
Planned changes to the programming language PASCAL

N. Wirth, June 1972

The programming language PASCAL has now been in use at ETH since
two years. During this time, the language has been extended by' a
few features - packed records, external files, read and write
procedures - and the compiler has undergone many improvements.
However, there have been practically no changes; the language has
been kept as stable as possible.

With two years experience in the use of PASCAL, we now contemplate
to introduce a few features which cannot be classified as mere
extensions but which will cause some true changes in the language.
The purpose of this note is to inform the users of PASCAL of our
intentions before the fact. We briefly explain the new facilities
and summarise the changes which must be made in existing programs.
We will try to give a motivation to these changes; however, it is
not possible to describe the entire set of arguments in extenso
within this short communication.

I. Files

The present concept of sequential files lacks in clarity and
simplicity of definition. It is for instance difficult to .
explain the exact role of the buffer element and the value of
the function eof. We therefore adopt a definition based on the
following 'notation:

The concatenation of two sequences

is denoted by

The empty sequence is written as < >

We regard every file f as being the concatenation of two parts
(say left and right of the reading head) denoted by f and f
such that always

[1- """] We denote a file f as a triple f = f, f1 ,f ,consisting of
left part, buffer element, and right part. The initial value of
a ~ile is [< >, 1; < >], unless it is declared as an external
input file. In Pascal 6000, this is described as

~ f[in]: F

In this case, the initial value is f = [< >, first(fo), foJ ,
where first(r") denotes the first component of f. The basic
file operators are now described as follows:

- 2 -

1. eof (f): the right part is empty •
....

eof(f) = (f=< »
Notice that eof is always defined, not only after executing
a get operation.

2. put(f) append an element to f

{f = [a,x,< >]} put(f) {f = [a*<x>,?,< >]}

Notice that the effect of putting is only defined, if eof(f) e

3. reset{f): resetting f to the beginning for reading.

{f = . [a , ? , b]} res e t (f) {f = [< >, fir s t (a * b) , a * b]}

Notice that f~ is only defined, if a*b~< >, i.e. if ~eof(f)

4. get{f): pick the next element of f e

Cf = [a,?,<x>*b]} get(f) {f = [a*<x>,first(b),b]}

Notice that ft is defined only if . ,eof(f) .

5 • rewri te (f) a new procedure with the effect

f := [< >,?,< >]

It is used to discard the current value of f.

6 • read(ch) is equivalent to

ch e_ inputt ; get(input) .-

7. write(ch) is equivalent to

out putt : = c h ; put (0 u t put)

The essential change with respect to the existing file system is
that the reset operation implies a subsequent get operation.
Also, an external input file declaration (including the standard
file "input") implies a first get operation. Sequential reading
of the file input was programmed as follows:

or

get(input};
while , eof (input) do

begin P(inputt); get(input)
"end

read(ch);
while ,e~f(input)

begin P(ch);
end

do
read(ch)

- 3 -

In the first case, the first line can simply be deleted under
the new scheme. However, the second version must be reprogrammed
as

while ,eof(input) do
begin read(ch); P{ch)
end

In PASCAL 6000, the read procedure has been extended to also
accept arguments of type integer and real. The effect of the
change is that in the sequence of statements

'read{x); read(ch)

ch is now assigned the character immediately following the
character sequence representing the number x.

II. Packed arrays

The introduction of packed arrays, declared by preceding an array
definition by the symbol oacked, is in the first instance a pure
extension of PASCAL, and may be implemented on machines with small
wordlength (bytes) by simply ignoring the symbol pack~d. However,
the intention is to treat the type alfa as defined by the
standard declaration

~ alfa = packed array[1 •• 10J of char

A problem ,arises because now we have an instance of structured
constants in the language: the alfaconstants are literals of an
array type. We will call them strings. Since there may be packed
array variables of various dimensions, an automatic padding of
strings to length 10 becomes illogical. And herein lies the
change induced by the introduction of packed arrays:

1. a string with n characters is taken to be a constant of type

packed array[1 •• nJ of char

2. assignments of packed arrays are .subject to strict rules of
type compatibility, possibly with the exception that trailing
blanks in literal strings may be omitted and are inserted by
th e compiler.

3. if a string occurs as parameter of a write statement, it is
printed literally and without padded blanks. The PASCAL 6000
procedure "text tt becomes redundant.

- 4 -

III. Parameters of procedures

The definition of constant-parameters will be changed. In
every case the value of the actual parameter will be assigned
to the formal parameter which effectively constitutes a local
variable. Assignments to this local variable are then no long~r
prohibited; the parameter essentially corresponds to Algol's
value parameter. In place of the symbol canst we therefore will
require the symbol value (which, however, may be elided).

This replacement of constant by value parameters will actually
nat require any changes to existing correct programs. However,
the failure of the existing compiler to paint aut assignments
to structured constant parameters has caused that many PASCAL
programs are assumed to be correct although they are nat. These
programs may very likely produce different results under the
scheme with value parameters. An example fallows:

~ A = array[1 •• 10] £f integer;
procedure ·P(x: A);

begin ••• x[3] := 17;
end;

P(a)

The assignment to x[3] is illegal, if x is considered as a
constant parameter. The current compiler version, however, will
assign 17 to a[3J • In case of a value parameter interpretation,
the assignment will be made to the local x[3] instead, and
a[~] will remain unchanged.

IV. Classes and painters

The reason for introducing the class variable is to make a
dynamic allocation scheme and access of elements via painters
available, and at the same time to obtain a cheap storage
retrieval mechanism for classes that are no longer needed. Such
classes which have a limited lifetime as a whale are declared
local to a procedure and are therefore Itreleased" by the normal
stack allocation scheme upon exit of the procedure. However, the
benefits of this scheme turn aut to·be hardly ever used: class
variables are declared in the main program almost without
exception. In this case, the fallowing simplification - which
amounts to the elimination of the class variable all together -
becomes attractiver

Instead of

~ P = tc;
~ c: class of T;

we write only

~ P = tT;

- 5 -

The natural technique to handle dynamic allocations in this
case is the following:

program

puIs. stack
~~

J~

,dyne alloc

It is planned that the described changes will be implemented in
a compiler to be released in late 1972. However, we reserve the
rights to deviate from these descriptions, where this turns out
to be necessary or desirable. At ETH Zurich, a compiler version
to be put into operation on July 15 will already include change I
on files. The current compiler, however, will remain available
at least until summer 1973.

