
PS 390 DOCUMENT SET

GRAPHICS TUTORIALS 8-16

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390, and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

GRAPHICS TUTORIALS

The tutorial sections in GT 1-7 and GT8-16 contain an in-depth discussion of
PS 390 programming. After reading these sections initially, you may want to use
these volumes in conjunction with R~\11-16 as a reference source to program your
own applications.

GT8-16 consists of sections which describe more advanced concepts of PS 390
graphics programming. Because it builds on fundamental information detailed in
GT 1-7, you should read those sections first. The following provides a capsule de­
scription of each section:

GTS VIEWING OPERATIONS

This section describes how to look at a model from different viewpoints.
This includes moving your viewpoint to another location in the coordinate
system, choosing a perspective view, and specifying a viewing area.

GT9 CONDITIONAL REFERENCING

Conditional Referencing describes how detail can be added to or deleted
from a view on the screen.

GTlO TEXT MODELING

Text Modeling details how to create character strings, how to use com­
mands and functions to manipulate character strings, and how to create and
use different character fonts.

GTll PICKING

Picking describes how to use the data tablet to activate a given action by
picking an object being displayed.

GT12 VIDEO OUTPUT CONTROL

This section describes how to control the video output of the PS 390 graph­
ics system, including how to select a background color, the configuration
and color of the screen cursor, a video timing format, and how to select
filters to implement antialiasing.

GT13 POLYGONAL RENDERING

This section describes how to define polygonal objects and how to perform
rendering operations, including cross sectioning, hidden-line removal, and
static shaded image rendering.

GT14 RASTER PROGRAMMING

Raster Programming describes the use of the PS 390 as a frame buff er for
displaying host-generated images.

GT15 SAMPLE PROGRAMS

This section contains sample programs illustrating various PS 390 program­
ming techniques.

GT16 GLOSSARY

This is a glossary of terminology specific to the PS 390.

GT8. VIEWING OPERATIONS

LOOKING AT THE MODEL

CONTENTS

INTRODUCTION . 1

0 BJECTIVES . 2

PREREQUISITES . 2

1. DEFINING A LINE OF SIGHT . 3

1.1 Looking Straight Up or Straight Down . 6
1.1.1 Exercise.. 8
1.2 Using a 4x3 Matrix to Specify a Line of Sight 9

2. DEFINING AN ORTHOGRAPHIC WINDOW 9

2.1 Altering the Size of a Window . 11
2.1.1 :Exercise . 12
2.2 Moving the Window . 13
2.2.1 Exercise . 13
2.3 Specifying Window Depth: Depth Clipping 15
2.3.1 Exercise 1 . 16
2.3.2 :Exercise 2 . 16
2.4 Optimizing Depth Cueing . 16
2.4.1 :Exercise 1 . 17
2 .4.2 :Exercise 2 . 18
2.5 Using a 4x4 Matrix to Specify an Orthographic Window 18

3. DEFINING PERSPECTIVE WINDOWS

3.1 Using FIELD_ OF_ VIEW
3 .1.1 Exercise 1
3 .1.2 Exercise 2
3.1.3 Exercise 3
3.2 Using the EYE BACK Command
3 .2 .1 Exercise 1
3.2.2 Exercise 2
3.3 Using a 4x4 Matrix to Specify a Perspective Window

4. SPECIFYING A VIEWPORT

4.1 Dynamic Viewport Operations
4.2 Specifying a Dynamic Viewport
4.2.1 Exercise 1
4.2.2 Exercise 2
4.2.3 Exercise 3
4.2.4 Exercise 4
4.2.5 Exercise 5
4.3 Dynamic Viewport Considerations
4.3.1 Overriding the Default Viewport
4.4 Operations in the Static Viewport
4.5 Specifying a Static Viewport
4.6 Clearing Viewports to Static or Dynamic
4.6.1 Clearing to Static
4.6.2 Clearing to Dynamic
4. 7 Displaying Multiple Viewports
4. 7 .1 Exercise .. .
4.8 Using Nonsquare Viewports ·
4.8.1 Exercise 1
4. 8 .2 Exercise 2
4.9 Setting an Intensity Range for a Window

in the Dynamic Viewport

5. VIEWING ATTRIBUTES

5 .1 Setting Intensity
5 .2 Setting Color .. .
5.2.1 Exercise

6. VIEWING SUMMARY

ii

19

21
23
24
24
25
29
30
33

33

34
34
35
35
36
37
38
39
40
41
41
42
42
42
43
43
44
45
46

47

48

48
50
51

52

ILLUSTRATIONS

Figt1re 8-1. LOOK Node . 3
Figure 8-2. Default LOOK . 4
Figt1re 8-3. Car . 4
Figure 8-4. Car From Left Side . S

Figure 8-5. LOOK Transformation Sequence . 6
Figure 8-6. Line of Sight Collinear with UP Direction 7
Figure 8-7. LOOKing Down . 8
Figure 8-8. WINDOW Node . 10
Figure 8-9. Default WINDOW . 10
Figure 8-10. Clipped View of Car . 11
Figure 8-11. Car in Large Window . 12
Figure 8-12. Display Structure for Large Window . 12
Figure 8-13. Relocated Window . 13
Figure 8-14. Interrelation of LOOK and WINDOW Transformations 14
Figure 8-15. Set Depth Clipping Display Structure . 15
Figure 8-16. Intensity as a Function of Z Location . 17
Figure 8-17. Orthographic Window Compared to Perspective Window 19
Figure 8-18. Angles Between Opposing Sides of the Pyramid 20
Figure 8-19. Display Structure With FIELD-OF-VIEW Node 21
Figure 8-20. Setting Z Boundaries for Maximum Depth Cueing 22
Figure 8-21. Using FIELD_OF_VIEW with LOOK . 23
Figure 8-22. Setting Front and Back Boundaries . 24
Figure 8-23. Relative Room Coordinates . 26
Figure 8-24. Line of Sight for LOOK and EYE BACK . 27
Figure 8-25. Specifying the Viewing Angle . 28
Figure 8-26. Moving Eyepoint Back and Left . 28
Figure 8-27. Boundaries Using the EYE BACK Command 29
Figure 8-28. EYE BACK View of Cars . 31
Figure 8-29. EYE BACK View of Car2 . 32
Figure 8-30. Current Viewport Dimensions . 34
Figure 8-31. Port2 - Upper Right Quadrant . 36
Figure 8-32. Display structure for Port2 . 36
Figure 8-33. Port3 and Associated Display Structure . 37
Figure 8-34. Display Structure for Full_ View . 38
Figure 8-35. Port4 and Associated Display Structure . 39

iii

Figure 8-36. PS 390 Display . 40
Figure 8-37. Dimensions of a Nonsquar1e Current Viewport 44
Figure 8-38. Square Window Mapped to a Nonsquare Viewport 46
Figure 8-39. Nonsquare Window Mapped to a Nonsquare Viewport 47
Figure 8-40. Color Wheel . 50

iv

Introduction

Section GT8

Viewing Operations

Looking At The Model

Once you have created a model and displayed it on the screen, you may want to
look at it from different viewpoints. One way to do this is to manipulate the model
into different positions. You have already learned how to do this using modeling
transformations-rotations and translations. Another way to change your view is to
keep the model in place and essentially move yourself as "viewer" about the
model. This is done on the PS 390 using viewing transformations.

There are two basic types of viewing transformations. The first type establishes the
viewer's position in the world coordinate system and the direction in which he is
looking. This is known as specifying a line of sight. The second type of viewing
transformation lets you specify how much of the world coordinate system will ap­
pear in your view. This is done by defining the boundaries of a viewing area or
window. Objects within a window may appear in either parallel projection (an
orthographic view) or in perspective projection.

Parallel projection creates a view in which the relative size of an object, or parts of
an object, is maintained as specified in the original object definition, no matter
where the object is located in Z. Perspective projection causes a distant object or
parts of an object to diminish in size as they recede into the distance toward posi­
tive Z.

In both parallel and perspective views, clipping is used to eliminate objects or parts
of objects that lie outside the boundaries of the window. In both, the illusion of
depth can be enhanced using depth cueing. Depth cueing makes objects or parts of
objects dimmer as they recede into the distance.

In addition to the two types of viewing transformations, you can specify a viewport.
A viewport is a portion of the PS 390 display in which the window is displayed.
Because the PS 390 allows the display of both antialiased wireframe models and
shaded images on the same raster screen, it is necessary to distinguish between
how and where each type of model is displayed.

Viewing Operations GT8-l

There are two types of viewports: the dynamic viewport and the static viewport.
Wireframe models are displayed and manipulated in the dynamic viewport, and
hidden-line images or shaded renderings are displayed in the static viewport. An
unlimited number and combination of dynamic and static viewports are available
within the usable screen space, letting you display different views of the same
model or view different models simultaneously. Viewports can be either full-screen
or smaller portions of the screen.

GT8-2

The last set of viewing operations you can specify is called viewing attributes.
These allow you to set an intensity range for displayed data in the dynamic view­
port, and set color for displayed objects in the dynamic viewport.

When you turn on the PS 390, you are automatically provided with a default line of
sight (down the positive Z axis from the origin), a window (orthographic, with
dimensions from -1 to 1 in X and Y; from 10-15 to 10 +is in Z), and a dynamic
viewport (which is full screen).

Most of the PS 390 viewing operations-viewing transformations, dynamic view­
ports, and viewing attributes-are represented in a model's display structure by
operation nodes. Specifying a static viewport, however, is done through the use of
the initial function instance SHADINGENVIRONMENT, and does not create a
node in the display structure.

Objectives

In this section you will learn how to create various views of the world coor­
dinate system. To do this, you should know how to:

• Define a line of sight.

• Define orthographic windows.

• Define perspective windows.

• Specify a dynamic or static viewport.

• Set an intensity range for the dynamic viewport.

• Set color in the dynamic viewport.

Prerequisites

Before reading this section, you need to know basic graphics concepts, how
data structuring is done in the PS 390, and how modeling transformations
work on data.

Graphics Tutorials

This section makes use of tutorial demonstrations. (Refer to GT3 PS 390

Tutorial Demonstrations.)

To do the exercises in this section, put the PS 390 in command mode.

CTRL/LINE_LOCAL (PS 300-Style Keyboard)

CTRL/CMND or ALT/CMND (PS 390-Style Keyboard)

1. Defining a Line of Sight

There are two types of viewing transformations that alter the way in which a
model is viewed. The first kind of transformation defines a line of sight.

In the real world, you establish a line of sight by placing yourself in a
particular position relative to the object you are viewing. The line of sight is
the invisible straight line between the point you are looking from and the
point you are looking at. Changing either one of these points gives you a
different line of sight.

The PS 390 simulates this relative positioning with the LOOK command.
The LOOK command lets you see your model from any point in the world
coordinate system.

The LOOK command creates a 4x3 matrix operation node in the model's
display structure. For a LOOK transformation to work correctly, it should
be placed above all modeling transformations (ROT A TE, TRANSLATE,
SCALE) in the structure (Figure 8-1).

Viewing Operations

Modeling
Transformations

B
U390184

Figure 8-1. LOOK Node

GT8-3

GT8-4

Note that the operation node created by LOOK can be an interactive node,
with values for the AT and FROM points being changed via a function
network (F:LOOKAT and F:LOOKFR01v1).

The default line of sight starts at the origin and points along the positive Z
axis. The viewer looks FROM 0,0,0, AT 0,0,1 (Figure 8-2).

y

Line of Si\t +Z

~(0,0,1)
x-----,----·----x

-_z/ From (0,0,0)

U390185

Figure 8-2. Default LOOK

Display the Car. Notice that the orientation of the car (default line of sight)
is as shown in Figure 8-3.

Enter:

DISPLAY Car;

Figure 8-3. Car

Graphics Tutorials

To see the other side of the car, specify a LOOK (Left_ View) with the
FROM point on the positive Z axis (0,0,.1) looking AT the origin (0,0,0).
Apply that line of sight to Car. Then DISPLAY Left_ View.

Enter:

Left_View :=LOOK FROM 0,0, .1 AT 0,0,0 APPLIED TO Car;
REMOVE Car;
DISPLAY Left_View;

You should now see the car from the left side as shown in Figure 8-4.

Figure 8-4. Car From Left Side

To create Left_ View, the PS 390 first translates all points in the world coor­
dinate system to put the FROM point (0,0,.1) at the origin. Then all points
in the world coordinate system are rotated around the FROM point (the
origin) until the AT point is on the positive Z axis. This orients the car
correctly for the LOOK specified in Left_ View, as shown in Figure 8-5.
(Note that the translation shown in Figure 8-5 is exaggerated for clarity.)

Viewing Operations GT8-5

+Y

Original World
Coordinate
System

+z

+Y

At 0,0,-.1

World Coordinate
System Translated
0,0,-.1

+Y

At0,0,.1

World Coordinate
System Rotated to
Place AT on +Z Axis

Figure 8-5. LOOK Transformation Sequence

1.1 Looking Straight Up or Straight :Oown

For any LOOK, an UP direction is specified by the system if you do not
specify one yourself. The default UP direction is derived by taking the vec­
tor that defines the AT point (X,Y,Z) and adding 1 to the Y component.
The resulting vector is placed in the positive half of the Y/Z plane, thereby
defining UP. The rotation for UP occurs after the translation that puts the
FROM point on the origin (0,0,0) and the rotations that put the AT point on
the positive Z axis.

For example, if the FROM point in a LOOK is 0,1,0 and the AT point is
1,1,1, the default UP point defining the Y/Z plane would be 1,2,1.

If the FROM point of a LOOK is directly above or below the AT point, the
system has to define an alternate UP direction. What would normally be the
UP direction is now collinear with the line of sight (Figure 8-6).

+X

U390216

GT8-6 Graphics Tutorials

-Z

From y
(0,3,0)

0,3,0

Line of Sight Parallel to,
or Collinear with, Y Axis

z

U390186

Figure 8-6. Line of Sight Collinear with UP Direction

In such cases the system takes the vector that is the AT point, adds one to
its Z component, and rotates the world to place that point in the positive
half of the Y/Z plane. To demonstrate this, enter:

REMOVE Left_View;

Top_View :=LOOK FROM 0,.1,0 AT 0,0,0 APPLIED TO Car;

DISPLAY Top_View;

The direction that is positive Z in the original model of Car is now up in
Top_ View (Figure 8-7). That direction was derived by adding 1 to the Z
component of the AT vector in Top_ View, and using that point (0,0,1) to
define UP as shown in Figure 8-7. (Note that in Figure 8-7 the distance
from the FROM point to the AT point is exaggerated for clarity.)

Viewing Operations GT8-7

GT8-8

Look From
0,.1,0

Up 0,0, 1
Defined by System

Figure 8-7. LOO King Down

go•
in
x

UP can be specified in a LOOK command even if the line of sight does not
define a straight-up or straight-down view. Redefine Top_ View to change
the UP direction to what is positive X in the original model of Car by enter­
ing:

Top_View := LOOK FROM 0, .1,0 AT 0,0,0 UP 1,0,0
APPLIED TO Car;

The view is reoriented to place the up point (1,0,0) in the positive half of
the Y/Z plane (up) in Top_ View.

REMOVE Top_View;

1.1.1 Exercise

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the LOOK
demonstration program.

U390217

Graphics Tutorials

1.2 Using a 4x3 Matrix to Specify a Line of Sight

You can build your own 4x3 matrix in lieu of the one created by the LOOK
command by using the MATRIX_ 4x3 command:

Name := MATRIX_4X3
mll,ml2,m13
m21,m22,m23
m31,m32,m33
m41,m42,m43 APPLIED TO Another_Name;

(For more details, refer to section RMI Command Summary.)

2. Defining An Orthographic Window

The second type of viewing transformation defines a viewing area-a por­
tion of the world coordinate system that is displayed on the screen. This
section introduces the first of three possible ways to define a viewing area,
using the WINDOW command.

The WINDOW command allows you to specify a three dimensional viewing
area (right rectangular prism) in which objects may be viewed. Once a win­
dow transformation is applied, all points in the world coordinate system is
translated so that the central axis of the window coincides with the positive
Z axis (the line of sight).

Objects inside a window appear in orthographic or parallel projection. That
is, far objects (relative to the front window plane) do not appear to be
smaller than near objects, so the location of an object in Z has no effect on
its size on the screen. Perspective does not exist. Farther away parts of
objects will appear to be dimmer in the default view. This is called depth
cueing.

The WINDOW transformation is a 4x4 matrix operation represented by an
operation node in the model's display structure. In the PS 390, a 4x4 matrix
overrides all transformations in effect when the matrix is encountered. A
4x4 matrix must be the topmost matrix operation node along any branch in
a display structure. If it is not, any operations above it will have no effect.
Figure 8-8 illustrates this rule.

Viewing Operations GT8-9

GTS-10

Window

All Other Transformations

Data
U390187

Figure 8-8. WINDOW Node

Just as there is a default LOOK imposed by the PS 390, there is also a
default window. The default window is an orthographic window that extends
from -1 to 1 in the X and Y dimensions, and from 10-15 to 10 +is in Z. Any
object that lies within this viewing area (Figure 8-9) will appear on the
screen when displayed. Objects outside the window in Z will be displayed
unless depth clipping is enabled. Refer to section 2.3.

Figure 8-9. Default WINDOW

To see an object, it must be located within the X and Y boundaries of the
viewing window. Any object outside these boundaries is removed from view
via clipping.

Graphics Tutorials

If a part of a model is not entirely within the X and Y boundaries of a
window, only a portion of the model appears. For example, the following
line of sight effectively moves the object so that part of the Car falls outside
the viewing area:

Another_View :=LOOK AT 1,0,0 FROM 1,0,-.1
APPLIED TO Car;

The part of the Car that appears on the screen is inside the boundaries of
the default window. The part of the Car that is clipped falls outside the
default window boundaries in X (Figure 8-10).

X and Y Window Boundaries

U390185

Figure 8-10. Clipped View of Car

2.1 Altering the Size of a Window

The X, Y, and Z boundaries of the default window may be changed to
affect window size. Boundaries may be changed using the WINDOW com­
mand.

The size of the window influences the apparent size of objects being viewed.
If the window is enlarged, objects will appear smaller; if the window size is
reduced, objects will appear larger. Altering window size may cause an ob­
ject to appear so large that it is completely or partially clipped from view.

For example, the default window for Another_ View clips off part of Car.
You can redefine a window for Another_ View that does not clip any part of
the car.

Viewing Operations GT8-l l

GT8-12

2.1.1 Exercise

Define Another View of Car as shown in the previous example and display
Another View to see the effect (Figure 8-10). Now enlarge the window and
apply the new window specification to the LOOK called Another_ View.

Enter:

Large_window :=WINDOW X=-2:2 Y=-2:2
APPLIED TO Another_View;

DISPLAY Large_Window;
REMOVE Another_View;

U390189

Figure 8-11. Car in Large Window

All of the car appears in Large_ Window (Figure 8-11). The car appears
smaller than it did in Another_ View because Large_ Window encompasses
more area than the default window used in Another View.

REMOVE Large_Window;

The display structure created by the above sequence of commands is shown
in Figure 8-12.

Large_ Window

Another View

WINDOW Command

Car (Vector List Command)
U390190

Figure 8-12. Display Structure for Large Window

Graphics Tutorials

2.2 Moving the Window

Another way to define a window for Another_ View that does not clip any
part of the car is to move the window to encompass Car. Moving a window
causes the line of sight to be shifted to a new, parallel line of sight.

If an orthographic window is defined as shown in Figure 8-13 so that its
center is not coincident with the Z axis, the PS 390 translates everything in
the world coordinate system to center the window about the Z axis. You do
not need to use a LOOK to move the line of sight to the Z axis.

/

3,-3 3,-3
,, ,, ,,

----1---....----1---------------------x Axis
0,0

-3,-3

Initial
Line of
Sight

Y Axis

2.2.1 Exercise

/

3,-3

9,-5

9,-11

New
Line of
Sight

Figure 8-13. Relocated Window

15,-5

15,-11

U390191

Define a "moved" window the same size as the default window (2 units in x
by 2 units in y), but place it so that the car in Another_ View will be in it:

Viewing Operations

DISPLAY Another_View;
Move_Window := WINDOW X=-2:0 Y=-1:1

APPLIED TO Another_View;
DISPLAY Move_Window;
REMOVE Another_View;

GT8-I 3

Move_ Window clips no part of the car.

REMOVE Move_Window;

Figure 8-14 shows the sequence of transformations that makes
Move_ Window encompass the car.

+Y

+z
+Y ,'

Clipped , , , ,

, ,
,

, , , ,

, , ,
~~~---~___,.--...,........~--~~~--.-,.~ +X 

, , , , 

From 1,0,-.1 

GTB-14 

FROM AT 
Specification of 
Another_ View Car Clipped 

in Def a ult Window 

+Y 

, , 
, , 

Move Window 

" , , 

A Window Defined 
Around Car 
(no clipping) 

, , , 
, " 

" " 

, , , , 

U390218 

Figure 8-14. Interrelation of LOOK and WINDOW Transformations 

Graphics Tutorials 



2.3 Specifying Window Depth: Depth Clipping 

So far you have redefined the X and Y dimensions of windows. The Z 
dimension of all the windows specified up to now has defaulted to 10 -15 for 
the front boundary and to 10 +l

5 for the back boundary. In this section, you 
will specify not only the X and Y boundaries of an orthographic window but 
the Z boundaries as well. The Z boundaries are specified as part of the 
WINDOW command. 

The PS 390 automatically clips the top, bottom, right side, and left side of 
the window at the X and Y boundaries. However, clipping at the Z bounda­
ries, known as depth clipping, does not automatically happen when you 
define Z boundaries for a displayed window. Portions of an object that fall 
in front of or in back of the Z boundaries are not clipped until depth clip­
ping is enabled. Depth clipping is enabled by using the SET DEPTH CLIP­
PING command. 

In an orthographic window, depth clipping can occur anywhere in positive 
and negative Z. 

The SET DEPTH CLIPPING command is an operation node in the display 
structure. The node can be placed above the 4x4 WINDOW matrix because 
depth clipping operations are not matrix transformations (they are not over­
ridden by a 4x4 matrix). 

Depth Clipping Node 

Window Node 

All Other Transformations 

Data Node 
U390192 

Figure 8-15. Set Depth Clipping Display Structure 

Viewing Operations GT8-15 



2.3.1 Exercise 1 

Include Z boundaries in an orthographic window by entering: 

Change_z := WINDOW X=-1:1 Y=-1:1 FRONT=3 BACK=5 
APPLIED TO Car; 

DISPLAY Change_Z; 

The X and Y dimensions of Change_ Z are the same as in the default win­
dow, but the Z dimensions define front and back boundaries at 3 and 5. 
Since the car extends from about -1 to about 1 in Z, none of it falls within 
the Z boundaries of Change_ Z. However, you still see the car because 
depth clipping (set to OFF in default mode) is not in effect. 

2.3.2 Exercise 2 

To see only what is in the window, in this case from 3 to 5 in Z, enable 
depth clipping by entering: 

REMOVE Change_Z; 

Z_Clip := SET DEPTH_CLIPPING ON APPLIED TO Change_Z; 

DISPLAY Z_Clip; 

Now nothing appears on the screen because the car is outside the the Z 
dimensions of the window. The entire car has been clipped from view. 

REMOVE Z_Clip; 

2.4 Optimizing Depth Cueing 

GTB-16 

One of the ways the PS 390 gives the illusion of depth to an object is to vary 
the intensity between parts of the object that are near and those that are 
farther away. Near portions are brighter; portions farther away are gradu­
ally dimmed. This is called depth cueing. Refer to Figure 8-16. 

The brightest intensity occurs at the front Z boundary (or clipping plane) 
and the dimmest intensity occurs at the back Z boundary. So maximum 
contrast in depth cueing is achieved when the Z boundaries are set close to 
the object in the window. 

Graphics Tutorials 



With depth clipping on, data between the eye and the front clipping plane 
will be clipped, data between the front clipping plane and back clipping 
plane will appear with an intensity gradient, and data behind the back clip­
ping plane will be clipped. 

With depth clipping off, data between the eye and front clipping plane will 
appear at full intensity, data between the front clipping plane and back 
clipping plane will appear with an intensity gradient, and data behind the 
back clipping plane will appear at minimum intensity. 

/ 
/ 

'( 

/ 
/ 

/ 
/ 

7L-+X 
/ 

/ 
/ 

/ 

.,,,.,, 

z 

Back Boundary and 
beyond - Minimum 
Intensity 

,,,, ""'.,..___ Brightness Inverse 
It(/ Relationship to Z Value 

U390193 Front Boundary 
and Preceding Maximum Intensity 

Figure 8-16. Intensity as a Function of Z Location 

2.4.1 Exercise 1 

Change the Z boundaries of the default WINDOW to see a change in depth 
cueing for the Car. First display the sports car in the default WINDOW, 
with Z boundaries at 10 -15 and 10 +15

• To make this easier to see, first rotate 
the car. 

Rot_Car := ROTATE IN Y 110 APPLIED TO Car; 

DISPLAY Rot_Car; 

Viewing Operations GT8-17 



Depth cueing is apparent enough to make it difficult to see the back of the 
car. Now close in the Z boundaries around the car and display the new 
window. 

Close :=WINDOW X=-1:1 Y=-1:1 FRONT=-.5 BACK=5 
APPLIED TO Rot __ Car; 

DISPLAY Close; 

In Close, the front Z boundary is placed in negative Z (a placement that is 
legal only for orthographic windows). 

REMOVE Close; 

REMOVE Rot_Car; 

2.4.2 Exercise 2 

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the WINDOW 
demonstration program. 

2.5 Using a 4x4 Matrix to Specify an Orthographic Window 

GT8-18 

You can build your own 4x4 matrix in lieu of the one created by the WIN­
DOW command by using the following MATRIX_ 4x4 command below. 
(The operation node this creates should be placed above all other matrix 
operations in a display structure branch, because a current matrix is over­
ridden whenever a 4x4 matrix is encountered.) 

Name := MATRIX_4X4 
mll,m12,ml3,ml4 
mll,m12,ml3,m14 
mll,m12,ml3,m14 
mll,m12,ml3,m14 

APPLIED TO Another_Name; 

(For more details, refer to Section RMI Command Summary.) 

Graphics Tutorials 



3~ Defining Perspective Windows 

The orthographic window is one of three possible ways to define a viewing 
area. With the orthographic window, the illusion of depth is created only by 
depth cueing. 

The two other ways to define a viewing area employ perspective as well as 
depth cueing. In a perspective view, lines that go back from your eye point 
appear to be converging. So objects viewed in a perspective window appear 
smaller as they recede into the distance, further enhancing the illusion of 
depth and realism. The PS 390 defines perspective windows two ways: us­
ing the FIELD_OF_VIEW command and using the EYE BACK command. 

Perspective windows are not box-shaped like orthographic windows. They 
are shaped like a pyramid, with your eye at the apex, extending into world 
coordinate space. The section of the pyramid in which objects are visible, 
called a frustum, is defined using front and back boundaries. 

Figure 8-1 7 shows how a perspective window differs from an orthographic 
window: 

Orthographic Window Perspective Window 

Figure 8-17. Orthographic Window Compared to Perspective Window 

Viewing Operations GT8-19 



GT8-20 

In a perspective window, the X, Y size of the front and back boundaries is 
not specified directly. Boundary size is determined by two factors. 

The first factor is the size of the viewing angle-the angle between opposing 
sides of the viewing pyramid. As the viewing angle widens, the frustum of 
view encompasses more and more of the world coordinate system. So the 
wider the angle, the smaller an object appears relative to the viewing area. 
Also, since the angle opens equally in height and in width, the aspect ratio 
of perspective windows is always 1, width equal to height. 

The second factor determining the size of a perspective window is the dis­
tance from the apex of the viewing pyramid (located at 0,0,0) to the front 
and back boundaries of the frustum and the distance between the front and 
back boundaries. See Figure 8-18. 

Figure 8-18. Angles Between Opposing Sides of the Pyramid 

Unlike in an orthographic window, the front boundary of a perspective 
window cannot be placed behind your eyepoint (behind the LOOK FROM 
location). In perspective views, the front boundary cannot be at a location 
behind 10 -is in Z. 

Graphics Tutorials 



3.1 Using FIELD_OF_VIEW 

The easiest way to define a perspective viewing area is using the 
FIELD_ OF_ VIEW command. A field of view is specified in terms of the 
viewing angle and the distance of the front and back boundaries from the 
eyepoint. This command imposes a perspective view on objects within the 
frustum of vision (the perspective window) it creates. 

A field of view is like an orthographic window in that depth clipping does 
not occur in a field of view unless you set depth clipping on. And also, the 
intensity for depth cueing in a field of view is brightest at the front bound­
ary and dimmest at the back boundary. 

Lastly, like the orthographic window transformation, the field of view trans­
formation is performed by a 4x4 matrix. This matrix is represented by an 
operation node, which must be above all other matrix transformation nodes 
in a display structure (see Figure 8-19). 

Field of View 

Look 

All Other Transformations 

Data 
U390196 

Figure 8-19. Display Structure With FIELD-OF-VIEW Node 

For maximum depth cueing effects in a field of view, you must set the front 
and back boundaries close to the object. To do this, determine the distance 
from the eyepoint to the object being viewed and also how large the object 
is. If you place the AT point in the center of a large object and then position 
the front and back boundaries too close to it, parts of that object may be 
clipped from view. 

Viewing Operations GTB-21 



GTB-22 

If no LOOK transformation has been applied to the view, the distance to the 
object is its location along the positive Z axis-the default line of sight. If 
you have defined a line of sight with a LOOK transformation, you must 
calculate the distance between the AT and FROM points so you will know 
where to place the front and back boundaries. To calculate this distance, 
find the differences between the X, Y, and Z values of the FROM point and 
the AT point, square those differences, add them, and find the square root 
of that sum. 

For example, if you are looking from (-2,2,0) at a one-unit radius sphere 
centered at (3,-2,-1), the FROM/AT distance is the square root of: 5 
squared, plus 4 squared, plus 1 squared, or 6.48. For maximum depth 
cueing, place the near boundary (zmin) at 5 .48 and the zmax boundary at 
7.48 (see Figure 8-20). 

y 

From 
-2,2,0 

Figure 8-20. Setting Z Boundaries for Maximum Depth Cueing 

The result of the LOOK command is, of course, to place FROM at 0,0,0 and 
AT on the positive Z axis; thus, the Zmax, Zmin designations. 

Graphics Tutorials 



3.1.1 Exercise 1 

Position the sports car in a perspective window by specifying a 
FIELD __ OF_ VIEW and position the car within the frustum of vision using a 
LOOK command. 

Perspective := FIELD_OF_VIEW 28 APPLIED TO Look; 

Look : = LOOK AT 0' 0' 0 FROM 0' 0' --5 
APPLIED TO Car; 

DISPLAY Perspective; 

No front or back (Z) boundaries are specified. Because their default value is 
1 O -15 and 1 O +l

5 
, the car appears to be dim. 

The 28 in the command is the number of degrees in the angle between 
opposing sides of the viewing pyramid. Twenty-eight degrees is approxi­
mately the actual viewing angle from your eye to the edges of the PS 390 
screen at a comfortable viewing distance. 

The LOOK (named Look) has the effect of translating the car forward 5 
degrees in Z and placing the FROM point at the same location as the apex 
of the viewing pyramid (0,0,0). The Z axis runs down the center of the 
pyramid (Figure 8-21). 

Back Boundary 1015 in Z 

Front Boundary 10-15 in Z U390198 

Figure 8-21. Using FIELD_OF_VIEW with LOOK 

Viewing Operations GT8-23 



GTS-24 

3.1.2 Exercise 2 

Change Perspective to specify different front and back boundaries by 
entering:. 

Perspective := FIELD_OF_VIEW 28 
FRONT= 4.5 
BACK = 7 
APPLIED TO Look; 

Since the LOOK (named Look) moves the car forward so that it is centered 
around 5 in Z, placing the front and back boundaries at 4.5 and 7 in Per­
spective closes the boundaries around Car, maximizing depth cueing. The 
part of the car nearest to the front boundary appears brighter. Figure 8-22 
shows the car in the frustum of vision just created. 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

/ / 

/ ,,,, ' - - Front Boundary 
/ ,,,,-\,,,..' ---- X/Y Plane at Z = 4.5 

//~.'~)..---
/L..,,. --

~::::.. - 28-Degree 
Viewing Area 

Back Boundary 
X/Y Plane at Z = 7 

U390199 

Figure 8-22. Setting Front and Back Boundaries 

3.1.3 Exercise 3 

Refer to Section GT3 PS 390 Tutorial Demonstrations and run the 
FIELD_ OF_ VIEW demonstration program. Before you begin, remove Per­
spective. Enter: 

REMOVE Perspective; 

Graphics Tutorials 



3.2 Using the EYE BACK Command 

In addition to FIELD_ OF_ VIEW, there is another command that creates a 
perspective window. Like FIELD_OF_VIEW, the EYE BACK command 
specifies a pyramid-shaped viewing area with front and back clipping 
planes. 

In addition, it allows you to move the eyepoint back from, above, below, 
and to the side of screen center. This also moves the line of sight estab­
lished by the LOOK transformation, keeping the line of sight parallel to a 
line straight through the center of the screen (where most lines of sight are 
situated). This effect means that you may not see what you are LOOKing 
AT. The EYE BACK command is the only viewing command that has the 
effect of moving the line of sight, established by the LOOK transformation, 
somewhere other than directly through the center of the screen. 

Imagine yourself in a room looking out through a porthole. The EYE BACK 
command simulates a view from any position in the room through this port­
hole and into the world coordinate system. Distance and location through 
the porthole (that is, FRONT and BACK BOUNDARIES) are measured in 
the usual PS 390 coordinate system units. Inside the room, distance is 
measured in relative room coordinates. These relative room coordinates are 
used to create the proper proportions for the viewing pyramid in the world 
coordinate system. 

What you see-the viewing area-is determined by the line of sight estab­
lished in the LOOK transformation, the size of the porthole, your distance 
back from it, and your position in the room with respect to its center. The 
closer you are to the porthole, the larger the viewing area. The EYE BACK 
command allows you to adjust how far back and/or off-center you are from 
the center of the porthole. As with all windowing commands, you may also 
specify front and back boundaries. 

From where you stand in thG room, distance and screen width are specified 
in terms of relative room coordinates. These coordinates are important in 
terms of the ratios they establish, which determine the viewing angle. For 
example, in Figure 8-23 the ratio of screen width to eyeback distance is 2:2. 
A screen width of 4 and eyeback distance of 4 would establish the same 
ratio (2/2=1; 414=1) and so the same view. (Figure 8-23). 

Viewing Operations GT8-25 



GT8-26 

Relative Room 
Coordinates PS 390 World Coordinates 

---~-~~__..,_-.....-}Screen Width = 2-

Eye Back 2 

Relative Room 
Coordinates 

Eye Back 4 

PS 390 World Coordinates 

Screen Width = 4-

Figure 8-23. Relative Room Coordinates 

U390200 

The line of sight established by the LOOK transformation may not point at 
what you are looking at when you use the EYE BACK transformation. The 
eye transformation creates its own sightline relative to the line of sight es­
tablished by the LOOK transformation. As shown in Figure 8-24, the LOOK 
transformation establishes a line of sight to the viewed object. With EYE 
BACK, however, the new line of sight may be different. So, you may not see 
what you are "LOO King AT." (You may be LOO King AT Car 1, but see 
Car 2.) 

Graphics Tutorials 



Look 
Original 
Line of 
Sight 

Front Boundary 

Left 10 

Visible Area 

"Eye" 
Line of 

} 

Sight 

Back 10 

Figure 8-24. Line of Sight for LOOK and EYE BACK 

U390201 

In the simplest instance of using the EYE BACK command, you specify only 
the distance from the screen (back) and the screen width (wide). The ratio 
of these two determines how much of the world coordinate system is view­
able (viewing angle) and the orientation of the viewing pyramid. (This is 
effectively another way to specify a view that can be specified using 
FIELD_ OF_ VIEW.) In such a view, the line of sight established by the 
LOOK transformation would aim through the center of the screen toward 
the AT point. 

In part A of Figure 8-25, at least part of all four cubes appears in the 
viewing area. When the eyepoint is moved further back in part B, only two 
of the cubes are viewable, but they appear to be larger than in part A. 

Viewing Operations GT8-27 



GT8-28 

'Q DD c~~( 
' / ' // 

'~ 2 units wide 

1 unit back ~' 
Eye Back 1 from Screen Area 2 Wide 

View A 

\ 2 3 4 

DODD 
---- 2 units wide 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 

4 units back \ / 
\ I 
\ I 
\ I 
\ I 
\I 

Eye Back 4 from Screen Area 2 Wide 

View B U390202 

Figure 8-25. Specifying the Viewing Angle 

Moving the eyepoint so that it is not directly over the center of the screen, 
results in a different portion of the world coordinate system coming into 
view. For example, in Figure 8-26, moving the eyepoint back 1 unit and left 
2 units has shifted the viewing so that no part of cube 1 is visible and most 
of cube 4 has come into view. 

1 I 2 

D!D 
"Look" 
Line of 
Sight 

A~ 

FROM 

Back 

·~'~~~~~~~-/.,,...,.~ [] 0/,,.// 
/ 

/ 

,,. ,,. ,,. "><::__ Front 

"Eye" 
Line of 
Sight U390203 

Figure 8-26. Moving Eyepoint Back and Left 

Graphics Tutorials 



As with FIELD_OF _VIEW, you must set boundaries correctly with the EYE 
BACK command to have an object appear. As expected, if depth clipping is 
not in effect, any object in front of the front boundary appears at full inten­
sity; anything between boundaries diminishes in brightness as it approaches 
the back boundary; and everything behind the back boundary appears at 
minimum brightness. 

As with the FIELD_OF _VIEW, boundaries are specified in world coordinate 
system units measured from 10-15 in Z (the center of the screen after the 
LOOK transformation is applied). 

Note that with the EYE BACK command, Z boundaries remain orthogonal 
to the Z axis. For example, in Part A of Figure 8-27, though the eyepoint 
has been moved farther back, the boundary is still placed 6 units from the 
original FROM point (0,0,0) at the center of the screen. This is also the case 
in Part B, where the eyepoint has been moved back and to the left. Even 
when EYE BACK changes the line of sight, the boundaries do not shift. 
Instead, the viewing area, the frustum of vision, becomes skewed. 

\ 10 Back Boundary I 10 / 

\ / 

\ I "Look" / 
\ I Line of / 

\ I Sight 6 // "Eye" \6 Front Boundary/ 
\ / Line of 

\ I Sight 
\ I 

\ I 
\ 2 wide 

t(f Back 2 

Part A Part B 
U390204 

Figure 8-27. Boundaries Using the EYE BACK Command 

3.2.1 Exercise 1 

Run the LOOK demonstration program. (Refer to Section GT3 PS 390 

Tutorial Demonstrations.) 

Viewing Operations GT8-29 



GT8-30 

3.2.2 Exercise 2 

Create instances of Car to the right and the left of the original sports car 
and group all three instances under the name Three_ Cars. 

Car2 :=TRANSLATE BY 3,0,0 APPLIED TO Car; 

Car3 := TRANSLATE BY -3,0,0 APPLIED TO Car; 

Three_Cars := INSTANCE OF Car, Car2, Car3; 

View Three_ Cars using the LOOK and EYE BACK commands. First, estab­
lish a line of sight (Look1). 

Lookl := LOOK AT 0,0,0 FROM 0,0,-10 
APPLIED TO Three_Cars; 

This places the three cars 10 units away from your eyepoint. Now apply an 
EYE BACK command to view the cars through a porthole 1 room unit wide 
from a distance of 2 room units. 

Notice the following three commands include values for the front and back 
boundaries. The sports cars have been placed in front of the front boundary 
(depth clipping is off by default) to appear at maximum intensity. 

Eye_Locate := EYE 
BACK 2 
RIGHT 0 {default} 
UP 0 {default} 
SCREEN 1 WIDE 
FRONT = 9.5 
BACK= 10.5 
THEN Lookl; 

DISPLAY Eye_Locate; 

You can see the original Car, but Car2 and Car3 are partially clipped on the 
right and the left sides, respectively, of the window. See Figure 8-28. 

Graphics Tutorials 



Visible Area 

Figure 8-28. EYE BACK View of Cars 

Now move your eyepoint to the left far enough to see all of Car2 (which is 
partially visible to the right of the present window). 

Viewing Operations 

REMOVE Eye_Locate; 

New_Eye := EYE 
BACK 2 
LEFT .5 {or RIGHT -.5} 
UP O {default} 
SCREEN 1 WIDE 
FRONT = 9.5 
BACK= 10.5 
THEN Lookl; 

DISPLAY New_Eye; 

GT8-31 



GT8-32 

Visible Area 

U390206 

Left .5 

Figure 8-29. EYE BACK View of Car2 

Now, look at Car3 (which is partially visible to the left of the present 
screen) by moving your eye to the right. 

REMOVE New_Eye; 

Last_Eye := EYE 
BACK 2 
RIGHT . 5 
UP 0 

{or LEFT -.5} 

SCREEN 1 WIDE 
FRONT = 9.5 
BACK= 10.5 
THEN Lookl; 

DISPLAY Last_Eye; 

What you see on the screen is in correct perspective only if your actual 
position in the room is approximately where you specified your eye location 
to be in the EYE BACK command. In the last example, the values in the 
EYE BACK command are .5 right, back 2 from a screen 1 wide. You would 
need to move your head right one-half of a screen width and back two 
widths from the center of the PS 390 screen to view the cars in correct 
perspective. (Note in this case, you will not be able to see the AT point 
specified by the LOOK command.) 

If you remain seated at the PS 390 looking into the center of the screen, 
displayed objects may appear distorted or skewed when the eyepoint is 
changed. This is because you are looking at what should be an oblique view 
from a position that would not normally create an oblique view. 

Graphics Tutorials 



3.3 Using a 4x4 Matrix to Specify a Perspective Window 

The EYE BACK transformation is a 4x4 matrix operation that is repre­
sented by an operation node. This node must be above all other transforma­
tion nodes in a display structure. The EYE BACK operation node should 
also be directly above the LOOK operation node in the display structure. 

You can build your own customized 4x4 matrix in lieu of the one created by 
the FIELD_ OF_ VIEW or EYE BACK command by using the following 
MATRIX 4x4 command: 

MATRIX_4x4:= mll,ml2,ml3,m14 
mll,m12,ml3,m14 
mll,m12,ml3,m14 
mll,m12,m13,m14 APPLIED TO Another_Name; 

(For more details, refer to the Section RMI Command Summary.) 

4~ Specifying a Viewport 

In addition to the two types of viewing transformations, establishing a line 
of sight and specifying a viewing window, the PS 390 lets you specify por­
tions of the full screen in which windows are displayed. The PS 390 raster 
screen allows display of both antialiased wireframe models, and shaded 
renderings. Because the commands and operations governing the display of 
each kind of model are inherently different, there are two types of viewports 
used for display. The dynamic viewport is used for the display and manipu­
lation of wireframe models, while the static viewport allows display of hid­
den-line images and shaded renderings. 

Either an orthographic or perspective window can be displayed within either 
a dynamic or a static viewport. Up to this point, all windows specified in 
examples have been projected onto the full dynamic screen of the PS 390. 
The PS 390 maps a window to the full dynamic screen by default if no 
smaller portion of the screen is specified. The area of the screen that has 
the window mapped to it is called a viewport. 

The process of mapping a window to a viewport is not a matrix operation. 
Because of this, the viewport specification can be placed virtually anywhere 
in relation to matrix operations in a display structure. A logical placement, 
though, is above the windowing transformation. 

Viewing Operations GT8-33 



4.1 Dynamic Viewport Operations 

The following operations are performed in the dynamic viewport: 

• Real-time manipulation of vector or wireframe representations of po­
lygonal models. 

• Cross-sectioning defined by the sectioning plane (solid wireframe po­
lygonal model). 

• Sectioned rendering (wireframe polygonal model). 

• Backface removal (solid wireframe polygonal model). 

Operations involving polygonal models are discussed fully in Section GTJ 3 
Polygonal Rendering. 

4.2 Specifying a Dynamic Viewport 

GT8-34 

Dynamic viewports are specified using the VIEWPORT or the 
LOAD_ VIEWPORT command. The VIEWPORT command defines a dy­
namic viewport in terms of the current viewport. Values of the new viewport 
must be within the -1 to 1 range of the current viewport, implying that each 
viewport may be no larger than its predecessor. The LOAD_ VIEWPORT 
command however, defines a dynamic viewport relative to the full PS 390 
screen. 

The dimensions of the current viewport are always -1 to 1 in width and -1 
to 1 in height, with the center of the viewport corresponding to 0,0. (See 
Figure 8-30.) 

-1-411-- Width ----lllll 1 

Current 
Viewport 

____ , ___ _ 
I 
Height 

l 
U390207 -1 

Figure 8-30. Current Viewport Dimensions 

Graphics Tutorials 



This holds true with both the VIEWPORT and LOAD VIEWPORT com­
mands. The default intensity range available for any dynamic viewport is 
from 0 to 1, or from minimum to maximum intensity. This intensity is 
spread over the range from the front boundary to the back boundary of the 
window being displayed in the viewport. The values for viewport dimensions 
and intensity ranges have nothing to do with world coordinate values. 

4.2.1 Exercise 1 

First display the Car in the default full-screen dynamic viewport by 
entering: 

INITIALIZE DISPLAY; 

DISPLAY Car; 

The car is now displayed in the current viewport, which is -1 to 1 in height 
and in width. 

4.2.2 Exercise 2 

Using the VIEWPORT command, define a viewport to be the upper right 
corner of the default full-screen viewport by entering; 

Port2 := VIEWPORT 
HORIZONTAL=O:l 
VERTICAL=O:l APPLIED TO Car; 

DISPLAY Port2; 

REMOVE Car; 

By using the VIEWPORT command, Port2 was defined in terms of the cur­
rent viewport. Now the upper right corner of the screen becomes the current 
viewport and the default window is mapped to it (Figure 8-31). 

Viewing Operations GTB-35 



GT8-36 

U390208 

Figure 8-31. Port2 - Upper Right Quadrant 

The display structure for this viewport applied to Car is shown in 
Figure 8-32. 

Port2 /' 
Viewport 

Car[ Data 
U390209 

Figure 8-32. Display structure for Port2 

4.2.3 Exercise 3 

Define another viewport in terms of the now current viewport (Port2). 

Port3 := VIEWPORT 
HORIZONTAL=O:l 
VERTICAL=O:l 

DISPLAY Port3; 

REMOVE Port2; 

APPLIED TO Port2; 

Port3 is now the upper right quadrant of Port2, which is the upper right 
quadrant of the default full-screen viewport. Figure 8-33 shows the associ­
ated display structure. 

Graphics Tutorials 



Port3 ~ 
Viewport 

Port2 x 
Upper Right Quadrant 

of Port2 

Viewport Upper Right Quadrant 
of Full Screen 

Car 
Data 

U390210 

Figure 8-33. Port3 and Associated Display Structure 

To define a viewport independent of the current viewport, the 
LOAD_ VIEWPORT command is used. This specifies a viewport relative to 
the entire PS 390 screen. Viewport specification using the LOAD_ VIEW­
PORT command does not restrict the user from making a larger viewport 
after making a smaller one, as is the case with the VIEWPORT command. 

4.2.4 Exercise 4 

Using the LOAD_ VIEWPORT command define the current viewport to be 
the full dynamic screen (Full_ View). 

Full_View := LOAD_VIEWPORT 
HORIZONTAL= -1:1 
VERTICAL = -1:1 APPLIED TO Port3; 

DISPLAY Full_View; 

REMOVE Port3; 

The display structure for this is shown in Figure 8-34. Note that the 
LOAD_ VIEWPORT command overrides the previous viewports specified 
with the VIEWPORT command. 

Viewing Operations GT8-37 



GT8-38 

Full_ View r-'\ 
Viewport 

Port3 x 
Viewport 

Port2 x 
Viewport 

Car 
Data 

Full Screen 

Upper Right Quadrant 
of Port2 

Upper Right Quadrant 
of Full Screen 

U390500 

Figure 8-34. Display Structure for Full_ View 

4.2.S Exercise S 

Define the equivalent of viewport Port3 using the LOAD_ VIEWPORT com­
mand (Port4). 

Port4 := LOAD_VIEWPORT 
HORIZONTAL = .5:1 
VERTICAL = .5:1 APPLIED TO Full_View; 

DISPLAY Port4; 

Remove Full_View; 

Port4 is in the upper right of the screen. Figure 8-35 shows the display 
structure and equivalent viewport of Port4. 

Graphics Tutorials 



I 

l<8DlP 
L--

Port4 ~ 
Viewport 

FullViewX 
- Viewport 

Upper Right Quadrant 
of Full Screen 

Full Screen 

Port3 x 
Viewport Upper Right Quadrant 

of Port2 

Port2 X 
Viewport Upper Right Quadrant 

of Full Screen 

Car 
Data 

U390501 

Figure 8-35. Port4 and Associated Display Structure 

Before going on to the next section, remove the data structures from the 
display list. Enter the INITIALIZE DISPLAY command: 

INITIALIZE DISPLAY; 

4.3 Dynamic Viewport Considerations 

Although the raster screen contains 1024 by 1024 addressable pixels, the 
actual displayable area on the raster screen is a rectangle, with pixel ad­
dresses going from 0 to 1023 in X and to 863 in Y, where the physical pixel 
address 0,0 is in the lower left corner. A PS 390 viewport which spans 
(-1, 1) in both vertical and horizontal directions maps onto the full 1024 x 
1024 screen so that a rectangular portion along the lower edge of the view­
port is not displayed. To avoid this situation, all viewports in the display 
structure are initially concatenated with a default viewport in the top display 
structure which maps to a square of 864 x 864 (Figure 8-36). 

Viewing Operations GTS-39 



GTS-40 

-1 0 +1 
863 ' ·' ·' ·' .· .. · ..... , .. ,. ' ·' .... · ....... ·. ·' ''.·+1 

~"'-Displayable~I 
I Screen t 

431 390 origin X (O,O) 0 

0 

PS 390 Logical Pl ~i::z:::z::::z::::::::?C!~=~ez:::::::.t::L::z::::!2:::ci1z;:::z::z:::z::::!l:::::z:::z::=:===~='lp;1:::::z::1 ~1 
{ 

-1 +1 

Physical 0 79 943 1023 

Logical Coordinates 

Figure 8-36. PS 390 Display 

4.3.1 Overriding the Default Viewport 

If you want to override the default viewport and use the entire displayable 
rectangular screen area as a non-square viewport, the following commands 
can be entered: 

Configure A; 
VPF1$ := Viewport Horizontal = -0.998: .998 

Vertical = -0.685:1 
Intensity = 0:1 

Then HVP1$; 
Finish Configuration; 

Graphics Tutorials 



This will cause all the subsequent VIEWPORT and LOAD_ VIEWPORT 
commands in the structure to be concatenated with this rectangular 
viewport. In doing so, however, your data must account for the nonsquare 
viewport. 

To re-establish the default viewport, use either the commands 

or 

Configure A; 
VPF1$ := Viewport Horizontal= -0.8425:0.8425 

Vertical = -0.685:1 
Intensity = 0:1 

Then HVP1$; 
Finish Configuration; 

Screensave := F:Screensave; 

Note that the INITIALIZE command does not restore the original viewport. 
Also note that you cannot override the default viewport with the 
LOAD VIEWPORT command. 

4.4 Operations in the Static Viewport 

The following types of rendering styles are displayed in the static viewport: 

• Wash shading 

• Flat shading 

• Gouraud shading 

• Phong shading 

• Raster hidden-line removal 

A complete description of rendering operations can be found in Section 
GTJ 3 Polygonal Rendering. 

4. 5 Specifying a Static Viewport 

There is no PS 390 specific command to specify static viewports. Specifying 
a static viewport boundaries is done by sending a 3D vector to input <3> of 
SHADINGENVIRONMENT. Refer to section RM3 Initial Function Instances 
for a complete description of the SHADINGENVIRONMENT function. 

Viewing Operations GT8-41 



A 3D vector sent to input <3> of SHADINGENVIRONMENT specifies view­
port pixel values. For example, 

Send V3D ( 80, O, 863) to <:~>SHADINGENVIRONMENT; 

would be a valid command to specify a square static viewport of 864 by 864 
pixels on the PS 390. Static viewports cannot be nonsquare; they must al­
ways be specified as a square viewport. Specifying a viewport by sending to 
input <3> of SHADINGENVIRONMENT is completely independent from 
dynamic viewport specifications as it does not create a viewport node in the 
display structure. 

4.6 Clearing Viewports to Static or Dynamic 

GT8-42 

It is also possible to clear either the current viewport or the entire PS 390 
screen and specify if the viewport is to be treated as a dynamic or static 
viewport. This is done by sending an integer or Boolean to input <7> of 
SHADINGENVIRONMENT. 

4.6.1 Clearing to Static 

Sending either a True or a fix (0) to input <7> clears the entire screen to 
static and causes a screen wash with the current static background color. 
Sending a False or fix (1) to input <7> clears only the currently specified 
static viewport and causes the viewport to be filled with the current static 
background color. When requesting another rendering to be displayed in a 
current static viewport, it is not necessary to clear the viewport first, since 
this is accomplished by requesting a new rendering. Refer to Section GTJ 3 
Polygonal Rendering for more information. 

4.6.2 Clearing to Dynamic 

Sending a fix (2) to input <7> clears the entire screen to dynamic and 
causes a screen wash with the current dynamic background color. This must 
be done to clear either a shaded image or a dynamic image (from the entire 
screen or viewport), before displaying a new dynamic image. Sending a fix 
(3) to input <7> clears only the currently specified dynamic viewport with 
the current dynamic background color. To prevent images from being 
corrupted, do not display an image or use the terminal emulator in an area 
of the screen that already has an image without first clearing the screen (or 
viewport) with a dynamic wash. Refer to Section RM3 Initial Function 
Instances for more details on the SHADINGENVIRONMENT function. 

Graphics Tutorials 



4. 7 Displaying Multiple Viewports 

The PS 390 allows multiple combinations of dynamic and static viewports to 
be displayed simultaneously. Because of this flexibility in defining the 
usable screen space, it is necessary that the code be organized so that 
images or viewports do not overlap each other. The overlapping of dynamic 
images on static viewports will corrupt the static image. 

To illustrate the capability of multiple viewports, the exercises that follow 
create four dynamic views that can be displayed simultaneously. The four 
views are: 

• In the lower left quadrant, the Car is displayed as a side view in an 
orthographic window. 

• In the lower right quadrant, the Car is displayed as a front view in an 
orthographic window. 

• In the upper right quadrant, the Car is displayed as a top view in an 
orthographic window. 

• In the upper left quadrant, the Car is displayed in a perspective 
window. 

4. 7 .1 Exercise 

Create the four views by applying the following VIEWPORT definitions: 

DISPLAY Four_View; 

Four_View := INSTANCE OF Side, Front, Top, Persp; 

Side := VIEWPORT 
HORIZONTAL= -1:0 
VERTICAL= -1:0 APPLIED TO Car; 

Front := BEGIN_STRUCTURE 

Viewing Operations 

VIEWPORT 
HORIZONTAL= 0:1 
VERTICAL= 0:-1; 

LOOK 
AT 0,0,0 
FROM .1,0,0 

END_STRUCTURE; 
APPLIED TO Car; 

GTS-43 



Top·:= BEGIN_STRUCTURE 
VIEWPORT 

HORIZONTAL= 0:1 
VERTICAL= 0:1; 

LOOK 
AT 0,0,0 
FROM 0, .1,0 

END_STRUCTURE; 
APPLIED TO Car; 

Persp := VIEWPORT 
HORIZONTAL= -1:0 
VERTICAL= 0:1 APPLIE:D TO Perspective; 

If you have rebooted, changed modes, or initialized the system since you 
began this section, you will need to add the two following lines of code to 
the above listing: 

Perspective : = FIELD_OF _ _YIEW 28 FRONT=4. 5 BACK=7 
APPLIED TO Look; 

Look := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Car; 

4. 8 Using N onsquare Viewports 

GT8-44 

Nonsquare viewports are applicable to dynamic viewports only. Sometimes 
a nonsquare viewport is needed. The dimensions of -1 to 1 in width and 
height apply to nonsquare viewports as well (see Figure 8-37). 

-1 1 
-1 1 

-1 1 

c=)_l 
---------1 -----1 U390211 

Figure 8-37. Dimensions of a Nonsquare Current Viewport 

Graphics Tutorials 



A nonsquare viewport can cause distortion of displayed data. To compen­
sate for such distortion, objects can be viewed in a nonsquare window. This 
window must have the same height to width ratio (aspect ratio) as the view­
port. For example, if the aspect ratio of a viewport is 1 :2, half as wide as it 
is high, the window displayed in the viewport must also be half as wide as it 
is high to eliminate distortion that results from viewport mapping. 

Orthographic windows are the only windows that can have nonsquare front 
boundaries. Perspective windows always have square front boundaries, so 
objects are distorted if a perspective window is displayed in a nonsquare 
viewport. 

Unmatched aspect ratios can sometimes be used to advantage. A variety of 
effects can be achieved using this distortion. Cubes can become bricks in a 
viewport that is wider than it is high. Circles can become ellipses; 
econo-sedans can become sleek sports cars. 

4.8.1 Exercise 1 

Map a square window to a nonsquare dynamic viewport to observe the re­
sulting distortion. First impose the PS 390 default orthographic (square) 
window by removing the previous perspective view: 

REMOVE Four_View; 

Then create the nonsquare viewport: 

Nonsquare := VIEWPORT 
HORIZONTAL=-.5:.5 
VERTICAL=-1:1 APPLIED TO Car; 

DISPLAY Nonsquare; 

The default window around the. Car is compressed to fit in the width of the 
narrow viewport. The result is distortion: a tall car (see Figure 8-38). 

Viewing Operations GT8-45 



GT8-46 

-.5 

I 
Nonsquare 
Viewport 

I 
I I 

~ 
I I 
I I 

-1 U390212 

Figure 8-38. Square Window Mapped to a Nonsquare Viewport 

4.8.2 Exercise 2 

Compensate for the distortion by creating a nonsquare window for the 
nonsquare viewport by entering: 

Nonsquare_Window := WINDOW 
x = -1:1 

Y = -2:2 APPLIED TO Nonsquare; 

DISPLAY Nonsquare_Window; 

REMOVE Nonsquare; 

When this window is applied to the viewport, its aspect ratio is equivalent to 
the aspect ratio of the viewport, so the car appears in the nonsquare view­
port without distortion (see Figure 8-39). 

Graphics Tutorials 



-.5 
Nonsquare 
View ort .5 

1 

I 
I I 
I I 
~ 
I I 
I I 

-1 
U390213 

Figure 8-39. Nonsquare Window Mapped to a Nonsquare Viewport 

To clear the display enter: 

REMOVE Nonsquare_Window; 

4.9 Setting an Intensity Range for a Window in the Dynamic Viewport 

A dynamic viewport specification can also set an intensity range for the 
window displayed in the viewport. This intensity mapping is another facet of 
the window-to-viewport mapping process. 

Remember that the maximum and minimum intensities for an orthographic 
or perspective window are anchored at the front and back boundaries of the 
displayed window. The default intensity range is from 0 (dimmest, back 
boundary) to 1 (brightest, front boundary). 

Set the dynamic viewport boundaries to the upper right quadrant of the 
screen. To change the maximum and minimum intensities, compress the 
intensity range from .25 (quarter) to . 75 (three-quarters). The car in the 
viewport will appear slightly dimmer. 

Viewing Operations GTB-47 



Display Car; 

New_Range .- VIEWPORT 
HORIZONTAL=O:l 
VERTICAL=O:l 
INTENSITY=.25: .75 
APPLIED TO Car; 

Display New_Range; 

The intensity ranges of nested viewports affect each other. If Viewport2, 
with a range of .25 to . 75, is defined in terms of a current viewport having 
an identical intensity range of .25 to . 75, Viewport2 will have an intensity 
range of .375 to .625. 

REMOVE New_Range; 
REMOVE Car; 

5. Viewing Attributes 

You are now familiar with viewing transformations, which let you create 
any number of views of objects . . . and with viewports, which allow you to 
display objects anywhere on the screen. The last set of viewing operations 
you can specify add a further range of possibilities to the images that are 
displayed. These operations let you set attributes in the structure of a model 
to enhance its usefulness. 

In particular, viewing attributes allow you to specify the: 

• Intensity at which lines are drawn in the dynamic viewport 

• Colors of lines that form the image in the dynamic viewport 

Viewing attributes differ from viewing transformations (line of sight and 
windows) in that they are not matrix operations. Consequently, they can be 
placed above windows (WINDOW, FIELD_OF_VIEW, EYE BACK) and 
LOOK transformations in a display structure. 

5 .1 Setting Intensity 

GT8-48 

Remember that with the VIEWPORT and the LOAD VIEWPORT com­
mands, an intensity range can be specified which applies to the window 
being displayed in the current dynamic viewport. In addition to this method, 
dynamic viewport intensity can be manipulated using the SET INTENSITY 
attribute. 

Graphics Tutorials 



The SET INTENSITY attribute is a non-matrix operation that overrides and 
replaces the intensity range set in the viewport specification. In fact, SET 
INTENSITY can be switched on and off, allowing you to easily and directly 
switch intensities between the values in the viewport specification and the 
values in the SET INTENSITY node. 

A set intensity node can be switched on and off via function networks. 
SENDing (or CONNECTing) a Boolean value to a SET INTENSITY node 
toggles the ON/OFF condition of the node. (Refer to Section RM I Command 
Summary for details.) 

In a series of SET INTENSITY commands, the last one ON determines the 
intensity range in effect. For example: 

One := BEGIN_STRUCTURE 
a := VIEWPORT 

HORIZONTAL=-1:1 
VERTICAL=-1:1 
INTENSITY=.5:1; 

b := SET INTENSITY ON 0:1; 
c := SET INTENSITY ON 1:1; 
INSTANCE OF object; 
END_STRUCTURE; 

DISPLAY One; 

When One is displayed, the intensity range is 1: 1, the last specified intensity 
range. 

A SET INTENSITY OFF command does not cancel a previous SET 
INTENSITY ON command. For example: 

Two := BEGIN_STRUCTURE 
a := VIEWPORT 

HORIZONTAL=-1:1 
VERTICAL=-1:1 
INTENSITY=.5:1; 

b := SET INTENSITY ON 0:1; 
c := SET INTENSITY OFF .8:1; 
INSTANCE OF object; 
END_STRUCTURE; 

DISPLAY Two; 

The intensity range in effect is 0: 1 since that is the range specified in the 
last SET INTENSITY command to be ON in the series. You can set the 
intensity range to .8:1 by SENDing a TRUE to <l>Two.c. 

Viewing Operations GT8-49 



Other operations and definitions can affect intensity. The VECTOR_ LIST 
command lets you separately specify the intensity of each vector in the list. 
If this is done, those vector intensities are affected by the intensity range of 
the VIEWPORT. If the object has very bright vectors in the background and 
dim vectors in the foreground, the effect of depth cueing could bring them 
to a nearly equal intensity by brightening the near, dim vectors and 
dimming the far, bright vectors. (Ref er to the Section RM I Command 
Summary for information on assigning intensities to vectors using the 
VECTOR LIST command.) 

5.2 Setting Color 

GT8-50 

It is possible to display entire objects (vector lists or character strings) in the 
same color. Color is specified in terms of hue and saturation. The hue is a 
color, such as red or blue. The saturation is the amount of color versus the 
amount of white in the hue. Red at high saturation is full-toned; red at low 
saturation is pink. All hues are white at 0 saturation. 

The intensity, or brightness, of any hue/saturation combination depends on 
factors other than the color specification. These factors include such things 
as the intensity range of the viewport, and the condition of a SET 
INTENSITY command. 

The PS 390 lets you choose from 120 hues. Selectable hues correspond to 
the values on the color wheel shown in Figure 8-40, with blue at 0 and 360, 
red at 120, and green at 240. 

GREE 
240 

BLUE 
360,0 

YELLOW 
180 

ED 
120 

U390082 

Figure 8-40. Color Wheel 

Graphics Tutorials 



In effect, then, color is specifiable in 3-degree increments around the color 
wheel. Hue values from 0 to 2 select the same hue; hue values from 3 to 5 
select the same hue, etc. 

The saturation of any hue is specified as a value from 1 to 0, or from 
full-color saturation to no color (white). The default saturation is full (1). 

Color and saturation is set as follows: 

Blue_Car := SET COLOR 0,1 APPLIED TO Car; 

where 0 indicates the color (blue) and 1 is the saturation (full). 

5.2.1 Exercise 

Make the Car red, fully saturated. 

Redcar := SET COLOR 120,1 APPLIED TO Car; 

DISPLAY Redcar; 

Change the color settings and watch what happens to the color of the car: 

Same hue, less saturated: 

Redcar := SET COLOR 120, .3 APPLIED TO Car; 

The car appears to be light pink. For a new hue, full saturation enter: 

Redcar := SET COLOR 240,1 APPLIED TO Car; 

New hue midway between red and green-yellow, full saturation: 

Redcar := SET COLOR 180,1 APPLIED TO Car; 

Make the wheels of the yellow Car a different color than the car body by 
specifying a new color (green) for the tires only. 

PREFIX Tire WITH SET COLOR 240,l; 

INITIALIZE DISPLAY; 

Viewing Operations GTS-51 



6. Viewing Summary 

GT8-52 

Viewing consists of placing an object in :front of you by defining a line of 
sight (LOOK), defining a window (WINDOW, FIELD_ OF_ VIEW, EYE 
BACK), and setting up a portion of the PS 390 screen to display the window 
in (VIEWPORT). 

If an object is viewed without specifying a line of sight, a window, or a 
viewport, defaults are supplied by the system. The default view has a line of 
sight from the origin (0,0,0) looking straight along the positive Z axis. In the 
default window, objects appear as orthographic views. The default viewport 
is the dynamic full screen. 

The WINDOW command creates orthographic views. The 
FIELD OF VIEW and EYE BACK commands create perspective views. 
With FIELD_ OF_ VIEW, the line of sight is perpendicular to the front and 
back boundaries of the frustum of vision. With EYE BACK, the line of sight 
can be off set, creating a skewed frustum of vision. 

Non-matrix viewing attributes may be used to set intensity in the dynamic 
viewport, to display entire objects in color in the dynamic viewport, and to 
enable and disable the display of objects on selected screens. 

The following sections summarize concepts in this section. 

Important Concepts for LOOK 

• The LOOK transformation defines a line of sight in the world coordi­
nate system in terms of a point to look from and a direction in which 
to look. 

• If no LOOK is specified, the system defaults to a LOOK from 0, 0, 0 
along the positive Z axis (AT 0,0, 1). 

• An UP direction can be specified as part of any LOOK 
transformation. 

• If the line of sight coincides with the UP direction, the system defines 
positive Y relative to the LOOK AT point to be up in the new view. 

Graphics Tutorials 



• The command format to specify a LOOK is: 

name := LOOK AT X,Y,Z FROM X,Y,Z APPLIED TO Name2; 

or 

name := LOOK FROM X,Y,Z AT X,Y,Z APPLIED TO Name2; 

• The LOOK transformation is done in a 4x3 matrix. To work cor­
rectly, a LOOK transformation should be placed above all modeling 
transformations (ROTATE, TRANSLATE, SCALE) in the display 
structure and immediately below the windowing transformation 
(WINDOW, FIELD_OF_VIEW, EYE BACK). 

Important Concepts for WINDOW 

• Orthographic windows are specified in terms of X and Y and 
optionally Z. 

• WINDOW s can be defined to be not centered around the X/Y axis. 

• WINDOW s can be specified to be larger or smaller than the default 
window. Large windows encompass more, and therefore make ob­
jects appear smaller than they appear in smaller windows. 

• Objects or parts of objects within a window are displayed when the 
window is displayed. 

• Objects or parts of objects outside a window are clipped from view. 

• Depth clipping at Z boundaries is not in effect unless you put it into 
effect. 

• Depth cueing, the variation of intensity that imparts an illusion of 
depth to displayed obje.cts, is anchored at the front and rear (Z) 
boundaries of the wiitdow. Brightest intensity occurs at the front 
boundary and dimmest occurs at the back boundary. 

• WINDOWs are usually square. 

Viewing Operations GT8-53 



GT8-54 

• The command format to specify a WINDOW is: 

name :=WINDOW X=xmin:xmax Y=ymin:ymax [FRONT boundary = zmin 
BACK boundary = zmax] APPLIED TO name!; 

• The WINDOW transformation is done in a 4x4 matrix. To work 
properly, the WINDOW transformation must be the topmost matrix 
node in a display structure. 

Important Concepts for FIELD_ 01!_ VIEW 

• FIELD_ OF_ VIEW is specified in terms of a viewing angle and front 
and back boundaries. 

• The FIELD_OF _VIEW is always centered about the positive Z axis. 
The apex of the pyramid (your eyepoint) is always at 0,0,0. 

• Since the eyepoint is always at 0,0,0, objects must be located on the 
positive Z axis, far enough out to be within the frustum of vision if 
they are to be seen. Usually a LOOK transformation is used to do 
this. 

• The size of the viewing angle in no way distorts the perspective im­
posed on viewed objects. However, the larger the viewing angle, the 
larger the area included in the frustum of vision. Larger angles have 
the effect of making a viewed object appear smaller. 

• Depth clipping is not in effect unless you put in effect with a SET 
DEPTH CLIPPING ON command. 

• Depth cueing is anchored at the front and back boundaries. Brightest 
intensity occurs at the front boundary and dimmest occurs at the 
back boundary. 

• The face of a window created using FIELD OF VIEW is always 
square. That is, it has an aspect ratio of 1. 

• The command format to _specify a FIELD_ OF_ VIEW is: 

name := FIELD_OF_VIEW angle [FRONT boundary = zmin] 
[BACK boundary == zmax] APPLIED to namel; 

• The FIELD_OF _VIEW transformation is performed by a 4x4 matrix. 
The FIELD_ OF_ VIEW operation node must be the topmost matrix 
node and be directly above the LOOK node in the display structure. 

Graphics Tutorials 



Important Concepts About the EYE BACK Command 

• EYE BACK is specified in relative room coordinates to position the 
eye relative to the center of the viewport. Front and back boundaries 
are specified in world coordinates. 

• The face of a window created using EYE BACK is always square. 

• With the EYE BACK transformation, the line of sight is not necessar­
ily collinear with the from/at line in LOOK. 

• If the eye position is not collinear with the from/at line in LOOK, the 
viewing pyramid is skewed. Front and back boundaries remain per­
pendicular to the line of sight established in the LOOK specification. 

• The larger the viewing angle, the larger the area included in the frus­
tum of vision. Larger angles have the effect of making a viewed 
object appear smaller. 

• The command format to specify EYE BACK is: 

name := EYE BACK Z [option l] [option 2] from SCREEN area w 
WIDE [FRONT boundary = zm:in] [BACK boundary = zmax] 
APPLIED TO namel; 

• The EYE BACK transformation is performed by a 4x4 matrix. To 
work properly, the EYE BACK operation node must be above all 
other transformation nodes and directly above the LOOK operation 
node in the display structure. 

Important Concepts About Viewports 

• A viewport is the area of the PS 390 screen to which a window is 
mapped. 

• A viewport may be defined in terms of a current viewport by using 
the VIEWPORT command, or in terms of the full PS 390 screen by 
using the LOAD_ VIEWPORT command. 

• The dimensions of any current viewport are -1 to 1 in X and in Y. 

• Multiple viewports can be displayed simultaneously. 

• Nonsquare dynamic viewports distort displayed objects unless the 
viewed window has the same aspect ratio as the nonsquare viewport. 

Viewing Operations GT8-55 



GT8-56 

• An intensity range for a window (WINDOW, EYE BACK, etc) can be 
specified for a dynamic viewport. 

• The command format to specify a dynamic viewport is either: 

name := VIEWport HORizontal hmin:hmax VERtical = vmin:vmax 
[INTENsity = imin:imax] APPLIED TO namel; 

or 

name := LOAD_VIEWport HORizontal hmin:hmax 
VERtical = vmin:vmax 

[INTENsity = imin:imax] APPLIED TO namel; 

• Static viewports are always square. 

• The command format to specify a static viewport is: 

Send V3D (x,y,z) to <3> SHADINGENVIRONMENT; 

• Mapping a window to a viewport is not a matrix operation, so view­
port specifications can be placed anywhere in relation to matrix op­
erations in a display structure. 

Important Concepts About Viewing Attributes 

• Viewing attributes differ from viewing transformations in that they 
are non-matrix operations. They can be placed above windows (WIN­
DOW, FIELD_ OF_ VIEW, EYE BACK) and LOOK transformations 
in a display structure. 

• The SET INTENSITY attribute manipulates viewport intensity. SET 
INTENSITY can be switched on and off, varying intensities between 
values in the viewport specification and values in the SET 
INTENSITY command. 

• In a series of SET INTENSITY commands, the last one ON deter­
mines the intensity range in effect. 

• A SET INTENSITY OFF command does not cancel a previous SET 
INTENSITY ON command. 

• The SET COLOR attribute allows you to display entire objects as a 
single color. Color is specified in terms of hue and saturation. Hue is 
specifiable in 3-degree increments around a color wheel. Saturation 
is specified as a value from 1 to 0. 

Graphics Tutorials 





GT9. CONDIDONAL REFERENCING 

SELECTING PORTIONS OF A MODEL FOR DISPLAY 

CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

0 BJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

PREREQUISITES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1. USING CONDITIONAL-BIT ATTRIBUTE SETTINGS . . . . . . . . . . 3 

1.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2. USING LEVEL-OF-DETAIL CONDITIONAL REFERENCING . . 9 

2.1 Determining the Order for Overlaying Detail . . . . . . . . . . . . . . . . 10 
2.2 Using Level-of-Detail Settings to Animate An Object . . . . . . . . . 12 
2.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

3. USING RATE ATTRIBUTE SETTINGS . . . . . . . . . . . . . . . . . . . . . . . 14 

3.1 Creating the SET RATE Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
3.2 Creating the IF PHASE Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
3.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
3 .4 Some Uses for Timed Blinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

4. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 

i 



ILLUSTRATIONS 

Figure 9-1. Display Structure Including Conditional Referencing Nodes . . . . . 2 
Figure 9-2. Car Display Structures . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Figure 9-3. Molecule Display Structure . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Figure 9-4. Display Structure for Conditional Referencing in Molecule . . . . . . 7 
Figure 9-5. Function Network for Conditional-Bit Control . . . . . . . . . . . . . . . . . 8 
Figure 9-6. Level-of-Detail Structure for the World . . . . . . . . . . . . . . . . . . . . . . . 12 
Figure 9-7. Turbine Blade Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

ii 



Introduction 

Section GT9 

Conditional Referencing 

Selecting Portions Of A Model For Display 

Conditional referencing is the referencing of data only when certain conditions are 
met. It is a way to display selected branches of a display structure without display­
ing other branches. It is useful, for example, if you have a model that you would 
like to add parts to or take parts from, showing various stages of development or 
assembly. 

There may be layers of detail in your model that you would like to be able to 
overlay or strip off. An example of adding detail might start with an outline map of 
the United States, then sequentially add major rivers, mountain ranges, state bor­
ders, major cities, county borders, etc. 

You might also want to display different views of an object at different times to 
animate an object, or alternately display and blank an object at a selectable rate 
(blinking). 

These kinds of operations are achieved with conditional referencing, using three 
methods: conditional-bit settings, level-of-detail settings, and rate settings. 

To use conditional referencing, a minimum of two nodes must be placed in a 
display structure. The first node (called a SET node) sets a condition. A hypotheti­
cal PS 390 command to do this might be: 

THE CONDITION IS 1 

The second node (called an IF node) tests the condition and makes the traversal of 
the branch (and therefore the display of data indicated by that branch) dependent 
on the condition in the SET node: 

IF THE CONDITION IS 1 THEN DISPLAY Objectl 
IF THE CONDITION IS 2 THEN DISPLAY Object2 

Conditional Referencing GT9-l 



GT9-2 

Figure 9-1 shows these nodes in a display structure. These nodes are attribute 
nodes and follow the same rules of piacement and of use as operation nodes. 

Cond _Object 

Object1 Object2 

U390091 

Figure 9-1. Display Structure Including Conditional Referencing Nodes 

In the above example, displaying the SET node (Cond_Object) will result in 
Objectl being displayed and Object2 not being displayed. This is because the 
condition is not satisfied for the branch with Object2. By changing the condition 
from 1 to 2 in the SET node, Object2 will be displayed and Objectl will not be 
displayed. 

The values in both the SET node (Cond __ Object) and the IF nodes (Objectl, 
Object2) can be changed interactively. For example, the two branches could be 
alternately displayed by toggling the numbers in the SET node between 1 and 2. 

Objectives 

In this section, you will learn to display selected parts of your display struc­
ture using: 

• Conditional-bit attribute settings 

• Level-of-detail attribute settilngs 

• Rate attribute settings 

Graphics Tutorials 



Prerequisites 

Before reading this section, you should be familiar with the rules for using 
opt:ration nodes in display structures (Section GT4 Modeling), and the differ­
ences between matrix operations and attribute operations (Section GT2 
Graphics Principles.) 

1. Using Conditional-Bit Attribute Settings 

Conditional bits are used to display selected branches of a display structure, 
independent of whether other branches are displayed. Branches of a display 
structure that have IF nodes that are not satisfied by the condition are not 
traversed by the display processor and are therefore excluded from dis­
played data. 

The SET CONDIDONAL_BIT node is used to set any of 15 conditional bits 
(0-14). By placing the SET CONDIDONAL_BIT node above an instance 
node, bit settings affect all branches under the instance node. The SET node 
is created with the SET CONDIDONAL_BIT command. The syntax is as 
follows: 

where: 

name := SET CONDITIONAL_BIT n switch APPLIED TO namel; 

n is an integer from 0 to 14, corresponding to the conditional bit to 
be set ON or OFF. 

switch is either ON or OFF. All bits default to OFF. 

namel is the descendent node of the conditional bit node. 

For example, the following command creates a SET node and sets BIT 2 
ON APPLIED TO Car. 

Pattern := SET CONDITIONAL_BIT 2 ON APPLIED TO Car; 
Car := INSTANCE OF Body, Wheels; 

When you create a SET node, you explicitly set one bit ON or OFF. How­
ever, all 14 bits default to OFF. So if you enter the command: 

name := SET CONDITIONAL_BIT 1 ON APPLIED TO namel; 

then bit 1 is ON, and bits 2-14 are OFF. All bits can be changed by sending 
values to an input of the SET node. 

Conditional Referencing GT9-3 



GT9-4 

Inputs to the SET CONDffiONAL_BIT node are as follows: 

Boolean-----> <1> Sets the original bit (n) 
to be ON (T) or OFF (F). 

Integer-----> <2> Sets bit number input (0-14) 
ON. 

Integer-----> <3> Sets bit number input (0-14) 
OFF. 

Integer-----> <4> Disables bit number input 
(0-14) from being affected 
by this node. 

Integer-----> <5> Toggles bit number input (0-14). 

The SET node controls the states of the conditional bits and it is only 
through the SET node that the conditions of all 15 bits are changed. If bit 5 
was originally set to ON and then you want to set it to OFF, it could be done 
in any of the following three ways: 

• Sending the integer 5 to input:<3> of the SET node. 

• Sending a FALSE to input<l> of the SET node. 

• Sending the integer 5 to input<5> of the SET node. 

Of course, the SET node is useless unless you have an IF node that tests the 
condition set by the SET node. The IF node tells under which condition a 
branch will be traversed for display. 

IF nodes are created with the IF CONDIDONAL_BIT command. The syntax 
is as follows: 

where: 

name .- IF CONDITIONAL_BIT n switch APPLIED TO namel; 

n is an integer from 0 to 14, indicating which bit to test. 

switch is the setting to be tested, ON or OFF. 

namel is the descendent of the IF node. 

Graphics Tutorials 



The IP CONDITIONAL_BIT node has one input that accepts an integer 
(0-14) to change the bit number in the node. 

In the following command sequence, when Car is displayed, Wheels would 
also be displayed. 

Set := SET CONDITIONAL_BIT 4 ON APPLIED TO Car; 
PREFIX Wheels WITH IF BIT 4 IS ON; 

If bit 4 of Car is set to OFF or the condition in Wheels is changed to OFF, 
then the test in Wheels would fail and Wheels would not be displayed. 

The display structure for Car that this command sequence creates in shown 
in Figure 9-2. 

Body Body 

Wheels 

(Original Display Structure) 

(After Conditional Referencing) 

U390092 

Figure 9-2. Car Display Structures 

Figure 9-3 is a display structure for a molecule for which conditional refer­
encing will be implemented. 

Conditional Referencing GT9-5 



GT9-6 

Figure 9-3. Molecule Display Structure 

In Figure 9-3 notice that Molecule is made up of an instance node pointing 
to 8 SET COLOR nodes for parts of the molecule. The eight parts can be 
controlled separately for display by placing a SET node and eight IF nodes 
in the structure. 

The molecule will be set with the following conditions. 

Bit No. Condition Result 

1 OFF Branch l (MolecO_Color) will be displayed 
2 OFF Branch 2 (Molecl_Color) will be displayed 
3 OFF Branch 3 (Molec2_Color) will be displayed 
4 OFF Branch 4 (Molec3_Color) will be displayed 
5 OFF Branch 5 (Molec4_Color) will be displayed 
6 OFF Branch 6 (Molec5_Color) will be displayed 
7 OFF Branch 7 (Molec6_Color) will be displayed 
8 OFF Branch 8 (Molec7_Color) will be displayed 

The display structure to implement this is shown in Figure 9-4. 

Graphics Tutorials 



Selector 

U390094 

Figure 9-4. Display Structure for Conditional Referencing in Molecule 

1.1 Exercise 

Add conditional-bit referencing to the _display structure for Molecule. The 
first step is to place a SET node above the instance node Molecule. Do this 
by entering: 

Selector := SET CONDITIONAL_BIT 1 OFF APPLIED TO Molecule; 

Remember, even though the command says to set only conditional bit 1 
OFF, this one node may be used to separately control the ON/OFF condi­
tion of all 15 conditional bits~ Also, note that the condition of the other 14 
bits defaults to OFF. 

Next place nodes at the top of each branch under the instance node so that 
the branches will be separately selectable for display. To do this, redefine 
Molecule as follows. 

Conditional Referencing GT9-7 



GT9-8 

Molecule := BEGIN_STRUCTURE 

IF BIT 1 IS OFF THEN MolecO_Color; 
IF BIT 2 IS OFF THEN Molecl_Color; 
IF BIT 3 IS OFF THEN Molec2_Color; 
IF BIT 4 IS OFF THEN Molec3_Color; 
IF BIT 5 IS OFF THEN Molec4_Color; 
IF BIT 6 IS OFF THEN Molec5_Color; 
IF BIT 7 IS OFF THEN Molec6_Color; 
IF BIT 8 IS OFF THEN Molec7_Color; 

END_STRUCTURE; 

You have built the display structure that allows conditional-bit referencing 
in Molecule. Notice that the molecule is displayed because all conditional 
bits are set OFF. To remove parts of the molecule from display, bits must 
be set ON. 

To control the ON/OFF condition of the eight bits that affect the branches 
of this display structure, a function network can be used to connect the 
function keys to the SET node named Selector. That network is shown in 
Figure 9-5. 

FKEYS 
<1> 
<2> 
<3> 
<4> 
<5> 
<6> 
<7> 

--8 Selector 

<8> 
<9> 

<10> 
<11> 
<12> 

U390094 

Figure 9-5. Function Network for Conditional-Bit Control 

FKEYS will output integers corresponding to the number of the pressed 
function key. lnput<5> to the SET CONDITIONAL_BIT node toggles the 
setting of the bit corresponding to the integer received. For example, if bit 6 
is OFF, pressing function key F6 will turn bit 6 ON. 

Graphics Tutorials 



Enter the following commands to build the network. 

CONNECT FKEYS<1>:<5>Selector; 

The display structure is now designed to allow conditional display of parts 
of the molecule (MolecO _Color through Molec7 _Color). Also, the function 
keys have been connected to control this display. 

One step remains in this particular case. The values used to define the 
molecule are large. The molecule has a diameter of some 45,000 units. To 
see the molecule, put a window around it and disable depth cueing by enter­
ing: 

now, 

Molecule_View := WINDOW 
X=-22500:22500 
Y=-22500:22500 
FRONT BOUNDARY = -22500 
BACK BOUNDARY = 22500 APPLIED TO Intensity; 

Intensity SET INTENSITY ON 1:1 APPLIED TO Selector; 

DISPLAY Molecule_View; 

Press SHIFf/LINE LOCAL (PS 300-style keyboard) or press CTRL/LOCAL 
(PS 390-style keyboard) to enable the function keys. Use keys Fl through 
F8 to toggle the display of the parts of the molecule. 

When you are finished enter: 

REMOVE Molecule_View; 

2. Using Level-of-Detail Conditional Referencing 

The conditional-bit method shown for the molecule is usually used when 
you need to separately control the display of branches of your display struc­
ture in a variety of sequences. In the level-of-detail method, the parts of a 
model are always displayed and removed in a predetermined sequence. 

Level-of-detail is usually used to overlay detail on your picture. For exam­
ple, progressive detail could be added to an outline of a sphere (world) to 
add continents, mountain ranges, states, etc. Level-of-detail can also be 
used to run animation sequences comprised of a series of separate picture 
definitions. 

Conditional Referencing GT9-9 



Unlike conditional-bit referencing where 15 variables (bits) are set, only one 
variable is set using the level-of-detail method. All IF nodes are tested 
against that one variable in the SET node .. 

The command to create a SET LEVEL_OF_DETAIL node is as follows. 

where: 

name := SET LEVEL_OF_DETAIL TO n APPLIED TO namel; 

n is an integer from 0 to 32767 indicating the level of detail value. 
(The default n is 0.) 

namel is the descendent of the SET node. 

The input for updating the SET LEVEL_OF_DETAIL node is: 

Integer--------> <1> Changes the level of detail 
(0-32767) to the value of the 

received integer. 

2.1 Determining the Order for Overlaying Detail 

GT9-10 

Because level-of-detail controls the display of branches in a determined or­
der, the conditional statements are expressed as relationships rather than 
the two-state (ON/OFF) type used in conditional-bit references. 

These relationships are: 

Less Than < 
Less Than Or Equal To <= 
Equal To 
Not Equal To <> 
Greater Than Or Equal To >= 
Greater Than > 

and are specified in the IF LEVEL_ OF_ DETAIL node. The command to 
create this IF node is as follows. 

Graphics Tutorials 



where: 

name .- IF LEVEL_OF_DETAIL relationship n THEN namel; 

relationship is the relationship to n to be tested ( <, <=, =, <>, >=, >). 

n is an integer from 0 to 32767 indicating the number (along with the 
previous relationship) to compare against the current level of detail 
setting (the default n is O). 

namel is the descendent of the IF LEVEL OF DETAIL node. 

The IF LEVEL OF DETAIL node has one input that accepts an integer 
(0-32767) to change the value in the node. 

With the following command sequence, 

A := SET LEVEL_OF_DETAIL TO 3 THEN B; 
B := IF LEVEL_OF_DETAIL = 3 THEN C; 
C := VECTOR_LIST ..... ; 

initially when A is displayed, C is also displayed. If the level-of-detail is 
changed to something other than 3, then the test in B fails and C is not 
displayed. 

An example of adding detail is to start with a sphere and add continents, 
mountain ranges, and countries. To display the parts of the world in this 
order (and turn them OFF in the reverse order): 

Sphere 

Continents 

Mountain Ranges 

Countries 

the sphere needs to be displayed first and remain on while all subsequent 
parts are displayed. 

The continents need to be added next, the mountain ranges and then the 
countries. If the sphere is displayed whenever there is a value of 1 or 
greater in the SET node, and the subsequent parts are displayed for values 
equal or greater than 2, 3, and 4, respectively, the desired effect is 
achieved. 

The display structure that sets up such a level-of-detail condition is shown in 
Figure 9-6. 

Conditional Referencing GT9-l I 



Sphere 

Continents Mountain 
Ranges 

Countries 

U390095 

Figure 9-6. Level-of-Detail Structure for the World 

By changing the value of the integer in the SET node, the parts of the 
sphere can be laid on and stripped off. If the integer 2 is sent to the SET 
node, then the sphere and the continents are both displayed because both 
branches of the display structure meet the condition tested against the SET 
node. If the integer 3 is sent to the SET node, the sphere, the continents, 
and the mountain ranges are all displayed. If the integer 4 is sent to the SET 
node, the entire structure is displayed. The details of the sphere can be 
stripped off by decreasing the value in the SET node. 

2.2 Using Level-of-Detail Settings to Animate An Object 

GT9-12 

An example of using level-of-detail settings for animation is in the turbine 
blade portion of the PS 390 Demonstration Package. The turbine blade is 
defined as a sequence of turbine blades in slightly different positions. A 
clock is used to advance the level of detail settings resulting in the display 
sequence and the apparent motion of the turbine blade. The structure that 
sets this up is similar to the one shown in Figure 9-7. 

Graphics Tutorials 



Clock Values---

Frame ___ _ 

1 

Frame 
2 

Frame 
3 

Frame 
4 

Frame 
5 

Figure 9-7. Turbine Blade Structure 

___ __.Frame 

U390096 

Frame 
6 

8 

Frame 
7 

The topmost node is the one supplied with clock values through a function 
network to step through the sequence of pictures corresponding to the refer­
enced branches in the display structure. Note that in animation, detail is not 
laid over a displayed picture. Instead, sequences of pictures are displayed. 

2 .. 3 Exercise 

Using the Tutorial Demonstrations select the Level-of-Detail Program from 
the menu. 

The ANIMATED_CYLINDER in this demonstration is a good example of 
how level-of-detail settings can be used for local animation. 

Conditional Referencing GT9-13 



3. Using Rate Attribute Settings 

The third type of conditional referencing allows you to blink an object or 
display structure branch under control of the refresh rate of the PS 390 
display, an internal PS 390 clock, or an external clock. This type of condi­
tional referencing can cause an object to blink or to be displayed alternately 
with another object. (For example, one part might be displayed for one 
second, then that part is removed while another part is displayed for a sec­
ond, etc.) 

Like the other types of conditional referencing, blinking requires two nodes. 
One node sets a blink rate in terms of phase ON and OFF durations. The 
other if node tells tell whether an object or branch will be displayed during 
the ON phase or the OFF phase. 

3.1 Creating the SET RATE Node 

The command to create the SET RA TE node is: 

where: 

name : = SET RATE phase __ ON phase_OFF [ ini tial_state] [delay] 
APPLIED TO namel; 

phase_ ON phase_ OFF are integers designating the durations of the 
ON and OFF phases, respectively, in refresh frames. 

initial_state is either ON or OFF, indicating the initial phase (the 
default initial_ state is OFF). 

delay is an integer designating the number of refresh frames in the 
initial state. 

namel is the descendent of the SET RATE node. 

Inputs for updating the SET RATE node are as follows: 

INTEGER----> <1> Changes the phase_on value. 

INTEGER----> <2> Changes the phase_off value. 

BOOLEAN----> <3> Changes the initial_state ON(T)/OFF(F). 

INTEGER----> <4> Changes the delay. 

GT9- l 4 Graphics Tutorials 



A command similar to SET RATE, SET RATE EXTERNAL allows you to 
alter the PHASE attribute via an external source such as a function network 
or a message from the host computer. Refer to Section RM 1 for specific 
details of this command. 

3.2 Creating the IF PHASE Node 

The command to create the IF node to test the ON/OFF state of the phase is 
as follows: 

where: 

name .- IF PHASE IS state THEN namel; 

state is the phase setting under which namel is displayed (ON or 
OFF). 

namel is the descendent of the IF PHASE node. 

If there is no SET RATE node or SET RATE EXTERNAL node higher in 
the structure, the "state" of the PHASE node will always be OFF. 

For example, with the command sequence 

Shape := SET RATE 10 15 APPLIED TO Blink_Shape; 
Blink_Shape := IF PHASE ON THEN Sphere; 
Sphere:= VECTOR_LIST .... ; 

If Shape is displayed, Sphere will be displayed for 10 refresh frames and 
not displayed for 15 refresh frames repeatedly. 

If the command sequence is 

Shape := SET RATE 10 15 APPLIED TO Blink_Shape; 
Blink_Shape := IF PHASE OFF THEN Sphere; 
Sphere := VECTOR_LIST .... ; 

If Shape is displayed, Sphere will be displayed for 15 refresh frames and 
not displayed for 10 refresh frames repeatedly, since the condition is to 
display the vector list when the phase is OFF. 

Conditional Referencing GT9-15 



3.3 Exercise 

This exercise uses the robot created in Section GTS. 

To demonstrate the effects of blinking, add blinking nodes above Robot. 
The blink rate in this exercise will be based on the PS 390 refresh rate. 
First, define a node that sets the rate by entering: 

Blink_Robot := SET RATE 120 60 APPLIED TO If_Robot; 

This sets the ON phase to 120 refreshes and the OFF phase to 60 refreshes. 

Now place a node that determines whether the robot will be displayed in the 
ON phase (and blanked in the OFF phase) or displayed in the OFF phase 
(and blanked in the ON phase). Display robot in the ON phase, by entering: 

If_Robot := IF PHASE IS ON THEN Robot; 

Robot should now blink at a rate of about 2 seconds on and one second 
OFF, when you: 

DISPLAY Blink_Robot; 

Then: 

REMOVE Blink_Robot; 

3.4 Some Uses for Timed Blinking 

GT9-16 

One practical use of the rate setting commands, other than the visual effects 
produced, is that they can synchronize the refresh rate of the display to a 
movie camera to make sure that the frame rate of the camera matches the 
frame refresh rate of the screen, allowing the camera to always be taking a 
frame as the picture is refreshed. 

Stereo views can be created using a split screen (two viewports side by 
side), each half containing the same image and viewed with the EYE BACK 
projection (refer to Section GT8 Viewing Operations). Then each viewport can 
be displayed alternately with the other viewport. By placing an opaque di­
vider between the viewports so each eye can see only one viewport, a 3D 
effect can be generated. 

Graphics Tutorials 



4. Summary 

The flexibility and ease of use of conditional referencing within the display 
structure makes what is often a difficult operation on other graphics ma­
chines easy on the PS 390. 

Conditional referencing allows you to display selected branches of a display 
structure without displaying other branches. These kinds of operations are 
achieved using three methods: conditional-bit settings, level-of-detail 
settings, and rate settings. 

To use conditional referencing, a minimum of two nodes must be placed in 
a display structure. The first node sets up the condition on which all subse­
quent references are tested. The second tests the condition and makes tra­
versal of the branch (display of the data) dependent on the condition in the 
set node. 

Using Conditional Bit Settings 

The conditional-bit method shown is used when you need to separately 
control the display of branches of your display structure in a variety of 
sequences. 

The SET CONDIDONAL_BIT node sets any of 15 conditional bits 
(0-14). By placing the set conditional bit node above an instance node, 
then bit settings affect all branches under the instance node. 

This node is created with the SET CONDffiONAL BIT command. The 
syntax is as follows. 

name := SET CONDITIONAL_BIT n switch APPLIED TO namel; 

where: 

n is an integer from 0 to 14, corresponding to the conditional bit to 
be set ON or OFF. 

switch is either ON or OFF (all bits default to OFF). 

namel is the descendent node of the conditional bit node. 

Conditional Referencing GT9-17 



GT9-18 

IF nodes (to test the condition of the SET node) are created with the IF 
CONDIDONAL_BIT Command. The syntax is as follows: 

name := IF CONDITIONAL_BIT n switch APPLIED TO namel; 

where: 

n is an integer from 0 to 14., indicating which bit to test. 

switch is the setting to be tested, ON or OFF. 

namel is the descendent of the IF node. 

Using Level-of-Detail Conditional Referencing 

When using the level-of-detail method, the parts of the model are always 
displayed and removed in a set sequence. Level-of-detail is usually used 
to overlay detail on your picture. 

Level-of-detail can also be used to run animation sequences comprised of 
a series of separate picture definitions. 

Unlike conditional-bit referencing where 15 variables (bits) are set, only 
one variable is set using the level-of-detail method. All IF nodes are 
tested against that one variable in the SET node. 

The command to create a SET LEVEL OF DETAIL node is as follows. 

name := SET LEVEL_OF_DETAIL TO n APPLIED TO namel; 

where: 

n is an integer from 0 to 32767 indicating the level-of-detail value 
(the default n is 0). 

namel is the descendent of the SET node. 

Determining Order for Overlaying Detaii.l 

Because level-of-detail controls the display of branches in a determined 
order, the conditional statements are expressed as relationships rather 
that the two-state (ON/OFF) type used in conditional-bit references. 

These relationships are specified in the IF_ LEVEL_ OF_ DETAIL node: 

Less Than < 
Less Than Or Equal To <= 
Equal To 
Not Equal To <> 
Greater Than Or Equal To >= 
Greater Than > 

Graphics Tutorials 



The command to create this IF node is as follows. 

name := IF LEVEL_OF_DETAIL relationship n THEN namel; 

where: 

relationship is the relationship to be tested (<, <=, =, <>, >=, >). 

n is an integer from 0 to 32767 indicating the number (along with the 
previous relationship) to compare against the current level-of-detail 
setting (the default n is 0). 

namel is the descendent of the IF LEVEL_OF_DETAIL node. 

Using Level-of-Detail Settings to Animate an Object 

An example of using level-of-detail settings for animation is in the tur­
bine blade portion of the PS 390 Demonstration Package. The turbine 
blade is defined as a sequence of turbine blades in slightly different posi­
tions. A clock is used to advance the level-of-detail settings resulting in 
the display sequence and the apparent motion of the turbine blade. 

Blinking and Alternately Displaying Parts of an Object 

The third type of conditional referencing, rate attribute settings, allows 
you to blink an object or display structure branch under control of the 
refresh rate of the PS 390 display, an internal PS 390 clock, or an exter­
nal clock. This type of conditional referencing can cause an object to 
blink or to be displayed alternately with another object. (For example, 
one part might be displayed for one second, then that part is removed 
while another part is displayed for a second, etc.) 

Like the other types of conditional referencing, blinking requires two 
nodes. One node sets a blink rate in terms of phase ON and OFF dura­
tions. The other IF node tells whether an object or branch will be dis­
played during the ON phase or the OFF phase. 

Conditional Referencing GT9-19 



GT9-20 

Creating the SET RATE Node 

The command to create the SET RATE node is: 

name := SET RATE phase_ON phase_OFF [initial_state] [delay] 
APPLIED TO namel; 

where: 

phase_ON phase_OFF are integers designating the durations of the 
ON and OFF phases, respectively, in refresh frames. 

initial_state is either ON or OFF, indicating the initial phase (the 
default initial_ state is OFF). 

delay is an integer designating the number of refresh frames in the 
initial state. 

namel is the descendent of the SET RATE node. 

Similar to SET RATE, a command SET RATE EXTERNAL allows you to 
alter the PHASE attribute via an external source such as a function net­
work or a message from the host computer. Ref er to Section RM 1 for 
specific details of this command. 

Creating the IF PHASE Node 

The command to create the IF node to test the ON/OFF state of the phase 
is as follows: 

name := IF PHASE IS state THEN namel; 

where: 

state is the phase setting to be tested (ON or OFF). 

namel is the descendent of the SET RATE node. 

If there is no SET RATE node or SET RATE EXTERNAL node higher in 
the structure, the state of the PHASE node will always be OFF. 

Graphics Tutorials 





GTlO. TEXT MODELING 
AND 

STRING HANDLING 

CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

0 BJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

PREREQUISITES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1. USING COMMANDS TO CREATE CHARACTER STRINGS . . . . 2 

1.1 The CHARACTERS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.1.1 Changing Starting Position and Spacing . . . . . . . . . . . . . . . . . . 4 
1.1.2 Exercise ........................ t> • • • • • • • • • • • • • • • • • • • • • 4 
1.2 The LABELS Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.3 When to Use CHARACTERS and LABELS . . . . . . . . . . . . . . . . . 5 

2. USING COMMANDS TO MANIPULATE CHARACTER 
STRINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.1 The CHARACTER ROTATE Command . . . . . . . . . . . . . . . . . . . . . 6 
2.2 The CHARACTER SCALE Command . . . . . . . . . . . . . . . . . . . . . . 6 
2.3 The TEXT SIZE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.3.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.4 Character Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.4.1 World-Oriented Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
2.4.2 Screen-Oriented Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.4.3 Screen-Oriented Fixed Characters . . . . . . . . . . . . . . . . . . . . . . . . 12 

i 



3. USING FUNCTIONS TO MANIPULATE CHARACTERS 
AND STRINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

3.1 Character- and String-Conversion Functions . . . . . . . . . . . . . . . . 13 
3.2 String-Formatting and Reformatting Functions . . . . . . . . . . . . . . 14 
3.3 Miscellaneous String-Handling Functions . . . . . . . . . . . . . . . . . . . 15 
3.4 Character-Transformation Functions . . . . . . . . . . . . . . . . . . . . . . . 15 

4. UPDATING CHARACTERS AND LABELS NODES . . . . . . . . . . . . 16 

4.1 Updating With Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
4.1.1 The COPY Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
4.1.2 The SEND Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
4.1.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
4.2 Updating With Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

5. CREATING AND USING DIFFERENT CHARACTER FONTS . . . 19 

5.1 Creating an Alternate Font . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
5 .2 Using an Alternate Font . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
5.3 The Character-Font Editor Program . . . . . . . . . . . . . . . . . . . . . . . 23 

6. SUMMARY . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

6 .1 Crea ting Text Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
6.2 Manipulating Text With Commands . . . . . . . . . . . . . . . . . . . . . . . . 24 
6.2.1 Transforming Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
6.2.2 Setting Character Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
6.3 Manipulating Text With Functions . . . . . . . . . . . . . . . . . . . . . . . . . 25 
6.4 Text Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
6.5 Updating Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
6.6 Alternate Character Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 



ILLUSTRATIONS 

Figure 10-1. Default Window and Character Size . . . . . . . . . . . . . . . . . . . . . . . . 3 
Figure 10-2. The Effect of the PREFIX Command . . . . . . . . . . . . . . . . . . . . . . . 8 
Figure 10-3. New Node Added with the PREFIX Command . . . . . . . . . . . . . . . 8 
Figure 10-4. Display Structure with TEXT SIZE Node . . . . . . . . . . . . . . . . . . . . 9 
Figure 10-5. TEXT SIZE Node Prefixed with CHARACTER SCALE Node . . . 9 
Figure 10-6. Display Structure for a Labeled Cube . . . . . . . . . . . . . . . . . . . . . . . 10 
Figure 10-7. Inputs to a CHARACTERS Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Figure 10-8. Inputs to a LABELS Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Figure 10-9. Standard A and Simplex Roman A . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Figure 10-10. Standard A and Old English A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Figure 10-11. Display Structure with CHARACTER FONT Node . . . . . . . . . . . 23 

iii 



Section GTlO 

Text Modeling and String Handling 

Introduction 

Text is handled by the PS 390 in the same way as any other graphical item. Char­
acters are defined as data nodes consisting of a single string (a CHARACTERS 
node) or a block of several strings or labels (a LABELS node). Just like other 
graphical items, characters can be transformed through matrices. Because they are 
affected by 3x3 matrices, they can be transformed along with any three­
dimensional object which includes them in its definition. Characters can also be 
rotated and scaled using commands that create 2x2 transformation matrices. These 
matrices transform text while leaving other 2D and 3D graphical data unaffected. 

Strings can be created and manipulated with commands. They can also be manipu­
lated interactively using function networks and interactive devices. 

A standard character font comes with the PS 390. Commands exist which allow 
you to design and use an unlimited number of alternate character fonts. A graphi­
cal character font editor program, MAKEFONT, is also available for designing and 
modifying character fonts. Refer to Section TT7 Character Font Editor, for informa­
tion about this program. 

Text and text-handling nodes are included in display structures. Text strings are 
data nodes and text transformations are operation nodes. The current character 
font is an attribute node which points to a look-up table for the vectors which 
comprise the font in current use. 

Objectives 

In this section you will learn how to: 

• Use commands to create character strings. 

• Use commands to manipulate character strings. 

• Use functions to manipulate characters and strings. 

• Update characters and labels nodes. 

• Create and use different character fonts. 

Text Modeling and String Handling GTJ0-1 



Prerequisites 

Be at a PS 390 and have access to PS 390 Tutorial Demonstration 
Programs. Be familiar with the concepts covered in Sections GT2 Graphics 
Principles, GT4 Modeling, and GTS Command Language. Also have at hand 
Reference Materials 1-4. 

1. Using Commands To Create Character Strings 

Two PS 390 commands create character strings: the CHARACTERS com­
mand and the LABELS command. 

1.1 The CHARACTERS Command 

GTJ0-2 

The CHARACTERS command lets you create a single string of up to 240 
characters and specify the location of that string in the world coordinate 
system. 

The simplest form of the command lets you create a string which starts at 
the origin (the default location). Put the PS 390 in command mode by press­
ing the CTRL/LINE_LOCAL (PS 300-style keyboard) or CTRL/CMND or 
ALT/CMND (PS 390-style keyboard) keys. Use the following command to 
assign the name String to a character string. 

String:= CHARACTERS 'The quality of mercy ... 

Now DISPLAY String. All you can see at the moment is a large T in the 
top-right quadrant and the verticall stroke of the h. This is because each 
character is defined in a square which, by default, is one unit on each side. 
The default starting point for any string is the origin. Since the default 
window is from -1 to 1 in X and Y, only the first letter is within the win­
dow. Figure 10-1 illustrates this. 

Graphics Tutorials 



Def a ult Character 
Size 

r----...,--;;;;;;;;;i:;=;-;r - - - - - T - - - - - , 

Default Window--.., 

-1 

I 
I 
I 
I 
I 
L-----
Q 

-1 

I I 
I I le' I I 
I I _____ ..J... _____ .J 

1 

U390250 

Figure 10-1. Default Window and Character Size 

To scalie the characters to fit the default window and display the string at its 
new size, enter the following commands. 

Scale_String := SCALE BY .04 APPLIED Tp String; 
REMOVE String; 
DISPLAY Scale_String; 

The string should now appear in much smaller letters beginning at the cen­
ter of the screen. Notice that the characters which form the string in the 
CHARACTERS command are enclosed in single quotation marks; however, 
when String is displayed, only the characters appear. If you want quotation 
marks in the text string, you must use three single quotation marks at the 
start and at the end of the string. Redefine String by entering the following 
command. 

String:= CHARACTERS '''The quality of mercy .. ,"'; 

The character string should now appear in quotation marks. To get a single 
quote to appear in a string (as an apostrophe, for example) you must enter 
two single quotes. Redefine String with the following command. 

String:= CHARACTERS 'Love''s not time''s fool'; 

The string should appear with the contraction Love's and the possessive 
time's. 

Text Modeling and String Handling GTJ0-3 



GTJ0-4 

1.1.1 Changing Starting Position and Spacing 

When the PS 390 displays a character string, the string is positioned by 
default with the lower-left corner of the unit square enclosing the first char­
acter at the origin of the world coordinate system. Characters are regularly 
spaced and follow each other horizontally. Optional parameters in the com­
mand let you specify the beginning coordinates of the string and change the 
horizontal and vertical spacing of the characters to create vertical and di­
agonal text strings. Enter the following command to redefine String as a 
new line of text positioned off the origin. 

String:= CHARACTERS 0,5,0 'Up a little'; 

This string starts at 0 on the X axis and 0 on the Z axis but 5 on the Y axis. 
The X,Y,Z coordinate of the starting point can always be specified in this 
way. The Z coordinate is optional and, if not supplied, defaults to zero. 

The spacing between characters can be changed with a STEP clause. This 
clause lets you specify the spacing between characters in X and Y as a value 
from -1 to 1. The default spacing is 1, 0 or one unit in X and zero in Y for 
regular horizontal spacing. 

The vertical spacing can be changed by specifying the Y component of the 
STEP clause as a value other than zero. Enter the following command to 
create a string which descends diagonally from the origin to the right. 

String:= CHARACTERS STEP 1,-1 'Stepping down'; 

Now redefine the string as a diagonal which ascends from the origin to the 
upper-right. 

String:= CHARACTERS STEP 1,1 'Stepping up'; 

1.1.2 Exercise 

Try different combinations of X and Y values to produce strings which 
descend and ascend vertically from the origin. 

Graphics Tutorials 



1.2 The LABELS Command 

The LABELS command, like CHARACTERS, defines character strings for 
display. Whereas CHARACTERS defines a single string, LABELS combines 
any number of character strings into a single block. Each character string in 
the block is called a label. The command is quite straightforward to use. 
The following example combines some of the text strings created earlier in 
this section into a single label block. 

String :=LABELS 0,0 'The quality of mercy ... ' 
-1,2 '''The quality of mercy ... "' 

4,5 'Up a little' 
2,-5 'Love''s not time''s fool'; 

Diagonal and vertical strings could not be included in the block, however, 
because they specify different horizontal and vertical spacing between char­
acters. The LABELS command is not able to accommodate this. The only 
clause in the command is the X, Y ,Z coordinate of each label in the block. 

1.3 When to Use CHARACTERS and LABELS 

Both the CHARACTERS and the LABELS commands create data nodes in a 
display structure. Whenever several character strings are defined as a single 
LABELS node rather than as separate CHARACTERS nodes, there is a gain 
in display capacity. If you are displaying a lot of text, it is best defined 
using the LABELS command. 

Character strings defined with the CHARACTERS command, however, are 
more versatile. In deciding which command to use, keep the following in 
mind. 

• The CHARACTERS command lets you change the horizontal and 
vertical spacing between characters. The LABELS command does 
not. 

• If text is created using CHARACTERS, you can manipulate any 
character in the text string. If the LABELS command is used, the 
smallest entity you can manipulate is a single text string. 

Text Modeling and String Handling GTJ0-5 



2. Using Commands To Manipulate Character Strings 

The CHARACTERS and LABELS commands create data nodes containing 
text. Like any other primitive data, text can be transformed by having a 
matrix applied to it. Text can be rotated and scaled using the ROT A TE and 
SCALE commands which transform any two-dimensional or three­
dimensional structure. In addition, characters can be transformed with their 
own rotate and scale commands: CHARACTER ROTATE, CHARACTER 
SCALE, and TEXT SIZE. These commands create 2x2 transformation ma­
trices which only operate on text. 

2.1 The CHARACTER ROTATE Command 

The CHARACTER ROTA TE command rotates a character string or label 
block around the Z axis. When you look in the positive direction of the axis, 
the rotation is counterclockwise. 

To see the effect of this command, initialize the display, then rotate and 
display the scaled labels block. 

INITIALIZE DISPLAY; 
Rot_Text := CHARACTER ROTATE 90 APPLIED TO Scale_String; 
DISPLAY Rot_Text; 

Each string in the block should be rotated 90 degrees to the left. Notice that 
each label in the block is rotated around its own starting location. There is 
no single point in a labels block around which the whole block rotates:. 

A character rotate node can be updated interactively by any 2x2 matrix. The 
functions F:MATRIX2 and F:CROTATE (where C stands for character) are 
often used to supply the new matrix to the node. 

2.2 The CHARACTER SCALE Command 

GTJ0-6 

Characters can be scaled like any other pnm1t1ve data by a three­
dimensional scale matrix using the SCALE command. There is also a 
CHARACTER SCALE command which creates a 2x2 scale matrix for 
transforming text only. 

Graphics Tutorials 



There are two forms of the CHARACTER SCALE command, one for uni­
form scaling and one for nonuniform scaling. Enter the following com­
mands to initialize the display and to uniformly scale by . 75 and then dis­
play the characters in the labels block. 

INITIALIZE DISPLAY; 
Char_Scale :=CHARACTER SCALE .75 APPLIED TO Scale_String; 
DISPLAY Char_Scale; 

The scale factor is applied in both X and Y to the characters that compose 
Scale_String. A nonuniform scale can be applied by specifying separate 
scale factors in X and Y. Enter the following command to redefine 
Char Scale and make tall characters. 

Char_Scale :=CHARACTER SCALE .5,3 APPLIED TO Scale_String; 

Characters in the strings are made tall and thin with this command. 

When several CHARACTER SCALE commands are used, each is concate­
nated with the next and a cumulative scaling matrix is applied to the charac­
ters. To see this effect, initialize the display and create and display a text 
string called Text. 

INITIALIZE DISPLAY; 
Text :=CHARACTERS 'See Spot run.'; 
DISPLAY Text; 

Since the characters are at the default size, only the capital S and one line 
of the first lowercase e are visible in the top~right quadrant of the screen. 
Now scale the string by prefixing it with a CHARACTER SCALE node. 

PREFIX Text WITH CHARACTER SCALE .5; 

The characters should now change to half their previous size, and the S, 
first e, and one line of the second e should be visible. The PREFIX com­
mand inserts a new node above the existing node and assigns the name of 
the existing node to the new node. Figure 10-2 shows the effect of the PRE­
FIX command on the display structure. 

Text Modeling and String Handling GTJ0-7 



Text 

Text 0 -
U390251 

Figure 10-2. The Effect of the PREFIX Command 

Use the PREFIX command again to create another scale node above the last 
one. 

PREFIX Text WITH CHARACTER SCALE .1; 

Notice that the size of the characters is now one tenth of what it was imme­
diately before, not one tenth of the original default size. The actual size of 
the text is .5 times .1, which is .05 of the default size. The new display 
structure is as shown in Figure 10-3. 

Text 

Text 

U390252 

Figure 10-3. New Node Added with the PREFIX Command 

The two character scales are concatenated and the combined scaling matrix 
is applied to the characters. 

2.3 The TEXT SIZE Command 

GTJ0-8 

Character sizes can also be changed with the TEXT SIZE command. This 
command creates a text size which replaces the default size of 1. Text sizes 
are expressed as multiples or fractions of the default size. 

Like the CHARACTER SCALE command, TEXT SIZE creates a 2x2 scal­
ing matrix. However, this matrix is not concatenated with any other matrix. 
This means that the command creates a node which overrides any 2x2 ma­
trix nodes above it in the same branch of the display structure. 

Graphics Tutorials 



To see the effect of the command, first remove the two CHARACTER 
SCALE prefixes of the string called Text, then prefix Text with a TEXT 
SIZE node. 

REMOVE PREFIX OF Text; 
REMOVE PREFIX OF Text; 
PREFIX Text WITH TEXT SIZE .5; 

As you remove the prefixes, the characters being displayed should get 
larger until they are back to the default size, and only the capital S is visible 
in the top-right quadrant. Prefixing with the TEXT SIZE command should 
make the letters half of the default size. The display structure for this struc­
ture is as shown in Figure 10-4. 

Text G __ ___,... 
U390253 

Figure 10-4. Display Structure with TEXT SIZE Node 

Now prefix Text with a CHARACTER SCALE node to scale the characters 
by half again. 

PREFIX Text WITH CHARACTER SCALE .5; 

The text size does not change. This is because the effect of the CHARAC­
TER SCALE node is overridden by the TEXT SIZE node below it in the 
structure. The display structure for the structure is shown in Figure 10-5. 

Text 

U390254 

Figure 10-5. TEXT SIZE Node Prefixed with CHARACTER SCALE Node 

Text Modeling and String Handling GTJ0-9 



Now prefix the CHARACTER SCALE node with a character rotation node. 

PREFIX Text WITH CHARACTER ROTATE 90; 

Again, nothing happens. The TEXT SIZE node overrides all 2x2 matrices 
above it. Since a CHARACTER ROTA TE node is a 2x2 matrix node, it too 
is canceled out like the character scale. You should take this into account 
when structuring data. 

2.3.1 Exercise 

The TEXT SIZE node has no effect on 3x3 matrices, however. Try replac­
ing the CHARACTER ROTATE node with a ROTATE node, and the rota­
tion will be applied. 

2.4 Character Orientation 

GTJ0-10 

If a transformation is applied to an object or part of an object which con­
tains text in its structure, the default condition is that the text will be trans­
formed too. Consider the display structure in Figure 10-6. 

Dials 

Cube C 

String 1 
8 

. 
2 

String3 Strings 
tnng String4 String6 

U390255 

Figure I 0-6. Display Structure for a Labeled Cube 

Graphics Tutorials 



An instance node called Labeled_ Cube groups a vector list defining a cube 
and character strings which are scaled and positioned on each face to label 
the front, back, top, bottom, left, and right. A rotation node connected to 
three dials through a function network allows Labeled_ Cube to be rotated 
interactively. A scale node is also connected to a dial to allow interactive 
scaling. Any rotation or scale that is applied to the cube is also applied to 
the character strings. 

To display the cube represented by the display structure in Figure 10-6, go 
to the tutorial demonstration menu and select the program called 
CHARACTERS. 

The cube with its faces labeled will be displayed in three viewports. The 
rotation node is connected to dials 1, 2 and 3 for rotations in X, Y, and Z. 
Dial 4 is connected to the scale node. Use the dials to manipulate the cube. 

Notice that as you rotate and scale the cube, the character strings on the 
faces of the cube in viewport 1 are rotated and scaled also. Depth cueing is 
performed on the characters as well as on the lines that make up the cube. 

As you manipulate the cube in viewport 1, the character strings which label 
its faces are unreadable much of the time. They may be backwards, 
upside-down, and too small to read. Notice that this is not the case with the 
characters in viewports 2 and 3. These characters are unaffected by 
rotations and scales while the object is being transformed. This is achieved 
by using the SET CHARACTERS command. This command determines the 
orientation of characters which are part of a model. It has an "orientation" 
clause with three options: WORLD_ORIENTED, SCREEN_ORIENTED, and 
SCREEN ORIENTED/FIXED. 

2.4.1 World-Oriented Characters 

World-oriented characters are what you are seeing with the cube in viewport 
1. The characters are transformed along with the object just like any other 
part of it. When an object is rotated, translated, or scaled, the characters 
undergo the same transformations. This is the default condition for any 
character string or label block you create. 

The syntax for this command is as follows. 

name := SET CHARACTERS WORLD_ORIENTED APPLIED TO name!; 

Text Modeling and String Handling GTJ0-11 



2.4.2 Screen-Oriented Characters 

Screen-oriented characters are unaffected by ROTATE and SCALE nodes. 
The SET CHARACTERS command can be used with the SCREEN_ORI­
ENTED clause to maintain a readable orientation for character strings when 
an object is transformed. The cube in viewport 2 has a SET CHARACTERS 
SCREEN_ORIENTED node added. When this cube rotates, the names on 
the cube's faces stay readable. They rotate around the three axes but they 
stay parallel to the XY plane. When the cube is scaled, the character size 
remains unchanged. 

The syntax for this form of the command is as follows. 

name := SET CHARACTERS SCREEN_ORIENTED APPLIED TO namel; 

2.4.3 Screen-Oriented Fixed Characters 

Notice that with the screen-oriented characters in viewport 2, the intensity of 
the characters varies with depth. If the cube were being displayed in 
perspective projection, the size of the characters would vary too. In the 
initial position of the cube, the characters BACK on the back face of the 
cube would appear smaller and dimmer than the characters FRONT. You 
can use the SCREEN_ORIENTED/FIXED option of SET CHARACTERS to 
fix the size and intensity at which characters are displayed. 

The cube in viewport 3 has a SET CHARACTERS node with the 
SCREEN_ ORIENTED/FIXED option. Notice that when you rotate this cube, 
depth cueing is not performed on the characters, so they remain at full 
intensity. 

The syntax for this form of the command follows. 

name := SET CHARACTERS SCREEN_ORIENTED/FIXED APPLIED TO namel; 

3. Using Functions to Manipulate Characters and Strings 

GTJ0-12 

There are several functions which are used for manipulating characters and 
strings. These functions convert characters and strings to other types of 
data, format and reformat strings, transform characters, and perform other 
miscellaneous character and string-handling operations. 

Graphics Tutorials 



Complete information on these functions is contained in Section RM2 
Intrinsic Functions. The following sections summarize the functions and give 
a few examples of their use. 

3 .1 Character- and String-Conversion Functions 

F:CHARCONVERT 
Converts characters to integers. The function accepts a string and converts 
each byte of the string (i.e., each character) to an integer. For example, the 
string AB will be converted to 65 66, the ASCII decimal equivalent of A and 
B. 

F:CHARMASK 
Masks each character in a string by ANDing each byte with a constant inte­
ger. This is useful for converting one character or a string of characters to 
another, for example, from upper to lower case or from a nonprintable to a 
printable character. 

F:PRINT 
Converts any data type to a string. For example, a Boolean input will gener­
ate the string ... TRUE ... or ... FALSE ... ; a 3D vector will generate a string such 
as ... 5,2,1 ... and so on. 

F:TRANS_STRING 
Translates one string into an output string using another string as a transla­
tion table. For example, prime the function by sending ... ABCDEF­
GHIJKLMONPQRSTlNWXYZ... as the translation table to input <3> of the 
function, and 97 (the ASCII decimal equivalent of a) to input <2>. If a string 
of lowercase letters of the alphabet is now sent to input <1>, the letters will 
be converted to uppercase on output <1>. 

F:STRING_TO_NUM 
Converts a string to a real number or an integer. 

F:GATHER_STRING 
Collects strings until a terminator arrives. It then packages them into one 
string which may or may not include the terminator. 

Text Modeling and String Handling GTJ0-13 



3.2 String-Formatting and Reformatting Functions 

GTJ0-14 

F:CONCATENATE 
Concatenates strings. The string on input <2> of the function is appended to 
the string on input <1>. 

F:SPLIT 
Compares two strings and splits them depending on the match. If a match 
occurs, characters in the string on input <1> that precede the match are 
output on output <1>. Matching characters are output on output <2>. Char­
acters following the matching characters are output on output <3>. And a 
Boolean TRUE is output on output <4>. If no match is found, nothing is 
output on outputs <1>, <2>, and <3>, and a Boolean FALSE is output on 
output <4>. 

F:PUT_STRING 
Replaces characters in the string on input <1> with the string on input <3>, 
starting at the position specified by the integer on input <2>. 

F:TAKE STRING 
Outputs a string consisting of the number of characters specified on input 
<3> taken from the string on input <1>, starting at the position given on 
input <2>. 

F:LINEEDITOR 
Accepts a stream of characters and simple editing commands, accumulates 
the characters in an internal line buff er, applies the commands to the con­
tents of the line buff er as they are received, and outputs the edited line 
when a specified delimiter character is recognized. 

F:LABEL 
Creates a label to send to a LABELS node. A vector on input <1> of the 
function indicates the location of the label in the coordinate system. A string 
on input <2> is the text of the label. A Boolean value on input <3> indicates 
whether the label is to be displayed or not. The data type output by this 
function can only be used as input to a LABELS node. 

Graphics Tutorials 



3.3 Miscellaneous String-Handling Functions 

F:LENGTH STRING 
Accepts a string and outputs its length. 

F:FIND STRING 
Determines whether the string on input <2> is a substring of the string on 
input <1>. Outputs the starting location of the substring if it is found. 

F:COMP STRING 
Compares two strings to determine if the string on input <1> is greater than, 
less than, or equal to the string on input <2>. 

F:LBL EXTRACT 
Extracts information about a label in a LABELS node. An integer on input 
<1> is an index into the LABELS block. A string on input <2> is the name 
of the node. The function outputs the text of the label, its location in the 
coordinate system, and a TRUE or FALSE to indicate if the label is dis­
played or not. 

3.4 Character-Transformation Functions 

F:CROTATE 
Uses an integer on input <1> which represents degrees of rotation to create 
a 2x2 Z-axis rotation matrix. This matrix can be used to update a CHAR­
ACTER ROTATE node. 

F:CSCALE 
Uses a real number or a two-dimensional vector to create a uniform or 
nonuniform 2x2 scaling matrix. The matrix can be used to update a CHAR­
ACTER ROTATE node. 

F:MATRIX2 
Accepts two-dimensional vectors on inputs <1> and <2> and creates a 2x2 
matrix. This matrix can be used to update a CHARACTER SCALE or 
CHARACTER ROTATE node. 

Text Modeling and String Handling GTJ0-15 



4. Updating Characters and Labels Nodes 

Both CHARACTERS and LABELS nodes can have their contents updated 
using commands and functions. 

4.1 Updating With Commands 

GTJ0-16 

The COPY and SEND commands can be used to change the contents of a 
CHARACTERS or LPJ3ELS node. 

4.1.1 The COPY Command 

Labels can be copied from one LABELS node to another using the COPY 
command. Note, however, that this command does not work with a 
CHARACTERS node. 

The command has the following format: 

name :=COPY namel [START=] i [,] [COUNT=] n; 

The parameters for this command are: 

nanie - The name of the LABELS node you are creating and copy­
ing into. 

namel - The name of the LABELS node you are copying from. 

i - The number of the first label to be copied. 

n - A count of the number of labels to be copied. 

The command can be used as follows. First create a labels node called 
Limerick. 

Limerick :=LABELS -1, .75 'What''s wrong with this PS 390?' 
-1,.5 'The frustrated programmer thundered' 
-1, .25 'I''ve entered commands' 
-1,0 'With the carefulest of hands' 
-1,-.25 'But somehow I seem to have blundered!'; 

To see the limerick, scale the labels block by .05 and display it. 

Scale_Bloc:k. := CHARACTEH SCALE .05 APPLIED TO Limerick; 
DISPLAY Scale_Block; 

Graphics Tutorials 



Now create a new labels block which starts at the third label and is three 
labels long. 

New_Block :=COPY Limerick START= 3, COUNT= 3; 

The words START and COUNT and the equals signs are optional, so you 
could have typed "COPY Limerick 3,3;" instead. If one word is used, how­
ever, both must be used. 

Now redefine Scale Block so that it refers to New Block. - -

Scale_Block := CHARACTER SCALE .05 APPLIED TO New_Block; 

The last three lines of the Limerick should now be displayed on the screen. 

4.1.2 The SEND Command 

Several forms of the SEND command can be used to update a LABELS or 
CHARACTERS node. Both nodes have similar input queues. Figure 10-7 
shows inputs to a CHARACTERS node and Figure 10-8 shows inputs to a 
LABELS node. 

Character 

20,30,40 vector 

20,30,40 vector 

Integer 

Integer 

String 

String 

String 

Name 

<last> Changes the last character 

<Position> Changes the starting position 

<step> Changes the stepping 

<clear> Clears the current string 

<delete> Deletes n characters (from the end) 

<append> Appends to end of current string 

<i> Replaces current string with new string, starting 
at the ith character 

<substitute> Replaces entire current string with 
new string 

CHARACTERS 

U390256 

Figure 10-7. Inputs to a CHARACTERS Node 

Text Modeling and String Handling GTI0-17 



GTJ0-18 

String 

Integer 

Integer 

Label 

Boolean 

String 

3D 

Mame 

<last> Changes last label 

<clear> Clears list 

<delete> Deletes from end 

<append> Appends from end 

<i> True=on, False=off 

<i> Replaces ith label 

<i> Change start location of ith label 

LABELS 

U390257 

Figure 10-8. Inputs to a LABELS Node 

Unlike most other nodes, these nodes have inputs with names as well as 
numbers. All data sent to these nodes are sent to a named input or to a 
numeric input which indicates the position of a character within a string or a 
label within a block. 

The simplest form of the SEND command has the following format: 

SEND option TO <n>namel; 

The parameters in this command are as follows: 

option - For sending to a LABELS node, this is a string enclosed in 
single quotes. For sending to a CHARACTERS node, the format is 
CHAR(number), where number is the ASCII decimal equivalent of 
a single character. 

n - The name or number of the input to the LABELS or CHARAC­
TERS node. 

namel - The name of the destination LABELS or CHARACTERS 
node. 

You can use the command, for example, to send a new string to replace an 
existing one. Create a string called Quote. 

Quote :=CHARACTERS -1,0 'If we had world enough and time'; 

Graphics Tutorials 



Now scale the string by .05 so it will fit the default window. 

Scale_Quote := CHARACTER SCALE .05 APPLIED TO Quote; 

Remove anything you are displaying and display Scale_ Quote. Now use the 
SEND command to replace this string with the second line of John Donne's 
poem to his reluctant mistress. 

SEND 'This coyness, mistress, were no crime' TO <substitute>Quote; 

4.1.3 Exercise 

Try SENDing to some of the other inputs of CHARACTERS and LABELS 
nodes. For more information, refer to Section RMI Command Summary. 

Two other forms of the SEND command can be used with LABELS but not 
with CHARACTERS: they are SEND VL and SEND number*mode. The 
SEND VL form allows you to overwrite or append a label in a LABELS 
block. The SEND number*mode form allows you to send a P or L identifier 
to a label to indicate if a label is off (P) or on (L). Refer to Section RM I 
Command Summary for more details. 

4 . .2 Updating With Functions 

You can create function networks to update a CHARACTERS or LABELS 
node. Only four data types are accepted by the inputs to these nodes: an 
integer, a vector (2D or 3D), a character string, and a Boolean value. Any 
function which outputs one of these data types can be used to feed new 
values to a node containing text. In particular, the output of the string han­
dling functions mentioned earlier can be used as input to a text node. 

The function F:LABEL is designed specifically for updating a LABELS 
node. The data type output by this function is the only type accepted by 
input <append> of a LABELS node. 

5. Creating and Using Different Character Fonts 

A character font is a complete set of characters in the same size and type 
face. The PS 390 has a standard font consisting of the 128-character ASCII 
set. This is the default font for all textual displays. You can create and use 
alternate character fonts. The BEGIN FONT ... END FONT command lets - - -

Text Modeling and String Handling GTJ0-19 



you create an alternate font and the CHARACTER FONT command lets 
you use that font. 

5.1 Creating an Alternate Font 

GTJ0-20 

Alternate fonts are created as a sequence of itemized, two-dimensional vec­
tor lists defining each character in the font. Up to 128 ASCII character 
codes can be defined for each font. 

Each character in the font is defined as :follows. 

C[i]: N=n vectors; 

The parameters are: 

[i] - The decimal ASCII code to be defined, i.e. a number from 0 

to 128. 

n - The number of vectors in the 2D vector list. 

vectors - The vectors which make up the character. 

The vectors which comprise a character must be itemized 2D vectors. Item­
ized vectors are each preceded by P or L identifiers to indicate whether a 
vector is a position or a line vector. The following is the definition of a 
capital A in a font called Simplex_ Roman. 

C[65]: N= 6 
p 0.5455, 0.9545 L 0.1818, 0.0000 
p 0.5455, 0.9545 L 0.9091, 0.0000 
p 0.3182, 0.3182 L 0.7727, 0.3182; 

The Simplex_ Roman letter A is compared to an A in the standard font in 
Figure 10-9. 

fa\andfird Aimplex 
U390258 U390259 

Figure 10-9. Standard A and Simplex Roman A 

Graphics Tutorials 



In an Old English font, the definition of the same letter is much more 
complex. 

c [ 65] : N=49 
p 0.2727, 0.8182 L 0.3636, 0.9091 L 0.4545, 0.9545 
L 0.5455, 0.9545 
L 0.5909, 0.9091 L 0.9091, 0.1818 L 0.9545, 0.1364 
L 1.0455, 0.1364 
p 0. 5000°, 0.9091 L 0.5455, 0.8636 L 0.8636, 0.1364 
L 0.9091, 0.0455 
L 0.9545, 0.0909 L 0.8636, 0.1364 p 0.3636, 0.9091 
L 0.4545, 0.9091 
L 0.5000, 0.8636 L 0.8182, 0.1364 L 0.8636, 0.0455 
L 0.9091, 0.0000 
L 0.9545, 0.0000 L 1. 0455 I 0.1364 p 0.2727, 0.6364 
L 0.3182, 0.6818 
L 0.4091, 0.7273 L 0.4545, 0.7273 L 0.5000, 0.6818 
p 0.4545, 0.6818 
L 0.4545, 0.6364 p 0.3182, 0.6818 L 0.4091, 0.6818 
L 0.4545, 0.5909 
p 0.0455, 0.0000 L 0.1364, 0.0909 L 0.2273, 0.1364 
L 0.3636, 0.1364 
L 0.4545, 0.0909 p 0.1818, 0.0909 L 0.3636, 0.0909 
L 0.4091, 0.0455 
p 0.0455, 0.0000 L 0.1818, 0.0455 L 0.3182, 0.0455 
L 0.3636, 0.0000 
L 0.4545, 0.0909 p 0.5455, 0.7727 L 0.2727, 0.1364 
p 0.3636, 0.3636 
L 0.7273, 0.3636; 

This letter A is compared to the standard font A in Figure 10-10. 

fa\andard 
U390260 

Figure 10-10. Standard A and Old English A 

Text Modeling and String Handling GTJ0-21 



A complete set of character definitions is enclosed in a BEGIN_FONT 
END _FONT structure with the following format. 

New_Font := BEGIN_FONT 

C[O]: N=n P, L, L, L; 

C[n]: N=n P, L, L, L; 

C[l27]: N=n P, L, L, ... L; 

END FONT; 

Notice that in the sample 2D vector lists given, the range of the vectors in X 
and Y is between 0 and 1. There is no limit on the range of the vectors you 
use, but you should keep within the range of 0 and 1 for the correct spacing 
and orientation of adjacent characters. 

5.2 Using an Alternate Font 

GTJ0-22 

The BEGIN FONT ... END FONT command does not create a data node in 
a display structure but a look-up table of alternate character definitions. To 
switch to an alternate font in a structure, the CHARACTER FONT com­
mand is used to create an attribute node which indicates the font look-up 
table that must be read for the character definitions. 

An alternate font called Old_English is included in the PS390 Tutorial Dem­
onstration Programs. To use this font in a structure, you must create a node 
which points to the Old_ English font and apply it to the text you want to 
display. 

Create, scale, and display a character string. 

Text :=CHARACTERS -.5,0 'To be, or not to be'; 
Scale_Text := CHARACTER SCALE .05 APPLIED TO Text; 
DISPLAY Scale_Text; 

Now apply a CHARACTER FONT command to the scaled string to display 
it in the Old_ English font. 

New_Font : = CHARACTER FONT Old __ English APPLIED TO Scale_Text; 
REMOVE Scale_Text; 
DISPLAY New_Font; 

Graphics Tutorials 



Hamlet's question should now be displayed in the Old_ English font. If it is 
displayed in the standard font instead, this means that the Old_ English font 
was not available. 

The display structure for New_Font is shown in Figure 10-11. 

New_Font 

Scale Text 

Text 

Figure 10-11. Display Structure with CHARACTER FONT Node 

The Old_English font is shown as a look-up table which is not part of the 
actual structure. The CHARACTER FONT node New _Font points to this 
table as well as to the CHARACTER SCALE and CHARACTERS node. 

5.3 The Character-Font Editor Program 

Another way to create alternate character fonts is to use the program 
MAKEFONT which is distributed on the E&S magnetic tape and is docu­
mented in Section 1T7 Character Font Editor. MAKEFONT is a menu-driven, 
graphical character font editing program which allows you to create a font 
from scratch by drawing each of the characters, or to make changes to 
existing alternate fonts. 

6. Summary 

Two commands create data nodes containing text: CHARACTERS and 
LABELS. 

6.1 Creating Text Nodes 

The CrIARACTERS command creates a single text string of up to 240 char­
acters. Optional parameters allow you to specify the starting location of the 
string and the horizontal and vertical spacing between characters. The syn­
tax of the command is as follows. 

Text Modeling and String Handling GTI0-23 



name:= CHARACTERS [x,y[,z]] [STEP dx,dy] 'string'; 

The LABELS command creates a block of character strings or labels. Each 
label can be given its own starting location. The syntax of the command is 
as follows. 

name :=LABELS x,y [,z] 'string' 

[ xi , y i [ , z i ] ' st r i ng' ] ; 

6.2 Manipulating Text With Commands 

GTJ0-24 

Text nodes, just like any other data nodes, are affected by transformations. 
They can be rotated and scaled by 3x3 transformation matrices (created by 
the ROT A TE and SCALE commands) or by exclusive 2x2 character trans­
formation matrices. 

6.2.1 Transforming Text 

The commands which create these matrices are CHARACTER ROTATE, 
CHARACTER SCALE, and TEXT SIZE. The matrices which these 
commands create have no effect on three-dimensional data or nontextual 
two-dimensional data. 

The CHARACTER ROTATE command creates a Z-rotation matrix from an 
angle of rotation which is entered as parameter. The syntax of the com­
mand is as follows. 

name := CHARACTER ROTATE angle [APPLIED TO namel]; 

The CHARACTER SCALE command creates a uniform or nonuniform scal­
ing matrix from the scale factor entered with the command. For nonuniform 
scaling an X and Y scale factor is given. The syntax of the command is as 
follows. 

name :=CHARACTER SCALE s [APPLIED TO namel]; 
name :=CHARACTER SCALE sx,sy [APPLIED TO namel]; 

The TEXT SIZE command creates a 2x2 matrix node which overrides any 
2x2 matrix settings above it in the display structure. Any character scales or 

Graphics Tutorials 



character rotations are superseded by this command. The command estab­
lishes a character size for text which is a multiple or fraction of the default 
character size of 1. The syntax of the command is as follows. 

name := TEXT SIZE x [APPLied to namel]; 

6.2.2 Setting Character Orientation 

When text forms part of an object that is being displayed and manipulated, 
the characters can be transformed with the object or they can remain unaf­
fected by object transformations. The SET CHARACTERS command lets 
you determine the orientation of the text. The format of the command is as 
follows. 

name := SET CHARACTERS orientation [APPLIED TO namel]; 

Three types of orientation may be set: 

World_ Oriented - Characters are transformed just like any part of 
the object containing them. 

Screen Oriented - Characters are not affected by ROTA TE or 
SCALE transformations. Intensity and size of characters still vary 
with depth (Z-position). 

Screen_ Oriented/Fixed - Characters are not affected by ROTA TE 
or SCALE transformations. They are always displayed with full 
size and intensity. 

6.3 Manipulating Text With Functions 

Several functions are available for manipulating text and strings. These 
functions are listed below. 

• Character- and String-Conversion Functions 

F:CHARCONVERT 
F:CHARMASK 
F:GATHER STRING 
F:PRINT 
F:STRING TO NUM 
F:TRANS STRING 

Text Modeling and String Handling GTI0-25 



• String-Formatting and Reformatting Functions 

F:CONCATENATE 
F:LABEL 
F:LINEEDITOR 
F:PUT STRING 
F:SPLIT 
F:TAKE STRING 

• Miscellaneous String-Handling Function~ 

F:COMP STRING 
F:FIND STRING 
F:LBL EXTRACT 
F:LENGTH STRING 

• Character-Transformation Functions 

F:CROTATE 
F:CSCALE 
F:MATRIX2 

6.4 Text Nodes 

The CHARACTERS and LABELS commands create data nodes containing 
text. Both nodes have inputs which accept vectors, strings, integers, or 
Boolean values to update the contents of the node. 

6.5 Updating Nodes 

GTI0-26 

CHARACTERS and LABELS nodes can be updated using commands or the 
functions listed earlier. The following commands are most frequently used 
to update these nodes. 

COPY 

SEND 

SEND VL 

SEND number*mode 

Graphics Tutorials 



6.6 Alternate Character Fonts 

Character fonts other than the standard font can be created using the BE­
GIN_ FONT ... END_FONT command. The syntax for this command is as 
follows. 

name := BEGIN_FONT 
[C[O]: N=n {itemized 2D vectors};] 

[C[i]: N=n {itemized 2D vectors};] 

[C[127]: N=n {itemized 2D vectors};] 
END_FONT; 

Each character in the font is defined as a vector list consisting of itemized 
2D vectors. The clause C[i]: identifies the ASCII character being defined; 
for example, C[ 65]: indicates that the character is a capital A. Up to 128 
characters can be defined in an alternate font. Alternate fonts are used by 
including CHARACTER FONT nodes in a display structure. The syntax of 
the CHARACTER FONT command is as follows. 

name := CHARACTER FONT font_name APPLIED TO namel; 

The parameter font_name is the name of an alternate font defined with the 
BEGIN FONT ... END FONT command. ·- -

Text Modeling and String Handling GTI0-27 





GTl 1. PICKING 

SELECTING DISPLAYED OBJECTS 

CONTENTS 

INTRODUCTION ..................... ~ . . . . . . . . . . . . . . . . . . . . . 1 

0 BJECTIVES . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

PREREQUISITES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1. USING PICKING-ATIRIBUTE NODES . . . . . . . . . . . . . . . . . . . . . . 2 

1.1. Setting Picking ON and OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2. Using Picking Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.2.1. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2. USING INITIAL PICKING FUNCTIONS 7 

3. USING THE PICKING FUNCTIONS 
IN A FUNCTION NETWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

3.1. Examples of Picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
3.2. i:xercise ......................... o • • • • • • • • • • • • • • • • • • • • • 16 

4. SUMMARY . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 



ILLUSTRATIONS 

Figure 11-1. Picking Selectable by Bran.ch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Figure 11-2. Picking an Entire Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Figure 11-3. Display structure With Car and Four Tires . . . . . . . . . . . . . . . . . . 5 
Figure 11-4. Diagram of TABLETIN and PICK . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Figure 11-5. Typical TABLETIN and PICK Arrangement . . . . . . . . . . . . . . . . . . 11 
Figure 11-6. F:PICKINFO (Connected to PICK) . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Figure 11-7. Diagram of PICK Through F:SUBC 

Feeding a Bank of F:ROUTE(n) Instances . . . . . . . . . . . . . . . . . . 15 

ii 



Introduction 

Section GTl 1 

Picking 

Selecting Displayed Objects 

Picking allows you to retrieve information about a selection or pick made on dis­
played data. This information contains details about the structure that makes up 
the displayed data. Details can include the name of the data node that the picked 
portion of the object is associated with; names of nodes along the branch of the 
display structure that was selected by a pick; an index into the vector list, character 
string or label that was picked; and the coordinate values of the location where the 
pick took place. The information is available in a special format called the pick 
list. 

Normally, picking is done by using the data tablet and the stylus to select any part 
of a displayed object designed to allow for picking. The selection is made by mov­
ing the stylus across the surface of the data tablet; this positions the cursor on the 
screen. (The cursor is an X.) Picking is usually activated by pressing the tip of the 
stylus down when the cursor is positioned over the appropriate line, dot, or text 
character. The information that is returned when a pick takes place (the pick list) 
can be displayed, used to drive a function network, or sent to the host. The amount 
and kind of information received on the location of a pick is user-definable. 

An obvious use of picking is to make selections from a menu, where the cursor is 
positioned over a line or the piece of text in the menu that is to be selected. By 
pressing the stylus down, that item on the menu is picked, and the appropriate 
function can be performed (i.e., move to another menu, exit from the menu, bring 
up a displayable structure, etc.) 

Central to the picking process is the initial function instance PICK. PICK is enabled 
by sending any message to input <1> of PICK. (Normally this message is the X,Y 
location of the pick sent to PICK when the tipswitch of the stylus is pressed.) PICK 
feeds this trigger message to the display processor, asking for any pick information 

Picking GTll-1 



within the data structure being traversed to be sent back to PICK. If this 
information is found (a pick occurs if there is data) the pick list is placed on the· 
queue of output <1> of PICK. The main responsibility of PICK is to signal the 
display processor that picking has been enabled and to output the pick list that 
contains information about the location of the pick. 

Before picking can take place, the data structure that you want to be able to· pick 
from must contain certain nodes and pieces of information. Polygonal objects, 
because of their construction, cannot be picked. 

This section defines the various elements involved in picking: picking-attribute 
nodes and the commands that create them, and the picking functions. 

This section teaches how to place and set the appropriate attribute nodes used in 
picking and how to design a function network to use the information that is gener­
ated when a pick occurs. 

Objectives 

This section teaches you how to: 

• Use picking-attribute nodes. 

• Use initial picking functions instances for picking. 

• Use the picking functions in a function network. 

Prerequisites 

You need to be familiar with the concepts presented in Sections 
GT4 Modeling, GTS Command Language, GT6 Function Networks I and GT7 
Function Networks II. 

1. Using Picking-Attribute Nodes 

GTJJ-2 

Before an object can be picked, the display structure of the object must 
contain certain nodes, and the object must be displayed. These nodes pro­
vide for picking capabilities such as: 

• Turning picking on and off. 

• Determining the portions of the object (or branches of the display 
structure of the object) that can be picked. 

• Selecting the name of the pick identifier that will be returned as part 
of the pick list. 

Graphics Tutorials 



1.1 Setting Picking ON and OFF 

Picking 

The first picking-attribute node that must appear in the display structure is 
the SET PICKING ON/OFF node. This node must be above the parts of the 
display structure where picking will take place. This node is turned on and 
off by Boolean values; a TRUE will enable picking in the data structure 
below the node, a FALSE will disable it. 

The command that creates the SET PICKING ON/OFF node is: 

name := SET PICKING OFF APPLIED TO namel; 

The SET PICKING ON/OFF node is usually placed in the display structure 
in an OFF condition and activated· when the Boolean value TRUE is sent to 
input <1> of the named node. As an example, the following two commands 
first create an instance of a SET PICKING ON/OFF node, and then activate 
that node: 

Pick_Car := SET PICKING OFF APPLIED TO Car; 

where Car is the name of the data structure, or the part of a data structure 
that you want to be able to pick from; 

SEND TRUE TO <l>Pick_Car; 

activates picking for Car. (The Boolean value is normally sent by a network 
connected to the node.) 

In designing a pickable display structure, the placement of the SET PICK­
ING ON/OFF nodes is very important. As with any other attribute node, this 
node controls only its descendants. In the structure in Figure 11-1, picking 
can be enabled and disabled for each branch individually because of the 
placement of the SET PICKING ON/OFF nodes. In Figure 11-2, picking is 
established for the whole structure, but not for the individual branches. 

This placement can be important in complicated display structures, where 
there are close or overlapping data structures simultaneously displayed on 
the screen. In molecular modeling graphics applications, it can be useful to 
disable picking for specific parts of the molecule. This same principle holds 
for architectural or engineering applications, where only specific parts of 
the entire display are used as pickable structures. 

GTJ 1-3 



Set PICKING 
ON/OFF 

y 

D 

~ 
Set PICKING Set PICKING 

ON/OFF ON/OFF 

y y 

[5 D 
U390263 

Figure 11-1. Picking Selectable by Branch 

~~ 
Set PICKING 

ON/OFF 
~y 

U390264 

Figure 11-2. Picking an Entire Structure 

1.2 Using Picking Identifiers 

GTJ 1-4 

The other attribute node that must be placed in the display structure for 
picking is the SET PICKING IDENTIFIER node. This pick identifier node 
determines the detail of the information you get back in your pick list. 

A picked object is identified by two types of names in the pick list. The first 
type of name is the picking identifier or the pick id. The second name is the 
name of the data node that contains the picked vector or character. In the 
command shown above, "Car" is the name of the node that contains the 
picked vector. 

Graphics Tutorials 



Picking 

The command to create a SET PICKING IDENTIFIER node is: 

name := SET PICKING IDENTIFIER = id_name APPLIED TO namel; 

This command assigns id_name to be the picking identifier (the reported 
character string) to be output by PICK in the pick list if any part of name 1 is 
picked. id_name can be the name of the data node, but in many cases 
several branches of a display structure terminate at the same data node. 
The name(s) of the pick identifiers in the pick list in such cases show which 
branch was traversed to get to the common data node. 

1.2.1 Example 

WheelPickl : = SET PICKING IDENTIFIER == Wheell APPLIED TO Wheel; 

In this example, it is assumed that the display structure includes a car with 
four tires. There are five branches, four of which include an instance of the 
vector list for "Wheel." Each branch contains the appropriate translation 
and rotation operation nodes required to position the tires. To determine 
which instance of "Wheel" was picked, each branch must also contain a 
SET PICKING IDENTIFIER node with a unique name. This is illustrated in 
Figure 11-3. 

SET PICKING ON/OFF 

PickCar1 SET PICKING IDENTIFIER 

Body 

Wheel1 

U390265 

Figure 11-3. Display structure With Car and Four Tires 

GTJ 1-5 



GTJJ-6 

Assuming the·right-front tire is Wheell, then the pick list generated when a 
pick was made on the right-front tire would be: 

<index> Wheell,PickCarl Wheel 

If there were only one SET PICKING IDENTIFIER node directly below the 
SET PICKING ON/OFF node in Figure 11-3, when you picked from any 
part of the displayed object below the instance node, you would only get 
back the pick identifier for the whole data structure: 

<index> PickCarl Wheel (or Body) 

The information in a pick list includes the names of all the SET PICKING 
IDENTIFIER nodes down the branch of the display structure enabled for 
picking. The pick list also includes the name of the picked data node. The 
pick list can be reported as a character string with pick IDs on that branch 
separated by commas. This list always starts with the name of the SET 
PICKING IDENTIFIER node closest to the picked vector or character. 

The amount of detail about the display structure contained in information 
returned in the pick list is determined by the location and number of the 
SET PICKING IDENTIFIER nodes. In the code below, the pick list contains 
only one pick identifier (Pick Carl). 

DISPLAY Car; 

Car := BEGIN_STRUCTURE 
Pick := SET PICKING OFF; 

SET PICKING IDENTIFIER = PickCarl; 
INSTANCE OF Body, Wheell, Wheel2, Wheel3, Wheel4; 
END_STRUCTURE; 

To set up the display structure to enable picking remember the following: 

For picking to take place, there must be a SET PICKING ON/OFF node 
placed in the display structure, followed by at least one SET PICKING 
IDENTIFIER node down each pickable path. However, one structure can 
contain multiple SET PICKING ON/OFF nodes, and each SET PICKING 
ON/OFF node can be followed by multiple SET PICKING IDENTIFIER 
nodes. 

Graphics Tutorials 



2. Using Initial Picking Functions 

Picking 

The initial system function PICK was briefly described in the introduction to 
the section. The initial function network that should be built to make use of 
picking is shown in Figure 11-4. 

Connected to 
data tablet at 
Initialization 

TABLETIN 
(T ABLETIN2) 

DD 

<1 > 2D Vector (position/line) 
<2>-- Boolean (switch open/closed) 
<3> Integer 

<4> Boolean connected to SET PICKING 
ON/OFF node 

<5>-- Boolean 

<6> 2D (X, Y, position of the cursor 
when the tipswitch goes from 
open to closed) 

PICK 
(PICK2) 

Any message 

Boolean for coordinate picking 

<1> 

<2> 

<1> 

<2> 

Pick list sent out 

Boolean; FALSE sent to 
SET PICKING ON/OFF 
node when pick occurs <3> Integer specifying 

time-out duration 

Real number defining pick window half 
size for the ACP pass of the pick 

<4> 

<3> Boolean; sent to ON/OFF 
node; turns picking OFF 
after time-out 

Integer specifying retry count 

Real number specifying half size 
increment to be added on each 
try 

<5> 

<6> 

DD U390475 -------
Figure 11-4. Diagram of TABLETIN and PICK 

The system provides for picking with one other initial function, T ABLETJN. 
T ABLETJN accepts the X, Y vectors that identify the position of the picking 
location (the center of the cursor cross) as the stylus moves across the data 
tablet and uses these vectors to position the cursor on the screen. 
T ABLETJN identifies the X, Y coordinates of the picking location that are 

GTJJ-7 



GTll-8 

output when the tipswitch on the stylus is pressed. These coordinates are 
used to determine if a pick has occurred; and if it has, the location of the 
pick is made available. 

Output <4> of TABLETIN is typically connected to the SET PICKING ON/ 
OFF nodes in the display structure and is used to send Boolean values to the 
nodes. When the tipswitch on the stylus is pressed, a TRUE is sent to the 
node, enabling picking. 

Input <1> of PICK accepts any message. Typically, this queue is connected 
to output <6> of T ABLETIN which supplies the 2D coordinates of the pick 
location when the tipswitch is pressed. This arms the function, as the other 
two inputs to PICK are constants. Output <2> of PICK should be connected 
to the same SET PICKING ON/OFF nodes that are connected to output <4> 
of TABLETIN. This output sends a FALSE whenever a pick occurs which 
turns picking off until the tipswitch is again pressed and a TRUE is sent 
from TABLETIN to the ON/OFF node. (This FALSE is sent to disable pick­
ing so that the picking process ceases until a pick location is asked for.) 

Input <2> of PICK accepts a Boolean value that allows you to select the kind 
of pick list that will be sent out of output <1>. A FALSE sent to input <2> of 
PICK indicates that the output pick list includes the pick ID names, the data 
node name, and an index into the vector list or character string (the data 
node). A TRUE sent to input <2> of PICK indicates that the pick list in­
cludes the pick ID names, the data node name, an index to the data node, 
and the picked coordinates and the dimension (2D or 3D) of the picked 
vector. 

The format for the pick list then, with FALSE sent to input <2> PICK is: 

<index> Pickidl,Pickid2,Name_of_Data_Node 

where <index> is a pointer into the picked data node. 

The following chart shows the data node types and the definition of the 
<index> that is returned when the value of the <index> is the integer 3. 

Graphics Tutorials 



Picking 

Data Node Type 

Vector list 

Character string 

Label 

Polynomial or 
Rational 
polynomial curve 

Definition for Index Value of Integer 3 

The third vector in the list was picked. 

The third character in the string was picked. 

The third character string in the label was picked. 

The value of the parameter (t) where the curve 
was picked 

The format for the pick list with TRUE sent to input <2> of PICK (coordi­
nate picking) is: 

<index> [x,y,z] Pickidl,Pickid2,Name_of_Data_Node 

where X, Y ,Z are the coordinate points of the picked vector. 

Performing coordinate picking on a character string returns an index into 
the string, not its picked coordinates. 

Performing coordinate picking on a label block returns an index into the 
label, not its picked coordinates. 

Coordinate picking cannot be performed on a vector over 5 00 units long. 

The integer on input <3> of PICK is used to set a time-out interval for the 
PICK function in refresh frames. Timing starts when the PICK function re­
ceives any message on input <1>. This timing interval is used to determine 
if a pick occurs in the specified period of time. The allowable integers on 
input <3> are from 4 through 60. This is a safeguard feature: it deactivates 
PICK if no pick occurs within the time-out period. 

Input <4> is a real number between 0 and 1 that defines the pick window 
half-size for the ACP pass of the pick. This is different from the size set by 
the SET_PICKing_LOCation operation node. The line generator or the 
frame buff er uses the operation node to determine if a pick has occurred, 
while the ACP uses the value placed on input <4> to do the actual pick pass 
on the data. 

GTJJ-9 



GTll-10 

Input <5> is an integer specifying pick pass retries. Since it is possible that 
the ACP will not find the picked data during a pick pass, input <5> indicates 
the number of times to add the window half-size increment on input <6> 
and try another pick pass. 

Input <6> is a real number between 0 and 1 which specifies the amount to 
increase the pick window half-size on each retry of the pick pass. The de­
faults for inputs <4>, <5> and <6>, are: 

Input <4> 6.8359E-3 

Input <5> 4 

Input <6> 6.8359E-3 

Once the PICK function is armed (by receiving input on input <1>), if no 
pick occurs within the specified time, PICK outputs a FALSE on output <3>. 
This output should be connected to the ON/OFF nodes to disable picking 
when a time-out occurs. Picking is enabled when the stylus is again pressed. 

One other feature that is initialized by the system is the picking location. 
This is by default the center of the cursor. The picking location must be 
defined within the current viewport and can be modified with the following 
command: 

name :=SET PICKING LOCATION= x,y sizex,sizey APPLIED TO namel; 

where: 

the 2D vector X, Y specifies the center of the picking location and the 2D 
vector sizex,sizey specifies the size in X and Y from the center to the edge 
of the picking location. namel is the structure to which the pick location 
applies. 

The pick location, then, specifies a region within a screen. If the pick-sensi­
tive object (line, dot, or character) is within the pick location, it can be 
reported as having been picked. 

The pick location can be moved within the viewport by sending the 2D 
vector that represents the coordinate location of the new set pick location to 
input <1> of the set picking location node. In effect, picking can take place 
by positioning the picking location over a displayed object (containing the 
appropriate picking attribute nodes) and sending a TRUE to input <1> of 
PICK. 

Graphics Tutorials 



Figure 11-5 shows a typical arrangement of the T ABLETIN and PICK func­
tions and their connections to the display structure. 

TABLETIN 
<1> 
<4> 
<6> 

2D Vector default connection for pick location and cursor 
Boolean to SET PICKING ON/OFF node 
2D Vector] 

PICK 
<1 > Anymessage 
<2> C Boolean 
<3> C Integer 

F:PICKINFO 

<1 > Pick list 

<1> pick list 
<2> B ----------
<3> B--~--1"""""""""~---~·~--__. 

All outputs to user 
function networks 

Figure 11-5. Typical TABLETIN and PICK Arrangement 

U390476 

3. Using the Picking Functions in a Function Network 

Picking 

A function associated with picking is F:PICKINFO. This function converts 
the pick list data type into character strings that are acceptable by other 
functions. There is only one active input to F:PICKINFO, <1>, and it should 
be connected to output <1> of PICK. 

GTJJ-11 



Any message ____, <1 > 

Boolean - <2> 

Integer time-out - <3> 
duration 

PICK 

<1 > - Pick list- to <1 > F: PICKINFO 

<2> - Boolean; FALSE to SET 
PICKING ON/OFF node 

<3> - Boolean; to SET PICKING 
ON/OFF node 

F:PICKINFO 

Pick list from PICK <1 > <1 > - Integer; index of the pick 

<2> .- String; the pick/IDs 

GTJJ-12 

I-depth of pick list <2> C 

<3> · Integer; start location of Character string 

<4> Integer; the dimension of the node 

<5> Boolean; coordinates reported 

<6> Real; curve parameter, (t) 

<7> Integer; data-type code 

<8> Special; name of picked element 

<9> 20; screen coordinates of the picked point 
U390477 

Figure 11-6. F:PICKINFO (Connected to PICK) 

The pick list sent from output <1> of PICK can be connected to an instance 
of F:PICKINFO to convert the pick list into a logically useful format. The 
pick list can also be printed out or displayed by connecting output <1> of 
PICK to F:PRINT. F:PRINT converts the pick list code to printable 
characters. 

The constant input <2> of F:PICKINFO accepts an integer that specifies the 
depth of the pick identifiers that willl be output. Since the pick list contains 
all of the pick IDs in a picked branch of a display structure, this input 
allows you to select the depth. For example, if there were four pick IDs 
active when a pick occurred and the integer 2 was sent to input <2> of 
F:PICKINFO, then the two pick IDs closest to the data node and the name 
of the data node itself are output as the string on output <2> of F:PICK­
INFO. 

The output information from F:PICKINFO varies with the type of pick list 
supplied on input <1>. If the PICK function has a TRUE on input <2>, then 
it supplies a detailed coordinate pick list and most of F:PICKINFO outputs 
are activated. If the PICK function has a FALSE on input <2>, a less de­
tailed pick list is supplied, and only outputs <1>, <2>, and <5> are active. 

Graphics Tutorials 



Ref er to Section RM2 Intrinsic Functions for a complete description of the 
outputs of F:PICKINFO. 

The best use of picking is when the pick list is sent to an instance of 
F:PICKINFO. Then information generated by the function can be used to 
drive function networks that can be triggered by typical data types. Exam­
ples of what this data can be used for are described in the next section. 

3. 1 Examples of Picking 

Picking 

The following example demonstrates how picking can be used to trigger a 
switching network for an object designed to have parts with independent 
motion. The control dials are normally used to rotate, translate, and scale 
objects in three dimensions. If the designed object requires more than eight 
elements of freedom (the maximum number that can be provided by one set 
of control dials), a picking network can be set up to access a bank of switch­
ing functions that control the output of the dials. This network will allow 
you to point at the part that you want to manipulate and the picking infor­
mation will drive the function network that routes the dial outputs to various 
networks. 

In this example, the display structure that defines a robot figure includes 
SET PICKING IDENTIFIER nodes in each branch of the figure networked 
for motion through a switch function to DIALS. This is the same robot that 
was built in Section GTS Command Language, and it is connected to the 
function networks that were designed in Sections GT6 Function Networks I 
and GT7 Function Networks II. The function network provides for several 
modes for the control dials. These modes provide the triggers to animate 
each part of the robot that requires independent movement, i.e., rotation of 
each shoulder joint, knee joints, torso, head, etc. 

The picking network will use the data tablet to trigger the mode of the dials. 
In Section GT6 Function Networks I, the function keys were used for dial­
mode switching. If you examine the design of the robot, you will notice that 
there are 41 elements of freedom designed into the structure. This will re­
quire 41 modes of the dials. As the picking network will be used to trigger 
the dials mode, 41 SET PICKJNG IDENTIFIER nodes must be coded into 
the structure. 

GTll-13 



GTll-14 

The picking network to switch the modes for dials that are connected to the 
robot display 'structure works in the following manner. When the cursor is 
positioned over a part of the robot with independent motion controlled by a 
dial (like the shoulder) and the tipswitch of the stylus is pressed, the name 
of the pickID in the shoulder branch of the display structure is sent from 
PICK to an instance of F:PICKINFO. 

Output <2> of this instance of of F:PICKINFO is connected to an instance of 
F:CHARCONVERT. F:CHARCONVERT converts the bytes of the string it 
receives on input <1> into a stream of integers. If the pick ID sent to 
F:PICKINFO is A, F:CHARCONVERT will translate A to the ASCII 65. If 
this is then sent to an instance of F:SUBC, it can subtract 64 and output the 
integer 1 that can be used to trigger the appropriate bank of switches for the 
dials. 

Figure 11-7 illustrates the function network described above. 

Graphics Tutorials 



-

Picking 

-

PICK F:PICKINFO F: CHARCONVERT 
<1> 1-- pick list- <1> 
<2> <2> c 

F:SUBC 

<1> 
<2> r- pick id 

F:ROUTE 

<1> 
<2> T 

<1> 

<1 > <1 > Integer (n) directs --+- <1 > <1 > Integer on input <1 > 
<2> routes message 

from DIALS <1> to 
function network 

2 64 message on 'np t - <2> < > I u ...--
<2> to output <n> 

DIALS 
<1> 
<2> 
<3> 
<4> 
<5> 
<6> 
<7> 
<8> ..____ 

~ 
The remaining outputs of 
DIALS would all be con­
nected to instances of 
F: ROUTE that accepted 
an integer from F: SUBC 
on input <1> 

<n> 

F:ROUTE 

+- <1> 
- <2> 

<1 > Integer on input <1 > 
<2> routes message 

from DIALS <2> to 
function network 

<n> 

F:ROUTE 

+--- <1> 
--- <2> 

<1> 
<2> 

<n> 

Integer on input <1 > 
routes message 
from DIALS <3> to 
function network 

to «1 > of all other instances 
of F:ROUTE 

Figure 11-7. Diagram of PICK Through F:SUBC Feeding a Bank 
of F:ROUTE(n) Instances 

To implement the previous example of picking as an exercise demonstrating 
the placement of the picking-attribute nodes and the connections that should 
be made for the picking network, use the source code supplied for the robot 
in Section GTS Command Language. Picking attribute nodes can be set into 
the display structure and then connected to the picking function network 
that is used in the picking demonstration available in the PS 390 Tutorial 
Demonstration Programs. 

GTJJ-15 



3 .2 Exercise 

Design a pickable display structure with several instances of a primitive. 

Design a function network that outputs the pick list to the screen. Use 
F:PRINT and a character data node. Code your display structure and func­
tion network. Display and pick each primitive. 

4. Summary 

GTll-16 

Picking allows you to retrieve information about a selection made on dis­
played data. The information is available in a special format called the pick 
list. Before picking can take place, the data structure that you want to be 
able to pick from must contain certain nodes and pieces of information. 

• Picking-Attribute Nodes 

The first picking-attribute node that must appear in the display structure 
is the SET PICKING ON/OFF node. This node must be above the parts of 
the display structure where picking will take place. This node is turned on 
and off by Boolean values; a TRUE will enable picking in the data struc­
ture below the node, a FALSE will disable it. 

The command that creates the SET PICKING ON/OFF node is: 

name := SET PICKING OFF APPLIED TO namel; 

The other attribute node that must be placed in the display structure for 
picking is the SET PICKING IDENTIFIER node. This pick identifier node 
determines how detailed the information you get back in your pick list 
will be. 

A picked object is identified by two types of names in the pick list. The 
first type of name is the picking identifier or the pick ID. The second 
name is the name of the data node that contains the picked vector or 
character. 

The command to create a SET PICKING IDENTIFIER node is: 

name := SET PICKING IDENTIFIER = id_name APPLIED TO namel; 

Graphics Tutorials 



Picking 

For picking to take place, there must be a SET PICKING ON/OFF node 
placed in the display structure, followed by at least one SET PICK 
IDENTIFIER node down each pickable path. However, one structure can 
contain multiple SET PICKING ON/OFF nodes, and each SET PICKING 
ON/OFF node can be followed by multiple SET PICKING IDENTIFIER 
nodes. 

• Picking Functions 

The initial function instance used for picking is PICK. Input <1> of PICK 
(usually connected to output <6> of TABLETIN) accepts any message 
type as a trigger message to activate picking. The pick list is placed on 
the queue of output <1> of PICK. The main responsibility of PICK is to 
signal the display processor that picking has been enabled and to output 
the pick list. 

An intrinsic user function associated with picking is F:PICKINFO. This 
function converts the pick list data type into character strings that are 
acceptable by other functions. There is only one active input to 
F:PICKINFO, <1>, and it should be connected to output <1> of PICK. 

GTJJ-17 





GT12. VIDEO OUTPUT CONTROL 

CONTENTS 

0 BJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1. VIDEO THEORY AND THE PS 390 . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Calligraphic and Raster Displays . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Raster Display Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.3 Video Timing Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. TH:E PS390ENV FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.1 Selecting a Background Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 Selecting a Cursor Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.3 Selecting a Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.4 Selecting a Video Timing Format . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
2.4.1 Reconfiguring Viewports for Alternate Video Timing . . . . . . . . 7 
2.5 Selecting a Line Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

APPENDIX A 
GUIDE TO PS 390 VIDEO 10 

Video Timing Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Multiple PS 390 Video Hookups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Video Ca bl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Video Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Custom Video Timing Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
References ........................... o • • • • • • • • • • • • • • • • • • • • • 13 

i 



TABLES 

Table 12-1. 1024 by 864, 60 Hz, non-interlaced Video Format . . . . . . . . . . . . . 14 
Table 12-2. RS-343 1024 by 864, 30 Hz, Interlaced Video Format . . . . . . . . . . 15 
Table 12-3. 640 by 484, 30 Hz, Interlaced (RS-170-A (NTSC)) Video Format 16 
Table 12-4. 768 by 574, 25 Hz, Interlaced (PAL, SECAM) Video Format . . . 17 
Table 12-5. RS-343 1024 by 1024, 30 Hz, Interlaced Video Format . . . . . . . . . 18 

ii 



Section GT12 

Video Output Control 

This section describes how to control the video output of the PS 390 graphics 
system. It describes how to select a background color, how to select the configura­
tion and color of the screen cursor, how to select a video timing format, and how 
to select filters to implement antialiasing. 

Objectives 

This section provides the following information: 

• Basic raster display concepts 

• How to select background color 

• How to select a cursor color 

• How to define the shape of a cursor 

• How to select a video timing format 

• How to select a line filter 

1. Video Theory and the PS 390 

This section explains general raster video output concepts and how the 
PS 390 handles video output. 

1.1 Calligraphic and Raster Displays 

There are two types of displays used in computer graphics: calligraphic 
displays and raster displays. Calligraphic displays draw lines on the screen 
by moving the electron beam of the display along the line. The calligraphic 
display produces superior quality lines, but has problems matching the end 
points of lines, uses much more power than a raster display, has limited 
polygon fill and no polygon rendering capabilities, and can draw only at 
limited speeds, which causes the display to flicker when complex objects are 
displayed. 

Video Output Control GT12-l 



Raster displays, such as the displays used with the PS 390, always have 
their electron beam draw the same grid pattern, but adjust the brightness of 
the beam to display a picture. The raster pattern is a grid composed of 
picture elements known as pixels. Resolution is defined in terms of pixels; 
the default PS 390 video timing format has a resolution of 1024 pixels (in 
the horizontal direction) by 864 pixels (in the vertical direction). 

A raster display draws horizontal lines of pixels known as "scan lines," 
starting at the upper left-hand corner of the screen. The scan lines are 
drawn from left to right in succession from the top to the bottom of the 
screen. Since the lines are always being drawn, a resonant circuit is used to 
move the electron beam, which means that a raster display uses only about 
one tenth the power of a calligraphic display. 

Raster displays can produce solid renderings, but in the past have been 
unable to match the line drawing quality of calligraphic displays due to a 
phenomenon known as "aliasing." Angled lines (such as a 45 degree line) 
take on a "stairstepped" effect due to the approximately square shape of 
the pixels. The PS 390 solves this problem by using a set of programmable 
line filters to smooth out the jagged angled lines, producing lines that ap­
proach calligraphic-display line quality. This revolutionary antialiasing capa­
bility of the PS 390 is achieved through proprietary, high-speed custom 
VLSI circuitry, known as Shadowfax TM technology. 

1.2 Raster Display Characteristics 

GT12-2 

Raster displays are either interlaced or non-interlaced. Non-interlaced dis­
plays draw all of the horizontal lines each time they draw from the top to 
the bottom of the screen. All the lines drawn on the screen make up a 
"frame." The default PS 390 video timing format is non-interlaced. 

Commercial television is an example of an interlaced display. Interlaced 
displays draw the first scan line on the top of the screen, then draw the third 
scan line, then the fifth, ·and so on to the bottom of the screen, drawing all 
the odd numbered scan lines. The beam then goes back to the top of the 
screen and draws all of the even numbered scan lines. The odd numbered 
scan lines are called the odd field and the even numbered scan lines are 
called the even field. The two fields make up one frame. 

Graphics Tutorials 



Interlaced displays can have the same resolution as a non-interlaced display 
with only about 60% of the performance of the non-interlaced display 
because the interlaced display draws a given pixel only one half as often as 
the non-interlaced display. The field rate is still 60 Hz, so there is not a 
problem with flicker. Interlaced displays produce some peculiarities 
(artifacts) when there is motion in the picture. If the eye follows an object 
that is moving vertically, the object can move one scan line per field, and 
the eye will see the two fields superimposed on each other. The object 
appears to have horizontal black lines drawn through it. This is one of the 
class of artifacts known as "temporal aliasing." One familiar example of 
temporal aliasing is wagon wheels appearing to turn backwards in western 
movies. 

1.3 Video Timing Formats 

The PS 390 software supports three video timing formats: 

• 1024 by 864 non-interlaced 

• 1024 by 864 interlaced (RS-343-A) 

• 640 by 484 interlaced (RS-170-A) 

The 1024 by 864 non-interlaced format is the default PS 390 video timing 
format. This format does not conform to any established standard video 
timing format. 

The RS-343-A 1024 by 864 interlaced PS 390 video timing format conforms 
to the Electronics Industry Association (EIA) RS-343-A standard for "Elec­
trical Performance Standards for High Resolution Monochrome Closed Cir­
cuit Television Camera." This standard defines a generic high-resolution 
interlaced timing format. This format is used for color cameras, projection 
systems, and other medium performance, high-resolution devices. 

Black and white television in the U.S. conforms to Electronics Industry As­
sociation (EIA) standard RS-170. Color television in the U.S. conforms to 
EIA standard RS-170-A. The color standard defines an encoding of the red, 
green, and blue video signals into one signal. This encoding is also known 
as National Television Standards Committee (NTSC) encoding. The stan­
dard PS 390 can generate a video timing format compatible with RS-170-A. 
Before video signals from the PS 390 can be recorded on a video recorder, 
they must be encoded using a device called an NTSC Encoder. The encoded 

Video Output Control GT12-3 



GT12-4 

signal cannot be hooked up to the antenna leads of a TV, but must be 
modulated over a standard TV broadcast frequency. Because the PS 390 
does not generate an encoded signal in the RS-170-A or any other video 
timing format, it conforms to the timing standards of RS-1 70-A standard, 
but not the encoding standard. 

The PS 390 optionally can support two alternate video timing formats. For a 
description of these alternate formats, multiple PS 390 video hookups, and 
PS 390 video specifications, refer to Appendix A. 

Different video timing formats are used to display pictures. Every display is 
configured to work with a certain video timing format. The important fea­
tures of a video timing format are: 

• Pixel Rate 

• Horizontal Frequency 

• Field Rate 

• Frame Rate 

Pixel rate is the rate at which video information can change. The default 
PS 390 video timing format has a pixel rate of approximately 70 MHz. 

Horizontal frequency is the number of times a horizontal line is drawn 
across the screen each second. The default PS 390 video timing format has 
a horizontal frequency of 54 KHz. 

Field rate is the rate that the electron beam goes from the top to the bottom 
of the screen. The default PS 390 video timing format has a field rate of 60 
Hz. 

Frame rate is the rate at which the entire screen is redrawn. In 
non-interlaced displays, the frame rate is the same as the field rate. 

All timing information is conveyed on the composite sync signal. The 
PS 390 generates only one composite sync signal, so only one video timing 
format can be generated at a time. A different video timing format requires 
a different composite sync signal. 

Displays with different video timing formats can be hooked up at the same 
time, but only displays that are configured for the video timing format 
which is generated by the PS 390 at that time will produce a good picture. 

Graphics Tutorials 



2. The PS390ENV Function 

The PS390ENV is an initial function instance that sets up the background 
color, selects a cursor and a cursor color, and selects a video timing format. 

Input <1> is a trigger which accepts any data type to make the function run. 

2 .1 Selecting a Background Color 

Input <2> of PS390ENV is a constant which accepts a 3D vector with hue, 
saturation, and intensity values to specify a background color used in depth 
cueing. The default background color is 0,0,0, which specifies black as the 
background color. Saturation and intensity must be in the range of [O, 1] or 
an error message is generated. Hue is in the range of [0,360]. For any value 
specified outside this range, multiples of 360 are added or subtracted to 
bring it into the [0,360] range. 

2.2 Selecting a Cursor Color 

Input <3> of PS390ENV is a constant which accepts an integer in the range 
[O, 7] to specify the color of the screen cursor. The following values select 
the following cursor colors: 

0. Black 

1. Blue 

2. Green 

3. Cyan 

4. Red 

5. Magenta 

6. Yellow 

7. White 

White is the default cursor color. Any color outside the [O, 7] range gener­
ates an error. 

Video Output Control GT12-5 



2.3 Selecting a Cursor 

GT12-6 

Input <4> of PS390ENV is a constant which accepts an integer to select the 
type of cursor. There are three types of cursors that can be selected: 

O. Update Rate Cursor (default) 

1. Refresh Rate Cursor 

2-32. Programmable Refresh Rate Cursors 

The update rate cursor is the default system cursor that appears when the 
PS 390 is booted up. The update rate cursor is part of the vector list in the 
graphics data structure and the shape of the update rate cursor can be 
reprogrammed by changing the vector list. The update rate cursor is syn­
chronized with the system's update rate. Sending a value of 0 to Input <4> 
of PS390ENV selects the system-defined update rate cursor, which is an 
x-shaped cursor. 

When used in a static viewport, the update rate cursor is a "destructive" 
cursor; that is, when the update rate cursor is dragged across an object, it 
"destroys" the foreground pixels and leaves a path of the background color 
along the pixels touched by the path of the cursor. This problem does not 
occur in a dynamic viewport. 

The system-defined refresh rate cursor is a 31 pixel by 31 pixel cross­
shaped cursor that is a single pixel wide. The refresh rate cursor matches 
the system's refresh rate and is only supported by the default 1024 by 864 
non-interlaced video timing format (video timing format 0). Sending a 1 to 
Input <4> of PS390ENV selects the system-defined refresh rate cursor. 

The programmable refresh rate cursors are not yet available. 

The refresh rate cursor is a "nondestructive" cursor that can be dragged 
across an object without altering pixel values in either dynamic or static 
viewports. 

When the refresh rate cursor is selected, the initial viewports HVP1 $ and 
GVPO$ must NOT be changed for the refresh rate cursor to work properly 
with picking. 

Graphics Tutorials 



2.4 Selecting a Video Timing Format 

Input <5> of PS390ENV is a constant which accepts an integer to specify the 
video timing format for the display. The 1024 by 864 non-interlaced format 
is the default video timing format. The standard PS 390 monitor only sup­
ports this default video timing format. To use the alternate video timing 
formats, you must have an interlaced monitor physically connected to the 
PS 390. When sent to Input <5> of PS390ENV, the following values select 
the following video timing formats: 

0. 1024 by 864 non-interlaced (default) 

1. Reserved for Diagnostic Use 

2. 1024 by 864 interlaced (RS-343-A) 

3. 640 by 484 interlaced 

Option 1 is reserved for diagnostic use and cannot be selected as a video 
timing format. Selecting option 1 generates an error message. 

2.4.1 Reconfiguring Viewports for Alternate Video Timing 

You MUST send commands to reconfigure your base viewport when you 
select the alternate 640 by 484 interlaced video timing format or switch 
from 640 by 484 interlaced back to one of the 1024 by 864 formats. 

To reconfigure the base viewport when you go from the 640 by 484 inter­
laced format to the 1024 by 864 non-interlaced format, send the following 
command: 

configure a; 
vpf1$ :=view horiz = -.84179688:.84179688 vert = -.68359375:1 
inten=O:l;then HVP1$; 
finish configuration; 
send fix(O) to <5>ps390env; 
send true to <l>ps390env; 

Video Output Control GT12-7 



To reconfigure the base viewport when you go from the 640 by 484 inter­
laced format to the 1024 by 864 interlaced format, send the following com­
mand: 

configure a; 
vpf1$ :=view horiz -.84179688: .84179688 vert -.68359375:1 
inten=O:l;then HVP1$; 
finish configuration; 
send fix(2) to <5>ps390env; 
send true to <l>ps390env; 

To configure the correct viewport for the 640 by 484 interlaced video timing 
format, send the following commands: 

configure a; 
vpf1$ :=view horiz = -.84570313: .09570313 vert 
inten=O:l;then HVP1$; 
finish configuration; 
send fix(3) to <5>ps390env; 
send true to <l>ps390env; 

.05859375:1 

2.5 Selecting a Line Filter 

GT12-8 

The PS 390 supports four selectable line filters to determine the type of 
aliased or antialiased line the system wm draw. The following command 
selects a line filter: 

Namel := Select Filter n THEN Name2; 

where n = 0, 1, 2, or 3. This selects the filter applied to Name2 and 
subsequent structures. This command creates an operation node in the data 
structure. 

The type of filter determines the quality of the lines displayed. Four line 
filters are provided: 

0. SIN (X)/X Filter 

1. Narrow Gaussian (Default) 

2. Wide Gaussian 

3. Jagged (No filter) 

Graphics Tutorials 



The SIN (X)/X filter (filter 0) produces the sharpest, best quality lines and 
works well with images such as text characters that require fine detail. 
However, the SIN (X)/X filter only works with limited background colors; it 
works best with light background colors, such as gray. The SIN (X)/X filter 
produces more artifacts than the Gaussian filters when multiple lines 
overlap. 

The default line filter is the narrow Gaussian filter (filter 1). The narrow 
Gaussian filter is the best general-purpose filter and produces good quality, 
sharp lines. It works with any background color and works well with detailed 
images such as those that contain radial lines. 

The wide Gaussian filter (filter 2) creates wider lines with less definition. 
The wide Gaussian filter produces no artifacts and works well with primi­
tives such as dots. 

The jaggy filter (filter 3) produces unfiltered, aliased lines. 

Values outside the 0-3 range default to the narrow Gaussian filter (filter 1), 
with the following warning message: 

W2045 ** Illegal filter selection, default filter 1 used 

Inputs allowed: 
Qinteger <1> selects filter. Anything other than 0,1,2,3 will 
default to 1 and generate the above warning message. 

Video Output Control GT12-9 



Appendix A 

(iuide To PS 390 Video 

This appendix explains the raster video concepts and the raster video output of the 
PS 390. The second section contains video specifications for the PS 390. 

Video Signals 

GT12-10 

The terminal controls the display. The terminal controls how bright the elec­
tron beam is for each point of the picture and when the beam draws each 
scan line. The information that controls the brightness of the beam is called 
"active video." The information that tells the beam when to go back and 
forth in the horizontal direction is called "horizontal sync." The information 
that tells the beam to go back and forth in the vertical direction is called 
"vertical sync." Vertical sync and horizontal sync are often combined to 
form "composite sync." The information is separated in the display by spe­
cial filters. 

The composite sync signal does not need to convey any information while 
active video information is being sent. This allows the composite sync signal 
to be included with one of the video signals. The resulting signal is called 
"composite video." Most color video terminals have one video signal for 
each of the primary colors of light: red, green, and blue. The composite 
sync signal is usually included with the green video signal. The PS 390 uses 
this red, green, blue (RGB) video system with composite sync carried on the 
green video signal. 

The video signal has defined voltage levels which convey information about 
brightness, composite sync, and more to the display. The Electronic Indus­
tries Association's RS-343-A standard is one common standard. The signal 
voltage levels from the PS 390 conform to this standard. 

Graphics Tutorials 



Video Timing Formats 

Different video timing formats are used to display pictures. Every display is 
configured to work with a specific video timing format. Remember that the 
important quantities of a video timing format are: 

• Pixel Rate 

• Horizontal Frequency 

• Field Rate 

• Frame Rate 

All timing information is conveyed on the composite sync signal. The 
PS 390 generates only one composite sync signal, so only one video timing 
format can be generated at a time. A different video timing format requires 
a different composite sync signal. The PS 390 supports three video timing 
formats that can be selected from runtime. Displays with different video 
timing formats can be hooked up at the same time, but only displays that 
are configured for the video timing format which is generated by the PS 390 
at that time will have a good picture. 

Multiple PS 390 Video Hookups 

The red, green, and blue video signals are carried on three coaxial cables 
bundled together in a large shielded cable. The coax has a characteristic 
impedance of 75 ohms. The connectors are standard BNC. The PS 390 gen­
erates only one set of video signals, so multiple output devices such as 
displays and cameras must be connected in a "daisy chain." This means 
that the first device hooked up to the PS 390 must have both inputs and 
"loop-thru" outputs. The next device connects the loop-thru outputs to its 
inputs. Each additional device along the chain works the same way. All 
devices except the device at the end of the chain must have its termination 
removed or turned off. The last device in the chain must terminate the video 
signals. This is usually done with BNC caps with a built-in 75 ohm resistor. 
Picture quality may degrade if more than one device is connected to the 
PS 390. In such cases, E&S recommends the use of wide-band video distri­
bution amplifiers with a minimum bandwidth of 70 MHz to implement ac­
tive "loop-thru". When using these active "loop-thru" devices, all devices 
should be terminated at 7 5 ohms. 

Video 0 utput Control GTJ 2-11 



Video Cables 

PS 390 video cables are available in lengths of 15, 25, 50, and 100 feet. 
Composite sync at TIL levels is also available (204584-xxx). Evans & 
Sutherland does not provide cables for connecting multiple video devices. 

Video Options 

The PS 390 supports a total of five video timing formats. The PAL/SECAM 
and RS-343-A 1024 by 1024 formats are not standard and require installa­
tion of a hardware option. Supported video timing formats are: 

• 1024 by 864 non-interlaced (PS 390 default) 

• RS-343-A 1024 by 864 

• RS-343-A 1024 by 1024 

• 640 by 484 interlaced (RS-170-A/NTSC timing) 

• 7 68 by 5 7 4 interlaced (P AL/SECAM timing) 

The three video timing formats that are supported by PS 390 system soft­
ware are: 

• 1024 by 864 non-interlaced 

• 1024 by 864 (RS-343-A timing) 

• 640 by 484 interlaced (RS-1 70-A/NTSC timing) 

The combinations available as options are shown in the following table: 

Format 0 
CHobson's Choice> 

1024 by 864 
(non-interlaced) 

Format 2 
CPick On.§}. 

RS-343-A 1024 by 864 
(interlaced) 

RS-343-A 1024 by 1024 
(interlaced) 

Format 3 
(Pick One) 

RS-170-A (NTSC) 
640 by 484 
(interlaced) 

PAL/SECAM 
768 by 574 
(interlaced) 

Custom Video Timing Formats 

GT12-12 

Other video timing formats may be available upon request. The PS 390 
supports gen lock capability as an option. The PS 390 does not support 
video mixing. 

Graphics Tutorials 



References: 

1. EIA RS-170 Standard 

2. EIA RS-170-A Standard 

3. EIA RS-343-A Standard 

4. Raster Graphics Handbook, Conrac Division, Conrac Corporation, 
(New York: Van Nostrand Reinhold Company, 1985), Second Edi­
tion. Chapter 8 is especially informative. 

Video Output Specifications for the PS 390 

Connections 

There are three BNC connectors, Red, Green, and Blue. Composite sync is 
on Green. Composite sync is also available at TTL levels. There must be 
provisions on the monitor for grounding the shield of the display cable. 

Voltage Levels 

0.000 v 
-0. 071 v 
-0.714 v 
-0.785 v 
-1. 071 v 

Peak White 
Reference White 
Reference Black 
Blanking 
Composite Sync 

Voltage levels are given referenced to "earth" ground. All video signals 
must be terminated in 75 ohms to ground. 

Nomenclature 

Front Porch refers to the time interval between the end of active video and 
the beginning of sync, during which the video is at Blank level. Back porch 
refers to the time interval between the end of sync and the beginning of 
active video, during which the video is at Blank level. The symbol "H," 
when used in the vertical timing specification, means one horizontal period. 

Tables 12-1 to 12-5 define the video characteristics of the PS 390 video 
formats. 

Video Output Control GT12-13 



GT12-14 

Table 12-1. 1024 by 864, 60 Hz, non-interlaced Video Format 

Effective resolution 8192 by 6912 

Aspect Ratio, H:V: 4:3.38 

Horizontal timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Horz Period: 
Pixels Displayed: 

Vertical timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Total Vertical Time: 

Pixel Frequency: 
Pixel Period: 

54.06 KHz 
173 nsec 
1850 nsec 
1676 nsec 
3700 nsec 
14798 nsec 
18498 nsec 
1024 

60 Hz 
none 
3H 
34H 
37H (684 usec) 
864H (16.0 usec) 
901H (16.67 msec) 

69.1968 MHz 
14.452 nsec 

Graphics Tutorials 



Table 12-2. RS-343 1024 by 864, 30 Hz, Interlaced Video Format 

Effective resolution 8192 by 6912 

Aspect Ratio, H:V: 

Horizontal timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Horz Period: 
Pixels Displayed: 

Vertical Timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Total Vertical Time: 

Pixel Frequency: 
Pixel Period: 

Video Output Control 

4:3.38 

28.197 KHz 
1001 nsec 
2779 nsec 
3224 nsec 
7004 nsec 
28460 nsec 
35464 nsec 
1024 

60 Hz per field 
3H 
3H 
31H 

37H (1312 usec) per field 
432H (15.32 msec) per field 
939H (33.3 msec) 

35.98 MHz 
27.793 nsec 

GT12-15 



GT12-16 

Table 12-3. 640 by 484, 30 Hz, Interlaced (RS-170-A (NTSC)) Video Format 

Effective resolution 5120 by 3872 

Aspect Ratio, H:V: 

Horizontal timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Horz Period: 
Pixels Displayed: 

Vertical Timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Total Vertical Time: 

Pixel Frequency: 
Pixel Period: 

4:3 

15.734 KHz 
1638 nsec 
4914 nsec 
4586 nsec 
11139 nsec 
52417 nsec 
63556 nsec 
640 

59.94 Hz per field 
3H 
3H 
14H 
20H (1271 usec) per field 
242.5H (15.41 msec) per field 
525H (33.36 msec) 

12.2098 MHz 
81.9014 nsec 

Graphics Tutorials 



Table 12-4. 768 by 574, 25 Hz, Interlaced (PAL, SECAM) Video Format 

Effective resolution 6144 by 4592 

Aspect Ratio, H:V: 

Horizontal timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Horz Period: 
Pixels Displayed: 

Vertical Timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Total Vertical Time: 

Pixel Frequency: 
Pixel Period: 

Video Output Control 

4:3 

15.625 KHz 
1627 nsec 
4610 nsec 
5695 nsec 
11932 nsec 
52068 nsec 
64000 nsec 
768 

50 Hz per field 
2.5H 
2. 5H 
20H 
25H (1600 usec) per field 
287.5H (18.40 msec) per field 
625H (40.0 msec) 

14.7500 MHz 
67.7966 nsec 

GT12-17 



GT12-18 

Table 12-5. RS-343 1024 by 1024, 30 Hz, Interlaced Video Format 

Effective resolution 8192 by 8192 

Aspect Ratio, H:V: 

Horizontal timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Horz Period: 
Pixels Displayed: 

Vertical Timing: 

Frequency: 
Front Porch: 
Sync Pulse: 
Back Porch: 
Total Blanking: 
Active Video: 
Total Vertical Time: 

Pixel Frequency: 
Pixel Period: 

1:1 

33.1 KHz 
1001 nsec 
2730 nsec 
3185 nsec 
6916 nsec 
23296 nsec 
30212 nsec 
1024 

60 Hz per field 
3H 
3H 
33H 
39H (1178 usec) per field 
512.5H (15.48 msec) per field 
1103H (33.3 msec) 

43.956 MHz 
22.75 nsec 

Graphics Tutorials 





GT13. POLYGONAL RENDERING 

CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

0 BJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

PREREQUISITES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1. DYNAMIC AND STATIC VIEWPORT RENDERING . . . . . . . . . . 3 

1.1 Dynamic Viewport Renderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1.1 Backf ace Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1.2 Sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.1.3 Cross-sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.2 Static Viewport Renderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.2.1 IIidden-Line Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.2.2 Wash Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2.3 Flat Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2.4 Gouraud Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
1.2. 5 Phong Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2. DEFINING POLYGONAL OBJECTS . . . . . . . . . . . . . . . . . . . . . . . . 8 

2.1 Using the POLYGON Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
2.2 Constructing Surfaces and Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.3 Specifying Vertices for Surfaces or Solids . . . . . . . . . . . . . . . . . . . 12 
2.4 Using the COPLANAR Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
2.5 Using the Soft Edge Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
2.6 Defining Color For Dynamic Wireframe Polygons . . . . . . . . . . . . 20 



2. 7 Using the WITH OUTLINE option to Define Color . . . . . . . . . . . 21 
2.8 Defining Color and Highlights for Static Raster Renderings . . . . 21 
2.9 Specifying Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

3. ESTABLISHING A WORKSPACE IN MEMORY . . . . . . . . . . . . . . 24 

3.1 Automatic Reservation of Working Storage . . . . . . . . . . . . . . . . . . 25 
3.2 Explicit Reservation of Working Storage . . . . . . . . . . . . . . . . . . . . 25 
3.3 Additional Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

4. MARKING AN OBJECT FOR RENDERING . . . . . . . . . . . . . . . . . 26 

4.1 Admissible Descendants for Rendering Operation Nodes . . . . . . 27 
4.2 Creating Renderings ...... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
4.3 Rendering Node Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
4.3.1 Input <1> ............... ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
4.3.2 Input <2> ............... G • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 33 
4.3.3 Input <3> Through Input <5> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
4.3.4 Output <1> .............. t) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 33 
4.4 Establishing a Sectioning Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
4.5 The Data Definition of a Sectioning Plane . . . . . . . . . . . . . . . . . . . 34 
4.6 Displaying Sectioning Plane Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 36 
4. 7 Cross-sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
4.8 Toggling Between the Rendered Object and 

the Original Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
4.9 Changing the Definition of the Object . . . . . . . . . . . . . . . . . . . . . . 37 

5. SAVING AND COMPOUNDING RENDERINGS . . . . . . . . . . . . . . 37 

5. l How to Save a Rendering ... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
5.2 Contents of a Saved Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
5.3 Common Uses of Saved Renderings . . . . . . . . . . . . . . . . . . . . . . . . 38 

6. DISPLAYING SHADED IMAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

6.1 Specifying Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
6.2 Using the ATIRIBUTES Command . . . . . . . . . . . . . . . . . . . . . . . . . 39 
6.2.1 COLOR Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
6.2.2 DIFFUSE Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
6.2.3 SPECULAR Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
6.2.4 OPAQUE Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
6.2.5 ATIRIBUTE Node Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
6.2.6 Examples of the ATIRIBUTES Command.................. 43 
6.3 Specifying Light Sources . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

ii 



6.3.1 Illumination Node Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
6.4 The SHADINGENVIRONMENT Function . . . . . . . . . . . . . . . . . . . 48 
6.4.1 Input <1> Ambient Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
6.4.2 Input <2> Background Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
6.4.3 Input <3> Static Viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
6.4.4 Input <4> Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
6.4.5 Input <5> Anti-aliasing control (Edge smoothing) . . . . . . . . . . . 51 
6.4.6 Input <6> Depth Cuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
6.4. 7 Input <7> Screen Wash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
6.4.8 Input <8> Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
6.4.9 Input <9> Refresh/Overlay Control . . . . . . . . . . . . . . . . . . . . . . . . 52 
6.4.10 Input <10> Color By Vertex Control . . . . . . . . . . . . . . . . . . . . . 52 
6.4.11 Input <11> Opaque (Transparency) Control . . . . . . . . . . . . . . . 52 
6.4.12 Input <12> Specular Highlight Control . . . . . . . . . . . . . . . . . . . 53 
6.4.13 Input <13> Special Color Blending for Spheres . . . . . . . . . . . . 53 
6.4.14 Input <14> Update Attribute Table . . . . . . . . . . . . . . . . . . . . . . . 53 
6.4.15 Input <15> Polygon Edge Enhancement . . . . . . . . . . . . . . . . . . 54 
6.4.16 Input <16> Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
6.4.17 Input <17> Restore System Look-up Table . . . . . . . . . . . . . . . . 55 
6.4.18 Input <18> Vertex Normals Control . . . . . . . . . . . . . . . . . . . . . . 55 
6.4.19 Input <19> Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

7. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

7.1 POLYGON Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
7 .2 Defining Polygonal Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
7 .3 Constructing Surfaces and Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
7 .4 The COPLANAR Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
7 .5 The Soft Edge Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
7.6 The Color Option in a Dynamic Viewport . . . . . . . . . . . . . . . . . . . 59 
7.7 Specifying Normals....................................... 59 
7. 8 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
7 .9 Marking an Object for Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
7 .10 Establishing a Sectioning Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
7.11 The Data Definition of the Sectioning Plane . . . . . . . . . . . . . . . . 61 
7 .12 Saving a Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
7.13 Specifying Color and Highlights for Static Viewports . . . . . . . . . 61 
7 .14 Specifying Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
7.15 The SHADINGENVIRONMENT Function . . . . . . . . . . . . . . . . . . 62 

iii 



ILLUSTRATIONS 

Figure 13-1. Object Before and After Backface Removal . . . . . . . . . . . . . . . . . . 4 
Figure 13-2. Sectioned Object With Capping Polygons . . . . . . . . . . . . . . . . . . . . 5 
Figure 13-3. Sectioned Object With Hidden-lines Removed . . . . . . . . . . . . . . . . 5 
Figure 13-4. Solid Before and After Hidden-line Removal . . . . . . . . . . . . . . . . . 7 
Figure 13-5. Surface Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Figure 13-6. Solid Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Figure 13-7. Surface With Three Common Edges . . . . . . . . . . . . ... . . . . . . . . . . 12 
Figure 13-8. Icosahedron With Correct. Vertex Ordering . . . . . . . . . . . . . . . . . . 13 
Figure 13-9. Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Figure 13-10. Surface With Inner/Outer Contours . . . . . . . . . . . . . . . . . . . . . . . . 15 
Figure 13-11. Object With Coplanar Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Figure 13-12. Solid Without Inner Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Figure 13-13. Cube With a Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Figure 13-14. Objects With Coplanar Outer Contours . . . . . . . . . . . . . . . . . . . . 18 
Figure 13-15. Objects With Incorrect Vertex Ordering . . . . . . . . . . . . . . . . . . . . 19 
Figure 13-16. Path to Rendering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Figure 13-17. Path to Original Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Figure 13-18. Path to Second Renderilllg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Figure 13-19. Rendering Node Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Figure 13-20. Sectioning Plane Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Figure 13-21. Data Structure of Sectioning Plane . . . . . . . . . . . . . . . . . . . . . . . . 35 
Figure 13-22. Hierarchy With Illumination Node . . . . . . . . . . . . . . . . . . . . . . . . . 46 

iv 



Introduction 

Section GT13 

Polygonal Rendering 

The commands and the function covered in this section allow the user to define 
objects eligible for rendering and to perform rendering operations on these objects. 
It is intended both as an introduction to rendering concepts and as a detailed state­
ment of the rules for using a PS 390 configured with the rendering option. 

Objects composed of polygons defined by the POLYGON command are the only 
objects that are eligible for rendering operations. Objects created by other data 
definition commands, such as VECTOR_LIST, CHARACTERS, LABELS, 
POLYNOMIAL, RATIONAL POLYNOMIAL, BSPLINE, and RATIONAL 
BSPLINE, are displayed along with polygonal objects prior to rendering, but are 
omitted from renderings. (However, special vector lists output from 
F:XFORMDATA can be used to render spheres and lines in a static viewport. This 
type of rendering operation is mainly used by molecular modelers and is described 
in Section TI'2 Helpful Hints.) 

Specifically, this section explains how to use the following PS 390 commands: 

• POLYGON 

• SOLID RENDERING 

• SURFACE RENDERING 

• SECTIONING PLANE 

• ATTRIBUTES 

• ILLUMINATION 

This section also discusses how to use the following PS 390 function: 

• SHADINGENVIRONMENT 

Polygonal Rendering GTJ 3-1 



Objectives 

This section presents the following topics and operations in the order listed 
below. This order is not necessarily the order in which they should be per­
formed. After reading this section you should be able to: 

• Identify the different rendering operations that can be performed in 
dynamic or static viewports. 

• Define a polygonal object with the POL YOON command using all the 
command options (wm-I ATIRIBUTES, wmI OUTLINE, 
COPLANAR, Normals, Soft Edges, Vertex Colors). 

• Establish a workspace in memory. 

• Mark an object as a solid or a surface for rendering. 

• Render the object. 

• Save and compound a rendering. 

• Display a shaded object in a static viewport and change the shading 
environment in which the object is displayed. 

For those already familiar with the PS 390, a reference summary at the end 
of this section lists important rules and guidelines. Also, Section GTJ 5 
Sample Programs contains a polygonal-rendering example that illustrates 
many of the rules and concepts discussed in this section. 

Prerequisites 

GTl3-2 

Before reading this section, you should be familiar with programming the 
PS 390. It is helpful to have an understanding of the representation of po­
lygonal objects in graphics applications. It is assumed that you have some 
method, such as an application program, to automatically generate polygo­
nal data structures. It is also assumed that you have some knowledge of the 
parameters used in rendering and shading objects for display on a raster 
screen. 

Boot the PS 390 with the rendering firmware and run the Rendering Option 
Performance Verification Test. The test graphically illustrates many of the 
concepts discussed in this section. 

Graphics Tutorials 



1. Dynamic and Static Viewport Rendering 

There are two types of rendering operations: those applied to objects 
displayed in a dynamic viewport and those applied to objects displayed in a 
static viewport. Once an object has been correctly defined with the 
POL YOON command, it can be displayed in either a dynamic or a static 
viewport without any modification to the data definition. 

1.1 Dynamic Viewport Renderings 

Rendering operations performed in a dynamic viewport include the 
following: 

• Backface removal (for solid wireframe polygonal models) 

• Sectioning (for both surface and solid wireframe polygonal models) 

• Cross-sectioning (for solid wireframe polygonal models) 

1.1.1 Backface Removal 

Backface removal is an intermediate step in hidden-line removal, during 
which all polygons facing away from the viewer are removed. Because back­
face removal takes considerably less time than hidden-line removal, this 
operation is provided separately to allow you to see an approximation of a 
hidden-line rendering's appearance. 

This operation is especially useful in obtaining quick previews of hidden­
line renderings of complex solids when an appropriate viewing angle is be­
ing decided upon by trial and error. Because the backface removed render­
ing is an unfinished hidden°line rendering, it is not identical to the 
hidden-line rendering in every line segment, but it is close enough to give a 
rough idea of the hidden-line rendering. 

Only solids can be subjected to backface removal; the operation has no 
visual effect on surfaces. 

Figure 13-1 is an example of a solid before and after backface removal. 

Polygonal Rendering GTJJ-3 



GT13-4 

(Before) (After) 

U390423 U390424 

Figure 13-1. Object Before and After Backface Removal 

1.1.2 Sectioning 

Sectioning makes use of a sectioning plane that passes through an object 
and divides the object into two pieces. This operation yields a "cutaway 
view" of the object. The part of the object that is behind the plane is dis­
carded and only the section in front of the plane is displayed. For solids, 
capping polygons are generated to maintain the integrity of the solid. 

A sectioned object may be saved and then subjected to further surface ren­
dering operations such as resectioning, hidden-line removal, or backface 
removal. 

Although there is generally no immediate visual evidence that a capping 
polygon has been produced, capping polygons become a part of the defini­
tion of a sectioned solid, and further rendering can disclose their existence. 
For example, suppose that a solid and a surface are each sectioned verti­
cally, yielding the two sectioned objeets shown in Figure 13-2. Assume that 
each object intersects with its sectioning plane at its two right-most faces. It 
is impossible to tell which object is capped. 

Graphics Tutorials 



Figure 13-2. Sectioned Object With Capping Polygons 

Hidden-line removal shows that the object on the left is a solid, while the 
object on the right is open at its right-most faces (Figure 13-3). 

U390426B 

Figure 13-3. Sectioned Object With Hidden-lines Removed 

Sectioning occurs within 1-3 seconds; the display may blink briefly while 
sectioning is applied. 

1.1.3 Cross-sectioning 

The cross-sectioning operation makes use of a defined sectioning plane to 
create a cross section of an object. When this operation is used, both sides 
of the object are discarded and only the slice defined by the sectioning 
plane remains. 

Polygonal Rendering GTJJ-5 



1.2 Static Viewport Renderings 

GT13-6 

Rendering operations that apply to objects in a static viewport include: 

• raster hidden-line removal 

• wash shading 

• flat shading 

• Gouraud shading 

• Phong shading 

1.2.1 Hidden-Line Removal 

Hidden-line removal generates a view in which only the unobstructed por­
tions of an object are displayed. All polygon edges or parts of edges that 
would be obscured by other polygons are removed (Figure 13-4). 

Three steps are involved in hidden-line removal. 

1. Backfacing polygons are discarded or made front facing. This hap­
pens within 1-3 seconds. During this time the screen is blank. 

2. The remaining polygons are sorted by their Z coordinates. This step 
takes approximately 30 seconds for 3,000 polygons, during which 
time the intermediate backface-removed picture is created. The time 
required for sorting depends on the number of polygons and the 
order in which they are defined. 

3. A static raster rendering is produced with the polygon outlines turned 
on. The polygon interiors are colored black, but they still have Z 
values which render into the scanline z-buffer thus resolving obscuri­
ties. This algorithm handles convex polygons and interpenetrating 
polygons. 

The last step may take one minute or more, depending on the number of 
polygons and the view. In general, it takes more time to process polygons 
that cover a large area of the screen than it does to process those that cover 
a small area. 

Hidden-line removal may be performed on both solids and surfaces. 
Hidden-line views cannot be subjected to further rendering operations. 

Graphics Tutorials 



U390423 U390430 

Figure 13-4. Solid Before and After Hidden-line Removal 

1.2.2 Wash Shading 

Wash shading produces an object with area-filled colored polygons ignoring 
normals, light sources, all lighting parameters, and all depth cueing parame­
ters. This operation does not produce objects that simulate a curved surface. 

1.2.3 Flat Shading 

Flat shading considers color, multiple light sources and depth cueing to 
shade the polygons in the object accordingly. Flat shading produces objects 
that simulate a faceted surface. 

1.2.4 Gouraud Shading 

Gouraud shading is a smooth shading style. This shading process eliminates 
much of the faceted appearance of flat shading. The color of a polygon is 
varied across its surface, considering the normals at the vertices of the poly­
gon, the direction and color of various active light sources, the attributes of 
the polygon (both color and highlights), and depth cueing. 

In Gouraud shading the degree of light which is transmitted is derived by 
first calculating the degree of light transmitted at the vertices using the 
normal you supply and then interpolating between the vertices. 

1.2.S Phong Shading 

Phong shading is also a smooth shading style. Phong shading processes are 
the most complex of all the shading styles. The color of a polygon is varied 

Polygonal Rendering GT13-7 



across its surface, using the surface normal derived by interpolating the 
normals supplied at each vertex of the polygon. The direction and color of 
various active light sources, the attributes of the polygon (both color and 
highlights), and depth cueing are also incorporated to achieve the final re­
sult. Phong shading is the slowest shading style to apply, but it results in a 
smooth appearance of higher quality than Gouraud shading. 

2. Defining Polygonal Objects 

The first step in defining a polygonal object is to determine the correct 
geometry to define that object in the world coordinate space. This is done 
typically by an application program because determining the vertices of all 
the polygons of an object is too complex to do manually. The polygons that 
make up an object must be defined in the POLYGON command according 
to certain rules. If these rules are not followed, the results of a rendering 
operation applied to that object are unpredictable and usually incorrect even 
though the object may appear correct when displayed in the dynamic 
viewport. 

After an object is correctly defined with the POLYGON command, it can be 
displayed in either a dynamic or a static viewport. The operations that can 
be applied in each type of viewport were discussed in Section 1.1 and 
Section 1.2. 

2.1 Using the POLYGON Command 

GT13-8 

A POLYGON clause, part of the POLYGON command, defines an 
individual polygon or face of an object by specifying the coordinates of its 
vertices. Since an object has many faces, several POLYGON clauses are 
used to define the entire object. The number of POLYGON clauses in the 
POLYGON command is equal to the number of polygons in the object. 

The edges of the polygon are defined by lines that connect the polygon's 
vertices. It is important that the vertices be connected in a clockwise order 
when being viewed from the outside of the model. If they are not connected 
in this manner, the polygon appears in a surface rendering but not in a solid 
rendering. Also, backface removal is impossible, and there are problems 
defining holes, concavities, and/or capping polygons in sectioned 
renderings. 

In the PS 390, a polygon must have at least three vertices and no more than 
250, all of which should lie in the same plane. 

Graphics Tutorials 



Concave polygons are acceptable. Degenerate polygons (less than three 
vertices) are not acceptable. Polygons are not pickable and polygon data 
nodes have no inputs to allow them to be modified by function networks. 

The syntax for the POLYGON clause is the word POLYGON and a set of 
X,Y,Z coordinates. Normal and vertex color specifications may or may not 
be present. A named group of one or more polygon clauses, with a 
semicolon at the end, constitutes a POLYGON data definition command (or 
POLYGON command for short). This command defines the data node in 
the data structure of that object. There is no syntactical limit on the number 
of polygon clauses in the group. 

An option of the POLYGON command declares polygons to be coplanar, 
indicating that the polygons have the same plane equation. This provides the 
capability to create objects with holes by defining a coplanar polygon (with 
vertices in a counter-clockwise orientation) inside the clockwise ordered 
vertices of the outer polygon. Another option allows you to define the color 
of the edges of polygons in static raster renderings. 

There are additional POLYGON command options that associate character­
istics or attributes with polygons for use in creating shaded images in a 
static viewport. These options include color and the concentration of 
specular highlights. Normals can be specified for the vertices of an object to 
create a smoothly shaded image that simulates a curved surface. Vertex 
colors can be defined for each vertex and are rendered by linearly interpo­
lating their red-green-blue (RGB) color values. These options are shown 
below and explained briefly; complete details are discussed throughout this 
section. 

The POLYGON command is: 

Name := <polygon> <polygon> ... <polygon> 

where each polygon has the definition: 

<polygon> [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR] 
POLYGON <vertex> ... <vertex> 

and each vertex definition has the form: 

[S] x,y,z [N x,y,z] [C h[,s[i]]] 

Polygonal Rendering GT13-9 



The following list is a brief explanation of each parameter in the command 
and in the vertex definition that a command contains: 

• WITH ATTRIBUTES is an option that assigns the attributes defined 
by name 1 for all polygons until superseded by another WITH 
ATTRIBUTES clause. This option is fully discussed in Section 6, 
Displaying Shaded Images. 

• WITH OUTLINE is an option that specifies as a real number (h) the 
color of the outline to be drawn around polygon borders in enhanced­
edge shaded images, or the: color of polygon edges in hidden-line 
renderings. It has no effect on the color of polygon edges in the 
dynamic viewport. 

• COPLANAR declares that the specified polygon and the one immedi­
ately preceding it have the same plane equation. 

• S indicates that the edge drawn between the previous vertex and this 
one represents a soft edge of the polygon. If the S specifier is used 
for the first vertex in a polygon definition, the edge connecting the 
last vertex with the first is soft. 

• N indicates a normal to the surface with each vertex of the polygon. 
Normals are used only in smooth shaded renderings. Normals must 
be specified for all vertices of a polygon or for none of them. If 
normals are not specified for a polygon, their values default to the 
values for the normal to the plane in which the polygon lies. 

• x, y, and z are coordinates in a left-handed Cartesian system. 

• C indicates a color that is assigned to the vertex. During shading 
operations, this color is interpolated across the polygon to the other 
vertices. 

• h,s,i are values in the hue-saturation-intensity color system. To­
gether, these values create a color. 

2.2 Constructing Surfaces and Solids 

GT13-IO 

The PS 390 command language allows you to define two classes of poly­
gons: surfaces and solids. Solids enclose a volume of space, while surfaces 
do not. 

Surfaces can have edges that belong to just one polygon. For example, in 
Figure 13-5, edge CD is a part of polygon 3 but not of any other polygon. 

Graphics Tutorials 



3 

Figure 13-5. Surface Object 

In a solid, each edge of each polygon must coincide with the edge of an 
adjacent polygon. For example, edge AB in Figure 13-6 is defined as part of 
polygon 1 and as part of polygon 2, and each edge of each polygon is 
similarly repeated in different polygons. 

Figure 13-6. Solid Object 

A solid cannot contain three or more polygons which have a single edge in 
common, although surfaces like the one in Figure 13-7 can. 

Polygonal Rendering GTl3-JJ 



Figure 13-7. Surface With Three Common Edges 

The nature of a polygonal object, representing a surface or a solid, is deter­
mined not only by the construction but by placing it beneath a rendering 
node in the PS 390 data structure created by the SOLID_ RENDERJNG and 
SURFACE RENDERJNG commands. These commands are discussed in de­
tail in Section 4, Marking an Object for Rendering. 

2.3 Specifying Vertices for Surfaces or Solids 

GTJJ-12 

Polygons are closed implicitly, so the first vertex is not repeated when defin­
ing a polygon. The system connects the last vertex given to the first vertex. 

In solids, the direction in which the vertices are ordered within each polygon 
clause has important consequences for rendering operations. The vertices 
should be listed so that if you start at any vertex and move to the next 
vertex (as indicated by the order in the polygon clause), you are traveling 
around the edges of the polygon i111 a clockwise direction, as seen from 
outside the subject. 

There are no similar restrictions for surfaces. The vertices of a surface can 
be Hsted in either a clockwise or a counterclockwise direction. 

For example, let A (0,0,0), B (.5,.87,0) and C (1,0,0) be the vertices of one 
triangular face of a solid icosahedron as shown in Figure 13-8. 

Graphics Tutorials 



Figure 13-8. Icosahedron With Correct Vertex Ordering 

Because the points A, B, and C have the arrangement indicated by the 
arrows when the triangular face is viewed from the outside of the 
icosahedron, that triangle could be defined correctly by any one of the 
following clauses, all of which specify the vertices in clockwise order: 

POLYGON 0,0,0 .5,.87,0 
POLYGON .5,.87,0 1,0,0 
POLYGON 1,0,0 0,0,0 

1,0,0 .. . 
0,0,0 .. . 
. 5,. 87 ,0 ... 

However, the following definition is incorrect for this polygonal face be­
cause it specifies the vertices in counterclockwise order: 

... POLYGON 0,0,0 1,0,0 . 5'. 87 ,0 ' .. 

Another method to determine the order of vertices is to use the right-hand 
rule. The right-hand rule states that if you point the thumb of your right 
hand towards the center of the object and rotate your fingers towards your 
wrist, the direction that your fingers move indicate the order in which the 
vertices of that polygon should be listed. 

In all correctly defined solids, each edge is repeated in two different poly­
gons. For each pair of adjacent polygons, the common edges run in opposite 
directions. This is true for any edge of a correctly defined solid, even if the 
solid contains inner contours. For solids, all vertices must run clockwise and 
all common edges of adjacent polygons must run in opposite directions. 

Polygonal Rendering GTJJ-13 



Although it is not required that surface vertices run clockwise, it is a good 
idea to follow the clockwise rule because it allows surfaces to be easily 
upgraded to solids. Assuming that polygon data are equally available in 
either form, it is better to have the vertices of a surface in a clockwise 
order. 

Given the following object in Figure 13-9: 

U390423A 

Figure 13-9. Cube 

A correct syntax to define this object is as follows: 

Cube .- POLYGON 0,0,0 0,1,0 1,1,0 1,0,0 
POLYGON 1,0,0 1,1,0 1,1,1 1,0,1 
POLYGON 1,1,1 0,1,1 0,0,1 1,0,1 
POLYGON 0,1,1 0,1,0 0,0,0 0,0,1 
POLYGON 0,1,1 1,1,1 1,1,0 0,1,0 
POLYGON 1,0,0 1,0,1 0,0,1 0,0,0; 

2.4 Using the COPLANAR Option 

GTJJ-14 

A polygon that represents a face of an object is called an outer contour. 
Other polygons, known as inner contours, represent cavities or holes in an 
object. 

For the PS 390 to interpret inner contours properly, two things must be 
done. One is to observe the vertex ordering convention for inner and outer 
contours. The other is to use the COPLANAR option in the POLYGON 
clause to associate inner and outer contours. 

Graphics Tutorials 



The vertex ordering rule for inner and outer contours is as follows: vertices 
of inner contours must run in the opposite sense to the corresponding outer 
contour. The vertices of the following triangular polygon face (outer con­
tour) with a hole in it (inner contour) are ordered as follows in Figure 
13-10. 

0.0,1.0,0.5 

-0.5,0.0,0.5 

-1 .. 5,-0.5,0.5 1.5,-0.5,0.5 
U390536 

Figure 13-10. Surface With Inner/Outer Contours 

A POLYGON command syntax for this object is: 

OBJECT := INST Triangle_with_hole; 
Triangle_with_hole := 

POLYGON 
0.0, 1.0, 0.5 
1.5, -0.5, 0.5 

-1.5, -0.5, 0.5 
POLYGON COPLANAR 

0.0, 0.5, 0.5 
-0.5, 0.0, 0.5 
0.5, 0.0, 0.5 

Note that the vertices for the inner contour in the above example are in the 
opposite order of those of the outer contour. 

Polygonal Rendering GT13-15 



GT13-16 

An inner contour is always coplanar with some surrounding outer contour. 
To define the vertices of a polygon as an inner contour, you must associate 
it with the appropriate outer contour by declaring an inner contour to be 
coplanar with the outer contour. The COPLANAR specifier makes this dec­
laration. COPLANAR is an option of the polygon clause which declares that 
the specified polygon and the one immediately preceding it have the same 
plane equation (are in the same plane). 

A polygon declared to be coplanar must He in the same p!ane as the previ­
ous polygon if correct renderings are to be obtained. The system does not 
check for this condition. A polygon without a COPLANAR specifier imme­
diately preceding the consecutive coplanar polygons is also taken to be in 
the set. 

Polygons that are coplanar can be included in the polygon list without the 
COPLANAR specifier, as long as the polygons are not to be associated as 
an outer/inner pair. 

If COPLANAR is specified for the first polygon in a polygon list, it has no 
effect. 

In Figure 13-11 the second polygon is coplanar with the first polygon. The 
third polygon is not coplanar with either of the two preceding polygons. 

U390537 

Figure 13-11. Object With Coplanar Polygon 

Graphics Tutorials 



A polygon should not be defined as an inner contour unless it is coplanar 
with a surrounding contour. Tunnels, protrusions, and holes do not need 
inner contours unless this coplanar arrangement is present. For example, in 
Figure 13-12 neither of the objects contains inner contours. 

Figure 13-12. Solid Without Inner Contours 

The cube with a tunnel running through it (in Figure 13-13) has two inner 
contours in its polygon definition, one for each opening of the tunnel. 

Figure 13-13. Cube With a Tunnel 

Polygonal Rendering GT13-17 



GTl 3-18 

A POLYGON command syntax for this object is: 

Object := 
POLYGON -.6,-.6, .6 .6 1 -.6 1 .6 .6, .6, .6 -.6 1 .6 1 .6 
POLYGON COPLANAR - . 3 I - • 3 I • 6 -·. 3 t • 3 I • 6 . 3 I • 3 I • 6 . 3 I - • 3 I • 6 
POLYGON -.6,-.6,-.6 .6 1 -.6 1 -.6 .6 1 -.6 1 .6 -.6,-.6, .6 
POLYGON .6,-.6,-.6 .6 1 .6 1 -.6 .6, .6, .6 .6,-.6,.6 
POLYGON .6 1 .6 1 -.6 -.6 1 .6 1 -.6 -.6, .6,.6 .6, .6,.6 
POLYGON -.6,.6,-.6 -.6,-.6,-.6 -.6,-.6,.6 -.6 1 .6 1 .6 
POLYGON . 6 I • 6 t - • 6 . 6 I - • 6 I - • 6 -·. 6 I - • 6 I - • 6 - . 6 I • 6 I - • 6 
POLYGON COPLANAR -.3, .3,-.6 -.3,-.3,-.6 .3,-.3,-.6 .3, .3,-.6 
POLYGON -.3,-.3,-.6 -.3,-.3,.6 .3,-.3, .6 .3,-.3,-.6 
POLYGON .3,.3,-.6 .3,-.3,-.6 .3,-.3,.6 .3, .3,.6 
POLYGON .3, .3,-.6 .3, .3, .6 -.3,.3, .6 -.3,.3,-.6 
POLYGON -.3, .3,-.6 -.3, .3, .6 -.3,-.3, .6 -.3,-.3,-.6; 

An object with holes can often be defined in a way that does not require the 
inner contour. For example, the polygon with a hole (outer/inner contour 
pair) in this object could be replaced by four individual polygons without 
holes (coplanar outer contours). 

Figure 13-14. Objects With Coplanar Outer Contours 

Both objects are admissible and can be rendered correctly. 

Graphics Tutorials 



In solids, misplaced capping polygons and extra missing lines are often 
traceable to an outer contour defined with the wrong vertex order as shown 
in Figure 13-15. 

Figure 13-15. Objects With Incorrect Vertex Ordering 

2.5 Using the Soft Edge Option 

The S option before a set of X,Y,Z coordinates indicates that the edge 
drawn between the previous vertex and this one represents a soft edge of 
the polygon. If S is placed before the first set of X,Y,Z coordinates in a 
polygon clause, the edge connecting the last vertex with the first is soft. 

When using the S specifier in the POLYGON command to define an object, 
there are some rules to remember about the way the system treats edges 
that are declared to be soft. 

An S specifier causes the system to apply a move operation rather than a 
draw operation to the associated polygon vertex. Therefore, if a single poly­
gon containing a soft edge is displayed, the soft edge is invisible on the 
display. 

Each polygon edge in a solid coincides with an edge of a neighboring poly­
gon so that the solid is made up of common edge pairs. Common edge pairs 
can be defined as two hard edges, one hard and one soft edge, or two soft 
edges. 

Polygonal Rendering GTl3-19 



In drawing a hard common-edge pair, the same vector is drawn twice in 
opposite directions. If one member of the pair is soft, the vector is only 
drawn once. There is no variation in the intensity between a line drawn once 
and one drawn twice, however, high quality anti-aliasing is more precise 
when edges are drawn just once. When both edges of a common-edge pair 
are defined as soft, the common-edge pair is invisible in both the rendered 
view and the original object. 

In the dynamic viewport, the soft edge is always displayed, with the 
exception of a soft common-edge pair. The same holds true of dynamic 
renderings, and of hidden-line renderings in the static viewport. In shaded 
static raster renderings, however, the default is to display neither hard nor 
soft edges. Input <15> of the SHADINGENVIRONMENT function controls 
the display of edges. As mentioned, the default (FALSE or Fix(O)) displays 
neither hard nor soft edges. Sending a Fix(l) to the input causes all edges 
to be displayed (enhanced). Sending a Fix(2) to this input allows you to 
enhance edges that are declared as hard, and leave edges declared as soft 
as undisplayed. 

2.6 Defining Color For Dynamic Wireframe Polygons 

GTJJ-20 

The color of the edges of a polygon displayed as a dynamic wireframe 
model is set by using the SET COLOR command: 

name := SET COLOR hue, sat [APPLIED TO namel]; 

where hue is a value from 0 to 360, and saturation is a value between 0 and 
1. Refer to the SET COLOR command for a full description of the 
parameters. 

To obtain pure green edges for a dynamic wireframe polygon list, the com­
mand sequence would be as follows: 

A := SET COLOR 240,l APPLIED TO B; 
B : = POLYGON ... ; 

Color is specified for complete polygons, not individual edges. The default 
color is white. The default intensity is 1. 

Graphics Tutorials 



2.7 Using the WITH OUTLINE option to Define Color 

To define the color of enhanced edges of polygon borders in static raster 
renderings, or the color of lines in a hidden-line rendering, the optional 
WITH OUTLINE clause is used. For example, the following commands can 
be used to define a polygon which will have green edges in the dynamic 
viewport, but red outlines when rendered in the static viewport. 

A := SET COLOR 240,1 APPLIED TO B; 
B :=WITH OUTLINE 120 

POLYGON ... ; 

The specifier (h) in the WITH OUTLINE clause is an index into the Spheres 
and Lines Attribute Table loaded at boot time. The overlay of outlines on 
shaded images (polygon edge enhancement) can be turned on or off by use 
of the SHADINGENVIRONMENT function. Refer to the explanation for 
Input <14> of SHADINGENVIRONMENT for more information on the 
attribute table. 

2.8 Defining Color and Highlights for Static Raster Renderings 

Specifying the color, diffuse reflection, specular highlights, and 
transparency (called attributes) of surfaces and solids is done using the 
WITH ATTRIBUTES clause of the POLYGON command. 

Given the ATTRIBUTES command syntax: 

Name :=ATTRIBUTES attributes [AND attributes]; 

where the attributes of a polygon are defined as follows: 

[Color h[s[i]]] [Diffused] [Specular s] [Opaque t] 

The ATTRIBUTES command creates a named attribute node in mass 
memory that defines specific qualities to be applied to polygons when 
referenced by the polygon data structure. The attributes specified in a WITH 
ATTRIBUTES clause of a polygon command apply to all subsequent 
polygons until superseded by another WITH ATTRIBUTES clause. If no 
WITH ATTRIBUTES option is given for a polygon node, default attributes 
are assumed. 

Polygonal Rendering GTJ 3-21 



Polygons may be solidly colored by specifying a color through the 
ATTRIBUTES command, or the colors may be assigned to the vertices by 
giving a color with each vertex specified. The color is specified by giving, 
first, the vertex and then, the color (h,s,i). If just the hue and saturation are 
given, the intensity defaults to 1. If no vertex colors are given, the vertex 
colors default to those specified in the attribute clause. 

Vertex colors must be specified for all vertices of a polygon or for none of 
them. However, as with normals, some polygons may have color at their 
vertices while other polygons may not have color at their vertices. This 
means that it is possible to have some objects in the picture color 
interpolated, while others are not. 

Although color of polygon vertices is specified with a hue, saturation, and 
intensity component, the colors are linearly interpolated across the vertices 
in the red-green-blue color system. If colors are not interpolating the way 
you would like them to, add more vertices to the polygon, or break up large 
solid volumes into smaller sub-volumes and assign the desired colors to the 
new vertices in the object. 

You can specify color for a polygon with both the ATTRIBUTES command 
and the color by vertex specification. An input to SHADINGENVIRON­
MENT allows you to switch between attribute-defined color and vertex­
defined color. Input <10> of SHADINGENVIRONMENT accepts a Boolean 
to determine how color is specified. 

The WITH ATTRIBUTES clause and the ATTRIBUTES command are ex­
plained in more detail in Section 6, Displaying Shaded Images. 

2.9 Specifying Normals 

GTJJ-22 

When a polygon is used to approximate a curved surface, the smooth 
appearance of the surface can be restored in a smooth shaded rendering by 
approximating a surface using normals. Normals only apply to shaded 
renderings. Normals to a surface are specified with one normal per vertex. 
Like vertices, normals are defined by coordinate values of X,Y,Z. The 
shaded rendering process interpolates between vertex normals when 
rendering the polygon. 

Normals must be specified for all vertices of a polygon or for none of them. 
If normals are not explicitly defined for a polygon, their values default to 

Graphics Tutorials 



the value of the normal to the plane in which the polygon lies. Normals are 
needed only in smooth-shaded renderings. If you do not define vertex nor­
mals, but you request a smooth-shaded rendering, the result is a flat-shaded 
rendering (except that specular and diffuse attributes will apply). 

In Phong shading, the surface normal used is the one derived by 
interpolating the normals you supply at each vertex. In flat shading, the 
normal used is the vector perpendicular to the polygon. In Gouraud shading 
the degree of light which is transmitted is derived by first calculating the 
degree of light is transmitted at the vertices using the normal you supply 
and then interpolating between the vertices. In wash shading, no surface 
normal is used and no lights are used. 

The following is the vector list for an octahedron with normals and 
attributes specified. 

object := INSTANCE octahedron; 

blue := ATTRIBUTES COLOR O; 
magenta := ATTRIBUTES COLOR 60; 
purple := ATTRIBUTES COLOR 90; 
red :=ATTRIBUTES COLOR 120; 
orange := ATTRIBUTES COLOR 150; 
yellow :=ATTRIBUTES COLOR 180; 
green := ATTRIBUTES COLOR 240; 
cyan := ATTRIBUTES COLOR 300; 
white :=ATTRIBUTES COLOR 0,0,1; 
black := ATTRIBUTES COLOR 0,0,0; 
grey := ATTRIBUTES COLOR 0,0,0.5; 

octahedron:= 
WITH ATTR cyan 

POLYGON 
0.000, 1.000, 0.000 N 1.000, 1.000, 1.000 C 0, 0, 1 {White} 
0.000, 0.000, 1.000 N 1.000, 1.000, 1.000 C 270, 1, 1 {Turquoise} 
1.000, 0.000, 0.000 N 1.000, 1.000, 1.000 C 0, 1, 1 {Blue} 

WITH ATTR magenta 
POLYGON 

0.000, 1.000, 0.000 N 1.000, 1.000, -1.000 C 0, 0, 1 { White} 
1.000, 0.000, 0.000 N 1.000, 1.000, -1.000 C 0, 1, 1 {Blue} 
0.000, 0.000, -1.000 N 1.000, 1.000, -1.000 C 90, 1, 1 {Purple} 

Polygonal Rendering GTJJ-23 



WITH ATTR yellow 
POLYGON 

0.000, 1.000, 0.000 N -1.000, 1.000, -1.000 C 0, 0, 1 {White} 
0.000, 0.000, -1.000 N -1.000, 1.000, -1.000 C 90, 1, 1 {Purple} 

-1.000, 0.000, 0.000 N -1.000, 1.000, -1.000 C 180, 1, 1 {Yellow} 

WITH ATTR blue 
POLYGON 

0.000, 1. 000, 0 . 000 N -1. 000 I 1.000, 1. 000 c 0, 0, 1 {White} 

-1.000, 0.000, 0 . 000 N -1. 000 I 1. 000 I 1. 000 c 180, 1, 1 

0.000, 0.000, 1. 000 N -1. 000 I 1.000, 1. 000 c 270, 1, 1 

WITH ATTR red 
POLYGON 

0.000, -1.000, 0.000 N 1.000, -1.000, 1.000 C 0, 0, 0 
1.000, 0.000, 0.000 N 1.000, -1.000, 1.000 C 0, 1, 1 
0.000, 0.000, 1.000 N 1.000, -1.000, 1.000 C 270, 1, 1 

WITH ATTR green 
POLYGON 

{Yellow} 
{Turquoise} 

{Black} 
{Blue} 
{Turquoise} 

0.000, -1.000, 0.000 N 1.000, -1.000, -1.000 C 0, 0, O {Black} 
0.000, 0.000, -1.000 N 1.000, -1.000, -1.000 C 90, 1, 1 {Purple} 
1.000, 0.000, 0.000 N 1.000, -1.000, -1.000 C 0, 1, 1 {Blue} 

WITH ATTR purple 
POLYGON 

0.000, -1. 000 I 
-1. 000 I 0.000, 
0.000, 0.000, 

WITH ATTR orange 
POLYGON 

0.000 N -1. 000, -1.000, 
0.000 N -1. 000' -l. 000, 

-1. 000 N -1. 000 I -1.000, 

-1. 000 c 0, 0, 0 {Black} 
-1. 000 c 180, 1, 1 {Yellow} 
-1. 000 c 90, 1, 1 {Purple} 

0.000, -1.000, 0.000 N -1.000, -1.000, 1.000 C 0, 0, 0 {Black} 
0.000, 0.000,1.000 N -1.000, -1.000, 1.000 C 270, 1, 1 {Turquoise} 

-1.000, 0.000, 0.000 N -1.000, -1.000, 1.000 C 180, 1, 1 {Yellow} 

3. Establishing a Workspace in Memory 

GTJJ-24 

The rendering process requires that a large block of mass memory be avail­
able. This workspace is known as working storage, and once reserved, is not 
available for other uses until it is unreserved. The working storage require­
ment can be calculated automatically by the PS 390, or may be explicitly 
reserved. 

Graphics Tutorials 



3 .1 Automatic Reservation of Working Storage 

To have the system automatically reserve working storage for the rendering 
process, the command 

RESERVE_WORKING_STORAGE O; 

should be entered. After the rendering operation is complete, the PS 390 
will display the amount of memory required. This number can be written 
down and used to explicitly reserve memory for the next rendering 
operation. 

The automatic calculation of working storage is more efficient in memory 
usage, but requires extra time during the rendering process. To avoid this, 
you may explicitly reserve working storage, either using the number re­
ported by an automatic calculation, or by using the guidelines that follow. 

3.2 Explicit Reservation of Working Storage 

To explicitly reserve memory for a rendering, the syntax of the command is 
as follows: 

RESERVE_WORKING_STORAGE n; 

where: 

the current working storage block is replaced with another contammg at 
least n bytes. If n is less than or equal to 0, the system will calculate the 
exact memory requirement for the rendering. 

The best time to reserve working storage is immediately after booting, when 
large requests can be filled easily. 

Each polygon of a solid object with four vertices requires approximately 150 
bytes of reserve working storage. Memory needs will vary from figure to 
figure depending on the complexity of the object, the operations to be per­
formed on the data structure, and the view. Typically, 200,000 to 400,000 
bytes of working storage should be reserved when you begin a session. 

After one working storage request is made, subsequent requests do not add 
to the original working storage; they replace the original working storage. 

Working storage is not freed by the INITIALIZE command. However, if a 
working storage request is followed by another, smaller request, an amount 
of memory equal to the difference between the two requests is freed. 

Polygonal Rendering GTJ 3-25 



If a contiguous block of memory cannot be allocated, no working storage is 
allocated and any previous storage is deallocated. If the system is unable to 
reserve enough working .storage to complete a rendering, the rendering ter­
minates prematurely and an error message is issued. 

3.3 Additional Memory Requirements 

In addition to the working storage space, extra mass memory is needed to 
create static renderings. This memory is ref erred to as transient memory 
and is automatically allocated and deallocated by the system. If adequate 
mass memory is not available for transient storage, the static process termi­
nates prematurely, and an error message is generated. For this reason E&S 
recommends 4Mb or more of memory for renderings of objects with numer­
ous polygons. 

4. Marking an Object for Rendering 

GTJ3-26 

A polygonal object must be defined by a PS 390 command to be either a 
surface or a solid before rendering operations can be applied to it. 

The commands to mark a polygonal object as a surface or solid are: 

• SOLID RENDERING 

• SURFACE RENDERING 

The SOLID_ RENDERING command creates an operation node in the data 
structure. The default value of this command declares that all of its descen­
dant polygon data nodes define solids. 

The SURFACE_RENDERING command also creates an operation node in 
the data structure. The default value of this command declares that all of its 
descendant polygon data nodes define surfaces. 

The nodes established by the commands are called rendering operation 
nodes. Rendering nodes should not be instanced more than once either di­
rectly or indirectly, as only one node at a time may be triggered. 

Before you can render an object, its rendering node must be part of a struc­
ture which is displayed (using the DISPLAY command). If the object itself 
is displayed but its rendering node is not, no renderings can be created. 

Graphics Tutorials 



For example, if the command sequence 

A := SOLID_RENDERING APPLIED TO B; 
B :=POLYGON ............ ; 

has been entered, the DISPLAY command should be DISPLAY A; and not 
DISPLAY B;. 

Syntax for the rendering commands is: 

Name := SOLID_RENDERING APPLIED TO Namel; 
Name := SURFACE_RENDERING APPLIED TO Namel; 

where Namel names either (a) a POLYGON node, or (b) an ancestor of 
one or more POLYGON nodes. If (b) is the case, any rendering referring to 
Name 1 is performed immediately on all of the POLYGON objects de­
scended from Namel. 

A descendent polygonal object originally declared as a surface with the 
SURFACE_RENDERING command can be changed to a solid by sending to 
input <2> of the SURFACE or SOLID_RENDERING node. A TRUE sent to 
input <2>declares the descendent object as a solid; a FALSE sent to this 
input declares the object as a surface. This input is useful for updating 
objects originally defined as surfaces to solids, making the full range of 
rendering operations possible. 

4.1 Admissible Descendants for Rendering Operation Nodes 

The following commands may be placed between a rendering node and its 
data: 

• IF and SET CONDffiONAL BIT 

• IF and SET LEVEL OF DETAIL 

• INCRENIENT LEVEL OF DETAIL 

• DECRENIENT LEVEL OF DETAIL 

• IF PHASE 

• SET COLOR 

• SET RATE 

• SET RATE EXTERNAL 

• SET DEPTH CLIPPING 

• BEGIN STRUCTURE ... 

• END STRUCTURE 

Polygonal Rendering GTJJ-27 



GT13-28 

A rendering takes into account any effects of these nodes at the time the 
request is made. For example, if IP PHASE and SET RATE are being used 
to blink an object and that object is "off" at the moment the request is 
made, the object is excluded from the rendering. 

The nodes mentioned above can also be placed above the rendering node 
with the same result. Placement of these nodes above the rendering nodes is 
generally regarded as good programming practice, although it is admissible 
to put them between the rendering node and its data. 

Transformations created with the following commands may be placed be­
tween a rendering node and its data node ( s): 

• ROTATE 

• TRANSLATE 

• SCALE 

• MATRIX 2X2 

• MATRIX 3X3 

• MATRIX4X3 

•LOOK 

The transformation nodes should be used with caution: like the operation 
nodes mentioned above, their effects are incorporated into renderings, and 
which may result in imprecision. Another potential problem with interposing 
these transformations between a rendering node and the data arises when 
renderings are being saved. 

Since most vertices in an object usually belong to more than one polygon, 
each vertex should be defined with the same numerical value in each of its 
polygons; otherwise, precision discrepancies may cause inaccurate 
renderings. 

In general, nodes created with the following five commands should not be 
made descendants of a rendering node: 

• WINDOW 

• VlEWPORT 

• EYE BACK 

• FJELD OF VlEW 

• MATRIX 4X4 

Graphics Tutorials 



Like other transformations, the five node types listed above are incorpo­
rated into the output data from a rendering operation. However, rendered 
data is generally displayed within a framework that already includes global 
4x4 matrix transformations. Including .the transformations listed above as 
part of the rendering usually has the effect of applying an unwanted double 
(double VIEWPORT, double WINDOW, etc.) to the rendered object. 

SOLID RENDERING and SURFACE RENDERING may not be 
descendants of a SURFACE or SOLID RENDERING node. If this rule is 
not observed, bad renderings or a system crash may result. The system does 
not check for this condition. 

4.2 Creating Renderings 

An appropriate integer sent to a SOLID_RENDERING or SURFACE_REN­
DERING node produces a rendering of that node's descendant polygonal 
object. When a rendering is first created for an object, a second set of data 
is created and "grafted" just below the rendering node for the original ob­
ject. To display the rendering, the Joint Control Processor traverses the path 
to this new data. The original data remain intact and are accessible through 
input to the rendering node (Figure 13-16). 

ORIGINAL 
POLYGON 

DATA 

Polygonal Rendering 

I 

/-'-.. 
(REQUEST RENDERING) (TRAN SF OR\ 

MATIONS I 

' / ;-

r ;_-, 

I ORIGINAL I 
POLYGON 

DATA 

L - .J U390539 

Figure 13-16. Path to Rendering Data 

RENDERING 
DATA 

GTJJ-29 



GT13-30 

When the original object is redisplayed, the path to the original object is 
traversed and the rendering data remains intact (Figure 13-1 7). 

ORIGINAL 
POLYGON 

DATA 

I
RENDERINGI 

DATA 

L - _J 

U390539A 

Figure 13-17. Path to Original Data 

At this point, the rendering can easily be displayed again, since its data still 
exists. When a second rendering is done on this object, a second set of 
rendering data replaces the first set (Figure 13-18). 

I 

/-1.... 
( TRANSFOR~ 

MATIONS I 

' / r-
r L-, 

I 

ORIGINAL I 
POLYGON 

DATA 

L - _J 

RENDERING 
DATA 

U390539B 

Figure 13-18. Path to Second Rendering 

Graphics Tutorials 



The "current rendering" is always the one most recently created, even if it 
is not currently displayed. Each rendering node has its own current 
rendering. 

After requesting a rendering operation, commands may be entered through 
the keyboard or through a function network. These commands are 
processed at a slightly slower rate because of the overhead caused by the 
rendering operation. 

If a command causing the screen viewport to change is issued during a 
rendering, the rendering will occur in the newly selected area of the screen 
viewport without clearing the screen. 

4.3 Rendering Node Connections 

Rendering nodes have five inputs. Inputs are similar for SOLID _rendering 
and SURFACE_rendering (Figure 13-19). 

Instance name 

Integer, String, _____ .. , Boolean 
or Boolean 
Boolean for Polygon --... 
Solid/Surf ace 
XFORMDATA----.1 
Vector List (raster Lines) 

XFORMDATA-------~ 
Vector List (spherical data) 

Name of Original----......... 
Vector List 

Figure 13-19. Rendering Node Connections 

Polygonal Rendering GT13-31 



GT13-32 

4.3.1 Input <1> 

Input <1> of the rendering nodes accept 9 different numerical values, or a 
string, or a Boolean. The following summarizes valid inputs for input <1>. 

Sending fix(O) to input <1> establishes a toggle between a current rendering 
and the original object in a dynamic viewport. 

Sending fix(l) to input <1> creates and displays a cross-section of a solid 
object as defined by a sectioning plane in a dynamic viewport. 

Sending fix(2) to input <1> creates and displays a sectioned rendering in a 
dynamic viewport. 

Sending fix(3) to input <1> creates and displays a rendering of a solid with 
backfaces removed in a dynamic viewport. 

Sending fix(4) to input <1> creates and displays a rendering with hidden­
lines removed in the static viewport. 

Sending fix(S) generates an object with the wash shading style in a static 
viewport. 

Sending fix( 6) generates an object with the flat shading style in a static 
viewport. 

Sending fix(7) generates an object with the Phong shading style in a static 
viewport. 

Sending fix(8) generates an object with the Gouraud shading style in a static 
viewport. 

Sending a string to input <1> causes the current rendering to be saved under 
a name defined by the string. 

Sending the Boolean FALSE to input <1> causes the original unrendered 
descendent structure of the rendering operation node to be displayed. 

Sending the Boolean TRUE to input <1> causes the rendered view of the 
rendering operation node to be displayed. 

Graphics Tutorials 



4.3.2 Input <2> 

Input <2> of the rendering nodes accept a Boolean which defines the dis­
played object as a surface or a solid. 

Sending a TRUE to input <2> defines the descendent object as a solid. 

Sending a FALSE to input <2> defines the descendent object as a surface. 

4.3.3 Input <3> Through Input <5> 

Input <3> accepts a transformed vector list from the function 
F:XFORMDATA to define raster lines. (Used with CPK-Molecular 
Modeling.) 

Input <4> accepts a transformed vector list from the function 
F:XFORMDATA to define spherical centers. (Used with CPK-Molecular 
Modeling.) 

Input <5> accepts the original vector list to enable accurate spherical scal­
ing. (Used with CPK-Molecular Modeling.) 

4.3.4 Output <1> 

Rendering nodes, unlike most other display structure nodes, generates an 
output. A TRUE is output upon successful completion of the rendering 
process, and a FALSE is output if the rendering failed. 

For example, the commands 

A := SOLID RENDERING APPLIED TO B; 
CONNECT A<l>:<l>C; 

cause the output of a rendering node to be sent to input <1> of C. 

Any input to input <1> of a rendering node causes an output. If output <1> 
has not been connected, and an integer, string, or Boolean value is sent to 
input <1>, a system generated function network will cause a message to 
appear on the screen upon successful completion of the rendering 
operation. An error message also appears if the rendering was not 
completed. 

Polygonal Rendering GT13-33 



4.4 Establishing a Sectioning Plane 

Defining, displaying, and positioning a sectioning plane are the first steps in 
producing a sectioned rendering of an object. The SECTIONING_ PLANE 
command creates a sectioning plane node which indicates that a descendant 
POLYGON is a sectioning plane. The syntax is: 

Name := SECTIONING_PLANE APPLIED TO Namel; 

where Namel names either (a) a POLYGON command or (b) an ancestor 
of a POLYGON command. 

4.5 The Data Definition of a Sectioning Plane 

GTJJ-34 

A sectioning plane is the plane in which a specified polygon lies. Only the 
plane need intersect the object to be sectioned; the actual polygon that de­
fines the plane does not need to. 

The data which defines a sectioning plane is contained in a POLYGON 
node; SECTIONING_PLANE indicates that a given POLYGON node repre­
sents a sectioning plane. 

The sectioning plane is the plane containing the polygon defined by the first 
POLYGON clause of the first polygon node encountered after a sectioning 
plane node. Additional polygon clauses defining other polygons have no 
effect on actual sectioning operations, but are displayed along with the de­
fining sectioning plane polygon. This can be put to use in designing an 
indicator which shows the side of the plane at which sectioning will remove 
(or preserve) polygon data. For example, the command 

SPdata := 
POLYGON -.9,-.9,0 -.9, .9,0 .9,.9,0 .9,-.9,0 
POLYGON .1,0,0 .1,0,-.3 .15,0,-.3 0,0,-.45 

-.15,0,-.3 -.1,0,-.3 -.1,0,0 
POLYGON 0,.1,0 0,.1,-.3 0, .15,-.3 0,0,-.45 

0,-.15,-.3 0,-.1,-.3 0,-.1, 0 ; 

defines a sectioning plane with two polygonal arrow indicators as shown in 
Figure 13-20. 

Graphics Tutorials 



y 

U390425A 

Figure 13-20. Sectioning Plane Definition 

Sectioning preserves those parts of an object lying in front of and removes 
those parts lying in back of the sectioning plane. The front side of a section­
ing plane is the side on which the vertices of the defining polygon run clock­
wise. 

No SOLID_RENDERING or SURFACE_RENDERING operation node may 
be an ancestor of a sectioning plane's defining polygon. The PS 390 inter­
prets polygons with SOLID_RENDERING or SURFACE_RENDERING an­
cestors as objects to be rendered rather than as sectioning plane definitions, 
and issues a "sectioning plane not found" message when a sectioning at­
tempt is made. 

(Wrong) 
• • • 

• • • 

Polygonal Rendering 

(Wrong) 
• • • 

• • • U390540 

• • • 

(Right) 

• • • • • • 

Figure 13-21. Data Structure of Sectioning Plane 

• • • 

GTJJ-35 



Other nodes which do not represent viewing transformations, such as 
TRANSLATE, may be placed either above or below the sectioning plane 
node as needed. 

Typically, you will want to orient the plane interactively by connecting inter­
active devices via function networks to translate and rotate the sectioning 
plane. 

4.6 Displaying Sectioning Plane Nodes 

Before an object can be sectioned, the sectioning plane node must be part of 
a structure which is displayed. In order to section an object, you must first 
create the sectioning plane, and then display it along with the object to be 
sectioned. 

For example, if the command sequence 

A := SECTIONING_PLANE APPLIED TO B; 
B : = POLYGON . . . ; 

has been entered, the DISPLAY command should be DISPLAY A; and not 
DISPLAY B;. 

4. 7 Cross-sectioning 

GT13-36 

Cross-sections can only be created for objects defined as solids. The cross­
sectioning operation makes use of a sectioning plane to create a cross sec­
tion of the object. When this operation is used, both sides of the object are 
thrown away and only the slice of the object defined by the sectioning plane 
remains. Essentially, the object is sectioned and only the capping polygons 
remain. 

This operation proceeds within 1-3 seconds. During this time the display 
blanks momentarily while the object is sectioned. 

Sending fix(l) to input <1> of the rendering node creates a cross section in 
the working storage area, and displays it on the screen in the dynamic 
viewport. 

Graphics Tutorials 



4. 8 Toggling Between the Rendered Object and the Original Object 

It is often useful to compare objects before and after rendering operations 
have been applied. The toggle operation that occurs when you send a TRUE 
or a fix(O) to input <1> of the rendering node allows you to alternate the 
display between the rendered object and the original object. Both the 
rendering and the original object are left intact and can be redisplayed until 
they are overwritten or saved. 

Sending a FALSE to input <1> of a rendering operation node causes the 
original descendent structure of the node to be displayed. The rendered 
view is not affected, other than being removed from the display. The ren­
dered view can be restored and displayed again by sending TRUE or fix(O) 
to the :rendering operation node. 

4.9 Changing the Definition of the Object 

Sending a Boolean value to input <2> of the rendering node controls 
whether the descendant polygons are to be treated as a solid or a surface. 
This allows a solid rendering node to be converted to a surface rendering 
node and vice versa. TRUE sent to input <2> defines the node as a solid 
rendering node whatever the original state was. FALSE defines the node as 
a surface rendering node. The default is determined by the word SOLID or 
SURF ACE in the command that created the node. 

5. Saving and Compounding Renderings 

Saving a rendering is done by giving it a name by which it can be ref er­
enced. Dynamic viewport renderings are the only renderings which may be 
saved and compounded. Static viewport renderings cannot be saved, and 
cannot have further rendering operations performed on them. 

This process establishes a rendering as a separate named data node. 
Requesting and displaying a rendering creates rendering data, but does not 
create a node in the normal sense. The rendering cannot be referenced nor 
subjected to further rendering operations until it is saved. Saving the 
rendering is, therefore, a prerequisite to making further renderings of the 
object. After a rendering is saved, it is no longer considered a current 
rendering. Therefore, the toggle operation (Boolean values and a fix(O) sent 
to the rendering node) no longer affect the rendering. 

Polygonal Rendering GT13-37 



5 .1 How to Save a Rendering 

To save a rendering, send the name (a string message) to input <1> of the 
SOLID_RENDERING or SURFACE_RENDERING operation node. All ille­
gal PS 390 names are rejected and an error message is generated. 

The string should specify the name of the node which is to contain the saved 
rendering data. If the named node does not exist, it is created; if it does 
exist, the saved rendering data replace the original contents of the node. 

All polygons in the rendering are taken into account in the saved rendering. 
It is not possible to exclude selected polygons or polygon data nodes from 
saved renderings. 

5.2 Contents of a Saved Rendering 

Backface removal and sectioned renderings are saved as polygon lists. 
When a sectioned rendering is saved, all transformations between the ren­
dering operation node and the polygon data node are applied to the polygon 
data. The result is stored in the new data node. When a backface rendering 
is saved, all ancestor transformations of the polygon data node are applied 
to the polygon data before the result is stored in the new node. This occurs 
even if those transformations are above the rendering operation node. 

5 .3 Common Uses of Saved Renderings 

GTJJ-38 

The most common reason for saving a rendering is to create a compound 
rendering from it. 

Common types of compound renderings are: (a) re-sectioning of a sectioned 
rendering and (b) creating a static rendering of an object which has been 
sectioned. 

Backface renderings, which are useful mainly for previewing time­
consuming hidden-line operations on complex objects, are not generally ren­
dered further. Hidden-line renderings cannot be rendered further because 
they are static raster images. 

Graphics Tutorials 



6. Displaying Shaded Images 

The PS 390 can be used as an "image buffer" to display host generated 
images (by using run length encoding), or it can display shaded images 
derived locally from PS 390 polygonal models. 

When using the display as an image or frame buffer, the PS 390 is only 
used as a communications link between the host and the raster system. No 
standard PS 390 commands or data structures are used to display host gen­
erated images. 

This section deals only with displaying shaded images derived locally from 
PS 390 polygonal models. Run length encoding, the process of displaying 
host generated images, is documented in Section GT14 Raster Programming. 

6.1 Specifying Attributes 

In Section 2, Defining Polygonal Objects, you were introduced to the WITH 
ATTRIBUTES option. Attributes are applied to a collection of polygons by 
specifying the name of the attribute node after WITH ATTRIBUTES in the 
POLYGON command. If the WITH ATTRIBUTES option is not used in the 
polygon clause, the default attributes 0,0, 1 for COLOR, 0. 75 for DIFFUSE, 
4 for SPECULAR, and 1 for OPAQUE (transparency) are assumed. Refer 
to Sections 6.2.1 through 6.2.4 for details on specific attributes. 

6.2 Using the ATIRIBUTES Command 

The ATTRIBUTES command specifies the various characteristics of poly­
gons used in the creation of shaded renderings. Attribute nodes are created 
with the ATTRIBUTES command and exist in mass memory but are not 
part of a data structure. The attributes specified in an ATTRIBUTES com­
mand are assigned to polygons which include a WITH ATTRIBUTES clause. 

When the display processor traverses the data structure with a polygon node 
containing a WITH ATTRIBUTES Name 1, the attributes in Name 1 are 
assigned to all polygons in the node until superseded with another WITH 
ATTRIBUTES clause. The various attributes may be changed from a 
function network via inputs to an attribute node or by reassigning the name, 
but the changes have no affect until a new rendering is created. No type 
checking is done by the shading process to ensure that WITH ATTRIBUTES 

Polygonal Rendering GT13-39 



GT13-40 

indeed refers to an attribute node and not some other entity. If it does ref er 
to some other entity, the display processor will interpret any values in that 
node as attributes, and display the object incorrectly. 

The ATTRIBUTES command is: 

Name :=ATTRIBUTES <attr> [ AND <attr> ] 

Given: 

<attr> = [COLOR h [ ,s ,i ]]] 
[ DIFFUSE d] 

SPECULAR s] 
OPAQUE t] 

A second set of attributes may be given after the word AND in the 
ATTRIBUTES command which apply to the obverse side of the polygon(s) 
concerned. In other words, the two sides of an object may have different 
attributes. The polygons considered on the obverse (back facing) side by the 
system are those having counterclockwise ordered vertices for the view in 
which the rendering is carried out. The second set of attributes will only be 
applied in surface renderings (not solid). The attributes defined for the first 
<attr> specify attributes for front facing polygons. The attributes after the 
AND specify the attributes of back facing polygons. 

You are not required to include the AND <attr> to specify different attrib­
utes for back facing polygons. If the AND specifier is not included, the 
backfacing polygons will have the same attributes as the front. The com­
mand syntax for specifying just one set of attributes is: 

Name := ATTRIBUTES <attr> 

6.2.1 COLOR Component 

The COLOR component of the ATTRIBUTE command sets the basic color 
for the surface of a polygon. This component pertains only to shaded 
renderings in a static viewport. It has no effect on the color of the edges of a 
polygon in a dynamic viewport or the outlines of polygons in static 
renderings (these are changed using SET COLOR command and the WITH 
OUTLlNE clause respectively). Color is given as hue (h), saturation (s), and 
intensity (i). It also changes according to such variables as shading style, 
light sources, orientation, depth cueing, ambient lighting, and specular 
lights. 

Graphics Tutorials 



Hue specifies degrees around the color circle with 0 being pure blue, 120 
pure red, and 240 pure green. Saturation varies from 0 for no color satura­
tion (grays) to 1 for full color saturation. Intensity varies from 0 for no 
intensity (black) to 1 for full intensity. 

If COLOR is not specified, the default hue is white (s=O, i=l). If not 
specified, saturation and intensity default to 1. If only hue and saturation 
are specified, intensity defaults to 1. Values greater than 1 or less than 0 for 
saturation or intensity are rounded to 1 or 0. Hue and saturation correspond 
to hue and saturation in the SET COLOR command but have greater 
precision. 

6.2.2 DIFFUSE Component 

The diffuse component of the ATTRIBUTE command determines the pro­
portion of color contributed by diffuse reflection versus that contributed by 
specular reflection to smooth shaded renderings. Decreasing d (diffuseness) 
makes the surface more shiny; increasing d reduces the intensity of specular 
highlights, making the surface more matte, with a value of 1 eliminating 
specular highlights entirely. Values larger than 1 or less than 0 are rounded 
to 1 or 0. If no DIFFUSE component is given, it defaults to 0.75. 

6.2.3 SPECULAR Component 

The SPECULAR component of the ATTRIBUTE command adjusts the con­
centration of specular highlights in smooth shaded renderings. Specular 
highlighting is a property of the object such that the size of the highlight 
spot is not influenced by the light source, only by the s value. Higher con­
centrations of specular highlights result in more metallic looking objects. In 
reality, objects are never completely specular (or completely diffuse), so 
you get artificial effects if these values are at a maximum. Acceptable val­
ues of s are integers between 0 and 10, with values outside that rounded to 
0 or 10. The default is 4. 

6.2.4 OPAQUE Component 

The OPAQUE component of the ATTRIBUTE command specifies the trans­
parency of a polygon. Increasing values of t (transparency) increase the 
polygon's opacity. Acceptable values for t are real numbers in the range 
from 0 to 1 where 1 indicates that the polygon is fully opaque and 0 indi­
cates the polygon is fully transparent (invisible). 

Polygonal Rendering GTJJ-41 



GTJJ-42 

As t decreases from 1 to 0, more of the color of the obscured object(s) will 
show through. At t=O, the transparent polygon becomes completely invis­
ible. If no opaque attribute is specified, the default is 1 (fully opaque). 

Polygons that are rendered as transparent have no color of their own, but 
merely filter the color of objects appearing behind them. This is according 
to the rule that each of the red, green, and blue components of the object 
behind is multiplied by the red, green, and blue components of the 
transparent polygon. This means that a transparent object rendered over a 
black background will be invisible. This also means that a purely blue 
transparent object rendering over a purely red object, will make the red 
object look more black (depending on the value of the Opaque specifier). 

There are no specular highlights available on transparent objects. 

To show polygon orientation relative to the eye point, the color which is 
transmitted through the transparent object is darkened according to the z­
component of a surface normal. This means that with Phong, Gouraud, and 
flat shading, as the object bends away from the user, the transmitted color 
becomes darker. 

To render any objects as transparent, you must at some time prior to ren­
dering send a TRUE to input<11> of SHADINGENVIRONMENT. This input 
that allows you to turn transparency on and off. 

6.2.5 ATIRIBUTE Node Inputs 

Inputs to the attribute node are as follows: 

• Input <1> accepts a real number as hue, a 2D vector as hue and 
saturation, or a 3D vector as hue, saturation, and intensity to specify 
COLOR for the front of the appropriate polygon(s) or both sides if 
no obverse attributes are given. 

• Input <2> accepts a real number to set DIFFUSE 

• Input <3> accepts an. integer to set SPECULAR 

• Input <4> accepts a real number to update the polygon's OPAQUE 
value. 

• Inputs <5> ... <10> are undefined 

• Inputs <11>, <12>, <13>, and <14> correspond to <1>, <2>, <3>, and 
<4> but affect the obverse attributes if they exist. 

Graphics Tutorials 



If you send values that only change the hue to input <1> or input <11>, the 
saturation and intensity return to the default values of s= 1 and i= 1. You 
cannot change just one value and keep the remaining values as they were 
before you made the change. Essentially, if you do not send a 3D vector, 
default values are assumed for the missing variables. 

For example, with the data definition 

Dim_Red :=ATTRIBUTES COLOR 130,1, .5 DIFFUSE .75 SPECULAR 8; 
Object := WITH ATTRIBUTES Dim_Red 

POLYGON 

POLYGON 

If you sent 200 to input <1> of Dim_Red the resulting color parameter in the 
attribute node would be 200,1,1. To keep the saturation and intensity the 
same and change only the hue, you would send 200,1,.5 to input <1> of 
Dim_Red. This is the same if you want to change hue, saturation or inten­
sity individually by sending a new value to the attribute node. 

After changing the values in the attribute node, the changes will not be 
reflected until another rendering is requested. 

6.2.6 Examples of the ATIRIBUTES Command 

In the following example, an attribute node is created that defines the object 
to be blue. Since only the hue is specified for the color parameter, the 
default values for saturation and intensity (s=l, i=l) are assumed. The de­
faults for DIFFUSE and SPECULAR (d=. 75, s=O) are also assumed. 

Blue :=ATTRIBUTES COLOR 120; 
Object :=WITH ATTRIBUTES Blue 

POLYGON 

POLYGON 

All the polygons in the object are blue since the attribute clause assigns the 
attributes defined by Blue for all polygons until superseded by another 

Polygonal Rendering GT13-43 



WITH ATIRIBUTES clause. In the following example, the attributes before 
AND specify attributes for front facing polygons in the object and the attrib­
utes after AND specify the attributes for all back facing polygons. 

Red_Green :=ATTRIBUTES COLOR 120, .5, .75 DIFFUSE .25 SPECULAR 1 
AND COLOR 240,l, .25; 

Object := WITH ATTRIBUTES Red_Green 
POLYGON 

POLYGON 

All front facing polygons are colored red with .5 saturation and . 75 inten­
sity. The value for DIFFUSE is .25 and the value for SPECULAR is 1. All 
back facing polygons are green with 0 saturation and .25 intensity. Since no 
values for SPECULAR or DIFFUSE are given in the second set of attrib­
utes, the defaults are assumed. 

The following object definition specifies attributes for display in the static 
viewport and also specifies the color of the polygon borders. 

Pastel_Blue :=ATTRIBUTES COLOR 3,.5,1 DIFFUSE .75 SPECULAR 5; 
Object := WITH ATTRIBUTES Pastel_Blue OUTLINE 30 

POLYGON 

POLYGON 

In this example, the shaded polygons on the raster display would be blue, 
with full saturation and .5 intensity. The specular value is . 75 and the 
diffuse value is 5. The polygon edges are magenta (OUTLINE 30) when 
rendered in the static viewport with edges on, or in a hidden-line rendering. 

6.3 Specifying Light Sources 

GTJJ-44 

Lights sources are specified with the ILLUMINATION command which 
creates illumination nodes. Illumination nodes can specify stationary lights, 
lights that can rotate with the object, or both. Illumination nodes are ignored 
during refresh in a dynamic viewport, and only those illumination nodes 
occurring in the descendent structure of a triggered solid or surface 
rendering operation node have any effect in shaded renderings. An 

Graphics Tutorials 



unlimited number of light sources are valid for flat and smooth shaded 
renderings. Light sources are not used in wash shaded (area filled) images. 

All light sources are presumed to be an infinite distance from the object; 
however, you can specify the direction from which the lights illuminate the 
object. This direction is multiplied by the current rotation matrix to deter­
mine the direction to the light in image space. If, after transformation, the 
light source appears to originate from behind the object, it will cause the 
whole object to be unilluminated (appear black) except, perhaps, "glancing" 
specular highlights near the silhouette. 

If no ILLUMlNATION command is given, a default white light at (0,0,-1) 
with an ambient proportion of 1.0 is assumed. If not specified, intensity and 
saturation default to 1. If only hue and saturation are specified, intensity 
defaults to 1. 

Syntax: 

Name :=ILLUMINATION X,Y,Z [COLOR h[,s[,i]]] [AMBIENT a] ; 

where the X,Y,Z component is a vector from the origin pointing toward the 
light source. 

The COLOR component specifies the color of the light source by defining 
hue, saturation, and intensity. The COLOR specification in this command is 
identical to the COLOR specification in the ATTRIBUTE command (refer to 
Section 6.2.1). The defaults are also the same. 

The AMBIENT component controls the contribution of a light source to the 
ambient light. The net ambient lighting is determined by taking the sum of 
the products of the color and ambient proportion of each active light, 
dividing by the total number of active lights, then combining the result with 
the ambient input of the SHADINGENVIRONMENT function (discussed in 
the next section). AMBIENT is defined by a real number between 0 and 1. 
Increasing the value of a (ambient) for one light increases its contribution to 
ambient light. Values outside this range are changed to 0 or 1. The default 
value for a is 1. 0. 

Changing the values of the SHADINGENVIRONMENT (ref er to Section 
6.4) allows you to increase or decrease the intensity and color of the 
ambient light without the need to change each light source. Whatever the 
values, if all active light sources have the same specified proportion, then 

Polygonal Rendering GTl3-45 



GT13-46 

all lights contribute equally to the ambient light. Decreasing a value for one 
light decreases its contribution to ambient light. Values outside the range 
[ 0 .. 1] are changed to 0 or 1. The default value is 1. 

In the following example, the ILLUMINATION command 

Light := ILLUMINATION 1,1,-1 COLOR 180; 

creates a node which defines a yellow light coming from the upper right. 
Since saturation and intensity are not specified, the defaults s= 1 and i= 1 are 
assumed. A default of 1.0 for the ambient proportion is also assumed. 

Since the illumination node occurs in the data structure (unlike the attribute 
node which exists alone in mass memory), it is not explicitly referenced by 
the polygon data node. 

The hierarchy with an illumination node is shown in Figure 13-22. 

Window, Viewport, 
Other 4x4-Matrix­
Transformation Nodes 

Rotation, Translation 
Scaling Nodes 

Solid-Rendering 
Node 

Illumination 
Node 

Polygon Data Node 

U390541 

Figure 13-22. Hierarchy With Illumination Node 

The illumination node must be under the rendering node in the display 
structure of the object. 

Graphics Tutorials 



The following is an example of how to use illumination nodes. There are 
two lights in the example: Sun.Light, which can be rotated independently of 
the object, and Moon.Light, which rotates with the object. To achieve this: 

1. Both lights are underneath the rendering node in the structure. 

2. Placing the Illumination nodes underneath the rendering node im­
plies that the nodes will have the transformations of the object also 
applied to them. This is what happens for Moon (sending a rotation 
to Moon.Rot will concatenate with the transformations of the object). 

3. The effect in step 2 is not desired for the sun, so a FIELD_ OF_ VIEW 
is inserted before the illumination node of Sun. This causes a rota­
tion matrix sent to Sun.Rot to be the only matrix applied to 
Sun.Light. 

4. Inserting a 4D matrix (caused by the FIELD_OF _VIEW) underneath 
a rendering node is not recommended. To avoid problems, the 4D 
matrix defined by Sun.Persp is identical to the 4D matrix defined by 
World.Persp and any change made to one (e.g., by a function net 
work) should be made to both. Failure to follow this suggestion may 
result in bad renderings. 

Sun := BEGIN_STRUCTURE {light which can be rotated independently} 
Persp := FIELD_OF_VIEW 90 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
Rot := SCALE BY 1; 
Light := ILLUMINATION 0,0,-1; 
END_STRUCTURE; 

Moon := BEGIN_STRUCTURE {light which rotates with the object} 
Rot := SCALE BY 1; 
Light := ILLUMINATION 0,0,-1; 
END_STRUCTURE; 

World := BEGIN_STRUCTURE 

Polygonal Rendering 

Persp := FIELD_OF_VIEW 45 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
VIEWPORT HORIZONTAL=-1:1 VERTICAL=-1:1 INTENSITY=l:O; 

GTJJ-47 



SET DEPTH_CLIPPING ON; 
Trans := TRANSLATE BY 0,0,0; 
Rot := SCALE BY 1; 
Rendering : = SURFACE __ RENDERING; {rendering node} 
INSTANCE OF Object, Sun, Moon; 
END_STRUCTURE; 

DISPLAY World; 

6.3.1 Illumination Node Inputs 

Inputs to the illumination node are the following: 

• Input <1> accepts a 3D vector as direction 

• Input <2> accepts a real number as hue, a 2D vector as hue and 
saturation, and a 3D vector as hue, saturation, and intensity. 

• Input <3> accepts a real number as the ambient proportion 

Like the attribute node, if you send a real number to input <2> to change 
only the hue, the saturation and intensity return to the default values of s=l 
and i=l. You cannot change just one value and keep the remaining values as 
they were before you made the change. If you do not send a 3D vector, the 
defaults for the variables not specified are assumed. 

6.4 The SHADINGENVIRONMENT Function 

GT13-48 

An initial function instance called SHADINGENVIRONMENT allows you to 
control various static aspects of shaded renderings. These aspects affect the 
total environment in which shading operations are performed. 

Sending values to the SHADINGENVIRONMENT function generally sets a 
parameter for the next requested shaded rendering rather than taking 
immediate effect. Inputs <7> (Screen Wash) and <17> (Restore look-up 
table) are the only inputs which cause an immediate visual effect. Note that 
SHADINGENVIRONMENT is different from other PS 390 functions in that 
any input will activate the function independent of the other inputs. 

Graphics Tutorials 



R, 20, 3D 
R, 20, 3D 

3D 

R 

R 

8,1 

Reserved 

8 

8 

8 

8 

8 

s 
I, 8, R 

Any 
I 

SHADINGENVIRONMENT 

...llo. <1> <1> ..3lo. , , PS 390 Display 

...llo. <2> , 

...llo. <3> , 
_ .... <4> , 
_ ..... <5> , 

~ <6> 
__..... <7> , 

~ <8> 

~ <9> 

~ <10> 
~ <11> 

~ <12> 
--~ <13> 

-~ <14> 

~ <15> 

~ <16> 

~ <17> 

~ <18> 

~ <19> 

The inputs to the SHADINGENVIRONMENT function are discussed below. 

6.4.1 Input <1> Ambient Color 

Input <1> accepts a real number as hue, a 2D vector as hue and saturation, 
and a 3D vector as hue, saturation, and intensity, to specify the ambient 
color. Refer to the COLOR parameter of the ATTRIBUTES command for 
the meaning of the values (Section 6.2.1). The ambient color is combined 
with the result obtained from the light sources to determine the color of 
ambient light. The default ambient color is white, with a default intensity of 
0.25. 

6.4.2 Input <2> Background Color 

Input <2> accepts a real number as hue, a 2D vector as hue and saturation, 
and/or a 3D vector as hue, saturation, and intensity to specify the 
background color. Refer to the COLOR parameter of the ATTRIBUTES 

Polygonal Rendering GT13-49 



GT13-50 

command for the meaning of the values (Section 6.2.1). The current static 
viewport specified by input <3> of SHADJNGENVIRONMENT is colored 
with the background color prior to any shaded rendering done in the refresh 
mode (refer to input <9>). The default background color is black (0,0,0). 
For information on how to change the background color for dynamic 
viewports, refer to notes on input <2> of the initial function instance 
PS390ENV. 

6.4.3 Input <3> Static Viewport 

Input <3> accepts a 3D vector which specifies physical pixel locations for 
the viewport where shaded renderings are displayed. Static raster viewports 
are always square, the lower left corner being given by the X and Y coordi­
nates of the vector, and its size given by the Z coordinate, such that the 
upper right corner is at (X+Z,Y+Z). Values are rounded to the nearest 
pixel. The default viewport is V3D(80,0,863). 

The viewport can be used for rendering multiple images side by side on the 
display. For example, sending V3D(0,-80,1023) would be a valid command 
to specify the largest recommended value for the static viewport. This view­
port encompasses the entire displayable screen as well as the undisplayable 
area in Y that is in excess of 863. Images in this viewport are clipped to the 
physical raster for which 0<=X<1024 and 0<=Y<864. 

6.4.4 Input <4> Exposure 

Input <4> accepts a real number as the exposure, controlling the overall 
brightness of the picture. The exposure is similar to the exposure control of 
a camera. If a picture is taken of an object with a very bright specular 
highlight, it may be so bright that the rest of the object is darkened. If three 
light sources exist, the object would be about three times brighter, making 
the object too bright. The exposure can be brought down to control this. 

The exposure is multiplied by the intensity at each pixel and the result 
clipped to the maximum intensity. This enables the overall brightness of a 
rendering to be increased without causing bright spots to exceed maximum 
intensity (instead forming "plateaus" of maximum intensity). 
Recommended exposure values may vary between 0.3 and 3.0. The default 
exposure is 1. 

Graphics Tutorials 



6.4.5 Input <5> Anti-aliasing control (Edge smoothing) 

Input <5> accepts an integer which allows users to chose between having a 
relatively fast rendering with jagged edges along the polygons or having 
slower renderings with smoother edges and correct interpretations of inter­
penetrating polygons. Anti-aliasing is accomplished by taking 16 samples 
per pixel instead of only one. You are given the choice of having no edge 
smoothing at all, smoothing along the edges only, or sampling 16 times 
within every pixel for every polygon. The default value for this input is 0. 

Sending fix(O) to this input produces no smooth edges, and produces the 
fastest renderings. Polygons are rendered with one sample per pixel. 

Sending fix(l) produces smooth edges, but may not correctly resolve 
visibility between surfaces that are extremely close in their Z values or that 
are interpenetrating. The 16 samples are taken only where the edges of the 
polygon touch a pixel. The interior of the polygons is rendered with one 
sample per pixel. This method has a speed intermediate between a fix(O) 
and a fix(2). 

Sending fix(2) to input <5> produces full anti-aliasing. This rendering 
method is the slowest, but it produces full visibility resolution for inter­
penetrating polygons. Sixteen samples are taken for every pixel in every 
polygon. 

6.4.6 Input <6> Depth Cueing 

Input <6> accepts a real number in the range of 0 to 1 to control depth 
cueing in the shaded image ( 1 specifying no depth cueing and 0 specifying 
maximum depth cueing). As perceived depth from the viewer increases, the 
colors are mixed with the ambient light color. Thus, if a 3D vector with a 
value of black (0,0,0) is sent to the ambient input <1> and a 0 is sent to the 
depth clipping input <6>, objects are rendered with a ramp ending in black 
at the back clipping plane. A 1 sent to input <6>turns off depth cueing. The 
default value for this input is 0.2. 

6.4.7 Input <7> Screen Wash 

Input <7> accepts a Boolean value or an integer and causes an immediate 
visual effect. Sending a TRUE to this input clears the entire screen to static 
and causes a screen wash with the current static background color. Sending 
a FALSE to this input clears the currently specified static viewport and 
causes the viewport to be filled with the current static background color. 

Polygonal Rendering GTJJ-51 



GT13-52 

Sending fix(O) to input <7> has the same effect as sending TRUE. 

Sending fix(l) to input<7> has the same effect as sending FALSE. 

Sending fix(2) to input<7> clears the entire screen to a dynamic screen and 
causes a screen wash with the current dynamic background color set by 
input <2> of PS390ENV. This may be done to clear a shaded image before 
displaying a new dynamic image. 

Sending fix(3) to input <7> clears the currently specified static viewport 
with the current dynamic background color. 

6.4.8 Input <8> Reserved 

6.4.9 Input <9> Refresh/Overlay Control 

Input <9> accepts a Boolean which determines whether the screen is cleared 
with the current background color before the rendering is performed. 
Sending a TRUE to this input causes the current object to be rendered on 
top of the image currently displayed in the static viewport. Sending FALSE 
to this input causes the static viewport to be cleared with the current 
background color before an object is rendered. The default value is FALSE. 

6.4.10 Input <10> Color By Vertex Control 

Input <10> accepts a Boolean which controls the use of vertex colors. Color 
by vertex is accomplished by defining a color for each vertex in the poly­
gon. A TRUE to this input enables the colors defined at each vertex. A 
FALSE to this input enables the color(s) specified in the ATTRIBUTES 
command. The default value for this input is FALSE. 

6.4.11 Input <11> Opaque (Transparency) Control 

Input <11> accepts a Boolean which enables or disables the transparency 
assigned to the polygon. Transparency is assigned to the polygon with the 
OPAQUE clause of the ATTRIBUTES command. Transparent polygons are 
created by modifying the ATTRIBUTES command as follows: 

Name :=ATTRIBUTE [COLOR h[,S[,i]]] [OPAQUE t] 
[DIFFUSE d] [SPECULAR s]; 

where t refers to a value between 0 and 1, with 1 being fully opaque and 0 
being fully transparent. When t=O, the object is completely invisible. As t 

Graphics Tutorials 



decreases from 1 to 0, more of the color of the obscured object(s) will show 
through. The default value for this input is FALSE (fully opaque). 

6.4.12 Input <12> Specular Highlight Control 

Input <12> accepts a Boolean which turns specular highlights on and off. 
Flat, Gouraud and Phong shading use a shading equation that can process 
multiple light sources and calculate specular highlights. The default value is 
TRUE which means specular highlights are turned on. 

6.4.13 Input <13> Special Color Blending for Spheres 

Input <13> accepts a Boolean value which turns color blending on and off. 
The color blending is used for correct spherical rendering (used in molecu­
lar modeling). Sending a TRUE turns the color blending on. Sending a 
FALSE turns it off. The default is FALSE. 

6.4.14 Input <14> Update Attribute Table 

Input <14> accepts a string which is the name of a 3D tabulated vector list 
used to update the attribute table that specifies color, radii, diffuseness, and 
specular highlights for spheres and lines. The attribute table has 0 to 12 7 
entries with six table components for each entry. The attribute table can be 
updated by encoding the table entries into a named PS 390 vector list and 
then sending the name of the vector list to this input. The six table compo­
nents are encoded into two consecutive 3D tabulated vector list. 

The table has the following components: hue, saturation, intensity, radius, 
diffuse, specular. 

Hue is a real number in the range 0 to 360. Saturation and intensity are real 
numbers in the range 0 to 1. Radius is a real number greater than 0. Diffuse 
is a real number in the range 0 to 1. Specular is an integer in the range 0 to 
255. 

The table is initialized as follows: 

Polygonal Rendering GTJJ-53 



GT13-54 

INDEX Hue Sat Intensit~ Radius Diffuse Specular 

0 0 0 0.5 1. 8 0.7 4 (Gray) 

1 0 0 1 1. 2 0.7 4 (White) 

2 120 1 1 1. 35 0.7 4 (Red) 

3 240 1 1 1. 8 0.7 4 (Green) 

4 0 1 1 1. 8 0.7 4 (Blue) 

5 180 1 1 1. 7 0.7 4 (Yellow) 

6 0 0 0.7 1. 8 0.7 4 (Gray) 

7 300 1 1 2.15 0.7 4 (Cyan) 

8 60 1 1 1. 8 0.7 4 (Magenta) 

9 0 0 0 1. 8 0.7 4 (Black) 

10-127 (Color Wheel) 

Spheres use all six of these components. Lines use only the hue, saturation, 
and intensity components. 

The (h) specifier in the WITH OUlLINE clause is used as the index into 
this table. The color of polygon interiors does not used this table; only the 
color of polygon outlines in static raster rendering is done this way. 

6.4.15 Input <15> Polygon Edge Enhancement 

Input <15> accepts a Boolean, or a real number in the range 0-1, or an 
integer in the range 0-2. 

A real value sent to this input adds an offset to the Z-values of lines. A 
number between 0.05 and 1.0 causes the lines to be displayed in front of 
other objects with the same Z value. This allows the enhancement of poly­
gon edges. Numbers between 0.05 and 0.0 are clamped to 0.05, which pro­
duces shaded renderings with the lines and edges brought forward slightly 
in Z. 

Sending a Boolean to this input allows you to toggle the display of polygon 
edges on and off. A TRUE causes lines to be drawn along polygon borders, 
thus enhancing the edges, and temporarily turns on full antialiasing. A 
FALSE causes polygons to be rendered normally without edge enhance­
ment. The default is FALSE (edges off). 

Graphics Tutorials 



Sending Fix{O) to <15> causes polygons to be rendered without enhanced 
edges. This is the same as sending a FALSE, and is the default condition. 

Sending Fix{l) causes polygon edges to be enhanced, and causes all edges 
including those marked as soft to be displayed. This is the same as sending 
a TRUE. 

Sending Fix{2) causes polygon edges to be enhanced, but only those edges 
marked as hard edges are displayed. 

6.4.16 Input <16> Algorithm 

This input accepts an integer value of 1 or 0 to choose between one of two 
possible algorithms for resolving visibility in a rendering. 

Sending Fix{O) causes a scan-line zbuffer algorithm to be applied. This 
algorithm is used in rendering solids; it causes all obscured polygons to 
remain undisplayed. This is the default shading algorithm. 

Sending Fix{l) causes the painters algorithm to be applied to the rendering. 
This algorithm renders an image by filling (painting) each polygon from 
back to front Z-value. Occasionally this algorithm displays polygons which 
which should be obscured. 

6.4.17 Input <17> Restore System Look-up Table 

Any value sent to this input restores the gamma-corrected system look-up 
table. This is the table responsible for producing antialiased lines of good 
line quality. Sending a value to this input has an immediate visual effect. 

6.4.18 Input <18> Vertex Normals Control 

This input accepts an integer value in the range 0 to 2. Values sent to this 
input affect vertex normals. 

Sending Fix{O) causes vertex normals to remain unchanged from their 
original definition. This is the default. 

Sending Fix{l) inverts all vertex normals that are backwards and that are on 
backfacing polygons to make the polygons appear forward. This is useful 
for the user who knows the desired direction for normals to point, but who 
does not necessarily specify polygon vertices in a consistently clockwise 

Polygonal Rendering GTJJ-55 



fashion. This is applicable to surface renderings only. The AND specifier of 
the ATTRIBUTES command should not be used when using this input to 
reverse normals. 

Sending Fix(2) flips vertex normals that are backwards and are on polygons 
that are frontfacing to make the polygons appear forward. This is useful for 
performing mirrored modeling operations, i.e., using a -y scale factor to 
produce an image mirrored about the xz plane. Again, this is applicable 
only to surface renderings. 

6.4.19 Input <19> Stereo 

This input is used for stereo renderings. Sending Fix(1024) causes render­
ings to be produced on the entire display, including the (usually) missing 
160 scan lines at the bottom of the screen. This input is used for rendering 
solid polygons, spheres, and raster lines in 3-dimensional stereo (using the 
Tektronix LCD screen). 

7. Summary 

GTJJ-56 

The POLYGON command defines collections of polygons from which ren­
derings can be created. This is a data definition command that creates a 
polygon data node in the data structure of the object. Objects defined as 
polygons are the only objects that are eligible for rendering operations. 

There are two types of rendering operations: those performed in the 
dynamic viewport, and those performed in a static viewport. Rendering 
operations in the dynamic viewport can result in a cross section of a 
displayed object, sectioning of an object relative to a sectioning plane, or 
backface removal. 

Rendering operations performed in the static viewport include hidden-line 
removal, flat shading, wash shading, and smooth shading (Gouraud and 
Phong). 

Polygonal objects must be defined correctly to produce correct renderings. 

Graphics Tutorials 



7.1 POLYGON Command Syntax 

Given, 

<vertex> = [ S ] x, y, z [ N x, y, z ] [C h [ s [ i] ] ] 

<polygon> = [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR] 
POLYGON <vertex> ... <vertex> 

The POLYGON command is: 

Name := <polygon> <polygon> ... <polygon> 

where: 

A vertex definition has the form [S] x,y,z [N x,y,z] [C h[s[i]]] 

where: 

• S indicates that the edge drawn between the previous vertex and this 
one represents a soft edge of the polygon. If the S specifier is used 
for the first vertex in a polygon definition, the edge connecting the 
last vertex with the first is soft. 

• N indicates a normal to the surface with each vertex of the polygon. 
Normals are used only in smooth-shaded renderings. Normals must 
be specified for all vertices of a polygon or for none of the vertices 
of a polygon. Normals do not need to be present for all polygons in 
the object. If no normals are given for a polygon, they are defaulted 
to the same as the plane equation for the polygon. 

• x, y, and z are coordinates in a left-handed Cartesian system. 

• C indicates a color that is assigned to the vertex. During shading 
operations, this color is interpolated across the polygon to the other 
vertices. 

• h,s,i are values in the Hue/Saturation/Intensity color system. To-
gether these values create a color. 

WITH ATTRIBUTES is an option that assigns the attributes defined by 
name 1 for all polygons until superseded by another WITH ATTRIBUTES 
clause. 

WITH OUTLINE is an option that specifies the color of the edges of poly­
gons in shaded renderings or in hidden-line renderings. 

COPLANAR declares that the specified polygon and the one immediately 
preceding it have the same plane equation. 

Polygonal Rendering GTIJ-57 



7.2 Defining Polygonal Objects 

There is no syntactical limit on the number of polygon clauses in the group. 

Polygons are implicitly closed. The first vertex should not be repeated when 
defining a polygon. 

No more than 250 vertices per polygon may be specified and no less than 
three. 

The vertices of a polygon must be coplanar. The plane equation is deter­
mined from any three non-co linear vertices. 

Concave polygons are acceptable. Degenerate polygons and polygons that 
intersect themselves or others are unacceptable. No specific checks are 
made for these conditions. 

Polygons are not pickable and polygon nodes have no inputs from which 
they can be modified with function networks. 

7 .3 Constructing Surfaces and Solids 

GT13-58 

Surfaces and solids can be defined. Solids enclose a volume of space, while 
surfaces do not. 

In a solid, every edge of every polygon must coincide with the edge of a 
neighboring polygon. 

For surfaces and solids, polygons are defined by listing their vertices in a 
clockwise order in the polygon clause. 

In a solid, the common edge where two polygons join must run in opposite 
directions. This arrangement is essential to produce correct renderings. The 
system does not check for this condition. 

A solid cannot contain three or more polygons which have a single edge in 
common, although surfaces may. 

The SURFACE RENDERING and SOLID RENDERING commands deter-- -
mine the nature of a polygonal object. 

Graphics Tutorials 



7.4 The COPLANAR Option 

Inner contours may be defined to create objects with holes or protrusions. 

Vertices of inner contours must be listed in the opposite direction to the 
corresponding outer contour. 

An inner contour should not be defined unless it is coplanar with some 
surrounding outer contour. 

All members of a set of consecutive coplanar polygons are taken to have the 
same plane equation, that of the previous polygon not containing the 
COPLANAR option. 

If COPLANAR is specified for the first polygon in a polygon list, it has no 
effect. 

7. 5 The Soft Edge Option 

The S specifier before a set of X,Y,Z coordinates indicates that the edge 
drawn between the previous vertex and this one represents a soft edge of 
the polygon. 

Soft edges are positions in the original object. If either edge of a common 
edged pair is declared soft, the entire edge is considered soft. Soft edges are 
displayed the same as hard edges, however they are only drawn once. The 
exception to this occurs when enhanced edges have been requested on a 
shaded rendering and a fix(2) has been sent to input<15> of 
SHADJNGENVIRONMENT. In this instance, polygon edges are enhanced, 
but those edges declared as soft are not displayed. 

7. 6 The Color Option in a Dynamic Viewport 

Color for polygons displayed in a dynamic viewport is specified with the 
SET COLOR command. Color is specified for complete polygons, not 
individual edges. 

7. 7 Specifying Normals 

When a polygon is used to approximate a curved surface, the smooth ap­
pearance of the surface can be restored in a smooth shaded rendering by 
approximating a surface using normals. A normal to the surface is given 
with each vertex of the polygon specified N x,y,z. 

Polygonal Rendering GTJJ-59 



7.8 Memory Usage 

The rendering process requires that a block of mass memory be available as 
working storage. This memory can be explicitly reserved with the command 
RESERVE_ WORKING_STORAGE n, where the current working storage is 
replaced with another containing at least n bytes. It is also possible to allow 
the system to automatically calculate working storage for you. If n is less 
than or equal to 0, the system will automatically calculate the amount of 
memory needed for the rendering process and display the amount used at 
completion. 

The best time to explicitly reserve working storage is immediately after 
booting; typically, you should reserve 200,000 to 400,000 bytes of working 
storage when you begin a session. 

Working storage is not freed by the INITIALIZE command. 

In addition to the working storage space, extra mass memory is needed to 
create static raster renderings. This memory is ref erred to as transient 
memory and is automatically allocated and deallocated by the system. 

7.9 Marking an Object for Rendering 

Syntaxes for the rendering commands are: 

GT13-60 

Name .- SOLID_RENDERING APPLIED TO Namel; 
Name .- SURFACE_RENDERING APPLIED TO Namel; 

where Name1 names either (a) a Polygon node, or (b) an ancestor of one or 
more polygon nodes. If (b) is the case, any rendering referring to Name1 is 
performed immediately on all of the polygon objects descended from 
Name1. 

Only polygons nodes are used in renderings. Vector and character nodes 
occurring beneath a rendering node are ignored by the rendering operations. 

Transformation nodes are lost in the rendering, but their effect is incorpo­
rated into the data nodes. 

Graphics Tutorials 



7.10 Establishing a Sectioning Plane 

The SECTIONING_PLANE command creates a sectioning plane node which 
indicates that a descendant polygon is a sectioning plane. The syntax is: 

Name := SECTIONING_PLANE APPLIED TO Namel; 

where namel names either (a) a POLYGON command or (b) an ancestor of 
a POLYGON command. 

7 .11 The Data Definition of the Sectioning Plane 

The sectioning plane is the plane containing the polygon defined by the first 
polygon clause of the first polygon node encountered by the display proces­
sor as it traverses the branch beneath a sectioning plane node. 

The sectioning plane is the plane in which a specified polygon lies. The 
polygon itself need not intersect the object to be sectioned, as long as some 
part of the plane does. 

No SOLID_RENDERING or SURFACE_RENDERING operation node, 
whether below or above the sectioning plane node, may be an ancestor of 
the defining polygon of a sectioning plane. The PS 390 interprets such 
polygons as objects to be rendered rather than as sectioning plane 
definitions and issues a "sectioning plane not found" message when a 
sectioning attempt is made. 

7.12 Saving a Rendering 

A rendering is saved by a string sent to input <1> of the 
SOLID RENDERING or SURFACE RENDERING operation node. The 
string should specify the name of the node which is to contain the saved 
rendering data. If the named node does not exist, it is created; if it does 
exist, the saved rendering data replaces the original contents of the node. 

All polygons in the rendering are taken into account in the saved rendering. 
It is not possible to exclude selected polygons or polygon data nodes from 
saved renderings. 

7 .13 Specifying Color and Highlights for Static Viewports 

Specifying attributes (specular and diffuse highlights, color, and transpar­
ency), of a polygon for display in a static viewport is done via the WITH 
ATTRIBUTES clause of the POLYGON command. 

Polygonal Rendering GT13-61 



Given the polygon syntax: 

Name := <polygon> <polygon> ... <polygon> 

the attributes option is 

<polygon> = [WITH ATTRIBUTES Namel] [OUTLINE h] 
POLYGON <vertex> ... <vertex> 

The ATTRIBUTES command is: 

Name := ATTRIBUTES <attr> [ AND <attr> ] 

Given: 

<at tr> [COLOR h [,s[,i]]] 

[DIFFUSE d] 
[SPECULAR s] 

[OPAQUE t] 

7 .14 Specifying Light Sources 

Lights may be stationary or rotate with the object or both. If no 
ILLUMINATION command is given, a default white light at (0,0, 1) with an 
ambient proportion of .25 is assumed. If intensity and saturation are not 
specified, both values default to 1. 

Syntax: 

Name :=ILLUMINATION x,y,z [COLOR h [,S[,i]]] [AMBIENT a] ; 

Like the attribute node, if you send a real number to input <2> to change 
only the hue, the saturation and intensity return to the default values of s= 1 
and i=l. 

7.15 The SHADINGENVIRONMENT Function 

GT13-62 

An initial function instance called SHAD1NGENVIRONMENT allows you to 
control various static factors of shaded :renderings. This function controls 
factors that affect the total environment in which shading operations are 
performed. There are currently nineteen inputs to the function. 

Sending values to the SHADINGENVIRONMENT function generally sets a 
parameter for the next requested shaded rendering rather than taking imme­
diate effect. Note that SHAD1NGENVIRONMENT is different from other 
PS 390 functions in that any input will activate the function independent of 
the other inputs. 

Graphics Tutorials 





GT14. RASTER PROGRAMMING 

DISPLAYING HOST-GENERATED IMAGES 
WITH THE PS 390 RASTER SYSTEM 

CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1. PS 390 RASTER CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.1 Run-Length Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 Color Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. LOGICAL DEVICE COORDINATES . . . . . . . . . . . . . . . . . . . . . . . . 5 

3. ENCODING A PICTURE WITH THE RASTER MODE . . . . . . . . 10 

3 .1 Writing Pixel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

4. GRAPHICS SUPPORT ROUTINES . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

4.1 List of Raster Graphics Support Routines . . . . . . . . . . . . . . . . . . 13 
4.2 FORTRAN GSR Raster Programming Example . . . . . . . . . . . . . . 13 
4.3 Pascal GSR Constant Declarations . . . . . . . . . . . . . . . . . . . . . . . . 15 
4.4 Pascal GSR Raster Programming Example . . . . . . . . . . . . . . . . . . 15 

5. FORMATIING RASTER COMMANDS FOR USER-GENERATED 
HOST ROUTINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

5.1 Write Pixel Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
5.2 Programming Example for User-Generated Host Routines . . . . 19 

i 



ILLUSTRATIONS 

Figure 14-1. Pixel Mapping to Color Lookup Tables . . . . . . . . . . . . . . . . . . . . . 4 
Figure 14-2. Virtual Address Space and Screen Space . . . . . . . . . . . . . . . . . . . . 6 
Figure 14-3. Coordinate Ranges for a Raster Display . . . . . . . . . . . . . . . . . . . . . 6 
Figure 14-4. Virtual Address Space, Logical Device Coordinate Range, 

and Screen Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Figure 14-5. Displayed Raster Image Within Lower Left 

Logical Device Coordinate Range . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Figure 14-6. Centering a Raster Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Figure 14-7. Displaying a Section of a Raster Picture . . . . . . . . . . . . . . . . . . . . 10 

Table 14-1. Commands in WRPIX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

ii 



Section GT14 

Raster Programming 
Displaying llost-Generated Images 

with the PS 390 Raster System 

Introduction 

The PS 390 raster system consists of a printed circuit card that outputs static im­
ages to a 1024 (column) by 864 (row) pixel raster display. Each pixel is 24 bits 
deep for addressing into a red-green-blue color lookup table (CLUT) that is 24 bits 
deep. 

The PS 390 raster system can be used to display polygon wireframe models and 
shaded images derived locally from PS 390 polygonal models, or it can be used as 
a frame buffer to display host-generated images. When used as a frame buffer, the 
PS 390 only serves as a communications link between the host and the raster sys­
tem. No standard PS 390 commands or data structures are used to display host­
generated images. 

This document describes how to display host-generated images using the FOR­
TRAN and Pascal Graphics Support Routines (GSRs) and user-generated routines. 
Programming examples for both methods are provided. 

This manual assumes that you are familiar with creating raster images. If you need 
background in this subject, the following books contain detailed sections on raster 
graphics: 

J.D. Foley and A. Van Dam: Fundamentals of Interactive Computer Graphics. 
Addison-Wesley Publishing Company, 1982. 

William M. Newman and Robert F. Sproul: Principles of Interactive Computer 
Graphics. McGraw-Hill Book Company, 1979. 

Conrac Division: Raster Graphics Handbook. Conrac Corporation (600 North 
Rimsdale Avenue, Covina CA, 91722), 1980. 

Donald P. Greenburg: Introduction to Raster Graphics. Siggraph '83 Tutorial, 
1983. 

Raster Programming GTJ 4-1 



1. PS 390 Raster Concepts 

The basic steps required to display a host-generated picture on the PS 390 
are: 

• Determine what your picture will look like (determine pixel values 
and the addresses into the lookup tables). 

• Set the logical device coordinates to specify the proper size and posi-. 
tion of the raster image. 

• Transfer this information from the host to the PS 390 via the GS Rs 
or user-written routines. 

Three features of the PS 390 image buffer mode are: 

• It is run-length encoded. 

• It uses red, green, and blue color lookup tables. 

• It specifies logical device coordinates to define the portion of virtual 
address space (the total coordinate area in which pictures can be 
created) that contains the raster picture. This allows flexibility in 
positioning a picture relative to the actual screen display. 

These concepts and their application in the PS 390 raster system are dis­
cussed in detail in the following sections. 

1.1 Run-Length Encoding 

GT14-2 

Some raster systems require that you encode a raster picture pixel by pixel. 
That is, each pixel on the raster screen must be addressed individually. In 
contrast, the PS 390 accepts raster data from the host in run-length encoded 
format. Both the GSRs and user-written routines specify run-length 
encoding. 

In run-length encoding, a set of consecutive pixels of the same color is 
specified in a single command containing the number of consecutive pixels 
and the color value of the pixels. Since, in practice, most pictures contain 
many sequences of consecutive pixels of the same color, run-length encod­
ing allows more efficient picture transmission than pixel-by-pixel encoding 
in all but the most complex and high-resolution raster pictures. 

For example, if the bottom third of your raster picture is a background 
color, one run-length encoded command could specify the color for those 
294,912 (1024x288) pixels. Pixel-by-pixel encoding would require 294,912 
separate single-pixel commands. 

Graphics Tutorials 



1.2 Color Lookup Tables 

Any displayable color is a combination of three components--red, green, 
and blue, the primary phosphor colors used in the raster display's additive 
color process. Varying the intensity of these three color components pro­
duces the wide variety of colors available to the raster display. 

The PS 390 raster system does not specify colors directly, but rather refers 
to locations in color lookup tables (CLUTs) that contain the color entries. 
Each pixel on the raster display is 24 bits deep. That is, 24 bits of data 
address each pixel's color value in the CLUTs with 8 bits to specify entries 
in the CLUTs for each red, green, and blue color. Since the 24 bits of pixel 
data do not specify a color directly, this is sometimes referred to as "pseu­
docolor" specification. 

There are three CLUTs on the raster card, one each of red, green, and blue. 
The CLUT entries (derived from the 24 bits of pixel data) contain a precise 
color level, or intensity for a specific color. 

Each entry in the tables is 8 bits deep, providing 224 potential colors. Each 
set of 8 bits specifies the intensity of the corresponding red, green, or blue 
color. Each table has 256 (0-255) possible entries (i.e., 8 bits of address per 
lookup table), providing 224 (2563) usable colors. This provides more dis­
playable colors than there are actual pixels on the raster screen. Naturally, 
the human eye cannot distinguish between this many shades of colors. This 
permits "smooth shading" of host-generated raster pictures. If the eye could 
actually perceive the slight differences in shades of colors, you would see 
banding (stripes of different shades) instead of smooth shading. 

The CLUTs are preloaded at boot time with a gamma-corrected lookup 
table. This gives the appearance on the screen of a linear change in integrity 
as the index changes (i.e., location 20 is twice as bright as 10). 

Figure 14-1 provides a graphic representation of how the 24 bits of pixel 
data map to the 24 bits of the CLUTs. The top of the figure shows the 
image buffer memory of the system. Each pixel contains 24 bits of pixel 
data made up of 8 bits of red, 8 bits of green7 and 8 bits of blue pixel data. 
These bits specify the address in the CLUTs. 

Raster Programming GT14-3 



GT14-4 

The 8-bit entries in the CLUTs specify intensities of red, green, and blue 
(RGB). The 8-bit digital-to-analog converters change these digital values to 
analog signals which drive the red, green, and blue guns that stimulate the 
RGB triads on the raster display screen. The eye blends these intensities to 
generate the specified color. 

IMAGE 
MEMORY 

\ .... ---1024 -----­
ONE PIXEL, 
24-BITS DEEP 

• • 
• • 
• 

+- 8 BITS_., 

1 0 l 0 1 0 1 0 

t--t---t--t--lt--t--+--t--1 

2 5 31--t---+-............. ~-+--t--1 

254 255 .___..._......,......... ____ ___. 

BLUE GUN 

RED GUN 

• 2 5 3 ...._.. __ .............. .___._ __ -+--f 

254 
2 5 5 l--r--r-""T""""""'1......-r--.--.....--I 

RASTER DISPLAY 

00 

U390450 

Figure 14-1. Pixel Mapping to Color Lookup Tables 

Graphics Tutorials 



2. Logical Device Coordinates 

The raster option has a virtual address space from -32768 to 2047 in both X 
and Y (see Figure 14-2). The portion of virtual address space that is actually 
displayed is from 0 to 1023 in X and from 0 to 863 in Y, and is called 
"screen space." A picture can be placed anywhere in the virtual address 
space. The portion of that picture which overlaps with screen space will be 
displayed (see Figure 14-2). 

When the raster system is booted, the logical device coordinates default to a 
1024x864 screen size starting at 0,0. Of course, once you have specified a 
different set of logical device coordinates, this becomes the new default 
value. 

The logical device coordinates are specified as ranges of X and Y values. 
They define the dimensions and position of the area that contains the pic­
ture and can be larger or smaller than screen space. 

Logical device coordinates specify: 

1. The size of the raster picture. 

2. Where the picture will appear in virtual-address space. 

3. Where "wraparound" will occur. Wraparound occurs when the 
run-length encoded command hits the limit of the X coordinates (the 
end of a row of pixels) and begins a new row of pixels. 

When sending the logical device coordinates for a picture that is larger than 
screen space, data outside of screen space is discarded. The data can be 
sent again to the image buffer to display another portion of the raster image 
in screen space. Changing the logical device coordinates and starting 
position, and resending the picture, places a new portion of the image in 
screen space without recalculating the image. Only the portion of the logical 
device coordinate picture that coincides with screen space will be visible 
(see Figures 14-3 and 14-4). 

The logical device coordinate range should correspond to the actual size of 
the precalculated raster image. If correctly run-length encoded, when the 
current pixel location reaches the right boundary of the logical device coor­
dinates, the next pixel location automatically begins at the left boundary of 
the logical device coordinates with the Y value incremented by one, address­
ing the pixels in the next row. In other words, raster images in the PS 390 

Raster Programming GTl4-5 



GT14-6 

go from left to right, bottom to top. This allows you to send an entire pic­
ture with only one current pixel location rather than having to start each 
new row of pixels with a new pixel location. 

+2047 _____ , ____ __ 

i 
y 

l 
-32768 

863 
Screen 
Space 

0 ..__ ___ ____, 
0 1023 

Virtual Address Space 

-c--x > 
U390451 +2047 

Figure 14-2. Virtual Address Space and Screen Space 

LDC Range 

Virtual Address Space 

-32768 x U390452 +2047 

Figure 14-3. Coordinate Ranges for a Raster Display 

Figure 14-3 illustrates the coordinate ranges for virtual address space (the 
total coordinate area in which pictures can be created), sample logical de­
vice coordinates specified by the programmer (in this case, shown in the 
shaded area specifying a 1024 x 1024 image), and the actual screen space 
that can be displayed at any given time. 

Graphics Tutorials 



Run-length encoded commands make no mention of absolute pixel location. 
The commands simply specify the next (n) consecutive pixels starting at the 
current pixel location. (The current pixel location is the point in the logical 
device coordinates where the run-length encoded command begins loading 
pixels.) It follows that an entire picture can be repositioned by changing the 
logical device coordinate specifications (which are the only specifications 
that ref er to absolute pixel locations) and retransmitting the picture data 
that fall in the new logical device coordinates. No change to the encoded 
pixel data is necessary. 

Figure 14-4 shows virtual address space (the entire area in which a picture 
can be created), the logical device coordinate range (specified by the 
WRPIX command described in the next section), and the screen space con­
taining the portion of the picture that will actually be displayed on the raster 
monitor. 

r 
y 

l 
-32768 

I 
I 

Virtual Address Space 
I 

I 

Screen 
Space 

Logical Device 
Coordinate Range 

U390453 

·•--- x----.> 
+2047 

Figure 14-4. Virtual Address Space, Logical Device Coordinate Range, 
and Screen Space 

Raster Programming GT14-7 



GT14-8 

Figure 14-5 shows that the logical device coordinate range has been 
changed so that the lower left-hand area of the logical device coordinate 
range coincides with screen space. Note that a new section of the raster 
image is in screen space after the picture data has been retransmitted. Also, 
screen space remains fixed: the new logical device coordinate range has 
changed what actually appears in screen space. 

I 
y 

1 
Virtual Address Space 

New Logical 
Device Coordinate 
Ran_g_e 

Screen 
Space 

-32768 U390454 +204 7 
-c---x----> 

Figure 14-5. Displayed Raster Image Within Lower Left 

Logical Device Coordinate Range 

The raster option has the ability of virtual pixel addressing of: 

-32768 <= x <= 2047, -32768 <= y <= 2047 

of which the portion that is actually displayed is: 

0 <= x <= 1023, 0 <= y <= 8 63 

The logical device coordinates (Xmin <= X <= Xmax, Ymin <= Y <= Ymax) 
can be any subset of this range. 

Graphics Tutorials 



To position a raster image of 200x200 on the center of the screen, the 
values should be: 

Raster Programming 

Xmin 412 ([1024-200]/2) 
Xmax 611 (Xmin + 200 -1) 
Ymin 332 ([864-200]/2) 
Ymax 531 (Ymin + 200 -1) 

Screer(1024x864) 

Virtual Address Space 
I 

I 

PICTURE 

U390455 

Figure 14-6. Centering a Raster Picture 

GT14-9 



To get the center of a 1024x1024 image on the physical screen, the logical 
device coordinates values should be: 

Xmin = -0 
Xmax = 1023 
Ymin = -80 
Ymax = 943 

([1024-1024]/2) 
(xmin + 1024 -1) 
([864-1024]/2) 
(ymin + 1024 -1) 

943Y 

Logical 
Device 
Coordinates PICTURE 

-SQY.__~_,_~~~---

0 x 1023 

Screen 

Virtual Address Space 

;-, __ ________, 

U390456 

Figure 14-7. Displaying a Section of a Raster Picture 

3. Encoding a Picture with the Raster Mode 

GT14-10 

This section discusses the basic raster mode of the image buffer, Write 
Pixel Data (WRPIX), and how it functions. The implementation is described 
in sections 4 and 5. 

Table 14-1 in section 4 provides a quick reference to commands in WRPIX 
mode and shows the GSRs that implement these commands. 

Graphics Tutorials 



3.1 Writing Pixel Data 

There are two basic steps to encoding a picture in WRPIX mode: setting up 
raster display parameters and changing the picture on the raster display. 

Two WRPIX mode commands are used to establish basic operating parame­
ters for the raster display: 

• Set Logical Device Coordinates 

This command positions the picture in virtual address space. 

• Set Current Pixel Location 

This command establishes a starting point (the current pixel) in the 
logical device coordinates where the next WRPIX mode command 
begins. 

Two WRPIX-mode commands are used to change the picture on the raster 
display: 

• Erase Screen 

This command fills all of pixel memory to one value, an address into 
the CLUTs. 

• Load Pixel Data 

This command writes specific values to pixels. 

Raster Programming 

NOTE 

All data not in the range of the actual display are dis­
carded. When the raster display is first set up in 
WRPIX mode, the X-Y position must be set to start 
position by using the X-Y position command. Data are 
stored in the pixels sequentially and wrap-around oc­
curs at X maximum position until a new X-Y position 
is received. Whole picture representations require at 
least one X-Y position. 

GT14-ll 



4. Graphics Support Routines 

GT14-12 

The GSRs provide the easiest way to send pixel information to the display 
and avoid the need for writing your own routines for pixel encoding. This 
document assumes that you are familiar with the E&S GSRs. For a descrip­
tion of the GSRs, refer to Section RM4. The routines are listed alphabeti­
cally and the raster routines all begin with "PRA." 

Table 14-1 lists the mode commands, the result of using the commands, and 
the GSR calls that implement the command. 

Following the table is an alphabetical list of the routines, their parameters, 
and a brief description. 

Programming examples in FORTRAN and Pascal follow the list of the ras­
ter routines. 

Table 14-1. Commands in WRPIX Mode 

MODE COMMAND l RESULT 

Set Raster Mode to 
Write Pixel Data 

Set Logical Device 
Coordinates 

Set Current Pixel 
Location 

Erase Screen 

Load Pixel Data 

Set Raster Mod~ 

Sets raster mode to write pixel 
data. 

WRPIX Mode -- Establish Operating Parameters 

Positions the picture in virtual 
address space 

Establishes the current pixel location 
in the Logical Device Coordinates 
where the next WRPIX mode command 
begins 

WRPIX Mode -- Change Raster Picture 

Fills all of pixel memory to one 
address in the CL UTs 

Writes specific values to specific 
pixels 

l GSR 

PRAWRP 

PRASLD 

PRASCP 

PRASER 

PRASWP 

Graphics Tutorials 



4.1 List of Raster Graphics Support Routines 

The following list provides the names of the routines, expected parameters, 
and brief descriptions. Refer to Section RM4 for a more detailed 
description. 

Name of Routine and Parameters 

PRASCP (x,y, error routine) 

PRASER (color, error routine 

PRASLD (xmin, ymin,xmax,ymax, 
routine) 

PRASWP (num, pixval, error routine) 

PRA WRP (error routine) 

Description 

Establishes current pixel location 
relative to the logical device 
coordinates. 

Erases the entire raster screen. 

Sets the logical device error 
coordinates used to position the 
picture in virtual address space. 

Loads current pixel location with 
pixel values. 

Sets raster mode to write pixel data. 

4 .. 2 FORTRAN GSR Raster Programming Example 

This programming example uses the GSRs to build a "tricolor" flag display 
surrounded by a 20-pixel-wide blank border. 

Program Example 

c 
EXTERNAL ERR 

INTEGER*4 MAT(4,10), BACK(3) 
c 

CALL Pattch ('Logdevnam=tt:/Phydevtyp=Async', Err) 
c 
C ERASE SCREEN TO BLACK 
c 

BACK(l) = 0 
BACK(2) = 0 
BACK(3) = 0 
CALL PRASER( BACK, ERR ) 

Raster Programming GT14-13 



c 
c PUT ON RED RECTANGLE 

c 
CALL PRASLD( 20, 20, 219, 459, ERR) 

c 
MAT(l,l) 200 * 440 
MAT(2,1) 255 
MAT(3,1) 0 
MAT(4,1) 0 
CALL PRASCP( 0, 0, ERR ) 
CALL PRASWP( 1, MAT, ERR 

c 
c 
c PUT ON WHITE RECTANGLE 
c 

CALL PRASLD( 220, 20, 419, 45~) I ERR) 

c 
MAT(l,1) 200 * 440 
MAT(2,1) 255 
MAT(3,1) 255 
MAT(4,1) 255 
CALL PRASCP( 0, 0, ERR ) 
CALL PRASWP( 1, MAT, ERR 

c 
c 
c PUT ON BLUE RECTANGLE 
c 

CALL PRASLD( 420, 20, 619, 459, ERR) 
c 

MAT(l,1) 200 * 440 
MAT(2,1) 0 
MAT(3,l) 0 
MAT(4,1) 255 
CALL PRASCP( 0, 0, ERR ) 
CALL PRASWP( 1, MAT, ERR 

c 
CALL PDTACH ( err ) 
STOP 
END 

GT14-14 Graphics Tutorials 



4.3 Pascal GSR Constant Declarations 

The following definitions are provided for the Pascal Raster GS Rs: 

P_MaxRunClrSize = User-specified maximum run-length color array 
P_ColorType RECORD 

Red INTEGER; 
Green INTEGER; 
Blue INTEGER; 

END; 
P_RunColorType RECORD 

Count INTEGER 
Red INTEGER; 
Green INTEGER; 
Blue INTEGER; 

END; 
P_RunClrArrayType =ARRAY [l .. P_MaxRunClrSize] OF P_RunColorType; 

4.4 Pascal GSR Raster Programming Example 

PROGRAM EXAMPLE (input, output); 
CONST 

TYPE 

VAR 

%INCLUDE 'PROCONST.PAS' 

%INCLUDE 'PROTYPES.PAS' 

MAT : P_RunClrArrayType; 
BACK : P_ColorType; 
%INCLUDE 'PROEXTRN.PAS' 

PROCEDURE Error_handler( err : INTEGER); 
BEGIN 
Writeln(' Error received: ', err); 
END; 

BEGIN 

Pattach ('Logdevnam=tt:/Phydevtyp=Async', Error_Handler ); 

{ ERASE SCREEN TO BLACK } 

BACK. red . - 0 ; 
BACK.green .- O; 
BACK.blue .- O; 
PRASER( BACK, Error_Handler ); 

Raster Programming GT14-15 



{ PUT ON RED RECTANGLE } 

PRASLD( 20, 20, 219, 459, Error_Handler ); 

MAT[l] .count .­ 200 * 440; 
.- 255; MAT[l] .Red 

MAT[l] .Green := O; 
MAT[l].Blue := O; 
PRASCP( 0, 0, Error_Handler ); 
PRASWP( 1, MAT, Error_Handler ); 

{ PUT ON WHITE RECTANGLE } 

PRASLD( 220, 26, 419, 459, Error_Handler ); 
MAT[l] .count .- 200 * 440; 
MAT[l] .Red .- 255; 
MAT[l].Green .- 255; 
MAT[l] .Blue .- 255; 
PRASCP( 0, 0, Error_Handler ); 
PRASWP( 1, MAT, Error_Handler ); 

{ PUT ON BLUE RECTANGLE } 

PRASLD( 420, 20, 619, 459, Error_.Handler ) ; 
MAT[l] .count .- 200 * 440; 
MAT[l] .Red := O; 
MAT[l] .Green := O;MAT[l] .Blue .- 255; 
PRASCP( 0, 0, Error_Handler ); 
PRASWP( 1, MAT, Error_Handler ); 

Pdetach Error_Handler ); 
END. 

5. Formatting Raster Commands for User-Generated 
Host Routines 

GT14-16 

Communications between the host and the PS 390 use binary data transmis­
sion protocols. If you are writing your own host routines, you must: 

• Ensure that the image buff er is in the correct mode (WRPIX). 

• Ensure that all data (including the mode delimiter) are transferred 
out of the intrinsic user function CIROUTE using routing byte B, 
which sends the data out port 21. 

Graphics Tutorials 



Mode is specified by the following decimal value: 

WRPIX = 0 

Raster commands are strings of data that follow this format: 

0 

Mode 

Delimiter 

0 0 

Mode 

x x 
Byte 

Count 

x 
Commands 

The "Mode Delimiter" is two bytes of 0 (0000000000000000), and must 
precede a new mode specification. No delimiter needs to follow the final 
mode specification. 

The "Mode" is the sixteen-bit binary value for WRPIX. This determines the 
way the data that follow are to be interpreted. If WRPIX is specified, the 
information that follows the byte count is interpreted as pixel data. 

The "Byte Count" determines how many of the bytes of data that follow the 
byte count are to be interpreted as commands in the specified mode. Until a 
new mode delimiter is set, all data are interpreted as being in the currently 
specified mode. Multiple sets of byte count and data may be sent without 
changing modes. 

The WRPIX commands are described below: 

0 I 0 0 I 0 xx I xx 
Mode WRPIX Byte Mode Commands 
Delimiter Mode Count 

NOTE 

The maximum recommended byte count is 512 bytes. 

Raster Programming GT14-17 



5 .1 Write Pixel Data Mode 

GT14-18 

Pixel information can be transmitted from the host to the raster display in a 
run-length encoding scheme. 

For example, a "Load Pixel Data'~' command for 1-127 consecutive pixels 
has the following format (each character represents one bit): 

I Onnnnnnn I RRRRRRRR I GGGGGGGG I BBBBBBBB I 

+ -------- + -------- + -------- + -------- + 
31 0 

Where "n" specifies the number of consecutive pixels, and "R-G-B" speci­
fies the lookup table addresses for red, green, and blue. 

Load Pixel Data for 128-16383 consecutive pixels command: 

I lOnnnnnn I nnnnnnnn I RRRRRRRR I GGGGGGGG I BBBBBBBB 
+ -------- + -------- + -------- + -------- + -------- + 
47 31 0 

where "n" specifies the number of consecutive pixels and "R-G-B" specifies 
the lookup table addresses for red~ green, and blue. 

The current pixel location can be explicitly set by the "Set X-Y Position" 
command and is used to specify the current pixel location where the "Load 
Pixel Data" command will begin writing pixels. The pixel location is set 
relative to the values (Xmin, Ymin) of the logical device coordinates. If the 
logical device coordinates are -1024 <= X <= 1024 and -1024 <= Y <= 1024, 
then an X,Y position of (0,0) is the lower left-hand corner pixel and 
(204 7 ,204 7) is the upper right-hand corner pixel. 

Set Current Pixel Location command: 

I llOxxxxx I xxxxxxxx I OOOyyyyy I YYYYYYYY I 

+ -------- + -------- + -------- + -------- + 
31 0 

The entire pixel memory may be set to the same value with one command. 
This will erase the entire screen to the color in the specified lookup table 
locations. 

Graphics Tutorials 



Erase Screen co111111and: 

I 11100000 I RRRRRRRR I GGGGGGGG I BBBBBBBB 
+ -------- + -------- + -------- + -------- + 
31 0 

Logical device coordinates are specified by the Set Logical Device Coordi­
nates co111111and. 

Set Logical Device Coordinates co111111and: 

llllOXXX I xxxxxxxx xxxxxxxx I xxxxxxxx I Where X = X maximum 
+ -------- + -------- + -------- + -------- + x = X minimum 

64 32 

OOOOYYYY I YYYYYYYY I yyyyyyyy I yyyyyyyy I Where Y = Y maximum 
+ -------- + -------- + -------- + -------- + y = Y minimum 
31 0 

Restrictions: 

x = twos complement integer -32768 < = x < 1023 
x = unsigned integer 0 < = x < 2047 
y twos complement integer -32768 < = y < 863 
y unsigned integer 0 < = y < = 2047 
x < = X and y < = Y 

5.2 Programming Example for User-Generated Host Routines 

This progra111111ing exatnple describes how to build a "tricolor" flag display 
surrounded by a 20-pixel-wide blank border. Nutnbers are specified in hexa­
decitnal. 

WRPIX tnode is specified to: 

1. Erase Screen. 

2. Set Logical Device Coordinates. 

3. Set Current Pixel Location. 

4. Load Pixel Data. 

Raster Programming GT14-19 



GT14-20 

WRPIX mode (0000) is set and 4 bytes of commands are specified. An 
Erase Screen command is sent. 

0000 Set WRPIX mode ) 
4 bytes of commands 04 

EOOOOOOO Erase Screen r = 0, g 0, b O ) 

Logical 
Device 

[:jnates Screen 

30 
WRPIX 

RRR 
RRR 
RRR 

FODB001401CB0014 

WRPIX 
cooooooo 
BFFFOOFFOOOO 
BFFFOOFFOOOO 
BFFFOOFFOOOO 
BFFFOOFFOOOO 
BFFFOOFFOOOO 
97C500FFOOOO 

Screen 

48 bytes of commands ) 

Set LDC 20 <== x <= 219, 
to the left one-third of 
Fill LDC area with red ) 

Set Current Location x = 
16383 pixels red 
16383 pixels red 
16383 pixels red 
16383 pixels red 
16383 pixels red 

6085 pixels red 

20 <= y <= 459: 
the screen ) 

0, y = 0 ) 

Sets LDCs 

Graphics Tutorials 



WRPIX (Fill new LDC with white) 

30 

RRR WWW 
RRR WWW 
RRR WWW 

FlA300DCOlCB0014 
cooooooo 
BFFFOOFFFFFF 
BFFFOOFFFFFF 
BFFFOOFFFFFF 
BFFFOOFFFFFF 
BFFFOOFFFFFF 
97C500FFFFFF 

( 

( 

( 

( 

48 bytes of commands ) 
Set LDC 220 <= x <= 419, 
Set Current Location x = 
16383 pixels white 
16383 pixels white 
16383 pixels white 
16383 pixels white 
16383 pixels white 

6085 pixels white 

WRPIX (Fill new LDC with blue) 

30 

RRR WWW BBB 
RRR WWW BBB 

WWW BBB 

F26B01A401CB0014 
48 bytes of commands ) 
Set LDC 420 <= x <= 619, 

20 <= y <= 
0, y = 0 ) 

20 <= y <= 
cooooooo Set Current Location X =,0, y = 0 ) 
BFFFOOOOOOFF 16383 pixels blue 
BFFFOOOOOOFF 16383 pixels blue 
BFFFOOOOOOFF 16383 pixels blue 
BFFFOOOOOOFF 16383 pixels blue 
BFFFOOOOOOFF 16383 pixels blue 
97C5000000FF 6085 pixels blue) 

(End of Example) 

Raster Programming 

459 ) 

459 ) 

GT14-21 





GTlS. SAMPLE PROGRAMS 

CONTENfS 

1. ARTICULATED ANTHROPOID ROBOT EXAMPLE........... 1 

1.1. ADAM.300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2. ADAM.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2. BOUNCING BALL EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.1. COLLISION .300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
2.2. COLLISION.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

3. PLANAR PROJECTION EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . 28 

3.1. PROJECTN.300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
3.2. PROJECTN.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

4. TRANSFORMATION EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

4.1. TRISQUARE.300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
4.2. TRISQUARE.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

5. SET RATE PROGRAMMING EXAMPLE . . . . . . . . . . . . . . . . . . . . 42 

6. PS 390 RENDERING EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

6.1. RENDER.300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
6.2. LIGHT.300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
6.3. RENDER.FUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

i 



Figure 15-1. 

Figure 15-1. 
Figure 15-1. 
Figure 15-1. 
Figure 15-1. 
Figure 15-2. 

Figure 15-2. 
Figure 15-2. 
Figure 15-2. 
Figure 15-2. 
Figure 15-2. 
Figure 15-3. 

Figure 15-3. 
Figure 15-4. 

Figure 15-4. 
Figure 15-4. 

ILLUSTRATIONS 

ADAM.FUN (Sheet 1 of 5) 
(Function Network for ADAM.300) . . . . . . . . . . . . . . . . . . . . . . . . . 10 
ADAM.FUN (Sheet 2 of 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
ADAM.FUN (Sheet 3 of 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
ADAM.FUN (Sheet 4 of 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
ADAM.FUN (Sheet 5 of S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
COLLISION.FUN (Sheet 1 of 6) 
(Function Network for COLLISION.300) . . . . . . . . . . . . . . . . . . . . 22 
COLLISION.FUN (Sheet 2 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
COLLISION.FUN (Sheet 3 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
COLLISION .FUN (Sheet 4 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
COLLISION .FUN (Sheet S of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
COLLISION.FUN (Sheet 6 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
PROJECTN.FUN (Sheet 1 of 2) 
(Function Net work for PROJECTN .300) . . . . . . . . . . . . . . . . . . . . 34 
PROJECTN.FUN (Sheet 2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
TRISQUARE.FUN (Sheet 1 of 3) 
(Function Network for TRISQUARE.300) . . . . . . . . . . . . . . . . . . . 39 
TRISQUARE.FUN (Sheet 2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
TRISQUARE.FUN (Sheet 3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

ii 



Section GTlS 

Sainple Programs 

The sample programs in this section illustrate various applications of the PS 390 
for design and analysis. A program with a .300 extension is a data structure file, 
and a program with a .FUN extension is a function network file. A header section 
in each file explains what the application does. General practices illustrated in the 
sample programs can give you ideas for your own application programs. 

A great deal of care has been taken to make these programs examples of good 
PS 390 programming practices. In the data structure files, notice particularly the 
use of BEGIN_STRUCTURE ... END_STRUCTURE versus explicit naming. Notice 
also that the code is tabbed and commented in a way that makes it very easy to 
read. 

The sample programs are listed in this section and also distributed in loadable 
form on magnetic tape. A selection in the command file TUTORIALS.COM lets 
you load the sample programs individually from the host. 

1. Articulated Anthropoid Robot Example 

1.1. ADAM.300 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: April 21, 1983 
Last update: 

Data Structure for an articulated anthropoid robot called ADAM (A Dial 
Activated Man). The data nodes (vector lists) for the sphere and the 
cylinder are not included in this file. The sphere has a radius of 1 and is 
centered at the origin. The base of the cylinder is at the origin lying in the 
XZ plane with the cylinder centered about the positive Y axis. The cylinder 
has a radius of 1 and a height of 1. 

Sample Programs GTJS-1 



GTJS-2 

ADAM.FUN is the function network file that will articulate this structure. 

!NIT DISP; 
DISP Adam; 

Adam := BEGIN_S 

Tran := 
Rot := 
Scale .-
2Pick := 

WINDOW X=-8.5:8.5 Y=-8.5:5.5 
FRONT=O BACK=lO; 

LOOK AT 0,0,0 FROM 0,0,-1; 
TRAN 0,0,0; 
ROT Y O; 
SCALE 1; 
SET PICKING OFF; 
INST Upper_Body,Lower_Body; 

END_S; 

Upper_Body .-

Rot := 
{Chest} 

BEGIN_S 
SET PICK ID = B; 
ROT O; 

SCALE .8,2.4,.7 THEN Cylinder; 
INST Right_Arm,Left_Arm,Head; 

END_S; 

Right_Arm BEGIN_S 
TRAN -1.15,2.4,0; 

{ Right Shoulder Joint } 
SET PICK ID = C; 

Rot := ROT O; 
INST Upper_Arm,Right_Lower_Arm; 

END_S; 

Upper_Arm .- BEGIN_S 
{Shoulder Ball} SCALE .3, .2, .2 THEN Sphere; 

TRAN 0,-2.l,O; 
SCALE .25,2.1,.25 THEN Cylinder; 

END_S; 

Right_Lower_Arm .- BEGIN_S 
TRAN 0,-2.2,0; 

Rot := ROT O; 

Lower_Arm 
{Elbow} 

INST Lower_Arm,Right_Hand; 
END_S; 

.- BEGIN_S 
SCALE .219 THEN Sphere; {7/32 rad.} 

TRAN 0 I -1. 8 I 0; 
SCALE .225,1.7, .225 THEN Cylinder; 

END_S; 

Graphics Tutorials 



Right __ Hand . - BEGIN_S 
TRAN 0, -1. 9 , 0 ; 
SET PICK ID = D; 

Rot . -· ROT 0 THEN Hand; 
END_S; 

Hand := BEGIN_S 
{Wrist} SCALE .175 THEN Sphere; 
{Hand} TRAN 0,-.4,0; 

SCALE .15,.4,.25 THEN Sphere; 
END_S; 

Left_Arm .- BEGIN_S 
TRAN 1.15,2.4,0; 
SET PICK ID = C; 

Rot .- ROT O; 
INST Upper_Arm,Left_Lower_Arm; 

END_S; 

Left_Lower_Arm .- BEGIN_S 
TRAN 0,-2.2,0; 

Rot := ROT O; 
INST Lower Arm,Left_Hand; 

END_S; 

Left_Hand .- BEGIN_S 
TRAN 0,-1.9,0; 
SET PICK ID = D; 

Rot .- ROT 0 THEN Hand; 

Head . ·-

Rot := 
{Neck} 
{Head} 

END_S; 

BEGIN_S 
TRAN 0,2.4,0; 
SET PICK ID = A; 
ROT O; 
SCALE .3, .6, .3 THEN Cylinder; 
TRAN 0' 1. 5 I 0 ; 
SCALE .6,1,.6 THEN Sphere; 

END_S; 

Lower_Body .- BEGIN_S 
SET PICK ID = B; 

Rot := ROT O; 
TRAN 0,-1,0; 
INST Right_Leg,Left_Leg; 

{Waist & Hips} SCALE .8,1,.7 THEN Cylinder; 
END_S; 

Sample Programs GTJS-3 



GTJS-4 

Right_Leg .- BEGIN_S 

Rot .-

TRAN -.45,-.25; 
SET PICK ID = E; 
ROT O; 
INST Upper_Leg,Right_Lower_Leg; 

END_S; 

Upper_Leg := BEGIN_S 
{Hip Joint} SCALE .3 THEN Sphere; 

TRAN 0,-2.5,0; 
SCALE .35,2.5,.35 THEN Cylinder; 

END_S; 

Right_Lower_Leg .- BEGIN_S 
TRAN 0,-2.6,0; 

Rot := ROT x O; 
INST Lower_Leg,Right_Foot; 

END_S; 

Lower_Leg .- BEGIN_S 
INST Knee; 
TRAN 0,-2.6,0; 

{Limb} SCALE .3,2.5, .3 THEN Cylinder; 
END_S; 

Knee .- BEGIN_S 
ROT 90; 
TRAN 0,-.3,0; 
SCALE .15, .6,.15 THEN Cylinder; 

END_S; 

Right_Foot := BEGIN_S 

Rot .-

TRAN 0,-2.75,0; 
SET PICK ID = F; 
ROT 0 THEN Foot; 

END_S; 

Foot := BEGIN_S 
{Ankle} SCALE .2 THEN Sphere; 

TRAN 0,-.2,.2; 
ROT x -90; 
SCALE .3,1,.2 THEN Cylinder; 

END_S; 

Left_Leg := BEGIN_S 

Rot .-

TRAN .45,-.25; 
SET PICK ID = E; 
ROT O; 
INST Upper_Leg,Left_Lower_Leg; 

END_S; 

Graphics Tutorials 



Left_Lower_Leg .- BEGIN_S 

Rot := 
TRAN 0,-2.6,0; 
ROT x O; 
INST Lower_Leg,Left_Foot; 

END_S; 

Left_Foot := BEGIN_S 

Rot .-

TRAN 0,-2.75,0; 
SET PICK ID = F; 
ROT 0 THEN Foot; 

END_S; 

1..2. ADAM.FUN 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1982 
Last update: February, 1985 

Network to modify the structure in ADAM.300. Point at the joint you want 
to rotate and the dials will be routed to modify that joint and others associ­
ated in that mode. If you want to rotate and translate the whole robot, point 
at the head. 

{ Code generated by Network Editor 1.07 } 
{ ADAM } 

{ Frame-Pref ix Macro-Prefix } 
{ Frame2:F2_ } 
F2_P4:=F:CROUTE(6); 
F2_P5:=F:CROUTE(6); 
F2_P6:=F:DXROTATE; 
F2_P7:=F:DXROTATE; 
F2_P8:=F:DXROTATE; 
F2_P9:=F:DXROTATE; 
CONN F2_P4<3>:<1>F2_P6; 
CONN F2_P4<5>:<1>F2_P7; 
CONN F2_P5<3>:<1>F2_P8; 
CONN F2_P5<5>:<1>F2_P9; 
CONN F2_P6<1>:<1>Right_Lower_Arm.Rot; 
CONN F2_P7<1>:<1>Right_Lower_Leg.Rot; 
CONN F2_P8<1>:<1>Left_Lower_Arm.Rot; 
CONN F2_P9<1>:<1>Left_Lower_Leg.Rot; 
SEND 200 TO <3>F2_P7; 
SEND 200 TO <3>F2_P8; 

Sample Programs GTf 5-5 



GTJS-6 

SEND 200 TO <3>F2_P9; 
SEND 200 TO <3>F2_P6; 
SEND 0 TO <2>F2_P7; 
SEND 0 TO <2>F2_P8; 
SEND 0 TO <2>F2_P9; 
SEND 0 TO <2>F2_P6; 
{ Frame3:F3_ } 
F3_Pll:=F:MULC; 
F3_P12:=F:MULC; 
F3_P13:=F:MULC; 
F3_P14:=F:XROTATE; 
F3_P15:=F:YROTATE; 
F3_P16:=F:ZROTATE; 
F3_P17:=F:CROUTE(6); 
F3_P18:=F:MULC; 
F3_P19:=F:MULC; 
F3_P20:=F:MULC; 
F3_P21:=F:MULC; 
F3_P22:=F:MULC; 
F3_P23:=F:MULC; 
CONN F3_Pll<l>:<l>F3_P14; 
CONN F3_P12<1>:<1>F3_P15; 
CONN F3_P13<1>:<1>F3_P16; 
CONN F3_P14<1>:<2>F3_P17; 
CONN F3_Pl5<1>:<2>F3_P17; 
CONN F3_P16<1>:<2>F3_P17; 
CONN F3_P17<1>:<1>F3_P18; 
CONN F3_P17<2>:<1>F3_P19; 
CONN F3_P17<3>:<1>F3_P20; 
CONN F3_P17<4>:<1>F3_P21; 
CONN F3_P17<5>:<1>F3_P22; 
CONN F3_P17<6>:<1>F3_P23; 
CONN F3_P18<1>:<1>Head.Rot; 
CONN F3_P18<1>:<2>F3_P18; 
CONN F3_P19<1>:<1>Upper_Body.Rot; 
CONN F3_P19<1>:<2>F3_P19; 
CONN F3_P20<1>:<1>Right_Arm.Rot; 
CONN F3_P20<1>:<2>F3_P20; 
CONN F3_P21<1>:<1>Right_Hand.Rot; 
CONN F3_P21<1>:<2>F3_P21; 
CONN F3_P22<1>:<1>Right_Leg.Rot; 
CONN F3_P22<1>:<2>F3_P22; 
CONN F3_P23<1>:<1>Right_Foot.Rot; 
CONN F3_P23<1>:<2>F3_P23; 
SEND 200 TO <2>F3_Pll; 
SEND 200 TO <2>F3_P12; 
SEND 200 TO <2>F3_Pl3; 

Graphics Tutorials 



{ Frame4:F4_ } 
F4_P24:=F:MULC; 
F4_P25:=F:MULC; 
F4_P26:=F:MULC; 
F4_P27:=F:XROTATE; 
F4_P28:=F:YROTATE; 
F4_P29:=F:ZROTATE; 
F4_P30:=F:CROUTE(6); 
F4_P31:=F:CMUL; 
F4_P32:=F:MULC; 
F4_P33:=F:MULC; 
F4_P34:=F:MULC; 
F4_P35:=F:MULC; 
F4_P36:=F:MULC; 
CONN F4_P24<1>:<1>F4_P27; 
CONN F4_P25<1>:<1>F4_P28; 
CONN F4_P26<1>:<1>F4_P29; 
CONN F4_P27<1>:<2>F4_P30; 
CONN F4_P28<1>:<2>F4_P30; 
CONN F4_P29<1>:<2>F4_P30; 
CONN F4_P30<1>:<2>F4_P31; 
CONN F4_P30<2>:<1>F4_P32; 
CONN F4_P30<3>:<1>F4_P33; 
CONN F4_P30<4>:<1>F4_P34; 
CONN F4_P30<5>:<1>F4_P35; 
CONN F4_P30<6>:<1>F4_P36; 
CONN F4_P31<1>:<1>Adam.Rot; 
CONN F4_P3l<l>:<l>F4_P31; 
CONN F4_P32<1>:<1>Lower_Body.Rot; 
CONN F4_P32<1>:<2>F4_P32; 
CONN F4_P33<1>:<1>Left_Arm.Rot; 
CONN F4_P33<1>:<2>F4_P33; 
CONN F4_P34<1>:<l>Left_Hand.Rot; 
CONN F4_P34<1>:<2>F4_P34; 
CONN F4_P35<1>:<1>Left_Leg.Rot; 
CONN F4_P35<1>:<2>F4_P35; 
CONN F4_P36<1>:<1>Left_Foot.Rot; 
CONN F4_P36<1>:<2>F4_P36; 
SEND 200 TO <2>F4_P25; 
SEND 200 TO <2>F4_P26; 
SEND 200 TO <2>F4_P24; 
{ Picking Network:F5_ } 
F5_P3:=F:PICKINFO; 
F5_P39:=F:CHARCONVERT; 
F5_P40:=F:SUBC; 
CONN TABLETIN<4>:<1>Adam.Pick; 
CONN TABLETIN<6>:<1>PICK; 

Sample Programs GTJS-7 



GTJS-8 

CONN PICK<l>:<l>F5_P3; 
CONN PICK<2>:<1>Adam.Pick; 
CONN PICK<3>:<1>Adam.Pick; 
CONN F5_P3<2>:<1>F5_P39; 
CONN F5_P39<1>:<1>F5_P40; 
SEND FIX(64) TO <2>F5_P40; 
SEND FIX(l) TO <2>F5_P3; 
{ Framel:Fl_ } 
{ Setup cness true <2-3>P10 } 
Fl_P10:=F:SYNC(3); 
SETUP CNESS TRUE <2>Fl_P10; 
SETUP CNESS TRUE <3>Fl_P10; 
CONN Fl_P10<2>:<2>F2_P6; 
CONN Fl_P10<2>:<2>F2_P7; 
CONN Fl_P10<2>:<2>F2_P8; 
CONN Fl_P10<2>:<2>F2_P9; 
CONN Fl_P10<3>:<1>Right_Lower_Arm.Rot; 
CONN Fl_P10<3>:<1>Right_Lower_Leg.Rot; 
CONN Fl_P10<3>:<1>Left_Lower_Arm .. Rot; 
CONN Fl_P10<3>:<1>Left_Lower_Leg.Rot; 
CONN Fl_P10<3>:<2>F3_P18; 
CONN Fl_P10<3>:<2>F3_Pl9; 
CONN Fl_P10<3>:<2>F3_P20; 
CONN Fl_P10<3>:<2>F3_P21; 
CONN Fl_Pl0<3>:<2>F3_P22; 
CONN Fl_P10<3>:<2>F3_P23; 
CONN Fl_P10<3>:<1>Head.Rot; 
CONN Fl_P10<3>:<1>Upper_Body.Rot; 
CONN Fl_P10<3>:<1>Right_Arm.Rot; 
CONN Fl_P10<3>:<1>Right_Hand.Rot; 
CONN Fl_Pl0<3>:<1>Right_Leg.Rot; 
CONN Fl_P10<3>:<1>Right_Foot.Rot; 
CONN Fl_P10<3>:<1>F4_P31; 
CONN Fl_P10<3>:<2>F4_P32; 
CONN Fl_P10<3>:<2>F4_P33; 
CONN Fl_P10<3>:<2>F4_P34; 
CONN Fl_P10<3>:<2>F4_P35; 
CONN Fl_P10<3>:<2>F4_P36; 
CONN Fl_P10<3>:<1>Adam.Rot; 
CONN Fl_P10<3>:<1>Lower_Body.Rot; 
CONN Fl_P10<3>:<1>Left_Arm.Rot; 
CONN Fl_P10<3>:<1>Left_Hand.Rot; 
CONN Fl_P10<3>:<1>Left_Leg.Rot; 
CONN Fl_P10<3>:<1>Left_Foot.Rot; 
CONN FKEYS<l>:<l>Fl_PlO; 
CONN DIALS<l>:<l>F3_Pll; 
CONN DIALS<2>:<1>F3_P12; 

Graphics Tutorials 



CONN DIALS<3>:<1>F3_P13; 
CONN DIALS<4>:<2>F2_P4; 
CONN DIALS<5>:<1>F4_P24; 
CONN DIALS<6>:<1>F4_P25; 
CONN DIALS<7>:<1>F4_P26; 
CONN DIALS<8>:<2>F2_P5; 
CONN F5_P40<1>:<1>F2_P4; 
CONN F5_P40<1>:<1>F2_P5; 
CONN F5_P40<1>:<1>F3_P17; 
CONN F5_P40<1>:<1>F4_P30; 
SEND FIX(l) TO <l>F2_P4; 
SEND FIX(l) TO <l>F2_P5; 
SEND FIX(l) TO <l>F3_P17; 
SEND FIX(l) TO <l>F4_P30; 
SEND 0 TO <2>Fl_P10; 
SEND M3D(l,O,O 0,1,0 0,0,1) TO <3>Fl_P10; 
SEND M3D(l,O,O 0,1,0 0,0,1) TO <l>Fl_PlO; 

Sample Programs GTJS-9 



. ----------------------···- . - ··------------------------

\ - \ Se,tup 
\ - \Setup 

cness 
cness 

LPN P_;_ 5 ./ 

Picking N•t•orlc 

Rout• N:.n11 .___ _____ v 

true 
true 

1:DIALS 
1 
2 
J 
4 

I 
5 
{I 

7 

8 

<2> \11F\PIO,: 
<3> \NF\P/O,: 

Pl() 

'f'ix(IJ (S>--

j 

I 
........ 

' /' 

v 

[

1 1 Lr---------c=---r--iJ I ',I '\.. 
.__F_K_E_Y -5 ___ _.J O 15>-f={~ F: SYNC ( 3) ! ~~---./+---+-+'..-----' 

3d(l,?,O Q, 1,0 0,0,I) (.i------~ 

Elbows & Knt1•s Control 

Route Nu111 

_____ v 

Vpp•r Bod/ Control 

~ Route Nu"' 

Oisl I 

Oi.•13 

P.11t111 t J 



P4 

0 Ir~~~~~-~ 
200 ~~!--~~~~-

k-lo-1..,-,;:-rc:r-~~~~~~~~~1 

i-.-~~-~~-----+---1 2 f:CROUTE(6) 

PS 

1 

H>--~--~--~--~~2 f.CROUTEC6) 

P6 

l 

;r:DXROT,..TE 

1 

;f:OXRDTllTE 

1 

;f:OXROT,..TE 

1 

~f:DXROT,..TE 

~----llE J 1R/GHT_l OJ.lf:l?_AIUf. ROT 

1----1---E <I >LEFT_lONER_ARH. ROT 

1----1-----11e <I >LEFT_lONE!l_lEG. ROT 



..-------11 
2 f:MUlC 

~------4--11 
2f:HULC 

H>------+--1' 
2 F:HULC 

200~ 

R•••t I 

PH 

f: XROTATE 

PIS 

F: YAOTATE 

1 
2 f:CROUTE(6) 

I 

1 ~---4-.....--1 2 r, HULC 

·---+-----! 1 
2 f:MULC 



PZ7 

f:XROTATE 

P26 
P30 
I 

1--__:~--1 2 f1CROUTE(6) 

__ _,.__ ....... 
2 r:HULC 

P~4 
____ ___,1 

2
f:HULC 

___ ...._ _ __., 
2 f:MULC 

'----~---1• 
2 r:HULC 



P3 , 
~TABLET IN 

~-..,......~· 
2F:PlCKINfO 

P39 _P_4_o _____ -Oout• Nu• 
I 11-------;::::- I 
2 r:CH~RCONVERT 2

F:SUBC 



2. Bouncing Ball Example 

2.1. COLLISION.300 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1984 
Last update: February, 1985 

PS 390 data structure, consisting of a ball in a box. The function network in 
COLLISION .FUN modifies this structure to simulate the ball bouncing in 
the box with no gravity and elastic collisions. 

!NIT DISP; 
DISP Collision; 

Collision := BEGIN_S 
SET INTENSITY ON .75:1; 
SET DEPTH_CLIPPING ON; 
FOV 70 FRONT = 1.4 BACK = 5; 

Yrot .-
LOOK AT 0,0,0 FROM 1.5,1.3,-2.4; 
ROT O; 
SET COLOR 240,1 THEN Box; 
SET COLOR 120,1 THEN Ball; 
SET COLOR 0,1 THEN Path; 

END_S; 

Box := SCALE 1 THEN Cube; 

Ball : = BEGIN_S 
Tran := TRAN 0,0,0; 
Rot := ROT O; 
Scale := SCALE .1 THEN Sphere; 

END_S; 

Path := VEC n=lOOOO 0,0,0; 

Cube := VEC Item n=16 
p -1, 1,-1 L 1, 1,-1 
L 1,-1,-1 L -1,-1,-1 
p 1, 1,-1 L 1, 1, 1 
L 1,-1, 1 L 1,-1,-1 
p 1, 1, 1 L -1, 1, 1 
L -1,-1, 1 L 1,-1, 1 
p -1, 1, 1 L -1, 1,-1 
L -1,-1,-1 L -1,-1, 1· 

' 

Sample Programs GTJS-15 



2.2. COLLISION.FUN 

GTIS-16 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1984 
Last update: February, 1985 

Network to modify structure created in COLLISION.300. See description in 
that file. 

{ Code generated by Network Editor 1.07 } 
{ COLL IS ION } 
{ Frame-Pref ix Macro-Pref ix 
{ Framel:M1$Fl_ } 
M1$Fl_Pl:=F:INPUTS_CHOOSE(13); 
M1$Fl_P2:=F:ROUTE(12); 
CONN M1$Fl_P1<1>:<2>M1$Fl_P2; 
SEND TRUE TO <l>M1$Fl_Pl; 
SEND TRUE TO <2>M1$Fl_Pl; 
SEND TRUE TO <3>Ml$Fl_Pl; 
SEND TRUE TO <4>M1$Fl_Pl; 
SEND TRUE TO <5>M1$Fl_Pl; 
SEND TRUE TO <6>M1$Fl_Pl; 
SEND TRUE TO <7>M1$Fl_Pl; 
SEND TRUE TO <8>M1$Fl_Pl; 
SEND TRUE TO <9>M1$Fl_Pl; 
SEND TRUE TO <10>M1$Fl_Pl; 
SEND TRUE TO <ll>M1$Fl_Pl; 
SEND TRUE TO <12>M1$Fl_Pl; 
{ Motion Control:F2_ } 
F2_P2:=F:SYNC(4); 
F2_P6:=F:LIMIT; 
F2_P7:=F:LIMIT; 
F2_P8:=F:LIMIT; 
F2_P9:=F:BROUTEC; 
F2_P10:=F:BROUTEC; 
F2_Pll:=F:BROUTEC; 
F2_P12:=F:MULC; 
F2_P13:=F:MULC; 
F2_P14:=F:MULC; 
F2_P15:=F:XVECTOR; 
F2~P16:=F:YVECTOR; 
F2_Pl7:=F:ZVECTOR; 
F2_Pl8:=F:ADD; 

Graphics Tutorials 



F2_P19:=F:ADD; 
F2_P20:=F:ADD; 
F2_P41:=F:ACCUMULATE; 
F2_P42:=F:ACCUMULATE; 
F2_P43:=F:ACCUMULATE; 
F2_P38:=F:ADD; 
F2_P39:=F:ADD; 
CONN F2_P2<2>:<1>F2_P18; 
CONN F2_P2<3>:<1>F2_Pl9; 
CONN F2_P2<4>:<1>F2_P20; 
CONN F2_P6<1>:<1>F2_P15; 
CONN F2_P6<1>:<2>F2_P18; 
CONN F2_P6<3>:<1>F2_P9; 
CONN F2_P7<1>:<1>F2_P16; 
CONN F2_P7<1>:<2>F2_P19; 
CONN F2_P7<3>:<1>F2_Pl0; 
CONN F2_P8<1>:<1>F2_P17; 
CONN F2_P8<1>:<2>F2_P20; 
CONN F2_P8<3>:<1>F2_Pll; 
CONN F2_P9<1>:<2>F2_P2; 
CONN F2_P9<2>:<1>F2_P12; 
CONN F2_P10<1>:<3>F2_P2; 
CONN F2_P10<2>:<1>F2_P13; 
CONN F2_P11<1>:<4>F2_P2; 
CONN F2_P11<2>:<1>F2_P14; 
CONN F2_P12<1>:<2>F2_P2; 
CONN F2_P12<1>:<2>F2_P9; 
CONN F2_P12<1>:<2>F2_P41; 
CONN F2_P13<1>:<3>F2_P2; 
CONN F2_P13<1>:<2>F2_Pl0; 
CONN F2_P13<1>:<2>F2_P42; 
CONN F2_P14<1>:<4>F2_P2; 
CONN F2_P14<1>:<2>F2_Pll; 
CONN F2_P14<1>:<2>F2_P43; 
CONN F2_P15<1>:<1>F2_P38; 
CONN F2_P16<1>:<2>F2_P38; 
CONN F2_P17<1>:<2>F2_P39; 
CONN F2_P18<1>:<1>F2_P6; 
CONN F2_P19<1>:<1>F2_P7; 
CONN F2_P20<1>:<1>F2_P8; 
CONN F2_P38<1>:<1>F2_P39; 
CONN F2_P39<1>:<1>Ball.Tran; 
CONN F2_P41<1>:<2>F2_P9; 
CONN F2_P42<1>:<2>F2_P10; 
CONN F2_P43<1>:<2>F2_Pll; 
SEND -.9 TO <3>F2_P6; 
SEND -.9 TO <3>F2_P7; 

Sample Programs GTJS-17 



GTJS-18 

SEND -.9 TO <3>F2_P8; 
SEND .9 TO <2>F2_P6; 
SEND .9 TO <2>F2_P7; 
SEND .9 TO <2>F2_P8; 
SEND 0 TO <6>F2_P41; 
SEND 0 TO <6>F2_P42; 
SEND 0 TO <6>F2_P43; 
SEND 10 TO <5>F2_P41; 
SEND 10 TO <5>F2_P42; 
SEND 10 TO <5>F2_P43; 
SEND .1 TO <4>F2_P41; 
SEND .1 TO <4>F2_P42; 
SEND .1 TO <4>F2_P43; 
SEND 0 TO <3>F2_P41; 
SEND 0 TO <3>F2_P42; 
SEND 0 TO <3>F2_P43; 
SEND .03 TO <4>F2_P2; 
SEND .03 TO <2>F2_Pll; 
SEND .03 TO <2>F2_P43; 
SEND .02 TO <3>F2_P2; 
SEND .02 TO <2>F2_P10; 
SEND .02 TO <2>F2_P42; 
SEND .01 TO <2>F2_P2; 
SEND .01 TO <2>F2_P9; 
SEND .01 TO <2>F2_P41; 
SEND 0 TO <2>F2_P18; 
SEND 0 TO <2>F2_P19; 
SEND 0 TO <2>F2_P20; 
SEND -1 TO <2>F2_P12; 
SEND -1 TO <2>F2_P13; 
SEND -1 TO <2>F2_Pl4; 
{ Clock Control:F3_ } 
F3_Pl:=F:CLFRAMES; 
F3_P22:=F:CONSTANT; 
F3_P23:=F:EDGE_DETECT; 
F3_P25:=F:ACCUMULATE; 
F3_P27:=F:FIX; 
F3_P28:=F:XOR; 
F3_P65:=F:XROTATE; 
CONN F3_P1<2>:<1>F3_P22; 
CONN F3_P1<2>:<1>F3_P65; 
CONN F3_P1<2>:<5>F3_Pl; 
CONN F3_P22<1>:<1>F3_P23; 
CONN F3_P25<1>:<1>F3_P27; 
CONN F3_P27<1>:<1>F3_Pl; 
CONN F3_P28<1>:<6>F3_Pl; 
CONN F3_P28<1>:<2>F3_P28; 

Graphics Tutorials 



CONN F3_P65<1>:<1>Ball.Rot; 
SEND FIX(O) TO <2>F3_Pl; 
SEND FALSE TO <3>F3_Pl; 
SEND FIX(l) TO <4>F3_Pl; 
SEND FIX(O) TO <5>F3_Pl; 
SEND FALSE TO <6>F3_Pl; 
SEND FIX(l) TO <l>F3_Pl; 
SEND FALSE TO <l>F3_P23; 
SEND TRUE TO <2>F3_P22; 
SEND TRUE TO <2>F3_P23; 
SEND 1 TO <2>F3_P25; 
SEND 1 TO <3>F3_P25; 
SEND 10 TO <4>F3_P25; 
SEND 60 TO <5>F3_P25; 
SEND 1 TO <6>F3_P25; 
SEND FALSE TO <2>F3_P28; 
{ Framel:M2$Fl_ } 
{ Box Size } 
M2$Fl_Pl:=F:ACCUMULATE; 
M2$Fl_P2:=F:XVECTOR; 
M2$Fl_P3:=F:YVECTOR; 
M2$Fl_P4:=F:ZVECTOR; 
M2$Fl_P5:=F:CONSTANT; 
M2$Fl_P6:=F:NOP; 
CONN M2$Fl_P2<l>:<l>M2$Fl_Pl; 
CONN M2$Fl_P3<1>:<1>M2$Fl_Pl; 
CONN M2$Fl_P4<1>:<1>M2$Fl_Pl; 
CONN M2$Fl_P5<1>:<2>M2$Fl_Pl; 
SEND V3D(.01,.0l,.01) TO <6>M2$Fl_Pl; 
SEND 1 TO <4>M2$Fl_Pl; 
SEND V3D(l,l,1) TO <2>M2$Fl_Pl; 
SEND V3D(l,l,1) TO <2>M2$Fl_P5; 
SEND V3D(l,1,1) TO <5>M2$Fl_Pl; 
SEND V3D(l,l,l) TO <l>M2$Fl_P6; 
SEND 0 TO <3>M2$Fl_Pl; 
{ Box/Ball Size:F4_ } 
F4_P31:=F:SUBC; 
F4_P32:=F:SCALE; 
F4_P33:=F:PARTS; 
F4_P34:=F:PARTS; 
F4_P35:=F:MULC; 
F4_P44:=F:DSCALE; 
F4_P45:=F:VEC; 
F4_P46:=F:VEC; 
F4_P47:=F:FETCH; 
VAR Box~Size; 
CONN M2$Fl_Pl<l>:<l>F4_P32; 

Sample Programs GTJS-19 



GTJS-20 

CONN M2$Fl_Pl<l>:<l>F4_P31; 
CONN M2$Fl_Pl<l>:<l>Box_S1ze; 
CONN M2$Fl_P5<1>:<1>F4_P32; 
CONN M2$Fl_P5<1>:<1>F4_P31; 
CONN M2$Fl_P5<1>:<1>Box_Size; 
CONN M2$Fl_P6<1>:<1>F4_P32; 
CONN M2$Fl_P6<1>:<1>F4_P31; 
CONN M2$Fl_P6<1>:<1>Box_Size; 
CONN F4_P31<l>:<l>F4_P33; 
CONN F4_P31<l>:<l>F4_P35; 
CONN F4_P32<l>:<l>Box; 
CONN F4_P35<1>:<1>F4_P34; 
CONN F4_P44<1>:<1>Ball.Scale; 
CONN F4_P44<2>:<3>F4_P44; 
CONN F4_P44<2>:<1>F4_P45; 
CONN F4_P44<2>:<2>F4_P45; 
CONN F4_P44<2>:<2>F4_P46; 
CONN F4_P45<1>:<1>F4_P46; 
CONN F4_P46<1>:<1>F4_P47; 
CONN F4_P46<1>:<2>F4_P31; 
CONN F4_P47<l>:<l>F4_P31; 
SEND V3D(l,1,l) TO <l>Box_Size; 
SEND 'Box_Size' TO <2>F4_P47; 
SEND .05 TO <5>F4_P44; 
SEND 1 TO <4>F4_P44; 
SEND .1 TO <2>F4_P44; 
SEND .1 TO <3>F4_P44; 
SEND V3D(.1,.1,.1) TO <2>F4_P31; 
SEND -1 TO <2>F4_P35; 
{ Path:F5_ } 
F5_P49:=F:CBROUTE; 
F5_P50:=F:XOR; 
CONN F5_P49<1>:<append>Path; 
CONN F5_P50<1>:<2>F5_P50; 
CONN F5_P50<1>:<1>F5_P49; 
SEND TRUE TO <2>F5_P50; 
SEND TRUE TO <l>F5_P49; 
{ Labels:F6_ } 
SEND 'RESET' TO <l>FLABELll; 
SEND 'STRT/STP' TO <l>FLABELlO; 
SEND 'SLOWER' TO <l>FLABEL4; 
SEND 'FASTER' TO <l>FLABEL3; 
SEND 'CLR PATH' TO <l>FLABEL2; 
SEND 'TRACE?' TO <l>FLABELl; 
SEND 'BALLSIZE' TO <l>DLABEL8; 
SEND 'Z VEL' TO <l>DLABEL7; 
SEND 'Y VEL' TO <l>DLABEL6; 

Graphics Tutorials 



SEND 'X VEL' TO <l>DLABEL5; 
SEND 'OS Y ROTATE' TO <l>DLABEL4; 
SEND 'Z SIZE' TO <l>DLABEL3; 
SEND 'Y SIZE' TO <l>DLABEL2; 
SEND 'X SIZE' TO <l>DLABELl; 
{ Framel:Fl_ } 
Fl_P48:=F:DYROTATE; 
CONN DIALS<l>:<l>M2$Fl_P2; 
CONN DIALS<2>:<1>M2$Fl_P3; 
CONN DIALS<3>:<1>M2$Fl_P4; 
CONN DIALS<4>:<1>Fl_P48; 
CONN DIALS<5>:<1>F2_P41; 
CONN DIALS<6>:<1>F2_P42; 
CONN DIALS<7>:<1>F2_P43; 
CONN DIALS<8>:<1>F4_P44; 
CONN M1$Fl_P2<l>:<l>F5_P50; 
CONN M1$Fl_P2<2>:<clear>Path; 
CONN M1$Fl_P2<3>:<1>F3_P25; 
CONN M1$Fl_P2<4>:<1>F3_P25; 
CONN Ml$Fl_P2<10>:<1>F3_P28; 
CONN M1$Fl_P2<ll>:<l>M2$Fl_P5; 
CONN FKEYS<l>:<l3>M1$Fl_Pl; 
CONN FKEYS<l>:<l>M1$Fl_P2; 
CONN Fl_P48<1>:<1>Collision.Yrot; 
CONN F2_P2<1>:<1>F3_P23; 
CONN F2_P39<1>:<2>F5_P49; 
CONN F3_P23<2>:<1>F2_P2; 
CONN F4_P33<1>:<2>F2_P6; 
CONN F4_P33<2>:<2>F2_P7; 
CONN F4_P33<3>:<2>F2_P8; 
CONN F4_P34<1>:<3>F2_P6; 
CONN F4_P34<2>:<3>F2_P7; 
CONN F4_P34<3>:<3>F2_P8; 
SEND 2 TO <4>M1$Fl_Pl; 
SEND -2 TO '<3>M1$Fl_Pl; 
SEND FIX(lOOOO) TO <2>M1$Fl_Pl; 
SEND 200 TO <3>Fl_P48; 
SEND 0 TO <2>Fl_P48; 

Sample Programs GTJS-21 



, , 
1

DIAL5 
2 
i . . . 
1 . 

P31 , I 

#'i .. (1Dtlflt11 ~ :"• ••l•at12 
2 

•:t . 
:r . . 

I . . . 
7 7 
I . . . ,. .. 
11 11 

l' f!CCYS 
J:: 11 

'---- •••• .,_c~. "'••" ~"'• 
C/et1lt •P••• 

/au 
#o.,>'ll•Jl Sl.r• 

X Si1• 

'"" 

x "'" 
r' Hin 

z '"" 

l>&llH l.Jftlli. l'Pt1T 

·------------·---

Ll!i.. l!L:t /1 
lletlo,, Cetnrel I 
Cloclt pul "•••t Cd•• ~ 
x ••• 
x 11.·,, 
X ll"•l•el'tJI 

r *•" 
r Nin 

r "•• 
r llin 

Peth 

Tree•? 

,, .. 

IA80760 



y """ 

1'42 

P1' 

·'~ .. ,~I 

fO.__~f, AD-I! ___,J 
.J, 

~~Ft LIMIT 

./ 

,,,. 
IL I 

~~ronECTOI 
/110 

~r_V<t_l_•_c•_'.!!]=+·+-4-++...._,f--1 1 '~---1-+------------1-1----------' 
'i ~~FoACCUftULATC 

N---" 
I '+--++---1' 

l'+-+--++--1• 

PtD Pl Pf? 'I L1-----+-+---11 il J 1 

~z_••-'--1-l-.i-~------~-------~---_-_-_-_-_-_-_-_-_-_-_-_-_-j./+-+----------' ~",'~'------. 
1'14 

z ,, .. ,, 

~:r.LIM!T :~r1ZYECTOI 

.~~ 
l
2 

F, 9IOUTEC Jl--------1Hr-l:' 
[ Lt FdlULC 

~z-~_.1_._c._·t_yt-t-+--+-1-+--1~
4

~ ·~-----------------------' 
~~r,ACCUNULAT£ _, 

'---• 
-----is 

-----1' ..__ ___ __. 

~ l 



I 
I 

ill 

"J I 

PZl 

r,ru 

~s-*_•_•*-~-~_1..,.~-~~--~-~--~-~~---1' 
zr, l!OI 

l----"--....--1' 

! r, CLrAAMEI 

,., .. 
I 
2 r, ceNSTANT 

ft XROTUE 

I 
I 

P:U ~ 
.__

I ~..._____ ___ Clod p.,1 •• 
2 r1 EDEE_ ~ --

OtHCl 

I 

1>11,.LL. RtJT 



v3d(I, I, I) [;Jt---:r-----fl1JX!ox_5izs 

P30 
}( Sizs 

<Z• 

a...~~~~z~•----i~H:collbox 
•s• 

'"---.---11 

v~d(. !,. I,. J) [>--------11--r-1 2 f:SUBC 

P32 

r:SCALE 

P33 

f:PARTS 

P3S 

'"-------1 1 

e.11 ....---------1• 
~f: OSCHE P"/6 

J--------1· 
2
f: 1r'EC 

2
f:MULC 

1--~-------1 l 
2

F: FETCH 

F: PARTS 



PS() 

t?-~~~~~~~~~~~~~~~~~~~~~~~~~--11 

2f:XOR 

Pos t rua [>---'...._--11 
l't--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-IZf:CBRDUTE 



1 

~ DLAB'EL 1 

1 

; OLABEL2 

1 

;oLABEL3 

'OS Y ROTATE· [ I 

~OLABEL4 

'X re£., t 

; DLABELS 

1 

;[lLABEL6 

1 

ioLABEL7 

~ DLABEL8 

I 

!FU.BELi 

I 

~fLABEL2 

I 

;fLABEL3 

I 

~fLABEL4 

I 

~fLABEL10 

I 
2 
3

FL,,BEL1' 



3. Planar Projection Example 

3.1. PROJECTN.300 

GTJS-28 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: July, 1982 
Last update: February, 1985 

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. 
The vector list data node for SPHERE, which is referred to in this structure, 
is not included in this file. 

!NIT DISP; 
DISP Projection; 

Projection := BEGIN_S 
CHAR SCALE . 6 5 ; 
FONT Complex_Roman; 
INST Isometric_View; 
WINDOW x=-7.2:7.2 y=-7.2:7.2; 
INST Front_View,Side_View,Top_View; 

END_S; 

Front_View := BEGIN_S 
VIEWPORT HOR=-1:0 VERT=-1:0; 
LOOK AT 3,2,0 FROM 3,2,-12 THEN Object; 

END_S; 

Side_View := BEGIN_S 
VIEWPORT HOR=O:l VERT=-1:0; 
LOOK AT 0,2,3 FROM 12,2,3 THEN Object; 

END_S; 

Top_View := BEGIN_S 
VIEWPORT HOR=-1:0 VERT=O:l; 
LOOK AT 3,0,1 FROM 3,12,1 THEN Object; 

END_S; 

Isometric_View := BEGIN_S 

Rot .-

VIEWPORT HOR=O:l VERT=O:l; 
WINDOW x=-7:9 y=-7:9; 
ROT O; 
ROT X -30; 
ROT Y 40 THEN Object; 

END_S; 

Graphics Tutorials 



Object .- BEGIN_S 
SET COLOR 240,1; 
SCALE 8 THEN WS_Gnomon; 
SET COLOR 0,0; 
INST Globe,Xplane,Yplane,Zplane; 

END_S; 

Globe := BEGIN_S 
Rot := ROT O; 

SCALE 1. 5; 
SET COLOR 0,1 THEN Sphere; 
SET COLOR 120,1; 
SCALE 1.5 THEN Os_Gnomon; 

END_S; 

Xplane .- BEGIN_S 
TRAN 5,0,0; 
INST Xprojection_Matrix; 
ROT Y -90; 
INST Square; 
LABELS -2.5,-2.5 'YZ Plane'; 

END_S; 

Yplane .- BEGIN_S 
TRAN 0,5,0; 
INST Yprojection_Matrix; 
ROT X 90; 
INST Square; 
LABELS -2.5,-2.5 'XZ Plane'; 

END_S; 

Zplane .- BEGIN_S 
TRAN 0,0,-5; 
INST Zprojection_Matrix,Square; 
LABELS -2.5,-2.5 'XY Plane'; 

END_S; 

XProjection_Matrix .- MATRIX_3X3 0,0,0 
0,1,0 

YProjection_Matrix .- MATRIX_3X3 

ZProjection_Matrix .- MATRIX_3X3 

Sample Programs 

0,0,1 THEN Globe; 

1,0,0 
0,0,0 
0,0,1 THEN Globe; 

1,0,0 
0,1,0 
0,0,0 THEN Globe; 

GTJS-29 



GTJS-30 

Square := VEC n=5 3,3 -3,3 -3,-3 3,-3 3,3; 

WS_Gnomon := BEGIN_S 
TEXT SIZE .05; 
SET CHARACTERS Screen_Oriented; 
FONT Triplex_Roman; 
LABELS 

1.1,-.05 'Wx' 
- . 05 , 1. 1 'Wy' 
-.05,-.05,1.1 'Wz'; 

VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0 
P 0,0,0 L 0,0,.8; 

TRAN .8,0 THEN Xarrow; 
TRAN 0,.8 THEN Arrow; 
TRAN 0,0,.8 THEN Zarrow; 

END_S; 

Xarrow := ROT z -90 THEN Arrow; 
Arrow:= SCALE .025,.2, .025 THEN Pyramid; 
Zarrow := ROT x 90 THEN Arrow; 

OS_Gnomon .- BEGIN_S 
CHARACTER SCALE .0375; 
SET CHARACTERS Screen_Oriented; 
FONT Triplex_Roman; 
LABELS 

1. l, - . 05 'Ox' 
- . 05 , 1. 1 ' Oy' 
-.05,-.05,1.1 'Oz'; 

WITH PATTERN 1 1 LEN .1 
VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0 

P 0,0,0 L 0,0,.8; 
TRAN .8,0 THEN Xarrow; 
TRAN 0, .8 THEN Arrow; 
TRAN 0,0, .8 THEN Zarrow; 

END_S; 

Pyramid := VEC BLOCK ITEM n=lO 
P 1,0, 1 L -1,0,1 L -1,0,-1 L 1,0,-1 L 1,0,1 L 0,1,0 L 1,0,-1 
P -1,0,-1 L 0,1,0 L -1,0,1; 

Graphics Tutorials 



3.2. PROJECTN.FUN 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: July, 1982 
Last update: February, 1985 

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. 
The vector list data node for SPHERE, which is referred to in this structure, 
is not included in this file. 

{ Code generated by Network Editor 1.07 } 
{ PROJECTN } 
{ Frame-Pref ix Macro-Prefix } 
{ Framel:M2$Fl_ } 
M2$Fl_Pl:=F:MULC; 
M2$Fl_P2:=F:MULC; 
M2$Fl_.P3: =F: MULC; 
M2$Fl_.P4: =F: XROTATE; 
M2$Fl_.P5: =F: YROTATE; 
M2$Fl_P6:=F:ZROTATE; 
CONN M2$Fl_Pl<l>:<l>M2$Fl_P4; 
CONN M2$Fl_P2<1>:<1>M2$Fl_P5; 
CONN M2$Fl_P3<1>:<1>M2$Fl_P6; 
SEND 200 TO <2>M2$Fl_P2; 
SEND 200 TO <2>M2$Fl_Pl; 
SEND 200 TO <2>M2$Fl_P3; 
{ Framel:M1$Fl_ } 
{World Space Rotations} 
M1$Fl_P2:=F:CMUL; 
M1$Fl_P3:=F:CONSTANT; 
CONN M2$Fl_P5<1>:<2>M1$Fl_P2; 
CONN M2$Fl_P4<1>:<2>M1$Fl_P2; 
CONN M2$Fl_P6<1>:<2>M1$Fl_P2; 
CONN M1$Fl_P2<1>:<1>M1$Fl_P2; 
CONN M1$Fl_P3<l>:<l>M1$Fl_P2; 
SEND M3D(l,O,O 0,1,0 0,0,1) TO <2>M1$Fl_P3; 
SEND M3D(l,0,0 0,1,0 0,0,1) TO <l>M1$Fl_P2; 
{ Framel:M3$Fl_ } 
M3$Fl_Pl:=F:INPUTS_CHOOSE(l3); 
M3$Fl_P2:=F:ROUTE(12); 
CONN M3$Fl_Pl<l>:<2>M3$Fl_P2; 
SEND TRUE TO <l>M3$Fl_Pl; 
SEND TRUE TO <2>M3$Fl_Pl; 

Sample Programs GTJ 5-31 



SEND TRUE TO <3>M3$Fl_Pl; 
SEND TRUE TO <4>M3$Fl_Pl: 
SEND TRUE TO <5>M3$Fl_Pl; 
SEND TRUE TO <6>M3$Fl_Pl; 
SEND TRUE TO <7>M3$Fl_Pl; 
SEND TRUE TO <8>M3$Fl_Pl; 
SEND TRUE TO <9>M3$Fl_Pl; 
SEND TRUE TO <10>M3$Fl_Pl; 
SEND TRUE TO <ll>M3$Fl_Pl; 
SEND TRUE TO <12>M3$Fl_Pl; 
{ Labels:F2_ } 
SEND 'RESET' TO <l>FLABELll; 
SEND 'OS ROT' TO <l>FLABEL2; 
SEND 'WS ROT' TO <l>FLABELl; 
SEND 'OBJ ZROT' TO <l>DLABEL7; 
SEND 'OBJ YROT' TO <l>DLABEL6; 
SEND 'OBJ XROT' TO <l>DLABEL5; 
SEND 'VIEWZROT' TO <l>DLABEL3; 
SEND 'VIEWYROT' TO <l>DLABEL2; 
SEND 'VIEWXROT' TO <l>DLABELl; 
{ Framel:Fl_ } 
Fl_P2:=F:CROUTE(2); 
Fl_P3:=F:MULC; 
Fl_P4:=F:MULC; 
Fl_P5:=F:MULC; 
Fl_P6:=F:XROTATE; 
Fl_P7:=F:YROTATE; 
Fl_PB:=F:ZROTATE; 
Fl_P9:=F:CMUL; 
Fl_PlO:=F:MULC; 
Fl_P14:=F:CONSTANT; 
CONN M1$Fl_P2<1>:<1>Isometric_View.Rot; 
CONN M1$Fl_P3<1>:<1>Isometric_View.Rot; 
CONN Fl_P2<1>:<2>Fl_P9; 
CONN Fl_P2<2>:<1>Fl_P10; 
CONN Fl_P3<1>:<1>Fl_P6; 
CONN Fl_P4<1>:<1>Fl_P7; 
CONN Fl_P5<1>:<1>Fl_P8; 
CONN Fl_P6<1>:<2>Fl_P2; 
CONN Fl_P7<1>:<2>Fl_P2; 
CONN Fl_P8<1>:<2>Fl_P2; 
CONN Fl_P9<1>:<1>Globe.Rot; 
CONN Fl_P9<1>:<2>Fl_P10; 
CONN Fl_P9<1>:<1>Fl_P9; 
CONN Fl_P10<1>:<1>Fl_P9; 
CONN Fl_PlO<l>:<l>Globe.Rot; 
CONN Fl_Pl0<1>:<2>Fl_P10; 

GTJ 5-32 Graphics Tutorials 



CONN M3$Fl_P2<1>:<1>Fl_P2; 
CONN M3$Fl_P2<2>:<1>Fl_P2; 
CONN M3$Fl_P2<11>:<1>Fl_P14; 
CONN M3$Fl_P2<11>:<1>M1$Fl_P3; 
CONN FKEYS<1>:<13>M3$Fl_Pl; 
CONN FKEYS<l>:<l>M3$Fl_P2; 
CONN DIALS<l>:<l>M2$Fl_Pl; 
CONN DIALS<2>:<1>M2$Fl_P2; 
CONN DIALS<3>:<1>M2$Fl_P3; 
CONN DIALS<5>:<1>Fl_P3; 
CONN DIALS<6>:<1>Fl_P4; 
CONN DIALS<7>:<1>Fl_P5; 
CONN Fl_P14<1>:<2>Fl_P10; 
CONN Fl_P14<1>:<1>Fl_P9; 
CONN Fl_P14<1>:<1>Globe.Rot; 
SEND FIX(2) TO <2>M3$Fl_Pl; 
SEND FIX(l) TO <l>M3$Fl_Pl; 
SEND FIX(l) TO <13>M3$Fl_Pl; 
SEND FIX(l) TO <l>M3$Fl_P2; 
SEND M3D(l,O,O 0,1,0 0,0,1) TO <2>Fl_Pl4; 
SEND M3D(l,0,0 0,1,0 0,0,1) TO <l>Fl_P9; 
SEND M3D(l,0,0 0,1,0 0,0,1) TO <2>Fl_P10; 
SEND 200 TO <2>Fl_P3; 
SEND 200 TO <2>Fl_P4; 
SEND 200 TO <2>Fl_P5; 

Sample Programs GTJS-33 



l(JO 15>---

[m ·. 
•'d'f () pt~ 

.• ,(/(}.1,00,IJ.l)J;>...__~-17"""".. Z I r1 CONSTl\.ft.T 

IAS0759 



,-------------------------------------------------------------1 -------

'Vl£HXROT· H--_--------~ 
~LABEL1__J 

1 

~OLA BEL 

I 

~DLABEL3 

I 

~DLABELo 

1 

~ OL ABEL7 

'HS ROT' [5)--

1 

~fLABEL2 

I 

~ fLABEL I. 



4. Transformation Example 

4.1. TRISQUARE.300 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: December, 1983 
Last update: February, 1985 

Demonstration to transform four pieces from an equilateral triangle to a 
square, and vice versa. Can be done either manually with the dials or auto­
matically by starting a clock. The control network is in TRISQUARE.FUN. 

INIT DISP; 
DISP TriSquare; 

TriSquare := BEGIN_S 

Rot .-

P2_Rot .-

P3_Rot .-

P4_Rot .-

WINDOW X=-5:5 Y=-5:5; 
TRAN -2,2; 
ROT O; 
SET COLOR 0,1 THEN Partl; 
TRAN 1, -1. 268; 
ROT O; 
SET COLOR 90,1 THEN Part2; 
TRAN -1,-1.732; 
ROT O; 
SET COLOR 180,l THEN Part3; 
TRAN -1.5, .866; 
ROT O; 
SET COLOR 240,1 THEN Part4; 

END_S; 

PARTl .- VEC n=5 0,.4641 -.5,-.4019 -.2857,-1.5151 1,-1.268 0, .4641; 

PART2 . - VEC n=5 0, 0 -1. 2857, -. 2471 -1, -1. 732 1, -1. 732 0, 0; 

PART3 := VEC n=5 0,0 -.2142,1.1135 -1.5, .866 -2,0 0,0; 

PART4 .- VEC n=4 0,0 1.2858,.2475 1,1.732 0,0; 

GT 15-36 Graphics Tutorials 



4.2. TRISQUARE.FUN 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: December, 1983 
Last update: February, 1985 

Network to control the structure created by TRISQUARE. 300. 

{ Code generated by Network Editor 1.07 } 
{ TRISQUARE } 
{ Frame-Prefix Macro-Pref ix } 
{ Clock Motion:F2_ } 
{ first in que ---> } 
F2_P13:=F:EQC; 
F2_P14:=F:XOR; 
F2_P15:=F:CLFRAMES; 
F2_P16:=F:BROUTEC; 
F2_P17:=F:SYNC(2); 
CONN FKEYS<l>:<l>F2_P13; 
CONN F2_P13<1>:<1>F2_P14; 
CONN F2_Pl4<1>:<2>F2_P14; 
CONN F2_Pl4<1>:<6>F2_Pi5; 
CONN F2_P15<2>:<5>F2_P15; 
CONN F2_Pl5<3>:<1>F2_Pl6; 
CONN F2_P16<2>:<2>F2_P15; 
CONN F2_P16<2>:<1>F2_Pl7; 
CONN F2_Pl7<2>:<4>F2_P15; 
CONN F2_P17<2>:<2>F2_Pl7; 
SEND FIX(l) TO <2>F2_P13; 
SEND FALSE TO <2>F2_Pl4; 
SEND FIX(-1) TO <2>F2_P17; 
SEND FIX(l) TO <2>F2_P17; 
SEND FIX(179) TO <2>F2_P16; 
SEND FIX(O) TO <5>F2_P15; 
SEND FIX(l) TO <4>F2_P15; 
SEND FALSE TO <3>F2_P15; 
SEND FALSE TO <6>F2_P15; 
SEND FIX(179) TO <2>F2_P15; 
SEND FIX(6) TO <l>F2_Pl5; 
{ Labels:F3_ } 
SEND 'STRT/STP' TO <l>FLABELl; 
SEND 'JOINT 3' TO <l>DLABEL3; 
SEND 'JOINT 2' TO <l>DLABEL2; 
SEND 'JOINT 1' TO <l>DLABELl; 

Sample Programs GTJS-37 



GTJS-38 

{ Framel:Fl_ } 
Fl_Pl:=F:ACCUMULATE; 
Fl_P2:=F:ACCUMULATE; 
Fl_P3:=F:ACCUMULATE; 
Fl_P4:=F:ZROTATE; 
Fl_P5:=F:ZROTATE; 
Fl_P6:=F:ZROTATE; 
CONN Fl_Pl<l>:<l>Fl_P4; 
CONN Fl_P2<1>:<1>Fl_P5; 
CONN Fl_P3<1>:<1>Fl_P6; 
CONN Fl_P4<1>:<1>Trisquare.P2_Rot; 
CONN Fl_P5<1>:<1>Trisquare.P3_Rot; 
CONN Fl_P6<1>:<1>Trisquare.P4_Rot; 
CONN DIALS<l>:<l>Fl_Pl; 
CONN DIALS<2>:<1>Fl_P2; 
CONN DIALS<3>:<1>Fl_P3; 
CONN F2_P15<2>:<1>Fl_P4; 
CONN F2_P15<2>:<1>Fl_P5; 
CONN F2_P15<2>:<1>Fl_P6; 
SEND 180 TO <5>Fl_Pl; 
SEND 180 TO <5>Fl_P2; 
SEND 180 TO <5>Fl_P3; 
SEND 200 TO <4>Fl_Pl; 
SEND 200 TO <4>Fl_P2; 
SEND 200 TO <4>Fl_P3; 
SEND 0 TO <2>Fl_Pl; 
SEND 0 TO <3>Fl_Pl; 
SEND 0 TO <6>Fl_Pl; 
SEND 0 TO <2>Fl_P2; 
SEND 0 TO <3>Fl_P2; 
SEND 0 TO <6>Fl_P2; 
SEND 0 TO <2>Fl_P3; 
SEND 0 TO <3>Fl_P3; 
SEND 0 TO <6>Fl_P3; 

Graphics Tutorials 



CH_ 

Clo cit. Ho ti ~n 

Pl 

2 0 0 I r~-l--.--+----1 

180 rr~~~-+----1 

F: ZROTA TE 

1--~~--1--1-...._~, •i--~.j...__~ 

4 

5 
6 

p 2 

~ F": ACCUMULATE 

P.1 

'-+--l-...._-1 I 

~ F": ACCUMULATE 

F": Zli!OTATE 

P6 

F": ZROTATE 

E <I> rR/SllUAR£. P3_ROT 

IAS0761 



PIS 

Aniil" 
I ~ f'i.x(6) 

~f:CLFRAHES fix(/79) 
;: f•ls• 
~ rix(!J I' J d 

fix(OJ 

""""' 
I 

2 f, BROUTEC 
Vi 
I 

~ 

;;] 
c;; 

• I ta -ti rs"t l n que )f'ix{·I) (r1 SYNC(ij 
2 

~ 
I I 

I 
ttj 

~ <: 
............. 
~ 

Pl-I PJ3 ~ 
~ 
~ I l 

2 f:EQC 2 r,xoR 
...... 

fKEYS 
N 

~ 
~ 



l 

I _J 



5. SET RATE Programming Example 

GTJS-42 

Programmed by: Neil Harrington 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: November, 1984 
Last update: February, 1985 

PS 390 Set Rate programming example using the GSRs. Pascal version of 
BLKLEVF.FOR created originally by A. Kerry Evans. To run this program 
compile it and link it with the Pascal GSR library. 

This program creates a PS 390 display structure that has many SET RA TE 
nodes cascaded by offsetting the starting time of each SET RATE node. 
This structure is another way to create an animated sequence on the 
PS 390. A function network is not needed, since the PHASE attribute value 
is modified by the Display Processor as a function of the number of times a 
SET RATE node is traversed. 

CONST 
DTheta = 0.1745329; { PI/18 } 
%INCLUDE 'gsrlib:ProConst.pas/nolist' 

TYPE 
%INCLUDE 'gsrlib:ProTypes.pas/nolist' 

VAR 
Theta 
Tran 
I 

Vecs 
Front 
Name 

REAL; 
P_VectorType; 
INTEGER; 
P_VectorListType; 
P_VectorListType; 
P_VaryingType; 

%INCLUDE 'gsrlib:ProExtrn.pas/nolist' 

PROCEDURE ErrHnd (Error: INTEGE:R); 
BEGIN 

WRITELN ('Error: ',Error:3); 
END; { ErrHnd } 

Graphics Tutorials 



PROCEDURE Calc_Wave; 
VAR 

I,J : INTEGER; 
VecNum : INTEGER; 
VecNum2 : INTEGER; 

BEGIN 
VecNum := -1; 
FOR I := 0 TO 49 DO BEGIN 

VecNum 
VecNum2 

:= VecNum + 2; 
:= VecNum + 1; 

Vecs[VecNum].v4[1] := I/50; 
Vecs[VecNum] .v4[2) := 

0.8*EXP(-0.02*I)*COS(Theta-0.2513274123*I); 
Vecs[VecNum] .v4[3] .- O; 
Vecs[VecNum] .v4[4] := 1 - I/150; 

Vecs[VecNum2] .v4[1] 
Vecs[VecNum2] .v4[2) 
Vecs[VecNum2] .v4[3] 
Vecs[VecNum2] .v4[4) 

FOR J := 1 TO 4 DO 
Front[I+l] .v4[J] 

END; { FOR I } 
END; { Calc_Wave } 

.- Vecs[VecNum] .v4[1]; 

.- O; 

.- 0.5; 

.- Vecs[VecNum] .v4[4]; 

.- Vecs[VecNum] .v4[J]; 

BEGIN 
PAttach 
PinitC 
PinitD 

('LogDevNam=tt:/PhyDevTyp=async' ,ErrHnd); 
(ErrHnd); 
(ErrHnd); 

Tran.v4[1] .- -0.5; 
Tran.v4[2] := O; 
Tran.v4[3] := O; 
PTransBy ('Sine_Wave',Tran,'Inst',ErrHnd); 
Pinst ('Inst'," ,ErrHnd); 
Theta := -DTheta; 

FOR I := 10 TO 46 DO BEGIN 

Sample Programs 

Theta 
Writev 
WRITELN 

:= Theta + DTheta; 
(Name,'VecList' ,I:2); 

(Name); 

GTJS-43 



GTJS-44 

Calc_Wave; 
PBeginS (Name, ErrHnd); 

PSetR ('' ,1,35,FALSE,I," ,ErrHnd); 
PifPhase ('',TRUE," ,ErrHnd); 
PVecBegn ('',100,TRUE,FALSE,3,P_Sepa,ErrHnd); 
PVecList (100,Vecs,ErrHnd); 
PVecEnd (ErrHnd); 
PVecBegn ('', 50, TRUE, F'ALSE, 3, P _Conn, ErrHnd); 
PVecList (50,Front,ErrHnd); 
PVecEnd (ErrHnd); 

PEndS ( ErrHnd) ; 
Pincl (Name,'Inst' ,ErrHnd); 

END; { FOR I } 

PDisplay ('Sine_Wave',ErrHnd); 
PDetach (ErrHnd); 

END. { SetRate } 

Graphics Tutorials 



6. PS 390 Rendering Example 

6.1. RENDER.300 

Programmed by: Scott Goodyear 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: May 31, 1987 
Last update: 

This data structure creates a model and allows the user to put the model in 
two dynamic viewports (one full screen and one in the lower right-hand 
corner) and three static viewports in the other corners. Data structure in 
LIGHT. 300 creates two independent light sources to illuminate model. The 
function network in RENDER.FUN renders dynamic wireframe and static 
shaded images of the model. 

{ reserve working storage to transform polygons } 
{ put this in the site.dat file on the system disk } 
{ reserve 150 - 180 bytes / phong shaded fully anti-aliased polygon } 
{ example: reserve reserve_working_storage 800000; for a 4500 polygon 
model } 

{ set up initial display structure } 
universe := begin_s 

split .- set level to O; 
if level = 0 then full; 
if level = 1 then split; 

end_s; 

{ full screen dynamic window } 
full := begin_s 

end_s; 

persp := fov 45 front=2.2 back=3.6; 
look := look at 0,0,0 from 0,0,-3.25; 
vport := viewport horizontal=-1:1 vertical=-1:1 intensity 0:1 

then world; 

Sample Programs GTJS-45 



GTJS-46 

{ 1/4 static viewport and 1/4 dynamic viewport } 
split := begin_s 

persp := fov 45 front=2.2 back=3.6; 
look := look at 0,0,0 from 0,0,-3.25; 
vport .- viewport horizontal=O:l vertical=-1:0 intensity 0:1 

then world; 
end_s; 

{ define two light sources } 
{ the world } 
world := begin_s 

end_s; 

bits := set bit 1 on; 
b := if bit 1 on; 
set depth_clipping on; 
tran := translate by 0,0,0; 
rot := rot O; 
scale := scale by 1; 
rendering := surface; 
if bit 2 on then sun; 
if bit 3 on then moon; 
inst of objects; 

display universe; 

{ multiple objects in memory, to attach your model to this network } 
{ put these statements in your network or type them locally } 
{ local: } 
{ @@ object .- INSTANCE my_moclel } 
{ @@ objectl .- INSTANCE my_first_model 
{ @@ object2 .- INSTANCE my_second_model 
{ .etc. } 

objects := begin_s 
select := set level_of_detail to 1; 
if level_of_detail 1 then OBJECT; 
if level_of_detail 2 then OBJECTl; 
if level_of_detail 3 then OBJECT2; 
if level_of_detail 4 then OBJECT3; 
if level_of_detail 5 then OBJECT4; 

end_s; 

} 
} 

{ create a bit bucket to dump unused things } 
VAR BitBucket; 

Graphics Tutorials 



6.2. LIGHT.300 

Programmed by: Scott Goodyear 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: May 31, 1987 
Last update: 

This data structure creates two light sources for the model in RENDER. 300. 
The two light sources, called Sun and Moon, can be rotated independently. 
The function network in RENDER.FUN renders dynamic wireframe and 
static shaded images of the model. 

{ sun - define a light which can be rotated independently } 
SunLight := illumination 1,0,0 color 0,0,1 ambient 1.0; 

Sun : = Begin_S 
persp := fov 45 front=2.3 back=4.3; 
look := look at 0,0,0 from 0,0,-3.3; 
Set Intensity on O: .9; 
Set depth_clipping off; 
rot in x -10; 
Scale := scale by 1; 
azimuth := Rot y O; 
ra := Rot z O; 

Inst SUN_LIGHT_MARKER,SUN_ICON,SUNLIGHT; 
End_S; 

Sun_Light_Marker := Begin_S 
set color 180,1 then ccircle; 
Set color 120,1; 
Vee n=2 .6,0 1,0; 
tran .6,0; 
rot 90; 
scale .025,.2,.025 then PYRAMID; 

End_S; 

Sun_Icon := Begin_S 
color := Set color 0,0; 
Tran 1,0; 
Rot y -90; 

Sample Programs GTJS-47 



GTJS-48 

Rational polynomial 
.2,0,8 -.2,-.2,-8 0, .1,4 chords=15; 

Rational polynomial 
.2,0,-8 -.~ -.2,8 0,.1,-4 chords=15; 

Vee sep n=15 
-.1,0 -.o~,o .o5,o .1,0 

0,-.1 0,-.05 0,.05 0, .1 
-.0707,-.0707 -.0354,-.0354 
.0354,.0354 .0707, .0707 
-.0707, .0707 -.0354, .0354 
.0354,-.0354 .0707,-.0707; 

End_S; 

{ moon - define a light which can be rotated independently } 
MoonLight := illumination 1,0,0 color 0,0,1 ambient 1.0; 

Moon := begin_structure 
persp := fov 45 front=2.3 back=4.3; 
look := look at 0,0,0 from 0,0,-3.3; 
Set Intensity on O: .9; 
Set depth_clipping off; 
rot in x -10; 
Scale := scale by 1; 
azimuth := Rot y 90; 
ra := Rot z O; 
instance MoonLight,Moon_Icon,Moon_Light_Marker; 

end_s; 

Moon_Icon := begin_s 
Color := set color 0,0; 
tran :=trans by 1,0,.01; 
rot in y -90; 

rational polynomial .2,0,4 -.2,-.2,-4 0, .1,2 chords=15; 
rational polynomial .12,0,4 -.12,-.2,-4 0, .1,2 chords=15; 

end_s; 

Moon_Light_Marker := Begin_S 
set color 0,1 then ccircle; 
Set color 120,1; 
Vee n=2 .6,0 1,0; 
tran .6,0; 
rot 90; 
scale .025,.2, .025 then PYRAMID; 

End_S; 

{ light source guide circle } 

Graphics Tutorials 



CCircle := vec n=72 
-1. 0000 I 0 o 0000 
-0.9962, 0.0872 
-0.9848, 0.1736 
-0.9659, 0.2588 
-0.9397, 0.3420 
-0.9063, 0.4226 
-0.8660, 0.5000 
-0.8192, 0.5736 
-0.7660, 0.6428 
-0.7071, 0. 7071 
-0.6428, 0.7660 
-0.5736, 0.8192 
-0.5000, 0.8660 
-0.4226, 0.9063 
-0.3420, 0.9397 
-0.2588, 0.9659 
-0.1736, 0.9848 
-0.0872, 0.9962 

0.0000, 1.0000 

0.0872, 0.9962 
0.1736, 0.9848 
0.2588, 0.9659 
0.3420, 0.9397 
0.4226, 0.9063 
0.5000, 0.8660 
0.5736, 0.8192 
0.6428, 0.7660 
0. 7071, 0. 7071 

0.7660, 0. 6428. 
0.8192, 0.5736 
0.8660, 0.5000 
0.9063, 0.4226 
0.9397, 0.3420 
0.9659, 0.2588 
0.9848, 0.1736 
0.9962, 0.0872 
1. 0000, 0.0000 
0.9962,-0.0872 
0.9848,-0.1736 
0.9659,-0.2588 
0.9397,-0.3420 
0.9063,-0.4226 
0.8660,-0.5000 
0.8192,-0.5736 
0.7660,-0.6428 

Sample Programs GTJS-49 



GTlS-50 

0.7071,-0.7071 
0.6428,-0.7660 

0.5736,-0.8192 

0.5000,-0.8660 
0.4226,-0.9063 
0.3420,-0.9397 
0.2588,-0.9659 
0.1736,-0.9848 

0.0872,-0.9962 
0.0000,-1.0000 

-0.0872,-0.9962 

-0.1736,-0.9848 

-0.2588,-0.9659 
-0.3420,-0.9397 

-0.4226,-0.9063 
-0.5000,-0.8660 
-0.5736,-0.8192 
-0.6428,-0.7660 
-0. 7071, -0. 7071 
-0.7660,-0.6428 

-0.8192,-0.5736 
-0.8660,-0.5000 
-0.9063,-0.4226 

-0.9397,-0.3420 
-0.9659,-0.2588 
-0.9848,-0.1736 
-0.9962,-0.0872 
-1,0; 

{ light source pyramid for arrow } 
Pyramid :=Vee block item n=lO 

P 1,0, 1 L -1,0,l L -1,0,-1 L 1,0,-1 L 1,0,1 L 0,1,0 L 1,0,-1 
P -1,0,-1 L 0,1,0 L -1,0,l; 

Graphics Tutorials 



6.3. RENDER.FUN 

Programmed by: Scott Goodyear 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: May 31, 1987 
Last update: 

The function network created in RENDER.FUN renders dynamic wireframe 
and static shaded images of the model created in RENDER.300, and illumi­
nated by light sources created in LIGHT. 300. 

{ network to mux the dials } 
DIALMUXl .- F:CROUTE(4); 
DIALMUX2 .- F:CROUTE(4); 
DIALMUX3 := F:CROUTE(4); 
DIALMUX4 .- F:CROUTE(4); 
DIALMUX5 .- F:CROUTE(4); 
DIALMUX6 : = F : CROUTE ( 4) ; 
DIALMUX7 := F:CROUTE(4); 
DIALMUX8 := F:CROUTE(4); 

CONN Dials <1>:<2> DialMuxl; 
CONN Dials <2>:<2> Dia1Mux2; 
CONN Dials <3>:<2> Dia1Mux3; 
CONN Dials <4>:<2> Dia1Mux4; 
CONN Dials <5>:<2> Dia1Mux5; 
CONN Dials <6>:<2> Dia1Mux6; 
CONN Dials <7>:<2> Dia1Mux7; 
CONN Dials <8>:<2> Dia1Mux8; 

{ connections to bitbucket } 
CONN Dia1Mux4 <2>:<1> BitBucket; 
CONN Dia1Mux4 <3>:<1> BitBucket; 
CONN Dia1Mux4 <4>:<1> BitBucket; 
CONN Dia1Mux5 <4>:<1> BitBucket; 
CONN Dia1Mux6 <4>:<1> BitBucket; 
CONN Dia1Mux7 <2>:<1> BitBucket; 
CONN Dia1Mux7 <3>:<1> BitBucket; 
CONN Dia1Mux7 <4>:<1> BitBucket; 
CONN Dia1Mux8 <4>:<1> BitBucket; 

Sample Programs GTIS-51 



GTJS-52 

{ dial control network } 
{ world space rotation, X,Y,Z translation and back-clipping for the 
object} 
WSXMUL .- F:MULC; 
WSYMUL .- F:MULC; 
WSZMUL .- F:MULC; 
WSXROT .- F:XROTATE; 
WSYROT .- F:YROTATE; 
WSZROT .- F:ZROTATE; 
PRSCALE := F:DSCALE; 
WSROTATE := F:CMUL; 
WSRESET := F:XROTATE; 

CONN DIALMUX5 <1>:<1> WSXMUL; 
CONN DIALMUX6 <1>:<1> WSYMUL; 
CONN DIALMUX7 <1>:<1> WSZMUL; 
CONN DIALMUX8 <1>:<1> PRSCALE; 

CONN WSXMUL <1>:<1> WSXROT; 
CONN WSYMUL <1>:<1> WSYROT; 
CONN WSZMUL <1>:<1> WSZROT; 

CONN WSXROT <1>:<2> WSROTATE; 
CONN WSYROT <1>:<2> WSROTATE; 
CONN WSZROT <1>:<2> WSROTATE; 

CONN WSRESET <1>:<1> WSROTATE; 
CONN WSROTATE <1>:<1> WORLD.ROT; 
CONN WSROTATE <1>:<1> WSROTATE; 
CONN PRSCALE <1>:<1> WORLD.SCALE; 
CONN PRSCALE <2>:<3> PRSCALE; 

SEND 180 TO <2> WSXMUL; 
SEND 180 TO <2> WSYMUL; 
SEND 180 TO <2> WSZMUL; 
SEND 0 TO <1> WSRESET; 
SEND 1 to <2> PRSCALE; 
SEND 1 to <3> PRSCALE; 
SEND 100 to <4> PRSCALE; 
SEND .1 to <5> PRSCALE; 

{ scale value } 
ObjScalepr := f:print; 
conn PRSCALE <2>:<1> ObjScalePr; 

Graphics Tutorials 



conn ObjScalepr <1>:<1> dlabel8; 

{ translation of object } 
TRAN_ACC := f :accumulate; 
TRAN_XVEC .- f:xvector; 
TRAN_ZVEC .- f:zvector; 
TRAN_YVEC .- f:yvector; 

connect DIALMUXl <1>:<1> tran_xvec; 
connect DIALMUX2 <1>:<1> tran_yvec; 
connect DIALMUX3 <1>:<1> tran_zvec; 
connect tran_xvec <1>:<1> TRAN_ACC; 
connect tran_yvec <1>:<1> TRAN_ACC; 
connect tran_zvec <1>:<1> TRAN_ACC; 
connect TRAN_ACC <1>:<1> WORLD.tran; 

send v3D(0,0,0) to <2> TRAN_ACC; 

{ print values } 
Tran_Vals := f:parts; 
TranXPr .- f:print; 
TranYPr .- f :print; 
TranZPr .- f:print; 

conn Tran_Acc <1>:<1> Tran_Vals; 
conn Tran_Vals <1>:<1> TranXPr; 
conn Tran_Vals <2>:<1> TranYPr; 
conn Tran_Vals <3>:<1> TranZPr; 
conn TranXPr <1>:<1> dlabell; 
conn TranYPr <1>:<1> dlabel2; 
conn TranZPr <1>:<1> dlabel3; 

{ PS 390 reset network - resets rotation, translation, } 
{ and scaling matrices, and display node } 
WSRESET := F:SYNC(5); 
SETUP CNESS TRUE <2> wsreset; 
SETUP CNESS TRUE <3> wsreset; 
SETUP CNESS TRUE <4> wsreset; 
SETUP CNESS TRUE <5> wsreset; 

{ connections into function network and display tree } 
{ translation reset } 
CONN wsreset <2>:<1> Tran_Acc; 
CONN wsreset <2>:<2> Tran_Acc; 

Sample Programs GTJS-53 



GTJS-54 

{ rotation reset } 
CONN wsreset <3>:<1> world.rot; 
CONN wsreset <3>:<1> WSROTATE; 
CONN wsreset <3>:<2> WSROTATE; 

{ scale reset } 
CONN wsreset <4>:<2> PRSCALE; 
CONN wsreset <4>:<3> PRSCALE; 
CONN wsreset <5>:<1> PRSCALE; 

{ initial values to function } 
SEND V3D(0,0,0) TO <2> wsreset; 
SEND M3D(l,0,0 0,1,0 0,0,1) TO <3> wsreset; 
SEND 1 TO <4> wsreset; 
SEND 0 TO <5> wsreset; 

{ network to adjust back clipping plane } 
backclip := f:fov; 
BCKCLP_ACC := f:accumulate; 

CONN dialmux4 <1>:<1> BCKCLP_ACC; 
CONN BCKCLP_ACC <1>:<4>backclip; 
CONN backclip <l>:<l>split.persp; 
CONN backclip <l>:<l>full.persp; 
setup cness false <4>backclip; 
setup cness true <l>backclip; 
send true to <l>backclip; 
send 45 to <2>backclip; 
send 2.2 to <3>backclip; 
send 3.6 to <2> BCKCLP_ACC; 
send 0 to <3> BCKCLP_ACC; 
send 1 to <4> BCKCLP_ACC; 
send 30 to <5> BCKCLP_ACC; 
send 2.2 to <6> BCKCLP_ACC; 

{ reset } 
RESET_BCKCLP := F:SYNC(3); 
SETUP CNESS TRUE <2> RESET_BCKCLP; 
SETUP CNESS TRUE <3> RESET_BCKCLP; 
CONN wsreset <1>:<1> RESET_BCKCLP; 
CONN RESET_BCKCLP <1>:<1> bitbucket; 
CONN RESET_BCKCLP <2>:<1> BCKCLP _ _ACC; 
CONN RESET_BCKCLP <3>:<2> BCKCLP_ACC; 
SEND 0 TO <2> RESET_BCKCLP; 
SEND 3.6 TO <3> RESET_BCKCLP; 

Graphics Tutorials 



{ print backclip value } 
BCKCLP_PRINT := F:PRINT; 
CONN BCKCLP_ACC <1>:<1> BCKCLP_PRINT; 
CONN BCKCLP_PRINT <1>:<1> DLABEL4; 

{ network to move the sun } 
Sun_Azimuth := f:dyrotate; 
Sun_RA := f :dzrotate; 

conn dialmux5 <2>:<1> Sun_Azimuth; 
conn dialmux6 <2>:<1> Sun RA; 
conn Sun_Azimuth <1>:<1> Sun.Azimuth; 
conn Sun_RA <1>:<1> Sun.RA; 

{ print values to dlabels } 
Sun_Azimuth_Pr := f:print; 
Sun_RA_Pr := f:print; 
conn Sun_Azimuth <2>:<1> Sun_Azimuth_Pr; 
conn Sun_RA <2>:<1> Sun_RA_Pr; 
conn Sun_Azimuth_Pr <1>:<1> Dlabel5; 
conn Sun_RA_Pr <1>:<1> dlabel6; 

send 50 to <3> Sun_Azimuth; 
send 50 to <3> Sun_RA; 

RS Sun := f:sync(3); 
setup cness true <2> RSSun; 
setup cness true <3> RSSun; 
conn RS Sun <1>:<1> bitbucket; 
conn RS Sun <2>:<1> Su.n_Azimuth; 
conn RS Sun <2>:<2> Sun_Azimuth; 
conn RS Sun <3>:<1> Sun_RA; 
conn RS Sun <3>:<2> Sun_RA; 

send 0 to <2> RSSun; 
send 0 to <3> RSSun; 

{ network to move the moon } 
Moon_Azimuth := f:dyrotate; 
Moon_RA := f:dzrotate; 

conn dialmux5 <3>:<1> Moon_Azimuth; 
conn dialmux6 <3>:<1> Moon_RA; 
conn Moon_Azimuth <1>:<1> Moon.Azimuth; 
conn Moon_RA <1>:<1> Moon.RA; 

Sample Programs GTJ5-55 



GTJS-56 

{ print values to dlabels } 
Moon_Azimuth_Pr := f :print; 
Moon_RA_Pr := f:print; 
conn Moon_Azimuth <2>:<1> Moon_Azimuth_Pr; 
conn Moon_RA <2>:<1> Moon_RA_Pr; 
conn Moon_Azimuth_Pr <1>:<1> dlabel5; 
conn Moon_RA_Pr <1>:<1> dlabel6; 

send 90 to <2> Moon_Azimuth; 
send 50 to <3> Moon_Azimuth; 
send 50 to <3> Moon_RA; 

RSMoon : = f : sync ( 3 ) ; 
setup cness true <2> RSMoon; 
setup cness true <3> RSMoon; 
conn RSMoon <1>:<1> bitbucket; 
conn RSMoon <2>:<2> Moon_Azimuth; 
conn RSMoon <3>:<1> Moon_Azimuth; 
conn RSMoon <3>:<1> Moon_RA; 
conn RSMoon <3>:<2> Moon_RA; 

send 90 to <2> RSMoon; 
send O to <3> RSMoon; 

{ scale for light sources 
LSCALE := F:DSCALE; 

CONN DIALMUXB <2>:<1> LSCALE; 
CONN DIALMUXB <3>:<1> LSCALE; 
CONN LSCALE <1>:<1> Sun.scale; 
CONN LSCALE <1>:<1> Moon.scale; 
CONN LSCALE <2>:<3> LSCALE; 

send 1 to <2> lscale; 
send 1 to <3> lscale; 
send 5 to <4> lscale; 
send .25 to <5> lscale; 

{ print values to dlabels } 
Lite_Scale_Pr := f :print; 
conn LSCALE <2>:<1> Lite_Scale_Pr; 
conn Lite_Scale_Pr <1>:<1> dlabel8; 

Graphics Tutorials 



{ resets scale of lites } 
LRESETER := F:SYNC(3); 
setup cness true <2> !reseter; 
setup cness true <3> !reseter; 

CONN LRESETER <2>:<1> LSCALE; 
CONN LRESETER <3>:<2> LSCALE; 
CONN LRESETER <3>:<3> LSCALE; 

{ initial values to functions } 
SEND 0 TO <2> LRESETER; 
SEND 1 TO <3> LRESETER; 

{ color network } 
tripcolor := f:sync(5); 

setup cness true <2>tripcolor; 
setup cness true <3>tripcolor; 
setup cness true <4>tripcolor; 
setup cness true <5>tripcolor; 
CONN tripcolor<2>:<3>shadingenvironment; 
CONN tripcolor<3>:<7>shadingenvironment; 
CONN tripcolor<4>:<3>shadingenvironment; 
CONN tripcolor<5>:<2>shadingenvironment; 
send v3d(975,815,48) to <2>tripcolor; 
send false to <3>tripcolor; 
send v3d(0,0,0) to <5>tripcolor; 

blackbox := f:constant; 
CONN blackbox<1>:<2>shadingenvironment; 
CONN blackbox<l>:<l>tripcolor; 
send v3d(0,0,0) to <2>blackbox; 

{ network to change sun color } 
sunhue := f:xvector; 
sunsat := f:yvector; 
sunint := f:zvector; 
suncolor := f:accumulate; 

CONN dialmuxl <2>:<1> sunhue; 
CONN dialmux2 <2>:<1> sunsat; 
CONN dialmux3 <2>:<1> sunint; 
CONN sunhue <1>:<1> suncolor; 
CONN sunsat <1>:<1> suncolor; 
CONN sunint <1>:<1> suncolor; 
CONN suncolor<1>:<2>sunlight; 
CONN suncolor<1>:<2>shadingenvironment; 
CONN suncolor<l>:<l>tripcolor; 

Sample Programs 

{ static viewport } 
{ screen wash } 
{ static viewport } 
{ background color } 
{ location of color box } 

GTJS-57 



GTJS-58 

send v3d(0,0,1) to <2>suncolor; 
send 0 to <3>suncolor; 
send v3d(20, .25, .25) to <4>suncolor; 
send v3d(360,1,1) to <5>suncolor; 
send v3d(0,0,0) to <6>suncolor; 

{ print sun color values } 
sunparts .- f:parts; 
sunhuepr .- f :print; 
sunsatpr .- f :print; 
sunintpr .- f :print; 
sunhuest .- f:take_string; 

CONN suncolor <1>:<1> sunparts; 
CONN sunparts <1>:<1> sunhuepr; 
CONN sunparts <2>:<1> sunsatpr; 
CONN sunparts <3>:<1> sunintpr; 
CONN sunhuepr <1>:<1> sunhuest; 
CONN sunhuest <1>:<1> dlabell; 
CONN sunsatpr <1>:<1> dlabel2; 
CONN sunintpr <1>:<1> dlabel3; 

setup cness true <2> sunhuest; 
setup cness true <3> sunhuest; 
send fix(1) to <2> sunhuest; 
send fix(3) to <3> sunhuest; 

{ network to change moon color } 
moonhue .- f:xvector; 
moonsat := f:yvector; 
moonint := f:zvector; 
mooncolor := f:accumulate; 

CONN dialmuxl <3>:<1> moonhue; 
CONN dialmux2 <3>:<1> moonsat; 
CONN dialmux3 <3>:<1> moonint; 
CONN moonhue <1>:<1> mooncolor; 
CONN moonsat <1>:<1> mooncolor; 
CONN moonint <1>:<1> mooncolor; 
CONN mooncolor <1>:<2> moonlight; 
CONN mooncolor <1>:<2> shadingenvironment; 
CONN mooncolor <1>:<1> tripcolor; 
send v3d(0,0,1) to <2>mooncolor; 
send O to <3>mooncolor; 
send v3d(20,.25, .25) to <4>mooncolor; 
send v3d(360,l,1) 
send v3d(0,0,0) 

to <5>mooncolor; 
to <6>mooncolor; 

Graphics Tutorials 



{ print moon color values } 
moonparts .- f:parts; 
moonhuepr .- f:print; 
moonsatpr .- f:print; 
moonintpr .- f:print; 
moonhuest .- f:take_string; 

CONN mooncolor <1>:<1> moonparts; 
CONN moonparts <1>:<1> moonhuepr; 
CONN moonparts <2>:<1> moonsatpr; 
CONN moonparts <3>:<1> moonintpr; 
CONN moonhuepr <1>:<1> moonhuest; 
CONN moonhuest <1>:<1> dlabell; 
CONN moonsatpr <1>:<1> dlabel2; 
CONN moonintpr <1>:<1> dlabel3; 
setup cness true <2> moonhuest; 
setup cness true <3> moonhuest; 
send fix(l) to <2> moonhuest; 
send fix(3) to <3> moonhuest; 

{ network to change back color } 
backhue .- f :xvector; 
backsat := f:yvector; 
backint := f:zvector; 
backcolor := f :accumulate; 

{ 

CONN dialmuxl <4>:<1> backhue; 
CONN dialmux2 <4>:<1> backsat; 
CONN dialmux3 <4>:<1> backint; 
CONN backhue <1>:<1> backcolor; 
CONN backsat <1>:<1> backcolor; 
CONN backint <1>:<1> backcolor; 
CONN backcolor <1>:<2> shadingenvironment; 
CONN backcolor <1>:<1> tripcolor; 
CONN backcolor <1>:<5> tripcolor; 
send v3d(0,0,0) to <2> backcolor; 
send 0 to <3>backcolor; 
send v3d(20, .25, .25) to <4>backcolor; 
send v3d(360,l,1) to <5>backcolor; 
send v3d(0,0,0) to <6>backcolor; 

print back color values } 
backparts .- f:parts; 
backhuepr .- f:print; 
backsatpr .- f :print; 
backintpr .- f:print; 
backhuest .- f:take_string; 

CONN backcolor <1>:<1> backparts; 

Sample Programs GTJS-59 



GTJS-60 

CONN backparts <1>:<1> backhuepr; 
CONN backparts <2>:<1> backsatpr; 
CONN backparts <3>:<1> backintpr; 
CONN backhuepr <1>:<1> backhuest; 
CONN backhuest <1>:<1> dlabell; 
CONN backsatpr <1>:<1> dlabel2; 
CONN backintpr <1>:<1> dlabel3; 
setup cness true <2> backhuest; 
setup cness true <3> backhuest; 
send fix(l) to <2> backhuest; 
send fix(3) to <3> backhuest; 

{ reset of background color } 
rsback := f:constant; 

CONN rsback <1>:<1> backcolor; 
CONN rsback <1>:<2> backcolor; 
send v3d(O,O,O) to <2> rsback; 

{ network to initialize dlabels 
InitDlabs .- f:routec(4); 
Obj Dials .- f:sync(4); 
SunDials .- f: sync (4); 
MoonDials .- f:sync(4); 
BackDials .- f:sync(3); 

} 

conn Initdlabs <1>:<4> ObjDials; 
conn Initdlabs <2>:<4> SunDials; 
conn Initdlabs <3>:<4> MoonDials; 
conn Initdlabs <4>:<3> BackDials; 
send 'init labels' to <2> Initdlabs; 

conn Obj Dials <1>:<1> Tran_Acc; 
conn Obj Dials <3>:<1> Dlabel5; 
conn Obj Dials <3>:<1> Dlabel6; 
conn Obj Dials <3>:<1> Dlabel7; 
conn Obj Dials <2>:<1> ObjScalePr; 
conn Obj Dials <2>:<1> bckclp_acc; 
conn Obj Dials <4>:<1> BitBucket; 
setup cness true <1> ObjDials; 
setup cness true <2> ObjDials; 
setup cness true <3> ObjDials; 
send v3d(0,0,0) to <1> ObjDials; 
send O to <2> ObjDials; 
send to <3> ObjDials; 

conn SunDials <1>:<1> SunColor; 
conn SunDials <2>:<1> Sun_Azimuth; 

Graphics Tutorials 



conn 
conn 
conn 
conn 
conn 
send 
send 
send 
setup 
setup 
setup 

conn 
conn 
conn 
conn 
conn 
conn 

SunDials <2>:<1> Sun_RA; 
SunDials <2>:<1> LScale; 
SunDials <3>:<1> dlabel4; 
SunDials <3>:<1> dlabel7; 
SunDials <4>:<1> BitBucket; 
v3d(0,0,0) to <1> SunDials; 
0 to <2> SunDials; 

to <3> SunDials; 
cness true <1> SunDials; 
cness true <2> SunDials; 
cness true <3> SunDials; 

MoonDials 
MoonDials 
MoonDials 
MoonDials 
MoonDials 
MoonDials 

<1>:<1> 
<2>:<1> 
<2>:<1> 
<2>:<1> 
<3>:<1> 
<3>:<1> 

MoonColor; 
Moon_Azimuth; 
Moon_RA; 
LScale; 
dlabel4; 
dlabel7; 

conn MoonDials <4>:<1> BitBucket; 
send v3d(0,0,0) to <1> MoonDials; 
send 0 to <2> MoonDials; 
send ' ' to <3> MoonDials; 
setup cness true <1> MoonDials; 
setup cness true <2> MoonDials; 
setup cness true <3> MoonDials; 

conn BackDials <1>:<1> BackColor; 
conn BackDials <2>:<1> dlabel4; 
conn BackDials <2>:<1> dlabel5; 
conn BackDials <2>:<1> dlabel6; 
conn BackDials <2>:<1> dlabel7; 
conn BackDials <2>:<1> dlabel8; 
conn BackDials <3>:<1> BitBucket; 
send v3d(0,0,0) to <1> BackDials; 
send ' ' to <2> BackDials; 
setup cness true <1> BackDials; 
setup cness true <2> BackDials; 

{ the reseter } 
reset := f:croute(4); 

CONN reset <1>:<1> wsreset; 
CONN reset <2>:<1> rssun; 
CONN reset <3>:<1> rsmoon; 
CONN reset <4>:<1> rsback; 

Sample Programs GTJS-61 



{ network to turn bits on and off } 
bits := f:constant; 

CONN bits<1>:<5>world.bits; 

{ dial labels for following mux } 
{ dial #1 labels } 
diallabell := f:inputs_choose(5); 
CONN diallabell <1>:<1> dlabellh; 

send "X-Trans" to <1> diallabell; 
send "Hue" to <2> diallabell; 
send "Hue" to <3> diallabell; 
send "Hue" to <4> diallabell; 

{ dial #2 labels } 
diallabel2 := f:inputs_choose(5); 
CONN diallabel2 <1>:<1> dlabel2h; 

send "Y-Trans" to <1> diallabel2; 
send "Sat" to <2> diallabel2; 
send "Sat" to <3> diallabel2; 
send "Sat" to <4> diallabel2; 

{ dial #3 labels } 
diallabel3 := f:inputs_choose(5); 
CONN diallabel3 <1>:<1> dlabel3h; 

send "Z-Trans" to <1> diallabel3; 
send "Intens" to <2> diallabel3; 
send "Intens" to <3> diallabel3; 
send "Intens" to <4> diallabel3; 

{ dial #4 labels } 
diallabel4 := f:inputs_choose(5); 
CONN diallabel4 <1>:<1> dlabel4h; 

send "Backclip" to <1> diallabel4; 
send to <2> diallabel4; 
send 
send " 

to <3> diallabel4; 
to <4> diallabel4; 

{ dial #5 labels } 
diallabel5 := f:inputs_choose(5); 
CONN diallabel5 <1>:<1> dlabel5h; 

send ' X-Rot" to <1> diallabel5; 
send 'Azimuth" to <2> diallabel5; 
send 'Azimuth" to <3> diallabel5; 
send " to <4> diallabel5; 

GTJ 5-62 Graphics Tutorials 



{ dial #6 labels } 
diallabel6 := f:inputs_choose(5); 
CONN diallabel6 <1>:<1> dlabel6h; 

send ' Y-Rot' to <1> diallabel6; 
send 'RIGHT A.' to <2> diallabel6; 
send 'RIGHT A.' to <3> diallabel6; 
send ' to <4> diallabel6; 

{ dial #7 labels } 
diallabel7 := f:inputs_choose(5); 
CONN diallabel7 <1>:<1> dlabel7h; 

send ' Z-Rot' to <1> diallabel7; 
send ' 
send ' 
send ' 

to <2> diallabel7; 
to <3> diallabel7; 
to <4> diallabel7; 

{ dial #8 labels } 
diallabel8 := f:inputs_choose(5); 
CONN diallabel8 <1>:<1> dlabel8h; 

send 'SCALE' to <1> diallabel8; 
send 'SCALE' to <2> diallabel8; 
send 'SCALE' to <3> diallabel8; 
send ' , to <4> diallabel8; 

{ way - network to control dials for } 
{ objects, sun, moon, and background color } 
way .- F:CONSTANT; 
waytrip .- F:ADDC; 
waymod .- F:MODC; 
way add .- F:ADDC; 
wayvals .- F:INPUTS _CHOOSE ( 5) ; 
way labs .- F:INPUTS_CHOOSE(5); 

CONN WAY <1>:<1> WAYTRIP; 
CONN WAYTRIP <1>:<1> WAYMOD; 
CONN WAYMOD <1>:<1> WAYADD; 
CONN WAYMOD <1>:<2> WAYTRIP; 
CONN WAYADD <1>:<5> WAYVALS; 
CONN WAYADD <1>:<5> WAYLABS; 
CONN WAYVALS <1>:<1> dialmuxl; 
CONN WAYVALS <1>:<1> dialmux2; 
CONN WAYVALS <1>:<1> dialmux3; 
CONN WAYVALS <1>:<1> dialmux4; 
CONN WAYVALS <1>:<1> dialmux5; 
CONN WAYVALS <1>:<1> dialmux6; 

Sample Programs GTJS-63 



GTJS-64 

CONN WAYVALS <1>:<1> dialmux7; 
CONN WAYVALS <1>:<1> dialmux8; 
CONN WAYVALS <1>:<5> diallabell; 
CONN WAYVALS <1>:<5> diallabel2; 
CONN WAYVALS <1>:<5> diallabel3; 
CONN WAYVALS <1>:<5> diallabel4; 
CONN WAYVALS <1>:<5> diallabel5; 
CONN WAYVALS <1>:<5> diallabel6; 
CONN WAYVALS <1>:<5> diallabel7; 
CONN WAYVALS <1>:<5> diallabel8; 
CONN WAYVALS <1>:<1> reset; 
CONN WAYVALS <1>:<2> bits; 
CONN WAYVALS <1>:<1> Initdlabs; 
CONN WAYLABS <1>:<1> FLABEL9; 
CONN WAYLABS <1>:<1> FLABELlO; 
CONN WAYLABS <1>:<1> FLABELll; 

send fix(l) to <l>wayvals; 
send fix(2) to <2>wayvals; 
send fix(3) to <3>wayvals; 
send fix(4) to <4>wayvals; 
send ' OBJECT' to <l>waylabs; 
send ' 
send ' 
send ' 

SUN' to <2>waylabs; 
MOON' to <3>waylabs; 
BACK' to <4>waylabs; 

send FIX(l) 
send FIX(O) 
send FIX(4) 
send FIX(l) 

TO <2> way; 
TO <2> waytrip; 
TO <2> waymod; 
TO <2> wayadd; 

{ network to control rendering style } 
renstyle := F:CONSTANT; 
stytrip .- F:ADDC; 
stymod .- F:MODC; 
styadd .- F:ADDC; 
styvals .- F:INPUTS_CHOOSE(6); 
stylabs .- F:INPUTS_CHOOSE(6); 
style .- F:CONSTANT; 

CONN renstyle <1>:<1> stytrip; 
CONN stytrip <1>:<1> stymod; 
CONN stymod <1>:<1> styadd; 
CONN stymod <1>:<2> stytrip; 
CONN styadd <1>:<6> styvals; 

Graphics Tutorials 



CONN styadd <1>:<6> stylabs; 
CONN styvals <1>:<2> style; 
CONN style <1>:<1> world.rendering; 
CONN sty labs <1>:<1> FLABEL2; 

send ' FLAT' to <1> stylabs; 
send ' GOURAUD' to <2> stylabs; 
send ' PHONG ' to <3> stylabs; 
send ' HIDDENLINE' to <4> stylabs; 
send ' WASH' to <5> stylabs; 
send fix(6) to <1> styvals; { flat } 
send fix(8) to <2> styvals; { gouraud } 
send fix(7) to <3> styvals; { phong } 
send fix(4) to <4> styvals; { static hiddenline 
send fix(5) to <5> styvals; { wash } 

SEND FIX(l) TO <2> renstyle; 
SEND F'IX(O) TO <2> stytrip; 
SEND FIX(5) TO <2> stymod; 
SEND FIX(l) TO <2> styadd; 

{ type - network to choose type of rendering } 
{ 1 - no anti-aliasing z-buffer } 
{ 2 - edge anti-aliasing z-buffer } 
{ 3 - full anti-aliasing z-buffer } 
{ 4 - no anti-aliasing painters } 
Type := F:CONSTANT; 
Type TRIP 
TypeMOD 
TypeADD 
TypeVals 
TypeNums 
TypeLabs 
TypeHead 

CONN type 

.-

.-

.-

.-

.-

.-

.-

F:ADDC; 
F:MODC; 
F:ADDC; 
F:INPUTS_CHOOSE(5); 
F:INPUTS_CHOOSE(5); 
F:INPUTS_CHOOSE(5); 
F:INPUTS_CHOOSE(5); 

<1>:<1> typeTRIP; 
CONN type TRIP <1>:<1> typeMOD; 
CONN typeMOD <1>:<1> typeADD; 
CONN typeMOD <1>:<2> typeTRIP; 
CONN typeADD <1>:<5> typeVALS; 
CONN typeADD <1>:<5> typeNums; 
CONN typeADD <1>:<5> typeLABS; 
CONN typeADD <1>:<5> typeHead; 
CONN typeVALS <1>:<5> shadingenvironment; 
CONN typeNums <1>:<16> shadingenvironment; 

Sample Programs 

} 

GTJS-65 



CONN Type LABS <1>:<1> FLABEL3; 
CONN TypeHead <1>:<1> FLABEL3H; 

send fix(O) to <1> TypeVals; 
send fix(l) to <2> TypeVals; 
send fix(2) to <3> TypeVals; 
send fix(O) to <4> TypeVals; 
send fix(O) to <1> TypeNums; 
send fix(O) to <2> TypeNums; 
send fix(O) to <3> TypeNums; 
send fix(l) to <4> TypeNums; 
send ' NO AA to <1> TypeLabs; 
send ' EDGE AA' to <2> TypeLabs; 
send ' FULL AA' to <3> TypeLabs; 
send ' NO AA' to <4> TypeLabs; 
send ' ZBUFFER' to <1> TypeHead; 
send ' ZBUFFER' to <2> TypeHead; 
send ' ZBUFFER' to <3> TypeHead; 
send ' PAINTERS' to <4> TypeHead; 

SEND FIX(l) TO <2> type; 
SEND FIX(O) TO <2> typeTRIP; 
SEND FIX(4) TO <2> typeMOD; 
SEND FIX(l) TO <2> typeADD; 

{ pie - raster viewports } 
pie .- F:CONSTANT; 
pictrip .- F:ADDC; 
picmod 
picadd 

.- F:MODC; 

.- F:ADDC; 
picvals .- F:INPUTS_CHOOSE(6); 
piclabs .- F:INPUTS_CHOOSE(6); 
splitview .- F:INPUTS_CHOOSE(6); 

CONN pie <1>:<1> pie trip; 
CONN pie trip <1>:<1> picmod; 
CONN picmod <1>:<1> picadd; 
CONN picmod <1>:<2> pie trip; 
CONN picadd <1>:<6> picvals; 
CONN picadd <1>:<6> piclabs; 
CONN picadd <1>:<6> spli tview; 
CONN picvals <1>:<3> shadingenvironment; 
CONN picvals <1>:<4> tripcolor; 

CONN pie labs <1>:<1> FLABEL4; 

{setup static viewport} 
{setup tripcolor for 

background} 

GT 15-66 Graphics Tutorials 



CONN splitview <1>:<1> universe.split; 

send ' SQUARE , to <1> piclabs; 
send 'UPPER RIGHT' to <2> piclabs; 
send 'UPPER LEFT' to <3> piclabs; 
send 'LOWER LEFT' to <4> piclabs; 
send ' BIG-PIC , to <5> piclabs; 

send v3d (170,10,853) to <1> picvals; 
send v3d (592,432, 431) to <2> 
send v3d (160,432,431) to <3> 
send v3d (160,0,431) to <4> 
send v3d (0,-80,1023) to <5> 

send fix(O) 
send fix(l) 
send fix(l) 
send fix(l) 
send fix(O) 

SEND FIX(l) 
SEND FIX(O) 
SEND FIX(5) 
SEND FIX(l) 

to 
to 
to 
to 
to 

TO 
TO 
TO 
TO 

<1> split view; 
<2> split view; 
<3> splitview; 
<4> spli tview; 
<5> splitview; 

<2> pie; 
<2> pictrip; 
<2> picmod; 
<2> picadd; 

{ polygon edge enhancement } 

picvals; 
picvals; 
picvals; 
picvals; 

{ network to toggle polyedges (on/off) } 
PolygonEdge := F:CONSTANT; 
petrip .- F:ADDC; 
pemod .- F:MODC; 
peadd .- F:ADDC; 
pevals .- F:INPUTS_CHOOSE(3); 
pelabs .- F:INPUTS_CHOOSE(3); 

CONN PolygonEdge <1>:<1> petrip; 
CONN petrip <1>:<1> pemod; 
CONN pemod <1>:<1> peadd; 
CONN pemod <1>:<2> petrip; 
CONN peadd <1>:<3> pevals; 
CONN peadd <1>:<3> pelabs; 
CONN pevals <1>:<15> shadingenvironment; 
CONN pelabs <1>:<1> FLABEL6; 

SEND FALSE TO <1> pevals; 
SEND TRUE TO <2> pevals; 

{ larger viewport sizes } 
{ for upper right corner } 
{ for upper left corner } 

{ for lower left corner } 
{ big pie } 

Sample Programs GTJ 5-67 



{ label selector } 
SEND ' OFF' TO <1> pelabs; 
SEND ' ON ' TO <2> pelabs; 

SEND FIX(l) TO <2> PolygonEdge; 
SEND FIX(O) TO <2> petrip; 
SEND FIX(2) TO <2> pemod; 
SEND FIX(l) TO <2> peadd; 

{ network to toggle color interpolation 
{ across polygon verticies } 
VertexColor := F:CONSTANT; 
vet.rip .- F:ADDC; 
vcmod .- F:MODC; 
vcadd .- F:ADDC; 
vcvals .- F: INPUTS _CHOOSE ( 3) ; 
vclabs .- F:INPUTS_CHOOSE(3); 

CONN VertexColor <1>:<1> vctrip; 
CONN vctrip <1>:<1> vcmod; 
CONN vcmod <1>:<1> vcadd; 
CONN vcmod <1>:<2> vctrip; 
CONN vcadd <1>:<3> vcvals; 
CONN vcadd <1>:<3> vclabs; 
CONN vcvals <1>:<10> shadingenvironment; 
CONN vclabs <1>:<1> FLABEL7; 

SEND FALSE TO <1> vcvals; 
SEND TRUE TO <2> vcvals; 

{ label selector } 
SEND ' OFF' TO <1> vclabs; 
SEND ' ON ' TO <2> vclabs; 

SEND FIX(l) 
SEND FIX(O) 
SEND FIX(2) 
SEND FIX(l) 

TO 
TO 
TO 
TO 

<2> 
<2> 
<2> 
<2> 

VertexColor; 
vctrip; 
vcmod; 
vcadd; 

{ transparency switch } 
Transparency := F:CONSTANT; 
TPtrip .- F:ADDC; 
TPmod . - F:MODC; 
TPadd .- F:ADDC; 

GT 15-68 Graphics Tutorials 



TPvals .- F:INPUTS_CHOOSE(3); 
TPlabs .- F:INPUTS_CHOOSE(3); 

CONN Transparency <1>:<1> TPtrip; 
CONN TPtrip <1>:<1> TPmod; 
CONN TPmod <1>:<1> TPadd; 
CONN TPmod 
CONN TPadd 

<1>:<2> TPtrip; 
<1>:<3> TPvals; 

CONN TPadd <1>:<3> TPlabs; 
CONN TPvals <1>:<11> Shadingenvironment; 
CONN TPlabs <1>:<1> FLABELB; 

SEND F'ALSE TO <1> TPvals; 
SEND TRUE TO <2> TPvals; 

{ label selector } 
SEND , OFF' TO <1> TPlabs; 
SEND , ON , TO <2> TPlabs; 

SEND FIX(l) 
SEND FIX(O) 
SEND FIX(2) 
SEND F'IX(l) 

TO 
TO 
TO 
TO 

<2> 
<2> 
<2> 
<2> 

Transparency; 
TPtrip; 
TPmod; 
TPadd; 

{ turn on wireframe object and clear screen } 
wireframe := F:SYNC(4); 
SETUP CNESS TRUE <2> wireframe; 
SETUP CNESS TRUE <3> wireframe; 
SETUP CNESS TRUE <4> wireframe; 
CONN wireframe <1>:<1> bitbucket; 
CONN wireframe <2>:<2> world.bits; 
CONN wireframe <3>:<7> shadingenvironment; 
CONN wireframe <4>:<1> FLABEL5; 

SEND FIX(l) TO <2> wireframe; 
SEND FIX(2) TO <3> wireframe; 
SEND ' ON' TO <4> wireframe; 

{ turn on ACP after rendering } 
{ use the output from the rendering node } 
TurnOnACP := F:CONSTANT; 
TurnOffObj := F:CONSTANT; 
CONN world.rendering <1>:<1> TurnOnACP; 
CONN world.rendering <1>:<1> TurnOffObj; 
CONN TurnOnACP <1>:<1> TurnOnDisplay; 

Sample Programs GTJS-69 



CONN TurnOffObj <1>:<3> world.bits; 
SEND FIX(O) TO <2> TurnOnACP; 
SEND FIX(l) TO <2> TurnOffObj; 

{ toggle display of object and label } 
togobj .- F:CONSTANT; 
togtrip .- F:ADDC; 
togmod .- F:MODC; 
togadd .- F:ADDC; 
togvals .- F:INPUTS_CHOOSE(6); 
tog labs .- F:INPUTS_CHOOSE(6); 
routebits := F:BROUTEC; 
togworld .- F:CONSTANT; 
togflab5 := F:CONSTANT; 

CONN togobj <1>:<1> togtrip; 
CONN togtrip <1>:<1> togmod; 
CONN togmod <1>:<1> togadd; 
CONN tor: llod <1>:<2> togtrip; 
CONN togadd <1>:<6> togvals; 
CONN tog add <1>:<6> toglabs; 
CONN world.rendering <1>:<1> togworld; 
CONN togvals <1>:<2> togworld; 
CONN togworld <1>:<1> routebits; 
CONN routebits <1>:<2> world.bits; 
CONN routebits <2>:<3> world.bits; 

{ conn from rendering node } 

CONN world.rendering <1>:<1> togflab5; { conn from rendering node } 
CONN toglabs <1>:<2> togflab5; 
CONN togflab5 <1>:<1> FLABEL5; 

SEND FALSE TO <1> togvals; 
SEND TRUE 
SEND TRUE 
SEND TRUE 

TO <2> togvals; 
TO <3> togvals; 
TO <4> togvals; 

SEND FALSE TO <5> togvals; 
SEND FIX(l) TO <2> routebits; 

{ label selector } 
SEND ' OFF' TO <1> toglabs; 
SEND ' ON ' TO <2> toglabs; 
SEND ' ON ' TO <3> toglabs; 
SEND ' ON ' TO <4> toglabs; 
SEND ' OFF' TO <5> toglabs; 

SEND FIX(l) TO <2> togobj; 

GT 15-70 Graphics Tutorials 



SEND FIX(O) TO <2> togtrip; 
SEND FIX(5) TO <2> togmod; 
SEND FIX(l) TO <2> togadd; 

{ 12 function key router } 
KEY_CHOOSE .- F:INPUTS_CHOOSE(13); 
KEY_ROUTE .- F:ROUTE(12); 

{ connections } 
CONN FKEYS <1>:<13> KEY_CHOOSE; 
CONN FKEYS <1>:<1> KEY_ROUTE; 
CONN KEY_CHOOSE <1>:<2> KEY_ROUTE; 

{ f key # 1 - render key } 
CONN key_route <1>:<1> style; 

{ fkey # 2 - rendering style } 
CONN key_route <2>:<1> renstyle; 

{ fkey # 3 - anti-alias } 
CONN key_route <3>:<1> type; 

{ fkey # 4 - raster viewport } 
CONN key_route <4>:<1> pie; 
CONN key_route <4>:<1> togobj; 

{ fkey # 5 - wireframe } 
CONN key_route <5>:<1> wireframe; 

{ fkey # 6 - edges of polygons } 
CONN key_route <6>:<1> PolygonEdge; 

{ fkey # 7 - vertex color on } 
CONN key_route <7>:<1> VertexColor; 

{ fkey # 8 - transparency } 
CONN key_route <8>:<1> Transparency; 

{ fkey # 9 - objects for di~l use } 
CONN key_route <9>:<1> way; 

{ fkey # 10 - objects on/off } 
CONN key_route <10>:<1> bits; 

Sample Programs GTJS-71 



GTJS-72 

{ fkey # 11 - reset object } 
CONN key_route <11>:<2> reset; 

{ fkey # 12 - exit network } 
var exit; 

CONN key_route <12>:<1> exit; 

{ initial values for key choose } 
send 'RENDER' to <1> key_choose; 
send 'STYLE' to <2> key_choose; 
send 'type' to <3> key_choose; 
send 'R VIEWPORT' to <4> key_choose; 
send 'WIREFRAME' to <5> key_choose; 
send 'POLYGON EDGES' to <6> key_choose; 
send 'VETREX COLOR' to <7> key __ choose; 
send 'TRANSPARENCY' to <8> key_choose; 
send 'WAY' to <9> key_choose; 
send 'BITS' to <10> key_choose; 
send v3d(0,0,0) to <11> key_choose;l send 

key_choose; 

{ trip headers } 
TripHeaders .- F: SYNC(15); 
SETUP CNESS TRUE <1> TripHeaders; 
SETUP CNESS TRUE <2> TripHeaders; 
SETUP CNESS TRUE <3> TripHeaders; 
SETUP CNESS TRUE <4> TripHeaders; 
SETUP CNESS TRUE <5> TripHeaders; 
SETUP CNESS TRUE <6> TripHeaders; 
SETUP CNESS TRUE <7> TripHeaders; 
SETUP CNESS TRUE <8> TripHeaders; 
SETUP CNESS TRUE <9> TripHeaders; 
SETUP CNESS TRUE <10> TripHeaders; 
SETUP CNESS TRUE <11> TripHeaders; 
SETUP CNESS TRUE <12> TripHeaders; 
SETUP CNESS TRUE <13> TripHeaders; 
SETUP CNESS TRUE <14> TripHeaders; 
CONN TripHeaders <1>:<1> FLABELlH; 
CONN TripHeaders <2>:<1> FLABEL2H; 
CONN TripHeaders <3>:<1> BitBucket; 
CONN TripHeaders <4>:<1> FLABEL4H; 
CONN TripHeaders <5>:<1> FLABEL5H; 
CONN TripHeaders <6>:<1> FLABEL6H; 
CONN TripHeaders <7>:<1> FLABEL7H; 
CONN TripHeaders <8>:<1> FLABEL8H; 

'EXIT' to <12> 

Graphics Tutorials 



CONN TripHeaders <9>:<1> FLABEL9H; 
CONN TripHeaders <10>:<1> FLABELlOH; 
CONN TripHeaders <11>:<1> FLABELllH; 
CONN TripHeaders <12>:<1> FLABEL12H; 
CONN TripHeaders <13>:<1> FLABELl; 
CONN TripHeaders <14>:<1> FLABEL12; 
CONN TripHeaders <15>:<1> BitBucket; 
SEND 'TRIGGER' TO <1> TripHeaders; 
SEND 'STYLE' TO <2> TripHeaders; 
SEND TO <3> TripHeaders; 
SEND 'R. VIEWPORT' TO <4> TripHeaders; 
SEND 'WIREFRAME' TO <5> TripHeaders; 
SEND 'POLY EDGES' TO <6> TripHeaders; 
SEND 'VERTEX COLOR' TO <7> TripHeaders; 
SEND 'TRANSPERANCY' TO <8> TripHeaders; 
SEND 'DIAL MUX' TO <9> TripHeaders; 
SEND 'TOGGLE ' TO <10> TripHeaders; 
SEND 'RESET' TO <11> TripHeaders; 
SEND 'EXIT' TO <12> TripHeaders; 
SEND 'RENDERING' TO <13> TripHeaders; 
SEND 'NETWORK' TO <14> TripHeaders; 

{ shadingenvironment considerations } 
SEND V3D(O,O, .1) to <1> ShadingEnvironment; 

{ tripping network to initialize rendering network } 
TRIPPER := F:CONSTANT; 
SEND FIX(O) TO <2> TRIPPER; 

{ connections from tripper to initialize fkeys and labels } 
CONN TRIPPER <1>:<1> wayTRIP; 
CONN TRIPPER <1>:<1> stytrip; 
CONN TRIPPER <1>:<1> typeTRIP; 
CONN TRIPPER <1>:<1> picTRIP; 
CONN TRIPPER <1>:<1> peTRIP; 
CONN TRIPPER <1>:<1> vcTRIP; 
CONN TRIPPER <1>:<1> TPTRIP; 
CONN TRIPPER <1>:<1> togTRIP; 
CONN TRIPPER <1>:<1> wireframe; 
CONN TRIPPER <1>:<15> TripHeaders; 

{ Trip the thing } 
send 'surf' to <1> Tripper; 

Sample Programs GTJS-73 





Glossary 

ACP. See Arithmetic Control Processor. 

Section GTl 6 

Glossary 

Active input. One of two types of function inputs. A value on an active 
input disappears or is consumed when the function fires. If values arrive on 
an active input faster than they are consumed, they will queue in the order 
they arrive. See also Constant input. 

Alternating display. A type of conditional referencing which is the alternate 
displaying of two different objects. See also Blinking. 

Ambient light. Refers to light surrounding an object and coming from all 
directions. The lighting is the same everywhere on the object. 

Antialiasing. A technique used to smooth the jagged appearance of lines on 
a raster display. See also Shading. 

Application routine. One of two types of Graphics Support Routines. 
Application routines correspond almost one for one with the standard 
PS 390 commands. See also Utility routine. 

Arithmetic Control Processor. Also called ACP. A subsystem in the Display 
Processor of the PS 390. The ACP is the master controller for Display 
Processor input. It includes a microprocessor that performs arithmetic and 
logical functions on data in Mass Memory. The ACP traverses display 
structures; performs matrix multiplications for rotations, scaling, and 
windowing; then applies the matrices to the data nodes; and outputs the 
transformed coordinates of the data to the Pipeline Subsystem. The ACP 
also performs clipping. The state of the ACP is considered to be those 
values that are context dependent, such as transformation matrix contents, 
viewport boundaries, and color. 

Aspect ratio. The ratio of width to height (X: Y). The aspect ratios of 
viewing areas and viewports in which they are displayed must be the same, 
or objects will appear distorted on the display screen. 

GT16-I 



GT16-2 

Asynchronous serial line. A data communication interface between the host 
and the PS 390. The arrival time of each character is random 
(asynchronous). The bits that represent a character are sent one after the 
other (serially). Each character is dlelineated by the use of a start bit and 
one or more stop bits (start/stop protocol). 

Attribute. A characteristic or aspect of a displayed image. Attribute setting 
commands set and change these aspects. Unlike transformations, attributes 
are not matrix operations. There are three classes of attributes: appearance 
attributes, picking attributes, and structure attributes. Appearance 
attributes govern the following aspects of the displayed image: color and 
intensity of the lines that form the image, depth-clipping on the image, and 
character font for any text in the image. Picking attributes allow the user to 
mark objects or parts of objects as candidates for picking, to turn picking on 
or off, and to assign a name (pick ID) which will be reported as a text string 
when a pick occurs. Structure attributes create nodes in a display structure 
at which branching may occur. These attributes allow the user to reference 
objects or parts of objects by setting conditional bits to add or remove detail 
from an object, to control blinking, and to control the alternating display of 
more than one image. 

Attribute table. Stores color {hue, intensity, saturation), radius, diffuse and 
specular attributes. 

B-spline. A mathematical representation of a curve which approximates a 
specified set of points. 

Backface removal. A rendering operation that removes all polygons facing 
away from the viewer, and which is an intermediate step in hidden-line 
removal. Backface removal is displayed in a dynamic viewport. See also 
Hidden-line removal. 

Blinking. A type of conditional referencing which is the alternate displaying 
and blanking of an image at a selectable rate. The rate may be under the 
control of the PS 390 update rate or a clock. See also Alternating display; 
Conditional referencing. 

Block. A group of either data structures or messages in Mass Memory. 

Graphics Tutorials 



Glossary 

Block-normalized vectors. When the components of all vectors that 
comprise a vector list have a common exponent, they are said to be 
block-normalized vectors. Only block-normalized vectors are displayed on 
the PS 390. See also Vector-normalized vectors. 

Boolean value. A Boolean value is either true or false. Boolean values are 
types of data which may be sent to a node or function. 

Boundaries, front and back. See Clipping planes. 

Bounded plane. See Surface. 

Branches. Connections between nodes in a PS 390 display structure. 
Branches determine the paths the Arithmetic Control Processor must take 
when it traverses the structure of the object in memory; i.e. when the object 
is displayed. See also Pointer. 

Character. A letter or digit or other symbol. The CHARACTERS and 
LABELS commands allow the user to display text as character strings or 
blocks of labels. By using optional attribute operations in the structure, 
characters can be transformed in the same way as any other graphical data, 
or they may be oriented to the screen and fixed at a certain size and 
intensity. See also Character data; Character string. 

Character data. Consists of an initial translation, spacing information, and 
the character string. This data may be drawn by the Arithmetic Control 
Processor if the data is part of a data node (also called a characters node). 
See also Character; Character string; Label. 

Character font. A set of characters of a particular style (size and type 
face). A 25 6 ASCII character set is provided as the standard font for the 
PS 390. Alternate fonts may be created by using BEGIN ... END FONT and 
CHARACTER FONT commands, or by using the Character Font Editor, 
MAKEFONT. 

Character string. Also called Text string. A sequence of up to 240 
characters. Strings can be created and manipulated with commands and 
manipulated interactively using function networks and interactive devices. If 
text is created using CHARACTERS command, the user can manipulate 
any character in the string. See also Character; Character data; Label. 

CI. See Command Interpreter. 

GTl6-3 



GT16-4 

Clipping. A viewing operation that eliminates the lines or parts of lines that 
are outside the boundaries of the viewing area. See also Depth clipping; 
Viewing area. 

Clipping planes. The six boundary planes that define a viewing area. The 
user can only interact with the front and back faces of the viewing area, 
which are located along the Z-axis. The front face is called the Hither plane 
or Front boundary, and the back face is called the Yon plane or Back 
boundary. 

Color. Color is specified by hue, saturation and intensity. Hue is the shade 
of color which distinguishes a particular color from all other colors. 
Saturation is the ratio of the selected hue to white and ranges from no 
saturation (grays) to fully saturated hue. Intensity is a measure of the 
brightness of the color; no intensity is black. Any displayable color is a 
combination of the primary phosphor colors: red, green and blue. Varying 
the hue, saturation, and intensity of these three color components produces 
the wide variety of colors available to the raster display. 

Color lookup table. Also called CLUf. An array of color values that defines 
the red, green and blue (RGB) components of pixels. 

Command. Using PS 390 commands, the user can build display structures 
that represent the objects and models the user wants to display and 
manipulate. In addition to creating and modifying display structures, the PS 
390 commands create and modify function networks, instruct the Display 
Processor to display items or remove them from the display list, and query 
or reset the Command Interpreter. PS 390 commands are not stored in 
memory; they are interpreted and either execute immediately or create 
display structure elements in Mass Memory. 

Command Interpreter. Also called CI. The CI is a PS 390 intrinsic system 
function that checks the validity of ,commands and puts them into effect. 
The PS 390 expects messages (tokens) which consist of a size, a data type, 
and a value. Once given, the type of command is implicit in the type of the 
token. The CI accepts tokens until it has enough to carry out a command. At 
that point, the CI passes all required data to (and fires/triggers) the 
appropriate function. The CI in the command mode handles user 
commands. The CI in the configure mode can access intrinsic system 
functions. 

Graphics Tutorials 



Glossary 

Command mode. Also called CI mode; Local command mode. One of three 
types of communication modes available on any style PS 390 keyboard. 
Command mode implies that commands entered locally on the PS 390 
keyboard (as opposed to data received from the host) are to be routed to the 
Command Interpreter. Command mode displays the "@@" prompt on the 
screen. See also Local mode; Terminal Emulator mode. 

Communication mode. See Command mode; Local mode; Terminal 
Emulator mode. 

Concatenate. See Transformation matrix. 

Conditional bit. Any one of 15 (0-14) bits which may be set on or off in 
order to conditionally reference for display selected branches of a display 
structure. 

Conditional referencing. The referencing of data only when certain 
conditions are met. Conditional referencing is used to selectively display or 
blank parts of a display structure. See also Alternating Display; Blinking; 
Level-of-detail. 

Configure mode. A privileged mode of operation. In this mode the user 
may reconfigure intrinsic system functions and has access to functions 
previously created in configure mode. The Command Interpreter is in this 
mode while reading the CONFIG .DAT file from the graphics firmware 
diskette. See also Suffix. 

Conjunctive/disjunctive. All PS 390 functions have conjunctive or 
disjunctive inputs and outputs. A function with conjunctive inputs must have 
a message on every input before it will fire. A function with conjunctive 
outputs will send a message on every output when the function is fired. A 
function with disjunctive inputs does not require a message on every input 
to fire. A function with disjunctive outputs might not send a message on 
every output every time the function is fired. 

Constant input. One of two types of function inputs. Constant inputs hold 
only one value at a time; i.e., there is no queuing. A value on a constant 
input is not consumed when the function fires. It will remain until it is 
overwritten by another value. See also Active input. 

Contour. See Inner contour; Outer contour. 

GT16-5 



GT16-6 

Coordinate system. Also called World coordinate system. A way of 
specifying a three-dimensional space in which objects can be modeled. The 
designer creates an object by entering, in the conventional order of X, Y, Z, 
mathematical information that defines and locates an object in 
three-dimensional space. The coordinate system used in programming the 
PS 390 is a left-handed Cartesian coordinate system, usually referred to as 
the world coordinate system. See also Screen coordinate system. 

Coplanar. Denotes that polygons have the same plane equation. 

Count mode packet. One type of communication packet sent by the host 
interface to the PS 390 runtime environment. Count mode packets consist 
of a Start of Packet character, followed by two bytes of count data, followed 
by the data itself. This type of packet is generated automatically by the 
Graphics Support Routines. See also Escape mode packet. 

Cross sectioning. A rendering operation that uses a sectioning plane to 
create a cross section of an object. When this operation is used, the object 
on either side of the plane is discarded and only the slice defined by the 
sectioning plane remains. Cross sectioning is displayed in a dynamic 
viewport. See also Sectioning. 

CRT. Abbreviation for cathode-ray tube. 

Current state-of-the-machine. See State-of-the-machine. 

Current Transformation Matrix. Also called CTM. See Transformation 
Matrix. 

Data driven. This means that a function fires only when data arrives at its 
inputs to be processed. See also Conjunctive/disjunctive. 

Data node. A node in a display structure that contains data which defines a 
primitive or untransformed object or shape. Data nodes, the terminal nodes 
in a display structure, may contain vector lists, polygons, curves, or text. 
See also Primitive. 

Data structure. Display structures and other data. See also Display 
structure. 

Data tree. See Display structure. 

Demultiplexing. The reverse process of multiplexing. See Multiplexing. 

Graphics Tutorials 



Glossary 

Depth clipping. Also called Z-clipping. A viewing operation that removes 
from displayed objects or parts of objects anything which extends beyond 
the front and back clipping planes in a viewing area. 

Depth cueing. An operation that imparts an illusion of depth to the image 
of a three-dimensional object by decreasing the intensity of lines as they 
recede into the distance (i.e., along the positive Z-axis). 

Diagnostic utility commands. Available on diagnostic diskettes and not part 
of the runtime environment. These commands format diskettes, check, 
copy, delete, modify, download, and send back files. 

Diffuse. An attribute used in shading polygons that specifies the proportion 
of color contributed by diffuse reflection versus specular reflection. 
Increasing the diffuse attribute contribution makes the surface more matte. 
See also Specular. 

Display list. Contains the names of all display structures that are currently 
being traversed for display. Whenever anything is displayed, its name goes 
on the display list. 

Display Processor. Accesses display structures in the Mass Memory and in 
each update cycle traverses them under the control of the Arithmetic 
Control Processor, transforming the data to be displayed. Performs clipping, 
perspective projections, and viewport mapping, and draws the data on the 
raster display screen. 

Display structure. Also called Data tree; Display tree; Hierarchical data 
structure. The structure of a model in Mass Memory. A display structure is 
an ordering of data nodes (primitives), operation nodes (attributes, 
transformations), and instance nodes connected by branches. Display 
structures are hierarchically ordered; each node or element is used as a 
reference to all elements below it. See also Data node; Instance node; 
Operation node. 

Distributed graphics. Allows the graphical portion of an application to be 
performed locally by the graphics system without burdening the host 
computer. 

GT16-7 



GT16-8 

Dynamic viewport. The viewport in which wireframe graphical models are 
displayed and manipulated in real time using the interactive devices. In 
addition, the following static renderings are displayed in a dynamic 
viewport: backface removal, cross-sectioning and sectioning. Dynamic 
viewports are defined by viewport operation nodes in the PS 390 display 
structure. See also Backface removal; Cross sectioning; Sectioning; Static 
viewport. 

Escape mode packet. One type of communication packet sent by the host to 
the PS 390 runtime environment. The escape mode is selected by the user. 
The escape mode packet consists of a Start of Packet character, followed by 
the muxing byte, followed by data. See also Count mode packet. 

Escape sequence. A sequence of characters in an escape mode packet that 
is used for control purposes, to perform a control function, and whose first 
character is the ESC control charact1~r. Used to set and reset modes, as well 
as tell the terminal how to respond to coded sequences. 

Explicit naming. To code having one named command correspond to each 
node in the display structure. Explicit naming forces the user to name every 
node. Explicit naming is also the only way a user can access a single node 
for display structure manipulation, or node content updating. 

Explicit referencing. In a command sequence that builds a display 
structure, all nodes except data nodes must be explicitly referenced, or 
point, to other nodes upon which they perform operations or which they 
group into instances. 

Exposure. A shading parameter that controls the overall brightness of an 
object displayed on the PS 390 screen. 

Field-of-view angle. Also called Viewing angle. The angle at the apex of the 
viewing pyramid used to define a perspective viewing area. 

Flat shading. A shading process that produces an object with area-filled 
colored polygons. Flat shading uses color, one light source, and depth 
cueing to shade the polygons in a rendered image. Flat shading produces a 
faceted surface. See also Rendering operation; Shading. 

Graphics Tutorials 



Glossary 

Frame buffer. Also called Image buffer. The memory allocated to hold the 
image that is to be displayed. The frame buffer temporarily stores image 
data drawn by pixel processors so that the screen may be refreshed from 
the buffer and not directly from the pipeline. It is also used in displaying 
host-generated pixel images. 

Frustum. A section of a perspective viewing pyramid that is obtained by 
slicing through the pyramid parallel to the base. The frustum encloses a 
portion of the world coordinate system. Any objects within in the frustum 
will be displayed in perspective projection on the screen. 

Function. The processing component of a function network, it performs one 
or more operations by accepting input, processing that input, and producing 
output. In the PS 390 there are two types of functions: intrinsic functions 
and user-written functions. See also Initial function instance; Intrinsic 
function; User-written function. 

Function instance. A specific case of an intrinsic function or user-written 
function named by a user. A function instance must be created before the 
function can be used in a function network. A function instance includes all 
information necessary to identify the function type, its input source(s), and 
its output destination(s). See Initial function instance. 

Function network. A collection of function instances. PS 390 commands 
are used to uniquely name instances of functions and connect outputs to 
inputs to form a function network. Functions are data driven. That is, they 
are active when appropriate data is received on function inputs and 
otherwise dormant. 

General Purpose Interface Option card. Also called GPIO card. A card 
through which the PS 390 accepts data from a host. This interface allows 
more closely-coupled host control of the PS 390 in directing the dynamics of 
the displayed image. 

Gouraud shading. See Smooth shading. 

GT16-9 



GT16-10 

Graphics Control Program. The collection of graphics firmware that 
executes whenever the PS 390 is being used in the normal mode of 
operation. The Graphics Control Program is made up of data structuring 
definitions, the scheduler, and the functions. The Graphics Control Program 
executes following the confidence or self tests, initializes all data structures 
and communication handlers, and awaits input from host software or the 
keyboard. By loading and bootstrapping the graphics firmware, the Graphics 
Control Program creates the PS 390 runtime environment. See also Runtime 
environment. 

Graphics firmware. Microcode and system software that, in conjunction 
with the hardware, manipulates the data structures traversed by the Display 
Processor. See also Host-resident software. 

Graphics Support Routines. Also called GSRs. A set of host-resident 
software routines that are the standard vehicle for communication to the 
PS 390 from the host. These are a collection of FORTRAN, Pascal or 
UNIX/C routines that preparse and package data on the host computer. The 
GSRs provide a set of routines that perform all formatting and routing 
duties for the applications, which include attaching to the graphics device; 
creating and modifying display structures; creating, connecting, and 
modifying function networks; and receivill1g data from the graphics device. 
There is a GSR that corresponds to almost every PS 390 command. See also 
Application routine; Utility routine. 

Hidden-line removal. A PS 390 rendering operation that generates a view in 
which only the unobstructed portions of an object are displayed. Hidden-line 
removal is displayed in a static viewport. See also Backface removal. 

Hierarchical data structure. See Display structure. 

Hierarchy. A ranked organization of components. The organizing principle 
will vary depending on the . relationship between components which the 
hierarchy is designed to show. 

Highlight. See Specular. 

Hither plane. See Clipping planes. 

Graphics Tutorials 



Glossary 

Host-resident software. A software package distributed by Evans & 
Sutherland on magtape which is loaded onto the host system and which 
includes the Graphics Support Routines and other programs. This package 
should not be confused with the graphics firmware or with host application 
programs. See also Graphics firmware. 

Hue. See Color. 

Identity matrix. A matrix that is composed of ones and zeros, with the ones 
running in a diagonal (top left to bottom right). Multiplying a matrix by an 
identity matrix leaves the matrix unaltered. 

Illumination. An attribute that is used to specify light sources applied to a 
shaded object. Illumination nodes may be placed anywhere in the display 
structure, allowing lights to be stationary or to rotate with the object or both. 

Initial display structure. Display structure built and loaded into memory by 
the CONFIG.DAT file. This structure sets up the framework that allows the 
user to build display structures and contains everything needed to generate 
data displayed at bootup. 

Initial function instance. An intrinsic system or user function that is, upon 
system initialization, automatically instanced for use. Such a function may 
be connected by the system into an initial function network or may be 
connected by the user to a user function network. See also Function; 
Function instance; Intrinsic function. 

Inner contour. A polygon that represents a cavity, hole, or protrusion site in 
a polygonal object. Vertices of inner contours must be associated with a 
corresponding outer contour by running them in the opposite sense (e.g., 
counterclockwise versus clockwise). See also Vertex ordering rule; Outer 
contour. 

Instance node. Also called Set node. An element of a display structure 
which groups other elements such as primitives, transformations, and 
attributes into a single-named entity. 

Intensity. See Color; Depth cueing 

Interactive device. Also called Peripheral. Provides programmable 
capabilities that allow an operator to interact with graphical data. These 
devices include, but are not restricted to, control dials, data tablet, 
keyboard, mouse, and function buttons. 

GT16-ll 



GT16-12 

Interactive mode. See Local mode. 

Interaction node. Also called Interaction point. A point in the structure of a 
model where a function network from an interactive device can be 
connected to change the model dynamically. 

Intrinsic function. One of the set of namable functions that are provided 
with the PS 390 for constructing function networks. These functions have 
the "F:" prefix and must be instanced (i.e., given a unique system- or 
user-defined name) before they can be used in a function network. There 
are two types of intrinsic functions. Intrinsic system functions (Usually 
called System function; Also called Internal function) are functions that 
should not be instanced by a user. Intrinsic user functions(Usually called 
Intrinsic function; Also called Standard function) may be instanced by a user 
to create a function network. See also Function; Initial function instance; 
User-written function. 

Joint Control Processor. Also called JCP. It is the central processor for the 
PS 390. It provides the interfaces to devices external to the system and 
manages all internal system communications. The JCP controls the creation 
and update of display structures in Mass Memory as well as the traversal of 
those display structures by the Display Processor. The JCP also conducts 
self-test operations on all major PS 390 components, and loads and 
executes the PS 390 diagnostic programs. 

Label. Character strings may be combined into a block, or node, of several 
strings, each of which is called a label. Labels are created as data nodes in 
a display structure by using the LABELS command. See also Character 
string. 

Left-hand rule. A mnemonic for the direction of rotation around an axis in 
the world coordinate system of the PS 390. Point the thumb of your left 
hand in the positive direction of any axis, and your fingers will curl in the 
direction of positive rotation. See also Coordinate system. 

Level-of-detail. An attribute that allows data to be conditionally referenced 
in a predetermined sequence. 

Light source. See Illumination. 

Graphics Tutorials 



Glossary 

Line of sight. The orientation of the viewer in relation to the object being 
viewed. The PS 390 uses the line of sight to perform a matrix operation 
which transforms the coordinates of an object to produce the correct view 
on the screen. All points in the world coordinate system are translated and 
rotated to place the "from" point at the world coordinate system origin and 
the "at" point on the positive Z-axis. 

Local mode. Also called Interactive mode. One of three communication 
modes available on a PS 390 keyboard. In local mode, function keys and 
any other programmed keys provide local input from selected devices for 
user-constructed PS 390 function networks. There is no cursor or screen 
prompt in local mode, and the keyboard does not send any information to 
the host. See also Command mode; Terminal Emulator mode. 

Logical device coordinates. Ranges of X and Y values that define the 
dimensions and position in virtual address space of the area that contains 
the picture, which can be larger or smaller than the screen space. 

Mass Memory. PS 390 memory in which display structures and other data 
are stored and managed by the Joint Control Processor. This data is 
accessed by the Display Processor through a dedicated port. See also 
Working storage. 

Matrix. See Transformation matrix. 

Memory alert. Whenever available memory drops below an acceptable 
level, a system function alerts the user by causing a message to be 
displayed. The message indicates the amount of remaining memory. 

Message. Also called Token. The unit of information that is passed between 
two functions or a function and a data structure. 

Model. As a verb, model or modeling is the process of defining graphical 
primitives and using transformations to shape model parts from primitives 
and to move parts into position relative to other pa.rts that are grouped 
within the display structure. As a noun, a model is a visual representation of 
any real or imagined object. See also Display structure; Transformation. 

Modeling transformations. Transformations that move primitives to a new 
location in the coordinate system or reform primitives to create new shapes. 
There are three modeling transformations: rotation (moving an object 
around an axis), scaling (altering the dimensions of an object), and 
translation (moving an object in coordinate space). 

GTl6-13 



GT16-14 

Multiplexing. The process of transmitting several messages simultaneously 
over the same transmission medium. 

Mux box. Abbreviation for Peripheral Multiplexer. Located in the pedestal 
that supports the screen. All lines from the interactive devices are connected 
to the PS 390 control unit through the mux box. The mux box also suppHes 
power to the screen and to the power supplies which drive the interactive 
devices. 

Named entity. Data structure (data block) representing function instances, 
variables, character fonts and display structures. Data structure which can 
be (but not necessarily is) named and referenced. 

Naming. Give a unique name to a single node or to a group of nodes in a 
display structure. Once a name has been given, all data specified by the 
commands are referenced by the assigned name. The naming convention of 
the PS 390 treats memory as a collection of objects, each created with a 
name and accessed (addressed) by that name using the system commands. 
See also Explicit naming; Instance node. 

Node. See Data node; Instance node; Operation node. 

Noncommutativity. A property of matrix algebra where the order of 
transformations must be preserved. 

N onnal. A surface normal is a vector that is perpendicular to a point on a 
surface. A vertex normal is a vector that is the average of the normals of 
the surfaces that are common to the vertex. Normals are used with shaded 
renderings and given with each .direction vertex of the polygon. The shaded 
rendering operation interpolates between these normals when rendering the 
polygon to generate a smooth-shaded image. If any vertex of a polygon has 
a normal then all vertices for the polygon must. 

Null object. Created when a name is referenced that has not previously 
been defined. 

Object. Objects may be a single primitive created as lines, polygons, and 
characters, or a named grouping of primitives, attributes, and the 
mathematical operations which are applied to the data and attributes. 

Object-space rotation. An object is said to rotate in object space when it 
rotates around its own set of axes, as opposed to the axes of the world 
coordinate system. See also World-space rotation. 

Graphics Tutorials 



Glossary 

Operation node. Element of a display structure that represent 
transformations and attributes. Operation nodes can be used as points of 
interaction with a model; they can receive new values from interactive 
devices such as dials or the data tablet. Operation nodes modify the state of 
the Arithmetic Control Processor. See also Attribute; Modeling; 
Transformation. 

Orthographic prujection. Also called Parallel projection. The two­
dimensional projection of a three-dimensional object in which lines that are 
parallel in the object always appear parallel, without perspective. See also 
Perspective projection. 

Outer contour. A polygon that represents the face of an object. Vertices of 
outer contours must be associated with a corresponding inner contour by 
running them in the opposite sense (e.g., counterclockwise versus 
clockwise). See also Inner contour; Vertex ordering rule. 

Packet. Includes the data sent to the PS 390 and all necessary information 
to process it. Packets are built from bytes by the PS 390 system functions 
that interface between the system and the hardware. A QPacket is a block of 
character data (bytes) that can be sent from one PS 390 function to another. 

Parallel projection. See Orthographic projection. 

Perspective projection. A viewing projection that allows spatial relations 
(distance and position) of three-dimensional objects to be represented as 
they might appear to the eye. Parallel lines in the object appear to converge 
with respect to relative distance or depth from the eye position. Objects 
become smaller as they recede in the distance. See also Orthographic 
projection. 

Phong shading. See Smooth shading. 

Physical 1/0 operation. A method of data communication, understood by 
the General Purpose Interface Option microcode, which permits the host to 
directly access the internal contents (data, not structure, portions) of any 
node (or other PS 390 data structure) and modify, read, and/or write those 
Mass Memory locations. 

Pick identifier. Also called Pick ID. A user-assigned identifier (tag) returned 
in the pick list. 

GT16-15 



GT16-16 

Pick list. The information about an object which is returned when a pick 
occurs. 

Picking. Selecting a displayed object or a portion of an object with a 
pointing device, such as a puck. When some part of the displayed object is 
picked, the PS 390 returns a pick list. 

Pipeline Subsystem. Also called PLS. A subsystem in the Display Processor. 
The PLS accepts transformed data from the Arithmetic Control Processor 
and completes the transformations of an object to be displayed from world 
coordinates to screen coordinates. The PLS also performs two clipping tests 
on the data and tells the Arithmetic Control Processor what needs to be 
clipped. The PLS performs perspective division, intensity computations, and 
block normalizations, then outputs the fully transformed data to the raster 
backend bitslice card. 

Pixel. A picture element. It is the smallest element which can be displayed 
on a raster display. 

Pointer. A special kind of address (location in Mass Memory) that has a 
value and points to another address. 

Polygon. A closed planer figure defined by the coordinates of its vertices. 
The edges of the polygon are defined by lines that connect those vertices. In 
the PS 390, a polygon must have at least three vertices and no more than 
250, all of which must lie in the same plane. See also Solid; Sphere; 
Surface. 

Polygon list. A polygon list contains the coordinates of the endpoints of the 
lines that make up the polygons. It specifies an object that is composed of 
surfaces joined together. 

Primitive. Also called Graphic primitive. The simplest object in a display 
structure. It is specified as a vector list of points and lines or as a polygon 
list. See also Data node. 

Priming. To initialize the constant input of a function. See also Constant 
input. 

Q. A prefix added to words to indicate that the material defined by that 
word is stored on a queue, as in QData or QPacket. 

Graphics Tutorials 



Glossary 

Queue. An input queue holds items to be processed in sequence of arrival 
by the function. See also Active Input; Constant Input. There are also output 
queues for sending messages created by the functions, and private queues 
for storing information. 

Radius. One of the six components of an attribute table, radius is used to 
define a sphere. 

Raster backend bitslice card (RBE/BS). A subsystem in the Display 
Processor. Among the RBE/BS components are the master bit-slice 
processor, the delta depth cue calculator, eight of the pixel processors, and 
one-half of the frame buff er. The RBE/BS receives transformed data from 
the graphics pipeline, calculates line slopes and endpoints, converts this 
data into the format required by the pixel processors, and draws this image 
data into its frame buff er. 

Raster backend video card (RBE/VC). A subsystem in the Display 
Processor. Among the components of the RBENC are eight of the pixel 
processors and one-half of the frame buffer. The RBENC takes pixel data 
from the frame buffer and uses that data to generate video values which it 
converts from digital to analog signals that are displayed on the screen. 

Raster. A technique used for producing an image on a CRT screen. Raster 
images are generated with an intensity controlled, scanline-by-scanline 
sweep across the screen from top to bottom, in contrast to calligraphic 
images that trace only the displayed lines, dots, or characters. 

Rate attribute setting. See Blinking. 

Real time. Term which describes the response of the graphics system, in 
which there is no perceptible delay between the action of the user and the 
displayed result, nor in the refresh rate. In real time the picture appears to 
change immediately and smoothly without jerkiness. 

Refresh rate. Also called Frame rate. The rate at which refresh frames are 
displayed; i.e. the number of times per second' a picture is drawn on the 
display screen. The standard refresh rate for the PS 390 is 60 refresh 
frames each second. See also Update rate. 

Rendering. Also called Rendered image. As used in the PS 390 system, a 
rendering is the new polygon list that is created from the rendering 
operations performed on the original polygon list. 

GT16-17 



GTl6-18 

Rendering operation. Definable option in the visualization of a model. As 
used in the PS 390 system, rendering operations can be performed only on 
a polygon list, and can be displayed in a dynamic viewport or a static 
viewport, depending on the rendering operation. Rendering operations that 
are displayed in a dynamic viewport are backface removal, cross-sectioning 
and sectioning. Rendering operations that are displayed in a static viewport 
are hidden line removal and shading. See also Backface removal; Cross 
sectioning; Hidden line removal; Sectioning; Shading. 

RGB. Abbreviation for red, green and blue, the primary colors of light. See 
also Color. 

Right-hand rule. See Vertex ordering rule. 

Rotation matrix. A 3x3 matrix used to perform a rotation on an object. The 
PS 390 uses the sine and cosine of the angle of rotation to create the 
matrix, then applies the matrix to the coordinates of the points which define 
the object. 

Routing. The transfer of data from the host to the Command Interpreter to 
the Terminal Emulator or other destinations. Routing bytes are characters 
used to select the appropriate channel for data in the PS 390. 

Run-length encoding. A set of consecutive pixels of the same color 
specified in a single command containing the number of consecutive pixels 
and the color value of the pixels. Run-length encoding of raster data from 
the host allows more efficient picture transmission than pixel-by-pixel 
encoding. 

Runtime code. Contains all definitions for system level commands and 
functions, as well as the definitions for user-accessible commands and 
functions. These definitions are loaded into the Joint Control Processor local 
memory and all other processors. 

Runtime environment. Everything (including the PS 390 functions linked 
together to form the system function network, all user interfaces, and 
initialized hardware) to which the user has access after the system is 
booted. 

Saturation. See Color. 

Graphics Tutorials 



Glossary 

Scaling matrix. The PS 390 creates a 3x3 scaling matrix which multiplies 
the coordinates of the points which define the object by the scale factor. 
This determines the new coordinates of the scaled object. 

Scheduler. The driving force behind the Graphics Control Program. It 
executes activated functions (instanced functions which have received all 
inputs needed for execution). 

Screen coordinate system. The coordinate system in which an object is 
viewed on the screen. See also Coordinate system; Viewport. 

Screen-oriented characters. Screen-oriented characters are not affected by 
ROTA TE and SCALE nodes that are applied to the object of which they are 
a part.. Screen-oriented characters maintain their size and their front-facing 
orientation when other data is transformed. 

Sectioning. Also called Sectioned rendering. A rendering operation which 
cuts away parts of polygons that extend beyond an arbitrarily positioned 
plane called the sectioning plane. This plane passes through the object to 
divide the object into two pieces. When sectioning is performed, the 
affected polygons are reconstructed so· that they do not extend beyond the 
sectioning plane; one piece is removed while the other remains displayed. 
Sectioning is displayed in a dynamic viewport. See also Cross sectioning. 

Set-operate-data structures. Data structures in Mass Memory containing a 
combination of set (instance), operation, and data nodes. 

Shading. The process of drawing the surface of a rendered image displayed 
in a static viewport. The characteristics of that surface are defined with the 
ATTRIBUTES command. Wash shading fills the interior of the polygons 
with the color given in the attribute node corresponding to that polygon, 
without considering the light source. Flat shading uniformly fills the interior 
of the polygons with the color given in the attribute node corresponding to 
that polygon, and it takes into consideration the light source. Smooth 
shading fills the polygons in a non-uniform manner to give the appearance 
of curvature to the object surface. There are two types of smooth shading: 
Gouraud shading and Phong shading. The shading styles in increasing order 
of quality are: Wash, Flat, Gouraud and Phong. Shading is displayed in the 
static viewport. See also Flat shading; Smooth shading; Wash shading. 

GT16-19 



GT16-20 

Smooth shading. A rendering operation applied to images displayed in a 
static viewport. The color of a polygon is varied across its surface, affected 
by the normals at the vertices of the polygon, the direction and color of 
various active light sources, the attributes of the polygon (both color and 
highlights), and depth cueing. Gouraud shading and Phong shading are the 
two styles of smooth shading. Gouraud shading is faster than Phong 
shading, but it does not produce the shading quality of Phong shading. 
Objects that simulate a curved surface can be produced with smooth 
shading. 

Soft edges. Invisible in hidden-line images except when they make up part 
of the profile of an object or a silhouette. They can, therefore, be used to 
approximate curved surfaces. See also Hidden-line removal. 

Software, software packages. See Graphics firmware; Host-resident 
software. 

Solid. A polygonal object that encloses a volume of space. It is composed of 
both front and back facing polygons. In a solid, every edge of every polygon 
must coincide with an edge of a neighboring polygon. 

Specular. Polygon attribute used in shading polygons to adjust the 
concentration of specular highlights/reflected light. Increasing specular 
makes the surface shine more. See also Diffuse. 

Sphere. A rendered image primarily used in molecular modeling. 
Represented as a vector list instead of an explicit spherical data type. See 
also Polygon. 

State-of-the-machine. A description that includes the current transformation 
matrix (CTM), the current level of detail, current conditional bit values, and 
status of pick identifiers. Instance nodes save and restore the 
state-of-the-machine between descendent branches of a display structure. 

Static viewport. The viewport in which hidden-line and shaded rendering 
operations are displayed. Rendering styles displayed in the static viewport 
include flat shading, Gouraud shading, Phong shading, wash shading, and 
hidden-line removal. In a static viewport interaction with the displayed 
image is not possible. See also Dynamic viewport. 

String. A sequence of characters and spaces enclosed in single quotation 
marks. Strings can be displayed as text or can be used as inputs to function 
instances. See also Character string. 

Graphics Tutorials 



Glossary 

Suffix. Characters added to the end of a name. Name suffixing 
distinguishes system-level names and function instances from user-defined 
names and function instances, and is automatically performed by the 
Command Interpreter, except in configure mode. See also Naming. 

Surface. A bounded plane which defines a polygonal object, in which the 
backfacing polygons have been removed, that does not necessarily enclose a 
volume of space. Surfaces can have edges that belong to just one polygon. 
See also Solid. 

System or system-level function. See Intrinsic function. 

System function network. The network of the PS 390 system functions 
through which data flows internally. Part of the PS 390 Runtime 
environment. 

Terminal Emulator. Also called TE. A feature available over standard 
interface lines that allows the PS 390 to be used as a host terminal. 

Terminal Emulator mode. Also called TE mode. One of three types of 
communication modes available on a PS 390 keyboard. In Terminal 
Emulator mode the PS 390 terminal functions as a standard host terminal 
so that the user can log on to the host, access and edit host resident files, 
and use the available host system utility commands. See also Command 
mode; Local mode. 

Terminal Emulator network. Function network responsible for directing the 
flow of data that will appear on the screen as text or graphics display, for 
determining certain attributes of the Terminal Emulator feature, for routing 
input from the PS 390 keyboard to the host or to local PS 390 system 
functions, and for receiving data from the host line. 

Text string. See Character string. 

Token. See Message. 

Transformation. A mathematical operation ultimately applied to a primitive 
to change its geometry by moving some or all of its points to a new location 
in the world coordinate system. The basic transformations are: modeling 
(rotating, scaling, translating) and viewing (line of sight, viewing area). 

GT16-21 



GT16-22 

Transformation matrix. All graphical transformations are applied to objects 
through transformation matrices. The display structure indicates the types 
of transformations and the order in which they are to be performed. The 
PS 390 performs the concatenation of matrices that this involves. This 
means that each matrix is premultiplied to a matrix called the current 
transformation matrix. The current transformation matrix (CTM) contains 
the accumulation of all transformations that are to be applied to graphical 
data and preserves the order in which they are to be applied. 

Transformed data. Image data that has been fully processed by the 
PS 390's graphics pipeline. This type of data has had all of the pipeline's 
transformation operations applied to it, including modeling, viewiag, and 
projection transformations. Transformed data may be either matrix (from 
which operation nodes may be created) or vector list (from which data 
nodes can be created) representations of the transformation operations in a 
display structure. Transformed data can be retrieved from a given data node 
and then established as a separate data or operation node in the display 
structure. Transformed data can also be transmitted to the host. 

Traverse. A process in which the Arithmetic Control Processor steps 
through the display structure in Mass Memory to retrieve data and operation 
specifications necessary to generate an image. 

Trigger. To start the operation of a function when all necessary inputs have 
data. 

Update. The process of changing the contents of a data or operation node. 

Update rate. The frequency at which data structures containing new values 
are traversed by the Arithmetic Control Processor to produce a new or 
changed image on the display system. See also Refresh rate. 

User-written function. A function written by a PS 390 user for a specific 
application. That application may perform operations not provided by 
intrinsic functions or perform operations that would require a large network 
of intrinsic functions to accomplish; i.e. to collapse a large function network 
into a single user-written function. User-written functions are documented in 
the Advanced Programming Volume of the PS 390 Document Set. 

Graphics Tutorials 



Glossary 

Utility routine. One of two types of Graphics Support Routines. Utility 
routines are specific to the operation of the Graphics Support Routines. 
These routines are used to attach and detach the PS 390, set the string 
delimiting character, select multiplexing channels, and send and receive 
messages. See also Application routine. 

Vector list. A set of coordinate pairs (X,Y) or triples (X,Y,Z) which specify 
the points within the world coordinate system at which lines start and end. 

Vector-normalized vectors. When the components (X, Y or X, Y, Z) of a 
single coordinate (vector) location share a common exponent, they are said 
to be vector-normalized. Vector-normalized vectors are not displayed on the 
PS 390. All ASCil and Graphics Support Routine vector list commands 
which do not specify block-normalized vectors will create 32-bit 
block-normalized vectors internally in the PS 390. See also Block-normalized 
vectors. 

Vertex ordering rule. In a polygon command creating a solid, vertices 
should be listed so that if one starts at any vertex and moves to the next 
vertex, one travels around the edges of the polygon in a clockwise direction. 
The right-hand rule states that if one points the thumb of the right hand 
towards the center of a polygonally defined object and curls the fingers 
towards the wrist, the direction in which the fingers 'move indicates the 
order in which the vertices of that polygon should be listed. 

Viewing area. Also called Window. The portion of the world coordinate 
system in which objects can be viewed. The viewing area is mapped to the 
viewport. See also Coordinate system; Screen coordinate system; Viewport. 

Viewing pyramid. A perspective viewing area. The actual viewing area is 
shaped like a frustum. The pyramid is completed by extending the 
converging sides of the pyramid until they meet. This point, the apex of the 
pyramid, is the eye point of the viewer and is coincident with the world 
coordinate system origin. See also Frustum. 

Viewing transformations. Matrix operations which specify whether 
displayed objects are displayed as perspective or orthographic projections. 
Viewing transformations also specify a point to look from and a direction to 
look at in the world coordinate system. 

GT16-23 



GT16-24 

Viewport. A portion of the screen coordinate system with horizontal (X) 
and vertical (Y) boundaries and an optional intensity range in which images 
are displayed. The viewport specification is a ratio and proportion 
calculation, unlike viewing transformations which are matrix operations. To 
obtain an accurate view of an object, the viewport in which it is displayed 
must have the same aspect ratio as the front boundary of the viewing area 
that enclosed the object. See also Dynamic viewport; Screen coordinate 
system; Static viewport. 

Wash shading. A shading operation that produces an object with area-filled 
colored polygons. Wash shading ignores normals, light sources, all lighting 
parameters, and all depth cueing parameters. See also Shading. 

Window. See Viewing area. 

Wireframe model. Objects defined as points and the lines that connect 
them. 

Working storage. Consists of a large contiguous block of PS 390 Mass 
Memory needed to create renderings. Working storage is explicitly reserved 
with the RESERVE WORKING STORAGE command. See also Mass - -
Memory. 

World coordinate system. See Coordinate system. 

World-space rotation. An object is said to rotate in world space when it 
rotates around any of the world coordinate system axes, as opposed to one 
of the axes of the object itself. See also Object-space rotation. 

World-oriented characters. Characters that are transformed along with an 
object of which they are a part. See also Screen-oriented characters. 

Yon plane. See Clipping planes. 

Z-clipping. See Depth clipping. 

Graphics Tutorials 


	0001
	0002
	0003
	GT08-000
	GT08-001
	GT08-002
	GT08-003
	GT08-004
	GT08-01
	GT08-02
	GT08-03
	GT08-04
	GT08-05
	GT08-06
	GT08-07
	GT08-08
	GT08-09
	GT08-10
	GT08-11
	GT08-12
	GT08-13
	GT08-14
	GT08-15
	GT08-16
	GT08-17
	GT08-18
	GT08-19
	GT08-20
	GT08-21
	GT08-22
	GT08-23
	GT08-24
	GT08-25
	GT08-26
	GT08-27
	GT08-28
	GT08-29
	GT08-30
	GT08-31
	GT08-32
	GT08-33
	GT08-34
	GT08-35
	GT08-36
	GT08-37
	GT08-38
	GT08-39
	GT08-40
	GT08-41
	GT08-42
	GT08-43
	GT08-44
	GT08-45
	GT08-46
	GT08-47
	GT08-48
	GT08-49
	GT08-50
	GT08-51
	GT08-52
	GT08-53
	GT08-54
	GT08-55
	GT08-56
	GT09-000
	GT09-001
	GT09-002
	GT09-01
	GT09-02
	GT09-03
	GT09-04
	GT09-05
	GT09-06
	GT09-07
	GT09-08
	GT09-09
	GT09-10
	GT09-11
	GT09-12
	GT09-13
	GT09-14
	GT09-15
	GT09-16
	GT09-17
	GT09-18
	GT09-19
	GT09-20
	GT10-000
	GT10-001
	GT10-002
	GT10-003
	GT10-01
	GT10-02
	GT10-03
	GT10-04
	GT10-05
	GT10-06
	GT10-07
	GT10-08
	GT10-09
	GT10-10
	GT10-11
	GT10-12
	GT10-13
	GT10-14
	GT10-15
	GT10-16
	GT10-17
	GT10-18
	GT10-19
	GT10-20
	GT10-21
	GT10-22
	GT10-23
	GT10-24
	GT10-25
	GT10-26
	GT10-27
	GT11-000
	GT11-001
	GT11-002
	GT11-01
	GT11-02
	GT11-03
	GT11-04
	GT11-05
	GT11-06
	GT11-07
	GT11-08
	GT11-09
	GT11-10
	GT11-11
	GT11-12
	GT11-13
	GT11-14
	GT11-15
	GT11-16
	GT11-17
	GT12-000
	GT12-001
	GT12-002
	GT12-01
	GT12-02
	GT12-03
	GT12-04
	GT12-05
	GT12-06
	GT12-07
	GT12-08
	GT12-09
	GT12-10
	GT12-11
	GT12-12
	GT12-13
	GT12-14
	GT12-15
	GT12-16
	GT12-17
	GT12-18
	GT13-000
	GT13-001
	GT13-002
	GT13-003
	GT13-004
	GT13-01
	GT13-02
	GT13-03
	GT13-04
	GT13-05
	GT13-06
	GT13-07
	GT13-08
	GT13-09
	GT13-10
	GT13-11
	GT13-12
	GT13-13
	GT13-14
	GT13-15
	GT13-16
	GT13-17
	GT13-18
	GT13-19
	GT13-20
	GT13-21
	GT13-22
	GT13-23
	GT13-24
	GT13-25
	GT13-26
	GT13-27
	GT13-28
	GT13-29
	GT13-30
	GT13-31
	GT13-32
	GT13-33
	GT13-34
	GT13-35
	GT13-36
	GT13-37
	GT13-38
	GT13-39
	GT13-40
	GT13-41
	GT13-42
	GT13-43
	GT13-44
	GT13-45
	GT13-46
	GT13-47
	GT13-48
	GT13-49
	GT13-50
	GT13-51
	GT13-52
	GT13-53
	GT13-54
	GT13-55
	GT13-56
	GT13-57
	GT13-58
	GT13-59
	GT13-60
	GT13-61
	GT13-62
	GT14-000
	GT14-001
	GT14-002
	GT14-01
	GT14-02
	GT14-03
	GT14-04
	GT14-05
	GT14-06
	GT14-07
	GT14-08
	GT14-09
	GT14-10
	GT14-11
	GT14-12
	GT14-13
	GT14-14
	GT14-15
	GT14-16
	GT14-17
	GT14-18
	GT14-19
	GT14-20
	GT14-21
	GT15-000
	GT15-001
	GT15-002
	GT15-01
	GT15-02
	GT15-03
	GT15-04
	GT15-05
	GT15-06
	GT15-07
	GT15-08
	GT15-09
	GT15-10
	GT15-11
	GT15-12
	GT15-13
	GT15-14
	GT15-15
	GT15-16
	GT15-17
	GT15-18
	GT15-19
	GT15-20
	GT15-21
	GT15-22
	GT15-23
	GT15-24
	GT15-25
	GT15-26
	GT15-27
	GT15-28
	GT15-29
	GT15-30
	GT15-31
	GT15-32
	GT15-33
	GT15-34
	GT15-35
	GT15-36
	GT15-37
	GT15-38
	GT15-39
	GT15-40
	GT15-41
	GT15-42
	GT15-43
	GT15-44
	GT15-45
	GT15-46
	GT15-47
	GT15-48
	GT15-49
	GT15-50
	GT15-51
	GT15-52
	GT15-53
	GT15-54
	GT15-55
	GT15-56
	GT15-57
	GT15-58
	GT15-59
	GT15-60
	GT15-61
	GT15-62
	GT15-63
	GT15-64
	GT15-65
	GT15-66
	GT15-67
	GT15-68
	GT15-69
	GT15-70
	GT15-71
	GT15-72
	GT15-73
	GT16-000
	GT16-01
	GT16-02
	GT16-03
	GT16-04
	GT16-05
	GT16-06
	GT16-07
	GT16-08
	GT16-09
	GT16-10
	GT16-11
	GT16-12
	GT16-13
	GT16-14
	GT16-15
	GT16-16
	GT16-17
	GT16-18
	GT16-19
	GT16-20
	GT16-21
	GT16-22
	GT16-23
	GT16-24



