
PS 390 DOCUMENT SET

REFERENCE MATERIALS 5-16

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390 and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 19 8 7
EVANS & SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

REFERENCE MATERIALS

The Reference Materials RMJ-4 and RMS-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con­
tains an index to the complete PS 390 Document Set.

RMS Host Communications

This section includes descriptions of the RS-232 specifications and pin
connector definitions, PS 390 transmission protocol, port values and
defaults, and the PS 390 system data reception functions.

RM6 Interfaces I Options

This section contains information about the PS 390/host interfaces.

RM7 Host Input Data Flow

This section covers information on the host input data flow, including rout­
ing functions and routing byte definitions.

RMS System Function Net work

This section contains diagrams of the PS 390 system function network. The
diagrams show the logical paths of the routing bytes and functions.

RM9 Initial Structures

This section describes initial data structures created at power-up. Configure
mode is discussed and a runtime system is defined.

RMlO Terminal Emulator

This section gives instructions for changing the modes and features of the
terminal emulator by either sending escape sequences from the host,
entering PS 390 commands in the SITE.DAT file, or sending the
appropriate ASCII characters to terminal emulator functions.

RM 11 System Errors

This section is a compendium of all user error messages (informational,
recoverable, fatal, and warning). Error messages are listed in numerical
order. The text of the message is given with an indication of common
causes of the error and, where appropriate, ways to correct it.

RM12 Diagnostic Utilities

This section provides a reference for the utility commands that are on the
PS 390 diagnostic utility diskette.

RM13 Interactive Devices

This section describes how the PS 390 interactive devices work and are con­
nected to the system. Interactive devices include a peripheral multiplexer,
keyboard, data tablet, function buttons, control dials and mouse.

RM14 GSR Internals

This section describes the data formats expected by the PS 390 command
interpreter. It is provided for advanced programmers to write their own
GSRs.

RM 15 Release Notes

A divider is provided for information supplied with future releases of soft­
ware.

RM16 Index

This section contains an index to the complete PS 390 Document Set.

RMS. HOST COMMUNICATIONS

CONTENTS

1. HOST/PS 390 INTERFACE . 1

1.1 RS-232-C Specifications . 3
1.1.1 Signal Definitions . 4
1.2 RS-232-C Cabling, Connectors and Pins . 5

2. PS 390 SERIAL COMMUNICATION CHARACTERISTICS 6

2.1 Asynchronous Port Defaults . 7
2.2 Changing Port Status . 8
2.3 Changing PS 390/Host Interface Values

Using the SITE.DAT File . 11

3. PS 390 TRANSMISSION PROTOCOL AND ERROR DETECTION 11

3.1 PS 390 Transmission Protocol . 12
3.1.1 Data Reception and Transmission . 12
3.1.2 Data Transmission Without XON XOFF 13
3.1.3 Transmission Errors . 13
3.2 Transmission Error Detection . 13
3.2.1 Parity Errors . 14
3.2.2 Framing Errors . 15
3.2.3 ()verrun Errors . 16

4. METHODS OF COMMUNICATION OVER THE HOST LINE . . 16

4.1 Data Communications - Escape and Count Mode 17
4.1.1 l~scape Mode . 18
4.1.2 Count Mode . 19
4.2 Using the Routing Bytes for Local Data Flow 20
4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters

in the SITE.DAT File . 21

5. PS 390/IBM HOST COMMUNICATIONS . 22

5.1 PS 390 Data Communication . 22
5.2 Data Destinations . 23
5 .3 Write Structured Field . 23
5.3.1 Programmed Symbols . 23
5.3.2 Load Programmed Symbols . 26
5.4 Configuration of the 3274 Control Unit . 27
5.5 Data Flow Overview . 27
5.5.1 Modification of Pool Sizes . 30

TABLE

Table 5-1. RS-232-C Connector Pin Definitions 3

ii

Section RMS

Host Communications

The PS 390 communicates with a variety of host computers by way of communica­
tions interfaces. The standard PS 390 interface is the RS-232-C asynchronous se­
rial communication protocol. Also supported are the Ethernet, Parallel, IBM 3278,
and IBM 5080 interfaces.

This section describes the data flow between the PS 390 and the host processor.
The initial sections introduce some of the basic concepts of data communication,
particularly those directly affecting the interface to be set up between the PS 390
graphics system and the host computer.

1. Host/PS 390 Interface

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390.

The standard data communication interface to the PS 390 is an RS-232-C
asynchronous serial line. The terms "asynchronous" and "serial" refer to
two important communication characteristics.

Binary data may be transferred between electronic devices in "serial", over
a single line, or in "parallel", over several lines at once, by changes in
current or voltage. In serial transmission, the bits that represent a character
are sent down a single wire, one after the other. These serial signals are
converted to parallel form at the reception end by shift registers. (In most
data communications applications, serial transmission is preferable to paral­
lel transmission, since fewer wires must be run. However, parallel transmis­
sion is faster, as more data can be sent across the line at once.)

Host Communications RMS-I

RMS-2

Data transfers may be of a "synchronous" nature, where the exact bit
framing of each byte of information is coordinated for the entire message
by the transmission of two or more synchronization characters at the
beginning of the message. All characters that follow these characters occur
within a specific time frame called a "character time."

Or, data transfers may be of an "asynchronous" nature, where each
character is self-defined by the use of a start bit and one or more stop bits.
The start and stop bits occur before and after the byte of data. For this
reason, this mode of transmission is referred to as "Start/Stop
Transmission." In this mode, the arrival time of each character is random.
Each end of the transmission line must know what the transmission rate is
to sample the line at correct intervals following the receipt of a start bit.

Under PS 390 graphic system protocol, the RS-232-C standard interface
sends data signals over a single, serial line using asynchronous transmis­
sion. The PS 390 may also be interfaced to a DEC/PDPl 1 or a DECN AX
host over an asynchronous parallel line.

RS-232-C refers to a standard for interface communication set by the Elec­
tronic Industries Association (EIA). The RS-232-C standard contains:

• The electrical signal characteristics.

• The interface mechanical characteristics.

• A functional description of the interchange circuits.

• A list of standard subsets of specific interchange circuits for specific
groups of communication system applications.

It is important when reviewing specifications for computer/system interfaces
to understand what the various interface leads do, and which are essential
for proper interface between the PS 390 graphics system and the host
computer.

Reference Materials

1.1 RS-232-C Specifications

The physical connection between the PS 390 and the host is made through
plug-in, 25-pin connectors (Cannon or Cinch DB Series). These connectors
are keyed for 13 pins on the top row, and 12 pins on the bottom row. The
PS 390 ports on the communication connector panel provide the male ele­
ment for the interface. The pin assignments and signal definitions supported
by the PS 390 graphics system are given in Table 5-1.

RS-232-C standard states that the cable between the data communications
equipment should be no longer than 50 feet. However, longer cabling dis­
tances have been used successfully.

For the PS 390 EIA RS-232-C communication ports, a Control-ON (logical
0), or "SPACE" condition exists if the voltage present is greater than +5
volts and less than +25 volts with respect to signal ground. A Control-OFF
(logical 1), or "MARK" condition exists if the voltage present is less than -5
volts and greater than -25 volts with respect to signal ground. This assumes
that the PS 390 signal ground and the communication data device signal
ground are at the same potential.

Table 5-1. RS-232-C Connector Pin Definitions

PIN # EIA LABEL ABBREV. NAME

1 AA GND
2 BA TXD
3 BB RXD
4 CA RTS
5 CB CTS
6 CC DSR
7 AB GND
8 CF DCD
15 DB TXCA
17 DD RXC
20 CD DTR

SIGNAL NAME

Protective ground
Transmit data
Receive data
Request to send
Clear to send
Data set ready
Signal ground
Data carrier detect
Transmit clock
Receive clock
Data terminal ready

DIRECTION

N/A
To DCE*
From DCE
To DCE
From DCE
From DCE
N/A
From DCE
From DCE
From DCE
To DCE

24 DA TXCB External transmit clock To DCE

* DCE Data Communication Equipment

Host Communications RMS-3

RMS-4

1.1.1 Signal Definitions

The following are definitions of the RS-232-C signals shown in Table 5-1.

• AA, AB (Protective Ground and Signal Ground) - These two
grounds are electrically independent. Protective Ground connects to
the power ground. Signal Ground connects to the logic ground. No
direct frame grounding occurs at the connector. Strict EIA RS-232-C
standard definitions are not directly applicable.

• BA (Transmit Data) - Data from the PS 390 are transmitted on this
line. The signal is generated by the PS 390 processor.

• BB (Receive Data) - Data are sent to the PS 390 on this line. The
signal is passed to the PS 390 via the data communications equip­
ment.

• CA (Request to Send) - This signal is generated by the PS 390 proc­
essor. The output may be programmed to conform with EIA
RS-232-C protocol. Generally, an "ON" CA (request to send) signal
indicates the PS 390 processor is ready to transmit information.

• CB (Clear to Send) - This signal may be generated by data commu­
nication equipment. An OFF condition will terminate data transmis­
sion. An ON condition allows data transmission to resume. If no
connection is made, an internal pull-up resistor will assert this line to
an ON condition (+12V) for non-standard RS-232-C communication.

• CC (Data Set Ready) - This signal may be generated by the data
communication equipment. The function of this signal is controlled
by software within the PS 390 processor. Usually, an 'ON' CC (data
set ready) is sent by the data communication equipment to indicate
that it is ready to transmit.

• CF (Data Carrier Detect) - This signal may be generated by the data
communication equipment. ON assertion of this signal allows BB (re­
ceive data) to be accepted by the PS 390 processor. If no connection
is made, this line will be pulled to an ON condition (+12V) to allow
non-standard EIA RS-232-C communication. To disable the BB (re­
ceive data) communication, an OFF condition must exist. Definition
of this pin is software controlled for Port 1 of the PS 390 processor.

Reference Materials

• CD (Data Terminal Ready) - This signal is generated by the PS 390
processor and is under software control. When asserted to an ON
level, CD indicates that the PS 390 processor is ready to
communicate.

• DA TXCB (Transmit Clock B) - This signal is generated by the
PS 390 processor. DA provides a timing clock to indicate the center
of each element of data. This timing clock can either be equal to the
transmitted data frequency, or equal to 16 times the data frequency.
DA TXCB is under software control. Port 1 of the PS 390 processor
does not directly generate this signal. It relies on TXCA (transmit
clock A) to generate this clock.

• DB TXCA (Transmit Clock BA) - This input signal is generated by
external transmitting data communications equipment. This clocking
signal input can control the rate at which the PS 390 processor
transmits data out. The ability to use this clock input is software
controlled.

• DD RXC (Receive Clock) - This input signal is generated by exter­
nal transmitting data communications equipment. This clock deter­
mines the rate at which the PS 390 processor receives data. The abil­
ity to use this clock is software controlled.

1.2 RS-232-C Cabling, Connectors and Pins

All cabling and connectors used in the interface between the PS 390 and the
host system must be provided by the user.

A null-modem cable configuration may be necessary to correctly connect
the pin signals through the RS-232-C interface.

Cables and the 25-pin connectors for RS-232-C are available through most
major computer product supply centers.

The cables running from the host to the PS 390 processor should terminate
with a female connector, as the PS 390 data communication ports house
male elements.

The decision to use shielded or unshielded cable is left to the user. Shielded
cable is highly recommended in noisy environments, but typically it has a
higher capacitance per foot than unshielded cable, which may reduce the
operating speed.

Host Communications RMS-5

2. PS 390 Serial Communication Characteristics

RMS-6

This section describes the serial 1/0 parameters the PS 390 graphics system
has defined for each port. The defaults (values assigned to each port when
the system is powered on in standard configuration) for the data character­
istics are listed in this section. For information on how these values can be
configured in a bootable file on the PS 390 graphics firmware diskette, refer
to section 2.3. The following information applies to PS 390 graphics sys­
tems asynchronous transmission:

• The baud rates available on Ports 1, 3, and 4 on the PS 390 are:
300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 9600, and 19200.
Port 5 runs at 19200.

• The PS 390 may be configured for 5, 6, 7, or 8 bits per character,
although the host port must pass all characters of the 7-bit ASCII
character set (for example 7 or 8 bits per character).

• Only one start bit will be accepted (and generated) by the PS 390.

• The PS 390 will accept (and generate) 1 or 2 stop bits.

• The PS 390 and the host can communicate using an XON _ XOFF
protocol. In this protocol, control sequences are generated that tell
the sender (either the PS 390 or the host) when to start (XON), or
stop (XOFF) data transmission. These control sequence values de­
fault to CTRL S (DEC 17 character) for XON, and CTRL Q (DEC 19
character) for XOFF. Under XON_XOFF, bit stripping is controlled
by the /MASK_T0_7 BITS option.

Additionally, there are available values for data characteristics that
are unique to the XON_XOFF protocol. These values and their defi­
nitions are shown in section 2.2.

• The PS 390 will run with even, odd, or no parity. Parity is a charac­
ter checking device that operates by adding non-information bits to
data, making the total number of ones in each grouping of bits either
odd for odd parity, or even for even parity. This permits error detec­
tion for an odd number of incorrect bits in each group.

Reference Materials

• Each port may be configured to cause a trap to the PS 390 Debugger
in the event a break is detected on that port.

• The PS 390 may be set to hold a maximum number of 127 buffers to
hold data transmitted from the host. The default is eight buffers.
Each buffer may be set to a maximum of 32, 767 bytes, with the
default at 48 bytes per buffer. This option allows the user to specify
the amount of memory space to be allocated for data reception from
the host. The user may specify the number of free input buffers
below which the host will be sent an XOFF to suspend transmission.
The number of free buffers above which the host will be sent an
XON to resume transmission may also be specified.

2.1 Asynchronous Port Defaults

The defaults for Ports 1, 3, 4, and 5 are:

• Port 1 - Host Port - 9,600 baud, 8 bits per character, 1 stop bit, no
parity, no_mask_to_7 _bits, transparent mode. Sends all XON_XOFF
protocol characters, ignores incoming XON_XOFF (no_hear_XON),
8 48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled.

• Port 3 - Debug Port - 9,600 baud, 8 bits per character, 1 stop bit,
no parity, non-transparent mode that accepts all XON_XOFF proto­
col characters, 8 48-byte buffers with 0 STOP buffers and 1 GO
buffer, and debug break enabled.

• Port 4 - 300 baud, 8 bits per character, 1 stop bit, no parity, non­
transparent mode that accepts all XON _XOFF protocol characters, 8
48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled

• Port 5 - Multiplexer Port - 19,200 baud, 8 bits per character, 1 stop
bit, no parity, transparent mode that does not recognize XON _ XOFF
protocol characters, 8 48-byte buffers, and debug break disabled.

The status of all the ports may be verified by using the SHOW INTERFACE
command.

Host Communications RMS-7

2.2 Changing Port Status

RMS-8

The following command sequence can be used to change any of the default
values on Ports 1, 3, 4, and 5. These new values must be within the accept­
able values for data characteristics as given in the previous section. The
port values are changed by entering the command:

SETUP INTERFACE <name>/<options>;

where name is the port being reconfigured, options refers to the option
setting the communications interface. The command:

SHOW INTERFACE <name>;

where <name> is the port, can be used to check the values of a given port.

In using these commands, the names of the ports are as follows:

Port 1 is designated port10
Port 3 is designated port30
Port 4 is designated port40
Port 5 is designated ports 0

The available options for SETUP INTERFACE are:

/SPEED=<baud rate> - input and output communications speed between 50
and 19200.

/EVEN_ PARITY - establishes monitoring of parity on input and generation
of parity on output, using EVEN parity.

/ODD _PARITY - establishes monitoring of parity on input and generation
of parity on output, using ODD parity.

/NO_PARITY (default) - terminates the monitoring of parity on input and
generation of parity on output.

/BITS_ PER_ CHARACTER=<number of bits per char> - sets the width of a
character in bits (normally 8, including 7-bit ASCII).

/STOP_ BITS_ PER_ CHARACTER=<number of stop bits per char> - sets
the number of stop bits for each character (normally 1).

/XON_XOFF - enables the PS 390 to use XON_XOFF protocol to tell the
host (or device) on this port to resume or suspend transmission. Default is
to this protocol.

Reference Materials

/NO_XON_XOFF - disables the use of XON and XOFF protocol from the
PS 390 to the host (or device) on this port to resume or suspend transmis­
sion.

/HEAR_XON - enables the use of XON_XOFF protocol for the host (or
device) on this port to tell the PS 390 to resume or suspend transmission.

/NO_HEAR_XON - disables the use of XON_XOFF protocol for the host
(or device) on this port to tell the PS 390 to resume or suspend transmis­
sion. Default is NO HEAR XON. - -

/BREAK - enables the receipt of a BREAK on this port to call the ROM
debugger.

/NO _BREAK - disables the receipt of a BREAK on this port to call the
ROM debugger. Default is NO_BREAK.

/SPEED_ EXTERNAL - sets the port speed to that of an attached modem,
rather than from an internal clock. (This applies only to those ports with full
modem support.)

/NO_ SPEED_ EXTERNAL - tells this port to use its internal clock, at the
speed set by /SPEED=. Default is NO_SPEED EXTERNAL.

/BUFFERS=<number of buffers> - specifies the number of buffers in the
input pool. Default is 8 buffers.

/BUFFER_ SIZE=<number of bytes> - specifies the size of each buff er in
the input pool. Default is 48 bytes.

NOTE

If input is received continuously, buffers will be filled
until they are full. The buffer size will, in this case,
specify the quantum of input being processed by subse­
quent functions.

If input is received at much less than the maximum
baud rate, buffers will be released to waiting functions
after 2 character times without receipt of a byte. In this
case, the strict product of <buffer size> and <number
of buffers> will not be the true amount of input
buffering.

Host Communications RM5-9

RMS-10

/N_STOP _BUFFERS=<number of buffers> - specifies the number of free
input buffers below which the sender is told to suspend transmission. This
has no effect unless the port is in /XON _ XOFF mode. Default is 1 Stop
Buffers. This is for host to PS 390 communication only.

IN_ GO_ BUFFERS=<number of buffers> - specifies the number of free in­
put buffers above which the sender is told to resume transmission. This has
no effect unless the port is in /XON_XOFF mode. Default is 2 Go Buffers.

The following four commands allow the user to specify non-standard
X ON-X OFF characters: - -

/SEND_ XON _ CHAR=<char code> - specifies the character code as
an integer (defaults to decimal 17) to be sent out from the PS 390 to
tell the sender to resume transmission. This has no effect unless the
port is in /XON_XOFF mode.

/SEND_ XOFF _ CHAR=<char code> - specifies the character code as
an integer (defaults to decimal 19) to be sent out from the PS 390 to
tell the sender to suspend transmission. This has no effect unless the
port is in /XON_XOFF mode.

/OBEY_ XON _ CHAR=<char code> - specifies the character code as
an integer (defaults to decimal 17) that, when received by the
PS 390, allows the PS 390 to transmit.

/OBEY_ XOFF _ CHAR=<char code> - specifies the character code as
an integer (defaults to decimal 19) that, when received by the
PS 390, stops the PS 390 from transmitting.

/MASK_T0_7_BITS - specifies that incoming bytes are to have their 8th
bit, normally the parity bit, stripped off.

/NO_ MASK_ TO_ 7 _BITS - (default) specifies that incoming bytes are not
to be masked.

/BREAK_ TIME=<break time> - specifies the length of time in centiseconds
that an outgoing BREAK is to be held. This defaults to 10. Maximum= 127.
(Section IS3 contains instructions for defining the break key.)

/ASYNCHRONOUS - normal mode of operation.

All commands are terminated with a semicolon (;) and a carriage return.
The menu available with the SHOW INTERFACE command lists only those
parameters that are relevant to the interface.

Reference Materials

2.3 Changing PS 390/Host Interface Values Using the SITE.DAT File

Port values may be changed to suit specific site requirements in two ways:
the default values can be changed by using the SETUP INTERFACE
commands in configuration mode, or the SETUP INTERFACE commands
can be entered into the SITE.DAT file. If the value needs to be changed for
just one session, so that the port will go back to its default values during the
next boot-up, the SETUP INTERFACE command can be entered during a
PS 390 session. Should the new port value need to be installed more
permanently, with the new value booted instead of the default, the SETUP
INTERFACE commands should be entered into the SITE.DAT file.

Any of the SETUP INTERPACE commands can be entered in the
SITE.DAT file, using the following forms:

SETUP INTERFACE portn/option;

SETUP INTERFACE portn/option=<p>;

where n is the port name, /option is the name of the feature being set, and
<p> is the specified parameter.

Examples:

SETUP INTERFACE portlO/XON_XOFF;

would enable Port 1 to use XON _ XOFF protocol to tell the host (or device)
on this port to resume or suspend transmission.

SETUP INTERFACE port10/SPEED=2400/XON_XOFF;

would set Port 1 to a baud rate of 2400 and enable XON _ XOFF protocol.

3. PS 390 Transmission Protocol and Error Detection

This section details the transmission protocol necessary to receive and trans­
mit data over the asynchronous interface. It also provides a brief description
of the three types of errors detected by the Enhanced Programmable Com­
munications Interface (EPCI) status register.

Host Communications RMS-11

3.1 PS 390 Transmission Protocol

RMS-12

The PS 390 graphics system uses an XON _ XOFF handshaking protocol to
maintain orderly data communication over a full duplex, asynchronous,
serial line between itself and the host computer. The receiver of XOFF
(decimal 19) is to suspend transmission as soon as possible. The receiver of
XON (decimal 17) is to resume transmission until the next reception of
XOFF. The PS 390 will suspend transmission within one character time and
can accept up to one buffer full of characters after XOFF is sent.

The following equation shows how many bytes of an empty buff er are left
when an XOFF is sent. An XOFF will be sent to the host that many bytes
before input buffering is exhausted.

((Number of STOP buffers +1) *Number of bytes/buffer) - 1

3.1.1 Data Reception and Transmission

The PS 390 defaults to eight 48-byte buffers available to receive data from
the host computer. Transmitted characters are placed in the first free buffer
starting in the first position and continuing to the end of the buffer. When
the buffer is full, the next available buffer is used. If all allocated buffers
are full, the PS 390 will drop everything off the line until a buffer is free.

When the XON _ XOFF protocol is used, the PS 390 will send an XOFF to
the host (sender), when the number of free buffers is equal to the number
of STOP buffers. The PS 390 will send XON to the host when the number
of free buffers is equal to the number of GO buffers.

An XOFF received on the host input port disables data transmission from
the host to the PS 390 until the PS 390 sends an XON. If a host transmis­
sion aborts before XON is transmitted, or if the host transmits XOFF as
part of the LOGOFF message, it is necessary to manually clear the XOFF
condition. XOFF is cleared and the port re-enabled for transmission when­
ever a SETUP or SHOW INTERFACE command is executed.

Rebooting the PS 390 will also clear the XOFF condition.

Default for the PS 390 is NO HEAR XON XOFF. - - -

Reference Materials

3.1.2 Data Transmission Without XON XOFF

Operation without support of the XON_XOFF protocol is discouraged. If
XON __ XOFF protocol is not available on the host, it is up to the user to
ensure that an adequate number of buffers are allocated for data reception
on the PS 390.

3.1.3 Transmission Errors

If the XON _ XOFF protocol is not used, and the number of available buffers
is not large enough to hold the incoming data from the host (sender), data
characters will be lost. These lost characters are detected and counted by
the input routines. The SHOW INTERFACE command will give the current
error counts for each port.

Messages which characterize lost input characters are:

• PARSER SYNTAX ERROR due to bad syntax generated by the lost
characters

• ERROR E 12 * * * Message which function cannot handle

3 .2 Transmission Error Detection

The Enhanced Programmable Communications Interface (EPCI) used on
PS 390 Ports 1, 3, 4, and 5, is able to detect three types of transmission
errors. When one of these transmission errors occurs, a bit is set in the
EPCI status register where it can be read by the graphics control processor.
The errors detected are:

• Parity errors (if parity is enabled)

• Framing errors

• Overrun errors

The SHOW INTERFACE command will display all errors detected from the
last PS 390 boot.

Host Communications RMS-13

RM5-14

3 .2.1 Parity Errors

The parity bit follows the character bits in data transmission. If there are 7
bits/characters, and parity is enabled, the total number of bits is 8 with the
parity bit being the last transmitted bit. Ignoring the start bit and stop bit(s),
the letter "A" when transmitted with EVEN parity would appear as follows:

lsb msb
1 2 3 4 5 6 7 parity
~~~~~~~~~--~~ 

1 0 0 0 0 0 1 0 

where "lsb" is the least significant blt and "msb" is the most significant bit. 

The same character transmitted with ODD parity would look like this: 

lsb msb 
1 2 3 4 5 6 7 parity 
~~~~~~~~~--~~ 

1 0 0 0 0 0 1 1

EVEN parity sets the state of the parity bit such that the number of ones in
the 8 bits is an even number.

ODD parity sets the state of the parity bit such that the number of ones in
the 8 bits is an odd number.

If parity is enabled, the EPCI determines the parity of the received character
and compares this parity with the parity bit transmitted. If they do not
agree, the parity error flag is set in the EPCI status register.

From the example of the character "A", it can be seen that if the host and
the PS 390 do not agree on the parity being used, every character received
or transmitted will generate a parity error.

Reference Materials

This vertical error detection scheme can only discern an odd number of bit
errors. For example, if bits 2 and 3 are erroneously changed to ones, so that
the character transmitted appears to be:

lsb

1
1

2 3 4 5

1 1 0 0

msb
6 7
0 1

parity

0

EVEN parity - the parity bit is correct for the character received ("G") but
incorrect for the letter sent ("A").

The PS 390 supports ODD and EVEN parity, or NO parity.

3.2.2 Framing Errors

"Framing" is the process of determining which group of bits constitute a
character. An error in this process is called a "framing error". Characters
are framed by the start bit and the stop bit(s). Looking at the character "A"
again (assume one stop bit):

MARK (1)

0 1 0

start 1 2

lsb

0 0

3 4

0 0 1 0 1 0

5 6 7 parity stop start lsb

msb

The line is held in a MARK condition with current flowing when characters
are not being transmitted. If for some reason the EPCI failed to detect the
start bit when the signal goes to an ON, or SPACE condition, it is possible
that it would assume bit 2 was the start bit, and bit 3 was the lsb, etc. At the
time EPCI expected to see a stop bit, it would instead see the lsb of the next
character, and a framing error would occur. When a framing error does
occur, the EPCI sets the framing-error flag in the status register.

Host Communications RMS-15

3.2.3 Overrun Errors

An overrun error occurs when the JCP fails to read the characters in the
holding register of the EPCI before the next character received is placed in
the holding register. When this happens, the EPCI will overwrite the con­
tents of the holding register with the next character. This overwrite causes
the overrun error flag to be set in the EPCI status register.

4. Methods of Communication over the Host Line

RMS-16

Section IS3 discusses the various methods of data communication that can
be used over the PS 390/host line. These methods include standard ASCII
transmission or the GSRs, an E&S supplied host-resident software package.

The GSRs perform all prepackaging of data prior to sending it in binary
format to the PS 390. The routing bytes required to channel the data to the
proper PS 390 system function are contained within the routines. The rou­
tines build data 'packets' that include all the necessary information to proc­
ess the data, and are in a form that is immediately acceptable by the PS 390
system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
packets. These packets may be in either ASCII or binary, and for asynchro­
nous communication, may be in either count or escape mode. Over the
parallel interface, these packets are sent only in count mode.

When communicating with standard ASCII transmission, the PS 390 system
functions (data reception functions, such as F:DEPACKET) that interface
between the system and the hardware are responsible for building the data
packets. The routing bytes that are used to channel data to the appropriate
PS 390 system function must be supplied. A brief description of the routing
bytes and their channels can be found in Section RM7.

The following sections deal with the use of count and escape mode in asyn­
chronous data transmission.

Reference Materials

4.1 Data Communications - Escape and Count Mode

Data is sent to the PS 390 from the host as a stream of bytes. These bytes
must contain information that is intelligible to PS 390 system functions
about the nature of the message and where it is to be sent internally in the
PS 390. The descriptions that follow describe the data transfer modes used
in host/PS 390 communication and briefly describe the system functions
that accept, examine, and route data internally in the PS 390.

Data may be transported over an asynchronous line in two modes: escape
mode or count mode. The mode used is dependent on the application and
can be selected by the user. Count mode is the faster mode, as the system
function, F:DEPACKET, that converts a stream of bytes into a stream of
packets does not have to check the identity of each byte.

A system function, F:DEPACKET, accepts data input to the PS 390 from
the host. F:DEPACKET converts a stream of bytes from the host into a
stream of Qpacket/Qmorepacket. A Qpacket is a block of character data
that can be sent from one PS 390 function to another. When data comes
from the host through the F:DEPACKET function, it contains a byte for
routing control. A Qmorepacket is a Qpacket that when coming from the
host through F:DEPACKET, has no routing byte (i.e. a Qmorepacket has
the same destination as the previous Qpacket.)

There are two instances of the F:DEPACKET function. The first,
DEPACKETO, accepts all incoming bytes from the host on input <1>. It
channels all incoming data through to output<2> until it sees the Start of
Packet (SOP) character <ACK> (ACKNOWLEDGE - decimal character
code 06, ASCII t F) that signifies the start of a count mode packet.

All the data sent through to output<2> of DEPACKETO are sent to input<l>
of the second DEPACKET function, DEPACKET20, which then checks all
incoming data for the SOP character <FS> (Field Separator - decimal char­
acter code 28, ASCII t\) that signifies the start of an escape mode packet. It
will also route all incoming bytes out output<2> until it sees the <FS> char­
acter. Output <2> of DEPACKET20 is connected to ES_TEl (the screen).

These instances of F:DEPACKET are described below. The characters that
are used to signify SOP (<FS> and <ESC> characters) may be changed by
the user by sending the new characters to the correct inputs of
F:DEPACKET.

Host Communications RMS-17

RMS-18

4.1.1 Escape Mode

In escape mode, F:DEPACKET looks at every byte to see if it is a SOP
character, which by default in escape mode is the ASCII Field Separator
<FS> character, or an <ESC> character.

Qpacket <1>

Qpacket <2>C

Qpacket <3>C

Qboolean <4>C

'FS'

'ESC'

ESC mode

DEPACKET20
(F:DEPACKET)
(escape mode)

<1>

<2>

Qpacket,
Qmorepacket
(after 1st 'FS')

Qpacket,
Qmorepacket
(before 1st 'FS')

In escape mode, F:DEPACKET assumes that a packet is defined as either:

FS packet contents Input <4> FALSE

or

ESC FS packet contents ~ Input <4> TRUE

where <FS> represents the SOP character that is by default the decimal
character code 28 (t \).

The definition of FS (one character) is taken from a single character
Qpacket on input <2>.

In the first mode (input <4> = FALSE), any FS or ESC characters within the
message packet must be escaped by prefixing them with an ESC character
(i.e. the <ESC> character, decimal character code 16 (tP)). Thus <ESC><x>
becomes <x> for all values of x.

Reference Materials

In the second mode (input <4> = TRUE), only ESC characters within the
message packet must be escaped by prefixing them with an ESC character.

The ESC character is defined by a single character Qpacket on Input <3>.
Output <1> outputs Qpacket and Qmorepackets of any messages after the
first SOP control character is received. Output <2> outputs Qpackets and
Qmorepackets of any messages before the first SOP control character is
received. A Qpacket is output on Output <1> each time a SOP control char­
acter is received. Otherwise Qmorepackets are output.

Output <2> is normally connected the Terminal Emulator Input and Output
<1> is connected to F:CIROUTE for both Count and Escape Modes.

The routing path will be used for data transfer until the multiplexing func­
tion sees another SOP character, and a packet with another routing byte.

4.1.2 Count Mode

In count mode, once the SOP <ACK> character is seen, F:DEPACKET
merely counts the bytes until the count is reached. No attempt is made to
decode any bytes until the count is reached. Because F:DEPACKET does
not examine the data, it is faster than escape mode, where all bytes are
checked by F:DEPACKET to see if they are <FS> or <ESC> characters.
Also, count mode allows for the use of any <SOP> or <ESC> sequences as
part of the data.

Qpacket <1>

Qpacket <2>C

Qinteger <3>C

Qpacket <4>C

Qinteger <5>C

Host Communications

"SOP"

count bytes

base char

radix

DEPACKETO
(F:DEPACKET)
(count mode)

<1>

<2>

Qpacket,
Qmorepacket

Qpacket,
Qmorepacket
(between packets)

RM5-19

In count mode, F:DEPACKET assumes that a packet is defined as:

SOP count bytes packet contents

where SOP represents the Start of Packet character that is by default the the
ASCII <ACK> character, decimal character code 06 (t F).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on input
<3>). Each count byte is off set from the base character (the base character
is taken from a single character Qpacket on input <4>). After the base char­
acter is subtracted, each count byte becomes a digit of the message count
whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F:CIROUTE, which performs the actual
routing.

4.2 Using the Routing Bytes for Local Data Flow

RMS-20

For asynchronous interfaces, routing can be done in a number of different
ways; but every data transfer must be preceded by an <ACK> character
(count mode) or an <FS> character (escape mode), and a routing byte that
gives the destination of the data. If ASCII data are to be sent from the host
to the Command Interpreter (in the Escape Mode), the file containing the
Command Interpreter routing bytes must precede the data, and must con­
tain the following characters:

t\O where t\ is a CTRL backslash

To route the line from the Command Interpreter back to the Terminal Emu­
lator, a file should contain the following sequence:

t\>

Reference Materials

Routing back to the Terminal Emulator is essential if the Terminal Emulator
is being used to download the file. To get the host prompt back after down­
loading the file, the line must be routed back to the Terminal Emulator
mode (t>). If the routing byte was not sent, the following command can be
entered from the keyboard in command mode to route back to the Terminal
Emulator:

SEND TRUE TO <l>RESET_TE;

If the Escape Mode <FS> characters appear as data in the PS 390 command
file, they must be prefixed by the escape sequence DLE (tP). The tP (deci­
mal 16), when immediately preceding the FS characters, will identify the
characters as being non-muxing data to be passed along.

The t\ <FS> character, the tF <ACK> character, and the escape sequence
(tP) can be changed by the user in the SITE.DAT file. This should be done
when the sequences used with the PS 390 are incompatible with the host or
have another site-specific value.

4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters in the
SITE.DAT File

If the <ESC>, and/or <SOP> sequence characters used by E&S are incom­
patible with the host, or have another site-specific value, these characters
can be changed by sending new values for these sequences to an instance of
F:DEPACKET in the PS 390.

These new values must be included as PS 390 commands in the SITE.DAT
file that is loaded during the system power-up. These commands should
never be sent down from the host or entered in from the PS 390 keyboard
during host transmission.

NOTE

If the <ESC> or <SOP> characters are changed in the
SITE.DAT file, this change must be incorporated in the
GSRs, as these routines use the same sequences for
routing.

Host Communications RMS-21

The PS 390 command for changing the escape mode <SOP> (default is
<FS>, decimal character code 28, ASCII character 't\') character is as fol­
lows:

SEND CHAR(I) to <2>DEPACKET20;

where I is the integer value corresponding to the new <SOP> character in
escape mode.

The PS 390 command for changing the escape mode <ESC> character is as
follows:

SEND CHAR(I) TO <3>DEPACKET20;

where I is the integer value corresponding to the new <ESC> sequence.

The count mode SOP character, (ASCII <ACK>, decimal character code 06,
ASCII tF), can be changed by sending the new integer value to
<2>DEPACKETO:

SEND CHAR(I) TO <2>DEPACKETO;

5. PS 390/IBM Host Communications

The following sections describe the data flow between the PS 390 and IBM
host processors. An introduction to the basic concepts of data communica­
tion, particularly those directly affecting the 3278 interface, are discussed
first.

5.1 PS 390 Data Communication

RMS-22

It is intended that all communication between the IBM host and the PS 390
use the cross-compatibility software provided to the user as the Graphics
Support Routines (GSRs). The GSRs reside on the host as either FORTRAN
subroutines or Pascal procedures, and are provided to support the interface
between the IBM 3274 Controller and the PS 390 Graphics System. The
PS 390 is an ASCII system, expecting and generating ASCII characters. The
IBM 3274 Controller is an EBCDIC system and is unable to generate the
ASCII characters expected by the PS 390. The GSRs provide an interface
that allows the two systems to respond to each other. Data that affect mes­
sages and message routing internally in the PS 390 are embedded with the
software communication routines and are, for the most part, transparent to
the user.

Reference Materials

5.2 Data Destinations

Data going from the host to the PS 390 have two possible destinations: the
PS 390 Command Interpreter (CI) or the PS 390 Terminal Emulator (TE).
Data for the CI can be initiated with a GSR or specific ASCII commands.

There are several PS 390 system functions that pass and route data through
the PS 390, prior to the command interpreter. These functions, and the data
paths, are discussed in section 5.5 and in Section RM7. The format of data
expected by the CI is given in Section RM 14.

5.3 Write Structured Field

Graphics data intended for the CI are sent from the host to the PS 390 using
a special 3278 command called Write Structured Field (WSF). The WSF
command is normally used by the IBM 3274 Controller to create
non-keyboard type symbols for use in business graphics applications. All
non-WSF commands cause the terminal emulator to perform like a 3278,
but Evans & Sutherland has reserved the use of the WSF command to
transfer graphics data, because the Load Program Symbols option of the
WSF command allows binary data to be sent unchanged to the PS 390. The
use of the WSF command requires the 3274 to have support for
Programmed Symbols, an option of Configuration Support C, in the 3274
Control Unit. When the GSRs are used, the PS 390 will appear to the
graphics application exactly as it would in any other environment. The
communication routines of the software will insert the user data in a WSF
buffer, and perform all necessary data transfers with the 3278 Terminal
Emulator.

If the GSRs are not used, the user will need to have some understanding of
how Programmed Symbols work and how the 32 7 4 sends the symbols to the
32 78 to understand how the WSF data buffers are built. A detailed
description of Programmed Symbols and their use to transfer graphics data
is provided below.

5.3.1 Programmed Symbols

Each symbol displayed on the 32 78 screen is composed of illuminated dots
made from a nine-by-sixteen dot matrix. The Load Program Symbols
function of the WSF command allows users to specifically illuminate any
particular set of dots in the matrix to create their own special symbol by

Host Communications RMS-23

RMS-24

setting the corresponding bit in the matrix description to a one. The matrix
is described by overlaying it with a set of eighteen eight-bit bytes·
(9x16=8x18=144).

The following diagram shows how each character matrix is overlaid with
eighteen bytes.

byte 1

(sixteen
dots long)

byte 2

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

CHARACTER MATRIX
(nine dots wide)

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

byte 3
byte 4
byte 5
byte 6
byte 7
byte 8

byte 9
byte 10

byte 11
byte 12
byte 13
byte 14
byte 15
byte 16
byte 17
byte 18

The data that describe the matrix are placed in a WSF buffer in the follow­
ing order.

byte 1 byte 2 byte 3
l********l********l********I

byte 18
l********I

When the 32 7 4 gets the matrix that was sent in the data stream described
immediately above, it converts the data back to a format that looks more
like the original matrix. The data are sent in sixteen groups of two bytes
each. The first seven bits of the first byte are unused, and the last bit of the
first byte is from byte 1 or 2 of the bytes sent. The second byte is made
directly from bytes three through eighteen.

Reference Materials

Data sent from 327 4 to the 3278

x x x x x x x * * * * * * * * * *
x x x x x x x * * * * * * * * * *
x x x x x x x * * * * * * * * *

byte 1 byte 3

or through
byte 2 byte 18

I I

LJ x x x x x x * * * * * * * * * *

The PS 390 receives graphics data passed to it from the 32 7 4 in the format
shown above. In order for the PS 390 to avoid the difficulty of reassembling
the bytes received, it simply discards the first byte of each of the sixteen
two-byte pairs for each programmed symbol. This means that the first two
bytes in each programmed symbol sent to the PS 390 cannot be used to
contain data.

The graphics data are placed in each program symbol matrix in the follow­
ing manner:

l<---unused------>I<-------- graphics data -------->I
byte 1 byte 2 byte 3 byte 18

IXXXXXXXXIXXXXXXXXl********I l********I

The 3274 expects the WSF buffer to contain one or more complete program
symbols. If the PS 390 graphics data does not fill a complete symbol, the
full eighteen bytes of the symbol must be sent, but the remainder is ignored.
To know exactly how much graphics data is present, the first two bytes of
the graphics data should contain the length of the actual data following. The
length does not include the length itself, the first two unused bytes in each
program symbol, or any unused bytes following the data in the last program
symbol. The length is used only by the 3278 Terminal Emulator, and is
external to the graphics data and any multiplexing scheme that may be
employed.

The following diagrams show the way the data would be placed m pro­
grammed symbols in the WSF buff er.

Host Communications RMS-25

RMS-26

bytes
in each
symbol

unused
1 2

length
of data
3 I 4 I

<--- data ---->1
s I ... I 18

unused
1 I 2

end of data --->1
... I 16

unused 1<--extra at end-->1
11 I 18 1 I 2 I ... I 1s

l
<-

3

- data
I ...

Note that an extra program symbol was added at the end of the buffer. It is
required by the PS 390 to verify that the previous symbol (the last symbol
containing data) was received correctly. Note also, that the data did not
completely fill the last symbol containing data, but that the full symbol was
built.

5.3.2 Load Programmed Symbols

The Load Programmed Symbols option of the WSF command that is used to
load the symbols described in preceding paragraphs is invoked by inserting
control information after the WSF command code and before the pro­
grammed symbols.

The control information contains the following data:

1. A length that includes itself, the control information and all symbols,
including the extra one at the end.

2. An identifier that indicates that this is a Load Programmed Symbol
request.

3. A flag byte that specifies which options are used.

4. Fields that identify the symbol set that the symbols would be loaded
into if this were an actual 3278. This information is not used by the
PS 390 and can be any legal value.

5. A starting code point identifier. This value would ordinarily be used
to match data from the host to the specific symbol the user wants
displayed. The PS 390 uses this value to indicate that the following
symbol will contain the data length in its first data bytes and that the
first data byte will be a code indicating which output port of the
function F:CIROUTE the data will be sent from. A value of X' 41'
must be used.

The control information can be a constant that is inserted in the buffer, with
the length updated to specify the total programmed symbols length.

Reference Materials

The final buff er might look like this:

symbol WSF
command

LPS
ID set IDs unused data

5-18

~wl wl 06 41 C2 41 02 uu uu dl dl ** **

WSF flag required
length code pt

data
length

remainder extra

unused data
3-18

uu uu * * ----

data unused data of symbol end symbol

I I I I I I I
I ... I **I uu I uu I ** **I rr I . I rr I ee I ee I . . I ee I

5.4 Configuration of the 3274 Control Unit

To support the transfer of graphics data to the PS 390 using the Write
Structured Field command with the Programmed Symbols option, the 32 7 4
Control Unit that supports the interface to the PS 390 must have the Con­
figuration Support C option. Also, the 3274 Control Unit must be custom­
ized with the following options:

162 - Structured Field and Attribute Processing (SFAP)

163 - Extended Character Set Adapter

The PS 390 should be included in the total number of devices that
require SFAP. Note that this number is a maximum. When the 3274
is initialized, special control blocks needed for SFAP are allocated as
needed on a port by port basis beginning with Port 0 until this
maximum is reached. SFAP devices attached to subsequent ports will
be unable to use the SFAP features until the control unit is
re-customized.

164 - Programmed Symbols

Refer to the appropriate IBM documentation for detailed instructions on the
3274 customization procedure.

5.5 Data ·p1ow Overview

The following diagram illustrates data flow between an application program
residing on the host system and the PS 390 system function that initiates
graphics commands. In the diagram, routines or functions that pass and/or
route data are enclosed on four sides. The format that data are passed in is
shown in curly braces.

Host Communications RMS-27

RMS-28

PS 390/IBM 3278 Interface Data Flow Diagram

APPLICATION

PROCEDURAL INTERFACE

{ tokens

low-level routines

{ packets }

I
{ WSF commands }

I
{ WSF buffer }

3274 lontroller

{ TE data }

{ TE data/expanded WSF commands }

PI

{ packets }

$
{ packets }

F·Q(RQUTE

Qpackets/Qmorepackets

I F·lEADSTREAM
{ tokens }

~

TE data }

Ll1ost S~reen Buffer

I

~ts

Reference Materials

There are low-level communication routines supporting the GSRs that use
formatting routines to package data for transportation. These routines build
WSF envelopes and put the data in outbound PS 390 buffers.

The CI expects "tokens" that consist of a size, a data type, and a value. For
a given PS 390 command, the type of command is implicit in the type of
one of the tokens. The CI accepts a stream of tokens until it has enough to
carry out the command. The GSRs can be thought of as "mailing" these
tokens to the CL The tokens are deposited into several layers or "Qpackets"
and "Qmorepackets" of nested envelopes for transportation purposes, but
when they reach the CI, they are almost identical to what was built by the
GSRs.

A WSF command contains the tokens that are to be sent to the CL Routing
information is included at the head of the WSF command. In the standard
PS 390 system, the PS 390 General Purpose Interface Option (GPIO) card
takes the routing information and the first 238 bytes of data in a WSF
command and· puts them into a Qpacket. All subsequent bytes of data in
that WSF command are put into Qmorepackets, signifying that the same
routing information is to be used. Whenever a WSF command is filled to
capacity, or a routing change is required, the current WSF is terminated and
a new WSF command is started by the low-level routines. The IBM system
I/O services maintain a WSF buffer. The size of this buffer is configurable
but generally defaults to a value specified by the routines sending the data.
More than one WSF command can go into the buffer and the buffer may be
split into smaller pieces when it is sent by the communications access
method.

All data bound for the CI are packaged in WSF envelopes. Upon receiving
information from the host, the GPIO is able to differentiate graphical data
from TE data by the WSF command; anything not in a WSF command is
TE data and goes directly to the (Host) Screen Buffer.

Data intended for the CI are passed through a PS 390 routing function,
F:CIROUTE. This function expects routing characters at the start of each
Qpacket it receives.

The software on the host processor uses routing bytes that will channel the
data to the proper PS 390 system function. The routines build the data
packets with the routing data embedded in the WSF envelopes. The GPIO

Host Communications RM.5-29

RMS-30

repacks these data and passes them, along with the routing information, to
the PS 390 system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
Qpackets. This function, and an overview of local data flow in the PS 390 is
discussed in Section RM7.

5.5.1 Modification of Pool Sizes

The PS 390 function SETUPIBM allows the number of empty packets in the
input pool for the PS 390/IBM interface system to be modified. The function
has one input queue and no output queues. The input queue accepts integer
values. At system configuration, the pool size is specified as 256. An exam­
ple of PS 390 commands used to change the pool size for the IBM system
is:

SEND FIX(64) TO <l>IBMSETUPl;

SEND FIX(99) TO <l>IBMSETUP3;

Reference Materials

RM6. INTERFACES AND OPTIONS

CONTENTS

1. IN'fERF ACES . 1

1.1 Asynchronous . 1
1.2 Parallel . 1
1.3 Ethernet . 2
1.4 IBM 3278 . 2
1.5 IBM 5080 . 2

2. MULTIPLE GPIO INTERFACES . 3

2.1 Interface Configuration Files . 4
2.2 Ethernet/DECNET Interface . 6

3. SYSTEM OP'fIONS . 6

3.1 Memory Card Option..................................... 6
3.2 User-Written Function Facility . 6
3.3 Advanced 3D Visualization Firmware . 7

TABLES

Table 6-1. Possible GPIO Combinations . 3
Table 6-2. Required Interface Files . 5

Section RM6

Interfaces and Options

This section summarizes the interfaces and options available for the PS 390. Multi­
ple interfaces, switching between interfaces, and the interface configuration files
are also described. (Users manuals supplied with each interface contain detailed
customer installation requirements and operating instructions.)

1. Interfaces

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390. The standard data communication inter­
face to the PS 390 is an asynchronous serial line. Several optional interfaces
are available for the PS 390.

1.1 Asynchronous

Under PS 390 graphic system protocol, EIA RS-232-C is the standard
interface used for serial asynchronous communication. With the exception
of interface cabling and connectors, no additional hardware is required to
interface the host with the PS 390. For a discussion of RS-232-C
specifications and PS 390 asynchronous communication protocols, refer to
Section RMS.

1.2 Parallel

The following optional interfaces are also available but may require addi­
tional interface hardware on the host and the PS 390.

The PS 390/UNIBUS TM Parallel Interface supports high-speed data transfers
to and from a DECN AX TM host computer running the VMS™ operating
system at 3.2 or higher.

The parallel interface uses the normal command processing mechanism in
the PS 390 to construct graphic data structures and establish local action
operations. When integrated with the PS 390 Graphics Support Routines,
the interface provides an even greater increase in data throughput. It is
especially useful in applications requiring a close coupling with the host
computer.

Interfaces and Options RM6-J

1.3 Ethernet

The PS 390/Ethernet TM (DECNET TM) Interface is a high-speed communica­
tions interface connecting a PS 390 graphics system to a DECN AX TM or
MicroVAX TM host computer with a VMS TM operating system 3.2 or higher.

The PS 390/Ethernet (TCP/IP) Interface is a high-speed communications in­
terface designed to connect a PS 390 graphics system to a DECN AX host
computer running under UNIX™ BSD 4.2 or higher.

The Ethernet interfaces allow a PS 390 to link to an Ethernet data commu­
nications network. They are intended for use in office automation and dis­
tributed data processing environments to allow a selected group of comput­
ers to communicate with each other.

1.4 IBM 3278

The PS 390/IBM TM 32 78 Interface allows a PS 390 graphics system to be
connected to an IBM host using an IBM 32 7 4 channel control unit to provide
high-performance graphics functions while attached in the same manner as
the 32 78 terminal. The PS 390 supports an IBM terminal emulator when
configured with this interface option. All the basic functions of the 32 78 are
fully supported, including basic attribute byte and keyboard functions.

1.5 IBM 5080

RM6-2

The PS 390/IBMTM 5088 Interface provides a high-speed, channel connect
attachment between a PS 390 graphics system and an IBM host computer
via an IBM 5088 controller.

The PS 390/IBMTM 5088N.35 Interface provides remote attachment by con­
necting the PS 390 to a V. 35 broadband modem that is attached to the IBM
5088 controller.

Both interfaces support the 5080 Capability option. This firmware option
allows the user to perform most IBM 5080 operations and to run programs
from the PS 390 that were written specifically for the IBM 5080, such as
CATIA TM and CADAMTM.

These interfaces allow the PS 390 to be connected to any IBM host comput­
er using a standard IBM 5088 channel control unit. The PS 390 can be
configured with other IBM 5080 graphics terminals on the same IBM 5088
channel control unit.

Reference Materials

2. Multiple GPIO Interfaces

The PS 390 runtime firmware supports up to two GPIO interfaces of
differing types as well as asynchronous communications installed in the
same system. You received two firmware diskettes with your system: a
runtime system diskette preconfigured for your site with interface
communication defaults and an interface diskette for modifying system
configuration. By renaming files on the diskettes you can change your
default to configure a different interface when the system is booted. This is
explained in section 2 .1.

It is also possible to change the configuration without rebooting the PS 390
because the runtime determines which of the interfaces are in the system
and initializes them all. This is achieved through runtime identification of
up to two GPIOs at the first two addresses assigned to GPIO interface cards.
(Ref er to section 2 .1 for an example of changing interface communications
protocol without rebooting.)

There are some limitations to the use of multiple GPIOs. First, there cannot
be two of the same type GPIO in the same system. Second, if the IBM 32 78
option is included, then only one additional GPIO may be added. The 3278
GPIO running under previous PS 300 systems is not supported under the
PS 390. Table 6-1 shows the possible GPIO combinations.

Table 6-1. Possible GP I 0 Combinations

1st GPIO 2nd GPIO

IBM 5080

IBM 3278 Parallel
(enabled on JCP)

Ethernet

Parallel
IBM 5080

Ethernet

IBM 5080
Parallel

Ethernet

Ethernet
IBM 5080

Parallel

Interfaces and Options RM6-3

2.1 Interface Configuration Files

RM6-4

The PS 390 runtime is distributed on two diskettes and contains more files
than previous PS 300 runtime diskettes. This is to allow for the many differ­
ent combinations of interfaces possible with the multiple GPIO operation.

When the PS 390 is booted, the system attempts to read the file,
INTFCFG.DAT. If this file is not found, the system will boot with the
default interface of asynchronous, and display the message INTFCFG.DAT
NOT FOUND. To boot with a default interface in addition to asynchronous,
the appropriate interface file must be renamed to INTFCFG .DAT. This can
be done using the Diagnostic Disk Utility program described in Section
RM 12 Diagnostic Utilities. For example,

Rename ETHERNET.DAT INTFCFG.DAT

would rename the default interface to Ethernet so that, at boot time, the
interface communications protocol for Ethernet would be configured.

The following is a list of the interface file names on the diskette and which
interface each file sets up.

ASYNC.DAT Asynchronous communications
IBM3278.DAT IBM 3278 communications
IBM5080.DAT IBM 5080 communications
UNIBUS.DAT Parallel interface communications
ETHERNET.DAT Ethernet communications (for Ethernet or DECNET)

If your system hardware supports two interfaces, you can change the inter­
face during a session without rebooting by sending the name of the interface
file to input <1> of RDCFG$. For example, the following command,

Send 'UNIBUS' to <l>RDCFG$;

would change the communications protocol to the UNIBUS Parallel inter­
face to allow parallel communications.

Table 6-2 shows the files contained on the PS 390 diskettes which are
needed for a particular interface.

Reference Materials

Table 6-2. Required Interface Files

PS 390 File Name Asy_nc 3278 5080 Unibus Ethernet
mmdd390J.EXS v v v v v
ACPCODE2.DAT v v v v v
ASYNC.DAT v
CHARFONT .DAT v v v v v
CIRCLE.DAT v
CONFIG.DAT v v v v v
DINTCODE.DAT v
EINTCODE.DAT v
ETHERNET.DAT v
FCNDICTY.DAT v v v v v
FCNTABLE.DAT v v v v v
FONT5080.DAT v
GPIOCODE.DAT v
HMSCODE.DAT v v v v v
HMSCOL.DAT v v v v v
HMSVEC.DAT v v v v v
IBM3278.DAT v
IBM5080.DAT v
IBMASCII.DAT v v v v v
IBMFONT.DAT v v v v v
IBMKEYBD.DAT v v v v v
INITACP.DAT v v v v v
INITGPIO.DAT v
LINLUT.DAT v v v v v
LUT.DAT v v v v v
MSGLIST.DAT v v v v v
OVERLAY2.DAT v v v v v
PARSECODE.DAT v v v v v
PARSDICT.DAT v v v v v
PINTCODE.DAT v
SINE.DAT v
THULE.DAT v v v v v
UNIBUS.DAT v

Interfaces and Options RM6-5

All of the interface files assume that the keyboard used is a VT100-style
keyboard. A FALSE is sent to the keyboard handler (either IBMKBD or
KBHANDLER) at the end of the file. To use an IBM-style keyboard, the
command in the interface file must be changed to send TRUE to the key­
board handler. For example,

Send True to <2>Kbhandler;

would accomplish this.

2.2 Ethernet/DECNET Interface

The GPIO interface hardware for Ethernet and DECNET is the same. The
only difference is the microcode that is loaded into the GPIO. Therefore,
both microcode files are distributed on each diskette. The runtime attempts
to load a file named EINTCODE.DAT. Ethernet is the default on the disk­
ette. The file for the DECNET interface is DINTCODE.DAT. If your system
supports the DECNET interface, DINTCODE.DAT must be renamed to
EINTCODE.DAT to load the DECNET microcode into the GPIO. This can
be accomplished by using the Diagnostic Utility program.

NOTE

For additional information on customer hardware and
software installation requirements for the various inter­
faces refer to the Customer Installation and User
Manuals supplied by E&S.

3. System Options

3.1 Memory Card Option

Up to two 1 MByte cards can be added to expand the standard JCP resident
2 MByte of memory. The cards can be installed in the PS 390 at the factory
or can be installed at the customer location.

3.2 User-Written Function Facility

RM6-6

The User-written Function Facility is designed to allow programmers to
write and use new functions to suit individual applications and needs.

Reference Materials

All PS 390 graphics systems include a set of intrinsic functions which allow
complex graphics actions to be accomplished locally within the PS 390.
These functions are the user interface between the programmer, display
structures, interactive devices, and high-performance graphics facilities in
the PS 390.

User-written functions expand the capabilities of the PS 390 by giving the
programmer the power to create unique functions, or to combine large net­
works of intrinsic functions into a single function that performs all the same
operations, yet is much simpler in design and operation.

A user-written function is written on the host computer as a procedure for
the Motorola 68000, in Pascal or Motorola 68000 assembly language.
Through the cross-compiling and linking software, the procedure is
translated into S-record host files which are then transferred to the PS 390
memory. The function is identified by its user-given name and stays in
memory as long as its name remains there. Once installed in the PS 390,
User-Written Functions can be used in the same way as the intrinsic
functions.

3.3 Advanced 3D Visualization :Firmware

The Advanced 3D Visualization Firmware option allows users to create ob­
jects as polygons and to display hidden-line removed and sectioned views of
polygonally-defined wireframe objects. Smooth-shaded renderings of po­
lygonal models can be displayed that take advantage of numerous attribute
settings for color, multiple light sources, specularity, transparency, and
polygon edge enhancement. In addition the PS 390 can be used as a frame
buffer for the display of host-generated, run length-encoded images.

Interfaces and Options RM6-7

RM7. HOST INPUT DATA FLOW

CONTENTS

1. DATA RECEPTION AND ROUTING NETWORK 1

2. ROUTING BITE DEFINITIONS . 2

3. OUTPUT PORT DEFINITIONS OF CIROUTEO
IN COUNT MODE . 3

TABLE

Table 7-1. Routing Byte Definitions . 2

Section RM7

Host Input Data Flow

This section discusses host input data flow in the PS 390, and includes a descrip­
tion of the functions that direct data flow, the routing functions and routing bytes,
and the channels that data can be routed to. Function names that appear in capital
letters are instances of intrinsic system and user functions. The intrinsic system and
user functions (also capitalized) appear with the "F:" prefix.

1. Data Reception and Routing Network

Data enters the PS 390 through one or more input functions. In systems
with the asynchronous interface, an instance of F:DEPACKET (an intrinsic
user function) receives host input and passes it to an instance of
F:CIROUTE(n) (an intrinsic user function). There are two instances of
F:CIROUTE(n), one for count mode (CIROUTEO) and one for escape mode
(CIROUTE20). CIROUTEO examines the first character it receives (the
character following the count bytes in count mode or the character following
the <FS> character in escape mode) to determine where the packet message
is to be sent. This character is the routing byte, and is used to select the
appropriate channel for the data in the PS 390. Data channels may include
lines to the terminal emulator, the command interpreter, the disk writing
function, the raster function, and other intrinsic functions. A base character
(defined on Input <2> of CIROUTEO) is subtracted from this routing charac­
ter before it is used to select the output channel. The base character de­
faults to the character zero ("O").

All other interfaces send host input through special interface functions
which pass it to a count mode instance of F:CIROUTE(n). For the Parallel
and Ethernet interfaces, the input may be routed through CIROUTE30. For
the lBM 3278 and IBM 5080 interfaces, the input is routed through
CIROUTEO. CIROUTEO, CIROUTE20, and CIROUTE30 are functionally
identical.

The definitions for the inputs and outputs of intrinsic system functions and
intrinsic user functions are described in Section RM2. Escape and count
modes are discussed in Section RM 5.

Host Input Data Flow RM7-1

2. Routing Byte Definitions

RM7-2

The value of the routing bytes are given in the following table.

Table 7-1. Routing Byte Definitions

CIROUTEO Routing Channel
Output Byte Parameter

1 N/A N/A
2 N/A N/A
3 0 1
4 1 2
5 2 3

6 3 4

7 4 5

8 5 6

9 6 7

10 7 8
11 8 9
12 9 10
13 11
14 12
15 < 13
16 14
17 > 15
18 ? 16
19 @ 17
20 A 18
21 B 19

Description

Reserved
Reserved
Parser/Command Interpreter
Command Interpreter via READSTREAM
6-bit binary
Reset network for GSRs
Unused
Unused
Download channel for user-written
functions
Raster
Polygon data
Unused
Write ASCII data to diskette
Close file
Write binary data to diskette
Unused
Channel to Terminal Emulator
Host message control
Reserved
Unused
Raster

NOTE

('?') is the HOST_ MESSAGE request channel. An
ASCII (1 or 2) requests a single message or multiple
messages from HOST_MESSAGEB.

Reference Materials

3. Output Port Definitions of CIROUTEO in Count Mode

Output<l> sends out invalid routing bytes.

Output<2> sends any message that does not have a valid routing character.
The message is sent to BADROUTEO (an instance of the intrinsic user func­
tion F:CONSTANT), and the message "Routing byte not in acceptable range"
is output as an error message to ES_ TE 1 (an instance of the intrinsic system
function F:VT10) for screen display.

Output<3> sends messages to H_CHOPO (an instance of the intrinsic user
function F:CHOP). This function chops and parses the input command
language generating proper messages for H _ CIO (an instance of the intrinsic
user function F:CI). Once chopped and parsed, the message is sent on
output<l> of H_CHOPO to the Command Interpreter. H_CHOPO is also
responsible for generating syntax error messages. ASCII commands should
be sent through this output.

Output<4> sends messages to READSTREAMO (an instance of the intrinsic
system function F:READSTREAM), which converts an eight-bit stream into
arbitrary messages. GSR data is sent through this output or through
output <5>.

Output<5> sends messages to SIXTOEIGHTO (an instance of the intrinsic
user function F:CVT6T08) to convert six-bit to eight-bit binary. The mes­
sage is then sent to READSTREAMO. GSR data is sent through this output
or through output <4>.

Output<6> sends messages to RESET_ RS 1 (an instance of the intrinsic user
function F:RESET) and RESET_HOST_MESSAGEl (an instance of the in­
trinsic user function F:CONSTANT), which causes the functions accepting
GSR data to be reset to the initial state.

Output<7> is unused.

Output<8> is unused.

Output<9> sends messages to SREC _GA THERO (an instance of the intrinsic
user function F:GATHER_GENFCN), which loads user-written functions.

Output<lO> sends messages to RASSTRO (an instance of the intrinsic
system function F:RASTERSTREAM), which processes pixel input using
run-length encoding of data from the host.

Host Input Data Flow RM7-3

RM7-4

Output<l 1> sends messages to HPOL YSTRO (an instance of the intrinsic
user function F:HOST _POLY), which processes polygon fill commands sent
from the host.

Output<12> is unused.

Output<13> sends messages to WDAO (an instance of the intrinsic user
function F:WRITEDISK), which writes ASCII commands to the diskette.

Output<14> sends messages to WDACO (an instance of the intrinsic user
function F:CHOP), which is used to interpret the command to close the file
sent via outputs <13> and <15> to the diskette.

Output<15> sends messages to WDBCO (an instance of the intrinsic user
function F:CHOP), which is used to parse binary data that will be written to
the diskette.

Output<16> is unused.

Output<l 7> sends messages to ES_TEl (an instance of the intrinsic system
function F:VT10), which processes input for the PS 390 display screen.

Output<18> sends messages to TRIGGER_CONVBl (an instance of the in­
trinsic user function F:CHARCONVERT). TRIGGER_CONVBl then sends
messages to input <1> of HOST_MESSAGEBl (an instance of the intrinsic
user function F:HOLDMESSAGE).

Output<l 9> sends messages to WHOl, which sends a package with the sys­
tem information back to the host. This output has been retained for com­
patibility. It is not used on the PS 390.

Output<20> is unused.

Output<21> sends messages to RASSTRO (an instance of the intrinsic sys­
tem function F:RASTERSTREAM), which processes pixel input using run­
length encoding of data from the host. This output is the same as output
<10>, and has been retained for compatibility purposes. Output <10> is the
recommended output since it is controlled by the Qprompt flushing mecha­
nism by default.

Reference Materials

Section RMS

System Function Network

The block diagrams in this section show the data flow through the PS 390 system
function network. Function names that appear in capital letters in this section are
instances of intrinsic system and user functions. The intrinsic function appears
with the 6'F:" prefix. Intrinsic function descriptions are provided in Section RM2.

• Figure 1 shows the initial read floppy network created in the PS 390.

• Figures 2 through 26 show the host input data flow through the sys­
tem function network for a PS 390 with an RS-232 interface to a host
computer.

• Figures 2 7 through 49 show the host input data flow through the
system function network for a PS 390 with an IBM host computer.

• Figure 5 0 shows the host input data flow through the raster system
function network for a PS 390 with a DEC host computer.

• Figure 51 shows the host input data flow through the raster system
function network for a PS 390 with an IBM host computer.

• Figures 52 through 55 show the host input data flow through the
DEC Parallel Interface function network.

A discussion of specific instances of functions that direct data flow in the PS 390
will be found in Section RM7, Host Input Data Flow.

NOTE

The diagrams in this section reflect Al firmware
functionality. We will be distributing updated diagrams
in a future release.

System Function Network RM8-J

~
~
~
~

Oo
I_

"'t1
iJ')

~
\Q
<::::::>

~ .,......
~· .,.._

~
~
~
~

~
~
'\5
'<

~ .,......
~
c:i
~
?°';""

("]
~
~
~ .,......
~
~

~ s
~
~
~
;:::s
('"')

~

~ .,......
~
"""':
E;·_
c;...:i

Name: lntttal functtons created by FCNINlT.PAS
FtleName: AllNIT
Date Modtf ted: 13-FEB-1984 10:33:55.43 Total Pages:

'CONFIG' IC>---i I l/F;

f: RU1DOISi<

e110 > 19
821<1> (9

831<1> 19
8-11<1> (9

BSltl> 19

1
l/FCHOPI
f:CHOP

Prefi.x: f 1
---------·---------,

I

Pareni:: PageNo:

~----~

1

ROIL F 'I
F: JNfORHATIO~

€>'I> OJ;

~<I >021

~<I >031

~<I >Ofl

~<J>OSI

-------~

V:l
~ -~
~

~
~

Name: SYSTEM1.DAT
('"') - FtleName: AlC
5·
~

Date Modtfted: 30-MAY-1984 14:53:24.98

~
~ -~ c ~

"""'i """'i
?:;-< ~

Oo
I

N

~
/

V:l

w
\Q
0

~
~ -
~
~
~ -\)
~ -~ L.. r2s_ fi_g_n/
~ c
~

Cl•ar_l•b•l s, 11•&••9•- p; $~ l•y '--
;-- <I >CLEAR_ < 1>FLA8£l0

~
<f>OLABEll·BI

V:l
I

</ >OSETI I

N
w tf>TABLETOUTI
N

~
c/>OFFBUTTONLJGHTSI -~

~
~
('"')

~ '\..

Total Pages:25

L F21>_ PJL 25/

Hi Ge.

<1>£RRORSO
~ v

L_F20~ P_g_ S /

TE, Parsing, Floppy, H;rd t:op ,re
<I >£5.;.:T£ I <0>£RRORSO

<I >FLABEl <1>£/lllORSO ~

'I >OLA8£l CIO, H_CIO,
"\

<l>OSETll <2>PORTSOI

<I> TABLE TOUT/.

<I >OFFBIJ TTONl /Gf!TSI

v

p,.efl.x: Fl_

Pa,.ent: PageNo:

IAS0519

I
i
I

I

I
I

L_r2 __ P_a_ 2 I Error•, s.t Ports

f(}>ERRORSO <l>ES_TEI r--'
<I >EllRORSO

CJO, H_C JO, H_Cf 20<1> I

<2>PORT501

v

I I
I I

I i
. I

~ 0q·
~
""'I
(ti

Oo
I

w

'"tJ
V:i
w
\0
a

~
Vo:!

~
'\::i
:::::'
.......

t;:,
:;:::i
.......
:;:::i

~
c::i
~

-;;
V:i

I

N
w
N

~
(ti

~
~
("",)

~
~

~ (ti
""'I
(ti

~
("",)
(ti

~
(ti
~ E·_
Vo:!

Name: Errors, Set Ports
FlleName: AlC
Date Modi.fled: 30-MAY-1984 14:53:24.98 Total Pages:25

LFt,

•O•CllllOllSIJ
•D•C/1/IOll!JD •I •CS_ TEI

il•£1U101lSD
•l>Clt/IDllSD

CIO,N_CllJ, H_Cl2D•t•

L. nt 1!L 171
I S•t port.

._•2_.,,,_0_11_rs_o_, ____________________ --I •2•P0/1TSO, •l•CS_TCIV 1---t----------/

Prefi.x: f2_

Parent: PageNo:

l
I

[1

I

I

I
!

r1.cs_rc1J

!
I

¥
~

~

~ Name: Errors Prettx: f29_
;::::
('"')
........
C)

ftleName: AlC
Date Modl.fted: 30-MAY-1984

...
14:53:24.98 Total Pages:25 Parent: 2 PageNo: 3

;::::

~ ~ 0q·
........

~ ~ ~ C)
"""I
~ Oo

I

~

""ti
V)

~
\Q
<:::::>

~ CllRDllSO,tl• ~tl•IFNL#
VJ H--------------------)<fJ•CllllllllS(J Tl1UC

~

-6
~

<1•£111'1/llSfJ
£11/IOllS(J .--------t' !1--------1--------42 r1 CHOUTE

F1 INFORMATIDt.t----.

•f•ES_TEI

........ Tl1U£

t:i
~ 1------~----t!E><l•tl:SI

........
~

~
Tl1U£

/llFOllNA T/tlNI

C)

~ ----------t2 r, CllADUTC

-;;
V)

I

N
~
N

~
~

~
~

/IFHL#tl> ~~-----------------------'!

('"') llF1'L#<2• rt>-----------------------'I
~

RM8-6

T1 -~-
..,..
..
0
z

Q)

0)

«J

I ci.

N -LI.. N

.. ..
x +' _ _, c
'r- Q)

Q) ,.. ,.. (I)

ci. ci.

I.I')

N
..
"' (I)

Cl
(0

ci.

.....
co
+'
0
t-

co
0-

v
N
-·

M
V'>
-·

v
v
co
0--
>-
<
::!:

CJ)

+' 0 ,.. M
0
a. u ..

- -0
+' < Q)
Q) _ _,

(f') 'r-

Q) -0
e 0

I I
co ::e::

.. z
Q) Q) Q)

e +'
(0 _ _, co

:z LI.. Cl

.., '
~

~
,I .;: I
"ll...::;.-..-J

...
~
4

l
~ =:J E' -c '? =: : =-= = :: = ! :: ;; ::

~~&b~~
~ ~ ...

~
~ t '£ ' ' : .e

1
... .
D ...
~

- N"'-n • 119 • ... • ~ ! : ~ ~ !: ~ ! :- : ~ : ;; s

1

.f ~::::=::~!===

:
::?
~
~

~ : ~

)
"' "' :J I ~ - ft;:. ! =: : : : : :: : :. :: ;; ::

l
a:
a r

t ~ .:- .. • ~=~==:~=~====

Figure 8-5. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

V:l
~
~

~

~
~
()
....... cs·
~

~ ~
~ 0q·

a ~
""": """:
~ ~

Co
I

?-
"""CJ
V:l
V,.)

\0
C)

~
~
........

~
~ -
'=' ~ -~
~;:
a
~

~
V:l

I

N
V,.)
N

~
~

~
~
()

~

Name: TE,Parsi.ng,Floppy,Hardcopy,OC
Fi.leName: AlC
Date Modtfi.ed: 30-MAY-1984 15: 43: 00. 48

I\ tl•CS..1£1

t 1 >FLAll£LfJI

<l•OLA/ICL/·81

<l>DSCTI/

<I> TAllLCTOUTI

t I >OFFllUTTONL llilfTSI

L_,.,

<l>llDAt:O

<1•110/ll"O

0•11lo• t1ont1'0J

<I >rtABCL t I >ClllfAllOL

< 1 •0LABCL <2>PDllTSOI

'1>DS£Tl1 t/>£11110/ISD

<l>TAllLCTOVTt

<I >11FF8UTTDNL IGHT:Sf

<l•lft:lllS-

h!S/

< 1 >£111111/ISD

<l>DCINSO

Total Pages:25

L_,-,
T•~•ln•I Eawl•to,.
<l>KllHAND <l>PLOTSrA

<l•CS_TCI <l•CHOPD

<l•l"LAll£LOI

Prefi.x: F20_

Parent: PageNo: 5

/ rn 1'112:17

H•,.dt:opy

t I >PLOrSTAllTI

<0>£11110/lSO

•l•CllllOllSO L..r11 ,.._ 117~
Ch.,p/CT l t:o•p•ny tfr--+---"'--+----------------__:...::..:.:.:..:.:::~.::..t,,

l--~--1-~l---l </>CIO <11>CllltOltSO 1--D Cltl.H_CIO.H_C/20<1~

<f>t:HDPO •f>£1llt01/SD ~

tl>H_CHQP CIO.H_CJD. 1-- L F/11 1'11 227 '2•PO!U$0~

<!>CJD

<l>CHOPD

<l>H_CHOPO

<l•l"S_TCI

rl>NHtll

<I >HOST_ltE:SSAGC/11

11/,o. Ho• t_ll••••g• 1 Ho.~o.,
C/)JIHO/

<l>HOST_lf£SSAGClll

~

~
Oo

I

Oo

~ ()q.

~
~

Oo
I

:'-1
"'t1
tr.i
l.J.,,)
\Q
C)

.....,...

~
V'.l

~
"'b:
~

t:i
~
~

~
<::)

~

-;;
tr.i

I

N
l.J.,,)
N

~
~

~
~
(")

~
~

~ (";:)
~
~
;::::
(")
~

~
~
~

5·
t:;"

Name: Oevi.ce control Prefi.x: F7 l
Fi.leName: AlC
Date Modi.fi.ed: 30-MAY-1984 14:53:24.98 Total Pages:25 Parent: 5 PageNo: 6 t

~~~~~~~~~~~--1 

l I 

'I •Fl Al£L fl 1 

<l>DLll6£L 1·11 

<I> TAIUCTOl/TI 

<I• DFFBllT TONL /&HT$ I 

\___ 

'-----
"-----

'-----
I\. •l•DClllS# 

0 • .,10. 011t~11f' 

•l>FLAB£Ltll <l>OCSAtl 

'1>DL.tBCL tf•DCSBtl 

•f•D5£Tll <J>DCSCD 

fl> TllBLCT 'f •DC5FI' 

•f•QfFBVT •4•TAB££Tl 

L_n ea. ,,7 
Do~cna 

<l>OCStltl 'I 11f/1H#IDL 

•l•OCSBO •l>DIALSI 

<l>OCSCO '1161/TTONS 

•l•DCSDO •2• TllBLCTI 

<1>/ICSCtl •1>(15, 

<l>OCSFO •2•PtHITSlll 

<f>OClllStl •l•l>tlflTSA· 

Por~ FrJnotlon• 

D•rloe input 

<l•DlllLSI 

•l>lllJTTONS/NI 

•2•TllBL£TINI 

•'I> f.tBL.£ TJN/ 

I 

i 
~IJK'8NANOLCPI~ 

L L_ij:_ P11_12/ 

•I >PtlllTStl <I >CllllDllSD 1---1-4----------------':..:.'.:..'£:.:ll:.::ll.=Dll::..:S::D.U 

'--~->--19c"""I >OSI .___ ______ v 



~ 
t.-:i ...... 
~ 

~ 

~ 
~ 
('J ...... 

Name: Devi.ce output 

Fi.leName: AlC -. C) Date Modi.fi.ed: 30-MAY-1984 
~ 

~ & ...... 
~ 
C) ~ 
'I 'I 
~ ~ 

Oo 
I 

Oo 

""t1 
V:i <l•FtAllCLlll 

w 
\Q 
<::::> 

~ 
t.-:i ...... 

~ 
~ 
~ ...... 
t:i 
~ ...... ll, t1•llt.AllCL1-'1 

~ •l>OSCTll 

~ 

~ 
C) 

~ 

';J 
V:i 

I 

N 
w 
N 

<I> TAllLCTfJUTI 

~ 
h •l>OFFllUTTONLIGlfTSI 

v 
...... 
~ 

9-. 
~ 
('J 

~ 

14:53:24.98 Total Pages:2S 

/ns ,,._)_/ 
lf1tyl11111rtl Oct1P4'1'(L•b1tlt 

•l•rt1111ct111 .1,11cs1111 y 

LrH PJL, / 

lli•I• output 

<1>DLA/1£L <l>DCSBO ... 
•l>DSCTll 

v 

/ F16 ~ ,,,7 
T•bl•t I •11tton 011t11ut 

<l>TllBLCT <l>DCSCO 

•l>Drr11ur <l•Dt:sro1 

<4> TA/IL CT/NI 

Prefi.x: F3_ ~ 

Parent: 6 PageNo: 7 I 

•l•DCSAll ., 

<l>DCSflO 

<l>DCSC'1 

<l>Ocsr~ 

<I• TAllL£f.llfl J 



Name: DLals output Prefi.x: Fl4 

Fl.leName: AtC J 
Date Modl.fl.ed: 30-MAY-1984 14:53:24.98 Total Pages:25 Parent: 7 PageNo: 8 

i------------
1 

~ 
~ 
('i:) 

Oo 
I 

DLAICL/I ;.a '1 •DL A6£L I· II 
I 

•l•DCSID 

""i:j <l•DSCTll 
IJSCT/I ! f 1 DULLAlll!L 

I 
V:i 

:r1 DIAL5[1 

V-J DLllllCL:ll 

\Q ! f 1 DI lLLAllCL 0 ascrn 
I 

~ ;r, DIALS£1 
DLASCL:JI 

t--:i I ...... 
~ f · Dl ALLAllEL OSCT31 

~ I 

~ !r• DIALS[l 

~ ...... 
t:; DSCTll ~ f, Dl1LLAB£L 

I 

~ ~f1 DIALS£1 ...... 
DLAllCLSI ~ 
I 

~ DSCTll ;r, DIALLAB[L 

a I 

~ !r• DIAL5C1 

-;;:_; I 

V:i DSC TH 
!r,DHLUllEL 

I I 

N 
!r• DIALSET V-J 

N I 

~ OSCT71 
~ f 1 DlALLlBEL 

...... I 
('i:) 

~r, DIAL SET 
~ 
~ I 
(""') 

c IJSCT61 ; r, DULL ABEL 

~ 
I 

~ 
~f', DIALSET 

('i:) 
"""! 
('i:) 

~ 
(""') 
('i:) 

~ ...... 
('i:) 
"""! -. 
~ .,._,. 
t--:i 



V:l 
'< 
~ ....... 
~ ;:: 
~ 
~ 

...--------------------------------------------------------------- --- -

Name: Keyboard output(Labels} Prefi_x: FlS_ 
~ 
(") fi.leName: AlC 
....... cs· 0 ate Modi. f i.. e d: 3 0 - MAY - 1 9 8 4 1 4: 5.3: 2 4. 9 8 Total Pages:25 Parent: 7 Page No: 9 
~ 

~ ~ ....... 
~ ~ 0 

~ ~ 
~ rLA6eill 

Oo 
I 

.......... 

~ 

I 

! r: flt TL lBCL rLA/1££81 

I 
tl>DCSAO 

rLA8Cl21 !r, ncvLun 

'""CJ 
V:l 

: r, rrtn lBEL rLA6£L'1 
I 

w TLABCl~I !r:rKrYLAl[L 

\Q I 

c::::, 

~ 
~ ....... 

! r, fk£YllBEL TLABCL IOI 

~· ! f: rk[YLAB(l 

I 

~f: FlEYllBEL rLABCLlll 

~ 
~ 

TLABCLSI !r1fK(YUB[l 

~ ....... !r:HEYLlBEL TLABCL IZI 

t:i 
~ 

I 

!r • fk[YLABEl 
I ....... 

~ ! r, nrn lBEL 

~ 
0 I 

~ ! r: HEYL lBEL 

~ 
V:l <l>FLAllnOI 

rLABCLDI 

I 

N r1rueno 

w 
N 

~ ...... 
~ 

~ 
~ 
(") 

~ 



~ 
0q· 

~ 
"""i 
('tl 

Oo 
I 

i-...... 
i-...... 

""ti 
V) 

w 
\0 
C) 

~ 
~ ....... 

~ 
~ 
~ ....... 

t:i 
~ 
....... 
~ 

~ 
C) 

~ 

~ 
V) 

I 

N 
w 
N 

~ ....... 
('tl 

~ 
~ 
("') 

~ ~ 

~ ('tl 
"""i 
('tl 

~ 
("') 
('tl 

~ ....... 
('tl 
"'""l 
E;· .,.._ 
~ 

Name: Tablet & Button output 
Fl.leName: A1C 

Date Modi.fted: 30-MAY-1984 15:43:00.48 Total Pages:25 

f\._<I' TABlETDUTI 
v 

OFFBUTTONL JGHTS I 
H~~~-'_'o_r_r_e_u_r_r_o_N_L_1c_H_r_s_1~~-+-~~~~~~~--1Ii 11 
I/ 1 r: orrLIGHTS32J 

ONBIJTTONl lfiHTS I 

l' 1 L 
2

r: ONLIGHTSJ2
2j 

TABlETOlJTI 

Pl"eftx: F16_ 

Pai-ent: 7 PageNo: 10 

~!•lJl"SCO 1 

J 

I 

1 
I 
I 



V) 
'< 

1:.-:i ...... 
("\:) 

~ 

~ 
~ 
~ 

Name: De fens 

Fi.leName: AlC 

Prefi.x: F4_ 

('") ...... cs· Date Modi.fi.ed: 30-MAY-1984 14:53:24.98 Tot.al Pages: 25 Parent: 6 PageNo: 11 

~ 

~ ~ ...... 
~ ~ 
0 ""'i 
""'i ("\:) 
?:;"' /IC/llStl 

Oa 
I .._ 

N 

.r----1' ~h rl>lfllltAllOLC/11 
r, DCD[CDDE . . "\. •l•DIALSI 

' r f >llUTTDNS/111 . 
~ 
V) 

w 

1 . l •2• TAlltCT!N~ 

:~i--+-

\Q 
a 

~ 
\.::) 
1:.-:i ...... 

~ 
'"'\:::; 
~ ...... 
t:i 
~ ...... 
~ 

Z1 
<:::> 
~ 

<l>OCSAfl 
DCSA() 

_r, ;l t/>OS*_j_ *f' DCDUT5UBPO~ 
r-._•l•/JCSllD 

DCSll() i r, ;i 

{~ r I 0 CDU rsua PD' 

•l•IJCSCD 
UCjCll 

J1 ;i_ 

~!f•DCOUTSUBPD~f 
•1•/JCSDD 

OCSDO r, ;i 

~! f 1 DCDUTSUBPDf 

•l•OCS£D 
Ut;"jl.11 

J1 ,1 

:c=:==t! f 1 DCOUT5U8Pj 

rl>DCSFD 
11csr11 r, I 

1! r' DCDUTSUBPDf 

ri._•l•DC/llS/1 r2>1'0/ITS()I 

~ 
V) JOCtJSD 

I 

N 
w 
N 

'--- • 1 

f1 IDtCDNTRDL: ~ . f-----1 
I 

~ ' f---J 
...... 
("\:) 

~ 
~ 
('") 

~ /II/ r_POllTS5D 
_r, i1 r I •PDllTSA ·F'_J, 

r, NOP l 



Name: Port Functions 
Fi.leName: AlC 

Date Modi.fied: 30-HAY-1984 14:53:24.98 Total Pages: 25 

1.--------------------il-----..--~· •J---1 
'DllTSAt rtX(JffJ()) ~!f1 DCSETSUBPOfi~ 

tf'------+-------~-,,----t• •f.-1 • 
f"/X(U()(I) E>--:r.ocstTSUBPD~ : 

• 1 

5 I . , 
I . ,, 
" 12 
u .. 
II 

" 11 

" " .. 
21 .. 

. ,, 
" II 
IJ .. 
u .. 
11 
II 

LJ 

Prefi.x: FS_ 

Parent: 6 PageNo: I 2 

1-------------------il---------------+----~.,,..---1• 1 •1>05, 
IXf"HJ IT !r• QC5£TSUIPO·lr-------------------'4.i""""I; 

'01115~ 

l'-------~-----------1---------1• •J---1 !r• DCSETSU8PO~ 
. 
I . 
1 
I . .. 
II 
12 
IJ .. 
II .. 
" II 

" 20 

" ,. 



~ 
~ ....... 
~ 

~ 

~ 
~ 
("") 
....... ......... 
c:i 
~ 

~ & ....... 
~ ~ c:i """l """l ~ 
~ 

Oo 
I 

.......... 

:t:.. 
"'tj 
VJ 

w 
\Q 
C) 

~ 
c:i 
~ ....... 

~ 
'\::$ 

i=::: ....... 

~ 
~ ....... 
~ 

~ 
c:i 
~ 
~ 

::::i.:i 
VJ 

I 

N 
v..i 
N 

~ 
....... 
~ 

~ 
~ 
("") 

~ 

Name: Oevlce lnput Prefi.x: F6_ 

Fi.leName: AlC 
Date Modi.fled: 30-MAY-1984 15:43:00.48 Total Pages:25 Parent: 6 PageNo: 13 

DIALS! 
H~-<_,_,_0_1_AL_S~'~~~~~~~~~~~~~~~~~~~~~l 
/ 2 F: DIALSIN 

BUTTONS/NT 
~~<_1_)_e_u_T_ro_N_s_1_N_1~~~~~~~~~~~~~~~~~~--1t 

17' 2 
f: 8UTTONS32 

:l, <2' TABLET/NT 
7 
.l. <'f> TABLET/NI 
7 

TABLET/NT 
1 

~f:BITPAOIN 
1--~~~~~~~~~E <T>PJCK_LOCATIONI 

I 

J 



Name: Termtnal Emulator Prefi.x: F8_ 

FtleName: A1C 
Date Modi.fi.ed: 30-HAY-1984 14:53:24.98 Tota 1 Pages: 25 Parent: 5 PageNo: 14 

& 
~ 
"""! 
~ 

Oo 
I 

......... 
Vi 

lfCYl/11AllDI 

"'tj 
Vi 

I I 

r, NOP CNAR(/1) 

~ 
\Q 
c::i 

~ 
t.-:i -
~ 
"b 
~ -t:1 
~ 

<I >XllHANl1LCll 1 
K/INAltl1LClll 19 1•111' 
I I _[ ~~ I 
~f11CHN:ll 2 I I 

' J ~r1 TEOUP 
2 

I . . ' . : r--------, . . . . . 
i 7 

:1 ' ' 
. . 

• 1 1 

I 
. I I 

::h' . . .. .. 
12 

•l•Pi.OTSTMiTIJ.. 

113#•1• 8> 
~ 

</ •CHOPD_2 I I ..• ·F ! r, L ucro noa! -491•113<# 
-i;; - . 

~ . 
~ 
0 
~ 
~ 

~ 

C~CI 
. 

<l>CS_TCI 
I ' 

<l•rtAl!CLtll 

2
f1YllO ;~ . 

rKf:YSI 

llrltl #•I• l9i----' • . J, ' 1 r1NOP 
Vi 11r1tt,•2• 
I 

N 
~ 
N 

11r1tt1•3• ~ I--" sn:CKCYSI 

Ji I f 

F1 NOP 

~ -~ 
~ 
~ 
r;, 

~ ~ 

~ 
~ 
"""! 
~ 
~ 
r;, 
~ 

~ 

I 

i 
CNllll(2T)t. '{;IN' ~qtAll{27/l&Nll/1(10)1 'P53011 PS. lflJS ' ICHAR(ltl)ICHA/1(13) 

•S•HCP/PJ 

~ 
•l>f.,-PLOT! l 

] -~ """! 
E;· .,.._ 
t.-:i 



Vi 
'< t.") 

""""'" ("\:) 

~ 

~ 
~ 
(") 

""""'" -. a 
~ 

~ ~ 
""""'" ()q. 
~ ~ a ~ 
~ ("\:) 
?°';"" 

Co 
I ._ 
~ 

~ 
Vi 
w 
\Q 
~ 

~ a 
t.") 

""""'" 

~ 
~ 

""""'" 
t::::i 
~ 

""""'" ~ 

~ a 
~ 

;;; 
Vi 

I 

N 
w 
N 

~ 
""""'" ("\:) 

~ 
~ 
(") 

~ 

Name: Di.sk Access Network 

Fl.leName: AlC 
Date Modt'fi.ed: 30-MAY-1984 14:53:24.98 Total Pages:25 

11r.u 
'STTC' 11>----+----t 

Ft RClDDISk 

NDIOI 

Ft HD;MEllOAY 

llCAOfl/NAllYI 1108$11 

Prefi.x: F9_ 

Parent: 5 PageNo: 15 

I 
I 
i 
I 

I 
ltf'CNDPl<11• 15>--·-'--------------'-"_•c_:e.vouo~j 

'-----------1---------11 
f'/Xf·;: lr~----l~r. SYNC(3) 

1---------------ri--4--1• •1-----------------------------'~·'~'.::..t.1" 
r1 READDJSIC F1REt.DSTREU

2 

FtlESEf 

llCADA:SC/11 

Ft AEADD!Slr: 

/ICAD_CATI 

Fr NOP Fi READDISK 

<l>/IOAD 

llOAt:D llOAD ,___ ____ --+--<I 

F1 CHOP zr.wRITCDISl 

11065() 
tl>/#Dlt:D 

I 
1

Fr WRITEOISK 

F/X(DJ 



~ 
0q· 
~ 
"""'i 
~ 

Oo 
I ,._ 
~ 

~ 
V:l 

w 
\0 
0 

~ 
c.-:i ...... 

~ 
"'b 
~ ...... 
\:::1 
~ ...... 
~ 

~ 
c::> 
~ 

>; 
V:l 
I 

N 
w 
N 

~ ...... 
~ 

~ /::} 
(") 

~ ~ 

~ ~ 
"""'i 
~ 
;:::::: 
(") 
~ 

~ 
~ ...... 
~ 
"""'i 
E;" 
t::;"' 

Name: 
FtleName: 

Chop/Cl 
AlC 

& Company 

Date Modtf\.ed: 30·MAY-1984 

tl>t:lfJ 

<l•ClfOPO 

<l•ll_Or:JPtJ 

14:53:24.98 

--~ 

I 
Pref\.x: Fl I_ 

Total Pages:25 Parent: 5 Page No: I 6 I 
-1 

I 

I 
i 

j 

! 
I 
I 

Lrn ea_u/ 
i t:hopO, C/fJ 

tl>Clfl •D>CllllDll!lfJ '0>£/UlORStlj 
_-;; 

•l•CHOPfJ •f•£flflDll$fJ <l•Cllllf!~ 

Clll<f> CIC, ll_C/0, H_CIZOt ~· 

v 
I 

I 
/FU 

H_Cho1>ll. 

Pp 11/1 
11_c1o.,,r11 I 

d >N_CHDP rD>CllllD/150 

•l>CllflDllSO 

11_c10,11_c1;11•f• 

•l•CS_T£1 •1 •CS_ Tll_.L 

<IHIHOI rl>llHOIJ_ 

• f •HDST_ll£$$A&Clll • l>HDST_.lf{$.1AG£81~~ 
<l>llt1AO tl>;IOA'!.I,; 

tl•llDllCO •I •liOAC:<l 

fl>NfJl/CQ t I >NOBC!' ~ 

v 
I 
i 

I 



V::i 
'< c..., -~ 
~ 

~ 
~ 
('"") -cs· 
~ 

~ ~ - 0q· 
~ ~ 
0 """'i 
"""'i ~ 
~ 

Oo 
I 

....... 
Oo 

'"\; 
V::i 
w 
\0 
a 

~ 
c..., -
~ 
~ -
\:::1 
~ -~ 
~ 
0 
~ 

~ 
V::i 

I 

N 
w 
N 

~ -~ 
~ 
~ 
('"") 

~ 

Name: 

Fll~Name: 

ChopO, C10 
AlC 

Prefi.x: F21_ 

Date Modl.fi.ed: 30-MAY-1984 15:43:00.48 Total Pages:25 Parent: 16 PageNo: 1 7 

.'l. <l>C/O 
f 

}. < 1 >CHOPO 
CHOPO 

CJO,O> E11-~~~~~--.

1 CHOPOtO> E1t-~~~~~--t~~----,~,--~~~~~~~~~~~_,.~~~~~'-O_>£_R_n_o_n_s_o-4--1_11 
C/O ~ 

r-~~~~~~~~~~~..._~---11 

~ f: CI 
7 

<I >£RRORSO_IJ 

J 



~ ()q. 
;;:: 
""'I 
~ 

Co 
I .._ 
~ 
""t; 
V::l 

w 
\0 
c:::i 

~ 
V) 
........ 

~ 
~ 
;;:: 
........ 

\::j 
~ ........ 
~ 

~ 
<::> 
~ 

-;; 
V::l 

I 

N 
w 
N 

~ ........ 
~ 

9-, 
~ 
(') 

~ ~ 

~ 
~ 
""'I 
~ 
~ 
(') 
~ 

~ 
........ 
~ 
""'I 
~-.,..._ 
V) 

Name: H_ChopO, H_Chop20 
FLleName: AlC 
Date Modi..fi..ed: 30-MAY-1984 14: 53: 24. 98 

'rJ..' 1 •H_CNOPD 

/ru. 

~ 
"--! 

R•••t-t•, 6e••t..t:ltop 
•l•ll_CllQP 

llCSET_TCl<I> 

/ Fii. 

5£1 0 

•I •H_CNOP •D•CRRDRSfJ 

<l•DEPACtr cl111£l'ACKC 

•l•llC!JCT_ •l•CRR0/1$() 

lf_CIO•I> 

•I •HDST_llCS!IA6£61 

•1>""'11 

•l•CS_TCI 

tf>lf/JAO 

<l>llOAt:tJ 

•l•llllllt:D 

Prefi.x: f22_ 

Total Pages:25 Parent: 16 PageNo: I 8 

l 
v 

r/>£11/lUllSIJ~ 

L_n,_ 

H_cf(),H_C/2~~ 

:S•t :10 

'-l-- •l>ILCHOP •l>HOST_llC i--: H--k 
</1/JEl'ACK <111£/tllOll!J() f---4.I 

f---/ I- ~ •l•Pl/l!J() •l>CR/1011$0 1-1 I-
H_Cl:ltl<I> l----1 I-
•l•CS_TCI 

<1>£$_1£1 

<l>lf/111() I-r---., 
t-i--------- <11NOACO I-h 
I-~ 

tl•NOICD 

t7' 1--h 
<l•NHOI 

t--t-

<I >HfJST_l1£SSAl;£BI J 

'------------------+--'~---------------'-'_'11_0.4=1 
d1JltJBC'!1J 

1 



~ 
'< 
V) ...... 
~ 

~ 

~ 
~ 
~ 
(") ...... c:;· 
~ 

~ ~ ...... 
~ ~ C) 

~ ""'J 
~ 

Oo 
I 

N 
~ 

""t1 
~ 

V,J 
\Q 
C) 

~ a 
V) ...... 

~ 
~ 
~ ...... 
~ 
~ ...... 
~ 

~ ....... 
C) 

~ 

-;; 
~ 
I 

N 
V,J 
N 

;;--
...... 
('t, 

~ 
~ 
(") 

~ 

Name: SET 0 
ftleName: AlC 

Prefi.x: F18_ 

Date Modtfted: 30-MAY-1984 16:38:39.29 Total Pages:25 Parent: 18 PageNo: 19 

•l>H_tHDPIJ 

[I.< 1 •0FPACtrCTIJ 

v 

H_CHOPIJ<O• 8=-~------

H...C/O<O• IP-------_,. ____________ ._o_•l'._ll_ll_01t_s_~4-1 
,,,,,. ~ 

-. l 11£PACKCTIJ 

-i>;: 1 ~h •l•DCPU:KCT.10 
CNAIUIJ I)" :r1DEPACll!:T 11-+---------------+-------------------------------~ 

rllf.1) ~...._: _ _____. 

CH411(1JJ ~I 
rlX(ISI) 

Fllf<I) Jn... SllCC_&4THClllJ i1-+._ 

CJ/tfJV7Cfl IT \.. r=:::r: ,i=:1 ~ 
~I I r:m~~=- ~ 

·o· ~:r.c1Rourcu1~1-l --4'-1--+----------++-~~'"u"" ~~ ~'
111 

FIX(4) ~ • :l---+--+-+----------...1 ~'-' C-HD_I' __ _. ~ !r, Cl 

:i---W -
I . __ ....._ _ _, 

II 
II 

l_;"' --~---'~ • ~.: .. "'''°' :~' """"''M: 
::·1---+-----. ~ l J r l TllU&Cfl_COffYlll r--' ~---'-~------1-4---'-''_N_os_r~ __ N£_s_s_~~_c_e41~ 
:: '-------+---------/) 

2
r, CH~RCDNYERTr 

•/,il!JAC;:-

21 J 
UOROQ/.[0 <1•£5_T£~ 

J 
'-+----------+-----------------

7
...._ _____ _,,J '1 >ilOBCO ,, 

I 



~ 
~ 
~ 

Oc 
I 

N 
;......,. 

~ 
V) 

w 
\0 
<:::::::> 

~ 
~ ..... 
~ 

'i:J 
~ ..... 
t;, 
~ ..... 
~ 

~ 
c::i 
~ 

"'."""',. 

~ 
V) 

I 

N 
w 
N 

~ ..... 
~ 

~ 
~ 
("') 

~ ~ 

~ 
~ 
""'I 
~ 
~ 
("') 
~ 

~ ..... 
~ 
""'I -. 
~ ..._ 
~ 

Name: 
FtleName: 

Set 20 
AlC 

Date Modlfted: 30-MAY-1984 16:38:39.29 

• 7 >ll_C#0/12/J 

<l•/JEPACA'CT21 
IKl'At:KCTZll 
I 'h 

;--- ~r.atPAC~f:i 2 
2 

r1 . ' • 

CHA/1(21) 

CllA/1(1') 

rAtSC 
•l•,..,flSO 

GC/llotrTE211 
I I 

"II' ~!r1CIRDUT£(21~~ 
rrraJ E>-P• • 

:~ 
7 . 
' .. 
II 
II 
IS 

:;h 
" .. 
II 

" H 
21 

·11· I?= 

Prefi.x: F19_ 

Total Pages:25 Pal"ent: 18 

l'fl'Dtlll 

s. ~·~"' r/Jt(I) ~zr1CDNSTAJIT 

~l 1
r1SYNC<Zl l'fl/CADO ] 

I I 

rlrtZJ ~2 r1CDNSTANT 

SRCt;,,._~A TNC/1211 
s, il 

f"/X(4J-F--t,, GATHER. 
Gl:NrCN ~ 

H..CNOP2tJ•D> um·•· J 
H.t:HDP21J H_t:l2D 
s. 

~ 
I I [ I ",~. !r.cr 1 

2j--1 

·t---+" 
:~ 
7 

~ 
I M' !r1 CYUTGI z r1 RE:ADSTl~A"2 . 

~Oll'OOTCZO 
r, 

"Routln11 •Tt• ttot in •t:r:¥t••I• ~•n11• '-~zr,CDNSHNT J l 

PageNo: 20 

tl>ND$T.Jl£$$AG£/I~ 

<f1>£RROll!UJ 

' r I •CRRORSIJ_J_ 

' 

H.C/20<1•_j_ 

' 

rl>CS.1£1.i_ 

fl>NDAO 

<l>JiOACIJ* 

rl>JIOBC~~ 



~ ...... 
~ 

~ 

~ Name: Reset_te, Reset_chop Prefl.x: F32_ 
~ 
("") Fi.leName: A1C 
...... -. C) Date Modi.fi.ed: 30-MAY-1984 14:53:24.98 Total Pages:25 Parent: 18 PageNo: 21 
~ 

~ ~ ...... 
~ ~ C) ""'i ""'i ~ 
~ 

Oo 
I 

N 
N 

""t1 
V:i 
V..) 

\0 
<:::::> 

~ 
~ ...... 

~ 
~ 
~ ...... 

RESET_ TEI HESET_CHOPO 

i--~-.-~~~~~~~I 

2
F:CONSTANT 

<I ~H_CHOP ~ 

·1 
i 

I 
f:RESET 

t:;1 
~ ...... 
~ 

N£5£T_ T£/ < I '~ 

~ 
.,.....; '}!RESET; !RESET;' C 
C) 

~ 

-;; 
V:i 
I 

N 
V..) 
N 

~ ...... 
~ 

~ 
~ 
('°') 

~ 



~ Ciq. 

~ 
""'I 
('1:l 

Oo 
I 

N 
w 

"'i:l 
V::i 
~ 
\Q 
a 

~ 
c.-:i ..... 
~ 

"'b 
~ ..... 
\:) 
~ ..... 
~ 

~ 
C) 

~ 

~ 
V::i 

I 

N 
w 
N 

~ ..... 
('1:l 

~ 
~ 
("') 

;::i:, ~ 

~ ('1:l 
""'I 
('1:l 
:;::s 
("') 
('1:l 

~ ..... 
('1:l 
""'I 
E;· .,._ 
c.-:i 

----, 
Prefi.x: FlO_ I 

I 
Name: Who, Host_Message, Hostout 

Fi.leName: AlC 
Date Modi.fled: 30-MAY-1984 15:43:00.48 Total Pages: 25 Parent: 5 PageNo: 2 2 I 
!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~~~~~~~----~~~-~ 

I 
i 

-------·--. 

i 
l 
I 

I 
I 
I 
I 

HHOI 
I\' I >HHOI 1 1 
II --., 

F:WHO_AH_I 

J\ <l>HOST_HESSAGEBJ I 
l7 l 

I 
I 

HOST_H£SSAG£1 HOST_HESSAG£BI HO STOUT! 

I I 1 1 1 '\. I 

'1 
E <l>Oli 

F:NOP ~F:HOLDHESSAGE F:NOP I 
1 I 
5 I 

i 
I 
i 



V:l 
~ -('1:) 

~ 

~ 
~ 
~ 
(J -c:;· 
~ 

~ ~ -~ ~ <:::) ""': 
""': ('1:) 
~ 

Oo 
I 

N 
~ 

~ 
V:l 
w 
\Q 
C) 

~ 
~ -
~ 

'\3 
~ -
\:::1 
~ -~ 
~ .,........ 
<:::) 

~ 

-;;; 
V:l 
I 

N 
w 
N 

~ -('1:) 

~ 
~ 
(J 

~ 

Name: 
ftleName: 

Hardcopy 
AlC 

Date Modtfted: 30-MAY-1984 15: 43: 00. 48 

)._O,PLOTSTARTI 

7 

HCP/Pl 

1 I 

~r: INITP_LOT 

~<S,HCP/PI ~ 

5 
f 

TllUE~ 
rrPLOTI 

!:i <! ,rrPLOTI 
1 v 2

f:ffPLOTTER 

Preflx: F28_ 

Total Pages:25 Parent: 5 PageNo: 23 

PLOTSTARTI 
1 1 

~f:STARTPLOT 2 ~</>HrPll 
.. 
s 

l 6 

7 
8 

9 

l 1 ii I 



~ ()q. 

~ 

~ 
Oo 

I 

N 
v-. 

""ti 
V:i 

w 
\0 
a 

~ 
CJ 
t..-:1 ....... 

~ 
'\::i 
~ ....... 

t;::, 
~ ....... 
~ 

~ 
CJ 
~ 

~ 
V:i 

I 

N 
w 
N 

~ 
....... 
~ 

~ 
~ 
("") 

~ ~ 

~ 
~ 
""'I 
~ 
~ 
("") 
~ 

~ ....... 
~ 
""'I 
E5" 
~ 

Name: Message_Oi.splay 
Fi.leName: 

Clear_labels, 
AlC 

Date ModLfi.ed: 30-HAY-1984 14: 53: 24. 98 Total Pages:25 

TllU£1l"»----
t:LEAll_LdllEl Sf 

tl>CtEllll_Lllllt:LSI l+-------------------------------'---l' 
CH/fll{10}1CHA/lff.1)l' IC>-----l!ra SYllC(7) 

HESSllGE_DISPLAYI 

CHA/1(10} IC:>----...---~--11 

CHAR(13)lt:lfAll(lfJ}l 'Sted ••l•1ttt 

Jll_HEHREPI ~""----~ 1 1 
1 1----~Zf:CCDNCATCllA 
2 r,PRINT f: BOTS TACK 

2
f1 STATDIS 

H£1'Ullr_llLEllTI 

I 

!r, "CHfULL 

HEHDRr_llDJtJ TD/II 

' 
~fa MENROll 

Prefi.x: F25_ 

Parent: PageNo: 24 

t/>FLAll£!01 

.t•OLllllEl I ·Ill 

\ ________ ,_, ,_,_All_L_c_ro_v_u ~1 
'------' r_•D_,._,.B_u r TON£ J ;'."'~ 

I I 

i 



V) 

~ ...... 
~ 

~ 

~ 
~ 
;::::: 
(") ...... ....... 
<::::> 
;::::: 

~ ~ ...... 0q· 
~ ~ 
<::::> """i """i ~ 
?<;-< 

Co 
I 

N 
~ 

""ti 
V) 

V...i 
\0 
a 

~ 
~ ...... 
......... 

~ 
~ ...... 
~ 
~ ...... 
~ 

~ 
<::::> 

~ 

~ 
V) 

I 

N 
V...i 
N 

~ ...... 
~ 

~ 
~ 
(") 

~ 

Name: Htsc. 

Fi.leName: AtC 
Date Modl.fl.ed: 30-MAY-1984 15:43:00.48 Total Pages:25 

CSHI 

f:NOP 

TECOLORI 

f:NOP 

E <l>CSHTOPO 

TSCSH! 

f:NOP 

E <I> TE COL ORO 

SCR££NSA VE 1 

f:SCREENSAVE 

Prefi.x: F26_ 

Parent: 

TOUOI 

f: USRTOF 

lfH£RRO£ TEC Tl 

I' r, HHHR£G 

PageNo: 25 

<I >ERRORSO.i. 
'\: 



~ 0q· 

~ 
('ti 

Oo 
I 

N 
~ 

~ 
V::i 
l..;,J 
\Q 
a 

~ 
c..., ....... 

~ 
"\:; 
~ ....... 

t:l 
~ ....... 
~ 

~ a 
~ 

~ 
b:i 

~ 

~ 
~ ('ti 
""'i 
('ti 

~ 
(") 
('ti 

~ ....... 
('ti 
""'i 
E;· ....._ 
c..., 

Name: SYSIBMl.OAT 

FtleName: AlIBM 

Date Modi. f i. e d: 1 - JUN - 1 9 8 4 1 3: 1 8: 3 5. 4 7 Total Pages:23 

/ F2d P_g_ 237 

Hi.sc. 

</>£RRORSO 
~ _______ v 

L_r2S P_s_ 22./1 

Cl••r_Jabal•. H••s•g•_tJi s~ l•y '--­

<!>CLEAR_ '1>FLA8£LO 

cl>OLABEll-61 

<I >OS£TI I 

<I> TA8L£TOUTI 

<l>OFFBUTTONLJGHTSI 

LF20 P_D 6 7 
TE,P•r•ing,Floppy,HardFop .~C 

<l>IBH_TE <O>ERNORSO 

tl>FLABEl </>£RRORSO ~ 

< 1>0lA8£l C/O, H_CIO< 

<l>OSETll <2>PORT501 

<I> TABLE TOUT! 

<l>OFFBVTTONLIGHTSI 

PT'ef\.x: Fl_ 

Pa1"ent: - - Page No: I 

_L' F2_,._ PJL 2 / 

£rrors, S•t Ports 

<O>ERROllS <l>/BH_TEI f---1--./ 

<l>ERRORSO 

CJO,HCI0<-1> 

<2>PORTSOI .___ _____ v 

IAS071l7 



~ 
i;.., 
"'"1--
('\) 

~ 

~ 
Name: Errol's. Set Ports 
fi.leName: Al IBM 

Prefi.x: F2_ 

;:; 
("') Date Modi.fted: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: PageNo: 2 
"'"1---. 0 
;:; 

~ 
"'"1--

~ 
0 
"""! 
?':;-< 

~ 
~ 
"""! 
~ 

Oo 
I LilL PJLS/ 

N Err•r• 
Oo •(J>£11/1'1111S(J 

•11•£11110/fS O•/Blf_TEI •t•J.B1t_rc1 

"'tl 
V::i 

<1>£11/IDllSD 
<I >£11/IDllSD 

C/(J, HCIO•I• C/D,11_'111•1• 

w v 
\Q 
c:::i 

~ 
i;.., 
"'"1--

~ 
~ 
~ 
"'"1--

t:i 
~ 
"'"1--

~ 
L_ru 1117 

S•t poru 

~ 
0 

•2•PtJllTSt1, 
•2>PDllT6t1 •l•llllt_T£/ v 

~ 

~ 
b:l 

~ 
Pa S CJ / F'3 

I ,,,, "'""" 



Name: Errors Prefi.x: F29_ 

Fi.leName: Al IBM 

Date Mod t ft e d: 1 - JUN - 1 9 8 4 0 9 1 1 6: 3 1 . 4 7 Total Pages:23 Parent: 2 PageNo: 3 

~ ;:; 
~ 

Oo 
I 

N 
:-0 
"ti 
(;") 

w 
\Q 
<::::::> 

~ 
c::i 
c.., 
......... 

•IJ>CllllDllSIJ 
£flllDll11J•IJ• ~/J•llFA'll 

~ iJ>Cl111DIPStl Tll/1£~ 
Clllftllll 

<1•£1111fJllSD 
CllROllSIJ J, 

~ 
'l•llllf_TC'-' 

J, il 
i'r, CllRDUTC l · · ........ "F 

1 TllVE~ 
CJtl. lf_CID• I• 

ll.1/IN/11'1 
J, il ~'''" 17 \. 
1'r:CBRDUTC 1 

:;--
'\:$ 

TRUE~ 
llfrfJllllAT/11111 

J1 I 

~ 
......... 11rc11•'• l9r- 1•,, ClllDUTC 

z 

t:J 
~ 
......... 
~ 

~ 
0 
~ 

~ 
tti 

llrllLltl> ~ 

~ N'iltl•I• ~ 

llrNLl•.S• ~ 

~ 
~ 
~ 
""'! 
~ 
~ 
(") 
~ 

~ 
......... 
~ 
""'! -. 
~ 
t:;"' 



CJ) 
'< 
t.-.i 
"'""'" ~ 
~ 

~ s 
Name: Set ports 

FtleName: A11BM 

Prefi.x: F12_ 

(""') 

"'""'" ........ 1-JUN-1<?8409:16:31.47 Total Pages:23 Pal"ent: 2 PageNo: 4 Date Modtfted: 
a 
~ 

~ 
"'""'" ~ a 
""'I 
('::;-' 

~ 
~ 
""'I 
~ 

~1>03# 
Sl'I r, ;l 'l>Jllll_T<T 

P•n101 Porr:JOI l r. mmmo!f=? I 

I 11----" I tl---'1 
:r. stt_l'OAT I ! FI Stl_PORT 

z . . 
Oo 

I 

I I . . 
w 
~ 

7 1 . . . . 
" .. 

""'Cj 
II II 
u 12 

CJ) n " .. It 

w 
\Q 
<::::::::> 

l'orl51JI II u 
u 1• I ~~ 17 17 ,,--, : r, SET _PORT ,. II 

" " . 
~ 

.. %t I 
ZI 21 . 
n n 1 

t.-.i . 
"'""'" t 

II 

~ 
'\:::i 
~ 

"'""'" 
\::1 

It 

•Z•POll7SO# .. 
~ 

.. .. 
II 

,..,,.,;01 !'or Hiii 
.. 
1j 

I ''--"' I 11--1 .. 
~ 

"'""'" 
:r. str_,.ou I 

: F 1 SET_PQRT 
l " H 

~ . . 21 
I I Z2 

~ a 
. . 
7 1 . . . . 

~ Port!Ol•D• {9' iY 0•$1'1 II II 
II II 

~ 
ttl 

~ 

II .. 
l'ort:IDl<DJ {? IS 11 .. 14 

" " Port:JOl<D• g: 
" " 11 17 
II " P•nlDl•D• ~ 
" If .. .. 

P~rtSDl•O• ~ JI JI : 
u n I 

I 



~ 
~ 
""'! 
('(:) 

Oo 
I 

w 
......... 

~ 
V:i 
w 
\Q 
C) 

~ 
c::i 
~ ...... 
....... 

~ ...... 
t:1 
~ ...... 
~ 

~ 
c::i 
~ 

~ 
to 

~ 

~ 

~ ('(:) 
""'! 
('(:) 
~ 
r') 
('(:) 

~ ...... 
('(:) 
""'! 
E;" ...._ 
~ 

I 
I 

I 
I 

l 

Name: IBM Setup 

ftleName: Al IBM 

Date Mod t fled: 1 - JUN - 1 9 8 4 0 9: 1-6: 3 1 . 4 7 Total Pages:23 

l8HSETlJPI 

rJX(2S6) 15>1----------11• 
F:SETUPIBH 

l BHSE TlJP :J 

F/X(2S6J (S>----------111 
~:SETUPJBH 

Prefi.x: F33_ 

Parent: 2 PageNo: 5 



CJ) 
'< 
~ .,....... 
('\) 

;:: 

~ 
~ 
(") .,....... 

cs· 
;:s 

~ .,....... 

~ 
C) 
"""i 
?';-< 

~ 0q· 

~ 
('\) 

Oo 
I 

v,,, 
W 

""ti 
CJ) 

v,,, 
\Q 
<::::::> 

~ 
t.-:i .,....... 

~ 
~ 
;: 
.,....... 

~ 
~ .,....... 
~ 

~ 
C) 

~ 

~ 
b:l 

~ 

Name: TE,ParsLng,floppy,Hardcopy,DC 
FtleName: AlIBH 
Date Modtfted: 1 -JUN-1984 09: 16: 31. 47 Total Pages:23 

<1•11111_ TEI 

t1•Fltf6CLOI 

•l•Ot.tflCLl·ll 

'1•0SCTll 

!I.''' TABLCTOl/TI 

r I •rJFFIQTTrJNLIGllTSI 

/n ,.._ 1s7' 

/n iiilu'71U 
Old tfoo••• It• tHrlt 

,---- <l>llDAll <tl>CllllOllSll ~ 

~,,:;~CJ •no/ c .. ,,.":; 17/~0 ,r-- <l•llOA"1 •1•£11/IOllStl 1----j.-.J 

rl>CIO 

tl>lt_CHDl'll 

cl•Dt'lltSll 

l-+----1-.......i <l>C/tl rtl>Cll/10/ISD I--

I-+----::""-' <l•CHDPD •l>C/111(1/ISD l-­

l-+-----4 tl>H_t"HDI' Clfl,H_l:Jtlt 1--

tl•HDST_HCSSA(;Cll 

rl•IBll_TEI 

•l>llHDI 

Prefi.x: F20_ 

Parent: PageNo: 

Lru 
lterdr:o11y 

ti •l'LQTSTAllTI 

•S•HCPIPI 

<l•FFPL(ITI 

/ FID "• 207 

·Jin ... H••t_ll•••••• .. No• •• 
r I •NIJS T_llCSSAGCl I 

•l•NllfJI 

6 

<l>CllllOllS4 

C/11,11_&10•4~ 



Oo 
I 

w 
w 

Name: Oevi.ce control 
FtleName: A 1 I BM 
Date Modi.fi.ed: 1-JUN-1984 09:16:31.47 

tl>TUICLlll 

•l•IH.11,.'Ll·lll 

L.a. 
O.ri., •a~lflut 

tl>FLAllCLlll •l•t!CSlll 

r-------------''-------1 '11/ll.AllCL •l•DCSllll 

<l•DSCTll 
<l•llSCTll tl>Ot:SCI 

.,, TAllLCTfJ//TI ti• Tllllt.CT •l•Dt:srfJ t'----

,.,._•l_•_fll'._'1'._ll_V_TT_fl_WL_l_G_H_rs_1 ________ --i_•_l_·(IF;_F•_v_1_.,_._''_•_i_cr_1__..~~ ~ 
•l•DC/llS; 

Total Pages:23 

tl•l1CSAIJ 

•l•DCSllO 

<l>DCSCO 

•l>flCStlO 

•l•flt:SCO 

•l•llcsro 

tl>r6HAlllJL r-{---/ 

•l•DIALSI 

<l>ltlTTfJNS 

•2• TAILCrt 

<l•POllTSA· 

Preftx: F7_ 

Pal"ent: 6 PageNo: 7 

!l6·;,.£::s En;:l't.1# 

•l>DIALSI 

I/ •11/ITTD#Sllll 

•:Ii TllllLCT/111 

<#>1AllL£TJlll 

l'•.-f' Functiott• 

ll•POllTSA •1•£/lflfl/ISO .___ ___ v 

•l•J611r1or 

•1•£/1/1()/1$~ 

1--n 
'----------------~~ ~---+----------------------------------------•-2•_P_D_*T_S_ll-411_,L 

<l•Dt:/llSfl 



~ 
I:.") ...... 
(';:) 

~ 

~ 
~ 

Prefi.x: F3_ Name: Devtce output 
fi. leName: A 1 IBM 

("') ...... ....... Date Modi.fled: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 7 PageNo: 8 
<:> 
~ 

~ ...... 
~ 
<:> 
"""i 
('=:;-< 

~ 0q· 

~ 
"""i /FIS_ ~10/ 
(';:) 

lf•,l>1t•rd ..,t11arfL•b•I• 

Oo 
I 

Vv 

•1•FLAICLOI <l•rtAIELOI •l>DC'SAO •l>DCSAIJJ 

v 'I; 

~ 

~ 
V:l 

w 
\0 
<::::> 

~ 
I:.") L rtf 12, / ...... 

Dl•I• OUf/1111 

~ 
'\:::$ 

•l•DUICL 1·11 •l•DU/l££ rl>DC'SIO O>DCSfltJ,f 

•l•DJCTll •l•DSCTll 

~ ...... v 
t:i 
~ ...... 
~ 

~ 
<:> 
~ 

~ 
b::l 

~ 

/711 Ii ,,7 
, •• 1.1 ' a.,,11.,, owtpwt 

<l>TAll.CTtll/11 ,,,,,,,,er tl>DCSCO <l>DCSC1 

•I •OFTltJ71tlNL /flNT:ll •l•DrF/JVT •I •DCSTIJI <l•JJCSF() 

t4> TA/ll £11111 <f>TAIL£T/NI 



& 
~ 
"""l 
~ 

Oo 
I w 
Vi 

"-t:J 
VJ 

w 
\Q 
<::::::> 

~ 
~ ...... 
.......... 

~ 
~ ...... 
t:1 
~ ...... 
~ 

~ 
c::::i 
~ 

~ 
OJ 

~ 

~ 
~ 
~ 
"""l 
~ 
;:::::; 
(') 
~ 

~ ...... 
~ 
"""l ...... 
~ 

~ 

Name: 
FtleName: 

Dtals output 
A 1 I BM 

Date Modt1ted: 1-JUN-1984 09:16:31.47 

•l•DLAICLl·ll 

•l•IJSCTll 
DSCTll 
I 

:r1 alALStT 

IJSCUI 
I 

:r, DIALSU 

IJSC"I 
I 

~r1 DIALIE1 

IJSCUI 
I 

!r1DIALl[l 

llSCTfl 
I 

:r1 DIALUT 

IJSC"I 
I 

!r1 DIALll[l 

DSCT71 
I 

~F'1 DIAL9ET 

IJSCTll 
I :r, DIALSET 

Prefi.x: F14_ 

Total Pages:23 Pai-ent: 8 PageNo: 9 

IJLAIFt II 
I 

•l>DCS8fJ 

!r:DJALLABEL 

DLAl£L21 

I 

!r1DULL1B£L 

OU6CL:JI 
I 

!r,DULLlBH 

~f:DlALLlBEL 

I 

!r: DJALllllEL 

I 

~F: DULLAllEL 

! r, DU.LL ABEL 

. 
!r• DJllllM:l 



Name: Keyboard output{labels} PrefLx: FiS_ 

Ft leName: A 1 IBM 
0 ate Mod t ft e d: 1 - JUN - 1 9 8 4 0 9: 1 6: 31 . 4 7 Total Pages:23 Parent: 8 Page No: 1 0 

~ FLABClll 
I 0q· ! r1 HEYLalEL ~ rLABCLll 

"""I I 
<l>OCSA~ 

('1:l 
rLABCL21 ~ r1 rk(YLUEL 

Oo I 
I !r1FKEYLAl[L rLAflCL'I v.i I 

~ rLABCl.JI ! F1 f"K[YLAIEL 
I 

"'ti !r1 FkEYL18fL rtABCL /ti/ v.i 

v.i 
\Q I 

<::::::> ! r' FKEYLAl[L ruBCL/11 

~ 
I 

ruBCLSI ~ r, rKCYLUEL 
I 

~ - : r1 HEYL ABEL rLABCL1Zf 

~ I 

'\:::> rtAllClll ! r, ra:rvLUEL 
I 

~ 
!r1flEYL18H -t:1 rLABCLTI 

~ I -~ ! r 1 HEYL ABEL 

~ 
c::i < l>rLABCLOI 

rLABCLOI 

~ 
F1rLUIELO 

~ 
~ 

~ 



Name: Tablet & Button output Prefi.x: f 16_ 

FtleName: AlIBM 

Date Mod t ft e d: 1 - JUN - 1 9 8 4 0 9: 1 6: 3 1 • 4 7 Total Pages:23 Parent: 8 PageNo: 11 

~ 
0q· 

). < 1.> TABLE TOUT! 

~ 
'""'I 
("i:) 

Oo 
I 

~ 

~ 

~ 
V:i 

~ 
\0 
c:::i 

orFBUTTONLJGHTSI 
~<t~orreuTTONLJGHTSl <I >OCSCO.lJ 

7 
r: OHLIGHTS32 

~ 
Vi -
~ 

'"\::i 
~ 

ONBUTTONL JGHTSI 

I 11--~~~~~~~~~~~~~--' 

2
F1 ONLIGHTS32

2 -t; 
~ -~ 
~ 
c:i 
~ 

.............. 
......... 
ttl 

~ TABLETOUTI 
<I >OCSFO.iJ 

f: B ITP ADO UT 
<If> TABlET/Nf_jj 

~ 
~ ("':;) 
""'i 
("i:) 
;:::: 
r") 
("i:) 

~ -("i:) ""'i 
5" ....._ 
t;..:i 



Name: De fens Prefi.x: F4_ 

FtleName: AlIBM 

Date Modi. f i. e d: 1 - JUN - 1 9 8 4 0 9: 1 6: 3 1 . 4 7 Total Pages:23 Parent: 7 PageNo: 12 

IJCJllSfJ 

,r--
1 r1 DCDECDDE !,_r----._--i'--------------------------------------'.:.:.'....:'l.'.:.:B.:.:.W.:.:.AK.:.:'D.:.£C.:.:./l.:.:./4J 

d~/JIALSI 

< 1 >8/JTTONS!N-:'J 

.~ 
"h" ..._ ____ _. 

IJCSAO 

lf'o--------------+-----------+-1-+-----+----------~f· ~1----......... --------~-----11£ />OS' 

l'-------tr------i1:r, DCDUTSUBPO~ DCSBO 

j~ !l--' f'-------iH-, _-_-_-_-_-_-_-:; o:c:s:C';;;;;f/;::::::::::::::=:=J! f' DCDUTSUBPDir 

tt--------------+-----------Hf-+----+------+-+----~J1 1l1-------------'I 
l'-------tr-t-1""~------l,:!r, DCOUTSUBPof 

,,.-------------1l1~:~:oursuaPoiH QC~CfJ 

H-----------------1------------+-iH-----l------~~-4---~1 1lf-------------'l 
i--------tr-t--t-T-te::::3-----l

1
: ! r, ocou rsu aPo~f ocsrtJ 

tt--------------+------------Hf-+----+------+-+-+-Hf--------------1_1, I ,.--------------lj! f, OCDUTSUBPOl 

l 

lfJCOSll 

'-- I 'I----" 
f• lDCCDNlROL!f------1 

111/T_l'UllTSSD 

fo MOP 



Co 
I 

~ 
\Q 

Name: Port Funct l ons Prefi.x: FS_ 

flleName: Al IBM 

Date ModLf i.ed: 1 ·JUN - 1 98 4 0 9: 1 6: 3 1 . 4 7 Total Pages:23 Parent: 7 PageNo: 13 

PORT SE, 
,.-~~~~~~~~~~~~~~~~-+~~~~~~~~~~~~~+-~~~~---!' •1--~~~~~~~~~~~~~~-'l_>_ER_R_OR_s_~~ 

! r, DCSETSUBPDflir--------

PDllTSC# 

. 1 
I . . . 
7 .. . II 

' II .. n 
II .. 
IZ II 
u .. .. 17 .. " .. " 11 H .. ll 

" H 
n 
ll .. 

('--~~~~~~~~~~~~~~~~--+~-+-~~~~~· •I---/ 
~ P'r DCSE r5UIP0lilr-----/ 

~~~~~~~~~~---1• 'I---' 
F/Jf(l/(}O) -E>==1:r. DCSCTSUIPaiir-----" .

s .
1 . .
" II
IZ
II ..
" ..
" :ti
ZI
n

.
I .
1
I .
" II
u

" ..
II ..
11
II

" H
ZI
H

•
I .
1
I .
" II
12 ,, ..
II

" 11

" It ..
ZI

H

.
I .
1

I .
" II
12
II

" 11

" It

ZI
21
H

V:i
"<::
VJ
~

~

~
~
~
("')
C)
~

~
~
C)
"""'!
~

~ ()q.

~
"""'!
~

O:i
I

~
~

"t1
V:i

w
\Q
a

~
VJ

~
~
~

t::J
~
~

~
C)

~
,..-...,_

8;
>
~

Name:
Fi.leName:

DevLce lnput
A 1 I BM

Date Modi.fled: 1-JUN-1984 09:16:31.47

l<l,OJALSI

v

l <J ,BUTTONSJNT
7

l <2' TABLET/Hf
I
l <f• TABLET/NI

v

Prefi.x: f 6_

Total Pages:23 Parent: 7 PageNo: 14

OIALSI

I I

2
frOIALSIN

2
3
4

s
I>

7
8

BIJTTONSJNI

I 1

2
f: BUTTONS32

2

TABLET/NT

1 1 E '1 >PICK_l OCAT JONI

~f: BITPAOIN
2
3

+ ~

s
I> I

j

~
~
'""'l
~

Oo
I

~
........

~
V::i
~
\0
c::>

~ v,
""'!-

~
'\:s
~
""'!-

\:)
~
""'!-

~

~
CJ
~

~
tl:l

~

~

~ ~
'""'l
~
;;::s
("')
~

~
""'!-
~
'""'! -.
~ .,..._
v,

Name:

Fi. leName:

Termi.nal Emulator

A 1 I BM
Date Modi.fi.ed: l-JUN-1qa4 09:16:31.47

/IJ#KIJDI

Total Pages: 23

I ~~-·'-'-'-'"-"_n_1 ______________________________ --1, •1-------------------.-J
_ (

2
f1UM_

2

/Ill/£ 19--"' lE¥8DAID : ~~ -==--==--:=::..===========::.-
; t--------... .
.~ :.h' .___ ___ __.

KCr6t1AllOI
_J, I

f"1 NOP

rurs1
_J, I

r, NOi'

SPCClfCYSI
_J, I

f1 NOP

tCD

· [9--
I I ... ! f" 1 L INC[D !TOA!

B:U' I• 19'-lf.>-----------..,.---i . . .
~ l•lllfl(fl

17

Prefi.x: F8_

Parent: 6

CHA/lf/O)ICHA/1(1')1 'PS:J:JO Al :1171 'ICHAlt(IOJICHJR(l:J) r

PageNo: 15

•I •Pi.OTSTA/111

•S•HCP/PI

<f•FFPLOTI

Name: Oi.sk Access Network Prefi.x: f9_

FlleName: Al IBM

Date Modi.fled: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 6 PageNo: 16

PDllCD•O> ~-----------·--------...

<D>CllllOllStJ
llFCllDP#<tl• IE>--_,,_------------------4<

111/ACO

tf'------------------------1•

llCA()ll/llARYI

Yi RCADDJSI(

F1CHOP

FIXfOJ
rl>Cll/101150

llFCHOP,•2> IEll----.,----------+;

11118CO 1101/D

1-----~1 I

F dlR ITCSTRCA~

1101150

t--------~-----"7"'"---i' •r---------------------------''-''-'-"~
F: R[ADSTl!CAft

2

Fr RESET

llCAOA!IC/11

F: R[ADOISK

ACAU. CATI llF.11

FtNOP Fr RC ADD I SK

llFU

·srr£· -.>-------1
r, RE ADD 1 sK

HOG,

F 1 H OGMC NOif

llFllHAT

t----~--------=----~· nrr-11
Fl

!r: SYNC(!)

't1CHOPIJ

<l>H_CHDPO

rl>OC/lf!iO ,

Name: Chop/CI and Company Prefi.x: Fl 1_

Fi.leName: AIIBM

Date Modi.fled: 1-JUN-1984 09: 16: 31. 47 Tota I Pages: 23 Parent: 6 PageNo: 1 7

L F21_ f!.D._ 18/

~ ChopO, CIO
0q· ~ c/.1C/O

d>CIO <0>£Rlt'OPSO <0>£RRORSO_L

~ I/ 7
(I >£RRORso) ('\:) [),,.<I .1CHOPO

<l>CHOPO t I >ERROR SO

Oo r:r 7
CI 0, H_ CI 0 «f ,) I C!O<-f 1

~ -,
w

""t1 I
V:i I
~ I
\Q

I
C)

~
V:i

~
~
~ L__na_ P_R_ 19 7
t;, SET 0
~ \cf >H_CHOPO

c/ >H_CHOP <0>£RRORSO _/
~

~
<I >ENRORSO _/

<:::> H_CJ0<-1> /

~
< f >HOST_HE:SSAG£81 J

~
<I >HOST_H£SSAGEBI

-oi;

b:i t/>J.IOAO <I >JIDAOJ

~ ~
<I >JIOACO <I >NOA CO.I .,
t/>NOfJCO < f>JIOBCO"

~
</ >/BH_ TE I <I> 18/'f_ iE I ,J.

""'I

~ <l>JIHOI <l>JIHOl,i
('\:) ~
""l
('\:)
~
(')
('\:)

~
('\:)
""l -.
~ .,.._
V:i

~

~
~

~

~ I Name>-: ChopO: CJO Preftx: f21_
;::
(") Ft leName: A 1 IBM
...... cs· Date Modlited: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 17 Page No: 18
;::

~
~
C)
"""i
;>:;--

~
i=:'
"""i
~

Oo
I

.'i.<l>CIO

f ' -t:...
~

~
~

v..i
\Q
<:::::>

~
V:i

CIO<O' E

l CHOPO,O> E
<O,£RRORSO_j_

CHOPO CIO \
).. c I >CHOPO

I I ~ I I
I 7 2

!r:CI
2 f:CHOP :CJ '\ 3

<I J£RRORSO_j_

I 4 \

I s '\. C/0<-1>~

' "
-,

...... 7

~
~
~
t:i
~ ' ./
~

~
C)

~

~
O:l

~

I
I

I
I

~
~
""'!
(":;)

Clo
I

~
V)

~
V)

w
\Q
C)

~
Vi .,....,._

~
'g

.,....,._

t;::,
~ .,....,._

~

~
~

~

~
DJ

~

~
~ (":;)
""'!
(":;)

~
("'J
(":;)

~ .,....,._
(":;)
""'!
5·_
V:i

Name: SET 0 Prefi.x: F18_

FtleName: Al IBM
Date Modtfi.ed: l·JUN-1984 09:16:31.47 Total Pages: 23 Parent: 1 7 Page No: 1 9

H_CNOPOttl> E~------------------~1

IADllDUTCtJ

t:ll1UQTCll

fllltl/#tl• ~~----..,,.....-~---1 1 1 ~ SIXTOCIGHTll

'fJ' IT r1!r:CIADUTEC21}µ ~------1Ji
n.rto ~· ;~ ·a·~:r.cwrnu

l 11£AOSfllCAHll

;t~---1· 1 r 1 f•ACAOSTROK
1

I ,,__ _____ _
II
II
IJ ::1-------...
111------. ..

/lCSCT_llSl 1uscr_CHO

HI :t::=' _d~ I

r.11rsn J J Lr.srNcc21
1

'J!llt:scr, !llt:scr,. llCSCT_HOSf_lfCSSllGCf

C>. _ l <0>£1111011$11
!Lt:llJtfJ• ~~----"---------------"*!

PllOlfPf_CNOPO

I

'r, srNcc21

::~
.. 1 ' ~ '------------1• •Lr-----------r--t-~-......,1-----'-'-'H_o_s_~_~_c_ss_11_sc_1_1~

r/X(OJ 19 tr,cDN5lANT i JI
21

SllEC_GA THE/10

-----------:.----~JI ~r----------~1
nxrn ~1 r,;nttr1_ ~I

~ L &CNfCN J

tl•KOAfl_J_

tl>llDAC-;.

t/•1108(-;.

'1>J81f_ ft:f'{,

Tll/GGCll_C'111Ylf

'--------~-~ '1---------------------1----J l f: CMARCONVE Rf

.-/.11/HDI

V)
~

V:i
~

~

~
;::s

Name: Who, Host_Message, Hostout

fi.leName: AlIBH

Prefi.x: FlO_

("')
....... c;· 0 ate Hod i. 1 i. e d: 1 - JUN - 1 9 8 4 0 9: 1 6: 31 , 4 7 Total Pages: 23 Parent: 6 PageNo: 20

;::s

~
~
a
~
(>;;--

~ 0q·
~
~
~

Oo
I

-4
~

~
V)

v...i
\Q
a ').<I >HOST_H£SSAG£BJ

~
V:i
.........

~

f HOST_H£SSAG£/ l HOST_H£SSAG£81 HOS TOUT!

I' r,NOP 11-------~~f:HOLDHESSAG~i----.,---~-1
~-------'

A_ IBH/I

E <!>IBHO!I

f: CVTASCTOIBH f:NOP

\::1
~
~ KHO!

~
J.'''llHOI
I

0
~

f:HHO_AH_I

~
b::i

~

Name: Hardcopy Prefi.x: F28_

Fi.leName: Al IBM
0 ate Modi. f i. e d: 1 - JUN - 1 q 8 4 0 q: 1 6: 3 1 . 4 7 Total Pages:23 Parent: 6 PageNo: 21

~
~
('\:) PlOTSlAllTI

Co
I

~
:'-l

~<I >PlOTSTARrt
1 I v ~f:STARTPLOT 2 E<l>HYPJI

4

""tj s
v.i 6

7
V..:l 8
\0
a 'I

10

~
11

HCP/Pl 12

t.-:i 1 i 13

~
'\::;
~
........

\::;)
~

~f:INITPLOT

.l.<S>HCP/P/ 4

I
TRUE~

s

........
~

~
C)

FFPLOTI
.l. <l>FFPlOTJ

I
f 2

f: ff PLOTTER
~

--:::::;
tt1

~

~ s ('\:)
"""l
('\:)
;::s
("')
('\:)

~
('\:)
"""! -.
~_
t.-:i

~

~ -~ ;::

~
~
("'J -c;·
~

~ -~
~
"""'i
?°';"'

&
~
"""'i
~

Oo
I

-t:...
Oo

"'i:j
~

v.,,
\Q
C)

~
~ -
~

'"b
~ -t:i
~ -~
~
~

~

~
~

~

Name: Ci ear_ lab e 1 s, Mess age _O i. s p 1 a y

ftleName: AllBH
Date Mod\.fi..ed: 1-JUN-1984 09:16:31.47 Total Pages:23

TIUC ~10----

l ClEAll_LAllEtSI

I '
t I •CLCAll_LA/IELSI

;r, SYNCC71
2
3

t t
s

:~ .
1 '

'lCHAR(IOaf_CHAll(l:SJ ic>-----1
r/X(2()) I>"

Fii(/) g:. :x: IC>------t

r/X(()) 190---""'°'------I
~----

CHAll(IO)ICHA/1{13)1'

llC$:SJfG£_DISPLA YI
CHAlt(IOJ 19'io-----..---+--IJ-1 1l _______ _,

2f': SU TD IS

CllAll(1')1CHA/t(l0)1'$t.d .,,,.,,t, ' ~ JfC

Ill. llClllfCl'I 1111 - y:::,::.-----,
11£/tOllT_ALCltTI ~

[

I I I ,;if 12 r:CCDKCATENA~
r dlOTSUCIC

2 2
r: PRINT

I I

!r: NEHFULL
t
s

• . /tClfOlll'_JfDJI/ T/Jlf I

I

~r, NENNON

t
s

Preftx: f25_

Parent: PageNo: 22

<l•DLJf/1££ 1 ·81

"\. <l•DSETll

•l>TAllt_£TOVTI

'\. , I >Orr1vrroNL /GHTSI

i

~~~~-~~~~~~J 



~ 
; 
('i:l 

Oo 
I 

~ 
:0 
~ 
V:i 
~ 
\Q 
<:::::> 

~ 
'-':l ........ 

~ 
"'tJ 
~ ........ 

t:i 
~ 
........ 
~ 

~ 
<:::) 

~ 

~ 
O:i 

~ 

~ 

~ ('i:l 
""'l 
('i:l 

~ 
(") 
('i:l 

~ ........ 
('i:l 
""'! -. 
~ .,..._ 
t,..:i 

Name: Hi.sc. 

FtleName: AlIBM 

0 ate Mod t f i. e d : 1 - JUN - 1 9 8 4 0 9 : 1 6 : 3 1 . 4 7 Total Pages:23 

CSHI 

r:HOP 

TCCOLORI 

r:NOP 

E t/>CSHTOPO 

TSCSHI 

r:NOP 

E '1 >I TE COL OllO 
SCR££NSAY£1 

r:SCREENSAVE 

Prefi.x: F26_ 

Parent: 

TOUOI 

f": USRTOf' 

HH£RRO£T£CTI 

I' f, HHHREG 

Page No: 23 

tl>£Rl?ORSO 



~ 
~ 

~ ;:;: 

~ 
;::::; 
(") 
~ ........ 
<::::> 
;::::; 

~ 
~ 

~ 
~ <::::> 

* ~ 
"""i 
~ 

Oo 
I 

Vi 
::::i 
~ 
~ 
V:i 
~ 

~ 
~ 

V:i 
~ 
~ 
~ 

;:;: 

~ 
V:i 
~ 

~ 
~ 
~ 

"'""" 
tJ 
~ 

"'""" ~ 

~ 
<::::) 

~ 

B 
tt:l 
0 

t--~-~_!_:_~_~_:_:_~_:_~_!_~_
3

_~-~-~-~-~ _J_u_:_._--_1 _q--5~4:-:1:_1 ___ = -~-~-'-4_o_-_~ _1:9:~::_~1_0 __ •_•_--_1 _-_:_~_g_-._-_s_: _· 1 ____ ---~-----_~:::~:~:-._n_i._-:_=_: ___ F_-_

1 

~---~---a~g-P.-. r-fo~-:~~------~_J-1 

'LUT' 

C/ROUT£<21 > E 

NASFILEO 

~-:1-
~ 

RASRESETO 

RASSTRO HASTCl<I 
1,,.__ __ ~----f 

r: RASTERSTRd r: RASTER 

)I----,---; I I 

I r: RESET 

J TRU£ [9---------ft;<l•SHAOIN6£NVIRONN£NTJ 

TE_O N£S£T_RSI <I> 

r:NOP 

CHAR{2l)l'{l;IH'lCHAR{27)l '{2J' [:it----~ 

CHAR(IO)ICHAR(l3)& 'PS3<f0 Al 'ICHAR{l0)8CHAR{l3) [9r-------~<O>SHAOIN6£NV/RONH£NTI 

IAS0~22 



Name: SYS340IB1 Prefl.x: Fl 

FtleName: A1340IBH 

Dai:e Hodtfi.ed: b-JUN-1984 12:09:36.66 Toi:al Pages: 1 Parent: .Page No: 

IAS0523 

~ 0q· 
~ 
""": 
("tl 

Oo 
C/ROUTC<21> E 

I 
V) 
........ 

~ 
~ 
c.-:i RASF'IL£0 RASSTRO RASTElN 
""'+-
~ 'LUT' c:ii-----1 • i----~----1 
""": 

Vl 
f:RASTERSTRd f:READDISK f:RASTER 

'< 
c.-:i 
""'+-
("tl 

~ 

~ 
c.-:i 
""'+- RASRESETO 
~ 

"\:J 
~ f:RESET 
""'+-

\:) 
~ 

TRUE ~r-------------i{f;<l>SHAOINGCNVIRONHENTJ 
""'+-
~ 

~ 
c::> 
~ 

~ 
b::l 

TLO 

l' _____ _,1~-----____,E@>I8i'f_ T£ I 
f:NDP . 

~ CHAR(IO)ICHAR(l3Jl'PS3f0 Al 3278'1CHAR(/0)SCHAR(JJ) !S>-------t@><O>SHAOING£NVJRONHENTI 

~ 
~ ("tl 
""": 
("tl 

~ 
(") 
("tl 

~ 
""'+-

~----------------------------~------~-----=----=-·~~-~~------~ 
("tl 
""": 
E· .,..._ 
c.-:i 



Vo) 

~ ..... 
("t) 

~ 

~ 
~ 
(') ..... 
c::;· 
~ 

Naiae: SYSP I 1 
fileNaiae: AlPI 
Date Hodtfted: S-JUN-1984 10:00:05.06 Total Pages:'l 

Pre'fi.x: rt 

Parent: Page No: l 
~ 

~------~------~·--~-~---. 

IAS0521 
..... 

~ ~ 
C) 0q· 
""! ~ ?°';"' ""! 

("t) 

Oo 
I 

Vi 
N 

GPJOSCTUPI 

f:SETUPIBH 

GP/OSCTUP3 

r ., SETU···· 
1 

t:i 
t'lj 
C"'l 

~ 
""! 
~ 

HOSTOVTl<I> (91----------~l>Pl_Oll 
.,.._ .,.._ 
("t) .,.._ 

~ ..... 
~ 

~ 
~ 
(') 
~ 

Pl_lll<I> EJt--------------------~ 

~ 
~ ..... 
~ 

"\::$ 
~ ..... 
t:i 
!::) ..... 
~ 

~ 
C) 

~ 



Name: Assorted connecttons Prefi.x: f2_ 
ftleNarae: AlPI 
Date Modtfted: 5-JUN-1984 10:00:05.06 Total Pages:4 Parent: J'>ageNo: 2 

£S_T£1t2> : { £S_T£/t3:. 

K8HANOL£RI t I> [9 ) 

KBHAN0l£/l/ tS> : f 
• p.,..11.1 lnt•rf'•c:• 'ZCHAR( IO)ICHA/l( 13) 

,__ ___ ....,,..... ____ _,i{9t I> cs_ T£ I 

BU (9 ,__ ____________ i{9tl•0£PACr.£TO 



~ ....... 
~ 

~ 

~ 
~ 
(""') ....... -. 0 
~ 

~ ....... 

~ :;s 
0 
'""'l 

~ ?;--
~ 

Co 
I 

Vi 
:t:.. 
\:J 
~ 
\) 

~ 
'""'l 
~ ......... ......... 
~ ......... 

~ ....... 
~ 

~ 
~ 
(""') 
~ 

~ 
0 
~ ....... 

~ 
~ 
~ ....... 

\:J 
~ ....... 
~ 

~ 
0 
:;s 

Narae: Parallel ClROUTE,CHOP,CI Prefix: f3_ d 
ft leNarae: A 1 PI 
Date Hodlfled: 5-JUN-1984 10:00:05.06 Total Pages:4 Parent: PageNo: 3 
i---------

11111/NHITUI 

,,------1• 
•1t•wtl,._ 6Tfo _, Ito -••Pf•6I• r.,,,.. • ID----+------11,, CG•STAIT 

&/lllllTC311 
1+'-'.;;-_Il-"#---,..---11 1 ll_CNf1'311 __ ·•-· ...... __ !r.c11tOun:u1~·~::::::::::::: ____________________________ .[~-----. 

F:CllOP 

$1.XTOC/611'311 . 
:t1CYUTGI 

I 't-T-------f----------JI 
'II' 

'/!llCSCT1/llCSCT1' 

------1• 
rutl'J z,, CO.STAii? 

--------f0.1•11111111 

---------11<>-l•llDA&I 

----------40<1•11/JJICll 

----------ID<l•CLTCI 

-----------tO<llTll6U/IJOllf'll 

:------------10.l•lllHll 

f1 IUDSTl[l.111--+-------+-

I 

1 r, IYllC(2) 

PllOllP T_CH()P311 

• ---;i 
2 F1 SYllCI 2} z 

( 

§
l>CLCAll__l.AICLSI 

lllOlll 

Alllt/11&1 

-i,>t.wr()RNAT/11111 

---------~---------------------------------------------~~~ _J, 



~ 0q· 
~ 
""I 
('\) 

Oo 
I 

v... 
v... 

t) 
t"t'j 
CJ 

~ 
""I 
~ .,.._ .,._ 
('\) .,.._ 

~ ....... 
('\) 

~ 
~ 
("') 
('\) 

~ 
t.-:i ....... 

~ 
"\::j 
~ ....... 
t) 
~ 
....... 
~ 

~ 
C) 

~ 

::::0 
~ ('\) 
""I 
('\) 

~ 
("') 
('\) 

~ ....... 
('\) 
""I ....... 
~ 
f;;"' 

Name: HOSTOUT2,HOST_HESSAGE2 
ftleNa11e: AlPI 
Date Hodtfted: S-JUN-1q34 10:00:05.06 Total Pages:4 

TR I GGCll_ CONY82 I 

ClllOUTCD~/8> EJt---------11 I 
2F:CHARCONVERT 

R£SET_H05 T_N£SSAG£ I' I> e-..----------------...1 

P4R£QU£STOt2J EJt------------------...1 

HOST_llCSSAG£21 HOS T_H£SSAG£81 I 

------..... • 
F:NOP 

NH021 

ClllOUTCOc/9> l9r-----11• 'I 
F:WHO_AM_I 

!r:HOLO"ESSAGE 
4 

s 

Preftx: f4_ 

Parent: Pa9eNo: 4 

HO.UOUT2/ 

F:NOP 

t 
'-------------------------------------------____ J 

---------------------------------- __ _I 





RM9. INITIAL STRUCTURES 

CONTENTS 

1. RUNTIME SYSTEM....................................... 1 

1.1 The Graphics Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1.1 Data Structure Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.2 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Initial Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Code for Initial Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. co:NFIG.DAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

3. NAME SUFFIXING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

4. USING THE CONFIGURE MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 7 



Section RM9 

Initial Structures 

This section discusses initial data structures and name suffixing including the sys­
tem configure mode and its uses. The first section describes a runtime system and 
the initial data structures that are built by the PS 390 firmware. Following sections 
discuss the configure mode and name suffixing procedures. 

Information for systems using DEC and IBM host computers is included. It is noted 
where the information for each configuration may be different. 

1. Runtime System 

The PS 390 is a runtime system, it does not act like a personal computer or 
provide a standard programming environment. The PS 390 does not have a 
file system, editor, compiler, or symbolic debugger. The runtime system is 
composed of PS 390 functions linked together to form the system function 
network. A PS 390 function can be viewed as self-contained program. With 
minor exceptions, it has no access to disk files, and deals with the world via 
messages and queues, one transaction at a time. 

1.1 The Graphics Control Program 

The Graphics Control Program is the collection of software that executes 
whenever the PS 390 is used as an interactive computer graphics terminal. 
The 68000 startup code loads the control program into local JCP memory. 

The Graphics Control Program is made up of: 

• Data structure definitions 

• Scheduler 

• Functions 

Initial Structures RM9-l 



1.1.1 Data Structure Definitions 

The data structures are set up by Pascal procedures that define and make 
use of the following: 

• Named entities; data structures that can be named and referenced. 

• Alpha block; data structure that contains the location of a named 
entity. 

• ACP state; contains the parameters the define the context of the dis­
play processor at any given time. 

1.1.2 Scheduler 

The PS 390 runtime system contains a scheduler that is activated once the 
initialization code on the firmware has been loaded. The scheduler loops to 
schedule and execute functions. When a function is instanced, it is assigned 
a default priority for execution. The scheduler uses this priority number to 
determine which active function will be scheduled next to be executed. 

1.1.3 Functions 

The PS 390 intrinsic system and user functions are described in Sections 
RM2 Intrinsic Functions and RM3 Initial Function Instances. 

1.2 Initial Data Structures 

RM9-2 

The initial data structures are built by the CONFIG.DAT file. These struc­
tures set up the framework that allow you to build displayable data struc­
tures. The initial data structures form the top nodes of a display structure 
that the JCP and ACP traverse to generate the display during each cycle. 

Reference Mate rials 



1.3 Code for Initial Data Structures 

The code that supports the initial data structure follows. 

Initial Display Data Structure: 

SCO$ := SET DISPLAYS ALL ON 
THEN VPF1$ 

VPF1$ :=VIEW HORIZONTAL 
THEN HVP1$; 

HVP1$ := VIEW HORIZONTAL 
THEN CSMTOPO 

CSMTOPO := SET CSM OFF 
THEN GT0$ 

SEND TRUE TO <-l>HVP1$ 

-1:1 VERTICAL 

-1:1 VERTICAL 

GTO$ := INSTANCE OF GVPO$, TVPO$, MDO$ 

Graphics Display Structure: 

-1:1 INTENSITY 0:1 

-1:1 INTENSITY 0:1 

GVP0$ :=VIEW HORIZONTAL = -1:1 VERTICAL = -1:1 INTENSITY 0:1 
THEN PICK_LOCATIONl; 

PICK_LOCATIONl: := SET PICK LOCATION = 0,0 .01, .01 
THEN GCURO$; 

GCURO$ := INSTANCE WB$1, CT1$, 
WB$! := WRITEBACK 

THEN GD0$; {All Display Commands append to GDO$} 
CT1$ :=TRANSLATE BY 0,0,2 

THEN CURSORl; 
CURSORl :=VECTOR LIST ITEMIZED N=lO 

p .035, .035 1 -.035,-.035 p -.035, .035 1 .035,-.035 
p .035, .035 1 -.035,-.035 p -.035, .035 1 .035,-.035; 

Terminal Emulator Display Structure for DEC VflOO: 

TVP0$ :=VIEW HORIZONTAL= -1:1 VERTICAL = -1:0 
THEN TENOSLAVEO$; 

TENOSLAVEO$ := SET DISP ALL ON 
THEN TECSMO; 

TECSMO := SET CSM OFF 
THEN TECOLORO; 

TECOLORO := SET COLOR 240.0, 1.0 
THEN TD0$; {The Terminal Screen is appended to TDO$} 

Initial Structures RM9-3 



RM9-4 

Terminal Emulator Display Structure for IBM 3278: 

IVPO~ := CHAR FONT IMBFONT$ 
THEN ITENOSLAVEO$; 

ITENOSLAVE0$ := SET DISP ALL ON 
THEN ITECSMO; 

ITECSMO := SET CSM OFF 
THEN ITECOLORO; 

ITECOLORO := SET COLOR 240, 1 
THEN IBMSCR0$; 

IBMSCRO$ INSTANCE IBMSCO$, IBMLINE$; 
IBMLINE$ := VEC N = 2 -1, -.88 1, -.88; 

Crash Message Display Structure: 

CRASH_MSGS$:=BEGIN_STRUCTURE 
IF LEVEL 17 THEN C17$; 
IF LEVEL 15 THEN C16$; 
IF LEVEL 16 THEN C16$; 
IF LEVEL > 17 THEN C16$; 
IF LEVEL < 0 THEN C16$; 
IF LEVEL 0 THEN CO$; 
IF LEVEL 1 THEN Cl$; 
IF LEVEL 2 THEN C2$; 
IF LEVEL 3 THEN C3$; 
IF LEVEL 4 THEN C4$; 
IF LEVEL 5 THEN C5$; 
IF LEVEL 6 THEN C6$; 
IF LEVEL 8 THEN C8$; 
IF LEVEL 9 THEN C9$; 
IF LEVEL 10 THEN CA$; 
IF LEVEL 11 THEN CB$; 
IF LEVEL 12 THEN CC$; 
IF LEVEL 13 THEN CD$; 
IF LEVEL 14 THEN CE$; 

END_STRUCTURE; 
C16$:=CHAR 'Unknown crash'; 
CO$:=CHAR 'Mass memory Exhausted'; 
C1$:=CHAR 'OKINT/NOINT imbalance'; 
C2$:=CHAR 'Free block size invalid'; 
C3$:=CHAR 'Attempt to activate non-function or nil'; 
C4$:=CHAR 'NEW call in Nomemsched failed to find memory'; 
C5$:=CHAR 'Attempt to queue where fen already waiting'; 
C6$:=CHAR 'Systemerror'; 
C7$:=CHAR 'TRAP7'; 
C8$:=CHAR 'Mass Memory Error'; 
C9$:=CHAR 'TRAP9'; 

Reference Materials 



CA$:=CHAR 'Multiple DISPOSE of same block'; 
CB$:=CHAR 'Block exponent not big enough'; 
CC$:=CHAR 'TRAP C'; 
CD$:=CHAR 'PASCAL Error'; 
CE$:=CHAR 'PASCAL Error'; 
C17$ :=CHAR 'Unexpected exception'; 

Setup Mode Display Structure: 

SVP0$ :=VIEW HORIZONTAL= -1:1 VERTICAL -1:1 

THEN SZO$; 
STCSMO := SET CSM OFF 

THEN SSO$; 
SSO$ := CHAR SCALE 0.03 

THEN SSO$; 
SSO$ := INSTANCE OF 

S10$, S20$, S30$, S40$, S50$, S60$, S70$, S80$, S90$; 
S10$ .- CHAR -1,. 9 'SETUP'; 
S20$ CHAR -1,. 8 

, , . .- ' 
S30$ CHAR -1,. 7 'F2-SRM :T F3=Awrp:F F4=ANSI:T F5=VT52:F , . .- ' 
S40$ CHAR -1,. 6 'F6=KPM :F F7=CKM :F F8=Cnum:T F9=Knum:T , . .- ' 
S50$ CHAR -1,. 5 

, , . .- ' 
S60$ .- CHAR -1, .4 'FlO= Define breakkey : "V , . 

' 
S70$ CHAR -1,. 3 'Fll= Move TE viewport, lower left corner , . .- ' 
S80$ CHAR -1,. 2 'Fl2= Move TE viewport, upper right corner , . .- ' 
S90$ .- CHAR -1, .1 'Mode: TE Term: On Graf: On , . 

' 
SAO$ .- CHAR -1, .0 'Press special key to be breakkey, Fl to exit. 
SB0$ CHAR -1, .0 'Move corner with cursor keys, Fl to exit. , . .-

2. CONFIG.DAT 

CONFIG.DAT is a file on one of the PS 390 diskettes. This file is read and 
processed during system boot. It contains commands to create the initial 
function instances and display structures. Before the CONFIG.DAT file 
builds any of the data structures, the system must first read the file. The 
firmware creates a simple function network that consists primarily of an 
instance of the F:READDISK and the F:CI(n) functions. The function 
network then reads the CONFIG.DAT file from the diskette. The command 
interpreter is in the privileged configure mode while reading the 
CONFIG.DAT file. 

Initial Structures 

, . 
' 

RM9-5 



The command interpreter that processes the CONFIG.DAT file is separate 
and distinct from the command interpreter that handles user commands. 
These user command interpreters are initially in a non-privileged command 
mode. 

3. Name Suffixing 

RM9-6 

Whenever you name anything or instance a function, the command inter­
preter assigns a specific suffix to that name, unless the command inter­
preter is in configure mode. The suffix is determined by the suffix that has 
been assigned to that instance of the command interpreter. Name suffixing 
is used to separate system level names and instances from user-originated 
names and instances. 

In command mode, all suffixing is done by the command interpreter. How­
ever, in configure mode the command interpreter does not assign suffixes, 
so you are responsible for correctly suffixing any function or structure that 
is instanced when using system-level or user-level names. 

The default suffix assignments for the PS 390 are as follows: 

• 0 - suffix for system related functions. Names with this suffix are 
not directly accessible to the user outside of configure mode. 

• 1 - suffix for user-defined and accessible names. All names with 
this suffix are accessible to the user. 

If you are creating an instance of the command interpreter, you must name 
that instance with the correct suffix to assure the other functions created by 
this command interpreter will have the appropriate suffix. Only characters 
0-7 are allowed as suffixes to the name of the command interpreter 
instance. 

If the command interpreter used is suffixed with a 0 or a 1, it will suffix 
names that it creates with a 1. If it is suffixed with 2 or 3, it suffixes names 
it creates with a 3. If it is suffixed with 4 or 5, it suffixes names it creates 
with a 5. If it is suffixed with 6 or 7, it suffixes names it creates with a 7. 

General system names are usually distinguished from all other names with 
the $ suffix. 

Reference Materials 



NOTE 

When the F:CI(n) function is instanced, the function 
creates PICK[ suffix]. Therefore, the command inter­
preter should be created before downloading the re­
maining program, or given a suffix that will create the 
PICK[suffix] used in the program. If this is not done, 
all connections from PICK[suffix] that were made be­
fore instancing will be lost. 

4. Using the Configure Mode 

To access system-level functions, you must be able to access any name, 
regardless of the suffix. To do this, you enter the privileged configure 
mode. In this mode you have the capability of reconfiguring system func­
tions. Use the following command to enter configure mode while in the 
normal mode of operation: 

CONFIGURE password; 

where password is the string defined by the setup password command (re­
fer to Section RM 1 Command Summary). If no password has been defined 
(the default case), any string can be entered. 

Since the command interpreter is in configure mode, you must explicitly 
include suffixes on any names to affect a specific user. For example, if the 
SITE.DAT file (read from the diskette when the command interpreter is in 
configure mode) contains commands to send a site message to FLABELO, 
the appropriate suffix is included at the end of the name and the commands 
in the SITE.DAT file appear as: 

SEND 'E&S System 11, Site Manager - Scot Jones' to <1> FLABELOl; 

Initial Structures RM9-7 





RMlO. TERMINAL EMULATOR 

MODES AND FUNCTIONS 

CONTENTS 

1. ANSI MODES OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.1 Definition of Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 SET and RESET - SM, RM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Send-Receive Mode (SRM) - Local Echo/Nolocal Echo . . . . . . 4 
1.4 Send-Receive Mode (SRM) Escape Sequences . . . . . . . . . . . . . . . 5 
1.5 ANSI - VT52 Mode Escape Sequences . . . . . . . . . . . . . . . . . . . . 5 
1.6 Directional Cursor Keys - (DECCKM) . . . . . . . . . . . . . . . . . . . . . 5 
1. 7 Cursor Key Mode Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . 6 
1.8 E&S Private ANSI Commands for Function Keys, 

Numeric Keypad and Cursor Keys . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.9 Values Appearing at KBhandler<9>: . . . . . . . . . . . . . . . . . . . . . . . 9 
1.10 Numeric Keypad - (DECKPNM and DECKPAM) . . . . . . . . . . 9 
1.11 Numeric Keypad Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . 10 
1.12 Escape Sequences that Affect Screen Display . . . . . . . . . . . . . . . 11 
1.13 Cursor Movement Command Escape Sequences . . . . . . . . . . . . . 11 
1.14 Index, Next Line, and Reverse Index Command Escape 

Sequences (IND, NEL, RI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
1.15 Erase Commands Escape Sequences (ED, EL) . . . . . . . . . . . . . . 13 
1.16 Set Top and Bottom Margins Command Escape Sequence 

(DECSTBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
1.17 Set Graphic Rendition Command Escape Sequences (SGR) . . . 14 
1.18 Report to the Host Command Escape Sequences (CPR, DSR) 15 
1.19 VT52 Command Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . 15 



2. PS 390 TERM:INAL EMULATOR FUNCTION NETWORK . . . . . 17 

2.1 Keyboard Manager - (KBhandlerl) . . . . . . . . . . . . . . . . . . . . . . . . 17 
2.2 Terminal Emulator Display Handler (F:VTlO) - ES_TEl . . . . . . 18 
2.3 Terminal Emulator Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
2.4 TE Initial Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3. KEYBOARD COMMUNICATION MODES . . . . . . . . . . . . . . . . . . . 21 

3.1 Keys and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
3.2 Using the SITE.DAT File to Change Features 

of the Terminal Emulator................................. 23 
3.3 Using the SITE.DAT To Send Control Sequences 

to the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

4. IBM 3278 TERM:INAL EMULATION . . . . . . . . . . . . . . . . . . . . . . . 27 

4.1 Overview of the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 
4.2 Keyboard Communication Functions and Modes . . . . . . . . . . . . . 27 
4.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
4.4 Indicator Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
4.5 Setup Mode for the Terminal Emulator . . . . . . . . . . . . . . . . . . . . . 30 
4.6 Using the SITE.DAT File to Change Features 

of the Terminal Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

TABLES AND FIGURES 

Table 10-1. Cursor Key Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Table 10-2. Keypad Transmissions in ANSI Mode . . . . . . . . . . . . . . . 10 
Table 10-3. Keypad Transmissions in VT52 Mode . . . . . . . . . . . . . . . 11 
Table 10-4. Keys, Modes, and Outputs . . . . . . . . . . . . . . . . . . . . . . . . 23 
Table 10-5. SETUP Toggling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 24 

Figure 10-1. F:IBM_KEYBOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Figure 10-2. F:IBMDISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

ii 



Section RMlO 

TerIDinal EIDulator 

Modes and Functions 

This section discusses the PS 390 terminal emulator for both the DEC VTl 00 and 
the IBM 32 78 systems. Each terminal emulator is discussed from several perspec­
tives. Sections 1, 2, and 3 will discuss VT100 terminal emulation, and section 4 
will cover IBM 3278 terminal emulation. 

Section 1 covers the ANSI modes and control sequences that are used to imple­
ment the DEC VTl 00 terminal emulation capabilities of the PS 390. Many of 
DEC's private sequences and modes for the VT100 are referred to in this section. 
More information on these sequences and modes is found in DEC's VT100 User 
Guide (EK-VTlOO-UG-002). 

Section 2 covers the system functions that form the terminal emulator network and 
how data is received and passed between them. 

Section 3 discusses the three communication modes of operation of the keyboard 
and how certain keys are translated within these modes. Operator information for 
the three communication modes used by the PS 390 keyboard is covered in Section 
IS3 Operation and Communication. 

Section 4 discusses the PS 390 IBM 32 78 terminal emulator. This section covers 
the system functions that form the terminal emulator network and how data is 
received and passed between them. The TE is also discussed in terms of the three 
communication modes of operation of the keyboard. Operator information for the 
three communication modes used by the PS 390 keyboard is covered in Section 
IS 3 Operation and Communication. 

Refer to the IBM publication, IBM 3270 Information Display System 3278 Display 
Station Operator's Guide (IBM #GA27-2890-3), for information on the use and 
operation of the PS 390/IBM terminal and keyboard. 

The terminal emulator facility has characteristics and features that can be changed 
fairly easily by system programmers. Information for changing and adapting these 
features for both the DEC and IBM terminal emulators will be covered throughout 
the section. 

Terminal Emulator RM 10-1 



1. ANSI Modes of Operation 

RMJ0-2 

The PS 390 operates under ANSI (and certain VT52) modes wherein it 
recognizes and responds to certain coded sequences whose syntax and 
semantics are in accordance with ANSI specifications. These modes 
determine how other coded sequences are to be interpreted and how the 
terminal will respond in certain situations. 

Escape sequences are interpreted as control functions that set the mode of 
operation, (i.e. sending a particular escape sequence from the host to the 
terminal will determine whether the numeric keypad on the PS 390 
keyboard generates the numeric value of the keycaps or the escape 
sequences that are used for EDT editing commands). The interpretation of 
the escape sequence is dependent on the mode in which the terminal is 
operating. The modes can be set or reset by sending escape sequences from 
the host to the terminal. 

It is difficult to categorize the modes in a straightforward manner because 
some of them are dependent on the settings of other modes: if the ANSI 
(VT100) mode is set to FALSE (or OFF), then logically, the terminal will 
not be able to respond to any other ANSI control sequences. Some of these 
modes are standard to the DEC VTl 00, and some are specific to the 
PS 390. The modes and the escape sequences that can be used to set them 
will be discussed in later sections. The list below gives some idea of the 
modes and what they do. 

• Send-Receive Mode (SRM (Local echo/Nolocal echo)) - determines 
whether keyboard input will be echoed to the display. 

• ANSI Mode (DECANM) - determines whether the PS 390 will gen­
erate and respond to standard ANSI (VT100) escape sequences. 

• VT52 Mode - allows the PS 390 to recognize VT52 coded 
sequences. 

• Keypad Numeric Mode (DECKPNM) - causes the numeric keycap 
values to be sent from the numeric keypad to the host. 

• Keypad Application Mode (DECKPAM) - causes the keys on the 
numeric keypad to transmit an escape sequence which begins with 
<ESC>O to the host. 

• Cursor Key Mode (DECCKM) - enables the cursor keys to transmit 
the ANSI control sequences that cause the cursor movements indi­
cated on the cursor keycaps. 

Reference Materials 



The modes listed previously, as well as other modes that are specific to the 
PS 390, can be changed using the terminal emulator SETUP facility. A defi­
nition of these modes, their defaults, and how to change them is discussed 
in Section /SJ Operation and Communication. 

1.1 Definition of Escape Sequences 

An escape sequence is a sequence of characters that is used for control 
purposes to perform a control function and whose first character is the 
escape <ESC> (the ASCII X" lB") control character. Escape sequences are 
used to set and reset modes, as well as tell the terminal how to respond to 
coded sequences. These characters are not displayed as text on the screen, 
but instead cause the terminal to perform some action or change some inter­
nal parameter of operation. Control sequences are also used to change or 
define characteristics of the terminal. A control sequence is an escape se­
quence that provides supplementary controls and begins with the control 
sequence introducer (CSI). In VT100 emulation, the CSI is <ESC>[. 

The sequences that the terminal emulator deals with take two general 
forms: those that may have parameters, and those that do not. Those not 
having parameters take the form <ESC>c, where c is a single character. 
Those that may have parameters take the form: 

where: 

<ESC>[Pl;P2; ... Pnc 

<ESC>[ is the control sequence introducer. 

Pl. ... Pn are the parameters (none need be present). 

; is used to separate parameters. 

c is the final character that determines which control sequence is 
being defined. 

The parameters are numbers expressed in their ASCII form. In sequences 
that use private or non-standard parameters, the first character of the 
parameter string is "?" for DEC private sequences and ">" for E&S private 
sequences. 

Terminal Emulator RMJ0-3 



1.2 SET and RESET - SM, RM 

The SET and RESET control sequences are used to set and reset certain 
modes of the terminal. These control sequences for setting or resetting these 
modes are sent from the host. The modes that can be set or reset are listed 
below, along with the set and reset escape sequences. 

• Send-Receive Mode (SRM) 

• ANSI-VT52 (DECANM) 

• Cursor Key Mode (DECCKM) 

• E&S private sequences 

The SET and RESET control sequences are: 

SM: <ESC>[Pnh 

RM: <ESC>[Pn/ 

where n is the parameter that determines which mode is to be set, i.e., 

<ESC>[?lh 

would set the Cursor Key mode (DECCKM). 

1.3 Send-Receive Mode (SRM) - Local Echo/Nolocal Echo 

RMJ0-4 

The SRM mode can be set or reset from the host by sending the proper 
control sequence, by using the SETUP facility of the terminal emulator 
package, or by including the appropriate ASCII characters in the SITE.DAT 
file. (Refer to Section !SJ Operation and Communication for SETUP, or to 
section 3.2 of this guide for information on the SITE.DAT file.) This mode 
determines whether the screen receives the input from the keyboard on the 
host line, or from a PS 390 system function. If the host line is half duplex, 
the host does not echo the keys as they are sent from the TE to the host. 
This mode must be reset so that the characters that are received by the TE 
from the keyboard will be displayed on the screen. 

If the line to the host is full-duplex, the host retransmits the keys it receives 
from the keyboard back to the terminal, and they are then displayed on the 
screen. In this case, SRM should be set so that the characters will not ap­
pear on the screen twice: once as they are keyed in, and once as they are 
received back from the host. 

Reference Materials 



1.4 Send-Receive Mode (SRM) Escape Sequences 

"12" is the parameter that designates SRM. 

<ESC>[12h SET SRM. Do not send keyboard input to the display. 

<ESC>[12l RESET SRM. Send keyboard input to the display, with 
[CR] (Carriage Return) displaying as [CRLF] 
(Carriage Return-Line Feed). 

1.5 ANSI - VT52 Mode Escape Sequences 

The ANSl-VT52 modes can be set or reset with the (SM/RM) control 
sequences. The VT52 set state causes VT52 compatible escape sequences to 
be interpreted and executed. The ANSI set state causes only ANSI (VT100) 
compatible escape sequences to be interpreted and executed. The 
ANSI-VT52 modes are private, using a private string parameter. The first 
character in the string must be "?", with "2" designating ANSI-VT52 mode. 
The recognition of VT52 sequences may be turned off by using the <ESC>< 
sequence when in the VT52 mode. 

<ESC>[?2h 

<ESC>[?2l 

SET ANSI mode. Escape sequences will be interpreted 
as ANSI; keys will be translated accordingly. 

SET VT52 mode. Escape sequences will be interpreted 
as VT52; keys will be translated accordingly. 

1.6 Directional Cursor Keys - (DECCKM) 

The four directional cursor keys of the keyboard have a single mode that 
may be set or reset using the SM/RM control sequences. The Cursor Key 
mode is similar to DEC's DECCKM. When this mode is reset (the default at 
power-up), the cursor keys transmit the ANSI control sequences that cause 
cursor movement as indicated by the arrows on the keycaps. When the 
Cursor Key mode is set, the keys are in an application mode, and like the 
numeric keypad, transmit escape sequences. 

When the VT52 mode is in effect, the sequences have no intermediate char­
acters, and are the same regardless of the setting of the Cursor Key mode. 
The following table shows what is transmitted in the Reset (RM) and Set 
(SM) modes. 

Terminal Emulator RMJ0-5 



Table 10-1. CURSOR KEY Transmission 

CURSOR VT52 (SET - ANSI MODE ANSI MODE 
KEY MODE (RESET) RESET MODE SET MODE 

Up <ESC>A <ESC>[A <ESC>OA 
Down <ESC>B <ESC>[B <ESC>OB 
Right <ESC>C <ESC>[C <ESC>OC 
Left <ESC>D <ESC>[D <ESC>OD 

1. 7 Cursor Key Mode Escape Sequences 

The Cursor Key mode is also a private mode and uses the private parameter 
string. The first character in the string must be "?". "1" is the parameter 
that designates Cursor Key mode. 

<ESC>[?1h 

<ESC>[? 11 

SET Cursor Key Mode. Cursor keys will now cause 
<ESC>Oc sequences to be sent. 

RESET Cursor Key Mode. Cursor keys will now cause 
the <ESC>[c sequences to be sent. 

1.8 E&S Private ANSI Commands for Function Keys, 
Numeric Keypad and Cursor Keys 

RMl0-6 

The Function keys, the numeric keypad, and the cursor keys can be placed 
under the control of the user-application program. The modes to do so may 
be set or reset using E&S private ANSI commands. 

For example, when Fkeys Always is set, the output of the Function Buttons 
is always sent to FKEYS<l>. When the mode controlling the routing of the 
output of the numeric keypad or the cursor keys is set, the numeric value 
(as input to function networks) of these keys are available to PS 390 
function networks in any of the three communication modes (Terminal 
Emulator, Command, or Local). These keys (numeric keypad or cursor) 
cause integers to appear at output<9> of KBhandler. (Note: KBhandler is an 
instance of the function F:K2ANSI.) When reset, the key values will be sent 
through KBhandler to the host, the command interpreter, SPECKEYS, etc., 
depending on the communication mode of the keyboard. 

Multiple parameters are allowed per command, i.e., <ESC>[>10;11;12h 
would cause all function keys, cursor keys, and keypad keys to go to the 
user application. 

Reference Materials 



ANSI SEQUENCES 

<ESC>[>2h 

<ESC>[>3h 
or 

<ESC>[>lh 

<ESC>[>4h 

<ESC>[>5h 

<ESC>[>6h 

<ESC>[>7h 

<ESC>[>8h 

<ESC>[>9h 

Terminal Emulator 

DESCRIPTION 

Set no/local echo. The TE will not locally echo 
keys. When reset, the TE locally echoes keys. 

Set auto-wrap. The TE adds <CRLF> if it receives 
more than 80 characters without getting <CRLF>. 
When reset, the TE puts additional characters in 
column 80, overwriting the last one. 

Set ANSI. The TE recognizes ANSI control 
sequences. When reset, the TE responds like a 
teletype terminal. When the reset sequence is sent 
from the host to the PS 390, all further ANSI 
commands are ignored (including <ESC>[>41). 

Set VT52. The TE will recognize VT52 control 
sequences. When reset, the TE will not recognize 
VT52 control sequences. 

Set KPM. The numeric keypad sends control 
sequences. When reset, the numeric keypad sends 
numbers. 

Set CKM. The cursor keys send control 
sequences. When reset, the cursor keys send 
cursor control sequences. 

Set Cnum. The numeric keypad sends numbers in 
CI mode. When reset, the numeric keypad sends 
tVc in CI mode. 

Set Knum. The numeric keypad sends numbers 
in KB mode. When reset, the numeric keypad 
sends t V c in KB mode. 

RMJ0-7 



RMJ0-8 

ANSI SEQUENCES 

<ESC>[>lOh 

<ESC>[>llh 

<ESC>[>12h 

DESCRIPTION 

Set Fkeys Always. Except in TE SETUP, the 
numeric value of the Function Keys will always 
appear at FKEYS<l>, regardless of the PS 390 
communication mode. When reset, the Function 
keys become VTl 00 keypad keys. 

Set Cursor Keys Always. Except in TE SETUP, 
the numeric value of the cursor keys will always 
appear at KBhandler<9> regardless of the PS 390 
communication mode. 

Set Keypad Keys Always. Except in TE SETUP, 
the numeric value of the numeric keypad keys 
will always appear at KBhandler<9> regardless of 
the PS 390 communication mode. 

There are four other E&S private set and reset escape sequences that can be 
used to set display features of the PS 390. These escape sequences change 
the status of the displays affected by the TERM and GRAPH keys. 

ANSI SEQUENCES 

<ESC>[>13h 
<ESC>[>13l 

<ESC>[>14h 
<ESC>[>14l 

<ESC>[>lOl, etc. 

DESCRIPTION 

Turns the TE display ON. 
Turns the TE display OFF. 

Turns the GRAPH display ON. 
Turns the GRAPH display OFF. 

Reset the various modes. When reset, the keys 
function under the modes in effect. (For example, 
if "Fkeys always" is reset, and DECKPAM is set, 
the last four Function Keys will generate control 
sequences used by DEC's EDT and KED editing 
programs. 

Any of the above modes may be set or reset by entering the appropriate 
characters in the SITE.DAT file, or by sending the appropriate sequence to 
<l>ES TEL 

Reference Materials 



1.9 Values Appearing at KBhandler<9>: 

When Keypad Keys Always is set, the numeric keypad keys pass their own 
value (except 0). For instance, pressing the 5 key in Keypad Keys Always 
mode causes an integer 5 to be output from KBhandler<9>. The remaining 
keys spiral out from the "9" key: 

,, - ,, is 10 
,, ,, is 11 I 

ENTER is 12 
,, ,, is 13 
'O' is 14 

Cursor keys: 

Up cursor is 15 
Down cursor is 16 
Left cursor is 17 
Right cursor is 18 

These modes may be set or reset by entering the appropriate ASCII charac­
ters in the SITE.DAT file. For example: 

SEND CHAR(27) & '[>lOh' to <l>ES_TEl; 

would set the Fkeys Always mode. 

1.10 Numeric Keypad - (DECKPNM and DECKPAM) 

The characters or sequences transmitted by the numeric keypad are 
dependent on a number of modes and configurations that can be set by the 
programmer. Normally, the numeric keypad transmits the codes shown on 
the key caps. However, in some host applications (DEC's editor utilities 
EDT and KED), these keys need to be interpreted as program function keys 
to cause some action to take place. 

To differentiate these keys from the number and character keys on the main 
keyboard, the numeric keypad has two modes; a keypad numeric mode, and 
a keypad application mode. In the application mode, the keys transmit 
specific sequences. (Refer to Table 10-2 and Table 10-3.) 

Terminal Emulator RMJ0-9 



1.11 Numeric Keypad Escape Sequences 

RMJ0-10 

The keypad modes are set up by sending two different escape sequences 
from the host and eventually to the terminal emulator network (KBhandler). 

<ESC>> 

causes the keycap values (numeric and other) to be sent to the host when 
the keys are pressed. This is the keypad numeric mode that corresponds to 
DEC's DECKPNM. 

<ESC>= 

puts the keypad in the keypad application mode (DEC's DECKP AM). In this 
mode, pressing the keys causes them to transmit an escape sequence that 
begins with <ESC>O. 

Setting the DEC VT52 mode (as opposed to the ANSI mode) will also affect 
the translation of these keys. Table 10-2 shows what is transmitted in the 
two modes when ANSI is set. Table 10-3 shows what is transmitted in the 
two modes when VT52 is set. 

Table 10-2. Keypad Transmissions in ANSI Mode 

KEY CAP NUMERIC APPLICATION 
MODE MODE 

(DECKPNM) (DECKPAM) 

0 0 <ESC>Op 
1 1 <ESC>Oq 
2 2 <ESC>Or 
3 3 <ESC>Os 
4 4 <ESC>Ot 
5 5 <ESC>Ou 
6 6 <ESC>Ov 
7 7 <ESC>Ow 
8 9 <ESC>Oy 
- - <ESC>Om 

' ' <ESC>Ol 
<ESC>On 

ENTER [CR] <ESC>OM 

** P1(F9) <ESC>OP <ESC>OP 
** P2(F10) <ESC>OQ <ESC>OQ 
** P3(F11) <ESC>OR <ESC>OR 
** P4(F11) <ESC>OS <ESC>OS 

Reference Materials 



Table 10-3. Keypad Transmissions in VT52 Mode 

KEY CAP NUMERIC APPLICATION 
MODE MODE 

(DECKPNM) (DECKPAM) 

0 0 <ESC>?p 
1 1 <ESC>?q 
2 2 <ESC>?r 
3 3 <ESC>?s 
4 4 <ESC>?t 
5 5 <ESC>?u 
6 6 <ESC>?v 
7 7 <ESC>?w 
8 9 <ESC>?y 
- - <ESC>?m 

' ' <ESC>?l 
<ESC>?n 

ENTER [CR] <ESC>?M 

** P1 (F9) <ESC>P <ESC>P 
** P2(F10) <ESC>Q <ESC>Q 
** P3(F11) <ESC>R <ESC>R 
** P4(F12) <ESC>S <ESC>S 

1.12 Escape Sequences that Affect Screen Display 

There are a number of escape sequences that can be sent from the host 
causing some action to take place in the terminal that affect the screen 
display. These include cursor position, scrolling, deletion of text, scrolling 
regions, and selective graphic rendition. 

The following sections describe the escape sequence commands that 
implement these actions. 

1.13 Cursor Movement Command Escape Sequences 

The cursor movement commands UP, DOWN, FORWARD and BACK are 
identical in form except for the final character. They take the form 

<ESC>[Pc 

where P is the number of positions to move, and c is A for UP, B for 
DOWN, C for FORWARD, and D for BACK. If Pis 0, 1, or absent, it is 
interpreted to be 1. 

These sequences, with P absent, are generated by the cursor keys when the 
Cursor Key mode is reset. 

Terminal Emulator RMJ0-11 



If a given cursor command causes the cursor to move out of the display 
area, the cursor is set at the edge of the display area in the direction of the 
move. Scrolling does not take place. If the cursor were on the bottom line, 
and the TE received <ESC>[26B, nothing would happen. The cursor would 
remain on the bottom line, and no scrolling would take place. 

<ESC>[PA CUU - Move the cursor P lines upward. 

<ESC>[PB CUD - Move the cursor P lines down. 

<ESC>[PC CUF - Move the cursor P columns forward. 

<ESC>[PD CUB - Move the cursor P columns back (left). 

The cursor position and horizontal vertical position (CUP, HVP) commands 
take the same form except for the final character. They take the form 

<ESC>[Pl;PcC 

where Pl is the line number to move to, Pc is the column to move to, and C 
is "H" for CUP and "f" for HVP (VT100 editor function). If one of these 
commands would cause the cursor to move out of the display area, it is set 
at the edge of the display area in the direction of the move. Scrolling does 
not take place. With no parameters present, it is equivalent to a cursor to 
home action. 

<ESC>[Pl;PcH CUP - Move cursor to line Pl, column Pc. 

<ESC>[Pl;Pcf HVP - Move cursor to line Pl, column Pc. 

1.14 Index, Next Line, and Reverse Index Command Escape 
Sequences (IND, NEL, RI) 

RMJ0-12 

These commands move the cursor, but may also cause scrolling to occur. 
All of them take the form <ESC>c. 

<ESC>D IND - Move the cursor down one line, maintaining column 
positioning. If the TE is at the bottom line of the 
scrolling window when IND is received, a scroll-up is 
performed. 

Reference Materials 



<ESC>E 

<ESC>M 

NEL - Move the cursor down one line and to column 1. If 
the TE is at the bottom line of the scrolling window 
when NEL is received, a scroll-up is performed. 

RI - Move the cursor up one line, maintaining column 
position. If the TE is at the top line of the scrolling 
window when RI is received, a scroll-down is performed. 

1.15 Erase Commands Escape Sequences (ED, EL) 

The Erase in Display (ED) command takes the form 

<ESC>[PJ 

where P selects a specific erasing action. If P is absent, it is interpreted to 
be 0. 

<ESC>[J or 
<ESC>[OJ 

<ESC>[lJ 

<ESC>[2J 

Erase the display from the cursor to the end of the 
screen. 

Erase the display from the beginning of the screen 
to the cursor. 

Erase the entire screen. 

The Erase in Line (EL) command takes the form: 

<ESC>[PK 

where P selects a specific erasing action. If P is absent, it is interpreted to 
be 0. 

<ESC>[K or 
<ESC>[OK Erase from the cursor to the end of the line. 

<ESC>[lK Erase from the beginning of the line to the cursor. 

<ESC>[2K Erase the entire line. 

Terminal Emulator RM 10-13 



1.16 Set Top and Bottom Margins Command Escape Sequence (DECSTBM) 

This command allows a scrolling window to be defined. Inside the given 
scrolling window, the lines scroll as they normally would for the entire 
screen. Outside of the window, lines do not scroll. This command also 
causes the cursor to be positioned in the upper-left corner of the scrolling 
region as defined. 

The form of this command is: 

<ESC>[Pt;Pbr 

where Pt is the top line of the scrolling window, Pb is the last line of the 
sc;-olling window, and r designates this command. 

This command also requires that Pt < Pb since the scrolling window must be 
logical and contain a minimum of two lines. Should an illegal set of pa­
rameters be defined, the current setting of the window remains unchanged. 
For example, the sequence 

<ESC>[Pt;Pbr 

would make the scrolling window Pt to Pb, inclusive. 

1.17 Set Graphic Rendition Command Escape Sequences (SGR) 

The intent of this command is to make some part of the text displayed on 
the screen stand out, in contrast to the rest of the screen. The form of the 
command is 

<ESC>[Pm 

where P selects some form of graphic rendition. If Pis absent or 0, then all 
forms of graphic rendition are turned off. As the most common methods 
used to make the contrast are difficult or expensive to implement on the 
PS 390, the command is interpreted by underscoring the selected text in the 
display. 

<ESC>[Pm 

<ESC>[Om or 

(where P <> 0) Begin underscoring the text in the 
display. 

<ESC>[m Stop underscoring the text in the display 

RM 10-14 Reference Materials 



1.18 Report to the Host Command Escape Sequences (CPR, DSR) 

These commands involve a query command from the host, and a response· 
by the terminal. The query command takes the form: 

<ESC>[Pn 

where P selects the type of report requested. Two values of P are recog­
nized: 5, which is a device status report, and 6, which requests a cursor 
position report. 

The response takes the forms: 

<ESC>[On 

that means "Ready, no malfunctions detected" and 

<ESC>[Pl;PcR 

where Pl is a two-digit ASCII number giving the current line (line 1 is at the 
top) and Pc is a two-digit ASCII number giving the current column. 

Host: <ESC>[5n Please report status. 

TE: <ESC> [On Ready, no malfunctions detected. 

Host: <ESC>[6n Please report active (cursor) position. 

TE: <ESC>[Pl;PcR Cursor is at line Pl, column Pc. 

1.19 VT52 Command Escape Sequences 

All VT52 commands in the PS 390 Terminal Emulator, except one, take the 
form: 

<ESC>c 

The exception, Direct Cursor Addressing, is discussed in the last paragraph 
of this section. 

<ESC>A Move cursor up one position. Do not scroll. 
<ESC>B Move the cursor down one position. Do not scroll. 
<ESC>C Move cursor right one position. 
<ESC>D Move the cursor left one position. 

Terminal Emulator RM I 0-15 



RMJ0-16 

<ESC>H Move cursor to line 1, column 1. 
<ESC>I Reverse line feed; reverse scroll if at top. 
<ESC>J Erase to end of screen. 
<ESC>K Erase to end of line. 
<ESC>= Enter alternate keypad mode. 
<ESC>> Exit alternate keypad mode. 
<ESC>< Enter ANSI mode. 

Direct Cursor addressing requires a 4-character sequence. The first two 
characters are <ESC> Y. The next two characters indicate the line and the 
column to move to. The desired number is obtained by subtracting 31 (Hex 
1F or Octal 37) from the ASCII character code of the character. The first 
character, indicating the line, will be in the range of "!"·(line 1) to "8" (line 
24), and the second character, indicating the column, will be in the range of 
"!" to "p" (column 80). For example: 

<ESC>Y/@ Move the cursor to line 15, column 32. 

The keypad mode commands are always recognized apart from VT52 
emulation. 

Reference Materials 



2. PS 390 Terminal Emulator Function Network 

The actual networking of the functions that build the terminal emulator is 
shown in the system functions Section of RM2 Intrinsic Functions. This sec­
tion will discuss the three main terminal emulator functions in more detail. 

2.1 Keyboard Manager - (KBhandlerl) 

The keyboard manager takes the stream of raw bytes from the keyboard and 
distributes them to output queues (translating to ANSI control sequences if 
necessary), and toggles graphics and terminal emulator displays. 

F:K2ANSI Keyboard Manager - KBhandler1 

Inputs: 

<1>: Strings originating at keyboard; connected to data 
concentrator demultiplexing function. 

Outputs: 

<1>: To KEYBOARD 
<2>: To Setup 
<3>: To CHOP PARSE 
<4>: To host 
<5>: To display handler function 
<6>: Unused 
<7>: To FKEYS. 
<8>: To SPECKEYS 
<9>: To user function-networks 

<10>: Unused 
<11>: Unused 

Private: 

None. 

The first four outputs, <1> to <4>, are keyboard routes for different tasks 
that the keyboard performs. Output <1> ultimately goes to a user function 
network that has been connected to KEYBOARD. This output is used when 
the keyboard is in the Local (interactive) communication mode. Output <2> 
goes to the TE SETUP function; hitting the SETUP key or the CTRL SETUP 
sequence toggles this mode on and off. Output <3> is the output for the 
"Command" (CI) communication mode. It goes through a line editor 
function to chop and parse the command line for the interpretation of 
PS 390 commands. Output <4> is the Terminal Emulator (TE) output port 
and output is sent to the host computer. 

Terminal Emulator RMJ0-17 



The other outputs are minor and special purpose to some extent. Output 
<5> goes directly to the TE display data handler function for two reasons: 
the first is to pass commands resulting from the CLEAR/HOME key being 
pressed (PS 300-style keyboard only), the second is to implement the 
local-echo option of the terminal emulator. When outputting to this queue, 
the key handler expands CR (Carriage Return) to CRLF (Carriage 
Return/Line Feed). 

Output <7> sends out the proper Qinteger when an Fkey is pressed and 
input to a user function network is desired via FKEYS. 

Output <8> allows the cursor keys to be used in user function networks via 
SPECKEYS. 

Output <9> allows the numeric value of the numeric keypad keys and the 
cursor keys to be passed to user function networks. 

2.2 Terminal Emulator Display Handler (F:VTlO) - ES_TEl 

RMI0-18 

This function receives input from the host, from an error formatting 
function, and from the line editor that receives input from the keyboard in 
Command (CI) mode. The primary task of the data display handler is to 
make this input visible on the PS 390 screen. 

F:VT10 TE display handler - ES_ TE1 

Inputs: 

<l>:Qpackets, Qmorepackets. Input to the TE. 
<2>:Qstring. Answerback string. 

Outputs: 

<l>:Qpackets. Bells for the keyboard. 
<2>:Qpackets. Status, cursor reports (to host). 
<3>:Qpackets. Terminal ID (VT52 or VTlOO to host) 
<4>:Qpackets. Echoed unknown escape sequences. 

Private: 

None. 

Reference Materials 



Users may send an answerback string to input <2> of ES_TEl. When the 
host sends ENQ (UE or %X5), the answer back string is sent to the host. As 
most of the input stream will have an effect on the screen, or show up as 
displayable data, the outputs are minor. Output <1> is used to make the 
expected "beep" on receipt of a tG (the beeper is in the keyboard). 

Output <2> sends data back to the host when the function receives com­
mand sequences, such as cursor position and terminal ID (I am a VT100). 

Output <3> is used to send the correct control sequence back to the host 
that identifies the terminal. 

Output <4> is an aid for debugging and development. It sends out all 
command sequences that are received, but unknown by the function. Output 
<4> is not normally not used. When connected, it can be used to discover 
what kind of sequences a host program might be sending (that the terminal 
emulator cannot interpret) by hooking the output to a function such as 
Message_ Display. 

2.3 Terminal Emulator Setup 

TE_ SETUP changes the characteristics of the terminal emulator. 

Inputs: 

<1>: Messages from key_manager 

Outputs: 

None. 

Private: 

None. 

The SETUP function gets input from the keyboard function and uses it to 
change the characteristics of the terminal emulator as a whole. Like the 
display handler function, the setup function manipulates a display structure 
that appears on the PS 390 screen and changes it in response to actions by 
the user. SETUP is interactive and uses menus and the function keys. 

Terminal Emulator RMJ0-19 



2.4 TE Initial Data Structures 

RMJ0-20 

The data structures used by the terminal emulator are set up by the 
CONFIG.DAT file and then completed by the function TE_BUILD. 

The CONFIG.DAT file contains a color node. The color node sets the color 
for the characters displayed on the screen in the terminal emulator mode. 
The color node is accessible by sending the appropriate value to 
TECOLOR1. 

TE BUILD adds a set node, a 4x4 matrix, a matcon2 (to scale characters), 
and a set node (called the line set) to the name TDO$ that is established by 
the CONFIG.DAT file. From the line set, a structure is hung for each line 
and for the cursor. The display handler function keeps various pointers into 
this structure and uses them to get data on the screen, perform scrolls, etc. 

Reference Materials 



3. Keyboard Communication Modes 

The three modes of operation, Terminal Emulator (TE), Command (CI), 
and Local (KB) are all modes of operation that are established by pressing a 
key (or combination of keys) on the keyboard. The term "mode" is slightly 
misleading as it is used here. Mode is also used to describe the operation of 
the keypads, cursor keys, and other terminal emulator features. The modes 
referred to here are actually determined by what output port is used by the 
key_ manager. 

The command sequences that can be sent to <l>KBhandlerl to toggle these 
communication modes are: 

Command 
Local 
Terminal Emulator 

CHAR (22) & CHAR (18) 

CHAR (22) & "R" 

CHAR (22) & "r" 

For example, to boot up in Local mode, the following command would be 
placed in SITE.DAT: 

SEND CHAR (22) & "R" to <l>KBhandlerl; 

The keys and the output that are generated from the keyboard_ manager 
(KBhandler) in the three modes is discussed in the following section. 

3 .1 Keys and Outputs 

In any of the modes listed below, if Keypad Keys Always or Cursor Keys 
Always is set, the numeric value of the keys will be sent to any user func­
tion network connected to <9>KBhandler. If Fkeys Always is set, an integer 
is output from FKEYS<l>. 

In Local mode (KB), the numeric keypad keys will be translated into the 
keycap numbers if Knum is true; otherwise they will be passed out 
KEYBOARD as ASCII characters (or to output <9> as the numeric value of 
the key if Keypad Keys Always is set). Fkeys always go out the FKEYS 
queue as Qintegers and the cursor keys always go out to SPECKEYS as 
<char>xyzw (or to output <9> as <char> if Cursor Keys Always is set). 

In Command mode (CI), the numeric keypad keys will be passed as num­
bers if Cnum is true and as sequences, ( t V <char>) if Cnum is false. Output 
here is only to the CI queue. Finally, Fkeys will always go out the CI queue 
as tV<char>. 

Terminal Emulator RMI0-21 



RMJ0-22 

The Terminal Emulator (TE) mode is the most complicated. The treatment 
of the numeric keypad depends on two modes: DECKPM and DECCKM. In 
DECKPM, when false, the keys are translated to their keycap values 
(numeric mode). 

When DECKPM is true, the keys are translated into escape sequences. The 
escape sequences that are generated depend on whether VT52 is true 
(<ESC>?<char>) or false (<ESC>O<char>). 

Fkeys are translated identical to their translation in CI mode. Otherwise, the 
keys become a superset of DEC's PF keys and send out <ESC>O<char> 
sequences like the numeric keypad in DECKPM mode. 

The cursor keys send out escape sequences (unless Cursor Keys Always is 
set). If VT52 is true, the sequences are <ESC><char>. If the TE is emulating 
a VTlOO, then the sequence depends on DECCKM. If DECCKM is true, 
then <ESC>O<char> is sent, so that the cursor keys look like PF keys (or the 
numeric keypad in DECKPM mode); otherwise the sequence is 
<ESC> [<char>, which is the ANSI command sequence to move the cursor 
one place in the direction of the arrow. 

The GRAPH and TERM keys (or CTRL GRAPH/CTRL TERM sequences on 
PS 390-style keyboards) allow the user to toggle the graphics and the TE 
displays on and off. The viewports and the set are created in the 
CONFIG.DAT file. 

The SETUP key (CTRL SETUP sequence on PS 390-style keyboards) 
toggles the SETUP mode. In SETUP mode, all keys are passed to the 
SETUP function. When SETUP is pushed a second time, or the CTRL 
SETUP sequence is entered again (PS 390-style keyboards), the last use and 
queue are pulled. 

The LINE/LOCAL key (LOCAL key on PS 390-style keyboards) is used to 
multiplex the keyboard between the communication modes (except SETUP). 
Refer to Section !SJ for detailed descriptions of the key sequences used to 
change between communication modes. 

The following table is an attempt to illustrate the keys, the modes, the out­
put of the keys in the modes, and any other combinations that are useful. 
The representation in the table assumes that ANSI is set. 

Reference Materials 



Table 10-4. Keys, Modes, and Outputs 

TE MQDE Cl MQDE KB MQDE 

FUNCTION KEYS Final 4 keys used tv char Qinteger to 
w/ DECKPAM (EDT) FKEYS 

Fkeys Always Qinteger to FKEYS Same as TE Same as TE 

CURSOR KEYS 

DECCKM - Set Application functions Ignored Ignored 
to host 

DECCKM - Reset Cursor control Ignored <char> to 
(W/DECKPAM set) commands to host SPECKEYS 

Cursor Keys Qinteger to Same as TE Same as TE 
Always K.Bhandler<9> 

Numeric KEYPAD 

DECKPNM Numeric value passed Ignored Ignored 
to host 

DECKPAM Transmits control Ignored Ignored 
sequences to host 
for EDT utility 

Keypad Keys Qinteger to Same as TE Same as TE 
Always K.Bhandler<9> 

3.2 Using the SITE.DAT File to Change Features of the Terminal Emulator 

The SITE.DAT file can be used to set bootable values for the SETUP 
features of the terminal emulator. The following section gives the PS 390 
commands that can be used to change features or defaults of the PS 390 
Terminal Emulator. 

TE characteristics are changed by sending sequences to <1>KBhandler1. 
These sequences will have the same effect as if they had been keyed in the 
SETUP mode of the Keyboard and Display. (Refer to Section /SJ Operation 
and Communication for a description of the SETUP feature of the Terminal 
Emulator.) 

Terminal Emulator RMJ0-23 



RMJ0-24 

There are four groups of commands: Toggles, BREAK Key, Mode, and 
Displays, each of which is handled differently. 

• Toggles 

These are TE options that have two values, true and false or on and off. 
In SETUP, they are changed by pressing a single Function Key that 
changes the present value to its opposite. To put a command in the 
SITE.DAT file so that the TE feature comes up in its desired value at 
bootup, the toggling sequence must be sandwiched between two se­
quences that represent the pressing of the SETUP key. The header and 
trailer sequence for the SETUP key is CHAR(22) &. "o". 

The following chart gives the SETUP name, the definition, the default 
value, and the PS 390 command sequence to change the default. 

Table 10-5. SETUP Toggling Sequence 

Setup Default 
Name Definition Setting Sequence to toggle 

SRM Local Echo OFF CHAR (22) & 'b' 
Awrp Automatic line wrap OFF CHAR (22) & 'c' 
ANSI ANSI sequences obeyed ON CHAR (22) & 'd' 
VT52 VT52 mode OFF CHAR (22) & 'e' 
KPM Keypad Application Mode OFF CHAR (22) & , f, 

CKM Cursor Key Mode OFF CHAR (22) & 'g' 
Cnum Keypad Numeric CI Mode ON CHAR (22) & 'h' 
Knum Keypad Numeric KB Mode ON CHAR (22) & 'i' 

For example, to setup the TE for local echo (host is noecho) and for 
automatic line-wrap, the following command would be placed in the 
SITE.DAT file: 

SEND CHAR(22) & 'o' & CHAR(22) & 'b' & CHAR (22) & 'c' 

& CHAR(22) & 'o' to <l>KBhandlerl; 

It is recommended, when possible, that the E&S private escape sequences 
used to set/reset the various modes of the terminal emulator be placed in 
the SITE.DAT file. These commands are generally more compact and 
take up less space on the diskette. For example, to setup the TE for local 
echo (host is noecho) and for automatic line-wrap, the following com­
mands can be sent to ES TE 1: 

Send CHAR(27) & '[>1;2h' to <l>ES_TEl; 

Reference Materials 



• The BREAK Key 

The BREAK key, like the toggles, must be sandwiched between 
sequences representing the SETUP key. It also has an inner sandwich, 
telling SETUP that it is the BREAK key and the end of the definition. The 
important sequence in these two outer wrappings represents the special 
key designated by the user to be the BREAK key. For example, to set a 
key as the BREAK key, the following command would be placed in the 
SITE.DAT file: 

SEND CHAR(22) & 'o' & CHAR(22) & 'j' & (Key sequence) 
& CHAR(22) & 'a' & CHAR(22) & 'o' to <l>KBhandlerl; 

where: 

CHAR(22) & 'o' is the header/trailer sequence for the SETUP key 

CHAR(22) & 'j' is the sequence for Function Key #10 (to enter the 
set/BREAK key mode) 

(Key sequence) is the CHAR(22) sequence designating a 
user-specified key as the BREAK key 

CHAR(22) & 'a' is the sequence for Function Key #1 (exiting out of 
set/BREAK key) 

CHAR(22) & 'o' is the header/trailer sequence to exit SETUP. 

• Mode 

To put the keyboard into Local (interactive) mode on bootup, the 
following should be put in the user's SITE.DAT file: 

SEND CHAR(22) & 'R' to <l>KBhandlerl; 

The PS 390 normally comes up in Terminal Emulator Mode (TE) mode; 
that is, the keyboard outputs to the initial instance of ES_ TE. To change 
to the other two modes (either Command or Local), the following 
sequences may be inserted in the SITE.DAT file. Note that these do not 
have to be sandwiched between SETUP key sequences. 

Terminal Emulator RMJ0-25 



Command 
Local 

CHAR (22) & CHAR (18) 

CHAR (22) & 'R' 

Terminal Emulator CHAR (22) & 'r' 

• Displays 

The two displays are the TE display and the Graphics display. They are 
toggled by the TERM and GRAPH keys (CRTL TERMJCTRL GRAPH on 
PS 390-style keyboards) and normally are on. To turn them off at boot 
time, special sequences may be sent. 

DISPLAY SEQUENCE 

TE CHAR(22) & "s' 

Graphics CHAR(22) & "p' 

For example, to turn the TE display off at boot time, the following com­
mand would be placed in SITE.DAT: 

SEND CHAR(22) & 's' to <l>K.Bhandlerl; 

The only TE characteristic that cannot be conveniently set by a 
SITE.DAT file is the size and placement of the TE display. 

3.3 Using the SITE.DAT To Send Control Sequences to the Terminal 

RMJ0-26 

Control sequences that affect the screen display (as well as any other escape 
sequences) can be placed in the SITE.DAT file as ASCII sequences. The 
terminal emulator function ES TEl can accept and translate these se­
quences. The escape sequence in the SITE.DAT should take the following 
form: 

SEND <char> n &'[Pl;P2; ... Pnc' to ES_TEl; 

where [ is the control sequence introducer and Pl through Pn are the 
parameters that may or may not be present. 

Reference Materials 



4. IBM 3278 Terminal Emulation 

4.1 Overview of the Environment 

In the IBM 3278 interface environment, the IBM host assumes the PS 390 is 
an IBM 3278 display terminal attached to a 3274 Control Unit. In a normal 
32 7 4/32 78 environment, application programs are able to send special char­
acters to a 32 78 terminal by packaging them in what is ref erred to as a 
Write Structured Field (WSF) envelope. E&S uses this formatting scheme to 
send graphical data down from the host using the Load Program Symbols 
option of the WSF command. This allows binary data to be sent unchanged 
to the PS 390. All non-WSF data are routed to the terminal emulator that 
performs like a 32 78 display terminal. 

4.2 Keyboard Communication Functions and Modes 

The three keyboard modes, Terminal Emulator (TE), Command (CI), and 
Local (KB) are all modes of operation that are established by pressing a key 
(or combination of keys) on the keyboard. The Terminal Emulator mode 
allows use of the PS 390 as an IBM terminal. While in the TE mode, the 
screen is formatted as an IBM 32 78 terminal. The Command mode permits 
the PS 390 to be used as an independent processor. In the command mode, 
the screen is formatted as a DEC VT100 terminal. Local mode allows the 
keyboard to be used as a peripheral graphics device. In Local mode the 
function keys and standard keyboard keys may act as inputs to any 
user-created function networks that are connected to them. 

The modes referred to here are actually determined by what output port is 
used by the function F:IBM_KEYBOARD, called the 3278 terminal emulator 
keyboard handler. 

The keyboard handler is a submodule of the IBM 32 78 terminal emulator. 
This function receives bytes of character data from the keyboard, distributes 
them to the output queues, and translates them to IBM scan codes or to 
ASCII characters if necessary. Translations are performed to support the 
keyboard used (either VT100 style or IBM) and the output port and 
destination the data will be sent to. It also toggles the graphics and terminal 
emulator displays. 

Terminal Emulator RMJ0-27 



F:IBM_KEYBOARD 

Qpacket <1> <1> Qpacket 

Qboolean <2> <2> Qinteger 

<3> Qpacket 

<4> Qpacket 

<5> Qpacket 

(IBMKBDl) 

Figure 10-1. F:IBM_KEYBOARD 

F:IBM KEYBOARD accepts character packets from the keyboard on input 
<1> and based on the mode (either Terminal Emulator, Command, or 
Local), outputs packets for use by the function network, the line editor, or 
an IBM host. Packets of characters for the KEYBOARD function are output 
on <1>. Qintegers to be sent to the FKEYS function are output on <2>. 
Qpackets of characters to be sent to the function, SPECKEYS, are output on 
<3>. Qpackets of characters for the line editor are output on <4>. Qpackets 
of IBM scan codes for an IBM host are output on <5>. 

Input <2> accepts a Boolean that indicates which type of keyboard is being 
used. 

True = IBM-style keyboard 
False = VTlOO-style keyboard 

At system configuration, a VTl 00-style keyboard is specified; so, if an 
IBM-style keyboard is being used, the following PS 390 command should be 
entered in the SITE.DAT file: 

SEND TRUE TO <2>IBMKBD1; 

4.3 IJata Structures 

RMl0-28 

The three main output ports of the keyboard handler all affect a different 
data display structure. The data structures used by the terminal emulator 
are set up by the CONFIG.DAT file and then completed by the function 
TE BUILD. 

The CONFIG.DAT file contains a color node. The color node determines 
the color of the characters on the screen in the terminal emulator mode. 
The color node is accessible by sending the appropriate value to 
TECOLORl. 

Reference Materials 



A simplified diagram of the display structure created by the terminal emula­
tor is shown below: 

INPUT FROM KEYBrARD OR HOST LINE 

KB (local or data mode) 

I 
GRAPHICS DISPLAY 

Cl (local command) 

I 
LOCAL TE 
DISPLAY 
(used by F:IBMDISP) 

TE (host line) 

I 
HOST TE 
DISPLAY 

(used by GPIO TE) 

The GPIO (the 1/0 processor used for communication with the IBM host) is 
able to differentiate between data that is bound for the Host Screen Buff er 
(32 78 terminal emulation) and data that is bound for the PS 390 command 
interpreter (graphical data). All data bound for the CI is packaged in WSF 
envelopes. (Refer to Section RMS Host Communications for information on 
WSF commands and data flow from the host system.) Upon receiving infor­
mation from the host, the GPIO differentiates graphical data from TE data 
by the WSF command; anything not in a WSF command is TE data and 
goes directly to the (Host) Screen Buffer. 

The local TE display is set up by the F:IBMDISP function. 

F:IBMDISP 

Qpacket <1> 

Figure 10-2. F:IBMDISP 

F:IBMDISP accepts packets of ASCII characters on input <1>. Then, it 
either inserts their equivalent IBM screen code into the local screen buff er 
used by the Command mode of the terminal emulator or causes the cursor 
position to be adjusted in the case of a carriage return, a line feed, or a 
back space. 

Terminal Emulator RMJ0-29 



4.4 Indicator Characters 

The PS 390 supports indicator characters that indicate the status (active 
mode, software exception, etc.) of the PS 390. These characters appear on 
the right side of the indicator line, and are defined as follows: 

H Indicates that the keyboard is communicating with the host. 

C Indicates that the keyboard is communicating with the Cl. 

L Indicates that the keyboard is communicating with user function networks. 

S Indicates that the keyboard is in the SETUP mode, i.e., the SETUP key 
has been pressed. 

G Indicates that the graphics display is active. 

¢ Indicates that the GPIO was unable to establish communications with the 
host. 

¢ Indicates that the GPIO timed out. 

t Indicates that the CAPS LOCK feature is active. 

These indicator characters (with the exception of the SETUP and the two 
error indicators) may be removed from the screen by using the SETUP 
mode of the keyboard. 

4.5 Setup Mode for the Terminal Emulator 

RMJ0-30 

The SETUP mode for the 3278 TE is accessed by pressing CTRL SETUP. In 
SETUP, the Function Keys on the keyboard are used to toggle or adjust 
screen display features. CTRL SETUP must be pressed again, after the ap­
propriate adjustments are made, to exit the SETUP mode. 

SETUP can be entered in any communication mode and can be used to 
make the following adjustments: 

FKey #1 Pressing this key increases the intensity of the screen. 

FKey #2 Pressing this key decreases the intensity of the screen. 

FKey #3 Pressing this key raises the contrast of the screen. 

Reference Materials 



FKey #4 Pressing this key lowers the contrast of the screen. 

FKey #5 Pressing this key toggles in and out of the CAPS LOCK mode. 
While in CAPS LOCK, all standard keypad keys output their 
shifted value. (This is for IBM-style keyboards only.) 

FKey #6 Pressing this key toggles the display of PS 390 characters. 
The default is the display of characters. 

Fkey #7 Toggles the display of the host indicator characters. The default 
is the display of characters. 

Fkey #8 Toggles the display of the cursor. Default is display of the cursor. 

Function keys F9 and Fl 0 are used in conjunction with the PS 390/IBM 
3250 Interface. Information on the use of these keys is available in the 
PS 300/IBM 3250 Interface User's Manual. 

4.6 Using the SITE.DAT File to Change Features of the Terminal Emulator 

The adjustments made in SETUP can be entered as PS 390 commands in 
the SITE.DAT file to set the appropriate characteristics at boot time. 

The list below shows the characters that should be entered into the 
SITE.DAT file for each feature. 

For VT100 style keyboards, the appropriate character(s) must be inserted 
between a ' t Vo t Vo ' header and trailer sequence. ( t Vo is a CTRL V 
lowercase "o" sequence.) 

FEATURE 

Raise Intensity 
Lower Intensity 
Raise Contrast 
Lower Contrast 
Set/Reset Caps Lock 
Set/Reset Local Indicators 
Set/Reset Host Indicators 
Set/Reset Cursor 
Set 3250 Mode 
Set PS 390 Mode 

Terminal Emulator 

CHARACTERS TO BE ENTERED INTO SITE.DAT 

SEND 'tvotvatvo " TO <l>IBMKBDl; 
SEND "tVotVbtVo ,, TO <l>IBMKBDl; 
SEND "tvotvctvo " TO <l>IBMKBDl; 
SEND "tvotvdtvo ' TO <l>IBMKBDl; 
SEND 'tvotvetvo " TO <l>IBMKBDl; 
SEND "tVotVftVo ,, TO <l>IBMKBDl; 
SEND "tVotVgtVo , TO <l>IBMKBDl; 
SEND 'tvotVhtvo " TO <l>IBMKBDl; 
SEND "tVotVitvo , TO <l>IBMKBDl; 
SEND "tVotVjt Vo' TO <l>IBMKBDl; 

RMJ0-31 



RMJ0-32 

For IBM-style keyboards, the appropriate characters must be inserted be­
tween a CHAR(130)&CHAR(n)&CHAR(130) sequence, where &CHAR(n) 
is the character sequence(s) for the feature. 

FEATURE CHARACTERS TO BE ENTERED INTO SITE.DAT 

Raise Intensity SEND CHAR(130)&CHAR(145)&CHAR(130) TO 
<l>IBMKBDl; 

Lower Intensity SEND CHAR(130)&CHAR(l46)&CHAR(130) TO 
<l>IBMKBDl; 

Raise Contrast SEND CHAR(130)&CHAR(147)&CHAR(130) TO 
<l>IBMKBDl; 

Lower Contrast SEND CHAR(l30)&CHAR(148)&CHAR(l30) TO 
<l>IBMKBDl; 

Set/Reset Caps Lock SEND CHAR(130)&CHAR(149)&CHAR(130) TO 
<l>IBMKBDl; 

Set/Reset Local Indicators SEND CHAR(130)&CHAR(150)&CHAR(130) TO 
<l>IBMKBDl; 

Set/Reset Host Indicators SEND CHAR(130)&CHAR(15l)&CHAR(130) TO 
<l>IBMKBDl; 

Set/Reset Cursor SEND CHAR(130)&CHAR(152)&CHAR(130) TO 
<l>IBMKBDl; 

Set 3250 Mode SEND CHAR(130)&CHAR(153)&CHAR(130) TO 
<l>IBMKBDl; 

Set PS 390 Mode SEND CHAR(130)&CHAR(154)&CHAR(130) TO 
<1> IBMKBDl ; 

When inserting multiple SETUP options in the SITE.DAT file, as many 
values as needed should be entered in between the header and trailer 
sequences. 

For example, on VTl 00 style keyboards 

SEND 'tVotVatvctvftVo' TO <l>IBMKBDl; 

would raise screen intensity, raise screen contrast, and toggle the local 
indicator display. 

For IBM style keyboards, this sequence would be 

SEND CHAR(l30)&CHAR(145)&CHAR(147)&CHAR(150)&CHAR(130) 
TO <l>IBMKBDl; 

The horizontal line running across the bottom of the terminal display can be 
removed by entering the following PS 390 command in the SITE.DAT file: 

IBMLINE$:=NIL; 

Reference Materials 



Another feature that can be changed in the SITE.DAT file is status of the 
displays affected by CTRL GRAPH and CTRL TERM sequences. 

VT100 style Sequences 

SEND tVP TO <l>IBMKBDl; 
SEND tvs TO <l>IBMKBDl; 

IBM style Sequences 

SEND CHAR(83) TO <l>IBMKBDl; 
SEND CHAR(82) TO <l>IBMKBDl; 

Terminal Emulator 

DESCRIPTION 

Toggles TERM display 
Toggles GRAPH display 

DESCRIPTION 

Toggles TERM display 
Toggles GRAPH display 

RMJ0-33 





Section RMl 1 

Systelll Errors 

This section provides a description of the system error messages that you may 
encounter during standard operation of the PS 390 graphics system. Errors may be 
written to the debug terminal, to the keyboard LEDs, or to the Crash Dump file. 
There are three types of error messages, listed in the following three tables. 

NOTE 

The tables list the error messages for PS 390 systems 
using either DEC or IBM host computers. It is noted in 
the tables where the message is host-specific. 

The first table lists the error number and brief description of the traps or software 
induced exceptions that might cause the system to fail. 

The second table lists the error numbers (with error definitions) of system errors 
that might be caused when you use the user-written function (UWF) facility. 

The third table is a comprehensive list of the system error numbers. Most system 
errors are generated only during the development process of the graphics firmware 
and are rarely seen during normal system operation. 

System Errors 

NOTE 

Notify E&S Customer Engineering Software Support 
when any error numbers are reported that are E&S 
firmware errors (shown in Table 11-1 or Table 11-3). 

RMJJ-1 



NUMBER 

0 

1 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

RMJJ-2 

Table 11-1. PS 390 Traps and Definitions 

DEFINITION 

Not enough available memory to come up or handle request. 

E&S firmware error. 

Memory corrupted or over-written (could be caused by UWF). 

Memory corrupted or over-written (could be caused by UWF). 
Message for systems using IBM host only. 

Attempt to wait on queue when function is waiting on another 
device (CLOCK, I/O) (could be caused by UWF). 

System errors (refer to Table 11-3). 

Double-bit mass memory error if address on LEDs is between 
200 and 300; unexpected interrupt on a vector with no routine if 
address is between 300 and 400. 

Usually indicates double-hit mass memory error. If address on 
LEDs is 22C, error occurred on memory card 200000-300000. If 
address is 23C, error occurred on memory card 300000-400000 
and so forth. Message for systems using DEC host only. 

E&S Firmware Error 

Memory corrupted or over-written (could be caused by UWF). 

E&S firmware error. 

Pascal in-line runtime error: usually caused by Case statement in 
Pascal with no Otherwise clause (could be caused by UWF). 

Reference Materials 



Table 11-2. User-Written Function Error Descriptions 

ERROR NUMBER 

SYSTEMERROR #7F 

SYSTEMERROR #80 

SYSTEMERROR #81 

SYSTE:MERROR #81 

SYSTE:MERROR #8E 

SYSTEMERROR #B9 

SYSTE:MERROR #C9 

SYSTE:MERROR #CB 

SYSTEMERROR #D9 

SYSTEMERROR #DA 

SYSTEMERROR #DB 

SYSTEMERROR #DE 

SYSTEMERROR #EO 

System Errors 

DEFINITION 

Exited function before re_ queuing function (not 
following template). 

Bad parameter passed to text utility routine: 
Text_text, Bl < 0. 

Bad parameter passes to text utility routine: 
Char_text, b < 0. 

Bad parameter passes to text utility routine: 
Char __ text, b < 0. Message for systems using IBM 
host only. 

Bad parameters passed to Updates utilities: 
AnnounceUpdate List tail = nil; head <> nil. 

Nil or invalid parameter passed to Illegal_Input 
handling routines. 

User written function stack overflow. 

Improper redefinition of user written function 
name. 

Call to Ckinputs has Nmin < 0. 

Call to Ckinputs has Nmin > Nmax. 

Call to Ckinputs has Nmax > total number of inputs 
for function. 

Multiple call to Qsendcopymsg on the same input. 

Function was not in state Running when Ckinputs 
was called; Cleaninputs returned a FALSE and still 
called Ckinputs; Cleaninputs was not called before 
calling Ckinputs the second time. 

RMJJ-3 



Table 11-2. User-Written Function Error Descriptions (continued) 

ERROR NUMBER 

SYSTEivfERROR #El 

SYSTEMERROR #E9 

SYSTEMERROR #EA 

SYSTEMERROR #110 

SYSTEMERROR #111 

SYSTEMERROR #68 

SYSTEMERROR #Al 

SYSTEMERROR #92 

SYSTEMERROR #9C 

SYSTEMERROR #9D 

SYSTEMERROR #A3 

SYSTEMERROR #103 

SYSTEMERROR #109 

RMll-4 

DEFINITION 

Function was not in state Mid _running when 
Cleaninputs was called. 

Qillmessage, or Qillvalue was called for input 
which does not exist. 

Qillmessage, or Qillvalue was called for input 
which was already dealt with; previous call to 
Qillmessage, Qillvalue, or Qsendcopymsg. 

Tolerance on FCnearzero is too small. 

Set node has no dummy control block. 

Possible overwrite of block boundary: Sending to an 
unrecognized Namedentity. 

Possible overwrite of block boundary: 
AppendVector, Invalid Acpdata type. 

Possible overwrite of block boundary: Byte Index 
Invalid Acpdata type. 

Possible overwrite of block boundary: Unrecognized 
type of Namedentity. 

Possible overwrite of block boundary: Hasstructure. 

Possible overwrite of block boundary: 
Nomemsched, Bad.Status for a fen. 

Possible overwrite of block boundary: Curfcn was 
not active at entry. 

Possible overwrite of block boundary: ContBlock, 
nil block. 

Reference Materials 



Table 11-2. User-Written Function Error Descriptions (continued) 

ERROR NUMBER 

SYSTEMERROR #10D 

SYSTEMERROR #10E 

Motorola Exceptions: 

DEFINITION 

Possible overwrite of block boundary: GetVector, 
Not an Acpdata block. 

Possible overwrite of block boundary: Get Vector, 
Not a vector Acpdata block. 

These exceptions could be due to E&S software exceptions or to UWF 
memory overwrites. 

Exception 2 
Exception 3 
Exception 4 

Bus Error. 
Address Error. 
Illegal Structure. 

The following table is the comprehensive list of system error messages. The 
messages are listed numerically, but can show one of two error types: 

System Errors 

• Possible UWF Error - software exceptions possibly caused by use of 
the UWF facility. If UWF is not used, notify Customer Engineering 
Software Support when you get this message. 

• E&S Firmware Error - software exceptions that indicate that Cus­
tomer Engineering Software Support should be notified. 

RMll-5 



Table 11-3. List of System Error Messages 

ERROR NUMBER DEFINITION 

#64 E&S Firmware Error 

#65 E&S Firmware Error 

#66 E&S Firmware Error 

#67 E&S Firmware Error 

#68 Possible UWF Error 

#69 E&S Firmware Error 

#6A E&S Firmware Error 

#6B E&S Firmware Error 

#6C E&S Firmware Error 

#6 E&S Firmware Error 

#6E E&S Firmware Error 

#6F E&S Firmware Error 

#70 E&S Firmware Error 

#71 E&S Firmware Error 

#72 E&S Firmware Error 

#73 E&S Firmware Error 

#74 E&S Firmware Error 

#75 E&S Firmware Error 

#76 E&S Firmware Error 

#77 E&S Firmware Error 

#78 E&S Firmware Error 

#79 E&S Firmware Error 

#7A E&S Firmware Error 

RMJJ-6 Reference Materials 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#7B E&S Firmware Error 

#7C E&S Firmware Error 

#7D E&S Firmware Error 

#7E E&S Firmware Error 

#7F Possible UWF Error 

#SO Possible UWF Error 

#Sl Possible UWF Error 

#SS E&S Firmware Error 

#S6 E&S Firmware Error 

#S7 E&S Firmware Error 

#SS E&S Firmware Error 

#SA E&S Firmware Error 

#SD E&S Firmware Error 

#SE Possible UWF Error 

#SF E&S Firmware Error 

#90 E&S Firmware Error 

#91 E&S Firmware Error 

#92 Possible UWF Error 

#93 E&S Firmware Error 

#94 E&S Firmware Error 

#95 E&S Firmware Error 

#96 E&S Firmware Error 

#97 E&S Firmware Error 

System Errors RMJJ-7 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#98 E&S Firmware Error 

#99 E&S Firmware Error 

#9C Possible UWF Error 

#9D Possible UWF Error 

#9E E&S Firmware Error 

#Al Possible UWF Error 

#A3 Possible UWF Error 

#A9 E&S Firmware Error 

#AA E&S Firmware Error 

#AB E&S Firmware Error 

#AC E&S Firmware Error 

#AD E&S Firmware Error 

#AE E&S Firmware Error 

#AF E&S Firmware Error 

#BO E&S Firmware Error 

#B3 E&S Firmware Error 

#B4 E&S Firmware Error 

#B8 E&S Firmware Error 

#B9 Possible UWF Error 

#BA E&S Firmware Error 

#BD E&S Firmware Error 

#BF E&S Firmware Error 

#CO E&S Firmware Error 

RMll-8 Reference Materials 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#Cl E&S Firmware Error 

#C2 E&S Firmware Error 

#C3 E&S Firmware Error 

#C9 Possible UWF Error 

#CA E&S Firmware Error 

#CB Possible UWF Error 

#CC E&S Firmware Error 

#CD E&S Firmware Error 

#CF E&S Firmware Error 

#DO E&S Firmware Error 

#Dl E&S Firmware Error 

#D2 E&S Firmware Error 

#D3 E&S Firmware Error 

#D4 E&S Firmware Error 

#D5 E&S Firmware Error 

#D6 E&S Firmware Error 

#D7 E&S Firmware Error 

#D8 E&S Firmware Error 

#D9 Possible UWF Error 

#DA Possible UWF Error 

#DB Possible UWF Error 

#DC E&S Firmware Error 

#DE Possible UWF Error 

System Errors RMJ 1-9 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#DF E&S Firmware Error 

#EO Possible UWF Error 

#El Possible UWF Error 

#E2 E&S Firmware Error 

#ES E&S Firmware Error 

#E6 E&S Firmware Error 

#E7 E&S Firmware Error 

#ES E&S Firmware Error 

#E9 Possible UWF Error 

#EA Possible UWF Error 

#EB E&S Firmware Error 

#ED E&S Firmware Error 

#EE E&S Firmware Error 

#EF E&S Firmware Error 

#FO E&S Firmware Error 

#Fl E&S Firmware Error 

#F3 E&S Firmware Error 

#F6 E&S Firmware Error 

#F7 E&S Firmware Error 

#F8 E&S Firmware Error 

#F9 E&S Firmware Error 

#FC E&S Firmware Error 

#FD E&S Firmware Error 

RMll-10 Reference Materials 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#FE E&S Firmware Error 

#FF E&S Firmware Error 

#100 E&S Firmware Error 

#101 E&S Firmware Error 

#102 E&S Firmware Error 

#103 Possible UWF Error 

#104 E&S Firmware Error 

#105 E&S Firmware Error 

#106 E&S Firmware Error 

#107 E&S Firmware Error 

#108 E&S Firmware Error 

#109 Possible UWF Error 

#10A E&S Firmware Error 

#10B E&S Firmware Error 

#10C E&S Firmware Error 

#lOD Possible UWF Error 

#10E Possible UWF Error 

#10F E&S Firmware Error 

#110 Possible UWF Error 

#111 Possible UWF Error 

#112 E&S Firmware Error 

#113 E&S Firmware Error 

#114 E&S Firmware Error 

System Errors RMJJ-11 



Table 11-3. List of System Error Messages (continued) 

ERROR NUMBER DEFINITION 

#115 E&S Firmware Error 

#116 E&S Firmware Error 

#117 E&S Firmware Error 

#118 E&S Firmware Error 

#119 E&S Firmware Error 

#120 E&S Firmware Error 

#121 E&S Firmware Error 

#122 E&S Firmware Error 

#123 E&S Firmware Error 

#124 E&S Firmware Error 

#125 E&S Firmware Error 

#126 E&S Firmware Error 

RMll-12 Reference Materials 





RM12. DIAGNOSTIC UTILITIES 

CONTENTS 

1. DIAGNOSTIC UTILITY COMMANDS . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Loading the Diagnostic Utility Diskette . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Selecting Utility Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Utility Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. BACKING UP FIRMWARE AND DIAGNOSTIC DISKETTES... 5 

2.1 Formatting the Destination Diskette . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 Copying the PS 390 Diskettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2.1 Copying Using Mass Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2.2 Copying Using JCP Local Memory . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.3 Error Messages During Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.4 Cl1ecking the Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.5 The DELETE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 



Section RM12 

Diagnostic Utilities 

Diagnostic utilities and commands are used to back up diskettes and for diskette 
file management. This section explains accessing the utility program that contains 
the commands and then lists and gives a short description of the commands. It also 
provides the steps used to back up the graphics firmware diskettes or any other 
system diskettes. 

1. Diagnostic Utility Commands 

The utility program in the diagnostic operating system contains commands 
used to format diskettes, and to check, copy, delete, modify, download, and 
send back files. The utility program also has terminal emulator capabilities. 
This section explains loading the diagnostic utility diskette in order to access 
the commands, then lists the utility commands available. 

1.1 Loading the Diagnostic Utility Diskette 

To access the utility commands load the diagnostic utility diskette using the 
following steps: 

1. Power-off the system, ensuring the activity light is off. 

2. Dismount any diskettes in the PS 390 disk drives. 

3. Insert the diagnostic utility diskette into drive 1. Ensure the E&S 
label on the diskette faces right and the covered write-protect slot 
faces up. 

4. Power-up the PS 390 control unit and display. A VT100-compatible 
auxiliary terminal or the PS 300 keyboard with LEDs may be used to 
enter in the diagnostic commands. The auxiliary terminal is the pre­
ferred equipment to use since it fully displays system prompts. 

Diagnostic Utilities RMJ2-I 



NOTE 

If an auxiliary terminal is used and you are operating it 
at 300 baud, connect it to one of the available ports on 
the control unit connector panel. Usually, Port 3 
(debug port) is used. 

5. Wait until the PS 390 finishes its power-on confidence tests and the 
auxiliary terminal displays "O" and beeps before continuing. 

6. Hold down the CTRL key while repeatedly typing P: 

<CTRL>P 

until the system responds with: 

PS 300 Diagnostic operating system Ax.Vxx 
Disk name = PS 300 Diagnostic Disk X Ax.Vxx 
Type "HELP" for help. 

The = prompt indicates the diagnostic operating system has been 
successfully loaded. 

7. Select the utilities program by typing: 

UTILITY <CR> 

1.2 Selecting Utility Commands 

RM12-2 

The following message is displayed when the utility program has been suc­
cessfully loaded. 

=Utility 
UTILITY; 1 loaded 
PS 300 file and download Utility Px.Vxx 
Type HELP for additional help. 
Utility> 

Enter a command at the Utility> prompt. The command is an alphabetic 
string that is long enough to identify the command. For example, you can 
type in the full word CHECK, or abbreviate it to CH, to call the CHECK 
command. If the first character in the entered command is not alphabetic, 
or if the first word in the entered command is incorrect, the system 
responds with: 

Invalid command. 

Reference Materials 



The system prompts you for any required parameters that are not entered 
by the operator. Those commands containing parameters require more than 
one line when they are entered. 

When you enter the command, the utility program steps you through a se­
ries of prompts that completes the command. 

1.3 Utility Commands 

The following file utility commands are available: 

CHECK 

COMPARE 

COMPRESS 

COPY 

COPYDISK 

CREATE 

CREATEBOOT 

DATE 

DELETE 

DIRECTORY 

DRIVE 

DUMP 

EXIT 

FORMAT 

Diagnostic Utilities 

Reads the entire diskette to check for diskette errors and 
to determine if the file structure is valid. 

Compares two diskettes or two files to determine if they 
are the same. 

Compresses a diskette by copying each file over any empty 
space on the diskette until all empty space resides in one 
contiguous block at the end of the diskette. 

Copies a file from one diskette to another diskette or 
copies a file from one place on a diskette to another 
place on the same diskette. 

Copies the contents of an entire diskette onto another 
diskette. 

Creates a file from data in memory. 

Creates a boot file from an existing file. 

Displays and/or changes the date. 

Deletes a file. 

Displays the diskette directory. 

Selects a diskette drive. 

Dumps a file from the diskette into memory. 

Returns to the Diagnostic Operating System monitor. 

Formats and initializes a diskette. 

RM 12-3 



FREE 

HELP 

INITIALIZE 

MEMORY 

MODIFY 

PURGE 

REMOVE 

RENAME 

RENAMED I SK 

RESTORE 

SAVE 

SENDBACK 

TERMINAL 

TRANSFER 

TYPE 

Indicates the number of free blocks on a diskette. 

Displays a list of available commands and information about 
each command. 

Initializes a diskette without formatting it. 

Displays memory size and allows use of either local or mass 
memory. 

Modifies the host communication parameter values for baud 
rate, parity, port number, etc. 

Deletes all but the latest version of each file or all but 
the latest version of one specific file from the diskette. 

This is a query "delete". It will selectively delete any 
files on the disk as it prompts the user through the file 
names. 

Renames a file. 

Changes the diskette title. 

Restores one of the saved (see SAVE command) files 
containing the host communication value parameters. 

Saves host communication parameter values modified using 
the MODIFY command. 

Transfers a file from the PS 390 to the host. 

Software resident on the diagnostic diskette lets the user 
access a line to the host system. The communication 
parameters must be correct for this command to work. 

Transfers a file from the host to the PS 390. 

Types the contents of a file to the terminal. 

Use the HELP command for a brief description of the function and syntax 
of each Utility command. 

RM12-4 Reference Materials 



2. Backing Up Firmware and Diagnostic Diskettes 

Backup copies should be made of the graphics firmware or any of the 
PS 390 diskettes. The diskettes should be copied as soon as they are re­
ceived. A blank diskette(s) must be available to use as the copy disk(s). A 
PS 300 keyboard with LEDs, or an auxiliary terminal may be used when 
backing up. The auxiliary terminal is the preferred equipment to use since it 
fully displays system prompts. 

You perform the following steps when you do a backup: 

• Load the PS 390 diagnostic utility diskette. 

• Access the utility program on the diagnostic diskette. 

• Format a blank diskette to be used as the copy diskette. 

• Store data from the original diskette for transfer to the copy diskette 
using either mass memory or local memory. 

2.1 Formatting the Destination Diskette 

The utility program in the diagnostic operating system is used to format the 
blank (destination) diskette and copy the PS 390 graphics firmware. 

Format the blank diskette as follows: 

1. Load the diagnostic diskette and access the utility program following 
the procedure described in sections 1.1 and 1.2. 

2. Dismount the diagnostic software diskette. 

3. Mount the blank diskette in the diskette drive. Ensure the 
write-protect tape has been removed from the diskette. 

4. Type: 

FORMAT 

The system responds with: 

Diagnostic Utilities 

Utility> Format 
ENTER DISK NAME 

RM12-5 



5. Although the system asks for a disk name, a response is not 
necessary. The firmware or diagnostic diskette is copied onto the 
destination diskette, name included. Press RETURN to continue. 

6. The system then formats the diskette. If the diskette is 
write-protected, the system returns with this message: 

*****ERROR: Disk write protected. 

If this message appears, make sure the write-protect tape has been 
removed. If the tape has been removed, and the message still ap­
pears, use a new diskette. 

7. When the destination diskette is successfully formatted, the Utility> 
prompt is displayed. 

Disk formatting difficulties are usually the result of a bad disk or faulty 
diskette mounting in the drive. Use the CHECK command to determine if a 
diskette has been properly formatted. 

2.2 Copying the PS 390 Diskettes 

RM12-6 

You can use either mass memory or local memory to copy the graphics 
firmware or diagnostic diskettes. It is faster to copy diskettes using mass 
memory and both disk drives. The system prompts you during the copy at 
each step. 

2.2.1 Copying Using Mass Memory 

Initialize mass memory by typing: 

MEM 

The system responds with: 

Memory is currently set to use xxxK of local memory. 
Do you want to change using mass memory? 

You must respond with YES or Y to use mass memory. NO is the default 
answer. If you respond with a RETURN, NO, or N, the system uses local 
memory to copy. 

Reference Materials 



When you respond with YES or Y, the system displays the current amount 
of mass memory available: 

xxxK of memory is available in mass memory. 

and initializes mass memory to be used in the COPYDISK command. Per­
form the following steps to complete the copy. 

1. Type: 

COPYDISK 

2. The system responds with: 

Copy using 1 or 2 drives? 
xxxK of memory is available in mass memory. 

3. Type: 

2 

4. The system prompts: 

Enter source drive number. 

Enter the number of the drive containing the source diskette. The 
diskette drives are numbered 1 and 2. The system then prompts: 

Enter destination drive number: 

Enter the number of the drive containing the newly formatted 
diskette. 

5. The system prompts: 

Please insert source and destination disks, then press RETURN. 

6. The system loads the data from the source file into memory and 
copies it onto the destination diskette. When the copy is complete, 
the system prompts: 

The disk has been copied. 
Do you want another copy of the same disk? 

Repeat the procedure as needed. 

Diagnostic Utilities RM/2-7 



2.2.2 Copying Using JCP Local Memory 

If mass memory is not available for temporary use with the COPYDISK 
utility, the system uses the JCP local memory for temporary storage. The 
system uses the same prompts that appear during the mass memory copy 
procedure. 

To use JCP local memory when copying, enter RETURN, NO, or Nat the 
system prompt: 

Do you want to change using mass memory? 

Then follow the system prompts to complete the copy procedure. 

2.3 Error Messages During Copying 

There are several error messages that may appear during COPYDISK. If the 
system displays the following, 

*****ERROR: Record not found during write. 

reformat the diskette and try COPYJDISK again. 

Ref er to the list of Utility commands at the front of this section for more 
commands that may be helpful in backing up the PS 390 diskettes. 

2.4 Checking the Copy 

RM12-8 

Use the CHECK command to determine if a diskette has been properly 
formatted. The CHECK command responds with a detailed report of the 
number of blocks in the header, footer, and body of each file. The message 
appears as: 

Header 
Directory 
File Name. Ex_; 26 
* Empty * 

0 

1 

2-43 

44-719 

When the system displays the Utility> prompt, and no error messages 
appear, the diskette has been properly formatted. 

Reference Materials 



When file copying is complete, use the utility DIRECTORY to check if all 
files were copied from the source disk. The CHECK utility can be used to 
read the diskette and display the name and number of sectors of each file, 
or the COMPARE utility can be used to compare the newly copied disk with 
the source disk. 

2.5 The DELETE Command 

Use the DELETE command to delete a file from the diskette. This utility 
command should be used to delete the original SITE.DAT file from the copy 
of the graphics firmware before downloading the new version. If the exten­
sion is not specified, the first file found on the diskette that has a matching 
file name and version number is deleted. The version number must always 
be specified. 

The following is an example deleting the SITE.DAT;4 file from the diskette: 

Utility>DELETE 
Enter name of file to be deleted: SITE.DAT;4 
File deleted successfully. 
Utility> 

The DELETE command may also be entered on one line: 

Utility>DELETE SITE.DAT;4 

The file name must be valid, and must include a version number. If the 
version number is not specified, the system advises the operator of the error 
with the following message: 

Error, version number must be specified. 

When a file is deleted it no longer exists on the diskette, and that space 
becomes available for other files. 

Diagnostic Utilities 

NOTE 

For information on using the utility commands to 
download a file from the host, refer to the example in 
TT2 Helpful Hints, How to copy Files Between the Host 
and the PS 390. 

RM12-9 





RM13A. INTERACTIVE DEVICES 

PS 300 STYLE 

CONTENTS 

1. THE PERIPHERAL MULTIPLEXER . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.1 Functional Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Data Framing and Transmission Rates . . . . . . . . . . . . . . . . . . . . . . 3 

2. KEYBOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

2.1 Physical Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
2.2 Data Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.3 Keyboard LED Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
2.4 Keyboard Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

3. CONTROL DIALS UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
3.2 O.peration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3.3 LED Display Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

4. FUNCTION BUTTONS UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

4.1 Communications Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

5. DATA TABLET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

5.1 O:perating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

6. THE OPTICAL MOUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

6.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 



ILLUSTRATIONS 

Figure 13A-1. Front Panel of Peripheral Multiplexer . . . . . . . . . . . . . . . . . . . . . 2 
Figure 13A-2. Back Panel of Peripheral Multiplexer . . . . . . . . . . . . . . . . . . . . . . 2 

TABLES 

Table 13A-1. Interactive Device Transmission Rates . . . . . . . . . . . . . . . . . . . . . . 3 
Table 13A-2. Alphabetic Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Table 13A-3. Standard Numeric Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Table 13A-4. Special Character Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Table 13A-S. Terminal Function Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Table 13A-6. Function Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Table 13A-7. Numeric/Application Mode Key Codes . . . . . . . . . . . . . . . . . . . . . . 12 
Table 13A-8. Device Control Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Table 13A-9. Binary Data Transmission Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Table 13A-10. Data Tablet Binary Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Table 13A-11. Mouse Bit Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 



Section RM13A 

Interactive Devices 

PS 300 Style 

Two sets of interactive devices are available with the PS 390: the PS 300-style 
devices and the PS 390-style devices. Interactive devices from the two styles cannot 
be mixed with the exception of the data tablets and the optical mouse, which are 
common to both styles. 

The PS 300-style interactive devices include: 

• Keyboard with LEDs 

• Control dials unit with LEDs 

• Function buttons unit 

• Data tablet (6 by 6 or 12 by 12) with puck 

• Optical mouse 

The light pen is not supported on the PS 390. 

The PS 390 interfaces with the interactive devices through the peripheral 
multiplexer which supplies the power to the interactive devices and serves as their 
input/output path to the PS 390. The peripheral multiplexer combines the signals 
from the interactive devices and transmits them to the PS 390. 

This section describes the PS 300-style interactive devices and peripheral 
multiplexer. Section RM l 3B describes the PS 390-style interactive devices and 
peripheral multiplexer. 

Interactive Devices RM13A-l 



1. The Peripheral Multiplexer 

RM13A-2 

The peripheral multiplexer serves as the connection point between the 
PS 390 system and the interactive devices. It provides power to the 
interactive devices and combines their signals and transmits them to the 
PS 390. It also routes any signals which the the system may send back to 
the appropriate interactive device. 

The peripheral multiplexer is housed in a metal box which fits beneath the 
raster display pedestal. The interactive devices connect to the five connec­
tors on the front of the multiplexer. Each connector is uniquely dedicated to 
a specific interactive device. 

Figure 13A-1 shows the peripheral connections for the PS 300-style 
peripheral set. Figure 13A-2 shows the backside connectors and plugs for 
the peripheral multiplexer. 

~• [I[J::: :::·. =·:: .":. •••• 1 D . . .. ... "······· .... . . ·~··········· :::: 
•• 

(() [QJ [QJ c (() 
MOUSE BUTTONS DIALS KEYBOARD TABLET POWER 

IAS390003A2 

Figure l JA-1. Front Panel of Peripheral Multiplexer 

n----' 

l=::J 90-130/180-250v-
r J 2A MAX 6/3A 47-63Hz 

~~ 
[ =i 

0 0 

§( ........ )0 1 
[ =i 

r J 
CONTROLLER 

l=::J _/ 
IAS390005A2 

Figure 1 JA-2. Back Panel of Peripheral Multiplexer 

Reference Materials 



1.1 Functional Characteristics 

The peripheral multiplexer consists of a circuit card which is connected to 
five input ports and one output port. The five input ports support the follow­
ing interactive devices: 

• Keyboard with LEDs 

• Control dials unit with LEDs 

• Function buttons unit 

• Data tablet (6 by 6 or 12 by 12) with cursor 

• Optical mouse 

The peripheral multiplexer receives input data from the interactive devices 
and multiplexes the data through an RS-232C output port to the PS 390. It 
also accepts the multiplexed data from the terminal controller, 
demultiplexes the data, and routes the data to the appropriate interactive 
devices. 

1.2 Data Framing and Transmission Rates 

The data sent to and from the peripheral multiplexer is asynchronous data 
with each byte containing eight data bits with no parity, one start bit and 
one stop bit. The data transmission rate of the peripheral multiplexer to and 
from the PS 390 is 19 ,200 baud. The transmission rates between the inter­
active devices and the peripheral multiplexer are shown in Table 13A-1. 

Table l 3A-l. Interactive Device Transmission Rates 

Device 

Keyboard Port x'Bl' 
Control Dials Port x'B2' 
32 Fune. Buttons Port x'B3' 
Mouse Port x'B4' 
Data Tablet Port x'B6' 

Interactive Devices 

Baud Rate 

2400 Baud 
9600 Baud 
9600 Baud 
9600 Baud 
9600 Baud 

RM13A-3 



2. Keyboard 

The main function of the keyboard is the generation and transmission of 
ASCII displayable characters, ASCII control characters, and PS 390 system 
sequences. This data is transmitted to the JCP, the controlling system proc­
essor that is located in the PS 390 control unit. The transmitted data may 
ultimately specify displayed characters, commands, menu/table selections, 
etc. 

The keyboard also displays full-line or segmented alphanumeric messages 
on a 1 to 96-character LED array. These displayed characters most often 
function as labels for the keyboard's 12 user-programmable function keys. 
The LED characters may also be used "in tandem" to present a single mes­
sage up to 96 characters long. 

2.1 Physical Configuration 

RM13A-4 

The keyboard is a modular unit that connects to the system through a single 
interface cable. Like the other interactive devices, the keyboard is micropro­
cessor-controlled to provide limited local processing capabilities.The proces­
sor in the keyboard controls LED displays and I/O data transmissions. 

The keyboard unit contains a keyboard, an LED display, and a keyboard 
interface. The assembled keyboard measures 21.1 inches (53.6 cm) long by 
8.25 inches (20.9 cm) deep. The keyboard stands 3.5 inches (8.9 cm) high 
on four rubber feet. The system's audible alarm sounds through a speaker. 

The LEDs are configured in a single row above the twelve keyboard func­
tion keys. They are arranged in twelve 8-character groups. Each LED group 
may serve as a label for its associated function key, or all LED characters 
may be used together to display a single message. A space of one character 
separates each 8-character LED group from the next. 

An 8-conductor, flexible cable with locking modular plugs connects the key­
board to the peripheral multiplexer. The cable is similar in function and 
appearance to a standard telephone "flex" cord. The cable may be stretched 
to permit many different work station arrangements. The modular plugs are 
identical, allowing the cable to be connected in either direction. 

The keyboard should be grounded, and provision for this has been made on 
the peripheral multiplexer. 

Reference Materials 



2.2 Data Entry 

The 9 5 keys fall into eight general categories. 

• Keyboard function control 

• Alphabetic 

• Standard numeric 

• Special character 

• Terminal function 

• Function 

• Numeric/application mode 

• Device control 

Note 

When instructions are given to press two or more keys 
simultaneously, the key sequence will be shown in 
italics. For example, CTRL V means that the CTRL and 
V keys are pressed simultaneously. 

2.2.1 Keyboard Function Control Keys 

The keyboard function control keys are unencoded, local controls, and in­
clude the SHJFT and CTRL keys. No codes are transmitted when these keys 
are pressed individually or in combination with each other. The keyboard 
function control keys are used to modify the codes transmitted by other 
keys. When either SHIFT key is pressed simultaneously with a displayable 
character key, the uppercase code for that key is generated. If the key does 
not have an uppercase function, the SHIFT key is ignored. For example, 
pressing the A key causes the binary code B" 01100001' for the character a 
to be transmitted; and pressing the sequence SHIFT A causes the binary 
code B' 01000001' for the character A to be transmitted. Bit 6 is forced low 
to define an uppercase character. 

When CTRL is pressed simultaneously with one of keys A-Z (uppercase 
only), the space bar, or the special character keys {, [, ], }, or ?, an ASCII 
control code is generated. For example, the CTRL Z keyboard sequence 
causes the binary code B,00011010' to be generated. The only difference 
between this code and the binary code for Z (B'01011010') is that bit 7 is 
forced low to define the control code. 

Interactive Devices RM13A-5 



RMJJA-6 

When the SHIFT and CTRL keys are pressed simultaneously, the shift func­
tion is selected in most cases. The only exceptions occur with the { and ? 
keys. The SHIFT CTRL { sequence causes the control character RS 
(B" 00011110") to be transmitted. The SHIFT CTRL ? sequence causes the 
control character US (B" 00011111 ") to be transmitted. 

When the REIT key is locked down, the auto-repeat feature is enabled on 
all keys except: Fl - F12, HARD_COPY, SETUP, GRAPH, CLEAR_HOME, 
LINE_LOCAL, TERM, CAPS_LOCK, CTRL, SHIFT (both keys), RETURN, 
and all numeric pad keys. When any other key is held down with the key­
board in auto repeat mode, repeated character transmission occurs. The 
initial rate is less than 2 Hz, but this increases to about 11 Hz in less than 
two seconds. Pressing the REIT key a second time causes it to release up­
wards, canceling the auto repeat feature. 

Pressing the CAPS_ LOCK key causes it to assume a locked-down position, 
asserting the "caps lock" function. This is actually a limited shift operation 
that applies to the alphabetic (A-Z) keys only. Alphabetic keys struck while 
the keyboard is in "caps lock" mode generate uppercase characters. Press­
ing the CAPS_ LOCK a second time causes it to release upward, canceling 
the "caps lock" mode. 

2.2.2 Alphabetic Keys 

The alphabetic keys are used to produce uppercase and lowercase ASCII 
displayable character codes, and ASCII control codes. Table 13A-2 shows 
the code and character produced when each key is pressed alone, with the 
SHIFT key, or with the CTRL key. The code in the table is shown in 
hexadecimal notation. 

Reference Materials 



Table l JA-2. Alphabetic Key Codes 

KEY KEY ALONE SHIFT+KEY _QTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

A X'61' a X'41' A X'Ol' SOH 

B X'62' b X'42' B X'02' STX 

c X'63' c X'43' c X'03' ETX 

D X'64' d X'44' D X'04' EOT 

E X'65' e X'45' E X'45' ENQ 

F X'66' f X'46' F X'06' ACK 

G X'67' g X'47' G X'07' BEL 

H X'68' h X'48' H X'08' BS 

I X'69' i X'49' I X'09' HT 

J X'6A' j X'4A' J X'OA' LF 

K X'6B' k X'4B' K X'OB' VT 

L X'6C' 1 X'4C' L X'OC' FF 

M X'6D' m X'4D' M X'OD' CR 

N X'6E' n X'4E' N X'OE' so 

0 X'6F' 0 X'4F' 0 X'OF' s 

p X'70' p X'50' p X'lO' DLE 

Q X'71' q X'51' Q X' 11' DCl 

R X'72' r X'52' R X'12' DC2 

s X'73' s X'53' s X'13' DC3 

T X'74' t X'54' T X'14' DC4 

u X'75' u X'55' u X'15' NAK 

v X'76' v X'56' v X'16' SYN 

w X'77' w X'57' w X' 17' ETB 

x X'78' x X'58' x X'18' CAN 

y X'79' y X'59' y X'19' EM 

z X'7A' z X'5A' z X'lA' SUB 

Interactive Devices RMJJA-7 



RMJJA-8 

2.2.3 Standard Numeric Keys 

The standard numeric keys generate ASCII displayable numbers and sym­
bols. The CTRL key is ignored when used with these keys. Table 13A-3 
shows the code and character produced when each key is pressed alone, 
with the SHIFT key, or with the CTRL key. The code in the table is shown 
in hexadecimal notation. 

Table l 3A-3. Standard Numeric Key Codes 

KEY KEY ALONE SHIFT+ KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

0 X'30' 0 X'29' ) X'30' 0 

1 X'31' 1 X'21' ! X'30' 1 

2 X'32' 2 X'40' @ X'32' 2 

3 X'33' 3 X'23' # X'33 3 

4 X'34' 4 X'24' $ X'34' 4 

5 X'35' 5 X'25' % X'35' 5 

6 X'36' 6 X'5E' ~ X'36' 6 

7 X'37' 7 X'26' & X'37' 7 

8 X'38' 8 X'2A' * X'38' 8 

9 X'39' 9 X'28' ( X'39' 9 

2.2.4 Special Character Keys 

The special character keys are detailed in Table 13A-4. The code in the 
table is shown in hexadecimal notation. These keys can be pressed alone, 
with the SHIFT key, and with the CTRL key. Note the varying response 
given to the CTRL key; in some instances, the unshifted key character is 
produced. In other cases, a control character is generated. In two cases, 
X' lF' and X' lE', both the SHIFT and CTRL keys must be used with the 
special character key to produce the control code shown in Table 13A-4. 

Reference Materials 



Table l 3A-4. Special Character Key Codes 

KEY KEY ALONE SHIFT+KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

- - - -
- X"2D" (minus) X"SF" (underline) X"2D" (minus) 

+ 
= X"3D" = X"2B" + X"2B" = 

N 

.. X"60" .. X"7E" N X"lE" RS* 

{ 
[ X"SB" [ X"7B" { X"lB" ESC 

} 
] X"SD" ] X"7D" } X"lD" GS 

\ X"SC" \ X"7C" I X"lC" FS 

: 
; X"3B" ; X"3A" : X" 3B" ; 

II 

" X"27" " X"22" II X"27" " 

< 
I X"2C" I X"3C" < X"2C" I 

> 
X"2E" X"3E" > X"2E" 

? 

I X"2F" I X" 3F" ? X"lF" US* 

*These control codes may also be produced by pressing both SHIFT 
and CTRL in conjunction with the indicated key. 

Interactive Devices RM13A-9 



2.2.5 Terminal Function Keys 

The terminal function keys produce codes used by a typical video display 
terminal. These keys enable an operator to generate any commonly used 
terminal control character with a single keystroke. Table 13A-5 lists the 
codes and characters generated by the terminal function keys. The code in 
the table is shown in hexadecimal notation. 

The codes produced by these keys are identical to those generated by the 
conventional two-key control sequences described in Table 13A-5. 

The SHIFT and CTRL keys have no effect on the codes produced by the 
terminal function keys, except for the CTRL Space_Bar sequence that gener­
ates an ASCII NUL character. 

Table l 3A-5. Terminal Function Key Codes 

KEY KEY ALONE SHIFT+KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

BACKSPACE X'08' BS X'08' BS X'08' BS 

DEL X'7F' DEL X'7F' DEL X'7F' DEL 

RETURN X'OD' CR X'OD' CR X'OD' CR 

LINE FEED X'OA' LF X'OA' LF X'OA' LF 

ESC X' lB' ESC X' lB' ESC X'lB' ESC 

TAB X'09' HT X'09' HT X'09' HT 

(none) X'20' (space) X'20' (space) X'OO' NUL 

RM13A-10 Reference Materials 



2.2.6 Function Keys 

Table l 3A-6 illustrates the codes produced by each function key as it is 
used individually, or in combination with the SHIFT and/or CTRL keys. The 
code in the table is shown in hexadecimal notation. Each transmitted code 
is preceded by X' 16'. 

Table 13A-6. Function Key Codes 

KEY KEY ALONE SHIFT+ KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

Fl X'61' a X'41' A X'Ol' SOH 

F2 X'62' b X'42' B X'02' STX 

F3 X'63' c X'43' c X'03' ETX 

F4 X'64' d X'44' D X'04' EOT 

F5 X'65' e X'45' E X'05' ENQ 

F6 X'66' f X'46' F X'06' ACK 

F7 X'67' g X'47' G X'07' BEL 

FB X'68' h X'48' H X'OB' BS 

F9 X'69' i X'49' i X'09 HT 

FlO X'6A' j X'4A' J X'OA' LF 

Fll X'6B' k X'4B' K X'OB' VT 

F12 X'6C' 1 X'4C' L X'OC' FF 

Note: All codes are preceded by X'16'. 

Interactive Devices RMI 3A-11 



2.2. 7 Numeric/Application Mode Keys 

Table 13A-7 illustrates the codes and characters produced by the numeric/ 
application mode keys. The code in the table is shown in hexadecimal nota­
tion. Neither SHIFT or CTRL affects the ENTER key, and no codes are 
modified by the CTRL key. 

Table l JA-7. Numeric/Application Mode Key Codes 

KEY KEY ALONE SHIFT+KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

0 X'30' 0 X"29' ) X'30' 0 

1 X'31' 1 x·· 21' ! X'31' 1 

2 X'32' 2 X"40' @ X'32' 2 

3 X'33' 3 X"23' # X'33' 3 

4 X'34' 4 X"24' $ X'34' 4 

5 X'35' 5 X"25' % X'35' 5 

6 X'36' 6 X'5E' A X'36' 6 

7 X'37' 7 X'26' & X'37' 7 

8 X'38' 8 X'2A' * X'38' 8 

9 X'39' 9 X'28' ( X'39' 9 

X'2E' X'3E' > X'2E' 

' 
X'2C' 

' 
X'3C' < X'2C 

' 

(minus) (underline) (minus) 
- X'2D' - X'SF' - X'2D' -

ENTER X'OD' CR X'OD' CR X'OD' CR 

Note: All codes are preceded by X'l6'. 

RMJJA-12 Reference Materials 



2.2.8 Device Control Keys 

Table 13A-8 illustrates the codes and characters produced by the device 
control keys. The codes produced by these keys are modified by SHIFT and 
CTRL. 

Table l 3A-8. Device Control Key Codes 

KEY KEY ALONE SHIFT+ KEY CTRL+KEY 
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER 

HARD 
COPY X'6E' n X'4E' N X'OE' so 

SETUP X'6F' 0 X'4F' 0 X'OF' SI 

GRAPH X'70' p X'50' p X'lO' OLE 

CLEAR 
HOME X' 71' q X'51' Q X' 11' DCl 

LINE 
LOCAL X'72' r X'52' R X'l2' DC2 

TERM X'73' s X'53' s X'l3' DC3 

+-- X'77' w X'57' w X'l7' ETB 

--4 X'78' x X'58' x X'l8' CAN 

t X'79' y X'59' y X'l9' EM 

! X'7A' z X'SA' z X'lA' SUB 

The Cursor Up key becomes Scroll Up when shifted. 
The Cursor Down key becomes Scroll Down when shifted. 

Note: All codes are preceded by X'l6'. 

Interactive Devices RM13A-13 



2.3 Keyboard LED Display 

The keyboard LED display will recognize and display the following ASCII 
characters: 

! "#$%&' ()*+,-./0123456789:; 

?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]A 

In addition to the above characters, CTRL E, CTRL G, CTRL V, 
BACKSPACE, DEL, RETURN, space, and lowercase alphabetic characters 
are recognized. 

Lowercase alphabetic characters are converted to uppercase and displayed. 
CTRL E causes the keyboard to send the following message to the PS 390: 

KBxxxD 

where xxx is the PROM version number in the keyboard. 

CTRL G generates a bell tone. CTRL V, BACKSPACE, DEL, and RETURN 
are used as described below. All other characters are ignored. 

2.4 Keyboard Display Modes 

The keyboard display operates in two modes: 

• Line mode 

• Function key label mode 

2.4.1 Line Mode 

In line mode, the LEDs fill from left to right as characters for display are 
received. A left-justified line up to 96 characters long (including spaces) can 
be displayed. 

The DEL and BACKSPACE characters are processed only in line mode. 
The BACKSPACE character causes the entire display to logically move left 
one LED display position. The DEL character causes the most recently 
entered character to be deleted. 

All data transmitted to the LEDs for display in line mode must be termi­
nated with a RETURN character. After a RETURN character is entered, the 
display is cleared when the next valid character is received. The received 
character is output to the leftmost LED character, and the LEDs are filled 
left to right as before. 

RMJJA-14 Reference Materials 



2.4.2 Function Key Label Mode 

Function key label mode is used to provide a descriptive label for each 
function key. The data input to the keyboard for this purpose must conform 
to the following format: 

X'16' Label Parameter Byte 0 to 8 Characters RETURN 

The label parameter byte specifies blinking, left justification, and label 
number; its format is as follows: 

4 3 

Blink_Label~~~~--~~~~~--' 

Left_Justify_Bit ___ ~~~~~~~~~---' 

Note 

Label values 0-11 correspond to function key numbers 
1-12. 

When the blink label bit is 1, the characters in the label location (0 - 11) 
specified in bits 0-3 blinks. When this bit is 0, the segment does not blink. 
To blink or unblink an existing label, it is only necessary to send X' 16', the 
label parameter byte, and a RETURN. 

When the left justify bit is 1, the function key label is left-justified in the 
specified label location; spaces are placed in any unused characters. When 
this bit is 0, the label is automatically centered in the segment location. 

The "O to 8 Characters" specified in the above label format constitute actual 
ASCII characters to display. The RETURN is a required terminator that 
must appear following each LED label string. 

Interactive Devices RMJJA-15 



To describe function key label mode, examples of function key labels and 
the data required to produce and modify them are provided below. 

RMJJA-16 

1. To center an "unblinking" label X AXIS over key F6 the following 
hexadecimal string is used: 

Byte Meaning 

X'16' CTRL V 

X'OS' Don't Blink; 

Center; use Segment 5 

X' 58' x 
X'20' Space 

X'41' A 

X'58' x 
X'49' I 

X'53' s 
X'OD' RETURN 

2. To make the existing label blink, the following hexadecimal string is 
used: 

Byte 

X'16' 

X'25' 

X'OD' 

Meaning 

CTRL V 

Blink; 

Center; use 

Segment 5 

RETURN 

3. The following hexadecimal string is used to "unblink" the existing 
label: 

Byte 

X'l6' 

X'OS' 

X'OD' 

Meaning 

CTRL V 

Don't Blink; 

Center; use 

Segment 5 

RETURN 

Reference Materials 



4. To code the label Y TRANS for presentation over key F12 with the 
label left-justified and blinking, use the following hexadecimal string: 

Byte 

X'16' 

X'3B' 

X'59' 

X'20' 

X'54' 

X'52' 

X'41' 

X'4E' 

X'53' 

X'OD' 

Meaning 

CTRL V 

Blink; Left-justify; 

Use Segment 11 
y 

Space 

T 

R 

A 

N 

s 
RETURN 

3. Control Dials Unit 

The control dials unit is a modular interactive device that is microprocessor 
controlled. Power, ground, and communication lines are routed through a 
modular phone cord from the peripheral multiplexer to the control dials 
interface card. It uses a single, eight-conductor flexible interface cable with 
locking modular plugs. The dials are used to communicate dynamic, 
incrementing, and decrementing data to the PS 390. There is an effective 
resolution of 1024 counts per turn. 

3.1 Operating Modes 

The control dials unit operates in the following modes. 

• Message 

The control dials unit outputs rotational values in message mode 
only when enabled to do so by a setup command from the JCP. 
Each dial is individually programmable. The message mode may 
be entered any time after initial power-up and is entirely under the 
control of the PS 390. 

• LED Label Mode 

Interactive Devices 

This mode allows each eight-character LED label to be individually 
defined. 

RMJJA-17 



3.2 Operation 

The control dials unit outputs pulses when any of the dials are turned. From 
the pulses, the control dials interface determines: 

• Which dial is being turned. 

• What direction the dial is turning. 

• How far the dial is rotated. Dial position is evaluated in terms of the 
number of changes of delta. 

After the control dials interface analyzes dial motion, rotational information 
is transmitted to the JCP. The following paragraphs describe data formats 
and codes exchanged in dial and LED display operation. 

Two messages set up the operating mode for the control dials unit. One 
command specifies the minimum rotation count delta required before a 
sample is output to the PS 390, and the other command specifies the maxi­
mum rate at which the control dials unit sends a new delta update to the 
PS 390. The control dials unit outputs relative delta values only; that is, the 
position of each dial is reported in terms of its last sampled location. These 
inputs can come from the initial function instance DSET1 ... DSET8, and 
must be done before any output can occur after power-up. 

The message to specify the rotation count delta for a particular control dial 
consists of the following four-byte sequence: 

X' 16' Control Byte MSB I LSB 

The control byte specifies the dial number in the following format: 

lxOxxnnn 

where the n's specify the dial number between 000 and 111 (O - 7.), and the 
x's may be either zero or one. 

The most significant byte (MSB) and least significant byte (LSB) together 
specify the 16-bit delta value. This number may be any value between 1 and 
65535; use of negative or zero values is not recommended. 

RMJJA-18 Reference Materials 



The message that specifies the maximum update in seconds is in the 
following four-byte format: 

[ X' 16' I Control byte Reserved Time Count I 

The control byte is in the following format: 

lxlxxxxx 

where all x's may be either zero or one. This means that the specified 
maximum update applies to all dials. 

The next byte is reserved for possible future use. 

The final byte consists of a binary number that specifies the sample time 
value. The following sample times are available: 

Hex 
05 

OA 
lE 

Decimal 
5 
10 
30 

3.2.1 Dial Setup Programming Examples 

Updates/Sec. 
60 
30 
10 

To specify a maximum update rate of 10 updates per second: 

Byte Meaning 
X'16' CTRL V 
X'90' Setup maximum update rate 
X'OO' Reserved byte 
X'lE' 10 updates per second 

(decimal 30) 

To set dial four for the minimum rotation count delta required before a 
sample is output: 

Byte Meaning 
X'16' CTRL V 
X'84' Setup Dial 4 
X'OO' Delta MSB 
X'06' Delta LSB 

Interactive Devices RMJJA-19 



The data format that is output from the control dials unit takes the following 
form: 

X'16' Dial Number Sample MSB Sample LSB I 

3.3 LED Display Operation 

The control dials unit has eight 8-character LED displays. Each display 
functions as a label for a dial. The LED displays are much like those on the 
keyboard, displaying the same characters and responding to the same codes. 
The control dials unit LEDs operate in label (segment) mode. That is, each 
display is separately programmed and functions independently of the other 
LEDs. 

The LED label message format is as follows: 

I X'16' I Control Byte O to 8 Characters j 

The X' 16' character indicates the beginning of a command string. The 
control byte specifies blinking, left justification, and LED label number. 

Not Used ____________ --.Jl 

[ o T T T 
7 6 5 4 3 0 

l 
L ] 

J 

Bl ink Label ___________ ___, 

Left Justify Bit;___ __________ ___. 
Label Numbe~..__ ________________ ___J 

The control byte format is as follows: 

• Bit 7 in the control byte is always 0. 

• Bit 6 is not used. 

When the blink label bit (bit 5) is 1, the label blinks. When this bit is 0, the 
label does not blink. 

When the left justify bit (bit 4) is 1, the label is left-justified in the specified 
label location. When this bit is 0, the label is automatically centered in the 
label location. 

RM13A-20 Reference Mate rials 



The label number bits (bits 3-0) specify the LED label location (0-7). 

The "0 to 8 characters" are the ASCII characters to be displayed on the 
selected LED label. If there is no label message (character count = 0), then 
the current message in the LED label is set up according to the values of bit 
5 in the control byte (that is, the LED will blink or not blink). 

4. Function Buttons Unit 

The function buttons unit gives an expanded capability for program 
selection, providing 32 programmable function buttons in addition to the 12 
function keys on the keyboard. Power and communications for the function 
buttons unit are provided through a single modular phone cord that 
connects to the peripheral multiplexer. The function buttons are lighted by 
incandescent bulbs. As with the function keys on the keyboard, pressing a 
function button results in a user-specified action. 

The function buttons unit is arranged with one row of four buttons, four 
rows of six buttons, and a final row of four buttons. The buttons are num­
bered from left to right, beginning at the top row of four buttons, with the 
first button labeled 0. Buttons can be programmed from the PS 390 to light 
when activated and go out when not activated. 

During operation, the function buttons respond to valid characters from the 
PS 390 and send a character to the PS 390 if a button is pressed. Inputs to 
the PS 390 from the function buttons unit are sent to the appropriate func­
tion network which determines the button functions. The activity of the 
lights backing the buttons is determined by messages sent from the PS 390 
to the function buttons unit. 

4.1 Communications Protocol 

During operation, the PS 390 and the function buttons unit use the commu­
nications protocol outlined below. 

Interactive Devices 

NOTE 

The displayed messages (such as X" 05", Ctrl E) in this 
section show both the ASCII equivalent (X" 05,.) and 
the actual character (Ctrl E). When "KEY" is entered 
as the actual character, it indicates the key entered by 
the user. 

RMIJA-21 



Turn ON All Lights Message (From PS 390) 

This message from the PS 390 turns ON all 32 lights in the function buttons 
unit: 

<Sl>,X' OF' ,Ctrl 0 

Tum OFF All Lights Message (From PS 390) 

This message from the PS 390 turns OFF all 32 lights in the function 
buttons unit: 

<SO>,X' OE' ,Ctrl N 

Turn ON Light KEY Message (From PS 390) 

This message from the PS 390 turns ON one of the 32 lights in the function 
buttons unit (no other lights are affected): 

(X'40'+ KEY) 

The value chosen for KEY (which should be a hex number from [X' 00'] to 
[X" 1F']) determines the specific light selected. If the designated light is 
already ON, this message has no affect. 

Turn OFF Light KEY Message (From PS 390) 

This message from the PS 390 turns OFF one of the 32 lights in the func­
tion buttons unit (no other lights are affected): 

(X' 60" + KEY) 

The value chosen for KEY (which should be a hex number from [X' 00'] to 
[X" 1F"]) determines the specific light selected. If the designated light is 
already OFF, this message has no affect. 

Key Down, Light ON Message (From Buttons) 

This message from the function buttons unit reports to the PS 390 that a 
KEY has been pressed down and that the status of the light in that KEY is 
ON: 

(X'40"+ KEY) 

The value of KEY should be a number (X" 00') to (X' 1F') corresponding to 
one of the 32 keys in the function buttons unit. 

RM13A-22 Reference Materials 



Key Down, Light OFF Message (From Buttons) 

This message from the function buttons unit reports to the PS 390 that a 
KEY has been pressed down and that the status of the light in that KEY is 
OFF: 

(X'60'+ KEY) 

The value of KEY should be a number (X, 00') to (X' 1F,) corresponding to 
one of the 32 keys in the function buttons unit. 

5. Data Tablet 

There are two data tablets available for use with the PS 390. Both tablets 
are identical for the PS 300 style and the PS 390 style interactive devices. 
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a 
four-button puck. Both are alike, except for their active areas, and both 
provide digitizing and picking functions for the PS 390. 

5.1 Operating Modes 

Data tablet modes may be controlled externally under program control. The 
following operating modes are available: 

• Point mode 

Pressing a puck button at a given tablet location causes one X, Y 
coordinate pair (sample) to be transmitted. 

• Stream mode 

X, Y coordinate pairs are generated continuously at the selected 
sampling rate when the puck is near the active area of the tablet. 

• Switched stream mode 

Interactive Devices 

Pressing a button on the puck causes X, Y coordinate pairs to be 
output continuously at the selected sampling rate until the button is 
released. 

RM13A-23 



Both the mode and the sampling rate may be changed under program con­
trol from the PS 390 by sending the data tablet an ASCII character. 
Table 13A-9 lists the ASCJI codes. 

Table l JA-9. Binary Data Transmission Codes 

Mode Binary Rate Uppercase ASCII Character 

Stop s 
Point p 

Switched Stream 2 @ 

4 A 

10 B 

20 c 
35 D 

70 E 

141 F 
141 G 

Stream 2 H 

4 I 

10 J 

20 K 

35 L 

70 M 

141 N 

141 0 

5.1.1 Binary Data Format 

The binary formatted RS-232 interface is a five-byte count output. Binary 
format is shown in Table 13A-10. 

Table l JA-10. Data Tablet Binary Format 

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
1 p 1 F3 F2 Fl FO 0 0 
2 p 0 X5 X4 X3 X2 Xl XO 
3 p 0 Xll XlO X9 X8 X7 X6 
4 p 0 Y5 Y4 Y3 Y2 Yl YO 
5 p 0 Yll YlO yg Y8 Y7 Y6 

RMJJA-24 Reference Materials 



6. The Optical Mouse 

The optical mouse transforms pos1t1on information into a digital form 
acceptable to the PS 390. The optical mouse uses a three-button mouse unit 
in conjunction with a reflective pad to provide X- and Y-axis position 
information. 

The mouse uses LEDs reflecting off the pad to provide directional informa­
tion to the control logic in the mouse. This movement is then translated into 
relative X and Y movement information. The data is transmitted serially to 
the PS 390 through the peripheral multiplexer. 

6.1 Protocol 

NOTE 

The optical mouse pad must be oriented horizontally to 
the user for proper mouse operation. Furthermore, the 
mouse cord (tail) should lead away from the user. 

The mouse protocol is 9600 baud asynchronous serial with one start bit, one 
stop bit, and eight data bits. The least significant data bit is transmitted 
first. Blocks of five bytes are sent whenever there is a change of mouse state 
(switches or position) since the last transmission. The protocol is as follows: 

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data 
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch 
status (0 switches the depressed state). With the mouse oriented so 
that the cord is facing away from the user, the right switch status is 
indicated by bit 0, the middle switch status by bit 1, and the left 
switch status is indicated by bit 2. 

2. Byte 2: Bits 0 through 7 represent the incremental change in the 
X-direction since the last complete report up to the time Byte 1 starts 
transmission. The data is in the two's complement form and has a 
value limit of +/- 127. With the mouse cord facing away from the 
user, moving the mouse to the right produces positive X values and 
moving the mouse to the left produces negative X values. 

Interactive Devices RMJJA-25 



RMlJA-26 

3. Byte 3: Bits 0 through 7 represent the incremental change in the 
Y-direction since the last complete report up to the time Byte 1 starts 
transmission. The data is in the two's complement form and has a 
value limit of +/- 127. Moving the mouse towards its mouse cord 
produces positive X values and moving the mouse away from its cord 
produces negative Y values. 

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre­
sent the data acquired since the beginning of Byte 1 transmission. 

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre­
sent the data acquired since the beginning of Byte 4 transmission. 

Table l JA-11. Mouse Bit Protocol 

MSB LSB 
Bit No. 7 6 5 4 3 2 1 0 

Byte 1 1 0 0 0 0 L M R 

Byte 2 X7 X6 X5 X4 X3 X2 Xl XO 

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO 

Byte 4 X7 X6 XS X4 X3 X2 Xl XO 

Byte 5 Y7 Y6 YS Y4 Y3 Y2 Yl YO 

Reference Materials 



RM13B. INTERACTIVE DEVICES 

PS 390 STYLE 

CONTENTS 

1. THE PERIPHERAL MULTIPLEXER........................ 1 

1.1 Functional Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Data Framing and Transmission Rates . . . . . . . . . . . . . . . . . . . . . . 3 

2. THE PS 390 KEYBOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2.1 Interface Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 Keyboard Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 

2.2.1 Data Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 
2.2.2 Keyboard Function Control Keys . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2.3 Alphabetic Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.2.4 Standard Numeric Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.2.5 Special Character Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.2.6 Terminal Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.2. 7 PS 390 Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.2.8 Numeric/Application Mode Keys.......................... 13 
2.2.9 Device Control Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

3. THE CONTROL DIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

3.1 Control Dial Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3 .2 Commands to the Control Dials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
3.3 Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4. THE 32-KEY LIGHTED FUNCTION BUTTONS . . . . . . . . . . . . . . . 16 

4.1 Light Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
4.2 Reporting Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
4.3 Self Test Command and Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
4.4 Transmission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 



5. DATA TABLET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

5.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
5.1.1 Binary Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

6. THE OPTICAL MOUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

6.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

ii 



ILLUSTRATIONS 

Figure 13B-1. Backside Connectors for the Peripheral Multiplexer . . . . . . . . . 2 
Figure 13B-2. Connectors for the PS 390 Style Interactive Devices . . . . . . . . . 3 
Figure 13B-3. The PS 390 Style Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

TABLES 

Table 13B~l. Interactive Device Transmission Rates . . . . . . . . . . . . . . . . . . . . . . 3 
Table 13B-2. Alphabetic Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Table 13B-2. Alphabetic Key Codes (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Table 13B-3. Standard Numeric Keys Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Table 13B-4. Special Character Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Table 13B-S. Terminal Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Table 13B-6. PS 390 Function Key Codes............................... 12 
Table 13B-7. Numeric/Application Mode Key Codes...................... 13 
Table 13B-8. The Device Control Key Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Table 13B-9. Control Dial Response Data Format... . . . . . . . . . . . . . . . . . . . . . 15 
Table 13B-10. Control Dial Command Data Format . . . . . . . . . . . . . . . . . . . . . . 16 
Table 13B-11. Function Button Light Control Message Byte . . . . . . . . . . . . . . . 17 
Table 13B-12. Function Button Light Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Table 13B-13. Function Button Self Test Responses . . . . . . . . . . . . . . . . . . . . . . 18 
Table 13B-14. Binary Data Transmission Codes.......................... 20 
Table 13B-15. Data Tablet Binary Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Table 13B-16. Mouse Bit Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 



Section RM13B 

Interactive Devices 
PS 390 Style 

Two sets of interactive devices are available with the PS 390: the PS 300-style 
devices and the PS 390-style devices. The interactive devices from the two styles 
cannot be mixed with the exception of the data tablets, and the optical mouse, 
which are common to both styles. 

The PS 390-style interactive devices include: 

• Keyboard without LEDs 

• Control dials unit without LEDs 

• Function buttons unit 

• Data tablet ( 6x6 or 12x12) with puck 

• Optical mouse 

The light pen is not supported on the PS 390. 

The PS 390 interfaces with the interactive devices through the peripheral 
multiplexer which supplies the power to the interactive devices and serves as their 
input/output path to the PS 390. The peripheral multiplexer combines the signals 
from the interactive devices and transmits them to the PS 390. 

This section describes the PS 390-style interactive devices and peripheral 
multiplexer. Section RM l 3A describes the PS 300-style interactive devices and 
peripheral multiplexer. 

1. The Peripheral Multiplexer 

The peripheral multiplexer serves as the connection point between the 
PS 390 system and the interactive devices. It provides power to the 
interactive devices and combines their signals and transmits them to the 
PS 390. It also routes any signals which the the system may send back to 
the appropriate interactive device. 

Interactive Devices RM13B-l 



The peripheral multiplexer is housed in a metal box which fits beneath the 
raster display pedestal. The interactive devices connect to the five connec­
tors on the front of the multiplexer. Each connector is uniquely dedicated to 
a specific interactive device. 

The peripheral multiplexer provides programmed logic which allows the 
data from the interactive devices to be multiplexed over a single RS-232C 
line into the controller via Port 5 on the rear of the PS 390. 

1.1 Functional Characteristics 

RMJJB-2 

The peripheral multiplexer consists of a circuit card which is connected to 
five input ports and one output port. The five input ports support the 
following interactive devices: 

• Keyboard 

• Control dials unit 

• Function buttons unit 

• Data tablet (6 by 6 or 12 by 12) with puck 

• Optical mouse 

Figure 13B-1 shows the backside connectors and plugs for the peripheral 
multiplexer. Figure 13B-2 shows the peripheral connections for the 
PS 390-style peripheral set. 

-n t-r---' 

[===:J 
90-130/180-250v~ 

[ ] 2A MAX 6/3A 47-63Hz 

~~ L :J 
0 :J 

0 

§c ....... )ol L 
[ 

~ON TROLLER [===:J 

Figure l JB-1. Backside Connectors for the Peripheral Multiplexer 

Reference Materials 



El 0I0 [j] I .... .... ...... ····j D .:::. . . .. .......... . =m= : : "-l·.·.-.·.·.·.·.·.·.·.~ m: 

~l~l~J @ 0 0 

MOUSE BUTTONS DIALS KEYBOARD TABLET POWER 

Figure I 3B-2. Connectors for the PS 390 Style Interactive Devices 

1.2 Data Framing and Transmission Rates 

The data sent to and from the peripheral multiplexer is asynchronous data 
with each byte containing eight data bits with no parity, one start bit and 
one stop bit. The data transmission rate of the peripheral multiplexer to and 
from the PS 390 is 19,200 baud. The transmission rates between the inter­
active devices and the peripheral multiplexer are shown in Table 13B-1. 

Table l 3B-I. Interactive Device Transmission Rates 

Device 

Keyboard Port x'Bl' 
Control Dials Port x'B2' 
32 Fune. Buttons Port x'B3' 
Mouse Port x'B4' 
Data Tablet Port x'B6' 

2. The PS 390 Keyboard 

Baud Rate 

1200 Baud 
9600 Baud 
9600 Baud 
9600 Baud 
9600 Baud 

The PS 390 Keyboard's main function is to generate and transmit ASCII 
displayable characters, ASCII control characters, and PS 390 system 
sequences. 

The PS 390 keyboard must plug into the peripheral multiplexer which sup­
ports the PS 390 peripheral set. 

The keyboard measures 19.76 inches (50.19 cm) long by 8.26 inches (20.98 
cm) deep. The keyboard stands 1.40 inches (3.56 cm) high on four rubber 
pads. 

Interactive Devices RMl3B-3 



BJ~ ™ [;ijB[;]B rnIB OClJl 
a=a bl: [PF3 8 ~ ~~~ 

~™~ff] ald~~ Local C 

• ~ l ~ l~A ws ffio rn Fw GOOH rn J ij~mmad rn a:m 
Shift 

llf ~JI z x le r v J le rN ~mm~ ~[JtW3 
It: I~ ~It' 

~~ ~ ~-. ~ 
....__ 



2.1 Interface Cable 

The Interface Cable is a 5-conductor, flexible cable with a shielded DIN 
plug which connects the PS 390 Keyboard to the front of the Peripheral 
Multiplexer. The cable may be stretched to permit many different work 
station arrangements. 

2.2 Keyboard Operation 

The PS 390 Keyboard allows the operator to input ASCII characters and 
other sequences to the Joint Control Processor by means of a typewriter­
like keyboard. Keyboard operation is discussed in detail in the following 
paragraphs. 

2.2.1 Data Entry 

The keys fall into eight general categories: 

• Keyboard Function Control 

• Alphabetic 

• Standard Numeric 

• Special Character 

• Terminal Function 

• PS 390 Function 

• Numeric/ Application Mode 

• PS 390 Device Control 

NOTE 

When instructions are given to press two or more keys 
simultaneously, the key sequence will be shown in ital­
ics. For example, CTRL V means that the CTRL and V 
keys are pressed simultaneously. 

The following is a detailed description of the eight general key categories. 

Interactive Devices RM13B-5 



RMJJB-6 

2.2.2 Keyboard Function Control Keys 

The Keyboard Function Control keys are unencoded, local controls. No 
codes are transmitted when these keys are pressed individually or in combi­
nation with each other. 

The Keyboard Function Control keys are as follows: 

• Shift Key (2) 

• CTRL (Control) Key 

The Keyboard Function Control keys are used to modify the codes transmit­
ted by other keys, as follows: 

• When either SHJFT key is pressed simultaneously with a displayable 
character key, the uppercase code for that key is generated. If the 
key does not have an uppercase function, the SHIFT key is ignored. 
For example, striking the A key causes the code B" 01100001" for the 
character a to be transmitted; the sequence SHIFT A causes the code 
B" 01000001" for the character A to be transmitted. Note that bit 6 is 
forced low to define an uppercase character. 

• When CTRL is pressed simultaneously with one of keys A-Z (upper­
case only), the space bar, or the Special Character keys , [, ], I, , or 
? , an ASCII control code is generated. For example, the CTRL Z 
keyboard sequence causes the code B" 00011010" to be generated. 
Note that the only difference between this code and that for Z (B'OlO 
11010') is that bit 7 is forced low to define the control code. 

When the SHIFT and CTRL keys are pressed simultaneously, the CTRL 
function is selected in most cases. The only exceptions occur with the - and 
I keys. SHIFT CTRL - causes the control character RS (B" 00011110") to be 
transmitted. SHIFT CTRL I causes the control character US (B-- 00011111 -- ) 
to be transmitted. The auto-repeat feature is enabled on all keys except: 
Fl - F12, SETUP, GRAPH, HOST, CMND, LOCAL, TERM, LOCK, CTRL, 
SHIFT (both keys), RETURN, and all numeric pad keys. When any other 
key is held down, repeated character transmission occurs. The rate is 15 +/-
2 Hz. 

Pressing the LOCK key enables the "shift lock" function. This is a shift 
operation that applies to all keys. Pressing either of the two shift keys 
causes the "shift lock" mode to be disabled. 

Reference Materials 



2.2.3 Alphabetic Keys 

The Alphabetic Keys are used to produce uppercase and lowercase ASCII 
displayable character codes and ASCII control codes. Table 13B-2 shows 
the code and character produced when each key is pressed alone, with the 
SHIFT key, or with the CTRL key. 

Table l JB-2. Alphabetic Key Codes 

Key Key Alone SHIFT+ Key CTRL+Key 
Label Code Char Code Char Code Char 

A X'61' a X'41' A X'Ol' SOR 
97 65 1 

B X'62' b X'42' B X'02' STX 
98 66 2 

c X'63' c X'43' c X'03' ETX 
99 67 3 

D X'64' d X'44' D X'04' EOT 
100 68 4 

E X'65' e X'45' E X'45' ENQ 
101 69 5 

F X'66' f X'46' F X'06' ACK 
102 70 6 

G X'67' g X'47' G X'07' BEL 
103 71 7 

H X'68' h X'48' H X'08' BS 
104 72 8 

I X'69' i X'49' I X'09' HT 
105 73 9 

J X'6A' J X'4A' J X'OA' LF 
106 74 10 

K X'6B' k X'4B' K X'OB' VT 
107 75 11 

L X'6C' 1 X'4C' L X'OC' FF 
108 76 12 

M X'6D' m X'4D' M X'OD' CR 
109 77 13 

N X'6E' n X'4E' N X'OE' so 
110 78 14 

Interactive Devices RMJJB-7 



Table 138-2. Alphabetic Key Codes (cont.) 

Key Key Alone SHIFT+Key CTRL+Key 
Label Code Char Code Char Code Char 

0 X'6F' 0 X'4F' 0 X'OF' SI 
111 79 15 

p X'70' p X'50' p X'lO' DLE 
112 80 16 

Q X'71' q X'51' Q X'll' DCl 
113 81 17 

R X'72' r X'52' R X'12' DC2 
114 82 18 

s X'73' s X'53' s X'13' DC3 
115 83 19 

T X'74' t X'54' T X'14' DC4 
116 84 20 

u X'75' u X'55' u X'15' NAK 
117 85 21 

v X'76' v X'56' v X'16' SYN 
118 86 22 

w X'77' w X'57' w X'17' ETB 
119 87 23 

x X'78' x X'58' x X'l8' CAN 
120 88 24 

y X'79' y X'59' y X'19' EM 
121 89 25 

z X'7A' z X'5A' z X'lA' SUB 
122 90 26 

RM13B-8 Reference Materials 



2.2.4 Standard Numeric Keys 

The shiftable Standard Numeric keys are similar to the shiftable numeric/ 
symbol keys that appear on a typewriter; they generate ASCII displayable 
numbers and symbols. The CTRL key is ignored when used with these keys. 
Table 13B-3 shows the code and character produced when each key is 
pressed alone, with the SI-IlFT key, or with the CTRL key. 

Table l 3B-3. Standard Numeric Keys Codes 

Key Key Alone SHIFT+ Key CTRL+Key 
Label Code Char Code Char Code Char 

0 X'30' 0 X'29' ) X'30' 0 
48 41 48 

1 X'31' 1 X'21' ! X'31' 1 
49 33 49 

2 X'32' 2 X'40' @ X'32' 2 
50 64 50 

3 X'33' 3 X'23' # X'33' 3 
51 35 51 

4 X'34' 4 X'24' $ X'34' 4 
52 36 52 

5 X'35' 5 X'25' % X'35' 5 
53 37 53 

6 X'36' 6 X'5E' /\ X'36' 6 
54 94 54 

7 X'37' 7 X'26' & X'37' 7 
55 38 55 

8 X'38' 8 X'2A' * X'38' 8 
56 42 56 

9 X'39' 9 X'28' ( X'39' 9 
57 40 57 

Interactive Devices RM13B-9 



2.2.5 Special Character Keys 

The shiftable Special Character keys are used to produce both ASCII 
displayable characters and ASCII control characters. Table 13B-4 shows the 
codes and characters produced when these keys are activated alone, with 
the SHIFT key, and with the CTRL key. Note the varying response given to 
the CTRL key; in some instances, the unshifted key character is produced. 
In other cases, a control character is generated. 

RMJJB-10 

Table l JB-4. Special Character Keys 

Key Key Alone 
Label Code Char 

+ 

{ 
[ 
} 
l 
I 
\ 

" 

< 

> 

? 

I 
> 
< 

X'2D' 
45 

X'3D' 
61 
X'60' 
96 
X'5B' 
91 

X'5D' 
93 

X'5C' 
92 

X'3B' 
59 

X'27' 
39 

X'2C' 
44 

X'2E' 
46 
X'2F' 
47 
X'3C' 
60 

(minus) 

\ 

I 

< 

SHIFT+ Key 
Code Char 

X'5F'' 
95 

X'2B' 
43 

X'7E~' 

126 

X'7B' 
123 
X'7D' 
125 
X'7C' 
124 
X'3A' 
58 

X'22' 
34 

X'3C' 
60 

X'3E:' 
62 

X'3F' 
63 
X'3E' 
62 

(underline) 

+ 

{ 

} 

" 

< 

> 

? 

> 

CTRL+Key 
Code Char 

X'2D' 
45 (minus) 

X'3D' 
61 
X'lE' 
30 

X'lB' 
27 

X'lD' 
29 

X'lC' 
28 
X'3B' 
59 

X'27' 
39 

X'2C' 
44 

X'2E' 
46 
X'lF' 
31 

X'3C' 
60 

RS 

ESC 

GS 

FS 

us 

< 

Reference Materials 



2.2.6 Terminal Function Keys 

The Terminal Function keys in produce codes used by a typical video dis­
play terminal. These keys enable an operator to generate any commonly 
used terminal control character with a single keystroke. (The codes pro­
duced by these keys are identical to those generated by the conventional 
two-key control sequences.) 

Note that the SHIFT and CTRL keys have no effect on the codes produced 
by the Terminal Function keys, except for the CTRL Space Bar sequence 
that generates an ASCII NUL character. 

Table 13B-5 lists the codes and characters generated by the Terminal 
Function keys. 

Table 13B-5. Terminal Function Keys 

Key Key Alone SHIFT+Key CTRL+Key 
Label Code Char Code Char Code Char 

X'AO' X'AO' X'AO' 
BREAK 160 160 160 
SCROLL X'9F' X'9F' X'9F' 

LOCK 159 159 159 
BACK X'08' X'08' X'08' 
SPACE 8 BS 8 BS 8 BS 

X'7F' X'7F' X'7F' 
DELETE 127 DEL 127 DEL 127 DEL 

X'OD' X'OD' X'OD' 
RETURN 13 CR 13 c~ 13 CR 

LINE X'OA' X'OA' X'OA' 
FEED 10 LF 10 LF 10 LF 

X'lB' X'lB' X'lB' 
ESC 27 ESC 27 ESC 27 ESC 

X'09' X'09' X'09' 
TAB g HT 9 HT 9 HT 

(none; X'20' X'20' X'OO' 
space bar) 32 (space) 32 (space) 0 NUL 

Interactive Devices RMJJB-11 



2.2.7 PS 390 Function Keys 

The PS 390 Function Keys are used to transmit special 2-byte system 
sequences. Table 13B-6 shows the the codes for these keys. 

Table 13B-6. PS 390 Function Key Codes 

Key Key Alone SHIFT+ Key CTRL+Key 
Label Code Code Code 

Fl X'1661 X'1641' X'1601' 
F2 X'1662 X'1642' X'1602' 
F3 X'1663' X'1643' X'1603' 
F4 X'1664' X'1644' X'1604' 
F5 X'1665' X'1645' X'1605' 
F6 X'1666' X'1646' X'1606' 
F7 X'1667' X'1647' X'1607' 
F8 X'1668' X'1648' X'1608' 
F9 X'1669' X'1649' X'1609' 

FlO X'166A' X'164A' X'160A' 
r- Fll X'166B' X'164B' X'160B' 

F12 X'166C' X'164C' X'160C' 

RM13B-12 Reference Materials 



2.2.8 Numeric/Application Mode Keys 

The numeric application mode keys generate special 2-byte PS 390 system 
sequences similar to those produced by the PS 390 Function keys. 

Note that neither SHIFT nor CTRL affects the ENTER key, and that no 
codes are modified by the CTRL key. 

Any code generated by a Numeric/ Application Mode key may be duplicated 
by entering CTRL SHIFT V, followed by the appropriate displayable charac­
ter or control character. 

Table 13B-7 illustrates the codes and characters produced by the Numeric/ 
Application Mode keys. 

Table J JB-7. Numeric/Application Mode Key Codes 

I 
Key Key Alone SHIFT+ Key CTRL+Key 

Label Code Char Code Char Code Char 

0 X'1630' X'1629' X'1630' 
1 X'1631' X'1621' X'1673' 
2 X'1632' X'1640' X'1644' 
3 X'1633' X'1623' X'1633' 
4 X'1634' X'1624' X'1670' 
5 X'1635' X'1625' X'166F' 
6 X'1636' X'165E' X'1636' 
7 X'1637' X'1626' X'1652' 
8 X'1638' X'162A' X'1612' 
9 X'1639' X'1628' X'1639' 

X'162E' X'163E' > X'162E' 

' 
X'162C' 

' 
X'163C' < X'l62C' 

' X'162D' (minus) X'165F' (underline) X'l62D' 
- - --

ENTER X'160D' CR X'160D' CR X'160D' CR 

Interactive Devices RMJJB-13 



2.2.9 Device Control Keys 

The Device Control keys generate two-byte sequences similar to those de­
scribed in 2.2. 7 and 2.2.8. The codes produced by these keys are modified 
by SHIFT and CTRL as shown in Table 13B-8. 

Any code generated by a Device Control key may also be produced by en­
tering CTRL SHIFT V, followed by the appropriate displayable character or 
control character. 

Table 13B-8. The Device Control Key Codes 

Key Key Alone SHIFT+I<ey CTRL+Key 
Label Code Code Code 

1 X'l631' X'1621' X'1673' 
TERM 

2 X'1632' X'1640' X'1644' 
NRMTST 

4 X'1634' X'1624' X'l670' 
GRAPH 

5 X'1635' X'1625' X'166F' 
SET UP 

7 X'1637' X'l626' X'1652' 
LOCAL 

8 X'1638' X'162A' X'1612' 
CMND 

X'1677' X'1657' X'1617' 
+-

X'1678' X'1658' X'1618' 
~ 

X'1679' X'1659' X'1619' 

i 
X'167A' X'165A' X'161A' 

l 
PFl X'A9' X'A9' X'1672' 

HOST 
PF2 X'AA' X'AA' X'1674' 
5080 

The Cursor Up key becomes Scroll Up when shifted. 
The Cursor Down key becomes Scroll Down when shifted. 

RMJJB-14 Reference Materials 



3. The Control Dials 

The Control Dials consist of an array of 8 shaft encoders arranged in a 2 
column x 4 row design, with the number 1 dial being the upper left-hand 
dial and the number 5 dial being the upper right-hand dial when the Dials 
are situated in their vertical orientation. The Control Dials report to the 
Joint Control Processor the number of counts rotated between sampling in­
tervals. The Joint Control Processor may specify the number of counts to be 
accumulated between sampling intervals and may set a sampling time for 
all the dials. (Default value for the Dials is 1024 counts per revolution at 4 
count increments and 30 samples per second.) 

3 .1 Control Dial Responses 

The Control Dials output relative delta values only. For example; each dial's 
position is reported in terms of its last sample location. The data format 
used to report the count is: 

Table l 3B-9. Control Dial Response Data Format 

Byte Number Description 

Interactive Devices 

1 Control V = '00010110' 

2 Byte = , OOOOOnnn', 

3 

4 

Where nnn is a binary number 000 thru 111 (0 thru 
7 decimal which specifies the dial.) 

Most significant byte of a 16-bit signed integer 
(sign indicates direction). 

Least significant byte of the 16-bit signed 
integer (two's complement notation). 

RM13B-15 



3.2 Commands to the Control Dials 

The Control Dials must respond to two commands. The first is in the same 
format as the response message except that the second byte is "100xxnnn" 
and no sign is legal on the 16-bit integer. It specifies the delta value which 
must be accumulated before the delta count is reported to the host (meaning 
how many counts between reports). 

The second command is formatted as follows and applies a sampling time 
to all the dials: 

Table l 3B-l 0. Control Dial Command Data Format 

Byte Number 

1 
2 
3 
4 

Description 

Control V = "00010110" 
Control Byte = "lxlxxxxx", (x=don't care) 
Reserved unused byte. 
Time count in binary, 

Where x" 05" = 60 samples/second 
Where x" OA" = 30 samples/second 
Where x" lE" = 10 samples/second 

This time indicates how often the Control Dials samples to see if sufficient 
counts have been accumulated on any dial to respond to the processor. 

3.3 Transmission Characteristics 

The data sent to and from the Control Dials is asynchronous with each byte 
containing eight data bits with no parity, one start bit and one stop bit. The 
data transmission rate of the Control Dials is 9600 baud. 

4. The 32-Key Lighted Function Buttons 

The Lighted Function Buttons consists of an array of 32 lighted function 
keys. The Joint Control Processor sends the message to the Function Button 
Unit that lights the keys which are candidates to be selected to invoke spe­
cific program functions. The same message may also turn off some of the 
lights which are already on. This cues the operator that he may select one of 
the lighted keys by pressing the key. The Function Buttons Unit then sends a 

RMJJB-16 Reference Materials 



message to the Joint Control Processor which indicates that a specific key 
has been depressed. The software can then take action(s) based upon the 
key selection. 

4.1 Light Control 

The Function Button lights are logically grouped into eight groups of four 
lights each. The lights of the box are turned on and of respectively by send­
ing a message consisting of one to eight bytes to the unit. The four most 
significant bits of each byte contains the identification number for a four­
light group; the four least significant bits contain a mask which turn on (if 
the corresponding bit is set) or off (if the bit is clear) the light. This is 
shown in Table 13B-11 where the Group Number is binary 0000 through 
0111 and Light Mask l's and 0' s turn lights on and off. 

I 1l 6l sl4l 312l 1IOJ 
I Group I Mask I 

Table 1 JB-11. Function Button Light Control Message Byte 

The Function Button Light Groups are defined in Table 13B-12. 

Table 1 JB-12. Function Button Light Groups 

Group Number Description 

b'OOOO' Group for lights 1 through 4 

b'OOOl' Group for lights 5 through 8 

b'OOlO' Group for lights 9 through 12 

b'OOll' Group for lights 13 through 16 

b'OlOO' Group for lights 17 through 20 

b'OlOl' Group for lights 21 through 24 

b' 0110' Group for lights 25 through 28 

b'Olll' Group for lights 29 through 32 

Interactive Devices RMJJH-17 



Any byte or combination of bytes may be sent in a message, depending on 
which of the lights must be turned on or turned off. Turning all lights on, 
turning all lights off or changing the state of at least one byte of each of the 
eight groups requires an eight-byte message to be sent. Changing the state 
of one to four lights in a single four-light group requires only a one-byte 
message to be sent. 

4.2 Reporting Selections 

The Function Button Unit reports that a key has been pressed by sending a 
single byte to the Joint Control Processor. The value of the byte is given by 
adding the hexadecimal value of the key number to the hexadecimal value 
x' 3F'. Thus the first sixteen keys are numbered x' 40' to x' 4F' and the 
second group of sixteen keys are numbered x' 50' to x' 5F'. Only one key 
depression per message is reported. 

4.3 Self Test Command and Report 

The Function Buttons Unit has a self-test command and report that is used 
for diagnostics and optionally for initialization confidence tests. The com­
mand is a single byte: x' 80'. The response is a four-byte sequence as 
shown in Table 13B-13. 

Byte 1 

Byte 2 

Byte 3 

Byte 4 

Table l JB-13. Function Button Self Test Responses 

64H, Hardware ID for the Button Box. 

xxH, where xx is the firmware revision level. This should 
begin with OlH. 

OOH if ROM and RAM test successful and 3EH if ROM or 
RAM test failed, (RAM and ROM refer to processor chip), 
or 3DH if key down on Self Test (3E supersedes 3D) 

OOH on successful test, or xxH, where xx is code of 
keydown at Self Test. 

4.4 Transmission Characteristics 

The data sent to and from the Function Buttons Unit is asynchronous data 
with each byte containing eight data bits without parity plus one start bit 
and one stop bit. The data transmission rate of the Buttons box is 9600 
baud. 

RM13B-18 Reference Materials 



5. Data Tablet 

There are two data tablets available for use with the PS 390. Both tablets 
are identical for the PS 300 style and the PS 390 style interactive devices. 
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a 
four-button puck. Both are alike, except for their active areas, and both 
provide digitizing and picking functions for the PS 390. 

5.1 Operating Modes 

Data tablet modes may be controlled externally under program control. The 
following operating modes are available: 

• Point mode 

Pressing a puck button at a given tablet location causes one X, Y 
coordinate pair (sample) to be transmitted. 

• Stream mode 

X, Y coordinate pairs are generated continuously at the selected 
sampling rate when the puck is near the active area of the tablet. 

• Switched stream mode 

Pressing a button on the puck causes X, Y coordinate pairs to be 
output continuously at the selected sampling rate until the button is 
released. 

Both the mode and the sampling rate may be changed under program con­
trol from the PS 390 by sending the data tablet an ASCII character. 
Table 13B-14 lists the ASCII codes. 

Interactive Devices RMJJB-19 



Table l 3B-l 4. Binary Data Transmission Codes 

Mode Binary Rate Uppercase ASCII Character 

Stop s 
Point p 

Switched Stream 2 @ 

4 A 

10 B 

20 c 
35 D 

70 E 

141 F 
141 G 

Stream 2 H 

4 I 

10 J 

20 K 

35 L 

70 M 

141 N 

141 0 

5.1.1 Binary Data Format 

The binary formatted RS-232 interface is a five-byte count output. Binary 
format is shown in Table 13B-15. 

Table l 3B-l 5. Data Tablet Binary Format 

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
1 p 1 F3 F2 Fl FO 0 0 
2 p 0 XS X4 X3 X2 Xl XO 
3 p 0 Xll XlO X9 XB X7 X6 
4 p 0 YS Y4 Y3 Y2 Yl YO 
5 p 0 Yll YlO yg YB Y7 Y6 

RM13B-20 Reference Materials 



6. The Optical Mouse 

The optical mouse transforms pos1t1on information into a digital form 
acceptable to the PS 390. The optical mouse uses a three-button mouse unit 
in conjunction with a reflective pad to provide X- and Y-axis position 
information. 

The mouse uses LEDs reflecting off the pad to provide directional informa­
tion to the control logic in the mouse. This movement is then translated into 
relative X and Y movement information. The data is transmitted serially to 
the PS 390 through the peripheral multiplexer. 

6 .1 Protocol 

NOTE 

The optical mouse pad must be oriented horizontally to 
the user for proper mouse operation. Furthermore, the 
mouse cord (tail) should lead away from the user. 

The mouse protocol is 9600 baud asynchronous serial with one start bit, one 
stop bit, and eight data bits. The least significant data bit is transmitted 
first. Blocks of five bytes are sent whenever there is a change of mouse state 
(switches or position) since the last transmission. The protocol is as follows: 

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data 
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch 
status (0 switches the depressed state). With the mouse oriented so 
that the cord is facing away from the user, the right switch status is 
indicated by bit 0, the middle switch status by bit 1, and the left 
switch status is indicated by bit 2. 

2. Byte 2: Bits 0 through 7 represent the incremental change in the 
X-direction since the last complete report up to the time Byte 1 starts 
transmission. The data is in the two's complement form and has a 
value limit of +/- 127. With the mouse cord facing away from the 
user, moving the mouse to the right produces positive X values and 
moving the mouse to the left produces negative X values. 

Interactive Devices RMJJB-21 



RMJJB-22 

3. Byte 3: Bits 0 through 7 represent the incremental change in the 
Y-direction since the last complete report up to the time Byte 1 starts 
transmission. The data is in the two's complement form and has a 
value limit of +/- 127. Moving the mouse towards its mouse cord 
produces positive X values and moving the mouse away from its cord 
produces negative Y values. 

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre­
sent the data acquired since the beginning of Byte 1 transmission. 

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre­
sent the data acquired since the beginning of Byte 4 transmission. 

Table l JB-16. Mouse Bit Protocol 

MSB LSB 
Bit No. 7 6 5 4 3 2 1 0 

Byte 1 1 0 0 0 0 L M R 

Byte 2 X7 X6 X5 X4 X3 X2 Xl XO 

Byte 3 Y7 Y6 Y5 Y4 Y3 Y2 Yl YO 

Byte 4 X7 X6 XS X4 X3 X2 Xl XO 

Byte 5 Y7 Y6 YS Y4 Y3 Y2 Yl YO 

Reference Materials 





RM14. GSR INTERNALS 

CONTENTS 

1. DATA TYPES............................................. 2 

1.1 Routing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Data Formats for Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.3 Error Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

2. COMMAND INTERPRETER DATA FORMAT . . . . . . . . . . . . . . . . 11 

2.1 Data Format Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.1.1 Example - Character Rotate Command . . . . . . . . . . . . . . . . . . . 12 
2.1.2 Example - Connect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
2.2 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

3. DESCRIPTION OF SIX-BIT BINARY DATA PROTOCOL 
IN THE PS 390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

3.1 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
3.2 Six-Bit Binary Data Encoding Method . . . . . . . . . . . . . . . . . . . . . 60 
3.3 Example of Encoding Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . 62 

i 



Section RM14 

GSR Internals 

This section describes the data formats expected by PS 390 command interpreter 
(CI) and other intrinsic functions. It provides you with the necessary information to 
write your own GS Rs. 

NOTE 

Information in this section is based on information in 
other sections of this guide. Where helpful, information 
will be duplicated here for clarity. Otherwise, 
references will be given to other sections as necessary. 

The first section discusses formats for the different data types. It is important to 
note that data is received a byte at a time by the JCP. Therefore, where there is a 
most significant bit (MSB) - least significant bit (LSB) specified, the MSB must be 
sent first. Error formats and reset commands are also discussed. Reset commands 
should be sent anytime there is an error detected during the sending of other com­
mands. Reset causes the CI to reset and begin command interpretation again. This 
section also describes the intrinsic functions that internally receive, pass, and route 
data. 

The second section provides the data formats for each of the commands that can 
be sent to the CI. The format shows the data type followed by the data that should 
be sent. The data is expressed as a number, a Boolean value, an identifier or an 
expression. 

The final section provides the 6-bit binary encoding method that can be used by 
the PS 390 for hosts that can't send binary data. This format uses 2D or 3D vector 
normalized data as an example. 

GSR Internals RM14-1 



1. Data Types 

RM14-2 

This section gives the formats for different data types. Some of the data 
types that can be passed internally in the PS 390 are defined below: 

{O} 
{1} 
{2} 
{3} 
{4} 
{5} 
{6} 
{7} 
{8} 
{9} 

{10} 
{11} 
{12} 
{13} 
{14} 
{15} 
{16} 
{17} 
{18} 
{19} 
{20} 

{21} 

Qreset, 
Qprompt, 
QBoolean, 
Qinteger, 
Qreal, 
Qstring, 
Qpacket, 
Qmorepacket, 
Qmove2, 
Qdraw2, 
Qvec2, 
Qmove3, 
Qdraw3, 
Qvec3, 
Qmove4, 
Qdraw4, 
Qvec4, 
Qmat2, 
Qmat3, 
Qmat4, 
Qbindata 

Qusertype 

) ; 

{dataless: reset a function instance} 
{dataless: flush the CI pipeline} 
{normal carrier of Boolean values} 
{normal carrier of integer values} 
{normal carrier of floating point values} 
{original carrier of byte strings, not used} 
{carrier of byte strings} 
{continuation Qpacket carrier of byte strings} 
{2D vector including P bit} 
{2D vector including L bit} 
{2D vector with no P/L bit (normal vector)} 
{3D vector including P bit} 
{3D vector including L bit} 
{3D vector with no P/L bit (normal vector)} 
{4D vector including P bit} 
{4D vector including L bit} 
{4D vector with no P/L bit (normal vector)} 
{2x2 matrix} 
{3x3 matrix} 
{4x4 matrix} 
{definition of binary data (data part of vector 
list)} 
{type that user may use to define own message} 

Qdtype is padded with 260 miscellaneous elements to ensure that a 16-bit 
field is allocated by the Pascal compiler rather than the 8-bit field that 
would be allocated otherwise. 

The Qdtype is used to specify the different types of Qdata message blocks 
available in the PS 390 runtime system. Qdata blocks are the primary 
vehicle for communication in the PS 390. When a Qdata message is input to 
a function, it checks to see if it is a valid message type (Qdtype). When a 
message is output by a function, it carves a Qdata message of the 
appropriate type and outputs it. 

Reference Materials 



The CI expects tokens that consist of a size, a data type, and a value. Once 
given, the type of command is implicit in the type of the token, such as 
"Qsetcontrast" for "Set Contrast." The CI accepts tokens until it has enough 
to carry out a command. 

1.1. Routing Functions 

Data is sent from the host to the PS 390 as a stream of bytes. The bytes 
contain information that tells the PS 390 intrinsic functions the nature of the 
message and where it is to be sent internally. The following is a list of the 
data transfer modes used in host/PS 390 communication and a brief de­
scription of the intrinsic functions that accept, examine, and route data in­
ternally in the PS 390. 

F:DEPACKET 

An intrinsic user function, F:DEPACKET, accepts data (input to the PS 390 
from the host) from receiving functions (Bl$, etc.). F:DEPACKET converts 
a stream of bytes from the host into a stream of Qpacket/Qmorepacket. A 
Qpacket is a block of character data that can be sent from one PS 390 
function to another. When data comes from · the host through the 
F:DEPACKET function, it contains a byte for routing control. A 
Qmorepacket is a Qpacket that when coming from the host through 
F:DEPACKET, has no routing byte. A Qmorepacket has the same 
destination as the previous Qpacket. 

(F:DEPACKET) 

Qpacket <1> <1> Qpacket, 

Qpacket <2> Qmorepacket 

Qinteger <3> <2> Qpacket, 

Qpacket <4> Qmorepacket 
(between packets) 

Qinteger <5> 

DEPACKETO 
(count mode) 

GSR Internals RM14-3 



RM14-4 

In count mode, F:DEPACKET assumes that a packet is defined as: 

I <SOP> I count bytes I packet contents 

where <SOP> represents the Start of Packet (SOP) character that is by de­
fault the the ASCII ACK character, decimal character code 06 CF). 

The definition of SOP (one character) is taken from a single character 
Qpacket on input <2>. 

The message count is defined by n bytes (n defined by the Qinteger on 
input <3>). Each count byte is off set from the base character (the base 
character is taken from a single character Qpacket on input <4>). After the 
base character is subtracted, each count byte becomes a digit of the mes­
sage count whose radix is defined by the Qinteger on input <5>. 

Output <1> outputs Qpackets and Qmorepackets of count mode messages. 
Output <2> outputs Qpackets and Qmorepackets of any messages which are 
not in count mode. 

The <SOP> byte and the count bytes are removed from the start of the 
packet before the packet is sent to F:CIROUTE, which does the actual 
routing. 

F:CIROUTE(n) 

Once data has passed through an instance of F:DEPACKET, the next func­
tion to receive it is F:CIROUTE(n). F:CIROUTE(n) has two instances, one 
for count mode and one for escape mode. Count and escape mode are 
functionally similar; therefore, only the count mode instance, CIROUTEO, 
will be described. CIROUTEO examines the first character of the Qpackets 
it receives (the character following the count bytes in count mode, or the 
character following the <FS> character in escape mode) to determine where 
the packet message is to be sent. These characters are routing bytes, and 
are used to select the appropriate channel for data in the PS 390. 

Reference Materials 



Data channels include lines to: 

• Terminal emulator 

• PS 390 CI (through F:READSTREAM for binary packets) 

• Disk writing function 

• Other intrinsic functions 

A base character, defined on Input <2> of CIROUTEO, is subtracted from 
this routing byte before it is used to select the output channel. The base 
character defaults to the character zero ("O"). 

F:CIROUTE (n) 

-.Qinteger Qpacket <1> 
Qmorepacket <1> 
Qreset <2> _.... Qpacket, Qmorepacket 
Qstring <2>C 

Qprompt <3>C 
Qr es et <n> _. Qpacket, Qmorepacket 
Qinteger <4> 

(CIROUTEO) 
(CIROUTE20) 

F:CIROUTE demultiplexes a stream of Qpackets/Qmorepackets from input 
<1> to one of the n output channels. The first byte of an incoming Qpacket 
is assumed to be the multiplexing byte, equal to the base character (from 
input <2>) + K, where K is the channel number. If K >(n-3) or K < 0, there 
is no channel for this output and a pair of messages are sent on outputs <1> 
and <2>. These can be used to allow for later remultiplexing or further 
demultiplexing. An integer giving the indicated output port is sent on output 
<1> and the message for which there was no defined output is sent on 
output <2>. Whether or not K is within the limits implied by the number of 
outputs of F:CIROUTE, the multiplexing byte is removed from the start of 
the packet. 

F:CIROUTE passes incoming Qmorepackets out the current channel (as 
defined by the last Qpacket). Initially, after a Qreset is received, the current 
channel is -1. 

GSR Internals RM14-5 



RM14-6 

When instancing this function, a parameter is required to specify the 
number of outputs. 

F:CIROUTE(n) is a special version of F:DEMUX(n). It assumes that it is 
driving parallel, asynchronous paths to a common destination, the CI. 
F:CIROUTE(n) synchronizes the paths by sending a Qprompt at the end of 
a channel, then waiting for it to come back around before switching to the 
next channel. This assumes that the CI can strip Qprompts and send them 
back. Input <4> gives the maximum channel number, m, for which path 
flushing is desired. F:CIROUTE(n) flushes channels 0<=K <= m with 
Qprompts. 

The definitions for the inputs and outputs for F:CIROUTE(n), and routing 
bytes used by F:CIROUTE(n) are described in Section RM2, Intrinsic 
Functions. 

F:READSTREAM 

Binary packet data sent from F:CIROUTE(n) to the CI is sent through 
F:READSTREAM. This is the same path the GSRs take. 

Qpacket 
Qprompt 

Qinteger 

Qflush 

F: READSTREAM 

<1> 
<1> 

<2>C 

<3>C 

(ReadstreamO, RDBSO 
P4RSO) 

any type 

This function converts an 8-bit stream into arbitrary messages. It takes two 
bytes as the count of information (including message type) and creates a 
message of that size with the bytes of information that follow it. The 
message format on input <1> is: 

2 bytes 2 bytes 

length message type rest of message body 

Reference Materials 



F:CI 

The CI accepts messages from the GSRs through an instance of 
F:READSTREAM. 

F:CI 

Qchopitems <1> <1> unused 
Qprompt 

<2> unused 

<3> error messages 

<4> Qboolean 
<5> Qprompt 

<6> unused 

<7> unused 

<8> Qflush 
(H_CIO) 

This function interprets commands, creating display structures and function 
networks. It receives input either from a chop/parse function or a 
READ STREAM function (if using the GS Rs). 

1.2. Data Formats for Data Types 

BBOOL - BOOL 8 BIT BOOLEAN 

l~--ol FALSE 

I 1 I TRUE 

B.OOL - BOOL 1 6 BIT BOOLEAN 

_, ____ ____.ol FALSE 

I 1 I TRUE 

GSR Internals RM14-7 



RM14-8 

INT8 - BYTE 8 BIT INTEGER .---I -----.I 

INT1 6 - WORD : 1 6 BIT INTEGER 

I MSB I LSB I 

INT32 - LWORD 

MSB 

32 BIT INTEGER 

LSB 

MSB LSB 

PSREAL - REAL32 64 BIT REAL 

ID 

SI MSB LSB 

SI MSB LSB 

MSB LSB 

0 

EXPONENT 

MS 1 6 BITS OF FRACTION 

LS 1 6 BITS OF FRACTION 

PADDING BYTES 

NOTE 

All exponents are signed integers in the range of +/-
1024. All fractions have their sign bits in the most sig­
nificant bit of the fraction. 

- NAME, SIZE 

I CHARACTER NAME ( 1) 

CHARACTER NAME (SIZE) 

STRING - NAME, SIZE 

I CHARACTER STA ( 1) 

CHARACTER STA (SIZE) 

Reference Materials 



VECNO - V, POSLIN, DIM, COUNT 

COUNT OF 

20 VECTOR - MOVE 

SI MSB LSB 

MSB LSB 

EXP INTENSIO 

20 VECTOR - ORA W 

MSB LSB 

MSB LSB 

EXP INTENSI 1 

or 

30 VECTOR - MOVE 

MSB LSB 

MSB LSB 

MSB LSB 

EXP INTENSIO 

30 VECTOR - ORA W 

MSB LSB 

MSB LSB 

MSB LSB 

EXP INTENSI 1 

GSR Internals 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

EXPONENT /INTENSITY - MOVE 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

EXPONENT /INTENSITY - DRAW 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

Z NORMALIZED FRACTION 

EXPONENT /INTENSITY - MOVE 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

Z NORMALIZED FRACTION 

EXPONENT/INTENSITY - DRAW 

RM/4-9 



RM14-10 

VBLNO - POSLIN, DIM, COUNT 

EXP INTENS EXPONENT /INTENSITY 

FOLLOWED BY COUNT OF 

or 

20 VECTOR - MOVE 

MSB LSB X NORMALIZED FRACTION 

MSB LSB I 0 Y NORMALIZED FRACTION - MOVE 

20 VECTOR - DRAW 

MSB LSB X NORMALIZED FRACTION 

MSB LSB I 1 Y NORMALIZED FRACTION - DRAW 

30 VECTOR - MOVE 

MSB LSB 

MSB LSB 

MSB LSB IO 

30 VECTOR - ORA W 

MSB LSB 

MSB LSB 

MSB LSB 11 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

Z NORMALIZED FRACTION - MOVE 

X NORMALIZED FRACTION 

Y NORMALIZED FRACTION 

Z NORMALIZED FRACTION - DRAW 

Reference Materials 



1.3. Error Formatting 

This format is used to reset the CI after an error. 

ERROR - ERRCOD 

INT16 - 2 
INT16 - QERRFL=143 

2. Command Interpreter Data Format 

This section provides the data formats for most of the commands that can 
be sent to the PS 390 CI. 

The format shows the data type, followed by the data that should be sent. 
The data is expressed as a number, a Boolean value, an identifier, or an 
expression. If an identifier begins with the letter Q, it is a subcommand type 
and the value of the subcommand to be used is shown after the equal sign 
( =). If the identifier is SIZE it refers to the size or length of the string or ID 
about to be transferred. All other identifiers are user supplied variables. 

2.1. Data Format Analysis 

To help understand how PS 390 commands are built from subcommands, 
the structure of some commands is analyzed below. Note that each Qdata 
(subcommand) described has the same substructure, as follows: 

• Number of bytes in the Qdata 

• The tag identifying the particular Qdata 

• The data, if any 

Data that may vary in size, such as character strings, is structured such that 
the Cl can deal with it correctly. 

The following describes how the pieces of information are incorporated into 
the data sent by the GSRs to the CI. 

GSR Internals RM14-11 



RM14-12 

2.1.1. Example - Character Rotate Command 

The command: 

Handle := CHARACTER ROTATE angle APPLIED TO Apply; 

has three parts, as follows: 

1. Handle := 

2. CHARACTER ROTATE angle 

3. APPLIED TO Apply 

This Qdata describes the Handle := part of the command. 

INT16 - SIZE+8 { A Qdata always starts with a byte count 
INT16 - QLABEL=44 { This particular Qdata is a QLabel } 
INT16 - SIZE { The number of bytes in the name "Handle" 
INT16 - 1 { always starts at the first byte 

} 

} 

ID - HANDLE,SIZE { A array of bytes containing the string "Handle" 
INT16 - 0 { always a 0 } 

This Qdata describes the CHARACTER ROTATE angle part of the 
command. 

INT16 - 10 
INT16 - QROTTXT=77 
PSREAL- ANGLE 

This particular Qdata is 10 bytes long 
And is a character rotate command } 
with a rotation angle of "ANGLE" } 

This QData describes the APPLIED TO Apply part of the command. 

INT16 - SIZE+8 { The byte count of the qdata} 
INT16 - QNAME=45 { This particular Qdata is a QNAME 
INT16 - SIZE { the number of bytes in the name "APPLY" 
INT16 - 1 { starts a byte position 1 } 
ID - APPLY, SIZE { the array of bytes containing the string 

INT16 - 0 { always a 0 } 

Contrast this command with others of the same form such as: 

Handle :=TRANSLATE X,Y,Z APPLIED TO Apply;. 

"APPLY"} 

Reference Materials 



2.1.2. Example - Connect Command 

The command: 

CONNECT SOURCE<OUT>:<INP>DEST; 

has several parts, as follows: 

1. The command verb CONNECT 

2. The source of the connection SOURCE 

3. The particular output of the source <OUT> 

4. The input number of the connection destination <INP> 

5. The destination of the connection DEST 

The Qdata sent by the GSR's for this command reflects this structure. 

This Qdata tells the CI to look up the name SOURCE. Note the similarity to 
QNAME and QLABEL in the examples. 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - SOURCE,SIZE 
INT16 - 0 

This Qdata identifies the output number of SOURCE. 

INT16 - 6 
INT16 - QFNOUT=144 
INT32 - OUT 

This Qdata is another QALOOK, instructing the CI to look up the name 
DEST. 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 

GSR Internals RM14-13 



This Qdata identifies the input number of DEST to connect to. 

INT16 - 6 
INT16 - QINPIN=145 
INT32 - INP 

This Qdata identifies the command as a CONNECT command. 

INT16 - 2 
INT16 - QCON=138 

Contrast this command with the DISCONNECT and SEND commands. 

2.2. Data Formats 

RM14-14 

HANDLE :=ATTRIBUTES [COLOR hue[,sat[,intens]]] 
[DIFFUSE di f fus] 
[SPECULAR specul] ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 44 
INT16 - QATTR=357 
PSREAL- HUE 
PSREAL- SAT 
PSREAL- INTENS 
PSREAL- 0. 
PSREAL- DIFFUS 
INT16 - SPECUL 

HANDLE :=ATTRIBUTES [COLOR hue[,sat[,intens]]] 
[DIFFUSE diffus] 
[SPECULAR specul] 
AND [COLOR hue2[,sat2[,inten2]]] 

[DIFFUSE diffu2] 
[SPECULAR specu2] ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 

Reference Materials 



INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 86 
INT16 - QOATTR=358 
PSREAL- HUE 
PSREAL- SAT 
PSREAL- INTENS 
PSREAL- 0. 
PSREAL- DIFFUS 
INT16 - SPECUL 
PSREAL- HUE2 
PSREAL- SAT2 
PSREAL- INTEN2 
PSREAL- 0. 
PSREAL- DIFFU2 
INT16 - SPECU2 

BEGIN 

INT16 - 2 
INT16 - QBEGIN=105 

HANDLE := BEGIN_STRUCTURE 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QBEGOB=103 

HANDLE := BSPLINE 

GSR Internals 

ORDER = ORDER 
OPEN/CLOSED 
NONPERIODIC/PERIODIC 
N = NVERT 
VERTICES x (1) ' 

x ( 2) ' 

y ( 1) ' 

y ( 2) ' 

Z(l) 
Z(2) 

X (N) , Y (N) , Z (N) 
KNOTS= KNOTS (1), ... KNOTS (NKNOTS) 
CHORDS = CHORDS; 

INT16 - SIZE+8 

RM14-15 



RM14-16 

INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 14 
INT16 - QSTRTC=152 
INT8 - 1 
BBOOL - .FALSE. 
INT8 - ORDER 
BBOOL - .FALSE. 
INT8 - DIMEN 
BBOOL - (.NOT.OPNCLS) 
BBOOL - (.NOT.NONPER) 
BBOOL - .FALSE. 
INT32 - NVERT 

REPEAT NVERT TIMES 
INT16 - 34 
INT16 - QCRVEC=296 
PSREAL- v (1,1) 
PSREAL- v (2,1) 
PSREAL- v (3,1) 
PSREAL- V (4,1) 

(OPTIONAL) 
REPEAT NKNOTS TIMES 

INT16 - 10 
INT16 - QKNOT=295 
PSREAL- KNOTS (I) 

INT16 - 14 
INT16 - QENDCV=153 
INT32 - CHORDS 
PSREAL- 0 

HANDLE := CHARACTER ROTATE ANGLE (APPLIED TO APPLY); 

INT16 - SIZE+B 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 10 
INT16 - QROTTX=77 
PSREAL- ANGLE 
INT16 - SIZE+B 
INT16 - QNAME=45 

Reference Materials 



INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := CHARACTERS TRANX,TRANY,TRANZ 
STEP STEPX,STEPY 'CHARS'; 

HANDLE 

GSR Internals 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 22 
INT16 - QTXTLB=159 
PSREAL- STEPX 
PSREAL- STEPY 
INT32 - 0 
INT16 - SIZE + 6 
INT16 - QDTSTR=305 
INT16 - SIZE 
INT16 - 1 
STRING- CHARS, SIZE 
INT16 - 26 
INT16 - Q3DPCH=306 
PSREAL- TRANX 
PSREAL- TRANY 
PSREAL- TRANZ 
INT16 - 2 
INT16 - QENDCH=304 

CHARACTER SCALE SCALEX, SCALEY 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 18 
INT16 - QTXTSC=166 
PSREAL- SCALEX 
PSREAL- SCALEY 
INT16 - SIZE+8 
INT16 - QNAME=45 

RM14-17 



RM14-18 

INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

CONN SOURCE <OUT>:<INP> DEST; 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - SOURCE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QFNOUT=144 
INT32 - OUT 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QCON=138 

HANDLE :=COPY CPYFRM (START=) START (,) (COUNT=) COUNT; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - CPYFRM, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QCOPY=123 
INT16 - START 
INT16 - COUNT 

Reference Materials 



HANDLE! .- PATTERN i (i) [AROUND_CORNERS] [MATCHiNOMATCH] 
LENGTH 1; 

INT16 - SIZE+B 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE!, SIZE 
INT16 - 0 
INT16 - 46 
INT16 - QPATRN=l49 
BBOOL - .NOT. CONTIN 
BBOOL - MATCH 
PSREAL- LENGTH 
INT8 - SEGS ( 0<SEGS<=32 ) 
INT8 - 0 
INT8 - PATTRN (1 TO SEGS) 

IF SEGS < 32 REPEAT TO EQUAL 32 INT8 VALUES 
INT8 - 0 
INT16 - 2 
INT16 - QENDCH=304 

DELETE HANDLE; 

INT16 - 2 
INT16 - QDELET=237 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE :=DECREMENT LEVEL_OF_DETAIL 
(APPLIED TO APPLY); 

INT16 - SIZE+B 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QDECLV=134 
INT16 - SIZE+B 

GSR Internals RM14-19 



RM14-20 

INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

DEL HANDLE*; (WILD CARD DELETE COMMAND) 

INT16 - 2 
INT16 - QDELW=57 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

DISCONNECT SOURCE <OUT>:<INP> DEST; 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - SOURCE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QFNOUT=144 
INT32 - OUT 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QDISCN=l39 

DISCONN SOURCE:ALL; 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 

Reference Materials 



INT16 - 1 
ID - SOURCE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QALLDS=219 

DISCONNECT SOURCE <OUT>:ALL; 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - SOURCE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QFNOUT=144 
INT32 - OUT 
INT16 - 2 
INT16 - QALLDS=219 

DISPLAY HANDLE; 

INT16 - 2 
INT16 - QDSPOB=ll8 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

END; 

INT16 - 2 
INT16 - QEND=106 

END OPTIMIZE; 

INT16 - 4 
INT16 - QOPTIM=162 
BOOL - .FALSE. 

GSR Internals RM 14-21 



RM14-22 

END __ STRUCTURE ; 

INT16 - 2 
INT16 - QENDOB=104 

ERASE PATTERN FROM HANDLE; 

INT16 - SIZE+8 
INT16 - QERAPA=332 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE := EYE BACK DISTB 
LEFT/RIGHT DISTLR 
UP/DOWN DISTUD 
FROM SCREEN AREA WIDTH WIDE 
FRONT BOUNDARY = FRONT 
BACK BOUNDARY = BACK 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 

ID - HANDLE, 
INT16 - 0 
INT16 - 50 
INT16 - QEYE=155 
PSREAL- DISTLR 
PSREAL- DISTUD 
PSREAL- -DISTB 
PSREAL- WIDE 
PSREAL- FRONT 
PSREAL- BACK 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 

SIZE 

ID - APPLY, SIZE 
INT16 - 0 

Reference Materials 



HANDLE := F:FNNAME; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - SIZE + 12 
INT16 - QFLOOK=99 
INT16 - 0 
INT32 - 0 

INT16 - SIZE 
ID - FNNAME, SIZE 
INT16 - 0 

HANDLE := F:FNNAME (INOUTS); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - SIZE + 12 
INT16 - QPARFN=267 
INT16 - INOUTS 
INT32 - 0 
INT16 - SIZE 
ID - FNNAME, SIZE 
INT16 - 0 

FOLLOW HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND; 

INT16 - 2 
INT16 - QFOLL0=115 

INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

GSR Internals RM14-23 



RM14-24 

HANDLE := CHARACTER FONT FONTNM (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 

INT16 - QUFONT=131 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - FONTNM, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

FORGET HANDLE; 

INT16 - 2 
INT16 - QFORG=113 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE := FIELD_OF_VIEW ANGLE 
FRONT BOUNDARY = FRONT 
BACK BOUNDARY = BACK 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 24 
INT16 - QFOV=l56 

Reference Materials 



PSREAL- ANGLE 
PSREAL- FRONT 
PSREAL- BACK 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE .- IF CONDITIONAL_BIT BITNUM IS ONOFF 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 8 
INT16 - QCOND=174 
BOOL - ONOFF 
INT32 - BITNUM 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := IF LEVEL_OF_DETAIL COMP LEVEL 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 8 
INT16 - QCOND=174 
INT16 - (COMP + 2) * 256 
INT32 - LEVEL 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 

GSR Internals RM14-25 



RM14-26 

INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= IF PHASE ONOFF (THEN APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 8 
INT16 - QCOND=174 
BOOL - ONOFF 
INT32 - 15 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := ILLUMINATION x,y,z, 
[COLOR hue[,sat[,intens]]] 
[AMBIENT ambien] ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

INT16 - 66 
INT16 - QLGHTS=355 
PSREAL- x 
PSREAL- y 

PSREAL- z 
PSREAL- 1. 

PSREAL- HUE 
PSREAL- SAT 
PSREAL- INTENS 
PSREAL- AMBIEN 

Reference Materials 



INCLUDE HANDLE! IN HANDLE2; 

INT16 - 2 
INT16 - QSETAD=125 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE!, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE2, SIZE 
INT16 - 0 

PINIT: INITIALIZE 

INT16 - 2 
INT16 - QINITN=121 
INT16 - 2 
INT16 - QINITD=122 
INT16 - 2 
INT16 - QINITL=293 

INITIALIZE CONNECTIONS; 

INT16 - 2 
INT16 - QINITC=218 

INITIALIZE DISPLAYS; 

INT16 - 2 
INT16 - QINITD=122 

INITIALIZE HANDLES; 

INT16 - 2 
INT16 - QINITN=l21 

GSR Internals RM14-27 



RM14-28 

HANDLE .- INCREMENT LEVEL_OF_DETAIL 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QINCLV=l33 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLEl := INSTANCE (OF HANDLE2); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLEl, SIZE 
INT16 - 0 
INT16 - 2 

INT16 - QUSE=120 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE2, SIZE 
INT16 - 0 
INT16 - 2 

INT16 - QENDLS=107 

HANDLE .- LABEL X, Y, Z, 'STRING' 

X, Y, Z, 'STRING'; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 

ID - LABBLK, SIZE 

Reference Materials 



INT16 - 0 
INT16 - 26 
INT16 - QDELTA=308 
PSREAL- STEPX 
PSREAL- STEPY 
PSREAL- 0 

THE NEXT 10 LINES FOR EACH LABEL 
INT16 - SIZE + 6 
INT16 - QDSTR=305 
INT16 - SIZE 
INT16 - 1 
STRING- LABEL, SIZE 
INT16 - 0 
INT16 - 26 
INT16 - Q3DPCH=306 
PSREAL- X 
PSREAL- Y 
PSREAL- Z 
INT16 - 2 
INT16 - QENDCH=304 

HANDLE :=LOOK AT AT FROM FROM UP UP (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 90 
INT16 - QLKAT=158 
PSREAL- FROM(l) 
PSREAL- FROM(2) 
PSREAL- FROM(3) 
PSREAL- 0 
PSREAL- AT(l) 
PSREAL- AT(2) 
PSREAL- AT(3) 
PSREAL- 0 
PSREAL- UP(l) 
PSREAL- UP(2) 
PSREAL- UP(3) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 

GSR Internals RMl4-29 



RM14-30 

INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= MATRIX_2X2 (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 50 
INT16 - QMAT2=17 
PSREAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 
PSREAL- 0 
PSREAL- 0 
PSREAL- MATRIX (2,1) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= MATRIX_3X3 (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

INT16 - 90 
INT16 - QMAT3=18 
PS REAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 
PSREAL- MATRIX (1,3) 
PSREAL- 0 
PSREAL- MATRIX (2,1) 
PSREAL- MATRIX (2,2) 
PSREAL- MATRIX (2,3) 
PSREAL- 0 
PSREAL- MATRIX (3,1) 
PSREAL- MATRIX (3,2) 

Reference Materials 



PSREAL- MATRIX (3,3) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE: : = MATRIX_4X3 MAT VEC (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 122 
INT16 - QMATRN=206 
PSREAL- MAT(l,1) 
PSREAL- MAT(l,2) 
PSREAL- MAT(l,3) 
PSREAL- 0 
PSREAL- MAT(2,1) 
PSREAL- MAT(2,2) 
PSREAL- MAT(2,3) 
PSREAL- 0 
PSREAL- MAT(3,l) 
PSREAL- MAT(3,2) 
PSREAL- MAT(3,3) 
PSREAL- 0 
PSREAL- VEC(l) 
PSREAL- VEC(2) 
PSREAL- VEC(3) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := MATRIX_4X4 (APPLIED TO APPLY); 

GSR Internals 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 

RM14-31 



ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 130 
INT16 - QMAT4=19 
PSREAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 
PSREAL- MATRIX (1,3) 
PSREAL- MATRIX (1,4) 
PSREAL- MATRIX (2,1) 
PSREAL- MATRIX (2,2) 
PSREAL- MATRIX (2,3) 
PSREAL- MATRIX (2,4) 
PSREAL- MATRIX (3,1) 
PSREAL- MATRIX (3,2) 
PSREAL- MATRIX (3,3) 
PS REAL- MATRIX (3,4) 
PSREAL- MATRIX (4,1) 
PSREAL- MATRIX (4,2) 
PSREAL- MATRIX (4,3) 
PSREAL- MATRIX (4,4) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := NIL; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QMKNIL=236 

OPTIMIZE STRUCTURE; 

INT16 - 4 
INT16 - QOPTIM=162 
BOOL - .TRUE. 

RMI 4-32 Reference Materials 



PATTEHN HANDLE WITH PATNAM; 

INT16 - SIZE+8 
INT16 - QNAMPA=316 
INT16 - SIZE 
INT16 - 1 
ID - PATNAM, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QAPPPA=333 
INT16 - SIZE 

INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE .- [WITH [ATTRIBUTES attr] [OUTLINE r]] 
POLYGON [Coplanar] ( [S] x,y,z [N x,y,z] 

GSR Internals 

[[WITH [ATTRIBUTES attr] [OUTLINE r]] 
POLYGON [Coplanar] ( [S] x,y,z [N x,y,z] ) )] ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QWTATT=349 
INT16 - SIZE 
INT16 - 1 
ID - ATTR, SIZE 
INT16 - 0 
INT16 - NVERTS * 8 + 4 
INT16 - QNORML=354 
INT16 - NVERTS 
VECNO - NORMS, VEDGES, DIMEN, NVERTS 
INT16 - NVERTS * 8 + 4 
INT16 - QPOLYG=318 OR QCOPOL=319 
INT16 - NVERTS 
VECNO - VERTS, VEDGES, DIMEN, NVERTS 
INT16 - 2 
INT16 - QEPOLY=320 

RM14-33 



RM14-34 

HANDLE .- POLYNOMIAL 
ORDER = ORDER 
(DIMEN IMPLIED IN SYNTAX) 
COEFFICIENTS= X(I), Y(I), Z(I) 

X(I-1), Y(I-1), Z(I-1) 

x (0) ' 

CHORDS = CHORDS; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 14 
INT16 - QSTRTC=152 
INT8 - 2 
BBOOL - .FALSE. 
INT8 - ORDER 
BBOOL - .FALSE. 
INT8 - DIMEN 
BBOOL - ( . TRUE . ) 
BBOOL - ( . TRUE . ) 
BBOOL - .FALSE. 
INT32 - ORDER+l 

REPEAT ORDER+l TIMES 
INT16 - 34 
INT16 - QCRVEC=296 
PSREAL- V (1,1) 
PSREAL- V (2,1) 
PSREAL- V (3,1) 
PSREAL- V (4,1) 
INT16 - 14 
INT16 - QENDCV=153 
INT32 - CHORDS 
PSREAL- 0 

Y(O), Z(O) 

PREFIX HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND; 

INT16 - 2 
INT16 - QPREFX=l14 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 

Reference Materials 



INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE := RAWBLOCK NUMBYTE (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QRAWBL=350 
INT32 - NUMBYTE 

INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := RATIONAL BSPLINE 
ORDER = ORDER 
OPEN/CLOSED 
NONPERIODIC/PERIODIC 
N = NVERT 
VERTICES X(l), Y(l), 

X(2), Y(2), 

X(N), Y(N), 

z ( 1) ' 

z (2) ' 

Z (N) , 

W(l) 

W(2) 

W(N) 

KNOTS = KNOTS (1), ... KNOTS (NKNOTS) 
CHORDS = CHORDS; 

GSR Internals 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 14 
INT16 - QSTRTC=152 
INT8 - 1 
BBOOL - .TRUE. 
INTB - ORDER 
BBOOL - .FALSE. 

RM14-35 



RM14-36 

INT8 - DIMEN+l 
BBOOL - (.NOT.OPNCLS) 
BBOOL - (.NOT.NONPER) 
BBOOL - .FALSE. 
INT32 - NVERT 

REPEAT NVERT TIMES 
INT16 - 34 
INT16 - QCRVEC=296 
PSREAL- V (1,1) 
PSREAL- V (2,1) 
PSREAL- V (3,1) 
PSREAL- V (4,1) 

(OPTIONAL) 
REPEAT NKNOTS TIMES 

INT16 - 10 
INT16 - QKNOT=295 
PSREAL- KNOTS (I) 

INT16 - 14 
INT16 - QENDCV=153 
INT32 - CHORDS 
PSREAL- 0 

REMOVE HANDLE; 

INT16 - 2 
INT16 - QREMOB=119 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

REMOVE FOLLOWER OF HANDLE; 

INT16 - 2 
INT16 - QUNFOL=117 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

Reference Materials 



REMOVE HANDLEl FROM HANDLE2; 

INT16 - 2 
INT16 - QSETRM=124 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLEl, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE2, SIZE 
INT16 - 0 

REMOVE PREFIX OF HANDLE; 

INT16 - 2 
INT16 - QUNPFX=l16 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE: : = ROTATE IN X ANGLE (APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 10 
INT16 - QROTX=74 
PSREAL- ANGLE 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

GSR Internals RM14-37 



RM14-38 

HANDLE:= ROTATE IN Y ANGLE (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 10 
INT16 - QROTY=75 
PSREAL- ANGLE 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= ROTATE IN Z ANGLE (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, 
INT16 - 0 
INT16 - 10 
INT16 - QROTZ=76 
PSREAL- ANGLE 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 

SIZE 

ID - APPLY, SIZE 
INT16 - 0 

HANDLE := RATIONAL POLYNOMIAL 
ORDER = ORDER 
(DIMENSION IMPLIED IN SYNTAX) 
COEFFICIENTS = X(I), Y(I), Z(I), W(I) 

X(I-1), Y(I-1), Z(I-1), W(I-1) 

X(O), 
CHORDS = CHORDS; 

INT16 - SIZE+8 
INT16 - QLABEL=44 

Y(O), z (0) , W(O) 

Reference Materials 



INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 14 
INT16 - QSTRTC=l52 
INT8 - 2 
BBOOL - .TRUE. 
INT8 - ORDER 
BBOOL - .FALSE. 
INT8 - DIMEN+l 
BBOOL - ( . TRUE . ) 
BBOOL - ( . TRUE . ) 
BBOOL - .FALSE. 
INT32 - ORDER+l 

REPEAT ORDER+l TIMES 
INT16 - 34 
INT16 - QCRVEC=296 
PSREAL- V (1,1) 
PSREAL- V (2,1) 
PSREAL- V (3,1) 
PSREAL- V (4,1) 

INT16 - 14 
INT16 - QENDCV=l53 
INT32 - CHORDS 
PSREAL- 0 

RESERVE_WORKING_STORAGE Bytes; 

INT16 - 6 
INT16 - QRSVST=314 
INT32 - BYTES 

HANDLE :=SCALE BY X,Y,Z (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 26 
INT16 - QSCALE=l64 
PSREAL- X(l) 
PSREAL- Y(2) 

GSR Internals RM14-39 



RMl4-40 

PSREAL- Z(3) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET CONDITIONAL_BIT BITNUM ONOFF 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QSETBT=89 OR QCLRBT=90 
INT32 - BITNUM 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET CHARACTERS SCREEN_ORIENTED/FIXED 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 

ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QCHARP=253 
INT32 - 1 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

Reference Materials 



HANDLE := SET CHARACTERS SCREEN_ORIENTE:D 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QCHARP=253 
INT32 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET CHARACTERS WORLD_ORIENTED 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QCHARP=253 
INT32 - -1 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

SETUP CNESS TRUE/FALSE <INP>HANDLE; 

GSR Internals 

INT16 - SIZE + 12 
INT16 - QCNESS=330 
INT16 - INP 
INT16 - 0 OR 1 
INT16 - 0 
INT16 - SIZE 
ID - HANDLE, SIZE 
INT16 - 0 

RM14-41 



RM14-42 

HANDLE := SET COLOR HUE,SAT (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 18 
INT16 - Q2COLR=167 
PSREAL- HUE 
PSREAL- SAT 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET CONTRAST TO CONTRAST 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 10 
INT16 - QCONTR=232 
PSREAL- CONTRA 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= SECTIONING PLANE (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 

INT16 - 1 

ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 

Reference Materials 



INT16 - QSECPL=315 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= SET DISPLAYS ALL ONOFF (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 4 
INT16 - QSCOPS=93 
BOOL - ONOFF 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE :=SET DEPTH_CLIPPING ONOFF (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 4 
INT16 - QDCLIP=95 
BOOL - ONOFF 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

GSR Internals RM14-43 



RM14-44 

HANDLE:= SET DISPLAY N ONOFF (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QSTDSP=235 
INT32 - N 
INT16 - 2 
INT16 - QDSCON=233 OR QDSCOF=234 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE :=SET INTENSITY ONOFF IMIN:IMAX 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 20 
INT16 - QSTINT=301 
BOOL - ONOFF 
PSREAL- IMIN 
PSREAL- IMAX 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= SET LINE TEXTURE PATTRN <AROUND> (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 

Reference Materials 



INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QTXTUR=344 OR QCTXTR=345 
INT32 - PATTRN 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET LEVEL_OF_DETAIL TO LEVEL 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QLEVEL=88 
INT32 - LEVEL 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET PICKING IDENTIFIER 
(APPLIED TO APPLY); 

PICK.ID 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QPCKNM=llO 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 

GSR Internals RM14-45 



RM14-46 

INT16 - 1 
ID - PICKID, SIZE 
INT16 - 0 

INT16 - SIZE+B 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET PICKING LOCATION 

(APPLIED TO APPLY) ; 

INT16 - SIZE+B 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 50 
INT16 - QPCKBX=194 
PSREAL- XCENTR 
PSREAL- YCENTR 
INT32 - 0 
INT32 - 0 
INT32 - 0 
INT32 - 0 
PSREAL- XSIZE 
PSREAL- YSIZE 
INT16 - SIZE+B 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

XCENTR, YCENTR 
XSIZE, YSIZE 

HANDLE:= SET PICKING ONOFF (APPLIED TO APPLY); 

INT16 - SIZE+B 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 8 

Reference Materials 



INT16 - QPCKNG=91 
BOOL - ONOFF 
INT32 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := SET RATE PHASEON PHASEOFF INITIAL STATE DELAY 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 34 
INT16 - QBLDEF=205 
PSREAL- PHASEON 
PSREAL- PHASEOFF 
PSREAL- INITIAL STATE (1-0N OR 0-0FF) 
PSREAL- DELAY 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE : = SET RATE EXTERNAL (APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QSETBI=89 
INT32 - 15 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 

GSR Internals RM14-47 



RM14-48 

INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

SEND TRUE/FALSE TO <INP> DEST; 

INT16 - 4 
INT16 - QBOOL=2 
BOOL - B 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=l45 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

SEND FIX (I) TO <INP> DEST; 

INT16 - 6 
INT16 - QINTGR=3 
INT32 - I 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

SEND M2D (MAT) TO <INP> DEST; 

INT16 - 50 
INT16 - QM2BLD=254 
PSREAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 

Reference Materials 



PSREAL- 0 
PSREAL- 0 
PSREAL- MATRIX (2,1) 
PSREAL- MATRIX (2,2) 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 

INT16 - 6 
INT16 - QINPIN=145 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

SEND M3D (MAT) TO <INP> DEST; 

GSR Internals 

INT16 - 90 
INT16 - QM3BLD=255 
PSREAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 
PSREAL- MATRIX (1,3) 
PSREAL- 0 
PSREAL- MATRIX (2,1) 
PSREAL- MATRIX (2,2) 
PSREAL- MATRIX (2,3) 
PSREAL- 0 
PSREAL- MATRIX (3,1) 
PSREAL- MATRIX (3,2) 
PSREAL- MATRIX (3,3) 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

RMl4-49 



RM14-50 

SEND M4D (MAT) TO <INP> DEST; 

SEND 

INT16 - 130 
INT16 - QM4BLD=256 
PSREAL- MATRIX (1,1) 
PSREAL- MATRIX (1,2) 
PSREAL- MATRIX (1,3) 
PSREAL- MATRIX (1,4) 
PSREAL- MATRIX (2,1) 
PSREAL- MATRIX (2,2) 
PSREAL- MATRIX (2,3) 
PSREAL- MATRIX (2,4) 
PSREAL- MATRIX (3,1) 
PSREAL- MATRIX (3,2) 
PSREAL- MATRIX (3,3) 
PSREAL- MATRIX (3,4) 
PSREAL- MATRIX (4,1) 
PSREAL- MATRIX (4,2) 
PSREAL- MATRIX (4,3) 
PSREAL- MATRIX (4,4) 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

COUNT*DRAWMV TO <INP> DEST; 

INT16 - 6 
INT16 - QNBOOL=243 
BOOL - DRAWMV 
INT16 - COUNT 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 

Reference Materials 



INT16 - QINPIN=l45 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND REAL-NUMBER TO <!NP> DEST; 

INT16 - 10 
INT16 - QREAL=4 
PSREAL- R 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND ~STR~ TO <!NP> DEST; 

INT16 - SIZE + 6 
INT16 - QSTR=S 
INT16 - SIZE 
INT16 - 1 
STRING- STR, SIZE 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND V2D (V) TO <INP> DEST; 

GSR Internals 

INT16 - 34 
INT16 - QVEC2=10 
PSREAL- V (1) 

RM14-51 



RM14-52 

PSREAL- V (2) 
PSREAL- 0 
PSREAL- 0 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 

INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND V3D (V) TO <!NP> DEST; 

INT16 - 34 
INT16 - QVEC3=13 
PSREAL- V (1) 
PSREAL- V (2) 
PSREAL- V (3) 
PSREAL- 0 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=145 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND V4D (V) TO <!NP> DEST; 

INT16 - 34 
INT16 - QVEC4=16 
PSREAL- V (1) 
PSREAL- V (2) 
PSREAL- V (3) 
PSREAL- V (4) 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 

Reference Materials 



INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=l45 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND VALUE (VARNAM) TO <!NP> DEST; 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - VARNAM, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QFETCH=186 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - DEST, SIZE 
INT16 - 0 
INT16 - 6 
INT16 - QINPIN=l45 
INT32 - !NP 
INT16 - 2 
INT16 - QSTORE=137 

SEND VL (HANDLEl) TO <!NP> HANDLE2; 

GSR Internals 

INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - HANDLEl, SIZE 
INT16 - 0 
INT16 - SIZE+8 
INT16 - QALOOK=lOO 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE2, SIZE 
INT16 - 0 
INT16 - 6 

RM14-53 



RM14-54 

INT16 - QINPIN=l45 
INT32 - INP 
INT16 - 2 
INT16 - QSTORE=137 

HANDLE:= SOLID_RENDERING (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QSOLRE=343 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= STANDARD FONT (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QSTDF0=132 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE : = SURFACE_RENDERING (APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

Reference Materials 



INT16 - 2 
INT16 - QSURRE=342 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE :=TEXT SIZE SIZEX SIZEY (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 18 
INT16 - QTEXTS=339 
PSREAL- SIZEX 
PSREAL- SIZEY 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := TRANSLATE BY V (APPLIED TO APPLY); 

GSR Internals 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 26 
INT16 - QTRANS=73 
PSREAL- V(l) 
PSREAL- V(2) 
PSREAL- V(3) 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

RM14-55 



RM14-56 

VARIABLE HANDLE; 

INT16 - SIZE+8 
INT16 - QVARNM=204 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 

HANDLE :=VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=N 
<VECTORS>; 

OR 

OR 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 45 
INT16 - Q2DVHD=l47 OR Q3DVHD=148 
INT8 - 1 (DOTS) 

INT8 - 3 (CONNECTED, ITEMIZED) 

INT8 - 4 (SEPARATE) 
BBOOL - BNORM 
INT32 - 0 
PSREAL- 0 
PSREAL- 0 
PSREAL- 0 
PSREAL- 0 
INT32 - VECCOU 
BBOOL - CBLEND 

BLOCK NORMALIZED 
INT16 - 4+COUNT*2*DIMEN+2 
INT16 - QBNDAT=266 
INT16 - COUNT*2*DIMEN+2 
VBLNO - VECS, POSLIN, DIMEN, COUNT 

VECTOR NORMALIZED 
INT16 - 4+COUNT*(DIMEN+l)*2 
INT16 - QBNDAT=266 
INT16 - COUNT*(DIMEN+l)*2 
VECNO - VECS, POSLIN, DIMEN, COUNT 
INT16 - 2 
INT16 - QENDLS=l07 

Reference Materials 



HANDLE .- VIEWPORT HORIZONTAL = XMIN:XMAX 
VERTICAL = YMIN:YMAX 
INTENSITY = IMIN:IMAX 
(APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 54 
INT16 - QVIEW=l60 
PSREAL- XMIN 
PSREAL- XMAX 
PSREAL- YMIN 
PSREAL- YMAX 
PSREAL- !MIN 
PSREAL- IMAX 
INT32 - 0 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE .- WINDOW X = XMIN:XMAX 
Y = YMIN:YMAX 

GSR Internals 

FRONT BOUNDARY = FRONT 
BACK BOUNDARY = BACK 
(APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 50 
INT16 - QWIND0=157 
PSREAL- XMIN 
PSREAL- XMAX 
PSREAL- YMIN 
PSREAL- YMAX 
PSREAL- FRONT 

RM14-57 



PSREAL- BACK 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE : = WRITEBACK (APPLIED TO APPLY) ; 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QWBACK=277 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE:= CANCEL XFORM (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QXFCAN=273 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

RM14-58 Reference Materials 



HANDLE:= XFORM MATRIX (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QXFMAT=270 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

HANDLE := XFORM VECTOR_LIST (APPLIED TO APPLY); 

INT16 - SIZE+8 
INT16 - QLABEL=44 
INT16 - SIZE 
INT16 - 1 
ID - HANDLE, SIZE 
INT16 - 0 
INT16 - 2 
INT16 - QXFVEC=271 
INT16 - SIZE+8 
INT16 - QNAME=45 
INT16 - SIZE 
INT16 - 1 
ID - APPLY, SIZE 
INT16 - 0 

GSR Internals RM14-59 



3. Description of Six-Bit Binary Data Protocol in the PS 390 

The following sections describe how the PS 390 binary data can be encoded 
into bytes with six bits of binary data per byte. This method should be used 
when you need to transmit printable ASCII characters to the PS 390. 

3.1. Data Storage 

The PS 390 stores its data as follows: 

L--~_M_S_B~~--~~LS_B~~J 

where the MSB starts at the low address and the LSB starts at the high 
address. 

The host must send the MSB first, followed by the LSB. Some hosts store 
their data in an address order that reverses this sequence. If this is the case, 
the MSB and LSB must be reversed in the host before being sent to the 
PS 390. 

3.2. Six-Bit Binary Data Encoding Method 

RM14-60 

Binary data must be encoded in the following manner. This encoding proc­
ess occurs prior to sending the byte count of binary vector data. 

NOTE 

The byte count of binary data must not include the 
count of bytes that result when the data is passed 
through the encoding scheme. 

1. The encoding process collects 16-bit words until it has two sets. 

CAUTION 

The carriage control characters must be suppressed 
when transmitting binary data, or the carriage control 
characters will be interpreted as binary data. 

2. A two-word set is broken up into five bytes with six significant bits, and 
one byte with two significant bits. These bits are extracted from the least 
significant end to the most significant end of the two-word set. 

Reference Materials 



3. The order that the bytes are sent to the PS 390 reverses the order in 
which they were extracted. The byte with two significant bits is sent first, 
followed by the the last 6-significant-bit byte, and so on. 

4. To make the bytes printable ASCII characters, a zero 'O' character (hex 
30 or decimal 48) is added to each byte prior to sending them. This 
encoding process is illustrated in the example that follows. The two­
word set of 16-bits are held internally in the host in the following bit 
sequence. The first two word set is: 

x = lol1lolololololololololololololol 

Y = lol1lolololololololololololololol 

The two 16-bit words are broken up into five bytes with six bits, and one 
byte with two bits in the following order: 

6 5 4 3 

[QDJ I ol ol ol ol ol o I I ol ol ol ol ol o I [OJ-...ol---..ol--.-1 l--.-ol---.o I 
2 1 

I olololololo I I olololololol 

The zero "O" character is now added to each six-bit byte: 

by tel 

byte2 

byte3 

GSR Internals 

000000 
+ 110000 (zero) 

110000 

000000 
+ llOOOQ (zero) 

110000 

000100 
+ llOQOO (zero) 

110100 

byte4 

bytes 

byte6 

000000 
+ 110000 (zero) 

110000 

000000 
+ llOOQO (zero) 

110000 

----01 
+ 110000 (zero) 

110001 

RM14-61 



After the encoding procedure, the bits will be sent to the PS 390 in the 
following sequence of bytes. Note that the sequence order of the bytes has 
been reversed. 

Two significant bits 

byte6 1001100011 

Six significant bits 
bytes 1001100001 

Six significant bits 

byte4 1001100001 

Six significant bits 
byte3 1001101001 

Six significant bits 

byte2 1001100001 

Six significant bits 
byte1 1001100001 

3.3. Example of Encoding Binary Data 

RM14-62 

An example of encoding binary vector data is given in the following section. 
Please note that the example assumes escape mode. Refer to Section RMS, 
Host Communications, for a complete description of escape mode. 

The vector list to be encoded is: 

AA:= vec itemized n=4 
P 1,1,0 I=l.O 
L -.25, .75, .5 I= .75 
P 10,5, .001 I=.5 
L -.001, -.002, .003 I= .1 

Reference Materials 



The data in PS 390 Eight-bit binary format is as follows: 

NOTE 

The X,Y,Z mantissa's and the Vector exponent are 
two's complement numbers. 

0100000000000000 
0100000000000000 

1/2 (x mantissa) 
1/2 (y mantissa) 

0000000000000000 0 (z mantissa) 
00000001 1111111 0 exponent =1 intensity= 7F(hex) p/l=p 

1110000000000000 
0110000000000000 

-lx2**-2 (x mantissa) NOTE 2/s complement 
3x2**-2 (y mantissa) 

0100000000000000 lx2**-1 (z mantissa) 
00000000 1100000 1 exponent=O inten=60(hex) p/l=l 

0101000000000000 
0010100000000000 

5x2**-3 
5x2**-4 

0000000000000010 lx2**-14 
00000100 1000000 0 exp=4 int=40(hex) p/l=p 

1101111100111100 -2097x2**-13 
1011111001110111 -16777x2**-15 
0110001001001101 25145x2**-15 
11111000 0001100 1 exp= -8 int=OC(hex) p/l=l 

0000000000000000 padding 

For exercise, check the last vectors in decimal. 

x= -2097x2**-13x2**-8 -2097x2**-21 = -9.99928E -4 -> -.001 

y= -1677x2**-15x2**-8 -16777x2**-23 1.99997E -3 -> -.002 

z= 25145x2**-15x2**-8 25145x2**-23 2.99752E -3 -> .003 

GSR Internals RM14-63 



RM14-64 

The left column is the binary data re-encoded into the six-bit format. The 
right column is the eight-bit data. 

002PO\ 0000000000001010 10 (size of label+8) 
0000000000101100 44 (Qlabel) 

OOOPOl 0000000000000010 = 2 (size) 
0000000000000001 = 1 

11@@00 0100000101000001 = AA (name) 
0000000000000000 O· 

00;@2D 0000000000101101 45 (data byte count) 
0000000010010100 148 (q3dvhd) 

030000 0000001100000000 item= 3/bnorm= .false. 
0000000000000000 = 0 (4 byte integer) 

000000 0000000000000000 
0000000000000000 0 (8 byte real) 

000000 0000000000000000 
0000000000000000 

000000 0000000000000000 
0000000000000000 0 (8 byte real) 

000000 0000000000000000 
0000000000000000 

000000 0000000000000000 
0000000000000000 0 (8 byte real) 

000000 0000000000000000 
0000000000000000 

000000 0000000000000000 
0000000000000000 0 (8 byte real) 

000000 0000000000000000 
0000000000000000 

000000 0000000000000000 
0000000000000000 4 (veccount 4 byte integer) 

Reference Materials 



001000 

OTO@XO 

OP@OlO 

000001 

3nh01P 

00@000 

31DOOX 

000084 

20gcbn 

lgHTgh 

OIOODO 

1[0000 

GSR Internals 

0000000000000100 
00000000 
00000000 

00100100 
0000000100001010 
00000000 

00100000 
0100000000000000 
01000000 

00000000 
0000000000000000 
00000001 

1111111 0 
1110000000000000 
01100000 

00000000 
0100000000000000 
00000000 

1100000 1 
0101000000000000 
00101000 

00000000 
0000000000000010 
00000100 

1000000 0 
1101111100111100 
10111110 

01110111 
0110001001001101 
11111000 

0001100 1 
0000000000000101 

00000000 

01101011 
00000000 

.false. (cblend) 

36 (total byte count) 
266 (qbndat) 

32 (count*(dimen+1)*2) 
1/2(x mantissa) 

1/2(y mantissa) 
O (z mantissa) 
exponent=l 

intensity=7F(hex) p/l=p 
-l*x**-2 (x mantissa) 

3*2**-1 (y mantissa) 
1*2**-1 (z mantissa) 
exponent=O 

intensity=60(hex) p/l=l 
5*2**-3 (x mantissa) 

5*2**-4 (y mantissa) 
1*2**-14(z mantissa) 
exponent=4 

intensity=40(hex) p/l=p 
-2097*2**-13 (x mantissa) 

-16777*2**-15 (y mantissa) 
25145*2**-15(z mantissa) 
exponent=-8 

intensity=OC(hex) p/l=l 
5 (data byte count - including 

padding) 

107 (qendls) 
padding 

RM14-65 



RM14-66 

0000000000000000 

002PO\OOOP0111@@0000;@2D03000000000000000000000000000000000000000000000 

000000000 
00000010000TO@XOOP@0100000013nh01P00@00031DOOX00008420gcbnlgHTghOIOOD01 
[0000 

The vector list is transmitted to the PS 390 using escape mode as follows: 

<SOP>2 {route to six bit binary route} 
{and send the encoded data} 

If the vectors are vector normalized, an arbitrary sized vector list may be 
transmitted by sending multiple packets of data as above, without the termi­
nating semicolon. When all of the vectors have been transmitted, they must 
be terminated with a semicolon. However the packets must contain com­
plete vectors. 

The vectors will be processed faster if the vector estimate (N=vector_esti­
mate) is equal to or greater than the actual number of vectors transmitted. 
This is because the PS 390 allocates memory for the vectors based on this 
estimate. If the estimate is low, the PS 390 must find a new block of con­
tinuous memory large enough for the total, copy the vectors in the original 
block into the new block, and write the new vectors into the block. 

Reference Materials 





Index 

Section RM16 

Index 

Indicators 

Entries are indexed by volume, section, and page number. In cases where a topic 
appears on more than one successive page and discussion of it is continuous, page 
indicators only refer to the page of that discussion on which the topic first appears. 
There are no inclusive references. Information on a topic may be found on several 
successive pages following the page that is referenced. A reference to the first page 
of a section may indicate that the topic is discussed throughout that section. 

A sample entry is: 

Viewing operations, GT2-44; GT8-1 
attributes, GTS-48, 5 6 
commands, IS2-17 
default values, GT8-2, 52 
node, GTS-53, 54, 55 

The first reference after the main entry is to the Graphics Tutorial volume, Section 
2, page 44, where a discussion of viewing operations begins. The second reference 
is to the first page of Section 8 in the Graphics Tutorial volume. That entire section 
discusses viewing operations. The subentries ref er to specific aspects of viewing 
operations. Note that in the case of the subentry "node," successive pages are 
indexed because the discussion of the topic is not continuous. 

Alphabetization 

Index entries, including abbreviations and acronyms, are alphabetized on a letter­
by-letter basis. In the order of entries and subentries, numbers come before letters. 
There is one exception, in which a number begins a main entry. 03$ is alphabet­
ized under Z, as if spelled out. Words are alphabetized up to the first mark of 
punctuation. Spaces between words, hyphens, slant lines, and underscores are ig­
nored in the entry sequence. 

RM16-1 



A sample ordering of entries and subentries is: 

Matrix 
2x2 
3x3 
4x4 
accumulated 
algebra 

MATRIX2, F: 
MATRIX 2x2 
MATRIX3, F: 
MATRIX 3x3 

Cross-References 

A See cross-reference is to the entry that has been chosen in cases where alterna­
tives, such as synonyms or word order variants, existed. A See also cross-reference 
refers to an entry where indicators to additional or related information can be 
found. Not all related topics are cross-referenced. Note especially that topics whose 
entries appear in close proximity in the index (such as "Viewing operations" and 
"Viewing area") are not cross-referenced. In most cases, there are no cross­
references from a subentry to a main entry with the same wording. For example, 
there is no cross-reference from the main entry "Display structure," subentry "con­
ditional referencing" to the main entry "Conditional referencing." 

RM16-2 Reference Materials 



A 

ACCUMULATE, F: (intrinsic user function), 
GT6-24; TTl-19 

exercise, GT6-25 
summary, RM2-8 

Accumulator. See Function, accumulator 

ACP. See Arithmetic control processor 

ACPProof. See Arithmetic control processor, 
proof 

Active or regular input. See Input/output, ac­
tive queue 

Active List. See Scheduler 

Acyclic directed graph, IS2-20 
See also Display structure 

ADD, F: (intrinsic user function), GT2-95; 
GT6-11; GT7-31; TT2-8; AP5-4 

exercise, GT7-32 
summary, RM2-11 

ADDC, F: (intrinsic user function) 
summary, RM2-12 

Address. See Mass Memory; Named entity, 
address 

Advanced 3D visualization firmware, RM6-7 
See also Polygon; Smooth shading 

Algorithm, GT13-55 

Aliasing, GT12-2, 8 
temporal, GT12-3 
See also Antialiasing 

ALLOW VECNORM, F: (intrinsic user func­
tion)-:- TT2-17, 60 

summary, RM2-13 

Alpha block, AP3-1 
contents, AP2-2 
definition of, RM9-2; AP2-1 
hash table and, AP2-36 
pointers to, AP3-1 
update and, AP3-3 
See also Named entity 

ALT (key). See Key, ALT 

Index 

Alternating display, GT2-82; GT9-14, 16, 19 
See also Animation; Blinking; Conditional ref­

erencing; SET RATE 

Ambient light 
color of, GT13-45, 49 
depth cueing in, GT13-51 
light source and, GT13-45 
See also ILLUMINATION; SHADINGEN­

VIRONMENT 

AND, F: (intrinsic user function) 
summary, RM2-14 

ANDC, F: (intrinsic user function) 
summary, RM2-15 

Animation 
clock function and, TT1-21, 23 
frame, TT1-23, 44 
level-of-detail and, GT9-9, 12; TT1-23 
picking and, GT11-13 
program example, GT3-23 
SET RATE and, GT15-42 
storing, TTl-44 

ANSI private commands, RM 10-6 

ANSI mode (DECANM), IS3-19; RM10-2 
keypad in, RM10-10 
See also Escape sequence; SETUP facility; 

Terminal emulator mode 

Antialiasing, GT12-2, 8 
control, GT13-51 
lookup table and, GT13-55 
soft edges and, GT13-20 
See also Aliasing; Line filter; Screen; 

SHADINGENVIRONMENT 

Application program 
data flow, RM5-27 

See also Host input data flow 
display structure in, GT5-31 
examples of, GT15-1 
GSRs and, IS3-30; TT3-18, 23 
polygonal object from, GT13-8 
primitive created by, GT2-8 

Application routine. See Graphics support rou­
tines, application 

APPLIED TO/THEN (command), GT1-4; 
GT2-12, 79, 83; TT9-2 

summary, RM 1-3 
syntax, RMl-185 

Arc, routing, GT2-101; TT4-21 
See also NETEDIT 

RMI6-3 



Arithmetic and logical function, IS2-24; 
GT2-93; GT6-11 

Arithmetic control processor (ACP) 
card, IS2-6 
communication with GCP, AP2-16 
description of, AP1-2 
picking and, GT11-1, 9 

See also PICK 
proof, AP3-3 
state of, AP1-2; AP2-26; RM9-2 

See also State of the machine 
update process and, AP3-2 

Array element. See Background color; Cursor; 
Screen 

Artifact, GT12-3, 9 
See also Line filter; Screen 

ASCII 
character as primitive, GT2-9; GT4-49 
character code set, RM1-205; RM2-197 
command language in, IS2-15; GT5-2 
data into, TT9-4 

See also LIST,F:; Transformed data 
file, transferring, TT2-26; TT6-11 
font, alternate, GT10-20 

See also BEGIN_FONT ... END_FONT; 
MAKEFONT 

font, standard, GT2-9; GT10-19 
function networks created as, GT2-101; 

TT4-29 
See also NETEDIT 

See also Character font; Character string; 
Data node 

ASCII-to-GSR converter (host-resident pro­
gram), TT6-8; TTS-1 

Aspect. See Attribute, appearance 

Aspect ratio 
definition of, GT2-59 
perspective viewing area, GTS-20 
program example, GT3-13 
viewport and viewing area, GT2-59, 66; 

GTS-45, 54 
See also Viewing area; Viewport 

Assembly language routine, AP9-37 

Asynchronous serial line, RM5-1 
applications, IS2-13 

RM16-4 

communication characteristics, RM5-6 
data communication methods with, RM5-16 
data reception and routing with, RM7-1 
description of, RM5-1 
GSRs and, TT3-19 
host independence and, IS2-3 
interface, standard, RM5-2; RM6-1 
ports, RM5-7, 8 
protocol, RM5-12 
RS-232-C specifications, IS2-13, RM5-3 
system function network for, RM8-1 
See also Ethernet interface; IBM interface; 

Parallel interface 

At/from point. See Line of sight, at/from point 

ATSCALE, F: (intrinsic user function) 
summary, RM2-16 

Attach PS 390 to Communication Device (utility 
GSR), RM4-8 

Attribute 
appearance, IS2-17; GT2-68; GT8-48, 56 

See also Character font; Color; Depth clip­
ping; Intensity; Viewing operation, at­
tribute 

changing, GT13-39 
classes of, GT2-67, 87 
default, GT13-39 
definition of, GT2-67 
designing for, GT4-3 
picking, GT2-84 

See also Picking 
polygon. See Polygon; POLYGON 
structure, GT2-77 

See also Blinking; Conditional referencing; 
Level-of-detail 

Attribute node 
character font lookup table, GT10-1, 22 

See also CHARACTER FONT 
creating, GT13-39, 43 
definition of, GT2-67, 87 
display structure and, GT2-78, 87; 

GT13-39 
highest, GT2-85 

See also Picking 
inputs to, GT13-42 
uses of, GT2-88 
See also Operation node; POLYGON 

ATTRIBUTES (command), GT13-21, 39 
GSR, RM4-11 
summary, RM 1-4 
syntax, GT13-21, 40, 62; RM1-185 

Reference Materials 



Attribute table, GT13-53; TT2-49, 51 
See also SHADINGENVIRONMENT 

AVERAGE, F: (intrinsic user function) 
summary, RM2-18 

Axis 
coordinate system, GT1-3; GT2-2 
line of sight and, GT8-4 
object's, GT6-22 
rotation around, GT2-14 
translation in, GT2-16 
world's, GT6-22 
See also Origin; Z-axis 

B 

Back boundary. See Boundaries, front and 
back 

Backface removal, GT2-108; GT13-3 
rendering node input, GT13-32 
saving, GT13-38 
vertex order and, GT13-8 
See also Hidden-line removal; SOLID REN-

DEITTNG -

Background color 
black, TT2--39 

See also Erase Screen 
line filters and, GT12-9 
screen wash and, GT13-51 
specifying, GT12-5; GT13-49 
viewport and, GT8-42 
See also PS390ENV; SHADINGENVIRON­

MENT 

Backing up, RM12-5 
See also Diskette; Graphics firmware 

BEGIN ... END (command), GT5-25 
GSR, RM4-·16, 43 
summary, RM 1-7 
syntax, RMl-185 

BEGIN_FONT ... END_FONT (command), 
GT2-9, 75; GT10-19, 22; TT7-7 

summary, RM 1-8 
syntax, GT10-22, 27; RM1-185 

Begin Saving GSR Data (utility GSR), 
RM4-144 

Index 

BEGIN STRUCTURE ... END STRUCTURE 
(command), GT1-7; GT5-10, 25, 29; 
GT15-1; TT6-8 

exercise, GT3-11 
GSR, RM4-17, 45 
summary, RM1-10 
syntax, GT5-24, 30; RM1-186 

Binary data 
commands in, IS2-18 
encoding six-bit, RM14-60 

Black box, IS2-24; GT1-9; GT2-92; GT6-3 
See also Function; Function network; Input/ 

Output 

Blanking. See Screen, blanking 

Blinking, IS2-22; GT2-82; GT9-14, 19 
attribute, GT2-78 
data structuring and, TT1-36 
definition of, GT9-1 
node. See SET/IF node 
program example, GT9-16 
rendering and, GT13-28 
uses of, GT9-16 
See also Alternating display; Conditional refer­

encing; IF PHASE; SET BLINKING ON/ 
OFF; SET BLINK RATE; SET RATE; 
SET RATE EXTERNAL 

Block 
allocating a memory, AP3-4 
types of, AP2-1 
See also Alpha block; Control block; Label; 

Named entity; RA WBLOCK; Update 
block 

BOOLEAN CHOOSE, F: (intrinsic user func­
tion) -

summary, RM2-19 

Boolean value 
attribute node and, GT2-67 
cursor shape and, TT1-5 
data format, RM14-7 
data node and, GT2-37 
depth clipping node and, GT2-92 
operation node and, GT6-5 
picking node and, GT11-3, 7, 8 
switch function and, TT1-32 
See also Data type 

Booting, IS3-1; GT1-1 
trouble-shooting tips, IS3-4 

RM16-5 



Boundaries, front and back 
default, GTS-15 
depth clipping and, GT2-72; GTS-15, 29 
depth cueing and, GT2-63, 71; GTS-16 
frustum and, GTS-19 
orthographic viewing area and, GT2-50; 

GTS-16 
perspective viewing area and, GT2-54; 

GTS-20, 24, 29 
See also Viewing angle; Viewing pyramid 

program example, GT3-13, 15 
specifying, GTS-15, 16, 24, 29 
spheres and, TT2-18 
square/nonsquare, GTS-45 
viewing pyramid and, GT2-54; GTS-20 

See also Frustum; Viewing area, perspective 
See also Clipping plane; EYE BACK; 

FIELD_OF_VIEW; LOOK; WINDOW 

Bounded plane. See Surface 

Branch, GT2-36, 43 
definition of, IS2-19; GT2-77 
displaying selected, GT2-78; GT9-1, 7, 17 

See also IF CONDITIONAL BIT; SET 
CONDITIONAL BIT -

instance node and, GT2-36, 40; GT4-2 
order of display, GT9-10 
picking, GT11-2, 4 
program example, GT3-22 
structure attributes and, GT2-7 8 
See also Arithmetic control processor; Condi­

tional referencing; Display structure; In­
stance node; Sphere of influence 

Break key. See Key, BREAK 

Breakpoint. See Debug; User-written function 

Break sequence, TT2-41 
See also Key, BREAK 

BROUTE, F: (intrinsic user function) 
summary, RM2-20 

BROUTEC, F: (intrinsic user function), 
TT1-32 

summary, RM2-21 

BSPLINE (command), GT2-9; GT4-49; 
TT6-15 

GSR, TT3-5; RM4-18 
summary, RM1-13 
syntax, RM1-186 

Buffer. See Input/output; Byte, buffer 

RM16-6 

Buffer, double, AP3-2; AP4-6 
See also Frame buffer; SET/IF 

LEVEL_OF _DETAIL; SET/IF CONDI­
TIONAL BIT 

Buttons. See Function button 

BUTTONSIN (initial function instance) 
summary, RM3-2 

Byte 
buffer, RM5-7, 9, 12 
encoding binary data into, RM14-60 
See also Data; Routing byte 

c 
Calligraphic system, IS2-1; GT12-1 

See also Raster; Screen 

Calling sequence. See Named entity; Real value 

CANCEL XFORM (command) 
GSR, RM4-225 
summary, RMl-16 
syntax, RM1-186 

Capping polygon. See Polygon, capping 

Car, GT4-3, 23; GT5-8, 11; GTS-4; 
GT9-5; GT11-3 

Card, IS2-6, 8 
configuration, IS2-10 
See also Arithmetic control processor; Joint 

control processor; Pipeline subsystem; Ras­
ter backend bit-slice processor; Raster 
backend video controller 

Cartesian system. See Coordinate system, left 
handed 

Cavity. See Contour, inner 

CBROUTE, F: (intrinsic user function) 
summary, RM2-22 

CCONCATENATE, F: (intrinsic user function) 
summary, RM2-23 

CDIV, F: (intrinsic user function) 
summary, RM2-24 

CEILING, F: (intrinsic user function) 
summary, RM2-25 

Centering. See Model; Origin 

Reference Materials 



CGE, F: (intrinsic user function) 
summary, RM2-26 

CGT, F: (intrinsic user function) 
summary, RM2-27 

Change bits node. See SET/IF node 

CHANGEQTYPE, F: (intrinsic user function) 
summary, RM2-28 

Character font 
alternate, GT2-9, 75; GT10-20, 27; 

TT7-2 
See also BEGIN FONT ... END FONT; 

MAKE FONT -
attribute, GT2-67, 75; GT10-22 

See also CHARACTER FONT 
bit, TT7-8; RM5-14, 15 
block, AP2-5, 34 
definition of, GT10-19 
design grid, TT7-5 
downloading, TT7-7 
lookup table, GT10-22 
modifying. See MAKEFONT 
node, GT2--76 
as primitive, GT2-9 
standard, IS2-3, 21; GT2-9, 75; GT10-1, 

19, 20; TT7-7 
See also ASCII; STANDARD FONT 

storing, TT7-8 
See also Label 

CHARACTER FONT (command), GT2-9, 76; 
GT10-20, 22 

GSR, RM4-·53 
summary, RM1-17 
syntax, GT10-22, 27; RM1-186 

Character font editor. See MAKEFONT 

Character generator. See MAKEFONT 

CHARACTER ROTATE (command), GT10-6, 
10; RM14-12 

exercise, GT10-10 
GSR, RM4-21 
summary, RM1-18 
syntax, RM1-186 

CHARACTERS (command), GT1-7; GT2-76; 
GT4-49; GT5-5; GT10-2, 5, 17, 18, 23 

exercise, GT10-19 
GSR, RM4-22 
summary, RM1-20 
syntax, GT10-24; RM1-186 

Index 

CHARACTER SCALE (command), GT1-7; 
GT2-76; GT10-6, 8 

GSR, RM4-24 
summary, RM1-22 
syntax, GT10-7, 24; RM1-186 

Character string, GT1-7; GT10-1 
block. See Label 
commands, GT10-2, 6, 16, 24 

See also CHARACTERS; CHARACTER 
ROTATE; CHARACTER SCALE; 
LABELS; PREFIX; TEXT SIZE 

definition of, GT10-1 
functions to manipulate, GT10-12, 19, 25 
node, GT2-76; GT10-1, 6, 11, 16, 23; 

TT1-28 
See also COPY; SEND 

orienting, GT10-10, 25 
See also SET CHARACTERS 

pick list into. See PICKINFO, F: 
positioning, GT10-2, 4 
primitive, GT2-9; GT4-49 
program example, GT3-2, 10, 20 
rotating, GT10-6 

See also CHARACTER ROT A TE 
scaling, GT10-3, 6 

See also CHARACTER SCALE; SCALE; 
TEXT SIZE 

screen-oriented, GT3-20; GT10-12 
screen-oriented fixed, GT3-21; GT10-12 
spacing, GT10-4, 5 
transforming, GT10-6, 24 

See also CROTATE, F:; CSCALE, F:; MA-
TRIX_2X2 

versatility of, GT10-5 
world-oriented, GT3-20; GT10-11 
See also Label; Pick list; Text 

Character transformation function, IS2-24; 
GT2-94; GT6-12; GT10-15 

CHARCONVERT, F: (intrinsic user function), 
RM7-4; TT1-40; GT10-13; GT11-14 

summary, RM2-29 

CHARMASK, F: (intrinsic user function), 
GT10-13 

summary, RM2-31 

CHECK (diagnostic utility command), 
RM12-2, 8 

CHOP, F: (intrinsic user function), TT2-33; 
RM7-3 

summary, RM2-32 

CI(n), F: (intrinsic user function), TT2-8; 
RM7-3; RM9-2, 7; RM14-7 

summary, RM2-33 

RM16-7 



Circle, Til-10 
See also RA TI ON AL POLYNOMIAL 

CIROUTE(n), F: (intrinsic user function), 
TI2-24, 33; RM5-16, 20, 26, 29; 
RM7-1,3; RM14-4 

summary, RM2-35 

CLCSECONDS, F: (intrinsic user function), 
TTl-21, 23 

summary, RM2-37 

CLE, F: (intrinsic user function) 
summary, RM2-39 

Clear. See Screen, blanking 

CLEAR_ LABELS (initial function instance) 
summary, RM3-3 

CLFRAMES, F: (intrinsic user function), 
GT6-27; TTl-21, 23 

exercise, GT6-30 
summary, RM2-40 

Clipping 
definition of, GT2-44, 72; GT8-1 
line of sight and, GT8-11, 13, 21 
screen boundaries and, IS2-21 
size of object and, GT8-11 

See also WINDOW 
viewing area and, GT2-51, 66; GT8-10, 13, 

15, 53 
See also Depth clipping 

Clipping plane 
depth clipping and, GT2-51, 73; GT8-15 
depth cueing and, GT2-58 

See also Intensity 
rendering and, TI2-5 8 
sphere and, TI2-57 
See also Boundaries, front and back; EYE 

BACK; FIELD OF VIEW; LOOK; WIN-
DOW - -

Clock 
blinking and, GT2-82; GT9-14, 19 
function, GT6-27; Til-21, 23 

See also CLCSECONDS, F:; CLFRAMES, 
F:; CL TICKS, F: 

level-of-detail and, GT9-12 
See also Animation 

real-time, displaying, TI1-33 
See also Alternating display; Blinking 

CLT, F: (intrinsic user function) 
summary, RM2-42 

RM16-8 

CL TICKS, F: (intrinsic user function), 
TT1-21, 23, 33 

summary, RM2-43 

CMUL, F: (intrinsic user function), GT6-9; 
GT7-9 

exercise, GT7-15 
summary, RM2-45 

Coding. See BEGIN STRUCTURE ... 
END_STRUCTURE; Command; Display 
structure; Naming, explicit 

Color 
ambient. See Ambient light, color of 
attribute node input, GT13-42 
blending, GT13-53 
changing, GT13-40 
components, GT14-3 

See also Color lookup table 
displaying, IS2-3; GT2-68, 69 
dynamic viewport and. See Dynamic view-

port, color in 
edge. See Edge, color of 
interpolating, GT13-9, 22 
node, GT2-69 
pixel, GT14-2, 3 
program example, GT13-43 
specifying, IS2-22; GT2-103; GT8-50; 

GT13-20, 21, 40, 59, 61 
See also POLYGON; SET COLOR 

transparency and, GT13-42 
values, GT2-68; GT13-41, 43 

See also Hue; Intensity; Saturation 
vertex. See Vertex, color 
wheel, GT2-68; GT8-50; GT13-41 
wireframe. See Wireframe model, color of 
See also Attribute; ATIRIBUTES; Back-

ground color; SET COLOR; Shading; 
SHADING ENVIRONMENT 

Color lookup table, GT14-1, 3, 11; TT2-39 

Command 
abbreviated, GT5-2; TT8-2 
building from subcommands, RM 14-11 
categories of, IS2-16; GT5-1, 29; 

RMl-180 
conventions, GT5-2, 29 
data formats, RM14-14 
data structuring, GT5-1, 4, 29 

See also BEGIN STRUCTURE ... 
END _STRUCTURE 

downloading, IS2-1 7 
editing. See LINEEDITOR, F: 
entering, GTl-2 

Reference Materials 



error in sending, RM 14-1, 11 
file. See Command file 
general, IS2-16 
GSRs and, IS2-18; IS3-30; GT5-28; 

TT3-3, 12; TT5-28; RMl-197; 
RM4-228 

immediate action, GT5-2, 25, 29 
language, IS2-15; GT4-2; GT5-1; RM1-1 

naming conventions, GT5-4, 29 
See also Name, command; Naming, explicit 

private ANSI, RM10-6 
See also Terminal emulator mode 

rendering operation and, GT13-31 
reset, RM14-1, 11 
runtime code and, IS3-7 
saving, GT5-27 
special site configuration, TT2-1 

See also SITE.DAT 
status. See COMMAND STATUS 
structure, IS2-17 
syntax, TT3-7, 16; RMl-185 
system, RM1-1 
use of, IS2-17; GT5-1 
utility. See Diagnostic utility command 
See also Command interpreter; Display struc­

ture; Graphics support routines; Node 

Command file, AP5-2 
DEC VAX/UNIX, AP5-16; AP9-11 
DEC VAX/VMS, AP5-15; AP9-1 
generating, TT4-3 
IBM MYS/TSO, AP9-24 
tutorial, GT3-5 

Command interpreter (CI), IS2-18 
alpha block and, AP2-3 
configure mode, IS3-7; RM9-6 

See also CONFIG.DAT 
data format, RM14-1, 11 

See also Data type; Graphics support rou­
tines 

graphics support routines and, IS3-30; 
TT3-17; RM5-29 

host communications and, IS3-25, 27; 
RM5-23 

name suffixing by, RM9-6 
querying or resetting, GT5-1; RM14-11 

See also COMMAND STATUS; !RESET 
routing to, RM5-20, 23, 27; RM7-3; 

RM14-6 
tokens expected by, RM14-3 
user-written function and, AP7 - 2 
See also CI(n), F:; Write structure field 

Index 

Command language. See Command; Graphics 
support routines 

Command mode (CI mode) 
cursor keys in, RM10-23 
DEC VT100, IS3-17 
description of, IS3-15; RM10-27 
entering commands in, IS2-17 
establishing, RM10-21 
function keys in, RM10-23 
IBM host, IS3-22, 24; GT1-2; RM10-27 
keyboard manager and, RM10-17, 21 

See also K2ANSI, F: 
keypad in, RM10-21, 23 
key sequence for, IS3-15, 22; GT3-30; 

GT10-2 
local communication, IS3-27 
non-IBM host, GT1-1 
prompt, GT1-1 
screen and, RM10-27 
suffixing, RM9-6 
See also Keyboard, modes of operation 

COMMAND STATUS (command), GTS-1, 
17, 25 

summary, RMl-24 
syntax, RMl-187 

Comments, GT5-3; TT4-31; TT5-4 
See also Command, language 

Commhead, AP2-35; AP9-41 

Communication connector panel, IS2-5 

Communication interface. See Interface 

Communication mode. See Command mode; 
Keyboard, modes of operation; Local mode; 
Terminal emulator mode 

Comparison function, IS2-24; GT2-93; 
GT6-11 

Complex model. See Compound object; Model 

Compound object 
advantage of, GT2-28 
creating, GT2-26, 31 
grouping as, GT2-30 
instance node and, GT2-39 
See also INSTANCE; Instance node; Model; 

Named entity 

Composite sync signal, GT12-4, 11, 13 
See also Video timing format 

RMJ6-9 



COMP STRING, F: (intrinsic user function), 
GTl0-15 

summary, RM2-46 

CONCATENATE, F: (intrinsic user function), 
GTl0-14 

summary, RM2-47 

CONCATENATEC, F: (intrinsic user function) 
summary, RM2-48 

Concatenation. See Character string, concatena­
tion; Matrix, concatenation 

CONCATXDATA(n), F: (intrinsic user func­
tion), TT2-53, 55 

summary, RM2-49 

Conditional bit 
function network, GT9-8 
setting, GT2-78; GT9-1, 7 
state of machine and, GT4-48 
using, GT9-3, 17 
See also IF CONDITIONAL_BIT; SET CON­

DITIONAL BIT 

Conditional referencing, GT9-1 
attribute, GT2-78 
definition of, GT2-78; GT9-1 
function key and, GT2-79; GT9-8 
node. See SET/IF node 
program example, GT3-11, 22 
using, GT9-17 
See also Blinking; IF CONDITIONAL_BIT; 

IF LEVEL OF DETAIL; IF PHASE; 
Level-of-detail;-SET CONDI-
TIONAL BIT; SET/IF node; SET 
LEVEL OF DETAIL; SET RATE; SET 
RATE EXTERNAL 

Condition handler, TT5-11 

Confidence tests, IS3-3, 4 

CONFIG.DAT (file), RM1-1 
command interpreter and, RM9-6 
description of, IS3-6, 7; TT2-9; RM9-5 
initial data structure and, RM9-2 
reading, RM9-5 

See also CI(n), F:; READDISK, F: 
terminal emulator and, RM10-20, 28 
See also Initial data structure; SITE.DAT 

CONFIGURE (command), GT8-40 
summary, RMl-25 
syntax, RMl-187 

RM16-10 

Configure mode, IS3-7 
commands, RMl-1 
definition of, TT2-7 
password. See SETUP PASSWORD 
using, TT2-7; RM9-7 
See also Command interpreter; Naming, suf­

fixing 

CONNECT (command), GTl-10; GT2-96; 
TT4-2, 28; TT5-4, 25; RM14-13 

exercise, GT6-16 
GSR, RM4-26 
summary, RMl-26 
syntax, RMl-187 

Connector, TT4-2, 19 

Constant, TT3-7, 16; TT4-20, 28 

CONSTANT, F: (intrinsic user function), 
RM7-3; GT7-33 

exercise, GT6-31 
summary, RM2-50 

Constant input. See Input/output, constant 
queue 

Control block, AP2-16, 27 
See also Display control block; Display con­

trol root 

Control sequence, RM10-2, 4, 5 
ANSI, RM10-2, 5 
cursor and, RM10-5 
definition of, RM10-3 
SET (SM) and RESET (RM), RM 10-4 
See also Escape sequence 

Control unit, IS2-4 
multiplexer and, RM13A-3 

Converter. See ASCII-to-GSR converter 

Convert HSI to RGB (utility GSR), RM4-207 

Coordinate 
calculating, GT2-12 
character string, GT10-4 

See also CHARACTERS 
label, GT10-5 

See also LABELS 
logical device, GT14-2, 5, 11, 18 
notation, GT2-6 
picking, GT11-7, 9 
room, GT2-56; GT8-25 

See also EYE BACK 
screen, GT5-21 

See also Viewing area 

Reference Materials 



values, GT1-3 
world, GT2-4, 56 

See also World coordinate system 
See also Vector; Vector list; VECTOR_LIST 

Coordinate system 
definition of, GT2-2, 10 
left-handed, GT2-3, 10 

See also World coordinate system 
mnemonic for, GT2-2, 3, '14 
portion displayed, GTl-3,' 4 
right-handed, GT2-2 
world. See World coordinate system 

CPK. See Rendering operation 

Coplanar. See Polygon, coplanar; POLYGON 

COPY (command), GTl0-16 
GSR, RM4--28 
summary, RM1-27 
syntax, GTl0-16; RMl-187 

COPYDISK (diagnostic utility command), 
RM12-7, 8 

COPY_ VECNORM_BLOCK, F: (user-written 
function), TT2-62 

Counter. See Clock, function. 

Count mode. See CIROUTE, F:; Data packet, 
count mode; Host communication 

Crash dump file, TT10-1; RM11-1 

Crash, system, RMl 1-1 
error types, AP9-63; TT10-1 
physical 1/0 and, AP4-3 
user-written functions and, AP5-23 

Cross-sectioning 
description of, GT2-110; GT13-5, 36 
rendering node input, GT13-32, 36 
See also Polygon, capping; Sectioning; Sec­

tioning plane; SECTIONING_PLANE 

Cross-compatibility software, IS2-14; AP5-2; 
AP9-18 

See also Graphics support routines 

CROTATE, F: (intrinsic user function), 
GT10-6, 15 

summary, RM2-51 

CROUTE(n), F: (intrinsic user function), 
GT7...:6, 37 

exercise, GT7-15 

Index 

summary, RM2-52 

CSCALE, F: (intrinsic user function), 
GTl0-15 

summary, RM2-53 

CSUB, F: (intrinsic user function) 
summary, RM2-54 

Current state of the machine (CSM). See State 
of the machine 

Current transformation matrix. See Matrix, cur­
rent transformation 

Cursor 
color, GT12-5 

See also PS390ENV 
data tablet. See Data tablet 
default, TT1-3 
moving, RM10-5, 9, 11, 15 
picking with, GT11-1, 7 

See also SET PICKING LOCATION 
programmable, GT12-6 
refresh rate, GT12-6 
shape of, TTl-3, 4; TT4-9; TT6-7 
sketching with. See Data tablet 
types of, GT12-6 
update rate, GT12-6 
See also Data tablet 

CURSOR (initial structure), TT1-3, 4 
summary, RM3-56 

Cursor key mode (DECCKM), IS3-20; 
RM10-2, 4, 5, 6, 22 

See also Escape sequence; SETUP facility; 
Terminal emulator, ANSI modes 

Curve 
generating, TTl-10 
primitive, GT2-9; GT4-49 
See also BSPLINE; POLYNOMIAL; RA­

TIONAL BSPLINE; RATIONAL POLY­
NOMIAL; Transformed data 

Customer support, IS4-1; ISS-1 

Cutaway view. See Sectioning 

CVEC, F: (intrinsic user function) 
summary, RM2-55 

CVT6T08, F: (intrinsic user function), RM7-3 
summary, RM2-56 

CVT8T06, F: (intrinsic user function), TT9-11 
summary, RM2-57 

RM16-ll 



CVT ASCTOIBM, F: (intrinsic user function) 
summary, RM2-58 

CVTIBMTOASC, F: (intrinsic user function) 
summary, RM2-59 

D 
Data 

digital-to-analog conversion, IS2-22 
filtering and formatting, GT2-100 

See also Function network 
flow. See Host input data flow 
format, RM14-2, 7, 11, 14 
function network and, GT2-100 
multiplexer, RM13A-3 
reception and routing, GT2-101; RM7-1; 

RM14-3 
See also CIROUTE(n), F:; Host input data 

flow 
storing, RM14-60 
transformed. See Transformed data 
type. See Data type 
See also Binary data 

Data base 
conceptual, GT4-47 
coordinate system and, GT2-2, 10 

See also World coordinate system 
graphic object's, GT2-1, 4, 6, 10; GT4-49 

See also Primitive; Geometry; Polygon list; 
Topology; Vector list 

Data channel. See Data, reception and routing; 
Host input data flow 

Data communication. See Data transmission; 
Host communication. 

Data conversion function, IS2-24; GT2-93; 
GT6-11; GT10-13 

Data-driven. See Function; Function network 

Data input and output function, IS2-25; 
GT2-94; GT6-12 

Data node 
contents of, GT2-36, 91 
definition of, GT2-36; GT4-13, 49; 

AP2-30; AP9-56 
See also Primitive 

display structure representation, GT2-36; 
GT4-13 

format of, AP2-30; AP9-56 

RM16-12 

function, GT4-48 
See also Character string; Curve; Label; 

Vector list 
inputs to, GT2-37 
interactive device and, GT4-49 
modeling and, GT4-2 
pick index of, GT11-8; AP2-32 

See also PICK 
picking, GT3-27; GT11-4, 9 
pointer, GT4-48, 49 
polygon, GT2-103 
terminal, GT4-13, 48, 49 
updating, GT2-36; TT2-37 

See also Interactive device 
uses of, GT4-49 
See also Data type; Display structure; Node 

Data packet, RM14-3 
commands and, IS2-18 
count mode, RMS-17, 19; RM7-1; 

TT2-23 
description of, RMS-16 
escape mode, RMS-17, 18; RM7-1; 

TT2-23 
writeback, TT9-10, 12 
See also CIROUTE(n), F:; Data, reception 

and routing; DEMUX(n), F:; 
DEPACKET, F:; Host communication; 
Host input data flow; PACKET, F: 

Data selection and manipulation function, 
IS2-25; GT2-94; GT6-12; GT:L0-14 

Data space. See World coordinate system 

Data structure 
creating, AP3-1 

See also Joint control processor 
description of, AP2-1 
definitions set up, RM9-2 

See also Graphics control program 
displaying. See CONFIG.DAT; Initial data 

structure 
editing. See STRUCTEDIT 
function instance as, AP2-6 
function network as, TT4-2 
initial. See Initial data structure 
named entity as, AP2-1, 5 
naming, GTS-4 

See also Alpha block; BEGIN_STRUC­
TURE ... END STRUCTURE; Command; 
FORGET STRUCTURES; Named entity; 

Naming, explicit null, GTS-4 
See also Data node; Display structure; Mass 

memory; Operation node; Set node 

Data structure editor. See STRUCTEDIT 

Reference Materials 



Data structuring command. See Command, 
data structuring 

Data tablet 
binary format, RM13A-24; RM13B-20 
character font selected with, TT7-3 

See also MAKEFONT 
cursor and, TT1-4 
description of, IS2-12; IS3-11; 

RM13A-23; RM13B-19 
editing with, TT 4 
grid banding with, TT1-17 
inking with, TT1-14, 38 
menus and, TT1-25; TT4-10 
modes of operation, IS3-11; RM13A-23; 

RM13B--19 
picking with, GT11-1, 7, 13 
program example, GT3-7, 27 
puck, IS3-11 
rubber banding with, TT1-15, 17 
uses of, GT2-88; GT6-5 

See also Cursor 
values, GT6-5 

Data transmission 
high-speed, IS2-13 
multiplexer rate, RM13A-3 
See also Host communication; Interface 

Data type 
character/label nodes and, GT10-19 
definitions, RM2-6; RM14-2 
formats for, RM14-7 

See also Data, format 
functions and, GT6-11; RM2-2, 6 
graphics control program and, AP2-35 
GSRs and, TT3-2, 20 
interactive devices and, GT2-92 

See also Function network 
nodes and, GT2-91; GT6-3, 23 

See also Function 
pick list, GT11-11 
See also PRINT, F:; User-written function, 

message types; VARIABLE 

Datum pointer, AP2-2; AP3-1 
See also Alpha block; RA WBLOCK 

Debug 
commands, AP7-9 
confidence test and, IS3-6 
entering, IS3-6; AP7-7 

See also Key, BREAK 
function network, TT2-43 

Index 

terminal, IS3-4 
use of, AP7-6 
See also NETPROBE; User-written function 

Debugging network. See NETPROBE 

DEC computer. See Host computer; Host com­
munications; Interface; Keyboard modes; 
Parallel interface; Terminal emulator, DEC 
VT100 

DECANM. See ANSI mode 

DECCKM. See Cursor key mode 

DECKPAM. See Keypad application mode 

DECKPNM. See Key pad numeric mode 

DECREMENT LEVEL_OF_DETAIL (com-
mand) 

GSR, RM4-34 
summary, RM1-29 
syntax, RM1-187 

Delay, GT2-83; GT9-14 
See also Blinking, SET RATE 

DELETE (command), GT5-5, 26 
GSR, RM4-32, 35 
summary, RM1-30 
syntax, RM1-187 

DELETE (diagnostic utility command), 
RM12-9 

Delimiter, GT5-3 
See also Command, language; 

LINEEDITOR, F: 

Delta values, GT6-5; RM13A-18; 
RM13B-15 

See also Dials, control 

DEL TA, F: (intrinsic user function) 
summary, RM2-60 

Demonstration package diskettes, IS2-14 

Demultiplexing. See Multiplexing; Input/output, 
multiple sources/ destinations 

DEMUX(n), F: (intrinsic user function), 
RM14-6 

summary, RM2-61 

DEPACKET, F: (intrinsic user function), 
TT2-24; RM5-17, 21; RM7-1; RM14-3 

summary, RM2-63 

RM16-13 



Dependency. See Grouping; Hierarchy; Sphere 
of influence. 

Depth clipping 
attribute, GT2-72 
definition of, GT2-51, 72 
depth cueing and, GT8-17 
display structure and, GT8-15 
enabling/disabling, GT2-72; GT8-15, 16, 54 

field-of-view and, GT8-21 
function key and, GT2-75 
node, GT2-74 
orthographic viewing area and, GTS-10, 15, 

17 
See also WINDOW 

perspective viewing area and, GT8-21, 29, 
30 

program example, GT3-14 
See also Boundaries, front and back; Clipping; 

Clipping plane; SET DEPTH_CLIPPING; 
Viewing area 

Depth cueing 
background color and, GT12-5 

See also PS390ENV 
boundaries, front and back and, GTS-53, 54 

See also Boundaries, front and back; Clip­
ping plane 

characters, GTl0-12 
definition of, IS2-2; GT2-44, 58, 71; 

GT8-1, 16, 53 
field-of-view and, GT8-21, 24 
maximum, GT2-63; GT8-16, 22, 24 
orthographic viewing area and, GT8-9, 19 
perspective viewing area and, GT2-63; 

GT8-21, 29 
shaded image, GT13-51 
See also Intensity; SET CONTRAST; SET IN­

TENSITY; SHADINGENVIRONMENT; 
Viewport 

Depth perception, GT2-2 
See also Coordinate system; Depth cueing; 

Perspective 

Designing. See Display structure; Model; Mod­
eling transformation 

DESTROY (initial function instance), AP2-6 

Detach PS 390 from Communication Device 
(utility GSR), RM4-42 

Detail frame. See Frame, detail 

RM16-14 

Diagnostic utility diskette 
backing up, RM12-5 
copying, RM12-6 
copying files with, TT2-26 
interface files on, RM6-4 

See also Asynchronous serial line; Ethernet 
interface; IBM interface; Parallel inter­
face 

loading, RM12-1 
uses of, IS2-14; RM12-1 

Diagnostic utility command, RM 12-1 
list of, RM12-3 
selecting, RM12-2 

Diagram. See NETEDIT 

Dial, control, RM13A-1 
clock function and, GT6-30 
commands, RM13B-16 
connecting, GTl-9 
data formats, RM13A-18; RM13B-15 
data transmission characteristics, RM13B-16 
description of, IS2-12; IS3-11; 

RM13A-17; RM13B-15 
function network, GT6-16, 21, 25, 32; 

GT7-2, 13, 22, 25 
function network editing and, TT4-14 
intensity setting with, GT2-71 
labels, IS3-10; GT7-1, 22; TT2-48; 

RM13A-20 
See also DLABEL1. .. DLABEL8; Light-emit­

ting diode 
level of detail and, GT2-80 
modes of operation, GT7-4, 23; GT11-13; 

RM13A-17 
multiple interactions and, GT7-1, 2, 37 
operation of, GT6-5; RM13A-18 

See also Delta values; Multiplying 
performance verification test, 1S6-9 
picking network and, GT11-13 
program example, GT3-7, 8, 13, 15, 18, 21, 

23, 25; RM13A-19 
response, RM13B-15 
rotating with, GT6-5, 18 
scaling with, GT6-23; TTl-12 
setup, RM13A-19 
transformations and, GT6-5 
translating with, GT6-23; TTl-19 
uses of, IS3-11; GT2-88 

DIALS (initial function instance), GT2-95, 97; 
GT6-15; GT7-5; GT11-15 

exercise, GT6-16, 21, 25, 32; GT7-13 
summary, RM3-4 

Dictionary. See Alpha block; Hash table 

Reference Materials 



Diffuse reflection, GT2-103 
attribute node input, GT13-42 
specifying, GT13-21, 41 
values, GT13-41; TT2-51 
See also ATTRIBUTES; Shading; Specular 

highlight 

Digital clock. See Clock, real-time Digitizing, 
GT6-5 

See also Data tablet 

Dimension, GT1-3; GT2-1 
See also Coordinate system 

DIRECTORY (diagnostic utility command), 
RM12-9 

DISCONNECT (command), GT5-25 
exercise, GT6-21, 30 
GSR, RM4-36, 40 
summary, RM1-31 
syntax, RM1-187 

Diskette, IS2-13; IS3-6 
backing up, RM12-5 
drives, IS2-5; IS3-1 
formatting blank, RM12-5 
installing, IS3-1, 2 
See also Demonstration diskette; Diagnostic 

utility diskette; Graphics firmware; 
Performance verification test; 
WRITEDISK, F: 

Display (noun). See Display structure; Screen 

DISPLAY (command), GT1-3; GT2-45, 57, 
61; GT5-25, 28; GT13-26 

exercise, GT3-10; GT8-35 
GSR, RM4-41 
summary, RM1-32 
syntax, RM1-187 

Display control block (DCB), AP2-20 

Display control root (DCR), AP2-16 

Displaying, GT1-2, 4, 5; GT2-45 
alternate. See Alternating display 
conditional referencing and, GT2-7 8 

See also IF CONDITIONAL BIT; SET 
CONDITIONAL BIT -

default values, GT2-46 
information needed, GT2-45 

Index 

See aiso Line of sight; Viewing area; View­
port 

level-of-detail and, GT2-80 
See also IF LEVEL_OF _DETAIL; SET 

LEVEL OF DETAIL 
off and on. See Blinking 
screen area for. See Viewport 
simultaneous. See BEGIN ... END 
viewing space. See Viewing area 

Display list, GT1-3, 5 

Display processing, IS2-22 
See also Interaction; Transformation 

Display processor 
attributes and, GT2-67; GT13-39 
branches and, IS2-19; GT2-77 
description of, IS 2-7; AP 1-1 

See also Arithmetic control processor 
instance node and, GT4-53; GT5-14 
naming and, GT5-10 
optimization mode and, GT5-26 

See also OPTIMIZE STRUCTURE; ... END 
OPTIMIZE; 

transformation and, GT4-51 

Display structure 
branching in, GT2-78 

See also Branch 
character font, GT10-23 
coding, GT5-1, 8, 11, 17; TT6-1 

See also BEGIN_STRUCTURE ... 
END STRUCTURE; Command; Nam­
ing, explicit; STRUCTEDIT 

conditional referencing, GT9-1 
data structuring commands and, IS2-17; 

GT5-1, 4, 29 
definition of, IS2-18; GT2-32, 34, 43; 

GT4-9; AP2-16 
designing, GT2-35, 90; GT4-9, 16, 23, 31, 

47 
editing. See STRUCTEDIT 
elements of, AP2-16 

See also Control block; Node 
function outputs as, TT5-1 

See also NETPROBE 
GSRs and, TT3-3, 5, 12, 15 
hierarchy in, IS2-18; GT2-32; GT4-3, 31 
immediate action commands and, GT5-25, 

29 
information in, GT4-13 
interaction points in, IS2-23; GT2-36, 38 
modeling steps and, GT4-2 
named entity, AP2-5 
order of operations in, GT4-52; GTS-13 

See also Operation node 
picking and, GT11-l, 2 

RM16-15 



program example, GT15-2, 15, 28, 36, 42, 
45, 47 

rules for, GT4-48 
sphere of influence in, GT2-40 

See also Instance node 
terminal emulator and, RM 10-19 
terminology, GT2-36 

See also Branch; Node; Hierarchy 
transformed data and, TT9-1 
traversing, IS2-20 

See also Display processor 
updating. 

See Update 
viewing and, GT2-60; GT8-12, 15, 21, 36 

See also Viewing operation 
writeback and, TT9-9 
See also Data structure; Hierarchy; Named 

entity; (Naming of Display Structure 
Nodes); Node; OPTIMIZE STRUC­
TURE; ... END OPTIMIZE 

Display tree. See Display structure 

Distortion. See Aspect ratio; Viewport 

Distributed graphics, IS2-3 
See also Host input data flow; Routing; Rout­

ing byte 

DIV, F: (intrinsic user function) 
summary, RM2-65 

DIVC, F: (intrinsic user function), TTl-17 
summary, RM2-66 

DLABEL1 ... DLABEL8 (initial function in­
stance), GT7-22, 37 

exercise, GT7-25 
summary, RM3-6 

Downloading, IS3-26, 28 
diagnostic utility commands and, RM 12-1 
See also Host communications 

DSCALE, F: (intrinsic user function), GT6-25; 
TTl-13 

exercise, GT6-26 
summary, RM2-67 

DSET1.. .DSET8 (initial function instance) 
summary, RM3-8 

DXROTATE, F: (intrinsic user function), 
GT6-6, 18; GT7-11, 30 

exercise, GT6-17; GT7-16 
summary, RM2-69 

RM16-16 

Dynamic viewport 
clearing to, GT8-42 
color in, IS2-3; GT8-48; GT13-20, 59 
considerations, GT8-39 
default, GT8-2, 34, 40 
dimensions of, GT8-34, 39 
display structure and, GT8-2 
intensity range, GT2-58, 71; GT8-35, 47, 

56 
program example, GT15-45 
real time and, IS2-2 
rendering operations, GT2-102, 108, 113; 

GT8-34; GT13-3, 32, 56 
See also Backface, removal; Cross-section­

ing; Sectioning 
soft edge in, GT13-20 
specifying, GT2-58; GT8-34, 56 

See also LOAD VIEWPORT; VIEWPORT 
wireframe model in, GT2-44, 58; GT8-33, 

34 
See also Static viewport; LOAD VIEWPORT; 

Screen; Viewport; VIEWPORT 

DYROTATE, F: (intrinsic user function), 
GT6-6, 18 

exercise, GT3-10; GT6-16 
summary, RM2-70 

DZROTATE, F: (intrinsic user function), 
GTl-9; GT2-96; GT6-15 

exercise, GT6-17; GT3-25 
summary, RM2-71 

E 
Edge, polygon 

color of, GT2-103; GT13-9, 20, 21, 44 
common, GT2-105, 106; GT13-11, 13, 19, 

58 
defining, GT2-102; GT13-8 
enhancement, GT13-20, 21, 54 
shading and, GT13-20 
smoothing. See Antialiasing 
soft, GT2-104; GT13-10, 19, 59 
solid, GT13-11, 13 
surface, GT13-10 
toggling, GT13-54 
See also Polygon; POLYGON 

EDGE_DETECT, F: (intrinsic user function), 
TTl-38 

summary, RM2-72 

Ellipse, TTl-11 
See also RATIONAL POLYNOMIAL 

Reference Materials 



Endpoint, TT4-21 

End Saving GSR Data (utility GSR), RM4-145 

Enhanced programmable communications inter­
face (EPCI), RM5-13 

EQ, F: (intrinsic user function) 
summary, RM2-73 

EQC, F: (intrinsic user function) 
summary, RM2-74 

ERASE PATTERN FROM (command) 
GSR, RM4-46 
summary, RMl-33 
syntax, RMl-187 

Erase Screen (raster GSR), GT14-11, 12, 19; 
TT2-39; RM4-122 

program example, GT14-13, 15, 19 

ERROR (initial function instance) 
summary, RM3-10 

Error 
converter, TrB-2 

See also ASCII-to-GSR converter 
detection logic, GT2-95 
diskette copying, RM 12-6, 8 
framing, RM5-15 
formatting, RM 14-11 
handling, TT3-6, 15, 22 
input queue, RM2-5 
LEDs and, IS3-10 
message, RM11-1 
overrun, RM5-16 
parity, RM5-·14 
transmission, RM5-13 
See also Crash, system; ERROR; Graphics 

support routines, error code; INFORMA­
TION; WARNING 

Error code. See Graphics support routines, 
error code 

Escape character (ESC) 
changing, RM5-1 7, 21 

See also DEPACKET, F:; SITE.DAT 
defining, RM5-18 

See also Data packet 
parameters, RMl0-3, 6 
VT52 mode and, RMl0-5, 15 
See also Escape sequence 

Escape mode. See Data packet, escape mode; 
Host communication 

Index 

Escape sequence 
ANSI, RMl0-6 
ANSI-VT52 mode, RMl0-5 
break and, IS3-21 

See also Key, BREAK 
cursor key mode, RMl0-6 
cursor movement commands, RMl0-11, 12 
definition of, RMl0-3 
erase commands, RM 10-13 
graphic rendition commands, RMl0-14 
host report commands, RMl0-14 
indexing commands, RM 10-12 
keypad, RMl0-10 
margins commands, RM 10-14 
modes of operation and, RM10-2 
screen display, RM10-8, 11 
send-receive mode, RMl0-5 
VT52 command, RMl0-15 
See also Control sequence; Host communica­

tion; Terminal emulator 

Ethernet interface 
data reception and routing with, RM6-2; 

RM7-1 
GSRs and, TT3-18, 25 
GPIO option, IS2-8; RM6-3, 4, 6 
SITE.DAT and, TT2-1 
physical 1/0 and, TT2-21 

Explicit naming. See Command; Naming, ex­
plicit 

Explicit referencing. See APPLIED TO/THEN; 
(Naming of Display Structure Nodes) 

Exposure, GT13-50 
See also SHADINGENVIRONMENT 

EYE BACK (command), GT2-54; GT8-25, 
55 

exercise, GT8-30 
GSR, RM4-47 
summary, RMl-34 
syntax, GT2-56; GT8-55; RMl-187 

Eyepoint 
exercise, GT8-30 
moving, GT2-56; GT8-25, 28 

See also EYE BACK 
perspective view and, GT2-56; GT8-19, 21 

See also LOOK; Viewing pyramid 
transparency and, GT13-42 
See also FIELD_OF _VIEW; Line of sight, 

at/from points; Viewing angle 

RM16-17 



F 

FCNSTRIP, F: (intrinsic user function) 
summary, RM2-75 

FETCH, F: (intrinsic user function), GT7-34 
exercise, GT7-36 
summary, RM2-76 

F _11_IBM, F: (intrinsic system function) 
summary, RM2-179 

F _12_IBM, F: (intrinsic system function) 
summary, RM2-179 

Field, 
interlaced display, GT12-2 
rate, GT12-4, 11 

See also Video timing format 
See also Frame; Scan line 

FIELD_OF _VIEW (command), GT2-54; 
GT8-2l, 54; GT13-47 

exercise, GT3-2, 15; GT8-23, 24 
GSR, RM4-55 
summary, RM1-36 
syntax, GT2-64; GT8-54; RM1-188 

Field-of-view angle. See Viewing angle 

Field separator character, IS3-27; TT2-23; 
RM5-17 

changing, RM5-21 
See also SITE.DAT 

defining, RM5-18 
See also DEPACKET, F: 

See also Data, reception and routing; Data 
packet, escape mode; Host input data flow 

File 
commands for, TT6-8 

See also Command file; STRUCTEDIT 
converting. See ASCil-to-GSR Converter 
copying between host and PS 390, TT2-26 
crash dump. See Crash dump file 
deleting, RM 12-9 
downloading, IS3-28; TT2-26; RM5-21 
editing, TT4-2, 34; TT6-1 

See also NETEDIT; STRUCTEDIT 
extension, GT15-1; TT4-5, 28; TT5·-3, 

TT6-1, TT8-1 
GSR output to, TT3-19 
init, TT6-7 

See also Graphic support routines 

RM16-18 

input/output, TT5-4 
log, TT4-27 
network, TT4-26 

See also Macro 
page, TT4-17; TT5-1; TT6-2, 9, 13 
parameter, TT4-5 
saving, IS2-12 
S-record. See S-record file 
text. See Text file 
types of, TT8-1 
utility commands and, RM12-3 
See also CONFIG.DAT; SITE.DAT; Text file; 

THULE.DAT 

FIND STRING, F: (intrinsic user function), 
GT10-15 

summary, RM2-77 

FINISH CONFIGURATION (command) 
summary, RM1-38 
syntax, RM1-188 

FIX, F: (intrinsic user function) 
summary, RM2-78 

FKEYS (initial function instance), GT7-6, 24, 
37; TT1-40; RM10-6, 18, 21 

exercise, GT6-31; GT7-13, 25; GT9-8 
summary, RM3-11 

FLABELO (initial function instance) 
summary, RM3-12 

FLABEL1...FLABEL12 (initial function in­
stance) 

summary, RM3-14 

Flat shading 
description of, GT2-112; GT13-7 
normals and, GT13-23 
rendering node input, GT13-32 
See also Smooth shading; Wash shading 

FLOAT, F: (intrinsic user function) 
summary, RM2-79 

Flowchart. See Display structure 

FOLLOW WITH (command), GT5-26 
GSR, RM4-52 
summary, RM1-39 
syntax, RM1-188 

FORGET (Structures) (command), GT5-5, 26 
GSR, RM4-54 
summary, RM1-41 
syntax, RM1-188 

Reference Materials 



FORGET °(Units) (command) 
summary, RMl-42 
syntax, RMl-188 

FORMAT (diagnostic utility command), 
RM12-5 

FORTRAN 
GSR, GT14--13; TT3-1, 33, 48 

FOV, F: (intrinsic user function) 
summary, RM2-80 

Frame 
definition of, GT12-2; TT4-17 
detail, TT4-17 
generating, TTl-44 

See also Animation 
input/ output, TT 4-19 
level-of-detail and, GT3-23 
See also Scan line; Screen 

Frame buffer, GT13-39; GT14-1, 10, 16; 
TT9-11; RM6-7 

Frame buffer and bit-slice processor (FBL/BP). 
See Raster backend bitslice processor 

Frame buffer and video controller (FBR/VC). 
See Raster backend video controller 

Frame rate. See Refresh, rate 

Framing. See Character string; Error, framing 

Framing for viewing. See Viewing area 

Frustum 
definition of, GT2-54; GT8-19 
program example, GT3-16 
skewed, GTS-29, 52 

See also EYE BACK 
viewing angle and, GT8-5 4 
See also Clipping plane; Perspective view; 

Viewing pyramid; Viewing area, perspec­
tive 

FS. See Field separator 

Function 
accumulator, GT6-9, 18, 25; GT7-9, 21, 30 

See also ACCUMULATE, F:; ADD, F:; 
CMUL, F:; DXROTATE, F:; 
DYROTATE, F; DZROTATE, F: 

activating, AP3-7 
categories of, IS2-24; GT2-93; GT6-11; 

RM2-192 
commands and, GT6-6; RM1 

Index 

conjunctive/disjunctive, RM2-3 
data driven, GT2-100 
data types input to, RM14-2 
definition of, IS2-24; GT2-92; RM2-1; 

AP2-5 
See also Black box 

dormant, GT2-100 
See also Token 

executing, AP3-6 
See also Scheduler 

generic, AP3-5, 9 
graphics control program and, RM9-1, 2 

GSRs and, TT3-3, 13 
identifier, RM2-1 
input/output. See Input/output 
inputs block, AP2-12 
instance block, AP2-5 

See also Function instance 
instancing. See Function instance; Instance 
interaction node and, GT6-3 
interactive device and, GT6-3 
intrinsic. See Intrinsic system function; Intrin­

sic user function 
I/O, AP2-6 

See also Interactive device 
loop, TTl-29 
multiplying, GT6-8, 13 

See also MUL, F:; MULC, F: 
naming of. See Function instance 
operation of, GT6-34; AP3-5 
outset block, AP2-13 
priming, GT2-99; GT6-9, 14, 21 

See also Input/Output 
procedure, AP3-9; AP5-4 
program example, AP5-4 
qdata block, AP2-13 
representation of, RM2-2 
routing, GT7-7, 22; RM7-1; RM14-3 
runtime code and, IS3-7 
shared, GT7-9 
standard, AP2-5 
states, AP3-8; AP5-9 
switching, GT7-6, 37; GT11-13; TTl-27 

See also CROUTE(n), F: 
system, AP2-6 

See also Intrinsic system function 
triggering, GT2-99; GT6-9 
See also Function network; Interactive device; 

Intrinsic user function; User-written func­
tion 

Function button 
communications protocol, RM13A-21 
data transmission characteristics, RM 13B-18 

RM16-19 



description of, IS2-12; IS3-12; 
RM13A-21; RM13B-16 

interaction with, IS2-12 
lights, RM13A-21; RM13B-17 
reporting selections, RM 13B-18 
self-test command and report, RM 13B-18 
uses of, IS3-12; GT2-88 
See also OFFBUTTONLIGHTS; 

ONBUTTONLIGHTS 

Function instance 
block, AP2-5, 7 

See also Named entity 
connecting. See CONNECT 
creating, GT2-95; TT4-18; AP2-15 
data structure, AP2-5, 14 
definition of, IS3-7; GT6-16; RM2-1 
disconnecting. See DISCONNECT 
inputs. See Input/output 
named entity, AP2-5 
programming and, GT6-17, 33 
suffix assigned, RM9-6 

See also Name, suffixing 
See also Function; Initial function instance 

(Function Instancing) (command), GT2-9 5; 
GT6-34; RM2-1 

GSR, RM4-49 
summary, RM1-43 
syntax, RM1-188 

Function key 
as break key, TT2-41 
character font and, TT7-2 

See also MAKEFONT 
codes, RM13A-11; RM13B-12 
conditional referencing and, GT2-79; 

GT9-8 
depth clipping with, GT2-74 
description of, IS3-10 
display structure editing and, TT6-2 

See also STRUCTEDIT 
function network editing and, TT4-12 

See also NETEDIT 
intensity enabling with, GT2-71 
keyboard modes, IS3-10; RMl0-23 
labels, IS3-10; TT2-48; RM13A-15 

See also FLABELO; FLABEL1... 
FLABEL12; Light-emitting diode 

numeric key used as, TT1-40 
output displays and, TT5-1 

See also NETPROBE 
performance verification test, IS6-5 
program example, GT3-7, 9, 14, 19, 23 

RM16-20 

SETUP mode, IS3-19 
toggle switch, GT2-89; GT6-31 
uses of, IS3-10, 14 
user-application program and, RM 10-6 
values, GT6-5 
See also FKEYS 

Function network, GT2-92; GT6-1; GT7-1 
accumulator, GT6-19, 24 

See also CMUL, F:; MULC,F: 
CPK, TT2-53 

See also XFORMDATA, F: 
creating, GT1-9; GT2-96, 101; GT6-33; 

RM2-2 
See also CONNECT, NETEDIT 

data-driven, GT2-100 
See also Interactive device 

data structuring commands and, GT5-1 
debugging, TT2-43; TT5-1 

See also NETPROBE; NPRT_PRT, F:; 
PRINT, F: 

definition of, IS2-23; GT2-100 
diagramming, GT2-101; GT6-1 7, 3 2; 

TT4-2 
See also NETEDIT 

direction of flow in, GT6-12, 17, 33 
editing. See NETEDIT 
flexibility of, GT6-30 
immediate action commands and, GT5-25 

See also CONNECT; DISCONNECT; 
SEND; STORE 

input to, GT6-3, 33 
interactive device and, IS2-23; GT1-9; 

GT2-100; GT6-18, 22, 32 
picking, GT2-86; GT11-7, 11 

See also PICK; PICKINFO, F: 
priming, GTl-10; GT6-17 
program example, GT3-3, 24; GT15-5, 16, 

31, 37, 51 
programming practices, GT6-17, 33 
reset, GT7-21, 37 
sequencing, TTl-29 

See also SYNC, F: 
substituting user-written function for, AP 5-1 
switching, GT11-13 

See also SUBC, F: 
system, IS3-7; RMS-1; RM9-1 

See also CONFIG.DAT; Host input data 
flow 

updating with, GT1-8 
uses of, GT2-100; GT6-1 
variable in, GT7-33, 38 

See also CONSTANT, F:; VARIABLE 

Reference Materials 



Function network debugger. See NETPROBE 

Function network editor. See NETEDIT 

F W IBM, F: (intrinsic system function) 
-;u~mary, RM2-180 

G 
GATHER GENFCN, F: (intrinsic user func­

tion), -RM7-3; TT2-33 
summary, RM2-82 

GATHER STRING, F: (intrinsic user function), 
GT10=13 

summary, RM2-83 

GE, F: (intrinsic user function) 
summary, RM2-84 

GEC, F: (intrinsic user function) 
summary, RM2-85 

General purpose interface option (GPIO) 
data routing and, RM5-29; RMl0-29 
interfaces, IS2-8; AP4-2; RM6-3 
joint control processor and, IS2-7 
physical I/O commands, AP4-2 

Geometry 
changing, GT2-12, 25 

See also Matrix; Transformation 
definition of, GT2-2, 4, 10 

See also World coordinate system 
topology and, GT2-6, 8, 9, 11, 12 

See also Polygon; Vector list 
See also Topology 

GIVE_UP_CPU (command), TT2-61 
GSR, RM4--61 
summary, RMl-44 
syntax, RMl-188 

Gouraud shading. See Smooth shading 

Graphics control processor (GCP) 
communication with ACP, AP2-16 
display structure control, AP2-16 
update process and, AP3-2 
See also Joint control processor 

Graphics control program 
data types, AP2-35 
description of, RM9-1; APl-3 
loading, IS3-6 

Index 

Graphics firmware 
backing up, RM12-5 
description of, IS3-6; APl-2 

See also CONFIG.DAT; Runtime code; 
SITE.DAT; THULE.DAT 

errors, RM 11-6; AP9-62 
installing, IS3-2 
self-tests, IS 3-6 
See also Host-resident software; Runtime firm­

ware 

Graphics support routines (GSRs) 
application, TT3-2, 12; RM4-1, 11 
application programs and, TT3-18, 23 
ASCII files converted to. See ASCII-to-GSR 

Converter 
capabilities, IS3-30 
command interpreter and, RM5-29; 

RM14-11 
commands and, TT3-3, 12; RMl-197; 

RM4-228 
See also ASCII-to-GSR Converter 

configuring, TT6-7 
data packet and, TT2-25; RM5-16 
data path taken by, RM14-6 
data structuring commands and, GT5-2 
data types and, TT3-2, 10, 20 
description of, GT5-2, 28; IS2-15, 18; 

IS3-30; TT3-1 
display structure and, TT3-3, 5, 12, 15 
error codes, RM4-2 

See also Host communication 
error handling, IS3-31; TT3-6, 15, 22 
file, generating, TT4-3, 28 
FORTRAN, VAX and IBM, GT14-13; 

TT3-1, 33, 48; RM4-1 
functions and, TT3-3, 13 
host communications and, IS3-25; RM5-16, 

22 
IBM communications and, RM5-22 
instancing and, TT3-5, 15 
interface (VAX/UNIX), TT2-25; TT3-18; 

TT6-7 
See also STRUCTEDIT 

internals, RM 14-1 
label blocks and, TT3-5, 14 
library, TT3-18 
lint library, TT3-18 
object code, TT3-17 
Pascal, VAX and IBM, GT14-15; TT3-10, 

61, 75; RM4-1 
program example, GT14-13; GT15-42; 

TT3-33, 48, 61, 75 
raster, GT14-1, 12 
routing, RM7-3 

RM16-21 



routing bytes sent by, TT2-23 
S-record file transfer, AP5-20 
SITE.DAT and, TT2-5 

see also SITE. DAT 
transformation matrices and, TT3-23 
types of, RM4-1 
UNIX/C, TT3-17; RM4-1 
uses of, TT3-1 
utility, RM4-1, 8; TT3-2, 12 
variables, multiple, and, TT3-5, 15 
vector list and, TT3-5, 14 
writing, RM14-1 
See also Cross-compatibility software; Host 

communications 

Grouping 
BEGIN STRUCTURE ... END STRUCTURE 

and: GT5-4, 10 
display structure and, GT4-52 
hierarchy and, GT4-4 
names, GT4-5, 31 
object created by, GT2-30 

See also Compound object; Named entity 
primitives and transformations, GT2-26, 30, 

31, 39 
See also INSTANCE; Instance node 

GT, F: (intrinsic user function) 
summary, RM2-86 

GTC, F: (intrinsic user function) 
summary, RM2-87 

H 
Hardcopy. See Plotter; WRITEBACK 

Hash table, AP2-1, 36 
See also Alpha block 

Header line. See User-written function, header 
line 

HELP (diagnostic utility command), RM12-2, 4 

Hex. See Data packet 

Hidden-line removal 
approximation of, GT2-108; GT13-3 

See also Backface, removal 
description of, GT2-111; GT13-6 
rate of, GT13-6 
rendering node input, GT13-32 

RM16-22 

saving, TT1-47 
steps in, GT13-6 
See also Backface, removal; SOLID REN­

DERING; Static viewport; SUR--
FACE RENDERING 

Hierarchical structure. See Display structure; 
Data structure; Hierarchy 

Hierarchical tree. See Display structure 

Hierarchy 
definition of, GT2-34 
designing, GT4-3, 47 
display structure and, IS2-18; GT2-34; 

GT4-3 
See also Grouping; Node 

interaction points in, GT4-8, 30 
movement and, GT4-6 
program example, GT4-30 
PS 390 feature, IS2-1 
sphere of influence in, GT2-41 

See also Instance node 
See also Data structure; Display structure 

Highlight. See Specular highlight 

Hither plane. See Clipping plane 

HOLDMESSAGE, F: (intrinsic user function), 
RM7-4 

summary, RM2-88 

Holes in object, creating, GT13-14, 18 
See also Polygon, contours, inner and outer 

Horizontal frequency, GT12-4, 11 
See also Video timing format 

Host application program. See Application pro­
gram 

Host communication, IS3-25 
characteristics, RM5-6 
data and, TT2-23; RM5-17, 22 

See also Data packet, Host input data flow 
destinations, RM5-23; RM14-5 

See also Command interpreter; Data, recep­
tion and routing; Function, routing; Ter­
minal emulator 

dynamic, AP4-1 
See also USERUPD, F: 

GSRs and, IS3-25; TT3-1, 18 
high speed, TT1-49 
IBM, RM5-22 
interface, IS2-13; RM5-1, 22; RM6-1 

See also Asynchronous serial line; Ethernet 
interface; IBM interface; Interface; Paral­
lel interface 

Reference Materials 



lines, IS2-13 
methods of, RMS-16 
pixel information, GT14-2, 12, 18 
port values for, RMS-7, 8, 11 

See also SHOW INTERFACE 
raster system and, GT14-1 
SITE.DAT and, TT2-1 
standard, IS3-25 
tests, IS2-14 

See also Performance verification test; Host 
resident software 

transmission errors in, RMS-13 
transmission protocol for, RMS-12 
user-generated routines, GT14-16, 19 
See also CIROUTE(n), F:; Data transmission; 

DEPACKET, F; Graphics support rou­
tines; Host input data flow; Host resident 
software; Interface; Physical I/0; Runtime 
environment 

Host computer 
binary encoding for, RM14-1, 60 
commands saved on, GTS-27 
data processor use, IS3-27 
data structuring commands created on, 

GTS-2 
dynamic direction, AP4-1 

See also Physical I/0; USERUPD, F: 
generated images, displaying, GT13-39; 

GT14-1. 2 
See also Run-length encoding 

GSRs and, GTS-28 
file storage on, IS2-12 
independence. See Distributed graphics 
initial function instance and, GT2-9 5 
interactive devices and, GT2-89 

See also Interactive device; Joint control 
processor 

PS 390 interface. See Interface 
raster system and, GT14-1 
storage device use, IS3-26 
transformed data and, TT9-1 
See also Application program; Text file 

Host input data flow, RMS-27; RM7-1 
function network diagrams, RM8-1 
See also CIROUTE(n), F:; Host communica­

tion; Function network, system 

HOST MESSAGE (initial function instance), 
GT7-36; TT1-49; TT2-44; TT3-25; 
TT9-5, 31; RM7-2 

summary, RM3-16 

Index 

HOST MESSAGEB (initial function instance), 
RM7-2, 4 

summary, RM3-16 

HOSTOUT (initial function instance), GT7-35; 
TT1-49 

exercise, GT7-36 
summary, RM3-18 

HOST POLY, F: (intrinsic user function), 
RM7-4 

Host-resident software, IS2-14 
See also Graphics support routines; 

Hue 
color, GT13-40 
definition of, GT2-68; GT8-50 
input to attribute node, TT2-51 

See also ATTRIBUTE 
specifying, GT8-51, 56; GT13-41 

See also SET COLOR 
values, GT13-41 
See also Color 

I 
IBM computer. See Host communications; 

IBM; Host computer; IBM interface; Key­
board, modes of operation; Terminal emula­
tor, IBM 

IBMDISP, F: (intrinsic system function), 
RM10-29 

summary, RM2-181 

IBM interface 
3278, IS2-6, 9; IS3-22; RM6-2 
5080, IS2-8; IS3-24; RM6-2 
data flow and, RM7-1 
host communications and, RM5-22 
pool size, RM5-30 

See also SETUPIBM, F: 
SITE.DAT and, TT2-1 
system function network for, RMS-1 

IBM KEYBOARD, F: (intrinsic system func­
tion), RM6-6; RM10-27 

summary, RM2-182 

Identifier. See Command, data format; Pick 
identifier; Position (P) and line (L) identifi­
ers 

Identity matrix. See Current transformation ma­
trix; Matrix, identity 

RM16-23 



IF CONDITIONAL_BIT (command), GT2-78; 
AP4-6 

exercise, GT9-7 
GSR, RM4-62 
summary, RM1-45 
syntax, GT9-4, 18; RM1-188 

IF LEVEL_OF_DETAIL (command), GT2-80; 
GT9-11; AP4-6 

exercise, GT3-22 
GSR, RM4-64 
summary, RM1-47 
syntax, GT9-10, 18; RM1-188 

IF node. See SET/IF node 

IF PHASE (command), GT2-82 
exercise, GT9-16 
GSR, RM4-66 
summary, RM1-49 
syntax, GT9-15, 20; RM1-188 

IF-THEN-ELSE, TT1-31 
See also Boolean value 

Illumination. See Diffuse reflection; Light 
source; Specular highlight 

ILLUMINATION (command), GT13-44 
GSR, RM4-68 
summary, RM1-50 
syntax, GT13-45, 62; RM1-189 

Illumination node 
display structure and, GT13-46 
inputs to, GT13-48 
light specification by, GT13-44 
program example, GT13-47 
See also Light source 

Image. See Display structure; Model; Object; 
Rendering; Screen 

Image buffer. See Frame buffer 

Immediate action command. See Command, 
immediate action 

INCLUDE (command), GT2-91; GTS-27 
exercise, GT3-10 
GSR, RM4-70 
summary, RM1-52 
syntax, RMl-189 

INCREMENT LEVEL_OF_DETAIL (com­
mand) 

GSR, RM4-75 

RM16-24 

summary, RM1-53 
syntax, RM1-189 

Indicator character, RM10-28 
See also SETUP facility 

INFORMATION (initial function instance) 
summary, RM3-19 

Informational message. See Message, informa­
tional 

Init file. See File, init 

Initial data structure 
codes for, RM9-3 
description of, RM9-2 
summary, RM3-1 
See also CONFIG.DAT; Terminal emulator 

Initial function instance 
categories of, RM3-5 8 
definition of, GT2-95; RM3-1 
interactive device and, GT6-34 
names, GT2-9 5; RM3-1; RM9-6 
network example, GT2-97 
summary, RM3-1 
See also Function; Function instance; Intrinsic 

system function 

Initial function network. See Function network, 
system 

INITIALIZE (command), GT1-9; GTS-26; 
GT8-41; GT13-25; TT1-3, 5; TT2-48; 
APS-22 

exercise, GT3-30 
GSR, RM4-71 
summary, RM1-54 
syntax, RM1-189 

Inking, TT1-14, 38 

Inner contour. See Polygon, contour 

Input/ output 
active queue, GT2-99; GT6-13, 34; 

RM2-4 
block, AP2-12 
buffering, RMS-9, 12 
conjunctive/disjunctive, RM2-3 
connecting, GT2-97, 101; GT6-:l2, 17 
constant queue, GT2-99; GT6-13, 34; 

GT7-33; RM2-2, 4 
consumed, GT6-13, 34 
data compatible with, GT2-36; GT6-3 

See also Data type; Node 
description of, GT2-93 

Reference Materials 



frame, TT4·-18 
function instance and, GT2-99; AP3-6 
multiple sources/destinations, GT6-12 
output list, TT5-1 

See also NETPROBE 
sources of, GT6-6, 33 

See also Function network; Interactive de­
vice 

values, GT6-6, 13, 34 
See also Node, input to; SEND; SETUP 

CNESS; STORE; User-written function, 
input/ output 

Input device. See Interactive device 

INPUTS_CHOOSE(n), F: (intrinsic user func­
tion), GT7-24, 37 

exercise, GT7-25 
summary, RM2-9 0 

Installation instructions, IS2-14; IS5-1 

Instance, GTl-5; GT2-95 
GSRs and, TT3-5, 15 
See also Compound object; Function instance; 

Grouping; Initial function instance 

Instance node 
BEGIN STRUCTURE ... END STRUCTURE 

and, GT5-13, 30 -
bit settings and, GT9-3 

See also SET CONDITIONAL_BIT 
creating, GT2-36 

See also INSTANCE 
definition of, GT2-39; GT4-14, 52; 

AP2-26 
display processor and, GT5-l4 
display structure representation, GT2-36; 

GT4-14 
format of, AP2-26 
function, GT4-48 

See also State of the machine 
grouping with, GT2-39; GT4-31 

See also Compound object 
modeling and, GT4-2 
pointer, GT2-36; GT4-48, 52 
sphere of influence and, GT2-41 

See also Hierarchy 
uses of, GT4-52 
See also Compound object; Display structure; 

Grouping; Node 

INSTANCE OF (command), GT1-5; GT2-30, 
36; TT8-3 

GSR, RM4-76 

Index 

summary, RMl-56 
syntax, RMl-189 

Instruction. See Command 

Integer 
data format, RM14-8 
function keys and, GT6-5 
input, GT2-37; GT6-27 

Intensity 
attribute, GT2-71; GT8-48; TT2-51 
color, GT13-40; GT14-3 
depth clipping and, GT8-17 
depth cueing and, GT2-58, 71; GT8-16, 50 
dynamic viewport and, GT2-58, 71; 

GT8-35, 47, 48, 52 
See also LOAD VIEWPORT; VIEWPORT 

exposure and, GT13-50 
interaction and, GT2-71; GT8-49; TT2-46 
node, GT2-71 
program example, GT3-13, 21; TT2-47 
setting, GT8-47, 48; TT2-46 
values for, GT13-41 
See also Color; Depth cueing; SET INTEN­

SITY 

Interaction, GT2-8 8 
definition of, IS2-23 
designing for, GT2-32, 90; GT4-4, 25 
function networks and, GT6 
multiple, GT7-1, 2 

See also Dial, control; Function key 
modeling step, GT4-9 

See also Display structure 
PS 390 and, GT2-88 
See also Interactive device 

Interaction node 
definition of, IS2-23; GT2-38, 88 
dials and, GT6-5 

See also Dial, control; DIALS 
display structure representation, GT2-36; 

GT4-13 
explicit naming of, GT5-11 

See also BEGIN_STRUC­
TURE. .. END _STRUCTURE 

function networks and, GT2-88, 93, 96; 
GT6-2, 5 

initial value, GT4-32 
interactive devices and, GT2-101; GT6-5 
operation node as, GT2-36, 38; GT4-13, 

52 
program example, GT3-24 
updating, GT2-88; GT6-33 
uses of, GT4-52 
See also Node; Operation node 

RM16-25 



Interactive device, IS2-10 
complex model and, GT2-32, 34; GT6-2 
connecting, GT1-8; GT2-97; GT4-49 

See also CONNECT 
data transmission rates, RM13A-3; 

RM13B-3 
description of, IS2-10, 23; IS3-9; GT2-88; 

GT6-5; RM13A-1; RM13B-1 
display structure connection, GT2-38 
function networks and, IS2-23; GT2-92, 

100; GT6-6 
host computer and, GT2-89 
initial function instances and, GT2-9 5 
local manipulation with, IS2-2 
microprocessor in, GT2-89 
multiple interactions and, GT7-2 
output, GT6-5, 33 
picking with, GT2-84 
polling, GT2-100 
program example, GT3-1, 4, 8 
programming, GT2-90, 92, 100; GT6-3, 

18, 22, 27, 32 
PS 300 style, RM13A-1 
PS 390 style, RM13B-1 
styles, IS3-9 
updating with, GT1-8; GT2-43, 90; GT6-3 
See also Buttons, function; Dial, control; 

Function key; Key; Keyboard; Tablet, 
data 

Interactive mode. See Local mode 

Interface, IS2-13; RMS-1; RM6-1 
asynchronous. See Asynchronous serial line 
changing values, RMS-11 

See also SETUP INTERFACE; SITE.DAT 
configuration files, RM6-4 
description of, RMS-1 
GSRs and, TT3-18 
multiple G PIO, RM 6-3 
runtime and, TT2-23 
synchronous, RMS-2 
toggling, IS2-13; RM6-3 
See also Asynchronous serial line; Data trans­

mission; General purpose interface option; 
Ethernet interface; Host communication; 
IBM interface; Parallel interface 

Interlaced/noninterlaced. See Screen, inter­
laced/noninterlaced; Video timing format. 

INTFCFG.DAT (file), IS3-6; RM6-4 

RM16-26 

Intrinsic system function, RM2-1 
data flow and, RMS-16; RM7-1, 3; 

RM8-1 
host communication and, IS3-25 
name suffixing and, RM9-6 

See also Configure mode 
routing, RM14-3 
summary, RM2-178 
See also Function; Function network, system; 

Host input data flow; Initial function in­
stance 

Intrinsic user function, GT2-9 5; RM2-1 
data flow and, RM7-1, 3; RM8-1 
routing, RM14-3 
summary, RM2-7 
See also Function; Function instance; Func­

tion network 

J 
Joint control processor (JCP) 

card, IS2-6; AP1-1, 
control dials and, RM 13B-15 
data received by, RM14-1 
description of, IS2-6; AP1-1 
function networks and, GT2-100 
interactive devices and, GT2-89, 100 
memory contents, APl-1; IS2-6; RM12-8 
rendering and, GT13-29 
See also Graphics control processor 

K 
K2ANSI, F: (intrinsic system function), 

RM6-6; RM10-6, 9, 10, 17, 21 
summary, RM2-184 

KB mode. See Local mode 

Key 
alphabetic, IS3-14; RM13A-6; RM13B-7 
ALT, GT1-2 
BREAK, IS3-18, 20; TT2-41; RM10-25; 

AP7-7 
CAPS LOCK, RM13A-6 
categories of, RM13A-5; RM13B-5 
CLEAR/HOME, IS3-16; RM10-18 
CONTROL (CTRL), GT1-1; RMl0-17, 22; 

RM12-2; RM13A-5; RM13B-6 
cursor, RM10-5, 6, 11, 21 
device control, IS3-14; RM13A-13; 

RM13B-14 

Reference Materials 



ENTER, GT1-2 
function. See Function key 
GRAPH, IS3-16; GT1-4, 5; RM10-8, 21, 

26 
keyboard function control, IS3-14; IS6-5, 

13; RM13A-5; RM13B-6 
LINE/LOCAL, GT1-1; RM10-21 
LOCAL, GT1-2 
LOCK, RM 13B-6 
numeric/application mode. See Keypad, nu­

meric 
numeric as function key, TT1-40 

See also Function key 
REPEAT, RM13A-6 
RETURN, GT1-1, 2; RM12-6 
SETUP, IS3-18; RM10-17, 22, 24 

See also SETUP facility 
SHIFT, RM13A-5; RM13B-6 
special character, IS3-14; RM13A-8; 

RM13B-10 
standard numeric, IS3-14; RM13A-8; 

RM13B-9 
TERM, IS3--16; GT1-4; RM10-8, 22, 26 
terminal function, IS3-14; RM13A-10; 

RM13B-11 
See also Function key; SPECKEYS 

Keyboard 
description of, IS2-11; IS3-13; RM13A-4; 

RM13B-3 
display modes, RM13A-14 

See also Light-emitting diode 
interface, RM13A-4; RM13B-5 
modes of operation, IS3-14, 16, 22, 24; 

GT3-30; RM10-21, 27 
See also Command mode; Local mode; Ter-

minal emulator mode 
operation, RM13B-5 
physical configuration, RM 13A-4 
private ANSI commands, RM 10-6 
user-application control, RM 10-6 

KEYBOARD (initial function instance), 
RM10-17, 21 

summary, RM3-20 

Keyboard manager, RM 10-17, 2 7 
See also K2ANSI, F: 

Keypad, numeric, IS3-14 
modes of operation, RM10-9, 10, 21 

See also Escape sequence 
numeric/application mode, RM13A-12; 

RM13B-13 

Index 

SETUP facility and, IS3-20 
user-application program and, RM 10-6 

Keypad application mode (DECKPAM), 
RM10-2, 9, 10 

Keypad numeric mode (DECKPNM), IS3-20, 
RM10-3, 9, 10 

Kill buffer, TT6-14 
See also UPDATE KILLER 

L 
Label, GT10-1 

block, GT10-5 
See also LABEL 

copying, GT10-16 
See also COPY 

definition of, GT10-1, 5 
GSRs and, TT3-5, 14 
function network diagram, TT4-22 
node, GT10-5, 16, 18, 26 
See also Character string; LABEL, F:; 

LABELS; LBL EXTRACT, F:; SEND; 
SEND number *mode; SEND VL 

LABEL, F: (intrinsic user function), GT10-14 
summary, RM2-91 

LABELS (command), GT4-49; GT5-5; 
GT10-5, 18, 23 

exercise, GT10-19 
GSR, TT3-5, 14; RM4-77 
summary, RM1-57 
syntax, GT10-5, 24; RM1-189 

Laser disk, TT1-44 
See also Rendering 

LBL_EXTRACT, F: (intrinsic user function), 
GT10-15 

summary, RM2-92 

LE, F: (intrinsic user function) 
summary, RM2-93 

Least significant bit (LSB), RM14-1, 60 

LEC, F: (intrinsic user function) 
summary, RM2-94 

LEDs. See Light-emitting diode 

Left-hand rule, GT2-14 
See also Coordinate system, world; Rotation 

RM16-27 



LENGTH STRING, F: (intrinsic user function), 
GT10=15 

summary, RM2-95 

Level-of-detail 
attribute, GT2-78 
default, GT9-11, 18 
definition of, GT2-80 
dial and, GT2-82 
order, GT9-10, 18 
program example, GT3-2, 22 
relationships list, GT2-81; GT9-10, 18 

See also IF LEVEL_OF _DETAIL 
state of machine and, GT4-48 
uses of, GT9-1, 9, 17 

See also Animation 
See also Conditional Referencing; DECRE­

MENT LEVEL OF DETAIL; IF 
LEVEL OF DETAIL; INCREMENT 
LEVEL-OF-DETAIL; SET 
LEVE(= O(=DETAIL 

Light-emitting diode (LED) 
confidence tests and, IS3-2 
control dial, GT7-1, 23; RM13A-20 
description of, IS3-10 
error messages and, IS3-10, 13 
keyboard, IS3-13; RM13A-4, 14 
label mode, RM13A-15, 20 
line mode, RM13A-14 
optical mouse, RM13B-21 

Light source 
color of, GT13-45 
direction of, GT13-45 
program example, GT15-47 
specifying, GT13-44, 62; TT2-49 
See also Ambient light; ILLUMINATION; 

Illumination node; SHADINGENVIRON­
MENT 

LIMIT, F: (intrinsic user function), GT7-30, 
38 

exercise, GT7-32 
summary, RM2-96 

Line 
angled, in raster system, GT12-2 
attributes, TT2-50 
crispness, TT2-46 

See also Intensity 
pattern, GT4-49; TT2-35 

See also Vector list; WITH PATTERN 
rendering, TT2-52 

RM16-28 

segment, TT1-16 
See also Data tablet, rubber banding with 

specifying, GT2-6 
texture, TT2-35 

See also SET LINE TEXTURE 
See also Aliasing; Antialiasing; Scan line 

LINEEDITOR, F: (intrinsic user function), 
GT10-14 

summary, RM2-9 8 

Line filter, GT12-2, 8 
See also Aliasing; Antialiasing; Scan line 

Line generation. See Display processing 

Line (L) identifier. See Position (P) and line 
(L) identifiers 

Line of sight 
at/from points, GT2-48, 62; GT8-3, 6, 22 

See also Coordinate system, world 
changing, GT2-61 
default, GT8-2, 4, 52 
definition of, GT2-45, 66; GT8-1, 3 
field of view and, GT8-23 
interactive node and, GT8-4 
matrix operation, GT2-66; GT8-3, 9 
moving, GT8-13, 25 

See also EYE BACK; Viewing area 
orthographic viewing area and, GT8-9, 13 
perspective viewing area and, GT2-54; 

GT8-22, 25 
specifying, GT2-46; GT8-3, 30, 52 

See also LOOK 
up direction, GT2-48; GT8-6 

Lint library. See Graphics support routines, lint 
library 

LISP. See STRUCTEDIT 

LIST, F: (intrinsic user function), TT2-44; 
TT9-4, 31 

summary, RM2-101 

Load Pixel Data (raster GSR), TT2-39; 
GT14-11, 12, 18; RM4-126 

program example, GT14-13, 15, 19 

Load Saved GSR Data (utility GSR), RM4-82 

LOAD VIEWPORT (command), GT2-58, 71; 
GT8-34, 41, 55 

exercise, GT8-37, 38 
summary, RM1-59 
syntax, GT8-56; RM1-189 

Local (key). See Key, LOCAL 

Reference Materials 



Local data flow. See Host communication; Host 
input data flow; Interface; Routing byte 

Local memory. See Joint control processor, 
memory 

Local mode 
booting in, RM10-21, 25 
cursor keys in, RM10-23 
DEC VT100, IS3-17 
description of, IS3-15 
displaying and, RM10-29 
function keys in, IS3-10; RM10-23 
IBM 3278, IS3-23; RM10-27 
IBM 5080, IS3-25 
keyboard manager and, RM10-26, 27 
keypad in, RM10-21, 23 
key sequence for, IS3-15, 23; GT3-30 
See also Keyboard, modes of operation 

LOOK (command), GT2-46, 54, 61; GT8-3, 
6, 52 

exercise, GT3-1, 16, 17; GT8-23, 30 
GSR, RM4-83 
summary, RM 1-61 
syntax, GT2-48; GT8-53; RM1-189 

LOOKAT, F: (intrinsic user function), GT8-4 
summary, RM2-102 

LOOKFROM, F: (intrinsic user function), 
GT8-4 

summary, RM2-103 

Lookup table. See Color lookup table 

LT, F: (intrinsic user function) 
summary, RM2-104 

LTC, F: (intrinsic user function) 
summary, RM2-105 

M 
Macro, TT4-2, 15, 26, 30 

Magtape. See Host-resident software 

Maintenance and services, IS4-1 

MAKEFONT (Character font editor), TT7-1 
uses of, GT2-75; GT10-23 

MAKEPACKET, F: (intrinsic user function) 
summary, RM2-106 

Index 

Mapping. See Viewing area; Viewport 

Mass memory 
backing up with, RM12-6 
BEGIN STRUCTURE ... END STRUCTURE 

and-:- GT5-10 -
card, IS2-9; RM6-6 
clearing, GT5-26 

See also INITIALIZE 
data structure address, GT5-4; AP2-1 
data structuring commands and, GT5-1, 4 
description of, AP1-1 
joint control processor and, IS2-6, 9 
loading user-written function into, AP7-2 

See also SITE.DAT 
location in, GT5-4, AP2-1 

See also Alpha block; Naming 
rendering requirements, GT2-106; 

GT13-24, 60 
See also Working storage 

structures, AP2-1 
See also Data structure; Named entity 

warning message, IS3-13 

Master function. See Function, intrinsic 

Matrix 
2x2, GT2-22; GT3-10; GT10-1, 6, 8, 10 

See also Character string; Rotation 
3x3, GT2-22, 38; GT6-3; GT10-1, 10; 

TT1-42 
See also Rotation; Scaling 

4x3, GT2-22, 49; GT3-19; GT8-3, 9 
See also Viewing operations 

4x4, GT2-22; GT8-9, 18, 21, 33; 
GT13-29, 47 

See also Viewing operations 
accumulated, GT6-8 
algebra, IS2-1; GT2-12, 22 

See also Geometry 
characters and, GT10-1 
concatenation, IS2-20; GT2-23; GT10-7 
current transformation (CTM), GT2-23, 25; 

GT4-48 
GSRs and, TT3-23 
identity, GT2-23; GT6-10, 21 
limiting function and, GT7-32 
multiplication, GT2-24; GT6-9 
non-commutativity of, GT2-23; GT4-16 
orthogonal, TT1-43 
transformation, IS2-20; GT2-12, 22; 

TT3-23; TT9-1 
See also Rotation; Scaling; Transformed 

data; Translation 
transpose, TT1-43 
See also Transformation 

RM16-29 



MATRIX2, F: (intrinsic user function), 
GT10-6, 15 

summary, RM2-107 

MATRIX_2x2 (command) 
GSR, RM4-85 
summary, RMl-64 
syntax, RMl-189 

MATRIX3, F: (intrinsic user function), 
TTl-42 

summary, RM2-108 

MATRIX_3x3 (command), GT15-28, 31 
GSR, RM4-86 
summary, RMl-66 
syntax, RMl-190 

MATRIX4, F: (intrinsic user function) 
summary, RM2-109 

MATRIX_ 4x3 (command), GT8-9 
GSR, RM4-87 
summary, RMl-68 
syntax, RMl-190 

MATRIX_ 4x4 (command), GT8-18, 33; 
TT9-1 

GSR, RM4-89 
summary, RMl-70 
syntax, RMl-190 

MCAT_STRING(n), F: (intrinsic user function) 
summary, RM2-110 

Mechanical arm, GT2-32, 69; GT4-6, 16 

Memory 
as objects, IS2-1, 15 
See also Data structure; Display structure; 

Mass memory; OPTIMIZE MEMORY; 
RAWBLOCK 

MEMORY (diagnostic utility command), 
RM12-6 

MEMORY_ALERT (initial function instance) 
summary, RM3-21 

MEMORY_MONITOR (initial function instance) 
summary, RM3-23 

Menu 
boundaries, TTl-25 
fill-in-the-blank, TT6-5 
MAKEFONT, TT7-2 

RM16-30 

NETEDIT, TT4-8 
selecting, GT6-5; GT11-1; TTl-25 

See also Data tablet; Picking 
STRUCTEDIT, TT6-3 
See also File 

Message. See Error message; Token 

MESSAGE DISPLAY (initial function instance), 
TT2-4S 

summary, RM3-25 

Microcode, IS3-6 
See also Display processor; Graphics firmware 

Microprocessor, 68000, IS2-6 

MINMAX (n), F: (intrinsic user function) 
summary, RM2-111 

Miscellaneous function, IS2-25; GT2-94; 
GT6-12 

MOD, F: (intrinsic user function) 
summary, RM2-112 

MODC, F: (intrinsic user function), TTl-23 
summary, RM2-113 

Model 
centering, GT4-13, 27 

See also Origin; Coordinate system 
complex, GT2-32, 43; GT4-27 
conceptual, GT4-1 
data base for, GT2-4 
designing, GT2-32; GT4-1, 27 
detail in, GT4-9 
display structure and, GT2-34; GT4-2 
hierarchy and, GT2-34; GT4-3; IS2-1 

See also Hierarchy 
limiting motion of. See Movement 
parts of, GT4-3, 47; GT9-1 

See also Conditional referencing; Primitive, 
graphic 

See also Compound object; Display structure; 
Object 

Modeling, GT4-1 
commands, IS2-17 
steps, GT4-9 
types of, GT4-9 

Modeling node, GT2-38, 88; GT4-52 
display structure representation, GT2-36; 

GT4-13 

Reference Materials 



Modeling transformation, GT2-67 
complex model and, GT2-32; GT4-2 
description of, GT2-13 

See also Rotation; Scaling; Translation 
mirrored, GT13-56 
uses of, GT4-13, 52 
See also MATRIX 3X3; MATRIX 4X3; MA­

TRIX 4X4; ROTATE; SCALE;TRANS­
LATE-

Mode of operation. See Command mode; In­
teractive mode; Keyboard, modes of opera­
tion; Terminal emulator mode 

MODIFY (Diagnostic utility command), 
TT2-29 

Molecule, GT9-6 

Most significant bit (MSB), RM14-1, 60 

Mouse. See Optical mouse 

MOUSEIN (initial function instance), IS3-12 
summary, RM3-26 

Move, See Translate 

Movement 
dependent and independent, GT2-34; 

GT4-6 
See also Grouping 

designing for, GT4-3, 10, 27 
limiting, GT7-1, 29, 31, 38 

Movie camera 
blinking and, GT9-16 

MPS character generator program. See 
MAKE FONT 

MUL, F: (intrinsic user function), GT6-13 
summary, RM2-114 

MULC, F: (intrinsic user function), GT6-18; 
GT7-9 

exercise, GT7-15 
summary, RM2-115 

Multiplexing/ demultiplexing, TT 1-2 7; 
RM13A-3; RM14-5 

See also Input/output, multiple sources/desti­
nations 

Mux box. See Peripheral multiplexer 

Mux byte. See Routing byte 

Index 

MUX, F: (intrinsic user function) 
summary, RM2-116 

N 
Named entity 

address, AP2-1; AP3-3 
See also Mass memory 

creating, AP3-1 
definition of, RM9-2; AP2-1, 5 
instance node, GT2-39 
objects as, IS2-16 
physical 1/0 and, TT1-49 
types of, AP2-1, 5 

See also Character Font; Display Structure; 
Function instance 

See also Alpha block; Control block; Data 
structure 

Naming 
BEGIN STRUCTURE ... END STRUCTURE 

and-:- GTS-10, 30 -
commands, GTS-1, 4, 29 
convention, IS2-15; GT5-4, 29 
data structure address, GT5-1, 4 

See also Mass memory 
explicit, GT5-4, 8, 19, 29; GT15-1 
indirect, GT5-16 
prefixing, TT8-3 

See also ASCII-to-GSR Converter 
suffixing, TT2-7; RM9-6 

See also Command Interpreter; Configure 
mode 

See also Command; Instance; Node, naming; 
PREFIX WITH 

(Naming of Display Structure Nodes) (com-
mand), GT5-5 

exercise, GT5-7 
summary, RM1-72 
syntax, RM1-190 

NE, F: (intrinsic user function) 
summary, RM2-11 7 

NEC, F: (intrinsic user function) 
summary, RM2-118 

Nesting, GT5-17, 30 
See also COMMAND ST A TVS 

NETBUILD.COM (command file), TT4-13, 
32; TT5-7 

NETEDIT (Function network editor), 
GT2-101; TT4-1, 32 

RM16-31 



NETPROBE (Function network debugger), 
GT2-101; TT5-1 

NETUSER.COM (command file), TT4-3, 32; 
TT5-1,7, 10; TT7-1 

Network. See Function network 

NEUTIL (library), TT5-11 

NIL (command), GT5-5 
GSR, RM4-93 
summary, RMl-73 
syntax, RMl-190 

Node 
commands for, GT2-36; GT5-4, 10, 26 
conditional referencing, GT9-17 
definition of, GT2-36 
direct host modification, AP4-2, 3 

See also Physical 1/0 
editing, TT6-7 

See also STRUCTEDIT 
grouping, GT4-31; GT5-10, 13, 30 

See also BEGIN STRUCTURE ... 
END _STRUCTURE; Grouping; Instance 
node 

inputs to, GT2-36, 91 
inserting, TT6-11 
naming, GT5-2, 4, 10, 13, 16; AP2-36 

See also Hash table 
pointers, GT4-48; GT5-15 
programming path to, GT2-92 

See also Function; Function network 
shared, GT4-31 
terminal. See Data node 
types of, IS2-19; GT2-36; GT4-48 

See also Data node; Instance node; Opera­
tion node 

updating, GT2-36, 91 
See also Attribute node; Command; Display 

structure; FOLLOW WITH; Modeling 
node; SET/IF node; Interactive node 

Non-commutativity. See Matrix, non­
commutativity of 

Non-matrix. See Matrix 

NOP, F: (intrinsic user function), TTl-17 
summary, RM2-119 

RM16-32 

Normal 
inverting, GT13-55 

See also SHADINGENVIRONMENT 
specifying, GT2-104; GT13-9, 22, 59 
See also Polygon; POLYGON; Smooth 

Shading 

NOT, F: (intrinsic user function) 
summary, RM2-120 

NPRT PRT, F: (intrinsic user function), 
TT2-43 

summary, RM2-121 

NTSC Encoder, GT12-3 

0 
Oblique view. See Eyepoint 

Object 
definition of, IS2-16; GT2-1 
See also Compound object; Display structure; 

Model; Primitive, graphical 

Object Space. See Rotation, object-space 

Object transformation function, IS2-25; 
GT2-94; GT6-12 

OFFBUTTONLIGHTS (initial function instance) 
summary, RM3-29 

ONBUTTONLIGHTS (initial function instance) 
summary, RM3-30 

Opacity. See ATTRIBUTE; Transparency 

Operating utilities (DEC), IS3-28 

Operation node 
contents of, GT2-36, 91 
definition of, GT2-37; GT4-13, 51; 

AP2-29 
See also Display processor; Transformation 

display structure representation, GT2-36; 
GT4-13 

format of, AP2-29; AP9-44 
function, GT4-48 

See also Character font; Level-of-detail; 
Picking 

inputs to, GT2-37 
interaction and. See Interaction node; Inter­

active device 
modeling and, GT4-2 
pointer, GT4-48, 51 

Reference Materials 



text/character transformation, GT10-1 
types of, GT2-88; GT4-13, 51; AP9-45 

See also Attribute node; Interaction node; 
Modeling node; Rendering operation 
node; SET/IF node; Viewing operation 
node 

updating, GT2-36, 91, 101 
uses of, GT4-13, 51 
See also Display structure; FOLLOW WITH; 

IF node; Matrix, multiplication; Node; 
Transformation 

Optical mouse, IS2-12 
communications protocol, RM13A-25; 

RM13B-21 
description of, IS3-12; RM13A-25; 

RM13B-21 

Optimization mode. See OPTIMIZE STRUC­
TURE; ... END OPTIMIZE; 

OPTIMIZE MEMORY (command) 
summary, RM1-74 
syntax, RM1-190 

OPTIMIZE STRUCTURE; ... END OPTIMIZE; 
(command), GT5-26; TT6-10 

GSR, RM4-44, 94 
summary, RM1-75 
syntax, RM1-190 

OR, F: (intrinsic user function) 
summary, RM2-122 

ORC, F: (intrinsic user function) 
summary, RM2-123 

Origin 
advantages of using, GT4-12, 28 
character string and, GT10-2, 4 
definition of, GT1-3; GT2-2, 4 

See also Axis 
line of sight and, GT2-48, 61, 66; GTB-4 

See also LOOK 
rotation and, GT2-14 
See also World coordinate system 

Orthographic view, GT2-50, 57; GTB-1, 9, 52 
program example, GT3-12 
See also LOOK; Viewing area, orthographic; 

WINDOW 

Outer contour. See Polygon, contour 

Output. See Input/Output 

Index 

Overlay, GT13-52 
See also Level-of-detail 

p 

Packet. See Data packet 

PACKET, F: (intrinsic user function) 
summary, RM2-124 

Page. See File 

Panning, TT4-49 

Parallel interface, RM5-1; RM7-1 
description of, IS2-9; RM6-1; AP4-2 
GSRs and, TT3-18 
high speed communication with, TTl-49 
memory allocation for, AP3-4 
physical I/O and, TT2-21 
system function network for, RM8-1 
See also Interface; Physical I/O; RA WBLOCK 

Parallel projection. See Orthographic view; 
Viewing area 

Parity, RM5-6 
errors, RM5-14 
See also SETUP Interface 

Parser, IS3-25, 27; RM7-3 

PARTS, F: (intrinsic user function) 
summary, RM2-126 

Pascal 
character font definitions, AP2-35 
control block definitions, AP2-18, 21 
debugger in, TT5-11 
function definitions, AP2-9, 12, 14 
function instances and, AP2-7; AP3-9 
GSRs, GT14-15; TT3-10, 61, 75 
node definitions, AP2-28, 31 
register usage, AP9-37 
standard and PS 390, AP2-7 
user-written function and, GT2-95; AP5-3, 

12 

PASSTHRU(n), F: (intrinsic user function) 
summary, RM2-127 

Password. See SETUP PASSWORD 

RM16-33 



PATTERN (command), TT2-36 
GSR, RM4-30 
summary, RMl-77 
syntax, RMl-190 

PATTERN WITH (command), TT2-36 
GSR, RM4-95 
summary, RMl-78 
syntax, RMl-191 

Performance verification test (PVT), IS2-14; 
IS6-1 

Peripheral. See Interactive device 

Peripheral multiplexer, IS2-10 
connections, IS3-2; RM13A-2; RM13B-2 
data framing and transmission rates, 

RM13A-3; RM13B-3 
description of, RM13A-2; RM13B-1 
functional characteristics, RM13A-3; 

RM13B-2 

Perspective view 
character string and, GT10-12 

See also SET CHARACTERS 
creating, IS2-21; GT2-54, 62; GT8-19, 

25, 52 
See also EYE BACK; FIELD_ OF_ VIEW 

definition of, IS2-2; GT2-44, 53; GT8-19 
program example, GT3-15 
See also FOY, F:; LOOK; Viewing area, per­

spective 

Phase, on/off, GT2-82; GT9-14, 16, 19 
program example, GT3-11 
See also Blinking; IF PHASE; SET RA TE; 

Refresh rate 

Phong shading. See Smooth shading 

Physical 1/0 
commands, TT2-21; AP4-2 

See also Interface 
constraints, AP4-3 
named entity and, TTl-49 
operations, AP4-3 
program example, TT2-21 
programming, AP4-1, 6 
test routine, TTl-51 
values and, TTl-49 
See also General purpose interface option 

RM16-34 

PICK (initial function instance), GTl1-:l, 7, 
11, 14, 17; RM9-7 

exercise, GT3-28 
summary, RM3-31 

Pick identifier (pick ID) 
definition of, GT2-84; GT11-5 
depth of, GT11-12 

See also PICKINFO, F: 
dials and, GT11-13 
node, GT2-86; GT11-4, 16 
pick list and, GT11-8 

See also PICK 
program example, GT3-27 
state of machine and, GT4-48 
using, GT11-4 
See also SET PICKING IDENTIFIER 

PICKINFO, F: (intrinsic user function), 
GT11-11, 14, 17 

exercise, GT3-28 
summary, RM2-128 

Picking, GT 11-1 
attribute node, GT2-84; GT11-2, 15, 16 
control block and, AP2-23 
coordinates, GT11-9 
data tablet and, GT6-5; GT11-1, 7 

See also T ABLETIN 
definition of, IS2-22; GT2-84; GT11-1 
interaction and, GT2-85 
functions, GT11-1, 7, 11, 17 

See also PICK; TABLETIN 
function network, GT11-11 

See also PICKINFO, F:; PRINT, F:; 
SUBC, F: 

location, GT11-7, 10 
See also SET PICKING LOCATION; View­

port 
pass, GT11-9 

See also Arithmetic control processor 
program example, GT3-3, 27 
time-out, GT11-9 
window half-size, GT11-9 
See also SET PICKING 

Pick list 
converting, GT11-11, 17 

See also PICKINFO,F: 
definition of, GT2-84; GT11-1, 16 
selecting, GT11-8 

See also PICK 
using, GT11-1 

PICK_LOCATION (initial structure), GT3-28 
summary, RM3-57 

Reference Materials 



Pipeline subsystem (PLS), IS2-6; AP1-2 

Pixel 
address, GT8-39; GT14-2, 3, 5 

See also Viewport 
definition of, GT12-2 
color, GT14-3 
current location, GT14-5, 11, 18 
encoding, GT14-2 
raster system and, GT14-1, 2 
rate, GT12-4, 11 

See also Video timing format 
values, GT14-11 
viewport and, GT13-50 

Plane. See Boundaries, front and back; Clip­
ping plane; Projection, planer 

Plane equation. See Polygon, coplanar 

Plotter, TT2- l 0 
See also Writeback 

Pointer. See Branch; Node 

Points and lines. See Vector list 

Poll PS 390 for Messages (utility GSR), 
RM4-57 

Polygon 
attributes, GT2-103; GT13-9, 21, 39, 61 

See also Color; Diffuse reflection; Specular 
highlights; and transparency 

capping, GT13-4, 36 
See also Cross sectioning 

classes of, GT13-10 
See also Solid; Surface 

clause, GT13-8 
color, GT13-22 

See also Edge, polygon, color of; Vertex, 
polygon, color of 

concave, GT13-9, 58 
contour, inner and outer, GT13-14, 59 
coplanar, GT2-103; GT13-9, 14, 58, 59 

See also Contour, polygon 
defining, GT2-102, 103, 107, 112; GT13-8 
definition of, GT2-7 
degenerate, GT13-9, 58 
edge. See Edge, polygon 
function networks and, GT13-58 
obverse side of, GT13-40, 42 
options, GT2-103; GT13-9 
primith~e, GT4-49 
PS 390 feature, IS2-3 

Index 

rendering operations and, GT2-102 
See also Rendering operation 

vertex. See Vertex, polygon 

POL YOON (command), GT2-7, 103; 
GT13-1, 8, 34, 39, 56; TT6-14 

GSR, TT3-5, 14; RM4-96 
summary, RM1-79 
syntax, GT2-112; GT13-9, 57; RM1-191 

Polygonal object, GT13-1 
data base for, GT2-4 

See also Geometry; Coordinate 
definition of, GT2-1 
defining, GT2-103, 104, 107; GT13-8, 58 
rendering operations and, GT2-7, 102, 107; 

GT13-1, 26, 56 
See also Rendering operations; 

SOLID RENDERING; SURFACE REN-
DERING -

wireframe compared, GT2-7 

Polygon list 
contents of, GT2-7 
data base for, GT2-6 

See also Geometry; Topology 
primitive, GT2-8, 10; GT4-28 
See also POLYGON; Vector list 

POLYNOMIAL (command), GT2-9; GT4-49 
GSR, RM4-113 
summary, RM1-82 
syntax, RM1-191 

Port 
characteristics, RM 5-6 
connector pins, RM5-3 
configuration, IS2-5 
values, TT2-1; RM5-7, 8, 11 
See also SETUP INTERFACE; SITE.DAT 

Position (P) and line (L) identifiers 
character font, GT10-20 
non··continuous lines and, GT2-26 
open figures and, GT2-8 
vector list inclusion, GT2-7 
See also VECTOR_LIST 

POSITION_LINE, F: (intrinsic user function), 
TTl-17 

summary, RM2-131 

Powering up. See Booting 

Power requirements, IS2-6 

Prefix. See Naming, prefixing 

RM16-35 



PREFIX WITH (command), GTS-27; 
GT10-7 

GSR, RM4-115 
summary, RMl-84 
syntax, RMl-191 

Priming. See Input/output 

Primitive, graphical 
as template, GT2-11; GT4-9 
commands for, GTS-5 
creating, GT2-8; GT4-28 

See also POLYGON; VECTOR_LIST 
data node represents, GT2-36 

See also Data node 
definition of, GT2-2, 8 

See also Polygon list; Vector list 
dimensions of, GT4-12, 28 
location of, GT4-12, 29 

See also Modeling transformation; Origin; 
World coordinate system 

modeling with, GT4-9 
transforming, GT2-11 

See also Transformation; Coordinate system 
types of, GT2-8, 10 

See also Character/Character string; Curve; 
Polygon list; Text; Vector list 

See also Car; Mechanical arm; Robot 

Primitive data. See Data node; Primitive, 
graphical 

PRINT, F: (intrinsic user function), GT7-36; 
GT10-13; GTl 1-12; TT2-43, APS-23 

exercise, GTl 1-16 
summary, RM2-132 

PROCONSF FORTRAN (file), TT3-7 

PROCONST.FOR (file), TT3-7 

PROCONST.PAS (file), TT3-16 

Programming 
examples of, GT3-1; GT15-1 

Programming language, function network and 
conventional, GT2-100 

Projection 
planar, demonstrated, GT15-28, 31 
See also Perspective view; Orthographic view; 

Viewing area 

PS390ENV (initial function instance), GT12-5 
summary, RM3-35 

RM16-36 

Puck, IS3-11 

Purge Output Buffer (utility GSR), RM4-116 

PUT STRING, F: (intrinsic user function), 
GT10-14 

summary, RM2-136 

PVT. See Performance verification test 

Q 

Qdata. See Data; Data type 

Qpacket. See Data packet 

Qreal. See Real value 

Queue. See Function, input/output; Input/out­
put; User-written function, private queues 

Query GSR Device Status (utility GSR), 
RM4-39 

Quotation marks. See Text, punctuation in 

R 
Radius, TT2-51 

See also Sphere 

RANGE SELECT, F: (intrinsic user function) 
summary, RM2-137 

Raster 
command, GT14-11, 12, 18 
display characteristics, GT12-2 

See also Antialiasing; Pixel; Scan line; 
Screen 

mode, GT14-10, 12, 16 
See also Write Pixel Data 

pattern. See Pixel; Scan line; Screen 
programming, GT14-1; TT2-39 
screen. See Screen 
system, IS2-1; TT2-39; GT14-1, 2, 3 

See also Frame buffer 
system function network for, RM8-1 
See also Pixel; Run-length encoding; Video 

output control 

RASTER, F: (intrinsic system function) 
summary, RM2-185 

Raster backend bitslice processor (RBE/BP), 
IS2-6, 7; APl-2 

Reference Materials 



Raster backend video controller (RBE/VC), 
IS2-6, 7; AP1-2 

Raster display. See Pixel; Screen; Video output 

Raster line. See Line, rendering 

RASTERSTREAM, F: (intrinsic system func­
tion), RM7-3 

summary, RM2-186 

Rate settings, GT9-1, 14, 20 
See also Alternating display; Blinking; Condi­

tional referencing; IF PHASE; SET 
RATE; SET RATE EXTERNAL 

Ratio and proportion operation, GT2-60 
See also Viewing operations 

RATIONAL BSPLINE (command), TT6-14 
GSR, RM4-130 
summary, RM1-85 
syntax, RM 1-191 

RATIONAL POLYNOMIAL (command), 
Tfl-10 

GSR, RM4-140 
summary, RM1-89 
syntax, RM1-191 

RA WBLOCK (command), AP3-4 
GSR, RM4-128 
summary, RM1-92 
syntax, RM1-192 

READDISK, F: (intrinsic user function) 
summary, RM2-139 

Read Messages from PS 390 (utility GSR), 
RM4-59 

READSTREAM, F: (intrinsic user function), 
TT2-33; RM7-3; RM14-6 

summary, RM2-140 

Real number 
data format, RM14-8 
dials and, GT6-6 
input, GT6-7, 24 

Real time 
definition of, IS2-2, 23; GT2-89 
dials and, GT6-11 
host communication and, TT1-49 

Real value. TT1-50 
See also Named entity 

Index 

REBOOT (command) 
summary, RM 1-9 4 
syntax, RM 1-192 

Referencing 
conditional. See Conditional referencing 
explicit. See APPLIED TO/THEN 
implicit. See BEGIN_STRUCTURE ... 

END STRUCTURE 

Refresh frame 
blinking and, GT2-83; GT9-14, 15 
picking and, GT11-9 

See also PICK 

Refresh rate 
blinking with, GT2-82; GT9-14, 16, 19 
video timing format and, GT12-4, 11 
See also Blinking; CLFRAMES, F:; Clock, 

function; SET RATE 

Refresh buffer. See Frame buffer 

Register, GT2-67, 87 
See also Attribute node; State of the machine 

REMOVE (command), GT1-5; GT2-91; 
GTS-25 

GSR, RM4-133 
summary, RM1-95 
syntax, RM1-192 

REMOVE FOLLOWER (command), GTS-26 
GSR, RM4-134 
summary, RM1-96 
syntax, RM 1-192 

REMOVE FROM (command), GTS-27 
GSR, RM4-135 
summary, RM1-97 
syntax, RM1-192 

REMOVE PREFIX (command), GTS-27; 
GT10-9 

GSR, RM4-136 
summary, RM1-98 
syntax, RM1-192 

Rendering 
animation of, TT1-44 
compound, GT13-38 
creating, GT2-102, 107; GT13-29 

See also POLYGON; SOLID_RENDERING; 
SURFACE RENDERING 

current, GT13-31 
data, GT13-29, 37 

RM16-37 



displaying, GT13-29, 32 
See also DISPLAY; Joint control processor 

saving, GT13-32, 37, 61; TT1-47 
stereo, GT13-56 
toggling, GT13-32, 37 

Rendering operation, GT2-102; GT13-1 
commands for, IS2-17; GT2-107, 112; 

GT13-1 
See also ATTRIBUTES; ILLUMINATION; 

POLYGON; SECTIONING PLANE; 
SOLID RENDERING; SURFACE REN-
DERING -

completion of, GT13-33 
CPK, TT2-49, 53 
error message, GT13-33, 38 
laser disk and, TT1-44 
marking object for, GT13-26, 60 
memory requirements, GT2-106; GT13-24, 

60 
See also RESERVE WORKING STORAGE· 

Transient memory; Working-storage ' 
program example, GT15-45 
types of, GT2-102, 108; GT13-3, 56 
See also Dynamic viewport; Polygon; 

SHADINGENVIRONMENT; Static view­
port 

Rendering operation node 
admissible descendants, GT13-27 
description of, GT2-107; GT13-26 
displaying, GT13-26 

See also DISPLAY 
illumination node and, GT13-46 
inputs to, GT13-31 
node placement with, GT13-28 
output from, GT13-33 
polygon data node and, GT2-108; 

GT13-26, 29, 60 
sectioning plane node and, GT13-35, 61 
transformations and, GT13-28, 60 
triggering, TT2-54 
See also SYNC(n), F: 

RESERVE_ WORKING _STORAGE (command), 
GT2-106; GT13-25, 60; TT2-63 

GSR, RM4-143 
summary, RM 1-9 9 
syntax, GT2-113; GT3-25; RM1-192 

Resonant circuit, GT12-2 

Reset. See Value, reset 

RM16-38 

!RESET (command), GTS-17, 26; TT8-2 
summary, RM1-101 
syntax, RM 1-192 

RESET, F: (intrinsic user function), RM7-3 
summary, RM2-141 

Reset switch, IS2-4; IS3-5 

RGB (red, green, blue). See Color 

Right-hand rule, GT13-13 
See also Vertex, ordering 

Robot, GT4-10, 27, 30; GTS-18; GT6-4; 
GT7-1, 3; GT9-16; GT11-13 

Room coordinates. See Coordinates 

Rotary switch, TT1-27 

ROTATE (command), GT1-4, 8; GT2-14; 
GT6-6; TT1-7, 9 

exercise, GT3-10 
GSR, RM4-137 
summary, RM1-102 
syntax, RM1-192 

Rotation 
around axis, GT2-14, 19 
centered and not-centered, GT2-14 
clock function and, GT6-27, 30 
controlling multiple, GT7-2 
description of, GT2-13 
function network and, GT3-24; GT6-3, 18 
functions, GT6-6 
jerkiness in, GT6-18 
limiting, GT7-29, 30 
matrix, GT2-13, 38 

See also Matrix, 2X2; Matrix, 3X3 
node, GT2-37, 39, 98 
object-space, GT3-7; GT6-22; TT1-8 
program example, GT3-10, 24 
screen-space, TT1-7 
three-dimensional, GT6-18 
transformation order and, GT2-19 
values, GT2-8 8; GT6-7 
world-space, GT2-13; GT3-23; GT6-22; 

TT1-6 
See also DXROTATE, F:; DYROTATE, F:; 

DZROTATE, F:; Operation node; Trans­
formation; XROTATE, F:; YROTATE, 
F:; ZROTATE, F 

ROUND, F: (intrinsic user function) 
summary, RM2-142 

Reference Materials 



ROUTE(n), F: (intrinsic user function), 
TTl-27 

exercise, GT11-15 
summary, RM2-143 

ROUTEC(n), F: (intrinsic user function), 
TT2-47 

summary, RM2-144 

Routing, IS3-·27 
See also CIROUTE(n), F:; Data, reception 

and routing; Host input data flow; Values, 
routing 

Routing byte 
ASCII file, downloading with, IS3-27; 

TT2-26 
definition of, TT2-33; RM7-1 
definitions, RM7-2 

See also Host input data flow 
GSRs and, IS3-27 
host communications with, RM5-20, 29; 

RM14-3 
SITE.DAT and, TT2-2 
specifying, TT2-33 
S-record file transfer with, AP5-19 

See also Graphics support routines 
See also Byte 

RS-232-C, RM5-2 

Run-length encoding, TT2-39; GT13-39; 
GT14-5 

data flow and, RM7-3 
description of, GT14-2 
write pixel data mode, GT14-18 
See also Pixel; Raster 

Runtime code, IS3-7 
See also CONFIG.DAT; SITE.DAT; 

THULE.DAT 

Runtime environment, TT2-23; RM9-1 
See also Host communication 

Runtime firmware, RM6-4 
See also Graphics control program; Graphics 

firmware 

s 
Sample programs, GT3-1; GT15-1 

Saturation, GT13-40 
color, GT13-40 definition of, GT2-68; 

GTB-50 

Index 

specifying, GTB-51, 56 
See also SET COLOR 

values, GT13-41 
See also Color; Hue 

SCALE (command), GT1-6; GT2-17, 28; 
GT6-6; GT10-6 

GSR, RM4-146 
summary, RMl-104 
syntax, RMl-192 

SCALE, F: (intrinsic user function), GT6-6, 
25 

summary, RM2-145 

Scaling 
characters. See CHARACTER SCALE; Char-

acter string, scaling 
compound object, GT2-30 
definition of, GT1-6; GT2-17 
factor, GT2-17, 99 
function network and, GT6-25 
functions, GT6-6, 25 
matrix, GT2-17, 38 
node, GT2-38 
primitive, GT2-26 
program example, GT3-10 
proportional, TTl-12 

See also Dial, control 
setting limits on, GT6-26 

See also DSCALE, F: 
uniform/non-uniform, GT2-17; GT6-23; 

GT10-7 
values, GT6-6 
See also Modeling; Operation node; Transfor­

mation 

Scan line 
definition of, GT12-2 
drawing, GT12-2 

See also Screen, interlaced/non-interlaced 
See also Frame; Screen; Video timing format 

Scheduler, RM9-2; AP3-6, 8 
See also Graphics control program 

Screen 
blanking, GT1-4, 5, 9; GT13-51 

See also Display; INITIALIZE; Key, TERM 

description of, IS3-12 
display area, IS3-13; GT2-57; GT3-1; 

GT8-1, 39, 40 
See also Viewport 

interlaced/non-interlaced, GT12-2 
See also Scan line; Video timing format 

RM16-39 



labels and, TT2-48 
See also Softlabels 

NETEDIT, TT4-8, 39 
performance verification test, IS6-2 
rendering operation and, GT13-31 
resolution, GT12-2 

See also Calligraphic system; Raster 
routing to, RM7-4 
space, GT14-5 

See also Coordinates, logical device; View­
port; Virtual address space 

STRUCTEDIT, TT6-2 
switch, IS3-13 
thumbwheel knobs, IS3-13 
wash, GT8-42; GT13-51 

See also Background color; SHADINGEN­
VIRONMENT 

See also Picking, location; Viewport 

SCREENSAVE, F: (intrinsic user function), 
TT9-10 

summary, RM2-146 

Scrolling, TT1-28 

Sectioning 
definition of, GT2-109; GT13-4 
object displayed after, GT2-109; GT13-4, 

35 
rendering node input, GT13-32 
saving, GT13-38 
vertex order and, GT13-8 
See also Cross sectioning; POLYGON; Sec­

tioning plane 

Sectioning plane 
cross sectioning with, GT2-110; GT13-5 
data definition of, GT13-34, 61 

See also Polygon 
displaying, GT13-36 
establishing, GT13-34, 61 

See also SECTIONING_PLANE 
front side of, GT13-35 
interaction with, GT13-36 
sectioning with, GT2-109; GT13-4 
See also Cross-sectioning 

SECTIONING_PLANE (command), GT13-34 
GSR, RM4-159 
summary, RMl-106 
syntax, GT13-61; RMl-192 

SELECT FILTER (command) 
summary, RMl-108 
syntax, RMl-193 

RM16-40 

SEND (command), GT1-8, 10; GT2-36, 99; 
GT5-27; GT10-17; TT4-2, 28 

exercise, GT10-19 
GSR, RM4-178, 190 
summary, RMl-110 
syntax, GT10-18; RMl-193 

SEND, F: (intrinsic user function) 
summary, RM2-147 

SEND BACK (Diagnostic utility command), 
TT2-28 

Send Bytes to Generic Output Channel (utility 
GSR), RM4-117 

Send Bytes to Parser Output Channel (utility 
GSR), TT2-33; RM4-119 

SEND number*mode (command), GT10-19 
GSR, RM4-188 
summary, RMl-111 
syntax, RMl-193 

Send-receive mode (local echo/nolocal echo), 
IS3-19; RM10-2, 4, 5 

See also Escape sequence; SETUP facility; 
Terminal emulator, ANSI modes 

SEND VL (command), GT10-19 
GSR, RM4-203 
summary, RMl-112 
syntax, RMl-193 

SET BLINKING ON/OFF (command) 
summary, RMl-113 
syntax, RMl-193 

SET BLINK RATE (command) 
summary, RMl-114 
syntax, RMl-193 

SET CHARACTERS (command), GT10-12, 
25 

exercise, GT3-20 
GSR, RM4-149 
summary, RMl-115 
syntax, GT10-12, 25; RMl-193 

SET COLOR (command), GT2-69; GT8-51, 
56, GT13-20, 59 

GSR, RM4-156 
summary, RMl-116 
syntax, RMl-193 

SET CONDITIONAL_BIT (command), 
GT2-78; GT9-3; AP4-6 

exercise, GT3-11; GT9-7 

Reference Materials 



GSR, RM4-147 
summary, RMl-118 
syntax, GT9-3, 17; RMl-193 

SET CONTRAST (command) 
GSR, RM4-158 
summary, RMl-120 
syntax, RMl-193 

Set Current Pixel Location (utility GSR), 
GT14-11, 12, 18; RM4-120 

program example, GT14-13, 15, 19 

Set Delimiting Character (utility GSR), RM4-33 

SET DEPTH CLIPPING (command), GT2-74, 
91; GT8-:_15 

exercise, GT8-16 
GSR, RM4--161 
summary, RMl-122 
syntax, RMl-193 

SET DISPLAYS (command) 
GSR, RM4--160, 163 
summary, RMl-124 
syntax, RMl-194 

Set Global Binary Output Channel (utility GSR), 
RM4-90 

Set Global Generic Channel (utility GSR), 
TT2-33; RM4-91 

Set Global Parser Channel (utility GSR), 
RM4-92 

SET/IF node, GT2-78; GT9-1, 17 
conditional bit settings, GT2-7 8; GT9-4, 7, 

18 
input, GT9-4, 10, 14 
level-of-detail settings, GT2-80; GT9-10, 18 
physical 1/0 and, AP4-6 
program example, GT15-42 
rate settings, GT2-82; GT9-14, 20 
See also Blinking; Conditional referencing; IF 

CONDITIONAL BIT; IF 
LEVEL OF DETAIL; IF PHASE; Level­
of-detail; SET CONDITIONAL BIT; SET 
LEVEL __ OF_DETAIL; SET RA-TE 

SET INTENSITY (command), TT2-46; 
GT2-71; GT8-48, 50, 56 

GSR, RM4--164 
summary, RMl-126 
syntax, RMl-194 

Index 

SET LEVEL_OF _DETAIL (command), 
GT2-80; AP4-6 

exercise, GT3-11, 22 
GSR, RM4-169 

summary, RMl-128 
syntax, GT9-10, 18; RMl-194 

SET LINE_TEXTURE (command), TT2-35 
GSR, RM4-166 
summary, RMl-130 
syntax, RMl-194 

Set Logical Device Coordinates (utility GSR), 
TT2-39; GT14-11, 12, 19; RM4-124 

program example, GT14-13, 15, 19 

Set node, AP2-26 
See also Instance node 

Set-operate-data structures, AP1-2 
See also Data node; Instance node; Operation 

node 

SET PICKING (command), GT2-85; GT11-3, 
16 

exercise, GT3-28; GT11-6 
GSR, RM4-174 
summary, RMl-132 
syntax, GTl 1-5, 16; RMl-194 

SET PICKING IDENTIFIER (command), 
GT2-86; GTl 1-4, 16 

exercise, GT11-5, 13 
GSR, RM4-171 
summary, RMl-134 
syntax, GTll-16; RMl-194 

SET PICKING LOCATION (command), 
GTll-10 

GSR, RM4-172 
summary, RMl-135 
syntax, GTl 1-10; RMl-194 

SET PRIORITY (command) 
summary, RMl-137 
syntax, RMl-194 

Set Raster Mode to Write Pixel Data (utility 
GSR), GT14-12; RM4-129 

SET RATE (command), GT2-82; GT9-14 
exercise, GT3-11; GT9-16; GT15-42 
GSR, RM4-175 
summary, RMl-138 
syntax, GT9-14, 20; RMl-194 

RM16-41 



SET RATE EXTERNAL (command), GT2-82; 
GT9-15, 20; TT1-36 

GSR, RM4-177 
summary, RM1-140 
syntax, RM1-194 

SETUP CNESS (command), AP5-8; GT2-99; 
GT6-14; RM2-4 

GSR, RM4-155 
summary, RM1-142 
syntax, RM1-195 

SETUP facility 
description of, IS 3-18; RM 10-19 
definitions, IS3-19 
function keys and, IS3-10; RM10-30 
IBM 3278, IS3-23; RM10-30 
menu display, IS3-18 
terminal emulator commands and, RMl0-23 

See also SITE.DAT 
See also Key, SETUP; Terminal emulator 

SETUPIBM, F: (intrinsic system function), 
RM5-30 

summary, RM2-187 

SETUP INTERFACE (command), IS3-2:L; 
TT2-41, 44; RM5-8, 11; AP7-7 

summary, RM1-144 
syntax, RM1-195 

SETUP PASSWORD (command), TT2-8; 
RM9-7 

summary, RM1-145 
syntax, RM1-195 

Shaded image 
creating, GT13-9 
depth cueing in, GT13-51 
displaying, GT13-39 

See also Rendering operation node, input 
normals in, GT13-22 
polygon edges in, GT13-20 
static viewport and, GT8-2 

See also Static Viewport 
See also SHADINGENVIRONMENT 

Shading. See ATTRIBUTES; Flat shading; 
Rendering operation; Smooth shading; Static 
viewport; Wash shading 

SHADINGENVIRONMENT (initial function in­
stance), GT2-59, 112, 113; GT13-21, 22, 
42, 45, 48, 62; TT2-50 

summary, RM3-37 

RM16-42 

Shadowfax, IS2-1, 7; GT12-2 

Shift register, TTl-28 

SHOW INTERFACE (command) 
summary, RMl-146 
syntax, RMl-195 

SINCOS, F: (intrinsic user function) 
exercise, GT3-25 
summary, RM2-148 

SITE.DAT (file) 
changing packet characters, RM5-21 
changing SETUP features, RMl0-23, 31 
CONFIG.DAT and, IS3-7; RM9-7 
control sequences and, RMl0-26 
creating, IS3-8; TT2-1 

See also Configure mode; Graphics support 
routines 

deleting, RM 12-9 
description of, IS3-6, 8 
host resident, 1S2-14 
interface, changing with, RM5-11 
loading, TT2-2 
user-written functions and, AP7-1 
using, TT2-1 

Site preparation, IS5-1 

Sketching. See Data tablet, inking with 

Smooth shading, GT2-112 
curved surface and, GT13-22; TT2-49 
description of, GT2-112; RM6-7 
Gouraud, GT13-7, 23 
normals and, GT13-22 
Phong, GT13-7, 23 
rendering node input, GT13-32 

Softlabels, IS3-10; TT2-48 
See also Dial, control, labels; Dynamic view­

port; Function key labels 

Software. See Graphics firmware; Host-resident 
software 

Solid 
3D visualization of, IS2-3 

See also Rendering operations 
backface removal and, GT13-3 

See also Backface, removal 
constructing, GT2-104; GT13-10, 58 

See also SOLID RENDERING 
cross-sectioning, GT13-36 
definition of, GT2-104; GT13-10 

Reference Materials 



edges in, GT13-11 
See also Edge, polygon 

sectioning, GT13-4 
surface, changing to, GT13-33, 37 
vertex order and, GT2-105; GT13-8, 12, 

19 
See also Polygon 

SOLID_RENDERING (command), GT2-105, 
1.07; GT13-26, 29, 58, 61; TT2-50, 53 

GSR, RM4-205 
summary, RM1-147 
syntax, GT2-113; GT13-60; RM1-195 

SOP. See Start of packet character 

SPECKEYS (initial function instance), 
RM10-21, 28 

summary, RM3-46 

Specular highlight 
attribute node input, GT13-42 
control, GT13-53 

See also SHADINGENVIRONMENT 
specifying, GT2-108; GT13-21, 41 
values, GT13-41; TT2-51 
See also ATTRIBUTES; Diffuse reflection; 

POLYGON 

Sphere rendering, GT13-33, 53; TT2-17, 49, 
52 

See also Solid; Surface; Vector 
viewing area and, TT2-57 

Sphere of influence, GT2-40; GT4-5, 53 
See also Hierarchy; Instance node 

Spheres and lines attribute table, GT13-21 

SPLIT, F: (intrinsic user function), GT10-14 
summary, RM2-149 

SQROOT, F: (intrinsic user function) 
summary, RM2-150 

S-record file 
crash and, AP5-23 

See also User-written function, stack size 
description of, RM6-7; AP5-14 
downloading, APS-14, 19; AP9-12, 18 

See also Cross-compatibility software; 
Graphics support routines; Routing byte 

format, AP9-34 
MAKEFONT and, TT7-2 

S specifier. See Edge, soft 

Index 

Stack. See User-written function 

STANDARD FONT (command) 
GSR, RM4-206 
summary, RM1-152 
syntax, RMl-195 

Star, GTl-5; GT2-26; GT4-14 

Start of packet (SOP) character, RM5-17; 
RM14-4; TT2-23 

changing, RM5-21 
See also DEPACKET, F:; SITE.DAT 

default, RM5-18, 20 
See also Escape sequence 

Startup code, AP 1-3 
See also Graphics control program 

STATDIS, F: (intrinsic system function), 
TT2-45 

summary, RM2-18 8 

State of the machine, GT2-67; GT4-48, 52 
See also Instance node 

Static viewport 
clearing to, GT8-42 

See also Screen, wash 
color in, GT13-21 
default, GT13-50 
display structure and, GT8-2, 42 
multiple images in, GT13-50 
polygon edges in, GT13-20 
program example, GT15-46, 66 
rendering operations, GT2-58, 102, 110, 

113; GT8-41; GT13-6, 56 
See also Hidden-line removal; Flat shading; 

Smooth shading; Wash shading 
specifying, GT2-59; GT8-41, 56; GT13-50 

See also SHADINGENVIRONMENT 
uses of, GT2-44 
See also Dynamic viewport, Viewport 

STORE (command), GTS-25; GT7-34 
summary, RM1-153 
syntax, RMl-195 

String. See Character string 

STRING TO NUM, F: (intrinsic user function), 
GTl0-13-

summary, RM2-151 

Stroke lookup table, TT7-8 
See also Character font; MAKEFONT 

STRUCTEDIT (Data structure editor), TT6-1 

RM16-43 



Structure. See Data structure, Display structure 

Stub, TT6-1, 14 

Stylus. See Data tablet 

SUB, F: (intrinsic user function) 
summary, RM2-152 

SUBC, F: (intrinsic user function), GT11-14 
summary, RM2-153 

Subcommand expression. See Data type 

Suffix. See Naming, suffixing 

Surface 
constructing, GT2-104; GT13-10, 58 

See also SURFACE_RENDERING 
curved, GT13-7, 9, 22, 59 

See also Normal 
definition of, GT2-104; GT13-10 
faceted, GT13-7 
obverse side attributes, GT13-40 
rendering node input, GT13-33 
solid, changing to, GT13-27, 33, 37 
vertices for, GT2-106; GT13-12 
See also Polygon; Rendering operations 

SURFACE_RENDERING (command), 
GT2-105, 107; GT13-26, 29, 58, 61 

GSR, RM4-208 
summary, RMl-154 
syntax, GT2-113; GT13-60; RMl-195 

Swinging around axis, GT2-14 
See also Origin; Rotation 

Switches, IS2-4; IS3-2, 13; GT6-31; 
GT11-13 

SYNC(n), F: (intrinsic user function), GT6-32; 
TTl-27, 28, 29; TT2-20, 45, 53; TT9-5; 
AP7-30 

summary, RM2-154 

Synchronization, TT1-29 

System configuration, IS2-4 

System function, See Function, system; Intrin­
sic system function 

System lookup table, GT13-55 

RM16-44 

T 

T ABLETIN (initial function instance), 
TTl-16, 17 

exercise, GT3-28 
summary, RM3-4 7 

TAB LETO UT (initial function instance) 
summary, RM3-50 

Tabulated. See VECTOR LIST 

TAKE_STRING, F: (intrinsic user function), 
GTl0-14 

summary, RM2-156 

TECO LOR (initial function instance) , 
RM10-20, 28 

summary, RM3-52 

TEDUP, F: (intrinsic system function) 
summary, RM2-189 

Terminal controller. See Control unit 

Terminal emulator (TE), RM 10-1 
ANSI mode. See ANSI mode (DECANM) 
data structures and, RM10-19 

See also CONFIG.DAT 
DEC VT100, IS3-16; RM10-2 
display handler, See VT10, F: 
display structure and, RM10-29 
function network and, RM 10-16 

See also K2ANSI,F:; TEDUP, F:; VT10, F: 
features changed, RM10-23, 31 

See also Key, BREAK; Key, TERM; 
SITE.DAT 

routing to, RMS-20 
IBM 3278, IS3-23; RM10-27 
SETUP. See SETUP feature 
viewing area, IS3-13, 21 
See also Host communications; Host computer 

Terminal emulator (TE) mode 
cursor keys in, RMl0-22 
DEC VT100, IS3-16; RM10-19 
description of, IS3-15 
editing in, GT5-27 
features of, IS2-17 
function keys in, IS3-10; RM10-23 
GSRs and, TT3-25 
host system and, IS2-17; TT3-25 

See also SITE.DAT 
IBM 3278, IS3-22; RMl0-27 
IBM 5080, IS3-25 

Reference Materials 



keypad in, RM10-23 
key sequence for, IS3-15, 25; GT3-30 
See also ANSI mode; SETUP feature 

Text 
character font for, GT2-75; GT10-19 

See also BEGIN FONT ... END FONT; 
CHARACTE-R FONT; MAKEFONT 

function network diagram, TT4-15 
See also NETEDIT 

interaction with, IS2-3 
modeling, GT 10-1 
nodes, GT10-1, 23 
primitive, GT2-9; GT5-5 
punctuation in, GT10-3 
size, GT10-8 

See also PREFIX; TEXT SIZE 
transforming, GT10-1, 6, 24 

See also CHARACTER ROTATE; CHAR­
ACTER SCALE; TEXT SIZE 

See also Character string; Label 

Text editor, TT2-3, 27 
See also STRUCTEDIT 

Text file 
commands in, GT5-27 
display structure in, GT5-31 

See also Display structure 
editing in TE mode, GTS-27 

See also Terminal emulator mode 
See also File; Graphics support routines 

TEXT SIZE (command), GT10-8 
exercise, GT10-10 
summary, RM1-159 
syntax, GT10-25; RM1-195 

Texture. See SET LINE_TEXTURE 

Three-dimensional space. See Coordinate, 
world; World coordinate system 

Three-dimensional view. See View, three­
dimensional 

Three-valued vector. See Vector, 3D 

THULE.DAT (file), IS3-6 

TIMEOUT, F: (intrinsic user function) 
summary, RM2-157 

Toggle switch, GT6-31 

Token, GT2-99; RM5-29; RM14-3 

Index 

Topology 
definition of, GT2-6, 10 
geometry and, GT2-6, 8, 9, 12 
See also VECTOR_LIST 

TRANSFER (diagnostic utility command), 
TT2-26 

Transformation 
compound object and, GT2-31 
control dials and, GT6-5 
description of, GT2-11, 12, 25 

See also Geometry; Matrix 
matrix. See Matrix 
modeling. See Modeling transformation 
order of, GT2-23, 25; GT4-16, 25 

See also Matrix, non-commutativity of 
pointer, GT4-35 
primitives and, GT2-11 

See also Polygon; Vector list 
processing, IS2-20 
program example, GT15-36, 37 
rendering operations and, GT13-28, 38, 60 

See also Rendering operation 
sphere of influence and, GT2-42 

See also Instance node 
types of, GT2-22, 25 

See also Rotation; Scaling; Translation 
viewing. See Viewing operation 
See also Operation node; XFORMDATA, F: 

Transformed data 
commands and, TT9-1, 3 

See also MATRIX_3X3; ROTATE; SCALE; 
TRANSLATE 

converted to command string, TT9-1 
data nodes, admissible, TT9-2 

See also Curve; Vector List 
definition of, TT9-1 

See also Matrix; Vector list 
modeling and, GT4-51 
program example, TT9-6 
rendering node input, GT13-33 
requests overlapping, TT9-5 

See also SYNC(n), F: 
retrieving, TT9-2, 31 

See also LIST, F:; XFORM; 
XFORMDATA, F: 

retrieving restricted, TT2-12; TT9-6 
See also XFORMDATA, F: 

storing, TT9-4 
See also LIST, F: 

Transient memory, GT13-26, 60 
See also Hidden-line removal 

RM16-45 



Translation 
definition of, GT1-6; GT2-15 
direction of, GT2-16 
function network and, GT3-24; GT6-6, 23 
functions, GT6-6 
notation for, GT2-17 
node, GT2-39 
primitive, GT2-28 
program example, GT3-24 
setting limits on, GT6-24 
transformation order and, GT2-19 
updating, GT1-8 
values, GT1-6 

See also SEND 
See also Modeling; Operation node; Transfor­

mation 

TRANSLATE (command), GT1-6; GT2-15, 
28, 76; GT6-6, 24 

exercise, GT6-25 
GSR, RM4-209 
summary, RMl-161 
syntax, RMl-195 

Transparency, GT2-103 
attribute node input, GT13-42 
color with, GT13-42 
control, GT13-52 
eyepoint effect on, GT13-42 
specifying, GT13-21, 41 
values, GT13-41 
See also ATTRIBUTE 

TRANS_STRING, F: (intrinsic user function), 
GT10-13 

summary, RM2-159 

Traversal. See Arithmetic control processor; 
Display processor 

Tutorial demonstration, GT3-1 

u 
Uniform scaling. See Scaling, uniform 

Update 
alpha, AP3-3 
block, AP3-2 
character and label nodes, GT10-16, 26 
display structure traversal and, IS2-21 
function networks and, GT6-3, 33 
memory and, TTl-49 

See also Named entity 

RM16-46 

nodes, GT2-36, 91, 101; GT6-3, 33 
See also Interactive device; Interaction node 

process, AP3-2 
value, GT1-8; AP3-3 
See also Function network; Input; Interaction 

UPDATE_FORMA TIER (initial function in­
stance), AP2-6; AP3-2 

UPDATE_KILLER (initial function instance), 
AP2-6, 15 

USERLINK (file), AP5-2, 14; AP8-7, 10 

USERSTRUC.PAS (file), AP5-2, 6, 11, 15; 
AP8-2; AP9-25 

USERUPD, F: (intrinsic user function), AP4-1; 
AP9-69 

User-written function, RM2-1; AP5-1; 
AP8-1 

breakpoints, AP7-26 
See also Debug; SYNC(n), F: 

compiling, linking, and naming, AP5-14 
creating, GT2-95; AP5-3 
debugging, AP5-23; AP7-6 
editing, TT4-16, 36 

See also NETEDIT 
error messages, RM11-3; AP8-40 
files, IS2-14 
header line, AP9-33 
input/output, AP5-8; AP6-1, 7 
instancing, AP5-21, 22; AP7-2, 3 
loading, AP7-1, 3 

See also UTILITY program 
message types, AP5-8; AP6-2; AP8-2 
memory allocation for, AP3-4 

See also RA WBLOCK 
network substitutions, AP5-1 
private queues, AP6-4 
qdata type and, AP6-1, 11; AP8-2 
requirements, AP5-2 

See also USERLINK; USERSTRUC.PAS 
restrictions, AP5-22 
routing, RM7-3 
stack size, AP8-38 
transferring to PS 390, AP5-18 

See also S-record file 
uses of, RM6-7 
utility procedures, AP5-7; AP8-6, 10, 24 
writing exercise, AP5-4, 12; AP6-1 

User-written function facility, RM6-6 

USRTOF, F: (intrinsic system function) 
summary, RM2-190 

Reference Materials 



UTILITY program, RM12-1; AP7-1, 2 
See also Diagnostic diskette; Diagnostic utility 

command 

Utility routines. See Graphics support routines; 
User-written function, utility procedures 

UWF. See User-written function 

v 
V3D (three-valued vector). See Vector, 3D 

Value 
accumulate, GT6-6 

See also CMUL, F:; MULC, F: 
constant input, GT2-99; GT6-13 

See also Input/output 
converting, GT6-3, 6, 33 

See also Function network; Interactive de­
vice 

coordinate. See Coordinate; Coordinate sys-
tem 

fixed, GT2-88 
initial, GT6-·14, 17 
interaction and, GT6-2 

See also Rotation; Scale; Translation 
negative, GT2-4; GT6-5 
positive, GT2-4, 10 

See also Z-axis 
reset, GT6-15, 24 
retrieving variable, GT7-34, 38 

See also FETCH, F: 
routing, GT7-6, 37 

See also CROUTE(n), F:; Function network 
sending, GT2-36 
storing, GT7-33, 38 

See also CONSTANT, F:; FETCH, F:; 
VARIABLE 

updating, GTt-8 
See also Function 

See also Data; Data type 

Variable, GT7-33, 38; TT1-49; 
GSRs and, TT3-5, 15 
See also Named entity 

VARIABLE (command), GT7-34, 38; TT4-2 
exercise, GT7-37 
GSR, RM4-211 
summary, RM1-163 
syntax, RM1-195 

Index 

VEC, F: (intrinsic user function) 
exercise, GT3-25 
summary, RM2-160 

VECC, F: (intrinsic user function) 
summary, RM2-161 

VEC __ EXTRACT, F: (intrinsic user function) 
summary, RM2-162 

Vector 
2D, GT6-3; GT10-20; GT11-7; RM14-9 
3D, GT1-8; GT6-3, 24; RM14-9 

See also CVEC, F:; XVECTOR, F:; YVEC­
TOR, F:; ZVECTOR, F: 

block-normalized, TT2-17, 60 
See also VECTOR_ LIST 

data tablet and, GT6-5 
definition of, GT1-2; GT2-6 
drawing common edge, GT13-20 
itemized, GT10-20 

See also Position and line identifier 
knot, TT6-14 
picking, GT11-8 

See also Picklist 
specifying, GT4-49 

See also VECTOR_LIST 
transformed, GT2-23; TT9-1 

See also WRITEBACK; XFORM MATRIX; 
XFORM VECTOR 

translation, GT6-3, 24; TT1-19 
vector-normalized, TT2-1 7, 60 
wireframe model from, GT1-2 

Vector list 
character font, GTl0-20 
definition of, GT2-6; GT4-49 
downloading to PS 390, TT2-62 
drawing, TT2-35; GT4-49 

See also Line; PATTERN; PATTERN 
WITH; SET LINE_TEXTURE; WITH 
PATTERN 

GSRs and, TT3-5, 14 
node, GT2-36 
primitive, GT2-8, 10; GT4-28 
rendering node input, GT13-33 
single, advantage of, GT4-50 

See also Writeback 
single, conversion into, TT9-3 

See also XFORM VECTOR 
tabulated, TT2-17, 51 

See also ALLOW VECNORM, F:; Sphere 
See also Coordinates; Data node; Polygon list; 

SEND VL 

RM16-47 



VECTOR_LIST (command), GTl-2; GT2-6, 8, 
26; GT4-49; GT5-5; TT2-51; TT9-1, 4 

exercise, GT3-10 
GSR, TT3-5, 14; RM4-212 
summary, RMl-164 
syntax, RMl-196 

Vertex, polygon 
color of, GT2-104; GT13-9, 52 
defining, GT2-103 
Gouraud shading and, GT13-7 
number of, allowed, GT2-102; GT13-8, 58 
options, GT2-104 
order of, GT2-105; GT13-8, 15, 59 

See also Right-hand rule 
soft edge and, GT13-19 
See also Normal; Polygon; POL YOON 

Vertex ordering rule. See Vertex, polygon, or­
der of 

Video hookup, GT12-11 

Video output 
control of, GT12-1 
specifications for, GT12-13 
See also Background color, Cursor, Scan line 

Video recorder, GT12-3 

Video signal, GT12-10, 11 

Video timing format 
alternating, GT 12-7 

See also Viewport 
custom, GT12-12 
features of, GT12-4, 11 
selecting, GT12-7 

See also PS390ENV 
standards, GT12-3 
supported by PS 390, GT12-3, 12 

View 
changing, GT8-1 
creating, GT2-45, 66; GT8-52 

See also EYE BACK; FIELD OF VIEW; 
WINDOW - -

cutaway, GT13-4 
See also Sectioning 

default, GT8-52 
definition of, GT2-44 
distorted, GT2-59 
multiple, GT2-60 
orthographic. See Orthographic view 
perspective. See Perspective view 

RM16-48 

stereo, GT9-16 
See also Viewport 

three-dimensional, GT2-71; GT9-16 
See also Depth cueing; Intensity; Perspective 

view 
See also Line of sight; LOOK; Viewing area; 

VIEWPORT 

Viewing angle 
definition of, GT8-20 
frustum and, GT8-20, 54 
hidden-line rendering and, GT13-3 
program example, GT3-15 
ratios for, GT8-25, 27 

See also Coordinate, room; Coordinate sys­
tem, world 

specifying, GT2-54, 64 
See also FIELD OF VIEW 

Viewing area 
default, GT2-52, 57; GT10-3; GT8-10, 52 

See also Orthographic view 
definition of, GT2-46, 49, 66; GT8-9 
depth of, GT8-15 

See also Depth clipping; SET 
DEPTH_CLIPPING 

display structure and, GT8-9, 21 
double, unwanted, GT13-29 
intensity mapping, GT8-4 7 
mapping to viewport, IS2-21; GT8-33, 45, 

47; TT2-58 
moving, GT8-13 
orthographic, GT2-50; GT8-9, 53 

See also WINDOW 
perspective, GT2-54, 62; GT8-19, 54, 55 

See also EYE BACK: FIELD OF VIEW 
program example, GT3-1, 12, 15, 19 
size altered, GT8-11, 12, 20 

See also Clipping 
specifying, GT8-9, 19, 25 
types of, GT2-50 
visibility of object and, GT2-50, 66, 72 

See also Clipping; Depth cueing 
See also LOOK; MATRIX_ 4x4; Viewport 

Viewing operations, GT2-44; GT8-1 
attributes, GT8-48, 56 

See also Attribute; Color; Intensity 
commands, IS2-17 
default values, GT2-46; GT8-2, 52 
node, GT2-60, 66, 88; GT8-53, 54, 55 
ratio and proportion, GT2-60 
transformations, GT8-1, 3, 9, 19, 52; 

TT9-5 
See also Line of sight; Viewing area 

Reference Materials 



Viewing pyramid, GT2-55; GT8-19, 23, 27 
See also Clipping plane; EYE BACK; 

FIELD_OF _VIEW; Frustum 

Viewing transformation function, IS2-25; 
GT2-94; GT6-12 

Viewport 
alternating display of, GT9-16 
clearing to dynamic/static, GT8-42 
CPK, TT2-59 
default, GT2-58; GT8-2, 34, 52 

See also Dynamic Viewport 
definition of, GT2-46, 58, 66; GT8-1, 33, 

55 
display structure and, GT8-33, 39 
double, unwanted, GT13-29 
dynamic. see Dynamic viewport 
mapping to, GT2-60; IS2-21; GT8-33, 45, 

46, 47 
multiple, GT2-60; GT8-43 
nonsquare, GT2-59; GT8-44 
picking location and, GT11-10 

See also SET PICKING LOCATION 
program example, GT3-1, 8, 12 
raster. See Static viewport 
reconfiguring for video timing, GT12-7 

See also Video timing format 
rendering operation and, GT 13-31 
specifying, GT2-58, 64; GTS-33, 41, 55 

See also LOAD VIEWPORT; VIEWPORT 
static. See Static viewport 
terminal emulator, IS3-21 
types of, GT2-44; GTS-2, 33 

See also Dynamic viewport; Static viewport 
viewing areas and, GTS-33 

VIEWPORT (command), GT2-58, 71; 
GT8-34, 41, 55; TT9-11 

exercise, GT3-12; GTS-35, 36, 43 
GSR, RM4-220 
summary, RM 1-169 
syntax, GT8-56; RM1-196 

Virtual address space, GT14-2, 5, 11 

VT10,. F: (intrinsic system function), TT2-13, 
45; RM7-3, 4; RM10-18 

summary, RM2-191 

VT52 mode, IS3-20; RM10-2, 5, 15 
keypad in, RM 10-11 
See also Escape sequence; SETUP facility; 

Terminal emulator, ANSI modes 

Index 

w 
WARNING (initial function instance) 

summary, RM3-53 

Warning message. See Message, warning 

Wash shading, GT2-111; GT13-7 
rendering node input, GT13-32 

See also Flat shading; Smooth shading 

WB$ (initial function instance). See 
WRITEBACK (initial function instance) 

White space. See Delimiter 

Window. See Viewing area 

WINDOW (command), GT2-53, 60; GTS-9, 
53; TT2-58 

exercise, GT3-12; GT8-12, 13, 16, 18, 46 
GSR, RM4-222 
summary, RM 1-1 72 
syntax, GT8-54; RM1-196 

WINDOW, F: (intrinsic user function), TT2-57 
summary, RM2-163 

Wireframe model 
color of, GT13-20 

See also SET COLOR 
data base for, GT2-4 
definition of, GT2-1 
dynamic viewport and, GT8-2, 34; GT13-3 

See also Dynamic viewport 
PS 390 feature, IS2-2, 3, 5 
vectors and, GT1-2 
See also Vector list 

WITH PATTERN (command), GT4-49 
summary, RM1-174 
syntax, RM1-196 

Working storage, GT2-106, 113; GT13-24, 60 
See also RESERVE_ WORKING_STORAGE 

Work space, GT3-29 

World coordinate system, GT2-10 
definition of, GT2-1, 3 
framing part of, GT2-49 

See also Viewing area 
line of sight in, GTS-5, 7 
locations. See Vector list 
model, location in, GT4-2, 12, 47 
program example, GT3-12, 17, 19 
translating in, GT2-15 

See also Axes; Translation 

RM16-49 



viewing area in, GT2-50; GT8-1, 9, 25, 
See also EYE BACK; FIELD_OF _VIEW; 

WINDOW 
See also Coordinate; Coordinate system; Line 

of sight; 

Wraparound, GT14-5 

Write back 
commands in, TT9-12 
constraints, TT9-9 
data sequence in, TT9-18 
description of, TT2-10; TT9-8 
hardcopy and, TT2-10 
node, TT9-9 
program example, TT9-20 

WRITE BACK (command), TT9-9, 31 
GSR, RM4-224 
summary, RMl-176 
syntax, TT9-9; RMl-196 

WRITEBACK (initial function instance), 
TT2-10; TT9-9, 10, 31 

summary, RM3-54 

WRITEDISK, F: (intrinsic user function), 
RM7-4 

summary, RM2-165 

Write Pixel Data (WRPIX), GT14-10, 12, 16, 
18 

WRITESTREAM, F: (intrinsic user function) 
summary, RM2-166 

Write structured field (WSF), RM5-23; 
RM10-27 

x 
XFORM (command), TT2-14, 57; TT9-2 

exercise, TT9-6 
GSR, RM4-26 
summary, RM1-178 
syntax, TT2-57; TT9-2; RM1-196 

Xform data. See Transformed data 

XFORMDAT A, F: (intrinsic user function), 
GT13-1, 33; TT2-12, 19, 44, 50, 53, 55; 
TT9-3, 6, 31 

summary, RM2-167 

XON_XOFF. See Host communication, trans­
mission protocol for 

RM16-50 

XOR, F: (intrinsic user function), TT1-14 
summary, RM2-170 

XORC, F: (intrinsic user function), GT6-31 
summary, RM2-171 

XROTATE, F: (intrinsic user function), 
GT7-9, 30, 37; TT1-7, 9 

exercise, GT6-21; GT7-15, 32 
summary, RM2-172 

XVECTOR, F: (intrinsic user function), 
GT6-24; TT1-19 

exercise, GT6-25 
summary, RM2-173 

y 
Yon plane. See Clipping plane 

YROT ATE, F: (intrinsic user function), 
GT6-7, 15, 19 

exercise, GT6-21; GT7-15 
summary, RM2-17 4 

YVECTOR, F: (intrinsic user function), 
GT6-24; TTl-19 

exercise, GT6-25 
summary, RM2-175 

z 
Z-axis 

look at point, GT2-48, 62; GT8-4, 6, 13, 
29 

See also Line of sight 
location equation, GT2-62 
See also Axes; Boundaries, front and back; 

Coordinate system 

Z-boundary. See Boundaries, front and back 

Z-clipping. See Depth clipping 

Z-clipping plane. See Clipping plane 

03$ (initial function instance), TT2-44, 45 

Zooming, TT 4-4 8 

ZROT A TE, F: (intrinsic user function) 
exercise, GT6-21; GT7-15 
summary, RM2-176 

ZVECTOR, F: (intrinsic user function), 
GT6-24; TTl-19 

exercise, GT6-25 
summary, RM2-177 

Reference Materials 


	001
	002
	003
	RM05-000
	RM05-001
	RM05-002
	RM05-01
	RM05-02
	RM05-03
	RM05-04
	RM05-05
	RM05-06
	RM05-07
	RM05-08
	RM05-09
	RM05-10
	RM05-11
	RM05-12
	RM05-13
	RM05-14
	RM05-15
	RM05-16
	RM05-17
	RM05-18
	RM05-19
	RM05-20
	RM05-21
	RM05-22
	RM05-23
	RM05-24
	RM05-25
	RM05-26
	RM05-27
	RM05-28
	RM05-29
	RM05-30
	RM06-000
	RM06-001
	RM06-01
	RM06-02
	RM06-03
	RM06-04
	RM06-05
	RM06-06
	RM06-07
	RM07-000
	RM07-001
	RM07-01
	RM07-02
	RM07-03
	RM07-04
	RM08-000
	RM08-01
	RM08-02
	RM08-03
	RM08-04
	RM08-05
	RM08-06
	RM08-07
	RM08-08
	RM08-09
	RM08-10
	RM08-11
	RM08-12
	RM08-13
	RM08-14
	RM08-15
	RM08-16
	RM08-17
	RM08-18
	RM08-19
	RM08-20
	RM08-21
	RM08-22
	RM08-23
	RM08-24
	RM08-25
	RM08-26
	RM08-27
	RM08-28
	RM08-29
	RM08-30
	RM08-31
	RM08-32
	RM08-33
	RM08-34
	RM08-35
	RM08-36
	RM08-37
	RM08-38
	RM08-39
	RM08-40
	RM08-41
	RM08-42
	RM08-43
	RM08-44
	RM08-45
	RM08-46
	RM08-47
	RM08-48
	RM08-49
	RM08-50
	RM08-51
	RM08-52
	RM08-53
	RM08-54
	RM08-55
	RM08-56
	RM09-000
	RM09-001
	RM09-01
	RM09-02
	RM09-03
	RM09-04
	RM09-05
	RM09-06
	RM09-07
	RM10-000
	RM10-001
	RM10-002
	RM10-01
	RM10-02
	RM10-03
	RM10-04
	RM10-05
	RM10-06
	RM10-07
	RM10-08
	RM10-09
	RM10-10
	RM10-11
	RM10-12
	RM10-13
	RM10-14
	RM10-15
	RM10-16
	RM10-17
	RM10-18
	RM10-19
	RM10-20
	RM10-21
	RM10-22
	RM10-23
	RM10-24
	RM10-25
	RM10-26
	RM10-27
	RM10-28
	RM10-29
	RM10-30
	RM10-31
	RM10-32
	RM10-33
	RM11-000
	RM11-01
	RM11-02
	RM11-03
	RM11-04
	RM11-05
	RM11-06
	RM11-07
	RM11-08
	RM11-09
	RM11-10
	RM11-11
	RM11-12
	RM12-000
	RM12-001
	RM12-01
	RM12-02
	RM12-03
	RM12-04
	RM12-05
	RM12-06
	RM12-07
	RM12-08
	RM12-09
	RM13-000
	RM13-001
	RM13-002
	RM13A-01
	RM13A-02
	RM13A-03
	RM13A-04
	RM13A-05
	RM13A-06
	RM13A-07
	RM13A-08
	RM13A-09
	RM13A-10
	RM13A-11
	RM13A-12
	RM13A-13
	RM13A-14
	RM13A-15
	RM13A-16
	RM13A-17
	RM13A-18
	RM13A-19
	RM13A-20
	RM13A-21
	RM13A-22
	RM13A-23
	RM13A-24
	RM13A-25
	RM13A-26
	RM13B-001
	RM13B-002
	RM13B-003
	RM13B-01
	RM13B-02
	RM13B-03
	RM13B-04
	RM13B-05
	RM13B-06
	RM13B-07
	RM13B-08
	RM13B-09
	RM13B-10
	RM13B-11
	RM13B-12
	RM13B-13
	RM13B-14
	RM13B-15
	RM13B-16
	RM13B-17
	RM13B-18
	RM13B-19
	RM13B-20
	RM13B-21
	RM13B-22
	RM14-000
	RM14-001
	RM14-01
	RM14-02
	RM14-03
	RM14-04
	RM14-05
	RM14-06
	RM14-07
	RM14-08
	RM14-09
	RM14-10
	RM14-11
	RM14-12
	RM14-13
	RM14-14
	RM14-15
	RM14-16
	RM14-17
	RM14-18
	RM14-19
	RM14-20
	RM14-21
	RM14-22
	RM14-23
	RM14-24
	RM14-25
	RM14-26
	RM14-27
	RM14-28
	RM14-29
	RM14-30
	RM14-31
	RM14-32
	RM14-33
	RM14-34
	RM14-35
	RM14-36
	RM14-37
	RM14-38
	RM14-39
	RM14-40
	RM14-41
	RM14-42
	RM14-43
	RM14-44
	RM14-45
	RM14-46
	RM14-47
	RM14-48
	RM14-49
	RM14-50
	RM14-51
	RM14-52
	RM14-53
	RM14-54
	RM14-55
	RM14-56
	RM14-57
	RM14-58
	RM14-59
	RM14-60
	RM14-61
	RM14-62
	RM14-63
	RM14-64
	RM14-65
	RM14-66
	RM15
	RM16-01
	RM16-02
	RM16-03
	RM16-04
	RM16-05
	RM16-06
	RM16-07
	RM16-08
	RM16-09
	RM16-10
	RM16-11
	RM16-12
	RM16-13
	RM16-14
	RM16-15
	RM16-16
	RM16-17
	RM16-18
	RM16-19
	RM16-20
	RM16-21
	RM16-22
	RM16-23
	RM16-24
	RM16-25
	RM16-26
	RM16-27
	RM16-28
	RM16-29
	RM16-30
	RM16-31
	RM16-32
	RM16-33
	RM16-34
	RM16-35
	RM16-36
	RM16-37
	RM16-38
	RM16-39
	RM16-40
	RM16-41
	RM16-42
	RM16-43
	RM16-44
	RM16-45
	RM16-46
	RM16-47
	RM16-48
	RM16-49
	RM16-50

