
CP/M-a6'"
OPERATING SYSTEM
PROGRAMMER'S GUIDE

CPIM-86™
Programmer's Guide

Copyright ~ 1981

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, i.nhis
own programs.

DISCLAIMER

Digital Research makes no re'J.')resentations or
warranties with respect to the contents hereof and
specifically disclaims any imt;'lied warranties of
merchan tabi 1 i ty or f i tnes s for any particular
purl?ose. Further, Diqi tal Research reserves the
right to revise this publication and to make chanqep
f rom time to t tme in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital ~esearch.
CP/M-86, ASM-86, DDT-86 and TEX-80 are trademarks of
Digital Research.

The "CP/M-86 Programmer's Guide" was prepared using
the Dig i tal Research TEx-ao'I'M text formatter and
printed in the united States of America by
Commercial Press/Monterey.

* Second Printing: June 1981 *

Foreword

This manual assists the 8086 assembly languaqe proqrammer
k .. / 8 6 rr'f'.1 . t I - . f ; 1 . wor lng 1.n a CP M- enVlronmen. t assumes you are ._am.~ __ lar

with the CP /~-1-86 impJ.ementat ion of CP/M. and have read the following
Digital Research publications:

• CP/M 2 Documentation

• CP/M-86 System Guide

The reader should also be familiar with the 8086 assembly
language instruction set, which i.s defi.ned in Intel s 8086 Family
User s Manual.

The first section of this manual discusses ASM-86 operation
and the var io~ assembl er options which may be enabled 'vhen
invoking ASM-86. One of thes-e options contro'ls the hexadecimal
out?ut format. ASM-86 can generate 8086 machine code in either
Intel or Digital Research format. These two hexadecima1 formats
are described in Appendix A.

The second section discusses the elements of AS~-86 assemblv
language. It defines ASM-86 s character set, constants, vari.ables,
identifiers, operators, expressions, and statements.

The third section discusses the ASM-86 directives, which
per form housekeeping functions such as requesting condi t i.onal
assembly, including multiple source fi.les, and contro] 1.inq the
format of the listing pri.ntout.

The fourth section is a concise summary of the 8086
instruction mnemonics accepted by ASM-86. The mnemonics used bV
the Digital Research assembler are the same as those used by the
Intel assembler except for four instructions: the intra-segment
short jump, and inter-seqment jump, return and call instructions.
These differences are summarized in Appendix B.

The fifth section of this manual discusses the code-macro
facilities of ASM.-86. Code-macro definition, specifiers and
modifiers as well as nine special code-macro directives are
discussed. This information is also summarized in Appendix H.

The sixth section discusses the nDT-86 program, which allows
the user to test and debug programs interactively in the CP/M-86
envi.ornment. Section 6 includes a DDT-86 sample debugging session.

iii

Table of Contents

1 Introduction

1.1 Assembler O?eration

1.2 Optional Run-time Parameters

1.3 Abortinq ASM-86

2 Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set •

2.2 Tokens and Separators

2.3 Delimiters. ·
2.4 Constants

2.4.1
2.4.2

Numeric Constants •
Character Strings •

.

2.5 Identifiers ·
2.5.1
2.5.2

Keywords ••• • • •• •
Symbols and Their Attributes

2.6 Operators ·
2.6.1 Operator Examples •
2.6.2 Operator Precedence.

2.7 Expressions

2.9 Statements ••

3 Assembler Directives

3.1 Introduction . . · · . . · ·
3.2 Segment Start Directives · ·

3.2.1 The CSEG Directive · 3.2.2 The DSEG Directive · 3.2.3 The SSEG Directive
3.2.4 The ESEG Directive ·

3.3 The ORG Directive · . . · ·

v

·

· · · · · · · · · ·
· · · · · · · · · · · ·
·
· · · · · · · · · ·

1

3

4

5

5

5

7

7
8

8

9
10

12

15
17

18

19

21

21

22
22
22
23

23

Table of Contents
(continued)

3.4 The IF and ENDIF Directives
3.5 The. INCLUDE Directive

3.6 The END Directive

3.7 The EOU nirective

3.8 The DB Directive .
3.9 The DW Directive
3.10 The DD Directive
3.11 The RS Directive

3.12 The RB Directive
3.13 The RW Directive

3.14 The TITLE Directive •

3.15 The PAGESIZE Directive

3.16 The PAGEWIDTH Directive •

3.17 The EJECT Directive •

3.18 The SIMFORM Directive

3.19 The NOLIST and LIST Directives

4 The ASM-86 Instruction Set

4.1 Introduction •••.•
4.2 Data Transfer Instructions •

4.3 Arithmetic, Logical, and Shift Instructions

4.4 String Instructions

4.5 Control Transfer Instructions

4.6 Processor Control Instructions.

vi

24

24

24

25

25

26

26

27

27

27

27

27

28

28

28

28

29

31

33

38

39

43

Table of Contents
(continued)

5 Code-Macro Facilities

6

5.1 Introduction to Code-macros ·
5.2 Specifiers

5.3 Modifiers ·
5.4 Range Specifiers. ·
S.5 Code-macro Directives

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6

DDT-86

6.1 DDT-86

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

6.2 DDT-86

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16

SEGFIX •• • •
NOSEGFIX
MODRM • • • • •
RELB and RELW •
DB, nw and DD •
DBI'r • • • • •

Operation . . .
Invoking DDT-86

·
·

· · · · ·
· · · · · DDT-86 Command Conventions

Sl?ecifying a 20-Bit Address
Terminating DDT-86 · · · ·

· · ·
· · · · · · · DDT-86 Operation with Interrupts

Commands . . . · · ·
The A (Assemble) Command
The D (Display) Command · · · The E (Load for Execution) Command
The F (Fill) Command · · · · · · The G (Go) Command · · · · · · · The H (Hexadecimal Math) Command
The I (Input Command Tail) Command
The L (List) Command · · · · The M (Move) Command · · · · The R (Read) Command · · The S (Set) Command · · · · The T (Trace) Command · · · · · The U (Untrace) Command · · · · The V (Value) Command · · · The W (Wr i te) Command · The X (Examine CPU State) Command

vii

· · · ·
·
· · · · · ·
·
· · · · · · ·

45

47

47

48

49

49
49
50
51
51
52

55

S5
5S
56
57
57

57

57
58
58
59
59
60
60
61
61
62
62
63
64
64
64
65

6.3

Table of Contents
(continued)

Default Segment Values •

6.4 Assembly Language Syntax for A and L Commands

6.5 DDT-86 Sample Program

viii

66

69

70

Appendixes

A ASM-86 Invocation • • • •

B Mnemonic Differences from the Intel Assembler •

C ASM-86 Hexadecimal Output Format

D Reserved Words

E ASM-86 Instruction Summary

F Sample Program . . . · . .
G Code-macro Definition Syntax

B ASM-86 Error Messages ·
I DDT-86 Error l-1essages ·

ix

79

81

83

87

89

93

99

101

103

Section 1
Introduction

1.1 Assembler Operation

ASM-S6 processes an 8086 assembly language source file in three
passes and produces three output files, including an 8086 machine
language file in hexadecimal format. This object file may be in
either Intel or Digital Research hex format, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross
assembler designed to run under CP/M on an Intel 8080 or Zilog Z-80
based system, and a S086 assembler designed to run under CP/M-86 on
an Intel 8086 or S088 based system. ASM-86 typically produces three
output files from one input file as shown in Figure 1-1, below.

SOURCE

<file name>.A86
<file name>.LST
<file name>.H86

<file name>.SYM

Figure 1-1.

ASM-86

contains source
contains listing

--'"

LIST FILE

HEX FILE

SYMBOL FILE

contains assembled program in
hexadecimal format
contains all user-defined symbols

ASM-86 Source and Object Files

Figure 1-1 also lists ASM-86 filename e.xtensions. ASM-86
accepts a source file with anv three letter extension, but if the
exte'nsion is omitted from the invoking command, it looks for the
specified filename with the extension .A86 in the directorv. If no
filename is specified and the file has an extension other than .A86
or has no extension at all, ASM-86 returns an error message.

The other extensions listed in Figure 1-1 identi fy ASM-S6
output files. The .LST file contains the assembly language listinq
'with any error messages. The .HS6 file contains the machine
language program in either Digital Research or Intel hexadecimal
format. The .SYM file lists any user-defined symbols.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 Proqrammer~s Guide 1.1 Assembler O?eration

Invoke ASM-86 by entering a command of the following form:

ASM86 <source filename> [$ <optional parameters>

Section 1.2 explains the optional parameters. Specify the source
file in the following form:

where

[<optional drive>:]<filename>[.<optional extension>]

<optional drive> is a valid drive letter specifying
the source file~s location. Not
needed if source is on current
drive.

<filename> is a valid CP/M filename of 1 to 8
characters.

<optional extension> is a valid file extension of 1 to 3
characters, usuall.y .A86.

Some examples of valid ASM-86 commands are:

A>ASM86 B:BIOS88

A>ASM86 BIOS88.ASM $FI AA HB PB SB

A>ASM86 D:TEST

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number. ASM-86 then attempts to
open the source file. If the file does not exist on the designated
drive, or does not have the correct extension as described above,
the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list,
ASM-86 displays the message:

PARAMETER ERROR

After opening the source, the assembler creates the output
files. Usually these are placed on the current disk drive, but they
may be redirected by optional parameters, or by a drive
specification in the the source file name. In the J.atter case, ASM-
86 directs the output files to the drive specified in the source
file name.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 Programmer's Guide 1.1 Assembler Operation

During assembly, ASM-86 aborts if an error condition such as
disk full or symbol table overflow is detected. When ASM-86 detects
an error in the source file, it places an error message line in the
listing file in front of the line containing the error. Each error
message has a number and gives a brief explanation of the error.
Append ix H lists A.SM-86 error messages. When the assembly is
complete, ASM-86 displays the message:

END OF ASSEM.BLY. NUMBER OF ERRORS: n

1.2 Optional Run-time Parameters

rrhe dollar-sign character, $, flaqs an optional string of run
time parameters. A parameter is a single letter followed by a
single letter device name specification. The parameters are shown
in Table 1-1, below.

Table 1-1. Run-time Parameter Summary

Parameter I ~o Specify

A
H
P
S
F

source file nevice
hex output file device
list file device
symbol file device
format of hex output file

I valid

A, B,
A
A . . .
A . . .
I, D

Arguments

C, ... P
P, X, Y, Z
P, X, Y, Z
P, X, V, Z

All parameters are optional, and can be entered in the command
line in any order. Enter the dollar sign only once at the beginning
of the parameter string. Spaces may separate parameters, but are
not required. No space is permitted, however, between a parameter
and its device name.

A device name must follow parameters A, H, P and S. The
devices are labeled:

A, B, C, ••• P or X, Y, Z

Device names A through P respective1y specify disk drives A
through P. X specifies the user console (CON:), Y specifies the
line printer (LST:), and Z suppresses output (NUL:).

If output is directed ~o the console, it may be temporari1y
stopped at any time by typing a control-S. Restart the output by
typing a second control-S or any other character.

All Information Presented Here is 'Proprietary to Digital ~esearch

3

CP/M-86 Programmer~s Guide 1.2 Optional Run-time Parameters

The F parameter requires either an I or a D argument. When I
is specified, ASM-86 produces an object file in Intel hex format. A
D argument requests Digital Research hex format. Appendix C
discusses these formats in detail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex
format.

Table 1-2. Run-time Parameter Examples

Command Line I
ASM86 10

ASM86 IO.ASM $ AD SZ

ASM86 10 $ PY SX

ASM86 10 $ FD

ASM86 10 $ FI

1.3 Aborting ASM-86

Result

Assemble file IO.A86, produce IO.HEX,
IO.LST and IO.SYM, all on the default
drive.

Assemble file IO.ASM on device D,
produce IO.LST and IO.HEX on the default
device, suppress symbol file.

Assemble file IO.A86, produce IO.HEX,
route listing directly to printer,
output symbols on console.

Produce Digital Research hex format.

Produce Intel hex format.

You may 'abort ASM-86 execution at any time by hitting any key
on the console keyboard. When a key is pressed, ASM-86 responds
with the question:

USER BREAK. OK (YIN) ?

A Y response aborts the assembly and returns to the operating
system. An ~ response continues the assembly.

All Information Presented Here is Proprietary to Digital Research

4

Section 2
Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The
valid characters are the alphanumer ics, special characters, and non
printing characters shown below:

A B C D E F G H I lJ K L M N 0 P Q R S T U VW X y Z
a b c d e f q h i j k 1 m n o P q r s t u v ,., x y z
0 1 2 3 4 5 6 7 8 9

+ * / =) ~

! . @ $ - . , .
space, tab, carriage-return, and line-feed

Lower-case letters are treated as upper-case except wi thin
strings. Only alphanumerics, special characters, and spaces may
appear within a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source
program, much as a word is the smallest meaningful unit of an
English composition. Adjacent tokens are commonly separated by a
blank character or s"9ace. Any sequence of spaces may appear
wherever a single space is allowed. ASM-86 recognizes horizontal
tabs as separators and interprets them as spaces. Tabs are eXl?anded
to spaces in the list fi Ie. The tab stops are at each eighth
column.

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to
the instruction, as opposed to separators, whLch merely mark the end
of a token. When a delimiter is present, separators need not be
used. However, sepa.rators after delimiters can make your program
easier to read.

Table 2-1 describes ASM-86 separators and delimiters. Some
delimiters are also operators and ar~ explained in greater detail in
Section 2.6.

All Information Presented Here is Propr ietarv to Di.q i tal Research

5

CP/M-86 Programmer~s Guide 2.3 Delimiters

Table 2-1. Separators and Delimiters

Character

20H

09H

CR

LF

;

$

+

*

I

@

Name

space

tab

carriage return

line feed

semicolon

colon

period

dollar sign

plus

minus

asterisk

slash

at-sign

underscore

exclamation
point

apostrophe

Use

separator

separator, legal in source
files, expanded in list files

terminate source lines

legal after CR; if within
source lines, it is inter
preted as a space

start comment field

identifies a label,
used in segment override
specification

forms variables from
numbers

notation for "present value
of location pointer"

arithmetic operator for
addition

arithmetic operator for
subtraction

arithmetic operator for
multiplication

arithmetic operator for
division .-

legal jn identifiers

legal but ignored in
identifiers

logically terminates a
statement, thus allowing
multiple statements on a
single source line

delimits strinq constants

All Information Presented Here is Proprietary to Digital Research

6

CP/M-86 Programmer~s Guide 2.4 constants

2.4 Constants

A constant is a value known at assembly time that does not
change while the assembled program is executed. A constant may be
either an integer or a character string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing
radix indicator. The radix indicators are shown in Table 2-2,
below.

Table 2-2. Radix Indicators for Constants

Indicator I Constant Type I Base

B binary 2
0 octal 8
Q octal 8
n decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a
radix indicator is a decimal constant. Radix ind.icators may be
upper or lower case.

A constant is thus a sequence of dig its followed by an opt ional
radix indicator, where the digits are in the range for the radix.
Binary constants must be composed of O~s and l~s.· Octal digits
range from a to 7: decimal digits range from a to 9. Hexadecimal
constants contain decimal digits as well as the hexadecimal digits A
(laD), B (lID), C (12D), D (13D), E (14D), and F (15D). Note that
the leading character of a hexadecimal constant must be either a
leading a or a decimal diqit so that ASM-86 cannot confuse a hex
constant with an identifier. The following are valid numeric
constants:

1234
1234H
33770

1234D
OFFEH
OFE3H

l100B
33770
1234d

1111000011110000B
13772Q
Offffh

All Information Presented Here is Prol?rietary to Digital Research

7

CP/M-86 Programmer~s Guide 2.4 Constants

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by
apostrophes as a string constant. All instructions accept only one
or two-character string constants as valid arguments. Instructions
treat a one-character string as an 8-bit number. A two-character
string is treated as a l6-bit number with the value of the second
character in the low-order byte, and the value of the first
character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86
does not translate case within character strings, so both upper- and
lower-case letters can be used. Note that only alphanumer ics,
special characters, and spaces are allowed within strinqs~

A DB assembler directive is' the only ASM-86 statement that may
contain strings longer than two characters. The string may not
exceed 255 bytes. Include any apostrophe to be printed within the
string by entering it twice. ASM-86 interprets the two keystrokes
~~ as a single apostrophe. Table 2-3 shows valid strings and how
they appear after processing:

Table 2-3. String Constant Exaaples

~a~ -> a
~Ab~~Cd~ -> Ab~Cd

~ ~I like CP/M~ -> I like CP/M
~~~~ -> ~ 

~ONIJY UPPER CASE~ -> ONLY UPPER CASE 
~only lower case ~ -> only lower case 

2.5 Identifiers 

Identifiers are character sequences which have a special, 
symbolic meaninq to the assembler. All identifiers in ASM-86 must 
obey the following rules: 

1. The fir s t c h a r act e r m us t be alp h a be tic (A, ••• Z , 
a, ••• z). 

2. Any subsequent characters can be either alphabetical 
or a numeral (0,1, ••••• 9). ASM-A6 ignores the special 
characters @ and , but they are still leqal. For 
example, a_b becomes abe 

3. Identifiers may be bf any length up to the limit of 
the physical line. 

All Information Present~d Here is Proprietary to nigital Research 

8 



CP/M-86 Programmer~s Guide 2.5 Identifiers 

Identifiers are of two types. The first are keywords, which 
have predefined meanings to the assembler. The second are symbols, 
which are defined by the user. The followinq are all valid 
identifiers: 

NOIJIST 
WORD 
AH 
Third street 
How are you today 
varIable@number@l234567A90 

2.5.1 Keywords 

A keyword is an identifier that has a predefined meaning to the 
assembler. Keywords are reserved; the user cannot define an 
identifier identical to a keyword. For a com?,lete list of keywords, 
see Appendix D. 

ASM-86 recogni zes five types of keywords: instructions, 
directives, operators, registers and predefined numbers. 8086 
instruction mnemonic keywords and the actions they ini tiate are 
defined in Section 4. Directives are discussed in Section 3. 
Section 2.6 defines operators. Table 2-4 lists the ASM-86 keywords 
that identify 8086 registers. 

Three keywords are predefined numbers: BYTE, WORn, and DWORD. 
The values of these numbers are 1, 2 and 4, respectively. In 
addition, a Type attribute is associated with each of'" these numbers. 
The keyword~s Type attribute is equal to the keyword~s numeric 
value. See Sect ion 2.5.2 for a complete discussion of "'vpe 
attributes. 

All Information Presented Here is Proprietary to Digital Research 

9 



CP/M-86 Programmer~s Guide 2.5 Identifiers 

Table 2-4. Register Keywords 

Register Numeric 
Symbol Size Value Meaning 

AH 1 byte 100 B Accumulator-High-Byte 
BH 1 II III B Base-Register-High-Byte 
CH 1 II 101 B Count-Register-High-Byte 
DH 1 II 110 B nata-Register-High-Byte 

AL 1 II 000 B Accumulator-Low-Byte 
BL 1 II 011 B Base-Register-Low-Byte 
~L 1 " 001 B count-Reqister-~OW-BYte 
DL 1 " 010 B Data-Register-L w-Byte 

AX 2 bytes 000 B ,Accumu1a tor (full word) 
BX 2 " 011 B Base-'Register II 

ex 2 " 001 B Count-Register " 
DX 2 " 010 'B Data-Register II 

BP 2 II 101 B Base Pointer 
SP 2 " 100 -B Stack Pointer; 

SI 2 " 110 B Source Index 
DI 2 " III B Destination Index 

CS 2 II 01 B Code-Segment-Register 
DS 2 " 11 B Data-Segment-Register 
SS 2 " 10 B Stack~Segment-Register 
ES 2 II 00 B Extra-Segment-Register 

2.5.2 Symbols and Their Attributes 

A symbol is a user-def.ined identifier that has attributes which 
specify what kind of information the symbol represents. Symbols 
fall into three categories: 

• variables 
• labels 
• numbers 

Variables identif.y data stored at a particular location in 
memory. All variables have the following three attributes: 

All Information Presented Here is Proprietary to Digital Research 

10 



CP/M-86 Programmer~s Guide 2.5 Identifiers 

• Segment - tells which seqment was beinq assembled when the 
variable was defined. 

• Offset - tells how many bytes there are between the 
beginning of the segment and the location of this variable. 

• Type - tells how many bytes of data are manipulated when 
this variable is referenced. 

A Segment may be a code-segment, a data-segment, a stack
segment or an extra-segment depending on its contents and the 
register that contains its starting address (see Section 3.2). A 
segment may start at any address divisible by 16. ~SM-86 uses this 
boundary value as the Segment portion of the variable~s definition. 

The Offset of a variable may be any number between 0 and OFFFFH 
or 65535D. A variable must have one of the following Type 
attributes: 

• BYTE 
• WORD 
• DWORD 

BYTE specifies a one-byte variable, WORD a two-byte variable 
and DWORD a four-byte variable. The DB, DW, and DO directives 
respectively define variables as these three types (see Section 3). 
For example, a variable is defined when it appears as the name for a 
storage directive: 

VARIABLE DB 0 

A variable may also be defined as the name for an EQU directive 
referencing another label, as shown below: 

VARIABLE EQU ANOTHER VARIABLE 

Labels identify locations in memory that contain instruction 
statements. They are referenced with jumps or calls. All labels 
have two attributes: 

• Segment 
• Offset 

Label segment and offset attributes are essentially the same as 
variable segment and offset attributes. Generally, a label is 
defined when it precedes an instruction. A colon, :, separates the 
label from instruction; for example: 

LABEL: ADD AX,BX 

A label may also appear as the name for an EQU directive 
referencing another label; for example: 

LABEL EQU ANOTHER LABEL 

All Information Presented Here is Proprietary to Digital Rese~rch 

11 



CP/M-86·Programmer""s Guide 2.5 Identifiers 

Numbers may also be defined as symbols. A number symbol is 
treated as if you had explicitly coded the number it represents. 
For· example: 

Number five EQU 5 
MOV AL,Number_five 

is equivalent to: 

MOV AL,5 

Section 2.6 describes operators and their effects on numbers 
and number symbols. 

2.6 Operators 

AS M - 8 6 0 per a tor s fall into the follow i n 9 cat ego r i e s : 
arithmetic, logical, and relational operators, segment override, 
variable manipulators and creators. Table 2-5 defines ASM-86 
operators. In this table, a and b represent two elements of the 
expression. The validity column defines the type of operands the 
operator can manipulate, using the or bar character, " to separate 
alternatives. 

Table 2-5. ASM-86 Operators 

Syntax Result Validity 

Logical Operators 
.', 

a XOR b bit-by-bit logical EXCLUSIVE a, b = n~er 
OR of a and b. 

a OR b bit-by-bit loqical OR of a a, b = number 
and b. 

a AND b bit-by-bit logical .AND of a a, b = number 
and b. 

NOT a logical inverse of a: all O""s a = 16-bit 
become l""s, l""s become O""s. number 

All Information Presented Here is Proprietary to Digital Research 

12 



CP/M-86 Programmer~s Guide 2.6 Operators 

Table 2-5. (continued) 

Syntax Result Validity 

Relational Operators 

a EO b returns OFFFFH if a = b,· a,b = 
otherwise O. unsigned number 

a LT b returns OFFFFH if a < b, a, b = 
otherwise O. unsigned number 

a LE b returns OFFFFH if a <= b, a, b = 
otherwise O. unsigned number 

a GT b returns OFFFFH if a > b, a, b = 
otherwise O. unsigned number 

a GE b returns OFFFFH if a >= b a, b = 
otherwise O. unsigned number 

a NE b returns OFFFFH if a <> b, a, b = 
otherwise O. unsigned number 

Arithmetic Operators 

a + b arithmetic sum of a and b. a = variable, 
1.abel or number 
b = number 

a - b arithmetic difference of a = variable, 
a and b. label or number 

b = number 

a * b does unsigned multiplication a, b = number 
of a and b. 

a / b does unsigned division of a a, b = number 
and b. 

a MOD b returns remainder of a / b. a, b = number 

a SHL b returns the value which a, b = number 
results from shifting a to 
left by an amount b. 

a SHR b returns the value which a, b = number 
results from shifting a to 
the right by an amount b. 

+ a gives a. a = number 

- a gives 0 - a. a = number 

All Information Presented Here is Propri.etary to Diqital Research 

13 



CP/M-86 Programmer~s Guide 

Syntax 

<seg reg>: 
<addr exp> 

SEG a 

OFFSET a 

TYPE a 

LENGTH a 

LAST a 

a PTR b 

.a 

$ 

Table 2-5. (continued) 

Result 

Segment OVerride 

overrides assembler~s choice 
of segment register. 

Variable Manipulators, Creators 

creates a number whose value 
is the segment value of the 
variable or label a. 

creates a number whose value 
is the offset value of the 
variable or label a. 

creates a number. If the 
variable a is of type BYTE, 
WORD or DWORD, the value of 
the number will be 1, 2 or 4, 
respectively. 

creates a number whose value 
is the LENGTH attribute of 
the variable a. The length 
attribute is the number of 
bytes associated with the 
variable. 

if LENGTH a > 0, then LAST a 
= LENGTH a - I; if LENGTH a = 
0, then LAST a = O. 

creates virtual variable or 
label with type of a and 
attributes- of b 

creates variable with an 
offset attribute of a. 
Segment attribute is current 
segment. 

creates label with offset 
equal to current value of 
location counter: segment 
attribute is current 
segment. 

2.6 Operators 

Validity 

<seg reg> = 
CS, DS, SS 
or ES 

a = label I 
variable 

a = label I 
variable 

a = label I 
variable 

a = label I 
variable 

a = label I 
variable 

a = BYTE I 
WORD, I DWORD 
b = <addr exp> 

a = number 

no argument 

All In(ormation Presented Here is Proprietary to Digital Research 

14 



CP/M-86 Programmer's Guide 2.6 Operators 

2.6.1 Operator Examples 

Log ica 1 operators accept only numbers as operands. 
perform the boolean logic operations AND, OR, XOR, and NOT. 
example: 

OOFC 
0080 

0000 B180 
0002 B003 

MASK EQU 
SIGNBIT EQU 

MOV 
MOV 

OFCH 
80H 
CL,MASK AND SIGNBIT 
AL,NOT MASK 

"rhey 
For 

Relational operators treat all operands as unsigned numbers. 
The relational operators are EQ (equal), LT (less than), LE (less 
than or equal), GT (greater than), GE (greater than or equal), and 
NE (not equal). Each o~erator compares two operands and returns all 
ones (OFFFFH) if the specified relation is true and all zeros if it 
is not. For example:·· 

OOOA 
0019 

0004 B8FFFF 
0007 B80000 

LIt.~ITl EQU 
LIMIT2 EQU 

MOV 
MOV 

10 
25 

AX,LIMITI LT LIMlrr2 
AX,LIMITI GT LIMIT2 

Addition and subtraction operators compute the arithmetic sum 
and difference of two operands. The first operand may be a 
variable, label, or number, but the second operand must be a number. 
When a number is added to a variable or label, the result is a 
variable or label whose offset is the numeric value of the second 
operand plus the offset of the first operand. Subtraction from a 
variable or label returns a variable or label whose offset is that 
of first operand decremented by the number specified in the second 
operand. For example: 

0002 
0005 

OOOA FF 

OOOB 2EAOOBOO 
OOOF 2E8AOEOFOO 
0014 B303 

COUNT 
DISPI 
FLAG 

EQU 
EQU 
DB 

.MOV 
MOV 
MOV 

2 
5 
OFFH 

AL,FLAG+l 
CL,FLAG+DISPI 
BL,DISPI-COUNT 

The multiplication and division operators *, I, MOD, SHL, and 
SHRaccept only numbers as operands. * and / treat all operators as 
unsigned numbers. For example: 

0016 BES500 
0019 B310 

0050 
OOlB B8AOOO 

MOV 
MOV 

BUFFERSIZE 
MOV 

SI,256/3 
BL,64/4 
EQU 80 
AX,BUFFERSIZE * 2 

All Information Presented Here is Proprietary to Digital Research 

15 



CP/M-86 Programmer"'"s Guide 2.6 Operators 

Unary operators accept both signed and unsigned operators as 
shown below: 

OOIE Bl23 
0020 'B007 
0022 B2F4 

MOV 
1'10V 
MOV 

CL,+35 
AL,2--5 
DL,-12 

When manipulating variables, the assembler decides which 
segment register to use. You may override the assembler"'"s choice by 
sp~cifying a different register with the segment override operator. 
The syntax for the override operator is <segment register> 
<address expression> where the <segment register> is CS, DS, ss, or 
ES. For example: 

0024 368B4720 
0028 268BOE5BOO 

. MOV 
MOV 

AX,SS:WORDBUFFER[BXl 
CX,ES:ARRAY 

A variable manipulator creates a number equal to one attri.bute 
of its variable operand. SEG extracts the variable"'"s segment value, 
OFFSET its offset value, TYPE its type value (1, 2, or 4), and 
LENGTH the number of bytes associated with the variable. LAST 
compares the var iable~ s LENGTH wi th 0 and if greater, then 
decrements LENGTH by one. If LENGTH equals 0, LAST leaves it 
unchanged. Variable manipulators accept only vari.ables as 
operators. For example: 

002D 000000000000 WORDBUFFER 
0033 0102030405 BUFFER 

0038 B80500 
003B B80400 
003E B80l00 
0041 B80200 

MOV 
MOV 
MOV 
MOV 

OW 
DB 

0,0,0 
1,2,3,4,5 

AX,LENGTH BUFFER 
AX,LAST BUFFER 
AX,TY1?E BUFFER 
AX,TYPE WORDBUFFER 

The PTR operator creates a virtual variable or label, one valid 
only during the execution of the instruction. It makes no chanqes 
to either of its operands. The temporary symbol has the same Type 
attribute as the left operator, and all other attributes of the 
right operator as shown below. 

0044 C60705 
0047 8A07 
0049 FF04 

MOV 
MOV 
INC 

BYTE PTR [BX], 5 
AL,BYTE PTR [BX] 
WORD PTR [SI] 

The Period operator, ., creates a variable in the current data 
segment. The new var i,able has a segment attr ibute equal to the 
current data segment and an offset attribute equal to its operand. 
Its operand must be a number. For example: 

004B AlOOOO 
004E 268BlE0040 

MOV 
MOV 

AX, .0 
BX, ES: .4000H 

All Information Presented Here is Proprietary to Digital Research 

16 



CP/M-86 Programmer's Guide 2.6 Operators 

The Dollar-sign operator, $, creates a label- with an offset 
attribute equal to the current value of the location counter. The 
label's segment value is the same as the current code segment. This 
operator takes no operand. For example: 

2.6.2 

0053 E9FDFF 
0056 RBFE 
0058 E9FD2F 

Operator Precedence 

JMP 
JMPS 
JMP 

$ 
$ 
$+3000H 

Expressions combine variables, labels or numbers with 
operators. ASM-86 allows several kinds of eX1;>ressions which are 
discussed in Section 2.7. This section defines the order in which 
operations are executed should more than one operator appear in an 
expression. 

In general, ASM-86 evaluates expressions left to right, but 
operators with higher precedence are evaluated before operators with 
lower precedence. When two operators have equal precedence, the 
left-most is evaluated first. Table 2-6 presents ASM-86 operators 
in order of increasing precedence. 

Parentheses can override normal rules of precedence. The part 
of an expression enclosed in parentheses is evaluated first. If 
parentheses are nested, the innermost expressions are evaluated 
first. Only five levels of nested parentheses are legal. For 
example: 

15/3 + 18/9 = 5 + 2 = 7 
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3 

All Information Presented Here is Proprietary to Digital Research 

17 



CP/M-86 Programmer~s Guide 2.6 Operators 

Table 2-6. Precedence of Operations in ASM-86 

Order I Operator Type 

1 Logical 

2 Logical 

3 Logical 

4 Relational 

5 Addition/subtraction 

6 Multiplication/division 

7 Unary 

8 Segment override 

9 Variable manipulators, 
creators 

10 Parentheses/brackets 

11 Period and Dollar 

2.7 Expressions 

1 Operators 

XOR, OR 

AND 

NOT 

EO, LT, T..IE, GT, 
GE, N'E 

+, -
*, /, MOD, SHL, 

SHR 

+, -

<segment override>: 

SEG, OFFSET, P~R, 

TYPE, LENGTH, LAST 

) , 

., $ 

ASM-86 allows address, numeric, and bracketed expressions. An 
address expression evaluates to a m.emory address and has three 
components: 

• A segment value 
• An offset value 
• A type 

Both variables and labels are address expressions. An address 
expression is not a number, but its components are. Numbers may be 
combined with operators such as PTR to make an address expression. 

A numer ic expression evaluates to a number. It does not 
contain any variables or labels, only numbers and operands. 

Bracketed expressions specify base- and index- addressinq 
modes. The base registers are BX and BP, and the index reqisters 
are DI and 81. A bracketed expression may consist of. a base 
register, an index register, or a base reqister and an index 
register. 

All Information Presented Here is Proprietary to Diqital Research 

18 



CP!M-86 Programmer~s Guide 2.7 Expressions 

Use the + operator between a base register and an index register to 
specify both base- and index-register addressing. For example: 

MOV variable[bx] ,0 
MOV AX, [BX+DI] 
MOV AX, [SI] 

2.8 Statements 

Just as "tokens" in this assembly language correspond to words 
in English, so are statements analogous to sentences. A statement 
tells ASM-86 what action to perform. Statements are of two types: 
instructions and directives. Instructions are translated by the 
assembler into 8086 machine language instructions. Directives are 
not translated into machine code but instead direct the assembler to 
perform certain clerical functions. 

Terminate each assembly language statement with a carriage 
return (CR) and line feed (LF), or with an exclamation point, !, 
which ASM-86 treats as an end-of-line except in comments. Mul tiT;>le 
assembly language statements can be written on the same physical 
line if separated by exclamation points. 

The ASM.-86 instruction set is defined in Section 4. The syntax 
for an instruction statement is: 

[label: ] [prefix] mnemonic [ 0p.erand(s)] [icomment] 

where the fields are defined as: 

label: 

prefix 

mnemonic 

A symbol followed by":" defines a label at the current 
value of the location counter in the current segment. 
This field is optional. 

Certain machine instructions such as LOCK and REP may 
prefix other instructions. This field is optional. 

A symbol defined as a machine instruction, either bv the 
assembler or by an EQU directive. This field is optional 
unless preceded by a prefix instructi.on. If it is 
omitted, no operands maybe present, although the other 
fields may appear. ASM-86 mnemonics are def ined in 
Section 4. 

All Information Presented Here is Proprietary to Digital Research 

19 



CP/M-86 Programmer~s Guide 2.8 Statements 

operand(s) 

comment 

An instruction mnemonic may require other symbols to 
represent operands to the instruction. Instructions may 
have zero, one or two operands. 

Any semicolon (:) appearing outside a character string 
begins a comment, which is ended by a carriage return. 
Comments improve the readability of programs. This field 
is optional. 

ASM-86 directives are descr ibed in Sect ion 3. The syntax for a 
directive statement is: 

[name] directive operand (s) [:comment] 

where the fields are defined as: 

name 

directive 

operand(s) 

comment 

Unlike the label field of an instruction, the name field 
of a directive is never terminated with a colon. 
Directive names are legal for only DB, DW, DD, RS and 
EQU. For DB, DW, DD and RS the name is optional: for EQU 
it is required. 

One of the directive keywords defined in Section 3. 

Analogous to the operands to the instruction mnemonics. 
Some directives, such as DB, DW, and. DO, allow any 
operand while others have special requirements. 

Exactly as defined for instruction statements. 

/Al1 Information Presented Here is Proprietary to Digital Research 

20 



3.1 Introduction 

Section 3 
Assembler Directives 

Directi.ve statements cause AS~-86 to perform housekeeping 
functions such as assigning portions of code to logical segments, 
requesting conditional assembly, defining data items, and specifying 
listing file format. General syntax for directive statements 
appears in Section 2.8. 

In the sections that follow, the specific syntax for each 
directive statement is given under the heading and before the 
explanation. These syntax lines use special symbols to represent 
possible arguments and other alternatives. Square brackets, [], 
enclose optional arguments. Angle brackets, <>, enclose 
descriptions of user-supplied arguments. no not include these 
symbols when coding a directive. 

3.2 Segment Start Directives 

At run-time, every 8086 memory reference must have a l6-bit 
segment base value and a l6-bi t offset value. These are combined to 
produce the 20-bit effective address needed by the CPU to physically 
address the location. The 16-bit segment base value or boundary is 
contained in one of the segment registers CS, DS, ss, or ES. The 
offset value gives the offset of the memory reference from the 
segment boundary. A l6-byte physical segment is the smallest 
relocatable unit of memory. 

ASM-86 predefines four logical segments: the Code Segment, Data 
Segment, Stack Segment, and Extra Segment, which are respectively 
addressed by the CS, OS, SS, and ES registers. Future versions of 
ASM-86 will support additional segments such as multiple data or 
code segments. All ASM-86 statements must be assigned to one of the 
four currently supported seqments so that they can be referenced by 
the cpu. A segment directive statement, CSEG, DSEG, SSEG, or ESEG, 
specifies that the statements following it belong to a specific 
segment. The statements are then addressed by the corresponding 
segment register unless a segment override is included with the 
instruction. ASM-86 assigns statements to the specified segment 
until it encounters another segment directive. 

Instruction statements must be assigned to the Code Segment. 
Directive statements may be assigned to any segment. ASM-86 uses 
these assignments to change from one segment register to another. 
For example, when an instruction accesses a memory variable, ASM-86 
must know which segment contains the variable so it can generate a 
segment override prefix byte if necessary. 

All' Information Presented Here is Propr ietary to Dig i tal Research 

21 



CP/M-86 Programmer~s Guide 

3.2.1 The CSEG Directive 

CSEG 
CSEG 
CSEG 

<numeric expression> 

$ 

3.2 Segment Start Directives 

This directive tells the assembler that the followinq 
statements belong in the Code Segment. All instruction statements 
must be assigned to the Code Segment. All directive statements are 
legal within the Code Segment. 

Use the first form when the location of the segment is known at 
assembly time: the code generated is not relocatable. Use the 
second form when the segment locat ion is not known at assembly time; 
the code generated is relocatable. Use the third form to continue 
the Code Segment after it has been interru~ted by a DSEG, SSEG, or 
ESEG directive. The continuing Code Segment starts with the same 
attributes, such as location and instruction pointer, as the 
previous Code Segment. -

3.2.2 The DSEG Directive 

DSEG 
DSEG 
DSEG 

<numeric expression> 

$ 

This directive specifies that the following statements belong 
to the Data Segment. The Data Segment primarily contains the data 
allocation directives DB, DW, DO and RS, but all other directive 
statements are also legal. Instruction statements are illegal in 
the Data Segment. 

Use the first form when the location of the segment is known at 
assembly time; the code generated is not relocatable. Use the 
second form when the segment location is not known at assembly time: 
the code generated is relocatable. Use the third form to continue 
the Data Segment after it has been interrupted by a CSEG, SSEG, or 
ESEG directive. The continuing Data Segment starts with the same 
attributes as the previous Data Segment. 

3.2.3 The SSEG Directive 

SSEG 
SSEG 
SSEG 

<numeric expression> 

$ 

The SSEG directive indicates the beginning of source lines for 
the Stack Segment. Use the Stack Segment for all stack operations. 
All directive statements are legal in the Stack Segment, but 
instruction statements are illegal. 

All Information Presented Here is Proprietary to Digital Research 

22 



CP/M-86 Programmer~s Guide 3.2 Segment Start nirectives 

Use the first form when the location of the segment is known at 
assembly time~ the code generated is not relocatable. Use the 
second form when the seqment location is not known at assembly time ~ 
the code generated is ielocatable. Use the third form to c~ntinue 
the Stack Segment after it has been interrupted by a CSEG, DSE~, or 
ESEG directive. The continuing Stack Segment starts with the same 
attributes as the previous Stack Segment. 

3.2.4 The ESEG Directive 

ESEG 
ESEG 
ESEG 

<numeric expression> 

$ 

This directive 
statements are not 
statements are. 

initiates 
legal in 

the Extra Segment. Instruction 
this segment, but all directive 

Use the first form when the location of the segment is known at 
assembly time ~ the code generated is not relocatab1.e. Use the 
second form when the segment location is not known at assembly time~ 
the code generated is relocatable. Use the third form to continue 
the Extra Segment after it has been interrupted by a DSEG, SSEG, or 
CSEG directive. The continuing Extra Segment starts with the same 
attributes as the previous Extra Segment. 

3.3 The ORG Directive 

ORG <numeric expression> 

The ORG directive sets the offset of the location counter in 
the current segment to the value sT;>ecified in the numeric 
expression. Define all elements of the ex?ression before the ORG 
directive because forward references may be ambiguous. 

In most segments, an O~G directive is unnecessary. If no ORG 
is included before the first instruction or data byte in a segment, 
assembly begins at location zero relative to the beginning of the 
segment. A segment can have any number of ORG directives. 

All Information Presented Here is Proprietary to Digital Research 

23 



CP/M-86 Programmer's Guide 3.4 The IF and ENDIF Directives 

3.4 The IF and ENDIF Directives 

IF <numeric expression> 
< source line 1 > 
< source line 2 > 

< source line n > 
ENDIF 

The IF and ENDIF directives allow a group of source lines to be 
included or excluded from the assembly. Use conditional directives 
to assemble several different versions of a sinqle source program. 

When the assembler finds an IF directive, it evaluates the 
numeric expression following the IF keyword. If the expression 
evaluates to a non-zero value, then <source line 1> through <source 
line n> are assembled. If the expression evaluates to zero, then 
all lines are listed but not assem~led. All elements in the numeric 
expression must be defined before they appear in the IF directive. 
Nested IF directives are not legal. 

3.5 The INCLUDE Directive 

INCLUDE <file name> 

This directive includes another ASM-86 fi le in the source text. 
For example: 

INCLUDE EQUALS.A86 

Use INCLUDE when the source program resides in several 
different files. INCLUDE directives may not be nested: a source 
file called by an INCLUDE directive may not contain another INCLUDE 
statement. If <file name> does not contain a file type, the file 
type is assumed to be .A86. If no drive name is specified with <file 
name>, ASM-86 assumes the drive containing the source file. 

3.6 The END Directive 

END 

An END directive marks the end of a source file. Any 
subsequent lines are ignored by the assembler. END is optional. If 
not present, ASM-86 processes the source until it finds an End-Of
File character (lAH). 

All Information Presented Here is Proprietary to Digital Research 

24 



CP/M-86 Programmer~s Guide 3.7 The EOU Directive 

3.7 The BQU Directive 

symbol 
symbol 
symbol 
symbol 

EQU 
EQU 
EQU 
EQU 

<numeric expression> 
<address ex~ression> 
<register> 
<instruction mnemonic> 

The EQU (equate) directive assigns values and attributes to 
user-defined symbols. The required symbol name may not be 
terminated with a colon. The symbol cannot be redefined by a 
subsequent EQU or another directive. Any elements used in numeric 
or ~ddress expressions must be defined before the EQU directive 
appears. 

The first form assigns a numeric value to the symbol, the 
second a memory address. ~he third form assigns a new name to an 
8086 register. The fourth form defines a new instruction (sub)set. 
~he following are examples of these four forms: 

0005 FIVE EQU 2*2+1 
0033 ~EX'1' EQU BUFFER 
0001 COUNTER EQU CX 

MOVVV RQU MOV 

005D 8BC3 MOVVV AX,BX 

3.8 The DB Directive 

[symbol] DB <numeric expression>[,<numeric expression> •• ] 
[symbol] DB <string constant>[,<string constant> ••• ] 

The DB directive defines initialized storage areas in byte 
format. Numeric expressions are evaluated to 8-bit values and 
sequentially placed in the hex output file. String constants are 
placed in the output file according to the rules defined in Section 
2.4.2. A DB directive is the only ASM-86 statement that accepts a 
string constant longer than two bytes. There is no transla.tion from 
lower to upper case within strings. Multiple expressions or 
constants, separated by commas, may be added to the definition, but 
may not exceed the physical line length. 

Use an optional symbol to reference the defined data area 
throughout the program. The symbol has four attr ibutes: the 
Segment and Offset attributes determine the symbol~s memory 
reference, the Type attribute specifies single bytes, and Length 
tells the number of bytes (allocation units) reserved. 

All Information Presented Here is Proprietary to Digital Research 

25 



CP/M-86 Programmer~s Guide 3.8 the DB Directive 

The following statements show DB directives wi.th symbols: 

005F 43502F4n2073 TEXT 
797374656000 

006B El AA 
006C 0102030405 X 

0071 B90COO 

3.9 The DW Directive 

DB 

DB 
DB 

MOV 

~CP/M system~,O 

~a~ + 80H 
1,2,3,4,5 

CX,LENGTH TEXT 

[symbol1 DW <numeric expression>[,<numeric expression> •• ] 
[symboll DW <string constant>[,<string constant> ••• 1 

The DW directive initializes two-byte words of storage. String 
constants longer than two characters are illegal. Otherwise, DW 
uses the same procedure to initialize storage as DB except that the 
low-order byte is stored first,' followed by the high-order byte. 
The following are examples of DW statements: 

0074 0000 CNTR DW 
0076 63C166C169Cl JMPTAB DW 
007C 010002000300 DW 

040005000600 

3.810 The DD Directive 

o 
SUBR1,SUBR2,SUBR3 
1,2,3,4,5,6 

[symbol] DD <numeric expression>[,<numeric expression> •• ] 

The DO directive initializes four bytes of storage. The Offset 
attr ibute of the address expression is stored in the two lower 
bytes, the Segment attribute in the two upper bytes. Otherwise, nn 
follows the same procedure as DB. For example: 

1234 CSEG 

0000 6CC134126FCl LONG JMPTAB 
3412 

0008 72C1341275Cl 
3412 

1234H 

DO ROUTl,ROUT2 

DO ROU'1'3,ROUT4 

All Information Presented Here is Proprietary to Digital Research 

26 



CP/M-86 Programmer~s Guide 3.11 The RS Directive 

3.11 The RS Directive 

[symbol] RS <numeric expression> 

The RS directive allocates storage in memory but does not 
initialize it. The numeric ex~ression gives the number of bytes to 
be reserved. An RS statement does not give a byte attribute to the 
optional symbol. For example: 

0010 BUF RS 80 
0060 RR 4000H 
4060 RS 1 

3.12 The RB Directive 

[symbol] RB <numeric expression> 

The RB directive allocates byte storage in memory without any 
initialization. This directive is identical to the RS directive 
except that it does give the byte attribute. 

3.13 The RW Directive 

[symbol] RW <numeric expression> 

The RW directive allocates two-byte word storage in memory but 
does not initialize it. The numeric expression gives the number of 
words to be reserved. For example: 

4061 
4161 
C161 

BUFF 

3.14 The TITLE Directive 

TITLE <string constant> 

RW 
RW 
RW 

128 
4000H 
1 

ASM-86 prints the string constant defined by a ~ITLE directive 
statement at the top of each printout page in the listing file. The 
title character string should not exceed, 30 characters. Fot:' 
example: 

TITLE ~CP/M monitor~ 

3.15 The PAGESIZE Directive 

PAGESIZE <numeric expression> 

The PAGESIZE directive defines the number of lines to be 
included on each printout page. The default pagesize is 66. 

All Information Presented Here is Propr ietary to Digi tal Rese.arch 

27 



CP/M-86 Programmer~s Guide 3.16 The PAGEWIDTH Directive 

3.16 The PAGEWIDTB Directive 

PAGEWIDTH <numeric expression> 

The PAGEWIDTH directive defines the number of columns printed 
across the page when the listing file is output. The default 
pagewidth 1s 120 unless the listing is routed directly to the 
terminal; then the default pagewidth is 79. 

3.17 The EJECT Directive 

EJECT 

The EJECT directive performs a page eiect during printout. The 
EJECT directive itself is printed on the first line of the next 
page. 

3.18 The SIMFORM Directive 

SIMFORM 

The SIMFORM directive replaces a form-feed (FF) character in 
the print file with the correct number of line-f.eeds (IJF). Use this 
directive when printing out on a printer unable to interpret the 
form-feed character. 

3.19 The NOLIST and LIST Directives 

NOLIST 
LIST 

The NOLIST directive blocks the pr intout of the following 
lines. Restart the listing with a LIST directive. 

All Information Presented Here is Proprietary to Digital Research 

28 



Section 4 
The ASM-86 I nstruction Set 

4.1 Introduction 

The ASM-86 instruction set includes all 8086 machine 
instructi.ons. The general syntax for instruction statements is 
given in Section 2.7. The following sections define the specific 
syntax and required operand types for each instruction, without 
reference to labels or comments. The instruction definitions are 
presented in tables for easy reference. For a more detailed 
descr iption of each instruction, see Intel's MCS-86 Assembly 
I.language Reference Manual. For descriptions of the instruction bi t 
patterns and operations, see Intel's MCS-86 User's Manual. 

The instruction-definition tables present.ASM-86 instruction 
statements as combinations of mnemonics and operands. A mnemonic is 
a symbolic representati.on for an instruction, and its operands are 
its required parameters. Instructions can take zero, one or two 
operands. When two operands are specified, the left operand is the 
instruction's destination operand, and the two operands are 
separated by a comma. 

The instruction-defini tion tables organize ASM-86 instructions 
into functional groups. Within each table, the instructions are 
listed alphabetically. ~able 4-1 shows the symbols used in the 
instruction-definition tables to define operand types. 

Symbol 

numb 

numb8 

acc 

reg 

regl6 

segreg 

Table 4-1. Operand Type Symbols 

I Operand Type 

any NUMERIC expression 

any NUMERIC expression which 
evaluates to an 8-bit number 

accumulator reqister, AX or AL 

any general purpo~e register, 
not segment register 

a 16-bit general purpose register, 
not segment register 

any segment register: CS, OS, SS, 
or ES 

All Information Presented Here is Proprietary to Digital Research 

29 



CP/M-86 Programmer's Guide 4.1 Introduction 

Symbol I 
mem 

simpmem 

mem I reg 

mem I reg16 

label 

lab8 

Table 4-1. (continued) 

Operand Type 

any ADDRESS expression, with or 
without base- and/or index
addressing modes, such as: 

variable 
variable+3 
variable[bx] 
variable[SI] 
variable[BX+SI] 
[BX] 
[BP+DI] 

any ADDRESS expression WITHOUT base
and index- addressinq modes, such as: 

variable 
variable+4 

any expression symbolized by "req" 
or "mem" 

any expression symbolized by 
"mem I reg", but must be 16 bi ts 

any ADDRESS expression which 
evaluates to a label 

any "label" which is within +1- 128 
bytes distance from the instruction 

The 8086 CPU has nine single-bit Flag registers which reflect 
the state of the CPU. The user cannot access these registers 
directly, but can test them to determine the effects of an executed 
instruction ul?on an operand or register. The effects of 
instructions on Flag registers are also described in the 
instruction-definition tables, using the symbols shown in Table 5-2 
to represent the nine Flag registers. 

All Information Presented Here is Proprietary to Oigital Research 

30 



CP!M-86 Programmer~s Guide 4.1 Introduction 

Table 4-2. Flag Register Symbols 

AF Auxiliary-Carry-Flag 
CF Carry-Flag 
OF Direction-Flag 
IF Interrupt-Enable-Flag 
OF Overflow-Flag 
PF Parity-Flag 
SF Sign-Flag 
TF Trap-Flag 
ZF Zero-Flag 

4.2 Data Transfer Instructions 

There are four classes of data transfer operations: general 
purpose, accumulator specific, address-object and flag. Only SAHF 
and POPF affect flag settings. Note in Table 4-3 that if acc = AL, 
a byte is transferred, but if acc = AX, a word is transferred. 

IN 

IN 

LAHF 

LOS 

LEA 

LES 

MOV 

MOV 

Table 4-3. Data Transfer Instructions 

Syntax 

acc,numb81numb16 

acc,OX 

reg16,mem 

reg16,mem 

reg16,mem 

req,memlreg 

memlreg,reg 

I Result 

transfer data from input port given 
by numb8 or numb16 (0-255) to 
accumulator 

transfer data from input port given 
by DX register (O-OFFFFH) to 
accumulator 

transfer SF, ZF, AF, PF, and CF 
flags to the AH register 

transfer the segment part of the 
memory address (DWORD variable) to 
the DS segment register, transfer 
the offset part to a general 
purpose 16-bit register 

transfer the offset of the memory 
address to a (16-bit) register 

transfer the segment part of the 
memory address to the ~s segment 
reqister, transfer the offset part 
to a 16-bit general purpose register 

move memory or register to reqister 

move reqister to memory or register 

All Information Presented Here is Proprietary to Diqital Research 

31 



CP/M-86 Programmer~s Guide 4.2 Data Transfer Instructions 

Table 4-3. (continued) 

Syntax 

MOV mem I reg, numb 

MOV segreg,memlreg16 

MOV memlreg16,segreg 

OUT numb8lnumb16,acc 

OUT DX,acc 

POP memlreg16 

POP segreg 

POPF 

PUSH mem I regl6 

PUSH segreg 

PUSHF 

SAHF 

XCHG reg,memlreg 

XCHG memlreg,reg 

XLAT mem I reg 

I Result 

move immediate data to memory or 
register 

move memory or register to segment 
register 

move segment register to memory or 
register 

transfer data from accumulator 
to output port (0-255) given by 
numb8 or numbl6 

transfer data from accumulator to 
output port (O-OFFFFH) given by DX 
register 

move top stack element to memory or 
register 

move top stack element to segment 
register; note that CS segment 
register not allowed 

transfer top stack element to flags 

move memory or register to top 
stack element 

move segment register to top stack 
element 

transfer flags to top stack element 

transfer the AH register to flags 

exchange register and memory or 
register 

exchange memory or register and 
reqister 

.perform table lookup translation, 
table given by "memlreq", which is 
always BX. Replaces AL with AL 
offset from BX. 

All Information Presented Here is Proprietary to Digital Research 

32 



CP/M-86 Programmer~s Guide 4.3 Arithmetic, Logic, and Shift 

4.3 Arithmetic, Logical, and Shift Instructions 

The 8086 CPU performs the four basic mathematical operations in 
several different ways. It supports both 8- and l6-bit operations 
and also signed and unsigned arithmetic. 

Six of the nine flag bits are set or cleared by most arithmetic 
operations to reflect the result of the operation. Table 4-4 
summarizes the effects of arithmetic instructions on flag bits. 
Table 4-5 defines arithmetic instructions and Table 4-6 logical and 
shift instructions. 

Table 4-4. Effects of Arithmetic Instructions on Flags 

CF is set if the operation resulted in a carry out of 
(from addition) -or a borrow into (from subt"raction) 
the high-order bit of the result; otherwise CF is 
cleared. 

AF is set if the operation resulted in a carry out of 
(from addition) or a borrow into (from subtraction) 
the low-order four bits of the result; otherwise AF 
is cleared. 

ZF is set if the result of the o-peration is zero; 
otherwise ZF is cleared. 

SF is set if the result is negative. 

PF is set if the modulo 2 sum of the low-order eight 
bits of the result of the operation is 0 (even 
parity); otherwise PF is cleared (odd parity). 

OF is set if the operation resulted in an overflow; the 
s i z e of the resul t exceeded the caf;>ac i ty of its 
destination. 

All Information Presented Here is Proprietary to Digital Research 

33 



CP/M-86 

AAA 

AAD 

AAM 

AAS 

ADC 

ADC 

ADC 

ADD 

ADD 

ADD 

CBW 

CWO 

CMP 

CMP 

CMP 

OAA 

DAS 

DEC 

Programmer~s Guide 

Table 

Syntax 

reg,memlreg 

memlreg,reg 

memlreg,numb 

req,memlreg 

memlreg,reg 

mem I reg ,numb 

reg,mem!reg 

memlreg,reg 

memlreg,numb 

mem' reg 

4-5. 

I 

4.3 Arithmetic, Logic, and Shift 

Arithaetic Instructions 

Result 

adjust unpacked BCD (ASCII) for 
addition - adjusts AL 

adjust unpacked BCD (ASCII) for 
division - adjusts AL 

adjust unpacked BCD (ASCII) for 
multiplication -"adjusts AX 

adjust unpacked BCD (ASCII) for 
subtraction - adjusts AL 

add (with carry) memory or 
register to register 

add (with carry) register to memory 
or register 

add (with carry) immediate data to 
memory or register 

add memory or register to register 

add register to memory or register 

add immediate data to memory or 
register 

convert byte in AL to word in AH bv 
sign extension 

convert word in AX to double word 
in DX/AX by sign extension 

compare register with memory or 
register 

compare memory or register with 
register 

compare data constant with memory 
pr register 

decimal ad;ust for addition, 
ad;usts AL 

decimal adjust for subtraction, 
adjusts AL 

subtract 1 from memory or register 

All Information Presented Here is Proprietarv to Diqital Research 

34 



CP/M-86 Programmer~s Guide 4.3 Arithmetic, Logic, and Shift 

Table 4-5. (continued) 

INC 

DIV 

IDIV 

IMUL 

MUL 

NEG 

SBB 

SBB 

SBB 

SUB 

SUB 

SUB 

Syntax 

meml reg 

meml reg 

mem' reg 

meml reg 

mem I reg 

mem I reg 

reg ,mem I reg 

mem I reg, reg 

mem I reg, numb 

reg,memlreg 

mem I reg, reg 

mem I reg, numb 

I Result 

add I to memory or register 

divide (unsigned) accumulator (AX 
or AL) by memory or register. 
If byte results, AL = quotient, AR 
= remainder. If word results, AX = 
quotient, OX = remainder 

divide (signed) accumulator (AX or 
AL) by memory or register -
quotient and remainder stored as in 
DIV 

multiply (signed) memory or 
register by accumulator (AX or 
AL) - if byte, results in AH, AL. 
If word, results in DX, AX 

multiply (unsigned) memory or 
register by accumulator (AX or 
AL) - results stored as in IMUL 

two~s complement memory or 
register 

subtract (with borrow) memory or 
register from register 

subtract (with borrow) register 
from memory or register 

subtract (with borrow) immediate 
data from memory or register 

subtract memory or register from 
register 

subtract register from memory or 
register 

subtract data constant from memory 
or register 

All Information Presented Here is Pro~rietary to Digital Research 

35 



CP/M-86 Programmer~s Guide 4.3 Arithmetic, Logic, and Shift 

Table 4-6. 

Syntax 

AND reg,memlreg 

AND mem!reg,reg 

AND memlreg,numb 

NOT mem! reg 

OR reg,memlreg 

OR mem' reg, reg 

OR memlreg,numb 

RCL mem I reg,1 

RCL memlreg,cL 

RCR memlreg,1 

RCR memlreg,CL 

ROL mem I reg,l 

ROL memlreq,CL 

ROR mem I reg,l 

ROR memlreg,CL 

SAT .. memlreq,l 

I 
Logic and Shift Instructions 

Result 

perform bitwise logical "and" of a 
register and memory register 

perform bitwise logical "and" of 
memory register and register 

perform bitwise logical "and" of 
memory register and data constant 

form ones complement of memory 
or register 

perform bitwise logical "or" of 
a register and memory register 

perform bitwise logical "or" of 
memory register and register 

perform bitwise logical "or" of 
memory register and data constant 

rotate memory or register 1 bit 
left through carry flag 

rotate memory or register left 
through carry flag, number of bits 
given by CL reqister 

rotate memory or register 1 bit 
right through carry flag 

rotate memory or register right 
through carry flag, number of bits 
given by CL register 

rotate memory or register 1 bit 
left 

rotate memory or register left, 
number of bits given by CL register 

rotate memory or register 1 bit 
.right 

rotate memory or register right, 
number of bits given by CL register 

shift memory or register 1 bit 
teft, shift in low-order zero bits 

All Information Presented Here is Proprietary to Digital Research 

36 



CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift 

Table 4-6. (continued) 

Syntax 

SAL memlreg,CL 

SAR memlreg,l 

SAR memlreg,C,L 

SHL memlreg,l 

SHL memlreg,CL 

SHR memlreg,l 

SHR memlreg,CL 

TEST reg,memlreg 

TEST memlreq,reg 

TEST memlreg,numb 

I Result 

shift memory or register left, 
number of bits given by CL 
register, shift in low-order zero 
bits 

shift memory or register 1 bit 
right, shift in high-order bits 
equal to the original high-order 
bit 

shift memory or register right, 
number of bits given by CL 
register, shift in high-order bits 
equal to the original high-order 
bit 

shift memory or register 1 bit 
left, shift in low-order zero bits 
- note that SHL is a different 
mnemonic for SAL 

shift memory or register left, 
number of bits given by CL 
register, shift in low-order zero 
bits - note that SHL is a 
different mnemonic for SAL 

shift memory or register 1 bit 
right, shift in high-order zero 
bits 

shift memory or register right, 
number of bits given by CL 
register, shift in high-order zero 
bits 

perform bitwise logical "and" of a 
register and memory or register 
- set condition flags but do not 
change destination 

perform bitwise logical "and" of 
memory reqister and register - set 
condition flags but do not 
change destination 

perform bitwise logical "and" -
test of memory register and data 
constant - set condition flags 
but do not change destination 

All Information Presented Here is Proprietary to Digital Research 

37 



CP/M-86 Programmer~s Guide 4.3 Arithmetic, Logic, and Shift 

Table 4-6. (continued) 

Syntax 

XOR reg ,mem I reg 

XOR mem I reg, reg 

XOR mem' reg, numb 

4.4 String Instructions 

I Result 

perform bitwise logical "exclusive 
OR" of a register and memory or 
register 

perform bitwise logical "exclusive 
OR" of memory register and register 

perform bitwise logical "exclusive 
OR" of memory register and data 
constant 

String instructions take one or two operands. The operands 
specify only the operand type, determining whether operation is on 
bytes or words. If there are two operands, the source operand is 
addressed by the SI register and the destination operand is 
addressed by the DI register. The DI and SI registers are always 
used for addressing. Note that for string operations, destination 
operands addressed by DI must always reside in the Extra Segment 
(ES) • 

CMPS 

LODS 

MOVS 

SCAS 

STOS 

Table 4-7. String Instructions 

Syntax I 
mem I reg ,mem I reg 

meml reg 

mernlreg,memlreg 

mem I reg 

mem I reg 

Result 

subtract source from destination, 
affect flags, but do not return 
result. 

transfer a byte or word from the 
source operand to the accumulator. 

move 1 byte (or word) from source 
to destination. 

subtract destination operand from 
accumulator (AX or AL), affect 
flags, but do not return result. 

transfer a byte or word from 
accumulator to the destination 
operand. 

All Information Presented Here is Proprietary to Digital Research 

38 



CP/M-86 Programmer's Guide 4.4 String Instructions 

Table 4-8 defines prefixes for string instructions. A prefix 
repeats its string instruction the number of times contained in the 
CX register, which is decremented by I for each iteration. Prefix 
mnemonics precede the string instruction mnemonic in the statement 
line as shown in Section 2.8. 

~able 4-8. Prefix Instructions 

Syntax I 
REP 

REPZ 

REPE 

REPNZ 

REPNE 

Result 

repeat until ex register is zero 

repeat until ex register is zero 
and zero flag (ZF) is not zero 

equal to "REPZ" 

repeat until ex register is zero 
and zer6 flag (ZF) is zero 

equal to "REPNZ" 

4.5 Control Transfer Instructions 

There are four classes of control transfer instructions: 

• calls, ;umps, and returns 
• conditional jumps 
• iterational control 
• interrupts 

All control transfer instructions cause program execution to 
continue at some new location in memory, possibly in a new code 
segment. The transfer may be absolute or depend upon a certain 
condition. Table 4-9 defines control transfer instructions. In the 
definitions of conditional jumps, "above" and "below" refer to the 
relationship between unsigned values, and "greater than" and "less 
than" refer to the relationship between signed values. 

All Information Presented Here is Proprietary to Digital Rese~rch 

39 



CP/M-86 Programmer~s Guide 4.5 Control Transfer Instructions 

Table 4-9. Control Transfer Instructions 

Syntax 

CALL label 

CALL memlregl6 

CALLF label 

CALLF mem 

INT numb8 

INTO 

IRET 

,JA lab8 

I Result 

push the offset address of the next 
instruction on the stack, jump to 
the target label 

push the offset address of the next 
instruction on the stack, jump to 
location indicated by contents of 
specified memory or register 

push CS segment register on the 
stack, oush the offset address of 
the next instruction on the stack 
(after CS), ;ump to the target 
label 

push CS register on the stack, 
push the offset address of the next 
instruction on the stack, jump to 
location indicated by contents of 
specified double word in memory 

push the flag registers (as in 
PUSHF), clear TF and IF flags, 
transfer control with an indirect 
call through anyone of the 256 
interrupt-vector elements - uses 
three levels of stack 

if OF (the overflow flag) is 
set, push the flag registers (as in 
PUSHF), clear TF and IF flags, 
transfer control with an indirect 
call through interrupt-vector 
el.ement 4 (location 10H) . - if the 
OF flag .is cleared, no operation 
takes place 

transfer control to the return 
address saved by a previous 
interrupt operation, restore saved 
flag registers, as well as CS and 
IP - pops three levels of stack 

jump if "not below or equal" or 
"above" ( (CF or ZF)=O ) 

All Information Presented Here is Proprie~ary to:Oigital Research 

40 



CP/M-86 Programmer~s Guide 4.5 Control Transfer Instructions 

Table 4-9. (continued) 

Syntax 

JAE labS 

JB lab8 

JBE lab8 

JC lab8 

JCXZ lab8 

JE lab8 

JG lab8 

JGE lab8 

JL lab8 

JLE lab8 

JMP label 

,JMP mem I reg16 

JMPF label 

JMPS lab8 

JNA lab8 

JNAE lab8 

JNB lab8 

JNBE lab8 

~JNC labS 

I Result 

jump if "not below" or "above or 
equal" ( CF=O ) 

jump if "below" or "not above or 
equal" ( CF=l ) 

jump if "below or equal" or "not 
above" «CF or ZF)=l ) 

same as ",-1B" 

;ump to tarqet label if ex register 
is zero 

jump if "equal" or "zer;o" ( ZF=l 

jump if "not less or equal" or 
"greater" «(SF xor OF) or ZF)=O ) 

jump if "not less" or "greater or 
equal" «SF xor OF)=O ) 

jump if "less" or "not greater or 
equal" «SF xor OF)=l ) 

jump if "less or equal" or "not 
greater" «(SF xor OF) or ZF)=1 

jump to the target label 

;ump to location indicated bv 
contents of specified memory or 
register 

juml? to the target label possibly 
in another code segment 

jump to the target label within +/-
128 bytes from instruction 

same as "JBE" 

same as "JB" 

same as "JAE" 

same as "JA" 

same as ",JNB" 

All Information Presented Here is Proprietary to Digital Research 

41 



CP/M-86 Programmer~s Guide 4.5 Control Transfer Instructions 

Syntax 

JNE labS 

JNG labS 

JNGE labS 

JNL lab8 

JNLE labS 

JNO labS 

JNP labS 

JNS labS 

JNZ labS 

JO labS 

,JP labS 

JPE labS 

JPO labS 

JS labS 

JZ labS 

LOOP labS 

LOOPE labS 

LOOPNE labS 

LOOPNZ labS 

LOOPZ labS 

Table 4-9. (continued) 

I Result 

jump if "not equal" or "not zero" 
( ZF=O ) 

same as "JLE" 

same as "JL" 

same as "JGE" 

same as "JG" 

jump if "not overflow" ( OF=O ) 

jump if "not parity" or "parity 
odd" 

jump if "not sign" 

same as ".JNE " 

jump if "overflow" ( OF=1 ) 

jump if "parity" or "parity even" 
( PF=1 ) 

same as "JP" 

same as "JNP" 

jump if "sign" ( SF=1 ) 

same as "JE" 

decrement ex register by one, jump 
to target label if ex is not zero 

decrement ex register by one, ;ump 
to target label if ex is not zero 
and the ZF flag is set - "loop 
while zero" or "loop while equal" 

decrement ex reqister by one, jump 
.to tarqet label if ex is not zero 
and ZF flag is cleared - "loop 
while not zero" or "loop white not 
equal" 

same as "LOOPNE" 

same as "LOOPE" 

All Information Presented Here is Proprietary to Digital Research 

42 



CP/M-86 Programmer~s Guide 4.5 Control Transfer Instructions 

Syntax 

RET 

RET numb 

RETF 

RETF numb 

Table 4-9. (continued) 

I Result 

return to the return address pushed 
by a previous CALL instruction, 
increment stack pointer by 2 

return to the address pushed by a 
previous CALL, increment stack 
pointer by 2+numb 

return to the address pushed by a 
previous CALLF instruction, 
increment stack pointer by 4 

return to the address pushed by a 
previous CALLF instruction, 
increment stack pointer by 4+numb 

4.6 Processor Control Instructions 

Processor control instructions manipulate the flag registers. 
Moreover, some of these instructions can synchronize the 8086 CPU 
with external hardware. 

CLC 

CLD 

eLI 

CMC 

ESC 

Table 4-10. Processor Control Instructions 

Syntax I 

numb8 ,mem I reg 

Results 

clear CF flag 

clear DF flag, causing string 
instructions to auto-increment the 
ooerand pointers 

clear IF flag, ~isabling maskable 
external interrupts 

complement CF flag 

do no operation other than compute 
the effective address and place it 
on the address bus (ESC is used by 
the 8087 numeric co-processor), 
"numbS" must be i.n the range 0 to 63 

All Information Presented Here is Proprietary to Diqital Research 

43 



CP/M-86 Programmer~s Guide 4.6 Processor Control Instructions 

Table 4-10. (continued) 

Syntax I 
LOCK 

HLT 

STC 

STD 

STI 

WAIT 

Results 

PREFIX instruction, cause the 8086 
processor to assert the "bus-lock" 
signal for the duration of the 
operation caused by the following 
instruction ~ the LOCK prefix 
instruction may precede any other 
instruction - buslock prevents 
co-processors from gaining the bus; 
this is useful for shared-resource 
semaphores 

cause 8086 processor to enter halt 
state until an interrupt is 
recognized 

set CF flag 

set DF flag, causing string 
instructions to auto-decrement the 
operand pointers 

set IF flag, enabling maskable 
external interrupts 

cause the 8086 processor to enter a 
"wait" state if the signal on its 
"TEST" pin is not asserted 

All Information Presented Here is Proprietary to Digital Research 

44 



Section 5 
Code-Macro Facilities 

5.1 Introduction to Code-macros 

ASM-86 does not support traditional assembly-language macros, 
but it does allow the llser to defi.ne his own instructions by using 
the Code-macro directive. Like traditional macros, code-macros are 
assembled wherever they al?pear i.n assembly l.anguaQe code, but there 
the similarity ends. Tt'aditional macros contain assembly language 
instructions, but a code-macro contains only code-macro directives. 
Macros are usuallv defined in the user~s symbol table; ASM-86 code
macros are deffned in the assembler~s· symbol table. A macro 
simplifies using the same block of instructions over and over again 
throughout a program, but a code-macro sends a bit stream to the 
output file and in effect adds a new instruction to the assembler. 

Because ASM-86 treats a code-macro as an instruction, you can 
invoke code-macros by using them as instructions in your program. 
The example below shows how MAC, an instruction defined by a code
macro, can be invoked. 

XCHG·BX,WORD3 
MAC PARI,PAR2 
M.UL AX , WORD 4 

Note that MAC accepts two operands. When MAC was defined, 
these two operands were also classified as to type, size, and so on 
by defining MAC~ s formal parameters. The names of formal parameters 
are not fixed. They are stand-ins which are reo.laced by the names 
or values suppl ied as operands when the code-macro is invoked. Thus 
formal parameters "hold the place" and indicate where and how the 
operands are to be used. 

The definition of a code-macro starts with a line s?ecifying 
its name and its formal parameters, if any: 

CodeMacro <name> [<formal parameter list>l 

where the optional <formal parameter list> i.s defined: 

<formal name>:<so.ecifier letter>[<modifier letter>l [<range>1 

All Information Presented Here is Proprietary to Digital Research 

45 



CP/M-86 Programmer~s Guide 5.1 Introduction to Code-Macros 

As stated above, the formal name. is not fixed, but a place 
holder. If formal parameter list is present, the specifier letter 
is required and the modifier letter is optional. Possible 
specifiers are A, C, D, E, M, R, S, and X •. Possible modifi.er 
letters are b, d, w, and sh. The assembler ignores case except 
within strings, but for clarity, this section shows specifiers in 
upper-case and modifiers in lower-case. Following sections describe 
specifiers, modifiers, and the optional range in detail. 

The body of the code-macro describes the bit pattern and formal 
parameters. Only the following directives are legal within code
macros: 

SEGFIX 
NOSEGFIX 
MODRM 
RELB 
RELl\T 
DB 
DW 
DD 
DBIT 

These directives are unique to code-macros, and those which 
appear to duplicate ASM-86 directives (DB, DW, and DD) have 
different meanings in code-macro context. These directives are 
discussed in detail in later sections. ~he definition of a code
macro ends with a line: 

EndM 

CodeMacro, EndM, and the code-macro directives are a11. reserved 
words. Code-macro definition syntax is defined in Backus-Naur-like 
form in Appendix H. The following examples are typical code-macro 
definitions. 

CodeMacro AAA 
DB 37H 

EndM 

CodeMacro 
SEGFIX 
DB 
MODRM 

EndM 

DIV divisor:Eb 
divisor 
6FH 
divisor 

CodeMacro ESC opcode:Db(O,63) ,src:Eb 
SEGFIX src 
DBIT 5 (lBH) ,3(opcode(3}} 
MODRM opcode,src 

EndM 

All Information Presented Here is Proprietary to Digital Research 

46 



CP/M-86 Programmer~s Guide 5.2 Specifiers 

5.2 Specifiers 

Every formal parameter must have a specifier letter that 
indicates what type of operand is needed to match the formal 
parameter. Table 5-1 defines the eight possible specifier letters. 

~able 5-1. Code-macro Operand Specifiers 

Letter I 
A 

C 

D 

E 

M 

R 

s 

X 

5.3 Modifiers 

Operand Type 

Accumulator register, AX or AL. 

Code, a label expression only. 

Data, a number to be used as an 
immediate value. 

Effective address, either an M 
(memory address) or an R (register). 

Memory address. This can be either 
a variable or a bracketed register 
expression. 

A general register only. 

Segment register only. 

A direct memory reference. 

The optional modifier letter i.s a further requirement on the 
operand. The meaning of the modifier letter depends on the type of 
the operand. For variables, the modifier requires the operand to be 
of type: "b" for byte, "w" for word, "d" for double-word and "sb" 
for signed byte. For numbers, the modifiers require the number to 
be of a certain size: "b" for -256 to 255 and "w" for other numbers. 
Table 5-2 summarizes code-macro modifiers. 

All Information Presented Here is Proprietary to Digital Research 

47 



CP/M.;.86 Programmer~sGuide 5.3 Modifiers 

Table 5-2. Code-macro Operand Modifiers 

Variables Numbers 

Modifier -I Type Modi.fier 1 Rize 

b byte b -256 to 255 

w word w anything else 

d dword 

sb signed 
byte 

5.4 . Range Specifiers 

The optional range is specified within parentheses by either 
one expression or two expressions separated by a comma. The 
following are valid formats: 

(numberb) 
(register) 
(numberb,numberb) 
(numberb,register) 
(register,numberb) 
(register,register) 

Numberb is 8-bi t number, not an address. The following example 
specifies that the input port must be identified by the DX reqister: 

CodeMacro IN dst:Aw,port:Rw(DX) 

The next example specifies that the CL register is to contain the 
"count" of rotation: 

CodeMacro ROR dst:Ew,count:Rb(CL) 

The last example specifies that the "opcode" is to be immediate 
data, and ~ay range from 0 to 63 inclusive: 

CodeMacro ESC opcode:Db(O,63) ,adds:Rb 

All Information Presented Here is Proprietary to Digital Research 

48 



CP/M-86 Programmer~s Guide 5~5 Code-macro Directives 

5.5 Code-macro Directives 

Code-macro directives define the bit pattern and. make further 
requirements on how the operand is to be treated. Directives are 
reserved words, and those tha t appear to dupl icate assembly language 
instructions have d.ifferent meaninqs within a code-macro definition. 
Only the nine directives defined here are legal within code-macro 
definitions. 

5.5.1 SEGFIX 

If SEGFIX is present, :it instructs the assembler to determine 
whether a segment-override prefix byte is needed to access a given 
memory location. If so, it is output as the first byte of the 
instruction. If not, no action is taken. SEGFIX takes the form: 

SEGFIX <formal name> 

where <formal name> is the name of a formal ?arameter which rep
resents the memory address. Because it represents a memory address, 
the formal parameter must have one of the s?ecifiers E, M or X. 

5.5.2 NOSEGFIX 

Use NOSEGFIX for o?erands in instructions that must use the E~ 
register for that operand. This a?plies only to the destination 
operand of these instructions: CMPS, ~10VS, SCAS, STOS. rrhe f.orm of 
NOSEGFIX is: 

NOSEGFIX segreg,<formname> 

where segreg is one of the segment registers ES,eS, SS,or ns and 
<formname> is the name of the memory-address formal l?arameter, which 
must have a -specifier E, M, or X. No code is qenerated from this 
directive, but an error check is performed. The following is an 
example of NOSEGFIX use: 

CodeMacro MOVS si ptr:Ew,di ptr:Ew 
NOSEGFIX ES,di ptr -
SEGFIX si otr 
DB o AsiI 

EndM 

All Information Presented Here is Proprietary to Digital Research 

49 



CP/M-86 Programmer~s Guide 5.5 Code-macro Directives 

5.5.3 MODRM 

This directi.ve intructs the assembler to generate the ModRM 
byte, which follows the opcodebyte in rnanv of the 8086~s 
instructions. The ModRM byte contains either the-indexing type or 
the register number to be used in the instruction. It a'.so 
specifies which register is to be used, or gives more information to 
specify an instruction. 

The ModRM byte carries the information in three fields: The mod 
field occupies the two most significant bits of the byte, and 
combines with the register memory field to form 32 oossible values: 
8 registers and 24 indexing mod~s.-

The reg field occupies the three next bits following the mod 
field. It specifies either a register number or three more bits of 
opcode information. The meaning of the reg field is determined by 
the opcode byte. 

The register memory field occul?ies the last three bits of the 
byte. It specifies a register as the location of an operand, or 
forms a part of the address-mode in combination with the mod field 
described above. 

For further information of the 8086~s instructions and their 
bit patterns, see Intel~s 8086 Assembly Language Programing Manual 
and the Intel 8086 Family User~s Manual. The forms of MODRM are: 

MODRM <form name>,<form name> 
MODR~ NUMBER7,<form name> 

where NUMBER7 is a value 0 to 7 inclusive and <form name> is the 
name of a formal parameter. The following examples show MODRM use: 

CodeMacro 
SEGFIX 
DB 
MODRM 

EndM 

CodeMacro 
SEGFIX 
DB 
MODRM 

EndM 

RCR dst:Ew,count:Rb(~L) 
dst 
003H 
3,dst 

OR dst:Rw,src:Ew 
src 
OBH 
dst,src 

All Information Presented Here is Proprietary to Digital Research 

50 



CP/M-8G Programmer~s Guide 5.5 Code-macro Directives 

5.5.4 RELB and RELW 

These directives, used in IP-relat ive branch instructions, 
instruct the assembler to generate displacement between the end of 
the instruction and the label which is suppli.ed as an oy;>erand. RELB 
generates one byte and RELW two bytes of displacement. The 
directives the following forms: 

RELB <form name> 
RELl'l <form name> 

where <form name> is the name of a formal parameter wi th a "C" 
(code) specifier. For example: 

CodeMacro LOOP place:Cb 
DB OE2H 
RELB place 

EndM 

5.5.5 DB, DW and DD 

These directives di ffer from those which occur outside of code
macros. The form of the directives are: 

DB <form name> 1 NUMBERB 
DW <form name> NUMBERW 
DD <form name> 

where NUMBERB is a single-byte number, NUMBERW is a two-byte number, 
and <form name> is a name of a formal parameter. For example: 

CodeMacro 
SEGFIX 
DB 
MODRM 
DW 

EndM 

XOR dst:Ew,src:Db 
dst 
8lH 
G,dst 
src 

All Information Presented Here is Proprietary to Digital Research 

51 



CP/M-86 Programmer~s Guide 5.5 Code-macro Directives 

5.5.6 DBIT 

This directive manipulates bits in combinations of a byte or 
less. The form is: 

DB.IT <field description>[,<field description>] 

where a <field description>, has two forms: 

<number><combination> 
<number>«form name>«rshift») 

where <number> ranges from 1 to 16, and specifies the number of bits 
to be set. <combination> specifies the desired bit combination. 
The total of all the <number>s listed in the field descriptions must 
not exceed 16. The second form shown above contains <form name>, a 
formal parameter name that instructs the assembler to put a certain 
number in the specified position. This number normally refers to 
the register specified in the first line of the code-macro. The 
numbers used in this special case for each register are: 

AL: a 
CL: 1 
DL: 2 
BL: 3 
AH: 4 
CH: 5 
DH: 6 
BH: 7 
AX: a 
ex: I 
DX: 2 
BX: 3 
SP: 4 
BP: 5 
SI: 6 
DI: 7 
ES: a 
cs: 1 
SS: 2 
DS: 3 

<rshift>, which is contained in the innermost parentheses, 
specifies a number of right shifts~ For example, "0" specifies no 
shift, "1" shifts right one bit, "2" shifts riqht two bits, and so 
on. The definition below uses this form. 

CodeMacro DEC dst:Rw 
DB IT 5 ( 9 H) , 3 (d s t ( 0) ) 

EndM 

All Information Presented Here is Proprietary to Digital Research 

52 



CP!M-86 Programmer~s Guide 5.5 Co~e-macro nirectives 

The first five bits of the byte have the value 9H. If the 
remaining bits are zero, the hex value of the byte will be 48Ft. If 
the instruction: 

DEC DX 

is assembled and OX has a value of 2H, then 48Ft + 2H = 4AR, which is 
the final value of the byte for execution. If this sequence had 
been present in the definition: 

OBIT 5(9H),3(dst(1» 

then the register number would have been shifted right once and the 
result would had been 48H + IH = 49H, which is erroneous. 

All Information 'Presented Here is ProT?rietary to Digital Research 

53 





6.1 DDT-86 Operation 

Section 6 
DDT-86 

The DDT-86™ program allows the user to test and debug programs 
interactively in a CP /M-86 envi. ronment. The reader should be 
familiar with the 8086 processor, ASM-86 and the CP/M-86 operating 
system as described in the CP/M-86 ~ystern Guide. 

6.1.1 Invoking DDT-86 

Invoke DDT-86 by entering one of the following commands: 

DDT86 
DDT86 filename 

The first command simply loads and executes DDT-86. After 
displaying its sign-on message and prompt character, - , nnT-86 is 
ready to accept operator commands. The second command is simi lar to 
the first, except that after DDT-86 is loaded it loads the file 
specified by filename. If the file type is omitted from filename, 
.CMD is assumed. Note that DDT-86 cannot load a file of type .H86. 
The second form of the invoking command is equivalent to the 
sequence: 

A>DDT86 
DDT86 x.x 
-Efilename 

At this point, the program that was loaded is ready for execution. 

6.1.2 DDT-86 Command Conventions 

When DDT-86 is ready to accept a command, it prompts the 
operator with a hyphen, -. In response, the operator can type a 
command line or a CONTROL-C (represented in this chapter as te) to 
end the debugging session (see Section 6.1.4). A command line may 
have up to 64 characters, and must be terminated with a carriage 
return. While entering the command, use standard CP/M line-editing 
functions (tx, tH, tR, etc.) to correct typing errors. DDT-86 does 
not process the command line until a carriage return is entered. 

The fi rst character of each command line determines the command 
action. Table 6-1 summarizes DDT-86 commands. DDT-86 commands are 
defined individually in Section 6.2. 

All Information Presented Here is Proprietary to Digital Research 

55 



CP/M~86 Programmer~s Guide 6.1 DDT-86 Operation 

Tab1e 6-1. DDT-86 Command Summary 

Command 

A 
D 
E 
F 
G 
H 
I 
L 
M 
R 
S 
T 
U 
V 
W 
X 

I Action 

enter assembly language statements 
display memory in hexadecimal and ASCII 
load program for execution 
fill memory block with a constant 
begin exec~tion with optional breakpoints 
hexadecimal arithmetic 
set up file control block and command tail 
list memory using 8086 mnemonics 
move memory block 
read disk file into memory 
set memory to new values 
trace program execution 
untraced program monitoring 
show memory layout of disk file read 
write contents of memory block to disk 
examine and modify CPU state 

The command character may be followed by one or more arguments, 
which may be hexadecimal values, file names or other information, 
depending on the command. Arguments are separated from each other 
by commas or spaces. No spaces are allowed between the command 
character and the first argument. 

6.1.3 Specifying a 20-Bit Address 

Most ODT-86 commands require one or more addresses as operands. 
Because the 8086 can address up to 1 megabyte of memory, addresses 
must be 20-bit values. Enter a 20-bit address as follows: 

ssss:oooo 

where ssss re~resents an optional 16-bit segment number and 0000 is 
a 16-bit offset. DDT-86 combines these values to produce a 20-bit 
effective address as follows: 

ssssO 
+ 0000 

eeeee 

The optional value ssss may be a 16-bit hexadecimal value or 
the name of a segment register. If a segment register name is 
specified, the value of ssss is the contents of that register in the 
user ~ s CPU state, as displayed by the X command. If omi tted, a 
default value appropriate to the command being executed is used as 
described in Section 6.4. 

All Information Presented Here is Proprietary to Digital Research 

56 



CP/M-86 Programmer~s Guide 6.1 DDT-86 Operation 

6.1.4 Terminating DDT-86 

Terminate DDT-86 by typing a tc in response to the hyphen 
prompt. This returns control to the CCP. Note that CP/~-86 does 
not have the SAVE facility found in CP/M for 8-bit machines. Thus 
if DDT-86 is used to patch a file, write the file to disk usi.ng the 
W command before exiting DDT-a6. 

6.1.5 DDT-86 Operation with Interrupts 

DDT-86 operates with interrupts enabled or disabled, and 
preserves the interrupt state of the program being executed under 
DDT-86. When DDT-86 has control of the ~PU, either when it is 
initially invoked, or when it regains control from the program being 
tested, the condition of the interrupt flag is the same as it was 
when DD~-86 was invoked, except for a few critical regions where 
interrupts are disabled. While the program being tested has control 
of the CPU, the user~s CPU state determines the state of the 
interrupt flag. 

6.2 DDT-86 Commands 

This section defines DDT-86 commands and their arguments. ODT-
86 commands give the user control of program execution and allow the 
user to display and modify system memory and the CPU state. 

6.2.1 The A (Assemble) Command 

The A command assembles 8086 mnemonics directly into memory. 
The form is: 

As 

where s is the 20-bit address where assembly is to start. DDT-86 
responds to the A command by displaying the address of the memory 
location where assembly is to begin. At this point the operator 
enters assembly language statements as described in ~ection 4 on 
Assembly Language Syntax. When a statement is entered, nOT-86 
converts it to machine code, places the value(s) in memory, and 
displays the address of the next available memory location. This 
process continues until the user enters a blank line or a line 
containing only a period. 

DDT-86 responds to invalid statements by displayinq a question 
mark, ? , and redisplaying the current assembly address. 

All Information Presented Here is Proprietary to Digital Research 

57 



CP/M-86 Programmer"-s Guirle 6.2 nnT-86 Commands 

6.2.2 The D (Display) Command 

The D command displays the contents of memory as 8-bit ot' 16-
bit hexadecimal values and in ASCII. The forms are: 

J) 

Ds 
ns,f 
DW 
DWs 
DWs,f 

where s is the 20-bit address where the display is to start, and f 
is the 16-bit offset within the segment specified in s where the 
display is to finish. 

Memory is displayed on one or more display lines. Each display 
line shows the values of up to 16 memory locat ions. For the first 
three forms, the display line appears as follows: 

ssss:oooo bb bb • bb cc • • • c 

where ssss is the segment being displayed and 0000 is the offset 
within segment ssss. The bb"-s re~resent the contents of the memory 
locations in hexadecimal, and the c"-s represent the contents of 
memory in ASCII. Any non-graphi.cASCII characters are represented 
by periods. 

In response to the first form shown above, DDT-86 displays 
memory from the current disl?lay address for 12 display ].ines. The 
response to the second form is similar to the first, except that the 
display address is first set to the 20-bit address s. The third 
form displays the memory block between locations sand f. The next 
three forms are analogous to the first three, exceo.t that the 
contents of memory are displayed as 16-bi t values, rather than 8-bi t 
values, as shown below: 

ssss:oooo wwww wwww ••• wwwwcccc ••• cc 

nuring a long display, the D command may be aborted by typinq 
any character at the console. 

6.2.3 The E (Load for Execution) Command 

The E command loads a file into memory so that a subsequent G, 
T or U command can begin program execution. The E command takes the 
form: 

E<filename> 

where <filename> is the name of the file to be loaded. If no file 
type is specified, .C~l) is assumed. The contents of the user 
segment registers and IP register are al tered according to the 
information in the header of the file loaded. 

All Information Presented Here is Proprietary to Digital ~esearch 

58 



CP/M-86 Programmer~s Guide 6.2 nD~-86 Commands 

An E command releases any blocks of memory allocated by any 
previous E or R commands or by programs executed under nOT-86. Thus 
only one file at a time may be loaded for execution. 

When the load is complete, DDT-86 displays the start and end 
addresses of each segment in the file loaded. Use the V command to 
redisplay this information at a later time. 

If the file does not exist or cannot be successfully loaded in 
the available memory, DDT-86 issues an error messaqe. 

6.2.4 The F (Fill) Command 

. The F command fills an area of memory wi th a byte or word 
constant. The forms are: 

Fs,f,b 
FWs,f,w 

where s is a 20-bit starting address of the block to be filled, and 
f is a l6-bit offset of the final byte of the block within the 
segment specified in s. 

In response to the first form, nDT-86 stores the a-bit value b 
in locations s through f. In the second form, the l6-bit value w is 
stored in locations s through f in standard form, low 8 bits first 
followed by high 8 bits. 

If s is greater than f or the value b is greater than 255, DDT-
86 responds with a question mark. DDT-86 issues an error message if 
the value stored in memory cannot be read back successfully, 
indicating faulty or non-existent RAM at the location indicated. 

6.2.5 The G (Go) Command 

The G command transfers control to the program being tested, 
and optionally sets one or two breakpoints. The forms are: 

G 
G,bl 
G,bl,b2 
Gs 
Gs,bl 
Gs,bl,b2 

where s is a 20-bit address where program execution is to start, and 
bl and b2 are 20-bit addresses of breakpoints. If no segment value 
is supplied for any of these three addresses, the segment value 
defaults to the contents of the CS register. 

All Information Presented Here is Proprietary to Digital Research 

59 



CP/M-86 Programrner~s Guide 6.2 nDT-86 Commands 

In the first three forms, no starting address is specified, so 
DDT-86 derives the 20-bit address from the user~s CS and IP 
registers. The first form transfers control to the user~s proqram 
without settinq any breakpoints. The next two forms respectively 
set one and two breakpoints before passing control to the user~s 
program. The next three forms are analogous to the first three, 
except that the user~s CS and IP registers are first set to s. 

Once control has been transferred to the program under test, it 
executes in real time until a breakpoint is encountered. At this 
point, DDT-86 regains control, clears all breakpoi.nts, and indicates 
the address at which execution of the program under test was 
interrupted as follows: 

*ssss:oooo 

where ssss corresponds to the CS and 0000 corresponds to the IP 
where the break occurred. When a breakpoint returns control to DDT-
86, the instruction at the breakpoint address has not yet been 
executed. 

6.2.6 The H (Hexadecimal Math) Command 

The H command computes the sum and difference of two 16-bit 
values. The form is: 

Ha,b 

where a and b are the values whose sum and difference are to be 
computed. DDT-86 displays the sum (ssss) and the difference (dddd) 
truncated to 16 bits on the next line as shown below: 

ssss dddd 

6.2.7 The I (Input Command Tail) Command 

'('he I command prepares a file control block and command tail 
buffer in DDT-86~s base page, and copies this information into the 
base page of the last file loaded with the E command. The form is: 

I<command tail> 

where <command tail> is a character strinq which usually contains 
one or more filenames. The first fi lename is parsed into the 
default file control block at 0~5CH. The optional second filename 
(if specified) is parsed into the second part of the default file 
control block beginning at 006CH. The characters in <command tail> 
are also copied into the default command buffer at 0080H. The 
length of <command tail> is stored at 0080H, followed by the 
character string terminated with a binary zero. 

All Information Presented Here is Proprietary to Digital Research 

60 



CP/M-86 Programmer~s Gui.de 6.2 DDT-86 Commands 

If a file has been loaded with the E command, DDT-86 copies the 
file control block and command buffer from the base page of DDT-86 
to the base page of the program loaded. The J.ocation of DDT-86~s 
base page can be obtained from the SS register in the user~s CPU 
state when DDT-86 is invoked. The location of the base page of a 
program loaded with the E command is the value displayed for DS upon 
completion of the program load. 

6.2.8 The L (List) Command 

The 
language. 

L 

L command 
The forms 

Ls 
Ls,f 

lists 
are: 

the contents of memory in assembly 

where s is a 20-bit address where the list is to start, and f is a 
16-bit offset within the segment specified in s where the list is to 
finish. 

The first form lists twelve lines of disassembled machi.ne code 
f rom the current list address. The second form sets the list 
address to s and then lists twelve lines of code. ~he last form 
lists disassembled code from s through f. In all three cases, the 
list address is set to the next unlisted ~ocation in preparation for 
a subsequent L command. When DDT-86 regains control from a program 
being tested (see G, 'r and U commands), the list address i.s set to 
the current value of the CS and IP registers. 

Long displays mav be aborted by typing any key during the list 
process. Or, enter ts to halt the display temporarily. 

The syntax of the assembly language statements produced by the 
I .. command is described i.n Section 4. 

6.2.9 The M (Move) Command 

The M command moves a block of data values from one area of 
memory to another. The form is: 

Ms,f,d 

where s is the 20-bi t starting address of the block to be moved, f 
is the offset of the final byte to be moved wi.. th in the segment 
described by s, and d is the 20-bit address of the first byte of the 
area to receive the data. If the segment is not specified in d, the 
same value is used that was used for s. Note that if d is between s 
and f, part of the block being moved will be overwritten before it 
is moved, because data is transferred starting from location s. 

All Information Presented Here is Proprietary to Digital Research 

61 



CP/M-86 Programmer~s Guide 6.2 nDT-86 Commanos 

6.2.10 The R (Read) Command 

The R command reads a file into a contiguous block of memory. 
The form is: 

R<filename> 

where <filename> is the name and type of the file to be read. 

DDT-86 reads the file into memory and oisplays the start and 
end addresses of the block of memory occupied by the file. A V 
command can redisplay this information at a later time. The default 
display pointer (for subsequent D commands) is set to the start of 
the block occupied by the file. 

The R command does not free any memory previously allocated by 
another R or E command. Thus a number of files may be read into 
memory without overlapping. The number of files which may be loaded 
is limited to seven, whi.ch is the number of memory allocations 
allowed by the BOOS, minus one for nOT-86 itself. 

If the file does not exist or there is not enough memory to 
load the file, DDT-86 issues an error message. 

6.2.11 The S (Set) Command 

The S command can chanqe the contents of bytes or words of 
memory. The forms are: 

Ss 
SWs 

where s is the 20-bit address where the change is to occur. 

DDT-86 displays the memory address and its cur~ent contents on 
the following line. In response to the first form, the display is: 

ssss:oooo bb 

and in response to the second form 

SSS8:0000 wwww 

where bb and wwww are the contents of memory in byte and word 
formats, respectively. 

In res~onse to one of the above displays, the operator may 
choose to alter the memory location or to leave it unchanged. If a 
valid hexadecimal value is entered, the contents of the byte (or 
word) in memory is replaced wi th the value. If no value is entered, 
the contents of memory are unaffected and the contents of the next 
address are displayed. In either case, DDT-86 continues to display 
successive memory addresses and values until either a period or an 
invalid value is entered. 

All Information Presented Here is Pro?rietary to Digital Research 

62 



CP/M-86 Programmer's Guide 6.2 DDT-86 Commands 

DDT-86 issues an error message if the value stored in memory 
cannot be read back successfully, indicating faulty or non-existent 
RAM at the location indicated. 

6.2.12 The T (Trace) Command 

~he T command traces program execution for 1 to OFFFFH proqram 
steps. The forms are: 

'T' 
Tn 
TS 
TSn 

where n is the number of instructions to execute before returninq 
control to the console. 

Before DDT-86 traces an instruction, it displays the current 
CPU state and the disassembled instruction. In the first two forms, 
the segment registers are not displayed, which allows the entire CPU 
state to be displayed on one line. The next two forms are analogous 
to the first two, except that all the registers are displayed, which 
forces the disassembled instruction to be displayed on the next line 
as in the X command. - .- , 

In all of the forms, control transfers to the program under 
test at the address indicated by the CS and IP registers. If n is 
not spec ified, one instruction is executed. Otherwise DDT-86 
executes n instructions, displaying the CPU state before each steT;>. 
A long trace may be aborted before n steps have been executed by 
typing any character at the console. 

After a T command, the list address used in the L command is 
set to the address of the next instruction to be executed. 

Note that DDT-86 does not trace through a BOOS interrupt 
instruction, since DDT-86 itself makes BDOS calls and the Bnos is 
not reentrant. Instead, the entire sequence of instructions from 
the BDOS interrupt through the return from BOOS is treated as one 
traced instruction. 

All Information Presented Here is Proprietary to Digital Research 

63 



CP!M-86 Programmer~s Guide 6.2 DDT-86 Commands 

6.2.13 The U (Untrace) Command 

The U command is identical to the T command except that the CPU 
state is displayed only before the first instruction is executed, 
rather than before every step. The forms are: 

U 
Un 
US 
USn 

where n is the number of instructions to execute before returning 
control to the console. The U command may be aborted by striking 
any key at the console. 

6.2.14 The V (Value) Command 

The V command displays information about the last file loaded 
with the E or R commands. The form is: 

V 

If the last file was loaded wi th the E command, the "'i.T command 
displays the start and end addresses of each of the segments 
contained in the file. If the last file was read with the R 
command, the V command displays the start and end addresses of the 
block of memory where the file was read. If. neither the R nor E 
commands have been used, DDT-86 responds to the V command with a 
question mark, ? 

6.2.15 The W (Write) Command 

The W command wr i tes the contents of a contiguous block of 
memory to disk. The forms are: 

W<filename> 
W<filename>,s,f 

where <filename> is the filename and file type of the disk file to 
receive the data, and sand f are the 20-btt first and last 
addresses of the block to be written. If the segment i.s not 
specified in f, DDT-86 uses the same value that was used for s. 

If the first form is used, DDT-86 assumes the sand f values 
from the last file read with an R command. If no file was read with 
an R command, DDT-86 responds with a question mark,? This first 
form is useful for writing out files after patches have been 
installed, assuming the overall length of the file is unchanged. 

All Information Presented Here is Proprietary to Digital Research 

64 



CP/M-86 Programmer~s Guide 6.2 DDT-86 Commands 

In the second form where sand f are specified as 20-bi t 
addresses, the low four bits of s are ignored. Thus the block being 
written must always start on a paragraph boundary. 

If a file by the name specified in the W command already 
exists, DDT-86 deletes it before writing a new file. 

6.2.16 The X (Examine CPU State) Command 

The X command allows the operator to examine and alter the CPU 
state of the program under test. The forms are: 

X 
Xr 
Xf 

where r is the name of one of the 8086 CPU registers and f is the 
abbreviation of one of the CPU flags. The first form displays the 
CPU state in the format: 

AX BX ex ES IP 
--------- xxxx xxxx xxxx • • • xxxx xxxx xxx x 
<instruction> 

The nine hyphens at the beginning of the line indicate the state of 
the nine CPU flags. Each position may be either a hyphen, 
indicating that the corresponding flag is not set (0), or a one
character abbreviation of the flag name, indicating that the flag is 
set (1). The abbreviations of the flag names are shown in Table 2-
1. <instruction> is the disassembled instruction at the next 
loca t ion to be executed, which is indicated by the CS and IP 
registers. 

Table 6-2. Flag Name Abbreviations 

Character 

o 
D 
I 
T 
S 
Z 
A 
P 
C 

I Name 

Overflow 
Direction 
Interrupt Enable 
Trap 
Sign 
Zero 
Auxiliary Carry 
Parity 
Carry 

All Information Presented ~ere is Proprietary to Digital Research 

65 



CP/M-86 Programmer~s Guide 6.2 ODT-86 Commands 

The second form allows the operator to alter the registers in 
the CPU state of the program being tested. ~he r following the X is 
the name of one of the 16-bit CPU registers. DDT-86 responds by 
displaying the name of the register followed by its current value. 
If a carriage return is typed, the value of the register is not 
changed. If a valid value is typed, the contents of the register 
are changed to that value. In either case, the next register is 
then displayed. This process continues until a period or an invalid 
value is entered, or the last register is displayed. 

The third form allows the operator to alter one of the flags in 
the CPU state of the program being tested. DDT-86 responds by 
displaying the name of the flag followed by its current state. If a 
carriage return is typed, the state of the flag is not changed. If 
a valid value is typed, the state of the flag is changed to that 
value. Only one flag may be examined or al tered wi th each Xf 
command. Set or reset flags by entering a value of 1 or O. 

6.3 Default Segment Values 

DDT-86 internally keeps track of the current segment value, 
making segment specification an optional part of a nOT-86 command. 
DDT-86 divides the command set into two tvpes of commands, according 
to which segment a command defaults if no segment value is specified 
in the command line. 

The first type of command pertains to the code segment: A 
(Assemble), L (List Mnemonics) and W (Write). These commands use 
the internal type-l segment value if no segment value is specified 
in the command. 

When invoked, DDT-86 sets the type-l segment value to 0, and 
changes it when one of the following actions is taken: 

• When a file is loaded by an E command, DDT-86 sets the type-l 
segment value to the value of the CS register. 

• When a file is read by an R command, DDT-86 sets the type-l 
segment value to the base segment where the file was read. 

• When an X command changes the value of the CS register, nDT-86 
changes the type-l segment value to the new value of the CS 
register. 

• When DDT-86 regains control from a user program after a G, T or 
U command, it sets the type-l segment value to the value of the 
CS register. 

• When a segment value is specified explicitly in an A or L 
command, DDT-86 sets the type-l segment value to the segment 
value specified. 

All Information Presented Here is Proprietary to Digital Research 

66 



CP/M-86 Programmer~s Guide 6.3 Default Segment Values 

The second type of command pertains to the data segment: n 
(Display), F (Fill), M (Move) and S (Set). ~hese commands use the 
internal type-2 segment value if no segment value is specified in 
the command. 

When invoked, DDT-86 sets the type-2 segment value to 0, and 
changes it when one of the followinq actions is taken: 

• When a file is loaded by an E command, DDT-86 sets the type-2 
segment value to the value of the OS register. 

• When a file is read by an R command, DDT-86 sets the type-2 
segment value to the base segment where the file was read. 

• When an X command chanqes the value of the DS register, nDT-86 
changes the type-2 segment value to the new value of the DS 
register. 

• When DDT-86 regains control from a user program after a G, T or 
U command, it sets the type-2 segment va llle to the value of the 
DS register. 

• When a segment value is speci.fied explicitly in an 0, F, M or S 
command, DDT-86 sets the type-2 seqment value to the seqment 
value specified. 

When evaluating programs that use identical values in the CS 
and DS registers, all DOT-86 commands default to the same segment 
value unless explicitly overridden. 

Note that the G (Go) command does not fall into either group, 
since it defaults to the CS register. 

All Information Presented Here is Proprietary to Digital Research 

67 



CP/M-86 Programmer"'s Guide 6.3 Default Segment Values 

Table 6-3 summarizes DDT-86"'s default segment values. 

Table 6-3. DDT-86 Default Segment Values 

Command type-l tvpe-2 

A x 
D x 
E u u 
F x 
G u u 
H 
I 
L x 
M x 
R u u 
S x 
T u u 
U u u 
V 
W x 
X u u 

x - use this segment default if none specified; 
change default if specified explicitly 

u - update this segment default 

All Information Presented Here is ~roprietary to Digital Research 

68 



CP/M-86 Programmer's Guide 6.4 Assembly Language Syntax 

6.4 Assembly Language Syntax for A and L Commands 

In general, the syntax of the assembly language statements used 
in the A and L commands is standard 8086 assembly language. Several 
minor exceptions are listed below. 

• nDT-86 assumes that all numeri.c values entered are hexadecimal. 

• Up to three prefixes (LOCK, repeat, segment override) may 
appear in one statement, but they all must precede the opcode 
of the statement. Alternately, a prefix may be entered on a 
line by itself. 

• The distinction between byte and word string instructions is 
made as follows: 

byte word 

LonSB LODSW 
STOSB STOSW 
SCASB SCASW 
MOVSB MOVSW 
CMPSB CMPSW 

• The mnemonics for near and far control transfer instructions 
are as follows: 

short normal far 

JMPS JMP JMPF 
CAJ .... L CALLF 
RET R~rr'F 

• I f the operand of a CAJ .... LF or JMPF instruction is a 20-bi t 
absolute address, it is entered in the form: 

ssss:oooo 

where ssss is the segment and 0000 is the offset of the 
address. 

All Information Presented Here is Proprietary to Oigital Research 

69 



CP/M-86 Programmer~s Guide 6.4 Assembly Language Syntax 

• Operands that could refer to either a bvte or word are 
ambiguous, and must be preceded either by the prefix "BYTE" or 
"WORD". These prefixes may be abbreviated to "BY" and "WO". 
For example: 

INC BYTE [BP] 
NOT WORD [1234] 

Failure to supply a prefix when needed results in an error 
message. 

• Operands which address memory directly are enclosed in square 
brackets to distinguish them from immediate values. For 
example: 

ADD 
ADD 

AX,S 
AX, [S] 

;add S to register AX 
;add the contents of location 5 to AX 

• The forms of register indirect memory operands are: 

[pointer register] 
[index register] 
[pointer register + index register] 

where the pointer registers are BX and RP, and the index 
registers are 8I and DI. ~ny of these forms may be preceded by 
a numeric offset. ~or example: 

ADD BX, [BP+S I] 
ADD BX,3{BP+SI] 
ADD BX,lD47[BP+SI] 

6.5 DDT-86 Sample Session 

In the following sample session, the user interactively debugs 
a simple sort program. Comments in italic type explain the steps 
involved. 

All Information Presented Here is Proprietary to Digital Research 

70 



CP/M~86 Programmer's Guide 6.5 DDT-86 Sample Session 

SOWtc.e. 6-Ue. 06 plLOglr.a.m to teAt. 
A>type sort.a86 

simple sort proqram 
, 
sort: 

mov si,O ;initia1ize index 
mov bx,offset n1ist ;bx = base of list 
mov sw,O ;c1ear switch flag 

comp: 

inci: 

done: 

, 

mov 
cmp 
jna 
xchg 
mov 
mov 

inc 
cmp 
inz 
test 
jnz 

jmp 

dseq 
orq 

al, [bx+si 1 
al, 1 [bx+si] 
inci 
at, 1 [bx+si] 
[bx+sil,a1 
sw,l 

si 
si,count 
comp 
sw,i 
sort 

done 

100h 

3,8,4,6,31,6,4,1 

1qet byte from list 
1compare with next byte 
1don~t switch if in order 
;00 first part of switch 
;do second r;>art 
1set switch f.lag 

;increment index 
;end of list? 
;no, keep qoinq 
;done - any switches? 
;ves, sort some more 

;get here when list ordered 

;leave space for base page 

n1ist 
count 
sw 

db 
equ 
db 
end 

offset $ - offset n1ist 
o 

A~~emble. p~og~am. 
A>asm86 sort 

CP 1~4 8086 ASSEMBLER VER 1.1 
END OF PASS 1 
END OF PASS 2 
END OF ASSEMBLY. NUMBER OF ERRORS: a 

Type. ~ting nile. ge.ne.~ated by ASM-86 • 
. Z\>type sort .1st 
CP 1M ASM 86 1. 1c)OURCE: SORT. A8 6 

0000 BEOOOO 
0003 BB0001 
0006 C606080100 

sort: 

comp: 

simple sort program 

mov 
mov 
mov 

si,O ;initialize index 
bx,offset n1ist ;bx = base of list 
sw,O ;c1ear switch flag 

PAGE 

OOOB 8AOO 
OOOD 3A4001 
0010 760A 
0012 864001 
0015 8800 

mov 
cmp 
ina 
xchq 
mov 
mov 

al, [bx+si 1 
al,l[bx+si] 
inci 
a1,1[bx+sil 
[bx+sil,a1 
sw,l 

;get byte from list 
;compare with next byte 
;don~t switch if in order 
;do first part of switch 
;do second part 

0017 C606080101 

001C 46 
001D 83FE08 
0020 75E9 
0022 F606080l01 
0027 75D7 

inci: 

done: 

inc 
cmp 
jnz 
test 
;nz 

si 
si,count 
comp 
sw,l 
sort 

;set switch f.1.ag 

~increment index 
;end of list? 
;no, keep goinq 
;done - any switches? 
;yes, sort some more 

1 

0029 E9FDFF jmp done ;get here when list ordered 

dseg 
org 100h ;leave s~ace for base page 

All Information Presented Here is Proprietary to Digital Research 

71 



CP/M-86 Programrner~s ~uide 6.5 DDT-86 Sample Session 

0100 030804061F06 n1ist db 3,8,4,6,31,6,4,1 
0401' 

0008 count equ offset $ - offset nllst 
0108 00 sw db a 

end 

END OF ASSEMBLY. NUMBER OF ERRORS: 0 

A 
T{'(yJe .6umbo.t .:ta.b.te 6-il.e geneJta.ted by ASM-86. 

>type sor~.sytn 
0000 VARIABLES 
0100 NLIST 0108 SW 

0000 NUMBERS 
0008 COUNT 

0000 LABELS 
OOOB COMP 0029 DONE 001C INCI 0000 SORT 

Tqpe hex 6-il.e geneJta.ted by ASM-86. 
A>type sor1:. h86 
:0400000300000000F9 
:lB000081BEOOOOBB0001C6060801008A003A4001760A864001880OC60608016C 
:11001B81014683FE0875E9F60608010175n7E9FDFFEE 
:09010082030804061F0604010035 
:OOOOOOOlFF 

GeneJta.te CMV 6-il.e 6~om .H86 6-il.e. 
A>gencmd sort 

BYTES READ 0039 
RECORDS WRITTEN 04 

Invoke VVT-86 and toad SORT.CMV. 
A>ddt86 sort 
DDT86 1. 0 

START END 
CS 047D:0000 047D:002F 
DS 0480:0000 0480:010F 

-x 
AX BX CX DX SP BP SI DI CS DS ~S RS IP 

--------- 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000 
MOV SI,OOOO 

V-iAa.6.6emb.te the beg.<.nning 06 :the c.ode .6egmen-t. 
-1 
047D:0000 MOV 
'04 7D: 0003 MOV 
047D:0006 MOV 
047D:000B MOV 
047D:000D CMP 
047D:0010 JBE 
047D:0012 XCHG 
047D:0015 MOV 
047D:0017 MOV 
047D:001C INC 
047D:001D CMP 
047D:0020 JNZ 

SI,OOOO 
BX,0100 
BY't'E [0108] ,00 
AL, [BX+SIl 
AL, 01 [BX+SI] 
001C 
AL .. 01 (BX+SI] 
[BX+SI] ,AL 
BYTE [0108] ,01 
SI 
SI,0008 
OOOB 

i V-iAp.tay :the .6.taJt.t 06 :the da.:ta. .6egmen-t. 
-d100,10f 
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00 •••••••••••.•••• 

All Information Presented Here is Proprietary to Digital Research 

72 



CP!M-86 Proqramffi~~~s Guide 6.5 nDT-86 ~ample Session 

V-L6a.Memb.te :the Jte6t 06 the c.ode. 
-1 
047D:0022 
047D:0027 
047D:0029 
047D:002C 
047D:002E 
047D:0030 
0470:0031 
0470:0033 
0470:0034 
047D:0035 
0470:0037 
047D:0039 

TEST 
JNZ 
,JMP 
ADD 
ADD 
DAS 
ADD 
1?= 
POP 
ADD 
ADD 
7?= 

BYTE [01081 ,01 
0000 
0029 
[BX+SI] ,AL 
[BX+SI] ,AL 

[BX+SI] ,AL 
6C 
ES 
[BX] ,CL 
[BX+SI] ,AX 
6F 

Exec.u.te pJtogJtam nJtom IP (=0) ~e.tting bJteakpo~nt at 29H. 
-g,29 
*047D:0029 BJteakpo~nt enc.ounteJted. 

V~p.taq ~oJt.ted wt. 
-d100,10f 
0480:0100 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 ••.••.•••••••••• 

VOe6n':t .took good; Jte.toad 6ile. 
-esort 

START END 
CS 047D:0000 047D:002F 
DS 0480:0000 0480:010F 

TIl.ac.e 3 ..i.~:t!tuc..:ti.On6. 
-t3 

AX BX CX. DX 
-----Z-P- 0000 0100 0000 0000 
-----z-P- 0000 0100 0000 0000 
-----Z-P- 0000 0100 0000 0000 
*047D:000B 

TJtac.e ~ome moJte. 
-t3 

AX BX CX DX 
-----Z-P- 0000 0100 0000 0000 
-----Z-P- 0003 0100 0000 0000 
----S-A-C 0003 0100 0000 0000 
*047T):001C 

V..i..6p.taq u~oJt.ted wt. 
-d100,10f 

SP 
119B 
119E 
119B 

SP 
119E 
119E 
119E 

BP SI DI 
0000 0008 0000 
0000 0000 0000 
0000 0000 0000 

BP 81 D1 
0000 0000 0000 
0000 0000 0000 
0000 0000 0000 

IP 
0000 
0003 
0006 

IP 
OOOR 
OOOD 
0010 

MOV 
MOV 
MOV 

MOV 
eMP 
JBE 

SI,OOOO 
BX,0100 
13Y'l'E [01081,00 

AL, [BX+SI] 
AL, 01 [BX+SIl 
001C 

0480:0100 03 08 04 06 1F 06 04 01 00 00 00 00 00 00 00 00 •.••.••••••••••• 

V-L6p.taq next ..i.~:t!tuc..ti..o~ to be exec.uted. 
-1 
047D:001C INC SI 
047D:001D CMP 51,0008 
047D:0020 JNZ oooe 
047D:0022 TEST BYTE [0108] ,01 
047D:0027 JNZ 0000 
047D:0029 JMP 0029 
047D:002C ADD [BX+SI] ,AL 
047D:002E ADD [BX+SI1,AL 
047TJ:0030 DAS 
047D:0031 ADD [BX+SI1,AL 
047D:0033 ??= 6C 
047'):0034 POP ES 

-t3 
TJtac.e ~ome moJte. 

AX BX ex DX SP BP SI DI IP 
----S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC 
--------C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP 
----S-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 J~Z 
*047D:000B 

SI 
SI,0008 
OOOB 

All Information Presented ~ere is Proprietary to Digital Research 

73 



CP/M-86 Proqrammer's Guide 6.5 ODT-86 Sample Session 

V-wpla.y irudltUc;ti.OYUl nltom c.uMen:t IP. 
-1 
047D:000B 
047D:000D 
0471):0010 
047D:0012 
047D:0015 
047D:0017 
047D:001C 
047D:001D 
047D:0020 
047D:0022 
047D:0027 
047D:0029 

-t3 

MOV 
CMP 
JBE 
XCHG 
MOV 
MOV 
INC 
CMP 
JNZ 
TEST. 
JNZ 
JMP 

AL, [BX+SI] 
AL,Ol[BX+SI] 
001C 
AL,Ol[BX+SI] 
[BX+SI] ,AL 
BYTE [ 010 8 1 , 0 1 
SI 
SI,0008 
00013 
13YTE 
0000 
0029 

[0108] ,01 

AX BX CX DX ~P BP SI DI IP 
----S-APC 0003 0100 0000 0000 119E 0000 0001 0000 OOOR MOV 
----S-APC 0008 0100 0000 0000 119E 0000 0001 0000 OOOD CMP 
--------- 0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 
*047D:0012 

-1 
047D:0012 XCHG 
047D:0015 MOV 
047D:0017 ~mv 
047D:001C INC 
047D:001D CMP 
047D:0020 J'NZ 
047D:0022 TEST 
047D:0027 JNZ 
047D:0029 JMP 
047D:002C ADD 
047D:002E ADD 
047D:0030 DAS 

AL, 01 [BX+.S I 1 
[BX+SI] ,AL . 
BYTE [0108J ,01 
SI 
SI,0008 
OOOB 
BYTE [0108] ,01 
0000 
0029 
[BX+SI] ,AL 
[BX+SI] ,AL 

Go until. -6wLtc.h hM been PeJtnOllmed. 
-g,20 
*047D:0020 

V.-i.-6pla.y wt. 
-d100,10f 

AT., [BX+S I 1 
.lU.J, 01 [BX+SIl 
00le 

0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00 ••.••••••••••••• 

-t 
Look-6 like 4 a.nd 8 welte I.>wi.tc.hed oka.y. (And toggle -w ;tJtue.) 

AX BX CX DX SP BP SI DI IP 
----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 
*047D:000B 

-1 
047D:000B MOV 
047D:000D CMP 
047D:0010 JBE 
047D:0012 XCHG 
047D:0015 MOV 
047D:0017 MOV 
047D: 001C INC 
047D:001D CMP 
047D:0020 JNZ 
047D:0022 TEST 
047D:0027 JNZ 
047D:0029 JMP 

AL, [BX+SI) 
AL, 01 [BX+SIJ 
001C 
AL,Ol[BX+SIJ 
[BX+SIJ ,AL 

BYTE [0108J,01 
SI 
SI,0008 
OOOB 
BYTE [0108] ,01 
0000 
0029 

Sinc.e I.>wi.tc.h woltked, let'l.> Ite.f.oa.d a.nd c.hec.k bounda.Jty c.onditioYUl. 
-esort 

START END 
CS 047D:0000 047D:002F 
DS 0480:0000 0480:010F 

00013 

All Information Presented Here is Proprietary to Digital Resedrch 

74 



CP/M-86 Proqrammer~s Guide 6.5 nDT-86 Rample Session 

Ma.k.e. Lt quic.k.e.Jt by .6e..utng .t,U,t". le.ngth t".o 3. 
- a 1 d to pa.:tc.h.) 

(Couid a.l.6o ha.ve. U.6e.d .647d=1e. 

047D:0010 em? si,3 
047D:0020 

-d100 
V.£.6play uYI..6oJt.:te.d wt. 

0480:0100 03 08 04 06 lF 06 04 01 00 00 00 00 00 00 00 00 •••••••••••••••• 
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••••••••••• 
0480:0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20 ••••••••••••• 

Se.t". bJte.a.k.po,[nt". whe.n 6iMt". 3 e.te.me.n.-t6 06 Wt". .6hotdd be. .6oJtt;e.d. 
-g,29 
*0470:0029 

-d100, 10~e.e. '[6 Lv.d .£.6 .6oJt.:te.d. 
0480:0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 00 00 •••••••••••••••• 

In.t".e.Jte..6.ting, the. 6ouJt.th e.leme.nt". .6e.em6 to ha.ve. be.e.n .6oJt:te.d in. 
-esort 

START END 
CS 047D:0000 0470:002F 
OS 0480:0000 0480:010F 

Le.t'.6 :tIty a.ga.,[n w.Lth .6 ome. tJta..ung. 
-a1d 
0470:0010 em? si,3 
047D:0020 . 

-t9 
AX BX CX OX SP 

-----Z-p- 0006 0100 0000 0000 119E 
-----Z-p- 0006 0100 0000 0000 1191'.: 
-----Z-p- 0006 0100 0000 0000 119E 
-----Z-p- 0006 0100 0000 0000 119E 
-----Z-p- 0003 0100 0000 0000 119E 
----S-A-C 0003 0100 0000 0000 119E 
----S-A-C 0003 0100 0000 0000 119E 
--------C 0003 0100 0000 0000 119B 
----S-A-C 0003 0100 0000 0000 119E 
*0470:000B 

-1 
047D:OOOB MOV AL, [BX+SI1 
0470:000D eMP AL,01[BX+SI1 
0470:0010 JBE 001C 
0470:0012 XCHG AL,01[BX+SI1 
047D:0015 MOV [BX+SI] ,AL 
047D:0017 MOV BYTE [01081,01 
047D:001C INC 81 
0470:0010 eMP SI,0003 
0471):0020 .TNZ OOOB 
0471):0022 TEST BYTE [01081,01 
047D:0027 JNZ 0000 
0470:0029 J~P 0029 

-t3 

BP 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

SI 01 IP 
0003 0000 0000 MOV 
0000 0000 0003 MOV 
0000 0000 0006 MOV 
0000 0000 OOOB MOV 
0000 0000 OOOD (;MP 
0000 0000 0010 J'!3E 
0000 0000 OOlC INC 
0001 0000 0010 CMP 
0001 0000 0020 JNZ 

AX BX CX OX SP BP 51 DI IP 
----S-A-C 0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV 
----S-A-C 0008 0100 0000 0000 119B 0000 0001 0000 0000 CMP 
--------- 0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 
*047D:0012 

-1 
0470:0012 XCHG 
047D:0015 MOV 
0470:0017 MOV 
0470:001C INC 
0470:0010 CMP 
047D:0020 JNZ 
0470:0022 TEST 

AL,Ol[BX+SIl 
[BX+S I] ,AL 
BYTE [0108] ,01 
SI 
SI,0003 
OOOB 
BYTE [0108] ,01 

SI,OOOO 
13X,0100 
BYTE [01081 ,00 
AL, [BX+SIl 
AL, 01 [BX+SI1 
OOlC 
51 
51,0003 
OOOB 

AL, [BX+SIl 
AL, 01 (BX+SI] 
aOle 

All Information Presented Here is Proprietary to Digital Resedrch 

75 



CP/M-86 Programmer~s Guide 6.5 DD~-86 Sample Session 

-t3 
AX BX CX DX SP BP SI DI IP 

--------- 0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHG AL,Ol[BX+SIl 
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX+SI] ,AL 
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [0108] ,01 
*047D:001C 

-d100,10f 
0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00 •••.•..••••••••• 

-t3 
So OM, M good. 

AX EX CX DX SP BP SI DI IP 
--------- 0004 0100 0000 0000 119E 0000 0001 0000 001C INC SI 
--------- 0004 0100 0000 0000 119B 0000 0002 0000 001D CMP 81,0003 
----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB 
*047D:000B 

-1 
047D:000B rviOV AL, [BX+SI) 
047D:000D CMP AL, 01 (BX+SI] 
047D:0010 JBE ODIC 
047D:0012 XCHG AL,Ol[BX+SI) 
047D:0015 MOV [BX+SI) ,AL 
047D:0017 MOV BYTE [0108) ,01 
047D:001C INC SI 
047D:001D CMP SI,0003 
047D:0020 JNZ OOOB 
047D:0022 TEST BY'1'E [0108] ,01 
047D:0027 JNZ 0000 
047D:0029 JMP 0029 

-t3 
AX EX ex DX SP BP SI DI IP 

----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 OOOB MOV AL, [BX+SI] 
----S-APC 0008 0100 0000 0000 119B 0000 0002 0000 OOOD ~MP AL, OJ. (BX+SIl 
--------- 0008 0100 0000 0000 119E 0000 0002 0000 0010 JBE 001~ 
*047D:0012 

S~e enough, it'~ c.ompMing :the thAAd and ooWtth e.f..emento 00 the mt. 
-esort Re.f..oad pltogJtam. 

START END 
CS 047D:0000 047D:002F 
DS 0480:0000 0480:010F 

-1 
047D:0000 MOV 
047D:0003 MOV 
047D:0006 MOV 
047D:000B MOV 
047D:000D CMP 
047D:0010 JBE 
047D:0012 XCHG 
047D:0015 MOV 
047D:0017 MOV 
047D:001C INC 
047D:001D CMP 
047D:0020 JNZ 

SI,OOOO 
BX,0100 
BYTE [0108],00 
AL, [BX+SI] 
AL, 01 [BX+SIl 
001C 
A:',01[BX+SIl 
[BX+SI) ,AL 
BYTE [01081 ,01 
81 
81,0008 
OOOB 

Patc.h le.ngth. 
-aId 
047D:001D cmp si,7 
047D:0020 . 

Tlttj it out. 
-g,29 
*047D:0029 

All Information Presented Here is Propri~tary to Digital Researr~ 

76 



CP/M-86 Programmer~s Guide 

See i6 ii~t i~ ~o~ted. 
-dl00,10£ 

6.5 nDT-86 ~ample Session 

0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00 •••••••••••.•.•• 

Lo 0 fl~ b ette~; 
-rsort.crod 

STAR't' END 

let'~ in~tall patch in di~fl 6ile. To do thi~, we 
mu~t ~ead CMV 6ile including heade~, ~o we u~e R 
command. 

2000:0000 2000:01FF 

Fi~~t 80h byte~ contain heade~, ~o code ~ta~t~ at 80h. 
-180 
2000:0080 MOV 
2000:0083 MOV 
2000:0086 MOV 
2000:008B MOV 
2000:008D CMP 
2000:0090 JBE 
2000:0092 XCHG 
2000:0095 MOV 
2000:0097 MOV 
2000:009C INC 
2000: 009{) CMP 
2000:00AO JNZ 

SI,OOOO 
BX,0100 
BYTE (0108) ,00 
AL, [BX+SI] 
AL,Ol[BX+SIl 
00ge 
AL, 01 [BX+SIl 
[BX+SI] ,AL 
BYTE [0108] ,01 
SI 
SI,0008 
OOBB 

-a9d 
r n~ tall patch. 

2000:009D crop si,7 

W~ite 6ile back. to di~l<.. (Length 06 6ile a~~umed to be unchanged 
-wsort.cmd ~ince no length ~peci6ied.) 

-esort 
Reload 6ile. 

START END 
es 047D:0000 047D:002F 
DS 0480:0000 0480:010F 

-1 
Ve~i6y that patch wa~ in~talled. 

047D:0000 MOV 
047D:0003 MOV 
047D:0006 MOV 
047!):000B MOV 
047D:000D CMP 
047D:0010 JBE 
047D:0012 XCHG 
047D:0015 ~OV 
047D:0017 MOV 
047D: 001C INC 
047D:001D CMP 
047D:0020 JNZ 

Run a. 
-g,29 
*047D:0029 

SI,OOOO 
BX,0100 
BYTE [ 010 8] ,00 
AL, [BX+SIl 
AL, 01 [BX+SIl 
001e 
AL,Ol[BX+SI] 
[BX+SI1,AL 
BYTE [0108] ,01 
51 
SI,0007 
OOOB 

Still loo~ good. SMP it! 
-dl00,10f 
0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00 ••••••.•••.••••• 
-"C 
A> 

All Information Presented Here is Proprietary to Digital Research 

77 





Command: ASM86 

Appendix A 
ASM-86 Invocation 

Syntax: ASM86 <filename> { $ <parameters> } 

where 

Parameters: 

<filename> is the 8086 assembly source file. 
Drive and extension are optional. 
The default file extension is .A86. 

<parameters> are a one-letter type followed by 
a one-letter device from the table 
below. 

form: $ ~d where T = type and d = device 

Table A-i. Parameter Types and Devices 

Devices Parameters 

A I H I P I S I F 

A - P x x x x 

X x x x 

y x x x 

Z x x x 

I x 

D d 

x = valid, d = default 

Valid Parameters 

Except for the F type, the default device is the the current default 
drive. 

All Information Presented Here is Proprietary to Digital Research 

79 



CP/M-86 Programmer~s Guide Appendix A ASM-86 Invocation 

A 
H 
P 
S 
F 

Table A-2. Parameter Types 

A - P 
X 
Y 
Z 
I 
D 

controls location of ASSEMBLER source 
controls location of HEX file 
controls location of PRINT file 
controls location of SYMBOL file 
controls type of hex output FORMA,"(, 

Table A-3. Device Types 

Drives A - P 
console device 
printer device 
byte bucket 
Intel hex format 
Digital Research hex format 

Table A-4. Invocation Examples 

file 

ASM86 10 Assemble file IO.A86, produce IO.HEX 
lO.LST and IO.SYM. 

ASM86 IO.ASM $ AD SZ Assemble file IO.ASM on device D, 
produce IO.LST and IO.HEX, 
no symbol file. 

ASM86 10 $ PY SX Assemble file IO.A86, produce lO.HEX, 
route listing directly to printer, 
output symbols on console. 

ASM86 10 $ FD Produce Digital Research hex format. 

ASM86 10 $ FI Produce Intel hex format. 

All Information Presented Here is Proprietary to Digital Research 

80 



Appendix B 
Mnemonic Differences From the Intel Assembler 

The CP/M 8086 assembler uses the same instruction mnemonics 
as the INTEL 8086 assembler except for explicitly specifying far 
and short jumps, calls and returns. The following table shows 
the four differences: 

Table B-1. Mnemonic Differences 

Mnemonic Function I CP/M I INTEI.J 

Intra segment short jump: JMPS JMP 

Inter segment jump: JMPF JMP 

Inter segment return: RE'r'F RET 

Inter segment call: CALLF CALL 

All Information Presented Here is Proprietary to Digital Research 

81 





Appendix C 
ASM-86 Hexadecimal Output Format 

At the user~~ option, ASM-86 produces machine code in either 
Intel or Digital Resea.rch hexadecimal format. The Intel format is 
identical to the format defined by Intel for the 8086. The Digital 
Research format is nearly identical to the Intel format, but adds 
segment information to hexad.ecimal records. Output of ei ther format 
c an be i npu t to GENCMD, but the Digi tal Research format 
automatically provides segment identification. A segment is the 
smallest unit of a program that can be relocated. 

Table C-l defines the sequence and contents of. bytes in a 
hexadecimal record. Each hexadecimal record has one of the four 
formats shown in Table C-2. An example of a hexadecim~l record is 
shown below. 

Byte number=> 012 3 4 567 8 9 •.••.••.•.• a •• n 

Contents=> 1 1 a a a a t t d d d ••••••••• c c CR LF 

Table C-l. Hexadecimal Record Contents 

Byte I Contents I Symbol 

0 record mark 
1-2 record length 1 1 
3-6 load address a a a a 
7-8 record type t t 
9- (n-l) data bytes d d ••••• d 
n- (n+l) check sum c c 
n+2 carriage return CR 
n+3 line feed Lf' 

All Information Presented Here is Proprietary to Digital Research 

83 



CP/M-86 Programmer~s Guide Appendix C Hexadecimal Output Format 

Table C-2. Hexadecimal Record Formats 

Record type I Content 1 Format 

00 Data record · 1.1 aaaa DT <data ••• > cc · 
01 End-of-file · 00 0000 01 FF · 

Extended address 
02 mark · 02 0000 ST ssss cc · 
03 Start address · 04 0000 03 ssss iiii cc · 

11 => record length - number of data bytes 
cc => check sum - sum of all record bytes 
aaaa => 16 bit address 
ssss => 16 bit segment value 
iiii => offset value of start address 
DT => nata record type 
ST => segment address record type 

It is in the definition of record types 00 and 02 that Digital 
Research~s hexadecimal format differs from Intel~s. Intel defines 
one value each for the data record type and the segment address 
type. Digital Research identifies each record with the segment that 
contains it, as shown in Table C-3. 

All Information Presented Here is Proprietary to Digital Research 

84 



CP/M-86 Programmer~s Guide Appendix C Hexadecimal Output Format 

Table C-3. Segment Record Types 

Intel~s Digital~s 
Symbol Value Value Meaning 

DT 00 for data belonging to all 
8086 segments 

8lH for data belonging to the 
CODE segment 

82H for data belonging to the 
DATA segment 

83H for data belonging to the 
STACK segment 

84H for data belonging to the 
EXTRA segment 

ST 02 for all segment address 
records 

8SH for a CODE absolute segment 
address 

86H for a DATA segment address 

87H for a STACK segment address 

88H for a EXTRA segment address 

All Information Presented Here is Proprietary to Digital Research 

85 





BYTE 

EQ 
NE 
P'rR 
LAST 

DB 
RB 
ORG 
EJECT· 
INCLUDE 

DB 
RELW 

AH 
BP 
ex 
DX 

WORD 

GE 
OR 
SEG 
TYPE 

DD 
RW 
CSEG 
ENDIF 

Appendix D 
Reserved Words 

Table D-l. Reserved Words 

Predefined Numbers 

DWORD 

Operators 

GT 
AND 
SHL 
LENGTH 

LE 
MOD 
SHR 
OFFSET 

Assembler Directives 

OW IF 
END ENDM 
DSEG ESEG 
TITLE LIST 

SIMFORM PAGESIZE CODEMACRO 

Code-macro directives 

DD DW OBIT 
MODRM SEGFIX NOSEGFIX 

8086 Registers 

AL AX BH 
BX CH CL 
DH DI DL 
ES 8I SP 

Instruction Mnemonics - See Appendix E. 

LT 
NOT 
XOR 

RS 
~QU 

SSEG 
NOLIST 
PAGEWIDTH 

RELB 

BL 
CS 
os 
SS 

All Information Presented Here is Proprietary to Digital Research 

87 





Mnemonic I 
AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
CALL 
CALLF 
CBW 
CLC 
CLD 
eLI 
CMC 
CMP 
CMPS 
CWO 
DAA 
DAS 
DEC 
DIV 
ESC 
HLT 
IDIV 
IMUL 
IN 
INC 
INT 
INTO 
I RET 
.. TA 
JAE 
lJB 
lJBE 
JC 
.. TCXZ 
JE 
JG 
JGE 
JL 
lJLE 

Appendix E 
ASM-86 Instruction Summary 

Table E-1. ASM-86 Instruction Summary 

Description 

ASCII adjust for Addition 
ASCII adjust for Division 
ASCII adjust for Multiplication 
ASCII adjust for Subtraction 
Add with Carry 
Add 
And 
Call (intra segment) 
Call (inter segment) 
Convert Byte to Word 
Clear Carry 
Clear Direction 
Clear Interrupt 
Complement Carry 
Compare 
Compare Byte or Word (of string) 
Convert Word to Double Word 
Decimal Adjust for Addition 
Decimal Adjust for Subtraction 
Decrement 
Divide 
Escape 
Halt 
Integer Divide 
Integer Multiply 
Input Byte or Word 
Increment 
Interrupt 
Interrupt on Overflow 
Interrupt Return 
Jump on Above 
Jump on Above or Equal 
Jump on Below 
Jump on Below or Equal 
Jump on Carry 
,Jump on ex Zero 
Jump on Equal 
Jump on Greater 
Jump on Greater or Equal 
Jump on Less 
Jump on Less or Equal 

I Section 

4.3 
4.3 
4.3 
4.3 
4.3 
4.3 
4.3 
4.5 
4.5 
4.3 
4.6 
4.6 
4.6 
4.6 
4.3 
4.4 
4.3 
4.3 
4.3 
4.3 
4.3 
4.6 
4.6 
4.3 
4.3 
4.2 
4.3 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 

All Information Presented Here is Proprietary to Digital Research 

89 



CP/M-86 Programmer~s Guide Appendix E Instruction Summary 

Mnemonic I 
JMP 
JMPF 
JMPS 
JNA 
JNAE 
,JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 
JNL 
.TNLE 
JNO 
JNP 
JNS 
.JNZ 
JO 
JP 
JPE 
JPO 
JS 
JZ 
LAHF 
LDS 
LEA 
T..IES 
LOCK 
LODS 
LOOP 
LOOPE 
LOOPNE 
LOOPNZ 
LOOPZ 
MOV 
MOVS 
MUL 
NEG 
NOT 
OR 
OUT 

Table B-1. (continued) 

Description 

Jump (intra segment) 
Jump (inter segment) 
Jump (8 bit displacement) 
,Jump on Not Above 
Jump on Not Above or Equal 
Jump on Not Below 
Jump on Not Below or Equal 
Jump on Not Carry 
Jump on Not Equal 
Jump on Not Greater 
Jump on Not Greater or Equal 
lJump on Not Less 
Jump on Not Less or Equal 
Jump on Not Overflow 
Jump on Not Parity 
Jump on Not Sign 
Jump on Not Zero 
Jump on Overflow 
Jump on Parity 
Jump on Parity Even 
Jump on Parity oad 
Jump on Sign 
Jump on Zero 
Load AH with Flags 
Load Pointer into OS 
Load Effective Address 
Load Pointer into ES 
Lock Bus 
Load Byte or Word (of string) 
Loop 
Loop While Equal 
Loop While Not Equal 
Loop While Not Zero 
Loop While Zero 
Move 
Move Byte or Word (of string) 
Multiply 
Negate 
Not 
Or 
~utput Byte or Word 

I Section 

4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.2 
4.2 
4.2 
4.2 
4.6 
4.4 
4.5 
4.5 
4.5 
4.5 
4.5 
4.2 
4.4 
4.3 
4.3 
4.3 
4.3 
4.2 

All Information Presented Here is Proprietary to Digital Research 

90 



CP/M-86 Programmer~s Guide Appendix E Instruction Summary 

Mnemonic 

POP 
POPF 
PUSH 
PUSHF 
RCL 
RCR 
REP 
RET 
RETF 
ROL 
ROR 
SAHF 
SAL 
SAR 
SBB 
SCAS 
SHL 
SHR 
STC 
STD 
STI 
STOS 
SUB 
TEST 
WAIT 
XCHG 
XLAT 
XOR 

I 
Table E-l. (continued) 

Pop 
Pop Flags 
Push 

Description 

Push Flags 
Rotate through Carry Left 
Rotate through Carry Right 
Repeat 
Return (intra segment) 
Return (inter segment) 
Rotate Left 
Rotate Right 
Store AH into Flags 
Shift Arithmetic Left 
Shift Arithmetic Right 
Subtract with Borrow 
Scan Byte or Word (of string) 
Shift Left 
Shift Right 
Set Carry 
Set Direction 
Set Interrupt 
Store Byte or Word (of strinq) 
Subtract 
Test 
Wait 
Exchange 
Translate 
Exclusive Or 

I Section 

4.2 
4.2 
4.2 
4.2 
4.3 
4.3 
4.4 
4.5 
4.5 
4.3 
4.3 
4.2 
4.3 
4.3 
4.3 
4.4 
4.3 
4.3 
4.6 
4.6 
4.6 
4.4 
4.3 
4.3 
4.6 
4.2 
4.2 
4.3 

All Information Presented Here is Propri.etary to Digital Research 

91 





Appendix F 
Sample Program 

Listing F-l. Sam~le Program APPF.A86 

CP/M ASM86 1.1 SOURCE: APPF. A8 6 
1 

Terminal Input/Output 

0000 E90600 
0003 E91900 
0006 E92BOO 

title ~Terminal Input/Output~ 
pagesize 50 
oagewidth 79 
simform 
· , 
:****** Terminal I/O subroutines ******** 
· , 
· , · , . , 

: 

: 
CSEG 
: 
jmp_tab: 

; 

The following subroutines 
are included: 

CONSTAT 
CONIN 
CONOUT 

console status 
console input 
console outout 

Each routine requires CON~OLE NUMBER 
in the BL - register 

***************** 
* Jump table: * 
**************** 

jmp 
jmp 
jmp 

: start of code segment 

constat 
conin 
conout 

*********************** 
* I/O port numbers * 
*********************** 

All Information Presented Here is Proprietary to Digital Research 

93 

PAGE 



CP/M-86 Programmer~s Guide Appendix F Sample Program 

CP/M ASM86 1.1 SOURCE: APPF.A86 
2 

Terminal Input/Output P2 

0010 
0011 
0011 
0001 
0002 

0012 
0013 
0013 
0004 
0008 

0009 53E83FOO 

OOOn 52 
OOOE B600 
0010 8A17 
0012 EC 
0013 224706 
0016 7402 
0018 BOFF 

~ermina1 1: . , 
instat1 
indata1 
outdata1 
readyinmask1 
readyoutmask1 

equ 
equ 
equ 
equ 
equ 

Terminal 2: 
; 
instat2 
indata2 
outdata2 
readyinmask2 
readyoutmask2 

equ 
equ 
equ 
equ 
equ 

*********** 
* CONSTAT * 
*********** 

10h 
11h 
11h 
01h 
02h 

12h 
13h 
13h 
04h 
08h 

input status p( 
input port 
output port 
input ready rna~ 
outout ready mc 

input status pc 
input port 
output port 
input ready ma~ 
output ready roc 

Entry: BL - reg = terminal no 
Exit: AL - reg = 0 if not ready 

Offh if ready 
; 
constat: 

push bx call okterminal 
constat1: 

push dx 
mov dh,O read status I 
mov dl,instatustab [BX] 
in al,dx 
and al,readyinmasktab [bx] 
jz constatout 
mov a1,Offh 

All Information Presented Here is Proprietary to Digital Research 

94 



CP/M-86 Programmer~s Guide Appendix F Sample Program 

CP/M ASM86 1.1 SOURCE: APPF.A86 
3 

Terminal Input/Output PAGE 

OOlA 5A5BOACOC3 

OOlF 53E82900 
0023 E8E7FF 
0026 74FB 
0028 52 
0029 B600 
002B 8A5702 
002E EC 
002F 247F 
0031 SA5Be3 

0034 53E81400 
0038 52 
0039 50 
003A B600 
003C 8A17 

003E EC 

constatout: 

· , · , · , 

pop dx ! pop bx 

********* 
* CONIN * 
********* 

or al,al ret 

Entry: BL - reg = terminal no 
; Exit: AL - reg = read character 

conin: push bx ! call okterminal 
coninl: call constatl test 

jz coni.nl 
status 

push dx read character 
mov dh,O 
mov dl,indatatab 
in al,dx 
and al,7fh 
pop dx ! pop 

********** 
* CONOUf{' * 
********** 

bx 

[BX] 

stri.p r;>arity 
ret 

Entry: BL - reg = terminal no 
AL - reg = character to print 

conout: push bx ! call okterminal 
push dx 
push ax 
mov dh,O 
mov dl,instatustab [EX] 

conoutl: 
in al,dx 

test status 

bit 

All Information Presented Here is Proprietary to Digital Research 

95 



CP/M-86Programmer"'s Guide Appendix F Sample Program 

CP/M ASM86 1.1 SOURCE: APPF.A86 
4 

Terminal Input/Output 

003F 224708 
0042 74FA 
0044 58 
0045 8A5704 
0048 EE 
0049 5A5BC3 

004C OADB 
004E 740A 
0050 80FB03 
0053 7305 
0055 FECB 
0057 B700 
0059 C3 

005A 5B5Be3 

. , 

and al,readyoutmasktab [BX] 
jz conoutl 
pop ax ; write byte 
mov dl,outdatatab [BX] 
out dx,al 
pop dx ! pop bx ! ret 

++++++++++++++ 
+ OKTERMINAL + 
++++++++++++++ 

Entry: BL - reg = terminal no 

okterminal: 
or bl,bl 
jz error 
cmp bl,length instatustab + I 
jae error 
dec bl 
mov bh,O 
ret 

error: pop bx ! pop bx ! ret do nothing 
; 

P~ 

;************** end of code segment ************* 

**************** 
* Data segment * 
**************** 

dseg 

************************** 
* Data for each terminal * 
************************** 

All Information Presented Here is Proprietary to Digital Research 

96 



~-86 Programmer~s Guide Appendix F Sample Program 

oi ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output 

00 1012 
02 1113 
104 1113 
106 0104 
108 0208 

instatustab db 
indatatab db 
outdatatab db 
readyinmasktab db 
readyoutmasktab db 
; 

instatl,instat2 
indatal,indata2 
outdata1,outdata2 
readyinmaskl,readyinmask2 
readyoutrnaskl,readyoutmask2 

;*************** end of file ********************** 
end 

) OF ASSEMBLY. Nt~BER OF ERRORS: a 

.11 Information Presented Here is Proprietary to Dig i tal Research 

97 





Appendix G 
Code-Macro Definition Syntax 

<codemacro> ::= CODEMACRO <name> [<formal$list>] 
[<listSof$macro$directives>1 
ENDM 

<name> ::= IDENTIFIER 

<formal$list> ::= <parameterSdescr>[{,<parameter$descr>l] 

<parameter$descr> ::= <formSname>:<specifier$letter> 
<modifier$letter>[«ranqe»] 

<specifier$letter> ::= A Ie' DIE I M I R I s I X 

<modifier$letter> ::= b I wid, sb 

<range> ::= <singleSrange>I<double$range> 

<single$range> ::= REGISTER I NUMBERB 

<double$range> ::= NUMBERB,NUMBERB I NUMBERB,REGI8TER I 
REGISTER,NUMBERB I REGISTER,REGISTER 

<list$of$macro$directives> ::= <macro$directive> 
{<macro$directive>} 

<macro$directive> ::= <db> I <dw> I <dd> I <segfix> 
<noseqfix> I <madrm> I <~elb> 
<relw> I <dbit> 

<db> ::= DB NUMBERB DB <forrn$name> 

<dw> ::= DW NUMBERW D~AT <form$name> 

<dd> ::= DD <form$name> 

<segfix> ::= SEGFIX <form$name> 

<nosegfix> ::= NOSEGFIX <form$name> 

<modrm> ::= MODRM NUMBER7,<form$name> I 
MODRM <form$name>,<form$name> 

<relb> ::= RELB <form$name> 

<relw> ::= RELW <form$name> 

<dbit> ::= OBIT <field$descr>{,<field$descr>} 

All Information Presented Here is Proprietary to Digital Research 

99 



CP /~,1-86 Programmer ~ s Guide 

<field$descr> ::= NUMBERl5 
NUMBER15 

<formSname> ::= IDEN~IFIER 

NUMBERS is 8-bits 
NUMBER~'V is 16-bi ts 

,J\opend tx G ~ode-macro Syntax 

NU~H3ERB ) I 
<form$name> ( NUMBERB ) ) 

NUMBER? are the values 0, 1, •• 
NUMBERIS are the values 0, 1, •• 

, ? 
, 15 

All Information Presented Here is Proprietary to Digital Research 

100 



Appendix H 
ASM-86 Error Messages 

There are two types of error messages produced by ASM-86: 
fatal errors and diagnostics. Fatal errors occur when ASM-86 is 
unable to continue assembling. Diagnostics messages report 
problems wi th the syntax and semantics of the -program being 
assembled. The followi.ng messages indicate fatal errors 
encountered by ARM-86 during assembly: 

NO FILE 
DISK FULL 
DIRECTORY FULL 
DISK READ ERROR 
CANNOrr' CLOSE 
SYMBOL TABLE OVERFLOW 
PARAMETER ERROR 

ASM-86 repor ts semantic and syntax errors by placing a 
numbered ASCII message in front of the erroneous source line. If 
there is more than one error in the line, only the first one is 
reported. Table H-l summarizes ASM-86 diagnostic error messages. 

All Information Presented Here is Proprietary to Digital Research 

101 



CP/M-86 Programmer~s Guide Appendix H Error Messages 

Table B-1. ASM-86 Diagnostic Error Messages 

Number I Meaning 

o ILLEGAL FIRST ITEM 
1 MISSING PSEUDO INSTRUCTION 
2 ILLEGAL PSEUDO INSTRUCTION 
3 DOUBLE DEFINED VARIABLE 
4 DOUBLE DEFINED LABEL 
5 UNDEFINED INSTRUCTION 
6 GARBAGE AT END OF LINE - IGNORED 
7 OPERAND(S) MISMATCH INSTRUCTION 
8 ILLEGAL INSTRUCTION OPERANDS 
9 MISSING INSTRUCTION 

10 UNDEFINED ELEMENT OF EXPRESSION 
11 ILLEGAL PSEUDO OPERAND 
12 NESTED "IF" ILLEGAL - "IF" IGNORED 
13 ILLEGAL "IF" OPERAND - "IF" IGNORED 
14 NO MATCHING "IF" FOR "ENDIF" 
15 SYM.BOL ILLEGALLY FORWARD REFERENCED - NEGLECTED 
16 DOUBLE DEFINED SYMBOL - TREATED AS UNDEFINED 
17 INSTRUCTION NOT IN CODE SEGMENT 
18 FILE NAME SYNTAX ERROR 
19 NESTED INCLUDE NOT ALLOWED 
20 ILLEGAL EXPRESSION ELEMENT 
21 MISSING TYPE INFORMATION IN OPERAND(S) 
22 LABEL OUT OF RANGE 
23 MISSING SEGMENT INFORMATION IN OPERAND 
24 ERROR I1\1 CODE~1ACROBUII,DING 

All Information Presented Here is Propr i.etary to Digi tal. Research 

102 



Appendix I 
DDT -86 Error Messages 

Table I-I. DDT-86 Error Messages 

Error Message 

AMBIGUOUS OPERAND 

CANNOT CLOSE 

DISK READ ERROR 

DISK WRITE ERROR 

INSUFFICIE~T MEf\10RY 

MEMORY REQUEST DENIED 

NO FILE 

NO SPACE 

VERIFY ERROR AT s:o 

I Meaning 

An attempt was made to assembJe a command 
with an ambiguous operand. Precede the 
operand with the prefix "BYTE" or 
"WORD". 

The disk file written bv a W command 
cannot be closed. 

The disk file specified in an R command 
could not be read properly. 

A disk write operation could not be 
successfu1.1y performed during a W 
command, probably due to a full disk. 

There is not enough memory to load the 
file specified in an R or E command. 

A request for memory during an R command 
could not be fulfilled. Up to eight 
blocks of memory may be allocated at a 
qiven time. 

The file specified in an R or E command 
could not be found on the disk. 

There is no space in the d i rector y for the 
file beinq written by a W command. 

The value placed in memory by a Fill, Set, 
Move, or Assemble command could not be 
read back correctly, indicating bad RAM 
or attempting to wri.te to ROM or non
existent memory at the indicated 
location. 

All Information Presented Here is Proprietary to Digi.tal Research 

103 





A 

MA, 34 
AAD, 34 
AAM, 34 
AAS, 34 
ADC, 34 
AnD, 34 
address conventions in 

ASM-86, 21 
address expression, 18 
allocate storage, 27 
AND, 36 
arithmetic operators, 15 

B 

bracketed expression, 18 

c 

CALL, 40 
CBN, 34 
character strinq, 8 
CLC, 43 
CLD, 43 
eLI, 43 
CMC, 43 
eMP, 34 
CMPS, 38 
code segment, 22 
code-macro directives, 49 
code-macros, 45 
conditional assembly, 24 
console output, 3 
constants, 7 
control transfer 

instructions, 39 
creation of output files, 2 
CSEG , 22 
cwn, 34 

D 

DM, 35 
DAS, 35 
data segment, 22 
data transfer, 31 
DB, 25 
DO, 26 
DEC, 35 
define data area, 25 

Index 

105 

delimiters, 5 
directive statement, 20 
DIV, 35 
dollar-sign operator, 17 
nSEG , 22 
DW, 26 

E 

effective address, 21 
EJECT, 28 
END, 24 
end-of-line, 19 
ENDIF, 24 
EQU, 25 
ESC, 43 
ESEG, 23 
expressions, 18 
extra seqment, 23 

F 

filename extensions, 1 
flag bits, 30, 33 
flag registers, 30 
formal parameters, 45 

B 

HLT, 44 

I 

identifiers, 8 
IDIV, 35 
IF, 24 
IMUL, 35 
IN, 31 
INC, 35 
INCLUDE, 24 
initialized storage, 25 
instruction statement, 19 
INT, 40 
INTO, 40 
invoking ASM-86, 2 
IRET, 40 

J 

JA, 40 
JB, 41 
JCXZ, 41 
JE, 41 



JG, 41 
JL, 41 

·JLE, 41 
JMP, 41 
JNA, 41 
JNB, 41 
JNE, 42 
JNG, 42 
JNL, 42 
JNO, 42 
Jl\Jp, 42 
JNS, 42 
JNZ, 42 
JO, 42 
JP, 42 
,TS, 42 
JZ, 42 

K 

keywords, 9 

L 

label, 19 
labels, 11 
LAHF, 31 
LDS, 31 
LEA, 31 
LES, 31 
LIST, 28 
location counter, 23 
LOCK, 44 
J.JODS, 38 
logical operators, 15 
IJOOP, 42 

M 

mnemonic, 19 
modifiers, 47 
MOV, 31 
MOVS, 38 
MUL, 35 

N 

name field, 20 
NEG, 35 
NOLIST, 28 
NOT, 36 
number symbols, 12 
numeric constants, 7 
numeric expression, lR 

106 

o 

offset, 11 
offset value, 21 
operator precedence, 17 
operators, 12 
optional run-time 

parameters, 3 
OR, 36 
order of operations, 17 
ORG, 23 
OTJT, 32 
output files, 1, 2 

p 

PAGESIZE, 27 
PAGEWIDTH, 28 
period operator, 16 
POP, 32 
predefined numbers, 9 
prefix, 19, 39 
printer output, 3 
PTR operator, 16 
PUSH, 32 

R 

radix indicators, 7 
RB, 27 
RCL, 36 
RCR, 36 
registers, 9 
relational operators, 15 
REP, 39 
RET, 43 
ROL, 36 
ROR, 36 
RS, 27 
tun-time options, 3 
RW, 27 

s 

SAHF, 32 
SAL, 36 
SAR, 37 
SBB, 35 
SCAS, 38 
segment, 11 
seqme~t base values, 21 
segment override operator, IE 
segment start directives, 21 
separators, 5 
SHL, 37 



SHR, 37 
SIMFORM, 28 
specifiers, 47 
SSEG, 22 
stack segment, 22 
starting ASM-86, 2 
statements, 19 
STC, 44 
STD, 44 
STI, 44 
STOS, 38 
string constant, 8 
string operations, 38 
SUB, 35 
symbols, 25 

T 

TEST, 37 
TITLE, 27 
type, 11 

u 

unary operators, 16 

v 

variable manipulator, 16 
variables, 10 

w 

WAIT, 44 

x 

XCHG, 32 
XLAT, 32 

107 





CP /M-86 T.M. 

Operating System 

Release 1.1 

Programmer's Guide Release Notes 

Copyright © 1982 

Digital Research 
P.O. Box 579 

160 Central Avenue 
Pacific Grove, CA 93950 

(408) 649-3896 
TWX 910 360 5001 

All Rights Reserved 





CP/M-86T .M·Operating System 

Release 1.1 

Copyright © 1982 by Digi tal Research 
CP/M is a registered trademark of Digital Research. 

ASM-86, CP/M-80 and CP/M-86 are trademarks of Di~ital Research. 
ISBC is a trademark of Intel Corporat10n. 

Intel is a registered trademark of Intel Corporation. 
Compiled February 1982 

Thank you for purchasing the CP/M-86 T.M. operating system 
package. Software included in this package is proprietary to 
Dig i tal Research and contains internal ser ialization to allow 
unauthorized copies to be traced to their source. The Digital 
Research Software License Agreement defines the terms and conditions 
covering the use of CP/M-86. Please take time to carefully read 
this agreement. The enclosed Software Registration Card must be 
filled out and mailed to Digital Research before use of this 
software is authorized. Upon receipt of the Registration Card, your 
name will be placed on ourCP/M-86 mailing list, so you will receive 
newsletters and update notices. Under the terms of the agreement, 
you are allowed to make back-up copies for your own use, but you are 
not allowed to make copies of software provided in this package for 
any third parties, including friends, relatives, or business 
associates. . 

The documentation for CP/M-86 consists of the following 
manuals: 

CPLM-86 Ol2erating System User's Guid~ 

CPLM-86 Ol2erating System Programmer's ~uid~ 

CP/M-86 °Eerating S~stem S:lstem Guide 

CPLM-86 °Eerating S~stem Command Summary 

Two diskettes are also included. The first disk contains the 
CP/M-86 operating system and the utility programs. The second disk 
contains the source files for progr"ams and data files used in system 
regeneration. The following programs are on the first disk. 

ASM86.CMD 
ASM86.COM 
COPYDISK.CMD 
CPM.H86 
CPM.SYS 
DDT86.CMD 
ED.CMD 
GENCMD.CMD 

8086 assembler 
8080 version of ASM-86 T.M·assembler 
utility to copy entire diskette 
Hex file for CP/M-86 CCP and BOOS 
CP/M® system file, loaded at cold start 
CP/M-86 debugger 
CP/M-86 program and text editor 
CMD file generation utility 

All Information Presented Here is Proprietary to Digital Research 

1 



CP/M-86 

GENCMD.COM 
GENDEF.CMD 
GENDEF.COM 
HELP.CMD 
HELP.HLP 
LDBDOS .H86 
LDBIOS.H86 
LDCOPY.CMD 
LDCPM.H86 
LMCMD.CMD 
LMCMD.COM 
LOADER.CMD 

PIP.CMD 
STAT.CMD 
SUBMIT.CMD 
TOD.CMD 

8080 version of GENCMD 
Diskdef file generator 
8080 version of GENDEF 
Help utility 
Data file for help utility 
Loader BDOS hex file 
Loader BIOS hex file 
Loader copy utility 
Loader main program hex file 
CMD file generation utility 
8080 version of LMCMD 

V 1.1 

ISBC T.M. 86/12 intermediate loader (used 
only with the standard Intel® system) 
Peripheral Interchange Program 
File and disk status utility 
Batch processing utility 
Display and set time of day utility 

The files with a filetype of CMD operate under CP/M-86. The 
files with a filetype of COM are included for cross development 
under CP /M-80T .M. 

The second disk contains the following files. 

BIOS.A86 
CBIOS.A86 
COPYDISK.A86 
DEBLOCK.LIB 
LDBIOS .A86 
LDCOPY.A86 
LDCPM.A86 
RANDOM.A86 
ROM.A86 
SINGLES.DEF 
SINGLES.LIB 
TBIOS.A86 
TRACK.A86 
8087.LIB 

Source file for the standard BIOS 
Source for the skeletal BIOS 
Source for COPYDISK.CMD 
Blocking/deblocking algorithms 
Source for LDBIOS.CMD 
Source for LDCOPY.CMD 
Source for LDCPM.CMD 
Sample A86 program using BDOS calls 
Source file for the ISBC 86/12 boot ROM 
Diskdef input to the GENDEF utility 
Output from the GENDEF utility 
Source for track buffered BIOS 
Skeletal source for track buffering 
Code macro library for 8087 

Note: The DEBLOCK.LIB file is included for your reference. Any 
specific application might require modifications. 

All Information Presented Here is Proprietary to Digital Research 

2 



CP/M-86T .M. Operating System 

PROGRAMMER'S GUIDE 

Corrections to the First Printing - 1981 
Copyr ight © 1981 by Digi tal Research 

CP/M is a registered trademark of Digital Research. 
ASM-86, CP/M-86, DDT-86, and MP/M-86 are trademarks 

of Digital Research. 
Compiled February 1982 

Clarification of ASM-86 T .M. Changes: 

1) Forward references in EQU's are flagged as errors. 

2) A! in a comment is ignored; comments extend to the physical 
end of the line. 

3) New directives: IFLIST and NOIFLIST control listing of false 
IF blocks. 

4) IF directives can be nested to five levels. 

5) New mnemonics implemented: 

• JC, JNC 
• CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, SCASB, 

SCASW, STOSB, STOSW 

6) JNBE implemented correctly. 

7) Segment override prefix is allowed in source operand of 
string instructions. 

8) Relational operators in expressions return OFFFFH if true. 

9)'Abort if invalid command tail encountered. 

10) Abort if symbol table overflows. 

11) Abort if disk or directory full. 

12) Incomplete string flagged as error (no terminating quote). 

13) Error repor ted if an invalid numer ic quanti ty appear s in EQU 
directive. 

14) Source files are opened in R/O mode for multiple access 
under MP/M-86 T"M •• 

All Information Presented Here is Proprietary to Digital Research 

1 



CP/M-S6 Programmer's Guide Corrections 

15) Format of .LST file: 

• form-feed at start of file 
• no form-feed at end of file 
• no cr, If at top of each page 
• fewer lines per page 
• spaces between hex bytes deleted to allow more space 

for comments 
• errors printed when NOLIST active 
• absolute address field for relative instructions 

16) Format of .SYM file: 

• form-feed at start of file 
• symbols alphabetized within groups 
• tabs expanded if symbols sent to printer ($SY) 

17) Include files: 

• filetype defaults to .AS6 
• filetype can have fewer than three characters 
• abort if include file not found 
• default to same drive as source when $a switch used 

IS) Programs with INCLUDE directives assemble correctly under 
CP/M® 1.4. 

19) About 5.5K more space available for symbol table. 

20) Use factor indicated at end of assembly (% usage of symbol 
table space). 

21) Runs somewhat faster (especially with $PZ switch). 

All Information Presented Here is Proprietary to Digital Research 

2 



CP/M-86 Programmer's Guide Corrections 

Clarification of DDT-86T .M. Changes: 

1) User programs default to CCP stack, rather than local stack 
in DDT-86. 

2) A command line starting with a ; is treated as a comment. 

3) Interrupts are disabled while a single instruction is being 
traced. 

4) BOOS error mode is set to return BOOS errors for MP/M-86. 

5) Files are closed after reading and loading for MP/M-86. 

6) New Block Compare function implemented, with the same 
command form as the Move function. 

All Information Presented Here is Proprietary to Digital Research 

3 





CP/M-86T .M. V1.0, Application Note 01, 11/6/81 

Copyright~198l by Digital Research, Inc., Pacific Grove, CA 93950 

DDT-86T
.M·SCREEN WIDTH ALTERATION 

Applicable Products and Version Numbers: CP/M-86 Vl.l, DDT-86 

You can alter DDT-86 for use with 40 character wide consoles. 
The display of memory locations (D command) and the CPU state (X, T 
and U commands) reflect the narrower screen size. Make sure you have 
a back-up copy of DDT-86 before installing the patch as shown below. 

A>ddt86 
DDT86 1.1 
-rddt8·6.cmd 
START END 
nnnn:OOOO nnnn:367F 
-s12fO 
nnnn:12FO 00 01 
nnnn:12Fl 00 
-wddt86.cmd 
_AC 

A> 

Licensed users are granted the right to include these changes in 
CP/M-86 Vl.l software. CP/M-86 and DDT-86 are trademarks of Digital 
Research. 

All Information Presented Here is Proprietary to Digital Research 

1 





CP/M-86T .M. V1.0 Application Note 02, 11/3/81 

Copyright~198l by Digital Research, Inc., Pacific Grove, CA 93950 

SMALLER VERSIONS OF DDT-86T .M. 

Applicable Products and Version Numbers: CP/M-86 Vl.O, DDT-86 

You can create smaller versions of DDT-86 that may be useful for 
systems with limited memory. You can remove the assembler portion 
resul ting in a 9K version of DDT-86 or you can remove both the 
assembler and disassembler resulting in a 5K version of DDT-86. In 
the 9K version, DDT-86 responds to an A command with a question mark. 
In the 5K version, both the A and L commands yield a question mark. 

A>ddt86 
DDT86 1.0 
-rddt86.cmd 
START END 
nnnn:OOOO nnnn:367F 
-sO 
nnnn:OOOO 01 
nnnn:OOOl 60 Od 
nnnn:0002 03 02 
nnnn:0003 00 
nnnn:0004 00 
nnnn:0005 66 Od 
nnnn:0006 03 02 
nnnn:0007 00. 
-51286 
nnnn:1286 01 00 
nnnn:1287 00 • 
-wddt9k.cmd,0,217f 
_AC 

A> 

Use the following procedure to remove the assembler and the 
disassembler from DDT-86. 

A>ddt86 
DDT86 1.0 
-rddt86.cmd 
START END 
nnnn:OOOO nnnn:367F 
-sO 
nnnn:OOOO 01 
nnnn:OOOl 60 2b 
nnnn:0002 03 01 
nnnn:0003 00 
nnnn:0004 00 
nnnn:0005 66 32 
nnnn:0006 03 01 
nnnn:0007 00. 

All Information Presented Here is Proprietary to Digital Research 

1 



CP/M-86 Vl.0, Application Note 02, 11/3/81 (cont'd) 

-81286 
nnnn:1286 01 00 
nnnn:1287 00 • 
-812b9 
nnnn:12B9 01 00 
nnnn:12BA 00 • 
-wddt5k.cmd,0,13ff 
_AC 

A) 

Licensed users are granted the right to include these changes in 
CP/M-86 Vl.O software. CP/M-86 and DDT-86 are trademarks of Digital 
Research. 

All Information Presented Here is Proprietary to Digital Research 

2 


