PS 390 DOCUMENT SET

GRAPHICS TUTORIALS 1-7

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390, and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

GRAPHICS TUTORIALS

The Graphics Tutorials GT1-7 and GT8-16 consist primarily of a series of tutorials
which teach PS 390 programming. Both volumes are designed to instruct program-
mers of various levels of expertise. Those with little computer graphics experience
will want to read carefully through each section and do each exercise. Those with
some computer graphics experience may find it sufficient to read these and supple-
ment them with the Reference Materials volume. Though sophisticated users may
want to rely primarily on the reference material, they are encouraged to read the
Graphics Tutorials as well to become familiar with the approach to graphics pro-
gramming taken in the PS 390 Document Set.

Each tutorial section covers a PS 390 programming concept or group of related
concepts that provide you with experience in creating and manipulating an object
on the screen using PS 390 commands. Because each section builds on information
contained in the previous section, it is highly recommended that you read the sec-
tions in the established order. The following provides a capsule description of
sections GTI1-GT7:

GT1 Hands-on Experience

This brief section steps you through a first encounter with the PS 390. Even

with no prior graphics experience, you can quickly learn to take advantage
of the PS 390’s capabilities.

GT2 Graphics Principles

This is the foundation of Graphics Tutorials. It presents the concepts of inter-
active graphics—how to construct models in a coordinate system—and illus-
trates how PS 390 programming puts these concepts into effect.

GT3 Tutorial Demonstrations

The tutorial demonstration package consists of programs which illustrate
many of the graphics principles detailed in the tutorial sections. This set of
software is distributed on magnetic tape. In addition to these programs, the
tape contains a group of primitives which are required for many of the
exercises in the tutorial sections. Before reading the tutorials, be sure to
load the demonstration package.

GT4 Modeling

This section presents the first stage of graphics modeling, analyzing the
model. This consists of breaking the model into interactive parts, organizing
those parts into a hierarchy, and representing the hierarchy as a PS 390
display tree.

GTS Command Language

This section details how to express the hierarchical display tree model in
terms of the PS 390 command language.

GT6 Function Networks I

Function Networks I explains how to connect input devices to the model so
you can interact with it.

GT7 Function Networks II

Function Networks II describes more advanced ways to use function net-
works. This includes multiple uses of dials (via function keys), labeling dial
LEDs, limiting the motion of a model, and storing and retrieving variables.

EXPERIENC

GT1. HANDS-ON EXPERIENCE
INTRODUCTION TO PS 390 GRAPHICS

CONTENTS
L. ST RATEGY .ottt it ittt et iaaneeananas 1
1.1 For Systems With a Non-IBM Hostccccou... 1
1.2 For Systems With an IBM Host iiivuunnn. 2
2. DISPLAYING A SQUARE ittt ittt e iieeiennn 2
2.1 The Display Listttt 3
2.2 Coordinate Valuesttt iiiiinieteeteennnnneeeeeeensns 3
2.3 Blanking the Screenciiiiiiiiiiiiiiiiiiiinnnnas 4
3. DISPLAYING A DIAMONDiiiiitiiiiiiiitiierennnnnnn 4
4. DISPLAYING STAR . ..ottt ittt ittt ittt i eeieeenannns 5
5. TWO MORE VERSIONS OF STARttt 6
6. UPDATING VALUES, CONNECTING AN INPUT DEVICE..... 8
7. ANOTHER WAY TO CLEAR THE SCREEN 9
8. CONNECTING A DIAL TO SPINSTARo 9
9. CONCLUSION ..ttt ittt ittt ittty 10

ILLUSTRATIONS

Figure 1-1. The Part of the Coordinate System that Appears on the Screen.. 4
Figure 1-2. “Spinner” Function Diagram i, 9

i

Section GT1
Hands-On Experience
Introduction to PS 390 Graphics

In this section you will begin programming the PS 390 to display a few simple
objects. Unlike the demonstration programs you have already worked with, where a
preprogrammed object was displayed and you were able to manipulate it, here you
will actually create the object before you interact with it. Everything you will be
doing in this section will be done locally on the PS 390, without any help from your
host computer.

1. Strategy

First you will build and display a square on the PS 390 screen. Next, you
will make a rotated version of that same square to display as a diamond
shape. Then, you will link these two shapes together for display as one
object, an eight-pointed star. Last, you will make two slightly modified ver-
sions of the star and manipulate them. First, boot the PS 390. This is de-
scribed in detail in Section IS3 Operation and Communication. Briefly, here is
what you need to do.

Put the PS 390 graphics firmware diskette in the disk drive. Boot the system
by turning on the power.
1.1 For Systems With a Non-IBM Host

Once the system is booted, hold down the CTRL key and press the LINE
LOCAL key. Then press the RETURN key. You will see this prompt

@@

which indicates the PS 390 is now in command mode. It will accept any
instructions you give it and execute them locally. (Command mode and
other modes of operation are described in Section /S§3 Operation and Com-
munication.)

Hands-On Experience

GTI-1

1.2 For Systems With an IBM Host

Once the system is booted, hold down the ALT key and press the LOCAL
key. This prompt will appear:

@@

This indicates the PS 390 is in command mode and will accept any com-
mand you give it. When your host is an IBM, remember to enter a carriage
return (<RETURN>) on the PS 390 keyboard (instead of the ENTER key)
when you are working in command mode. The ENTER key does not work in
command mode. (Command mode and other modes of operation are de-
scribed in Section 183 Operation and Communication.)

2. Displaying a Square

Before the PS 390 can display anything, it needs the coordinate points of
the object you want to build—the square. Any wire-frame object you define
must be specified as a collection of vectors, coordinate points and lines. The
VECTOR_LIST command does this. Enter

Square := VECTOR_LIST .5,.5 .5,-.5 -.5,-.5 -.5,.5 .5,.5;

Enter this command exactly as you see it here and end it by entering <RE-
TURN>. Pay special attention to all punctuation, but do not worry about
capitalization (the PS 390 accepts either uppercase or lowercase letters).
The “@@” prompt is shown here only because it appears on the screen
when you enter commands. It is not something you have to enter.

If the command is accepted, another @@ prompt will appear on the next
line, so this is what you should see on your screen.

@@Square := VECTOR_LIST .5,.5 .5,-.56 -.5§,-.5 -.5,.5 .5,.5;
@@

If you get an error message instead, be sure you entered the line exactly as
shown above. The “@@” prompt will not appear after an error message
until you enter another carriage return. After an error message, enter the
command again, exactly as shown above. Try this two or three times. If the
command still is not accepted, the problem lies elsewhere.

GTI-2 Graphics Tutorials

After the PS 390 accepts this command, it knows about an object called
Square that it will draw by going to the first point in the vector list (.5, .5)
and then drawing to the next four points in the sequence listed (you need to
end up back at .5, .5 to close the Square). The PS 390 will not display
Square until you tell it to using the DISPLAY command. Enter

DISPLAY Square;

Square will appear centered on the screen. That is because Square is cen-
tered on the world coordinate system’s origin, which currently corresponds
to the center of the screen. By default, the part of the coordinate system
viewed is from -1 to +1 in X and Y.

2.1 The Display List

As you have just seen, an object can be defined in the PS 390 and not be
visible on the screen. When you use the DISPLAY command to display an
object, the object’s name is placed on a display list. The PS 390 continually
checks this list to see if any names have been added or removed and then
displays or “undisplays” the corresponding objects.

2.2 Coordinate Values

Right now, the screen shows a view of only part of the coordinate system,
from plus 1 to minus 1 on both the X and Y axes. Anything to be drawn
outside those coordinates will not show up on the screen. To see an object,
you have to choose coordinates for it that are within these bounds. So, the
coordinates for Square’s corners are one-half unit in X and one-half unit in
Y, and they appear about halfway from the center to the edge of the screen
(Figure 1-1). Everything in this section will be two dimensional and take
place in the plane defined by the X and Y axes, with Z equal to zero. The Z
axis accounts for the third dimension of “depth.”

Hands-On Experience GTI-3

(h ([h

fa T fa ? 0.1 N\

i 1,0
@----f---= A== ~---®
-1,0 ;

& =, \S 80, /)

_ J \ J
This square as it If you could see the

appears on the screen coordinate system axes,

they would look like this,

U390015

Figure 1-1. The Part of the Coordinate System that Appears on the Screen

2.3 Blanking the Screen

Two very useful keys, TERM and GRAPH, are located to the left of the
typewriter section of the keyboard.

e Press the TERM key when you want to clear the screen of text. La-
bels or titles that are part of the displayed object are unaffected. This

key toggles so you can press it again to redisplay, or “unblank,” the
text.

e Press the GRAPH key to blank any graphics being displayed on the
screen. This will allow you an uncluttered view of the text. Press
GRAPH again to redisplay the graphics.

3. Displaying a Diamond

After displaying a square, the next thing to do is to superimpose a diamond
on it to make a star shape. Create the diamond as a rotated version of
Square. Enter

Diamond := ROTATE IN Z 45 APPLIED TO Square;

GT1-4 Graphics Tutorials

which means essentially “create a new object by applying a 45-degree rota-
tion to the object Square.” To get a star figure to display on the screen,
enter

DISPLAY Diamond;

Diamond is displayed superimposed on Square, resulting in a star-shaped
object. At this point, you have done what you set out to do, which was to
display a star shape on the screen. But if you want to do anything to the star
now on the screen, you must issue two commands, one for each of the two
objects that make it up. There is no single object named Star that you can
manipulate. You can create such an object using an INSTANCE command.
This command defines some new single object as a collection of other ob-
jects. You can define Star to be an instance of the two objects you already
created. Enter

Star := INSTANCE OF Square, Diamond;

Now any operation you apply to Star will apply simultaneously to its two
components, Square and Diamond.

4. Displaying Star

Before you display Star, remove the Square and Diamond from the screen.
Enter

REMOVE Square;
and then

REMOVE Diamond;

The screen should now have nothing on it but text. There is a difference
between removing objects from the screen this way and toggling the GRAPH
key. When you press the GRAPH key, every object on the display list is
blanked out from the screen (or unblanked so it will show up), but the
contents of the display list stay the same. When you REMOVE something, it
is removed from the display list and will not display no matter how many
times you press the GRAPH key.

Hands-On Experience GTI-5

Now enter

DISPLAY Star;

Star will appear. It looks like the two objects you just removed, but now it is
defined in the PS 390 as only one object.

5. Two More Versions of Star

With the SCALE command, you can scale an object on the screen to shrink
it or enlarge it. For example, to make a new star one-fourth the size of Star,
enter

Smallstar := SCALE BY .25 APPLIED TO Star;
and

DISPLAY Smallstar;

Smallstar will appear inside Star, centered on the screen origin. You can
use the TRANSLATE command to define an object that is a “moved” ver-
sion of some other object. Enter

Movestar := TRANSLATE BY .75,0 APPLIED TO Smallstar;

Movestar is a new version of Smallstar moved three-fourths of a unit to the
right. The two values, .75 and 0, indicate how to move the object in X and
Y. When the Y value is 0, the object translates horizontally only. Enter

DISPLAY Movestar;

and the new object will appear on the screen.

Even though the two newer stars, Smallstar and Movestar, are based on
Star, they are separate objects with names of their own. You can do any-
thing you want to Movestar or Smallstar and not affect Star. If you rotate or
scale Smallstar, nothing will happen to Star. It will still be displayed at the
center of the screen until you remove it. The reverse is not true. If you
redefine Star in some way, that will affect Smallstar and Movestar because
they are defined in terms of Star. Redefine Star as a triangle and watch
what happens to Smallstar and Movestar. Enter

Star := VECTOR_LIST O0,.43 .5,-.43 -.5,-.43 0, .43;

GTI-6 Graphics Tutorials

These coordinates define an approximately equilateral triangle. As soon as
you enter this command, what happens? Not only Star, but everything de-
fined in terms of Star, changes. As a further illustration of how Smallstar
and Movestar depend on Star, redefine Star once more, as the word
“STAR”. You need a couple of commands to accomplish this. You could do
the same thing with one BEGIN_STRUCTURE... END_STRUCTURE. BE-
GIN_STRUCTURE...END_STRUCTURE is a convenient way to group re-
lated commands together. Enter

Star := BEGIN_STRUCTURE
CHARACTER SCALE .1;
CHARACTER —-.2, O “STAR’;
END_STRUCTURE;

All three objects will change from triangles to the word “STAR.” Smallstar
is still a quarter-size version of Star.And Movestar appears to the right of
both of them. Briefly, here is what the two commands in the BE-
GIN_STRUCTURE... END_STRUCTURE did:

CHARACTER: The CHARACTER instruction specifies the word you want
to display and the location of the lower left corner of the first character in
the word. In this case, the S of STAR will be placed one-fifth unit (.2) out
on the negative X axis. The characters in single quotation marks comprise
the character string to be displayed.

CHARACTER_SCALE: Without scaling, each character would appear on
the screen one unit in size. The first letter would cover the entire upper right
quarter of the screen, and any letters following it would be out of view to
the right. So this instruction scales the characters to one-tenth their normal
size so they can all appear on the screen. The intricacies of BEGIN_STRUC-
TURE...END_STRUCTURE and the two CHARACTER commands (CHAR-
ACTER and CHARACTER SCALE) are explained in detail in other
sections. You can redefine Star to be the eight-pointed figure it was before.
Square and Diamond still exist in memory, so all you need to do is re-enter
the command that defines Star as an instance of those two objects. For an
exercise, do that now.

Hands-On Experience GTi-7

6. Updating Values, Connecting an Input Device

If you wanted to reposition Movestar, you could do so by redefining it with
new translation values like this:

Movestar := TRANSLATE BY -.5,0 APPLIED TO Smallstar;

This would redefine Movestar at a new position to the left of the origin.
There is a way to reposition Movestar without redefining it, and that is to
SEND a new value to it. To do that, enter

SEND V3D(.75,.75,0) to <1>MOVESTAR;

Remember that Movestar is a translation applied to another object,
Smallstar. Whenever you update a translation, you must send it a three-
dimensional value; “V3D” stands for a three-valued vector. To supply
Movestar with the right kind of data, you had to deal with all three dimen-
sions, even though you are not making use of Z here. This SEND command
immediately updates the translation values in Movestar (they were .75,0
with an assumed Z value of 0). Movestar shifts to the upper right corner of
the screen. None of the definitions for any objects changed—the values
changed. This is what input devices and function networks do. Without
changing the basic definitions of objects, they alter and update values; how
big to scale the objects, how much to rotate or translate them, and so on. To
illustrate this, hook a simple function network from a control dial to an
object to make it rotate. First, create the object. The PS 390 already knows
about Smallstar, the scaled-down version of Star. Define Spinstar to be a
version of Smallstar that can rotate. Enter

Spinstar := ROTATE IN Z O APPLIED TO Smallstar;

You must put 0 as the initial rotation value. Later, values coming from a
dial will update Spinstar and make it rotate.

GTI-8 Graphics Tutorials

7. Another Way To Clear the Screen

You have defined Spinstar. The next step is to display it. But first, clear the
screen of the other objects. When you did this before with Square and Dia-
mond, you used REMOVE for each of them. It is much more convenient to
use the INITIALIZE DISPLAY command. Enter

INITIALIZE DISPLAY;

This clears everything from the display list. Now display Spinstar by enter-
ing

DISPLAY Spinstar;

8. Connecting a Dial to Spinstar

Now build a simple function network to take values from the dial and turn
them into values that can be used to update Spinstar. The PS 390 contains a
“master” intrinsic function called F:DZROTATE that does that. To use it,
make a copy of it and assign it a name, “Spinner” for example. Enter

Spinner := F:DZROTATE;

It is convenient to think of individual functions as “black boxes” with values
coming in and other values going out. The functions are usually drawn as
shown in Figure 1-2, as squares with input and output lines:

Name of Function Instance

SPINNER /Name of Intrinsic Function

[4
F:DZROTATE

— 1> <1> frm——
OUTPUTS
INPUTS{ — <2> <2> |——
-—1 <3>

U39200186

Figure 1-2. “Spinner” Function Diagram

Hands-On Experience GTI-9

Connect a dial to the first input of this function and the first output to
Spinstar. Use the CONNECT command twice to do this.

CONNECT Dials<l>:<1>Spinner;
CONNECT Spinner <1>:<1>Spinstar;

These commands say to connect output <1> of the control dials (correspond-
ing to the top left dial) to input <1> of the function Spinner. And connect
output <1> of Spinner to input <1> of Spinstar. The numbers for the inputs
of a function are to the left of the name, the output numbers are to the
right. You are not quite finished setting up your function network, because
Spinner needs to be “primed.” It needs two initial values for its second and
third inputs. You have already used the SEND command to update Move-
star. You can use this command again to send 0 and 200 to Spinner’s sec-
ond and third inputs, respectively. Enter

SEND 0 TO <2>Spinner;
SEND 200 TO <3>Spinner;

The function network is now ready. If you turn dial 1, Spinstar will start
turning. The values the dial generates update Spinstar so quickly that it
appears to move in real time. When you turn the dial, Movestar responds
instantancously.

9. Conclusion

If any of what you have done is not completely clear to you, do not worry
about it right now. The purpose of this section was to give you an opportu-
nity to create and manipulate a few simple objects. In the remaining sec-
tions, you will discover in more detail how you can use these commands to
create display structures and more complex function networks for models.
You will also learn how to save the commands in a host file so they are
more convenient to use.

GTI-10 Graphics Tutorials

GRAPHICS

PRINCIPLES

GT2. GRAPHICS PRINCIPLES
HIGH-PERFORMANCE PS 390 DISTRIBUTED GRAPHICS

CONTENTS

1. CREATING PRIMITIVE OBJECTSoiviiiiiiiiiinan,

1
1.1 Coordinate SySteIms covviivrvoreerseeeensennnnnnnas 2
1.1.1 Right-Hand Coordinate Systemccvvu..... 2
1.1.2 Left-Hand Coordinate Systemc.cviiiiinenneen. 3
1.1.3 The World Coordinate Systemcovviiiienenan. 3
1.2 Data Base Foran Objectcvittiiinninnnninnnennns 4
| /20 B €103 14115 /N 4
1.2.2 Coordinate Notationccouotiiiiueennnnrennnneenn. 6
1.2.3 Topology ..vvviniiiiiiiiiitiitittntneeenneeennnnens 6
1.2.4 Vector List ...ttt eeeennnnnnnnnnns 6
1.2.5 Polygon Listoviiiiniiiiiiiiiiiiiiienrenennnenns 7
1.3 Graphical Primitives ittt 8
1.3.1 Same Geometry but Different Topologies 8
1.3.2 Same Topology but Different Geometries 9
1.3.3 Curve Primitivesoiiiiiiiiiiiiitiiennnnnnnnnenn 9
1.3.4 Text Primitivesoiiiiiiiiiiiiiiiiiinnnnennns 9
1.4 SUIMMALY ..ottt it ittt tntoenaaesennoennnnnsss 10

2. TRANSFORMING PRIMITIVES ..., 11

2.1 Creating New Objects From Primitives 11
2.1.1 Applying Transformations i, 12
2.2 Modeling Transformationscciiiiiiiiiiieeeenss 13
2.2.1 Rotation ...ovviiiinitiieninreneneoeerennnnnnnnnnnes 13
2.2.2 Rotations Around an AXiS ..ottt i, 14
2.2.3 Translationc.iiuiiiiiiii ittt 15
2.2.4 Translations in All Three Axescciiiiiinn, 16
2.2.5 Scaling ...t e e e, 17

2.3 The Ordering of Transformations 18

2.3.1 Transformation Matrices it iiiiiiinnnnnn 22
2.4 SUMIMATY « vttt ittt ettt et etasesensoeeesosnnnnnonnos 25
3. CREATING COMPOUND OBJECTSo, 26
3.1 Building with Primitives and Transformations 26
3.1.1 Creating a Star Primitive o i, 26
3.1.2 Grouping Primitives and Transformations 30
3.2 SUMMATY .« o vttt et et e e e 31
4. DESIGNING A MODEL FOR INTERACTION 32
4.1 Designing a Complex Modelo, 32
4.1.1 Analyzing a Model as a Hierarchy 34
4.2 Display Trees ..ot it 34
4.2.1 Display Tree for the Mechanical Arm 35
4.2.2 Display Tree Terminology, 36
200 T\ 0 Y6 - P 36
4.2.4 Updating Nodesoiutiiitiineninernnneeennns 36
4.2.5 Data Nodes . ..ottt e e et 36
4.2.6 Operation Nodescoviuiiiitiiiiiiiiinierneennns 37
4.2.7 Instance NoOAeScvtt ittt ittt 39
4.2.8 Grouping e tieereteaaiaereareaatunraennnannnns 39
4.2.9 Sphereof Influence, 40
4.3 SUMMATY « ottt ettt ittt ittt ettt 43
5. LOOKING AT OBJECTS . ..ottt i it e et iie i eans 44
5.1 Viewing Operationsc.ouiuiiiiiiiiiiiiinenneennns 45
5.1.1 Displaying an Objectot 45
5.2 Establishing a Line of Sight o it 46
5.3 Including Part of the World Coordinate System 49
5.3.1 Viewing Areas in the World Coordinate System 50
5.3.2 Orthographic Viewso, 50
5.3.3 Perspective Viewsoo ittt 53
5.4 Displaying an Image in Some Area of the Screen 57
5.4.1 Specifying a Viewportt 58
5.5 Viewing Transformations and Display Trees 60
5.6 SUMMATY . oottt ittt ittt e e e 66
6. USING ATTRIBUTES i 67
6.1 Attributesttt i e i e 67

il

6.2 Appearance Aftributes i i i, 68

6.2.1 Displaying Objects in Color v, 68
6.2.2 Displaying All Vectors in the Same Color 69
6.2.3 Setting and Changing Intensity Levels 71
6.2.4 Enabling and Disabling Depth Clipping 72
6.2.5 Choosing a Character Font for Text 75
6.3 Structure Attributes i i 77
6.3.1 Conditional Referencing oo, 78
6.3.2 Level of Detail i, 80
6.3.3 Blinking or Alternating Displays 82
6.4 Picking Attributes0iiiiiiiiiiiiii i i e 84
6.5 SUMIMATIY .o v vviiiii ittt i ittt ettt 87
7. INTERACTING WITH THE PICTUREcoviuu.., 88
7.1 Evans & Sutherland and Interactive Graphics 88
7.2 Programming the Interactive Devices 90
7.2.1 Planning for Interaction 90
7.2.2 Updating a Nodecitiitiiniiiiiiiiiiniienenneennss 91
7.2.3 Supplying the Correct Type of Data 92
7.3 PS 390 Functionsc.iuiuiiiniiiiiinnieennnnnnnnnnns 92
7.3.1 Intrinsic Functionsot nnnnn.. 95
7.3.2 Initial Function Instancesot 95
7.3.3 User-Written Functions o iiiiiiiiiienenn. 95
7.3.4 Creating Networksc0iiiiiiiiniiiiiinnnennennennn 96
7.3.5 Active and Constant Inputso i, 99
7.3.6 Data-Driven Networkso, 100
7.3.7 Why Function Networks?, 100
7.3.8 Creating Function Networks, 101
T4 SUMIMATY ¢ o vttt ettt et eeennssenneeeoneeseannesennns 101
8. POLYGONAL RENDERINGciuttiiiiiiiiinirnnnnnns 102
8.1 Defining Polygonal Objects i, 103
8.1.1 Constructing Surfaces and Solids 104
8.2 Specifying Vertices for Surfaces and Solids 105
8.3 Memory Requirementsouiiuiiniiininneenneenns 106
8.4 Creating Renderingscoiiiiiiiiiiiiiiniinnnn., 107
8.5 Rendering Operationscoiiiitiiiiiiiiinnn. 108
8.5.1 Backface Removal i, 108
8.5.2 Sectioningciiriiiiiiiii i e e 109
8.5.3 Cross-sectioningc.oiiiiiiiiiiiiiiiiiiriannns 110
8.5.4 Static Viewport Renderingsciiiiiiiiieeinn, 110

iii

8.5.5 Hidden-Line Removalciiiiiiin e rnnnenns 111

8.5.6 Wash Shadingcoiiiiiiiiiiiiiiiiiernneennnn 111
8.5.7 Flat Shadingiiiiiiiiiieiiiiiinneneeeserennnns 112
8.5.8 Gouraud and Phong Shading 112
8.6 SHADINGENVIRONMENT Functionccvvune.. 112
8.7 SUMMALY . ii ittt ittt ittt onnnoonntnsnsseaasenas 112

v

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2-21.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.
Figure 2-26.
Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-31.
Figure 2-32.
Figure 2-33.
Figure 2-34.
Figure 2-35.
Figure 2-36.

ILLUSTRATIONS

Right-Hand Coordinate Systemovviiiitiieienennnnns
Left-Hand Coordinate Systemvviiiuiitteereenennnns
The World Coordinate Systemcoviiiiurreeeerennn.
Coordinates of a Squareciiiiiiiiiiirrrennnnnns
Location of the Square in the World Coordinate System
Primitives With the Same Geometry and Different Topologies .

Primitives With the Same Topology and Different Geometries ..
Location of the Diamondottt iiiiiinnnnnn.
The Structure of the Diamond v,
Rotation in the World Coordinate System
Orientation of the Rotated Arrowccco....
Rotation of an Object Not Centered at the Origin
Location of the Translated Squareccvivviterennnn.
Square Translated in X and Negative Y
Scaling the Squarecciiiiiiietitieennnnnnnnnnnnnas
Nonuniform Scaling to Create a Rectangle
A Two-Dimensional Arrowcoviiiiiiniiiiiiieerennns
Rotated AITOW .. vviiii it i i ittt it iiientneenanannnnans
Arrow Rotated, Then Translated
The Structure of Arrow
Translated ATTOW ... ittt ittt it
Arrow Translated, Then Rotated
The Structure of Arrow_4
An Identity Matrixcoiiiuiiiiiitiiinnnnneeennnonns
Concatenating MatriCesvviiiiteteternnnnnnnnnens
Location of the Star Primitive v,
The Star Primitive Displayed on the Screen
The Location of Trans_Star on the Screen
The Structure of Trans_Star i,
The Structures of Trans_Square and Trans_Diamond
The Structure of Trans_Starl i,
An Articulated Mechanical Arm o i,
Hierarchy of Parts for the Mechanical Arm
Display Tree for the Mechanical Arm
Inputs to a Vector List Nodeooiiiiiiiiiin.,
Inputs to a Rotation Node

ooooooooooooooooooo

.....................

...........................

ooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

-0 0 Ui i A WK

Figure 2-37.
Figure 2-38.
Figure 2-39.
Figure 2-40.
Figure 2-41.
Figure 2-42.
Figure 2-43.
Figure 2-44.
Figure 2-45.
Figure 2-46.
Figure 2-47.
Figure 2-48.
Figure 2-49.
Figure 2-50.
Figure 2-51.
Figure 2-52.
Figure 2-53.
Figure 2-54.
Figure 2-55.
Figure 2-56.
Figure 2-57.
Figure 2-58.
Figure 2-59.
Figure 2-60.
Figure 2-61.
Figure 2-62.
Figure 2-63.
Figure 2-64.
Figure 2-65.
Figure 2-66.
Figure 2-67.
Figure 2-68.
Figure 2-69.
Figure 2-70.
Figure 2-71.
Figure 2-72.
Figure 2-73.
Figure 2-74.
Figure 2-75.
Figure 2-76.
Figure 2-77.
Figure 2-78.

The Structure of Trans_Starl it 39
Display Tree for Trans_Starl i, 40
Structure of the Upper Armo 41
A Simple Display Tree ..., 42
Shape Represented by Display Tree in Figure 2-40 42
The Location of the Square on the Screen 45
A Cube With Labeled Facesottt iiiinnnn. 46
Displaying the Cube it 47
“Looking Down” the Y Axis at the Cube 47
Looking Down at the Cube: the View on the Screen 48
How the LOOK Command Rearranges the Coordinate System . 49
An Orthographic Viewing Area, 50
“Visible” and “Invisible” Objects oo, 51
Clipping Parts of an Object i, 51
Depth Clipping of Objects, 52
Orthographic View of a Rotated Cube 52
The Default Viewing Space ittt 53
Perspective View of a Rotated Cube 54
A Viewing Area for Perspective Views 54
The FIELD_OF_VIEW Viewing Pyramid 55
The Viewing Pyramid Created by the EYE Command 56
Displaying an Object With the Default Window 57
Distorted Views of the Arrow i, 59
A Group of Objects in the Coordinate System 60
Display Tree for Shapescvuiiiiii ittt 61
DISPLAYIng Shapes ..o vt it ieniienannn 61
Adding the LOOK Nodecitiiiiiiiiiiiiiieenennnn. 62
The LOOK Transformation iioan, 63
Calculating the Front and Back Boundaries 63
Adding the FIELD_OF _VIEW Node 64
Adding the VIEWPORT Nodeciiiiiiiiiinnnnnnns 65
The Final Display i, 65
The Color Wheelt ittt 68
A Simplified Display Tree for the Mechanical Arm 69
Display Tree With Color Nodescoiiiiiiinn.. 70
An Interactive Intensity Nodeo, 72
Depth Clipping Enabled for a Viewing Area 73
Objects Outside the Front and Back Boundaries 74
Display Tree With Depth-Clipping Node 75
Display Tree for a Group of Labeled Objects 76
Display Tree With Character Font Nodes 77
Simplified Display Tree fora Car, 78

vi

Figure 2-79.
Figure 2-80.
Figure 2-81.
Figure 2-82.
Figure 2-83.
Figure 2-84.
Figure 2-85.
Figure 2-86.
Figure 2-87.
Figure 2-88.
Figure 2-89.
Figure 2-90.
Figure 2-91.
Figure 2-92.
Figure 2-93.
Figure 2-94.
Figure 2-95.
Figure 2-96.
Figure 2-97.
Figure 2-98.
Figure 2-99.

Display Tree With Conditional Referencing Nodes 79
Display Tree for a Contour Mapcoviiiniiinnnneens 80
Display Tree With Level-Of-Detail Nodes 82
Conditional Nodes for Blinking 83
Display Tree for Alternate Display of Two Objects 84
The SET PICKING ON/OFF Nodeciivuivnn, 85
Making the Components Pickable 86
Display Tree for Simple Interaction......................... 90
The SET DEPTH_CLIPPING Nodecoviviiinvinn., 92
Representation of a Function 93
The F:DZROTATE Functioncoiiiiiniiinreeenns 96
The Initial Function Instance DIALS 97
Inputs to a Rotate Node i, 98
Simple Z-Rotation Network i, 98
Surface Object ottt i e it i 105
Solid Object ..o v i e i e it e 105
Correctly Constructed Icosahedron 106
Object Before and After Backface Removal 109
Object Before and After Sectioning 109
Object Before and After Cross-Sectioning 110
Object Before and After Hidden-Line Removal 111

Vil

Section GT2
Graphics Principles
High-Performance PS 390 Distributed Graphics

This guide introduces the concepts and terminology which you must understand to
program the PS 390. It begins by explaining concepts which are common to most
interactive graphics systems, but it soon becomes specific to the PS 390. The con-
cepts introduced here are explained in much greater detail in the tutorial sections.
In most cases, cross references are given to appropriate sections.

Examples of the PS 390 command language and of some PS 390 functions and
function networks are given to show how specific computer graphics operations are
performed by the PS 390. Little attempt is made to explain the syntax of com-
mands or to explore all of the options of a particular command or function. Con-
sult Sections RM1 Command Summary, RM2 Intrinsic Functions, and RM3 Initial
Function Instances, for complete information on the commands and functions and
their options.

Programmers with little or no experience of computer graphics systems should
read this guide before embarking on the other tutorial sections. Experienced pro-
grammers who do not plan to use the tutorials sections can read this guide as an
introduction to the documentation in the Reference Materials volume.

1. Creating Primitive Objects

A graphics programmer using the PS 390 for designing, viewing, and ma-
nipulating objects begins by creating a data base of the mathematical infor-
mation that defines the objects. Objects are defined as two-dimensional or
three-dimensional shapes consisting of points and lines or planes. Objects
defined as points and the lines that connect them are wireframe models.
Objects defined as planes are polygonal models, and differ from wireframe
models because they contain surface or solid information.

The data space in which the programmer models objects is known as the
world coordinate system. This system provides a way of expressing the loca-
tion of all the points which define the object.

Graphics Principles GT2-1

The simplest object in a graphical data base is a primitive. This consists
entirely of points and lines or planes. The points specify the geometry of the
object; the lines or planes specify the topology.

1.1 Coordinate Systems

The PS 390 displays convincing three-dimensional images of mathemati-
cally defined objects. All mathematical information that the designer enters
to create an object (the data base) must be given in terms of a three-
dimensional coordinate system. A coordinate system is a way of specifying
a three-dimensional space in which objects can be modeled.

1.1.1 Right-Hand Coordinate System

One conventional method for representing three-dimensional space uses
three lines (axes) originating at a common point in space (the origin) and
drawn at right angles to each other in the dimensions of height, width, and
depth. These axes are labeled X (width), Y (height), and Z (depth).
Figure 2-1 represents a commonly used coordinate system known as the
right-hand coordinate system.

P>

u3g0227

Figure 2-1. Right-Hand Coordinate System

As Figure 2-1 shows, the thumb and first two fingers of the right hand can
be used as a mnemonic for the names and positive directions of the axes in
this system. There is a disadvantage to this coordinate system for modeling
with a computer graphics system. If you consider the computer screen to be
parallel to the XY plane of this three-dimensional space, then positive val-
ues in the Z axis (depth) increase towards the eye of the viewer. The depth
of an object displayed on the screen should be perceived as a dimension

GT2-2 Graphics Tutorials

into the screen. So a coordinate system is needed with a Z axis that has
positive values which increase into the screen away from the viewer.

1.1.2 Left-Hand Coordinate System

A left-hand coordinate system, employed by many computer graphics sys-
tems including the PS 390, has a Z axis in which positive values increase
away from the viewer. Figure 2-2 shows a representation of the left-hand
coordinate system.

X

u390228

Figure 2-2. Left-Hand Coordinate System

Note that the thumb and first two fingers of the left hand indicate the posi-
tive direction of the axes in this coordinate system.

1.1.3 The World Coordinate System

The left-hand coordinate system with which the PS 390 graphics program-
mer works is known as the world coordinate system. The world coordinate
system provides a way of expressing the mathematical data which the com-
puter needs to create, display, and manipulate models in three dimensions.
Figure 2-3 is a representation of the world coordinate system used in pro-
gramming the PS 390.

Graphics Principles G72-3

[
3 +Z
_.2 3
L 4 2
1
-3 -2 -1 1 2
—X= | l] ! Ll 1 » + X
0,0,0
-1 - —1
-2
- -2
-3
-7 - -3
4
-Y U390017

Figure 2-3. The World Coordinate System

All axes have a positive direction and a negative direction, and values are
assigned for every point along an axis. The point at which the three axes
meet is the origin.

1.2 Data Base For an Object

A data base for an object consists of points and lines (if the object is a
wireframe model) or planes (if the object is a polygonal model) expressed
in world coordinate values. The points, lines, and planes define the geome-
try and topology of the object.

1.2.1 Geometry

The geometry of an object is the location in the world coordinate system of
the points which define it. If, for example, you want to create a square
centered at the origin of the world coordinate system with sides five units
long, then the coordinates of the four points A, B, C, and D that define the
square are as shown in Figure 2-4.

GT2-4 Graphics Tutorials

3 S
-2
-1

X I 1_12 _11 -} 121 13 +X

- -1
- -2

[] ®

C - -3 B
=Y

u390018

Figure 2-4. Coordinates of a Square

When these coordinates are connected with lines, the result is the square
shown in Figure 2-5.

+Y

+X

!
X

-Y U390019

Figure 2-5. Location of the Square in the World Coordinate System

Graphics Principles GT2-5

1.2.2 Coordinate Notation

The convention for defining coordinates in three-dimensional space is to
give the X component first, then the Y component, and finally the Z compo-
nent. For example, point A is 2.5 units in the positive X axis, 2.5 units in
the positive Y axis, and zero units in the Z axis, since the square is a
two-dimensional figure. The notation for this coordinate is (2.5,2.5,0) or
just (2.5,2.5) with the value for Z defaulting to zero. Point B is also 2.5
units in the positive X axis, but 2.5 units in the negative Y axis, and zero
units in the Z axis. The notation for this coordinate is (2.5,-2.5,0) or just
(2.5,-2.5). The coordinates of the four corners of the square are as follows:

e Point A: (2.5,2.5,0) or (2.5,2.5)

e Point B: (2.5,-2.5,0) or (2.5,-2.5)

e Point C: (-2.5,-2.5,0) or (~2.5,-2.5)
e Point D: (-2.5,2.5,0) or (-2.5,2.5)

1.2.3 Topology

The coordinates of the points specify the geometry of the square. For the
computer to draw the square, the manner in which the points are connected
must be indicated. This is called the topology of the object. In the case of
the square, A is connected to B, B to C, C to D, and D is connected back to
A. Geometry and topology form a minimum data base for displaying an
object. This combination forms a vector list or a polygon list, depending on
whether the object is defined as a set of lines or bounded planes (surfaces).

1.2.4 Vector List

A vector list specifies an object that is composed of lines. A vector is a set
of coordinate pairs (X,Y) or triples (X,Y,Z) and a direction. A vector list
specifies points within the world coordinate system at which lines start and
end, and the order of the direction in which lines are drawn.

The following PS 390 command creates a vector list named Square.

Square := VECTOR_LIST N =5 2.5,2.5 2.5,-2.5 -2.5,-2.5
-2.5,2.5 2.5,2.5;

Notice that five items were needed in the vector list to specify the topology
of this object. The computer must be told to draw from point D to point A

GT2-6 Graphics Tutorials

to complete the square. The “N = 5” clause is an estimate of the number of
vectors so that sufficient memory can be allocated for the object.

The topology is implicit in the order in which coordinates are given. The
first coordinate indicates a starting position. Each coordinate after that is a
point to which a line is drawn. An alternative form of the VECTOR_LIST
command uses the clause ITEMIZED and includes P (position) and L (line)
identifiers to distinguish between move-to and draw-to coordinates. The
same vector list as specified above can be written as follows.

Square := VECTOR_LIST ITEMIZED N =5 P 2.5,2.5 L 2.5,-2.5 L -2.5,-2.5
L -2.5,2.8 L 2.5,2.5;

Position and line indicators are essential in vector lists for shapes that are
not closed figures. For example, to draw just the left and right sides of the
square, a vector list such as the following is needed.

Sides := VECTOR_LIST ITEMIZED N = 4 -2.5,2.5 L -2.5,-2.5
5,2.5

P
P

\v]
[
\S]
o
b
ot

1.2.5 Polygon List

A polygon is a set of points that enclose and define a plane or surface. Just
like a vector list, a polygon list contains the coordinates of the endpoints of
the lines that make up the polygon. Unlike a vector list, a polygon list does
not have to repeat the first point to close the figure, since by definition a
polygon is a closed figure. The following command creates a square as a
polygon list.

Square := POLYGON 2.5,2.5 2.5,-2.5 -2.5,-2.5 -2.5,2.5;

Only four items are needed in the polygon list to specify the topology of the
square when it is defined as a polygon.

Polygonal models differ from wireframe models created from vector lists in
that they contain surface or solid information. This information is necessary
for rendering operations applied to objects defined by the POLYGON com-
mand. Rendering operations include such things as cross-sectioning, hidden-
line removal, and shading of the model. The specific parameters for the
POLYGON command and a complete discussion of rendering operations
can be found in Section GT/3 Polygonal Rendering.

Graphics Principles GT12-7

1.3 Graphical Primitives

Vector lists and polygon lists contain all the information needed to specify
the geometry and topology of an object. Objects specified as vector lists or
polygon lists are known as graphical primitives. The VECTOR_LIST and
POLYGON commands are the two most commonly used to create primitives
locally in the PS 390. Complex primitives are often created by a host appli-
cation program and transferred to the PS 390 to be manipulated and
viewed.

1.3.1 Same Geometry but Different Topologies

Primitive objects can have the same geometry, but different topologies. That
is, the same set of world coordinates can be connected by lines to create
open figures or polygons of different sorts, as shown in Figure 2-6.

U390020

Figure 2-6. Primitives With the Same Geometry and Different Topologies

For example, the capital letter “N” can be created by the following vector
list.

Capital N := VECTOR_LIST N =4 -2.5,-2.5 -2.5,2.5
2.5,-2.5 2.5,2.5;

The bow tie shape can be created by the following vector list.

Bow _Tie := VECTOR_LIST N =5 -2.5,-2.5 -2.5,2.5 2.,5,-2.5
2.5,2.5 -2.5,-2.5;

For open figures, such as the two parallel lines, position and line identifiers
must be included in the vector list. The following command creates the two
parallel horizontal lines as a single primitive.

Lines := VECTOR_LIST ITEMIZED N =5 P -2.5,2.5 L 2.5,2.5
P -2.5,-2.5 L 2.5,-2.5;

Although the geometry is the same for all of these objects, their topologies
are different, and so their vector lists are different. Each object must be
defined as a separate primitive with its own vector list.

GT2-8 Graphics Tutorials

1.3.2 Same Topology but Different Geometries

Primitives can also share the same topology and have different geometries.
All of the four-sided shapes in Figure 2-7, for instance, consist of four
points connected in the same manner.

U390021

Figure 2-7. Primitives With the Same Topology and Different Geometries

Each of these objects must be defined as a separate primitive. However, as
the next section, Transforming Primitives shows, there are ways of changing
the geometry of a primitive to create a new object without creating a new
primitive.

1.3.3 Curve Primitives

The examples used so far have been for primitives consisting of straight
lines only. Other commands, such as the BSPLINE and POLYNOMIAL
commands create curve primitives locally in the PS 390. For more informa-
tion on these commands refer to Section RM1 Command Summary.

1.3.4 Text Primitives

Text is also treated as a graphical primitive in the PS 390. A standard
128-character ASCII set is provided with the system. The characters which
compose this standard font are created as vector lists, so you do not have to
create your own. However, if you want to create different fonts that can be
used as a supplement to the standard font, there is a command which allows
you to do this. The BEGIN_FONT ... END FONT command lets you create
128 separate vector lists defining the characters which compose the font and
assign them a single name. This font can be substituted for the standard
font using the CHARACTER FONT command. For more details, refer to
Sections GTI10 Text Modeling and String Handling and RMI1 Command
Summary.

Graphics Principles GT12-9

1.4 Summary

New Information Presented

1. To express the mathematical data which defines an object for graphi-
cal display, a programmer uses a coordinate system.

2. The coordinate system most useful for computer graphics purposes is
a left-hand coordinate system. This coordinate system has a Z axis
that has positive values which increase away from the eye of the
viewer.

3. The coordinate system used in creating a data base for graphical
objects is called the world coordinate system.

4. To create a model of an object with a graphics computer, you need to
specify two things:
e The positions of the endpoints of each line, expressed as three-
dimensional (X,Y,Z) coordinates. This is known as the geometry
of the object.

e The way in which those points are connected by lines. This is
known as the topology of the object.

5. The geometry and topology together form a vector list or polygon list
for a graphical primitive. A primitive defined by a vector list is com-
posed of lines. A primitive defined by a polygon list is composed of
planes or surfaces.

6. Other primitives composed of points and lines are curves and text.
Primitives of all sorts can be created locally using PS 390 com-
mands. They can also be generated by a host application program
and sent to the PS 390.

What Next?

At this point, you can create a graphical data base for a primitive. Vector
lists define wireframe objects made of lines, and polygon lists define objects
made of planes. In the next section you will see how to apply mathematical
transformations to primitives to create new objects. These new objects will
have the same topology as the primitives, but their geometries will be
different.

GT2-10 Graphics Tutorials

2. Transforming Primitives

Mathematical operations called transformations can be applied to a primi-
tive to change its geometry by moving some or all of its points to a new
location in the world coordinate system. Transformations create a new ob-
ject, based on the definition of the old one, which has the same topology as
the primitive, but a different geometry.

Using transformations, you can, in effect, move primitives around in the
coordinate system or add numerous different objects to the data base using
a small number of primitive shapes.

2.1 Creating New Objects From Primitives

The data base of shapes so far consists of a square with sides five units
long. If you want to add to the data base a two-dimensional diamond shape
with sides that are five units long centered at the origin of the world coordi-
nate system, you could create it as a primitive by entering a vector list like
this.

Diamond := VECTOR_LIST N =5 0,3.54°*3.54,0 0,-3.54 -3.54,0
0,3.54;

The diamond will be located in the world coordinate system as shown in
Figure 2-8.

u390022

Figure 2-8. Location of the Diamond

Graphics Principles GT2-11

Notice that the Diamond and the Square primitive that already exists share
several features. They are both two-dimensional figures, they are the same
size (5 units per side), and they have the same topology. In fact, the only
difference between the two figures is their geometry. The points that define
the four corners of the Square and the Diamond are in different locations
within the world coordinate system. The diamond shape could be described
as the square shape rotated 45 degrees around the Z axis.

Since the two objects share these relationships, there would be no need to
create a separate primitive if there were some way to change the geometry
of the square while maintaining its topology. PS 390 commands exist which
do exactly that.

2.1.1 Applying Transformations

With the PS 390, you can apply mathematical operations to primitives that
already exist to move them around in the coordinate system or create new
shapes from them. The resulting objects are not defined as primitives them-
selves. Instead, they are structures which consist of matrix transformations
applied to the coordinates which define a primitive.

Transformations are operations of matrix algebra which change the geome-
try of a graphical object, but do not affect the topology. When you create
either a vector list or polygon list for an object, you have to calculate the
coordinates of the points yourself. When you apply transformations to exist-
ing primitives, the PS 390 calculates the new coordinates for you. It is eas-
ier, for example, to create the diamond by rotating the square than to calcu-
late yourself the coordinates of the diamond primitive. The following
PS 390 command creates a diamond by rotating the square.

Diamond := ROTATE IN Z 45 APPLIED TO Square;

The structure of the diamond can be diagrammed as shown in Figure 2-9.

Rotation (Diamond)

T~

Figure 2-9. The Structure of the Diamond

Vector List (Square)

U390023

GT2-12 Graphics Tutorials

The diamond is shown as a rotation transformation applied to the vector list
defining the square.

2.2 Modeling Transformations

Transformations which are used to create new objects by changing the ge-
ometry of already defined primitives are often referred to as modeling
transformations. There are three modeling transformations: rotation, trans-
lation, and scaling. Section GT4 Modeling gives examples of the use of mod-
eling transformations to create and position the parts of a complex object.

2.2.1 Rotation

A new object can be created by rotating a primitive through any number of
degrees in any of the three dimensions. To perform a rotation on a primi-
tive, the computer uses the sine and cosine of the angle specified in the
rotate command to create a rotation matrix, which is applied to the points in
the vector list.

When an object is rotated in the world coordinate system, it rotates around
one of the X, Y and Z axes in the directions shown in Figure 2-10.

U390024

X

Figure 2-10. Rotation in the World Coordinate System

Graphics Principles GT2-13

2.2.2 Rotations Around an Axis

Note the terms used to express rotations. A rotation “in X” means rotation
around the X axis. To determine the direction of rotation around an axis,
use the left-hand coordinate mnemonic. Point the thumb of your left hand in
the positive direction of any axis, and your fingers will curl in the direction
of positive rotation.

Rotations always occur around one of the world coordinate axes. Consider a
new object called Rot_Arrow created by rotating an existing 2D arrow which
is centered at the origin through 120 degrees in Z.

Rot_Arrow := ROTATE IN Z 120 APPLIED TO Arrow;

The orientation of the rotated arrow will be as shown in Figure 2-11.

u390025
Figure 2-11. Orientation of the Rotated Arrow

The primitive arrow is drawn with dashed lines; the rotated arrow is drawn
with solid lines. Since the primitive arrow was created with its base at the
origin, the rotated arrow is based at the origin also. If an object is not
centered at the origin, however, and a rotation is applied, the rotation about
the world axis will have the effect of “swinging” the object around the axis,
as illustrated in Figure 2-12.

GT2-14 Graphics Tutorials

U390026

Figure 2-12. Rotation of an Object Not Centered at the Origin

Rotating an object while it is centered at the origin, then, effectively rotates
it about its own center. Rotating an object which is not at the origin swings
that object around one of the world axes to a new location in the world
coordinate system.

2.2.3 Translation

Translating an object means moving it to a new location in the world coordi-
nate system. An object which is translated in X is moved in the X direction.
An object translated in X and Y is moved some distance in the X direction
and some distance in the Y direction.

The PS 390 performs translations on a primitive by adding the X, Y, and Z

values specified in the translation command to the coordinates of each vec-
tor.

Consider a new square created by translating the Square defined earlier by
2 units in the positive X axis.

Trans_Square := TRANSLATE 2,0 APPLIED TO Square;

The location of Trans_Square will be as shown in Figure 2-13.

Graphics Principles GT2-15

D [3 A
- 2
- 1

xo 2 1 2 3 41°% .x

-1
|2
3 B
|4
| . U390027
-y

Figure 2-13. Location of the Translated Square

Notice that in a translation in X, the X component of each coordinate is
changed (in this case, increased by 2) but the Y and Z components are not.

2.2.4 Translations in All Three Axes

The PS 390 performs translations in any direction (X, Y, or Z) and in any
combination of directions. For example, a translation of 2 units in positive
X and 2 units in negative Y can be applied to Square.

New_Trans_Square := TRANSLATE 2,-2 APPLIED TO Square;

The new translated square will be located as shown in Figure 2-14.

+Y
- 3
- 2
D! A
— — T +X
-3 -2-1 |41t 2 3 4]5
| -2
-3
-—4 u3980028
CE-5 B

Figure 2-14. Square Translated in X and Negative Y

GT2-16 Graphics Tutorials

Naturally, translations may be specified in three dimensions. The notation
used for representing translations is to give the X component, the Y compo-
nent, then the Z component, separated by commas. So, for example, a
translation of 3,-2,4 is 3 units in X, 2 units in negative Y, and 4 units in Z.

2.2.5 Scaling

Scaling an object makes it smaller or larger, depending on the scale factor
that is specified. The PS 390 creates a scaling matrix which multiplies the
points in the vector list by the scale factor in the scaling command to deter-
mine the new coordinates of the scaled object.

For example, a small square can be created by scaling the square defined at
the origin of the world coordinate system by 0.5.

Small_Square := SCALE BY .5 APPLIED TO Square;

The small square will have the coordinates shown in Figure 2-15.

+Y
-3

D_[2 A
-1

32 23 ix

-1

C [.B

U390029

Figure 2-15. Scaling the Square

This type of scaling is called uniform scaling. The new object is created by
scaling the primitive by the same amount in all dimensions. Another type of
scaling, nonuniform scaling, consists of scaling an object by different
amounts in different dimensions. For example, a rectangle can be created
by scaling the Small_Square by 2 units in X only.

Rectangle := SCALE 2,1,1 APPLIED TO Small_Square;

Graphics Principles GT2-17

The rectangle will have the following coordinates (Figure 2-16).

+Y
-3
D 2 A
- 1
-31-2 -1 1 2 3
| [+X
-1
C » B
| _3 U390030

Figure 2-16. Nonuniform Scaling to Create a Rectangle

Nonuniform scaling is a commonly used modeling transformation; it distorts
the shape of a primitive to produce a new object. For example, a no-
nuniform scale in Y and Z applied to a cube at the origin can create an
object with the relative dimensions of a building brick. Circles can be scaled
nonuniformly to create ellipses, and spheres to create ellipsoids, and so on.

2.3 The Ordering of Transformations

When a series of transformations is applied to a primitive, the order in
which the transformations are applied always determines the final location
and orientation of the object in the world coordinate system. For example,

consider a 2D arrow which has been created within the world coordinate
system as shown in Figure 2-17.

GT2-18 Graphics Tutorials

4N

X

U390031

Figure 2-17. A Two-Dimensional Arrow

If the arrow is rotated 45 degrees in Z, rotation occurs around the Z axis.
The rotated arrow (Arrow_1) is oriented as shown in Figure 2-18.

U390032

Figure 2-18. Rotated Arrow

A new object called Arrow_ 2 is now created by applying a translation in
positive X and negative Y to the rotated arrow. The orientation of the trans-
lated arrow is still a rotation of 45 degrees in the plane of the Z axis, but its
location would be something like this (Figure 2-19).

Graphics Principles GT2-19

U390033

Figure 2-19. Arrow Rotated, Then Translated

The structure of Arrow_2 is a translation pointing to a rotation, pointing to
a vector list. It can be diagrammed as shown in Figure 2-20.

Translation (Arrow_2)

Rotation (Arrow_1)

\:390034

Vector List (Arrow)

Figure 2-20. The Structure of Arrow
Now consider what happens if the original arrow is translated first, and then
is rotated. Translating the arrow in positive X and negative Y creates an

object (Arrow_3) located in the world coordinate system as shown in
Figure 2-21.

GT2-20 Graphics Tutorials

2\

U390035

Figure 2-21. Translated Arrow

If a rotation of 45 degrees in Z is now applied to the translated arrow, the
new object Arrow_4 will “swing” around the Z axis to a new location in the
world coordinate system (Figure 2-22).

U390036

AN
V X

Figure 2-22. Arrow Translated, Then Rotated

The structure of Arrow_4 is a rotation pointing to a translation pointing to a
vector list. It can be shown as follows (Figure 2-23).

Graphics Principles GT12-21

Rotation (Arrow_4)

Translation_(Arrow_3)

u390037
Vector List (Arrow)

Figure 2-23. The Structure of Arrow_4

The order in which transformations are applied to objects determines the
ultimate location and orientation of the new object in the world coordinate
system. The same transformations applied to the same primitive in a differ-
ent order produce different results. When you are applying a series of trans-
formations to an object, you must take care to apply those transformations
in the correct order to get the result you want.

2.3.1 Transformation Matrices

Translations, rotations, and scalings are the three basic transformations
which are applied to data in a computer graphics system. We have called
these three modeling transformations. As you will see in Section 2.5 Looking
at Objects, other transformations called viewing transformations can be ap-
plied to data to create different views of objects—for example, top views,
side views, or perspective views. Although viewing transformations are
more complex, they are still combinations of translations, rotations, and
scales.

Later sections also describe how transformations can be applied interac-
tively to data. Values from the keyboard, data tablet, dials, and buttons can
be used to apply a series of transformations in rapid succession, giving the
illusion of movement to displayed objects. All transformations applied to
graphical data are performed by matrix algebra. The most commonly used
matrices in computer graphics are 2x2 (two-dimensional rotations and
scales for characters and text strings); 3x3 (three-dimensional rotations and
scales for objects); and 4x3 and 4x4 (most of the viewing transformations
described in Section 2.5).

GT2-22 Graphics Tutorials

All matrices are governed by the laws of matrix algebra. Of particular inter-
est to the graphics programmer is the law that matrix A times matrix B does
not equal matrix B times matrix A. This property is known as the noncom-
mutativity of matrices. The noncommutativity of matrices makes the careful
ordering of transformations necessary in graphics programming.

When a transformation is applied to an object, the new coordinates of the
vectors which compose the object are calculated by multiplying the old coor-
dinates by the elements in the matrix.

When more than one transformation is applied to graphical data, the matri-
ces are concatenated. This means that each matrix is premultiplied to a
matrix called the current transformation matrix. The current transformation
matrix contains the accumulation of all transformations that are to be ap-
plied to graphical data and preserves the order in which they are to be
applied. A 4x4 current transformation matrix is large enough to handle all
of the transformations needed for computer graphics operations.

Matrix concatenation works like this. Suppose you want to scale a primitive
to twice its size, rotate it 180 degrees in Z, and then translate it in X and Y.
Instead of applying three separate matrices to the points that define the
object, the PS 390 premultiplies the matrices that represent these transfor-
mations into the current transformation matrix. This single matrix is then
applied to the vector list that defines the object.

The current transformation matrix (CTM) starts out as an identity matrix,
as shown in Figure 2-24.

O O o=
OO0 -0
o =00
- O OO

U390038

Figure 2-24. An Identity Matrix

Graphics Principles GT2-23

An identity matrix is composed of ones and zeros, with the ones running in
a diagonal. Multiplying by an identity matrix is the equivalent of multiplying
by one: nothing changes. Each transformation matrix in turn—scale, rotate,
and translate—is premultiplied to the identity matrix. The result is a CTM
which consists of the cumulative transformations and the order in which
they are to be applied to the data. The vector list defining the object is run
through the CTM as the last stage in the process, as shown in Figure 2-25.

SCALE ROTATE TRANSLATE IDENTITY
V
Vector List ————» CTM U390039

Figure 2-25. Concatenating Matrices

The transformed vectors which result form the points and lines of the newly
oriented object. If the order of the transformations were changed, then the
final CTM would be different. If this matrix were applied to the data defin-
ing the object, the ultimate location and orientation in the world coordinate
system of the transformed object would change.

For more information about matrix algebra, consult Newman, W.M., and
Sproull, R.E., Principles of Interactive Computer Graphics, Second Edition,
McGraw-Hill, 1979. This text contains an appendix which introduces vectors
and matrices.

GT2-24 Graphics Tutorials

2.4 Summary

New Information Presented

1.

New objects can be created by applying transformations to primi-
tives.

. Transformations change the geometry of the primitives but leave

their topology the same.

Three basic transformations are translations, rotations, and scales.

. When more than one transformation is applied to an object, the or-

der in which the transformations are applied affects the final location
and orientation of the object in the world coordinate system.

. All transformations are applied through matrix algebra. Transforma-

tions are concatenated into a single matrix known as the current
transformation matrix.

. Matrices are said to be noncommutative. That is, matrix A times

matrix B does not equal matrix B times matrix A. The noncom-
mutativity of matrix multiplication requires the careful ordering of
transformations to be applied to graphical data.

What Next?

By applying matrix transformations to existing primitives you are now able
to move objects around and create new objects of different sizes and
shapes.

In the next section, you will see how to create compound objects. Com-
mands exist to group collections of primitives and transformations created
from the VECTOR_LIST command under one name. The resulting com-
pound object can be transformed as a single entity.

Graphics Principles

GT2-25

3. Creating Compound Objects

Compound objects can be created with the PS 390 using primitives and
transformations.

Primitive objects and transformed primitives can be grouped into one
named object which can be transformed as a single entity.

3.1 Building with Primitives and Transformations

No matter how complicated an object is, you can create it as a primitive by
figuring out the vector list or polygon list needed to specify the coordinates
of all the line endpoints and the way in which those points are connected.
An alternative, however, is to use primitives and transformations as build-
ing blocks to create new objects which are compound structures.

3.1.1 Creating a Star Primitive

If, for example, you want to create an eight-pointed star centered at the
origin, making the object out of lines (not polygons) five units long, you
could create it as a primitive by entering the following vector list:

Star := VECTOR_LIST ITEMIZED N = 10 0,3.54 L 3.54,0 L 0,-3.54
3

P
L -3.54,0 L 0,3.54 P 2.5,2.5
L 2.5,-2.5 L -2.5,-2.5

L -2.5,2.5 L 2.5,2.5;

Notice that this form of the vector list has the word ITEMIZED and has P
and L identifiers preceding each coordinate. This is necessary because the
star shape cannot be drawn as a set of continuous lines. The new primitive,
Star, created by this command is located in the world coordinate system as
shown in Figure 2-26.

G12-26 Graphics Tutorials

U390040

r-4
Figure 2-26. Location of the Star Primitive
When Star is displayed with the correct viewing transformations applied to

it (these are discussed in Section2.5), it will be located on the screen as
shown in Figure 2-27.

\)

U390041

Figure 2-27. The Star Primitive Displayed on the Screen

The same shape can be displayed using existing primitives without adding a
new primitive to the graphical data base. If you display at the same time the
Square primitive and the Diamond primitive that already exist in the graphi-
cal data base, the picture on the screen will look the same as when you
displayed the Star primitive.

Graphics Principles GT2-27

The advantage of using the Square and the Diamond is that you do not have
to calculate the coordinates for the Star primitive vector list. Your task as a
programmer is simplified by using existing objects. If however, you want to
do more than just display a picture of the star—if you want to apply trans-
formations to the star to rotate or translate it, for example—the new primi-
tive is easier to use than the Square and Diamond.

If you want to create a small star and move it to the upper-right corner of
the screen, you can create the small star by scaling the primitive and then
apply a translation in positive X and positive Y to the small star.

Scale_Star := SCALE BY .25 APPLIED TO Star;
Trans_Star := TRANSLATE .5,.5 APPLIED TO Scale_Star;

When displayed, Trans_Star will appear on the screen as shown in
Figure 2-28.

\. J

U390042

Figure 2-28. The Location of Trans_Star on the Screen

The structure of Trans_Star can be diagrammed as shown in Figure 2-29.

GT2-28 Graphics Tutorials

Translate (Trans_Star)
Scale (Scale_Star)

Vector List (Star)
U390043

Figure 2-29. The Structure of Trans_Star

If you use the Square primitive and the Diamond structure (rotation applied
to the Square) instead of the Star primitive, however, four new objects have
to be created and displayed to get the same picture. You must create a
scaled square, a scaled diamond, a translated small square, and a translated
small diamond, and display them together.

Scale_Square := SCALE BY .25 APPLIED TO Square;
Scale Diamond := SCALE BY .25 APPLIED TO Diamond;

Trans_Square := TRANSLATE .5,.5 APPLIED TO Scale_Square;
Trans_Diamond := TRANSLATE .5,.5 APPLIED TO Scale_ Diamond;

The two structures look like this (Figure 2-30).

Translate (Trans_Square) Translate (Trans_Diamond)
Scale (Scale_Square) Scale (Scale_Diamond)
Vector List (Square) Rotation (Diamond)
U390044 Vector List (Square)

Figure 2-30. The Structures of Trans_Square and Trans_Diamond

When they are displayed together, Trans_Square and Trans_Diamond look
just like Trans_Star. However, unless this shape can be manipulated as a

single entity, some of the programming time and effort saved by not creat-
ing the star as a primitive will be lost.

Graphics Principles GT12-29

3.1.2 Grouping Primitives and Transformations

The PS 390 allows you to construct a single named object from groupings of
primitives and transformed primitives generated from the VECTOR_LIST
command. The resulting compound structure represents an object which is
composed of separate parts, but which can be treated as a single item,
much like a primitive.

The INSTANCE command lets you create compound objects such as this:
Starl := INSTANCE OF Diamond, Square;

The object called Star1l has the same dimensions and location in the coordi-
nate system as Star, but it is not defined as a primitive vector list. It is a
compound object which groups the two existing definitions Diamond and
Square under a single name.

This compound object can be manipulated as easily as a primitive. A small
star can be created by scaling Starl.

Scale_Starl := SCALE BY .25 APPLIED TO Starl;

And the small star can be moved to the upper-right of the screen by trans-
lating Scale_Star1.

Trans_Starl := TRANSLATE .5,.5 APPLIED TO Scale_Starl;

The structure for Trans_Starl can be diagrammed as shown in Figure 2-31.

Translate (Trans_Star1)
Scab(&ia‘le__smﬂ)
Instance (Start)
Rotation (Diamond)

Vector List (Square)
u390045

Figure 2-31. The Structure of Trans_Starl

The name Trans Starl identifies the translation which points to
Scale Starl. The scaling transformation points to the name Starl. Starl
groups the vector list defining the square with the rotation that defines the
diamond. Both Diamond and Square share the same primitive definition.

GT2-30 Graphics Tutorials

A complete set of commands which would create Trans_Star1 is as follows.

Trans_Starl := TRANSLATE .5,.5 APPLIED TO Scale_Starl;

Scale_Starl := SCALE BY .25 APPLIED TO Starl;

Starl := INSTANCE OF Diamond, Square;

Diamond := ROTATE IN Z 45 APPLIED TO Square;

Square := VECTOR_LIST N =5 2.5,2.5 2.5,-2.5 -2.5,-2.5
-2.5,2.5 2.5,2.5;

Unlike the separate parts it is composed of, the compound object named
Star1 created by the INSTANCE command can now be treated as a single
entity. The translation and scale transformations (Trans Starl and
Scale_Star1) are applied directly to Starl. There is no longer any need to
transform the Diamond and Square separately, now that they are grouped
into a compound object.

There is also a structuring command BEGIN STRUCTURE
END_STRUCTURE which groups primitives and transformations into com-
pound structures with a single name. Refer to Section GT5 Command Lan-
guage for details on using this command.

3.2 Summary

New Information Presented

1. Compound objects can be created by grouping primitives and trans-
formed primitives under a single name.

2. Groupings such as these can be treated as a single object. Transfor-
mations applied to the named compound object automatically apply
to the parts it is composed of.

What Next?
The data base of graphical objects now consists of:

e Graphical primitives.

e Transformed primitives.

o Compound objects: structures consisting of primitives and trans-
formed primitives grouped into one object.

In the next section, you will learn how compound objects are used to create
complex models with parts that can be manipulated using the interactive
devices of the PS 390.

Graphics Principles GT2-31

4. Designing a Model for Interaction

The transformations discussed so far have been called modeling operations.
They are equivalent in the real world to assembling the raw materials for a
model and making the parts that the model is composed of. Complex 3D
models consisting of separate parts are made by building each part as a
compound object made of primitives and transformations. The parts are
then grouped together to form the complete model.

Complex models are designed as a hierarchical structure called a display
tree. The display tree shows the dependencies of parts within the structure
of the model and contains all the primitives and transformations needed to
create the model in the memory of the PS 390.

Models designed as hierarchical trees are a tremendously flexible design
tool. Complicated models can be created in smaller parts and assembled as
the designer requires. Changes can be made to any component of the model
without affecting other parts. Interaction with the entire model or with any
component is possible using the dials, buttons, function keys, and data tab-
let of the PS 390.

Section GT4 Modeling gives an extended example of designing a model as a
display tree.

4.1 Designing a Complex Model

The PS 390 can be used to model objects of any complexity. Consider the
articulated mechanical arm shown in Figure 2-32.

GT2-32 Graphics Tutorials

U390046

Figure 2-32. An Articulated Mechanical Arm

The arm consists of a base, two jointed sections, and a hand. The base is
fixed and cannot move. The whole arm can rotate at the base. The two arm
pieces and hand are affected by this movement. The movement at the “el-
bow” affects the upper arm and hand only. And movement at the “wrist”
only affects the hand.

Clearly, a computer model which simulates this mechanical arm cannot be
created as a primitive vector list or polygon list. Even if the object were
created as a primitive by a host application program, it would not be a
useful model of the mechanical arm. Transformations could be applied to
translate, rotate, or scale the complete model, but there would be no way to
interact with the individual parts. The arm could not be made to rotate at
the base, the elbow joint would not bend, and the hand could not twist at the
wrist.

Graphics Principles GT2-33

4.1.1 Analyzing a Model as a Hierarchy

Complex models such as the mechanical arm which are to be designed on
the PS 390 are analyzed to determine a hierarchy of the parts that compose
the model, and to show their dependencies. A hierarchy is a principled
organization of components. The organizing principle will vary depending
on the relationship between components which the hierarchy is designed to
show. The model for the mechanical arm, for example, can be represented
by the hierarchy in Figure 2-33. This hierarchy shows the dependent and
independent motion of the components.

Mechanical Arm

Base Arm

/N

Lower_Arm_Piece Upper_Arm

Upper_Arm_Piece Hand
U390047

Figure 2-33. Hierarchy of Parts for the Mechanical Arm

This hierarchy shows that the model consists of a base and an arm. The arm
consists of a lower arm and an upper arm. The upper arm is made up of the
upper-arm piece and hand.

If the whole mechanical arm moves, then all the parts that compose it move
too. If the arm moves, the lower-arm piece and upper arm move with it. If
the upper arm moves, the upper-arm piece and hand move. The hand can
also move on its own without affecting anything else.

4.2 Display Trees

For a complex model designed to be manipulated interactively with the
PS 390, a hierarchy is drawn as a display tree. Much like a flowchart for a
conventional computer program, a display tree represents the graphical
primitives that must be created and the transformations that must be ap-
plied to create this model in the memory of the PS 390. It also indicates the
interaction points in the structure of the model to which interactive devices
will be connected to change the model dynamically.

GT2-34 Graphics Tutorials

4.2.1 Display Tree for the Mechanical Arm

The hierarchy that has been established for the mechanical arm can be used
to create the display tree shown in Figure 2-34.

Scale_Model

Translate_Model {

Cube] Vv

Lower_Arm_Piece

Upper_Arm

Rotate_Hand

Cylinder] V \% Hand

U390048

Figure 2-34. Display Tree for the Mechanical Arm

The display tree shows details of the structure of the model in the PS 390
which the hierarchy of parts in Figure 2-33 does not. In particular, it in-
cludes the primitives, the modeling transformations which create the parts
of the model from the primitives, and the interaction points which will pro-
vide motion to the whole model and its parts.

Graphics Principles GT2-35

4.2.2 Display Tree Terminology

Display trees consist of nodes and the branches that connect them. A node
is an element in the hierarchy. The squares are data nodes. These are used
to represent the primitives from which individual pieces of the model are
built: the cube, the cylinder, and the hand. The triangles are instance nodes.
These represent the grouping of primitives and modeling transformations
into parts: the Upper arm, the Arm, and the complete Mechanical Arm.
Circles represent transformations and are called operation nodes. Single
circles represent the modeling transformations that are applied to primitives
to create the pieces and move them into place. Double circles represent
interaction points. These are the operation nodes in the model which will
receive new values from interactive devices such as dials or the data tablet.

4.2.3 Nodes

Nodes are created by PS 390 commands. Commands such as VEC-
TOR_LIST and POLYGON create data nodes. ROTATE, SCALE, and
TRANSLATE commands are three of the many which create operation
nodes. The INSTANCE command creates instance nodes.

4.2.4 Updating Nodes

Each data and operation node contains information. A rotation node con-
tains a rotation matrix, a vector list node contains point and line informa-
tion, and so on. An instance node does not contain data in the same way. It
acts as a pointer to paths in the display tree and occurs at the head of a
hierarchical branch. All operation nodes and most data nodes can have their
contents changed in several ways. You can redefine the command that cre-
ated the node and change its contents that way. You can send a new value
to a node using the SEND command. Or you can program an interactive
device to send a stream of constantly changing values to a node and so
change the model dynamically.

Nodes have inputs to which data can be sent. The number of inputs depends
on the type of node. An input will only accept data compatible with its
contents. A rotation node, for instance, will only accept a 3x3 matrix; a
translation node will only accept a 2D or 3D vector, and so on.

4.2.5 Data Nodes

Data nodes represent primitive objects. Vector lists, polygon lists, curves,
and text are all defined as graphical primitives using commands which cre-

GT2-36 Graphics Tutorials

ate data nodes. These nodes always appear at the bottom of a branch. Data
nodes have inputs so that their contents can be updated. Figure 2-35 shows
the inputs to a vector list data node.

name

Vector <last> Changes last vector

Integer—— <clear> Clears list

integer——{ <delete> Deletes from end

Vector__l <append> Appends to end
Boolean <i> TRUE=Line; FALSE=Position

Vector

<i> Replaces i-th vector

VECTOR LIST

U390049

Figure 2-35. Inputs to a Vector List Node

Most of the inputs to a vector list node are named instead of being num-
bered. A new vector sent to input <last> is substituted for the last vector in
the list. An integer sent to input <clear> removes the vector whose position
in the list corresponds to the number sent; for example, sending 4 will
remove the fourth vector. An integer sent to input <delete> will delete that
many vectors from the end of the vector list. Any vector sent to input <ap-
pend> is added to the end of the vector list. A Boolean TRUE or FALSE can
be sent to a numbered input (shown as input <i>). This will change the
identifier of that vector to an L for line or a P for position. A vector sent to
any numbered input is substituted for the vector whose position in the list
corresponds to the number of the input. By sending new values to this node,
you can change the geometry and topology of an object.

4.2.6 Operation Nodes

Operation nodes represent transformations that are applied to objects: trans-
lations, rotations, and scales, viewing transformations (discussed in Section
2.5), attribute operations (discussed in Section 2.6), and rendering opera-
tions (discussed in Section 2.8). Operation nodes have inputs which will
accept data to update a node. Figure 2-36 shows the input to a rotation
node.

Graphics Principles GT2-37

name

3 X 3 matrix <1> Changes matrix value

3 X 3 MATRIX

u390053

Figure 2-36. Inputs to a Rotation Node

The rotation node has a single input which accepts a 3x3 matrix which is
substituted for the matrix currently contained in the node. Operation nodes
may be created for modeling purposes or for interaction.

Modeling nodes represent transformations used to create the original static
model by sizing the pieces and moving or rotating them into place. These
nodes are shown as single circles in the display trees. The value contained
in a modeling node is not usually updated.

Interaction nodes represent places in the model which will be connected to
interactive devices. These are operation nodes whose contents will be up-
dated with data from the devices to which they are connected. Interaction
nodes are shown as double circles in a display tree. Naturally, any node that
can be updated has the potential for being an interactive node. But certain
nodes are specifically created as interaction points in the structure of a
model.

In Figure 2-34, for example, the scale node called Base is used for model-
ing purposes: it scales the vector list Cube by a fixed amount in X, Y, and Z
to create the shape which forms the base of the arm.

The scale node called Scale_ Model, however, serves a different purpose. It
is drawn as a double circle to show that it is an interaction point in the
structure. This node will be created with a value of one (scaling by one has
no effect on the model at all). Then a dial will be programmed to supply a
3x3 scaling matrix to this node. Each time the dial is turned, a different
scaling matrix will be sent to update the node and the model will grow
smaller or larger on the screen.

GT2-38 Graphics Tutorials

A rotation node designed for interaction is usually created with a value of
zero. When the object is displayed, the zero rotation will have no effect on
the object’s orientation. As rotation matrices are supplied to the node from
a dial, the object will rotate. Translation nodes set up for interaction are
created with a value of zero in X, Y, and Z. As new vectors are sent to the
translation node, the object will move in any of the three directions.

4.2.7 Instance Nodes

Instance nodes group operation nodes and data nodes into larger named
entities and set up and maintain spheres of influence in the display tree.

4.2.8 Grouping

Instance nodes form what were called compound objects in Section 2.3.
They group transformations and primitives into a single named entity. In a
display tree for a complex model, instance nodes are often at the “head” of
branches which represent the individual parts of the model. Recall the nota-
tion used in Section 2.3 to show the structure of the object called
Trans_Starl.

Translate (Trans_Star1)
Scale (Scale_Star1)
Instance (Star1)
Rotation (Diamond)

Vector List (Square)
u390045

Figure 2-37. The Structure of Trans_Starl

The name Trans_Starl is a translation which points to Scale_Starl.
Scale_Star1 is a transformation that points to Starl. Starl groups the un-
transformed vector list defining the Square with the rotated square that de-
fines the Diamond. Both Diamond and Square share the same primitive
definition.

Graphics Principles GT2-39

If the structure Trans_Star1 is now drawn as a display tree, it appears as
shown in Figure 2-38.

Trans_Start

Scale_Star1

Diamond

Square v

U390051

Figure 2-38. Display Tree for Trans_Starl

The single instance node, Starl, groups all of the transformations that are
applied to the primitive Square under one name.

Because an instance node performs this grouping function, it has more than
one branch out of it. An instance node is the only node in a display tree
which may have more than one branch coming out of it, though a data node
and an operation node may have more than one branch into it.

4.2.9 Sphere of Influence

In a display tree, nodes higher up in the structure affect nodes lower down.
For example, the nodes Trans_Starl and Scale_Star1l at the head of the
display tree in Figure 2-38 affect everything below them. If a new scaling
matrix is sent to Scale_Starl, the complete model will get bigger or smaller
on the screen.

GT2-40 Graphics Tutorials

However, a node can only affect its descendants, that is, other nodes below
it on the same hierarchical branch. Consider a simplified representation of
the structure for the upper arm of the mechanical arm model (Figure 2-39).

Up"ewm

Upper_Arm
Piece Rotate_Hand
Cylinder \ % Hand

U390052

Figure 2-39. Structure of the Upper Arm

When a dial is connected to the interaction node Rotate_Hand, only the
hand must move, not the upper-arm piece it is connected to. So the rotation
node is placed on a different branch from the Upper Arm_Piece data node
to restrict the sphere of influence of the rotation. The rotation will only
affect the data node Hand.

Instance nodes govern the spheres of influence in a hierarchy. Every branch
out of an instance node is affected by operations above the instance node.
Operations below the instance node in one branch affect only data in that
branch. Instance nodes maintain the integrity of each branch they govern.
Consider the following simple tree in Figure 2-40.

Graphics Principles GT2-41

Shape

Inner_Part Outer_Part

Square Y,

U390053

Figure 2-40. A Simple Display Tree

The tree in Figure 2-40 represents the structure of the shape in Figure 2-41.

U390054

Figure 2-41. Shape Represented by Display Tree in Figure 2-40

The shape is created in two parts from a single square primitive. The inner
part is the square rotated 45 degrees in Z. The outer part is made by scaling
the square nonuniformly in X and Y. The instance node Shape groups the
primitive and both transformations into a single compound object.

Both transformations are applied to the same primitive, but they apply inde-
pendently. The instance node Shape ensures that this occurs. The rotation in
the left-most hierarchical branch out of Shape does not affect the scale in

GT2-42 Graphics Tutorials

the right branch, and vice versa. Any transformations applied to Shape (that
is, above Shape in the display tree) would then affect both branches
grouped by the instance node.

4.3 Summary
New Information Presented

1. Complex models consisting of separately maneuverable parts are de-
signed as a hierarchy of the components of the model.

2. A display tree is a hierarchy which shows the primitives, transforma-
tions, and groupings that are used to create the model in the PS 390.
Display trees consist of data nodes, operation nodes, and instance
nodes, and the branches that connect them.

3. Data nodes and operation nodes can have their contents modified.
Certain operation nodes serve as interaction points in the model.
They are designed to be updated by values from the interactive de-
vices. In this way, a dial can be connected to a rotation node, for
example, to allow the model to be dynamically rotated.

What Next?

The data base now contains all of the “building blocks” for complex mod-
els.

e Primitives
* Transformed primitives
e Compound objects

e Complex objects: hierarchical groupings of independent parts of a
model, equipped with interaction points

In the next section, you will see how viewing nodes are added to the display
tree to create different views of the model that has been created.

Graphics Principles GT2-43

5. Looking at Objects

When you have created an object as a primitive, a compound object, or a
complex model, you will want to get some view of that model on the screen.
In the real world you can see a different view of an object by moving it. This
is simulated in a graphics system by applying modeling transformations
(translations and rotations) to the object. An alternative in the real world is
for you to move. Leaving the object alone, you can walk around it and
change your viewpoint.

The PS 390, in effect, lets you do the same thing. Using viewing operations,
you can obtain a number of “natural” views of a model on the screen.

These operations mimic the way you look at objects in real life. You decide
your eye point in the coordinate system and the direction you are looking in.
You can determine how much of the world coordinate system (and the
model) will appear in your view. You can enhance your perception of three
dimensions using perspective (to make objects further away appear smaller)
and depth cueing (to make them dimmer as they recede). In the real world,
objects at a distance or outside your range of view disappear naturally. The
PS 390 performs clipping to eliminate objects or parts of objects that lie
outside the screen boundaries.

Once you have determined the particulars of the view (the viewpoint and
“window” into the world coordinate system) you can determine where that
view will appear on the screen. Areas of the PS 390 screen can be defined
as viewports in which views of the models will appear.

There are two types of viewports: the dynamic viewport, and the static
viewport. The dynamic viewport is designated for manipulation and display
of wireframe models, while the static viewport is used for the display of
hidden-line and shaded renderings. An unlimited number and combination
of viewports can be specified.

Viewing operations are defined as part of the structure of a model. They are
represented as operation nodes in the display tree, with the exception of the
static viewport specification. Refer to Section GT8 Viewing Operations for a
complete description.

GT2-44 Graphics Tutorials

5.1 Viewing Operations

The modeling transformations discussed earlier let you use primitives as
building blocks for the components of a hierarchically structured model,
changing their basic shape and moving them into position. Once the model
is designed, you need to get a picture of it on the screen. The PS 390 offers
a set of viewing operations that can be applied to a model to create various
views of objects in the world coordinate system.

5.1.1 Displaying an Object

With the PS 390, you can get a picture of a model on the screen by entering
a single command. Consider a square with sides one unit long. This shape
can be created by entering the following vector list.

Square := VECTOR_LIST N =5 .5,.5 .5,-.5 -.5,-.5,
-.5,.5, .5,.5;

To display this shape on the screen, it is sufficient to enter

DISPLAY Square;

The Square shape will appear on the screen as shown in Figure 2-42.

\. J
U390055

Figure 2-42. The Location of the Square on the Screen

The apparent operation of a single command is, in fact, more complicated.
The PS 390 does not simply display Square; it displays a view of Square.

Before the PS 390 can display this view it needs information about

* A line of sight—your vantage point (as viewer) in the world coordinate
system and the direction in which you are looking.

Graphics Principles GT2-45

* A viewing area—what part of the world coordinate system to include
in the view.

* A viewport—where on the PS 390 screen to display the view.

If you do not specify a line of sight, a viewing area, and a viewport, the
PS 390 uses default values. It assumes you are looking from the origin
along the positive Z axis. The viewing area extends from -1to1inX and Y
and from almost zero to 10 -15 in Z. And the viewport defaults to the full
dynamic PS 390 screen. These three default values are in effect when you
simply display the Square.

5.2 Establishing a Line of Sight

In the real world, you establish a line of sight by standing in some spot,
looking towards something, and possibly tilting your head. This gives you a
specific view of the object you are looking at. The PS 390 simulates this
same ability with a LOOK command. Suppose, for example, the world coor-
dinate system contains a cube with its faces labeled top, bottom, front,

back, left and right. The cube is centered around the origin, as shown in
Figure 2-43.

7 U390056

Figure 2-43. A Cube With Labeled Faces
For clarity in the following illustrations, only three labels are shown at a

time. If you display the cube without changing the default line of sight,
viewing area, or viewport, the screen will show the picture in Figure 2-44.

GT2-46 Graphics Tutorials

FRONT

\. J
U390057

Figure 2-44. Displaying the Cube

If you want a picture of the top of the cube, you can think of this as moving
your eye above the cube and looking down the Y axis at it, as shown in
Figure 2-45.

)
Figure 2-45. “Looking Down” the Y Axis at the Cube

The view of the cube which will be displayed is shown in Figure 2-46.

Graphics Principles

GT2-47

TOP

. .
U390059

Figure 2-46. Looking Down at the Cube: the View on the Screen

A PS 390 command which will create this view of the object is as follows:

Top_View := LOOK AT 0,0,0 FROM 0,.5,0 APPLIED TO Cube;

An optional UP clause in the command lets you specify what direction is up.
This is equivalent to tilting your head left or right.

The concept of “looking at an object” is a very natural way for humans to
think. With a graphics system, of course, every visual effect is an illusion.
When you look at an object from a location in the world coordinate system,
the computer cannot actually move your eye to that location. Instead, it
applies transformations to the points and lines that comprise the object and
creates a picture of what you would see if you could move your eye.

To get this effect, the LOOK command actually performs the following
transformations. First, it translates all points in the coordinate system so
that the FROM point is at the origin. It then rotates all points so that you are
looking along the positive Z axis towards the AT point. It also rotates points
so that the “up” vector is in the positive YZ plane. The ultimate effect of all
this is to place your “eye” at the origin and place the object you are looking
at in front of your “face” in the positive Z axis.

After you create Top View with the LOOK command, the world coordinate
system and the points and lines defining the cube have been transformed as
shown in Figure 2-47.

GT2-48 Graphics Tutorials

U390060

»
\
X

/’

Figure 2-47. How the LOOK Command Rearranges the Coordinate System

This rearrangement of the world coordinate system is accomplished with a
4x3 transformation matrix, a compound matrix of rotations and transla-
tions. The PS 390 uses the information you supply in the LOOK command
to create this matrix. It then multiplies all coordinates by this matrix to
create the correct “view” of the object for the line of sight you specified.

Section GT8 Viewing Operations teaches how to use the LOOK command
with all of its options. Mastering this command ets you locate your view-
point anywhere in the world coordinate system, look in any direction, and
specify any direction as “up” to create a specific view of an object.

5.3 Including Part of the World Coordinate System

In the real world, your view is limited by several factors. If you do not
change your position, you cannot see things that are behind you or to either
side beyond your field of view. Your view is further limited if you are look-
ing out of a window, or through binoculars or the view finder of a camera.
You can only see whatever part of the world is “framed” by the window or
the lenses.

With a graphics system, looking at the world coordinate system is much like
looking through a view finder. You must specify how much of the world will
appear in the view which is displayed on the screen. An area of the world
specified for viewing is called a viewing area or a window. To “see” an
object in the world coordinate system, that object must lie in the direction of
your line of sight and must be contained within the viewing area you
specify.

Graphics Principles GT2-49

GT12-50

5.3.1 Viewing Areas in the World Coordinate System

The PS 390 lets you create two types of viewing areas. The WINDOW com-
mand creates a viewing area for orthographic or parallel projection views.
The FIELD OF_VIEW and EYE commands create a viewing area for dis-
playing objects as perspective projection views.

5.3.2 Orthographic Views

A viewing area for orthographic views can be thought of as a box which can
be positioned anywhere in world coordinate space but oriented with its sides
parallel to the three major coordinate system planes (XY, XZ, and YZ), as
shown in Figure 2-48.

U3900561

Figure 2-48. An Orthographic Viewing Area

The viewing area defined by the box has limited X (width), Y (height), and
Z (depth) dimensions. In general, if an object lies within the area, it is
visible; if it is outside the space, it is not visible. The X and Y boundaries of
the viewing space are always in effect. Any object outside those boundaries
is never visible. The XY planes at the front and back of the box, however
can be enabled or disabled at will. If these planes are disabled, as long as
an object lies within the X and Y boundaries, it will be visible no matter
where it is located along the positive or negative Z axis. This is shown in
Figure 2-49.

Graphics Tutorials

INVISIBLE

VISIBLE

U3900562

Figure 2-49. *“Visible” and “Invisible” Objects

If an object is only partially within the XY bounds of the viewing area, only
parts of it are visible. In this case, the computer calculates which lines are
visible and clips those that are not visible from the view (Figure 2-50).

U3900563

Figure 2-50. Clipping Parts of an Object

Clipping can also be specified in the Z dimension by enabling the front and
back faces of the viewing space which are called clipping planes. The front
boundary is sometimes called the hither plane; the back is called the yon
plane. Objects or parts of objects that lie outside the front and back bounda-
ries may be clipped from view. This is known as depth clipping, and is
illustrated in Figure 2-51.

Graphics Principles GT2-51

GT2-52

CLIPPED LINES

Py
~2% 7y
= ’
-’ I/ ,’
= ’

/

FRONT BOUNDRARY
BACK BOUNDARY

U3900564

Figure 2-51. Depth Clipping of Objects

Objects within an orthographic viewing area are displayed in orthographic
or parallel projection. This produces a view in which lines that are parallel
in the object remain parallel in the view. A rotated cube viewed in ortho-
graphic projection, for example, appears as shown in Figure 2-52.

\ J
U390065

Figure 2-52. Orthographic View of a Rotated Cube

An object must be enclosed in a viewing space before it can be displayed. If
you simply display an object (as with Square at the beginning of this sec-
tion) without explicitly defining a viewing space, the PS 390 defines one for
you. The default viewing space imposed by the system is shown in
Figure 2-53.

Graphics Tutorials

// i
! v 10'°
s | 1/’,/
doo .
x«—;;————:— 1
/ !
P ' -15 U390066
,) s 10
z |
v

Figure 2-53. The Default Viewing Space

This is a viewing space for orthographic views only. It extends from -1 to 1
in the X and Y dimensions, and from 10 ~'° (almost Zero) to 10*' in Z.

With the PS 390, a viewing space for orthographic views is created explic-
itly with the WINDOW command. For example, the command

New_View := WINDOW X = -2:2, Y = —-2:2 APPLIED TO Cube;

creates a viewing space twice as high and twice as wide as the default
space, but with the same depth. Optional parameters of the command allow
you to change Z values by specifying the location of front and back clipping
planes. The section, Defining An Orthographic Window in GT8 Viewing Opera-
tions explains the WINDOW command and its options.

5.3.3 Perspective Views
One way in which the PS 390 creates the illusion of depth on a flat screen is
to display objects in perspective.

In perspective views, parallel lines that go back from your eye point appear
to be converging. A rotated cube viewed in perspective might appear as
shown in Figure 2-54.

Graphics Principles GT2-53

\ J
U390067

Figure 2-54. Perspective View of a Rotated Cube

A perspective viewing space is a volume shaped like a frustum, a section of
a pyramid bounded by the front and back clipping planes. If you extend the
sides of the pyramid back, the apex of the pyramid is the eye point as
defined in the LOOK command (Figure 2-55).

FRONT BOUNDARY, BACK
BOUNDARY
/a 2%
- U390068
EYE POINT

Figure 2-55. A Viewing Area for Perspective Views

Two PS 390 commands create perspective views: the FIELD_OF_VIEW
command and the EYE command. Both commands are used in conjunction
with the LOOK command.

The FIELD OF_ VIEW command lets you specify an angle of view from the
eye point, which is the FROM point specified in the LOOK command. Op-
tional clauses let you specify the location of front and back boundaries.
These determine the depth of the viewing area created with this command.
A perspective view is fully defined in conjunction with a LOOK transforma-
tion. If no LOOK is specified, the default values are assumed.

The following commands set up a line of sight and a perspective view of an
object called Cube using a viewing angle of 30 degrees.

GT2-54 Graphics Tutorials

Look_Cube :
View_Cube :

LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube;
FIELD OF VIEW 30 FRONT = 4.5 BACK = 5.5
APPLIED TO Look_Cube;

The LOOK transformation will place the center of the Cube at 5 in the
positive Z axis, so assuming the cube is one unit square, front and back
boundaries of 4.5 and 5.5 should enclose it. When View_Cube is displayed,
the screen will show a cube seen in true perspective.

Note that the angle you enter in the FIELD_OF_VIEW command does not
alter the severity of the perspective imposed on the object. That is deter-
mined by the distance between your eye and the object and depth of the
object itself. Instead, the angle lets you see more or less of the world coordi-
nate system. The larger the angle, the larger the portion of the world that
will be included in the view.

In a perspective view created using the FIELD OF VIEW command, the
line of sight established by the LOOK command is always perpendicular to
the front and back boundaries of the frustum and passes through their cen-
ters. The viewing “pyramid” is always right-angled. This is shown in
Figure 2-56.

« BACK BOUNDARY

909

LINE OF SIGHT

\

\
FRONT BOUNDARY /

U390069

Figure 2-56. The FIELD OF VIEW Viewing Pyramid

Graphics Principles

GT2-55

The EYE command is used to create a view of an object as it would appear
displayed on a screen which is positioned at an angle to your line of sight,
not perpendicular to it. This perspective view simulates the “natural” distor-
tion of screen displays that your own eye would see if it were some distance
back, up or down, and left or right of the PS 390 screen.

Like the FIELD_OF_VIEW command, the EYE command creates a perspec-
tive view of an object. The eye point and the front and back clipping planes
specify a pyramid-shaped viewing area. However, if the eye point is offset
left, right, up, or down, the pyramid is skewed, unlike the right rectangular
pyramid created by the FIELD_OF_VIEW command (Figure 2-57).

BACK BOUNDARY, 7

LINE OF SIGHT

FRONT BOUNDARY

u380070

Figure 2-57. The Viewing Pyramid Created by the EYE Command

The LOOK command must be used first to establish a line of sight on the
object to be displayed. Then, clauses in the EYE command let you specify
the front and back boundaries of the viewing area in world coordinates and
your eye location relative to the center of the screen in relative room coordi-
nates. Note the difference between room coordinates and world coordinates.
World coordinates are locations in the world coordinate system where mod-
els are built and viewed. Room coordinates are locations within the real
world (the computer room where the PS 390 lives) and are used to simulate
the actual location of your eyes relative to the PS 390 screen. This is a rare
instance of when it is permissible to mix the computer’s coordinate system
and real-world coordinates, since the room coordinate values in the com-
mand are used for ratio and proportion operations only.

The following is an example of setting up a viewing area with the EYE
command.

GT2-56 Graphics Tutorials

Look_Cube := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube;

Oblique_View := EYE BACK 20 LEFT 5 UP 12 FROM SCREEN
AREA 20 WIDE
FRONT = 4.5 BACK

5.5 APPLIED TO Cube;

In this command, the front and back boundaries are chosen to enclose the
cube after the LOOK transformation has taken place. When Oblique_View
is displayed, the cube will appear in the correct perspective to simulate an
eye position that is back from the screen, over to the left and somewhat
high.

The section called Defining Perspective Windows in GT8 Viewing Operations
fully explains the FIELD_OF_VIEW and EYE commands with all of their
options.

5.4 Displaying an Image in Some Area of the Screen

Whenever you instruct the PS 390 to display an object by simply using the
DISPLAY command, as long as the object fits within the default window
(that is, from 1 to -1 in X and Y and from 10 ~!¥(almost Zero) to 10 *!% in
Z) it will occupy the full screen. For example, a cube defined around the
origin with sides 2 units long fits exactly in the default window. When the
cube is displayed, an orthographic view will appear which fills the entire
display area of the screen, as shown in Figure 2-58.

\. i
U390071

Figure 2-58. Displaying an Object With the Default Window

Graphics Principles GT2-57

5.4.1 Specifying a Viewport

When an image is displayed on the screen, the view of the object contained
in the viewing area is mapped to a viewport. A viewport is an area of the
screen with horizontal (X) and vertical (Y) boundaries. A viewport may be
specified as either dynamic or static, depending upon what kind of opera-
tions are to be performed in the viewport. Real-time manipulation and dis-
play of wireframe models is done in a dynamic viewport, while the display
of hidden-line or shaded renderings is done in a static viewport.

The dynamic viewport has an optional intensity range. The intensity range
specifies the dimmest and the brightest that lines will be drawn on the
screen. Lines at the front clipping plane of the viewing area will be bright-
est. By default, lines at the back clipping plane will be dimmest. The vari-
ation of intensity levels within a viewport creates an effect known as depth
cueing.

Perspective views created with the FIELD OF VIEW or the EYE command
naturally give the illusion of depth to any object displayed on the screen.
This illusion is further enhanced by depth cueing. When intensity levels
have been set for a dynamic viewport, the PS 390 varies the intensity of
lines in the view that represent the Z dimension (depth) of the object. A line
that recedes in the Z axis from the eye point gets dimmer as positive Z
values increase. This gives the impression that objects are being displayed
in a place that is brightly lit close to you and more dimly lit farther away.
Depth cueing can be turned on or off. The default is on.

The default viewport to which the PS 390 maps views of objects in the
viewing area is the full dynamic screen, and the full intensity range (from 0
to 1) is in effect. There are two commands that let you change the size of
the dynamic viewport, relocate it anywhere on the screen, and vary the
intensity. These are the VIEWPORT and the LOAD_VIEWPORT com-
mands. The VIEWPORT command specifies a viewport relative to the cur-
rent viewport, implying that a new viewport specification may be no larger
than the current viewport. The LOAD_ VIEWPORT command, however,
does not have this restriction, and specifies viewports relative to the full
PS 390 screen.

GT2-58 Graphics Tutorials

The following command, for example, creates a viewport in the upper-right
quadrant of the screen, and sets an intensity range from .5 to 1.

New_VieWpOI‘t := VIEWPORT HORIZONTAL=0:1 VERTICAL=0:1] INTENSITY=.5:1
APPLIED TO Cube;

When New_Viewport is displayed, a cube will appear in the upper-right
quadrant of the screen. There will be less contrast between the brightest and
the dimmest lines than in the original view of Cube.

Specification of a static viewport is done by sending a value to an input of
the SHADINGENVIRONMENT initial function instance. The SHADINGEN-
VIRONMENT function also allows you to clear either the current viewport
or the entire screen, and specify whether it is to be treated as a dynamic or
static viewport.

To obtain an accurate view of an object, the viewport it is displayed in must
have the same aspect ratio as the viewing area that encloses the object. The
aspect ratio is the ratio of height to width. Objects defined in viewing areas
with square front and back boundaries and displayed in nonsquare view-
ports will appear distorted.

An arrow enclosed in a square viewing area and displayed in nonsquare
viewports, for instance, may look like this (Figure 2-59).

SCREEN
o)
| |
1 \
WINDOW ! !
r———ax——- q ! |
1 | | |
I | |]
| | \ i
| |—> 1 Vo e
]] i v T A
]] i \ \ |
! ! | i
S N,
Lt—ly .. _ 1
\ Viewport Viewport),

U390072

Figure 2-59. Distorted Views of the Arrow

Distortion also occurs when nonsquare viewing areas are displayed in
square viewports. The FIELD OF_VIEW and EYE commands always create

Graphics Principles

GT2-59

viewing areas with an aspect ratio of 1:1, a square. The WINDOW com-
mand can be used to create a viewing area with an aspect ratio that is not
1:1, a nonsquare viewing area.

Any size and any number of viewports may be displayed at the same time.
In this way the screen can be used to show multiple views of the same
object or different views of different objects.

Note that viewport operations are the only viewing operations which are not
matrix transformations of graphical data. When the contents of a viewing
area are mapped to a viewport, this is a ratio and proportion operation, not
a transformation of coordinates in the world coordinate system.

5.5 Viewing Transformations and Display Trees

When views of objects are created, viewing operation nodes are added to
the display tree.

Consider, for example, the group of objects shown in Figure 2-60.

VA

+Y

AN |
AP X

U390073

Figure 2-60. A Group of Objects in the Coordinate System
The group consists of three primitives: a sphere centered around the origin,
and a cube and pyramid translated off the origin. These primitives have

been grouped as an instance called Shapes. The display tree for Shapes is
shown in Figure 2-61.

GT2-60 Graphics Tutorials

SHAPES A

Vv \ \

SPHERE PYRAMID CUBE 200074

Figure 2-61. Display Tree for Shapes

If you use the DISPLAY command to view Shapes, the picture on the screen
will be as shown in Figure 2-62.

4)

a0

U390075

Figure 2-62. DISPLAYing Shapes

The default viewing space is a window for orthographic projection, the de-
fault LOCOK is in effect, and the default viewport is the dynamic full screen.

To get any other view of Shapes on the screen, you must explicitly use the
viewing commands.

To establish a different line of sight, for instance, use the LOOK command
as follows. Look towards the origin from a position that is left (negative X),
up (positive Y), and back (negative Z) from the origin.

View_Shapes := LOOK AT 0,0,0 FROM -1,1,-5 APPLIED TO Shapes;

The LOOK command adds the following node to the display tree
(Figure 2-63).

Graphics Principles GT2-61

View_Shapes

\ \' \

Sphere Pyramid Cube 390076

Figure 2-63. Adding the LOOK Node

Now build a viewing area around Shapes so that the objects can be seen in
perspective projection. First calculate where the LOOK command has actu-
ally placed the objects in the coordinate system. Remember that all coordi-
nates are translated and rotated so that the FROM point is at the origin and
“the AT point is in the positive Z axis. The new location of an object in Z is
found by taking the square root of the following equation.

2 2 2
Xa - Xf) + (Ya - YI) + (Za - Zf)

In this equation, “a” is the AT point in X, Y, and Z and “f” is the FROM
point.

In a LOOK command with a FROM point of 0,0,0 and an AT of -1,1,-5,
the new location in Z of the sphere (the one object exactly at the origin) is
the square root of 27, or 5.1962. This is shown in Figure 2-64.

GT2-62 Graphics Tutorials

+Y +Y +Z
+Z

AT 0,0, FROM 0,0,0 /\//—27

ﬂ +X > /ﬁ(

+X

FROM
/&_1 oM U390077

Figure 2-64. The LOOK Transformation

For maximum depth-cueing of the objects, the front and back boundaries of
the perspective viewing area should be close to the objects. The sphere is a
primitive with a radius of .15, so the front boundary should be placed at
5.1962 - 0.15, which is 5.0462. The back boundary can be placed further
back at about 6. This is shown in Figure 2-65.

s
6 BACK BOUNDARY
5.04672_______
\ .~ FRONT BOUNDARY
\\ II
\]
\ !
Vg
\
\\ ,/
Qe V

(: u390078

Figure 2-65. Calculating the Front and Back Boundaries

Graphics Principles GT2-63

Finally a viewing angle must be chosen. An angle of about 28 degrees
should suffice. The command to create the perspective view, then, is as
follows.

Perspective_View := FIELD OF VIEW 28 FRONT = 5.0462 BACK = 6
APPLIED TO View_Shapes;

This adds a viewing matrix node to the display. The new structure is shown
below (Figure 2-66).

Perspective_View

View_Shapes

\% \ \

U390079

Sphere Pyramid Cube

Figure 2-66. Adding the FIELD OF_VIEW Node

Now, create a viewport in the upper-right corner of the screen. This is where
the view of Shapes will be displayed. Do not use the optional intensity
clause, so that Shapes will be displayed with the full intensity in effect for
maximum depth-cueing.

Final View := VIEWPORT HORIZONTAL=0:1 VERTICAL=0:1

APPLIED TO Perspective_View;

The display tree for the final view is shown in Figure 2-67.

GT2-64 Graphics Tutorials

When Final_View is displayed, the PS 390 screen will appear as shown in

Figure 2-68.

Graphics Principles

Final_View

Perspective_View

\

v

\%

Sphere

Figure 2-67. Adding the VIEWPORT Node

Pyramid

Cube

u390080

VA

()

&

_J

U390081

Figure 2-68. The Final Display

GT2-65

5.6 Summary

New Information Presented

1. Viewing operations are matrix and nonmatrix operations that let you
create a variety of views of objects and display those views anywhere
on the PS 390 screen.

2. A complete “view” is created by establishing a line of sight, defining
a viewing area in the world coordinate system, and defining a view-
port on the PS 390 screen. The PS 390 assumes default values for all
three if they are not explicitly specified.

3. A line of sight is a matrix operation which specifies a point to look
from and a direction to look at. You can also specify which direction
is up. Whatever values you assign to these variables, the PS 390
translates coordinates so that the “look from” point is at the origin
and the “look at” point is somewhere in the positive Z axis. It also
rotates all coordinates so that “up” is in the YZ plane.

4. Viewing areas result from matrix transformations which produce or-
thographic or perspective views of objects. For an object to be vis-
ible, it must be enclosed in a viewing area. Objects or parts of ob-
jects that lie outside the viewing area are clipped, and do not appear
in the view displayed on the screen.

5. A viewport is the area of the screen in which the contents of a view-
ing area are displayed. Viewports are not matrix operations. Two
kinds of viewports can be specified, dynamic or static. Any number
of viewports and any sized viewports can be displayed at the same
time. A difference between the aspect ratio (width to height) of the
viewing area and the aspect ratio of the viewport will result in a
distorted view of the object.

6. Viewing transformations add operation nodes to the display tree for
an object.

What Next?

The data base now contains display trees that represent many different
views of the basic models that have been created. By displaying these views,
any number of images can be displayed on any part of the PS 390 screen.

In the next section, you will see how attributes can be assigned to the
objects you create.

GT2-66 Graphics Tutorials

6. Using Attributes

Modeling operations let you create objects of any complexity with the
PS 390. Using viewing operations, you can create an infinite number of
different views of the objects and display them anywhere on the screen.
Another set of operations add a further range of possibilities to the images
that are displayed. They let you assign attributes to an object to enhance its
usefulness in modeling and analysis applications.

6.1 Attributes

All modeling and viewing operations (other than viewports) transform the
coordinates of objects in the world coordinate system to create new objects.
Each transformation adds an operation node which applies matrix opera-
tions to the object definitions.

The PS 390 lets you add other operation nodes to a display structure which
do not transform graphical data and so do not create transformation matri-
ces. These nodes assign attributes to an object.

Attributes offer a variety of possibilities for changing the characteristics of a
displayed image. These include:

e Determining aspects of the image such as color, intensity, and the
character font in which text appears.

e Referencing objects or parts of objects for display only when certain
conditions are met.

e Marking parts of the displayed image as capable of being “picked”
with a stylus, puck, or other pointing device.

Attribute settings are different from transformations because they are not
matrix operations. Attribute nodes set and change values which are stored
in registers. These registers record the current state of the machine. When
the display processor of the PS 390 encounters an attribute node in a dis-
play structure, the contents of the node are used to check and sometimes to
change the register representing that attribute. For example, an attribute
node which sets depth clipping can enable or disable depth clipping, de-
pending on the Boolean value contained in the node.

There are three classes of attributes: appearance attributes, structure attrib-
utes, and picking attributes.

Graphics Principles GT2-67

6.2 Appearance Attributes

Appearance attributes govern the following aspects of an object when it is
displayed.

e The colors of lines that form the image.

e The intensity at which lines are drawn.

o Whether or not depth clipping is performed on the image.

e The character font for any text in the image.

6.2.1 Displaying Objects in Color

Objects or parts of objects can be displayed in different colors. Color is
specified as a hue and a saturation. The hue is the color itself. There are
360 hues to choose from. These correspond to values on a color wheel as
shown in Figure 2-69.

BLUE
360,0
CYAN MAGENTA
300 60
GREE ED
240 120
YELLOW
180 U390082

Figure 2-69. The Color Wheel

Blue has a value of 0 and 360, red is 120, and green is 240. The saturation
is the amount of color versus the amount of white in the hue, and is speci-
fied as a range from 1 to 0. Blue at high saturation is deep toned. At low
saturation, it is sky blue, and at 0 saturation it is white.

GT2-68 Graphics Tutorials

6.2.2 Displaying All Vectors in the Same Color

Color is applied to an object using the SET COLOR command. A cube can
be colored red by applying the following command to Cube.

Red_Cube := SET COLOR 120,1 APPLIED TO Cube;

When Red_Cube is displayed, the lines that form the cube will appear in
full-bodied red on the screen.

With complex objects, different parts of the object can be displayed in dif-
ferent colors. Each SET COLOR command creates an operation node in the
display structure for the object. Consider the mechanical arm discussed in
Section GT2.4. A simplified display tree is as shown in Figure 2-70.

MechanioaI_Ar

Base \%

Lower_Arm_Piece

Upper_Arm_
Piece

\ Hand

Cylinder \
390083

Figure 2-70. A Simplified Display Tree for the Mechanical Arm

Graphics Principles GT2-69

You can use the SET COLOR command to color the parts of the model
separately. For example, the base can be colored red, the arm pieces blue,

and the hand green. The display tree with the SET COLOR nodes added is
as shown in Figure 2-71.

MechanicaI_Ar

Base \Y;

Lower_Arm_Piece Upper_Arm

Hand

U380084
Cylinder | v

Figure 2-71. Display Tree With Color Nodes
For more information on color nodes, refer to the section called Setting

Color in Section GT8 Viewing Operations.

GT12-70 Graphics Tutorials

6.2.3 Setting and Changing Intensity Levels

The PS 390 can be programmed to vary the intensity at which line segments
are drawn between endpoints. This ability is used to good effect in the proc-
ess known as depth cueing. Depth cuing enhances the illusion of three-
dimensional views by varying the intensity of any line that recedes in the
positive Z axis. Lines in an image which are “farther away” from the viewer
appear dimmer.

Intensity levels are associated with dynamic viewports. An option of the
VIEWPORT and LOAD_VIEWPORT commands allows you to specify the
intensity variation for lines drawn within the dynamic viewport. A minimum
and a maximum intensity are specified as values from 0 to 1. When objects
enclosed in an orthographic or perspective window are mapped to the view-
port, lines closest to the front boundary of the window are drawn at maxi-
mum intensity, and lines closest to the back boundary are drawn at mini-
mum intensity.

The PS 390 also has a SET INTENSITY command which allows intensity to
be specified as a separate attribute of an object. The command creates an
attribute operation node in a display tree which overrides the intensity speci-
fication of the VIEWPORT or LOAD_ VIEWPORT command.

A SET INTENSITY node in a display tree is often used as an interactive
node. The node has two inputs. One accepts a Boolean value to enable or
disable the effect of the node. The other accepts a 2D vector to change the
intensity range. Thus a SET INTENSITY node in a display tree can be used
to interactively change the intensity setting of a displayed image. The fol-
lowing command creates a node named Change_Intensity.

Change _Intensity := SET INTENSITY OFF 0.0:0.5 APPLIED TO Car;

The display tree which contains this node might be structured as in
Figure 2-72.

Graphics Principles GT2-71

Function Key

Change_Intensity

— @
\

U390085

Figure 2-72. An Interactive Intensity Node

Function networks connect the two inputs of the node to interactive devices.
Until the SET INTENSITY node is enabled, the intensity setting of the dy-
namic viewport (the default setting of 0:1) is in effect. A Boolean TRUE
sent to input <1> from a function key will enable the SET INTENSITY node.
New intensity settings can then be supplied from a dial, so that the operator
can interactively change the intensity setting while viewing an image.

For more information on setting intensity, refer to Section G78 Viewing Op-
erations.

6.2.4 Enabling and Disabling Depth Clipping

Depth clipping is the operation of clipping (removing from the screen) ob-
jects or parts of objects that extend outside the viewing area in Z. The
PS 390 automatically clips objects or parts of objects which extend beyond
the X and Y boundaries of a window. Depth clipping (or Z clipping) is an
optional feature which is not in effect when the system is initialized. It is
specified as an attribute of an object.

GT2-72 Graphics Tutorials

Orthographic and perspective windows are defined with front and back
boundaries or Z-clipping planes. When depth clipping is enabled, only ob-
jects or parts of objects that lie within the area bounded by the Z-clipping
planes will be displayed in the viewport. This is illustrated in Figure 2-73.

Back Clipping Plane //’ [.

v
4
yd \ J
— SCREEN

U390086

Front Clipping Plane

World Coordinate
System

Figure 2-73. Depth Clipping Enabled for a Viewing Area

When depth clipping is disabled, objects that lie outside the Z-clipping
planes in the positive or negative Z axis will be visible. Consider the objects

in Figure 2-74.

Graphics Principles GT2-73

Back Clipping Plane

Front Clipping Plane

u390087

Figure 2-74. Objects Outside the Front and Back Boundaries

The cube and the sphere will not be displayed if depth clipping is on, be-
cause they lie outside the front and back boundaries. When depth clipping is
turned off, however, they will be displayed.

Objects in front of the front boundary, such as the cube, will be displayed at
maximum intensity. Objects behind the back boundary, such as the sphere,
will be displayed at minimum intensity.

The following command enables depth clipping for an object called Ro-
tated_Car.

Z _Clip := SET DEPTH_CLIPPING ON APPLIED TO Rotated_Car;

A display tree into which the SET DEPTH_CLIPPING node is inserted is
shown in Figure 2-75.

GT2-74 Graphics Tutorials

Function Key

Z_Clip O
Rotated_View FOD

Rotated_Car R

Car \

u390088

Figure 2-75. Display Tree With Depth-Clipping Node

The node can be turned on or off interactively. It has one input which ac-
cepts a Boolean TRUE or FALSE. TRUE turns depth clipping on; FALSE
turns it off. A function key can be connected to the node to toggle depth
clipping on and off.

6.2.5 Choosing a Character Font for Text

If text forms part of an object as a label, a menu item, or annotation, for
example, you can add attribute nodes in the display tree to allow different
character fonts to be used.

The PS 390 has a standard character font in which all text appears. You
also have the ability to create alternate fonts. There is a command which
allows you to design any number of other character fonts. This command
(BEGIN_FONT END_FONT;) lets you enclose up to 128 separate vector
lists defining characters within a named structure. Each vector list defines a
letter, character, or number in the character font. For more information on
the BEGIN_FONT ... END_FONT; command, consult Sections RMI Com-
mand Summary and GT10 Text Modeling and String Handling. Also, in Section
TT3 Data Structure Editor there is a user’s guide to MAKEFONT, a graphi-

Graphics Principles GT2-75

cal character font editor program. This program allows you to create new
character fonts, to combine fonts, and to change existing fonts.

Once an alternate font has been created, it can be used by setting an attrib-
ute node in the display tree. Suppose that the alternate fonts Italic and Mod-
ern have been created, and that character strings in a display tree are to be
displayed in the standard font and in Italic and Modern. Consider the dis-
play tree in Figure 2-76 for a group of labeled objects.

Labeled_Shapes \
I

\ \ \ C C C

Cube Pyramid Sphere String1 String?2 String3
u390089

Figure 2-76. Display Tree for a Group of Labeled Objects

The instance node Labeled Shapes groups vector lists for three objects (a
cube, a sphere, and a pyramid) and character strings (“Cube”, “Sphere”,
and “Pyramid”) to label the objects. Each character node is created by the
CHARACTERS command. The character nodes are preceded by a CHAR-
ACTER SCALE and a TRANSLATE node to scale the characters and move
them to their correct location. When Labeled_Shapes is displayed, the three
objects will appear labeled in the standard font.

Suppose you want the word “Cube” (String 1) to appear in the Italic font
and “Sphere” (String 3) to appear in Modern. Two CHARACTER FONT
nodes must be inserted above the data nodes for the cube and sphere labels.
The following commands create those nodes.

GT2-76 Graphics Tutorials

Cube_Label := CHARACTER FONT Italic APPLIED TO String 1;
Sphere_Label := CHARACTER FONT Modern APPLIED TO String 3;

The modified display tree with alternate fonts specified is structured as

shown in Figure 2-77.

Labeled_Shapes
I

\ \ \

Cube Pyramid Shpere

Cube_Label

/
/
ltalic 7

7/

T
C C
String1 String2 String3

Sphere_Label

A
N

\ Modern

U390090

Figure 2-77. Display Tree With Character Font Nodes

The CHARACTER FONT nodes called Cube_Label and Sphere Label are
pointers to the fonts called Italic and Modern. The branch of the tree which
ends at the CHARACTERS node for labeling the pyramid has no CHARAC-
TER FONT node in it, so the string “Pyramid” will appear in the standard

font.

6.3 Structure Attributes

A display tree for an object is composed of branches which determine the
paths that the display processor must take when the object is being dis-

Graphics Principles

GT12-77

played. Each branch is unconditionally traversed during each display proc-
essing cycle. Structure attributes create nodes in a display tree at which
“branching” may occur only if certain conditions are met. These attributes
allow you to:

e Reference objects or parts of objects by setting conditional bits and
testing those bit settings further down the display tree.

e Add or remove detail from an object by setting level-of-detail bits
and testing for them further down in the display tree.

o Control blinking or alternate displaying of images by setting a rate
and an on/off phase, then testing for the phase further down the
display tree.

6.3.1 Conditional Referencing

Conditional referencing is generally used to display or blank parts of a com-
plex structure by selectively traversing or bypassing branches of a display
tree. Two commands are needed to set up and use conditional referencing.
The SET CONDITIONAL BIT command sets any of fifteen conditional bits
numbered 0 to 14. This creates a SET CONDITIONAL BIT node, or SET
node for short, in the display tree. Below the SET node, an IF CONDI-
TIONAL BIT node, or IF node, is created. This node tests a conditional bit
setting and branches to the name it is APPLIED TO if the condition is met.

For example, consider a display tree for a car which, for simplicity, consists
of four wheels, a chassis, and a body, as shown in Figure 2-78.

)
«
))
W
)]
€8

\ \ \

U390091

Wheels Chassis Body

Figure 2-78. Simplified Display Tree for a Car

GT2-78 Graphics Tutorials

For some reason, you want to be able to display or blank the car body at
your whim. Use the SET command and IF command to create a pair of SET
and IF nodes in the branch which ends with Body.

Set_Condition := SET CONDITIONAL_BIT 1 ON THEN Condition_ Met;
Condition_Met := IF CONDITIONAL_BIT 1 IS ON THEN Body;

Notice that the THEN form of the command is used. This is synonymous in
all cases with the APPLIED TO form of the command, but makes more
syntactic sense to readers.

Figure 2-79 shows the display tree with conditional referencing nodes
added.

|

))
«
))
U

\' \Y Set_Condition

Condition_Met

Wheels Chassis

\ Bedy

U390092

Figure 2-79. Display Tree With Conditional Referencing Nodes

Initially, when Set Condition is displayed, all the components of the car,
including Body, will be displayed. The condition that bit 1 be set on is met
and the path to the data node Body is made. The ON/OFF clause lets you
control the display of the car body. A function key can be connected to
Set_Condition to turn it ON (Boolean TRUE) or OFF (Boolean FALSE).
When the bit is off, the car body will not be displayed.

Graphics Principles GT2-79

Refer to the section Using Conditional-Bit Attribute Settings in Section
GT9 Conditional Referencing for more examples of this sort.

6.3.2 Level of Detail

Level of detail is another form of conditional referencing that is built into a
display tree using pairs of SET and IF nodes. This form of conditional refer-
encing is normally used to unfold detail in a complex display. For example,
a display for a geological or seismological application might show various
levels in the earth’s crust. SET and IF level-of-detail nodes can be placed in
the display tree to allow the picture to be displayed or blanked layer by
layer.

Unlike conditional-bit referencing where 15 bits may be set, level of detail
uses only one variable. This is an integer from 0 to 32767. The SET
LEVEL_OF_DETAIL command creates a SET node in the display tree. The
IF LEVEL._OF_DETAIL command creates an IF node to test the level-of-de-
tail setting and complete the path to a named entity accordingly.

Consider as an example a display tree for a three-dimensional contour map
of an area of land. You want to be able to turn a dial and add contour lines
in 50 foot increments from sea level to 250 feet. Before any level-of-detail
‘nodes are added, the display tree is simply a collection of vector lists, one
for each contour line, under a single instance node, as shown in
Figure 2-80.

Map

\ \ \ \

50_Ft 150_Ft ~ 200_Ft 250 Ft
U390083

Figure 2-80. Display Tree for a Contour Map

This structure was created by the following command which grouped the
vector lists.

GT2-80 Graphics Tutorials

Map := INSTANCE OF 50_Feet, 150_Feet, 200 _Feet, 250 Feet;

Begin allowing for level-of-detail displays by adding a SET node at the top
of the display tree.

Set_Level := SET LEVEL_OF_DETAIL TO 1 THEN Map;

Each branch of the display tree out of the instance node Map can now be
prefixed by an IF node. Unlike conditional-bit referencing IF nodes,
LEVEL_OF DETAIL nodes do not test an on/off state, but a relationship.
These relationships are as follows.

Less Than <
Less Than or Equal To <=
Equal To =
Not Equal To <>
Greater Than or Equal To >=
Greater Than >

A different value can be assigned to the IF node for each contour line in the
map. If the level of detail is 1 or greater, the fifty-foot contour is displayed.
If it is 2 or greater, the hundred-foot contour is displayed, and so on. For
example, the following command creates a node called If 1 which tests
whether or not the level of detail is 1 or greater and completes the path to
the 50-foot contour line.

If 1 := IF LEVEL_OF DETAIL >= 1 THEN 50_feet;

The complete tree with all IF nodes is as shown in Figure 2-81.

Graphics Principles GT2-81

Set_Level

\%

50_Ft 150_Ft 200_Ft 250 Ft
U390094

Figure 2-81. Display Tree With Level-Of-Detail Nodes

A function network can be connected to the SET node to supply new values
to the level-of-detail setting from a dial. As the dial is turned and the level-
of-detail changes, more of the contours will be displayed.

For more examples of this sort, refer to the section on Using
LEVEL OF _DETAIL in Section GT9 Conditional Referencing.

6.3.3 Blinking or Alternating Displays

Making an object blink or alternating the display of different objects is an-
other form of conditional referencing which involves SET nodes and IF
nodes in the display tree. The SET node sets a rate for displaying and blank-
ing the object. This rate can be under control of the refresh rate of the
PS 390 display, an internal PS 390 clock, or an external clock generated by
a function network or the host computer. The IF node determines what will
be displayed during the on phase and what will be displayed during the off
phase. The commands are SET RATE and SET RATE EXTERNAL (for an
external clock), and IF PHASE.

The SET RATE commands specify durations for the on phase and the off
phase, an optional initial state (either on or off), and an optional clause

GT2-82 Graphics Tutorials

called the delay, which specifies the number of refresh frames in the initial
state. The IF PHASE command determines what will be displayed during
the on phase and what will be displayed during the off phase using the
APPLIED TO or THEN clause to indicate a path to a named structure.

For example, to cause the label associated with an object to blink by being
displayed for 120 refresh frames and blanked for 60, the following com-
mands can be used.

Blink_Rate := SET RATE 120 60 THEN Phase;
Phase := IF PHASE ON THEN Object Label;
Object_Label := CHARACTERS “THIS IS THE OBJECT YOU CHOSE”;

These nodes would be placed in a display tree as shown in Figure 2-82.

A

SR
Blink_Rate 120
60

Phase

Object_Label C

U390095

Figure 2-82. Conditional Nodes for Blinking

The words “THIS IS THE OBJECT YOU CHOSE” will be displayed for 120
refresh cycles (about two seconds) and blanked for 60 (about one second)
when this tree is traversed.

The SET RATE and IF PHASE commands can also be used to display alter-
nately two different objects. A display tree can be created with SET and IF
nodes to display one object during the on phase and another during the off
phase. Figure 2-83 shows such a display tree.

Graphics Principles GT2-83

SR
120
120

\ \

U390096

Cube Pyramid

Figure 2-83. Display Tree for Alternate Display of Two Objects

During the on phase, the cube will be displayed for two seconds. During the
off phase, the pyramid will be displayed for two seconds. Refer to Section
GT9 Conditional Referencing for more information on blinking.

6.4 Picking Attributes

In computer graphics terms, picking means selecting by means of a stylus, a
puck, or some other pointing device, a line, set of lines, or piece of text in a
display. When the pick occurs, the computer generates information in the
form of a pick list which identifies the line(s) or text picked no matter how
the object may be oriented on the screen. This information is reported for
programming purposes. For example, in the tutorial demonstration package,
when a menu item is picked, the information returned by the pick is used to
run the correct demonstration program.

Picking attributes must be assigned to an object before it or any part of it
can be picked from a screen display. These attributes are nodes in the dis-
play which:

e Mark objects or parts of objects as candidates for picking and turn
picking on or off.

» Assign a name (pick identifier) which will be reported as a text string
when a pick occurs.

GT2-84 Graphics Tutorials

The highest attribute node in the display tree must be the node that turns
picking on and off for the object. For example, to make an object called
Space_Shuttle capable of being picked from the screen, the following com-
mand can be used.

Pick := SET PICKING ON APPLIED TO Space_Shuttle;

Assuming that Space_Shuttle is an instance node grouping the various parts
of the craft, the top level of the display tree will be structured as shown in
Figure 2-84.

Pick /\

Set_Picking

Space_Shuttle

/
A

Fuselage Nose Tail Left_Wing Right_Wing
U390097

\ \ \

Figure 2-84. The SET PICKING ON/OFF Node

This node can be used interactively and should be created in the OFF set-
ting. Picking is enabled by a Boolean TRUE sent to the node through a
function network.

The node created in the command above makes the whole object called
Space_Shuttle capable of being picked. If you want the separate components
of the object to be pickable, nodes must be included in the display tree as
shown in Figure 2-85.

Graphics Principles GT2-85

Pick /_\

Set_Picking

Space_Shuttle

TN

Set_Picking Set_Picking Set_Picking Set_Picking Set_Picking

T TTTT
EREEEB LR

Fuselage Nose Tail Left_Wing Right_Wing

U390098

Figure 2-85. Making the Components Pickable

Now the fuselage, nose, tail, left wing, and right wing can be made individu-
ally pickable.

The other attribute node that must be added to the display tree assigns the
pick identifier (or pick ID) that will be reported in the pick list when a pick
occurs. Two names identify a picked object.

The first is the pick ID—a character string assigned by the SET PICKING
IDENTIFIER command. The second name is the name of the data node that
contains the line or character that was picked from the screen.

The following command, for instance, assigns a pick ID to the fuselage.

Fuselage_ Pick := SET PICKING IDENTIFIER = Shuttle_ Fuselage
APPLIED TO Fuselage;

If any line in the fuselage section of the space shuttle is picked when picking
is enabled, the system will generate a pick list which reports the pick ID as
Shuttle_Fuselage and the data node as Fuselage. To use picking with the

GT2-86 Graphics Tutarials

PS 390, function networks must be built to report any picks that occur.
Refer to Section GT11 Picking for complete information on setting up pick-
ing networks.

6.5 Summary

New Information Presented

1. An attribute node is another type of operation node in a display tree.
It allows you to specify characteristics of the displayed image of the
models you create.

2. There are three types of attributes: appearance attributes, structure
attributes, and picking attributes.

3. Attribute nodes differ from transformation nodes in a display tree.
Transformation nodes create transformation matrices which are ap-
plied to the geometrical data in the data nodes. Attributes, however,
are non-matrix operations. They set and change values in registers in
the PS 390.

What Next?

You have now seen all of the types of nodes that can be included in a
display tree. Data nodes define primitive shapes. Modeling operation nodes
shape and position parts of complex models in the world coordinate system.
Instance nodes group separate primitives and transformations into larger
named entities. Viewing operation nodes create views of objects from any
angle and from any perspective and specify areas of the screen in which the
view will be displayed. Attribute operation nodes change aspects of the
model’s appearance, allow conditional referencing, and set up picking.

In the next section, you will see how the interactive devices of the PS 390
are programmed to allow interactive manipulation of models. Function net-
works are created to complete the path between the devices and interaction
nodes in the display tree. These networks take values from the control dials,
function keys, and so on, and convert them to the correct type of data for
the interactive node they are connected to.

Graphics Principles GT12-87

7. Interacting With the Picture

A display tree contains three types of operation nodes. Modeling nodes rep-
resent translation, rotation, and scale transformations that are applied to
primitive data to shape and position the parts of a model in the world coor-
dinate system. Viewing nodes transform the model through viewing matri-
ces to create numerous views of the model from different vantage points.
Attribute nodes determine aspects of the model’s appearance on the screen,
control which parts of a model will be displayed, and set up picking.

Operation nodes can be set up for modeling purposes or for interaction.

For modeling purposes, translation, rotation, and scale nodes; viewing
nodes; and attribute nodes are all created with fixed values. For example, a
primitive might be rotated 60 degrees around the X axis to a permanent
location in the coordinate system. Or a model might have a permanent per-
spective view imposed on it with a viewing angle of 45 degrees. Or the
intensity range might be fixed at .5 to 1, and separate parts of the model
might be designated as always pickable.

Interaction nodes, on the other hand, are put in the display tree to allow you
to interactively manipulate the entire model or any separate part of it. To
achieve this interactive manipulation, the contents of these nodes must be
updated with new values. These values are supplied from a physical device
such as a dial through data-handling software called a function network to
the interactive node. The network might feed a rotation node with a series
of new rotation matrices, a viewing node with a new viewing matrix, or an
attribute node with information to change its function.

7.1 Evans & Sutherland and Interactive Graphics

At Evans & Sutherland, interaction has always been the most important
feature of graphics systems. For E&S, interaction means the ability to
change the picture being displayed in an easy manner and in real time.

The PS 390 provides ease of manipulation through offering a variety of
interactive devices. A data tablet and stylus can be used to control a cursor
on the screen for pointing at and selecting parts of the display. Eight control
dials can be programmed to translate, rotate, and scale objects and to zoom
and pan. A bank of 32 function buttons can be programmed to select differ-

GT2-88 Graphics Tutorials

ent displays or change details of the same display. Twelve programmable
function keys can act as toggle switches between different functions. These
devices are all easy and natural to use and can be arranged comfortably at
your work place. Refer to Section RM13 Interactive Devices for more infor-
mation.

Real time interaction means that the effect of an interactive device—for
example, turning a dial or pressing a button—is seen instantly in the picture.
If a dial is correctly programmed to rotate a model around the Y axis, then
you perceive no delay between turning the dial and seeing the model re-
spond. If you turn the dial slowly the model turns slowly, and if you turn it
fast the model turns fast. When the devices are correctly programmed, min-
ute, precise changes can be made to the orientation of a model on the
screen as you watch.

Since every owner of an interactive graphics system has a different reason
for using interactive graphics and different requirements and expectations
of the machine, the interactive devices must be programmed to suit individ-
ual needs. Users themselves decide how they want to interact with the mod-
els they have created, and they program the devices accordingly.

In Evans & Sutherland systems previous to the PS 300 product line, the host
computer controlled the interactive devices as well as running the applica-
tion programs and calling the routines that created the graphics. Interactive
devices were checked regularly by the host computer programs to see if
their state had changed. If the state had changed, the host program had to
determine how and what to do about it.

The PS 390 unburdens the host by handling the interactive devices locally.
The host computer never has to intervene in setting up the devices or inter-
preting data from them. In addition, each device contains its own micropro-
cessor. This distribution of some intelligence to the devices themselves in
turn unburdens the Joint Control Processor (JCP) of the PS 390. Devices
send data that has already been interpreted to the JCP. So, for example,
instead of the control dials unit sending a stream of data whenever a dial is
turned, it sends significant information only (such as which of the eight
dials was turned) at significant times (every sixteenth of a turn, for in-
stance).

Graphics Principles GT2-89

7.2 Programming the Interactive Devices

The common end product of programming an interactive device is to have it
change the displayed picture in some way or send information back to the
host. For example, you might want the object being displayed to start and
stop blinking when you press function key F3. Or you might want dial 2 to
rotate only the wrist joint of a mechanical arm, and dial 4 to translate the
whole model from left to right across the screen. Or when you pick an
object on the screen, you may want information from the pick to be re-
ported back to an application program on the host.

7.2.1 Planning for Interaction

The first step in planning for interaction is designing the display tree for the
model. You must decide what sort of interaction you want and structure the
display tree accordingly. For most applications of interactive graphics, you
will want to interactively translate, rotate, and scale the model. For other
purposes, you may also want to change the viewing matrices dynamically.
And in many cases you will want to use conditional referencing, level-of-de-
tail, and picking in interactive operations.

Interactive nodes, unlike modeling operation nodes, are created with values
that will later be updated from an interactive device. Consider, for example,
the simple display tree in Figure 2-86 for a star that can be rotated interac-

tively.
Rot_Star e

Star

Diamond
Square| V

U390099

Figure 2-86. Display Tree for Simple Interaction

GT2-90 Graphics Tutorials

The instance node called Star groups a data node called Square and a rota-
tion node called Diamond. The rotation node is a modeling node. It applies
a 45 degree rotation matrix to the Square to create a diamond shape. Its
contents never change. The rotation node Rot_Star, however, is not in the
display tree for modeling purposes. It is drawn as a double circle to indicate
that it is an interaction node. This rotation node is initially created with a
rotation of zero degrees, so that at first it will not have an effect on the
structure. Its contents will eventually be updated with a new rotation matrix
from a function network as a dial is turned.

The following commands will create the display tree shown in Figure 2-86.

Rot_Star := ROTATE O APPLIED TO Star;

Star := INSTANCE OF Diamond, Square;

Diamond := ROTATE IN Z 45 APPLIED TO Square;

Square := VECTOR LIST N=5 .5,.5 .5,-.5, -.5,-.5, -.5,.5, .5,.5;

7.2.2 Updating a Node

Not every node in a display tree can be updated and so not every node can
be an interactive node. Instance nodes, for example cannot be updated.
Their function is to point to other places in the structure of the display tree.
An instance node can be redefined using the INCLUDE and REMOVE com-
mands, but new values cannot be sent to an instance node through a func-
tion network because instance nodes do not contain data.

Operation nodes, however, do contain data, in the form of matrices, vec-
tors, numbers, and Boolean values. Most operation nodes can have their
contents changed as long as those nodes have a direct name by which they
can be accessed. Data nodes contain vector lists, polygon lists, special vec-
tor lists for curves, and text in various forms. There are ways to change the
contents of these nodes interactively too.

Section RM1 Command Summary shows the type of node a command creates
and indicates if that node has inputs which allow it to be updated.
Figure 2-87 shows a representation of the SET DEPTH_CLIPPING node.

Graphics Principles GT12-91

Boolean <1> Disables (F) /enables(T)

depth clipping

SET DEPTH
CLIPPING

U390100

Figure 2-87. The SET DEPTH_CLIPPING Node

This node has one input which accepts a Boolean TRUE or FALSE. A
TRUE enables depth clipping for an object and a FALSE disables it.

7.2.3 Supplying the Correct Type of Data

The Boolean value which the SET DEPTH_CLIPPING node requires is sup-
plied by an interactive device. Logically, a two-state device such as a func-
tion key or function button would be programmed to act as a toggle switch,
setting depth clipping on the first time it is pressed and setting it off when it
is pressed again. However, when a function key is pressed it generates an
integer which identifies the key, not a Boolean value. Some method is
needed of programming a path between the function key and the SET
DEPTH_CLIPPING node, and of converting the integer to a Boolean value.

7.3 PS 390 Functions

With the PS 390, interactive devices are not programmed using a standard
programming language. Instead, the PS 390 uses functions which are com-
bined into function networks. The individual functions which compose a
network are actually Pascal procedures, but can be thought of as “black
boxes” with numbered input queues and outputs, as shown in Figure 2-88.

GT12-92 Graphics Tutorials

F:AND
—_p <1> <1> P>

U390101

Figure 2-88. Representation of a Function

Each function accepts data on its input queues, performs a mathematical,
logical, data conversion, routing, or selecting operation, and sends data out
of its outputs. Inputs accept data from interactive devices, from the host, or
from the outputs of other functions. Outputs connect to inputs of other func-
tions or interactive nodes in a display tree.

Functions are chosen and combined so that the final network will accept
data from a device and manipulate and convert the data into types that will
be accepted by the interactive nodes. There are nine categories of functions
available with the PS 390. These are as follows.

e Data Conversion

Data conversion functions change matrices into rows, rows into scalar
elements, and real numbers to integers or vectors. Data can be output in
decimal or exponential format.

e Arithmetic and Logical

These functions perform all arithmetic operations (add, divide, subtract,
multiply, square root, sine, and cosine) and logical operations (and, or,
exclusive-or, and complement).

e Comparison

Comparison functions test whether values are greater than, less than,
equal to, not equal to, greater than or equal to, and less than or equal to
other values.

Graphics Principles GT2-93

¢ Data Selection and Manipulation

These functions are used to selectively switch functions, choose outputs,
and route data.

e Viewing Transformation

Viewing transformation functions connect to viewing operation nodes in
display trees to interactively change line-of-sight, window size, and view-
ing angle.

e Object Transformation

Object transformation functions connect to modeling operation nodes in
display trees to interactively rotate, translate, and scale objects.

¢ Character Transformation

These functions are used to interactively position, rotate, and scale text.

e Data Input and Qutput

These functions set up and control the interactive devices (dials, function
keys, function buttons, data tablet, and keyboard) and output values to
the optional LED labels on the control dials and function keys.

e Miscellaneous
Other functions set up and control picking, clocking, timing, and synchro-

nizing operations.

The complete set of functions is loaded into memory when the PS 390 is
booted. Sections RM2 Intrinsic Functions and RM3 Initial Function Instances
are a reference to all available functions.

There are three types of functions: intrinsic functions, initial function in-
stances, and user-written functions.

GT2-94 Graphics Tutorials

7.3.1 Intrinsic Functions

Intrinsic functions are the set of master functions which you can instance to
create networks. Their names reflect the operation they perform, and are
preceded by F:, for instance, F:AND, F:ROUTE, F:MATRIX.

Functions are instanced using the NAME := F:function_name command.
For example, the following command creates an instance of the ADD func-
tion (F:ADD) and assigns it the unique name Adder.

Adder := F:ADD;

Intrinsic functions are always instanced in this way. The intrinsic function
name itself, in this case F:ADD, is never used in the network. The name of
the function instance (i.e., Adder) is used instead.

7.3.2 Initial Function Instances

When the PS 390 is booted, the system itself instances (i.e., names) certain
functions as initial function instances. Among other things, these functions
connect to the interactive devices, connect to the host, and connect to error
detection logic. For example, inputs to the initial function instance called
DIALS are connected to the control dials unit at system initialization. DI-
ALS has eight outputs on which it sends real numbers from one to eight,
corresponding to the numbers of the eight dials. It sends values generated
by the dials out of the output that corresponds to the number of the dial.

Unlike intrinsic functions, which must always be assigned a unique name,
initial function instances are used with their system-assigned name. The
name reflects the operation the function performs, but is not preceded by F:
(for example, TABLETIN, WARNING, KEYBOARD).

7.3.3 User-Written Functions

You are not limited to the set of intrinsic functions and initial function
instances supplied with the system. If the functions that are available do not
suit all your needs, you can write your own using the optional user-written
function facility. User-written functions are instanced in the same way as
intrinsic functions. E&S provides documentation on writing Pascal proce-

Graphics Principles GT2-95

dures to create user-written functions and documentation and software files
that aid in producing and transporting these procedures from the host to the
PS 390. To understand user-written functions, you should know Pascal well
and you should have experience in programming PS 390 function networks.
For complete information, refer to the Advanced Programming volume of the
PS 390 Document Set.

7.3.4 Creating Networks

Networks are created by connecting initial function instances, instances of
intrinsic functions, and interactive nodes in display trees using the CON-
NECT command. For example, the following group of commands create a
simple network to rotate the star diagrammed in Figure 2-86 around the Z
axis.

Rotate := F:DZROTATE;
CONNECT DIALS<2>:<1>Rotate;
CONNECT Rotate<l>:<1>Rot_Star;

The first command

Rotate := F:DZROTATE;

creates an instance of the intrinsic function F:DZROTATE named Rotate.
This intrinsic function is represented in Figure 2-89.

F:DZROTATE
R =i <1> <1> P—¥» 3X3

R | <2> <2> b9 Real

R ——pf <3>

u390102

Figure 2-89. The F:DZROTATE Function

GT2-96 Graphics Tutorials

This function has three inputs. Input <1> accepts real numbers, usually di-
rectly from the initial function instance DIALS. Input <3> is a magnification
factor. The very small numbers (from 0 to 1) that arrive at input <1> from
the dial are multiplied by this factor. Input <2> is an accumulator set for the
values received on input <1>. The function creates a matrix from an angle
of rotation, which is derived from the accumulator contents on input <2>
multiplied by the scale factor on input <3>. The matrix is sent on output
<1>. Output <2> contains the accumulator contents from input <2>.

The second command

CONNECT DIALS<2>:<1>Rotate;

connects output <2> of the initial function instance DIALS to input <1> of
Rotate. The initial function instance DIALS is diagrammed in Figure 2-90.

DIALS
Conneted to == <1> >
Control Dials
at System
Initialization <2> >
<3>
<4> p=p
<5> >
<6> —p
<7> b—p
<8>

v

U390103

Figure 2-90. The Initial Function Instance DIALS

This initial function instance is connected to the control dials unit when the
PS 390 is booted. It produces a real number on each of its eight outputs.
Every output corresponds to one of the eight dials. Connecting output <2>
of DIALS to input <1> of Rotate feeds values into the Rotate function from
dial 2 whenever the dial is turned.

Graphics Principles GT2-97

GT2-98

The third command

CONNECT Rotate<l1>:<1>Rot_Star;

connects output <1> of Rotate to input <1> of an interaction node called
Rot_Star. Figure 2-91 represents a rotation node in a display tree.

name

3 X 3 matrix - <1> Changes matrix value

3 X 3 MATRIX

U390053

Figure 2-91. Inputs to a Rotate Node

This connection feeds the rotation matrix from the Rotate function to the
interactive rotation node. Figure 2-92 is a diagram of the simple Z-rotation

function network which the commands create.

L

DIALS

<> Rotate Rot_Star
F:DZROTATE

<2 <1> <1>

N T e <>

—»|<3>

<4>H>

<5>pp

<>

7>

<8>Hr

Figure 2-92. Simple Z-Rotation Network

U390104

Graphics Tutorials

Before the network will start to accumulate values from the dials correctly,
however, inputs <2> and <3> on Rotate must be primed. The SEND com-
mand is used to send a magnification value of 50 to input <3> and an initial
value of 0 to input <2> to set the accumulator to an initial value.

The final command file, with comments in braces, might read as follows.

Rotate := F:DZROTATE; {Instance of Z-rotate function}
CONNECT DIALS<2>:><1>Rotate; {Connect dial 2 to rotate function}

CONNECT Rotate<l>:<1>Rot_Star; {Connect output of rotate function}
{to rotate node}

SEND O TO <2>Rotate; {Set accumulator to zero}
SEND 50 TO <3>Rotate; {Multiply values from dial by}
{magnification factor of 50}

7.3.5 Active and Constant Inputs

A function instance can have active or constant input queues. An active
input receives data from an interactive device or from the output of another
function instance. Input <1> of F:DZROTATE is an active input, for exam-
ple. Each datum or token that arrives on an active input is a trigger for the
function to execute. When the function is triggered, the datum is consumed.
Constant input queues, however, are primed with a value, usually by the
SEND command, and that value remains on the input queue until it is re-
placed by another constant value from another SEND command. For exam-
ple, inputs <2> and <3> of F:DZROTATE are constant inputs. The values
that are sent to those inputs prime the function. The value on input <2> sets
the accumulator to an initial value. The value on input <3> is a scale factor
which is used to magnify the real numbers sent from the dial.

Section RM2 Intrinsic Functions indicates whether a function has active or
constant inputs: an input followed by a “C” in the “Intrinsic Functions”
diagrams is a constant input. There is also a command named SETUP
CNESS, which allows you to change the constant or active nature of func-
tion instance inputs. Refer to Section RMI Command Summary for details.

Graphics Principles GT2-99

7.3.6 Data-Driven Networks

Individual functions and the networks they comprise are data driven. This
means that a function only becomes active when data arrive at its inputs to
be processed. Once a function has executed its task, it dormant again until
another set of tokens arrives. An entire network is dormant until activity
occurs at the interactive device to which it is connected. As long as values
are being sent out from the device, the network is active, converting and
routing the data.

7.3.7 Why Function Networks?

Data driven function networks differ from conventional programming lan-
guages in that they are active only when an event occurs which produces
data to be processed. Conventional programming languages are best suited
for data treated as values to be looked at if necessary. Whenever data exist
as asynchronous events and when the arrival of such events causes an op-
eration to occur, then data are best handled by data-driven programs, such
as function networks. Conventional programs written to handle input from
interactive devices must regularly poll all the available devices to see if any
activity has occurred. Once activity is detected, the type of activity has to be
determined and data have to be processed accordingly.

A PS 390 with a tablet, 8 control dials, 12 function keys, 32 function but-
tons, a keyboard, and a communications line to the host has a total of 55
independent devices which can input data. Programming in a conventional
language requires each device to be polled regularly to determine if its
status has changed. Function networks, however, capitalize on the fact that
few of these devices are ever used at the same time. A human user of the
system has only two hands and typically uses only one or two of the devices
at a time. The data-driven nature of function networks schedules operations
so that devices which are unused at any time do not burden the central
processing unit of the PS 390, the Joint Control Processor.

Function networks are designed to filter data and perform data formatting
and selection. They filter input data, for example, reducing a stream of data
indicating tablet positions to just those data when the the tip switch of the
stylus is pressed. They reformat input data, converting a dial’s value, for

GT2-100 Graphics Tutorials

instance, into a rotation matrix. And they select and route data, by connect-
ing to a node in a display tree, for example, or transmitting data back to the
host application program. They do not operate like conventional computer
programs, as single processes whose parts communicate via subroutine
calls. Instead, they are collections of autonomous, cooperative processes
whose parts communicate via packages of information which are sent out
while the originator of the information goes on to do something else.

7.3.8 Creating Function Networks

Function networks are created as ASCII files. They can be entered by hand
or generated automatically from the graphical function network editor pro-
gram, NETEDIT. This program is documented in Section 774 Function Net-
work Editor. Briefly, networks are created using a drawing program which
lets you select and place symbols which represent functions. Connections
are made by routing arcs between outputs and inputs, much like a wiring
diagram. When a network drawing is complete, code can be generated auto-
matically.

A network debugging aid, NETPROBE, is also available. It is documented in
Section TT5 Function Network Debugger. For more information on networks
and their use, refer to Sections GT6 Function Networks I and GT7 Function
Networks 1I.

7.4 Summary

New Information Presented

1. Most operation nodes in a display tree can have their contents
changed. Nodes that are set up for interaction have their contents
updated with values from an interactive device.

2. The path between a device and a node is a function network. The
network, composed of individual functions, receives data from a
physical device such as a dial, manipulates those data, and produces
the correct data type to update the node.

Graphics Principles GT2-101

3. Networks are data driven. This means that they are only active when
there is data to process.

4. Programming with PS 390 functions allows you to customize the op-
erations of the interactive devices to suit any programming needs.

What Next?

Realtime interactive manipulation of models can be accomplished by the
use of function networks, which are used to complete the path between the
interactive devices and the interaction nodes in the display tree.

The next section describes how polygonal models can be rendered. The
options of the POLYGON command will be described as well as a discus-
sion of the rendering operations available with the PS 390 rendering firm-
ware.

8. Polygonal Rendering

The PS 390 has the capability of multiple rendering operations, yielding
both calligraphic quality wireframe renderings as well as shaded models.
There are two types of rendering operations that may be applied to poly-
gons; those performed in the dynamic viewport, and those performed in the
static viewport. Dynamic viewport rendering operations include backface
removal, sectioning by a section plane, and cross-sectioning. Static viewport
rendering operations include hidden-line removal, wash, flat, Gouraud, and
Phong shading.

Rendering operations have effect on polygonal models only. Vector list,
text, and curve primitives are not affected by rendering operations.

Renderings are created from collections of polygons defined by the POLY-
GON command. A polygon is defined by the coordinates of its vertices, with
the edges defined by the lines that connect those vertices. Polygons in the
PS 390 are limited to a minimum of three vertices and a maximum of 250,
all of which must lie in the same plane.

GT2-102 Graphics Tutorials

8.1 Defining Polygonal Objects

Polygons are defined by the POLYGON command, which defines a data
node in the data structure of an object. The POLYGON command consists
of one or more polygon clauses, which define an individual polygon or face
of an object by specifying the coordinates of its vertices. By definition, poly-
gons are closed implicitly, so the first vertex is not repeated when defining a

polygon.

Each polygon of an object must be defined with a POLYGON clause. A
POLYGON command can contain an unlimited number of polygon clauses.
Each polygon clause has 3 different options which associate characteristics
or attributes with the individual polygons. The vertex definition in the
POLYGON command also has options to specify additional characteristics.

The POLYGON command is:

Name := <polygon> <polygon> ... <polygon>;

where each polygon clause has the definition:

<polygon> = [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]
POLYGon <vertex> ... <vertex>

Following is a brief description of each of the parameters in the command,
and of the vertex definition contained in the command.

WITH ATTRIBUTES is an option that assigns the attributes defined by
namel for all polygons until superseded by another WITH ATTRIBUTES
clause. This option is used to specify color, diffuse reflection, specular high-
lights and the degree of transparency for polygons to be rendered in the
static viewport. Attributes may be specified for both the front and back
sides of a polygon.

WITH OUTLINE is an option that specifies the color of the outlines overlaid
on polygon borders of shaded images, and the color of polygon edges in
hidden-line renderings. The specifier (h) in the WITH OUTLINE clause is
an index into the Spheres and Lines Attributes table.

COPLANAR declares that the specified polygon and the one immediately
preceding it have the same plane equation. This option is used when defin-
ing polygons that represent cavities or holes in an object.

Graphics Principles GT2-103

A <vertex> definition has the form [S] x,y,z [N x,y,z] [C h[,s[i]]]
where:

S indicates that the edge drawn between the previous vertex and the current
one represents a soft edge of the polygon. If S is specified for the first
vertex in a polygon definition, the edge connecting the last vertex with the
first is soft.

N indicates a normal to the surface with each vertex of the polygon. Nor-
mals are used only in smooth shaded renderings. Normals must be specified
for all vertices of a polygon or for none of them. If normals are not speci-
fied for a polygon, their values default to the values for the normal to the
plane in which the polygon lies.

x,y, and z are coordinates in a left-handed Cartesian system.

C indicates a color to be assigned to the vertex. This color will be interpo-
lated across the polygon to the other vertices during shading operations in a
static viewport. Color must be specified for all vertices of a polygon or for
none of them.

h,s,i are coordinates of the Hue/Saturation/Intensity color system.

For a more detailed explanation of the POLYGON command and its options
refer to Section GT13 Polygonal Rendering.

8.1.1 Constructing Surfaces and Solids

There are two classes of polygons which may be defined: surfaces and sol-
ids. Solids enclose a volume of space while surfaces do not. Different types
of rendering operations require specific types of models, either surfaces or
solids. For example, cross-sectioning a polygonal model requires that it be
defined as a solid, whereas shading a polygonal model can be done on
either a surface or a solid.

Surfaces can have edges belonging to just one polygon, or edges common to
three or more polygons (Figure 2-93).

G12-104 Graphics Tutorials

LB

\ /;90420

Figure 2-93. Surface Object

In a solid, each edge of a polygon must coincide with the edge of an adja-
cent polygon, and cannot have three or more polygons that have a single
edge in common (Figure 2-94).

AN\ Y

U390421

Figure 2-94. Solid Object

Determining the nature of a polygonal object, either surface or solid, is
accomplished not only by the construction, but by its placement beneath a
rendering node determined by the SURFACE_RENDERING and

SOLID_RENDERING commands. These commands are discussed in Section
8.4.

8.2 Specifying Vertices for Surfaces and Solids

In solids, the direction in which the vertices are ordered within each polygon
clause has important consequences for rendering operations. The listing of
the vertices (as indicated by the order in the polygon clause) should move in
a clockwise direction.

Graphics Principles GT2-105

Also important is the direction of the edges in common edge pairs. In all
correctly defined solids, each edge is repeated in two different polygons.
For each pair of adjacent polygons, the common edges should run in oppo-
site directions. This is true for any edge of any correctly defined solid
(Figure 2-95).

u390422
Figure 2-95. Correctly Constructed Icosahedron

For surfaces, the vertex ordering rule is less stringent. Vertices in surfaces
do not have to be ordered in a clockwise direction, although if so defined,
provide for easy upgrade to solids. Although the vertices of a surface do not
need to be ordered in a clockwise direction, they should be ordered so that
common edges of adjacent polygons run in opposite directions.

8.3 Memory Requirements

Rendering operations require a large block of mass memory be available as
working storage. Before the rendering process can execute, a workspace
must be reserved in mass memory. The PS 390 can automatically calculate
the required working storage for you, or you may explicitly reserve it your-
self. To have the system calculate the working storage for you, enter the
command:

RESERVE WORKING STORAGE O;

The PS 390 will automatically calculate the amount of memory required,
and will display the total memory used at the completion of the rendering
operation.

GT2-106 Graphics Tutorials

System calculation of working storage is more efficient in memory usage,
but requires extra time during the rendering process. To avoid this, work-
ing storage may also be reserved explicitly. The best time to reserve work-
ing storage is immediately after booting, when large requests can be filled
easily.

Between 200,000 to 400,000 bytes of working storage should be reserved
when you begin a session. This is also done with the RESERVE_WORK-
ING_STORAGE command. The command syntax for reserving working
storage is:

RESERVE_WORKING_STORAGE n;

where the current working storage is replaced with another containing at
least n bytes.

8.4 Creating Renderings

A polygonal object must be defined as either a surface or solid before ren-
dering operations can be applied to it. The commands to do this are:

SURFACE_RENDERING
SOLID_RENDERING

The SURFACE_RENDERING command creates an operation node in the
data structure. The default value of this command declares that all of its
descendant polygon data nodes define surfaces.

The SOLID RENDERING command also creates an operation node in the
data structure. The default value of this command declares that all of its
descendant polygon data nodes define solids.

A POLYGON data node can be displayed by itself. However, if the object is
to be rendered, it must have a rendering node as an ancestor. All rendering
and display operations involving the object are done with the rendering node
rather than the data node itself.

Graphics Principles GT2-107

Syntax for the rendering commands is:

Name := SURFACE_RENDERING APPLIED TO Namel;
Name := SOLID RENDERING APPLIED TO Namel;
where:

Namel names either (a) a POLYGON node, or (b) an ancestor of one or
more POLYGON nodes. If (b) is the case, then any rendering referring to
Name is performed on all of the POLYGON objects descended from Namel
at once.

An appropriate integer sent to a SOLID RENDERING or SURFACE_REN-
DERING node produces a rendering of that node’s descendant polygonal
object. Refer to Sections RMI Command Summary and GT13 Polygonal Ren-
dering for more information on the rendering commands.

8.5 Rendering Operations

There are two types of rendering operations available with the PS 390. Ren-
dering operations are divided into those performed in the dynamic viewport
and those performed in the static viewport. Rendering operations performed
in the dynamic viewport include the following:

e Backface removal (for solid wireframe polygonal models)
o Sectioning (for solid or surface wireframe polygonal models)

e Cross-sectioning (for solid wireframe polygonal models)

8.5.1 Backface Removal

Backface removal provides an approximation of a hidden-line rendering’s
appearance. In backface removal, all polygons facing away from the viewer
are removed. Because the backface removed rendering resembles an unfin-
ished hidden-line rendering, it can be used to give a rough idea of the hid-
den-line rendering.

Only solids can be subjected to backface removal; the operation has no
visual effect on surfaces.

GT2-108 Graphics Tutorials

(Before) (After)

U390423 U390424

Figure 2-96. Object Before and After Backface Removal

8.5.2 Sectioning

Sectioning makes use of a sectioning plane that passes through an object
and divides the object into two pieces. This operation yields a “cutaway
view” of the object. The part of the object that is behind the plane is dis-
carded and only the front section of the object is displayed.

(Before) After

T\
== -

Figure 2-97. Object Before and After Sectioning

7

/

Graphics Principles GT2-109

A sectioned object may be saved and then subjected to further rendering
operations such as resectioning, or backface removal.

8.5.3 Cross-sectioning

The cross-sectioning operation makes use of a defined sectioning plane to
create a cross section of an object. When this operation is used, both sides
of the object are discarded and only the slice defined by the sectioning
plane remains. Cross-sectioning has effect on solid polygonal models only. |

(Before)

u390427

(After)

U390428

Figure 2-98. Object Before and After Cross-Sectioning

8.5.4 Static Viewport Renderings

Rendering operations that apply to objects in a static viewport include hid-
den-line removal, wash shading, flat shading, Gouraud shading, and Phong
shading.

GT2-110 Graphics Tutorials

8.5.5 Hidden-Line Removal

Hidden-line removal generates a view in which only the unobstructed por-
tions of an object are displayed. All polygon edges or parts of edges that
would be obscured by other polygons are removed.

Hidden-line removal may be performed on both solids and surfaces.

(Before Hidden-Line Removal)

\
7

\

T—— U390429

\E

\ %90431

Figure 2-99. Object Before and After Hidden-Line Removal

U390423
(After Hidden-Line Removal)

U390430

8.5.6 Wash Shading

Wash shading is the quickest and most simple of the shading operations.
Wash shading produces an object with area-filled colored polygons ignoring
normals, light sources, all lighting parameters, and all depth cuing parame-
ters. This operation does not produce objects that simulate a curved surface.

Graphics Principles GT2-111

8.5.7 Flat Shading

Flat shading considers color, one light source, and depth cuing to shade the
polygons in the object accordingly. Flat shading produces a faceted surface.

8.5.8 Gouraud and Phong Shading

Gouraud and Phong shading are both examples of smooth shading. These
shading processes are the most complex of all the shading styles. The color
of a polygon is varied across its surface, considering the normals at the
vertices of the polygon, the direction and color of various active light
sources, the attributes of the polygon (both color and highlights), and depth
cueing. Objects that simulate a curved surface can be produced with both
Phong and Gouraud shading.

8.6 SHADINGENVIRONMENT Function

The initial function instance SHADINGENVIRONMENT allows you to con-
trol various non-dynamic factors of shaded renderings. This function con-
trols factors that affect the total environment in which shading operations
are performed, as well as specific polygonal characteristics. Things such as
background color, viewport specification, polygon edge enhancement, edge
smoothing, and transparency are controlled by the SHADINGENVIRON-
MENT function.

For more information on rendering operations and the SHADINGEN-
VIRONMENT function, refer to Section GT13 Polygonal Rendering.

8.7 Summary

1. Polygons are defined by the POLYGON command, which defines a
data node in the data structure of an object. Polygonal objects are the
only objects eligible for rendering operations.

2. The POLYGON command has the syntax:
Name := <polygon> <polygon> ... <polygon>;
where each polygon clause has the definition:

<polygon> = [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]
POLYGON <vertex> ... <vertex>

GT2-112 Graphics Tutorials

3. A polygon must be defined as a surface or solid before rendering
operations can be applied. The commands to do this are:

SURFACE_RENDERING

SOLID_RENDERING

4. All types of rendering operations require an ancestral rendering
node. The syntax for the rendering commands is:

Name :
Name :

SURFACE_RENDERING APPLIED TO Namel;
SOLID_RENDERING APPLIED TO Namel;

where Namel names either a POLYGON node or an ancestor of one
or more POLYGON nodes.

S. Rendering operations require a large block of mass memory. This
working storage may be reserved automatically by the system or you
may reserve it explicitly. To have the system allocate working stor-
age, the command is:

RESERVE_WORKING_STORAGE O;

To explicitly reserve a block of memory, the syntax of the command
is:

RESERVE_WORKING_STORAGE n;

where n is the size of the block you wish to reserve.

6. Dynamic viewport renderings include backface removal, sectioning
by a section plane, and cross-sectioning.

7. Static viewport renderings include hidden-line removal, and wash,
flat, Gouraud, and Phong shading styles.

8. The initial function instance SHADINGENVIRONMENT controls fac-
tors affecting the total environment in which shaded renderings oc-
cur, as well as specific polygonal characteristics.

Graphics Principles GT2-113

GTa. TUTORIAL

DEMONSTRATIONS

PS 390 TUTORIAL DEMONSTRATIONS

LIMITED SUPPORT DISCLAIMER

The PS 390 Tutorial Demonstrations are distributed by
Evans & Sutherland as a convenience to customers and
as an aid to understanding the capabilities of the
PS 390 graphics systems. Evans & Sutherland Cus-
tomer Engineering supports the Tutorial Demonstra-
tions to the extent of answering questions concerning
the installation and operation of the programs, as well
as receiving reports on any bugs encountered while the
programs are running. However, Evans & Sutherland
makes no commitment to correct any errors which may
be found.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

GT3. PS 390 TUTORIAL DEMONSTRATIONS

CONTENTS

1. INTRODUCTION TO THE TUTORIAL DEMONSTRATIONS ... 1
1.1 The Components of the Tutorial Demonstration Package 4
1.2 Required Interactive Devicesciiiiiiiiiinen. 4
1.3 Host Computer Requirementscciiiuueiinnesn. 4
2. ACCESSING THE TUTORIAL DEMONSTRATIONS 5
2.1 Using the Tutorial Command File 00, 5

3. RUNNING THE TUTORIAL DEMONSTRATION PROGRAMS .. 5
3.1 Program: TUTORIAL DEMONSTRATION MENU - GLOBE AND

3.2 Program:
3.3 Program:
3.4 Program:
3.5 Program:
3.6 Program:
3.7 Program:
3.8 Program:
3.9 Program:
3.10 Program:

SHUTTLE ... ittt it iiii i 6
PROGRAMMINGcovviiiiiiiiiiii i, 8
WINDOW/VIEWPORTccooiiiiii .. 12
FIELD OF VIEW ittt 15
LOOK AT ..ottt iiiii i 17
CHARACTERS ... it 20
LEVEL OF DETAILovviiiiiiiiiiinnnnnn 22
NETWORK EXECUTIONcoiviiviiinnnns 24
PICKING ..ttt ittt ittt it i e 27
WORKSPACE ... i 29

Section GT3
PS 390 Tutorial Demonstrations

1. Introduction to the Tutorial Demonstrations

The eight Tutorial Demonstration programs are designed to clarify graphics
programming concepts explained in the tutorial sections of the PS 390
Document Set.

The programs display images you can interact with using the data tablet,
control dials, and function keys. Typically, the keys and dials are pro-
grammed to translate, rotate, and scale the objects displayed and to change
the values in the PS 390 graphics programming commands that are being
illustrated. Programmed operations are shown in the LED displays above
each control dial or function key.

The following concepts are illustrated in the programs.

® Programming the PS 390

In three separate areas of the screen, you are shown a sequence of
PS 390 commands, a representation of the structures these commands
create in memory, and the picture that the commands produce on the
screen. As you scroll through the commands, the contents of memory
and the screen display are changed when each command takes effect.

¢ Windows and Viewports

This program illustrates the mapping of an orthographic window in the
world coordinate system to a viewport on the PS 390 screen. In one area
of the screen, a sphere is shown enclosed in a window. In another, the
sphere is shown as it appears when displayed on the PS 390 screen. To
the side, the variables used in the WINDOW and VIEWPORT commands
are listed. Using function keys and dials, you can change the dimensions
of the window and the viewport and control the size and orientation of
the sphere. The relation between windows and viewports is clearly shown
in the resulting changes to the displayed image of the sphere.

PS 390 Tutorial Demonstrations GT3-1

e The FIELD_OF_VIEW Command

To demonstrate the FIELD_OF_VIEW command, a sphere is shown en-
closed in a perspective viewing area. In another portion of the display,
the sphere is shown as it would appear on the PS 390 screen. The values
entered in the FIELD OF VIEW command are listed to one side. Using
dials you can change the viewing angle and front and back boundaries of
the viewing area to see how the image of the sphere is affected on the
screen.

e The LOOK Command

This program shows how the LOOK command rotates and translates all
points in the world coordinate system to simulate a vantage point and a
line of sight towards an object. One area of the screen shows a collection
of objects and an eye that can be moved in any direction to change values
in the LOOK command. A second area shows the rotations and transla-
tions that are performed by the PS 390 to create the view specified in the
LOOK command. A third area shows the screen display. Dials are pro-
grammed to change the “at” and “from” points in the LOOK command
and to change the “up” vector.

e Character Modes

The three ways in which characters can be used in an image are illus-
trated in this program. Three cubes are displayed with each of their faces
labeled. The cubes can be rotated, translated, and scaled using control
dials. The first cube contains world-oriented characters which are trans-
formed with the cube. The second cube contains screen-oriented charac-
ters which always remain at the same size and in a plane parallel to the
screen, so that they are always legible. The third cube contains screen-
oriented characters which are “fixed” so that they do not vary in intensity
as they move forwards and backwards (in the Z axis).

e Level of Detail Settings

This demonstration shows how level-of-detail nodes can be used in a
structure to display changing images of an object in response to changing
values from a function network. A display structure is shown with a SET
node connected to a network and IF nodes at the head of each of twelve
hierarchial branches. As the value in the SET node is updated from the

GT3-2 Graphics Tutorials

network, a different branch is traversed. This produces an animation se-
quence of 12 frames in which the ends of a cylinder twist and untwist in
opposite directions.

e Execution of a Function Network

This program illustrates the relationship between interactive devices,
function networks, interactive nodes in a display structure, and a dynami-
cally changing image. In one area of the screen, an object is shown which
consists of two wheels and a tie-bar. A display structure is shown for the
structure of this object. The structure contains interactive rotation and
translation nodes connected to a dial through a function network. As you
turn the dial to rotate the wheels, the function network is shown accepting
data, converting it to matrices, and updating the nodes in the display
structure.

e Picking

To illustrate picking, this program shows a collection of objects consisting
of two cubes, a B-spline curve, a character string and a labels block. The
display structure for these objects is shown with the required SET PICK-
ING node and pick identifier nodes. A picking network is connected to
the display structure. When a vector, character, or label is picked, the
branch traversed in the display structure is highlighted and the informa-
tion returned from the pick on the outputs of the function F:PICKINFO is
shown.

This manual explains how to install the Tutorial Demonstrations and how to
run each of the programs.

The first section describes the components of the Tutorial Demonstrations
and explains the interactive devices and host computer requirements for

running the demonstrations.

The second section explains how to install the Tutorial Demonstration pro-
grams on your system.

The third section gives complete operating instructions for each of the pro-
grams.

PS 390 Tutorial Demonstrations

GT3-3

1.1 The Components of the Tutorial Demonstration Package

The PS 390 Tutorial Demonstration package consists of several files distrib-
uted on magnetic tape.

The tape contains control networks, the Tutorial Demonstrations Menu from
which programs are chosen, the programs themselves, and several character
fonts. Also included are the vector lists for the primitives used in the tutori-
al sections of the PS 390 Document Set.

1.2 Required Interactive Devices

The following interactive devices are required to run the Tutorial Demon-
stration programs.

e Data Tablet and Stylus
e Keyboard with Function Keys

e Control Dials

The data tablet and stylus are used to pick programs from the menu and to
interact with the objects displayed by some of the programs. The function
keys and control dials are programmed through function networks to per-
form various graphical operations such as scaling, rotating, and translating
the images displayed and to change dynamically the values in the PS 390
commands being illustrated. The operation controlled by each function key
and control dial is displayed in its red LED label.

1.3 Host Computer Requirements

The eight programs that comprise the Tutorial Demonstrations are run lo-
cally on the PS 390. There are no host computer requirements for running
the programs.

The files that are distributed on the tape must be loaded onto a host com-
puter and then transferred to the PS 390. There are two requirements for
the host computer for storing and transferring the files. First, it must have
sufficient memory to contain the files on the tape: approximately 1166K
bytes are needed. Second, the host must be able to communicate with the
PS 390 so that the files can be transferred.

GT3-4 Graphics Tutorials

2. Accessing the Tutorial Demonstrations

The complete Tutorial Demonstrations package takes between 15 and 20
minutes to transfer from the host to the PS 390, depending on the current
work load on the host.

2.1 Using the Tutorial Command File

Individual sites will need to set up a method on the host computer to gain
access to the Tutorial Demonstrations as well as the objects that are re-
quired by some of the tutorial sections and the sample programs. A com-
mand file displaying the following menu should be available.

PS 390 GRAPHICS PROGRAMMING TUTORIAL

Set to be loaded First used in section .

1. Demonstrations

2. Sports Car GT5. "PS 390 Command Language"

3. Molecule GT9. "Conditional Referencing"

4, Complete Robot GT6. "Function Networks I" & GT7.

"Function Networks II"

5. Sphere and Cylinder GT5. "PS 390 Command Language" & GT9.
"Conditional Referencing"

6. Sample Programs GT16. "Sample Programs"

Enter the number of the selection you want. Loading is complete when
the host operating system prompt is displayed again.

3. Running the Tutorial Demonstration Programs

This section describes how to run each of the Tutorial Demonstration pro-
grams. Each description is organized as follows.

Typical screen displays are illustrated. An abstract points out some of the
features of the PS 390 that are shown in the demonstration. The pro-
grammed functions and the LED labels that appear on control dials and
function keys are listed. Notes on usage give instructions for running the
program.

PS 390 Tutorial Demonstrations GT3-5

3.1 Program: TUTORIAL DEMONSTRATION MENU - GLOBE AND
SHUTTLE

Typical Program Display

PS 300 Series

Field
Programming W indow/ oef

Overview Viewport View

Level

L:zk Characters of

Detail

Network
W orkspace

Execution Picking P

¢

Tutorial Demonstrations

Abstract

This program serves both as a demonstration in itself and as the menu from
which the other Tutorial Demonstration programs are picked. Several win-
dows and viewports are combined to produce a very complex dynamic im-
age. In the center of the screen is the earth spinning on its axis. Orbiting the
earth is a Space Shuttle, and closely hugging the shuttle in a tight orbit of
his own is one of the crew in a Manned Maneuvering Unit. Overlapping the
globe to the right is the menu from which the programs are selected.

GT3-6 Graphics Tutorials

Programmed Functions

Control Dials Function Keys
D1 - 0S X ROT (globe and shuttle) F10 - STRT/STP
D2 - 0OS Y ROT (globe and shuttle) F11l - RESET

D3 - OS Z ROT (globe and shuttle)

Notes on Usage

To use this program as a menu, pick the demonstration you want to run by
positioning the cursor over the name and pressing the stylus down on the
data tablet. Whenever you exit from a program by pressing F12, you are
returned to this display.

The function keys and dials let you interact with the spinning globe and
space shuttle displayed in the center of the screen. Dials 1 through 3 let you
rotate the globe and shuttle around the X, Y, or Z axes. The “OS” in the
dial labels stands for Object Space. An object rotates in Object Space when
it rotates about a set of axes which are different from the world coordinate
system axes.

Function key F10 starts and stops the rotation of the globe and shuttle.

Function key F11 resets the orientation of the globe and shuttle.

PS 390 Tutorial Demonstrations GT3-7

3.2 Program: PROGRAMMING

Typical Program Display

= |

E!Em] Cube_Rotation
24—y)
(m o-ﬁn) r:ovROTATE (3)

180 K(8)

rint DLABEL4
1) F:PRINT (1 1) P:DLABEL4

EMD VECTOR

(GELETR)

PS 300 Mass Memory

CUBE_ROT :+ ROTate 0 THEN CUBE;
CI1SPley CUBE_ROT,
REMove CUBE;

I Cube rotation network |
CUBE_ROTATION 11 FIOYROTATE;
CONNect DIALSc45: «1>CUBE_ROTATION;
CONNect CUBE_ROTATIOMc13: <1>CUBE_ROY;
SEND O to «2>CUBE_ROTATION;

SEND 180 to <3>CUBE_ROTATION;
CR_PRINT 11 FiPRINT;

CONNect CUBE_ROTATIONC2>: «1>CR_PRINY;
CONNect CR_PRINT<1>; <1 DLABELS; 1

PS 300 Screen PS 300 Commeands

Abstract

This is a graphical introduction to programming the PS 390 with commands
and function networks. It illustrates how PS 390 commands create struc-
tures in memory and affect images being displayed, as well as how some of
the interactive devices are programmed with simple networks.

After an initial introductory message, the screen is divided into four view-
ports representing the contents of the display list, the contents of mass
memory, the PS 390 screen, and commands which are entered. When you
turn control dial 8, commands appear in the Commands viewport. Each
time a complete command is displayed, the display in the other<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>