PS 390 DOCUMENT SET

GRAPHICS TUTORIALS 8-16

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390, and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

GRAPHICS TUTORIALS

The tutorial sections in GTI-7 and GT8-16 contain an in-depth discussion of
PS 390 programming. After reading these sections initially, you may want to use
these volumes in conjunction with RM1-16 as a reference source to program your
own applications.

GT8-16 consists of sections which describe more advanced concepts of PS 390
graphics programming. Because it builds on fundamental information detailed in
GTI1-7, you should read those sections first. The following provides a capsule de-
scription of each section:

GT8 VIEWING OPERATIONS

This section describes how to look at a model from different viewpoints.
This includes moving your viewpoint to another location in the coordinate
system, choosing a perspective view, and specifying a viewing area.

GT9 CONDITIONAL REFERENCING

Conditional Referencing describes how detail can be added to or deleted
from a view on the screen.

GT10 TEXT MODELING

Text Modeling details how to create character strings, how to use com-
mands and functions to manipulate character strings, and how to create and
use different character fonts.

GT11 PICKING

Picking describes how to use the data tablet to activate a given action by
picking an object being displayed.

GT12 VIDEO OUTPUT CONTROL

This section describes how to control the video output of the PS 390 graph-
ics system, including how to select a background color, the configuration
and color of the screen cursor, a video timing format, and how to select
filters to implement antialiasing.

GT13 POLYGONAL RENDERING
This section describes how to define polygonal objects and how to perform
rendering operations, including cross sectioning, hidden-line removal, and
static shaded image rendering.

GT14 RASTER PROGRAMMING
Raster Programming describes the use of the PS 390 as a frame buffer for
displaying host-generated images.

GT15 SAMPLE PROGRAMS
This section contains sample programs illustrating various PS 390 program-
ming techniques.

GT16 GLOSSARY

This is a glossary of terminology specific to the PS 390.

GT8. VIEWING OPERATIONS
LOOKING AT THE MODEL

CONTENTS
INTRODUCTION . ..ttiiittttintneoseessosassosnssssssssonnns 1
OBJECTIVES ... ittt ititieesatontssnssnssanssnnses 2
PREREQUISITES ...t tiitiiitiiittntnneannsonsssnsonases 2
1. DEFINING ALINE OF SIGHTciiiiiitinnionnnnnnanas 3
1.1 Looking Straight Up or Straight Down 6
L.1.1 EXeICiSe ..vvviiuitiinerionnoeonoocsosnonnsonnnannnnnns 8
1.2 Using a 4x3 Matrix to Specify a Line of Sight 9
2. DEFINING AN ORTHOGRAPHIC WINDOW 9
2.1 Altering the Size of a Windowcciiviiiiininnrnnnn 11
2.1.1 EXercCiSecuivviiinueennnotosnoossnossoesossnssnnsons 12
2.2 Moving the Windowcciitiiiiiiniinnnrnnrennnonns 13
221 EXErCiSe «.vvvviiiniiiuinurnnreneeeneosssassonnsonnnnas 13
2.3 Specifying Window Depth: Depth Clipping 15
231 Exercise Iuiiiiiiiiiiienreennesseenneensnannans 16
232 EXErCiSe 2 .. ivtivriintinnieneonetsntosossnsonnssnsonns 16
2.4 Optimizing Depth Cueingiciiiiiiiiiiiiins, 16
241 Exercise 1ivuiinuiiniinrnneenaronersnosnosnnsnnns 17
2,42 EXErcise 2iiiiiiiiiteiiiittiitnttttettioniaaaaans 18
2.5 Using a 4x4 Matrix to Specify an Orthographic Window 18

3. DEFINING PERSPECTIVE WINDOWS0oht. 19

3.1 Using FIELD _OF_VIEW i tiititiiiniriennonnnnnnns 21
3.1.1 Exercise 1 iititiiiiienieoneeesssoeonosssosesannns 23
3.1.2 Exercise 2 ...ttt 24
3.1.3 Exercise 3 ... iiiiiiiiiiieenostoesosnnsanassssosnonnns 24
3.2 Using the EYE BACK Commandccoieeiivennnnnns 25
32,1 Exercise 1ottt nsnnnssnsonnes 29
322 EXercise 2 ...ttt rrresoontotentttesesseenns 30
3.3 Using a 4x4 Matrix to Specify a Perspective Window 33
4. SPECIFYING A VIEWPORTcciiiitiiiiiiininnennnns 33
4.1 Dynamic Viewport Operations oo, 34
4.2 Specifying a Dynamic Viewportccciiviiin.. 34
421 Exercise 1iitiiiiiiiiiiirenensnensesansannanns 35
4.2.2 EXErcCise 2 ... iiviiuetieinnonrosstosossonasssssoasnnns 35
4.2.3 Exercise 3 ...ttt i i e i 36
4.2.4 Exercise 4iiuitiiiiiiiiettiinrioierastotanessonns 37
4.2.5 ExXercise 5 ...ttt ittt 38
4.3 Dynamic Viewport Considerations, 39
4.3.1 Overriding the Default Viewport 40
4.4 Operations in the Static Viewportt 41
4.5 Specifying a Static Viewportoiiiiiiiiiia., 41
4.6 Clearing Viewports to Static or Dynamic 42
4.6.1 Clearing to Staticvviiieiiirrieronnerosnorsonnns 42
4.6.2 Clearing to Dynamicciiitttiivenrnnnnoensesnsns 42
4.7 Displaying Multiple Viewportsc0viiiiiiinn. 43
N O (5 3 1] 43
4.8 Using Nonsquare Viewportscciitiieinneenncnns 44
4.8.1 Exercise 1c.iiuitiiiiiiiiieiineiinnneiennneeannns 45
4.8.2 EXErcCise 2iviiuiiiiiiiiinnenneineeneesnecnnennnenns 46
4.9 Setting an Intensity Range for a Window

in the Dynamic Viewportcoivtiiiiiiiniiinneeen. 47
5. VIEWING ATTRIBUTES0itttitinninnereeneacenasnnns 48
5.1 Setting Intensitycciiiiiiiiiernrnnenienscennnns 48
52 Setting Colorc.iiiiiiiiiiitiroerneenssssssssosssnss 50
S2.1 EXeICISe . vvvvitiiiiinnenneentrineensonsoeneenssnnnenss 51
6. VIEWING SUMMARYiittiiritiennorennnorsnosesonnns 52

ii

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-3.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.

Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.
Figure 8-16.
Figure 8-17.
Figure 8-18.
Figure 8-19.
Figure 8-20.
Figure 8-21.
Figure 8-22.
Figure 8-23.
Figure 8-24.
Figure 8-25.
Figure 8-26.
Figure 8-27.
Figure 8-28.
Figure 8-29.
Figure 8-30.
Figure 8-31.
Figure 8-32.
Figure 8-33.
Figure 8-34.
Figure 8-35.

ILLUSTRATIONS

LOOK NOe ..t iiiiiiiiiitiiinneenneeneasncansoennennnsns 3
Default LOOK ittiiiiiiiiitiitirntinrenneennennnes 4
L 4
Car From Left Sidettt 5
LOOK Transformation Sequencecccicvvieeenennn. 6
Line of Sight Collinear with UP Direction 7
LOOKINg DOWN ... oviiitiiiiiiiiititnnnneennnsesannnnsons 8
WINDOW NOAE « oo oot iiiiiitiiiiiettieesteeeanennesnnenns 10
Default WINDOW iiiiiiiittiittrnnnnnnnnnnnsoessoens 10
Clipped View of Carciiiiiiiiiiiiiiiiirosnnnnnnnns 11
Carin Large Windowciiiiiiiiniieenneonnnnnnnons 12
Display Structure for Large Windowcoivvuuinnn 12
Relocated Windowcciiiiiinnnneenererseeeenennnans 13
Interrelation of LOOK and WINDOW Transformations 14
Set Depth Clipping Display Structurecc0veuenen. 15
Intensity as a Function of Z Location....................... 17
Orthographic Window Compared to Perspective Window 19
Angles Between Opposing Sides of the Pyramid 20
Display Structure With FIELD-OF-VIEW Node 21
Setting Z Boundaries for Maximum Depth Cueing 22
Using FIELD_OF_VIEW with LOOK 23
Setting Front and Back Boundaries 24
Relative Room Coordinatescovvivitiiieennnnnnnns 26
Line of Sight for LOOK and EYEBACK 27
Specifying the Viewing Anglecoiiiiiiiinnenn. 28
Moving Eyepoint Back and Leftot 28
Boundaries Using the EYE BACK Command 29
EYEBACK View of Carsovveiiiniiniineeennnnnonnns 31
EYE BACK View of Car2oiiiiuiinnrnnrsnnnonannns 32
Current Viewport Dimensionsc.covviiiiiiinenneenns 34
Port2 - Upper Right Quadrantoiiuinnn. 36
Display structure for Port2ccooiiiiiiiiiiiinnenn. 36
Port3 and Associated Display Structure 37
Display Structure for Full View 38
Port4 and Associated Display Structure 39

iii

Figure 8-36. PS 390 Displaycciititiiiiitiiiiiiiiinieinnnionnnnns 40

Figure 8-37. Dimensions of a Nonsquare Current Viewport - 44
Figure 8-38. Square Window Mapped to a Nonsquare Viewport 46
Figure 8-39. Nonsquare Window Mapped to a Nonsquare Viewport 47
Figure 8-40. Color Wheeliiiiiiiitinriinnroneronronessonennss 50

v

Section GT8
Viewing Operations
Looking At The Model

Introduction

Once you have created a model and displayed it on the screen, you may want to
look at it from different viewpoints. One way to do this is to manipulate the model
into different positions. You have already learned how to do this using modeling
transformations—rotations and translations. Another way to change your view is to
keep the model in place and essentially move yourself as “viewer” about the
model. This is done on the PS 390 using viewing transformations.

There are two basic types of viewing transformations. The first type establishes the
viewer’s position in the world coordinate system and the direction in which he is
looking. This is known as specifying a line of sight. The second type of viewing
transformation lets you specify how much of the world coordinate system will ap-
pear in your view. This is done by defining the boundaries of a viewing area or
window. Objects within a window may appear in either parallel projection (an
orthographic view) or in perspective projection.

Parallel projection creates a view in which the relative size of an object, or parts of
an object, is maintained as specified in the original object definition, no matter
where the object is located in Z. Perspective projection causes a distant object or
parts of an object to diminish in size as they recede into the distance toward posi-
tive Z.

In both parallel and perspective views, clipping is used to eliminate objects or parts
of objects that lie outside the boundaries of the window. In both, the illusion of
depth can be enhanced using depth cueing. Depth cueing makes objects or parts of
objects dimmer as they recede into the distance.

In addition to the two types of viewing transformations, you can specify a viewport.
A viewport is a portion of the PS 390 display in which the window is displayed.
Because the PS 390 allows the display of both antialiased wireframe models and
shaded images on the same raster screen, it is necessary to distinguish between
how and where each type of model is displayed.

Viewing Operations GT8-1

There are two types of viewports: the dynamic viewport and the static viewport.
Wireframe models are displayed and manipulated in the dynamic viewport, and
hidden-line images or shaded renderings are displayed in the static viewport. An
unlimited number and combination of dynamic and static viewports are available
within the usable screen space, letting you display different views of the same
model or view different models simultaneously. Viewports can be either full-screen
or smaller portions of the screen.

The last set of viewing operations you can specify is called viewing attributes.
These allow you to set an intensity range for displayed data in the dynamic view-
port, and set color for displayed objects in the dynamic viewport.

When you turn on the PS 390, you are automatically provided with a default line of
sight (down the positive Z axis from the origin), a window (orthographic, with
dimensions from -1 to 1 in X and Y; from 107" to 10*** in Z), and a dynamic
viewport (which is full screen).

Most of the PS 390 viewing operations—viewing transformations, dynamic view-
ports, and viewing attributes—are represented in a model’s display structure by
operation nodes. Specifying a static viewport, however, is done through the use of
the initial function instance SHADINGENVIRONMENT, and does not create a
node in the display structure.

Objectives

In this section you will learn how to create various views of the world coor-
dinate system. To do this, you should know how to:

e Define a line of sight.

e Define orthographic windows.

o Define perspective windows.

e Specify a dynamic or static viewport.

e Set an intensity range for the dynamic viewport.
e Set color in the dynamic viewport.

Prerequisites

Before reading this section, you need to know basic graphics concepts, how
data structuring is done in the PS 390, and how modeling transformations
work on data.

GT8-2 Graphics Tutorials

This section makes use of tutorial demonstrations. (Refer to GT3 PS 390
Tutorial Demonstrations.)

To do the exercises in this section, put the PS 390 in command mode.

CTRL/LINE_LOCAL (PS 300-Style Keyboard)
CTRL/CMND or ALT/CMND (PS 390-Style Keyboard)

1. Defining a Line of Sight

There are two types of viewing transformations that alter the way in which a
model is viewed. The first kind of transformation defines a line of sight.

In the real world, you establish a line of sight by placing yourself in a
particular position relative to the object you are viewing. The line of sight is
the invisible straight line between the point you are looking from and the
point you are looking at. Changing either one of these points gives you a
different line of sight.

The PS 390 simulates this relative positioning with the LOOK command.
The LOOK command lets you see your model from any point in the world
coordinate system.

The LOOK command creates a 4x3 matrix operation node in the model’s
display structure. For a LOOK transformation to work correctly, it should
be placed above all modeling transformations (ROTATE, TRANSLATE,
SCALE) in the structure (Figure 8-1).

N
Modeling
Transformations

_/

Data

U390184

Figure 8-1. LOOK Node

Viewing Operations GT8-3

Note that the operation node created by LOOK can be an interactive node,
with values for the AT and FROM points being changed via a function
network (F:LOOKAT and F:LOOKFROM).

The default line of sight starts at the origin and points along the positive Z
axis. The viewer looks FROM 0,0,0, AT 0,0,1 (Figure 8-2).

Line of
Sight +Z

At (0,0,1)
-X X

/ From (0,0,0)

Figure 8-2. Default LOOK

U390185

Display the Car. Notice that the orientation of the car (default line of sight)
is as shown in Figure 8-3.

Enter:

DISPLAY Car;

U390214

Figure 8-3. Car

GTS8-4 Graphics Tutorials

To see the other side of the car, specify a LOOK (Left View) with the
FROM point on the positive Z axis (0,0,.1) looking AT the origin (0,0,0).
Apply that line of sight to Car. Then DISPLAY Left View.

Enter:
Left_View := LOOK FROM 0,0,.1 AT 0,0,0 APPLIED TO Car;
REMOVE Car;

DISPLAY Left_View;

You should now see the car from the left side as shown in Figure 8-4.

U390215

Figure 8-4. Car From Left Side

To create Left_View, the PS 390 first translates all points in the world coor-
dinate system to put the FROM point (0,0,.1) at the origin. Then all points
in the world coordinate system are rotated around the FROM point (the
origin) until the AT point is on the positive Z axis. This orients the car
correctly for the LOOK specified in Left View, as shown in Figure 8-5.
(Note that the translation shown in Figure 8-5 is exaggerated for clarity.)

Viewing Operations GT8-5

+Y +Y +Y

+Z At 0;0,-1

From 0,0,.1
From 0,0,0

Original World World Coordinate World Coordinate
Coordinate System Translated System Rotated to
System 0,0,-.1 Place AT on +Z Axis

U3980216

Figure 8-5. LOOK Transformation Sequence

1.1 Looking Straight Up or Straight Down

For any LOOK, an UP direction is specified by the system if you do not
specify one yourself. The default UP direction is derived by taking the vec-
tor that defines the AT point (X,Y,Z) and adding 1 to the Y component.
The resulting vector is placed in the positive half of the Y/Z plane, thereby
defining UP. The rotation for UP occurs after the translation that puts the
FROM point on the origin (0,0,0) and the rotations that put the AT point on
the positive Z axis.

For example, if the FROM point in a LOOK is 0,1,0 and the AT point is
1,1,1, the default UP point defining the Y/Z plane would be 1,2,1.

If the FROM point of a LOOK is directly above or below the AT point, the
system has to define an alternate UP direction. What would normally be the
UP direction is now collinear with the line of sight (Figure 8-6).

GT8-6 Graphics Tutorials

From Line of Sight Parallel to,
(0,3,0) or Collinear with, Y Axis

0,3,0 7

<

Default

0,1,0) |¢ P

U390186

Figure 8-6. Line of Sight Collinear with UP Direction

In such cases the system takes the vector that is the AT point, adds one to
its Z component, and rotates the world to place that point in the positive
half of the Y/Z plane. To demonstrate this, enter:

REMOVE Left View;
Top_View := LOOK FROM O0,.1,0 AT 0,0,0 APPLIED TO Car;

DISPLAY Top_View;

The direction that is positive Z in the original model of Car is now up in
Top_View (Figure 8-7). That direction was derived by adding 1 to the Z
component of the AT vector in Top_View, and using that point (0,0,1) to
define UP as shown in Figure 8-7. (Note that in Figure 8-7 the distance
from the FROM point to the AT point is exaggerated for clarity.)

Viewing Operations GT8-7

Look From

o-1v

Up 0,0,1

Defined by System Look From

0,

~

Look At /
0,0,0
90°
in
X

U390217

Figure 8-7. LOOKing Down

UP can be specified in a LOOK command even if the line of sight does not
define a straight-up or straight-down view. Redefine Top_View to change
the UP direction to what is positive X in the original model of Car by enter-
ing:

Top_View := LOOK FROM 0,.1,0 AT 0,0,0 UP 1,0,0
APPLIED TO Car;

The view is reoriented to place the up point (1,0,0) in the positive half of
the Y/Z plane (up) in Top_View.

REMOVE Top_View;
1.1.1 Exercise

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the LOOK
demonstration program.

GT8-8 Graphics Tutorials

1.2 Using a 4x3 Matrix to Specify a Line of Sight

You can build your own 4x3 matrix in lieu of the one created by the LOOK
command by using the MATRIX 4x3 command:

Name := MATRIX_4X3
mll, ml2,ml3
m21,m22,m23
m31,m32,m33
m41l,m42,m43 APPLIED TO Another_ Name;

(For more details, refer to section RM1 Command Summary.)

2. Defining An Orthographic Window

The second type of viewing transformation defines a viewing area—a por-
tion of the world coordinate system that is displayed on the screen. This
section introduces the first of three possible ways to define a viewing area,
using the WINDOW command.

The WINDOW command allows you to specify a three dimensional viewing
area (right rectangular prism) in which objects may be viewed. Once a win-
dow transformation is applied, all points in the world coordinate system is
translated so that the central axis of the window coincides with the positive
Z axis (the line of sight).

Objects inside a window appear in orthographic or parallel projection. That
is, far objects (relative to the front window plane) do not appear to be
smaller than near objects, so the location of an object in Z has no effect on
its size on the screen. Perspective does not exist. Farther away parts of
objects will appear to be dimmer in the default view. This is called depth
cueing.

The WINDOW transformation is a 4x4 matrix operation represented by an
operation node in the model’s display structure. In the PS 390, a 4x4 matrix
overrides all transformations in effect when the matrix is encountered. A
4x4 matrix must be the topmost matrix operation node along any branch in
a display structure. If it is not, any operations above it will have no effect.
Figure 8-8 illustrates this rule.

Viewing Operations GT8-9

Window

All Other Transformations

Data
u390187

Figure 8-8. WINDOW Node

Just as there is a default LOOK imposed by the PS 390, there is also a
default window. The default window is an orthographic window that extends
from -1 to 1 in the X and Y dimensions, and from 10 to 10**in Z. Any
object that lies within this viewing area (Figure 8-9) will appear on the
screen when displayed. Objects outside the window in Z will be displayed
unless depth clipping is enabled. Refer to section 2.3.

P d V4
Y
Q N
I /
i
7 rd
| 7
P) S //' 1015
7 1| f e
A Za>
0,0,0, -~
X -3~ A" *
{
/ =
P ' 710718
ya : 0
¢ U390066

Figure 8-9. Default WINDOW

To see an object, it must be located within the X and Y boundaries of the
viewing window. Any object outside these boundaries is removed from view
via clipping.

GT8-10 Graphics Tutorials

If a part of a model is not entirely within the X and Y boundaries of a
window, only a portion of the model appears. For example, the following
line of sight effectively moves the object so that part of the Car falls outside
the viewing area:

Another_View := LOOK AT 1,0,0 FROM 1,0,-.1
APPLIED TO Car;

The part of the Car that appears on the screen is inside the boundaries of
the default window. The part of the Car that is clipped falls outside the
default window boundaries in X (Figure 8-10).

X and Y Window Boundaries

U390185

Figure 8-10. Clipped View of Car

2.1 Altering the Size of a Window

The X, Y, and Z boundaries of the default window may be changed to
affect window size. Boundaries may be changed using the WINDOW com-
mand.

The size of the window influences the apparent size of objects being viewed.
If the window is enlarged, objects will appear smaller; if the window size is
reduced, objects will appear larger. Altering window size may cause an ob-
ject to appear so large that it is completely or partially clipped from view.

For example, the default window for Another_View clips off part of Car.
You can redefine a window for Another_View that does not clip any part of
the car.

Viewing Operations GT8-11

2.1.1 Exercise

Define Another_View of Car as shown in the previous example and display
Another View to see the effect (Figure 8-10). Now enlarge the window and
apply the new window specification to the LOOK called Another_View.

Enter:

Large_window := WINDOW X=-2:2 Y=-2:2
APPLIED TO Another_View;

DISPLAY Large_Window;

REMOVE Another_View;

=

U390189
Figure 8-11. Car in Large Window

All of the car appears in Large Window (Figure 8-11). The car appears
smaller than it did in Another_View because Large_Window encompasses
more area than the default window used in Another View.

REMOVE Large_Window;

The display structure created by the above sequence of commands is shown
in Figure 8-12.

Large_Window WINDOW_Command

Another_View LOOK AT Command

QOC

Car (Vector List Command)
U390190

Figure 8-12. Display Structure for Large Window

GT8-12 Graphics Tutorials

2.2 Moving the Window

Another way to define a window for Another_View that does not clip any
part of the car is to move the window to encompass Car. Moving a window
causes the line of sight to be shifted to a new, parallel line of sight.

If an orthographic window is defined as shown in Figure 8-13 so that its
center is not coincident with the Z axis, the PS 390 translates everything in
the world coordinate system to center the window about the Z axis. You do
not need to use a LOOK to move the line of sight to the Z axis.

rd rd
3,-3 3,-3
rd
//
X Axis
0,0
7 Vd
-3,-3 / 3,-3
P4 7~
Initial 9-5F 15.-5
Line of ! !
Sight ad
11,-7
7 -~
9,-11 / 15,-11
New
Line of
Sight
U390191
Y Axis

Figure 8-13. Relocated Window

2.2.1 Exercise

Define a “moved” window the same size as the default window (2 units in x
by 2 units in y), but place it so that the car in Another_View will be in it:

DISPLAY Another_View;

Move_Window := WINDOW X=-2:0 Y=-1:1
APPLIED TO Another_View;

DISPLAY Move_Window;

REMOVE Another_View;

Viewing Operations GT8-13

Move Window clips no part of the car.

REMOVE Move_Window;

Figure 8-14 shows the sequence of transformations that makes
Move Window encompass the car.

+Y

From 1,0,-.1 From
0,0,0

FROM AT
Specification of .

. Car Clipped
Another_View in Default Window

Move_Window U390218
A Window Defined
Around Car

(no clipping)

Figure 8-14. Interrelation of LOOK and WINDOW Transformations

GT8-14 Graphics Tutorials

2.3 Specifying Window Depth: Depth Clipping

So far you have redefined the X and Y dimensions of windows. The Z
dimension of all the windows specified up to now has defaulted to 10 for
the front boundary and to 10** for the back boundary. In this section, you
will specify not only the X and Y boundaries of an orthographic window but
the Z boundaries as well. The Z boundaries are specified as part of the
WINDOW command.

The PS 390 automatically clips the top, bottom, right side, and left side of
the window at the X and Y boundaries. However, clipping at the Z bounda-
ries, known as depth clipping, does not automatically happen when you
define Z boundaries for a displayed window. Portions of an object that fall
in front of or in back of the Z boundaries are not clipped until depth clip-
ping is enabled. Depth clipping is enabled by using the SET DEPTH CLIP-
PING command.

In an orthographic window, depth clipping can occur anywhere in positive
and negative Z.

The SET DEPTH CLIPPING command is an operation node in the display
structure. The node can be placed above the 4x4 WINDOW matrix because
depth clipping operations are not matrix transformations (they are not over-
ridden by a 4x4 matrix).

Depth Clipping Node

Window Node

All Other Transformations

Data Node

U390192

Figure 8-15. Set Depth Clipping Display Structure

Viewing Operations GT8-15

2.3.1 Exercise 1

Include Z boundaries in an orthographic window by entering:

Change_Z := WINDOW =-1:1 Y=-1:1 FRONT=3 BACK=5
APPLIED TO Car;

DISPLAY Change_Z;

The X and Y dimensions of Change Z are the same as in the default win-
dow, but the Z dimensions define front and back boundaries at 3 and 5.
Since the car extends from about -1 to about 1 in Z, none of it falls within
the Z boundaries of Change Z. However, you still see the car because
depth clipping (set to OFF in default mode) is not in effect.

2.3.2 Exercise 2

To see only what is in the window, in this case from 3 to 5 in Z, enable
depth clipping by entering:

REMOVE Change_2Z;
Z_Clip := SET DEPTH_CLIPPING ON APPLIED TO Change Z;

DISPLAY Z_Clip;

Now nothing appears on. the screen because the car is outside the the Z
dimensions of the window. The entire car has been clipped from view.

REMOVE Z_Clip;

2.4 Optimizing Depth Cueing

One of the ways the PS 390 gives the illusion of depth to an object is to vary
the intensity between parts of the object that are near and those that are
farther away. Near portions are brighter; portions farther away are gradu-
ally dimmed. This is called depth cueing. Refer to Figure 8-16.

The brightest intensity occurs at the front Z boundary (or clipping plane)
and the dimmest intensity occurs at the back Z boundary. So maximum
contrast in depth cueing is achieved when the Z boundaries are set close to
the object in the window.

GT8-16 Graphics Tutorials

With depth clipping on, data between the eye and the front clipping plane
will be clipped, data between the front clipping plane and back clipping
plane will appear with an intensity gradient, and data behind the back clip-

ping plane will be clipped.

With depth clipping off, data between the eye and front clipping plane will
appear at full intensity, data between the front clipping plane and back
clipping plane will appear with an intensity gradient, and data behind the

back clipping plane will appear at minimum intensity.

B XX Mg

7
7

Front Boundary
and Preceding

I'4

e

s Back Boundary and
s beyond - Minimum
s Intensity

7
//\ Brightness Inverse
Relationship to Z Value

U390193

Maximum Intensity

Figure 8-16. Intensity as a Function of Z Location

2.4.1 Exercise 1

Change the Z boundaries of the default WINDOW to see a change in depth
cueing for the Car. First display the sports car in the default WINDOW,
with Z boundaries at 10 ** and 10*'°. To make this easier to see, first rotate

the car.
Rot_Car

DISPLAY Rot_Car;

Viewing Operations

:= ROTATE IN Y 110 APPLIED TO Car;

GT8-17

Depth cueing is apparent enough to make it difficult to see the back of the
car. Now close in the Z boundaries around the car and display the new
window.

Close := WINDOW =—1:1 Y=-1:1 FRONT=-.5 BACK=5
APPLIED TO Rot_Car;

DISPLAY Close;

In Close, the front Z boundary is placed in negative Z (a placement that is
legal only for orthographic windows).

REMOVE Close;

REMOVE Rot_Car;

2.4.2 Exercise 2

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the WINDOW
demonstration program.

2.5 Using a 4x4 Matrix to Specify an Orthographic Window

You can build your own 4x4 matrix in lieu of the one created by the WIN-
DOW command by using the following MATRIX 4x4 command below.
(The operation node this creates should be placed above all other matrix
operations in a display structure branch, because a current matrix is over-
ridden whenever a 4x4 matrix is encountered.)

Name := MATRIX_4X4
mll,ml2,ml3,ml4
mll,mi2,ml13,ml4
mll,ml2,ml13,ml4
mll,mi2,m13,ml4

APPLIED TO Another Name;

(For more details, refer to Section RMI Command Summary.)

GT8-18 Graphics Tutorials

3. Defining Perspective Windows

The orthographic window is one of three possible ways to define a viewing
area. With the orthographic window, the illusion of depth is created only by
depth cueing.

The two other ways to define a viewing area employ perspective as well as
depth cueing. In a perspective view, lines that go back from your eye point
appear to be converging. So objects viewed in a perspective window appear
smaller as they recede into the distance, further enhancing the illusion of
depth and realism. The PS 390 defines perspective windows two ways: us-
ing the FIELD_OF_VIEW command and using the EYE BACK command.

Perspective windows are not box-shaped like orthographic windows. They
are shaped like a pyramid, with your eye at the apex, extending into world
coordinate space. The section of the pyramid in which objects are visible,
called a frustum, is defined using front and back boundaries.

Figure 8-17 shows how a perspective window differs from an orthographic
window:

Back

“d

Orthographic Window Perspective Window

Front

U390914

Figure 8-17. Orthographic Window Compared to Perspective Window

Viewing Operations GT8-19

In a perspective window, the X,Y size of the front and back boundaries is
not specified directly. Boundary size is determined by two factors.

The first factor is the size of the viewing angle—the angle between opposing
sides of the viewing pyramid. As the viewing angle widens, the frustum of
view encompasses more and more of the world coordinate system. So the
wider the angle, the smaller an object appears relative to the viewing area.
Also, since the angle opens equally in height and in width, the aspect ratio
of perspective windows is always 1, width equal to height.

The second factor determining the size of a perspective window is the dis-
tance from the apex of the viewing pyramid (located at 0,0,0) to the front
and back boundaries of the frustum and the distance between the front and
back boundaries. See Figure 8-18.

Back Back
Back
//
- o
/X ==
&z ’\ = Front
Front Front U390915

Figure 8-18. Angles Between Opposing Sides of the Pyramid

Unlike in an orthographic window, the front boundary of a perspective
window cannot be placed behind your eyepoint (behind the LOOK FROM

location). In perspective views, the front boundary cannot be at a location
behind 10 in Z.

GT8-20 Graphics Tutorials

3.1 Using FIELD OF_VIEW

The easiest way to define a perspective viewing area is using the
FIELD_OF_VIEW command. A field of view is specified in terms of the
viewing angle and the distance of the front and back boundaries from the
eyepoint. This command imposes a perspective view on objects within the
frustum of vision (the perspective window) it creates.

A field of view is like an orthographic window in that depth clipping does
not occur in a field of view unless you set depth clipping on. And also, the
intensity for depth cueing in a field of view is brightest at the front bound-
ary and dimmest at the back boundary.

Lastly, like the orthographic window transformation, the field of view trans-
formation is performed by a 4x4 matrix. This matrix is represented by an
operation node, which must be above all other matrix transformation nodes
in a display structure (see Figure 8-19).

Field of View

Look

All Other Transformations

Data

U390196

Figure 8-19. Display Structure With FIELD-OF-VIEW Node

For maximum depth cueing effects in a field of view, you must set the front
and back boundaries close to the object. To do this, determine the distance
from the eyepoint to the object being viewed and also how large the object
is. If you place the AT point in the center of a large object and then position
the front and back boundaries too close to it, parts of that object may be
clipped from view.

Viewing Operations GT8-21

If no LOOK transformation has been applied to the view, the distance to the
object is its location along the positive Z axis—the default line of sight. If
you have defined a line of sight with a LOOK transformation, you must
calculate the distance between the AT and FROM points so you will know
where to place the front and back boundaries. To calculate this distance,
find the differences between the X, Y, and Z values of the FROM point and
the AT point, square those differences, add them, and find the square root
of that sum.

For example, if you are looking from (-2,2,0) at a one-unit radius sphere
centered at (3,-2,-1), the FROM/AT distance is the square root of: 5
squared, plus 4 squared, plus 1 squared, or 6.48. For maximum depth
cueing, place the near boundary (zmin) at 5.48 and the zmax boundary at
7.48 (see Figure 8-20).

Y
From
-2,2,0
At
/ 3,-2,-1
X
Zmin=5.48
Zmax=7.48
u380197

Figure 8-20. Setting Z Boundaries for Maximum Depth Cueing

The result of the LOOK command is, of course, to place FROM at 0,0,0 and
AT on the positive Z axis; thus, the Zmax, Zmin designations.

GT8-22 Graphics Tutorials

3.1.1 Exercise 1

Position the sports car in a perspective window by specifying a
FIELD _OF_VIEW and position the car within the frustum of vision using a
LOOK command.

Perspective := FIELD_OF_VIEW 28 APPLIED TO Look;

Look := LOOK AT 0,0,0 FROM 0,0,-5
APPLIED TO Car;

DISPLAY Perspective;

No front or back (Z) boundaries are specified. Because their default value is
107 and 10***, the car appears to be dim.

The 28 in the command is the number of degrees in the angle between
opposing sides of the viewing pyramid. Twenty-eight degrees is approxi-
mately the actual viewing angle from your eye to the edges of the PS 390
screen at a comfortable viewing distance.

The LOOK (named Look) has the effect of translating the car forward §
degrees in Z and placing the FROM point at the same location as the apex
of the viewing pyramid (0,0,0). The Z axis runs down the center of the
pyramid (Figure 8-21).

Line of Sight e 4 15
X | Back Boundary 10'® in Z

Look a4 1. ——
from ag
0,0,0

Front Boundary 10 inz U390198

Figure 8-21. Using FIELD _OF_VIEW with LOOK

Viewing Operations GT8-23

3.1.2 Exercise 2

Change Perspective to specify different front and back boundaries by
entering: .

Perspective := FIELD_OF_VIEW 28
FRONT = 4.5
BACK = 7
APPLIED TO Look;

Since the LOOK (named Look) moves the car forward so that it is centered
around 5 in Z, placing the front and back boundaries at 4.5 and 7 in Per-
spective closes the boundaries around Car, maximizing depth cueing. The
part of the car nearest to the front boundary appears brighter. Figure 8-22
shows the car in the frustum of vision just created.

Viewing Area
(Frustum of
Vision) Back Boundary
X/Y Plane at Z = 7

P _~——" Front Boundary
— X/Y Plane at Z = 4.5

“= 28-Degree
Viewing Area U390199

Figure 8-22. Setting Front and Back Boundaries

3.1.3 Exercise 3

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the
FIELD_OF_VIEW demonstration program. Before you begin, remove Per-
spective. Enter:

REMOVE Perspective;

GT8-24 Graphics Tutorials

3.2 Using the EYE BACK Command

In addition to FIELD_OF_VIEW, there is another command that creates a
perspective window. Like FIELD OF_VIEW, the EYE BACK command
specifies a pyramid-shaped viewing area with front and back clipping
planes.

In addition, it allows you to move the eyepoint back from, above, below,
and to the side of screen center. This also moves the line of sight estab-
lished by the LOOK transformation, keeping the line of sight parallel to a
line straight through the center of the screen (where most lines of sight are
situated). This effect means that you may not see what you are LOOKing
AT. The EYE BACK command is the only viewing command that has the
effect of moving the line of sight, established by the LOOK transformation,
somewhere other than directly through the center of the screen.

Imagine yourself in a room looking out through a porthole. The EYE BACK
command simulates a view from any position in the room through this port-
hole and into the world coordinate system. Distance and location through
the porthole (that is, FRONT and BACK BOUNDARIES) are measured in
the usual PS 390 coordinate system units. Inside the room, distance is
measured in relative room coordinates. These relative room coordinates are
used to create the proper proportions for the viewing pyramid in the world
coordinate system.

What you see—the viewing area—is determined by the line of sight estab-
lished in the LOOK transformation, the size of the porthole, your distance
back from it, and your position in the room with respect to its center. The
closer you are to the porthole, the larger the viewing area. The EYE BACK
command allows you to adjust how far back and/or off-center you are from
the center of the porthole. As with all windowing commands, you may also
specify front and back boundaries.

From where you stand in the room, distance and screen width are specified
in terms of relative room coordinates. These coordinates are important in
terms of the ratios they establish, which determine the viewing angle. For
example, in Figure 8-23 the ratio of screen width to eyeback distance is 2:2.
A screen width of 4 and eyeback distance of 4 would establish the same
ratio (2/2=1; 4/4=1) and so the same view. (Figure 8-23).

Viewing Operations GT8-25

Relative Room
Coordinates / PS 390 World Coordinates

/’,——-Gl
_—d — ! Screen Width = 2——
Eye Back 2 \

/ PS 390 World Coordinates
Relative Room
Coordinates

}Screen Width = 4 =——

Eye Back 4

U390200

Figure 8-23. Relative Room Coordinates

The line of sight established by the LOOK transformation may not point at
what you are looking at when you use the EYE BACK transformation. The
eye transformation creates its own sightline relative to the line of sight es-
tablished by the LOOK transformation. As shown in Figure 8-24, the LOOK
transformation establishes a line of sight to the viewed object. With EYE
BACK, however, the new line of sight may be different. So, you may not see
what you are “LOOKing AT.” (You may be LOOKing AT Car 1, but see
Car 2.)

GT8-26 Graphics Tutorials

Visible Area

Look

Original—___
Line of
Sight

Front Boundary—
\

Eyepoint Moved '

Figure 8-24. Line of Sight for LOOK and EYE BACK

Left 10 U390201

In the simplest instance of using the EYE BACK command, you specify only
the distance from the screen (back) and the screen width (wide). The ratio
of these two determines how much of the world coordinate system is view-
able (viewing angle) and the orientation of the viewing pyramid. (This is
effectively another way to specify a view that can be specified using
FIELD_OF_VIEW.) In such a view, the line of sight established by the
LOOK transformation would aim through the center of the screen toward
the AT point.

In part A of Figure 8-25, at least part of all four cubes appears in the
viewing area. When the eyepoint is moved further back in part B, only two
of the cubes are viewable, but they appear to be larger than in part A.

Viewing Operations GT8-27

GT8-28

3 4 1y 2 3, 4
\\ // \ /
N\ // \. /
AN .’ \)
\ ” 2 units wide L 2 units wide
N \ !
\ /
1 unit back \ |
\ |
\]
Eye Back 1 from Screen Area 2 Wide \ /
View A

4 units back /

Eye Back 4 from Screen Area 2 Wide

View B U390202

Figure 8-25. Specifying the Viewing Angle

Moving the eyepoint so that it is not directly over the center of the screen,
results in a different portion of the world coordinate system coming into
view. For example, in Figure 8-26, moving the eyepoint back 1 unit and left

2 units has shifted the viewing so that no part of cube 1 is visible and most
of cube 4 has come into view.

Back
| ~
12 3 4 -7
| _-
[e
| ¥ -
ATh A PR
"Look" N > -
Line of ///\ Front
Sight -
/ ” Eye »
Line of
Sight
FROM

U390203

Figure 8-26. Moving Eyepoint Back and Left

Graphics Tutorials

As with FIELD_OF_VIEW, you must set boundaries correctly with the EYE
BACK command to have an object appear. As expected, if depth clipping is
not in effect, any object in front of the front boundary appears at full inten-
sity; anything between boundaries diminishes in brightness as it approaches
the back boundary; and everything behind the back boundary appears at
minimum brightness.

As with the FIELD_OF_VIEW, boundaries are specified in world coordinate
system units measured from 107 in Z (the center of the screen after the
LOOK transformation is applied).

Note that with the EYE BACK command, Z boundaries remain orthogonal
to the Z axis. For example, in Part A of Figure 8-27, though the eyepoint
has been moved farther back, the boundary is still placed 6 units from the
original FROM point (0,0,0) at the center of the screen. This is also the case
in Part B, where the eyepoint has been moved back and to the left. Even
when EYE BACK changes the line of sight, the boundaries do not shift.
Instead, the viewing area, the frustum of vision, becomes skewed.

N 10 Back Boundary /

Vg

[y
‘\ / ” LOOk ”

\ / Line of
\ / ,
\§ Front Boundarx/ Sight
\ 7
\ /
\ /
__/2 wide

\
\N A Left 2 _///
(Back 2 Back 3(

Part A Part B
U390204

Figure 8-27. Boundaries Using the EYE BACK Command

3.2.1 Exercise 1

Run the LOOK demonstration program. (Refer to Section GT3 PS 390
Tutorial Demonstrations.)

Viewing Operations GT8-29

3.2.2 Exercise 2

Create instances of Car to the right and the left of the original sports car
and group all three instances under the name Three Cars.

Car2 := TRANSLATE BY 3,0,0 APPLIED TO Car;
Car3 := TRANSLATE BY -3,0,0 APPLIED TO Car;
Three_Cars := INSTANCE OF Car, Car2, Car3;

View Three_Cars using the LOOK and EYE BACK commands. First, estab-
lish a line of sight (Look1).

Lookl := LOOK AT 0,0,0 FROM 0,0,-10
APPLIED TO Three_Cars;

This places the three cars 10 units away from your eyepoint. Now apply an
EYE BACK command to view the cars through a porthole 1 room unit wide
from a distance of 2 room units.

Notice the following three commands include values for the front and back
boundaries. The sports cars have been placed in front of the front boundary
(depth clipping is off by default) to appear at maximum intensity.

Eye_Locate := EYE
BACK 2
RIGHT O {default}
UP O {default}
SCREEN 1 WIDE
FRONT = 9.5
BACK = 10.5
THEN Lookl;

DISPLAY Eye_Locate;

You can see the original Car, but Car2 and Car3 are partially clipped on the
right and the left sides, respectively, of the window. See Figure 8-28.

GT8-30 Graphics Tutorials

Visible Area

U390205

\' Eyepoint

Figure 8-28. EYE BACK View of Cars

Now move your eyepoint to the left far enough to see all of Car2 (which is
partially visible to the right of the present window).

REMOVE Eye_Locate;

New_Eye := EYE
BACK 2
LEFT .5 {or RIGHT -.5}
UP O {default}
SCREEN 1 WIDE
FRONT = 9.5
BACK = 10.5
THEN Lookl;

DISPLAY New_Eye;

Viewing Operations GTS8-31

Visible Area

=02

Front Boundar
Back 2

U390206

Eyepoint Left .5

Figure 8-29. EYE BACK View of Car2

Now, look at Car3 (which is partially visible to the left of the present
screen) by moving your eye to the right.

REMOVE New_Eye;

Last_Eye := EYE

BACK 2

RIGHT .5 {or LEFT -.5}
UP 0

SCREEN 1 WIDE

FRONT = 9.5

BACK = 10.5

THEN Lookl;

DISPLAY Last_Eye;

What you see on the screen is in correct perspective only if your actual
position in the room is approximately where you specified your eye location
to be in the EYE BACK command. In the last example, the values in the
EYE BACK command are .5 right, back 2 from a screen 1 wide. You would
need to move your head right one-half of a screen width and back two
widths from the center of the PS 390 screen to view the cars in correct
perspective. (Note in this case, you will not be able to see the AT point
specified by the LOOK command.)

If you remain seated at the PS 390 looking into the center of the screen,
displayed objects may appear distorted or skewed when the eyepoint is
changed. This is because you are looking at what should be an oblique view
from a position that would not normally create an oblique view.

GT8-32 Graphics Tutorials

3.3 Using a 4x4 Matrix to Specify a Perspective Window

The EYE BACK transformation is a 4x4 matrix operation that is repre-
sented by an operation node. This node must be above all other transforma-
tion nodes in a display structure. The EYE BACK operation node should
also be directly above the LOOK operation node in the display structure.

You can build your own customized 4x4 matrix in lieu of the one created by
the FIELD _OF_VIEW or EYE BACK command by using the following
MATRIX_4x4 command:

MATRIX 4x4:= mll,ml2,m13,ml4
mll,ml2,ml13,ml4
mll,ml2,ml13,ml4
mll,mi2,ml13,ml14 APPLIED TO Another Name;

(For more details, refer to the Section RMI Command Summary.)

4. Specifying a Viewport

In addition to the two types of viewing transformations, establishing a line
of sight and specifying a viewing window, the PS 390 lets you specify por-
tions of the full screen in which windows are displayed. The PS 390 raster
screen allows display of both antialiased wireframe models, and shaded
renderings. Because the commands and operations governing the display of
each kind of model are inherently different, there are two types of viewports
used for display. The dynamic viewport is used for the display and manipu-
lation of wireframe models, while the static viewport allows display of hid-
den-line images and shaded renderings.

Either an orthographic or perspective window can be displayed within either
a dynamic or a static viewport. Up to this point, all windows specified in
examples have been projected onto the full dynamic screen of the PS 39C.
The PS 390 maps a window to the full dynamic screen by default if no
smaller portion of the screen is specified. The area of the screen that has
the window mapped to it is called a viewport.

The process of mapping a window to a viewport is not a matrix operation.
Because of this, the viewport specification can be placed virtually anywhere
in relation to matrix operations in a display structure. A logical placement,
though, is above the windowing transformation.

Viewing Operations GT8-33

4.1 Dynamic Viewport Operations

The following operations are performed in the dynamic viewport:

¢ Real-time manipulation of vector or wireframe representations of po-
lygonal models.

o Cross-sectioning defined by the sectioning plane (solid wireframe po-
lygonal model).

o Sectioned rendering (wireframe polygonal model).

o Backface removal (solid wireframe polygonal model).

Operations involving polygonal models are discussed fully in Section G713
Polygonal Rendering.

4.2 Specifying a Dynamic Viewport

Dynamic viewports are specified using the VIEWPORT or the
LOAD_VIEWPORT command. The VIEWPORT command defines a dy-
namic viewport in terms of the current viewport. Values of the new viewport
must be within the -1 to 1 range of the current viewport, implying that each
viewport may be no larger than its predecessor. The LOAD_VIEWPORT
command however, defines a dynamic viewport relative to the full PS 390
screen.

The dimensions of the current viewport are always -1 to 1 in width and -1
to 1 in height, with the center of the viewport corresponding to 0,0. (See
Figure 8-30.)

-1 44— Width —» 1

A
Current .
Viewport Height
v
U390207 -1

Figure 8-30. Current Viewport Dimensions

GT8-34 Graphics Tutorials

This holds true with both the VIEWPORT and LOAD_VIEWPORT com-
mands. The default intensity range available for any dynamic viewport is
from 0 to 1, or from minimum to maximum intensity. This intensity is
spread over the range from the front boundary to the back boundary of the
window being displayed in the viewport. The values for viewport dimensions
and intensity ranges have nothing to do with world coordinate values.

4.2.1 Exercise 1

First display the Car in the default full-screen dynamic viewport by
entering:

INITIALIZE DISPLAY;
DISPLAY Car;

The car is now displayed in the current viewport, which is -1 to 1 in height
and in width.

4.2.2 Exercise 2

Using the VIEWPORT command, define a viewport to be the upper right
corner of the default full-screen viewport by entering;

Port2 := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1 APPLIED TO Car;

DISPLAY Port2;

REMOVE Car;

By using the VIEWPORT command, Port2 was defined in terms of the cur-
rent viewport. Now the upper right corner of the screen becomes the current
viewport and the default window is mapped to it (Figure 8-31).

Viewing Operations GT8-35

U390208

Figure 8-31. Port2 — Upper Right Quadrant

The display structure for this viewport applied to Car is shown in
Figure 8-32.

Port2 / ’\

Viewport

Car
Data

390209

Figure 8-32. Display structure for Port2

4.2.3 Exercise 3
Define another viewport in terms of the now current viewport (Port2).

Port3 := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1 APPLIED TO Port2;

DISPLAY Port3;

REMOVE Port2;

Port3 is now the upper right quadrant of Port2, which is the upper right
quadrant of the default full-screen viewport. Figure 8-33 shows the associ-
ated display structure.

GT8-36 Graphics Tutorials

Port3 /-\

Viewport Upper Right Quadrant
of Port2

Port2 _
Viewport Upper Right Quadrant
of Full Screen

Car
Data

U390210

Figure 8-33. Port3 and Associated Display Structure

To define a viewport independent of the current viewport, the
LOAD_VIEWPORT command is used. This specifies a viewport relative to
the entire PS 390 screen. Viewport specification using the LOAD_ VIEW-
PORT command does not restrict the user from making a larger viewport
after making a smaller one, as is the case with the VIEWPORT command.

4.2.4 Exercise 4

Using the LOAD_VIEWPORT command define the current viewport to be
the full dynamic screen (Full_View).

Full_View := LOAD_VIEWPORT

HORIZONTAL= -1:1

VERTICAL = -1:1 APPLIED TO Port3;
DISPLAY Full View;

REMOVE Port3;
The display structure for this is shown in Figure 8-34. Note that the

LOAD_VIEWPORT command overrides the previous viewports specified
with the VIEWPORT command.

Viewing Operations GT8-37

)

Full_View
Viewport Full Screen

)a(

Port3 Upper Right Quadrant

Viewport of Port2

Ja(

Port2
or Upper Right Quadrant

Viewport of Full Screen

‘<

Car

Data
U390500

Figure 8-34. Display Structure for Full_View

4.2.5 Exercise 5

Define the equivalent of viewport Port3 using the LOAD VIEWPORT com-
mand (Port4).

Port4 := LOAD_VIEWPORT

HORIZONTAL = .5§:1

VERTICAL = .5:1 APPLIED TO Full View;
DISPLAY Port4;
Remove Full View;

Port4 is in the upper right of the screen. Figure 8-35 shows the display
structure and equivalent viewport of Port4.

GT8-38 Graphics Tutorials

! Port4

)

Load
Viewport

P

Full_View
Viewport

>_<

Port3
Viewport

>_<

Before going on to the next section, remove the data structures from the

Port2
Viewport

_<

Car
Data

Upper Right Quadrant
of Full Screen

Full Screen

Upper Right Quadrant
of Port2

Upper Right Quadrant
of Full Screen

U390501

Figure 8-35. Port4 and Associated Display Structure

display list. Enter the INITIALIZE DISPLAY command:

INITIALIZE DISPLAY;

4.3 Dynamic Viewport Considerations

Although the raster screen contains 1024 by 1024 addressable pixels, the
actual displayable area on the raster screen is a rectangle, with pixel ad-
dresses going from 0 to 1023 in X and to 863 in Y, where the physical pixel
address 0,0 is in the lower left corner. A PS 390 viewport which spans
(-1,1) in both vertical and horizontal directions maps onto the full 1024 x
1024 screen so that a rectangular portion along the lower edge of the view-
port is not displayed. To avoid this situation, all viewports in the display
structure are initially concatenated with a default viewport in the top display

structure which maps to a square of 864 x 864 (Figure 8-36).

Viewing Operations

GT8-39

863T T T T T T T TS

T | q+1
|

|
™~ Displayable I
Screen

| |
| |
431 I 390 oﬁghl)((QO) l
| |
I |
[|
| I
| |
0_'_ I I
-1 41
Logical | . ﬁ |
P§ 390 N ==
Physicalg 59 943 1023

Logical Coordinates

Figure 8-36. PS 390 Display

4.3.1 Overriding the Default Viewport

If you want to override the default viewport and use the entire displayable
rectangular screen area as a non-square viewport, the following commands
can be entered:

Configure A;

VPF1l$:= Viewport Horizontal = -0.998:.998
Vertical = -0.685:1
Intensity = 0:1

Then HVP1$;

Finish Configuration;

GT8-40 Graphics Tutorials

This will cause all the subsequent VIEWPORT and LOAD_VIEWPORT
commands in the structure to be concatenated with this rectangular
viewport. In doing so, however, your data must account for the nonsquare
viewport.

To re-establish the default viewport, use either the commands

Configure A;

VPF1$:= Viewport Horizontal = -0.8425:0.8425
Vertical = -0.685:1
Intensity = 0:1

Then HVP1$;

Finish Configuration;

or

Screensave := F:Screensave;

Note that the INITIALIZE command does not restore the original viewport.
Also note that you cannot override the default viewport with the
LOAD_VIEWPORT command.

4.4 Operations in the Static Viewport

The following types of rendering styles are displayed in the static viewport:

e Wash shading

o Flat shading

e Gouraud shading
e Phong shading

o Raster hidden-line removal

A complete description of rendering operations can be found in Section
GT13 Polygonal Rendering.

4.5 Specifying a Static Viewport

There is no PS 390 specific command to specify static viewports. Specifying
a static viewport boundaries is done by sending a 3D vector to input <3> of
SHADINGENVIRONMENT. Refer to section RM3 Initial Function Instances
for a complete description of the SHADINGENVIRONMENT function.

Viewing Operations GT8-41

A 3D vector sent to input <3> of SHADINGENVIRONMENT specifies view-
port pixel values. For example,

Send V3D(80,0,863) to <3>SHADINGENVIRONMENT;

would be a valid command to specify a square static viewport of 864 by 864
pixels on the PS 390. Static viewports cannot be nonsquare; they must al-
ways be specified as a square viewport. Specifying a viewport by sending to
input <3> of SHADINGENVIRONMENT is completely independent from
dynamic viewport specifications as it does not create a viewport node in the
display structure.

4.6 Clearing Viewports to Static or Dynamic

It is also possible to clear either the current viewport or the entire PS 390
screen and specify if the viewport is to be treated as a dynamic or static
viewport. This is done by sending an integer or Boolean to input <7> of
SHADINGENVIRONMENT.

4.6.1 Clearing to Static

Sending either a True or a fix (0) to input <7> clears the entire screen to
static and causes a screen wash with the current static background color.
Sending a False or fix (1) to input <7> clears only the currently specified
static viewport and causes the viewport to be filled with the current static
background color. When requesting another rendering to be displayed in a
current static viewport, it is not necessary to clear the viewport first, since
this is accomplished by requesting a new rendering. Refer to Section G713
Polygonal Rendering for more information.

4.6.2 Clearing to Dynamic

Sending a fix (2) to input <7> clears the entire screen to dynamic and
causes a screen wash with the current dynamic background color. This must
be done to clear either a shaded image or a dynamic image (from the entire
screen or viewport), before displaying a new dynamic image. Sending a fix
(3) to input <7> clears only the currently specified dynamic viewport with
the current dynamic background color. To prevent images from being
corrupted, do not display an image or use the terminal emulator in an area
of the screen that already has an image without first clearing the screen (or
viewport) with a dynamic wash. Refer to Section RM3 Initial Function
Instances for more details on the SHADINGENVIRONMENT function.

GT8-42 Graphics Tutorials

4.7 Displaying Multiple Viewports

The PS 390 allows multiple combinations of dynamic and static viewports to
be displayed simultaneously. Because of this flexibility in defining the
usable screen space, it is necessary that the code be organized so that
images or viewports do not overlap each other. The overlapping of dynamic
images on static viewports will corrupt the static image.

To illustrate the capability of multiple viewports, the exercises that follow
create four dynamic views that can be displayed simultaneously. The four
views are:

e In the lower left quadrant, the Car is displayed as a side view in an
orthographic window.

o In the lower right quadrant, the Car is displayed as a front view in an
orthographic window.

¢ In the upper right quadrant, the Car is displayed as a top view in an
orthographic window.

e In the upper left quadrant, the Car is displayed in a perspective
window.

4.7.1 Exercise

Create the four views by applying the following VIEWPORT definitions:

DISPLAY Four_View;
Four_View := INSTANCE OF Side, Front, Top, Persp;

Side := VIEWPORT
HORIZONTAL= -1:0
VERTICAL= -1:0 APPLIED TO Car;

Front := BEGIN_STRUCTURE

VIEWPORT
HORIZONTAL= 0:1
VERTICAL= 0:-1;

LOOK
AT 0,0,0
FROM .1,0,0 APPLIED TO Car;

END_STRUCTURE;

Viewing Operations

GT8-43

Top “:= BEGIN_STRUCTURE

VIEWPORT
HORIZONTAL= 0:1
VERTICAL= 0:1;

LOOK
AT 0,0,0
FROM 0,.1,0 APPLIED TO Car;

END_STRUCTURE;

Persp := VIEWPORT
HORIZONTAL= -1:0
VERTICAL= 0:1 APPLIED TO Perspective;

If you have rebooted, changed modes, or initialized the system since you
began this section, you will need to add the two following lines of code to
the above listing:

Perspective := FIELD OF VIEW 28 FRONT=4.5 BACK=7
APPLIED TO Look;

Look := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TQO Car;

4.8 Using Nonsquare Viewports

Nonsquare viewports are applicable to dynamic viewports only. Sometimes
a nonsquare viewport is needed. The dimensions of -1 to 1 in width and
height apply to nonsquare viewports as well (see Figure 8-37).

-1

U390211

Figure 8-37. Dimensions of a Nonsquare Current Viewport

GT8-44 Graphics Tutorials

A nonsquare viewport can cause distortion of displayed data. To compen-
sate for such distortion, objects can be viewed in a nonsquare window. This
window must have the same height to width ratio (aspect ratio) as the view-
port. For example, if the aspect ratio of a viewport is 1:2, half as wide as it
is high, the window displayed in the viewport must also be half as wide as it
is high to eliminate distortion that results from viewport mapping.

Orthographic windows are the only windows that can have nonsquare front
boundaries. Perspective windows always have square front boundaries, so
objects are distorted if a perspective window is displayed in a nonsquare
viewport.

Unmatched aspect ratios can sometimes be used to advantage. A variety of
effects can be achieved using this distortion. Cubes can become bricks in a
viewport that is wider than it is high. Circles can become ellipses;
econo-sedans can become sleek sports cars.

4.8.1 Exercise 1

Map a square window to a nonsquare dynamic viewport to observe the re-
sulting distortion. First impose the PS 390 default orthographic (square)
window by removing the previous perspective view:

REMOVE Four_View;

Then create the nonsquare viewport:
Nonsquare := VIEWPORT
HORIZONTAL=-.5:.5
VERTICAL=-1:1 APPLIED TO Car;

DISPLAY Nonsquare;

The default window around the Car is compressed to fit in the width of the
narrow viewport. The result is distortion: a tall car (see Figure 8-38).

Viewing Operations GT8-45

Nonsquare
Viewport

— e c— — ca—
— o — — c—

e
| |

—~1 U390212

Figure 8-38. Square Window Mapped to a Nonsquare Viewport

4.8.2 Exercise 2

Compensate for the distortion by creating a nonsquare window for the
nonsquare viewport by entering:

Nonsquare_Window := WINDOW
X=-1:1
Y = -2:2 APPLIED TO Nonsquare;

DISPLAY Nonsquare_Window;

REMOVE Nonsquare;

When this window is applied to the viewport, its aspect ratio is equivalent to
the aspect ratio of the viewport, so the car appears in the nonsquare view-
port without distortion (see Figure 8-39).

GT8-46 Graphics Tutorials

Nonsquare
Viewport

e e o w— w—]

-1
U390213

Figure 8-39. Nonsquare Window Mapped to a Nonsquare Viewport

To clear the display enter:

REMOVE Nonsquare_Window;

4.9 Setting an Intensity Range for a Window in the Dynamic Viewport

A dynamic viewport specification can also set an intensity range for the
window displayed in the viewport. This intensity mapping is another facet of
the window-to-viewport mapping process.

Remember that the maximum and minimum intensities for an orthographic
or perspective window are anchored at the front and back boundaries of the
displayed window. The default intensity range is from 0 (dimmest, back
boundary) to 1 (brightest, front boundary).

Set the dynamic viewport boundaries to the upper right quadrant of the
screen. To change the maximum and minimum intensities, compress the
intensity range from .25 (quarter) to .75 (three-quarters). The car in the
viewport will appear slightly dimmer.

Viewing Operations GT8-47

Display Car;

New_Range := VIEWPORT
HORIZONTAL=0:1
VERTICAL=0:1
INTENSITY=.25:.75
APPLIED TO Car;

Display New _Range;

The intensity ranges of nested viewports affect each other. If Viewport2,
with a range of .25 to .75, is defined in terms of a current viewport having
an identical intensity range of .25 to .75, Viewport2 will have an intensity
range of .375 to .625.

REMOVE New_Range;
REMOVE Car;

5. Viewing Attributes

You are now familiar with viewing transformations, which let you create
any number of views of objects ... and with viewports, which allow you to
display objects anywhere on the screen. The last set of viewing operations
you can specify add a further range of possibilities to the images that are
displayed. These operations let you set attributes in the structure of a model
to enhance its usefulness.

In particular, viewing attributes allow you to specify the:

o Intensity at which lines are drawn in the dynamic viewport
e Colors of lines that form the image in the dynamic viewport

Viewing attributes differ from viewing transformations (line of sight and
windows) in that they are not matrix operations. Consequently, they can be
placed above windows (WINDOW, FIELD OF VIEW, EYE BACK) and
LOOK transformations in a display structure.

5.1 Setting Intensity

Remember that with the VIEWPORT and the LOAD VIEWPORT com-
mands, an intensity range can be specified which applies to the window
being displayed in the current dynamic viewport. In addition to this method,
dynamic viewport intensity can be manipulated using the SET INTENSITY
attribute.

GT8-48 Graphics Tutorials

The SET INTENSITY attribute is a non-matrix operation that overrides and
replaces the intensity range set in the viewport specification. In fact, SET
INTENSITY can be switched on and off, allowing you to easily and directly
switch intensities between the values in the viewport specification and the
values in the SET INTENSITY node.

A set intensity node can be switched on and off via function networks.
SENDing (or CONNECTing) a Boolean value to a SET INTENSITY node
toggles the ON/OFF condition of the node. (Refer to Section RMI Command
Summary for details.)

In a series of SET INTENSITY commands, the last one ON determines the
intensity range in effect. For example:

One := BEGIN_STRUCTURE

a := VIEWPORT
HORIZONTAL=-1:1
VERTICAL=-1:1
INTENSITY=.5:1;

b := SET INTENSITY ON 0:1;

¢ := SET INTENSITY ON 1:1;

INSTANCE OF object;

END_STRUCTURE;

DISPLAY One;

When One is displayed, the intensity range is 1:1, the last specified intensity
range.

A SET INTENSITY OFF command does not cancel a previous SET
INTENSITY ON command. For example:

Two := BEGIN_STRUCTURE

a := VIEWPORT
HORIZONTAL=-1:1
VERTICAL=-1:1
INTENSITY=.5:1;

b := SET INTENSITY ON 0:1;

¢ := SET INTENSITY OFF .8:1;

INSTANCE OF object;

END_STRUCTURE;

DISPLAY Two;

The intensity range in effect is 0:1 since that is the range specified in the
last SET INTENSITY command to be ON in the series. You can set the
intensity range to .8:1 by SENDing a TRUE to <1>Two.c.

Viewing Operations GT8-49

Other operations and definitions can affect intensity. The VECTOR_LIST
command lets you separately specify the intensity of each vector in the list.
If this is done, those vector intensitics are affected by the intensity range of
the VIEWPORT. If the object has very bright vectors in the background and
dim vectors in the foreground, the effect of depth cueing could bring them
to a nearly equal intensity by brightening the near, dim vectors and
dimming the far, bright vectors. (Refer to the Section RMI1 Command
Summary for information on assigning intensities to vectors using the
VECTOR_LIST command.)

5.2 Setting Color

It is possible to display entire objects (vector lists or character strings) in the
same color. Color is specified in terms of hue and saturation. The hue is a
color, such as red or blue. The saturation is the amount of color versus the
amount of white in the hue. Red at high saturation is full-toned; red at low
saturation is pink. All hues are white at 0 saturation.

The intensity, or brightness, of any hue/saturation combination depends on
factors other than the color specification. These factors include such things
as the intensity range of the viewport, and the condition of a SET
INTENSITY command.

The PS 390 lets you choose from 120 hues. Selectable hues correspond to
the values on the color wheel shown in Figure 8-40, with blue at 0 and 360,
red at 120, and green at 240.

BLUE
360,0
CYAN MAGENTA
300 60
GREE ED
240 120
YE!ﬂég w U390082

Figure 8-40. Color Wheel

GTS8-50 Graphics Tutorials

In effect, then, color is specifiable in 3-degree increments around the color
wheel. Hue values from 0 to 2 select the same hue; hue values from 3 to 5
select the same hue, etc.

The saturation of any hue is specified as a value from 1 to 0, or from
full-color saturation to no color (white). The default saturation is full (1).

Color and saturation is set as follows:
Blue_Car := SET COLOR 0,1 APPLIED TO Car;

where 0 indicates the color (blue) and 1 is the saturation (full).

5.2.1 Exercise

Make the Car red, fully saturated.
Redcar := SET COLOR 120,1 APPLIED TO Car;

DISPLAY Redcar;

Change the color settings and watch what happens to the color of the car:
Same hue, less saturated:

Redcar := SET COLOR 120,.3 APPLIED TO Car;

The car appears to be light pink. For a new hue, full saturation enter:

Redcar := SET COLOR 240,1 APPLIED TO Car;

New hue midway between red and green—yellow, full saturation:

Redcar := SET COLOR 180,1 APPLIED TO Car;
Make the wheels of the yellow Car a different color than the car body by
specifying a new color (green) for the tires only.

PREFIX Tire WITH SET COLOR 240,1;

INITIALIZE DISPLAY;

Viewing Operations GT8-51

6. Viewing Summary

Viewing consists of placing an object in front of you by defining a line of
sight (LOOK), defining a window (WINDOW, FIELD_OF_VIEW, EYE
BACK), and setting up a portion of the PS 390 screen to display the window
in (VIEWPORT).

If an object is viewed without specifying a line of sight, a window, or a
viewport, defaults are supplied by the system. The default view has a line of
sight from the origin (0,0,0) looking straight along the positive Z axis. In the
default window, objects appear as orthographic views. The default viewport
is the dynamic full screen.

The WINDOW command creates orthographic views. The
FIELD _OF_VIEW and EYE BACK commands create perspective views.
With FIELD_OF_VIEW, the line of sight is perpendicular to the front and
back boundaries of the frustum of vision. With EYE BACK, the line of sight
can be offset, creating a skewed frustum of vision.

Non-matrix viewing attributes may be used to set intensity in the dynamic
viewport, to display entire objects in color in the dynamic viewport, and to
enable and disable the display of objects on selected screens.

The following sections summarize concepts in this section.

Important Concepts for LOOK

e The LOOK transformation defines a line of sight in the world coordi-
nate system in terms of a point to look from and a direction in which
to look.

e If no LOOK is specified, the system defaults to a LOOK from 0,0,0
along the positive Z axis (AT 0,0,1).

e An UP direction can be specified as part of any LOOK
transformation.

 If the line of sight coincides with the UP direction, the system defines
positive Y relative to the LOOK AT point to be up in the new view.

GT8-52 Graphics Tutorials

e The command format to specify a LOOK is:
name := LOOK AT X,Y,Z FROM X,Y,Z APPLIED TO Name2;

or

name :

LOOK FROM X,Y,Z AT X,Y,Z APPLIED TO Name2;

e The LOOK transformation is done in a 4x3 matrix. To work cor-
rectly, a LOOK transformation should be placed above all modeling
transformations (ROTATE, TRANSLATE, SCALE) in the display
structure and immediately below the windowing transformation
(WINDOW, FIELD_OF_VIEW, EYE BACK).

Important Concepts for WINDOW

e Orthographic windows are specified in terms of X and Y and
optionally Z.

« WINDOWSs can be defined to be not centered around the X/Y axis.

« WINDOWs can be specified to be larger or smaller than the default
window. Large windows encompass more, and therefore make ob-
jects appear smaller than they appear in smaller windows.

* Objects or parts of objects within a window are displayed when the
window is displayed.

¢ Objects or parts of objects outside a window are clipped from view.

» Depth clipping at Z boundaries is not in effect unless you put it into
effect.

 Depth cueing, the variation of intensity that imparts an illusion of
depth to displayed objects, is anchored at the front and rear (Z)
boundaries of the window. Brightest intensity occurs at the front
boundary and dimmest occurs at the back boundary.

e WINDOWs are usually square.

Viewing Operations GT8-53

e The command format to specify a WINDOW is:

name := WINDOW X=xmin:xmax Y=ymin:ymax [FRONT boundary = zmin
BACK boundary = zmax] APPLIED TO namel; :

e The WINDOW transformation is done in a 4x4 matrix. To work
properly, the WINDOW transformation must be the topmost matrix
node in a display structure.

Important Concepts for FIELD_OF_VIEW

e FIELD_OF_VIEW is specified in terms of a viewing angle and front
and back boundaries.

» The FIELD_OF VIEW is always centered about the positive Z axis.
The apex of the pyramid (your eyepoint) is always at 0,0,0.

¢ Since the eyepoint is always at 0,0,0, objects must be located on the
positive Z axis, far enough out to be within the frustum of vision if
they are to be seen. Usually a LOOK transformation is used to do
this.

» The size of the viewing angle in no way distorts the perspective im-

- posed on viewed objects. However, the larger the viewing angle, the
larger the area included in the frustum of vision. Larger angles have
the effect of making a viewed object appear smaller.

¢ Depth clipping is not in effect unless you put in effect with a SET
DEPTH CLIPPING ON command.

¢ Depth cueing is anchored at the front and back boundaries. Brightest
intensity occurs at the front boundary and dimmest occurs at the
back boundary.

» The face of a window created using FIELD OF VIEW is always
square. That is, it has an aspect ratio of 1.

* The command format to specify a FIELD_OF_VIEW is:

name := FIELD OF_VIEW angle [FRONT boundary = zmin]
[BACK boundary = zmax] APPLIED to namel;

e The FIELD_OF_VIEW transformation is performed by a 4x4 matrix.
The FIELD_OF_VIEW operation node must be the topmost matrix
node and be directly above the LOOK node in the display structure.

GTS8-54 Graphics Tutorials

Important Concepts About the EYE BACK Command

EYE BACK is specified in relative room coordinates to position the
eye relative to the center of the viewport. Front and back boundaries
are specified in world coordinates.

The face of a window created using EYE BACK is always square.

With the EYE BACK transformation, the line of sight is not necessar-
ily collinear with the from/at line in LOOK.

If the eye position is not collinear with the from/at line in LOOK, the
viewing pyramid is skewed. Front and back boundaries remain per-
pendicular to the line of sight established in the LOOK specification.

The larger the viewing angle, the larger the area included in the frus-
tum of vision. Larger angles have the effect of making a viewed
object appear smaller.

The command format to specify EYE BACK is:

name := EYE BACK Z [optibn 1] [option 2] from SCREEN area w
WIDE [FRONT boundary = zmin] [BACK boundary = zmax]
APPLIED TO namel;

The EYE BACK transformation is performed by a 4x4 matrix. To
work properly, the EYE BACK operation node must be above all
other transformation nodes and directly above the LOOK operation
node in the display structure.

Important Concepts About Viewports

A viewport is the area of the PS 390 screen to which a window is
mapped.

A viewport may be defined in terms of a current viewport by using
the VIEWPORT command, or in terms of the full PS 390 screen by
using the LOAD_VIEWPORT command.

The dimensions of any current viewport are -1 to 1 in X and in Y.
Multiple viewports can be displayed simultaneously.

Nonsquare dynamic viewports distort displayed objects unless the
viewed window has the same aspect ratio as the nonsquare viewport.

Viewing Operations

GT8-55

* An intensity range for a window (WINDOW, EYE BACK, etc) can be
specified for a dynamic viewport.

» The command format to specify a dynamic viewport is either:
name := VIEWport HORizontal hmin:hmax VERtical = vmin:vmax
[INTENSity = imin:imax] APPLIED TO namel;
or

name := LOAD VIEWport HORizontal hmin:hmax
VERtical = vmin:vmax
[INTENsity = imin:imax] APPLIED TO namel;

e Static viewports are always square.

» The command format to specify a static viewport is:

Send V3D (x,y,z) to <3> SHADINGENVIRONMENT,;

e Mapping a window to a viewport is not a matrix operation, so view-
port specifications can be placed anywhere in relation to matrix op-
erations in a display structure.

Important Concepts About Viewing Attributes

e Viewing attributes differ from viewing transformations in that they
are non-matrix operations. They can be placed above windows (WIN-
DOW, FIELD_OF VIEW, EYE BACK) and LOOK transformations
in a display structure.

e The SET INTENSITY attribute manipulates viewport intensity. SET
INTENSITY can be switched on and off, varying intensities between
values in the viewport specification and values in the SET
INTENSITY command.

e In a series of SET INTENSITY commands, the last one ON deter-
mines the intensity range in effect.

¢ A SET INTENSITY OFF command does not cancel a previous SET
INTENSITY ON command.

e The SET COLOR attribute allows you to display entire objects as a
single color. Color is specified in terms of hue and saturation. Hue is
specifiable in 3-degree increments around a color wheel. Saturation
is specified as a value from 1 to 0.

GT8-56 Graphics Tutorials

F 0
(©]
Z

=

=

, ©

- Z
>

3

GT9. CONDITIONAL REFERENCING
SELECTING PORTIONS OF A MODEL FOR DISPLAY

CONTENTS
INTRODUCTION ... iiitittiiiiiiieteiocnsnassossonannenaes 1
OBJECTIVES ... iiiiiiiiiiieteienenerenencnsnenonnnannnns 2
PREREQUISITESt titiiiitiiititienoinonsenennennnnnnns 3
1. USING CONDITIONAL-BIT ATTRIBUTE SETTINGS 3
1.1 EXerCisSeviiiiniiiiieiniintieneenneentennoonncnnannns 7

2. USING LEVEL-OF-DETAIL CONDITIONAL REFERENCING .. 9

2.1 Determining the Order for Overlaying Detail 10
2.2 Using Level-of-Detail Settings to Animate An Object 12
2.3 EXEICiSe ...vivviiriiuinonososessnsssssssssenosnnnnnssasan 13
3. USING RATE ATTRIBUTE SETTINGScciiiiiuin... 14
3.1 Creating the SET RATE Nodecciviiiiinnnennnns 14
3.2 Creating the IF PHASE Nodeciiiiiiiniiiinnn. 15
3.3 EXEICiS@ ..t irienennnnonseoeesnsnnnnanenseeseens 16
3.4 Some Uses for Timed Blinkingccvviuvurennnnanens 16
4. SUMMARY . ..ttiiiitiiintttennsesssssssnsnssssonnsssnnnses 17

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.

ILLUSTRATIONS

Display Structure Including Conditional Referencing Nodes 2
Car Display Structuresc.iitiiiiiiiiiiiirnenneennnns 5
Molecule Display Structureccociiiiiiiiiiiieenn. 6
Display Structure for Conditional Referencing in Molecule 7
Function Network for Conditional-Bit Control 8
Level-of-Detail Structure for the World 12
Turbine Blade Structurecoiiiiiiiiiiieeiieeennnnnas 13

]

Section GT9
Conditional Referencing
Selecting Portions Of A Model For Display

Introduction

Conditional referencing is the referencing of data only when certain conditions are
met. It is a way to display selected branches of a display structure without display-
ing other branches. It is useful, for example, if you have a model that you would
like to add parts to or take parts from, showing various stages of development or
assembly.

There may be layers of detail in your model that you would like to be able to
overlay or strip off. An example of adding detail might start with an outline map of
the United States, then sequentially add major rivers, mountain ranges, state bor-
ders, major cities, county borders, etc.

You might also want to display different views of an object at different times to
animate an object, or alternately display and blank an object at a selectable rate
(blinking).

These kinds of operations are achieved with conditional referencing, using three
methods: conditional-bit settings, level-of-detail settings, and rate settings.

To use conditional referencing, a minimum of two nodes must be placed in a
display structure. The first node (called a SET node) sets a condition. A hypotheti-
cal PS 390 command to do this might be:

THE CONDITION IS 1

The second node (called an IF node) tests the condition and makes the traversal of
the branch (and therefore the display of data indicated by that branch) dependent
on the condition in the SET node:

IF THE CONDITION IS 1 THEN DISPLAY Objectl
IF THE CONDITION IS 2 THEN DISPLAY Object2

Conditional Referencing GT9-1

Figure 9-1 shows these nodes in a display structure. These nodes are attribute
nodes and follow the same rules of placement and of use as operation nodes.

Cond_Object

Objectt Object?2

U390091

Figure 9-1. Display Structure Including Conditional Referencing Nodes

In the above example, displaying the SET node (Cond_Object) will result in
Objectl being displayed and Object2 not being displayed. This is because the
condition is not satisfied for the branch with Object2. By changing the condition
from 1 to 2 in the SET node, Object2 will be displayed and Objectl will not be
displayed.

The values in both the SET node (Cond_Object) and the IF nodes (Objectl,
Object2) can be changed interactively. For example, the two branches could be
alternately displayed by toggling the numbers in the SET node between 1 and 2.

Objectives

In this section, you will learn to display selected parts of your display struc-
ture using:

o Conditional-bit attribute settings
e Level-of-detail attribute settings
e Rate attribute settings

GT9-2 Graphics Tutorials

Prerequisites

Before reading this section, you should be familiar with the rules for using
operation nodes in display structures (Section GT4 Modeling), and the differ-
ences between matrix operations and attribute operations (Section G72
Graphics Principles.)

1. Using Conditional-Bit Attribute Settings

Conditional bits are used to display selected branches of a display structure,
independent of whether other branches are displayed. Branches of a display
structure that have IF nodes that are not satisfied by the condition are not
traversed by the display processor and are therefore excluded from dis-
played data.

The SET CONDITIONAL BIT node is used to set any of 15 conditional bits
(0-14). By placing the SET CONDITIONAL BIT node above an instance
node, bit settings affect all branches under the instance node. The SET node
is created with the SET CONDITIONAL_BIT command. The syntax is as
follows:

name := SET CONDITIONAL BIT n switch APPLIED TO namel;

where:

n is an integer from 0 to 14, corresponding to the conditional bit to
be set ON or OFF.

switch is either ON or OFF. All bits default to OFF.
namel is the descendent node of the conditional bit node.

For example, the following command creates a SET node and sets BIT 2
ON APPLIED TO Car.

Pattern := SET CONDITIONAL__BIT 2 ON APPLIED TO Car;
Car := INSTANCE OF Body, Wheels;

When you create a SET node, you explicitly set one bit ON or OFF. How-
ever, all 14 bits default to OFF. So if you enter the command:

name := SET CONDITIONAL_BIT 1 ON APPLIED TO namel;

then bit 1 is ON, and bits 2-14 are OFF. All bits can be changed by sending
values to an input of the SET node.

Conditional Referencing GT9-3

GT9-4

Inputs to the SET CONDITIONAL_BIT node are as follows:

Boolean————-— > <1> Sets the original bit (n)
to be ON (T) or OFF (F).

Integer————— > <2> Sets bit number input (0-14)
ON.

Integer————— > <3> Sets bit number input (0-14)
OFF.

Integer————— > <4> Disables bit number input

(0-14) from being affected
by this node.

Integer————— > <5> Toggles bit number input (0-14).

The SET node controls the states of the conditional bits and it is only
through the SET node that the conditions of all 15 bits are changed. If bit 5
was originally set to ON and then you want to set it to OFF, it could be done
in any of the following three ways:

e Sending the integer S to input<3> of the SET node.
e Sending a FALSE to input<1> of the SET node.

e Sending the integer S to input<5> of the SET node.

Of course, the SET node is useless unless you have an IF node that tests the
condition set by the SET node. The IF node tells under which condition a
branch will be traversed for display.

IF nodes are created with the IF CONDITIONAL_BIT command. The syntax
is as follows:

name := IF CONDITIONAL_BIT n switch APPLIED TO namel;

where:

n is an integer from 0 to 14, indicating which bit to test.
switch is the setting to be tested, ON or OFF.
namel is the descendent of the IF node.

Graphics Tutorials

The IF CONDITIONAL BIT node has one input that accepts an integer
(0-14) to change the bit number in the node.

In the following command sequence, when Car is displayed, Wheels would
also be displayed.

Set := SET CONDITIONAL_BIT 4 ON APPLIED TO Car;
PREFIX Wheels WITH IF BIT 4 IS ON;

If bit 4 of Car is set to OFF or the condition in Wheels is changed to OFF,
then the test in Wheels would fail and Wheels would not be displayed.

The display structure for Car that this command sequence creates in shown
in Figure 9-2.

Car

Body Body

7 TTN

Wheell 2 3 4

(Original Display Structure)

(After Conditional Referencing)

U390092

Figure 9-2. Car Display Structures

Figure 9-3 is a display structure for a molecule for which conditional refer-
encing will be implemented.

Conditional Referencing

GT9-5

Molec0O

Molecule

Molec7

Figure 9-3. Molecule Display Structure

U390093

In Figure 9-3 notice that Molecule is made up of an instance node pointing
to 8 SET COLOR nodes for parts of the molecule. The eight parts can be
controlled separately for display by placing a SET node and eight IF nodes

in the structure.

The molecule will be set with the following conditions.

Bit No. Condition Result
1 OFF Branch 1 (MolecO_Color) will be displayed
2 OFF Branch 2 (Molecl_ Color) will be displayed
3 OFF Branch 3 (Molec2_Color) will be displayed
4 OFF Branch 4 (Molec3_Color) will be displayed
5 OFF Branch 5 (Molec4_Color) will be displayed
6 OFF Branch 6 (Molec5_Color) will be displayed
7 OFF Branch 7 (Molec6_Color) will be displayed
8 OFF Branch 8 (Molec7_Color) will be displayed

The display structure to implement this is shown in Figure 9-4.

GT9-6

Graphics Tutorials

Selector @

U390094

Figure 9-4. Display Structure for Conditional Referencing in Molecule

1.1 Exercise

Add conditional-bit referencing to the display structure for Molecule. The
first step is to place a SET node above the instance node Molecule. Do this
by entering:

Selector := SET CONDITIONAL_BIT 1 OFF APPLIED TO Molecule;

Remember, even though the command says to set only conditional bit 1
OFF, this one node may be used to separately control the ON/OFF condi-
tion of all 15 conditional bits. Also, note that the condition of the other 14
bits defaults to OFF.

Next place nodes at the top of each branch under the instance node so that
the branches will be separately selectable for display. To do this, redefine
Molecule as follows.

Conditional Referencing GT9-7

GT9-8

Molecule := BEGIN_STRUCTURE

IF
IF
IF
IF
IF
IF
IF
IF

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

00 N O b W N

END_STRUCTURE;

IS OFF
IS OFF
IS OFF
IS OFF
IS OFF
IS OFF
IS OFF
IS OFF

THEN MolecO_Color;
THEN Molecl_Color;
THEN Molec2 Color;
THEN Molec3_Color;
THEN Molec4_Color;
THEN Molec5_Color;
THEN Molec6_Color;
THEN Molec7_Color;

You have built the display structure that allows conditional-bit referencing
in Molecule. Notice that the molecule is displayed because all conditional
bits are set OFF. To remove parts of the molecule from display, bits must

be set ON.

To control the ON/OFF condition of the eight bits that affect the branches
of this display structure, a function network can be used to connect the
function keys to the SET node named Selector. That network is shown in

Figure 9-5.

FKEYS
<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>

<10

<11
<12

<5>

Selector

U390094

Figure 9-5. Function Network for Conditional-Bit Control

FKEYS will output integers corresponding to the number of the pressed
function key. Input<5> to the SET CONDITIONAL BIT node toggles the
setting of the bit corresponding to the integer received. For example, if bit 6
is OFF, pressing function key F6 will turn bit 6 ON.

Graphics Tutorials

Enter the following commands to build the network.

CONNECT FKEYS<1>:<5>Selector;

The display structure is now designed to allow conditional display of parts
of the molecule (MolecO_Color through Molec7_Color). Also, the function
keys have been connected to control this display.

One step remains in this particular case. The values used to define the
molecule are large. The molecule has a diameter of some 45,000 units. To
see the molecule, put a window around it and disable depth cueing by enter-

ing:
Molecule View := WINDOW
X=-22500:22500
Y=-22500:22500
FRONT BOUNDARY = -22500
BACK BOUNDARY = 22500 APPLIED TO Intensity;
Intensity := SET INTENSITY ON 1:1 APPLIED TO Selector;
now,

DISPLAY Molecule_View;

Press SHIFT/LINE LOCAL (PS 300-style keyboard) or press CTRL/LOCAL
(PS 390-style keyboard) to enable the function keys. Use keys F1 through
F8 to toggle the display of the parts of the molecule.

When you are finished enter:

REMOVE Molecule View;

2. Using Level-of-Detail Conditional Referencing

The conditional-bit method shown for the molecule is usually used when
you need to separately control the display of branches of your display struc-
ture in a variety of sequences. In the level-of-detail method, the parts of a
model are always displayed and removed in a predetermined sequence.

Level-of-detail is usually used to overlay detail on your picture. For exam-
ple, progressive detail could be added to an outline of a sphere (world) to
add continents, mountain ranges, states, etc. Level-of-detail can also be
used to run animation sequences comprised of a series of separate picture
definitions.

Conditional Referencing GT9-9

Unlike conditional-bit referencing where 15 variables (bits) are set, only one
variable is set using the level-of-detail method. All IF nodes are tested
against that one variable in the SET node.

The command to create a SET LEVEL OF_DETAIL node is as follows.
name := SET LEVEL_OF_DETAIL TO n APPLIED TO namel;

where:

n is an integer from 0 to 32767 indicating the level of detail value.
(The default n is 0.)

namel is the descendent of the SET node.
The input for updating the SET LEVEL_OF_DETAIL node is:

Integer-———————-— > <1> Changes the level of detail
(0-32767) to the value of the

received integer.

2.1 Determining the Order for Overlaying Detail

Because level-of-detail controls the display of branches in a determined or-
der, the conditional statements are expressed as relationships rather than
the two-state (ON/OFF) type used in conditional-bit references.

These relationships are:

Less Than <
Less Than Or Equal To <=
Equal To =
Not Equal To <>
Greater Than Or Equal To >=
Greater Than >

and are specified in the IF LEVEL, OF DETAIL node. The command to
create this IF node is as follows.

GT9-10 Graphics Tutorials

name := IF LEVEL_OF_DETAIL relationship n THEN namel;

where:
relationship is the relationship to n to be tested (<, <=, =, <>, >=, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level of detail
setting (the default n is 0).

namel is the descendent of the IF LEVEL_OF_DETAIL node.

The IF LEVEL_OF_DETAIL node has one input that accepts an integer
(0-32767) to change the value in the node.

With the following command sequence,

A := SET LEVEL OF_DETAIL TO 3 THEN B;
B := IF LEVEL OF DETAIL = 3 THEN C;
C := VECTOR_LIST ;

initially when A is displayed, C is also displayed. If the level-of-detail is
changed to something other than 3, then the test in B fails and C is not
displayed.

An example of adding detail is to start with a sphere and add continents,
mountain ranges, and countries. To display the parts of the world in this
order (and turn them OFF in the reverse order):

Sphere
Continents
Mountain Ranges
Countries

the sphere needs to be displayed first and remain on while all subsequent
parts are displayed.

The continents need to be added next, the mountain ranges and then the
countries. If the sphere is displayed whenever there is a value of 1 or
greater in the SET node, and the subsequent parts are displayed for values
equal or greater than 2, 3, and 4, respectively, the desired effect is
achieved. ‘

The display structure that sets up such a level-of-detail condition is shown in
Figure 9-6.

Conditional Referencing GT9-11

Sphere Countries

Mountain

Continents Ranges

U390095

Figure 9-6. Level-of-Detail Structure for the World

By changing the value of the integer in the SET node, the parts of the
sphere can be laid on and stripped off. If the integer 2 is sent to the SET
node, then the sphere and the continents are both displayed because both
branches of the display structure meet the condition tested against the SET
node. If the integer 3 is sent to the SET node, the sphere, the continents,
and the mountain ranges are all displayed. If the integer 4 is sent to the SET
node, the entire structure is displayed. The details of the sphere can be
stripped off by decreasing the value in the SET node.

2.2 Using Level-of-Detail Settings to Animate An Object

An example of using level-of-detail settings for animation is in the turbine
blade portion of the PS 390 Demonstration Package. The turbine blade is
defined as a sequence of turbine blades in slightly different positions. A
clock is used to advance the level of detail settings resulting in the display
sequence and the apparent motion of the turbine blade. The structure that
sets this up is similar to the one shown in Figure 9-7.

GT9-12 Graphics Tutorials

Clock Values

The topmost node is the one supplied with clock values through a function
network to step through the sequence of pictures corresponding to the refer-
enced branches in the display structure. Note that in animation, detail is not
laid over a displayed picture. Instead, sequences of pictures are displayed.

2.3 Exercise

Using the Tutorial Demonstrations select the Level-of-Detail Program from

the menu.

The ANIMATED_CYLINDER in this demonstration is a good example of

Set

Figure 9-7. Turbine Blade Structure

IF Turbine IF
Frame LOD Blade L O D Frame
1 -1 g 8
IF IF
LOD LOD
=2 =7
Frame Frame
2 7
IF IF
L.OD LOD
=3 IF IF =
L O_D LOD
=4 =5
Frame Frame
3 6
Frame Frame
4 5
U390096

how level-of-detail settings can be used for local animation.

Conditional Referencing

GT9-13

3. Using Rate Attribute Settings

The third type of conditional referencing allows you to blink an object or
display structure branch under control of the refresh rate of the PS 390
display, an internal PS 390 clock, or an external clock. This type of condi-
tional referencing can cause an object to blink or to be displayed alternately
with another object. (For example, one part might be displayed for one
second, then that part is removed while another part is displayed for a sec-
ond, etc.)

Like the other types of conditional referencing, blinking requires two nodes.
One node sets a blink rate in terms of phase ON and OFF durations. The
other if node tells tell whether an object or branch will be displayed during
the ON phase or the OFF phase.

3.1 Creating the SET RATE Node

The command to create the SET RATE node is:

name := SET RATE phase_ON phase_ OFF [initial_state] [delay]
APPLIED TO namel;

where:

phase_ON phase_OFF are integers designating the durations of the
ON and OFF phases, respectively, in refresh frames.

initial_state is either ON or OFF, indicating the initial phase (the
default initial_state is OFF).

delay is an integer designating the number of refresh frames in the
initial state.

namel is the descendent of the SET RATE node.

Inputs for updating the SET RATE node are as follows:
INTEGER———> <1> Changes the phase_on value.
INTEGER———-> <2> Changes the phase_off value.
BOOLEAN—--—-> <3> Changes the initial_state ON(T)/OFF(F).

INTEGER————> <4> Changes the delay.

GT9-14 Graphics Tutorials

A command similar to SET RATE, SET RATE EXTERNAL allows you to
alter the PHASE attribute via an external source such as a function network
or a message from the host computer. Refer to Section RMI for specific
details of this command.

3.2 Creating the IF PHASE Node

The command to create the IF node to test the ON/OFF state of the phase is
as follows:

name := IF PHASE IS state THEN namel;

where:

state is the phase setting under which namel is displayed (ON or
OFF).

namel is the descendent of the IF PHASE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the “state” of the PHASE node will always be OFF.

For example, with the command sequence

Shape := SET RATE 10 15 APPLIED TO Blink_Shape;
Blink_Shape := IF PHASE ON THEN Sphere;
Sphere := VECTOR_LIST;

If Shape is displayed, Sphere will be displayed for 10 refresh frames and
not displayed for 15 refresh frames repeatedly.

If the command sequence is

Shape := SET RATE 10 15 APPLIED TO Blink_Shape;
Blink_Shape := IF PHASE OFF THEN Sphere;
Sphere := VECTOR_LIST ;

If Shape is displayed, Sphere will be displayed for 15 refresh frames and
not displayed for 10 refresh frames repeatedly, since the condition is to
display the vector list when the phase is OFF.

Conditional Referencing GT9-15

3.3 Exercise

This exercise uses the robot created in Section GT5.

To demonstrate the effects of blinking, add blinking nodes above Robot.
The blink rate in this exercise will be based on the PS 390 refresh rate.
First, define a node that sets the rate by entering:

Blink_Robot := SET RATE 120 60 APPLIED TO If_Robot;

This sets the ON phase to 120 refreshes and the OFF phase to 60 refreshes.

Now place a node that determines whether the robot will be displayed in the
ON phase (and blanked in the OFF phase) or displayed in the OFF phase
(and blanked in the ON phase). Display robot in the ON phase, by entering:

If Robot := IF PHASE IS ON THEN Robot;

Robot should now blink at a rate of about 2 seconds on and one second
OFF, when you:

DISPLAY Blink Robot;

Then:

REMOVE Blink Robot;

3.4 Some Uses for Timed Blinking

One practical use of the rate setting commands, other than the visual effects
produced, is that they can synchronize the refresh rate of the display to a
movie camera to make sure that the frame rate of the camera matches the
frame refresh rate of the screen, allowing the camera to always be taking a
frame as the picture is refreshed.

Stereo views can be created using a split screen (two viewports side by
side), each half containing the same image and viewed with the EYE BACK
projection (refer to Section GT8 Viewing Operations). Then each viewport can
be displayed alternately with the other viewport. By placing an opaque di-
vider between the viewports so each eye can see only one viewport, a 3D
effect can be generated.

GT9-16 Graphics Tutorials

4. Summary

The flexibility and ease of use of conditional referencing within the display
structure makes what is often a difficult operation on other graphics ma-
chines easy on the PS 390.

Conditional referencing allows you to display selected branches of a display
structure without displaying other branches. These kinds of operations are
achieved using three methods: conditional-bit settings, level-of-detail
settings, and rate settings.

To use conditional referencing, a minimum of two nodes must be placed in
a display structure. The first node sets up the condition on which all subse-
quent references are tested. The second tests the condition and makes tra-
versal of the branch (display of the data) dependent on the condition in the
set node.

Using Conditional Bit Settings

The conditional-bit method shown is used when you need to separately
control the display of branches of your display structure in a variety of
sequences.

The SET CONDITIONAL BIT node sets any of 15 conditional bits
(0-14). By placing the set conditional bit node above an instance node,
then bit settings affect all branches under the instance node.

This node is created with the SET CONDITIONAL_BIT command. The
syntax is as follows.
name := SET CONDITIONAL_BIT n switch APPLIED TO namel;

where:

n is an integer from 0 to 14, corresponding to the conditional bit to
be set ON or OFF.

switch is either ON or OFF (all bits default to OFF).

namel is the descendent node of the conditional bit node.

Conditional Referencing GT9-17

IF nodes (to test the condition of the SET node) are created with the IF
CONDITIONAL _BIT Command. The syntax is as follows:

name := IF CONDITIONAL_BIT n switch APPLIED TO namel;
where:
n is an integer from 0 to 14, indicating which bit to test.
switch is the setting to be tested, ON or OFF.

namel is the descendent of the IF node.

Using Level-of-Detail Conditional Referencing

When using the level-of-detail method, the parts of the model are always
displayed and removed in a set sequence. Level-of-detail is usually used
to overlay detail on your picture.

Level-of-detail can also be used to run animation sequences comprised of
a series of separate picture definitions.

Unlike conditional-bit referencing where 15 variables (bits) are set, only
one variable is set using the level-of-detail method. All IF nodes are
tested against that one variable in the SET node.

The command to create a SET LEVEL, OF _DETAIL node is as follows.
name := SET LEVEL_OF_DETAIL TO n APPLIED TO namel;
where:

n is an integer from 0 to 32767 indicating the level-of-detail value
(the default n is 0).

namel is the descendent of the SET node.

Determining Order for Overlaying Detail

Because level-of-detail controls the display of branches in a determined
order, the conditional statements are expressed as relationships rather
that the two-state (ON/OFF) type used in conditional-bit references.

These relationships are specified in the IF_LEVEL_OF_DETAIL node:

Less Than <
Less Than Or Equal To <=
Equal To =
Not Equal To <>
Greater Than Or Equal To >=
Greater Than >

GT9-18 Graphics Tutorials

The command to create this IF node is as follows.

name := IF LEVEL_OF _DETAIL relationship n THEN namel;

where:
relationship is the relationship to be tested (<, <=, =, <>, >=, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level-of-detail
setting (the default n is 0).

namel is the descendent of the IF LEVEL_OF_DETAIL node.

Using Level-of-Detail Settings to Animate an Object

An example of using level-of-detail settings for animation is in the tur-
bine blade portion of the PS 390 Demonstration Package. The turbine
blade is defined as a sequence of turbine blades in slightly different posi-
tions. A clock is used to advance the level-of-detail settings resulting in
the display sequence and the apparent motion of the turbine blade.

Blinking and Alternately Displaying Parts of an Object

The third type of conditional referencing, rate attribute settings, allows
you to blink an object or display structure branch under control of the
refresh rate of the PS 390 display, an internal PS 390 clock, or an exter-
nal clock. This type of conditional referencing can cause an object to
blink or to be displayed alternately with another object. (For example,
one part might be displayed for one second, then that part is removed
while another part is displayed for a second, etc.)

Like the other types of conditional referencing, blinking requires two
nodes. One node sets a blink rate in terms of phase ON and OFF dura-
tions. The other IF node tells whether an object or branch will be dis-
played during the ON phase or the OFF phase.

Conditional Referencing GT9-19

Creating the SET RATE Node
The command to create the SET RATE node is:

name := SET RATE phase_ON phase OFF [initial_state] [delay]
APPLIED TO namel;

where:

phase_ON phase_OFF are integers designating the durations of the
ON and OFF phases, respectively, in refresh frames.

initial_state is either ON or OFF, indicating the initial phase (the
default initial_state is OFF).

delay is an integer designating the number of refresh frames in the
initial state.

namel is the descendent of the SET RATE node.

Similar to SET RATE, a command SET RATE EXTERNAL allows you to
alter the PHASE attribute via an external source such as a function net-
work or a message from the host computer. Refer to Section RMI for
specific details of this command.

Creating the IF PHASE Node

The command to create the IF node to test the ON/OFF state of the phase
is as follows:

name := IF PHASE IS state THEN namel;

where:
state is the phase setting to be tested (ON or OFF).
namel is the descendent of the SET RATE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the state of the PHASE node will always be OFF.

GT9-20 Graphics Tutorials

GT10 TEXT MODELING

GT10. TEXT MODELING
AND
STRING HANDLING

CONTENTS

INTRODUCTION ... iiiiiiiiiiiiiitiinenrenenesneonsnncns
OBJECTIVES ... ittt iiiiiiieentenetenenenenenennns
PREREQUISITEScitiiiitiitiiiiiitniiteneeneencnnsnnns

1. USING COMMANDS TO CREATE CHARACTER STRINGS .

1.1 The CHARACTERS Commandcocoviivenvnnnnennss
1.1.1 Changing Starting Position and Spacing
1.1.2 EXercCisevvtiniiniiiniirerenseeesoensonsssensonsanss

2. USING COMMANDS TO MANIPULATE CHARACTER
STRINGS .ottt ittt ittt ittt titeetttaetensneneannes

2.1 The CHARACTER ROTATE Commandcccvvvunnnn.
2.2 The CHARACTER SCALE Commandcccvvvvvuunnnn.
2.3 The TEXT SIZE Commandc.cccttttnnnnenenneennn
2.3.1 EXOrCiSe ..viiviiiitrennnnrnonesoonoooeoassannnsnonnns
2.4 Character Orientation00iiiiieeeeerronnnnnnnnns
2.4.1 World-Oriented Characterscceueeeeeeeeeeeeeannnas
2.4.2 Screen-Oriented Characterscieieveeennnnnnas
2.4.3 Screen-Oriented Fixed Charactersco0vveeee..

Ny h AN N

3. USING FUNCTIONS TO MANIPULATE CHARACTERS

AND STRINGS ...ttt ittt iiiittennssosnscssansssnnnss 12
3.1 Character- and String-Conversion Functions 13
3.2 String-Formatting and Reformatting Functions 14
3.3 Miscellaneous String-Handling Functions 15
3.4 Character-Transformation Functions 15
4. UPDATING CHARACTERS AND LABELS NODES 16
4.1 Updating With Commandscciiiiiiiiiiiennnn. 16
4.1.1 The COPY Commandooutiiurrennecrnnnecannans 16
4.12 The SEND Commandoovtiieeienerscrocosnnnnns 17
4.1.3 EXErCiSEvivieereirernneeesnssssassssnssssassssonas 19
4.2 Updating With Functions ot 19

5. CREATING AND USING DIFFERENT CHARACTER FONTS... 19

5.1 Creating an Alternate Fontcoiiiiiiiiinnene. 20
5.2 Using an Alternate Fontc.coiiiiiiiiiiinrecnnens 22
5.3 The Character-Font Editor Program 23
6. SUMMARYcovn... et ee et eaceeteeeeeaaeeaanas 23
6.1 Creating Text Nodescovtivirerrenrronncennosseonnns 23
6.2 Manipulating Text With Commandscvvevn.n. 24
6.2.1 Transforming Textciiitieieerrnnnseennerannnns 24
6.2.2 Setting Character Orientation...............cciievivnnn.. 25
6.3 Manipulating Text With Functions 25
6.4 Text Nodescvvviiiiiiirneaertoesenossssrococeonnnas 26
6.5 Updating Nodescciiiiiiiiiiiinereneonosonesnnns 26
6.6 Alternate Character Fontscoiiievinnenennn.. 27

ii

ILLUSTRATIONS

Figure 10-1. Default Window and Character Size, 3
Figure 10-2. The Effect of the PREFIX Commandccoivveeeennns 8
Figure 10-3. New Node Added with the PREFIX Command 8
Figure 10-4. Display Structure with TEXT SIZE Node 9
Figure 10-5. TEXT SIZE Node Prefixed with CHARACTER SCALE Node ... 9
Figure 10-6. Display Structure for a Labeled Cube 10
Figure 10-7. Inputs to a CHARACTERS Nodecoiiviivnnnennn 17
Figure 10-8. Inputs to a LABELS Nodeccciiiiiiiiiiieninenn. 18
Figure 10-9. Standard A and Simplex Roman Acooiiviiuenn, 20
Figure 10-10. Standard A and Old English A, 21

Figure 10-11. Display Structure with CHARACTER FONT Node 23

iii

Section GT10
Text Modeling and String Handling

Introduction

Text is handled by the PS 390 in the same way as any other graphical item. Char-
acters are defined as data nodes consisting of a single string (a CHARACTERS
node) or a block of several strings or labels (a LABELS node). Just like other
graphical items, characters can be transformed through matrices. Because they are
affected by 3x3 matrices, they can be transformed along with any three-
dimensional object which includes them in its definition. Characters can also be
rotated and scaled using commands that create 2x2 transformation matrices. These
matrices transform text while leaving other 2D and 3D graphical data unaffected.

Strings can be created and manipulated with commands. They can also be manipu-
lated interactively using function networks and interactive devices.

A standard character font comes with the PS 390. Commands exist which allow
you to design and use an unlimited number of alternate character fonts. A graphi-
cal character font editor program, MAKEFONT, is also available for designing and
modifying character fonts. Refer to Section 777 Character Font Editor, for informa-
tion about this program.

Text and text-handling nodes are included in display structures. Text strings are
data nodes and text transformations are operation nodes. The current character
font is an attribute node which points to a look-up table for the vectors which
comprise the font in current use.

Objectives
In this section you will learn how to:

e Use commands to create character strings.

e Use commands to manipulate character strings.

e Use functions to manipulate characters and strings.
e Update characters and labels nodes.

e Create and use different character fonts.

Text Modeling and String Handling GT10-1

Prerequisites

Be at a PS 390 and have access to PS 390 Tutorial Demonstration
Programs. Be familiar with the concepts covered in Sections GT2 Graphics
Principles, GT4 Modeling, and GT5 Command Language. Also have at hand
Reference Materials 1-4.

1. Using Commands To Create Character Strings

Two PS 390 commands create character strings: the CHARACTERS com-
mand and the LABELS command.

1.1 The CHARACTERS Command

The CHARACTERS command lets you create a single string of up to 240
characters and specify the location of that string in the world coordinate
system.

The simplest form of the command lets you create a string which starts at
the origin (the default location). Put the PS 390 in command mode by press-
ing the CTRL/LINE_LOCAL (PS 300-style keyboard) or CTRL/CMND or
ALT/CMND (PS 390-style keyboard) keys. Use the following command to
assign the name String to a character string.

String := CHARACTERS ‘The quality of mercy... ;

Now DISPLAY String. All you can see at the moment is a large T in the
top-right quadrant and the vertical stroke of the h. This is because each
character is defined in a square which, by default, is one unit on each side.
The default starting point for any string is the origin. Since the default
window is from -1 to 1 in X and Y, only the first letter is within the win-
dow. Figure 10-1 illustrates this.

GT10-2 Graphics Tutorials

Default Character

Default Window——»

or—————q-=
!
I
I*
|
!
I
I
I
I
|
l-—.—-. —
Lo e e e

-1

-1 1390250

Figure 10-1. Default Window and Character Size

To scale the characters to fit the default window and display the string at its
new size, enter the following commands.

Scale_String := SCALE BY .04 APPLIED TP String;
REMOVE String;
DISPLAY Scale_String;

The string should now appear in much smaller letters beginning at the cen-
ter of the screen. Notice that the characters which form the string in the
CHARACTERS command are enclosed in single quotation marks; however,
when String is displayed, only the characters appear. If you want quotation
marks in the text string, you must use three single quotation marks at the
start and at the end of the string. Redefine String by entering the following
command.

String := CHARACTERS “““The quality of mercy...”””;

The character string should now appear in quotation marks. To get a single
quote to appear in a string (as an apostrophe, for example) you must enter
two single quotes. Redefine String with the following command.

String := CHARACTERS “Love’’s not time’’s fool-;

The string should appear with the contraction Love’s and the possessive
time’s.

Text Modeling and String Handling GT10-3

1.1.1 Changing Starting Position and Spacing

When the PS 390 displays a character string, the string is positioned by
default with the lower-left corner of the unit square enclosing the first char-
acter at the origin of the world coordinate system. Characters are regularly
spaced and follow each other horizontally. Optional parameters in the com-
mand let you specify the beginning coordinates of the string and change the
horizontal and vertical spacing of the characters to create vertical and di-
agonal text strings. Enter the following command to redefine String as a
new line of text positioned off the origin.

String := CHARACTERS 0,5,0 “Up a little’;

This string starts at 0 on the X axis and 0 on the Z axis but 5 on the Y axis.
The X,Y,Z coordinate of the starting point can always be specified in this
way. The Z coordinate is optional and, if not supplied, defaults to zero.

The spacing between characters can be changed with a STEP clause. This
clause lets you specify the spacing between characters in X and Y as a value
from -1 to 1. The default spacing is 1,0 or one unit in X and zero in Y for
regular horizontal spacing.

The vertical spacing can be changed by specifying the Y component of the
STEP clause as a value other than zero. Enter the following command to
create a string which descends diagonally from the origin to the right.

String := CHARACTERS STEP 1,-1 “Stepping down’;

Now redefine the string as a diagonal which ascends from the origin to the
upper-right.

String := CHARACTERS STEP 1,1 “Stepping up’;

1.1.2 Exercise

Try different combinations of X and Y values to produce strings which
descend and ascend vertically from the origin.

GT10-4 Graphics Tutorials

1.2 The LABELS Command

The LABELS command, like CHARACTERS, defines character strings for
display. Whereas CHARACTERS defines a single string, LABELS combines
any number of character strings into a single block. Each character string in
the block is called a label. The command is quite straightforward to use.
The following example combines some of the text strings created earlier in
this section into a single label block.

String := LABELS 0,0 “The quality of mercy...~
~-1,2 ““’The quality of mercy...”””
4,5 ‘Up a little-
2,-5 “Love’’s not time”’s fool”;

Diagonal and vertical strings could not be included in the block, however,
because they specify different horizontal and vertical spacing between char-
acters. The LABELS command is not able to accommodate this. The only
clause in the command is the X,Y,Z coordinate of each label in the block.

1.3 When to Use CHARACTERS and LABELS

Both the CHARACTERS and the LABELS commands create data nodes in a
display structure. Whenever several character strings are defined as a single
LABELS node rather than as separate CHARACTERS nodes, there is a gain
in display capacity. If you are displaying a lot of text, it is best defined
using the LABELS command.

Character strings defined with the CHARACTERS command, however, are
more versatile. In deciding which command to use, keep the following in
mind.

e The CHARACTERS command lets you change the horizontal and
vertical spacing between characters. The LABELS command does
not.

o If text is created using CHARACTERS, you can manipulate any
character in the text string. If the LABELS command is used, the
smallest entity you can manipulate is a single text string.

Text Modeling and String Handling GT10-5

2. Using Commands To Manipulate Character Strings

The CHARACTERS and LABELS commands create data nodes containing
text. Like any other primitive data, text can be transformed by having a
matrix applied to it. Text can be rotated and scaled using the ROTATE and
SCALE commands which transform any two-dimensional or three-
dimensional structure. In addition, characters can be transformed with their
own rotate and scale commands: CHARACTER ROTATE, CHARACTER
SCALE, and TEXT SIZE. These commands create 2x2 transformation ma-
trices which only operate on text.

2.1 The CHARACTER ROTATE Command

The CHARACTER ROTATE command rotates a character string or label
block around the Z axis. When you look in the positive direction of the axis,
the rotation is counterclockwise.

To see the effect of this command, initialize the display, then rotate and
display the scaled labels block.

INITIALIZE DISPLAY;
Rot_Text := CHARACTER ROTATE 90 APPLIED TO Scale_ String;
DISPLAY Rot_Text;

Each string in the block should be rotated 90 degrees to the left. Notice that
each label in the block is rotated around its own starting location. There is
no single point in a labels block around which the whole block rotates.

A character rotate node can be updated interactively by any 2x2 matrix. The
functions F:MATRIX2 and F:CROTATE (where C stands for character) are
often used to supply the new matrix to the node.

2.2 The CHARACTER SCALE Command

Characters can be scaled like any other primitive data by a three-
dimensional scale matrix using the SCALE command. There is also a
CHARACTER SCALE command which creates a 2x2 scale matrix for
transforming text only.

GTI10-6 Graphics Tutorials

There are two forms of the CHARACTER SCALE command, one for uni-
form scaling and one for nonuniform scaling. Enter the following com-
mands to initialize the display and to uniformly scale by .75 and then dis-
play the characters in the labels block.

INITIALIZE DISPLAY;
Char_Scale := CHARACTER SCALE .75 APPLIED TO Scale_String;
DISPLAY Char_Scale;

The scale factor is applied in both X and Y to the characters that compose
Scale_String. A nonuniform scale can be applied by specifying separate
scale factors in X and Y. Enter the following command to redefine
Char_Scale and make tall characters.

Char_Scale := CHARACTER SCALE .5,3 APPLIED TO Scale_String;

Characters in the strings are made tall and thin with this command.

When several CHARACTER SCALE commands are used, each is concate-
nated with the next and a cumulative scaling matrix is applied to the charac-
ters. To see this effect, initialize the display and create and display a text
string called Text.

INITIALIZE DISPLAY;
Text := CHARACTERS ‘See Spot run.”;
DISPLAY Text;

Since the characters are at the default size, only the capital S and one line
of the first lowercase e are visible in the top-right quadrant of the screen.
Now scale the string by prefixing it with a CHARACTER SCALE node.

PREFIX Text WITH CHARACTER SCALE .5;

The characters should now change to half their previous size, and the S,
first e, and one line of the second e should be visible. The PREFIX com-
mand inserts a new node above the existing node and assigns the name of
the existing node to the new node. Figure 10-2 shows the effect of the PRE-
FIX command on the display structure.

Text Modeling and String Handling GT10-7

Text

Text | C|— | C

U390251

Figure 10-2. The Effect of the PREFIX Command
Use the PREFIX command again to create another scale node above the last

one.

PREFIX Text WITH CHARACTER SCALE .1;

Notice that the size of the characters is now one tenth of what it was imme-
diately before, not one tenth of the original default size. The actual size of
the text is .5 times .1, which is .05 of the default size. The new display
structure is as shown in Figure 10-3.

-

Text | C | —] C

U390252

Figure 10-3. New Node Added with the PREFIX Command

The two character scales are concatenated and the combined scaling matrix
is applied to the characters.

2.3 The TEXT SIZE Command

Character sizes can also be changed with the TEXT SIZE command. This
command creates a text size which replaces the default size of 1. Text sizes
are expressed as multiples or fractions of the default size.

Like the CHARACTER SCALE command, TEXT SIZE creates a 2x2 scal-
ing matrix. However, this matrix is not concatenated with any other matrix.
This means that the command creates a node which overrides any 2x2 ma-
trix nodes above it in the same branch of the display structure.

GTI10-8 Graphics Tutorials

To see the effect of the command, first remove the two CHARACTER
SCALE prefixes of the string called Text, then prefix Text with a TEXT
SIZE node.

REMOVE PREFIX OF Text;
REMOVE PREFIX OF Text;
PREFIX Text WITH TEXT SIZE .5;

As you remove the prefixes, the characters being displayed should get
larger until they are back to the default size, and only the capital S is visible
in the top-right quadrant. Prefixing with the TEXT SIZE command should
make the letters half of the default size. The display structure for this struc-
ture is as shown in Figure 10-4.

Text | C| —}| C

U390253

Figure 10-4. Display Structure with TEXT SIZE Node
Now prefix Text with a CHARACTER SCALE node to scale the characters
by half again.
PREFIX Text WITH CHARACTER SCALE .5;

The text size does not change. This is because the effect of the CHARAC-
TER SCALE node is overridden by the TEXT SIZE node below it in the
structure. The display structure for the structure is shown in Figure 10-5.

Text

U390254

Figure 10-5. TEXT SIZE Node Prefixed with CHARACTER SCALE Node

Text Modeling and String Handling GT10-9

Now prefix the CHARACTER SCALE node with a character rotation node.
PREFIX Text WITH CHARACTER ROTATE 90;

Again, nothing happens. The TEXT SIZE node overrides all 2x2 matrices
above it. Since a CHARACTER ROTATE node is a 2x2 matrix node, it too
is canceled out like the character scale. You should take this into account
when structuring data.

2.3.1 Exercise

The TEXT SIZE node has no effect on 3x3 matrices, however. Try replac-
ing the CHARACTER ROTATE node with a ROTATE node, and the rota-
tion will be applied.

2.4 Character Orientation

If a transformation is applied to an object or part of an object which con-
tains text in its structure, the default condition is that the text will be trans-
formed too. Consider the display structure in Figure 10-6.

Dials

=TT
Coo Q

Labeled_Cube

)
>

o] Cc C C

inai i tri
String String?2 String3 String4 Strings String6

U390255

10| JOO

Cube] C

Figure 10-6. Display Structure for a Labeled Cube

GT10-10 Graphics Tutorials

An instance node called Labeled Cube groups a vector list defining a cube
and character strings which are scaled and positioned on each face to label
the front, back, top, bottom, left, and right. A rotation node connected to
three dials through a function network allows Labeled_Cube to be rotated
interactively. A scale node is also connected to a dial to allow interactive
scaling. Any rotation or scale that is applied to the cube is also applied to
the character strings.

To display the cube represented by the display structure in Figure 10-6, go
to the tutorial demonstration menu and select the program called
CHARACTERS.

The cube with its faces labeled will be displayed in three viewports. The
rotation node is connected to dials 1, 2 and 3 for rotations in X, Y, and Z.
Dial 4 is connected to the scale node. Use the dials to manipulate the cube.

Notice that as you rotate and scale the cube, the character strings on the
faces of the cube in viewport 1 are rotated and scaled also. Depth cueing is
performed on the characters as well as on the lines that make up the cube.

As you manipulate the cube in viewport 1, the character strings which label
its faces are unreadable much of the time. They may be backwards,
upside-down, and too small to read. Notice that this is not the case with the
characters in viewports 2 and 3. These characters are unaffected by
rotations and scales while the object is being transformed. This is achieved
by using the SET CHARACTERS command. This command determines the
orientation of characters which are part of a model. It has an “orientation”
clause with three options: WORLD_ORIENTED, SCREEN_ORIENTED, and
SCREEN_ORIENTED/FIXED.

2.4.1 World-Oriented Characters

World-oriented characters are what you are seeing with the cube in viewport
1. The characters are transformed along with the object just like any other
part of it. When an object is rotated, translated, or scaled, the characters
undergo the same transformations. This is the default condition for any
character string or label block you create.

The syntax for this command is as follows.

name := SET CHARACTERS WORLD_ORIENTED APPLIED TO namel;

Text Modeling and String Handling GT10-11

2.4.2 Screen-Oriented Characters

Screen-oriented characters are unaffected by ROTATE and SCALE nodes.
The SET CHARACTERS command can be used with the SCREEN_ORI-
ENTED clause to maintain a readable orientation for character strings when
an object is transformed. The cube in viewport 2 has a SET CHARACTERS
SCREEN_ORIENTED node added. When this cube rotates, the names on
the cube’s faces stay readable. They rotate around the three axes but they
stay parallel to the XY plane. When the cube is scaled, the character size
remains unchanged.

The syntax for this form of the command is as follows.

name := SET CHARACTERS SCREEN_ORIENTED APPLIED TO namel;

2.4.3 Screen-Oriented Fixed Characters

Notice that with the screen-oriented characters in viewport 2, the intensity of
the characters varies with depth. If the cube were being displayed in
perspective projection, the size of the characters would vary too. In the
initial position of the cube, the characters BACK on the back face of the
cube would appear smaller and dimmer than the characters FRONT. You
can use the SCREEN_ORIENTED/FIXED option of SET CHARACTERS to
fix the size and intensity at which characters are displayed.

The cube in viewport 3 has a SET CHARACTERS node with the
SCREEN_ORIENTED/FIXED option. Notice that when you rotate this cube,
depth cueing is not performed on the characters, so they remain at full
intensity.

The syntax for this form of the command follows.

name := SET CHARACTERS SCREEN_ORIENTED/FIXED APPLIED TO namel;

3. Using Functions to Manipulate Characters and Strings

There are several functions which are used for manipulating characters and
strings. These functions convert characters and strings to other types of
data, format and reformat strings, transform characters, and perform other
miscellaneous character and string-handling operations.

GT10-12 Graphics Tutorials

Complete information on these functions is contained in Section RM2
Intrinsic Functions. The following sections summarize the functions and give
a few examples of their use.

3.1 Character- and String-Conversion Functions

F:CHARCONVERT

Converts characters to integers. The function accepts a string and converts
each byte of the string (i.e., each character) to an integer. For example, the
string AB will be converted to 65 66, the ASCII decimal equivalent of A and
B.

F:CHARMASK

Masks each character in a string by ANDing each byte with a constant inte-
ger. This is useful for converting one character or a string of characters to
another, for example, from upper to lower case or from a nonprintable to a
printable character.

F:PRINT

Converts any data type to a string. For example, a Boolean input will gener-
ate the string “TRUE“ or “FALSE“; a 3D vector will generate a string such
as “5,2,1° and so on.

F:TRANS_STRING

Translates one string into an output string using another string as a transla-
tion table. For example, prime the function by sending °ABCDEF-
GHIJKLMONPQRSTUVWXYZ" as the translation table to input <3> of the
function, and 97 (the ASCII decimal equivalent of a) to input <2>. If a string
of lowercase letters of the alphabet is now sent to input <1>, the letters will
be converted to uppercase on output <1>.

F:STRING_TO_NUM
Converts a string to a real number or an integer.

F:GATHER_STRING :
Collects strings until a terminator arrives. It then packages them into one
string which may or may not include the terminator.

Text Modeling and String Handling GT10-13

3.2 String-Formatting and Reformatting Functions

F:CONCATENATE
Concatenates strings. The string on input <2> of the function is appended to
the string on input <1>.

F:SPLIT

Compares two strings and splits them depending on the match. If a match
occurs, characters in the string on input <1> that precede the match are
output on output <1>. Matching characters are output on output <2>. Char-
acters following the matching characters are output on output <3>. And a
Boolean TRUE is output on output <4>. If no match is found, nothing is
output on outputs <1>, <2>, and <3>, and a Boolean FALSE is output on
output <4>.

F:PUT_STRING
Replaces characters in the string on input <1> with the string on input <3>,
starting at the position specified by the integer on input <2>.

F:TAKE_STRING

Outputs a string consisting of the number of characters specified on input
<3> taken from the string on input <1>, starting at the position given on
input <2>.

F:LINEEDITOR

Accepts a stream of characters and simple editing commands, accumulates
the characters in an internal line buffer, applies the commands to the con-
tents of the line buffer as they are received, and outputs the edited line
when a specified delimiter character is recognized.

F:LABEL

Creates a label to send to a LABELS node. A vector on input <1> of the
function indicates the location of the label in the coordinate system. A string
on input <2> is the text of the label. A Boolean value on input <3> indicates
whether the label is to be displayed or not. The data type output by this
function can only be used as input to a LABELS node.

GT10-14 Graphics Tutorials

3.3 Miscellaneous String-Handling Functions

F:LENGTH_STRING
Accepts a string and outputs its length.

F:FIND_STRING
Determines whether the string on input <2> is a substring of the string on
input <1>. Outputs the starting location of the substring if it is found.

F:COMP_STRING
Compares two strings to determine if the string on input <1> is greater than,
less than, or equal to the string on input <2>.

F:LBL_EXTRACT

Extracts information about a label in a LABELS node. An integer on input
<1> is an index into the LABELS block. A string on input <2> is the name
of the node. The function outputs the text of the label, its location in the
coordinate system, and a TRUE or FALSE to indicate if the label is dis-
played or not.

3.4 Character-Transformation Functions

F:CROTATE
Uses an integer on input <1> which represents degrees of rotation to create

a 2x2 Z-axis rotation matrix. This matrix can be used to update a CHAR-
ACTER ROTATE node.

F:CSCALE
Uses a real number or a two-dimensional vector to create a uniform or

nonuniform 2x2 scaling matrix. The matrix can be used to update a CHAR-
ACTER ROTATE node.

F:MATRIX2

Accepts two-dimensional vectors on inputs <1> and <2> and creates a 2x2
matrix. This matrix can be used to update a CHARACTER SCALE or
CHARACTER ROTATE node.

Text Modeling and String Handling GT10-15

4, Updating Characters and Labels Nodes

Both CHARACTERS and LABELS nodes can have their contents updated
using commands and functions.

4.1 Updating With Commands

The COPY and SEND commands can be used to change the contents of a
CHARACTERS or LABELS node.

4.1.1 The COPY Command

Labels can be copied from one LABELS node to another using the COPY

command. Note, however, that this command does not work with a
CHARACTERS node.

The command has the following format:

name := COPY namel [START=] i [,] [COUNT=] n;

The parameters for this command are:
name - The name of the LABELS node you are creating and copy-
ing into.
namel - The name of the LABELS node you are copying from.
i - The number of the first label to be copied.

n - A count of the number of labels to be copied.

The command can be used as follows. First create a labels node called
Limerick.

Limerick := LABELS -1,.75 “What’’s wrong with this PS 3907~

-1,.5 “The frustrated programmer thundered~
-1,.25 “I1”‘ve entered commands”
-1,0 “With the carefulest of hands”

-1,-.25 “But somehow I seem to have blundered!”;

To see the limerick, scale the labels block by .05 and display it.

Scale_Blockx := CHARACTER SCALE .05 APPLIED TO Limerick;
DISPLAY Scale_Block;

GT10-16 Graphics Tutorials

Now create a new labels block which starts at the third label and is three
labels long.

New_Block := COPY Limerick START = 3, COUNT = 3;

The words START and COUNT and the equals signs are optional, so you
could have typed “COPY Limerick 3,3;” instead. If one word is used, how-
ever, both must be used.

Now redefine Scale_Block so that it refers to New_Block.
Scale_Block := CHARACTER SCALE .05 APPLIED TO New_Block;
The last three lines of the Limerick should now be displayed on the screen.

4.1.2 The SEND Command

Several forms of the SEND command can be used to update a LABELS or
CHARACTERS node. Both nodes have similar input queues. Figure 10-7
shows inputs to a CHARACTERS node and Figure 10-8 shows inputs to a
LABELS node.

Name

Character —»| <last> Changes the last character
2D,3D,4D vector —»] <Position> Changes the starting position
2D,3D,4D vector —»| <step> Changes the stepping
Integer —»] <clear> Clears the current string
Integer —»| <delete> Deletes n characters (from the end)
String —»} <append> Appends to end of current string

String —»] <i> Replaces current string with new string, starting
at the ith character

String —»} <substitute> Replaces entire current string with
new string

CHARACTERS

U390256

Figure 10-7. Inputs to a CHARACTERS Node

Text Modeling and String Handling GT10-17

Mame

String —¥{ <last> Changes last label
Integer —» <clear> Clears list
Integer —1 <delete> Deletes from end
Label — <append> Appends from end
Boolean — <i> True=on, False=off
String —» <i> Replaces ith label
3D —»] <i> Change start location of ith label

LABELS

U390257

Figure 10-8. Inputs to a LABELS Node

Unlike most other nodes, these nodes have inputs with names as well as
numbers. All data sent to these nodes are sent to a named input or to a
numeric input which indicates the position of a character within a string or a
label within a block.

The simplest form of the SEND command has the following format:
SEND option TO <n>namel;

The parameters in this command are as follows:

option - For sending to a LABELS node, this is a string enclosed in
single quotes. For sending to a CHARACTERS node, the format is
CHAR(number), where number is the ASCII decimal equivalent of
a single character.

n - The name or number of the input to the LABELS or CHARAC-
TERS node.

namel - The name of the destination LABELS or CHARACTERS
node.

You can use the command, for example, to send a new string to replace an
existing one. Create a string called Quote.

Quote := CHARACTERS -1,0 “If we had world enough and time~’;

GTI10-18 Graphics Tutorials

Now scale the string by .05 so it will fit the default window.
Scale_Quote := CHARACTER SCALE .05 APPLIED TO Quote;

Remove anything you are displaying and display Scale_Quote. Now use the
SEND command to replace this string with the second line of John Donne’s
poem to his reluctant mistress.

SEND “‘This coyness, mistress, were no crime’ TO <substitute>Quote;

4.1.3 Exercise

Try SENDing to some of the other inputs of CHARACTERS and LABELS
nodes. For more information, refer to Section RM1 Command Summary.

Two other forms of the SEND command can be used with LABELS but not
with CHARACTERS: they are SEND VL and SEND number*mode. The
SEND VL form allows you to overwrite or append a label in a LABELS
block. The SEND number*mode form allows you to send a P or L identifier
to a label to indicate if a label is off (P) or on (L). Refer to Section RMI
Command Summary for more details.

4.2 Updating With Functions

You can create function networks to update a CHARACTERS or LABELS
node. Only four data types are accepted by the inputs to these nodes: an
integer, a vector (2D or 3D), a character string, and a Boolean value. Any
function which outputs one of these data types can be used to feed new
values to a node containing text. In particular, the output of the string han-
dling functions mentioned earlier can be used as input to a text node.

The function F:LABEL is designed specifically for updating a LABELS
node. The data type output by this function is the only type accepted by
input <append> of a LABELS node.

5. Creating and Using Different Character Fonts

A character font is a complete set of characters in the same size and type
face. The PS 390 has a standard font consisting of the 128-character ASCII
set. This is the default font for all textual displays. You can create and use
alternate character fonts. The BEGIN_FONT _... END FONT command lets

Text Modeling and String Handling GT10-19

you create an alternate font and the CHARACTER FONT command lets
you use that font.

5.1 Creating an Alternate Font

Alternate fonts are created as a sequence of itemized, two-dimensional vec-
tor lists defining each character in the font. Up to 128 ASCII character
codes can be defined for each font.

Each character in the font is defined as follows.
C[i]: N=n vectors;

The parameters are:

[i1 — The decimal ASCII code to be defined, i.e. a number from 0
to 128.

n — The number of vectors in the 2D vector list.
vectors — The vectors which make up the character.

The vectors which comprise a character must be itemized 2D vectors. Item-
ized vectors are each preceded by P or L identifiers to indicate whether a
vector is a position or a line vector. The following is the definition of a
capital A in a font called Simplex_Roman.

C[65]: N= 6

P 0.5455, 0.9545 L 0.1818, 0.0000
P 0.5455, 0.9545 L 0.9091, 0.0000
P 0.3182, 0.3182 L 0.7727, 0.3182;

The Simplex Roman letter A is compared to an A in the standard font in
Figure 10-9.

Standard Simplex

U390258 U390259

Figure 10-9. Standard A and Simplex Roman A

GTI10-20 Graphics Tutorials

In an Old English font, the definition of the same letter is much more

complex.

C[65]: N=49

P 0.2727, 0.8182 L
L 0.5455, 0.9545

L. 0.5909, 0.9091 L
L 1.0455, 0.1364

P 0.5000, 0.9091 L
L 0.9091, 0.0455

L 0.9545, 0.0909 L
L 0.4545, 0.9091

L 0.5000, 0.8636 L
L 0.9091, 0.0000

L 0.9545, 0.0000 L
L. 0.3182, 0.6818

L 0.4091, 0.7273 L
P 0.4545, 0.6818

L 0.4545, 0.6364 P
L 0.4545, 0.5909

P 0.0455, 0.0000 L
L 0.3636, 0.1364

L 0.4545, 0.0909 P
L 0.4091, 0.0455

P 0.0455, 0.0000 L
L 0.3636, 0.0000

L 0.4545, 0.0909 P
P 0.3636, 0.3636

L 0.7273, 0.3636;

.3636,

.9091,

.5455,

.8636,

.8182,

. 0455,

.4545,

.3182,

.1364,

.1818,

.1818,

.5455,

.9091

.1818

.8636

.1364

.1364

.1364

L7273

.6818

.0909

.0909

.0455

L7727

.4091, O

.4545, 0.

.9545, 0.

.8636, 0.

.3636, O.

.8636, O.

.2727, O.

.5000, O.

.2273, 0.

.3636, O.

.3182, 0.

.2727, 0.

9545

1364

1364

9091

0455

6364

6818

.6818

1364

0909

0455

1364

This letter A is compared to the standard font A in Figure 10-10.

Standard

U390260

Old English

U390261

Figure 10-10. Standard A and Old English A

Text Modeling and String Handling

GT10-21

A complete set of character definitions is enclosed in a BEGIN_FONT ...
END_FONT structure with the following format.

New_Font := BEGIN_FONT

C[0]: N=n P, L, L, ... L;
C[n}: N=n P, L, L, ... L;
Cc[127]: N=n P, L, L, ... L;
END FONT;

Notice that in the sample 2D vector lists given, the range of the vectors in X
and Y is between 0 and 1. There is no limit on the range of the vectors you
use, but you should keep within the range of 0 and 1 for the correct spacing
and orientation of adjacent characters.

5.2 Using an Alternate Font

The BEGIN_FONT ... END_FONT command does not create a data node in
a display structure but a look-up table of alternate character definitions. To
switch to an alternate font in a structure, the CHARACTER FONT com-
mand is used to create an attribute node which indicates the font look-up
table that must be read for the character definitions.

An alternate font called Old_English is included in the PS390 Tutorial Dem-
onstration Programs. To use this font in a structure, you must create a node
which points to the Old_English font and apply it to the text you want to
display.

Create, scale, and display a character string.

Text := CHARACTERS -.5,0 “To be, or not to be’;
Scale_Text := CHARACTER SCALE .05 APPLIED TO Text;
DISPLAY Scale_Text;

Now apply a CHARACTER FONT command to the scaled string to display
it in the Old_English font.

New_Font := CHARACTER FONT 0Old_English APPLIED TO Scale_Text;

REMOVE Scale_Text;
DISPLAY New_Font;

GT10-22 Graphics Tutorials

Hamlet’s question should now be displayed in the Old_English font. If it is
displayed in the standard font instead, this means that the Old_English font
was not available.

The display structure for New_Font is shown in Figure 10-11.

New_Font e
\\\
~
Scale_Text @
C

~«~_ Old_English
~

Text

U390262

Figure 10-11. Display Structure with CHARACTER FONT Node

The Old_English font is shown as a look-up table which is not part of the
actual structure. The CHARACTER FONT node New_Font points to this
table as well as to the CHARACTER SCALE and CHARACTERS node.

5.3 The Character-Font Editor Program

Another way to create alternate character fonts is to use the program
MAKEFONT which is distributed on the E&S magnetic tape and is docu-
mented in Section T77 Character Font Editor. MAKEFONT is a menu-driven,
graphical character font editing program which allows you to create a font
from scratch by drawing each of the characters, or to make changes to
existing alternate fonts.

6. Summary
Two commands create data nodes containing text: CHARACTERS and
LABELS.

6.1 Creating Text Nodes

The CHARACTERS command creates a single text string of up to 240 char-
acters. Optional parameters allow you to specify the starting location of the
string and the horizontal and vertical spacing between characters. The syn-
tax of the command is as follows.

Text Modeling and String Handling GT10-23

name := CHARACTERS [x,y[,z]][STEP dx,dy] ‘string”’;

The LABELS command creates a block of character strings or labels. Each
label can be given its own starting location. The syntax of the command is
as follows.

name := LABELS X,y [,z] “string”
[xi,yi [,zi] “string’];

6.2 Manipulating Text With Commands

Text nodes, just like any other data nodes, are affected by transformations.
They can be rotated and scaled by 3x3 transformation matrices (created by
the ROTATE and SCALE commands) or by exclusive 2x2 character trans-
formation matrices.

6.2.1 Transforming Text

The commands which create these matrices are CHARACTER ROTATE,
CHARACTER SCALE, and TEXT SIZE. The matrices which these
commands create have no effect on three-dimensional data or nontextual
two-dimensional data.

The CHARACTER ROTATE command creates a Z-rotation matrix from an
angle of rotation which is entered as parameter. The syntax of the com-
mand is as follows.

name := CHARACTER ROTATE angle [APPLIED TO namel];

The CHARACTER SCALE command creates a uniform or nonuniform scal-
ing matrix from the scale factor entered with the command. For nonuniform
scaling an X and Y scale factor is given. The syntax of the command is as
follows.

name :
name :

CHARACTER SCALE s [APPLIED TO namel];
CHARACTER SCALE sx,sy [APPLIED TO namel];

The TEXT SIZE command creates a 2x2 matrix node which overrides any
2x2 matrix settings above it in the display structure. Any character scales or

GT10-24 Graphics Tutorials

character rotations are superseded by this command. The command estab-
lishes a character size for text which is a multiple or fraction of the default
character size of 1. The syntax of the command is as follows.

name := TEXT SIZE x [APPLied to namel}];

6.2.2 Setting Character Orientation

When text forms part of an object that is being displayed and manipulated,
the characters can be transformed with the object or they can remain unaf-
fected by object transformations. The SET CHARACTERS command lets
you determine the orientation of the text. The format of the command is as
follows.

name := SET CHARACTERS orientation [APPLIED TO namel];

Three types of orientation may be set:

World_Oriented — Characters are transformed just like any part of
the object containing them.

Screen Oriented — Characters are not affected by ROTATE or
SCALE transformations. Intensity and size of characters still vary
with depth (Z-position).

Screen_Oriented/Fixed — Characters are not affected by ROTATE
or SCALE transformations. They are always displayed with full
size and intensity.

6.3 Manipulating Text With Functions

Several functions are available for manipulating text and strings. These
functions are listed below.

e Character- and String-Conversion Functions

F:CHARCONVERT
F:CHARMASK
F:GATHER_STRING
F:PRINT
F:STRING_TO_NUM
F:TRANS_STRING

Text Modeling and String Handling GT10-25

o String-Formatting and Reformatting Functions

F:CONCATENATE
F:LABEL
F:LINEEDITOR
F:PUT_STRING
F:SPLIT
F:TAKE_STRING

Miscellaneous String-Handling Functions

F:COMP_STRING
F:FIND_STRING
F:LBL_EXTRACT
F:LENGTH_STRING

Character-Transformation Functions

F:CROTATE
F:CSCALE
F:MATRIX?2

6.4 Text Nodes

6.5 Updating Nodes

GT10-26

COPY

SEND

SEND VL

SEND number*mode

The CHARACTERS and LABELS commands create data nodes containing
text. Both nodes have inputs which accept vectors, strings, integers, or
Boolean values to update the contents of the node.

CHARACTERS and LABELS nodes can be updated using commands or the
functions listed earlier. The following commands are most frequently used
to update these nodes.

Graphics Tutorials

6.6 Alternate Character Fonts

Character fonts other than the standard font can be created using the BE-
GIN_FONT ... END_FONT command. The syntax for this command is as
follows.

name := BEGIN_FONT
[C[0]: N=n {itemized 2D vectors};]

{C[i]: N=n {itemized 2D vectors};]

[C[127]: N=n {itemized 2D vectors};]
END_FONT;

Each character in the font is defined as a vector list consisting of itemized
2D vectors. The clause C[i]: identifies the ASCII character being defined;
for example, C[65]: indicates that the character is a capital A. Up to 128
characters can be defined in an alternate font. Alternate fonts are used by
including CHARACTER FONT nodes in a display structure. The syntax of
the CHARACTER FONT command is as follows.

name := CHARACTER FONT font_name APPLIED TO namel;

The parameter font_name is the name of an alternate font defined with the
BEGIN _FONT ... END_FONT command.

Text Modeling and String Handling GT10-27

PICKING

GT11. PICKING
SELECTING DISPLAYED OBJECTS

CONTENTS

INTRODUCTION ...ttt iiieieinenesnennonannnens
OBJECTIVES ... ittt iiieatrenrracnensonansoanes
PREREQUISITEScitiititiiiitiiitinenrenrneeneenenanns

1. USING PICKING-ATTRIBUTE NODESccoitiiuennn.

1.1. Setting Picking ON and OFFcitiiiuiiennrennnnns
1.2. Using Picking Identifiers.............cooviiiiiinennann.
1.21. Example ...ttt iiiiioiienrenteecneennaanns

2. USING INITIAL PICKING FUNCTIONScociveuunnn

3. USING THE PICKING FUNCTIONS
IN A FUNCTION NETWORKci0itittinenennrnncnnns

3.1. Examples of Pickingot
K O) v]

4. SUMMARY et tiet et i

B AW N

|

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

ILLUSTRATIONS

Picking Selectable by Branchcoiiiiiiiinn.. 4
Picking an Entire Structurecciiiiiiiiiiieernnnnas 4
Display structure With Car and Four Tires 5
Diagram of TABLETIN and PICKcoiivtiiuennnnnns 7
Typical TABLETIN and PICK Arrangement 11
F:PICKINFO (Connected 10 PICK)ccoivvereinnernnnnen 12

Diagram of PICK Through F:SUBC
Feeding a Bank of F:ROUTE(n) Instances 15

]

Section GT11
Picking
Selecting Displayed Objects

Introduction

Picking allows you to retrieve information about a selection or pick made on dis-
played data. This information contains details about the structure that makes up
the displayed data. Details can include the name of the data node that the picked
portion of the object is associated with; names of nodes along the branch of the
display structure that was selected by a pick; an index into the vector list, character
string or label that was picked; and the coordinate values of the location where the
pick took place. The information is available in a special format called the pick
list.

Normally, picking is done by using the data tablet and the stylus to select any part
of a displayed object designed to allow for picking. The selection is made by mov-
ing the stylus across the surface of the data tablet; this positions the cursor on the
screen. (The cursor is an X.) Picking is usually activated by pressing the tip of the
stylus down when the cursor is positioned over the appropriate line, dot, or text
character. The information that is returned when a pick takes place (the pick list)
can be displayed, used to drive a function network, or sent to the host. The amount
and kind of information received on the location of a pick is user-definable.

An obvious use of picking is to make selections from a menu, where the cursor is
positioned over a line or the piece of text in the menu that is to be selected. By
pressing the stylus down, that item on the menu is picked, and the appropriate
function can be performed (i.e., move to another menu, exit from the menu, bring
up a displayable structure, etc.)

Central to the picking process is the initial function instance PICK. PICK is enabled
by sending any message to input <1> of PICK. (Normally this message is the X,Y
location of the pick sent to PICK when the tipswitch of the stylus is pressed.) PICK
feeds this trigger message to the display processor, asking for any pick information

Picking GT11-1

within the data structure being traversed to be sent back to PICK. If this
information is found (a pick occurs if there is data) the pick list is placed on the’
queue of output <1> of PICK. The main responsibility of PICK is to signal the
display processor that picking has been enabled and to output the pick list that
contains information about the location of the pick.

Before picking can take place, the data structure that you want to be able to pick
from must contain certain nodes and pieces of information. Polygonal objects,
because of their construction, cannot be picked.

This section defines the various elements involved in picking: picking-attribute
nodes and the commands that create them, and the picking functions.

This section teaches how to place and set the appropriate attribute nodes used in
picking and how to design a function network to use the information that is gener-
ated when a pick occurs.

Objectives

This section teaches you how to:

e Use picking-attribute nodes.
e Use initial picking functions instances for picking.
o Use the picking functions in a function network.

Prerequisites

You need to be familiar with the concepts presented in Sections
GT4 Modeling, GTS Command Language, GT6 Function Networks I and GT7
Function Networks II.

1. Using Picking-Attribute Nodes

Before an object can be picked, the display structure of the object must
contain certain nodes, and the object must be displayed. These nodes pro-
vide for picking capabilities such as:

e Turning picking on and off.

e Determining the portions of the object (or branches of the display
structure of the object) that can be picked.

e Selecting the name of the pick identifier that will be returned as part
of the pick list.

GT11-2 Graphics Tutorials

1.1 Setting Picking ON and OFF

Picking

The first picking-attribute node that must appear in the display structure is
the SET PICKING ON/OFF node. This node must be above the parts of the
display structure where picking will take place. This node is turned on and
off by Boolean values; a TRUE will enable picking in the data structure
below the node, a FALSE will disable it.

The command that creates the SET PICKING ON/OFF node is:

name := SET PICKING OFF APPLIED TO namel;

The SET PICKING ON/OFF node is usually placed in the display structure
in an OFF condition and activated when the Boolean value TRUE is sent to
input <1> of the named node. As an example, the following two commands
first create an instance of a SET PICKING ON/OFF node, and then activate
that node:

Pick Car := SET PICKING OFF APPLIED TO Car;

where Car is the name of the data structure, or the part of a data structure
that you want to be able to pick from,;

SEND TRUE TO <1>Pick_Car;

activates picking for Car. (The Boolean value is normally sent by a network
connected to the node.)

In designing a pickable display structure, the placement of the SET PICK-
ING ON/OFF nodes is very important. As with any other attribute node, this
node controls only its descendants. In the structure in Figure 11-1, picking
can be enabled and disabled for each branch individually because of the
placement of the SET PICKING ON/OFF nodes. In Figure 11-2, picking is
established for the whole structure, but not for the individual branches.

This placement can be important in complicated display structures, where
there are close or overlapping data structures simultaneously displayed on
the screen. In molecular modeling graphics applications, it can be useful to
disable picking for specific parts of the molecule. This same principle holds
for architectural or engineering applications, where only specific parts of
the entire display are used as pickable structures.

GT11-3

Set PICKING Set PICKING Set PICKING
ON/OFF ON/OFF ON/OFF

T T T
T I T

U380263

Figure 11-1. Picking Selectable by Branch

PN
Set PICKING
ON/OFF

T

TN

U390264

Figure 11-2. Picking an Entire Structure

1.2 Using Picking Identifiers

The other attribute node that must be placed in the display structure for
picking is the SET PICKING IDENTIFIER node. This pick identifier node
determines the detail of the information you get back in your pick list.

A picked object is identified by two types of names in the pick list. The first
type of name is the picking identifier or the pick id. The second name is the
name of the data node that contains the picked vector or character. In the
command shown above, “Car” is the name of the node that contains the
picked vector.

GT11-4 Graphics Tutorials

Picking

The command to create a SET PICKING IDENTIFIER node is:

name := SET PICKING IDENTIFIER = id_name APPLIED TO namel;

This command assigns id_name to be the picking identifier (the reported
character string) to be output by PICK in the pick list if any part of name1 is
picked. id_name can be the name of the data node, but in many cases
several branches of a display structure terminate at the same data node.
The name(s) of the pick identifiers in the pick list in such cases show which
branch was traversed to get to the common data node.

1.2.1 Example
WheelPickl := SET PICKING IDENTIFIER = Wheell APPLIED TO Wheel;

In this example, it is assumed that the display structure includes a car with
four tires. There are five branches, four of which include an instance of the
vector list for “Wheel.” Each branch contains the appropriate translation
and rotation operation nodes required to position the tires. To determine
which instance of “Wheel” was picked, each branch must also contain a
SET PICKING IDENTIFIER node with a unique name. This is illustrated in
Figure 11-3.

SET PICKING ON/OFF

SET PICKING IDENTIFIER

Body

U390265

Figure 11-3. Display structure With Car and Four Tires

GTI1-5

Assuming the right-front tire is Wheel1, then the pick list generated when a
pick was made on the right-front tire would be:

<index> Wheell,PickCarl Wheel

If there were only one SET PICKING IDENTIFIER node directly below the
SET PICKING ON/OFF node in Figure 11-3, when you picked from any
part of the displayed object below the instance node, you would only get
back the pick identifier for the whole data structure:

<index> PickCarl Wheel (or Body)

The information in a pick list includes the names of all the SET PICKING
IDENTIFIER nodes down the branch of the display structure enabled for
picking. The pick list also includes the name of the picked data node. The
pick list can be reported as a character string with pick IDs on that branch
separated by commas. This list always starts with the name of the SET
PICKING IDENTIFIER node closest to the picked vector or character.

The amount of detail about the display structure contained in information
returned in the pick list is determined by the location and number of the
SET PICKING IDENTIFIER nodes. In the code below, the pick list contains
only one pick identifier (PickCar1).

DISPLAY Car;

Car
Pick :

BEGIN_STRUCTURE

SET PICKING OFF;

SET PICKING IDENTIFIER = PickCarl;

INSTANCE OF Body, Wheell, Wheel2, Wheel3, Wheel4;
END_STRUCTURE;

To set up the display structure to enable picking remember the following:

For picking to take place, there must be a SET PICKING ON/OFF node
placed in the display structure, followed by at least one SET PICKING
IDENTIFIER node down each pickable path. However, one structure can
contain multiple SET PICKING ON/OFF nodes, and each SET PICKING
ON/OFF node can be followed by multiple SET PICKING IDENTIFIER
nodes.

GT11-6 Graphics Tutorials

2. Using Initial Picking Functions

The initial system function PICK was briefly described in the introduction to
the section. The initial function network that should be built to make use of
picking is shown in Figure 11-4.

TABLETIN
(TABLETIN2)
<1> 2D Vector (position/line)
Connected to <2> Boolean (switch open/closed)
data tablet at |
Initialization <3> nteger
<4> Boolean connected to SET PICKING
ON/OFF node
<5> Boolean
<6> 2D (X, Y, position of the cursor
when the tipswitch goes from
DD open to closed)
PICK
(PICK2)
Any message <1> <1>|— Pick list sent out
Boolean for coordinate picking —<2> <2>— Boolean; FALSE sent to
SET PICKING ON/OFF
Integer specifying—|<3> node when pick occurs
time-out duration <3>}— Boolean; sent to ON/OFF
Real number defining pick window half —{<4> node; turns picking OFF
size for the ACP pass of the pick after time-out
Integer specifying retry count—{<5>
Real number specifying half size —1<6>
increment to be added on each
try DD U390475

Figure 11-4. Diagram of TABLETIN and PICK

The system provides for picking with one other initial function, TABLETIN.
TABLETIN accepts the X,Y vectors that identify the position of the picking
location (the center of the cursor cross) as the stylus moves across the data
tablet and uses these vectors to position the cursor on the screen.
TABLETIN identifies the X,Y coordinates of the picking location that are

Picking GT11-7

output when the tipswitch on the stylus is pressed. These coordinates are
used to determine if a pick has occurred; and if it has, the location of the
pick is made available.

Output <4> of TABLETIN is typically connected to the SET PICKING ON/
OFF nodes in the display structure and is used to send Boolean values to the
nodes. When the tipswitch on the stylus is pressed, a TRUE is sent to the
node, enabling picking.

Input <1> of PICK accepts any message. Typically, this queue is connected
to output <6> of TABLETIN which supplies the 2D coordinates of the pick
location when the tipswitch is pressed. This arms the function, as the other
two inputs to PICK are constants. Output <2> of PICK should be connected
to the same SET PICKING ON/OFF nodes that are connected to output <4>
of TABLETIN. This output sends a FALSE whenever a pick occurs which
turns picking off until the tipswitch is again pressed and a TRUE is sent
from TABLETIN to the ON/OFF node. (This FALSE is sent to disable pick-
ing so that the picking process ceases until a pick location is asked for.)

Input <2> of PICK accepts a Boolean value that allows you to select the kind
of pick list that will be sent out of output <1>. A FALSE sent to input <2> of
PICK indicates that the output pick list includes the pick ID names, the data
node name, and an index into the vector list or character string (the data
node). A TRUE sent to input <2> of PICK indicates that the pick list in-
cludes the pick ID names, the data node name, an index to the data node,
and the picked coordinates and the dimension (2D or 3D) of the picked
vector.

The format for the pick list then, with FALSE sent to input <2> PICK is:

<index> PickIdl,PickId2,Name_of Data_Node

where <index> is a pointer into the picked data node.

The following chart shows the data node types and the definition of the
<index> that is returned when the value of the <index> is the integer 3.

GT11-8 Graphics Tutorials

Picking

Data Node Type Definition for Index Value of Integer 3

Vector list The third vector in the list was picked.

Character string The third character in the string was picked.
Label The third character string in the label was picked.
Polynomial or The value of the parameter (t) where the curve
Rational was picked

polynomial curve

The format for the pick list with TRUE sent to input <2> of PICK (coordi-
nate picking) is:

<index> [x,y,z] PickIdl,PickId2,Name_of Data_ Node

where X,Y,Z are the coordinate points of the picked vector.

Performing coordinate picking on a character string returns an index into
the string, not its picked coordinates.

Performing coordinate picking on a label block returns an index into the
label, not its picked coordinates.

Coordinate picking cannot be performed on a vector over 500 units long.

The integer on input <3> of PICK is used to set a time-out interval for the
PICK function in refresh frames. Timing starts when the PICK function re-
ceives any message on input <1>. This timing interval is used to determine
if a pick occurs in the specified period of time. The allowable integers on
input <3> are from 4 through 60. This is a safeguard feature: it deactivates
PICK if no pick occurs within the time-out period.

Input <4> is a real number between 0 and 1 that defines the pick window
half-size for the ACP pass of the pick. This is different from the size set by
the SET PICKing L.OCation operation node. The line generator or the
frame buffer uses the operation node to determine if a pick has occurred,
while the ACP uses the value placed on input <4> to do the actual pick pass
on the data.

GT11-9

Input <5> is an integer specifying pick pass retries. Since it is possible that
the ACP will not find the picked data during a pick pass, input <5> indicates
the number of times to add the window half-size increment on input <6>
and try another pick pass.

Input <6> is a real number between 0 and 1 which specifies the amount to
increase the pick window half-size on each retry of the pick pass. The de-
faults for inputs <4>, <5> and <6>, are:

Input <4> 6.8359E-3
Input <5> 4
Input <6> 6.8359E-3

Once the PICK function is armed (by receiving input on input <1>), if no
pick occurs within the specified time, PICK outputs a FALSE on output <3>.
This output should be connected to the ON/OFF nodes to disable picking
when a time-out occurs. Picking is enabled when the stylus is again pressed.

One other feature that is initialized by the system is the picking location.
This is by default the center of the cursor. The picking location must be
defined within the current viewport and can be modified with the following
command:

name := SET PICKING LOCATION = x,y sizex,sizey APPLIED TO namel;

where:

the 2D vector X,Y specifies the center of the picking location and the 2D
vector sizex,sizey specifies the size in X and Y from the center to the edge
of the picking location. namel is the structure to which the pick location
applies.

The pick location, then, specifies a region within a screen. If the pick-sensi-
tive object (line, dot, or character) is within the pick location, it can be
reported as having been picked.

The pick location can be moved within the viewport by sending the 2D
vector that represents the coordinate location of the new set pick location to
input <1> of the set picking location node. In effect, picking can take place
by positioning the picking location over a displayed object (containing the
appropriate picking attribute nodes) and sending a TRUE to input <1> of
PICK.

GT11-10 Graphics Tutorials

Picking

Figure 11-5 shows a typical arrangement of the TABLETIN and PICK func-
tions and their connections to the display structure.

TABLETIN

<1>}— 2D Vector default connection for pick location and cursor
<4>}— Boolean to SET PICKING ON/OFF node—l
<6>f— 2D Vector—]

L PICK

<1> Anymessage <1>}— pick list—

SET
PICKING
ON/OFF

<2> C Boolean <2>—B
<3> C Integer <3>—B
L F:PICKINFO
<1> Pick list

— All outputs to user
function networks

U390476

Figure 11-5. Typical TABLETIN and PICK Arrangement

3. Using the Picking Functions in a Function Network

A function associated with picking is F:PICKINFO. This function converts
the pick list data type into character strings that are acceptable by other

functions. There is only one active input to F:PICKINFO, <1>, and it should
be connected to output <1> of PICK.

GT11-11

PICK

Any message —<1> <1>}— Pick list—— to <1> F:PICKINFO —
Boolean —<2> <2>— Boolean; FALSE to SET
PICKING ON/OFF node
Integer time-out —<3> <3>}— Boolean; to SET PICKING
duration ON/OFF node
L F:PICKINFO
Pick list from PICK <1> <1>|— Integer; index of the pick
I-depth of pick list— <2> C <2>|— String; the pick/IDs
<3> |— Integer; start location of Character string
<4> — Integer; the dimension of the node

<6> — Boolean; coordinates reported

<6> |— Real; curve parameter, (t)
<7>}— Integer; data-type code
<8>— Special; name of picked element

<9> — 2D; screen coordinates of the picked point

u390477

Figure 11-6. F:PICKINFO (Connected to PICK)

The pick list sent from output <1> of PICK can be connected to an instance
of F:PICKINFO to convert the pick list into a logically useful format. The
pick list can also be printed out or displayed by connecting output <1> of
PICK to F:PRINT. F:PRINT converts the pick list code to printable
characters.

The constant input <2> of F:PICKINFO accepts an integer that specifies the
depth of the pick identifiers that will be output. Since the pick list contains
all of the pick IDs in a picked branch of a display structure, this input
allows you to select the depth. For example, if there were four pick IDs
active when a pick occurred and the integer 2 was sent to input <2> of
F:PICKINFO, then the two pick IDs closest to the data node and the name
of the data node itself are output as the string on output <2> of F:PICK-
INFO.

The output information from F:PICKINFO varies with the type of pick list
supplied on input <1>. If the PICK function has a TRUE on input <2>, then
it supplies a detailed coordinate pick list and most of F:PICKINFO outputs
are activated. If the PICK function has a FALSE on input <2>, a less de-
tailed pick list is supplied, and only outputs <1>, <2>, and <5> are active.

GT11-12 Graphics Tutorials

Refer to Section RM2 Intrinsic Functions for a complete description of the
outputs of F:PICKINFO.

The best use of picking is when the pick list is sent to an instance of
F:PICKINFO. Then information generated by the function can be used to
drive function networks that can be triggered by typical data types. Exam-
ples of what this data can be used for are described in the next section.

3.1 Examples of Picking

Picking

The following example demonstrates how picking can be used to trigger a
switching network for an object designed to have parts with independent
motion. The control dials are normally used to rotate, translate, and scale
objects in three dimensions. If the designed object requires more than eight
elements of freedom (the maximum number that can be provided by one set
of control dials), a picking network can be set up to access a bank of switch-
ing functions that control the output of the dials. This network will allow
you to point at the part that you want to manipulate and the picking infor-
mation will drive the function network that routes the dial outputs to various
networks.

In this example, the display structure that defines a robot figure includes
SET PICKING IDENTIFIER nodes in each branch of the figure networked
for motion through a switch function to DIALS. This is the same robot that
was built in Section G75 Command Language, and it is connected to the
function networks that were designed in Sections GT6 Function Networks I
and GT7 Function Networks II. The function network provides for several
modes for the control dials. These modes provide the triggers to animate
each part of the robot that requires independent movement, i.e., rotation of
each shoulder joint, knee joints, torso, head, etc.

The picking network will use the data tablet to trigger the mode of the dials.
In Section GT6 Function Networks I, the function keys were used for dial-
mode switching. If you examine the design of the robot, you will notice that
there are 41 elements of freedom designed into the structure. This will re-
quire 41 modes of the dials. As the picking network will be used to trigger
the dials mode, 41 SET PICKING IDENTIFIER nodes must be coded into
the structure.

GT11-13

The picking network to switch the modes for dials that are connected to the
robot display structure works in the following manner. When the cursor is
positioned over a part of the robot with independent motion controlled by a
dial (like the shoulder) and the tipswitch of the stylus is pressed, the name
of the pickID in the shoulder branch of the display structure is sent from
PICK to an instance of F:PICKINFO.

Output <2> of this instance of of F:PICKINFO is connected to an instance of
F:CHARCONVERT. F:CHARCONVERT converts the bytes of the string it
receives on input <1> into a stream of integers. If the pick ID sent to
F:PICKINFO is A, F:CHARCONVERT will translate A to the ASCII 65. If
this is then sent to an instance of F:SUBC, it can subtract 64 and output the
integer 1 that can be used to trigger the appropriate bank of switches for the
dials.

Figure 11-7 illustrates the function network described above.

GT11-14 Graphics Tutorials

PICK F:PICKINFO F:CHARCONVERT
T <1> }— pick list—] <1> <1>
<2> <2>C <2>|— pick id—{ <1> <1>
* <2>T
F:SUBC F:ROUTE
<i> <1>[I-Integer (n) directs +—1<1> <1>| Integer on input <1>
<2> 64 message on input — | —<2> <2>|] routes message
<2> to output <n> . from DIALS <1> to
function network
<n>
DIALS
<1> -
<2> F:ROUTE
<3> +—] <1> <1>] Integer on input <1>
<4> L | <2> <2>] routes message
<5> . from DIALS <2> to
<6> : function network
<7> <n>
<8>
F:ROUTE
+— <1> <i>| Integer on input <1>
U L] routes message
The remaining :utputs of N <%> from DIALS <3> to
DIALS would all be con- . function network
nected to instances of <n>
F:ROUTE that accepted
an integer from F:SUBC

on input <1>

to <1> of all other instances

of F:ROUTE

Figure 11-7. Diagram of PICK Through F:SUBC Feeding a Bank
of F:ROUTE(n) Instances

To implement the previous example of picking as an exercise demonstrating
the placement of the picking-attribute nodes and the connections that should
be made for the picking network, use the source code supplied for the robot
in Section GTS Command Language. Picking attribute nodes can be set into
the display structure and then connected to the picking function network
that is used in the picking demonstration available in the PS 390 Tutorial
Demonstration Programs.

Picking

GT11-15

3.2 Exercise

Design a pickable display structure with several instances of a primitive.

Design a function network that outputs the pick list to the screen. Use
F:PRINT and a character data node. Code your display structure and func-
tion network. Display and pick each primitive.

4. Summary

GT11-16

Picking allows you to retrieve information about a selection made on dis-
played data. The information is available in a special format called the pick
list. Before picking can take place, the data structure that you want to be
able to pick from must contain certain nodes and pieces of information.

o Picking-Attribute Nodes

The first picking-attribute node that must appear in the display structure
is the SET PICKING ON/OFF node. This node must be above the parts of
the display structure where picking will take place. This node is turned on
and off by Boolean values; a TRUE will enable picking in the data struc-
ture below the node, a FALSE will disable it.

The command that creates the SET PICKING ON/OFF node is:

name := SET PICKING OFF APPLIED TO namel;

The other attribute node that must be placed in the display structure for
picking is the SET PICKING IDENTIFIER node. This pick identifier node
determines how detailed the information you get back in your pick list
will be.

A picked object is identified by two types of names in the pick list. The
first type of name is the picking identifier or the pick ID. The second
name is the name of the data node that contains the picked vector or
character.

The command to create a SET PICKING IDENTIFIER node is:

name := SET PICKING IDENTIFIER = id_name APPLIED TO namel;

Graphics Tutorials

Picking

For picking to take place, there must be a SET PICKING ON/OFF node
placed in the display structure, followed by at least one SET PICK
IDENTIFIER node down each pickable path. However, one structure can
contain multiple SET PICKING ON/OFF nodes, and each SET PICKING
ON/OFF node can be followed by multiple SET PICKING IDENTIFIER
nodes.

Picking Functions

The initial function instance used for picking is PICK. Input <1> of PICK
(usually connected to output <6> of TABLETIN) accepts any message
type as a trigger message to activate picking. The pick list is placed on
the queue of output <1> of PICK. The main responsibility of PICK is to
signal the display processor that picking has been enabled and to output
the pick list.

An intrinsic user function associated with picking is F:PICKINFO. This
function converts the pick list data type into character strings that are
acceptable by other functions. There is only one active input to
F:PICKINFO, <1>, and it should be connected to output <1> of PICK.

GT11-17

~— VIDEO OUTPUT
GTi2.

CONTROL

GT12. VIDEO OUTPUT CONTROL

CONTENTS

OBJECTIVES .. ittt iiinttoenssonassossstosenasssonasss 1
1. VIDEO THEORY AND THE PS 390coiitiiiiinnnn.. 1
1.1 Calligraphic and Raster Displaysc.ociiiiinnn. 1
1.2 Raster Display Characteristicscciiiiiann.. 2
1.3 Video Timing Formatscouitiiiuiiiiniieiinnnneonns 3
2. THE PS390ENV FUNCTIONciiiitiiiennrronnecnnnans 5
2.1 Selecting a Background Colorccoviiivinenneennens S
2.2 Selecting @a Cursor Colorcciiiiiviienneeeroeennens 5
2.3 Selecting @ Cursorcoviititeenrneneceeaneceaeaseennns 6
2.4 Selecting a Video Timing Format 7
2.4.1 Reconfiguring Viewports for Alternate Video Timing 7
2.5 Selecting a Line Filtercciutiiiitiiririrennneecnns 8
APPENDIX A

GUIDETO PS390 VIDEOivtiitiininnnennnennenneennees 10
Video Timing Formatscoiituiotiionnnnennnnnsonnsns 11
Multiple PS 390 Video Hookupscoviiiiiiiiiiinnennne. 11
Video Cablesiiiiiiiiiiiiiiiiiiineeennereennneennns 12
Video Optionsciuiiiiiiiiiiiiioinieierennenneennenns 12
Custom Video Timing Formatscc0iieiiiiinnineeeeens 12
ReferencCesvuiiutiieioseensnosssossennnassssssssssnnns 13

TABLES

Table 12-1. 1024 by 864, 60 Hz, non-interlaced Video Format 14
Table 12-2. RS-343 1024 by 864, 30 Hz, Interlaced Video Format 15
Table 12-3. 640 by 484, 30 Hz, Interlaced (RS-170-A (NTSC)) Video Format 16
Table 12-4. 768 by 574, 25 Hz, Interlaced (PAL, SECAM) Video Format ... 17

Table 12-5. RS-343 1024 by 1024, 30 Hz, Interlaced Video Format 18

i

Section GT12
Video Output Control

This section describes how to control the video output of the PS 390 graphics
system. It describes how to select a background color, how to select the configura-
tion and color of the screen cursor, how to select a video timing format, and how
to select filters to implement antialiasing.

Objectives

This section provides the following information:

e Basic raster display concepts

e How to select background color

o How to select a cursor color

e How to define the shape of a cursor
e How to select a video timing format
e How to select a line filter

1. Video Theory and the PS 390

This section explains general raster video output concepts and how the
PS 390 handles video output.

1.1 Calligraphic and Raster Displays

There are two types of displays used in computer graphics: calligraphic
displays and raster displays. Calligraphic displays draw lines on the screen
by moving the electron beam of the display along the line. The calligraphic
display produces superior quality lines, but has problems matching the end
points of lines, uses much more power than a raster display, has limited
polygon fill and no polygon rendering capabilities, and can draw only at
limited speeds, which causes the display to flicker when complex objects are
displayed.

Video Output Control GTI12-1

Raster displays, such as the displays used with the PS 390, always have
their electron beam draw the same grid pattern, but adjust the brightness of
the beam to display a picture. The raster pattern is a grid composed of
picture elements known as pixels. Resolution is defined in terms of pixels;
the default PS 390 video timing format has a resolution of 1024 pixels (in
the horizontal direction) by 864 pixels (in the vertical direction).

A raster display draws horizontal lines of pixels known as “scan lines,”
starting at the upper left-hand corner of the screen. The scan lines are
drawn from left to right in succession from the top to the bottom of the
screen. Since the lines are always being drawn, a resonant circuit is used to
move the electron beam, which means that a raster display uses only about
one tenth the power of a calligraphic display.

Raster displays can produce solid renderings, but in the past have been
unable to match the line drawing quality of calligraphic displays due to a
phenomenon known as “aliasing.” Angled lines (such as a 45 degree line)
take on a “stairstepped” effect due to the approximately square shape of
the pixels. The PS 390 solves this problem by using a set of programmable
line filters to smooth out the jagged angled lines, producing lines that ap-
proach calligraphic-display line quality. This revolutionary antialiasing capa-
bility of the PS 390 is achieved through proprietary, high-speed custom
VLSI circuitry, known as Shadowfax™ technology.

1.2 Raster Display Characteristics

Raster displays are either interlaced or non-interlaced. Non-interlaced dis-
plays draw all of the horizontal lines each time they draw from the top to
the bottom of the screen. All the lines drawn on the screen make up a
“frame.” The default PS 390 video timing format is non-interlaced.

Commercial television is an example of an interlaced display. Interlaced
displays draw the first scan line on the top of the screen, then draw the third
scan line, then the fifth, and so on to the bottom of the screen, drawing all
the odd numbered scan lines. The beam then goes back to the top of the
screen and draws all of the even numbered scan lines. The odd numbered
scan lines are called the odd field and the even numbered scan lines are
called the even field. The two fields make up one frame.

GT12-2 Graphics Tutorials

Interlaced displays can have the same resolution as a non-interlaced display
with only about 60% of the performance of the non-interlaced display
because the interlaced display draws a given pixel only one half as often as
the non-interlaced display. The field rate is still 60 Hz, so there is not a
problem with flicker. Interlaced displays produce some peculiarities
(artifacts) when there is motion in the picture. If the eye follows an object
that is moving vertically, the object can move one scan line per field, and
the eye will see the two fields superimposed on each other. The object
appears to have horizontal black lines drawn through it. This is one of the
class of artifacts known as “temporal aliasing.” One familiar example of
temporal aliasing is wagon wheels appearing to turn backwards in western
movies.

1.3 Video Timing Formats
The PS 390 software supports three video timing formats:

e 1024 by 864 non-interlaced
e 1024 by 864 interlaced (RS-343-A)
e 640 by 484 interlaced (RS-170-A)

The 1024 by 864 non-interlaced format is the default PS 390 video timing
format. This format does not conform to any established standard video
timing format.

The RS-343-A 1024 by 864 interlaced PS 390 video timing format conforms
to the Electronics Industry Association (EIA) RS-343-A standard for “Elec-
trical Performance Standards for High Resolution Monochrome Closed Cir-
cuit Television Camera.” This standard defines a generic high-resolution
interlaced timing format. This format is used for color cameras, projection
systems, and other medium performance, high-resolution devices.

Black and white television in the U.S. conforms to Electronics Industry As-
sociation (EIA) standard RS-170. Color television in the U.S. conforms to
EIA standard RS-170-A. The color standard defines an encoding of the red,
green, and blue video signals into one signal. This encoding is also known
as National Television Standards Committee (NTSC) encoding. The stan-
dard PS 390 can generate a video timing format compatible with RS-170-A.
Before video signals from the PS 390 can be recorded on a video recorder,
they must be encoded using a device called an NTSC Encoder. The encoded

Video Output Control GT12-3

signal cannot be hooked up to the antenna leads of a TV, but must be
modulated over a standard TV broadcast frequency. Because the PS 390
does not generate an encoded signal in the RS-170-A or any other video
timing format, it conforms to the timing standards of RS-170-A standard,
but not the encoding standard.

The PS 390 optionally can support two alternate video timing formats. For a
description of these alternate formats, multiple PS 390 video hookups, and
PS 390 video specifications, refer to Appendix A.

Different video timing formats are used to display pictures. Every display is
configured to work with a certain video timing format. The important fea-
tures of a video timing format are:

o Pixel Rate
o Horizontal Frequency

Field Rate
o Frame Rate

Pixel rate is the rate at which video information can change. The default
PS 390 video timing format has a pixel rate of approximately 70 MHz.

Horizontal frequency is the number of times a horizontal line is drawn
across the screen each second. The default PS 390 video timing format has
a horizontal frequency of 54 KHz.

Field rate is the rate that the electron beam goes from the top to the bottom
of the screen. The default PS 390 video timing format has a field rate of 60
Hz.

Frame rate is the rate at which the entire screen is redrawn. In
non-interlaced displays, the frame rate is the same as the field rate.

All timing information is conveyed on the composite sync signal. The
PS 390 generates only one composite sync signal, so only one video timing
format can be generated at a time. A different video timing format requires
a different composite sync signal.

Displays with different video timing formats can be hooked up at the same
time, but only displays that are configured for the video timing format
which is generated by the PS 390 at that time will produce a good picture.

GT12-4 Graphics Tutorials

2. The PS390ENYV Function

The PS390ENV is an initial function instance that sets up the background
color, selects a cursor and a cursor color, and selects a video timing format.

Input <1> is a trigger which accepts any data type to make the function run.

2.1 Selecting a Background Color

Input <2> of PS390ENV is a constant which accepts a 3D vector with hue,
saturation, and intensity values to specify a background color used in depth
cueing. The default background color is 0,0,0, which specifies black as the
background color. Saturation and intensity must be in the range of [0,1] or
an error message is generated. Hue is in the range of [0,360]. For any value
specified outside this range, multiples of 360 are added or subtracted to
bring it into the [0,360] range.

2.2 Selecting a Cursor Color

Input <3> of PS390ENYV is a constant which accepts an integer in the range
[0,7] to specify the color of the screen cursor. The following values select
the fo_llowing cursor colors:

0. Black
1. Blue

2. Green
3. Cyan

4. Red

5. Magenta
6. Yellow

7. White

White is the default cursor color. Any color outside the [0,7] range gener-
ates an error.

Video Output Control GTI2-5

2.3 Selecting a Cursor

Input <4> of PS390ENYV is a constant which accepts an integer to select the
type of cursor. There are three types of cursors that can be selected:

0. Update Rate Cursor (default)
1. Refresh Rate Cursor

2-32., Programmable Refresh Rate Cursors

The update rate cursor is the default system cursor that appears when the
PS 390 is booted up. The update rate cursor is part of the vector list in the
graphics data structure and the shape of the update rate cursor can be
reprogrammed by changing the vector list. The update rate cursor is syn-
chronized with the system’s update rate. Sending a value of 0 to Input <4>
of PS390ENV selects the system-defined update rate cursor, which is an
x-shaped cursor.

When used in a static viewport, the update rate cursor is a “destructive”
cursor; that is, when the update rate cursor is dragged across an object, it
“destroys” the foreground pixels and leaves a path of the background color
along the pixels touched by the path of the cursor. This problem does not
occur in a dynamic viewport.

The system-defined refresh rate cursor is a 31 pixel by 31 pixel cross-
shaped cursor that is a single pixel wide. The refresh rate cursor matches
the system’s refresh rate and is only supported by the default 1024 by 864
non-interlaced video timing format (video timing format 0). Sending a 1 to
Input <4> of PS390ENYV selects the system-defined refresh rate cursor.

The programmable refresh rate cursors are not yet available.
The refresh rate cursor is a “nondestructive” cursor that can be dragged
across an object without altering pixel values in either dynamic or static

viewports.

When the refresh rate cursor is selected, the initial viewports HVP1$ and
GVPO0$ must NOT be changed for the refresh rate cursor to work properly
with picking.

GTI12-6 Graphics Tutorials

2.4 Selecting a Video Timing Format

Input <5> of PS390ENV is a constant which accepts an integer to specify the
video timing format for the display. The 1024 by 864 non-interlaced format
is the default video timing format. The standard PS 390 monitor only sup-
ports this default video timing format. To use the alternate video timing
formats, you must have an interlaced monitor physically connected to the
PS 390. When sent to Input <5> of PS390ENYV, the following values select
the following video timing formats:

0. 1024 by 864 non-interlaced (default)
1. Reserved for Diagnostic Use
2. 1024 by 864 interlaced (RS-343-A)

3. 640 by 484 interlaced

Option 1 is reserved for diagnostic use and cannot be selected as a video
timing format. Selecting option 1 generates an error message.

2.4.1 Reconfiguring Viewports for Alternate Video Timing

You MUST send commands to reconfigure your base viewport when you
select the alternate 640 by 484 interlaced video timing format or switch
from 640 by 484 interlaced back to one of the 1024 by 864 formats.

To reconfigure the base viewport when you go from the 640 by 484 inter-
laced format to the 1024 by 864 non-interlaced format, send the following
command:

configure a;

vpfl$:= view horiz = -.84179688:.84179688 vert = —.68359375:1
inten=0:1;then HVP1$;

finish configuration;

send fix(0) to <5>ps390env;

send true to <1>ps390env;

Video Output Control GT12-7

To reconfigure the base viewport when you go from the 640 by 484 inter-
laced format to the 1024 by 864 interlaced format, send the following com-
mand:

configure a;

vpfl$:= view horiz = -.84179688:.84179688 vert = —.68359375:1
inten=0:1;then HVP1l$;

finish configuration;

send fix(2) to <5>ps390env;

send true to <1>ps390env;

To configure the correct viewport for the 640 by 484 interlaced video timing
format, send the following commands:
configure a;
vpfl$:= view horiz = —.84570313:.09570313 vert = .05859375:1
inten=0:1;then HVP1$;
finish configuration;

send fix(3) to <5>ps390env;
send true to <1>ps390env;

2.5 Selecting a Line Filter

The PS 390 supports four selectable line filters to determine the type of
aliased or antialiased line the system will draw. The following command
selects a line filter:

Namel := Select Filter n THEN Name2;

where n = 0, 1, 2, or 3. This selects the filter applied to Name2 and
subsequent structures. This command creates an operation node in the data
structure.

The type of filter determines the quality of the lines displayed. Four line
filters are provided:

0. SIN (X)/X Filter
1. Narrow Gaussian (Default)
2. Wide Gaussian

3. Jagged (No filter)

GT12-8 Graphics Tutorials

The SIN (X)/X filter (filter 0) produces the sharpest, best quality lines and
works well with images such as text characters that require fine detail.
However, the SIN (X)/X filter only works with limited background colors; it
works best with light background colors, such as gray. The SIN (X)/X filter
produces more artifacts than the Gaussian filters when multiple lines
overlap.

The default line filter is the narrow Gaussian filter (filter 1). The narrow
Gaussian filter is the best general-purpose filter and produces good quality,
sharp lines. It works with any background color and works well with detailed
images such as those that contain radial lines.

The wide Gaussian filter (filter 2) creates wider lines with less definition.
The wide Gaussian filter produces no artifacts and works well with primi-
tives such as dots.

The jaggy filter (filter 3) produces unfiltered, aliased lines.

Values outside the 0-3 range default to the narrow Gaussian filter (filter 1),
with the following warning message:

W2045 ** Illegal filter selection, default filter 1 used
Inputs allowed:

Qinteger <1> selects filter. Anything other than 0,1,2,3 will
default to 1 and generate the above warning message.

Video Output Control GT12-9

Appendix A
Guide To PS 390 Video

This appendix explains the raster video concepts and the raster video output of the
PS 390. The second section contains video specifications for the PS 390.

Video Signals

The terminal controls the display. The terminal controls how bright the elec-
tron beam is for each point of the picture and when the beam draws each
scan line. The information that controls the brightness of the beam is called
“active video.” The information that tells the beam when to go back and
forth in the horizontal direction is called “horizontal sync.” The information
that tells the beam to go back and forth in the vertical direction is called
“vertical sync.” Vertical sync and horizontal sync are often combined to
form “composite sync.” The information is separated in the display by spe-
cial filters.

The composite sync signal does not need to convey any information while
active video information is being sent. This allows the composite sync signal
to be included with one of the video signals. The resulting signal is called
“composite video.” Most color video terminals have one video signal for
each of the primary colors of light: red, green, and blue. The composite
sync signal is usually included with the green video signal. The PS 390 uses
this red, green, blue (RGB) video system with composite sync carried on the
green video signal.

The video signal has defined voltage levels which convey information about
brightness, composite sync, and more to the display. The Electronic Indus-
tries Association’s RS-343-A standard is one common standard. The signal
voltage levels from the PS 390 conform to this standard.

GT12-10 Graphics Tutorials

Video Timing Formats

Different video timing formats are used to display pictures. Every display is
configured to work with a specific video timing format. Remember that the
important quantities of a video timing format are:

o Pixel Rate
e Horizontal Frequency
o Field Rate

o Frame Rate

All timing information is conveyed on the composite sync signal. The
PS 390 generates only one composite sync signal, so only one video timing
format can be generated at a time. A different video timing format requires
a different composite sync signal. The PS 390 supports three video timing
formats that can be selected from runtime. Displays with different video
timing formats can be hooked up at the same time, but only displays that
are configured for the video timing format which is generated by the PS 390
at that time will have a good picture.

Multiple PS 390 Video Hookups

The red, green, and blue video signals are carried on three coaxial cables
bundled together in a large shielded cable. The coax has a characteristic
impedance of 75 ohms. The connectors are standard BNC. The PS 390 gen-
erates only one set of video signals, so multiple output devices such as
displays and cameras must be connected in a “daisy chain.” This means
that the first device hooked up to the PS 390 must have both inputs and
“loop-thru” outputs. The next device connects the loop-thru outputs to its
inputs. Each additional device along the chain works the same way. All
devices except the device at the end of the chain must have its termination
removed or turned off. The last device in the chain must terminate the video
signals. This is usually done with BNC caps with a built-in 75 ohm resistor.
Picture quality may degrade if more than one device is connected to the
PS 390. In such cases, E&S recommends the use of wide-band video distri-
bution amplifiers with a minimum bandwidth of 70 MHz to implement ac-
tive “loop-thru”. When using these active “loop-thru” devices, all devices
should be terminated at 75 ohms.

Video Output Control GTi2-11

Video Cables

PS 390 video cables are available in lengths of 15, 25, 50, and 100 feet.
Composite sync at TTL levels is also available (204584-xxx). Evans &
Sutherland does not provide cables for connecting multiple video devices.

Video Options

The PS 390 supports a total of five video timing formats. The PAL/SECAM
and RS-343-A 1024 by 1024 formats are not standard and require installa-
tion of a hardware option. Supported video timing formats are:

e 1024 by 864 non-interlaced (PS 390 default)

e RS-343-A 1024 by 864

o RS-343-A 1024 by 1024

e 640 by 484 interlaced (RS-170-A/NTSC timing)
e 768 by 574 interlaced (PAL/SECAM timing)

The three video timing formats that are supported by PS 390 system soft-
ware are:

e 1024 by 864 non-interlaced
e 1024 by 864 (RS-343-A timing)
e 640 by 484 interlaced (RS-170-A/NTSC timing)

The combinations available as options are shown in the following table:

Format 0 Format 2 Format 3

H n' hoi (Pick One) (Pick One)

1024 by 864 RS-343-A 1024 by 864 RS-170-A (NTSC)
(non-interlaced) (interlaced) 640 by 484

(interlaced)

RS-343-A 1024 by 1024 PAL/SECAM
(interlaced) 768 by 574
(interlaced)

Custom Video Timing Formats

Other video timing formats may be available upon request. The PS 390
supports gen lock capability as an option. The PS 390 does not support
video mixing.

GT12-12 Graphics Tutorials

References:

1. EIA RS-170 Standard

2. EIA RS-170-A Standard
3. EIA RS-343-A Standard
4,

Raster Graphics Handbook, Conrac Division, Conrac Corporation,
(New York: Van Nostrand Reinhold Company, 1985), Second Edi-
tion. Chapter 8 is especially informative.

Video Output Specifications for the PS 390

Connections

There are three BNC connectors, Red, Green, and Blue. Composite sync is
on Green. Composite sync is also available at TTL levels. There must be
provisions on the monitor for grounding the shield of the display cable.

VYoltage Levels

Level Value

0.000 V Peak White
-0.071 V Reference White
-0.714 V Reference Black
-0.785 V Blanking

-1.071 V Composite Sync

Voltage levels are given referenced to “earth” ground. All video signals
must be terminated in 75 ohms to ground.

Nomenclature

Front Porch refers to the time interval between the end of active video and
the beginning of sync, during which the video is at Blank level. Back porch
refers to the time interval between the end of sync and the beginning of
active video, during which the video is at Blank level. The symbol “H,”
when used in the vertical timing specification, means one horizontal period.

Tables 12-1 to 12-5 define the video characteristics of the PS 390 video
formats.

Video Output Control GTI12-13

GT12-14

Aspect Ratio, H:V: 4:3.38

Horizontal timing:

Frequency:

Front Porch:

Sync Pulse:

Back Porch:

Total Blanking:
Active Video:
Horz Period:
Pixels Displayed:

Vertical timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

Effective resolution 8192 by 6912

54 .06 KHz
173 nsec
1850 nsec
1676 nsec
3700 nsec
14798 nsec
18498 nsec
1024

60 Hz

none

3H

34H

37H (684 usec)
864H (16.0 usec)
901H (16.67 msec)

69.1968 MHz
14.452 nsec

Table 12-1. 1024 by 864, 60 Hz, non-interlaced Video Format

Graphics Tutorials

Table 12-2. RS-343 1024 by 864, 30 Hz, Interlaced Video Format

Effective resolution 8192 by 6912

Aspect Ratio, H:V:

Horizontal timing:

Frequency:

Front Porch:

Sync Pulse:

Back Porch:

Total Blanking:
Active Video:
Horz Period:
Pixels Displayed:

Vertical Timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

Video Output Control

4:3.38

28.197 KHz
1001 nsec

2779 nsec

3224 nsec

7004 nsec

28460 nsec
35464 nsec
1024

60 Hz per field
3H
3H
31H

37H (1312 usec) per field
432H (15.32 msec) per field

939H (33.3 msec)

35.98 MHz
27.793 nsec

GTi12-15

GTi12-16

Aspect Ratio, H:V:

Horizontal timing:

Frequency:

Front Porch:

Sync Pulse:

Back Porch:

Total Blanking:
Active Video:
Horz Period:
Pixels Displayed:

Vertical Timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

Effective resolution 5120 by 3872

4:3

15.734 KHz
1638 nsec

4914 nsec

4586 nsec

11139 nsec
52417 nsec
63556 nsec
640

59.94 Hz per field
3H
3H
14H

Table 12-3. 640 by 484, 30 Hz, Interlaced (RS-170-A (NTSC)) Video Format

20H (1271 usec) per field
242.5H (15.41 msec) per field

525H (33.36 msec)

12.2098 MHz
81.9014 nsec

Graphics Tutorials

Table 12-4. 768 by 574, 25 Hz, Interlaced (PAL, SECAM) Video Format

Effective resolution 6144 by 4592

Aspect Ratio, H:V:

Horizontal timing:

Frequency:

Front Porch:

Sync Pulse:

Back Porch:

Total Blanking:
Active Video:
Horz Period:
Pixels Displayed:

Vertical Timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

Video Output Control

4:3

15.625 KHz
1627 nsec

4610 nsec

5695 nsec

11932 nsec
52068 nsec
64000 nsec
768

50 Hz per field

2.5H

2.5H

20H

25H (1600 usec) per field
287.5H (18.40 msec) per field
625H (40.0 msec)

14.7500 MHz
67.7966 nsec

GTi12-17

GTi12-18

Aspect Ratio, H:V:

Horizontal timing:

Frequency:

Front Porch:

Sync Pulse:

Back Porch:

Total Blanking:
Active Video:
Horz Period:
Pixels Displayed:

Vertical Timing:

Frequency:
Front Porch:
Sync Pulse:
Back Porch:
Total Blanking:
Active Video:

Total Vertical Time:

Pixel Frequency:
Pixel Period:

Effective resolution 8192 by 8192

33.1 KHz
1001 nsec
2730 nsec
3185 nsec
6916 nsec
23296 nsec
30212 nsec
1024

60 Hz per field
3H
3H
33H

Table 12-5. RS-343 1024 by 1024, 30 Hz, Interlaced Video Format

39H (1178 usec) per field
512.5H (15.48 msec) per field

1103H (33.3 msec)

43.956 MHz
22.75 nsec

Graphics Tutorials

POLYGONAL
RENDERING

GT13.

GT13. POLYGONAL RENDERING

CONTENTS
INTRODUCTION . ..iiitiiiiinreeerootonasonsoeosenaeennenns 1
OBJECTIVES ... ittt iiteteneoenseneosneennsnnnenns 2
PREREQUISITESiiiiiiiiiiiiiiitnieeronsnenennnnnenns 2
1. DYNAMIC AND STATIC VIEWPORT RENDERING 3
1.1 Dynamic Viewport Renderingsccoiiieineennnnn. 3
1.1.1 Backface Removalcciiiniteininriennonnnennnnnns 3
11,2 Sectioningccoiiiiiiiiiiiineieerrosennnneenennnes 4
1.1.3 Cross-sectioningccoiieiinnnernnneernnnneeennnnns 5
1.2 Static Viewport Renderingsoiiiiiiinrinennennn. 6
1.2.1 Hidden-Line Removalcciiiiiiitieinnrennnnnnn. 6
1.22 Wash Shadingoovviiiiiiiiiinieinnrereenneeeeennnnes 7
1.2.3 Flat Shadingcvutiiiiitrrnneeenroereenaneennnnses 7
1.2.4 Gouraud Shadingcoiiiiiiiiiiiitiinneeronnnnnes 7
1.2.5Phong Shadingottt iioineernennnns 7
2. DEFINING POLYGONAL OBJECTScctiitiiiiinnnennnns 8
2.1 Using the POLYGON Commandccvcvvnevvvennscens 8
2.2 Constructing Surfaces and Solidsccoviiiiiiinnnnnns 10
2.3 Specifying Vertices for Surfaces or Solids 12
2.4 Using the COPLANAR Optioncocivitinuininnnnnnnnns 14
2.5 Using the Soft Edge Option, 19
2.6 Defining Color For Dynamic Wireframe Polygons 20

2.7 Using the WITH OUTLINE option to Define Color 21
2.8 Defining Color and Highlights for Static Raster Renderings 21

2.9 Specifying Normalsoiiiiiiiiiiiniiiinnreennseonns 22
3. ESTABLISHING A WORKSPACE IN MEMORY 24
3.1 Automatic Reservation of Working Storage 25
3.2 Explicit Reservation of Working Storage 25
3.3 Additional Memory Requirementscovevevuerennnss 26
4. MARKING AN OBJECT FOR RENDERINGc00uun. 26
4.1 Admissible Descendants for Rendering Operation Nodes 27
4.2 Creating Renderingscciiiiiiiiiiiinnernnnenennnans 29
4.3 Rendering Node Connectlons 31
43.1Input <I> ...ttt ittt ittt 32
432 Input <2> .. it i i i i i i i et 33
4.3.3 Input <3> Through Input <5>0iiiiiiivnnnn., 33
4.3.40utput <I> it i et it ettt 33
4.4 Establishing a Sectioning Plane v, 34
4.5 The Data Definition of a Sectioning Plane 34
4.6 Displaying Sectioning Plane Nodeso0. ... 36
4.7 Cross-sectioningciuiiiuirirnneronncronnnsscnnans 36
4.8 Toggling Between the Rendered Object and

the Original Object ittt iinieiinneennnnnenns 37
4.9 Changing the Definition of the Object 37
5. SAVING AND COMPOUNDING RENDERINGS 37
S.1 Howto Save a Renderingcoiiitiiiiiiiinnnnennnn. 38
5.2 Contents of a Saved Renderingcoviviiiiienn., 38
5.3 Common Uses of Saved Renderingsccoviuieennn.. 38
6. DISPLAYING SHADED IMAGES ...ttt iiiiinnrnnrennns 39
6.1 Specifying Aftributes ittt it it 39
6.2 Using the ATTRIBUTES Command 39
6.2.1 COLOR Componentoeeeeevesonessscensccensens 40
6.2.2 DIFFUSE Componentccottiueintenncenncnncnnnss 41
6.2.3 SPECULAR Componentccoeeeeennsssrsososssnonas 41
6.2.4 OPAQUE Componentcoevtvueieenenrnnsoncnennss 41
6.2.5 ATTRIBUTE Node Inputscciiiiiiiiininnennnn. 42
6.2.6 Examples of the ATTRIBUTES Command 43
6.3 Specifying Light Sourcesciiiiiiiiiiiiiiiia., 44

ii

6.3.1 Illumination Node Inputsciiiiiiiiiiiiiiinennn, 48

6.4 The SHADINGENVIRONMENT Function 48
6.4.1 Input <1> Ambient Colorc.covtiiiiiiniiinn. 49
6.4.2 Input <2> Background Colorcoiiiiviininn, 49
6.4.3 Input <3> Static Viewportcoiviviiiiiiineen, 50
6.4.4 Input <4> Exposurecoovittiiiinirenernnernnncnnns 50
6.4.5 Input <5> Anti-aliasing control (Edge smoothing) 51
6.4.6 Input <6> Depth Cuingcciiiiiiiiiiiiiiiieeeronas 51
6.4.7 Input <7> Screen Wash ittt 51
6.4.8 Input <8> Reservedcoiiiiiiiiiiiiiiiiiinennns 52
6.4.9 Input <9> Refresh/Overlay Controlovvvvuvenn. 52
6.4.10 Input <10> Color By Vertex Control 52
6.4.11 Input <11> Opaque (Transparency) Control 52
6.4.12 Input <12> Specular Highlight Control 53
6.4.13 Input <13> Special Color Blending for Spheres 33
6.4.14 Input <14> Update Attribute Table 53
6.4.15 Input <15> Polygon Edge Enhancement 54
6.4.16 Input <16> Algorithm o, 55
6.4.17 Input <17> Restore System Look-up Table 53
6.4.18 Input <18> Vertex Normals Control 55
6.4.19 Input <19> Stereocoiiiiiirrnrreroinnesnanenns 56
T.SUMMARY . ..tiiiiiiiiiteitentnnenesnssneneensoncsnsnnes 56
7.1 POLYGON Command Syntaxoeeeveeeesocossccoonnas 57
7.2 Defining Polygonal Objectscovieiiiriirinnrennnnnnss 58
7.3 Constructing Surfaces and Solidsovvvviuvinann, 58
7.4 The COPLANAR Optioncooiiiiiiiieninnienecneennns 59
7.5 The Soft Edge Optionciitiiiiiiinnnnnrocennsens 59
7.6 The Color Option in a Dynamic Viewport 59
7.7 Specifying Normalscoitiiiiiiiiiiiiiiiiiiienennns 59
7.8 Memory USagecvvuteerrrrseesrossnsescnssesssnnsses 60
7.9 Marking an Object for Renderingccivvvinaen. 60
7.10 Establishing a Sectioning Planeccoiiiiiiinnnns 61
7.11 The Data Definition of the Sectioning Plane 61
7.12 Saving a Renderingc.coiiiiiiiiiiiiiiiiennnnnne. 61
7.13 Specifying Color and Highlights for Static Viewports 61
7.14 Specifying Light Sourcesciiiiiiiiiiiiiii.., 62
7.15 The SHADINGENVIRONMENT Function 62

iii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

ILLUSTRATIONS

13-1. Object Before and After Backface Removal 4
13-2. Sectioned Object With Capping Polygons 5
13-3. Sectioned Object With Hidden-lines Removed 5
13-4. Solid Before and After Hidden-line Removal 7
13-5. Surface Objectvvviiiii ittt iiennnenenanonsoons 11
13-6. Solid Objectcvviiiiiiiirrreneeerineesennnnasnssonss 11
13-7. Surface With Three Common Edges e 12
13-8. Icosahedron With Correct Vertex Ordering 13
13-9. Cube ...ttt ittt it i i i ettt i e e 14
13-10. Surface With Inner/Outer Contourscocvvuenn.n. 15
13-11. Object With Coplanar Polygonc0ivivnivnnnn 16
13-12. Solid Without Inner Contourscooeieeveunceerenn. 17
13-13. Cube With a Tunnelcvitiiiieennneennnoeonnns 17
13-14. Objects With Coplanar Outer Contours 18
13-15. Objects With Incorrect Vertex Ordering 19
13-16. Path to Rendering Datacciiiiiiiiieeennnnn. 29
13-17. Path to Original Datacivettiiiinnnnnnnneneenoons 30
13-18. Path to Second Renderingot iiann, 30
13-19. Rendering Node Connectionsccoivvivneeeeennnn 31
13-20. Sectioning Plane Definition, 35
13-21. Data Structure of Sectioning Plane 35
13-22. Hierarchy With Illumination Node 46

iv

Section GT13
Polygonal Rendering

Introduction

The commands and the function covered in this section allow the user to define
objects eligible for rendering and to perform rendering operations on these objects.
It is intended both as an introduction to rendering concepts and as a detailed state-
ment of the rules for using a PS 390 configured with the rendering option.

Objects composed of polygons defined by the POLYGON command are the only
objects that are eligible for rendering operations. Objects created by other data
definition commands, such as VECTOR_LIST, CHARACTERS, LABELS,
POLYNOMIAL, RATIONAL POLYNOMIAL, BSPLINE, and RATIONAL
BSPLINE, are displayed along with polygonal objects prior to rendering, but are
omitted from renderings. (However, special vector lists output from
F:XFORMDATA can be used to render spheres and lines in a static viewport. This
type of rendering operation is mainly used by molecular modelers and is described
in Section TT2 Helpful Hints.)

Specifically, this section explains how to use the following PS 390 commands:

e POLYGON

e SOLID_RENDERING

e SURFACE_RENDERING
e SECTIONING_PLANE
e ATTRIBUTES

o ILLUMINATION

This section also discusses how to use the following PS 390 function:

e SHADINGENVIRONMENT

Polygonal Rendering GT13-1

Objectives

This section presents the following topics and operations in the order listed
below. This order is not necessarily the order in which they should be per-
formed. After reading this section you should be able to:

o Identify the different rendering operations that can be performed in
dynamic or static viewports.

o Define a polygonal object with the POLYGON command using all the
command options (WITH ATTRIBUTES, WITH OUTLINE,
COPLANAR, Normals, Soft Edges, Vertex Colors).

o Establish a workspace in memory.

e Mark an object as a solid or a surface for rendering.
¢ Render the object.

e Save and compound a rendering.

e Display a shaded object in a static viewport and change the shading
environment in which the object is displayed.

For those already familiar with the PS 390, a reference summary at the end
of this section lists important rules and guidelines. Also, Section GTI5
Sample Programs contains a polygonal-rendering example that illustrates
many of the rules and concepts discussed in this section.

Prerequisites

Before reading this section, you should be familiar with programming the
PS 390. It is helpful to have an understanding of the representation of po-
lygonal objects in graphics applications. It is assumed that you have some
method, such as an application program, to automatically generate polygo-
nal data structures. It is also assumed that you have some knowledge of the
parameters used in rendering and shading objects for display on a raster
screen.

Boot the PS 390 with the rendering firmware and run the Rendering Option
Performance Verification Test. The test graphically illustrates many of the
concepts discussed in this section.

GT13-2 Graphics Tutorials

1. Dynamic and Static Viewport Rendering

There are two types of rendering operations: those applied to objects
displayed in a dynamic viewport and those applied to objects displayed in a
static viewport. Once an object has been correctly defined with the
POLYGON command, it can be displayed in either a dynamic or a static
viewport without any modification to the data definition.

1.1 Dynamic Viewport Renderings

Rendering operations performed in a dynamic viewport include the
following:

e Backface removal (for solid wireframe polygonal models)
e Sectioning (for both surface and solid wireframe polygonal models)
e Cross-sectioning (for solid wireframe polygonal models)

1.1.1 Backface Removal

Backface removal is an intermediate step in hidden-line removal, during
which all polygons facing away from the viewer are removed. Because back-
face removal takes considerably less time than hidden-line removal, this
operation is provided separately to allow you to see an approximation of a
hidden-line rendering’s appearance.

This operation is especially useful in obtaining quick previews of hidden-
line renderings of complex solids when an appropriate viewing angle is be-
ing decided upon by trial and error. Because the backface removed render-
ing is an unfinished hidden-line rendering, it is not identical to the
hidden-line rendering in every line segment, but it is close enough to give a
rough idea of the hidden-line rendering.

Only solids can be subjected to backface removal; the operation has no
visual effect on surfaces.

Figure 13-1 is an example of a solid before and after backface removal.

Polygonal Rendering GT13-3

(Before) (After)

U390423 U390424

Figure 13-1. Object Before and After Backface Removal

1.1.2 Sectioning

Sectioning makes use of a sectioning plane that passes through an object
and divides the object into two pieces. This operation yields a “cutaway
view” of the object. The part of the object that is behind the plane is dis-
carded and only the section in front of the plane is displayed. For solids,
capping polygons are generated to maintain the integrity of the solid.

A sectioned object may be saved and then subjected to further surface ren-
dering operations such as resectioning, hidden-line removal, or backface
removal.

Although there is generally no immediate visual evidence that a capping
polygon has been produced, capping polygons become a part of the defini-
tion of a sectioned solid, and further rendering can disclose their existence.
For example, suppose that a solid and a surface are each sectioned verti-
cally, yielding the two sectioned objects shown in Figure 13-2. Assume that
each object intersects with its sectioning plane at its two right-most faces. It
is impossible to tell which object is capped.

GTI13-4 Graphics Tutorials

U390426A

Figure 13-2. Sectioned Object With Capping Polygons

Hidden-line removal shows that the object on the left is a solid, while the
object on the right is open at its right-most faces (Figure 13-3).

U390426B

Figure 13-3. Sectioned Object With Hidden-lines Removed

Sectioning occurs within 1-3 seconds; the display may blink briefly while
sectioning is applied.

1.1.3 Cross-sectioning

The cross-sectioning operation makes use of a defined sectioning plane to
create a cross section of an object. When this operation is used, both sides
of the object are discarded and only the slice defined by the sectioning
plane remains.

Polygonal Rendering GT13-5

1.2 Static Viewport Renderings

GT13-6

Rendering operations that apply to objects in a static viewport include:

e raster hidden-line removal
e wash shading

o flat shading

e Gouraud shading

o Phong shading

1.2.1 Hidden-Line Removal

Hidden-line removal generates a view in which only the unobstructed por-
tions of an object are displayed. All polygon edges or parts of edges that
would be obscured by other polygons are removed (Figure 13-4).

Three steps are involved in hidden-line removal.

1. Backfacing polygons are discarded or made front facing. This hap-
pens within 1-3 seconds. During this time the screen is blank.

2. The remaining polygons are sorted by their Z coordinates. This step
takes approximately 30 seconds for 3,000 polygons, during which
time the intermediate backface-removed picture is created. The time
required for sorting depends on the number of polygons and the
order in which they are defined.

3. A static raster rendering is produced with the polygon outlines turned
on. The polygon interiors are colored black, but they still have Z
values which render into the scanline z-buffer thus resolving obscuri-
ties. This algorithm handles convex polygons and interpenetrating
polygons.

The last step may take one minute or more, depending on the number of
polygons and the view. In general, it takes more time to process polygons
that cover a large area of the screen than it does to process those that cover
a small area.

Hidden-line removal may be performed on both solids and surfaces.
Hidden-line views cannot be subjected to further rendering operations.

Graphics Tutorials

U390423 U390430
Figure 13-4. Solid Before and After Hidden-line Removal

1.2.2 Wash Shading

Wash shading produces an object with area-filled colored polygons ignoring
normals, light sources, all lighting parameters, and all depth cueing parame-
ters. This operation does not produce objects that simulate a curved surface.

1.2.3 Flat Shading

Flat shading considers color, multiple light sources and depth cueing to
shade the polygons in the object accordingly. Flat shading produces objects
that simulate a faceted surface.

1.2.4 Gouraud Shading

Gouraud shading is a smooth shading style. This shading process eliminates
much of the faceted appearance of flat shading. The color of a polygon is
varied across its surface, considering the normals at the vertices of the poly-
gon, the direction and color of various active light sources, the attributes of
the polygon (both color and highlights), and depth cueing.

In Gouraud shading the degree of light which is transmitted is derived by
first calculating the degree of light transmitted at the vertices using the
normal you supply and then interpolating between the vertices.

1.2.5 Phong Shading

Phong shading is also a smooth shading style. Phong shading processes are
the most complex of all the shading styles. The color of a polygon is varied

Polygonal Rendering GT13-7

across its surface, using the surface normal derived by interpolating the
normals supplied at each vertex of the polygon. The direction and color of
various active light sources, the attributes of the polygon (both color and
highlights), and depth cueing are also incorporated to achieve the final re-
sult. Phong shading is the slowest shading style to apply, but it results in a
smooth appearance of higher quality than Gouraud shading.

2. Defining Polygonal Objects

The first step in defining a polygonal object is to determine the correct
geometry to define that object in the world coordinate space. This is done
typically by an application program because determining the vertices of all
the polygons of an object is too complex to do manually. The polygons that
make up an object must be defined in the POLYGON command according
to certain rules. If these rules are not followed, the results of a rendering
operation applied to that object are unpredictable and usually incorrect even
though the object may appear correct when displayed in the dynamic
viewport.

After an object is correctly defined with the POLYGON command, it can be
displayed in either a dynamic or a static viewport. The operations that can
be applied in each type of viewport were discussed in Section 1.1 and
Section 1.2.

2.1 Using the POLYGON Command

A POLYGON clause, part of the POLYGON command, defines an
individual polygon or face of an object by specifying the coordinates of its
vertices. Since an object has many faces, several POLYGON clauses are
used to define the entire object. The number of POLYGON clauses in the
POLYGON command is equal to the number of polygons in the object.

The edges of the polygon are defined by lines that connect the polygon’s
vertices. It is important that the vertices be connected in a clockwise order
when being viewed from the outside of the model. If they are not connected
in this manner, the polygon appears in a surface rendering but not in a solid
rendering. Also, backface removal is impossible, and there are problems
defining holes, concavities, and/or capping polygons in sectioned
renderings.

In the PS 390, a polygon must have at least three vertices and no more than
250, all of which should lie in the same plane.

GT13-8 Graphics Tutorials

Concave polygons are acceptable. Degenerate polygons (less than three
vertices) are not acceptable. Polygons are not pickable and polygon data
nodes have no inputs to allow them to be modified by function networks.

The syntax for the POLYGON clause is the word POLYGON and a set of
X,Y,Z coordinates. Normal and vertex color specifications may or may not
be present. A named group of one or more polygon clauses, with a
semicolon at the end, constitutes a POLYGON data definition command (or
POLYGON command for short). This command defines the data node in
the data structure of that object. There is no syntactical limit on the number
of polygon clauses in the group.

An option of the POLYGON command declares polygons to be coplanar,
indicating that the polygons have the same plane equation. This provides the
capability to create objects with holes by defining a coplanar polygon (with
vertices in a counter-clockwise orientation) inside the clockwise ordered
vertices of the outer polygon. Another option allows you to define the color
of the edges of polygons in static raster renderings.

There are additional POLYGON command options that associate character-
istics or attributes with polygons for use in creating shaded images in a
static viewport. These options include color and the concentration of
specular highlights. Normals can be specified for the vertices of an object to
create a smoothly shaded image that simulates a curved surface. Vertex
colors can be defined for each vertex and are rendered by linearly interpo-
lating their red-green-blue (RGB) color values. These options are shown
below and explained briefly; complete details are discussed throughout this
section.

The POLYGON command is:
Name := <polygon> <polygon> . . . <polygon> ;
where each polygon has the definition:

<polygon> [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]
POLYGON <vertex> ... <vertex>

and each vertex definition has the form:

[S) x,y,z [N x,y,z][C h{,s[i]]]

Polygonal Rendering GT13-9

The following list is a brief explanation of each parameter in the command
and in the vertex definition that a command contains:

e WITH ATTRIBUTES is an option that assigns the attributes defined
by namel for all polygons until superseded by another WITH
ATTRIBUTES clause. This option is fully discussed in Section 6,
Displaying Shaded Images.

o WITH OUTLINE is an option that specifies as a real number (h) the
color of the outline to be drawn around polygon borders in enhanced-
edge shaded images, or the color of polygon edges in hidden-line
-renderings. It has no effect on the color of polygon edges in the
dynamic viewport.

e COPLANAR declares that the specified polygon and the one immedi-
ately preceding it have the same plane equation.

¢ S indicates that the edge drawn between the previous vertex and this
one represents a soft edge of the polygon. If the S specifier is used
for the first vertex in a polygon definition, the edge connecting the
last vertex with the first is soft.

o N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth shaded renderings. Normals must
be specified for all vertices of a polygon or for none of them. If
normals are not specified for a polygon, their values default to the
values for the normal to the plane in which the polygon lies.

e X, y, and z are coordinates in a left-handed Cartesian system.

e C indicates a color that is assigned to the vertex. During shading
operations, this color is interpolated across the polygon to the other
vertices.

e h,s,i are values in the hue-saturation-intensity color system. To-
gether, these values create a color.

2.2 Constructing Surfaces and Solids

GT13-10

The PS 390 command language allows you to define two classes of poly-

gons: surfaces and solids. Solids enclose a volume of space, while surfaces
do not.

Surfaces can have edges that belong to just one polygon. For example, in
Figure 13-5, edge CD is a part of polygon 3 but not of any other polygon.

Graphics Tutorials

e[B

\ /;390420

Figure 13-5. Surface Object

In a solid, each edge of each polygon must coincide with the edge of an
adjacent polygon. For example, edge AB in Figure 13-6 is defined as part of

polygon 1 and as part of polygon 2, and each edge of each polygon is
similarly repeated in different polygons.

1\:\2./

B

U390421

Figure 13-6. Solid Object

A solid cannot contain three or more polygons which have a single edge in
common, although surfaces like the one in Figure 13-7 can.

Polygonal Rendering GTi3-11

—

\

U390635

Figure 13-7. Surface With Three Common Edges

The nature of a polygonal object, representing a surface or a solid, is deter-
mined not only by the construction but by placing it beneath a rendering
node in the PS 390 data structure created by the SOLID_RENDERING and
SURFACE_RENDERING commands. These commands are discussed in de-
tail in Section 4, Marking an Object for Rendering.

2.3 Specifying Vertices for Surfaces or Solids

Polygons are closed implicitly, so the first vertex is not repeated when defin-
ing a polygon. The system conrnects the last vertex given to the first vertex.

In solids, the direction in which the vertices are ordered within each polygon
clause has important consequences for rendering operations. The vertices
should be listed so that if you start at any vertex and move to the next
vertex (as indicated by the order in the polygon clause), you are traveling
around the edges of the polygon in a clockwise direction, as seen from
outside the subject.

There are no similar restrictions for surfaces. The vertices of a surface can
be listed in either a clockwise or a counterclockwise direction.

For example, let A (0,0,0), B (.5,.87,0) and C (1,0,0) be the vertices of one
triangular face of a solid icosahedron as shown in Figure 13-8.

GTI13-12 Graphics Tutorials

U390421A

Figure 13-8. Icosahedron With Correct Vertex Ordering

Because the points A, B, and C have the arrangement indicated by the
arrows when the triangular face is viewed from the outside of the
icosahedron, that triangle could be defined correctly by any one of the
following clauses, all of which specify the vertices in clockwise order:

. POLYGON 0,0,0 .5,.87,0 1,0,0 ..
. POLYGON .5,.87,0 1,0,0 0,0,0 ...
.. POLYGON 1,0,0 0,0,0 .5,.87,0 ..

However, the following definition is incorrect for this polygonal face be-
cause it specifies the vertices in counterclockwise order:

. POLYGON 0,0,0 1,0,0 .5,.87,0 ...

Another method to determine the order of vertices is to use the right-hand
rule. The right-hand rule states that if you point the thumb of your right
hand towards the center of the object and rotate your fingers towards your
wrist, the direction that your fingers move indicate the order in which the
vertices of that polygon should be listed.

In all correctly defined solids, each edge is repeated in two different poly-
gons. For each pair of adjacent polygons, the common edges run in opposite
directions. This is true for any edge of a correctly defined solid, even if the
solid contains inner contours. For solids, all vertices must run clockwise and
all common edges of adjacent polygons must run in opposite directions.

Polygonal Rendering GT13-13

Although it is not required that surface vertices run clockwise, it is a good
idea to follow the clockwise rule because it allows surfaces to be easily
upgraded to solids. Assuming that polygon data are equally available in
either form, it is better to have the vertices of a surface in a clockwise
order.

Given the following object in Figure 13-9:

0,1,1 1,1,1

0.1,0] 1.1,0

1,0,1

0,0,1

0,0,0 1,0,0

U380423A

Figure 13-9. Cube

A correct syntax to define this object is as follows:

Cube := POLYGON O
POLYGON 1
POLYGON 1
POLYGON O,
POLYGON O
POLYGON 1

2.4 Using the COPLANAR Option

A polygon that represents a face of an object is called an outer contour.
Other polygons, known as inner contours, represent cavities or holes in an
object.

For the PS 390 to interpret inner contours properly, two things must be
done. One is to observe the vertex ordering convention for inner and outer
contours. The other is to use the COPLANAR option in the POLYGON
clause to associate inner and outer contours.

GT13-14 Graphics Tutorials

The vertex ordering rule for inner and outer contours is as follows: vertices
of inner contours must run in the opposite sense to the corresponding outer
contour. The vertices of the following triangular polygon face (outer con-
tour) with a hole in it (inner contour) are ordered as follows in Figure
13-10.

0.0,1.0,0.5

-0.5,0.0,0.5 0.5,0.0,0.5

-1.5,-0.5,0.5

1.5,-0.5,0.5

< U390536

Figure 13-10. Surface With Inner/Outer Contours

A POLYGON command syntax for this object is:

OBJECT := INST Triangle_with_hole;
Triangle_with_hole :=

POLYGON
0.0, 1.0, 0.5
1.5, -0.5, 0.5
-1.5, -0.5, 0.5
POLYGON COPLANAR
0.0, 0.5, 0.5
-0.5, 0.0, 0.5
0.5, 0.0, 0.5

Note that the vertices for the inner contour in the above example are in the
opposite order of those of the outer contour.

Polygonal Rendering GT13-15

An inner contour is always coplanar with some surrounding outer contour.
To define the vertices of a polygon as an inner contour, you must associate
it with the appropriate outer contour by declaring an inner contour to be
coplanar with the outer contour. The COPLANAR specifier makes this dec-
laration. COPLANAR is an option of the polygon clause which declares that
the specified polygon and the one immediately preceding it have the same
plane equation (are in the same plane).

A polygon declared to be coplanar must lie in the same plane as the previ-
ous polygon if correct renderings are to be obtained. The system does not
check for this condition. A polygon without a COPLANAR specifier imme-
diately preceding the consecutive coplanar polygons is also taken to be in
the set.

Polygons that are coplanar can be included in the polygon list without the
COPLANAR specifier, as long as the polygons are not to be associated as

an outer/inner pair.

If COPLANAR is specified for the first polygon in a polygon list, it has no
effect.

In Figure 13-11 the second polygon is coplanar with the first polygon. The
third polygon is not coplanar with either of the two preceding polygons.

1y

U390537

Figure 13-11. Object With Coplanar Polygon

GTi13-16 Graphics Tutorials

A polygon should not be defined as an inner contour unless it is coplanar
with a surrounding contour. Tunnels, protrusions, and holes do not need
inner contours unless this coplanar arrangement is present. For example, in
Figure 13-12 neither of the objects contains inner contours.

Q

\

1A80302

1A80303

Figure 13-12. Solid Without Inner Contours

The cube with a tunnel running through it (in Figure 13-13) has two inner
contours in its polygon definition, one for each opening of the tunnel.

Polygonal Rendering

d

yd

/

U390538

Figure 13-13. Cube With a¢ Tunnel

GT13-17

A POLYGON command syntax for this object is:

Object :=

POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6

POLYGON COPLANAR -.3,-.3,.6 -.3,.3,.6 .3,.3,.6 .3,-.3,.6
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -—-.6,-.6,.6
POLYGON .6,-.6,-.6 .6,.6,—-.6 .6,.6,.6 6,-.6,.6

POLYGON .6,.6,-.6 -.6,.6,-.6 -.6,.6,. .6,.6,.6

’ - ,6 3 .
POLYGON -.6,.6,-.6 -.6,-.6,-.6 -.6,—-.6,.6 -.6,.
6

,.6,.6
POLYGON .6,.6,-.6 .6,-.6,-.6 —-.6,-.6,-.6 —.6,.6,—.6
POLYGON COPLANAR -.3,.3,-.6 -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6
POLYGON -.3,-.3,-.6 -.3,-.3,.6 .3,-.3,.6 .3,-.3,-.6
POLYGON .3,.3,-.6 .3,-.3,-.6 .3,-.3,.6 .3,.3,.6
POLYGON .3,.3,-.6 .3,.3,.6 -.3,.3,.6 -.3,.3,-.6
POLYGON -.3,.3,-.6 -.3,.3,.6 -.3,-.3,.6 -.3,-.3,-.6;

An object with holes can often be defined in a way that does not require the
inner contour. For example, the polygon with a hole (outer/inner contour
pair) in this object could be replaced by four individual polygons without
holes (coplanar outer contours).

U390430A

Figure 13-14. Objects With Coplanar Outer Contours

Both objects are admissible and can be rendered correctly.

GT13-18 Graphics Tutorials

In solids, misplaced capping polygons and extra missing lines are often
traceable to an outer contour defined with the wrong vertex order as shown
in Figure 13-15.

U390430B

Figure 13-15. Objects With Incorrect Vertex Ordering

2.5 Using the Soft Edge Option

The S option before a set of X,Y,Z coordinates indicates that the edge
drawn between the previous vertex and this one represents a soft edge of
the polygon. If S is placed before the first set of X,Y,Z coordinates in a
polygon clause, the edge connecting the last vertex with the first is soft.

When using the S specifier in the POLYGON command to define an object,
there are some rules to remember about the way the system treats edges
that are declared to be soft.

An S specifier causes the system to apply a move operation rather than a
draw operation to the associated polygon vertex. Therefore, if a single poly-
gon containing a soft edge is displayed, the soft edge is invisible on the
display.

Each polygon edge in a solid coincides with an edge of a neighboring poly-
gon so that the solid is made up of common edge pairs. Common edge pairs
can be defined as two hard edges, one hard and one soft edge, or two soft
edges.

Polygonal Rendering GT13-19

In drawing a hard common-edge pair, the same vector is drawn twice in
opposite directions. If one member of the pair is soft, the vector is only
drawn once. There is no variation in the intensity between a line drawn once
and one drawn twice, however, high quality anti-aliasing is more precise
when edges are drawn just once. When both edges of a common-edge pair
are defined as soft, the common-edge pair is invisible in both the rendered
view and the original object.

In the dynamic viewport, the soft edge is always displayed, with the
exception of a soft common-edge pair. The same holds true of dynamic
renderings, and of hidden-line renderings in the static viewport. In shaded
static raster renderings, however, the default is to display neither hard nor
soft edges. Input <15> of the SHADINGENVIRONMENT function controls
the display of edges. As mentioned, the default (FALSE or Fix(0)) displays
neither hard nor soft edges. Sending a Fix(1) to the input causes all edges
to be displayed (enhanced). Sending a Fix(2) to this input allows you to
enhance edges that are declared as hard, and leave edges declared as soft
as undisplayed.

2.6 Defining Color For Dynamic Wireframe Polygons

The color of the edges of a polygon displayed as a dynamic wireframe
model is set by using the SET COLLOR command:

name := SET COLOR hue,sat [APPLIED TO namel];

where hue is a value from 0 to 360, and saturation is a value between 0 and
1. Refer to the SET COLOR command for a full description of the
parameters.

To obtain pure green edges for a dynamic wireframe polygon list, the com-
mand sequence would be as follows:

SET COLOR 240,1 APPLIED TO B;
POLYGON. . . ;

>
"

Color is specified for complete polygons, not individual edges. The default
color is white. The default intensity is 1.

GT13-20 Graphics Tutorials

2.7 Using the WITH OUTLINE option to Define Color

To define the color of enhanced edges of polygon borders in static raster
renderings, or the color of lines in a hidden-line rendering, the optional
WITH OUTLINE clause is used. For example, the following commands can
be used to define a polygon which will have green edges in the dynamic
viewport, but red outlines when rendered in the static viewport.

A .
B .

SET COLOR 240,1 APPLIED TO B;
WITH OUTLINE 120
POLYGON ...;

The specifier (h) in the WITH OUTLINE clause is an index into the Spheres
and Lines Attribute Table loaded at boot time. The overlay of outlines on
shaded images (polygon edge enhancement) can be turned on or off by use
of the SHADINGENVIRONMENT function. Refer to the explanation for
Input <14> of SHADINGENVIRONMENT for more information on the
attribute table.

2.8 Defining Color and Highlights for Static Raster Renderings

Specifying the color, diffuse reflection, specular highlights, and
transparency (called attributes) of surfaces and solids is done using the
WITH ATTRIBUTES clause of the POLYGON command.

Given the ATTRIBUTES command syntax:
Name := ATTRIBUTES attributes [AND attributes];
where the attributes of a polygon are defined as follows:
[Color h[s[i]]] [Diffuse d] [Specular s] [Opaque t]

The ATTRIBUTES command creates a named attribute node in mass
memory that defines specific qualities to be applied to polygons when
referenced by the polygon data structure. The attributes specified in a WITH
ATTRIBUTES clause of a polygon command apply to all subsequent
polygons until superseded by another WITH ATTRIBUTES clause. If no
WITH ATTRIBUTES option is given for a polygon node, default attributes
are assumed.

Polygonal Rendering GT13-21

Polygons may be solidly colored by specifying a color through the
ATTRIBUTES command, or the colors may be assigned to the vertices by
giving a color with each vertex specified. The color is specified by giving,
first, the vertex and then, the color (h,s,i). If just the hue and saturation are
given, the intensity defaults to 1. If no vertex colors are given, the vertex
colors default to those specified in the attribute clause.

Vertex colors must be specified for all vertices of a polygon or for none of
them. However, as with normals, some polygons may have color at their
vertices while other polygons may not have color at their vertices. This
means that it is possible to have some objects in the picture color
interpolated, while others are not.

Although color of polygon vertices is specified with a hue, saturation, and
intensity component, the colors are linearly interpolated across the vertices
in the red-green-blue color system. If colors are not interpolating the way
you would like them to, add more vertices to the polygon, or break up large
solid volumes into smaller sub-volumes and assign the desired colors to the
new vertices in the object.

You can specify color for a polygon with both the ATTRIBUTES command
and the color by vertex specification. An input to SHADINGENVIRON-
MENT allows you to switch between attribute-defined color and vertex-
defined color. Input <10> of SHADINGENVIRONMENT accepts a Boolean
to determine how color is specified.

The WITH ATTRIBUTES clause and the ATTRIBUTES command are ex-
plained in more detail in Section 6, Displaying Shaded Images.

2.9 Specifying Normals

When a polygon is used to approximate a curved surface, the smooth
appearance of the surface can be restored in a smooth shaded rendering by
approximating a surface using normals. Normals only apply to shaded
renderings. Normals to a surface are specified with one normal per vertex.
Like vertices, normals are defined by coordinate values of X,Y,Z. The
shaded rendering process interpolates between vertex normals when
rendering the polygon.

Normals must be specified for all vertices of a polygon or for none of them.
If normals are not explicitly defined for a polygon, their values default to

GT13-22 Graphics Tutorials

the value of the normal to the plane in which the polygon lies. Normals are
needed only in smooth-shaded renderings. If you do not define vertex nor-
mals, but you request a smooth-shaded rendering, the result is a flat-shaded
rendering (except that specular and diffuse attributes will apply).

In Phong shading, the surface normal used is the one derived by
interpolating the normals you supply at each vertex. In flat shading, the
normal used is the vector perpendicular to the polygon. In Gouraud shading
the degree of light which is transmitted is derived by first calculating the
degree of light is transmitted at the vertices using the normal you supply
and then interpolating between the vertices. In wash shading, no surface
normal is used and no lights are used.

The following is the vector list for an octahedron with normals and
attributes specified.

object = INSTANCE octahedron;
blue := ATTRIBUTES COLOR O;
magenta := ATTRIBUTES COLOR 60;
purple = ATTRIBUTES COLOR 90;
red := ATTRIBUTES COLOR 120;
orange := ATTRIBUTES COLOR 150;
yellow := ATTRIBUTES COLOR 180;
green = ATTRIBUTES COLOR 240;
cyan := ATTRIBUTES COLOR 300;
white := ATTRIBUTES COLOR 0,0,1;
black := ATTRIBUTES COLOR 0,0,0;
grey := ATTRIBUTES COLOR 0,0,0.5;
octahedron:=
WITH ATTR cyan

POLYGON

0.000, 1.000, 0.000 N 1.000, 1.000, 1.000 C O, O, 1 {White}

0.000, 0.000, 1.000 N 1.000, 1.000, 1.000 C 270, 1, 1 {Turquoise}

1.000, 0.000, 0.000 N 1.000, 1.000, 1.000C O, 1, 1 {Blue}
WITH ATTR magenta

POLYGON
0.000, 1.000, 0.000 N 1.000, 1.000, -1.000 C O, O, 1 { white}
1.000, 0.000, 0.000 N 1.000, 1.000, -1.000C O, 1, 1 {Blue}

0.000, 0.000, -1.000 N 1.000, 1.000, -1.000 C 90, 1, 1 {Purple}

Polygonal Rendering GT13-23

WITH ATTR yellow
POLYGON
0.000, 1.000, 0.000 N -1.000, 1.000, -1.000 C 0, O, 1 {White}
0.000, 0.000, -1.000 N -1.000, 1.000, -1.000 C 90, 1, 1 {Purple}
-1.000, 0.000, 0.000 N -1.000, 1.000, -1.000 C 180, 1, 1 {Yellow}
WITH ATTR blue
POLYGON
0.000, 1.000, 0.000 N -1.000, 1.000, 1.000 C 0, O, 1 {White}
-1.000, 0.000, 0.000 N -1.000, 1.000, 1.000 C 180, 1, 1 {Yellow}
0.000, 0.000, 1.000 N -1.000, 1.000, 1.000 C 270, 1, 1 {Turquoise}
WITH ATTR red
POLYGON
0.000, -1.000, 0.000 N 1.000, -1.000, 1.000 C O, O, O {Black}
1.000, 0.000, 0.000 N 1.000, -1.000, 1.000 C O, 1, 1 {Blue}
0.000, 0.000, 1.000 N 1.000, -1.000, 1.000 C 270, 1, 1 {Turquoise}
WITH ATTR green
POLYGON
0.000, -1.000, 0.000 N 1.000, -1.000, -1.000 C 0, 0, O ({Black}
0.000, 0.000, -1.000 N 1.000, -1.000, -1.000 C 90, 1, 1 {Purple}
1.000, 0.000, 0.000 N 1.000, -1.000, -1.000 C 0, 1, 1 {Blue}
WITH ATTR purple
POLYGON
0.000, -1.000, 0.000 N -1.000, -1.000, -1.000 C 0, 0, O {Black}
-1.000, 0.000, 0.000 -1.000, -1.000, -1.000 C 180, 1, 1 {Yellow}
0.000, 0.000, -1.000 N -1.000, -1.000, -1.000 C 90, 1, 1 ({Purple}
WITH ATTR orange
POLYGON
0.000, -1.000, 0.000 N -1.000, -1.000, 1.000 C 0, O, O {Black}
0.000, 0.000,1.000 N -1.000, -1.000, 1.000 C 270, 1, 1 {Turquoise}
-1.000, 0.000, 0.000 N -1.000, -1.000, 1.000 C 180, 1, 1 {Yellow}

4

3. Establishing a Workspace in Memory

The rendering process requires that a large block of mass memory be avail-
able. This workspace is known as working storage, and once reserved, is not
available for other uses until it is unreserved. The working storage require-
ment can be calculated automatically by the PS 390, or may be explicitly
reserved.

GT13-24 Graphics Tutorials

3.1 Automatic Reservation of Working Storage

To have the system automatically reserve working storage for the rendering
process, the command

RESERVE_WORKING_STORAGE O;

should be entered. After the rendering operation is complete, the PS 390
will display the amount of memory required. This number can be written
down and used to explicitly reserve memory for the next rendering
operation.

The automatic calculation of working storage is more efficient in memory
usage, but requires extra time during the rendering process. To avoid this,
you may explicitly reserve working storage, either using the number re-
ported by an automatic calculation, or by using the guidelines that follow.

3.2 Explicit Reservation of Working Storage

To explicitly reserve memory for a rendering, the syntax of the command is
as follows:

RESERVE_WORKING_STORAGE n;

where:

the current working storage block is replaced with another containing at
least n bytes. If n is less than or equal to 0, the system will calculate the
exact memory requirement for the rendering.

The best time to reserve working storage is immediately after booting, when
large requests can be filled easily.

Each polygon of a solid object with four vertices requires approximately 150
bytes of reserve working storage. Memory needs will vary from figure to
figure depending on the complexity of the object, the operations to be per-
formed on the data structure, and the view. Typically, 200,000 to 400,000
bytes of working storage should be reserved when you begin a session.

After one working storage request is made, subsequent requests do not add
to the original working storage; they replace the original working storage.

Working storage is not freed by the INITIALIZE command. However, if a
working storage request is followed by another, smaller request, an amount
of memory equal to the difference between the two requests is freed.

Polygonal Rendering GT13-25

If a contiguous block of memory cannot be allocated, no working storage is
allocated and any previous storage is deallocated. If the system is unable to
reserve enough working storage to complete a rendering, the rendering ter-
minates prematurely and an error message is issued.

3.3 Additional Memory Requirements

In addition to the working storage space, extra mass memory is needed to
create static renderings. This memory is referred to as transient memory
and is automatically allocated and deallocated by the system. If adequate
mass memory is not available for transient storage, the static process termi-
nates prematurely, and an error message is generated. For this reason E&S
recommends 4Mb or more of memory for renderings of objects with numer-
ous polygons.

4. Marking an Object for Rendering

A polygonal object must be defined by a PS 390 command to be either a
surface or a solid before rendering operations can be applied to it.

The commands to mark a polygonal object as a surface or solid are:

o SOLID_RENDERING
e SURFACE_RENDERING

The SOLID_RENDERING command creates an operation node in the data
structure. The default value of this command declares that all of its descen-
dant polygon data nodes define solids.

The SURFACE_RENDERING command also creates an operation node in
the data structure. The default value of this command declares that all of its
descendant polygon data nodes define surfaces.

The nodes established by the commands are called rendering operation
nodes. Rendering nodes should not be instanced more than once either di-
rectly or indirectly, as only one node at a time may be triggered.

Before you can render an object, its rendering node must be part of a struc-
ture which is displayed (using the DISPLAY command). If the object itself
is displayed but its rendering node is not, no renderings can be created.

GT13-26 Graphics Tutorials

For example, if the command sequence

A
B

SOLID_RENDERING APPLIED TO B;
POLYGON 3

has been entered, the DISPLAY command should be DISPLAY A; and not
DISPLAY B;.

Syntax for the rendering commands is:

Name :

SOLID_RENDERING APPLIED TO Namel;
Name := S

URFACE_RENDERING APPLIED TO Namel;

where Namel names either (a) a POLYGON node, or (b) an ancestor of
one or more POLYGON nodes. If (b) is the case, any rendering referring to
Name1l is performed immediately on all of the POLYGON objects de-
scended from Namel.

A descendent polygonal object originally declared as a surface with the
SURFACE_RENDERING command can be changed to a solid by sending to
input <2> of the SURFACE or SOLID_RENDERING node. A TRUE sent to
input <2>declares the descendent object as a solid; a FALSE sent to this
input declares the object as a surface. This input is useful for updating
objects originally defined as surfaces to solids, making the full range of
rendering operations possible.

4.1 Admissible Descendants for Rendering Operation Nodes

The following commands may be placed between a rendering node and its
data:

e IF and SET CONDITIONAL BIT

o IF and SET LEVEL_OF DETAIL
« INCREMENT LEVEL_OF DETAIL
« DECREMENT LEVEL_OF DETAIL
o IF PHASE

« SET COLOR

« SET RATE

« SET RATE EXTERNAL

« SET DEPTH_CLIPPING

« BEGIN_STRUCTURE...

« END_STRUCTURE

Polygonal Rendering GT13-27

A rendering takes into account any effects of these nodes at the time the
request is made. For example, if IF PHASE and SET RATE are being used
to blink an object and that object is “off” at the moment the request is
made, the object is excluded from the rendering.

The nodes mentioned above can also be placed above the rendering node
with the same result. Placement of these nodes above the rendering nodes is
generally regarded as good programming practice, although it is admissible
to put them between the rendering node and its data.

Transformations created with the following commands may be placed be-
tween a rendering node and its data node(s):

« ROTATE

« TRANSLATE

« SCALE

o MATRIX_2X2
« MATRIX_3X3
o MATRIX4X3

« LOOK

The transformation nodes should be used with caution: like the operation
nodes mentioned above, their effects are incorporated into renderings, and
which may result in imprecision. Another potential problem with interposing
these transformations between a rendering node and the data arises when
renderings are being saved.

Since most vertices in an object usually belong to more than one polygon,
each vertex should be defined with the same numerical value in each of its
polygons; otherwise, precision discrepancies may cause inaccurate
renderings.

In general, nodes created with the following five commands should not be
made descendants of a rendering node:

« WINDOW

« VIEWPORT

« EYE BACK

« FIELD OF VIEW
o MATRIX_4X4

GT13-28 Graphics Tutorials

Like other transformations, the five node types listed above are incorpo-
rated into the output data from a rendering operation. However, rendered
data is generally displayed within a framework that already includes global
4x4 matrix transformations. Including the transformations listed above as
part of the rendering usually has the effect of applying an unwanted double
(double VIEWPORT, double WINDOW, etc.) to the rendered object.

SOLID_RENDERING and SURFACE_RENDERING may not be
descendants of a SURFACE or SOLID_RENDERING node. If this rule is
not observed, bad renderings or a system crash may result. The system does
not check for this condition.

4.2 Creating Renderings

An appropriate integer sent to a SOLID RENDERING or SURFACE_REN-
DERING node produces a rendering of that node’s descendant polygonal
object. When a rendering is first created for an object, a second set of data
is created and “grafted” just below the rendering node for the original ob-
ject. To display the rendering, the Joint Control Processor traverses the path
to this new data. The original data remain intact and are accessible through
input to the rendering node (Figure 13-16).

SOLID
RENDERING
/
s =S
TRANSFOR- (REQUEST RENDERING) (TRANSFOR-\ RENDERING
MATIONS » | MATIONS / DATA
\ -
/_
.
r 1
ORIGINAL ORIGINAL
POLYGON I POLYGON
DATA DATA
l_ _J U3980539

Figure 13-16. Path to Rendering Data

Polygonal Rendering GT13-29

When the original object is redisplayed, the path to the original object is

traversed and the rendering data remains intact (Figure 13-17).

SOLID
RENDERING,

=~

TRANSFOR- |RENDERING
MATIONS DATA
L —
ORIGINAL U390539A
POLYGON
DATA

Figure 13-17. Path to Original Data

At this point, the rendering can easily be displayed again, since its data still
exists. When a second rendering is done on this object, a second set of

rendering data replaces the first set (Figure 13-18).

an N
(TRANSFOR-\
MATIONS /

\

r~

;-
r — "
ORIGINAL U3905398

| POLYGON
DATA

L —
Figure 13-18. Path to Second Rendering

RENDERING|
DATA

GT13-30

Graphics Tutorials

The “current rendering” is always the one most recently created, even if it
is not currently displayed. Each rendering node has its own current
rendering.

After requesting a rendering operation, commands may be entered through
the keyboard or through a function network. These commands are
processed at a slightly slower rate because of the overhead caused by the
rendering operation.

If a command causing the screen viewport to change is issued during a
rendering, the rendering will occur in the newly selected area of the screen
viewport without clearing the screen.

4.3 Rendering Node Connections

Rendering nodes have five inputs. Inputs are similar for SOLID_rendering
and SURFACE rendering (Figure 13-19).

Instance name

Boolean

Integer, String, »/<1>
or Boolean

Boolean for Polygoh ———»
Solia/surface 2 <2>

XFORMDATA ———|<3>
Vector List (raster Lines)

XFORMDATA =\<4>
Vector List (spherical data)

Name of Original »
Vector List

S5> SOLID_rendering
SURFACE_renderin

U390292A

Figure 13-19. Rendering Node Connections

Polygonal Rendering GT13-31

4.3.1 Input <1>

Input <1> of the rendering nodes accept 9 different numerical values, or a
string, or a Boolean. The following summarizes valid inputs for input <1>.

Sending fix(0) to input <1> establishes a toggle between a current rendering
and the original object in a dynamic viewport.

Sending fix(1) to input <1> creates and displays a cross-section of a solid
object as defined by a sectioning plane in a dynamic viewport.

Sending fix(2) to input <1> creates and displays a sectioned rendering in a
dynamic viewport.

Sending fix(3) to input <1> creates and displays a rendering of a solid with
backfaces removed in a dynamic viewport.

Sending fix(4) to input <1> creates and displays a rendering with hidden-
lines removed in the static viewport.

Sending fix(5) generates an object with the wash shading style in a static
viewport.

Sending fix(6) generates an object with the flat shading style in a static
viewport.

Sending fix(7) generates an object with the Phong shading style in a static
viewport.

Sending fix(8) generates an object with the Gouraud shading style in a static
viewport.

Sending a string to input <1> causes the current rendering to be saved under
a name defined by the string.

Sending the Boolean FALSE to input <1> causes the original unrendered
descendent structure of the rendering operation node to be displayed.

Sending the Boolean TRUE to input <1> causes the rendered view of the
rendering operation node to be displayed.

GT13-32 Graphics Tutorials

4.3.2 Input <2>

Input <2> of the rendering nodes accept a Boolean which defines the dis-
played object as a surface or a solid.

Sending a TRUE to input <2> defines the descendent object as a solid.

Sending a FALSE to input <2> defines the descendent object as a surface.

4.3.3 Input <3> Through Input <5>

Input <3> accepts a transformed vector list from the function
F:XFORMDATA to define raster lines. (Used with CPK-Molecular
Modeling.)

Input <4> accepts a transformed vector list from the function
F:XFORMDATA to define spherical centers. (Used with CPK-Molecular
Modeling.)

Input <5> accepts the original vector list to enable accurate spherical scal-
ing. (Used with CPK-Molecular Modeling.)

4.3.4 Output <1>

Rendering nodes, unlike most other display structure nodes, generates an
output. A TRUE is output upon successful completion of the rendering
process, and a FALSE is output if the rendering failed.

For example, the commands

A := SOLID RENDERING APPLIED TO B;
CONNECT A<1>:<1>C;

cause the output of a rendering node to be sent to input <1> of C.

Any input to input <1> of a rendering node causes an output. If output <1>
has not been connected, and an integer, string, or Boolean value is sent to
input <1>, a system generated function network will cause a message to
appear on the screen upon successful completion of the rendering
operation. An error message also appears if the rendering was not
completed.

Polygonal Rendering GT13-33

4.4 Establishing a Sectioning Plane

Defining, displaying, and positioning a sectioning plane are the first steps in
producing a sectioned rendering of an object. The SECTIONING_PLANE
command creates a sectioning plane node which indicates that a descendant
POLYGON is a sectioning plane. The syntax is:

Name := SECTIONING_PLANE APPLIED TO Namel;

where Namel names either (a) a POLYGON command or (b) an ancestor
of a POLYGON command.

4.5 The Data Definition of a Sectioning Plane

A sectioning plane is the plane in which a specified polygon lies. Only the
plane need intersect the object to be sectioned; the actual polygon that de-
fines the plane does not need to.

The data which defines a sectioning plane is contained in a POLYGON
node; SECTIONING_PLANE indicates that a given POLYGON node repre-
sents a sectioning plane.

The sectioning plane is the plane containing the polygon defined by the first
POLYGON clause of the first polygon node encountered after a sectioning
plane node. Additional polygon clauses defining other polygons have no
effect on actual sectioning operations, but are displayed along with the de-
fining sectioning plane polygon. This can be put to use in designing an
indicator which shows the side of the plane at which sectioning will remove
(or preserve) polygon data. For example, the command

SPdata :=

POLYGON -.9,-.9,0 -.9,.9,0 9,.9,0 .9,-.9,0

POLYGON .1,0,0 .1,0,-.3 .15,0,-.3 0,0,-.45
-.15,0,-.3 -.1,0,-.3 -.1,0,0

POLYGON 0,.1,0 0,.1,-.3 0,.15,-.3 0,0,-.45

0,~-.15,-.3 0,-.1,-.3 0,-.1, O ;

defines a sectioning plane with two polygonal arrow indicators as shown in
Figure 13-20.

GTI13-34 Graphics Tutorials

7 Ny

U390425A

Figure 13-20. Sectioning Plane Definition

Sectioning preserves those parts of an object lying in front of and removes
those parts lying in back of the sectioning plane. The front side of a section-
ing plane is the side on which the vertices of the defining polygon run clock-
wise.

No SOLID_RENDERING or SURFACE_RENDERING operation node may
be an ancestor of a sectioning plane’s defining polygon. The PS 390 inter-
prets polygons with SOLID_RENDERING or SURFACE_RENDERING an-
cestors as objects to be rendered rather than as sectioning plane definitions,
and issues a “sectioning plane not found” message when a sectioning at-
tempt is made.

(Wrong) (Wrong) (Right)

Sectioning Surface

Plane Rendering

Sectioning Surface
Plane Rendering

Surface Sectioning
Rendering Plane

L J
° U390540

Figure 13-21. Data Structure of Sectioning Plane

Polygonal Rendering GT13-35

Other nodes which do not represent viewing transformations, such as
TRANSLATE, may be placed either above or below the sectioning plane
node as needed.

Typically, you will want to orient the plane interactively by connecting intet-
active devices via function networks to translate and rotate the sectioning
plane.

4.6 Displaying Sectioning Plane Nodes

Before an object can be sectioned, the sectioning plane node must be part of
a structure which is displayed. In order to section an object, you must first
create the sectioning plane, and then display it along with the object to be
sectioned.

For example, if the command sequence

A
B :

SECTIONING_PLANE APPLIED TO B;
POLYGON ... ;

has been entered, the DISPLAY command should be DISPLAY A; and not
DISPLAY B;.

4.7 Cross-sectioning

Cross-sections can only be created for objects defined as solids. The cross-
sectioning operation makes use of a sectioning plane to create a cross sec-
tion of the object. When this operation is used, both sides of the object are
thrown away and only the slice of the object defined by the sectioning plane
remains. Essentially, the object is sectioned and only the capping polygons
remain.

This operation proceeds within 1-3 seconds. During this time the display
blanks momentarily while the object is sectioned.

Sending fix(1) to input <1> of the rendering node creates a cross section in
the working storage area, and displays it on the screen in the dynamic
viewport.

GT13-36 Graphics Tutorials

4.8 Toggling Between the Rendered Object and the Original Object

It is often useful to compare objects before and after rendering operations
have been applied. The toggle operation that occurs when you send a TRUE
or a fix(0) to input <1> of the rendering node allows you to alternate the
display between the rendered object and the original object. Both the
rendering and the original object are left intact and can be redisplayed until
they are overwritten or saved.

Sending a FALSE to input <1> of a rendering operation node causes the
original descendent structure of the node to be displayed. The rendered
view is not affected, other than being removed from the display. The ren-
dered view can be restored and displayed again by sending TRUE or fix(0)
to the rendering operation node.

4.9 Changing the Definition of the Object

Sending a Boolean value to input <2> of the rendering node controls
whether the descendant polygons are to be treated as a solid or a surface.
This allows a solid rendering node to be converted to a surface rendering
node and vice versa. TRUE sent to input <2> defines the node as a solid
rendering node whatever the original state was. FALSE defines the node as
a surface rendering node. The default is determined by the word SOLID or
SURFACE in the command that created the node.

5. Saving and Compounding Renderings

Saving a rendering is done by giving it a name by which it can be refer-
enced. Dynamic viewport renderings are the only renderings which may be
saved and compounded. Static viewport renderings cannot be saved, and
cannot have further rendering operations performed on them.

This process establishes a rendering as a separate named data node.
Requesting and displaying a rendering creates rendering data, but does not
create a node in the normal sense. The rendering cannot be referenced nor
subjected to further rendering operations until it is saved. Saving the
rendering is, therefore, a prerequisite to making further renderings of the
object. After a rendering is saved, it is no longer considered a current
rendering. Therefore, the toggle operation (Boolean values and a fix(0) sent
to the rendering node) no longer affect the rendering.

Polygonal Rendering GT13-37

5.1 How to Save a Rendering

To save a rendering, send the name (a string message) to input <1> of the
SOLID_RENDERING or SURFACE_RENDERING operation node. All ille-
gal PS 390 names are rejected and an error message is generated.

The string should specify the name of the node which is to contain the saved
rendering data. If the named node does not exist, it is created; if it does
exist, the saved rendering data replace the original contents of the node.

All polygons in the rendering are taken into account in the saved rendering.
It is not possible to exclude selected polygons or polygon data nodes from
saved renderings.

5.2 Contents of a Saved Rendering

Backface removal and sectioned renderings are saved as polygon lists.
When a sectioned rendering is saved, all transformations between the ren-
dering operation node and the polygon data node are applied to the polygon
data. The result is stored in the new data node. When a backface rendering
is saved, all ancestor transformations of the polygon data node are applied
to the polygon data before the result is stored in the new node. This occurs
even if those transformations are above the rendering operation node.

5.3 Common Uses of Saved Renderings

The most common reason for saving a rendering is to create a compound
rendering from it.

Common types of compound renderings are: (a) re-sectioning of a sectioned
rendering and (b) creating a static rendering of an object which has been
sectioned.

Backface renderings, which are useful mainly for previewing time-
consuming hidden-line operations on complex objects, are not generally ren-
dered further. Hidden-line renderings cannot be rendered further because
they are static raster images.

GT13-38 Graphics Tutorials

6. Displaying Shaded Images

The PS 390 can be used as an “image buffer” to display host generated
images (by using run length encoding), or it can display shaded images
derived locally from PS 390 polygonal models.

When using the display as an image or frame buffer, the PS 390 is only
used as a communications link between the host and the raster system. No
standard PS 390 commands or data structures are used to display host gen-
erated images.

This section deals only with displaying shaded images derived locally from
PS 390 polygonal models. Run length encoding, the process of displaying
host generated images, is documented in Section GT14 Raster Programming.

6.1 Specifying Attributes

In Section 2, Defining Polygonal Objects, you were introduced to the WITH
ATTRIBUTES option. Attributes are applied to a collection of polygons by
specifying the name of the attribute node after WITH ATTRIBUTES in the
POLYGON command. If the WITH ATTRIBUTES option is not used in the
polygon clause, the default attributes 0,0,1 for COLOR, 0.75 for DIFFUSE,
4 for SPECULAR, and 1 for OPAQUE (transparency) are assumed. Refer
to Sections 6.2.1 through 6.2.4 for details on specific attributes.

6.2 Using the ATTRIBUTES Command

The ATTRIBUTES command specifies the various characteristics of poly-
gons used in the creation of shaded renderings. Attribute nodes are created
with the ATTRIBUTES command and exist in mass memory but are not
part of a data structure. The attributes specified in an ATTRIBUTES com-
mand are assigned to polygons which include a WITH ATTRIBUTES clause.

When the display processor traverses the data structure with a polygon node
containing a WITH ATTRIBUTES Namel, the attributes in Namel are
assigned to all polygons in the node until superseded with another WITH
ATTRIBUTES clause. The various attributes may be changed from a
function network via inputs to an attribute node or by reassigning the name,
but the changes have no affect until a new rendering is created. No type
checking is done by the shading process to ensure that WITH ATTRIBUTES

Polygonal Rendering GT13-39

indeed refers to an attribute node and not some other entity. If it does refer
to some other entity, the display processor will interpret any values in that
node as attributes, and display the object incorrectly.

The ATTRIBUTES command is:
Name := ATTRIBUTES <attr> [AND <attr>] ;
Given:

<attr> = [COLOR h [,s [,i 111
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t]

A second set of attributes may be given after the word AND in the
ATTRIBUTES command which apply to the obverse side of the polygon(s)
concerned. In other words, the two sides of an object may have different
attributes. The polygons considered on the obverse (back facing) side by the
system are those having counterclockwise ordered vertices for the view in
which the rendering is carried out. The second set of attributes will only be
applied in surface renderings (not solid). The attributes defined for the first
<attr> specify attributes for front facing polygons. The attributes after the
AND specify the attributes of back facing polygons.

You are not required to include the AND «<attr> to specify different attrib-
utes for back facing polygons. If the AND specifier is not included, the
backfacing polygons will have the same attributes as the front. The com-
mand syntax for specifying just one set of attributes is:

Name := ATTRIBUTES <attr> ;

6.2.1 COLOR Component

The COLOR component of the ATTRIBUTE command sets the basic color
for the surface of a polygon. This component pertains only to shaded
renderings in a static viewport. It has no effect on the color of the edges of a
polygon in a dynamic viewport or the outlines of polygons in static
renderings (these are changed using SET COLOR command and the WITH
OUTLINE clause respectively). Color is given as hue (h), saturation (s), and
intensity (i). It also changes according to such variables as shading style,
light sources, orientation, depth cueing, ambient lighting, and specular
lights.

GT13-40 Graphics Tutorials

Hue specifies degrees around the color circle with 0 being pure blue, 120
pure red, and 240 pure green. Saturation varies from 0 for no color satura-
tion (grays) to 1 for full color saturation. Intensity varies from 0 for no
intensity (black) to 1 for full intensity.

If COLOR is not specified, the default hue is white (s=0, i=1). If not
specified, saturation and intensity default to 1. If only hue and saturation
are specified, intensity defaults to 1. Values greater than 1 or less than 0 for
saturation or intensity are rounded to 1 or 0. Hue and saturation correspond
to hue and saturation in the SET COLOR command but have greater
precision.

6.2.2 DIFFUSE Component

The diffuse component of the ATTRIBUTE command determines the pro-
portion of color contributed by diffuse reflection versus that contributed by
specular reflection to smooth shaded renderings. Decreasing d (diffuseness)
makes the surface more shiny; increasing d reduces the intensity of specular
highlights, making the surface more matte, with a value of 1 eliminating
specular highlights entirely. Values larger than 1 or less than 0 are rounded
to 1 or 0. If no DIFFUSE component is given, it defaults to 0.75.

6.2.3 SPECULAR Component

The SPECULAR component of the ATTRIBUTE command adjusts the con-
centration of specular highlights in smooth shaded renderings. Specular
highlighting is a property of the object such that the size of the highlight
spot is not influenced by the light source, only by the s value. Higher con-
centrations of specular highlights result in more metallic looking objects. In
reality, objects are never completely specular (or completely diffuse), so
you get artificial effects if these values are at a maximum. Acceptable val-
ues of s are integers between 0 and 10, with values outside that rounded to
0 or 10. The default is 4.

6.2.4 OPAQUE Component

The OPAQUE component of the ATTRIBUTE command specifies the trans-
parency of a polygon. Increasing values of t (transparency) increase the
polygon’s opacity. Acceptable values for t are real numbers in the range
from 0 to 1 where 1 indicates that the polygon is fully opaque and 0 indi-
cates the polygon is fully transparent (invisible).

Polygonal Rendering GT13-41

As t decreases from 1 to 0, more of the color of the obscured object(s) will
show through. At t=0, the transparent polygon becomes completely invis-
ible. If no opaque attribute is specified, the default is 1 (fully opaque).

Polygons that are rendered as transparent have no color of their own, but
merely filter the color of objects appearing behind them. This is according
to the rule that each of the red, green, and blue components of the object
behind is multiplied by the red, green, and blue components of the
transparent polygon. This means that a transparent object rendered over a
black background will be invisible. This also means that a purely blue
transparent object rendering over a purely red object, will make the red
object look more black (depending on the value of the Opaque specifier).

There are no specular highlights available on transparent objects.

To show polygon orientation relative to the eye point, the color which is
transmitted through the transparent object is darkened according to the z-
component of a surface normal. This means that with Phong, Gouraud, and
flat shading, as the object bends away from the user, the transmitted color
becomes darker.

To render any objects as transparent, you must at some time prior to ren-
dering send a TRUE to input<11> of SHADINGENVIRONMENT. This input
that allows you to turn transparency on and off.

6.2.5 ATTRIBUTE Node Inputs

Inputs to the attribute node are as follows:

e Input <1> accepts a real number as hue, a 2D vector as hue and
saturation, or a 3D vector as hue, saturation, and intensity to specify
COLOR for the front of the appropriate polygon(s) or both sides if
no obverse attributes are given.

o Input <2> accepts a real number to set DIFFUSE
e Input <3> accepts an integer to set SPECULAR

e Input <4> accepts a real nurnber to update the polygon’s OPAQUE
value.

e Inputs <5>...<10> are undefined

o Inputs <11>, <12>, <13>, and <14> correspond to <1>, <2>, <3>, and
<4> but affect the obverse attributes if they exist.

GT13-42 Graphics Tutorials

If you send values that only change the hue to input <1> or input <11>, the
saturation and intensity return to the default values of s=1 and i=1. You
cannot change just one value and keep the remaining values as they were
before you made the change. Essentially, if you do not send a 3D vector,
default values are assumed for the missing variables.

For example, with the data definition

Dim_Red := ATTRIBUTES COLOR 130,1,.5 DIFFUSE .75 SPECULAR 8;
Object := WITH ATTRIBUTES Dim Red
POLYGON

POLYGON ;

If you sent 200 to input <1> of Dim_Red the resulting color parameter in the
attribute node would be 200,1,1. To keep the saturation and intensity the
same and change only the hue, you would send 200,1,.5 to input <1> of
Dim_Red. This is the same if you want to change hue, saturation or inten-
sity individually by sending a new value to the attribute node.

After changing the values in the attribute node, the changes will not be
reflected until another rendering is requested.

6.2.6 Examples of the ATTRIBUTES Command

In the following example, an attribute node is created that defines the object
to be blue. Since only the hue is specified for the color parameter, the
default values for saturation and intensity (s=1, i=1) are assumed. The de-
faults for DIFFUSE and SPECULAR (d=.75, s=0) are also assumed.

Blue := ATTRIBUTES COLOR 120;
Object := WITH ATTRIBUTES Blue
POLYGON

POLYGON ;

All the polygons in the object are blue since the attribute clause assigns the
attributes defined by Blue for all polygons until superseded by another

Polygonal Rendering GT13-43

WITH ATTRIBUTES clause. In the following example, the attributes before
AND specify attributes for front facing polygons in the object and the attrib-
utes after AND specify the attributes for all back facing polygons.

Red_Green := ATTRIBUTES COLOR 120,.5,.75 DIFFUSE .25 SPECULAR 1
AND COLOR 240,1, .25;

Object := WITH ATTRIBUTES Red_Green
POLYGON

POLYGON

All front facing polygons are colored red with .5 saturation and .75 inten-
sity. The value for DIFFUSE is .25 and the value for SPECULAR is 1. All
back facing polygons are green with 0 saturation and .25 intensity. Since no
values for SPECULAR or DIFFUSE are given in the second set of attrib-
utes, the defaults are assumed.

The following object definition specifies attributes for display in the static
viewport and also specifies the color of the polygon borders.

Pastel_Blue := ATTRIBUTES COLOR 3,.5,1 DIFFUSE .75 SPECULAR 5;
Object := WITH ATTRIBUTES Pastel_Blue OUTLINE 30
POLYGON

POLYGON ;

In this example, the shaded polygons on the raster display would be blue,
with full saturation and .5 intensity. The specular value is .75 and the
diffuse value is 5. The polygon edges are magenta (OUTLINE 30) when
rendered in the static viewport with edges on, or in a hidden-line rendering.

6.3 Specifying Light Sources

Lights sources are specified with the ILLUMINATION command which
creates illumination nodes. Illumination nodes can specify stationary lights,
lights that can rotate with the object, or both. Illumination nodes are ignored
during refresh in a dynamic viewport, and only those illumination nodes
occurring in the descendent structure of a triggered solid or surface
rendering operation node have any effect in shaded renderings. An

GT13-44 Graphics Tutorials

unlimited number of light sources are valid for flat and smooth shaded
renderings. Light sources are not used in wash shaded (area filled) images.

All light sources are presumed to be an infinite distance from the object;
however, you can specify the direction from which the lights illuminate the
object. This direction is multiplied by the current rotation matrix to deter-
mine the direction to the light in image space. If, after transformation, the
light source appears to originate from behind the object, it will cause the
whole object to be unilluminated (appear black) except, perhaps, “glancing”
specular highlights near the silhouette.

If no ILLUMINATION command is given, a default white light at (0,0,-1)
with an ambient proportion of 1.0 is assumed. If not specified, intensity and
saturation default to 1. If only hue and saturation are specified, intensity
defaults to 1.

Syntax:
Name := ILLUMINATION X,Y,Z [COLOR h[,s[,i1]1] [AMBIENT a] ;

where the X,Y,Z component is a vector from the origin pointing toward the
light source.

The COLOR component specifies the color of the light source by defining
hue, saturation, and intensity. The COLOR specification in this command is
identical to the COLOR specification in the ATTRIBUTE command (refer to
Section 6.2.1). The defaults are also the same.

The AMBIENT component controls the contribution of a light source to the
ambient light. The net ambient lighting is determined by taking the sum of
the products of the color and ambient proportion of each active light,
dividing by the total number of active lights, then combining the result with
the ambient input of the SHADINGENVIRONMENT function (discussed in
the next section). AMBIENT is defined by a real number between 0 and 1.
Increasing the value of a (ambient) for one light increases its contribution to
ambient light. Values outside this range are changed to 0 or 1. The default
value for a is 1.0.

Changing the values of the SHADINGENVIRONMENT (refer to Section
6.4) allows you to increase or decrease the intensity and color of the
ambient light without the need to change each light source. Whatever the
values, if all active light sources have the same specified proportion, then

Polygonal Rendering GT13-45

all lights contribute equally to the ambient light. Decreasing a value for one
light decreases its contribution to ambient light. Values outside the range
[0..1] are changed to 0 or 1. The default value is 1.

In the following example, the ILLUMINATION command

Light := ILLUMINATION 1,1,-1 COLOR 180;

creates a node which defines a yellow light coming from the upper right.
Since saturation and intensity are not specified, the defaults s=1 and i=1 are
assumed. A default of 1.0 for the ambient proportion is also assumed.

Since the illumination node occurs in the data structure (unlike the attribute
node which exists alone in mass memory), it is not explicitly referenced by
the polygon data node.

The hierarchy with an illumination node is shown in Figure 13-22.
Window, Viewport,

Other 4x4-Matrix-
Transformation Nodes

Rotation, Translation
Scaling Nodes

Solid-Rendering
Node

lHumination
Node

Polygon Data Node

U390541

Figure 13-22. Hierarchy With Illumination Node

The illumination node must be under the rendering node in the display
structure of the object.

GT13-46 Graphics Tutorials

The following is an example of how to use illumination nodes. There are
two lights in the example: Sun.Light, which can be rotated independently of
the object, and Moon.Light, which rotates with the object. To achieve this:

1. Both lights are underneath the rendering node in the structure.

2. Placing the Illumination nodes underneath the rendering node im-
plies that the nodes will have the transformations of the object also
applied to them. This is what happens for Moon (sending a rotation
to Moon.Rot will concatenate with the transformations of the object).

3. The effect in step 2 is not desired for the sun, so a FIELD_OF_VIEW
is inserted before the illumination node of Sun. This causes a rota-

tion matrix sent to Sun.Rot to be the only matrix applied to
Sun.Light.

4. Inserting a 4D matrix (caused by the FIELD OF VIEW) underneath
a rendering node is not recommended. To avoid problems, the 4D
matrix defined by Sun.Persp is identical to the 4D matrix defined by
World.Persp and any change made to one (e.g., by a function net
work) should be made to both. Failure to follow this suggestion may
result in bad renderings.

Sun := BEGIN_STRUCTURE {light which can be rotated independently}
Persp := FIELD_OF_VIEW 90 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
Rot := SCALE BY 1;
Light := ILLUMINATION 0,0,-1;
END_STRUCTURE;

Moon := BEGIN_STRUCTURE {light which rotates with the object}
Rot := SCALE BY 1;
Light := ILLUMINATION 0,0,-1;
END_STRUCTURE;

World := BEGIN_STRUCTURE
Persp := FIELD_OF_VIEW 45 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
VIEWPORT HORIZONTAL=-1:1 VERTICAL=-1:1 INTENSITY=1:0;

Polygonal Rendering GT13-47

SET DEPTH_CLIPPING ON;

Trans := TRANSLATE BY 0,0,0;

Rot := SCALE BY 1;

Rendering := SURFACE_RENDERING; ({rendering node}
INSTANCE OF Object, Sun, Moon;

END_STRUCTURE;

DISPLAY World;

6.3.1 INlumination Node Inputs
Inputs to the illumination node are the following:

o Input <1> accepts a 3D vector as direction

o Input <2> accepts a real number as hue, a 2D vector as hue and
saturation, and a 3D vector as hue, saturation, and intensity.

e Input <3> accepts a real number as the ambient proportion

Like the attribute node, if you send a real number to input <2> to change
only the hue, the saturation and intensity return to the default values of s=1
and i=1. You cannot change just one value and keep the remaining values as
they were before you made the change. If you do not send a 3D vector, the
defaults for the variables not specified are assumed.

6.4 The SHADINGENVIRONMENT Function

An initial function instance called SHADINGENVIRONMENT allows you to
control various static aspects of shaded renderings. These aspects affect the
total environment in which shading operations are performed.

Sending values to the SHADINGENVIRONMENT function generally sets a
parameter for the next requested shaded rendering rather than taking
immediate effect. Inputs <7> (Screen Wash) and <17> (Restore look-up
table) are the only inputs which cause an immediate visual effect. Note that
SHADINGENVIRONMENT is different from other PS 390 functions in that
any input will activate the function independent of the other inputs.

GT13-48 Graphics Tutorials

SHADINGENVIRONMENT

R, 2D, 3D — ¥ <1> <1> —>» PS 390 Display
R, 2D, 3D —} <2>

3D —» <3>

R —» <4>

| — <5>

R —» <6>

B,l —¥<7>

Reserved ———>} <8>
B —> <9>

B —<10>
B — <11>
B —»<12>
B —<13>
S — <14>
R — 1 <«15>

| —<16>
Any —3 <17>
| — <18>

| —>1<19>

The inputs to the SHADINGENVIRONMENT function are discussed below.

6.4.1 Input <1> Ambient Color

Input <1> accepts a real number as hue, a 2D vector as hue and saturation,
and a 3D vector as hue, saturation, and intensity, to specify the ambient
color. Refer to the COLOR parameter of the ATTRIBUTES command for
the meaning of the values (Section 6.2.1). The ambient color is combined
with the result obtained from the light sources to determine the color of
ambient light. The default ambient color is white, with a default intensity of
0.25.

6.4.2 Input <2> Background Color

Input <2> accepts a real number as hue, a 2D vector as hue and saturation,
and/or a 3D vector as hue, saturation, and intensity to specify the
background color. Refer to the COLOR parameter of the ATTRIBUTES

Polygonal Rendering GT13-49

command for the meaning of the values (Section 6.2.1). The current static
viewport specified by input <3> of SHADINGENVIRONMENT is colored
with the background color prior to any shaded rendering done in the refresh
mode (refer to input <9>). The default background color is black (0,0,0).
For information on how to change the background color for dynamic
viewports, refer to notes on input <2> of the initial function instance
PS390ENV.

6.4.3 Input <3> Static Viewport

Input <3> accepts a 3D vector which specifies physical pixel locations for
the viewport where shaded renderings are displayed. Static raster viewports
are always square, the lower left corner being given by the X and Y coordi-
nates of the vector, and its size given by the Z coordinate, such that the
upper right corner is at (X+Z,Y+Z). Values are rounded to the nearest
pixel. The default viewport is V3D(80,0,863).

The viewport can be used for rendering multiple images side by side on the
display. For example, sending V3D(0,-80,1023) would be a valid command
to specify the largest recommended value for the static viewport. This view-
port encompasses the entire displayable screen as well as the undisplayable
area in Y that is in excess of 863. Images in this viewport are clipped to the
physical raster for which 0<=X<1024 and 0<=Y<864.

6.4.4 Input <4> Exposure

Input <4> accepts a real number as the exposure, controlling the overall
brightness of the picture. The exposure is similar to the exposure control of
a camera. If a picture is taken of an object with a very bright specular
highlight, it may be so bright that the rest of the object is darkened. If three
light sources exist, the object would be about three times brighter, making
the object too bright. The exposure can be brought down to control this.

The exposure is multiplied by the intensity at each pixel and the result
clipped to the maximum intensity. This enables the overall brightness of a
rendering to be increased without causing bright spots to exceed maximum
intensity (instead forming “plateaus” of maximum intensity).
Recommended exposure values may vary between 0.3 and 3.0. The default
exposure is 1.

GT13-50 Graphics Tutorials

6.4.5 Input <5> Anti-aliasing control (Edge smoothing)

Input <5> accepts an integer which allows users to chose between having a
relatively fast rendering with jagged edges along the polygons or having
slower renderings with smoother edges and correct interpretations of inter-
penetrating polygons. Anti-aliasing is accomplished by taking 16 samples
per pixel instead of only one. You are given the choice of having no edge
smoothing at all, smoothing along the edges only, or sampling 16 times
within every pixel for every polygon. The default value for this input is 0.

Sending fix(0) to this input produces no smooth edges, and produces the
fastest renderings. Polygons are rendered with one sample per pixel.

Sending fix(1) produces smooth edges, but may not correctly resolve
visibility between surfaces that are extremely close in their Z values or that
are interpenetrating. The 16 samples are taken only where the edges of the
polygon touch a pixel. The interior of the polygons is rendered with one
sample per pixel. This method has a speed intermediate between a fix(0)
and a fix(2).

Sending fix(2) to input <5> produces full anti-aliasing. This rendering
method is the slowest, but it produces full visibility resolution for inter-
penetrating polygons. Sixteen samples are taken for every pixel in every

polygon.

6.4.6 Input <6> Depth Cueing

Input <6> accepts a real number in the range of 0 to 1 to control depth
cueing in the shaded image (1 specifying no depth cueing and 0 specifying
maximum depth cueing). As perceived depth from the viewer increases, the
colors are mixed with the ambient light color. Thus, if a 3D vector with a
value of black (0,0,0) is sent to the ambient input <1> and a 0 is sent to the
depth clipping input <6>, objects are rendered with a ramp ending in black
at the back clipping plane. A 1 sent to input <6>turns off depth cueing. The
default value for this input is 0.2.

6.4.7 Input <7> Screen Wash

Input <7> accepts a Boolean value or an integer and causes an immediate
visual effect. Sending a TRUE to this input clears the entire screen to static
and causes a screen wash with the current static background color. Sending
a FALSE to this input clears the currently specified static viewport and
causes the viewport to be filled with the current static background color.

Polygonal Rendering GTI13-51

Sending fix(0) to input <7> has the same effect as sending TRUE.
Sending fix(1) to input<7> has the same effect as sending FALSE.

Sending fix(2) to input<7> clears the entire screen to a dynamic screen and
causes a screen wash with the current dynamic background color set by
input <2> of PS390ENV. This may be done to clear a shaded image before
displaying a new dynamic image.

Sending fix(3) to input <7> clears the currently specified static viewport
with the current dynamic background color.

6.4.8 Input <8> Reserved

6.4.9 Input <9> Refresh/Overlay Control

Input <9> accepts a Boolean which determines whether the screen is cleared
with the current background color before the rendering is performed.
Sending a TRUE to this input causes the current object to be rendered on
top of the image currently displayed in the static viewport. Sending FALSE
to this input causes the static viewport to be cleared with the current
background color before an object is rendered. The default value is FALSE.

6.4.10 Input <10> Color By Vertex Control

Input <10> accepts a Boolean which controls the use of vertex colors. Color
by vertex is accomplished by defining a color for each vertex in the poly-
gon. A TRUE to this input enables the colors defined at each vertex. A
FALSE to this input enables the color(s) specified in the ATTRIBUTES
command. The default value for this input is FALSE.

6.4.11 Input <11> Opaque (Transparency) Control

Input <11> accepts a Boolean which enables or disables the transparency
assigned to the polygon. Transparency is assigned to the polygon with the
OPAQUE clause of the ATTRIBUTES command. Transparent polygons are
created by modifying the ATTRIBUTES command as follows:

Name := ATTRIBUTE [COLOR h{[,s[,i]l]] [OPAQUE t]
[DIFFUSE d] [SPECULAR s];

where t refers to a value between 0 and 1, with 1 being fully opaque and 0
being fully transparent. When t=0, the object is completely invisible. As t

GT13-52 Graphics Tutorials

decreases from 1 to 0, more of the color of the obscured object(s) will show
through. The default value for this input is FALSE (fully opaque).

6.4.12 Input <12> Specular Highlight Control

Input <12> accepts a Boolean which turns specular highlights on and off.
Flat, Gouraud and Phong shading use a shading equation that can process
multiple light sources and calculate specular highlights. The default value is
TRUE which means specular highlights are turned on.

6.4.13 Input <13> Special Color Blending for Spheres

Input <13> accepts a Boolean value which turns color blending on and off.
The color blending is used for correct spherical rendering (used in molecu-
lar modeling). Sending a TRUE turns the color blending on. Sending a
FALSE turns it off. The default is FALSE.

6.4.14 Input <14> Update Attribute Table

Input <14> accepts a string which is the name of a 3D tabulated vector list
used to update the attribute table that specifies color, radii, diffuseness, and
specular highlights for spheres and lines. The attribute table has 0 to 127
entries with six table components for each entry. The attribute table can be
updated by encoding the table entries into a named PS 390 vector list and
then sending the name of the vector list to this input. The six table compo-
nents are encoded into two consecutive 3D tabulated vector list.

The table has the following components: hue, saturation, intensity, radius,
diffuse, specular.

Hue is a real number in the range 0 to 360. Saturation and intensity are real
numbers in the range 0 to 1. Radius is a real number greater than 0. Diffuse
is a real number in the range 0 to 1. Specular is an integer in the range 0 to
255.

The table is initialized as follows:

Polygonal Rendering GT13-53

INDEX Hue Sat Intensity Radius Diffuse Specular
0 0 0 0.5 1.8 0.7 4 (Gray)
1 0 0 1 1.2 0.7 4 (White)
2 120 1 1 1.35 0.7 4 (Red)
3 240 1 1 1.8 0.7 4 (Green)
4 0 1 1 1.8 0.7 4 (Blue)
5 180 1 1 1.7 0.7 4 (Yellow)
6 0] 0.7 1.8 0.7 4 (Gray)
7 300 1 1 2.15 0.7 4 (Cyan)
8 60 1 1 1.8 0.7 4 (Magenta)
9 0 0 0 1.8 0.7 4 (Black)
10-127 (Color Wheel)

Spheres use all six of these components. Lines use only the hue, saturation,
and intensity components.

The (h) specifier in the WITH OUTLINE clause is used as the index into
this table. The color of polygon interiors does not used this table; only the
color of polygon outlines in static raster rendering is done this way.

6.4.15 Input <15> Polygon Edge Enhancement

Input <15> accepts a Boolean, or a real number in the range 0-1, or an
integer in the range 0-2.

A real value sent to this input adds an offset to the Z-values of lines. A
number between 0.05 and 1.0 causes the lines to be displayed in front of
other objects with the same Z value. This allows the enhancement of poly-
gon edges. Numbers between 0.05 and 0.0 are clamped to 0.05, which pro-
duces shaded renderings with the lines and edges brought forward slightly
in Z.

Sending a Boolean to this input allows you to toggle the display of polygon
edges on and off. A TRUE causes lines to be drawn along polygon borders,
thus enhancing the edges, and temporarily turns on full antialiasing. A
FALSE causes polygons to be rendered normally without edge enhance-
ment. The default is FALSE (edges off).

GT13-54 Graphics Tutorials

Sending Fix(0) to <15> causes polygons to be rendered without enhanced
edges. This is the same as sending a FALSE, and is the default condition.

Sending Fix(1) causes polygon edges to be enhanced, and causes all edges
including those marked as soft to be displayed. This is the same as sending
a TRUE.

Sending Fix(2) causes polygon edges to be enhanced, but only those edges
marked as hard edges are displayed.

6.4.16 Input <16> Algorithm

This input accepts an integer value of 1 or 0 to choose between one of two
possible algorithms for resolving visibility in a rendering.

Sending Fix(0) causes a scan-line zbuffer algorithm to be applied. This
algorithm is used in rendering solids; it causes all obscured polygons to
remain undisplayed. This is the default shading algorithm.

Sending Fix(1) causes the painters algorithm to be applied to the rendering.
This algorithm renders an image by filling (painting) each polygon from
back to front Z-value. Occasionally this algorithm displays polygons which
which should be obscured. |

6.4.17 Input <17> Restore System Look-up Table

Any value sent to this input restores the gamma-corrected system look-up
table. This is the table responsible for producing antialiased lines of good
line quality. Sending a value to this input has an immediate visual effect.

6.4.18 Input <18> Vertex Normals Control

This input accepts an integer value in the range 0 to 2. Values sent to this
input affect vertex normals.

Sending Fix(0) causes vertex normals to remain unchanged from their
original definition. This is the default.

Sending Fix(1) inverts all vertex normals that are backwards and that are on
backfacing polygons to make the polygons appear forward. This is useful
for the user who knows the desired direction for normals to point, but who
does not necessarily specify polygon vertices in a consistently clockwise

Polygonal Rendering GT13-55

fashion. This is applicable to surface renderings only. The AND specifier of
the ATTRIBUTES command should not be used when using this input to
reverse normals.

Sending Fix(2) flips vertex normals that are backwards and are on polygons
that are frontfacing to make the polygons appear forward. This is useful for
performing mirrored modeling operations, i.e., using a -y scale factor to
produce an image mirrored about the xz plane. Again, this is applicable
only to surface renderings.

6.4.19 Input <19> Stereo

This input is used for stereo renderings. Sending Fix(1024) causes render-
ings to be produced on the entire display, including the (usually) missing
160 scan lines at the bottom of the screen. This input is used for rendering
solid polygons, spheres, and raster lines in 3-dimensional stereo (using the
Tektronix LCD screen).

7. Summary

The POLYGON command defines collections of polygons from which ren-
derings can be created. This is a data definition command that creates a
polygon data node in the data structure of the object. Objects defined as
polygons are the only objects that are eligible for rendering operations. ‘

There are two types of rendering operations: those performed in the
dynamic viewport, and those performed in a static viewport. Rendering
operations in the dynamic viewport can result in a cross section of a
displayed object, sectioning of an object relative to a sectioning plane, or
backface removal.

Rendering operations performed in the static viewport include hidden-line
removal, flat shading, wash shading, and smooth shading (Gouraud and
Phong).

Polygonal objects must be defined correctly to produce correct renderings.

GT13-56 Graphics Tutorials

7.1 POLYGON Command Syntax
Given,

<vertex> = [S 1 x,y,z [N x,y,2 1 [C h[s[i]]]
<polygon> = [WITH ATTRIBUTES namel] ({WITH OUTLINE h] [COPLANAR]
POLYGON <vertex> ... <vertex>

The POLYGON command is:
Name := <polygon> <polygon> . . . <polygon> ;
where:
A vertex definition has the form [S] x,y,z [N x,y,z] [C h[s[i]]]
where:

e S indicates that the edge drawn between the previous vertex and this
one represents a soft edge of the polygon. If the S specifier is used
for the first vertex in a polygon definition, the edge connecting the
last vertex with the first is soft.

e N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth-shaded renderings. Normals must
be specified for all vertices of a polygon or for none of the vertices
of a polygon. Normals do not need to be present for all polygons in
the object. If no normals are given for a polygon, they are defaulted
to the same as the plane equation for the polygon.

e X, Yy, and z are coordinates in a left-handed Cartesian system.

e C indicates a color that is assigned to the vertex. During shading
operations, this color is interpolated across the polygon to the other
vertices.

e h,s,i are values in the Hue/Saturation/Intensity color system. To-
gether these values create a color.

WITH ATTRIBUTES is an option that assigns the attributes defined by
namel for all polygons until superseded by another WITH ATTRIBUTES
clause.

WITH OUTLINE is an option that specifies the color of the edges of poly-
gons in shaded renderings or in hidden-line renderings.

COPLANAR declares that the specified polygon and the one immediately
preceding it have the same plane equation.

Polygonal Rendering

GT13-57

7.2 Defining Polygonal Objects

There is no syntactical limit on the number of polygon clauses in the group.

Polygons are implicitly closed. The first vertex should not be repeated when
defining a polygon.

No more than 250 vertices per polygon may be specified and no less than
three.

The vertices of a polygon must be coplanar. The plane equation is deter-
mined from any three non-colinear vertices.

Concave polygons are acceptable. Degenerate polygons and polygons that
intersect themselves or others are unacceptable. No specific checks are
made for these conditions.

Polygons are not pickable and polygon nodes have no inputs from which
they can be modified with function networks.

7.3 Constructing Surfaces and Solids

Surfaces and solids can be defined. Solids enclose a volume of space, while
surfaces do not.

In a solid, every edge of every polygon must coincide with the edge of a
neighboring polygon.

For surfaces and solids, polygons are defined by listing their vertices in a
clockwise order in the polygon clause.

In a solid, the common edge where two polygons join must run in opposite
directions. This arrangement is essential to produce correct renderings. The
system does not check for this condition.

A solid cannot contain three or more polygons which have a single edge in
common, although surfaces may.

The SURFACE_RENDERING and SOLID_RENDERING commands deter-
mine the nature of a polygonal object.

GT13-58 Graphics Tutorials

7.4 The COPLANAR Option

Inner contours may be defined to create objects with holes or protrusions.

Vertices of inner contours must be listed in the opposite direction to the
corresponding outer contour.

An inner contour should not be defined unless it is coplanar with some
surrounding outer contour.

All members of a set of consecutive coplanar polygons are taken to have the
same plane equation, that of the previous polygon not containing the
COPLANAR option.

If COPLANAR is specified for the first polygon in a polygon list, it has no
effect.

7.5 The Soft Edge Option

The S specifier before a set of X,Y,Z coordinates indicates that the edge
drawn between the previous vertex and this one represents a soft edge of
the polygon.

Soft edges are positions in the original object. If either edge of a common
edged pair is declared soft, the entire edge is considered soft. Soft edges are
displayed the same as hard edges, however they are only drawn once. The
exception to this occurs when enhanced edges have been requested on a
shaded rendering and a fix(2) has been sent to input<15> of

- SHADINGENVIRONMENT. In this instance, polygon edges are enhanced,
but those edges declared as soft are not displayed.

7.6 The Color Option in a Dynamic Viewport

Color for polygons displayed in a dynamic viewport is specified with the
SET COLOR command. Color is specified for complete polygons, not
individual edges.

7.7 Specifying Normals

When a polygon is used to approximate a curved surface, the smooth ap-
pearance of the surface can be restored in a smooth shaded rendering by
approximating a surface using normals. A normal to the surface is given
with each vertex of the polygon specified N x,y,z.

Polygonal Rendering GT13-59

7.8 Memory Usage

The rendering process requires that a block of mass memory be available as
working storage. This memory can be explicitly reserved with the command
RESERVE_WORKING_STORAGE n, where the current working storage is
replaced with another containing at least n bytes. It is also possible to allow
the system to automatically calculate working storage for you. If n is less
than or equal to 0, the system will automatically calculate the amount of
memory needed for the rendering process and display the amount used at
completion.

The best time to explicitly reserve working storage is immediately after
booting; typically, you should reserve 200,000 to 400,000 bytes of working
storage when you begin a session.

Working storage is not freed by the INITIALIZE command.

In addition to the working storage space, extra mass memory is needed to
create static raster renderings. This memory is referred to as transient
memory and is automatically allocated and deallocated by the system.

7.9 Marking an Object for Rendering

Syntaxes for the rendering commands are:

Name :
Name :

SOLID_RENDERING APPLIED TO Namel;
SURFACE_RENDERING APPLIED TO Namel;

where Name1 names either (a) a Polygon node, or (b) an ancestor of one or
more polygon nodes. If (b) is the case, any rendering referring to Namel is
performed immediately on all of the polygon objects descended from
Namel.

Only polygons nodes are used in renderings. Vector and character nodes
occurring beneath a rendering node are ignored by the rendering operations.

Transformation nodes are lost in the rendering, but their effect is incorpo-
rated into the data nodes.

GT13-60 Graphics Tutorials

7.10 Establishing a Sectioning Plane

The SECTIONING_PLANE command creates a sectioning plane node which
indicates that a descendant polygon is a sectioning plane. The syntax is:

Name := SECTIONING_PLANE APPLIED TO Namel;

where name1 names either (a) a POLYGON command or (b) an ancestor of
a POLYGON command.

7.11 The Data Definition of the Sectioning Plane

The sectioning plane is the plane containing the polygon defined by the first
polygon clause of the first polygon node encountered by the display proces-
sor as it traverses the branch beneath a sectioning plane node.

The sectioning plane is the plane in which a specified polygon lies. The
polygon itself need not intersect the object to be sectioned, as long as some
part of the plane does.

No SOLID RENDERING or SURFACE_RENDERING operation node,
whether below or above the sectioning plane node, may be an ancestor of
the defining polygon of a sectioning plane. The PS 390 interprets such
polygons as objects to be rendered rather than as sectioning plane
definitions and issues a “sectioning plane not found” message when a
sectioning attempt is made.

7.12 Saving a Rendering

A rendering is saved by a string sent to input <1> of the
SOLID_RENDERING or SURFACE_RENDERING operation node. The
string should specify the name of the node which is to contain the saved
rendering data. If the named node does not exist, it is created; if it does
exist, the saved rendering data replaces the original contents of the node.

All polygons in the rendering are taken into account in the saved rendering.
It is not possible to exclude selected polygons or polygon data nodes from
saved renderings.

7.13 Specifying Color and Highlights for Static Viewports

Specifying attributes (specular and diffuse highlights, color, and transpar-
ency), of a polygon for display in a static viewport is done via the WITH
ATTRIBUTES clause of the POLYGON command.

Polygonal Rendering GT13-61

Given the polygon syntax:
Name := <polygon> <polygon> . . . <polygon> ;
the attributes option is

<polygon> = [WITH ATTRIBUTES Namel] [OUTLINE h]
POLYGON <vertex>...<vertex>

The ATTRIBUTES command is:
Name := ATTRIBUTES <attr> [AND <attr>] ;
Given:

<attr> = [COLOR h [,s[,i]]]
[DIFFUSE d]
[SPECULAR 5]
[OPAQUE t]

7.14 Specifying Light Sources

Lights may be stationary or rotate with the object or both. If no
ILLUMINATION command is given, a default white light at (0,0, 1) with an
ambient proportion of .25 is assumed. If intensity and saturation are not
specified, both values default to 1.

Syntax:
Name := ILLUMINATION x,y,z [COLOR h [,s[,i]1]] [AMBIENT a] ;

Like the attribute node, if you send a real number to input <2> to change
only the hue, the saturation and intensity return to the default values of s=1
and i=1.

7.15 The SHADINGENVIRONMENT Function

An initial function instance called SHADINGENVIRONMENT allows you to
control various static factors of shaded renderings. This function controls
factors that affect the total environment in which shading operations are
performed. There are currently nineteen inputs to the function.

Sending values to the SHADINGENVIRONMENT function generally sets a
parameter for the next requested shaded rendering rather than taking imme-
diate effect. Note that SHADINGENVIRONMENT is different from other
PS 390 functions in that any input will activate the function independent of
the other inputs.

GTI13-62 Graphics Tutorials

RASTER

PROGRAMMING

GT14. RASTER PROGRAMMING

DISPLAYING HOST-GENERATED IMAGES
WITH THE PS 390 RASTER SYSTEM

CONTENTS

INTRODUCTION . ..iiitiiitiieinntnnessnssnasonassncanansns 1
1. PS 390 RASTER CONCEPTSttt tiiurriorsnaronnsonnnnns 2
1.1 Run-Length Encodingcciiviiiiiiiiniienaee, 2
1.2 Color Lookup Tablesccciiiiiiiiiiiiiinnnn., 3
2. LOGICAL DEVICE COORDINATEScoiivviuinnnnn. 5
3. ENCODING A PICTURE WITH THE RASTER MODE 10
3.1 Writing Pixel Dataciiitineeerieenennnnnnnnneans 11
4. GRAPHICS SUPPORT ROUTINESc0iitiiiinvnnnnens 12
4.1 List of Raster Graphics Support Routines 13
4.2 FORTRAN GSR Raster Programming Example 13
4.3 Pascal GSR Constant Declarationsc..c00u.n. 15
4.4 Pascal GSR Raster Programming Example 15
5. FORMATTING RASTER COMMANDS FOR USER-GENERATED

HOST ROUTINES ... iiiiitiiiiiiiititiienntnntonneonnesnns 16
5.1 Write Pixel Data Modecciiiiiiiiiieennnneenns 18

5.2 Programming Example for User-Generated Host Routines 19

ILLUSTRATIONS

Figure 14-1. Pixel Mapping to Color Lookup Tables 4
Figure 14-2. Virtual Address Space and Screen Space 6
Figure 14-3. Coordinate Ranges for a Raster Display 6
Figure 14-4. Virtual Address Space, Logical Device Coordinate Range,

and Screen Space ittt ittt 7
Figure 14-5. Displayed Raster Image Within Lower Left

Logical Device Coordinate Rangec.ccvvvvuevneonnn 8
Figure 14-6. Centering a Raster Picturecciiiiritiivnnnrennnnns 9
Figure 14-7. Displaying a Section of a Raster Picture 10

Table 14-1. Commands in WRPIX Modeouvttivreeeenosnoonnoses 12

ii

Section GT14

Raster Programming

Displaying Host-Generated Images
with the PS 390 Raster System

Introduction

The PS 390 raster system consists of a printed circuit card that outputs static im-
ages to a 1024 (column) by 864 (row) pixel raster display. Each pixel is 24 bits
deep for addressing into a red-green-blue color lookup table (CLUT) that is 24 bits
deep.

The PS 390 raster system can be used to display polygon wireframe models and
shaded images derived locally from PS 390 polygonal models, or it can be used as
a frame buffer to display host-generated images. When used as a frame buffer, the
PS 390 only serves as a communications link between the host and the raster sys-
tem. No standard PS 390 commands or data structures are used to display host-
generated images.

This document describes how to display host-generated images using the FOR-
TRAN and Pascal Graphics Support Routines (GSRs) and user-generated routines.
Programming examples for both methods are provided.

This manual assumes that you are familiar with creating raster images. If you need
background in this subject, the following books contain detailed sections on raster
graphics:

J.D. Foley and A. Van Dam: Fundamentals of Interactive Computer Graphics.
Addison-Wesley Publishing Company, 1982.

William M. Newman and Robert F. Sproul: Principles of Interactive Computer
Graphics. McGraw-Hill Book Company, 1979.

Conrac Division: Raster Graphics Handbook. Conrac Corporation (600 North
Rimsdale Avenue, Covina CA, 91722), 1980.

Donald P. Greenburg: Introduction to Raster Graphics. Siggraph ’83 Tutorial,
1983.

Raster Programming GTI14-1

1. PS 390 Raster Concepts

The basic steps required to display a host-generated picture on the PS 390
are:

e Determine what your picture will look like (determine pixel values
and the addresses into the lookup tables).

o Set the logical device coordinates to specify the proper size and posi-.
tion of the raster image.

e Transfer this information from the host to the PS 390 via the GSRs
or user-written routines.

Three features of the PS 390 image buffer mode are:

e It is run-length encoded.
e It uses red, green, and blue color lookup tables.

o It specifies logical device coordinates to define the portion of virtual
address space (the total coordinate area in which pictures can be
created) that contains the raster picture. This allows flexibility in
positioning a picture relative to the actual screen display.

These concepts and their application in the PS 390 raster system are dis-
cussed in detail in the following sections.

1.1 Run-Length Encoding

Some raster systems require that you encode a raster picture pixel by pixel.
That is, each pixel on the raster screen must be addressed individually. In
contrast, the PS 390 accepts raster data from the host in run-length encoded
format. Both the GSRs and user-written routines specify run-length
encoding.

In run-length encoding, a set of consecutive pixels of the same color is
specified in a single command containing the number of consecutive pixels
and the color value of the pixels. Since, in practice, most pictures contain
many sequences of consecutive pixels of the same color, run-length encod-
ing allows more efficient picture transmission than pixel-by-pixel encoding
in all but the most complex and high-resolution raster pictures.

For example, if the bottom third of your raster picture is a background
color, one run-length encoded command could specify the color for those
294,912 (1024x288) pixels. Pixel-by-pixel encoding would require 294,912
separate single-pixel commands.

GTI14-2 Graphics Tutorials

1.2 Color Lookup Tables

Any displayable color is a combination of three components--red, green,
and blue, the primary phosphor colors used in the raster display’s additive
color process. Varying the intensity of these three color components pro-
duces the wide variety of colors available to the raster display.

The PS 390 raster system does not specify colors directly, but rather refers
to locations in color lookup tables (CLUTSs) that contain the color entries.
Each pixel on the raster display is 24 bits deep. That is, 24 bits of data
address each pixel’s color value in the CLUTSs with 8 bits to specify entries
in the CLUTs for each red, green, and blue color. Since the 24 bits of pixel
data do not specify a color directly, this is sometimes referred to as “pseu-
docolor” specification.

There are three CLUTSs on the raster card, one each of red, green, and blue.
The CLUT entries (derived from the 24 bits of pixel data) contain a precise
color level, or intensity for a specific color.

Each entry in the tables is 8 bits deep, providing 22+ potential colors. Each
set of 8 bits specifies the intensity of the corresponding red, green, or blue
color. Each table has 256 (0-255) possible entries (i.e., 8 bits of address per
lookup table), providing 224 (2568) usable colors. This provides more dis-
playable colors than there are actual pixels on the raster screen. Naturally,
the human eye cannot distinguish between this many shades of colors. This
permits “smooth shading” of host-generated raster pictures. If the eye could
actually perceive the slight differences in shades of colors, you would see
banding (stripes of different shades) instead of smooth shading.

The CLUTs are preloaded at boot time with a gamma-corrected lookup
table. This gives the appearance on the screen of a linear change in integrity
as the index changes (i.e., location 20 is twice as bright as 10).

Figure 14-1 provides a graphic representation of how the 24 bits of pixel
data map to the 24 bits of the CLUTs. The top of the figure shows the
image buffer memory of the system. Each pixel contains 24 bits of pixel
data made up of 8 bits of red, 8 bits of green, and 8 bits of blue pixel data.
These bits specify the address in the CLUTS.

Raster Programming GTI14-3

The 8-bit entries in the CLUTs specify intensities of red, green, and blue
(RGB). The 8-bit digital-to-analog converters change these digital values to
analog signals which drive the red, green, and blue guns that stimulate the
RGB triads on the raster display screen. The eye blends these intensities to
generate the specified color.

/8 BITS BLUE PIXEL DATA
/ 8 BITS GREEN PIXEL DATA

& 0
8 BITS RED PIXEL DATA Q‘& I I q1[0]0
&
& 2
T IMAGE) o AL
864 MEMORY P S . MO
[]
l 253 BLUE
254 LOOKUP TABLE
— 1024 ———p i 2ss| L1 P T TT1
ONE PIXEL, o

24-BITS DEEP

8-BIT
DAC
110{1]0J1]0f1]0

N
\VMAY
/\v .
GREEN
LOOKUP TABLE
L1 1
® <— 8 BITS—p 7
o[i[o[il o[i[o] 1 8-BIT
DAC

L J

253 RED | |
254 LOOKUP TABLE
a55{ T TP T 11

8-BIT
DAC
RASTER DISPLAY

1
—»] BLUE GUN |
/ / [e)
———»{GREEN GUN|

Y u3s04as50
RED GUN o

Figure 14-1. Pixel Mapping to Color Lookup Tables

GT14-4 Graphics Tutorials

2. Logical Device Coordinates

The raster option has a virtual address space from -32768 to 2047 in both X
and Y (see Figure 14-2). The portion of virtual address space that is actually
displayed is from 0 to 1023 in X and from 0 to 863 in Y, and is called
“screen space.” A picture can be placed anywhere in the virtual address
space. The portion of that picture which overlaps with screen space will be
displayed (see Figure 14-2).

When the raster system is booted, the logical device coordinates default to a
1024x864 screen size starting at 0,0. Of course, once you have specified a
different set of logical device coordinates, this becomes the new default
value.

The logical device coordinates are specified as ranges of X and Y values.
They define the dimensions and position of the area that contains the pic-
ture and can be larger or smaller than screen space.

Logical device coordinates specify:

1. The size of the raster picture.
2. Where the picture will appear in virtual-address space.

3. Where “wraparound” will occur. Wraparound occurs when the
run-length encoded command hits the limit of the X coordinates (the
end of a row of pixels) and begins a new row of pixels.

When sending the logical device coordinates for a picture that is larger than
screen space, data outside of screen space is discarded. The data can be
sent again to the image buffer to display another portion of the raster image
in screen space. Changing the logical device coordinates and starting
position, and resending the picture, places a new portion of the image in
screen space without recalculating the image. Only the portion of the logical
device coordinate picture that coincides with screen space will be visible
(see Figures 14-3 and 14-4).

The logical device coordinate range should correspond to the actual size of
the precalculated raster image. If correctly run-length encoded, when the
current pixel location reaches the right boundary of the logical device coor-
dinates, the next pixel location automatically begins at the left boundary of
the logical device coordinates with the Y value incremented by one, address-
ing the pixels in the next row. In other words, raster images in the PS 390

Raster Programming GT14-5

GT14-6

go from left to right, bottom to top. This allows you to send an entire pic-
ture with only one current pixel location rather than having to start each
new row of pixels with a new pixel location.

+2047 | L
[
863
Screen
Space

0 1023

A

. |
l ,

Virtual Address Space

] [
le u3go4s1 +2047

-32768

Figure 14-2. Virtual Address Space and Screen Space

+2047 / Y
ymax = 943
1 I ————
Scree
LDC Rang 0 Space
ymin = -80
xmin =0 xmax = 102
Y__- LDC Range o
Virtual Address Space
YA
~-32768 7 X / Usgoasz +2047

Figure 14-3. Coordinate Ranges for a Raster Display

Figure 14-3 illustrates the coordinate ranges for virtual address space (the
total coordinate area in which pictures can be created), sample logical de-
vice coordinates specified by the programmer (in this case, shown in the
shaded area specifying a 1024 x 1024 image), and the actual screen space
that can be displayed at any given time.

Graphics Tutorials

Run-length encoded commands make no mention of absolute pixel location.
The commands simply specify the next (n) consecutive pixels starting at the
current pixel location. (The current pixel location is the point in the logical
device coordinates where the run-length encoded command begins loading
pixels.) It follows that an entire picture can be repositioned by changing the
logical device coordinate specifications (which are the only specifications
that refer to absolute pixel locations) and retransmitting the picture data
that fall in the new logical device coordinates. No change to the encoded
pixel data is necessary.

Figure 14-4 shows virtual address space (the entire area in which a picture
can be created), the logical device coordinate range (specified by the
WRPIX command described in the next section), and the screen space con-
taining the portion of the picture that will actually be displayed on the raster

monitor.
/ /
+2047 7/ /
Screen
Space
A
Logical Device
Coordinate Range
- —
Y -~ /r
v
Virtual Address Space ,
-32768 /7 / Usg0453 42047

«—— X——>

Figure 14-4. Virtual Address Space, Logical Device Coordinate Range,
and Screen Space

Raster Programming GT14-7

Figure 14-5 shows that the logical device coordinate range has been
changed so that the lower left-hand area of the logical device coordinate
range coincides with screen space. Note that a new section of the raster
image is in screen space after the picture data has been retransmitted. Also,
screen space remains fixed: the new logical device coordinate range has
changed what actually appears in screen space.

/
+2047 // /
New Logical
Device Coordinate|
Range
Screen
Space
A
— —

\
A\
\
\

Virtual Address Space

-32768 / 7/ 0390454 +2047

< X

v

Figure 14-5. Displayed Raster Image Within Lower Left
Logical Device Coordinate Range

The raster option has the ability of virtual pixel addressing of:
-32768 <= X <= 2047, -32768 <= Y <= 2047

of which the portion that is actually displayed is:
0 <= X <=1023, 0 <= Y <= 863

The logical device coordinates (Xmin <= X <= Xmax, Ymin <= Y <= Ymax)
can be any subset of this range.

GT14-8 Graphics Tutorials

To position a raster image of 200x200 on the center of the screen, the
values should be:

Xmin = 412 ([1024-200]/2)
Xmax = 611 (Xmin + 200 -1)
Ymin = 332 ([864-200]/2)

Ymax = 531 (¥Ymin + 200 -1)

PICTURE

Logical /
Device
Coordinates——s31 v v4

332 ¥
412X 611 X

— / -

Screen(1024x864)

\
\
A\
\

Virtual Address Space y
/
!/ / U390456

Figure 14-6. Centering a Raster Picture

Raster Programming GT14-9

To get the center of a 1024x1024 image on the physical screen, the logical
device coordinates values should be:

Xmin = -0 ([1024-1024]/2)
Xmax = 1023 (xmin + 1024 -1)
Ymin = -80 ([864-1024]/2)

Ymax = 943 (ymin + 1024 -1)

J/ /
7/

943Y

Logical
Device

Coordinates PICTURE

t
/

B Y ex 1023
. 2
e Screen o
Virtual Address Space ;
!/ / U300456

Figure 14-7. Displaying a Section of a Raster Picture

3. Encoding a Picture with the Raster Mode

GT14-10

This section discusses the basic raster mode of the image buffer, Write
Pixel Data (WRPIX), and how it functions. The implementation is described
in sections 4 and S.

Table 14-1 in section 4 provides a quick reference to commands in WRPIX
mode and shows the GSRs that implement these commands.

Graphics Tutorials

3.1 Writing Pixel Data

There are two basic steps to encoding a picture in WRPIX mode: setting up
raster display parameters and changing the picture on the raster display.

Two WRPIX mode commands are used to establish basic operating parame-

ters for the raster display:

o Set Logical Device Coordinates

This command positions the picture in virtual address space.

e Set Current Pixel Location

This command establishes a starting point (the current pixel) in the
logical device coordinates where the next WRPIX mode command

begins.

Two WRPIX-mode commands are used to change the picture on the raster

display:

e FErase Screen

This command fills all of pixel memory to one value, an address into

the CLUTs.

e Load Pixel Data

This command writes specific values to pixels.

Raster Programming

NOTE

All data not in the range of the actual display are dis-
carded. When the raster display is first set up in
WRPIX mode, the X-Y position must be set to start
position by using the X-Y position command. Data are
stored in the pixels sequentially and wrap-around oc-
curs at X maximum position until a new X-Y position
is received. Whole picture representations require at
least one X-Y position.

GT14-11

4. Graphics Support Routines

The GSRs provide the easiest way to send pixel information to the display
and avoid the need for writing your own routines for pixel encoding. This
document assumes that you are familiar with the E&S GSRs. For a descrip-
tion of the GSRs, refer to Section RM4. The routines are listed alphabeti-

cally and the raster routines all begin with “PRA.”

Table 14-1 lists the mode commands, the result of using the commands, and

the GSR calls that implement the command.

Following the table is an alphabetical list of the routines, their parameters,

and a brief description.

Programming examples in FORTRAN and Pascal follow the list of the ras-

ter routines.

Table 14-1. Commands in WRPIX Mode

MODE COMMAND RESULT GSR
Set Raster Mode
Set Raster Mode to Sets raster mode to write pixel PRAWRP
Write Pixel Data data.
WRPIX Mode —— Establish Operating Parameters
Set Logical Device Positions the picture in virtual PRASLD
Coordinates address space
Set Current Pixel Establishes the current pixel location PRASCP
Location in the Logical Device Coordinates
where the next WRPIX mode command
begins
WRPIX Mode —— Change Raster Picture
Erase Screen Fills all of pixel memory to one PRASER
address in the CLUTs
Load Pixel Data Writes specific values to specific PRASWP
pixels

GT14-12

Graphics Tutorials

4.1 List of Raster Graphics Support Routines

The following list provides the names of the routines, expected parameters,
and brief descriptions. Refer to Section RM4 for a more detailed

description.

Name of Routine and Parameters

PRASCP (x,y, error routine)

PRASER (color, error routine
PRASLD (xmin, ymin,xmax,ymax,
routine)

PRASWP (num, pixval, error routine)

PRAWRP (error routine)

Description

Establishes current pixel location
relative to the logical device
coordinates.

Erases the entire raster screen.

Sets the logical device error
coordinates used to position the
picture in virtual address space.

Loads current pixel location with
pixel values.

Sets raster mode to write pixel data.

4.2 FORTRAN GSR Raster Programming Example

This programming example uses the GSRs to build a “tricolor” flag display
surrounded by a 20-pixel-wide blank border.

Program Example

Cc
EXTERNAL ERR
INTEGER*4 MAT(4,10), BACK(3)

CALL Pattch (“Logdevnam=tt:/Phydevtyp=Asyn¢’, Err)

C ERASE SCREEN TO BLACK

BACK (1) 0
BACK(2) = 0
BACK(3) 0
CALL PRASER(BACK, ERR)

Raster Programming

GT14-13

GT14-14

Q

QO QQ

Q

QOO

Q

PUT ON RED RECTANGLE

CALL PRASLD(20, 20, 219, 459, ERR)

MAT(1,1) = 200 * 440
MAT(2,1) = 255
MAT(3,1) = O
MAT(4,1) = O

CALL PRASCP(O, O, ERR)
CALL PRASWP(1, MAT, ERR)

PUT ON WHITE RECTANGLE

CALL PRASLD(220, 20, 419, 459,

MAT(1,1) = 200 * 440
MAT(2,1) = 255

MAT (3,1) 255

MAT (4,1) 255

CALL PRASCP(O, O, ERR)
CALL PRASWP(1, MAT, ERR)

PUT ON BLUE RECTANGLE

CALL PRASLD(420, 20, 619, 459,

MAT(1,1) = 200 * 440
MAT(2,1) = O
MAT(3,1) = 0O

MAT (4,1) = 255
CALL PRASCP(O, O, ERR)
CALL PRASWP(1, MAT, ERR)

CALL PDTACH (err)
STOP
END

ERR)

ERR)

Graphics Tutorials

4.3 Pascal GSR Constant Declarations

The following definitions are provided for the Pascal Raster GSRs:

P_MaxRunClrSize = User-specified maximum run-length color array

P_ColorType = RECORD
Red : INTEGER;
Green : INTEGER;
Blue : INTEGER;

END;

P_RunColorType = RECORD
Count . INTEGER
Red : INTEGER;
Green : INTEGER;
Blue : INTEGER;

END;

P_RunClrArrayType = ARRAY [1..P_MaxRunClrSize] OF P_RunColorType;

4.4 Pascal GSR Raster Programming Example

PROGRAM EXAMPLE (input, output);
CONST
%INCLUDE ‘“PROCONST.PAS”
TYPE
%INCLUDE ‘PROTYPES.PAS”
VAR
MAT : P_RunClrArrayType;
BACK : P_ColorType;
%INCLUDE “PROEXTRN.PAS”
PROCEDURE Error_handler(err : INTEGER);
BEGIN
Writeln(” Error received : “, err);
END;

BEGIN
Pattach (’Logdevnam=tt:/Phydevtyp=Async’, Error_ Handler);

{ ERASE SCREEN TO BLACK }

BACK.red = 0;
BACK.green := 0;
BACK.blue := 0;

PRASER (BACK, Error_Handler);

Raster Programming GT14-15

{ PUT ON RED RECTANGLE }
PRASLD(20, 20, 219, 459, Error_Handler);

MAT[1] .count := 200 * 440;

MAT[1] .Red 1= 255;
MAT[1l] .Green := O;
MAT[1].Blue := O;

PRASCP(0, O, Error_Handler);
PRASWP(1, MAT, Error_Handler);

{ PUT ON WHITE RECTANGLE }

PRASLD(220, 20, 419, 459, Error_Handler);
MAT([1l] .count := 200 * 440;

MATI[1] .Red = 255;
MAT([1] .Green := 255;
MAT[1] .Blue := 255;

PRASCP(0, O, Error_Handler);
PRASWP(1, MAT, Error_Handler);

{ PUT ON BLUE RECTANGLE }

PRASLD(420, 20, 619, 459, Error_Handler);
MAT{1] .count := 200 * 440;

MATI[1] .Red 0;

MAT([1] .Green := O;MAT[1l].Blue := 255;
PRASCP(O, O, Error_Handler);

PRASWP(1, MAT, Error_Handler);

Pdetach (Error_Handler);
END.,

5. Formatting Raster Commands for User-Generated
Host Routines

Communications between the host and the PS 390 use binary data transmis-
sion protocols. If you are writing your own host routines, you must:

o Ensure that the image buffer is in the correct mode (WRPIX).

e Ensure that all data (including the mode delimiter) are transferred
out of the intrinsic user function CIROUTE using routing byte B,
which sends the data out port 21.

GTI14-16 Graphics Tutorials

Mode is specified by the following decimal value:
WRPIX = 0

Raster commands are strings of data that follow this format:

0 0 0 X X { X
Mode Mode Byte Commands
Delimiter Count

The “Mode Delimiter” is two bytes of 0 (0000000000000000), and must
precede a new mode specification. No delimiter needs to follow the final
mode specification.

The “Mode” is the sixteen-bit binary value for WRPIX. This determines the
way the data that follow are to be interpreted. If WRPIX is specified, the
information that follows the byte count is interpreted as pixel data.

The “Byte Count” determines how many of the bytes of data that follow the
byte count are to be interpreted as commands in the specified mode. Until a
new mode delimiter is set, all data are interpreted as being in the currently
specified mode. Multiple sets of byte count and data may be sent without
changing modes.

The WRPIX commands are described below:

0 0 0 0 XX XX
Mode WRPIX Byte Mode Commands
Delimiter Mode Count
NOTE

The maximum recommended byte count is 512 bytes.

Raster Programming GT14-17

5.1 Write Pixel Data Mode

Pixel information can be transmitted from the host to the raster display in a
run-length encoding scheme.

For example, a “Load Pixel Data” command for 1-127 consecutive pixels
has the following format (each character represents one bit):

| Onnnnnnn | RRRRRRRR | GGGGGGGG | BBBBBBBB |
+ + + + +
31 0

Where “n” specifies the number of consecutive pixels, and “R-G-B” speci-
fies the lookup table addresses for red, green, and blue.

Load Pixel Data for 128-16383 consecutive pixels command:

| 10nnnnnn | nnnnnnnn | RRRRERRR | GGGGGGGG | BBBBBBBB |
+ + + + + +
47 31 (]

where “n” specifies the number of consecutive pixels and “R-G-B” specifies
the lookup table addresses for red, green, and blue.

The current pixel location can be explicitly set by the “Set X-Y Position”
command and is used to specify the current pixel location where the “Load
Pixel Data” command will begin writing pixels. The pixel location is set
relative to the values (Xmin, Ymin) of the logical device coordinates. If the
logical device coordinates are -1024 <= X <= 1024 and -1024 <= Y <= 1024,
then an X,Y position of (0,0) is the lower left-hand corner pixel and
(2047,2047) is the upper right-hand corner pixel.

Set Current Pixel Location command:
| 11loxxxxx | xxxxxxxx | 000yyyyy | yyyyyyyy |

+ + + + +
31 0

The entire pixel memory may be set to the same value with one command.
This will erase the entire screen to the color in the specified lookup table
locations.

GT14-18 Graphics Tutorials

FErase Screen command:

| 11100000 | RRRRRRRR | GGGGGGGG | BBBBBBBB |

+ + + +

31

+
0

Logical device coordinates are specified by the Set Logical Device Coordi-

nates command.

Set Logical Device Coordinates command:

| 11110XXX | XXXXXXXX | XXXXXXXX | XXXXXXXX |

+ + + +
64

+
32

| 0000YYYY | YYYYYYYY | yyyyyyyy | yyyyyyyy |

+ + + +
31

Restrictions:

= twos complement integer

= unsigned integer

= twos complement integer

= unsigned integer
<=Xand y < =Y

FL I]

-32768

-32768

+
0

AANANA

Where

Where

I
Ko XX
AANAA

5.2 Programming Example for User-Generated Host Routines

= X maximum
= X minimum

= Y maximum
= Y minimum

1023
2047
863

2047

This programming example describes how to build a “tricolor” flag display
surrounded by a 20-pixel-wide blank border. Numbers are specified in hexa-

decimal.
WRPIX mode is specified to:

1. Erase Screen.

2. Set Logical Device Coordinates.
3. Set Current Pixel Location.

4. Load Pixel Data.

Raster Programming

GT14-19

WRPIX mode (0000) is set and 4 bytes of commands are specified. An
Erase Screen command is sent.

0000 (Set WRPIX mode)
04 (4 bytes of commands)
E0000000 (Erase Screenr =0, g =0, b=20)

Logical

Device

Coprdinates

l Screen

RRR Screen

RRR

RRR
30 (48 bytes of commands)
WRPIX

FODB001401CB0014 (Set LDC 20 <= X <= 219, 20 <= y <= 459: Sets LDCs
to the left one-third of the screen)

WRPIX (Fill LDC area with red)
C0000000 (Set Current Location X =0, Y = 0)
BFFFOOFF0000 (16383 pixels red)
BFFFOOFF0000 (16383 pixels red)
BFFFOOFF0000 (16383 pixels red)
BFFFOOFF0000 (16383 pixels red)
BFFFOOFF0000 (16383 pixels red)
()

97C500FF0000 6085 pixels red

GTI14-20 Graphics Tutorials

WRPIX (Fill new LDC with white)

RRR|WWW

RRR{WWW
RRR|WWW

30 (48 bytes of commands)
F1A300DC01CB0014 (Set LDC 220 <= x <= 419, 20 <=y <= 459)
C0000000 (Set Current Location X = 0, Y =0)
BFFFOOFFFFFF (16383 pixels white)
BFFFOOFFFFFF (16383 pixels white)
BFFFOOFFFFFF (16383 pixels white)
BFFFOOFFFFFF (16383 pixels white)
BFFFOOFFFFFF (16383 pixels white)
()

97C500FFFFFF 6085 pixels white

WRPIX (Fill new LDC with blue)

RRR|WWW|BBB

RRR{WWW|BBB
RRRIWWW[BBB

30 (48 bytes of commands)

F26B01A401CB0014 (Set LDC 420 <= x <= 619, 20 <=y <= 459)
C0000000 (Set Current Location X =0, Y = 0)
BFFFOOOOOOFF (16383 pixels blue)

BFFFOCOQOQFF (16383 pixels blue)

BFFFOOO0OOOFF (16383 pixels blue)

BFFFOOOOOOFF (16383 pixels blue)

BFFFOOOOO0OOFF (16383 pixels blue)

97C50C00000FF (6085 pixels blue)

(End of Example)

Raster Programming GTI14-21

SAMPLE

GT15 pROGRAMS

GT1S5. SAMPLE PROGRAMS

CONTENTS
1. ARTICULATED ANTHROPOID ROBOT EXAMPILE 1
LI ADAML300 ...iittiiiiiiiiiiiiieeitenroonacenneeneennens 1
1.2, ADAMLFUN ...ttt ittt iiiittainenanaennennns]
2. BOUNCING BALL EXAMPLEcitiitiiiiniiinnennnenns 15
2.1, COLLISION.300ititittirenennnnrnrenenacancnnnnnnn 15
2.2. COLLISION.FUNittttittniennenennrensnonassnsnsnncns 16
3. PLANAR PROJECTION EXAMPLEccciitiiiiiinnnenns 28
3. PROJECTN.300 .. .oiititiiiiiiiiiiiietiienennennennnns 28
3.2. PROJECTN.FUNtiiiiiiitiirieeennseennenecnenncns 31
4. TRANSFORMATION EXAMPLEciiiiiiiiiinnen, 36
4.1. TRISQUARE.300ovitititiiitiiiieienrnenensnenennns 36
4.2. TRISQUARE.FUNtiiiiiiiiiiiietiitnenennnnnnns 37
5. SET RATE PROGRAMMING EXAMPLE 42
6. PS 390 RENDERING EXAMPLEciiiiiiiiniinne. 45
6.1. RENDER.300itittiiiiiiiiiiiiiitiieitentennennnns 45
6.2. LIGHT.300cioiti it iiiiiiiiiiiiiaanennanns 47
6.3. RENDER.FUNtitiitiiiiiiiiiiiiitiiiieenneneenss 51

Figure 15-1.

Figure 15-1.
Figure 15-1.
Figure 15-1.
Figure 15-1.
Figure 15-2.

Figure 15-2.
Figure 15-2.
Figure 15-2.
Figure 15-2.
Figure 15-2.
Figure 15-3.

Figure 15-3.
Figure 15-4.

Figure 15-4.
Figure 15-4.

ILLUSTRATIONS

ADAM.FUN (Sheet 1 of 5)

(Function Network for ADAM.300)c.ciiivinnnnn. 10
ADAMLFUN (Sheet 2 of 5)ciiiiiiiiiiiiinnnnnnnnnnnnn 11
ADAM.FUN (Sheet 3 0f 5) ...ttt ennnnas 12
ADAM.FUN (Sheet 4 of 5)civviiiiiiiiieennnnnnnnnnnn 13
ADAM.FUN (Sheet 5 0f 5) ...ovviiiiiiiiiiiieiinnnnnnnnnns 14
COLLISION.FUN (Sheet 1 of 6)

(Function Network for COLLISION.300)ccievvnnn.. 22
COLLISION.FUN (Sheet 2 0f 6)ccivivitiinnnnnnnnnnn 23
COLLISION.FUN (Sheet 3 0f6)coiviiteeinnnnnnnnnnn 24
COLLISION.FUN (Sheet 4 0of 6)civvvvinnenennnns 25
COLLISION.FUN (Sheet 50f6)ccviiviviiinnnnnnnnn. 26
COLLISION.FUN (Sheet 6 of 6)cccoiiviiinnnnnnnn. 27
PROJECTN.FUN (Sheet 1 of 2)

(Function Network for PROJECTN.300)ccvivvvnnnn. 34
PROJECTN.FUN (Sheet 2 0f 2)coiiiiiininnnnnennns 35
TRISQUARE.FUN (Sheet 1 of 3)

(Function Network for TRISQUARE.300)covvn.n 39
TRISQUARE.FUN (Sheet 2 of 3)ccvitiiiininnnnnnnnnnn 40

TRISQUARE.FUN (Sheet 3 0f 3)oviiiiiinirnenennnnnns 41

ii

Section GT15
Sample Programs

The sample programs in this section illustrate various applications of the PS 390
for design and analysis. A program with a .300 extension is a data structure file,
and a program with a .FUN extension is a function network file. A header section
in each file explains what the application does. General practices illustrated in the
sample programs can give you ideas for your own application programs.

A great deal of care has been taken to make these programs examples of good
PS 390 programming practices. In the data structure files, notice particularly the
use of BEGIN_STRUCTURE ... END_STRUCTURE versus explicit naming. Notice
also that the code is tabbed and commented in a way that makes it very easy to
read.

The sample programs are listed in this section and also distributed in loadable
form on magnetic tape. A selection in the command file TUTORIALS.COM lets
you load the sample programs individually from the host.

1. Articulated Anthropoid Robot Example

1.1. ADAM.300

Programmed by: Neil Harrington
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: April 21, 1983
Last update:

Data Structure for an articulated anthropoid robot called ADAM (A Dial
Activated Man). The data nodes (vector lists) for the sphere and the
cylinder are not included in this file. The sphere has a radius of 1 and is
centered at the origin. The base of the cylinder is at the origin lying in the
XZ plane with the cylinder centered about the positive Y axis. The cylinder
has a radius of 1 and a height of 1.

Sample Programs GT15-1

ADAM.FUN is the function network file that will articulate this structure.

INIT DISP;
DISP Adam;

Adam := BEGIN_S
WINDOW X=-8.5:8.5 Y=-8.5:5.5
FRONT=0 BACK=10;

LOOK AT 0,0,0 FROM 0,0,-1;

Tran := TRAN 0,0,0;
Rot := ROT Y O;
Scale := SCALE 1;
2Pick := SET PICKING OFF;
INST Upper_Body,Lower_Body;
END_S;
Upper_Body := BEGIN_S
SET PICK ID = B;
Rot := ROT O;
{Chest} SCALE .8,2.4,.7 THEN Cylinder;
INST Right_Arm,Left Arm,Head;
END_S;
Right_Arm := BEGIN_S

TRAN -1.15,2.4,0;
{ Right Shoulder Joint }
SET PICK ID = C;

Rot := ROT O;
INST Upper_Arm,Right_Lower_Arm;
END_S;
Upper_Arm := BEGIN_S

{Shoulder Ball} SCALE .3,.2,.2 THEN Sphere;
TRAN 0,-2.1,0;
SCALE .25,2.1,.25 THEN Cylinder;
END_S;

Right_Lower_ Arm := BEGIN_S
TRAN 0,-2.2,0;

Rot := ROT O;
INST Lower_Arm,Right_Hand;
END_S;
Lower_Arm := BEGIN_S
{Elbow} SCALE .219 THEN Sphere; {7/32 rad.}

TRAN 0,-1.8,0;
SCALE .225,1.7,.225 THEN Cylinder;
END_S;

GT15-2 Graphics Tutorials

Right_Hand := BEGIN_S
TRAN 0,-1.9,0;
SET PICK ID = D;
Rot := ROT O THEN Hand;
END_S;

Hand := BEGIN_S
{Wrist} SCALE .175 THEN Sphere;
{Hand} TRAN 0,-.4,0;
SCALE .15, .4, .25 THEN Sphere;
END_S;

Left_Arm := BEGIN_S
TRAN 1.15,2.4,0;
SET PICK ID = C;

Rot := ROT O;
INST Upper_Arm,Left_Lower_ Arm;
END_S;

Left_Lower_Arm := BEGIN_S

TRAN 0,-2.2,0;
Rot := ROT O;

INST Lower_Arm,Left_Hand;

END_S;

Left_Hand := BEGIN_S
TRAN 0,-1.9,0;

SET PICK ID = D;
Rot := ROT O THEN Hand;
END_S;

Head := BEGIN_S
TRAN 0,2.4,0;
SET PICK ID = A;
Rot := ROT O;
{Neck} SCALE .3,.6,.3 THEN Cylinder;
{Head} TRAN 0,1.5,0;
SCALE .6,1,.6 THEN Sphere;
END_S;

Lower_Body := BEGIN_S
SET PICK ID = B;
Rot := ROT O;
TRAN 0,-1,0;
INST Right_Leg,Left_Leg;
{Waist & Hips} SCALE .8,1,.7 THEN Cylinder;
END_S;

Sample Programs GT15-3

GT15-4

Right_Leg :

BEGIN_S
TRAN —.45,-.25;
SET PICK ID = E;

Rot := ROT O;
INST Upper_Leg,Right_Lower_Leg;
END_S;
Upper_Leg := BEGIN_S

{Hip Joint} SCALE .3 THEN Sphere;
TRAN 0,-2.5,0;
SCALE .35,2.5,.35 THEN Cylinder;
END_S;

Right_Lower_Leg := BEGIN_S
TRAN 0,-2.6,0;

Rot := ROT x O;
INST Lower_Leg,Right_Foot;
END_S;

Lower_Leg := BEGIN_S

INST Knee;

TRAN 0,-2.6,0;
{Limb} SCALE .3,2.5,.3 THEN Cylinder;

END_S;

Knee := BEGIN_S
ROT 90;
TRAN 0,-.3,0;
SCALE .15,.6,.15 THEN Cylinder;
END_S;

Right_Foot := BEGIN_S
TRAN 0,-2.75,0;
SET PICK ID = F;
Rot := ROT 0 THEN Foot;
END_S;

Foot := BEGIN S
{Ankle} SCALE .2 THEN Sphere;
TRAN 0,-.2,.2;
ROT x -90;
SCALE .3,1,.2 THEN Cylinder;
END_S;

Left_Leg := BEGIN_S
TRAN .45,-.25;
SET PICK ID = E;
Rot := ROT O;
INST Upper_Leg,Left_Lower_Leg;
END_S;

Graphics Tutorials

Left_Lower_Leg := BEGIN_S

Rot

Left Foot :=

Rot

TRAN 0,-2.6,0; .

ROT x O;
INST Lower_Leg,Left_Foot;
END_S;
BEGIN_S

TRAN 0,-2.75,0;

SET PICK ID = F;

ROT O THEN Foot;
END_S;

1.2. ADAM.FUN

Programmed by: Neil Harrington
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: October, 1982
Last update: February, 1985

Network to modify the structure in ADAM.300. Point at the joint you want
“to rotate and the dials will be routed to modify that joint and others associ-
ated in that mode. If you want to rotate and translate the whole robot, point

at the head.

{ Code generated by Network Editor 1.07 }
{ ADAM }
{ Frame-Prefix Macro-Prefix }

{ Fra

F2_P4:
F2_P5:
F2_P6:
F2_P7:
F2_P8:
F2_P9:

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND

me2:F2_

=F
=F : DXRO'
=F

=F :DXRO

200 TO <
200 TO <

Sample Programs

}

=F:CROUTE (6) ;
:CROUTE (6) ;

TATE;

:DXROTATE;

TATE;

=F :DXROTATE;
F2_P4<3>:
F2_P4<5>:
F2_P5<3>:
F2_P5<5>:
F2_P6<1>:
F2_P7<1>:
F2_P8<1>:
F2_P9<1>:

<1>F2_P6;

<1>F2_P7;

<1>F2_P8;

<1>F2_P9;
<1>Right_Lower_Arm.Rot;
<1>Right_Lower_Leg.Rot;
<1>Left_Lower_ Arm.Rot;
<1>Left_Lower_Leg.Rot;
3>F2_P7;

3>F2_P8;

GTI15-5

GT15-6

SEND 200 TO <3>F2_P9;
SEND 200 TO <3>F2_P6;

SEND O TO <2>F2_P7;
SEND 0 TO <2>F2_P8;
SEND O TO <2>F2_P9;
SEND O TO <2>F2_P6;
{ Frame3:F3_ }

F3_Pll:=
F3_Pl2:=
F3_P13:=
F3_Pl4:=
F3_P15:=
F3_Pl16:=
F3_Pl17:=
F3_P18:=
F3_P19:=
F3_P20:
F3_P21:=
F3_P22:=
F3_P23:=

:MULC;
‘MULC;
:MULC;
:XROTATE;
:YROTATE;
: ZROTATE;
:CROUTE (6) ;
:MULC;
:MULC;
:MULC;
‘MULC;
:MULC;
:MULC;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND

F3_Pl1<1>:
F3_Pl2<1>:
F3_P13<1>:
F3_Pl4<1>:
F3_P15<1>:
F3_P16<1>:
F3_Pl17<1>:
F3_P17<2>:
F3_P17<3>:
F3_P17<4>:
F3_P17<5>:
F3_P17<6>:
F3_P18<1>:
F3_P18<1>:
F3_P19<1>:
F3_P19<1>:
F3_P20<1>:
F3_P20<1>:
F3_P21<1>:
F3_P21<1>:
F3_P22<1>;
F3_P22<1>:
F3_P23<1>:
F3_P23<1>:

<1>F3_P14;
<1>F3_P15;

<1>F3_P16;
<2>F3_P17;

<2>F3_P17;
<2>F3_P17;
<1>F3_P18;
<1>F3_P19;
<1>F3_P20;
<1>F3_P21;
<1>F3_P22;
<1>F3_P23;
<1>Head.Rot;
<2>F3_P18;

<1>Upper_Body.Rot;

<2>F3_P19;

<1>Right_Arm.Rot;

<2>F3_P20;

<1>Right_Hand.Rot;

<2>F3_P21;

<1>Right_Leg.Rot;

<2>F3_P22;

<1>Right_Foot.Rot;

<2>F3_P23;

200 TO <2>F3_P11;
200 TO <2>F3_P12;
200 TO <2>F3_P13;

Graphics Tutorials

{ Frame4:F4_ }
F4_P24:=F:MULC;
F4_P25:=F:MULC;
F4_P26:=F:MULC;

F4_P27:=F:XROTATE;
F4_P28:=F:YROTATE;
F4_P29:=F:ZROTATE;
F4_P30:=F:CROUTE(6) ;
F4_P31:=F:CMUL;

F4_P32:=F:MULC;

F4_P33:=F:MULC;

F4_P34:=F:MULC;

F4_P35:=F:MULC;

F4_P36:=F:MULC;

CONN F4_P24<1>:<1>F4_P27;

CONN F4_P25<1>:<1>F4_P28;

CONN F4_P26<1>:<1>F4_P29;

CONN F4_P27<1>:<2>F4_P30;

CONN F4_P28<1>:<2>F4_P30;

CONN F4_P29<1>:<2>F4_P30;

CONN F4_P30<1>:<2>F4_P31;

CONN F4_P30<2>:<1>F4_P32;

CONN F4_P30<3>:<1>F4_P33;

CONN F4_P30<4>:<1>F4_P34;

CONN F4_P30<5>:<1>F4_P35;

CONN F4_P30<6>:<1>F4_P36;

CONN F4_P31<1>:<1>Adam.Rot;
CONN F4_P31<1>:<1>F4_P31;

CONN F4_P32<1>:<1>Lower_Body.Rot;
CONN F4_P32<1>:<2>F4_P32;

CONN F4_P33<1>:<1>Left_Arm.Rot;
CONN F4_P33<1>:<2>F4_P33;

CONN F4_P34<1>:<1>Left_Hand.Rot;
CONN F4_P34<1>:<2>F4_P34;

CONN F4_P35<1>:<1>Left_Leg.Rot;
CONN F4_P35<1>:<2>F4_P35;

CONN F4_P36<1>:<1>Left_Foot.Rot;
CONN F4_P36<1>:<2>F4_P36;

SEND 200 TO <2>F4_P25;

SEND 200 TO <2>F4_P26;

SEND 200 TO <2>F4_P24;

{ Picking Network:F5_ }
F5_P3:=F:PICKINFO;
F5_P39:=F:CHARCONVERT;
F5_P40:=F:SUBC;

CONN TABLETIN<4>:<1>Adam.Pick;
CONN TABLETIN<6>:<1>PICK;

Sample Programs GT15-7

CONN
CONN
CONN
CONN
CONN
SEND
SEND

PICK<1>:<1>F5_P3;
PICK<2>:<1>Adam.Pick;
PICK<3>:<1>Adam.Pick;
F5_P3<2>:<1>F5_P39;

F5_P39<1>:

<1>F5_P40;

FIX(64) TO <2>F5_P40;

FIX(1) TO

{ Framel:F1_ }
{ Setup cness true <2-3>P10 }
F1_P10:=F:SYNC(3);

SETUP CNESS TRUE <2>F1_P10;
SETUP CNESS TRUE <3>F1_P10;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN

GT15-8

F1_P10<2>:
Fl1_P10<2>:
F1_P10<2>:
F1_P10<2>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1 P10<3>:
F1_P10<3>:
Fl1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:
F1_P10<3>:

<2>F5_P3;

<2>F2_P6;
<2>F2_PT7;
<2>F2_P8;
<2>F2_P9;

<1>Right_Lower_Arm.Rot;
<1>Right_Lower_Leg.Rot;
<1>Left_Lower_Arm.Rot;
<1l>Left_Lower_Leg.Rot;

<2>F3_P18;
<2>F3_P19;
<2>F3_P20;
<2>F3_P21;
<2>F3_P22;
<2>F3_P23;
<1>Head.Rot;
<1>Upper_Body.Rot;
<1>Right Arm.Rot;
<1>Right_Hand.Rot;
<1>Right_Leg.Rot;
<1>Right_Foot.Rot;
<1>F4_P31;
<2>F4_P32;
<2>F4_P33;
<2>F4_P34;
<2>F4_P35;
<2>F4_P36;
<1>Adam.Rot;
<1>Lower_Body.Rot;
<1>Left_Arm.Rot;
<1>Left_Hand.Rot;
<1>Left_Leg.Rot;
<1>Left_Foot.Rot;

FKEYS<1>:<1>F1_P10;
DIALS<1>:<1>F3_P11;
DIALS<2>:<1>F3_P12;

Graphics Tutorials

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND
SEND
SEND
SEND
SEND

DIALS<3>:
DIALS<4>
DIALS<5>:
DIALS<6>:
DIALS<7>:
DIALS<8>:

F5_P40<1>:
F5_P40<1>:
F5_P40<1>:
F5_P40<1>:

FIX(1l) TO
FIX (1) TO
FIX(1) TO
FIX(1l) TO
0 TO <2>F

M3D(1,0,0 0,1,0 0,0,1) TO <3>F1_P10;
M3D(1,0,0 0,1,0 0,0,1) TO <1>F1_P1lO;

Sample Programs

<1>F3_P13;

1<2>F2_P4;

<1>F4_P24;
<1>F4_P25;
<1>F4_P26;
<2>F2_P5;

<1>F2_P4;
<1>F2_P5;

<1>F2_P4;
<1>F2_P5;

<1>F3_P17;
<1>F4_P30;

1 _P10;

<1>F3_P17;
<1>F4_P30;

GT15-9

0I-SIID

sporiomy sorydo.o

(00" WVQV -0f Y10M1IN u01OUNY)
(S Jo [129YyS) NNA'WVAY “[-ST 24nS1]

PN_

Py 5

Picking Netsork

Route Num

Fixl1) Pr——

"N

£X_ Pg 2

\ -V\Setup cness true
| -1Setup cness true

~

’D1ALS

Elbows & Nnaes Lontrol

Route Nunm
Dield
Diald
Resetd

Reset]

ya_ Pg 3

0N A W N

<2 \MF\PI1O,
3> \MF\PIO,

Pig

FKEYS

w3d(1,2,6 0,1.2 0.0.1)

Upper Body Contrel
Route Num

Diall
Died2
Dial3

Peset [

L18_ Pg 4

1
ZFisYNE(3)

3

fower Body Control

Route Num
Dial5
Dialé
Dial?

Reset [

1AS0762

SW4804q4 2)dung

[1-SIID

(S fo 7 129yS) NNA'WVAV “I-ST 2nS1q

D 13 RIGHT_LONER_ARY. ROT

{E>c 12 RIGHT_LONER_LEG. ROT

D15 LEFT_LONER_ARH. ROT

0
200
P8
i b } 1
2FiDXROTATE ?
P4 r—
\Pouta Nue 1]
dial? 2 2
> F:CROUTE(®) §
4
-]
[
7
1 1
2 2 4
2F DXROTATE
P8
1]
ZFioxROTATE Z
T
Ps
NDiel8 . !
s F.CROUTE(S) ;
4
s
)
P9
1 1
N
o iFoxRoTATE C
\I\’csrta
}
xPcsctI)

B> /3 LEFT_LOWER_LEG. ROT

CI-SILO

sppromy sorydo.n

(s Jo € 100yS) NNA'WVAV “I-ST 24n81]

Route Num

P17

P&

PP

- b
{ F:MULC

1

>
Pl PIE
Oiel!?
1 1
(—rr:nutc F:XROTATE
, Pi2 PIS
/0:.12 . |
L —1%F: nuLc F:YROTATE
P13 Pl
}D«’.JJ , ;
—12F: MuLC F: ZROTATE

200 @—/

Reset 1

2F . CROUTE(S)

N AW~

J Zp. muLe

< IIHEAD. ROT

7

P20

45>« 1 >4PPER_BADY. ROT

N1 -
/‘[ZF:HULC

k P21
— |
/Tzr:nun.c

1 2RIGHT_ARN. ROT

P22

1

2

1@(15RFGHT_HAND. ROT

i

P,

/[FiMULC

ADesoR161T_LE5. ROT

23
1
/‘[zr: HuLC

@a»msm_mor. ROT

swva8o.q ajdung

EI-SIID

(s fo # 129YyS) NNA'WVAY “I-ST 24n81]

\ﬂoufo Num

P30

] P31l

-

t

Reset [

viels P24 P27
NOie 1
7 2]
r— F:MULC F: XROTATE
P25 P28
Oials . T
v 2
1 F:MULC F: YROTATE
P26 P29
\Da’.l7 T I
(r‘zr,nuLc F:ZROTATE

2F, CROUTE(S)

oM e N -

jﬁdb:nwuf. ROT

Epc 73 LORER_BOOY. ROT

F.CMUL
P32
1
I L ——%F . nuLc
N
P33

L—2F MuLe

EPeTLEFT_ARM. ROT

P34

¥ ZF:HULC

< @{;;Lffz_ﬁ,mo. rOT

P35

V—%F . nuLc

e 1 LEFT_LEG. ROT

P36

V 2F:MUL(Z

W @u;; EFT_FOOT. ROT

pI-SILD

syprom] $I1ydo.io

(s o § 192y8) NOL WVAY "I-ST 24nsiq

P3

{D< 124048, PICK

A\l
2
3
4

TABLETIH

o N hUN —

4 PICK

Fix(1)

2e pICKINFO

LR

&1

t '

2 F . CHARCONVERT

P49

!
rix(s4) 312 susc

Poute Jloaj

4

2. Bouncing Ball Example

2.1. COLLISION.300

Programmed by: Neil Harrington
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: October, 1984
Last update: February, 1985

PS 390 data structure, consisting of a ball in a box. The function network in
COLLISION.FUN modifies this structure to simulate the ball bouncing in

the box with no gravity and elastic collisions.

INIT DISP;
DISP Collision;

Collision := BEGIN_S v
SET INTENSITY ON .75:1;
SET DEPTH_CLIPPING ON;
FOV 70 FRONT = 1.4 BACK = 5;

LOOK AT 0,0,0 FROM 1.5,1.3,-2.4;

Yrot := ROT O;
SET COLOR 240,1 THEN Box;
SET COLOR 120,1 THEN Ball;
SET COLOR 0,1 THEN Path;
END_S;

Box := SCALE 1 THEN Cube;

Ball := BEGIN_S

Tran := TRAN 0,0,0;

Rot := ROT O;

Scale := SCALE .1 THEN Sphere;
END_S;

Path := VEC n=10000 0,0,0;

Cube := VEC Item n=16
P-1, 1,-1 L 1, 1,-1
L 1,-1,-1 L-1,-1,-1
P 1, 1,1 L 1,1, 1
L 1,-1, 1 L 1,-1,-1
P 1,1,1 L-1,1,1
L-1,-1,1 L 1,-1, 1
P-1,1,1 L -1, 1,-1
L -1,-1,-1 L -1,-1, 1;

Sample Programs

GT15-15

2.2. COLLISION.FUN

GT15-16

Programmed by: Neil Harrington

Evans & Sutherland
P.O. Box 8700

Salt Lake City, Utah 84108

Created: October, 1984

Last update: February, 1985

Network to modify structure created in COLLISION.300. See description in
that file.

{ Code generated by Network Editor 1.07 }

{ COLLISION }

{ Frame-Prefix Macro-Prefix

{ Framel:M1$F1_ }
M1$F1l_P1:=F:INPUTS_CHOOSE (13) ;
M1$F1_P2:=F:ROUTE(12);
CONN M13F1_P1<1>:<2>M1$F1_P2;
SEND TRUE TO <1>M1$F1_P1;
SEND TRUE TO <2>M1$F1l_Pl;
SEND TRUE TO <3>M1$F1_P1,;
SEND TRUE TO <4>M1$F1_P1;
SEND TRUE TO <5>M1$F1_P1;
SEND TRUE TO <6>M1$F1_P1;
SEND TRUE TO <7>M1$F1_P1;
SEND TRUE TO <8>M1$F1_P1;
SEND TRUE TO <9>M1$F1_P1;
SEND TRUE TO <10>M1$F1_P1;
SEND TRUE TO <11>M1$F1_P1;
SEND TRUE TO <12>M1$F1_P1;
{ Motion Control:F2_ }
F2_P2:=F:SYNC(4);
F2_P6:=F:LIMIT;
F2_P7:=F:LIMIT;
F2_P8:=F:LIMIT,
F2_P9:=F:BROUTEC;
F2_P10:=F:BROUTEC;
F2_P11:=F:BROUTEC;
F2_P12:=F:MULC;
F2_P13:=F:MULC;
F2_Pl4:=F:MULC;
F2_P15:=F:XVECTOR;
F2_P16:=F:YVECTOR;
F2_P17:=F:ZVECTOR;
F2_P18:=F:ADD;

Graphics Tutorials

F2_P19:=
F2_P20:
F2_P4l:=
F2_P42:=
F2_P43:=
F2_P38:=
F2_P39:=

:ADD;
:ADD;
: ACCUMULATE;,;
: ACCUMULATE;
: ACCUMULATE;
:ADD;
:ADD;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND

F2_P2<2>:
F2_P2<3>:
F2_P2<4>:
F2_P6<1>:
F2_P6<1>:
F2_P6<3>:
F2_P7<1>:
F2_P7<1>:
F2_P7<3>:
F2_P8<1>:
F2_P8<1>:
F2_P8<3>:
F2_P9<1>:
F2_P9<2>:

F2_P10<1>:
F2_P10<2>:
F2_P11<1>:
F2_P11<2>:
F2_P12<1>:
F2_P12<1>:
F2_Pl12<1>:
F2_P13<1>:
F2_P13<1>:
F2_P13<1>:
F2_P1l4<1>:
F2_Pl4<1>:
F2_P1l4<1>:
F2_P15<1>:
F2_P16<1>:
F2_P17<1>:
F2_P18<1>:
F2_P19<1>:
F2_P20<1>:
F2_P38<1>:
F2_P39<1>:
F2_P41<1>:
F2_P42<1>:
F2_P43<1>:

<1>F2_P18;
<1>F2_P19;
<1>F2_P20;
<1>F2_P15;
<2>F2_P18;
<1>F2_P9;
<1>F2_P16;
<2>F2_P19;
<1>F2_P10;
<1>F2_P17;
<2>F2_P20;
<1>F2_P11;
<2>F2_P2;
<1>F2_P12;
<3>F2_P2;
<1>F2_P13;
<4>F2_P2;
<1>F2_Pl4;
<2>F2_P2;
<2>F2_P9;
<2>F2_P41;
<3>F2_P2;
<2>F2_P10;
<2>F2_P42;
<4>F2_P2;
<2>F2_P11;
<2>F2_P43;
<1>F2_P38;
<2>F2_P38;
<2>F2_P39;
<1>F2_P6;
<1>F2_P7;
<1>F2_P8;
<1>F2_P39;

<1>Ball.Tran;

<2>F2_P9;
<2>F2_P10;
<2>F2_P11;

-.9 TO <3>F2_P6;
-.9 TO <3>F2_PT7;

Sample Programs

GT15-17

GT15-18

SEND —.9 TO <3>F2_P8;
.9 TO <2>F2_P6;
.9 TO <2>F2_P7;
.9 TO <2>F2_P8;
0 TO F2_P41;
0 TO <6>F2_P42;
0 TO <6>F2_P43;

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

SEND .

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

10
10
10

H R

TO
TO
TO
TO
TO
TO

<5>F2_P41;
<5>F2_P42;
<5>F2_P43;
<4>F2_P41;
<4>F2_P42;
<4>F2_P43;

0 TO <3>F2_P41;

0 TO <3>F2_P42;

0 TO <3>F2_P43;
TO <4>F2_P2;
TO <2>F2_P11;
TO <2>F2_P43;
TO <3>F2_P2;
TO <2>F2_P10;
TO <2>F2_P42;
TO <2>F2_P2;
TO <2>F2_P9;
TO <2>F2_P41;
0 TO <2>F2_P18;

0 TO <2>F2_P19;

0 TO <2>F2_P20;
-1 TO <2>F2_P12;
-1 TO <2>F2_P13;
-1 TO <2>F2_P14;
{ Clock Control:F3_ }
F3_P1l:=F:CLFRAMES;

.03
.03
.03
.02
.02
.02
.01
.01
.01

F3_P22:=

F3_P23:

F3_P25:=
F3_P27:=
F3_P28:=
F3_P65:=

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN

F:CONSTANT;

=F:EDGE_DETECT;

F: ACCUMULATE;
F:FIX;

F:XOR;

F : XROTATE;

F3_P1<2>:<1>F3_P22;
F3_P1<2>:<1>F3_P65;
F3_P1<2>:<5>F3_P1l;

F3_P22<1>:
F3_P25<1>:
F3_P27<1>:
F3_P28<1>:
F3_P28<1>:

<1>F3_P23;
<1>F3_P27;
<1>F3_P1;
<6>F3_P1;
<2>F3_P28;

Graphics Tutorials

CONN F3_P65<1>:<1>Ball.Rot;
SEND FIX(0) TO <2>F3_P1;

SEND FALSE TO <3>F3_P1,;

SEND FIX(1l) TO <4>F3_P1;

SEND FIX(0) TO <5>F3_P1;

SEND FALSE TO <6>F3_P1;

SEND FIX(1) TO <1>F3_P1;

SEND FALSE TO <1>F3_P23;

SEND TRUE TO <2>F3_P22;

SEND TRUE TO <2>F3_P23;

SEND 1 TO <2>F3_P25;

SEND 1 TO <3>F3_P25;

SEND 10 TO <4>F3_P25;

SEND 60 TO <5>F3_P25;

SEND 1 TO <6>F3_P25;

SEND FALSE TO <2>F3_P28;

{ Framel:M2$F1_ }

{ Box Size }
M2$F1_P1:=F:ACCUMULATE;
M2$F1_P2:=F:XVECTOR;
M23$F1_P3:=F:YVECTOR;
M2$F1_P4:=F:ZVECTOR;
M2$F1_P5:=F:CONSTANT;
M2$F1_P6:=F:NOP;

CONN M2$F1l_P2<1>:<1>M2$F1_P1;
CONN M2$F1_P3<1>:<1>M2$F1_P1;
CONN M2$F1_P4<1>:<1>M28F1_P1;
CONN M2$F1_P5<1>:<2>M28F1_P1;
SEND V3D(.01,.01,.01) TO <6>M2$F1_P1;
SEND 1 TO <4>M2$F1_P1;

SEND V3D(1,1,1) TO <2>M2%$F1_P1;
SEND V3D(1,1,1) TO <2>M2$F1l_P5;
SEND V3D(1,1,1) TO <5>M2§F1_P1;
SEND V3D(1,1,1) TO <1>M23F1 _P6;
SEND 0 TO <3>M2$F1_P1;

{ Box/Ball Size:F4_ }
F4_P31:=F:SUBC;
F4_P32:=F:SCALE;
F4_P33:=F:PARTS;
F4_P34:=F:PARTS;
F4_P35:=F:MULC;
F4_P44:=F:DSCALE;
F4_P45:=F:VEC;

F4_P46:=F:VEC;

F4_P47:=F:FETCH;

VAR Box_Size;

CONN M2$F1_P1<1>:<1>F4_P32;

Sample Programs GT15-19

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN

M2$F1_Pl<1>:
M2$F1_P1l<1>:
M2$F1_P5<1>:
M28F1_P5<1>:
M28F1_P5<1>:
M2$F1_P6<1>:
M2§F1_P6<1>:

M2$F1_P6<1>

<1>F4_P31;
<1>Box_Size;
<1>F4_P32;
<1>F4_P31;
<1>Box_Size;
<1>F4_P32;
<1>F4_P31;

:<1>Box_Size;

CONN F4_P31<1>:<1>F4_P33;
CONN F4_P31<1>:<1>F4_P35;
CONN F4_P32<1>:<1>Box;

CONN F4_P35<1>:<1>F4_P34;
CONN F4_P44<1>:<1>Ball.Scale;
CONN F4_P44<2>:<3>F4_P44;
CONN F4_P44<2>:<1>F4_P45;
CONN F4_P44<2>:<2>F4_P45;
CONN F4_P44<2>:<2>F4_P46;
CONN F4_P45<1>:<1>F4_P46;
CONN F4_P46<1>:<1>F4_P47;
CONN F4_P46<1>:<2>F4_P31;
CONN F4_P47<1>:<1>F4_P31;
SEND V3D(1,1,1) TO <1>Box_Size;
SEND “Box_Size” TO <2>F4_P47;
SEND .05 TO <5>F4_P44;

SEND 1 TO <4>F4_P44;

SEND .1 TO. <2>F4_P44;

" SEND .1 TO <3>F4_P44;

GT15-20

SEND V3D(.1,.1,.1) TO <2>F4_P31;
SEND -1 TO <2>F4_P35;

{ Path:F5_ }

F5_P49:=F:CBROUTE;
F5_P50:=F:XO0OR;

CONN F5_P49<1>:<append>Path;
CONN F5_P50<1>:<2>F5_P50;

CONN F5_P50<1>:<1>F5_P49;

SEND TRUE TO <2>F5_P50;

SEND TRUE TO <1>F5_P49;

{ Labels:Fé6_ }

SEND “RESET” TO <1>FLABEL11;
SEND “STRT/STP° TO <1>FLABEL1O;
SEND “SLOWER’ TO <1>FLABEL4;
SEND ‘FASTER’ TO <1>FLABEL3;
SEND “CLR PATH’ TO <1>FLABEL2;
SEND “TRACE?” TO <1>FLABEL1L;
SEND “BALLSIZE’ TO <1>DLABELS;
SEND “Z VEL’ TO <1>DLABEL7;
SEND ‘Y VEL“ TO <1>DLABELG6;

Graphics Tutorials

SEND
SEND
SEND
SEND
SEND

X VEL’ TO <1>DLABELS5;
“0OS Y ROTATE’ TO <1>DLABEL4;
“Z SIZE” TO <1>DLABEL3;
‘Y SIZE TO <1>DLABEL2;
‘X SIZE’ TO <1>DLABEL1;

{ Framel:F1_ }
F1_P48:=F:DYROTATE;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND
SEND
SEND

DIALS<1>:<1>M2$F1_P2;
DIALS<2>:<1>M2$F1_P3;
DIALS<3>:<1>M2$F1_P4;
DIALS<4>:<1>F1_P48;
DIALS<5>:<1>F2 P41;
DIALS<6>:<1>F2 P42;
DIALS<7>:<1>F2_P43;
DIALS<8>:<1>F4_P44;
M1$F1l_P2<1>:<1>F5_P50;
M1$F1_P2<2>:<clear>Path;
M1$F1_P2<3>:<1>F3_P25;
M1$F1_P2<4>:<1>F3_P25;
M1$F1_P2<10>:<1>F3_P28;
M1$F1l_P2<11>:<1>M2$F1_P5;
FKEYS<1>:<13>M1$F1_P1;
FKEYS<1>:<1>M1$F1_P2;
Fl_P48<1>:<1>Collision.Yrot;
F2_P2<1>:<1>F3_P23;
F2_P39<1>:<2>F5_P49;
F3_P23<2>:<1>F2_P2;
F4_P33<1>:<2>F2_P6;
F4_P33<2>:<2>F2_P7;
F4_P33<3>:<2>F2_P8;
F4_P34<1>:<3>F2_P6;
F4_P34<2>:<3>F2_PT7;
F4_P34<3>:<3>F2_P8;

2 TO <4>M1$F1_P1;

-2 TO <3>M1$F1_P1;
FIX(10000) TO <2>M1%Fl_P1;
200 TO <3>F1_P48;

0 TO <2>F1_P48;

Sample Programs

GT15-21

ce-SILH

(00€°NOISITIOD 40f Y410M19N uONIUN,])
(9 Jo 1 199yS) NNA'NOISITIOD 'T-SI 24n8iq

—
o %] Py ?e 2 7
: : fiaek Control Notien Canmtrol
DIALS sf— 1 | Resav_tep Ciecr Puie Clock pul Pesat Edze
4
———
[Cleck spasd X Wox Pos W
4
? WT | Start/Step ————————] X ¥in
W — veisclty
¥ Nex
237 Pl R X r #tn
1 1
Box/Ball Sisre
{ £ 2 T Velewity
Fix(10000] B M meleatl2 s_____/\1 X Size X Koe || | (
2 . — 3 Z Nax
£} * Y Size T Fox
. . z win
’ r \ Z Size Z Nax
. . 2 Velseity
.] Ranut X Rin S
» 19 / f—
n 1 AN Boil size ¥ Nin
” 12
] 1 3 Z Nin
FXEYS J
g
pez
Nt {———AD<ssco0L 13100, rROT
(4 F1IDYROTAT
200 B:, VOYROTATE
.
P
2 7z 5
Peth
\ Treca?
Lisar Path
] Pee

1A80760

sporiomy sorydoao

swv.ido4q a1dwnsg

£C-SLID

(9 fo z 129yS) NNA'NOISITIOD °T-ST 24nSiy

Clock pules

£2
1

Rovet fdge |
N

2r:SYNC4)

.07
.02
o3

4

]

r‘@ﬁl)!ﬁ(& TR,

18 ps pis p32 P39
1 1] 1}) 3] ' il T]
N 2
o B ¢ a00 (T Jartimar 3| FiXYECTOR *ria00 foADE
£ Wox 7 23
s T il pi2
¥ win Tr.anourec 2 N
FinuLe
.14
NX velood tr r T T J
o —] TFACCUNULATE piy 7 7]
¢ 4 1) ' + 1 L~
10 & z 2 2
R E= < M Foaoe (inmcmr 3 rovvEcTOR
7 Wox — ar’]
T T a2]
Ny #in r.routec ? N .
e ’ V17 rimuec
Pe2
¥ Vetscity] PRE——
AN
£ ACCURULATE
M P20 ps P17
H S T 1 1 1 ¥ 1 —
N T'nun [et FizvECTOR
Z Bex — p1s
T 1 ol
?r.smoutec ? N
z win l V1 Fimunc
2 Valoci ty] (T ;
v
> 2r. accumuLate - p—r
N4
s
¢

ey

vc-SILD

Sppriomy soydp.c)

"T-ST 24nsy]

(9 Jo ¢ 199yS) NNA'NOISITIOD

NReset_Edge
v

Ciock epeed

225
223

2.

Start/Siap

2. ACCUNULATE
.
.
(]

]

Pixfl)
27
[

FiFI1XK

tulsa

ralee &

faiea |}—\

»22

FiCLrRAMES 2

TR

:

true E‘:

T 1 CONSTANT

]

Ciook Poiwe

PES
t

FeXROTATE

{28010, ROT

swv.aSoug a)dung

§TSILD

(9 Jo ¥ 109yS) NNA'NOISITIOD ‘T-SI 24n8iq

v3d(1, 1, 1) [>——7——®6u.$.'n

‘Box.Size’

y si P3a P32
tze W4
Y STEE ; ! 1 '———{}ensox
N'Z Size aM:collbox FiSCALE
Nesetl
4
P31 P33
T] f X HMsx
7 ¥V Hex
v3d(¢. f,.1,.7) h 2(,—: SUBC F:PARTS :2‘ Z Max
3 {
P35 P34
1 1 | 1 X Min
LA %
-1 1%, murce F:PARTS : Z AR
3 ;
AN
Ball e e N~ 3
¥ ell &z Ly ;——e@a)tmu.suw
7 2FiDSCALE P45 Pes pe7
’] t 1 ! 1 1 [
.05 s ZeivEC r“‘zhvzc 2F, FETCH

9C-SI1ID

sppriom] sorydv.an

(9 fo § 122yS) NNA'NOISITIOD “T-ST 24n81

i

Pas

PSo
Trace? 1 1
d true 2F. x0R
ci Path
hElear Fo —%ﬂ:lc:rlf’d’h’

trus

PIP

2F, cBROUTE

2 —-———{étlppcnd’ﬁd In

swoa8ol ajdung

LC-SLLD

(9 f0 9 122yS) NNA'NOISITIOD T-SI 24n8iy

‘X Stze: D}—

JDLABELY
'y s1z6° [0

ZoLABEL2
7 srze* [

ZpLaABEL3

‘05 v ROTATE " [

1
2DLABEL4

X vEC [Da-

1
2DLABELS

v ovEL” [

2

3OLABELS

7 VEL' E>—

1
ZoLaBEL?

"BALLSIZE" [Da

1
IpLaBELS

‘TRACE? T3}
ZrLaBEL

“cLR PATH [oa!

ZrLaBEL2

‘FASTER® E)—

o —

FLABEL3

3

‘SLONER® |C 1
SFLABEL4

*STRT/STP " [Da!
ZFLABEL1O

‘RESET’ D»—;
3

FLABEL1”

3. Planar Projection Example

3.1. PROJECTN.300

Programmed by: Neil Harrington
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: July, 1982
Last update: February, 1985

Demonstrate X,Y, and Z planar projections using Matrix 3x3 command.
The vector list data node for SPHERE, which is referred to in this structure,
is not included in this file.

INIT DISP;
DISP Projection;

Projection :

BEGIN_S

CHAR SCALE .65;

FONT Complex_Roman;

INST Isometric_View;

WINDOW x=-7.2:7.2 y=-7.2:7.2;

INST Front_View, Side_View,Top_View;
END_S;

Front_View :

BEGIN_S

VIEWPORT HOR=-1:0 VERT=-1:0;

LOOK AT 3,2,0 FROM 3,2,-12 THEN Object;
END_S;

Side_View := BEGIN_S
VIEWPORT HOR=0:1 VERT=-1:0;
LOOK AT 0,2,3 FROM 12,2,3 THEN Object;
END_S;

Top_View := BEGIN_S
VIEWPORT HOR=-1:0 VERT=0:1;
LOOK AT 3,0,1 FROM 3,12,1 THEN Object;
END_S;

Isometric_View := BEGIN_S
VIEWPORT HOR=0:1 VERT=0:1;
WINDOW x=-7:9 y=-T7:9;
Rot := ROT O;
ROT X -30;
ROT Y 40 THEN Object;
END_S;

GT15-28 Graphics Tutorials

Object := BEGIN_S
SET COLOR 240,1;
SCALE 8 THEN WS_Gnomon;
SET COLOR 0,0;
INST Globe,Xplane,Yplane,Zplane;
END_S;

Globe := BEGIN_S
Rot := ROT O;
SCALE 1.5;
SET COLOR 0,1 THEN Sphere;
SET COLOR 120,1;
SCALE 1.5 THEN Os_Gnomon;
END_S;

Xplane := BEGIN_S
TRAN §,0,0;
INST Xprojection_Matrix;
ROT Y -90;
INST Square;
LABELS -2.5,-2.5 “YZ Plane’;
END_S;

Yplane := BEGIN_S
TRAN 0,5,0;
INST Yprojection Matrix;
ROT X 90;
INST Square;
LABELS -2.5,-2.5 “XZ Plane”’;
END_S;

Zplane := BEGIN_S
TRAN 0,0,-5;
INST Zprojection_Matrix, Square;
LABELS -2.5,-2.5 “XY Plane’;

END_S;

XProjection_Matrix := MATRIX_3X3 0,0,0

0,1,0

0,0,1 THEN Globe;
YProjection_Matrix := MATRIX_3X3 1,0,0

0,0,0

0,0,1 THEN Globe;
ZProjection_Matrix := MATRIX_3X3 1,0,0

0,1,0

0,0,0 THEN Globe;

Sample Programs GT15-29

Square := VEC n=5 3,3 -3,3 -3,-3 3,-3 3,3;

WS_Gnomon := BEGIN_S
TEXT SIZE .05;
SET CHARACTERS Screen_Oriented;
FONT Triplex_Roman;

LABELS
1.1,-.05 “WwWx~
-.05,1.1 “wy’

-.05,-.05,1.1 “Wz”;
VEC ITEM n=5 P 0,.8,0 L 0,0,0L .8,0,0
P 0,0,0 L 0,0,.8;
TRAN .8,0 THEN Xarrow;
TRAN O, .8 THEN Arrow;
TRAN 0,0, .8 THEN Zarrow;
END_S;

Xarrow := ROT z -90 THEN Arrow;
Arrow := SCALE .025,.2,.025 THEN Pyramid;
Zarrow := ROT x 90 THEN Arrow;

0S_Gnomon := BEGIN_S
CHARACTER SCALE ,0375;
SET CHARACTERS Screen_Oriented;
FONT Triplex_Roman;

LABELS
1.1,-.05 “Ox~
-.05,1.1 "0y~

-.05,-.05,1.1 “0z’;

WITH PATTERN 1 1 LEN .1

VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0
P 0,0,0L 0,0,.8;

TRAN .8,0 THEN Xarrow;

TRAN O, .8 THEN Arrow;

TRAN 0,0, .8 THEN Zarrow;

END_S;

Pyramid := VEC BLOCK ITEM n=10

p1,0,1L-1,0,1 L -1,0,-21L1,0,-1L1,0,1LO,1,0L 1,0,-1
p-1,0,-1L O0,1,0L -1,0,1;

GT15-30 Graphics Tutorials

3.2. PROJECTN.FUN

Programmed by: Neil Harrington
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: July, 1982
Last update: February, 1985

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command.
The vector list data node for SPHERE, which is referred to in this structure,
is not included in this file.

{ Code generated by Network Editor 1.07 }
{ PROJECTN }

{ Frame-Prefix Macro-Prefix }
{ Framel:M2$F1_ }
M2$F1_P1:=F:MULC;
M2$F1_P2:=F:MULC;
M2$F1_P3:=F:MULC;
M238F1_P4:=F:XROTATE;
M2$F1_P5:=F:YROTATE;
M2$F1_P6:=F:ZROTATE;

CONN M28%F1_P1<1>:<1>M2$F1_P4;
CONN M2§F1_P2<1>:<1>M2$F1_P5;
CONN M23F1_P3<1>:<1>M2$F1_P6;
SEND 200 TO <2>M2$F1_P2;

SEND 200 TO <2>M2$F1_P1;

SEND 200 TO <2>M2$F1_P3;

{ Framel:M1$F1_ }

{World Space Rotations}
M1$F1_P2:=F:CMUL;
M13$F1_P3:=F:CONSTANT;

CONN M2$F1_P5<1>:<2>M1$F1_P2;
CONN M2$F1_P4<1>:<2>M1$F1_P2;
CONN M2$F1_P6<1>:<2>M1$F1_P2;
CONN M1$F1_P2<1>:<1>M1$F1_P2;
CONN M13$F1_P3<1>:<1>M18$F1_P2;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>M1$F1_P3;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>M1$F1_P2;
{ Framel:M3$F1_ }
M3$F1_P1:=F:INPUTS_CHOOSE (13);
M3$F1_P2:=F:ROUTE(12);

CONN M33$F1_Pl1<1>:<2>M38$F1_P2;
SEND TRUE TO <1>M3$F1l_P1;

SEND TRUE TO <2>M3$F1_P1;

Sample Programs GT15-31

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

{ Labels:F2_

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

{ Framel
F1_P2:=
F1_P3:=
Fl1_P4:=
F1_P5:=
Fl1_P6:=
F1_P7:=
F1_P8:=
F1_P9:=

<3>M3%F1_P1;
<4>M3$F1_P1;
<5>M3$F1_P1;
<6>M3$F1_P1;
<7>M3$F1_P1;
<8>M3$F1_P1;
<9>M3$F1_P1;
<10>M3$F1_P1;
<11>M3$F1_P1;
<12>M3$F1_P1;

}

‘RESET” TO <1>FLABEL11l;

“0OS ROT”
‘WS ROT”

TO <1>FLABEL2;
TO <1>FLABEL1;

“0BJ ZROT“ TO <1>DLABELT;
“0OBJ YROT’ TO <1>DLABELS6;
“0OBJ XROT’ TO <1>DLABELS5;
“VIEWZROT’ TO <1>DLABELS3;
“VIEWYROT” TO <1>DLABEL2;
‘VIEWXROT® TO <1>DLABEL1;
:F1_ }
:CROUTE (2) ;
‘MULC;
+MULC;
:MULC;
:XROTATE;
:YROTATE;

: ZROTATE;
:CMUL;

F1_P10:=F:MULC;
F1_P14:=F:CONSTANT;

CONN
CONN
CONN
CONN
CONN
CONN
CO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>