-to-GSR Converter TT8-3 





IT9. TRANSFORMED DATA AND WRITEBACK 

CONTENTS 

1. TRANSFORMED DATA COMMANDS AND FUNCTIONS . . . . . . 2 

1.1 The XFORM Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 The F:XFORMDATA Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.3 The F:LIST Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2. EXCLUDING CERTAIN VIEWING TRANSFORMATIONS . . . . . 5 

3. USING F:SYNC(N) TO PREVENT OVERLAPPING REQUESTS . 5 

4. SPECIFYING VECTOR RANGES FOR TRANSFORMED 
DATA RETRIEVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

5. TRANSFORMED DATA SAMPLE PROGRAM . . . . . . . . . . . . . . . . 6 

6. WRITEBACK FEATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

6.1 \'VRITEBACK Operation Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
6.2 WRITEBACK Operation Node Constraints . . . . . . . . . . . . . . . . . . 9 

7. WRITEBACK FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

7.1 Data Packets Returned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
7 .2 Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
7 .3 Sequence of Data Sent Back to the Host . . . . . . . . . . . . . . . . . . . . 18 

8. SAMPLE WRITEBACK PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . 20 

9. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 



Section TI9 

Transformed Data and Write back 

The PS 390 provides a means to retrieve transformed data. Transformed data is 
the matrix or vector list representation of transformation operations in a display 
structure. 

After an object has been transformed on the PS 390, the transformed accumulated 
data for that object can be retrieved from a given data node and then established 
as a separate data or operation node in the display structure. The transformed data 
can also be converted to an ASCII PS 390 command string for transmission to the 
host. 

Transformed data can be obtained either as transformed vectors or as a transfor­
mation matrix which is the concatenation of transformations currently applied to 
the object. 

If transformed vectors are requested, a data node can be created and an ASCII 
PS 390 VECTOR LIST ITEMIZED command can be generated. If a transforma­
tion matrix is requested, an operation node can be created and an ASCII PS 390 
MATRIX_ 4x4 command can be generated for transmission back to the host. 

Once the node containing a transformed vector list or 4X4 matrix node is created, 
those nodes can be used as primitive data nodes or operation nodes, and connec­
tions can be made into the nodes just as for any other VECTOR_ LIST ITEMIZED 
or 4x4 MATRIX node. 

Transformations explicitly reserved for characters (CHARACTER ROTATE, etc.) 
are excluded from both forms of retrieved transformed data. 

The Writeback feature allows displayed transformed vector data to be sent back to 
the host. The position of the writeback node in the display structure determines 
which transformations are applied to the writeback data. The system-generated 
writeback node includes all viewing and modeling transformations. Once the host 
has received the data, it can be used to generate hardcopy plots or display 
host-generated raster images. The user is responsible for retrieval and all 
subsequent processing of data on the host system. 

Transformed Data and Writeback IT9-l 



TF9-2 

1. Transformed Data Commands and Functions 

To retrieve transformed data for a given data node (or set of data nodes): 

• Mark the data node by applying a XFORM VECTOR or XFORM 
MATRIX node. 

• Request the transformed data using an instance of F:XFORMDATA. 

• Optionally, convert the transformed data to an ASCII PS 390 com­
mand string using an instance of F:LIST and send this ASCII infor­
mation to the host computer via HOST_ MESSAGE. 

1.1 The XFORM Node 

The XFORM node, a type of operation node, can be placed anywhere above 
the data node(s) for which transformed data are to be retrieved; however, 
the placement of the XFORM node with respect to other transformations is 
critical. The syntax of the command that establishes an XFORM node is: 

Name := XFORM specifier APPLIED TO Node_Name; 

where: 

specifier is either VECTOR or MATRIX. To retrieve a transformed vector 
list, use VECTOR; to retrieve a transformation matrix, use MA TRIX. 

If XFORM VECTOR is used, all transformations applied to the data node(s) 
are taken into account, whether these transformations are above or below 
the XFORM VECTOR node. 

If XFORM MATRIX is used, however, only those transformations above the 
XFORM MATRIX node are taken into account. To include all transforma­
tions applied to the data node(s), then, XFORM MA TRIX should be placed 
immediately above the data node(s). 

THEN may be substituted for APPLIED TO. 

Node_ Name is the node to be marked for transformed data retrieval. Ad­
missible data nodes are vector lists and curves (rational polynomials, poly­
nomials, and B-splines). Transformed data cannot be retrieved for charac­
ters and labels. 

Tools and Techniques 



If Node_Name is an instance node covering two or more data nodes and if 
XFORM VECTOR is requested, then the transformed data for all nodes are 
consolidated into a single vector list. 

NOTE 

The transformed counterparts of the original data 
nodes do not necessarily appear in the same order in 
which the INSTANCE command named those nodes. 
However, vector integrity is maintained within each 
node. 

The transformed object(s) must be displayed when transformed data re­
trieval is requested; otherwise, the request has no effect. 

If transformed vector information is requested (XFORM VECTOR), no 
more than 2,048 consecutive transformed vectors may be retrieved. 

• TRANSLATE, SCALE, ROTATE, and MATRIX_3x3 transforma­
tions applied to data are taken into account when the transformed 
data are retrieved. 

• Character transformations are not taken into account when the trans­
formed data are retrieved. These include CHARACTER ROTATE, 
CHARACTER SIZE, TEXT SIZE, CHARACTER SCALE, and MA­
TRIX 2x2. 

• WINDOW, EYE BACK, FIELD_OF_VIEW, LOOK, MATRIX_4x3, 
and MATRIX_ 4x4 transformations applied to data are taken into ac­
count when transformed data are retrieved, but it is recommended 
that these six transformations be removed from the object definition 
beforehand. 

• A VIEWPORT specification has no effect on the transformed data. 

1.2 The F:XFORMDATA Function 

Use an instance of F:XFORMDATA to request transformed data. 
F:XFORMDATA has five inputs and one output. (Discussion of inputs <4> 
and <5>, which specify a range of transformed vectors to be retrieved, is 
presented in section 4.) 

• Input <1> is the active input for this function. Any message sent to 
this input will begin retrieval of transformed data if the other inputs 
have been prepared correctly. 

Transformed Data and Writeback TT9-3 



IT9-4 

• Input <2> is a constant input which accepts a string message contain­
ing the name of a XFORM node. Transformed data will be retrieved 
for the object(s) marked by this XFORM node. 

• Input <3> is a constant input which accepts a string message contain­
ing the name of the new data or operation node to be created. The 
name also appears in the ASCII command string produced by 
F:LIST, if any. 

If XFORM VECTOR is used and if the name at input <3> is identical 
to the name of the original (untransformed) data node, the trans­
formed data replace the original data in the display structure. (The 
immediate effect of this redefinition is to display the object with its 
transformations doubly applied-once explicitly in the display data 
structure and once implicitly in the transformed vector list). 

• Output <1> contains the transformed data. If ASCII PS 390 com­
mand information is desired for the host, connect this output directly 
to F:LIST. Do not attempt to connect this output to anything else 
(such as another data node). 

Output <1> may remain unconnected if no ASCII transformed data 
are desired. (A data node can be created through XFORM VECTOR 
without any connections from this output.) 

1.3 The F:LIST Function 

F:LIST converts the output of F:XFORMDATA into an ASCII PS 390 com­
mand string suitable for storage on the host computer (and for retrans­
mission back to the PS 390). There is no need to instance F:LIST unless this 
ASCII information is to be retrieved. F:LIST has one input and two outputs: 

• Input <1> accepts the transformed data from output <1> of 
F:XFORMDATA. 

• Output <1> contains the transformed data, reformatted as an ASCII 
PS 390 command string. 

If a transformed vector list was requested, a VECTOR_ LIST 
ITEMIZED command is output. If a transformation matrix was 
requested, a MATRIX_ 4x4 command is output. 

The name of the command is the string that was on output <3> of 
F:XFORMDATA at the time of the request. 

Tools and Techniques 



• Output <2> is a Boolean TRUE completion indicator. Refer to the 
transformed data sample program for an application of this comple­
tion indicator. 

The ASCII command string from F:LIST may be sent to a host computer via 
HOST MESSAGE. 

2. Excluding Certain Viewing Transformations 

If WINDOW, EYE BACK, FIELD_OF_VIEW, LOOK, MATRIX_4x3, or 
MATRIX_ 4x4 transformations are applied to an object, transformed data 
may include inappropriate Z information. It is therefore recommended that 
these transformations be excluded from the object and replaced by a 4x4 
identity matrix before transformed data are retrieved. 

Since the default window transformation matrix is not an identity matrix, 
this practice is recommended even when no nodes for the above six trans­
formations have been included explicitly in the display structure. 

3. Using F:SYNC(n) to Prevent Overlapping Requests 

After F:XFORMDATA is triggered, it begins supplying transformed data to 
F:LIST, which in turn converts the data to ASCII format. Before this process 
is finished, F:XFORMDATA could be triggered again, and 
F:XFORMDATA could supply new data before F:LIST is finished with the 
old. The result could be a nonsensical combination of the two requests. A 
suggested network to prevent overlapping transformed data requests is: 

F: SYNC(2) ---- F: XFORMDATA---- F:LIST 

This network must be initialized before use by sending any message to input 
<2> of F:SYNC(2). 

Transformed Data and Writeback IT9-5 



TT9-6 

4. Specifying Vector Ranges for Transformed Data Retrieval 

Inputs <4> and <5> of F:XFORMDATA restrict the retrieval of transformed 
vector data (XFORM VECTOR) to a specified range of vectors within the 
source vector list( s). 

Input <4> (used only for VECTOR_JLIST) is an integer index specifying the 
place in the vector list at which transformed vector retrieval is to begin. The 
default value is 1. 

Input <5> (used only with VECTOR __ LIST) specifies the number of consecu­
tive transformed vectors to be retrieved .. The default value is 2,048. No 
more than 2, 048 consecutive vectors may be retrieved. 

If inputs <4> and/or <5> are used for matrix data, they are ignored. 

If the XFORM VECTOR node is applied to an instance node so that several 
data nodes are within the scope of the XFORM VECTOR node, transformed 
vectors can be retrieved from individual vector lists or portions of vector 
lists using the range specification. Vectors are numbered in sequence, be­
ginning with the first vector list named in the INSTANCE command. For 
example, if the command sequence 

Xformit := XFORM VECTOR APPLIED TO Z; 
Z := INSTANCE OF A,B,C,D; 
A := VECTOR_LIST N=5 ... ; 
B := VECTOR_LIST N=6 ... ; 
C := VECTOR_LIST N=lO ... ; 
D := VECTOR_LIST N=8 ... ; 
XformData := F:XFORMDATA; 

has been entered, then transformed vectors for list C may be requested by 
using XFORMDATA inputs <4> and <5> as follows: 

SEND FIX(12) TO <4>XformData; 
SEND FIX(lO) TO <5>XformData; 

5. Transformed Data Sample Program 

The following example illustrates both of the recommended features of a 
network for retrieving transformed data using the XFORM command: the 
exclusion of perspective and window transformations and the prevention of 
overlapping transformed data requests. 

Tools and Techniques 



In this example, a conditional bit is used to switch between the perspective 
and window mappings (applied while designing the object) and the identity 
matrix (applied while sending the transformed object data). The untrans­
formed object is Data; the transformed vector list to be created is Xdata. 

Xform .- BEGIN_STRUCTURE { Set up switch mechanism } 
X := SET CONDITIONAL_BIT 1 ON; 

IF CONDITIONAL BIT 1 IS ON THEN View; 
IF CONDITIONAL BIT 1 IS OFF THEN Tran; 

END_STRUCTURE; 

Tran .- BEGIN_STRUCTURE { To be used while getting 
{ transformed data } 

MATRIX_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; 
INSTANCE OF Obj; 

END_STRUCTURE; 

View .- BEGIN_STRUCTURE {To be used while viewing and designing} 
{Viewing commands: WINDOW, EYE BACK, } 
{FIELD_OF_VIEW, MATRIX_4x3, MATRIX_4x4, LOOK} 

INSTANCE OF Obj; 
END_STRUCTURE; 

Obj .- BEGIN_STRUCTURE Set up transformed data request 
Transformation commands: ROTATE, 
SCALE, and/or MATRIX_3x3 

XFORM_REQUEST:= XFORM VECTOR; 
INSTANCE OF DATA; 

END_STRUCTURE; 

TRANSLATE,} 

} 

XformData := F:XFORMDATA; 
Sync2 := F:SYNC(2); 

{ Build transformed data network } 

List := F:LIST; 
CONNECT Sync2<1>:<1>XformData; 
CONNECT XformData<l>:<l>List; 
CONNECT List<l>:<l>HOST_MESSAGE; 
CONNECT List<2>:<2>Sync2; 
SEND <any message> TO <2>SYNC2; 

{ Send transformed data to host } 
{ "Task completed" flag } 

SEND 'Obj.Xform_Request' TO <2>XformData; 
SEND 'Xdata' TO <3>XformData; 
DISPLAY Xf orm; 

Transformed Data and Writeback 7T9-7 



TT9-8 

When the object has been designed and transformed properly and you are 
ready to send data to the host, the commands 

SEND FALSE TO <l>Xform.X; 
SEND <any message> TO <l>Sync2; 

(or an equivalent function network) send the transformed data to the host. 
Since the perspective and window transformations are replaced by the iden­
tity matrix during this time, the displayed object becomes distorted or disap­
pears during transmission. When the entire list has been sent, enter 

SEND TRUE TO <l>Xform.X; 

(or route the completion indicator of F:LIST to this input) to redisplay the 
object and continue designing). 

6. Writeback Feature 

The following sections describe how to use the Writeback feature. These 
sections contain: 

• A description of the user interface for the Writeback feature. The 
user interface consists of the WRITEBACK operation node and the 
WRITEBACK initial function instance. 

• Constraints on the use of the WRITEBACK operation node. 

• Descriptions of the WRITEBACK function. 

• A list of the commands that need to be interpreted by host-resident 
code to filter writeback data retrieved from the PS 390. 

• An example of the sequence of data sent back to the host. 

• An example of a host program that retrieves, processes, and files 
write back data from the PS 390. 

The Writeback feature is implemented by: 

• Creating the WRITEBACK operation node (or using the system-gen­
erated write back node, WB$). 

• Activating the WRITEBACK operation node. 

• Connecting the WRITEBACK function to a function network. 

Tools and Techniques 



6.1 WRITEBACK Operation Node 

When the PS. 390 is booted, a WRITEBACK operation node is created. It is 
named WB$ and is placed above every user-defined display structure. This 
node can be triggered if an entire displayed picture is to be included in the 
writeback data. If writeback of only a portion of the picture is desired, the 
user must place other WRITEBACK nodes appropriately in the display 
structure. 

A user-defined WRITEBACK operation node is created by the command: 

Name := WRITEBACK [APPlied to Namel]; 

The WRITEBACK node has one input. A TRUE sent to input <1> of the 
WRITEBACK node triggers writeback for the display structure below the 
node. This trigger is sent by the user, for example: 

SEND TRUE TO <l>name; 

triggers that WRITEBACK node. Of course the node could be triggered 
through a function network using a function key, etc. 

A WRITEBACK operation node delimits the display structure from which 
the writeback data will be collected. Only the data nodes below the 
WRITEBACK operation node in the display structure will be transformed, 
clipped, viewport scaled perspective divided (as delineated by the placement 
of the WRITEBACK node), and sent back to the host. 

6.2 WRITEBACK Operation Node Constraints 

Only a displayed structure can be enabled for writeback. This means that 
the WRITEBACK operation node must be traversed by the display processor 
and therefore must be included in the displayed portion of the structure. 
The default WRITEBACK node WB$ is displayed as part of every displayed 
structure. But, if the user creates another WRITEBACK node and if this 
node is triggered before being displayed, the following error message will 
result: 

E 8 ACP cannot find your operate node 

Transformed Data and Writeback IT9-9 



Any number of WRITEBACK nodes can be placed within a structure. How­
ever, only one WRITEBACK operation can occur at a time. If more than one 
node is triggered, the WRITEBACK operations are performed in the order 
in which the corresponding nodes were triggered. 

The terminal emulator and message_ display information will not be re­
turned to the host. 

Before triggering the WRITEBACK operation, disable the SCREENSA VE 
function by entering the command 

SCREENSAVE:= nil; 

7. WRITEBACK Function 

TT9-10 

An initial function instance, WRITEBACK, is created by the system at boot 
up. 

Integer specifying 
size of output 
Qpackets -----~- <1> 

WRITE BACK 

<1>-f4---

'-------·--~----

Qpackets to user 
function network 

WRITEBACK sends encoded writeback data received from the display proc­
essor. The writeback data is prefixed by a start-of-writeback command, fol­
lowed by the encoded data, followed by an end-of-writeback or end-of-frame 
command. 

WRITEBACK has one user-accessible input queue. Input <1> accepts 
integers specifying the size of Qpackets to be output by the function. The 
default size is 512 bytes per Qpacket. The minimum and maximum size are 
16 bytes per Qpacket and 1024 bytes per Qpacket, respectively. If the size 
specified by the user is not within this range, the default size will be used by 
the system. 

Tools and Techniques 



The input value should be chosen such that the actual size of the Qpacket 
sent to the I/O port is less than or equal to the present input buff er size on 
the host computer. 

If the CVT8T06 function is used to send the binary data to the host, then 
the number of the bytes sent to the host is approximately 3/2 "' the number 
of bytes sent by the WRITEBACK function. 

For example, if the integer sent to <1> of the WRITEBACK function is 80, 
the largest Qpacket sent to the host will be 80 * 3/2 = 120. Qpackets, where 
the size is not a multiple of 4i will be padded to the next multiple of 4. For 
instance, Qpacket sizes of 77, 78, and 79, sent to CVT8T06 will all have 
output sizes of 120. 

WRITEBACK has one user-accessible output queue. Output <1> passes the 
encoded writeback data out as Qpackets until the end-of-writeback or end­
of-frame command is seen. 

This function is not activated by the normal input queue triggering mecha­
nism. It is activated by sending a TRUE to any WRITEBACK operation 
node. 

WRITEBACK will return all data below the WRITEBACK operation node. 
Host-resident code will be responsible for recognizing the start-of-writeback 
and end-of-writeback or end-of-frame commands. 

Attribute information, such as color, must be interpreted by host code to 
ensure that the hardcopy plots are correct. 

On the PS 390, viewport translations will not be applied to the data. Correct 
computation of the position of endpoints requires that the host program add 
a viewport center to each endpoint. The initial viewport center is established 
with a VIEWPORT CENTER command. The VIEWPORT CENTER com­
mand is sent following the start-of-writeback command. Any changes to the 
viewport center will be indicated through this sequence of commands: 
CLEAR DDA, CLEAR SA VE POINT, position endpoint, CLEAR SA VE 
POINT. The position endpoint becomes the new viewport center. 

Also, on the PS 390, several commands such as ENABLE PICK and EN­
ABLE BLINK are sent to the host. These will not typically be needed by the 
host program. However, these commands come directly from the refresh 
buffer and are not filtered by the PS 390. Host-resident code must filter the 
writeback data and strip out nonessential information. 

Transformed Data and Writeback IT9-l I 



7.1 Data Packets Returned 

Data packets sent from the WRITEBACK function contain the following 
information: 

• If bit 15 of the first word is 0, it signals that the data that follows is 
a command. For example, if the first word is H#0200 (Hex 0200) 
then the Line Generator status will follow. 

bits 15 14 0 

1--0_._c_o_m~m-a_nd~--~~----i 
parameter ~ 

• If bit 15 of the first word is 1, it indicates that intensity, x and y 
coordinate information will follow. Intensity can range from 0 to 127. 
The format of the data is: 

bits 15 14 13 
1 d i11 

bits 15 - 13 

//////// 

bits 15 - 13 

//////// 

12 -- 6 
inten 

12 --
y co ord 

12 --
x co ord 

NOTE 

0 

0 

if d = 1, it is a DRAW 
if d = 0, it is a MOVE 

In the illustrations of data format, the slash character is 
used to illustrate blocks of data that are unused. 

7 .2 Command Descriptions 

TT9-12 

The following list describes the commands that the host-resident code might 
have to interpret before it can recognize and filter writeback data received 
from the PS 390. These commands can be intermixed with vector data. 

It is important to note that each command contains at least three 16-bit 
words. For example, if a command only has one parameter then the third 
word is unused, but it is still sent to the host. If a command has 3, 4, or 5 
parameters, then 6 words will be sent for that command. 

Tools and Techniques 



START-OF-WRITEBACK 

Parameters: 
Line texture (one word) 
LGS (one word) 

code in hex = H#OBOO 
# 2816 

Marks the beginning of the writeback segment, of which there is 
guaranteed to be only one. 

The texture and line generator status are included here. They follow 
the format shown below. 

§!m1n(r: re~ure 
END-OF-WRITEBACK 

Parameters: 
None 

code in hex = H#OCOO 
# 3072 

Marks the end of the writeback segment. 

!== 
0 

coo 
011 

I 0 = finished successfully, 1 = cannot finish 

lzzzz.!;71777777~ ////// /////// operation because of insufficient memory. 

LINE GENERATOR STATUS 

Parameters: 
Status word (one word) 

code in hex = H#0200 
# 512 

Indicates dot mode (bit 8) and which display is selected (bits 0-3). 
Normally, only the dot mode bit must be referenced. 

~//ll/!//;;;/////////11/ I 

Transformed Data and Writeback TT9-13 



Line Generator Status Register (LGS): 

Ill Ill Ill Ill Ill Ill Ill SHO I Ill I Ill 1111111 SCOPE SELECT 
Ill Ill Ill Ill Ill Ill Ill EPT Ill Ill 1111111 o c B A 

--''------'---=---=----..:::::._~ 

15 14 13 1 2 11 10 09 08 07 06 05 04 03 02 01 00 

Bit Logical Names 

B A 
08 SHOWENDPT Dot mode 
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope) 
02 BLANKC Blank scope c 
01 BLANKB Blank scope B 
00 BLANKA Blank scope A 

COLOR 

Parameters: 
Color value (one word) 

code in hex = H#0400 
# 1024 

1

111 T77I /////////// 
.__1_11----'-'H_,__I ___ -:.,H......,.U<-=E'---__ =.;LO'"'--lml_ HI AT LO I 11 I I I I I I I I 
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

TEXTURE 

Parameters: 
Texture value (one word) 

IW£#%%~~;};f//!i1111 I 
Line Generator Texture Register: 

code in hex = H#OSOO 

# 1280 

llllll llllllllllll Ill lllllll llllllll I~ TEXTURE BIT PATTERN 
11/lll llllllllllll Ill lllllll llllllll IL_ 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

H#007F or H#OOFF both default to a Solid line. 

TT9-14 Tools and Techniques 



CLEAR DDA 

Parameters: 
None 

PICK BOUNDARY 

Parameters: 
Four Boundary Values ( 4 words) 

CLEAR SA VE POINT 

Parameters: 
None 

SET PICK ID 

Parameters: 
Pick ID Pointer (two words) 

RESERVED 

ENABLE PICK 

Parameters: 
None 

Transformed Data and Writeback 

code in hex = H#0100 
II 256 

~ode in hex = H#0300 
# 768 

code in hex = H#0600 
# 1536 

code in hex = H#0700 
# 1792 

code in hex = H#0800 
# 2048 

code in hex = H#0900 
# 2304 

7T9-15 



179-16 

DISABLE PICK 

Parameters: 
None 

SET BLINK RA TE 

Parameters: 
Blink Rate (one word) 

ENABLE BLINK 

Parameters: 
None 

DISABLE BLINK 

Parameters: 
None 

END-OF-FRAME 

Parameters: 
None 

code in hex = H#OAOO 
# 2560 

code in hex = H#ODOO 
# 3328 

code in hex = H#OEOO 
# 3584 

code in hex = H#OFOO 
# 3840 

code in hex = H#l 700 
# 5888 

Signifies that the current update cycle is completed and that any following 
data is part of the next update frame. This also signifies end of the writeback 
segment. 

Tools and Techniques 



VIEWPORT CENTER 
Parameters: 

x center (one word) 
y center (one word) 
z center (one word) 
spare (two words) 

bits 15 . . . . . . . . . . . . . . . . . . . . . O 

code in hex = H#1800 

I coordinates I 2 's complement vector 

This value has to be added to each x,y coordinate pair. This information 
is necessary to calculate the actual coordinates of the data which has 
been viewport scaled. Every time a new viewport is traversed by the ACP, 
a new viewport center command will be sent. 

NOTE 

Codes H#l 900 - H#lFOO are reserved for future com­
mands. Code H#OOOO is defined as a no-op, and natu­
rally has no parameters. 

Transformed Data and Writeback 7T9-17 



7.3 Sequence of Data Sent Back to the Host 

TI'9-l 8 

The following example illustrates the sequence of data and the data in byte 
format sent to the host during a WRITEBACK operation. 

Texture 

1--------------1 

x 

Color command 

v 
E 
c 
T 
0 
R 
s 

1-------------1 Line Generator Status command 

x 

Texture command 

v 
E 
c 
T 
0 
R 
s 

Tools and Techniques 



Data in Byte Format 

OB 00 
00 FF 
04 70 
04 00 
80 00 
00 00 
00 FF 
lY FF 
lX FF 
00 FF 
2Y FF 
2X FF 

02 00 
04 70 
00 00 
05 00 
00 FF 
00 00 
04 00 
80 00 
00 00 
00 FF 
lY FF 
lX FF 

oc 00 
00 00 
00 00 

Start-of-writeback command 
Texture 
LGS 
Color command 
Hue/Saturation 
Not used 
Intensity 

y 

x 
Intensity 

y 

x 

LGS command 
LGS 
Not used 
Texture command 
Texture 
Not used 
Color command 
Color 
Not used 
Intensity 

y 

x 

End-of-writeback command 
Finished successfully 
Not used 

Transformed Data and Writeback TI9-19 



8. Sample WRITEBACK Prograim 

PROGRAM Wri teback (Input, Output, Outf ile, Devf ile) ; 

{ Program to read writeback data from a PS 390. This program sets up a } 
{ function network to get the writeback data and processes the data and } 
{creates a data file on the host with the data from the PS 390.} 

CONST 
%INCLUDE 'PROCONST.PAS' 
Max_buf = 1024; 

TYPE 
Int16 = -32768 .. 32767; 
Max line = VARYING [Max_buf] OF CHAR; 
%INCLUDE 'PROTYPES.PAS' 

VAR 

TT9-20 

OUTFILE TEXT; 
DEVFILE TEXT; 
DEV SPEC P_VARYINGTYPE; 
OUTNAME P_VARYINGTYPE; 
WBNAME P_VARYINGTYPE; 
COMMAND INT16; 
INDEX : INTEGER; 
LEN : INTEGER; 
Inline : P_VARYBUFTYPE; 
vx,vy,vz : REAL; 
In_DDA : BOOLEAN := FALSE; 

%INCLUDE 'PROEXTRN.PAS' 

PROCEDURE ERR (ERROR: INTEGER); 
{} 
{ ERROR HANDLER ROUTINE } 
{} 

BEGIN { ERR } 
{} 
WRITELN(' ERROR:=' ,ERROR); 
HALT; 
{} 

END; { ERR 

Tools and Techniques 



PROCEDURE Setup; 
{ Create function network to send writeback data to host 
{ This uses F:cvt8to6 to send 6-bit data to the host } 

BEGIN 
PFninst('cvt' ,'cvt8',Err); 
Pconnect ('Writeback' ,1,1,'cvt' ,Err); 
Pconnect ( 'cvt', 1, 1, 'host_message', Err) ; 
PsndStr (CHR(36),2,'cvt' ,Err); 
PsndFix (48,1,'writeback', Err); 
PNameNil('screensave' ,Err); 
PPurge ( Err) ; 
END; 

{ Utility procedures } 
PROCEDURE Six_to_eight( Inbuf : Max_line; 

VAR Outbuf : P_VARYBUFTYPE); 
{ Data from PS 390 is in six-bit packed format. This procedure } 
{ unpacks data } 

CONST Base = 36; 

TYPE 
Cheat __ 4 = PACKED RECORD CASE Boolean OF 

TRUE: ( i: UNSIGNED); 
FALSE: ( c: PACKED ARRAY [1 .. 4] OF CHAR); 

END; 

VAR 
w : Cheat_4; 
c_out,cycle_count,buf_index,il,tc 
first : BOOLEAN; 

BEGIN 
buf_index := 1; 
first := TRUE; 
cycle __ count : = 1; 
c_out := 4; 
outbuf : = " ; 
WHILE buf _index <= len DO 

BEGIN 
tc := ORD(Inbuf[buf_index]) - base; 
IF first THEN 

IF tc < 0 THEN 
c_out .- 4+tc 

ELSE 
BEGIN 

first := FALSE; 
w.i := tc; 
cycle_count .- SUCC(cycle_count); 

END { ELSE tc >= 0 } 

Transformed Data and Writeback 

INTEGER; 

TT9-21 



ELSE 

TI9-22 

BEGIN 
w.i := w.i * (2**6); 
w.i := UOR(w.i ,tc); 
cycle_count := SUCC(cycle_count); 

END; { ELSE } 
IF cycle_count > 6 THEN 

BEGIN 
FOR il := 4 DOWNTO (5-c_out) DO 

Outbuf := outbuf + w.c[il]; 
cycle_count .- 1; 
first .- true; 

END; 
buf_index .- SUCC(buf_index); 

END; { WHILE } 
END; 

PROCEDURE Next_Block; 
{ Get a block of data from the PS 390 and convert from six to eight } 
{ bit format } 

VAR Inbuf f Max line; 

BEGIN 
PGETWAIT(Inbuff ,err); 
Index := 1; 
Len := LENGTH(Inbuff); 
Six_to_eight ( Inbuff, Inline); 
Len.- LENGTH(Inline); 

END; 

PROCEDURE Get_Value( VAR a: INT16); 
{ Convert two bytes of input buffer to 16 bit integer } 

VAR i INTEGER; 

BEGIN { Get Value 
a := O; 

FOR i := 1 TO 2 DO 
BEGIN 

Index := Index + 1; 
IF Index > Len THEN 

Next_Block; 
a :=a* 256 + ORD(Inline[Index]); 

END; 
END;{ Get Value} 

Tools and Techniques 



Procedures for processing refresh buffer commands } 

PROCEDURE Clear_DDA; 
{CLEAR DDA - %X0100 } 
{Parameters - None } 
{Indicates start of sequence to set viewport center } 
{This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT} 

VAR a,b : Int16; 

BEGIN 
In DDA .- TRUE; 
Get_value (a); 
Get_value ( b ) ; 
Writeln(Outfile,'{Clear DDA}'); 

END; 

PROCEDURE Write_LGS; 
{ WRITE LINE GENERATOR STATUS - %X0200 
{ Parameters - Status word (one word) 
{ Bit 8 Dot mode. } 
{ Bit 6 Fast sweep ( Opposite of 7) } 

{ Bits 5 - 4: Contrast selection (00-min,11-max) 
{ Bits 3 - O: Scope select( 1 disables,O enables) } 

VAR lgs,a Intl6; 

BEGIN 
Get_value ( lgs ) ; 
Get_value (a); 
Writeln(Outfile,'{Write LGS:',HEX(lgs),'}'); 

END; 

PROCEDURE Write_Pick_Bound; 
{ WRITE PICK BOUNDARY - %X0300 } 
{ Parameters - Left, Right, Bottom, Top } 

VAR l,r,b,t,a : Int16; 

BEGIN 
Get value 1 ); 
Get_value r ) ; 
Get_value b ) ; 
Get_value t ); 
Get_value a ) ; 
Writeln(Outfile,'{Write_Pick_bound:' ,HEX(l) ,HEX(r),HEX(b) ,HEX(t) ,'}'); 

END; 

Transformed Data and Writeback 1T9-23 



IT9-24 

PROCEDURE Write_Color; 
{ WRITE COLOR - %X0400 
{ Parameters - Color value (one Word) } 
{ Bit 15 Not Used } 
{ Bits 14 - 8 : Hue (High order in 14) } 
{ Bit 7 Not Used } 
{ Bits 6 3 Sat (High order in 3) } 
{ Bits 2 - 0 : Not Used } 

VAR c,a Intl6; 

BEGIN 
Get_value ( c ); 
Get_value (a); 
Writeln(Outfile,'{Write_Color:' ,HEX(c) ,'}'); 

END; 

PROCEDURE Write_Texture; 
{ WRITE TEXTURE - %X0500 
{ Parameters - Texture value (one word) 
{ Bits 15 7 Not Used } 
{ Bits 6 - 0 : Texture bit pattern } 

VAR t,a Intl6; 

BEGIN 
Get_value ( t ); 
Get_value (a); 
Writeln(Outfile,'{Write_Texture:' ,HEX(t) ,'}'); 

END; 

PROCEDURE Clear_Save_Point; 
CLEAR SAVE POINT - %X0600 

{ Parameters - None } 

VAR a ' b : Intl 6 ; 

BEGIN 
Get_value ( a ) ; 
Get_value ( b ); 
Writeln(Outfile,'{Clear_Save_Point:}'); 

END; 

PROCEDURE Set_Pick_Id; 
{ SET PICK ID - %X0700 
{ Parameters - Pick Id Pointer (two words) } 

VAR a ' b : Intl 6 ; 
BEGIN 

Get_value (a); 

Tools and Techniques 



Get_value ( b ) ; 
Writeln(Outfile,'{Set_Pick_Id:' ,HEX(a),HEX(b),'}'); 

END; 

PROCEDURE Set_Lightpen_Mode; 
{ SET LIGHTPEN MODE - %~0800 } 
{ **----------------------** } 
{ PS 350 ONLY } 
{ **----------------------** } 
{ Parameters - Control mask } 
{ Tracking cross y } 
{ Tracking cross x } 
{ Delta distance } 
{ Delta frames 

VAR cm,x,y,dd,df 

BEGIN 
Get_value cm); 
Get_value x ) ; 
Get_value y ) ; 
Get_value dd ); 
Get_value df ); 

Int16; 

Writeln(Outfile,'{Set_Lightpen_mode:' ,HEX(cm),HEX(x),HEX(y), 
HEX(dd),HEX(df),'}'); 

END; 

PROCEDURE Enable_Pick; 
{ ENABLE PICK - %X0900} 
{ Parameters - None } 

VAR a, b : Int16; 

BEGIN 
Get_value ( a ) ; 
Get_value ( b ); 
Writeln(Outfile,'{Enable_Pick:}'); 

END; 

PROCEDURE Disable_Pick; 
{ DISABLE PICK - %XOAOO } 
{ Parameters - None 

VAR a ' b : In t16 ; 

BEGIN 
Get_value ( a ) ; 
Get_value ( b ); 
Writeln(Outfile,'{Disable_Pick:}'); 

END-; 

Transformed Data and Writeback IT9-25 



IT9-26 

PROCEDURE Enable_Writeback; 
{ ENABLE WRITEBACK - %XOBOO } 
{ Parameters - Line Texture } 
{ Line Gen Status} 

VAR a, b : Int16; 

BEGIN 
Get_value (a); 
Get_value ( b ); 
Writeln(Outfile,'{Enable_Writeback:' ,HEX(a),HEX(b) ,'}'); 

END; 

PROCEDURE Disable_Writeback; 
{ DISABLE WRITEBACK - %XOCOO 
{ Parameters - None 

VAR a,b : Int16; 

BEGIN 
Get_value (a); 
Get_value ( b ); 
Writeln(Outfile,'{Disable_Writeback:}'); 

END; 

PROCEDURE Set_Blink_Rate; 
{ SET BLINK RATE - %XODOO } 
{ Parameters - Blink rate } 

VAR a,b : Int16; 

BEGIN 
Get_value ( a ) ; 
Get_value ( b ); 
Writeln(Outfile,'{Set_Blink_Rate:' ,HEX(a) ,'}'); 

END; 

PROCEDURE Enable_Blink; 
{ ENABLE BLINK - %XOEOO 
{ Parameters - None } 

VAR a ' b : In t16 ; 

BEGIN 
Get_value (a); 
Get_value ( b ); 
Wri teln (Outf ile,' {Enable_Blink:}') ; 

END; 

Tools and Techniques 



PROCEDURE Disable_Blink; 
{ DISABLE BLINK - %XOFOO 
{ Parameters - None } 

VAR a, b : Int16; 

BEGIN 
Get_value (a); 
Get_value ( b ); 
Writeln(Outfile,'{Disable_Blink:}'); 

END; 

PROCEDURE End_Of_Frame; 
END OF FRAME - %X1700 

{ Parameters - None 

VAR a,b : Int16; 

BEGIN 
Get_value (a); 
Get_value ( b ) ; 
Writeln(Outfile,'{End_Of_Frame:}'); 

END; 

PROCEDURE Viewport_Center; 
{ VIEWPORT CENTER - %X1800} 
{ Parameters - x center } 
{ y center } 
{ z center } 

VAR xc,yc,zc,a,b Int16; 

BEGIN 
Get - value xc ) ; 

Get - value ye ) ; 
Get - value zc ) ; 
Get value - a ) ; 
Get value - b ) ; 
vx := xc; 
IF (vx >= 32768) THEN vx .- vx - 65536.0; 
vx := vx/32767; 
vy :=ye; 
IF (VY >= 32768) THEN vy .- vy - 65536.0; 
vy := vy/32767; 
vz := zc; 
IF (VZ >= 32768) THEN VZ := VZ - 65536.0; 
vz := vz/32767; 
Writeln(Outfile,'{Viewport_Center:' ,vx:6:6,' ',vy:6:6,' ',vz:6:6,'}'); 

END; 

Transformed Data and Writeback 7T9-27 



PROCEDURE Process_Vector; 
{ Vector - Bit 15 of command = 1 
{ Word 1 ( command ) 

{ Bit 15 Always one for vector 
{ Bit 14 1 Draw, O = Move 
{ Bits 12 - 6 : Intensity/2 
{ Bits 5 - 0 : Not Used } 
{ Word 2 ( y coord) 
{ Bits 15 - 13: Not Used 
{ Bits 12 - 0: Y coordinate 
{ Word 3 ( x coord) 
{ Bits 15 - 13: Not Used 
{ Bits 12 - 0: x 

VAR a,b : Int16; 
un : UNSIGNED; 
pl : CHAR; 
int,x,y : REAL; 

BEGIN 
Get_value (a); 
Get_value ( b ) ; 
un:=command; 
pl:="l"; 

coordinate 

} 

} 

IF (UAND(un,%X4000) = 0) THEN pl "p"; 

un := UAND(un,%X1FCO); 
int := un; 
IF' In DOA THEN 

vz := int/8128.0 
ELSE 

int := (int/8128.0 + vz) * 2; 
un := a; 
un := UAND(un,%X1FFF); 
y := un; 
IF (y >= %X1000) THEN y .- y - %X2000; 
IF In DOA THEN 

vy := y I %XFFF 
ELSE 

y := y / %XFFF + vy; 
un := b; 
un := UAND(un,%X1FFF); 
x := un; 
IF (X >= %X1000) THEN x .- x - %X2000; 
IF In DOA THEN 

vx := x I %XFFF 
ELSE 

x := x / %XFFF + vx; 
II'' In DOA THEN 

BEGIN 

TT9-2 8 Tools and Techniques 



Writeln(Outfile,'{New View Center:' ,vx:6:6,' ',vy:6:6,' ',vz:6:6,'}'); 
In_DDA := FALSE; 

END 
ELSE 
Writeln(Outfile,'{Vec ',pl,' ',x,' ,' ,y,' i=' ,int,'}'); 

END; 

PROCEDURE Unknown; 
VAR a,b Int16; 

BEGIN 
Get_value ( a ) ; 
Get_value ( b ); 
Writeln(Outfile,'{Unknown:' ,HEX(command) ,HEX(a),HEX(b),'}'); 

END; 

BEGIN { Writeback } 
Write ('Enter Output File Name:'); 
Readln(Outname); 
Write ('Enter Writeback Operate Node Name:{WB$ is default node}'); 
Readln(wbname); 
open(Outfile,Outname,new); 
rewrite(Outfile); 

{ Look for file specifying line for pattach procedure } 
{ Example of record in PSDEV.DAT: } 
{ 'logdevnam=tt:/Phydevtyp=async' } 
open(devfile,'psdev' ,old); 
reset (devfile); 
readln(devfile,devspec); 
close (devfile); 

PATTACH(devspec,err); {Attach to PS 390} 
Setup; { Setup writeback network } 
PNAMENIL('SCREENSAVE' I ERR); 
PPURGE(ERR); 
PSndBool(TRUE,1,wbname, Err); { Trigger write back operate 

Next_block; 

Index := O; 
Command := O; 
vx .- 0.0; 
vy .- 0.0; 
vz .- 0.0; 

{ Read in first block of writeback data } 

{ Process writeback buffers until END OF FRAME or END WRITEBACK } 
WHILE (Command <> %XOCOO) AND (Command <> %X1700) DO 

Transformed Data and Writeback IT9-29 



BEGIN 
Get_value(Command); 
IF (Command > 32767) THEN { If bit 15 of command if set } 

Process_ vector 
ELSE 
CASE (Command DIV 256) OF 

%X01 Clear_DDA; 
%X02 Write_LGS; 
%X03 Write _Pick_Bound; 
%X04 Write_Color; 
%X05 Write_Texture; 
%X06 Clear _Save_Point; 
%X07 Set - Pick_Id; 
%X08 Set_Lightpen_Mode; 
%X09 Enable_Pick; 
%XOA Disable_Pick; 
%XOB Enable_Writeback; 
%XOC Disable_Writeback; 
%XOD Set_Blink_Rate; 
%XOE Enable_Blink; 
%XOF Disable_Blink; 
%X17 End_Of_Frame; 
%X18 Viewport_Center; 
OTHERWISE Unknown; 

END; { CASE } 
END; 

PFNINST (" SCREENSAVE", "SCREENSAVE', ERR PDETACH (ERR) ; 
PPURGE (ERR) : 
{} 

END. { Writeback 

TT9-30 Tools and Techniques 



9. Sumrnary 

Transformed data can be retrieved from a given data node and then estab­
lished as a separate data or operation node in the display structure. The 
transformed data can also be converted to an ASCII PS 390 command 
string for transmission to the host. To retrieve transformed data you must: 

• Mark the data node by applying a XFORM VECTOR or 
XFORM_MATRIX node in the display structure. The syntax for the 
XFORM node command is: 

Name := XFORM specifier APPLIED_TO_Node_Name; 

• Request the transformed data using an instance of the 
F:XFORMDATA function. 

To send the transformed data to the host you can convert the data to an 
ASCII PS 390 command string with an instance of the F:LIST function and 
send the data to the host via HOST MESSAGE. 

Writeback allows displayed transformed data to be sent back to the host. 
The transformations applied to the writeback data are determined by the 
position of the Writeback node in the display structure. 

A WRITEBACK operation node is created when the PS 390 is booted and 
placed above every user-defined display structure. This node can be trig­
gered if an entire displayed picture is to be included in the writeback data. 
If writeback of only a portion of the picture is desired, the user must place 
other WRITEBACK nodes appropriately in the display structure. A user-de­
fined WRITEBACK operation node is created by the command: 

Name := WRITEBACK [APPlied to Name l]; 

A WRITEBACK operation node delimits the display structure from which 
the writeback data will be collected. 

Transformed Data and Writeback 179-31 





TTlO. CRASH DUMP FILE 

CONTENTS 

1. CRASH DUMP FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. CRASH DUMP INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

3. CRASH DUMP PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

ILLUSTRATIONS 

Figure 10-1. Data in Crash File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 



Section TflO 

Crash Dulllp File 

A crash dump file i~ written to the diskette in drive 1 when a system crash occurs. 
This file is always named Crash.dat;l and occupies only 1 block on the diskette. If 
the file already exists it will be overwritten by the new crash information. If the file 
doesn't exist, it will be created. If there is insufficient room on the disk for the file, 
no crash dump file will be written. 

1. Crash Dump File 

The file consists of the 8 Data, the 8 Address registers, system version, 
system type, program counter, error type, error number, 59 32-bit stack 
entries, and the 68000 status register. The following figure shows the struc­
ture of the data in the crash file. Section 2 gives more information on some 
of these values. 

DO 
Dl 
D2 
D3 
04 
05 

06 
07 

AO 

Al 
A2 
A3 
A4 
A5 

A6 
A7 

Sysver 
Systype 

PC 
Err!.YQ_ l Errnum 

• 
Stack (236 Bytes) 

• 
Unused I SR 

Figure 10-1. Data in Crash File 

Crash Dump File ITJ0-1 



Section 3 gives an example of a host Pascal program that reads back the 
crash file from the PS 390. This information can be helpful in determining 
the cause of a crash. 

This program uses constant input <2> of the READDISK Function to pre­
vent the logging of crash files that were already recorded, by reading and 
then immediately deleting this file. If there is a true on input <2> after the 
file specified on input <1> is read, the file is deleted. The existence of a 
crash file would indicate that a crash had occurred since the last time the 
host program was run. 

2. Crash Dump Information 

TTI0-2 

There are three crash error types in the PS 390. Each type has a set of error 
numbers associated with the type. The three types are: 

• System Errors - Type 1 

•Traps - Type 2 

• Exceptions - Type 3 

The following is the list of errors for each type. 

Type 1 - System Errors 

1 Track number out of range 

2 Disk drive not ready 

3 Disk remains busy after a seek 

4 Block number out of range 

6 Lost data during read 

7 Record not found during read 

8 Data CRC error during read 

9 ID CRC error during read 

B Lost data during write 

c Record not found during write 

D Data CRC error during write 

E ID CRC error during write 

F Write fault 

Tools and Techniques 



10 Disk is write protected 

11 Lost data during format 

12 Write fault during format 

14 Disk drive number out of range 

15 Seek error 

16 Drive not ready during read 

17 Drive not ready during write 

18 Disk not at track 0 after restore command 

19 Disk busy after restore command 

1A Track number out of range during format 

1B Drive not ready during format 

1 C Disk write protected during format 

1D Time out during read 

1E Time out during write 

1F Time out during format 

64 Wait maybe called with nil argument 

65 Wait maybe called with a non-function 

66 Wait maybe, already a function waiting 

67 Wait maybe, parameter function waiting elsewhere 

68 Q ship to an unrecognized Namedentity 

69 Msgcopy, Message type shouldn't be copied 

6A Msgcopy, Msg type Has structure, unknown to Msgcopy 

6B Send, "Me" = nil 

6C Send, "Me" not a function instance 

6D Send, No such output port for this function 

6E Rem_conn/Add_conn, Al = nil 

6F Add_conn, A2 = nil 

70 Findqueue, Named item = nil 

71 Findqueue, illegal queue number (queue no. < 0 or queue no. > no. 
of inputs for function) 

72 Allinpwait, Nmin > Nmax 

73 Allinpwait, Nmin < 1 

Crash Dump File TTJ0-3 



ITJ0-4 

7 4 Tmessage, Waiting and n = 0 

75 Cmessage, Waiting and n = 0 

76 Lookmessage, Waiting and n = 0 

77 Allinputs, Nmin > Nmax 

78 Allinputs, Nmin < 1 

79 Fcnnotwait, Me = nil 

7 A Findqueue, found a nil queue! 

7B Waitnextinput, n = 0 

7C Anyoutputs, Me = nil 

7D Anyoutputs, illegal outset number 

7E Anyoutputs, no outset where there should be 

7F Fdispatch, function failed to re-queue after running 

80 Text_text, Bl < 0 

81 Char_text, b < 0 

85 Error during disk read 

8D Initial structure not correct 

8E AnnounceUpdate List tail = nil;head < > nil 

8F FormatUpdate, update pointer non nil 

90 FormatUpdate, Ready Head not nil but Tail is 

91 Bad code file -- illegal Op 

92 Byteindex Invalid Acpdata type 

93 FormatUpdate, PASCAL Head not nil but Tail is 

94 Vec_size, Invalid Acpdata type 

95 KillUpdate, Updfetch was < 0 

96 KillUpdate, update pointer non nil 

97 Vec_bias, Invalid Acpdata type 

99 CntCapacity, Invalid Acpdata type 

9C Unknown brand of Namedentity 

9D Hasstructure, has Qdatatype not found in Destroy 

9E Amuhead not a Qalphapair 

Al AppendVector, Invalid Acpdata type 

A3 Nomemsched, Bad .Status for a fen 

Tools and Techniques 



A9 Bad update list on ACP time-out 

AA ACP Timeout during initialization 

AB Crashprepare, Name CRASH$ has not been defined 

AC DecUpdsync, C_header " .Updsync < 0 

AD FormatUpdate, Someone waiting in C_header " .Updswait already 

AF Someone else waiting in C _header " .Killer already 

BO Non-nil Qwait of a dying function 

B3 Microcode won't fit into ACP 

B4 Implementation limit on delta waits (2 * * 31) 

B8 Detected internal inconsistency 

B9 Detected error (passed a bad parameter) 

BA Diskette's parsecode table inconsistent with parser 

BD Bad boundary on binary data xf er 

BF Default Devsts contains errors 

CO Inwait, f is already waiting or not a function 

Cl Outwait, f is already waiting or not a function 

C9 User generic function stack overflow 

CA Ug_run_cnt has become negative 

CB User generic function has bad alpha (on private queue) 

CC Bad format of MSGLIST .DAT detected 

CD MSGLIST (or code using it) has probably been corrupted 

CF Apparent datastructure incompatibility 

DO Bad MemOKindex detected 

Dl Routine passed bad parm (e.g., a nil ptr) 

D2 Lines to IBM system not active 

D3 Floppy disk file INITGPIO.DAT; not found or unable to read 

D4 Floppy disk file GPIOCODE.DAT; not found or unable to read 

DS Floppy disk file IBMFONT.DAT; not found or unable to read 

D6 Floppy disk file IBMKEYBD.DAT; not found or unable to read 

D7 Floppy disk file IBMASCII.DAT; not found or unable to read 

D8 IBM GPIO timeout 

D9 Number of minimum inputs is negative 

Crash Dump File ITJ0-5 



TTJ0-6 

DA Number of maximum inputs < Number of minimum inputs 

DB Number of maximum inputs > Number of inputs for function 

DC Sendlist detected a bad list 

DE Sendmess: message to be sent is NIL 

DF Caller did not have a Jock set already 

EO Curfcn in improper state to call Getinputs 

El Cleanin, Curfcn in improper state to call Cleaninp (e.g., have you 
first called Getinputs?) 

E2 Somebody remembered a forgotten non-fcninstance 

ES Alpha not already locked by caller 

E6 Confusion in discarding bad message 

E7 Lock not already set by caller 

E9 RemOne, Curfcn does not have that many inputs 

EA RemOne, Message to be deleted and message pointed to by 
Curinputs is not the same 

EB Lock not already set in Gatheraupdate call 

ED Get2locks detected lock already set 

EE Error in semantic routine for polygon vertex 

EF Destination Alpha was not already locked 

FO Parent not already locked in add/remove from set 

Fl Child not already locked in add to set 

F3 Alpha not already locked in Gpseudoaupdate 

F6 Confusion about locks or decausages 

F7 Unknown tap reason 

F8 Unanticipated state at which to see shoulder tap 

F9 Illegal number of inputs 

FC No existing DCB found for this user 

FD Timeout, Message on input 1 disappeared before fen could get it 

FE Error while initializing disk drive 

FF Error while reading disk header 

100 Error while reading disk directory 

101 THULE.DAT not found on disk 

102 Error while reading THULE.DAT 

Tools and Techniques 



103 Curfcn was not active at entry 

104 Viewport not in structure 

105 Real_simple, number of digits requested out of range (n < 1 or n > 9) 

106 Getnextone, illegal queue specified 

107 Getnextone, msg on head of queue and specified by Curinput do not 
agree 

108 Getnextone, no message on queue, but Curinput < > NIL 

109 ContBlock, nil block 

10A Timeout when waiting for all on-line JCPs 

1 OB Rehash only works first time, only time now. 

1 OC No processor has right to issue this tap 

lOD GetVector, Not an Acpdata block 

10E GetVector, Not a vector Acpdata block 

1 OF Invalid qpacket received 

110 Tolerance on FCnearzero is absurd 

111 Set construct of father has no dummy control block 

112 Function code has to be of type CI to have elements included and 
removed 

113 ShadeEnviron node encountered in non PS 340 

114 Unknown command received from Raster Backend; expected 
writeback.more or writeback.done. 

115 Error in reading HMSCODE.DAT from disk. 

116 Error in trying to get file info for HMSCODE.DAT. 

117 Error in reading HMSVEC.DAT from disk. 

118 Error in trying to get file info for HMSVEC.DAT. 

119 Error in reading HMSCOL.DAT from disk. 

120 Error in trying to get file info for HMSCOL.DAT. 

121 Error in reading HMSCURS.DAT from disk. 

122 Error in trying to get file info for HMSCURS.DAT. 

123 Error in reading HMSFILT.DAT from disk. 

124 Error in trying to get file info for HMSFILT.DAT. 

125 No TurnOnDisplay (wrong CONFIG.DAT file for PS 390). 

126 Can't follow alpha: TurnOnDisplay. 

Crash Dump File TTJ0-7 



ITJ0-8 

127 Raster Backend Timeout. The Raster Backend did not clear 
HMSmailbox[O] after it was sent an attention. A second attention to 
try to recover also received no response. 

Type 2 - Traps 

0 No mass memory on line, or too little to come up 

1 More OKINTs than NOINTs or > 128 NOINTs 

2 Free storage block size bad (on request or in free list) 

3 Attempt to Activate a non-function (or nil) or bad software detected 
during startup (most commonly, incompatible datastru.sa detected 
but perhaps invalid startup routine sequencing (if someone has been 
mucking around with it)) 

4 NEW call failed to find memory, within NOMEMSCHED 

5 Attempt to queue where a function is already waiting 

6 Systemerror(n) 

7 Badfcode(Fcn) 

8 Mass Memory Error Interrupt 

9 Utility Routine not included in this linked system 

A Probable multiple DISPOSE of the same block 

B Block exponent not big enough 

C Attempt to divide with a divisor which is too small in FixLongDivide 
(twice the dividend must be Jess than the divisor) 

D (Used by Motorola PASCAL) 

Type 3 - Exceptions 

0 Reset: Initial SSP 

1 Reset: Initial PC 

2 Bus Error (i.e. attempt to address nonexistent location in memory) 

3 Address Error (i.e. attempt to access memory incorrectly, for 
example an instruction not starting on a word boundary). 

4 Illegal instruction 

5 Zero Divide 

6 CHK Instruction 

7 TRAPV Instruction 

Tools and Techniques 



8 Privilege violation 

9 Trace 

10 Line 1010 Emulator 

11 Line 1111 Emulator 

24 Spurious interrupt 

3. Crash Dump Program 

Following is an example of a Pascal host program that writes the informa­
tion from the diskette crash file into a host :file. 

PROGRAM CRASH (Input,Output,Outfile); 

CONST 

TYPE 

%INCLUDE 'PROCONST.PAS/NOLIST' 

%INCLUDE 'PROTYPES.PAS/NOLIST' 

cheat_4 = RECORD 

CASE Boolean OF 
TRUE: (i : Integer); 
FALSE : (c : Array[l .. 4] OF CHAR) 

END; 

cheat_2 = RECORD 
CASE Boolean OF 

END; 

TRUE : ( i : [WORD] 0 .. 1024); 
FALSE : (c : Array[l .. 2] OF CHAR) 

Buff er = RECORD 
CASE Boolean OF 

TRUE: (b: P_VaryBuftype); 
FALSE : ({ Length of P_VaryBuftype is in Dummy} 

Dummy [WORD] 0 .. 1024; 
Dreg Array[O .. 7] of Cheat_4; 
Areg Array[O .. 7] of Cheat_4; 
SVer 
Stype 

Cheat_4; 
Cheat_4; 

Crash Dump File ITJ0-9 



TTJ0-10 

VAR 

END; 

Devtyp 
Inbuf f 
OutBuff 
Found 
Out file 

PC Cheat 4• 
-- ' 

Errtyp Cheat 2· - ' 
Errnum Cheat 2; -
Stack Array [l .. 59] 
Not Used Cheat 
SR Cheat 

Integer; 
P_VaryBuftype; 
Buffer; 
BOOLEAN; 
text; 

2· -- ' 
2) 

of Cheat 4• 
- ' 

%INCLUDE 'PROEXTRN.PAS/NOLIST' 

%INCLUDE 'VAXERRHAN.PAS/NOLIST' 

PROCEDURE Init_ps300; 

{ 

FUNCTIONAL DESCRIPTION: 

Initialize the comm link to the PS 390 

VAR 
a, Modify P_Varyingtype; 

BEGIN 
Write('Enter Type of Interface (l=Async, 2=Ethernet, 3=Parallel):'); 
Readln( Devtyp ); 
Write('Enter Device name :'); 
Readln( a ) ; CASE Devtyp OF 

1 

Modify 
3 

Modify 
2 

Modify 
OTHERWISE 
END; 

'LOGDEVNAM=' +a+ '/PHYDEVTYP=ASYNC'; 

'LOGDEVNAM=' +a+ '/PHYDEVTYP=ETHERNET'; 

'LOGDEVNAM=' +a+ '/PHYDEVTYP=PARALLEL' 

PAttach( Modify, PI_Error_handler) 
END; 

Tools and Techniques 



PROCEDURE Trigger_read; 

FUNCTIONAL DESCRIPTION: 

Create instance of function network to retrieve CRASH.DAT 
file from disk. The network will convert the data block 
to six-bit format and break it into packets of 72 bytes 
which will be put on host_message. 

VAR 

a : CHAR; 

PROCEDURE BREAKUP; 
{ Code generated by Network Editor 1.08 } 
{ This function network takes an incoming qpacket and breaks it 
{ into smaller packets to be sent over an terminal line since } 
{ most terminal handlers have some limit to the input length } 
{ BREAKUP } 
BEGIN 

Framel: 
PFninstN ( / Break_sync / , /SYNC/ , 2, PI __ Error _handler) ; 
PFninst (/Break_route/, /BROUTEC/, PI __ Error_handler); 
PFninst (/Add_constant/, /CONSTANT/, PI_Error_handler); 
PFninst (/Break_add/, / ADDC/, PI_Error_handler); 
PFninst (/Breakup/, /TAKE_ STRING/, PI __ Error_handler); 
PFninst (/In_length/, /LENGTH_STRING/, PI_Error_handler); 
PFninst (/Len_compare/, /OTC/, PI_Error_handler); 
PF:ninst (/Route_string/, /BROUTE/, PI __ Error_handler); 
PF:ninst ( /Route_starV, /BROUTE/, PI_Error_handler); 
PF:ninst (/cvt/, /CVT8T06/, PI_Error_handler); 
PF:ninst (/rd/, /READDISK/, PI_Error_handler); 
PFninst (/prnt/, /PRINT;, PI_Error_handler); 
PFninst (/Breakup_in3/, /CONSTANT/, PI_Error_handler); 
PConnect (/Break_sync/, 1, 1, /Breakup/, PI_Error_handler); 
PConnect (/Break_sync/, 1, 2, /Break_route/, PI_Error_handler); 
PConnect (/Break_sync/, 2, 2, /Breakup/, PI_Error_handler); 
PConnect (/Break_sync/, 2, 2, /Break_sync/, PI_Error_handler); 
PConnect (/Break_sync/, 2, 2, /Break_add/, PI_Error_handler); 
PConnect (/Break_route/, 1, 1, /Add_constant/, PI_Error_handler); 
PConnect ( /Break_route/, 1, 2, /Route __ string/, PI_Error_handler); 
PConnect (/Add_constant/, 1, 1, /Break_add/, PI_Error_handler); 
PConnect (/Break_add/, 1, 2, /Break_add/, PI_Error_handler); 
PConnect (/Break_add/, 1, 2, /Route_start/, PI_Error_handler); 

Crash Dump File TTJ0-11 



ITJ0-12 

END; 

PConnect ('Break_add', 1, 1, 'Len_compare', PI_Error_handler); 
PConnect ('Breakup', 1, 1, 'cvt', PI_Error_handler); 
PConnect ('Breakup', 2, 1, 'Break_route', PI_Error_handler); 
PConnect ( 'Br.eakup', 2, 1, 'Breakup_in3', PI_Error_handler); 
PConnect ('In_length', 1, 2, 'Len_compare', PI_Error_handler); 
PConnect ('Len compare', 1, 1, 'Route_string', PI_Error_handler); 
PConnect ('Len_compare', 1, 1, 'Route_start', PI_Error_handler); 
PConnect ('Route_string', 2, 1, 'Breakup', PI_Error_handler); 
PConnect ('Route_start', 2, 2, 'Breakup', PI_Error_handler); 
PConnect ('cvt', 1, 1, 'host_message', PI_Error_handler); 
PConnect ('rd', 1, 1, 'Break_sync', PI_Error_handler); 
PConnect ('rd', 1, 1, 'In_length', PI_Error_handler); 
PConnect ('rd', 2, 1, 'prnt', PI_Error_handler); 
PConnect ('prnt', 1, 1, 'host_message', PI_Error_handler); 
PConnect ('Breakup_in3', 1, 3, 'Breakup', PI_Error_handler); 
PSndStr(CHR(36), 2, 'cvt', PI_Error_handler); 
PSndFix (48, 3, 'Breakup' ,PI_Error_handler); 
PSndFix (48, 2, 'Breakup_in3' ,PI_Error_handler); 
PSndFix (48, 2, 'Add_constant', PI_Error_handler); 
PSndFix (1, 2, 'Break_sync' ,PI_Error_handler); 
PPutPars('Set priority of prnt to 9; ',PI_Error_handler); 

BEGIN 
IF Devtyp 1 

THEN 
Breakup 

ELSE 
BEGIN 
PFninst ('rd' , 'READDISK', PI_.Error_handler) ; 
PFninst ('prnt', 'PRINT', PI_Error_handler); 
PConnect ('rd', 2, 1, 'prnt', PI_Error_handler); 
PConnect ('prnt', 1, 1, 'host_message', PI_Error_handler); 
PConnect ('rd', 1, 1, 'host_message', PI_Error_handler); 
PPutPars('Set priority of prnt to 9; ',PI_Error_handler); 
END; 

Write(' Do you want to delete CRASH.DAT after reading?'); 
Readln ( a ) ; 
IF (a= 'Y') OR (a= 'y') 

THEN 
Psndbool( TRUE, 2, 'rd', PI_Error_handler) 

ELSE 
Psndbool( FALSE, 2, 'rd', PI_Error_handler); 

Psndstr( 'CRASH', 1, 'rd', PI_Error_handler) 
PPurge( PI_Error_handler ); 
END; 

Tools and Techniques 


	0001
	0002
	0003
	TT01-000
	TT01-001
	TT01-002
	TT01-003
	TT01-01
	TT01-02
	TT01-03
	TT01-04
	TT01-05
	TT01-06
	TT01-07
	TT01-08
	TT01-09
	TT01-10
	TT01-11
	TT01-12
	TT01-13
	TT01-14
	TT01-15
	TT01-16
	TT01-17
	TT01-18
	TT01-19
	TT01-20
	TT01-21
	TT01-22
	TT01-23
	TT01-24
	TT01-25
	TT01-26
	TT01-27
	TT01-28
	TT01-29
	TT01-30
	TT01-31
	TT01-32
	TT01-33
	TT01-34
	TT01-35
	TT01-36
	TT01-37
	TT01-38
	TT01-39
	TT01-40
	TT01-41
	TT01-42
	TT01-43
	TT01-44
	TT01-45
	TT01-46
	TT01-47
	TT01-48
	TT01-49
	TT01-50
	TT01-51
	TT01-52
	TT01-53
	TT01-54
	TT01-55
	TT01-56
	TT01-57
	TT01-58
	TT01-59
	TT01-60
	TT01-61
	TT02-000
	TT02-001
	TT02-002
	TT02-01
	TT02-02
	TT02-03
	TT02-04
	TT02-05
	TT02-06
	TT02-07
	TT02-08
	TT02-09
	TT02-10
	TT02-11
	TT02-12
	TT02-13
	TT02-14
	TT02-15
	TT02-16
	TT02-17
	TT02-18
	TT02-19
	TT02-20
	TT02-21
	TT02-22
	TT02-23
	TT02-24
	TT02-25
	TT02-26
	TT02-27
	TT02-28
	TT02-29
	TT02-30
	TT02-31
	TT02-32
	TT02-33
	TT02-34
	TT02-35
	TT02-36
	TT02-37
	TT02-38
	TT02-39
	TT02-40
	TT02-41
	TT02-42
	TT02-43
	TT02-44
	TT02-45
	TT02-46
	TT02-47
	TT02-48
	TT02-49
	TT02-50
	TT02-51
	TT02-52
	TT02-53
	TT02-54
	TT02-55
	TT02-56
	TT02-57
	TT02-58
	TT02-59
	TT02-60
	TT02-61
	TT02-62
	TT02-63
	TT03-000
	TT03-001
	TT03-002
	TT03-01
	TT03-02
	TT03-03
	TT03-04
	TT03-05
	TT03-06
	TT03-07
	TT03-08
	TT03-09
	TT03-10
	TT03-11
	TT03-12
	TT03-13
	TT03-14
	TT03-15
	TT03-16
	TT03-17
	TT03-18
	TT03-19
	TT03-20
	TT03-21
	TT03-22
	TT03-23
	TT03-24
	TT03-25
	TT03-26
	TT03-27
	TT03-28
	TT03-29
	TT03-30
	TT03-31
	TT03-32
	TT03-33
	TT03-34
	TT03-35
	TT03-36
	TT03-37
	TT03-38
	TT03-39
	TT03-40
	TT03-41
	TT03-42
	TT03-43
	TT03-44
	TT03-45
	TT03-46
	TT03-47
	TT03-48
	TT03-49
	TT03-50
	TT03-51
	TT03-52
	TT03-53
	TT03-54
	TT03-55
	TT03-56
	TT03-57
	TT03-58
	TT03-59
	TT03-60
	TT03-61
	TT03-62
	TT03-63
	TT03-64
	TT03-65
	TT03-66
	TT03-67
	TT03-68
	TT03-69
	TT03-70
	TT03-71
	TT03-72
	TT03-73
	TT03-74
	TT03-75
	TT03-76
	TT03-77
	TT03-78
	TT03-79
	TT03-80
	TT03-81
	TT03-82
	TT03-83
	TT03-84
	TT03-85
	TT03-86
	TT03-87
	TT04-000
	TT04-001
	TT04-002
	TT04-003
	TT04-004
	TT04-01
	TT04-02
	TT04-03
	TT04-04
	TT04-05
	TT04-06
	TT04-07
	TT04-08
	TT04-09
	TT04-10
	TT04-11
	TT04-12
	TT04-13
	TT04-14
	TT04-15
	TT04-16
	TT04-17
	TT04-18
	TT04-19
	TT04-20
	TT04-21
	TT04-22
	TT04-23
	TT04-24
	TT04-25
	TT04-26
	TT04-27
	TT04-28
	TT04-29
	TT04-30
	TT04-31
	TT04-32
	TT04-33
	TT04-34
	TT04-35
	TT04-36
	TT04-37
	TT04-38
	TT04-39
	TT04-40
	TT04-41
	TT04-42
	TT04-43
	TT04-44
	TT04-45
	TT04-46
	TT04-47
	TT04-48
	TT04-49
	TT04-50
	TT04-51
	TT04-52
	TT04-53
	TT05-000
	TT05-001
	TT05-01
	TT05-02
	TT05-03
	TT05-04
	TT05-05
	TT05-06
	TT05-07
	TT05-08
	TT05-09
	TT05-10
	TT05-11
	TT06-000
	TT06-001
	TT06-01
	TT06-02
	TT06-03
	TT06-04
	TT06-05
	TT06-06
	TT06-07
	TT06-08
	TT06-09
	TT06-10
	TT06-11
	TT06-12
	TT06-13
	TT06-14
	TT07-000
	TT07-001
	TT07-01
	TT07-02
	TT07-03
	TT07-04
	TT07-05
	TT07-06
	TT07-07
	TT07-08
	TT07-09
	TT08-000
	TT08-001
	TT08-01
	TT08-02
	TT08-03
	TT09-000
	TT09-001
	TT09-01
	TT09-02
	TT09-03
	TT09-04
	TT09-05
	TT09-06
	TT09-07
	TT09-08
	TT09-09
	TT09-10
	TT09-11
	TT09-12
	TT09-13
	TT09-14
	TT09-15
	TT09-16
	TT09-17
	TT09-18
	TT09-19
	TT09-20
	TT09-21
	TT09-22
	TT09-23
	TT09-24
	TT09-25
	TT09-26
	TT09-27
	TT09-28
	TT09-29
	TT09-30
	TT09-31
	TT10-000
	TT10-001
	TT10-01
	TT10-02
	TT10-03
	TT10-04
	TT10-05
	TT10-06
	TT10-07
	TT10-08
	TT10-09
	TT10-10
	TT10-11
	TT10-12

