PS 390 DOCUMENT SET

TOOLS AND TECHNIQUES 1-10

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390, and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

TOOLS AND TECHNIQUES

The Tools and Techniques (TTI1-10) volume contains programming aids for the
PS 390 user. It includes information such as application notes, helpful hints, how
to use the various editors, using the GSRs, and using the ASCII-to-GSR converter.

TT1 Application Notes

This section contains a collection of applications for PS 390 users. Contri-
butions to this section come from users inside and outside of Evans &
Sutherland.

TT2 Helpful Hints

This section contains task-oriented information such as defining break keys,
using the SITE.DAT file, and name suffixing. This section assumes a good
working knowledge of the PS 390 and some programming experience.

TT3 Using the GSRs

This section is an introduction to using the graphics support routines
(GSRs). The GSRs are a set of host-resident software routines that are the
standard vehicle for communication to the PS 390 from the host. The GSRs
can be used with the FORTRAN, Pascal and UNIX/C programming lan-
guages.

TT4 Function Network Editor

This section describes NETEDIT which permits the user to create a function
network using a diagram on the PS 390 display rather than directly input-
ting commands to a file.

TTS Function Network Debugger

This section describes NETPROBE which is used as a guide in preparing a
user-written network debugging program.

TT6 Data Structure Editor

This section describes STRUCTEDIT which is a graphical display structure
editor for the PS 390.

TT7 Character Font Editor

This section describes MAKEFONT which is a program that allows a user to
edit an existing character font or create a new one.

TT8 ASCII to GSR Converter

This section describes the ASCII-to-GSR conversion program which allows a
user to combine ASCII programming with the faster data communication
speeds available through the GSRs.

TT9 Transformed Data and Writeback

This section provides information on how to retrieve transformed data such
as a matrix or vector-list representation of transformation operations.

TT10 Crash Dump File

This section explains how to read back the crash dump file which is created
when a system crash occurs.

APPLICATION

NOTES

TT1. APPLICATION NOTES

CONTENTS
1 CURSOR REDEFINITION ittt iiiii ittt einnan, 3
2 DEFINING A DYNAMIC CURSOR ..., 4
3 WORLD-SPACE ROTATIONS ...ttt it e iiiiiennnn 6
4 OBJECT-SPACE ROTATIONS ... i i i e 8
5 RATIONAL POLYNOMIAL COMMAND USAGE 10
6 PROPORTIONAL SCALING ...ttt it iiiiiennnnnns 12
7 LOCAL INKING OF TABLET COORDINATES 14
8 LOCAL RUBBER BANDING OF TABLET COORDINATES 15
9 LOCAL GRID BANDING OF TABLET COORDINATES 17
10 TRANSLATION NETWORK i, 19

11 ANIMATION SEQUENCING WITH CLOCK FUNCTION 21

12 FRAME-BY-FRAME ANIMATIONo i, 23

13 MENU SELECTIONttt ittt iiii i i 25
14 ROTARY SWITCH i i it it it i 27
15 SHIFT REGISTERottt it iiii i ennes 28
16 FUNCTION NETWORK SEQUENCINGcoivinn.. 29
17 IF-THEN-ELSE CONSTRUCT iiiii i, 31
18 A REALTIME ANALOG AND DIGITAL CLOCK 33
19 BLINKING USING SET RATE EXTERNAL 36
20 LOCAL INKING OF TABLET COORDINATES 38
21 INTEGER INPUT VIA NUMERIC KEYPAD 40
22 MATRIX TRANSPOSE it i 42
23 LASER DISK CONTROLLERoitiiiiiiiiiiiininnennn 44
24 HIGH SPEED COMMUNICATIONt iiiiiiiinnnenns 49

i

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

ILLUSTRATIONS

1-1. World-Space Rotationsottt rennneennnnns 6
1-2. World-Space Rotation Networksccvveiieiinneeneennns 7
1-3. Object-Space Rotationsciiiiiiiiiiiiiiinnnnnns 8
1-4. Object-Space Rotation Networkcciiiiiivinn., 9
1-5. Proportional Scaling Network i, 13
1-6. Inking Networkcoiuuiiiiiiiiiiiiiiiiiiiiiiinnnnn, 14
1-7. Rubber-Banding Network i, 16
1-8. Grid-Banding Networkcuiiiniiiiiiiiiiinneennnns 18
1-9. Translation Networkoiuiuiiiiiiiiiiiininieeeenoennns 19
1-10. Animation Sequencing On-The-Fly 21
1-11. Animation Replay and Reset Network 22
1-12. Frame-by-Frame Animation it iinneennnn. 23
B G TR\ 7 1< 5 PO 25
1-14. Menu Selection Networkottt iiiennnn.. 26
1-15. Rotary Switch Networkt 27
1-16. Shift Register Networkcocoviiiiiiniiiniiiinnnneennns 28
1-17. Function Network Sequencingcoiiiiiiiienen. 29
1-18. Sequential Executing Networks, 30
1-19. IF-THEN-ELSE Networko.iiutiiniiiiiinnrnnnnennns 32
1-20. Clock Networkoviii i i i i e e 34
1-21. Analog ClocK .. vviiiiii it i i ittt ittt nnnnnanans 35
1-22. Blinking Network i i it it e 36
1-23. MEBLINK MaCIO o oot viiiiii it e enntennnnsooennsesnnnns 37
1-24. Inking Networkcoiiiiiiiiiitiiiinnnnnnnnneeeeeens 38
1-25. Keypad Network ...ttt 40
1-26. Matrix Transpose Network i, 42
1-27. Hardware Diagram for PS 390/Laser Disk Configuration 44
1-28. Laser Disk Controller Networko, 46

iii

Section TT1
Application Notes

The PS 390 Application Notes is a collection of useful information and applications
for PS 390 users. Contributions to the PS 390 Application Notes come from inside
and outside of Evans & Sutherland. Each note includes the author’s name and
company. The notes are numbered arbitrarily for referencing only.

Users will develop ways of using the PS 390 that may be valuable for a wide range
of applications. By publishing PS 390 Application Notes, Evans & Sutherland is act-
ing as a clearinghouse to make your ideas and techniques generally available to
other users. These notes have been written by PS 390 users and have not been
rigorously tested. If you encounter errors or bugs in these Application Notes when
you use them, please notify Evans & Sutherland.

These notes might describe an intricate function network that performs an impor-
tant operation, show a new and useful way of structuring data, or they may provide
something as simple as programming conventions or debugging methods that have
helped you. In other words, almost any idea that you think may be useful for other
PS 390 users is a candidate for the PS 390 Application Notes.

Please submit an Application Note for each idea you have to Evans & Sutherland.
We will compile them and distribute them periodically to all PS 390 sites. We may,
of course, not be able to publish every note submitted to us. Following is a descrip-
tion of the format we have used for this release of the Application Notes. Please
follow the same format when you submit an Application Note. Submit your Appli-
cation Notes and comments you may have to:

Neil Harrington

Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Format Note

When actual code appears in an Application Note, the PS 390 commands are writ-
ten with essential syntax in caps. Non-essential syntax is in lower case. For exam-
ple, BEGIN Structure indicates that it is necessary to enter only BEGIN_S.

Application Notes Trl-1

PS 390 Application Note Form Instructions
(Title of Note Here)

Your Name
Department
Company
City

Date

Categories

List all possible categories for this note, for example: data structuring,
function networks, command usage, host communications, animation, trans-
formations, etc. Your note may fall into different categories.

Description

Briefly describe the function or application and tell why the new application
is useful: what need it fills, what new thing it does, or what old thing it does
in a new and easier way.

Implementation

Insert specific details about using the application. If the procedure is com-
plex, describe it “top-down”:
e First explain the “big picture” or supply a block diagram

e Then describe in detail each piece of the overall description or block
in the diagram.

Do not start at the level of greatest detail unless the application is extremely
simple.

Notes, Examples

Include an example of the application. For users, this could mean the differ-
ence between understanding and not understanding how to use your applica-
tion when they can’t find their way through the Description and Implemen-
tation.

Also put here any warnings or side notes you think might help someone to
understand and use your application.

1TI-2 Tools and Techniques

Application Note 1

Cursor Redefinition

Kerry Evans

Evans & Sutherland
Salt Lake City, Utah
December 1981

Categories

Screen cursor, data structuring

Description
This describes how the screen cursor may be redefined to be a symbol other
than the default cursor, which is an “X”.

Implementation
The default cursor is defined as a vector_list by a command of the form:

CURSOR := VECtor_list ITEMized n = 4
P -.035, -.035
L .035, .035
P -.035, .035
L .035, -.035;

To redefine the cursor as a square, simply redefine “CURSOR” in the fol-
lowing manner:

CURSOR := VECtor_list ITEMized n = 5

-.035, -.035
-.035, .035
.035, .035
.035, ~—-.035
-.035, -.035;

Notes, Examples

The original cursor definition is lost until redefined in its original form by
the user or until the PS 390 is powered on again. The INITialize command
does not restore the default cursor definition.

Application Notes

1T1-3

Application Note 2

Defining a Dynamic Cursor

Kerry Evans

Evans & Sutherland
Salt Lake City, Utah
December 1981

Categories

Screen cursor, data structuring

Description

The screen cursor may be redefined to provide two different shapes - one
when the data tablet pen tipswitch is up or open, and another when it is
down or closed.

Implementation

Redefine the cursor as

CURSOR := BEGIN_Structure
UP_DOWN := SET conditional BIT 1 OFF;
IF conditional BIT 1 is ON THEN C_SQUARE;
IF conditional BIT 1 is OFF THEN C_CROSS;
END_Structure;

C_SQUARE := VECtor_list ITEMized n = 5
-.035, -.035
-.035, .035
.035, .035
.035, -.035
-.035, -.035;
C_CROSS := VECtor_list ITEMized n = 4

P -.035, -.035
L .035, .035
P .035, -.035
L -.035, .035;

1T1-4 Tools and Techniques

Now connect the data tablet tipswitch Boolean value (output 2) to control
which cursor symbol is displayed:

CONNect Tabletin<2>:<1>CURSOR.UP_DOWN;

Notes, Examples

The original cursor definition is lost until redefined in its original form by
the user or until the PS 390 is powered on again. The INITialize command
does not restore the default cursor definition.

Application Notes 171-5

Application Note 3

World-Space Rotations

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
February 1982

Categories

World-space rotations, object-space rotations, screen-space rotations

Description

A very desirable way of performing three-dimensional rotations is to know
beforehand just what direction the object you are rotating is going to move.
One way of doing this is to perform world-space (world-centered) rotations
-that is, when you turn, say, the X rotation dial, you know the rotation will
be about the world-space X axis. Likewise, of course, for Y and Z rotations.
(See also object-space rotations.)

Wx

1AS0227

Figure 1-1. World-Space Rotations

1TI-6 Tools and Techniques

Implementation

To get true world-space rotations, the rotations need to be processed in the
order that they come in (that is, they need to be post-concatenated to the
current matrix). The network to do this is shown in the diagram below.

WS _rese/
F:XROTATE
WS xmu/c
DIALS(!) J— WS _xrotale
F:MULC F:XROTATE
180 —5 —
WS _rolale
WS _yrmu/c Lg
DIALS{(j) — W yrotote F :CMUL {1)(Rotation data node)
F:MULC —’—‘ F:YROTATE {L
180 -3
WSzl e (Initialize (1)FS_rotate to the identity
mairiz by sending 0 to (1)WS_reset)
DIALS(k) WS .zrotafte
F :MULC F:ZROTATE F—
180 -<

1AS0228
Figure 1-2. World-Space Rotation Networks

The output of the last function should also be connected to the appropriate
rotation node in the data structure.

Notes, Examples

If you are rotating an object about the world-space axes and viewing it from
the negative Z axis, the space screen coordinates and world-space coordi-
nates will coincide - the space-screen rotations will in effect be the same as
the world-space rotations.

There should only be one rotation node in the data structure (not one each
for X, Y, and Z rotations). This node can be created with the ROTate X,
ROTate Y, or ROTate Z commands.

To reset the network and rotation node in the data structure, just put an
identity matrix on input <1> of WS_Rotation. This can be done by connect-
ing an instance of F:XROTATE to it and sending a 0 to input <1> of
WS_Reset.

Application Notes

111-7

Application Note 4

Object-Space Rotations

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
February 1982

Categories

Object-space rotations, world-space rotations, data-space rotations

Description

A very desirable way of performing three-dimensional rotations is to know
beforehand just what direction the object you are rotating is going to move.
One way of doing this is to perform object-space (object-centered) rotations;
that is, when you turn, say, the X rotation dial, you know the rotation will
be about the X axis of the original object definition space. Likewise, of
course, for Y and Z rotations. (See also world-space rotations).

Wx

Figure 1-3. Object-Space Rotations

TTI-8 Tools and Techniques

Implementation

To get true object space rotations, the rotations need to be processed in the
reverse order that they come in (that is, they need to be pre-concatenated to
the current matrix). The network to do this is shown in the diagram below.

o8 /e

DIALS(i) —
F:MULC
180 -

OS5 _rmu /e

DIALS(j) —
o| FiMULC
180 —

o8 _Zmu/c

DIALS{k)
F :MULC

180 -4

08 _Xrotalte

F:XROTATE

08 Yrolale

F : YROTATE

08 Zrofote
F:ZROTATE

O8_Rese/

-—‘} F:XROTATE

(Initialize (1)0S_Rotate to the idenfity
matriz by sending 0 to (71)0S._resetl)

OR _Rotale

. F:ilij‘ {(7)(Rotation date node)

1AS0230

Figure 1-4. Object-Space Rotation Network

The output of the last function should also be connected to a rotation node

in the data structure.

Notes, Examples

There should only be one rotation node in the data structure (not one each
for X, Y, and Z rotations). This node can be created with the ROTate X,

ROTate Y, or ROTate Z commands.

To reset the network and rotation node in the data structure, put an identity
matrix on input <1> of OS_ Rotation. This can be done by connecting an
instance of F:XROTATE to it and sending a 0 to input <1> of OS_Reset.

Application Notes

1T1-9

Application Note 5

Rational Polynomial Command Usage

Marty Best, Bill Armstrong
Evans & Sutherland

Salt Lake City, Utah

April 1982

Categories

Circles, ellipses, curve generation, RATIONAL POLYNOMIAL

Description

The Polynomial commands that are available on the PS 390 offer a power-
ful means of building curve shapes without transmitting large numbers of
vectors. Unfortunately, use of the Polynomial commands requires an under-
standing of curve generation and a routine for computing the curve parame-
ters to be sent to the PS 390. Only users experienced in curve generation,
for the most part, will find a specific use for them.

Some basic curve shapes, however, can be adapted to many applications
and are simple to implement.

The command detailed below can be modified to draw a circle of a given
radius, or an ellipse of a specified size. Of course, these primitives can be
instanced by any other structure and translated, rotated, or scaled.

Implementation

A circle must be defined in two parts using a RATIONAL POLYNOMIAL
command. It can then be included in a BEGIN_ Structure...END_Structure
and referenced as a single entity. The syntax is as follows:

1T1-10 Tools and Techniques

CIRCLE := BEGIN_Structure
RATional POLYnomial
2r, o, 0, 2
-2r, -2r, O, -2
0, r, 0, 1
CHORDS=25;
RATional POLYnomial
2r, 0o, 0, -2
-2r, -2r, O, 2
0, r, 0, -1
CHORDS=25;
END_Structure;

where r is the desired radius of the circle. The number of chords have been
set at 25 to give a smooth appearance.

Notes, Examples

The two RATIONAL POLYNOMIAL commands given above define the
right and left semicircles of the circle and can be made the top and bottom
semicircles by exchanging the X and Y columns (Columns 1 and 2).

The above circle can be modified to give an ellipse as follows:

ELLIPSE := BEGIN_Structure
RATional POLYnomial
2a, 0, 0, 2
-2a,-2b, 0, -2
0, b, o0, 1
CHORDS=25;
RATional POLYnomial
2a, 0, 0, -2
-2a,-2b, 0, 2
0, b, 0, -1
CHORDS=25;
END_Structure;

where a and b are the major and minor axes of the ellipse. Again the num-
ber of chords has been chosen for smoothness.

Application Notes

1TI-11

Application Note 6

Proportional Scaling

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
September, 1982

Categories

Scaling

Description

A dial is usually used to accumulate the scale factor in standard scaling
networks. It’s hard to control scaling this way, though, since the current
scale factor becomes very small or very large in proportion to the new dial
value. For example:

Current Scale Factor New Dial Value New Scale Factor % Increase
0.01 .1 0.11 1000.0
100.00 1 100.10 0.1

When the current scale factor is small, the effect of a turn of the dial is
large, and vice versa.

The network shown below will correct this problem by making the effect of
the dial proportional to the current scaling factor. Using this network the
chart shown above will look like:

Current Scale Factor New Dial Value New Scale Factor % _Increase
0.01 L1 0.011 10
100.00 .1 110.00 10

1T1-12 Tools and Techniques

Implementation

FProp_Scal/e

DIALS(i) (1)
1—X2)
(H—(7)(Scale node)
{——k3) F:DSCALE
2
100—+2l(4) (2)
L 01—+ls)

1AS0231

Figure 1-5. Proportional Scaling Network

Application Notes TTI1-13

Application Note 7

Local Inking of Tablet Coordinates

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
June 1982

Categories
Inking, F:XOR

Description

Inking is the technique of using an input device (usually the data tablet) to
sketch “freehand.” This application note describes a function network that
will allow the user to do inking with the data tablet.

Implementation

The network is as follows. Data structure A should be DISPlayed and be
created with a command such as:

A := VEC n=1000 0,0;

(The n=1000, or some other number, allocates a block of memory for the
vector list).

TABLETIN
(1) (APPEND)A
AR (2r— INK_Togg/le INK_Paints INK_Pos Line INK_LIne
2) (3)— FT ¢
F:XOR F : CBROUTE F:POSITION_LINE F : CONSTANT
s} @) . L ¢ -4
H4) (SH—
(o —
S INK_Pos
F : BROUTEC
C L
— 1A50232
Figure 1-6. Inking Network
Notes

To use this, press and release the data tablet pen to start inking and then
press and release it again to stop inking. Do this as many times as needed.

1T1-14 Tools and Techniques

Application Note 8

Local Rubber Banding of Tablet Coordinates

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
June 1982

Categories

Rubber banding, grid banding

Description

This note describes a function network to do rubber banding using the data
tablet.

Rubber banding is the technique of displaying a line segment that extends
from some fixed point to the data tablet cursor and moves along with the
cursor until some indication is given (such as pressing the data tablet pen
switch) to fix the line segment at the current position. This way you can see
the lie of the line before you finish positioning it.

Implementation

The network is as follows. Data structure A should be DISPlayed and be
created with a command such as:

A := VEC n=1000 0,0;

(The n=1000, or some other number, allocates a block of memory for the
vector list).

Application Notes TTI-15

TABLETIN

[$3

(€8) (APPEND)A (LAST)A
» ar— RA_TriggarAppend PRAppend r2LIne RR_Pos_l/ne
3y g

¥ : BROUTEC F:FETCH |- | 7:CONSTANT o| FePoOSITION LINE
o « -4 "TabXy -2 -9

(BN
RR_End
— (LAST)A
F : BROUTEC r
F-5 > F

1AS0233
Figure 1-7. Rubber-Banding Network

Notes

To use this network, press and release the stylus on the data tablet to fix the
first position. Moving the stylus around on the tablet now will create a rub-
ber band line from the initial position to the cursor.

Pressing and releasing the stylus again will fix this line segment, and a new
rubber band line will start from this last point to the next point you press
down on and so on. To break this continuous line and start a new series of
rubber band segments, you must move the stylus away from the tablet sur-
face. This will cause the current rubber band line to disappear; a new one
will start as soon as a new starting position is selected.

1TI-16 Tools and Techniques

Application Note 9

Local Grid Banding of Tablet Coordinates

Kerry Evans

Evans & Sutherland
Salt Lake City, Utah
April 1982

Categories

Grid banding, rubber banding, function networks, data tablet

Description

This note describes a function network which takes 2D coordinates from the
data tablet and constrains the points to fall on grid points of a user-defined
grid - that is, it performs rubber banding to discrete points on a grid. We
call this grid banding (see also Application Note 8.)

Implementation

Use the same network as that for rubber banding (Application Note 8), but
instead of connecting the tablet xy position (TABLETIN <1>) to the POSI-
TION_LINE Function directly, connect the output of the DIVC Function in
the network shown below to the POSITION_LINE Function.

Specify the number of grid points per unit by sending a real to input <1> of
the NOP function. For example, sending 10 causes the vectors output from
the DIVC function to lie on grid points 0.1 unit apart in X and Y.

Application Notes TT1-17

CB_Sizre I>

1T1-18

GCR M/ GA Farts GR _Xrouna' GB X(/oal GA_Vec G Dive
TABLETIN(1)—i (l)——{ ¥ :ROUND —“ F:FLOAT
@ F:NMULC F F:VEC o F:DIVC —({1)Rubber_Point
2 = FipaRTS) CR_YF/oa (Ses App. Note §8)

L—_ CB_Yround
F :ROUND f“{

F:FLOAT

1

Notes, Examples

Figure 1-8. Grid-Banding Network

1AS023Y

Use just like rubber banding (Application Note 8). This is an easy way of
doing rubber banding without having to be as accurate with pen positioning,
especially if you are doings things like schematics or block diagrams.

Tools and Techniques

Application Note 10

Translation Network

Kerry Evans

Evans & Sutherland
Salt Lake City, Utah
April 1982

Categories

Translation, F:ACCUMULATE

Description

This application note shows an example of how the ACCUMULATE func-
tion may be used to build translation vectors from the dials. Since ACCU-
MULATE can accept real numbers or vectors, it is a simple matter for it to
accumulate “position.”

Implementation

The following function network allows Dials 1, 2, and 3 to control the X, Y,
and Z components of the Translate vector, respectively.

Tran X

DIALS(1 F:XVECTOR

DIALS(j F :YVECTOR

DIALS (k)—| F:ZVECTOR

Trons/ate
1)

c

Initial position or reset (2)

Mindmun change in pasition per output——c—ﬂ)
¢ F:ACCUMULATE (x—(7)(Translation daia node)
Scale factor for input 7 (Real or V3D)—4)
Upper limit (Real or V3D) £

Lower l#mit (Real or V3D)

(8)
c

(8)

I1AS0235

Figure 1-9. Translation Network

Application Notes TT1-19

Notes, Examples

The X, Y, and Z vector functions build 3D vectors from the dial values,
which get scaled by input <4> of ACCUMULATE and accumulated on input
<2>. ACCUMULATE may be reset by sending the initial translation value to
input <2>. But no output will be generated until input is received on <1>.
This may be the result of turning a dial or sending a Boolean value to <1>.

Scale factor and upper and lower limit may be real numbers (if uniform
scaling and limiting in X, Y and Z is desired) or they may be vectors, in
which case the components are applied individually in each dimension. In-
put <3> specifies the amount by which the accumulated sum must change
before an output is generated. This amount is a real number greater than or
equal to 0.

1TI-20 Tools and Techniques

Application Note 11

Animation Sequencing with CLOCK Function

Gary Cannon, Neil Harrington
Evans & Sutherland

Salt Lake City, Utah

May 1982

Categories

Animation, F:CLCSECONDS

Description

This shows a method for wusing a series of clock functions
(F:CLCSECONDS, F:CLFRAMES, and/or F:CLTICKS) to run through a
sequence of actions.

Implementation

A clock can control some motion for a given time span, then stop and trig-
ger the start of the next clock in sequence, which controls some other mo-

tion.
Control network Control nelwork
[for 7at mequencs [far 2nd segquence
Timer._Sequerce 7/mer. Sequence?
(U—ﬂ I (4)%
.y C ‘e
() o (5)5 ol
Folse—f3) Fal xe—i(-")
cl, FiCLCSECONDS @ 7SI Nof .\)ty T iCLCSECONDS (@ 7S2 Mot
(k)-° . e (k)= 2N
() Clgy ¢ }F:NOT (1) clsy () F:NOT
) {65)) (
(Boolean ¢ c
Triggsary) I (6 [(®>
$,9' = Turne interval
7.3 — Sequence duration (§ of time intervals)
k k' — Adding value
1,1’ — Initial accwnlator value

1AS0236

Figure 1-10. Animation Sequencing On-The-Fly

Application Notes 1T1-21

Notes, Examples

1T1-22

The actions best suited for this type of animation sequence are those that
can use the summing outputs <1> or <2> to modify the currently displayed
data structure. An example of this would be using output <2> to feed a
rotation network that then modifies a rotation node in the displayed data
structure. When output <3> of the clock generates a FALSE, a network
could also be triggered to change the level of detail and change the data
structure being viewed.

To cycle repetitively through the sequence, input <2> of each of the timers
needs to be reset to the initial value. This could be done by having the NOT
function of the last sequence trigger the following network (note that this
network will also trigger the sequence to start over again “n” times).

Sequenca. Fess?

(1) «

(1}

(") (s,

(-

F:SYNC(N+1)
(=

rsaNar (47)

(at1) (as1)

F:NOT

Selocl !

{2)TImer_Sequencel
{2)TImer_Segusnce2

{2)Timar_Sequencen

Adder

Done

1—

B F : BROUTEC

- 1

F:ADDC
©

o F:LEC 8} Timer_Sequencel

n - Nunber of timers
m - Nunber of times to recyols

.1’,...4" — Duration aof saoch torer

1AS0237

Figure 1-11. Animation Replay and Reset Network

Tools and Techniques

Application Note 12

Frame-by-Frame Animation

Neil Harrington
Evans & Sutherland
Salt Lake City, Utah
August, 1982

Categories
Animation, F:CLCSECONDS, F:-MODC, Level-of-Detail

Description
This shows a method for using a clock function (F:CLCSECONDS,

F:CLFRAMES, or F:CLTICKS) to cycle through a series of previously cal-
culated frames. Typically, each frame would consist of different transforma-

tions applied to the same objects. The modulo function allows for the ani-

mation to recycle indefinitely.

Implementation
Animatlon
Frome. T /mer Frama_Modu/lo
(15w]
¢ F:MODC |-
0 1)—Skz) [4
R w— | (g
False—(® F:CLCSECONDS (2
oyt © VAR
(3Q— P 4 <
(0)——® "F @
& 8 &
c AN . . .
True 8) & i‘l‘ A\
~ 3,
N & M
Frame1l Frame ramen
t — Time {nterval per frare
n - Nunber of frames o

1AS0238

Figure 1-12. Frame-by-Frame Animation

Application Notes 1T1-23

Notes

1. Input <1> of Frame Timer could be dynamically altered to change
the speed of the animation sequence.

2. Input <4> of Frame Timer could be dynamically altered to skip
frames in the animation sequence.

3. The clock could be stopped and a value sent to input <1> of
Frame Modulo to look at a particular frame in the sequence.

1T1-24 Tools and Techniques

Application Note 13

Menu Selection

Gary Cannon
Evans & Sutherland
Salt Lake City, Utah
August, 1982

Categories

Menus

Description

This function network allows you to do menu picking from a defined menu
in a specific area of the screen. It uses simple math to produce a “box
number” from the tablet X and Y coordinates.

The menu boundaries are shown below as they would appear in a full
screen viewport on the screen:

Figure 1-13. Menu

Application Notes 1T1-25

Each of the numbers shown is a value produced by the network when the
screen cursor is in the menu box with that number and the stylus is pressed

down on the tablet. Of course, these numbers should be replaced by de-
scriptive names for the real menu.

Implementation

The menu selection network is shown below:

ILE' Toa XY
Tgv.ﬂ!ﬂ—[i{nuu
1) M—
E_) o s sters 33 adide ”L Ve /le Ao o
(3)
[v_ _irxmmc__ 'v.uv'—‘- o YIWUUTICH_ ‘__' T (ADDC o PMULC P:CLILING yiaDD Box meembsr (1-8)
“ ™ Yposs ME_Yeheok2 M. T,
M N/
PiLIC .’=“‘“’""_'”_i piLTC [7:ror] ot riBnovtee|
MS_o1rom
H {+]
-
1AS0239
Figure 1-14. Menu Selection Network
Notes

With modifications to this network, menus of other sizes

and shapes can
easily be created.

TT1-26 Tools and Techniques

Application Note 14

Rotary Switch

Carl Ellison
Evans & Sutherland
Salt Lake City, Utah
August 1982

Categories

Switching, Multiplexing, F:SYNC(n), F:ROUTE(n)

Description

The simplest form of multiplexing breaks a stream of items into a collection
of streams by sending the first item to destination 1, the second to destina-
tion 2..., the nth to destination n, the (n+1) back to destination 1, and so on.
As long as n<=20 the function network shown below can do that job.

Implementation
RS Mulltiplexer
{(—
Prime with list of R3Rotfor (@)
switch oulput nunbers (1) .
F:SYNC(2) F :ROUTE (n) -
Data to be routed—| (2)
(n-1—
(n)—
1ASO241

Figure 1-15. Rotary Switch Network

Application Notes 1T1-27

Application Note 15

Shift Register

Carl Ellison

Evans & Sutherland
Salt Lake City, Utah
August, 1982

Categories

Shift register, F:SYNC(n)

Description

F:SYNC(n) can be used to act as a shift register. It can be used, for exam-
ple, to achieve scrolling by feeding character strings to CHARACTER dis-

play nodes.
rrr s le
Implementation ShiftRegister
(1) (1)
(2) (2)
. , (3)
Prime with ‘ . F :SYNC(N)
inttial values : j (n-2)
(n-1) (n-1)
(n) {n)
1AS0242
Figure [-16. Shift Register Network
Notes

These F:SYNC functions could be cascaded to shift or scroll more than 20
lines if needed.

TTI-28 Tools and Techniques

Carl Ellison

Evans & Sutherland
Salt Lake City, Utah
August, 1982

Categories

Function network sequencing, F:SYNC(n), function loops, synchronization

Description

This application note describes how to control when a function network, or
series of networks, runs. The sequencing schemes described here are based
on the use of a “GO” token which is passed around among F:SYNC(n)
functions, controlling the activation of sub-networks.

This type of network implementation can be safer, also, since it will not
allow new tokens into a network until it has completely processed the cur-

rent tokens.

Implementation

"GO

The network shown below has its inputs and outputs controlled by
F:SYNC(n) functions. This allows the network to “execute” completely be-

Application Note 16

Function Network Sequencing

fore accepting new inputs:

/nputs for Nef)

(Network)

(1)
—(R)

F:SYNC(I+1)

(i+1)

{1+1)

(1)
(2)

(1)

Arbltrary function natwork
[(possibly Including loops)
I with | inputs and J outputs

Oulputs for Net)

K1) (Ih—

(2) (@)r—

F:SYNC(J+1)

ur—

(J*l)——]

1AS0243

Figure 1-17. Function Network Sequencing

Application Notes

1T1-29

Inpuls for Net 1) Wetwork 1)

—H1)

The network shown below shows an arbitrary number of sub-networks
linked together. This forces the sequential processing of these networks.

i

! [
(._____‘ Arbltrary funetlon natwork |
.. ! (possttly tnciuding loopa) !
I 1 with t tnpats and J outputa !
a— -

¥:EYNT(X41)

(inpwte_ter Ne!l n) (Wotwork n) _ _ _ _ _ _ _ _
H « ! [R.
(2 a.___' Arblirary fumation netwerk [

! (possitly including laops) |
| with K Jnputs and L outpuis!

1)

(Owtputs for Mei n)

Y—

(Ry—

Qp—

(-.-)—J

1T1-30

Figure 1-18. Sequential Executing Networks

FASO2u4

Tools and Techniques

Application Note 17

IF-THEN-ELSE Construct

Carl Ellison

Evans & Sutherland
Salt Lake City, Utah
August, 1982

Categories

IF-THEN-ELSE, Boolean switch, F:BROUTE

Description

This application note shows how to implement an IF-THEN-ELSE construct
using PS 390 functions. It assumes “i” values are input to test some
Boolean relation. The values are then routed to one of two networks depend-
ing on the Boolean value that is output from the expression. This implemen-

tation is similar to the general programming statement:

IF <expression> THEN statementl
ELSE statement2;

Application Notes : 1T1-31

Implementation

Variablses

Input —
-1
[
;

() Network (o !

expression !

evaluale ' — (Boolecn)

1L SwirehT

F:BROUTE

/. Swlichl

F : BROUTE

——y(2) Network to

o evaluatle
L stalemmnts

1=

L Sw/tehn

| ——Ke)y WNeiwork to
- evaluale
N1 stalement?

F :BROUTE

Figure 1-19.

Note

1T1-32

IF-THEN-ELSE Network

@— new
OUTPUTS

@ msc
1. OUTPUTS

1AS0245

This application shows how F:BROUTE can be used as a Boolean switch

function.

Tools and Techniques

Application Note 18

A Realtime Analog and Digital Clock

Patrick Fitzhorn, David Ferguson

Center for Computer-Assisted Engineering
Colorado State University

Ft. Collins, Colorado

October, 1982

Categories

F:CLTICKS

Description

Frequently it is useful to display a realtime clock on the PS 390 screen. The
network described here has, as an end result, both an analog clock compo-
nent (rotations in degrees for the hour, minute, and second hands) and a
digital component.

Implementation

The network is based on F:CLTICKS with constant input of 120 on input
<1>. This generates an integer at output <2> once per second, which is
incremented by one each tick. The clock is based on a 12-hour cycle, so
F:MODC resets the clock after 43,200 seconds.

An initialization network is provided that changes standard hour, minute,
and seconds input into seconds. This value is then sent to input <5> of
F:CLTICKS, which serves as a new starting value for the clock. The network
diagram is shown in the following figure.

Application Notes

1T1-33

Hours CIL ML Add Seconds

{H)— | (s)—
FIMULC F:ADD F:aDD)
(3600)-Y [—
Minutes
(Cha
F:MULC
(805

Clook Initlaliration Network

Cr_ Tinwr

(120)-%n
(0)>-5km

False—Skn

ay— CLMode

cl, . FiCLTICKS O
(1)—pa - .| ¥:MoDC ®
@1 (43200)—

True

e

Clock Timer Network

AL _Seconds Mviec

bty

AC. Seconds folale
F:MULC F:ZROTATE |—(1)ANALOG LLOCK, SECONDS

(~8)-5

AC MInutes Dive

AC M log Rolale

of FiDIVC ¥ : ZROTATE |—(1)ANALOG_CLOCK. MINUTES

(-10)—

AC Nours O/ve

AC Hovre Kotarte
F:DI1VC F:LROTATE (1) ANALOG_LLOCK. HOURS

(-120)%-4

Analog Clook Network

OC MHour Dlive DCHovrsPrint D MHours Coneote DC /I LConcal DC_SS_Conca !

F:DIVC '—l—c‘ F:PRINT . F:CONCATENATEC —] ¥ :CONCATENATR

(3600)-5 £ -5

10

¥ :CONCATENATE —(1)FLABEL12

DENIn_Dfve DCMIn_Mode DC MiIn Print e MInytes_Concale

reoive |- F:MODC irr: F:PRINT — 4| FiCONCATENATEC

(80)-5 (805 -4 vpet

DC_Sea Made OC _Seconds Prin/

F:MODC . F(PRINT
(60)-4

Digital Clook Network

IASO246

Figure 1-20. Clock Network

An example of the data structure for the analog clock face is:

ANALOG_CLOCK := BEGIN_ Structure
VIEWport HORizontal=-.1:.5454 VERtical=-1:1;
SECONDS ROTate O := THEN SECOND_HAND;
MINUTES := ROTate O THEN MINUTE_ HAND;
HOURS := ROTate O THEN HOUR_HAND;
END_Structure;

SECOND_HAND

I

SCALE .025,1 THEN BASIC_HAND;

MINUTE_HAND := SCALE .05,.8 THEN BASIC HAND;
HOUR_HAND := SCALE .075,.5 THEN BASIC_HAND;

BASIC_HAND := VECtor_list N=5 0,0 1,.25 0,1 -1,.25 0,0;

1T1-34 Tools and Techniques

Evans & Sutherland

Figure 1-21. Analog Clock

Notes

The digital clock’s display is of the form: (hours):(minutes):(seconds) with
a maximum of eight digits.

The output can be connected to a character node in a display data structure
or to a function key LED label, if so desired. In the current digital compo-
nent, leading zeros for minutes and seconds do not appear, so that 9:05:05
is displayed as 9:5:5. This has not proved to be much of a hardship. If a
standard 8-digit output is required, one could test the minute and second
outputs and, if less than 10, concatenate a leading zero. The clock starts out
at time 00:00:00. To set the clock, the following commands are used:

store fix(h) to <l>hours
store fix(m) to <l>minutes
store fix(s) to <l>seconds

where,

=2
I

integer between 1 and 12
integer between 1 and 60

B
w
I

Application Notes TTi-35

Application Note 19

Blinking Using SET RATE EXTERNAL

Gary Cannon
Evans & Sutherland
Salt Lake City, Utah
January, 1985

Categories

Data Structuring, SET RATE EXTERNAL

Description

This data structure and function network allow blinking when appropriate
without requiring two separate structure paths. This will use the SET RATE
EXTERNAL command.

Implementation

The network is as follows:

B1ink

FReys_Route Irue ’“,'”c/ ! ! 4>‘/"‘
rix(¥) IMiBlink
1 1 1 il 1 1 3"
FKEYS —?F ROUTE(12) 2| true [D{7r. constant
4
5
o
1
a
7
110
"
12
N — |

1AS0766

Figure 1-22. Blinking Network

The data structure should be displayed and be created with commands such
as:

A := Set Rate External then B;
B := If Phase ON then OBJECT;

M:BLINK is a macro which is expanded in the following figure.

TTI-36 Tools and Techniques

Rote
OuFreTion

ralsa
rixi¢o)

B

hY

LL

}5(‘07 7

Llock

(Duration must be

t
TF CLFRANES
p
S
&

1
2

ocdd)

a2rr_0On

3L

true

relse

1

D}]ZTTISYNC(Z)

(false Fir

Stop

)y

1

relss Eq’r'zusﬁ~

DEFECT

st

(n queuve)

Reset_Guration

1 1
*r.prouTic

Set Rate Ext Noi{(

]

Application Notes

Figure 1-23. M:BLINK Macro

1T1-37

Application Note 20

Local Inking of Tablet Coordinates

Dan Harlin

Evans & Sutherland
Salt Lake City, Utah
December, 1982

Categories

Inking, F:EDGE_DETECT

Description

This application note is a variation of Application Note 7. To do inking with
the network of Application Note 7, the user began by pressing and releasing
the pen, and ended by pressing and releasing the pen again. With this net-
work, the user presses the pen to begin, and releases the pen to end inking.

Implementation

The network is as follows:

Ink Pos_Lin Lina

(-—@(nppcndu{

TTABLETIN

false [>_T—I ! !
! ZricorouTE ! Teposition. | tres [O{7F consTaNT
LINE

o AN -

1AS0768

Stert_Stop
1 1

true 2P, E0GE_ z
DETEC-

Figure 1-24. Inking Network

1T1-38 Tools and Techniques

The data structure should be displayed and be created with a command
such as:

A := VECTOR_LIST N=1000 0,0;

Notes, Examples

To ink, press the data tablet pen. Continue to press the pen while inking. To
stop inking, release the pen.

Application Notes TT!1-39

Application Note 21

Integer Input Via Numeric Keypad

Michael F. Werner
Performance Analysis
Aerospace Corporation
El Segundo, CA

May 4, 1984

Categories

Function Keys, F:CHARCONVERT
Description

The most straightforward use of the PS 390 keyboard as an input device
involves the use of the 12 function keys in conjunction with the FKEYS
initial function instance. The integers 1 through 36 can be generated with
the function keys and the SHIFT or CTRL keys on the keyboard.

Many PS 390 applications require the use of a large number of function
keys. Use of the 12 keys becomes cumbersome in these applications. The
function network below allows the numeric keypad on the keyboard to be
used as an input device in a manner similar to the function keys.

Implementation

The network diagrammed converts a two-key sequence on the numeric key-
pad into an integer between 0 and 99 inclusive.

Lonver t Normalize
1 1 1

1
KEYBOARD tros 25, cnaRcONVERT| *ix(78) [D?r, supc

rin(2) —\
J Routar Tense Orias
)

1 1) ' __4>(,,4
2 2z

FiSYNC(2) ° ZFiROUTECZY [rincr0) [BTe wuLc F1ADD
1AS0769

Figure 1-25. Keypad Network

Rotar
i
2

rintl) !

1T1-40 Tools and Techniques

Notes, Examples

This network can be used in applications where a large number of objects or
perhaps 50 overlays of a single object must be toggled off and on. A list of
2 digit codes corresponding to each overlay must be provided until the
codes are memorized. This approach is easier to use and requires less code
than re-programming the function keys or developing a series of menus.

The user is cautioned that as long as the keyboard is enabled as an input
device, this network will attempt to convert any 2 character ASCII sequence
into an integer.

Note that this network is easily expandable to handle 3 digit sequences.

Application Notes 1T1-41

Application Note 22

Matrix Transpose

Thomas Hern

Department of Computer Science
University of North Carolina
New West Hall 035-A

Chapel Hill, NC 27514

and

Department of Mathematics & Statistics
Bowling Green State University
Bowling Green, OH 27514

January, 1985

Categories

Transformations, matrices

Description

This function network produces the transpose of the 3x3 matrix, which is
the input to the network. Hence, the matrix which is the output of the net-
work (F:MATRIX3, specifically) has as its rows the columns of the input.
This network operates very quickly in this form.

Implementation

The network is as follows:

Pl

— e i
v3901.0.0) D¢ yure)
Pe
\NHotrix In "":? . ; | Transposad Hetrix/
v N V300, 1. 0 [@“ﬂ':nuu: —]3F:MATRIX3
1ASO767
P I _,
| — [
v3d00.0. 10 [D2¢ wuc

Figure 1-26. Matrix Transpose Network

1T1-42 Tools and Techniques

Notes, Examples

The inverse of an orthogonal matrix is its transpose, so this network can
often make calculating an inverse unnecessary. Such an inverse may be
needed in some rotation nodes.

This implementation is for 3x3 matrices only, but adding (or deleting)
COLn functions and changing the SEND statements will adapt the network
to any size.

Application Notes TT1-43

Application Note 23

Laser Disk Controller

Mike Grannan
Evans & Sutherland
Saint Louis, MO
January 10, 1985

Categories

Animation, PS 390 raster, laser disk

Description

A function network for automatic generation of separate PS 390 frames of
an animation sequence for storage onto laser disk is documented. A
Panasonic TQ-2022FC laser disk is attached to the PS 390. Recording com-
mands are sent from the PS 390 to the laser disk via RS-232 communica-
tions; the picture is transmitted from the PS 390 to a color encoder, which
converts an RGB signal to the NTSC format required by the laser disk.

PS 390 | RGB NTSC
. ic |
Display | Out Panasonic laser Regular T.V.
In Out Monitor
color encoder }
p
S 390 port 4 RS-232-C
Control
Unit

Figure 1-27. Hardware Diagram for PS 390/Laser Disk Configuration

The following function network can be used to enhance any PS 390 shading
network to store multiple renderings onto laser disk for playback later. It is
intended for purposes where high-quality shaded animation sequences are
desired. Since the PS 390 uses a static raster display, each frame of the
animation sequence is precalculated, and the laser disk is given the com-
mand to store each frame as it is generated.

TT1-44 Tools and Techniques

Implementation

1. Laser disk communications

The particular laser disk used is connected to port 4 of the PS 390 control
unit, and requires configuring port 4’s serial I/O parameters to 9600 baud,
odd parity, and seven bits per character. A few simple functions can then be
created for laser disk communications. The Panasonic laser disk accepts
single character commands preceded by a byte with the value X’02’ and
followed by X’03’. For example, “G” is the command to record a frame at
the current frame counter location, and increment the frame counter. Thus,
a function can be created to save the next frame in a sequence (current
picture on the raster display) when triggered in the following manner.

SAVE_NEXT_FRAME

any message———————-— F:CONSTANT |-———- > <1>04%
char(2) & G~ & char(3)-—-

Similarly, functions for ENABLE_RECORDING and DISABLE_RECORD-
ING can be created. (The laser disk does transmit status messages, which
will be ignored in this example for purposes of simplicity.)

2. Transformational updates between frames

Of course, to obtain a moving sequence on laser disk, updates to data-struc-
tures will have to occur between renderings. Thus the controlling network
will define two functions, UPDATE TRANSFORMATION, whose first and
only output fires after completion of a rendering, and UPDATE_COM-
PLETED, which must receive any message on its first input to signal com-
pletion of data-structure updates, so the network can continue and start
rendering the next frame.

UPDATE TRANSFORMATIONS<1>-——| user network for —-<1>UPDATE COMPLETED
update of data
structure between
frames

3. Controlling network for multiple frame generation

Application Notes TT1-45

9r-ILL

Yo puv Sj00]

sonbiu

YLOMION 40[]043U00) YSIT 49SDT 9T~ 24n8L]

hidden_enimation

</>enedle_recording

rfreme_init

freme_lnecr

freme_count

num_freanes

1

rixt2) D—2¢, constant

t

2F. CONSTANT

712 FiCONSTANT

2. s00C

1 1

2¢ . geC

fix(-1)

[

Fix(1) [}——/

1S

tix(#-0of-frenes)

render_control
1 1

<!>disable_recording L

init_rouvter

router

next_shedse

?r.BROUTE

rix(l)

rendaring_nodect> b——‘
D . r1*F.BROUTEE
true

vpdete_traneformstion

1

(' F:crouTEC3)]

1
2

2| J Pin(3) b‘
_\

1

2F.CONSTANT

l/'2& CONSTANT

rendsr_success

rix(1)

I

nexi_ssvehi

N

rix(2) [

1

2F . CONSTANT

M\

@(l:seve_next_tremse

7

N—1 1
: NOP
F:NO A Talse
(aavo_:ync count_print soveE_neme sove_hidden_renderings
1 1 1 1] ! 1
2_) 2 k__.l k__
2p.sYNC(2) F:PRINT F:cconcaTENATE ?F. CBROUTE

renderstyle

vpdesta_cospleted

Ny 1
7exl7) D —2¢, consTaNT ~—1*f.synce2)

@(/:rendering_node

1AS0770

Notes

The controlling network can easily be incorporated into the shading network
described in Section GT/3 by noting that the name of the rendering node in
that network is WORLD.RENDERING. (This same network appears on
PS 340 A1 firmware diskette B as the file “test340”.) Just name the render-
ing node in the controlling network above WORLD.RENDERING when cre-
ating it.

CONN UPDATE_COMPLETED<2>: <1>WORLD.RENDERING;

CONN SAVE_HIDDEN_RENDERINGS<1>:<1>WORLD.RENDERING;
CONN WORLD.RENDERING<1>:<1>RENDER_SUCCESS;

Also, pass the current rendering style of the shading network (hidden, flat,
etc.) as chosen by function key 3 to the controlling network.

CONN STYVAL<1>:<2>RENDERSTYLE;

Single frames can be rendered at will without affecting the controlling net-
work. To invoke the animation control network, perform the following steps.

1. Make sure your user data-structure update network is in place and
referencing the functions UPDATE_TRANSFORMATION and UP-
DATE_COMPLETED.

2. If the storage of each hidden-line picture generated during the ren-
dering process as separate vector lists is desired, SEND TRUE TO
<1>SAVE_HIDDEN_RENDERINGS. While the network is designed
for raster animation, this mechanism is included to allow storage of
the calligraphic renderings as vector lists. If used, the network will
name these vector-lists HO,H1,...,Hn where n = #frames - 1. The
frame by frame animation technique described in Application Note
12 could be used to implement a hidden-line animation sequence on
the calligraphic display. BY DEFAULT, hidden-line pictures are not
saved.

3. SEND FIX(#-of-frames) TO <2>NUM_FRAMES;

4. To invoke the frame generation process, SEND any-message TO
<1>HIDDEN ANIMATION;

Application Notes 1T1-47

Example

Once the controlling network is incorporated into a shading network, the
only code remaining is the user data-structure update network. An example
of a network to rotate a model 45 degrees (1 degree per frame) is listed
below.

{the following network rotates the model about its own data-space}
{Z-axis}

TESTCONS:=F:CONS;

TESTADDC: =F: ADDC;
testzrot:=F:ZROTATE;

{cause update of rotation to occur when triggered by}
{UPDATE_TRANSFORMATION}

CONN UPDATE_TRANSFORMATION<1>:<1>TESTCONS;
CONN TESTCONS<1>:<1>TESTADDC;

SEND FIX(1l) TO <2>TESTCONS;

SEND FIX(-1) TO <2>TESTADDC;

CONN TESTADDC<1>:<2>TESTADDC;

CONN TESTADDC<1>:<1>testzrot;
CONN testzrot<l>:<1>0BJECT;

{signal completion of update network by triggering UPDATE_COMPLETED}
CONN testzrot<l>:<1>UPDATE_COMPLETED;
{modify object manipulated to be model referenced by z rotation-matrix}

OBJECT:=ROT z O THEN scaled_mbb;
scaled_mbb:=scale by .0005 then smoothmbb;

{ render 45 ps340 frames }
SEND FIX(45) TO <2>NUM_FRAMES;

{After these commands are executed, the command to initiate the}
{rendering process is }

SEND TRUE TO <1>HIDDEN_ANIMATION;

1T1-48 Tools and Techniques

Application Note 24

High Speed Communication

Erik K. Antonsson, Assistant Professor
Department of Mechanical Engineering
Division of Engineering and Applied Science
California Institute of Technology

Pasadena, CA 91125

August, 1985

Categories

Physical I/O using the parallel interface to a VAX/VMS host to send Qreals
from a PS 300 variable to the Host.

Description

Frequently it is important to obtain a value from the PS 300 sent to the host
very quickly. The normal routes of using HOSTOUT or HOST _MESSAGE
are very slow for occasions where a single value is needed to close a compu-
tation or control loop at high speed or in real time. An example might be an
aircraft flight simulation where a control dial input will be sent to the host
to vary a parameter of the aircraft flight dynamics, and the simulation needs
to obtain that single value and update the simulation (and the display struc-
ture) in real time, or near real time.

This solution exploits physical I/O using the Parallel Interface on a VAX
11/750 running VMS Version 4.1. The approach is to read the address and
then the value at that address of a PS 300 Variable in PS 300 memory and
send the value back to the host. This is done using VMS QIOs to find the
address of the PS 300 named entity (Variable), then locate the address of
the value, and then read the value. Since the address of the entity doesn’t
change, that address fetch need only be done once for each variable to be
read. However, the structure of the PS 300 is such that when anything in
memory is updated from a function network, the updated value is written
into a free spot in PS 300 memory, and then the pointer to the value is
updated in the block of data associated with the named entity. Thus two
QIOs (physical I/O) are necessary for each “Read:” one to get the current

Application Notes

1T1-49

address of the value in the block of data at the address and read the value.
Occasionally the PS 300 updates the value in-between the two QIOs. When
this happens, the value extracted is invalid. The subroutines shown here
take that into account, and have a Re-Try parameter. The subroutines will
re-try an operation (address fetch, or value read) up to the number of times
specified in the Re-Try argument. Thus the time to get a change in value is
unpredictable.

Getting single real value (PS 300 Qreal) using the serial interface and the
HOSTOUT function instance, and a Fortran Read was timed to take ap-
proximately 20 milliseconds for 8 bytes. This does not include the time
necessary to convert the Qreal to an ASCII string on the PS 300 nor that
ASCII string into a real number on the host.

Getting a single real value using the GSRs and the Parallel Interface and the
HOST_MESSAGE function instance took about 26 milliseconds for 7 bytes
(also not including the ASCII conversions).

The subroutines shown here take 10.3 milliseconds per “read” of a PS 300
Qreal.

A future Application Note will describe an asynchronous version of these
subroutines permitting several “reads” to be stacked up in a queue, or to

allow other processing to occur in the 10 milliseconds required to get the
real value.

Implementation

The subroutine set is based on the VMS system service $QIO and $QIOW
(available from Fortran as QIO and QIOW). The subroutines are callable
from Fortran, and adhere to the VMS calling standard. None of the values
input to the subroutines are modified during the call. A test routine
(PS3_PHY_TEST) is included showing how two different PS 300 Variables
can be monitored, and a simple PS 300 function network to accumulate two
dials into two variables is also included.

The subroutine’s names are:

PS3_PHY_ATTACH
(Attaches an I/O channel to the PS 300 for physical I/O)

PS3_PHY _GET_ADDR
(Gets the address of a PS 300 named entity)

1T1-50 Tools and Techniques

PS3_PHY_READ_ VAR
(Reads the value of a variable at an address previously fetched)

PS3_PHY DETACH
(Detaches the /O channel used for Physical 1/O)

The subroutines are heavily commented to explain the calling procedure
and arguments as well as usage. The main test program demonstrates a
typical calling sequence.

C PS3 PHY TEST ——- A test routine of Physical I/O Variable Reads
C wusing the Parallel Interface.
o]
C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech
C
PROGRAM PS3 PHY TEST

C
C Assign the Data Types required
C

Integer*4 Ichan

Integer*2 Iadrhil,Iadrlol

Integer*2 Iadrhi2,Iadrlo2

Character*80 Labell,Label2
C

2 write(5,1002)7
1002 format (“$Enter the number of times to read each variable. 7,
& “[zero=indefinite]: ~7,1lal)
read(5,1003,end=500,err=2)nloop
1003 format (i6)
if (nloop.1t.0)goto 2
C
C Input the Character String Names of the PS300 Named Variables
C
5 write(5,1005)7
1005 format (“$Enter the Name of the first PS300 variable to
& monitor: “,lal)
read(5,1010,end=500,err=5) labell
1010 format (a)
15 write(5,1015)7
1015 format (“$Enter the Name of the second PS300 Variable to
& monitor: “,lal)
read(5,1010,end=500,err=15)label2

Application Notes TT1-51

Q

1TI1-52

Attach to the PS300 for Physical I/0 (ONCE)

Call PS3 PHY ATTACH(Ichan)
Iretry=10

Get the Address of the first PS300 Variable

Call PS3 PHY GET ADDR(Labell,Iretry,Ichan,Iadrhil,Iadrlol)

If an invalid address is returned, Exit

If(Iadrhil.eq.0.and.Iadrlol.eq.0)goto 450

Get the Address of the second PS300 Variable

Call PS3 PHY GET ADDR(Label2,Iretry,Ichan,Iadrhi2,Iadrlo2)

If an invalid address is returned, Exit
If(Iadrhi2.eq.0.and.Iadrlo2.eq.0)goto 450

write(5,1020)

1020 format (//)

iloop=0
Iretry=10

LOOP to READ the Variables Values

25 Continue
iloop=iloop+1

Read the First Variable

Call PS3 PHY READ VAR (Ichan,Iadrhil,Iadrlol,
&Iretry,Rvaluel,Ivalid)

Exit if Invalid data is returned
If(Ivalid.le.0)goto 400
Read the Second Variable

Call PS3 PHY READ VAR(Ichan,Iadrhi2,Iadrlo2,
&Iretry,Rvalue2,Ivalid)

Exit if Invalid data is returned

Tools and Techniques

If(Ivalid.le.O)goto 400

C

C Write the PS300 Variable’s Values to the Terminal Screen

C
write(5,1200)Iloop,Rvaluel,Rvalue2

1200 format (" +°,16,1PG20.10,1PG20.10)

C

C LOOP again if the loop count (nloop) has not been exceeded

C
if(nloop.eq.0)goto 25 'If nloop=0, Loop Forever
if(iloop.ge.nloop)goto 500
goto 25

C

C ERROR Messages

C

400 type *,”INVALID OR IMCOMPATABLE DATA RETURNED ~
goto 500
450 type *,”ADDRESS FETCH FOR PS300 NAMED ENTITY FAILED -

goto 500

C

C On EXIT be sure to Detach the PS300 from the Physical I/O Channel (ONCE)

C

500 Call PS3 PHY DETACH(Ichan)

C
call exit
end

C

{PS3_PHY_ TEST.300};

variable dialO1l;

printl := f:print;

conn printl<l>:<i>message_display;
suml := f:accumulate;
conn suml<l>:<1l>printl;
conn suml<l>:<1>dialOl;
send 0. to <2>suml;
send 1. to <4>suml;
conn dials<1>:<1>suml;
send 0. to <1>suml;
variable dial02;

sum2 := f:accumulate;
conn sum2<1>:<1>dial02;
send 0. to <2>sum2;
send 1. to <4>sum2;
conn dials<2>:<1>sum2;
send 0. to <1>sum2;

Application Notes 1T1-53

PS3_PHY ATTACH —- A Subroutine to Attach the PS300 Parallel Interface
and Open a Channel and return a Channel Number

Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech

This routine should be called ONCE in a program that uses the other
PS3_PHY * routines. This routine attaches the PS300 Parallel Interface
and assigns a channel number for subsequent communications. If the
user also plans to use the PS300 GSRs, the GSR routine PATTCH must
ALSO be called to attach the PS300 and open a channel for GSR
communication.

This routine Attaches to the Logical Device PS3PI: rather than

a physical device (PIAO:). So be sure to make the logical assignment
before executing this routine. This assignment allows the user to
execute the code on different devices (PIAO: or PIAl:, etc.) without
having to modify the code, only the logical assignment.

Note that all the PS3_PHY * routines will work ONLY with the
PS300 PARALLEL INTERFACE.

Usage:

INTEGER*4 Ichan
CALL PS3_PHY ATTACH (Ichan)

The argument Ichan is RETURNED by the routine, and contains the
channel number to use for subsequent PS3_PHY * communication. It must
be declared INTEGER*4.

o000 co00c000oco00o0oc00000ao0Q0000aa0

SUBROUTINE PS3_PHY ATTACH(Ichan)

C
INTEGER*4 SYS$QIO, SYSSWAITFR
INTEGER*4 SYS$ASSIGN, SYS$QIOW
INTEGER*4 ICHAN,ISTATUS, IVALUE
INTEGER*2 IOSB(4)
C
C get a channel number
C
ISTATUS=SYS$ASSIGN (%descr(PS3PI:”),ICHAN,,)
IF(ISTATUS.EQ.1) GO TO 10
TYPE *,”BAD ASSIGN! —- 7 ISTATUS
goto 500
C
C Detach first for safety: 34 —-> detach function code
C

1T1-54 Tools and Techniques

10 ISTATUS=SYS$QIOW(,%VAL (ICHAN) ,%VAL(34) ,IOSB,,,,,,,,)

C
C Attach: 33 ——> attach function code
C
ISTATUS=SYS$QIOW (,%VAL (ICHAN) ,%VAL (33) ,I0SB,,,,,,.,)
IF(ISTATUS.EQ.1l) Return
TYPE *,“BAD ATTACH! —— -, ISTATUS
o}
C Detach: 34 —--> detach function code
o}
500 ISTATUS=SYS$QIOW(,%VAL (ICHAN) ,%VAL (34) ,I0SB,,,,,,,,)
ichan=0
return
end

PS3_PHY_GET_ADDR -- A routine to get the address of a named entity
in the PS300 memory using the Parallel Interface
and Physical I/0.

Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech

This routine will get the PS300 physical memory address of a PS300
named entity. The named entity must be set up in the PS300 BEFORE this
routine is called. If the named entity is not in PS300 memory before,
the routine will return an address of zero (0) (both High and Low 16
bits are zero).

This routine should be called ONCE per named entity whose address

is desired. As long as the named entity remains in the PS300 memory
its address will not change. This routine can be called multiple
times to access multiple entities in the PS300 memory. If several
addresses are required, different address variables must be used

for each one.

Usage:
CALL PS3_PHY_GET_ADDR(Label,Iretry, Ichan,Iadrhi,Iadrlo)

Arguments:
Label: A Character String with the Name of the Entity.
Iretry: An Integer containing the number of times to retry
the address retreival if unsuccessful.
Ichan: The I/O Channel Number (From PS3_PHY ATTACH) [Integer*4]
Iadrhi: The high 16 bits of the PS300 entity Address [Integer*2]
Iadrlo: The low 16 bits of the PS300 entity Address [Integer*2]
Iadrhi and Iadrlo are RETURNED by this routine.

The Iretry argument is to allow the subroutine to retry the address
fetch if it is unsuccessful. If the Iretry argument is set to zero (0)

oo oNoNeNeNeoNoNeoNoNeNeNoNoNoNoNoNoNoNoNoNeoNoNoNo o NoNoNoNoNoNe!

Application Notes TTI-55

oo

Q

QO 0Q

TTI-56

then PS3_PHY GET_ADDR will retry the fetch indefinitely, until a
successful and valid address is returned.

If the subroutine is UnSuccessful in Iretry tries, it will return
zeros (0) in both Iadrhi and Iadrlo.

If Ichan is zero

(0) when this routine is called, it will Return

and take no action.

SUBROUTINE PS3_PHY GET_ADDR(Label,Iretry,IchanA,Iadrhi,Iadrlo)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*2
integer*2
integer*2
INTEGER*2
BYTE

SYS$QIO, SYSSWAITFR
SYSSASSIGN, SYSSQIOW

ICHAN, ISTATUS, IVALUE

ICHANA

IOSB (4)

ITBUF (4), IrdBUF(8),Irdbu2(12)
iad2lo,iad2hi,iadrlo, iadrhi
ILabel (40)

Blabel (80)

Character* (*) Label
Equivalence (Blabel,ILabel)

If(IchanA.eq.0)return
lablen=len(label)

Truncate string length if greater than 80 characters

if (lablen.

gt.80)lablen=80

Move Character String into a Byte array

do 12 iqg=1,lablen
blabel(ig)=ichar(label(iq:iq))

12 continue

Strip Trailing blanks (etc) from String

do 14 ig=lablen,1,-1
if((blabel(iq).gt."40).and. (blabel(iq).1t."177))goto 15

14 continue
ig=0
15 lablen=iq

Get the PS300 addresses of the entity to update
43 ——> lookup named entities function code

20 continue

Tools and Techniques

iloop=0
21 Continue
Ichan=IchanA
ISTATUS=SYS$QIOW(,%VAL (ICHAN) ,b%VAL (43),I0SB,,,ILabel,
&WVAL (lablen) ,%VAL(1),,,)

C
IF(ISTATUS.EQ.1.AND.IOSB(1).EQ.1.AND.
& (IOSB(3).0R.IOSB(4)).NE.0) GOTO 24
iloop=iloop+1
if(iretry.le.0)goto 21
if(iloop.lt.iretry)goto 21
TYPE *,”BAD ENTITY ADDRESS FETCH! <STAT,IOSB> —— “,ISTATUS,IOSB
goto 500
C
C Get the address from out of the IO status block (IOSB)
C
24 continue
iadrlo=iosb(3)
iadrhi=iosb (4)
RETURN
C
500 continue
C
C Detach: 34 ——> detach function code
C
o] Ichan=IchanA
C ISTATUS=SYS$QIOW (,%VAL (ICHAN) ,%VAL (34) ,I0SB,,,,,,,,)
C ichanA=0
C
iadrlo=0
iadrhi=0
return
end
C PS3_PHY READ VAR —-— A routine to retrieve and decode a Qreal number
C from a PS300 VARIABLE using the Parallel Interface
C and Physical I/0.
C
C Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech
C
C This routine will ONLY return a valid number if the entity whose
C address is contained in Iadrhi and Iadrlo is a PS300 VARIABLE,
C The PS300 Variable can be any named variable containing any real
C value. However, if the variable contains a value other than a
C PS300 Real (Integer, Character_String, Vector, Matrix) the subroutine

Application Notes 1TI1-57

will retry the read until the Iretry argument count is reached, and
if no valid PS300 real data was returned, the subroutine will return
a zero (0.0) Rvalue and a negative Ivalid.

It is especially important to be sure that an initial Qreal is sent
to the PS300 Variable to be read so that on the first read, this
subroutine does not return an Invalid data condition.

The routine will return one REAL*4 Rvalue each time it is called.
This routine takes approximately 10 micro seconds to return a value.

Useage:
CALL PS3_PHY READ_VAR(Ichan,Iadrhi,Iadrlo,Iretry,Rvalue,Ivalid)

Arguments:

Ichan: 1I/0 Channel Number from PS3_PHY ATTACH

Iadrhi: High 16 bits of PS300 Entity (Variable) address
[Integer*2]

Tadrlo: Low 16 bits of PS300 Entity (Variable) address
[Integer*2]

Iadrhi and Iadrlo are from PS3_PHY GET_ADDR

Iretry: The number of times to retry the read if unsuccessful
(a zero argument here (0) will allow an unlimited
number of retrys)

Rvalue: The REAL*4 RETURNED variable(with the PS300 Qreal
value from the named Entity (variable)).

Ivalid: An indicator of valid returned data (Rvalue)
Less than zero (0): INVALID Rvalue
Greater than zero (0): VALID Rvalue

If Ichan is zero (0), or Iadrhi AND Iadrlo are both zero (0) this
routine will Return and take no action.

cNosNeoNoNo N NN NN NN NoIoNoNoNoNoNoNoNeoNoNoNoNeoNoNeNe N

SUBROUTINE PS3_PHY READ VAR (IchanA,Iadrhi,Iadrlo,
&IretryA,RVALUE, Ivalid)

INTEGER*4 SYS$QIO,SYSSWAITFR

INTEGER*4 SYSBASSIGN, SYS$QIOW
INTEGER*4 ICHAN, ISTATUS, IVALUE
Integer*4 IchanA

Integer*4 Ia

Integer*2 Ival2(2)

INTEGER*2 IQOSB(4)

integer*2 IrBUF(4),IrdBUF(8),Irdbu2(12)
integer*2 Iad2lo,Iad2hi,Iadrlo,Iadrhi
Equivalence (Ivalue,Ival2)

If(IchanA.eq.0)return

1T1-58 Tools and Techniques

If((Iadrlo.eq.0).and. (iadrhi.eq.0))return
ia="17777777777

Fia=float (ia)

iloop=0

Iretry=IretryA

C
25 IrBUF(1)=1

irbuf(2)=iadrlo

irbuf (3)=iadrhi
C
C Get 4 words (Actually will get 4 words + 8 bytes = 16 bytes = 8 words)
C

irbuf (4)=4
C
C Do a read phy At the Entity Address to get Address of Variable Value
C
C 39 ——> Read Physical function code
C IOSB ——> I0 status block
C IrBUF —> Address buffer (actually address of buffer, by reference)
C 8 ——> Address buffer BYTE count (4 words)
C IrdBUF —-> Data Buffer to Fill
C 16 ——> Size of Read Buffer to Fill in Bytes (8 words)
C

Ichan=IchanA

ISTATUS=SYS3QIOW(,%VAL (ICHAN) , %VAL(39),I0SB,,,

&IrBUF,%VAL(8), IrdBuf,%VAL(16),,)
IF(ISTATUS.EQ.1) GOTO 200
150 TYPE *,” BAD POINTER READ! —— 7 ISTATUS, IOSB

goto 400

C
200 continue

IF(IOSB(1).NE.1) GO TO 150

IF(IOSB(3).ne.16) GOTO 150

IrdBUF (1)=1

irdbuf (2)=irdbuf(7) !LOW Address

irdbuf (3)=irdbuf(6) 'HIGH Address
C
C Get 8 words (Actually will get 8 words + 8 bytes = 24 bytes = 12 words)
C

irdbuf(4)=8 !Get 8 words
C
C Do a read phy At the Variable Value Address to get the Variable Value
C

Ichan=IchanA
ISTATUS=SYS$QIOW(,%VAL (ICHAN) ,%VAL(39),I0SB,,,
&IrdBUF,%VAL(8),IrdBu2,%VAL(24),,)

Application Notes 1T1-59

(ol e

oo aaaQ

Q

ITI-60

IF(ISTATUS.EQ.1) GOTO 205
202 TYPE *,”BAD VALUE READ! —— 7 ,ISTATUS,IOSB
goto 400

205 continue
IF(IOSB(1l).NE.1) GO TO 202
IF(IOSB(3).ne.24) GOTO 202

Check to be sure Valid Data has been retrieved. A 4 always preceeds
a valid QReal number

iloop=iloop+1
if (irdbu2(7).eq.4)goto 300
if(Iretry.le.0)goto 25
if(iloop.lt.Iretry)goto 25
goto 500

300 continue

Convert from MC68000 Floating Long Format to VAX Real*4

Irdbu2(8)-1024 is the Exponent

Irdbu2(9) 1is the most significant 16 bits of the fraction
Irdbu2(10) is the least significant 16 bits of the fraction
Ivalue is an Integer*4 equivalenced to Ival2

A 16 bit approximation to the fraction can be obtained
using only Irdbu2(9) and dividing by "100000

Fia is a Real*4 equal to "17777777777

Ival2(1l)=Irdbu2 (10) !'Swap Order of the Words
Ival2(2)=Irdbu2(9) 'in the 32 bit Fraction
Rvalue=(float (Ivalue) /Fia)*(2.0**float (Irdbu2(8)-1024))
ivalid=1

return

400 continue
write(5,1020) (iosb(iq),iq=1,4) ! Octal
write(5,1021) (iosb(iq),iq=1,4) ! Decimal
1020 format (- IOSB: ~,408,” Octal 7)
1021 format (- IOSB: 7,418, Decimal)
500 Rvalue=0.0
ivalid=-1
return
end

Tools and Techniques

PS3_PHY DETACH —-- A Routine to Detach the PS300 Parallel Interface
from the Open Channel and to Close the I/0 Channel

Created: 3-August-1985 by: Prof. Erik Antonsson, Caltech

This routine should be called ONCE in a program that uses the other
PS3_PHY * routines. This routine detaches the PS300 Parallel Interface
and frees the channel number. If the user is also using the PS300
GSRs, the GSR routine PDETCH must ALSO be called to detach the PS300
from GSR communication.

Useage:

INTEGER*4 Ichan
CALL PS3_PHY DETACH(Ichan)

The argument Ichan is Input to the routine, and contains the channel
number used for PS3_PHY_* communication. It must be declared
INTEGER*4, If this routine determines that the Ichan Argument is zero
(0) it will return, and take no action. Other PS3_PHY_ * routines may
set Ichan to zero (0) if an error was detected, and the communication
is detached.

o000

SUBROUTINE PSS_PHY_DETACH(IChanA)
INTEGER*4 ICHAN, ISTATUS
Integer*4 IchanA

INTEGER*2 IOSB(4)

Q

Detach: 34 —--> detach function code

If(IchanA.eq.0)return

Ichan=IchanA
ISTATUS=SYS3QIOW(,%VAL (ICHAN) ,%VAL(34),I0SB,,,,,,,,)
return

end

Application Notes 1T1-61

TT2. HELPFUL HINTS

TT2. HELPFUL HINTS

CONTENTS

1. HOW TO MAKE A SITE.DAT FILEcciiivuiinnn..

2. HOW TO DEAL WITH NAMING CONVENTIONS
AND CONFIGURE MODEciviitiiiiiiiiiniininennn.

3. HARDCOPY NETWORKS USING WRITEBACK
4. HOW TO DEAL WITH XFORMDATAc.oiiiiiinn,
5. HOW TO RENDER SPHERICAL AND LINE DATA TYPES
6. PHYSICAL I/O GSR ISSUESttt i

7. HOST COMMUNICATION DATA FLOW -
HOW THE INTERFACES DEAL WITH RUNTIME

8. HOW TO COPY FILES BETWEEN
THE HOSTAND THE PS 390o iiiiniiiiiiiiiiiiin,

9. ROUTING BYTES ... ittt iiin e
10. HOW TO DO PATTERNED AND TEXTURED VECTOR LISTS
11. DISCUSSION OF INPUTS TO DISPLAY STRUCTURES
12. HOW TO DO RUN LENGTH ENCODED PROGRAMMING

13. HOW TO DEFINE A BREAK KEY it
14. HOW TO DEBUG A FUNCTION NETWORK
15. INTENSITY SETTINGS ONTHE PS 390 vt
16. SOFTLABELS ottt it iiii it

17.CPK RENDERING . . . oo oottt ittt it iiiiiainnaaens

10

12

21

23

26

33

Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 17-4.

ILLUSTRATIONS

Function Network Diagramcivinnn. 54
Synchronization of XFORMDATAcciiiirtereeenns 56
F:XFNORM Network for Window Scaling 59

Function Network for PS 390 Display and CPK Renderings ... 61

ii

Section TT2
Helpful Hints

1. How to Make a SITE.DAT File

Categories:

SITE.DAT file

Description:

The SITE.DAT file is an optional command file created by the system man-
ager. It can be used to tailor the PS 390 system default parameters to the
specific requirements of a site. The commands in a SITE.DAT file are auto-
matically read from the firmware diskette and executed when the system
boots. The SITE.DAT file may be used to store the following types of infor-
mation across power-up sequences:

e Host/PS 390 communications node address (DECNET or Ethernet
interface)

e Host/PS 390 communications identity number (IBM interface)
e PS 390 Port Setup values
e Terminal Emulator keyboard and display features

e Special Site Configuration Commands

The SITE.DAT file is assumed to contain a string of ASCII commands. The
file should be as compact as possible due to limited space on the diskette.

NOTE

You should make a backup copy of the graphics firm-
ware diskette before the SITE.DAT file is downloaded
to the diskette. If this is a new system, the PS 390 con-
trol unit, display and keyboard must be installed before
you can create and download the SITE.DAT file.

Helpful Hints T12-1

172-2

Analysis And Implementation:

There are three methods for creating and installing the SITE.DAT file:

1. Creating the SITE.DAT file (an ASCII file) on the host and down-
loading to the PS 390 over an asynchronous line.

2. Entering the PS 390 command mode and typing the SITE.DAT com-
mands directly to the diskette from the PS 390 keyboard. This
method is not recommended since it involves writing directly to disk-
ette and therefore does not provide for error correction.

3. Using GSRs.

NOTE

All PS 390 commands in SITE.DAT must be termi-
nated with a semicolon.

The SITE.DAT file is executed in configure mode. This
means the appropriate suffix must be attached to each
function name.

Creating the SITE.DAT File on the Host and Downloading

You may create a text file on the host that contains the desired SITE.DAT
commands and three special routing characters. The routing characters
direct the PS 390 to write the ASCII commands to the SITE.DAT file on the
firmware diskette, close the file and return control to the PS 390 Terminal

Emulator.

The file you create on the host contains the following commands:

N\

PS390 command;

The file must begin with the demuxing character
“\ (control key and \ pressed simultaneously)
and the routing byte : which causes the ASCII
commands to be written on the firmware diskette.

The command(s) you are using to configure your
system. Note that each command must end with a
semicolon.

The demuxing character “\ and routing byte ;

must precede the command to close the file
on the diskette.

Tools and Techniques

CLOSE SITE; The command that closes the file on diskette.

“\> The demuxing character "\ and the routing byte >
restore output to the terminal emulator.

Once the SITE.DAT file exists on the host, boot the PS 390 from your
backup disk and access Terminal Emulator mode, then enter the command
to type the host file, as follows:

For VMS - type site.dat

For UNIX - stty raw —eché; cat site.dat; stty cooked echo;

The routing bytes channel the commands to the SITE.DAT file on the disk-
ette. You now reboot the system using the newly created SITE.DAT.

NOTE

Your text editor controls the method you use to insert
the control character "\ in an ASCII file. For example,
the VMS editor EDT uses the key sequence:

gold-28-gold-specins
or the EDT.INI command file line:
define key control \ as "(28asc)"

to define the "\ character as ASCII 28.
The following is an example of a SITE.DAT file created on the host.

A\
SEND “042E” TO <1>ei_o0l$;

SEND “any welcome message’ TO <1>ES_TE1,;
SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF;
"\

CLOSE SITE;

>

Helpful Hints TT2-3

The commands send the hexidecimal DECNET node address for a PS 390
JCP node # 1.46, and sets Port 4 to a baud rate of 2400 and enables it to
use X_ON X OFF.

Installing the SITE.DAT File Directly from the PS 390 Keyboard

This method is not recommended since it involves writing directly to disk-
ette and does not provide for error correction. However, if you cannot com-
municate with the PS 390 over an asynchronous line, the SITE.DAT infor-
mation required to use an Ethernet interface may be entered directly from
the PS 390 keyboard as follows.

Boot the PS 390 from your backup diskette.

Access command mode on the PS 390 keyboard by simultaneously pressing
the LINE LOCAL key and the CTRL key, then push RETURN. The com-
mand mode prompt @@ should appear. Enter the following command lines:

CONFIGURE A;

SEND “SEND ““042E°’ TO <1>EI_O01$;° TO <1>WDAO;
SEND “CLOSE SITE;” TO <1>WDACO;

FINISH CONFIGURATION;

Where:

e The A in the first line must be replaced by the appropriate password
if one exists.

e The hexidecimal DECNET address for node #1.46 denoted by
--042E-- must have two single quotes before and after it.

o The O in EI_O18$ is the alphabetic character.
e The 0s in WDAO and WDACO are zeros.

If you enter a command incorrectly from the keyboard and have not yet
entered the line:

SEND “CLOSE SITE;” TO <1>WDACO;

you can reboot the system and start over. However, if you have sent the
CLOSE SITE command, you must delete the SITE.DAT that now exists on
the diskette before you reboot and begin again.

Once the commands have been entered correctly, reboot the system using
the diskette which now contains the SITE.DAT file.

TT2-4 Tools and Techniques

The following commands demonstrate the same sequence to provide a
UNIX Ethernet PS 390 JCP node address for a node # 192.6.10.8.

CONFIGURE A;

SEND
SEND

“SEND ““C0060A08°° TO <1>EI_O1%;” TO <1>WDAO;
“CLOSE SITE;” TO <1>WDACO;

FINISH CONFIGURATION;

Refer to the Customer Installation and User Manual for your particular in-
terface for a discussion of node addressing.

Installing the SITE.DAT File Using GSRs

The GSR software source files must be loaded on the host and linked to
each user application program.

The following examples demonstrate the basic GSR calls needed to create
the SITE.DAT file using the Fortran and Pascal GSRs on a system with
asynchronous communication. The GSR commands do the following:

oV R W

Enable PS 390/host communications

Define the demuxing channel to diskette

Send one (or more) SITE.DAT commands out the demuxing channel
Define the channel to close the file

Close the file

Detach the PS 390 from host communications.

FORTRAN GSRs:

EXTERNAL ERR

CALL
CALL
CALL
CALL
CALL
CALL
CALL
END

PATTCH (* LOGDEVNAM=TT : /PHYDEVTYP=ASYNC")

PMUXG (11, ERR)

PPUTG (” SEND CHAR(65) TO <1>MESSAGE DISPLAY1;~”,37,ERR)
PPUTG (* SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF;’ 6 44,ERR)
PMUXG (12, ERR)

PPUTG (’CLOSE SITE;”,11,ERR)

PDTACH (ERR)

SUBROUTINE ERR(ERROR)

INTEGER*4 ERROR

Helpful Hints

172-5

WRITE(6,1) ERROR
FORMAT (“ERROR = “,15)
STOP

END

PASCAL GSRs:

PROGRAM SITE (INPUT, OUTPUT) ;

CONST
%INCLUDE PROCONST

TYPE
%INCLUDE PROTYPES
%INCLUDE PROEXTRN

PROCEDURE ERR;

BEGIN

WRITELN(“ERROR IS: “, ERROR);
HALT;

END;

BEGIN

PATTACH (* LOGDEVNAM=TT : /PHYDEVTYP=ASYNC") ;

PMUXG (11,ERR) ;

PPUTG (” SEND CHAR(65) TO <1>MESSAGE DISPLAY1;’,ERR);
PPUTG (” SETUP INTERFACE PORT40/SPEED=2400/XON_XOFF:’ ERR):
PMUXG (12,ERR) ;

PPUTG (“CLOSE SITE;’,ERR);

PDETACH (ERR) ;

END

Further Information:

Helpful Hints Topic 2, How to Deal With Naming Conventions And Configure
Mode.

Section RM10, Terminal Emulator

1T2-6 Tools and Techniques

2. How To Deal With Naming Conventions and Configure Mode

Categories:

naming conventions, configure mode

Description:

Naming conventions

When you instance a function or name something, the command interpreter
assigns a specific suffix to that name corresponding to the suffix assigned
to that instance of the command interpreter. Name suffixing is used to dis-
tinguish system level names and instances from user-defined names and
instances. The following suffixing scheme is used for the PS 390:

0 suffix for system related functions associated with the user. The
names with this suffix are not accessible in command mode.

1 suffix for user-defined and accessible names associated with The
user. All names with this suffix are accessible to the user.

(If the command interpreter is suffixed with a 0 or a 1, it
will suffix names that it creates with a 1.)

Configure Mode

Name suffixing automatically occurs in command mode, but it does not
automatically occur in configure mode. Configure mode is a privileged
mode of operation that the command interpreter uses to create or modify
system functions. You must suffix any function that is instanced whenever
you are working in configure mode, whether you are using system-level or
user-level names. You must also properly suffix the command interpreter to
assure that other functions created by the command interpreter will have the
appropriate suffix. Configure mode is provided as a way to protect
system-level names and functions from being erroneously modified.
Therefore, you cannot access any system-level names or functions without
being in configure mode.

Helpful Hints 1712-7

Analysis And Implementation:

Naming Conventions

Name suffixing is handled by the command interpreter when you are in
command mode, and is completely invisible to you. For example, when you
are in command mode on a single-user system and instance:

ADD := F:ADD;
The command interpreter creates an instance of the function F:ADD with
the name of ADD1 (a suffix of 1 is used because ADD is a user-defined

name created with the system command interpreter, called CI0). If you were
to send:

SEND 2.5 TO <1>ADD;

to the function that you just instanced, the command interpreter would send
the value 2.5 to the function ADDI.

Configure mode

You can only access system-level names and functions in configure mode,
in which you have the capability of reconfiguring system functions. Use the
following command to set up a password for configure mode:

@@ SETUP PASSWORD password;

Where password is the password to enter into configure mode. This com-
mand allows you to establish and modify the password required to enter
configure mode. This command can be included in the SITE.DAT file, or
may be set up at any time thereafter (there will be no password established
prior to you issuing this command).

The commands that allow you to enter and exit configure mode are as
follows:

@@ CONFIGURE password;(issue in command mode to enter configure mode)

Where password is the established string. If no password has been defined,
any string can be entered for the password.

@@ FINISH CONFIGURATION;

TT2-8 Tools and Techniques

This command takes the PS 390 out of configure mode back into command
mode. This command must be entered after any modifications to
system-level functions or names have been made.

When you boot your PS 390 with the appropriate firmware, a file called
CONFIG.DAT is read from your firmware diskette. This file contains the
initial instances of system-level commands and functions. While reading this
file, the command interpreter is in configure mode.

The last thing that the CONFIG.DAT network does is search for a file called
SITE.DAT on your firmware diskette. If a SITE.DAT file is found, it is read
and processed. You must perform all name suffixing when you create a
SITE.DAT file to be read from your firmware diskette. The SITE.DAT file
is read by the CONFIG.DAT while in configure mode. For example, if you
created a SITE.DAT file which had a command in it to change the back-
ground color to red, you would need to write:

@@ SEND V3D (120.0,1.0,1.0) TO <2>PS390ENV1;
@@ SEND TRUE TO <1>PS390ENV1;

While if you wanted to change the background color to red from command
mode, the command would need to be:

@@ SEND V3D (120.0,1.0,1.0) TO <2>PS390ENV;
@@ SEND TRUE TO <1>PS390ENV;

Further Information:

Helpful Hints Topic 1, How to Make a SITE.DAT File.

Helpful Hints T72-9

3. Hardcopy Networks using Writeback

Categories:

writeback, plotters

Description:

Writeback allows you to receive picture information from the PS 390. The
writeback node, defined by WBS, occurs at the top level of the display struc-
ture. Picture information is a description of the transformed vectors located
beneath the writeback node and can be converted to instructions for a plot-
ter. There are two ways to convert the information:

e Running a program from the host.
e Running a function net program on the PS 390.

Analysis And Implementation:

Running a program from the host

When you run the plotinfo.exe program, you create two files of picture
instructions on the host. These files are talked about in the plotinfo.doc file.
These host files are then converted into plotter commands for the
appropriate plotter. The plot routines in the plot directory supports three
plotters:

e Hewlett Packard 7550A

o Apple Laser Writer

o Tektronix 4510 rasterizer hooked to a 4691 jet plotter

The programs to do these conversions are described in the following files:

e hpplot.doc
e lwplot.doc
o tekplot.doc

Running a function net program on the PS 390

A network defined in plot.fun allows you to trigger the writeback feature
with the PS 390 hardcopy key. This network has the WB$ node connected to
a Plotinfo function. The Plotinfo function puts out generic picture com-
mands for a plotter function.

172-10 Tools and Techniques

NOTE

The only plotter function supported by the PS 390 is
the Hpplot user-written function for the Hewlett Pack-
ard hp7750a plotter.

The Hpplot function receives commands from the Plotinfo function and puts
out commands to the port to which it is connected. The Plot.Fun file con-
nects the plot function to output port 4. Both the Plotinfo and Hpplot func-
tion are User-written functions that need to be loaded down to the PS 390.
The functions are defined in the Plotinfo.uwf and Hpplot.uwf files. These
functions are described in the Plotinfouwf.doc and Hpplotuwf.doc files.

Further Information:

Section RM2 Intrinsic Functions, RM14 GSR Internals

Helpful Hints TT2-11

4. How to Deal with XFORMDATA

Categories:

XFORM VECTOR, XFORM MATRIX

Description:

Before reading this, thoroughly read the Section 779 Transformed Data and
Writeback. You should be familiar with the information contained in that
section.

Note the following restrictions on the use of transformed data on the
PS 390:

e The PS 390 does not allow the display of transformed data
(F:XFORMDATA outputs a non-displayable data type —
vector-normalized vector list).

o A single-precision vector list is generated by F:XFORMDATA.
e Only three-dimensional data can be transformed.
o F:XFORMDATA can still be connected to F:LIST to enable the host

to read the transformed data retrieved from the PS3990.

XFORM VECTOR affects all transformations applied to the data node(s),
whether these transformations are above or below the XFORM VECTOR
node.

XFORM MATRIX affects only those transformations above the XFORM
MATRIX node. XFORM MATRIX should be placed immediately above the
data node(s) to include all transformations applied to the data node(s).

There is a limit of 2048 vectors that may be read back with single trigger of
the XFORM VECTOR node.

17T2-12 Tools and Techniques

Analysis And Implementation:

The following examples show how XFORM MATRIX and XFORM
VECTOR might be used. As the code is, an output is not produced because
the LIST<1> is not connected to another function. Output of LIST<1> can be
verified in one of three ways:

e LIST<1> can be connected to a debug port (if available)
e LIST<1> can be connected to the function ES_TE

e LIST<1> can be connected to the function HOST MESSAGE, and
messages may be polled from HOST MESSAGE via
FORTRAN/Pascal GSR programs.

You can verify the XFORM VECTOR example is functional by removing
the displayed data and displaying the transformed data:

@@ REMOVE XFORM;
@@ DISPLAY XDATA;

Example Of XFORM MATRIX

init;
xform := begin_structure
x := set conditional bit 1 on; {Set up conditional }
if conditional_bit 1 is on then view; {referencing so that }
if conditional_bit 1 is off then tran;{the viewing, etc. can }
end_s; {be replaced by the }
{identity matrix. }
tran := begin_structure
matrix_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; {structure to be }
instance of obj; {transformed- no }
end_s; {viewing, etc. }
{applied }
view := begin_structure
window x = -5:5 y = —-5:5; {structure to be displayed- }
instance of obj; {all viewing, etc. applied }
end_s;
obj := begin_structure
trans := translate by 0.2,0.4,0.0;
xform_request := xform matrix; {xform matrix request - }
instance of data; {note that it is just }
end_s; {prior to the data node }

Helpful Hints TT2-13

data

= vec item n=2 -.5,.5,0 .5,-.5,0;

xformdata :=
= f:sync(2);

.= f:1ist;

sync2<1l>:<1>xformdata;

xformdata<l>:<1>1ist;

list<2>:<2>sync2;

list<2>:<1>xform.x;

sync2
list
conn
conn
conn
conn
send
send
send

display xform;

. ,

go

f:xformdata;

to <2>sync2;

‘obj.xform_request’ to <2>xformdata;
“xdata’ to <3>xformdata;

{The following network sets up function key 1 such that it performs the

{two commands:

{
{
{

@@ send false to <l>xform.x;

{which triggers the conditional bit 1, and then triggers the xform
{vector node to return the transformed data.

sync
false
route
send
send
conn
conn
conn
conn
conn
conn
conn

}
}
}
@@ send false to <1>sync2; }
}
}
}

= f:sync(2);

:= f:constant;

:= f:route(12);
‘xform” to <1>flabell;

false to

fkeys<1l>:
fkeys<1>:
route<l>:
fkeys<1>:
false<1l>:
false<l>:

<2>false;
<l>route;
<2>route;
<1>false;
<1>sync;
<l>xform.x;
<2>sync;

sync<2>:<1>sync2;

This example should produce the following from LIST<1>:

XDATA := MATRIX_4X4 1.000000E+0,0.000000E+0,0.000000E+0,0.000000E+0

172-14

0.000000E+0,1.000000E+0,0.000000E+0,0.000000E+0
0.000000E+0,0.000000E+0,1.000000E+0,0.000000E+0O
1.999999E-1,3.999999E-1,0.000000E+0,1.000000E+0;

Tools and Techniques

Example Of XFORM VECTOR

init;
xform := begin_structure
x := set conditional bit 1 on; {Set up conditional }
if conditional_bit 1 is on then view; {referencing so that }
if conditional_bit 1 is off then tran; {the viewing, etc. can }
end_s; {be replaced by the }
{identity matrix. }
tran := begin_structure
matrix_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; {structure to be }
instance of obj; {transformed- no }
end_s; {viewing, etc. }
{applied }
view := begin_structure { structure to be displayed- }
instance of obj; { all viewing, etc. applied }
end_s;
obj := begin_structure
xform_request := xform vector; {xform vector request — note }
instance of data; {that it is Jjust prior to the }
end_s; {data node }
data := vec item n=2 -.5,.5,0 .5,-.5,0; {Only three-dimensional data can }
{be transformed on a PS390 }
xformdata := f:xformdata;
sync2 := f:sync(2);

list := f:list;

conn sync2<l>:<1>xformdata;

conn xformdata<l>:<1>1list;

conn list<2>:<2>sync?2;

conn list<2>:<1>xform.x;

send “go” to <2>sync?2;

send “obj.xform_request’ to <2>xformdata;
send “xdata’ to <3>xformdata;

display xform;

{which triggers the conditional bit 1, and then triggers the xform
{vector node to return the transformed data.

{The following network sets up function key 1 such that it performs }
{the two commands: }
{ @@ send false to <1l>xform.x; }
{ @@ send false to <1>sync2; }
{ }

}

}

Helpful Hints TT2-15

sync

false
route

send
send
conn
conn
conn
conn
conn
conn
conn

This example should produce the following from LIST<1>:

XDATA

= f:sync(2);
= f:constant;
:= f:route(12);

‘xform” to <1>flabell;

false to
fkeys<l>:
fkeys<1>:
route<l>:
fkeys<1>:
false<l>:
false<1l>:

<2>false;
<l>route;
<2>route;
<l>false;
<1l>sync;
<l>xform.x;
<2>sync;

sync<2>:<1l>sync?2;

:= VECTOR_LIST ITEMIZED N=2 P --0.500000,0.500000,0.000000 I=0.992188

Further Information:

Section TT9 Transformed Data and Writeback

172-16

L 0.500000,-0.500000,0.000000 I=0.992188;

Tools and Techniques

5. How to Render Spherical and Line Data Types

Categories:

rendering

Description:

Spherical renderings on the PS 390 use input <5> of the surface/solid
rendering node and transformed data node information. To change
definitions of the spherical renderings in the attribute table, you need to
create a tabulated vector list that contains spherical definitions.

Analysis And Implementation:

To render a sphere, perform the following:

Helpful Hints

1. Place an instance of the surface/solid rendering node in the main

structure of the object to be rendered. The rendering node should be
placed below the instance of the vector data to be used for the
spherical rendering.

. Create spherical data definition using tabulated vector lists where

each X,Y,Z coordinate specification represents the spherical center
of the rendered sphere. The tabulated value represents the spherical
attributes associated with the table value as loaded in the attribute
table. The following is an example of spherical vector data definition
with the default system attribute table:

raster_spheres := vector list tabulated n = 3

P 1,0,0 t=5 {yellow sphere}
t=4 {blue sphere}
t=2 {red sphere}

Because the transformed data function uses vector normalized vector
data, two definitions of the spherical data must be established in
mass memory that are identical in value. One list is used for display
information and is block normalized.The other list follows a trigger
of the ALLOW_VECNORM function and is a vector normalized vec-
tor list in mass memory. This vector list is not displayed since the
PS 390 does not display vector normalized vector lists.

172-17

3. Setup transformed data node to provide transformed data informa-
tion to the rendering node and connect output <1> of the xformdata
node to input <4> of the rendering node.

4. Send the name of the spherical vector list data to input <5> of the
rendering node.

5. Trigger the rendering xformdata node and the rendering node to pro-
duce the rendering.

NOTE

To avoid timing problems, use a SYNC(2) function
from the function keys to simultaneously trigger the
rendering xformdata node and the rendering node.
Connect sync function output <1> to the xformdata
function and output <2> to the rendering node.

Reloading the Attribute Table

To change the definitions of the spherical renderings in the attribute setup a
vector list similar to the following:

ATTRIBUTE_TABLE VEC := VECTOR LIST TABULATED N = 6
0,1,1 2,.5,4 T=5
120,1,1 4.0,0.8,9 T=6
240,1,1 3.0,0.3,2 T=7;

’ ’

Where each table entry is specified by two X, Y, Z vector components. The
first X, Y, Z, component is for hue, saturation, and intensity, and the sec-
ond X, Y, Z component is for radius, diffuse, and specularity of that entry.

Update the table by entering the command:

@@ send “attribute_table_vec’ to <l4>shadingenvironment;

NOTE

When rendering spherical data, the sphere will not be
rendered if the vector list is defined or transformed
such that the front or back clipping planes clip the
radius of the rendered sphere. Be sure front and back
clipping planes are setup so as not to interfere with the
spherical rendering.

T12-18 Tools and Techniques

The following is an example of basic raster_spheres rendering network.
init;
reserve_working_ storage 300000;
allow := f:allow_vecnorm;

display render_sphere;
render_sphere := begin_s

set depth_clipping on;

set contrast O;

window x = -5:5 y=-5:5 front = -10.0 back = 10;
instance of disp_sphere;

rendering := surface_rendering;
{instance of polygon objects}
end_s;
disp_sphere := begin_s
linexform := xform vector;

{ viewing, windowing, etc. }
{ rotate, scale, translate }
instance of sphere_vecn, sphere_blockn;

end_s;
sphere_blockn := vector tabulated n=3
P 1,0,0 t=2 {red sphere}
L 1,1,0 t=5 {vellow sphere}
L 0,1,0 t=4; {blue sphere}

{allow following vector definition to be vector normalized }
send true to <l1>allow;

give_up_cpu;

give_up_cpu;

give_up_cpu;

give_up_cpu;

sphere_vecn vector tabulated n=3

P 1,0,0 t=2 {red sphere}
L 1,1,0 t=5 {yellow sphere}
L 0,1,0 t=4; {blue sphere}

send false to <1>allow;
{ setup xformdata node }

linexformdata := f:xformdata;
send “disp_sphere.linexform” to <2>linexformdata;

Helpful Hints 1T2-19

conn linexformdata<l>:<4>render sphere.rendering;
send “sphere_vecn’ to <5>render_sphere.rendering;

{ setup network to turn on the display upon render completion }
con := f:constant;

send fix(0) to <2>con;

conn render_sphere.rendering<l>:<l>con;

conn con<l>:<1>turnondisplay;

{setup render trigger to be any function key}
rsyn := f:sync(2);

conn fkeys<l>:<1>rsyn;

setup cness true <2>rsyn;

send fix(7) to <2>rsyn;

conn rsyn<l>:<l>linexformdata;

conn rsyn<2>:<l>render_sphere.rendering;

{ initialize shadingenvironment function }

send v3d(120,0,500) to <3>shadingenvironment;
send fix(l) to <5>shadingenvironment;

Further Information:

Section TT9 Transformed Data and Writeback

TT2-20 Tools and Techniques

6. Physical I/0O GSR issues

Categories:

Ethernet interface, parallel interface, I/O commands

Description:

The physical /O commands permit the host to directly access the internal
contents of any node or PS 390 structure. The I/O commands take full
advantage of the speed of the Ethernet or parallel interfaces to modify the
contents without any node swapping, pointer juggling, memory
management, or command interpretation. For a more complete description
of the physical I/O commands refer to Section AP4 of the PS 390 Document
Set and the appropriate Customer Installation and User Manual for your
interface.

Analysis And Implementation:

The following is a high level description of a physical I/O programming
example. This programming example can be run over the Ethernet or
parallel interfaces. To run this program read the file phy_example.doc
located on the host software tape in the miscellaneous sub-directory.

The source for this program is located in the phy_example.for file.

The program updates two matrices that rotate two objects, one around the Y
axis, the other around the Z axis. These two matrices are double buffered.
The double buffering is accomplished by having two paths through the dis-
play structure.

Path1 has one copy of the Y and Z matrices, path2 has the other copy of the
matrices. The names of the Y rotation matrices are pathl.yrot and
path2.yrot. The names of the Z rotation matrices are pathl.zrot and
path2.zrot. The conditional pivots.bit controls whether pathl matrices or
path2 matrices are used.

Helpful Hints 1T2-21

The program first gets the physical address of these five entities and then
continuously switches updates of pathl and path2 matrices. Each time an
update is done the conditional bit is also updated so the appropriate path is
taken in the display structure. The result is smooth rotations of the objects
around the Y and Z axis.

Further Information:

Advanced Programming, API-9 and the Customer Installation and User
Manual for your interface

TT2-22 Tools and Techniques

7. Host Communication Data Flow — How the Interfaces
Deal with Runtime

CATEGORIES:

communication interface, runtime environment

DESCRIPTION:

The host system communicates with the PS 390 runtime environment via a
communication interface. The communication interface uses two types of
communication packets, count mode and escape mode.

Count mode

Count mode packets begin with the start of packet (SOP) character (6),
followed by two bytes of count data, followed by the data. The first byte of
data should be a muxing byte that tells the PS 390 where the data goes.

As an example, a sample count mode packet, in hex, might look like:
06 00 06 30 49 4E 49 54 3B

Where:

06 signifies the beginning of a packet

00 06 signifies there are 6 bytes following

30 signifies that this is an ASCII command which needs to go to the
chopper/parser

49 4E 49 54 3B are the ASCII character codes for “INIT;”

This type of packet is generated automatically by the GSRs and is the stan-
dard method of communication with the PS 390.

Escape mode

Escape mode packets start with an ASCII FS character (Hex 1C), followed
by the muxing byte, followed by data. Since there is no count associated
with an escape mode packet, the system assumes that all data is part of the
current packet until another SOP character is received. The escape mode
packet is commonly used when you place the FS and the mux bytes directly
in the data file destined for the PS 390 and use a host system command
such as TYPE or COPY to transfer the file to the PS 390 over the
asynchronous line.

Helpful Hints 172-23

Analysis And Implementation:

The runtime communication environment can be conceptually divided into
five function boxes.

| input handling | | depacket | ——————~ > | ciroute | ————>
| function | [function | | function |-———>
——>| accepts data | ————— >| breaks host | | routes data |
| from host | | data into | | to various |
I ! | Qpackets and |-——- | system |
| | | Qmorepackets | | | functions |-—-->
|
DEPACKETO | CIROUTEO
|
|
| ==
[| another | | another | ————>
————>| depacket — > ciroute | ————>
| function [| function |
l | | |
| I | I
I | I | >
DEPACKET20 CIROUTE20

The input handling function is a generic description of a function that ac-
cepts data from the host and passes it to the next function in line:
DEPACKETO.

DEPACKETO is a count mode version of the F:DEPACKET function. When
DEPACKETO receives data that is not a count mode packet, it sends the
data to the second F:DEPACKET function: DEPACKET20. When
DEPACKETO receives a count mode packet, it consumes the SOP and count
bytes and sends out a Qpacket, followed by Qmorepackets, to CIROUTEQO.

CIROUTEDO looks at incoming data packets and does one of two things; if a
QPACKET is received, CIROUTEQ looks at the first byte, which should be a
muxing byte, then changes the output path to match the mux byte. Data
following the mux byte goes out this path. If a Qmorepacket is received,
CIROUTEO does not change the output path, and sends the data out the
current output path. The various paths out of CIROUTEQ are connected to

112-24 Tools and Techniques

such system functions as a chopper/parser to handle ASCII commands, as
well as a path to handle binary data commands.

DEPACKET?20 is similar to DEPACKETO, except it looks for escape mode
packets. DEPACKET20 consumes the SOP character from an escape mode
packet and breaks the data up into Qpackets and Qmorepackets and sends it
out output 1 to CIROUTE20. If the data is not an escape mode packet,
DEPACKET20 sends the data out output 2.

CIROUTE20 functions like CIROUTEQ, including a complementary set of
output paths.

The appropriate packets must be built on the host side before sending to the
PS 390. The common way to send ASCII PS 390 commands across an asyn-
chronous link is to build a file using the editor which has the desired com-
mands and required FS characters followed by mux bytes. The file is then
sent to the PS 390 with an operating system command such as TYPE or
COPY.

However, the standard way to communicate with the PS 390 is via the GSR
library. The GSR library builds packets for all PS 390 commands in binary
and ASCII format, handles efficiency considerations such as buffering of
data, and knows how to deal with all the supported communication interface
options such as asynchronous, parallel, Ethernet, and IBM 3278.

To reset CIROUTE and CIROUTES3 to their previous configuration type in
the following commands:

Configure a;

disconnect cirouteO0<1l0>:<1>rasstrO;

disconnect cirouteO<11>:<1>hpolystro;

disconnect ciroute30<10>:<1>rasstr30;

disconnect ciroute30<11>:<1>hpolystr30;

send fix(4) to <4>cirouteO;

send fix(4) to <4>ciroute3O;

Finish configuration;

FURTHER INFORMATION:

Section RM5 Host Communications and Section RM7 Local Data Flow

Helpful Hints TT2-25

8. How to Copy Files Between the Host and the PS 390

Categories:

Description:

You can copy files from the host to a PS 390 diskette and from the PS 390
diskette to the host. You need to connect a debug terminal to your system
and use the UTILITY routines booted from the diagnostic utility diskette
except when downloading a file over an asynchronous line.

Analysis And Implementation:

Copying Files from Host to PS 390 Diskette

There are two methods for copying an ASCII file from the host to the
PS 390:

1. Adding appropriate routing bytes to the ASCII file on the host and
downloading to the PS 390 over an asynchronous line.

2. Booting from a PS 390 diagnostic disk and using the UTILITY com-
mand TRANSFER.

Downloading an ASCII File from the Host Using Routing Bytes

You must add three special routing bytes to your text file on the host. These
routing bytes direct the PS 390 to write the host file to the firmware disk-
ette, close the new file and return control to the PS 390 terminal emulator.

The file you create on the host contains the following special characters:

“\: The file must begin with the demuxing character
“\ (control key and \ pressed simultaneously)
and the routing byte : which causes the following
lines of the file to be written on the firmware

diskette.
FILE BODY The file lines are assumed to be ASCII.
“\; The demuxing character *\ and routing byte ;

must precede the command to close the file on
the diskette.

17T2-26 Tools and Techniques

CLOSE<filename>; The PS 390 command that closes the file on
diskette. Note you DO NOT ADD A FILE EXTENSION
HERE. When you use this method, the system will
automatically append the extension .dat to the file
name you give here.

“\> The demuxing character “\ and the routing byte >
restore output to the terminal emulator.

Once the routing bytes have been added to the file that exists on the host,
boot the PS 390 and enter terminal emulator mode. Give the command to
type the host file:

For VMS - type <filename.>
For UNIX - stty raw -echo; cat <filename.>; stty cooked echo;

The routing bytes channel the commands to the filename.dat file on the
diskette.

NOTE

You must insert a space at the start of each line since
the first character of each line is lost. The method you
use to insert the control character "\ in an ASCII file
depends on the text editor you are using. For example,
the VMS editor EDT uses the sequence:

gold-28-gold-specins key
or the edt.ini command file line:

define key control \ as "(28asc)"

to define the "\ character as ASCII 28.

The following example shows a file containing the necessary routing bytes.

N\
These two lines of text will be copied onto the PS 390 diskette.
The file will be labeled: SAMPLE.DAT.

“\;

CLOSE SAMPLE;

>

Helpful Hints 172-27

172-28

Using Utility Routines for Uploading and Downloading

You use the TRANSFER utility routine to copy files from the host to a
PS 390 diskette, and the SENDBACK routine to copy files from the PS 390
diskette to the host. You need to connect a debug terminal to your system to
fully use the UTILITY routine screen prompts and messages.

To transfer a file, boot your system from the diagnostic utility diskette. If
you have a data tablet connected to your system, be sure the puck is not on
the tablet when booting. When the debug terminal indicates the diagnostics
have completed through ‘O’, hold the control key down while you slowly
type the letter ‘p’ 5 or 6 times. The system should respond by identifying the
operating system, disk name and the message: type HELP for additional
help, followed by the = prompt. When you see the = prompt type:

utility <cr>

You then get the utility> prompt and are ready to begin the file transferring
process.

Checking Host Communications Settings

The first step in checking the communication settings is to ensure the
default communication parameters between your host and the PS 390 are
compatible. The MODIFY utility routine displays the current settings and
allows you to modify those that are not correct. At the utility> prompt type:

modify <cr>

The MODIFY routine lists a menu of all the setting selections when you
enter the number 0. Select menu number 1 to see the current default
settings for all the parameters.

NOTE

Generally, you only need to verify that the baud rate
(#4) is appropriate, and that the sendback (#7) and
transfer (#9) strings and terminator strings (#8, #10)
are compatible with your host. For example, on VMS,
the appropriate transfer string:

Tools and Techniques

TYPE <fn><cr>

is the VMS command that will cause the host to send
the file <fn> to the PS 390. The appropriate terminator
string is the VMS prompt “$ ” which indicates that the
file transfer has been completed.

If the default settings are compatible with your host, you may exit from the
MODIFY utility by typing a carriage return and proceed with the file copy-
ing as described in the next sections. If one or more of the default settings
needs to be changed, refer to the section on Modifying Host/PS 390 Com-
munication Parameters under this topic before attempting the copy proce-

dures.

Copying from Host to PS 390 Using the TRANSFER Utility

If the communication parameters displayed by the MODIFY utility are ap-
propriate for your host, you may proceed to copy a file of up to 30,000
bytes from the host to the PS 390 diskette as follows:

Helpful Hints

1. At the Utility> prompt, type:

terminal <cr>
<cr>

to log onto the host account containing the file to be transferred. This
places the PS 390 in terminal emulator mode and causes the system
to prompt for your login.

. After you have logged onto the appropriate account, set the terminal

to NOECHO. If you fail to turn the echo off, your newly copied file
will contain the transfer string as its first line. The commands to turn
character echoing off are:

For VMS - set term/noecho
For UNIX - stty raw -echo

. Simultaneously press the control key and letter A to return to the

PS 390 utility prompt. At the utility> prompt type:

transfer <cr>

. The transfer utility will prompt you for:

¢ The name of the file exactly as it appears on the host.

172-29

e The name of the file to be created on the PS 390. File names may
contain 1 to 8 alphanumeric characters plus an extension .DAT
(data), .TXT (text) or .COM (communication).

e The type of transfer (ASCII or S-record).

e The date in the format dd-mmm-yy.

The file transfer starts when you have supplied the above information. A
dot appears for each line transferred, then a message stating the transfer
was successful appears when the transfer is complete. At the utility> prompt
and you can repeat the process for another file. If you return to terminal
emulator mode, you should set the character echo back on as follows:

For VMS - set term/echo
For UNIX - stty cooked echo

Copying from the PS 390 to the Host Using the SENDBACK Utility

If the communication parameters displayed by the MODIFY utility are ap-
propriate for your host (including the XON/XOFF characters), you may
copy a file from the PS 390 diskette to the host as follows.

1. At the Utility> prompt, type:

terminal <cr>
<cr>

to log onto the host account to which the file will be transferred. This
places you in terminal emulator mode and causes the system to
prompt for your login.

2. After you have logged onto the appropriate account, set the terminal
to host synchronization. If the host computer does not send XON/
XOFF signals data may be lost. Setting the host synchronization as-
sures that the buffers of the host computer do not overflow. The
VMS command to turn host synchronization on is:

SET TERM/HOSTSYNC

3. To return to the utility prompt, type:
<CONTROL> A

4. At the utility> prompt type:

sendback <cr>

TT2-30 Tools and Techniques

5. The sendback utility prompts you for:
* The name of the file exactly as it appears on the PS 390.

e The name and extension of the file to be created on the host,
including the full path name if the file is to be copied to a direc-
tory other than the one where you are currently logged on.

e The type of transfer (ASCII or S-record)

The file transfer starts when you have supplied the above information. A
message stating that the transfer was successful appears when the transfer
is complete. At the utility> prompt you can repeat the process for another
file. When you return to terminal emulator mode, you should set VMS host
synchronization off as follows:

SET TERM/NOHOSTSYNC

Modifying Host/PS 390 Communication Parameters

Successful file transfers require that the default communication parameters
between your host and the PS 390 are compatible. The utility routine
MODIFY displays the current settings and allows you to modify those that
are not correct. At the utility> prompt type:

modify <cr>

The MODIFY routine lists a menu of all the setting selections when you
enter the number 0. Select menu number 1 to see the current default set-
tings for all the selections.

Enter the number 0 to return to the selection menu at any time or enter the
menu number of the specific setting you wish to change.

When you select a specific parameter, the MODIFY utility shows the current
setting for the parameter and prompt you step by step through the
modification process.

As an example, the following steps describe how to modify the sendback
string (#7) to shorten the transfer string to TY instead of TYPE and choose
the # delimiter.

Helpful Hints 17T2-31

1. The system prompts:
Enter a number
You type:
9 <cr>

The current transfer string is displayed and you are prompted to
enter the new transfer string:

Current transfer string is: "TYPE <fn><cr>"
Enter a delimiter (any character but <cr>), then the message, and the
delimiter again.
2. Then type:
#TY (CONTROL F) <cr>#

The change is made as soon as you type the final delimiter.

3. You are prompted to enter another number and repeat the process,
or you can return to the main menu by typing a 0. Verify your

changes by entering number 1. If they are not correct, repeat the
process.

4. Exit the MODIFY utility by typing a carriage return and proceed with
the file copying as described in the previous sections.

TT2-32 Tools and Techniques

9. Routing Bytes

CATEGORIES:
routing bytes, F:CIROUTE

DESCRIPTION:

A routing byte (also called a mux byte) is that portion of a PS 390 commu-
nication packet that determines where the commands and/or data are sent.
It is one byte in length. The intrinsic function F:CIROUTE uses the routing
byte to determine where data following the routing byte is sent. Outputs of
F:CIROUTE are connected to other functions such as CHOP to process
ASCII commands, READSTREAM to process binary commands, and
SREC_GATHER to process user written function code.

ANALYSIS AND IMPLEMENTATION:

There are three ways to specify routing bytes:

1. Insert the routing byte within an ASCII file with an editor. This byte
must be preceded by the FS character (hex 1C) and all data follow-
ing the routing byte is routed to the designated path until another FS
routing byte sequence is encountered.

2. Use the special GSR routines PMuxG and PPutG. PMuxG sets the
generic output channel according to the value of its parameter and
subsequent calls to PPutG send data to the generic output channel.

3. The most common technique is to let the GSR’s implicitly build com-
munication packets and set the routing bytes for you.

Following is a table showing the F:CIROUTE function, its output connec-
tions and the routing bytes necessary for each output path. The connections
of CIROUTEQ are subject to change.

Helpful Hints TT2-33

FURTHER INFORMATION

T7T2-34

CIROUTEO

<1>|
<2>|
<3>|
<4>|
<5>|
<6>|
<7>]
<8>|
<9>|
<10>|
<11>|
<12>|
<13>|
<14>|
<15>|
<16>|
<17>|
<18>|
<19>|
<20> |
<21>|

output connection

reserved
<1>BADROUTEO
<1>H_CHOPO
<1>READSTREAMO
<1>SIXTOEIGHTO
<1>RESET RS1
unused

unused
<1>SREC_GATHERO
<1>RASSTRO
<1>HPOLYSTRO
unused

<1>WDAO
<1>WDACO
<1>WDBCO
unused
<1>ES_TE1
<1>TRIGGER_CONVB1
<1>WHO1

unused
<1>RASSTRO

routing bytes

ascii / pmuxg

N/A | N/A

N/A | N/A
0 | 1
1 | 2
2 | 3
3 [4
4 | 5
5 | 6
6 | 7
7 | 8
8 | 9
9 | 10
: | 11
; | 12
< | 13
= | 14
> | 15
? | 16
@ | 17
A | 18
B [19

Helpful Hint Topic 7, Host Communication Data Flow/How the Interfaces Deal

with Runtime

Tools and Techniques

10. How to do Patterned and Textured Vector Lists

CATEGORIES:

patterned vector lists, textured vector lists

DESCRIPTION:

Textured vector lists

The texture command is used to apply a hardware generated texture to a
vector list. Textures are drawn in the same direction as the vector list was
specified.

Patterned vector lists
A pattern may be applied to a vector list by specifying up to 32 integers
between 0 and 128 that represent the relative lengths on the pattern
segments (lines and spaces).

ANALYSIS AND IMPLEMENTATION:

Textured vector lists

The texture command has the form:
Name := set line_texture [around _corners] pattern [applied to x]

Where pattern is an integer in the range of 1 to 127 specifying a texture to
be applied to a vector list. The texture applied is calculated by the binary
representation of the of the integer given in the lower 7 bits. All textures
start with a one (dash) in bit 8 of the texture.

Example 1:
Plain_vec vector_list -1,0,0 1,0,0;

texture_vec := set line_texture 122 then plain vec;
Display texture_vec;

Integer 122 which is 01111010 in binary

would produce a texture - - -

over 3 intervals. 111110101111101011111010
1 1 =2 | 3 |

Helpful Hints 172-35

T12-36

Example 2:
Plain_vec := vector_list -1,0,0 1,0,0;
texture_vec := set line_texture 25 then plain_vec;
Display texture_vec;
Integer 25 which is 00011001 in binary
would produce a texture - — — — — — -—

over 3 intervals. 100110011001100110011001
[1 [2 | 3 |

Patterned vector lists

The command to apply a pattern to a vector list is:

name := pattern i [around corners] [match/nomatch] length r;

Where i represents the integers that specify the pattern and r represents the
interval over which the pattern is to be repeated. The pattern is applied to
the vector list with the PATTERN WITH command.

Example:

lineX vector_list -1,0,0 1,0,0;
Patternl := pattern 5,2,2,5 length 1;
Pattern linex with patternl;

Display linex;

Produces a patterned vector list over three intervals as shown below:

Tools and Techniques

11. Discussion of inputs to display structures

CATEGORIES:

vector nodes, character nodes, label nodes

DESCRIPTION

The vector, character, and label data structures can be updated via inputs to
their node in the display structure. Following are examples of updates. For
complete documentation on inputs for vector, character, and label nodes,
refer to Section RMI, Command Summary.

ANALYSIS AND IMPLEMENTATION:

The following program uses an update to delete the top vector of a box. The
third item in the vector list is changed from a move command to a position

command.
vector := vec n=4
0,0,0
0,.5,0
.5,.5,0
.5,0,0
0,0,0;

display vector;
send false to <3>vector;

The following program uses an update to replace the last character (g) of a
string with another character (a).

charl := char “test string”;
scal := scale by .05,..05 applied to charl;
display scal;
send “a’ to <last>charl;

The following programming example uses an update to replace the last
string in a label block (stringl) with another string (new string).

Helpful Hints

172-37

lab := labels 0,0,0 “string 1°
0,-1.5,0 ’string 2~
0,-3,0 “string 37;
scal := scale by .05,..05 applied to lab;
display scal;
send “new string” to <3>lab;

FURTHER INFORMATION:
RM1, Command Summary

172-38 Tools and Techniques

12. How to do Run Length Encoded Programming

CATEGORIES:

raster programming

DESCRIPTION

The PS 390 raster system outputs static images to a 1024 (column) by 864
(row) pixel raster display. Each pixel is 24 bits deep for addressing into a
red-green-blue color lookup table that is 24 bits deep. The PS 390 accepts
raster data from the host in run-length encoded format. A description of
this data format and how to address the various pixels on the PS 390 is
contained in Section GTI14, PS 390 Raster Programming. The following is an
example from GTI4. The program displays a flag of red, white, and blue
blocks.

ANALYSIS AND IMPLEMENTATION:

Helpful Hints

1. Load a black background color. This is done through the PRasEr call

with the red, green, and blue entries having a value of 0.

. Display a red rectangle. This rectangle will be 200 pixels wide by 440

pixels high. The block is located between pixel number 20 and 219 in
the X direction and pixel number 20 and 459 in the Y direction. The
location of the block is given in the PRasLd call. The number of
pixels and the color of these pixels are stored in the matrix MAT.
This matrix is used in the PRasWP call for writing down pixel
information.

. Display a white rectangle. This rectangle will be 200 pixels wide by

440 pixels high. The block is located between pixel number 220 and
419 in the X direction and pixel number 20 and 459 in the Y direc-
tion. The location of the block is given in the PRasLd call. The num-
ber of pixels and the color of these pixels are stored in the matrix
MAT. This matrix is used in the PRasWP call for writing down pixel
information.

17T2-39

4. Display a blue rectangle. This rectangle will be 200 pixels wide by
440 pixels high. The block is located between pixel number 420 and
619 in the X direction and pixel number 20 and 459 in the Y
direction. The location of the block is given in the PRasLd call. The
number of pixels and the color of these pixels are stored in the
matrix MAT. This matrix is used in the PRasWP call for writing
down pixel information.

5. Exit program.

FURTHER INFORMATION:

GT14, Raster Programming

TT2-40 Tools and Techniques

13. How to Define a Break Key

CATEGORIES:
break key

DESCRIPTION:

A break sequence is useful for getting the attention of the host across an
asynchronous line for such purposes as requesting a logon prompt. PS 390
users have control over which key is defined as the break key, as well as the
duration of the break sequence.

Any key may be used as a break key except the following:

e SETUP

e Function Key F1
e GRAPH Key

e TERM Key

e LINE/LOCAL Key

Any other function key, HARDCOPY, CLEAR/HOME, or any key on the
right-hand keypad can be designated as the break key. The break key can be
designated as the key, the shift value of the key, or the control value of the
key.

ANALYSIS AND IMPLEMENTATION:
Defining the break key

You must be in setup mode to define the break key. To define a break key,
perform the following:

e Press Function Key F10

e Press the key your designating as the break key

e Press Function Key F1 to indicate the break key has been selected
After entering this sequence press the setup key to exit setup mode.

Setting the duration of the break sequence

Use the SETUP INTERFACE command to set the duration of the break

sequence. For example, to set the break time on port 1 to be 50
centiseconds, enter the following command:

Helpful Hints

172-41

SETUP INTERFACE PORT>0/BREAK TIME=50;

The default break time is 10 centiseconds and the maximum is 127. All
values are in centiseconds.

NOTE

The break key is only functional in the terminal
emulator mode of operation.

TT2-42 Tools and Techniques

14. How to Debug a Function Network

CATEGORIES:

DESCRIPTION:

There are two ways to debug the function network; use the PS 390 Debug,
or tap into the function network in different places and examine the data to
see if it is correct at that point.

ANALYSIS AND IMPLEMENTATION:

PS 390 Debug

It is suggested that you do not attempt to use Debug except when other
methods for debugging a function network have failed. To use Debug, you
must be familiar with PS 390 data types and formats. For more information
on the PS 390 debugger, refer to AP7.

Tapping into the Function Network

Print function

The F:PRINT function converts any data type to string format; it performs
an inverse of the operation that occurs when an ASCII string is input to the
PS 390 and is converted to one of the data types.

Most of the data retrieved from a function network must first be translated
by the F:PRINT function to an ASCII string so that it can be printed in a
readable form.

Unprintable to printable data

The F:NPRT_PRT function converts strings containing nonprintable charac-
ters to strings with printable characters, as in:

“L to <FF>
If the F:NPRT_PRT input is connected to the function receiving input from

the host, and the F:NPRT PRT output connected to the terminal emulator, it
allows all data that enters the PS 390 from the host to be printable.

Helpful Hints

1T2-43

Debug port: 03$

If you have a debug terminal, you can dump function network data to the
terminal by making a connection (in configure mode) to O38$.
NOTE
This is the letter O, not the number zero.

038§ is a system function that corresponds to output port 3 on your PS 390.
Port 3 is initially configured to be a debug port, as follows:

e 9600 baud

8 bits per character

1 stop bit

No parity

Nontransparent mode that accepts all X_ON and X _off protocol
characters

8 48-byte buffers with 0 STOP buffers and 1 GO buffer
e Debug break enabled

This configuration may be changed by using the SETUP INTERFACE
command.

For example, if your transformed data network is not returning the expected
messages to your host program from HOST MESSAGE, look at the data
that is returned from the LIST function (the LIST function sends the data to
the HOST_MESSAGE function). Use the following commands to look at the
list function data on the debug terminal.

@@ CONFIGURE A;
@@ CONN LIST1<1>:<1>03%;
@@ FINISH CONFIGURATION;

Note that F:LIST is a special function that converts the output of
F:XFORMDATA into a PS 390 ASCII command string suitable for storage
on the host computer. The data output by F:LIST does not need to be sent
through F:PRINT.

TT2-44 Tools and Techniques

ES_TE and MESSAGE_DISPLAY initial function instances

ES_TE is the terminal emulator display handler that displays the input on
the PS 390 screen. MESSAGE_DISPLAY is a function that corresponds to
the bottom line of the PS 390 display and is used to display error messages
and information messages. Both of these functions are user-accessible and
may be connected to any printable output of any function.

ES_TE uses the next available line on the screen and then scrolls this line
as does a terminal emulator. However, MESSAGE_DISPLAY is restricted to
one line, so output to this function overrides what is already on the bottom
line of the display.

The following are possible networks for debugging your function network:
PS390 printable data ——> F:PRINT--> ES_TE, MESSAGE_DISPLAY, or O3%
PS390 non-printable data-—> F:NPRT_PRT--> ES_TE, MESSAGE_DISPLAY, or O3$

ASCIl data ~~———=—————~ > ES_TE, MESSAGE_DISPLAY, or 0O3$

FURTHER INFORMATION:

RM1, Command Summary

Helpful Hint Topic 2, How to deal with configure mode and naming conven-
tions.

AP7, Advanced Programming

Helpful Hints TT2-45

15. Intensity Settings on the PS 390

CATEGORIES:
SET INTENSITY node

DESCRIPTION:

When you display an object consisting of many lines drawn closely together
on the PS 390 you occasionally observe a “roping effect” on the lines. The
roping effect gives lines a jagged appearance similar to that of a braided
rope. The roping effect is due to the intensity saturation of pixels as lines
are drawn very close to each other. You can restore the line crispness by
lowering the overall intensity level of the display; however, this results in a
trade off between crisp lines and bright intensity.

To minimize the effect of lower display intensity, you can build flexible
intensity settings into the display structure. Then, if the roping effect occurs,
you can decrease the intensity in stages until crispness is achieved or return
it to full brightness when desired.

ANALYSIS AND IMPLEMENTATION:

To create a flexible display intensity, place a SET INTENSITY node at the
very top of the display structure and use input from a function key or dial to
cycle through several levels of intensity values.

The following PS 390 commands could be added to a PS 390 program to
cycle through five levels of intensity using the F11 function key. The num-
ber of intensity levels and the actual intensity range values should be modi-
fied to meet your requirements.

NOTE

This example is not intended as a complete program
and will not run independently. For demonstration
purposes, it assumes your top level display structure is
named IMAGE and that it includes an enabled SET
INTENSITY node named INTENS at the top. Each time
the F11 key is pushed, the intensity range of the
IMAGE.INTENS node is modified and the intensity is
cycled to the next level.

TT2-46 Tools and Techniques

Instance and connect the necessary functions. INTENS_SELECT and }
INTENS LABEL will hold cycling queues of maximum intensity values }
to be sent on input from the F11 key. INTENS_RANGE will send a 2-D }
intensity range vector of (0.0, current maximum) to the }
IMAGE. INTENS node. }

INTENS_SELECT F:SYNC(2);
INTENS_LABEL := F:SYNC(2);
INTENS_RANGE := F:CVEC;

KEY_ROUTE := F:ROUTEC(12);

i

CONN FKEYS <1>:<1> KEY ROUTE;

CONN KEY_ROUTE <11>:<1> INTENS_SELECT;
CONN INTENS_SELECT <2>:<2> INTENS_RANGE;
CONN INTENS_RANGE <1>:<2> IMAGE.INTENS;

{ Set maximum intensity values on a cycling queue. }
SEND .15 TO <2> INTENS_SELECT;

SEND .25 TO <2> INTENS_SELECT;

SEND .4 TO <2> INTENS_SELECT;

SEND .7 TO <2> INTENS_SELECT;

SEND 1 TO <2> INTENS_SELECT;

CONN INTENS_SELECT <2>:<2> INTENS_SELECT;

{ Label the F11 key with the current maximum intensity. }
CONN KEY_ROUTE <11>:<1> INTENS_LABEL;

CONN INTENS_LABEL <2>:<1> FLABEL11;

SEND “INT=.15" TO <2> INTENS_LABEL;

SEND “INT=.25" TO <2> INTENS_ LABEL;

SEND “INT=.4" TO <2> INTENS_LABEL;

SEND “INT=.7° TO <2> INTENS_LABEL;

SEND “INT=1" TO <2> INTENS_LABEL;

CONN INTENS_LABEL <2>:<2> INTENS_LABEL;

SEND “INT SEL” TO <1> FLABEL1ll1;

{ Set minimum intensity to a constant 0. }
SEND O TO <1> INTENS_RANGE;

{ Accept F11 key output }
SEND TRUE TO <2> KEY_ROUTE;

Helpful Hints 172-47

16. Softlabels

CATEGORIES:

softlabels, function key labels, dial labels

DESCRIPTION:

The softlabels network redefines the dynamic viewport on the PS 390 to
allow the left edge of the display to be used as a display area for the func-
tion key labels (FLABELS) and dial labels (DLABELS).

ANALYSIS AND IMPLEMENTATION:

The network is loaded from diskette B with the following command:

@@ SEND “SLABEL’ TO <1>READASCII;

This command can be added the the SITE.DAT file so that the network is
automatically loaded at boot time, as follows:

SEND “SLABEL’ TO <1>READASCII1;

There is also a copy of the softlabel network on the host distribution tape
under the the PS 390 subdirectory.

The softlabels are accessed by sending a character string to <1> of FLABEL
1-12 as well as <1> of DLABEL 1-8. FLABEL 0 is not supported by the
softlabel network.

The softlabels network allows for two lines of descriptive characters for
each label block. The second line is accessed by sending a character string
to <1> of the FLABEL 1-12h or DLABEL 1-8h functions.

An INITIALIZE command clears the displayed labels. The underlying net-
work is protected from the initialize command.

You can toggle the display of the labels on and off by pressing the LEFT
ARROW key when then the system is in application mode.

TT2-48 Tools and Techniques

17. CPK Rendering

CATEGORIES:

Rendering

DESCRIPTION:

Enhanced CPK firmware includes new shading and lighting options for CPK ren-
derings and the integration of lines as a raster primitive.

With this release, you can now specify multiple, colored, and movable light
sources. The color of each light source may be specified by the parameters hue,
saturation, and intensity. The direction of the light source may be specified as any
3D vector. Previous to this release, you were only allowed to define one light
source, which was fixed at the eyepoint and assumed to be white.

The specification of diffuse and specular attributes for spheres is also a new capa-
bility now available with enhanced CPK firmware. These two attributes can be
adjusted to produce the appearance of different types of surfaces. A high diffuse
value and a low specular value produces a dull, plastic appearance. A low diffuse
value and a high specular value produces a shiny, metallic appearance.

As before, you use an attribute table with color and radius for each atom in your
CPK rendering. A default attribute table is provided with the firmware. You are
also allowed to define your own attribute table.

ANALYSIS AND IMPLEMENTATION:

Spherical rendering and raster lines are represented as vector lists instead
of an explicit PS 390 data type. Spheres are shaded consistent with the
Phong shading style, allowing multiple colored light sources, specular re-
flections, and depth cueing. Hidden-element removal has been accom-
plished with a common z-buffer algorithm.

17.1 DEFINING SPHERES AND LINES

A table for rendering attributes for 127 atom types is referenced by the
rendering node. The seven-bit intensity field or the TABulated field for a
vector is used as an index into the attribute table. Thus, you must store an
appropriate value in the field depending on which atom type a particular
vector represents. Either the intensity or the TABulated option may be used
to specify this field in the vector.

Helpful Hints 1772-49

The ITEMized option in the vector list command allows specifying this in-
tensity field as a real number between 0 and 1. For example, to specify that
an atom is to have index 12, you would need to divide 12 by 128 (0.09375)
and use the result in the “ clause of the vector list command:

2%

1=

v := vec ITEMized n = 1
0,0,0 i = 0.09375; { for atom type 12 (12 / 128) }

The TABulated option in the VECtor_list command allows specifying this
seven bit value as an integer between 0 and 126:

v := vec TABulated n =1
0,0,0 t =12; { for atom type 12 }

Both of the above examples create the same vector list and either option
may be used in conjunction with CPK renderings. If you have been using the
ITEMized option, there is no need to switch to the tabulated option.

These vector lists must be tied to F:XFORMDATA functions whose output
is used by the PS 390 SOLID RENDERING node to perform CPK render-
ings. Previous CPK firmware used the F:CPK function to perform render-
ings. The SOLID_RENDERING node, which was previously used only for
rendering polygons, is now also used to render raster spheres and lines.
(Refer to section 17.3 for more details on the SOLID RENDERING node.)

NOTE

Since there are no explicit PS 390 data types for repre-
senting spheres or raster lines, you do not place sphere
or raster-line data under a rendering operation node.

17.2 Specifying Attributes for Spheres and Lines

The attributes for spheres (radius, diffuse, specular, color) and lines (color)
are stored in a default table created at system boot up. This table can be
modified via input <14> of the SHADINGENVIRONMENT function.

The table has the following components:

Hue Saturation Intensity Radius Diffuse Specular

TT2-50 Tools and Techniques

Hue is a real number in the range 0 to 360. Saturation and intensity are real
numbers in the range 0 to 1. Radius is a real number greater than 0. Diffuse
is a real number in the range 0 to 1. Specular is an integer in the range 0 to
255. The table is initialized as follows:

INDEX Hue Sat Intensity Radius Diffuse Specular
0 0 0 0.5 1.8 0.7 4 (Gray)
1 0 0 1 1.2 0.7 4 (White)
2 120 1 1 1.35 0.7 4 (Red)
3 240 1 1 1.8 0.7 4 (Green)
4 0 1 1 1.8 0.7 4 (Blue)
5 180 1 1 1.7 0.7 4 (Yellow)
6 0 0 0.7 1.8 0.7 4 (Gray)
7 300 1 1 2.15 0.7 4 (Cyan)
8 60 1 1 1.8 0.7 4 (Magenta)

Spheres use all six components per entry. Lines use only the hue, saturation
and intensity components.

The t field of each 3D tabulated vector is used as an index into this table.
The table contains 127 entries (0-126). Entries 9-126 are not initialized.

For example, the following vector list represents three spheres with the
color indicated.

Sphere:= VECtor_list TABulated N = 3
P 1.866,1.5,0 t 5 {yellow sphere}
L 1.787,2.833,0 t =6 {gray sphere}
L .822,3.282,0 t 7 {cyan sphere}

The following example represents a square with sides of the indicated col-

ors.
Rasterline := VECtor_list TABulated N = 5
P 0,1,0
L 0,0,0 t =5 ({yellow}
L 1,0,0 t =2 ({red}
L 1,1,0 t =3 {green}
L 0,1,0 t =4 ({blue}

Helpful Hints TT2-51

NOTE

13 ”

Lines use the tabulated index of the point drawn “to
and not the point drawn “from.”

The attribute table may be updated by encoding the table entries into a
PS 390 tabulated vector list and then sending the name of the vector list to
input<14> of SHADING ENVIRONMENT. The six table components are
encoded into two consecutive 3D vectors of the vector list. Hue, saturation,
and intensity are encoded into the first X,Y,Z respectively. Radius, diffuse,
and specular are encoded into the second X,Y,Z respectively. The table
index is encoded into the t field of the second vector. When an entry is
updated, each of the six components must be specified. For example, the
following vector list could be used to update attribute table entry S:

ATTRIBUTE_TABLE
150,0.5,1
5.0,0.3,2 t =25

’

:= VEC TAB N = 2
{ Hue, Saturation, Intensity }
{ Radius, Diffuse, Specular, Index }

Updating would be accomplished by the command:

@@ SEND “ATTRIBUTE_TABLE” TO <14>SHADINGENVIRONMENT;

More than one table entry may be encoded into a vector list. The following
vector list would be used to update attribute table entries 5, 6, and 7:

ATTRIBUTE_TABLE := VEC TAB N = 6
0,.1,.1 2.0,0.5,4 t =35
120,1,1 4.0,0.8,9 t =6
240,1,1 3.0,0.3,2 t =7

’ ’

3

17.3 Rendering Spheres and Lines

1T2-52

The rendering node created with the PS 390 SOLID RENDERING com-
mand is used to perform the rendering of raster spheres and lines. The
rendering node has five inputs and acts somewhat like a PS 390 function.

Input <1> accepts a fix(7) to trigger the rendering. Input <2> is only used
for polygons and has a default value which is adequate for raster spheres
and lines. Input <3> accepts a transformed vector list and interprets the

Tools and Techniques

vectors as “moves” and “draws” for raster-line renderings. Similarly, input
<4> of the rendering node accepts a transformed vector list and interprets
each vector as an X,Y,Z spherical center for raster rendering. Input <5> of
the rendering node accepts the name of the original vector list representing
the spherical data to be rendered. The rendering node must have access to
the original data to enable accurate scaling of the sphere(s). The name is
represented as a string in single quotes.

17.4 Function Network Considerations

A function network to display a CPK rendering must contain at least the
following:

e Instance of F:XFORMDATA to transform the data
e Instance of SOLID RENDERING

e Instance of F:SYNC(n) to guarantee that the rendering node is not
triggered until all the constant inputs of the rendering node are up-
dated.

In some situations, an instance of F:XFNORM or F:CONCATXDATA(n) is
required.

If a non-cubical window is used, an instance of F:XFNORM is required to
normalize the coordinates. F:XFNORM is a user-written function described
in section 17.9.

If multiple instances of F:XFORMDATA are required for rendering either
spheres or lines, an instance of F:CONCATXDATA(n) must be used to
create a single vector list for spheres or a single vector list for lines.

The function network for CPK renderings must also accommodate potential
timing problems triggering the rendering node and certain window and
viewing restrictions. These function network considerations are detailed in
the following sections.

The diagram in Figure 17-1 shows a general flow of data through a function
network to the rendering node.

Helpful Hints TT72-53

TRANSLATE

SPIHIERESXF:=XFORM VEC; LINESXF:=XFORM VEC;

Sphere Line
VECLIST VECLIST

F:XFORMDATA

- <1> SOLID_RENDERING

. - <13
LINESXF' | s,

<4>
" <5> > <> <13

- <2> <2

Ly

. 7
F:XFORMDATA | HXT | o 4]

] <1>

\ seimresxer | oo <1 //

\ — 3> /
\ —al <4> /

\ —» <5> /

Figure 17-1. Function Network Diagram

17.5 Triggering the Rendering Node

Two potential timing problems exist with triggering the rendering node. In-
put <1> of the rendering node is the only active input. Inputs <3> and <4>
accept transformed data to render lines and spheres. Since inputs <3> and
<4> are constant inputs, you must guarantee that they have been updated
before the trigger is sent to input <1> of the rendering node. This is accom-
plished using the F:SYNC(n) function.

TT2-54 Tools and Techniques

The second potential timing problem deals with the triggering of
F:XFORMDATA. An instance of F:XFORMDATA must not be triggered
while it or any other instance of F:XFORMDATA is still active. Thus, when
using multiple instances of F:XFORMDATA, one instance should be used
to trigger the next. This is explained in more detail in section 17.7.

17.6 Notes on Using F:CONCATXDATA(n)

F:CONCATXDATA(n) accepts up to 127 transformed vector lists (output
from XFORMDATA functions) and concatenates them into a single trans-
formed vector list. This function is used to avoid the maximum vector re-
striction imposed on the output of F:XFORMDATA. The XFORMDATA
function will return a maximum of 2048 vectors. This restriction passes on
to the rendering node since the output of the XFORMDATA function is
normally connected directly to the rendering node. To obtain a rendering of
greater than 2048 vectors or (spheres), the output of multiple instances of
XFORMDATA must be concatenated into a single transformed vector list,
which can then be sent to the rendering node (see Figure 17-2). Note that
the number of inputs to an instance of F:CONCATXDATA is specified in
the parameter (n) when the function is instanced.

17.7 Notes on Using F:XFORMDATA

As previously mentioned, when multiple instances of F:XFORMDATA are
used to provide input for F:CONCATXDATA(n), they must be connected in
a way which ensures that one instance completes before the next one com-
mences. This synchronization is accomplished by linking instances of
XFORMDATA together so that the output of the first instance triggers the
second instance, and the output of the second instance triggers the third,
and so forth. For example, assume that in the following network, the vector
list SPHERES contains 5,000 vectors.

FORCPK := BEGIN_STRUCTURE
GETXF := XFORM VEC;
INSTANCE OF SPHERES;
END_STRUCTURE;

One instance of XFORMDATA could retrieve the first 2048 transformed
vectors of SPHERES (vectors 1-2048). A second instance of XFORMDATA
could retrieve the second 2048 transformed vectors (vectors 2049 - 4096).
A third instance of XFORMDATA could retrieve the last 904 vectors (vec-
tors 4097 - 5000). Figure 17-2 shows an illustration of this network.

Helpful Hints TT2-55

F:XFORMDATA
—| <1>

<1>

FORCPK.GETXF—» <2>
— <3>
1] — <4>

2048 —w <5>

L <1> F:CONCATXDATA(n)
<1>

FORCPK.GETXF—» <2>

<1> <1>}—»
— <3>

<2>
2049 —» <4>

<3>
2048 —» <5>

|—> <1>

FORCPK.GETXF —» <2>

<1>

— <3>
4097 — <4>

904 —w <5>

Figure 17-2. Synchronization of XFORMDATA

There is one other restriction that you must be aware of when using
F:XFORMDATA. Input <3> of F:XFORMDATA typically allows you to
specify a name for the transformed data. However, when using
F:XFORMDATA in conjunction with the rendering node, this input MUST
be left blank.

CAUTION

Naming the transformed data and then sending it to a
rendering node, will result in a system failure.

17.8 Window and Viewing Restrictions

The following window and viewing restrictions apply to CPK renderings.

The rendering node assumes that the transformed data it receives on input
<4> comes from an orthographic projection (i.e., PS 390 WINDOW com-
mand). Each sphere is rendered with the radius specified in the attribute
table, regardless of the sphere’s distance from the viewpoint.

TT2-56 Tools and Techniques

Spherical renderings with perspective projections (FIELD_OF_VIEW or
EYE BACK) should not be used. Non-cubical windows for spheres are al-
lowed but require special handling. If non-cubical windows are allowed by
the applications program, F:XFNORM must be used to ensure correct map-
ping of the coordinates. This new function is explained in the following
section.

17.9 Using F:XFNORM

This function filters, maps, and clips transformed sphere and line data for
enhanced CPK renderings. If the PS 390 WINDOW in effect for a rendering
is non-cubical, transformed data will return non-uniformly mapped coordi-
nates which result in incorrect renderings. The F:XFNORM function com-
pensates for this non-uniform mapping, by applying an inverse mapping.

Spheres which are outside of the Z-clipping planes are rejected before map-
ping. Under user control, the function either rejects or clips lines which

have exactly one endpoint outside of the Z-clipping planes before mapping.

Following is a summary of F:XFNORM.

F:XFNORM

xformdata—» <1> <1>}—= xformdata
4x4 Matrix—» <2> C
Boolean ——»{<3> C
Boolean ———»{<4> C

Input <1> accepts transformed data.

Input <2> accepts the output of F:WINDOW. The WINDOW function used
to update the WINDOW node in the display structure should be connected
to input <2> of F:XFNORM.

Input <3> accepts a Boolean value indicating whether the transformed
vector list is to be used for rendering spheres or for rendering lines. A True
indicates that the vector list is to be used for spheres. A FALSE indicates
that the vector list is to be used for lines.

Helpful Hints 17T2-57

Input <4> only pertains o transformed vector lists used for rendering lines
(i.e. when input <3> is FALSE). Input <4> is ignored for vector lists used
for rendering spheres, but must have a Boolean value in order for the
function to trigger. Input <4> accepts a Boolean value indicating whether
lines with exactly one endpoint outside of the Z clipping planes are to be
clipped or rejected entirely.

17.10 Mapping

F:XFNORM first compares the WINDOW’s dx against its dy. If dx is not
equal to dy, then the window is scaled down in the appropriate dimension to
correct the non-uniform transformation. Then if dz is not equal to the new
normalized dx/dy value, the WINDOW is scaled in Z to correct it in that
dimension. In doing so, some possible problems are introduced.

In some instances, when F:XFNORM scales up and transforms the data, it
places some points out of the clipping planes which were previously be-
tween the clipping planes. Because of this, certain spheres and lines may be
clipped-out in the rendering which ARE NOT Z-clipped in the wireframe
model, even with depth clipping enabled. There is little that can be done
about this.

Similarly, in other situations, .XFNORM scales down and transforms a
point into the range between clipping planes which was previously outside
of the clipping planes. Because of this, certain spheres and lines may be
rendered which are Z-clipped in the wireframe display of the model. This
problem can be solved, however. For spheres, those points which are
Z-clipped (before mapping) are tagged, and are not rendered.

One additional problem exists. Assume that a model would “fit” in a cubi-
cal window but is being viewed in a window with Z-planes that are scaled
out some distance. Since there is a non-uniform WINDOW mapping in Z,
F:XFNORM will compensate in this case by scaling up the vectors’ Z-com-
ponents. Assume also, that the model is near either the front or back clip-
ping plane. Since the Z-components of the model’s vectors are already near
a clipping plane, scaling them up will place them outside of the clipping
plane and nothing will be rendered. To reduce this problem, the function
also centers the model in Z. Figure 17.3 shows a function network using
F:XFNORM.

172-58 Tools and Techniques

F:WINDOW

WINDOW

TRANSLATE

ROTATE

SPHERESXF:=XIFORM VEC LINESXF:=XFORM VEC;

Sphere Line SOLID_RENDERING
/ VECLIST VECLIST
/ F: XFORMDATA F: XFNORM F:SYNC(3)
—<1> .
/ LINESXF? { oS <1 = <I>
| S <2> <1> <13
—
<3> i3> <2> <2>i
- <4> T/F]
, <4> X e3> <35
‘ —{ <5>
F:XFORMDATA . /
F:XFNORM
»-[<1>
. R <1 <1> /
\ SPHERESXF’ | <o |
- <2> /
\ > <3> —Lle3>
\ — <4> T/F <4> /
\ — <5>
o _/

Figure 17-3. F:XFNORM Network for Window Scaling

17.11 Viewport Considerations
On the PS 340, only the following raster viewport should be used.

Xleft = 64 Xright = 575
Ybottom = -32 Ytop = 479

The command “SEND V3D(64,-32,511) TO <3>SHADINGENVIRONMENT;” will
set this raster viewport.

Helpful Hints 172-59

On the 390, the following viewport for CPK renderings must be used.

Xleft = 256 Xright = 767
Ybottom = 176 Ytop = 687

The command “SEND V3D(256,176,511) TO <3>SHADINGENVIRONMENT;” will
set this raster viewport.

17.12 Using CPK on the PS 390

The PS 390 cannot display vector-normalized data, so by default, the system
converts it to block-normalized data. Enhanced CPK firmware is dependent
on vector-normalized data to perform renderings, so some programming
adjustments have to be made to account for this.

An intrinsic user function, F:ALLOW_VECNORM allows vector-normalized
vector lists to be created locally or downloaded from the host to the PS 390.
Function networks for the display of CPK renderings need to have a node
for both the block-normalized vector (to allow display of the data on the PS
390) and a vector- normalized vector list of the same data (required by the
XFORMDATA function). The function network in figure 17-4 gives an ex-
ample of this.

Following is a summary of F:ALLOW_VECNORM.

A Boolean TRUE sent to input <1> of FFALLOW_VECNORM allows vector-
normalized data to be created by the PS 390. A Boolean FALSE on input
<1> will reset the PS 390 and cause vector-normalized data to be converted
to block-normalized data. The Boolean TRUE sent from output <1> of
F:ALLOW_VECNORM when the function has run to completion may be
connected to user function networks.

Because F:XFORMDATA cannot selectively choose only vector-normalized
vector lists, any block-normalized vector lists that are sent to the rendering
node unintentionally will be discarded.

TT2-60 Tools and Techniques

F: ALLOW_VECNORM

Boolean-—i<1> <1>#Bgolean TRUE
when completed

TRANSFORMATIONS

SPHERSFX:=XFORM VEC; LINESXF:=XFORM VEC;

\
'l SPHEREVNORM | SPHEREBNORM LINEBNORM / LINEVNORM
7/ (Vector normalized) | (Block normalized (Block normalized / (Vector normalized)
for display) for display)
‘ ! F:XFORMDATA .
f —[<1> < To SOLID_rendering node

\ UNESKF | oo <1
—=<3>
| \ —e<4>

\ \ —m 5>

\ ~ F:XFORMDAT.
\ ~ > <> <1

A
To SOLID_rendering node

T e ‘SPHERESXF' | <0

<3>
<4>
<5>

iy

N To SOLID_rendering node

— :

Figure 17-4. Function Network for PS 390 Display and CPK Renderings

There is a potential timing problem when using the F:ALLOW_VECNORM
function: if the Boolean TRUE to trigger F:ALLOW_VECNORM is sent
from the host and then immediately followed by a vector list to be defined
as a vector-normalized vector list, F:ALLOW_VECNORM may not have
executed before the vector list definition begins. If this should happen, the
resulting vector list would be the wrong type. To prevent this from
occurring, the command GIVE UP_CPU; may be used. GIVE _UP_CPU
causes the command interpreter to terminate execution temporarily,
allowing other functions to be activated. To ensure that other functions are
activated, GIVE_UP_CPU should be sent four times after sending a value to
F:ALLOW_VECNORM.

Helpful Hints

The sequence that should normally be followed when downloading vectors
lists to the PS 390 is:

1. Download the vector lists from the host to be displayed
(block-normalized vector lists).

2. Send Boolean TRUE to input <1> of an instance of
F:ALLOW_VECNORM.

3. Execute the GIVE_UP_CPU command four times.

4. Download the vector lists from the host for CPK renderings (PS 390
will create vector-normalized vector lists).

5. Send Boolean FALSE to input <1> of the same instance of
F:ALLOW_VECNORM (resets the default condition of converting to
block-normalized data).

6. Execute the GIVE UP_CPU command four times to make sure
F:ALLOW_VECNORM is reset to the default condition before any
more vector lists are sent.

NOTE

Although vector-normalized lists will not be displayed
on the PS 390, they can still be transformed using
F:XFORMDATA and sent to the rendering node with-
out any additional modification.

17.13 Using F:COPY_VECNORM_BLOCK

F:COPY_VECNORM_BLOCK

STRING —{ <1>

STRING —f <2>

The user-written function F:COPY_VECNORM_BLOCK accepts the name
of an existing vector-normalized vector list on input <1> and creates the
corresponding block-normalized vector list with the name specified on
input <2>.

172-62 Tools and Techniques

This function is to be used in conjunction with the intrinsic user function
F:ALLOW_VECNORM for enhanced CPK renderings on the PS 390. CPK
renderings require the use of vector-normalized vector lists, but the PS 390
will only display block-normalized vector lists. To avoid having to transmit
both types of vector lists from the host, the user may transmit only the
vector-normalized list and use F:COPY_ VECNORM BLOCK to locally
generate a block-normalized vector list.

17.14 MASS MEMORY REQUIREMENT

The RESERVE_working_storage command must be issued at least once to
enable enhanced CPK renderings. This command reserves a block of mass
memory to perform the rendering. (Refer to the RESERVE_ working_storage
command summary at the back of this manual for more details.) For
polygonal renderings, this number is typically large, at least 100000 bytes.
For CPK or ball-and-stick renderings 1000 bytes is sufficient.

FURTHER INFORMATION:
RM1, Command Summary

RM2, Intrinsic Functions
RM3, Initial Function Instances

Helpful Hints 17T2-63

TT3. USING THE GSRs

TT3. USING THE GSRS

CONTENTS

1. VAX and IBM FORTRAN GRAPHICS SUPPORT ROUTINES ..

1.1 FORTRAN GSR Conventionsoeiviiuuveinnnnsn.
1.2 Utility and Application Routineso ivnu...
1.3 EXCepPlIONS .. vivtttiiiiiiiiii ittt itiiiiiieinaeeennnenss
1.4 Error Handlingcoiuiuiiiniiniiiiiiiinnnnennnnnen.
1.5 Programming Suggestionsccc0iiiiinnnnnnanann

2. VAX and IBM PASCAL GRAPHICS SUPPORT ROUTINES ..

2.1 Pascal GSR Conventionscviuiiiineennnnnnenn,
2.1.1 Pascal V2 .. i it i it e e e
2.1.2 Pascal/VS it e e e
2.2 Utility and Application Routines,
2.3 ExXCePlIONS .o viiitt ittt it i e e
2.4 Error Handlingccoiiiiiiiiiintiireeenennnnnnnas
2.5 Programming Suggestionscciiiiiiiiiiiiiiieean

3. UNIX/C GRAPHICS SUPPORT ROUTINES

3.1 The Lint libraryoouiiiiiiiiiiiiiiieeeeons
3.2 UNIX/PS 390 Communication Channels
3.2.1 Automatic device typingciiiiiiiiiiiiiii,
3.2.2 Parallel Interface Device i,
3.2.3 PS 390/Ethernet Interface oo iiiiinn,
3.2.4 RS-232 Asynchronous serial channels
325 Output to Files . ..o viiii i it

NN NN

3.3 UNIX/C GSR Conventions .. oveveeetnereenereenennenenenns 20

3.3.1 Names of user callable GSR library routines 20
3.3.2 Data types of GSR parametersccivviveinnn... - 20
3.3.3 Strings and Bytes ...t 20
334 Booleanstiiiiiiii ittt i e 21
3.3.5 Floating Point Numberscootiiiitiiiiennnnn. 21
3.3.6 Other Special Types and Constantscou... 21
34 Error Handling iiuiiiiiiiiiiiiiiinnnn, 22
3.4.1 The Default Error Handler oo, 22
3.4.2 User provided Error Handlerscc.ooiunn. 22
3.4.3 Error Handler Parameter iiiiiennnnn, 23
3.5 Special Notes . ..vvviiiii ittt ittt 23
3.5.1 Specifying Transformation Matrices 23
3.5.2 Miscellaneous notes on using the GSRs................... 23
3.5.3 Using the PGetWait routine in the GSR library 25
3.6 Ethernet Interface I/O Operations 25
3.6.1 The PSNETIO Functioncc0iiiirueeerereennns 26
APPENDIX A - FORTRAN-77 EXAMPLE PROGRAM 33
APPENDIX B - VS FORTRAN EXAMPLE PROGRAM 48
APPENDIX C - PASCAL V2 EXAMPLE PROGRAM 61
APPENDIX D - PASCAL/VS EXAMPLE PROGRAM 75

il

Section TT3
Using The Graphics Support Routines

The Graphics Support Routines (GSRs) are a set of host resident software routines
that are the standard vehicle for communication to the PS 390 from the host. They
are a collection of FORTRAN, Pascal or UNIX/C routines that preparse and pack-
age data on the host computer. Typically, the routines are used for the following
applications:

e Attach to the graphics device
e Create and modify display structures
o Create, connect and modify function networks

e Receive data from the graphics device

This section is a guide to the FORTRAN, Pascal and UNIX/C GSRs. It contains
information on the conventions and definitions used in the GSRs. Section RM4
contains the FORTRAN, Pascal and UNIX/C GSRs listed in alphabetical order
according to the FORTRAN GSR. The GSRs corresponding to a PS 390 command
are grouped together. The GSRs are listed in the following order: VAX and IBM
FORTRAN, VAX Pascal, IBM Pascal and UNIX/C. A description of the GSR, the
PS 390 command syntax and cross references follow the listing of the GSRs.

Section RM4 also contains error tables which define the possible error codes used

to identify warning, error or fatal error conditions that may arise while using the
GSRs.

1. VAX and IBM FORTRAN Graphics Support Routines

The PS 390 VAX FORTRAN GSRs are written in FORTRAN-77 and re-
quire a FORTRAN-77 compiler. The GSRs are supported under PS 390
Graphics Firmware Release A2.V02 and higher. There are no specific hard-
ware requirements.

The PS 390 IBM FORTRAN GSRs are written in VS FORTRAN and are
compatible with IBM VM/CMS and TSO environments. The GSRs are

Using the GSRs 173-1

supported under PS 390 Graphics Firmware Release A2.V02 and higher.
There are no specific hardware requirements.

The UNIX/C routines are written in C and are supported under PS 390
Graphics Firmware Release A2.V02 and higher and UNIX BSD 4.2 running
on a DEC VAX host system.

Appendix A contains a FORTRAN--77 network creation example program,
and Appendix B contains a VS FORTRAN network creation example pro-
gram. Both programs contain an error handling routine.

1.1 FORTRAN GSR Conventions
The FORTRAN-77 GSRs make extensive use of the following data type

definitions:
Boolean = Logical value true/false, generally LOGICAL*1.
Integer = Integer value always INTEGER*4,
Real = Real (floating point) number generally REAL*4,

String = Character string, CHARACTER*N.

The VS FORTRAN GSRs make extensive use of the following data type
definitions:

Boolean Logical value true/false, generally LOGICAL*1.
Integer = Integer value generally INTEGER*4.

Real = Real (floating point) number generally REAL*4.
String = Character string, CHARACTER*N,

For the FORTRAN version of the GSRs, character strings require a
delimiter character for length determination. Double quote (") is the default
delimiter. This delimiter may be changed using the PDELIM routine. A
description of PDELIM is found in Section RM4. The GSRs use LEN
(String) to determine the maximum length of a string. Therefore, if the
delimiter is not specified, all characters up to LEN (String) will be used.
Because of this, quoted strings may be used without delimiters, i.e. ~THIS”
is treated the same as “THIS" -.

1.2 Utility and Application Routines

Utility Routines are specific to the operation of the GSRs. These routines
are used to attach the PS 390, set the string delimiting character, select
multiplexing channels, send and receive messages, and detach.

173-2 Tools and Techniques

Application Routines correspond almost one for one with the standard
PS 390 Commands. In most cases, the names for the application routines
were derived by choosing an abbreviation of the PS 390 commands and
prefixing it with a P. Parameter ordering generally coincides with the
PS 390 commands as well. Examples of some of the application routines
are shown below.

EXAMPLE 1
For commands which build operate display structures, such as
Name:= operate parameterl,parameter2,..., then apply;
the routine call is:
CALL Poper(’name’ ,parameterl,parameter2, ..., apply’, ErrHnd)
where:

oper is an abbreviated form of the PS 390 command such as rotate
in x — Protx

‘name’ is a character string containing the name to be associated
with the operate

parameterl,parameter2,..., are the parameters to be used in com-
puting the operation. These may be logicals, integers, reals, vec-
tors, or matrices.

‘apply’ is a character string containing the name of the object to
which this operate applies.

ErrHnd is the user-defined error handler routine.

EXAMPLE 2

For commands to send to functions or display structures, such as
Send datum to <input>dest;

the routine call is:
CALL PSNtyp(datum, input,”dest”, ErrHnd)

where:

typ is an abbreviated form of the PS 390 command such as
PSNFIX, PSNM2D,...

Using the GSRs 173-3

TT3-4

datum is what is to be sent. It may be logical, integer, real, charac-
ter string, vector, or a REAL*4 two-dimensional array.

input is an integer which specifies which input of the destination is
being sent to.

‘dest’ is a character string containing the name of the display
structure or function.

ErrHnd is the user-defined error handler routine.

Note that the function names in the GSRs are specified without the “F:”
prefix that is used in the standard PS 390 command language.

EXAMPLE 3

For commands which create functions and connections such as:

Name := f:genfcn;

Name := f:genfcn(n);

Conn name<output>:<input>dest;
Disc name<output>:<input>dest;

the routine calls are:

CALL PFN (“name’, “genfcn’, ErrHnd)

CALL PFNN (“name’, ‘genfcn’, n, ErrHnd)

CALL PCONN (“name”’ ,output, input,”dest’, ErrHnd)
CALL PDI (“name” ,output,input,‘dest’, ErrHnd)

’

where:

‘name’ is a character string containing the name associated with
the function instance.

‘genfen’ is a character string containing the name of the system
generic function.

n is an integer specifying the number of input/outputs for this func-
tion instance.

output,input are integers specifying the output and input numbers.

‘dest’ is a character string containing the name of the display
structure or function.

ErrHnd is the user-defined error handler routine.

Tools and Techniques

1.3 Exceptions

To be fully specified using GSRs, three PS 390 commands require three
separate calls to routines. The commands are LABEL, VECTOR_LIST, and
POLYGON.

For example, to create, specify and complete a label block, the user must
call:

PLaBeg — To create and open a label block

PLaAdd - May be called multiple times to add to a previously
opened label block

PLaEnd — To complete the creation of a label block.

Together these three routines implement the PS 390 command:

Name := LABELS x, y, z, “string”’
X, ¥, z, “string”;
In the same way, the user must call PVcBeg to begin a vector list, PVcLis to

send a piece of a vector list, and PVcEnd to end a vector list.

An example of a call that varies slightly from the PS 390 command is the
PBSPL call. In the BSPLINE command, some of the parameters are

optional. In the routine they are all required. This is also the case for the
PRBSPL, PPOLY, and PRPOLY routines.

The PS 390 syntax allows for instancing multiple display entities and for
creating multiple variables. In the PS 390 command language the com-
mands would be:

NAME := INSTANCE a,b,c,d;

for instancing multiple display entities, and
VARIABLE s,y,z,w,t,q;

for multiple variables.

To perform the equivalent instancing of multiple display entities or for cre-
ating multiple variables, the following GSRs should be used.

Using the GSRs 173-5

173-6

For the multiple instance case:

CALL PINST("NAME’, “A”, ErrHnd)
CALL PINCL(’B’, “NAME’, ErrHnd)
CALL PINCL(’C’, °“NAME’, ErrHnd)
CALL PINCL(’D”, “NAME”, ERRHND)

For the multiple variable case:

CALL PVAR (”S”, ERRHND)
CALL PVAR (°Y”, ERRHND)
CALL PVAR (“Z”, ERRHND)
CALL PVAR (“W’, ERRHND)
CALL PVAR (°T’, ERRHND)
CALL PVAR (°“Q”, ERRHND)

1.4 Error Handling

An error handling scheme has been employed to catch errors detected by
the GSRs. Examples of errors detected by the GSRs are:

e Prefix not followed by an operate.
¢ Follow not followed by an operate.
e Multiple calls to PVcLis for block-normalized vector list data.

e Invalid characters in a name.

Command Interpreter errors and warnings are not detected by the GSRs.
Examples of these errors are:

e Destination does not yet exist.
e Message rejected by destination.

e Connection not made.

Error checking will be performed within the GSRs to ensure that only valid
characters are sent within names, and that routines are called in the proper
order, in cases where order is required. No attempt has been made to cap-
ture errors and/or warnings from the Command Interpreter.

Each routine call includes an argument that specifies the user-written error
handler. This error handler is of the form:

Routine ERRHND (ercode)

where ercode is an integer error code corresponding to one of the errors.

Tools and Techniques

CAUTION

It is critical that the user specify the error handler as
EXTERNAL in all routines that make calls to the
GSRs. Otherwise, the address of a real variable will be
passed as a routine address and unpredictable results
will occur if the error handler is called.

It is the responsibility of the user to provide an error handling routine to
decide what action should be taken when an error is detected. The GSRs do
not attempt to terminate execution or log errors.

The name, description, and error code of each detectable error is given in
tables in Section RM4. An example error handler routine appears in the
example programs in Appendix A and Appendix B. It is a sophisticated
error handler that may be incorporated by the user into an error handling
scheme, or used as an example of what an error handler should look like.

1.5 Programming Suggestions

The file PROCONST.FOR contains definitions for constants used by the
FORTRAN-77 GSRs. The file PROCONSF FORTRAN contains definitions
for constants used by the VS FORTRAN GSRs. It is often convenient to
think of these constants by name rather than by remembering numbers.
Specifically, in the usual PS 390 command syntax, inputs to display struc-
tures are often referred to by name such as <append> and <clear> for vec-
tor_lists and <position> and <step> for character strings. There are also
<delete>, <last>, and others. Other useful constants such as values for con-
ditional tests for level of detail, and vector list class are obtainable from
PROCONST.FOR or PROCONSF FORTRAN. PROCONST.FOR or
PROCONSF FORTRAN also contain a complete set of error/warning code
definitions. These values are given in the error table in Section RM4 and
may be referenced by name by the user routine if PROCONST.FOR or
PROCONSF FORTRAN is included in the routine.

The following is an abbreviated list derived from PROCONST.FOR or
PROCONSF FORTRAN of the constants which should be most useful to the
user.

Using the GSRs T13-7

173-8

GSR constant declarations:

Name

PIAPP:
PIDEL:
PICLR:
PISTEP:
PIPOS:
PILAST:
PISUBS
PCLES:
PCEQL:
PCLEQL:
PCGTR:
PCNEQL:
PCGEQL:
PVCONN:
PVDOTS:
PVITEM:
PVSEPA:

INTEGER*4
&
&
&

PARAMETER

R

Meaning

<Append> input number.
<Delete> input number.

<Clear>
<Step>

input number.
input number.

<Position> input number.

<Last>

input number.
<Substitute>

input number.

"Less" level of detail comparison operator.

"Equal" level of detail comparison operator.
"Less-equal" level of detail comparison operator.
"Greater" level of detail comparison operator.
"Not-equal" level of detail comparison operator.
"Greater-equal" level of detail comparison operator.

Vector list
Vector List
Vector List
Vector List

"Connected" class type.
"Dots" class type.

"ITtemized" class type.
"Separate" class type.

PIAPP, PIDEL, PICLR,
PISTEP, PIPOS, PILAST, PISUBS, PCLES,

PCEQL, PCLEQL, PCGTR, PCNEQL, PCGEQL,

PVCONN, PVDOTS, PVITEM, PVSEPA

PIAPP = 0, PIDEL = -1,

PICLR = -2, PISTEP= -3, PIPOS = -4, PILAST= -5,
PISUBS = -6, PCLES = O, PCEQL = 1, PCLEQL= 2,
PCGTR = 3, PCNEQL= 4, PCGEQL= 5, PVCONN= O,
PVDOTS= 1, PVITEM= 2, PVSEPA= 3, PVTAB= 4,)

The following example illustrates the use of PROCONST.FOR.

Send to a vector list.

PROGRAM TEST
PROCONST.FOR ~
LOGICAL*1 PL (100)
DIMENSION VECS(4,100), AVEC(3)
REAL*4 VECS, AVEC

INCLUDE ~

(@]

C Always declare user error handler external

EXTERNAL ERRHND

Tools and Techniques

Qoo aaQ

Qo

QO aaQQ

Create a vector list named VLIST containing 100 connected vectors
PVCONN is defined in PROCONST.FOR

CALL PVCBEG (“VLIST”, 100, .FALSE., .FALSE., 3, PVCONN, ERRHND)
CALL PVCLIS (100, VECS, PL, ERRHND)
CALL PVCEND (ERRHND)

Send a 3d vector to <append> of vecs.
PIAPP is defined in PROCONST.FOR.

CALL PSNV3D (AVEC, PIAPP, “VLIST’, ERRHND)
Delete 2 vectors from VLIST.
PS 390 command: Send fix(2) to <delete>vlist;

PIDEL is defined in PROCONST.FOR.

CALL PSNFIX (2, PIDEL, “VLIST’, ERRHND)

END

The following example illustrates the use of PROCONSF FORTRAN.

Send to a vector list.

Qo

QO aQ

Using the GSRs

PROGRAM TEST

INCLUDE (PROCONSF FORTRAN)
LOGICAL*1 PL (100)

REAL*4 VECS(4,100), AVEC(3)

Always declare user error handler external

EXTERNAL ERRHND

Create a vector list named VLIST containing 100 connected vectors
PVCONN is defined in PROCONSF FORTRAN

CALL PVCBEG (“VLIST”, 100, .FALSE., .FALSE., 3, PVCONN, ERRHND)
CALL PVCLIS (100, VECS, PL, ERRHND)
CALL PVCEND (ERRHND)

T73-9

Send a 3d vector to <append> of vecs.
PIAPP is defined in PROCONSF FORTRAN.

QaaaQ

CALL PSNV3D (AVEC, PIAPP, °“VLIST”, ERRHND)

Delete 2 vectors from VLIST.
PS 390 command: Send fix(2) to <delete>vlist;
PIDEL is defined in PROCONSF FORTRAN.

oo NeNe!

CALL PSNFIX (2, PIDEL, “VLIST’, ERRHND)

éND
2. VAX and IBM Pascal Graphics Support Routines

The PS 390 VAX Pascal GSRs are written in Pascal V2 and are supported
only in a VAX/VMS environment. The GSRs are supported under PS 390
Graphics Firmware Release PS.V03 and higher. There are no specific hard-
ware requirements.

The PS 390 IBM Pascal GSRs are written in IBM Pascal/VS and are
compatible with IBM VM/CMS and TSO environments. They require an
IBM Pascal/VS compiler, Release 2.0. The GSRs are supported under
PS 390 Graphics Firmware Release P5.V03 and higher. There are no
specific hardware requirements.

Appendix C contains a Pascal V2 network creation example program, and
Appendix D contains a Pascal/VS network creation example program. Both
programs contain an error handler routine.

2.1 Pascal GSR Conventions

2.1.1 Pascal V2

The Pascal V2 version of the GSRs make use of the following
program-defined Pascal TYPE definitions.

P_VaryingType
P _VaryBufType
P_KnotArrayType
P_MatrixType

VARYING [P_MaxVaryingSize] OF CHAR;
VARYING [P_MaxVaryBufSize] OF CHAR;
ARRAY [1..P_MaxKnots] OF REAL;
ARRAY [1..4, 1..4] OF REAL

1

173-10 Tools and Techniques

P_VectorType

= RECORD
Draw : BOOLEAN;
V4 : ARRAY [1..4] OF REAL;
END;

P_VectorListType = ARRAY [1l..P_MaxVecListSize] OF

P_PatternType

2.1.2 Pascal/VS

P_VectorType;
= ARRAY [1...32] of INTEGER;

The Pascal/VS version of the GSRs make use of the following
program-defined Pascal TYPE definitions.

P_KnotArrayType

P_MatrixType
P_VectorType

P_VectorListType

P_PatternType

P_MaxKnots

P_MaxVecListSize

= ARRAY (.1l..P_MaxKnots) OF SHORTREAL;

ARRAY (.1..4, 1..4.) OF SHORTREAL;

= RECORD
Draw : BOOLEAN;
V4 : ARRAY (.1..4.) OF SHORTREAL;
END;

PACKED ARRAY (.1..P_MaxVecListSize) OF
P_VectorType;

= ARRAY (.1...32.) of INTEGER;

10; This parameter can be changed by the user
to any appropriate value WITHOUT
recompiling the GSRs.

100; This parameter can be changed by the user
to any appropriate value WITHOUT
recompiling the GSRs.

The Pascal V2 and Pascal/VS versions of the Graphic Support Raster
of the following program-defined Pascal CONSTANT

Routines make use
definitions:

P_MaxRunclrSize

P_ColorType = RECORD
RED : INTEGER;
GREEN : INTEGER;
BLUE : INTEGER;

End;

Using the GSRs

User specified maximum length run color array

1T3-11

P_RunColorType = RECORD
COUNT : INTEGER

RED . INTEGER;
GREEN : INTEGER;
BLUE : INTEGER;
End;
P_RunClrArrayType = ARRAY [1..P MaxRunclrSize] of P_RunColorType;

The following parameters can be changed by the user to any appropriate
value without having to recompile the GSRs:

P_MaxKnots = 10
P_MaxVecListSize = 200
P_MaxVaryingSize = 255
P_MaxVaryBufSize = 512

2.2 Utility and Application Routines

Utility Routines are specific to the operation of the GSRs. These calls are
used to attach the PS 390, select multiplexing channels, send and receive
messages, and detach.

Application Routines correspond almost one for one with the standard
PS 390 Commands. In most cases, the names for the Application Routines
were derived by choosing an abbreviation of the PS 390 command and
prefixing it with a P. Parameter ordering generally coincides with the
PS 390 commands as well. Examples of some of the Application Routines
are below.

EXAMPLE 1

For commands which build operation display structures, such as
Name:=operate parameterl,parameter2,..., then apply;

The routine call is:
Poper (“name” ,parameterl,parameter2, ..., apply”, Error_Handler);

where:

oper is an abbreviated form of the PS 390 command such as rotate
in x — Protx

‘name’ is a character string containing the name to be associated
with the operate

173-12 Tools and Techniques

parameterl,parameter2,..., are the parameters to be used in com-
puting the operation. These may be boolean values, integers, real
numbers, vectors, or matrices.

‘apply’ is a character string containing the name of the object to
which this operate applies.

Error_Handler is the user-defined error handler routine.

EXAMPLE 2

For commands to send to functions or display structures, such as
Send datum to <input>dest;

The routine call is:

PSNDtyp (datum, input,”“dest”, Error Handler);

where:
‘typ’ is an abbreviated form of the PS 390 command such as
PSndFiX, PSndM2D,...
datum is what is to be sent. It may be Boolean, integer, real, char-
acter string, vector, or matrix.
input is an integer which specifies which input of the destination is
being sent to.
‘dest’ is a character string containing the name of the display
structure or function.
Error_Handler is the user-defined error handler routine.
EXAMPLE 3

For commands which create functions and connections such as:

Name := f:genfcn;

Name f:genfcn(n);

Conn name<output>:<input>dest;
DISCONN name<output>:<input>dest;

The routines are:

PFNINST (“name”, “genfcn”, Error_Handler);

PFNINSTN (“name’, “genfcn’, n, Error_ Handler);
PCONNECT (“name’ ,output, input,”dest’, Error Handler);
PDISC (“name” ,output, input,“dest”, Error_ Handler);

Using the GSRs TT3-13

where:

‘name’ is a character string containing the name associated with
the function instance.

‘genfcn’ is a character string containing the name of the system
generic function.

n is an integer specifying the number of input/outputs for this func-
tion instance.

output,input are integers specifying the output and input numbers.

‘dest’ is a character string containing the name of the display data
structure

Error_Handler is the user-defined error handler routine.
Note that the function names in the GSRs are specified without the “F:”
prefix that is used in the standard PS 390 command language.
2.3 Exceptions

To be fully specified using GSRs, three PS 390 commands require three
separate calls to routines. The commands are LABEL, VECTOR_LIST, and

POLYGON.
For example, to create, specify and complete a label block, the user must
call:
PLabBegn — To create and open a label block
PLabAdd - May be called multiple times to add to a previously
opened label block
PLabEnd - To complete the creation of a label block.

Together these three routines implement the PS 390 command:

Name := LABELS x, y, z, “string”’

X, ¥, z, “string”;

In the same way, the user must use PVecBegn to begin a vector list,
PVecList to send a piece of a vector list, and PVecEnd to end a vector list.

An example of a routine that varies slightly from the PS 390 command is
PBSPL. In the BSPLINE command some of the parameters are optional. In
the routine they are all required. This is also the case for the PRBSPL,
PPOLY, and PRPOLY routines.

173-14 Tools and Techniques

The PS 390 syntax allows for instancing multiple display entities and for
creating multiple variables. In the PS 390 command language the com-
mands would be:

NAME:= INSTANCE a,b,c,d;
for instancing multiple display entities, and
VARIABLE s,y,z,w,t,q;

for multiple variables.

To perform the equivalent instancing of multiple display entities or for cre-
ating multiple variables, the following GSRs should be used.

For the multiple instance case:

PINST(“NAME’, “A”, Error_Handler);
PINCL(“B”, “NAME’, Error_Handler);
PINCL(’C”, “NAME”’, Error_Handler);
PINCL(“D”, “NAME’, Error_Handler);

For the multiple variable case:

PVAR (°S’, Error_Handler);
PVAR (°Y’, Error_Handler);
PVAR (27, Error_Handler);
PVAR (“W’, Error_Handler);
PVAR (‘T’, Error_Handler);
PVAR (°Q”, Error_Handler);

2.4 Error Handling

An error handling scheme has been employed to catch errors detected by
the GSRs. Examples of errors detected by the GSRs:

e Prefix not followed by an operate.
¢ Follow not followed by an operate.
e Invalid characters in a name.

Command Interpreter errors and warnings are not detected by the GSRs.
Examples of these errors are:

e Destination does not yet exist.
e Message rejected by destination.

e Connection not made.

Using the GSRs 173-15

Error checking will be performed within the GSRs to ensure that only valid
characters are sent within names, and that routines are called in the proper
order, in cases where order is required. No attempt has been made to cap-
ture errors and/or warnings from the Command Interpreter.

Each routine call includes an argument that specifies the user-written error
handler. This error handler is of the form:

PROCEDURE Error_Handler (Error : INTEGER);

where ERROR is an integer error code corresponding to one of the errors.

It is the responsibility of the user to provide an error handling scheme to
decide what action should be taken when an error is detected. The GSRs do
not attempt to terminate execution or log errors.

The name, description, and error code of each detectable error is given in
tables in Section RM4. An example error handling routine appears in the
example programs in Appendix C and Appendix D. It is a sophisticated
error handler that may be incorporated by the user into an error handling
scheme, or used as an example of what an error handler should look like.

2.5 Programming Suggestions

The file PROCONST.PAS contains definitions for constants used by the
GSRs. It is often convenient to think of these constants by name rather than
by remembering numbers. Specifically, in the usual PS 390 command syn-
tax, inputs to display structures are often referred to by name such as <ap-
pend> and <clear> for vector_lists and <position> and <step> for character
strings. There are also <delete>, <last>, and others. Other useful constants
such as values for conditional tests for level of detail, and vector list class
are obtainable from PROCONST.PAS.

PROCONST.PAS also contains a complete set of error/warning code
definitions. These values may be referenced by name by the user routine if
PROCONST.PAS is INCLUDED in the routine. The Error Tables in Section
RM4 provide a list of the mnemonics and error codes. Using the mnemonics
provides an easy way of checking for the correct error code value.

There are two other files that must be INCLUDED by the user. These
additional files and their descriptions are:

PROTYPES.PAS - contains the GSR Pascal TYPE definitions
PROEXTRN.PAS - contains the VAX GSR EXTERNAL Routine Definitions

TT3-16 Tools and Techniques

The following is an abbreviated list derived from PROCONST.PAS of the
constants which should be most useful to the user.

GSR private constant declarations:

Name Value Meaning

P_Append = 0; <Append> input number.

P_Delete = -1; <Delete> input number.

P_Clear = -2 <Clear> input number.

P_Step = -3; <Step> input number.

P_Position = —4; <Position> input number,

P_Last = -5; <Last> input number.

P_Substitute = -6; <Substitute> input number.

P_LES = 0; "Less" level of detail comparison operator.

P_EQL = 1; "Equal" level of detail comparison operator.

P_LEQL = 2; "Less-equal" level of detail comparison
operator.

P_GTR = 3; "Greater" level of detail comparison operator.

P_NEQL = 4; "Not-equal" level of detail comparison operator.

P_GEQL = 5; "Greater-equal" level of detail comparison
operator.

P_Conn = ; Vector list "Connected" class type.

0
P_Dots = 1 Vector List "Dots" class type.
P_Item = 2 Vector List "Itemized" class type.
P_Sepa = 3; Vector List "Separate" class type.
P_Tab 4, Vector List "Tabulated" class type.

3. UNIX/C Graphics Support Routines

The GSR Library provides C functions for each command accepted by the Com-
mand Interpreter. It is assumed that the E&S software distribution has been loaded
into subdirectories of a directory named /usr/ps300/dist/es.

The object code for the PS 390 GSRs exists as the library archive file, libgsr.a in
the lib subdirectory. Application programs using the GSRs should be linked with
this library and must include gsrext.h from the include subdirectory. There are
other header files in the include subdirectory, which may be used by programs
which need access to the lower levels of the GSR library. They are pidefs.h and
netdefs.h. Programs which call the piqiow and psnetio routines directly should
include pidefs.h and netdefs.h respectively. These files define constants and data
types, and declare external routines used in the corresponding modules. The
pidefs.h file defines the data types and symbolic errors and other constants used
by the parallel interface device driver. The netdefs.h file defines constants and
macros used by the psnetio function.

Using the GSRs T73-17

3.1 The Lint library

The GSR library passes through the lint analyst without errors. Application
programs should make use of the objects defined in the header files and the
analysis of lint. The lint library llib-Igsr.In is provided so that lint may
analyze the usage of the GSRs in a user application program. This file
exists in the lib subdirectory. The GSR lint library will be automatically
updated whenever the GSR library is modified.

3.2 UNIX/PS 390 Communication Channels

The VAX/UNIX/C GSRs support communication with a PS 390 over an
asynchronous serial line, the PS 390/UNIBUS parallel interface and the
PS 390/Ethernet Interface. The synchronous serial interface device
(DMR-11) is not supported. Output to disk files instead of the PS 390, is
also supported. Application programs specify the communication channel
using the PAttach routine in the GSR library, as shown below:

PAttach(devname);

where devname is a character string specifying a device special file. A

% 2

hyphen (“-”) is a special case and is assumed to specify the stdout file.

3.2.1 Automatic device typing

Regardless of the device specified by the application program for I/O to the
PS 390, the type of the device being used (parallel, RS-232 line, or Ethernet
node) is automatically determined by the GSR package at the time of
initialization. For example, if stdout was specified in the application
program (in the PAttach routine) and was redirected to a PS 390 parallel
interface special file (regardless of the name of that special file) it will be
recognized as such and controlled appropriately.

3.2.2 Parallel Interface Device

The GSR user needs only to know the name of the UNIX special file which
is used to access the device. The recommended name pattern is /dev/pi?0.
The second to last character in the name is a character in the range "a"
through "z", identifying one of possibly several picture processors.

3.2.3 PS 390/Ethernet Interface

To use the PS 390 on the customer’s Ethernet, its Official Host Name or an
alias (found in /etc/hosts) should be specified as the “devname” to the

TT3-18 Tools and Techniques

PAttach. For example, the shell scripts in the test subdirectory of the
distribution assume that the /etc/hosts file contains an entry for a node
named “net_300_1" and pass “net_300_1" to the test programs, which is
used in the PAttach call.

Other facts to remember about the PS 390 Ethernet interface are:

e Dual line operation of the PS 390 is precluded.

e The 4.2 BSD UNIX trailer protocols must be turned off for the
PS 390 Ethernet interface to work.

3.2.4 RS-232 Asynchronous serial channels

The GSR, PAttach, attempts to set up the communication line properly for
asynchronous communications. However, some special precautions should
be taken when using the async lines with the GSRs to communicate with the
PS 390. If the tty being used for the PS 390 is not the same as the process’s
controlling tty(i.e., the PS 390 is operating in dual line mode or a separate
terminal is being used) then logins must not be enabled for the device (i.e.,
no getty running on it). You may disable logins permanently for such a line
by editing its entry in /etc/ttys (change the first character on the correspond-
ing line to “0”) and sending a hangup signal to init (with a “kill-HUP 1”) or
rebooting the system. Alternately, if your site has implemented enable/dis-
able commands to do this more gracefully as required, you can disable the
line dynamically upon each use. Note that anything written to stderr (as the
standard GSR error handler does) will be sent to your terminal (i.e., the
PS 390, probably in the middle of some binary data packet) unless you take
steps to redirect it elsewhere.

3.2.5 Output to Files

Any file may be specified to receive the output of the GSRs for examination
during debugging or delayed transmission to the PS 390. In this case, the
output is formatted with the same type of headers used for asynchronous
serial lines so that the file may simply be copied (e.g., with cat) to a PS 390
at a later time. Care must be taken to ensure that the asynchronous commu-
nication line is set up properly since the PAttach/PDetach calls usually take
care of this for you. When directing output to a file other than a real
PS 390, it is important to note that any GSR operations which require read-
ing from the PS 390 will return nothing and generate a call to the error
handler indicating a PSF_PHYGETFAI condition. In general, this can cause
problems in the program’s operation and is not recommended.

Using the GSRs 173-19

3.3 UNIX/C GSR Conventions

3.3.1 Names of user callable GSR library routines

The actual names of the user callable routines in the GSR library consist of
upper and lower case letters and digits. However, application programs
which use the GSRs may call these routines using all lower case letters
provided the symbol “LOWERCASE_GSR” is defined when the C
preprocessor processes the mandatory gsrext.h header file.

3.3.2 Data types of GSR parameters

The number, ordering, and function of parameters to the GSR library is, in
general, the same as in the VMS Pascal implementation. There are a few
exceptions as noted in the sections below. The type and/or structure of some
of the parameters have also been changed as described in the following.

3.3.3 Strings and Bytes

All character string and byte buffer parameters are of the type string (i.e.,
pointer to a char) in C, whereas in the Pascal version they are
P_VaryingType and P_VaryBufType. In C, this is equivalent to an array of
char or to a quoted literal text string. When these are strings of ASCII
characters, the C convention of terminating the string with a null character
is assumed, requiring no explicit indication of length. There are three rou-
tines in the C version which make an exception to this convention and re-
quire explicit specification of length since they treat a string as a general
purpose byte buffer which may contain the value zero (the conventional
string terminator) as valid data. These routines are:

PPutG(buffer, actual_ length)
string buffer;
int length;

int PGet (buffer, max_length)
string buffer;
int max_length;

int PGetWait (buffer, max_length)
string buffer;
int max_length;

In all three cases, the buffer pointer is followed by an integer length value.
The length parameter to the PPutG routine is the number of bytes of valid

173-20 Tools and Techniques

data in the buffer. However, in PGet and PGetWait, the length parameter
indicates the size of the buffer in bytes (i.e., the maximum number of bytes
which may be returned in the buffer). The PGet and PGetWait routines
return the number of bytes read from the PS 390 as their function value.

3.3.4 Booleans

A Boolean type definition (with values of TRUE and FALSE) is used in
place of Pascal’s built-in boolean type.

3.3.5 Floating Point Numbers

The 4.2 BSD C compiler and most others perform all floating-point
operations in double precision, treat all f.p. constants as double precision,
and convert all f.p. expressions and actual parameters to routines to double
precision, and implicitly declare all formal f.p. parameters as double
precision. For this reason, the C GSRs use the type double in place of the
Pascal type REAL.

3.3.6 Other Special Types and Constants

The other special types used in the Pascal version have been converted to C
with essentially no change in structure. They are:

typedef enum (P_Conn=0,P_Dots,P_Item,P_Sepa,P_Tab) P _vector_class;
typedef long int P_PatternType[32];

typedef double P_KnotArrayTypel];

typedef double P_MatrixType[4][4];

typedef struct {
boolean Draw;
double V4[4];

} P_VectorType;

typedef P_VectorType P_VectorListTypel[];

typedef struct {
unsigned short red;
unsigned short green;
unsigned short blue;
} P_ColorType;

Using the GSRs 173-21

typedef struct {

int count;

unsigned short red;
unsigned short green;
unsigned short blue;
} P_RunColorType;

typedef P_RunColorType P_RunClrArrayTypel[];

The set of P_Max... constants used in Pascal as limits for the variable
length arrays in Pascal are unnecessary in C due to the flexibility in passing
arrays of different lengths as parameters.

All of the defined constants used in Pascal for specifying symbolic values
for certain integer parameters (e.g., P_Delete, P_LES, P_Dots etc.,) are also
available in the C GSRs.

3.4 Error Handling

All errors which were detected in the VMS version are likewise detected in
the UNIX/C version (except for the VMS-specific errors). A few
UNIX-specific errors have been added using the same scheme for error
code assignment. Error handling in the C implementation is more efficient
and more flexible. A standard error handler is provided in the GSR library
which is used by default if an alternate one is not specified. The application
program may provide its own error handling routine(s) at various points in
the program. Passing an error handler routine to each of the GSRs has been
eliminated. The symbolic names of GSR errors are defined in the header
file gsrerror.h in the include subdirectory of the distribution.

3.4.1 The Default Error Handler
The default error handling routine provided by the GSR library is:

gsr_std_err handler (error)
P_gsr_error_type error;

This routine prints a message on the stderr file, giving the integer error code
passed to it.

3.4.2 User provided Error Handlers

An application program using the GSRs may provide its own error handling
routine, even though the gsr_std_err_handler routine is in effect by default.

113-22 Tools and Techniques

An alternate error handler may be specified using the set_gsr_err_handler
routine as shown below.

set_gsr_err_handler (new_handler)
int (* new_handler) ();

where new_handler is the alternate error handler routine which should take
one parameter of P_gsr_error_type which will be passed the current error
code when called. If the set_gsr_err_handler routine is called with a null
pointer (i.e., zero) it will revert back to the use of the default handler.

3.4.3 Error Handler Parameter

The address of an error handler is passed as a parameter to every routine in
the VMS Pascal version of the library. However, since the C version
provides a standard error handler and a mechanism for specifying
user-supplied error handlers, this parameter has been eliminated. Whatever
error handler is in effect is invoked directly at the site of the error detection.

3.5 Special Notes

3.5.1 Specifying Transformation Matrices

The following GSR library routines require the input of a transformation
matrix:

PMat2x2 PMat3x3 PMat4x3 PMat4x4 PSndM2d PSndM3d PSndm4d

The GSR library can be built for input of transformation matrices in ROW
MAJOR or COLUMN MAJOR mode by specifying the rowmajor or the
columnmajor option when invoking the make utility which generates it. The
default is the rowmajor option. The library archive libgsr.a which is distrib-
uted on magtape is built using the rowmajor option.

3.5.2 Miscellaneous notes on using the GSRs

There is no easy way for an application program to know when the PS 390
has completely processed the GSR equivalent of a PS 390 command and is
in a quiescent state. The absence of such a general facility could be the
source of some unpredictable program behavior unless the appropriate pre-
cautions are taken. A typical situation for such behavior is illustrated by the
following segment of an application program.

Using the GSRs TT3-23

char dummy[256] ;
/* use the parallel interface*/

PAttach("/dev/pia0");
PInit();

/* Connect Function Key 1 to HOST MESSAGE so that when it is hit,

PGetWait will wakeup*/
PConnect ("FKEYS",1,1, "HOST_MESSAGE") ;
PFnInst ("inst_of print","PRINT");

/* Create a character data node*/

CharSca("object", 0.04, 0.04, "charnode");
PChars("charnode",0.2,0.83,0.0,1.0,0.0,"");

/* Connect inst_of print to the substitute input of the character
data node*/

PConnect ("inst_of_print",1,-6,"object");
PSndStr("Hello",1,"inst_of print");
PDisplay("object");

/* Wait for PS 390 user to hit key F1 */
PGetWait (dummy, 256);

/*¥ At this point, the string "Hello" would appear on the PS 390
display. Now let us try to disconnect inst_of print from object and
send the string "ABC" to it and THEN connect it again to object.*/

PDisc("inst_of print",1,"object");
PSndStr ("ABC",1,"inst_of print");
PConnect ("inst_of print",1,-6,"object");

/% Wait for PS 300 user to hit key F1 */
PGetWait (dummy, 256);

/*¥ It seems reasonable to expect that "ABC" should not be displayed
because the functions were disconnected prior to sending "ABC".
However, because of the way some commands are interpreted by the CI,
it is very likely that the string "ABC" ended up on the input of
inst_of_print AFTER the connection was made the second time, thus
making"ABC" appear on the display! */

One could invent a specific solution to each situation of this kind which
would satisfactorily take care of the problem. In the case above, we could
resort to a crude solution by which the application program could wait for a

173-24 Tools and Techniques

reasonably long time, say 1 second, after sending the string “ABC” but
before doing the PConnect again as shown below:

PDisc("inst_of print",1,"object");
PSndStr ("ABC",1,"inst_of print");

/* Give enough time for the string to end up on the input of
inst_of print before making the connection again*/ !

sleep(1l);
/* sleep for 1 second */

PConnect ("inst_of_print",1,-6,"object");
PGetWait (dummy,256);

/* Wait for F1 key */

3.5.3 Using the PGetWait routine in the GSR library

The PGetWait routine is called by host application programs when they
want to wait for some input from the PS 390, typically sent back via the
HOST_MESSAGE function. However, when the application program uses
an asynchronous communication line to the PS 390, all keys typed on the
PS 390 keyboard in Terminal Emulator mode will also be sent to the host
(bypassing HOST_MESSAGE). This means that the application program
may receive unexpected input and behave in an unexpected manner. The
solution is to make sure that the PS 390 keyboard is not in Terminal Emula-
tor mode when PGetWait is used to wait for input from the PS 390. This
situation does not arise when the VAX/UNIBUS Parallel Interface or the
Ethernet Interface is used to communicate with the PS 390 because the Ter-
minal Emulator uses only the async line.

3.6 Ethernet Interface I/O Operations

The PS 390 Ethernet Interface allows a PS 390 to be connected to an
Ethernet local area network. The E&S software for this option consists of
(a) PS 390 firmware which implements full duplex byte stream
communications over an Ethernet and (b) the GSR library which provides
easy access to the networked PS 390. The DoD TCP/IP is used in the initial
release; a simpler E&S protocol may also be supported in the near future.

Using the GSRs TT73-25

Application programs which use the GSR library can access the networked
PS 390 by specifying its node name or an alias to the PAttach function as
shown:

PAttach ("PS 390nodeName") ;

The name of the PS 390 node and its aliases can be found in the /etc/hosts
file.

Application programs may communicate with the networked PS 390 by call-
ing the psnetio function in the devlib.c module of the GSR library. This
function hides the protocols used and relieves the programmer of some
housekeeping chores in handling the interface. More importantly, the physi-
cal I/O operations of the interface will be accessible only by calling psnetio
directly.

3.6.1 The PSNETIO Function

The psnetio function allows the caller to issue logical, physical and diagnos-
tic I/O requests to the PS 390/Ethernet Interface. The request parameter is
an integer code passed to psnetio from the calling program. The need for
and the meaning of the argpl and argp2 parameters depends on the re-
quest. The request codes available and the corresponding parameter list are
described below:

PSNET_ATT

This request is issued to create a communication socket and to establish a
virtual circuit between this socket and a socket on the PS 390 node. The
argp! parameter is a pointer to the name of the PS 390 node or one of its
aliases from the /etc/hosts file. There is no argp2 parameter for this re-
quest. If the connection is established successfully, a file descriptor value
is returned; otherwise -1.

PSNET DET

This request is issued to shutdown the virtual circuit established by the
PSNET_ATT request. Further communication with the PS 390 node
would be possible only after a new PSNET ATT request. There are no
other parameters for this request.

A 0 is returned if the call succeeds; -1 if it fails.

TT3-26 Tools and Techniques

PSNET_LWRITE

This request is issued to send data to the function network in the PS 390
node. The argpl parameter is a pointer to a user buffer which has the
following format:

opcode (8 bits)
flags (8 bits)
be (16 bits)
lwdata (bc bytes)

The fields of this buffer are:
opcode
Not written or read by psnetio’s caller.
flags
The F_WRITESWAP bit should be set if the bytes in each 16-bit word of

the Iwdata field should be swapped by the PS 390 before passing them to
the function network.

The F_READSWAP bit should be set if the bytes should be swapped in
each 16-bit word sent to the host for a PSNET LREAD request.(See
below.)

bc
Number of bytes of data in Iwdata. This does not include the opcode,
flags and bc fields.

Iwdata
Data to be sent to the function network.

The number of bytes of data sent, excluding the opcode, flags and bc
fields, is returned as the function value. A -1 is returned in case of an
error. There is no argp2 parameter for this request.

NOTE

A PSNET LWRITE request throws away any data from
the PS 390 which still remains unread.

Using the GSRs

113-27

PSNETLREAD

This request is issued to read data from the function network in the
PS 390 node. The argpl parameter is a pointer to a user buffer which has
the following format:

opcode (8 bits)
flags (8 bits)
be (16 bits)
lrdata (bc bytes)

The fields of this buffer are:
opcode
Not written or read by psnetio’s caller.
flags
Bit mask returned by the PS 390. If the F_SWAPPED bit is set, the order
of bytes in each 16-bit word of the Irdata field is the opposite of the way
they are stored in PS 390 memory.
bc
Size of the Irdata field, in bytes. This field is modified by psnetio. On
return, it contains the number of bytes of data received from the PS 390.
Irdata
All or part of the data received from the PS 390 function network.
The number of bytes of data, excluding the opcode, flags and bc fields is

returned as the function value. A -1 is returned in case of an error. There
is no argp2 parameter for this request.

NOTE

(1) If the order of data bytes from the PS 390 is to be
reversed, it should have been specified by setting the
F_READSWAP bit in the most recent PSNET _LWRITE
request prior to the read.

(2) Psnetio may be called repeatedly to recover all of
the data received from the PS 390.

(3) Any data remaining unread after a PSNET_LREAD

will be thrown away by requests other than a
PSNET _LREAD.

173-28 Tools and Techniques

PSNET PREAD

This request is issued to read data directly from PS 390 mass memory.
The argpl and argp2 parameters are pointers to two user buffers; the
first contains a set of descriptors for the physical read operation and the
second receives the data read from mass memory and a copy of the
descriptors from the first buffer. The argpl buffer has the following

format:

opcode (8 bits)

flags (8 bits)

be (16 bits)
N (16 bits)
Block #1 mmaddr (32 bits)
Block #1 wc (16 bits)
Block #2 mmaddr (32 bits)
Block #2 wc (16 bits)
Block #N mmaddr (32 bits)
Block #N wc (16 bits)

The fields of this buffer are:
opcode
Not written or read by psnetio’s caller.

flags

The F_READSWAP bit should be set if the bytes should be swapped in
each 16-bit word read from PS 390 mass memory before being sent to
the host.

bc
Number of bytes in the rest of the buffer.

N

Number of blocks of mass memory to read in this request. Each block is
specified by a mass memory address and a word count.

mmaddr

Source mass memory address.

wC

Number of 16-bit words to read beginning at mmaddr.

Using the GSRs 173-29

The argp2 buffer receives the physical read data and a copy of the other
fields from the argpl buffer. It has the following format:

opcode (8 bits)
flags (8 bits)
bc (16 bits)
N (16 bits)
Block #1 mmaddr (32 bits)
Block #1 wc (16 bits)
Block #1 mmdata (per wc)
Block #2 mmaddr (32 bits)
Block #2 wc (16 bits)
Block #2 mmdata (per wc)
Block #N mmaddr (32 bits)
Block #N wc (16 bits)
Block #N mmdata (per wc)

The fields of the argp2 buffer are:
opcode

Not written or read by psnetio’s caller.
flags

Bit mask returned by the PS 390. 1f the F_SWAPPED bit is set, the order
of bytes in each 16-bit word returned in mmdata is the opposite of their
order in PS 390 memory.

bc
Size of the rest of the buffer, in bytes. This field is modified by psnetio.
mmaddr
Copied by the PS 390 from the argpl buffer.
wce
Copied by the PS 390 from the argpl buffer.
mmdata
Physical data read from mass memory.

The number of bytes of data returned in the argp2 buffer is returned as
the function value. This count excludes the opcode, flags, bc, N, mmaddr
and wc fields. A -1 is returned in case of an error.

NOTE

Any physical data remaining unread after a
PSNET_PREAD request is thrown away by the first re-
quest other than a PSNET PREAD.

1T3-30 Tools and Techniques

PSNET_PWRITE

This request is issued to write data directly to PS 390 mass memory. The
argpl parameter is a pointer to a user buffer containing the target mass
memory addresses, word counts and the data for the physical write op-
eration. The buffer has the following format:

opcode (8 bits)
flags (8 bits)
bc (16 bits)
N (16 bits)
Block #1 mmaddr (32 bits)
Block #1 wc (16 bits)
Block #1 mmdata (per wc)
Block #2 mmaddr (32 bits)
Block #2 wc (16 bits)
Block #2 mmdata (per wc)
Block #N mmaddr (32 bits)
Block #N wc (16 bits)
Block #N mmdata (per wc)

The fields of this buffer are:
opcode

Not written or read by psnetio’s caller.
flags

The F_WRITESWAP bit should be set if the bytes should be swapped in
each 16-bit word of mmdata before being written to PS 390 mass
memory.

bc
Size of the rest of the buffer, in bytes.
N

The number of blocks of mass memory to write in this request. Each
block is specified by a mass memory address, the number of 16-bit words
of data to write and the data.

mmaddr
Destination mass memory address.
wce

Number of 16-bit words to write, beginning at the mass memory address
specified in mmaddr.

Using the GSRs TT3-31

mmgdata
Data to be written to mass memory.
The number of bytes of data sent to the PS 390 is returned as the func-

tion value. This count excludes the opcode, flags, bc, N, mmaddr and wc
fields. A -1 is returned in case of an error.

NOTE

Any physical data remaining unread after a
PSNET PREAD request is thrown away by the
PSNET_PWRITE request.

PSNETLOOKUP

This request is issued to get the named entity pointer (i.e., the mass
memory address) of a PS 390 object. The argpl parameter is a pointer to
a character string containing the name of the object. It has the following

format:
opcode (8 bits)
flags (8 bits)
bc (16 bits)
name (bc bytes)
The fields of the buffer are:
opcode

Not written or read by psnetio’s caller.
flags

Not read or written by psnetio’s caller.
bc

Number of characters in name.
name

Character string specifying the name of the PS 390 object whose address
is to be looked up.

NOTE

The order in which the characters in the name are sent
is assumed to be the order in which the PS 390 expects
them. In other words, the PS 390 does not swap the
bytes before looking up the name. The pointer to the
named entity is returned as the function value. A -1 is
returned in case of an error.

173-32 Tools and Techniques

Appendix A - FORTRAN-77 Example Program

This appendix contains a network creation example program that illustrates the use
of the PS 390 DEC/VAX FORTRAN-77 Graphics Support Routines. The program
contains an error handler routine example.

PROGRAM BlkLevF

INCLUDE “PROCONST.FOR/NOLIST~

C
C Main program:
C
REAL*4 Deg rad
PARAMETER (Deg_rad = 0.017453292)
REAL*4 Theta, DTheta, Front (4, 100),
& Vecs (4, 100), Zero_vec (3),
& Y Up (3), At (3), From (3), Up (3)

INTEGER*4 i, k, 1, Times
CHARACTER Name*63, DeviceSpec*1l, DeviceName*5,

&
LOGICAL*1

CHARACTER
EXTERNAL

DeviceSpec
DO WHILE (
&
&
WRITE (6
&
READ (5
DeviceSp
IF ((Dev
& (Dev
& (Dev
WRITE
END IF
END DO
DeviceName

AttachParameter*80
PFront (100), PVecs (100)

Uppercase¥*1l
Err, Uppercase

= ‘ 7

(DeviceSpec .NE. “A”) .AND.
(DeviceSpec .NE. “E”) ,AND,
(DeviceSpec .NE. “P’))

, 1) ‘Device Interface type = *

// ‘(Parallel, Ethernet, Asynchronous):

, 2) DeviceSpec

ec = Uppercase (DeviceSpec)

iceSpec .NE. “A”) .AND.

iceSpec .NE. “E”) .AND.

iceSpec .NE. “P”)) THEN

(6, *) “Invalid device type specified.”

S

DO WHILE (DeviceName .EQ. ~ 7)

WRITE (6

Using the GSRs

, 1) “Physical device name (i.e. TT, ~

173-33

17T3-34

\S]

& // “TTA6, XMDO): _~

READ (5, 3) DeviceName
FORMAT (- 7, A, 9)
FORMAT (1A)
FORMAT (5A)
END DO
IF ((DeviceName (2:2)) .EQ. ~ “) THEN
DeviceName (2:) = “:7
ELSE
IF ((DeviceName (3:3)) .EQ. “ 7) THEN
DeviceName (3:) = 7:~
ELSE
IF ((DeviceName (4:4)) .EQ. ~) THEN
DeviceName (4:) = 7.~
ELSE
DeviceName (5:) =
END IF
END IF
END IF
IF ((Uppercase (DeviceSpec)) .EQ. “P”) THEN
AttachParameter = “Logdevnam=’ // DeviceName

P

& // */Phydevtyp=PARALLEL"

ELSE
IF ((Uppercase (DeviceSpec)) .EQ. “E”) THEN
AttachParameter = “Logdevnam=" // DeviceName

& // °/Phydevtyp=Ethernet”

ELSE
AttachParameter = “Logdevnam=’ // DeviceName
& // °/Phydevtyp=Async”
END IF

END IF

CALL PAttch (AttachParameter, Err)

At (1) 0.3

At (2) 0

At (3) =0

From (1)
From (2)
From (3)
Up (1) =
Up (2)
Up (3) =
Y up (1) =0

Y up (2) =1

Y up (3) =0
Zero_vec (1) =0
Zero_vec (2) =0
Zero_vec (3) = 0
CALL Pinit (Err)

o
o O

I
O+ O

Tools and Techniques

Using the GSRs

CALL

CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

Peyebk (“eye’,
1000.0, ~

Pseint

PLooka
Pfn
Pfn
Pfn
Pfn
Pfn
Pfn
Pfn
Pfn
Pfn
PfnN
Pfn
Pconn
Pconn
Psnboo
Pfn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Pconn
Psnv3d
Psnv3d
Psnv3d
Pconn
Pfn
Pconn
Pconn
Psnv3d
Psnv3d
Pinst

(

L T N e N N T T T T T T e T e N e T T U T T e e T e T e T T e T T T T e T T T T T T S N N N N N e e N e

‘inten”,
“look”,
“look”,

’ ’ s

atx”’,
‘aty”,
‘atz”,
“fromx”,
“fromy”,
“fromz~,
‘ac_at”,

s,

’

1.0, 0.0, 0.0, 2.0, 0.0,

inten’, Err)
.TRUE., 0.5, 1.0,

Err)

At, From, Up, “pic’, Err)

xvec’, Err)

yvec’, Err)

zvec’, Err)
‘xvec’, Err)
‘yvec’, Err)
“zvec”’, Err)
“accumulate’, Err)

‘ac_from”, “accumulate’, Err)

“add_up”

, “addc”, Err)

‘sync_up”, “sync’, 3, Err)
fix_sync’, ‘nop’, Err)
“sync_up”, 3, 1, “fix sync’, Err)
“fix_sync”, 1, 3, “sync_up’, Err)

.TRUE., 3, ’“sync_up’, Err)
“look_at”, “lookat’, Err)
“dials’, 1, 1, “atx’, Err)
“dials”, 2, 1, “aty”, Err)
~dials”, 3, 1, “atz”, Err)
“dials”, 5, 1, “fromx”, Err)
“dials’, 6, 1, “fromy’, Err)
“dials”, 7, 1, “fromz’, Err)
‘atx”, 1, 1, “ac_at’, Err)
‘aty”, 1, 1, “ac_at’, Err)
‘atz”, 1, 1, “ac_at’, Err)
‘fromx”, 1, 1, “ac_from”, Err)
‘fromy”, 1, 1, “ac_from’, Err)
‘fromz”, 1, 1, “ac_from’, Err)
‘ac_at”, 1, 1, “sync_up’, Err)
“ac_at”, 1, 1, “add_up’, Err)
“add_up’,1, 2, “sync_up’, Err)

“sync_up”, 1, 1, “look _at’, Err)
‘sync_up”’, 2, 3, “look _at’, Err)
‘ac_from”, 1, 2, “look at’, Err)

At, 2, 7

From, 2,
Y up, 2,

ac_at”, Err)
“ac_from”, Err)
“add_up’, Err)

“look_at”, 1, 1, “look”, Err)

fix_at”

, ‘const’, Err)

“ac_from”, 1, 1, “fix at’, Err)

“fix at”

1, “ac_at”, Err)

1,
Zero_vec, 2, “fix_at’, Err)
1 1

Zero_vec,

’

pic”,

s -

“ac_from”, Err)
, Err)

17T3-35

1T3-36

Dtheta
Theta
DO i =

Theta = Theta + Dtheta
CALL Computewave (Theta, Vecs,
DO k=

DO

Front (1, k)

1, 36

1, 50
1=1, 4

10.0 * Deg_rad
-Dtheta

= Vecs (1,

PVecs)

(k=1)*2+1)

PFront (k) = PVecs ((k-1) * 2 + 1)

END DO
END DO
CALL Computename (i, Name)
CALL Pbegs (Name, Err)
CALL Pser (", 1, 35, .FALSE., i, "~
CALL Pifpha (“"“, .TRUE., “"’, Err)
CALL Pvcbeg (“"’, 100, .FALSE., .FALSE.,
PVsepa, Err)
CALL Pvclis (100, Vecs, PVecs, Err)
CALL Pvcend (Err)
CALL Pvcbeg (“"’, 50, .FALSE., .FALSE.,
PVconn, Err)
CALL Pvclis (50, Front, PFront, Err)
CALL Pvcend (Err)
CALL Pends (Err)
CALL Pincl (Name, “pic’, Err)
END DO
CALL Pdisp (“eye’, Err)
CALL PSnSt (“X°, 1, “Dlabell”, Err)
CALL PSnSt (“Y”, 1, “Dlabel2’, Err)
CALL PSnSt (“Z°, 1, “Dlabel3’, Err)
CALL PSnSt (“Look At”, 1, “Dlabel4’, Err)
CALL PSnSt (“X’, 1, ’“Dlabel5’, Err)
CALL PSnSt (“Y’, 1, ’“Dlabel6”, Err)
CALL PSnSt (“Z°, 1, “Dlabel7’, Err)
CALL PSnSt (“From”, 1, “Dlabel8’, Err)

CALL Pdtach (Err)

END

SUBROUTINE Computename (Nameid, Name)
INTEGER*4 NameId
CHARACTER Name* (*)

INTEGER*4 j,

Name =
L_name

L_name

“List000"”

Nameid

, Err)

3 3

3)

Tools and Techniques

Using the GSRs

j=1

DO WHILE (L_name .GT. 0)

= CHAR (MOD (L_name,

L_name = L_name/10

Name (j:3)
jg=3-1
END DO
RETURN
END

SUBROUTINE ComputewWave (Theta, VecList, PosLin)

REAL*4 Theta, VecList (4, 100)

LOGICAL*1 PosLin (¥*)

REAL*4 Amp, Alpha,
FARAMETER (Amp =

&

INTEGER*4 i,

Iaddr = -1

DO i = 0, 49

Beta =

IAddr

Iaddr = Iaddr + 2
Veclist (1,
Veclist (2,

Veclist (3,
Veclist (4,

PosLin (

Veclist (1,
Veclist (2,
Veclist (3,
Veclist (4,

PosLin (
END DO
RETURN
END

CHARACTER*1
CHARACTER
IF (((Chara
& ((Chara
Uppercase
ELSE
Uppercase
END IF
RETURN
END

Iaddr)
Iaddr)

Taddr)
Taddr)
Iaddr)

0.
0.

Beta
Alpha = -0.02,
2513274123)

8,

i

/ 50.0

10) + ICHAR (°07))

= Amp * EXP (Alpha * i)
¥ cos (Theta - Beta * i)

Iaddr+1)
Taddr+1)
Iaddr+1)
Iaddr+1)
Taddr+1)

0

=1

- 1/150.0

.TRUE.

Il

Veclist (1,
0

0.5
Veclist (4,
.TRUE.

Iaddr)

Iaddr)

FUNCTION Uppercase (Chara)

Chara* (*)
(1:1)) .GE.
(1:1)) .LE.

a’) .AND.
z”)) THEN

CHAR (ICHAR (Chara (1:1)) - 32)

Chara

173-37

TT3-38

oNoNoNeoNeoNeoNoNeoNoNoNoNoNoNoNoNeoRoNoNoNoNoNoNeoNoNoo e

Q

(@]

The following Error Handler demonstrates the general
overall recommended form that the user”s own error
handler should follow.

This error handler upon being invoked writes ALL
messages to the data file: ~“PROERROR.LOG’. Error
and warning explanation messages are written to

a data file for 2 reasons:

1. The error handler should not immediately
write information out on the PS 390 screen
since the explanatory text defining the error
or warning condition may be taken as data by
the PS 390 and therefore wind up not being
displayed on the PS 390 screen (as in the
case of a catastrophic data transmission
error) .

2. The logging of errors and warnings to a
logfile allows any errors and/or warnings
to be reviewed at a later time.

SUBROUTINE ERR (ERRCOD)

Procedural Interface (GSR) error handler:

INCLUDE “PROCONST . FOR/NOLIST”
INTEGER*4 ERRCOD

INTEGER*4 PsVMSerr

LOGICAL FILOPN

DATA FILOPN /.FALSE./
EXTERNAL PsVMSerr, DETERH, PIDCOD

IF (FILOPN) GOTO 1

Open error file for logging of errors:

Tools and Techniques

OPEN (UNIT=10, FILE="PROERROR.LOG”, STATUS="NEW~,

& DISP="KEEP’, ORGANIZATION="SEQUENTIAL”,
& ACCESS="SEQUENTIAL”, CARRIAGECONTROL="LIST")
FILOPN = .TRUE.
C END IF

1 CALL PIDCOD (ERRCOD)
IF (ERRCOD .LT. 512) GOTO 3
WRITE (10, *) “PS-I-ATDCOMLNK: Attempting to ~

& // “detach PS 390/Host communications “
& // “link.”
C
C When we attempt to perform the Detach, use a
C different error handler so as not to get caught
C in a recursive loop if we consistently get an
Cc error when attempting to detach.
C
CALL PDTACH (DETERH)
CLOSE (UNIT=10)
IF ((ERRCOD .LT. PSFPAF) .OR.
& (ERRCOD .GT. PSFPPF)) GOTO 2
C
C Identify VMS error if there was one
C
CALL LIB$STOP (%VAL (PsVMSerr ()))
GOTO 3
C ELSE
2 STOP
C END IF
C END IF
3 RETURN
END
SUBROUTINE DETERH (ERRCOD)
C
C Main Error handler Detach error handler:
C

INTEGER*4 ERRCOD
EXTERNAL PIDCOD

WRITE (10, *) ’“PS—-I-ERRWARDET: Error/warning -~

& // “trying to Detach -

& // “the communications”

WRITE (10, *) “link between the PS 390 and the host.~

Using the GSRs 173-39

CALL PIDCOD (ERRCOD)
RETURN
END

SUBROUTINE PIDCOD (ERRCOD)

C
C PIDCOD: Identify Procedural Interface (GSR) Completion
C code.
C
INCLUDE “PROCONST.FOR/NCLIST’
INTEGER*4 ERRCOD
CHARACTER VMSDEF*133, PIDEF*133
INTEGER*4 PsVMSerr
CHARACTER MSSG1*55, MSSG2*67
PARAMETER (MSSG1 = “PS-W-UNRCOMCOD: Procedural -
& // “Interface ~
& // “(GSR) completion 7)
EXTERNAL PsVMSerr
WRITE (10, *) “PS-I-PROERRWAR: Procedural -
& // “Interface warning/’
& // “error completion code was “
WRITE (10, *) ‘received.’
IF (ERRCOD .NE. PSWBNC) GOTO 1
WRITE (10, *) “PS-W-BADNAMCHR: Bad character ~*
& // “in name was °
& // “translated to: " _".-
GOTO 1000
C ELSE
1 IF (ERRCOD .NE. PSWNTL) GOTO 2
WRITE (10, *) “PS-W-NAMTOOLON: Name too -
& // “long. Name was ~
& // “truncated to °
WRITE (10, *) “256 characters.”
GOTO 1000
Cc ELSE
2 IF (ERRCOD .NE. PSWSTL) GOTO 7
WRITE (10, *) “PS-W-STRTOOLON: String too ~
& // “long. String ~“
& // ‘was truncated -
WRITE (10, *) “to 240 characters.”
GOTO 1000
C ELSE

7 IF (ERRCOD .NE. PSWAAD) GOTO 8
WRITE (10, *) “PS-W-ATTALRDON: Attach -

TT3-40 Tools and Techniques

& //
& //
WRITE (10, *)
GOTO 1000
C ELSE

8 IF (ERRCOD .NE.
WRITE (10, *)

& //
CALL PIBMSP
GOTO 1000

C ELSE

9 IF (ERRCOD .NE.

WRITE (10, *)

& //
WRITE (10, *)
& //

WRITE (10, *)
CALL PIBMSP
GOTO 1000
Cc ELSE
10 IF (ERRCOD .NE.
WRITE (10, *)

& //
& /!
CALL PIBMSP
GOTO 1000
C ELSE

11 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)
& //
CALL PIBMSP
GOTO 1000
C ELSE

12 IF (ERRCOD .NE.
WRITE (10, *)

& /!
& /"
WRITE (10, *)
GOTO 1000
C ELSE

13 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)

Using the GSRs

.

“already done.

‘Multiple call to PAttch without”
“intervening PDtach call ignored.”

PSWAKS) GOTO 9

“PS—-W-ATNKEYSEE: Attention key ~

’seen (depressed).’

PSWBGC) GOTO 10
‘PS-W-BADGENCHR: Bad generic
“channel character. Bad *
“character in string sent via:
“PPutGX was translated to ~
‘a blank.”

PSWBSC) GOTO 11
“PS-W-BADSTRCHR: Bad ~
‘character in string was
“translated to a blank.”

s,

PSWBPC) GOTO 12
“PS-W-BADPARCHR: Bad parser °
“channel character. Bad -
“character in string sent to~
“PS 390 parser via: PPutpP -~
‘was translated to a blank.”

PSEIMC) GOTO 13
“PS-E-INVMUXCHA Invalid -
‘multiplexing channel -
“specified in call to:”
“PMuxCI, PMuxP, or PMuxG.~

PSEIVC) GOTO 14
“PS-E-INVVECCLA: Invalid ~
‘vector list class °
‘specified”

“in call to: PVcBeg.~’

-,

-

1T3-41

173-42

GOTO 1000
ELSE
14 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
GOTO 1000
ELSE
15 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
16 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
17 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
18 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
19 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
&
GOTO 1000
ELSE
20 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
GOTO 1000
ELSE

NE.
*)
//
//

*)

NE.
*)
//
//

NE.
*)
//
/7

NE.
*)
//
1/

NE.
*)
/7
//

NE.
*)
//
//
*)
//

NE.
*)
//
//
*)

PSEIVD) GOTO 15

“PS—-E-INVVECDIM:

Invalid -

‘vector list dimension ~
“specified in call to~

‘PVcBeg.”

PSEPOE) GOTO 16

“PS-E-PREOPEEXP:
‘operator call was

“expected.”

PSEFOE) GOTO 17

‘PS—-E-FOLOPEEXP:
‘operator call was

“expected.”

PSELBE) GOTO 18

“PS—-E-LABBLKEXP:

Prefix -

-

Follow ~

.

Call to -

“PLaAdd or PLaEnd was ~

‘expected.”

PSEVLE) GOTO 19

*PS-E~-VECLISEXP:

Call to -

‘PVcLis or PVcEnd ~

‘was expected.”

PSEAMV) GOTO 20

“PS-E-ATTMULVEC:
‘multiple call -

Attempted ~

“sequence to PVcLis is NOT”
‘permitted for BLOCK -
‘normalized vectors.”

PSEMLB) GOTO 21

‘PS-E-MISLABBEG:

.

Missing

“label block begin call. ~
“Call to PLaAdd or PLaEnd”

‘without call to:

PLaBeg.”

Tools and Techniques

21 IF (ERRCOD .NE.

WRITE (10,
&
&

WRITE (10,
&

GOTO 1000
ELSE

*)
//
//
*)
//

22 IF (ERRCOD .NE.

WRITE (10,
&

GOTO 1000
ELSE

*)
//

23 IF (ERRCOD .NE.

WRITE (10,
&
&

WRITE (10,

GOTO 1000
ELSE

*)
/7
/7
*)

24 IF (ERRCOD .NE.

WRITE (10,
&
&

WRITE (10,

WRITE (10,

WRITE (10,
GOTO 1000
ELSE

*)
//
//
*)
//
//
*)
//
//
*)

25 IF (ERRCOD .NE.

WRITE (10,
&
&

WRITE (10,
&

GOTO 1000
ELSE

*)
//
//
*)
//

26 IF (ERRCOD .NE.

WRITE (10,
&
&

GOTO 1000
ELSE

*)
4
//

27 IF (ERRCOD .NE.

Using the GSRs

PSEMVB) GOTO 22
*PS-E-MISVECBEG:

,

Missing

‘vector list begin °
“call. Call to PvcLis’
‘or PVcEnd without call -~

“to: PVcBeg.~’

PSENUN) GOTO 23
“PS—E-NULNAM:

Null name

’

“parameter is not allowed.”’

PSEBCT) GOTO 24
“PS-E-BADCOMTYP:

Bad ~

comparison type operator -

“specified in ~
‘call to:

PSEIFN) GOTO 25
“PS—-E-INVFUNNAM:
function name.

‘Attempted PS 390~

’

PIfLev.”

Invalid -

‘function instance failed ~“
“because the named -
“function cannot possibly”
‘exist. The function name -

“identifying the ~

“function type to instance-’

‘was longer than 256 characters.~”

PSENNR) GOTO 26
“PS-E-NULNAMREQ:
‘parameter is “

Null name

“required in operate node”

“call following a PPref or -

“PFoll procedure call.”’

PSETME) GOTO 27
*PS—E-TOOMANEND :

.,

Too

‘many END_STRUCTURE calls -

“invoked.”

PSENOA) GOTO 28

e

1T3-43

WRITE (10, *) °“PS-E-NOTATT: The PS 390 ~

& // ‘communications link ~“
& // “has not -
WRITE (10, *) “yet been established.
& // “PAttch has not been ~
& // ‘called or failed.’
GOTO 1000
C ELSE

28 IF (ERRCOD .NE. PSEODR) GOTO 38
WRITE (10, *) “PS-E-OVEDURREA: An -

& // ‘overrun occurred during ~

& // “a read operation.”
WRITE (10, *) “The specified input buffer -

& // “in call to: PGET ~

& // ‘or: PGETW~’
WRITE (10, *) ‘was too small and ~*

& // “truncation has occurred.”
GOTO 1000

C ELSE

38 IF (ERRCOD .NE. PSEPDT) GOTO 39
WRITE (10, *) ‘“PS-E-PHYDEVTYP: Missing ~*
& // “or invalid physical -
& // “device type’
WRITE (10, *) “specifier in call to PAttch.”
CALL PVAXSP
GOTO 1000
C ELSE
39 IF (ERRCOD .NE. PSELDN) GOTO 40
WRITE (10, *) “PS-E-LOGDEVNAM: Missing -
& // ‘or invalid logical -
& // “device name”
WRITE (10, *) “specifier in call to PAttch.~’
CALL PVAXSP
GOTO 1000
C ELSE
40 IF (ERRCOD .NE. PSEADE) GOTO 41
WRITE (10, *) “PS-E-ATTDELEXP: Attach -
& // ‘parameter string °
& // “delimiter”
WRITE (10, *) “"/" was expected.”’
CALL PVAXSP
GOTO 1000
C ELSE
41 IF (ERRCOD .NE. PSFPAF) GOTO 42
WRITE (10, *) “PS-F-PHYATTFAI: ’
& // ‘Physical attach operation ~“
& // “failed.”
GOTO 1000

TT3-44 Tools and Techniques

ELSE
42 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
GOTO 1000
ELSE
43 IF (ERRCOD .NE.
WRITE (10, *)
& //
GOTO 1000
ELSE
44 IF (ERRCOD .NE.
WRITE (10, *)
& //
GOTO 1000
ELSE
45 IF (ERRCOD .NE.
WRITE (10, *)

& /7
& //

WRITE (10, *)
& /7

& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000

ELSE
46 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //

WRITE (10, *)
& //
& //

WRITE (10, *)
& //

& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000

ELSE
47 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)

& //

Using the GSRs

PSFPDF) GOTO 43

‘PS—-F-PHYDETFAI: Physical -

“detach operation -
“failed.”

PSFPGF) GOTO 44

“PS—-F-PHYGETFAI: Physical *
“GET operation failed.~”

PSFPPF) GOTO 45

“PS—-F-PHYPUTFATI: Physical -
“PUT operation failed.”

PSFBTL) GOTO 46

“PS-F-BUFTOOLAR: Buffer -

“too large error in
“call to: PSPUT.~

,

“This error should NEVER ~

“occur and indicates a

,

“Procedural Interface (GSR)~
“internal validity check.”’

PSFWNA) GOTO 47

“PS-F-WRONUMARG: Wrong ~
‘number of arguments ~

“in call to Procedural”
‘Interface (GSR) low-level -

,

“I/0 procedure

“(source file: PROIOLIB.MAR).~

‘This error should NEVER ~“

‘occur and indicates a

-,

‘Procedural Interface (GSR)~
“internal validity check.”

PSFPTL) GOTO 48

“PS-F-PROTOOLAR: Prompt ~

“buffer too large -
‘error in call to:

PSPRCV.~

“This error should NEVER ~

‘occur and indicates a

.

17T3-45

& // ‘Procedural Interface (GSR)~
WRITE (10, *) “internal validity check.”
CALL PVAXSP

GOTO 1000
C ELSE
C
C Unknown error message error message.
C
48 IF (ERRCOD .GE. 512) GOTO 49
MSSG2 = MSSGl // “warning’
GOTO 51
C ELSE
49 IF (ERRCOD .GE. 1024) GOTO 50
MSSG2 = MSSGl // “error *
GOTO 51
C ELSE
50 MSSG2 = MSSG1 // ‘fatal error -~
C END IF
C END IF
51 WRITE (10, *) MSSG2
WRITE (10, *) “code is unrecognized.’
WRITE (10, *) “Probable Procedural ~
& // “Interface (GSR) Internal -
& // “validity check error.”
C END IF

1000 IF ((ERRCOD .LT. PSFPAF) .OR.
& (ERRCOD .GT. PSFPPF)) GOTO 2000
CALL PSFVMSERR (VMSdef, PIdef)
WRITE (10, *) “DEC VAX/VMS Error °
& // “definition is:~”
WRITE (10, *) VMSdef
WRITE (10, *) “Procedural Interface ~°
& // “(GSR) Interpretation of -
& // “DEC VAX/VMS completion code:”
WRITE (10, *) PIdef
WRITE (10, *) “DEC VAX/VMS Error code ~
& // “value was: “, PsVMSerr ()
C END IF
2000 WRITE (10, *)
RETURN
END

SUBROUTINE PIBMSP

C
C PIBMSP: Write the "IBM version specific"
C message to the Error handler file.

1T3-46 Tools and Techniques

WRITE (10, *) “This error/warning is ~

& // “applicable ONLY to the IBM -
& // ‘version of the”

WRITE (10, *) “Procedural Interface (GSR).~
RETURN '

END

SUBROUTINE PVAXSP

C
C PVAXSP: Write the "DEC VAX/VMS Version
C specific" message to the Error
C handler file.
C
WRITE (10, *) “This error/warning is ~°
& // ‘applicable ONLY to the DEC ~*
& // “VAX/VMS version of”
WRITE (10, *) “the Procedural Interface (GSR).~
RETURN
END

Using the GSRs 1T3-47

Appendix B - VS FORTRAN Example Program

This appendix contains a network creation example program that illustrates the use
of the PS 390/IBM VS FORTRAN Graphics Support Routines. The program con-
tains an error handler routine example.

1T3-48

&

PROGRAM BLKLEVF

INCLUDE (PROCONSF)

MAIN PROGRAM:

REAL*4 DEGRAD
PARAMETER (DEGRAD = 0.017453292)

REAL*4 THETA, DTHETA, FRONT (4, 100),

VECS (4, 100), ZERVEC (3),

& YUP (3), AT (3), FROM (3),

INTEGER*4 I, K, L, TIMES
CHARACTER NAME*63
LOGICAL*1 PFRONT (100), PVECS (100)

EXTERNAL ERR

CALL PATTCH ("7, ERR)

AT (1) = 0.3
AT (2) =0

AT (3) =0
FROM (1) = O
FROM (2) =0
FROM (3) = -1
UP (1) = 0.3
UP (2) =1

UP (3) =0

YUP (1) = O
YUP (2) =1
YUP (3) = O
ZERVEC (1) = O
ZERVEC (2) = O
ZERVEC (3) =0

CALL PINIT (ERR)
CALL PEYEBK (“EYE’, 1.0, 0.0, 0.0,
1000.0, “INTEN’, ERR)

UP (3)

2.0, 0.0,

Tools and Techniques

Using the GSRs

CALL
&

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

SALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DTHETA = 10.

PSEINT

PLOOKA
PFN
PFN
PFN
PFN
PFN
PFN
PFN
PFN
PFN
PFNN
PFN
PCONN
PCONN
PSNBOO
PFN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PCONN
PSNV3D
PSNV3D
PSNV3D
PCONN
PFN
PCONN
PCONN
PSNV3D
PSNV3D
PINST

(

“INTEN", .TRUE., 0.5, 1.0,
“LOOK”, ERR)

“LOOK”, AT, FROM, UP, “PIC”,

“ATX’, ’XVEC’, ERR)
“ATY”, ’YVEC’, ERR)
“ATZ’, ’ZVEC’, ERR)
FROMX’, “XVEC’, ERR)
FROMY”, ’YVEC’, ERR)
FROMZ”, “ZVEC’, ERR)

“AC_AT”, “ACCUMULATE”, ERR)

“AC_FROM”, “ACCUMULATE’, ERR)

“ADD_UP“, “ADDC’, ERR)
“SYNC_UP”, “SYNC”, 3, ERR
“FIX_SYNC’, “NOP”, ERR)

“SYNC_UP’, 3, 1, ’FIX_SYNC~,
‘FIX_SYNC’, 1, 3, ’SYNC_UP’,

.TRUE., 3, ’“SYNC_UP’, ERR
“LOOK_AT”, “LOOKAT’, ERR)
‘DIALS”, 1, 1, “ATX’, ERR
“DIALS”, 2, 1, “ATY’, ERR
“DIALS”, 3, 1, “ATZ’, ERR
‘DIALS’, 5, 1
‘DIALS”, 6, 1

7, 1

“DIALS”

’

’

ATX”, 1, 1, “AC_AT’, ERR
“ATY”, 1, 1, “AC_AT’, ERR
“ATZ”, 1, 1, “AC_AT’, ERR
“FROMX”, 1, 1, “AC_FROM~,
“FROMY”, 1, 1, “AC_FROM~,
FROMZ”, 1, 1, “AC_FROM~,
“AC_AT”, 1, 1, “SYNC_UP’,
“AC_AT’, 1, 1, “ADD_UP’,

“ADD_UP”,1, 2, ’SYNC_UP’,

“SYNC_UP”, 1, 1, “LOOK_AT”,

)

)

)
)
)

, “FROMX’, ERR)
, FROMY’, ERR)
, “FROMZ’, ERR)

)
)

)
ERR

ERR
ERR
ERR
ERR
ERR

ERR)

ERR)
ERR)

R

ERR

“SYNC_UP’, 2, 3, “LOOK_AT’, ERR
AC_FROM”, 1, 2, “LOOK_AT’, ERR

AT, 2, “AC_AT’, ERR)
FROM, 2, “AC_FROM’, ERR)
YUP, 2, “ADD_UP’, ERR)

“LOOK_AT”, 1, 1, “LOOK’, ERR)

‘FIX_AT’, “CONST’, ERR)
AC_FROM”, 1, 1, ‘FIX_AT’,

ZERVEC, 2, °“FIX_AT’, ERR)
ZERVEC, 1, “AC_FROM’, ERR
“PIC’,”"’, ERR)

* DEGRAD

ERR)
‘FIX_AT’, 1, 1, “AC_AT’, ERR)

)

1T3-49

THETA = -DTHETA
DO I =1, 36
THETA = THETA + DTHETA

CALL COMWAV (THETA, VECS, PVECS)

DO K=1, 50
DO L=1, 4
FRONT (L, K) = VECS (L, (K-1)*2+1)
PFRONT (K) = PVECS ((K-1) * 2 + 1)
END DO
END DO
CALL COMNAM (I, NAME)
CALL PBEGS (NAME, ERR)
CALL PSER (“"’, 1, 35, .FALSE., I, “"’
CALL PIFPHA (“"’, .TRUE., “"’, ERR)
CALL PVCBEG (°"’, 100, .FALSE., .FALSE.,
& PVSEPA, ERR)
CALL PVCLIS (100, VECS, PVECS, ERR)
CALL PVCEND (ERR)
CALL PVCBEG (“"’, 50, .FALSE., .FALSE.,
& PVCONN, ERR)
CALL PVCLIS (50, FRONT, PFRONT, ERR)
CALL PVCEND (ERR)
CALL PENDS (ERR)
CALL PINCL (NAME, °“PIC’, ERR)
END DO
CALL PDISP (“EYE’, ERR)
CALL PSNST (“X”, 1, ‘DLABEL1’, ERR)
CALL PSNST (°Y’, 1, ’DLABEL2’, ERR)
CALL PSNST (“Z”, 1, ’DLABEL3’, ERR)
CALL PSNST (“LOOK AT’, 1, °“DLABEL4’, ERR)
CALL PSNST (“X”, 1, ‘DLABEL5’, ERR)
CALL PSNST (°Y’, 1, °DLABEL6’, ERR)
CALL PSNST (“Z”, 1, ’‘DLABEL7’, ERR)
CALL PSNST (“FROM’, 1, “DLABEL8’, ERR)
CALL PDTACH (ERR)
END
SUBROUTINE COMNAM (MANEID, NAME)
INTEGER*4 NAMEID
CHARACTER NAME* (*)
INTEGER*4 J, LNAME
NAME = “LISTO0O"’

T7T3-50

, ERR)

3,

3 ’

Tools and Techniques

LNAME = NAMEID

Jd =1

DO WHILE (LNAME .GT. 0)
NAME (J:J) = CHAR (MOD (LNAME, 10) + ICHAR (°07))
LNAME = LNAME/10
J=J -1

END DO

RETURN

END

SUBROUTINE COMWAV (THETA, VECLIS, POSLIN)

REAL*4 THETA, VECLIS (4, 100)
LOGICAL*1 POSLIN (*)

REAL*4 AMP, ALPHA, BETA
PARAMETER (AMP = 0.8, ALPHA = -0.02,
& BETA = 0.2513274123)

INTEGER*4 I, IADDR

IADDR = -1
DO I = 0, 49
IADDR = IADDR + 2
VECLIS (1, IADDR) =1 / 50.0
VECLIS (2, IADDR) = AMP * EXP (ALPHA * I)
& * COS (THETA - BETA * I)
VECLIS (3, IADDR) = O
VECLIS (4, IADDR) =1 - I/150.0
POSLIN (IADDR) = .TRUE.
VECLIS (1, IADDR+1) VECLIS (1, IADDR)
VECLIS (2, IADDR+1) 0
VECLIS (3, IADDR+1l) = 0.5
VECLIS (4, IADDR+1) VECLIS (4, IADDR)
POSLIN (IADDR+1) . TRUE.
END DO
RETURN
END

THE FOLLOWING ERROR HANDLER DEMONSTRATES THE
GENERAL OVERALL RECOMMENDED FORM THAT THE USER’S
OWN ERROR HANDLER SHOULD FOLLOW.

OO aQ

THIS ERROR HANDLER UPON BEING INVOKED WRITES ALL

Using the GSRs TT3-51

173-52

Q eReoNeoNeNeoNeoNoNeoNoEesNeoNoNoNoNoNoloNo oo Mo

QOO0

Q

MESSAGES TO THE DATA FILE ASSOCIATED WITH THE
FORTRAN LOGICAL UNIT NUMBER OF 10. ERROR AND
WARNING EXPLANATION MESSAGES ARE WRITTEN TO
A DATA FILE FOR 2 REASONS:

1. THE ERROR HANDLER SHOULD NOT IMMEDIATELY
WRITE INFORMATION OUT ON THE PS 390
SCREEN SINCE THE EXPLANATORY TEXT
DEFINING THE ERROR OR WARNING CONDITION
MAY BE TAKEN AS DATA BY THE PS 390 AND
THEREFORE WIND UP NOT BEING DISPLAYED ON
THE PS 390 SCREEN (AS IN THE CASE OF A
CATASTROPHIC DATA TRANSMISSION ERROR).

2. THE LOGGING OF ERRORS AND WARNINGS TO A
LOGFILE ALLOWS ANY ERRORS AND/OR WARNINGS
TO BE REVIEWED AT A LATER TIME.

SUBROUTINE ERR (ERRCOD)

PROCEDURAL INTERFACE ERROR HANDLER:

INCLUDE (PROCONSF)
INTEGER*4 ERRCOD

1 CALL PIDCOD (ERRCOD)
IF (ERRCOD .LT. 512) GOTO 3
WRITE (10, *) “PS—-I-ATDCOMLNK: ATTEMPTING ~
& // °“TO DETACH PS -
& // ~300/HOST COMMUNICATIONS LINK.~

WHEN ATTEMPTING TO PERFORM THE DETACH, USE
A DIFFERENT ERROR HANDLER TO AVOID RECURSIVE
SUBROUTINE CALLS

CALL PDTACH (DETERH)
CLOSE (UNIT=10)

INVOKE TRACEBACK

Tools and Techniques

CALL ERRTRA

STOP
END IF

3 RETURN

QO Qa0

C

Using the GSRs

END

SUBROUTINE

DETERH (ERRCOD)

MAIN ERROR HANDLER DETACH ERROR HANDLER:

INTEGER*4

WRITE (10,
&
&
WRITE (10,
&

ERRCOD

*) “PS—-I-ERRWARDET: ERROR/WARNING -
// “TRYING TO DETACH -

// ‘THE COMMUNICATIONS”

*) “LINK BETWEEN THE PS 300 AND ~

// °“THE HOST.~”

CALL PIDCOD (ERRCOD)

RETURN
END

SUBROUTINE

PIDCOD (ERRCOD)

PIDCOD: IDENTIFY PROCEDURAL INTERFACE
COMPLETION CODE.

INCLUDE (
INTEGER*4
CHARACTER
PARAMETER
&

WRITE (10,
&
&

WRITE (10,
IF (ERRCOD

PROCONSF)

ERRCOD

MSSG1*55, MSSG2*67

(MSSG1 = “PS-W-UNRCOMCOD: PROCEDURAL ~
// “INTERFACE (GSR) COMPLETION 7)

*) “PS-I-PROERRWAR: PROCEDURAL ~

// 7 INTERFACE WARNING/~

// “ERROR COMPLETION CODE WAS ~

*) “RECEIVED.~

.NE. PSWBNC) GOTO 1

WRITE (10, *) “PS-W-BADNAMCHR: BAD CHARACTER ~

&
&

GOTO 1000
ELSE

// °IN NAME WAS ~
// °TRANSLATED TO: " ". -

T73-53

173-54

1 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)
GOTO 1000
ELSE

2 IF (ERRCOD .NE.
WRITE (10, *)

& /7
& /7
WRITE (10, *)
GOTO 1000
ELSE

7 IF (ERRCOD .NE.
WRITE (10, *)

& /7
& /7
WRITE (10, *)
GOTO 1000
ELSE

8 IF (ERRCOD .NE.
WRITE (10, *)

& //
CALL PIBMSP
GOTO 1000

ELSE

9 IF (ERRCOD .NE.

WRITE (10, *)

& //
WRITE (10, *)
& //

WRITE (10, *)
CALL PIBMSP
GOTO 1000
ELSE
10 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
CALL PIBMSP
GOTO 1000

ELSE

11 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //

PSWNTL) GOTO 2

* PS-W-NAMTOOLON :
“LONG. NAME WAS ~
“TRUNCATED TO ~
7256 CHARACTERS.~’

NAME TOO -

PSWSTL) GOTO 7
*PS-W-STRTOOLON :
“LONG. STRING ~
“WAS TRUNCATED ~
“TO 240 CHARACTERS.”

STRING TOO

PSWAAD) GOTO 8
*PS-W—-ATTALRDON:
“ALREADY DONE. ~

ATTACH ~

’

MULTIPLE CALL TO PATTCH WITHOUT”

“INTERVENING PDTACH CALL IGNORED.~

PSWAKS) GOTO 9
“PS-W-ATNKEYSEE:
“SEEN (DEPRESSED) .~

PSWBGC) GOTO 10
“PS-W-BADGENCHR: BAD GENERIC
“CHANNEL CHARACTER. BAD -~

“CHARACTER IN STRING SENT VIA:

“PPUTGX WAS TRANSLATED TO -
“A BLANK.~’

PSWBSC) GOTO 11
“PS-W-BADSTRCHR: BAD ~
“CHARACTER IN STRING WAS ~
“TRANSLATED TO A BLANK.~

PSWBPC) GOTO 12
“PS-W-BADPARCHR: BAD PARSER
“CHANNEL CHARACTER. BAD ~
“CHARACTER IN STRING SENT TO”

-,

ATTENTION KEY

-

-,

.

Tools and Techniques

WRITE (10,
&

*)
//

CALL PIBMSP

GOTO 1000
ELSE
12 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
GOTO 1000
ELSE
13 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
GOTO 1000
ELSE
14 IF (ERRCOD .
WRITE (10,
&
&
WRITE (10,
GOTO 1000
ELSE
15 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
16 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
17 IF (ERRCOD .
WRITE (10,
&
&
GOTO 1000
ELSE
18 IF (ERRCOD .
WRITE (10,
&

Using the GSRs

NE.
*)
//
//
*)

NE.
*)
//
//
*)

NE.
*)
//
//
*)

NE.
*)
//
//

NE.
*)
//
//

NE.
*)
//
//

NE.
*)
//

“PS 300 PARSER VIA: PPUTP

“WAS TRANSLATED TO A BLANK.~’

PSEIMC) GOTO 13
“PS—-E-INVMUXCHA: INVALID -
“MULTIPLEXING CHANNEL -
“SPECIFIED IN CALL TO:~
“PMUXCI, PMUXP, OR PMUXG.~

PSEIVC) GOTO 14
“PS—-E-INVVECCLA: INVALID -
“VECTOR LIST CLASS °

“SPECIFIED”
“IN CALL TO:

PVCBEG.

PSEIVD) GOTO 15
’PS-E-INVVECDIM: INVALID ~
“VECTOR LIST DIMENSION ~
“SPECIFIED IN CALL TO~

“PVCBEG. ~

PSEPOE) GOTO 16
‘PS-E-PREOPEEXP: PREFIX ~
“OPERATOR CALL WAS ~

“EXPECTED. ~

PSEFOE) GOTO 17
‘PS-E~FOLOPEEXP: FOLLOW ~
“OPERATOR CALL WAS -

“EXPECTED. ~

PSELBE) GOTO 18
“PS-E-LABBLKEXP: CALL TO -
“PLAADD OR PLAEND WAS ~

“EXPECTED.

PSEVLE) GOTO 19
“PS—-E-VECLISEXP: CALL TO -
“PVCLIS OR PVCEND -

,

173-55

& //
GOTO 1000
c ELSE
19 IF (ERRCOD .NE.
WRITE (10, *)

“WAS EXPECTED.

PSEAMV) GOTO 20
“PS-E-ATTMULVEC:
“MULTIPLE CALL ~

ATTEMPTED ~

“SEQUENCE TO PVCLIS IS NOT”
“PERMITTED FOR BLOCK -
“NORMALIZED VECTORS. "~

& //
& //
WRITE (10, *)
& //
GOTO 1000
C ELSE

20 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)
GOTO 1000
c ELSE

21 IF (ERRCOD .NE.
WRITE (10, *)

PSEMLB) GOTO 21
“PS-E-MISLABBEG:

MISSING -

“LABEL BLOCK BEGIN CALL. ~
“CALL TO PLAADD OR PLAEND”

“WITHOUT CALL TO: PLABEG.~
PSEMVB) GOTO 22
’PS-E-MISVECBEG: MISSING -

& //
& //
WRITE (10, *)
& //
GOTO 1000
C ELSE

22 IF (ERRCOD .NE.

WRITE (10, *)
& /7
GOTO 1000
c ELSE

23 IF (ERRCOD .NE.

WRITE (10, *)
& //
& //
WRITE (10, *)
GOTO 1000
C ELSE

“VECTOR LIST BEGIN -
“CALL. CALL TO PVCLIS”
“OR PVCEND WITHOUT CALL -~
“TO: PVCBEG.~

PSENUN) GOTO 23
“PS-E-NULNAM: NULL NAME -~
“PARAMETER IS NOT ALLOWED.~

PSEBCT) GOTO 24
“PS-E-BADCOMTYP: BAD ~
“COMPARISON TYPE OPERATOR -
“SPECIFIED IN ~

“CALL TO: PIFLEV.~”

24 IF (ERRCOD .NE.
WRITE (10, *)

PSEIFN) GOTO 25
“PS-E-INVFUNNAM:

INVALID ~

& //
& //

WRITE (10, *)
& /7
& //

WRITE (10, *)
& //

TT73-56

“FUNCTION NAME. -
“ATTEMPTED PS 300°
“FUNCTION INSTANCE FAILED -
“BECAUSE THE NAMED -~
“FUNCTION CANNOT POSSIBLY”
“EXIST. THE FUNCTION NAME ~
“IDENTIFYING THE ~

Tools and Techniques

& //
WRITE (10, *)
GOTO 1000

ELSE
25 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)
& //
GOTO 1000
ELSE

26 IF (ERRCOD .NE.
WRITE (10, *)
& /7
& //

GOTO 1000

ELSE

27 IF (ERRCOD .NE.
WRITE (10, *)

& //
& //
WRITE (10, *)
& //
& //
GOTO 1000
ELSE

28 IF (ERRCOD .NE.
WRITE (10, *)

& /7
& /7

WRITE (10, *)
& /!
& //

WRITE (10, *)
& //

GOTO 1000
ELSE

38 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000
ELSE
39 IF (ERRCOD .NE.

Using the GSRs

“FUNCTION TYPE TO INSTANCE~

“WAS LONGER THAN 256 CHARACTERS.~’

PSENNR) GOTO 26
“PS—-E-NULNAMREQ
“PARAMETER IS -

¢ NULL NAME -~

“REQUIRED IN OPERATE NODE~”

“CALL FOLLOWING

A PPREF OR ~

“PFOLL PROCEDURE CALL.~

PSETME) GOTO 27
* PS~E-TOOMANEND

. TOO -

“MANY END_STRUCTURE CALLS -

“INVOKED. ”

PSENOA) GOTO 28
“PS—-E-~NOTATT:

THE PS 300 ~

“COMMUNICATIONS LINK -

“HAS NOT -
“YET BEEN ESTAB

LISHED. ~

“PATTCH HAS NOT BEEN ~

“CALLED OR FAIL

PSEODR) GOTO' 38

ED.”

“PS-E-OVEDURREA: AN ~
“OVERRUN OCCURRED DURING -

“A READ OPERATI

“THE SPECIFIED INPUT BUFFER ~

“IN CALL TO: P
“OR: PGETW~’

ON.~

GET ~

“WAS TOO SMALL AND ~

“TRUNCATION HAS

PSEPDT) GOTO 39
" PS—-E-PHYDEVTYP
“OR INVALID PHY
“DEVICE TYPE~’

“SPECIFIER IN CALL TO PATTCH.~

PSELDN) GOTO 40

OCCURRED. ©

: MISSING -
SICAL -~

173-57

1T3-58

WRITE (10, *)
& //
& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000
ELSE
40 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000
ELSE
41 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
GOTO 1000
ELSE
42 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
GOTO 1000
ELSE
43 IF (ERRCOD .NE.
WRITE (10, *)
& //
GOTO 1000
ELSE
44 IF (ERRCOD .NE.
WRITE (10, *)
& //
GOTO 1000
ELSE
45 IF (ERRCOD .NE.
WRITE (10, *)
& //
& //
WRITE (10, *)
& //
& //
WRITE (10, *)
CALL PVAXSP
GOTO 1000

’PS—-E-LOGDEVNAM: MISSING -~
“OR INVALID LOGICAL -~
“DEVICE NAME~“

“SPECIFIER IN CALL TO PATTCH.~’

PSEADE) GOTO 41
“PS-E-ATTDELEXP: ATTACH ~
“PARAMETER STRING
“DELIMITER”

2n/" WAS EXPECTED.

PSFPAF) GOTO 42
’PS-F-PHYATTFAI: ~
“PHYSICAL ATTACH OPERATION ~
“FAILED.”

PSFPDF) GOTO 43
‘PS-F-PHYDETFAI: PHYSICAL -
“DETACH OPERATION -~
“FAILED.”

PSFPGF) GOTO 44
“PS-F-PHYGETFAI: PHYSICAL -
“GET OPERATION FAILED.~’

PSFPPF) GOTO 45
“PS—-F-PHYPUTFAI: PHYSICAL -
“PUT OPERATION FAILED.~

PSFBTL) GOTO 46
“PS-F-BUFTOOLAR: BUFFER ~
“TOO LARGE ERROR IN ~

“CALL TO: PSPUT.~

“THIS ERROR SHOULD NEVER ~“
“OCCUR AND INDICATES A ~
“PROCEDURAL INTERFACE (GSR)~
“INTERNAL VALIDITY CHECK.~’

Tools and Techniques

C

ELSE

46 IF (ERRCOD .NE. PSFWNA) GOTO 47

WRITE (10, *) “PS-F-WRONUMARG: WRONG ~

& // “NUMBER OF ARGUMENTS ~

& // “IN CALL TO PROCEDURAL’
WRITE (10, *) .{INTERFACE (GSR) LOW-LEVEL -

& // “I/0 PROCEDURE ~

& // 7 (SOURCE FILE: PROIOLIB.MAR).”
WRITE (10, *) “THIS ERROR SHOULD NEVER ~“

& // “OCCUR AND INDICATES A ~

& // “PROCEDURAL INTERFACE (GSR)~

WRITE (10, *) “INTERNAL VALIDITY CHECK.~’
CALL PVAXSP
GOTO 1000

ELSE

47 IF (ERRCOD .NE. PSFPTL) GOTO 48

C

C

C

C

c
48

C
49

C
50

C

C
51

C
1000

Using the GSRs

WRITE (10, *) “PS-F-PROTOOLAR: PROMPT ~

& // “BUFFER TOO LARGE ~

& // “ERROR IN CALL TO: PSPRCV.~
WRITE (10, *) °“THIS ERROR SHOULD NEVER ~

& // “OCCUR AND INDICATES A ~*

& // “PROCEDURAL INTERFACE (GSR)~“

WRITE (10, *) “INTERNAL VALIDITY CHECK.~
CALL PVAXSP
GOTO 1000

ELSE

UNKNOWN ERROR MESSAGE ERROR MESSAGE.

IF (ERRCOD .GE. 512) GOTO 49
MSSG2 = MSSGl // “WARNING~’
GOTO 51

ELSE

IF (ERRCOD .GE. 1024) GOTO 50
MSSG2 = MSSG1l // “ERROR ~
GOTO 51
ELSE
MSSG2 = MSSG1l // “FATAL ERROR -
END IF
END IF
WRITE (10, *) MSSG2
WRITE (10, *) “CODE IS UNRECOGNIZED.~
WRITE (10, *) “PROBABLE PROCEDURAL -

& // “INTERFACE (GSR) INTERNAL -
& // “VALIDITY CHECK ERROR.~
END IF

WRITE (10, *)

TT3-59

1T3-60

Q Qa0

oo ool

RETURN
END

SUBROUTINE

PIBMSP:

WRITE (10,
&

&

WRITE (10,
RETURN
END

SUBROUTINE

PVAXSP:

WRITE (10,
&

&

WRITE (10,
RETURN
END

PIBMSP

WRITE THE "IBM VERSION SPECIFIC"

MESSAGE TO THE ERROR HANDLER FILE.

*) “THIS ERROR/WARNING IS ~

// “APPLICABLE ONLY TO THE IBM ~
// “VERSION OF THE~

*) “PROCEDURAL INTERFACE (GSR).~

PVAXSP

WRITE THE "DEC VAX/VMS VERSION
SPECIFIC" MESSAGE TO THE ERROR
HANDLER FILE.

*) “THIS ERROR/WARNING IS *
// “APPLICABLE ONLY TO THE DEC *
// ‘VAX/VMS VERSION OF’

*) “THE PROCEDURAL INTERFACE (GSR).~

Tools and Techniques

Appendix C - Pascal V2 Example Program

This appendix contains a network creation example program that that illustrates
the use of the PS 390 DEC/VAX Pascal V2 Graphics Support Routines. The

program contains an error handler routine example.

PROGRAM BlkLevp (INPUT, OUTPUT);

CONST
Deg rad = 0.017453292;
%INCLUDE “PROCONST.PAS”

TYPE
%INCLUDE “PROTYPES.PAS”

VAR
Front : P_VectorListType;
vecs : P_VectorListType;
Zero_vec : P_VectorType;
Y _Up : P_VectorType;
At : P_VectorType;
From : P_VectorType;
Up : P_VectorType;
Name : P_VaryingType;
Theta : REAL;
DTheta : REAL;
i : INTEGER;
k : INTEGER;
1 : INTEGER;
Times : INTEGER;

%INCLUDE “PROEXTRN.PAS”

The following Error Handler demonstrates the
general overall recommended form that the user’s
own error handler should follow.

This error handler upon being invoked writes ALL
messages to the data file: “PROERROR.LOG” for 2
reasons:

1. The error handler should NOT immediately
write information out on the PS 390 screen
since the explanatory text defining the
error or warning condition may be taken as

LS e e e e B e N e N e)

Using the GSRs

}
}
}
}
}
}
}
}
}
}
}
}

17T3-61

data by the PS 390 and therefore wind up
not being displayed on the PS 390 screen
(as in the case of a catastrophic data
transmission error.

2. The logging of errors and warnings to a
logfile allows any errors and/or warnings
to be reviewed at a later time.

P Wt W et N ate Nt T et W ate Bt
e e el S A e et e

PROCEDURE Err (Error_code: Integer);

VAR
vMSdef, PIdef : P_VaryingType;
Error_Log : [STATIC] TEXT;
ErrorFileOpen : [STATIC] BOOLEAN := FALSE;

[EXTERNAL] PROCEDURE LIB$STOP
(%IMMED CompletionCode : INTEGER); EXTERN;

PROCEDURE IBM_Specific;
BEGIN
WRITE (Error_Log, “This error/warning is 7);
WRITE (Error_Log, “applicable ONLY to the IBM “);
WRITELN (Error_lLog, “version of the’);
WRITELN (Error_Log, “Procedural Interface (GSR).”);
END;

PROCEDURE VAX_Specific;
BEGIN

WRITE (Error_Log, “This error/warning is 7);
WRITE (Error_Log, “applicable ONLY to the DEC ”);
WRITELN (Error_Log, “VAX/VMS version of”);
WRITE (Error_Log, “the Procedural Interface “);
WRITELN (Error_Log, “(GSR).”);

END;

PROCEDURE UnknownError;

BEGIN
WRITE (Error_Log, ‘PS-W-UNRCOMCOD:)
WRITE (Error_Log, “Procedural Interface 7);
WRITE (Error_Log, ’(GSR) completion 7);
IF Error_code < 512

173-62 Tools and Techniques

THEN WRITE (Error_Log, “warning *)
ELSE IF Error_code < 1024
(Error_Log, ‘error 7)
(Error_Log, “fatal error “);

THEN WRITE
ELSE WRITE

WRITELN (Error_Log,

WRITE
WRITE

(Error_Log,
(Error_Log,

WRITELN (Error_Log,

END:
PROCEDURE
(Error_code
BEGIN
WRITE (Error_Log,
WRITE (Error_lLog,
WRITE (Error_Log,

WRITELN (Error_Log,

“code is unrecognized.”);
‘Probable Procedural “);
“Interface (GSR) Internal 7);
‘validity check error.”);

IdentifyCompletionCode

INTEGER) ;

“PS—I-PROERRWAR:

Procedural °);

‘Interface (GSR) warning/”);
‘error completion code was “);

‘received.”’);

{ Identify warning codes }

IF Error_Code < 512 THEN CASE Error_Code OF

Using the GSRs

PSW_BadNamChr:
BEGIN

WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSW_NamTooLon:
BEGIN
WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSW_StrTooLon:
BEGIN
WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSW_AttAlrDon:
BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
(Error_Log,

WRITE

WRITELN (Error_Log, “ignored.”);

“PS-W-BADNAMCHR :
“character in name was 7);
“translated to:

“PS-W-NAMTOOLON:
“long. Name was truncated to “7);
256 characters.”);

*PS-W—-STRTOOLON :
“long. String was truncated 7);
“to 240 characters.”);

“PS—-W—-ATTALRDON :
“already done. Multiple call 7);
“to PAttach without”);

“intervening PDetach call 7);

Bad 7);

Il_"");

Name too 7);

Attach 7);

String too “);

173-63

17T3-64

END;

PSW_AtnKeySee:

BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
IBM_Specific;

END;

PSW_BadGenChr:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
IBM_Specific;

END;

PSW_BadStrChr:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
IBM_Specific;

END;

PSW_BadParChr:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
IBM Specific;

END;

" PS-W—ATNKEYSEE:

Attention

“key seen (depressed).”’);

*PS-W-BADGENCHR:

Bad generic

“channel character. Bad “);
“character in string sent via:”);
/7 PPutGX was translated to 7);
‘a blank.”);

“PS-W-BADSTRCHR:

Bad “);

“character in string was 7);
“translated to a blank.”);

“PS-W-BADPARCHR:

Bad parser

“channel character. Bad 7);
“character in string sent to”);

‘PS5 300 parser via:

PPutp ~

/)’
’

)

)

)

‘was translated to a blank.”);

OTHERWISE UnknownError;

END

{ Identify errors }

ELSE IF Error_code < 1024 THEN CASE Error_Code OF

PSE_InvMuxCha:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_Log,
END;
PSE_InvVecCla:
BEGIN

“PS—-E-INVMUXCHA:

Invalid 7);

‘multiplexing channel “);
“specified in call to:”);

“PMuxCI,

PMuxP,

or PMuxG.”);

Tools and Techniques

Using the GSRs

WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,

END;

PSE_InvVecDim:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_Log,
END;
PSE_PreOpeExXp:
BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSE_Fo0lOpeExp:
BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSE_LabBlkExp:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
END;
PSE_VecLisExp:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
END;
PSE_AttMulvec:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_Log,

END;

PSE_MisLabBeg:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_lLog,
END;

*PS—-E-INVVECCLA:

“vector list class specified 7);
PVecBegn.) ;

“in call to:

“PS-E-INVVECDIM:

Invalid 7);

Invalid 7);

‘vector list dimension 7);
‘specified in call to”);

“PVecBegn.”) ;

“PS—-E-PREOPEEXP:

“operator call was expected.”);

*PS-E-FOLOPEEXP:

‘operator call was expected.”);

“PS—-E-LABBLKEXP:

Prefix 7);

Follow 7);

Call to 7);

‘PLabAdd or PLabEnd was ’);

‘expected.”);

"PS-E-VECLISEXP:

Call to 7);

“PVecList or PVecEnd was “);

“expected.”);

“PS—-E—-ATTMULVEC:

Attempted) ;

‘multiple call sequence to 7);
“PVecList is NOT permitted”);

“for BLOCK normalized vectors.”);

*PS—-E-MISLABBEG:

Missing 7);

“label block begin call. 7);
“Call to PLabAdd or PLabEnd”);

‘without call to:

PLabBegn.) ;

173-65

1T3-66

PSE_MisVecBeg:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_log,
END;
PSE_NulNam:
BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSE_BadComTyp:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITELN (Error_Log,
END;
PSE_InvFunNam:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,

END;

PSE_NulNamReq:

BEGIN
WRITE (Error_Log,
WRITE (Error Log,

WRITELN (Error_Log,
WRITE (Error_Log,
WRITELN (Error_ Log,
END;
PSE_TooManEnd:
BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSE_NotAtt:
BEGIN

WRITE (Error_Log,

*PS-E-MISVECBEG:

‘vector list begin call.

Missing

-,

)
)

“Call to PVecList or PVecEnd’);:

‘without call to:

“PS—-E-NULNAM:

Null name

PVecBeg

,

n.”);

)

‘parameter is not allowed.”);

“PS—-E-BADCOMTYP:

Bad “);

“comparison type operator
“specified in call to:7);

‘PIfLevel.”);

*PS—E-INVFUNNAM:

Invalid

“function name. Attempted
2300 function instance failed’);
“because the named function 7);
“cannot possibly exist. The °);
“function name identifying the”);
“function type to instance 7);
“was longer than 256 7);

“characters.”);

“PS—-E-NULNAMREQ:

Null nam

DK
PS 7))

e 7);

‘parameter is required in “);
‘operate node call following’);
“a PPref or PFoll procedure °);

‘call.”);

“PS-E-TOOMANEND :

Too many

)

“END_STRUCTURE calls invoked.”);

“PS-E-NOTATT:

The PS 300 “);

Tools and Techniques

WRITE (Error_Log,
WRITELN (Error_Log,

WRITE (Error_Log,
WRITELN (Error_Log,
END;
PSE_OveDurRea:
BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
WRITE (Error_Log,
WRITE (Error_Log,
WRITELN (Error_Log,
WRITELN (Error_Log,

END;

PSE_PhyDevTyp:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
VAX_Specific;

END;

PSE_LogDevNam:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
VAX_Specific;

END;

PSE_AttDelExp:

BEGIN
WRITE (Error_Log,
WRITE (Error_Log,

WRITELN (Error_Log,
VAX Specific;
END;

“communications link has not “);
‘yet been established.”);
“PAttach has not been called “);

‘or failed.”);

PS—-E-OVEDURREA :

An overrun 7);

“occurred during a read 7);

‘operation.”);

“The specified input buffer 7);

“in call to: PGET or:
was too small and truncation”);

-

“has occurred.”);

“PS-E-PHYDEVTYP:

PGETW”) ;

Missing or 7);

“invalid physical device type 7);
“specifier in call to PAttach.”);

’PS—E-LOGDEVNAM:

Missing or 7);

“invalid logical device name °);
“specifier in call to PAttach.’);

“PS—-E-ATTDELEXP:

Attach 7);

‘parameter string delimiter 7);
‘m/" was expected.”);

OTHERWISE UnknownError;

END
{ Identify fatal errors

ELSE Case Error_Code OF
PSF_PhyAttFai:
BEGIN
WRITE (Error_Log,
WRITELN (Error_Log,
END;

Using the GSRs

"PS-F-PHYATTFATI:

Physical “);

“attach operation failed.’);

T73-67

TT3-68

PSF_PhyDetFai:

BEGIN
WRITE
WRITELN

END;

(Error_Log,
(Error_Log,

PSF_PhyGetFai:

BEGIN
WRITE
WRITELN

END;

(Error_Log,
(Error_Log,

PSF_PhyPutFai:

BEGIN
WRITE
WRITELN

END;

(Error_Log,
(Error_Log,

PSF_BufTooLar:

BEGIN
WRITE
WRITE
WRITELN
WRITE
WRITE
WRITELN
WRITELN

(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,

VAX_Specific;

END;

PSF_WroNumArg:

BEGIN
WRITE
WRITE
WRITELN
WRITE
WRITELN
WRITE
WRITE
WRITELN
WRITELN

(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,

VAX_Specific;

END;

PSF_ProTooLar:

BEGIN
WRITE
WRITE
WRITELN
WRITE
WRITE
WRITELN

(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,
(Error_Log,

‘PS-F-PHYDETFAI:

Physical -

“detach operation failed.”);

*PS-F-PHYGETFAT:

.

Physical

‘get operation failed.”’);

‘PS-F-PHYPUTFAT:

.

Physical

‘put operation failed.”’);

’PS-F-BUFTOOLAR:

“PSPUT.");

)

)

)

Buffer too 7);
“large error in call to:)

“This error should NEVER “);
“occur and indicates a 7);

“Procedural Interface (GSR)’);
‘validity check.’);

*PS~F~-WRONUMARG:

Wrong 7);

‘number of arguments in call 7);
“to Procedural Interface (GSR)’);
“low-level I/0 procedure “);
PROIOLIB.MAR).”);
‘This error should NEVER “);
“occur and indicates a 7);
‘Procedural Interface (GSR)
‘validity check.’);

“(source file:

“PS-F-PROTOOLAR:

Prompt 7);

/),
El

‘buffer too large error in 7);

‘call to:

PSPRCV. ") ;

“This error should NEVER) ;
“occur and indicates a “);
‘Procedural Interface (GSR)

),

Tools and Techniques

WRITELN (Error_Log, “validity check.”);
VAX_Specific;
END;
OTHERWISE UnknownError;
END;

IF (Error_code >= PSF_PhyAttFai) AND
(Error_code <= PSF_PhyPutFai) THEN BEGIN

Psvmserr (VMSdef, PIdef);
WRITELN (Error_Log, °“DEC VAX/VMS Error definition is:”);
WRITELN (Error_Log, VMSdef);
WRITE (Error_Log, ’Procedural Interface (GSR) 7);
WRITE (Error_Log, “Interpretation of 7);
WRITELN (Error_Log, ‘DEC VAX/VMS completion code:”);
WRITELN (Error_Log, PIdef);
WRITE (Error_Log, ‘DEC VAX/VMS Error code value “);
WRITELN (Error_Log, “was: “, Psvmserr);

END;

WRITELN (Error_Log);

END;

PROCEDURE DetachErrorHan (Detach_Error : INTEGER);

BEGIN
WRITE (Error_Log, “PS-I-ERRWARDET: Error/warning “);
WRITE (Error_Log, “trying to Detach 7);
WRITELN (Error_Log, “the communications link between 7);
WRITELN (Error_Log, “the PS 300 and the host.”);
IdentifyCompletionCode (Detach_Error);

END;

BEGIN
IF NOT ErrorFileOpen THEN BEGIN

{ Open error file for the logging of errors }

OPEN (Error_Log, “Proerror.log”, History := NEW);
REWRITE (Error_lLog);
ErrorFileOpen := TRUE;

END;

IdentifyCompletionCode (Error_Code);

IF Error_code >= 512 THEN BEGIN
WRITE (Error_Log, “PS-I-ATDCOMLNK: Attempting 7);
WRITE (Error_Log, “to detach PS 3007);
WRITELN (Error_Log, ’/Host communications link.”);

Using the GSRs 1T3-69

{ Use different error handler so as
{ not to get caught in a recursive
{ loop if we consistently get an

{ error when attempting to detach

PDetach (DetachErrorHan);
CLOSE (Error_Log);
IF (Error_code >= PSF_PhyAttFai) AND
(Error_code <= PSF_PhyPutFai)
{ identify VMS error if there was one }

THEN LIB$STOP (PsVMSerr)
ELSE HALT;
END;
END;

FUNCTION Uppercase (Chara : CHAR) : CHAR;

BEGIN
IF (Chara >= “a”) AND (Chara <= “z7)
THEN Uppercase := CHR (ORD (Chara) - 32)
ELSE Uppercase := Chara;
END;

PROCEDURE Attach;

VAR
DeviceSpec : CHAR;
DeviceName : VARYING [5] OF CHAR;
AttachParm : P_VaryingType;

BEGIN
DeviceSpec := ;
REPEAT
IF DeviceSpec <> ° ° THEN
WRITELN (OUTPUT, ‘Invalid device type specified.”);
WRITE (OUTPUT, “Device Interface type = (PARALLEL, 7);
WRITE (OUTPUT, “Ethernet, Asynchronous): _7);
IF EOLN (INPUT)
THEN DeviceSpec := ~ ~
ELSE DeviceSpec Uppercase (INPUT");
READLN (INPUT);
UNTIL (DeviceSpec
(DeviceSpec

“P”) OR (DeviceSpec = “E’) OR
A7)

T713-70 Tools and Techniques

REPEAT
WRITE (OUTPUT, “Physical device name (i.e. 7);
WRITE (OUTPUT, °“TT, TTA6, PS390): _7);
READLN (INPUT, DeviceName) ;
UNTIL LENGTH (DeviceName) > 0;
AttachParm := “Logdevnam=" + DeviceName + “:/Phydevtyp=";
IF Uppercase (DeviceSpec) = P’
THEN AttachParm := AttachParm + “PARALLEL’
ELSE IF Uppercase (DeviceSpec) = “E”
THEN AttachParm AttachParm + “Ethernet”
ELSE AttachParm AttachParm + “Async”;
Pattach (AttachParm, ERR);
END;

PROCEDURE Computename (NameId : INTEGER;

VAR Name : P_VaryingType);
VAR
J : INTEGER;
BEGIN
Name := “List000”;
J =1
WHILE (NameId > 0) DO BEGIN
Name [J] := CHR (NameId MOD 10 + ORD (°07));
NameId := NameId DIV 10;
j := PRED (j);
END;
END;
PROCEDURE ComputeWave (Theta : REAL;
VAR VecList : P_VectorListType);
CONST
Amp = 0.8;
Alpha = ~-0.02;
Beta = 0.2513274123;
VAR
i : INTEGER;
Addr : INTEGER;
Iaddr : INTEGER;
BEGIN
Iaddr := O;
FOR i := 0 TO 49 DO BEGIN

Iaddr := SUCC (Iaddr);

Using the GSRs 1713-71

173-72

VecList [Iaddr].
VecList [Iaddr].

VecList [Iaddr].
VecList [Iaddr].
VecList [Iaddr].

Iaddr

END;
END;
BEGIN
Attach; { Do the Attach }
At.V4 [1] := 0.3;
At.V4 [2] := O;
At.Vv4 [3] := 0O;
From.V4 [1] := O;
From.V4 [2] := O;
From.V4 [3] := -1;
Up.V4 [1] := 0.3;
Up.V4 [2] := 1;
Up.V4 [3] := O;
Y Up.V4 [1] := O;
Y Up.V4 [2] 1;
Y Up.V4 [3] := O;
Zero_vec.V4 [1] := O;
Zero_vec.V4 [2] := O;
Zero_vec.V4 [3] := O;
PInit (Err);
PEyeBack (“eye’, 1.0, 0.0, 0.0, 2.0, 0.0,
1000.0, “inten’, Err);
PSetInt (“inten”, TRUE, 0.5, 1.0, “look’, Err);
PLookat (“look’, At, From, Up, ‘pic’, Err);
PFnInst (“atx”, “xvec’, Err);
PFnInst (“aty”, “yvec’, Err);
PFnInst (“atz’, “zvec’, Err);
PFnInst (“fromx’, “xvec’, Err);
PFnInst (“fromy”, “yvec’, Err);
PFnInst (“fromz”’, “zvec’, Err);
PFnInst (“ac_at”’, “accumulate’, Err);
PFnInst (“ac_from”, “accumulate’, Err);
PFnInst (“add_up’, “addc”, Err);
PFnInstN (“sync_up”’, “sync’, 3, Err);
PFnInst (“fix_sync’, ‘nop”, Err);

Draw := TRUE;
= SUCC (Iaddr);

VecList [Iaddr]
VecList [Iaddr]
VecList [Iaddr]
VecList [Iaddr]

VecList [Iaddr].Draw := TRUE;

V4 [1] =1 / 50.0;
V4 [2] := Amp * EXP
* COS
V4 [3] := O;
V4 [4) :=1 - 1/150.0;

.V4 [1] := VecList [PRED (Iaddr)].v4
V4 [2] := O;

V4 [3] := 0.5;

.V4 [4] := VecList [PRED (Iaddr)].v4

(Alpha * i)

(Theta — Beta * 1i);

(11;

[41;

Tools and Techniques

PConnect
PConnect
PSndBool
PFnInst
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PConnect
PSndv3D
PSndv3D
PSndv3D
PConnect
PFnInst
PConnect
PConnect
PSndv3D
PSndv3D
PInst
Dtheta :=
Theta
FOR i :=
Theta

FOR k
FOR 1

=

“sync_up’, 3, 1,

7fix_sync’, 1, 3,

TRUE, 3, “sync_up’, Err);
“look_at”, “lookat’, Err);
‘dials”, 1, 1, “atx”, Err
“dials’, 2, 1, “aty’, Err
‘dials”, 3, 1, ‘atz’, Err
‘dials”, 5, 1, “fromx”, Err);
‘dials”, 6, 1, “fromy’, Err);
‘dials”, 7, 1, “fromz’, Err);
‘atx”, 1, 1, “ac_at’, Err
‘aty’, 1, 1, “ac_at’, Err
‘atz”, 1, 1, “ac_at’, Err
“fromx”, 1, 1, “ac_from”,
“fromy”, 1, 1, “ac_from”,
‘fromz”, 1, 1, “ac_from”,
‘ac_at’, 1, 1, “sync_up”,
‘ac_at’, 1, 1, “add_up’,
“add_up’,1, 2, “sync_up”’,
‘sync_up”, 1, 1,

‘sync_up”’, 2, 3,

‘ac_from”, 1, 2,
‘ac_at’, Err),;
From, 2,
Y up, 2,
“look_at”,

At, 2,

‘fix_at”,

“ac_from

“fix_at”’,
Zero_vec,
Zero_vec,

. .,

pic”,

’

“ac_from”, Err);

‘fix_sync’, Err);

“look_at’, Err);
“look _at”, Err);
“look_at”, Err);

“add_up’, Err);

3

’

1,
2 H
1,

1,

1,

“look”,

“const’, Err);

1,

1,

1,
fix_at”, Err);
‘ac_from”, Err);

‘fix_at’, Err);

)
)
)

)3
)
)
Err
Err
Err
Err
Err
Err

“sync_up’, Err);

)

Err);

‘ac_at”’, Err);

Err);

10.0 * Deg_rad;
~Dtheta;
1 TO 36 DO BEGIN

Theta + Dtheta;
Computewave (Theta, Vecs);

1 TO 50 DO BEGIN
:= 1 TO 4 DO Front [k].V4 [1]
Vecs [SUCC (PRED (k) * 2)1.v4 [11;

Front [k].Draw

END;

Computename (1,
PBegins (Name,
PSetR (7, 1,

PIfPhase (“°, TRUE,

3

Vecs [SUCC (PRED (k) * 2)].Draw;

Name) ;
Err);

5, FALSE, i, ”~

4

’

Err);

PVecBegn (“7, 100, FALSE, FALSE,

Using the GSRs

3,

Err);

P_Sepa, Err);

113-73

PVecList (100, Vecs, Err);

PVecEnd (Err);

PvecBegn (°°, 50, FALSE, FALSE, 3, P_Conn, Err);

PVecList (50, Front, Err);

PVecEnd (Err);

PEnds (Err);

PIncl (Name, “pic’, Err);
END;
PDisplay (“eye’, Err);
PSndStr (“X’, 1, ’Dlabell”, Err);
PSndStr (°Y’, 1, “Dlabel2’, Err);
PSndStr (“Z’, 1, ‘Dlabel3’, Err);
PSndStr (“Look At“, 1, ‘Dlabel4’, Err);
PSndStr (“X’, 1, ’Dlabel5’, Err);
PSndStr (°Y’, 1, “Dlabel6”, Err);
PSndStr (“2°, 1, °Dlabel7’, Err);
PSndStr (“From”, 1, ‘Dlabel8’, Err);
Pdetach (Err);

END.

1T3-74 Tools and Techniques

Appendix D - Pascal/VS Example Program

This appendix contains a network creation example program that illustrates the use
of the PS 390/IBM PASCAL/VS Graphics Support Routines. The program contains

an error handler routine example.

PROGRAM BlkLevp (INPUT, OUTPUT);

CONST
Deg_rad = 0.017453292;
%INCLUDE PROCONST

TYPE
%INCLUDE PROTYPES

VAR
Front P_VectorListType;
Vecs P_VectorListType;
Zero_vec P_VectorType;
Y Up P_VectorType;
At P_VectorType;
From P_VectorType;
Up P_VectorType;
Name STRING (10);
Theta SHORTREAL;
DTheta SHORTREAL;
i INTEGER;
k INTEGER;
1 INTEGER;
Times INTEGER;

%INCLUDE PROEXTRN

‘ErrorLog” .

L T e e T et T et T)

Using the GSRs

The following Error Handler demonstrates
the general overall recommended form that
the user’s own error handler should follow.

This error handler upon being invoked
writes ALL messages to the data file
associated with the PASCAL/VS identifier of:
The messages are written to a
data file for two reasons:

173-75

TT3-76

P T et M e W e S e Tt T e N e W e S NP

1. The error handler should NOT
immediately write information out
on the PS 390 screen since the
explanatory text defining the error
or warning condition may be taken
as data by the PS 390 and therefore
wind up not being displayed on the
PS 390 screen (as in the case of a
catastrophic data transmission
error) .

2. The logging of errors and warnings
to a logfile allows any errors
and/or warnings to be reviewed at a
later time.

PROCEDURE Err (Error_code: Integer);

STATIC
ErrorFileOpen : BOOLEAN;
ErrorLog . TEXT;
VALUE

ErrorFileOpen := FALSE;

PROCEDURE IBM_Specific;
BEGIN

WRITE (ErrorLog, ‘This error/warning is 7);
WRITE (ErrorLog, ‘applicable ONLY to the IBM “);

WRITELN (ErrorLog, ‘version of the”’);

WRITELN (ErrorLog, ‘Procedural Interface (GSR).”);

END;

PROCEDURE VAX_Specific;
BEGIN

WRITE (ErrorLog, “This error/warning is °);
WRITE (ErrorLog, “applicable ONLY to the DEC “);

WRITELN (ErrorLog, “VAX/VMS version of’);

WRITE (ErrorLog, “the Procedural Interface

WRITELN (ErrorLog, “(GSR).7);
END;

[P R U S VI N W B S S S S SR SN R S S S S)

Tools and Techniques

PROCEDURE UnknownError;

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorlLog,
WRITE (ErrorLog,

IF Error_code < 512

THEN WRITE (ErrorlLog,
ELSE IF Error_code <

THEN WRITE (ErrorlLog,
ELSE WRITE (ErrorLog,

“PS—I-PROERRWAR:
‘Interface (GSR) warning/”);

‘error completion code was “);
‘received.”);

“PS—-W-UNRCOMCOD: “);
‘Procedural Interface 7);
“(GSR) completion 7);

‘warning)
1024
‘error 7)
“fatal error

“code is unrecognized.’);
‘Probable Procedural 7);
“Interface (GSR) Internal “);
“validity check error.”);

INTEGER) ;

WRITELN (ErrorlLog,
WRITE (ErrorlLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
END;
PROCEDURE IdentifyCompletionCode
(Error_code
BEGIN
WRITE (ErrorLog,
WRITE (ErrorlLog,
WRITE (ErrorlLog,
WRITELN (ErrorLog,
{ Identify warning codes }

IF Error_Code < 512 THEN CASE Error_Code OF

Using the GSRs

PSW_BadNamChr:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,

WRITELN (ErrorLog,
END;
PSW_NamTooLon:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,

WRITELN (ErrorLog,
END;
PSW_StrTooLon:

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorLog,

WRITELN (ErrorLog,
END:
PSW_AttAlrDon:

“PS-W-BADNAMCHR :

“character in name was

ll_"' ’) ;

‘translated to:

“PS-W-NAMTOOLON :

256 characters.”);

“PS—W-STRTOOLON:

Procedural

)5

Bad 7);

/).
3

Name too
“long. Name was truncated to 7);

String too

)

)

DK

“long. String was truncated 7);

“to 240 characters.”);

T713-77

173-78

BEGIN

WRITE (ErrorLog,
WRITE (Errorlog,
WRITELN (ErrorlLog,
WRITE (ErrorlLog,

WRITELN (ErrorLog,
END;
PSW_AtnKeySee:
BEGIN
WRITE (ErrorlLog,
WRITELN (Errorlog,
IBM_Specific;

END;

PSW_BadGenChr:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorlLog,

WRITELN (ErrorlLog,
IBM_Specific;

END;

PSW_BadStrChr:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,

WRITELN (ErrorlLog,
IBM_Specific;

END;

PSW_BadParChr:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (Errorlog,
WRITE (ErrorLog,

WRITELN (Errorlog,
IBM_Specific;
END;

“PS-W-ATTALRDON:

Attach)

k)

‘already done. Multiple call 7);
“to PAttach without”);

“intervening PDetach call

“ignored.”);

*PS-W—-ATNKEYSEE:

*PS-W-BADGENCHR:

,

)

Attention 7);
“key seen (depressed).”);

Bad generic

“channel character. Bad “);
“character in string sent via:”);
7 PPutGX was translated to 7);

‘a blank.”);

“PS~-W-BADSTRCHR:

“character in string was 7);

Bad 7);

“translated to a blank.”);

“PS-W-BADPARCHR:

‘PS 300 parser via:
“was translated to a blank.”);

OTHERWISE UnknownError;

END

{ Identify errors }

)

Bad parser “);
“channel character. Bad 7);
“character in string sent to”);
)

PPutP

ELSE IF Error_code < 1024 THEN CASE Error_Code OF

PSE_InvMuxCha:
BEGIN
WRITE

(ErrorLog,

’PS—-E~INVMUXCHA:

Invalid

)5

Tools and Techniques

Using the GSRs

WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITELN (ErrorLog,

END;

PSE_InvVecCla:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSE_InvVecDim:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorlLog,
WRITELN (ErrorLog,
WRITELN (ErrorLog,

END;

PSE_PreOpeExp:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSE_Fo0lOpeExp:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSE_LabBlkExp:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorlLog,

END;

PSE_VecLisExp:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLlog,

END;

PSE_AttMulVec:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorlLog,
WRITELN (ErrorLog,

END;

PSE_MisLabBeg:

‘multiplexing channel “);
“specified in call to:”);

“PMuxCI,

PMuxP, or PMuxG.’);

*PS-E-INVVECCLA: Invalid 7);

‘vector list class specified 7);

“in call to: PVecBegn.’);

“PS-E-INVVECDIM: Invalid 7);
“vector list dimension 7);
“specified in call to”);
“PVecBegn.”);

“PS-E-PREOPEEXP: Prefix 7);

‘operator call was expected.’);

“PS-E-FOLOPEEXP: Follow “);

“operator call was expected.’);

“PS-E-LABBLKEXP: Call to 7);
“PLabAdd or PLabEnd was 7);
“expected.”’);

“PS—-E-VECLISEXP: Call to 7);
“PVecList or PVecEnd was “);
“expected.’);

“PS—-E-ATTMULVEC:

‘multiple call sequence to ”);
“PVecList is NOT permitted”);

for BLOCK normalized vectors.”);

Attempted 7);

173-79

173-80

BEGIN
WRITE (ErrorLog,
WRITE (ErrorlLog,
WRITELN (ErrorlLog,
WRITELN (ErrorLog,

END;

PSE_MisVecBeg:

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorlLog,

WRITELN (ErrorLog,
WRITELN (ErrorLog,
END;
PSE_NulNam:
BEGIN
WRITE (ErrorLog,
WRITELN (Errorlog,
END;
PSE_BadComTyp:

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorLog,

WRITELN (ErrorLog,
WRITELN (ErrorlLog,
END;
PSE_InvFunNam:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,
WRITE (ErrorlLog,

WRITELN (ErrorlLog,
END;
PSE_NulNamReq:

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorLog,
WRITELN (ErrorlLog,
WRITE (ErrorlLog,

WRITELN (ErrorlLog,
END;
PSE_TooManEnd:
BEGIN

’PS-E-MISLABBEG: Missing *);
“label block begin call. “);
“Call to PLabAdd or PLabEnd”’);
“without call to: PLabBegn.’)

‘PS-E-MISVECBEG: Missing 7);
‘vector list begin call. 7);
“Call to PVecList or PVecEnd’)
‘without call to: PVecBegn.’)

’PS-E-NULNAM: Null name “);
“parameter is not allowed.”);

“PS-E-BADCOMTYP: Bad 7);
‘comparison type operator “);
“specified in call to:7);
“PIfLevel.”);

“PS-E-INVFUNNAM: Invalid 7);

“function name. Attempted PS °
2300 function instance failed”
‘because the named function 7)
‘cannot possibly exist. The 7)

’

’

)3
)

.
’

“function name identifying the”’);

“function type to instance 7);
‘was longer than 256 “);
“characters.”);

“PS-—-E-NULNAMREQ: Null name “)
‘parameter is required in “);
‘operate node call following”)
‘a PPref or PFoll procedure °)
‘call.”);

.
’

’

Tools and Techniques

Using the GSRs

WRITE (ErrorlLog,
WRITELN (ErrorlLog,
END;

PSE_NotAtt:

BEGIN
WRITE (ErrorlLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,

WRITELN (ErrorlLog,
END;
PSE_OveDurRea:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorlLog,
WRITE (ErrorLog,

WRITELN (Errorlog,
WRITELN (ErrorlLog,
END;
PSE_PhyDevTyp:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorlLog,

WRITELN (ErrorLog,
VAX_Specific;

END;

PSE_LogDevNam:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,

WRITELN (ErrorlLog,
VAX_Specific;

END;
PSE_AttDelExp:
BEGIN
WRITE (ErrorlLog,
WRITE (ErrorLog,

WRITELN (ErrorlLog,
VAX_Specific;
END;

" PS—E-TOOMANEND:

Too many “);

END_STRUCTURE calls invoked.”);

“PS—-E-NOTATT:

The PS 300

)

“communications link has not 7);

‘yet been established.”);

“PAttach has not been called 7);

‘or failed.’);

“PS-E-OVEDURREA: An overrun 7);
“occurred during a read “):

“operation.”);

“The specified input buffer 7);

“in call to:

’

“has occurred.”);

PGET or:
was too small and truncation”);

PGETW”) ;

‘PS—-E-PHYDEVTYP: Missing or 7);
“invalid physical device type “);
“specifier in call to PAttach.’);

“PS—-E-LOGDEVNAM:

Missing or 7);

“invalid logical device name “);
“specifier in call to PAttach.”);

"PS-E-ATTDELEXP:

Attach 7);

‘parameter string delimiter 7);

sn/v was expected.”);

OTHERWISE UnknownError;

END

{ Identify fatal errors }

173-81

173-82

ELSE Case Error_Code OF

PSF_PhyAttFai:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSF_PhyDetFai:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorlLog,

END;

PSF_PhyGetFai:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSF_PhyPutFai:

BEGIN
WRITE (ErrorLog,
WRITELN (ErrorLog,

END;

PSF_BufTooLar:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorlLog,
WRITELN (ErrorlLog,
VAX_Specific;

END;

PSF_WroNumArg:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (Errorlog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITELN (ErrorlLog,
VAX_Specific;

END;

’PS—-F-PHYATTFAI: Physical 7);

‘attach operation failed.”);

‘PS—-F-PHYDETFAI: Physical “);

“detach operation failed.”);

“PS-F-PHYGETFATI: Physical
‘get operation failed.”’);

“PS-F-PHYPUTFATI: Physical
‘put operation failed.”);

)

Bk

‘PS-F-BUFTOOLAR: Buffer too 7);

“large error in call to:

“PSPUT. ") ;

“This error should NEVER “);
‘occur and indicates a “);

)

‘Procedural Interface (GSR)”);

“validity check.”);

‘PS--F-WRONUMARG: Wrong “);

‘number of arguments in call *);
“to Procedural Interface (GSR)”);

“low-level I/0 procedure “);

“(source file: PROIOLIB.MAR).”);

‘This error should NEVER 7);
“occur and indicates a “7);
“Procedural Interface (GSR)

‘validity check.”);

)

Tools and Techniques

PSF_ProTooLar:

BEGIN
WRITE (ErrorLog,
WRITE (ErrorLog,
WRITELN (ErrorLog,
WRITE (ErrorLog,
WRITE (ErrorlLog,
WRITELN (ErrorLog,
WRITELN (ErrorlLog,
VAX_Specific;

END;

‘PS-F-PROTOOLAR: Prompt 7);

‘buffer too large error in “);

“call to: PSPRCV.");

“This error should NEVER °);
‘occur and indicates a “);
‘Procedural Interface (GSR)

“validity check.”’);

OTHERWISE UnknownError;

END;
WRITELN (ErrorLog);
END;

PROCEDURE DetachErrorHan (Detach_Error

BEGIN

WRITE (ErrorLog, “PS—-I-ERRWARDET:

WRITE (ErrorLog, “trying to Detach 7);

WRITELN (ErrorLog, ‘“the communications link between 7);
WRITELN (ErrorLog, “the PS 300 and the host.”);

IdentifyCompletionCode (Detach_Error);

END;

BEGIN

IF NOT ErrorFileOpen THEN BEGIN

{ Open error file for the logging of errors }

REWRITE (ErrorLog);
ErrorFileOpen := TRUE;
END;

IdentifyCompletionCode (Error_Code);

WRITE (ErrorLog, “PS-I-PASTRABAC:

WRITELN (ErrorLog, “Traceback follows:”);

{ Display PASCAL/VS traceback }

TRACE (ErrorlLog);
WRITELN (ErrorLog);

IF Error_code >= 512 THEN BEGIN
WRITE (ErrorLog, “PS-I-ATDCOMLNK: “);

WRITE (ErrorLog, “Attempting to detach PS 3007);
WRITELN (ErrorLog, “/Host communications link.,”);

{ Use different error handler so as
{ not to get caught in a recursive

Using the GSRs

INTEGER) ;

PASCAL/VS 7);

),

Error/warning °);

TT3-83

{ loop if we consistently get an }
{ error when attempting to detach }

PDetach (DetachErrorHan);
CLOSE (ErrorLog);
HALT; {stop}
END;
END;

PROCEDURE Computename (NameId : INTEGER;

VAR Name : STRING) ;
VAR
J : INTEGER;
BEGIN
Name := “List000”;
j =17

WHILE (NameId > 0) DO BEGIN
Name (.j.) := CHR (NameId MOD 10 + ORD (°07));
NameId := NameId DIV 10;

J := PRED (j);

END;
END;
PROCEDURE ComputeWave (Theta : SHORTREAL;

VAR VecList : P_VectorListType);

CONST

Amp = 0.8;

Alpha = -0.02;

Beta = 0.2513274123;
VAR

i : INTECER;

Addr : INTEGER;

Taddr : INTEGER;
BEGIN

Iaddr := 0;

FOR i := 0 TO 49 DO BEGIN
Iaddr := SUCC (Iaddr);
VecList (.Iaddr.).v4 (.1.)
VecList (.Iaddr.).v4 (.2.)

i/ 50.0;

Amp * EXP (Alpha * 1)

¥ COS (Theta — Beta * 1i);
VecList (.Iaddr.).V4 (.3.) := 0;

VecList (.Iaddr.).V4 (.4.) 1 - 1i/150.0;

TT3-84 Tools and Techniques

VecList (.Iaddr.).Draw := TRUE;
Iaddr := SUCC (Iaddr);

VecList (.Iaddr.).v4 (.1.) := VecList (.PRED (Iaddr).).V4 (.1.);
VecList (.Iaddr.).v4 (.2.) := 0;
VecList (.Iaddr.).v4 (.3.) := 0.5;
VecList (.Iaddr.).V4 (.4.) := VecList (.PRED (Iaddr).).V4 (.4.);
VecList (.Iaddr.).Draw := TRUE;
END;
END;
BEGIN
PAttach (7, Err); { Do the Attach }
At. V4 (.1.) := 0.3;
At.V4 (.2.) := 0;
At.V4 (.3.) := 0;
From.V4 (.1.) := O;
From.V4 (.2.) := O;
From.V4 (.3.) := -1;
Up.V4 (.1.) := 0.3;
Up.V4 (.2.) :=1;
Up.V4 (.3.) := 0;
Y Up.V4 (.1.) := 0;
Y Up.V4 (.2.) :=1;
Y Up.V4 (.3.) := 0;
Zero_vec.V4 (.1.) := O;
Zero_vec.V4 (.2.) := 0O;
Zero_vec.V4 (.3.) := 0;
PInit (Err);

PEyeBack (“eye’, 1.0, 0.0, 0.0, 2.0, 0.0,
1000.0, “inten’, Err);

PSetInt (“inten”, TRUE, 0.5, 1.0, “look’, Err);
PLookat (“look”, At, From, Up, ‘pic’, Err);
PFnInst (“atx’, “xvec’, Err);

PFnInst (“aty’, “yvec’, Err);

PFnInst (“atz”’, “zvec’, Err);

PFnInst (“fromx’, “xvec’, Err);

PFnInst (“fromy’, “yvec’, Err);

PFnInst (“fromz’, “zvec’, Err);

PFnInst (“ac_at”, “accumulate’, Err);
PFnInst (“ac_from”, “accumulate’, Err);
PFnInst (“add_up”, “addc’, Err);

PFnInstN (“sync_up’, “sync’, 3, Err);
PFnInst (“fix_sync’, “nop”, Err);

PConnect (“sync_up’, 3, 1, “fix_sync”, Err);
PConnect (“fix_sync”, 1, 3, “sync_up’, Err);
PSndBool (TRUE, 3, “sync_up’, Err);

Using the GSRs TT3-85

PFnInst (“look at”., “lookat’, Err);
PConnect (“dials”, 1, 1, “atx’, Err);
PConnect (“dials”, 2, 1, “aty’, Err);
PConnect (“dials”, 3, 1, “atz’, Err);
PConnect (“dials”, 5, 1, “fromx”, Err);
PConnect (“dials”, 6, 1, “fromy”, Err);
PConnect (“dials”, 7, 1, “fromz’, Err);
PConnect (“atx”, 1, 1, “ac_at”, Err);
PConnect (“aty”, 1, 1, “ac_at’, Err);
PConnect (“atz”, 1, 1, “ac_at’, Err);
PConnect (“fromx”, 1, 1, “ac_from”, Err);
PConnect (“fromy”, 1, 1, “ac_from’, Err);
PConnect (“fromz”, 1, 1, “ac_from”, Err);
PConnect (“ac_at’, 1, 1, “sync_up’, Err);
PConnect (“ac_at”, 1, 1, “add_up”, Err);
PConnect (“add_up”,1, 2, “sync_up’, Err);
PConnect (“sync_up’, 1, 1, “look at’, Err);
PConnect (“sync_up’, 2, 3, “look at”, Err);
PConnect (“ac_from”, 1, 2, “look at”, Err);
PSndv3D (At, 2, “ac_at’, Err);

PSndv3D (From, 2, “ac_from’, Err);
PSndv3D (Y_up, 2, “add_up’, Err);
PConnect (“look at”, 1, 1, “look’, Err);
PFnInst (“fix_at”, ‘const’, Err);
PConnect (“ac_from”, 1, 1, “fix at’, Err);
PConnect (“fix_at”, 1, 1, “ac_at’, Err);
PSndv3D (Zero_vec, 2, “fix_at’, Err);
PSndv3D (Zero_vec, 1, “ac_from’, Err);
PInst (“pic’, 7, Err);

Dtheta := 10.0 * Deg_rad;

Theta = -Dtheta;

FOR i := 1 TO 36 DO BEGIN

Theta := Theta + Dtheta;
Computewave (Theta, Vecs);
FOR k := 1 TO 50 DO BEGIN

FOR 1 := 1 TO 4 DO Front (.k.).V4 (.1.)

;= Vecs (.SUCC (PRED (k) * 2).).V4 (.1.);

Front (.k.).Draw := Vecs (.SUCC (PRED (k) * 2).).Draw;
END;
Computename (i, Name);
PBegins (Name, Err);
PSetR (77, 1, 35, FALSE, i, °°, Err);
PIfPhase (“°, TRUE, °°, Err);
PvecBegn (7, 100, FALSE, FALSE, 3, P_Sepa, Err);
PVvecList (100, Vecs, Err);
PVecEnd (Err);
PVecBegn (7, 50, FALSE, FALSE, 3, P_Conn, Err);

TT3-86 Tools and Techniques

PVecList (50, Front, Err);
PVecEnd (Err);

PEnds (Err);

PIncl (Name, “pic’, Err);
END;
PDisplay (“eye’, Err);
PSndsStr (“X’, 1, “Dlabell’, Err);
PSndStr (°Y’, 1, “Dlabel2’, Err);
PSndStr (“2°, 1, ’‘Dlabel3’, Err);
PSndStr (“Look At’, 1, ‘Dlabel4”, Err);
PSndStr (“X’, 1, ’‘Dlabel5’, Err);
PSndStr (“Y’, 1, ’“Dlabel6”, Err);
PSndStr (“zZ”, 1, “Dlabel7’, Err);
PSndStr (‘From”, 1, “Dlabel8’, Err);
Pdetach (Err);

END.,

Using the GSRs 173-87

TT4. FUNCTION

NETWORK EDITOR

TT4. FUNCTION NETWORK EDITOR
NETEDIT

CONTENTS

1. INTRODUCTION TO THE FUNCTION NETWORK EDITOR ...

1.1 Editing a Filecctttiiiiiiiiiiiiiiii ittt nnnnnnns
1.1.1 Network Diagram Primitives,
1.1.2 Constructing the Diagramottt
1.1.3 Generating the PS 390 Command File

2. GETTING STARTED ...ttt

2.1 Restarting .. oovviiiiii ittt ettt
2.2 Parameter File ..ottt i i it et e ittt e

3. GENERAL CHARACTERISTICS i,

3.1 Display Organizationttt rrnnnennnn
3.2 Cursor Shapes ..o vit ittt i i e e e e e
3.3 Menu Selections ...ttt i i e e e e
3.4 Permanent Menu Ifems ..o ottt i et iiinnnennn
3.5 Function Keys ...ttt
3.6 Control Dialsttt iiiinieneenreeennnnnns
T 15
T T\ 2 Y of 1
3.8.1 Instancing Macrosttt innteeenenneeennnnns
3.8.2 Compiling and Prefixingo,
3.8.3 Prefixing Constants, Variables and External References
3.8.4 Date Checkingttt riennnnn.
3.9 User-¥Written Functionsuit ittt eernnreneeneenns

4. EDITING ..ttt i e i it i it it
4.1 ADD ITEM ...t i ettt e i

W W NN -

wn W

4.1.1 Detail Frame e ettt et e e e 17

4.1.2 Functionsc.uviiiiinnerineinnnnnoeeeesonnoannnnns 18
4.1.3 ConneCtorSvvviuueeereeenennnnoaeeeseesnaennnnans 19
4.1.4 Input Framectiiiiiiiiiitiiiiiiiiinieiennnnnnns 19
4.1.5 Output Framettt 20
4.1.6 Constantsiuiieitttiiiitiii i e i e 20
4.1.7 Variableoiiiitiii it i it i e i e e 20
4.1.8 In-Externalcouitiiiiiiiiitiriennnennnnnnoeenss 20
4.1.9 Out-External 0ttt 20
1 R) N A 21
4.1.11 Labelsttt ittt ettt 22
4.2 MOVE ...t it i et ittt 23
4.3 MOVE AREA ittt ettt eienneannnns 24
4.4 DELETE i it ittt ieneennas 24
4.5 DELETE AREA ittt iiititreennaennnns 25
4.6 OPTIONS ...t it ittt e ittt eaneananns 25
4.6.1 Change Scaleoutiiiiiiniieeereennnnnnonennns 25
4.6.2 Redraw Framecciiiiiiiitttieennnnnnnnnnnns 25
4.6.3 Replace Functioniiiiiiiiiiiiiiiiiniiennnn. 25
4.6.4 Update MaCrOS . . o v vt vv ittt eestoeensonnssoeeeenns 26
5. FILE CONTROLottt et i et einaennannns 26
5.1 Select Network.......... ..t iiiennnnannn. 26
5.2 Backup Networkciiiiiiiiiiiiiiiiiiiiiiineneen, 27
5.3 Scratch Networkcoiiiiitiiiiiiiiiiteenneennnnnns 27
Si4 ReCOVEI + ..ttt ittt toosannnoaseessnonnnns 27
5.5 Rename Networkottt itnnnnnnnneanss 27
6. CONVERT NETWORK iiiiiiiiiiiiieniinnnnness 28
6.1 ASCITI Output ovii ittt it ittt iiaenneens 29
6.2 FORTRAN GSR ...ttt ittt ittt i enaeannnnns 29
6.3 Pascal GSR i i i i e 29
6.4 Use Frame Prefix i, 30
6.5 Use Macro Prefix it 30
6.6 Compile MacCroccvuiiiuiniiiitinennernenneennens 30
6.7 Suppress Commentsctiiiitiiiiiiiiiiiiiii., 31
APPENDIX A INSTALLATION INSTRUCTIONS 32
1. Installation without Rebuilding the Executables 32
2. Installation with Rebuilding Required 32
2.1 Distribution Tape Format and Installation Procedure 33

2.2 Customizing the Command Files 33

2.3 Installing the Files, 33
3. Filesthat are Loaded i, 34
4. Error Handling i iiiiiiiiinnnns e 36
S.User Log File ... iiiiiiiiiiiiiiiiiitinrnnnneneeennns 36
6. User-Written Functions 0 iiiiiiiiiiniinnnnnns 36
APPENDIX B SAMPLE EDITING SESSIONcouo... 37

1]

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

ILLUSTRATIONS

Function Network Editor Displayo,
The HELP and HISTORY Displayccoiiiiiiine,
Selecting the Network Fileoiitiiiiiiiiiiiiiieennns
Placing Functions With the Cross-Hairs Cursor
Creating Strings to Label the Dialscc00viuen,
Connecting Constants to Inputs With Ares
Creating Detail Frames ittt
Editing Labelsc.tiiiiiiiiiiiiirrteennsonanansnns
Adding Input and Output Frame Connectors to a Detail Frame .
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.

Placing Functions in the Detail Frame
The Complete Detail Frame for Rotations
The Next Highest Frame in the Hierarchy
The Complete Detail Frame for Zooming
The Complete Detail Frame for Panning
Using MOVE to Reposition Items in the Diagram
The Top-Level Frame of the Complete Diagram

v

Section TT4
Function Network Editor
NETEDIT

This software package is distributed by Evans & Sutherland as a convenience to
customers and as an aid to understanding the capabilities of the PS 390 graphics
systems. Evans & Sutherland Customer Engineering supports the package to the
extent of answering questions concerning installation and operation of the pro-
grams, as well as receiving reports on any bugs encountered while the programs
are running. However, Evans & Sutherland makes no commitment to correct any
errors which may be found.

The NETEDIT Function Network Editor is a program to aid in the creation of
PS 390 function networks. Networks are created as diagrams using a drawing pro-
gram with menu selections. Symbols representing functions are placed in the dia-
gram and their inputs and outputs are connected much as in a wiring diagram.
Constants and variables can be specified. Items can be named and annotations can
be added freely. When the diagram is complete, the Editor allows you to generate
a file of the corresponding PS 390 ASCII commands and comments or of FOR-
TRAN or Pascal Graphics Support Routines (GSRs). Hardcopies of diagrams can
be obtained with the PS 390 system Writeback feature (refer to Section 779 Trans-
formed Data and Writeback).

1. Introduction to the Function Network Editor

The Network Editor currently runs under VAX VMS 3.3 and higher, uses
Pascal V2.2 and higher source code, and uses version A2 and higher of the
PS 390 firmware. Files are distributed on magnetic tape and are installed as
explained in Appendix A.

Command files display menus which let you start the Editor and restart if a
crash occurs. A log file is kept each time the Editor is started and this is
used in recovery. A parameter file can be created to specify user-definable
options, such as directory names and file extensions.

Function Network Editor TT4-1

1.1 Editing a File

NETEDIT stores the diagram of the networks as a hierarchical data struc-
ture in a sequential file. It allows single files to represent extended function
networks with external contact points to other function networks or nodes in
a display structure. It also allows you to use macros (references to libraries
of other networks) and user-written functions.

You can edit a file by making menu selections with the data tablet or in
some cases with the function keys. Selections let you place items in the
display area to create the network drawing, or change the drawing as
needed. Other selections display HELP information, access other files, and
generate ASCII or GSR files from the network diagram.

1.1.1 Network Diagram Primitives

Intrinsic functions, initial function instances, user-written functions, and
macros are represented as boxes with numbered inputs and outputs.
Functions are selected and placed in the display area and named using the
Labels selection. This results in name:=F:Function_name; statements or
equivalent GSR calls in the code file that is generated.

Connections corresponding to CONNECT name<i>:<j>name; commands
and equivalent GSRs are made by routing arcs from one connection point to
another. Connecting arcs are shown as lines much like wires in a wiring
diagram. A connector is an arc endpoint. It may be an input queue to a
function and so part of the function box, or one of several free-floating
types of endpoints.

Constant connectors can be placed in the diagram and connected to function
inputs. The value associated with the constant is entered also. This results in
SEND value TO <i>:name; statements or equivalent GSR calls in the code
file.

Variables are created as connectors also. These correspond to instances of
the VARIABLE namel; command or equivalent GSR calls.

17T4-2 Tools and Techniques

1.1.2 Constructing the Diagram

Since the display area is limited and networks are often quite extensive,
most diagrams will be broken up into pages. The Editor allows you to
construct a diagram hierarchically by creating a “frame” for each page and
by letting you create “detail frames,” which represent lower pages in the
hierarchy.

Detail frames are shown as pseudo-3D boxes with inputs and outputs. They
represent different functional blocks of a network. For example, the parts of
a network which handle input from the dials can be shown as a detail frame
within a page that shows a general network of peripherals and display ma-
nipulation. When you move into that detail frame the actual functions which
comprise the detail will be shown. Details can be nested to any level.

The hierarchical nature of the network diagram means you can create a
network top down or bottom-up. Detail frames can be created first and their
contents specified later, or parts of the diagram can be moved into or de-
leted from detail frames. The diagram can be constructed and restructured
however you want. You navigate between frames using function keys.

1.1.3 Generating the PS 390 Command File

When the diagram is completed, selections from the menus allow you to
generate a file of PS 390 ASCII commands or of FORTRAN or Pascal GSRs
which instance the functions, connect inputs and outputs, declare variables,
and send data as shown in the diagram.

A sample ASCII file generated by the Editor is included in Appendix B.

2. Getting Started

The Network Editor is started and entered through menu selections dis-
played by a command file. After the Network Editor and associated files
have been installed and the command files NETUSER.COM and NET-
BUILD.COM have been customized (refer to Appendix A), enter the follow-
ing command:

$ @[HomeDir]NETUSER

Function Network Editor TT4-3

TT4-4

For [HomeDir], substitute the name of the directory in which NETEDIT
resides. This command file brings up the following Initial Menu.

0)
1)
2)
3)
4)
5)

Evans & Sutherland PS 300 Utilities V1.08
Initial Menu

Exit

Initialize the PS 300

Send a file to the PS 300

Run NetProbe - Function Network Debugger (Menu)
Run NetEdit - Function Network Editor (Menu)
Character Font Utilities (Menu)

Select option 4 to bring up the following NETEDIT Menu of options specific
to running the Network Editor.

0)
1)
2)
3)
4)
5)
6)

Evans & Sutherland Function Network Editor
Maintenance Command File V1.08

NetEdit: PS 300 Function Network Editor Menu

Exit

Start NetEdit from scratch, download support net
Start NetEdit without full init, but download support net
Restart NetEdit without downloading support net

Read the current release notes

Start NetEdit without full init from floppy disk

Init from floppy

Selection 1 initializes the PS 390 and loads NETEDIT. This is the selection
most often made when the Editor is run. Selection 2 loads NETEDIT with-
out initializing the PS 390. Selection 3 restarts the Editor after a crash or an
aborted session. Selection 4 lets you review the current release notes. Selec-
tion 5 allows you to load NETEDIT from a floppy diskette. Selection 6 in-
itializes the PS 390 from a floppy diskette. This must be done if NETEDIT
was loaded from a floppy diskette.

To start NETEDIT for the first time, use selection 1 or 2. When the Editor
display appears, pick SELECT NETWORK and you will be prompted for the
name of the file you want to edit.

Tools and Techniques

A sample editing session is included in Appendix B. You may wish to glance
through this before reading the following sections.

2.1 Restarting

Should the program crash while you are editing or should you deliberately
abort the current session using CTRL C, the network editor may be re-
started without reloading the support network and display structures by us-
ing the menu selections or typing the following command.

$ @[HomeDir]NETUSER 4 3

For [HomeDir], substitute the name of the directory in which NETEDIT
resides. The parameters 4 3 make the menu selections for you. Note that all
selections from the command file menus can be given as parameters to
bypass the menu displays.

2.2 Parameter File

A parameter file permits each user to customize the Editor by describing a
working set of directories and selecting some options.

Create-a parameter file called NETPARMS.TXT. In this file, list the directo-
ries (up to 30) that you want to have in your working set. List them in order
of preference, since the directories will be searched in this order.

The parameter file can also contain other operating parameters. Currently,
these consist of the following.

@EXTENSION .300

This sets the ASCII output file extension to .300, and may be changed to
any other extension. GSR output files have the extension .FOR for FOR-
TRAN and .PAS for Pascal. These extensions cannot be changed in the
parameter file.

@SYSTEMPRIVILEGE

The Editor is set by default to use the user/primitive function data base
but may be changed to use system privileged functions.

Function Network Editor TT4-5

@PRIMITIVEPROMPT ON/OFF

Enables/disables prompting for function names immediately as they are
instanced and placed.

@ATTACHTO

This specifies a parameter which is passed to the GSRs when the Editor
starts up. The parameter contains the logical device name and physical
device type (asynchronous, parallel). The format of the parameter is ex-
actly what the PATTACH GSR expects:

LOGDEVNAM=name /PHYDEVTYP=type

For more information consult the PATTACH description in the PS 390
DEC VAX/VMS Pascal GSR summary.

The parameter file is expected to reside in the directory NETUSERDIR. You
must make this logical assignment either manually or by inserting the fol-
lowing line into your login or similar file.

@ASSIGN [UserHomeDir] NETUSERDIR:

[UserHomeDir] should be replaced with the directory in which you keep
your parameter file. This ensures that the Editor can find your parameter
file from wherever it may be run.

3. General Characteristics

3.1 Display Organization

The Editor display is divided into three sections.

The main section is the diagram DISPLAY AREA in which you assemble
and edit the network diagram. This is made up of two parts: a header bar,
which describes the frame, and a work area.

The header bar includes the name and prefix of the current frame, the file
name, a page number, the total number of pages, and the date the file was
last modified. The name and prefix in the header can be modified by pick-
ing the item from the bar and entering a new value.

1T4-6 Tools and Techniques

The work area is an oblong of a size which allows hardcopy to fit neatly on
8 1/2 by 11 inch paper. Panning and zooming using the Control Dials can be
performed in the display area. The header bar is unaffected by panning and
zooming.

On the right edge of the display is the MENU AREA in which the different
Editor menus are displayed. Up to three menus may be present at a time,
depending on where you are in the hierarchy of menu options.

At the bottom of the screen is the MESSAGE AREA, two lines in which
messages are displayed. The top line serves as a PROMPT and text entry
line, and the second line displays warning and STATUS messages. The ab-
breviations I - information, W - warning, E - error are used to indicate the
relative severity of the message.

Figure 4-1 shows the initial Network Editor display.

Function Network Editor TT4-7

TT4-8

Evans & Sutherland PS300 Function Network Editor V1.06

Help
fxit
History

file Control
[diting
Convert Network

“FILE CONTROL
Select Network
Backup Ketwork
Scratch Network
Recover

Renane Network

47

[

[STATUS: NEW SESSION: Plesse select file for editing

1AS0553

Figure 4-1. Function Network Editor Display

Function key F1, the VIEWMENU function key, is used to alternate between
the diagram/menu display for editing and the diagram only display for
hardcopy and closer inspection.

The HELP and HISTORY selections also change the display. When these
functions are chosen, the display is as shown in Figure 4-2

Tools and Techniques

Evans & Sutherlard

#S300 Function Network Editor V1.06

Weser Tresel
fllaNees PIMRY
Bute Neditinde 15-000-1980 09,30 40,1

t Tutat Peges: s

Pretim V1o

Parents =x Depetier 1

e

2rot

trane : ¢

ecole : s

Extarnel diepley structures:

TRANSLATE BY 0,0,0 APPLIED TO xrotd
wrot 1+ ROTATE IN X 0.0 APPLIED 70 yrot;
yrot ;¢ ROTATE IN ¥ 0.0 APPLIED 70 rrot;
(e ROTATE IN 2 0.0 APPLIED TO acale;
SCALE BY 1.0 APPLIED 10 veser_deta;

Help Page 1!

Help
Exit
History

“ADD ITEN
Detat] Frame
Functions
(onnector
Are

Label

“SLLECT/MAKTPULATE
Mscale
Boolean_Choose
BRoute

BRoutel
(BRoute

[Route

[Select
[Switch

lelta
Integer_(hoose
Inputs_Choose

It

I

[sTATUS:

Figure 4-2. The HELP and HISTORY Display

3.2 Cursor Shapes

You interact with the display through a combination of tablet and keyboard
actions. The cursor shows not only the current location at which you are
pointing but also the current state of the program by changing the cursor
shape for different actions. The most basic cursor shapes indicate when
only a menu selection is permitted (a chevron), when no action is yet per-
mitted (hourglass), when keyboard entry is permitted (downward pointing
hand), and when an object may be placed, moved, or deleted (various

Function Network Editor

TAS0554

TT4-9

shapes). A clock shape with sweeping arm appears for extended periods of
waiting. This will help you judge the progress of the operation.

With most cursor shapes, an asterisk (*) indicates exactly at what point on
the shape the stylus tip is, which is the point at which object or menu “pick-
ing” is performed. Where an asterisk is not present, as with the arrow cur-
sor shapes, the tip of the arrow corresponds to the point of the stylus.

Cursor shapes are described in the course of the documentation as appro-
priate. An optional cross-hair may be displayed at the cursor position by
toggling function key F2. This cross-hair is useful for aligning objects on the
display.

3.3 Menu Selections

The MENU AREA is divided into three main menus: the PERMANENT
MENU (HELP, EXIT, HISTORY); the MAIN MENU (editing selections and
further options); and the SUBMENU (object categories, file options) which
appear as needed. The permanent menu is always present and may always
be selected from. When a permanent menu option has been invoked, that
option is highlighted. All cursor shapes except the hourglass or clock may
be used to select from the menu at any time. Any incomplete action is
canceled by making another selection. This includes keyboard entry and
object placement.

The main and submenus are arranged as a hierarchy which will sometimes
display two different levels (MAIN and SUBMENU) and at other times just
one level (MAIN). You move from menu to menu by picking selections with
the data tablet and stylus or pressing certain function keys. The first item in
all but the top level menu is in capital letters and preceded by a chevron (%)
to signify that it is both the title of the menu and the entry point to move
back up. Selecting it will reset the menu display accordingly.

Many submenus are particularly long. When a submenu is displayed it may
be scrolled up or down by means of the first dial on the control dials unit.
At the bottom of the submenu is a long string of dashes to indicate that you
have moved off the bottom and that you should scroll upwards to find the
submenu.

7T4-10 Tools and Techniques

The menu hierarchy is as follows.

Function Network Editor

HELP
EXIT
HISTORY

FILE CONTROL
SELECT NETWORK
BACKUP NETWORK
SCRATCH NETWORK
RECOVER
RENAME NETWORK

EDITING
ADD

ITEM

Detail Frame

Functions

Connector
Input Frame
Output Frame
Constants
Variable
In-External
Out-External

Arc

Labels

MOVE

MOVE AREA
DELETE
DELETE AREA
OPTIONS

Change Scale
Redraw Frame
Replace Functions
Update Macros
Print Page

Print Page Set

CONVERT NETWORK

ASCII OUTPUT
FORTRAN GSR
PASCAL GSR

USE FRAME PREFIX
USE MACRO PREFIX
COMPILE MACRO

SUPPRESS COMMENTS

17T4-11

3.4 Permanent Menu Items

HELP

The HELP selection provides information on individual functions, menu se-
lections, and a variety of other topics. To get information on menu selec-
tions, select HELP and then pick the menu item. To get help on a function,
pick EDITING, then ADD ITEM, then Functions, and pick the name of the
function you are interested in. The scrolling dial, Dial 3, can be used to
scan forwards and backwards through long descriptions.

EXIT

EXIT saves any existing network that has been edited, closes all open files,
returns the keyboard to terminal emulator mode, and exits from the
program. If the file name is incorrect, EXIT will not allow you to leave the
program. When this occurs, you must either scratch or rename the network
and select EXIT again. Note that EXIT must be picked twice before it is
selected.

HISTORY

This selection allows you to view the last ten pages of status messages. This
can be useful when a code conversion produces errors and the messages
have moved past faster than they could be read. The scrolling dial, Dial 3,
can be used to scan forwards and backwards through the pages.

3.5 Function Keys

1T4-12

Currently, 11 of the 12 function keys are programmed to perform specific
operations. Most keys perform only one function, but keys F8, F9, and F10
have double functions. The keys are programmed as follows.

Key F1 - VIEWMENU

Changes the display for closer inspection and for hardcopy of diagrams.
Removes the MENU area and MESSAGE area and displays just the dia-
gram at a size that produces 8 1/2 by 11 inch hardcopies.

Key F2 - CROSS
Displays a cross-hair to help place objects in the diagram.

Tools and Technigues

Key F3 - GO UP

Moves you up one level in the diagram hierarchy from the current frame
(context) to its parent frame. The frame you were just in appears as a
detail frame in the new display. If you are in the top frame, you are
notified that you cannot move higher.

Key F4 - OUTLINE
Displays a page which shows the structure of the diagram file. All frames
in the file are listed, and indentation shows the hierarchical dependen-
cies. The frame currently being edited is highlighted. The outline can be
scrolled using Dial 2. You may also pick a frame in the outline and
proceed directly to that frame without going through the intermediate
frames.

Key F5 - GO DOWN
Moves you down to a detail frame in the context frame you are currently
editing. If more than one detail frame is present, a large down-pointing

arrow is displayed to allow you to select the detail frame you want to
enter.

Key F6 - FULL VIEW

Resets the display after zooming and panning has taken place with the
control dials.

Key F7 - BY NAME
Allows you to select an intrinsic function, initial function instance, mac-
ro, or user-written function by name. Press this key and then enter the
name at the PROMPT line at the bottom of the screen. For primitive
functions, you may place multiple copies before selecting another primi-
tive. For macros and user-written functions, you are prompted after each
placement.

Key F8 - MOVE (double function)

Allows you to select MOVE or MOVE AREA without picking from the
menu. One press selects MOVE, two presses select MOVE AREA.

Key F9 - DELETE (double function)

Allows you to select DELETE or DELETE AREA without picking from
the menu. One press selects DELETE, two presses select DELETE
AREA.

Function Network Editor TT4-13

Key F10 - ARC/TEXT (double function)

Allows you to place an arc or edit labels without picking from the menu.
One press selects ARC, two presses select LABELS.

Key F11

This key is currently unused.

Key F12

This key is currently unused.

3.6 Control Dials

TT4-14

The Editor uses 6 of the 8 Control Dials to help in building and viewing
network diagrams. The dials are programmed as follows.

Dial 1 - SUBMENU
Scrolls a submenu up and down.

Dial 2 - OUTLINE
Scrolls the diagram outline page forwards and backwards.

Dial 3 - FLIPPAGE
Scans forwards and backwards through HELP or HISTORY pages.

Dial 4
This dial is currently unused.

Dial 5 - ZOOM
Zooms in and out of the diagram.

Dial 6 - HORIZNTL

Pans left and right in the diagram after zooming. When panning, you
cannot move out of the diagram work area.

Dial 7 - VERTICAL

Pans up and down in the diagram after zooming. Again, you cannot move
out of the diagram work area.

Dial 8
This dial is currently unused.

Tools and Techniques

3.7 Text

There are two types of text used in a network diagram: permanent text and
notations. Any textual information which is in italics on the diagram is con-
sidered as notations and may be altered interactively by using the ADD
ITEM/Labels selection. Any text shown in the standard font is permanent.
When you are prompted for text entry (the downward pointing hand), either
type in the string you want followed by a carriage return, or select another
menu item to change your mind. Any text entered but not followed by a
return will have no effect on the display or current status.

3.8 Macros

Macros are a means of incorporating code into a network file which is de-
scribed in another file. They may be referenced repeatedly in the same file
and may be nested to any level. When a macro is instanced, it appears in
the diagram exactly as a function would, except that the name is preceded
by M: instead of F:. Any existing network file that has been created by the
Editor can be referenced as a macro. The macro description is derived from
the top level frame of the network file, using the list of directories set up in
your parameter file.

Since the Editor allows you to generate output files in ASCII, FORTRAN
GSR, and Pascal GSR form, you must ensure that the code for all macros
referenced in a network has the same form (i.e. ASCII, FORTRAN, Pascal).
If you attempt to reference incompatible macros, (for example, an ASCI
macro when you are generating Pascal code), the Editor gives a warning.

3.8.1 Instancing Macros

To instance a macro, use the BY NAME function key (F7) just as you do for
selecting a primitive function, but enter the file name of the source network
file instead of a function name. If the name does not conflict with an exist-
ing primitive function, the editor will try to find the file.

3.8.2 Compiling and Prefixing

Macros must be compiled using the Compile Macro option of the menu
selection CONVERT NETWORK. Macros may be prefixed with the Use
Macro Prefix option to distinguish multiple uses of the same macro. Com-
piling a macro produces a .MAC file, which may be incorporated into the
code for another file with proper instancing and connections.

Function Network Editor TT4-15

3.8.3 Prefixing Constants, Variables and External References

Since final names of constants, variables, and external references may not
be known until the final level code conversion, you can flag them to indicate
where prefixes should be placed. By adding \M\ at the beginning of the
name within the string, the macro prefix will be added as needed in place of
it, but no frame prefix will be included. By adding \F\, both macro and
frame prefixes will be added.

3.8.4 Date Checking

Each macro instance is flagged with the date that the source file was last
modified. This allows the Update Macro option to check against the original
source file for changes. Macro code which is compiled is flagged with the
last date the source file was edited and the date the code was compiled. A
warning is given during code compilation if the .MAC file was generated
from a different version of the source file than it was instanced from. The
Updating Macros selection brings the instance into agreement with the
source file, and recompiling brings the macro code into agreement with the
source file.

3.9 User-Written Functions

User-written functions are referenced the same as macros. The name of a
user-written function is indicated on the diagram as U:name, even though it
is instanced in the code as F:name. If a network file contains no arcs, primi-
tives, or detail frames, then it is automatically assumed to represent a user-
written function. This allows you to create a description of the user-written
function with named inputs, outputs, and internal comments which can later
be used as a help item on that function. No macro code need be compiled
for user-written functions, since they generate instances exactly as primitive
functions do.

4. Editing

4.1 ADD ITEM

The ADD ITEM selection allows objects to be placed into the diagram space
to construct a diagram. Generally the object appears at the cursor shape and
is placed by pushing down the stylus when it is in the desired location. The
asterisk shows where the stylus tip actually is. To “discard” the object that

TT4-16 Tools and Techniques

you are moving, merely select another menu item. Note that while objects
are seen completely before they are placed, they will be clipped against the
boundary of the display space once placed.

The ADD ITEM selection offers the following options: Detail Frame, Func-
tions, Connector, Arc, and Labels.

4.1.1 Detail Frame

A frame is a portion of the hierarchical representation of the diagram,
equivalent to a “page” of the complete network diagram. There are two
types of frames: the one you are in (context frame) or a subsidiary frame
within the context frame which refers to a lower level of the diagram hierar-
chy (detail frame). A context frame is a diagram page and the program may
handle up to 100 frames within a file, though this may be an impractical
size for memory and load/save speeds.

Context frames are bounded by a box outline corresponding to a higher
level detail frame box. You can place Input Frame or Output Frame connec-
tors on this outline in the context frame to create connection points between
the context frame you are working in and the higher level detail frame
which references it. Each context frame has a PREFIX (upper left-hand
corner) which can be changed one level higher on the detail frame represen-
tation. The prefix is (optionally) used before the function names to maintain
unique naming between frames. The prefix can be edited in the current
frame by picking the prefix in the header bar while in Labels mode. Each
context frame also has a NAME which is used to provide a more descriptive
identifier while editing.

Frames are created in two ways. When a new file is created, the top level
frame is created at the same time. From there on, the ADD ITEM/Detail
Frame selection will add a symbol for the detail frame and also create the
accompanying frame.

Detail frames are displayed as pseudo-3D boxes to indicate that they in-
clude more detail at a lower level. Initially all detail frames have 0 inputs
and outputs and are created as a minimum size detail symbol. As connec-
tors are added in the corresponding frame below, the detail symbol will be
updated to reflect its new description. The detail frame includes a single
line label which may be edited exactly as a function box label.

Function Network Editor TT4-17

Input/Output Frame connectors may be attached to the left and right edges
of the context frame (outside box), respectively. They may later be moved
or deleted as necessary, at which time the detail and its attached arcs will
be modified as needed.

Before a frame can be deleted, you are asked to verify the delete. Then the
frame is deleted along with all contained detail frames and objects.

To move between frames, there are three function keys: UP, DOWN, and
OUTLINE. UP will reset the current context frame to the parent of the one
you were working in. DOWN will move into a detail frame in the current
context. If there is more than one, a large down pointing arrow will appear
to allow you to select the desired detail frame. By hitting the OUTLINE
function key, an outline page will appear for selecting any frame in the
current file; indentation indicates the tree structure of the file. The frame
currently being edited will be highlighted. The outline is implemented as a
page in the diagram and may be scrolled using Dial 2.

4.1.2 Functions

A function is an intrinsic function or initial function instance supported by
the PS 390 Command Language. When the menu item Functions is se-
lected, a submenu of function classes appears, organized by class. Since the
list of classes is long, some are off the bottom of the display and may be
seen by turning the dial marked SUBMENU to scroll up and down. When a
class is selected, its list of functions will appear in place of the class sub-
menu for selection. When a function is chosen, its box representation will
appear.

A function may also be selected by name. This may be a faster method for
many sessions. Press the BY NAME function key (F7) and you will be
prompted for the name of a function. After the name is entered, the func-
tion box will appear and may be placed. The same box will appear at the
cursor after one has been placed, and may be placed as often as needed.

You must enter the complete name of the function. For “n” type functions
such as F:SYNC(n), you are prompted for the number of outputs.

The BY NAME key can also be used for instancing macros and user-written
functions. Unlike intrinsic functions or initial function instances, only one
instance of the macro or user-written function can be placed at a time. After
one instance is placed, you are prompted for another name.

1T4-18 Tools and Techniques

A function consists of a box; a set of up to 50 inputs, which appear on the
left edge; a set of up to 50 outputs; the name of the function type (F:func-
tion_name) on the top half of the box, and a user label, initially assigned by
the system as P(n), written in italics (e.g. PI). For initial function instances,
there is no user label and the function name appears as TABLETIN, or
whatever. This user label may be altered interactively at any time (see La-
bels below). Long names are broken at an underscore if one is present in
the name.

The function box should be placed within the context frame. At any point
that arcs are being drawn, the function’s inputs and outputs will be activated
for picking as appropriate.

The PRIMITIVEPROMPT ON/OFF option in the parameter file
NETPARMS.TXT can be set to enable or disable prompting for function
names immediately as they are instanced and placed.

4.1.3 Connectors

There are various types of connectors, but all are basically similar in func-
tion to the primitive inputs and outputs. They serve as the source or destina-
tion of an arc, which establishes a data path between two points. Currently
there are the following types of connectors: Input Frame, Output Frame,
Constant, Variable, In-External, and Out-External.

The connector shapes are indicated by the direction of the arrow and a
contained letter (C for Constant, V for Variable, E for External) and may
be freely placed anywhere in the diagram. For connectors containing text,
you will be prompted for an initial value and then a copy of the shape and
the value will be fixed at that location.

4.1.4 Input Frame

Input Frame connectors are attached to the left-hand side of the surrounding
box outline in the frame and represent input to the frame. When you select
a frame connector, the system will assign a name to it. This can be changed
using the ADD ITEM/Labels menu selection or function key F10 (TEXT).
Names will be reflected in the detail frame above as soon as you have
finished adding them and moved to another action. Up to 50 of these may
be placed.

Function Network Editor TT4-19

4.1.5 Output Frame

Output Frame connectors are attached to the right-hand side of the sur-
rounding box outline and represent an output channel from the frame’s
contents. They are treated the same as Input Frame connectors.

4.1.6 Constants

Constant connectors allow a line of text to be SENT to another point in the
network. You will immediately be prompted for the value that you wish to
SEND. Enter this string exactly as it would appear in the normal PS 390
command syntax. Note that syntax checking is not currently performed by
the Network Editor. You must then route an arc from the constant connector
to the intended input.

4.1.7 Variable

Variable connectors create variables to hold values apart from primitives.
The variable will be instanced using the optional prefix in the name if \M\
or \F\ are included in the name. Any connections going to these variables
will be added when code is generated.

4.1.8 In-External

In-External connectors are a means of making connections to external net-
works or display structures freely. They are input points from outside
sources of data. You should be careful in using them to make sure that
when the code is downloaded, these connections already exist if they are
data outputs. Also when prompted for the connection name, you should
enter the complete reference including the port number (e.g. INNAME<1>).

4.1.9 Out-External

Out-External connectors are output points to external destinations. Make
sure that when the code is downloaded these connections already exist if
they are data outputs, though this is not as important as it is with in-external
connectors. Also when prompted for the connection name, you should enter
the complete reference including the port number (e.g. <append>Out-
VecList).

1T4-20 Tools and Techniques

4.1.10 Arc

An arc is a line indicating a pathway along which data tokens are expected
to move during execution. They are much like wires between the inputs and
outputs of integrated circuits. They correspond to the CONNECT or SEND
statement in the PS 390 Command Language. Arcs must start at a data
source (frame or external input, a constant, a primitive or detail output) and
terminate at a data target (frame or external output, a variable, or primitive
or detail input). An arc may follow a circuitous route, making as many turns
as necessary. You start the arc as needed and then manually route the arc to
the desired endpoint. The pathway is automatically grid locked and bent to
horizontal or vertical lines. If the arc is not completed by making another
menu selection before completion, it is canceled.

When Arc is selected, the cursor changes to an Arc Start Arrow: a single
arrow which points to the left. Once the arc is started, the cursor changes to
an Arc End Arrow—an arrow pointing to the right. A corner shape will
appear at the last bend to indicate in what directions a turn can be made.
Arcs can only be routed in horizontal and vertical segments. The point of
bending is indicated by a four-way corner shape. Each time a new corner is
added, this corner shape moves. Once terminated, the arc will flash once
and then become a permanent part of the diagram, and all corners will be
rounded off to more easily distinguish the arcs from the other squared off
shapes and lines around them.

Arcs are homed into the starting or ending connector.

When an arc is placed, the editor checks the types of the output and input
connectors and beeps and issues a warning if they are incompatible. An arc
placed between incompatible connector types will be highlighted. These arcs
will remain in the diagram and must be deleted explicitly. Note that connec-
tion type checking is only performed on connections between primitives.
Connector symbols such as Constants and Variables which have editable
strings are not checked currently.

Duplicate arcs are deleted when a second connection is made between the
same pair of connectors. There is no need to explicitly delete the old arc.

Note that Arc can also be selected by pressing function key F10 once.

Function Network Editor TT4-21

4.1.11 Labels

Labels are any text strings in the diagram which can be edited. Labels ap-
pear in italics to distinguish them from text which cannot be edited. The
first shape that appears is an arrow which points to the upper right. This is
used to pick either a point in space at which to place a free-floating label
(comment) or to pick any object which has a label associated with it such as
a function box, or a previously defined label. If a new point is picked, then
a new comment label will be placed there. Otherwise the already existing
label will be replaced by the new value.

Labels are limited to 80 characters. Any label larger than that is truncated
to 80.

Once a selection is made, the text-entry hand shape appears and is frozen in
position where you have pointed. A second, dimmer copy of the hand will
move about, allowing you to cancel the action by making another menu
selection. The hand indicates that keyboard entry of text is expected. As you
type on the keyboard, the text will appear in place at either the position of
the previous label or at the point at which you are pointing. A second copy
of what you are editing appears at the prompt line.

To correct mistakes, use the DELETE key on the PS 390 keyboard, and
deleted characters will be erased. Once the string is complete, press the
RETURN key and the new value will be stored. You will remain in text-en-
try mode so that more strings can be entered until you enter a return. In this
way, you can create text as a block. To change from the Labels selection,
pick another item from the menu.

The text editor uses the following control characters for editing effects:

CONTROL-A Moves the cursor to the beginning of the line.
CONTROL-B Moves the cursor back (left) one character.
CONTROL-D Deletes the character at the cursor position.
CONTROL-E Moves the cursor to the end of the line.
CONTROL-F Moves the cursor forward (right) one character.
CONTROL-K Kills (deletes) to the end of the line.
CONTROL-R Retype line

CONTROL-U Deletes the entire line.

DELETE Deletes the character to the left of the cursor.
RETURN Signals completion and disconnects the keyboard.

TT4-22 Tools and Techniques

Note that Labels can also be selected be pressing function key F10 twice.

Specially flagged labels can be used to insert random PS 390 commands in
a network. Floating comments which start with \+\ or \-\ indicate com-
mands to be inserted before or after the other code for the frame, respec-
tively. These commands are always written to the output file during code
conversion, regardless of the SUPPRESS COMMENTS setting.

The statements can be ordered by including a priority number in the flag.
Statements prefixed with \-1\ are guaranteed to be output before state-
ments prefixed with \-2\. This is useful for sending an ordered sequence of
constants to the same input of a function.

Typically, commands that should be inserted before the other code for a
frame are INITIALIZE commands or display structure definitions. Com-
mands that should be specified to go at the end of the code for the frame
are SETUP CNESS commands, and SEND statements. NETEDIT does not
perform any syntax or validity checking on the commands.

Names of functions, variables, and display structures that are referenced in
these commands may be prefixed with \F\ and/or \M\ to indicate that the
appropriate frame and/or macro prefix should be substituted during code
conversion.

4.2 MOVE

All of the diagram objects may be moved once they have been included in
the diagram, except arcs which are only moved by moving what they aie
attached to. A four-directional arrow will appear to indicate that you may
move objects. You may pick any of the above objects for moving at any
point in their symbol. An identical “ghost” copy will then appear to help
you accurately place the object again. If the ghost-symbol is not placed
within the diagram, no movement will occur. The four-way arrow will also
shrink to indicate that you have successfully picked an object up and are in
the second half of moving an object. Any placement rules that apply to that
object, such as placing a connector on the frame, still apply during move-
ment.

Function Network Editor TT4-23

To move an object or set of objects to another frame, pick the detail frame
that you wish to move into, or pick the outer box outline to move up into the
parent frame of the current context frame. The frame display will change to
the selected context and you can repeat this process until you do NOT pick
a frame or detail. At this point you can place the object or set of objects as
if they were still in the original frame. Arcs which have had both of their
endpoints moved are carried along while arcs for which only one endpoint
has been affected will be stretched if the move is within the same frame,
and destroyed if the move has jumped into another frame. A detail frame
cannot be moved down into itself, even though it may originally have been
picked up or included in the selected area. The frame outline will automati-
cally be restructured to reflect the change made due to the move operation.

MOVE may also be selected by pressing function key F8 once.

4.3 MOVE AREA

By selecting MOVE AREA and indicating any two opposite corners of an
area box, you can move the items contained within the area. A large lower-
left angle (first point) and a large upper-right angle (second point) set the
area. Select the lower-left and then the upper-right corners and then move
the box to a third point. Objects within will be shifted to the new location of
the area box.

Detail frames must be completely contained within the area box if they are
to be moved. Connectors and primitives need only have their placement
point (the center of the cursor shape you notice when moving the item)
within the area. Arcs are moved if their connection points are moved; they
will be bent if only one endpoint is moved, but moved completely if both
endpoints are moved. MOVE AREA will not allow you to position items
outside of the frame area.

MOVE AREA can also be selected by pressing function key F8 twice.

4.4 DELETE

Any object in the diagram may be deleted. When DELETE is selected, the
cursor changes to a large X shape which can be used to pick any of the
diagram objects. The object picked will be removed from the display to-
gether with any attached arcs.

Delete can also be selected be pressing function key F9 once.

1T4-24 Tools and Techniques

4.5 DELETE AREA

As with MOVE AREA, you can delete all items in an area by indicating any
two opposite corners of the area box. Objects within will be deleted from
the diagram with the same inclusion rules as in MOVE AREA. Arcs are
deleted if either of their connection points are deleted.

DELETE AREA can also be selected by pressing function key F9 twice.

4.6 OPTIONS

The OPTIONS area of the EDITING menu offers selections that are less
often used. These are: Change Scale, Redraw Frame, Replace Functions,
and Update Macros.

4.6.1 Change Scale

Change Scale is used to change the overall size of the working page from
the current size (size 2) up to size 20, which gives 10 times the working
space. The selected size is noted in the frame data record and is automati-
cally reset when you enter the frame. This allows you to have different sized
frames within the same file. Frame connectors are moved automatically to
the outer edge of the frame box.

4.6.2 Redraw Frame

This option will clear and redraw the frame if for any reason the display
contains errors or was partially lost in transmission to the PS 390.

4.6.3 Replace Function

This selection lets you pick an existing function in the diagram and replace
it with another. You are prompted for the name of the replacement func-
tion. The replacement can be any valid type of function: Initial Function
Instance, primitive function, macro, or User-Written Function. When func-
tions are swapped, existing arcs are checked. They are highlighted if the
connector types are incompatible with the new function. Arcs leading to
inputs no longer available in the new function are deleted.

Function Network Editor 1T4-25

4.6.4 Update Macros

This option locates all macros used in the file and compares them to the
original network file from which they were derived. If the file has since been
edited, the macro is updated. First, the display is set to the page containing
the macro to allow you to see the related changes. Then, as with changes to
detail frames, the existing connections are moved or deleted if the corre-
sponding frame connectors in the top level of the source file have been
changed. When updating is complete, the display returns to the original

page.

Note that updating is based on the internal ID of the original frame connec-
tors. If you delete the connector, connections to it are lost even if you re-
name a new connector to the same name. This allows you to change names
without losing the original connection, but if you delete the original connec-
tion, the editor will also delete all connections to it in the corresponding
usage as a macro.

5. File Control

A network file is a structured ASCII file with an extension of .NET which is
created and edited by NETEDIT. The FILE CONTROL selection offers the
following options: SELECT NETWORK, BACKUP NETWORK, SCRATCH
NETWORK, RECOVER, and RENAME NETWORK.

5.1 Select Network

This selection lets you enter the name of an existing file which you want to
edit or lets you create a new file. You may use directory names or logical
names preceding the filename. Do not give the file an extension (NET is
assumed by the Editor).

NOTE

File names are truncated to nine characters. Before a
new file is created, the directory list in your parameter
file is searched from beginning to end to see if the file
name already exists.

1T4-26 Tools and Techniques

5.2 Backup Network

During the course of editing, you can back up the file by selecting BACKUP
NETWORK which will save the current network file you are working in.
Backup also happens automatically when EXITing or SELECTing a new
network file. Backup will not occur if no editing has taken place. Simply
pressing the MOVE function key is sufficient to “touch” a file and consider
it edited.

5.3 Scratch Network

If you wish to abandon the network you are currently working on without
saving any of it, select SCRATCH NETWORK. As a precaution against
stray menu picks, you must select this twice before the network is scratched.

5.4 Recover

A log file with an extension of .LOG is kept for every edit of a file. Log
files are purged after a normal exit from the editor, but only in the current
working directory. If a crash occurs during editing, the log file can be used
to recover editing that was done between saves of the file.

Use the RECOVER selection to rerun the editing operations that were per-
formed before the crash. DO NOT LOAD THE ORIGINAL NETWORK.
The RECOVER selection loads the network automatically. Then, if a log file
is found with the correct name, it is read in and executed as if the com-
mands were coming from the PS 390. The diagram is reconstructed step by
step. When the recovery is complete, a message is displayed. At this point,
select BACKUP NETWORK to close the current log file and open another.

If the crash was caused by the Editor, or if you wish to undo the last few
commands that you gave, edit the log file and remove the last few lines
before you select RECOVER.

5.5 Rename Network

This selection lets you rename the file you are currently working on. Note
that the editor does not check to see if the file name you enter already
exists.

Function Network Editor TT4-27

6. Convert Network

This option will produce an output file from the diagram structure currently
in memory. An ASCII file has an extension of .300. A FORTRAN or Pascal
file has an extension of .FOR or .PAS. In all cases, the name of the file is
the same as the name of the network file. Other extensions for ASCII files
can be set up in your parameter file NETPARMS.TXT. However, the pa-
rameter file cannot be used to change the extensions of GSR files.

Primitives result in name := F:function name; statements. The selection
optionally adds the prefix in each frame to the primitives within it. Arcs
between sources and targets produce CONNECT namel<l>:<1>name2;
connection statements or equivalent GSR calls. Constants are sent to targets
with SEND value TO <1>name; commands or equivalent GSR calls. VARI-
ABLE connections cause the creation of the needed variables. External in-
put and output connections are connected, expecting the external code to
already be resident in the PS 390. Free-floating labels in the diagram are
added as comments within the code. Labels flagged with \+\ or \-\ become
literal PS 390 commands inserted before or after the other code for the
frame in which they are included.

NOTE

This selection will use the file currently in memory,
which may be more recent than the accompanying dia-
gram file unless you have just loaded or backed up the
file.

The following options are available: ASCII Output, FORTRAN GSR, Pascal
GSR, Use Frame Prefix, Use Macro Prefix, Compile Macro, and Suppress
Comments. Options are selected by being picked once and canceled by be-
ing picked again. When an option has been selected, it is highlighted. Some
options are present by default. Before you select the output file type (ASCII,

FORTRAN, Pascal) be sure to toggle the other options to the selections you
want.

174-28 Tools and Techniques

6.1 ASCII Output

This selection generates an ASCII file from the network diagram. Choose
this selection after selecting the other options as you wish. If an item is
highlighted, it is selected; if not, it is disabled. The file generated will have
the same root name as the source file and an extension of .300 or the
user-selected extension in the parameter file.

6.2 FORTRAN GSR

This selection generates a FORTRAN subroutine from the network diagram.
The FORTRAN code is compatible with VAX/VMS FORTRAN-77. Choose
this selection after selecting the other options you want. If an item is high-
lighted, it is selected; if not, it is disabled. The subroutine file produced will
have the extension .FOR.

To compile and link the generated code, the host program must perform
calls to attach and detach the PS 390 (PATTCH/PDTACH). You must also
supply an error-handling routine, as described in the DEC VAX/VMS FOR-
TRAN GSR documentation, called ERR.

The output file generated by the Editor may be compiled independently or
included in a file containing other FORTRAN subprograms. You must then
link it with your main program, the error-handler, and the FORTRAN GSR
library.

6.3 Pascal GSR

This selection generates a Pascal procedure from the network diagram. The
code is compatible with VAX/VMS Pascal V2. Choose this selection after
selecting the other options you want. If an item is highlighted, it is selected;
if not, it is disabled. The procedure file produced will have an extension of
.PAS.

To compile and link the generated code, the host program must perform
calls to attach and detach the PS 390 (PATTACH)/PDETACH). You must
also supply an error-handling procedure as described in the DEC VAX/VMS
Pascal GSR documentation, called PI_Error_Handler.

To compile the procedure, it is recommended that you include the file in
your main program using the “% include” directive. Your program must
also include the declarations in PROCONST.PAS, PROTYPES.PAS, and
PROETRN.PAS. After compiling the program, you must link it with the
Pascal GSR library.

Function Network Editor T74-29

6.4 Use Frame Prefix

Each context frame has a prefix (upper right-hand corner) which can be
changed by going one level higher on the detail frame representation or by
picking the prefix from the header bar. The prefix is (optionally) used
before the function names to maintain unique naming between frames. This
selection lets you specify whether or not frame-prefixes are used with
function names. If you do not select this option, prefixes will NOT be used.

6.5 Use Macro Prefix

This selection controls the inclusion of a special macro prefix in the ASCII
code file in several ways. The prefix (M1$, M2§, M3§, etc.) is used to
distinguish multiple uses of the same macro. If this option is selected when
the original macro is compiled, then the prefix will always be used later.
You should use this selection if you intend to make multiple uses of a
macro. If the option is off when the macro is compiled, then use of the
prefix is optional.

If the option is selected during final code generation, then all macros will
include the Mn$ prefix. Otherwise, only those macros that were compiled to
force inclusion of the prefix will use the prefix.

Prefixes are a way of making multiple copies of a macro with unique
names. At the same time, by making these optional, the user has the flexi-
bility of controlling the function names completely.

6.6 Compile Macro

A macro must be compiled before it can be included in the code of a net-
work that instances it.

Macros are compiled into an intermediate form of ASCI code which is
different from the code which the PS 390 normally expects. This form of
output is selected by the Compile Macro option. When this is selected, the
ASCII output is written to a macro file with an extension of .MAC which is
specially generated to allow later inclusion as a macro. Codes are embedded
(\n\) which can later be interpreted to provide unique prefixes and allow
arbitrary nesting of macros.

These codes make the ASCI code unreadable to the PS 390. In addition,
the connections from the top frame connectors are listed at the end of the

1T4-30 Tools and Techniques

file to allow a network that instances the macro to be hooked up to the right
inputs and outputs within the file. When one macro is compiled, other mac-
ro files are merged in with the special codes updated to allow unique prefix-
ing later.

6.7 Suppress Comments

This selection lets you decide whether or not comments and frame headers
are included in the output file of ASCII commands or GSRs. If you choose
this selection, no comments will be generated. If you do not choose Sup-
press Comments, comments and headers will be generated in the file. Com-
ments are included in an arbitrary order, but they are placed with the code
for that frame.

NOTE

Literal PS 390 commands which are flagged with /+/ or
/-/ are written to the output file whether or not you
choose the Suppress Comments selection.

Function Network Editor TT4-31

Appendix A
Installation Instructions

NETEDIT is distributed on magtape along with NETPROBE, the function network
debug program, and MAKEFONT, the character font editor program. The tape
contains executables as well as source files. This simplifies the installation proce-
dure for sites where no modifications to the source or data files are planned, or
where no Pascal compiler is available. Two sets of installation instructions are
supplied below. The first is simpler and assumes you have already used the VMS
Backup Utility to copy the distribution tape to the host.

1. Installation without Rebuilding the Executables

The procedure for installing NETEDIT without rebuilding it entirely is as
follows:

1. Set default to NETEDIT subdirectory in the A2.V02 subdirectory.

2. Edit the NETUSER.COM and change the definition of the
NETROOT (marked !"INSTALL-DEPENDENT) to the name of
the directory created. Make sure this file is readable and executa-
ble by all users. See comments in Netuser.com “Site Customiza-
tion of Netuser.Com.”

3 Copy the empty user log file, NETEDIT0.USR to NETEDIT.USR.
Set the protection on this file so that it is writable by all users.

2. Installation with Rebuilding Required

The files are installed in three stages. First, the files are transferred onto the
VAX system. Then two menu-driven command files, NETBUILD.COM and
NETUSER.COM are edited to customize the home directory in which the
files are to reside. Finally, NETBUILD.COM is run to compile and link all
of the files.

174-32 Tools and Techniques

2.1 Distribution Tape Format and Installation Procedure

PS 390 VAX/VMS sites receive the distribution tape (PS 390 host software)
in VMS Backup format. To install the VAX PS 390 host software, first
create a subdirectory for the PS 390 software and set your default to that
directory. Using the VMS Backup Utility, enter the following commands:

$ Allocate MTNN:

$ Mount/Foreign MTNN

$ Backup MTNN:PSDIST.BCK [...]*.%¥
$ Dismount MTNN:

$ Deallocate MTNN:

where MTNN: is the physical device name of the tape drive being used.

This will create the subdirectory A2V02.DIR which is the parent directory of
the PS 390 host software.

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites
will receive a 1600-bpi distribution tape with a block size of 6400 and a
logical record length of 80.

2.2 Customizing the Command Files

A menu-driven command file called NETBUILD.COM is provided to help
you install the files. Another command file, NETUSER.COM, displays a
programming utility menu from which NETEDIT, NETPROBE, and
MAKEFONT are accessed. Both command files must be edited to set up the
home directory in which the utility program files will reside. With a text
editor, enter NETBUILD.COM and NETUSER.COM and change the entries
which are marked with !*INSTALL-DEPENDENT®*. These are the name of
the directory in which the files will reside, the UIC reference, and the direc-
tory where the Pascal GSR library resides.

2.3 Installing the Files

When the changes have been made to NETBUILD.COM, start the command
file by typing the following command.

$ @[HomeDir]NETBUILD.COM

[HomeDir] is the name of the directory in which the files reside. The fol-
lowing menu is displayed.

Function Network Editor TT4-33

Evans & Sutherland PS 300 Utilities Maintenance
Command File V1.08 Main Menu

0) Exit
1) Initial installation - interactive
2) Initial installation - submit as batch job

To install the network editor files, select 1 or 2 for interactive or batch
compilation and linking of the entire system. Note that compilation will only
occur if the object code is missing or if the source code or related files have
been updated.

The other selections on the menu display further menus of options for up-
dating programs individually (selection 3), updating the data base (selection
4), and miscellaneous support activities (selection 5).

3. Files that are Loaded

TT4-34

The following is a list of all the files that are loaded from the distribution
tape. The files are ordered by logical groupings and in the same way they

would appear if you were working in a multiple directory.

WORK:
NetParms.TXT
Init.300
NetBuild.COM*
NetUser.COM*
NELinker.COM
NEPascal.COM
NEFileLst.DAT
NEFileDbg.DAT
NetProbe.PAS
NetProbe.COM
NetProbe. 300
NetProbeA.300
NetEditO.Usr

PROG:
NEComm.MOD
NEControl.MOD
NEConvert .MOD
NEDraw.MOD
NEEdit .MOD

A sample parameter file

ASCII command file to initialize the PS 300

The NetEdit maintenance command file

The shared user utility command file

A command file to link programs with NEUtil library
A conditional Pascal compilation command file

The list of files needed for NetEdit distribution
The list of files needed for NetProbe distribution
The NetProbe debugger source program file

The NetProbe maintenance command file

The NetProbe debugger control network

Command file to label function keys

A dummy NetEdit usage log file-copied automatically

PS 300 communications

Intermediate level database management
Network->ASCII command file conversion
Object graphics

High level editing control

Tools and Techniques

NEError.MOD
NEGraph.MOD
NEInfo.MOD
NEMain.MOD
NEParse.MOD
NERecord.MOD
NEUtil.MOD
NEUtilCon.DCL
NEUtilTyp.DCL
NEUtilvar.DCL
NEUtilExt.DCL
NEError.DCL
NetEdit.DCL
NetEdit.PAS
NetEdit.EXT
DBASE:
Config.TXT
D*'*
GrandCF.,OLD
GrandCF . TXT
InitD.PAS
NetData.PAS
NetFcn.PAS
NetLoad.PAS
NetResolv.PAS

OldToNew.PAS
ParsUser.PAS
PS300Man.DOC
FNEUser.Man

DOC:
Announce.DOC
Database.DOC
V108.DOC

MENU:
Menu.DOC
NetMenu.DAT
NetMenu.PAS

NETW:
Editor.300
Editor.Net
EdMenuMgr.Net
EdPlace.Net
EdSysMgr.Net

Function Network Editor

Error handling management (see also NEUtil)
Generic graphics support

Function and Help database interface

Top control loop and file control

Parsing routines

Low-level database management and I/O
Shared library of string routines and file handling
NEUtil Constants

NEUtil Types

NEUtil Variables

NEUtil External declarations

Error codes

Global declarations

Top-level program for NetEdit

Global external declarations

Configuration file function list

Digit vectors for 1-9 input and output on functions
P5 function database

Al function database

Merge digits into sets of 1-9

Generate main function database files (user, system)
Parse the function appendix file into a database
Bind output of NetData and NetFcn together

Merge function and help databases and cross
reference

Compare P5 and Al databases and produce change list
Parse the users manual and produce indexed file

PS 300 User’s Manual appendix on functions

Function Network editor’s manual

Announcement of new release
Function and Help Database notes
V108 release notes

Menu construction information
Menu outline file
Menu construction program

ASCII version of network editor support

Top network file-host communications and integration
Menu manager network-menu display and highlighting
PointLine placement network-Drawing

System management network-Hardcopy, Memory Alloc

TT4-35

EdText.Net Text entry network

FetchPr.Net Fetch and print network-used in EdSysMgr
HNet .Net Help page control-dials

PickMgr.Net Pick manager

Timer.Net Clock display timer control

* MAC Macro code versions of net files

Editor.Doc Description of network contents

Editor.DSP Main display structure

NetInit.300 Front end for network editor network
NetEnd. 300 Tail end for network editor network

DRAW:

NetDraw.PAS Simple drawing program used to draw cursors
NETran.PAS Translate and scale drawings

NetDraw. 300 NetDraw support network

NeCursors. 300 Combined library of cursor shapes-must be broken

into individual cursor files for editing.

4. Error Handling

Should the program crash, the current routine stack will be recorded auto-
matically in NETEDIT.ERR. An error message will appear on the status line
at the bottom of the screen, and the terminal will be reset to the normal
terminal emulator mode. After a crash, you should save the error file, along
with the log file that is kept during a session (Filename.LLOG) and your data
file (Filename.NET) as they are so that they are available for later examina-
tion during attempts to identify the problem.

5. User Log File

NETEDIT.USR is a log file that is kept to indicate who uses NETEDIT and
when. This file may become long and should be cleared occasionally by the

system manager. If you have no use for the log file, it can be disabled in the
NETUSER.COM command file.

6. User-Written Functions

Source files for the user-written function used by NETEDIT are also pro-
vided, along with a command file to build the .300 files which may be
downloaded to the PS 390. However, to rebuild the user-written functions,
you must have the Motorola 68000 cross software, which is not supplied by
Evans & Sutherland.

1T4-36 Tools and Techniques

Appendix B
Sample Editing Session

In this sample session, NETEDIT is used to design a simple function network
which allows the control dials to be used to rotate, translate, and scale displayed
objects. The transcript illustrates the sequence of operations used in creating the
network, and shows how to place functions, constants and arcs; create and manipu-
late detail frames; and make connections to external display structures.

When NETEDIT is started, it will ask you to select the network to be edited. In
Figure 4-3, the SELECT NETWORK menu item has been selected and the name of
the network (DIALNET) typed in. The network file will be called DIALNET.NET
and the file containing the ASCII code will be named DIALNET.300, unless speci-
fied otherwise in the parameter file.

Function Network Editor TT4-37

1T4-38

Evans 8 Sutherland PS300 Function Network Editor V1.06

Help
Exit
History

file Control
Editing
Convert Netrork

“FILE CONTROL

Backup Netvork
Scratch Netvork
Recover
flenane Netvork
[Enter NeﬁworkNanjL{iL’ialnef]
[s1aTUS:
TAS0555

Figure 4-3. Selecting the Network File

In Figure 4-4, the menu items for EDITING, ADD ITEM, and FUNCTIONS
have been selected to get the Functions menu. Here, functions are being
placed in the top-level frame. All of the functions that have been added here
are Initial Function Instances, so they have not been assigned user-defined
names as primitive functions are. The cross-hairs cursor has been turned on
to help align the function boxes.

Tools and Techniques

Evans & Sutherland PS300 Function Network Editor V1.06
Nane: Franel Profin: FI_
FileNeme: OIALNET
Date Modifisd: 1-JUN-1984 07,21:64.55 Total Paegas: ! Parent: -- PhgeNo:
; ;
2 1
DIALS 3
:
1
4
H
L]
1 1
ToLaseLt
TouaseLz

JoLascey

i
ToLabCLe

1
2
JoLABELS

1
JoLABELS

Help
[xit
History

“H00 TTEN

Detat] frame

functions _~__:::]

[onnector

Are
Label

“INITIAL QUTPUTH
DLabell

(Label

Dabeld

Dt abel4

Dlabel’ _

\ ;
JoLaBELs

Ol abelT
OLabelf
DSet!
05et?
0Set]

J5etd
NSatd

L

[sTATUS

Figure 4-4. Placing Functions With the Cross-Hairs Cursor

1AS0556

In Figure 4-5, the CONSTANT item has been selected from the EDITING
menu to allow placement of constants, corresponding to PS 390 SEND com-
mands. The user is prompted for the value to be sent as each constant is
positioned. Note that the constants are not connected automatically to func-
tion inputs. Here, strings to label the dials according to their functions are

being created.

Function Network Editor

174-39

Evans &| Sutherland PS300 Function Network Editor V1.06

Nenme: Framel Pretixs FI1_
FileName: D[ALNET Help
Oats Modifieg: 1-JUN-1984 07:21:54.55 Totsl Pages: | Parent: -- PageNo: 1 .
fxit
History
;om.s i
: 00 11EK
. Detacl frane
functions
aworare | lomector |
hre
YROTATE ¢ im_uu_z l label
¥
“(NNECTOR
LALLD v
) Input Frame
; ; Dutput Frane
EIIIIIIIIIIIIII Yariable
In-External

Dut-[xternal

|
t
|
|
i
|
|
|
|
|
|
I
|
I

s i
[sTaTUS

TAS0557

Figure 4-5. Creating Strings to Label the Dials
Arcs have been added to connect the constants to the function inputs in

Figure 4-6. Arcs may be inserted either by selecting the Arc menu item or
from the ARC/TEXT function key.

TT4-40 Tools and Technigues

Fvans & Sutherland PS300 Function Network Editor V1.06

Nans: Franel

Prefix: F1_

FileName: DIALNET Help
Dete Modified: 1-JUN-1984 07:21:54.55 Total Pagas:! Parent: -- PageNo: 1 L
1n
History
I :
2oracs H
4 -
| ADD [TEN
' Detatl frame
functions
eorare oo i [onnector
JouaeELt
reorare ¢ D '
‘2801ATE * [t '
!IILA'(L)
t SCAE ‘ 1 1
HEe
woR1ZNTL " a1 v
ToLaBeLs \
o
[s71ATUS:
1AS0558

Figure 4-6. Connecting Constants to Inputs With Arcs

Detail frames are being created in Figure 4-7. Instead of putting on one
page all the functions to turn input from the dials into transformation matri-
ces, using detail frames allows the details to be split up into logically inde-
pendent blocks. Notice that all detail frames initially have no inputs or out-

puts; the names and prefixes are assigned default values automatically.

Function Network Editor

1T4-41

TT4-42

Evans & Sutherland PS300 Function Network Editor V1.06
Nane: Freansl Prefix: F1_
FileName: DIALNET Help
Dats Modifiad: 1-JUN-1984 07:21.54.55 Total Pages:2 Parant: -+ PageNo: 1 bt
x
History
f2 e 0
' ! Frame.
toiats H _ ’ i
3 “K00 ITEN
4 Detail Frane
Functions
“xeer1ATE Connector
’N.A![L|
Irc
‘YROTATE M '
» ToLabcLz —_— Label
"2R07ATE ¢ B3 ' ﬂ
:ﬂLAlEL!
’DLASELQ
o
verricac b} '
Zouaneis
[sTAaTUS
1AS0559

Figure 4-7. Creating Detail Frames

The prefixes and names of detail frames, along with all other text which is
displayed in italics, may be edited by selecting the Labels menu item and
picking the text to be edited. Text can also be edited by pressing the ARC/
TEXT function key twice. This feature can also be used to add “floating”
comments. Labels are being added in Figure 4-8.

Tools and Techniques

Evans & Sutherland PS300 Function Network Editor V1.06

FileNanme:
Oste Modifi

Neme: Fr

omet Prefix: F1_
DIALNET

ed: 1-JUN-1984 07:21:54.55 Total Pages: 4 Parent: -- PageNo: 1

XROTATE

Help
Exit
History

“A00 [TEH
Detail Frame
functions
[onnector
kre

"YROTATE '
Label
‘ZROTATE * ! '
TouaseLs
toscaE 1 '
JotaELs
HORIZHTL ' [Da1 '
TouaBeLs
verricac [! !
JOLABELS
l _pan _!
[s7ATUS:
1AS0560

Figure 4-8. Editing Labels

In Figure 4-9, the GO DOWN function key has been pressed and the “rota-
tions” detail frame has been selected to edit the “inside” of the detail box.
This frame will have three inputs (from the dials for X, Y, and Z rotations)
and three outputs (for the corresponding rotation matrices). Input and out-
put frame connectors have been placed by selecting the INPUT FRAME and
OUTPUT FRAME items from the CONNECTOR menu. These items may
be placed only on the left and right edges of the frame, respectively.

Function Network Editor

TT4-43

Eveane & Sutherland PS300 Function Network Editor

(AN

06

Nene: Freame2
FileName: DIALNET -
Dete Modltied: 4. JUN-1984 07:09:54.70

Pretix: rotations

Totel Pages: 4 Perent: | PageNg

>J

Help
[xit
History

“A0D ITEW
Detail Frame
Functions

!ﬂﬂﬂiﬂ!ﬂllllllllll

kre
Label

"CONNECTOR

Input Trane

Dutput frase

[anstant

Vartabte
In-External
Out-External

[sTATUS:

TAS0561

Figure 4-9. Adding Input and Output Frame Connectors to a Detail Frame

In Figure 4-10, the input and output frame connectors have been assigned
descriptive names using the LABEL function. Functions are now being
placed in the detail frame. Since these are intrinsic functions, they are as-
signed default names by the Editor as they are instanced. These may also be

edited using the LABEL function.

Tools and Techniques

Evans & Sutherland PS300 Flunction Network Editor VI1.06

Name: Frame2 Prefix: rotationse
FileName: DIALNET HB]p
Date Modified: 4-JUN-1984 07:09:54.70 Total| Pages: 4 Parent: 1 PageNo: 2 [.

it

History

wre 2 IR
b ileXNOYATE " <

Detail frame

functions

Connector

delte 5 y ratetion 4 Lakal
v] T TaveT

I ovromate !

“TRANSF ORMATTON
(Rotate

[Scale

DScale

DMRotate
UYRotaL_j
0IRotate

Scale

fRotate

fRotate

Rotate

>4'/" 7 x rotation

L J

[sTATUS:

1AS0562

Figure 4-10. Placing Functions in the Detail Frame

Constants and arcs have been drawn. Figure 4-11shows the completed de-
tail frame for handling the rotations.

Function Network Editor TT4-45

Evans & Sutherland PS300 Function Network Editor V1.06

Name: frame2 Prefix: rotstione

FileName: DIALNET Help
Date Modified: 4-JUN-1984 07:09:54.70 Tote!l Pages:4 Parent: 1 PaegaNo: 2 hit
Xt
History
ey “A0D ITEN
delta x T""“__‘“—' x rotation /| n t l f
0.0 200 2 etat! frane
200, 0 Bj,r,nxnouv: .
[unctions
{onnector
hre
1.5 - .
Noelea » 4 AL Label
0.0 2 2
100, 0 %,r,ovnuult
P10 .
delts z I y Z rotation
0.0 2, ?

i]

STATUS:

TAS0563
Figure 4-11. The Complete Detail Frame for Rotations

Figure 4-12 shows that when the GO UP function key is selected, the next
higher-level frame in the context tree is displayed again. Notice that the box
for the “rotations” detail frame has grown and that the input and output
connectors that were placed inside now appear. The connectors appear in
the same order at both levels; the size of the detail frame box on the higher
level is adjusted automatically, depending on the number of connectors.

TT4-46 Tools and Techniques

Evans & Sutherland PS300 Function Network Editor V1.06
Name: Framel Prefux: F1_
FileName: DIALNET Help
Date Modified: 4-JUN-1984 07:09:54.70 Total Pages: 4 Parent: -- PageNo: | b
ait
History
fotetione Pg 2
! ! Frama?
2 2
OIALS 3 delte x x rotsation
% delts y v rotetion “h00 ITEM
7 delta z x rotetian .
' Detat] Frame
Functions
B . oo Py 3
YROTATE b—; 1 iy £ Connector
Touasel Franed SR
Are
CYROIAVE ¢ ! ' T
bﬂ:uuszu Label
‘ZROTATE * [>4; '
!DLAU[LS
e P2 1
Framed
SCaLE l}—-; [
ToLasELe
WORIZNTL b—; '
JOLABELS
TVERTICAL * b—; !
JDLAB(LA
[sTATUS:]

Figure 4-12. The Next Highest Frame in the Hierarchy

1AS056

£

The detail frame for “zoom” has been created in much the same way.
Figure 4-13 shows the completed frame.

Function Network Editor

1T4-47

Evans & Sutherland PS300 Function

Network Editor V1.06
Neme: frame3 Pretix: zoom
FileNams: DIALNET Hz]p
Dets Modified: 4-JUN-1984 07:09:54.70 Totsl Pesgen: 4 Parant: 1 PageNo: 3 ['t
M
History
“A00 ITEN
veres FL , sonte mserix Detail Frane
HE%B“M !) functions
1000. 0 M
a0 N Connector
Labe!
[sTATUS.
1AS0565

Figure 4-13. The Complete Detail Frame for Zooming

Figure 4-14 shows the completed detail frame for “pan”—horizontal and
vertical translation. The output of the detail box is a 3D vector.

TT4-48 Tools and Techniques

Evans & Sutherland PS300 Function Network Editor VI1.06
Name: Frame4 Prefix: pean
FileName: DIALNET Help
Date Modified: 4-JUN-1984 07:41:29 87 Total Pages: 4 Parent: 1 PegaNo: 1 s
Exit
fitstory
\delta x ‘:” ':” ; ¢reneletion “A00 17EN
4 FiXVECTOR V-'ﬂ‘bf?.ag; :r:AccunULAy[Deta‘l frase
e ah functions
p13 -1000. 0 ¢
yoelta y g (onnectar
FIYYECTOR
Label
AN
l]
[sTATuS]
TAS0568
Figure 4-14. The Complete Detail Frame for Panning
Because the sizes of the detail frame boxes change as they are edited, it is
often necessary to adjust the layout of the diagram after they have been
completed. In Figure 4-15, the MOVE feature is being used to reposition a
function box.
Function Network Editor

TT4-49

Evans & Sutherlapd PS300 Function Network Editor V1.06
Name: Frome!l Prefix: F1_
FuleName: DOIALNET Help
Date Modified: 4-JUN-1984 12):15:09.05 Totel Pages: 4 Parent: - - PageNo: 1 [,
at
History
" retetions W
; ' Frore2 =
ZotaLs H delte « x rotetion
3 , ‘ et LN —
’ DIALS : deite & 3 rotetion
H : ‘ ° hdd [tea
§
[
‘ ! 2008 Py 3 hove
XROTATE ; Frared H()ve Arga
SOLA![L‘ delte ecele matrix D l
elote
. . v |
TRorare T asree T Delete Area
3 an g 1
Froret M
ZROTATE * 1 1 Jelta x trenslavion Dpt‘ons
IoLamecs delre y
—_ S— /
© scae ! '
TovaecLa
HORIZNTL ' ! !
ToLaBELS
‘VERTICAL ! !
JoLaseLe
[sTATUS
1AS0566

Figure 4-15. Using MOVE to Reposition Items in the Diagram

Figure 4-16 shows the top level frame of the completed diagram. Arcs have
been inserted to route the output from the dials to the appropriate places.
Connectors to external display structures were added. The floating com-

ment, added using the Labels feature, describes how to set up these display
structures.

1T4-50 Tools and Techniques

Evans & Sutherland PS300 Function Network Edttor V1.06
Nane: framel Prefix: F1_
FuleName: DIALNET
DPate Modified: 4-JUN-198B4 12:15:09.05 Totsl Peges. 4 Parent: - - PageNo: 1
rotetions Pe 2
Freme?
; ; delte x x rotetion ,I'>,,,,,,,
D1ALS T T TN | deite sy rotetion —~Dersyrat
b N deits r 1 rotation ctoeror
-
3
roon Pe 3
XROTATE * (O ; ! Frased
3OLABELI delte scele setrix Dctoscale
rROTATE ! !
ZouastL2 on Pg 1
Fromed
CZROTATE * [OAt ' deite x trensletion erszran
jouABeLs delte y ‘J|> -
©oscALE ! '
ZoLaBEL4
External display structures:
WORIZNTL * (G ;DLABELS " trans TRANSLATE B7 0,0,0 APPLIED TO xrot.
3 xrot :: ROTATE [N X 0.0 APPLIED TO yrot,
N q yrot = ROTATE IN ¥V 0.0 APPLIED TO zrot,
2 oLasELs zrot = ROTATE IN Z 0.0 APPLIFD TO scale,
scale SCALE BY 7.0 APPLIED TO user_data,

7

Help
Exit
Ristory

“ADD [TCK
Deta.] Frane
lunctions
Lonnector

hre

l

[sTATUS

Figure 4-16. The Top-Level Frame of the Complete Diagram

1AS0567

Here is a listing of the ASCII code produced by selecting the CONVERT
NETWORK menu item.

To generate the file, the following options were selected.

e Use Frame Prefix (off)
e Suppress Comments (off)
e Use Macro Prefix (off)

{ Code generated by Network Editor 8 }

{ DIALNET }

Function Network Editor

J

1T4-51

{ Frame-Prefix Macro-Prefix }
{ Frame2:rotations }

rotationsP8:=F:DXROTATE;
rotationsP9:=F:DYROTATE;
rotationsPl10:=F:DZROTATE;

SEND 100.0 TO <3>rotationsPlO0;
SEND 0.0 TO <2>rotationsP1l0;
SEND 100.0 TO <3>rotationsP9;
SEND 0.0 TO <2>rotationsP9;
SEND 100.0 TO <3>rotationsP8;
SEND 0.0 TO <2>rotationsP8;

{ Frame3:zoom }
zoomPll:=F:DSCALE;

SEND 0.0 TO <5>zoomPl1l;
SEND 1000.0 TO <4>zoomPll;
SEND 1.0 TO <3>zoomPl1;
SEND 1.0 TO <2>zoomP1l1l;

{ Frame4:pan }

panPl12:=F:XVECTOR;
panPl13:=F:YVECTOR;
panP14:=F: ACCUMULATE;

CONN panPl2<1>:<1>panP14;
CONN panPl3<1>:<1>panPl4;

SEND -1000.0 TO <6>panP14;
SEND 1000.0 TO <5>panPl4;
SEND 1.0 TO <4>panPl4;

SEND 0.001 TO <3>panPl4;

SEND v3d(0,0,0) TO <2>panPl4;

Framel:F1 }
External display structures:}
trans := TRANSLATE BY 0,0,0 APPLIED TO xrot; }

xrot := ROTATE IN X 0.0 APPLIED TO yrot; }
yrot := ROTATE IN Y 0.0 APPLIED TO zrot; }
zrot := ROTATE IN Z 0.0 APPLIED TO scale; }

Pt et et R ate N et et N ate]

scale := SCALE BY 1.0 APPLIED TO user_data; }

CONN DIALS<1>:<1>rotationsP8;

1T4-52 Tools and Techniques

CONN DIALS<2>:<1>rotationsP9;
CONN DIALS<3>:<1>rotationsPl0;
CONN DIALS<4>:<1>zoomPll;
CONN DIALS<5>:<1>panPl2;
CONN DIALS<6>:<1>panPl3;

CONN rotationsP8<1>:<1>xrot;
CONN rotationsP9<1>:<1>yrot;
CONN rotationsPl1l0<1>:<1>zrot;

CONN zoomPll<l>:<1>scale;
CONN panPl4<1>:<1>trans;

SEND “VERTICAL’ TO <1>DLABELSG;
SEND “HORIZNTL® TO <1>DLABELS;
SEND “ SCALE ~“ TO <1>DLABEL4;
SEND “ZROTATE ° TO <1>DLABEL3;
SEND “YROTATE - TO <1>DLABEL2;
SEND “XROTATE “ TO <1>DLABEL1;

Function Network Editor TT4-53

FUNCTION NETWORK

DEBUGGER

TTS. FUNCTION NETWORK DEBUGGER

NETPROBE

CONTENTS

1. GETTING STARTED ... ittt ittt 2

2. ADDITIONAL FEATURES ...ttt

2.1 ASCII Network File - Original Input,
2.2 Active Output Name Fileo,
2.3 Debugging Networkoiiiiiiiiiiiiiiinneeeeeeenns

[NV B SN *N

APPENDIX A INSTALLATIONottt ittt

Distribution Tape Format and Installation Procedure
Customizing the Command Files viiiiinnn.
Compiling and Linking ittt
Files that are Loadedcittiiiiiiiiiiiiiiiiirennnnnnns

S B B

APPENDIX B CUSTOMIZATION ...ttt 10

APPENDIX C PORTING TO OTHER MACHINES 11

Section TTS
Function Network Debugger
NETPROBE

This software package is distributed by Evans & Sutherland as a convenience to
customers and as an aid to understanding the capabilities of the PS 390 graphics
systems. Evans & Sutherland Customer Engineering supports the package to the
extent of answering questions concerning installation and operation of the pro-
grams, as well as receiving reports on any bugs encountered while the programs
are running. However, Evans & Sutherland makes no commitment to correct any
errors which may be found.

One of the most critical aspects of the PS 390 graphics programmers’ job is isolat-
ing and correcting problems in function networks. NETPROBE, developed at Evans
& Sutherland, can be used as a function network debugger or as a guide in writing
your own network debugging program, allowing you to see the data values the
network generates as it runs. NETPROBE is written in DEC Version 2 Pascal for
use on a VAX/VMS 3.3 and higher system.

The NETPROBE host program works in two stages: it first reads an ASCII function
network file and produces a list of the actively used outputs; it uses this list to
create the debugging network and display structure for up to 300 outputs. It can
then be downloaded on top of the network to be debugged, and data from the
function outputs are displayed. The user can optionally edit the list of outputs to
reorder or modify the display, or generate a list to focus on particular segments of
a function network. Each function output used in the network is displayed on a
separate display line in a 15-item page, showing the name of the function and
number of the output, the value of the last output, and optionally, a count of how
many times the output has fired. Function keys provide control over which of
twenty pages are displayed, clear the currently displayed values, and disable the
display.

NETPROBE is invoked through a VMS command file (NETUSER.COM) which
allows the user to initialize the PS 390, download the ASCII command files, run

Function Network Debugger TT5-1

the Function Network Debugger, and run the Function Network Editor (if
installed).

1. Getting Started

Installation instructions for NETPROBE are contained in Appendix A. When
all of the files have been installed, run NETPROBE using the NETUSER
command file.

To bring up the initial menu of the PS 390 utility programs enter:
$@[HomeDir] NETUSER

where the name of the directory in which NETPROBE is installed is substi-
tuted for HomeDir.

Evans & Sutherland PS 300 Ultilities V1.08
Initial Menu

0) Exit

1) Initialize the PS 300

2) Send a file to the PS 300

3) Run NetProbe - Function Network Debugger (Menu)
4) Run NetEdit - Function Network Editor (Menu)

5) Character Font Utilities (Menu)

Use Option 2 or an equivalent procedure of your own to first download your
ASCII function network file to the PS 390. This must be done before the
debugging network can be sent to the PS 390. Then select Option 3. You
will be presented with the following Debug Menu:

Evans & Sutherland Function Network Utility Command File V1.06
NETPROBE: Function Network Debugger

Exit

Prepare a debug module - complete and sorted
Prepare a debug module in stages

Send a debug module to the PS 300

Label the control function keys.

PoOb=O

Option 1 creates a list of output names and uses the list to create a debug-
ging network, performing both operations in a single pass and producing a

175-2 Tools and Technigues

sorted debug display for all the outputs in the network. This is useful for
small files. The command file prompts you for a file name, runs
NETPROBE and outputs a list, and then uses the VAX Sort utility to sort
the list. It immediately runs NETPROBE again and prepares the debugger
network and display structure. The default extension for input file names is
.300, and the extension for the output name list is .PRB.

Option 2 allows you to directly run NETPROBE to generate an output list or
to use a list to create a debugging network. You are presented with the
following menu:

NETPROBE: Please provide a source file in one of two formats

Original PS 390 ASCIl Network commands (any extension)
Assumes CONNECTS are contained on single lines and are the
first non blank words on the line

OR

Output name list: (no extension or .PRB)
a list of output names and comments (“ ” or “{”)

OR

1. Turn Counting Option ON (OFF)
Enter filename, Option, or RETURN to exit:

If any extension other than .PRB (the output list extension) is used, it is
assumed the filename you provide is an ASCII network file and an output
list is created. If no extension or .PRB is used, it is assumed you are provid-
ing an output list and a debugging network is created from it.

If you enter “1”, the count option is toggled so the debugging network
counts the number of times the output is fired and displays the current
count. A counted debugging network is slow and should be used only for
small numbers of outputs.

After using NETPROBE to generate an output list, you can also edit the list
to reduce the number of outputs, improve the quality of printing, or add
some outputs. To do this, exit the NetUser command file and using the text
editor, edit the .PRB file you have just produced. Re-enter NetUser and the
Debug Menu and select Option 2 to create a debugging network using the
modified output list.

Function Network Debugger ‘ 175-3

Option 3 sends both the debugger control network and the debugging net-
work just produced to the PS 390. During the download of the debug struc-
ture, status messages appear on the bottom line of the display, including an
end message. The debug control network includes the standard support net-
work for any of the debugging structures, and includes the top-level display
structure and implementation of the function key controls. You must then
press SHIFT/LINE LOCAL (PS 300 Style) or CTRL/LOCAL (PS 390 Style)
to enable the function keys properly.

Once the network and the debugging network are downloaded to the
PS 390, the function keys can be used to control the debug display as

follows:
Shift-FKey 9: PAGE - Display previous debug page
Shift-FKey 10: PAGE + Display next debug page
Shift-FKey 11: CLEAR Clear the current values and counts
Shift-FKey 12: SHOW Y/N Enable or disable the debug display

You must press SHIFT and then the associated key. If you are not actively
using these function keys for your own function network, you can download
labels for the function keys by selecting Option 4.

2. Additional Features

2.1 ASCII Network File - Original Input

NETPROBE reads in PS 390 command files and generates a list of the func-
tion outputs that appear in CONNECT statements. For example:

CONNECT a<1>:<2>b;
produces

a<l>
in the output list.

The CONNECT commands must be coded on single lines with no comments
or other commands preceding the CONNECT command on the same line.
For lines in which the CONNECT command follows a comment or another
command on the same line, the outputs are not listed. For example, in:

{Comment} CONNECT a<1>:<1>b;

the output a<1> is not listed.

1T5-4 Tools and Techniques

In:
CONNECT a<1>b; CONNECT b<l>:<l>c;

the output b<1> is not listed.
Commands that have been commented out are ignored.

Some versions of Pascal may not tolerate a null line at the end of a file and
may produce an error in reading the file. In this case, the last line should
contain at least a space.

2.2 Active Output Name File

You can either run NETPROBE in one pass (Debug Menu, Option 1), or in
stages (Option 2) which allows you to edit the output name file (.PRB). You
might want to edit the output name file to improve the way the debug
display appears, to increase the efficiency of the debugging network, and to
reduce delays caused by very active networks and frequently sampled
peripherals.

The output name file may contain blank lines to separate sets of display
items or it may contain comments. Any line beginning with a space or left
curly brace ({) is treated as a comment and empty lines (0 characters) are
ignored.

Sorting facilitates lookup. The NETPROBE program discards duplicate
output names whether the list is sorted or not.

The debug structure may result in a large and slow network bogged down by
frequently sampled interactive devices (tablet and dial). To reduce the
traffic during debugging, either edit the output name file and remove some
of the outputs being monitored, or cut the sampling rate of the tablet and
dials.

NETPROBE generates extensive code for each output. With moderate to
large networks (over 100 outputs) in which a lot of activity is expected, split
the output name intermediate file into sections and create debugging net-
works for each of these separately for debug sessions focused on different
network segments.

The output name file can be used to check for spelling errors by listing its
contents.

Function Network Debugger TT5-5

2.3 Debugging Network

The debugging network and display file are downloaded on top of your
network and compete with it for memory, display capacity, function execu-
tion, and object names.

Memory can be reduced and function execution enhanced by shortening the
output name file to focus on limited sections of the network. All
NETPROBE-generated named entities (function and display structures) use
a D$ prefix to help reduce naming conflicts, e.g., D$pr_1. Please do not use
this prefix in your own files.

Once a debugging network has been passed to the PS 390, to eliminate it
use the INIT command (refer NetUser, Option 1) and retransmit the
function network.

1T5-6 Tools and Techniques

Appendix A
Installation

Distribution Tape Format and Installation Procedure

PS 390 VAX/VMS sites receive the distribution tape (PS 390 host software)
in VMS Backup format. To install the VAX PS 390 host software, first
create a subdirectory for the PS 390 software and set your default to that
directory. Using the VMS Backup Utility, enter the following commands:

$ Allocate MTNN:

$ Mount/Foreign MTNN

$ Backup MTNN:PSDIST.BCK [...]*.*
$ Dismount MTNN:

$ Deallocate MTNN:

where MTNN: is the physical device name of the tape drive being used.

This will create the subdirectory A2V02.DIR which is the parent directory of
the PS 390 host software.

UNIX sites will receive a 1600-bpi distribution tape in tar format. IBM sites
will receive a 1600-bpi distribution tape with a block size of 6400 and a
logical record length of 80.

Customizing the Command Files
To modify the two command files NETPROBE.COM and NETUSER.COM:

1 Using a text editor, search for and change the entries which are
marked !"INSTALL-DEPENDENT™. These identify the home direc-
tory in which the NETPROBE files are installed.

2 In the NETUSER.COM file, if you don’t intend to install the NetEdit
file, comment out Option 4 in Top_Menu.

3 Exit from the text editor.

Compiling and Linking

NETPROBE is automatically compiled and linked when NETBUILD.COM is
run to install the Function Network Editor. (Refer to Appendix A of

Function Network Debugger TT5-7

Function Network Editor for instructions on running NETBUILD.COM.)
NETPROBE is compiled and linked on its own as follows:

Enter:

$@[HomeDir] NETPROBE

where the name of the directory in which NETPROBE is installed is
substituted for HomeDir.

The Main Menu is presented:

Evans & Sutherland Function Network Debugger
Maintenance Command File V106
Main Menu

0. Exit

1. Compile Debugger (NonDebug)
2. Compile Debugger (Debug)

3. Copy Debugger to Tape
Enter selection (0-3)

Select Option 1 to compile and link NETPROBE and its utility library. Op-
tion 2 prepares a debugging version of NETPROBE if you want to debug
modifications to NETPROBE. Option 3 copies the necessary files (listed in
NEFileDbg.DAT) to tape for further distribution.

Files that are Loaded

The following is a list of all the NETPROBE files that are loaded from the
distribution tape (other files may be loaded that are used for NETEDIT).
The files are ordered by logical groupings and in the same way they would
appear if you were working in a multiple directory.

Init.300 An initialization file for the PS 390, used by
NetUser

NetUser.Com+ The user command file

NELinker.Com A command file to link NETPROBE after
compilation

NEPascal.Com A conditional Pascal compilation command file

NEFileDbg.Dat The list of files needed in NETPROBE
distribution

NetProbe.Pas The NETPROBE source program file

NetProbe.Com+ The maintenance command file

NetProbe. 300 The debugger control network

TT5-8 Tools and Techniques

NetProbeA. 300 Command file to label function keys

NEUtil.Mod A library of support routines needed by
NETPROBE
NEUtil*.Dcl Shared declarations between NEUtil and
NETPROBE
NOTE

The +’d files must be edited upon installation. NEUtil*
is shared in common with the Network Editor.

Function Network Debugger 175-9

Appendix B
Customization

The NETUSER.COM command file is set up to assume a default extension of
’.300’. This can be modified without side effects to meet user conventions.

CAUTION

In editing the NETPROBE.300 debug control network
file, check to see if any portion of the PS 390 com-
mands you intend to alter are referenced in
NETPROBE.PAS. The commands are described in the
NETPROBE.300 file header. (Refer to Appendix A for
a summary of the files included in the distribution
tape.)

The following are changes that can easily be made to NETPROBE.PAS:

e Items per page: change the PageSize constant.

e Maximum items: change the MaxProbes constant and also modify
the display structure in NETPROBE.300 to include more pages.

NOTE

If there are more than 512 lines, add more
DS$clear_all_N functions which can handle 128 outputs
each.

o Placement of display structure: change the display structure in
NETPROBE.300 and reset the VSpace constant if you are changing
the scale of the display.

17T5-10 Tools and Techniques

Appendix C
Porting to Other Machines

NETPROBE is written in Pascal and has been made as machine independent as
possible. It is limited to standard Pascal with the following exceptions of DEC
Pascal, Version 2:

1. Attributes: Attributes are ANSI extentions to Pascal which qualify
how routines and constants are used and shared and include [EX-
TERNAL], [GLOBAL], [ASYNCHRONOUS], [ENVIRONMENT],
and [INHERIT]. These must be edited out if the destination Pascal
cannot handle them.

2. Condition handlers: File errors are trapped by a condition handler
called OpenError, which helps to recognize nonexistent or protected
files and allows the user to try again. This can either be reimple-
mented if possible, or commented out if you are unable to provide a
condition handler and can tolerate a crash on such a condition. Ig-
nore EHandler, another condition handler; it is used only in the Net-
work Editor, NETEDIT.

NETPROBE consists of the debugger source program, NETPROBE.PAS,
and NEUTIL.MOD, a library of support functions that it shares with
NETEDIT. If you do not have NETEDIT, you do not have to worry about
how modifications to NEUTIL will affect it. If you do have NETEDIT, you
should rename it if you are going to make extensive changes to NEUTIL.

Some of the routines in NEUTIL are not needed and can be commented out
when converting to another version of Pascal or another language. If you are
unable to support modules, these two files can be merged together and the
associated *.DCL files can be merged into the declaration section to provide
a single support file. If you do merge files, then also modify
NETPROBE.COM to directly compile and link as a single file rather than
compiling and linking in the library.

Function Network Debugger TT5-11

DATA STRUCTURE
EDITOR

TT6.

TT6. DATA STRUCTURE EDITOR

STRUCTEDIT

CONTENTS

1. RUNNING STRUCTEDIT ...ttt

1.1 Filesand Pagesoutiiiiiiienreeeennnnnnneeanans
1.2 Manipulating the Displaycoviiiiii i,
1.3 MeIUS &« vttt eitiiiieteeteeeennnenooeoesoesnnnanneeeness
1.4 Helpful Hintsttt it ienieaeanns
1.5 Init Files ..o oviiiiiiiiiiiietiiiitenenetennnennnnaeenns
1.6 Converting Existing Modelscoiiiiiiiiinnn..

ILLUSTRATIONS

Figure 6-1. Command Menu Example
Figure 6-2. Fill-in-the-Blank Menu Example

-y

W0 3 1 W N

Section TT6
Data Structure Editor
STRUCTEDIT

STRUCTEDIT is a graphical display structure editor for the PS 390. This program
allows you to sketch out your display structure, and then converts the diagram into
ASCII PS 390 commands or a routine you can include as part of a FORTRAN,
Pascal, C, or LISP program.

Unlike the PS 390 Function Network Editor, described in 774, STRUCTEDIT lets
you concentrate on designing the semantics of your PS 390 program, rather than
requiring you to spend a lot of time designing the graphical layout of the diagram.
STRUCTEDIT does the graphical layout for you, and commands are mostly con-
cerned with conceptual operations such as inserting nodes into the display struc-
ture, copying structure, etc.

To support the automatic layout, some restrictions have been made on what you
can do. The major one is that each diagram page is drawn as a strict display
structure; that is, each node must have exactly one parent. Sharing of structure is
achieved through the use of stubs, which are references to names which are de-
fined elsewhere.

Another restriction has nothing to do with layout, but rather with enforcing that
your PS 390 program is valid. This is that operation nodes must always be fol-
lowed by a THEN or APPLIED TO node. (Note that the Graphics Support Routines
will signal an error if this is not the case.) In general, STRUCTEDIT will insert
stubs when necessary. You can replace the stub with another node.

1. Running Structedit
This section gives some general information about how the user interface
works. Specific commands are discussed in sections 2 through S.

1.1 Tiles and Pages
When you start up STRUCTEDIT, the first thing it will do is ask you for the
name of the file you want to edit. It will assume a file type of “.data” if you
do not supply an extension. If it can find the file, it will read it in; other-
wise, it will assume you want to create a new file.

Data Structure Editor TT6-1

A file contains one or more pages. There is no implied hierarchy among the
pages; they just provide a convenient way to break up a large program into
manageable parts. There is no limit on how much you can fit on a page,
although if you try to fit too much on a page it will get scaled down so much
you will have a hard time reading the diagram. Using the default diagram
scale, you can fit approximately 9 nodes across and 7 nodes down on the
screen.

Many of the editing commands make use of a kill buffer. Generally,
whenever you delete a large part of your diagram, it is saved in the kill
buffer. Until you delete another part, you can paste the deleted subtree back
into your diagram from the kill buffer. This also provides a handy
mechanism for moving parts of structure between pages, or for making
copies of structure.

1.2 Manipulating the Display

The PS 390 screen is divided into three parts. The upper part is used for
displaying the current page diagram, the middle part is used for displaying
menus, and the bottom of the screen is where messages appear. Figure 6-1
and Figure 6-2 show typical screen displays. You can use dials 1, 2, and 3
to translate and scale the diagram display, and dial 4 to scroll the menu
area. (Nearly all the menus are small enough so that you do not need to
scroll them.)

The function keys are used to manipulate the display in various ways. Most
of them are used to control what menu appears in the menu window. Fol-
lowing is a summary of the function keys.

Key F1 - DATAEDIT
This displays the current fill-in-the-blank menu, used for editing various
kinds of data, in the menu window. See the next section for more infor-
mation on how to use these menus. Normally, the menu will be displayed
whenever the host program is expecting you to use it.

Key F2 - BUFFERS
This displays a menu listing the various pages or buffers in the file cur-
rently being edited. You can switch to a different buffer by picking its
name from the menu.

Key F3 - FILES
This menu lists various commands pertaining to file operations.

Key F4 - EDITING
This menu contains miscellaneous editing commands.

176-2 Tools and Techniques

Key F5 - DATANODE
This menu contains commands for inserting the various kinds of data
nodes into your diagram.

Key F6 - TRANSFRM
The TRANSFORMATIONS menu contains commands for inserting vari-

ous kinds of transformation nodes into your diagram, such as SCALE
and ROTATE.

Key F7 - COND REF
The CONDITIONAL REFERENCE menu contains commands for insert-

ing various kinds of conditional reference nodes into your diagram. For
example, CONDITIONAL BIT and LEVEL_OF DETAIL are found here.

Key F8 - ATTRIB
The ATTRIBUTES menu contains commands for inserting miscellaneous

operation nodes into your diagram. Most of these nodes set various at-
tributes such as COLOR, PICKING, and so on.

Key F9 - DIAGRAM
The DIAGRAM function key resets the scale and translate for the main
diagram window to the defaults for the current page. (These defaults are
calculated whenever you select a page from the buffers menu. If you
have added or deleted a lot of structure from the current page, reselect
the page from the buffers menu to recompute the scale factor.)

Key FI10 - DISPLAY
This function key toggles between the normal screen setup and a view of
your model. Note that the picture of your model is only updated when
you explicitly request it.

Key FII - FULLMENU
Some of the fill-in-the-blank menus are rather large. You can use this
function key to toggle between the normal screen setup and a full-screen
view of the fill-in-the-blank menu window.

1.3 Menus

All of the menus controlled by the function keys are command menus. You
can always pick a command from one of these menus; this will abort
whatever other command is currently in progress. When you pick an item
from a command menu, a box will be drawn around it to help you keep

Data Structure Editor 176-3

TT6-4

track of what the host program is currently doing. Most commands require
you to enter some other data on a fill-in-the-blank menu, or to pick things
from the diagram display. In addition, some commands loop, or introduce
modes. Figure 6-1 shows a typical command menu.

File name: BIKE.DATA (Page 1 of 2)
Page root: tricycle
Description: Tricycle model

|

frame

VECTOR_LIST

Isize
SCALE BY

left_wheel
TRANSLATE

right_wheel
TRANSLATE

steering
ROTATE
INY

rsize
SCALE BY

T5
INSTANCE

rangel
ROTATE
IN Z

@@

handlebars
VECTOR_LIST

front_wheel
TRANSLATE

wheel
VECTOR_LIST

Add Transformation Node

SCALE BY ROTATEINX ROTATEINY
TRANSLATE MATRIX_3x3 MATRIX_4x3 MATRIX_4x4

EYE BACK LOOK AT FIELD_OF_VIEW VIEWPORT

LOAD VIEWPORT ~ WINDOW CHARACTER ROTATE ~ CHARACTER SCALE
TEXT SIZE MATRIX_2x2 CANCEL XFORM XFORM MATRIX
XFORM VECTOR WRITEBACK

Adding ROTATE IN Z node; pick where to insert it.

Figure 6-1. Command Menu Example

Tools and Techniques

Fill-in-the-blank menus are used extensively for things like editing the name
and parameters associated with a structure node. When the host is expect-
ing you to edit something in a fill-in-the-blank menu, it will automatically
display the menu for you in the menu window. You can use the function
keys to return to a command menu.

There are three different kinds of items that can appear on a fill-in-the-
blank menu. The first is a multiple-choice menu. An asterisk (“*”) will
appear next to whatever item in the menu is selected. Picking an item se-
lects it. The second kind of submenu is a toggle menu. This looks like a
multiple-choice menu, except that you can have more than one item se-
lected. Picking an item toggles its status. The third type of submenu is a text
menu. If you pick an item from a text menu, the keyboard is connected to it
so you can type in a new value. If you pick something else while the text
menu is active, it will get reset to its initial value and disconnect the key-
board. Typing a carriage return signals completion and also disconnects the
keyboard. If there is more than one text item in the menu, the keyboard will
automatically connect itself to the next item at this point, to reduce the
amount of switching between the keyboard and tablet you need to do.

The text editor uses the following control characters for editing effects:

CONTROL-A Moves the cursor to the beginning of the line.

CONTROL-B Moves the cursor back (left) one character.

CONTROL-D Deletes the character at the cursor position.

CONTROL-E Moves the cursor to the end of the line.

CONTROL-F Moves the cursor forward (right) one character.

CONTROL-K Kills (deletes) to the end of the line.

CONTROL-U Deletes the entire line.

DELETE Deletes the character to the left of the cursor.

RETURN Signals completion and disconnects the keyboard.
Fill-in-the-blank menus generally have an item marked “Pick this to con-
tinue” at the top. Picking that item indicates that you are satisfied with all of
the values you have been asked to edit, and allows the command to com-
plete. Until then, you can go back and change values you have set previ-

ously. A fill-in-the-blank menu for editing the parameters associated with a
viewport node is shown in Figure 6-2.

Data Structure Editor TT6-5

1T6-6

In a few cases, STRUCTEDIT needs you to supply just a single string. Here,
you do not have to pick anything, and the host program will take whatever

you have typed in as soon as you hit the carriage return.

T24
FIELD
_OF_VIEW

view
LOOK AT

grid
VECTOR_ULIST

position
TRANSLATE

orientation
ROTATE
INY

File name: BIKE.DATA (Page 2 of 2)
top Page root: top
VIEWPORT Description: Viewing and positioning

Edit VIEWPORT Data
Pick to continue

Name: top

Viewport Parameters

X Min -1 X Max 1 Y Min -1
| Min 0 | Max 1

Y Max 1

Please edit the node data.

Figure 6-2. Fill-in-the-Blank Menu Example

Tools and Techniques

1.4 Helpful Hints

Many editing commands require you to pick nodes from the diagram display
window. In this case, you will see a message indicating that you should do
So.

The cursor shape also indicates what input mode you are in. An arrow
shape pointing to the left and up indicates that the only valid actions are
picks from a command menu. An arrow shape pointing to the right and up
indicates that the program is waiting for a diagram pick. An asterisk-shaped
prompt indicates that there is a fill-in-the-blank menu active.

Occasionally, you will see a message indicating that garbage collection is in
progress, and the program will seem to go dead for several seconds. This is
completely normal; the program is just recycling its heap storage. Another
message will be displayed when the garbage collection is finished.

1.5 Init Files

You can use an init file, SYSSLOGIN:STRUCTEDIT.INI, to alter some of
the parameters used by the editor. A typical use of the init file is to config-
ure the Graphics Support Routines if you are using something other than an
async line.

The structure editor is written in LISP so you can actually put any random
LISP code you want into your init file. However, the following are the only
things that are really useful.

(setq *device-type* “async)
This establishes the device type for use by the Graphics Support Rou-
tines. Valid values are “async, “parallel, or “ethernet.

(setq *device-name* "tt:")
This establishes the name of the device used by the Graphics Support
Routines.

(setq *add-node-edit* nil)
Normally, as you insert nodes into your diagram, you will be given a
chance to edit the name and other parameters associated with each node.
If you prefer to add all of the nodes first and then go back and edit the
data as necessary, you can use this option. The new nodes will get unique
names and appropriate defaults for their parameters.

Data Structure Editor T16-7

(setq *ascii-file-type* "300")
(setq *pascal-file-type* "pas")
(setq *fortran-file-type* "for")
(setq *c-file-type* "c")

(setq *lisp-file-type* "cl")
These variables provide default values for the file type (or extension)
used by the various code conversion options. If you want to use some
other extension, just provide another value for the appropriate variable.

1.6 Converting Existing Models

Your existing .300 files can be converted to data files that the structure
editor can understand using the PS 390 ASCII-to-GSR conversion program
described in Section TT8. Specify an output format of DATA.

The conversion process basically works by trying to insert as many nodes as
possible on each diagram page. Nodes that are defined but never referenced
become the root nodes of the pages. You will probably want to rearrange
some parts of the diagram to get a clearer picture.

PS 390 commands that do not represent namable objects are thrown away
with a warning message. However, the converter does understand BE-
GIN...END and BEGIN_STRUCTURE...END_STRUCTURE sequences.

You should avoid converting very large models, particularly if there are long
vector lists or polygon lists. In these cases, the model should be broken into
smaller files.

2. Command Descriptions — Buffers

The BUFFERS menu allows you to select the current page from the pages
you have defined in the file you are currently editing. The menu lists the
name of the root node and the description text for each page in the file.
Pick the name of the page you want to switch to.

Selecting a page from the buffers menu displays that page and also recom-
putes the default scale factor used by the DIAGRAM function key.

3. Command Descriptions — Files

The FILES menu contains various commands pertaining to file operations.

17T6-8 Tools and Techniques

READ FILE
This command prompts you for the name of the file to read. The file
currently being edited is saved, then the new file read in.

WRITE FILE
This command writes out a backup copy of the file currently being ed-
ited. It is suggested that you save your work from time to time, since the
structure editor does not have any kind of journaling or autosave feature.
It does recover automatically from most program errors. It will simply
abort whatever command was in progress when the error occurred, and
return you to the command loop.

MERGE FILE
This command is used to merge or include another diagram file into the
current file. The pages in the included file are simply added to those
already defined in the current file; no checks are made for name con-
flicts. It prompts you for the name of the file to read.

RENAME FILE
Use this command if you want to change the name of the current file.

This command does not actually rename the file, but simply changes the
name that will be used by WRITE FILE or EXIT.

PLOT CURRENT PAGE
This causes a screen dump of the current diagram page to be sent back to
the host for plotting. The plot is written to a file with the same name as
the file being edited, but with an extension of “plot.”

The scale and translation are not reset; the diagram will appear in the
plot just as it does on the screen. Menus are not plotted.

Particularly if you have a lot of structure displayed on the page or are
using the RS-232 async interface, transferring the plot dump to the host
can be a rather slow process. The program beeps when it is finished.

The plot data is formatted in such a way that it can be easily processed
by an external plot program. Each point is written to the plot file as two
integer coordinates (X ranging from 0 to 2398, and Y from 0 to 2998),
plus a 0 for move and 1 for draw. You can change the scale factor from
the default by sending a 2D vector to <2>m$_P315.

Data Structure Editor

1T6-9

PLOT ENTIRE FILE
This command causes a plot dump for each page in the current file to be
written. The plot for each page is written to a file with the same name as
the current file, but with extensions of “plotl,” “plot2,” etc. The scale
and translation are reset for each page, so that the entire contents of each
page will appear in the resulting plots. The program beeps when all of
the pages have been plotted.

CODE CONVERSION
This command is used to produce a file containing ASCII PS 390 com-
mands or a FORTRAN, Pascal, C, or LISP routine containing calls to the
Graphics Support Routines library, that you can use to download the
model you have created with the structure editor. You will be asked to
select what kind of output you want.

The output code will be written to a file with the same name as the file
being edited, but with a different extension: “300” for ASCII, “pas” for
Pascal, “for” for FORTRAN, “c” for C, and “cl” for Common LISP.
(You can change the defaults in your init file; see above.) The output file
contains a single procedure, with the same name as the file.

The code generator uses a postorder traversal so that code is generated
from the bottom up. That is, the leaf nodes are defined first, then the
nodes that reference them, and so on up to the root node of the page.
The reason for this is that if you have OPTIMIZE STRUCTURE turned
on when the model is downloaded, the PS 390 cannot make any op-
timizations unless the descendants of a set node are defined before the
set node itself. Note that the code generated by the structure editor does
not turn on OPTIMIZE STRUCTURE; that it is not possible for one part
of the structure defined in a single file to be optimized and another part
not; and that the order in which pages are processed is not guaranteed.

EXIT (saving file first)
This saves the current file, then exits the program. You will be asked to
verify that you want to exit.

QUIT (without saving)
This exits the program without saving the current file. You will be asked
to verify that you want to quit.

TT6-10 Tools and Techniques

DOWNLOAD FILE TO PS 390
This command, which downloads an ASCII file to the PS 390, is useful in
conjunction with the DISPLAY MODEL command. An extension of
“.300” is assumed if you do not supply one explicitly. The file should not
contain muxing bytes, as it is downloaded through the Graphics Support
Routines. This option should only be used to download display structure
definitions. Downloading a function network may interfere with the op-
eration of the structure editor.

4. Command Descriptions — Editing

The EDITING menu contains the following miscellaneous editing
commands.

DELETE NODE
This is a splicing delete; a single node is deleted from the diagram. The
deleted node is not saved in the kill buffer. You will be asked to pick a
node to delete. This command loops; you will remain in delete mode until
you pick another command.

The behavior of this command depends on what kind of node you are
deleting. If you delete a data node, STRUCTEDIT will replace it with a
stub to maintain the correctness of the structure. If you delete an opera-
tion node, it will just splice the display structure tree together around the
deleted node. This also happens if you delete an instance node that does
not have more than one descendant. (You cannot delete an instance node
with several descendants because it is generally not possible to splice in
more than one descendant node. Use CUT SUBTREE or REMOVE
FROM in this case.)

CUT SUBTREE
This command moves the subtree rooted at the selected node to the kill
buffer, and replaces it with a stub with the same name as the root node
of the deleted subtree. (This makes it convenient if you are using CUT
and PASTE to move a subtree to a new page; the original display struc-
ture still points to the same name.) This command loops, so you will be
asked to pick another subtree.

PASTE SUBTREE
This command replaces the subtree rooted at the selected node with a
copy of the subtree in the kill buffer. The original subtree is not saved in

Data Structure Editor

1T6-11

the kill buffer; this allows you to insert multiple copies of a display struc-
ture at various places in your diagram. Note that the names of the nodes
copied from the kill buffer are not changed, so you may need to edit the
names if you are inserting multiple copies of structure. Again, this com-
mand loops.

Insert INSTANCE Node
This command is used to insert an instance node into your diagram. See
the discussion of adding nodes in §..

INCLUDE IN
Use this command to add another descendant (a stub) to an instance
node. This command will loop, asking you to pick another instance node.
The stub will be added as the rightmost descendant of the instance node.

Note that it is possible to change the the left-to-right order of the descen-
dants of a set node, if you wish to do so. First use INCLUDE IN to add a
new node on the far right. Then use REMOVE FROM and PASTE SUB-
TREE to replace the stub with one of the other dependants of the set
node.

REMOVE FROM
Use this command to delete a descendant subtree from an instance node.
The deleted subtree is saved in the kill buffer. Again, this command
loops, asking you to pick the root node of the subtree to be removed.

CHANGE NAME PREFIX
When you add nodes into your diagram, the structure editor gives them
default names generated from a prefix and a counter. The default prefix
is T, so the names look like T1, T2, etc. You can give a file a different
prefix string using this command. Note that the prefix only affects subse-
quent nodes added, not those already part of the diagram. Use EDIT
NODE DATA to change the names of these nodes.

EDIT NODE DATA
This command allows you to edit the name and other data associated
with a node. A fill-in-the-blank menu will be displayed after you have
picked the node you want to edit. This command loops, asking you to
pick another node to edit.

DISPLAY MODEL
This command downloads commands to the PS 390 to display your struc-
ture. You can use function key 10 to toggle between the model display

17T6-12 Tools and Techniques

and the usual menu/diagram display. Note that the model display is only
updated when you specifically request it using this command.

Since the support network and display structures of the structure editor
share the same name space as the display structures in your model that
are downloaded by DISPLAY MODEL, you must exercise some caution
to avoid conflict with the structure editor when you use this feature. To
make this easier, all of the names used by the structure editor are pre-
fixed with “m$.”

CREATE NEW PAGE
This creates a new diagram page in the current file, and makes it the
current page. The page contains a stub as its root node. You will be given
a chance to edit the description of the page.

DELETE CURRENT PAGE
This command deletes the current page. Its contents are moved to the Kkill
buffer. You will be switched to another page in the same file. Note that
every file must have at least one page. If you try deleting the only page in
your file, it will create a new page containing only a stub and switch you
to that instead.

REDRAW CURRENT PAGE
If the display becomes corrupted, use this command to redraw the cur-
rent page.

EDIT PAGE DESCRIPTION
This command allows you to edit the description of the current page.

FIND NAMED NODE
This command prompts for a node name, and switches to the page where
the node with that name is defined. Note that stubs are name references,
not definitions, and are ignored in the search.

Wildcard characters “%,” “*,” and “+” may appear in the search string,
to match any single character, a sequence of zero or more characters, or
a sequence of one or more characters, respectively. A backslash acts as
an escape character to allow these characters to be searched for as
literals.

Data Structure Editor TT6-13

5. Command Descriptions — Adding Nodes

The DATANODE, TRANSFRM, COND REF, and ATTRIB menus contain
commands for inserting nodes into your diagram. You will be asked to pick
the place in the diagram where you want the node to be inserted, and then a
fill-in-the-blank menu will let you edit the name or other data associated
with the node. These parameters are initialized with reasonable default val-
ues (including an automatically generated name), so in many cases you will
not need to change anything.

These commands loop; that is, after you have completed the operation, it
will ask you to insert another node of the same type.

The exact behavior of these commands depends on what kind of node you
are inserting. If you are adding an operation or instance node, it gets spliced
into the diagram just in front of the node you selected. If you are adding a
stub or data node, the subtree rooted at the node you selected is deleted
(and placed in the kill buffer), and the entire subtree is replaced with the
new node.

The editing menus provided by the structure editor only allow you to modify
values, and, for data nodes such as vector list and labels, add or delete
items from the end of the command. Since data node definitions tend to
contain a lot of textual information and very little structure, you will prob-
ably find a text editor a better alternative for defining large vector lists or
polygon lists. You can reference these externally defined names inside the
structure editor using a stub.

A few of the data node menus also put slight restrictions on syntax. For
BSPLINE and RATIONAL BSPLINE, you cannot specify an explicit knot
vector (the default knot sequence is always assumed). For POLYGON lists,
you can only specify ATTRIBUTES, OUTLINE, and whether or not you
want to use vertex normals and color-by-vertex at the beginning of the poly-
gon list, and these values apply to all polygons within the list.

1T6-14 Tools and Techniques

CHARACTER FONT

. EDITOR

TT7. CHARACTER FONT EDITOR

MAKEFONT

CONTENTS

1. RUNNING MAKEFONTttt
2. MAIN CONTROL MENU ... iiiiiiiiiiiiiiiiiiiiininanns
3. EDIT MENU ...ttt ittt it ittt enneennes
4. DOWNLOADING STANDARD FONTSoiiiiiinvnn..

5. FONT STORAGE i i ittt e naeen

ILLUSTRATIONS

Figure 7-1. The Main Control Menuo,
Figure 7-2. The Edit Menuc.oivtiiiitiiiiiininneennnas

w

Section TT7
Character Font Editor
MAKEFONT

This software package is distributed by Evans & Sutherland as a convenience to
customers and as an aid to understanding the capabilities of the PS 390 graphics
systems. Evans & Sutherland Customer Engineering supports the package to the
extent of answering questions concerning installation and operation of the pro-
grams, as well as receiving reports on any bugs encountered while the programs
are running. However, Evans & Sutherland makes no commitment to correct any
errors which may be found.

MAKEFONT is a program that allows character fonts for the PS 390 to be de-
signed or modified. Files may be read and written in formats for both standard
fonts (the default font loaded when the PS 390 is booted) and user-defined alter-
nate character fonts (a BEGIN FONT ... END FONT sequence). MAKEFONT it-
self runs on a PS 390 under VAX/VMS.

Either a 128-character or 256-character font may be created. There are features
allowing merging or modification of existing fonts, as well as for creation of new
characters. In addition, files can be read and written in the format used for user-
defined alternate fonts.

This document provides descriptions of the commands available within
MAKEFONT. It also provides a detailed description of the standard font file for-
mat and instructions for downloading standard fonts.

The files needed to run MAKEFONT are loaded from the same distribution tape as
the NETEDIT (Function Network Editor) and NETPROBE (Function Network
Debugger) files. For installation instructions, refer to Appendix A of Section 774.

1. Running MAKEFONT

MAKEFONT is run from the command file NETUSER.COM. To bring up
the menu from which MAKEFONT is selected, enter the following
command.

Character Font Editor TT7-1

[HomeDir] NETUSER.COM

[HomeDir] is the name of the directory in which MAKEFONT resides. The
following menu is displayed.

Evans & Sutherland PS 300 Utilities V1.08
Initial Menu
0) Exit
1) Initialize the PS 300
2) Send a file to the PS 300
3) Run NetProbe - Function Network Debugger (Menu)
4) Run NetEdit - Function Network Editor (Menu)
5) Character Font Utilities (Menu)

Select option 5 to bring up the Character Font Utilities Menu.

Evans & Sutherland PS 300 Utilities V1.08
MakeFont: PS 300 Character Font Utilities Menu

0) Exit
1) Run MakeFont character font editor program
2) Convert standard font file to PS 300 S-record format

Select option 1 to start the MAKEFONT program. Option 2 prompts for the
name of a standard font file and produces an S-record file (a file in a
format which the PS 390 can read). This file can then be downloaded to
diskette as the default character font. This is explained in Section 4.

When MAKEFONT is run, it first downloads menus and initializes the font.
A “Ready” message appears when the host has completed the initialization,
but because of delays due to things such as buffering, it takes about five
minutes for the PS 390 to be ready to accept commands. The program is
actually “Ready” when it responds to menu picks.

2. Main Control Menu

The main control menu for MAKEFONT consists of a character selection
grid on the top half of the screen, and text strings representing various
functions on the bottom half of the screen. Although only 128 characters at
a time can be displayed on the character selection grid, you can edit a font
with 256 characters by using function key F1 to toggle between the display
of characters 0-127 and 128-255. (This action is carried out locally, so this

1717-2 Tools and Techniques

has no effect on what MAKEFONT is doing on the host.) Figure 7-1 shows
the Main Control Menu when MAKEFONT is first entered.

Use the data tablet and stylus to select menu items from the bottom half of
the screen. Some of the functions available (DISCARD, DELETE, COPY,
SWAP, and EDIT) require you to select one or more characters from the
grid to operate on. For example, if you pick the menu item DELETE, you
will be prompted to select a character to delete. You may then pick any
number of characters from the selection menu to be deleted. To stop delet-
ing, pick another function from the bottom menu. The remaining functions
perform a single action; when complete, MAKEFONT will return to the
“Ready” state.

[/3 4 {3 1 f] (] 10 (k] 12] 1
' | () 2 ?

N 24 b k34 38 3 90 49 2 43 [X] 49 LY} ()]
4 (1] | 4 1]] (1] 62
4 ? (%] 1] 29 2 12 ? 74 1 1 ? 79

31 2 (3] 24 [I [24 1] (1] 9 92 9 LX] 9
(] (3] (Y}] 100 101 ! |) 1] 197 108 1909 119 (iR)
112 (iF) 114 51 114 117 118 119 120 121 122 123N124 128 126 121

BDISCARD DELETE COPY SWAP EDIT

READ_ST0 WRITE_STO READ_ALT WRITE_ALT

INIT_127 INIT_255 QuUIT

Ready

1AS0U49

Figure 7-1. The Main Control Menu

Character Font Editor

17T7-3

The Main Control Menu functions are described below.
DISCARD

This function is useful for combining characters from two or more fonts
into a single font. When a character font is read in from a file, only those
characters in the current font which are marked for discard will be over-
written by the character definitions being read in. A discarded character
has a large X’ drawn through it on the character selection menu. When
the DISCARD menu item is picked, the discard flags for all characters
are reset. Selecting a character while in DISCARD mode complements its
current discard status.

DELETE

This function is used to delete character definitions from the current font.
Any characters which are picked while in DELETE mode are removed
from the font.

COPY

The COPY function is used to duplicate a character definition at a loca-
tion corresponding to a different ASCII code. After selecting COPY, you
will be prompted to select the character you wish to copy, and then to
select the character location to copy it to. When the copy is complete, you
will be prompted to select another character to copy.

SWAP

The SWAP function is used to exchange two character definitions. After
selecting SWAP, you will be prompted to select the two characters you
wish to exchange, and the character stroke definitions for the two charac-
ters will be interchanged. As with the COPY function, when the swap is
complete, the operation may be repeated.

EDIT

The EDIT function allows you to define or modify the stroke definition of
a character. After selecting EDIT, select the character to be modified.
The character edit menu (described in Section 3) will then appear. After
picking EXIT or RETURN on the edit menu, you will be returned to the
main control menu; at this point, another character may be selected for
editing.

READ_STD

This function reads a standard font from a file. Only characters which
are marked for discard will be overwritten. After selecting the function,

1T7-4 Tools and Techniques

you will be asked for the name of the file; type in a valid VAX/VMS file
specification or a logical name.

WRITE_STD

Selection of this menu item writes the current font to a file, using the
format for standard fonts. After selecting the function, you will be asked
for the name of the file; type in a valid VAX/VMS file specification or a
logical name.

READ_ALT

This function reads a user-defined alternate font from a file. The file is
assumed to contain a single BEGIN_FONT ... END_FONT command.
Only characters which are marked for discard will be overwritten. After
selecting the function, you will be asked for the name of the file; type in
a valid VAX/VMS file specification or a logical name.

WRITE_ALT

Selection of this menu item writes the current font to a file, using the
BEGIN_FONT ... END FONT format. After selecting the function, you
will be asked for the name of the file; type in a valid VAX/VMS file
specification or a logical name.

INIT 127

This function initializes a 128-character font (containing definitions for
characters corresponding to ASCII 0 to 127). All characters are deleted
and marked for discard when this function is selected. (This happens
automatically when MAKEFONT is started.)

INIT 255

This function initializes a 256-character font (containing definitions for
characters corresponding to ASCII 0 to 255). All characters are deleted
and marked for discard when this function is selected.

QUIT

Selection of this menu item causes MAKEFONT to terminate; control is
returned to the operating system.

3. Edit Menu

A separate menu is used to design individual characters in EDIT mode. This
menu consists of the character design grid on the upper part of the screen,

Character Font Editor TT7-5

and text strings representing various functions on the lower part of the
screen. The Edit Menu is shown in Figure 7-2.

MOVE_TO DRAW_TO ORIGIN ERASE EXIT RETURN

MOVE_TO
Editing character 103 IAS0450

Figure 7-2. The Edit Menu

The design grid coordinates range from -64 to 64 in both X and Y. (This
is because of the way the standard text fonts are defined. User-defined
fonts are actually defined as real numbers between 0 and 1, but
MAKEFONT does a conversion internally to integer coordinates.) Nor-
mally, characters are drawn within a “unit square” that corresponds to
the upper right quadrant of the design grid. If the strokes defining the
character extend beyond this area, this may cause overlap between adja-
cent characters.

If very large characters are being edited, Control Dial 1 may be used to
adjust the scale of the grid.

Notice the blinking box on the design grid. This marks the position of the
last “move” or “draw” in the character definition.

If the tablet stylus is pressed within the character design grid, a stroke
will be added to the character definition. The stroke will be either a
“move” or a “draw”, depending on the current state.

1T7-6 Tools and Techniques

MOVE_TO

Selecting this menu item causes the current state to be set to “move”.
Selecting a position in the character design grid will then cause a “move”
stroke to be added to the character. This is the default state upon enter-
ing EDIT mode.

DRAW_TO

Selecting this menu item causes the current state to be set to “draw”.
Selecting a position in the character design grid will then cause a “draw”
stroke to be added to the character.

ORIGIN

This selection adds a stroke to the character which causes a move to the
origin. This is useful since all characters in a standard font should have
the last position at the origin. If this rule is not observed, the characters
will be drawn with incorrect spacing (although this can be a feature of
the font, not a problem).

ERASE

This function causes the last stroke to be erased from the character defi-
nition. This function may be selected multiple times to erase several
strokes. There is no way to erase strokes except from the end of the list.

EXIT

Selecting EXIT updates the definition of the character being edited in the
font and returns the user to the Main Control Menu.

RETURN
Selecting RETURN returns the user to the Main Control Menu without
saving any changes that were made to the character being edited.
4. Downloading Standard Fonts

Files containing alternate fonts (BEGIN_FONT ... END_FONT structures)
created by MAKEFONT may be sent to the PS 390 parser in the usual
manner.

To define and download a standard font to the PS 390, the following steps
should be performed:

1. Use MAKEFONT to write the font in standard font format. The file
containing the standard font definition is named CHARFONT.DAT.

Character Font Editor T77-7

2. Convert this file to S-record format using MAKEFONT menu selec-
tion 2. By convention, the S-record file is called CHARFONT.SR.

3. Download the S-record format to the PS 390 floppy using the Diag-
nostic Utility Program TRANSFER routine. The file must be named
CHARFONT.DAT on the floppy to ensure that the previous version
is overwritten. (Note: You may want to make a copy of the floppy
using the Utility Program COPYDISK before overwriting the font.)

4. Boot the PS 390 using the floppy with the new font.

5. Font Storage

MAKEFONT stores a font internally as an array of pointers to character
definitions. A NIL pointer indicates that the associated character has not
been defined.

Character definitions are records with two fields: an integer to keep track of
how many strokes there are, and an array containing the strokes. Strokes
are also records containing the absolute X and Y (integer) coordinates and a
Boolean indicating whether it is a move or draw. The maximum number of
strokes per character (the dimension of the stroke array) is 64, but as this is
a symbolic constant it can be changed if needed.

The primary advantage in using this format for internal storage of the char-
acter definitions is the ease with which characters can be changed. For
instance, swapping two characters involves only swapping the two pointers
in the font array.

The font files are stored on the host as ASCII text. Each record of a font file
consists of a 7-digit octal number. These numbers are decoded in various
ways.

The first record in the file is an integer, giving the size of the “stroke table”,
in 16-bit words.

The second record in the file is an integer describing how many characters
are in the font : either 128 or-256. (This number will be referred to as ‘n’).

The remaining records in the file comprise the “stroke table”. The first ‘n’
of these records are integers which give the offset of the corresponding
character definition in the stroke table. A zero value indicates that a charac-
ter has not been defined.

17T7-8 Tools and Techniques

Then there are a some zero records in the file, generally five. After these
come the actual character definitions.

Suppose that, for example, the value in location 68 of the stroke table were
599. That would mean that the definition for character 67 (68-1) begins at
location 599 in the stroke table. Then the value at location 599 would be the
number of strokes (moves/draws) defining the character. If location 599 had
a value of 10, then locations 600 to 609 would contain the move/draw in-
structions for the character.

The move/draw instructions are stored with the X and Y displacements at
RELATIVE distances between —-63 and 63. The information is packed into a
16-bit word as follows:

Bit O move/draw information (O=move, l=draw)
Bits 1-7 Y-displacement

Bit 8 unused

Bits 9-15 X-displacement

Each character definition has to end with a zero word. Also, character defi-
nitions have to be aligned on longword boundaries. This means that words 1
to ’'n’ in the stroke table must all have ODD values, so that the first stroke
definition command of each character has an EVEN offset. More zero
words are added here and there in the stroke table to fill it out.

Character Font Editor TT7-9

ASCIl TO GSR

CONVERTER

TT8. ASCII-TO-GSR CONVERTER

CONTENTS

L R 170 O U
2. CONVENTIONS .. i i it it et i e e
3. ERROR REPORTING ...ttt ittt

4. NAME PREFIXING ...ttt ittt i eanaen

The ASCII-to-GSR conversion program is a host-resident PS 390 option which
allows a programmer to combine the advantages of ASCII programming with the
faster data communication speeds possible through the PS 390 GSRs. Specifically,
the conversion program converts a file of ASCII PS 390 commands into a
procedure which the programmer can link into a host-resident program. When the
procedure is executed, the commands are downloaded to the PS 390 via the GSRs.
Contact your Evans & Sutherland Account Executive for distribution and

installation details.

1. FILES

Section TTS8
ASCII-to-GSR Converter

When you run the ASCII-to-GSR Converter, it prompts you regarding the
name of the ASCII file to convert and for the format of the output file.
There are several options which are described in Table 8-1.

OQutput tion File Type
PASCAL .pas
FORTRAN .for

C .C

LISP .cl

DATA .data
ASCII .asc

Table 8-1.

Output Options

Notes

Generates a Pascal procedure with
embedded calls to the VMS Pascal GSRs.
Generates a FORTRAN subroutine with

embedded calls to the VMS FORTRAN GSRsS.

Generates a C function with embedded
calls to the UNIX C GSRs.

Generates a Common LISP function with
embedded GSR calls.

Generates output in a format which can
be read by the PS 390 Data Structure
Editor.

Generates a file containing ASCII

PS 390 commands. This is primarily a
debugging operation.

Two files are produced, and any errors are reported to your terminal. The
first file is a listing file having the same name as the input file but with a

ASCII-to-GSR Converter

17T8-1

“lis” extension. This file contains a line-by-line listing of the input file,
along with any error or informational messages. The “.lis” file is for debug
purposes and may be deleted once the ASCII file has been converted suc-
cessfully. The second file contains the output of the converter.

A sample ASCI input file and output files in Pascal, FORTRAN and C
formats are included in the distribution.

2. Conventions

If you do not explicitly specify a file extension for the input file, the con-
verter will use a .300 extension. There is no restriction on the size of an
input file, but it is recommended that files be under 2000 lines. Long vector
or polygon lists may cause a heap-exhausted fatal error. Extremely long
procedures may also be refused by the VMS Pascal compiler. The input file
should rot contain muxing bytes as these may cause a fatal error.

The converter recognizes most command abbreviations such as CONN for
CONNECT or VEC for VECTOR_LIST. If a valid abbreviation is not recog-
nized, use the longer form of the same name.

The main program is responsible for issuing the GSR call for connecting to
the PS 390. The sample programs included in the distribution (pdriver.pas,
fdriver.for, and cdriver.c) illustrate how to set up a minimal program which
connects the PS 390 and calls the generated procedure.

It is assumed that all error handlers have the standard names:
ERROR_HANDLER for Pascal and ERR for FORTRAN. No error handler is
required for C. Error handlers should be provided separately and linked in
with the generated procedure. Refer to the sample programs for examples
of how to do this.

It is also assumed that you have not changed the constant declarations that
establish array sizes in the linking file “proconst.pas,” residing in the GSRs
library.

3. Error Reporting

The converter issues diagnostic messages which are self-explanatory. Note
that it does not attempt to convert !RESET, units, or other commands which
have no corresponding GSR, but it does issue an appropriate warning

178-2 Tools and Techniques

message. In a few cases, it may produce unexpected output which will need
to be corrected. For example, because no direct equivalents exist in the
GSRs library, INSTANCE OF commands with multiple descendants nested
inside structures actually expand into several unnamed INSTANCE nodes.
WITH_PATTERN...VECTOR_LIST is treated as an ordinary vector list.

Syntax errors in the input file are usually reported, and processing is contin-
ued. Unrecoverable errors indicate serious problems with the input file. Ad-
ditional messages referring to garbage collection may also occasionally ap-
pear, indicating that the program is just recycling its heap storage.

4. Name Prefixing

The converter provides an optional feature which allows you to attach a
prefix to all PS 390 names. The prefix is applied to all object labels and
function labels. It is not applied to names of generic functions, such as
F:ACCUMULATE; to names of initial function instances, such as
TABLETIN; or to pick 1ID’s.

To attach a name prefix, you need to create an initialization file in your
main login directory, called “parser.ini” for VMS, or “.parserrc” for UNIX.
This file should contain the following line:

(setq parser::*name-prefix* t)

The parser program then prompts you for a name prefix before processing
the input file.

If you want to prefix names with some exceptions, you may specify those
exceptions by adding another command to your initialization file which lists
the names to protect. For example, if you want to protect the names “cube”
and “knots,” add the additional command:

(setq parser::*reserved-names* “ ("cube" "knots"))

White space is ignored, so the list of names may extend to more than one
line; but be sure that string quotes and parentheses are matched properly.
For example, the following is equivalent to the command above:

(setq parser::*reserved-names*
“("cube"
"knots"
))

ASCII-to-GSR Converter T18-3

79 TRANSFORMED DATA

AND WRITEBACK

TT9. TRANSFORMED DATA AND WRITEBACK

CONTENTS
1. TRANSFORMED DATA COMMANDS AND FUNCTIONS 2
1.1 The XFORM NOQe .. vt vv it ttitt ittt et inentennsoeneanennns 2
1.2 The F:XFORMDATA Functioncuuiiiiiiinennenenns 3
1.3 The F:LIST Functionoueieieteteeteneneeeeoeennes 4
2. EXCLUDING CERTAIN VIEWING TRANSFORMATIONS 5

3. USING F:SYNC(N) TO PREVENT OVERLAPPING REQUESTS . 5

4. SPECIFYING VECTOR RANGES FOR TRANSFORMED

DATA RETRIEVAL ... ittt e ennnaens 6
5. TRANSFORMED DATA SAMPLE PROGRAM 6
6. WRITEBACK FEATUREcciiiiutiiiiitirennnnennnans 8
6.1 WRITEBACK Operation Node, 9
6.2 WRITEBACK Operation Node Constraints 9
7. WRITEBACK FUNCTION ...ttt iiiiiiiinnnenas 10
7.1 Data Packets Returned 0 i, 12
7.2 Command Descriptionsccoiiiiiiiiiiiiiiiiiiieee, 12
7.3 Sequence of Data Sent Back to the Host 18
8. SAMPLE WRITEBACK PROGRAMc.iiiiiiiinnn. 20

9. SUMMARY .. ittt ittt ciiietienaaennnaaans 31

Section TT9
Transformed Data and Writeback

The PS 390 provides a means to retrieve transformed data. Transformed data is
the matrix or vector list representation of transformation operations in a display
structure.

After an object has been transformed on the PS 390, the transformed accumulated
data for that object can be retrieved from a given data node and then established
as a separate data or operation node in the display structure. The transformed data
can also be converted to an ASCII PS 390 command string for transmission to the
host.

Transformed data can be obtained either as transformed vectors or as a transfor-
mation matrix which is the concatenation of transformations currently applied to
the object.

If transformed vectors are requested, a data node can be created and an ASCII
PS 390 VECTOR_LIST ITEMIZED command can be generated. If a transforma-
tion matrix is requested, an operation node can be created and an ASCIL PS 390
MATRIX_4x4 command can be generated for transmission back to the host.

Once the node containing a transformed vector list or 4X4 matrix node is created,
those nodes can be used as primitive data nodes or operation nodes, and connec-
tions can be made into the nodes just as for any other VECTOR_LIST ITEMIZED
or 4x4_MATRIX node.

Transformations explicitly reserved for characters (CHARACTER ROTATE, etc.)
are excluded from both forms of retrieved transformed data.

The Writeback feature allows displayed transformed vector data to be sent back to
the host. The position of the writeback node in the display structure determines
which transformations are applied to the writeback data. The system-generated
writeback node includes all viewing and modeling transformations. Once the host
has received the data, it can be used to generate hardcopy plots or display
host-generated raster images. The user is responsible for retrieval and all
subsequent processing of data on the host system.

Transformed Data and Writeback 179-1

1. Transformed Data Commands and Functions

To retrieve transformed data for a given data node (or set of data nodes):

e Mark the data node by applying a XFORM VECTOR or XFORM
MATRIX node.

e Request the transformed data using an instance of F:XFORMDATA.
e Optionally, convert the transformed data to an ASCII PS 390 com-

mand string using an instance of F:LIST and send this ASCII infor-
mation to the host computer via HOST_MESSAGE.

1.1 The XFORM Node

The XFORM node, a type of operation node, can be placed anywhere above
the data node(s) for which transformed data are to be retrieved; however,
the placement of the XFORM node with respect to other transformations is
critical. The syntax of the command that establishes an XFORM node is:

Name := XFORM specifier APPLIED TO Node_Name;

where:

specifier is either VECTOR or MATRIX. To retrieve a transformed vector
list, use VECTOR; to retrieve a transformation matrix, use MATRIX.

If XFORM VECTOR is used, all transformations applied to the data node(s)
are taken into account, whether these transformations are above or below
the XFORM VECTOR node.

If XFORM MATRIX is used, however, only those transformations above the
XFORM MATRIX node are taken into account. To include all transforma-
tions applied to the data node(s), then, XFORM MATRIX should be placed
immediately above the data node(s).

THEN may be substituted for APPLIED TO.

Node_Name is the node to be marked for transformed data retrieval. Ad-
missible data nodes are vector lists and curves (rational polynomials, poly-
nomials, and B-splines). Transformed data cannot be retrieved for charac-
ters and labels.

T79-2 Tools and Techniques

If Node_Name is an instance node covering two or more data nodes and if
XFORM VECTOR is requested, then the transformed data for all nodes are
consolidated into a single vector list.

NOTE

The transformed counterparts of the original data
nodes do not necessarily appear in the same order in
which the INSTANCE command named those nodes.
However, vector integrity is maintained within each
node.

The transformed object(s) must be displayed when transformed data re-
trieval is requested; otherwise, the request has no effect.

If transformed vector information is requested (XFORM VECTOR), no
more than 2,048 consecutive transformed vectors may be retrieved.

e TRANSLATE, SCALE, ROTATE, and MATRIX 3x3 transforma-
tions applied to data are taken into account when the transformed
data are retrieved. :

e Character transformations are not taken into account when the trans-
formed data are retrieved. These include CHARACTER ROTATE,
CHARACTER SIZE, TEXT SIZE, CHARACTER SCALE, and MA-
TRIX 2x2.

o WINDOW, EYE BACK, FIELD OF VIEW, LOOK, MATRIX 4x3,
and MATRIX_4x4 transformations applied to data are taken into ac-
count when transformed data are retrieved, but it is recommended

that these six transformations be removed from the object definition
beforehand.

e A VIEWPORT specification has no effect on the transformed data.

1.2 The F:XFORMDATA Function

Use an instance of F:XFORMDATA to request transformed data.
F:XFORMDATA has five inputs and one output. (Discussion of inputs <4>
and <5>, which specify a range of transformed vectors to be retrieved, is
presented in section 4.)

e Input <1> is the active input for this function. Any message sent to
this input will begin retrieval of transformed data if the other inputs
have been prepared correctly.

Transformed Data and Writeback T7T9-3

179-4

o Input <2> is a constant input which accepts a string message contain-
ing the name of a XFORM node. Transformed data will be retrieved
for the object(s) marked by this XFORM node.

e Input <3> is a constant input which accepts a string message contain-
ing the name of the new data or operation node to be created. The
name also appears in the ASCIl command string produced by
F:LIST, if any.

If XFORM VECTOR is used and if the name at input <3> is identical
to the name of the original (untransformed) data node, the trans-
formed data replace the original data in the display structure. (The
immediate effect of this redefinition is to display the object with its
transformations doubly applied—once explicitly in the display data
structure and once implicitly in the transformed vector list).

e Output <1> contains the transformed data. If ASCIl PS 390 com-
mand information is desired for the host, connect this output directly
to F:LIST. Do not attempt to connect this output to anything else
(such as another data node).

Output <1> may remain unconnected if no ASCII transformed data
are desired. (A data node can be created through XFORM VECTOR
without any connections from this output.)

1.3 The F:LIST Function

F:LIST converts the output of F:XFORMDATA into an ASCII PS 390 com-
mand string suitable for storage on the host computer (and for retrans-
mission back to the PS 390). There is no need to instance F:LIST unless this
ASCII information is to be retrieved. F:LIST has one input and two outputs:

e Input <1> accepts the transformed data from output <1> of
F:XFORMDATA.

e Output <1> contains the transformed data, reformatted as an ASCII
PS 390 command string.

If a transformed vector list was requested, a VECTOR LIST
ITEMIZED command is output. If a transformation matrix was
requested, a MATRIX 4x4 command is output.

The name of the command is the string that was on output <3> of
F:XFORMDATA at the time of the request.

Tools and Techniques

e Output <2> is a Boolean TRUE completion indicator. Refer to the
transformed data sample program for an application of this comple-
tion indicator.

The ASCII command string from F:LIST may be sent to a host computer via
HOST_MESSAGE.

2. Excluding Certain Viewing Transformations

If WINDOW, EYE BACK, FIELD_OF VIEW, LOOK, MATRIX 4x3, or
MATRIX 4x4 transformations are applied to an object, transformed data
may include inappropriate Z information. It is therefore recommended that
these transformations be excluded from the object and replaced by a 4x4
identity matrix before transformed data are retrieved.

Since the default window transformation matrix is not an identity matrix,
this practice is recommended even when no nodes for the above six trans-
formations have been included explicitly in the display structure.

3. Using F:SYNC(n) to Prevent Overlapping Requests

After F:XFORMDATA is triggered, it begins supplying transformed data to
F:LIST, which in turn converts the data to ASCII format. Before this process
is finished, F:XFORMDATA could be triggered again, and
F:XFORMDATA could supply new data before F:LIST is finished with the
old. The result could be a nonsensical combination of the two requests. A
suggested network to prevent overlapping transformed data requests is:

——» F:SYNC(2) F: XFORMDATA F:uST [———»

bl

\ 4

P <
<] <

This network must be initialized before use by sending any message to input
<2> of F:SYNC(2).

Transformed Data and Writeback T79-5

4. Specifying Vector Ranges for Transformed Data Retrieval

Inputs <4> and <5> of F:XFORMDATA restrict the retrieval of transformed
vector data (XFORM VECTOR) to a specified range of vectors within the
source vector list(s).

Input <4> (used only for VECTOR_LIST) is an integer index specifying the
place in the vector list at which transformed vector retrieval is to begin. The
default value is 1.

Input <5> (used only with VECTOR_LIST) specifies the number of consecu-
tive transformed vectors to be retrieved. The default value is 2,048. No
more than 2,048 consecutive vectors may be retrieved.

If inputs <4> and/or <5> are used for matrix data, they are ignored.

If the XFORM VECTOR node is applied to an instance node so that several
data nodes are within the scope of the XFORM VECTOR node, transformed
vectors can be retrieved from individual vector lists or portions of vector
lists using the range specification. Vectors are numbered in sequence, be-
ginning with the first vector list named in the INSTANCE command. For
example, if the command sequence

XformIt := XFORM VECTOR APPLIED TO Z;
:= INSTANCE OF A,B,C,D;
= VECTOR_LIST N=5 ... ;
VECTOR_LIST N=6 ... ;
VECTOR_LIST N=10 ... ;
:= VECTOR_LIST N=8 ... ;
XformData := F:XFORMDATA;

oaQw» N
"

has been entered, then transformed vectors for list C may be requested by
using XFORMDATA inputs <4> and <5> as follows:

SEND FIX(12) TO <4>XformData;
SEND FIX(10) TO <5>XformData;

5. Transformed Data Sample Program

The following example illustrates both of the recommended features of a
network for retrieving transformed data using the XFORM command: the
exclusion of perspective and window transformations and the prevention of
overlapping transformed data requests.

179-6 Tools and Techniques

In this example, a conditional bit is used to switch between the perspective
and window mappings (applied while designing the object) and the identity
matrix (applied while sending the transformed object data). The untrans-
formed object is Data; the transformed vector list to be created is Xdata.

Xform := BEGIN_STRUCTURE { Set up switch mechanism }
X := SET CONDITIONAL_ BIT 1 ON;
IF CONDITIONAL_BIT 1 IS ON THEN View;
IF CONDITIONAL_BIT 1 IS OFF THEN Tran;
END_STRUCTURE;

Tran := BEGIN_STRUCTURE { To be used while getting }
{ transformed data }
MATRIX_4x4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1;
INSTANCE OF Obj;
END_STRUCTURE;
View := BEGIN_STRUCTURE {To be used while viewing and designing}
{Viewing commands: WINDOW, EYE BACK, }
{(FIELD_OF_VIEW, MATRIX_ 4x3, MATRIX_4x4, LOOK}
INSTANCE OF Obj;
END_STRUCTURE;
Obj := BEGIN_STRUCTURE { Set up transformed data request }
{ Transformation commands: ROTATE, TRANSLATE,}
{ SCALE, and/or MATRIX_ 3x3 }
XFORM_REQUEST:= XFORM VECTOR;
INSTANCE OF DATA;
END_STRUCTURE;
XformData := F:XFORMDATA; { Build transformed data network }

Sync2 := F:SYNC(2);

List := F:LIST;

CONNECT Sync2<1>:<1>XformData;

CONNECT XformData<l>:<1>List;

CONNECT List<1>:<1>HOST_MESSAGE; { Send transformed data to host }
CONNECT List<2>:<2>Sync2; { "Task completed" flag }

SEND <any message> TO <2>SYNC2;

SEND “Obj.Xform Request” TO <2>XformData;

SEND “Xdata’ TO <3>XformData;

DISPLAY Xform;

Transformed Data and Writeback 119-7

When the object has bezn designed and transformed properly and you are
ready to send data to the host, the commands

SEND FALSE TO <1>Xform.X;
SEND <any message> TO <1>Sync2;

(or an equivalent function network) send the transformed data to the host.
Since the perspective and window transformations are replaced by the iden-
tity matrix during this time, the displayed object becomes distorted or disap-
pears during transmission. When the entire list has been sent, enter

SEND TRUE TO <1>Xform.X;

(or route the completion indicator of F:LIST to this input) to redisplay the
object and continue designing).

6. Writeback Feature

The following sections describe how to use the Writeback feature. These
sections contain:

e A description of the user interface for the Writeback feature. The
user interface consists of the WRITEBACK operation node and the
WRITEBACK initial function instance.

o Constraints on the use of the WRITEBACK operation node.
e Descriptions of the WRITEBACK function.

e A list of the commands that need to be interpreted by host-resident
code to filter writeback data retrieved from the PS 390.

o An example of the sequence of data sent back to the host.

e An example of a host program that retrieves, processes, and files
writeback data from the PS 390.

The Writeback feature is implemented by:

e Creating the WRITEBACK operation node (or using the system-gen-
erated writeback node, WBS$).

o Activating the WRITEBACK operation node.
e Connecting the WRITEBACK function to a function network.

179-8 Tools and Techniques

6.1 WRITEBACK Operation Node

When the PS 390 is booted, a WRITEBACK operation node is created. It is
named WBS$ and is placed above every user-defined display structure. This
node can be triggered if an entire displayed picture is to be included in the
writeback data. If writeback of only a portion of the picture is desired, the
user must place other WRITEBACK nodes appropriately in the display
structure.

A user-defined WRITEBACK operation node is created by the command:

Name := WRITEBACK [APPlied to Namel];

The WRITEBACK node has one input. A TRUE sent to input <1> of the
WRITEBACK node triggers writeback for the display structure below the
node. This trigger is sent by the user, for example:

SEND TRUE TO <1>name;

triggers that WRITEBACK node. Of course the node could be triggered
through a function network using a function key, etc.

A WRITEBACK operation node delimits the display structure from which
the writeback data will be collected. Only the data nodes below the
WRITEBACK operation node in the display structure will be transformed,
clipped, viewport scaled perspective divided (as delineated by the placement
of the WRITEBACK node), and sent back to the host.

6.2 WRITEBACK Operation Node Constraints

Only a displayed structure can be enabled for writeback. This means that
the WRITEBACK operation node must be traversed by the display processor
and therefore must be included in the displayed portion of the structure.
The default WRITEBACK node WBS is displayed as part of every displayed
structure. But, if the user creates another WRITEBACK node and if this
node is triggered before being displayed, the following error message will
result:

E 8 ACP cannot find your operate node

Transformed Data and Writeback T79-9

Any number of WRITEBACK nodes can be placed within a structure. How-
ever, only one WRITEBACK operation can occur at a time. If more than one
node is triggered, the WRITEBACK operations are performed in the order
in which the corresponding nodes were triggered.

The terminal emulator and message_display information will not be re-
turned to the host.

Before triggering the WRITEBACK operation, disable the SCREENSAVE
function by entering the command

SCREENSAVE:= nil;

7. WRITEBACK Function

An initial function instance, WRITEBACK, is created by the system at boot
up.
WRITEBACK

Integer specifying
size of output

Qpackets —————— oy <1> <1>l¢—— Qpackets to user
function network

WRITEBACK sends encoded writeback data received from the display proc-
essor. The writeback data is prefixed by a start-of-writeback command, fol-
lowed by the encoded data, followed by an end-of-writeback or end-of-frame
command.

WRITEBACK has one user-accessible input queue. Input <1> accepts
integers specifying the size of Qpackets to be output by the function. The
default size is 512 bytes per Qpacket. The minimum and maximum size are
16 bytes per Qpacket and 1024 bytes per Qpacket, respectively. If the size
specified by the user is not within this range, the default size will be used by
the system.

179-10 Tools and Techniques

The input value should be chosen such that the actual size of the Qpacket
sent to the I/O port is less than or equal to the present input buffer size on
the host computer.

If the CVT8TO6 function is used to send the binary data to the host, then
the number of the bytes sent to the host is approximately 3/2 * the number
of bytes sent by the WRITEBACK function.

For example, if the integer sent to <1> of the WRITEBACK function is 80,
the largest Qpacket sent to the host will be 80 * 3/2 = 120. Qpackets, where
the size is not a multiple of 4, will be padded to the next multiple of 4. For
instance, Qpacket sizes of 77, 78, and 79, sent to CVT8TO6 will all have
output sizes of 120.

WRITEBACK has one user-accessible output queue. Output <1> passes the
encoded writeback data out as Qpackets until the end-of-writeback or end-
of-frame command is seen.

This function is not activated by the normal input queue triggering mecha-
nism. It is activated by sending a TRUE to any WRITEBACK operation
node.

WRITEBACK will return all data below the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback
and end-of-writeback or end-of-frame commands.

Attribute information, such as color, must be interpreted by host code to
ensure that the hardcopy plots are correct.

On the PS 390, viewport translations will not be applied to the data. Correct
computation of the position of endpoints requires that the host program add
a viewport center to each endpoint. The initial viewport center is established
with a VIEWPORT CENTER command. The VIEWPORT CENTER com-
mand is sent following the start-of-writeback command. Any changes to the
viewport center will be indicated through this sequence of commands:
CLEAR DDA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE
POINT. The position endpoint becomes the new viewport center.

Also, on the PS 390, several commands such as ENABLE PICK and EN-
ABLE BLINK are sent to the host. These will not typically be needed by the
host program. However, these commands come directly from the refresh
buffer and are not filtered by the PS 390. Host-resident code must filter the
writeback data and strip out nonessential information.

Transformed Data and Writeback 179-11

7.1 Data Packets Returned

Data packets sent from the WRITEBACK function contain the following

information:

o If bit 15 of the first word is 0, it signals that the data that follows is
a command. For example, if the first word is H#0200 (Hex 0200)

then the Line Generator status will follow.

bits

15|14

0

0| command

parameter

o If bit 15 of the first word is 1, it indicates that intensity, x and y
coordinate information will follow. Intensity can range from 0 to 127.
The format of the data is:

bits

bits

bits

= =
o Q

15]14]13]12 - 68]5 - 0
1| dl// inten | ///////
156 - 13112 -—- 0
//////// y coord
15 - 13}12 - 0
17177117 x coord

NOTE

1, it is a DRAW
0, it is a MOVE

In the illustrations of data format, the slash character is
used to illustrate blocks of data that are unused.

7.2 Command Descriptions

The following list describes the commands that the host-resident code might
have to interpret before it can recognize and filter writeback data received
from the PS 390. These commands can be intermixed with vector data.

It is important to note that each command contains at least three 16-bit
words. For example, if a command only has one parameter then the third
word is unused, but it is still sent to the host. If a command has 3, 4, or §

parameters, then 6 words will be sent for that command.

1T9-12

Tools and Techniques

START-OF-WRITEBACK code in hex = H#0B0O0
2816

Parameters:
Line texture (one word)
LGS (one word)

Marks the beginning of the writeback segment, of which there is
guaranteed to be only one.

The texture and line generator status are included here. They follow
the format shown below.

B0O
[T Texture

LGS
END-OF-WRITEBACK code in hex = H#0C00
3072
Parameters:
None

Marks the end of the writeback segment.

€00 0 = finished successfully, 1 = cannot finish

///////0/7//]//17/]7/(}/7}/7//7/ operation because of insufficient memory.

LINE GENERATOR STATUS code in hex = H#0200
512

Parameters:
Status word (one word)

Indicates dot mode (bit 8) and which display is selected (bits 0-3).
Normally, only the dot mode bit must be referenced.

200
LGS
Vi

Transformed Data and Writeback 77T9-13

Line Generator Status Register (LGS):

VI 07| 77/ seO 7/ 7/ ///////| SCOPE SELECT
AV AV AV A/ avi/avi/an=uaviaviaviiian I - 1

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit Logical Names
B A

08 SHOWENDPT Dot mode
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope)
02 BLANKC Blank scope C
01 BLANKB Blank scope B
00 BLANKA Blank scope A

COLOR code in hex = H#0400

1024
Parameters:
Color value (one word)
400
Hue [Saturation

Y

/// 1/ /7777777777

/s HUE LO /M W_SAT L0 /////111 777

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TEXTURE code in hex = H#0500
1280
Parameters:
Texture value (one word)
500

LI7TTTTT7777771 Texture
i

Line Generator Texture Register:

Yuiraiaing TEXTURE BIT PATTERN
L1110 77710117707 1071777117 7/7777/7

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
H#007F or H#00FF both default to a Solid line.

119-14 Tools and Techniques

CLEAR DDA code in hex = H#0100

256

Parameters:

None

PICK BOUNDARY code in hex = H#0300
768

Parameters:

Four Boundary Values (4 words)

CLEAR SAVE POINT code in hex = H#0600
1536

Parameters:

None

SET PICK ID code in hex = H#0700
1792

Parameters:

Pick ID Pointer (two words)

RESERVED code in_hex = H#0800
2048

ENABLE PICK code in hex = H#0900
2304

Parameters:

None

Transformed Data and Writeback TT9-15

DISABLE PICK code in hex = H#0A00

2560

Parameters:

None

SET BLINK RATE code in hex = H#0DO0O
3328

Parameters:

Blink Rate (one word)

ENABLE BLINK code in hex = H#0EQOQ
3584

Parameters:

None

DISABLE BLINK code in hex = H#0F00
3840

Parameters:

None

END-OF-FRAME code in hex = H#1700
5888

Parameters:

None

Signifies that the current update cycle is completed and that any following
data is part of the next update frame. This also signifies end of the writeback
segment.

17T9-16 Tools and Techniques

VIEWPORT CENTER
Parameters:

x center (one word)
y center (one word)

z center (one word)
spare (two words)

bits 15 ... cieiiiiinnnn... 0

l coordinates I 2's complement vector

This value has to be added to each x,y coordinate pair. This information
is necessary to calculate the actual coordinates of the data which has
been viewport scaled. Every time a new viewport is traversed by the ACP,
a new viewport center command will be sent.

code in hex = H#1800

NOTE

Codes H#1900 - H#1F00 are reserved for future com-
mands. Code H#0000 is defined as a no-op, and natu-

rally has no parameters.

Transformed Data and Writeback

179-17

7.3 Sequence of Data Sent Back to the Host

The following example illustrates the sequence of data and the data in byte
format sent to the host during a WRITEBACK operation.

Start-of-writeback command

BOO
LI Texture

LGS
400 Color command
| Saturation
////////////// LI11111117777
Intensity v
Y E
X C
. T
0]
R
S
200 Line Generator Status command
LGS
LT L1777
500 Texture command

L17T7777777777] Texture
s

400 Color command
| saturation
/ ///////////// /111111177717
Intensity v
Y E
X C
: T
0
R
S
Cbo End-of-writeback command

1 | 0 = finished successfully, 1 = cannot

0/
/1177777177777 77//////////// | finish because of insutficient memory

179-18 Tools and Techniques

Data in Byte Format

OB
00
04
04
80
00
00
1Y
1X
00
2Y
2X

02

04
00
05
00
00
04
80
00
00
1Y
1X

0oC

00
00

00
FF
70
00
00
00
FF
FF
FF
FF
FF
FF

00
70
00
00
FF
00
00
00
00
FF
FF
FF

00
00
00

Start-of-writeback command
Texture
LGS
Color command
Hue/Saturation
Not used
Intensity

Y

X
Intensity

Y

X

LGS command
LGS
Not used
Texture command
Texture
Not used
Color command
Color
Not used
Intensity

Y

X

End-of-writeback command
Finished successfully
Not used

Transformed Data and Writeback

TT9-19

8. Sample WRITEBACK Program

PROGRAM Writeback (Input,Output,OQutfile,Devfile);

{ Program to read writeback data from a PS 390. This program sets up a }
{ function network to get the writeback data and processes the data and }
{ creates a data file on the host with the data from the PS 390.}

CONST
%INCLUDE “PROCONST.PAS”
Max_buf = 1024;

TYPE

Intl6 = -32768..32767;

Max_line = VARYING [Max_buf] OF CHAR;
%INCLUDE “PROTYPES.PAS”

VAR

OUTFILE : TEXT;

DEVFILE : TEXT;

DEVSPEC : P_VARYINGTYPE,
OUTNAME : P_VARYINGTYPE;
WBNAME : P_VARYINGTYPE;
COMMAND : INT16;

INDEX : INTEGER;

LEN : INTEGER;

Inline : P_VARYBUFTYPE;
vVX,Vy,vz : REAL;

In DDA : BOOLEAN := FALSE;

%INCLUDE “PROEXTRN.PAS~

PROCEDURE ERR (ERROR: INTEGER) ;

{}
{ ERROR HANDLER ROUTINE }

{}
BEGIN { ERR }

{}
WRITELN(” ERROR :=",ERROR);
HALT;

{}
END; { ERR)}

179-20 Tools and Techniques

PROCEDURE Setup;
{ Create function network to send writeback data to host }
{ This uses F:cvt8to6 to send 6-bit data to the host }
BEGIN
PFnInst(‘cvt”,’cvt8 ,Err);
Pconnect (“Writeback”,1,1,’cvt’ ,Err);
Pconnect (“cvt”,1,1, host_message’, Err);
PsndStr (CHR(36),2, cvt”,Err);
PsndFix (48,1, writeback’, Err);
PNameNil (’screensave’ ,Err);
PPurge(Err);
END;

{ Utility procedures }
PROCEDURE Six_to_eight(Inbuf : Max_line;
VAR Outbuf : P_VARYBUFTYPE) ;
{ Data from PS 390 is in six-bit packed format. This procedure }
{ unpacks data }

CONST Base = 36;

TYPE
Cheat_4 = PACKED RECORD CASE Boolean OF
TRUE : (i: UNSIGNED);
FALSE : (c: PACKED ARRAY [1..4] OF CHAR);
END;

VAR
w : Cheat_4;
c_out,cycle_count,buf_ index,il,tc : INTEGER;
first : BOOLEAN;

BEGIN
buf_index := 1;
first := TRUE;
cycle_count := 1;
c_out := 4;
outbuf := 7
WHILE buf_index <= len DO
BEGIN
tc := ORD(Inbuf[buf_index]) - base;
IF first THEN
IF tc < 0 THEN

c_out := 4+tc
ELSE
BEGIN
first := FALSE;
w.i = tc;
cycle_count := SUCC(cycle_count);

END { ELSE tc >= 0 }

Transformed Data and Writeback 179-21

ELSE

BEGIN
w.i :=w.1 * (2%%6);
w.i := UOR(w.i ,tc);
cycle_count := SUCC(cycle_count);

END; { ELSE }
IF cycle _count > 6 THEN
BEGIN
FOR il := 4 DOWNTO (5-c_out) DO
Outbuf := outbuf + w.c[(il];

cycle_count := 1;
first := true;
END:

buf_index := SUCC(buf_index);
END; { WHILE }
END;

PROCEDURE Next_Block;
{ Get a block of data from the PS 390 and convert from six to eight }
{ bit format }

VAR Inbuff : Max_line;

BEGIN
PGETWAIT (Inbuff,err);
Index := 1;

Len := LENGTH(Inbuff);
Six_to_eight (Inbuff, Inline);
Len := LENGTH(Inline);

END;

PROCEDURE Get_Value(VAR a : INT16);
{ Convert two bytes of input buffer to 16 bit integer }

VAR i : INTEGER;

BEGIN { Get_value }

a := 0;
FOR 1 := 1 TO 2 DO
BEGIN
Index := Index + 1;
IF Index > Len THEN
Next_Block;
a :=a ¥ 256 + ORD(Inline[Index]);
END;

END; { Get_Value }

179-22 Tools and Techniques

{ Procedures for processing refresh buffer commands }

PROCEDURE Clear_DDA;

{CLEAR DDA - %X0100 }

{Parameters - None }

{Indicates start of sequence to set viewport center }

{This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT}

VAR a,b : Intlé6;

BEGIN
In_DDA := TRUE;
Get_value (a);
Get_value (b);
Writeln(Outfile,” {Clear DDA}");
END;

PROCEDURE Write_ LGS;

WRITE LINE GENERATOR STATUS - %X0200 }

Parameters - Status word (one word) }

Bit 8 : Dot mode. }

Bit 6 Fast sweep (Opposite of 7) }

Bits § —~ 4: Contrast selection (00-min,1l-max) }
Bits 3 — O0: Scope select(1 disables,0 enables) }

VAR lgs,a : Intl6;

BEGIN

Get_value (lgs);

Get_value (a);

Writeln(Outfile,” {Write LGS:’ ,HEX(lgs), }");
END;

PROCEDURE Write_ Pick Bound;
{ WRITE PICK BOUNDARY - %X0300 }
{ Parameters - Left, Right, Bottom, Top }

VAR 1,r,b,t,a : Intl6;

BEGIN
Get_value
Get_value
Get_value
Get_value
Get_value
Writeln(Ou

END;

)3
)
);
)
)
le,” {Write_Pick_bound:’ ,HEX(1l) ,HEX(r) ,HEX(b) ,HEX(t), }");

N~~~ o~
H® T

f

Transformed Data and Writeback TT9-23

1T79-24

VAR t,a

VAR a,b

VAR a,b
BEGIN

PROCEDURE Write Color;

WRITE COLOR - %X0400 }

{

{ Parameters - Color value (one
{ Bit 15 Not Used }

{ Bits 14 - 8 Hue (High order
{ Bit 7 : Not Used }

{ Bits 6 - 3 Sat (High order
{ Bits 2 - 0 : Not Used }

VAR c,a Intl6;

BEGIN

Get_value (c);
Get_value (a);
Writeln(Outfile,” {Write_Color

END;

PROCEDURE Write Texture;

{ WRITE TEXTURE - %X0500 }

Word) }
in 14) }

in 3) }

D HEX(C), 7))

{ Parameters - Texture value (one word) }

{ Bits 15 - Not Used }

7
{ Bits 6 - 0 : Texture bit pattern }

Intl6;

BEGIN

Get_value (t);
Get_value (a);

Writeln(Outfile,” {Write_Texture:” ,HEX(t),” }");
END;

PROCEDURE Clear_Save_Point;
{ CLEAR SAVE POINT - %X0600 }
{ Parameters - None }

Intl6;

BEGIN

Get_value (a);
Get_value (b);

Writeln(Outfile,” {Clear_Save_Point:}");

END;

PROCEDURE Set Pick_Id;

{ SET PICK ID - %XO0700 }
{ Parameters - Pick Id Pointer

Intl6;

Get_value (a);

(two words) }

Tools and Techniques

Get_value (b);
Writeln(Outfile,” {Set_Pick_Id:’,HEX(a),HEX(b),"}");
END;

PROCEDURE Set_Lightpen_Mode;

{ SET LIGHTPEN MODE - %X0800 }
{ %k % %k }
{ PS 350 ONLY }
{ * X * % }
{ Parameters - Control mask }
{ Tracking cross y }

{ Tracking cross x }

{ Delta distance }

{ Delta frames }

VAR cm,x,y,dd,df : Intil6;

BEGIN
Get_value
Get_value X)

Get_value Y)
Get_value (dd);
Get_value (df);
Writeln(Outfile,” {Set_Lightpen mode:“ ,HEX(cm) ,HEX(x),HEX(y),
HEX (dd) ,HEX(df)," }");
END;

Q

m);

~ o~ o~

PROCEDURE Enable_ Pick;
{ ENABLE PICK - %X0900}
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,” {Enable_Pick:}");
END;

PROCEDURE Disable Pick;
{ DISABLE PICK - %XO0A00 }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,” {Disable_Pick:}");
END:

Transformed Data and Writeback 779-25

PROCEDURE Enable_Writeback;

{ ENABLE WRITEBACK - %XOBOO }
{ Parameters - Line Texture }
{ Line Gen Status}

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,” {Enable_Writeback:’ ,HEX(a) ,HEX(b), }");
END;

PROCEDURE Disable_ Writeback;
{ DISABLE WRITEBACK - %XO0CO0O }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,” {Disable_Writeback:}");
END;

PROCEDURE Set_Blink Rate;
{ SET BLINK RATE - %XODOO }
{ Parameters - Blink rate }

VAR a,b : Intl6;

BEGIN
Get_value (a);
Get_value (b);
Writeln(Outfile,” {Set_Blink Rate:” ,HEX(a),”}”");
END;

PROCEDURE Enable_Blink;
{ ENABLE BLINK - %XOEOQO }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile, “{Enable_Blink:}");
END;

TT9-26 Tools and Techniques

PROCEDURE Disable_Blink;
{ DISABLE BLINK - %XOF00 }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,” {Disable_Blink:}’);
END;

PROCEDURE End_Of_Frame;
{ END OF FRAME - %X1700 }
{ Parameters - None }

VAR a,b : Intl6;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,’ {End_Of_Frame:}”);
END;

PROCEDURE Viewport_Center;
{ VIEWPORT CENTER - %X1800}
{ Parameters - x center }
{ Yy center }

{ z center }

VAR xc,yc,zc,a,b : Intl6;

BEGIN
Get_value (xc);
Get_value (yc);
Get_value (zc);
Get_value (a);
Get_value (b);
VX := XCj;
IF (vx >= 32768) THEN vx :=
VX 1= vX/32767,

vx - 65536.0;

vy := yC;

IF (vy >= 32768) THEN vy := vy - 65536.0;
vy = vy/32767;

vz := zC;

IF (vz >= 32768) THEN vz := vz - 65536.0;

vz = vz/32767;

Writeln(Outfile,” {Viewport_Center:”,vx:6:6,” ~,vy:6:6,” 7 ,vz:6:6,7}");
END;

Transformed Data and Writeback T79-27

179-28

PROCEDURE Process_Vector;

e Rt Rate Rats Rate Rate ot Tate Nate Wata W aa S e

Vector - Bit 15 of command = 1 }
Word 1 (command) }

Bit 15 : Always one for vector }
Bit 14 1 = Draw, 0 = Move }
Bits 12 - 6 : Intensity/2 }
Bits 5 - 0 : Not Used }

Word 2 (y coord) }

Bits 15 - 13: Not Used }

Bits 12 - 0: Y coordinate }
Word 3 (x coord) }

Bits 15 - 13: Not Used }

Bits 12 - 0: X coordinate }

VAR a,b : Intlé6;

un : UNSIGNED;
pl : CHAR;
int, X,y : REAL;

BEGIN

Get_value (a);
Get_value (b);
un:=command;
pl:="1";
IF (UAND(un,%X4000) = 0) THEN pl
un := UAND (un,%X1FCO) ;
int := un;
IF In_DDA THEN
vz := int/8128.0

ELSE
int := (int/8128.0 + vz) * 2;
un := a;
un := UAND (un,%X1FFF):
Yy := un;
IF (y >= %X1000) THEN y :=
IF In_DDA THEN
vy =Y / %XFFF
ELSE
y :=Y / %XFFF + vy;
un := b;
un := UAND(un,%X1FFF) ;
X = un;
IF (x >= %X1000) THEN x :=

IF In_DDA THEN

VX 1= X / %XFFF
ELSE

X := X / %XFFF + vXx;
IF In_DDA THEN

BEGIN

Y - %X2000;

X - %X2000;

Tools

and Techniques

Writeln(Outfile,” {New View Center:” ,vx:6:6,” ~,vy:6:6,” 7,vz:6:6,7}");
In_DDA := FALSE;
END
ELSE
Writeln(Outfile,” {Vec “,pl,” ’,x,”,”,y,” i=",int,"}");
END;

PROCEDURE Unknown;
VAR a,b : Intl6;

BEGIN
Get_value (a);
Get_value (b); .
Writeln(Outfile,” {Unknown:“ ,HEX (command) ,HEX(a) ,HEX(b),"}");
END;

BEGIN { Writeback }
Write (“Enter OQutput File Name:”);
Readln (Qutname) ;
Write (“Enter Writeback Operate Node Name:{WB$ is default node}”’);
Readln (wbname) ;
open(Outfile,Outname,new) ;
rewrite(Outfile);

{ Look for file specifying line for pattach procedure }
{ Example of record in PSDEV.DAT: }

{ “logdevnam=tt:/Phydevtyp=async’ }

open(devfile, “psdev’,0ld);

reset (devfile);

readln(devfile,devspec) ;

close(devfile);

PATTACH(devspec,err); { Attach to PS 390 }

Setup; { Setup writeback network }
PNAMENIL (“ SCREENSAVE“, ERR);
PPURGE (ERR) ;

PSndBool (TRUE, 1,wbname, Err); { Trigger write back operate }
Next_block; { Read in first block of writeback data }

Index := 0;

Command := O;
vx := 0
vy := 0.
vz := 0

{ Process writeback buffers until END OF FRAME or END WRITEBACK }
WHILE (Command <> %X0CO00) AND (Command <> %X1700) DO

Transformed Data and Writeback 179-29

END.

179-30

BEGIN
Get_value (Command) ;

IF (Command > 32767) THEN { If bit 15 of command if

Process_vector

ELSE

CASE (Command DIV 256) OF
%X01 Clear_DDA;
%X02 : Write LGS;
%X03 : Write_Pick_ Bound;
%X04 : Write_Color;
%X05 : Write_Texture;
%X06 : Clear_Save_Point;
%X07 Set_Pick Id;
%X08 Set_Lightpen_Mode;
%X09 : Enable_Pick;
%X0A : Disable_ Pick;
%X0B : Enable Writeback;
%X0C : Disable_Writeback;
%X0D Set_Blink Rate;
%X0E Enable_Blink;
%XOF Disable_Blink;
%X1T End_Of_Frame;
%X18 Viewport_Center;

OTHERWISE Unknown;
END; { CASE }

END;

PFNINST (* SCREENSAVE” ,

“ SCREENSAVE”

PPURGE (ERR) :

{}

{ Writeback }

ERR PDETACH (ERR) ;

set }

Tools and Techniques

9. Summary

Transformed data can be retrieved from a given data node and then estab-
lished as a separate data or operation node in the display structure. The
transformed data can also be converted to an ASCII PS 390 command
string for transmission to the host. To retrieve transformed data you must:

e Mark the data node by applying a XFORM_VECTOR or
XFORM_MATRIX node in the display structure. The syntax for the
XFORM node command is:

Name := XFORM specifier APPLIED_TO_Node_Name;

e Request the transformed data using an instance of the
F:XFORMDATA function.

To send the transformed data to the host you can convert the data to an
ASCII PS 390 command string with an instance of the F:LIST function and
send the data to the host via HOST _MESSAGE.

Writeback allows displayed transformed data to be sent back to the host.
The transformations applied to the writeback data are determined by the
position of the Writeback node in the display structure.

A WRITEBACK operation node is created when the PS 390 is booted and
placed above every user-defined display structure. This node can be trig-
gered if an entire displayed picture is to be included in the writeback data.
If writeback of only a portion of the picture is desired, the user must place
other WRITEBACK nodes appropriately in the display structure. A user-de-
fined WRITEBACK operation node is created by the command:

Name := WRITEBACK [APPlied to Name 1];

A WRITEBACK operation node delimits the display structure from which
the writeback data will be collected.

Transformed Data and Writeback T79-31

TT10. CRASH DUMP FILE

CONTENTS

ILCRASH DUMP FILEttt ittt it iiiii e
2. CRASH DUMP INFORMATIONcoiiiiiiinninnvnnnnens

3. CRASH DUMP PROGRAM ittt

ILLUSTRATIONS

Figure 10-1. Data in Crash Filec.ciiiiiienieennnn.

Section TT10
Crash Dump File

A crash dump file is written to the diskette in drive 1 when a system crash occurs.
This file is always named Crash.dat;1 and occupies only 1 block on the diskette. If
the file already exists it will be overwritten by the new crash information. If the file
doesn’t exist, it will be created. If there is insufficient room on the disk for the file,
no crash dump file will be written.

1. Crash Dump File

The file consists of the 8 Data, the 8 Address registers, system version,
system type, program counter, error type, error number, 59 32-bit stack
entries, and the 68000 status register. The following figure shows the struc-
ture of the data in the crash file. Section 2 gives more information on some
of these values.

DO
D1
D2
D3
D4
DS
D6
D7
A0
Al
A2
A3
A4
AS
A6
A7
Sysver
Systype
PC
Errtyp I Errnum

.
Stack (236 Bytes)
°

Unused [SR

Figure 10-1. Data in Crash File

Crash Dump File

1TI10-1

Section 3 gives an example of a host Pascal program that reads back the
crash file from the PS 390. This information can be helpful in determining
the cause of a crash.

This program uses constant input <2> of the READDISK Function to pre-
vent the logging of crash files that were already recorded, by reading and
then immediately deleting this file. If there is a true on input <2> after the
file specified on input <1> is read, the file is deleted. The existence of a
crash file would indicate that a crash had occurred since the last time the
host program was run.

2. Crash Dump Information

There are three crash error types in the PS 390. Each type has a set of error
numbers associated with the type. The three types are:

e System Errors - Type 1
e Traps - Type 2
e Exceptions - Type 3

The following is the list of errors for each type.

Type 1 — System Errors

[y

Track number out of range
Disk drive not ready

Disk remains busy after a seek
Block number out of range
Lost data during read

Record not found during read
Data CRC error during read
ID CRC error during read
Lost data during write

Record not found during write
Data CRC error during write
ID CRC error during write
Write fault

MmO O QW 0o a9 bW

TTI10-2 Tools and Techniques

10
11
12
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73

Crash Dump File

Disk is write protected

Lost data during format

Write fault during format

Disk drive number out of range

Seek error

Drive not ready during read

Drive not ready during write

Disk not at track ¢ after restore command
Disk busy after restore command

Track number out of range during format
Drive not ready during format

Disk write protected during format

Time out during read

Time out during write

Time out during format

Wait maybe called with nil argument

Wait maybe called with a non-function
Wait maybe, already a function waiting
Wait maybe, parameter function waiting elsewhere
Q ship to an unrecognized Namedentity
Msgcopy, Message type shouldn’t be copied
Msgcopy, Msg type Has structure, unknown to Msgcopy
Send, “Me* = nil

Send, “Me~ not a function instance

Send, No such output port for this function
Rem_conn/Add_conn, Al = nil

Add_conn, A2 = nil

Findqueue, Named item = nil

Findqueue, illegal queue number (queue no. < ¢ or queue no. > no.

of inputs for function)
Allinpwait, Nmin > Nmax

Allinpwait, Nmin < 1

1T10-3

1T10-4

74
75
76
77
78
79
7A
7B
7C
7D
7E
vis
80
81
85
8D
SE
8F
90
91
92
93
94
95
96
97
99
9C
9D
9E
Al
A3

0

Tmessage, Waiting and n
Cmessage, Waiting and n = ¢

Lookmessage, Waiting and n = ¢

Allinputs, Nmin > Nmax

Allinputs, Nmin < 1

Fcnnotwait, Me = nil

Findqueue, found a nil queue!

Waitnextinput, n = ¢

Anyoutputs, Me = nil

Anyoutputs, illegal outset number

Anyoutputs, no outset where there should be
Fdispatch, function failed to re—queue after running
Text_text, Bl < ¢

Char_text, b < ¢

Error during disk read

Initial structure not correct

AnnounceUpdate List tail = nil;head < > nil
FormatUpdate, update pointer non nil
FormatUpdate, Ready Head not nil but Tail is
Bad code file —- illegal Op

Bytelndex Invalid Acpdata type

FormatUpdate, PASCAL Head not nil but Tail is
Vec_size, Invalid Acpdata type

KillUpdate, Updfetch was < ¢

KillUpdate, update pointer non nil

Vec_bias, Invalid Acpdata type

CntCapacity, Invalid Acpdata type

Unknown brand of Namedentity

Hasstructure, has Qdatatype not found in Destroy
Amuhead not a Qalphapair

AppendVector, Invalid Acpdata type
Nomemsched, Bad .Status for a fcn

Tools and Techniques

A9

56885

BO
B3
B4
BS
B9
BA
BD
BF
Co
C1
C9
CA
CB
cC
CD
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9

Crash Dump File

Bad update list on ACP time-out

ACP Timeout during initialization

Crashprepare, Name CRASHS$ has not been defined
DecUpdsyne, C_header " .Updsync < ¢

FormatUpdate, Someone waiting in C_header * .Updswait already
Someone else waiting in C_header " Killer already

Non-nil Qwait of a dying function

Microcode won'’t fit into ACP

Implementation limit on delta waits (2**31)

Detected internal inconsistency

Detected error (passed a bad parameter)

Diskette’s parsecode table inconsistent with parser

Bad boundary on binary data xfer

Default Devsts contains errors

Inwait, f is already waiting or not a function

Outwait, f is already waiting or not a function

User generic function stack overflow

Ug_run_cnt has become negative

User generic function has bad alpha (on private queue)

Bad format of MSGLIST .DAT detected

MSGLIST (or code using it) has probably been corrupted
Apparent datastructure incompatibility

Bad MemOKindex detected

Routine passed bad parm (e.g., a nil ptr)

Lines to IBM system not active

Floppy disk file INITGPIO.DAT; not found or unable to read
Floppy disk file GPIOCODE.DAT; not found or unable to read
Floppy disk file IBMFONT.DAT; not found or unable to read
Floppy disk file IBMKEYBD.DAT; not found or unable to read
Floppy disk file IBMASCIL.DAT; not found or unable to read
IBM GPIO timeout

Number of minimum inputs is negative

1T10-5

TT10-6

DA
DB
DC
DE
DF

E0

E1

E2
ES
E6
E7
E9
EA

EB
ED
EE
EF
FO
F1
F3
F6
F7
F8
F9
FC
FD
FE
FF
100
101
102

Number of maximum inputs < Number of minimum inputs

Number of maximum inputs > Number of inputs for function

Sendlist detected a bad list

Sendmess: message to be sent is NIL
Caller did not have a lock set already
Curfen in improper state to call Getinputs

Cleanin, Curfen in improper state to call Cleaninp (e.g., have you

first called Getinputs?)

Somebody remembered a forgotten non-fcninstance
Alpha not already locked by caller

Confusion in discarding bad message

Lock not already set by caller

RemOne, Curfen does not have that many inputs

RemOne, Message to be deleted and message pointed to by

Curinputs is not the same

Lock not already set in Gatheraupdate call
Get2locks detected lock already set

Error in semantic routine for polygon vertex
Destination Alpha was not already locked
Parent not already locked in add/remove from set
Child not already locked in add to set

Alpha not already locked in Gpseudoaupdate
Confusion about locks or decausages

Unknown tap reason

Unanticipated state at which to see shoulder tap
Illegal number of inputs

No existing DCB found for this user

Timeout, Message on input 1 disappeared before fcn could get it

Error while initializing disk drive
Error while reading disk header
Error while reading disk directory
THULE.DAT not found on disk
Error while reading THULE.DAT

Tools and Techniques

103
104
105
106
107

108
109
10A
10B
10C
10D
10E
10F
110
111
112

113
114

115
116
117
118
119
120
121
122
123
124
125
126

Crash Dump File

Curfcn was not active at entry

Viewport not in structure

Real simple, number of digits requested out of range (n <1 or n > 9)
Getnextone, illegal queue specified

Getnextone, msg on head of queue and specified by Curinput do not
agree

Getnextone, no message on queue, but Curinput < > NIL
ContBlock, nil block

Timeout when waiting for all on-line JCPs

Rehash only works first time, only time now.

No processor has right to issue this tap

GetVector, Not an Acpdata block

GetVector, Not a vector Acpdata block

Invalid gpacket received

Tolerance on FCnearzero is absurd

Set construct of father has no dummy control block

Function code has to be of type CI to have elements included and
removed

ShadeEnviron node encountered in non PS 340

Unknown command received from Raster Backend; expected
writeback.more or writeback.done.

Error in reading HMSCODE.DAT from disk.

Error in trying to get file info for HMSCODE.DAT.
Error in reading HMSVEC.DAT from disk.

Error in trying to get file info for HMSVEC.DAT.
Error in reading HMSCOL.DAT from disk.

Error in trying to get file info for HMSCOL.DAT.
Error in reading HMSCURS.DAT from disk.

Error in trying to get file info for HMSCURS.DAT.
Error in reading HMSFILT.DAT from disk.

Error in trying to get file info for HMSFILT.DAT.
No TurnOnDisplay (wrong CONFIG.DAT file for PS 390).
Can’t follow alpha: TurnOnDisplay.

1T10-7

127 Raster Backend Timeout. The Raster Backend did not clear
HMSmailbox[0] after it was sent an attention. A second attention to
try to recover also received no response.

Type 2 - Traps
0 No mass memory on line, or too little to come up
1 More OKINTSs than NOINTs or > 128 NOINTSs
2 Free storage block size bad (on request or in free list)
3

Attempt to Activate a non-function (or nil) or bad software detected
during startup (most commonly, incompatible datastru.sa detected
but perhaps invalid startup routine sequencing (if someone has been
mucking around with it))

NEW call failed to find memory, within NOMEMSCHED
Attempt to queue where a function is already waiting
Systemerror(n)

Badfcode(Fcn)

Mass Memory Error Interrupt

Utility Routine not included in this linked system
Probable multiple DISPOSE of the same block

Block exponent not big enough

O W > © o 9 & »h A

Attempt to divide with a divisor which is too small in FixLongDivide
(twice the dividend must be less than the divisor)

(Used by Motorola PASCAL)

o

Type 3 - Exceptions
0 Reset: Initial SSP
Reset: Initial PC

Bus Error (i.e. attempt to address nonexistent location in memory)

W N

Address Error (i.e. attempt to access memory incorrectly, for
example an instruction not starting on a word boundary).

Illegal instruction
Zero Divide

CHK Instruction
TRAPV Instruction

~NN Oy e A

1T10-8 Tools and Techniques

Privilege violation
Trace
10 Line 1010 Emulator
11 Line 1111 Emulator

24 Spurious interrupt

3. Crash Dump Program

Following is an example of a Pascal host program that writes the informa-
tion from the diskette crash file into a host file.

PROGRAM CRASH (Input,Output,Outfile);

CONST
%INCLUDE “PROCONST.PAS/NOLIST”

TYPE
%INCLUDE ‘PROTYPES.PAS/NOLIST”

cheat_4 = RECORD

CASE Boolean OF
TRUE : (i : Integer);
FALSE : (c : Array[l..4] OF CHAR)

END;

cheat_2 = RECORD
CASE Boolean OF
TRUE : (i : [WORD] 0..1024);
FALSE : (¢ : Array([l..2] OF CHAR)

END;

Buffer = RECORD
CASE Boolean OF
TRUE : (b : P_VaryBuftype);
FALSE : ({ Length of P_VaryBuftype is in Dummy}

Dummy : [WORD] 0..1024;

Dreg : Array[0..7] of Cheat_4;
Areg . Array[0..7] of Cheat_ 4;
Sver : Cheat_4;

Stype : Cheat_4;

Crash Dump File

1T10-9

PC : Cheat_4;

Errtyp : Cheat_2;
Errnum : Cheat_2;
Stack : Array[l..59] of Cheat_4;
Not Used : Cheat_2;
SR : Cheat_2)
END;
VAR

Devtyp : Integer;

Inbuff : P_VaryBuftype;

OutBuff : Buffer;

Found . BOOLEAN;

Outfile : text;

%INCLUDE “PROEXTRN.PAS/NOLIST~
%INCLUDE “VAXERRHAN.PAS/NOLIST”
PROCEDURE Init_ps300;

{

FUNCTIONAL DESCRIPTION:

Initialize the comm link to the PS 390

VAR
a, Modify : P_Varyingtype;

BEGIN

Write(“Enter Type of Interface (l=Async, 2=Ethernet, 3=Parallel):”);
Readln(Devtyp);

Write(’Enter Device name :7);

Readln(a); CASE Devtyp OF

1
Modify := “LOGDEVNAM=" + a + °/PHYDEVTYP=ASYNC”;
3
Modify := “LOGDEVNAM=" + a + ~/PHYDEVTYP=ETHERNET~ ;
2
Modify := “LOGDEVNAM=" + a + ~/PHYDEVTYP=PARALLEL~
OTHERWISE
END;
PAttach(Modify, PI_Error_handler)

END;

1T10-10 Tools and Techniques

PROCEDURE Trigger_ read;

FUNCTIONAL DESCRIPTION:

Create instance of function network to retrieve CRASH.DAT
file from disk. The network will convert the data block
to six-bit format and break it into packets of 72 bytes
which will be put on host_message.

VAR

a : CHAR;

PROCEDURE BREAKUP;

{ Code generated by Network Editor 1.08 }

{ This function network takes an incoming gpacket and breaks it }
{ into smaller packets to be sent over an terminal line since }

{ most terminal handlers have some limit to the input length }

{ BREAKUP }

BEGIN

{ Framel: }

PFnInstN (’Break_sync”, “SYNC’, 2, PI_Error_handler);

PFnInst (“Break_route”, “BROUTEC”, PI_Error_handler);

PFnInst (“Add_constant’, “CONSTANT’, PI_Error_handler);

PFnInst (’Break_add”, “ADDC’, PI_Error_handler);

PFnInst (“Breakup’, “TAKE_STRING’, PI_Error_handler);

PFnInst (“In_length”, “LENGTH_STRING”, PI_Error_handler);
PFnInst (“Len_compare’, “GIC”, PI_Error_handler);

PFnInst (“Route_string”, “BROUTE”, PI_Error_ handler);

PFnInst (“Route_start”, “BROUTE’, PI_Error_handler);

PFnInst (“cvt”, “CVIT8TO06”, PI_Error_handler);

PFnInst (“rd”, “READDISK’, PI_Error_handler);

PFnInst (“prnt”, “PRINT”, PI_Error_handler);

PFnInst (“Breakup_in3“, “CONSTANT’, PI_Error_handler);

PConnect (’Break sync”’, 1, 1, “Breakup’, PI_Error_ handler);
PConnect (“Break_sync”, 1, 2, “Break route’, PI_Error_handler);
PConnect (“Break_sync”, 2, 2, “Breakup’, PI_Error_handler);
PConnect (“Break_sync’, 2, 2, “Break sync’, PI_Error_ handler);
PConnect (“Break sync’, 2, 2, “Break add”, PI_Error_handler);
PConnect (“Break_route”, 1, 1, “Add_constant’, PI_Error_handler);
PConnect (“Break_route’, 1, 2, “Route_string”, PI_Error_ handler);
PConnect (“Add_constant’, 1, 1, “Break_add’, PI_Error_handler);
PConnect (’Break _add”, 1, 2, “Break_add’, PI_Error_handler);
PConnect (’Break_add”, 1, 2, “Route_start’, PI_Error_handler);

Crash Dump File

1T10-11

PConnect (“Break add”, 1, 1, “Len_compare’, PI_Error_handler);
PConnect (“Breakup’, 1, 1, “cvt’, PI_Error_handler);
PConnect (’Breakup’, 2, 1, ’“Break route’, PI_Error_handler);
PConnect (’Breakup”, 2, 1, “Breakup_in3”, PI_Error_handler);
PConnect (“In_length”, 1, 2, “Len_compare’, PI_Error_handler);
PConnect (’Len_compare’, 1, 1, “Route_string”, PI_Error_handler);
PConnect (’Len_compare”, 1, 1, “Route_start’, PI_Error_handler);
PConnect (’Route_string’, 2, 1, “Breakup’, PI_Error_handler);
PConnect (’Route_start®, 2, 2, “Breakup’, PI_Error_handler);
PConnect (‘cvt’, 1, 1, “host _message’, PI_Error_handler);
PConnect (“rd”, 1, 1, “Break_sync’, PI_Error_handler);
PConnect (“rd”, 1, 1, “In_length’, PI_Error_handler);
PConnect (“rd”, 2, 1, “prnt’, PI_Error_handler);
PConnect (“prnt”, 1, 1, “host_message’, PI_Error_handler);
PConnect (“Breakup in3“, 1, 3, ‘Breakup’, PI_Error_handler);
PSndStr (CHR(36), 2, “cvt’, PI_Error_handler);
PSndFix (48, 3, “Breakup’,PI_Error_handler);
PSndFix (48, 2, “Breakup_in3’,PI_Error_handler);
PSndFix (48, 2, “Add_constant’,PI_Error_handler);
PSndFix (1, 2, “Break _sync’,PI Error_handler);
PPutPars(’Set priority of prnt to 9; “,PI_Error_handler);

END;

BEGIN

IF Devtyp =1

THEN
Breakup

ELSE
BEGIN
PFnInst (‘rd”, “READDISK’, PI_Error_handler);
PFnInst (“prnt’, “PRINT’, PI_Error_handler);
PConnect (‘rd”, 2, 1, “prnt’, PI_Error_handler);
PConnect (“prnt”, 1, 1, “host_message’, PI_Error_handler);
PConnect (“rd”, 1, 1, “host_message’, PI_Error_handler);
PPutPars(’Set priority of prnt to 9; °,PI_Error_handler);
END;

Write(” Do you want to delete CRASH.DAT after reading?”);

Readln(a);
IF (a = °Y") OR (a = “y”)
THEN
Psndbool(TRUE, 2, “rd”, PI_Error_handler)
ELSE

Psndbool(FALSE, 2, “rd’, PI_Error_handler);
Psndstr(“CRASH”, 1, “rd”, PI_Error_handler)
PPurge(PI_Error_handler);

END;

1T10-12 Tools and Techniques

	0001
	0002
	0003
	TT01-000
	TT01-001
	TT01-002
	TT01-003
	TT01-01
	TT01-02
	TT01-03
	TT01-04
	TT01-05
	TT01-06
	TT01-07
	TT01-08
	TT01-09
	TT01-10
	TT01-11
	TT01-12
	TT01-13
	TT01-14
	TT01-15
	TT01-16
	TT01-17
	TT01-18
	TT01-19
	TT01-20
	TT01-21
	TT01-22
	TT01-23
	TT01-24
	TT01-25
	TT01-26
	TT01-27
	TT01-28
	TT01-29
	TT01-30
	TT01-31
	TT01-32
	TT01-33
	TT01-34
	TT01-35
	TT01-36
	TT01-37
	TT01-38
	TT01-39
	TT01-40
	TT01-41
	TT01-42
	TT01-43
	TT01-44
	TT01-45
	TT01-46
	TT01-47
	TT01-48
	TT01-49
	TT01-50
	TT01-51
	TT01-52
	TT01-53
	TT01-54
	TT01-55
	TT01-56
	TT01-57
	TT01-58
	TT01-59
	TT01-60
	TT01-61
	TT02-000
	TT02-001
	TT02-002
	TT02-01
	TT02-02
	TT02-03
	TT02-04
	TT02-05
	TT02-06
	TT02-07
	TT02-08
	TT02-09
	TT02-10
	TT02-11
	TT02-12
	TT02-13
	TT02-14
	TT02-15
	TT02-16
	TT02-17
	TT02-18
	TT02-19
	TT02-20
	TT02-21
	TT02-22
	TT02-23
	TT02-24
	TT02-25
	TT02-26
	TT02-27
	TT02-28
	TT02-29
	TT02-30
	TT02-31
	TT02-32
	TT02-33
	TT02-34
	TT02-35
	TT02-36
	TT02-37
	TT02-38
	TT02-39
	TT02-40
	TT02-41
	TT02-42
	TT02-43
	TT02-44
	TT02-45
	TT02-46
	TT02-47
	TT02-48
	TT02-49
	TT02-50
	TT02-51
	TT02-52
	TT02-53
	TT02-54
	TT02-55
	TT02-56
	TT02-57
	TT02-58
	TT02-59
	TT02-60
	TT02-61
	TT02-62
	TT02-63
	TT03-000
	TT03-001
	TT03-002
	TT03-01
	TT03-02
	TT03-03
	TT03-04
	TT03-05
	TT03-06
	TT03-07
	TT03-08
	TT03-09
	TT03-10
	TT03-11
	TT03-12
	TT03-13
	TT03-14
	TT03-15
	TT03-16
	TT03-17
	TT03-18
	TT03-19
	TT03-20
	TT03-21
	TT03-22
	TT03-23
	TT03-24
	TT03-25
	TT03-26
	TT03-27
	TT03-28
	TT03-29
	TT03-30
	TT03-31
	TT03-32
	TT03-33
	TT03-34
	TT03-35
	TT03-36
	TT03-37
	TT03-38
	TT03-39
	TT03-40
	TT03-41
	TT03-42
	TT03-43
	TT03-44
	TT03-45
	TT03-46
	TT03-47
	TT03-48
	TT03-49
	TT03-50
	TT03-51
	TT03-52
	TT03-53
	TT03-54
	TT03-55
	TT03-56
	TT03-57
	TT03-58
	TT03-59
	TT03-60
	TT03-61
	TT03-62
	TT03-63
	TT03-64
	TT03-65
	TT03-66
	TT03-67
	TT03-68
	TT03-69
	TT03-70
	TT03-71
	TT03-72
	TT03-73
	TT03-74
	TT03-75
	TT03-76
	TT03-77
	TT03-78
	TT03-79
	TT03-80
	TT03-81
	TT03-82
	TT03-83
	TT03-84
	TT03-85
	TT03-86
	TT03-87
	TT04-000
	TT04-001
	TT04-002
	TT04-003
	TT04-004
	TT04-01
	TT04-02
	TT04-03
	TT04-04
	TT04-05
	TT04-06
	TT04-07
	TT04-08
	TT04-09
	TT04-10
	TT04-11
	TT04-12
	TT04-13
	TT04-14
	TT04-15
	TT04-16
	TT04-17
	TT04-18
	TT04-19
	TT04-20
	TT04-21
	TT04-22
	TT04-23
	TT04-24
	TT04-25
	TT04-26
	TT04-27
	TT04-28
	TT04-29
	TT04-30
	TT04-31
	TT04-32
	TT04-33
	TT04-34
	TT04-35
	TT04-36
	TT04-37
	TT04-38
	TT04-39
	TT04-40
	TT04-41
	TT04-42
	TT04-43
	TT04-44
	TT04-45
	TT04-46
	TT04-47
	TT04-48
	TT04-49
	TT04-50
	TT04-51
	TT04-52
	TT04-53
	TT05-000
	TT05-001
	TT05-01
	TT05-02
	TT05-03
	TT05-04
	TT05-05
	TT05-06
	TT05-07
	TT05-08
	TT05-09
	TT05-10
	TT05-11
	TT06-000
	TT06-001
	TT06-01
	TT06-02
	TT06-03
	TT06-04
	TT06-05
	TT06-06
	TT06-07
	TT06-08
	TT06-09
	TT06-10
	TT06-11
	TT06-12
	TT06-13
	TT06-14
	TT07-000
	TT07-001
	TT07-01
	TT07-02
	TT07-03
	TT07-04
	TT07-05
	TT07-06
	TT07-07
	TT07-08
	TT07-09
	TT08-000
	TT08-001
	TT08-01
	TT08-02
	TT08-03
	TT09-000
	TT09-001
	TT09-01
	TT09-02
	TT09-03
	TT09-04
	TT09-05
	TT09-06
	TT09-07
	TT09-08
	TT09-09
	TT09-10
	TT09-11
	TT09-12
	TT09-13
	TT09-14
	TT09-15
	TT09-16
	TT09-17
	TT09-18
	TT09-19
	TT09-20
	TT09-21
	TT09-22
	TT09-23
	TT09-24
	TT09-25
	TT09-26
	TT09-27
	TT09-28
	TT09-29
	TT09-30
	TT09-31
	TT10-000
	TT10-001
	TT10-01
	TT10-02
	TT10-03
	TT10-04
	TT10-05
	TT10-06
	TT10-07
	TT10-08
	TT10-09
	TT10-10
	TT10-11
	TT10-12

