PS 390 DOCUMENT SET

REFERENCE MATERIALS 5-16

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390 and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

REFERENCE MATERIALS

The Reference Materials RM1-4 and RM5-16 provide reference information for the
user of the PS 390 system. Summaries of the ASCII commands, intrinsic functions,
initial function instances and GSRs are contained in the first part of the volume.
Included in the second part of the volume are sections covering interactive devices,
interfaces and options, host input data flow, system function network diagrams,
diagnostic utilities, system errors and host communications. The final section con-
tains an index to the complete PS 390 Document Set.

RMS Host Communications

This section includes descriptions of the RS-232 specifications and pin
connector definitions, PS 390 transmission protocol, port values and
defaults, and the PS 390 system data reception functions.

RM6 Interfaces / Options

This section contains information about the PS 390/host interfaces.

RM7 Host Input Data Flow
This section covers information on the host input data flow, including rout-
ing functions and routing byte definitions.

RMS8 System Function Network

This section contains diagrams of the PS 390 system function network. The
diagrams show the logical paths of the routing bytes and functions.

RM9 Initial Structures

This section describes initial data structures created at power-up. Configure
mode is discussed and a runtime system is defined.

RM10 Terminal Emulator

This section gives instructions for changing the modes and features of the
terminal emulator by either sending escape sequences from the host,
entering PS 390 commands in the SITE.DAT file, or sending the
appropriate ASCII characters to terminal emulator functions.

RM11 System Errors
This section is a compendium of all user error messages (informational,
recoverable, fatal, and warning). Error messages are listed in numerical
order. The text of the message is given with an indication of common
causes of the error and, where appropriate, ways to correct it.

RM12 Diagnostic Utilities
This section provides a reference for the utility commands that are on the
PS 390 diagnostic utility diskette.

RM13 Interactive Devices

This section describes how the PS 390 interactive devices work and are con-
nected to the system. Interactive devices include a peripheral multiplexer,
keyboard, data tablet, function buttons, control dials and mouse.

RM14 GSR Internals

This section describes the data formats expected by the PS 390 command

interpreter. It is provided for advanced programmers to write their own
GSRs.

RM15 Release Notes

A divider is provided for information supplied with future releases of soft-
ware.

RM16 Index

This section contains an index to the complete PS 390 Document Set.

RM5.

COMMUNICATIONS

RMS. HOST COMMUNICATIONS

CONTENTS
1. HOST/PS 390 INTERFACEttt iiiiiii i 1
1.1 RS-232-C Specificationsottt 3
1.1.1 Signal Definitionsottt i, 4
1.2 RS-232-C Cabling, Connectors and Pins 5
2. PS 390 SERTIAL COMMUNICATION CHARACTERISTICS 6
2.1 Asynchronous Port Defaults i, 7
2.2 Changing Port Statuscoiiiiiiiiiiiiiiiiiiiiinnns 8

2.3 Changing PS 390/Host Interface Values
Using the SITE.DAT Fileottt 11

3. PS 390 TRANSMISSION PROTOCOL AND ERROR DETECTION 11

3.1 PS 390 Transmission Protocolccciiiiiveven.. 12
3.1.1 Data Reception and Transmission 12
3.1.2 Data Transmission Without XON_XOFF 13
3.1.3 Transmission Errorscciiitiiiiiiiiiiieenrnnns 13
3.2 Transmission Error Detection it innnnnn 13
321 Parity Errorsottt it 14
3.22 Framing Errorsouiiiiiiiiiiiiiiiiiiiniiiiinnn., 15
323 0verrun Errors ... vvt ittt ittt it et 16

4. METHODS OF COMMUNICATION OVER THE HOST LINE .. 16

4.1 Data Communications — Escape and Count Mode 17
4.1.1 Escape Modeoitiiiiutiiiiiiininriiiineennnnnss 18
412 Count Modevviiiiiiiii ittt 19
4.2 Using the Routing Bytes for Local Data Flow 20
4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters

in the SITE.DAT Filecciiiiiiiiiiiiiiiiiininnnnnnns 21

5. PS 390/IBM HOST COMMUNICATIONScovvvvinenen 22

5.1 PS 390 Data Communicationo0ettteieennnnneens 22
5.2 Data Destinationscoviieittinneertioonseenonneeannnns 23
5.3 Write Structured Fieldcciiiiiiiiiiiiiiiinanns 23
5.3.1 Programmed Symbols ittt 23
5.3.2 Load Programmed Symbols i, 26
5.4 Configuration of the 3274 Control Unit 27
S.5Data Flow Overviewciiiiiiiieerieinennnneeeeereeennnns 27
5.5.1 Modification of Pool Sizesciiiiiiiininnnnnenns 30
TABLE
Table 5-1. RS-232-C Connector Pin Definitions 3

i

Section RM5
Host Communications

The PS 390 communicates with a variety of host computers by way of communica-
tions interfaces. The standard PS 390 interface is the RS-232-C asynchronous se-
rial communication protocol. Also supported are the Ethernet, Parallel, IBM 3278,
and IBM 5080 interfaces.

This section describes the data flow between the PS 390 and the host processor.
The initial sections introduce some of the basic concepts of data communication,
particularly those directly affecting the interface to be set up between the PS 390
graphics system and the host computer.

1. Host/PS 390 Interface

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390.

The standard data communication interface to the PS 390 is an RS-232-C
asynchronous serial line. The terms “asynchronous” and “serial” refer to
two important communication characteristics.

Binary data may be transferred between electronic devices in “serial”, over
a single line, or in “parallel”, over several lines at once, by changes in
current or voltage. In serial transmission, the bits that represent a character
are sent down a single wire, one after the other. These serial signals are
converted to parallel form at the reception end by shift registers. (In most
data communications applications, serial transmission is preferable to paral-
lel transmission, since fewer wires must be run. However, parallel transmis-
sion is faster, as more data can be sent across the line at once.)

Host Communications

RM5-1

Data transfers may be of a “synchronous” nature, where the exact bit
framing of each byte of information is coordinated for the entire message
by the transmission of two or more synchronization characters at the
beginning of the message. All characters that follow these characters occur
within a specific time frame called a “character time.”

Or, data transfers may be of an “asynchronous” nature, where each
character is self-defined by the use of a start bit and one or more stop bits.
The start and stop bits occur before and after the byte of data. For this
reason, this mode of transmission is referred to as “Start/Stop
Transmission.” In this mode, the arrival time of each character is random.
Each end of the transmission line must know what the transmission rate is
to sample the line at correct intervals following the receipt of a start bit.

Under PS 390 graphic system protocol, the RS-232-C standard interface
sends data signals over a single, serial line using asynchronous transmis-
sion. The PS 390 may also be interfaced to a DEC/PDP11 or a DEC/VAX
host over an asynchronous parallel line.

RS-232-C refers to a standard for interface communication set by the Elec-
tronic Industries Association (EIA). The RS-232-C standard contains:

e The electrical signal characteristics.
e The interface mechanical characteristics.
e A functional description of the interchange circuits.

e A list of standard subsets of specific interchange circuits for specific
groups of communication system applications.

It is important when reviewing specifications for computer/system interfaces
to understand what the various interface leads do, and which are essential
for proper interface between the PS 390 graphics system and the host
computer.

RMS5-2 Reference Materials

1.1 RS-232-C Specifications

The physical connection between the PS 390 and the host is made through
plug-in, 25-pin connectors (Cannon or Cinch DB Series). These connectors
are keyed for 13 pins on the top row, and 12 pins on the bottom row. The
PS 390 ports on the communication connector panel provide the male ele-
ment for the interface. The pin assignments and signal definitions supported
by the PS 390 graphics system are given in Table 5-1.

RS-232-C standard states that the cable between the data communications
equipment should be no longer than 50 feet. However, longer cabling dis-
tances have been used successfully.

For the PS 390 EIA RS-232-C communication ports, a Control-ON (logical
0), or “SPACE” condition exists if the voltage present is greater than +5
volts and less than +25 volts with respect to signal ground. A Control-OFF
(logical 1), or “MARK?” condition exists if the voltage present is less than -5
volts and greater than -25 volts with respect to signal ground. This assumes
that the PS 390 signal ground and the communication data device signal
ground are at the same potential.

Table 5-1. RS-232-C Connector Pin Definitions

PIN # EIA LABEL ABBREV. NAME SIGNAL NAME DIRECTION

1 AA GND Protective ground N/A

2 BA TXD Transmit data To DCE*
3 BB RXD Receive data From DCE
4 CA RTS Request to send To DCE

5 CB CTS Clear to send From DCE
6 CcC DSR Data set ready From DCE
7 AB GND Signal ground N/A

8 CF DCD Data carrier detect From DCE
15 DB TXCA Transmit clock From DCE
17 DD RXC Receive clock From DCE
20 CD DTR Data terminal ready To DCE
24 DA TXCB External transmit clock To DCE

¥ DCE = Data Communication Equipment

Host Communications RM5-3

1.1.1 Signal Definitions

The following are definitions of the RS-232-C signals shown in Table 5-1.

e AA, AB (Protective Ground and Signal Ground) — These two
grounds are electrically independent. Protective Ground connects to
the power ground. Signal Ground connects to the logic ground. No
direct frame grounding occurs at the connector. Strict EIA RS-232-C
standard definitions are not directly applicable.

¢ BA (Transmit Data) — Data from the PS 390 are transmitted on this
line. The signal is generated by the PS 390 processor.

e BB (Receive Data) — Data are sent to the PS 390 on this line. The
signal is passed to the PS 390 via the data communications equip-
ment.

o CA (Request to Send) — This signal is generated by the PS 390 proc-
essor. The output may be programmed to conform with EIA
RS-232-C protocol. Generally, an “ON” CA (request to send) signal
indicates the PS 390 processor is ready to transmit information.

e CB (Clear to Send) — This signal may be generated by data commu-
nication equipment. An OFF condition will terminate data transmis-
sion. An ON condition allows data transmission to resume. If no
connection is made, an internal pull-up resistor will assert this line to
an ON condition (+12V) for non-standard RS-232-C communication.

o CC (Data Set Ready) — This signal may be generated by the data
communication equipment. The function of this signal is controlled
by software within the PS 390 processor. Usually, an ‘ON’ CC (data
set ready) is sent by the data communication equipment to indicate
that it is ready to transmit.

o CF (Data Carrier Detect) — This signal may be generated by the data
communication equipment. ON assertion of this signal allows BB (re-
ceive data) to be accepted by the PS 390 processor. If no connection
is made, this line will be pulled to an ON condition (+12V) to allow
non-standard EIA RS-232-C communication. To disable the BB (re-
ceive data) communication, an OFF condition must exist. Definition
of this pin is software controlled for Port 1 of the PS 390 processor.

RM5-4 Reference Materials

¢ CD (Data Terminal Ready) — This signal is generated by the PS 390
processor and is under software control. When asserted to an ON
level, CD indicates that the PS 390 processor is ready to
communicate.

e DA TXCB (Transmit Clock B) — This signal is generated by the
PS 390 processor. DA provides a timing clock to indicate the center
of each element of data. This timing clock can either be equal to the
transmitted data frequency, or equal to 16 times the data frequency.
DA TXCB is under software control. Port 1 of the PS 390 processor
does not directly generate this signal. It relies on TXCA (transmit
clock A) to generate this clock.

e DB TXCA (Transmit Clock BA) — This input signal is generated by
external transmitting data communications equipment. This clocking
signal input can control the rate at which the PS 390 processor
transmits data out. The ability to use this clock input is software
controlled.

e DD RXC (Receive Clock) — This input signal is generated by exter-
nal transmitting data communications equipment. This clock deter-
mines the rate at which the PS 390 processor receives data. The abil-
ity to use this clock is software controlled.

1.2 RS-232-C Cabling, Connectors and Pins

All cabling and connectors used in the interface between the PS 390 and the
host system must be provided by the user.

A null-modem cable configuration may be necessary to correctly connect
the pin signals through the RS-232-C interface.

Cables and the 25-pin connectors for RS-232-C are available through most
major computer product supply centers.

The cables running from the host to the PS 390 processor should terminate
with a female connector, as the PS 390 data communication ports house
male elements.

The decision to use shielded or unshielded cable is left to the user. Shielded
cable is highly recommended in noisy environments, but typically it has a
higher capacitance per foot than unshielded cable, which may reduce the
operating speed.

Host Communications RMS5-5

2. PS 390 Serial Communication Characteristics

RM5-6

This section describes the serial I/O parameters the PS 390 graphics system
has defined for each port. The defaults (values assigned to each port when
the system is powered on in standard configuration) for the data character-
istics are listed in this section. For information on how these values can be
configured in a bootable file on the PS 390 graphics firmware diskette, refer
to section 2.3. The following information applies to PS 390 graphics sys-
tems asynchronous transmission:

e The baud rates available on Ports 1, 3, and 4 on the PS 390 are:
300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 9600, and 19200.
Port 5 runs at 19200.

e The PS 390 may be configured for 5, 6, 7, or 8 bits per character,
although the host port must pass all characters of the 7-bit ASCII
character set (for example 7 or 8 bits per character).

e Only one start bit will be accepted (and generated) by the PS 390.

e The PS 390 will accept (and generate) 1 or 2 stop bits.

e The PS 390 and the host can communicate using an XON_XOFF
protocol. In this protocol, control sequences are generated that tell
the sender (either the PS 390 or the host) when to start (XON), or
stop (XOFF) data transmission. These control sequence values de-
fault to CTRL S (DEC 17 character) for XON, and CTRL Q (DEC 19
character) for XOFF. Under XON_XOFF, bit stripping is controlled
by the /MASK_TO_7 BITS option.

Additionally, there are available values for data characteristics that
are unique to the XON_XOFF protocol. These values and their defi-
nitions are shown in section 2.2.

e The PS 390 will run with even, odd, or no parity. Parity is a charac-
ter checking device that operates by adding non-information bits to
data, making the total number of ones in each grouping of bits either
odd for odd parity, or even for even parity. This permits error detec-
tion for an odd number of incorrect bits in each group.

Reference Materials

e Each port may be configured to cause a trap to the PS 390 Debugger
in the event a break is detected on that port.

e The PS 390 may be set to hold a maximum number of 127 buffers to
hold data transmitted from the host. The default is eight buffers.
Each buffer may be set to a maximum of 32,767 bytes, with the
default at 48 bytes per buffer. This option allows the user to specify
the amount of memory space to be allocated for data reception from
the host. The user may specify the number of free input buffers
below which the host will be sent an XOFF to suspend transmission.
The number of free buffers above which the host will be sent an
XON to resume transmission may also be specified.

2.1 Asynchronous Port Defaults
The defaults for Ports 1, 3, 4, and 5 are:

e Port 1 — Host Port - 9,600 baud, 8 bits per character, 1 stop bit, no
parity, no_mask to 7 bits, transparent mode. Sends all XON_XOFF
protocol characters, ignores incoming XON_XOFF (no_hear_XON),
8 48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled.

e Port 3 — Debug Port - 9,600 baud, 8 bits per character, 1 stop bit,
no parity, non-transparent mode that accepts all XON_XOFF proto-
col characters, 8 48-byte buffers with 0 STOP buffers and 1 GO
buffer, and debug break enabled.

e Port 4 — 300 baud, 8 bits per character, 1 stop bit, no parity, non-
transparent mode that accepts all XON_XOFF protocol characters, 8
48-byte buffers with 0 STOP buffers and 1 GO buffer, and debug
break disabled

e Port 5 — Multiplexer Port - 19,200 baud, 8 bits per character, 1 stop
bit, no parity, transparent mode that does not recognize XON_XOFF
protocol characters, 8 48-byte buffers, and debug break disabled.

The status of all the ports may be verified by using the SHOW INTERFACE
command.

Host Communications RMS5-7

2.2 Changing Port Status

The following command sequence can be used to change any of the default
values on Ports 1, 3, 4, and 5. These new values must be within the accept-
able values for data characteristics as given in the previous section. The
port values are changed by entering the command:

SETUP INTERFACE <name>/<options>;

where name is the port being reconfigured, options refers to the option
setting the communications interface. The command:

SHOW INTERFACE <name>;

where <name> is the port, can be used to check the values of a given port.
In using these commands, the names of the ports are as follows:

Port 1 is designated port10
Port 3 is designated port30
Port 4 is designated port40
Port § is designated port50

The available options for SETUP INTERFACE are:

/SPEED=<baud rate> — input and output communications speed between 50
and 19200.

/EVEN_PARITY — establishes monitoring of parity on input and generation
of parity on output, using EVEN parity.

/ODD_PARITY — establishes monitoring of parity on input and generation
of parity on output, using ODD parity.

/NO_PARITY (default) — terminates the monitoring of parity on input and
generation of parity on output.

/BITS_PER_CHARACTER=<number of bits per char> — sets the width of a
character in bits (normally 8, including 7-bit ASCII).

/STOP_BITS_PER_CHARACTER=<number of stop bits per char> — sets
the number of stop bits for each character (normally 1).

/XON_XOFF — enables the PS 390 to use XON_XOFF protocol to tell the
host (or device) on this port to resume or suspend transmission. Default is
to this protocol.

RM5-8 Reference Materials

/NO_XON_XOFF — disables the use of XON and XOFF protocol from the
PS 390 to the host (or device) on this port to resume or suspend transmis-
sion.

/HEAR_XON — enables the use of XON_XOFF protocol for the host (or
device) on this port to tell the PS 390 to resume or suspend transmission.

/NO_HEAR_XON — disables the use of XON_XOFF protocol for the host
(or device) on this port to tell the PS 390 to resume or suspend transmis-
sion. Default is NO_HEAR_XON.

/BREAK — enables the receipt of a BREAK on this port to call the ROM
debugger.

/NO_BREAK — disables the receipt of a BREAK on this port to call the
ROM debugger. Default is NO_BREAK.

/SPEED_EXTERNAL — sets the port speed to that of an attached modem,
rather than from an internal clock. (This applies only to those ports with full
modem support.)

/NO_SPEED_EXTERNAL — tells this port to use its internal clock, at the
speed set by /SPEED=. Default is NO_SPEED EXTERNAL.

/BUFFERS=<number of buffers> — specifies the number of buffers in the
input pool. Default is 8 buffers.

/BUFFER_SIZE=<number of bytes> — specifies the size of each buffer in
the input pool. Default is 48 bytes.

NOTE

If input is received continuously, buffers will be filled
until they are full. The buffer size will, in this case,
specify the quantum of input being processed by subse-
quent functions.

If input is received at much less than the maximum
baud rate, buffers will be released to waiting functions
after 2 character times without receipt of a byte. In this
case, the strict product of <buffer size> and <number
of buffers> will not be the true amount of input
buffering.

Host Communications RM5-9

/N_STOP_BUFFERS=<number of buffers> — specifies the number of free
input buffers below which the sender is told to suspend transmission. This
has no effect unless the port is in /XON_XOFF mode. Default is 1 Stop
Buffers. This is for host to PS 390 communication only.

/N_GO_BUFFERS=<number of buffers> — specifies the number of free in-
put buffers above which the sender is told to resume transmission. This has
no effect unless the port is in /XON_XOFF mode. Default is 2 Go Buffers.

The following four commands allow the user to specify non-standard
X ON-X_OFF characters:

/SEND_XON_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 17) to be sent out from the PS 390 to
tell the sender to resume transmission. This has no effect unless the
port is in /XON_XOFF mode.

/SEND_XOFF_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 19) to be sent out from the PS 390 to
tell the sender to suspend transmission. This has no effect unless the
port is in /XON_XOFF mode.

/OBEY_XON_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 17) that, when received by the
PS 390, allows the PS 390 to transmit.
/OBEY_XOFF_CHAR=<char code> — specifies the character code as
an integer (defaults to decimal 19) that, when received by the
PS 390, stops the PS 390 from transmitting.

/MASK_TO_7_BITS — specifies that incoming bytes are to have their 8th
bit, normally the parity bit, stripped off.

/NO_MASK TO_7 BITS — (default) specifies that incoming bytes are not
to be masked.

/BREAK_TIME=<break time> — specifies the length of time in centiseconds
that an outgoing BREAK is to be held. This defaults to 10. Maximum = 127.
(Section 183 contains instructions for defining the break key.)

/ASYNCHRONOUS — normal mode of operation.

All commands are terminated with a semicolon (;) and a carriage return.
The menu available with the SHOW INTERFACE command lists only those
parameters that are relevant to the interface.

RM5-10 Reference Materials

2.3 Changing PS 390/Host Interface Values Using the SITE.DAT File

Port values may be changed to suit specific site requirements in two ways:
the default values can be changed by using the SETUP INTERFACE
commands in configuration mode, or the SETUP INTERFACE commands
can be entered into the SITE.DAT file. If the value needs to be changed for
just one session, so that the port will go back to its default values during the
next boot-up, the SETUP INTERFACE command can be entered during a
PS 390 session. Should the new port value need to be installed more
permanently, with the new value booted instead of the default, the SETUP
INTERFACE commands should be entered into the SITE.DAT file.

Any of the SETUP INTERFACE commands can be entered in the
SITE.DAT file, using the following forms:

SETUP INTERFACE portn/option;
SETUP INTERFACE portn/option=<p>;

where n is the port name, /option is the name of the feature being set, and
<p> is the specified parameter.

Examples:

SETUP INTERFACE port10/XON_XOFF;

would enable Port 1 to use XON_XOFF protocol to tell the host (or device)
on this port to resume or suspend transmission.

SETUP INTERFACE portl0/SPEED=2400/XON_XOFF;

would set Port 1 to a baud rate of 2400 and enable XON_XOFF protocol.

3. PS 390 Transmission Protocol and Error Detection

This section details the transmission protocol necessary to receive and trans-
mit data over the asynchronous interface. It also provides a brief description
of the three types of errors detected by the Enhanced Programmable Com-
munications Interface (EPCI) status register.

Host Communications RM5-11

3.1 PS 390 Transmission Protocol

The PS 390 graphics system uses an XON_XOFF handshaking protocol to
maintain orderly data communication over a full duplex, asynchronous,
serial line between itself and the host computer. The receiver of XOFF
(decimal 19) is to suspend transmission as soon as possible. The receiver of
XON (decimal 17) is to resume transmission until the next reception of
XOFF. The PS 390 will suspend transmission within one character time and
can accept up to one buffer full of characters after XOFF is sent.

The following equation shows how many bytes of an empty buffer are left
when an XOFF is sent. An XOFF will be sent to the host that many bytes
before input buffering is exhausted.

((Number of STOP buffers +1) * Number of bytes/buffer) - 1

3.1.1 Data Reception and Transmission

The PS 390 defaults to eight 48-byte buffers available to receive data from
the host computer. Transmitted characters are placed in the first free buffer
starting in the first position and continuing to the end of the buffer. When
the buffer is full, the next available buffer is used. If all allocated buffers
are full, the PS 390 will drop everything off the line until a buffer is free.

When the XON_XOFF protocol is used, the PS 390 will send an XOFF to
the host (sender), when the number of free buffers is equal to the number
of STOP buffers. The PS 390 will send XON to the host when the number
of free buffers is equal to the number of GO buffers.

An XOFF received on the host input port disables data transmission from
the host to the PS 390 until the PS 390 sends an XON. If a host transmis-
sion aborts before XON is transmitted, or if the host transmits XOFF as
part of the LOGOFF message, it is necessary to manually clear the XOFF
condition. XOFF is cleared and the port re-enabled for transmission when-
ever a SETUP or SHOW INTERFACE command is executed.

Rebooting the PS 390 will also clear the XOFF condition.

Default for the PS 390 is NO_ HEAR_XON_XOFF.

RM5-12 Reference Materials

3.1.2 Data Transmission Without XON_XOFF

Operation without support of the XON_XOFF protocol is discouraged. If
XON_XOFF protocol is not available on the host, it is up to the user to
ensure that an adequate number of buffers are allocated for data reception
on the PS 390.

3.1.3 Transmission Errors

If the XON_XOFF protocol is not used, and the number of available buffers
is not large enough to hold the incoming data from the host (sender), data
characters will be lost. These lost characters are detected and counted by
the input routines. The SHOW INTERFACE command will give the current
error counts for each port.

Messages which characterize lost input characters are:

e PARSER SYNTAX ERROR due to bad syntax generated by the lost
characters

o ERROR E 12 *** Message which function cannot handle

3.2 Transmission Error Detection

The Enhanced Programmable Communications Interface (EPCI) used on
PS 390 Ports 1, 3, 4, and 5, is able to detect three types of transmission
errors. When one of these transmission errors occurs, a bit is set in the
EPCI status register where it can be read by the graphics control processor.
The errors detected are:

e Parity errors (if parity is enabled)
e Framing errors

e Overrun errors

The SHOW INTERFACE command will display all errors detected from the
last PS 390 boot.

Host Communications RMS5-13

RM5-14

3.2.1 Parity Errors

The parity bit follows the character bits in data transmission. If there are 7
bits/characters, and parity is enabled, the total number of bits is 8 with the
parity bit being the last transmitted bit. Ignoring the start bit and stop bit(s),
the letter “A” when transmitted with EVEN parity would appear as follows:

Isb msb
1 2 3 4 5 6 7 |party
i 0 0 0 0 O 1 0

where “Isb” is the least significant bit and “msb” is the most significant bit.

The same character transmitted with ODD parity would look like this:

Isb msb
1 2 3 4 5 6 7 party
1 O 0 0 0 0 1 1

EVEN parity sets the state of the parity bit such that the number of ones in
the 8 bits is an even number.

ODD parity sets the state of the parity bit such that the number of ones in
the 8 bits is an odd number.

If parity is enabled, the EPCI determines the parity of the received character
and compares this parity with the parity bit transmitted. If they do not
agree, the parity error flag is set in the EPCI status register.

From the example of the character “A”, it can be seen that if the host and
the PS 390 do not agree on the parity being used, every character received
or transmitted will generate a parity error.

Reference Materials

This vertical error detection scheme can only discern an odd number of bit
errors. For example, if bits 2 and 3 are erroneously changed to ones, so that
the character transmitted appears to be:

Isb msb
1 2 3 4 5 6 7 oparty
1 i1 0 0 0 1 0

EVEN parity — the parity bit is correct for the character received (“G”) but
incorrect for the letter sent (“A”).

The PS 390 supports ODD and EVEN parity, or NO parity.

3.2.2 Framing Errors

“Framing” is the process of determining which group of bits constitute a
character. An error in this process is called a “framing error”. Characters
are framed by the start bit and the stop bit(s). Looking at the character “A”
again (assume one stop bit):

MARK (1)

of 1 0‘0\0'0'01 o 110

start 1 2 3 4 5 6 7 parity stop start Isb
Isb msb

The line is held in a MARK condition with current flowing when characters
are not being transmitted. If for some reason the EPCI failed to detect the
start bit when the signal goes to an ON, or SPACE condition, it is possible
that it would assume bit 2 was the start bit, and bit 3 was the Isb, etc. At the
time EPCI expected to see a stop bit, it would instead see the Isb of the next
character, and a framing error would occur. When a framing error does
occur, the EPCI sets the framing-error flag in the status register.

Host Communications RMS5-15

3.2.3 Overrun Errors

An overrun error occurs when the JCP fails to read the characters in the
holding register of the EPCI before the next character received is placed in
the holding register. When this happens, the EPCI will overwrite the con-
tents of the holding register with the next character. This overwrite causes
the overrun error flag to be set in the EPCI status register.

4. Methods of Communication over the Host Line

Section 183 discusses the various methods of data communication that can
be used over the PS 390/host line. These methods include standard ASCII
transmission or the GSRs, an E&S supplied host-resident software package.

The GSRs perform all prepackaging of data prior to sending it in binary
format to the PS 390. The routing bytes required to channel the data to the
proper PS 390 system function are contained within the routines. The rou-
tines build data ‘packets’ that include all the necessary information to proc-
ess the data, and are in a form that is immediately acceptable by the PS 390
system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
packets. These packets may be in either ASCII or binary, and for asynchro-
nous communication, may be in either count or escape mode. Over the
parallel interface, these packets are sent only in count mode.

When communicating with standard ASCII transmission, the PS 390 system
functions (data reception functions, such as F:DEPACKET) that interface
between the system and the hardware are responsible for building the data
packets. The routing bytes that are used to channel data to the appropriate
PS 390 system function must be supplied. A brief description of the routing
bytes and their channels can be found in Section RM?7.

The following sections deal with the use of count and escape mode in asyn-
chronous data transmission.

RMS5-16 Reference Materials

4.1 Data Communications — Escape and Count Mode

Data is sent to the PS 390 from the host as a stream of bytes. These bytes
must contain information that is intelligible to PS 390 system functions
about the nature of the message and where it is to be sent internally in the
PS 390. The descriptions that follow describe the data transfer modes used
in host/PS 390 communication and briefly describe the system functions
that accept, examine, and route data internally in the PS 390.

Data may be transported over an asynchronous line in two modes: escape
mode or count mode. The mode used is dependent on the application and
can be selected by the user. Count mode is the faster mode, as the system
function, F:DEPACKET, that converts a stream of bytes into a stream of
packets does not have to check the identity of each byte.

A system function, F:.DEPACKET, accepts data input to the PS 390 from
the host. F:-DEPACKET converts a stream of bytes from the host into a
stream of Qpacket/Qmorepacket. A Qpacket is a block of character data
that can be sent from one PS 390 function to another. When data comes
from the host through the F:DEPACKET function, it contains a byte for
routing control. A Qmorepacket is a Qpacket that when coming from the
host through F:DEPACKET, has no routing byte (i.e. a Qmorepacket has
the same destination as the previous Qpacket.)

There are two instances of the F:DEPACKET function. The first,
DEPACKETO0, accepts all incoming bytes from the host on input <1>. It
channels all incoming data through to output<2> until it sees the Start of
Packet (SOP) character <ACK> (ACKNOWLEDGE — decimal character
code 06, ASCII tF) that signifies the start of a count mode packet.

All the data sent through to output<2> of DEPACKETO0 are sent to input<1>
of the second DEPACKET function, DEPACKET20, which then checks all
incoming data for the SOP character <FS> (Field Separator — decimal char-
acter code 28, ASCII 1\) that signifies the start of an escape mode packet. It
will also route all incoming bytes out output<2> until it sees the <FS> char-
acter. Output <2> of DEPACKET?20 is connected to ES_TE1 (the screen).

These instances of F:DEPACKET are described below. The characters that
are used to signify SOP (<FS> and <ESC> characters) may be changed by
the user by sending the new characters to the correct inputs of
F:DEPACKET.

Host Communications RM5-17

RM5-18

4.1.1 Escape Mode

In escape mode, F:DEPACKET looks at every byte to see if it is a SOP
character, which by default in escape mode is the ASCII Field Separator

<FS> character, or an <ESC> character.

Qpacket —¥<1>

Qpacket —¥»<2>C “FS’

Qpacket ——®»<3>C “ESC’

Qboolean —»{ <4>C ESC mode

DEPACKET20

(F:DEPACKET)
(escape mode)

<1>

<2>

— Qpacket,
Qmorepacket
(after 1st “FS7)

—» Qpacket,
Qmorepacket
(before 1st “FS”)

In escape mode, F:DEPACKET assumes that a packet is defined as either:

FS packet contents

or

Input <4> = FALSE

ESC FS packet contents

Input <4> = TRUE

where <FS> represents the SOP character that is by default the decimal

character code 28 (1\).

The definition of FS (one character) is taken from a single character

Qpacket on input <2>.

In the first mode (input <4> = FALSE), any FS or ESC characters within the
message packet must be escaped by prefixing them with an ESC character
(i.e. the <ESC> character, decimal character code 16 (1tP)). Thus <ESC><x>

becomes <x> for all values of x.

Reference Materials

In the second mode (input <4> = TRUE), only ESC characters within the
message packet must be escaped by prefixing them with an ESC character.

The ESC character is defined by a single character Qpacket on Input <3>.
Output <1> outputs Qpacket and Qmorepackets of any messages after the
first SOP control character is received. Output <2> outputs Qpackets and
Qmorepackets of any messages before the first SOP control character is
received. A Qpacket is output on Output <1> each time a SOP control char-
acter is received. Otherwise Qmorepackets are output.

Output <2> is normally connected the Terminal Emulator Input and Output
<1> is connected to F:CIROUTE for both Count and Escape Modes.

The routing path will be used for data transfer until the multiplexing func-
tion sees another SOP character, and a packet with another routing byte.

4.1.2 Count Mode

In count mode, once the SOP <ACK> character is seen, F:DEPACKET
merely counts the bytes until the count is reached. No attempt is made to
decode any bytes until the count is reached. Because F:DEPACKET does
not examine the data, it is faster than escape mode, where all bytes are
checked by F:DEPACKET to see if they are <FS> or <ESC> characters.
Also, count mode allows for the use of any <SOP> or <ESC> sequences as
part of the data.

Qpacket —¥<1> <1>—"Qpacket,
Qmorepacket
Qpacket ——® <2>C “SOP’

Qinteger — ™ <3>C # count bytes <2>[—" Qpacket,
Qmorepacket
Qpacket ——» <4>C base char (between packets)

Qinteger —»{ <5>C radix
DEPACKETO

(F:DEPACKET)
(count mode)

Host Communications RM5-19

In count mode, F:DEPACKET assumes that a packet is defined as:

SOP count bytes packet contents

where SOP represents the Start of Packet character that is by default the the
ASCII <ACK> character, decimal character code 06 (tF).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on input
<3>). Each count byte is offset from the base character (the base character
is taken from a single character Qpacket on input <4>). After the base char-
acter is subtracted, each count byte becomes a digit of the message count
whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F:CIROUTE, which performs the actual
routing.

4.2 Using the Routing Bytes for Local Data Flow

For asynchronous interfaces, routing can be done in a number of different
ways; but every data transfer must be preceded by an <ACK> character
(count mode) or an <FS> character (escape mode), and a routing byte that
gives the destination of the data. If ASCII data are to be sent from the host
to the Command Interpreter (in the Escape Mode), the file containing the
Command Interpreter routing bytes must precede the data, and must con-
tain the following characters:

tN\0 where t\ is a CTRL backslash

To route the line from the Command Interpreter back to the Terminal Emu-
lator, a file should contain the following sequence:

>

RM5-20 Reference Materials

Routing back to the Terminal Emulator is essential if the Terminal Emulator
is being used to download the file. To get the host prompt back after down-
loading the file, the line must be routed back to the Terminal Emulator
mode (t>). If the routing byte was not sent, the following command can be
entered from the keyboard in command mode to route back to the Terminal
Emulator:

SEND TRUE TO <1>RESET_TE;

If the Escape Mode <FS> characters appear as data in the PS 390 command
file, they must be prefixed by the escape sequence DLE (tP). The 1P (deci-
mal 16), when immediately preceding the FS characters, will identify the
characters as being non-muxing data to be passed along.

The 1\ <FS> character, the tF <ACK> character, and the escape sequence
(1P) can be changed by the user in the SITE.DAT file. This should be done
when the sequences used with the PS 390 are incompatible with the host or
have another site-specific value.

4.3 Changing the <ESC>, And/Or <SOP> Sequence Characters in the
SITE.DAT File

If the <ESC>, and/or <SOP> sequence characters used by E&S are incom-
patible with the host, or have another site-specific value, these characters
can be changed by sending new values for these sequences to an instance of
F:DEPACKET in the PS 390.

These new values must be included as PS 390 commands in the SITE.DAT
file that is loaded during the system power-up. These commands should
never be sent down from the host or entered in from the PS 390 keyboard
during host transmission.

NOTE

If the <ESC> or <SOP> characters are changed in the
SITE.DAT file, this change must be incorporated in the
GSRs, as these routines use the same sequences for
routing.

Host Communications RM5-21

The PS 390 command for changing the escape mode <SOP> (default is
<FS>, decimal character code 28, ASCII character ‘t\’) character is as fol-
lows:

SEND CHAR(I) to <2>DEPACKET20;

where I is the integer value corresponding to the new <SOP> character in
escape mode.

The PS 390 command for changing the escape mode <ESC> character is as
follows:

SEND CHAR(I) TO <3>DEPACKET20;

where 1 is the integer value corresponding to the new <ESC> sequence.

The count mode SOP character, (ASCI <ACK>, decimal character code 06,
ASCII tF), can be changed by sending the new integer value to
<2>DEPACKETO0:

SEND CHAR(I) TO <2>DEPACKETO;

5. PS 390/IBM Host Communications

The following sections describe the data flow between the PS 390 and IBM
host processors. An introduction to the basic concepts of data communica-
tion, particularly those directly affecting the 3278 interface, are discussed
first.

5.1 PS 390 Data Communication

It is intended that all communication between the IBM host and the PS 390
use the cross-compatibility software provided to the user as the Graphics
Support Routines (GSRs). The GSRs reside on the host as either FORTRAN
subroutines or Pascal procedures, and are provided to support the interface
between the IBM 3274 Controller and the PS 390 Graphics System. The
PS 390 is an ASCII system, expecting and generating ASCII characters. The
IBM 3274 Controller is an EBCDIC system and is unable to generate the
ASCII characters expected by the PS 390. The GSRs provide an interface
that allows the two systems to respond to each other. Data that affect mes-
sages and message routing internally in the PS 390 are embedded with the
software communication routines and are, for the most part, transparent to
the user.

RM5-22 Reference Materials

5.2 Data Destinations

Data going from the host to the PS 390 have two possible destinations: the
PS 390 Command Interpreter (CI) or the PS 390 Terminal Emulator (TE).
Data for the CI can be initiated with a GSR or specific ASCII commands.

There are several PS 390 system functions that pass and route data through
the PS 390, prior to the command interpreter. These functions, and the data
paths, are discussed in section 5.5 and in Section RM7. The format of data
expected by the CI is given in Section RMI14.

5.3 Write Structured Field

Graphics data intended for the CI are sent from the host to the PS 390 using
a special 3278 command called Write Structured Field (WSF). The WSF
command is normally used by the IBM 3274 Controller to create
non-keyboard type symbols for use in business graphics applications. All
non-WSF commands cause the terminal emulator to perform like a 3278,
but Evans & Sutherland has reserved the use of the WSF command to
transfer graphics data, because the Load Program Symbols option of the
WSF command allows binary data to be sent unchanged to the PS 390. The
use of the WSF command requires the 3274 to have support for
Programmed Symbols, an option of Configuration Support C, in the 3274
Control Unit. When the GSRs are used, the PS 390 will appear to the
graphics application exactly as it would in any other environment. The
communication routines of the software will insert the user data in a WSF
buffer, and perform all necessary data transfers with the 3278 Terminal
Emulator.

If the GSRs are not used, the user will need to have some understanding of
how Programmed Symbols work and how the 3274 sends the symbols to the
3278 to understand how the WSF data buffers are built. A detailed
description of Programmed Symbols and their use to transfer graphics data
is provided below.

5.3.1 Programmed Symbols

Each symbol displayed on the 3278 screen is composed of illuminated dots
made from a nine-by-sixteen dot matrix. The Load Program Symbols
function of the WSF command allows users to specifically illuminate any
particular set of dots in the matrix to create their own special symbol by

Host Communications RM5-23

setting the corresponding bit in the matrix description to a one. The matrix
is described by overlaying it with a set of eighteen eight-bit bytes
(9x16=8x18=144).

The following diagram shows how each character matrix is overlaid with
eighteen bytes.

CHARACTER MATRIX
(nine dots wide)

byte
byte
byte
byte
byte
byte
byte
byte 10

byte 1

0 00N O bk W

* %X % X X ¥ X %
* R OX K K X X ¥
¥ X O X X X X *
® X X X X X X %
* X X X X X X *
¥ X X X X X %X x
%® X K X X K ¥ *
X K X K X X ¥ %
¥ O X X X X ¥ x

(sixteen
dots long)

byte 11
byte 12
byte 13
byte 14
byte 15
byte 16
byte 17
byte 18

byte 2

¥ XK X X X X X ¥
¥R X X X X X %
* X X K X X X %
¥ X X X X X K %
% XK X X X X X %
% X X H X ¥ % %
* X X X X X X ¥
% X X X X ¥ ¥ *
¥ X X X X X X ¥

The data that describe the matrix are placed in a WSF buffer in the follow-
ing order.

byte 1 byte 2 byte 3 .« v v .« « . . . byte 18

|********|********I********| s, I********I

When the 3274 gets the matrix that was sent in the data stream described
immediately above, it converts the data back to a format that looks more
like the original matrix. The data are sent in sixteen groups of two bytes
each. The first seven bits of the first byte are unused, and the last bit of the
first byte is from byte 1 or 2 of the bytes sent. The second byte is made
directly from bytes three through eighteen.

RM5-24 Reference Materials

Data sent from 3274 to the 3278

X X X X X X X |1 =% *x k% % ¥ % %k x *k %
X X X X X X X 1 x * * *
X X X X X X X *
byte 1 byte 3
or . . . through
byte 2 byte 18
L x x X X X X X « | [x % % % ox x % x x|

The PS 390 receives graphics data passed to it from the 3274 in the format
shown above. In order for the PS 390 to avoid the difficulty of reassembling
the bytes received, it simply discards the first byte of each of the sixteen
two-byte pairs for each programmed symbol. This means that the first two
bytes in each programmed symbol sent to the PS 390 cannot be used to
contain data.

The graphics data are placed in each program symbol matrix in the follow-
ing manner:

| <——-unused > < graphics data ——————— > |
byte 1 byte 2 byte 3 byte 18
| XXXXXXXX | KXXKXXKXX | *krskksksn | | sokskokokkon |

The 3274 expects the WSF buffer to contain one or more complete program
symbols. If the PS 390 graphics data does not fill a complete symbol, the
full eighteen bytes of the symbol must be sent, but the remainder is ignored.
To know exactly how much graphics data is present, the first two bytes of
the graphics data should contain the length of the actual data following. The
length does not include the length itself, the first two unused bytes in each
program symbol, or any unused bytes following the data in the last program
symbol. The length is used only by the 3278 Terminal Emulator, and is
external to the graphics data and any multiplexing scheme that may be
employed.

The following diagrams show the way the data would be placed in pro-
grammed symbols in the WSF buffer.

Host Communications

RM5-25

length

bytes unused of data <——- data —————> unused <—- data
in each —>| 1 2 3 | 4 5] ... | 18 1] 2 3
symbol
end of data —-> unused <—--extra at end—>
...] 18 17 18112 |2 | ...] 18

Note that an extra program symbol was added at the end of the buffer. It is
required by the PS 390 to verify that the previous symbol (the last symbol
containing data) was received correctly. Note also, that the data did not
completely fill the last symbol containing data, but that the full symbol was
built.

5.3.2 Load Programmed Symbols

The Load Programmed Symbols option of the WSF command that is used to
load the symbols described in preceding paragraphs is invoked by inserting
control information after the WSF command code and before the pro-
grammed symbols.

The control information contains the following data:

1. A length that includes itself, the control information and all symbols,
including the extra one at the end.

2. An identifier that indicates that this is a Load Programmed Symbol
request.

3. A flag byte that specifies which options are used.

4. Fields that identify the symbol set that the symbols would be loaded
into if this were an actual 3278. This information is not used by the
PS 390 and can be any legal value.

5. A starting code point identifier. This value would ordinarily be used
to match data from the host to the specific symbol the user wants
displayed. The PS 390 uses this value to indicate that the following
symbol will contain the data length in its first data bytes and that the
first data byte will be a code indicating which output port of the
function F:CIROUTE the data will be sent from. A value of X’41’
must be used.

The control information can be a constant that is inserted in the buffer, with
the length updated to specify the total programmed symbols length.

RMS5-26 Reference Materials

The final buffer might look like this:

WSF LPS symbol
command ID set IDs unused data unused data
| | I I l (5-18) | l (3-18)
IF3I wllwl I 06 l 41 | Cc2 41|02|uu|uu|d1|d1[** ...l**l quluul**l...]
WSF flag required data
length code pt length
remainder extra
data unused data of symbol end symbol
| I I |
I...l**luuluul** **lrrl. ..]rrleeleel. . .]eel

5.4 Configuration of the 3274 Control Unit

To support the transfer of graphics data to the PS 390 using the Write
Structured Field command with the Programmed Symbols option, the 3274
Control Unit that supports the interface to the PS 390 must have the Con-
figuration Support C option. Also, the 3274 Control Unit must be custom-
ized with the following options:

162 — Structured Field and Attribute Processing (SFAP)

163 — Extended Character Set Adapter
The PS 390 should be included in the total number of devices that
require SFAP. Note that this number is a maximum. When the 3274
is initialized, special control blocks needed for SFAP are allocated as
needed on a port by port basis beginning with Port 0 until this
maximum is reached. SFAP devices attached to subsequent ports will
be unable to use the SFAP features until the control unit is
re-customized.

164 — Programmed Symbols

Refer to the appropriate IBM documentation for detailed instructions on the
3274 customization procedure.

5.5 Data Flow Overview

The following diagram illustrates data flow between an application program
residing on the host system and the PS 390 system function that initiates
graphics commands. In the diagram, routines or functions that pass and/or
route data are enclosed on four sides. The format that data are passed in is
shown in curly braces.

Host Communications RMS5-27

PS 390/IBM 3278 Interface Data Flow Diagram

l APPLICATION]

[PROCEDURAL INTERFACE]

{ tokens }

[low-level routines J

{ packets }

{ WSF commands }

{ WSF buffer } { TE data }

|
ng_?m;;_lm]

{ TE data/expanded WSF commands }

(o)

|

{ packets } { TE data }
O]
{ packets }

|

{ Qpackets/Qmorepackets } { Qpackets/Qprompts }

LF: READSTREAM I
T

{ tokens }

RM5-28 Reference Materials

There are low-level communication routines supporting the GSRs that use
formatting routines to package data for transportation. These routines build
WSF envelopes and put the data in outbound PS 390 buffers.

The CI expects “tokens” that consist of a size, a data type, and a value. For
a given PS 390 command, the type of command is implicit in the type of
one of the tokens. The CI accepts a stream of tokens until it has enough to
carry out the command. The GSRs can be thought of as “mailing” these
tokens to the CI. The tokens are deposited into several layers or “Qpackets”
and “Qmorepackets” of nested envelopes for transportation purposes, but
when they reach the CI, they are almost identical to what was built by the
GSRs.

A WSF command contains the tokens that are to be sent to the CI. Routing
information is included at the head of the WSF command. In the standard
PS 390 system, the PS 390 General Purpose Interface Option (GPIO) card
takes the routing information and the first 238 bytes of data in a WSF
command and puts them into a Qpacket. All subsequent bytes of data in
that WSF command are put into Qmorepackets, signifying that the same
routing information is to be used. Whenever a WSF command is filled to
capacity, or a routing change is required, the current WSF is terminated and
a new WSF command is started by the low-level routines. The IBM system
I/O services maintain a WSF buffer. The size of this buffer is configurable
but generally defaults to a value specified by the routines sending the data.
More than one WSF command can go into the buffer and the buffer may be
split into smaller pieces when it is sent by the communications access
method.

All data bound for the CI are packaged in WSF envelopes. Upon receiving
information from the host, the GPIO is able to differentiate graphical data
from TE data by the WSF command; anything not in a WSF command is
TE data and goes directly to the (Host) Screen Buffer.

Data intended for the CI are passed through a PS 390 routing function,
F:CIROUTE. This function expects routing characters at the start of each
Qpacket it receives.

The software on the host processor uses routing bytes that will channel the
data to the proper PS 390 system function. The routines build the data
packets with the routing data embedded in the WSF envelopes. The GPIO

Host Communications

repacks these data and passes them, along with the routing information, to
the PS 390 system function, F:CIROUTE.

In all cases, F:CIROUTE expects to receive data in a specific format called
Qpackets. This function, and an overview of local data flow in the PS 390 is
discussed in Section RM7.

5.5.1 Modification of Pool Sizes

The PS 390 function SETUPIBM allows the number of empty packets in the
input pool for the PS 390/IBM interface system to be modified. The function
has one input queue and no output queues. The input queue accepts integer
values. At system configuration, the pool size is specified as 256. An exam-
ple of PS 390 commands used to change the pool size for the IBM system
is:

SEND FIX(64) TO <1>IBMSETUP1;

SEND FIX(99) TO <1>IBMSETUPS3;

RM5-30 Reference Materials

INTERFACES/

OPTIONS

RM6. INTERFACES AND OPTIONS

CONTENTS

1. INTERFACES .. ittt it iiiiinnnennennnens

1.1 Asynchronousttt rnnnneeennnens
1.2 Parallel ...t i it i et et it e et e e
1.3 Ethernetttt ittt nneeeonneennneeennes
I 530V K 32 &
1.5 IBM 5080 .. .ci ittt ittt tiiteeeeeeeeeennnnneneennn

2. MULTIPLE GPIO INTERFACEScciiitieinnnnnenn.
2.1 Interface Configuration Files,
2.2 Ethernet/DECNET Interfacec.oiiiiiiiiiiinnnnenns
3. SYSTEM OPTIONS ..ttt iiinntienneennnnennnns

3.1 Memory Card Optioncovviiiiiiiiininntrnerennnnns
3.2 User-Written Function Facility,
3.3 Advanced 3D Visualization Firmware

TABLES

Table 6-1. Possible GPIO Combinations
Table 6-2. Required Interface Files oot

NN N = =

AR W

NAaAN &

Section RM6
Interfaces and Options

This section summarizes the interfaces and options available for the PS 390. Multi-
ple interfaces, switching between interfaces, and the interface configuration files
are also described. (Users manuals supplied with each interface contain detailed
customer installation requirements and operating instructions.)

1. Interfaces

One of the most important considerations in setting up the configuration
characteristics of a PS 390 graphics system is the interface between the host
computer system and the PS 390. The standard data communication inter-
face to the PS 390 is an asynchronous serial line. Several optional interfaces
are available for the PS 390.

1.1 Asynchronous

Under PS 390 graphic system protocol, EIA RS-232-C is the standard
interface used for serial asynchronous communication. With the exception
of interface cabling and connectors, no additional hardware is required to
interface the host with the PS 390. For a discussion of RS-232-C
specifications and PS 390 asynchronous communication protocols, refer to
Section RMS5.

1.2 Parallel

The following optional interfaces are also available but may require addi-
tional interface hardware on the host and the PS 390.

The PS 390/UNIBUS™ Parallel Interface supports high-speed data transfers
to and from a DEC/VAX™ host computer running the VMS™ operating
system at 3.2 or higher.

The parallel interface uses the normal command processing mechanism in
the PS 390 to construct graphic data structures and establish local action
operations. When integrated with the PS 390 Graphics Support Routines,
the interface provides an even greater increase in data throughput. It is
especially useful in applications requiring a close coupling with the host
computer.

Interfaces and Options

RMo6-1

1.3 Ethernet

The PS 390/Ethernet™ (DECNET™) Interface is a high-speed communica-
tions interface connecting a PS 390 graphics system to a DEC/VAX™ or
MicroVAX™ host computer with a VMS™ operating system 3.2 or higher.

The PS 390/Ethernet (TCP/IP) Interface is a high-speed communications in-
terface designed to connect a PS 390 graphics system to a DEC/VAX host
computer running under UNIX™ BSD 4.2 or higher.

The Ethernet interfaces allow a PS 390 to link to an Ethernet data commu-
nications network. They are intended for use in office automation and dis-
tributed data processing environments to allow a selected group of comput-
ers to communicate with each other.

1.4 IBM 3278

The PS 390/IBM™ 3278 Interface allows a PS 390 graphics system to be
connected to an IBM host using an IBM 3274 channel control unit to provide
high-performance graphics functions while attached in the same manner as
the 3278 terminal. The PS 390 supports an IBM terminal emulator when
configured with this interface option. All the basic functions of the 3278 are
fully supported, including basic attribute byte and keyboard functions.

1.5 IBM 5080

The PS 390/IBM™ 5088 Interface provides a high-speed, channel connect
attachment between a PS 390 graphics system and an IBM host computer
via an IBM 5088 controller.

The PS 390/IBM™ 5088/V.35 Interface provides remote attachment by con-
necting the PS 390 to a V.35 broadband modem that is attached to the IBM
5088 controller.

Both interfaces support the 5080 Capability option. This firmware option
allows the user to perform most IBM 5080 operations and to run programs
from the PS 390 that were written specifically for the IBM 5080, such as
CATIA™ and CADAM™.

These interfaces allow the PS 390 to be connected to any IBM host comput-
er using a standard IBM 5088 channel control unit. The PS 390 can be
configured with other IBM 5080 graphics terminals on the same IBM 5088
channel control unit.

RM6-2 Reference Materials

2. Multiple GPIO Interfaces

The PS 390 runtime firmware supports up to two GPIO interfaces of
differing types as well as asynchronous communications installed in the
same system. You received two firmware diskettes with your system: a
runtime system diskette preconfigured for your site with interface
communication defaults and an interface diskette for modifying system
configuration. By renaming files on the diskettes you can change your
default to configure a different interface when the system is booted. This is
explained in section 2.1.

It is also possible to change the configuration without rebooting the PS 390
because the runtime determines which of the interfaces are in the system
and initializes them all. This is achieved through runtime identification of
up to two GPIOs at the first two addresses assigned to GPIO interface cards.
(Refer to section 2.1 for an example of changing interface communications
protocol without rebooting.)

There are some limitations to the use of multiple GPIOs. First, there cannot
be two of the same type GPIO in the same system. Second, if the IBM 3278
option is included, then only one additional GPIO may be added. The 3278
GPIO running under previous PS 300 systems is not supported under the
PS 390. Table 6-1 shows the possible GPIO combinations.

Table 6-1. Possible GPIO Combinations

1St GPIO 2nd GPIO
IBM 5080
IBM 3278 Parallel
(enabled on JCP)
Ethernet
Parallel
IBM 5080 Ethernet
IBM 5080
Parallel Ethernet
Ethernet LA oo
Parallel

Interfaces and Options RM6-3

2.1 Interface Configuration Files

The PS 390 runtime is distributed on two diskettes and contains more files
than previous PS 300 runtime diskettes. This is to allow for the many differ-
ent combinations of interfaces possible with the multiple GPIO operation.

When the PS 390 is booted, the system attempts to read the file,
INTFCFG.DAT. If this file is not found, the system will boot with the
default interface of asynchronous, and display the message INTFCFG.DAT
NOT FOUND. To boot with a default interface in addition to asynchronous,
the appropriate interface file must be renamed to INTFCFG.DAT. This can
be done using the Diagnostic Disk Utility program described in Section
RM 12 Diagnostic Utilities. For example,

Rename ETHERNET.DAT INTFCFG.DAT

would rename the default interface to Ethernet so that, at boot time, the
interface communications protocol for Ethernet would be configured.

The following is a list of the interface file names on the diskette and which
interface each file sets up.

ASYNC.DAT Asynchronous communications

IBM3278 DAT IBM 3278 communications

IBMS5080.DAT IBM 5080 communications

UNIBUS.DAT Parallel interface communications
ETHERNET.DAT Ethernet communications (for Ethernet or DECNET)

If your system hardware supports two interfaces, you can change the inter-
face during a session without rebooting by sending the name of the interface
file to input <1> of RDCFGS$. For example, the following command,

Send “UNIBUS” to <1>RDCFG$;

would change the communications protocol to the UNIBUS Parallel inter-
face to allow parallel communications.

Table 6-2 shows the files contained on the PS 390 diskettes which are
needed for a particular interface.

RM6-4 Reference Materials

Table 6-2. Required Interface Files

PS 390 File Name Async | 3278 | 5080 Unibus | Ethernet
mmdd390J.EXS vV 2 v 17
ACPCODE2.DAT v 24 v v
ASYNC.DAT
CHARFONT.DAT
CIRCLE.DAT
CONFIG.DAT
DINTCODE.DAT
EINTCODE.DAT
ETHERNET.DAT
FCNDICTY.DAT
FCNTABLE.DAT
FONTS5080.DAT
GPIOCODE.DAT
HMSCODE.DAT
HMSCOL.DAT
HMSVEC.DAT
IBM3278.DAT
IBMS080.DAT
IBMASCII.DAT
IBMFONT.DAT
IBMKEYBD.DAT
INITACP.DAT
INITGPIO.DAT
LINLUT.DAT
LUT.DAT
MSGLIST.DAT
OVERLAY2.DAT
PARSECODE.DAT
PARSDICT.DAT
PINTCODE.DAT
SINE.DAT
THULE.DAT
UNIBUS.DAT

ASAYAYA

v v

\

X
\
AYAYAN

AWA
ANA
ANA
NN
AYAYAYANANA

ANAY

ANAYA
\

ANARA
ANAYA

AYANANANAN

AYASANAY
AYAYAYAYA
AYASANAY
AYAYANA

AYAVARASANA
AN AYANAYANANANANANANAY
AYAYASAWAWA
AYAVAVANANAN

ASAYARANATANAY

\
\
AYAY
\

ARAY

Interfaces and Options RMe6-5

All of the interface files assume that the keyboard used is a VT100-style
keyboard. A FALSE is sent to the keyboard handler (either IBMKBD or
KBHANDLER) at the end of the file. To use an IBM-style keyboard, the
command in the interface file must be changed to send TRUE to the key-
board handler. For example,

Send True to <2>Kbhandler;

would accomplish this.

2.2 Ethernet/DECNET Interface

The GPIO interface hardware for Ethernet and DECNET is the same. The
only difference is the microcode that is loaded into the GPIO. Therefore,
both microcode files are distributed on each diskette. The runtime attempts
to load a file named EINTCODE.DAT. Ethernet is the default on the disk-
ette. The file for the DECNET interface is DINTCODE.DAT. If your system
supports the DECNET interface, DINTCODE.DAT must be renamed to
EINTCODE.DAT to load the DECNET microcode into the GPIO. This can
be accomplished by using the Diagnostic Utility program.

NOTE

For additional information on customer hardware and
software installation requirements for the various inter-
faces refer to the Customer Installation and User
Manuals supplied by E&S.

3. System Options

3.1 Memory Card Option

Up to two 1 MByte cards can be added to expand the standard JCP resident
2 MByte of memory. The cards can be installed in the PS 390 at the factory
or can be installed at the customer location.

3.2 User-Written Function Facility

The User-written Function Facility is designed to allow programmers to
write and use new functions to suit individual applications and needs.

RM6-6 Reference Materials

All PS 390 graphics systems include a set of intrinsic functions which allow
complex graphics actions to be accomplished locally within the PS 390.
These functions are the user interface between the programmer, display
structures, interactive devices, and high-performance graphics facilities in
the PS 390.

User-written functions expand the capabilities of the PS 390 by giving the
programmer the power to create unique functions, or to combine large net-
works of intrinsic functions into a single function that performs all the same
operations, yet is much simpler in design and operation.

A user-written function is written on the host computer as a procedure for
the Motorola 68000, in Pascal or Motorola 68000 assembly language.
Through the cross-compiling and linking software, the procedure is
translated into S-record host files which are then transferred to the PS 390
memory. The function is identified by its user-given name and stays in
memory as long as its name remains there. Once installed in the PS 390,
User-Written Functions can be used in the same way as the intrinsic
functions.

3.3 Advanced 3D Visualization Firmware

The Advanced 3D Visualization Firmware option allows users to create ob-
jects as polygons and to display hidden-line removed and sectioned views of
polygonally-defined wireframe objects. Smooth-shaded renderings of po-
lygonal models can be displayed that take advantage of numerous attribute
settings for color, multiple light sources, specularity, transparency, and
polygon edge enhancement. In addition the PS 390 can be used as a frame
buffer for the display of host-generated, run length-encoded images.

Interfaces and Options RMe6-7

HOST INPUT

DATA FLOW

RM7. HOST INPUT DATA FLOW

CONTENTS

1. DATA RECEPTION AND ROUTING NETWORK
2. ROUTING BYTE DEFINITIONS ..ottt

3. OUTPUT PORT DEFINITIONS OF CIROUTEO(
INCOUNT MODE ...t it ittt

TABLE

Table 7-1. Routing Byte Definitionsot

Section RM7
Host Input Data Flow

This section discusses host input data flow in the PS 390, and includes a descrip-
tion of the functions that direct data flow, the routing functions and routing bytes,
and the channels that data can be routed to. Function names that appear in capital
letters are instances of intrinsic system and user functions. The intrinsic system and
user functions (also capitalized) appear with the “F:” prefix.

1. Data Reception and Routing Network

Data enters the PS 390 through one or more input functions. In systems
with the asynchronous interface, an instance of F:DEPACKET (an intrinsic
user function) receives host input and passes it to an instance of
F:CIROUTE(n) (an intrinsic user function). There are two instances of
F:CIROUTE(n), one for count mode (CIROUTEOQ) and one for escape mode
(CIROUTE20). CIROUTEQ examines the first character it receives (the
character following the count bytes in count mode or the character following
the <FS> character in escape mode) to determine where the packet message
is to be sent. This character is the routing byte, and is used to select the
appropriate channel for the data in the PS 390. Data channels may include
lines to the terminal emulator, the command interpreter, the disk writing
function, the raster function, and other intrinsic functions. A base character
(defined on Input <2> of CIROUTED) is subtracted from this routing charac-
ter before it is used to select the output channel. The base character de-
faults to the character zero (“07).

All other interfaces send host input through special interface functions
which pass it to a count mode instance of F:CIROUTE(n). For the Parallel
and Ethernet interfaces, the input may be routed through CIROUTE30. For
the IBM 3278 and IBM 5080 interfaces, the input is routed through
CIROUTEO. CIROUTEO, CIROUTE20, and CIROUTE30 are functionally
identical.

The definitions for the inputs and outputs of intrinsic system functions and
intrinsic user functions are described in Section RM2. Escape and count
modes are discussed in Section RMS.

Host Input Data Flow

RM7-1

2. Routing Byte Definitions

The value of the routing bytes are given in the following table.

Table 7-1. Routing Byte Definitions

CIRQUTEO Routing Channel

Output Byte Parameter Description

1 N/A N/A Reserved

2 N/A N/A Reserved

3 0 1 Parser/Command Interpreter

4 1 2 Command Interpreter via READSTREAM
5 2 3 6-bit binary

6 3 4 Reset network for GSRs

7 4 5 Unused

8 5 6 Unused

9 6 7 Download channel for user-written

functions

10 8 Raster

11 8 9 Polygon data

12 9 10 Unused

13 : 11 Write ASCII data to diskette
14 ; 12 Close file

15 < 13 Write binary data to diskette
16 = 14 Unused

17 > 15 Channel to Terminal Emulator
18 ? 16 Host message control
19 @ 17 Reserved
20 A 18 Unused
21 B 19 Raster

NOTE

(‘) is the HOST MESSAGE request channel. An
ASCII (1 or 2) requests a single message or multiple
messages from HOST MESSAGEB.

RM?7-2 Reference Materials

3. Output Port Definitions of CIROUTE(in Count Mode

Output<1> sends out invalid routing bytes.

Output<2> sends any message that does not have a valid routing character.
The message is sent to BADROUTEQ (an instance of the intrinsic user func-
tion F:CONSTANT), and the message “Routing byte not in acceptable range”
is output as an error message to ES_TE1 (an instance of the intrinsic system
function F:VT10) for screen display.

Output<3> sends messages to H CHOPO (an instance of the intrinsic user
function F:CHOP). This function chops and parses the input command
language generating proper messages for H_CI0 (an instance of the intrinsic
user function F:CI). Once chopped and parsed, the message is sent on
output<1l> of H_CHOPO to the Command Interpreter. H CHOPO is also
responsible for generating syntax error messages. ASCII commands should
be sent through this output.

Output<4> sends messages to READSTREAMO (an instance of the intrinsic
system function F:READSTREAM), which converts an eight-bit stream into
arbitrary messages. GSR data is sent through this output or through
output <5>.

Output<S> sends messages to SIXTOEIGHTO (an instance of the intrinsic
user function F:CVT6TOS) to convert six-bit to eight-bit binary. The mes-
sage is then sent to READSTREAMO. GSR data is sent through this output
or through output <4>.

Output<6> sends messages to RESET RS1 (an instance of the intrinsic user
function F:RESET) and RESET_HOST MESSAGE!1 (an instance of the in-
trinsic user function F:CONSTANT), which causes the functions accepting
GSR data to be reset to the initial state.

Output<7> is unused.
Output<8> is unused.

Output<9> sends messages to SREC_GATHERO (an instance of the intrinsic
user function F:GATHER_GENFCN), which loads user-written functions.

Output<10> sends messages to RASSTRO (an instance of the intrinsic
system function F:RASTERSTREAM), which processes pixel input using
run-length encoding of data from the host.

Host Input Data Flow RM?7-3

Output<11> sends messages to HPOLYSTRO (an instance of the intrinsic
user function F:HOST POLY), which processes polygon fill commands sent
from the host.

Output<12> is unused.

Output<13> sends messages to WDAO (an instance of the intrinsic user
function F:WRITEDISK), which writes ASCII commands to the diskette.

Output<14> sends messages to WDACO (an instance of the intrinsic user
function F:CHOP), which is used to interpret the command to close the file
sent via outputs <13> and <15> to the diskette.

Output<15> sends messages to WDBCO (an instance of the intrinsic user
function F:CHOP), which is used to parse binary data that will be written to
the diskette.

Output<16> is unused.

Output<17> sends messages to ES_TE1 (an instance of the intrinsic system
function F:VT10), which processes input for the PS 390 display screen.

Output<18> sends messages to TRIGGER_CONVBI1 (an instance of the in-
trinsic user function F:CHARCONVERT). TRIGGER_CONVBI1 then sends
messages to input <1> of HOST MESSAGEBI1 (an instance of the intrinsic
user function F:FHOLDMESSAGE).

Output<19> sends messages to WHO1, which sends a package with the sys-
tem information back to the host. This output has been retained for com-
patibility. It is not used on the PS 390.

Output<20> is unused.

Output<21> sends messages to RASSTRO (an instance of the intrinsic sys-
tem function F:RASTERSTREAM), which processes pixel input using run-
length encoding of data from the host. This output is the same as output
<10>, and has been retained for compatibility purposes. Output <10> is the
recommended output since it is controlled by the Qprompt flushing mecha-
nism by default.

RM7-4 Reference Materials

NETWORK

Section RMS8
System Function Network

The block diagrams in this section show the data flow through the PS 390 system
function network. Function names that appear in capital letters in this section are
instances of intrinsic system and user functions. The intrinsic function appears
with the “F.” prefix. Intrinsic function descriptions are provided in Section RM2.

o Figure 1 shows the initial read floppy network created in the PS 390.

o Figures 2 through 26 show the host input data flow through the sys-
tem function network for a PS 390 with an RS-232 interface to a host
computer.

e Figures 27 through 49 show the host input data flow through the
system function network for a PS 390 with an IBM host computer.

e Figure 50 shows the host input data flow through the raster system
function network for a PS 390 with a DEC host computer.

o Figure 51 shows the host input data flow through the raster system
function network for a PS 390 with an IBM host computer.

e Figures 52 through 55 show the host input data flow through the
DEC Parallel Interface function network.

A discussion of specific instances of functions that direct data flow in the PS 390
will be found in Section RM7, Host Input Data Flow.
NOTE

The diagrams in this section reflect Al firmware
functionality. We will be distributing updated diagrams
in a future release.

System Function Network RMS-1

8NN

SIDLIIDIN 20Ud49foy

paiva.) yiompaN Kddoj ppay [v1ul 06€ Sd "1-8 24n8]

Name:

Initial functions created by FCNINIT.PAS

FileName: ATINIT

Date Modified: 13-FEB-1984 10:33:55.43

Prefuix:

Total Pages: 1 Parent

Fi_

PageNo: 1

RFCI#cO» D;_____4£>r0»kfﬂlf

cowrre i o,

F: READDISK

Br#et> E>
s2¢<1> Bn
83875 B
Befcl> b
851> b

' rrcHoPe
F:CHOP

W N -

1
2
3

RFCT¢

F:CI”

Y RFMLE

N WAL N -

F: INFORMATIOf

4

1AS0S18

@«;)ou
®(1»02#
@q)o:ﬂ‘
@(/»0!#
@q;zﬁ#

YAOMION UONIUN] WISKS

E8NY

(20vfuarur z£z-Sy) Mol vIvq Induf ISOH 06§ Sd "T-8 2481y

Name: SYSTEM1. DAT Prefix: F1_
FileName: AIC
Date Modified: 30-MAY-1984 14:53:24,98 Totel Pages: 25 Parent: -- PageNo: |
1AS0519
—
F26_ Py 25
HNisc.
¢} SERRORST
F20 Pg S £2, Pg 2
F25_ Pg 24 JE.Persing.Floppy, Hardbopy, PC Errors. Set Ports
- TE £
Clear_labels, Nessege_Display N CI3ESITEL <O>ERRORSO cD>ERRORSD < 1-£S_TES
— CIICLEAR,_ cI>3FLABELO C12FLABEL < 15ERRORSO e] >ERRORSO
I OLABELT-81 cl130LABEL CIO0.H_CID, CIO0,H.CI10,H_CI20¢%>
1385677117 ¢1508ET1] <2:PORTS0¢ ¢ 2>PORTS504
cFsTABLETOUT?! cl>TABLETOUT?.
CI>O0FFBUTTONLIGHTS? ¢l >OFFBUTTONLIGHRTST
L)

8Ny

(20vfuo1u] 7EZ-SY) Mol vIDQ mdu] 1S0[f 06§ Sd "£-8 24mBL]

Name: Errors, Set Ports Prefix: F2_
FileName: AIC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages:2S Parent: 1 PageNo: 2
777, P 3
Errers
h <0s£a00050 «0-ERRORSO <15ES_TED , 1ESTES
<) 2£RR0RSO €12 ERRORSO)
{cro.n.c10.8.c12004s £10,K_£10,4_C120¢4)
iz 7 ¢
Set ports
}.:»mrnv €2:PORTSOS «22£S_TET s

SIDLIIDI 20Ud49foY

YLOMIN UOOUN] WIISKS

S-8WYH

(o0nfaoru 7£Z-SY) Mol vivg ndul SO 06€ Sd “#-8 24ns1d

Name: Errors
FileName: AlC

-»
Date Modified: 3D0-MAY-1984 14:53:24,98

Total Pages: 25

Prefix: F29_

Parent: 2 PageNo:

3

£RR0R30¢0s By—R>c0s0FNLS
0> ERPORSD
> 0 £pr08S0 rege
ERRPORI
£RRORSD l 5 -
r‘ €1 >ERRORSO " ; ’rx conaure '
F1 INFORMAT10]
4 73
NEJO, H_CIO0, N_L120<4 :lm"" -
4 —X . : > fDers030
£1CBROUTE
reue
INFORNAT 101
1 I‘_)
BFCIpe2s @____) N :
F1CBRDUTE

#raLecss B3

RENLS ¢2> E}

RriLeds Br—

NI

12ES_YE2 A
—

Iz (14
corp083404 2 ”
24 .
[3) &1
cgr4gs3i0g € "
&L (4}
cgssocieog " "
*l "
€0r90Z3 404 < €t
I n
" "
#dsco 0rp01240g " M
&)
L L)
4 t
. *)
w2 $ $
111 * *
b . 180471354 . 14047135145
" 1}) 1} t
" $0v3 %4 9ol ied
st
"
" ¥05190d 27
1
”
4
L}
[3 14 124
* 114 (13
1] L1 [11
1] L1 L1
- € L 11 L 1}
z 1804 wu-.hn o m
Ve 11) " L
V057404 " ;"
(1) L1}
11 11}
k) a3
" 1n
LD L1}
] +
L] 1
4 z
L] L)
9 5
* 1]
, 1w0ami3sia] , 18047138 1]
* e _I||||||||-L T) L}
Ho1tvusoant s #0531 40¢ F0iid04
| N L vy
Vizi=szeis !
fas
ecocr
p toNebeq g :jusdeyq Gz :sebeyq [ejo} B6'bZ €S bl $8HI-AVH-QE P21L1pOW 23e(Q
Jlyv P2weNa2[1
TZ14 X13244 s}40d 28 tauey

Figure 8-5. PS 390 Host Input Data Flow (RS-232 Interface)

Reference Materials

RMS8-6

YAOMION UO1IOUN] WAISKS

L8Ny

(20nfao3u] Z£2-S¥) MOl DIDQ IMdu] IS0 06€ Sd "9-§ 24N

Name: TE
FileName:

,Parsing,Floppy,Hardcopy.,DC
AlC

Prefix:

F20_.

Date Modified: 30-MAY-1984 15:43:00,43 Total Pages: 25 Parent: 1 PageNo: 5
NCIIES_TET
, /" N\
£2, fg 6 s Pg 1% ras Pg 23
JOevioce control Terainel Esulfotor Hardcopy
}""““"' CI>FLABEC <15 C13KBHAND <1)PLOTSTA CTIPLOTSTART?
<J2DLABELS-87 CIsDLABEL +2:PORTSO¢ | N eries 100 1> CHOPO 1SIHEPIPT
\ll)ﬂ.f['fl ¢120SETIT ¢! CIIFLABELOY L/ J’ CI>FFPLOTT
(tla rasLeTOUTT 12 TABLETOUTT «SsHEPIPY I
genorraarmn I§KTS? <1>OFFRUITONL 16HTST <IIFFALOTE
, «120CIN5p
) Ps I35]
Disk Aecess Netwerk ‘
| 124Da0 c0s£RRORSO 'Ot[RROk50<
€1HDACO €13 ERRDR,
sewkoeso £11 Ly 14 l 15ERRORSO
s
| (1H0BLG e1s0CINSO N Lhep/Cl & Campany (4
c1>C10 crrcto coseoroRsy || CI0. M. CI0. H_C120¢4»
« 1> CNOPO C1ICHDPG ¢ 1>ERRORSO || J '?»Pal'?'é'vl/
€)IN_THOPO CIIH_THOP C10.KM_C10.
rio, P 22

IIES_TES

crrNROT

) >HOSY_NESSAGER?

1> HDAD

#ho, Howt_Neveap

LRy 4]

€l HOST_WESSASERT

c1rupaco ||
10800

88Ny

S]DIIIDN 20U42f2Y

(20vfudru] 7EZ-Sy) Mol viIvq mduf IS0 06€ Sd "L-8 24Nl

Name: Bevice control Prefix: F7_
FileName: Al1C
Date Modified: 30-MAY-1984 14:53:24.98 Tots]l Pages: 25 Parent: 5 PageNo: 6
v Py 7
Device outpwt
\ 2srca2eL07 «ISFLABELOT <1s0c5A0 |
g""’“”“"’ < €IIDLABEL ¢1500580
}"‘”’”” C1sDSETIE <)s0CSCO
Ellt"ﬂli’ﬂdr’ 11 FABLEY «F>0C5F0
1. OFFBUTTONLIGHTS) ;
N CISOFFOUT 4> TABLETT |
{ [7) e 13
Dovice input
] cIsDIALS)
. 1s8UTTONSIN)
— €2sTABLETING
2 FPABLETING
|
i
re Pp 17
Dotans
N crrocsi0 1 r1oKBNANDLERT A
Ne—] rl:0C580 €1:014L 587
| eroesco erszorrons
N €120CS00 <22 TABLETE
c1o0CSEC 1,058
N\ crs0csF0 c2.p0R7500 2> PORTSO4 4
}i"”‘”’" «130CINSG <1sPORTSA-
I3 7 12
Pore Funotione
<13PORTSA <f "‘""””{
1084 N @,,,”,

YAOMION UONIUN WasKs

6-8NWY

(oonfaoruy Z£2-SY) Mol vivq nduf ISOH 06§ Sd "8-§ 24n8Lf

Name: Bevice output Prefix: F3_
FileName: AlC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages: 25 Parent: 6 PageNo: 7
715, 7o ¥
Koyboard output(lobeis
}""“”“” C1sFLABELOT ©150CS5A0 -rwt.na{
yaz) Pe ¥
Dials oviput
}'7’“"5"'" CIIOLABEC 100580 12005604
¢130SET11 1s0SETIT -
Fis. P2 10
Teblet § Butten autput
/d»nlLt!ﬂuH €12 TABLET <¢1)005C0 €<11BCSTO0A
}flrﬂ’f’””ﬁﬁl 18501571 CIADFFBOT <120CSFO «1,0C5F0
43 TABLETING <) TABLETINY

0I-8W

SIDLIDIDIN 20Ud43foy

(9opf101u] TEZ-SY) MOl DIDQ INduf ISOH 065 Sd 6-8 24nSL

Name: Dlals output

FileName: AlC
Date Modified:

30-MAY-1984 14:53:24,98

Total Pages: 25

Prefix:

Parent:

F14_

7

PageNo:

8

SF:oraser

100580 4
9

p
gLasLLlr
1oDLABELI-8) - -
< H ”
o5LI11 I DIALLABEL
\ e1s05£711 « .
JrioiaLseY
DLABEL2Y
e 1)
osEr2) 3 FiIDIALLABEL
—— e
SriorALsET
oLASELIT
| — | H
03ETS) 3 F DIALLABEL
A s M 1
TFLDIALSET
DLABELYY
1] A
o5ET41 1F:DIALLABEL
—— —
2F)DIALSEY
oLA8ELS)
| CR— t
2
J—— . DIALLABEL
——— e
IFiniALsET
3 DLABELS}
) SURS— | } L S ——
F:DIALLABEL
D3ET8
h—_—_— A ———
SFrorALsEY
oLABELY Y
N L O —
$FiDaLLABEL
p3ErZI .
N ———— e’
irioraLser
oLasELE)
| S—— | L S —_
oscT81 3F1DIALLABEL
D e |]

YAOMIDN UOTIOUNS WISKS

[T-8WY

(o0nfa03u] ZEZ-SY) MOl DIDQ AUl 1S0H 06 Sd "01-8 24n31

Name: Keyboard output(Labels) Prefix: F15_
FileName: AlC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages: 25 Parent: 7 PageNo: 9
FLABELSS
1 1
2r.FRETLABEL rLABELS)
) T €1 DLSA0
reapEL2s 3 F 1 FREYLABEL
1 1
IriFKEYLABEL FLABELYI
' L}
FLABELIL 1F:FETLASEL
* 1 L
3P FREVLABEL reasee 101
1]
FLABELST TF:FREYLABEL
1]
IrerkevoaBeL FLABELI 1Y
1 »
FLABELST 3F 1 FREYLABEL
1 1
2P FREYLABEL FLABELIZ!
1) 1
FLABELST z(: FRKEYLABEL
1 1]
IFOFREYLABEL
FLABELT!
1 L
IriFrEvLABEL
FLABELD?
cI>FLABELOY! v T
F1FLABELD
.

I8Ny

SIDLIDIDIN 0UL2f2Y

(200f123u] 7E2-Sy) Mol vIDQ Indu] 1SOH 06€ Sd "T1-§ 24nSi]

Name: Tablet & Button output

FileName: Al1C

Prefix: F146_

Date Modified: 30-MAY-1984 15:43:00.48 Total Pages: 25 Parent: 7 PageNo: 10
\ <75 TABLETOUTI
h
OFFBUTTONLIGHTST
\ < 720FFBUTTONL IGHTS) 1> DESCO
> ¥ 1 {
F:OFFLIGHTS32
ONBUTTONLIGHTS !
1 1
2F:ONL1GHTS32®
TABLETOUT I
; ; <1,0C5F0 4
F:BITPADOUT 2 K
\ 4> TABLETINT

YLOMION UOIIOUN WAISKS

E1-8NY

(20vfao1uf TEZ-SY) Mol vIvQ Induf IS0[06 Sd TI-8 24nS1d

Name: cfens Prefix: F4_
FileName: AlC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages: 25 Parent: & PageNo: 11
ocinso
___Jl 1 — CIIRBRANDLER!
F1DCOECODE |
N A «I.DIALSS
H L ofs wnawsu&
: ~ 2 TABLETINT)
’
L1 S
[}} ™ ~\,
oesa0
1500540 - - 12054
X,
L /13 bcouTsuBroRy
oc580
1:00580 1 4
2. acoutsuspoblr
TESTT
1500560 - -
—1?rocoutsuarah
ocs00
\fIJUC.fpﬂ 1 N/
"4 ? 3
4 F: BCOUTSUBPOR{T
T
<1050 ' ' o
4§ ———{2r: ocoutsusrok
pesre
\ <1:005F0 . —_)
Vv
__ f ¢ ocoursusroblr
&fllﬂflﬂfﬂ / L r})’“’fﬂ’_{
4 4 ht

NS

INIT_PORTSS0

1

F:NOP

t

rl»Pﬂﬂ’!d-f"(

rI-8IWY

SIDLIGIDIN a0Ud49faY

(o0vfuo1u] 7£7-SY) Mol viIvQ Induj 1S0L 06§ Sd "E1-8 4N

Name: Port Functions Prefix: F5_
FileName: AiC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages:25 Parent: 6 PageNo: 12
-
PORISES
[T Y 1 'l’(PFOﬁSO/
Vg N
3 F: 0CsETSUBPORI
PORISCS N
1} [} 0
PORISAS Flxea¢oe) b_:r-ntsnsunpoir“_\ M
\ <7>20RTSA-F4) T I, : X
N
t £12(2900) ———2¢, pesersuapabr— : "
' ’ 12
s 1] Ak
» 1] e
£ " (13
. " "
L3 {13 ”
" (3] "
" " "
” L1 20
13 i1 i1}
.- 11 22
s ”
" it}
"” mw
" n
" 22
2
t 4
2 Va 7 <
\ N [AN
PORTSF& 1
1 1
1x(9400) 7 0cseTsusrol) 4 22
PORISOS "
1 o/]
PORTSSS riocseTsun N H
1 [] . .
b3 s
FLx2¢00) —— r:ocseTsusPOR— ; M
L] ? i1}
s L[] ”
L3 \d ”
7 " 12
1] n (13
i 133 .
10 9 ”
" " .
12 s 113
"3 " 2.
" ” 2
"% w 22
" "
1k 20
1 0
" 22
20
21
22

YAOMIAN UonIUN] WaISKS

SI-8WYH

(20vfuarup z€z-8y) Mol vivq Indu] IS0 06§ Sd “#1-§ 241

Name: Device input
FileName: AlC
Date Modified: 30-MAY-1984 15:43:00.48

Prefix: Fé6_

Total Pages:25 Parent: 4 PageNo:

13

¢ 2)TABLETINT

OIALST
\fl)DIALSI
1 1
V 2 2
F:BIALSIN 3
4
5
IS
7
8
BUTTONSINT
\r/JBI.Iffah'SINI :)
>

2. BUTTONS32 °

TABLETINI
1

@« 1sPICK_LOCATIONT

((4) TABLETIN?

IFiBITPADIN

4

NN -

9I-8IWY

SIDLIIDIN 2UILIfoY

(20vfudpup 7£2-SY) Mol vIDQ Induf 1S0H 06 Sd "SI-8 2481

Name: Terminal Emulator Prefix: F8_
FileName: Al1C
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages:25 Parent: 5 PageNo: 14
REYBOARD!
1 1
—
iNOP CHAR(17)
\ < 2>xanancLER? raraNDeER! De1s01e
] 1 r SETUPT &
, 2 2 i)
BATS TULY B . .
N b — 3F1TEDUP H
s] 4 .
i3 s £ 13
7 b} SE— & .
tJ | | S, 7 ?
] * L] .
|| | SE— i\
||—\ 18 l"
2
1i»Fi.i7757iﬂ71’/
£2 1 [IIUPG‘
230015 B> N 1 Y o
‘o, b—:r.u-::unun: < {1209
4
1]
.
£3_1E1
\Cl'[!_'!l f 3 'Ilfll’flﬂlr
*rivTio 2 N
M FXETSI
RENL s N
ters r— s f Y
F:NOP
RENL# 2>
RENLE e3> SPECKErS)
N— 1
F:NOP
V4
J
CHARC2T)R[; IN'KCHAR(27)BENAR(10)8 'PS300 P5. VOS5 ' SCHARCIOJECHAR(I3Z)
'JJNZ'PIPI‘}
rI)FFPLOT !
7

YLOMION UONIOUN,] WIISAS

LI-8NY

(20nfaoru Z£Z-SY) Mo vivq mduf ISO[f 06€ Sd "9I-§ 24ndLf

Name: Disk Access Network Prefix: F9_
FileName: Al1C
Date Modified: 30-MAY-1984 14:53:24,98 Total Pages: 25 Parent: 5 PageNo: 15
1 R
RECNOPS 0> P fﬂ)(P’UPSUJ
erze
"S17E ¢ f— t ! LD« 1,01 CHOPS
F:READBISK
wois archopse2s B MLl
3 (REXHAT
F 1 HOGMERORY) 't errocInso
Flxe-1) 2 2 4
J H&I—)———B,r- sYNCC3) ¥
READBINARY 20830
v ; " : erscl0
FiREADDISE 2} F:READSTREARS
RORESETO
L 1
FiRESET ?
REAASCITT
) «1:¢m0P0 4
F:READOISK °
READ_CAT? or¢
Y T A " 1s4_tHore 4
FrNOP F:RCADDISK
N < 138040
v N\
\ s 4040 ':”“ - [o2e -
4 FiCHOP : e WRITEDISK
4
wosco ¥08C0 0> [—’ w0850 w282
N ¢ 140800 T) ;) 0
I

a

Fixco)

‘ F:CHOP

FiNRITESTREAR,

?F i NRITEDISK

8I-8IWY

SIDLIIDI 20Uy

(o0vfso3ur 7£T-Sy) Mol vIDQ Indu] 1SOH 06€ Sd "LI-8 24n81]

Name: Chop/Cl & Company

FileName: AIC
Date Modified:

30-MAY-19384

14:53:24.98

Total Pages: 25

Prefux:

Parent:

F11_

5

PageNo: 16

£F22, P 17
Chopl, CIO 0> ERRORSO
5
}l I:clo CHicio D> ERRORSO ——— B
<1:CHOPO C1:CHOPY < 1>ERRORSO (I LRRORSS,
Croces tlt'.ﬂl_tlﬂ,ll_tl}ﬂ((j\
F22, Po 18
H.Chop8. H_Lheplt
}e IiM_INOR €1>H_CHDP «0sERRORSO s J
« 1+ ERRORSD
H_CIO,N_CI20c4s
15£3_TES MR
! ‘M‘ID’_’
oo HOST_NESIAGED))
1 HOST_NESSAGES] L2a03T- {
trwoas 12000}
1
1 NDACD tIt)lﬂA[EIs
1 2508C0 0 I)Nﬂﬂ[('}x

YAOMIN UONIUN] WdISKS

(20nfao1u 7£2-SY) Mol vivg mmduj 150l 06€ Sd "81-8 24ns1g

Name: ChopO, CI10 Prefix: F21_
FileName: Al1C
Date Modified: 30-MAY-1984 15:43:00.48 Total Pages: 25 Parent: 16 PageNo: 17
!
Nel>6lo
>

C10¢0s
(0)[#/?0»?501/

CHOPD CHOPO <0 E>47 L 77 ¢

};}:cyopo)) 1 1
2 2 2

F:CHOP 3 3F: cl 3 rl)[/?,?()/?50’/

1) R cr0.0)

s N
7

61-8NWNY

0CT-8IWY

SIDLIDIDIN dULIDY

(oovfudru] ZEZ-SY) Moy vivq mduf 1SOH 06§ Sd "61-8 24ns1g

Name: H_Chop0O, H_Chop20 Prefix: F22_
FileName: AIC
Date Modified: 30-MAY-1984 14:53:24.98 Total Pages: 25 Parent: 16 PageNo: 18
Resst_te, Reset chop
<1 >H_CHOP
RESET_TEI<1 «0»EFPORSD
4
Ilﬁfﬁﬁllﬂsaf
, ¢
H_C10.H_C12044> 4
7 A,
r1e, Py I? £y Po 20
SET @ I Sot 20
}'“”—‘W” 1IH_CHOP <0 | ersncwop cronosr_ar
t €12 0EPACK <1 :BEPALKE k CPIBEPACK D02 LRRORSO | L/
C1IRESET. <1:ERRORSO \—_| cropmso <iscomonso ||/
H_CIOct> H_CIZ0cHs /
1 HOST_NEISASESS <IES_TET s TEN <
<PLuNC! «1INOAD
e1.ES_TE7 €72 HOALO F—
1 NDAD N t1>H08C0 A
el NOACO F—1—\
eswosce || 1I'Alllol{

12 HOST_MESSAGER!

k3 I)I/Dlﬂ!

N
< I>RDALO

hY
rl)lll»‘d'fﬂ[

YLOMION UOnOUN] WdISKS

[T-8INY

(20vf123u] ZET-SY) MOLL vIDQ INAU] ISO[] 06 Sd "0T-8 24Nl

Name: SET © Prefix: F18_
FileName: AIC
Date Modified: 30-MAY-1984 16:38:39.29 Total Pages: 25 Parent: 18 PageNo: 19
H_CHOPO 0> P—__l
v0»ERRORSE
}ihlv_:)lﬂﬂd ~ H.Cl0¢0> & {
#roers
J— DEPACKETO
7 EEEEE—
} ; l, —\ <13 DEPACKET20
cHaRCos b—-,r.n:nun)
4
P
rizess D_I_: : ::sn_ns: - n::s:r_am . Imn_cma -
4 2 s 2 2
F
cwancas FIRESET F1SYNC(2) +SYNC(2)
FI20256) Rt
cpsmeser; weser; B0 | prser wost messacdt 1> ERRORSD
\ <75 RESET_NOST_NESSASE 1 s
—_— r
4 r1xcos o> 2 F: CONSTANT
h N_LIDc4s
SREC_§4THERD 3
100 By REEEATIERS
£IRGYTED N 2 21T
_’T— T F:GATHER 3| Z
. H GENFCX V" A_LHOPO 11
0 D‘—;,r,cmuur:(zti 1 v ' !
re {
Frece) o R FicHop ' Proa :Fj
s / h! 4]
T st
. 1)
» -/ ?
19
T AN
I J (Ixrmﬂﬂ“—wmﬂ W
1 \JI 1 1 1
I Y b—ir,cnnut 1 F:READSTREAN]
TRIGGER. CONYET
1 o - - 1 HOST_NESSAGER!
b ' 2 F . CHARCONVERT .
n
’ T 1IES_TET
Rovting byte not i(n gooepteble renge’ b————’r:cm‘s,“,
LRy /.21
-
JIXDALO]
\. P, . l)ﬂﬂﬁ[ﬂz
N
S S

CC8NY

SIDIIIDIN 2UI42f2Y

(20vfuasur z£7-Sy) Mol vIDQ INdu] ISOH 06 Sd "17-8 24nSi]

Name:
FileNeme:

Date Modified:

Set

20

AlC

30-MAY-1984

Prefix: F19_

16:38:39,2¢9 Total Pages: 25 Parent: 18 PageNo: 20

PePOLLO
))
\ ¢724_cHOP2ZD Frxer) Be, constamt
N
I 12 HOST_NESSAGER) {
PIREADD FiSTNC(2)
7.
\ «1s0€PACKE P20 'l”‘t 20 n : !
s : Ky Flxc2) b‘ 71 CONSTANT
‘lfoICFACK!' H ~ €O ERRGRSD 4
18 (
N «1>£RR0RS0 4
4 - 7 \
SREC_EATHER20
1 1
] N\
FIX(4) D——', ATHER. 2
CHAR(28) ‘Staron- 3
cHaR(16)
FALSE b—J
\ ersPeRS0 H_C1201> 4
s \ y
| citoorere H.CHOP20<0> B>—) #cr20:0: B~
. H_CHOP2D H_C120
0’ b_:r.nnuvl:(n}—‘\ \ f T) 1
Frreas g ! £1 cHOP = Bre I,
s \ . P} —
7 | § N—
| »
L / 7
19
1Y)
17
M PR L LA l N
14 1 1 1 1
N 7
b K4 B":rx:vrutnl ? FiREADSTREAM]
11y 4 .
N N
I
2]
“ N LTI 1%
L R AR 1sES_TEL A
‘Routing byte not in sccepteble range’ b——‘x F:CONSTANT L CtINOAD
\ L2 ‘ﬂﬂl[a}
{
CIINDECO

YLOMIDN UOIOUN WSS

EC-8NY

(2onfudpup Z£z-Sy) Mol vIvQ Induf ISOF 06E Sd “TT-8 24NNy

Name: Reset_te, Reset_chop Prefix: F32_
FileName: AlIC
Date Modified: 30-MAY-1984 14:.53:24.98 Total Pages:25 Parent: 18 PageNo: 21
RESET_TE] RESET_CHOPO
clsH_CHOP
1 1 1 1 d.
2 2 X,
F:RESET F:CONSTANT

RESET_TE7 < 1>

<
"FIRESET; IRESET; * T

rT-8WY

SIDILIDN doUL2f2Y

(20vfaa1u] 7E£Z-SY) MOl vIDQ INduf 1ISOH 06€ Sd "£T-8 24n8id

Name: Who, Host_Message, Hostout Prefix: F10_
FileName: AlIC
Date Modified: 30-MAY-1984 15:43:00.48 Total Pages:?25 Parent: 5 PageNo: 22
HHO I
\ €72 HHOT ; ;
b
F:WHD_AH_I

N </2HOST_MESSAGER)

r

HOST_MESSAGE!

1
F:NOP

1

HOST_MESSAGES!

1

1
2F:HOLDMESSAGE
4
E

HOSTOUT!

F:NOP

————@awu

YAOMION UONIUN] WdISKS

ST-SWY

(20nfa21uf 7£Z-S¥) MOl vIDQ INdU] 1S0[] 06€ Sd '#T-8 24NSL]

Name: Hardcopy
FileName: AlC

Date Modified:

30-MAY-1984 15:43:00.48

Total Pages: 25

Prefix: F28_

Parent: S

PageNo:

23

1
2—5[:}«1»1{#1:

PLOTSTART/
\rI)PLUI'SfAﬁfI ;
f IF:STARTPLOT
HEPIPI .
1 1 5
2)
IFLINITRLOT :
4 8
/(5:/!&‘/’1/’/ : :
10
TRUE b——J 1
12
13
FFPLOT!
C13FFPLOTT -
>
2F.FFPLOTTER

9C-8WYH

SIDIDIDIN dOUDLIf2Y

(200f121up 7£Z-8y) MO)d vIDQ Indu] ISOH 06 Sd 'ST-§ 24nSiy

Name:

FilleName:
Date Modified:

Clear_labels,
AlC

30-MAY-1984

Message_Dtisplay

14:53:24.98

Total Pages: 25

Prefix:

Parent:

F25.

1 PageNo: 24

CHARCII}ZCHAR(I0)S ‘Stack antent: '

In_nERREP) e
) 1 [1
2 2

F:BOTSTACK F.PRINT

CHAR(10)

B"\Ln

2
F: CCONCATENAT]

HESSAGE_DISPLAYS

]
*FisTavols

HENORI_ALERT!

]
ZF:menFuLL

.
S

-

NEMORY_NONI TOR1

1
F L NENNON

4
5

1
2
3

TRUE

CLEAR_LABELS? crFLABELOS 4
N ¢I>CLEARLABELSS o N
7 : (NN
LHARCIOISCHART ISR “ZLHARCIQIECNARCIS) FosTnCeny 2 4 N

FIXC20) 2 3 <12PSETIT
o §_____ . 4 i - —{i
Fract) Pr—rwr . N — \ 1 IABLETOUTT]

Fixeos E}ﬁ 7 4 N 1 OFFBUTTONLISHTS T

YLOMIIN U0OUN] WSS

LC8NY

(20vfuruy 7€Z-SY) Mol vIDQ Mduf IS0 06 Sd "97-8 NSy

Name: Misc. Prefix: F26_
FileName: AlC
Date Modified: 30-MAY-1984 15:43:00,48 Total Pages:25 Parent: 1 PageNo: 25
|
EDc 13 CSNTOPO
CSH7 TSESHI!
1 1 ! ! < /> TECSHO
F: NOP F: NOP
</>STCSHO ToU0$
(l)[;?ﬁﬂ/?.?(?/
¢1s TECOLORO F.USRTOF A
TECOLOR? SCREENSAVET
1 1
F:NOP F:SCREENSAVE
MMERRDETELT#
1
F: MHMREG

8T-8NY

S]DLIDIDIY ULy

(Wg1) Mol vivq mmduf JSOH 06€ Sd “LZ-8 24n81]

Name: SYSIBM1.DAT Prefix: F1_
FileName: A1IBM
Date Modified: 1-JUN-1984 13:18:35,.47 Total Pages: 23 Parent: -- PageNo: !
\
F24_ Pg 23
HNisc
<1 >ERRORSO
£20. Pg ¢ £2 Pg 2
28 Pg 22 FTE,Parsing.Floppy. Herdropy, PC Errors, S5st Ports
Clear_iebels, Messeps_Dishlay ¢I3IBM_TE <O>ERRORSO CO>ERRORS <1>7/6M_TE? e
] CIICLEAR_ ¢I>FLABELO CISFLABEL <1>FERRORSO AN </ >ERRORSO
«IIOLABEL]-81 c!»OLABEL CI0.H_CIO¢ CI0,HCIO 4>
«Is0SETIY 1 0SET1S ¢2:PORTS0¢ ¢ 23PORT50¢
¢JsTABLETOUT CI>TABLETOUT?
CI>QFFBUTTONLIGHTS? c1>OFFBUTTONLIGHTST
\ /
1ASO747

YAOMIDN UONIUN] WdISKS

6C-8IWY

(Wg1) mol vivq nduf 10K 06§ Sd "ST-8 2n81q

Name: Errors.
FileName: A11BM
Date Modified:

Set Ports

1-JUN-1984 09:16:31.47

Prefix: F2_

Total Pages: 23 Parent: 1

PageNo:

2

e1sln 114

129, Pg 3
Errers
} <0, £RRORSC «OIERRORS <15 18N_TES e
N €72 ERRORSO «ls
s
NCIO, HETD 45 CI0,H_L10<4>
o ri2 Pg 4
st ports
PORT s
}1?) ORTS0P €2)PORTSD «1,18K_TES

33 Pg &

8% Yo tup

0E-8WY

SIDIIDIN 20UL2[2Y

(Wg1) molf vipg mmduj 150l 06€ Sd "62-8 24n81f

Name: Errors Prefix: F29_
FileName: Al1IBM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 2 PageNo: 3
b T ER20R30¢0) Ra——iDe0s 0L
g osearonso rayr b:
ERROR!

ERRORS O 3 e2a 18K _TE!

N £ 72 ERRORSO i N

F1 INFORMATIO
]

N,

*r:eoROUTE

reue h

\C10.7_C10¢ 4>
4

RECLEe2s

r.canoute

KARNING]

JNFORNALTION]

TRYE Fi

2
F:CBROUTE

AFRLSC > &_

ArwLieds By

orateess B

—Desso22

YAOMION UONIUN] WIISKS

1E-8WY

(Wg1) mop vivg mduf 10 06§ Sd "0£-8 24nSLy

Name: Set ports

FileName: A11BM
Dste Modified:

1-JUN-1984 09:16:31.47

Total Pages:23

Prefix: F12_

Parent: 2 PageNo: 4

-
Porti s Por130¢
’ [} S 1 1
iFescr_ront ¥ Irisev_port
+ 4
t i
. o
7 7
. 8
i id
" "
1 "
7 12
13 3
" “
. 1%
" 1%
1”7 "
" "
" "
20 28
21 21
22 22
\ <2>PORISOS
b
Por 1209 Por 2404
1 [} S 1 1
iriscT_ront 2 1riser_port !
4 4
i i
L3 &
r 7
. td
* \d
" 1
" "
” 7
13 13
14 14
18 1
" "
" "
1 19
1" 19
20 20
21 ti
22 23

1,034
52
; . - 12 IBN_1E1 4
r.xurnnnano§.:{ N

Porti0sed;

Port208<0»

Port304c0s

Portifieds

Port304<0s

028P¢

CE-8NY

SIDLIDIN dIUDUIf2Y

(WgI) Mo vivq mduy 1So[f 06§ Sd "1£-8 24n81

Name: IBM Setup
FileName: A11BM
Date Modified: 1-JUN-1984 09:16:31.,47 Total Pages:23

Prefix:

Parent:

F33.

2

PageNo:

5

IBMSETUPT

F1x0258) [r—- !

F:SETUPIBM

IBNSETUPS

F1x256) [Hr—r!

F:SETUPIBM

YAOMION UONIIUN,] WIISKS

EEENY

(Wg1) mold vioq mduf 1S0f] 06§ Sd "TE-8 2431

Name: TE,Parsing.Floppy.Hardcopy,DC Pretix: F20_
FileNeme: A1IBM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 1 PageNo: &
NI ION_TE)
D
N
77 72 7 7z 7p I35
Doviee eontrel Terainel Eaulator
}'“”-“‘“' CLIFLAREL 1) ers18meen <isreazee | L =i 57
hc220LAEL 787 <1 >OLABEL «1>ERRORSE CIIIBN_TES +15CHOPO _4 3
\ _ N\ Hsrdcopy
}" 2os€TEr €1,0SETIT (2>p0RTSO0 | €1>PLOTSTART? €12PLOTSTARTS
}" 2TABLETOYTY 12 TABLETOUTE «SIHCPIAY <SsHCPIPT
\ (1 20rFB0TTONLIGNTST €1 QFFBYTTONL IERTST 1 FFRLOTI <IIFFPLOTT
, «rs0CINS)
7
-
— 1
) W7
\ | 20> ERRORSH 4
Dlok Aooess Netzerk L
c1s4040 corcmmonse || 12£RRORSO
Fiz Pg 17 crmeraead
. 78
—— ¢1>HOREO <1:ERRORSE EMep/TI snd Coapany - Py
S cr>400c0 erscro erscto corermoRso | N 220081508
e122HOPS _1 crscnoro c1:£RRORSO ||
£19, 20
€)IN_CHOPO CIIH_CNBP C10,H_CIO¢ e “Whe, Hoet_N - .
«1>0LINS0 €12 HOST_MESSASERT el sWOST_NESSAGER!
13400 N el sWHD?
e1,400C0 k_h
tsuo80 ||
IrIBN_TES
\ el unor
_ J
\— /
\ s

rESINY

(Wg1) mold vivq nduy 150 06§ Sd "££-§ 2481y

Name: Device control Prefix: F7_
FileName: A11BM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages: 23 Parent: 6 PageNo: 7
215 185K80
4
ré, Po i1
Dssizs input
W I DIALST
1 BYTTONSING
3 Pg 3 £ Pg 12 2/ IASLETING
Dsviee sotput Detens £ TABLETING
Ner27LasELOT C13FLABELOT <1)OCSAD e1soCsA0 €1 oL
roLarcis-ar c1:0ABEL «150C5BE 10580 <1:014L5)
12056711 C1208E111 e1>005C0 €1:005C0 <1 BUrTONS
CrsTABLETOYT) L2 Lo 13
y €1 TABCET 1.00SFQ 1500500 ¢2:TABLETI Fere Fometione
et Orr8YTION. I6HTST ¢1>0FFBUT 45 TADLETT C1sDCSED ¢ 12PORTSA- €15PORTSA 15 ERRORSO o "””""’\
€150C5F0 <2:PORTSOP
\ <150CIn58
b «1200INS0 2 PORTSOE
{

SIDLIDIDIN 20UdL9foY

YLOMIN UOOUNY WISKS

SE-8WY

(Wg1) Mol vinq mduj 150 06§ Sd FE-§ 24n31]

Name: Device output Prefix: F3_
FileNeme: A11BM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages: 23 Parent: 7 PageNo: 8
7is Pg 10
Keybosrd eutputilabele|
}chf‘llﬂﬂ C1>FLABELOI 1500540 "’”“"’{
£is Po ?
Dtels outout
}"}Ml'ﬂlv'l €1 DLABEL <1)DC580 lllﬂff'd/
N <1203€71 1 «120SETII
.
Fre, Pp 11
Toblet & Buiton ovtput|
\(IJ’I'I"""I C1ITABLET ¢1>0C5C0 lllﬂfffoj
(< 120rragrsom snrss 1SDFFBYT 12005707 «1.0e3r0)
' CEIJABLETINI

CA>TABLETINS

9E-8NY

SIDLIBIDIN d0UDAf2Y

(W41 moll vivq mduj 1SOH 06€ Sd "SE-§ 24n8L]

Name: Dials output

FileName: A11BM
Date Modified:

1-JUN-1984 09:16:31.,47

Total Pages:?2

3

Prefix: F14_

Parent:

8

PageNo:

9

iristaLser

e ss00a0EL1-81 fraseess 1 <1300580
h! 2 (h
o ascrty 1FB1ALLABEL
f T sreotaLset
DLABEL2I
Nt N e e/
osrra) 3 FeDIALLABEL
| —— | _/J ¥
SFioIALSEY
oLa8EL37
S [) E———
23£731 S FeDIALLABEL
N E——— ———1
1FionaLser
oLABELY)
| ——— | — e
osEre! 1r:DIsLLIBEL
D" A
IFDIALBET
pLABELST
p—— | } Ll S ——
pserer JF:DIALLABEL
R N
SFio1ALIEY BLABELS?
N [} S ——
vsEres F:DIALLABEL
L ——— | | ER—
TrioraLser
DIABELT!
o a— | | h——
o JF:DIALLABEL
S —
e
DLABLELE}
N ' L—————
pserey 3 F10TALLABEL
) W —— |] — 7

YAOMIAN UOTIIUN] WdISKS

LESNY

(WdI) mold vIvg mMduf 1S0H 06§ Sd "9£-§ 281y

Name: Keyboard output(lLabels} Prefix: F15_
FileName: A1IBM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages: 23 Parent: 8 PageNo: 10
FLABELY?
TriFREYLABEL riasresr
N y €1200542
FeaseL2r 3 F1FKEYLABEL
] Y
IreFcEvLABEL FLABELSS
1 [S ——
FLADELI! 2rirxevLABEL

\¢7sFLasELOr

)
3 FuFREYLABEL

1
2r:rxevuaseL

FLABEL4!

FLABELST
1

P FREYLABEL

]
3FIFREYLABEL

FLABELST

1

FLABELIDT

3reFeevLaREL

1 —

FLABELITY
1 1}
3 FiFREvLABEL

rLAscL 121
] 1
eiFkevLaBEL

FLABELTY
1

I FREYLABEL

TLABELOY

FiFLABELD

8E-8NYH

SIDIIIDN 20U12[oY

(Wg1) Mol vinq mduj 150 06€ Sd "LE-§ 24mSLy

Name: Tablet & Button output

FileName: A11BM
Date Modified:

1-JUN-1984 09:16:31,47 Totsl Pages:23

Prefix: F16_

Parent: 8 PageNo: 11

_el)lABI.EfOUT)'
b
OFFBYTTONLIGHTS!
\ <12 0FFBUTTONLIGHTST ; , <15005C0
4 F:OFFLIGHTS32 \
ONBUTTONLIGHTS?
1 1
ZF L ONLIGHTS32®
TABLETOUT!
] 1 tl)ﬂC.fFo/
2 \
F:BITPADOUT
\L rl)flﬂ[[f]”f!

)

YAOMIAN UONIUN WaISKS

658N

(Wg1) mold viog mduf 150 06 Sd "S€-8 24n81g

Name: Dcfens
FileName: A1IBM
Date Modified:

1-JUN-1984 09:16:31.47

Total Pages: 23

Prefix:

Parent:

Fa_

7 PageNo: 12

ocINsO
et) ; l”(’ﬂl”ﬂ(f”/
riococcone]
: ~ 12074155
; \ 1>BUTTONSINI
: ~ 2, Il&l[flwl%
. —
'.-——-\
11"
N T ocsa0
h e T 7 D
: 4> 1050
¢, ocaursuseoky
acsgo
N 1200520 1 1
V
L - ¢ . pcoursuspod]
23T
N <720C8C0] '
V
L /~————3F: ocoursunpokr
oc500
\ 1s0c500 - A
— ¢ ocoursuspobi
100560 f . 1 /]
V H b
L 2F. ocoursuspoklr
\ «7:0€570 o W
>
L) 2r: ncoutsuspolr
\ <200cM50)
>
racoso
) — | "We_/
£+ roccontroLi " |
| —
|] S
]
INIT_PORTSSO
: : rllﬁﬂlffl-f’j
FiNOP 3
L 2:P0R750¢

0F-8INY

SIDIIIDIN 20UI2[2Y

(Ng1) ol vivq mduf 1S0H 06§ Sd "6€-§ 231y

Name: Port Functions Prefix: F5_
FileName: A1I1BM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 7 PageNo: 13
'd
PORTSES
' T ll)(?kﬂﬂ!@[
[3 F: DCSETSUBPORI "\
PORISCS .
1 1 .
%
’ rrre2400) B—2r, pesersuspoh ’
— rarrsae ' : '
N
#i z t AL
Fix(2400) b‘—,husnsuwo . "
+ 7 12
i L] "
»] 14
t4 (1] 18
» " "w
i ” "
1] AL "
11 " 1
” (1] e
13 " 23
e " 22
" "
" 1"
" 20
L] td}
(1] 22
»
2
22
> -)
| PORTSF o _j
» ' '
2 2 N
1xqvé00) &_,r:n:sz- 0" o5
PoRISEY, 2
N 1 1 s
PORISES $FiDesersuapobr—— M
N] l’__/ 4 1]
2 2 7/
r1xc2400) P> tr.ocser : N
i3 r n
5 L] (1]
» . 3
14 " "
» n i1
L] ” "W
" " ”
" " "
i3 i3 i
13 " 20
4 ” 21
1”8 " 2
" "
1y 20
" 2
" 22
.]
n
n

YLOMIDN UONOUNY WAISKS

T1P-8WY

(Wg1) wmop vioq mdug 150 06€ Sd "0p-8 24nSiy

Name: Device
FileName: A11BM
Date Modified:

input

1-JUN-1984 09:16:31.47

Prefix: Fé

Total Psges: 23 Parent: 7 PageNo:

14

DIALST
\(I)OIALSI
V 1 1
ZFipiaLsING 2
4
5
&
7
8
BUTTONSINI
\ < 128UTTONSINT ‘ ,

d

\121 TABLETING

2F ., BUTTONS32 2

TABLETINT
1

1o PICK_LOCATIONT

(f{) TABLETIN?

JF:BITPADIN

4

AW N -

Cr-8NY

SIDLIIDIN 20Ud4f2Y

(Wd1) mol vivq nduj ISOY 06€ Sd "T#-8 24n81

Name:

FileName:
Date Modified:

Terminal Emulator

1-JUN-1984 09:16:31.47

Total Pages:23

Prefix: F8_

Parent: 6 PageNo: 15§

xEr804801
1 1
F: NOP
18nX8D7
Ne¢l:78nx807 ’ - I
>
*Firom_ : ' '
rave KevapARD | F: NOP
. el FLABELD)
; cxaRe2s @.—{
N
’ SPECKEYS)
AL L} 1
» F1 NOP
u 1>2H0PO
ets
B834¢ls 1 1 14
. l}"“:r.unzzmrun: 1030 A
L}
s
]
Rracecs
N
£<1s10mc10
on_7E1
\ essrox £ : l
>
2r.1mntE z
RENL D>
RENLY S
CHARLID)ECHAR(I3)E 'PSII0 A1 3278 “8CHAR(103I4CHAR(13)

CIIPLOTSTARI I A

$2HCPIPI

IFPLOTI 4
j!

YAOMIIN UOIUN] WIISKS

Er-8NY

(Wg1) mold viq mduf IS0 06§ Sd "Tr-8 241

Name: Jisk Access Network Prefix: F9_
FileName: A11BM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages: 23 Parent: & PageNo: 16
woaco<0s [Ba-
N <Iu040 Oy €0 ERRORSO A
14 RFCHOPY D> &> 4
N
\ ¢ 1o404C0 2L - 40 "
i FiCHOP K ?F: NR1TEDISK e
‘ Fixeo) Rrcnope2s [Ba- 2 4
X020 40859 X020
\ <7 #08C0] f ' 1 '
>
[F:CHOP :-____—___-—_1 r;uﬁlt[!T!(Aﬁ IFIHRIIEDISK
4
] \
REAOBIRARY! RO8S0
Y 1 Y N t1:Li04
F:READDISK ? ':RtADSTHEAHI N
RORLSETO
' 1
FIRESET :
READASCITS
t 1 «12LHOPO
F:READOISK 3
READ_CATI Rr3e
T 7 : 7 12K_EHOPO
FiNOP F:READDISK
Rr2e
SryE" B}———l 1 ——@:harmow RIRUAT
F:READDISK o N : crsocIwso)
,H&;————B,nswcu) H

HO6s
’

FiLHOGMENORY

rE-8INY

SIDLIIDIN dOUDL2[2Y

(Wgr) mopd vivq mduy 1SOH 06§ Sd "§#-8 24131

Name: Chop/Cl
FileName: A1]1BM
Date Modified:

and Company

1-JUN-1984 09:16:31.47

Total Pages: 23

F1i1_

6 PageNo: 17

h < 1oH. . CHOPO

F21_ Py 18

Chopl, CI0
}""“’ c1:C10 ¢0>ERRORSY <02 ERRORSO 4
}:!»CHGPO CI>CHOPO ¢ 1>ERRORSG ‘/’[””””5”>

Cl0c4

CI0.H . CI0<4s

Flée. Po 19

>

SET ¢
1o H_CHOP <O0>ERRORSO

¢1>ERRORSO

H_E[Oc4>

</ HOST_NESSAGES!

¢ I}HUST_MESSAEEQI/

¢ JSHOAD

clsHOAC

¢I>HOALO

cIoNOACD

c]>HOBC0

ol #05[0)

c/>I8M TE!

<I>IBM_TE?

I >HHT)

rl)l/HGl/

{

YAOMION UONOUN,] WdISKS

SE-8WY

(ngr) mojq viq mduj 150 06§ Sd “tr-8 2481

Name: Chop0. CI0 Prefix: F21_
FileName: A1IBM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 17 PageNo: 18
\<72C10
>
€10¢0> b_—j
fﬂ«‘[ﬁﬁoﬁ.?o!
CHOPO <05 |E
\fiif/'lﬂpﬂ L:ﬂDPU - & L;]a ‘
4 F:CHOP : 2rict 2 <13 ERRORSO
] ’
* ;——_ﬁ [10({)}
6 \
7

9F-8NWY

SIDIIBIDI 30UdIfdY

(Wg1) Moy ving nduf 1S0H 068 Sd “Sp-8 24nsiy

Name: SET 0 Prefix: F18_
FileName: A1IBM
Bate Modified: 1-JUN-1984 09:16:31.47 Total Pages: 23 Parent: 17 PageNo: 19
n_cwarocos [\L
02 £RRORSO
werors Rr— 4
240R007E0
L] v
‘Routing byte ner [n scoeptebls rangs’ b——lr‘“"s“", N
\
12 ERRORSO {
{
. CHOP
1o H_CHOPO fM_' (”,—"” |
F: tHoP :——‘/ irct : o
. : NLroets
s h!
»
;
c1ro0TED
ramitéers @,—t V
- SIXTOCIENTE READSIREAND
0" P ——tr. crnourecari—~ l ; " 1 S -
rixee) B> ‘ : 0 B——r.cvreras FIREADSTREAN
. 4
r
.
N RESET_RSL RESET_LHO I PRONPT_LHOPD
" ' W/ 1]] '
. FiRESET risencey ! ‘risrcey
"\
N
"———
14
N — JIRESET) IRESETs RESET_NOST_WESSASE!
I ; > crrupsT_rEsSACER!T
™ f
| Fix(o 2 -
b (01 o ————1¢. constant
SPEC_GATHERD
_ v ; J
FIaeds B———r catnea_ 3 -
GENFCH
154040
CrINOACO
_ «1:408¢0 4
CI13IBN_TE!
TRIEELR_LONYES
-~ h 1 J
2. CHARCONVERT
I 2 HHOT
N

YLOMIN UO1IOUN] WdISKS

LP-8NY

(Wgl) Mol vipg mduj JSOH 06€ Sd “9F-8 24nSiyq

Name:
FileName:

Date Modified:

Rho,

A11BM

Host_Message,

1-JUN-1984 09:16:31.47

Hostout

Total Pages:23

Prefix: F10_

Parent: 6 PageNo: 20

\ < 73HOST_HESSAGERI

HosTOUT!

1

>
HOST_HESSAGE! HOST_MESSAGEB!
1 1 1 1
F:NOP 2F:HOLDMESSAGE

4

5

HHO 1
}(})ﬂﬂﬂl N :
F:WHO_AM_I

F:NOP

A_T8HM1¢

1 i

F:CYTASCTOIBM

e s> 155014

SE-8INY

SIDLIIDIN 20Uy

(Wg1) Moy vioq mmduj 1S0H 06€ Sd “LF-8 24nSL]

Name: Hardcopy
FileName: Al11BM
Date Modified: 1-JUN-1984 09:16:31.47

Total Pages:23

Prefix: F28_

Parent: & PageNo:

21

D> onvPrs

PLOTSTART!
\rl)PLﬂfSTlRfl) :
>
2F:sTarTPLOT ?
4
s
[
7
8
¢
10
1
HEPIPI 12
1 ¥ i3
SF:INITPLOT
>¢5)H£P1Pl ;
TRUE E>———/{
FFPLOTI
\(I)fTPLO’I
/. 1
2F.FFPLOTTER

Name: Clear_labels, Message_Display Prefix: F25_
FileName: A1IBM
Date Modified: 1-JUN-1984 09:16:31.47 Total Pages:23 Parent: 1 PageNo: 22

YLOMION UOHIUN] WdISKS

(Wg1) mold vivq mduf 1S0[] 06§ Sd “8p-8 241y

TRUE
CLEAR_LABELS? CIIFLABELDY
NeIICLEAR_LABELS? 1 {

1
4 CHARCIOIECHARCIS)S ¢ “SLHARCIONECHARCTS) D ————Tp syyeery 2 e A

Fix(20) 3 3 >

— 1 : ~ 15DSET11)

Frrcr) B> : s P — | mr.mnan

.. ? I Y — - \

rixcos - ’ ? — <120FFBUTTONLIGHTST)

4

NESIAGL_DBISPLAY?

1 —

z
F:3TATDIS

CHAR(1O)

CHARCII)ECNAR(10)3 ‘Steek arxtent: * ne
IN HEAREP? .4) 1

' 3 H ! ?r. cconcaTenalE
F:80TSTACK FPRINT

HENORE_ALERT! _
1

F: REMFULL

Wewn -

< NENORY_NONITOR?
1 '
z 2
31 KEMNON 3
L}
i

6r-8INY

0S-8IWY

SIDIIIDN 2OUII2foY

(WgI) Mol vivq mduf 10 06§ Sd "64-9 24131y

Name: Misc.
FileName: A1IBM

Date Modified: 1-JUN-1984 09:16:31.47

Total Pages:23

Prefix: F26_

Parent: 1 PageNo: 23

CSK!

F: NOP

¢]2 LSNTOPO
TSESN/
1 1

TECOLOR?

1
F:NOP

F:NOP

E)e 12 ITECOLORG
SCREENSAYET

F: SCREENSAYE

<« 1> ITECSHO

¢/ >STCSKHO

Touos
Y <I>ERRORSO 4
R\
F:USRTOF
HMERROETELTH
i
F: MMMREG

YLOMIN uoOUN] WaIsKg

[S-8IWY

(Oaa) moyg vivq mmduy 1sofy wasKs 491svY "0S-§ 2nSL]

Name:
FileName:

Date Modified:

SYS3401

SYS3401

4-JUN-1984

11:54:40.19

Prefix:

Total Pages: |

Parent:

F1._

PagelNo:

1

uar'@»————l

CIROUTE <215 [B3—

RASFILED

F:READDISK

RASSTRO

N

RASRESETO

1

RASTERT

1

F:RASTERSTREAR ——

TRUE |IC !
TRUE F:RESET

[

RESET_RS1¢ts

CHARCTO)BCHAR(13)E 'P5340

B

CHAR(27)& '[1: 1H '8CHAR(27)&

TE_O

TRUE [

F:RASTER

1
F: NOP

f2J° |

EXIES_TET

4D 7> SHADINGENVIRONNENT |

A1 BCHAR(10)8CHARCI3) E>—————————~————4D>¢0)SﬂAHINGENVIRUNH[NII

1AS0522

S8y

Name: SYS3401B1 Prefix: F1_
FileName: A1340IBM
Date Modified: 6-JUN-1984 12:09:36. 66 TJotal Pages: ! Parent: -- PageNo: 1

(Wgl) Mol vivq mduj 1S0f WSS 42ISVY “[-8 24nSLy

1AS0523

CIROUTE 21> [E3—

RASFILED RASSTRO RASTERI
‘wore ——oy 1 N 1 '
z in'—‘/(
F:READDISK F:RASTERSTRE F:RASTER
RASRESETO
rRUE ! [—
2
RUE F:RESET
TRUE [Ox @«7»5ﬁmmsfﬂvmommr:

RESET_RSI <1 @a———) T£.0
! "W—————————dbren_res

F:NOP

CHAR(I10)8CHAR(I3)8 'PS340 Al 3278 '8CHAR(I0)ECHAR(13) @——@«wsmmwmymawnmn

SIDLIDIDIA 2oUDLIfo Y

YAOMIDN UONIUN] WIISKS

ES-ENY

Mo DID(Induf 3SOf] 2ovf193u] 121040 DT "TS-§ 24NS1

Nanme: SYSPI1 Prefuix: F1_
FileName: AIPI
Date Modified: 5-JUN-1984 10:00:05.06 Total Psges: 4 Parent: -- PageNo: 1|
1AS0521
&EPIOSETUPY SPIGSETUPY
' '
F:SETUPIBHM F: SETUPIBM
wosTouTI <15 B9 Perrpi_01s
F3 Pg 3
Persilel] CIROUTE, CHOP, LT

PI_11¢

PI_I1¢eis [?

F2_ Pg 2

Assorted cennsctions

Fe_ Pg 1

HOSTOUT2. HOST_MESSAGE2)

FS-8IWY

SIDIIIVIN 2OUDL2[2Y

Moy v induf 1Sofy 20vfad3ul 10710404 DT €S-8 24n81y

Name: Assorted connections Prefix: F2_
FileNeme: A1PI1
Date Modified: 5-JUN-1984 10:00:05.06 Total Pages: 4 Parent: 1 PageNo:

2

ES.TEI 2>

ES_TET<3>

KBHANOLER?) < #>

KBHANDLER! ¢ 5>

' Poresllel Interfece 'BCHAR(IO)BCHAR(I3)

8z¢

[—

B> Peroesrer
o

<12 0ePackeTO

¥

YAOMIIN UOHOUN] WDISKS

SS-8INY

Mol vIvq mduf 1Sofy aonfuauy 12)10404 DA FS-§ 2481y

Prefix: F3_

Nanme: Parallel CIROUTE,CHOP,CI
FileNeme: A1P1
Date Modified: S5-JUN-1984 10:00:05.06 Totsal Psges: 4 Parent: 1 PageNo: 3
paDROVIESS
— ' ®-1:83_1¢3
“Reveing bytc mot im pteble ronge’ Ty, cONSTANT
o110 £1a0vics0 ‘ | e
:0° [B——12r, crnoure (21} focmerse [“.C130 -
/| 4
r1xeer [G——or,e M \ f:cuop :—/ ([rac1 .
» EE————— 4 4
? S|
2 L]
* 7|
Rl
" SIX10EIENTIE #E4OSTREINSO
”» 1 1 A 1 v
\ -
I — o B—Jiricvetos | rosesostaean? /1
18 4
e , /
"
N\
o TIRESET: 1RE3ET; * Br—
RESET_RS31 lorszr_tm PRONPT_CHOP3Y "
p—— } []) s v]
FoRESCT tr.ovncey 2r swmcey 2 NP rscLan_raseesy
N——eneoer
RESET_NOST _RESSAGEIS S s ARNING]
)\ SE—) t ——————eﬁl'i‘a".ﬂf’sﬂ“’l
Fixco) B———7,, constant N—— —ruroenarions

\—-————-———_e% 128040

\ N
{9« 12 404Co

) PN
 Uald

O
D 12E8 781

D
n alld TRIGELR_LONYE!

D 1:um01

9S-8IWY

S|DILIDIN 20Uy

Mol vIvq Induf 1sof 200f131uf 1211040 YT "C6-§ 24n81g

Name: HOSTOUT2,HOST_MESSAGE2 Prefix: F4_
FileNane:
Date Modified: S-JUN-1984 10:00:05.06 Total Psges: 4 Parent: 1 PageNo: 4
TRIGSER_CONVB21
|1 1
CIROUTEO<18> [g;——z ——
F: CHARCONVERT
RESET_HOST_WESSAGET 1> [E3- N
PIREQUESTO <25 [EX N
HOST_NESSAGEZ2] HOST_HESSAGEB2] HOSTOUT21
1 1 \ ; '] ' —@el»ﬂl#
F:NOP 3F: HOLOMESSABE F:NOP
4
£
HHO21
CIROUTEO<19» &—" 1
F: WHO_AN_I

RM9. INITIAL STRUCTURES

RM9. INITIAL STRUCTURES

CONTENTS
1. RUNTIME SYSTEM ..ttt ittt ittt anenesonnsennneeens
1.1 The Graphics Control Programot
1.1.1 Data Structure Definitionsciiuivniiiiinn.
1.1.2 Scheduler . ..o it i ittt e i ettt teneneneennnnnnns
1.1.3 FUNCHIONS & vt vttt ittt ettt ittt te st teeseneenennonenenns
1.2 Initial Data Structurescou ittt in e ennennenns

1.3 Code for Initial Data Structures

2. CONFIG.DAT

3. NAME SUFFIXING

4. USING THE CONFIGURE MODE

...........................

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

oooooooooooooooooooooooooo

W N NN N - e

Section RM9
Initial Structures

This section discusses initial data structures and name suffixing including the sys-
tem configure mode and its uses. The first section describes a runtime system and
the initial data structures that are built by the PS 390 firmware. Following sections
discuss the configure mode and name suffixing procedures.

Information for systems using DEC and IBM host computers is included. It is noted
where the information for each configuration may be different.

1. Runtime System

The PS 390 is a runtime system, it does not act like a personal computer or
provide a standard programming environment. The PS 390 does not have a
file system, editor, compiler, or symbolic debugger. The runtime system is
composed of PS 390 functions linked together to form the system function
network. A PS 390 function can be viewed as self-contained program. With
minor exceptions, it has no access to disk files, and deals with the world via
messages and queues, one transaction at a time.

1.1 The Graphics Control Program

The Graphics Control Program is the collection of software that executes
whenever the PS 390 is used as an interactive computer graphics terminal.
The 68000 startup code loads the control program into local JCP memory.

The Graphics Control Program is made up of:
e Data structure definitions
e Scheduler

e Functions

Initial Structures RMO9-1

1.1.1 Data Structure Definitions

The data structures are set up by Pascal procedures that define and make
use of the following:

o Named entities; data structures that can be named and referenced.

e Alpha block; data structure that contains the location of a named
entity.

o ACEP state; contains the parameters the define the context of the dis-
play processor at any given time.

1.1.2 Scheduler

The PS 390 runtime system contains a scheduler that is activated once the
initialization code on the firmware has been loaded. The scheduler loops to
schedule and execute functions. When a function is instanced, it is assigned
a default priority for execution. The scheduler uses this priority number to
determine which active function will be scheduled next to be executed.

1.1.3 Functions

The PS 390 intrinsic system and user functions are described in Sections
RM?2 Intrinsic Functions and RM3 Initial Function Instances.

1.2 Initial Data Structures

The initial data structures are built by the CONFIG.DAT file. These struc-
tures set up the framework that allow you to build displayable data struc-
tures. The initial data structures form the top nodes of a display structure
that the JCP and ACP traverse to generate the display during each cycle.

RM9-2 Reference Materials

1.3 Code for Initial Data Structures

The code that supports the initial data structure follows.

Initial Display Data Structure:

SCO$:= SET DISPLAYS ALL ON
THEN VPF1$

VPF1$:= VIEW HORIZONTAL
THEN HVP1$;

HVP1$:= VIEW HORIZONTAL
THEN CSMTOPO

CSMTOPO := SET CSM OFF
THEN GTO$

SEND TRUE TO <-1>HVP1$
GTO$:= INSTANCE OF GVPO$, TVPO$, MDO$

-1:1 VERTICAL

—1:1 INTENSITY = 0:1

-1:1 VERTICAL —-1:1 INTENSITY

]
Il
I
(@)
=

Graphics Display Structure:

GVP0$:= VIEW HORIZONTAL = -1:1 VERTICAL = -1:1 INTENSITY = 0:1
THEN PICK_LOCATION1;
PICK_LOCATION1: := SET PICK LOCATION = 0,0 .01, .01
THEN GCUROS$:
GCURO$:= INSTANCE WB$1, CT1$,
WB$! := WRITEBACK
THEN GDO$; {All Display Commands append to GDO$}
CT1$:= TRANSLATE BY 0,0,2
THEN CURSOR1;
CURSOR1 := VECTOR_LIST ITEMIZED N=10
p .035,.035 1 -.035,-.035 p -.035,.035 1 .035,-.035
p .035,.035 1 -.035,-.035 p —.035,.035 1 .035,-.035;

Terminal Emulator Display Structure for DEC VT100:

TVPO$:= VIEW HORIZONTAL = -1:1 VERTICAL = -1:0
THEN TENOSLAVEOS$;
TENOSLAVEQO$:= SET DISP ALL ON
THEN TECSMO;
TECSMO := SET CSM OFF
THEN TECOLORO;
TECOLORO := SET COLOR 240.0, 1.0
THEN TDO$; {The Terminal Screen is appended to TDO$}

Initial Structures RM9-3

RM9-4

Terminal Emulator Display Structure for IBM 3278:

IVPO$:= CHAR FONT IMBFONT$
THEN ITENOSLAVEOS;
ITENOSLAVEO$:= SET DISP ALL ON
THEN ITECSMO;
ITECSMO := SET CSM OFF
THEN ITECOLORO;
ITECOLORO := SET COLOR 240, 1
THEN IBMSCROS$;
IBMSCRO$:= INSTANCE IBMSCO$, IBMLINES$;

IBMLINE$:= VEC N =2 -1, -.88 1, -.88;

Crash Message Display Structure:

CRASH_MSGS$:=BEGIN_STRUCTURE
IF LEVEL = 17 THEN C17%;
IF LEVEL = 15 THEN C16%;
IF LEVEL = 16 THEN C16%;
IF LEVEL > 17 THEN C16%;
<

IF LEVEL O THEN C16%;
IF LEVEL = O THEN CO$;
IF LEVEL = 1 THEN C1$;
IF LEVEL = 2 THEN C2$;
IF LEVEL = 3 THEN C3$;
IF LEVEL = 4 THEN C48$;
IF LEVEL = b5 THEN C5%;
IF LEVEL = 6 THEN C6$;
IF LEVEL = 8 THEN C8$;
IF LEVEL = 9 THEN C9%;

IF LEVEL = 10 THEN CAS$;

IF LEVEL = 11 THEN CB$;

IF LEVEL 12 THEN CC$;

IF LEVEL = 13 THEN CD$;

IF LEVEL = 14 THEN CE$;
END_STRUCTURE;
C16%:=CHAR ‘Unknown crash’;
C0%$:=CHAR “Mass memory Exhausted~’;
C1$:=CHAR ‘OKINT/NOINT imbalance”;
C2%:=CHAR “Free block size invalid~’;

C3%:=CHAR “Attempt to activate non-function or nil’;
C4%:=CHAR “NEW call in Nomemsched failed to find memory~’;
C5%:=CHAR “Attempt to queue where fcn already waiting”;

C6%:=CHAR “Systemerror’;
C7%$:=CHAR °“TRAP7’;

C8%:=CHAR “Mass Memory Error~”;
C9%:=CHAR “TRAP9’;

Reference Materials

CA$:=CHAR “Multiple DISPOSE of same block’;
CB$:=CHAR “Block exponent not big enough’;
CC$:=CHAR “TRAP C’;

CD$:=CHAR “PASCAL Error”;

CE$:=CHAR “PASCAL Error”;

Cl7$% := CHAR “Unexpected exception’;

Setup Mode Display Structure:

SVPO$:= VIEW HORIZONTAL= -1:1 VERTICAL = -1:1

THEN SZ0$;
STCSMO := SET CSM OFF

THEN SSO0$;
SS0$:= CHAR SCALE 0.03

THEN SSO0$;
SS0$:= INSTANCE OF
S10$, S20%, S308%, S40%, S50%, S60%, S708, S80%, S90%;
S10$:= CHAR -1,.9 “SETUP’;
S20% := CHAR -1,.8 ~ 7;
S30$% := CHAR -1,.7 “F2-SRM :T F3=Awrp:F F4=ANSI:T F5=VT52:F ~;
S40% := CHAR -1,. ‘F6=KPM :F F7=CKM :F F8=Cnum:T F9=Knum:T “;
S50% := CHAR -1,.5 ~ 7;
S60$:= CHAR -1,.4 “F10= Define breakkey :°V 75
S70% := CHAR -1,.3 “Fll= Move TE viewport, lower left corner -;
S80% := CHAR -1,.2 “Fl2= Move TE viewport, upper right corner “;
S90$:= CHAR -1,.1 “Mode: TE Term: On Graf: On 73
SA0O$:= CHAR -1,.0 “Press special key to be breakkey, F1 to exit.
SBO$:= CHAR -1,.0 “Move corner with cursor keys, Fl to exit. 7:

C O KR MWK GO

2. CONFIG.DAT

CONFIG.DAT is a file on one of the PS 390 diskettes. This file is read and
processed during system boot. It contains commands to create the initial
function instances and display structures. Before the CONFIG.DAT file
builds any of the data structures, the system must first read the file. The
firmware creates a simple function network that consists primarily of an
instance of the F:READDISK and the F:CI(n) functions. The function
network then reads the CONFIG.DAT file from the diskette. The command
interpreter is in the privileged configure mode while reading the
CONFIG.DAT file.

Initial Structures

RM9-5

The command interpreter that processes the CONFIG.DAT file is separate
and distinct from the command interpreter that handles user commands.
These user command interpreters are initially in a non-privileged command
mode.

3. Name Suffixing

Whenever you name anything or instance a function, the command inter-
preter assigns a specific suffix to that name, unless the command inter-
preter is in configure mode. The suffix is determined by the suffix that has
been assigned to that instance of the command interpreter. Name suffixing
is used to separate system level names and instances from user-originated
names and instances.

In command mode, all suffixing is done by the command interpreter. How-
ever, in configure mode the command interpreter does not assign suffixes,
so you are responsible for correctly suffixing any function or structure that
is instanced when using system-level or user-level names.

The default suffix assignments for the PS 390 are as follows:

e 0 — suffix for system related functions. Names with this suffix are
not directly accessible to the user outside of configure mode.

e 1 — suffix for user-defined and accessible names. All names with
this suffix are accessible to the user.

If you are creating an instance of the command interpreter, you must name
that instance with the correct suffix to assure the other functions created by
this command interpreter will have the appropriate suffix. Only characters
0-7 are allowed as suffixes to the name of the command interpreter
instance.

If the command interpreter used is suffixed with a 0 or a 1, it will suffix
names that it creates with a 1. If it is suffixed with 2 or 3, it suffixes names
it creates with a 3. If it is suffixed with 4 or 5, it suffixes names it creates
with a 5. If it is suffixed with 6 or 7, it suffixes names it creates with a 7.

General system names are usually distinguished from all other names with
the $ suffix.

RM9-6 Reference Materials

NOTE

When the F:CI(n) function is instanced, the function
creates PICK[suffix]. Therefore, the command inter-
preter should be created before downloading the re-
maining program, or given a suffix that will create the
PICK[suffix] used in the program. If this is not done,
all connections from PICK[suffix] that were made be-
fore instancing will be lost.

4. Using the Configure Mode

To access system-level functions, you must be able to access any name,
regardless of the suffix. To do this, you enter the privileged configure
mode. In this mode you have the capability of reconfiguring system func-
tions. Use the following command to enter configure mode while in the
normal mode of operation:

CONFIGURE password;

where password is the string defined by the setup password command (re-
fer to Section RMI Command Summary). If no password has been defined
(the default case), any string can be entered.

Since the command interpreter is in configure mode, you must explicitly
include suffixes on any names to affect a specific user. For example, if the
SITE.DAT file (read from the diskette when the command interpreter is in
configure mode) contains commands to send a site message to FLABELDO,
the appropriate suffix is included at the end of the name and the commands
in the SITE.DAT file appear as:

SEND “E&S System 11, Site Manager - Scot Jones” to <1> FLABELO1l;

Initial Structures RM9-7

RM10. TERMINAL

EMULATOR

RM10. TERMINAL EMULATOR
MODES AND FUNCTIONS

CONTENTS

1. ANSI MODES OF OPERATIONcciitiiiiiiiiinnennnn

1.1 Definition of Escape Sequences,
1.2 SET and RESET — SM, RMiiiiiiitiininnennnnnas
1.3 Send-Receive Mode (SRM) — Local Echo/Nolocal Echo
1.4 Send-Receive Mode (SRM) Escape Sequences
1.5 ANSI — VTS52 Mode Escape Sequenceso0..
1.6 Directional Cursor Keys - (DECCKM)cvvvuveeeeenn.
1.7 Cursor Key Mode Escape Sequencesccovuuenn.

1.8 E&S Private ANSI Commands for Function Keys,
Numeric Keypad and Cursor Keysot

1.9 Values Appearing at KBhandler<9>:
1.10 Numeric Keypad — (DECKPNM and DECKPAM)
1.11 Numeric Keypad Escape Sequences
1.12 Escape Sequences that Affect Screen Display
1.13 Cursor Movement Command Escape Sequences

1.14 Index, Next Line, and Reverse Index Command Escape
Sequences (IND, NEL, RI)ccuottttiiennrnnnnnoanaas

1.15 Erase Commands Escape Sequences (ED, EL)

1.16 Set Top and Bottom Margins Command Escape Sequence
(DECSTBM) t.tiiiiittiieiittientntnneenneenasnneennns

1.17 Set Graphic Rendition Command Escape Sequences (SGR) ...
1.18 Report to the Host Command Escape Sequences (CPR, DSR)
1.19 VT52 Command Escape Sequencescooevvvuenneees

QU1 BTN A AW N

o A

2. PS 390 TERMINAL EMULATOR FUNCTION NETWORK 17

2.1 Keyboard Manager — (KBhandlerl) 17
2.2 Terminal Emulator Display Handler (F:VT10) — ES_TE1 18
2.3 Terminal Emulator Setup ittt 19
2.4 TE Initial Data Structuresc.ootiieteinuernnnannnaas 20
3. KEYBOARD COMMUNICATION MODESc.ccvvun.. 21
31 Keysand Outputsooiiittiiiiiiniiiinirienneconnnas 21
3.2 Using the SITE.DAT File to Change Features

of the Terminal Emulatort 23
3.3 Using the SITE.DAT To Send Control Sequences

tothe Terminalcc0tiiiiiiiiiiiiiiiiiiiiennnnns 26
4. IBM 3278 TERMINAL EMULATIONcc0iiuvennnn.. 27
4.1 Overview of the Environmentc0ivuuvn.., 27
4.2 Keyboard Communication Functions and Modes 27
4.3 Data Structurescovvitiiiiiittntntereetenrneeneannnas 28
4.4 Indicator Characterscciuiiiuiiiinneennnnnnennas 30
4.5 Setup Mode for the Terminal Emulator 30
4.6 Using the SITE.DAT File to Change Features

of the Terminal Emulator, 31

TABLES AND FIGURES

Table 10-1. Cursor Key Transmissioncceviuven.. 6
Table 10-2. Keypad Transmissions in ANSI Mode 10
Table 10-3. Keypad Transmissions in VI52 Mode 11
Table 10-4. Keys, Modes, and Outputsoeevvnu... 23
Table 10-5. SETUP Toggling Sequenceccvvvevnnn... 24
Figure 10-1. F:IBM_KEYBOARDcciiiiiiiinnnnnnn. 28
Figure 10-2. F:IBMDISPiitiiiiiiiitnntnennennenenns 29

il

Section RM10
Terminal Emulator

Modes and Functions

This section discusses the PS 390 terminal emulator for both the DEC VT100 and
the IBM 3278 systems. Each terminal emulator is discussed from several perspec-
tives. Sections 1, 2, and 3 will discuss VT100 terminal emulation, and section 4
will cover IBM 3278 terminal emulation.

Section 1 covers the ANSI modes and control sequences that are used to imple-
ment the DEC VT100 terminal emulation capabilities of the PS 390. Many of
DEC’s private sequences and modes for the VT100 are referred to in this section.
More information on these sequences and modes is found in DEC’s VT100 User
Guide (EK-VT100-UG-002).

Section 2 covers the system functions that form the terminal emulator network and
how data is received and passed between them.

Section 3 discusses the three communication modes of operation of the keyboard
and how certain keys are translated within these modes. Operator information for
the three communication modes used by the PS 390 keyboard is covered in Section
I§3 Operation and Communication.

Section 4 discusses the PS 390 IBM 3278 terminal emulator. This section covers
the system functions that form the terminal emulator network and how data is
received and passed between them. The TE is also discussed in terms of the three
communication modes of operation of the keyboard. Operator information for the
three communication modes used by the PS 390 keyboard is covered in Section
183 Operation and Communication.

Refer to the IBM publication, IBM 3270 Information Display System 3278 Display
Station Operator’s Guide (IBM #GA27-2890-3), for information on the use and
operation of the PS 390/IBM terminal and keyboard.

The terminal emulator facility has characteristics and features that can be changed
fairly easily by system programmers. Information for changing and adapting these
features for both the DEC and IBM terminal emulators will be covered throughout
the section.

Terminal Emulator RM10-1

1. ANSI Modes of Operation

The PS 390 operates under ANSI (and certain VTS52) modes wherein it
recognizes and responds to certain coded sequences whose syntax and
semantics are in accordance with ANSI specifications. These modes
determine how other coded sequences are to be interpreted and how the
terminal will respond in certain situations.

Escape sequences are interpreted as control functions that set the mode of
operation, (i.e. sending a particular escape sequence from the host to the
terminal will determine whether the numeric keypad on the PS 390
keyboard generates the numeric value of the keycaps or the escape
sequences that are used for EDT editing commands). The interpretation of
the escape sequence is dependent on the mode in which the terminal is
operating. The modes can be set or reset by sending escape sequences from
the host to the terminal.

It is difficult to categorize the modes in a straightforward manner because
some of them are dependent on the settings of other modes: if the ANSI
(VT100) mode is set to FALSE (or OFF), then logically, the terminal will
not be able to respond to any other ANSI control sequences. Some of these
modes are standard to the DEC VT100, and some are specific to the
PS 390. The modes and the escape sequences that can be used to set them
will be discussed in later sections. The list below gives some idea of the
modes and what they do.

e Send-Receive Mode (SRM (Local echo/Nolocal echo)) — determines
whether keyboard input will be echoed to the display.

e ANSI Mode (DECANM) — determines whether the PS 390 will gen-
erate and respond to standard ANSI (VT100) escape sequences.

e VI52 Mode — allows the PS 390 to recognize VT52 coded
sequences.

o Keypad Numeric Mode (DECKPNM) — causes the numeric keycap
values to be sent from the numeric keypad to the host.

o Keypad Application Mode (DECKPAM) — causes the keys on the
numeric keypad to transmit an escape sequence which begins with
<ESC>0 to the host.

e Cursor Key Mode (DECCKM) — enables the cursor keys to transmit
the ANSI control sequences that cause the cursor movements indi-
cated on the cursor keycaps.

RM10-2 Reference Materials

The modes listed previously, as well as other modes that are specific to the
PS 390, can be changed using the terminal emulator SETUP facility. A defi-
nition of these modes, their defaults, and how to change them is discussed
in Section I§3 Operation and Communication.

1.1 Definition of Escape Sequences

An escape sequence is a sequence of characters that is used for control
purposes to perform a control function and whose first character is the
escape <ESC> (the ASCII X-1B-) control character. Escape sequences are
used to set and reset modes, as well as tell the terminal how to respond to
coded sequences. These characters are not displayed as text on the screen,
but instead cause the terminal to perform some action or change some inter-
nal parameter of operation. Control sequences are also used to change or
define characteristics of the terminal. A control sequence is an escape se-
quence that provides supplementary controls and Begins with the control
sequence introducer (CSI). In VT100 emulation, the CSI is <ESC>][.

The sequences that the terminal emulator deals with take two general
forms: those that may have parameters, and those that do not. Those not
having parameters take the form <ESC>c, where ¢ is a single character.
Those that may have parameters take the form:

<ESC>[P1;P2;...Pnc

where:

<ESC>[is the control sequence introducer.

P1....Pn are the parameters (none need be present).

; is used to separate parameters.

c is the final character that determines which control sequence is

being defined.

The parameters are numbers expressed in their ASCII form. In sequences
that use private or non-standard parameters, the first character of the
parameter string is “?” for DEC private sequences and “>” for E&S private
sequences.

Terminal Emulator RM10-3

1.2 SET and RESET - SM, RM

The SET and RESET control sequences are used to set and reset certain
modes of the terminal. These control sequences for setting or resetting these
modes are sent from the host. The modes that can be set or reset are listed
below, along with the set and reset escape sequences.

¢ Send-Receive Mode (SRM)

e ANSI-VTS2 (DECANM)

e Cursor Key Mode (DECCKM)
e E&S private sequences

The SET and RESET control sequences are:

SM: <ESC>[Pnh

RM: <ESC>[Pn!
where n is the parameter that determines which mode is to be set, i.e.,
<ESC>[?1h

would set the Cursor Key mode (DECCKM).

1.3 Send-Receive Mode (SRM) - Local Echo/Nolocal Echo

The SRM mode can be set or reset from the host by sending the proper
control sequence, by using the SETUP facility of the terminal emulator
package, or by including the appropriate ASCII characters in the SITE.DAT
file. (Refer to Section IS3 Operation and Communication for SETUP, or to
section 3.2 of this guide for information on the SITE.DAT file.) This mode
determines whether the screen receives the input from the keyboard on the
host line, or from a PS 390 system function. If the host line is half duplex,
the host does not echo the keys as they are sent from the TE to the host.
This mode must be reset so that the characters that are received by the TE
from the keyboard will be displayed on the screen.

If the line to the host is full-duplex, the host retransmits the keys it receives
from the keyboard back to the terminal, and they are then displayed on the
screen. In this case, SRM should be set so that the characters will not ap-
pear on the screen twice: once as they are keyed in, and once as they are
received back from the host.

RM10-4 Reference Materials

1.4 Send-Receive Mode (SRM) Escape Sequences

“12” is the parameter that designates SRM.

<ESC>[12h SET SRM. Do not send keyboard input to the display.

<ESC>[12! RESET SRM. Send keyboard input to the display, with
[CR] (Carriage Return) displaying as [CRLF]
(Carriage Return-Line Feed).

1.5 ANSI - VI52 Mode Escape Sequences

The ANSI-VT52 modes can be set or reset with the (SM/RM) control
sequences. The VTS52 set state causes VI'52 compatible escape sequences to
be interpreted and executed. The ANSI set state causes only ANSI (VT100)
compatible escape sequences to be interpreted and executed. The
ANSI-VTS52 modes are private, using a private string parameter. The first
character in the string must be “?”, with “2” designating ANSI-VT52 mode.
The recognition of VT52 sequences may be turned off by using the <ESC><
sequence when in the VT52 mode.

<ESC>[?2h SET ANSI mode. Escape sequences will be interpreted
as ANSI; keys will be translated accordingly.

<ESC>[?2] SET VT52 mode. Escape sequences will be interpreted
as VI52; keys will be translated accordingly.

1.6 Directional Cursor Keys - (DECCKM)

The four directional cursor keys of the keyboard have a single mode that
may be set or reset using the SM/RM control sequences. The Cursor Key
mode is similar to DEC’s DECCKM. When this mode is reset (the default at
power-up), the cursor keys transmit the ANSI control sequences that cause
cursor movement as indicated by the arrows on the keycaps. When the
Cursor Key mode is set, the keys are in an application mode, and like the
numeric keypad, transmit escape sequences.

When the VT52 mode is in effect, the sequences have no intermediate char-
acters, and are the same regardless of the setting of the Cursor Key mode.
The following table shows what is transmitted in the Reset (RM) and Set
(SM) modes.

Terminal Emulator RM10-5

Table 10-1. CURSOR KEY Transmission

CURSOR VT52 (SET - ANSTI MODE ANSI MODE
KEY MODE (RESET) RESET MODE SET MODE
Up <ESC>A <ESC>[A <ESC>0A
Down <ESC>B <ESC>[B <ESC>0B
Right <ESC>C <ESC>[C <ESC>0C
Left <ESC>D <ESC>[D <ESC>0D

1.7 Cursor Key Mode Escape Sequences

The Cursor Key mode is also a private mode and uses the private parameter
string. The first character in the string must be “?”. “1” is the parameter
that designates Cursor Key mode.

<ESC>[?1h SET Cursor Key Mode. Cursor keys will now cause
<ESC>Oc sequences to be sent.

<ESC>[?1! RESET Cursor Key Mode. Cursor keys will now cause
the <ESC>[c sequences to be sent.

1.8 E&S Private ANSI Commands for Function Keys,
Numeric Keypad and Cursor Keys

The Function keys, the numeric keypad, and the cursor keys can be placed
under the control of the user-application program. The modes to do so may
be set or reset using E&S private ANSI commands.

For example, when Fkeys Always is set, the output of the Function Buttons
is always sent to FKEYS<1>. When the mode controlling the routing of the
output of the numeric keypad or the cursor keys is set, the numeric value
(as input to function networks) of these keys are available to PS 390
function networks in any of the three communication modes (Terminal
Emulator, Command, or Local). These keys (numeric keypad or cursor)
cause integers to appear at output<9> of KBhandler. (Note: KBhandler is an
instance of the function F:K2ANSI.) When reset, the key values will be sent
through KBhandler to the host, the command interpreter, SPECKEYS, etc.,
depending on the communication mode of the keyboard.

Multiple parameters are allowed per command, i.e., <ESC>[>10;11;12h
would cause all function keys, cursor keys, and keypad keys to go to the
user application.

RM10-6 Reference Materials

ANSI SEQUENCES

<ESC>[>2h

<ESC>[>3h
or
<ESC>[>1h

<ESC>[>4h

<ESC>[>5h

<ESC>[>6h

<ESC>[>7h

<ESC>[>8h

<ESC>[>%h

Terminal Emulator

DESCRIPTION

Set no/local echo. The TE will not locally echo
keys. When reset, the TE locally echoes keys.

Set auto-wrap. The TE adds <CRLF> if it receives
more than 80 characters without getting <CRLF>.
When reset, the TE puts additional characters in
column 80, overwriting the last one.

Set ANSI. The TE recognizes ANSI control
sequences. When reset, the TE responds like a
teletype terminal. When the reset sequence is sent
from the host to the PS 390, all further ANSI
commands are ignored (including <ESC>[>4l).

Set VTS52. The TE will recognize VTS52 control
sequences. When reset, the TE will not recognize
VTS52 control sequences.

Set KPM. The numeric keypad sends control
sequences. When reset, the numeric keypad sends
numbers.

Set CKM. The cursor keys send control
sequences. When reset, the cursor keys send
cursor control sequences.

Set Cnum. The numeric keypad sends numbers in
CI mode. When reset, the numeric keypad sends
tVc in CI mode.

Set Knum. The numeric keypad sends numbers
in KB mode. When reset, the numeric keypad
sends tVc in KB mode.

RM10-7

RM10-8

ANSI SEQUENCES

<ESC>[>10h

<ESC>[>11h

<ESC>[>12h

DESCRIPTION

Set Fkeys Always. Except in TE SETUP, the
numeric value of the Function Keys will always
appear at FKEYS<1>, regardless of the PS 390
communication mode. When reset, the Function
keys become VT100 keypad keys.

Set Cursor Keys Always. Except in TE SETUP,
the numeric value of the cursor keys will always
appear at KBhandler<9> regardless of the PS 390
communication mode. '

Set Keypad Keys Always. Except in TE SETUP,
the numeric value of the numeric keypad keys
will always appear at KBhandler<9> regardless of
the PS 390 communication mode.

There are four other E&S private set and reset escape sequences that can be
used to set display features of the PS 390. These escape sequences change
the status of the displays affected by the TERM and GRAPH keys.

ANSI SEQUENCES

<ESC>[>13h
<ESC>[>13]

<ESC>[>14h
<ESC>[>14]

<ESC>[>10!, etc.

DESCRIPTION

Turns the TE display ON.
Turns the TE display OFF.

Turns the GRAPH display ON.
Turns the GRAPH display OFF.

Reset the various modes. When reset, the keys
function under the modes in effect. (For example,
if “Fkeys always” is reset, and DECKPAM is set,
the last four Function Keys will generate control
sequences used by DEC’s EDT and KED editing
programs.

Any of the above modes may be set or reset by entering the appropriate
characters in the SITE.DAT file, or by sending the appropriate sequence to

<1>ES_TEL1.

Reference Materials

1.9 Values Appearing at KBhandler<9>:

When Keypad Keys Always is set, the numeric keypad keys pass their own
value (except 0). For instance, pressing the 5 key in Keypad Keys Always
mode causes an integer 5 to be output from KBhandler<9>. The remaining
keys spiral out from the “9” key:

‘-7 is 10
P is 11
ENTER is 12
‘L7 is 13
“0” is 14

Cursor keys:

Up cursor is 15
Down cursor is 16
Left cursor is 17
Right cursor is 18

These modes may be set or reset by entering the appropriate ASCII charac-
ters in the SITE.DAT file. For example:

SEND CHAR(27) & “[>10h” to <1>ES_TE1l;

would set the Fkeys Always mode.

1.10 Numeric Keypad - (DECKPNM and DECKPAM)

The characters or sequences transmitted by the numeric keypad are
dependent on a number of modes and configurations that can be set by the
programmer. Normally, the numeric keypad transmits the codes shown on
the key caps. However, in some host applications (DEC’s editor utilities
EDT and KED), these keys need to be interpreted as program function keys
to cause some action to take place.

To differentiate these keys from the number and character keys on the main
keyboard, the numeric keypad has two modes; a keypad numeric mode, and
a keypad application mode. In the application mode, the keys transmit
specific sequences. (Refer to Table 10-2 and Table 10-3.)

Terminal Emulator

RM10-9

1.11 Numeric Keypad Escape Sequences

RM10-10

The keypad modes are set up by sending two different escape sequences
from the host and eventually to the terminal emulator network (KBhandler).

<ESC>>

causes the keycap values (numeric and other) to be sent to the host when
the keys are pressed. This is the keypad numeric mode that corresponds to

DEC’s DECKPNM.

<ESC>=

puts the keypad in the keypad application mode (DEC’s DECKPAM). In this
mode, pressing the keys causes them to transmit an escape sequence that
begins with <ESC>0.

Setting the DEC VT52 mode (as opposed to the ANSI mode) will also affect
the translation of these keys. Table 10-2 shows what is transmitted in the
two modes when ANSI is set. Table 10-3 shows what is transmitted in the

two modes when VT52 is set.

Table 10-2. Keypad Transmissions in ANSI Mode

KEY CAP NUMERIC APPLICATION
MODE MODE
(DECKPNM) (DECKPAM)

0 0 <ESC>Op

1 1 <ESC>0q

2 2 <ESC>Or

3 3 <ESC>0Os

4 4 <ESC>0t

5 5 <ESC>Ou

6 6 <ESC>Ov

7 7 <ESC>Ow

8 9 <ESC>Oy

- - <ESC>0Om

, s <ESC>0!

. <ESC>0On

ENTER [CR] <ESC>OM

£ P1(F9) <ESC>OP <ESC>0OP
* % P2(F10) <ESC>0Q <ESC>0Q
* % P3(F11) <ESC>0OR <ESC>0OR
*x P4(F11) <ESC>08 <ESC>0S

Reference Materials

Table 10-3. Keypad Transmissions in VT52 Mode

KEY CAP NUMERIC APPLICATION
MODE MODE
(DECKPNM) (DECKPAM)
0 0 <ESC>?p
1 1 <ESC>?q
2 2 <ESC>?r
3 3 <ESC>?s
4 4 <ESC>7t
5 5 <ESC>%u
6 6 <ESC>7v
7 7 <ESC>?w
8 9 <ESC>?y
- - <ESC>m
, , <ESC>?
. <ESC>?n
ENTER [CR] <ESC>?M
s P1(F9) <ESC>P <ESC>P
*x P2(F10) <ESC>Q <ESC>Q
s P3(F11) <ESC>R <ESC>R
i P4(F12) <ESC>S <ESC>S

1.12 Escape Sequences that Affect Screen Display

There are a number of escape sequences that can be sent from the host
causing some action to take place in the terminal that affect the screen
display. These include cursor position, scrolling, deletion of text, scrolling
regions, and selective graphic rendition.

The following sections describe the escape sequence commands that
implement these actions.
1.13 Cursor Movement Command Escape Sequences

The cursor movement commands UP, DOWN, FORWARD and BACK are
identical in form except for the final character. They take the form

<ESC> [Pc

where P is the number of positions to move, and ¢ is A for UP, B for
DOWN, C for FORWARD, and D for BACK. If P is 0, 1, or absent, it is
interpreted to be 1.

These sequences, with P absent, are generated by the cursor keys when the
Cursor Key mode is reset.

Terminal Emulator RM10-11

If a given cursor command causes the cursor to move out of the display
area, the cursor is set at the edge of the display area in the direction of the
move. Scrolling does not take place. If the cursor were on the bottom line,
and the TE received <ESC>[26B, nothing would happen. The cursor would
remain on the bottom line, and no scrolling would take place.

<ESC>[PA CUU - Move the cursor P lines upward.

<ESC>[PB CUD - Move the cursor P lines down.

<ESC>[PC CUF Move the cursor P columns forward.

<ESC>[PD CUB - Move the cursor P columns back (left).

The cursor position and horizontal vertical position (CUP, HVP) commands
take the same form except for the final character. They take the form

<ESC>[P1;PcC

where Pl is the line number to move to, Pc is the column to move to, and C
is “H” for CUP and “f” for HVP (VT100 editor function). If one of these
commands would cause the cursor to move out of the display area, it is set
at the edge of the display area in the direction of the move. Scrolling does
not take place. With no parameters present, it is equivalent to a cursor to
home action.

<ESC>[P1l;PcH CUP - Move cursor to line Pl1, column Pc.

<ESC>[P1l;Pcf HVP - Move cursor to line P1, column Pc.

1.14 Index, Next Line, and Reverse Index Command Escape

RM10-12

Sequences (IND, NEL, RI)

These commands move the cursor, but may also cause scrolling to occur.
All of them take the form <ESCs>c.

<ESC>D IND — Move the cursor down one line, maintaining column
positioning. If the TE is at the bottom line of the
scrolling window when IND is received, a scroll-up is
performed.

Reference Materials

<ESC>E NEL - Move the cursor down one line and to column 1., If
the TE is at the bottom line of the scrolling window
when NEL is received, a scroll-up is performed.

<ESC>M RI - Move the cursor up one line, maintaining column

position. If the TE is at the top line of the scrolling
window when RI is received, a scroll-down is performed.

1.15 Erase Commands Escape Sequences (ED, EL)

The Erase in Display (ED) command takes the form
<ESC> [PJ

where P selects a specific erasing action. If P is absent, it is interpreted to

be 0.
<ESC>[J or
<ESC>[0J Erase the display from the cursor to the end of the
screen,
<ESC>[1J Erase the display from the beginning of the screen
to the cursor.
<ESC>[2J Erase the entire screen.

The Erase in Line (EL) command takes the form:
<ESC> [PK

where P selects a specific erasing action. If P is absent, it is interpreted to

be 0.
<ESC>[K or
<ESC>[OK Erase from the cursor to the end of the line.
<ESC>[1K Erase from the beginning of the line to the cursor.
<ESC>[2K Erase the entire line.

Terminal Emulator RMI10-13

1.16 Set Top and Bottom Margins Command Escape Sequence (DECSTBM)

This command allows a scrolling window to be defined. Inside the given
scrolling window, the lines scroll as they normally would for the entire
screen. Outside of the window, lines do not scroll. This command also
causes the cursor to be positioned in the upper-left corner of the scrolling
region as defined.

The form of this command is:
<ESC> [Pt ;Pbr

where Pt is the top line of the scrolling window, Pb is the last line of the
scrolling window, and r designates this command.

This command also requires that Pt < Pb since the scrolling window must be
logical and contain a minimum of two lines. Should an illegal set of pa-
rameters be defined, the current setting of the window remains unchanged.
For example, the sequence

<ESC> [Pt ; Pbr

would make the scrolling window Pt to Pb, inclusive.

1.17 Set Graphic Rendition Command Escape Sequences (SGR)

The intent of this command is to make some part of the text displayed on
the screen stand out, in contrast to the rest of the screen. The form of the
command is

<ESC>[Pm

where P selects some form of graphic rendition. If P is absent or 0, then all
forms of graphic rendition are turned off. As the most common methods
used to make the contrast are difficult or expensive to implement on the
PS 390, the command is interpreted by underscoring the selected text in the

display.
<ESC> [Pm (where P <> 0) Begin underscoring the text in the
display.
<ESC>[0Om or
<ESC>[m Stop underscoring the text in the display

RMI10-14 Reference Materials

1.18 Report to the Host Command Escape Sequences (CPR, DSR)

These commands involve a query command from the host, and a response
by the terminal. The query command takes the form:

<ESC>[Pn

where P selects the type of report requested. Two values of P are recog-
nized: 5, which is a device status report, and 6, which requests a cursor
position report.

The response takes the forms:
<ESC>[0n

that means “Ready, no malfunctions detected” and
<ESC>[P1;PcR

where Pl is a two-digit ASCII number giving the current line (line 1 is at the
top) and Pc is a two-digit ASCII number giving the current column.

Host: <ESC>[5n Please report status.

TE: <ESC>[On Ready, no malfunctions detected.

Host: <ESC>([6n Please report active (cursor) position.
TE: <ESC>[P1l;PcR Cursor is at line P1l, column Pc.

1.19 VI52 Command Escape Sequences

All VT52 commands in the PS 390 Terminal Emulator, except one, take the
form:

<ESC>c

The exception, Direct Cursor Addressing, is discussed in the last paragraph
of this section.

<ESC>A Move cursor up one position. Do not scroll.
<ESC>B Move the cursor down one position. Do not scroll.
<ESC>C Move cursor right one position.

<ESC>D Move the cursor left one position.

Terminal Emulator RMI10-15

<ESC>H Move cursor to line 1, column 1.

<ESC>I Reverse line feed; reverse scroll if at top.
<ESC>J Erase to end of screen.

<ESC>K Erase to end of line.

<ESC>= Enter alternate keypad mode.

<ESC>> Exit alternate keypad mode.

<ESC>< Enter ANSI mode.

Direct Cursor addressing requires a 4-character sequence. The first two
characters are <ESC>Y. The next two characters indicate the line and the
column to move to. The desired number is obtained by subtracting 31 (Hex
1F or Octal 37) from the ASCII character code of the character. The first
character, indicating the line, will be in the range of “!” "(line 1) to “8” (line
24), and the second character, indicating the column, will be in the range of
“1” to “p” (column 80). For example:

<ESC>Y/@ Move the cursor to line 15, column 32.

The keypad mode commands are always recognized apart from VT52
emulation.

RM10-16 Reference Materials

2. PS 390 Terminal Emulator Function Network

The actual networking of the functions that build the terminal emulator is
shown in the system functions Section of RM2 Intrinsic Functions. This sec-
tion will discuss the three main terminal emulator functions in more detail.

2.1 Keyboard Manager — (KBhandlerl)

The keyboard manager takes the stream of raw bytes from the keyboard and
distributes them to output queues (translating to ANSI control sequences if
necessary), and toggles graphics and terminal emulator displays.

F:K2ANSI Keyboard Manager - KBhandler1
Inputs:
<1>: Strings originating at keyboard; connected to data

concentrator demultiplexing function,

Outputs:

<1>: To KEYBOARD

<2>: To SetUp

<3>: To CHOP PARSE

<4>: To host

<5>: To display handler function
<6>: Unused

<7>: To FKEYS.

<8>: To SPECKEYS

<9>: To user function-networks
<10>: Unused

<11>: Unused

Private:
None.

The first four outputs, <1> to <4>, are keyboard routes for different tasks
that the keyboard performs. Output <1> ultimately goes to a user function
network that has been connected to KEYBOARD. This output is used when
the keyboard is in the Local (interactive) communication mode. Output <2>
goes to the TE SETUP function; hitting the SETUP key or the CTRL SETUP
sequence toggles this mode on and off. Output <3> is the output for the
“Command” (CI) communication mode. It goes through a line editor
function to chop and parse the command line for the interpretation of
PS 390 commands. Output <4> is the Terminal Emulator (TE) output port
and output is sent to the host computer.

Terminal Emulator RM10-17

The other outputs are minor and special purpose to some extent. Output
<5> goes directly to the TE display data handler function for two reasons:
the first is to pass commands resulting from the CLEAR/HOME key being
pressed (PS 300-style keyboard only), the second is to implement the
local-echo option of the terminal emulator. When outputting to this queue,
the key handler expands CR (Carriage Return) to CRLF (Carriage
Return/Line Feed).

Output <7> sends out the proper Qinteger when an Fkey is pressed and
input to a user function network is desired via FKEYS.

Output <8> allows the cursor keys to be used in user function networks via
SPECKEYS.

Output <9> allows the numeric value of the numeric keypad keys and the
cursor keys to be passed to user function networks.

2.2 Terminal Emulator Display Handler (F:VT10) - ES_TE1

This function receives input from the host, from an error formatting
function, and from the line editor that receives input from the keyboard in
Command (CI) mode. The primary task of the data display handler is to
make this input visible on the PS 390 screen.

F:VT10 TE display handler - ES_TET1
Inputs:

<1>:Qpackets, Qmorepackets. Input to the TE.
<2>:Qstring. Answerback string.

Outputs:
<1>:Qpackets. Bells for the keyboard.
<2>:Qpackets. Status, cursor reports (to host).
<3>:Qpackets. Terminal ID (VT52 or VT100 to host)
<4>:Qpackets. Echoed unknown escape sequences.

Private:

None.

RM10-18 Reference Materials

Users may send an answerback string to input <2> of ES_TE1. When the
host sends ENQ (UE or %X35), the answerback string is sent to the host. As
most of the input stream will have an effect on the screen, or show up as
displayable data, the outputs are minor. Output <1> is used to make the
expected “beep” on receipt of a 1G (the beeper is in the keyboard).

Output <2> sends data back to the host when the function receives com-
mand sequences, such as cursor position and terminal ID (I am a VT100).

Output <3> is used to send the correct control sequence back to the host
that identifies the terminal.

Output <4> is an aid for debugging and development. It sends out all
command sequences that are received, but unknown by the function. Output
<4> is not normally not used. When connected, it can be used to discover
what kind of sequences a host program might be sending (that the terminal
emulator cannot interpret) by hooking the output to a function such as
Message Display.

2.3 Terminal Emulator Setup

TE_SETUP changes the characteristics of the terminal emulator.
Inputs:
<1>: Messages from key manager
Outputs:
None.
Private:

None.

The SETUP function gets input from the keyboard function and uses it to
change the characteristics of the terminal emulator as a whole. Like the
display handler function, the setup function manipulates a display structure
that appears on the PS 390 screen and changes it in response to actions by
the user. SETUP is interactive and uses menus and the function keys.

Terminal Emulator RMI10-19

2.4 TE Initial Data Structures

The data structures used by the terminal emulator are set up by the
CONFIG.DAT file and then completed by the function TE_BUILD.

The CONFIG.DAT file contains a color node. The color node sets the color
for the characters displayed on the screen in the terminal emulator mode.

The color node is accessible by sending the appropriate value to
TECOLORLI.

TE BUILD adds a set node, a 4x4 matrix, a matcon2 (to scale characters),
and a set node (called the line set) to the name TDO0S$ that is established by
the CONFIG.DAT file. From the line set, a structure is hung for each line
and for the cursor. The display handler function keeps various pointers into
this structure and uses them to get data on the screen, perform scrolls, etc.

RM10-20 Reference Materials

3. Keyboard Communication Modes

The three modes of operation, Terminal Emulator (TE), Command (CI),
and Local (KB) are all modes of operation that are established by pressing a
key (or combination of keys) on the keyboard. The term “mode” is slightly
misleading as it is used here. Mode is also used to describe the operation of
the keypads, cursor keys, and other terminal emulator features. The modes
referred to here are actually determined by what output port is used by the
key_manager.

The command sequences that can be sent to <1>KBhandler1 to toggle these
communication modes are:

Command CHAR (22) & CHAR (18)
Local CHAR (22) & ‘R’
Terminal Emulator CHAR (22) & ‘r”’

For example, to boot up in Local mode, the following command would be
placed in SITE.DAT:

SEND CHAR (22) & “R” to <1>KBhandlerl;

The keys and the output that are generated from the keyboard manager
(KBhandler) in the three modes is discussed in the following section.

3.1 Keys and Outputs

In any of the modes listed below, if Keypad Keys Always or Cursor Keys
Always is set, the numeric value of the keys will be sent to any user func-
tion network connected to <9>KBhandler. If Fkeys Always is set, an integer
is output from FKEYS<1>.

In Local mode (KB), the numeric keypad keys will be translated into the
keycap numbers if Knum is true; otherwise they will be passed out
KEYBOARD as ASCII characters (or to output <9> as the numeric value of
the key if Keypad Keys Always is set). Fkeys always go out the FKEYS
queue as Qintegers and the cursor keys always go out to SPECKEYS as
<char>xyzw (or to output <9> as <char> if Cursor Keys Always is set).

In Command mode (CI), the numeric keypad keys will be passed as num-
bers if Cnum is true and as sequences, (tV<char>) if Cnum is false. Output
here is only to the CI queue. Finally, Fkeys will always go out the CI queue
as tV<char>.

Terminal Emulator RM10-21

The Terminal Emulator (TE) mode is the most complicated. The treatment
of the numeric keypad depends on two modes: DECKPM and DECCKM. In
DECKPM, when false, the keys are translated to their keycap values
(numeric mode).

When DECKPM is true, the keys are translated into escape sequences. The
escape sequences that are generated depend on whether VTS52 is true
(<ESC>7<char>) or false (<ESC>O<char>).

Fkeys are translated identical to their translation in CI mode. Otherwise, the
keys become a superset of DEC’s PF keys and send out <ESC>O<char>
sequences like the numeric keypad in DECKPM mode.

The cursor keys send out escape sequences (unless Cursor Keys Always is
set). If VT52 is true, the sequences are <ESC><char>. If the TE is emulating
a VT100, then the sequence depends on DECCKM. If DECCKM is true,
then <ESC>O<char> is sent, so that the cursor keys look like PF keys (or the
numeric keypad in DECKPM mode); otherwise the sequence is
<ESC>[<char>, which is the ANSI command sequence to move the cursor
one place in the direction of the arrow.

The GRAPH and TERM keys (or CTRL GRAPH/CTRL TERM sequences on
PS 390-style keyboards) allow the user to toggle the graphics and the TE
displays on and off. The viewports and the set are created in the
CONFIG.DAT file.

The SETUP key (CTRL SETUP sequence on PS 390-style keyboards)
toggles the SETUP mode. In SETUP mode, all keys are passed to the
SETUP function. When SETUP is pushed a second time, or the CTRL
SETUP sequence is entered again (PS 390-style keyboards), the last use and
queue are pulled.

The LINE/LOCAL key (LOCAL key on PS 390-style keyboards) is used to
multiplex the keyboard between the communication modes (except SETUP).
Refer to Section IS3 for detailed descriptions of the key sequences used to
change between communication modes.

The following table is an attempt to illustrate the keys, the modes, the out-
put of the keys in the modes, and any other combinations that are useful.
The representation in the table assumes that ANSI is set.

RM10-22 Reference Materials

Table 10-4. Keys, Modes, and Outputs

TE MODE

Cl MODE

KB MODE

FUNCTION KEYS

Fkeys Always

Final 4 keys used
w/ DECKPAM (EDT)

Qinteger to FKEYS

1V char

Same as TE

Qinteger to
FKEYS

Same as TE

CURSOR KEYS
DECCKM - Set
DECCKM - Reset
(w/DECKPAM set)

Cursor Keys
Always

Application functions
to host

Cursor control
commands to host

Qinteger to
KBhandler<9>

Ignored

Ignored

Same as TE

Ignored

<char>to
SPECKEYS

Same as TE

Numeric KEYPAD

DECKPNM

DECKPAM

Keypad Keys
Always

Numeric value passed
to host

Transmits control
sequences to host
for EDT utility

Qinteger to
KBhandler<9>

Ignored

Ignored

Same as TE

Ignored

Ignored

Same as TE

3.2 Using the SITE.DAT File to Change Features of the Terminal Emulator

The SITE.DAT file can be used to set bootable values for the SETUP
features of the terminal emulator. The following section gives the PS 390
commands that can be used to change features or defaults of the PS 390
Terminal Emulator.

TE characteristics are changed by sending sequences to <1>KBhandlerl.
These sequences will have the same effect as if they had been keyed in the
SETUP mode of the Keyboard and Display. (Refer to Section 1S3 Operation
and Communication for a description of the SETUP feature of the Terminal

Emulator.)

Terminal Emulator

RM10-23

There are four groups of commands: Toggles, BREAK Key, Mode, and
Displays, each of which is handled differently.

e Toggles

These are TE options that have two values, true and false or on and off.
In SETUP, they are changed by pressing a single Function Key that
changes the present value to its opposite. To put a command in the
SITE.DAT file so that the TE feature comes up in its desired value at
bootup, the toggling sequence must be sandwiched between two se-
quences that represent the pressing of the SETUP key. The header and
trailer sequence for the SETUP key is CHAR(22) & “o0”.

The following chart gives the SETUP name, the definition, the default
value, and the PS 390 command sequence to change the default.

Table 10-5. SETUP Toggling Sequence

Setup Default

Name Definition Setting Seguence to_toggle
SRM Local Echo OFF CHAR (22) & ‘b~
Awrp Automatic line wrap OFF CHAR (22) & ‘¢’
ANSI ANSI sequences obeyed ON CHAR (22) & “d’
VT52 VT52 mode OFF CHAR (22) & ‘e’
KPM Keypad Application Mode OFF CHAR (22) & £~
CKM Cursor Key Mode OFF CHAR (22) & “g~°
Cnum Keypad Numeric CI Mode ON CHAR (22) & “h”
Knum Keypad Numeric KB Mode ON CHAR (22) & “i~”

For example, to setup the TE for local echo (host is noecho) and for
automatic line-wrap, the following command would be placed in the
SITE.DAT file:

SEND CHAR(22) & “0” & CHAR(22) & “b” & CHAR (22) & ‘c”
& CHAR(22) & “0° to <1>KBhandlerl;

It is recommended, when possible, that the E&S private escape sequences
used to set/reset the various modes of the terminal emulator be placed in
the SITE.DAT file. These commands are generally more compact and
take up less space on the diskette. For example, to setup the TE for local
echo (host is noecho) and for automatic line-wrap, the following com-
mands can be sent to ES_TE1:

Send CHAR(27) & “[>1;2h” to <1>ES_TE1;

RM10-24 Reference Materials

« The BREAK Key

The BREAK key, like the toggles, must be sandwiched between
sequences representing the SETUP key. It also has an inner sandwich,
telling SETUP that it is the BREAK key and the end of the definition. The
important sequence in these two outer wrappings represents the special
key designated by the user to be the BREAK key. For example, to set a
key as the BREAK key, the following command would be placed in the
SITE.DAT file:

SEND CHAR(22) & “0” & CHAR(22) & “j’ & (Key sequence)
& CHAR(22) & “a” & CHAR(22) & “0° to <1>KBhandlerl;

where:

CHAR(22) & ’0’ is the header/trailer sequence for the SETUP key

CHAR(22) & ’j’ is the sequence for Function Key #10 (to enter the
set/BREAK key mode)

(Key sequence) is the CHAR(22) sequence designating a
user-specified key as the BREAK key

CHAR(22) & ’a’ is the sequence for Function Key #1 (exiting out of
set/BREAK key)

CHAR(22) & ’0’ is the header/trailer sequence to exit SETUP.

e Mode

To put the keyboard into Local (interactive) mode on bootup, the
following should be put in the user’s SITE.DAT file:

SEND CHAR(22) & ‘R’ to <1>KBhandlerl;

The PS 390 normally comes up in Terminal Emulator Mode (TE) mode;
that is, the keyboard outputs to the initial instance of ES_TE. To change
to the other two modes (either Command or Local), the following
sequences may be inserted in the SITE.DAT file. Note that these do not
have to be sandwiched between SETUP key sequences.

Terminal Emulator RMI10-25

3.3

RM10-26

MODE SEQUENCE

Command CHAR (22) & CHAR (18)
Local CHAR (22) & “R’
Terminal Emulator CHAR (22) & “r’

e Displays

The two displays are the TE display and the Graphics display. They are
toggled by the TERM and GRAPH keys (CRTL TERM/CTRL GRAPH on
PS 390-style keyboards) and normally are on. To turn them off at boot
time, special sequences may be sent.

DISPLAY SEQUENCE

TE CHAR(22) & “s”

Graphics CHAR(22) & ‘p”

For example, to turn the TE display off at boot time, the following com-
mand would be placed in SITE.DAT:

SEND CHAR(22) & “s8” to <1>KBhandlerl;

The only TE characteristic that cannot be conveniently set by a
SITE.DAT file is the size and placement of the TE display.

Using the SITE.DAT To Send Control Sequences to the Terminal

Control sequences that affect the screen display (as well as any other escape
sequences) can be placed in the SITE.DAT file as ASCII sequences. The
terminal emulator function ES_TE1 can accept and translate these se-
quences. The escape sequence in the SITE.DAT should take the following
form:

SEND <char> n &’ [P1;P2;...Pnc’ to ES_TE1l;

where [is the control sequence introducer and P1 through Pn are the
parameters that may or may not be present.

Reference Materials

4, IBM 3278 Terminal Emulation

4.1 Overview of the Environment

In the IBM 3278 interface environment, the IBM host assumes the PS 390 is
an IBM 3278 display terminal attached to a 3274 Control Unit. In a normal
3274/3278 environment, application programs are able to send special char-
acters to a 3278 terminal by packaging them in what is referred to as a
Write Structured Field (WSF) envelope. E&S uses this formatting scheme to
send graphical data down from the host using the Load Program Symbols
option of the WSF command. This allows binary data to be sent unchanged
to the PS 390. All non-WSF data are routed to the terminal emulator that
performs like a 3278 display terminal.

4.2 Keyboard Communicatien Functions and Modes

The three keyboard modes, Terminal Emulator (TE), Command (CI), and
Local (KB) are all modes of operation that are established by pressing a key
(or combination of keys) on the keyboard. The Terminal Emulator mode
allows use of the PS 390 as an IBM terminal. While in the TE mode, the
screen is formatted as an IBM 3278 terminal. The Command mode permits
the PS 390 to be used as an independent processor. In the command mode,
the screen is formatted as a DEC VT100 terminal. Local mode allows the
keyboard to be used as a peripheral graphics device. In Local mode the
function keys and standard keyboard keys may act as inputs to any
user-created function networks that are connected to them.

The modes referred to here are actually determined by what output port is
used by the function F:IBM_KEYBOARD, called the 3278 terminal emulator
keyboard handler.

The keyboard handler is a submodule of the IBM 3278 terminal emulator.
This function receives bytes of character data from the keyboard, distributes
them to the output queues, and translates them to IBM scan codes or to
ASCII characters if necessary. Translations are performed to support the
keyboard used (either VT100 style or IBM) and the output port and
destination the data will be sent to. It also toggles the graphics and terminal
emulator displays.

Terminal Emulator RM10-27

F:IBM_KEYBOARD

Qpacket —¥ <1> <1> —» Qpacket
Qboolean —¥ <2> <2> ¥ Qinteger
<3> — Qpacket
<4>—» Qpacket
<5>—» Qpacket

(IBMKBD1)

Figure 10-1. F:IBM_KEYBOARD

F:IBM_KEYBOARD accepts character packets from the keyboard on input
<1> and based on the mode (either Terminal Emulator, Command, or
Local), outputs packets for use by the function network, the line editor, or
an IBM host. Packets of characters for the KEYBOARD function are output
on <1>. Qintegers to be sent to the FKEYS function are output on <2>.
Qpackets of characters to be sent to the function, SPECKEYS, are output on
<3>. Qpackets of characters for the line editor are output on <4>. Qpackets
of IBM scan codes for an IBM host are output on <5>.

Input <2> accepts a Boolean that indicates which type of keyboard is being
used.

True = IBM-style keyboard
False = VT100-style keyboard

At system configuration, a VT100-style keyboard is specified; so, if an
IBM-style keyboard is being used, the following PS 390 command should be
entered in the SITE.DAT file:

SEND TRUE TO <2>IBMKBD1;

4.3 Data Structures

The three main output ports of the keyboard handler all affect a different
data display structure. The data structures used by the terminal emulator
are set up by the CONFIG.DAT file and then completed by the function
TE_BUILD.

The CONFIG.DAT file contains a color node. The color node determines
the color of the characters on the screen in the terminal emulator mode.

The color node is accessible by sending the appropriate value to
TECOLORI.

RM10-28 Reference Materials

A simplified diagram of the display structure created by the terminal emula-
tor is shown below:

INPUT FROM KEYBOARD OR HOST LINE

| | |

KB (local or data mode) Cl (local command) TE (host line)
GRAPHICS DISPLAY LOCAL TE HOST TE
DISPLAY DISPLAY

(used by F:IBMDISP) (used by GPIO TE)

The GPIO (the I/O processor used for communication with the IBM host) is
able to differentiate between data that is bound for the Host Screen Buffer
(3278 terminal emulation) and data that is bound for the PS 390 command
interpreter (graphical data). All data bound for the CI is packaged in WSF
envelopes. (Refer to Section RMS5 Host Communications for information on
WSF commands and data flow from the host system.) Upon receiving infor-
mation from the host, the GPIO differentiates graphical data from TE data
by the WSF command; anything not in a WSF command is TE data and
goes directly to the (Host) Screen Buffer.

The local TE display is set up by the F:IBMDISP function.

F:IBMDISP

Qpacket —¥ <1>

Figure 10-2. F:IBMDISP

F:IBMDISP accepts packets of ASCII characters on input <1>. Then, it
either inserts their equivalent IBM screen code into the local screen buffer
used by the Command mode of the terminal emulator or causes the cursor
position to be adjusted in the case of a carriage return, a line feed, or a
back space.

Terminal Emulator RM10-29

4.4

4.5

RM10-30

Indicator Characters

The PS 390 supports indicator characters that indicate the status (active
mode, software exception, etc.) of the PS 390. These characters appear on
the right side of the indicator line, and are defined as follows:

H Indicates that the keyboard is communicating with the host.
C Indicates that the keyboard is communicating with the CI.
L Indicates that the keyboard is communicating with user function networks.

S Indicates that the keyboard is in the SETUP mode, i.e., the SETUP key
has been pressed.

G Indicates that the graphics display is active.

¢ Indicates that the GPIO was unable to establish communications with the
host.

& Indicates that the GPIO timed out.

t Indicates that the CAPS LOCK feature is active.

These indicator characters (with the exception of the SETUP and the two
error indicators) may be removed from the screen by using the SETUP
mode of the keyboard.

Setup Mode for the Terminal Emulator

The SETUP mode for the 3278 TE is accessed by pressing CTRL SETUP. In
SETUP, the Function Keys on the keyboard are used to toggle or adjust
screen display features. CTRL SETUP must be pressed again, after the ap-
propriate adjustments are made, to exit the SETUP mode.

SETUP can be entered in any communication mode and can be used to
make the following adjustments:

FKey #1 Pressing this key increases the intensity of the screen.
FKey #2 Pressing this key decreases the intensity of the screen.

FKey #3 Pressing this key raises the contrast of the screen.

Reference Materials

FKey #4 Pressing this key lowers the contrast of the screen.

FKey #5 Pressing this key toggles in and out of the CAPS LOCK mode.
While in CAPS LOCK, all standard keypad keys output their
shifted value. (This is for IBM-style keyboards only.)

FKey #6 Pressing this key toggles the display of PS 390 characters.
The default is the display of characters.

Fkey #7 Toggles the display of the host indicator characters. The default
is the display of characters.

Fkey #8 Toggles the display of the cursor. Default is display of the cursor.

Function keys F9 and F10 are used in conjunction with the PS 390/IBM
3250 Interface. Information on the use of these keys is available in the
PS 300/IBM 3250 Interface User’s Manual.

4.6 Using the SITE.DAT File to Change Features of the Terminal Emulator

The adjustments made in SETUP can be entered as PS 390 commands in
the SITE.DAT file to set the appropriate characteristics at boot time.

The list below shows the characters that should be entered into the
SITE.DAT file for each feature.

For VT100 style keyboards, the appropriate character(s) must be inserted
between a “tVo tVo’ header and trailer sequence. (tVo is a CTRL V
lowercase “0” sequence.)

FEATURE CHARACTERS TO BE ENTERED INTQ SITE.DAT
Raise Intensity SEND “tvVotvatVo °~ TO <1>IBMKBD1;
Lower Intensity SEND “tVofVbiVo * TO <1>IBMKBD1;
Raise Contrast SEND “tVofVetvVo © TO <1>IBMKBD1;
Lower Contrast SEND “1VotvdfVvo - TO <1>IBMKBD1;
Set/Reset Caps Lock SEND “fVot1VetVo ° TO <1>IBMKBD1;
Set/Reset Local Indicators SEND “tVotVf{Vo - TO <1>IBMKBD1;
Set/Reset Host Indicators SEND “fVo1Vgtvo - TO <1>IBMKBD1;
Set/Reset Cursor SEND “t1Vo1Vh{Vo ° TO <1>IBMKBD1;
Set 3250 Mode SEND “tVo1VifVvo ° TO <1>IBMKBD1;
Set PS 390 Mode SEND “1Vo1Vjt Vo’ TO <1>IBMKBD1;

Terminal Emulator

RM10-31

For IBM-style keyboards, the appropriate characters must be inserted be-
tween a CHAR(130)&CHAR(n)&CHAR(130) sequence, where &CHAR(n)
is the character sequence(s) for the feature.

FEATURE CHARACTERS TO BE ENTERED INTO SITE.DAT

Raise Intensity SEND CHAR(130)&CHAR(145)&CHAR(130) TO
<1>IBMKBD1;

Lower Intensity SEND CHAR(130)&CHAR(146)&CHAR(130) TO
<1>IBMKBD1;

Raise Contrast SEND CHAR(130)&CHAR(147)&CHAR(130) TO
<1>IBMKBD1;

Lower Contrast SEND CHAR(130)&CHAR(148)&CHAR(130) TO
<1>IBMKBD1;

Set/Reset Caps Lock SEND CHAR(130)&CHAR(149)&CHAR(130) TO
<1>IBMKBD1;

Set/Reset Local Indicators SEND CHAR(130)&CHAR(150)&CHAR(130) TO
<1>IBMKBD1;

Set/Reset Host Indicators SEND CHAR(130)&CHAR(151)&CHAR(130) TO
<1>IBMKBD1;

Set/Reset Cursor SEND CHAR(130)&CHAR (152)&CHAR(130) TO
<1>IBMKBD1;

Set 3250 Mode SEND CHAR(130)&CHAR(153)&CHAR(130) TO
<1>IBMKBD1;

Set PS 390 Mode SEND CHAR(130)&CHAR(154)&CHAR(130) TO
<1>IBMKBD1

When inserting multiple SETUP options in the SITE.DAT file, as many
values as needed should be entered in between the header and trailer
sequences.

For example, on VT100 style keyboards
SEND ‘tvotvatvetvEtvo’ TO <1>IBMKBD1;

would raise screen intensity, raise screen contrast, and toggle the local
indicator display.

For IBM style keyboards, this sequence would be

SEND CHAR(130)&CHAR{(145)&CHAR(147)&CHAR (150)&CHAR(130)
TO <1>IBMKBD1;

The horizontal line running across the bottom of the terminal display can be
removed by entering the following PS 390 command in the SITE.DAT file:

IBMLINES$:=NIL;

RM10-32 Reference Materials

Another feature that can be changed in the SITE.DAT file is status of the
displays affected by CTRL GRAPH and CTRL TERM sequences.

VT1 style Sequences

SEND tVp TO <1>IBMKBD1;
SEND 1Vs TO <1>IBMKBD1;

IBM style Sequences

SEND CHAR(83) TO <1>IBMKBD1;
SEND CHAR(82) TO <1>IBMKBD1;

Terminal Emulator

DESCRIPTION
Toggles TERM display

Toggles GRAPH display

DESCRIPTION

Toggles TERM display
Toggles GRAPH display

RM10-33

RM11. SYSTEM ERRORS

Section RM11
System Errors

This section provides a description of the system error messages that you may
encounter during standard operation of the PS 390 graphics system. Errors may be
written to the debug terminal, to the keyboard LEDs, or to the Crash Dump file.
There are three types of error messages, listed in the following three tables.

NOTE

The tables list the error messages for PS 390 systems
using either DEC or IBM host computers. It is noted in
the tables where the message is host-specific.

The first table lists the error number and brief description of the traps or software
induced exceptions that might cause the system to fail.

The second table lists the error numbers (with error definitions) of system errors
that might be caused when you use the user-written function (UWF) facility.

The third table is a comprehensive list of the system error numbers. Most system
errors are generated only during the development process of the graphics firmware
and are rarely seen during normal system operation.

NOTE

Notify E&S Customer Engineering Software Support
when any error numbers are reported that are E&S
firmware errors (shown in Table 11-1 or Table 11-3).

System Errors RMI11-1

NUMBER

10

11

12

RM11-2

Table 11-1. PS 390 Traps and Definitions

DEFINITION

Not enough available memory to come up or handle request.
E&S firmware error.

Memory corrupted or over-written (could be caused by UWF).

Memory corrupted or over-written (could be caused by UWF).
Message for systems using IBM host only.

Attempt to wait on queue when function is waiting on another
device (CLOCK, I/O)(could be caused by UWF).

System errors (refer to Table 11-3).
Double-bit mass memory error if address on LEDs is between
200 and 300; unexpected interrupt on a vector with no routine if

address is between 300 and 400.

Usually indicates double-bit mass memory error. If address on
LEDs is 22C, error occurred on memory card 200000-300000. If
address is 23C, error occurred on memory card 300000-400000
and so forth. Message for systems using DEC host only.

E&S Firmware Error

Memory corrupted or over-written (could be caused by UWF).

E&S firmware error.

Pascal in-line runtime error: usually caused by Case statement in
Pascal with no Otherwise clause (could be caused by UWF).

Reference Materials

Table 11-2. User-Written Function Error Descriptions

ERROR NUMBER

SYSTEMERROR #7F

SYSTEMERROR #80

SYSTEMERROR #81

SYSTEMERROR #81

SYSTEMERROR #8E

SYSTEMERROR #B9

SYSTEMERROR #C9

SYSTEMERROR #CB

SYSTEMERROR #D9

SYSTEMERROR #DA

SYSTEMERROR #DB

SYSTEMERROR #DE

SYSTEMERROR #EO0

System Errors

DEFINITION

Exited function before re_queuing function (not

following template).

Bad parameter passed to text utility routine:
Text_text, B1 < 0.

Bad parameter passes to text utility routine:
Char_text, b < 0.

Bad parameter passes to text utility routine:
Char_text, b < 0. Message for systems using IBM
host only.

Bad parameters passed to Updates utilities:
AnnounceUpdate List tail = nil; head <> nil.

Nil or invalid parameter passed to Illegal Input
handling routines.

User written function stack overflow.

Improper redefinition of user written function
name.

Call to Ckinputs has Nmin < 0.
Call to Ckinputs has Nmin > Nmax.

Call to Ckinputs has Nmax > total number of inputs
for function.

Multiple call to Qsendcopymsg on the same input.

Function was not in state Running when Ckinputs
was called; Cleaninputs returned a FALSE and still
called Ckinputs; Cleaninputs was not called before
calling Ckinputs the second time.

RM11-3

Table 11-2. User-Written Function Error Descriptions (continued)

ERROR NUMBER

SYSTEMERROR #E1

SYSTEMERROR #E9

SYSTEMERROR #EA

SYSTEMERROR #110

SYSTEMERROR #111

SYSTEMERROR #68

SYSTEMERROR #A1

SYSTEMERROR #92

SYSTEMERROR #9C

SYSTEMERROR #9D

SYSTEMERROR #A3

SYSTEMERROR #103

SYSTEMERROR #109

RM11-4

DEFINITION

Function was not in state Mid_running when
Cleaninputs was called.

Qillmessage, or Qillvalue was called for input
which does not exist.

Qillmessage, or Qillvalue was called for input
which was already dealt with; previous call to
Qillmessage, Qillvalue, or Qsendcopymsg.
Tolerance on FCnearzero is too small.

Set node has no dummy control block.

Possible overwrite of block boundary: Sending to an
unrecognized Namedentity.

Possible overwrite of block boundary:
AppendVector, Invalid Acpdata type.

Possible overwrite of block boundary: Byte Index
Invalid Acpdata type.

Possible overwrite of block boundary: Unrecognized
type of Namedentity.

Possible overwrite of block boundary: Hasstructure.

Possible overwrite of block boundary:
Nomemsched, Bad.Status for a fen.

Possible overwrite of block boundary: Curfcn was
not active at entry.

Possible overwrite of block boundary: ContBlock,
nil block.

Reference Materials

Table 11-2. User-Written Function Error Descriptions (continued)

ERROR NUMBER DEFINITION

SYSTEMERROR #10D Possible overwrite of block boundary: GetVector,
Not an Acpdata block.

SYSTEMERROR #10E Possible overwrite of block boundary: GetVector,
Not a vector Acpdata block.

Motorola Exceptions:

These exceptions could be due to E&S software exceptions or to UWF
memory overwrites.

Exception 2 Bus Error.
Exception 3 Address Error.
Exception 4 Illegal Structure.

The following table is the comprehensive list of system error messages. The
messages are listed numerically, but can show one of two error types:

o Possible UWF Error — software exceptions possibly caused by use of
the UWF facility. If UWF is not used, notify Customer Engineering
Software Support when you get this message.

e E&S Firmware Error — software exceptions that indicate that Cus-
tomer Engineering Software Support should be notified.

System Errors RM11-5

Table 11-3. List of System Error Messages

ERROR NUMBER DEFINITION
#64 E&S Firmware Error
#65 E&S Firmware Error
#66 E&S Firmware Error
#67 E&S Firmware Error
#68 Possible UWF Error
#69 E&S Firmware Error
#6A E&S Firmware Error
#6B E&S Firmware Error
#6C E&S Firmware Error
#6 E&S Firmware Error
#6E E&S Firmware Error
#6F E&S Firmware Error
#70 E&S Firmware Error
#71 E&S Firmware Error
#72 E&S Firmware Error
#73 E&S Firmware Error
#74 E&S Firmware Error
#75 E&S Firmware Error
#76 E&S Firmware Error
#17 E&S Firmware Error
#1718 E&S Firmware Error
#79 E&S Firmware Error
#TA E&S Firmware Error

RM11-6 Reference Materials

System Errors

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#7B
#7C
#7D
#TE
#TF
#80
#81
#85
#86
#87
#88
#8A
#8D
#8E
#8F
#90
#91
#92
#93
#94
#95
#96
#97

DEFINITION

E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error

E&S Firmware Error

RM11-7

RM11-8

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#98
#99
#9C
#9D
#9E
#A1
#A3
#A9
#AA
#AB
#AC
#AD
#AE
#AF
#B0
#B3
#B4
#B8
#B9
#BA
#BD
#BF
#CO0

DEFINITION

E&S Firmware Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error

E&S Firmware Error

Reference Materials

System Errors

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#Cl1
#C2
#C3
#C9
#CA
#CB
#CC
#CD
#CF
#D0
#D1
#D2
#D3
#D4
#DS
#D6
#D7
#D8
#D9
#DA
#DB
#DC
#DE

DEFINITION

E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error

Possible UWF Error

RM11-9

RMI11-10

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#DF
#EO0
#E1
#E2
#ES
#E6
#E7
#E8
#E9
#EA
#EB
#ED
#EE
#EF
#F0
#F1
#F3
#F6
#F7
#F8
#1F9
#FC
#FD

DEFINITION

E&S Firmware Error
Possible UWF Error
Possible UWFE Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error

E&S Firmware Error

Reference Materials

System Errors

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#FE
#FF
#100
#101
#102
#103
#104
#105
#106
#107
#108
#109
#10A
#10B
#10C
#10D
#10E
#10F
#110
#111
#112
#113
#114

DEFINITION

E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
Possible UWF Error
Possible UWF Error
E&S Firmware Error
E&S Firmware Error

E&S Firmware Error

RMII-11

RM11-12

Table 11-3. List of System Error Messages (continued)

ERROR NUMBER

#115
#116
#117
#118
#119
#120
#121
#122
#123
#124
#125
#126

DEFINITION

E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error
E&S Firmware Error

E&S Firmware Error

Reference Materials

RM12. DIAGNOSTIC UTILITIES

CONTENTS

1. DIAGNOSTIC UTILITY COMMANDS iiiiiiinn,

1.1 Loading the Diagnostic Utility Diskette
1.2 Selecting Utility Commands ittt
1.3 Utility Commandsouiiuiutiiittrnnnernnnneennnns

2. BACKING UP FIRMWARE AND DIAGNOSTIC DISKETTES ...

2.1 Formatting the Destination Diskette
2.2 Copying the PS 390 Diskettescoiiiiiiiiiinnn.
2.2.1 Copying Using Mass Memoryoevueevueeneenneanns
2.2.2 Copying Using JCP Local Memorycovviviuenneenns
2.3 Error Messages During Copying i,
2.4 Checking the Copy ... cvvviiiiiienntirreeerenineennnneoans
2.5 The DELETE Commandc.oiiuiiitennernneennss

W N = =

O G0 XN U W

Section RM12
Diagnostic Utilities

Diagnostic utilities and commands are used to back up diskettes and for diskette
file management. This section explains accessing the utility program that contains
the commands and then lists and gives a short description of the commands. It also
provides the steps used to back up the graphics firmware diskettes or any other
system diskettes.

1. Diagnostic Utility Commands

The utility program in the diagnostic operating system contains commands
used to format diskettes, and to check, copy, delete, modify, download, and
send back files. The utility program also has terminal emulator capabilities.
This section explains loading the diagnostic utility diskette in order to access
the commands, then lists the utility commands available.

1.1 Loading the Diagnostic Utility Diskette

To access the utility commands load the diagnostic utility diskette using the
following steps:

1. Power-off the system, ensuring the activity light is off.
2. Dismount any diskettes in the PS 390 disk drives.

3. Insert the diagnostic utility diskette into drive 1. Ensure the E&S
label on the diskette faces right and the covered write-protect slot
faces up.

4. Power-up the PS 390 control unit and display. A VT100-compatible
auxiliary terminal or the PS 300 keyboard with LEDs may be used to
enter in the diagnostic commands. The auxiliary terminal is the pre-
ferred equipment to use since it fully displays system prompts.

Diagnostic Utilities RM12-1

NOTE

If an auxiliary terminal is used and you are operating it
at 300 baud, connect it to one of the available ports on
the control unit connector panel. Usually, Port 3
(debug port) is used.

5. Wait until the PS 390 finishes its power-on confidence tests and the
auxiliary terminal displays “O” and beeps before continuing.

6. Hold down the CTRL key while repeatedly typing P:

<CTRL>P

until the system responds with:

PS 300 Diagnostic operating system AX.Vxx
Disk name = PS 300 Diagnostic Disk X AX.VxxX
Type "HELP" for help.

The = prompt indicates the diagnostic operating system has been
successfully loaded.

7. Select the utilities program by typing:

UTILITY <CR>

1.2 Selecting Utility Commands

RM12-2

The following message is displayed when the utility program has been suc-
cessfully loaded.

=Utility

UTILITY; 1 loaded

PS 300 file and download Utility Px.Vxx
Type HELP for additional help.

Utility>

Enter a command at the Utility> prompt. The command is an alphabetic
string that is long enough to identify the command. For example, you can
type in the full word CHECK, or abbreviate it to CH, to call the CHECK
command. If the first character in the entered command is not alphabetic,
or if the first word in the entered command is incorrect, the system
responds with:

Invalid command.

Reference Materials

The system prompts you for any required parameters that are not entered
by the operator. Those commands containing parameters require more than
one line when they are entered.

When you enter the command, the utility program steps you through a se-
ries of prompts that completes the command.
1.3 Utility Commands

The following file utility commands are available:

CHECK Reads the entire diskette to check for diskette errors and
to determine if the file structure is valid.

COMPARE Compares two diskettes or two files to determine if they
are the same.

COMPRESS Compresses a diskette by copying each file over any empty
space on the diskette until all empty space resides in one
contiguous block at the end of the diskette.

COPY Copies a file from one diskette to another diskette or
copies a file from one place on a diskette to another
place on the same diskette.

COPYDISK Copies the contents of an entire diskette onto another
diskette.

CREATE Creates a file from data in memory.

CREATEBOOT Creates a boot file from an existing file.

DATE Displays and/or changes the date.

DELETE Deletes a file.

DIRECTORY Displays the diskette directory.

DRIVE Selects a diskette drive.

DUMP Dumps a file from the diskette into memory.

EXIT Returns to the Diagnostic Operating System monitor.

FORMAT Formats and initializes a diskette.

Diagnostic Utilities

RM12-3

FREE

HELP

INITIALIZE

MEMORY

MODIFY

PURGE

REMOVE

RENAME

RENAMEDISK

RESTORE

SAVE

SENDBACK

TERMINAL

TRANSFER

TYPE

Indicates the number of free blocks on a diskette.

Displays a list of available commands and information about
each command.

Initializes a diskette without formatting it.

Displays memory size and allows use of either local or mass
memory .

Modifies the host communication parameter values for baud
rate, parity, port number, etc.

Deletes all but the latest version of each file or all but
the latest version of one specific file from the diskette.

This is a query "delete". It will selectively delete any
files on the disk as it prompts the user through the file
names.

Renames a file.

Changes the diskette title.

Restores one of the saved (see SAVE command) files
containing the host communication value parameters.

Saves host communication parameter values modified using
the MODIFY command.

Transfers a file from the PS 390 to the host.

Software resident on the diagnostic diskette lets the user
access a line to the host system. The communication
parameters must be correct for this command to work.

Transfers a file from the host to the PS 390.

Types the contents of a file to the terminal.

Use the HELP command for a brief description of the function and syntax
of each Utility command.

RM12-4

Reference Materials

2. Backing Up Firmware and Diagnostic Diskettes

Backup copies should be made of the graphics firmware or any of the
PS 390 diskettes. The diskettes should be copied as soon as they are re-
ceived. A blank diskette(s) must be available to use as the copy disk(s). A
PS 300 keyboard with LEDs, or an auxiliary terminal may be used when
backing up. The auxiliary terminal is the preferred equipment to use since it
fully displays system prompts.

You perform the following steps when you do a backup:

e Load the PS 390 diagnostic utility diskette.
e Access the utility program on the diagnostic diskette.
o Format a blank diskette to be used as the copy diskette.

e Store data from the original diskette for transfer to the copy diskette
using either mass memory or local memory.

2.1 Formatting the Destination Diskette

The utility program in the diagnostic operating system is used to format the
blank (destination) diskette and copy the PS 390 graphics firmware.

Format the blank diskette as follows:

1. Load the diagnostic diskette and access the utility program following
the procedure described in sections 1.1 and 1.2.

2. Dismount the diagnostic software diskette.

3. Mount the blank diskette in the diskette drive. Ensure the
write-protect tape has been removed from the diskette.

4. Type:

FORMAT

The system responds with:

Utility> Format
ENTER DISK NAME

Diagnostic Utilities RM12-5

5. Although the system asks for a disk name, a response iS not
necessary. The firmware or diagnostic diskette is copied onto the
destination diskette, name included. Press RETURN to continue.

6. The system then formats the diskette. If the diskette is
write-protected, the system returns with this message:

**x*x*ERROR: Disk write protected.

If this message appears, make sure the write-protect tape has been
removed. If the tape has been removed, and the message still ap-
pears, use a new diskette.

7. When the destination diskette is successfully formatted, the Utility>
prompt is displayed.

Disk formatting difficulties are usually the result of a bad disk or faulty
diskette mounting in the drive. Use the CHECK command to determine if a
diskette has been properly formatted.

2.2 Copying the PS 390 Diskettes

RM12-6

You can use either mass memory or local memory to copy the graphics
firmware or diagnostic diskettes. It is faster to copy diskettes using mass
memory and both disk drives. The system prompts you during the copy at
each step.

2.2.1 Copying Using Mass Memory
Initialize mass memory by typing:
MEM

The system responds with:

Memory is currently set to use xxxK of local memory.
Do you want to change using mass memory?

You must respond with YES or Y to use mass memory. NO is the default
answer. If you respond with a RETURN, NO, or N, the system uses local
memory to copy.

Reference Materials

When you respond with YES or Y, the system displays the current amount
of mass memory available:

xxxXK of memory is available in mass memory.

and initializes mass memory to be used in the COPYDISK command. Per-
form the following steps to complete the copy.

1. Type:

COPYDISK

2. The system responds with:

Copy using 1 or 2 drives?
xxxK of memory is available in mass memory.

3. Type:

2

4. The system prompts:
Enter source drive number.

Enter the number of the drive containing the source diskette. The
diskette drives are numbered 1 and 2. The system then prompts:

Enter destination drive number:

Enter the number of the drive containing the newly formatted
diskette.

5. The system prompts:
Please insert source and destination disks, then press RETURN.
6. The system loads the data from the source file into memory and

copies it onto the destination diskette. When the copy is complete,
the system prompts:

The disk has been copied.
Do you want another copy of the same disk?

Repeat the procedure as needed.

Diagnostic Utilities RM12-7

2.2.2 Copying Using JCP Local Memory

If mass memory is not available for temporary use with the COPYDISK
utility, the system uses the JCP local memory for temporary storage. The
system uses the same prompts that appear during the mass memory copy
procedure.

To use JCP local memory when copying, enter RETURN, NO, or N at the
system prompt:

Do you want to change using mass memory?

Then follow the system prompts to complete the copy procedure.

2.3 Error Messages During Copying

There are several error messages that may appear during COPYDISK. If the
system displays the following,

*¥*kxx*ERROR: Record not found during write.

reformat the diskette and try COPYDISK again.

Refer to the list of Utility commands at the front of this section for more
commands that may be helpful in backing up the PS 390 diskettes.

2.4 Checking the Copy

Use the CHECK command to determine if a diskette has been properly
formatted. The CHECK command responds with a detailed report of the
number of blocks in the header, footer, and body of each file. The message

appears as:
Header 0
Directory 1
File Name.Ex_;26 2-43
* Empty * 44-719

When the system displays the Utility> prompt, and no error messages
appear, the diskette has been properly formatted.

RM12-8 Reference Materials

When file copying is complete, use the utility DIRECTORY to check if all
files were copied from the source disk. The CHECK utility can be used to
read the diskette and display the name and number of sectors of each file,
or the COMPARE utility can be used to compare the newly copied disk with
the source disk.

2.5 The DELETE Command

Use the DELETE command to delete a file from the diskette. This utility
command should be used to delete the original SITE.DAT file from the copy
of the graphics firmware before downloading the new version. If the exten-
sion is not specified, the first file found on the diskette that has a matching
file name and version number is deleted. The version number must always
be specified.

The following is an example deleting the SITE.DAT;4 file from the diskette:

Utility>DELETE

Enter name of file to be deleted: SITE.DAT;4
File deleted successfully.

Utility>

The DELETE command may also be entered on one line:

Utility>DELETE SITE.DAT;4

The file name must be valid, and must include a version number. If the
version number is not specified, the system advises the operator of the error
with the following message:

Error, version number must be specified.

When a file is deleted it no longer exists on the diskette, and that space
becomes available for other files.

NOTE

For information on using the utility commands to
download a file from the host, refer to the example in
TT2 Helpful Hints, How to copy Files Between the Host
and the PS 390.

Diagnostic Utilities RM12-9

RM13. INTERACTIVE

'DEVICES

RM13A. INTERACTIVE DEVICES

PS 300 STYLE

CONTENTS
1. THE PERIPHERAL MULTIPLEXERc0iiiiiinnennnns 2
1.1 Functional Characteristicscciiiiiriinieeenreennns 3
1.2 Data Framing and Transmission Rates 3
2. KEYBOARD ...ttt ittt iennerennnnsnnnens 4
2.1 Physical Configuration o i, 4
22 DData Entry . ooviiiiiiiiiiiiiiiitiett ittt 5
2.3 Keyboard LED Displaycoiitiiiiiiiiiiinrenieennnans 14
2.4 Keyboard Display Modesccitiiiiiiinnnrnereraeens 14
3. CONTROL DIALS UNIT .. .ottt ittt e iinenenennaennns 17
3.1 Operating Modescouoiriiiuiininnrnennrennnennenannas 17
3.20perationttt it i e it e 18
3.3 LED Display Operationcciitiiuiinrnneennennnns 20
4. FUNCTION BUTTONS UNIT ... iiiiii it iitninnnnaeeeeens 21
4.1 Communications Protocol, 21
S. DATA TABLET ittt it eerenannnnnas 23
S.1 Operating Modesvviittiiiiiniiniiteieeeeeeeannnnnens 23
6. THE OPTICAL MOUSEttt iiiiiiiiiittennnnrrennnens 25
6.1 Protocol ...t i i i e 25

ILLUSTRATIONS

Figure 13A-1. Front Panel of Peripheral Multiplexer 2
Figure 13A-2. Back Panel of Peripheral Multiplexer 2
TABLES
Table 13A-1. Interactive Device Transmission Rates, 3
Table 13A-2. Alphabetic Key Codescouiiiiiiiiiininnnnenas 7
Table 13A-3. Standard Numeric Key Codescciiiiiiiiiiiiinn, 8
Table 13A-4. Special Character Key Codeso, 9
Table 13A-5. Terminal Function Key Codescoiiiiiiiiinnnn, 10
Table 13A-6. Function Key Codesouiitiiniiiiinnnnrnnenns 11
Table 13A-7. Numeric/Application Mode Key Codesooviunn. 12
Table 13A-8. Device Control Key Codescciiiiiiiiiernnnnnnn. 13
Table 13A-9. Binary Data Transmission Codeso iivvennn. 24
Table 13A-10. Data Tablet Binary Format oo i, 24
Table 13A-11. Mouse Bit Protocolo i, 26

li

Section RM13A
Interactive Devices

PS 300 Style

Two sets of interactive devices are available with the PS 390: the PS 300-style
devices and the PS 390-style devices. Interactive devices from the two styles cannot
be mixed with the exception of the data tablets and the optical mouse, which are
common to both styles.

The PS 300-style interactive devices include:
* Keyboard with LEDs
* Control dials unit with LEDs
* Function buttons unit
* Data tablet (6 by 6 or 12 by 12) with puck

* Optical mouse

The light pen is not supported on the PS 390.

The PS 390 interfaces with the interactive devices through the peripheral
multiplexer which supplies the power to the interactive devices and serves as their
input/output path to the PS 390. The peripheral multiplexer combines the signals
from the interactive devices and transmits them to the PS 390.

This section describes the PS 300-style interactive devices and peripheral

multiplexer. Section RMI3B describes the PS 390-style interactive devices and
peripheral multiplexer.

Interactive Devices RM13A-1

1. The Peripheral Multiplexer

The peripheral multiplexer serves as the connection point between the
PS 390 system and the interactive devices. It provides power to the
interactive devices and combines their signals and transmits them to the
PS 390. It also routes any signals which the the system may send back to
the appropriate interactive device.

The peripheral multiplexer is housed in a metal box which fits beneath the
raster display pedestal. The interactive devices connect to the five connec-
tors on the front of the multiplexer. Each connector is uniquely dedicated to
a specific interactive device.

Figure 13A-1 shows the peripheral connections for the PS 300-style
peripheral set. Figure 13A-2 shows the backside connectors and plugs for
the peripheral multiplexer.

© = 9
oL @ @ B
[i A * A
MOUSE BUTTONS DIALS KEYBOARD TABLET POWER

IAS390003A2

Figure 13A-1. Front Panel of Peripheral Multiplexer

— 90-130/180-250v-
| 2A MAX 6/3A 47-63Hz
]
]
]

D) -

IAS390005A2

CONTROLLER

| I—

Figure 13A-2. Back Panel of Peripheral Multiplexer

RM13A-2 Reference Materials

1.1 Functional Characteristics

The peripheral multiplexer consists of a circuit card which is connected to
five input ports and one output port. The five input ports support the follow-
ing interactive devices:

o Keyboard with LEDs

e Control dials unit with LEDs

e Function buttons unit

o Data tablet (6 by 6 or 12 by 12) with cursor
e Optical mouse

The peripheral multiplexer receives input data from the interactive devices
and multiplexes the data through an RS-232C output port to the PS 390. It
also accepts the multiplexed data from the terminal controller,
demultiplexes the data, and routes the data to the appropriate interactive
devices.

1.2 Data Framing and Transmission Rates

The data sent to and from the peripheral multiplexer is asynchronous data
with each byte containing eight data bits with no parity, one start bit and
one stop bit. The data transmission rate of the peripheral multiplexer to and
from the PS 390 is 19,200 baud. The transmission rates between the inter-
active devices and the peripheral multiplexer are shown in Table 13A-1.

Table 13A-1. Interactive Device Transmission Rates

Device Baud Rate
Keyboard Port x“Bl” 2400 Baud
Control Dials Port x“B2- 9600 Baud
32 Func. Buttons Port x“B3~ 9600 Baud
Mouse Port x“B4- 9600 Baud
Data Tablet Port x“B6” 9600 Baud

Interactive Devices RMI13A-3

2. Keyboard

The main function of the keyboard is the generation and transmission of
ASCII displayable characters, ASCII control characters, and PS 390 system
sequences. This data is transmitted to the JCP, the controlling system proc-
essor that is located in the PS 390 control unit. The transmitted data may
ultimately specify displayed characters, commands, menu/table selections,
etc.

The keyboard also displays full-line or segmented alphanumeric messages
on a 1 to 96-character LED array. These displayed characters most often
function as labels for the keyboard’s 12 user-programmable function keys.
The LED characters may also be used “in tandem” to present a single mes-
sage up to 96 characters long.

2.1 Physical Configuration

The keyboard is a modular unit that connects to the system through a single
interface cable. Like the other interactive devices, the keyboard is micropro-
cessor-controlled to provide limited local processing capabilities. The proces-
sor in the keyboard controls LED displays and I/O data transmissions.

The keyboard unit contains a keyboard, an LED display, and a keyboard
interface. The assembled keyboard measures 21.1 inches (53.6 cm) long by
8.25 inches (20.9 cm) deep. The keyboard stands 3.5 inches (8.9 cm) high
on four rubber feet. The system’s audible alarm sounds through a speaker.

The LEDs are configured in a single row above the twelve keyboard func-
tion keys. They are arranged in twelve 8-character groups. Each LED group
may serve as a label for its associated function key, or all LED characters
may be used together to display. a single message. A space of one character
separates each 8-character LED group from the next.

An 8-conductor, flexible cable with locking modular plugs connects the key-
board to the peripheral multiplexer. The cable is similar in function and
appearance to a standard telephone “flex” cord. The cable may be stretched
to permit many different work station arrangements. The modular plugs are
identical, allowing the cable to be connected in either direction.

The keyboard should be grounded, and provision for this has been made on
the peripheral multiplexer.

RM13A-4 Reference Materials

2.2 Data Entry

The 95 keys fall into eight general categories.

e Keyboard function control
o Alphabetic

e Standard numeric

e Special character

e Terminal function

o Function

e Numeric/application mode

e Device control

Note

When instructions are given to press two or more keys
simultaneously, the key sequence will be shown in
italics. For example, CTRL V means that the CTRL and
V keys are pressed simultaneously.

2.2.1 Keyboard Function Control Keys

The keyboard function control keys are unencoded, local controls, and in-
clude the SHIFT and CTRL keys. No codes are transmitted when these keys
are pressed individually or in combination with each other. The keyboard
function control keys are used to modify the codes transmitted by other
keys. When either SHIFT key is pressed simultaneously with a displayable
character key, the uppercase code for that key is generated. If the key does
not have an uppercase function, the SHIFT key is ignored. For example,
pressing the A key causes the binary code B-01100001- for the character a
to be transmitted; and pressing the sequence SHIFT A causes the binary
code B-01000001- for the character A to be transmitted. Bit 6 is forced low
to define an uppercase character.

When CTRL is pressed simultaneously with one of keys A-Z (uppercase
only), the space bar, or the special character keys {, [, 1, }, or ?, an ASCII
control code is generated. For example, the CTRL Z keyboard sequence
causes the binary code B-00011010- to be generated. The only difference
between this code and the binary code for Z (B-01011010-) is that bit 7 is
forced low to define the control code.

Interactive Devices RM13A-5

When the SHIFT and CTRL keys are pressed simultaneously, the shift func-
tion is selected in most cases. The only exceptions occur with the { and ?
keys. The SHIFT CTRL { sequence causes the control character RS
(B-00011110-) to be transmitted. The SHIFT CTRL ? sequence causes the
control character US (B-00011111-) to be transmitted.

When the REPT key is locked down, the auto-repeat feature is enabled on
all keys except: F1 - F12, HARD COPY, SETUP, GRAPH, CLEAR_HOME,
LINE LOCAL, TERM, CAPS_LOCK, CTRL, SHIFT (both keys), RETURN,
and all numeric pad keys. When any other key is held down with the key-
board in auto repeat mode, repeated character transmission occurs. The
initial rate is less than 2 Hz, but this increases to about 11 Hz in less than
two seconds. Pressing the REPT key a second time causes it to release up-
wards, canceling the auto repeat feature.

Pressing the CAPS _LOCK key causes it to assume a locked-down position,
asserting the “caps lock” function. This is actually a limited shift operation
that applies to the alphabetic (A-Z) keys only. Alphabetic keys struck while
the keyboard is in “caps lock” mode generate uppercase characters. Press-
ing the CAPS_LOCK a second time causes it to release upward, canceling
the “caps lock” mode.

2.2.2 Alphabetic Keys

The alphabetic keys are used to produce uppercase and lowercase ASCII
displayable character codes, and ASCII control codes. Table 13A-2 shows
the code and character produced when each key is pressed alone, with the
SHIFT key, or with the CTRL key. The code in the table is shown in
hexadecimal notation.

RM13A-6 Reference Materials

Table 13A-2. Alphabetic Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER
A X 61~ a X 41” A X o1~ SOH
B X 62~ b X 42° B X 02- STX
Cc X’63” c X743” Cc X703~ ETX
D X 64" d X 44° D X704’ EOT
E X 657 € X 45”7 E X745” ENQ
F X’ 66" f X 46~ F X 067 ACK
G X 67 g X 47” G X707” BEL
H X768 h X748~ H X 08~ BS
I X”769” i X749” I X 09~ HT
J X 6A” J X7 4A° J X’ 0A” LF
K X’ 6B~ k X’ 4B~ K X“ 0B~ vT
L X 6C” 1 X”4C” L X 0cC” FF
M X’ 6D’ m X”4D” M X’ 0Dh” CR
N X7 6E” n X7 4E” N X7 OE~ SO

0] X“6F’ o X7 4F” (0] X7 OF~ S

P X770 p X750 P X710~ DLE
Q X 71° q X751° Q X711° DC1
R X" 72”7 T X7527 R X7 12° DC2
S X7 73” s X”753” S X713~ DC3
T X 74" t X 54° T X" 14° DC4
U X 757 u X”7557 U X715” NAK
Vv X776~ v X756" v X716~ SYN
w X 77 w X757 w X717 ETB
X X 787 X X758 X X718~ CAN
Y X 797 y X 597 Y X719” EM

Z X“TA” z X7 5A7 Z X7 1A’ SUB

Interactive Devices

RM13A-7

2.2.3 Standard Numeric Keys

The standard numeric keys generate ASCII displayable numbers and sym-
bols. The CTRL key is ignored when used with these keys. Table 13A-3
shows the code and character produced when each key is pressed alone,
with the SHIFT key, or with the CTRL key. The code in the table is shown
in hexadecimal notation.

Table 13A-3. Standard Numeric Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY

LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER
0 X7 30” 0 X729”) X730” 0
1 X 31” 1 X 21° ! X7 30° 1
2 X 32° 2 X740” @ X”32” 2
3 X733~ 3 X723” # X733 3
4 X734~ 4 X 24~ $ X7 34° 4
5 X735~ 5 X257 % X”35” 5
6 X”36° 6 X’ 5E” - X”736" 6
7 X737’ 7 X726~ & X737 7
8 X 38~ 8 X7 2A7 * X738~ 8
9 X’ 39”7 9 X 28~ (X739 9

2.2.4 Special Character Keys

The special character keys are detailed in Table 13A-4. The code in the
table is shown in hexadecimal notation. These keys can be pressed alone,
with the SHIFT key, and with the CTRL key. Note the varying response
given to the CTRL key; in some instances, the unshifted key character is
produced. In other cases, a control character is generated. In two cases,
X-1F’ and X-1E-, both the SHIFT and CTRL keys must be used with the
special character key to produce the control code shown in Table 13A-4.

RM13A-8 Reference Materials

Table 13A-4. Special Character Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER
- X’ 2D’ (minus) X’ 5F” (underline) | X’2D” (minus)

+

= X’ 3D” = X’ 2B~ + X 2B~ =

* X760~ * X TE” ~ X71E~ RS*
{

[X“5B” [X TB” { X 1B~ ESC
}

1 X’ 5D”] X’ 7D’ } X”1D” GS
\ X75C” \ X 7C” | X 1C” FS
; X’ 3B~ ; X7 3A° X 3B~ ;

"

‘ X 277 ‘ X”22° " X 277 ‘

<

, X/zcz , X/3C; < Xzzc/ ,

>

X’ 2E” X’ 3E” > X7 2E”
?
/ X7 2F~° / X7 3F~ ? X”1F~ US*

*These control codes may also be produced by pressing both SHIFT

and CTRL in conjunction with the indicated key.

Interactive Devices

RM13A-9

2.2.5 Terminal Function Keys

The terminal function keys produce codes used by a typical video display
terminal. These keys enable an operator to generate any commonly used
terminal control character with a single keystroke. Table 13A-5 lists the
codes and characters generated by the terminal function keys. The code in
the table is shown in hexadecimal notation.

The codes produced by these keys are identical to those generated by the
conventional two-key control sequences described in Table 13A-5.

The SHIFT and CTRL keys have no effect on the codes produced by the
terminal function keys, except for the CTRL Space_Bar sequence that gener-
ates an ASCII NUL character.

Table 13A-5. Terminal Function Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER
BACKSPACE X 08" BS X708” BS X708~ BS
DEL X TF” DEL X TF” DEL X TF” DEL
RETURN X’ 0D’ CR X’ 0D” CR X’ 0D~ CR
LINE_FEED X 0A” LF X7 0A” LF X“0A” LF
ESC X“1B” ESC X“1B” ESC X“1B” ESC
TAB X 09~ HT X709” HT X709” HT
(none) X 20° (space) X 20" (space) X700~ NUL

RM13A-10 Reference Materials

2.2.6 Function Keys

Table 13A-6 illustrates the codes produced by each function key as it is
used individually, or in combination with the SHIFT and/or CTRL keys. The
code in the table is shown in hexadecimal notation. Each transmitted code

is preceded by X-16-.

Table 13A-6. Function Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER
F1 X 61” a X741° A X“01° SOH
F2 X" 62” b X 427 B X 02- STX
F3 X763’ c X 43 c X”03” ETX
F4 X 64° d X 44”° D X04° EOT
F5 X 65 e X 457 E X 057 ENQ
F6 X“ 66" f X 46" F X 06” ACK
F7 X" 671" g X 47 G X 07’ BEL
F8 X 68" h X 48” H X“08” BS
F9 X 69" i X 49° i X709 HT
F10 X7 6A” J X 4A° J X“0A” LF
F11 X“ 6B~ k X7 4B” K X“ 0B~ vT
F12 X“6C” 1 X 4C” L X 0C’ FF
Note: All codes are preceded by X’ 16”.

Interactive Devices

RMI13A-11

2.2.7 Numeric/Application Mode Keys

Table 13A-7 illustrates the codes and characters produced by the numeric/
application mode keys. The code in the table is shown in hexadecimal nota-
tion. Neither SHIFT or CTRL affects the ENTER key, and no codes are
modified by the CTRL key.

Table 13A-7. Numeric/Application Mode Key Codes

KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER CODE CHARACTER CODE CHARACTER

0o X730~ 0 X 297) X730” 0

1 X”31° 1 X 21° ! X”31” 1

2 X”32° 2 X407 @ X732° 2

3 X*33” 3 X 237 # X”733” 3

4 X 34" 4 X" 24" $ X734° 4

5 X*35” 5 X 2587 % X”35° 5

6 X 36" 6 X”5E” - X367 6

7 X371 7 X 26" & X 37 7

8 X”38” 8 X" 2A° * X" 38~ 8

9 X739~ 9 X 28" (X” 397 9

X7 2E” . X7 3E” > X7 2E”
, X 2C’ s X~ 3C” < X 2C ,
(minus) (underline) (minus)

- X’ 2D” - X“8F7 —_ X7 2D’ -

ENTER X” 0D~ CR X“ 0D~ CR X7 0D~ CR

Note: All codes are preceded by X 16°.

RM13A-12 Reference Materials

2.2.8 Device Control Keys

Table 13A-8 illustrates the codes and characters produced by the device
control keys. The codes produced by these keys are modified by SHIFT and

CTRL.
Table 13A-8. Device Control Key Codes
KEY KEY ALONE SHIFT+KEY CTRL+KEY
LABEL CODE CHARACTER | CODE CHARACTER | CODE CHARACTER
HARD
COPY X’ 6E” n X’ 4E’ N X’ OE” SO
SETUP X’ 6F° o X’ 4F’ 0 X’ OF’ ST
GRAPH X“70° p X507 P X 10’ DLE
CLEAR
HOME X" 71° q X’ 51° Q X 11” DC1
LINE
LOCAL X727 r X" 527 R X7 12° DC2
TERM X°73° s X" 537 S X°13° DC3
- X777 w X" 577 w X’ 17’ ETB
— X°78° X X" 58° X X 18° CAN
1 X797 y X597 Y X°19° EM
] X’ TA” z X’ 5A° Z X“ 1A’ SUB

The Cursor Up key becomes Scroll Up when shifted.
The Cursor Down key becomes Scroll Down when shifted.

Note: All codes are preceded by X 167.

Interactive Devices

RM1I13A-13

2.3 Keyboard LED Display
The keyboard LED display will recognize and display the following ASCII
characters:

I "#8%&” () *+,—. /0123456789 ;

?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [] " _

In addition to the above characters, CTRL E, CTRL G, CTRL YV,
BACKSPACE, DEL, RETURN, space, and lowercase alphabetic characters
are recognized.

Lowercase alphabetic characters are converted to uppercase and displayed.
CTRL E causes the keyboard to send the following message to the PS 390:

KBxxxD

where xxx is the PROM version number in the keyboard.

CTRL G generates a bell tone. CTRL V, BACKSPACE, DEL, and RETURN
are used as described below. All other characters are ignored.

2.4 Keyboard Display Modes

The keyboard display operates in two modes:

e Line mode
e Function key label mode

2.4.1 Line Mode

In line mode, the LEDs fill from left to right as characters for display are
received. A left-justified line up to 96 characters long (including spaces) can
be displayed.

The DEL and BACKSPACE characters are processed only in line mode.
The BACKSPACE character causes the entire display to logically move left
one LED display position. The DEL character causes the most recently
entered character to be deleted.

All data transmitted to the LEDs for display in line mode must be termi-
nated with a RETURN character. After a RETURN character is entered, the
display is cleared when the next valid character is received. The received
character is output to the leftmost LED character, and the LEDs are filled
left to right as before.

RM13A-14 Reference Materials

2.4.2 Function Key Label Mode

Function key label mode is used to provide a descriptive label for each
function key. The data input to the keyboard for this purpose must conform
to the following format:

[,X’lG’AL Label Parameter Byte | 0 to 8 Characters | RETURN}

The label parameter byte specifies blinking, left justification, and label
number; its format is as follows:

7 6 5 4 3 0
[[[1 I
L | L
Not_Used
Blink_Label
Left_Justify Bit
Label Number
Note

Label values 0-11 correspond to function key numbers
1-12.

When the blink label bit is 1, the characters in the label location (0 — 11)
specified in bits 0-3 blinks. When this bit is 0, the segment does not blink.
To blink or unblink an existing label, it is only necessary to send X~ 16, the
label parameter byte, and a RETURN.

When the left justify bit is 1, the function key label is left-justified in the
specified label location; spaces are placed in any unused characters. When
this bit is 0, the label is automatically centered in the segment location.

The “0 to 8 Characters” specified in the above label format constitute actual
ASCII characters to display. The RETURN is a required terminator that
must appear following each LED label string.

Interactive Devices RMI3A-15

To describe function key label mode, examples of function key labels and
the data required to produce and modify them are provided below.

1. To center an “unblinking” label X AXIS over key F6 the following
hexadecimal string is used:

Byte Meaning

X716~ CTRL V

X 057 Don“t Blink;
Center; use Segment 5

X’58” X

X 20" Space

X 41” A

X 58~ X

X”49” I

X537 S

X” 0D~ RETURN

2. To make the existing label blink, the following hexadecimal string is

used:
Byte Meaning
X716~ CTRL V
X 25~ Blink;
Center; use
Segment 5
X“ 0D~ RETURN

3. The following hexadecimal string is used to “unblink” the existing

label:
Byte Meaning
X’ 16~ CTRL V
X7 05" Don’t Blink;
Center; use
Segment 5
X“0D~” RETURN

RM13A-16 Reference Materials

4. To code the label Y TRANS for presentation over key F12 with the
label left-justified and blinking, use the following hexadecimal string:

Byte Meaning

X716~° CTRL V

X”3B” Blink; Left-justify;
Use Segment 11

X 59° Y

X207 Space

X 54" T

X 52”7 R

X 41- A

X" 4E” N

X753~ S

X”0D” RETURN

3. Control Dials Unit

The control dials unit is a modular interactive device that is microprocessor
controlled. Power, ground, and communication lines are routed through a
modular phone cord from the peripheral multiplexer to the control dials
interface card. It uses a single, eight-conductor flexible interface cable with
locking modular plugs. The dials are used to communicate dynamic,
incrementing, and decrementing data to the PS 390. There is an effective
resolution of 1024 counts per turn.

3.1 Operating Modes
The control dials unit operates in the following modes.

e Message

The control dials unit outputs rotational values in message mode
only when enabled to do so by a setup command from the JCP.
Each dial is individually programmable. The message mode may
be entered any time after initial power-up and is entirely under the
control of the PS 390.

o LED Label Mode

This mode allows each eight-character LED label to be individually
defined.

Interactive Devices RMI13A-17

3.2 Operation

The control dials unit outputs pulses when any of the dials are turned. From
the pulses, the control dials interface determines:

e Which dial is being turned.
e What direction the dial is turning.

e« How far the dial is rotated. Dial position is evaluated in terms of the
number of changes of delta.

After the control dials interface analyzes dial motion, rotational information
is transmitted to the JCP. The following paragraphs describe data formats
and codes exchanged in dial and LED display operation.

Two messages set up the operating mode for the control dials unit. One
command specifies the minimum rotation count delta required before a
sample is output to the PS 390, and the other command specifies the maxi-
mum rate at which the control dials unit sends a new delta update to the
PS 390. The control dials unit outputs relative delta values only; that is, the
position of each dial is reported in terms of its last sampled location. These
inputs can come from the initial function instance DSET1...DSETS8, and
must be done before any output can occur after power-up.

The message to specify the rotation count delta for a particular control dial
consists of the following four-byte sequence:

| x'16° | control Byte | mss]| LsB |

The control byte specifies the dial number in the following format:

1xX0xXxnnn

where the n’s specify the dial number between 000 and 111 (0 - 7.), and the
x’s may be either zero or one.

The most significant byte (MSB) and least significant byte (LSB) together
specify the 16-bit delta value. This number may be any value between 1 and
65535; use of negative or zero values is not recommended.

RM13A-18 Reference Materials

The message that specifies the maximum update in seconds is in the
following four-byte format:

[X’le’ I Control byte | Reserved I Time Count

The control byte is in the following format:

1X1XXXXX

where all x’s may be either zero or one. This means that the specified
maximum update applies to all dials.

The next byte is reserved for possible future use.

The final byte consists of a binary number that specifies the sample time
value. The following sample times are available:

Hex Decimal Updates/Sec.
05 5 60
0A 10 30
1E 30 10

3.2.1 Dial Setup Programming Examples

To specify a maximum update rate of 10 updates per second:

Byte Meaning

X 16” CTRL V

X’90” Setup maximum update rate
X700~ Reserved byte

X7 1E” 10 updates per second

(decimal 30)

To set dial four for the minimum rotation count delta required before a
sample is output:

Byte Meaning

X 16 CTRL V

X’ 84~ Setup Dial 4
X700~ Delta MSB

X 06" Delta LSB

Interactive Devices

RM13A-19

The data format that is output from the control dials unit takes the following
form:

l X“ 167 ‘ Dial Number Sample MSB Sample L§§J

3.3 LED Display Operation

The control dials unit has eight 8-character LED displays. Each display
functions as a label for a dial. The LED displays are much like those on the
keyboard, displaying the same characters and responding to the same codes.
The control dials unit LEDs operate in label (segment) mode. That is, each
display is separately programmed and functions independently of the other
LEDs.

The LED label message format is as follows:

I X716~] Control Byte 0 to 8 Characters

The X-16- character indicates the beginning of a command string. The
control byte specifies blinking, left justification, and LED label number.

Not Used
Blink Label
Left Justify Bit
Label Number

The control byte format is as follows:
e Bit 7 in the control byte is always 0.
e Bit 6 is not used.

When the blink label bit (bit 5) is 1, the label blinks. When this bit is 0, the
label does not blink.

When the left justify bit (bit 4) is 1, the label is left-justified in the specified
label location. When this bit is 0, the label is automatically centered in the
label location.

RM13A-20 Reference Materials

The label number bits (bits 3-0) specify the LED label location (0-7).

The “0 to 8 characters” are the ASCII characters to be displayed on the
selected LED label. If there is no label message (character count = 0), then
the current message in the LED label is set up according to the values of bit
5 in the control byte (that is, the LED will blink or not blink).

4. Function Buttons Unit

The function buttons unit gives an expanded capability for program
selection, providing 32 programmable function buttons in addition to the 12
function keys on the keyboard. Power and communications for the function
buttons unit are provided through a single modular phone cord that
connects to the peripheral multiplexer. The function buttons are lighted by
incandescent bulbs. As with the function keys on the keyboard, pressing a
function button results in a user-specified action.

The function buttons unit is arranged with one row of four buttons, four
rows of six buttons, and a final row of four buttons. The buttons are num-
bered from left to right, beginning at the top row of four buttons, with the
first button labeled 0. Buttons can be programmed from the PS 390 to light
when activated and go out when not activated.

During operation, the function buttons respond to valid characters from the
PS 390 and send a character to the PS 390 if a button is pressed. Inputs to
the PS 390 from the function buttons unit are sent to the appropriate func-
tion network which determines the button functions. The activity of the
lights backing the buttons is determined by messages sent from the PS 390
to the function buttons unit.

4.1 Communications Protocol

During operation, the PS 390 and the function buttons unit use the commu-
nications protocol outlined below.

NOTE

The displayed messages (such as X~ 057, Ctrl E) in this
section show both the ASCII equivalent (X-05-) and
the actual character (Ctrl E). When “KEY” is entered
as the actual character, it indicates the key entered by
the user.

Interactive Devices RMI3A-21]

Turn ON All Lights Message (From PS 390)

This message from the PS 390 turns ON all 32 lights in the function buttons
unit:

<SI>,X’0F~,Ctrl O

Turn OFF All Lights Message (From PS 390)

This message from the PS 390 turns OFF all 32 lights in the function
buttons unit:

<S0>,X“0E-,Ctrl N

Turn ON Light KEY Message (From PS 390)

This message from the PS 390 turns ON one of the 32 lights in the function
buttons unit (no other lights are affected):

(X740 + KEY)

The value chosen for KEY (which should be a hex number from [X-00-] to
[X-1F-]) determines the specific light selected. If the designated light is
already ON, this message has no affect.

Turn OFF Light KEY Message (From PS 390)

This message from the PS 390 turns OFF one of the 32 lights in the func-
tion buttons unit (no other lights are affected):

(X”60°+ KEY)

The value chosen for KEY (which should be a hex number from [X-00-] to
[X“1F-]) determines the specific light selected. If the designated light is
already OFF, this message has no affect.

Key Down, Light ON Message (From Buttons)

This message from the function buttons unit reports to the PS 390 that a
KEY has been pressed down and that the status of the light in that KEY is
ON:

(X“"40°+ KEY)

The value of KEY should be a number (X-00-) to (X-1F-) corresponding to
one of the 32 keys in the function buttons unit.

RM13A-22 Reference Materials

Key Down, Light OFF Message (From Buttons)

This message from the function buttons unit reports to the PS 390 that a
KEY has been pressed down and that the status of the light in that KEY is
OFF:

(X” 607+ KEY)

The value of KEY should be a number (X-00-) to (X 1F-) corresponding to
one of the 32 keys in the function buttons unit.

5. Data Tablet

There are two data tablets available for use with the PS 390. Both tablets
are identical for the PS 300 style and the PS 390 style interactive devices.
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a
four-button puck. Both are alike, except for their active areas, and both
provide digitizing and picking functions for the PS 390.

5.1 Operating Modes

Data tablet modes may be controlled externally under program control. The
following operating modes are available:

e Point mode
Pressing a puck button at a given tablet location causes one X,Y
coordinate pair (sample) to be transmitted.
e Stream mode
X,Y coordinate pairs are generated continuously at the selected
sampling rate when the puck is near the active area of the tablet.
o Switched stream mode

Pressing a button on the puck causes X,Y coordinate pairs to be
output continuously at the selected sampling rate until the button is
released.

Interactive Devices RM13A-23

Both the mode and the sampling rate may be changed under program con-
trol from the PS 390 by sending the data tablet an ASCII character.

Table 13A-9 lists the ASCII codes.

Table 13A-9. Binary Data Transmission Codes

Mode Binary Rate Uppercase ASCIl Character

Stop -
Point
Switched Stream 2

10
20
35
70
141
141
Stream 2

10
20
35
70
141
141

OZ=E2rARgHITOQRMEDOW>>®E U W

5.1.1 Binary Data Format

The binary formatted RS-232 interface is a five-byte count output. Binary

format is shown in Table 13A-10.

Table 13A-10. Data Tablet Binary Format

Byte Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1

1 P 1 F3 F2 F1 FO 0

2 P 0 X5 X4 X3 X2 X1
3 P 0 X11 X10 X9 X8 X7
4 P 0 Y5 Y4 Y3 Y2 Y1
S P 0 Y11 Y10 Y9 Y8 Y7

RM13A-24

Bit 0
0]
X0
X6
YO
Y6

Reference Materials

6. The Optical Mouse

The optical mouse transforms position information into a digital form
acceptable to the PS 390. The optical mouse uses a three-button mouse unit
in conjunction with a reflective pad to provide X- and Y-axis position
information.

The mouse uses LEDs reflecting off the pad to provide directional informa-
tion to the control logic in the mouse. This movement is then translated into
relative X and Y movement information. The data is transmitted serially to
the PS 390 through the peripheral multiplexer.

NOTE

The optical mouse pad must be oriented horizontally to
the user for proper mouse operation. Furthermore, the
mouse cord (tail) should lead away from the user.

6.1 Protocol

The mouse protocol is 9600 baud asynchronous serial with one start bit, one
stop bit, and eight data bits. The least significant data bit is transmitted
first. Blocks of five bytes are sent whenever there is a change of mouse state
(switches or position) since the last transmission. The protocol is as follows:

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch
status (0 switches the depressed state). With the mouse oriented so
that the cord is facing away from the user, the right switch status is
indicated by bit 0, the middle switch status by bit 1, and the left
switch status is indicated by bit 2.

2. Byte 2: Bits 0 through 7 represent the incremental change in the
X-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two’s complement form and has a
value limit of +/- 127. With the mouse cord facing away from the
user, moving the mouse to the right produces positive X values and
moving the mouse to the left produces negative X values.

Interactive Devices RMI3A-25

RM13A-26

3. Byte 3: Bits 0 through 7 represent the incremental change in the
Y-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two’s complement form and has a
value limit of +/- 127. Moving the mouse towards its mouse cord
produces positive X values and moving the mouse away from its cord
produces negative Y values.

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre-
sent the data acquired since the beginning of Byte 1 transmission.

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre-
sent the data acquired since the beginning of Byte 4 transmission.

Bit No.

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5§

Table 13A-11. Mouse Bit Protocol

MSB
7

X7

Y7

X7

Y7

X6

Y6

X6

Y6

X85

YS

X5

Y5

X4

Y4

X4

Y4

X3

Y3

X3

Y3

X2

Y2

X2

Y2

X1

Y1

X1

Y1

LSB

X0

YO

X0

YO

Reference Materials

RM13B. INTERACTIVE DEVICES

PS 390 STYLE
CONTENTS

1. THE PERIPHERAL MULTIPLEXERciiiitttteennnns 1
1.1 Functional Characteristicsoc ittt 2
1.2 Data Framing and Transmission Rates

2. THEPS 390 KEYBOARDcitiiiiiiiiinnnnnnnneeennas 3
2.1 Interface Cablecciiiiiiiiiiiiiiiiiennnnnnannnnns 5
2.2 Keyboard Operationcooiiiiiiiiiiiiiiiinnennns 5
221 Data Entryoiiiiiiiinniineneneneneeererenannnnns 5
2.2.2 Keyboard Function Control Keys 6
2.2.3 Alphabetic Keysttt nnanns 7
2.2.4 Standard Numeric Keys i, 9
2.2.5 Special Character Keyscovviiiiiiniiiininnnnnnn. 10
2.2.6 Terminal Function Keys i, 11
227 PS 390 Function Keysooiiiiiiiiiiiniinennnnnnns 12
2.2.8 Numeric/Application Mode Keysoviiviineann, 13
2.2.9 Device Control Keyscuoveviuerrnnreeenneeeeennneens 14
3. THE CONTROL DIALS B 15
3.1 Control Dial Responsesccetiiiiiiiiiiiieeneeeanns 15
3.2 Commands to the Control Dials 16
3.3 Transmission Characteristics o iiiann.. 16
4. THE 32-KEY LIGHTED FUNCTION BUTTONS 16
4.1 Light Control ittt iiiiiiiiieeeeeneeeennnnns 17
4.2 Reporting Selections i il 18
4.3 Self Test Command and Report, 18
4.4 Transmission Characteristicso, 18

S5. DATA TABLET ... i i ittt i 19

5.1 Operating Modescciitiiiiiiiiniieeennnnnnanns 19
5.1.1 Binary Data Formatttt nnnnennns 20
6. THE OPTICAL MOUSE ittt iiiiinnneneerneeannns 21
6.1 Protocolot i it i et e e 21

ii

ILLUSTRATIONS

Figure 13B-1. Backside Connectors for the Peripheral Multiplexer 2
Figure 13B-2. Connectors for the PS 390 Style Interactive Devices 3
Figure 13B-3. The PS 390 Style Keyboardccciiiiiiiiinnnnnnn. 4
TABLES
Table 13B-1. Interactive Device Transmission Rates 3
Table 13B-2. Alphabetic Key Codesc i, 7
Table 13B-2. Alphabetic Key Codes (cont.)c.0iiiiiienenn. 8
Table 13B-3. Standard Numeric Keys Codesc.oveviiererernennnnns 9
Table 13B-4. Special Character Keysoiiiiiiiiiiiiiiiinneennnas 10
Table 13B-5. Terminal Function Keys i, 11
Table 13B-6. PS 390 Function Key Codesciiiiiiiiiiiinnn... 12
Table 13B-7. Numeric/Application Mode Key Codes 13
Table 13B-8. The Device Control Key Codescvvviiiiiiiiennnnn. 14
Table 13B-9. Control Dial Response Data Format 15
Table 13B-10. Control Dial Command Data Format 16
Table 13B-11. Function Button Light Control Message Byte 17
Table 13B-12. Function Button Light Groupso ... 17
Table 13B-13. Function Button Self Test Responses 18
Table 13B-14. Binary Data Transmission Codes, 20
Table 13B-15. Data Tablet Binary Format c.coivuv.n. 20

Table

13B-16.

Mouse Bit Protocolcoviiiitiiirineennenennenns 22

iii

Section RM13B
Interactive Devices

PS 390 Style

Two sets of interactive devices are available with the PS 390: the PS 300-style
devices and the PS 390-style devices. The interactive devices from the two styles
cannot be mixed with the exception of the data tablets, and the optical mouse,
which are common to both styles.

The PS 390-style interactive devices include:

e Keyboard without LEDs

e Control dials unit without LEDs

¢ Function buttons unit

e Data tablet (6x6 or 12x12) with puck

¢ Optical mouse

The light pen is not supported on the PS 390.

The PS 390 interfaces with the interactive devices through the peripheral
multiplexer which supplies the power to the interactive devices and serves as their
input/output path to the PS 390. The peripheral multiplexer combines the signals
from the interactive devices and transmits them to the PS 390.

This section describes the PS 390-style interactive devices and peripheral
multiplexer. Section RMI3A describes the PS 300-style interactive devices and
peripheral multiplexer.

1. The Peripheral Multiplexer

The peripheral multiplexer serves as the connection point between the
PS 390 system and the interactive devices. It provides power to the
interactive devices and combines their signals and transmits them to the
PS 390. It also routes any signals which the the system may send back to
the appropriate interactive device.

Interactive Devices RM13B-1

The peripheral multiplexer is housed in a metal box which fits beneath the
raster display pedestal. The interactive devices connect to the five connec-
tors on the front of the multiplexer. Each connector is uniquely dedicated to
a specific interactive device.

The peripheral multiplexer provides programmed logic which allows the
data from the interactive devices to be multiplexed over a single RS-232C
line into the controller via Port S on the rear of the PS 390.

1.1 Functional Characteristics

The peripheral multiplexer consists of a circuit card which is connected to
five input ports and one output port. The five input ports support the
following interactive devices:

Keyboard

Control dials unit

Function buttons unit

Data tablet (6 by 6 or 12 by 12) with puck

Optical mouse

Figure 13B-1 shows the backside connectors and plugs for the peripheral
multiplexer. Figure 13B-2 shows the peripheral connections for the
PS 390-style peripheral set.

90-130/180-250v~
6/3A 47-63Hz

E— 2A MAX
[] l/[]\
© | - [o] <° 00 9

CONTROLLER

o

Figure 13B-1. Backside Connectors for the Peripheral Multiplexer

RM13B-2 Reference Materials

A M [R Sy
O € © e

A \ A

MOUSE BUTTONS DIALS KEYBOARD TABLET POWER

Figure 13B-2. Connectors for the PS 390 Style Interactive Devices

1.2 Data Framing and Transmission Rates

The data sent to and from the peripheral multiplexer is asynchronous data
with each byte containing eight data bits with no parity, one start bit and
one stop bit. The data transmission rate of the peripheral multiplexer to and
from the PS 390 is 19,200 baud. The transmission rates between the inter-
active devices and the peripheral multiplexer are shown in Table 13B-1.

Table 13B-1. Interactive Device Transmission Rates

Device Baud Rate
Keyboard Port x“Bl-’ 1200 Baud
Control Dials Port x“B2° 9600 Baud
32 Func. Buttons Port x“B3~” 9600 Baud
Mouse Port x’B4~° 9600 Baud
Data Tablet Port x“B6” 9600 Baud

2. The PS 390 Keyboard

The PS 390 Keyboard’s main function is to generate and transmit ASCII
displayable characters, ASCII control characters, and PS 390 system
sequences.

The PS 390 keyboard must plug into the peripheral multiplexer which sup-
ports the PS 390 peripheral set.

The keyboard measures 19.76 inches (50.19 c¢cm) long by 8.26 inches (20.98
cm) deep. The keyboard stands 1.40 inches (3.56 cm) high on four rubber
pads.

Interactive Devices RMI13B-3

PF4
’
Enter

PF3

9
6
3

PF2
5080
8
Ci
5

‘SetUp
2

PF1

Host

7
Local

4
Graj

1
“Term

0

]
L
f
biE

[Deletq
(_

<€— Backspace
Returmn

[y

)

2

+ g - =
v o~
¢ >
o A
=] Tﬂﬁ
O | |l===llv -
(nd @ — =
. -
hd ~ QUQ =
o ~Ill S
i © V._ @
=Ll
- >
hd 2" w
| o
s4 D
) >
14 - n
=TS N
® < ﬁ
(o] ><_ 3
..... _r &
— § g
I8
1
> iR
& 1)

Figure 13B-3. The PS 390 Style Keyboard

RM13B-4 Reference Materials

2.1 Interface Cable

The Interface Cable is a 5-conductor, flexible cable with a shielded DIN
plug which connects the PS 390 Keyboard to the front of the Peripheral
Multiplexer. The cable may be stretched to permit many different work
station arrangements.

2.2 Keyboard Operation

The PS 390 Keyboard allows the operator to input ASCII characters and
other sequences to the Joint Control Processor by means of a typewriter-
like keyboard. Keyboard operation is discussed in detail in the following
paragraphs.

2.2.1 Data Entry

The keys fall into eight general categories:

Keyboard Function Control
e Alphabetic

e Standard Numeric

e Special Character

e Terminal Function

¢ PS 390 Function

e Numeric/Application Mode

¢ PS 390 Device Control

NOTE

When instructions are given to press two or more keys
simultaneously, the key sequence will be shown in ital-
ics. For example, CTRL V means that the CTRL and V
keys are pressed simultaneously.

The following is a detailed description of the eight general key categories.

Interactive Devices RMI13B-5

2.2.2 Keyboard Function Control Keys

The Keyboard Function Control keys are unencoded, local controls. No
codes are transmitted when these keys are pressed individually or in combi-
nation with each other.

The Keyboard Function Control keys are as follows:

« Shift Key (2)
e CTRL (Control) Key

The Keyboard Function Control keys are used to modify the codes transmit-
ted by other keys, as follows:

e When either SHIFT key is pressed simultaneously with a displayable
character key, the uppercase code for that key is generated. If the
key does not have an uppercase function, the SHIFT key is ignored.
For example, striking the A key causes the code B-01100001- for the
character a to be transmitted; the sequence SHIFT A causes the code
B-01000001- for the character A to be transmitted. Note that bit 6 is
forced low to define an uppercase character.

e When CTRL is pressed simultaneously with one of keys A-Z (upper-
case only), the space bar, or the Special Character keys , [,], |, , or
?, an ASCII control code is generated. For example, the CTRL Z
keyboard sequence causes the code B-00011010- to be generated.
Note that the only difference between this code and that for Z (B’010
11010’) is that bit 7 is forced low to define the control code.

When the SHIFT and CTRL keys are pressed simultaneously, the CTRL
function is selected in most cases. The only exceptions occur with the ~ and
/ keys. SHIFT CTRL - causes the control character RS (B-00011110-) to be
transmitted. SHIFT CTRL / causes the control character US (B-00011111-)
to be transmitted. The auto-repeat feature is enabled on all keys except:
F1 - F12, SETUP, GRAPH, HOST, CMND, LOCAL, TERM, LOCK, CTRL,
SHIFT (both keys), RETURN, and all numeric pad keys. When any other
key is held down, repeated character transmission occurs. The rate is 15 +/-
2 Hz.

Pressing the LOCK key enables the ‘“‘shift lock’ function. This is a shift
operation that applies to all keys. Pressing either of the two shift keys
causes the “shift lock” mode to be disabled.

RM13B-6 Reference Materials

2.2.3 Alphabetic Keys

The Alphabetic Keys are used to produce uppercase and lowercase ASCII
displayable character codes and ASCII control codes. Table 13B-2 shows
the code and character produced when each key is pressed alone, with the
SHIFT key, or with the CTRL key.

Interactive Devices

Table 13B-2. Alphabetic Key Codes

Key Key Alone SHIFT+Key | CTRL+Key

Label | Code I Char | Code [Char | Code I Char

A X’61’ a X’41° A X’01’ | SOH
97 65 1

B X’62’ b X’42’ B X002’ | STX
98 66 2

C X’63’ c X’43’ C X’03’ | ETX
99 67 3

D X’64’ d X’44’ D X’04’ | EOT
100 68 4

E X’65’ e X45’ E X'45’ | ENQ
101 69 5

F X’66’ f | X146’ F X06’ | ACK
102 70 6

G X687’ g X477 G X’07 | BEL
103 71 7

H X’68’ h X’48’ H X’08’ BS
104 72 8

I X’69’ i X’49’ I X’09’ HT
105 73 9

J X’6A’ J X4A’ J X’0A’ | LF
106 74 10

K X’6B’ k X’4B’ K X0B’ | VT
107 75 11

L X’6C’ 1 X4C’ L X0C’ | FF
108 76 12

M X’6D’ m X4’ M X0D’| CR
109 77 13

N X’6E’ n X4E’ N X’0E’ | SO
110 78 14

RM13B-7

RM13B-8

Table 13B-2. Alphabetic Key Codes (cont.)

Key Key Alone SHIFT+Key | CTRL+Key
Label | Code J Char | Code | Char | Code I Char
0] X’6F’ o X’4F’ (@) X’0F’ SI
111 79 15

P X7 P X’50’ P X’10° | DLE
112 80 16

Q X711’ q X’51° Q X’11’ | DC1
113 81 17

R X172’ r X’52’ R X’12’ | DC2
114 82 18

S X173’ s X’53’ S X’13’ | DC3
115 83 19

T X74° t X’54’ T X’14’ | DC4
116 84 20

U X'75’ u X’55’ U X’15’ | NAK
117 85 21

\" X176’ v X’56’ A% X’16’ | SYN
118 86 22

W X717 w X7’ W X’17 | ETB
119 87 23

X X178’ X X’58’ X X’18’ | CAN
120 88 24

Y X179’ y X'59’ Y X’'19 | EM
121 89 25

Z XTA’ Z X’5A° Z X’1A’ | SUB
122 90 26

Reference Materials

2.2.4 Standard Numeric Keys

The shiftable Standard Numeric keys are similar to the shiftable numeric/
symbol keys that appear on a typewriter; they generate ASCII displayable
numbers and symbols. The CTRL key is ignored when used with these keys.
Table 13B-3 shows the code and character produced when each key is

pressed alone, with the SHIFT key, or with the CTRL key.

Table 13B-3. Standard Numeric Keys Codes

Key Key Alone SHIFT+Key | CTRL+Key
Label | Code | Char | Code | Char | Code | Char
0 [X30] 0 |X29]) |X30] o
48 41 48

1 X’31’ 1 X’21° ! X’31’ 1
49 33 49

2 X’32’ 2 X400’ Q@ X’32’ 2
50 64 50

3 X’33’ 3 X723 # X’33’ 3
51 35 51

4 X34’ 4 X’24’ $ X’34’ 4
52 36 52

5 X’35’ 5 X’25’ % X35’ 5
53 37 53

6 X’36’ 6 X’5E’ A X’36’ 6
54 94 54

7 X’37’ 7 X’26’ & X’37’ 7
55 38 55

8 X’38’ 8 X2A° * X’38’ 8
56 42 56

9 | X39| o |[X2® | (| X390 9
57 40 57

Interactive Devices

RM13B-9

2.2.5 Special Character Keys

The shiftable Special Character keys are used to produce both ASCII
displayable characters and ASCII control characters. Table 13B-4 shows the
codes and characters produced when these keys are activated alone, with
the SHIFT key, and with the CTRL key. Note the varying response given to
the CTRL key; in some instances, the unshifted key character is produced.
In other cases, a control character is generated.

Table 13B-4. Special Character Keys

Key Key Alone SHIFT+Key CTRL+Key
Label | Code l Char Code | Char Code | Char
- X2D’ - X’5F’ — X2D’ -
- 45 (minus) | 95 (underline) | 45 (minus)
+ X’3D’ X2B’ X’3D’
= 61 = 43 + 61 =
~ X’60’ XTE’ X'1E’
96 - 126 30 RS
{ X’5B’ Xy X1B’
[|o1 [123 { 27 ESC
} X’5D’ X 7D’ X'1D’
] |93] 125 } 29 GS
\ X’5C X7 X1’
\ |92 \ 124 l 28 FS
: X’3B’ X3A° X’3B’
; 59 ; 58 59 ;
K X227 X’22’ xX27
’ 39 ’ 34 ” 39 ’
< xX2¢c’ X3¢’ X2¢C’
;|44 , 60 < 44 ,
> X2E’ X’3E’ X2’
. 46 62 > 46
? X2F° X’3F’ X’1F’
/| at /|63 ? 31 Us
> X3¢’ X’3E’ X’3C’
< 60 < 62 > 60 <

RM13B-10

Reference Materials

2.2.6 Terminal Function Keys

The Terminal Function keys in produce codes used by a typical video dis-
play terminal. These keys enable an operator to generate any commonly
used terminal control character with a single keystroke. (The codes pro-
duced by these keys are identical to those generated by the conventional
two-key control sequences.)

Note that the SHIFT and CTRL keys have no effect on the codes produced
by the Terminal Function keys, except for the CTRL Space Bar sequence
that generates an ASCII NUL character.

Table 13B-5 lists the codes and characters generated by the Terminal
Function keys.

Table 13B-5. Terminal Function Keys

Key Key Alone SHIFT+Key CTRL+Key
Label Code | Char | Code | Char | Code [Char
X’AQ’ X’A0’ X’AQ’
BREAK | 160 160 160
SCROLL | X’9F’ X'9F’ X9F’
LOCK 159 159 159
BACK X’08’ X’08’ X’08’
SPACE | 8 BS 8 BS 8 BS
X'TF’ XTF’ X7
DELETE | 127 DEL | 127 DEL | 127 DEL
X0D’ X’on’ X0D’
RETURN | 13 CR 13 CR 13 CR
LINE X0A’ X0A’ X0A’
FEED 10 LF 10 LF 10 LF
X’1B’ X’1B’ X1B’
ESC 27 ESC | 27 ESC | 27 ESC
X’09’ X099’ X09’
TAB 9 HT 9 HT 9 HT
(none; X’20° X720 X’00
space bar) | 32 (space) | 32 (space) | O NUL

Interactive Devices

RM13B-11

2.2.7 PS 390 Function Keys

The PS 390 Function Keys are used to transmit special 2-byte system
sequences. Table 13B-6 shows the the codes for these keys.

Table 13B-6. PS 390 Function Key Codes

Key | Key Alone | SHIFT+Key | CTRL+Key
Label Code Code Code
F1 X’1661 X’1641° X’1601°
F2 X’1662 X’'1642’ X’1602’
F3 X’1663’ X’1643’ X’1603’
F4 X’1664’ X’1644’ X’1604’
F5 X’1665’ X’1645’ X’1605’
F6 X’1666’ X’1646’ X’1606’
F7 X’1667’ X’'1647’ X’1607’
F8 X’1668’ X’1648’ X’1608’
F9 X’1669’ X’1649’ X’1609’
F10 X’166A° X’'164A° X’160A’
F11 X’166B’ X’164B° X’160B’
F12 X’166C’ X’164C° X’160C’

RM13B-12 Reference Materials

2.2.8 Numeric/Application Mode Keys

The numeric application mode keys generate special 2-byte PS 390 system
sequences similar to those produced by the PS 390 Function keys.

Note that neither SHIFT nor CTRL affects the ENTER key, and that no
codes are modified by the CTRL key.

Any code generated by a Numeric/Application Mode key may be duplicated
by entering CTRL SHIFT V, followed by the appropriate displayable charac-
ter or control character.

Table 13B-7 illustrates the codes and characters produced by the Numeric/
Application Mode keys.

Table 13B-7. Numeric/Application Mode Key Codes

Key Key Alone SHIFT+Key CTRL+Key
Label Code | Char Code] Char Code J Char
0 X’1630’ X’1629’° X’1630’
1 X'1631’ X’1621° X’1673’
2 X’1632’ X’1640° X’1644’
3 X’1633’ X’1623’ X’1633’
4 X’1634’ X’1624’ X’1670°
5 X’1635’ X’1625’ X’166F’
6 X’1636’ X’165E’ X’1636’
7 X’1637’ X’1626’ X’1652’
8 X’1638’ X’162A° X’1612’
9 X’1639’ X’1628’ X’1639’
X’162E’ . X’163F’ > X’162E’ .
, X’'162C’ , X’163C’ < X’'162C’ ,
X’162D’ | (minus) { X’165F” | (underline) | X’162D’
ENTER | X’160D’ CR X’160D’ CR X’160D’ | CR

Interactive Devices

RM13B-13

2.2.9 Device Control Keys

The Device Control keys generate two-byte sequences similar to those de-
scribed in 2.2.7 and 2.2.8. The codes produced by these keys are modified
by SHIFT and CTRL as shown in Table 13B-8.

Any code generated by a Device Control key may also be produced by en-
tering CTRL SHIFT V, followed by the appropriate displayable character or
control character.

Table 13B-8. The Device Control Key Codes

Key Key Alone | SHIFT+Key | CTRL+Key
Label Code Code Code
1 X’1631° X’1621’° X’1673’
TERM
2 X’'1632’ X’1640’ X’1644’
NRMTST
4 X’1634’° X’1624’ X’'1670°
GRAPH
5 X’1635’ X’1625’ X’166F’
SET UP
7 X’1637 X’1626’ X’1652’
LOCAL
8 X’1638° X’162A° X’1612°
CMND
X’'1677’ X’1657’ X’1617
—
X’1678’ X’1658’ X’1618’
—
X’'1679’° X’1659’ X’'1619’
1
X'167A’ X'165A’ X'161A°
|
PF1 X’A9’ X'A9 X’'1672’
HOST
PF2 X’AA’ X'AA’ X’'1674’
5080

The Cursor Up key becomes Scroll Up when shifted.
The Cursor Down key becomes Scroll Down when shifted.

RMI13B-14 Reference Materials

3. The Control Dials

The Control Dials consist of an array of 8 shaft encoders arranged in a 2
column x 4 row design, with the number 1 dial being the upper left-hand
dial and the number 5 dial being the upper right-hand dial when the Dials
are situated in their vertical orientation. The Control Dials report to the
Joint Control Processor the number of counts rotated between sampling in-
tervals. The Joint Control Processor may specify the number of counts to be
accumulated between sampling intervals and may set a sampling time for
all the dials. (Default value for the Dials is 1024 counts per revolution at 4
count increments and 30 samples per second.)

3.1 Control Dial Responses

The Control Dials output relative delta values only. For example; each dial’s

position is reported in terms of its last sample location. The data format
used to report the count is:

Table 13B-9. Control Dial Response Data Format

Byte Number Description
1 Control V = -00010110-
2 Byte = -00000nnn-,

Where nnn is a binary number 000 thru 111 (0 thru
7 decimal which specifies the dial.)

3 Most significant byte of a 16-bit signed integer
(sign indicates direction).

4 Least significant byte of the 16-bit signed
integer (two’s complement notation).

Interactive Devices RMI13B-15

3.2 Commands to the Control Dials

The Control Dials must respond to two commands. The first is in the same
format as the response message except that the second byte is - 100xxnnn-”
and no sign is legal on the 16-bit integer. It specifies the delta value which
must be accumulated before the delta count is reported to the host (meaning
how many counts between reports).

The second command is formatted as follows and applies a sampling time
to all the dials:

Table 13B-10. Control Dial Command Data Format
Byte Number Description

Control V = 00010110~

Control Byte = - 1x1xxxxx-, (x=don’t care)

Reserved unused byte.

Time count in binary,
Where x-05- = 60 samples/second
Where x-0A- = 30 samples/second
Where x-1E- = 10 samples/second

EENVO N SR

This time indicates how often the Control Dials samples to see if sufficient
counts have been accumulated on any dial to respond to the processor.

3.3 Transmission Characteristics

The data sent to and from the Control Dials is asynchronous with each byte
containing eight data bits with no parity, one start bit and one stop bit. The
data transmission rate of the Control Dials is 9600 baud.

4. The 32-Key Lighted Function Buttons

The Lighted Function Buttons consists of an array of 32 lighted function
keys. The Joint Control Processor sends the message to the Function Button
Unit that lights the keys which are candidates to be selected to invoke spe-
cific program functions. The same message may also turn off some of the
lights which are already on. This cues the operator that he may select one of
the lighted keys by pressing the key. The Function Buttons Unit then sends a

RM13B-16 Reference Materials

message to the Joint Control Processor which indicates that a specific key
has been depressed. The software can then take action(s) based upon the

key selection.

4.1 Light Control

The Function Button lights are logically grouped into eight groups of four
lights each. The lights of the box are turned on and of respectively by send-
ing a message consisting of one to eight bytes to the unit. The four most
significant bits of each byte contains the identification number for a four-
light group; the four least significant bits contain a mask which turn on (if

the corresponding bit is set) or off (if the bit is clear) the light. This is

shown in Table 13B-11 where the Group Number is binary 0000 through
0111 and Light Mask 1’s and 0’s turn lights on and off.

Table 13B-11. Function Button Light Control Message Byte

The Function Button Light Groups are defined in Table 13B-12.

7] 6] 5[4{3]2]1]0]

I Group

|

Mask

Table 13B-12. Function Button Light Groups

Group Number

b’ 0000~
b-0001~
b 0010~
b-0011~
b”0100~
b-0101~
b 0110~
b 0111~

Interactive Devices

Description

Group
Group
Group
Group
Group
Group
Group
Group

for
for
for
for
for
for
for

for

lights 1 through 4
lights 5 through 8

lights 9 through 12

lights
lights
lights
lights
lights

13
17
21
25
29

through
through
through
through
through

RM13B-17

Any byte or combination of bytes may be sent in a message, depending on
which of the lights must be turned on or turned off. Turning all lights on,
turning all lights off or changing the state of at least one byte of each of the
eight groups requires an eight-byte message to be sent. Changing the state
of one to four lights in a single four-light group requires only a one-byte
message to be sent.

4.2 Reporting Selections

The Function Button Unit reports that a key has been pressed by sending a
single byte to the Joint Control Processor. The value of the byte is given by
adding the hexadecimal value of the key number to the hexadecimal value
x*3F-. Thus the first sixteen keys are numbered x-40- to x-4F- and the
second group of sixteen keys are numbered x-50° to x*5F-. Only one key
depression per message is reported.

4.3 Self Test Command and Report

The Function Buttons Unit has a self-test command and report that is used
for diagnostics and optionally for initialization confidence tests. The com-
mand is a single byte: x°80-. The response is a four-byte sequence as
shown in Table 13B-13.

Table 13B-13. Function Button Self Test Responses
Byte 1 64H, Hardware ID for the Button Box.

Byte 2 xxH, where xx is the firmware revision level. This should
begin with 01H.

Byte 3 O00H if ROM and RAM test successful and 3EH if ROM or
RAM test failed, (RAM and ROM refer to processor chip),
or 3DH if key down on Self Test (3E supersedes 3D)

Byte 4 00H on successful test, or xxH, where xx is code of
keydown at Self Test.

4.4 Transmission Characteristics

The data sent to and from the Function Buttons Unit is asynchronous data
with each byte containing eight data bits without parity plus one start bit
and one stop bit. The data transmission rate of the Buttons box is 9600
baud.

RM13B-18 Reference Materials

5. Data Tablet

There are two data tablets available for use with the PS 390. Both tablets
are identical for the PS 300 style and the PS 390 style interactive devices.
There is a 6-inch by 6-inch and a 12-inch by 12-inch tablet, each with a
four-button puck. Both are alike, except for their active areas, and both
provide digitizing and picking functions for the PS 390.

5.1 Operating Modes
Data tablet modes may be controlled externally under program control. The
following operating modes are available:

¢ Point mode

Pressing a puck button at a given tablet location causes one X,Y
coordinate pair (sample) to be transmitted.

¢ Stream mode

X,Y coordinate pairs are generated continuously at the selected
sampling rate when the puck is near the active area of the tablet.

o Switched stream mode

Pressing a button on the puck causes X,Y coordinate pairs to be
output continuously at the selected sampling rate until the button is
released.

Both the mode and the sampling rate may be changed under program con-
trol from the PS 390 by sending the data tablet an ASCII character.
Table 13B-14 lists the ASCII codes.

Interactive Devices RMI13B-19

Table 13B-14. Binary Data Transmission Codes

Mode Binary Rate Uppercase ASCII Character

Stop -
Point -
Switched Stream 2

141
141
Stream 2

10
20
35
70
141
141

OZ2rR"RuaHIQHAEHEUOT>® "W

5.1.1 Binary Data Format

The binary formatted RS-232 interface is a five-byte count output. Binary
format is shown in Table 13B-15.

Table 13B-15. Data Tablet Binary Format

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 BitO
1 P 1 F3 F2 F1 FO 0 0
2 P 0 X5 X4 X3 X2 X1 X0
3 P 0 X11 X10 X9 X8 X7 X6
4 P 0 Y5 Y4 Y3 Y2 Y1l YO
5 P 0 Y1l Y10 Y9 Y8 Y7 Y6

RM13B-20 Reference Materials

6. The Optical Mouse

The optical mouse transforms position information into a digital form
acceptable to the PS 390. The optical mouse uses a three-button mouse unit
in conjunction with a reflective pad to provide X- and Y-axis position
information.

The mouse uses LEDs reflecting off the pad to provide directional informa-
tion to the control logic in the mouse. This movement is then translated into
relative X and Y movement information. The data is transmitted serially to
the PS 390 through the peripheral multiplexer.

NOTE

The optical mouse pad must be oriented horizontally to
the user for proper mouse operation. Furthermore, the
mouse cord (tail) should lead away from the user.

6.1 Protocol

The mouse protocol is 9600 baud asynchronous serial with one start bit, one
stop bit, and eight data bits. The least significant data bit is transmitted
first. Blocks of five bytes are sent whenever there is a change of mouse state
(switches or position) since the last transmission. The protocol is as follows:

1. Byte 1: Bits 3 through 7 represent the sync for the start of the data
block with bit 7 = 1 and bits 3-6 = 0. Bits 0 through 2 define switch
status (0 switches the depressed state). With the mouse oriented so
that the cord is facing away from the user, the right switch status is
indicated by bit 0, the middle switch status by bit 1, and the left
switch status is indicated by bit 2.

2. Byte 2: Bits 0 through 7 represent the incremental change in the
X-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two’s complement form and has a
value limit of +/- 127. With the mouse cord facing away from the
user, moving the mouse to the right produces positive X values and
moving the mouse to the left produces negative X values.

Interactive Devices RMI13B-21

RM13B-22

3. Byte 3: Bits 0 through 7 represent the incremental change in the
Y-direction since the last complete report up to the time Byte 1 starts
transmission. The data is in the two’s complement form and has a
value limit of +/- 127. Moving the mouse towards its mouse cord
produces positive X values and moving the mouse away from its cord

produces negative Y values.

4. Byte 4: Bits 0 through 7 follow the same format as Byte 2 and repre-
sent the data acquired since the beginning of Byte 1 transmission.

5. Byte 5: Bits 0 through 7 follow the same format as Byte 3 and repre-
sent the data acquired since the beginning of Byte 4 transmission.

Bit No.

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Table 13B-16. Mouse Bit Protocol

MSB
7

X7

Y7

X7

Y7

X6

Y6

X6

Y6

X5

Y5

X5

Y5

X4

Y4

X4

Y4

X3

Y3

X3

Y3

X2

Y2

X2

Y2

X1

Y1l

X1

Y1

LSB

X0

YO

X0

YO

Reference Materials

RM14. GSR INTERNALS

RM14. GSR INTERNALS

CONTENTS
1. DATA TYPES .. i e i ettt anaas
1.1 Routing Functionsottt
1.2 Data Formats for Data Typesciiiiiiienn...
1.3 Error Formattingciiiiiiiiiiiiiiiieeeeneenns
2. COMMAND INTERPRETER DATA FORMAT
2.1 Data Format Analysisc0viiiiiiiiiiiiiininneeennns
2.1.1 Example — Character Rotate Command
2.1.2 Example — Connect Commandcoviiunnnn.
2.2 Data Formats ...t iiiiiiiiiiiiiiiiirnnnannnnannns

3. DESCRIPTION OF SIX-BIT BINARY DATA PROTOCOL
INTHE PS 390 ..ottt ittt ittt iitiiiieeinneenn

3.1 Data Storagecoveiiriietiiratattittiittteteneens
3.2 Six-Bit Binary Data Encoding Method
3.3 Example of Encoding Binary Data

Section RM 14
GSR Internals

This section describes the data formats expected by PS 390 command interpreter
(CI) and other intrinsic functions. It provides you with the necessary information to
write your own GSRs.

NOTE

Information in this section is based on information in
other sections of this guide. Where helpful, information
will be duplicated here for clarity. Otherwise,
references will be given to other sections as necessary.

The first section discusses formats for the different data types. It is important to
note that data is received a byte at a time by the JCP. Therefore, where there is a
most significant bit (MSB) - least significant bit (LSB) specified, the MSB must be
sent first. Error formats and reset commands are also discussed. Reset commands
should be sent anytime there is an error detected during the sending of other com-
mands. Reset causes the CI to reset and begin command interpretation again. This
section also describes the intrinsic functions that internally receive, pass, and route
data.

The second section provides the data formats for each of the commands that can
be sent to the CI. The format shows the data type followed by the data that should
be sent. The data is expressed as a number, a Boolean value, an identifier or an
expression.

The final section provides the 6-bit binary encoding method that can be used by
the PS 390 for hosts that can’t send binary data. This format uses 2D or 3D vector
normalized data as an example.

GSR Internals RM14-1

1. Data Types

RM14-2

This section gives the formats for different data types. Some of the data
types that can be passed internally in the PS 390 are defined below:

{0}
{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9}
{10}
{11}
{12}
{13}
{14}
{15}
{186}
{17}
{18}
{19}
{20}

{21}

Qreset,
Qprompt,
QBoolean,
Qinteger,
Qreal,
Qstring,
Qpacket,
Qmorepacket,
Qmove?2,
Qdraw2,
Qvec2,
Qmove3,
Qdraw3,
Qvec3,
Qmove4,
Qdraw4,
Qvec4,
Qmat2,
Qmat3,
Qmat4,
Qbindata

Qusertype

)i

{dataless: reset a function instance}
{dataless: flush the CI pipeline}

{normal carrier of Boolean values}

{normal carrier of integer values}

{normal carrier of floating point values}
{original carrier of byte strings, not used}
{carrier of byte strings}

{continuation Qpacket carrier of byte strings}
{2D vector including P bit}

{2D vector including L bit}

{2D vector with no P/L bit (normal vector)}
{3D vector including P bit}

{3D vector including L bit}

{3D vector with no P/L bit (normal vector)}
{4D vector including P bit}

{4D vector including L bit}

{4D vector with no P/L bit (normal vector)}
{2x2 matrix}

{3x3 matrix}

{4x4 matrix}

{definition of binary data (data part of vector
list)}

{type that user may use to define own message}

Qdtype is padded with 260 miscellaneous elements to ensure that a 16-bit
field is allocated by the Pascal compiler rather than the 8-bit field that
would be allocated otherwise.

The Qdtype is used to specify the different types of Qdata message blocks
available in the PS 390 runtime system. Qdata blocks are the primary
vehicle for communication in the PS 390. When a Qdata message is input to
a function, it checks to see if it is a valid message type (Qdtype). When a
message is output by a function, it carves a Qdata message of the
appropriate type and outputs it.

Reference Materials

The CI expects tokens that consist of a size, a data type, and a value. Once
given, the type of command is implicit in the type of the token, such as
“Qsetcontrast” for “Set Contrast.” The CI accepts tokens until it has enough
to carry out a command.

1.1. Routing Functions

Data is sent from the host to the PS 390 as a stream of bytes. The bytes
contain information that tells the PS 390 intrinsic functions the nature of the
message and where it is to be sent internally. The following is a list of the
data transfer modes used in host/PS 390 communication and a brief de-
scription of the intrinsic functions that accept, examine, and route data in-
ternally in the PS 390.

F:DEPACKET

An intrinsic user function, F:DEPACKET, accepts data (input to the PS 390
from the host) from receiving functions (B1S$, etc.). F:DEPACKET converts
a stream of bytes from the host into a stream of Qpacket/Qmorepacket. A
Qpacket is a block of character data that can be sent from one PS 390
function to another. When data comes from the host through the
F:DEPACKET function, it contains a byte for routing control. A
Qmorepacket is a Qpacket that when coming from the host through
F:DEPACKET, has no routing byte. A Qmorepacket has the same
destination as the previous Qpacket.

(F:DEPACKET)

Qpacket —{ <1> <1>1—¥» Qpacket,
Qpacket —p| <2> Qmorepacket
Qinteger —p{ <3> <2>1r—¥» Qpacket,

Qmorepacket

Qpacket —p| <4> (between packets)

Qinteger —p{ <5>

DEPACKETO
(count mode)

GSR Internals RM14-3

In count mode, F:-DEPACKET assumes that a packet is defined as:

<SOP> | count bytes packet contents

where <SOP> represents the Start of Packet (SOP) character that is by de-
fault the the ASCHI ACK character, decimal character code 06 (°F).

The definition of SOP (one character) is taken from a single character
Qpacket on input <2>.

The message count is defined by n bytes (n defined by the Qinteger on
input <3>). Each count byte is offset from the base character (the base
character is taken from a single character Qpacket on input <4>). After the
base character is subtracted, each count byte becomes a digit of the mes-
sage count whose radix is defined by the Qinteger on input <5>.

Output <1> outputs Qpackets and Qmorepackets of count mode messages.
Output <2> outputs Qpackets and Qmorepackets of any messages which are
not in count mode.

The <SOP> byte and the count bytes are removed from the start of the
packet before the packet is sent to F:CIROUTE, which does the actual
routing.

F:CIROUTE(n)

Once data has passed through an instance of F:DEPACKET, the next func-
tion to receive it is F:CIROUTE(n). F:CIROUTE(n) has two instances, one
for count mode and one for escape mode. Count and escape mode are
functionally similar; therefore, only the count mode instance, CIROUTED,
will be described. CIROUTEOQ examines the first character of the Qpackets
it receives (the character following the count bytes in count mode, or the
character following the <FS> character in escape mode) to determine where
the packet message is to be sent. These characters are routing bytes, and
are used to select the appropriate channel for data in the PS 390.

RM14-4 Reference Materials

Data channels include lines to:

Terminal emulator
PS 390 CI (through F:READSTREAM for binary packets)

Disk writing function

¢ Other intrinsic functions

A base character, defined on Input <2> of CIROUTEQO, is subtracted from
this routing byte before it is used to select the output channel. The base
character defaults to the character zero (“07).

F:CIROUTE (n)

Qpacket ——» <1>
Qmorepacket

Qreset <2> —» Qpacket, Qmorepacket
Qstring ——# <2>C
Qprompt —» <3>C
Qreset <n> —» Qpacket, Qmorepacket
Qinteger —» <4>

<1> }—» Qinteger

(CIROUTEO)
(CIROUTE20)

F:CIROUTE demultiplexes a stream of Qpackets/Qmorepackets from input
<1> to one of the n output channels. The first byte of an incoming Qpacket
is assumed to be the multiplexing byte, equal to the base character (from
input <2>) + K, where K is the channel number. If K >(n-3) or K < 0, there
is no channel for this output and a pair of messages are sent on outputs <1>
and <2>. These can be used to allow for later remultiplexing or further
demultiplexing. An integer giving the indicated output port is sent on output
<1> and the message for which there was no defined output is sent on
output <2>. Whether or not K is within the limits implied by the number of
outputs of F:CIROUTE, the multiplexing byte is removed from the start of
the packet.

F:CIROUTE passes incoming Qmorepackets out the current channel (as
defined by the last Qpacket). Initially, after a Qreset is received, the current
channel is -1.

GSR Internals RMI14-5

When instancing this function, a parameter is required to specify the
number of outputs.

F:CIROUTE(n) is a special version of F:.DEMUX(n). It assumes that it is
driving parallel, asynchronous paths to a common destination, the CIL
F:CIROUTE(n) synchronizes the paths by sending a Qprompt at the end of
a channel, then waiting for it to come back around before switching to the
next channel. This assumes that the CI can strip Qprompts and send them
back. Input <4> gives the maximum channel number, m, for which path
flushing is desired. F:CIROUTE(n) flushes channels 0<=K <= m with
Qprompts.

The definitions for the inputs and outputs for F:CIROUTE(n), and routing
bytes used by F:CIROUTE(n) are described in Section RM2, Intrinsic
Functions.

F:READSTREAM

Binary packet data sent from F:CIROUTE(n) to the CI is sent through
F:READSTREAM. This is the same path the GSRs take.

F:READSTREAM

Qpacket —¥ <1>
Qprompt <1>p+—Pp any type

Qinteger —¥ <2>C

<2> 11— Qprompt
Qflush —» <3>C

(Readstream0, RDBSO
P4RS0)

This function converts an 8-bit stream into arbitrary messages. It takes two
bytes as the count of information (including message type) and creates a
message of that size with the bytes of information that follow it. The
message format on input <1> is:

2 bytes 2 bytes

length message type rest of message body

RM14-6 Reference Materials

F:Cl

The CI accepts messages from the GSRs through an instance

F:READSTREAM.
F:Cl
Qchopitems—p{ <1>
Qprompt
(H_CIO)

<1>
<2>
<3>

<4>

<5>

<6>
<7>
<8>

—» unused

—®» unused

—» error messages
— Qboolean

—» Qprompt

——» unused

—» unused

—» Qflush

of

This function interprets commands, creating display structures and function
networks. It receives input either from a chop/parse function or a
READSTREAM function (if using the GSRs).

1.2. Data Formats for Data Types

BBOOL - BOOL 8 BIT BOOLEAN
O] FALSE
1] TRUE
BOOL - BOOL 16 BIT BOOLEAN
0| FALSE
1| TRUE

GSR Internals

RM14-7

RM14-8

INT8 — BYTE

INT16

INT32

PSREAL - REAL32 :

8 BIT INTEGER

EXPONENT
MS 16 BITS OF FRACTION

LS 16 BITS OF FRACTION
PADDING BYTES

- WORD 16 BIT INTEGER
MSB LSB

- LWORD : 32 BIT INTEGER
MSB LSB
MSB LSB

64 BIT REAL
S| MsB LSB
S| MsB LSB
MSB LSB
0

NOTE

All exponents are signed integers in the range of +/-
1024. All fractions have their sign bits in the most sig-
nificant bit of the fraction.

ID - NAME, SIZE

STRING - NAME, SIZE

CHARACTER NAME (1)

CHARACTER NAME (SIZE)

CHARACTER STR(1)

CHARACTER STR(SIZE)

Reference Materials

VECNO -V, POSLIN, DIM, COUNT

COUNT OF
2D VECTOR - MOVE
S| MsB | LsB
MSB LSB
EXP | INTENS|O

2D VECTOR - DRAW

MSB LSB
MSB LSB
EXP | INTENS|

or

3D VECTOR - MOVE

mMSB LSB
MSB LSB
MSB LSB
EXP INTENS|O

3D VECTOR - DRAW

MSB LSB
MSB LSB
MSB LSB
EXP | INTENS|1

GSR Internals

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
EXPONENT/INTENSITY — MOVE

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
EXPONENT/INTENSITY — DRAW

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
Z NORMALIZED FRACTION
EXPONENT/INTENSITY - MOVE

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
Z NORMALIZED FRACTION
EXPONENT/INTENSITY — DRAW

RM14-9

VBLNO - POSLIN, DIM, COUNT

EXP

INTENS

FOLLOWED BY COUNT OF
2D VECTOR - MOVE

or

RM14-10

MSB

LSB

MSB

LSB |0

2D VECTOR - DRAW

MSB

LSB

MSB

LSB |1

3D VECTOR - MOVE

MSB LSB
MSB LSB
MSB LSB |0

3D VECTOR - DRAW

MSB LSB
MSB LSB
MSB LSB |1

EXPONENT/INTENSITY

X NORMALIZED FRACTION
Y NORMALIZED FRACTION - MOVE

X NORMALIZED FRACTION
Y NORMALIZED FRACTION - DRAW

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
Z NORMALIZED FRACTION - MOVE

X NORMALIZED FRACTION
Y NORMALIZED FRACTION
Z NORMALIZED FRACTION - DRAW

Reference Materials

1.3. Error Formatting

This format is used to reset the CI after an error.

ERROR - ERRCOD

INT16 - 2
INT16 — QERRFL=143

2. Command Interpreter Data Format

This section provides the data formats for most of the commands that can
be sent to the PS 390 CI.

The format shows the data type, followed by the data that should be sent.
The data is expressed as a number, a Boolean value, an identifier, or an
expression. If an identifier begins with the letter Q, it is a subcommand type
and the value of the subcommand to be used is shown after the equal sign
(=). If the identifier is SIZE it refers to the size or length of the string or ID
about to be transferred. All other identifiers are user supplied variables.

2.1. Data Format Analysis

To help understand how PS 390 commands are built from subcommands,
the structure of some commands is analyzed below. Note that each Qdata
(subcommand) described has the same substructure, as follows:

e Number of bytes in the Qdata
o The tag identifying the particular Qdata
e The data, if any

Data that may vary in size, such as character strings, is structured such that
the CI can deal with it correctly.

The following describes how the pieces of information are incorporated into
the data sent by the GSRs to the CI.

GSR Internals RM14-11

2.1.1. Example — Character Rotate Command

The command:
Handle := CHARACTER ROTATE angle APPLIED TO Apply;
has three parts, as follows:

1. Handle :=
2. CHARACTER ROTATE angle

3. APPLIED TO Apply

This Qdata describes the Handle := part of the command.

INT16 SIZE+8 A Qdata always starts with a byte count }
INT16 QLABEL=44 This particular Qdata is a QLabel }
INT16 SIZE The number of bytes in the name "Handle" }

{
{
{
INT16 - 1 { always starts at the first byte }
{
{

1D HANDLE, SIZE A array of bytes containing the string "Handle" }
INT16 - O always a 0 }

This Qdata describes the CHARACTER ROTATE angle part of the

command.

INT16 - 10 { This particular Qdata is 10 bytes long }
INT16 — QROTTXT=77 { And is a character rotate command }
PSREAL—- ANGLE { with a rotation angle of "ANGLE" }

This QData describes the APPLIED TO Apply part of the command.

INT16 — SIZE+8 { The byte count of the qdata}

INT16 — QNAME=45 { This particular Qdata is a QNAME }

INT16 - SIZE { the number of bytes in the name "APPLY" }

INT16 - 1 { starts a byte position 1 }

ID — APPLY,SIZE { the array of bytes containing the string "APPLY"}
INT16 - O { always a 0 }

Contrast this command with others of the same form such as:

Handle := TRANSLATE X,Y,Z APPLIED TO Apply;.

RMI14-12 Reference Materials

2.1.2. Example — Connect Command

The command:
CONNECT SOURCE<OUT>:<INP>DEST;

has several parts, as follows:

The command verb CONNECT

The source of the connection SOURCE

The particular output of the source <OUT>

The input number of the connection destination <INP>
The destination of the connection DEST

A

The Qdata sent by the GSR’s for this command reflects this structure.

This Qdata tells the CI to look up the name SOURCE. Note the similarity to
QNAME and QLABEL in the examples.

INT16 — SIZE+8
INT16 - QALOOK=100
INT16 — SIZE

INT16 - 1

ID — SOURCE, SIZE
INT16 - O

This Qdata identifies the output number of SOURCE.

INT16 - 6
INT16 - QFNOUT=144
INT32 - OUT

This Qdata is another QALOOK, instructing the CI to look up the name

DEST.

INT16 — SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1

ID - DEST, SIZE
INT16 - O

GSR Internals RMI14-13

This Qdata identifies the input number of DEST to connect to.

INT16 — 6
INT16 — QINPIN=145
INT32 - INP

This Qdata identifies the command as a CONNECT command.

INT16 - 2
INT16 — QCON=138

Contrast this command with the DISCONNECT and SEND commands.

2.2. Data Formats

RM14-14

HANDLE := ATTRIBUTES [COLOR hue[,sat[,intens]]]

[DIFFUSE diffus]
[SPECULAR specul];

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 44

INT16 - QATTR=357
PSREAL- HUE
PSREAL- SAT
PSREAL— INTENS
PSREAL- O.
PSREAL- DIFFUS
INT16 - SPECUL

HANDLE := ATTRIBUTES [COLOR hue[,sat[,intens]]]

[DIFFUSE diffus]
[SPECULAR specul]

AND [COLOR hue2[,sat2[,inten2]]]

[DIFFUSE diffu2]
[SPECULAR specuZ2];

INT16 - SIZE+8
INT16 — QLABEL=44

Reference Materials

BEGIN

INT16
INT16
ID

INT16
INT16
INT16
PSREA

- SIZE

-1

— HANDLE, SIZE

-0

- 86

— QOATTR=358
L— HUE

PSREAL- SAT
PSREAL~ INTENS

PSREA
PSREA
INT16

L- 0.
L- DIFFUS
— SPECUL

PSREAL- HUE2
PSREAL~- SAT2
PSREAL— INTEN2
PSREAL- O.
PSREAL- DIFFU2

INT16

- SPECU2

INT16 - 2
INT16 — QBEGIN=105

HANDLE := BEGIN_STRUCTURE

HANDLE

GSR Internals

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 — SIZE
INT16 - 1
1D — HANDLE, SIZE
INT16 - O
INT16 - 2
INT16 — QBEGOB=103
:= BSPLINE
ORDER = ORDER
OPEN/CLOSED
NONPERIODIC/PERIODIC
N = NVERT
VERTICES = X(1), Y(1), (Z(1)
X(2), Y(2), (2(2)
X(N), Y(N), (Z(N)
KNOTS = KNOTS (1), ... KNOTS (NKNOTS)

INT16

CHORDS = CHORDS;

— SIZE+8

RM14-15

RM14-16

HANDLE

INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
INT8 -
BBOOL -
INT8 -
BBOOL -
INT8 -
BBOOL -
BBOOL -
BBOOL -
INT32 -

QLABEL=44
SIZE

1

HANDLE, SIZE
0

14
QSTRTC=152

1

.FALSE,

ORDER

.FALSE.

DIMEN
(.NOT.OPNCLS)
(.NOT.NONPER)
.FALSE.

NVERT

REPEAT NVERT TIMES

:= CHARACTER ROTATE ANGLE (APPLIED TO APPLY);

INT16 — 34
INT16 — QCRVEC=296
PSREAL- V (1,1)
PSREAL- V (2,1)
PSREAL- V (3,1)
PSREAL- V (4,1)
(OPTIONAL)

REPEAT NKNOTS TIMES
INT16 - 10
INT16 - QKNOT=295
PSREAL- KNOTS (I)
INT16 - 14
INT16 - QENDCV=153
INT32 - CHORDS
PSREAL- O
INT16 — SIZE+8
INT16 — QLABEL=44
INT16 - SIZE
INT16 - 1
ID - HANDLE, SIZE
INT16 - O
INT16 - 10
INT16 — QROTTX=77
PSREAL- ANGLE
INT16 — SIZE+8
INT16 — QNAME=45

Reference Materials

INT16 — SIZE
INT16 - 1
ID - APPLY, SIZE
INT16 - O

HANDLE := CHARACTERS TRANX, TRANY,TRANZ

STEP STEPX, STEPY “CHARS”;

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 - SIZE
INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 22
INT16 - QTXTLB=159
PSREAL—- STEPX
PSREAL- STEPY
INT32 - O
INT16 — SIZE + 6
INT16 - QDTSTR=305
INT16 — SIZE
INT16 - 1
STRING- CHARS, SIZE
INT16 - 26
INT16 — Q3DPCH=306
PSREAL—- TRANX
PSREAL- TRANY
PSREAL- TRANZ
INT16 - 2
INT16 — QENDCH=304

HANDLE := CHARACTER SCALE SCALEX, SCALEY

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL—
PSREAL—-

INT16
INT16

GSR Internals

(APPLIED TO APPLY),;

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

18
QTXTSC=166
SCALEX
SCALEY
SIZE+8
QNAME=45

RM14-17

INT16 - SIZE
INT16 - 1
ID - APPLY, SIZE

INT16 - O

CONN SOURCE <OUT>:<INP> DEST;

INT16 — SIZE+8
INT16 — QALOOK=100
INT16 - SIZE

INT16 - 1
ID — SOURCE, SIZE
INT16 - O
INT16 - 6

INT16 — QFNOUT=144
INT32 - OUT

INT16 — SIZE+8
INT16 — QALOOK=100
INT16 - SIZE

INT16 - 1
ID - DEST, SIZE
INT16 - O
INT16 — 6

INT16 — QINPIN=145
INT32 - INP

INT16 - 2

INT16 - QCON=138

HANDLE := COPY CPYFRM (START=) START (,) (COUNT=) COUNT;

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O

INT16 - SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID - CPYFRM, SIZE
INT16 - O
INT16 - 6

INT16 - QCOPY=123
INT16 — START
INT16 — COUNT

RM14-18 Reference Materials

HANDLE1 := PATTERN i (i) [AROUND_ CORNERS] [MATCHiNOMATCH]
LENGTH 1;

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1
ID -~ HANDLE1l, SIZE
INT16 - O
INT16 - 46

INT16 - QPATRN=149

BBOOL - .NOT. CONTIN

BBOOL - MATCH

PSREAL—- LENGTH

INT8 - SEGS (O<SEGS<=32)
INT8 - O

INT8 - PATTRN (1 TO SEGS)

IF SEGS < 32 REPEAT TO EQUAL 32 INT8 VALUES
INT8 - O
INT16 - 2
INT16 — QENDCH=304

DELETE HANDLE;

INT16 - 2

INT16 - QDELET=237
INT16 — SIZE+8

INT16 - QNAME=45
INT16 — SIZE

INT16 - 1

ID ~ HANDLE, SIZE
INT16 - O

HANDLE := DECREMENT LEVEL_OF_DETAIL
(APPLIED TO APPLY);

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 — SIZE

INT16 - 1
ID - HANDLE, SIZE
INT16 — O
INT16 - 2

INT16 — QDECLV=134
INT16 - SIZE+8

GSR Internals RMI14-19

INT16 - QNAME=45
INT16 — SIZE
INT16 - 1
1D — APPLY, SIZE
INT16 — O

DEL HANDLE*; (WILD CARD DELETE COMMAND)
INT16 - 2
INT16 - QDELW=57
INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE
INT16 - 1
ID — HANDLE, SIZE
INT16 - O

DISCONNECT SOURCE <OUT>:<INP> DEST;

INT16 -~ SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID — SOURCE, SIZE
INT16 - O
INT16 —~ 6

INT16 — QFNOUT=144
INT32 - OUT

INT16 - SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID - DEST, SIZE
INT16 - O
INT16 - 6

INT16 - QINPIN=145
INT32 - INP

INT16 - 2

INT16 - QDISCN=139

DISCONN SOURCE:ALL;
INT16 - SIZE+8

INT16 - QALOOK=100
INT16 - SIZE

RM14-20 Reference Materials

INT16
ID

INT16
INT16 -
INT16

DISCONNECT SOURCE <OUT>:ALL;

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
INT32 —
INT16 -
INT16 -

1

SOURCE, SIZE
0

2

QALLDS=219

SIZE+8
QALOOK=100
SIZE

1

SOURCE, SIZE
0

6
QFNOUT=144
ouT

2
QALLDS=219

DISPLAY HANDLE;

INT16 -
INT16 -~
INT16 -
INT16 -
INT16 -

INT16 -

ID -
INT16 -

END;

INT16 -
INT16 -

END OPTIMIZE;

INT16 -
INT16 -
BOOL -

GSR Internals

2

QDSPOB=118
SIZE+8
QNAME=45
SIZE

1

HANDLE, SIZE
0

2
QEND=106

4
QOPTIM=162
.FALSE.

RM14-21

RM14-22

END_STRUCTURE;

INT16 - 2
INT16 — QENDOB=104

ERASE PATTERN

HANDLE

INT16
INT16
INT16
INT16
ID

INT16

FROM HANDLE;

SIZE+8
QERAPA=332
SIZE

1

HANDLE, SIZE
0

:= EYE BACK DISTB
LEFT/RIGHT DISTLR
UP/DOWN DISTUD

FROM SCREEN AREA WIDTH WIDE

FRONT BOUNDARY = FRONT
BACK BOUNDARY = BACK
(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID
INT16
INT16
INT16
PSREAL
PSREAL
PSREAL
PSREAL
PSREAL
PSREAL
INT16
INT16
INT16
INT16
ID
INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

50

QEYE=155
DISTLR
DISTUD
-DISTB

WIDE

FRONT

BACK

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

Reference Materials

HANDLE := F:FNNAME;

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID - HANDLE, SIZE
INT16 - O

INT16 — SIZE + 12
INT16 - QFLOOK=99

INT16 - O
INT32 - O
INT16 — SIZE
ID — FNNAME, SIZE
INT16 - O
HANDLE := F:FNNAME (INOUTS);

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O

INT16 — SIZE + 12
INT16 - QPARFN=267
INT16 — INOUTS

INT32 - O

INT16 — SIZE

ID - FNNAME, SIZE
INT16 - O

FOLLOW HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND;

INT16 2
INT16 - QFOLLO=115

INT16 — SIZE+8
INT16 — QNAME=45
INT16 —- SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O

GSR Internals RMI14-23

RM14-24

HANDLE

FORGET HANDLE;

HANDLE

:= CHARACTER FONT FONTNM (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

I

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2

QUFONT=131
SIZE+8
QNAME=45
SIZE

1

FONTNM, SIZE
0]

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

2

QFORG=113
SIZE+8
QNAME=45
SIZE

1

HANDLE, SIZE
0

:= FIELD OF VIEW ANGLE

FRONT BOUNDARY = FRONT
BACK BOUNDARY = BACK

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

24

QFOV=156

Reference Materials

HANDLE

HANDLE

GSR Internals

PSREAL-
PSREAL~
PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

= IF CONDITIONAL_BIT BITNUM IS ONOFF

ANGLE

FRONT

BACK

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID
INT16
INT16
INT16
BOOL
INT32
INT16
INT16
INT16
INT16
ID
INT16

= IF LEVEL_OF DETAIL COMP LEVEL

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

8

QCOND=174
ONOFF
BITNUM
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT32
INT16
INT16
INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

8

QCOND=174
(COMP + 2) * 256
LEVEL

SIZE+8
QNAME=45
SIZE

RM14-25

INT16 - 1
ID — APPLY, SIZE
INT16 — O

HANDLE := IF PHASE ONOFF (THEN APPLY);

INT16 - SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID - HANDLE, SIZE
INT16 - O
INT16 — 8

INT16 - QCOND=174
BOOL - ONOFF
INT32 - 15

INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O

HANDLE := ILLUMINATION Xx,y,z,
[COLOR hue[,sat[,intensi])
[AMBIENT ambien];

INT16 -~ SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE
INT16 - O

INT16 - 66

INT16 - QLGHTS=355
PSREAL- X

PSREAL—- Y

PSREAL- Z

PSREAL- 1.

PSREAL- HUE
PSREAL— SAT

PSREAL—- INTENS
PSREAL- AMBIEN

RM14-26 Reference Materials

INCLUDE HANDLEl IN HANDLE2;

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16

2

QSETAD=125
SIZE+8
QNAME=45

SIZE

1

HANDLE1l, SIZE
0

SIZE+8
QNAME=45

SIZE

1

HANDLE2, SIZE
0

PINIT: INITIALIZE

INT16
INT16
INT16
INT16
INT16
INT16

2
QINITN=121
2
QINITD=122
2
QINITL=293

INITIALIZE CONNECTIONS;

INT16 - 2
INT16 — QINITC=218

INITIALIZE DISPLAYS;

INT16 - 2
INT16 — QINITD=122

INITIALIZE HANDLES;

INT16 -~ 2
INT16 — QINITN=121

GSR Internals

RM14-27

HANDLE := INCREMENT LEVEL_OF_ DETAIL

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

HANDLE1l :=

INT16
INT16
INT16
INT16
D

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

(APPLIED TO APPLY);

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QINCLV=133
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

INSTANCE (OF HANDLE2) ;

SIZE+8
QLABEL=44
SIZE

1

HANDLE1l, SIZE
0

2

QUSE=120
SIZE+8
QNAME=45

SIZE

1

HANDLE2, SIZE
0

2

QENDLS=107

HANDLE := LABEL X, Y, Z, “STRING~

INT16
INT16
INT16
INT16
ID

RM14-28

X, Y, Z, “STRING”;

SIZE+8
QLABEL=44
SIZE

1

LABBLK, SIZE

Reference Materials

HANDLE

GSR Internals

INT16 -
INT16 -
INT16 —
PSREAL-
PSREAL-
PSREAL-

THE NEXT 10 LINES FOR EACH LABEL

INT16 -
INT16 -
INT16 -
INT16 -
STRING-
INT16 -
INT16 -
INT16 -
PSREAL—
PSREAL—-
PSREAL-
INT16 -
INT16 -

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
PSREAL~-
PSREAL-
PSREAL-
PSREAL-
PSREAL~-
PSREAL-
PSREAL-
PSREAL—
PSREAL-
PSREAL-
PSREAL-
INT16 -
INT16 -
INT16 -

0

26
QDELTA=308
STEPX
STEPY

0

SIZE + 6
QDSTR=305
SIZE

1

LABEL, SIZE
0

26
Q3DPCH=306
X

Y

Z

2
QENDCH=304

:= LOOK AT AT FROM FROM UP UP (APPLIED TO APPLY);

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

90
QLKAT=158
FROM (1)
FROM(2)
FROM(3)

0

AT(1)

AT (2)

AT (3)

0

UP (1)
UP(2)
UP(3)
SIZE+8
QNAME=45
SIZE

RM14-29

INT16 - 1
ID — APPLY, SIZE
INT16 - O

HANDLE := MATRIX_2X2 (APPLIED TO APPLY);

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 — SIZE

INT16 - 1

ID — HANDLE, SIZE
INT16 - O

INT16 - 50

INT16 — QMAT2=17
PSREAL- MATRIX (1,1)
PSREAL— MATRIX (1,2)
PSREAL- O

PSREAL- 0

PSREAL— MATRIX (2,1)
INT16 — SIZE+8
INT16 — QNAME=45
INT16 - SIZE

INT16 - 1
ID — APPLY, SIZE
INT16 - O

HANDLE := MATRIX_3X3 (APPLIED TO APPLY);

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1

ID — HANDLE, SIZE
INT16 - O

INT16 - 90

INT16 — QMAT3=18
PSREAL- MATRIX (1,1)
PSREAL- MATRIX (1,2)
PSREAL- MATRIX (1,3)
PSREAL- 0

PSREAL— MATRIX (2,1)
PSREAL- MATRIX (2,2)
PSREAL- MATRIX (2,3)
PSREAL- 0

PSREAL— MATRIX (3,1)
PSREAL- MATRIX (3,2)

RM14-30 Reference Materials

HANDLE

HANDLE := MATRIX_4X4 (APPLIED TO APPLY);

GSR Internals

PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

:= MATRIX_ 4X3 MAT VEC (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL~-
PSREAL-—
PSREAL-
PSREAL-
PSREAL-
PSREAL~
PSREAL-
PSREAL-
PSREAL-
PSREAL-
PSREAL—-
PSREAL-
PSREAL-
PSREAL-
PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

INT16
INT16
INT16
INT16

MATRIX (3,3)
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

122
QMATRN=206
MAT(1,1)
MAT (1,2)
MAT (1, 3)

0

MAT (2,1)
MAT (2, 2)
MAT (2, 3)

0

MAT(3,1)
MAT (3, 2)
MAT (3, 3)

0

VEC(1)
VEC(2)

VEC (3)
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

SIZE+8
QLABEL=44
SIZE

1

RM14-31

RM14-32

ID
INT16 - O
INT16 - 130

HANDLE,

SIZE

INT16 - QMAT4=19

PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL—- MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
PSREAL— MATRIX
INT16 - SIZE+8
INT16
INT16 - SIZE
INT16 — 1

1D
INT16 — O

HANDLE := NIL;

(1,1)
(1,2)
(1,3)
(1,4)
(2,1)
(2,2)
(2,3)
(2,4)
(3,1)
(3,2)
(3,3)
(3,4)
(4,1)
(4,2)
(4,3)
(4,4)

QNAME=45

APPLY, SIZE

INT16 - SIZE+8

INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE
INT16 - O

INT16 - 2

INT16 - QMKNIL=236

OPTIMIZE STRUCTURE,;

INT16 - 4

INT16 - QOPTIM=162

BOOL - .TRUE.

Reference Materials

PATTERN HANDLE WITH PATNAM;

HANDLE

GSR Internals

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16

- SIZE+8

— QNAMPA=316

- SIZE

-1

— PATNAM, SIZE
-0

— SIZE+8

— QAPPPA=333

- SIZE

-1

— HANDLE, SIZE
-0

[WITH [ATTRIBUTES attr] [OUTLINE r]]

POLYGON [Coplanar] ([S] Xx,y,z [N x,y,z]))

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
VECNO
INT16
INT16
INT16
VECNO
INT16
INT16

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [Coplanar] ([S] x,y,z [N x,y,z]

- SIZE+8

— QLABEL=44

- SIZE

-1

— HANDLE, SIZE

-0

~ SIZE+8

- QWTATT=349

- SIZE

-1

— ATTR, SIZE

-0

~ NVERTS * 8 + 4

— QNORML=354

— NVERTS

- NORMS, VEDGES, DIMEN, NVERTS
— NVERTS * 8 + 4

— QPOLYG=318 OR QCOPOL=319
— NVERTS

— VERTS, VEDGES, DIMEN, NVERTS
- 2

— QEPOLY=320

)

)15

RM14-33

HANDLE := POLYNOMIAL
ORDER = ORDER
(DIMEN IMPLIED IN SYNTAX)
COEFFICIENTS = X(I), Y(I), Z(I)
X(I-1), Y(I-1), Z(I-1)

X(0), Y@, Z(0)
CHORDS = CHORDS;

INT16 -~ SIZE+8
INT16 - QLABEL=44
INT16 — SIZE

INT16 - 1

ID — HANDLE, SIZE
INT16 - O

INT16 - 14

INT16 — QSTRTC=152
INT8 - 2

BBOOL - .FALSE.
INT8 - ORDER
BBOOL -~ .FALSE.
INT8 - DIMEN
BBOOL - (.TRUE.)
BBOOL - (.TRUE.)
BBOOL - .FALSE.
INT32 — ORDER+1

REPEAT ORDER+1 TIMES

INT16 — 34

INT16 - QCRVEC=296
PSREAL- V (1,1)
PSREAL- V (2,1)
PSREAL- V (3,1)
PSREAL- V (4,1)
INT16 — 14

INT16 — QENDCV=153
INT32 — CHORDS
PSREAL- O

PREFIX HANDLE WITH TRANSFORMATION-OR-ATTRIBUTE COMMAND;

INT16 - 2

INT16 - QPREFX=114
INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE

RM14-34 Reference Materials

HANDLE

HANDLE

GSR Internals

INT16 - 1

ID - HANDLE, SIZE
INT16 - O
:= RAWBLOCK NUMBYTE (APPLIED TO APPLY);

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 — 6

INT16 — QRAWBL=350
INT32 - NUMBYTE
INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE

IN
ID
IN

T1i6 - 1

— APPLY, SIZE
T16 —- O
:= RATIONAL BSPLINE

ORDER = ORDER

OPEN/CLOSED
NONPERIODIC/PERIODIC

N = NVERT

VERTICES = X(1), Y(1), (Z(1),) W(1)

X(2), Y(2), (Z(2),) W)

X(N)Y, Y(N), (Z(N),) W(N)
KNOTS = KNOTS (1), KNOTS (NKNOTS)
CHORDS = CHORDS;

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 — SIZE

INT16 - 1

ID — HANDLE, SIZE
INT16 - O

INT16 - 14

INT16 — QSTRTC=152
INT8 -1

BBOOL - .TRUE.

INT8 - ORDER

BB

OOL .FALSE.

RM14-35

INT8 - DIMEN+1
BBOOL - (.NOT.OPNCLS)
BBOOL — (.NOT.NONPER)
BBOOL - .FALSE.

INT32 ~ NVERT

REPEAT NVERT TIMES
INT16 - 34
INT16 — QCRVEC=296
PSREAL- V (1,1)
PSREAL- V (2,1)
PSREAL—- V (3,1)
PSREAL- V (4,1)

(OPTIONAL)

REPEAT NKNOTS TIMES
INT16 - 10
INT16 — QKNOT=295
PSREAL- KNOTS (I)

INT16 - 14

INT16 — QENDCV=153
INT32 - CHORDS
PSREAL—- O

REMOVE HANDLE;

INT16 - 2

INT16 - QREMOB=119
INT16 — SIZE+8

INT16 — QNAME=45
INT16 - SIZE

INT16 - 1

ID — HANDLE, SIZE

INT16 ~ O

REMOVE FOLLOWER OF HANDLE;

INT16 - 2

INT16 - QUNFOL=117
INT16 — SIZE+8

INT16 — QNAME=45
INT16 - SIZE

INT16 - 1

ID — HANDLE, SIZE

INT16 - O

RM14-36 Reference Materials

REMOVE HANDLE1 FROM HANDLEZ2;

REMOVE PREFIX

HANDLE

GSR Internals

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

:= ROTATE IN X ANGLE (APPLIED TO APPLY):

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

2

QSETRM=124
SIZE+8
QNAME=45

SIZE

1

HANDLEl, SIZE
0

SIZE+8
QNAME=45

SIZE

1

HANDLE2, SIZE
0

OF HANDLE;

2

QUNPFX=116
SIZE+8
QNAME=45
SIZE

1

HANDLE, SIZE
0

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

10

QROTX=74
ANGLE
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

RM14-37

RM14-38

HANDLE

HANDLE

HANDLE

:= ROTATE IN Y ANGLE (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
D
INT16
INT16
INT16
PSREAL
INT16
INT16
INT16
INT16
ID
INT16

:= ROTATE IN Z ANGLE (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
1D
INT16
INT16
INT16
PSREAL
INT16
INT16
INT16
INT16
ID
INT16

SI

QLABEL=44

SI
1

ZE+8

ZE

HANDLE, SIZE

0
10

QROTY=75
ANGLE

SI

ZE+8

QNAME=45

SI
1

ZE

APPLY, SIZE

o

SI

QLABEL=44

SI
1

ZE+8

ZE

HANDLE, SIZE

0
10

QROTZ=76

AN
SI

GLE
ZE+8

QNAME=45

SI
1

ZE

APPLY, SIZE

0

:= RATIONAL POLYNOMIAL

ORDE

R

ORDER

(DIMENSION IMPLIED IN SYNTAX)
COEFFICIENTS

X(I),
X(I-1),

X(0),

CHORDS = CHORDS;

INT16 - SIZE+8

INT16 - QLABEL=44

Y(I),
Y(I-1),

Y(0),

z(I),
Z(I-1),

Z(0),

W(I)
W(I-1)

w(0)

Reference Materials

RESERVE_WORKING_STORAGE Bytes;

HANDLE

GSR Internals

INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
INT8 -
BBOOL -
INT8 -
BBOOL -
INT8 -
BBOOL -
BBOOL -
BBOOL -
INT32 -

REPEAT ORDER+1 TIMES

INT16 -
INT16 -
PSREAL-
PSREAL-
PSREAL-
PSREAL-

INT16 -
INT16 -
INT32 -
PSREAL-

INT16 -
INT16 -
INT32 -

:= SCALE BY X,Y,Z (APPLIED TO APPLY);

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
PSREAL~
PSREAL-

SIZE

1

HANDLE, SIZE
0

14
QSTRTC=152
2

. TRUE.
ORDER
.FALSE,
DIMEN+1
(.TRUE.)
(.TRUE.)
.FALSE.
ORDER+1

34
QCRVEC=296
vV (1,1)

vV (2,1)

vV (3,1)

V (4,1)

14
QENDCV=153
CHORDS

0

6
QRSVST=314
BYTES

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

26
QSCALE=164
X(1)

Y (2)

RM14-39

PSREAL—- Z(3)
INT16 — SIZE+8
INT16 - QNAME=45
INT16 — SIZE
INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET CONDITIONAL_BIT BITNUM ONOFF

(APPLIED TO APPLY);

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1
1D - HANDLE, SIZE
INT16 - O
INT16 - 6

INT16 - QSETBT=89 OR QCLRBT=90
INT32 - BITNUM

INT16 — SIZE+8

INT16 - QNAME=45

INT16 — SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET CHARACTERS SCREEN_ORIENTED/FIXED

(APPLIED TO APPLY);

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE
INT16 - O

INT16 - 6

INT16 — QCHARP=253
INT32 - 1

INT16 — SIZE+8
INT16 — QNAME=45
INT16 - SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O

RM14-40 Reference Materials

HANDLE := SET CHARACTERS SCREEN_ORIENTED
(APPLIED TO APPLY);

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 — SIZE
INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 6
INT16 - QCHARP=253
INT32 - O
INT16 — SIZE+8
INT16 — QNAME=45
INT16 - SIZE
INT16 - 1
ID - APPLY, SIZE
INT16 - O

HANDLE := SET CHARACTERS WORLD_ORIENTED

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16
INT16
INT16
ID

INT16

SETUP CNESS

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

GSR Internals

- SIZE+8

— QLABEL=44

- SIZE

-1

— HANDLE, SIZE
-0

- 8

— QCHARP=253
- -1

— SIZE+8

— QNAME=45

- SIZE

-1

— APPLY, SIZE
-0

TRUE/FALSE <INP>HANDLE;

SIZE + 12
QCNESS=330

- INP

OOR 1

-0

SIZE

HANDLE, SIZE
-0

RM14-41

HANDLE := SET

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL~—
PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

COLOR HUE, SAT (APPLIED TO APPLY);

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

18
Q2COLR=167
HUE

SAT

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

HANDLE := SET CONTRAST TO CONTRAST
(APPLIED TO APPLY);

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 - SIZE
INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 10
INT16 - QCONTR=232
PSREAL— CONTRA
INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE
INT16 - 1
ID - APPLY, SIZE
INT16 - O

HANDLE := SECTIONING_PLANE (APPLIED TO APPLY);
INT16 - SIZE+8
INT16 - QLABEL=44
INT16 — SIZE
INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 -~ 2

RM14-42

Reference Materials

INT16 — QSECPL=315
INT16 — SIZE+8
INT16 — QNAME=45
INT16 — SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET DISPLAYS ALL ONOFF (APPLIED TO APPLY);

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 ~ 1
ID - HANDLE, SIZE
INT16 - O
INT16 - 4

INT16 — QSCOPS=93
BOOL - ONOFF
INT16 —~ SIZE+8
INT16 — QNAME=45
INT16 - SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET DEPTH_CLIPPING ONOFF (AFPPLIED TO APPLY);

INT16 - SIZE+8
INT16 - QLABEL=44
INT16 — SIZE

INT16 - 1
iD — HANDLE, SIZE
INT16 — O
INT16 - 4

INT16 - QDCLIP=95
BOOL - ONOFF
INT16 — SIZE+8
INT16 - QNAME=45
INT16 — SIZE

INT16 - 1
1D — APPLY, SIZE
INT16 - O

GSR Internals RM14-43

RM14-44

HANDLE := SET DISPLAY N ONOFF (APPLIED TO APPLY);
INT16 — SIZE+8
INT16 - QLABEL=44
INT16 — SIZE
INT16 - 1
ID - HANDLE, SIZE
INT16 - O
INT16 - 6
INT16 - QSTDSP=235
INT32 - N
INT16 - 2
INT16 — QDSCON=233 OR QDSCOr=234
INT16 — SIZE+8
INT16 - QNAME=45
INT16 - SIZE
INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET INTENSITY ONOFF IMIN:IMAX

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID
INT16
INT16
INT16
BOOL

PSREAL-
PSREAL-

INT16
INT16
INT16
INT16
ID

INT16

HANDLE := SET

INT16
INT16
INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

20
QSTINT=301
ONOFF

IMIN

IMAX

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

LINE_TEXTURE PATTRN <AROUND> (APPLIED TO APPLY) ;

SIZE+8
QLABEL=44
SIZE

Reference Materials

INTi6 - 1

ID — HANDLE, SIZE
INT16 - O
INT16 — 6

INT16 — QTXTUR=344 OR QCTXTR=345
INT32 - PATTRN

INT16 — SIZE+8

INT16 — QNAME=45

INT16 - SIZE

INT16 - 1
ID - APPLY, SIZE
INT16 - O
HANDLE := SET LEVEL_OF DETAIL TO LEVEL

(APPLIED TO APPLY);

INT16 — SIZE+8
INT16 - QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 6

INT16 — QLEVEL=88
INT32 - LEVEL
INT16 — SIZE+8
INT16 — QNAME=45
INT16 - SIZE

INT16 - 1
ID — APPLY, SIZE
INT16 ~ O
HANDLE := SET PICKING IDENTIFIER = PICKID

(APPLIED TO APPLY);

INT16 — SIZE+8
INT16 — QLABEL=44
INT16 — SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 2

INT16 — QPCKNM=110
INT16 — SIZE+8
INT16 — QNAME=45
INT16 - SIZE

GSR Internals RM14-45

RM14-46

INT16 -
ID
INT16 -
INT16
INT16
INT16
INT16 -
ID
INT16 -

HANDLE := SET

1

PICKID, SIZE
0

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

PICKING LOCATION = XCENTR, YCENTR

XSIZE,

(APPLIED TO APPLY);

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
PSREAL-
PSREAL-
INT32 -
INT32 -
INT32 -
INT32 -
PSREAL-
PSREAL-
INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -

HANDLE := SET

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

50
QPCKBX=194
XCENTR
YCENTR

0

0

0

0

XSIZE
YSIZE
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

PICKING ONOFF (APPLIED TO APPLY);

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

8

YSIZE

Reference Materials

HANDLE

HANDLE

INT16
BOOL
INT32
INT16
INT16
INT16
INT16
ID
INT16

:= SET RATE PHASEON PHASEOFF INITIAL STATE DELAY

QPCKNG=91
ONOFF

0

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL—
PSREAL-
PSREAL~-
PSREAL—-

INT16
INT16
INT16
INT16
ID

INT16

1= SET

INT16
INT16

'INT16

GSR Internals

INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16
INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

34
QBLDEF=205
PHASEON
PHASEOFF
INITIAL STATE (1-ON OR O-OFF)
DELAY

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

RATE EXTERNAL (APPLIED TO APPLY);

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

6
QSETBI=89
15

SIZE+8
QNAME=45
SIZE

RM14-47

RM14-48

INT16 - 1
ID - APPLY, SIZE
INT16 - O

SEND TRUE/FALSE TO <INP> DEST;

INT16 - 4
INT16 - QBOOL=2
BOOL - B

INT16 - SIZE+8
INT16 - QALOOK=100
INT16 — SIZE

INT16 - 1
ID — DEST, SIZE
INT16 - O
INT16 - 6

INT16 — QINPIN=145
INT32 - INP

INT16 - 2

INT16 — QSTORE=137

SEND FIX (I) TO <INP> DEST;

INT16 - 6
INT16 — QINTGR=3
INT32 - I

INT16 - SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID - DEST, SIZE
INT16 - O
INT16 - 6

INT16 — QINPIN=145
INT32 - INP

INT16 - 2

INT16 — QSTORE=137

SEND M2D (MAT) TO <INP> DEST;

INT16 - 50

INT16 — QM2BLD=254
PSREAL- MATRIX (1,1)
PSREAL- MATRIX (1,2)

Reference Materials

PSREAL- O
PSREAL~
PSREAL-
PSREAL-

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16

SEND M3D (MAT) TO <INP> DEST;

INT16
INT16

PSREAL-
PSREAL~
PSREAL—-
PSREAL-
PSREAL~-
PSREAL-
PSREAL-
PSREAL-
PSREAL—-
PSREAL-
PSREAL—

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16

GSR Internals

0

MATRIX
MATRIX
SIZE+8

(2,1)
(2,2)

QALOOK=100

SIZE
1

DEST, SIZE

0
6

QINPIN=145

INP
2

QSTORE=137

90

QM3BLD=255

MATRIX
MATRIX
MATRIX
0

MATRIX
MATRIX
MATRIX
0

MATRIX
MATRIX
MATRIX
SIZE+8

QALOOK=

SIZE
1

(1,1)
(1,2)
(1,3)

(2,1)
(2,2)
(2,3)

(3,1)
(3,2)
(3,3)

100

DEST, SIZE

0
6

QINPIN=145

INP
2

QSTORE=137

RM14-49

SEND M4D (MAT) TO <INP> DEST;

INT16 — 130

INT16 — QM4BLD=256
PSREAL— MATRIX (1,1)
PSREAL— MATRIX (1,2)
PSREAL- MATRIX (1,3)
PSREAL—~ MATRIX (1,4)
PSREAL— MATRIX (2,1)
PSREAL- MATRIX (2,2)
PSREAL— MATRIX (2,3)
PSREAL— MATRIX (2,4)
PSREAL- MATRIX (3,1)
PSREAL- MATRIX (3,2)
PSREAL- MATRIX (3,3)
PSREAL— MATRIX (3,4)
PSREAL- MATRIX (4,1)
PSREAL— MATRIX (4,2)
PSREAL— MATRIX (4,3)
PSREAL- MATRIX (4,4)

INT16 - SIZE+8
INT16 - QALOOK=100
INT16 — SIZE

INT16 - 1
ID — DEST, SIZE
INT16 - O
INT16 —~ 6

INT16 — QINPIN=145
INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND COUNT*DRAWMV TO <INP> DEST;

INT16 - 6

INT16 — QNBOOL=243
BOOL - DRAWMV
INT16 — COUNT
INT16 — SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID — DEST, SIZE
INT16 ~ O
INT16 - 6

RM14-50 Reference Materials

SEND REAL-NUMBER TO <INP> DEST;

INT16
INT32
INT16
INT16

INT16
INT16
PSREAL
INT16
INT16
INT16
INT16
ID
INT16
INT16
INT16
INT32
INT16
INT16

SEND “STR” TO

SEND V2D (V) TO <INP> DEST;

GSR Internals

INT16
INT16
INT16
INT16

STRING-

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16

QINPIN=1435
INP

2
QSTORE=137

10

QREAL=4

R

SIZE+8
QALOOK=100
SIZE

1

DEST, SIZE
0

6
QINPIN=145
INP

2
QSTORE=137

<INP> DEST;

SIZE + 6
QSTR=5
SIZE

1

STR, SIZE
SIZE+8
QALOOK=100
SIZE

1

DEST, SIZE
0

6
QINPIN=145
INP

2
QSTORE=137

INT16 - 34
INT16 - QVEC2=10
PSREAL- V (1)

RM14-51

RM14-52

PSREAL- V (2)
PSREAL- O

PSREAL- O

INT16 — SIZE+8
INT16 - QALOOK=100
INT16 — SIZE

INT16 - 1
D - DEST, SIZE
INT16 - O
INT16 - 6

INT16 - QINPIN=145
INT32 - INP

INT16 - 2

INT16 QSTORE=137

SEND V3D (V) TO <INP> DEST;

INT16 — 34

INT16 - QVEC3=13
PSREAL— V (1)
PSREAL- V (2)
PSREAL- V (3)
PSREAL- 0

INT16 — SIZE+8
INT16 - QALOOK=100
INT16 - SIZE

INT16 - 1
ID - DEST, SIZE
INT16 - O
INT16 - 6

INT16 - QINPIN=145
INT32 - INP

INT16 - 2

INT16 - QSTORE=137

SEND V4D (V) TO <INP> DEST;

INT16 - 34

INT16 — QVEC4=16
PSREAL- V (1)
PSREAL- V (2)
PSREAL— V (3)
PSREAL— V (4)
INT16 - SIZE+8
INT16 — QALOOK=100
INT16 — SIZE

Reference Materials

SEND VALUE (VARNAM) TO <INP> DEST;

SEND VL (HANDLEl) TO <INP> HANDLE2;

GSR Internals

INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT32
INT16
INT16

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
ID

INT16
INT16

1

DEST, SIZE
0

6
QINPIN=145
INP

2
QSTORE=137

SIZE+8
QALOOK=100
SIZE

1

VARNAM, SIZE
0

2
QFETCH=186
SIZE+8
QALOOK=100
SIZE

1

DEST, SIZE
0

6
QINPIN=145
INP

2
QSTORE=137

SIZE+8
QALOOK=100
SIZE

1

HANDLEl, SIZE
0

SIZE+8
QALOOK=100
SIZE

1

HANDLE2, SIZE
0

6

RM14-53

RM14-54

HANDLE

HANDLE

HANDLE

INT16
INT32
INT16
INT16

:= SOLID_RENDERING (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
Ib

INT16

QINPIN=145
INP

2
QSTORE=137

STZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QSOLRE=343
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

:= STANDARD FONT (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

:= SURFACE_RENDERING (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QSTDF0O=132
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

Reference Materials

HANDLE

HANDLE

GSR Internals

INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

1= TEXT SIZE SIZEX SIZEY (APPLIED TO APPLY),

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL-
PSREAL—-

INT16
INT16
INT16
INT16
ID

INT16

2
QSURRE=342
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

SIZE+8

QLABEL=44
SIZE

1

HANDLE, SIZE

0

18

QTEXTS=339
SIZEX
SIZEY
SIZE+8

QNAME=45
SIZE

1

APPLY, SIZE
0

:= TRANSLATE BY V (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

‘PSREAL~

PSREAL-
PSREAL—

INT16
INT16
INT16
INT16
ID

INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

26

QTRANS=73

V(1)

V(2)

V(3)
SIZE+8
QNAME=45
SIZE
1
APPLY, SIZE
0

RM14-55

VARIABLE HANDLE;

INT16 — SIZE+8

INT16 — QVARNM=204
INT16 - SIZE

INT16 - 1

ID - HANDLE, SIZE
INT16 - O

HANDLE := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE) N=N
<VECTORS>;

INT16 - SIZE+8
INT16 — QLABEL=44
INT16 - SIZE

INT16 - 1
ID — HANDLE, SIZE
INT16 - O
INT16 - 45

INT16 - Q2DVHD=147 OR Q3DVHD=148
INT8 - 1 (DOTS)

OR

INT8 -~ 3 (CONNECTED, ITEMIZED)
OR

INT8 — 4 (SEPARATE)

BBOOL - BNORM

INT32 - O

PSREAL~- O

PSREAL- O

PSREAL- O

PSREAL- O

INT32 - VECCOU
BBOOL - CBLEND
BLOCK NORMALIZED

INT16 — 4+COUNT*2*DIMEN+2

INT16 - QBNDAT=266

INT16 - COUNT*2*DIMEN+2

VBLNO - VECS, POSLIN, DIMEN, COUNT

VECTOR NORMALIZED
INT16 — 4+COUNT* (DIMEN+1)*2
INT16 — QBNDAT=266
INT16 — COUNT* (DIMEN+1)*2
VECNO - VECS, POSLIN, DIMEN, COUNT
INT16 - 2
INT16 - QENDLS=107

RM14-56 Reference Materials

HANDLE

HANDLE

GSR Internals

:= VIEWPORT HORIZONTAL = XMIN:XMAX
VERTICAL = YMIN:YMAX
INTENSITY = IMIN:IMAX
(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL-
PSREAL-
PSREAL--
PSREAL-
PSREAL—-
PSREAL-

INT32
INT16
INT16
INT16
INT16
ID

INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

54
QVIEW=160
XMIN
XMAX
YMIN
YMAX

IMIN

IMAX

0

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

= WINDOW X = XMIN:XMAX

Y

YMIN:YMAX

FRONT BOUNDARY = FRONT
BACK BOUNDARY = BACK
(APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16

PSREAL—-
PSREAL—-
PSREAL~-
PSREAL-
PSREAL-

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0]

50
QWINDO=157
XMIN

XMAX

YMIN

YMAX

FRONT

RM14-57

RM14-58

PSREAL-
INT16 -
INT16 -
INT16 -
INT16 -
ID

INT16

BACK

SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
)

HANDLE := WRITEBACK (APPLIED TO APPLY);

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QWBACK=277
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

HANDLE := CANCEL XFORM (APPLIED TO APPLY);

INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
INT16 -
ID -
INT16 -

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QXFCAN=273
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

Reference Materials

HANDLE

HANDLE

GSR Internals

:= XFORM MATRIX (APPLIED TO APPLY);

INT16
INT16
INT16
INT16
ID

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QXFMAT=270
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

:= XFORM VECTOR_LIST (APPLIED TO APPLY),;

INT16
INT16
INT16
INT16
1D

INT16
INT16
INT16
INT16
INT16
INT16
INT16
ID

INT16

SIZE+8
QLABEL=44
SIZE

1

HANDLE, SIZE
0

2
QXFVEC=271
SIZE+8
QNAME=45
SIZE

1

APPLY, SIZE
0

RM14-59

3. Description of Six-Bit Binary Data Protocol in the PS 390

The following sections describe how the PS 390 binary data can be encoded
into bytes with six bits of binary data per byte. This method should be used
when you need to transmit printable ASCII characters to the PS 390.

3.1. Data Storage

The PS 390 stores its data as follows:

| MSB | LSB |

where the MSB starts at the low address and the LSB starts at the high
address.

The host must send the MSB first, followed by the LSB. Some hosts store
their data in an address order that reverses this sequence. If this is the case,
the MSB and LSB must be reversed in the host before being sent to the
PS 390.

3.2. Six-Bit Binary Data Encoding Method
Binary data must be encoded in the following manner. This encoding proc-
ess occurs prior to sending the byte count of binary vector data.

NOTE

The byte count of binary data must not include the
count of bytes that result when the data is passed
through the encoding scheme.

1. The encoding process collects 16-bit words until it has two sets.

CAUTION

The carriage control characters must be suppressed
when transmitting binary data, or the carriage control
characters will be interpreted as binary data.

2. A two-word set is broken up into five bytes with six significant bits, and
one byte with two significant bits. These bits are extracted from the least
significant end to the most significant end of the two-word set.

RM14-60 Reference Materials

3. The order that the bytes are sent to the PS 390 reverses the order in
which they were extracted. The byte with two significant bits is sent first,
followed by the the last 6-significant-bit byte, and so on.

4. To make the bytes printable ASCII characters, a zero 0’ character (hex
30 or decimal 48) is added to each byte prior to sending them. This
encoding process is illustrated in the example that follows. The two-
word set of 16-bits are held internally in the host in the following bit

sequence. The first two word set is:

X = |0I1lOlOlOlOIO‘OlOI0|0‘0|0|Ol0|0|

y=[o]1]o]o[o[o]o]ooo|o]o]o]ofo[o]

The two 16-bit words are broken up into five bytes with six bits, and one
byte with two bits in the following order:

6 5 4 3
[o[1] [o]oJoJoo]o] [o]o]olo]o[o] [o]o[o[1]o]0]

2 1
ofo[ofofofo] LoJo[ofojo]o]

The zero ”0“ character is now added to each six-bit byte:

bytel 000000

+ 110000 (zero)
110000

byte2 000000

4+ 11000Q (zero)
110000

byte3 000100

+ 110000 (zero)
110100

GSR Internals

byte4

bytes

byte6

000000

+ 110000 (zero)
110000

000000

+ 110000 (zero)
110000

——-01

+ 110000 (zero)
110001

RM14-61

After the encoding procedure, the bits will be sent to the PS 390 in the
following sequence of bytes. Note that the sequence order of the bytes has

been reversed.

byte6

byte5

byte4

byte3

byte2

byte1

Two significant bits
[oo110001]

Six significant bits
[oo110000]

Six significant bits
[0o0110000]

Six significant bits
[oo110100]

Six significant bits
[oo110000]

Six significant bits
[00110000]

3.3. Example of Encoding Binary Data

RM14-62

An example of encoding binary vector data is given in the following section.
Please note that the example assumes escape mode. Refer to Section RMS,

Host Communications, for a complete description of escape mode.

The vector list to be encoded is:

AA:= vec itemized n=4
P 1,1,0 I=1.0
-.25, .75, .5 I= .75

L
P 10,5,.001 I
L -.001, -.002, .003 I= .

’

.5

Reference Materials

The data in PS 390 Eight-bit binary format is as follows:

NOTE

The X,Y,Z mantissa’s and the Vector exponent are
two’s complement numbers.

0100000000000000 1/2 (x mantissa)
0100000000000000 1/2 (y mantissa)
0000000000000000 = O (z mantissa)
00000001 1111111 O exponent =1 intensity= 7F(hex) p/l=p

I

fl

1110000000000000 —-1x2**-2 (x mantissa) NOTE 2’s complement
0110000000000000 3x2**%-2 (y mantissa)

0100000000000000 = 1x2**-1 (z mantissa)

00000000 1100000 1 exponent=0 inten=60(hex) p/l=1

I

0101000000000000 = 5x2**-3
0010100000000000 = 5x2**-4
0000000000000010 = 1x2**-14

00000100 1000000 O exp=4 int=40(hex) p/l=p

1101111100111100 = -2097x2**-13
1011111001110111 = -16777Tx2**-15
0110001001001101 = 25145x2**-15

11111000 0001100 1 exp= -8 int=0C(hex) p/l=1

0000000000000000 padding

For exercise, check the last vectors in decimal.

X= —2097x2%*-13x2%*_-8

-2097x2**-21 = -9,99928E -4 —> -.001

Y= —167Tx2**-15x2%*-8 = -16777x2%*-23 1.99997E -3 -> -.002

z= 25145x2**-15x2%*-8

25145x2**-23

2.99752E -3 —> .003

GSR Internals RM14-63

RM14-64

The left column is the binary data re-encoded into the six-bit format. The

right column is the eight-bit data.

002P0\

000PO1

11l@@00

00;@2D

030000

000000

000000

000000

000000

000000

000000

000000

000000

000000

0000000000001010
0000000000101100

0000000000000010
0000000000000001

0100000101000001
0000000000000000

0000000000101101
0000000010010100

0000001100000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

Il

44 (Qlabel)

= 2 (size)
=1

= AA (name)
=0'

1

148 (q3dvhd)

10 (size of label+8)

45 (data byte count)

item= 3/bnorm= ,false.

0 (8 byte real)

0 (8 byte real)

0 (8 byte real)

0 (8 byte real)

0 (4 byte integer)

4 (veccount 4 byte integer)

Reference Materials

001000

0TO@X0

OP@010

000001

3nh01pP

00@000

31D00X

000084

20gcbn

1gHTgh

0I00DO

1[0000

GSR Internals

0000000000000100
00000000
00000000

00100100
0000000100001010
00000000

00100000
0100000000000000
01000000

00000000
0000000000000000
00000001

1111111 O
1110000000000000
01100000

00000000
0100000000000000
00000000

1100000 1
0101000000000000
00101000

00000000
0000000000000010
00000100

1000000 0O
1101111100111100
10111110

01110111
0110001001001101
11111000

0001100 1
0000000000000101

00000000

01101011
00000000

I

.false. (cblend)

36 (total byte count)
266 (gbndat)

32 (count*(dimen+1) *2)
1/2(x mantissa)

1/2(y mantissa)
0 (z mantissa)
exponent=1

intensity=7F (hex) p/l=p
—1*x**-2 (x mantissa)

3*%¥2%*_-] (y mantissa)
1*¥2**-1 (z mantissa)
exponent=0

intensity=60(hex) p/1l=1
5%2%%_-3 (x mantissa)

5%2%*%-4 (y mantissa)
1*2*%*%_-14(z mantissa)
exponent=4

intensity=40(hex) p/l=p
—2097*2%%-13 (x mantissa)

~-16777*%¥2*%%-15 (y mantissa)
25145*2**-15(z mantissa)
exponent=-8

intensity=0C (hex) p/1l=1
5 (data byte count - including
padding)

107 (gendls)
padding

RM14-65

0000000000000000

002P0\000P0111@@0000 ; @2D03000
000000000
00000010000T0@X00P@0100000013nh01F00@00031D00X00008420gcbn1gHTghO0IO0DO1
[0000

The vector list is transmitted to the PS 390 using escape mode as follows:

<SOP>2 {route to six bit binary route}
{and send the encoded data}

If the vectors are vector normalized, an arbitrary sized vector list may be
transmitted by sending multiple packets of data as above, without the termi-
nating semicolon. When all of the vectors have been transmitted, they must
be terminated with a semicolon. However the packets must contain com-
plete vectors.

The vectors will be processed faster if the vector estimate (N=vector_esti-
mate) is equal to or greater than the actual number of vectors transmitted.
This is because the PS 390 allocates memory for the vectors based on this
estimate. If the estimate is low, the PS 390 must find a new block of con-
tinuous memory large enough for the total, copy the vectors in the original
block into the new block, and write the new vectors into the block.

RM14-66 Reference Materials

RM15. RELEASE NOTES INDEX

Section RM16
Index

Indicators

Entries are indexed by volume, section, and page number. In cases where a topic
appears on more than one successive page and discussion of it is continuous, page
indicators only refer to the page of that discussion on which the topic first appears.
There are no inclusive references. Information on a topic may be found on several
successive pages following the page that is referenced. A reference to the first page
of a section may indicate that the topic is discussed throughout that section.

A sample entry is:

Viewing operations, GT2-44; GT8-1
attributes, GT8-48, 56
commands, 1S2-17
default values, GT8-2, 52
node, GT8-53, 54, 55

The first reference after the main entry is to the Graphics Tutorial volume, Section
2, page 44, where a discussion of viewing operations begins. The second reference
is to the first page of Section 8 in the Graphics Tutorial volume. That entire section
discusses viewing operations. The subentries refer to specific aspects of viewing
operations. Note that in the case of the subentry “node,” successive pages are
indexed because the discussion of the topic is not continuous.

Alphabetization

Index entries, including abbreviations and acronyms, are alphabetized on a letter-
by-letter basis. In the order of entries and subentries, numbers come before letters.
There is one exception, in which a number begins a main entry. 03$ is alphabet-
ized under Z, as if spelled out. Words are alphabetized up to the first mark of
punctuation. Spaces between words, hyphens, slant lines, and underscores are ig-
nored in the entry sequence.

Index RMI6-1

A sample ordering of entries and subentries is:

Matrix

2x2

3x3

4x4

accumulated

algebra
MATRIX2, F:
MATRIX 2x2
MATRIX3, F:
MATRIX 3x3

Cross-References

A See cross-reference is to the entry that has been chosen in cases where alterna-
tives, such as synonyms or word order variants, existed. A See also cross-reference
refers to an entry where indicators to additional or related information can be
found. Not all related topics are cross-referenced. Note especially that topics whose
entries appear in close proximity in the index (such as “Viewing operations” and
“Viewing area”) are not cross-referenced. In most cases, there are no cross-
references from a subentry to a main entry with the same wording. For example,
there is no cross-reference from the main entry “Display structure,” subentry “con-
ditional referencing” to the main entry “Conditional referencing.”

RM16-2 Reference Materials

A

ACCUMULATE, F: (intrinsic user function),
GT6-24; TT1-19
exercise, GT6-25
summary, RM2-8

Accumulator. See Function, accumulator
ACP. See Arithmetic control processor

ACPProof. See Arithmetic control processor,
proof

Active or regular input. See Input/output, ac-
tive queue

Active List. See Scheduler

Acyclic directed graph, 1S2-20
See also Display structure

ADD, F: (intrinsic user function), GT2-95;
GTe6-11; GT7-31; TT2-8; AP5-4
exercise, GT7-32

summary, RM2-11

ADDC, F: (intrinsic user function)
summary, RM2-12

Address. See Mass Memory; Named entity,
address

Advanced 3D visualization firmware, RM6~7
See also Polygon; Smooth shading

Algorithm, GT13-55

Aliasing, GT12-2, 8
temporal, GT12-3
See also Antialiasing

ALLOW_VECNORM, F: (intrinsic user func-
tion), TT2-17, 60
summary, RM2-13

Alpha block, AP3-1
contents, AP2-2
definition of, RM9-2; AP2-1
hash table and, AP2-36
pointers to, AP3-1
update and, AP3-3
See also Named entity

ALT (key). See Key, ALT

Index

Alternating display, GT2-82; GT9-14, 16, 19
See also Animation; Blinking; Conditional ref-
erencing; SET RATE

Ambient light
color of, GT13-45, 49
depth cueing in, GT13-51
light source and, GT13-45
See also ILLUMINATION; SHADINGEN-
VIRONMENT

AND, F: (intrinsic user function)
summary, RM2-14

ANDC, F: (intrinsic user function)
summary, RM2-15

Animation
clock function and, TT1-21, 23
frame, TT1-23, 44
level-of-detail and, GT9-9, 12; TT1-23
picking and, GT11-13
program example, GT3-23
SET RATE and, GT15-42
storing, TT1-44

ANSTI private commands, RM10-6

ANSI mode (DECANM), 1S3-19; RM10-2
keypad in, RM10-10
See also Escape sequence; SETUP facility;
Terminal emulator mode

Antialiasing, GT12-2, 8
control, GT13-51
lookup table and, GT13-55
soft edges and, GT13-20
See also Aliasing; Line filter; Screen;
SHADINGENVIRONMENT

Application program

data flow, RMS5-27

See also Host input data flow
display structure in, GT5-31
examples of, GT15-1
GSRs and, 1S3-30; TT3-18, 23
polygonal object from, GT13-8
primitive created by, GT2-8

Application routine. See Graphics support rou-
tines, application

APPLIED TO/THEN (command), GT1-4;
GT2-12, 79, 83; TT9-2
summary, RM1-3
syntax, RM1-185

Arc, routing, GT2-101; TT4-21
See also NETEDIT

RM16-3

Arithmetic and logical function, 1S2-24;
GT2-93; GT6-11

Arithmetic control processor (ACP)
card, IS2-6
communication with GCP, AP2-16
description of, AP1-2
picking and, GT11-1, 9
See also PICK
proof, AP3-3
state of, AP1-2; AP2-26; RM9-2
See also State of the machine
update process and, AP3-2

Array element. See Background color; Cursor;
Screen

Artifact, GT12-3, 9
See also Line filter; Screen

ASCII
character as primitive, GT2-9; GT4-49
character code set, RM1-205; RM2-197
command language in, 1S2-15; GT5-2
data into, TT9-4
See also LIST,F:; Transformed data
file, transferring, TT2-26; TT6-11
font, alternate, GT10-20
See also BEGIN_FONT...END_FONT,;
MAKEFONT
font, standard, GT2-9; GT10-19
function networks created as, GT2-101;
TT4-29
See also NETEDIT
See also Character font; Character string;
Data node

ASCII-to-GSR converter (host-resident pro-
gram), TT6-8; TT8-1

Aspect. See Attribute, appearance

Aspect ratio
definition of, GT2-59
perspective viewing area, GT8-20
program example, GT3-13
viewport and viewing area, GT2-59, 66;
GT8-4S, 54

See also Viewing area; Viewport

Assembly language routine, AP9-37

Asynchronous serial line, RMS5-1
applications, 1S2-13

RM16-4

communication characteristics, RMS5-6

data communication methods with, RMS5-16

data reception and routing with, RM7-1

description of, RMS5-1

GSRs and, TT3-19

host independence and, 1S2-3

interface, standard, RMS5-2; RM6-1

ports, RMS5-7, 8

protocol, RMS5-12

RS-232-C specifications, 1S2-13, RMS5-3

system function network for, RMS§8-1

See also Ethernet interface; IBM interface;
Parallel interface

At/from point. See Line of sight, at/from point

ATSCALE, F: (intrinsic user function)
summary, RM2-16

Attach PS 390 to Communication Device (utility
GSR), RM4-8

Attribute
appearance, [S2-17; GT2-68; GT8-48, 56
See also Character font; Color; Depth clip-
ping; Intensity; Viewing operation, at-
tribute
changing, GT13-39
classes of, GT2-67, 87
default, GT13-39
definition of, GT2-67
designing for, GT4-3
picking, GT2-84
See also Picking
polygon. See Polygon; POLYGON
structure, GT2-77
See also Blinking; Conditional referencing;
Level-of-detail

Attribute node
character font lookup table, GT10-1, 22
See also CHARACTER FONT
creating, GT13-39, 43
definition of, GT2-67, 87
display structure and, GT2-78, 87;
GT13-39
highest, GT2-85
See also Picking
inputs to, GT13-42
uses of, GT2-88
See also Operation node; POLYGON

ATTRIBUTES (command), GT13-21, 39
GSR, RM4-11
summary, RM1-4
syntax, GT13-21, 40, 62; RM1-185

Reference Materials

Attribute table, GT13-53; TT2-49, 51
See also SHADINGENVIRONMENT

AVERAGE, F: (intrinsic user function)
summary, RM2-18

Axis
coordinate system, GT1-3; GT2-2
line of sight and, GT8-4
object’s, GT6-22
rotation around, GT2-14
translation in, GT2-16
world’s, GT6-22
See also Origin; Z-axis

B

Back boundary. See Boundaries, front and
back

Backface removal, GT2-108; GT13-3
rendering node input, GT13-32
saving, GT13-38
vertex order and, GT13-8
See also Hidden-line removal; SOLID REN-
DERING

Background color
black, TT2--39
See also Erase Screen
line filters and, GT12-9
screen wash and, GT13-51
specifying, GT12-5; GT13-49
viewport and, GT8-42
See also PS390ENV; SHADINGENVIRON-
MENT

Backing up, RM12-5
See also Diskette; Graphics firmware

BEGIN...END (command), GT5-25
GSR, RM4-16, 43

summary, RM1-7

syntax, RM1-185

BEGIN_FONT...END_FONT (command),
GT2-9, 75; GT10-19, 22; TT7-7
summary, RMI1-8
syntax, GT10-22, 27, RM1-185

Begin Saving GSR Data (utility GSR),
RM4-144

Index

BEGIN_STRUCTURE...END_STRUCTURE
(command), GT1-7; GT5-10, 25, 29;
GT15-1; TT6-8

exercise, GT3-11
GSR, RM4-17, 45
summary, RM1-10
syntax, GT5-24, 30; RM1-186

Binary data
commands in, 1S2-18
encoding six-bit, RM14-60

Black box, 1S2-24; GT1-9; GT2-92; GT6-3
See also Function; Function network; Input/
Output

Blanking. See Screen, blanking

Blinking, 1S2-22; GT2-82; GT9-14, 19

attribute, GT2-78

data structuring and, TT1-36

definition of, GT9-1

node. See SET/IF node

program example, GT9-16

rendering and, GT13-28

uses of, GT9-16

See also Alternating display; Conditional refer-
encing; IF PHASE; SET BLINKING ON/
OFF; SET BLINK RATE; SET RATE;
SET RATE EXTERNAL

Block
allocating a memory, AP3-4
types of, AP2-1
See also Alpha block; Control block; Label;
Named entity; RAWBLOCK; Update
block

BOOLEAN_CHOOSE, F: (intrinsic user func-
tion)
summary, RM2-19

Boolean value
attribute node and, GT2-67
cursor shape and, TT1-5
data format, RM14-7
data node and, GT2-37
depth clipping node and, GT2-92
operation node and, GT6-5
picking node and, GT11-3, 7, 8
switch function and, TT1-32
See also Data type

Booting, IS3-1; GT1-1
trouble-shooting tips, 1S3-4

RM16-5

Boundaries, front and back
default, GT8-15
depth clipping and, GT2-72; GT8-15, 29
depth cueing and, GT2-63, 71, GT8-16
frustum and, GT8-19
orthographic viewing area and, GT2-50;
GT8-16
perspective viewing area and, GT2-54;
GT8-20, 24, 29
See also Viewing angle; Viewing pyramid
program example, GT3-13, 15
specifying, GT8-15, 16, 24, 29
spheres and, TT2-18
square/nonsquare, GT8-45
viewing pyramid and, GT2-54; GT8-20
See also Frustum; Viewing area, perspective
See also Clipping plane; EYE BACK;
FIELD_OF_VIEW; LOOK; WINDOW

Bounded plane. See Surface

Branch, GT2-36, 43
definition of, 1S2-19; GT2-77
displaying selected, GT2-78; GT9-1, 7, 17
See also IF CONDITIONAL_BIT; SET
CONDITIONAL_BIT
instance node and, GT2-36, 40; GT4-2
order of display, GT9-10
picking, GT11-2, 4
program example, GT3-22
structure attributes and, GT2-78
See also Arithmetic control processor; Condi-
tional referencing; Display structure; In-
stance node; Sphere of influence

Break key. See Key, BREAK
Breakpoint. See Debug; User-written function

Break sequence, TT2-41
See also Key, BREAK

BROUTE, F: (intrinsic user function)
summary, RM2-20

BROUTEC, F: (intrinsic user function),
TT1-32
summary, RM2-21

BSPLINE (command), GT2-9; GT4-49;
TT6-15

GSR, TT3-5; RM4-18

summary, RM1-13

syntax, RM1-186

Buffer. See Input/output; Byte, buffer

RM16-6

Buffer, double, AP3-2; AP4-6
See also Frame buffer; SET/IF
LEVEL_OF _DETAIL; SET/IF CONDI-
TIONAL_BIT

Buttons. See Function button

BUTTONSIN (initial function instance)
summary, RM3-2

Byte
buffer, RMS5-7, 9, 12
encoding binary data into, RM14-60
See also Data; Routing byte

C

Calligraphic system, IS2-1; GT12-1
See also Raster; Screen

Calling sequence. See Named entity; Real value

CANCEL XFORM (command)
GSR, RM4-225

summary, RM1-16

syntax, RM1-186

Capping polygon. See Polygon, capping

Car, GT4-3, 23; GT5-8, 11; GT8-4;
GT9-5; GT11-3

Card, 1S2-6, 8
configuration, IS2-10
See also Arithmetic control processor; Joint
control processor; Pipeline subsystem; Ras-
ter backend bit-slice processor; Raster
backend video controller

Cartesian system. See Coordinate system, left
handed

Cavity. See Contour, inner

CBROUTE, F: (intrinsic user function)
summary, RM2-22

CCONCATENATE, F: (intrinsic user function)
summary, RM2-23

CDI1V, F: (intrinsic user function)
summary, RM2-24

CEILING, F: (intrinsic user function)
summary, RM2-25

Centering. See Model; Origin

Reference Materials

CGE, F: (intrinsic user function)
summary, RM2-26

CGT, F: (intrinsic user function)
summary, RM2-27

Change bits node. See SET/IF node

CHANGEQTYPE, F: (intrinsic user function)
summary, RM2-28

Character font
alternate, GT2-9, 75; GT10-20, 27,
TT7-2
See also BEGIN_FONT...END_FONT;
MAKEFONT
attribute, GT2-67, 75; GT10-22
See also CHARACTER FONT
bit, TT7-8; RMS5-14, 15
block, AP2-5, 34
definition of, GT10-19
design grid, TT7-5
downloading, TT7-7
lookup table, GT10-22
modifying. See MAKEFONT
node, GT2--76
as primitive, GT2-9
standard, I1S2-3, 21; GT2-9, 75; GT10-1,
19, 20; TT7-7
See also ASCII; STANDARD FONT
storing, TT7-8
See also Label

CHARACTER FONT (command), GT2-9, 76;
GT10-20, 22
GSR, RM4-53
summary, RM1-17
syntax, GT10-22, 27, RM1-186

Character font editor. See MAKEFONT
Character generator. See MAKEFONT

CHARACTER ROTATE (command), GT10-6,
10; RM14-12

exercise, GT10-10

GSR, RM4-21

summary, RM1-18

syntax, RM1-186

CHARACTERS (command), GT1-7; GT2-76;
GT4-49; GTS-5; GT10-2, 5, 17, 18, 23
exercise, GT10-19
GSR, RM4-22
summary, RM1-20
syntax, GT10-24; RM1-186

Index

CHARACTER SCALE (command), GT1-7;
GT2-76; GT10-6, 8
GSR, RM4-24
summary, RM1-22
syntax, GT10-7, 24; RM1-186

Character string, GT1-7; GT10-1
block. See Label
commands, GT10-2, 6, 16, 24
See also CHARACTERS; CHARACTER
ROTATE; CHARACTER SCALE;
LABELS; PREFIX; TEXT SIZE
definition of, GT10-1
functions to manipulate, GT10-12, 19, 25
node, GT2-76; GTI10-1, 6, 11, 16, 23;
TT1-28
See also COPY; SEND
orienting, GT10-10, 25
See also SET CHARACTERS
pick list into. See PICKINFO, F:
positioning, GT10-2, 4
primitive, GT2-9; GT4-49
program example, GT3-2, 10, 20
rotating, GT10-6
See also CHARACTER ROTATE
scaling, GT10-3, 6
See also CHARACTER SCALE; SCALE;
TEXT SIZE
screen-oriented, GT3-20; GT10-12
screen-oriented fixed, GT3-21; GT10-12
spacing, GT10-4, §
transforming, GT10-6, 24
See also CROTATE, F:; CSCALE, F:; MA-
TRIX_2X2
versatility of, GT10-5
world-oriented, GT3-20; GT10-11
See also Label; Pick list; Text

Character transformation function, I182-24;
GT2-94; GT6-12; GT10-15
CHARCONVERT, F: (intrinsic user function),
RM7-4; TT1-40; GT10-13; GT11-14
summary, RM2-29
CHARMASK, F: (intrinsic user function),

GT10-13
summary, RM2-31

CHECK (diagnostic utility command),
RM12-2, 8

CHOP, F: (intrinsic user function), TT2-33;
RM7-3
summary, RM2-32
CI(n), F: (intrinsic user function), TT2-8;
RM7-3; RM9-2, 7; RM14-7
summary, RM2-33

RM16-7

Circle, TT1-10
See also RATIONAL POLYNOMIAL

CIROUTE(n), F: (intrinsic user function),
TT2-24, 33; RMS5-16, 20, 26, 29;
RM7-1,3; RM14-4

summary, RM2-35

CLCSECONDS, F: (intrinsic user function),
TT1-21, 23
summary, RM2-37

CLE, F: (intrinsic user function)
summary, RM2-39

Clear. See Screen, blanking

CLEAR_LABELS (initial function instance)
summary, RM3-3

CLFRAMES, F: (intrinsic user function),
GT6-27;, TT1-21, 23
exercise, GT6-30
summary, RM2-40

Clipping
definition of, GT2-44, 72; GT8-1
line of sight and, GT8-11, 13, 21
screen boundaries and, 1S2-21
size of object and, GT8-11
See also WINDOW
viewing area and, GT2-51, 66; GT8-10, 13,
15, 53
See also Depth clipping

Clipping plane
depth clipping and, GT2-51, 73; GT8-15
depth cueing and, GT2-58
See also Intensity

rendering and, TT2-58

sphere and, TT2-57

See also Boundaries, front and back; EYE
BACK; FIELD_OF_VIEW; LOOK; WIN-
DOW

Clock
blinking and, GT2-82; GT9-14, 19
function, GT6-27; TT1-21, 23
See also CLCSECONDS, F:; CLFRAMES,
F:; CLTICKS, F:
level-of-detail and, GT9-12
See also Animation
real-time, displaying, TT1-33
See also Alternating display; Blinking

CLT, F: (intrinsic user function)
summary, RM2-42

RM16-8

CLTICKS, F: (intrinsic user function),
TT1-21, 23, 33
summary, RM2-43

CMUL, F: (intrinsic user function), GT6-9;
GT7-9
exercise, GT7-15
summary, RM2-45

Coding. See BEGIN_STRUCTURE...
END_STRUCTURE; Command; Display
structure; Naming, explicit

Color
ambient. See Ambient light, color of
attribute node input, GT13-42
blending, GT13-53
changing, GT13-40
components, GT14-3
See also Color lookup table
displaying, I1S2-3; GT2-68, 69
dynamic viewport and. See Dynamic view-
port, color in
edge. See Edge, color of
interpolating, GT13-9, 22
node, GT2-69
pixel, GT14-2, 3
program example, GT13-43
specifying, 1S2-22; GT2-103; GT8-50;
GT13-20, 21, 40, 59, 61
See also POLYGON; SET COLOR
transparency and, GT13-42
values, GT2-68; GT13-41, 43
See also Hue; Intensity; Saturation
vertex. See Vertex, color
wheel, GT2-68; GT8-50; GT13-41
wireframe. See Wireframe model, color of
See also Attribute; ATTRIBUTES; Back-
ground color; SET COLOR; Shading;
SHADINGENVIRONMENT

Color lookup table, GT14-1, 3, 11; TT2-39

Command

abbreviated, GT5-2; TTg8-2

building from subcommands, RM14-11

categories of, 1S2-16; GTS-1, 29;

RM1-180

conventions, GTS5-2, 29

data formats, RM14-14

data structuring, GTS5-1, 4, 29
See also BEGIN_STRUCTURE...

END_STRUCTURE

downloading, 1S2-17

editing. See LINEEDITOR, F:

entering, GT1-2

Reference Materials

error in sending, RM14-1, 11

file. See Command file

general, IS2-16

GSRs and, [S2-18; IS3-30; GT5-28;
TT3-3, 12; TT5-28; RM1-197;
RM4-228

immediate action, GTS5-2, 25, 29

language, IS2-15; GT4-2; GTS5-1; RMI1-1

naming conventions, GTS5-4, 29
See also Name, command; Naming, explicit
private ANSI, RM10-6
See also Terminal emulator mode
rendering operation and, GT13-31
reset, RM14-1, 11
runtime code and, I1S3-7
saving, GTS5-27
special site configuration, TT2-1
See also SITE.DAT
status. See COMMAND STATUS
structure, 1S2-17
syntax, TT3-7, 16; RM1-185
system, RM1-1
use of, IS2-17; GT5-1
utility. See Diagnostic utility command
See also Command interpreter; Display struc-
ture; Graphics support routines; Node

Command file, AP5-2

DEC VAX/UNIX, AP5-16; AP9-11
DEC VAX/VMS, AP5-15; AP9-1
generating, TT4-3

IBM MVS/TSO, AP9-24

tutorial, GT3-5

Command interpreter (CI), IS2-18
alpha block and, AP2-3
configure mode, IS3-7; RM9-6
See also CONFIG.DAT
data format, RM14-1, 11
See also Data type; Graphics support rou-
tines
graphics support routines and, 1S3-30;
TT3-17; RMS5-29
host communications and, 1S3-25, 27;
RMS5-23
name suffixing by, RM9-6
querying or resetting, GTS5-1; RM14-11
See also COMMAND STATUS; IRESET
routing to, RMS5-20, 23, 27; RM7-3;
RM14-6
tokens expected by, RM14-3
user-written function and, AP7-2
See also CI(n), F:; Write structure field

Index

Command language. See Command; Graphics
support routines

Command mode (CI mode)
cursor keys in, RM10-23
DEC VT100, 1S3-17
description of, I1S3-15; RM10-27
entering commands in, 1S82-17
establishing, RM10-21
function keys in, RM10-23
IBM host, 1S3-22, 24; GT1-2; RM10-27
keyboard manager and, RM10-17, 21
See also K2ANSI, F:
keypad in, RM10-21, 23
key sequence for, 1S3-15, 22; GT3-30;
GT10-2
local communication, 183-27
non-IBM host, GT1-1
prompt, GT1-1
screen and, RM10-27
suffixing, RM9-6
See also Keyboard, modes of operation

COMMAND STATUS (command), GT5-1,
17, 25
summary, RM1-24
syntax, RM1-187

Comments, GT5-3; TT4-31; TTS5-4
See also Command, language

Commhead, AP2-35; AP9-41
Communication connector panel, 1S2-5
Communication interface. See Interface

Communication mode. See Command mode;
Keyboard, modes of operation; Local mode;
Terminal emulator mode

Comparison function, 1S82-24; GT2-93;
GT6-11

Complex model. See Compound object; Model

Compound object
advantage of, GT2-28
creating, GT2-26, 31
grouping as, GT2-30
instance node and, GT2-39
See also INSTANCE; Instance node; Model;
Named entity

Composite sync signal, GT12-4, 11, 13
See also Video timing format

RM16-9

COMP_STRING, F: (intrinsic user function),
GT10-15
summary, RM2-46

CONCATENATE, F: (intrinsic user function),
GT10-14
summary, RM2-47

CONCATENATEC, F: (intrinsic user function)
summary, RM2-48

Concatenation. See Character string, concatena-
tion; Matrix, concatenation

CONCATXDATA(n), F: (intrinsic user func-
tion), TT2-53, 55
summary, RM2-49

Conditional bit
function network, GT9-8
setting, GT2-78; GT9-1, 7
state of machine and, GT4-48
using, GT9-3, 17
See also IF CONDITIONAL BIT; SET CON-
DITIONAL_BIT

Conditional referencing, GT9-1

attribute, GT2-78

definition of, GT2-78; GT9-1

function key and, GT2-79; GT9-8

node. See SET/IF node

program example, GT3-11, 22

using, GT9-17

See also Blinking; IF CONDITIONAL_BIT;
IF LEVEL_OF_DETAIL; IF PHASE,;
Level-of-detail; SET CONDI-
TIONAL_BIT; SET/IF node; SET
LEVEL_OF_DETAIL; SET RATE; SET
RATE EXTERNAL

Condition handler, TT5-11
Confidence tests, IS3-3, 4

CONFIG.DAT (file), RM1-1

command interpreter and, RM9-6
description of, IS3-6, 7; TT2-9; RM9-5
initial data structure and, RM9-2
reading, RM9-5

See also CI(n), F:; READDISK, F:
terminal emulator and, RM10-20, 28
See also Initial data structure; SITE.DAT

CONFIGURE (command), GT8-40
summary, RM1-25
syntax, RM1-187

RM16-10

Configure mode, IS3-7

commands, RM1-1

definition of, TT2-7

password. See SETUP PASSWORD

using, TT2-7, RM9-7

See also Command interpreter; Naming, suf-
fixing

CONNECT (command), GT1-10; GT2-96;
TT4-2, 28; TT5-4, 25; RM14-13

exercise, GT6-16

GSR, RM4-26

summary, RM1-26

syntax, RM1-187

Connector, TT4-2, 19
Constant, TT3-7, 16; TT4-20, 28

CONSTANT, F: (intrinsic user function),
RM7-3; GT7-33
exercise, GT6-31
summary, RM2-50

Constant input. See Input/output, constant
queue

Control block, AP2-16, 27
See also Display control block; Display con-
trol root

Control sequence, RM10-2, 4, 5
ANSI, RM10-2, 5
cursor and, RM10-5
definition of, RM10-3
SET (SM) and RESET (RM), RM10-4
See also Escape sequence

Control unit, 1S2-4
multiplexer and, RM13A-3

Converter. See ASCII-to-GSR converter
Convert HSI to RGB (utility GSR), RM4-207

Coordinate
calculating, GT2-12
character string, GT10-4
See also CHARACTERS
label, GT10-5
See also LABELS
logical device, GT14-2, 5, 11, 18
notation, GT2-6
picking, GT11-7, 9
room, GT2-56; GT8-25
See also EYE BACK
screen, GT5-21
See also Viewing area

Reference Materials

values, GT1-3
world, GT2-4, 56
See also World coordinate system
See also Vector; Vector list; VECTOR_LIST

Coordinate system
definition of, GT2-2, 10
left-handed, GT2-3, 10

See also World coordinate system

mnemonic for, GT2-2, 3,14
portion displayed, GT1-3, 4
right-handed, GT2-2
world. See World coordinate system

CPK. See Rendering operation
Coplanar. See Polygon, coplanar; POLYGON

COPY (command), GT10-16
GSR, RM4-28

summary, RM1-27

syntax, GT10-16; RM1-187

COPYDISK (diagnostic utility command),
RM12-7, 8

COPY_VECNORM_BLOCK, F: (user-written
function), TT2-62

Counter. See Clock, function.

Count mode. See CIROUTE, F:; Data packet,
count mode; Host communication

Crash dump file, TT10-1; RM11-1

Crash, system, RM11-1
error types, AP9-63; TT10-1
physical I/O and, AP4-3
user-written functions and, AP5-23

Cross-sectioning
description of, GT2-110; GT13-5, 36
rendering node input, GT13-32, 36
See also Polygon, capping; Sectioning; Sec-
tioning plane; SECTIONING_PLANE

Cross-compatibility software, I1S2-14; AP5-2;
AP9-18
See also Graphics support routines

CROTATE, F: (intrinsic user function),
GT10-6, 15
summary, RM2-51

CROUTE(n), F: (intrinsic user function),
GT7-6, 37
exercise, GT7-15

Index

summary, RM2-52

CSCALE, F: (intrinsic user function),
GT10-15
summary, RM2-53

CSUB, F: (intrinsic user function)
summary, RM2-54

Current state of the machine (CSM). See State
of the machine

Current transformation matrix. See Matrix, cur-
rent transformation

Cursor
color, GT12-5
See also PS390ENV
data tablet. See Data tablet
default, TT1-3
moving, RM10-5, 9, 11, 15
picking with, GT11-1, 7
See also SET PICKING LOCATION
programmable, GT12-6
refresh rate, GT12-6
shape of, TT1-3, 4; TT4-9; TT6-7
sketching with. See Data tablet
types of, GT12-6
update rate, GT12-6
See also Data tablet

CURSOR (initial structure), TT1-3, 4
summary, RM3-56

Cursor key mode (DECCKM), 1S83-20;
RM10-2, 4, 5, 6, 22
See also Escape sequence; SETUP facility;
Terminal emulator, ANSI modes

Curve
generating, TT1-10
primitive, GT2-9; GT4-49
See also BSPLINE; POLYNOMIAL; RA-
TIONAL BSPLINE; RATIONAL POLY-
NOMIAL; Transformed data

Customer support, 1S4-1; IS5-1
Cutaway view. See Sectioning

CVEC, F: (intrinsic user function)
summary, RM2-55

CVT6TOS, F: (intrinsic user function), RM7-3
summary, RM2-56

CVT8TOG6, F: (intrinsic user function), TT9-11
summary, RM2-57

RM16-11

CVTASCTOIBM, F: (intrinsic user function)
summary, RM2-58

CVTIBMTOASC, F: (intrinsic user function)
summary, RM2-59

D

Data
digital-to-analog conversion, 1S2-22
filtering and formatting, GT2-100
See also Function network
flow. See Host input data flow
format, RM14-2, 7, 11, 14
function network and, GT2-100
multiplexer, RM13A-3
reception and routing, GT2-101; RM7-1;
RM14-3
See also CIROUTE(n), F:; Host input data
flow
storing, RM14-60
transformed. See Transformed data
type. See Data type
See also Binary data

Data base
conceptual, GT4-47
coordinate system and, GT2-2, 10
See also World coordinate system
graphic object’s, GT2-1, 4, 6, 10; GT4-49
See also Primitive; Geometry; Polygon list;
Topology; Vector list

Data channel. See Data, reception and routing;
Host input data flow

Data communication. See Data transmission;
Host communication.

Data conversion function, I1S2-24; GT2-93;
GT6-11; GT10-13

Data-driven. See Function; Function network

Data input and output function, I1S2-25;
GT2-94; GT6-12

Data node

contents of, GT2-36, 91

definition of, GT2-36; GT4-13, 49;
AP2-30; AP9-56

See also Primitive

display structure representation, GT2-36;
GT4-13

format of, AP2-30; AP9-56

RM16-12

function, GT4-48
See also Character string; Curve; Label;
Vector list
inputs to, GT2-37
interactive device and, GT4-49
modeling and, GT4-2
pick index of, GT11-8; AP2-32
See also PICK
picking, GT3-27; GT11-4, 9
pointer, GT4-48, 49
polygon, GT2-103
terminal, GT4-13, 48, 49
updating, GT2-36; TT2-37
See also Interactive device
uses of, GT4-49
See also Data type; Display structure; Node

Data packet, RM14-3

commands and, 1S2-18

count mode, RMS5-17, 19; RM7-1;
TT2-23

description of, RMS5-16

escape mode, RMS5-17, 18; RM7-1;
TT2-23

writeback, TT9-10, 12

See also CIROUTE(n), F:; Data, reception
and routing; DEMUX(n), F:;
DEPACKET, F:; Host communication;
Host input data flow; PACKET, F:

Data selection and manipulation function,

1S2-25; GT2-94; GT6-12; GT10-14

Data space. See World coordinate system

Data structure

creating, AP3-1
See also Joint control processor
description of, AP2-1
definitions set up, RM9-2
See also Graphics control program
displaying. See CONFIG.DAT; Initial data
structure
editing. See STRUCTEDIT
function instance as, AP2-6
function network as, TT4-2
initial. See Initial data structure
named entity as, AP2-1, §
naming, GT5-4
See also Alpha block; BEGIN_STRUC-
TURE...END_STRUCTURE; Command;
FORGET STRUCTURES; Named entity;
Naming, explicit null, GT5-4
See also Data node; Display structure; Mass
memory; Operation node; Set node

Data structure editor. See STRUCTEDIT

Reference Materials

Data structuring command. See Command, terminal, I1S3-4
data structuring use of, AP7-6

See also NETPROBE; User-written function
Data tablet

binary format, RM13A-24; RM13B-20 Debugging network. See NETPROBE
haracter font selected with, TT7-3
¢ Sé? aL:O ?J;ASI?;;OeN-%VI DEC computer. See Host computer; Host com-

munications; Interface; Keyboard modes;

cursor and, TT1-4 Parallel interface; Terminal emulator, DEC

description of, 1S2-12; IS3-11;
RM13A-23; RM13B-19 VT100
editing with, TT4 DECANM. See ANSI mode
grid banding with, TT1-17
inking with, TT1-14, 38 DECCKM. See Cursor key mode

menus and, TT1-25; TT4-10

modes of operation, IS3-11; RM13A-23; DECKPAM. See Keypad application mode

RM13fB—-19 DECKPNM. See Key pad numeric mode
picking with, GT11-1, 7, 13
program example, GT3-7, 27 DECREMENT LEVEL_OF_DETAIL (com-
puck, IS3-11 mand)
rubber banding with, TT1-15, 17 GSR, RM4-34
uses of, GT2-88; GT6-5 summary, RM1-29
See also Cursor syntax, RM1-187
values, GT6-5 Delay, GT2-83; GT9-14
Data transmission See also Blinking, SET RATE
high-speed, 1S2-13 DELETE 4. GTS-5. 26
multiplexer rate, RM13A-3 GSR R(;/IO“H_’ ;nzan3 g’ ’
See also Host communication; Interface sumr;na ry, RMl,-3O
Data type syntax, RM1-187
character/label nodes and, GT10-19 DELETE (diagnostic utility command),
definitions, RM2-6; RM14-2 RM12-9
formats for, RM14-7 o
See also Data, format Delimiter, GT5-3
functions and, GT6-11; RM2-2, 6 See also Command, language;
graphics control program and, AP2-35 LINEEDITOR, F:

GSRs and, TT3-2, 20 Delta values, GT6-5; RM13A-18;
interactive devices and, GT2-92 RM13B-15

See also Function network

See also Dials, control
nodes and, GT2-91; GT6-3, 23

See also Function DELTA, F: (intrinsic user function)
pick list, GT11-11 summary, RM2-60
See also PRINT, F:; User-written function, i)
message types; VARIABLE Demonstration package diskettes, 1S2-14
Datum pointer, AP2-2; AP3-1 Demultiplexing. See Mu.ltipl.exing; Input/output,
See also Alpha block; RAWBLOCK multiple sources/destinations
DEMUX(n), F: (intrinsic user function),
Debug RMIA(I—)G ()
commands, AP7-9 summary, RM2-61
confidence test and, 1S3-6
entering, 1S3-6; AP7-7 DEPACKET, F: (intrinsic user function),
See also Key, BREAK TT2-24; RMS5-17, 21; RM7-1; RM14-3
function network, TT2-43 summary, RM2-63

Index RM16-13

Dependency. See Grouping; Hierarchy; Sphere
of influence.

Depth clipping
attribute, GT2-72
definition of, GT2-51, 72
depth cueing and, GT8-17
display structure and, GT8-15
enabling/disabling, GT2-72; GT8-15, 16, 54

field-of-view and, GT8-21

function key and, GT2-75

node, GT2-74

orthographic viewing area and, GT8-10, 15,
17

See also WINDOW

perspective viewing area and, GT§-21, 29,
30

program example, GT3-14

See also Boundaries, front and back; Clipping;
Clipping plane; SET DEPTH_CLIPPING;
Viewing area

Depth cueing
background color and, GT12-5
See also PS390ENV
boundaries, front and back and, GT8-53, 54
See also Boundaries, front and back; Clip-
ping plane
characters, GT10-12
definition of, I1S2-2; GT2-44, 58, 71;
GT8-1, 16, 53
field-of-view and, GT8-21, 24
maximum, GT2-63; GT8-16, 22, 24
orthographic viewing area and, GT8-9, 19
perspective viewing area and, GT2-63;
GT8-21, 29
shaded image, GT13-51
See also Intensity; SET CONTRAST; SET IN-
TENSITY; SHADINGENVIRONMENT;
Viewport

Depth perception, GT2-2
See also Coordinate system; Depth cueing;
Perspective

Designing. See Display structure; Model; Mod-
eling transformation

DESTROY (initial function instance), AP2-6

Detach PS 390 from Communication Device
(utility GSR), RM4-42

Detail frame. See Frame, detail

RM16-14

Diagnostic utility diskette

backing up, RM12-5

copying, RM12-6

copying files with, TT2-26

interface files on, RM6-4

See also Asynchronous serial line; Ethernet

interface; IBM interface; Parallel inter-
face

loading, RM12-1

uses of, 1S2-14; RMI12-1

Diagnostic utility command, RM12-1

list of, RM12-3
selecting, RM12-2

Diagram. See NETEDIT
Dial, control, RM13A-1

clock function and, GT6-30

commands, RM13B-16

connecting, GT1-9

data formats, RM13A-18; RM13B-15

data transmission characteristics, RM13B-16

description of, IS2-12; 1S3-11;
RM13A-17; RM13B-15

function network, GT6-16, 21, 25, 32;
GT7-2, 13, 22, 25

function network editing and, TT4-14

intensity setting with, GT2-71

labels, 1IS3-10; GT7-1, 22; TT2-48;
RM13A-20

See also DLABEL1...DLABELS; Light-emit-
ting diode

level of detail and, GT2-80

modes of operation, GT7-4, 23; GT11-13;
RM13A-17

multiple interactions and, GT7-1, 2, 37

operation of, GT6-5; RM13A-18

See also Delta values; Multiplying

performance verification test, IS6-9

picking network and, GT11-13

program example, GT3-7, 8, 13, 15, 18, 21,
23, 25; RM13A-19

response, RM13B-15

rotating with, GT6-5, 18

scaling with, GT6-23; TT1-12

setup, RM13A-19

transformations and, GT6-5

translating with, GT6-23; TT1-19

uses of, 1S3-11; GT2-88

DIALS (initial function instance), GT2-95, 97,

GT6-15; GT7-5; GT11-15
exercise, GT6-16, 21, 25, 32; GT7-13
summary, RM3-4

Dictionary. See Alpha block; Hash table

Reference Materials

Diffuse reflection, GT2-103
attribute node input, GT13-42
specifying, GT13-21, 41
values, GT13-41; TT2-51
See also ATTRIBUTES; Shading; Specular
highlight

Digital clock. See Clock, real-time Digitizing,
GT6-5
See also Data tablet

Dimension, GT1-3; GT2-1
See also Coordinate system

DIRECTORY (diagnostic utility command),
RM12-9

DISCONNECT (command), GT5-25
exercise, GT6-21, 30
GSR, RM4-36, 40
summary, RM1-31
syntax, RM1-187

Diskette, 1S2-13; 1S3-6
backing up, RM12-5
drives, 1S2-5; IS3-1
formatting blank, RM12-5
installing, IS3-1, 2
See also Demonstration diskette; Diagnostic
utility diskette; Graphics firmware;

Performance verification test;
WRITEDISK, F:

Display (noun). See Display structure; Screen

DISPLAY (command), GT1-3; GT2-45, 57,
61; GTS5-25, 28; GT13-26

exercise, GT3-10; GT8-35

GSR, RM4-41

summary, RM1-32

syntax, RM1-187

Display control block (DCB), AP2-20
Display control root (DCR), AP2-16

Displaying, GT1-2, 4, 5; GT2-45
alternate. See Alternating display
conditional referencing and, GT2-78
See also IF CONDITIONAL_BIT; SET
CONDITIONAL_BIT
default values, GT2-46
information needed, GT2-45
See also Line of sight; Viewing area; View-
port

Index

level-of-detail and, GT2-80
See also IF LEVEL_OF_DETAIL; SET
LEVEL_OF_DETAIL
off and on. See Blinking
screen area for. See Viewport
simultaneous. See BEGIN...END
viewing space. See Viewing area

Display list, GT1-3, 5

Display processing, 1S2-22
See also Interaction; Transformation

Display processor

attributes and, GT2-67; GT13-39
branches and, 1S2-19; GT2-77
description of, 1S2-7; AP1-1

See also Arithmetic control processor
instance node and, GT4-53; GTS5-14
naming and, GT5-10
optimization mode and, GTS5-26

See also OPTIMIZE STRUCTURE; ...END

OPTIMIZE;

transformation and, GT4-51

Display structure
branching in, GT2-78
See also Branch
character font, GT10-23
coding, GTS5-1, 8, 11, 17, TTe6-1
See also BEGIN_STRUCTURE...
END_STRUCTURE; Command; Nam-
ing, explicit; STRUCTEDIT
conditional referencing, GT9-1
data structuring commands and, 1S2-17;
GTs-1, 4, 29
definition of, 1S2-18; GT2-32, 34, 43;
GT4-9; AP2-16
designing, GT2-35, 90; GT4-9, 16, 23, 31,
47
editing. See STRUCTEDIT
elements of, AP2-16
See also Control block; Node
function outputs as, TT5-1
See also NETPROBE
GSRs and, TT3-3, 5, 12, 15
hierarchy in, 1S2-18; GT2-32; GT4-3, 31
immediate action commands and, GTS-25,
29
information in, GT4-13
interaction points in, 1S2-23; GT2--36, 38
modeling steps and, GT4-2
named entity, AP2-5
order of operations in, GT4-52; GTS5-13
See also Operation node
picking and, GT11-1, 2

RM1I16-15

program example, GT15-2, 15, 28, 36, 42,
45, 47
rules for, GT4-48
sphere of influence in, GT2-40
See also Instance node
terminal emulator and, RM10-19
terminology, GT2-36
See also Branch; Node; Hierarchy
transformed data and, TT9-1
traversing, 1S2-20
See also Display processor
updating.
See Update
viewing and, GT2-60; GT8-12, 15, 21, 36
See also Viewing operation
writeback and, TT9-9
See also Data structure; Hierarchy; Named
entity; (Naming of Display Structure
Nodes); Node; OPTIMIZE STRUC-
TURE;...END OPTIMIZE

Display tree. See Display structure
Distortion. See Aspect ratio; Viewport

Distributed graphics, 1S2-3
See also Host input data flow; Routing; Rout-
ing byte

DIV, F: (intrinsic user function)
summary, RM2-65

DIVC, F: (intrinsic user function), TT1-17
summary, RM2-66

DLABEL1...DLABELS (initial function in-
stance), GT7-22, 37
exercise, GT7-25
summary, RM3-6

Downloading, 1S3-26, 28
diagnostic utility commands and, RM12-1
See also Host communications

DSCALE, F: (intrinsic user function), GT6-25;
TT1-13
exercise, GT6-26
summary, RM2-67

DSET1...DSET8 (initial function instance)
summary, RM3-8

DXROTATE, F: (intrinsic user function),
GT6-6, 18; GT7-11, 30
exercise, GT6-17; GT7-16
summary, RM2-69

RMI16-16

Dynamic viewport

clearing to, GT8-42

color in, IS2-3; GT8-48; GT13-20, 59

considerations, GT8-39

default, GT8-2, 34, 40

dimensions of, GT8-34, 39

display structure and, GT8-2

intensity range, GT2-58, 71; GT8-35, 47,
56

program example, GT15-45

real time and, I1S2-2

rendering operations, GT2-102, 108, 113;
GT8-34; GT13-3, 32, 56

See also Backface, removal; Cross-section-

ing; Sectioning

soft edge in, GT13-20

specifying, GT2-58; GT8-34, 56

See also LOAD VIEWPORT; VIEWPORT

wireframe model in, GT2-44, 58; GT8-33,
34

See also Static viewport; LOAD VIEWPORT;
Screen; Viewport; VIEWPORT

DYROTATE, F: (intrinsic user function),
GT6-6, 18
exercise, GT3-10; GT6-16
summary, RM2-70

DZROTATE, F: (intrinsic user function),
GT1-9; GT2-96; GT6-15
exercise, GT6-17; GT3-25
summary, RM2-71

E

Edge, polygon
color of, GT2-103; GT13-9, 20, 21, 44
common, GT2-105, 106; GT13-11, 13, 19,
58
defining, GT2-102; GT13-8
enhancement, GT13-20, 21, 54
shading and, GT13-20
smoothing. See Antialiasing
soft, GT2-104; GT13-10, 19, 59
solid, GT13-11, 13
surface, GT13-10
toggling, GT13-54
See also Polygon; POLYGON

EDGE_DETECT, F: (intrinsic user function),
TT1-38
summary, RM2-72

Ellipse, TT1-11
See also RATIONAL POLYNOMIAL

Reference Materials

Endpoint, TT4-21
End Saving GSR Data (utility GSR), RM4-145

Enhanced programmable communications inter-
face (EPCI), RM5-13

EQ, F: (intrinsic user function)
summary, RM2-73

EQC, F: (intrinsic user function)
summary, RM2-74

ERASE PATTERN FROM (command)
GSR, RM4-46
summary, RM1-33
syntax, RM1-187

Erase Screen (raster GSR), GT14-11, 12, 19;
TT2-39; RM4-122
program example, GT14-13, 15, 19

ERROR (initial function instance)
summary, RM3-10

Error
converter, TT8-2
See also ASCII-to-GSR converter

detection logic, GT2-95

diskette copying, RM12-6, 8

framing, RMS5-15

formatting, RM14-11

handling, TT3-6, 15, 22

input queue, RM2-5

LEDs and, 1S3-10

message, RM11-1

overrun, RMS5-16

parity, RMS-14

transmission, RMS5-13

See also Crash, system; ERROR; Graphics
support routines, error code; INFORMA-
TION; WARNING

Error code. See Graphics support routines,
error code

Escape character (ESC)
changing, RMS5-17, 21
See also DEPACKET, F:; SITE.DAT
defining, RMS5-18
See also Data packet
parameters, RM10-3, 6
VT52 mode and, RM10-5, 15
See also Escape sequence

Escape mode. See Data packet, escape mode;
Host communication

Index

Escape sequence

ANSI, RM10-6

ANSI-VTS52 mode, RM10-5

break and, IS3-21

See also Key, BREAK

cursor key mode, RM10-6

cursor movement commands, RM10-11, 12

definition of, RM10-3

erase commands, RM10-13

graphic rendition commands, RM10-14

host report commands, RM10-14

indexing commands, RM10-12

keypad, RM10-10

margins commands, RM10-14

modes of operation and, RM10-2

screen display, RM10-8, 11

send-receive mode, RM10-5

VT52 command, RM10-15

See also Control sequence; Host communica-
tion; Terminal emulator

Ethernet interface
data reception and routing with, RM6-2;
RM7-1
GSRs and, TT3-18, 25
GPIO option, IS2-8; RM6-3, 4, 6
SITE.DAT and, TT2-1
physical I/0 and, TT2-21

Explicit naming. See Command; Naming, ex-
plicit

Explicit referencing. See APPLIED TO/THEN;
(Naming of Display Structure Nodes)

Exposure, GT13-50
See also SHADINGENVIRONMENT

EYE BACK (command), GT2-54; GT8-25,
55

exercise, GT8-30

GSR, RM4-47

summary, RM1-34

syntax, GT2-56; GT8-55; RM1-187

Eyepoint

exercise, GT8-30

moving, GT2-56; GT8-25, 28
See also EYE BACK

perspective view and, GT2-56; GT8-19, 21
See also LOOK; Viewing pyramid

transparency and, GT13-42

See also FIELD_OF_VIEW; Line of sight,

at/from points; Viewing angle

RM1I16-17

F

FCNSTRIP, F: (intrinsic user function)
summary, RM2-75

FETCH, F: (intrinsic user function), GT7-34

exercise, GT7-36
summary, RM2-76

F_I1_IBM, F: (intrinsic system function)
summary, RM2-179

input/output, TT5-4
log, TT4-27
network, TT4-26
See also Macro
page, TT4-17;, TTS5-1; TT6-2, 9, 13
parameter, TT4-5
saving, 1S2-12
S-record. See S-record file
text. See Text file
types of, TT8-1
utility commands and, RM12-3
See also CONFIG.DAT; SITE.DAT; Text file;

F_I2_IBM, F: (intrinsic system function) THULE.DAT

summary, RM2-179 FIND_STRING, F: (intrinsic user function),

GT10-15

Field, summary, RM2-77

interlaced display, GT12-2

rate, GT12-4, 11 FINISH CONFIGURATION (command)
See also Video timing format summary, RM1-38

See also Frame; Scan line syntax, RM1-188

FIELD_OF_VIEW (command), GT2-54;
GT8-21, 54; GT13-47
exercise, GT3-2, 15; GT8-23, 24
GSR, RM4-55
summary, RM1-36
syntax, GT2-64; GT8-54; RM1-188

FIX, F: (intrinsic user function)
summary, RM2-78

FKEYS (initial function instance), GT7-6, 24,
37, TT1-40; RM10-6, 18, 21
exercise, GT6-31; GT7-13, 25; GT9-8
summary, RM3-11

Field-of-view angle. See Viewing angle FLABELO (initial function instance)

Field separator character, 183-27; TT2-23; summary, RM3-12

RMS5-17
changing, RMS5-21
See also SITE.DAT
defining, RMS5-18
See also DEPACKET, F:
See also Data, reception and routing; Data
packet, escape mode; Host input data flow

FLABEL1...FLABEL12 (initial function in-
stance)
summary, RM3-14

Flat shading
description of, GT2-112; GT13-7
normals and, GT13-23
rendering node input, GT13-32

File See also Smooth shading; Wash shading
commands for, TT6-8

See also Command file; STRUCTEDIT
converting. See ASCII-to-GSR Converter
copying between host and PS 390, TT2-26
crash dump. See Crash dump file
deleting, RM12-9
downloading, 1S3-28; TT2-26; RMS5-21
editing, TT4-2, 34; TTé6-1

FLOAT, F: (intrinsic user function)
summary, RM2-79

Flowchart. See Display structure

FOLLOW WITH (command), GT5-26
GSR, RM4-52
summary, RM1-39

See also NETEDIT; STRUCTEDIT syntax, RM1-188
extension, GT15-1; TT4-5, 28; TT5-3,
TT6-1, TT8-1 FORGET (Structures) (command), GTS5-5, 26
GSR output to, TT3-19 GSR, RM4-54
init, TT6-7 summary, RM1-41
See also Graphic support routines syntax, RM1-188
RM16-18 Reference Materials

FORGET (Units) (command)
summary, RM1-42
syntax, RM1-188

FORMAT (diagnostic utility command),
RM12-5

FORTRAN
GSR, GT14-13; TT3-1, 33, 48

FOV, F: (intrinsic user function)
summary, RM2-80

Frame

definition of, GT12-2; TT4-17
detail, TT4-17
generating, TT1-44

See also Animation
input/output, TT4-19
level-of-detail and, GT3-23
See also Scan line; Screen

Frame buffer, GT13-39; GT14-1, 10, 16;
TT9-11; RM6-7

Frame buffer and bit-slice processor (FBL/BP).
See Raster backend bitslice processor

Frame buffer and video controller (FBR/VC).
See Raster backend video controller

Frame rate. See Refresh, rate
Framing. See Character string; Error, framing
Framing for viewing. See Viewing area

Frustum

definition of, GT2-54; GT8-19

program example, GT3-16

skewed, GT8-29, 52

See also EYE BACK

viewing angle and, GT8-54

See also Clipping plane; Perspective view;
Viewing pyramid; Viewing area, perspec-
tive

FS. See Field separator

Function
accumulator, GT6-9, 18, 25; GT7-9, 21, 30
See also ACCUMULATE, F:; ADD, F:;

CMUL, F:; DXROTATE, F:;
DYROTATE, F; DZROTATE, F:

activating, AP3-7

categories of, 1S2-24; GT2-93; GT6-11;
RM2-192

commands and, GT6-6; RM1

Index

conjunctive/disjunctive, RM2-3
data driven, GT2-100
data types input to, RM14-2
definition of, 1S2-24; GT2-92; RM2-1;
AP2-35
See also Black box
dormant, GT2-100
See also Token
executing, AP3-6
See also Scheduler
generic, AP3-5, 9
graphics control program and, RM9-1, 2
GSRs and, TT3-3, 13
identifier, RM2-1
input/output. See Input/output
inputs block, AP2-12
instance block, AP2-5
See also Function instance
instancing. See Function instance; Instance
interaction node and, GT6-3
interactive device and, GT6-3
intrinsic. See Intrinsic system function; Intrin-
sic user function
1/0, AP2-6
See also Interactive device
loop, TT1-29
multiplying, GT6-8, 13
See also MUL, F:; MULC, F:
naming of. See Function instance
operation of, GT6-34; AP3-5
outset block, AP2-13
priming, GT2-99; GT6-9, 14, 21
See also Input/Output
procedure, AP3-9; AP5-4
program example, AP5-4
qdata block, AP2-13
representation of, RM2-2
routing, GT7-7, 22; RM7-1; RM14-3
runtime code and, 1S3-7
shared, GT7-9
standard, AP2-5
states, AP3-8; AP5-9
switching, GT7-6, 37; GT11-13; TT1-27
See also CROUTE(n), F:
system, AP2-6
See also Intrinsic system function
triggering, GT2-99; GT6-9
See also Function network; Interactive device;
Intrinsic user function; User-written func-
tion

Function button
communications protocol, RM13A-21
data transmission characteristics, RM13B-18

RM16-19

description of, 182-12; 1S83-12;
RM13A-21; RM13B-16

interaction with, I1S2-12

lights, RM13A-21; RM13B-17

reporting selections, RM13B-18

self-test command and report, RM13B-18

uses of, 1S83-12; GT2-88

See also OFFBUTTONLIGHTS;
ONBUTTONLIGHTS

Function instance
block, AP2-5, 7
See also Named entity
connecting. See CONNECT
creating, GT2-95; TT4-18; AP2-15
data structure, AP2-5, 14
definition of, 1S3-7; GT6-16; RM2-1
disconnecting. See DISCONNECT
inputs. See Input/output
named entity, AP2-5
programming and, GT6-17, 33
suffix assigned, RM9-6
See also Name, suffixing
See also Function; Initial function instance

(Function Instancing) (command), GT2-95;
GTe6-34; RM2-1
GSR, RM4-49
summary, RM1-43
syntax, RM1-188

Function key
as break key, TT2-41
character font and, TT7-2
See also MAKEFONT
codes, RM13A-11; RM13B-12
conditional referencing and, GT2-79;
GT9-8
depth clipping with, GT2-74
description of, 1S3-10
display structure editing and, TT6-2
See also STRUCTEDIT
function network editing and, TT4-12
See also NETEDIT
intensity enabling with, GT2-71
keyboard modes, 1S3-10; RM10-23
labels, I1S3-10; TT2-48; RM13A-15
See also FLABELO; FLABELL...
FLABEL12; Light-emitting diode
numeric key used as, TT1-40
output displays and, TTS5-1
See also NETPROBE
performance verification test, 1S6-5
program example, GT3-7, 9, 14, 19, 23

RM16-20

SETUP mode, 1S3-19

toggle switch, GT2-89; GT6-31

uses of, 1S3-10, 14

user-application program and, RM10-6
values, GT6-5

See also FKEYS

Function network, GT2-92; GTe6-1; GT7-1

accumulator, GT6-19, 24
See also CMUL, F:; MULC,F:
CPK, TT2-53
See also XFORMDATA, F:
creating, GT1-9; GT2-96, 101; GT6-33;
RM2-2
See also CONNECT, NETEDIT
data-driven, GT2-100
See also Interactive device
data structuring commands and, GTS5-1
debugging, TT2-43; TT5-1
See also NETPROBE; NPRT_PRT, F:;
PRINT, F:
definition of, 1S2-23; GT2-100
diagramming, GT2-101; GT6-17, 32;
TT4-2
See also NETEDIT
direction of flow in, GT6-12, 17, 33
editing. See NETEDIT
flexibility of, GT6-30
immediate action commands and, GT5-25
See also CONNECT; DISCONNECT;
SEND; STORE
input to, GT6-3, 33
interactive device and, 1S2-23; GT1-9;
GT2-100; GT6-18, 22, 32
picking, GT2-86; GT11-7, 11
See also PICK; PICKINFO, F:
priming, GT1-10; GT6-17
program example, GT3-3, 24; GT15-5, 16,
31, 37, 51
programming practices, GT6-17, 33
reset, GT7-21, 37
sequencing, TT1-29
See also SYNC, F:
substituting user-written function for, AP5-1
switching, GT11-13
See also SUBC, F:
system, IS3-7; RMS8-1; RM9-1
See also CONFIG.DAT; Host input data
flow
updating with, GT1-8
uses of, GT2-100; GT6-1
variable in, GT7-33, 38
See also CONSTANT, F:; VARIABLE

Reference Materials

Function network debugger. See NETPROBE
Function network editor. See NETEDIT

F_W_IBM, F: (intrinsic system function)
summary, RM2-180

G

GATHER_GENFCN, F: (intrinsic user func-
tion), RM7-3; TT2-33
summary, RM2-82

GATHER_STRING, F: (intrinsic user function),

GT10-13
summary, RM2-83

GE, F: (intrinsic user function)
summary, RM2-84

GEC, F: (intrinsic user function)
summary, RM2-85

General purpose interface option (GPIO)
data routing and, RMS5-29; RM10-29
interfaces, 1S2-8; AP4-2; RM6-3
joint control processor and, 1S2-7
physical I/O commands, AP4-2

Geometry
changing, GT2-12, 25
See also Matrix; Transformation
definition of, GT2-2, 4, 10
See also World coordinate system
topology and, GT2-6, 8, 9, 11, 12
See also Polygon; Vector list
See also Topology

GIVE_UP_CPU (command), TT2-61
GSR, RM4--61

summary, RM1-44

syntax, RM1-188

Gouraud shading. See Smooth shading

Graphics control processor (GCP)
communication with ACP, AP2-16
display structure control, AP2-16
update process and, AP3-2
See also Joint control processor

Graphics control program
data types, AP2-35
description of, RM9-1; AP1-3
loading, 1S3-6

Index

Graphics firmware
backing up, RM12-5
description of, 1S3-6; AP1-2
See also CONFIG.DAT; Runtime code;
SITE.DAT; THULE.DAT
errors, RM11-6; AP9-62
installing, 1S3-2
self-tests, IS3-6
See also Host-resident software; Runtime firm-
ware

Graphics support routines (GSRs)
application, TT3-2, 12; RM4-1, 11
application programs and, TT3-18, 23
ASCII files converted to. See ASCII-to-GSR

Converter
capabilities, 1S3-30
command interpreter and, RMS5-29;
RM14-11
commands and, TT3-3, 12; RM1-197;
RM4-228
See also ASCII-to-GSR Converter
configuring, TT6-7
data packet and, TT2-25; RMS5-16
data path taken by, RM14-6
data structuring commands and, GT5-2
data types and, TT3-2, 10, 20
description of, GTS5-2, 28; I1S2-15, 18;
1S3-30; TT3-1
display structure and, TT3-3, 5, 12, 15
error codes, RM4-2
See also Host communication
error handling, I1S3-31; TT3-6, 15, 22
file, generating, TT4-3, 28
FORTRAN, VAX and IBM, GT14-13;
TT3-1, 33, 48; RM4-1
functions and, TT3-3, 13
host communications and, 1S3-25; RMS-16,
22
IBM communications and, RMS5-22
instancing and, TT3-5, 15
interface (VAX/UNIX), TT2-25; TT3-18;
TT6-7
See also STRUCTEDIT
internals, RM14-1
label blocks and, TT3-5, 14
library, TT3-18
lint library, TT3-18
object code, TT3-17
Pascal, VAX and IBM, GT14-15; TT3-10,
61, 75; RM4-1
program example, GT14-13; GT15-42;
TT3-33, 48, 61, 75
raster, GT14-1, 12
routing, RM7-3

RM16-21

routing bytes sent by, TT2-23 saving, TT1-47

S-record file transfer, AP5-20 steps in, GT13-6

SITE.DAT and, TT2-5 See also Backface, removal; SOLID_REN-
see also SITE.DAT DERING:; Static viewport; SUR-

transformation matrices and, TT3-23 FACE_RENDERING

types of, RM4-1
UNIX/C, TT3-17; RM4-1
uses of, TT3-1

Hierarchical structure. See Display structure;
Data structure; Hierarchy

utility, RM4-1, 8; TT3-2, 12 Hierarchical tree. See Display structure

variables, multiple, and, TT3-5, 15 Hierarchy

vector list and, TT3-5, 14 definition of, GT2-34

writing, RM14-1 designing, GT4-3, 47

See also Cross-compatibility software; Host display structure and, 1S2-18; GT2-34;
communications GT4-3

See also Grouping; Node
interaction points in, GT4-8, 30
movement and, GT4-6
program example, GT4-30
PS 390 feature, 1S2-1
sphere of influence in, GT2-41
See also Instance node
See also Data structure; Display structure

Grouping
BEGIN_STRUCTURE...END_STRUCTURE
and, GT5-4, 10
display structure and, GT4-52
hierarchy and, GT4-4
names, GT4-5, 31
object created by, GT2-30
See also Compound object; Named entity

primitives and transformations, GT2-26, 30, Highlight. See Specular highlight
31, 39 . .
See also INSTANCE; Instance node Hither plane. See Clipping plane
HOLDMESSAGE, F: (intrinsic user function),

GT, F: (intrinsic user function) RM7-4

summary, RM2-86 summary, RM2-88
GTC, F: (intrinsic user function) Holes in object, creating, GT13-14, 18

summary, RM2-87 See also Polygon, contours, inner and outer

Horizontal frequency, GT12-4, 11
See also Video timing format

H

Hardcopy. See Plotter; WRITEBACK

Host application program. See Application pro-
gram

Host communication, IS3-25

Hash table, AP2—1, 36 characteristics, RMS5-6
See also Alpha block data and, TT2-23; RM5-17, 22
See also Data packet, Host input data flow
Header line. See User-written function, header destinations, RM5-23; RM14-5
line See also Command interpreter; Data, recep-
tion and routing; Function, routing; Ter-
HELP (diagnostic utility command), RM12-2, 4 minal emulator
dynamic, AP4-1
Hex. See Data packet See also USERUPD, F:
) . GSRs and, 1S3-25; TT3-1, 18
Hidden-line removal high speed, TT1-49
approximation of, GT2-108; GT13-3 IBM, RMS5-22
See also Backface, removal interface, 1S2-13; RMS5-1, 22; RM6-1
description of, GT2-111; GT13-6 See also Asynchronous serial line; Ethernet
rate of, GT13-6 interface; IBM interface; Interface; Paral-
rendering node input, GT13-32 lel interface

RM16-22 Reference Materials

lines, IS2-13
methods of, RMS5-16
pixel information, GT14-2, 12, 18
port values for, RM5-7, 8, 11
See also SHOW INTERFACE
raster system and, GT14-1
SITE.DAT and, TT2-1
standard, 1S3-25
tests, I1S2-14
See also Performance verification test; Host
resident software
transmission errors in, RMS5-13
transmission protocol for, RMS5-12
user-generated routines, GT14-16, 19
See also CIROUTE(n), F:; Data transmission;
DEPACKET, F; Graphics support rou-
tines; Host input data flow; Host resident
software; Interface; Physical I/O; Runtime
environment

Host computer
binary encoding for, RM14-1, 60
commands saved on, GT5-27
data processor use, 1S3-27
data structuring commands created on,
GT5-2
dynamic direction, AP4-1
See also Physical 1/0; USERUPD, F:
generated images, displaying, GT13-39;
GT14-1, 2
See also Run-length encoding
GSRs and, GT5-28
file storage on, 1S2-12
independence. See Distributed graphics
initial function instance and, GT2-95
interactive devices and, GT2-89
See also Interactive device; Joint control
processor
PS 390 interface. See Interface
raster system and, GT14-1
storage device use, 1S3-26
transformed data and, TT9-1
See also Application program; Text file

Host input data flow, RMS5-27; RM7-1
function network diagrams, RMS8-1
See also CIROUTE(n), F:; Host communica-
tion; Function network, system

HOST_MESSAGE (initial function instance),
GT7-36; TT1-49; TT2-44; TT3-25;
TT9-5, 31; RM7-2

summary, RM3-16

Index

HOST_MESSAGEB (initial function instance),
RM7-2, 4
summary, RM3-16

HOSTOUT (initial function instance), GT7-35;
TT1-49
exercise, GT7-36
summary, RM3-18

HOST_POLY, F: (intrinsic user function),
RM7-4

Host-resident software, 1S2-14
See also Graphics support routines;

Hue

color, GT13-40

definition of, GT2-68; GT8-50

input to attribute node, TT2-51
See also ATTRIBUTE

specifying, GT8-51, 56; GT13-41
See also SET COLOR

values, GT13-41

See also Color

IBM computer. See Host communications;
IBM; Host computer; IBM interface; Key-
board, modes of operation; Terminal emula-
tor, IBM

IBMDISP, F: (intrinsic system function),
RM10-29
summary, RM2-181

IBM interface
3278, 1S2-6, 9; 1S3-22; RM6-2
5080, 1S2-8; IS3-24; RM6-2
data flow and, RM7-1
host communications and, RMS5-22
pool size, RMS5-30

See also SETUPIBM, F:

SITE.DAT and, TT2-1
system function network for, RMS§8-1

IBM_KEYBOARD, F: (intrinsic system func-
tion), RM6-6; RM10-27
summary, RM2-182

Identifier. See Command, data format; Pick
identifier; Position (P) and line (L) identifi-
ers

Identity matrix. See Current transformation ma-
trix; Matrix, identity

RM16-23

IF CONDITIONAL_BIT (command), GT2-78;
AP4-6
exercise, GT9-7
GSR, RM4-62
summary, RM1-45
syntax, GT9-4, 18; RM1-188

IF LEVEL_OF_DETAIL (command), GT2-80;
GT9-11; AP4-6

exercise, GT3-22

GSR, RM4-64

summary, RM1-47

syntax, GT9-10, 18; RM1-188

IF node. See SET/IF node

IF PHASE (command), GT2-82
exercise, GT9-16

GSR, RM4-66

summary, RM1-49

syntax, GT9-15, 20; RM1-188

IF-THEN-ELSE, TT1-31
See also Boolean value

Ilumination. See Diffuse reflection; Light
source; Specular highlight

ILLUMINATION (command), GT13-44
GSR, RM4-68

summary, RM1-50

syntax, GT13-45, 62; RM1-189

Ilumination node
display structure and, GT13-46
inputs to, GT13-48
light specification by, GT13-44
program example, GT13-47
See also Light source

Image. See Display structure; Model; Object;
Rendering; Screen

Image buffer. See Frame buffer

Immediate action command. See Command,
immediate action

INCLUDE (command), GT2-91; GT5-27
exercise, GT3-10
GSR, RM4-70
summary, RM1-52
syntax, RM1-189

INCREMENT LEVEL_OF_DETAIL (com-
mand)
GSR, RM4-75

RM16-24

summary, RM1-53
syntax, RM1-189

Indicator character, RM10-28
See also SETUP facility

INFORMATION (initial function instance)
summary, RM3-19

Informational message. See Message, informa-
tional

Init file. See File, init

Initial data structure
codes for, RM9-3
description of, RM9-2
summary, RM3-1
See also CONFIG.DAT; Terminal emulator

Initial function instance

categories of, RM3-58

definition of, GT2-95; RM3-1

interactive device and, GT6-34

names, GT2-95; RM3-1; RM9-6

network example, GT2-97

summary, RM3-1

See also Function; Function instance; Intrinsic
system function

Initial function network. See Function network,
system

INITIALIZE (command), GT1-9; GT5-26;
GT8-41; GT13-25; TT1-3, 5; TT2-48;
AP5-22

exercise, GT3-30
GSR, RM4-71
summary, RM1-54
syntax, RM1-189

Inking, TT1-14, 38
Inner contour. See Polygon, contour

Input/output

active queue, GT2-99; GT6-13, 34;
RM2-4

block, AP2-12

buffering, RMS5-9, 12

conjunctive/disjunctive, RM2-3

connecting, GT2-97, 101; GT6-12, 17

constant queue, GT2-99; GT6-13, 34;
GT7-33; RM2-2, 4

consumed, GT6-13, 34

data compatible with, GT2-36; GT6-3

See also Data type; Node

description of, GT2-93

Reference Materials

frame, TT4-18
function instance and, GT2-99; AP3-6
multiple sources/destinations, GT6-12
output list, TT5-1
See also NETPROBE
sources of, GT6-6, 33
See also Function network; Interactive de-
vice
values, GT6-6, 13, 34
See also Node, input to; SEND; SETUP
CNESS; STORE; User-written function,
input/output

Input device. See Interactive device

INPUTS_CHOOSE((n), F: (intrinsic user func-
tion), GT7-24, 37
exercise, GT7-25
summary, RM2-90

Installation instructions, I1S2-14; IS5-1

Instance, GT1-5; GT2-95
GSRs and, TT3-5, 15
See also Compound object; Function instance;
Grouping; Initial function instance

Instance node
BEGIN_STRUCTURE...END_STRUCTURE
and, GT5-13, 30
bit settings and, GT9-3
See also SET CONDITIONAL_BIT
creating, GT2-36
See also INSTANCE
definition of, GT2-39; GT4-14, 52;
AP2-26
display processor and, GT5-14
display structure representation, GT2-36;
GT4-14
format of, AP2-26
function, GT4-48
See also State of the machine
grouping with, GT2-39; GT4-31
See also Compound object
modeling and, GT4-2
pointer, GT2-36; GT4-48, 52
sphere of influence and, GT2-41
See also Hierarchy
uses of, GT4-52
See also Compound object; Display structure;
Grouping; Node

INSTANCE OF (command), GT1-5; GT2-30,

36; TT8-3
GSR, RM4-76

Index

summary, RM1-56
syntax, RM1-189

Instruction. See Command

Integer

data format, RM14-8
function keys and, GT6-5
input, GT2-37; GT6-27

Intensity

attribute, GT2-71; GT8-48; TT2-51

color, GT13-40; GT14-3

depth clipping and, GT8-17

depth cueing and, GT2-58, 71; GT8-16, 50

dynamic viewport and, GT2-58, 71;
GT8-35, 47, 48, 52

See also LOAD VIEWPORT; VIEWPORT

exposure and, GT13-50

interaction and, GT2-71; GT8-49; TT2-46

node, GT2-71

program example, GT3-13, 21; TT2-47

setting, GT8-47, 48; TT2-46

values for, GT13-41

See also Color; Depth cueing; SET INTEN-
SITY

Interaction, GT2-88

definition of, 1S82-23
designing for, GT2-32, 90; GT4-4, 25
function networks and, GT6
multiple, GT7-1, 2
See also Dial, control; Function key
modeling step, GT4-9
See also Display structure
PS 390 and, GT2-88
See also Interactive device

Interaction node

definition of, 1S2-23; GT2-38, 88
dials and, GT6-5
See also Dial, control; DIALS
display structure representation, GT2-36;
GT4-13
explicit naming of, GTS-11
See also BEGIN_STRUC-
TURE...END_STRUCTURE
function networks and, GT2-88, 93, 96;
GT6-2, 5
initial value, GT4-32
interactive devices and, GT2-101; GT6-5
operation node as, GT2-36, 38; GT4-13,
52
program example, GT3-24
updating, GT2-88; GT6-33
uses of, GT4-52
See also Node; Operation node

RM16-25

Interactive device, 1S2-10

complex model and, GT2-32, 34; GT6-2
connecting, GT1-8; GT2-97; GT4-49
See also CONNECT

data transmission rates, RM13A-3;
RM13B-3

description of, 182-10, 23; 1S83-9; GT2-88;
GT6-5; RM13A-1; RM13B-1

display structure connection, GT2-38

function networks and, 1S2-23; GT2-92,
100; GTé6-6

host computer and, GT2-89

initial function instances and, GT2-95

local manipulation with, 1S2-2

microprocessor in, GT2-89

multiple interactions and, GT7-2

output, GT6-5, 33

picking with, GT2-84

polling, GT2-100

program example, GT3-1, 4, 8

programming, GT2-90, 92, 100; GT6-3,
18, 22, 27, 32

PS 300 style, RM13A-1

PS 390 style, RM13B-1

styles, 1S3-9

updating with, GT1-8; GT2-43, 90; GT6-3

See also Buttons, function; Dial, control;
Function key; Key; Keyboard; Tablet,
data

Interactive mode. See Local mode

Interface, 1S2-13; RMS-1; RM6-1

asynchronous. See Asynchronous serial line

changing values, RMS5-11

See also SETUP INTERFACE; SITE.DAT

configuration files, RM6-4

description of, RMS5-1

GSRs and, TT3-18

multiple GPIO, RM6-3

runtime and, TT2-23

synchronous, RMS5-2

toggling, IS2-13; RMé6-3

See also Asynchronous serial line; Data trans-
mission; General purpose interface option;
Ethernet interface; Host communication;
IBM interface; Parallel interface

Intrinsic system function, RM2-1

data flow and, RMS5-16; RM7-1, 3;
RMS8-1

host communication and, IS3-25

name suffixing and, RM9-6

See also Configure mode

routing, RM14-3

summary, RM2-178

See also Function; Function network, system;
Host input data flow; Initial function in-
stance

Intrinsic user function, GT2-95; RM2-1

data flow and, RM7-1, 3; RMS8-1

routing, RM14-3

summary, RM2-7

See also Function; Function instance; Func-
tion network

J

Joint control processor (JCP)

card, IS2-6; API1-1,

control dials and, RM13B-15

data received by, RM14-1

description of, 1S2-6; AP1-1

function networks and, GT2-100

interactive devices and, GT2-89, 100
memory contents, AP1-1; 1S2-6; RMI12-8
rendering and, GT13-29

See also Graphics control processor

K

K2ANSI, F: (intrinsic system function),
RM6-6; RM10-6, 9, 10, 17, 21
summary, RM2-184

KB mode. See Local mode

Key

alphabetic, 1S3-14; RM13A-6; RM13B-7

ALT, GT1-2

BREAK, 1S3-18, 20; TT2-41; RM10-25;
AP7-7

CAPS LOCK, RMI13A-6

categories of, RM13A-5; RM13B-5

CLEAR/HOME, 1S3-16; RM10-18

CONTROL (CTRL), GT1-1; RM10-17, 22;
RM12-2; RM13A-5; RM13B-6

cursor, RM10-5, 6, 11, 21

device control, IS3-14; RM13A-13;
RM13B-14

Interlaced/noninterlaced. See Screen, inter-
laced/noninterlaced; Video timing format.

INTFCFG.DAT (file), IS3-6; RM6-4

RM16-26 Reference Materials

ENTER, GT1-2

function. See Function key

GRAPH, IS3-16; GT1-4, 5; RM10-8, 21,
26

keyboard function control, IS3-14; IS6-5,
13; RM13A-5; RM13B-6

LINE/LOCAL, GT1-1; RM10-21

LOCAL, GT1-2

LOCK, RM13B-6

numeric/application mode. See Keypad, nu-
meric

numeric as function key, TT1-40

See also Function key

REPEAT, RM13A-6 .

RETURN, GT1-1, 2; RM12-6

SETUP, I1S3-18; RM10-17, 22, 24

See also SETUP facility

SHIFT, RM13A-5; RM13B-6

special character, 1S3-14; RM13A-8§;
RM13B-10

standard numeric, IS3-14; RM13A-8;
RM13B-9

TERM, 1S3-16; GT1-4; RM10-8, 22, 26

terminal function, 1S3-14; RM13A-10;
RM13B-11

See also Function key; SPECKEYS

Keyboard
description of, 1S2-11; IS3-13; RM13A-4;
RM13B-3
display modes, RM13A-14
See also Light-emitting diode
interface, RM13A-4; RM13B-5
modes of operation, 1S3-14, 16, 22, 24,
GT3-30; RM10-21, 27
See also Command mode; Local mode; Ter-
minal emulator mode
operation, RM13B-5
physical configuration, RM13A-4
private ANSI commands, RM10-6
user-application control, RM10-6

KEYBOARD (initial function instance),
RM10-17, 21
summary, RM3-20

Keyboard manager, RM10-17, 27
See also K2ANSI, F:

Keypad, numeric, 1S3-14
modes of operation, RM10-9, 10, 21
See also Escape sequence
numeric/application mode, RM13A-12;
RM13B-13

Index

SETUP facility and, IS3-20
user-application program and, RM10-6

Keypad application mode (DECKPAM),
RM10-2, 9, 10

Keypad numeric mode (DECKPNM), IS3-20,
RM10-3, 9, 10

Kill buffer, TT6-14
See also UPDATE_KILLER

L

Label, GT10-1
block, GT10-5
See also LABEL
copying, GT10-16
See also COPY
definition of, GT10-1, 5
GSRs and, TT3-5, 14
function network diagram, TT4-22
node, GT10-5, 16, 18, 26
See also Character string; LABEL, F:;
LABELS; LBL_EXTRACT, F:; SEND;
SEND number*mode; SEND VL

LABEL, F: (intrinsic user function), GT10-14
summary, RM2-91

LABELS (command), GT4-49;
GT10-5, 18, 23

exercise, GT10-19

GSR, TT3-5, 14; RM4-77
summary, RM1-57

syntax, GT10-5, 24; RM1-189

GT5-5;

Laser disk, TT1-44
See also Rendering

LBL_EXTRACT, F: (intrinsic user function),
GT10-15
summary, RM2-92

LE, F: (intrinsic user function)
summary, RM2-93

Least significant bit (LSB), RM14-1, 60

LEC, F: (intrinsic user function)
summary, RM2-94

LEDs. See Light-emitting diode

Left-hand rule, GT2-14
See also Coordinate system, world; Rotation

RM16-27

LENGTH_STRING, F: (intrinsic user function),

GT10-15
summary, RM2-95

Level-of-detail
attribute, GT2-78
default, GT9-11, 18
definition of, GT2-80
dial and, GT2-82
order, GT9-10, 18
program example, GT3-2, 22
relationships list, GT2-81; GT9-10, 18
See also IF LEVEL_OF_DETAIL
state of machine and, GT4-48
uses of, GT9-1, 9, 17
See also Animation
See also Conditional Referencing; DECRE-
MENT LEVEL_OF_DETAIL; IF
LEVEL_OF_DETAIL; INCREMENT
LEVEL_OF_DETAIL; SET
LEVEL_OF_DETAIL

Light-emitting diode (LED)
confidence tests and, IS3-2
control dial, GT7-1, 23; RM13A-20
description of, IS3-10
error messages and, 1S3-10, 13
keyboard, 1S3-13; RM13A-4, 14
label mode, RM13A-15, 20
line mode, RM13A-14
optical mouse, RM13B-21

Light source

color of, GT13-45

direction of, GT13-45

program example, GT15-47

specifying, GT13-44, 62; TT2-49

See also Ambient light; ILLUMINATION;
Illumination node; SHADINGENVIRON-
MENT

LIMIT, F: (intrinsic user function), GT7-30,
38
exercise, GT7-32
summary, RM2-96

Line
angled, in raster system, GT12-2
attributes, TT2-50
crispness, TT2-46
See also Intensity
pattern, GT4-49; TT2-35
See also Vector list; WITH PATTERN
rendering, TT2-52

RM16-28

segment, TT1-16
See also Data tablet, rubber banding with
specifying, GT2-6
texture, TT2-35
See also SET LINE TEXTURE
See also Aliasing; Antialiasing; Scan line

LINEEDITOR, F: (intrinsic user function),
GT10-14
summary, RM2-98

Line filter, GT12-2, 8
See also Aliasing; Antialiasing; Scan line

Line generation. See Display processing

Line (L) identifier. See Position (P) and line
(L) identifiers

Line of sight
at/from points, GT2-48, 62; GT8-3, 6, 22
See also Coordinate system, world
changing, GT2-61
default, GT8-2, 4, 52
definition of, GT2-45, 66; GT8-1, 3
field of view and, GT8-23
interactive node and, GT8-4
matrix operation, GT2-66; GT8-3, 9
moving, GT8-13, 25
See also EYE BACK; Viewing area
orthographic viewing area and, GT8-9, 13
perspective viewing area and, GT2-54;
GT8-22, 25
specifying, GT2-46; GT8-3, 30, 52
See also LOOK
up direction, GT2-48; GT8-6

Lint library. See Graphics support routines, lint
library

LISP. See STRUCTEDIT

LIST, F: (intrinsic user function), TT2-44;
TT9-4, 31
summary, RM2-101

Load Pixel Data (raster GSR), TT2-39;
GT14-11, 12, 18; RM4-126
program example, GT14-13, 15, 19

Load Saved GSR Data (utility GSR), RM4-82

LOAD VIEWPORT (command), GT2-58, 71;
GT8-34, 41, 55
exercise, GT8-37, 38
summary, RM1-59
syntax, GT8-56; RM1-189

Local (key). See Key, LOCAL

Reference Materials

Local data flow. See Host communication; Host
input data flow; Interface; Routing byte

Local memory. See Joint control processor,
memory

Local mode
booting in, RM10-21, 25
cursor keys in, RM10-23
DEC VT100, 1S3-17
description of, IS3-15
displaying and, RM10-29
function keys in, IS3-10; RM10-23
IBM 3278, I[S3-23; RM10-27
IBM 5080, 1S3-25
keyboard manager and, RM10-26, 27
keypad in, RM10-21, 23
key sequence for, 1S3-15, 23; GT3-30
See also Keyboard, modes of operation

LOOK (command), GT2-46, 54, 61; GT8-3,
6, 52
exercise, GT3-1, 16, 17; GT8-23, 30
GSR, RM4-83
summary, RM1-61
syntax, GT2-48; GT8-53; RM1-189

LOOKAT, F: (intrinsic user function), GT8-4
summary, RM2-102

LOOKFROM, F: (intrinsic user function),
GT8-4
summary, RM2-103
Lookup table. See Color lookup table

LT, F: (intrinsic user function)
summary, RM2-104

LTC, F: (intrinsic user function)
summary, RM2-105

M

Macro, TT4-2, 15, 26, 30
Magtape. See Host-resident software
Maintenance and services, 1S4-1

MAKEFONT (Character font editor), TT7-1
uses of, GT2-75; GT10-23

MAKEPACKET, F: (intrinsic user function)
summary, RM2-106

Index

Mapping. See Viewing area; Viewport

Mass memory
backing up with, RM12-6
BEGIN_STRUCTURE...END_STRUCTURE
and, GT5-10
card, 1S2-9; RM6-6
clearing, GTS5-26
See also INITIALIZE
data structure address, GTS5-4; AP2-1
data structuring commands and, GTS-1, 4
description of, AP1-1
joint control processor and, IS2-6, 9
loading user-written function into, AP7-2
See also SITE.DAT
location in, GTS5-4, AP2-1
See also Alpha block; Naming
rendering requirements, GT2-106;
GT13-24, 60
See also Working storage
structures, AP2-1
See also Data structure; Named entity
warning message, [S3-13

Master function. See Function, intrinsic

Matrix
2x2, GT2-22; GT3-10; GT10-1, 6, 8, 10
See also Character string; Rotation
3x3, GT2-22, 38; GT6-3; GT10-1, 10;
TT1-42
See also Rotation; Scaling
4x3, GT2-22, 49; GT3-19; GT8-3, 9
See also Viewing operations
4x4, GT2-22; GT8-9, 18, 21, 33;
GT13-29, 47
See also Viewing operations
accumulated, GT6-8
algebra, 1S2-1; GT2-12, 22
See also Geometry
characters and, GT10-1
concatenation, IS2-20; GT2-23; GT10-7
current transformation (CTM), GT2-23, 25;
GT4-48
GSRs and, TT3-23
identity, GT2-23; GT6-10, 21
limiting function and, GT7-32
multiplication, GT2-24; GT6-9
non-commutativity of, GT2-23; GT4-16
orthogonal, TT1-43
transformation, 1S2-20; GT2-12, 22;
TT3-23; TT9-1
See also Rotation; Scaling; Transformed
data; Translation
transpose, TT1-43
See also Transformation

RM16-29

MATRIX?2, F: (intrinsic user function),
GT10-6, 15
summary, RM2-107

MATRIX_2x2 (command)
GSR, RM4-85
summary, RM1-64
syntax, RM1-189

MATRIX3, F: (intrinsic user function),
TT1-42
summary, RM2-108

MATRIX_3x3 (command), GT15-28, 31
GSR, RM4-86
summary, RM1-66
syntax, RM1-190

MATRIX4, F: (intrinsic user function)
summary, RM?2-109

MATRIX_4x3 (command), GT8-9
GSR, RM4-87
summary, RM1-68
syntax, RM1-190

MATRIX_4x4 (command), GT8-18, 33;
TT9-1
GSR, RM4-89
summary, RM1-70
syntax, RM1-190

MCAT_STRING(n), F: (intrinsic user function)
summary, RM2-110

Mechanical arm, GT2-32, 69; GT4-6, 16

Memory
as objects, 1S2-1, 15
See also Data structure; Display structure;
Mass memory; OPTIMIZE MEMORY;
RAWBLOCK

MEMORY (diagnostic utility command),
RM12-6

MEMORY_ALERT (initial function instance)
summary, RM3-21

MEMORY_MONITOR (initial function instance)
summary, RM3-23

Menu

boundaries, TT1-25
fill-in-the-blank, TT6-5
MAKEFONT, TT7-2

RM16-30

NETEDIT, TT4-8

selecting, GT6-5; GT11-1; TT1-25
See also Data tablet; Picking

STRUCTEDIT, TT6-3

See also File

Message. See Error message; Token

MESSAGE_DISPLAY (initial function instance),
TT2-45
summary, RM3-25

Microcode, 1S3-6
See also Display processor; Graphics firmware

Microprocessor, 68000, IS2-6

MINMAX (n), F: (intrinsic user function)
summary, RM2-111

Miscellaneous function, 1S2-25; GT2-94;
GT6-12

MOD, F: (intrinsic user function)
summary, RM2-112

MODC, F: (intrinsic user function), TT1-23
summary, RM2-113

Model
centering, GT4-13, 27
See also Origin; Coordinate system
complex, GT2-32, 43; GT4-27
conceptual, GT4-1
data base for, GT2-4
designing, GT2-32; GT4-1, 27
detail in, GT4-9
display structure and, GT2-34; GT4-2
hierarchy and, GT2-34; GT4-3; 1S2-1
See also Hierarchy
limiting motion of. See Movement
parts of, GT4-3, 47, GT9-1
See also Conditional referencing; Primitive,
graphic
See also Compound object; Display structure;
Object

Modeling, GT4-1
commands, 1S2-17
steps, GT4-9
types of, GT4-9

Modeling node, GT2-38, 88; GT4-52
display structure representation, GT2-36;
GT4-13

Reference Materials

Modeling transformation, GT2-67
complex model and, GT2-32; GT4-2
description of, GT2-13

See also Rotation; Scaling; Translation
mirrored, GT13-56
uses of, GT4-13, 52

See also MATRIX_3X3; MATRIX_4X3; MA-

TRIX_4X4; ROTATE; SCALE; TRANS-
LATE

Mode of operation. See Command mode; In-
teractive mode; Keyboard, modes of opera-
tion; Terminal emulator mode

MODIFY (Diagnostic utility command),
TT2-29

Molecule, GT9-6
Most significant bit (MSB), RM14-1, 60
Mouse. See Optical mouse

MOUSEIN (initial function instance), IS3-12
summary, RM?3-26

Move. See Translate

Movement
dependent and independent, GT2-34;
GT4-6
See also Grouping
designing for, GT4-3, 10, 27
limiting, GT7-1, 29, 31, 38

Movie camera
blinking and, GT9-16

MPS character generator program. See
MAKEFONT

MUL, F: (intrinsic user function), GT6-13
summary, RM2-114

MULC, F: (intrinsic user function), GT6-18;
GT7-9
exercise, GT7-15
summary, RM2-115

Multiplexing/demultiplexing, TT1-27;
RM13A-3; RM14-5
See also Input/output, multiple sources/desti-
nations

Mux box. See Peripheral multiplexer

Mux byte. See Routing byte

Index

MUX, F: (intrinsic user function)
summary, RM2-116

N

Named entity
address, AP2-1; AP3-3
See also Mass memory
creating, AP3-1
definition of, RM9-2; AP2-1, 5
instance node, GT2-39
objects as, 1S2-16
physical I/0 and, TT1-49
types of, AP2-1, 5
See also Character Font; Display Structure;
Function instance
See also Alpha block; Control block; Data
structure

Naming
BEGIN_STRUCTURE... END_STRUCTURE
and, GT5-10, 30
commands, GTS5-1, 4, 29
convention, 1S2-15; GT5-4, 29
data structure address, GT5-1, 4
See also Mass memory
explicit, GT5-4, 8, 19, 29; GT15-1
indirect, GT5-16
prefixing, TT8-3
See also ASCII-to-GSR Converter
suffixing, TT2-7; RM9-6
See also Command Interpreter; Configure
mode
See also Command; Instance; Node, naming;
PREFIX WITH

(Naming of Display Structure Nodes) (com-
mand), GT5-5
exercise, GTS5-7
summary, RM1-72
syntax, RM1-190

NE, F: (intrinsic user function)
summary, RM2-117

NEC, F: (intrinsic user function)
summary, RM2-118

Nesting, GT5-17, 30
See also COMMAND STATUS

NETBUILD.COM (command file), TT4-13,
32; TTS5-7

NETEDIT (Function network editor),
GT2-101; TT4-1, 32

RM16-31

NETPROBE (Function network debugger),
GT2-101; TTS-1

NETUSER.COM (command file), TT4-3, 32;
TTS-1,7,10; TT7-1

Network. See Function network
NEUTIL (library), TT5-11

NIL (command), GT5-5
GSR, RM4-93
summary, RM1-73
syntax, RM1-190

Node
commands for, GT2-36; GTS5-4, 10, 26
conditional referencing, GT9-17
definition of, GT2-36
direct host modification, AP4-2, 3
See also Physical 1/O
editing, TT6-7
See also STRUCTEDIT
grouping, GT4-31; GTS-10, 13, 30
See also BEGIN_STRUCTURE...

END_STRUCTURE; Grouping; Instance

\ node
inputs to, GT2-36, 91
inserting, TT6~-11
naming, GT5-2, 4, 10, 13, 16; AP2-36
See also Hash table
pointers, GT4-48; GTS5-15
programming path to, GT2-92
See also Function; Function network
shared, GT4-31
terminal. See Data node
types of, 1S2-19; GT2-36; GT4-48

See also Data node; Instance node; Opera-

tion node
updating, GT2-36, 91
See also Attribute node; Command; Display
structure; FOLLOW WITH; Modeling
node; SET/IF node; Interactive node

Non-commutativity. See Matrix, non-
commutativity of

Non-matrix. See Matrix

NOP, F: (intrinsic user function), TT1-17
summary, RM2-119

RM16-32

Normal
inverting, GT13-55
See also SHADINGENVIRONMENT
specifying, GT2-104; GT13-9, 22, 59
See also Polygon; POLYGON; Smooth
Shading

NOT, F: (intrinsic user function)
summary, RM2-120

NPRT_PRT, F: (intrinsic user function),
TT2-43
summary, RM2-121

NTSC Encoder, GT12-3

o)

Oblique view. See Eyepoint

Object
definition of, 1S2-16; GT2-1
See also Compound object; Display structure;
Model; Primitive, graphical

Object Space. See Rotation, object-space

Object transformation function, I1S2-25;
GT2-94; GTe6-12

OFFBUTTONLIGHTS (initial function instance)
summary, RM3-29

ONBUTTONLIGHTS (initial function instance)
summary, RM3-30

Opacity. See ATTRIBUTE; Transparency
Operating utilities (DEC), 1S3-28

Operation node
contents of, GT2-36, 91
definition of, GT2-37; GT4-13, 51;
AP2-29
See also Display processor; Transformation
display structure representation, GT2-36;
GT4-13
format of, AP2-29; AP9-44
function, GT4-48
See also Character font; Level-of-detail;
Picking
inputs to, GT2-37
interaction and. See Interaction node; Inter-
active device
modeling and, GT4-2
pointer, GT4-48, 51

Reference Materials

text/character transformation, GT10-1
types of, GT2-88; GT4-13, 51; AP9-45
See also Attribute node; Interaction node;
Modeling node; Rendering operation
node; SET/IF node; Viewing operation
node
updating, GT2-36, 91, 101
uses of, GT4-13, 51
See also Display structure; FOLLOW WITH;
IF node; Matrix, multiplication; Node;
Transformation

Optical mouse, IS2-12
communications protocol, RM13A-25;
RM13B-21
description of, IS3-12; RM13A-25;
RM13B-21

Optimization mode. See OPTIMIZE STRUC-
TURE;...END OPTIMIZE;

OPTIMIZE MEMORY (command)
summary, RM1-74
syntax, RM1-190

OPTIMIZE STRUCTURE;...END OPTIMIZE;
(command), GT5-26; TT6-10
GSR, RM4-44, 94
summary, RM1-75
syntax, RM1-190

OR, F: (intrinsic user function)
summary, RM2-122

ORC, F: (intrinsic user function)
summary, RM2-123

Origin

advantages of using, GT4-12, 28

character string and, GT10-2, 4

definition of, GT1-3; GT2-2, 4
See also Axis

line of sight and, GT2-48, 61, 66; GT8-4
See also LOOK

rotation and, GT2-14

See also World coordinate system

Orthographic view, GT2-50, 57; GT8-1, 9, 52

program example, GT3-12
See also LOOK; Viewing area, orthographic;
WINDOW
Outer contour. See Polygon, contour

Output. See Input/Output

Index

Overlay, GT13-52
See also Level-of-detail

P

Packet. See Data packet

PACKET, F: (intrinsic user function)
summary, RM2-124

Page. See File
Panning, TT4-49

Parallel interface, RM5-1; RM7-1
description of, 1S2-9; RM6-1; AP4-2
GSRs and, TT3-18
high speed communication with, TT1-49
memory allocation for, AP3-4
physical I/0 and, TT2-21
system function network for, RM8-1
See also Interface; Physical 1/0; RAWBLOCK

Parallel projection. See Orthographic view;
Viewing area

Parity, RMS5-6
errors, RMS5-14
See also SETUP Interface

Parser, 1S3-25, 27, RM7-3

PARTS, F: (intrinsic user function)
summary, RM2-126

Pascal
character font definitions, AP2-35
control block definitions, AP2-18, 21
debugger in, TT5-11
function definitions, AP2-9, 12, 14
function instances and, AP2-7; AP3-9
GSRs, GT14-15; TT3-10, 61, 75
node definitions, AP2-28, 31
register usage, AP9-37
standard and PS 390, AP2-7
user-written function and, GT2-95; AP5-3,

12

PASSTHRU(n), F: (intrinsic user function)
summary, RM2-127

Password. See SETUP PASSWORD

RM16-33

PATTERN (command), TT2-36
GSR, RM4-30
summary, RM1-77
syntax, RM1-190

PATTERN WITH (command), TT2-36
GSR, RM4-95
summary, RM1-78
syntax, RM1-191

Performance verification test (PVT), 1S2-14;
1S6-1

Peripheral. See Interactive device

Peripheral multiplexer, IS2-10
connections, 1S3-2; RM13A-2; RM13B-2
data framing and transmission rates,
RM13A-3; RM13B-3
description of, RM13A-2; RM13B-1
functional characteristics, RM13A-3;
RM13B-2

Perspective view
character string and, GT10-12
See also SET CHARACTERS
creating, IS2-21; GT2-54, 62; GT8-19,
25, 52
See also EYE BACK; FIELD_OF_VIEW
definition of, 1S2-2; GT2-44, 53; GT8-19
program example, GT3-15
See also FOV, F:; LOOK; Viewing area, per-
spective

Phase, on/off, GT2-82; GT9-14, 16, 19
program example, GT3-11
See also Blinking; IF PHASE; SET RATE;
Refresh rate

Phong shading. See Smooth shading

Physical 1/0

commands, TT2-21; AP4-2
See also Interface

constraints, AP4-3

named entity and, TT1-49

operations, AP4-3

program example, TT2-21

programming, AP4-1, 6

test routine, TT1-51

values and, TT1-49

See also General purpose interface option

RM16-34

PICK (initial function instance), GT11-1, 7,
11, 14, 17; RM9-7
exercise, GT3-28
summary, RM3-31

Pick identifier (pick ID)

definition of, GT2-84; GT11-5
depth of, GT11-12

See also PICKINFO, F:
dials and, GT11-13
node, GT2-86; GT11-4, 16
pick list and, GT11-8

See also PICK
program example, GT3-27
state of machine and, GT4-48
using, GT11-4
See also SET PICKING IDENTIFIER

PICKINFO, F: (intrinsic user function),
GT11-11, 14, 17
exercise, GT3-28
summary, RM2-128

Picking, GT11-1
attribute node, GT2-84; GT11-2, 15, 16
control block and, AP2-23
coordinates, GT11-9
data tablet and, GT6-5; GT11-1, 7
See also TABLETIN
definition of, IS2-22; GT2-84; GT11-1
interaction and, GT2-85
functions, GT11-1, 7, 11, 17
See also PICK; TABLETIN
function network, GT11-11
See also PICKINFO, F:; PRINT, F:;
SUBC, F:
location, GT11-7, 10
See also SET PICKING LOCATION; View-
port
pass, GT11-9
See also Arithmetic control processor
program example, GT3-3, 27
time-out, GT11-9
window half-size, GT11-9
See also SET PICKING

Pick list
converting, GT11-11, 17
See also PICKINFO,F:
definition of, GT2-84; GT11-1, 16
selecting, GT11-8
See also PICK
using, GT11-1

PICK_LOCATION (initial structure), GT3-28
summary, RM3-57

Reference Materials

Pipeline subsystem (PLS), IS2-6; AP1-2

Pixel
address, GT8-39; GT14-2, 3, 5
See also Viewport
definition of, GT12-2
color, GT14-3
current location, GT14-5, 11, 18
encoding, GT14-2
raster system and, GT14-1, 2
rate, GT12-4, 11
See also Video timing format
values, GT14-11
viewport and, GT13-50

Plane. See Boundaries, front and back; Clip-
ping plane; Projection, planer

Plane equation. See Polygon, coplanar

Plotter, TT2-10
See also Writeback

Pointer. See Branch; Node
Points and lines. See Vector list

Poll PS 390 for Messages (utility GSR),
RM4-57

Polygon

attributes, GT2-103; GT13-9, 21, 39, 61

See also Color; Diffuse reflection; Specular
highlights; and transparency

capping, GT13-4, 36
See also Cross sectioning

classes of, GT13-10
See also Solid; Surface

clause, GT13-8

color, GT13-22
See also Edge, polygon, color of; Vertex,

polygon, color of

concave, GT13-9, 58

contour, inner and outer, GT13-14, 59

coplanar, GT2-103; GT13-9, 14, 58, 59
See also Contour, polygon

defining, GT2-102, 103, 107, 112; GT13-8

definition of, GT2-7

degenerate, GT13-9, 58

edge. See Edge, polygon

function networks and, GT13-58

obverse side of, GT13-40, 42

options, GT2-103; GT13-9

primitive, GT4-49

PS 390 feature, IS2-3

Index

rendering operations and, GT2-102
See also Rendering operation
vertex. See Vertex, polygon

POLYGON (command), GT2-7, 103;
GT13-1, 8, 34, 39, 56; TT6-14

GSR, TT3-5, 14; RM4-96

summary, RM1-79

syntax, GT2-112; GT13-9, 57; RM1-191

Polygonal object, GT13-1
data base for, GT2-4
See also Geometry; Coordinate
definition of, GT2-1
defining, GT2-103, 104, 107; GT13-8, 58
rendering operations and, GT2-7, 102, 107;
GT13-1, 26, 56
See also Rendering operations;
SOLID_RENDERING; SURFACE_REN-
DERING
wireframe compared, GT2-7

Polygon list
contents of, GT2-7
data base for, GT2-6
See also Geometry; Topology
primitive, GT2-8, 10; GT4-28
See also POLYGON; Vector list

POLYNOMIAL (command), GT2-9; GT4-49
GSR, RM4-113

summary, RM1-82

syntax, RM1-191

Port
characteristics, RMS5-6
connector pins, RMS5-3
configuration, IS2-5
values, TT2-1; RMS-7, 8, 11
See also SETUP INTERFACE; SITE.DAT

Position (P) and line (L) identifiers
character font, GT10-20
non-continuous lines and, GT2-26
open figures and, GT2-8
vector list inclusion, GT2-7
See also VECTOR_LIST

POSITION_LINE, F: (intrinsic user function),
TT1-17
summary, RM2-131

Powering up. See Booting
Power requirements, 1S2-6

Prefix. See Naming, prefixing

RM16-35

PREFIX WITH (command), GT5-27;
GT10-7
GSR, RM4-115
summary, RM1-84
syntax, RM1-191

Priming. See Input/output

Primitive, graphical
as template, GT2-11; GT4-9
commands for, GT5-5
creating, GT2-8; GT4-28
See also POLYGON; VECTOR_LIST
data node represents, GT2-36
See also Data node
definition of, GT2-2, 8
See also Polygon list; Vector list
dimensions of, GT4-12, 28
location of, GT4-12, 29
See also Modeling transformation; Origin;
World coordinate system
modeling with, GT4-9
transforming, GT2-11
See also Transformation; Coordinate system
types of, GT2-8, 10
See also Character/Character string; Curve;
Polygon list; Text; Vector list
See also Car; Mechanical arm; Robot

Primitive data. See Data node; Primitive,
graphical

PRINT, F: (intrinsic user function), GT7-36;
GT10-13; GT11-12; TT2-43, AP5-23
exercise, GT11-16
summary, RM2-132

PROCONSF FORTRAN (file), TT3-7
PROCONST.FOR (file), TT3-7
PROCONST.PAS (file), TT3-16

Programming
examples of, GT3-1; GT15-1

Programming language, function network and
conventional, GT2-100

Projection
planar, demonstrated, GT15-28, 31
See also Perspective view; Orthographic view;
Viewing area

PS390ENV (initial function instance), GT12-5
summary, RM3-35

RM16-36

Puck, 1S3-11
Purge Output Buffer (utility GSR), RM4-116

PUT_STRING, F: (intrinsic user function),
GT10-14
summary, RM2-136

PVT. See Performance verification test

Q

Qdata. See Data; Data type
Qpacket. See Data packet
Qreal. See Real value

Queue. See Function, input/output; Input/out-
put; User-written function, private queues

Query GSR Device Status (utility GSR),
RM4-39

Quotation marks. See Text, punctuation in

R

Radius, TT2-51
See also Sphere

RANGE_SELECT, F: (intrinsic user function)
summary, RM2-137

Raster
command, GT14-11, 12, 18
display characteristics, GT12-2
See also Antialiasing; Pixel; Scan line;
Screen
mode, GT14-10, 12, 16
See also Write Pixel Data
pattern. See Pixel; Scan line; Screen
programming, GT14-1; TT2-39
screen. See Screen
system, I1S2-1; TT2-39; GT14-1, 2, 3
See also Frame buffer
system function network for, RMS&8-1
See also Pixel; Run-length encoding; Video
output control

RASTER, F: (intrinsic system function)
summary, RM2-185

Raster backend bitslice processor (RBE/BP),
1S2-6, 7; AP1-2

Reference Materials

Raster backend video controller (RBE/VC),
1S2-6, 7; AP1-2

Raster display. See Pixel; Screen; Video output
Raster line. See Line, rendering

RASTERSTREAM, F: (intrinsic system func-
tion), RM7-3
summary, RM2-186

Rate settings, GT9-1, 14, 20
See also Alternating display; Blinking; Condi-
tional referencing; IF PHASE; SET
RATE; SET RATE EXTERNAL

Ratio and proportion operation, GT2-60
See also Viewing operations

RATIONAL BSPLINE (command), TT6-14
GSR, RM4-130

summary, RM1-835

syntax, RM1-191

RATIONAL POLYNOMIAL (command),
TT1-10

GSR, RM4-140

summary, RM1-89

syntax, RM1-191

RAWBLOCK (command), AP3-4
GSR, RM4-128
summary, RM1-92
syntax, RM1-192

READDISK, F: (intrinsic user function)
summary, RM2-139

Read Messages from PS 390 (utility GSR),
RM4-59

READSTREAM, F: (intrinsic user function),
TT2~33; RM7-3; RM14-6
summary, RM2-140

Real number
data format, RM14-8
dials and, GT6-6
input, GT6-7, 24

Real time
definition of, 1S2-2, 23; GT2-89
dials and, GT6-11
host communication and, TT1-49

Real value. TT1-50
See also Named entity

Index

REBOOT (command)
summary, RM1-94
syntax, RM1-192

Referencing
conditional. See Conditional referencing
explicit. See APPLIED TO/THEN
implicit. See BEGIN_STRUCTURE...
END_STRUCTURE

Refresh frame
blinking and, GT2-83; GT9-14, 15
picking and, GT11-9
See also PICK

Refresh rate
blinking with, GT2-82; GT9-14, 16, 19
video timing format and, GT12-4, 11
See also Blinking; CLFRAMES, F:; Clock,
function; SET RATE

Refresh buffer. See Frame buffer

Register, GT2-67, 87
See also Attribute node; State of the machine

REMOVE (command), GT1-5; GT2-91;
GT5-25

GSR, RM4-133

summary, RM1-95

syntax, RM1-192

REMOVE FOLLOWER (command), GT5-26
GSR, RM4-134

summary, RM1-96

syntax, RM1-192

REMOVE FROM (command), GT5-27
GSR, RM4-135

summary, RM1-97

syntax, RM1-192

REMOVE PREFIX (command), GT5-27;
GT10-9

GSR, RM4-136

summary, RM1-98

syntax, RM1-192

Rendering

animation of, TT1-44

compound, GT13-38

creating, GT2-102, 107; GT13-29

See also POLYGON; SOLID_RENDERING;
SURFACE_RENDERING
current, GT13-31
data, GT13-29, 37

RM16-37

displaying, GT13-29, 32
See also DISPLAY; Joint control processor
saving, GT13-32, 37, 61; TT1-47
stereo, GT13-56
toggling, GT13-32, 37

Rendering operation, GT2-102; GT13-1
commands for, 1S2-17; GT2-107, 112;
GT13-1
See also ATTRIBUTES; ILLUMINATION;
POLYGON; SECTIONING_PLANE;
SOLID_RENDERING; SURFACE_REN-
DERING
completion of, GT13-33
CPK, TT2-49, 53
error message, GT13-33, 38
laser disk and, TT1-44
marking object for, GT13-26, 60
memory requirements, GT2-106; GT13-24,
60
See also RESERVE_WORKING_STORAGE;
Transient memory; Working storage
program example, GT15-45
types of, GT2-102, 108; GT13-3, 56
See also Dynamic viewport; Polygon;
SHADINGENVIRONMENT; Static view-
port

Rendering operation node

admissible descendants, GT13-27
description of, GT2-107; GT13-26
displaying, GT13-26

See also DISPLAY
illumination node and, GT13-46
inputs to, GT13-31
node placement with, GT13-28
output from, GT13-33
polygon data node and, GT2-108;

GT13-26, 29, 60

sectioning plane node and, GT13-35, 61
transformations and, GT13-28, 60
triggering, TT2-54
See also SYNC(n), F:

RESERVE_WORKING_STORAGE (command),
GT2-106; GT13-25, 60; TT2-63

GSR, RM4-143

summary, RM1-99

syntax, GT2-113; GT3-25; RM1-192

Resonant circuit, GT12-2

Reset. See Value, reset

RM16-38

'RESET (command), GT5-17, 26; TT8-2
summary, RM1-101
syntax, RM1-192

RESET, F: (intrinsic user function), RM7-3
summary, RM2-141

Reset switch, 1S2-4; IS3-5
RGB (red, green, blue). See Color

Right-hand rule, GT13-13
See also Vertex, ordering

Robot, GT4-10, 27, 30; GT5-18; GT6-4;
GT7-1, 3; GT9-16; GT11-13

Room coordinates. See Coordinates
Rotary switch, TT1-27

ROTATE (command), GT1-4, 8; GT2-14;
GT6-6; TT1-7, 9

exercise, GT3-10

GSR, RM4-137

summary, RM1-102

syntax, RM1-192

Rotation

around axis, GT2-14, 19

centered and not-centered, GT2-14

clock function and, GT6-27, 30

controlling multiple, GT7-2

description of, GT2-13

function network and, GT3-24; GT6-3, 18

functions, GT6-6

jerkiness in, GT6-18

limiting, GT7-29, 30

matrix, GT2-13, 38

See also Matrix, 2X2; Matrix, 3X3

node, GT2-37, 39, 98

object-space, GT3-7; GT6-22; TT1-8

program example, GT3-10, 24

screen-space, TT1-7

three-dimensional, GT6-18

transformation order and, GT2-19

values, GT2-88; GT6-7

world-space, GT2-13; GT3-23; GT6-22;
TT1-6

See also DXROTATE, F:; DYROTATE, F:;
DZROTATE, F:; Operation node; Trans-
formation; XROTATE, F:; YROTATE,
F:; ZROTATE, F

ROUND, F: (intrinsic user function)
summary, RM2-142

Reference Materials

ROUTE(n), F: (intrinsic user function),
TT1-27
exercise, GT11-15
summary, RM2-143

ROUTEC(n), F: (intrinsic user function),
TT2-47
summary, RM2-144

Routing, 1S3-27
See also CIROUTE(n), F:; Data, reception
and routing; Host input data flow; Values,
routing

Routing byte
ASCII file, downloading with, IS3-27;
TT2-26
definition of, TT2-33; RM7-1
definitions, RM7-2
See also Host input data flow
GSRs and, 1S3-27
host communications with, RM5-20, 29;
RM14-3
SITE.DAT and, TT2-2
specifying, TT2-33
S-record file transfer with, APS5-19
See also Graphics support routines
See also Byte

RS-232-C, RMS5-2

Run-length encoding, TT2-39; GT13-39;
GT14-5
data flow and, RM7-3
description of, GT14-2
write pixel data mode, GT14-18
See also Pixel; Raster

Runtime code, 1S3-7
See also CONFIG.DAT; SITE.DAT;
THULE.DAT

Runtime environment, TT2-23; RM9-1
See also Host communication

Runtime firmware, RM6-4
See also Graphics control program; Graphics
firmware

S

Sample programs, GT3-1; GT15-1

Saturation, GT13-40
color, GT13-40 definition of, GT2-68;
GT8-50

Index

specifying, GT8-51, 56
See also SET COLOR

values, GT13-41

See also Color; Hue

SCALE (command), GT1-6; GT2-17, 28;
GT6-6; GT10-6

GSR, RM4-146

summary, RM1-104

syntax, RM1-192

SCALE, F: (intrinsic user function), GT6-6,
25
summary, RM2-145

Scaling

characters. See CHARACTER SCALE; Char-
acter string, scaling

compound object, GT2-30

definition of, GT1-6; GT2-17

factor, GT2-17, 99

function network and, GT6-25

functions, GT6-6, 25

matrix, GT2-17, 38

node, GT2-38

primitive, GT2-26

program example, GT3-10

proportional, TT1-12

See also Dial, control
setting limits on, GT6-26
See also DSCALE, F:

uniform/non-uniform, GT2-17; GT6-23;
GT10-7

values, GT6-6

See also Modeling; Operation node; Transfor-
mation

Scan line
definition of, GT12-2
drawing, GT12-2
See also Screen, interlaced/non-interlaced
See also Frame; Screen; Video timing format

Scheduler, RM9-2; AP3-6, 8
See also Graphics control program

Screen
blanking, GT1-4, 5, 9; GT13-51
See also Display; INITIALIZE; Key, TERM

description of, I1S3-12
display area, IS3-13; GT2-57; GT3-1;
GT8-1, 39, 40
See also Viewport
interlaced/non-interlaced, GT12-2
See also Scan line; Video timing format

RM16-39

labels and, TT2-48
See also Softlabels
NETEDIT, TT4-8, 39
performance verification test, 1S6-2
rendering operation and, GT13-31
resolution, GT12-2
See also Calligraphic system; Raster
routing to, RM7-4
space, GT14-5
See also Coordinates, logical device; View-
port; Virtual address space
STRUCTEDIT, TT6-2
switch, 1S3-13
thumbwheel knobs, 1S3-13
wash, GT8-42; GT13-51
See also Background color; SHADINGEN-
VIRONMENT
See also Picking, location; Viewport

SCREENSAVE, F: (intrinsic user function),
TT9-10
summary, RM2-146

Scrolling, TT1-28

Sectioning
definition of, GT2-109; GT13-4
object displayed after, GT2-109; GT13-4,
35

rendering node input, GT13-32

saving, GT13-38

vertex order and, GT13-8

See also Cross sectioning; POLYGON; Sec-
tioning plane

Sectioning plane
cross sectioning with, GT2-110; GT13-5
data definition of, GT13-34, 61
See also Polygon
displaying, GT13-36
establishing, GT13-34, 61
See also SECTIONING_PLANE
front side of, GT13-35
interaction with, GT13-36
sectioning with, GT2-109; GT13-4
See also Cross-sectioning

SECTIONING_PLANE (command), GT13-34
GSR, RM4-159

summary, RM1-106

syntax, GT13-61; RM1-192

SELECT FILTER (command)
summary, RM1-108
syntax, RM1-193

RM16-40

SEND (command), GT1-8, 10; GT2-36, 99;
GT5-27; GT10-17;, TT4-2, 28

exercise, GT10-19

GSR, RM4-178, 190

summary, RM1-110

syntax, GT10-18; RM1-193

SEND, F: (intrinsic user function)
summary, RM2-147

SENDBACK (Diagnostic utility command),
TT2-28

Send Bytes to Generic Output Channel (utility
GSR), RM4-117

Send Bytes to Parser Output Channel (utility
GSR), TT2-33; RM4-119

SEND number*mode (command), GT10-19
GSR, RM4-188

summary, RM1-111

syntax, RM1-193

Send-receive mode (local echo/nolocal echo),
I1S3-19; RM10-2, 4, 5
See also Escape sequence; SETUP facility;
Terminal emulator, ANSI modes

SEND VL (command), GT10-19
GSR, RM4-203

summary, RM1-112

syntax, RM1-193

SET BLINKING ON/OFF (command)
summary, RM1-113
syntax, RM1-193

SET BLINK RATE (command)
summary, RM1-114
syntax, RM1-193

SET CHARACTERS (command), GT10-12,
25

exercise, GT3-20

GSR, RM4-149

summary, RM1-115

syntax, GT10-12, 25; RM1-193

SET COLOR (command), GT2-69; GT8-51,
56, GT13-20, 59
GSR, RM4-156
summary, RM1-116
syntax, RM1-193

SET CONDITIONAL_BIT (command),
GT2-78; GT9-3; AP4-6
exercise, GT3-11; GT9-7

Reference Materials

GSR, RM4-147
summary, RM1-118
syntax, GT9-3, 17; RM1-193

SET CONTRAST (command)
GSR, RM4-158
summary, RM1-120
syntax, RM1-193

Set Current Pixel Location (utility GSR),
GT14-11, 12, 18; RM4-120
program example, GT14-13, 15, 19

Set Delimiting Character (utility GSR), RM4-33

SET DEPTH_CLIPPING (command), GT2-74,
91, GT8-15

exercise, GT8-16

GSR, RM4--161

summary, RM1-122

syntax, RM1-193

SET DISPLAYS (command)
GSR, RM4--160, 163
summary, RM1-124
syntax, RM1-194

Set Global Binary Output Channel (utility GSR),
RM4-90

Set Global Generic Channel (utility GSR),
TT2-33; RM4-91

Set Global Parser Channel (utility GSR),
RM4-92

SET/IF node, GT2-78; GT9-1, 17

conditional bit settings, GT2-78; GT9-4, 7,
18

input, GT9-4, 10, 14

level-of-detail settings, GT2-80; GT9-10, 18

physical I/O and, AP4-6

program example, GT15-42

rate settings, GT2-82; GT9-14, 20

See also Blinking; Conditional referencing; IF
CONDITIONAL_BIT; IF
LEVEL_OF_DETAIL; IF PHASE; Level-
of-detail;, SET CONDITIONAL_BIT; SET
LEVEL_OF_DETAIL; SET RATE

SET INTENSITY (command), TT2-46;
GT2-71; GT8-48, 50, 56
GSR, RM4-164
summary, RM1-126
syntax, RM1-194

Index

SET LEVEL_OF_DETAIL (command),
GT2-80; AP4-6

exercise, GT3-11, 22

GSR, RM4-169
summary, RM1-128

syntax, GT9-10, 18; RM1-194

SET LINE_TEXTURE (command), TT2-35
GSR, RM4-166

summary, RM1-130

syntax, RM1-194

Set Logical Device Coordinates (utility GSR),
TT2-39; GT14-11, 12, 19; RM4-124
program example, GT14-13, 15, 19

Set node, AP2-26
See also Instance node

Set-operate-data structures, AP1-2
See also Data node; Instance node; Operation
node

SET PICKING (command), GT2-85; GT11-3,
16

exercise, GT3-28; GT11-6

GSR, RM4-174

summary, RM1-132

syntax, GT11-5, 16; RM1-194

SET PICKING IDENTIFIER (command),
GT2-86; GT11-4, 16
exercise, GT11-5, 13
GSR, RM4-171
summary, RM1-134
syntax, GT11-16; RM1-194

SET PICKING LOCATION (command),
GT11-10
GSR, RM4-172
summary, RM1-135
syntax, GT11-10; RM1-194

SET PRIORITY (command)
summary, RM1-137
syntax, RM1-194

Set Raster Mode to Write Pixel Data (utility
GSR), GT14-12; RM4-129

SET RATE (command), GT2-82; GT9-14
exercise, GT3-11; GT9-16; GT15-42
GSR, RM4-175
summary, RM1-138
syntax, GT9-14, 20; RM1-194

RM16-41

SET RATE EXTERNAL (command), GT2-82;
GT9-15, 20; TT1-36

GSR, RM4-177

summary, RM1-140

syntax, RM1-194

SETUP CNESS (command), AP5-8; GT2-99;
GT6-14; RM2-4

GSR, RM4-155

summary, RM1-142

syntax, RM1-195

SETUP facility

description of, 1S3-18; RM10-19

definitions, 1S83-19

function keys and, 1S3-10; RM10-30

IBM 3278, 1S3-23; RM10-30

menu display, I1S3-18

terminal emulator commands and, RM10-23
See also SITE.DAT

See also Key, SETUP; Terminal emulator

SETUPIBM, F: (intrinsic system function),
RM5-30
summary, RM?2-187

SETUP INTERFACE (command), 1S3-21;
TT2-41, 44; RMS5-8, 11; AP7-7
summary, RM1-144
syntax, RM1-195

SETUP PASSWORD (command), TT2-8;
RM9-7

summary, RM1-145

syntax, RM1-195

Shaded image
creating, GT13-9
depth cueing in, GT13-51
displaying, GT13-39
See also Rendering operation node, input
normals in, GT13-22
polygon edges in, GT13-20
static viewport and, GT8-2
See also Static Viewport
See also SHADINGENVIRONMENT

Shading. See ATTRIBUTES; Flat shading;

Rendering operation; Smooth shading; Static

viewport; Wash shading

SHADINGENVIRONMENT (initial function in-

stance), GT2-59, 112, 113; GT13-21, 22,

42, 45, 48, 62; TT2-50
summary, RM?3-37

RM16-42

Shadowfax, 1S2-1, 7; GT12-2
Shift register, TT1-28

SHOW INTERFACE (command)
summary, RM1-146
syntax, RM1-195

SINCOS, F: (intrinsic user function)
exercise, GT3-25
summary, RM2-148

SITE.DAT (file)
changing packet characters, RMS5-21
changing SETUP features, RM10-23, 31
CONFIG.DAT and, IS3-7; RM9-7
control sequences and, RM10-26
creating, IS3-8; TT2-1

See also Configure mode; Graphics support
routines

deleting, RM12-9
description of, 1S3-6, 8
host resident, IS2-14
interface, changing with, RMS-11
loading, TT2-2
user-written functions and, AP7-1
using, TT2-1

Site preparation, IS5-1
Sketching. See Data tablet, inking with

Smooth shading, GT2-112
curved surface and, GT13-22; TT2-49
description of, GT2-112; RM6-7
Gouraud, GT13-7, 23
normals and, GT13-22
Phong, GT13-7, 23
rendering node input, GT13-32

Softlabels, 1S3-10; TT2-48
See also Dial, control, labels; Dynamic view-
port; Function key labels

Software. See Graphics firmware; Host-resident
software

Solid
3D visualization of, I1S2-3
See also Rendering operations
backface removal and, GT13-3
See also Backface, removal
constructing, GT2-104; GT13-10, 58
See also SOLID_RENDERING
cross-sectioning, GT13-36
definition of, GT2-104; GT13-10

Reference Materials

edges in, GT13-11
See also Edge, polygon
sectioning, GT13-4
surface, changing to, GT13-33, 37
vertex order and, GT2-105; GT13-8, 12,
19
See also Polygon

SOLID_RENDERING (command), GT2-105,
107; GT13-26, 29, 58, 61; TT2-50, 53
GSR, RM4-205
summary, RM1-147
syntax, GT2-113; GT13-60; RM1-195

SOP. See Start of packet character

SPECKEYS (initial function instance),
RM10-21, 28
summary, RM3-46

Specular highlight
attribute node input, GT13-42
control, GT13-53
See also SHADINGENVIRONMENT
specifying, GT2-108; GT13-21, 41
values, GT13-41; TT2-51
See also ATTRIBUTES; Diffuse reflection;
POLYGON

Sphere rendering, GT13-33, 53; TT2-17, 49,
52
See also Solid; Surface; Vector
viewing area and, TT2-57

Sphere of influence, GT2-40; GT4-5, 53
See also Hierarchy; Instance node

Spheres and lines attribute table, GT13-21

SPLIT, F: (intrinsic user function), GT10-14
summary, RM2-149

SQROOT, F: (intrinsic user function)
summary, RM2-150

S-record file
crash and, AP5-23
See also User-written function, stack size
description of, RM6-7; AP5-14
downloading, APS5-14, 19; AP9-12, 18
See also Cross-compatibility software;
Graphics support routines; Routing byte
format, AP9-34
MAKEFONT and, TT7-2

S specifier. See Edge, soft

Index

Stack. See User-written function

STANDARD FONT (command)
GSR, RM4-206
summary, RM1-152
syntax, RM1-195

Star, GT1-5; GT2-26; GT4-14

Start of packet (SOP) character, RM35-17;
RM14-4; TT2-23
changing, RMS5-21
See also DEPACKET, F:; SITE.DAT
default, RMS5-18, 20
See also Escape sequence

Startup code, AP1-3
See also Graphics control program

STATDIS, F: (intrinsic system function),
TT2-45
summary, RM2-188

State of the machine, GT2-67; GT4-48, 52
See also Instance node

Static viewport
clearing to, GT8-42
See also Screen, wash
color in, GT13-21
default, GT13-50
display structure and, GT8-2, 42
multiple images in, GT13-50
polygon edges in, GT13-20
program example, GT15-46, 66
rendering operations, GT2-58, 102, 110,
113; GT8-41; GT13-6, 56
See also Hidden-line removal; Flat shading;
Smooth shading; Wash shading
specifying, GT2-59; GT8-41, 56; GT13-50
See also SHADINGENVIRONMENT
uses of, GT2-44
See also Dynamic viewport, Viewport

STORE (command), GT5-25; GT7-34
summary, RM1-153
syntax, RM1-195

String. See Character string

STRING_TO_NUM, F: (intrinsic user function),
GT10-13
summary, RM2-151

Stroke lookup table, TT7-8
See also Character font; MAKEFONT

STRUCTEDIT (Data structure editor), TT6-1

RM16-43

Structure. See Data structure, Display structure
Stub, TT6-1, 14
Stylus. See Data tablet

SUB, F: (intrinsic user function)
summary, RM2-152

SUBC, F: (intrinsic user function), GT11-14
summary, RM2-153

Subcommand expression. See Data type
Suffix. See Naming, suffixing

Surface
constructing, GT2-104; GT13-10, 58
See also SURFACE_RENDERING
curved, GT13-7, 9, 22, 59
See also Normal
definition of, GT2-104; GT13-10
faceted, GT13-7
obverse side attributes, GT13-40
rendering node input, GT13-33
solid, changing to, GT13-27, 33, 37
vertices for, GT2-106; GT13-12
See also Polygon; Rendering operations

SURFACE_RENDERING (command),
GT2-105, 107, GT13-26, 29, 58, 61
GSR, RM4-208

summary, RM1-154

syntax, GT2-113; GT13-60; RM1-195

Swinging around axis, GT2-14
See also Origin; Rotation

Switches, 182-4; 1S3-2, 13; GT6-31;
GT11-13

SYNC(n), F: (intrinsic user function), GT6-32;
TT1-27, 28, 29; TT2-20, 45, 53; TT9-5;
AP7-30

summary, RM2-154
Synchronization, TT1-29

System configuration, I1S2-4

System function, See Function, system; Intrin-
sic system function

System lookup table, GT13-55

RM16-44

T

TABLETIN (initial function instance),
TT1-16, 17
exercise, GT3-28
summary, RM3-47

TABLETOUT (initial function instance)
summary, RM3-50

Tabulated. See VECTOR_LIST

TAKE_STRING, F: (intrinsic user function),
GT10-14
summary, RM2-156

TECOLOR (initial function instance),
RM10-20, 28
summary, RM3-52

TEDUP, F: (intrinsic system function)
summary, RM2-189

Terminal controller. See Control unit

Terminal emulator (TE), RM10-1
ANSI mode. See ANSI mode (DECANM)
data structures and, RM10-19
See also CONFIG.DAT
DEC VT100, 1S3-16; RM10-2
display handler, See VT10, F:
display structure and, RM10-29
function network and, RM10-16
See also K2ANSIF:; TEDUP, F:; VT10, F:
features changed, RM10-23, 31
See also Key, BREAK; Key, TERM;
SITE.DAT
routing to, RM5-20
IBM 3278, 1S3-23; RM10-27
SETUP. See SETUP feature
viewing area, IS3-13, 21
See also Host communications; Host computer

Terminal emulator (TE) mode

cursor keys in, RM10-22

DEC VT100, 1S3-16; RM10-19

description of, 1S3-15

editing in, GTS5-27

features of, 1S2-17

function keys in, IS3-10; RM10-23

GSRs and, TT3-25

host system and, 1S2-17; TT3-25
See also SITE.DAT

IBM 3278, 1S3-22; RM10-27

IBM 5080, IS3-25

Reference Materials

keypad in, RM10-23
key sequence for, IS3-15, 25; GT3-30
See also ANSI mode; SETUP feature

Text
character font for, GT2-75; GT10-19
See also BEGIN_FONT...END_FONT;

CHARACTER FONT; MAKEFONT

function network diagram, TT4-15
See also NETEDIT
interaction with, 1S2-3
modeling, GT10-1
nodes, GT10-1, 23
primitive, GT2-9; GTS5-5
punctuation in, GT10-3
size, GT10-8
See also PREFIX; TEXT SIZE
transforming, GT10-1, 6, 24

See also CHARACTER ROTATE; CHAR-

ACTER SCALE; TEXT SIZE
See also Character string; Label

Text editor, TT2-3, 27
See also STRUCTEDIT

Text file
commands in, GTS5-27
display structure in, GTS5-31
See also Display structure
editing in TE mode, GT5-27
See also Terminal emulator mode
See also File; Graphics support routines

TEXT SIZE (command), GT10-8
exercise, GT10-10

summary, RM1-159

syntax, GT10-25; RM1-195

Texture. See SET LINE_TEXTURE

Three-dimensional space. See Coordinate,
world; World coordinate system

Three-dimensional view. See View, three-

dimensional
Three-valued vector. See Vector, 3D
THULE.DAT (file), 1S3-6

TIMEOUT, F: (intrinsic user function)
summary, RM2-157

Toggle switch, GT6-31
Token, GT2-99; RMS5-29; RM14-3

Index

Topology
definition of, GT2-6, 10
geometry and, GT2-6, 8§, 9, 12
See also VECTOR_LIST

TRANSFER (diagnostic utility command),
TT2-26

Transformation
compound object and, GT2-31
control dials and, GT6-5
description of, GT2-11, 12, 25
See also Geometry; Matrix
matrix. See Matrix
modeling. See Modeling transformation
order of, GT2-23, 25; GT4-16, 25
See also Matrix, non-commutativity of
pointer, GT4-35
primitives and, GT2-11
See also Polygon; Vector list
processing, I1S2-20
program example, GT15-36, 37

rendering operations and, GT13-28, 38, 60

See also Rendering operation
sphere of influence and, GT2-42

See also Instance node
types of, GT2-22, 25

See also Rotation; Scaling; Translation
viewing. See Viewing operation

See also Operation node; XFORMDATA, F:

Transformed data
commands and, TT9-1, 3

See also MATRIX_3X3; ROTATE; SCALE;

TRANSLATE
converted to command string, TT9-1
data nodes, admissible, TT9-2
See also Curve; Vector List
definition of, TT9-1
See also Matrix; Vector list
modeling and, GT4-51
program example, TT9-6
rendering node input, GT13-33
requests overlapping, TT9-5
See also SYNC(n), F:
retrieving, TT9-2, 31
See also LIST, F:; XFORM;
XFORMDATA, F:
retrieving restricted, TT2-12; TT9-6
See also XFORMDATA, F:
storing, TT9-4
See also LIST, F:

Transient memory, GT13-26, 60
See also Hidden-line removal

Translation
definition of, GT1-6; GT2-15
direction of, GT2-16
function network and, GT3-24; GT6-6, 23
functions, GT6-6
notation for, GT2-17
node, GT2-39
primitive, GT2-28
program example, GT3-24
setting limits on, GT6-24
transformation order and, GT2-19
updating, GT1-8
values, GT1-6
See also SEND
See also Modeling; Operation node; Transfor-
mation

TRANSLATE (command), GT1-6; GT2-15,
28, 76; GT6-6, 24
exercise, GT6-25
GSR, RM4-209
summary, RM1-161
syntax, RM1-195

Transparency, GT2-103
attribute node input, GT13-42
color with, GT13-42
control, GT13-52
eyepoint effect on, GT13-42
specifying, GT13-21, 41
values, GT13-41
See also ATTRIBUTE

TRANS_STRING, F: (intrinsic user function),
GT10-13
summary, RM2-159

Traversal. See Arithmetic control processor;
Display processor

Tutorial demonstration, GT3-1

U

Uniform scaling. See Scaling, uniform

Update
alpha, AP3-3
block, AP3-2

character and label nodes, GT10-16, 26
display structure traversal and, 1S§2-21
function networks and, GT6-3, 33
memory and, TT1-49

See also Named entity

RM16-46

nodes, GT2-36, 91, 101; GTe6-3, 33
See also Interactive device; Interaction node
process, AP3-2
value, GT1-8; AP3-3
See also Function network; Input; Interaction

UPDATE_FORMATTER (initial function in-
stance), AP2-6; AP3-2

UPDATE_KILLER (initial function instance),
AP2-6, 15

USERLINK (file), APS-2, 14; AP8-7, 10

USERSTRUC.PAS (file), AP5-2, 6, 11, 15;
AP8-2; AP9-25

USERUPD, F: (intrinsic user function), AP4-1;
AP9-69

User-written function, RM2-1; APS5-1;
AP8-1
breakpoints, AP7-26
See also Debug; SYNC(n), F:
compiling, linking, and naming, AP5-14
creating, GT2-95; AP5-3
debugging, AP5-23; AP7-6
editing, TT4-16, 36
See also NETEDIT
error messages, RM11-3; AP&-40
files, 1S2-14
header line, AP9-33
input/output, AP5-8; AP6-1, 7
instancing, AP5-21, 22; AP7-2, 3
loading, AP7-1, 3
See also UTILITY program
message types, AP5-8; AP6-2; AP8-2
memory allocation for, AP3-4
See also RAWBLOCK
network substitutions, APS-1
private queues, AP6-4
qdata type and, AP6-1, 11; AP8-2
requirements, AP5-2
See also USERLINK; USERSTRUC.PAS
restrictions, AP5-22
routing, RM7-3
stack size, AP8-38
transferring to PS 390, AP5-18
See also S-record file
uses of, RMo6-7
utility procedures, AP5-7; AP8-6, 10, 24
writing exercise, AP5-4, 12; AP6-1

User-written function facility, RM6-6

USRTOF, F: (intrinsic system function)
summary, RM2-190

Reference Materials

UTILITY program, RM12-1; AP7-1, 2 VEC, F: (intrinsic user function)

See also Diagnostic diskette; Diagnostic utility exercise, GT3-25
command summary, RM2-160
Utility routines. See Graphics support routines; VECC, F: (intrinsic user function)

User-written function, utility procedures summary, RM2-161

UWE. See User-written function VEC_EXTRACT, F: (intrinsic user function)
summary, RM2-162

Vector
VvV 2D, GT6-3; GT10-20; GT11-7; RM14-9

3D, GT1-8; GT6-3, 24; RM14-9
See also CVEC, F:; XVECTOR, F:; YVEC-

V3D (three-valued vector). See Vector, 3D TOR, F:; ZVECTOR, F:
Value block-normalized, TT2-17, 60
accumulate, GT6-6 See also VECTOR_LIST
See also CMUL, F:; MULC, F: data tablet and. GT6-5
constant input, GT2-99; GT6-13 definition of é’r1—2- GT2-6
See a{so Input/output drawing common edge, GT13-20
converting, GT6-3, 6, 33 itemized. GT10-20
See also Function network; Interactive de- See als’o Position and line identifier
vice
. . . . knot, TTé6-14
coortceh:‘ate. See Coordinate; Coordinate sys- picking, GT11-8

See also Picklist
specifying, GT4-49
interaction and, GT6-2 See also VECTOR_LIST

See also Rotation: Scale: Translati transformed, GT2-23; TT9-1

ée.a * o‘a Loms Sréles fransiation See also WRITEBACK; XFORM MATRIX;

negative, GT2-4; GT6-5 S EORM VECTOR
positive, GT2-4, 10 translation, GT6-3, 24; TT1-19

See also Zraxis vector-normalized, TT2-17, 60

reset, GT6-15, 24 .
’ ’ ireframe model from, GT1-2
retrieving variable, GT7-34, 38 v m om

fixed, GT2-88
initial, GTé6-14, 17

See also FETCH, F: Vector list
routing, GT7-6, 37 character font, GT10-20
See also CROUTE(n), F:; Function network definition of, GT2-6; GT4-49
sending, GT2-36 downloading to PS 390, TT2-62
storing, GT7-33, 38 drawing, TT2-35; GT4-49
See also CONSTANT, F:; FETCH, F:; See also Line; PATTERN; PATTERN
VARIABLE WITH; SET LINE_TEXTURE; WITH
updating, GT1-8 PATTERN
See also Function GSRs and, TT3-5, 14
See also Data; Data type node, GT2-36
primitive, GT2-8, 10; GT4-28
Variable, GT7-33, 38; TT1-49; rendering node input, GT13-33
GSRs and, TT3-5, 15 single, advantage of, GT4-50
See also Named entity See also Writeback
single, conversion into, TT9-3
VARIABLE (command), GT7-34, 38; TT4-2 See also XFORM VECTOR
exercise, GT7-37 tabulated, TT2-17, 51
GSR, RM4-211 See also ALLOW_VECNORM, F:; Sphere
summary, RM1-163 See also Coordinates; Data node; Polygon list;
syntax, RM1-195 SEND VL

Index RM16-47

VECTOR_LIST (command), GT1-2; GT2-6, 8,
26; GT4-49; GTS5-5; TT2-51; TT9-1, 4
exercise, GT3-10

GSR, TT3-5, 14; RM4-212

summary, RM1-164

syntax, RM1-196

Vertex, polygon
color of, GT2-104; GT13-9, 52
defining, GT2-103
Gouraud shading and, GT13-7
number of, allowed, GT2-102; GT13-8, 58
options, GT2-104
order of, GT2-105; GT13-8, 15, 59
See also Right-hand rule
soft edge and, GT13-19
See also Normal; Polygon; POLYGON

Vertex ordering rule. See Vertex, polygon, or-
der of

Video hookup, GT12-11

Video output
control of, GT12-1
specifications for, GT12-13
See also Background color, Cursor, Scan line

Video recorder, GT12-3
Video signal, GT12-10, 11

Video timing format
alternating, GT12-7
See also Viewport
custom, GT12-12
features of, GT12-4, 11
selecting, GT12-7
See also PS390ENV
standards, GT12-3
supported by PS 390, GT12-3, 12

View

changing, GT8-1

creating, GT2-45, 66; GT8-52
See also EYE BACK; FIELD_OF_VIEW;

WINDOW

cutaway, GT13-4
See also Sectioning

default, GT8-52

definition of, GT2-44

distorted, GT2-59

multiple, GT2-60

orthographic. See Orthographic view

perspective. See Perspective view

RM16-48

stereo, GT9-16
See also Viewport
three-dimensional, GT2-71; GT9-16
See also Depth cueing; Intensity; Perspective
view
See also Line of sight; LOOK; Viewing area;
VIEWPORT

Viewing angle
definition of, GT8-20
frustum and, GT8-20, 54
hidden-line rendering and, GT13-3
program example, GT3-15
ratios for, GT§-25, 27
See also Coordinate, room; Coordinate sys-
tem, world
specifying, GT2-54, 64
See also FIELD_OF_VIEW

Viewing area

default, GT2-52, 57; GT10-3; GT8-10, 52
See also Orthographic view

definition of, GT2-46, 49, 66; GT8-9

depth of, GT8-15
See also Depth clipping; SET

DEPTH_CLIPPING

display structure and, GT8-9, 21

double, unwanted, GT13-29

intensity mapping, GT8-47

mapping to viewport, I[S2-21; GT8-33, 45,

47, TT2-58

moving, GT8-13

orthographic, GT2-50; GT8-9, 53
See also WINDOW

perspective, GT2-54, 62; GT8-19, 54, 55
See also EYE BACK: FIELD_OF_VIEW

program example, GT3-1, 12, 15, 19

size altered, GT8-11, 12, 20
See also Clipping

specifying, GT8-9, 19, 25

types of, GT2-50

visibility of object and, GT2-50, 66, 72
See also Clipping; Depth cueing

See also LOOK; MATRIX_4x4; Viewport

Viewing operations, GT2-44; GT8-1

attributes, GT8-48, 56

See also Attribute; Color; Intensity
commands, 182-17
default values, GT2-46; GT8§-2, 52
node, GT2-60, 66, 88; GTB8-53, 54, 55
ratio and proportion, GT2-60
transformations, GTS8-1, 3, 9, 19, 52;

TT9-5

See also Line of sight; Viewing area

Reference Materials

Viewing pyramid, GT2-55; GT8-19, 23, 27
See also Clipping plane; EYE BACK;
FIELD_OF_VIEW; Frustum

Viewing transformation function, IS2-25;
GT2-94; GT6-12

Viewport
alternating display of, GT9-16
clearing to dynamic/static, GT8-42
CPK, TT2-59
default, GT2-58; GT8-2, 34, 52
See also Dynamic Viewport
definition of, GT2-46, 58, 66; GT8-1, 33,
55
display structure and, GT8-33, 39
double, unwanted, GT13-29
dynamic. see Dynamic viewport
mapping to, GT2-60; 1S2-21; GT8-33, 45,
46, 47
multiple, GT2-60; GT8-43
nonsquare, GT2-59; GT8-44
picking location and, GT11-10
See also SET PICKING LOCATION
program example, GT3-1, 8, 12
raster. See Static viewport
reconfiguring for video timing, GT12-7
See also Video timing format
rendering operation and, GT13-31
specifying, GT2-58, 64; GT8-33, 41, 55
See also LOAD VIEWPORT; VIEWPORT
static. See Static viewport
terminal emulator, IS3-21
types of, GT2-44; GT8-2, 33
See also Dynamic viewport; Static viewport
viewing areas and, GT8-33

VIEWPORT (command), GT2-58, 71;
GT8-34, 41, 55; TT9-11
exercise, GT3-12; GT8-35, 36, 43
GSR, RM4-220
summary, RM1-169
syntax, GT8-56; RM1-196

Virtual address space, GT14-2, 5, 11

VTI10, F: (intrinsic system function), TT2-13,
45; RM7-3, 4, RM10-18
summary, RM2-191

VT52 mode, 183-20; RM10-2, 5, 15
keypad in, RM10-11
See also Escape sequence; SETUP facility;
Terminal emulator, ANSI modes

Index

W

WARNING (initial function instance)
summary, RM3-53

Warning message. See Message, warning

Wash shading, GT2-111; GT13-7
rendering node input, GT13-32
See also Flat shading; Smooth shading

WBS$ (initial function instance). See
WRITEBACK (initial function instance)

White space. See Delimiter

Window. See Viewing area

WINDOW (command), GT2-53, 60; GTS8-9,

53; TT2-58

exercise, GT3-12; GT8-12, 13, 16, 18, 46
GSR, RM4-222

summary, RM1-172

syntax, GT8-54; RM1-196

WINDOW, F: (intrinsic user function), TT2~57
summary, RM2-163

Wireframe model

color of, GT13-20
See also SET COLOR

data base for, GT2-4

definition of, GT2-1

dynamic viewport and, GT8-2, 34; GT13-3
See also Dynamic viewport

PS 390 feature, 1S82-2, 3, §

vectors and, GT1-2

See also Vector list

WITH PATTERN (command), GT4-49
summary, RM1-174
syntax, RM1-196

Working storage, GT2-106, 113; GT13-24, 60
See also RESERVE_WORKING_STORAGE

Work space, GT3-29

World coordinate system, GT2-10

definition of, GT2-1, 3
framing part of, GT2-49

See also Viewing area
line of sight in, GT8-35, 7
locations. See Vector list
model, location in, GT4-2, 12, 47
program example, GT3-12, 17, 19
translating in, GT2-15

See also Axes; Translation

RM16-49

viewing area in, GT2-50; GT8-1, 9, 25,
See also EYE BACK; FIELD_OF_VIEW;
WINDOW
See also Coordinate; Coordinate system; Line
of sight;

Wraparound, GT14-5

Writeback
commands in, TT9-12
constraints, TT9-9
data sequence in, TT9-18
description of, TT2-10; TT9-8
hardcopy and, TT2-10
node, TT9-9
program example, TT9-20

WRITEBACK (command), TT9-9, 31
GSR, RM4-224

summary, RM1-176

syntax, TT9-9; RM1-196

WRITEBACK (initial function instance),
TT2-10; TT9-9, 10, 31
summary, RM3-54

WRITEDISK, F: (intrinsic user function),
RM7-4
summary, RM2-165

Write Pixel Data (WRPIX), GT14-10, 12, 16,
18

WRITESTREAM, F: (intrinsic user function)
summary, RM2-166

Write structured field (WSF), RM5-23;
RM10-27

X

XFORM (command), TT2-14, 57; TT9-2
exercise, TT9-6
GSR, RM4-26
summary, RM1-178
syntax, TT2-57; TT9-2; RMI1-196

Xform data. See Transformed data
XFORMDATA, F: (intrinsic user function),
GT13-1, 33; TT2-12, 19, 44, 50, 53, 55;

TT9-3, 6, 31
summary, RM2-167

XON_XOFF. See Host communication, trans-
mission protocol for

RM16-50

XOR, F: (intrinsic user function), TT1-14
summary, RM2-170

XORC, F: (intrinsic user function), GT6-31
summary, RM2-171

XROTATE, F: (intrinsic user function),
GT7-9, 30, 37, TT1-7, 9
exercise, GT6-21; GT7-15, 32
summary, RM2-172

XVECTOR, F: (intrinsic user function),
GT6-24; TT1-19
exercise, GT6-25
summary, RM2-173

Y

Yon plane. See Clipping plane

YROTATE, F: (intrinsic user function),
GT6-7, 15, 19
exercise, GT6-21; GT7-15
summary, RM2-174

YVECTOR, F: (intrinsic user function),
GT6-24; TT1-19
exercise, GT6-25
summary, RM2-175

y4

Z-axis
look at point, GT2-48, 62; GT8-4, 6, 13,
29
See also Line of sight
location equation, GT2-62
See also Axes; Boundaries, front and back;
Coordinate system

Z-boundary. See Boundaries, front and back
Z-clipping. See Depth clipping

Z-clipping plane. See Clipping plane

03$ (initial function instance), TT2-44, 45
Zooming, TT4-48

ZROTATE, F: (intrinsic user function)
exercise, GT6-21; GT7-15
summary, RM2-176

ZVECTOR, F: (intrinsic user function),
GT6-24; TT1-19
exercise, GT6-25
summary, RM2-177

Reference Materials

	001
	002
	003
	RM05-000
	RM05-001
	RM05-002
	RM05-01
	RM05-02
	RM05-03
	RM05-04
	RM05-05
	RM05-06
	RM05-07
	RM05-08
	RM05-09
	RM05-10
	RM05-11
	RM05-12
	RM05-13
	RM05-14
	RM05-15
	RM05-16
	RM05-17
	RM05-18
	RM05-19
	RM05-20
	RM05-21
	RM05-22
	RM05-23
	RM05-24
	RM05-25
	RM05-26
	RM05-27
	RM05-28
	RM05-29
	RM05-30
	RM06-000
	RM06-001
	RM06-01
	RM06-02
	RM06-03
	RM06-04
	RM06-05
	RM06-06
	RM06-07
	RM07-000
	RM07-001
	RM07-01
	RM07-02
	RM07-03
	RM07-04
	RM08-000
	RM08-01
	RM08-02
	RM08-03
	RM08-04
	RM08-05
	RM08-06
	RM08-07
	RM08-08
	RM08-09
	RM08-10
	RM08-11
	RM08-12
	RM08-13
	RM08-14
	RM08-15
	RM08-16
	RM08-17
	RM08-18
	RM08-19
	RM08-20
	RM08-21
	RM08-22
	RM08-23
	RM08-24
	RM08-25
	RM08-26
	RM08-27
	RM08-28
	RM08-29
	RM08-30
	RM08-31
	RM08-32
	RM08-33
	RM08-34
	RM08-35
	RM08-36
	RM08-37
	RM08-38
	RM08-39
	RM08-40
	RM08-41
	RM08-42
	RM08-43
	RM08-44
	RM08-45
	RM08-46
	RM08-47
	RM08-48
	RM08-49
	RM08-50
	RM08-51
	RM08-52
	RM08-53
	RM08-54
	RM08-55
	RM08-56
	RM09-000
	RM09-001
	RM09-01
	RM09-02
	RM09-03
	RM09-04
	RM09-05
	RM09-06
	RM09-07
	RM10-000
	RM10-001
	RM10-002
	RM10-01
	RM10-02
	RM10-03
	RM10-04
	RM10-05
	RM10-06
	RM10-07
	RM10-08
	RM10-09
	RM10-10
	RM10-11
	RM10-12
	RM10-13
	RM10-14
	RM10-15
	RM10-16
	RM10-17
	RM10-18
	RM10-19
	RM10-20
	RM10-21
	RM10-22
	RM10-23
	RM10-24
	RM10-25
	RM10-26
	RM10-27
	RM10-28
	RM10-29
	RM10-30
	RM10-31
	RM10-32
	RM10-33
	RM11-000
	RM11-01
	RM11-02
	RM11-03
	RM11-04
	RM11-05
	RM11-06
	RM11-07
	RM11-08
	RM11-09
	RM11-10
	RM11-11
	RM11-12
	RM12-000
	RM12-001
	RM12-01
	RM12-02
	RM12-03
	RM12-04
	RM12-05
	RM12-06
	RM12-07
	RM12-08
	RM12-09
	RM13-000
	RM13-001
	RM13-002
	RM13A-01
	RM13A-02
	RM13A-03
	RM13A-04
	RM13A-05
	RM13A-06
	RM13A-07
	RM13A-08
	RM13A-09
	RM13A-10
	RM13A-11
	RM13A-12
	RM13A-13
	RM13A-14
	RM13A-15
	RM13A-16
	RM13A-17
	RM13A-18
	RM13A-19
	RM13A-20
	RM13A-21
	RM13A-22
	RM13A-23
	RM13A-24
	RM13A-25
	RM13A-26
	RM13B-001
	RM13B-002
	RM13B-003
	RM13B-01
	RM13B-02
	RM13B-03
	RM13B-04
	RM13B-05
	RM13B-06
	RM13B-07
	RM13B-08
	RM13B-09
	RM13B-10
	RM13B-11
	RM13B-12
	RM13B-13
	RM13B-14
	RM13B-15
	RM13B-16
	RM13B-17
	RM13B-18
	RM13B-19
	RM13B-20
	RM13B-21
	RM13B-22
	RM14-000
	RM14-001
	RM14-01
	RM14-02
	RM14-03
	RM14-04
	RM14-05
	RM14-06
	RM14-07
	RM14-08
	RM14-09
	RM14-10
	RM14-11
	RM14-12
	RM14-13
	RM14-14
	RM14-15
	RM14-16
	RM14-17
	RM14-18
	RM14-19
	RM14-20
	RM14-21
	RM14-22
	RM14-23
	RM14-24
	RM14-25
	RM14-26
	RM14-27
	RM14-28
	RM14-29
	RM14-30
	RM14-31
	RM14-32
	RM14-33
	RM14-34
	RM14-35
	RM14-36
	RM14-37
	RM14-38
	RM14-39
	RM14-40
	RM14-41
	RM14-42
	RM14-43
	RM14-44
	RM14-45
	RM14-46
	RM14-47
	RM14-48
	RM14-49
	RM14-50
	RM14-51
	RM14-52
	RM14-53
	RM14-54
	RM14-55
	RM14-56
	RM14-57
	RM14-58
	RM14-59
	RM14-60
	RM14-61
	RM14-62
	RM14-63
	RM14-64
	RM14-65
	RM14-66
	RM15
	RM16-01
	RM16-02
	RM16-03
	RM16-04
	RM16-05
	RM16-06
	RM16-07
	RM16-08
	RM16-09
	RM16-10
	RM16-11
	RM16-12
	RM16-13
	RM16-14
	RM16-15
	RM16-16
	RM16-17
	RM16-18
	RM16-19
	RM16-20
	RM16-21
	RM16-22
	RM16-23
	RM16-24
	RM16-25
	RM16-26
	RM16-27
	RM16-28
	RM16-29
	RM16-30
	RM16-31
	RM16-32
	RM16-33
	RM16-34
	RM16-35
	RM16-36
	RM16-37
	RM16-38
	RM16-39
	RM16-40
	RM16-41
	RM16-42
	RM16-43
	RM16-44
	RM16-45
	RM16-46
	RM16-47
	RM16-48
	RM16-49
	RM16-50

