
PLI -80™
APPLICATIONS GUIDE

[j]] DIGITAL RESEARCH™

PL/I-80 APPLICA.':rIOT\IS ~TJIDE

Copyright (c) 1980

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGH~

Copyright (c) 1980 bv Digital Research. All rights
reserved. No part of this ~ub]ication may be
reproduced, transmitted, transcribed, store~ in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, maqnetic, oPtical., chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
permission is granted to reoroduce or abstract the
example programs shown in the enclosed fiqures for
the pu~poses of i.nclusion within the reader~s
programs.

DISCLAIMF.R

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantabi.lity or fitness for any particular
putpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKR

CP/M is a registered trademark of Digital
PL/I-80, MP/M-80, RMA~, SID, ZSID and
trademarks of Digital Research.

Research.
~EX are

The "PL/I-80 App]ications Guide" was prepared using
the Digital Research ~BX Text formatter.

* Second Printing: December, 1980 *

1 .

2 •

3 •

4.

5.

6.

7 •

8 •

9.

TABLE OF CONTENTS

INTRODUCTION •

PL/I-80 SYSTEM OPERATION •

PL/I~80 PROGRAMMING STYLE

PL/I-80 INPUT/OUTPUT CONVENTIONS.
4 • 1 • The 0 PE N S tat em en t
4.2. The PUT LIST Statement
4.3. The GET LIST Statement
4.4. The PUT EDIT Sta tement
4 • 5 • The GET ED ITS tat em e n t • • • • •
4.6. The FORMAT Statement
4.7. The WRITE Statement.
4.8. The READ Statement

PL/I-80 PROGRAMMING EXAMPLES •
5.1. Polynomial Evaluation.
5e2. The File Copy Program ••••••
5.3. Name and Address File processing
5.4. An Information Management System

LABEL CONSTANTS, VARIABLES, AND PARAMETERS •

EXCEPTION PROCESSING • • • •
7 • 1 • Th e ON S tat em en t
7 • 2. The REVER'r S ta temen t
7.3. The SIGNAL Statement
7.4. The ERROR Exception.
7.5. FIXEDOVERFLOW, OVERFLOW, UNDERFLOW,

7.6.
7.7.
7.8.

and ZERODIVIDE •• • • • • • • • • • • • • • •
ENDFILE, UNDEFINEDFILE, KEY, and ENDPAGE •••
ONCODE, ONFILE, ONKEY, PAGENO, and LINENO •
An Exam pI e 0 f Ex cept ion Proce ss i ng ••••

APPLICATIONS OF CHARACTER STRING PROCESSING
8 • 1 • The 0 PT I 1'4 I S T Pro gram
8.2. A Free-Field Scanner

APPLICATIONS OF LIST PROCESSING
9.1. Manag i ng aLi st 0 f Wo rds
9 .2. A Ne twork Analys i s Prog ram

1

4

11

14
14
18
20
21
23
25
25
27

31
31
34
37
40

55

59
60
61
62
64

66
66
68
69

75
75
78

84
84
90

10. USES OF RECURSION IN PL/I-80 • •• • ••••••• 104

11.

10.1. Evaluation of Factorials •• 104
10.2. Evaluation of the Ackermann Function ••• 114
10.3. An Arithmetic Expression Evaluator •••••• 117

SEPARATE COMPILATION AND LINKAGE • • • •• • •
11.1. Data and Program declarations •••
11.2. An Example of Separate Compilation

• • • • 126
• • 126

129

(All Information Contained Herein is proprietary to Digital Research.)

12. COMMERCIAL PROCESSING USING PL/I-SO · · · · · 135
12.1. A Com'Parison of Decimal and

Binary Operations · · · · · · · · · · · · · 135
12.2. Decimal Computations in PL/I-SO · · · · · · 137
12.3. Addition and Subtraction · · · · · · · · · 139
12.4. Multi'P1ication . · · · · · · · · · · · · · 141
12.5. Division · · · · · · · · · · · · · 143
12.6. Conversion Between Fixed Decimal

and Float Binary · · · · · · · · · · · · · 146
12.7. A Simple Loan Payment Schedule · · · · · · 147
l2.S. Ordinary Annuity · · · · · · · · · · · 150
12.9. Formatted Loan Payment Schedule · · · · · · · · 156
12.10. Computation of Det;>reciation Schedules · · · · · 167

(All Information Contained Herein is Proprietary to Digital Research.)

1. INTRODUCTION TO PL/I-80

The PL/I-80 system is a complete software package for
a ppl ica tion prog ramming under the Dig i tal Research CP/M and
multiprogramming MP/M operating systems (the name, by the way, is
pronounced PL-ONE, but is spell ed wi th the Roman numeral II I", so don It
be confused when you see lower case "pI i" in va r ious commands and
prog ram examples). The PL/I-80 language is based upon the new Subset
G language defined by the ANS PL/I Standardization Committee X3JI.
The subset contains all necessary application programming constructs
of full PL/I, discarding seldom-used or redundant forms. The
resul tinq language constraints encourage good programming practices
wh i I e s im pI i f yi ng the c om p i I a t ion task.

PL/I-80, like all programminq languages (and most natural
languages) is most easily learned by studying working examples. The
purpose here is to introduce the mechanics of compiling, linking, and
executinq programs, and to introduce useful facilities of the
language. The presentation is followed by detailed sample programs
which illustrate Input/Output processing, scientific computation,
business applications, along with string and list processing.

The best way to learn PL/I-80 is to study these examples by
reading the associated text, examining the programs, and
cross-checking with the reference manual when necessary. Once you
understand the operation of a particular sample program, you may wish
to modify the program to enhance its operation and further your
experience with the language. If you are a beginner, check with your
local universiy or community college: programming courses are often
available which specifically cover the PL/I language (you'll find you
have a particular advantage over your classmates, since your
turnaround time is only a few minutes). Alternatively, you may wish
to purchase one of the hundreds of textbooks which are currently
available on the sUbject. Most of these textbooks are found in
university bookstores or through special orders, and cover the basics
of PL/I.

Your PL/I-80 system diskette does not contain a CP/M operating
system, so you must first make a copy of the PL/I-80 programs for
everyday use, and generate a CP/M systen on the first two system
tracks (be sure you have read your licensing agreement - you have
certain responsibilities when you make copies of Digital Research
pro gram s) • Load yo urn ew I y c rea ted dis ke t t e into d r i v e A, reb 0 0 t
CP/M, and type a DIR command. You'll find several types of files,
i nclud ing :

COM

DAT

IHL

CP/M Command Files
o r Compo sit e Pro gram s
(PLI.COM is one of these)

Default Data File Type

Indexed Relocatable Code
(PLILIB.IRL is the library)

(All Information Contained Herein is proprietary to Digital Research.)

1

OVL

PLI

PRL

PHN

REL

PL/I-80 Compiler Overlays
(PLI0, PLIl, and PLI2)

PL/I-80 Source Programs
(e.g., type OPTIMIST.PLI)

Page Relocatable Object
(Used in MP/M Parti tions)

Printer Disk File
(Program Listing to Disk)

Relocatable Object Code
(Such as Developed Programs)

The only files which contain printable characters are the "PLI" source
programs and "PRN" printer listing files. Several programs are
included on the PL/I-80 system disk which correspond to various
examples in this manual, along with additional programs of increasing
complexity. To begin with, try running a program which has already
been compiled and linked to the PL/I-80 runtime library. Type the
command

OPTIMIST

the OPTIMIST program will load and respond with

What's up?

Answer by typing the sentence

None of these programs make sense.

(be sure to end your input with a period, followed by a return).
After you get the response from the OPTIMIST, you can type a few more
sentences if you wish, then type a control-C to stop the OPTIMIST.

The OPTIMIST is a PL/I program which is included on your PL/I-80
system diskette in source form. Display the program using the type
comma nd

TYPE OPTIMIST.PLI

As an example, go through a complete compilation and test of the
OPTIMIST program by following the steps shown below. Note that
although you can run the OPTIMIST program in any memory size, the
PL/I-80 compiler needs at least a 48K CP/M system for operation. Be
sure that the PLI.COM and overlay files are on your default disk,
otherwise you'll get the error messaqe "NO FILE: PLI0.0VL" when you
start the compiler. Compile the OPTIMIST program by typing

PLI OPTIMIST

(All Information Contained Herein is Proprietary to Diqital Research.)

2

The compiler will process the program in three steps, referred to as
"passes," marked by the messages

NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2
END COMPI LATION

If you examine your directory, you'll find the file

OPTIMIST. RE L

which contains the relocatable machine code produced by the PL/I-80
compiler for the OPTIMIST program. If you wish, you can recompile
with the listing option so you can view the proqram as it is being
compiled. This is accomplished by typinq

PLI OPT IMIST $ L

The compiler will proceed as before, but this time it produces the
proqram listing in the last pass.

The relocatable machine code resultinq from the compilation is
not directly executable, so you'll have to link the REL file with the
PL/I-80 runtime subroutine library by typinq

LINK OPTIMIST

The LINK-80 program produces an OPTIMIST. COM file which replaces the
one that came with your diskette. Your new OPTIMIST program should
operate in the same manner as the original proqram.

(All Information Contained Herein is Proprietary to Diqital Research.)

3

2. PL/I-80 SYSTEM OPERATION

First it's necessary to expand upon the compiler and linker
ope rat ions pre sented in th e prev ious secti on. In general, th e PL/I -8"
compiler reads program files prepared under CP/M or MP/M using th~
standard program editor (ED). The program is processed by the PL/I-80
compiler, linked using LINK-80, and subsequently tested. As an
example, consider the simple payroll program compiled and listed in
Figure 2-1. The compiler proceeds through the first two passes and
lists each line containing an error, with the line number to the left,
a short error message, and a "?" below the position in the line where
the error occurred. You can, at any time, abort the compilation by
typing a carriage-return at the console. This particular facility is
useful if the number of error diagnostics is excessive, and you wish
to make certain corrections before proceeding. The program line
number is listed on the left, followed by a letter a-z which denotes
the nesting level for each line. The main program level is I'a", and
each nested BEGIN advances the level by one letter, while each nested
PROCEDURE level advances by two. The'relative machine code address
for each line is listed next as a four digit hexadecimal number. This
address is useful in determihing the amount of machine code generated
for each statement and the relative machine code address for each 1 ine
of the program. The source statement is printed on the line following
the relative machine code value.

The $L parameter provided on the command line which starts the
compiler is called a "compiler switch" and enables the listing option.
A list of compiler switches is shown below. In each case, the single
1 etter command follows the "$ II symbol gi ven in the command 1 ine, wi th
a maximum of seven command letters following the dollar sign. 'l'he
default when no parameters are specified results in a compilation with
no 1 isting, where all error messages are sent to the console.

B Builtin Subroutine Trace
shows the library functions which
are called-out by your PL/I program

D Disk File Print
sends the listing file to disk, using
the file type PRN

I Interlist Source and Machine Code
decodes the machine language code
produced by the compiler in a
pseudo-assembly language form

L List Source Program
produces a listing of the source
program with line numbers and
machine code locations (automatically
set by the I switch)

N Nest ing Level Di spl ay
enables a pass 1 trace which shows
exact balance of DO, PROC, and BEGIN

(All Information Contained Herein is Proprietary to Digital Research.)

4

PL/I-80 V1.0, COMPILATION OF: WAGE

L: List Source Proqram

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: WAGE

1 a 0000
2 a 0006
3 a 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

payroll:

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0008
17 c 0023
18 c 003A
19 c 00A0
20 c 00C8
21 c 00C8
22 c 00C8
23 c 00C8
24 c 00DF
25 c 00F0
26 c 0eJF0
27 c 011F
28 c 0157
29 c 0177
30 c 0192
31 c 01EA
32 c 01EA
33 a 01EA

CODE SIZE = 01ED
DATA AREA = 0ED2

procedure options(main);

declare
name (100) character(30) varying,
h 0 u r s (1 0 0) fix e d dec im a 1 (5 , 1) ,
wage (100) fixed decimal(5,2),
done bit (1) ,
next fixed;

declare
(grosspay, withhold, netpay) fixed decimal(7,2);

/* read initial values */
done = '0'b;

do next = 1 to 100 while(~done);
put list('Type "employee' I, hours, wage: I);
get 1 i st (name (next) ,hours (next) ,wage (next));
done = (name (next) = 'END');
end;

/* all names have been read, write the report */
put list('Adjust Paper ~o Top of Page, Type return');
get ski p(2) ;

do next = 1 to 100 while(name(next) ~= 'END');
qrosspay = hours(next) * waqe(next);
withhold = grosspay * .15;
netpay = grosspay - withhold;
put skip(2) list('$' ,netpay,'for' ,name(next));
end;

end payroll~

Figure 2-1. Wage Program Listing.

(All Information Contained Herein is Proprietary to Digital Research.)

5

exact balance of DO, PROC, and BEGIN
s ta tern ents wi th the i r correspondi nq
END statements

P Page Mode Print
inserts form feeds every 60 lines,
and sends the listing to the printer

S Symbol Table Display
shows the program variable names, along
with their assigned, defaulted, and
augmented attributes

PL/I-80 allows separate compilation of individual procedures,
where each compilation produces a ~REL" file. Only one procedure can
be included with "options(main)" and this becomes the main program for
the modul e, wh i Ie all 0 ther s ubrout i nes have the usual PL/I procedure
head er.

The file PLILIB.IRL contains the subroutines which can be
called-out by your PL/I-80 program, and as shown in the previous
section, the relocatable machine code is linked with the PL/I run-time
library subroutines by typing the command:

link wage

producing a Composite Program. If you are operating under the MP/1Vl
system, the command

link waqe[op]

again produces a Composite Program, but in this case the machine code
is in page relocatable format which executes in an MP/M partition. In
the first case, LINK-80 produces a "waqe.com" file for execution under
CP/M or in an absolute segment u~der MP/M. In the second case,
LINK-80 produces a file named ~wage.prl". In addition to the machine
code files, LINK-80 also produces the symbol table file, named
"wage.sym~ which can be loadad for debugging purposes under SID or
ZSID.

Figure 2-2a shows the output from LINK-80 for the simple waqe
program. By convention, the subroutines extracted from the PL/I-80
1 i bra r y are pre c e d ed by the "?" s ym b 01 i nor de r to avo i d con f 1 i c t s
with user-defined symbol names. Symbols enclosed within slashes ("/")
are EXTERNAL variables (COMMON in Fortran), and symbols followed by
"*1' are undefined. It is important t·o note that LINK-80 implements
the Microsoft linkage editing format in order to be compatible with a
variety of other language processors. This format, however, restricts
the length of external names to 6 characters, so even though your
internal variable names can be as long as 31 characters, make sure all
your externally defined names are unique in the first 6 positions.

By default, LINK-80 does not list the "?" symbols from the
library. If you want a complete listing of these symbols, type

(All Information Contained Herein is Proprietary to Digital Research.)

6

A>link wage
LINK V0.4

PAYROL 0100 /SYSIN/ IF19 /SYSPRI/ IF3E

ABSOLUTE 0000
CODE SIZE 1DCF (0100-1ECE)
DATA SIZE 10C5 (lF94-3058)
COMMON SIZ E 00C5 (lECF-IF93)
USE FACTOR 4E

Figure 2-2a. A Simple Link Edit for the Wage Program.

A>link wage[q]
LINK V0.4

PAYROL 0100 ?START 1D60 ?SYSPR 03BB ?SLCTS 1756
?PNCOP 02F3 ?QIOOP lCOF ?SYSIN 03B7 ?GNVOP 08CB
?IM22N 17C1 ?SSVFS 177F ?QCOOP 12F1 ?DSTOP 1563
?SCVCM 16E7 ?SKPOP 0526 ?DLOOP 153C ?DMUOP 15DC
?QDDSR 1446 ?DSUOP 15BC ?QDCOP 14A0 ?PNVOP 0317
?SLVTS 1754 ?STOPX lE71 /?FILAT/ lECF /?FPB/ 1EDS
?PNBOP 02ED ?PNCPR 05C5 ?IS22N 1823 ?SIOOP 03C0
?SIOPR 03DE /?FPBST/ 1F06 /SYSIN/ IF19 /SYSPRI/ 1F3E
?OIOOP 0690 ?FPBIO 084E ?OIOPR 06BC ?BSL16 1606
?SIGNA 197E ?SKPPR 052F ?GNCPR 0A45 ?WRBYT 0F2C
?PAGOP 08BO ?NSTOP 160C ?8MVCM 179E ?SJSVM 171C
?SSCFS 1769 ?QB" 81 1200 ?OPNFI 0E09 /?FMTS/ 1F66
?FPBOU ID33 ?FPBIN 1CEB ?GNVPR 0908 ?RDBYT 0F19
?RDBUF 0F52 ?WRBUF 0F75 ?CLOSE 105E ?GETKY 108F
? SETKY 10B5 ?PATH 1042 ?BDOS 0005 ?OFCB0 005C
?OFCS1 006C ?DBUFF 0080 ?ALLOP 182A ?FREOP l8C0
? ADDIO 1DBC ?SUBIO 1003 ?WRCHR 1049 ?RFS IZ I1BA
?RRFCB 122C ?RWFCB 1231 ?QB16I 12E0 ?QODOP l3BF
?DNGOP 15A5 ?QOOSL 13D7 ?DOVER 16SC ?BSL08 1600
?SCCCM 16EE ?SJSCM 171E ?SJSTS 1730 ?8MCCM 17A2
?IM22 17Cl ?IM11 17F5 ·?I822 1823 ?ERMSG 1E8e
?BEGIN 3055 /?ONCOD/ IF6E ?SIGOP 196E ?STACK 304F
?ONCPC 1CA3 /?CONSP/ IF71 ?ONCOP 1C06 ?REVOP lC5B
/?CNCOL/ 1F92 ?RECLS 3BFC ?BOOT 0000 ?CMEM 1ECF
?DMEM 3059

ABSOLUTE 0000
CODE SIZ E IDCF (0100-1ECE)
OATA SIZE 10C5 (lF9 4 -3058)
COMMON SIZE 00C5 (lECF-IF93)
USE FACTOR 4E

Figure 2-2b. Link Editing using the LINK-80 "Q" Switch

(All Information Contained Herein is Proprietary to Digital Research.)

7

1 ink wage [q]

and a listing of the form shown in Figure 2-2b results.

Execution proceeds by typing the name of the COM or PRL file, as
shown in Figure 2-3. The program executes, and prompts the console
for input. As discussed in the I/O section which follows, input from
the console is free-field with the full line editing facilities of
CP/M and MP/M. The messaqe

End of Execution

is displayed upon completion of the program before returning to the
console command 1 eve 1.

Various run-time errors terminate program
explicitly intercepted within the PLII program.
message fo rm shown be low is d ispl ayed:

execution if not
In this case, the

error-condition (code), file-option, auxiliary-message
Traceback: aaaa bbbb cccc dddd # eeee ffff gggg hhhh

where the "error-condition" is one of the standard PL/I conditions

ERROR FIXED OVERFLOW OVERFLOW UNDERFLOW
ZERODIVIDE END OF FILE UNDEFINED FILE

and" (code)" is an error subcode which identifies the origin of the
error. The "file-option" is printed when the error involves an I/O
operation, and takes the form:

internal=external

where "internal" is the internal program name which references the
file involved in the error, and "external" is the external device or
file name associated with the file. The "auxiliary-message" is
printed whenever the preceding information is insufficient to identify
the error. Finally, the "traceback" portion lists up to eight
elements of the internal stack in order to help identify the program
statement which produced the error. If the stack depth exceeds eight
elements, the "i" separates the topmost four elements on the left from
the lowermost four elements on the right. In the form shown above,
element aaaa corresponds to the top of stack, while hhhh corresponds
to the bottom of the stack. Unless the statement in error has filled
the low end of the stack with a character or decimal temporary, the
value hhhh determines the main program statement in error, as
desc r ibed below.

An execution of the wage program, shown in Figure 2-4, gives an
example of the diagnostic form. In this case, the first console input
is entered properly, but the second line terminates console input with
an end-of-file (control-Z). The END OF FILE condition is raised for
the SYSIN file which is standard console input. The external device
connected to SYSIN is, in this case, the operator's console, denoted
by CON.

(All Information Contained Herein is proprietary to Digital Research.)

8

A>wage
Type 'employee', hours, wage: 'Sidney Abercrombie', 35, 6.70
Type 'employee', hours, wage: 'Yol anda Carlsbad' , 42, 7.10
Type 'employee', hours, wage: 'Ebenizer Eggbert', 30, 5.50
Type 'employee', hours, wage: 'Hortense Gravelpaugh',40,6.50
Type 'employee', hours; wage: 'Franklin Fairweather' ,10,15.00
Type 'employee', hours, wage: 'Tilly Krabnatz',32~4.10
Type 'employee', hours, wage: 'Ricardo Millywatz', 45, 7.20
Type 'employee', hours, wage: 'Adolpho Quagmire', 60, 4.30
Type 'employee', hours, wage: 'pratney Willowander'·,43, 5.50
Type 'employee', hours, wage: 'Manny Yuppgander', 40, 3.25
Type 'employee', hours, wage: 'END',0,0
Adjust Paper to Top of Page, Type return

$ 199.33 for Sidney Abercrombie

$ 253.47 for Yolanda Carlsbad

$ 140.25 for Ebenizer Eggbert

$ 221.00 for Hortense Gr avelpaugh

$ 127.50 for Frankl in Fairweather

$ 111.52 for Tilly Krabnatz

$ 275.40 for Ricardo Mi llywa tz

$ 219.30 for Adolpho Quagmi re

$ 201.03 for Pratney Wi llowand er

$ 110.50 for Manny Yuppgander
End of Execution

Figure 2-3. Execution of the Wage Program.

A>wage
Type 'employee', hours, wage: 'Sally Switzwigg', 23, 3.10
Type 'employee', hours, wage: -Z

END OF FILE (1), File: SYSIN=CON
Traceback: 0930 08DB 0146 3300 # 1F07 049A 8082 0146
End of Execution

Figure 2-4. Error Traceback for the Wage Program.

(All Information Contained Herein is Proprietary to Digital Research.)

9

by CON.

The traceback shows the lowest stack location as 0146
(hexadecimal), corresponding to the main program statement in error.
Referring back to Figure 2-2a, the PAYROL program address is shown in
the upper left corner as 0100, which is the normal beginning location
under CP/M. The difference 0146-0100 = 0046 is the relative location
of the error. The Figure 2-1 listing shows that the address 0046
falls between the code addresses listed alongside line 18 (003A to
00A0-1), and thus it was within this lin~ that the error occurred.

(All Information Contained Herein is Proprietary to Digital Research.)

10

3. PL/I-80 PROGRAMMING STYLE

Before we get into PL/I-80 proqramming rletails, it's worthwhile
discussing the topic of programming style. PL/I is a "free-format"
language, which means that you can write programs without regard to
column positions and specific line formats. Each line can be up to
120 characters in length (terminated by a carriage return), and is
logically connected to the next line in sequence. The compiler simply
reads the source program from the first throuqh the last line,
disregarding line boundaries. With this freedom of expression comes a
responsibility on your part to adhere to some stylistic conventions so
that your programs can be easily read and understood by other
programmers. Professional programmers know that it's not enough to
just have a program that produces the proper output (although that's a
desirable qualityl). The program must also be consistent in form, and
divided into logical segments which are easy to comprehend. A
well-constructed program is a work of art which is appreciated for its
structure as well as its function.

There are many stylistic conventions wnich are used throughout
the industry. The rules given below illustrate one set of conventions
which we'll use fairly consistently throughout the examples this
manual.

First, note that PL/I programs can be written in either upper or
lower case. Internally, the PL/I compiler translates all characters
outside of string quotes to upper case. We generally prefer the use
of lower case throughout programs since it decreases the program
density and generally improves readability. Second, indentation is
used throughout PL/I to set off various declarations and statements.
In order to simplify indentation, the PL/I compiler expands tabs
(control-I characters) to every fourth column position. Be aware,
however, that CP/M utilities, such as ED, expand tabs to multiples of
eight columns, so the line will appear wider during the edit and
display operations. Note also that the TRUNC (truncate) error is
issued if the expanded line length exceeds 120 columns. Program
statements start at the outer block level in the first column
position. Each successive block level, initiated by a DO, BEGIN, or
PROCEDURE group is started at a new indentation level, either four
spaces or one tab stop. Statements within a group are given at the
same indentation level, with procedure names and labels on a single
line by themselves. An IF statement should be directly followed by
the con d i t ion and the 'fH E N key wo r d , wi t h the n ext s ta t em en tin den ted
on the next 1 ine. When the IF statement has an associated ELSE, the
ELSE starts at the same level as the IF. Further, the statement
following the ELSE is indented and placed on the next line. Finally,
the declaration statement should be formed by placing the DECLARE
keyword on a single line, followed by the declared elements indented
on the following line. Complicated attribute factoring should be
avoided since this reduces program readability. Blank lines (i.e.,
lines containing only a carriage return) are inserted when necessary
to improve paragraphing, and most often used to separate logically
distinct segments of the program. Many of the longer PL/I keywords
have abbreviations (e.g., DCL is equivalent to DECLARE). Inconsistent
use of abbreviations produces awkward progr~ns, so within a project

(All Information Contained Herein is proprietary to Digital Research.)

11

use either the long or short forms, but not both.

In general, large programs are divided into several logical
groups, or ~modules," where each module performs a specific primitive
function. These modules are expressed as PL/I subroutines which are
either locally or externally defined. Local subroutines become a part
of the same main or subprogram, while external subroutines are
separately compiled and linked together using LINK-80. Locally
defined subroutines are placed at the end of the program so that the
beginning contains only declarations and top-level statements which
call the local subroutines. As a general rule, neither the top-level
statements, nor th~ locally defined subroutines, should exceed one Qr
two pages in length. If you are just learning to program PL/I-80,
you'll probably want to use just a main program with locally defined
subroutines, following the form of most of the examples of this
manual. When your application programs increase in size, however, it
may be more effective for you to break programs into separate modules
so that individual segments can be compiled and linked in pieces, thus
reducing overall development time.

Comments are a welcome sight within programs, but avoid
introducing them at random spots throughout the source file since they
detract from the overall structure. Again, consistency is the
watchword: a good practice is to place the comment at the head of
subroutines or logical statement groups, and if you've properly
decomposed your program you'll find that these explanatory remarks,
along with your well-formed program, provide the required information
to understand program operation. The program shown in Figure 3-1
illustrates the conventions presented in this section.

(All Information Contained Herein is Proprietary to Digital Research.)

12

PL/I-80 Vl.0, COMPILATION OF: TEST

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR{S) IN PASS 2

PL/I-80 Vl.O, COMPILATION OF: TEST

1 a 0000 test:
2 a 0006 proc options (main);
3 c 0006 dcl
4 c 0006 (a,b,c) float binary;
5 c 0006 put 1 ist ("rype 'rh ree Number s: .) ;

6 c 00lD ge t 1 i st (a,b,c) ;
7 c 0056 put list (. The La rgest Value is I ,

8 c 0078 max3(a,b,c));
9 c 0078

10 c 0078 max3:
11 c 0078 proc{x,y,z} returns { flo a t bin a ry} ;
12 e 007B dcl
13 e 0088 (x,y,z,max) float binary;
14 e 0088 /* compute the larqest of x, y, and z */
15 e 0088 if x > y then
16 e 0099 if x > z then
17 e 00A7 max = x;
18 e 0085 else
19 e 0085 max = z;
20 e 00C3 else
21 e 00C3 if Y > z then
22 e 00D1 max = y;
23 e 00DF else
24 e 00DF max = z;
25 e 00EA return (max) ;
26 c 00F3 end max3;
27 a 00F3 end test;

CODE SIZE = 00~6
DATA AREA- = 0044

Figure 3-1. An Illustration of Stylistic Conventions.

(All Information Contained Herein is proprietary to Digital Research.)

13

4. PL/I-80 INPUT/OUTPUT CONVENTIONS

We'll start with a detailed discussion of the PL/I-80 I/O
system. This will provide the necessary foundation for the examples
t hat are pre sen ted 1 ate r • 1ft his sec t ion be c om est 00 d eta i 1 e d for
you, skip to the GET and PUT statements where the simplest I/O
facilites are found. Scan the example programs in l~ter sections and
then return to reread the details - they'll make more sense next time.

PL/I-80 provides a device independent I/O system which
interfaces PL/I-80 programs with the CP/M and MP/M file system. The
parameters for this interface are provided in the OPE~ statement and
through the defaulting mechanisms of the GET, PUT, READ, and WRITE
statements.

4.1. The PL/I-80 OPEN Statement.

The OPEN statement is optional, and takes place automatically
when a file is accessed using GET, PUT, READ, or WRI'rE when an
explicit OPEN has not occurred. If you do not want the file to take
the default attributes, it's necessary to explicitly OPEN the file
before it is accessed. The form of the open statment is:

OPEN
FILE (f)
STREAM RECORD
PRINT
INPUT OUTPUT UPDATE
SEQUENTIAL DIRECT
KEYED
E NV (B (i)) E NV (F (i)) E NV (F (i) , B (j))
LINESIZE (i)
PAGESIZE (i)
TITLE (c)

where the attributes may be listed in any order. The value f denotes
the value of a file constant or file variable and must be named in the
open statement. All other attributes are optional, and take default
values shown below. The values i and j denote FIXED BINARY
expressions, while c represents a character expression. Attributes
shown on the same line are in conflict and, if not included, the first
attribute on each line with multiple attributes becomes the default
value. The last four attributes take default values as shown below:

E NV (B (1 2 8))
LINESIZE (80)
PAGESIZE (60)
TITLE (If.DAT ')

A STREAM file contains variable
RECORD file generally contains pure

1 enq th ASCI I
binary data.

data, while a
The lines of an

(All Information Contained Herein is Proprietary to Digital Research.)

14

ASCII data file are defined by the interspersed carriage return line
feed sequences. Note that the line feed is included following each
carriage return when the file is created using the ED program. Files
created using PL/I-80 can, however, contain a series of line feeds
without preceding carriage returns. In this case, the end of line is
sensed when the line feed is encountered. The PRINT attribute applies
only to STREAM files, and generally suqgests that the data is
eventually destined for display on a line printer device.

INPUT files are expected to exist at the point of the OPEN
statement, while OUTPUT files are deleted, if they exist, and created
at the OPEN statement. An UPDATE file cannot have the STREAM
attribute, and can be both written and read. An UPDATE file is
created if it does not exist.

SEQUENTIAL files are read or written from
while DIRECT files can be accessed randomly.
automatically receives the RECORD attribute.

beginning to
A DIRECT

end,
file

A KEYED file can be accessed through the use of keys, and
automatically receives the RECORD attribute. In PL/I-80, a KEYED file
1S simply a fixed-length record file, where the key is the relative
record position of the record being accessed, based upon the fixed
record size.

rfhe ENV (Environment) attribute defines fixed and variable
length record files, along with the internal buffer sizes. The form
ENV(B(i» causes the I/O system to buffer i bytes of storage, where i
is internally rounded-up to the next multiple of 128 bytes. In this
case, the file is assumed to have variable length records and, in
PL/I-80, cannot have the KEYED attribute since the record size is not
fixed.

The ENV(F(i» form defines a file with fixed length records
containing i bytes each, which is internally rounded to the next
multiple of 128 bytes. In order to comply with the PL/I standard, you
are also required to define files with fixed-length records as KEYED.
The default buffer size is, in this case, i bytes rounded to the next
higher multiple of 128 bytes.

The form ENV (F(i) ,B(j) defines a file containing fixed length
records of i bytes (rounded up, as above), with a buffer size of j
bytes (again, rounded up). Note that you can specify a fixed length
record larger than the buffer size. Again, you are required to
include the KEYED attribute to maintain compatibility with the
standard.

If you specify the KEYED attribute, then the record length must
be given using either the ENV(f(i}} or ENV(F(i} ,B(j)} form. Further,
PL/I-80 requires all UPDATE files to be declared with the DIRECT
attribute in order that the individual records may be located. After
applying the default values, the following attributes are added:

(All Information Contained Herein is Proprietary to Digital Research.)

15

SEQUENTIAL ----> RECORD

U PDATE* ----> RECORD

KEYED** ----> HECORD

D IREC'r ----> KEYED** ----> RECORD

PRIN1' ----> STREAM
I
---> OUTPUT

* In PL/I-80, UPDATE must also be DIRECT
** In PL/I-80, KEYED must have ENV(F(i)) or ENV(F(i) ,S(j))

That is, the attribute RECORD is added to SEQUENTIAL, UPDATE, and
KEYED files, while STREAM is added to PRINT files. PRINT files are
a 1 so aut om a tic a 11 y 9 i v en the 0 UT P U (r at t r i bu t e • The KE Y E D at t rib ute i s
added to DIRECT files (which, in turn, adds the RECORD attribute).

An OPEN staternent cannot contain conflicting attributes obtained
in the OPEN statement itself or through the default or implied
mechani sm s.

So, what does all this mean? Basically, if you want to read a
file containing ASCII characters, you have to define it as a STREAM
file, otherwise it must be a RECORD file. Normally, this is all you
have to deal with. If you want to perform random access, define the
file as DIRECT and use ENV to define the record size. If you just
want to read the keys, you can define the file as KEYED, and leave off
the DIRECT attribute. You'll get quite a bit more insight by reading
the examples in the sections which follow.

The LINESIZE option applies only to STREAM files, and defines
the maximum input or output line lenqth. The PAGESIZE option applies
only to STREAM OUTPUT files, and defines the length of a page.

The TITLE(c) option allows programmatic connection between an
internal file name and an external device or CP/M file. When not
specified, the external file name becomes the value of the file
reference, with the type "DAT~. Otherwise, the character string c is
evaluated to produce either a device name:

$CON
$ LS'f
$RDR
SPUN

or a disk file name

System Can sol e
System List Device
System Reader Device
System Punch Device

d:x.y Disk d, File x.y

where lid:" is an optional drive name, and x and y represent the file

(All Information Contained Herein is Proprietary to Digital Research.)

16

name and file type, respectively. Note that either x or y, or both,
may be $1 or $2. If $1 is specified, then the first default name is
taken from the command line and filled into that position of the
title. Similarly, $2 is taken from the second default name and filled
into the position in which it occurs. The file name x cannot be
b 1 a nk , nor can x , y ,or d con t a i nil? II s ym b 01 s • The ph y sic a 1 I/O
devices $CON, $RDR, SPUN, and $LST can be opened as STREAM files only,
$RDR must be INPUT, and SPUN and $LST must have the OUTPUT attribute.

Several examples of the OPEN statement are shown below, assuming
each file fi has been declared elsewhere as a file constant. In each
case, the source statement is listed, with the default and augmented
a·t t r i bu t e s shown below the s tat em en t •

open file (fl);
STREAM INPUT LINESIZE(80) TITLE('fl.DAT') ENV(b(128»

open file (fl) print;
STREAM OUTPUT LINESIZE(80) PAGESIZE(60)
TITLE('F2.DAT') ENV(B(128)

open file (f3) sequential title('new.fil');
RECORD INPUT ENV(B(128»

open title('a: '11c) file (f4) direct keyed env(f(2000»;
RECORD INPUT ENV(f(2048) ,b(2048»

open update keyed file (f5) env(f(300) ,b(100»;
R E COR D E NV (f (3 8 4) , b (1 2 8» T I 'r L E (' f 5 • D AT')

open input direct title(cll'OU'l") env(f(100) ,b(2000»;
RECORD ENV(f(128) ,b(128»

Integer expressions are allowed wherever a constant is shown
above. Thus the statment

open file (fl) linesize (k+3) pagesize (n-4) env(b(x+128»;

is a valid form of the open statement. Finally, note that when an
OPEN statement references a file which is already open, the statement
is ignored.

the form of the close statement is

CLOSE FILE(f);

where f is a file variable or file constant. All open files are
automatically closed at the end of the program or upon execution of
the STOP statement.

Files opened with the STREAM attribute can be accessed through
GET and PUT statements, while files with the RECORD attribute are
accessed through READ and WRITE, with one exception noted later.

(All Information Contained Herein is Proprietary to Digital Research.)

17

4.2. The PL/I PUT LIST Statement.

The PUT LIST statement takes the form:

PUrr
FILE (f)
SKIP SKIP(i)
PAGE
LIST (d)

where all e lemen ts a re opt ional (al thouqh at 1 ea st one must be
specified). PUT LIST options can be qiven in any order, but the LIST
option, if specified, must occur last. In the form shown above, f is
a file variable or constant, and i is an integer expression. The LIST
option includes a data list, denoted by d, and described in the
paragraphs which follow.

The PUT statement writes data or control characters to the file
given by FILE(f), or to the standard console file SYSPRINT which is
implicitly declared in all PL/I-80 programs. If the file has not been
previously opened, it is automatically opened when the PUT statement
is executed. The SYSPRINT file is implicitly opened as:

OPEN FILE(SYSPRINT) PRINT ENV(B(128)) TITLE('$CON ');

The SKIP option can take one of the forms:

SKIP SKIP(i)

where i is a FIXED expression. The first form causes a carriaqe
return line feed sequence to be inserted into the output file, and
resets the column position of the output file to 1. The form SKIP(i)
inserts a single carriage return into the output stream, followed by i
line feed characters. Note that SKIP(0) moves the column position to
1 (e.g., the cursor is positioned to the left of the line on a CRT
display), \'lithout a line feed.

The PAGE option causes an automatic SKIP(0), and places a
form-feed character into the output stream. The order in which the
PAGE and SKIP options nre listed in the PUT statement is of no
consequence: if specified, the PAGE ootion is executed first,
followed by the SKIP option.

The data list d given in the LIST option takes the qeneral form:

LIST (dl,d2, ••• , dn)

where each di is either a simple constant, scalar expression, or
iterative g roup. An iterative g roup takes the form

(el,e2, ••• ,em DO iteration)

where, again, el through em are themselves constants, scalar
express ions, 0 rite rative g rou ps. The" i teration" por tion of the 1 i st
takes the same form as a PL/I DO-group header, and controls the number

(All Information Contained Herein is Proprietary to Digital Research.)

18

of times each embedded group is written. The iterative group has the
same effect as the PL/I-80 DO-group shown below:

DO iteration;
PUT LIST (el ,e2, ••• , em);
END;

Each element of the data list is evaluated, and converted to a
string constant according to the normal PL/I-80 conversion rules. If
the d a t a item i s a s t r i nq val u e, and the 0 u t pu t f i 1 e doe s not h a vet h e
PRINT attribute, then quote symbols are placed around the string, and
each embedded single quote is changed to a double quote value. If the
data item is a bit string, then the character lib" is appended to the
end of the output value. Values written to a disk file in this manner
are suitable for subsequent input using a GET LIST statement.

Upon converting the data item to a string value, the current
column position is compared to the linesize to ensure that the data
item will fit i nth e cur r en t 1 in e. I f not, a n aut om a tic SKI pis
issued, and the data item is writt~n on the following loqical line.
If the item is not the first on a line, a preceding blank is written
to separate each data item (this blank is included in the data item
length when multiple data items are written).

Examples of the PUT statement are shown below, followed by a
short explanation of their effect:

put skip;

m ov est 0 a new 1 in e i nth e f i 1 e S Y S PR IN T (us u all y the con so 1 e) •

put list('Type Name: ');

writes a string to the standard output file SYSPRINT, producing either

Type Name: or 'Type Name:

The first form is produced if the PRINT attribute is present.

put file (f) skip(3) page list(a,b,c);

writes a form-feed to the file specified by f, followed by a carriaqe
return and three line feed characters. The three variables a,b, and c
are then converted to varying character strings and sent to the file
f •

Additional valid forms are shown below.

put ski P 1 is t (x I I '+' I I y, ((x+y))) ;
put list «a(i),b(i) do i=l to 10»;

put list (x, «a(i,j) do j=l to n) do i=l to m»;
put list«x(i) do i = 1 to k+m while(x(i) < 10»);

(All Information Contained Herein is Proprietary to Digital Research.)

19

4.3. The PL/I-80 GET LIST statement.

Similar to the PUT st?tement, the GET statement is used to read
files with the STREAM attribute. The form of the GET statement is:

GET
FILE (f)
SKIP SKIP(i)
LIST(d)

where the FILE, SKIP, and LIST options obey the constraints of the PUT
statement shown above. If the FILE(f) option is not included, the
standard input file SYSIN is accessed with the automatic OPEN
sta temen t:

OPEN FILE(SYSIN) STREAM ENV(b(128» TITLE(I$CON');

The file f must have the STREAM INPUT attributes. The SKIP option
causes the input stream to be flushed to the next end of line, while
the SKIP(i) statement reads through the next i line feed characters.
The data items given in the LIST option must be scalar variables or
iterative groups, as given in the PU'l' statemen t, and must be valid
tar ge t s 0 f ass ig nm en t s tat em en t s •

When the console is accessed through a GET statement, the PL/I-80 I/O
system nccesses the console and waits for input. The operator can
type up to 80 characters, using the normal line editing facilities of
CP/M, before issuing a carriage return (an automatic carriage return
i sis sue d follow i n q the 8 0 t h c h a r act e r). I nth i s cas e, the car r i aq e
i s ret ur n ed tot he 1 eft sid e, followed by ali n e feed. T his b u f fer ed
line (including the line feed) is then used for subsequent GET
statement input.

External data read by the GET statement is taken by PL/I-80 as a
sequence of characters, or as a bit or character string surrounded by
string quotes. Each data item is separated by one or more blanks and
an optional comma character. It must be possible to convert the data
read in this manner to the type of the target item. If, for example,
a decimal number is specified in the GET statement, then the input
value must contain a valid decimal number.

Note that if a data item is empty (i.e., a pair of commas is
encountered, possibly separated by intervening blanks), the value of
the t a rg e t d a t a item i s not a I t e r ed • T his par tic u I a r f eat ur e 0 f P L / I
is useful when displaying data at a console which is then reread and
optionally changed.

The carriaqe return found at the end of each input line serves
as a delimiter (blank or comma). Further, string constants cannot go
beyond a line boundary, and, in fact, are automatically closed when an
end of line is encountered. (Thus, only the leading quote is
necessary when typing string data at the console.) The normal CP/M end
of file character (control-Z) can be typed at the console, but it must
be the first character on the line.

(All Information Contained Herein is Proprietary to Digital Research.)

20

4.4. The PL/I-80 PUT EDIT Statement.

The PUT EDIT statement is similar to PUT LIST described above,
except data is written into particular fields of the output line, as
described by a list of format items. The form of the PUT EDIT is

FILE(f)
PAGE
SKIP SKIP(i)
EDIT(d) (fl)

where the data list specifies a number of values to be written in
fixed fields defined by the format list fl. The list of data items to
write, denoted by d, obeys the same rules as the PUT LIST. One or
more format items are given in the list fl, separated by commas, and
optionally grouped within parentheses. Any format item may be
preceded by a positive constant integer value not exceeding 254, which
determines the number of times to apply the format item or group of
format items. Each element of the data list is paired with a format
item which determines the column position and interpretation of the
data element. See the Reference Manual, as well as the GET EDIT
statment, for additional details. The format items are:

A

A (n)

B

B (n)

81

81 (n)

B2

B2 (n)

83

83 (n)

Writes the next alphanumeric field using
the size of the (converted) character
data as a field width.

Similar to the A format, except the field
width is n, with truncation or blank pad
on the right.

Writes a bit string value to the output,
where the field width is determined by
the precision of the data item.

Similar to B, except the field width is
given by the constant n, with truncation
or blank pad on the right.

Equivalent to the B format shown above.

Equivalent to Bl shown above.

Equivalent to B, except the di~its are
written in radix 4 notation (0,1,2,3).

Equivalent to B(n), except radix 4 digits
are printed.

Equivalent to B, except radix 8 nota
tion is used for output (0 to 7).

Equivalent to B(n), except radix 8 digits
are printed.

(All Information Contained Herein is Proprietary to Digital Research.)

21

B4 Equivalent to B, except radix 16 digits
are written to the field (0-9, A-F).

B4(n) Equivalent to 8(n), except radix 16
digits are written.

COLUMN(n) Moves to column position n before writinq
the next data item. This may cause the
current line to be flushed.

E(n) writes n data item into a field of n
characters in scientific notation, with
maximum precision allowed within the
field width (n must be at least ~).

E(n,m) writes a data item into a field of n
characters, with m decimal places
of precision. The number is written
in scientific notation with one digit
to the left of the decimal point.

F(n) Write a numeric value in a field of
n digits, with no fractional part.
The value is rounded before it is
printed.

F(n,m) write a numeric value in a field of
n digits, with m fractional digits.
The value is rounded in the m+l frac
tional position before printing.

LINE(n) Moves to line n in the output before
writing the next data item.

PAGE Performs a page eject for print files.

R(fmt) Specifies a remote format. In PL/I-80,
if the R format appears, it must be the
only format item in fl.

SKIP Skips to the next output line before
writing the next data item.

SKIP(n) Skips n lines in the output before
printing the next data item.

TAB(n) Moves to the nth tab position in the
output line, where tabs are defined
at multiples of eight columns.

X(n) Inserts n blank characters into the
output stream before writing the
next da ta item.

(All Information Contained Herein is Proprietary to Digital Research.)

22

Unlike the PUT LIST statement, data fields are written to the end of
the line, without a "pre-fit" test. If the entire field cannot be
written, the portion which does fit on the current line is sent to the
output, a carriaqe return line feed is written, and the remainder of
the field is written on the following line. COLUMN, LINE. PAGE, SKIP,
TAB, and X format items which occur at the end of the format list have
no effect after the entire data list has been written. Valid PUT EDIT
statements are shown below:

put file(f) edit(INext ',value) (a,f(4»i
put edit «a(i) do i=q to r}) (page,40(3e(10,2},x(3}}}i

put edit (u,v,w) (r(fmt2)}i

4.5. The PL/I-80 GET EDIT Statement.

The GET EDIT statement is similar to the GET LIST statement,
except data is read from particular fields in the input stream. While
GET LIST is more appropriate for console input, GET EDIT is often used
to read data that has been written by another program. The form of
the GET EDIT statement is

GET
FILE (f)
SKIP SKIP(i)
EDIT (d) (fl)

where the FILE and SKIP options are identical to the GET LIST
statement. The EDIT option specifies a list of target variables to
receive the data which, again, matches the data specification of the
GET LIST. The EDIT option is followed by a format list, consisting of
a sequence of format items defined as follows:

A

A (n)

B (n)

Bl(n)

B2 (n)

Read the next alphanumeric field UP to
the next carriage return, line feed or
end of file (not standard PL/I).

Read the next n characters as an alpha
numeric field.

Read the next n characters and inter
pret as a bit string. The field must
be all blank, or contain a sequence of
lis and 0 1 s with riqht or left blank
pad.

Interpreted in the same manner as B.

Similar to Bl (n) , but the sequence must
contain diqits selected from 0,1,2,3.

(All Information Contained Herein is Proprietary to Diqital Research.)

23

R3(n) Similar to Bl(n), but the sequence must
contain digits from 0 throuqh 7.

B4 (n) Similar to 81 (n), but the sequence must
contain diqits from 0 to 9, and ~ to F.

COLUMN(n) Move to column position n in input,
may require a read past end of line.

E(n) Read the next n fields as a numeric
value, with possible leading and trail
ing blanks. The number must be a pro
perly formed constant, but may take
a simple signed or unsigned integer
form, a number with a decimal fraction,
or a number in scientific notation.

E (n,m) Equivalent to E (n), the scale factor m
is ignored on input.

F (n)

F (n ,m)

LINE(n)

R (fmt)

SKIP

SKIP(n)

x (n)

Equivalent to the E(n) form shown above.

Equivalent to E(n), except that the
decimal point is assumed m positions
to the left of the least significant
digit if there is no decimal point in
the field.

Moves to line n in the input before
reading the next field.

Specifies a remote format. In PL/I-80,
if the R format item appears, it must
be the only format item in fl.

Clears the current input line before
reading additional data items.

Clears the current input line, and
moves n-l additional lines through
the input before reading additional
data.

Moves n characters through the
input stream before reading the
next field.

The carriage return line feed sequences are ignored in the A(n), B(n),
B I (n), B 2 (n), B 3 (n), E (n), E (n , m), F (n), and F (n , m) form a t s : w hen
encountered, the next input line is read to obtain the remaining
characters of the field. Each format item can be preceded by a
repetition count, and groups of items can be enclosed within
parentheses and separated by commas with a preceding repetition count.
The repetition count r must be a positive constant value, not
exceeding 254, and is equivalent to writing the same format r times.

(All Information Contained Herein is Proprietary to Digital Research.)

24

In processing the GET EDIT statement, the PL/I-80 I/O system
keeps track of the next data item -to read, along with the 'next format
item to use in input processinq. As each data item is read, the next
successive format item in the list is selected, repeating each item if
a repetition count is present, until the data list is exhausted.
Format items which remain in the list are left unprocessed: in
particular, the control format items which remain (COLUMN, LINE, SKIP,
and X) have no effect when the data list is exhausted. If the list of
format items is exhausted before all data items have been read, the
format list is restarted at the beginning. (See the Reference Manual
for exact details on EDIT directed input operations.) 'The following
examples show a number of valid GET EDIT statements.

get edit(hours,pay) (f(4),f (5,2));
get file(employee) (hours,pay) (r(fmtl));

get e d i t ((a (i) do i = 1 to 10) (8 e (6) , ski p) ;
get skip(2) edit(u,v,w) (b3 (4) ,x(4) ,2a (5)); ·

get file(input) edit((mat(i) do i=l to mat(l)))
(1 in e (3) ,4 (10 (f (4) , x (2) , 2 f (4) , ski p (2)) , sk i p)) ;

4.6. The PL/I-80 FORMAT Statement.

The FORMAT statement allows a list of format items to be shared
among various GET and PUT EDIT statements. The form is

fm tname:
FORMAT (fl)

where fl denotes a list of format items, as shown in the GET and PUT
EDIT statements above. The list of format items is the.n referenced
using the R format within the GET or PUT format list. Again, note
that PL/I-80 restricts the use of the remote format: if it appears in
a GET or PUT EDIT, it must be the only format item in the list. Valid
FORMAT statements are shown below, and referenced in the examples of
the p rev ious two sec ti on s.

f m t l: form at (5 (x (3) , 4 (b 1 (2) , x (1) , f (4)) , ski p) , ski p (2)) ;
fmt'2: format(skip(3),e (10,2) ,f(8,3) ,2(x(4) ,b4 (4)));

4.7. The PL/I-80 WRITE Statement.

The WRITE statement is used pr~narily to transmit data
memory to an external file without conversion to character form.
basic form of the WRITE statement appears as follows:

WRITE
FILE(f)

from
The

(All Information Contained Herein is proprietary to Digital Research.)

25

FROM.(x)

where both the FILE and FROM elements must be ~resent, but may appear
in any order, f is a file reference, and x is a scalar or connected
aggregate data type. The file f is opened automatically as:

OPEN FILE(f) OUTPUT SEQUENTIAL TITLE('f.DAT') ENV(b(128));

If already open, file attributes of f must not conflict with these
default values. Thus, for example, a KEYED file is allowed (since
this only implies fixed length~records), but DIRECT is not.

If file f has been previously opened with the KEYED attribute,
then each ~record length is fixed, and determined by the ENV(F(i))
option given in the OPEN statement. Otherwise, the file is assumed to
contain variable lerigth records, where each record length is
determi~ed by the aggregate data size of x. Given a KEYED file with
records of length i, each record is written from x for a maximum of i
by,tes. T.he record .is padded with zeroes if the lenqth of x is less
than i •. r"f f is not KEYED, then the record length is exactly the size
of x.

An alternative form of the write statement is:

WRITE
FILE(f)
FROv1(x)
KEYFROM (k)

where the elements can appear in any order. If the file f is not
a Ire a d y 0 pe n, the d e fa ul t s tat ern en t

OPEN FILE(f) OUTPUT DIRECT ENV(f(128));

occurs before the file is accessed. Note that the DIRECT attribute
implies a KEYED file (which, in turn, implies a RECORD file). The
file may have previously been opened with either OUTPUT, the INPUT, or
UPDATE attributes, but must have the DIRECT attribute. Recall that in
the case of OUTPUT, the file is deleted, if it exists, and a new file
is created. If the file is marked as INPUT, then the file must
already exist. An UPDATE file is opened for access if it exists, and
created if it does not exist.

When the KEYFRCM option is included, each record is accessed
through a key k which, in PL/I-80, is a FIXED expression providing the
relative record number of the record to write, based upon the fixed
length of each record. The lowest key value is k = 0, while the
maximum key value depends upon the record length obtained from the
E NV (f (j)) a t t r i bu t e : i f j i s the fix e d r e cor d s i z e , and j , i s the
rounded record size, then the largest key times j' cannot exceed the
capacity of the drive.

A special form of the WRITE statement is supported by PL/I-80
for processing variable-length STREAM data, delimited by carriage
return line feed sequences. Given a file f with the STREAM OUTPUT

(All Information Contained Herein is Proprietary to Digital Research.)

26

attributes, and a varying character strinq v, the statement:

WRITE FILE(f) FRCM(v);

writes the characters of v
embedded control characters.

to the STREAM
The form:

WRITE FROM (v) ;

file f, including any

writes the string value v to the standard output device, and is
equivalent to:

WRITE FILE(SYSPRINT) FRCM(v);

In order to facilitate control character processing, PL/I-80
allows control characters to be entered into string constants. In
general, the character within a string constant denotes that a
control character follows. The occurrence of a double I within a
string, however, is reduce~ to a single character. The effect 6f
a leading is to mask the high-order four bits of the ~haracter
wh i ch fo llows to ze ro. Thus, the sequence ""'m ll wi thi n a st ring
constant is converted to a carriage return. Embedded control
characters are shown in the examples given in sections which follow.

To summarize, let f be a file, x be a scalar or connected
aggregate data type, v be a varying character string, and k be a fixed
binary expression. The following forms show the required file
attributes in each case:

w r i t e f i Ie (f) from (x) ;
S EQUE N'l'IAL OUTPUT (Opt i ona lly KEYE D) RECORD

write file(f) from(x) keyfrom(k);
DIRECT OUTPUT or DIRECT UPDATE

w rite f i I e (f) from (v) ;
STREAM QUrrpUT

write from(v);
STREAM OUTPUT (automatically SYSPRINT)

4.8. The PL/I-80 READ Statement.

The READ statement is used, with one excep'tion, to read fixed or
variable length RECORD files without conversion from character form.
That is, data is transmitted from an external file to data elements in
memory, where the external file is assumed to contain binary data. It
is the responsibility of the programmer to interpret the meaning of
the data which is transmitted.

Th e form 0 f the bas i c READ s t a tern e n tis:

(All Information Contained Herein is Proprietary to Digital Research.)

27

READ
FILE(f)
INTO(x);

where f is a file reference, and x is a connected aggregate or scalar
data type (e.g., a structures, array, or simple variable). Both the
FILE and INTO elements must be present, but may occur ln any order.
If the file f is not already open, then it is automatically opened as:

OPEN FILE (f) INPUT SEQUENTIAL TITLE('f.DAT ') ENV(b(128»;

As in the case of the WRITE statement, if f is already open, then its
attributes must not conflict with those shown above.

If the file has been opened with the KEYED attribute, then each
record is assumed to be of fixed length, as defined in the ENV(f(i»
attribute. Otherwise, the record length is assumed to be variable,
depending upon the size of the target data x specified in the INTO
element. Given a KEYED file, if the record length i is greater than
the size of x, all remaininq bytes in the record are ignored. If the
record length is less than the size of x, then only i bytes are read
into x. If the file is not KEYED, then the number of bytes read is
exactly the size of x.

The keys for a particular file can be optionally extracted as
the file is read sequentially usinq the form~

READ
FILE(f)
INTO(x)
KEYTO(k)

where the elements may be specified in any order. The effect of this
form is exactly the same as the previous READ statement, except that
the key value for the record is stored into the fIXED BINARY variable
reference denoted by k. Note, however, that in order to read the key
as well as the data, the file must be KEYED. Thus, the automatic OPEN
statement which applies to this second form of the READ is:

OPEN FILE(f) INPUT KEYED TITLE('f.DAT ') ENV(f(128»;

If a previous open has occurred, the attributes of f must not conflict
with these default attributes. Note, in particular, that KEYED must
be present, and DIRECT is not allowed since the KEYTO option simply
extracts the key, but does not specify the keyed record to read. This
form of the READ statement is most often used in the situation where
the file is first read sequentially to determine the keys, and later
accessed directly to read, write, or update specific records within
the file.

The third form of the READ statement specifies the keyed record
to read:

READ

(All Information Contained Herein is Proprietary to Digital Research.)

28

FILE(f)
INTO(x)
KEY (k)

where the elements may be specified in any order. If the file is not
already open, the default OPEN shown below is executed:

OPEN FILE(f) INPUT DIRECT ENV(f(128» TITLE('f.DAT');

If the file is already open, the open attributes must not conflict
with these default values, except that the file may have been opened
with the UPDATE attribute. Note that the DIRECT attribute also
implies that the file is KEYED.

The effect of this READ statement is to dlrectly access the
record which has the key value k. Since the file is KEYED, the record
length must be fixed, as defined by the ENV(f(i» attribute, and data
transfer takes place according to the above rules for fixed length
records.

A special form of the READ statement is allowed in PL/I-80 to
process variable length STREAM INPUT files:

READ FILE(f) INTO(v);

and

READ INTO (v) ;

where v is a varying character strinq, and f is an ASCII data file (or
character device) with records delimited by carriaqe return line feed
sequences. If FILE(f) 1S not specified, then the standard output file
SYSIN is assumed. If f is not open, it is opened with the statement:

OPEN FILE(f) PRINT TITLE('f.DAT') ENV(b(128»;

The effect of this statement is to read data from the file until
either the maximum lenqth of v is reached, or a line feed character is
read. The lenqth value of v is set to the number of characters
processed, including control characters, which specifically includes
the carriaqe return and line feed characters. If the standard SYSIN
file is attached to the console, then a maximum of 80 characters is
read before an automatic carriage return and line feed is issued.

In summary, if f is a file, x is a scalar or aggregate data
reference, v is a varying character string, and k is a fixed binary
key, the following.forms show the required file attributes:

read file(f) into(x);
SEQUENTIAL INPUT (Optionally KEYED) RECORD

read file(f) into(x) keyto(k);
SEQUENTIAL INPUT KEYED RECORD

read file(f) into(x) key(k);

(All Information Contained Herein is Proprietary to Diqital Research.)

29

DIRECT INPUT or DIRECT UPDATE

read file (f) into(v);
STREA.M INPUT

read i n to (v) ;
STREAM INPUT (Automatically SYSIN)

The followinq section contains a number of examples which show the use
of the various PL/I-80 I/O statements.

(All Information Contained Herein is Proprietary to Digital Research.)

30

5. PL/I-80 PROGRAMMING EXAMPLES

The purpose of this section is to introduce the various PL/I-80
I/O statements through several sample programs. The programs
themselves are simple in nature, but illustrate the basic techniques
for stream and record processing.

5.1. Polynomial Evaluation.

Two programs for polynomial evaluation are shown in Fiqures 5-1
and 5-2. Each program interacts with the system console hy readinq
three values: x, y, and z, which are then used in the evaluation of

2
p(x,y,z} = x + 2y + z

The programs have one main loop, bounded by a single DO-END group. On
each successive loop, the values of x, y, and z are read from the
standard SYSIN (console) file, and used in the polynomial evaluation.
The value produced by p(x,y,z} is written to the SYSPRINT file (again,
the console) in the middle of the loop. The STOP statement is
executed if all input values are zero, thus terminating the indefinite
loop.

The console interaction is shown below the program listing in
each Figure. Referring to Figure 5-1, note that the initial values
for x, y, and z are 1.4, 2.3, and 5.67, respectively. The next input,
however, takes the form

,4.5, ,

which changes only the value of y. On this loop, the values of x, y,
and z are 1.4, 4.5, and 5.67. The third input line changes y and z,
while the fourth line changes only x.

These two programs illustrate a number of points which should be
noted in passing. The" % repl ace" statement is used on 1 ine 6 to
define the literal value of "true" as a bit string constant Illb which
is substituted by the compiler whenever the name "true" is
encountered. In particular, the DO group beginning on line 12 is
interpreted by the compiler as

do while(lllb};

end;

which loops until the contained STOP statement is executed.

The only essential difference between the programs of Figures
5-1 and 5-2 is that the first uses float binary data items, while the
second program defines the variables as fixed decimal types. Although
the float binary computations execute significantly faster that their
fixed decimal equivalents, the binary computations are carried out to
only about 7-1/2 decimal places and involve truncation errors which
are inherent in floating binary computations.

(All Information Contained Herein is Proprietary to Digital Research.)

31

1 a 0000 poly:
2 a 0006 procedure opt ion s (rna in) ;
3 a 0006
4 a 0006 1* evaluate polynomial *1
5 a 0006
6 c 0006 % repl ace
7 c 0006 false by • 0' b,
8 c 0006 true by • I' b;
9 c 0006 dcl

10 c 0006 (x,y,z) flo a t h ina ry ;
11 c 000~

12 c 0006 do while{true);
13 c 0006 put skip(2) 1 i st (• Type x,y,z: I) ;

14 c 0022 get list(x,y,z);
15 c 0058
16 c 0058 if x = 0 & Y = 0 & z = " then
17 c 008E stop;
18 c 0091
19 c 0091 put skip 1 i st (• 2 •) ;
20 c 00AD put skip 1 i st (I x + 2y + z =' ,p(x,y,z));
21 c 00DA end;
22 c 00DA
23 c 00DA p:
24 c 00DA proc (x,y,z) returns (float binary) ;
25 e 00DA dcl
26 e 00E7 (x,y,z) float bi nary;
27 e 00E7 return (x * x + 2 * Y + z);
28 c 0109 end Pi
29 c 0109
30 a 0109 end poly;

Type x,y,z: 1.4, 2.3,5.67

2
x + 2y + Z = 1.223000E+01

Type x,y,z: ,4.5"

2
x + 2y + Z = 1.663000E+01

Type x,y,z: , .6e-3, 7

2
x + 2y + Z = 0.896119E+01

Type x,y,z: 2.3",

2
x + 2y + z = 1.229119E+01

rrype x, y , z: ",0,"

Figure 5-1. Floating Point Polynomial Evaluation.

(All Information Contained Herein is Proprietary to Digital Research.)

32

1 a 0000
2 a 0006
3 a 0006
4 a 0006
5 a 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

poly:

10 c 0006
11 c 0006
12 c 0006
13 c 0022
14 c 0067
15 c 0067
16 c 0082
17 c 0085
18 c 0085
19 c 00D1
20 c 0100
21 c 0100
22 c 0100
23 c 0100
24 e 0100
25 e 0100
26 e 010D
27 c 0153
28 c 0153
29 a 0153

Type x, y , z:

2
x +

Type x, y , z:

2
x +

Type x,y,z:

2

procedure options(main);

/* evaluate polynomial */

% rep1 ace

dc1

o· I •

t rue by 1 lib;

(x , y , z) fix e d dec ima 1 (1 5 , 4) ;

do whi1e(true);
put skip(2) 1ist('Type x,y,z: I);
get 1ist(x,y,z);

if x = 0 & Y = 0 & z = 0 then
stop;

put ski p 1 i st. (1

pu t ski p 1 i st (1

end;

2 •) ;
x + 2y + z =',p(x,y,z»;

proc (x,y,z) returns (fixed decima1(15,4»;
dc1

(x,y,z) fixed decimal(15,4);
return (x * x + 2 * Y + z);
end p;

end poly;

1.4, 2.3, 5.67

2y + z = 12.2300

, • 0006 , 7

2y + z = 8.9612

723.445, 80.54, 0

x + 2y + z = 523533.7480

Type x, y, z: 0,0"

End 0 f Execution

Figure 5-2. Fixed Decimal Polynomial Evaluation.

(All Information Contained Herein is Proprietary to Digital Research.)

33

5.2. The File Copy Program.

A general purpose file~to-file copy program is shown in figure
5-3. 'rhe program defines two file constants on line 4, called input
and output. The files are opened on lines 6 and 9, followed by a
continuous loop which reads data from the input file, and copies the
line to the output file.

Both OPEN sta tements de fine STHEAM fi les con taining ASCI I da ta,
with internal buffers of 8192 characters each. The first OPEN
statement has the default value of INPUT, while the second file
ex p 1 i cit 1 Y d e fin e san 0 U 'rp U T f i 1 e (0 the rw i s e , i t wo u 1 d a 1 so be
considered an INPUT file). The TITLE options connect the internal
file names to external CP/M devices and files: the first file name is
taken as the first default name typed in the command tail when the
copy proqram executes (denoted by $1.$1). Similarly, the second file
name is taken from the second default name on the command line
(denoted by $2.$2). The input file must exist, while the output file
is erased, if it exists, and re-created.

This particular program shows the special use of READ and WRITE
to process STREAM files: line 15 reads a STHEAM file into "buff"
which is a varying character string. The line of input, up to the
next line feed, is read into buff, and the length of buff is set to
the amount of data which was read, including the line feed character.
The next statement performs the opposite action: a WRITE statement
sends data to a STREAM file from buff, which is a varying character
string. The output file receives all characters from the first
position through the LENGTH(buff).

The program terminates by reading through the input file until
the STREAlv1 end of file (control-z) is reached. At this point, the END
OF FILE condition is raised, and the program stops. All files are
a utoma t i cally closed (and in te rnal buf fe r s are empt i ed), prese rvi ng
the newly created output file.

A sample execution of the copy program is shown in Figure 5-4,
using the command line

copy copy.pli $con

In this case, the input file is taken as "copy.pli" (which just
happens to be the original source file), while the output file is the
s y stem con so 1 e. The res ul tis t hat the cop y • pI i pro gram i s 1 i s ted at
the operator's terminal. The command

copy a:x.dat c:u.new

would, for example, copy the file x.dat from drive "a" to the new file
u.new on drive "cu.

(All Information Contained Herein is Proprietary to Digital Research.)

34

PL/I-80 V1.0, COMPILATION OF: COpy

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: COpy

1 a 0000 copy:
2 a 0006 proc options(main);
3 c 0006 dc1
4 c 0006 (input,olltput)
5 c 0006

f i 1 e;

6 c 0006 open f i 1 e (input) stream
7 c 0023 t i t1 e (• $1 • $1 •) ;
8 c 0023

env(b(8192))

9 c 0023 open file (output) stream output env(b(8192)}
10 c 0040 t i t1 e (• $ 2 • $ 2 I) ;

11 c 0040 dcl
12 c 0040 buff char(254} varyinq;
13 c 0040
14 c 0040 do wh i I e (• 1 • b) :
15 c 0040 read file (input) into (buff) ;
16 c 0058 write file (output) from (buff):
17 c 0073 end;
18 a 0073 end copy:

CODE SIZE = 0073
DATA AREA = 0109

Figure 5-3. File to File Copy Utility.

(All Information Contained Herein is Proprietary to Digital Research.)

35

A>b:copy copy.pli $con
copy:

proc options(main);
dcl

(input,output) file;

open file (input) stream env(b(8l92»
title('$1.$1');

open file (output) stream output env(b(8l92»
title ('$2. $2 t);

dcl
buff char(254) varying;

do while('l'b);
read fi I e (i npu t) into (buf f) ;
wri te file (output) from (buff);
end;

end copy;

END OF FILE (3), File: INPUT=COPY.PLI
Traceback: 0448 03AF 0155
End of Execution

Figure 5-4. Execution of the File Copy Utility.

(All Information Contaihed Herein is Proprietary to Digital Research.)

36

5.3. Name and Address File Processinq.

Two programs are shown in Figures 5~5 and 5-7, called "create"
and "retrieve," which manage a simple name and address file. The
create program produces a STREAM file containing individual names and
addresses which are subsequently accessed by the retrieve program.

The create program, shown in Figure 5-5, contains a structure
which defines the name, address, city, state, zip code, and phone
number format. The console is prompted for each data input, and each
successive entry is written to the output file until the name "EOF't is
entered by the operator.

The record structure is read and merged with the source program
from a separate file, using a II%include" statement which is a
statement in the source file, but is not shown in the listing. The
pre sen ceo f a II % inc 1 u dell s tat em e n tis i n d i cat e d by the .. + II S ym b 01 s to
the r ig h t 0 f the sou r c eli n e n um be r • Th e so u r c e pro gram, i n fa c t,
appears as follows:

create:
procedure options(main);
/* create name and address file */

%include 'record.dcl';

% repl ace
true by 'l'b,

Th e f i 1 e 9 i v en in the II % inc 1 u de" s tat em e n t can be any val i d C P / M f i 1 e
name, and is copied from the file at the point of the U%include"
statement.

In this particular program, the input file name is entered by
the operator on line 25 and listed in the TITLE option in the OPEN
statement on line 27. The PRINT attribute is not specified in the
OPEN statement, and thus the output file is in a form suitable for
later input using a GET LIST statement.

The console interaction and subsequent program output is shown
in Figure 5-6. In this case, the output file is specified by the
operator as "names.dat" in the first input line. Recall that LIST
input is delimited by blanks and commas, unless the delimiters are
included within a quoted string. Thus, the input line

'Aaron Appleby

is taken as a single string value with
automatically inserted at the end of
includes the three input values

the implied cloSing quote
the line. The second entry

Don't-Know, 'Won"t Know', 99999

which are assigned to the variables city, street, and state. The

(All Information Contained Herein is Proprietary to Digital Research.)

37

1 a ftHHH?J
2 a 0006
3 a 0006
4 a 0006
5+c 0006
6+c 0006
7+c 0006
8+c 0006
9 +c 0006

10+c 0006
11+c 0006
12+c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
17 c 0006
18 c 00"06
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0006
25 c 0010
26 c 0037
27 c 0037
28 c 0051
29 c 0051
30 c 0058
31 c 0074
32 c 008E
33 c 00A0
34 c 00A7
35 c 00A7
36 c 00A7
37 c 00BE
38 c 0008
39 c 00EF
40 c 012A
41 c 0141
42 c 0158
43 c 0158
44 c 0158
45 c 01A9
46 c 01A9
47 c 01C0
48 c 01C0
49 c 01C0
50 c 010F
51 a "lF3

create:
procedure options(main);
/* create name and address file */

dc1
1 record,

2 name
2 addr
2 city
2 state
2 zi p
2 phone

character(30) varying,
character(30) varying,
character(20} varying,
character(10) varying,
fix e d dec im a 1 (6) ,
character(12) varying;

% replace

dcl

dcl

dcl

true by 'l'b,
f a Is e by '0' b;

output file;

filename character(14) varying;

eofile bit(l) static initial(fa1se);

put list ('Name and Address Creation Program, File Name: ');
get 1 i s t (f i 1 e name) ;

open fi1e(output) stream output title(filename);

do wh i 1 e (.... e 0 f i 1 e) ;
put skip(3) Ii st('Name: ');
get 1 i s t (n am e) ;
eofile = (name = 'EOF');
if eofile then

end;

do;
/* write prompt strings to console */
put list('Address: ');
get list(addr);
put listC'City, State, Zip: '};
get list(city, state, zip);
put list('Phone: f);
qet list(phone);

/* data in memory, write to output file */
put file(output)

list(name,addr,city,state,zip,phone};
put file(output) skip;
end;

put file(output} skip 11st{'EOF');
put file(output) skip;
end create;

Figure 5-5. File CREATE Program.

(All Information Contained Herein is Proprietary to Digital Research.)

38

A>b:create
Name and Address Creation Program, File Name: names.dat

Name: 'Aaron Appleby
Address: '32 West East St.
City, State, Zip: Claustrophobia, Ca., 92995
Phone: 123-4567

Name: 'Bugsy Burton
Address: 'Good Question
City, State, Zip: Don't-Know,'Won' 't Know', 99999
Phone: 333-9999

Name~ 'Zwiggy Zittsmacher
Address: 2323-W-2nd#201
City, State, Zip: Lincoln, Wa., 98177
Phone: 345-5432

Name: EOF

End of Execution

Figure 5-6a. Interaction with the CREATE program.

A>type names.dat
'Aaron Appleby' '32 West East St.' 'Claustrophobia' 'Ca.'
'Bugsy Burton' 'Good Question' 'Don' It-Know' 'Won' 't Know'
'Zwiggy Zittsmacher' '2323-W-2nd#201' 'Lincoln' 'Wa.'

'EOF'

92995 '12
99999 '3

98177 '345-54

Figure 5-6b. Output from the CREATE program.
(Note: output listing is truncated on right.)

(All Information Contained Herein is Proprietary to Digital Research.)

39

first value does not begin with a quote, so the data item is scanned
until the next blank, comma, or end of line occurs. The second data
item begins with a quote, causing all input through the trailing
balanced quote to be consumed, with all embedded double quotes reduced
to a single quote. The last value, 99999, is assigned to a decimal
number, and must contain only numeric data.

The CP/M TYPE command is used, following program execution, to
display the STREAM file which was created. The (truncated) output
shows the quoted strings which were produced for each input entry.

The retrieve program shown in Figure 5-7 reads the previously
created file and displays the name and address data according to an
operator request. The "record.dcl" structure is included in the
retrieve program, matching the create program discussed above.

In general, the retrieve program works as follows: the main
loop between 30 and 60 reads two string values corresponding to the
lowest and highest names to· print on each iteration. The embedded
loop between 41 and 58 reads the entire input file and lists only
those names between the lower and upper bounds.

Similar to the create program, retrieve reads the name of the
source· file from the console, but opens and closes this source file
each time a console retrieval request occurs. The OPEN statement on
line 38 sets-up the input file, with internal buffer size of 1024
bytes. After the file has been processed, the CLOSE statement on line
59 is executed, and all internal buffers are reclaimed. As a result,
th~ input file is effectively set back to the beginning on each
retrieval request.

Program interaction is shown in Figure 5-8. Again, the input
file is given as "names.dat" which is assumed to exist on the disk in
the form produced by "create. II The input values

B,D

set lower to 'B' and upper to 'D' which causes retrieve to
'Bugsy Burton'. The second input line consists only of a
leaving the lower ·bound as the sequence 'AAA ••• A' while
bound remains at 'zzz ••• z'. These two bounds include
alphabetic range, resulting in a display of the entire list
and addresses.

list
comma

the
all
of

only
pa ir,
upper

of the
names

It should be noted that the sysprint file was explicitly opened
with the PRINT attribute on line 26 to illustrate the form of the
resulting output. This statement is, however, superfluous sihce the
PUT statement on line 27 would have provided the same information.

5.4. An Information Management System.

The example of this section provides the model for an
information management system consisting of a set of four programs.
The four programs work together to manag-e a file of em·ployee names,
addresses, waEj"e schedules, and wage reporting mechanisms. In general,

(All Information Contained Herein is P.roprietary to Digital Research.)

40

PL/I-80 V1.0, COMPILATION OF: RETRIEVE

L: List Source Program

%include 'record.dcl';
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: RETRIEVE

1 a 0000
2 a 0006
3 a 0006
4 a 0006
5+c 0006
6+c 0006
7+c 0006
8+c 0006
9+c 0006

1'0+c 0006
11+c 0006
12+c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
17 c 0006
18 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0006
25 c 0006
26 c 0006
27 c 0022
28 c 0039

retrieve:
procedure options(main);
/* name and address retrieval program */

dc1
1 record,

2 name
2 addr
2 city
2 state
2 zip
2 phone

character(30) varying,
character(30) varying,
character(20) varying,
character(10) varying,
fix e d dec im a 1 (6) ,
character(12) varying;

% repla~e

dcl

dcl

true by 'l'b,
false by '0'b;

(sysprint, input) file;

filename character(14) varying,
(lower, upper) character(30) varying,
eofile bit(l);

open file(sysprint) print title('$con');
put 1 i s t (, N am e and Ad d res s Ret r i eva l, F i leN am e : ');
get list(filename):

Figure 5-7a. RETRIEVE Program Listing, Part A.

(All Information Contained Herein is proprietary to Digital Research.)

41

29 c 0053
30 c 0053
31 c 0053
32 c 005F
33 c 0068
34 c 0087
35 c 00AF
36 c 008D
37 c 00C0
38 c 00C0
39 c 00D8
40 c 00D8
41 c 00E0
42 c 00E7
43 c 0104
44 c 0116
45 c 011D
46 c 011D
47 c 0177
48 c 0177
49 c 0194
50 c 0194
51 c 0181
52 c 0181
53 c 01CB
54 c 01EE
55 c 0211
56 c 022E
57 c 022E
58 c 022E
59 c 022E
60 c 0237
61 a 0237

CODE SIZE =
DATA AREA =

end

0237
0141

do whi1e(true);
lower = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';
upper = 'zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz';
put skip(2) 1ist('Type Lower, Upper Bounds: ');
get 1ist(lower,upper);
if lower = 'EOF' then

stop;

open fi1e(input) stream input environment(b(1024»
t i tl e (f i 1 en am e) ;

eofile = false;
do while (~eofile);

q e t f i 1 e (i n put) 1 i s t (n am e) ;
eofile = (name = 'EOF');
if ~eofile then

end;

do;
get file(input)

list(addr,city,state,zip,phone);
if name)= lower & name <= upper then

do;

end;

put page skip(3)
list(name);

put skip list(addr);
put skip list(city,state);
put skip list(zip);
put skip list(phone);
end;

close file(input);
end;
retrieve;

Figure 5-7b. RETRIEVE Program Listing Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

42

A>b:retrieve
Name and Address Retrieval, File Name: names.dat

Type Lower, Upper Bounds: B,D

Bugsy Burton
Good Question
Don't-Know Won't Know

99999
333-9999

Type Lower, Upper Bounds: "

Aaron Appleby
32 West East St.
Claustrophobia Ca.

92995
123-4567

Bugsy Burton
Good Question
Don't-Know Won't Know

99999
333-9999

Zwiggy Zittsmacher
2323-W-2nd#20l
Lincoln Wa.

9S177
345-5432

Type Lower, Upper Bounds: EOF"

End of Execution

r"igure 5-S. Interaction with the RETRIEVE Program.

(All Information Contained Herein is proprietary to Digital Research.)

43

a file is initially prepared using a data entry program, called enter,
which establishes the data base. A second program, called keypr,
reads this data base and prepares an index file for direct access to
this data base for information and update. A third program, called
update, interacts with the console to allow access to the data base.
Finally, the report program reads the data base to produce a final
report. Although these programs are, themselves, simplistic in
nature, they contain all the elements of a more advanced data
management system, thus demonstrating the power of the PL/I-80
programming system, while providing the basis for custom programs.

The "enter" program interacts with the operator's console and
constructs the initial data base, as shown in Figure 5-9. The basic
input loop appears between lines 36 and 49 where the operator is
prompted for an employee name, age, and hourly wage. The "employee"
data structure is filled with this variable information, and, for
simplicity of the example, the address fields are filled with default
values on 1 ine 44. operator input is terminated when the name II EOF"
is entered.

The employee record names a number of fields which total 84
bytes in length (the $8 compiling pardmeter can be used to verify this
value). For expansion, a record size of 100 bytes is specified in the
OPEN statement on line 33, where each record of the "emp" file holds
exactly one employee data structure.

The OPEN statement names "emp" as a KEYED file, which makes each
'record a fixed size as specified in the environment option. In this
case the fixed size is 100 bytes, but is internally rounded to 128
bytes. The buffer size is also given in the OPEN statement as 8000
bytes, again rounded up toS192. Each employee record is filled from
the console and written to the employee file named in the command
line, with the file type uEMP" given on line 34.

The WRITE statement itself is included in a separate subroutine,
named WRITE, which is called from lines 41 and 48, and is defined
starting at 51. The WRITE statement was placed into a separate
subroutine to reduce program size.

Interaction with the enter program is given in Figure 5-10.
Each employee record is entered including the name, age, and hourly
wage. The program terminates when the EOF entry is typed, and the
file "plantl.empn is closed ~nd recorded on the disk.

The "keypr" program constructs a key file by reading the data
base file created by "enter." The key file is a sequence of employee
names, followed by the key corresponding to that name. In this
particular case, the key file is written in STREAM mode so that it can
be displayed at the console. Referring to Figure 5-11, the "EMP"
employee file is OPENed on line 16 with the KEYED attribute, where
each record length is given as 100 bytes, with a buffer size of 10000
bytes. The "keys" key file is then OPENed in STREAM mode, with with
LINESIZE(60) and a TITLE option which appends "KEY" as the file type.

The keypr program, reads successive records on 1 ine 23, extracts

(All Information Contained Herein is Proprietary to Digital Research.)

44

PL/I-80 V1.0, COMPILATION OF: ENTgR

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: ENTER

1 a 0000
2 a 0006
3 a 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
1 7 c 0006
1·8 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 000'5
23 c 0006
24 c 0006
25 c 0006
26 c 0006
27 c 0006
28 c 0006
29 c 0006
30 c 0006
31 c 0006
32 c 0006
33 c 0006
34 c 0026
35 c 0026

enter:
proc options(main);

%replace

dcl

dcl

dcl

true by 'l'b,
f a Is e by '0' b;

1 employee static,
2 name
2 addr,

3 street
3 city
3 state
3 zip

2 age
2 wage
2 hours

cha~(30) varying,

char(30) varying,
char(10) varying,
char(7) varyinq,
fixed dec(5),
fixed dec (3) ,
fixed dec(5,2),
fixed dec(5,1);

1 default static,
2 street char (30) varyinq

ini tial(' (no street)'),
2 city char(10) varyinq

i n j. t i a I (• (no cit y) I) ,

2 state char(7) varying
ini tial(' (no st) I) ,

2 zip fixed dec(5)
initial(00000) ;

emp file;

open file(emp) keyed output environment(f(100) ,b(8000»
t i tl e (I $1 • EMP ,) ;

Figure 5-9a. ENTER Program Listing Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

45

36 c 0026
37 c 0026
38 c 00 3D
39 c 0057
40 c 0066
41 c 0066
42 c "069
43 c 006C
44 c 006C
45 c 0078
46 c 008F
47 c 00Cl
48 c 0001
49 c 0007
50 c 0007
51 c "007
52 c 00D7
53 e 00D7
54 c 00F0
55 a 00F0

do while(true);
put list('Employee: ');
q e t lis t (n am e) ;
if name = 'EOF ' then

do;
call write();
stop;
end;

addr = default;
put list (' Age, Wage: '):
qet list (age,wage);
hours = 0;
call wr i te () :
end;

write:
procedur e;
wr i te file (emp) from (employee) :
end write;

end enter;

Figure 5-9b. ENTER Program Listing Part B.

A>b:enter plantl
Employee: Abercrombie

Age, Wage: 25, 6.70
Employee: Fairweather

Age, Wage: 32, 15.00
Employee: Eqqbert

Age, Wage: 45, 5.50
Employee: Willowander

Ag e, Wa g e: 2 7 , ,
Employee: Millywatz

Age, Wage: ,7.20
Employee: Quagmire, 23, 4.30

Age, Wage: Employee: EOF

End of Execution

Figure 5-10. Interaction with the ENTER Program.

(All Information Contained Herein is Proprietary to Digital Research.)

46

PL/I-80 Vl.0, COMPILATION OF: KEYFILE

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 Vl.0, COMPILATION OF: KEYFILE

1 a 0000
2 a 0006
3 a 0006
4 a 0006
5 a 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

keypr:

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
17 c 0026
18 c 0026
19 c 0026
20 c 0044
21 c 0044
22 c 0044
23 c 0044
24 c 0062
25 c 0087
26 c 00AA
27 c 0089
28 c 008F
29 a 008F

CODE SIZE = 008F
DATA AREA = 0030

proc options(rnain);

/* create key from employee file */

dcl
1 employee static,

2 name char(30) varying;

dcl
(input, keys) file;

dcl
k fixed;

open title('$I.emp') keyed
env(f(100) ,b(10000)) file(input);

open file (keys) stream output
lin e s i z e (6 0) tit I e '(, $1 • key') ;

do wh i I e (, I') ;
read file(input) into(employee)
put skip list(k,name);
put file(keys) list(name,k);
if name = 'EOF' then

stop;
end;

end keypri

Figure 5-11. Listing of the KEYPR Program.

keyto(k);

(All Information Contained Herein is Proprietary to Digital Resp

47

.~.

the key with the KEYTO option, and writes the name and key to both the
console and to the key file. The sample interaction of Figure 5-12
shows the output from keypr using the "plantl.emp" data base. Note
that the key values extracted by the READ statement are just the
relative record number corresponding to the record's position in the
file. Following program execution, the CP/M TYPE command is used to
display the actual contents of the Uplantl.key" file.

The third program, shown in Figure 5-13, allows access to the
data base created by enter and indexed through the file created by
keypr. The update program first reads the STREAM key file into a
vector which cross-references the employee name with the corresponding
key value in the data base. The dimensioned structure which holds
these cross-reference values is defined on line 17, and filled between
lines 30 and 33.

The main program loop between lines 30 and 55 accesses the
individual records of the employee file OPENed on line 25. The OPEN
statement marks this file as DIRECT, which allows both READ and WRITE
operations where the individual records are identified by a key value.
The operator enters an employee name as "matchname" which will be
directly accessed in the data base.

The direct access is accomplished by searching the list of names
read from the key file, between lines 40 and 54. If a match is found,'
the employee record is brought into memory from the employee file
through the READ with KEY statement on line 43. Various fields are
then displayed and updated from the console, and the record is
rewritten to the data base using the WRITE with KEYFROM statement on
line 51. Execution terminates when the operator enters the name "EOF "
as an input value.

Three successive update sessions are shown in Figure 5-14. The
employee name is entered by the operator, the record is accessed and
displayed, and the fields are optionally updated. In particular, note
that the GET statement is quite useful here: if the operator wishes
to change a value then the new value is typed in the field position,
otherwise a comma delimiter leaves the field unchanged. During these
three interactions, various addresses and work times are updated.

The final report program uses the updated employee file ·to
produce a list of employees along with their paycheck values according
to their hourly wage and number of hours worked, as shown in Figure
5-15. The repo r t prog ram aqa in accesses the II EMP " f i 1 e, but reads the
file sequentially to produce the desired output information. The main
loop between lines 37 and 53 reads each successive employee record and
constructs a title line of the form:

[name]

followed by a dollar amount. For illustration, the
form of the WRITE statement is again used to produce
Note, however, that the embedded control-m (~m) and
characters are included at the end of "buff" to
return and line feed when the buffer is written. The

STREAM oriented
the output line.
control-j (,.. j)

cause a carriage
r e po r t p r og ram

(All Information Contained Herein is Proprietary to Digital Research.)

48

A>b:keyfi1e p1ant1

o Abercrombie
1 Fairweather
2 Eggbert
3 Wi110wander
4 Mi 11ywa tz
5 Quagmi re
6 EOF

End of Execution
A>type plant1.key
'Abercrombie' 0 'Fairweather' 1 'Eggbert'

2 'Wil1owander' 3 'Mi11ywatz' 4
'Quagmire' 5 'EOF' 6

Figure 5-12. Interaction with the KEYPR Program.

PL/I-80 V1.0, COMPILATION OF: UPDATE

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: UPDATE

1 a 0000 upda te:
2 a 0006 proc opt ions (rna in) ;
3 c 0006 dc1
4 c 0006 1 em ploy e est a tic ,.
5 c 0006 2 name char (30) var,
6 c 0006 2 addr,
7 c 0006 3 street char(30) var,
8 c 0006 3 city char(10) var,
9 c 0006 3 state char(7) var,

10 c 0006 3 zip fixed dec(.5) ,
11 c 0006 2 age fixed dec(3),
12 c 0006 2 wage fixed dec(5,2),
13 c 0006 2 hours fixed dec(5,1);

Figure 5-13a. Listing of the UP~TE Program Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

49

14 c 0006
15 c 0006
16 c 0006
17 c 0006
18 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0006
25 c 0006
26 c 0025
27 c 0025
28 c 0025
29 c 0044
30 c 0044
31 c 005C
32 c.00A4
33 c 00CC
34 c 00CC
35 c 00CC
36 c 00CC
37 c 00E8
38 c 0102
39 c 0110
40 c 0113
41 c 0125
42 c 013E
43 c 013E
44 c 016C
45 c 016C
46 c 01B5
47 c 01B5
48 c 01Dl
49 c 021A
50 c 024E
51 c 026D
52 c 02A8
53 c 02A8
54 c 02A8
55 c 02A8
56 a 02A8

dcl

dcl

dcl

(emp, keys) file;

1 keylist (100),
2 keyname char(30) var,
2 keyval fixed binary;

(i, endlist) fixed,
eolist bit(l) static initial(10 ' b),
matchname char(30) var;

open file(emp) update direct env(f(100»
title ('$l.EMp l

);

open file(keys) stream env(b(4000» title('$l.key');

do i = 1 to 100 while(~eolist);
get fi1e(keys) list(keyname(i) ,keyval(i»;
eolist = keyname(i) = 'EOF';
end;

do wh i 1 e (I lib) ;
put skip list('Employee: ');
get list(matchname);
if matchname = 'EOF ' then

stop;

end;

do i = 1 to 100;
if matchname = keyname(i) then

do;

end;

read fi1e(emp) into(employee)
key (keyva1 (i));

put skip list('Address: I,

street, city, state, zip);
put skip list(' ');
get list(street, city, state, zip);
put list('Hours: I ,hours.l': ') =

get 1ist(hours);
write file(emp) from (employee)

keyfrom(keyval(i»);
end;

end update;

CODE SIZE = 02A8
DATA AREA = 0D97

Fi ure 5-l3b. Listin of the UPDATE Pro ram Part B.

(All Information Contain'ed Herein is Proprietary to Digital Research.)

50

A)b:update plantl

Employee: Willowander

Address: (no street) (no city) (no st) 0
'123 E Willow', Williams, Ca., 98344

Hours: 0.0 : 43.5

Employee: Quagmire

Address: (no street) (no city) (no st)
'321 W Q St', Quincy, Ca., 98222

Hours: 0.0 : 38.6

Employee: EOF

End of Execution
A)b:update plantl

Employee: Quagmire

Address: 321 W Q St Quincy Ca.
, , , ,

Hours: 38.6 50.5

Employee: Abercrombie

98222

Address: (no street) (no city) (no st)
, , , ,

Hours: 0.0 : 46.7

Employee: Fairweather

Address: (no street) (no city) (no st) 0
345-W-8th#304 Bloomberg Wa. 33455

Hours: 0.0 : 38~6

Employee: EOF

End of Execution
A)b:update plantl

Employee: Quagmire

Address: 321 W Q St Quincy Ca.
, , , ,

Hours: 50.5 67.4

Employee: Millywatz

98222

Address: (no street) (no city) (no st)
'345 6th St', Mipville, Ca. 98444

Hours: 0.0 : 60.2

Employee: EOF

Figure 5-14. Interaction with the UPDATE Program.

(All Information Contained Herein is Proprietary to Digital Research.)

51

1 a 0000
2 a 0006
3 a 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

10 c 0006
11 c 0006
12 c 0006
13 c 00'06
14 c 0006
15 c 0006
16 c 0006
17 c 0006
18 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0006
25 c 0006
26 c 0006
27 c 0006
28 c 0006
29 c 0026
30 c 0026
31 c 0026
32 c 0045
33 c 0045
34 c 0045
35 c 005C
36 c 0060
37 c 0060
38 c 006D
39 c 0085
40 c 0094
41 c 0097
42 c 00AB
43 c 00CO
44 c 00E5
45 c 0105
46 c 0125
47 c 0147
48 c 0180
49 c 0180
50 c 0180
51 c 0187
52 c 01AC
53 c 01e7
54 c 01C7
55 a 01C7

report:
procedure options(main);

dcl

dcl

dcl

dcl

1 employee static,
2 name character(30) varying,
2 addr,

3 street
3 city
3 state
3 zip

2 age
2 wage
2 hours

character(30) varying,
character(10) varying,
character(7) varying,
fixed dec(5) ,
fixed dec(3),
fixed dec(5,2),
fixed dec(5,1);

dashes character(15) static initial
('$--------------'),

buff character(20) varying;

i fixed,
(grosspay, withhold) fixed dec(7,2);

(repfi1e, empfile) file;

open file(empfile) keyed env(f(100) ,b(4000»
t i tl e (' $1 • EMP I) ;

open file(repfi1e) stream print tit1e('$2.$2')
environment(b(2000»;

put list('Set Top of Forms, Type Return');
get skip;

do while('l'b);
read file(empfi1e) into(employee);
if name = 'EOF' then

stop;
put file(repfile) skip(2);
b u f f = ' [' !! n am e !! '] '" m "" j , ;
write.file(repfile) from ·Cbuff);·
grosspay = wage * hours;
withhold = grosspay * .15;
buff = grosspay - withhold;

do i = 1 to 15
wh i I e (s ubs t r (buf f , i ,1) = ' ');

end;
i = i-I;
substr(buff,l,i) = substr(dashes,l,i);
write file (repfile) from(buff);
end;

end report;

Figure 5-15. Final Report Generation Program.

(All Information Contained Herein is Proprietary to Digital Research.)

52

A>b:report plantl $con
Set Top of Forms, Type Return

[Aberc rombie]
$----265.96

[Fairweather]
$----492.15

[Egqbert]
$------0.00

(Wi 11 owander]
$----203.37

(Mi 11 ywa t z]
$----368.43

[Quaqmire]
$----246.35
End of Execution

Figure 5-16a. Report Generation to the Console.

A>b:report plantl plantl.prn
Set Top of Forms, Type Return

A>type plantl.prn

[Abercromb ie]
$----265.96

[Fairweather]
$----492.15

.[Eqg.bertl
$------0.00

[Wi llowander]
$----203.37

[Mi llywa tz]
$----368.43

[Quagmi re]
$----246.35

Figure 5-16b. Report Generation to a Disk File.

(All Information Contained Herein is Proprietary to Digital Research.)

53

then computes the pay value using the expression

grosspay - withhold

which is assigned to the varying character string called buff. The
assignment causes automatic conversion of the decimal value to string
type, with leading blanks. The leading blanks are then scanned and
replaced by a dollar sign dash sequence, and written to the report
file.

Figures 5-16a and 5-16b show the output from the report program.
In the first case, the report is sent to the console for debugging
purpose, while "plantl.prn" receives the data in the second example.

(All Information Contained Herein is Proprietary to Digital Research.)

54

6. LABEL CONSrrANT·S, VARIABLES, AND PARAMETERS.

You probably noticed that all of the programs shown above either
stop by encountering an end of file condition, with a corresponding
ENDFILE traceback, or use a special data value which signals the end
of data condition. The POLY program in Figure 5-1, for example,
detects the end of data by checking for the special case where all
three input values, x, y, and z, are zero.

There are, fortunately, more elegant ways to sense the end of
data condition in PL/I-80. In fact, sensing the end of data is just
one f a c il i t Y am 0 ng man y , un d e r the g en era 1 to pic 0 file xc e p t ion
processing." As a prelude to the discussion of exception processing,
we need some background in label processing, since labelled statements
are 0 ften i nvo 1 ved when ha ndl i ng exc epti onal cond it ions. As a 1 ways,
if the discussion becomes too detailed, skip to later sections and
return when you've seen some examples.

Contemporary programming practices advocate the general
avoidance of labelled statements and GO TO's due to the unstructured
programs which often result from using such statements. 'l'he resulting
programs are often difficult to comprehend by ano·ther programmer and
become unreadable, even to the author, as the program grows in size.
PL/I-80 provides a comprehensive set of control structures in the form
of iterative DO groups with REPEAT and WHILE options which preclude
the necessity for labelled statements in the general programming
schema.

'rhere are occasions, however, when judicious use of labelled
statements is considered appropriate. One particular situation, for
example, is found in program exception processing where the occurrence
of a catastrophic error, such as a mistyped input data line, is most
easily handled by simply transferring control to an outer block label
where program recovery takes place. In this case, the program flow is
considerably simpler to comprehend than the alternative system of
flag s, te sts, and return sta tern en ts.

Generally, one should avoid labelled statements and GO TO's
whenever the normal PL/I-80 program control structures are directly
applicable, limiting their use to exception processing and locally
defined computed GO TO's.

Program labels, like other PL/I-80 data types, fall into two
broad categories: label constants and label variables. Label
constants are those which appear literally within the source program,
and do not change as the program executes. Label variables, however,
have no initial value and must be assigned the value of a label
constant through a direct assignment statement, or through the actual
to form a 1 pa ram e t era s s iq nm en t s imp lie i tin a sub r 0 uti n e call • The
simplest form of a label constant precedes a PL/I-80 statement as
shown below.

lab: put skip list('Bad Input, Try Again');

In this case, II lab" has the constant label value corresponding to the

(All Information Contained Herein is Proprietary to Digital Research.)

55

particular statement address where the PUT statement starts.

A label constant can also contain a single positive or negative
literal subscript, corresponding to the target of a n-way branch
(i.e., a "computed GO TO"). The program segment which follows shows a
specific example.

get list{x);
go to q(x);
q{-l):

q (") :

q(2):;
q (3) :

endq:

y = flex);
go to endq;

y = f2 (x) ;
go to endq;

y = f3(x};

put skip list{'f{x}=',y};

In this case, four label constants q (-l) , q (0), q (2), and q (3) are
defined within the program. The label constant vector

q{-1:3} label constant

is automatically defined to hold the values of these label constants.
You must ensure that program control does not transfer to a subscript
which does not have a corresponding label constant value. In the
above case, for example, a branch to q{i} produces an undefined value
if i is below -1, equal to 1, or above 3.

Label constants are either only locally referenced, or
non-locally referenced. A locally referenced label constant occurs as
the target of a GO TO statement only within the PROCEDURE or BEGI~
block in which it occurs. A label constant is non-locally referenced
if it occurs on the right side of an assignment to a label variable,
as an actual parameter to a subroutine, or as the target of a GO TO
statement within an inner nested PROCEDURE or BEGIN block. Although
there is no functional difference between a locally referenced and
non-locally referenced label constant, there is additional space and
time overhead required to handle non-locally referenced labels. For

. this reason., the PL/I-S0 ·assumes that sub-scrip-ted label constants will
be only locally referenced: the resul ts are undefined if control
transfers to a subscripted label constant from outside the current
scope.

The non-functional program segment shown below provides an
example.

(All Information Contained Herein is Proprietary to Digital Research.)

56

main:
proc options(main);
pI:

proc;
go to 1 abl;
go to lab2;
p2:

proc;
go to lab2;
end p2;

1 abl : ;
1 ab2 : ;
end pI;

end rna in;

The label constant "labll' is only locally referenced wi thin the
procedure pI, while "l a b2" is the target of both a lCtcal reference
within pI and a non-local reference within p2.

A label variable takes on the value of a label constant through an
explicit assignment statement, or through the implicit assignment
performed when a subroutine is called. Similar to other PL/I-80
variables, label variables must be declared and may be optionally
s ubsc r i pted.

The skeletal program of Figure 6-1 shows various label constants
and va ria b 1 e s. Th e 1 abe 1 con s tan t sin t his p ro q r am are c (1), c (2) ,
c(3), labl, and lab2, and are defined by their literal occurrence
within the program. The label variables are x, y, z, and g defined by
the declarations on lines 5 and 33. At the start of execution, the
label variables have undefined values. The variable x is first
assigned the constant value labl. Label variable y then (indirectly)
receives the constant value labl throuqh the assignment on line 7. As
a result, all three GO TO statements beginning on line 9 are
functionally equivalent: each transfers control to the null statement
following the label labl on line 27.

The subroutine calIon line 13 shows a different form of
variable assignment. Lab2 is an actual parameter which is sent to the
procedure p, and assigned to the formal label variable q. In this
particular program, the subroutine call transfers program control
directly to the statement labelled "labl."

The DO-group beginning on line 15 initializes the variable label
vector z to the corresponding constant label vector values of c. Note
that since c is a vector of label constants, the reversed assignment

c(i) = z(i);

would be invalid within this program. Due to this initialization, the
two computed GO TO statements starting on line 20 have exactly the
sam e e f f e ct.

(All Information Contained Herein is Proprietary to Digital Research.)

57

PL/I-80 Vl.0, COMPILATION OF: GOTO

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 Vl.0, COMPILATION OF: GOTO

1 a 0000
2 a 0006
3 c 0006
4 c 000D
5 c 000D
6 c 000D
7 c 0013
8 c 0019
9 c 0019

10 c 001C
11 c 0020
12 c 0024
13 c 0024
14 c 0030
15 c 0030
16 c 0042
17 c 005E
18 c 005E
19 c 005E
20 c 0064
21 c 0073
22 c 0082
23 c 0082
24 c 0082
25 c 0082
26 c 0089
27 c 0089
28 c 0090
29 c 0090
30 c 0090
31 c 0090
32 e 0090
33 e 009A
34 e 009A
35 c 00A2
36 a 00A2

main:
proc options(main)i
dcl

i fixed,
(x, y, z (3» 1 abel i

x = 1 abl i
y = Xi

go to labl;
go to Xi
go to Yi

call p(lab2);

do i = Ito 3;
z(i) = c(l);
end;

i = 2;
go to z(i);
go to c (i) ;

c(l):;
c(2) :;
c(3):;

labl:;
lab2: ;

p:
proc(g);
dcl

g label;
go to g;
end p;

end main;

CODE SIZE = 00A5
DATA AREA = 001A

Figure 6-1. An Illustration of Label Variables and Constants.

(All Information Contained Herein is Proprietary to Digital Research.)

58

7. EXCEPTION PROCESSING.

An important facility of any production programming language is
its ability to intercept run-time error conditions in order that a
program-defined action can take place to handle the error. An
exceptional condition takes place, for example, when input data is
read from an interactive console, and the operator inadvertently types
a data value which does not conform to the input data variable. Under
normal circumstances, a "conversion" exception is raised by the
run-time system and, in the absence of any program-defined action,
execution terminates with a traceback. In a production environment,
however, this premature termination could occur after hours of data
entry, resulting in a considerable amount of wasted effort.

Thus, PL/I-80 incorporates a comprehensive set of operations for
exception processing in the form of ON, REVERT, and SIGNAL statements.
The ON statemen t d ef ines the action s wh ich take pI ace upon
encountering an exception, the REVERT statement disables the ON
statement, and the SIGNAL statement allows various conditions to be
raised by the program.

There are a total of nine major exception categories which are,
by name, ERROR, FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, ZERODIVIDE,
ENDFILE, UNDEF'INEDFILE, KEY, and ENDPAGE. The first five categories
include all arithmetic error conditions and miscellaneous conditions
which can arise during I/O setup and processing, as well as conversion
between the var ious data types. 'rhe last four categories apply to a
specific file which is being operated upon by the run-time I/O system.
Each condition has an associated subcode which provides information as
to the source of the exception, as described below.

As a simple example, consider the file-to-file copy program
shown be low:

copy:
proc options(main) ;
dcl

buff char(254) var,
(input, output) file;

ope n f i 1 e (i n pu t) s t re am t i tl e ('$ 1 • $1 ') ;
open file(output) stream output

t i tl e (• $ 2 • $ 2 •) ;

one nd f i 1 e (in pu t)
stop;

do wh i 1 e (• 1 • b) ;
read file (input) into(buff);
write file(output) from(buff);
end;

end copy;

As described in Section 5.2, this program opens an input file, called
,. i n pu t , .. and t ran sf e r sea c h r e cor d from t his f i 1 e to a n 0 u t pu t f i 1 e ,

(All Information Contained Herein is Proprietary to Digital Research.)

59

called .. output." Under no rmal circumstances, the p roq ram in Figure 5-3
term ina t e s wi t h a nE N D OF F I LEe r r 0 r me s s aq e wi t hap r 0 9 ram t r ace b a c k ,
which, although of no harm, can be somewhat distressing to an
uninitiated user of the program. The ON statement given above,
however, intercepts the end of file condition on the input file and
e >c e cut e s a sing 1 e S TO Pst a tern e n t • In t his cas e , the pro 9 r dIn

terminates normally with the message

Execution Terminated

The var ious sta temen t fo rms fo r ON, REvER'r, and SIGNAL are
discussed first, using the ENDFILE condition as an example, followed
by a description of each of the conditions.

7.1. 'fhe ON Sta temen t.

Th eON s tat em e n tis use d to pro g r amma tic a 11 yin t e r c e pta
particular condition when it is raised by the run-time system or a
SIGNAL statement. The form of the ON statement is

ON condition on-bodYi

where .. condi tion tl is one 0 f the except ion c a tego r ies given above, and
"on-body" is a PL/I-80 statement or statement group to execute when
the condition occurs. In order to avoid ambiguity, the statement must
be a simple statement (not a conditional), or a BEGIN-END group which
itself can contain any valid PL/I-80 statement, other than a RETURN (a
RETURN is allowed, of course, within any procedure definitions which
occur inside the BEGIN-END group) •

Control returns from the ON statement at the end of the
statement or BEGIN-END group. Alternatively, control may be
transferred to a non-local label outside the on-body. If the
condition is already set, execution of yet another ON statement with
the same condition saves the previous condition in "stack order" and
institutes the new condition. A stacked condition is reinstituted
when a REVERrr statement is executed, or the block containing the ON
statement is exited. Three examples of valid ON statements are qiven
below.

on endfile(input)
eofile = 'l'bi

on endfile(input)
go to exi ti

(All Information Contained Herein is Proprietary to Digital Research.)

60

on endfile(input)
beg in;
if input = sysin then

stop;
put 1 ist (' Ok to Stop?');
get 1 ist(ok) ;
i f 0 k = 'y' th en

stop;
go to ret ry;
end;

7.2. The REVERT Statement.

Execution of a REVERT statement disables the currently active
named condition, and recovers the previously stacked condition, if
any. The fo rm of the REVER'r sta temen tis

REVERT condition;

where "condition" is one of the categories discussed above. An
automatic REVERT statement takes place for any ON conditions set
within a procedure when the procedure is exited. The following
program segment, for example, shows balanced ON and REVERT statements
used within a DO group:

do wh il e (I 1 I b) ;
on endfile(sysin)

eofile = 'lib;

revert endfile(sysin);
end;

In this particular case, the ON statement is executed at the beginning
of each iteration, enabling the ENDFILE condition. The REVERT
statement at the end of the group disables the condition which was set
at the beginning of the block. The ON and REVERT statements do,
however, require some simple run-time processing and thus the above
group is more efficiently written as:

on endfile(sysin)
eofile = 'lib;
do wh i I e (I 1 • b) ;

end;

Note that no more than 16 ON conditions can be active or stacked at
any given point in the program execution. The message:

Condition Stack Overflow

occurs if the stack size is exceeded, and the program terminates.

(All Information Contained Herein is proprietary to Digital Research.)

61

The (rather unstructured) program shown in Figure 7-1
illustrates the automatic REVERT statements which take place upon
procedure exit. The procedure Hp" is called from line 8 with the DO
group index, along with the label constant Hexit" as actual
parameters. The ON statement within p is executed upon each
invocation and, without the automatic REVERT statements, would
overflow the condition stack when the index i reaches 17. There are
three possible ways to exit p: first, if the operator types an end of
file character (control-z, followed by return) the enabled ON
condition is executed, sending control through the label variable
" I a b H to the s tat em en t 1 abe 11 ed i' ex it. ,I Sin c e t his GOT a t a k e s
control outside the environment of p, the ON condition automatically
REVERTs.

The second possible exit follows the test on line 21. If the
operator types a value equal to the index, then the GO TO statement on
line 22 is executed, again sending control to the non-local label
"exit" which REVERTs to the original condition.

Finally, control can return normally by reaching the end of the
procedure p. In this case, the automatic REVERT is again executed,
disabling the ON condition which was set on line 17. Thus, the
enabled ON condition is always disabled, no matter how program control
leaves the environment of p.

7 • 3 • 'r he S I G N AL S tat em en t •

The on-body which corresponds to a particular ON statement can
be activated through execution of a SIGNAL statement which takes the
form:

SIGNAL condition;

The effect is the same as if the condition had been enabled
externally: the topmost stacked ON condition is executed, if it
exists. If no ON condition is active, the default system action takes
place. The following program segment illustrates a particular use of
the SIGNAL statement:

on endfile(sysin)
stop;

do while('l'b);
get lis t (bu f f) ;
if buff = 'END' then

signal endfile(sysin);
put skip list(buff);
end;

In this example, the SIGNAL statement is executed whenever the value
II END" is read from the SYSIN file. The ON condition set at the

(All Information Contained Herein is Proprietary to Digital Research.)

62

PL/I-80 V1.0, COMPILATION OF: REVERT

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: REVERT

1 a 0000
2 a 0006
3 c 0006
4 c 000D
5 c 000D
6 c 000D
7 c 000D
8 c 001F
9 c 003C

revert:

10 c 003C
11 c 00 3C
12 c 003C
13 c 00 3C
14 e 003C
15 e 004C
16 e 004C
17 e 004C
18 f 0054
19 e 005F
20 e 008A
21 e 00A2
22 e 0086
23 c 00C2
24 a 00C2

CODE SIZE = 00C5
DATA AREA = 0011

proc options(main);
dc1

i fixed,
sysin file;

do i = I to 10000;
call p(i,exit);
exi t:
end;

p:
proc(index,lab);
dcl

(t, i nd ex) fix ed ,
lab label;

on endfile(sysin)
go to lab;

put skip list(index,' :');
get list(t);
if t = index then

go to lab;
end p;

end revert;

Figure 7-1. Proqram Illustratinq REVERT Processinq.

(All Information Contained Herein is Proprietary to Digital Research.)

63

beginning of the program thustreceives control upon a real end of
file, or when the ~END" value is read.

7.4. The ERROR Exception.

The ERROR condition is the broadest category of all PL/I-80
exceptions and includes, through its subcode, both system defined and
programmer defined conditions. The form of the ERROR condition is

or

ON ERROR on-body;
SIGNAL ERROR;
R EVER'r ERROR;

ON ERROR(integer-expression) on-body;
SIGNAL ERROR(integer-expression);
REVERT ERROR(integer-expression);

In the first three cases, the ERROR subcode is assumed to be zero,
while the second set includes a specific subcode in the range 0 to
255. The forms

ON ERROR on-body;
ON ERROR(0) on-body;

intercept any error condition, no matter what subcode is set. The
form

ON ERROR(3)

for example, intercepts the ERROR condition only when it is
accompanied by subcode 3. In general, ERROR conditions with a subcode
in the range 0-127 are considered catastrophic. As a result, the
on-body for these conditions must not return, but instead must execute
a GO TO to a non-local label. Subcodes in the range 128-255 are
considered harmless, and may return after performing some local
action.

Subcodes for the ERROR condition are partitioned into four
groups:

(a)
(b)
(c)
(d)

o
64

128
192

63
127
191
255

Reserved for PL/I-80
Programmer Defined
Reserved for PL/I-80
programmer Defined

The subcodes which are presently assigned from group (a) are:

ERROR(I) Data Conversion: data types
do not conform during assign
ment, computation, or input
processing.

(All Information Contained Herein is proprietary to Digital Research.)

64

ERROR(2)

ERROR(3)

ERROR (4)

ERROR(5)

ERROR(6)

ERROR(7)

I/O Stack Overflow

Argument to transcendental func
tion is out of range.

I/O Conflict: the attributes
of an open file do not match
the attributes required for a
particular GET, PUT, READ or
WRITE.

Format stack overflow, nested
format evaluation exceeds 32
levels.

Invalid format item, data item
does not conform to format item,
or unrecognized format item en
coun tered.

Free space exhausted, no more
space is available in dynamic
s tor ag ear ea.

The following program segment provides a simple example of the use of
the ERROR condition:

on error(l)
beg in;
put skip list('Invalid Input:');
go to retry;
end;

retry:
get 1 ist (x) ;

The GET statement reads a variable x from the SYSIN file. If the
operator types invalid data during the input operation, ERROR(l) is
s i g naIl e d by the r un - t im e s y stem. In t his cas e , the 0 n - bod Y get s
control, and error message is written to the console, and execution
re-commences at the II retry" label.

The SIGNAL statement can be used in conjunction with the ON
statement to flag either terminal or non-terminal conditions. 'l'he
statement

signal error(64)

raises the ERROR(64) condition. If there is an ON ERROR(64) active,
the corresponding on-body receives control. Otherwise, the program
terminates with an error message. The statement

signal error(255)

(All Information Contained Herein is Proprietary to Digital Research.)

65

performs a similar action except that the program does not terminate
if the ERROR(255) condition is not active. Note that an ON ERROR or
ON ERROR(0) statement will intercept any subcode in the range 0-255.
The particular error subcode can be extracted, however, using the
ONCODE function discussed below.

7.5. FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, and ZERODIVDE.

The arithmetic exceptions are

FIXEDOVERFLOW or FIXEDOVERFLOW{i)
OVERFLOW or OVERFLOW (i)

UNDERFLOW 0 r UNDERFLOW (i)
ZERODIVIDE or ZERODIVIDE(i)

where i denotes the optional integer expression. Similar to the ERROR
function, ON, REVER'r, and SIGNAL statements can specify any of these
conditions. Further, if the integer expression is absent, then a zero
value is assumed. An ON statement with a zero valued subcode
intercepts a subcode of any value from 0-255. Subcode values are
d i v ide din to s y stem de f ion e dan d use r d e fin e d val u e s, a s 1 i s ted wit h
the ERROR function. Note, however, that all arithmetic faults are
considered terminal. That is, if an ON condition is set for an
arithmetic exception, then the on-body must contain a transfer to a
global label. Otherwise, the program is terminated upon return from
the ON unit.

Currently defined system subcodes are listed below:

FIXEDOVERFLOW (I) Decimal Add, Mul t i pI y,
or Store

OVERFLOW (1) Floatinq Point Pack

UNDERFLOW (I) Floating Point Pack

ZERODIVIDE{I) Decimal Divide

Z ERODIVI DE (2) Floating Point Divide

ZERODIVIDE(3) I n t eg e r D i v ide

7.6. ENDFILE, UNDEFINEDFILE, KEY, and ENDPAGE.

Several exceptional conditions may arise during I/O processing
which are related to particu}ar file access. These conditions are

(All Information Contained Herein is Proprietary to Digital Research.)

66

denoted by
ENDFILE(file-reference)

UNDEFINEDFILE(file-reference)
KEY (file-reference)

ENDPAGE(file-reference)

where "file-reference" denotes a file-valued expression.
value which results need not denote an open file.

The file

The ENDFILE condition is raised whenever the end of file
character (control-z) i.s read from a STREAM file, or the physical end
of file is encountered in a RECORD file which is processed in
SEQUENTIAL mode. A DIRECT READ with a key beyond the end of file also
raises the ENDFILE condition. Similarly, RECORD or STREAM OUTPUT
operations will signal ENDFILE if the disk capacity is exceeded.

The UNDEFINEDFILE condition is raised whenever a file is
accessed for INPUT or OUTPUT and the file does not exist on the
specified disk. This condition will also be raised if a physical
device (SCaN, SLST, SRDR, SPUN) is accessed as a KEYED or UPDATE file.

The KEY condition is raised when a proqram attempts to access a
key value beyond the capacity of the disk.

The ENDPAGE condition is raised for .PRIN'r files when the value
of the current line reaches the PAGESIZE for the specified file. The
current line begins at zero, and increased by one for each line-feed
which is sent to the file. If the file is initially opened with

PAGESIZE(0)

then the ENDPAGE condition is never raised. (PL/I-80 opens the
default console input, SYSIN, with a zero PAGESIZE.) The current line
is reset to one whenever a form-feed is sent to the output file,
through a PAGE option in a PUT statement within an ON-unit, or throuqh
the de fa ul t s y stem act ion w h i c h a u tom at i call yin s e r t s the for m - feed •
In any case, if the ENDPAGE condition is raised during the execution
of a SKIP option, then the SKIP is terminated.

It must be noted that if an ON unit intercepts the ENDPAGE
condition, but does not execute a PUT statement with the PAGE option,
then the current line is not reset to one. The result is that the
ENDPAGE will not be signalled since the current line continues
unbounded until a PUT statement with the PAGE option is executed. The
current line will, in reality, count as high as 32767 and then begin
again at 1. Due to fact that the line count is always greater than
zero, the ENDPAGE condition will never be siqnalled for files with a
PAGESIZE of zero.

As described above, if no ENDPAGE ON-unit is active, the default
system action is to insert a form-feed into the output file. The
default system action for ENDFILE, UNDEFINEDFILE, and KEY, however, is
to terminate the program execution with an error message.

If an ON-unit receives control for ENDFILE, UNDEFINEDFILE, or

(All Information Contained Herein is Proprietary to Digital Research.)

67

KEY, and returns to the point where the signal occurred, then the
current I/O operation is terminated, and control is passed to the
statement following the OPEN, GET, PUT, READ, or WRITE which caused
the condition to be raised.

7.7. ONCODE,ONFILE, ONKEY, PAGENO, and LINENO.

Several built-in functions are provided in PL/I-80 which aid in
exception processing. Specifically, five function declarations exist
in the scope of all PL/I-80 programs:

dcl
oncode
onfile
onkey
pageno
lineno

en try
entry
en try
entry
entry

returns (fixed) ,
ret ur n s (c h a r (3 I) va r yin g) ,
ret ur n s (fix e d) ,
(file) returns(fixed),
(f i Ie) ret ur n s (fix e d) ;

The ONCODE function returns the most recently signalled subcode, or
zero if no condition has been raised. The function can be used, for
example, to determine the exact source of an error after the ON unit
is activated:

on error
beg in;
dcl code fixed;
code = oncode();
if code = I then

do;
put list('Bad Input:');
go to retry;
end;

put list('Error#' ,code);
end;

retry:

The ONFILE function returns the string value of the internal
file name which was last involved in an I/O operation which raised a
condition. In the case of a conversion error, the ONFILE function
produces the name of the file which was active at the time. If no
file was involved in a signalled condition, then the ONFILE function
returns a string of length 0. An example of the ONFILE function is
shown beiow.

on error(l)
begin;
put listC'Bad Data:' ,onfile());
go to retry;
end;

retry:

(All Information Contained Herein is Proprietary to Digital Research.)

68

The ONKEY function returns the value of the last key involved in
an I/O operation which raised the ONKEY condition, and is only valid
within the on-body of the activated unit. An example of the use of
ONKEY is

o n key (new f i 1 e)
put skip list('bad key' ,onkey());

The last two functions, PAGENO and LINENO, return the current
page number and current line number for the PRINT file named as the
parameter. Note that when the ENDPAGE condition is signalled by other
than a SIGNAL statement, the line number is one greater than the ?age
size for the file. The PAGENO and LINENO functions are illustrated in
the exampl e wh i ch fo 110\vs.

7.8. An Example of Exception processinq.

Figure 7-2 shows a rather extensive example of I/O processing in
PL/I-80 using ON conditions. The purpose of this program is to copy a
STREAM file from the disk to a PRINT file, while properly formatting
the output line with a page header and line numbers. The program
interacts with the console to obtain the parameters for the copy
operation. The statements which appear between lines 10 and 47 read
the parameter values from the console, and provide error exits and
retry operations for each input value. Lines 49 through 66 setup
various ON units which intercept errors during the copy operation.
The actual copy operation itself is enclosed in the iterative DO group
between lines 69 and 74. These individual sections of the program are
discussed in detail below.

Functionally, the program setup involves reading five values:
the number of lines on each page, the width of the printer line, the
line spacing (normally single or double spaced output), and the
destination and source files or devices. During entry of these
parameters, the operator may type an end of file character
(control-z), ~nd the prompting is restarted. The PUT statement on
line 10 writes the initial sign-on message. Note that the first
character of the message is a control-z which, when using an ADM-3 CRT
device, clears the screen. The ON statement shown on line 12 traps
the ENDFILE condition for SYSIN so that execution begins at "typeover"
whenever an end of file is read from the console. Lines 16 through 20
read the first two parameters, with no error checking (other than
detecting the end of file). Line 22, however, intercepts conversion
errors for all operations which follow. If the operator types a
non-numeric field during execution of the GET statement on line 29,
the on-body between 23 and 26 gets control, writes an error message,
and then branches to "getnumber" where the input operation is
reattempted. Following successful input of the "spaces" parameter,
the REV E R rr s tat ern en ton 1 in e 3 0 dis a b 1 e s th e c 0 nv e r s ion err 0 r
handl i ng •

(All Information Contained Herein is p~oprietary to Digital Research.)

69

PL/I-80 Vl.0, COMPILATION OF: COPYLPT

L: List Source Program

NO ERROR{S) IN PASS 1

NO ERROR{S) IN PASS 2

PL/I-80 Vl.0, COMPILATION OF: COPYLPT

1 a 0000
2 c 0006
3 c 000D
4 c 000D
5 c 000D
6 c 000D
7 c 000D
8 c 000D
9 c 000D

10 c 000D
11 c 0024
12 c 0024
13 d 002C
14 d 0032
15 c 0032
16 c 0039
1 7 c 0055
18 c 006D
19 c 006D
20 c 0089
21 c 00A6
22 c 00A6
23 d 00AD
24 e 0080
25 e 00C7
26 d 00CA
27 c 00CA
28 c 00Dl
29 c 00ED
30 c 010A
31 c 0111
32 c 0111
33 c 012D
34 c 014C
35 c '014C
36 c 016C
37 c 016C

copy: procedure options{main);
dcl

(sysin, sou'rcefile, printfile) file;
dcl

(pagesize, pagewidth,
spaces, linenumber) fixed;

dcl
(line char(14), buff char(254» varying;

put list(' z File to Print Copy Program');

on endfile(sysin)
go to typeover;

typeover:
put skip(5) list('How Many Lines Per Page?
get list(pagesize);

put skip list{'How Many Column Positions? ');
get skip list{pagewidth);

on error{l)
beg in;
put list('Invalid Number, Type Integer');
go to g etnumber;
end;

ge tnumber:
put skip list('Line Spacing (l=Single)? ');
get skip list{spaces);
revert error{l);

put skiplist{'Destination Device/File: ');
get skip list{line);

open file(printfile) print pagesize{pagesize)
linesize (pagewidth) ti tIe (line);

Figure 7-2a. Listinq of the COPYLPT Program Part A.

,) ;

(All Information Containea Herein is Proprietary to Digital Research.)

70

38 c 016C
39 d 0174
40 e 0177
41 e 01A7
42 d 01AA
43 c 01AA
44 c 0181
45 c 01CD
46 c 01E7
47 c 0204
48 c 0204
49 c 0204
50 d 020C
51 e 020F
52 e 0221
53 d 0224
54 d 0224
55 c 0224
56 d 022C
57 e 022F
58 e 0248
59 d 024E
60 d 02 4E
61 c 024E
62 d 0256

I 63 e 0259
64 e 028F
65 e 028F
66 d 02A3
67 d 02A3
68 c 02A3
69 c 02AC
70 c 0282
71 c 02D2
72 c 0306
73 c 0306
74 c 0326
75 c 0326
76 a 0326

on undefinedfi1e(sourcefi1e}
beg in;
put skip 1ist('I',·line,'" isn"t a Valid Name');
go to retry;
end;

re try:
put skip 1ist('Source File to Print? '};
get 1ist(line};
open file(sourcefile} stream title(line}

e nv (b (8000)) ;

on endfile(sourcefi1e}
beg in;
put file(printfile} page;
stop;
end;

on endfile(printfile}
beg in;
put skip list(l~g~gAg~g Disk is Full'};
stop;
end;

on endpage(printfile}
beg in;
put file(printfi1e} page skip(2}

list(I PAGE' ,pageno (printfile});
put file(printfile) skip(4};
end;

signal endpage(printfile);
do linenumber'= I repeat(linenumber + I};
get file (sourcefile) edit(buff) (a);
put file (printfile)

edit(linenumber,' II ,buff} (f(5) ,x(l} ,a(2} ,a);
put file (printfile) skip(spaces);
end;

end copy;

CODE SIZE = 0326
DATA AREA = 021A

Figure 7-2b. Listing of the COPYLPT Program Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

71

The input and output files are opened between lines 35 and 47.
The program assumes tha·t the output file can always be opened, but
detects an UNDEFINED input file so that the operator can correct the
file name.

Two ON ENDFILE statements are executed between lines 49 and 59.
rrhe fi rst ON statement traps the input end of file condi tion and
performs a page eject on the output file. This ensures that the
printer output will be at the top of a new page upon completion of the
print operation. The STOP stntement included in this ON unit
completes the processing with a normal exit. The second ON unit
intercepts the end of file condition on the print file. Since this
can only occur if the disk file fills, the message "Disk is Full" is
printed, followed by normal termination. The preceding control-g
characters send a ser ies 0 f II beeps" to the CRT as an al arm. No te tha t
the run-time syst,em cioses all files upon termination so that the
print file is intact to the full capacity of the disk.

An ENDPAGE ON unit is executed on line 61 which intercepts the
end of page condition for the print file. Whenever this condition is
raised, the ON unit moves to the top of the next page, skips two
lines, prints the page number, and skips 4 more lines before returning
to the signal source. The SIGNAL statement on line 68 starts the
print file output on a new page by explicitly sending control to the
ON unit defined on line 61. All subsequent ENDPAGE signals are
generated by the run-time I/O system at the end of each page.

The DO group beginning on line ~9 initializes and increments a
line counter on each iteration. The GET EDIT statement on line 70
reads with an A (Alphanumeric) format which fills IIbuff" with the next
input line up to, but not including, the carriage return line feed
sequence. The PUT EDIT statement on line 71 writes the line to the
destination file with a preceding line number, a blank, a vertical
bar, and another blank (resulting from the A(2) field). Note that the
SKIP(SPACES) operation may be partially aborted if the ENDPAGE
condition is raised during the execution of the PUT statement.

Operator interaction is shown in Fiqure 7-3, where the original
copy.pli program is used as the source file, and the $LST (physical
printer) is used as the destination. Figure 7-4 shows the first two
pages of output produced by thjs program.

As you can see, there is quite a bit of error handling that can
be done within your program. Even this last example could be further
enhanced to handle errors in the first two input lines (currently a
CONVERSION error could be raised) or errors in the destination file
name. In fact, a good exercise at this point is to add exception
handlers for these errors, and then retest the program. To gain
further experience, go back over the previous examples and add ON
units to trap invalid input data and end of file conditions. By the
time you finish changing these examples, you'll have a good foundation
in exception processing.

(All Information Contained Herein is Proprietary to Digital Research.)

72

A>b :copylpt
File to Print Copy Program

How Many Lines Per Page? 10

How Many Column Positions? 40

Line Spacing (l=Single)? zot
I nval id Number, rfype In teg e r
Line Spacing (l=Single)? 1

Destination Device/File: $lst

Source File to Print? $zap

" $zap .. isn' t a Val id Name
Source File to Print? b:copylpt.pli

Figure 7-3. Console Interaction with COPYLPT.

(All Information Contained Herein is Proprietary to Digital Research.)

73

PAGE I

I I copy: procedure opt ions (rna in) ;
2 I dc I
3 I (s ys in, sou r c e f i Ie, p r i n

tfile) file;

PAGE 2

4 dcl
5 (paq e size, pagewid th,
6 spaces, linenumber) fix

ed;

Figure 7-4. Output from the COPYLPT Program.

(All Information Contained Herein is Proprietary to Diqital Research.)

74

8. APPLICATIONS OF CHARACTER STRING PROCESSING.

This section is devoted entirely to giving the details of two
sample programs which illustrate ways in which PL/I-80 character
string functions can be used to manipulate character data. The
intention is to again provide a basis for gaining fluency in the
language. As before, read the explanations, examine the sample
programs, and make changes to these proqrams in order to expand your
own working knowledge of PL/I-80.

8.1. The OPTIMIST Program.

Recall the first Pl/I-80 program in Section 1, called the
OPTIMIST? The OPTIMIST has the task of turning a negative statement
into a positive statement, based upon a few commonly used words in the
English language. The OPTIMIST performs its job using the character
string facilities of PL/I-80.

Figure 8-1 shows the OPT'IMIST listing. The first segment,
between lines 7 and 20, defines the data items referenced within the
program. The remaining portion reads sentences from the console,
terminated by a period, and retypes the sentences in their positive
form. A sample console interaction is shown in Figure 8-2. As you
can tell, the program does a pretty good job if the sentences are of
the proper form, but reveals itself as just another computer program
when th i ng s get c ompl icated •

The sequence of negative words is defined starting on line 8,
with the corresponding positive words beginning on line 10. Thus,
IInever" becomes "always," while IInone" becomes "all," and so-forth.
Note that the word "not" is replaced by the empty string. The upper
and lower case alphabets are also included for case translation in the
sen tence proc ess ing secti on.

The OPTIMIST doesn't want to stop talking, so the DO group
between lines 22 and 42 loops indefinitely, and terminates only
through some unnatural influence, such as a control-z (end of file) or
control-c {system warm start) at the beginning of an input line. Each
successive input sentence is constructed between lines 24 and 29,
where the DO group reads another word, and concatenates the word onto
the end of the sentence. The SUBSTR test in the DO WHILE heading
checks for a period at the end. Note that the maximum length of a
sentence is 254 characters (additional characters are discarded).

Upon reading the complete sentence, all upper case characters
are translated to lower case so that the negative words can be
scanned. This case translation is performed by the TRANSLATE built-in
function shown on line 30. As an additional illustration of string
processing, the VERIFY function is used on line 31 to ensure that the
sentence consists only of letters and a period. If not, VERIFY
returns the first (non-zero) position which mismatches, and the
OPTIMIST responds with

Actually, that's an interesting idea.

(All Information Contained Herein is Proprietary to Digital Research.)

75

PL/I-80 Vl.0, COMPILATION OF: OPTIMIST

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c .0006
9 c 0006

opt imi st:

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
1 7 c "006
18 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0022
25 c 002F
26 c 0048
27 c 0048
28 c 0065
29 c 0088
30 c 0088
31 c 00AS
32 c 00C2
33 c 00CF
34 c 00El
35 c 00F9
36 c 0102
37 c 0162
38 c 0162
39 c 0162
40 c 0162
41 c 0l7F
42 c 0193
43 a 0193

CODE SIZE =0193
DATA AREA = 0lF2

proc options(main);
% repl ace

dcl

dcl

dcl

true by 'l'b,
false by '0'b,
nwords by 5;

negative (l:nwords) char(8) var static initial
(' n ever I ,. no n e ' " not h i ng , " no t ' " no'),

positive (l:nwords) char(10) var static initial
(' always',' all',' something',",' some'),

upper char(28) static initial
('A8CDEFGHIJKLMNOPQRSTUVWXYZ. '),

1 ower c h a r (2 8) s tat i c i nit i a 1
(, abcde fghij klmnopqr stuvwxyz. ');

sent char (254) var,
wo r d c h a r (3 2) va r ;

(i, j) fix ed;

do while(true);
put skip list('What"s up? ');
sen t = ' ';

do while
(substr(sent,length(sent)) ""= '.');

get list (word);
sen t = sen t !! ' , !! wo r d ;
end;

sent = translate(sent,lower,upper);
if verify(sent,lower) ~= 0 then

sent = ' that' 's an interesting idea.';
d 0 i = 1 to nwo r ds ;
j = ind~x(sent,neqative(i»;
if j ... = 0 then

end;

sen t = s ub s t r (sen t, 1 , j -1) !!
po sit i v e (i) !!
substr(sent,j+length(negative(i»);

put 1 ist('Actually,'! !sent);
put skip;
end;

end optimist;

Figure 8-1. Listing of the OPTIMIST program.

(All Information Contained Herein is Proprietary to Digital Research.)

76

A> b : 0 p t im i s t

Wh at' sup? Not h i ng i sup.
Actually, something is up.

What's up? This is NOT fun.
Actually, this is fun.

What's up? programs like this never make sense.
Actually, programs like this always make sense.

What's up? Nothing is easy that is not complicated.
Actually, something is easy that is complicated.

What's up? Nobody cares, and its none of your business.
Actually, somebody cares and its all of your business.

What's up? No, no, no, no.
Actually, some no no no.

What's up? You no, no, no.
Ac tually, you some no no.

What's up? NO, NO, NO!

Ac t ua 11 y, t hat's ani n t ere s t i ng ide a.

What's up? No it is not.
Actually, some it is.

What's up? "'z

END OF FILE (1), File: SYSIN=CON
Traceback: 09B7 0962 0157 6E00 # IBD7 0521 8082 0157
End of Execution

Figur e 8-2. In te r act i on wi th the OPTIMISrr P rog ram.

(All Information Contained Herein is proprietary to Digital Research.)

77

If VERIFY returns a zero value, then the sentence contains only
(translated) lower case letters and a period. In this

case, the DO group between lines 33 and 39 is executed. On each
~tera·tion, the INDEX function is used to search for the next negative
wo r d, g i v en by neg at i v e (i). Iff 0 un d, j iss e t tot he po sit ion 0 f the
negative word and, in the assignment starting on line 36, is replaced
by the positive word to which it corresponds. In this assignment,

s ubstr (sent, 1, j-l)

is the portion of the sentence which occurs before the negative word,
while

positive(i)

i s the r e pI a cern en t val u e for the n eg a t i v e wo r d, and

subs t r (sen t, j + 1 eng t h (n eg a t i v e (i)))

is the portion of the sentence which follows the negative word being
replaced. The concatenation of these three segments produces a new
sentence with the negative word replaced by the positive word. Note
that since all negative words have a leading blank, the negative
portion will only be found at the beginning of a word. Thus,
"nevermind" is replaced by lIalwaysmind ll which, on occasion, can
produce some interesting results. The OPTIMIST sends the resulting
sentence to the console, and loops back to read another input.

Three improvements could be made
input scan will never stop if the
since the period will not be found. A
that the newly appended word does
Second, an ON-unit could be included to
the program terminates in a reasonable
the OPTIMIST a bit smarter!

8.2. A Free-Field Scanner.

to the OPTIMIST. First, the
sentence exceeds 254 characters
check should be made to ensure

not e x c e ed the m a x i m urn s i z e •
detect an end of file so that
fashion. Last, you could make

A second, more practical, appl ication of string processing is
given in this section. In general, it is often useful to have a
"free-field scanner ll which is a subroutine that reads input lines and
breaks the input values into individual numbers and characters. The
program shown in Figure 8-3, called FSCAN, gives an example of a
free-field scanner. The function of FSCAN is to test an embedded
subroutine, called GNT (Get Next Token) , which reads the next input
item, called a "token." In this case, the tokens are just numeric
values, such as 1234.56, or individual letters and special characters.
All i nterveni ng blanks between the tokens a re bypassed in th e token
scan.

(All Information Contained Herein is Proprietary to Digital Research.)

78

PL/I-80 Vl.0, COMPILATION OF: FSCAN

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

fsc an:

10 c 0006
11 e 0006
12 e 0009
13 e 0009
14 e 0009
15 e 0009
16 e 0009
17 e 0023
18 e 0023
19 e 0031
20 e 004E
21 e 0063
22 e 006C
23 e 0074
24 e 0074
25 e 0074
26 e 008A
27 e 009F
28 e 00A8
29 e 0086
30 e 0086
31 e 008F
32 e 0005
33 e 0005
34 e 00EE
35 e 00F2
36 e 00F2
37 c 00F2
38 c 00F2
39 c 00F2
40 c 00F2
41 c 00F5
42 c 0127
43 a 0127

CODE SIZE = 0127
DATA AREA = 0080

proc options(main);
%replace

dcl

gnt:

true by 'l'b;

token char(80) var
static ini tial(' ');

proc;
dcl

i fixed,
line char(80) var
static initial(' ');

line = sUbstr(line,length(token)+l);
do while(true);
if line = " then

get edit(line) (a);
i = ve r i fy (1 i ne,' I);
if i = 0 then

else

end;
end gnt;

1 i ne = I I;

do;
line = substr(line,i);
i = verify(line,'0l23456789.');
if i = " then

token = line;
else
if· i = 1 then

token = substr(line,l,l);
else

token = substr(line,l,i-l);
retur n;
end;

do while(true)i
call qnt;
put edit(""!!token!!"") (x(l),a);
end;

end fscan;

Figure 8-3. Listing of the FSCAN Free-Field Scanner Test.

(All Information Contained Herein is Proprietary to Digital Research.)

79

The program shown in Figure 8-3 is broken into three logical
parts. The first segment appears between 1 ines 3 and 7, and defines
the global da ta a rea called token, fo r use by the GNT procedur e. The
second portion, from line 9 through line 37, is the GNT procedure
itself, while the DO group between 39 and 42 performs the GNT testing
func ti on.

An interaction with the FSCAN program is shown in Figure 8-4.
Note that the program reads a line of input, then decomposes the input
line into basic tokens and writes the decomposed items back to the
console, with surrounding quotes. The assumption is, of course, that
once the free-field scanner has been tested, the GNT procedure. will be
extracted from this program and placed into a production program where
the scanner is required. In fact, GNT will reappear in another
program later where it is used to compute values of arithmetic
express ions.

The overall operation of the GNT procedure is as follows. The
character variable called LINE is used to hold the input line as it is
being processed. Initially, the value of LINE is empty, due to the
declaration starting on line 11. On each call to GNT, the first
portion of LINE is extracted and placed into TOKEN, which becomes the
next input item. On each successive call, the previous TOKEN value is
first removed from the beg inn ing of LINE before the next item is
scanned. As an example, suppose the operator types the line

bbb88*9.9

where IIb l
' represents a blank character. On the first call to GNT (see

line 38), both TOKEN and LINE are empty strings, so the assignment on
line 16, which normally removes the previous value of TOKEN, leaves
LINE as an empty string. The DO group between lines 17 and 36,
however, ensures that the LINE buffer is filled. If, on line 18, an
empty buffer is encountered, it is immediately refilled using a GET
EDIT statement. In any case, the VERIFY calIon line 20 produces the
first position in LINE which is not blank. If VERIFY produces a 0
value, then the entire line is blank and must be cleared so that the
refill operation will take place on the next iteration. If LINE is
not entirely blank, the DO group beginning on line 24 is entered.

processing within the DO group proceeds as follows. Upon entry
to the group, the value of i is the first non-blank position of the
LINE buffer. Thus, the statement on line 25 removes the preceding
blanks from LINE, leaving the next token starting at the first
position. The VERIFY function is then applied to LINE to determine if
the next i tern is a number. The statement on line 26 sets i to 0 if
the entire buffer consists of numbers and decimal points, to 1 if the
first item is not a number or decimal, and to a value larger than I if
the first item is a number which does not exend through the entire
LINE buffer. The sequence of tests starting at line 27 thus extract
either the entire line (i=0), the first character of the line (i=l),
o r the fir s t po r t ion 0 f the lin e (i > 1) •

Taking the example above, LINE is immediately set to

(All Information Contained Herein is Proprietary to Digital Research.)

80

A>b:fscan
88+9.9

'88' '+' '9.9'
1234567 89.10

'1234567' '89.10'
1,2,3,4,5,6,7

'1' ',' '2' ',' '3' ','
•••• 666 ••• 7.7.7.
' •••• fi66 ••• • '7.7.7.'

.... Z

'4 ' • • ,

END OF FILE (7), File: SYSIN=CON

• 5'
, , , '6 ' • • , , 7 •

Traceback: 08AE 23FF 0143 00FF # 0888 06Cn 0143 01F5
End of Execution

Figure 8-4. Interaction with the FSCAN Test program.

(All Information Contained Herein is proprietary to Digital Research.)

81

I bib I bl8181 * 191.191

1 2 3 4 5 5 7 8 9

where the index 1 through 9 into LINE is shown below each character.
The initial blanks are stripped off on line 23, leaving LINE as

18181 *191.191

1 2 3 4 5

The VERIFY on line 24 locates the first position containing a
no n- dig ito r per i 0 d c h a r act e r , res ul t i ng i nth e val u e 3 wh i c h
cor res po n ds tot he" *.. in po sit ion 3. A s are s ul t 0 f a s e r i e s 0 f
tests, line 33 is executed, producing the equivalent of

subs t r (, 88* 9 .9' ,1 ,2)

which results in a TOKEN value of '88' which is the next number in
LINE.

On the "next call to GNT, TOKEN is removed from LINE using the
SUBSTR operation on line 15, leaving LINE as

I * 1 9 I • I 9 I

1 2 3 4

The VERIFY function on 1 i ne 26 returns the value 1, si nce the leading
position of LINE is not a digit or a period. The first character of
LINE is extracted and returned as the value of TOKEN on line 31.

The third call to GNT gets the last token in LINE by first
extracting the "*" which leaves LINE as

I 9 I • I 9 I

1 2 3

The VERIFY on line 26 returns 0 since all characters are either digits
or periods, and thus line 28 is executed, resulting in a TOKEN value
of '9.9' which is the remainder of LINE.

The fourth call to GNT clears the previous value of TOKEN from
LINE, leaving LINE as the empty string. This action, in turn, causes
the GET EDIT statement to be executed, and refills LINE from the
console. Execution proceeds in this manner until the operator aborts
t he pro gram wit h e i the r a con t r 0 1- Z 0 r con t r 0 1-c i n put.

'fhis program is of no particular interest in itself, but, as we
shall see later, it is easily incorporated into a more comprehensive

(All Information Contained Herein is Proprietary to Digital Research.)

82

and useful function. In any case, the scanner has some drawbacks.
Like our previous example, no end of file conditions are trapped. An
ON-unit could be included to detect this condition, and a null TOKEN
value could be returned to indicate that no more input is available.
Further, the scanner makes no checks to detect multiple period
characters which would cause a subsequent conversion signal (ERROR(l})
if any attempt is made to convert to a decimal value. It is a
worthwhile exercise at this point to add these functions in the
simplest possible form.

(All Information Contained Herein is proprietary to Digital Research.)

83

9. APPLICATIONS OF LIST PROCESSING.

PL/I-80 has subroutines which are included in every PL/I-80
program for dynamic storage management. When your program loads into
memory for execution, the first action which takes place is to set up
all remaining free storage as a linked-list structure. Your program
can dynamically allocate pieces of this storage area through the
ALLOCATE statement, and later release segments using the FREE
statement.· All storage management is done in the background, using
subroutines from the PL/I-80 library. Segments of memory allocated in
thi s manner can be 1 ogi cally connected to one ano ther through III ists 't

which lead from one m.emory segment to another. The 1 ist elements are
PL/I structures which contain information fields and one or more
POINTER variables which provide access to other list elements.

The dynamic nature of list processing is most often used when
the number and structure of data elements managed by a program varies
considerably. The programs of this section illustrate the use of list
processing in two cases where the data allocation is not easily
predetermined. Each program is discussed in detail in order to
provide a series of concrete examples of PL/I-80 list processing.

9.1. Managing a List of Words.

The first example performs a function similar to the OPTIMIST of
the previous section. Recall that the length of a sentence accepted
by the OPTIMIST was restricted to 254 characters,which is the maximum
s t ring 1 eng t h • In 0 r d e r to a c c e p t sen ten c e s 0 f vir t ua 11 y any 1 eng t h ,
we will use a list structure instead of a single character string.
For illustration, we will simplify the task somewhat by simply
reversing the input sentence, rather than performing word
sub s tit uti 0 n.

Before we get into the details, there are a few mechanical
things to consider about list processing. First, a based variable is
just a template that fits over a region of memory and has no storage
directly allocated to it. The based variable template is
programmatically placed over a particular piece of memory using a
pointer variable in one of two ways, depending upon the form of the
based variable declaration. If no implied base is included in the
declaration, then any reference to the based variable must be
pointer-qualified. If an implied base is included in the declaration,
then references may include a pointer qualifier or simply use implied
pointer given in the declaration as a base. An example should clarify
the situation. Consider the following declarations:

dcl
i fixed,
mat(0::5) fixed,
(p, q) po i n te r ,
x fixed based,
y fixed based(p) ,
z fixed based(f());

The two variables i and mat are not based variables, so storage is

(All Information Contained Herein is Proprietary to Digital Research.)

84

allocated for these data items. Similarly, the two pointer variables
p and q have assigned storage locations. The three variables x, y,
and z, however, are declared as based variables whose actual storage
addresses will be determi ned dur i ng execu t ion of the prog ram. The
variable x has no implied base, so all references to x must have a
pointer qualifier, such as

p->x = 5; and q->x = 6;

In the first case, the fixed (two-byte) variable
location given by p is assigned the value 5,
statement stores the value 6 at the location given by
y, on the other hand, has an implied base and can be
or without a pointer qualifier. The reference

y = 5; is equivalent to p->y = 5;

and thus

y = 5; and q->y = 6;

at the memory
while the second
q. The variable
referenced with

have exactly the same effects as the two assignments to x shown above.

The variable z, like y, has an implied base. The base, in this
case, is an invocation of a pointer-valued function with no arguments.
The function f could, for example, take the form

f:
proc returns(ptr);
return (addr (mat (i))) ;
end f;

Two valid references to z, for example, are

p->z = 5; and z = 6;

The first form is equivalent to those shown above, where the location
is derived from the pointer variable p. The second form, however, is
an abbreviati.on for

f() -> z = 6;

In this case, the function f is evaluated to produce the storage
address for the based variable z. The advantage to using this form is
twofold. First, the pointer valued expression can be a complex form,
not restricted to a simple pointer variable. Second, the code for the
function f occurs only once in memory, rather than being duplicated at
each variable reference, thus saving a considerable amount of program
space. It must also be noted in passing, that the implied base'must
be in the scope of the declaration for the based variable. The
following non-functional program segment illustrates this notion:

(All Information Contained Herein is proprietary to Digital Research.)

85

main:
proc options(main);
dcl

dcl

x based(p),
y based (q) ,
p ptr;
begin;
dcl

(p,q) ptr;
x = 5;
Y = 10;
end;

q ptr;·
end main;

The declarations of p and q within the BEGIN block have no effect
since the based variables x and y reference p and q which must be in
the same or encompassing scope.

Now that the basics have been discussed, we can get into the
list processing example. The sentence reversing program, called REV,
is shown in Figure 9-1. The program is broken into three main
sections~ The first portion, from line 3 through 14 performs the
function of reading a sentence and writing the sentence back to the
console in reverse order. In order to simpl ify the overall program
structure, the read function is performed by a separate subroutine,
called READ, which starts on line 16. Similarly,. the program output
is performed in a third section by the subroutine named WRITE,
beginning on line 34. Each input senten,ce consists of a sequence of
words, up to 30 characters in length, sufficient to hold

floccinaucinihilipilification

which is the longest word in the English language (plus one letter
because the Author is probably wrong about it being the longest word).
In order to simplify the input processing, REV requjres a space before
the period which terminates. the sentence. The program terminates when
an empty sentence is typed by the operator. Figure 9-2 shows the
con so 1 e i n t era c t ion wit h the REV pro gram •

The REV program generally operates as follows. Each word is
stored in a separate area of memory created using an ALLOCATE
statement. Each ALLOCATE statement obtains a unique section of the
free memory sufficiently large to hold the dwordnode" structure on
line 5, amounting to 32 bytes for each allocation (you can verify this
by examining the symbol table resulting from the $S compiler switch).
The wordnode elements are linked together through the dnexttl field of
each allocation, and the beginning of the list is given by the value
of the dsentenced pointer variable.

In PL/I-80, pointer variables are really just two-byte 16-bit
words which hold the address of a variable. rhe statement

allocate wordnode set (newnode)

(All Information Contained Herein is proprietary to Digital Research.)

86

PL/I-80 VI. 0, CaMPI LATION OF: REV

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

10 c 0006
11 c 0009
12 c 0011
13 c 0014
14 c 001A
15 c 001A
16 c 001A
1 7 c 001A
18 e 001A
19 e 001A
20 e 001A
21 e 001A
22 e 0020
23 e 003C
24 e 003C
25 e 0056
26 e 0064
27 e 0065
28 e 006E
29 e 0070
30 e 0083
31 e 0091
32 c 0091
33 c 0091
34 c 0091
35 c 0091
36 e 0091
37 e 0091
38 e 0091
39 e 00AD
40 e 0085
41 e 00CA
42 e 0000
43 e 00DE
44 e 00E7
45 e 00E7
46 e 00FE
47 c 0110
48 c 0110
49 a 0110

reverse:
proc options{main);
dcl

sen tence pt r,
1 wordnode based (sentence),

2 word char(30) varyinq,
2 next ptr;

do while{'l'b);
call read () ;
if sentence = null then

stop;
call write{);
end;

read:
proc;
dcl

newword char(30) varying,
newnode ptr;

sentence = null;
put skip list{'What"s up? ');

do while('I' b);
get list(newword);
if newword = '.' then

ret urn;
allocate wordnode set (newnode);
newnode->next = sentence;
sentence = newnode;
word = newword;
end;

end read;

write:
proc;
dcl

p ptr;
put skip list('Actually, ');

do while (sentence ~= null);
put 1 i s t (wo r d) ;
P = sentence;
sentence = next;
free p->wordnode;
end;

put list('.·);
put ski p;
end write;

end reverse;

Figure 9-1. Listing of the REV Sentence Reverser.

(All Information Contained Herein is proprietary to Digital Research.)

87

A>b:rev

What's up? Now is the time for all good parties.

Actually, parties good all for time the is Now.

What's up? The rain in Spain falls mainly in the plain.

Actually, plain the in mainly falls Spain in rain The •

What's up? a man a plan a canal panama.

Actually, panama canal a plan a man a •

Wha t' sup?

End of Execution

Fig u r e 9 - 2 • I n t era c t ion wit h the· REV Pro gram.

(All Information Contained Herein is proprietary to Digital Research.)

88

for example, finds a segment of memory to hold the 33 byte wordnode
data item, and sets the value of the pointer variable newnode to the
address of this memory area (wordnode is 33 bytes because the varying
string "word" requires one byte to hold the current length, 30 bytes
to hold the string itself, and is followed by a two byte pointer
value). Given the input sentence

FLICK YOUR BIC

for example, the ALLOCATE statement is executed three times, once for
each word in the list. For illustration, assume these three memory
allocations are found at addresses 1000, 200~, and 3000. The REV
program reads the sentence in the main loop within the READ procedure.

REV begins by initializing the sentence pointer to the null
address which, by the way, is just address 0000. Upon entering the DO
group at line 23, the value of sentence appears as shown" below.

SENTENCE: I 0000 I

The first word, FLICK, is read by the GET statement at line 24 and,
since the value is not a period, the first 33 byte area is allocated
to hold the word. As the sentence is constructed, the pointer value
of the sentence variable is placed into the "next" field and the input
word is stored into the "word~ field. The most recently read word
then becomes the new head of the list. Aft~r processing the word
FLICK, the list appears as shown below.

SENTENCE: I 1000 I

1000: IFLICK I

I 0000 I

The program then proceeds through the loop again. This time, the word
YOUR is read and the second 33 byte area is allocated. The newly
allocated area becomes the new head of the list, with the resulting
pointer structure:

SENTENCE I 2000 I

2000: I YOUR 1000: IFLICK I

I 1000 I I 0000 I

The last word, BIC, is then processed. The final 33 byte

(All Information Contained Herein is proprietary to Digital Research.)

89

area is allocated and placed at the head of the list,
with the resulting sequence of nodes:

SENT E NC E : I 3 000 I

3000: ISIC 2000: IYOUR 1000: IFLICK I

I 2000 I I 1000 I I 0000 I

Note that the program can follow the pointer structure from the
sentence variable to the node for SIC, then to the node for YOUR, and
finally to FLICK where an end of list (0000) value is encountered.

Due to the order in which the list was constructed, there is
really no processing required to reverse the list. In facti the WRITE
function simply searches through the list, starting at the sentence
pointer and prints each word as it is encountered within the loop
between lines 39 and 44. As soon as the word has been written, the 33
byte area allocated to it is released using the FREE statement on line
43. It is important to note that the sentence pointer variable is
moved to the next item in the list before FREEing the current element
'since, in general, you cannot expect storage to remain intact after it
has been released.

In this situation, the principal advantage of the list structure
is that the sentence can be arbitrarily long, limited only by the size
of available memory. The disadvantage is that there is considerably
more storage consumed for sentences which could be represented by a
254 character string.

9.2. A Network Analysis Program.

The next example is, without doubt, the most comprehensive
program in this manual. The NET program, shown in Figure 9-3,
performs the following function. The operator enters a network of
cities and distances between these cities. The NET program constructs
a connected set of network nodes, implemented using PL/I-80 list
processing, which represents the graph. Upon demand from the console,
the NET program computes the shortest path from all cities in the
network to the designated destination, and then selectively displays
particular optimal paths through the network.

NET use s t.wo s t ruc t ur e form s a s 1 i s tel em e n t s • Th e fir s t
corresponds to a particular city, called a "city node," and is defined
on line 11 in Figure 9-3. The structure of a city node is shown
graphically below.

(All Information Contained Herein is proprietary to Digital Research.)

90

CITY NODE: ci ty name

I total dist I

I i nv est ig ate I

city list

I route head I

The "city name" field holds the character value of the city name
itself, while the "total distil and "investiqate" fields are used
dur ing the shortest path a l.gor i thIn, and are 0 f no consequence at th is
point. The "city list" and "route head" pointer values are used to
connect the cities in the network.

The second structure is called a "route node," and is defined on
line 18. A route node establishes a single connection between one
city and one of its neighbors. Normally, several route nodes are
allocated fo r a city, cor respond ing to a number 0 f connec tions to its
neighboring ciiies. The structure of a single route node is

ROUTE NODE: next city

I route dist I

I route list I

The list of route nodes associated with a particular city begins at
the pointer value "route head" which is a part of the city node shown
above, and continues through the "route list" pointer to additional
route nodes, until a null route list is encountered. Each route node
has a pointer value, denoted by "next city," which leads to a
neighboring city node, along with a "route distil field that gives the
mileage to the next city.

For illustration, assume Monterey is 350 miles from . Las Vegas.
Two city nodes and two route nodes must be allocated to represent the
graph, with the sample addresses shown to the left of each allocation:

(All Information Contained Herein is Proprietary to Digital Research.)

91

CITY NODE CITY NODE
----------- -----------

1000 I Monterey I 2000 I Las Vegas'
----------- -----------, xxxxxxx , , xxxxxxx ,
----------- -----------, xxxxxxx , , xxxxxxx ,
----------- -----------, xxxxxxx I , xxxxxxx ,
----------- -----------

3000 4000
----------- -----------
ROUTE NODE ROUTE NODE
----------- -~---------

3000 2000 4000 1000
----------- -----------

350 350
----------- -----------

where the "x" fields are ignored in the diagram. A linked list,
starting at "city head" on line 23, le~ds to all cities in the
network. Given the two cities shown above, the list of cities appears
as

CITY HEAD

1000

CITY NODE CITY NODE

1000 'Monterey' 2000 'Las Vegas'

, xxxxxxx , , xxxxxxx ,

, xxxxxxx I I xxxxxxx I

2000

I xxxxxxx I I xxxxxx~ ,

Before getting into the details of the NET program, we should
note that one particular form of an iterative DO group is used
throughout the program to traverse the linked lists. The program
statement on line 142 is typical:

do p->cityhead repeat (p->citylist) while (p-=null);

The effect of this iterative DO group header is to successively
process each elerne'nt of the 1 inked 1 ist st,arting at c i tyhead until a
null (0000) link is encountered. On the first iteration, the pointer
variable p is set to the value of the pointer variable cityhead,
resulting in the assignment p = 1000 in the example shown above. On

(All Information Contained Herein is Proprietary to Digital Research.)

92

the next iteration, p takes on the value of the citylist field at 1000
which addresses Las Vegas, resulting in the value p = 2000. On the
last iteration, p takes on the value of the citylist field based at
2000, resulting in p = 0000. Since p is equal to null, the DO group
execution is stopped.

In order to understand the operation of the NET program, take q
look at the console interaction given in Figure 9-4. The operator
first enters a list of cities and distances between cities, terminated
by the end of file character control-z. The control-z response
triggers a display of the entire network to aid in detecting input
errors. The operator is then prompted for ~ destination city
(Tijuana) and a starting city (Boise). A best route is displayed
(there.may be several of equal length), and then a prompt appears for
another starting city. If a control-z is entered, the NET program
reverts to another destination prompt, leaving the network intact.
Interaction proceeds in this manner until the operator enters a
control-z in response to the destination prompt. When this occurs,
NET clears the network and returns to accept an entirely new network
of cities and distances. The NET program terminates if an empty
network is entered at this time (i.e., a single control-z is typed).

Given this background, we can now discuss the program structure.
NET is logically divided into three parts: the input section which
constructs and echoes the city network, the shortest path analysis,
and the shortest path display operations. The input section consists
of four procedures beginning on line 34, named ~setup,~ "connect,"
~find,~ and ~print all.~ The shortest path analysis takes place within
the "shortest dist" procedure starting on line 122, while the display
function is split between the two procedures ~print paths" and "print
route" at lines 103 and 169, respectively. The last procedure, ~free
all," is called to clear the old network before a new network is
loaded. The top level program calls occur in the DO group between
lines 25 and 32. The remainder of the program consists entirely of
the nested subroutines named above.

Beginning on line 26, the main program calls "setup" to read the
graph. If the city list is empty upon return, the program terminates
on line 28. Otherwise, "print all" is called to display the graph,
followed by I' pr int paths" to prompt and display shortest routes. Upon
return, "ftee all" is called to release storage. This process
continues until an empty graph is entered.

The main loop within "setup" occurs between lines 43 and 47. On
each iteration, a pair of cities with a connecting distance is read on
line 44. The "connect" subroutine is then called twice to establish
the connection in both directions between the cities. Note that the
.termination condition is intercepted by the ON-unit at line 39.

The "connec tit subrou tine, in tur n, is r espons i bl e fo r
establishing a single route node to connect the first city to the
second city. The action of "connect" is to call the "find" procedure
twice, once for the first city and once for the second city. The

(All Information Contained Herein is proprietary to Digital Research.)

93

"find" procedure will locate a city if it exists in the network, or
create the city node if it does not yet exist. Upon return from
"find," the route node is created and filled-in between lines 61 and
65. In the previous Monterey to Las Vegas example, the first call to
"connect" would establish the city nodes for Monterey and Las Vegas
'(indirectly, through "find") and then produce the route node under
Monterey only. The second call to .. connect" establishes the route
node under Las Vegas.

The "find" procedure, starting at line 68, searches the city
list, beginning at "city head," until the input city i~ found or the
city list is exhausted. If the input city is not found, it it. created
between lines 79 and 85. In any case, "find" returns a pointer to the
requested city node.

The "print all" procedure, called after the network is created,
appears between lines 88 and 101. This procedure starts at "city
he ad " and dis pI a y saIl the cit i e sin the cit y 1 i st. As e a c h cit y i s
visited, the route head is also traversed and displayed. Upon
completion of the "print all" procedure, all city nodes and route
nodes have been visited and displayed.

The "print paths" subroutine performs the essential processing.
A des tin at ion cit y i s rea don 1 i nell 0, and sen t tot he" sh 0 r t est
dist" procedure. Upon return, the "total distil field of each city
node has been set to the total distance from the destination city.
The operator enters the starting city on line 115, which is sent to
the "print route" subroutine for the display operation.

Ignoring the shortest path analysis for now, the "print route"
procedure, at line 169, is responsible for displaying the best route
from the input city to the destination. The procedure essentially
rediscovers the path as follows, recalling that the total distance
from the input city to the destination has been computed and stored in
"total dist." 'rhe first leg of the best route is ·discovered by
finding a neighboring city whose "total distil field differs by exactly
the distance to the neighbor. The neighbor is displayed, we move to
the neighboring city, and repeat the same operation. Eventually, the
destination city is reached, and the display operation is completed.
Mechanically, the original city node is found on line 176. The
remaining distance is displayed on line 186, and the search for the
first or next leg occurs between lines 188 and 197. On each
iteration, line 191 tests to determine if a neighbor has been found
whose total distance plus leg distance matches the current city. If
so, the leg distance is displayed on line 193, and the search is
terminated by setting q to null.

Now we'll go back to the "shortest dist" procedure on line 123.
Basically, the function of this procedure is to take an input city,
called the destination, and compute the minimum total distance from
every city in the network to the destination. This total is recorded
at each city node in the "total dist" field. The algorithm proceeds
as follows

(All Information Contained Herein is Proprietary to Digital Research.)

94

(a) Initially mark all total distances with
infinity (32767 in PL/I-80), to indicate
that the node has no connection (yet).

(b) Set the Hinvestigate" flag to false for
each city. The investigate flag marks
a city node which needs to be processed
further by the algorithm.

(c) Set the total distance to the destination
to the value zero, all others ,are currently
set to infinity, but will change during
processing. Set the investigate flag
to true for the destination only.

(d) Examine the city list for the city node
which has the least total distance, and
whose investigate flag is true (at first,
only the destination will be found) •
When no city node has a true investigate
flag, processing is complete and all

'minimum total distances have been com
puted.

(e) Clear the investigate flag for the city
found in (d), and extract its current
total distance value. Examine each of
its ne iqhbo rs: if the cur rent to tal
distance plus the leg distance is less
than the total distanc~ marked at the
neighbor, then replace the neighbor's
total distance by this sum, and mark the
neighbor for processing by setting its
investigate bit to true. After pro
cessing each neighbor, return to step (d).

Basically, the algorithm proceeds through the graph, developing the
shortest path to any node. As a result, each city will be visited
exactly once. Due to this fact, the algorithm is linear which means
that additional nodes in the 'network do not significantly affect the
time taken to analyze the graph.

The final procedure, "free all," starting at line 201 gives all
the network storage back at the end of processing each network. Each
city node is visited, the entire list of route node connections is
discarded, and the city node is discarded.

The NET program can be expanded in several ways. First, it is
inconvenient to type an entire network each time, so a simple addition
would be to open a STREAM file and read the qraph from disk. Several
networks could be stored on the disk and retrieved on command from the
console. Second, you could expand the basic functions of NET. If you
are an aviation buff, for example, you might recast the network to
model the national airway system consisting of electronic airway
transmitters (VORis and VORTAC's) which are placed throughout the

(All Information Contained Herein is Proprietary to Digital Research.)

95

country. Directions, distances, and VOR frequencies can be stored at
each node, along with additional local information. Under command
from the console, the NET program would select the best route to take
you from one place to another, and display the headings, distances,
and VOR information for use during the trip. You could even expand
further by switching between networks at the world, national, and
local levels to aid in complete flight planning. If you're not an
aviation fan, try some other application, such as a telephone exchange
or computer program branch structure analysis.

(All Information Contained Herein is Proprietary to Digital Research.)

96

PL/I-80 Vl.0, COMPILATION OF: NET

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
1 7 c 0006
18 c 0006
19 c 0006
20 c 0006
21 c 0006
22 c 0006
23 c 0006
24 c 0006
25 c 0006
26 c 0006
27 c 0009
28 c 0011
29 c 0014
30 c 0017
31 c 001A
32 c 0020
33 c 0020
34 c 0020
35 c 0020
36 e 0020
37 e 0027
38 e 0027
39 e 0027
40 e 0035
41 e 0038
42 e 0057
43 e 0068
44 e 0068
45 e 009C
46 e 00A2
47 e 0086
48 e 0086
49 c 0086

graph:
proc options(main);
%replace

true
false
citysize
infinite

by 'l'b,
by '0'b,
by 20,
by 32767;

dcl

dcl

dcl

dcl

sysin file;

1 city node based,
2 city name char(citysize) var,
2 total dist fixed,
2 investigate bit,
2 city list ptr,
2 route head ptr;

1 route node based,
2 next city ptr,
2 route dist fixed,
2 route list ptr;

city_head ptr;

do while(true);
call setup();
if city head = null then

stop;
call print all();
call print-paths();
call free_all{);
end;

setup:
proc;
dcl

dist fixed,
(cityl, city2) char(citysize) var;

on endfile(sysin) go to eof;
city head = null;
put skip list("l"'ype "Cityl, Dist, City2"');
put skip;

eof:

do while(true);
qet list(cityl, dist, city2);
call connect(cityl, dist, city2);
call connect{city2, dist, cityl);
end;

end setup;

Figure 9-3a. Listing of the NET Network Program Part A.

(All Information Containe~ Herein is proprietary to Digital Research.)

97

51 c 00B6
52 c 00B6
53 e 0086
54 e 00C3
55 e 00C3
56 e 00C3
57 e 00C3
58 e 00C3
59 e 00C3
60 e 00D2
61 e 00El
62 e .00EA
63 e 00F8
64 e 0106
65 e 011D
66 c 012D
67 c 012D
68 c 0120
69 c 012D
70 e 012D
71 e 0134
72 e 0134
73 e 0134
74 e 0134
75 e 0142
76 e 0142
77 e 0150
78 e 0165
79 e 0165
80 e 016E
81 e 0178
82 e 018A
83 e 0190
84 e 019C
85 e 01A9
86 c 01AD
87 c 01AD
88 c 01AD
89 c 01AO
90 e 01AD
91 e 01AO
92 e 01AD
93 e 0188
94 e 018B
95 e 01E"
96 e 01F6
97 e 01F6
98 e 0253
99 e 0253

100 e 0253
101 c 0253
102 c 0253

connect:
proc(source city, dist, dest-city);
dcl -

dcl

source city char(citysize) var,
di st fixed,
dest_city char(citysize) var;

(r, s, d) ptr;
s = find(source city);
d = find(dest city);
allocate route_node set (r.);
r->route-dist dist;
r->next city = d;
r->route list = s->route_head;
s->route-head = r;
end connect;

find:
proc (c i ty) re turns (ptr) ;
dcl

dcl
city char(citysize) var;

(p, q) ptr;
do p = city head

repeat(p->city list) while(p~=null);
i f city = p- >c i ty name then

return (p) ; -
end;

allocate city node set(p);
p->city name -= city;
p->city-list = city head;
city head = p; -
p->total dist = infinite;
p->route-head = null;
return (pT;
end find;

pr i nt_all:
proc;
dcl

(p, q) ptr;
do p = city head

repeat(p->city list) while(p-=null);
put ski P lis t (p- >c Tty n am e , , : ') ;

do q = p->route head
repeat(q->route list) while(q-=null);

put skip list(q->route dist,'miles to',
q->next_cTty->city_name);

end;
end;

end print_all;

Figure 9-3b. Listing of the NET Network Program Part B.

(All Information Containe~ Herein is Proprietarv to Digital Research.)

98

103 c 0253 pr i nt_pa ths:
104 c 0253 proci
105 e 0253 dcl
106 e 025A city char(~itysize) vari
107 e 025A on endfile{sysin) qo to eof;
108 e 0268 do wh i 1 e (t rue) i
109 e 0268 put skip list{'Type Destination ') i
110 e 0284 qet 1 i s t (cit y.) ;
III e 029E call shortest dist(citY)i
112 e 02A4 on endfile (sysin) go to eol;
113 e 0282 do while{true);
114 e 0282 pu t ski P 1 i s t (I Ty P e Start I) ;

115 e 02CE get list(city):
116 e 02E8 call print_route{citY)i
117 e 02F8 end;
118 e 02F8 eol: revert endfile(sysin)i
119 e 030E end;
120 e 030E eof:
121 c 030E end pr in t_pa ths;
122 c 030E

Figure 9-3c. Listing of the NET Network Program Part C.

(All Information Contained Herein is proprietary to Digital Research.)

99

123 c 030E
124 c 030E
125 e 030E
126 e 0315
127 e 0315
128 e 0315
129 e 0315
130 e 0315
131 e 0315
132 e 0323
133 e 0323
134 e 032F
135 e 0346
136 e 0346
137 e 0355
138 e 0360
139 e 0368
140 e 0368
141 e 036E
142 e 0374
143 e 0382
144 e 0382
145 e 038E
146 e 038E
147 e 03A3
148 e 03A3
149 e 0381
150 e 03C8
151 e 03C8
152 e 03C8
153 e 03C8
154 e "3D0
155 e 03Dl
156 e 03DA
157 e 03EF
158 e 03EF
159 e 03F9
160 e 0408
161 e 0421
162 e 0421
163 e 0430
164 e 044D
165 e "044D
166 e 044D
167 c 044D

shortest-dist:
procTci ty) ;
dcl

dcl
city char(citysize) var;

bestp ptr,
(d, be s td) fix ed,
(p, q, r) ptr;
do p = city head

repeat(p->city list) while(p-=null);
p->total dist = infinite;
p->investiqate = false;
end;

p = find{ ci ty);
p->total dist = 0;
,p->investiqate = true;

do while(true);
bestp = null;
bestd = infinite;

do p = city head
repeat(p->city list) while(p"'=null);

if p->investigate then
do;
if p->total dist < bestd then

do; -
bes td = p-> total_ d i st;
bestp = p;
end;

end;
end;

if bestp = null then
return;

bestp->investigate = false;
do q = bestp->route head

repeat(q->route-list) while(q-=null);
r = q->next city; -
d = bestd +-q->route dist;
if d < r->total dist-then

end;
end;

do;
r->total dist = d;
r->investiqate = true;
end;

end shortest~dist;

Figure 9-3d. Listing of the NET Network Program Part D.

(All Information Contained Herein is proprietary to Digital Research.)

100

168 c 04 4D
169 c 044D
17'1 c'144D
1 71 e "4 4D
172 e 0454
173 e 0454
174 e 0454
1 75 e 0454
1 7n e 045'4
177 e 0463
178 e 0463
179 e 0471
180 e C147D
181 e 0470
182 e 0499
183 e 049A
184 e 049A
185 e 04A3
186 e 04A4
187 e 04CB
188 e 0409
189 e 04E1
190 e 04EB
191 e 04F7
192 e 0515
193 e 0515
194 e 0540
195 e 0549
196 e 0549
197 e 055D
198 e "5 5D
199 c 055D
200 c 055D
201 c "55D
2 02 c 0550
203 e (155D
204 e 055D
205 e 0550
206 e "56B
2 07 e 0568
208 e 0581
209 e 0581
210 e 0598
211 e 0598
212 e 0580
213 c 05B0
214 c 0580
215 a 05B0

CODE SIZE = 0580
DATA AREA = 00E8

print route:
, proc(city);

dc1

dc1
city char(citysize) var;

(p, q) ptr,
(t, d) fixed:

p = find(city):
do wh i 1 e (t rue) ;
t = p->total dist;
if t = infinIte then

do;
put skip list{' (No Connection) ');
ret ur n:
end;

if t = 0 then
return;

put skip list(t,'miles remain,'):
q = p->route head;

end;

do while(q-=null):
p = q->next city;
d = q->route dist:
if t = d + p=>total dist then

do: -
put list(d,'miles to' ,p->city_name);
q = null;
end; else

q = q->route list;
end: -

end print_route;

free all:
proc;
dcl

(p, q) ptr;
do p = city head

repeat(p->city list) while(p-=null);
do q = p->route head

repeat(q->route list) while(q-=null);
free q->route node;-
end: -

free p->city node;
end; -

end free_all;

end graph;

Figure 9-3e. Listing of the NET Network Program Part E.

(All Information Contained Herein is proprietary to Digital Research.)

101

A)b:net

Type "Cityl, Dist, City2"
Se~ttle, 150, Boise
Boise, 300, Modesto
Seattle,400,Modesto
Modesto,150,Monterey'
Modesto, 50,San-Francisco
San-Francisco,200,Las-Vegas
Las-Vegas,350,Monterey
Los-Angeles,400,Las-Veqas
Bakersfield,300,Monterey
Bakersfield,250,Las-Vegas
Los-Angeles,450,Tijuana
Tijuana, 700,Las-Vegas
Las-Veqas, 9i0, Boise
Pacific-Grove,5,Monterey
~Z

Pacific-Grove :
5 miles to Monterey

Tijuana :
700 miles to Las-Vegas
450 miles to Los-Angeles

Bakersfield :
250 miles to Las-Vegas
300 miles to Monterey

Los-Angeles :
450 miles to Tijuana
400 miles to Las-Vegas

Las-Vegas
920 miles to Boise
700 miles to Tijuana
250 miles to Bakersfield
400 miles to Los-Angeles
350 miles to Monterey
200 miles to San-Francisco

San-Francisco :
200 miles to Las-Vegas

50 miles to Modesto
Monterey :

5 miles to Pacific-Grove
300 miles to Bakersfield
350 miles to Las-Vegas
150 miles to Modesto

Modesto :

Boise

50 miles to San-Francisco
150 miles to Monterey
400 miles to Seattle
300 miles to Boise

920 miles to Las-Vegas
300 miles to Modesto
150 miles to Seattle

Seattle :
400 miles to Modesto
150 miles to Boise

Figure 9-4a. NET program Network Setup.

(All Information Contained Herein is proprietary to Digital Research.)

102

Type Destination Tijuana

Type Start Boise

1250 miles remai n, 300 miles to Modesto
950 miles rema in, 50 miles to San-Franc isco
900 miles rema in, 200 miles to Las-Vegas
700 miles remain, 700 miles to Tijuana

Type Start Z

Type Destination Pacific-Grove

rfype Start Seattle

555 miles remain, 4eJeJ miles to Modesto
155 miles rema i n, 150 miles to Monterey

5 miles rema in, 5 miles to Pacific-Grove
Type Start Z

Type Destination Z

Type "Cityl, Di st, City2"
.... Z

Figure 9-4b. NET program Network Interrogation.

(All Information Contained Herein is proprietary to Digital Research.)

103

10. USES OF RECURSION IN PL/I-80.

Recursion processing is a language facility often used to
s.impl ify programming problems which are partially self-defined. We
will examine three such problems, where the first two illustrate the
basic concepts and the last shows a more powerful use of recursion in
a prac tical problem.

Getting into the mechanics of recursion processing for a moment,
a recursive procedure is one in which an embedded call either directly
or indirectly reenters the procedure before returning to the first
level call. In PL/I, all such procedures must have the RECURSIVE
attribute so that the local data areas are properly saved and restored
at each level of recursion. In PL/I-80, there are two restrictions
within recursive procedures. First, all procedure parameters are
~call by value,H which means that values cannot be returned from a
recursive procedure by assiqnment to formal parameters. Instead, your
program may return a functional value or assign values to global
variables. In order to maintain compatibility with full PL/I, you
should not use formal parameters on the left of an assignment
statement within a PL/I-80 recursive procedure. Second, PL/I-80 does
not allow embedded BEGIN blocks within recursive procedures. Nested
procedures and DO groups are, however, allowed. The proper
formulation of recursive procedures is shown in the examples which
follow.

10.1. Evaluation of Factorials.

No introduction to recursion would be complete without a
presentation of factorial evaluation. The factorial function, used
throughout Mathematics, is a good illustration because it is easily
defined through Hiteration" as well as recursion. The iterative
definition of the factorial function is

k! = (k) (k-l) (k-2) ••• (2) (1)

where k! is the factorial function applied to the non-negative integer
k • Not e t ha t sin c e

(k-l)! = (k-l) (k-2) ••• (2) (1),

we can give the factorial definition in terms of itself, using the
recursion relation

k! = k (k-l)!

where we define

0! = 1

Evaluating the factorial function using either iteration or recursion

(All Information Contained Herein is Proprietary to Digital Research.)

104

produces the values shown below

0 = 1
1 = 1
2 = (2) (1) = 2
3 = (3) (2) (1) = 6
4 = (4) (3) (2) (1) = 24
5 = (5) (4) (3) (2) (1) = 120

1" i g u reI 0 -1 pro v ide sal i s t i ng 0 f IF AC 'I' w hie h com put e s val u e S 0 f the
factorial function using iteration. The variable FACT is a fixed
binary data item which accumulates the value of the factorial up to a
maximum of 32767. The output from IFACT, shown in Figure 10-2, gives
the proper value of the factorial function up to 71 = 5040. At this
point, the FACT variable overflows and produces improper results.
Recall that PL/I-80 does not signal FIXEDOVERFLOW for binary
comp~tations since the overhead would significantly degrade execution
time.

Figure 10-3 shows the equivalent recursive evaluation of the
factorial function. For comparison, the REPEAT form of the DO group
is used to control the test. In this case, FACT is a procedure marked
as RECURSIVE, which is called at the top level in the PUT statement on
line 6, with an embedded recursive call in the RETURN statement on
line 14. Note that FACT returns immediately when the input value is
zero. All other cases require one or more recursive evaluations of
FACT to produce the result. For example, 31 produces the sequence of
compu tations

fact(3) = 3*fact(2)
f ac t (2) = 2*fact(1)

fact(l) = 1 *fact(0)
fact(0) .- 1

= 1 * 1
= 2 * 1 * 1

= 3 * 2 * 1 * 1

producing the final value 6. The output values for the recursive
factorial evaluation are shown in Figure 10~4. Note again that the
values overflow beyond 5040 due to the precision of the computations.

We can use this opportunity to examine output differences when
the data item types and precisions are altered. Figure 10-5 shows the
recursive evaluation of factorial, where a maximum precision decimal
value is used. The largest value produced by the program, as shown in
Figure 10-6, is

factorial(17) = 355,687,428,096,000

At this point, the FIXEDOVERFLOW is signalled by PL/I-80 to indicate
that the decimal computation has overflowed the maximum 15 digit
value. Similarly, Figure 10-7 shows the factorial function evaluated
using floating point binary data items. The output from this program
is shown in Figure 10-8. Although the function can be computed beyond
171, the number of significant digits is truncated on the right to

(A 11 Info rm a t ion Co n ta i ne d Here i n i s Prop r i eta ry to Dig ita 1 Re sea r c h.)

105

PL/I-80 Vl.0, COMPILATION OF: IFACT

L: List Source prqgram

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 Vl.0, COMPILATION OF: IFACT

1 a 0000 f :
2 a 000'6 proc options(main);
3 c 0006 del
4 c 0006 (i,n,fact) fix ed;
5 c 0006
6 c 000C
7 c 0012
8 c 0021
9 c 0039

10 c 0039
11 c 0081
12 c 0081
13 a 0081

CODE SIZE - 0081
DATA AREA = 0021

end

do i = 0 by 1;
fact = 1;

do n = i to 1 by -1;
fact = n * fact;
end;

put e d i t (, fa c to ria 1 (, , i , ,) = , , fa c t)
(skip, a,f(2) ,a,f(7));

end;
f;

Figure 10-1. Listing of the IFACT Program.

(All Information Contained Herein is Proprietary to Digital Research.)

106

A>b: ifact

factoria1(0)=
factoria1(1)=
factoria1(2)=
f a c to ria 1 (3) =
factoria1(4)=
f a c to ria 1 (5) =
factoria1(6)=
f a c to ria 1 (7) =
factoria1(8)=
f ac to rial (9) =
factoria1(10)=
factoria1(11)=
factoria1(12)=
f a c to ria 1 (1 3) =
factoria1(14)=
f a c to ria 1 (1 5) =
factorial (16)=
factoria1(17)=
f a c to ria 1 (1 8) =
factoria1(19)=
factoria1(20)=
f ac to rial (21) =

1
1
2
f)

24
120
720

5040
-25216
-30336

24320
5376

-1024
-13312

10240
22528

-32768
-32768

o
o
o
o

Figure 10-2. Output from the IFACT program.

(All Information Contained Herein is Proprietary to Digital Research.)

107

PL/I-80 V1.0, COMPILATION OF: FACT

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: FACT

1 a 0000 f:
2 a 0006 proc options(main);
3 c 0006 del
4 c 0006 i fixed;
5 c 0006 do i = 0 repeat(i+1) ;
6 c 000C put skip 1 is t (I f ac to ria 1 (I , i , I) = • , fa c t (i)) ;
7 c 0056
8 c 0056
9 c 0056

10 c 0056
11 c 0056
12 e 0056
13 e 0070
14 e 0080
15 c 0099
16 a 0099

CODE SIZE = 0.099
DATA AREA = 0018

end;
stop;

fact:
procedure(i) ret ur n s (fix e d) recursive;
del i fixed;
if i = 0 then return (1) ;
return (i * fact(i-1»;
end fact;

end f;

Figure 10-3. Listing of Factorial in Fixed Binary.

(All Information Contained Herein is Proprietary to Digital Research.)

108

A>b:fact

factoria1(0) = 1
factor ia1 (1)= 1
factoria1(2)= 2
factor ia1 (3) = 6
factor ia1 (4)= 24
factorial (5)= 120
f ac tor i a1 (6)= 720
f ac to rial (7)= 5040
facto rial (8)= -25216
factoria1(9)= -30336
f ac to rial (10) = 24320
factoria1(11)= 5376
facto rial (12)= -1024
f ac to rial (13) = -13312
f ac to rial (14) = 10240
factor ia1 (15) = 22528
facto ri a1 (16) = -32768
facto rial (17)= -32768
factoria1(18)= 0
f ac tor ia1 (19) = 0
factoria1(20) = 0
factori a1 (21)= 0
f ac tor ial (22)= 0

Figure 10-4. Output from the FACT Program.

(All Information Contained Herein is proprietary to Digital Research.)

109

PL/I-80 Vl.0, COMPILATION OF: DFACT

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 Vl.0, COMPILATION OF: DFACT

1 a 0000 f:
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 000C
7 c 0058
8 c 0058
9 c 0058

10 c 0058
11 c 0058
12 c 0058
13 e 0058
14 e 0072
15 e 0072
16 e 0072
17 e 0072
18 e 0078
19 e 0089
20 c 00A5
21 a 00A5

CODE SIZE = 00A5
DATA AREA = 0028

proc options(main);
dcl

i fixed;
do i = 0 repeat(i+l);
'Put skip list('Factorial(' ,i,')=',fact(i»;
end;

stop;

fact:
proc (i)

dcl

dcl

returns(fixed dec(15,0» recursive;

i fixed;

f fixed dec(lS,0);
if i = 0 then

ret urn (1);
ret ur n (dec im a 1 (i , 1 5) * fa c t (i-I)) ;

end fact;
end f;

Figure 10-5. Listing of Factorial in Decimal.

(All Information Contained Herein is Proprietary to Digital Research.)

110

A>b:dfact

F a c to ria 1 (0) =
Fac torial (1) =
Factorial{ 2)=
F ac to ria 1 (3) =
Factor ia1 (4) =
Factorial{ 5)=
F ac to ria 1 (6) =
li'actorial{ 7)=
Factorial{ 8)=
Factorial{ 9)=
r"' a c to ria 1 (10) =
Fa c to ria 1 (11) =
Factorial(12)=
Factorial{ 13)=
F ac to ria 1 (14) =
F ac to ria 1 (15) =
Fa c to ria 1 (16) =
Fa c to ria 1 (1 7) =
Factorial(18)=

1
1
2
6

24
120
720

5040
40320

362880
3628800

39916800
479001600

6227020800
87178291200

1307674368000
20922789888000

355687428096000

FIXED OVERFLOW (1)
Traceback: 0007 019F
End 0 f Execu ti on

0018 0000 # 2809 ~874 0355 0141

Figure 10-6. Output from the DFACT program.

(All Information Contained Herein is Proprietary to Digital Research.)

111

PL/I-80 Vl.0, COMPILATION OF: FFACT

L: List Source Proqram

NO ERROR(S) IN PASS 1

NO ERROR(S) I~ PASS 2

PL/I-80 Vl.0, COMPILATION OF: FFACT

1 a 0000 f:
2 a 0006 proc options(main) ;
3 c 0006 dcl
4 c 0006 i fixed;
5 c 0006 do i = 0 repeat(i+l);
6 c 000C put skip list('factorial(' ,i,')=' ,fact(i));
7 c 0056
8 c 0056
9 c 0056

10 c 0056
11 c 0056
12 e 0056
13 e 0" 70
14 e 0079
15 e 0085
16 c 00Al
17 a 00Al

CODE SIZE = 00Al
DATA AREA = 00lC

end;
stop;

fact:
procedure (i) returns (float) recursive;
dcl i fixed;
if i = 0 then

return (1);
return (i * fact(i-l)) ;
end fact;

end f;

Figure 10-7. Listing of Factorial in Float Binary.

(All Information Contained Herein is proprietary to Digital Research.)

112

A>b: ffac t

fac to r ial(0) = 1.000000E+00
f ac to r ial(1)= 1.000000E+00
f ac tor ial(2) = 2.000000E+00
f ac to r ial(3) = 0.600000E+01
fac tor ial (4) = 2.400000E+Qll
factorial(5) = 1.200000E+02
fac tor ial (6)= 0.720000E+03
facto r ial (7)= 0.504000E+04
factorial(8) = 4.032000E+04
facto r ial (9)= 3.628799E+05
factorial(10) = 3.628799E+QJ6
factorial(11)= 3: 9 91 679 E+ 07
factorial(12) = 4.790015E+08
factorial(13)= 0.622702E+10
f actorial(14) = 0.871782E+ll
f actorial (15)= 1. 30.767 4E + 12
f ac tor ial (16)= 2.092278 E+13
factorial(17)= 3.556874E+14
factor ial (18) = QI • 64023 7E + 16
fact'o.Jial(19) = 1.216450E+17
f ac tori.al (20) = 2 • 43 2 90 IE + 1 8
f ac tor ial (21)= 0.510909E+20
factorial(22) = 1. 12400Q1E+21
factorial(23) = 2.585201E+22
f ac to rial (24) = 0.620448E+24
factorial(25)= 1.551l21E+25
factor ial (26) = 4 .032914 E+26
factorial(27)= 1.088887E+28
factorial(28)= 3.048883E+29
f ac to r ial (29)= 0.884176E+31
f ac tor ial (30) = 2.652528E+32
factorial(31)= 0.822283E+34
factorial(32) = 2.63l308E+35
factorial(33) = 0.86833lE+37
f ac tor i al (34) =
OVERFLOW (1)
Traceback: 0046 13BF 13E6 0198 # 8608 0815 FB51 0141
End of Execution

Figure 10-8. Output from the FFACT program.

(All Information Contained Herein is proprietary to Digital Research.)

113

approximately 7-1/2 equivalent decimal digits. The floating point
binary version terminates when the OVERFLOW condition is signalled by
PL/I-80, produced by an exponent value which cannot be maintained in
the floating point representation.

10.2. Evaluation of the Ackermann Function.

The PL/I-80 runtime system maintains a memory Ustack~ where
subroutine return addresses and some temporary results are maintained.
Under normal circumstances, the memory area allocated to hold the
stack is sufficiently large for non-recursive procedure processing, as
well as simple recursive procedure evaluation. The program of this
section, however, illustrates a more comprehensive example of
recursion using a function which is derived from Number Theory, called
the Ackermann function. The Ackermann function, denoted by A(m,n),
has the recursive definition:

A(m,n) =
if In = 0 ~hen n + 1, otherwise
i f n = 0 t h en A (m -1 , 1), 0 th e rw i s e

A(m-l ,A(m,n-l))

For our puposes, the Ackermann function illustrates multiple recursion
using a stack depth which can exceed the default value provided by
PL/I-80. The program, shown in Figure 10-9, implements the Ackermann
func tion by read ing two values for the maximum m and n for wh ich the
function is to be evaluated. The prog ram interaction is given in
Figure 10-10. It should be noted in passing that although the
Ackermann function returns a fixed binary value, the DECIMAL built-in
function is used to control the PUT LIST output conversion field size
on lines 8, 10, and 12.

The important point in this ,example is that the STACK option is
used on line 2 to increase the size of the memory area allocated for
the'runtime stack. The STACK option is only valid with the MAIN
option and, in this case, increases the stack size from its default
value of 512 bytes up to 2000 bytes. The value of the STACK option
must be determined empirically, since the depth of recursion cannot
generally be computed by the compiler. The message

Free Space Overwrite

however, occurs when the stack overflows during recursion, accompanied
by program termination, as an indication that the allocated stack size
is too sm a 11 •

(All Information Contained Herein is Proprietary to Digital Research.)

114

PL/I-80. V1.0, COMP ILATION OF: ACK

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: ACK

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0022
7 c 0046
8 c 0095
9 c 0095

10 c 00AE
11 c 00DA
12 c 0 0~"3
13 c 0126
14 c 0126
15 c 0126
16 c 0129
17 c 0129
18 c 0129
19 e 0129
20 e 0153
21 e 015C
22 e 0164
23e 016D
24 e 017E
25 c 019F
26 a 019F

ack:
procedure options(main,stack(2000»;
dc1

(m,maxm,n,maxn) fixed;
put ski p list ('Type max m,n: ');
qet 1ist{maxm,maxn);
put skip

1ist(' " (decima1(n,4) do n=0 to maxn»;
do m = 0 to maxm;
pu t ski p 1 i s t (d ec im a1 (m ,4) " : I) ;

do n = 0 to maxn;

end;
stop;

put 1 i s t (dec im a 1 (a c k e rm ann (m , n) , 4)) ;
end;

ackermann:
procedure (m,n) returns (fixed) recur sive;
dc1 (m,n) fixed;
if m = 0 then

return (n+1) ;
if n = 0 then

return(ackermann(m-l,l)};
return(ackermann(m-i,ackermann(rn,n-1)}};
end ackermann;

end ack;

CODE SIZE = 019F
DATA AREA = 0048

Figure 10-9. Listing of the Ackermann program.

(All Information Contained Herein is proprietary to Digital Research.)

115

A)B:ACK

Type max m,n: 4,6

0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 5 7 9 11 13 15
3 5 13 29 61 125 253 509
4 13

Figure 10-10. Interaction with the Ackermann Program.

(All Information Contained Herein is proprietary to Digital Research.)

116

10.3. An Arithmetic Expression :Evaluator.

One of the day-to-day practical uses of recursion takes place in
the translation and execution of programming languages. This use is
primarily due to the fact that languages are most often recursively
defined. In block-structured languages like PL/I-80, for example, DO
groups, and BEGIN and PROCEDURE blocks can be self-embedded, so the
resulting structure is easily 'processed using recursion. Another
example, which is the subject of this section, occurs in the
evaluation of arithmetic expressions. One simple form of an
expression can be recursively defined as follows.

An expression is a simple number, or
an expression is a pair of expressions
separated by a +, -, *, or I, and
enclosed in parentheses.

Using this definition, the number 3.6 is an expression since it is a
s im pIe n urn be r • Fur the r ,

{ 3.6 + 6.4

is also an expression since it consists of a pair of expressions which
are both simple numbers, separated by a +, and enclosed in
parentheses. As a result,

{ 1.2 * (3.6 + 6.4))

is a valid expression because it also contains two valid expressions:
1.2 and (3.6+6.4), separated by a *, and enclosed in parentheses. The
sequences

3.6 + 6.4
(1.2 + 3~6 + 6.4)

are not valid expressions since the first is not enclosed in
parentheses, while the second is not a pair of expressions in
parentheses. The definition of an expression as given above is
somewhat restrictive, but once we have the foundation established it
is easily expanded to include expressions of the complexity of, say,
P~/I-8 0.

An expression evaluation program is shown in Figure 10-11. The
p r inc i pa 1 pr 0 c e s sing t ak e s p 1 ace i nth is Fig u reb e twe en 1 i n e s 20 and
24 where an expression is read from the console and the evaluated
result is typed back to the operator. The console interaction is
shown in Figure 10-12, where the operator has entered several properly
and improperly formed expressions.

The heart of the expression analyzer is the recursive procedure
EXP which processes input expressions according to the recursive
definition given above. The EXP procedure decomposes the expression
piece-by-piece as the recursion proceeds~ The GNT (Get Next Token)
procedure reads the next element, or IItoken, II in the input line, which
should be a left or right parenthesis, a number, or one of the

(All Information Contained Herein is Proprietary to Digital Research.)

117

PL/I-80 Vl.0, COMPILATION OF: EXPRI

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 Vl.0, 'COMPILATION OF: EXPRI

1 a 0000
2 a 0006
3 c 0006
4 c 000D
5 c 000D
6 c 00130
7 c 000D
8 c 0000
9 d 0015

10 d 0018
11 c 0018
12 c 0022
13 d 0022
14 e 0025
15 e 004A
16 e 0058
1 7 d 005E
18 d 005E
19 c 005E
20 c 0065
21 c ,0065
22 c 0081
23 c 008A
24 c 0084
25 c 0084
26 c 0084
27 c 0084
28 e 00134
29 c 00CF

expre ss ion:
proc options(main);
dcl

sysin file,
value float,
token char(10) var;

on endf ile (sys in)
stop;

onerror(l)
/* conversion or signal */
begin;
put skiplist('Invalid Input at ',token);
get skip;
go to restart;
end;

restart:

gnt:

do wh i 1 e (I 1 I b) ;
put ski p (3) 1 i s t (I Ty pe ex pre s s ion: ');
value = exp(};
put skip 1 i s t (• Value is: I ,value);
end;

proc;
get 1 i st (token) ;
end gnt;

Figure 10-lla. Listing of an Expression Evaluator Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

118

30 c 00CF
31 c 00CF exp:
32 c 00CF proc returns(f1oat binary) recursive;
33 e 00CF dc1 x float b ina ry;
34 e 0008 ca11gnt();
35 e 0008 if token = ' (' then
36 e 00E9 do;
37 e 00E9 x = exp () ;
38 e 00F2 call gnt();
39 e 00F5 if token = ' +' then
40 e 0103 x = x + exp();
41 e 0115 else
42 e 0115 if token = '-' then
43 e 0123 x = x - exp () ;
44 e 0135 else
45 e 0135 if token = . *. then
46 e 0143 x = x * exp () ;
47 e 0155 else
48 e 0155 if token = , /' then
49 e 0163 x = x / exp();
50 e 0175 else
51 e 0175 s ig na1 error(l);
52 e 017C call gn t () ;
53 e 017F if token = .) , then
54 e 0180 signal e r ro r (1) ;
55 e 0197 end;
56 e 0197 else
57 e 0197 x = token;
58 e 01A6 return(x);
59 c 0182 end eXPi
60 a 01B2 end expres sion;

CODE SIZE = 0182
DATA AREA = 0046

Figure 10-11b. Listing of an Expression Evaluator Part 8.

(All Information Contained Herein is proprietary to Digital Research.)

119

A>b:exprl

'rype expression: (4 + 5.2

Value is: 0.920000E+0l

Type expression: 4.5e-l

Value 'is: 4.499999E-0l

Type expression: (4 & 5)

Invalid Input at &

Ty pe ex pre ss ion: ((3 + 4) - (1 0 / 8))

Value is: 0.575000E+01

Type expression: (3 * 4

Value is: 1 • 200000 E+01

Type expression: ~Z

End of Execution

Figure 10-12. Interaction with the Expression Evaluator.

(All Information Contained Herein is Proprietary to Digital Research.)

120

arithmetic operators. Since GNT uses a GET LIST, each of these tokens
must be separated by a blank or end of line. EXP begins by calling
GNT on line 34. GNT, .in turn, places the next input token into the
CHAR(10) variable called token. If the first item read is a number,
then the series of tests within EXP sends control to line 57 where the
character value of token is automatically converted to a floating
po int value through the assignment to x. Thi s converted value is
returned from EXP back to line 22, where it is stored into "valu." and
subsequently wr i tten as the resul t of the expression. If the
expression is non-trivial, then EXP scans the leading left parenthesis
o n 1 in e 3 5 , and en t e r s the DOg r 0 u p 0 n 1 in e 36 • Th e fir s t
subexpression is immediately evaluated, no matter how complicated, and
stored into the variable x in line 37. The token is then checked for
an occurrence of +, *, or I. Suppose, for example, that the *
operator is encountered on line 45. The statement on line 46
recursively invokes the EXP procedure to evaluate the right side of
the expression and, upon return, multipl,ies this result hy the value
of the left side which was previously computed. The balancing right
parenthesis is checked starting on line 52, and the resulting product
is returned as the value of EXP on line 58.

Exceptional conditions are handled in three places. An end of
file condition on the input file is intercepted by the· ON-unit at line
8, where a STOP statement is executed. A second point where an error
can take place is during conversion from charact~r to floating point
at the assignment on line 57. If this occurs, the ON-unit starting at
line 11 receives control. The token in error is displayed and the
data is cleared to the end of line using a GET SKIP statement.
Program control then recommences at the II restart" label where the
operator is prompted for another input expression.

An exceptional condition is generated by the program itself when
an invalid operator or unbalanced expression is encountered. If the
operator is not a +, -, *, or I, then statement 51 is executed and the
ON-unit at line 11 is signalled, resulting in an error report and
transfer to II restart, II where the current recursion levels are
discarded and the program begins again. Similarly, a missing right
parenthesis on line 53 triggers the error(l) ON-unit to report the
error and restart the program.

The only major problem here is that the input line requires
spaces between tokens, which is somewhat inconvenient. Recall,
however, that we earlier tested a procedure called GNT (see Section
8.2) which reads console input lines and decomposes the line into
numeric and single character tokens, without the necessity for
intervening blanks. Figure 10-13 shows the expression processor of
the previous figures with the GNT procedure replaced by the free-field
scanner. The error recovery has also changed, since it is necessary
on line 20 to discard the remainder of the current input when
restarting the program. Figure 10-14 shows the console interaction
with this improved expression analyzer.

There is plenty of room for expansion in this particular
example. First, you could add more operators to expand upon the basic
arithmetic functions. You might want to add operator precedence, and

(All Information Contained Herein is Proprietary to Digital Research.)

121

do away with the requirement for explicit parentheses. Beyond that,
you can add variable names and assignment statements and, who knows,
with a bit of work you may turn the program into a Basic interpreter!

(All Information Contained Herein is Proprietary to Digital Research.)

122

PL/I-80 V1.0, COMPILATION OF: EXPR2

1 a 0000
2 a 0006
3 a 0006
4 c 0006
5 c 000D
6 c 000D
7 c 000D
8 c 000D
9 c 000D

10 c 000D
11 c 000D
12 c 000D
13 c 0000
14 d 0015
15 d 001B
16 c 001B
17 c 0022
18 d 0022
19 e 0'025
20 e 004A
21 e 0054
22 d 0057
23 d 0057
24 c 0057
25 c 005E
26 c 005E
27 c 005E
28 c 007A
29 c 0083
30 c 00AE
31 c 00AE
32 c 00AE
33 c 00AE
34 e 00AE
35 e 00AE
36 e 00AE
37 e 00AE
38 e 00C8

,39 e 00C8
40 e 0006
41 e 00F3
42 e 0108
43 e 0111
44 e 0119

expression:
proc options(main):

% repl ace

dcl

true by 'l'b:

sysin file,
value float,
(token char(10), line char(80» varying

static initial(' '):

on endfile(sysin)
stop:

on error(l)
/w conversion or signal */
beg in;
put skip list('Invalid Input at ',token):
token = ": line = ":
g'o to resta r t:
end;

restart:

gn t:

do while('l'b):
put ski p (3) lis t (, Ty pee x pre s s ion: ');
value = expel;
put edit('Value is: ',value) (skip,a,f(10,4»;
end:

proe:
del

i fixed;

line = substr(line,length(token)+l):
do while(true);
if line = " then

get edi t (1 ine) (a);
i = verify(line,' ');
if i = 0 then

line = ";
else

Figure 10-13a. An Expanded Expression Evaluator Part A.

(All Information Contained Herein is proprietary to Digital Research.)

123

45 e 0119
46 e 0119
47 e 012F
48 e 0144
49 e 0140
50 e 015B
51 e 015B
52 e 0164
53 e 017A
54 e 017A
55 e 0193
56 e.0197
57 e 0197
58 c 0197
59 c 0197
60 c 0197
61 c 0197
62 e 0197
63 e 01A0
64 e 01A3
65 e 0181
66 e 0181
67 e 01BA
68 e 0180
69 e 01CB
70 e 010D
71 e 01DD
72 e 01E8
73 e 01FO
74 e 01FD
75 e 0208
76 e 021D
77 e 021D
78 e 0228
79 e 0230
80 e 0230
81 e 0244
82 e 0247
83 e 0255
84 e 025F .
85 e 025F
86 e 025F
87 e 026E
88 c 027A
89 c "27A
90 a 027A

CODE SIZE =
DATA AREA =

027A
0085

exp:

end;

do;
line = substr(line,i);
i = verify(line,'0123456789.');
if i = 0 then

token = line;
else
if i = 1 then

token = substr(line,l,l);
else

token = substr(line,1,i-1);
return;
end;

end qnt;

proc returns(float binary) recursive;
dc1 x float binary;
call gnt();
if token = '(' then

do;

else

x = exp () ;
call qnt();
if token = '+' then

x = x + exp () ;
else
if token = '-' then

x = x - exp () ;
else
if tokeri = '*' then

x = x * exp();
else
if token = '/' then

x = x / exp();
else
signal error(l);
call gnt();
if token ~= ')' then

signal error(l);
end;

x = token;
return (x) ;
end exp;

end expression;

Figure 10-13b. An Expanded Expression Evaluator Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

124

A)b:expr2

Type ex pre s s ion: (2 * 1 4 • 5)

Value is: 29.0000

Type expression: ((2*3) / (4.3-1.5»

Value is: 2.1429

Type e xpre ssi on: zo t

Invalid Input at z

Ty pe ex pre s s ion: ((2 * 3
) - 5)

Value is: 1.0000

Type expression: (2 nS)

Invalid Input at n

Type expression: ~Z

End of Execution

Figure 10-14. Expanded Evaluator Console Interaction.

(All Information Contained Herein is Proprietary to Digital Research.)

125

11. SEPARATE COMPILATION AND LINKAGE.

All of the programs presented thusfar are constructed as
indivisible units, where many contain embedded local procedures. As
mentioned previously, it is often useful to break larger programs into
distinct modules which are subsequently linked with one another and
with the PL/I-80 subroutine library. There are two reasons for
separately compiling and linking programs in this manner. F'irst,
large programs take longer to compile and, in fact, may overrun the
memory size available for the symbol table. Smaller segments can be
independently developed, integrated, and tested, thus requiring less
overall compilation time for the entire project. Second, you will
soon identify particular subroutines which you find useful for your
own application programming. You can build your own library of
subroutines and selectively link them into your programs, as required.
This section provides the basic information required to link program
and data segments, and provides a complete example of separate
compilation and linkage.

11.1. Data and Program Declarations.

Da ta a reas can be shared in PL/I-80 by inc Iud ing the EXTERNAL
attribute in the item's declaration. For example, the declaration

dcl x (10) fixed binary external;

defines a variable named x occupying 10 fixed binary locations (20
contiguous bytes), which is accessible by any other module that uses
this same declaration. Similarly,

dcl
1 s,

2 y(10) bit(8),
2 z char(9) var;

defines a 20 byte data area named s which is accessible by other
modules. There are a few basic rules which apply to the declaration
of external data:

(a) An external data item automatically re
ceives the STATIC attribute.

(b) EXTERNAL data items are accessible in
any block in which they are declared,
thus overriding scope rules for internal
data.

(c) EXTERNAL data items must be unique in
the first six (6) characters since the
linkage editing format requires trun
cation from the seventh character on.

(All Information Contained Herein is Proprietary to Digital Research.)

126

(d) All EXTERNAL data areas must be declared
with the same length in all modules in
which they appear.

(e) Av 0 id th e use 0 f "? II S ym bo 1 sin va ria b 1 e
name s, since t h' i s c h a r a c te r is used as
a prefix on PL/I-80 library names.

(f) One module, at most, can initialize an
EXTEHNAL data item re ferenced hy several
modul es.

Similar to the label data described in Section 6, entry constants and
entry variables are data items whiph identify procedure names and
descr ibe their pa rameter value s. En try constan ts cor re spond to
procedures defined within the program (internal procedures) or at
1 ink-time (ex te rnal pro cedures) • Entry va r iables ta ke on en try
constant values during program execution, using either a direct
assignment statement or an actual to formai parameter assignment
implicit in a subroutine call. A procedure may be invoked through a
call to an entry constant, or indirectly by callinq a procedure
constant value held by an entry variable. Similar to label variables,
entry variables may be subscripted. The program listing shown in
Figure 11-1 provides examples of entry constants and entry variables.
This particular program contains four entry constants: the main
program, labelled "call," the external procedure "gil declared on line
5, the "sin" function which is a part of the pL/I library, and the
internal function "h" beginning on line 20. One entry variable is
dec 1 a r ed 0 n 1 i n e 4 , call e d II f II wh i c h con ta ins t h r ee e 1 em en t s • Th e
individual subscr ipt elements are initial ized, startinq on 1 ine g, to

I the constants sin, g, and h. The DO-group prompts the console for a
I value to send to each function and, in the middle of line lfi, each

function is called exactly one time with the invocation

f (i) (x)

where the first parenthesis pair defines the subscript, and the second
encloses the list of actual arguments. It should be noted that the
declaration of entry constants and entry variables is similar to file
constants and file var iables: all fonnal parameters declared as type
ENTRY are automatically assumed to be entry 'variables. In all other
cases, an entry is constant unless it is declared with the VARIABLE
keyword. Rules (b), (c), and (e) above apply to external procedure
d ecl ar ati ons. In add i t ion, yo u mus t be careful to dec lar e each formal
parameter to exactly match the actual procedure declaration, and
ensure that the RETURNS attribute exactly matches the form returned
for function subroutines.

(All Information Contained Herein is Proprietary tD Digital Research.)

127

PL/I-80 V1.0, COMPILATION OF: CALL

L: List Source Prog ram

NO ERROR (S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: CALL

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6 c 0006
7 c 0006
8 c 0006
9 c 0006

10 c 000C
11 c 0015
12 c 001E
13 c 001E
14 c 0030
15 c 004C
16 c 0067
1 7 c 00 BD
18 c 00 BD
19 c 00C0
20 c 00C0
21 c 00C0
22 e 00C0
23 e 00C7
24 c 00DB
25 a 00DB

CODE SIZE =
DATA AREA =

call:

00D8
0023

proc options(main);
dc1

dc1

f (3) entry (float) returns (float),variable,
9 entry (float) returns (float);

i fixed, x float;

f(l) = sin;
f(2) = g;
f(3) = h;

do i = 1 to 3;
pu t ski p 1 i st (I Type x I);
get list(x);
pu t 1 i s t (i f (I , i , I) = I , f (i) (x)) ;
end;

stop;

h:
proc (x) returns (float);
dcl x float;
ret ur n (2 * x + 1);
end hi

end calli

Figure 11-1. Use of ENTRY Variables and Constants.

(All Information Contained Herein is proprietary to Digital Research.)

128

11.2. An Example 0 f Separate Compilation.

This section contains a complete example of separate compilation·
and linkage editing. In particular, the programs of Figures 11-2 and
11-3 together form a module that interacts with the console to produce
solutions to systems of simultaneous equations. Consider the
following system of three equations in three unknowns:

a b + c = 2
a + b c = 0

2a b = 0

The values a = 1 , b = 2 , and c = 3 yield a solution to this system of
e qua t ion s sin c e

1 2 + 3 = 2
1 + 2 3 = 0

2 *1 2 = 0

The listing shown in Figure 11-2 interacts with the console to
read the coefficients and the solution vectors for the systems of
equations, while the listing of Figure 11-3 shows the compilation of
the separate subroutine II invert·· which performs the matrix inversion
that is used to solve the system of equations. The essential
difference between these two programs is found in the procedure
heading: the "inv" procedure is the main program, as defined by the
OP'rIONS(MAIN), while the "invert" program is a subroutine which is
called by the main program. Referring to Figure 11-2, the declaration
starting on 1 ine 16 defines the external entry constant" invert" which
is called from the main program on line 46. The parameters for the
invert subroutine are declared on 1 ine 18 as a matrix of "maxrow" by
"maxcol" floating point numbers, where maxrow and maxcol are actually
the literal constants given on lines 7 and 8. The invert subroutine
is defined with two additional fixed(f;) paramet'ers, but does not
ret ur n a val ue •

The invert procedure, shown in Figure 11-3, hAS three formal
parameters, called a, r, and c, as defined on line 2 and declared in
lines 7 and 8. It should be noted that the actual literal values of
maxrow and maxcol, corresponding to the lar.gest possible row and
col u m n val u e , are t a ken from ani n c 1 u de f i 1 e, as i n die ate d by th e ., + "
symbols following the line number at the left of both listings.

Following compilation of these two programs, the linking step is
invoked by typing

link invert.com=invertl,invert2

which first combines these two modules, selects the necessary
subroutines from the PL/I-80 library, and stores the resulting machine
code into the "invert.com" file. Execution is started as shown in
Figure .11 4.

I nth iss am pIe i n t era c t ion, th e U i d en tit yil mat r i xis fir s t

(All Information Contained Herein is proprietary to Digital Research.)

129

entered in order to test the basic operations. The inverse matrix
produced for this input value is also the identity matrix. The system
of equations shown above is then entered, along with two solution
vectors. The output values for this system are shown under
"Solutions:" and match the values shown above. The second set of
solutions corresponds to the second solution vector input. An invalid
input matrix size is then tested, followed by termination of the
progr~n as sensed by a zero row size.

This completes the examples of this applications
Additional information can be obtained from the accompanying
manuals, as well as the LINK-80 manual.

guide.
PL/I-80

CAll Information Contained Herein is P'roprietary to Digital Research.)

130

PL/I-80 Vl.0, COMPILATION OF: INVERTl

L: List Source Program

%include 'matsize.lib';
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

P LII -8 0 Vl.0, CaMPI LA'rION OF: INVERTI

1 a 0000
2 a 0006
3 c 0006
4 c 0006
5 c 0006
6+c 0006
7 +c 0006
8+c 0006
9 c 0006

10 c 0006
11 c 0006
12 c 0006
13 c 0006
14 c 0006
15 c 0006
16 c 0006
17 c 0006
18 c 0006
19 c 0006
20 c 0006
21 c 001D
22 c 001D
23 c 0039
24 c 0052
25 c 0059

inv:
procedure
%replace

true
false

%replace

options(main);

by 'l'b,

by '''' b;

dcl

dcl

dcl

dcl

max row by 26,
maxcol by 40;

mat(maxrow,maxcol) float (24);

(i,j,n,m) fixed(6);

var char(26) static initial
('abcdefghijklmnopqrstuvwxyz');

invert entry
((maxrow,maxcol) float(24), fixed(6), fixed(6»;

put list{'Solution of Simultaneous Equations');
do \vhile{true);
pu t ski p (2) 1 is t ('Ty pe .r ows, col umn s : ');
get listen);
if n = 0 then

stop;

Figure 11-2a. Listing of the Matrix Inversion Main Program.

(All Information Contained Herein is proprietary to Digital Research.)

131

26 c 005C
27 c 005C
28 c 0075
29 c 0087
30 c 00A6
31 c 00A6
32 c 00A6
33 c 00C2
34 c 00D3
35 c 00E8
36 c 0119
37 c 0173
38 c 0173
39 c 0173
40 c 018F
41 c 01A0
42 c 0187
43 c 01F3
44 c 024D
45 c 024D
46 c 024D
47 c 0253
48 c 026F
49 c 0284
50 c 0284
51 c 0314
52 c 0314
53 c 0314
54 c 0314
55 c 0330
56 c 0345
57 c 03AF
58 c 03AF
59 c 03AF
60 c 03AF
61 c 03AF
62 a 03AF end inv;

CODE SIZE = 03AF
DATA AREA = 1120

get 1ist(m);
if n > rnaxrow ! m > rnaxco1 then

else
put skip 1ist('Matrix is Too Large');

do;
put skip 1ist('Type Matrix of Coefficients');
put skip;

do i = 1 to n;
pu t 1 i st (, Row' , i , • : •) ;
qet 1ist((rnat(i,j) do j = 1 to n»;
end;

put skip 1ist('Type Solution Vectors');
put ski p;

do j = n + 1 to m;
put 1 i s t { I Va ria b 1 e' , s ub s t r (va r , j - n , 1) , , : ') ;
ge t 1 i s t ((rna t (i , j) do i = 1 to n»;
end;

call invert{rnat,n,rn);
put skip(2) list{'Solutions:');

do i = 1 to n:
pu t ski p 1 is t (sub s t r (va r , i , 1) , , = I) ;

put edit((mat(i,j) do j = 1 to m-n»
(f(8,2»;

end;

put skip(2) 1ist('Inverse Matrix is');
do i = 1 to n;
put skip edit

end;
end;

end;

{ {ma t (i , j) do j = m- n+ 1 to m»
(x(3) ,6f (8,2) ,skip);

Fig u r e 11-2 b • Lis t i nq 0 f the Mat r ix I nv e r s ion M a in Pro g ram.

(All Information Contained Herein is proprietary to Digital Research.)

132

PL/I-80 V1.0, COMPILATION OF: INVERT2

L: List Source Program

%inc1ude 'matsize.1ib';
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: INVERT2

1 a 0000 invert:
2 a 0000 proc (a,r,c) ;
3+c 0000 % rep1 ace
4+c 000D max row by 26,
5+c 000D maxco 1 by 40;
6 c 000D dc1
7 c 000D (d , a(maxrow,maxcol)) float
8 c 000D (i,j,k,l,r,c) fixed (6) ;
9 c 000D do i = 1 to r ;

10 c 0023 d = a(i,l);
11 c 0042 do j = 1 to c - 1 ;
12 c 0059 a(i,j) = a(i,j+l)/d;
13 c 0082 end;
14 c 0082 a(i,c) = l/d;
15 c 00E4 do k = 1 to r;
16 c 00FA if k = i then
17 c 0104 do;
18 c 0104 d = a(k,l);
19 c 0123 do 1 = 1 to c - 1 ;
20 c 013A a(k,l) = a(k,l+l) -
21 c 0189 end;
22 c 01B9 a(k,c) = - a(i,c) * d;
23 c 021C end;
24 c " 21C end;
25 c 021C end;
26 a 021C end invert;

CODE SIZE = 021C
DATA AREA = 0016

(24) ,

a(i,l) * d;

Figure 11-3. Listing of the Matrix Inversion Subroutine.

(All Information Contained Herein is proprietary to Digital Research.)

133

A>b:invert
Solution of Simultaneous Equations

Type rows, columns: 3,3

Type Matrix of Coefficients
Row 1:1 0 0
Row 2:0 1 0
Row 3:0 0 1

Type Solution Vectors

Soluti ons:
a =
b =
c =
Inverse Matrix is

1.00 0.00
0.00 1.00
0.00 0.00

Type rows, columns: 3,5

Type Matrix of Coefficients
Row 1:1 -1 1
Row 2:1 1 -1
Row 3:2 -1 0

Type Solution Vectors
Variable a:2 0 0
Variable b :3.5 1 -1

Solutions:
a = 1.~0
b = 2.00
c = 3.00

2.25
5.50
6.75

Inverse Matrix 15

0.50 0.50
1.00 1.00
1.50 0.50

0.00
-1.00
-1.00

Type rows, columns: 41,0

Matrix is Too Large

~ype rows, columns: 0

End of Execution

Fi gu r e 11-4 • I n t era c t ion wit h the Ma t r i x In ve r s ion P r og ram.

(All Information Contained Herein is Proprietary to Digital Research.)

134

12. COMMERCIAL PROCESSING USING PL/I-SO.

The purpose of this section is to familiarize you with some
techniques used in PL/I-SO in processing commercial data. In
~articular, the various decimal arithmetic o~erations are described in
some detail. Conversion between Fixed Decimal and Floating Point
Binary is examined, includinq the use of the ftc (float to character)
library function. The discussion also includes exam~les of ~icture
formatted output, along with a presentation of precision and scale
evaluation when using the four basic arithmetic functions with decimal
operands. Four programs are presented which typify the use of decimal
operations in actual applications.

12.1. A Comparison of Decimal and Binary Operations.

We have been taught from childhood to perform arithmetic
operations using base ten arithmetic where the permissible digits
range from 0 through 9. Further, aoplication languages such as Basic,
Fortran, Cobol, and PL/I allow us to write programs which process base
ten constants and data items in simole and readable forms.
Internally, however, computers generaliy perform the arithmetic
operations using either binary or decimal numbers. Binary numbers are
more "natural" for internal computer arithmetic since the l~s and O~s
can be directly processed by the-'on-off electronic switches found in
arithmetic processors. Because our programs generally process decimal
values, it becomes necessary to convert into a binary form on in~ut
and back to a decimal form on output. As we shall see below, this
conversion can introduce truncation errors which are unacceotable in
commercial processinq. Thus, decimal arithmetic is often required in
order to avoid the propagation of errors throughout computations.

In most languages, the programmer has no control over the
internal format used for numeric ~rocessing. In fact, two of the most
popular Basic intero.reters for microprocessors differ primarily in the
internal number formats. One uses floating point binary, while the
other performs calculations using decimal arithmetic. Pascal language
translators generally tise floating and fixed point binary formats with
implementation-defined preclslon, while Fortran always performs
arithmetic using floating or fixed point binary. Cobol, on the other
hand, was designed for use in commercial a~plications where exact
dollars and cents must be maintained throughout como.utations, and thus
data items are processed using decimal arithmetic.

PL/I-SO gives the programmer the choice between representations
so that each program can be tailored to the exact needs of the
particular application. Fixed Decimal data items are used in PL/I-SO
to perform commercial functions, while Float Binary items are used for
scientific ~rocessing where computation s~eed is the most important
factor. The two programs shown below illustrate the essential
difference between the two computational forms:

(All Information Contained Herein is ~roprietary to Diqital Research.)

135

dec comp:
-proc or;>tions" (main) ;
dcl

i fixed,
t decimal(7,2);

t = 0;
do i = 1 to 10nOO;
t = t + 3.10;
end;

put edit(t) (f(10,2»;
end decimal_comp;

bin comp:
-proc or;>tions(main);
dcl

i fixed,
t float(24);

t = 0;
do i = 1 to 10000:
t = t + 3.10:
end:

put edit(t) (f(10,2»:
end bin_comr;>;

The two programs perform the simple function of summing the value 3.10
a total of 10,000 times. The only difference between these r;>rograms
is that "dec comp" comr;>utes the result using a Fixed Decimal variable,
while. "bin comp" performs the computation using Float Binary.
Dec comp produces the correct result 31000.00, while bin comp oroduces
the- ar;>pr6ximation 30997.30. The difference is due t~ th~ inherent
truncation which occurs when certain decimal constants, such as 3.10,
are converted to their binary approximations. Since no conversion
occurs when Fixed Decimal variables are used, dec como produces an
exact result:.

These two programs can be considered simr;>lifications of a more
qeneral situation: suppose Chase-Manhattan Bank has processed 10,000
deposits of $3.10 during a particular day. Using a. program based upon
Floating Binary, there would be an extra $2.70 unaccounted for at the
end of the day (there have been cases where crooked systems
programmers have been caught redirecting the "excess cash" produced by
such errors into their own accounts!). This is due to the· fact that
.10 cannot be represented as a finite binary fractional expansion.
That is, 3.10 is actuallY aporoximated as 3.099999E+00 in Float Binary
form. Each addition pror;>agates a small error into the sum, resulting
in an incorrect total. In scientific applications, the inherent
truncation errors are often insignificant and thus ignored. In
commercial applications such inherent errors are unacceptable.

It should be noted that th~re are situations where decimal
arithmetic also produces truncation errors which can propagate
throughout computations. The expression 1/3, for example, cannot be
represented as a finite decimal fraction, and thus is approximated as

0.3333333 •..

to the maximum possible precision. However, due to our life-long
experience with decimal comr;>utations, we expect such errors to occur
and adjust our programming to account for the situation. In fact, we
know that such errors will only occur when explicit division
operations take pla6e. We exr;>ect that 1/10 will be represented
exactly as .10, and not just a close ar;>proximation. But herein lies
the difficulty with Float Binary rer;>resentations: some decimal
constants which can be expressed as finite fractional ex?ansions in
Fixed Decimal cannot be written as finite binary fractions and thus
are necessarily truncated during conversion to Float Binary form.

(All Information Contained Herein is :Proprietary to Digital Re$earch.)

L36

With this introduction, we will now proceed to explain exactly
how Fixed Decimal numbers are re~resented and manipulated.

12.2. Decimal Computations in PL/I-SO.

Fixed Decimal arithmetic can be performed in PL/I-SO orograms.
There are both advantages and disadvantaqes in selecting Fixed Decimal
arithmetic when contrasted to Floating Point formats. First, Fixed
Decimal arithmetic guarantees that there will be no loss of
significant digits. That is, all digits are considered significant in
a computation so that multiplication, for example, will not truncate
digits in the least-significant ~ositions. Further, Fixed Decimal
arithmetic precludes the necessity for exponent manipulation, and thus
the operations are relatively fast when com~ared to alternative
decimal arithmetic formats. The disadvantage, however, is that since
all digits are considered significant, the programmer must keep track
of the range of values that arithmetic operands can take on. The
paragraphs which follow provide the nebessary background to properly
program using Fixed Decimal formats.

Decimal variables and constants in PL/I-80 have both "~recision"
and "scale." Precision denotes the number of digits in the variable
or constant, while scale defines the number of digits in the
fractional ?art. For Fixed ,Decimal variables and constants, the
precision must not exceed 15 and the scale must not exceed the
precision. The precision and scale of a PL/I-80 variable is defined
In the variable~~ declaration:

declare x fixed decimal(lO,3) i

while the precision and scale of a constant are derived by the
compiler by counting the number of digits in the constant, and the
number of digits following the decimal point. The constant

-324.76

for example, has precision 5 and scale 2. Internally, Fixed Decimal
variables and constants are stored as Binary Coded Decimal (BCD)
pairs, where each BCD digit occupies either the high or low order 4-
bits of each byte. The most significant BCD digit defines the sign of
the number or constant, where 0 denotes a positive number, and 9
defines a negative number in lO~s complement form, as described below.
Since numbers are always stored into 8-bit byte locations, there may
be an extra "pad" digit at the end of the number to align to an even
byte boundary. The number 83.62, for example, is stored as

108136120 I

where each digit represents a 4-bit "half byte" oosition in the 8-bit

(All Information Contained Herein is Proprietarv to Digital Research.)

137

value. The leading BCD pair is stored lowest in memory.

Negative numbers are stored in lO~s complement form to simplify
arithmetic operations. A 10~s comolement number is similar to a 2~s
complement binary re~resentation, exceo.t the complement value of the
digit x is 9-x. To derive the 10~s complement value of a number, form
the complement of each digit (by subtracting the digit from 9), and
add I to the final result. Thus, the 10~s complement of -2 is formed
as follows:

9 - 2 + I = 7 + I = 8

The sign digit is attached to this number, and internally carried as
the single-byte value

198 I

Note, 'forexamole, that you can add -2 and +3 as follows

98 + 03 = 101

The carry-out beyond the sign digit is ignored, and the correct result
01 is produced through the addition. For this reason, addition and
subtraction in PL/I-80 are equivalent: in the case of subtraction,
the subtrahend is first complemented and the addition operation is
applied. In all cases, numeric values are sign-extended to 15 digits
before arithmetic ooerations are applied. For convenience of
notation, negative numbers will be show~-with a leading "-" sign, with
the assumption that the underlying representation is lO~s complement
fo~m. Thus, the number shown above will be written as

1-2 ,

It should be noted that there is no need to explicitly store the
decimal position in memory, since the precision and scale for each
variable and constant is known by the compiler. Before each
arithmetic operation, the compiled code causes the necessary alignment
of the operands. In later examples, however, a decimal point position
is often shown in order to more easily determine the effect of
alignment. The number -324.76 may be shown, for examole, as

1-3 , 2 4 176 ,

When this value is prepared for arithmetic ~rocessinq, it is first
loaded into an 8-byte stack frame, consisting of 15 decimal digits
with a high-order sign. In this case, the -324.76 is shown as

(All Information Contained Herein is Proorietary to Digital Research.)

138

- 0 0 0 0 0 0 0 0 0 0 3 2 4 7 6
A

A convenient model for discussing the various arithmetic
operations is to visualize a lS-digit mechanical or electronic
calc~lator with a hand-movable decimal point. At the beginning of
each operation, you must properly line-u~ the operands for the
arithmetic operation and, upon com~letion of the o~eration, you must
decide where the resulting decimal point appears. Actually, the
compiler performs the alignment and accounts for the decimal ~oint
position, but it~s useful for you to imagine what is taking place so
that you can avoid overflow or underflow conditions. In some cases,
you may wish to force a preclslon and/or sc~le change durinq the
computation using the DECIMAL or DIVIDE built-in functions. Examples
of such functions are given in the sam~le programs discussed in the
sections which follow.

First, we~ll examine each of the arithmetic functions in order
to determine the alignment, precision, and scale which occurs in each
case.

12.3. Addition and Subtraction.

As mentioned above, addition and subtraction are functionally
equivalent in PL/I~80, since subtraction is accomplished bv forming
the lO~s complement of the subtrahend and then performinq an addition.
Given two numbers x and y with precision and scale (~,q) and (r,s),
respectively, the addition operation proceeds as follows. First, the
two operands are loaded to the stack and aligned. Alignment takes
place by shiftinq the operand with the smaller scale to the left until
the decimal positions are the same. Given that the scale of x is
greater than the scale of y, y is shifted q-s positions t.o the left,
with zero values introduced in the least siqnficant positions. After
alignment, y has ~recision r+(q-s) and scale q. (A Fixed Overflow
condition is signalled if significant digits are shifted into the sign
position during the alignment process.)

In order to provide a specific example, suppose x = 31465.2437
and y = 9343.412 so that x has precision p = 9 and scale q = 4, while
y has precision r = 7 and scale s = 3. Before aliqnment, the numbers
appear as

(All Information Contained Herein is ?ro~rietary to Digital Research.)

139

1<----- p2r<-;:4-~!
x = + 0 0 0 0 0 0 314 6 524 3 7

y = + 0 0 0 000 0 0 9 3 4 3 4 1 2 I ,. ,

!<--- r=~<:::~!
The value y is aligned with x by shifting q-s = 4-3 = 1 ~ositions to
the left, producing

1<----- 0=9 ----->1
, . 1< q=4 > I

x = + 0 000 0 0 314 6 524 3 7

y = + 0 0 0 0 0 0 0 9 3 4 3 4 120
1 I

I 1< q > I
< r+(q-s) = 8 >1

Note that the number of digits in the whole part of x is o-q, while
the whole part of v contains r-s diqits:

1< T?-q=5 >1
31465

9 :3 4 3
l<r-s=4>1

so the sum must contain p-q=5 digits in the whole ~art:

31465
+ 934 3

4.0 8 0 8
1< l?-q=5 >1

Note, however, that sufficiently large values could produce an
overflow, requiring one extra digit in the whole part:

9 999 9
+ 9 999 9

1 9 999 8
1«l?-q)+1=6>1

Thus, the total number of digits in the sum of x and y is the number
of digits in the whole ~art, (p-q)+1=6, plus the number of digits in
the fraction, given by q, resulting in a precision of

(~-q)+l + q = p + I

Given two values x and y of arbitrary precision and scale, we
can use the specific case shown above to derive the general form of
the resulting precision and scale. First, the scale must be the

(All Information Contained Herein is ProprietarY to Digital Research.)

140

greater of q and s, given by

max (q, s)

and thus, the resulting ?recision must have max(q,s) fractional
digits. Second, the whole part x contains ?-q digits, while the whole
part of y contains r-s digits. The result contains the larger of p-q
and r-s digits, plus the fractional digits, along with one overflow
digit, or a total of

max (o-q,r-s) + max (q,s) + 1

digit positions. Since the precision cannot exceed 15 digits in PL/I-
80, the resulting precision must be

min(l5,max(p-q,r-s)+max(q,s)+1)

digits. Written as a pair, the precision and scale of the resulting
addition or subtraction is

(min(15,max(p-q,r-s)+max(q,s)+1), max(q,s))

Using the above example,

1<----- 0=9 ----->1
, . ,< q=4 > I

x = + 0 0 0 000 314 6 524 3 7

y = + 0 0 000 009 3 4 3 4 120

x + y =

,
1< q > 1

< r+(q-s) = 8 >1

+ 0 000 0 0 4 0 8 0 8 6 557
1 1

1<------ 10 ~~=-~-=~I
the precision (10,4) shown in the diagram is derived usinq the
expression

(min(15,max(9-4,7-3)+max(4,3)+1), max(4,3))

or

(min(15,max{5,4)+4+l), 4) = (min(15,10) ,4) = (10,4)

12.4. Multiplication.

Evaluation of precision and scale for the result of
multiplication is somewhat simpler than addition and subtraction since

(All Information Contained Herein is Proprietary to Diqital Research.)

141

no decimal point alignment is required before the multiolication is
applied. The two operands x and V with precision and scale (p,q) and
(r,s), respectively, are multiplied digit-by-diqit to produce the
result. Similar to simple hand-calculations, the number of decimal
places in the result is the sum of the scale factors q and s. The
number of digits in the result is the sum of the precisions of the two
operands. To conform to the PL/I standard, however, one additional
digit position is included in the final preclslon. Thus, the
precision and scale of the result of multiplication is given by

(min(15,p+r+l) ,q+s)

Suppose, for example, that x = 924.5 and y = 862.33, yielding the
precision and scale values (4,1) and (5,2):

x = + 0 0 0 0 0 0 0 0 0 0 0 9 245

y = + 0 000 0 0 0 0 0 086 233
"

The product of the digits of x and yare shown below with the
resulting precision and scale:

x * y = + 0 0 0 0 0 079 7 224 0 8 5
I

<------- 10 -~~-:-~I
where the precision is com~uted as

(min(15,4+5+l) ,1+2} = (min(15,10) ,3) = (10,3)

The Fixed Overflow condition is signalled if the product
contains more than fifteen significant digits. In the exam~le of the
~revious section, x = 31465.2437 and y = 9343.412. The ~roduct x*v
has ~recision (17,7) with 16 significant digits, resultinq in Fixed
Overflow. In this particular case, the DECIMAL function must be
applied to reduce the number of significant digits in either x or y.
The computation could be carried out as

DECIMAL(x,9,3) * y

which loads the stack with the two values shown below before the
multiplication takes place:

DECIMAL(x,9,3) = + 0 0 0 0 0 0 0 3 1 4 6 5 2 4 3

y = + 0 0 0 0 0 0 0 0 9 3 4 3 4 1 2

The precision and scale of the product is

(All Information Contained Herein is Proprietary to Digital Research.)

142

+ 2 9 399 2 7 2 9 0 291 1 6

I /'.I
1<--- 6 --->!

!<------------ 15 ------------>!
Note that the precision computation p+r+l produces the value 16 which
is then reduced to PL/I-80~s maximum 15 digit precision by

min(lS,p+r+l) = min(lS,16) = 15

Since the precision of com?utations involvinq multiplications can grow
rapidly, it is the res?onsibility of the programmer to ensure that the
precisions of the operands involved will not produce overflow. Again,
precision can be explicitly declared with the variables involved in
the computation, or the DECIMAL function can be applied to reduce the
precision of a tem?orary result.

12.5. Division.

The division operation is the only one of the four basic
arithmetic operations which may produce truncation errors, as
described in Section 12.1. Thus, each division operation produces a
maximum precision value, consisting of 15 decimal digits, with a
resulting scale which de?ends upon the scale values of the two
operands. Assume that x and y have precision (p,q) and (r,s), and
that x is to be divided by y. The division ooeration proceeds as
follows. First, x is shifted to the extreme left bv introducing lS-p
zero values on the right, leaving the dividend in the stack as

1

<------ ? ----->1<-- lS-p -->\
!<-- q -->1

, x x . . . x x 1 0 0 . . 0 !

The decimal point of x is then effectively shifted right by an amount
s to pro?erly align the decimal point in the result, producing the
operands

(All Information Contained Herein is ~roprieta~y to Digital Research.)

143

1<------ 0 ----->1<-- 15-0 -->1
I 1< q-s > <-- lS-p -->1

I x x • • • x x 1 0 0 • ~ 0 1

100 ••• 0 Iyyy •• yyl

The significant digits of x are then continuously divided by the
significant digits of y until 15 decimal digits are generated.
Referring to the above diagram, note that the number of fractional
digits produced by the division is determined by the 9lacement of the
adjusted decimal point in x. The field followinq· the decimal point
contains (q-s) plus (IS-p) positions, yielding the following precision
and scale for the result of the division

(15, (q-s) + (IS-p)) or (15, lS-t;>+q-s)

SU9pose x = 31465.243, and y = 9343.41, yie1dinq precision and
scale values of (8,3) and (6,2), rest;>ectively. ~he value x when
loaded appears as

1<----- 8 ----->1
I 1<-3->1

x = + 0 0 0 0 0 0 0 314 6 5 243
"

The value of x is then shifted to the extreme left and the value of y
is loaded, producing the values

1
<----- 8 ----->1<- 15-8=7 ->!

1<-3->1 1
x = + 3 146 5 2 4 3 0 0 0 0 0 0 0

y = + 0 000 0 0 0 0 0 9 3 4 341
1

1<2>1
<--- 6 --->1

The imaginary decimal t;>oints are shifted to the right bv two positions
in order to properly align the decimal point in the result, producing

(All Information Contained Herein is Proprietary to Digital Research.)

144

1<----- 8 ----I~I<---- 7 ---->1
x = + 3 1 4 6 5 2 4 3 0 0 0 0 0 0 0

y = + 0 000 0 0 0 0 0 9 3 4 3 4 1

1<--- 6 --->1
The significant digits of x are divided by the six significant digits
of y, and the result is

1
<----------- 15 ------------>1

1<-- 1+7=8 -->1
x/y = + 0 0 0 0 0 0 0 3 3 6 7 6 4 0 1

In this case, the precision and scale of the result is given by

(15, (l5-T?+q-s) = (15,15-8+3-2) = (15,8)

The most important consideration in decimal division is to
ensure that you are generating enough digits in the fractional oart
for the com~utation you are performing. Fractional digits are
produced in two ways. First, the zero padding which occurs when the
dividend is aligned T?rovides l5-p fractional digits, so that divi~end
values with small precision generate more fractional digits. Second,
if q is greater than s, then (q-s) additional fractional digits are
generated as shown above. If, on the other hand, the dividend
contains fewer fractional digits than the divisor then q is less than
s, and (s-q) fractional digits are consumed. The simole case of q = s
occurs quite often. In this ?articu1ar situation, the number of
fractional digits depends entirely. u~on the ?recision of the divisor,
and results in l5-p fractional digits.

You may also wish to truncate or extend the result with zeroes
using the DIVIDE built-in function during a ~articular comoutation
(see the PL/I-80 Language Manual). The form is

DIVIDE (x,y,p,q)

where p and q are literal constants, can aooear as an ex?ression or
sUbexpression in an arithmetic computation, and has the same effect as
the statement

DECIMAL (x/y,o,q)

As above, the value x is divided by y, but the precision and scale
values are forced (p,q). Note that the computation is carried out as
described above, and the resulting value is then shifted by the
appropriate number of digits in order to obtain the desired orecision
and scale.

(All Information Contained Herein is Proprietary to Diqital Research.)

145

12.6. Conversion Between Fixed Decimal and Float Binary.

It is often useful to convert Fixed Decimal values to and from a
Float Binary representation. In PL/I-SO, this conversion is
accom9lished by first converting to character format, then to either
Fixed Decimal or Float Binary. Although conversion from Fixed
Decimal, then to Character, and finally to Float Binary is orovid~d
directly in the language, a special library function, call "ftc," is
provided for conversion from Float Binary to Character format. This
particular function is useful in other applications, and is described
fully in this section. '

Consider the following program as an exam9le of conversion
between data formats:

conv:

d
f
f
d

proc options (main) ~
dcl

dcl

=
=
=
=

ftc entry (float)
returns (char(17) var);

d fixed decimal(S,2),
f float binary;

-123456.7S;
char(c)~
O.3l4159265el;
ftc (f) ;

end conv;

In this examole, the Fixed Decimal value d is first initialized to
123456.7S. Next, the CHAR built-in function is aoo1ied to the Fixed
Decimal value to 9roduce a character string constant

""b-123456.7S""

where "b" is a blank character. (Recall from the PL/I-SO Language
Manual that conversion from Fixed Decimal to character produces a
string of length 0+3, consisting of leadinq blanks, a sign 'position,
and digits of the number itself.) The store ogetation following the
character conversion effectively converts from Fixed Decimal to Float
Binary with 90ssible truncation errors due to conversion to binarv, as
discussed 9reviously. Next, the value of Pi is stored into the Float
Binary value f. Normally, an assignment from f into d causes
truncation of the fractional part, since the PL/I standard first
requires conversion to Fixed Binary. Instead, the ftc function is
applied to f to 9roduce the character string variable of length 17:

""b3.14159200000000""

where the blank character, represented by b, is inserted if the number
is positive, and "-" is included if the value is ne~ative. The
subsequent store ooeration into d produces a truncated value of 3.14,
due to d""s declared scale value of two decimal places. It should ~e
noted that Float Binary reoresentation allows aporoximately 7-1/2
significant decimal digits, and thus truncation errors may occur as

(All Information Contained Herein is Pro~rietary to Diqital Research.)

146

the conversions take place.

Additional examples of conversion between Fixed Decimal and
Float Binary are given in the programs described below.

12.7. A Simple Loan Payment Schedule.

The first example of commercial processing is found in Figure
12-1. This program computes a loan payment schedule using three input
values corresponding to the loan principal (P), the yearly interest
rate (i), and 'monthly payment (PMT). Each month, the remaining
principal is computed as

P + i * P

and is then reduced by the payment amount, producing a new princioal
for the next month:

P = (P + i * P) - PMT

The program iterates through the statements from line 18 through line
31 until the principal is reduced to zero, and the loan is comoletely
paid off. .

We assume in this program that the principal does not exceed
$999,999,999.99, and thus the declaration on line 6 defines P as a
Fixed Decimal variable with precision 11 and scale 2. Further, we
shall assume that the oayment does not exceed $9,9Q9.99, so PMT is
declared with precision 6 and scale 2. Finallv, the interest rate is
defined with the Fixed Decimal(4,2) attribute allowinq numbers as
large as 99.99%. The two variables "m" and "V" correspond to the
month and year, beginning at the first month of the first year.

The initial values are read between lines 10 and 15. Note that
for this example, no range checking is oerformed and thus negative
values are acceptable, and payment values can be orocessed which would
never payoff the loan. These checks must be made, of course, to be
useful in an application environment.

On each monthly iteration, the month is incremented
possible overflow past the 12th month which changes the year
(lines 19 through 24). The current principal P is disolayed on
25, and the monthly interest is added on the followinq line.
computation on line 26 is evaluated as £ollows:

with
value
line

The

(All Information Contained Herein is Proorietary to Digital Research.)

147

1 a
2 a
3 c
4 c
5 c
6 c
7 c
8 e
9 e

10 e
11 e
12 e
13 c
14 e
15 e
16 e
17 e
18 e
19 e
20 c
21 e
22 e
23 e
24 e
25 c
26 e
27 e
28 e
29 e
30 c
31 e
32 e
33 a

0000
0006
0006
0006
0006
0006
0006
0006
0006
0006
0022
0041
0058
0077
008E
OOAD
00B3
00B6
OOCC
OODF
OODF
00E6
0100
0100
0114
0142
0182
0198
01A8
01C6
01E7
01E7
01E7

pmt:
proc options (main) ;
del

m fixed binary,
y fixed binary,
P fixed deeimal(ll,2),
PMT fixed decimal(6,2),
i fixed deeimal(4,2);
do while("l.#b);
put skip list("Principal .#);
get list(P);
put list("Interest ,#);
get list (i);
put list('#payment .#);
get list (PMT) ;
m = 0;
y = 0;

end;
end prot;

do while (P > 0);
if mod(m,12) = 0 then

do;
v = v + 1;
~ut skip list(.#Year.#,y);
end;

m = m + 1;
put ski? list(m,p);
P = P + round (i * P / 1200, 2);
if P < PMT then

PMT = P;
out list (PMT) ;
P = P - PMT;
end;

Figure 12.1. Simple Loan Payment Program Part A.

(All Information Contained Herein is Pro~rietary to Digital Research.)

148

B>pmta

Principal 500
Interest 14
Payment 22.10

Year 1
1 500.00 22.10
2 483.73 22.10
3 467.27 22.1.0
4 450.62 22.10
5 433.78 22.10
6 416.74 22.10
7 399.50 22.10
8 382.06 22.10
9 364.42 22.10

10 346.57 22.10
11 328.51 22.10
12 310.24 22.10

Year 2
13 291.76 22.10
14 273.06 22.10
15 254.15 22.10
16 235.02 22.10
17 215.66 22.10
18 196.08 22.10
19 176.27 22.10
20 156.23 22.10
21 135.95 22.10
22 115.44 22.10
23 94.69 22.10
24 73.69 22.10

Year 3
25 52.45 22.10
26 30.96 22.10
27 9.22 9.33

Principal AC

Figure 12.1. Simple Loan Payment Program Part B.

(All Information Contained Herein is Proorietary to Diqital Research.)

149

i
P

i * P
1200

(i * P)/1200

has precision and scale (4,2)
has ~recision and scale (11,2)
results in Fixed Decimal(15,4)
has precision and scale (4,0)
has precision (15,4), since
preci~ion and scale in division
is computed as (15,15-15+4-0)

The division by 1200 is required since the interest rate is expressed
as a percentage (division by 100) over a one year period (division bv
12). The intermediate result is ROUNDed in the second decimal place
'(cents position), and added to the principal. This result becomes the
new principal.

In the last month of payment, it is likely that the remaining
principal is less than the payment. The test on line 27 accounts for
this possibility and, if so, changes the payment to equal the
principal on line 2S. The payment is printed on line 29 and, finally,
the principal is reduced by the payment on line 30 using the
assignment

P = P - PMT

The out~ut from this program is shown following the orogram
listing in Figure 12-1, with an initial loan of $500, interest rate
14%, and ~ayment of $22.10 per month.

l2.S. Ordinary Annuity.

Given the interest rate (i) and two of three values, the annuity
program listed in Figure 12-2 computes either the ?resent value (PV),
payment (PMT), or number of periods (n). This particular ~rogram
illustrates the use of several commercial processing facilities of
PL/I-SO, including a mix of Floating Point and Fixed Decimal
arithmetic, along with picture format out?ut.

Unlike the program of the previous section, the annuity program
computes the unknown value through static formulas, rather than
iteration. The static formulas are given below, assuming the interest
rate is greater than zero. First, the present value is given by:

1

1 n
(1 + i)

PV = PMT
i

and, by transposing the above formula, PMT can be comouted as

(All Information Contained Herein is Proprietary to Digital Research.)

150

1 a 0000
2 a 0006
3 c 0006
4 c 0000
5 c 0000
6 c 0000
7 c 0000
8 c 0000
9 c 0000

10 c 0000
11 c 0000
12 c 0000
13 c 0000
14 c 0000
15 c 0000
16 c 0000
17 c 0000
18 c 002F
19 c 004B
20 c 004B
21 c 004B
22 d 0052
23 e 0055
24 e 0071
25 d 0074
26 d 0074
27 c 0074
28 c 007B
29 c 007B
30 c 0097
31 c 0097
32 c 00B6
33 c OOCD
34 c OOEC
35 c 0103
36 cOllE
37 c 012F
38 c 0146
39 c 015E
40 c 015E
41 c 0190
42 c 01B3
43 c 01B3
44 c 01C9
45 c 01C9
46 c 01C9
47 c 01FD
48 c 022C
49 c 022C
50 c 022C
51 c 022C
52 c 0242
53 c 0242
54 c 0242
55 c 0276

annuity:
proe options (main) :
%rel;)lace

del

del

clear by.#A z .#,
true by .#l.#b;

PMT fixed decimal(7,2),
PV fixed decimal(9,2),
IP fixed decimal(6,6),
x float binary,
yi float binary,
i float binary,
n fixed:

ftc entry (float binary) returns (char{l7) var):

put list (clear,.#AiAiO R 0 I N A R Y ANN U I T y'#):
put skip (2) list

('#AIEnter Known Values, or 0, on Each Iteration.#):

on error
begin;
put skip list(.#AiInvalid Data, Re-enter.#):
go to retry;
end;

retry:
do while (true):
put skio(3) list

(.#AiPresent Value ,#);

get list (PV) ;
put 1ist('#AiPayment .#);
get list(PMT);
put 1ist(.#AiInterest Rate .#):
get 1ist(yi):
i = vi / 1200:
put list(.#AiPay Periods .#):
get 1ist(n);

if PV = 0 1 PMT = 0 then
x = 1 - l/(l+i)**n:

if PV = 0 then
do;
/* com~ute oresent value */
PV = PMT * dec(ftc(x/i) ,15,6);
put edit(.#AiPresent Value is '#,PV)

(a,p.#S,$$$,$$SV.99'#) :
end:

if PMT = 0 then
do;
/* com~ute oavrnent */
PMT = PV * dee(ftc(i/x) ,15(8);
put edit('#AiPayment is ',PMT)

Figure 12.2. Ordinary Annuity Program Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

151

56 c 02A5
57 c 02A5
58 c 02A5
59 c 02A5
60 c 02AE
61 c 02AE
62 c 02AE
63 c 02C1
64 c 02EF
65 c 032C
66 c 0362
67 c 0362
68 c 0362
69 a 0362

(a,p~$$,$$$,$$$V.99~) :
end;

if n = 0 then
do;
/* compute number of periods */
IP = ftc(i};
x = char(PV * IP / PMT}:
n = ceil (- log(1-x)/1og(1+i));
put edit(~Ai~,n,~ Pay Periods~)

(a,:O~ZZZ9~ ,a) :
end;

end:
end annuity:

o ,R DIN A R Y ANN U I T Y

Enter Known Values, or 0, on Each Iteration

32000
o
8.75
360

Present Value
Payment
Interest Rate
Pay Periods
Payment is $251.74

,
Present Value ,
Payment 0
Interest Rate
Pay Periods
Payment is

240
$282.78

Present Value 0
Payment
Interest Rate ,
Pay Periods ,
Present Value is

Present Value 32000
Payment
Interest Rate ,
Pay Periods 0

240 Pay Periods

Present Value AC

$31,998.87

Figure 12.2. Ordinary Annuity Proqram Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

152

i
PMT = PV

I

I n
(1 + i)

Finally, n is evaluated using:

i
Log (I - PV))

PMT
n =

Log (1 + i)

The program contains one main loop between lines 28 and 67 where
the present value, payment, and yearly interest are read from the
console. The operator must enter two non-zero values and one zero
value on each iteration. The program then computes the value of the
variable which was entered as zero. The values are retained on each
main loop so that a comma (,) entry can be entered if the value is not
to be changed. The interest rate, expressed as a yearly percentage,
is reduced to a monthly period on line 36, where it is divided by 12 *
100 = 1200. Again, the program does not check for inout values in the
prooer range. The interaction with the annuity program is shown
following the ~roqram listing, with several different values used as
input.

This particular ~rogram uses both Float Binary and Fixed Decimal
computations since there is a mixture of simole decimal arithmetic and
analytic functions. The variables used throughout the program are
defined between lines 7 and 13 as follows. PMT holds the ~ayment
value, and is defined as a Fixed Decimal number as 1arqe as
$99,999.99. Similarly, the present value can be as large as
$99,999,999.99. The variable IP is used to hold the interest rate for
a one month period, represented as a Decimal fraction with six decimal
places. The variables x, yi and i are Float Binary numbers which are
used during the comoutations to approximate decimal numbers with about
7-1/2 decimal places. Finally, the Fixed Binarv variable n holds the
number of payment periods, ranqing from 1 to 32767.

Referrinq to the above formulas, the comoutation

1 - 1 / (1 + i) ** n

occurs in both the computation of PV andPMT. Thus, line 41 stores
this value into the variable x for subsequent use if either PV or PMT
is to be evaluated. Again, it is important to realize that x is only
an approximation to the decimal value given by this exoression. If
the ooerator enters a zero value for PV, then the statements between
lines- 45 and 49 are executed. In this case, PV is comouted usinq the
"ftc" external subroutine, defined on line 15, as

PV = PMT * dec(ftc(x/i) ,15,6)

(All Information Contained Herein is Proorietary to Digital Research.)

153

where xli is a Float Binary computation, and ftc converts the
'resu1ting value from float to character form. Given that xli produces
the value 3.0424S5E+01, for examo1e, ftc (xli) results in 30.42455
which is acceptable for conversion to decimal. The ERROR(I) condition
is signalled by ftc, indicating a conversion error, if the floating
point argument cannot be converted to a IS-digit decimal number. The
"dec" function is a~p1ied to the character string to convert to a
specific precision (15) and scale (6) for the subsequent
mu1ti~lication. How did we decide on this particular value for
precision and scale? First, consider a sim~ler form of this program
which is shown below

dcl
PMT fixed decimal(7,2),
PV fixed decimal(Q,2),
o fixed decimal(u,v) i

PV = PMT * Oi

where we must decide upon the appropriate constant values for u and v.
PV has preC1Slon and scale (9~2) "and thus there must be 7 digits in
the whole part and 2 digits in the fraction. We will generate the
full 7 digits in the whole part if the ?roduct PMT * Q results in any
of the following precision and scale values

(9,2) (10,3) (11,4) (12,5) (13,6) (14,7) (15,8)

since the assignment to PV will truncate any fractional diqits beyond
the second decimal place. Further, since PMT has orecision and scale
(7,2), we can choose (lS,6) as the ?recision and scale of Q to produce

(min(IS,7+lS+l) ,2+6) = (15,8)

as the ?reClSlon and scale resulting from the rules for multiolication
stated ~reviously. In general, given an ex?ression with orecision and
scale values as shown below

a = b
(~,q) (r,s)

* c
(u, v)

where p, q, r, and s are constants, you can set the precision and
scale of c to

u = 15 v = 15 - ? + q - s

which, using the values in the above statement, results in

v = 15 - 9 + 2 - 2 = 8, or (u, v) = (15,6)

as the precision and scale of Q.

Returning to the sample ~rogram in Figure 12-2, the resulting
present value PV is written using a ~icture format with a drifting
dollar sign on line 48.

Alternatively, the ooeratoL could have entered a non-zero

(All Information Contained Herein is Proorietarv to Digital Research.)

154

present value with a zero value for the payment (PMT). In this case,
the group beginning at line 57 is entered, and the value of PMT is
computed:

PMT = PV * dec (ftc(i/x) ,15,8):

using essentially the same technique as shown in the ~revious
computation. Again, we must decide the precision and scale of the
second operand in the multiplication. (We are really concerned only
with the value of the scale since the precision can be taken as 15.)
Using the analysis shown above, the form is

a = b * c
(7,2) (9,2) (l5,v)

where

v = 15 - P + q - s = 15 - 7 + 2 - 2 = 8

The computed value of PMT is written with the a picture format on line
56.

The final case occurs when the operator enters non-zero values
for PV and PMT, but sets the number of periods to zero. When this
occurs, the group beginning on line 60 is executed to compute n.
First, the interest for a monthly period is changed from Float Binary
to Fixed Decimal using the assignment on line 62. The next assignment

x = char (PV * IP / PMT)

first computes the ~artia1 Decimal result PV * IP / PMT, then converts
the result to character, and then to Float Binary through the
assignment to x. The intermediate character form is necessary since
otherwise the intermediate result would first be converted to ~ixed
Binary, then to Float Binary, resu1tinq in truncation of the fraction.
(This,sequence of conversions is necessary to maintain compatibility
with the full language.)

First, we~ll analyze the precision and scale of the Decimal
com~utation. The subexpression PV * IP produces the following:

*

I
(15,4)

The computation proceeds with the division, producinq the following
precision and scale:

(All Information Contained Herein is Proprietary to Digital Research.)

155

PV * IP
(15,4)

I

/

I
(15,2)

PMT
(7 ,2)

I

since, according to the precision a~d scale rules for division,

(15,15-p+q-s) = (15,15-15+4-2) = (15,2)

thus providIng two decimal ?laces in the computation. Additional
fractional digits can be generated by a?~lying the decimal function
following the multiply, as shown below

x = char(dec(PV*P, 11,4) / PMT)

which would produce a quotient with precision and scale

(15,15-11+4-02) = (15,6)

The resulting value, x, is used in the expression on line 64 to
compute the number of payment periods. ~he CEIL function is a~plied
to the result so that any partial month becomes a full month in the
payment period analysis. The number of months is written using a
~icture format with leading zero su?pression, and the ?rogram loops
for another set of in?ut values.

12.9. Formatted Loan Payment Schedule.

The program shown in Figure 12-3 is essentially the same as that
presented in Section 12.7, with a more elaborate analysis and display
format. As shown starting on line 116, this 9rogram reads -several
data items:

PV Present Value (Initial Princi9al)
yi Yearly Interest Rate
PMV Monthly Payment
ir Yearly Inflation Rate
sm Starting Month of Payment (1-12)
sy Starting Year of Payment (0-99)
fm Fiscal Month (End of Fiscal Year, 1-12)
dl Dis?lay Level (0-2)

The initial ?rincipal and payment variables are declared as Fixed
Decimal (10,2) on lines 16 and 19, allowing values as large as
$99,999,999.99. The yearly interest rate and yearlY inflation rate
are expressed as percentages as large as 99.99, as defined on lines 24
and 29. The month and year variables, sm, sy, and fm are in Fixed
Binary format, and are assumed to properlv re~resent month and year
values. The variable dl defines the amount of information disolayed

(All Information Contained Herein is ProprietarY to Digital Research.)

156

1 a
2 a
3 c
4 c
5 c
6 c
7 c
8 c
9 c

10 c
11 c
12 c
13 c
14 c
15 c
16 c
17 c
18 c
19 c
20 c
21 c
22 c
23 c
24 c
2S c
26 c
27 c
28 c
29 c
30 c
31 c
32 c
33 c
34 c
35 c
36 c
37 c
38 d
39 e
40 e
41 d
42 d
43 c
44 c
45 c
46 c
47 c
48 c
49 c
50 c
51 c
52 c
53 d
54 e
5S e

0000 pmt:
0006 proc options (main) :
0006 %rep1ace
0000 true by ~l~b,
0000 false bv ~O~b.
0000 clear by ~~z~;
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
002F
002F
0037
003A
005F
0062
0062
0062
0069
0085
009F
009F
OOAD
OOCC
ooce
00E6
00E6
OOED
OOFO
010e

dc1

dcl

end bi t (1) ,
m fixed binary,
sm fixed binary,
y fixed binary,
sy fixed binary,
fm fixed binary,
dl fixed binary,
P fixed decimal(10,2),
PV fixed decimal(10,2),
PP fixed decimal(10,2),
PL fixed decimal(10,2),
PMT fixed decimal(10,2),
PMV fixed decimal(10,2),
INT fixed decima1(10,2),
YIN fixed decimal(10,2),
IP fixed decimal(10,2),
yi fixed decimal(4,2),
i fixed decimal (4,2) ,
INF fixed decimal(4,3),
ci fixed decimal(15,14) ,
fi fixed decimal (7,5) ,
ir fixed decimal(4,2):

name char(14) var static init(~$con~),
output file:

o F

on undefinedfile(output)
begin:

PAY MEN T S~);

~ut skip 1ist(~~i~icannot write to~,name);
go to open output;
end; -

open output:
put skip(2) list{~Ai~iOutput File Name ~);
get list(name) i

if name = ~$con~ then
o~en file (output) title(~$con') orint paqesize(O);

else
open file (out,<?ut) title (name) printi'

on error
begin;
?ut skip list(~AiAiBad Ingut Data, Retry');
go to retry;

Figure 12.3. Summary of Loan Payments Program Part A.

(All Information Contained Herein is Pro?rietary to Digital Research.)

157

56 d OlOF
57 d OlOF
58 c OlOF
59 c 0116
60 c 0116
61 c 0132
62 c 0132
63 c 0151
64 c 0161
65 c 0178
66 c 0197
67 c 01A7
68 c 01BE
69 c 0100
70 c OlEO
71 c 0204
72 c 0223
73 c 0253
74 c 0263
75 c 027A
76 c 0292
77 c 02A9
78 c 02Cl
79 c 0208
80 c 02FO
81 c 032E
82 c 032E
83 c 032E
84 c 032E
85 c 032E
86 c 0346
87 c 0357
88 c 035E
89 c 0364
90 c 036A
91 c 037A
92 c 038A
93 c 039A
94 c 03A8
95 c 03BA
96 c 03BD
97 c 0303
98 c 0308
99 c 0408

100 c 0423
101 c 0433
102 c 044E
103 c 0464
104 c 0474
105 c 048F
106 c 04B5
107 c 04CA
108 c 04EA
109 c 0520
110 c 0520

end;

retry:
do while(true) ~
put skip (2)

list(~AiAiPrinci~al

get list (PV) ;
P = PV;
put list(~AiAiInterest
get list(yi) ~
i = yi;
put list(~AiAiPayment
get list (PMV) ;
PMT = PMV;
put 1ist(~AiAi%Inflation
get list(ir);
fi = 1 + ir/1200i
ci = 1.00:
put list(~AiAiStarting Month
get list(sm);
put list(~AiAiStarting Year
get list(sy);
~ut list(~AiAiFiscal Month
get list(fm) ~
put edit(~AiAiOisplay Level

~AiAiYr Results: 0 ~
~AiAiYr Interest: 1 ~,

~AiAiAll Values: 2 ~)

(ski~,a) ~
get list(dl);
if dl < 0 I dl > 2 then

signal error;
m = smi
y = sy;
IP = 0;
PP = O~
YIN = O~
if name A= ~$con~ then

?ut file (output) page;
call header();

do while (P > 0);
end = false~

~) ~

~) i

~) ;

~) ;

INT = round (i * P / 1200, 2);
IP = IP + INT;
PL = Pi
P = P + INTi
if P < PMT then

PMT = P;
P = P - PMTi
PP = PP + (PL - P) ;
INF = ci;
ci = ci / fi;
if P = 0 , dl > I I m = fm then

do;
put file (output) ski?

Figure 12.3. Summary of Loan Payments Program Part B.

(All Information Contained Herein is Pro~rietary to Diqital Research.)

158

11 c 055B
112 c 055B
113 c 0601
114 c 0601
115 c 0601
116 c 061E
117 c 0621
118 c 0628
119 c 0634
120 c 0634
121 c 063A
122 c 0641
123 c 0640
124 c 0656
125 c 0656
126 c 0656
127 c 065F
128 c 0665
129 c 0665
130 c 066C
131 c 0672
132 c 0672
133 c 0672
134 c 0672
135 e 0672
136 e 067F
137 e 067F
138 e 0731
139 e 0731
140 e 0731
141 c 0731
142 c 0731
143 c 0731
144 c 0731
145 e 0731
146 e 0736
147 e 0757
148 c 0768
149 c 0768
150 c 0768
151 c 0768
152 e 0768
153 e 076F
154 e 076F
155 e 076F
156 e 0775
157 e 0781
158 e 0788
159 e 078B
160 e 0804
161 e 0804
162 e 0804
163 c 0808
164 c 0808
165 c 0808

edit('!' ,100*m+y) (a,p'99/99');
call diso1ay(PL * INF, INT * INF,
PMT * INF, PP * INF, IP * INF);
end;

if m = fm & d1 > 0 then
call summary () ;

m = m + 1~
if m > 12 then

do;

end;

m = 1;
y = y + 1;
if y > 99 then

y = 0;
end;

if d1 = 0 then
call 1ine();

else
if ""end then

call summary();
end;

display:
proe (a , b, c , d, e) ;
dc1

put

end

(a, b , c , d , e) fixed dec imal (10, 2) ;
file (outout) edit
'I' '!-';' b '!' 'I'd 'I' 'I') (,a, " ,c, " ,e,
(a,2(2(p~$zz,zzz,zz9v.99',a) ,

p'$zzz,zz9.v99',a)) ;
display;

summary:
proe;
end = true;
call current_year (IP-YIN) ;
YIN = IP;
end summary;

current year:
proc (I) ;
del

yp fixed binary,
I fixed deeimal(10,2);

1"9 = Yi
if fm < 12 then

yp = Y? - 1;
call line () ;
out skio fi1e(outout) edit
~'I','Interest Paid During ,yp,'#_'~~,y, is ~,I,~I'#)
(a,x(15) ,2(a,p'99') ,a,'9'#$$S,S$$,$S9V.99~ ,x(16) ,a);
call line () ;
end current_year;

header:

Figure 12.3. Summary of Loan Payments Program Part C.

(All Information Contained Herein is Proprietary to Diqital Research.)

159

166 c 0808
167 e 0808
168 e 0822
169 e 0825
170 e 0860
171 e 0860
172 e 0860
173 e 0863
174 e 08E3
175 e 08E3
176 e 08E3
177 e 08E6
178 e 0942
179 e 0942
180 e 0942
181 e 0942
182 e 0942
183 e 0942
184 e 0942
185 c 0946
186 c 0946
187 c 0946
188 c 0946
189 e 0946
190 e 0946
191 e 0946
192 e 099E
193 e 099E
194 c 099E
195 a 099E

proc~

put file (output) 1ist(c1ear)i
call 1ine() ~
put file (output) skip edit
~~I~,~L 0 A ~ PAY MEN T SUM MAR Y~/~I~)

(a,x(19» ~
call line();
put file (output) skio edit
(~I~,~Interest Rate~/yi,~%~,~Inflation Rate~,ir,~%~,~I~)

(a,x (15) ,2 (a ,p~b99v. 99~ ,a ,X (6)) ,X (9) ,a) ;
call line () ;
out file(output) skio edit
- (~ I Da tel ~ , .

~ Princioal 'I~'
~Plus Interest~,
~ Payment I ~ I

~Principal Paid'~,
~Interest Paid ,~) (a);

call line();
end header;

line:
proc;
dcl

i fixed bin;
put file (output) skip edit
(~-------~ ,~------------~,

(~ --------------- ~ do i = 1 to 4) (a) i
end line;

end prot;

SUM MAR Y o F

Output File Name ,

Principal
Interest
Payment
%Inflation
Starting Month
Starting Year
Fiscal Month

Display Level

3000
14
144.03
o
11
80
12

Yr Results : 0
Yr Interest: 1
All Values : 2 0

PAY MEN T S

Figure 12.3. Summary of Loan Payments Program Part D.

(All Information Contained Herein is Proprietary to Di~ital Research.)

160

--------~---~---~-------~----I Interest Rate 14.00% Inflation Rate 00.00%

i;;~;-I--;;~~~~~;~---l;~~;--~~~;;;;~'--;;;;;~~--';;~~~~~;~-;~i~I~~~;;;;~-;~:~-1

-~~~:~I~-----~::~~:~~l~--------~~:~~I~----~:::g~l~-----:~~~~:~~i.~-------~~~:~~:
11/821$ 0.251s o.ools 0.251$ 3,000.00Is 456.971

---~-------------

Princioal
Interest
Payment
%Inflation
Starting Month ,
Startinq Year
Fiscal Month

Dist?1ay Level
Yr Results : 0
Yr Interest: 1
All ~Ta1ues : 2 1

LOA N PAY MEN T SUM MAR Y

Interest Rate 14.00% Inflation Rate 00.00%

IDate I Princioal lp1us Interestl Payment IPrincioal PaidlInterest Paid I

II2/80rS 2,890.971$ 33.731$ 144.031$ 219.331S ~8.73!

Interest Paid Durinq ~80-~80 is S68.73

112/811s 1,479.02Is l7.26!S l44.031s 1,647.75Is 368.671

Interest Paid Durinq ~81-~81 is S299.94

111/82!S 0.25!S o.ools 0.251s 3,000.0010:; 456.97 1

Interest Paid Durinq ~82-~82 is S88.30 I

Figure 12.3. Summary of Loan Pavments Program Part s.

(All Information Contained Herein is Proorietarv to Dio_l'tal ~ ~) ~esearC~l .

161

Principal
Interest
Payment
%Inflation
Starting Month ,
Starting Year
Fiscal Month

Display Level
Yr Results : 0
Yr Interest: 1
,All Values : 2 2

-----~~---~~-------------------~---~-
LOA N PAY MEN T S (J M MAR Y

~------~----~--.--
Interest Rate 14.00% Inflation Rate OO.OO~

IDate 1 Princi~al Iplus Inter~stl Payment Iprincioal ?aidlInterest ~aid !

111/801s
112/801s

3,000.00Is
2,890.971$

35.001s
33.731s

144.031S
144.031s

10C).03Is
219.331s

35.001
68.73'

--~------------

1

01/811s
,02/81Is
103/811s
104/811$
105/8lls
06/811$
07/81'S
08/811s

109/811s
!10/81Is
11l/81!S
112/811$

I, 01/821 S
102/821$
!03/821$
!04/821$
!05/821s
106/821s
107/82/$

1
08/821S

;09/821$
110/82!S
[11/821S

Interest Paid During ~80-~80 is

2,780.671$
2,669.08Is
2,556.19\$
2,441.98 $
2,326.44!S
2,209.551$
2,091. 3°ls
1,971.67 s
1,850.64!S
1,728.20 1$
1,604.33Is
1,479.021$

32.441$
31.141$
29.821$
28.491s
27.141S
25~781$
24.401s
23.001s
21.591$
20.161S
18.721s
17.261$

144. 03 1$
144.03 s
144.031s
144.031S
144.031s
144.031s
144.03 $
144.03 S
144.03 S
144.031S
144.031S
144.031s

Interest Paid During ~81-~81 is

1,352.251$
1,224.001$
1,094.25Is

962.991S
830.191s
695.851s
559.941$
422.441s
283.341s
142.621s
, O. 25 I s

15.78!S
14.28!S
12.771s
11.23!S

9.691s
8.121s
6.531S
4.931s
3.31!$
1.561S
o.ools

144.031$
144.031s
144.03/S
144.031$
144.031~
144.031S
144.031s
144.031s
144.03 1 $
144.031s

0.251S

Interest Paid During ~82-~82 is

$"8.73

330.Q21S
443.811s
558.021s
673.5~'S
79.0.45Is
908.70 1S

1,028.33 1 $
1,149.36 1 $
1,271.80 l S
1,3~5.t;7IS
1,520.98Is
1,647.7Sls

5299.94

1,776.00 I S
1,905.75!S
2,037.01!S
2,159.81 I S
2,304.151~
2,440.0615
2,577.56 1S
2,716.6t;! S
2,857.38' $
2,c}99.75 I S
3,000.00 1 S

S88.30

Figure 12.3. Summary of Loan Pavments Program Part F.

101.171
132.31 11
162.131
190.62'
217.76'
243.541
267.941
290.941
312.53'
332.~9'
351.41 1
3~8.157!

384.45'
398.731
41'_ .50 I
.122.73 1

432.42 1

440.54'
447.07 1

452.001
455.31'
456.97 1

456.97 1

fAll Information Contained Herein is Pro~rietary to ~igital Research.)

162

Princioal
Interest
Payment ,
%Inflation 10
Startinq Month ,
Starting Year ,
Fiscal Month 10

Display Level
Yr Results : 0
Yr Interest: 1
All Values : 2 2

LOA N PAY MEN '1' saM MAR Y

Interest Rate 14.00% Inflation Rate 10.00%

!Date I Princi?al !P1us Interestl Payment IPrinci9al PaidlInterest Paid 1

111/801S
12/801s
01/811$
02/81\$
03/81 $
04/811s
05/81 1 S
06/81 $

l07/81 1 S
108/81 $
109/81 1 S
110/81 $

3,000.00 $
2,864.95 S
2,733.39 S
2,602.351$
2,471.83 s
2,341.85 S
2,212.44 $
2,083.601$
1,955.36\5
1,829.70,S
1,702.581s
1,576.111$

35.00lS
33.421s
31.881s
30.361s
28.831s
27.321s
25.811$
24.3115
22.8115
21.3415
19.8615
18.381s

144.031s
142.731s
141.581$
140.4215
139.271$
138.121s
136.971s
135.821s
134.661s
133.651s
132.501s
131.351s

Interest Paid During ~80-~81 is

109.031S
217.3515
325.291$
432.711s
539.601s
645.941s
751. 7}. I S
856.90ls
961.4815

1,066.60 I S
1,170.05IS
1,272.85 I S

5332.69

35.001
68.111
9~.451

12g.001
156.77 1

182.80 1
207.08!
229.651
250.521
269.991
287.52 1

303.41'

111/811s 1,451.91Is 16.9415 130.3415 1,376.4815 318.02 1

112/811s 1,326.681$ 15.481s 129.191$ 1,478.03 1 5 330.69'
101/821$ 1,203.501$ 14.041s 128.181s l,SSO.64'S 342.16'
102/82 $ 1,079.561$ 12.591S 127.0315 1,680.8715 351.~il
03/821$ 957.461$ 11.171s 126.021s 1,782.38Is 3~0.06!
04/821$ 835.87!$ 9.741s 125.011s 1,883.39Is 366.92 1

05/821$ 714.79 $ 8.341s 124.001s 1,983.87IS 372.311
106/821$ 594.251s 6.931s 123.001s 2,083.8115 376.22!
107/82 $ 474.261s 5.5315 121.9915 2,183.1915 3i8.~61
108/821~ 354.8415 4.1415 120.9815 2,281.9~Is 379.~81
109/821$ 236.021$ 2.751$ 119.97!S 2,380.19Is 379.27!
110/821S 117.801s 1.371s 118.961s 2,47i.7 Q I5 377.45!
---------------------------------~---
I Interest Paid During ~81-~82 is 5124.28

i11/821s 0.201s 0.001$ 0.201s 2,457.001$

Interest Paid During ~81-~92 is 50.00

---~------

Figure 12.3. Summary of Loan Payments Program Part G.

(All Information Contained Herein is Proprietary to Digital Research.)

163

during a particular iteration of the orogram, where 0 provides an
abbreviated display, 1 provides additional information, and 2 gives
the full trace.

Using an algorithm similar to that described in Section 12.7,
the primary loop occur~ between lines 96 and 131, where the initial
principal is increased by the monthly interest and reduced by the
monthly payment until the principal becomes zero. Several exam~les of
program interaction are shown following the listing of Figure 12-3.
The first output listing shows a minimal display corresoondinq to a
loan of $3000 at 14% interest rate with a payment of S144.03. In this
case, an inflation rate of 0% is assumed with a starting payment on
11/80, and end-of-year taxes due in December of each year. The
display shows the orincioal, interest in December, monthly payment,
amount paid toward principal in December, and amount of interest paid
in the last month of the fiscal year.

The second out~ut listing shows an execution of the main loo~
using the same values shown above, with disolav level 1. In this
case, the output also contains the yearly interest paid on the loan
for each fiscal year which would, presumably, be deducted from the
taxable income.

The third out~ut listing again uses the same initial values used
in the previous exam~les, but ~rovides a full disolav of the monthly
orincipal, interest, monthly payment, pavrnent applied to the
principal, and interest payment.

The last display shows the same loan and interest rate with an
adjustment in dollar value due to inflation. The (rather
conservative) inflation rate of 10% is assumed in this examole, so
that all amounts are scaled to the value of the dollar at the time the
loan was issued. For tax reportinq purooses, the display showing the
total interest paid at the end of each year is not scaled, and thus
does not match the sum of the interest paid during the y~ar. It is
interesting to note that if we assume a 0% inflation rate, the total
loan payment is 3,456.97, taken from the orevious output. Assuminq an
inflation rate of 10%, however, the total cost of the loan in today~s
dollars is

2,457.00
+ 374.25

2,831.25

resulting in a net gain of 68.75 over a two year period!

Several operational details must be presented in order to
properly understand the operation of this program. ~ir~~ there are
several additional variables declared between lines 15 and 29 which
are used throughout the program:

(All Information r.ontained Herein is Proorietarv to Digital Research.)

164

P initially set to PV, but chanqes during
execution (see lines 63, 101, and 104)

PP total principal paid (see line 105)

PL principal for current line, holds P for
display purposes (see lines 100 and 112)

PMT payment initially set to PMV, but changes
during execution (see lines 69 and 103)

INT computed interest during current month
(see lines 98, 101, and 112)

YIN interest at beginning of current year
(see lines 92, 146, and 147)

IP total interest ?aid (see lines 90, 99, and
146)

i interest rate, initialized to yi (see line
66)

INF percent of devaluation of the original dollar
due to inflation (see lines 106, 112, and 113)

ci current devaluation due to inflation (see
lines 73, 106, and 107)

fi factor for computing current inflation (see
lines 72 and 107)

It should be noted that P and PMT are "workinq" variables for
princi?al and ?ayment so that the original variables P" and PMV are
not destroyed during the computations. ~s a result, the operator can
simply enter a comma (,) for subsequent input reauests to indicate
that the previously entered value is to be retained.

The program execution actua~.ly begins on line 15 with a "clear
screen" character for the Lear-Siegler ADM-3A ~RT. This control
character is defined in the replace statement on line 6. If you are
not usinq an ADM-3A, you can substitute the prc.)er character in the
replace statement and recompile the program.

In l?reparation for the subsequent OPEN, an ON-condition is set
to trap possible OPEN errors (see lines 37 through 41). The o?erator
is then prompted for the report output file name on line 44. The
characte~ v~riable "name'"is initialized to the value "Scon" on line
32: if the operator enters a comma rather than a file or device name,
the console is assumed as the output device. If either a ·comma or the
name $con is entered as the out?ut file name, the console is OPE~ed
with a zero page size so that no form-feeds are issued at the end of
each logical paqe (see lines 47 and 48). Otherwise, the output file
or device is OPENed as a normal PRINT device so that form-feeds are
placed into the output file or sent to the physical output device

(All Information Contained Herein is P~o?rietary to Digital Research.)

165

(usually the printer, $lst).

The ON-condition set at line 52 traps any occurrence of the
ERROR condition, including ERROR(l) which indicates a data conversion
error (a complete list of the ERROR subcodes is given in the
"Recoverable Errors" section of the PL/I-80 Command Summary). Invalid
data is also programmatically SIGNALed on line 87 if the value of dl
is out-of-range. To make this particular ~rogram commercially
palatable, it would be necessary to SIGNAL errors for all other
invalid input data items, such as a negative interest rate. Further,
the Fixed Overflow condition (FOFL) should also be set to intercept
out-of-bound computations.

Program variable initialization for each set of input values
begins on line 88. A page-eject is executed if the output file is not
the console, followed by a page header printed by the "header"
subroutine on line 165. It is instructional to compare the formatting
statements in the header subroutine with the output values shown
following the program listing.

The main processing loop, beginning at line 96, is executed
repetitively until the principal reduces to zero. The variable "end"
indicates whether or not an end-of-year summary has been printed (see
line 145), and is used at the end of processing to avoid a possible
duplicate summarv (see line 129). The monthly interest (INT) for the
current principal (P) is then computed and summed in IP on lines 98
and 99. The current principal is saved for later dis~lay in PL, and
the monthly interest is added to the princioal. If the payment
exceeds the remaining principal on line 102, then the payment is
reduced to cover this remainder. The principal is then reduced by the
payment amount, which will eventually ~roduce a zero value (if the
original payment is sufficiently large to pay off the loan!). The
total principal paid is summed on line 105, and the inflation rate is
computed on line 106.

Since we have three display formats, the decision to disolay the
current computation is somewhat complicated: if this is the last
iteration (the principal P is zero), or if the full display format is
selected (dl > 1), or if the current month is the end of the fiscal
year (m = £m) then the current computation is written between lines
109 and 114. The picture format p~q9i99~ displays the month and year,
where 100*m+y produces a four-digit number to match this format. If,
for example, m = 11 and y = 64, then

100 * m + y = 100 * 11 + 64 = 1164

which aopears as 11/64 when printed using this picture. The "display"
subroutine actuallv performs the out?ut function, based upon the six
actual parameters listed on lines 112 and 113. Each argument is
adjusted by the current inflation rate INF and passed to the dis~lay
subroutine. If the inflation rate has been set to 0%, the value of
INF is 1.00 at this ~oint in the com~utation. The body of the display
subroutine, listed between lines 134 and 141 could, of course, be
inserted in-line since there is onli one call to display. However,
the display subroutine does illustrate Fixed Decimal parameter ~assinq

(All Information Contained Herein is Proprietary to Digital Research.)

166

mechanisms and serves
readable, segments.
formatting operations
program output.

to break the
Again , it may

in the dist;>lay

~roqram into smaller, more
be worthwhile comparing the
subroutine with the actual

The statement on line 115 then checks for the end of fiscal year
(m = fm) and, if the disolay mode is either 1 or 2, a yearly interest
summary is printed using the "summarv" subroutine. The summary
subroutine, listed between lines 144 and 148, in turn, calls the
"current year" subroutine to write the yearly interest ?aid (IP-YIN).
The base-value for next year~s dis?lay is retained in YIN through the
assignment on line 147. The current year subroutine is listed between
lines 151 and 163. If the fiscal year does not end in December
(fm<12), the interest rate ~ayment is split between two calendar years
(yp = y - 1). Again, the current year subroutine could be combined
with the summary subroutine without changing the t;>roqram logic.

The end of the main loop, between lines 126 and 130, contains
statements which finalize the report. If the abbreviated display
format was selected (dl = 0), a simple line of dashes completes the
display. Otherwise, a check is made to ensure there have been
intervening output lines (Aend) ann, if so, an interest summary is
printed on line 130. The program then returns to the too of the loop
and reads additional inout parameters for production of another
report.

12.10. Computation of De~reciation SchedUles.

The final example illustrates a number of commercial processing
concepts in PL/I-80 using evaluation of De~reciation Schedules as an
examt;>le. ~he sample proqram listing is shown in Figure 12-4 followed
by several examples of proqram interaction.

The Depreciation program reads several input values and orints a
table based upon these values according to one of three different
depreciation schedules: Straight-Line, Sum of the Years, or Double
Declining. The program also accounts for bonus de~reciation during
the first year, reduction in taxable income due to sales·tax, and
investment tax credit on new or used equipment. ~he followinq general
algorithms are used in this proqram:

Investment Tax Credit (ITC) is assumed to be 10% of the
selling price (see the replace statment, line 7), applied to
the full price of new equipment, or up to $100,000 in the case
of used equipment.

Bonus Depreciation is assumed to be 10% of the selling price,
up to a maximum of $2,000 (see the replace statement, lines 8
and 9).

Under all three deoreciation schedules, the amount to

(All Information Contained Herein is Proprietary to Digital Research.)

167

depreciate is taken as the difference between the selling
price minus the bonus depreciation, and the residual value of
the equipment.

Under all schedules, the depreciation value computed for the
first year is prorated by month through the remainder of the
fiscal year (not including bonus deoreciation) .

In the case of Straight-Line depreciation, the amount to
depreciate is spread uniformly over the number of years in
which the depreciation occurs.

For the Sum of the Years, the year values are summed starting
at 1, through the number of years in which depreciation takes
place:

ys = 1 + 2 + 3 + • • • + years

The depreciation is distributed over the total number of years
by computing years/ys times the de?reciation value for the
first year, (years-l)/ys times the remainder for the second
year, and so-forth until the last year in which l/ys times the
remaining de?reciation value is taken.

For the Double Declining case, each vear~s depreciation is
computed as the book value divided bv the number of years,
which is then multiplied by 2 for new equipment, or 1.5 if the
equipment is used.

The ~rogram reads the selling price, residual value, percentage
sales tax, the percentage income tax bracket, t~e number of months
remaining in the current fiscal year, and the number of years in which
to depreciate the equipment. The program then asks whether the
equipment is new or used., and then reads the de?reciation schedule
code for the subsequent report. A sample input sequence is given in
Figure 12-4, immediately following the program listing. Although the
exact details of program organization and flow is left to the reader
as an exercise, there are a number of constructs in this program
wotthy of discussion.

First, this particular program uses an entry variable array to
"dispatch" the calls to compute one of three schedules. The entry
array is defined on line 40, with a subscript range of 0 through 3.
The individual elements of this vector are initialized between lines
42 and 45, allowing an indirect call to either the "error" subroutine
or' one of the depreciation schedule handling subroutines. The actual
call to one of these subroutines occurs later in the program. The
schedule selection takes place on line 71, where one of the characters
s, y, or d is read from the console into the character variable
"select sched." After variable initialization has occurred, the
"display" subroutine is invoked from line 89. The display subroutine,
listed between lines 97 and 101, performs the actual dis?atch to the
schedule hand~er through the statement

call schedule (index (schedules,select_sched»

(All Information Contained Herein is Proorietary to Digital Research.)

168

This particular statement can be decomposed as follows. The
"schedules" variable is defined on line 39 and initialized to the
character string 'syd', where each letter corresponds to one of the
valid schedule handlers, as shown below

The evaluation of

is the same as

'syd'
123

I!--- double declining
sum of-years
straignt_line

index (schedules,select_sched)

index('svd',select sched) -. -
which, for valid in?uts s, y, or d, produces 1, 2, or 3. If the value
of select sched is not one of s, y, or d, then the index function
returns a zero value. Thus, if select sched is s, the call statement
evaluates to

call schedule(l)

which, due to the assignment on line 43, calls the
"straight_line." Similarly, an input of y or d ?roduces

call schedule (2) or call schedule(3)

subroutine

producing a call to "sum of years" or "double declining,"
res?ectively. Since the index function returns zero if select sched
is not one of s, y, or d, all invalid character in?ut values ~roduce

call schedule(O)

which calls the "error" subroutine where the error condition is
reported to the operator.

The second construct of interest in this orogram is the use of
the "out?ut" file variable, defined on line 35. Durinq the oarameter
input phase, the o?erator is prom?ted with

List? (yes/no)

If the operator re?onds with "yes" then the proqram writes the
de?reciation report to both the console and the listing device. The
manner in which the program performs this function is presented below.

Two file constants, sysprint and list, are declared on line 36
to address the console and the list device. The console file is
OPENed first, on line 47, using an infinite page length to avoid form-

(All Information Contained Herein is Proprietary to Digital Research.)

169

feed characters. If, on any iteration of the main loop, the operator
responds in the· affirmative on line 73, the list device is
subsequently OPENed on line 75. It should be noted that this
statement may be executed several times on any ?articular execution of
this program, but only the first OPEN has any effect. The "dis?lav"
subroutine is called on line 89 to compute and display the output
report for a specific set of input values. Display has a single
actual parameter which is the file constant "sysprint" passed to the
subroutine as the formal parameter "f" on line 99. The formal
parameter, in turn, is assigned to the global variable "out~ut" on
line 100. Subsequent PUT statements of the form

put file (output) ..•

write data to the console, producinq the first report.

Referring to line 90 of Figure 12-4, if "copy to list" has the
character value ~yes~ then display is called once-aqain. ~his time,
however, the actual oarameter is "list" which corresoonds to the
system listing device. Similar to the actions given above, the output
file variable is indirectly assigned the value "list" and all PUT
statements which reference file "output" write their data to the
printer, resulting in both a soft and-hard copv of the report.

Again, it is worthwhile examining the various comoonents of this
program while cross-checking output formats with the displayed
results, since there are several different forms of decimal arithmetic
and formatting which occur throughout.

(All Information Contained Herein is Proorietary to Digital Research.)

170

1 a
2 a
3 a
4 c
5 c
6 c
7 c
S c
9 c

10 c
11 c
12 c
13 c
14 c
15 c
16 c
17 c
IS c
19 c
20 c
21 c
22 c
23 c
24 c
25 c
26 c
27 c
2S c
29 c
30 c
31 c
32 c
33 c
34 c
35 c
36 c
37 c
3S c
39 c
40 c
41 c
42 c
43 c
44 c
45 c
46 c
47 c
48 c
49 c
50 c
51 c
52 c
53 c
54 c
55 c

0000
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
'0006
0006
0006
0006
0006
0006
OOOC
0015
OOlE
0027
0027
0043
0043
0043
0043
0065
0081
OOAO
00B7

depreciate:
procedure o~tions(main) 7

%replace
- clear screen by ~AZ~,
indent by 15,
ITC rate bv .1,
bonus rate-by .1,
bonus-max by 20007

declare
sellinq ~rice decimal(8,2),
adj price decimal(S,2),
residual value decimal(8,2),
year value decimal(S,2),
depreciation value decimal(S,2),
total depreciation decimal(S,2),
book value decimal(S,2),
tax rate decimal(3,2),
sales tax decimal(S,2),
tax bracket decimal (2) ,
FYD-decimal(S,2) ,
ITC decimal (S, 2) ,
bonus dep decimal(S,2),
months remaining decimal(2},
new char (4) ,
factor decimal(2,1),
years decimal (2) ,
year sum decimal (3) ,
current year decimal (2) ,
select sched char(l):

declare
coPY to list char(4),
output file variable,
(sysprint, list) file;

declare
schedules char(3) static initial (~syd~),
schedule (0:3) entry variable;

schedule (0) = error;
schedule (1) = straiqht line;
schedule (2) = sum of vears;
schedule (3) = double=declining;

o?en file (sysprint) stream print pagesize(O)
title (~Scon~);

do whi I.e ("'1'" b) ;
put list(clear screen,"'~i~i~iDepreciation
~ut skip(3) list(... AiAiSelling Price?"') ~
get list(selling ~rice);
put list("'AiAiRe~idual Value? ...);
get list (residual_value) ;

Schedule~) :

Figure 12.4. De?reciation Schedule Program Part A.

(All Information Contained Herein is Pro?rietary to Digital Research.)

171

56 c .0.006
57 c aCED
58 c Clae
S9 c .0123
6.0 c .0142
61 c .0159
62 c .0178
63 c .o18F
64 c .olAE
65 c .olC5
66 c .o10F
67 c .0210
68 c .o21D
69 c .o21D
7.0 c .o21D
71 c .o21D
72 c .0237
73 c .o24E
74 c .0268
75 c .0278
76 c .0294
77 c 02A4
78 c Q2B4
79 c C2C4
8.0 c .03.04
81 c .03.04
82 c C32E
83 c .0351
84 c .0351
85 c .0371
86 c .0391
87 c C3A7
88 c C3B7
89 c .o3CE
9.0 c C3DA
91 c C3EA
92 c C3F6
93 c .0412
94 c .0426
95 c .0426
96 c .0426
97 c .0426
98 e .0426
99 e .o42D

ICC e C42D
1.01 e .0437
1.02 c .0453
1.03 c .0453
1.04 c .0453
1.05 c .0453
1.06 c .0453
1.07 e .0453
1.08 e .0473
1.09 e .0473
11.0 c .0477

put list(~AiAiSales Tax (%)? ~) 1
get list(tax rate):
put list(~Ai~iTax Bracket(%)? ~) ~
get 1ist(tax bracket):
put 1ist(~Ai~iproRate ~onths? ~);
get list(months remaining):
put list(~AiAiHOw Many Years? ~):
get list(years) 1
put 1ist(~AiAiNew? (yes/no) ~):
get list (new) :
put edit(~AiAiSchedule:~,

~AiAiStraight (s)~,

~AiAiSum-of-Yrs (y)~,

~AiAiDouble Dec (d)? ~)
(a,skip) :

get list(select sched):
put list(~AiAiLIst? (yes/no) ~);
get list (copy_to_list) ;
if copy to list = ~yes~ then

open fIle(list) ·stream print title(~Slst~);
factor = 1.5:
if new = ~yes~ then

factor = 2 • .0;
sales tax =

dicimal(selling orice*ta~ rate,12,2)/lCC+.CC5;
if new = ~yes~ I seliing price <= 1.0.0.0.0.0 • .0.0 then

ITC = selling price * ITC rate:
else -- -

ITC = 1.0.0.0.0.0 * ITC rate:
bonus_dep = selling_prIce * bonus_rate;
if bonus dep > bonus max then

bonus dep = bonus max;
out 1ist(clear screenr~
call display(sysprint);
if copy to list = ~yes~ then

calI disolav(list) ;
out skio list (~Ai.Ai i Type RETURN to Continue"') ;
get skip (2) :
end;

display:
procedure (f) :
declare

f file:
output = f:
call schedule (index (schedules,select_sched);
end display:

error:
procedure:
/* bad eritry for schedule */
put file (output) edit(~Invalid Schedule - Enter s, y, or d"')

(page ,column (indent) ,x (8) ,a) ;.
call line();
end. error:

Figure 12.4. Depreciation Schedule Program Part B.

(All Information Contained Herein is Proprietary to Diqital Research.)

172

III c 0477
112 c 0477
113 c 0477
114 e 0477
115 e 0492
116 e 04B2
117 e 04B2
118 e 04B5
119 e 0400
120 e 04EO
121 e 04FO
122 e 0526
123 e 0560
124 e 0560
125 e 0576
126 e 0576
127 e 05A6
128 e 05A6
129 e 05B6
130 e 05B6
131 e 0501
132 e 05EC
133 e 0607
134 e 0624
135 e 0624
136 c 0628
137 c 0628
138 c 0628
139 c 0628
140 e 0628
141 e 0643
142 e 0663
143 e 0663
144 e 0666
145 e 0681
146 e 0691
147 e 06A1
148 e 06B1
149 e 06E7
150 e 071C
151 e 071C
152 e 071C
153 e 0752
154 e 07A3
155 e 07A3
156 e 07A3
157 e 07A3
158 e 07B9
159 e 07B9
160 e 07E9
161 e 07E9
162 e 07F9
163 e 07F9
164 e 0814
165 e 082F

straight line:
procedure:
adj ?rice = selling price - bonus_deo;
put-file (output) edit(~S T R A I G H T LIN E~)

(page,column(indent) ,x(14) ,a);
call header();
de?reciation value = adj price - residual_value;
book value =-adj price; -
total depreciation = 0;

de current vear = 1 to years;
year va1ue-~

decimal (depreciation_value/years,8,2) + .005:
if current year = 1 then

do; -
year value =

year value * months_remaining / 12;
FYD ~ year value;
end; -

deoreciation value = depreciation value - year_value;
total deprecIation = total deorecIation + vear value~
boo-k value = adj t?rice - totai depreciation;
call-print line(); -
endi- -

call summary();
end straight_line~

sum of years:
-procedure:

adj ?rice = selling ~rice - bonus dep;
?ut-file (output) edit(~S U M O-F· THE YEA R S~)

(oage,column(indent) ,x(11) ,a);
call header(};
depreciation value = adj orice - residual_value;
book value =-adj orice; --
totar_depreciation = 0;
year sum = 0:

do current year = 1 to years:
year sum = year_sum + current_year;
end;-

do current year = 1 to years;
year value-=

decimal (depreciation value *
(years-- current-year + 1) ,12,2)
/ year sum + .005;

if current 'year = 1 then
do; -
year value =

year value * months_remaining / 12;
FYD = year value;
end; -

deoreciation value = depreciation value - year value;
total deprecIation = total oeorecIation + year-value;
book value = adj price - totai deoreciation; -- - .

Figure 12.4. De?reciation Schedule Program Part C.

(All Information Contained Herein is Proprietary to Digital Research.)

173

166 e 084A
167 e 0867
168 e 0867
16_9 c 086B
170 c 086B
171 c 086B
172 c 086B
173 e 086B
174 e 0886
175 e 08A6
176 e 08A6
177 e 08A9
178 e 08C4
179 e 08D4
180 e 08E4
181 e 0931
182 e 0931
183 e 0971
184 e 0971
185 e 0987
186 e 0987
187 e 09B7
188 e 09B7
189 e 09C7
190 e 09C7
191 e 0900
192 e 09ED
193 e OA08
194 eOA23
195 e OA3E
196 e OA5B
197 e OASB
198 c OASF
199 c OASF
200 c OA5F
201 c OASF
202 c OASF
203 e OASF
204 e OASF
205 e OASF
206 e OA6F
207 e OA7F
208 e OA7F
209 e OA8S
210 e OB5D
211 e OBSD
212 e OB5D
213 e OB5D
214 e 0'95D
215 e OBSD
216 e OB5D
217 e OBSD
218 e OBSO
219 e OB5D
220 e OB9F

call print line();
end; -

call summary();
end sum_of_years;

double declining:
procedure:
adj price = selling price - bonus_de?;
put-file (output) eait(~D 0 U B LED EeL I N I N G~)

(oage,column (indent) ,x (10) ,a) ;
call header();
depreciation value = adj price - residual value~
book value =-adj price; -
total depreciation = 0;

do current year = 1 to years
while (depreciation value > 0) ~

year value = -
- aecimal(book value/years,8,2) * factor+.005;
if current year ~ 1 then

do; -
year value =

year value * months_remaining / 12;
FYD = year value;
end: -

if year value > depreciation value then
year value = depreciation value;

depreciafion value = deoreciafion value - year value:
total deprecIation = total deprecIation + year-value;
book value = adj price - total deoreciation; -
call-print line(); -
end:

call summarv();
end double_declining;

header:
procedure;
/* print header record */
dcl

new or used char(5);
if new ~ ~yes~ then

new or used = ~ New~;
else

new or used = ~ Used~;

~ut file (output) edit(

~I~ ,selling price+sales tax,new or used,
residual value,~ Residual ValueT~,-

~,~ ,months remaining,~ Months Left ~,
tax rate,~% Tax~ ,tax bracket,~% Tax Bracketl~)

(2(skip~column(indent) ,a),
2 (0 ~ B $ $, $ $ $, $ $ 9 • V9 9 ~ ,a) ,
skio,column(indent) ,a,x(5) ,f(2) ,a,2(x(2) ,p;B99~ ,a));

out file (output) edit(
~

Figure 12.4. Oe?reciation Schedule Program Part o.

(All Information Contained Herein is Proprietary to Digital Research.)

174

221 e OB9F
222 e OB9F
223 e OB9F
224 e OB9F
225 c OB9F
226 c OB9F
227 c OB9F
228 c OB9F
229 c OB9F
230 e OB9F
231 e OC34
232 e OC34
233 e OC34
234 e OC34
235 e OC34
236 e OC34
237 c OC34
238 c OC34
239 c OC34
240 c OC34
241 e OC34
242 e OC34
243 e OC34
244 e OC34
245 e OC34
246 e OC37
247 e Oe67
248 e OC98
249 e OCC8
250 e ODEE
251 e ODEE
252 e ODEE
253 e ODEE
254 e ODEE
255 e ODEE
256 e ODEE
257 e ODEE
258 e ODEE
259 e ODEE
260 e ODEE
261 e ODEE
262 e ODEE
263 e ODEE
264 c ODF2
265 c ODF2
266 c ODF2
267 c ODF2
268 c ODF2
269 e ODF2
270 e OE13
271 e OE13
272 c OE13
273 a OE13

~1 Y 1 Depreciation 1 Depreciation I Book Value I~,
~ I r I For Year I Remaininq I I ~ ,
~--~)
(skip,column(indent) ,a) ;
end header;

prir..t line:.
- procedure;

j* print current line */
put file (output) edit(
~I~ ,current year,
~ I~,year value,
~ I~ ,depreciation value,
~ 1 ~ , boo k val u e , ~ - I ~)

(skip,column(indent) ,
a,f (2),4 (a,p~Sz,zzz,zz9v.99~));
end orint_line;

summary:
procedure;
declare

adj ITC decimal(8,2),
total decimal(8,2),
direct decimal(8,2);

call line();
adj ITC = ITC * 100 / tax bracket;
total = FYD + sales tax +-adj I~C + bonus_deo;
direct = total * tax bracket 7 100;
put file (outout) edIt (:1 First Year Reduction in Taxable Income I~ ,

~ -- ,
~ I Deoreciation ~ ,FYD, ~ I ~ ,

Sales Tax ~ ,sales tax, ~ I ~ ,
ITC (Adjusted) ~ ,adj lTC, ~ I ~,
Bonus De?reciation ~ ,bonus_dep, ~ I~

------------- ! ~ ,
Total for First Year
Direct Reduction in Tax

(2 (ski p , col urn n (i n den t) , a) ,
2(4(skip,column(indent) ,a,
p~$z,zzz,zz9v.99~ ,x(3) ,a),

ski? , col urn n (i n den t) , a)) ;
call line () ;
end summary;

line:
procedure;

~ ,total,
~ ,direct,

~ I ~ ,
~ I ~)

/* ~rint line of "-" */
out file (output) edit(
~------------~-------------------------------------~)
(s k i ~ , co 1 umn (i nden t) , a) ;
end line;

end de?reciate;

~~------------------~
Figure 12.4. Depreciation Schedule Program Part E.

(All Information Contained Herein is Proorietary to Diqital Research.)

175

Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months?
How Many Years?
New? (yes/no)
Schedule:

200000
40000
6
50
10
7
no

Straight (s)
Sum-of-Yrs (y)
Double Dec (d)? d
List? (yes/no) no

D 0 U B L E DEC LIN I N G
--

S212,000.00 Used
10 Months Left

$40,000.00 Residual Valuel
06% Tax 50% Tax Bracketl

I
Y I De~reciation I Depreciation I
r I For Year I Remaininq I

Book Value

--
1 Is
2 $
3 S
4 $
5 S
6 $
7 $

35,357.14 1$ 122,642.86 1$ 162,642.86
34,852.04 1$ 87,790.82 Is 127,790.82
27,383.75 I~ 60,407.07 Is 100,407.07
21,515.79 38,891.28 Is 78,891.28
16,905.27 1$ 21,986.01 s 61,986.01
13,282.71 Is 8,703.30 $ 48,703.30

8,703.30 1$ 0.00 $ 40,000.00

First Year Reduction in Taxable Income

Depreciation
Sales Tax
ITC (Adjusted)
Bonus Depreciation

Total for First Year
Direct Reduction in Tax

$
S
S
$

$
$

Type RETURN to Continue

35,357.14
12,000.00
20,000.00

2,000.00

69,357.14
34,1578.57

Figure 12.4. Depreciation Schedule Program Part F.

(All Information Co~tained Herein is Proprietary to Digital Research.)

176

Depreciation Schedule

Selling Price? ,
Residual Value? ,
Sales Tax (%)?
Tax Bracket(%)? ,
ProRate Months? 8
How Many Years? ,
New? (yes/no) yes
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)? y
List? (yes/no) no

SUM o F THE YEA R S

$212,000.00 New
8 Months Left

$40,000.00 Residual Value!
06% Tax 50% Tax Bracket'

I Y I Depreciation I Depreciation I Book Value
I r I For Year , Remaining I
--

1 $ 26,333.33 $ 131,666.67 1$ 171,666.67
2 S 28,214.29 S 103,452.38 IS 143,452.38
3 $ 18,473.64 S 84,978.74 Is 124,978.74
4 $ 12,139.82 $ 72,838.92 Is 112,838.92
5 S 7,804.17 $ 65,034.75 1$ 105,034.75
6 S 4,645.34 $ 60,389.41 Is 100,389.41
7 $ 2,156.76 $ 58,232.65 Is 98,232.65

~

--
First Year Reduction in Taxable Income

De"9reciation
Sales Tax
ITC (Adjusted)
Bonus De?reciation

Total for First Year
Direct Reduction in Tax

$
$
S
$

$
S

Type RETURN to Continue

26,333.33
12,000.00
40,000.00

2,000.00

80,333.33
40,166.66

Figure 12.4. Denreciation Schedule Program Part G.

(All Information Contained Herein is Proprietary to Digital Research.)

177

Depreciation Schedule

Selling Price? 310000
Residual Value? 30000
Sales Tax (%)?
Tax Bracket(%)? ,
ProRate Months? 12
How Many Years? 5
New? (yes/no) yes
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)? d
List? (yes/no) no

D 0 U B L E DEC LIN I N G
--

$328,600.00 New
12 Months Left

$30,000.00 Residual Value!
06% Tax 50% Tax Bracketl

--

I Y I Deoreciation \ Depreciation I
r I For Year Remaining I

Book Value

--
1 $
2 $
3 $
4 Is
5 1$

123,200.00 1$ 154,800.00 Is 184,800.00
73,920.00 1$ 80,880.00 1$ 110,880.00
44,352.00 $ 36,528.00 Is 66,528.00
26,611.20 $ 9,916.80 Is 39,916.80
9,916.80 $ 0.00 Is 30,000.00

First Year Reduction in Taxable Income

Deoreciation
Sales Tax
ITC (Adjusted)
Bonus Deoreciation

Total for First Year
Direct Reduction in ~ax

$ 123,200.00
$ 18,~00.00
S 62,000.00
$ 2,000.00

S 205,800.00
$ 102,900.00

Type RETURN to Continue

Figure 12.4. De?reciation Schedule Program Part H.

(All Information Contained Herein is Proprietary to Digital Research.)

178

, Y
I r

Depreciation Schedule

Selling Price? ,
Residual Value? ,
Sales Tax (%)?
Tax Bracket(%)? ,
ProRate Months? ,
How Many Years? ,
New? (yes/no)
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)? s
List? (yes/no)

S T R A I G H T LIN E

$328,600.00 New
12 Months Left

$30,000.00 Residual Va1uel
06% Tax 50% Tax Bracketl

I Depreciation I Depreciation I Book Value
I For Year I Remaining I

--
1 1$
2 1$
3 $
4 $
5 ,$

55,600.00 1$ 222,400.00 Is 252,400.00
44,480.00 $ 177,920.00 Is 207,920.00
35,584.00 $ 142,336.00 1$ 172,336.00
28,467.20 $ 113,868.80 Is 143,868.80
22,773.76 Is 91,095.04 1$ 121,095.04

First Year Reduction in Taxable Income

Depreciation
Sales Tax
ITC (Adjusted)
Bonus Depreciation

Total for First Year
Direct Reduction in Tax

$
s
$
$

55,600.00
18,600.00
62,000.00

2,000.00

$ 138,200.00
$ 69,100.00

Type RETURN to ContinueAC

Figure 12.4. Deoreciation Schedule Program Part I.

(All Information Contained Herein is Pro~rietary to Digital Research.)

179

