

nJsearch string"Zinsert string"Zdelete-to string

where n is the occurrence of the search string. If no number is
specified, ED searches for the next occurrence of the search
string in the memory buffer. In the following example, ED
searches for the word "Dickinson" and inserts the phrase "told a
friend" after it and then deletes everything up to the comma.

1: *4T
1: Emily Dickinson said,
2: "I find ecstasy in living -
3: the mere sense of living
4: is joy enough."
1: *jDickinson"Z told a friend"Z,
1: *OIt
1: Emily Dicl<inson told a friend,
1:*

If you combine this command with other commands, you
must terminate the delete-to string with a Ctrl-Z or Esc. (This
is shown in the following example.) If an upper-case J
command letter is specified, ED looks for upper-case search
and delete-to strings and inserts an upper-case insert string.

The J command is especially useful when revising comments
in assembly language source code, as shown below.

236: LXI H, SW ;ADDRESS TOGGLE SWITCH
236: *j;"ZADDRESS SWITCH TOGGLE"Z"L �~�Z�O�L�T�

236: LXI H, SW ;ADDRESS SWITCH TOGGLE
236: *

In this example, ED searches for the first semicolon and inserts
ADDRESS SWITCH TOGGLE after the mark and then
deletes to the <cr><lf> sequence, represented by Ctrl-L. (In
any search string, you can use Ctrl-L to �r�e�p�r�e�~�e�n�t� a
<cr><lf> when your desired phrase extends across a line
break. You can also use a Ctrl-I in a search string to represent a
tab.)

Note: If long strings make your command longer than your
screen line length, enter a Ctrl-E to cause a physical carriage
return at the screen. A Ctrl-E returns the cursor to the left edge
of the screen, but does not send the command line to ED.
Remember that no ED command line containing strings can
exceed 100 characters. When you finish your command, press
the carriage-return key to send the command to ED.

5-27

5-28

The M (Macro) Command

An ED macro command, M, can increase the usefulness of a
string of commands. The M command allows you to group ED
commands together for repeated execution. The form of the M
command is:

nMcommand string

where n is the number of times the command string is to be
executed. A negative number is not a valid argument for an M
command. If no number is specifed, the special character # is
assumed, and ED executes the command string until it reaches
the end of data in the buffer or the end of the source file,
depending on the commands specified in the string. In the
following example, ED executes the four commands
repetitively until it reaches the end of the memory buffer.

1: *mflivingAZ-6diLivingAZOlt
2: "I find ecstasy in Living -
3: the mere sense of Living

BREAK "#" ATAZ
3:*

The terminator for an M command is a carriage return;
therefore, an M command must be the last command on the
line. Also, all character strings that appear in a macro must be
terminated by Ctrl-Z or Esc. If a character string ends the
combined-command string, it must be terminated by Ctrl-Z,
then followed by a <cr> to end the M command.

The execution of a macro command always ends in a BREAK
"#" message, even when you have limited the number of times
the macro is to be performed, and ED does not reach the end of
the buffer or source file. Usually the command letter displayed
in the message is one of the commands from the string and not
M.

To stop a macro command, strike a Ctrl-C at the keyboard.

TheZ(Sk~)Com~nd

Use the Z command to make the editor pause between
operations. The pauses give you a chance to review what you
have done. The form of the Z command is:

nZ

where n is the number of seconds to wait before proceeding to
the next instruction.

Generally, the Z command has no real effect unless you use it
with a macro command. The example below shows you how
you can use the Z command to cause a ten-second pause each
time ED finds the word "text" in a file.

1: zmfliving"ZOtt10z

Moving Text Blocks

To move a group of lines from one area of your data to another,
use an X command to write the text block into a temporary
. LIB file, then a K command to remove these lines from their
original location, and finally an R command to read the block
into its new location.

The X (Transfer) Command

The X command takes the forms:

nX
nX filespec"Z

where n is the number of lines from the CP towards the
bottom of the buffer that are to be transferred to a file.
Therefore, n must always be a positive number. The nX
command with no file specified creates a temporary file named
X$$$$$$$.lIB. This file is erased when you terminate the
edit session. The nX command with a file specified creates a
file of the specified name. If the X command is not the last
command on the line, the command must be terminated by a
Ctrl-Z or Esc. In the following example, just one line is
transferred to the temporary file.

5-29

5-30

1:*X
1: *t
1: *Emily Dickinson said,
1: *kt
1: *"1 find ecstasy in living-
1: *

If no library file is specified, ED looks for a file named
X$$$$$$$.LIB. If the file does not exist, ED creates it. If a
previous X command already created the library file, ED
appends the specified lines to the end of the existing file.

Use the special character 0 as the n argument in an X
command to delete any file from within ED.

The R (Read) Command

The X command transfers the next n lines from the current
line to a library file. The R command can retrieve the
transferred lines. The R command takes the forms:

R
Rfilepsec

If no filename is specified, X$$$$$$$ is assumed. If no filetype
is specified, .LIB is assumed. R inserts the library file in front
of the CP; therefore, after the file is added to the memory
buffer, the CP points to the same character it did before the
read, although the character is on a new line number. If you
combine an R command with other commands, you must
separate the filename from subsequent command letters with a
Ctrl-Z as in the following example where ED types the entire
file to verify the read.

1: *41
: *RAZB#T

1: "1 find ecstasy in living-
2: the mere sense of living
3: is joy enough."
4: Emily Dickinson said,
1: *

Saving or Abandoning Changes: ED Exit

You can save or abandon editing changes with the following
three commands: H, 0, and Q.

The H (Head o/Pile) Command

An H command saves the contents of the memory buffer
without ending the ED session, but it returns to the "head" of
the file. It saves the current changes and lets you reedit the file
without exiting ED. The form of the H command is:

H

followed by a carriage return.

To execute an H command, ED first finalizes the new file,
transferring all lines remaining in the buffer and the source file
to the new file. Then ED closes the new file, erases any .BAK
file that has the same file specification as the original source
file, and renames the original source file filename. BAK. ED
then renames the new file, which has had the filetype . $$$,
with the original file specification. Finally, ED opens the
newly renamed file as the new source file for a new edit, and
opens a new .$$$ file. When ED returns the '* prompt, the CP
is at the beginning of an empty memory buffer.

If you want to send the edited material to a file other than the
original file, use a command of the following form:

A> ED filespec different-filespec

If you then restart the edit with the H command, ED renames
the file different-filename. $$$ to different-filename.BAK and
creates a new file of different-filespec when yo,u finish editing.

5-31

5-32

The 0 (Original) Command

An 0 command abandons changes made since the beginning
of the edit and allows you to return to the original source file
and begin reediting without ending the ED session. The form
of the 0 command is:

o

followed by a carriage return. When you enter an 0 command,
ED confirms that you want to abandon your changes by
asking:

o (YIN)?

You must respond with either a Y or an N; if you press any
other key, ED repeats the question. When you enter Y, ED
erases the temporary file and the contents of the memory
buffer. When the =II: prompt returns, the character pointer is
pointing to the beginning of an empty memory buffer, just as
it is when you start ED.

The Q (Quit) Command

A Q command abandons changes made since the beginning of
the ED session and exits ED. The form of the Q command is:

Q

followed by a carriage return.

When you enter a Q command, ED verifies that you want to

abandon the changes by asking:

o (YIN)?

You must respond with either a Y or an N; if you press any
other key, ED repeats the question. When you enter Y, ED
erases the temporary file, closes the source file, and returns
control to CP/M-86.

Note: You can enter a Ctrl-Break or a Ctrl-C to immediately
return control to CP/M-86. This does not give ED a chance to

close the source or new files, but it prevents ED from deleting
any temporary files.

ED Error Messages

ED returns one of two types of error messages: an ED error
message if ED cannot execute an edit command, or a CP/M-86
error message if ED cannot read or write to the specified file.

The form of an ED error message is:

BREAK "x" AT c

where x is one of the symbols defined in the following table
and c is the command letter where the error occurred;

Symbol

?c

o

>

E

F

ED Error Symbols

Meaning

Search failure. ED cannot find the string
specified in an F, S, or N command.

Unrecognized command letter c. ED does not
recognize the indicated command letter; or an
E, H, Q, or 0 command is not alone on its
command line.

No .LIB file. ED did not find. the .LIB file
specified in an R command.

Buffer full. ED cannot put any more characters
in the memory buffer, or string specified in an
F, N, or S command is too long.

Command aborted. A keystroke at the keyboard
aborted command execution.

File error. Followed by either DISK FULL or
DIRECTORY FULL.

The following examples show how to recover from common
editing error conditions. For example:

BREAI(">" AT A

5-33

5-34

means that ED filled the memory buffer before completing the
execution of an A command. When this occurs, . the character
pointer is at the end of the buffer and no editing is possible.
Use the OW command to write out half the buffer or use an 0
or H command and reedit the file.

BREAI("#" AT F

means that ED reached the end of the memory buffer without
matching the string in an F command. At this point, the
character pointer is at the end of the buffer. Move the CP with
a B or n: line number command to resume editing.

BREAI("F" AT F DISI(FULL

Use the OX command to erase an unnecessary file on the disk
or a B#Xd:buffer.sav command to write the contents of the
memory buffer onto another disk.

BREAI("F" AT n DIRECTORY FULL

Use the same commands described in the previous message to
recover from this file error.

The following table defines the disk file error messages ED
returns when it cannot read or write a file.

ED Disk File Error Messages

Message Meaning

BOOS ERR ON d: RIO

Disk d: has read-only attribute. This occurs if a
different disk has been inserted in the drive
since the last cold or warm boot.

** FILE IS READ ONLY **

The file specified in the command to invoke ED
has the RIO attribute. ED can read the file so
that the user can examine it, but ED cannot
change a Read-Only file.

CHAPTER 6. INTRODUCTION
TO ASM-86

Contents

Assembler Operation 6-3
Optional Run-time Parameters 6-5
Ending ASM-86. .. 6-7

6-1

6-2

Assembler Operation

ASM-S6 processes an SOS6 or SOSS assembly language source
file in three passes and produces three output files, including
an SOS6/S0SS machine language file in hexadecimal format.
This object file can be in either Intel or Digital Research hex
format. These formats are described in Appendix C. ASM-S6
is designed to run under CP/M-S6 on an IntelSOS6 or SOSS
based system. ASM-S6 typically produces three output files
from one input file as shown in the figure below.

B-8--+------+8

filename. AS6
filename. LST
filename. HS6

filename. SYM

contains source
contains listing

SYMBOL FILE

contains assembled program
in hexadecimal format
contains all user-defined symbols

ASM-S6 Source and Object Files

The figure above also lists ASM-S6 filetypes. ASM-S6 accepts
a source file with any three-letter filetype, but if the type is
omitted from the invoking command, it looks for the specified
filename with the filetype .AS6 in the directory. If the file has
a type other than .AS6 or has no type at all, ASM-86 returns
an error message.

The other filetypes listed in the figure identify ASM-S6 output
files. The .LST file contains the assembly language listing with
any error messages. The .HS6 file contains the machine
language program in either Digital Research or Intel
hexadecimal format. The .SYM file lists any user-defined
symbols.

6-3

6-4

Start ASM-86 by entering a command of the following form:

ASM86 source filespec { $ optional parameters}

Specify the source file in the following form:

{d: }filename{. typ}

where

d: is a valid drive letter specifying the source
file's location. Not needed if source is on
current drive.

filename is a valid CP/M-86 filename of 1 to 8
characters.

filetype is a valid filetype of 1 to 3 characters, usually
.A86.

Some examples of valid ASM-86 commands are:

A>ASM86 B:BIOS88

A>ASM86 BIOS88.A86 $FI AA HB PB SB

A>ASM86 D:TEST

Note that if you assemble an empty source file, ASM-86
produces three empty output files.

Once invoked, ASM-86 responds with the message:

CP/M-06 8086 ASSEMBLER VER X.x

where X.x is the ASM-86 version number. ASM-86 then
attempts to open the source file. If the file does not exist on the
designated drive, or does not have the correct filetype as
described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list,
ASM-86 displays the message:

PARAMETER ERROR

After opening the source, the assembler creates the output
files. Usually these are placed on the default diskette drive, but
they can be redirected by optional parameters, or by a drive
specifier in the source file specification. In the latter case,
ASM-86 directs the output files to the drive specified in the
source file specification.

During assembly, ASM-86 terminates if an error condition
such as diskette full or symbol table overflow is detected.
When ASM-86 detects an error in the source file, it places an
error message line in the listing file in front of the line
containing the error. Each error message has a number and
gives a brief explanation of the error. See Appendix A for a list
of ASM-86 error messages. Also in the list file, the value of the
absolute address generated by relative instructions, such as
calls, jumps and loops, appears in a field to the left of the
source line. When the assembly is complete, ASM-86 displays
the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n. USE FACTOR:
pp%

The use factor indicates how much of the available symbol
table space was actually used during the assembly; pp is a
decimal percentage ranging from 0 to 99.

Optional Run-time Parameters

The dollar-sign character, $, flags an optional string of
run-time parameters. A parameter is a single letter followed by
a single letter device name specification. The parameters are
shown in the table below.

Run-time Parameter Summary

Parameter To Specify

A source file device
H hex output file device
P list file device
S symbol file device
F format of hex output file

Valid Arguments

A,B,C,D
A,B,C,D,X,Y,Z
A,B,C,D,X,Y,Z
A,B,C,D,X,Y,Z
I, D

6-5

6-6

All parameters are optional, and can be entered in the
command line in any order. Enter the dollar sign only once at
the beginning of the parameter string. Spaces may separate
parameters, but are not required. No space is permitted,
however, between a parameter and its device name.

A device name must follow parameters A, H, P and S. The
devices are labeled:

A,B,C,DorX,Y,Z

Device names A through D, respectively, specify disk drives A
through D. X specifies the screen, Y specifies the printer, and
Z suppresses output.

If output is directed to the screen, it can be temporarily
stopped at any time by typing a Ctrl-S. Restart the output by
typing a second Ctrl-S or any other character.

The F parameter requires either an lor a D argument. When I
is specified, ASM-86 produces an object file in Intel hex
format. A D argument requests Digital Research hex format.
Appendix C discusses these formats in detail. If the F
parameter is not entered in the command line, ASM-86
produces Digital Research hex format.

Run-time Parameter Examples

Command Line

ASM8610

ASM86 10.ASM $ AD SZ

ASM86 10 $ PY SX

ASM86 10 $ FD

ASM86 10 $ FI

Ending ASM-86

Result

Assemble file 10.A86,
produce 10.H86, 10.LST
and 10.SYM, all on the
default drive.

Assemble file 10.ASM on
drive D, produce 10.LST
and 10.H86, no symbol
file.

Assemble file 10.A86,
produce 10. H86, route
listing directly to printer,
output symbols on screen.

Produce Digital Research
hex format.

Produce Intel hex format.

You can end ASM-86 execution at any time by hitting any key
on the keyboard. When you press a key, ASM-86 responds
with the question:

USER BREAI<' OI{(Y/N)?

A Y response ends the assembly and returns to the operating
system. An N response continues the assembly.

6-7

6-8

CHAPTER 7. ELEMENTS OF ASM-86
ASSEMBLY LANGUAGE

Contents

ASM-86 Character Set 7-3
Tokens and Separators. .. 7-3
Delimiters. .. 7-3
Constants .. 7-5

Numeric Constants. 7-5
Character Strings .. 7 -6

Identifiers 7-7
Keywords .. 7 -8
Symbols and Their Attri butes. 7 -1 0

Operators 7-12
Operator Examples 7-15
Operator Precedence. 7-18

Expressions. .. 7-19
Statements 7-20

7-1

7-2

ASM -86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The
valid characters are the alphanumerics, special characters, and
non-printing characters shown below:

ABC D E F G H IJ KLM N 0 P Q R STU VW X YZ
abcdefghijklmnopqrstuvwxyz
0123456789

+ :II: /) []
@ $

space, tab, carriage-return, and line-feed

Lower-case letters are treated as upper-case except within
strings. Only alphanumerics, special characters, and spaces
may appear within a string.

Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source
program, much as a word is the smallest meaningful unit of an
English composition. Adjacent tokens are commonly separated
by a blank character or space. Any sequence of spaces may
appear wherever a single space is allowed. ASM-86 recognizes
horizontal tabs as separators and interprets them as spaces.
Tabs are expanded to spaces in the list file. The tab stops are at
each eighth column.

Delimiters

Delimiters mark the end of a token and add special meaning to
the instruction, as opposed to separators, which merely mark
the end of a token. When a delimiter is present, separators
need not be used. However, separators after delimiters can
make your program easier to read.

The table below describes ASM-86 separators and delimiters.
Some delimiters arealso operators and are explained in greater
detail in the section "Operators. "

7-3

Separators and Delimiters

Character Name Use

20H space separator

09H tab legal in source files, expanded
in list files

CR carriage terminates source lines
return

LF line feed legal after CR; if within source
lines, it is interpreted as a
space

semicolon starts comment field

colon identifies a label, used in
segment override specification

period forms variables from numbers

$ dollar sign notation for "present value of
location pointer"

+ plus. arithmetic operator for addition

mInus arithmetic operator for
subtraction

'* asterisk arithmetic operator for
multi plication

/ slash arithmetic operator for division

@ "at" sign legal in identifiers

underscore legal in identifiers

exclamation logically terminates a
point statement, thus allowing

multiple statements on a single
source line

apostrophe delimits string constants

7-4

Constants

A constant is a value known at assembly time that does not
change while the assembled program is executed. A constant
may be either an integer or a character string.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a
trailing radix indicator. The radix indicators are shown in the
table below.

Radix Indicators for Constants

Indicator Constant Type Base

B binary 2
a octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated
with a radix indicator is a decimal constant. Radix indicators
may be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional
radix indicator, where the digits are in the range for the radix.
Binary constants must be composed ofO's and 1's. Octal digits
range from 0 to 7; decimal digits range from 0 to 9. Hexa­
decimal constants contain decimal digits as well as the
hexadecimal digits A (10D), B (lID), C (12D), D (13D), E
(14D), and F (15 D) . Note that the leading character of a
hexadecimal constant must be a decimal digit so that ASM-86
cannot confuse a hex constant with an identifier. The following
are valid numeric constants:

1234
1234H
33770

1234D
OFFEH
OFE3H

1100B
33770
1234d

1111000011110000B
13772Q
OFFFFH

7-5

7-6

Character Strings

ASM-86 treats an ASCII character string delimited by
apostrophes as a string constant. All instructions accept only
one- or two-character constants as valid arguments.
Instructions treat a one-character string as an 8-bit number. A
two-character string is treated as a 16-bit number with the
value of the second character in the low-order byte, and the
value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. Both
upper- and lower-case letters can be used because ASM-86 does
not translate case within character strings. Note that only
alphanumerics, special characters, and spaces are allowed
within strings.

A DB assembler directive is the only ASM-86 statement that
may contain strings longer than two characters. The string
may not exceed 255 bytes. Include any apostrophe to be
printed within the string by entering it twice. ASM-86
interprets the two keystrokes (") as a single apostrophe. The
examples below show valid strings and how they appear after
processing.

'a'-> a
'Ab"Cd'-> Ab'Cd

""->'

'ONLY UPPER CASE' - > ONLY UPPER CASE
'only lower case' -> only lower case

Identifiers

Identifiers are character sequences which have a special,
symbolic meaning to the assembler. All identifiers in ASM-86
must obey the following rules:

1. The first character must be alphabetic (A, ... Z, a, ... z).

2. Any subsequent characters can be either alphabetical or a
numeral (0, 1, 9). ASM-86 ignores the special
characters @ and _, but they are still legal. For
example, a_b becomes abo

3. Identifiers may be of any length up to the limit of the
physical line .

Identifiers are of two types. The first are keywords, which have
predefined meanings to the assembler. The second are
symbols, which are defined by the user. The following are all
valid identifiers:

NOLIST
WORD
AH
Third_street
How_are_you_today
variable@number@ 1234567890

7-7

7-8

BYTE

EQ
NE
PTR
LAST

Keywords

A keyword is an identifier that has a predefined meaning to the
assembler. Keywords are reserved; the user cannot define an
identifier identical to a keyword. The following table gives a
complete list of reserved words.

Reserved Words

Predefined Numbers

WORD DWORD

Operators

GE GT LE LT
OR AND MOD NOT
SEG SHL SHR XOR
TIPE LENGTH OFFSET

Assembler Directives

DB DD DW IF RB
RS RW
CSEG DSEG
SSEG EJECT
NOLIST INCLUDE
CODEMACRO PAGEWIDTH

END EQU
ENDM ESEG
ENDIF TITLE
SIMFORM NOIFLIST

ORG
LIST
IFLIST
PAGESIZE

Code-macro directives

DB DD DW DBIT RELB
RELW MODRM SEGFIX NOSEGFIX

8086 Registers

AH AL AX BH BL
BP BX CH CL Cs.
CX DH DI DL DS
DX ES SI SP SS

ASM-86 recognizes five types of keywords: instructions,
directives, operators, registers and predefined numbers. 8086
instruction mnemonic keywords and the actions they initiate
are defined in Chapter 9. Directives are discussed in Chapter 8.

Three keywords are predefined numbers: BYTE, WORD, and
DWORD. The values of these numbers are 1, 2 and 4,
respectively. In addition, a Type attribute is associated with
each of these numbers. The keyword's Type attribute is equal
to the keyword's numeric value. See the section "Symbols and
Their Attributes" for a complete discussion of Type attributes.
The following table gives a complete list of register keywords.

Register Keywords

Register Numeric
Symbol Size Value Meaning

AH 1 byte 100 B Accumulator-High-Byte
BH 1 byte 111 B Base-Register-High-Byte
CH 1 byte 101 B Count-Register-High-Byte
DH 1 byte 110 B Data-Register-High-Byte

AL 1 byte OOOB Accumulator-Low-Byte
BL 1 byte 011 B Base-Register-Low-Byte
CL 1 byte 001 B Count-Register-Low-Byte
DL 1 byte 010 B Data-Register-Low-Byte

AX 2 bytes 000 B Accumulator (full word)
BX 2 bytes 011 B Base-Register (full word)
CX 2 bytes 001 B Count-Register (full word)
DX 2 bytes 010 B Data-Register (full word)

BP 2 bytes 101 B Base Pointer
SP 2 bytes 100 B Stack Pointer

SI 2 bytes 110 B Source Index
DI 2 bytes 111 B Destination Index

CS 2 bytes 01 B Code-Segment-Register
DS 2 bytes 11 B Data-Segment-Register
SS 2 bytes 10 B Stack -Segment-Register
ES 2 bytes OOB Extra-Segment-Register

7-9

7-10

Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes which
specify what kind of information the symbol represents.
Symbols fall into three categories:

variables
• labels

numbers

Variables identify data stored at a particular location in
memory. All variables have the following three attributes:

•

•

•

Segment-tells which segment was being assembled when
the variable was defined.

Offset-tells how many bytes there are between the
beginning of the segment and the location of this variable.

Type-tells how many bytes of data are manipulated when
this variable is referenced.

A Segment may be a code-segment, a data-segment, a
stack-segment or an extra-segment depending on its contents
and the register that contains its starting address (see
"Segment Start Directives" in Chapter 8). A segment may
start at any address divisible by 16. ASM-86 uses this
boundary value as the Segment portion of the variable's
definition.

The Offset of a variable may be any number between 0 and
OFFFFH or 65535D. A variable must have one of the
following Type attributes:

• BYTE
• WORD

DWORD

BYTE specifies a one-byte variable, WORD a two-byte
variable and DWORD a four-byte variable. The DB, DW,
and DD directives, respectively, define variables as these three
types. For example, a variable is defined when it appears as the
name for a storage directive:

VARIABLE DB 0

A variable may also be defined as the name for an EQU
directive referencing another variable, as shown below:

VARIABLE EOU ANOTHER_VARIABLE

Labels identify locations in memory that contain instruction
statements. They are referenced with jumps or calls. All labels
have two attributes:

•
•

Segment
Offset

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. Generally, a label is
defined when it precedes an instruction. A colon, :, separates
the label from instruction; for example:

LABEL: ADD AX,BX

A label may also appear as the name for an EQU directive
referencing another label; for example:

LABEL EOU ANOTHER_LABEL

Numbers may also be defined as symbols. A number symbol is
treated as if you had explicitly coded the number it represents.
For example:

Number_five EOU 5
MOV AL,Number_five

is equivalent to:

MOV AL,5

The following section describes operators and their effects on
numbers and number symbols.

7-11

Operators

ASM-86 operators fall into the following categories:
arithmetic, logical, and relational operators, segment
override, variable manipulators and creators. The following
table defines ASM-86 operators. In this table, a and b
represent two elements of the expression. The validity column
defines the type of operands the operator can manipulate,
using the "or" bar character, I, to separate alternatives.

ASM -86 Operators

Syntax Result Validity

logical Operators

aXORb bit-by-bit logical a, b = number
EXCLUSIVE OR of a
and b.

aORb bit-by-bit logical OR of
a and b. a, b = number

aANDb bit-by-bit logical AND a, b = number
ofaand b.

NOTa logical inverse of a: all a = 16-bit number
O's become l's, 1's
become O's.

aEQb returns OFFFFH if a = a, b = unsigned
b, otherwise O. number

alTb returns OFFFFH if a < a, b = unsigned
b, otherwise O. number

alE b returns OFFFFH if a a, b = unsigned
< = b, otherwise O. number

aGTb returns OFFFFH if a > a, b = unsigned
b, otherwise O. number

aGEb returns OFFFFH if a a, b = unsigned
> = b, otherwise O. number

aNEb returns OFFFFH if a a, b = unsigned
<> b, otherwise O. number

7-12

ASM-86 Operators (continued)

Syntax Result Validity

Arithmetic Operators

a+b ari thmetic sum of a and a = variable,
b. label or number

b = number

a-b arithmetic difference of a = variable,
a and b. label or number

b = number

a*b does unsigned a, b = number
multiplication of a and
b.

alb does unsigned division a, b = number
of a'and b.

aMODb returns remainder of a, b = number
alb.

aSHLb returns the value which a, b = number
results from shifting a
to the left by an amount
b.

aSHRb returns the value which a, b = number
results from shifting a to
the right by an amount
b.

+a gives a. a = number

-a gives 0 -a. a = number

Segment Override

<seg reg>: overrides assembler's <seg reg> = CS, DS,
<addr choice of segment SS or ES
exp> register.

7-13

ASM-86 Operators (continued)

Syntax Result Validity

Variable Manipulators, Creators

SEGa creates a number whose a = label I variable
value is the segment
value of the variable or
label a. The variable or
label a must be declared
in an absolute segment
(i.e. CSEG 1234H);
otherwise the SEG
operator is undefined.

OFFSET a creates a number whose a = label I variable
value is the offset value
of the variable or label
a.

TYPE a creates a number. If the a = label I variable
variable a is of type
BYTE, WORD or
DWORD, the value of
the number will be 1, 2
or 4, respectively.

creates a number whose a = label I variable
LENGTH a value is the LENGTH

attribute of the variable
a. The length attribute
is the number of bytes
associated with the
variable.

LAST a if LENGTH a > 0, a = label I variable
then LAST a =
LENGTH a-I; if
LENGTH a = 0, then
LAST a = 0.

creates virtual variable a = BYTE I WORD, I
aPTRb or label with type of a DWORD

and attributes of b b = <addr exp>

7-14

Syntax

.a

$

ASM-86 Operators (continued)

Result Validity

Variable Manipulators, Creators

creates variable with an a = number
offset attribute of a.
Segment attribute is
current segment.

creates label with offset no argument
equal to current value of
location counter;
segment attribute is
current segment.

Operator Examples

Logical operators accept only numbers as operands. They
perform the boolean logic operations AND, OR, XOR, and
NOT. For example:

OOFC
0080

0000 B180
0002 B003

MASI(
SIGNBIT

EOU
EOU
MOV
MOV

OFCH
80H
CL,MASI{ AND SIGNBIT
AL,NOT MASI(

Relational operators treat all operands as unsigned numbers.
The relational operators are EQ (equal), LT (less than), LE (less
than or equal), GT (greater than), GE (greater than or equal),
and NE (not equal). Each operator compares two operands and
returns all ones (OFFFFH) if the specified relation is true and
all zeros if it is not. For example:

OOOA
0019

0004 B8FFFF
0007 B80000

LlMIT1
LlMIT2

EOU
EOU

MOV
MOV

10
25

AX,LlMIT1 LT LlMIT2
AX,LlMIT1 GT LlMIT2

7-15

7-16

Addition and subtraction operators compute the arithmetic
sum and difference of two operands. The first operand may be a
variable, label, or number, but the second operand must be a
number. When a number is added to a variable or label, the
result is a variable or label whose offset is the numeric value of
the second operand plus the offset of the first operand.
Subtraction from a variable or label returns a variable or label
whose offset is that of first operand decremented by the
number specified in the second operand. For example:

0002
0005
OoOA FF

OOoB 2EAOOBOO
OooF 2E8AOEOFOO
00014 B303

COUNT EQU 2
DISP1 EQU 5
FLAG DB OFFH

MOV AL,FLAG + 1
MOV CL,FLAG + DISP1
MOV BL,OISP1-COUNT

The multiplication and division operators =1«, I, MOD, SHL,
and SHR accept only numbers as operands. =I« and I treat all
operators as unsigned numbers. For example:

0016 BE5500
0019 B310
0050
001B B8AOOO

MOV
MOV
BUFFERSIZE
MOV

SI,256/3
BL,64/4
EQU 80
AX,BUFFERSIZE * 2

Unary operators accept both signed and unsigned operators as
shown below:

001E B123
0020 B007
0022 B2F4

MOV
MOV
MOV

CL,+35
AL,2-5
DL,-12

When manipulating variables, the assembler decides which
segment register to use. You may override the assembler's
choice by specifying a different register with the segment
override operator. The syntax for the override operator is
segment-register: address-expression where the
segment-register is CS, DS, SS, or ES. For example:

0024 363B472D
OOl0 260BOE5BOO

MOV
MOV

AX,SS:WORDBUFFER[BX]
CX,ES :ARRAY

A variable manipulator creates a number equal to one attribute
of its variable operand. SEG extracts the variable's segment
value, OFFSET its offset value, TYPE its type value (1,2, or
4), and LENGTH the number of bytes associated with the
variable. LAST compares the variable's LENGTH with 0 and
if greater, then decrements LENGTH by one. If LENGTH
equals 0, LAST leaves it unchanged. Variable manipulators
accept only variables as operators. For example:

1234
0020 000000000000
0033 0102030405

0038 B80500
003B B80400
003E B80100
0041 B80200
0044 B83412

WOROBUFFER
BUFFER

OSEG 1234H
OW 0,0,0
OB 1,2,3,4,5

MOV
MOV
MOV
MOV
MOV

AX,LENGTH BUFFER
AX,LAST BUFFER
AX,TYPE BUFFER
AX,TYPE WOROBUFFER
AX,SEG BUFFER

The PTR operator creates a virtual variable or label, one valid
only during the execution of the instruction. It makes no
changes to either of its operands. The temporary symbol has
the same Type attribute as the left operator, and all other
attributes of the right operator as shown below.

0044 C60705
00478A07
0049 FF04

MOV
MOV
INC

BYTE PTR [BX], 5
AL,BYTE PTR [BX]
WORO PTR [SI]

The Period operator, ., creates a variable in the current data
segment. The new variable has a segment attribute equal to
the current data segment and an offset attribute equal to its
operand. Its operand must be a number. For example:

004B A10000
004E 268B1 E0040

MOV
MOV

AX,.O
BX, ES: .4000H

The dollar-sign operator, $, creates a label with an offset
attribute equal to the current value of the location counter.
The label's segment value is the same as the current segment.
This operator takes no operand. For example:

0053 E9FOFF
0056 EBFE
0058 E9F02F

JMP
JMPS
JMP

$
$
$+3000H

7-17

7-18

Operator Precedence

Expressions combine variables, labels or numbers with
operators. ASM-86 allows several kinds of expressions which
are discussed in the section "Expressions." However, this
section defines the order in which operations are executed,
should more than one operator appear in an expression.

In general, ASM-86 evaluates expressions left to right, but
operators with higher precedence are evaluated before
operators with lower precedence. When two operators have
equal precedence, the left-most is evaluated first. The table
below presents ASM-86 operators in order of increasing
precedence.

Parentheses can override normal rules of precedence. The part
of an expression enclosed in parentheses is evaluated first. If
parentheses are nested, the innermost expressions are evaluated
first. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3

Precedence of Operations in ASM -86

Order Operator Type Operators

1 Logical XOR, OR

2 LogiGal AND

3 Logical NOT

4 Relational EQ, LT, LE, GT,
GE,NE

5 Addi tion! subtraction + -,

6 Multi plication! di vision *, I, MOD,
SHL, SHR

7 Unary + -,

8 Segment override <segment override>:

Precedence of Operations in ASM-86 (continued)

Order Operator Type Operators

9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE, LENGTH,

LAST

10 Parentheses/brackets (), []

11 Period and Dollar ., $

Expressions

ASM-86 allows address, numeric, and bracketed expressions.
An address expression evaluates to a memory address and has
three components:

A segment value
An offset value
A type

Both variables and labels are address expressions. An address
expression is not a number, but its components are. Numbers
may be combined with operators such as PTR to make an
address expression.

A numeric expression evaluates to a number. It does not
contain any variables or labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing
modes. The base registers are BX and BP, and the index
registers are D1 and S1. A bracketed expression may consist of a
base register, an index register, or a base register and an index
register. Use the + operator between a base register and an
index register to specify both base- and index-register
addressing. For example:

MOV variable[bx],O
MOV AX,[BX + DI]
MOV AX,[SI]

7-19

Statements

7-20

Just as "tokens" in this assembly language correspond to words
in English, so are statements analogous to sentences. A
statement tells ASM-86 what action to perform. Statements
are of two types: instructions and directives. Instructions are
translated by the assembler into 8086 machine language
instructions. Directives are not translated into machine code
but instead direct the assembler to perform certain clerical
functions.

Terminate each assembly language statement with a carriage
return (CR) and line-feed (LF), or with an exclamation point,
!, which ASM-86 treats as an end-of-line. Multiple assembly
language statements can be written on the same physical line if
separated by exclamation points.

The ASM-86 instruction set is defined in Chapter 9. The
syntax for an instruction statement is:

[label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as:

label:

prefix

A symbol followed by ":" defines a label at the current
value of the location counter in the current segment.
This field is optional.

Certain machine instructions such as LOCK and REP
may prefix other instructions. This field is optional.

mnemonic

A symbol defined as a machine instruction, either by the
assembler or by an EQU directive. This field is optional
unless preceded by a prefix instruction. If it is omitted,
no operands may be present, although the other fields
may appear. ASM-86 mnemonics are defined in Chapter
9.

operand(s)

An instruction mnemonic may require other symbols to

represent operands to the instruction. Instructions may
have zero, one or two operands.

comment

Any semicolon (;) appearing outside a character string
begins a comment, which is ended by a carriage return.
Comments improve the readability of programs. This
field is optional.

ASM-86 directives are described in Chapter 8. The syntax for a
directive statement is:

[name] directive operand(s) [;comment]

where the fields are defined as:

name

Unlike the label field of an instruction, the name field of
a directive is never terminated with a colon. Directive
names are legal for only DB, DW, DD, RS and EQU.
For DB, DW, DD and RS the name is optional; for EQU
it is required.

directive

One of the directive keywords defined in Chapter 8.

operand(s)

Analogous to the operands of the instruction
mnemonics. Some directives, such as DB, DW, and
DD, allow any operand while others have special
requirements.

comment

Exactly as defined for instruction statements.

7-21

7-22

CHAPTER 8. ASSEMBLER DIRECTIVES

Contents

Assembler Directives. .. 8-3
Segment Start Directives 8-3

The CSEG Directive. 8-4
The DSEG Directive. 8-5
The SSEG Directive 8-5
The ESEG Directive. 8-6

The ORG Directive. .. 8-6
The IF and ENDIF Directives 8-7
The INCLUDE Directive 8-7
The END Directive. .. 8-8
The EQU Directive. .. 8-8
The DB Directive .. 8-9
The DW Directive 8-10
The DD Directive " 8-10
The RS Directive " 8-11
The RB Directive " 8-11
The R W Directive. .. 8-11
The TITLE Directive. .. 8-12
The P AGE SIZE Directive. 8-12
The P AGEWIDTH Directive " 8-12
The EJECT Directive " 8-12
The SIMFORM Directive 8-13
The NOLIST and LIST Directives. 8-13
The IFLIST and NOIFLIST Directives. 8-13

8-1

8-2

Assembler Directives

Directive statements cause ASM-86 to perform housekeeping
functions such as assigning portions of code to logical
segments, requesting conditional assembly, defining data
items, and specifying listing file format. General syntax for
directive statements appears in the preceding chapter.

In the sections that follow, the specific syntax for each
directive statement is given under the heading and before the
explanation. These syntax lines use special symbols to

represent possible arguments and other alternatives. Braces,
{}, enclose optional arguments. User-supplied arguments are
described in lower-case, hyphenated phrases. Do not include
these symbols or phrases when coding a directive.

Segment Start Directives

At run-time, every 8086 memory reference must have a 16-bit
segment base value and a 16-bit offset value. These are
combined to produce the 20-bit effective add(ess needed by
the CPU to physically address the location. The 16-bit
segment base value or boundary is contained in one of the
segment registers CS, DS, SS, or ES. The offset value gives the
offset of the memory reference from the segment boundary. A
16-byte physical segment is the smallest relocatable unit of
memory.

ASM-86 predefines four logical segments: the Code Segment,
Data Segment, Stack Segment, and Extra Segment, which are
respectively addressed by the CS, DS, SS, and ES registers. All
ASM-86 statements must be assigned to one of the four
segments so that they can be referenced by the CPU. A
segment directive statement, CSEG, DSEG, SSEG, or ESEG,
specifies that the statements following it belong to a specific
segment. The statements are then addressed by the
corresponding segment register. ASM-86 assigns statements
to the specified segment until it encounters another segment
directive.

8-3

8-4

Instruction statements must be assigned to the Code Segment.
Directive statements may be assigned to any segment.
ASM-86 uses these assignments to change from one segment
register to another. For example, when an instruction accesses
a memory variable, ASM-86 must know which segment
contains the variable so it can generate a segment override
prefix byte if necessary.

The CSEG Directive

. .
CSEG
CSEG
CSEG

numenc-expreSSIOn

$

This directive tells the assembler that the following statements
belong in the Code Segment. All instruction statements must
be assigned to the Code Segment. All directive statements are
legal within the Code Segment.

Use the first form when the location of the segment is known
at assembly time; the code generated is not relocatable. Use
the second form when the segment location is not known at
assembly time; the code generated is relocatable. Use the third
form to continue the Code Segment after it has been
interrupted by a DSEG, SSEG, or ESEG directive. The
continuing Code Segment starts with the same attributes, such
as location and instruction pointer, as the previous Code
Segment.

The DSEG Directive

DSEG
DSEG
DSEG

numeric-expression

$

This directive specifies that the following statements belong to
the Data Segment. The Data Segment primarily contains the
data allocation directives DB, DW, DD and RS, but all other
directive statements are also legal. Instruction statements are
illegal in the Data Segment.

Use the first form when the location of the segment is known
at assembly time; the code generated is not relocatable. Use
the second form when the segment location is not known at
assembly time; the code generated is relocatable. Use the third
form to continue the Data Segment after it has been
interrupted by a CSEG, SSEG, or ESEG directive. The
continuing Data Segment starts with the same attributes as the
previous Data Segment.

The SSEG Directive

SSEG
SSEG
SSEG

numeric-expression

$

The SSEG directive indicates the beginning of source lines for
the Stack Segment. Use the Stack Segment for all stack
operations. All directive statements are legal in the Stack
Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known
at assembly time; the code generated is not relocatable. Use
the second form when the segment location is not known at
assembly time; the code generated is relocatable. Use the third
form to continue the Stack Segment after it has been
interrupted by a CSEG, DSEG, or ESEG directive. The
continuing Stack Segment starts with the same attributes as
the previous Stack Segment. Refer to the stack segment
initialization example in Appendix B.

8-5

The ESEG Directive

ESEG
ESEG
ESEG

numeric-expression

$

This directive initiates the Extra Segment. Instruction
statements are not legal in this segment, but all directive
statements are.

Use the first form when the location of the segment is known
at assembly time; the code generated is not relocatable. Use
the second form when the segment location is not known at
assembly time; the code generated is relocatable. Use the third
form to continue the Extra Segment after it has been
interrupted by a DSEG, SSEG, or CSEG directive. The
continuing Extra Segment starts with the same attributes as
the previous Extra Segment.

The ORG Directive

8-6

ORG numeric-expression

The ORG directive sets the offset of the location counter in the
current segment to the value specified in the numeric
expression. Define all elements of the expression before the
ORG directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessary. If no
ORG is included before the first instruction or data byte in a
segment, assembly begins at location zero relative to the
beginning of the segment. A segment can have any number of
ORG directives.

The IF and ENDIF Directives

IF

ENDIF

numeric-expression
source-line-l
source-line-2

source-line-n

The IF and ENDIF directives allow a group of source lines to

be included or excluded from the assembly. Use conditional
directives to assemble several different versions of a single
source program.

When the assembler finds an IF directive, it evaluates the
numeric expression following the IF keyword. If the expression
evaluates to a non-zero' value, then source-line-l through
source-line-n are assembled. If the expression evaluates to zero,
the lines are not assembled, but are listed unless a NOIFLIST
directive is active. All elements in the numeric expression
must be defined before they appear in the IF directive. IF
directives may be nested to a maximum depth of five levels.

The INCLUDE Directive

INCLUDE filespec

This directive includes another ASM-86 file in the source text.
For example:

INCLUDE EGUALS.AD6

Use INCLUDE when the source program resides in several
different files. INCLUDE directives may not be nested; a
source file called by an INCLUDE directive may not contain
another INCLUDE statement. If file specification does not
contain a filetype, the filetype is assumed to be .A86. If the file
specification does not include a drive specification, ASM-86
assumes the file resides on the drive containing the source file.

8-7

The END Directive

END

An END directive marks the end of a source file. Any
subsequent lines are ignored by the assembler. END is
optional. If not present, ASM-86 processes the source until it
finds an End-Of-File character (lAH).

The EQU Directive

8-8

symbol EQU numeric -expression
symbol EQU address-expression
symbol EQU register
symbol EQU instruction-mnemonic

The EQU (equate) directive assigns values and attributes to

user-defined symbols. The required symbol name may not be
terminated with a colon. The symbol cannot be redefined by a
subsequent EQU or another directive. Any elements used in
numeric or address expressions must be defined before the
EQU directive appears.

The first form assigns a numeric value to the symbol, the
second a memory address. The third form assigns a new name
to an 8086 register. The fourth form defines a new instruction
(sub)set. The following are examples of these four forms:

0005
0033
0001

0050 HBC3

FIVE
NEXT
COUNTER
MOVW

EGU
EGU
EGU
EGU

2*2+1
BUFFER
CX
MOV

MOVW AX,BX

The DB Directive

{symbol} DB
numeric-expression{, numeric-expression .. }
{symbol} DB string-constant{,string-constant ... }

The DB directive defines initialized storage areas in byte
format. Numeric expressions are evaluated to 8-bit values and
sequentially placed in the hex output file. String constants are
placed in the output file according to the rules defined in the
section "Constants" in Chapter 7. A DB directive is the only
ASM-86 statement that accepts a string constant longer than
two bytes. There is no translation from lower- to upper-case
within strings. Multiple expressions or constants, separated by
commas, may be added to the definition, but may not exceed
the physical line length.

Use an optional symbol to reference the defined data area
throughout the program. The symbol has four attributes: the
Segment and Offset attributes determine the symbol's memory
reference, the Type attribute specifies single bytes, and Length
tells the number of bytes (allocation units) reserved.

The following statements show DB directives with symbols:

005F

006B
006C

0071

43502F402073
797374656000
E1
0102030405

B90COO

TEXT

AA
X

DB

DB
DB

'CP/M system',O

'a' + 80H
1,2,3,4,5

MOV CX,LENGTH TEXT

8-9

The DW Directive

{symbol} DW
numeric-expression{, numeric-expression .. }
{symbol} DW string-constant{,string-constant ... }

The DW directive initializes two-byte words of storage. String
constants longer than two characters are illegal. Otherwise,
DW uses the same procedure to initialize storage as DB. The
following are examples ofDW statements:

0074
0076
007C

0000
63C166C169C1
010002000300
040005000600

CNTR OW
JMPTAB OW

OW

o
SUBR1,SUBR2,SUBR3
1,2,3,4,5,6

The DD Directive

8-10

{symbol} DD
numeric-expression{, numeric-expression .. }

The DD directive initializes four bytes of storage. The Offset
attribute of the address expression is stored in the two lower
bytes, the Segment attribute in the two upper bytes.
Otherwise, DD follows the same procedure as DB. For
example:

1234

0000

0008

CSEG 1234"

6CC134126FC1 LONG_JMPTAB
3412
72C1341275C1
3412

DO

DO

ROUT1,ROUT2

ROUT3,ROUT4

The RS Directive

{symbol} RS numeric-expression

The RS directive allocates storage in memory but does not
initialize it. The numeric expression gives the number of bytes
to be reserved. An RS statement does not give a byte attribute
to the optional symbol. For example:

0010
0060
4060

BUF RS
RS
RS

80
4000H
1

If an RS statement is the last statement in a segment, you
must follow it with a DB statement in order for GENCMD to
allocate the memory space.

The RB Directive

{symbol} RB numeric-expression

The RB directive allocates byte storage in memory without
any initialization. This directive is identical to the RS
directive except that it does give the byte attribute.

The RW Directive

{symbol} R W numeric-expression

The R W directive allocates two-byte word storage in memory
but does not initialize it. The numeric expression gives the
number of words to be reserved. For example:

4061
4161
C161

BUF RW
RW
RW

128
4000H
1

8-11

The TITLE Directive

TITLE string-constant

ASM-86 prints the string constant defined by a TITLE
directive statement at the top of each printout page in the
listing file. The title character string should not exceed 30
characters. For example:

TITLE 'CP/M-D6 monitor'

If the title is too long, the ASM-86 page number overwrites
the title.

The P AGESIZE Directive

P AGE SIZE numeric-expression

The P AGESIZE directive defines the number of lines to be
included on each printout page. The default pagesize is 66.

The P AGEWIDTH Directive

P AGEWIDTH numeric-expression

The PAGEWIDTH directive defines the number of columns
printed across the page when the listing file is output. The
default pagewidth is 120 unless the listing is routed directly to
the terminal; then the default pagewidth is 79.

The EJECT Directive

EJECT

8-12

The EJECT directive performs a page eject during printout.
The EJECT directive itself is printed on the first line of the
next page.

The SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in
the print file with the correct number of line-feeds (LF). Use
this directive when printing out on a printer unable to
interpret the form-feed character.

The NOLIST and LIST Directives

NOLIST
LIST

The NOLIST directive blocks the printout of the following
lines. Restart the listing with a LIST directive.

The IFLIST and NOIFLIST Directives

IFLIST
NOIFLIST

The NOIFLIST directive suppresses the printout of the
contents of IF-ENDIF blocks that are not assembled. The
IFLIST directive resumes printout of IF-ENDIF blocks.

8-13

8-14

CHAPTER 9. THE ASM-86
INSTRUCTION SET

Contents

ASM-86 Instruction Set Summary 9-3
Data Transfer Instructions. 9-8
Arithmetic, Logic, and Shift Instructions 9-11
String Instructions 9-18
Control Transfer Instructions 9-20
Processor Control Instructions. 9-25
Mnemonic Differences. .. 9-27

9-1

9-2

ASM -86 Instruction Set Summary

The ASM-86 instruction set includes all 8086 machine
instructions. The general syntax for instruction statements is
given at the end of Chapter 7. The following table lists all
ASM-86 instructions alphabetically.

ASM-86 Instruction Summary

Mnemonic

AAA
AAD
AAM
AAS
ADC
ADD
AND
CAll
CAllF
CBW
ClC
ClD
ClI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
HlT
IDIV
IMUl
IN
INC
INT
INTO
IRET
JA
JAE

Description

ASCII Adjust for Addition
ASCII Adjust for Division
ASCII Adjust for Multiplication
ASCII Adjust for Subtraction
Add with Carry
Add
And
Call (intra segment)
Call (inter segment)
Convert Byte to Word
Clear Carry
Clear Direction
Clear Interrupt
Complement Carry
Compare
Compare Byte or Word (of string)
Compare Byte (of string)
Compare Word (of-string)
Convert Word to Double Word
Decimal Adjust for Addition
Decimal Adjust for Subtraction
Decrement
Divide
Escape
Halt
Integer Divide
Integer Multiply
Input Byte or Word
Increment
Interrupt
Interrupt on Overflow
Interrupt Return
Jump on Above
Jump on Above or Equal

9-3

9-4

ASM-86 Instruction Summary (continued)

Mnemonic

JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JMPF
JMPS
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LOS
LEA
LES
LOCK
LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE

Description

Jump on Below
Jump on Below or Equal
Jump on Carry
Jump on CX Zero
Jump on Equal
Jump on Greater
Jump on Greater or Equal
Jump on Less
Jump on Less or Equal
Jump (intra segment)
Jump (inter segment)
Jump (8-bit displacement)
Jump on Not Above
Jump on Not Above or Equal
Jump on Not Below
Jump on Not Below or Equal
Jump on Not Carry
Jump on Not Equal
Jump on Not Greater
Jump on Not Greater or Equal
Jump on Not Less
Jump on Not Less or Equal
Jump on Not Overflow
Jump on Not Parity
Jump on Not Sign
Jump on Not Zero
Jump on Overflow
Jump on Parity
Jump on Parity Even
Jump on Parity Odd
Jump on Sign
Jump on Zero
Load AH with Flags
Load Pointer into OS
Load Effective Address
Load Pointer into ES
Lock Bus
Load Byte or Word (of string)
Load Byte (of string)
Load Word (of string)
Loop
Loop while Equal
Loop while Not Equal

ASM-86 Instruction Summary (continued)

Mnemonic

LOOPNZ
LOOPZ
MOV
MOVS
MOVSB
MOVSW
MUL
NEG
NOT
OR
OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST

Description

Loop while Not Zero
Loop while Zero
Move
M9ve Byte or Word (of string)
Move Byte (of string)
Move Word (of string)
Multiply
Negate
Not
Or
Output Byte or Word
Pop
Pop Flags
Push
Push Flags
Rotate through Carry Left
Rotate through Carry Right
Repeat
Repeat while Equal
Repeat while Not Equal
Repeat while Not Zero
Repeat while Zero
Return (intra segment)
Return (inter segment)
Rotate Left
Rotate Right
Store AH into Flags
Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (of string)
Scan Byte (of string)
Scan Word (of string)
Shift Left
Shift Right
Set Carry
Set Direction
Set Interrupt
Store Byte or Word (of string)
Store Byte (of string)
Store Word (of string)
Subtract
Test

9-5

9-6

ASM-86 Instruction Summary (continued)

Mnemonic

WAIT
XCHG
XLAT
XOR

Description

Wait
Exchange
Translate
Exclusive Or

The following sections define the specific syntax and required
operand types for each instruction, without reference to labels
or comments. The instruction definitions are presented in
tables for easy reference. For a more detailed description of
each instruction, see Intel's MCS-86 Assembly Language
Reference Manual. For descriptions of the instruction bit
patterns and operations, see Intel's MCS-86 User's Manual,

The instruction-definition tables present ASM-86 instruction
statements as combinations of mnemonics and operands. A
mnemonic is a symbolic representation for an instruction, and
its operands are its required parameters. Instructions can take
zero, one or two operands. When two operands are specified,
the left operand is the instruction's destination operand, and
the two operands are separated by a comma.

The instruction-definition tables organize ASM-86
instructions into functional groups. Within each table, the
instructions are listed alphabetically. The table below shows
the symbols used in the instruction-definition tables to define
operand types.

Symbol

numb

numb8

acc

Operand Type Symbols

Operand Type

any NUMERIC expression

any NUMERIC expression which evaluates to
an 8-bit number

accumulator register, AX or AL

reg any general purpose register, not segment register

reg16

segreg

a 16-bit general purpose register, not segment
register

any segment register: CS, DS, SS, or ES

mem any ADDRESS expression, with or without base­
and/or index-addressing modes, such as:

variable
variable + 3
variable[bx]
variable[SI]
variable[BX +SI]
[BX]
[BP+DI]

simpmem any ADDRESS expression WITHOUT base­
and index-addressing modes, such as:

memlreg

variable
variable+4

any expression symbolized by "reg" or "mem"

memlreg16 any expression symbolized by "memlreg",
but must be 16 bits

label any ADDRESS expression which evaluates to
a label

lab8 any "label" which is within ± 128 bytes distance
from the instruction

9-7

The 8086 CPU has nine single-bit Flag registers which reflect
the state of the CPU. The user cannot access these registers
directly, but can test them to determine the effects of an
executed instruction upon an operand or register. The effects
of instructions on Flag registers are also described in the
instruction-definition tables, using the symbols shown in the
table below to represent the nine Flag registers.

Flag Register Symbols

AF Auxiliary-Carry-Flag
CF Carry-Flag
DF Direction-Flag
IF Interrupt-Enable-Flag
OF Overflow-Flag
PF Parity-Flag
SF Sign-Flag
TF Trap-Flag
ZF Zero-Flag

Data Transfer Instructions

IN

IN

LAHF

9-8

There are four classes of data transfer operations: general
purpose, accumulator specific, address-object, and flag. Only
SAHF and POPF affect flag settings .. Note in the following
table that if acc = AL, a byte is transferred, but if acc = AX,
a word is transferred.

Data Transfer Instructions

Syntax Result

acc,numb8 Transfer data from input port
given by numb8 (0-255) to

accum ulator.

acc,DX Transfer data from input port
given by DX register
(O-OFFFFH) to accumulator.

Transfer flags to the AH
register.

I

Data Transfer Instructions (continued)

Syntax Result

LDS reg16,mem Transfer the segment pa(t of
the memory address (DWORD
variable) to the DS segment
register; transfer the offset part
to a general purpose 16-bit
register.

LEA reg 16,mem Transfer the offset of the
memory address to a (16-bit)
register.

LES reg16,mem Transfer the segment part of
the memory address to the ES
segment register; transfer offset
part to a 16-bit general
purpose register.

MOV reg,memlreg Move memory or register to
register.

MOV memlreg,reg Move register to memory or
register.

MOV memlreg,numb Move immediate data to
memory or register.

MOV segreg,memlreg 16 Move memory or register to
segment register.

MOV memlreg 16,segreg Move segment register to
memory or register.

OUT numb8,acc Transfer data from accumulator
to output port (0-255) given
by numb8.

OUT DX,acc Transfer ,data from accumulator
to output port (O-OFFFFH)
given by DX register.

POP memlreg16 Move top stack element to
memory or register.

9-9

Data Transfer Instructions (continued)

Syntax Result

POP segreg Move top stack element to
segment register; note that CS
segment register not allowed.

POPF Transfer top stack element to
flags.

PUSH mem I reg 16 Move memory or register to
top stack element.

PUSH segreg Move segment-register to top
stack element.

PUSHF Transfer flags to top stack
element.

SAHF Transfer the AH register to
flags.

XCHG reg,memlreg Exchange register and memory
or register.

XCHG -memlreg,reg Exchange memory or register
and register.

XLAT inemlreg Perform table lookup
translation, table given by
"memlreg", which is always
BX. Replaces AL with Ai
offset from BX.

9-10

Arithmetic, Logic, and Shift Instructions

The 8086 CPU performs the four basic mathematical
operations in several different ways. It supports both 8- and
16-bit operations and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic
operations to reflect the result of the operation. The following
table summarizes the effects of arithmetic instructions on flag
bits. Subsequent tables define arithmetic instructions and
logical and shift instructions.

Effects of Arithmetic Instructions on Flags

CF is set if the operation resulted in a carry out of (from
addition) or a borrow into (from subtraction) the
high-order bit of the result; otherwise CF is cleared.

AF is set if the operation resulted in a carry out of (from
addition) or a borrow into (from subtraction) the
low-order four bits of the result; otherwise AF is cleared.

ZF- is set if the result of the operation is zero; otherwise ZF is
cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight bits of
the result of the operation -is 0 (even parity); otherwise
PF is cleared (odd parity).

OF is set if the operation resulted" in an overflow; the size of
the result exceeded the capacity of its destination.

9-11

Arithmetic Instructions

Syntax Result

AAA adjust unpacked BCD (ASCII)
for addition-adjusts AL

AAD adjust unpacked BCD (ASCII)
for division-adjusts AL

AAM adjust unpacked BCD (ASCII)
for multiplication-adjusts AX

AAS adjust unpacked BCD (ASCII)
for subtraction-adjusts AL

ADC reg,memlreg add (with carry) memory or
register to register

ADC memlreg,reg add (with carry) register to

memory or register

ADC memlreg,numb add (with carry) immediate
data to memory or register

ADD reg,memlreg add memory or register to

register

ADD memlreg,reg add register to memory or
register

ADD memlreg,numb add immediate data to memory
or register

CBW convert byte in AL to word in
AH by sign extension

CWD convert word in AX to double
word in DX/ AX by sign
extension

CMP reg,memlreg compare register with memory
or register

CMP memlreg,reg compare memory or register
with register

9-12

Arithmetic Instructions (continued)

Syntax Result

CMP memlreg,numb compare data constant with
memory or register

DAA decimal adjust for addition,
adjusts AL

DAS decimal adjust for subtraction,
adjusts AL

DEC memlreg subtract 1 from memory or
register

INC memlreg add 1 to memory or register

DIV memlreg divide (unsigned) accumulator
(AX or AL) by memory or
register: ifbyte results, AL =
quotient, AH = remainder, if
word results, AX = quotient,
DX = remainder

IDIV memlreg divide (signed) accumulator
(AX or AL) by memory or
register-quotient and
remainder stored as in DIV

IMUL memlreg multiply (signed) memory or
register by accumulator (AX or
AL)-ifbyte, results in AH,
AL; if word, results in DX,
AX

MUL memlreg multiply (unsigned) memory
or register by accumulator (AX
or AL)-results stored as in
IMUL

NEG memlreg two's complement memory or
register

SBB reg,memlreg subtract (with borrow) memory
or register from register

9-13

Arithmetic Instructions (continued)

Syntax Result

SBB memireg,reg subtract (with borrow) register
from memory or register

SBB memireg,numb subtract (with borrow)
immediate data from memory
or register

SUB reg, memi reg subtract memory or register
from register

SUB memireg,reg subtract register from memory
or register

SUB memireg,numb subtract data constant from
memory or register

Logic and Shift Instructions

Syntax Result

AND reg,memireg perform bitwise logical "and"
of a register and memory
register

AND memireg,reg perform bitwise logical "and"
of memory register"and register

AND memireg,numb perform bitwise logical "and"
of memory register and data
constant

NOT memireg form one's complement of
memory or register

OR reg,memireg perform bitwise logical "or" of
a register and memory register

OR memireg,reg perform bitwise logical "or" of
" memory register and register

9-14

Logic and Shift Instructions (continued)

Syntax Result

OR memlreg,numb perform bitwise logical "or" of
memory register and data
constant

RCL memlreg,l rotate memory or register 1 bit
left through carry flag

RCL memlreg,CL rotate memory or register left
through carry flag, number of
bits given by CL register

RCR memlreg,l rotate memory or register 1 bit
right through carry flag

RCR memlreg,CL rotate memory or register right
through carry flag, number of
bits given by CL register

ROL memlreg,l rotate memory or register 1 bit
left

ROL memlreg,CL rotate memory or register left,
number of bits given by CL
register

ROR memlreg,l rotate memory or register 1 bit
right

ROR memlreg,CL rotate memory or register
right, number of bits given by
CL register

SAL memlreg,l shift memory or register 1 bit
left, shift in low-order zero bits

SAL memlreg,CL shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits

9-15

Logic and Shift Instructions (continued)

Syntax Result

SAR memlreg,1 shift memory or register 1 bit
right, shift in high-order bits
equal to the original
high-order bit I

SAR memlreg,CL shift memory or register right,
number of bits given by CL
register, shift in high-order
bits equal to the original
high-order bit

SHL memlreg,1 shift memory or register 1 bit
left, shift in low-order zero bits
-note that SHL is a different
mnemonic for SAL

SHL memlreg,CL shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits-note that SHL is a
different mnemonic for SAL

SHL memlreg,1 shift memory or register 1 bit
right, shift in high-order zero
bits

SHR memlreg,CL shift memory or register right,
number of bits given by CL
register, shift in high-order
zero bits

TEST reg,memlreg perform bitwise logical "and"
of a register and memory or
register-set condition £lags but
do not change destination

TEST memlreg,reg perform bitwise logical "and"
of memory register and
register-set condition £lags but
do not change destination

9-16

Logic and Shift Instructions (continued)

Syntax Result

TEST memlreg,numb perform bitwise logical
"and"-test of memory register
and data constant-set
condition flags but do not
change destination

XOR reg,memlreg perform bitwise logical
"exclusive OR" of a register
and memory or register

XOR memlreg,reg perform bitwise logical
"exclusive OR" of memory
register and register

XOR memlreg,numb perform bitwise logical
"exclusive OR" of memory
register and data constant

9-17

String Instructions

CMPS

CMPSB

CMPSW

LODS

LODSB

LODSW

MOVS

MOVSB

9-18

String instructions take zero, one or two operands. The
operands specify only the operand type, determining whether
operation is on bytes or words. If there are two operands, the
source operand is addressed by the SI register and the
destination operand is addressed by the DI register. The DI
and SI registers are always used for addressing. Note that for
string operations, destination operands addressed by DI must
always reside in the Extra Segment (ES).

String Instructions

Syntax Result

memlreg,memlreg subtract source from
destination, affect flags, but do
not return result

an alternate mnemonics for
CMPS which assumes a byte
operand

an alternate mnemonics for
CMPS which assumes a word
operand

memlreg transfer a byte or word from
the source operand to the
accumulator

an alternate mnemonic for
LODS which assumes a byte
operand

an alternate mnemonic for
LODS which assumes a word
operand

memlreg,memlreg move 1 byte (or word) from
source to destination

an alternate mnemonic for
MOVS which assumes a byte
operand

String Instructions (continued)

Syntax Result

MOVSW an alternate mnemonic for
MOVS which assumes a word
operand

SCAS memlreg subtract destination operand
from accumulator (AX or AL),
affect flags, but do not return
result

SCASB an alternate mnemonic for
SCAS which assumes a byte
operand

SCASW an alternate mnemonic for
SCAS which assumes a word
operand

STOS memlreg transfer a byte or word from
accumulator to the destination
operand

STOSB an alternate mnemonic for
STOS which assumes a byte
operand

STOSW an alternate mnemonic for
STOS which assumes a word
operand

9-19

The following table defines prefixes for string instructions. A
prefix repeats its stri'ng instruction the number of times
contained in the CX register, which is decremented by 1 for
each iteration. Prefix mnemonics precede the string
instruction mnemonic in the statement line as shown in
"Statements in Chapter 7."

Syntax

REP

REPZ

REPE

REPNZ

REPNE

Prefix Instructions

Result

repeat until·CX register is zero

repeat until CX register is zero and zero flag
(ZF) is not zero

equal to "REPZ"

repeat until CX register is zero and zero flag
(ZF) is zero •

equal to "REPNZ"

Control Transfer Instructions

9-20

There are four classes of control transfer instructions:

•
•
•
•

calls, jumps, and returns
conditional jumps
iterational control
interrupts

All control transfer instructions cause program execution to

continue at some new location in memory, possibly in a new
code segment. The transfer may be absolute or depend upon a
certain condition. The following table defines control transfer
instructions. In the definitions of conditional jumps, "above"
and "below" refer to the relationship between unsigned values,
and "greater than" and "less than" refer to the relationship
between signed values.

Control Transfer Instructions

Syntax Result

CALL label push the offset address of the
next instruction on the stack,
jump to the target label

CALL memlreg16 push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified memory
or register

CALLF label push CS segment register on
the stack, push the offset
address of the next instruction
on the stack (after CS), jump to
the target label

CALLF mem push CS register on the stack,
push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified double
word in memory

INT numb8 push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an
indirect call through anyone of
the 256 interrupt-vector
elements-uses three levels of
stack

INTO if OF (the overflo~ flag) is set,
push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an
indirect call through
interrupt-vector element 4
(location 10H)-if the OF flag
is cleared, no operation takes
place

9-21

Control Transfer Instructions (continued)

Syntax Result

IRET transfer control to the return
address saved by a previous
interrupt operation, restore
saved flag registers, as well as
CS and IP-pops three levels of
stack

JA labS jump if"not below or equal" or
"above" «CF or ZF) = 0)

JAE labS jump if"not below" or "above
or equal" (CF = 0)

JB labS jump if "below" or "not above
or equal" (CF = 1)

JBE labS jump if "below or equal" or
"not above" «CF or ZF) = 1)

JC labS same as "JB"

JCXZ labS jump to target label if CX
register is zero

JE labS jump if "equal" or "zero"
(ZF = 1)

JG labS jump if"not less or equal" or
"greater" «(SF xor OF) or
ZF) = 0)

JGE labS jump if "not less" or "greater
or equal" «SF xor OF) = 0)

JL labS jump if "less" or "not greater
or equal" «SF xor OF) = 1)

JLE labS jump if "less or equal" or "not
greater" «(SF xor OF) or
ZF) = 1)

JMP label jump to the target label

9-22

Control Transfer Instructions (continued)

Syntax Result

JMP memlregl6 jump to location indicated by
contents of specified memory

\ or register
I

I

JMPF label jump to the target label
possibly in another code
segment

JMPS lab8 jump to the target label within
± 128 bytes from instruction

JNA lab8 same as "]BE"

JNAE lab8 same as "]B"

JNB lab8 same as CO] AE"

JNBE lab8 same as "]A"

JNC lab8 same as "]NB"

JNE lab8 jump if"not equal" or "not
zero" (ZF = 0)

JNG lab8 same as "]LE"

JNGE lab8 same as "]L"

JNL lab8 same as "]GE"

JNLE lab8 same as "]G"

JNO lab8 jump if"not overflow"
(OF = 0)

JNP lab8 jump if"not parity" or "parity
odd"

JNS lab8 jump if "not sign"

JNZ lab8 same as "]NE"

9-23

Control Transfer Instructions (continued)

Syntax

JO lab8

JP lab8

JPE lab8

JPO lab8

JS lab8

JZ lab8

LOOP lab8

LOOPE lab8

LOOPNE lab8

LOOPNZ lab8

LOOPZ lab8

RET

RET numb

9-24

Result

jump if "overflow" (OF = 1)

jump if "parity" or "parity
even" (PF = 1)

same as "JP"

same as "JNP"

jump if "sign" (SF = 1)

same as "JE"

decrement CX register by one,
jump to target label if CX is
not zero

decrement CX register by one,
jump to target label if CX is
not zero and the ZF flag is
set-"loop while zero" or "loop
while equal"

decrement CX register by one,
jump to target label if CX is
not zero and ZF flag is
cleared-"loop while not zero"
or "loop while not equal"

same as "LOOPNE"

same as "LOOPE"

return to the return address
pushed by a previous CALL
instruction, increment stack
pointer by 2

return to the address pushed by
a previous CALL, increment
stack pointer by 2 + numb

Control Transfer Instructions (continued)

Syntax Result

RETF return to the address pushed by
a previous CAllF instruction,

I
increment stack pointer by 4

RETF numb return to the address pushed by
a previous CAllF instruction,
increment stack pointer by
4+numb

Processor Control Instructions

ClC

ClD

ClI

CMC

ESC

Processor control instructions manipulate the flag registers.
Moreover, some of these instructions can synchronize the 8086
CPU with external hardware.

Processor Control Instructions

Syntax Results

clear CF flag

clear DF flag, causing string
instructions to auto-increment
the operand pointers

clear IF flag, disabling
maskable external interrupts

complement CF flag

numb8,memlreg do no operation other than
compute the effective address
and place it on the address bus
(ESC is used by the 8087
numeric co-processor),
"numb8" must be in the range
o to 63

9-25

Processor Control Instructions (continued)

Syntax Results

HLT cause 8086 processor to enter
halt state until an interrupt is
recognized

LOCK PREFIX instruction, cause the
8086 processor to assert the
"bus-lock" signal for the
duration of the operation
caused by the following
instruction-the LOCK prefix
instruction may precede any
other instruction-buslock
prevents co-processors from
gaining the bus; this is useful
for shared-resource semaphores

Nap no operation is performed

STC set CF flag

STD set DF flag, causing string
instructions to auto-decrement
the operand pointers

STI set IF flag, enabling maskable
external interrupts

WAIT cause the 8086 processor to
enter a "wait" state if the
signal on its "TEST" pin is not
asserted

9-26

Mnemonic Differences

The CP/M-86 8086 assembler uses the same instruction
mnemonics as the INTEL 8086 assembler except for explicitly
specifying far and short jumps, calls and returns. The following
table shows the four differences:

Mnemonic Differences

Mnemonic Function CP/M-86 Intel

Intra segment short jump:]MPS]MP
Inter segment jump:]MPF]MP
Inter segment return: RETF RET
Inter segment call: CALLF CALL

9-28

CHAPTER 10. ASM-86 ERROR MESSAGES

Contents

ASM-86 Fatal Error Messages. 10-3
ASM-86 Diagnostic Error Messages '. 10-4

10-1

10-2

ASM-86 Fatal Error Messages

There are two types of error messages produced by ASM-86:
fatal errors and diagnostic errors. Fatal errors occur when
ASM-86 is unable to continue assembling. Diagnostic error
messages report problems with the syntax and semantics of the
program being assembled. The following messages indicate
fatal errors encountered by ASM-86 during assembly:

NO FILE

The indicated source or include file could not be found on the
indicated drive.

DISlt FULL

There is not enough disk space for the output files (LST, H86
and SYM). You should either erase some unnecessary files or
get another diskette with more room and run ASM-86 again.

DIRECTORY FULL

There is not enough directory space for the output files. You
should either erase some unnecessary files or get another
diskette with more directory room and run ASM-86 again.

DlSlt READ ERROR-{filespec}

A source or include file could not be read properly. This is
usually the result of an unexpected end of file. Correct the
problem in your source file.

CANNOT CLOSE

An output file cannot be closed. This is a fatal error that
terminates ASM-86 execution. The user should take
appropriate action after checking to see if the correct diskette
is in the drive and that the diskette is not write-protected.

10-3

SYMBOL TABLE OVERFLOW

There is not enough memory for the symbol table. Either
reduce the length and/or number of symbols, or reassemble on
a system with more memory available.

PARAMETER ERROR

A parameter in the command tail of the ASM-86 command
was specified incorrectly. Example:

ASM86 TEST $S;

ASM-86 Diagnostic Error Messages

10-4

ASM-86 reports semantic and syntax errors by placing a
numbered message in front of the erroneous source line. If
there is more than one error in the line, only the first one is
reported. The following messages indicate diagnostic errors
encountered by ASM-86.

** ERROR NO: 0 ILLEGAL FIRST ITEM

The first item on a source line is not a valid identifier, directive
or mnemonic. Example:

1234H

** ERROR NO: 1 MISSING PSEUDO INSTRUCTION

The first item on a source line is a valid identifier and the
second item is not a valid directive which may be preceded by
an identifier. Example:

THIS IS A MISTAKE

** ERROR NO: 2 ILLEGAL PSEUDO INSTRUCTION

Either a required identifier in front of a pseudo instruction is
missing, or an identifier appears before a pseudo instruction
which doesn't allow an identifier.

** ERROR NO: 3 DOUBLE DEFINED VARIABLE

An identifier used as the name of a variable is used elsew~ere in
the program as the name of a variable or label. Example:

X DB 5

X DB 123H

** ERROR NO: -4 DOUBLE DEFINED LABEL

An identifier used as a label is used elsewhere in the program as
a label or variable name. Example:

LAB3: MOV BX,5

LAB3: CALL MOVE

** ERROR NO: 5 UNDEFINED INSTRUCTION

The item following a label on a source line is not a valid
instruction. Example:

DONE: BAD INSTR

** ERROR NO: 6 GARBAGE AT END OF LINE-IGNORED

Additional items were encountered on a line when ASM-86
was expecting an end ofline. Examples:

NOLIST 4
MOV AX,4RET

10-5

10-6

** ERROR NO: 7 OPERAND(S) MISMATCH INSTRUCTION

Either an instruction has the wrong number of operands, or
the types of the operands don't match. Examples:

MOV CX,1,2
X DB 0

MOV AX,X

** ERROR NO: 8 ILLEGAL INSTRUCTION OPERANDS

An instruction operand is improperly formed. Examples:

MOV [BP +SP], 1234
CALL Bxl1

** ERROR NO: 9 MISSING INSTRUCTION

A prefix on a source line is not followed by an instruction.
Example:

REPNZ

** ERROR NO: 10 UNDEFINED ELEMENT OF EXPRESSION

An identifier used as an operand is not defined or has been
illegally forward referenced. Examples:

]MP X
A EQU B
B EQU 5

MOV AL,B

** ERROR NO: 11 ILLEGAL PSEUDO OPERAND

The operand in a directive is invalid. Examples:

X EQU OAGH
TITLE UNQUOTED STRING

** ERROR NO: 12 NESTED "IF" ILLEGAL-"IF" IGNORED

The maximum nesting level for IF statements has been
exceeded.

** ERROR NO: 13 ILLEGAL "IF" OPERAND-"IF" IGNORED

Either the expression in an IF statement is not numeric, or it
contains a forward reference.

** ERROR NO: 14 NO MATCHING "IF" FOR "ENDIF"

An ENDIF statement was encountered without a matching IF
statement.

** ERROR NO: 15 SYMBOL ILLEGALLY FORWARD
REFERENCED - NEGLECTED

The indicated symbol was illegally forward referenced in an
ORG, RS, EQU or IF statement.

** ERROR NO: 16 DOUBLE DEFINED SYMBOL-TREATED AS
UNDEFINED

The identifier used as the name of an EQU directive is used as a
name elsewhere in the program.

** ERROR NO: 17 INSTRUCTION NOT IN CODE SEGMENT

An instruction appears in a segment other than a CSEG.

** ERROR NO: 18 FILE NAME SYNTAX ERROR

The filename in an INCLUDE directive is improperly formed.
Example:

INCLUDE FILE.A86X

10-7

10-8

00 ERROR NO: 19 NESTED INCLUDE NOT ALLOWED

An INCLUDE directive was encountered within a file already
being included.

00 EnnOn rJO: 20 ILLEGAL E}{PRESSION ELEMENT

An expression is improperly formed. Examples:

X DB 12X
DW (4·)

00 EnnOR rJO: 21 r.~ISSING TYPE INFORMATION IN
OPERAND(S)

Neither instruction operand contains sufficient type
information. Example:

MOV [BX] , 10

00 ERROR NO: 22 LABEL OUT OF RANGE

The label referred to in a call, jump or loop instruction is out
of range. The label may be defined in a segment other than the
segment containing the instruction. In the case of short
instructions UMPS, conditional jumps and loops), the label is
more than 128 bytes from the location of the following
instruction.

** ERROR NO: 23 MISSING SEGMENT INFORMATION IN
OPERAND

The operand in a CALLF or]MPF instruction (or an expression
in a DD directive) does not contain segment information. The
required segment information can be supplied by including a
numeric field in the segment directive as shown:

X:
CSEG 1000H

]MPF X
DD X

** ERROR NO: 24 ERROR IN CODEMACRO BUILDING

Either a code macro contains invalid statements, or a
codemacro directive was encountered outside a codemacro.

10-9

10-10

CHAPTER 11. DDT-86

Contents

DDT -86 Operation. .. 11-3
Invoking DDT -86 11-3
DDT -86 Command Conventions 11-3
Specifying a 20-Bit Address. 11-4
Terminating DDT-86 11-5
DDT-86 Operation With Interrupts 11-5

DDT-86 Commands 11-6
The A (Assemble) Command 11-6
The B (Block Compare) Command. 11-6
The D (Display) Command. 11-7
The E (Load for Execution) Command 11-8
The F (Fill) Command 11-9
The G (Go) Command 11-9
The H (Hexadecimal Math) Command. . .. 11-10
The I (Input Command Tail) Command. .. 11-11
The L (List) Command. 11-11
The M (Move) Command 11-12
The R (Read) Command. 11-12
The S (Set) Command. 11-13
The T (Trace) Command. Ilr 14
The U (Untrace) Command 11-15
The V (Value) Command 11-15
The W (Write) Command 11-16
The X (Examine CPU State) Command ... 11-16

Default Segment Values. 11-18
Assembly Language Syntax for

A and L Commands 11-20
DDT-86 Sample Session 11-23

11-1

11-2

DDT-86 Operation

The DDT-86 program allows the user to test and debug
programs interactively in a CP/M-86 environment. You
should be familiar with the 8088 processor, ASM-86 and the
CP/M-86 operating system before using DDT-86.

Invoking DDT -86

Invoke DDT -86 by entering one of the following commands:

00106
00106 filespec

The first command simply loads and executes DDT-86. After
displaying its sign-on message and prompt character, "-",
DDT -86 is ready to accept operator (:ommands. -The second
command is similar to the first, except that after DDT -86 is
loaded, it loads the file specified by file specification. If the
filetype is omitted from file specification, .CMD is assumed.
Note that DDT-86 cannot load a file of type .H86. The file
must be in the CMD file format produced by the GENCMD
utility. The second form of the invoking command is
equivalent to the sequence:

A>00106
00106 X.X

-Efilespec

At this point, the program that was loaded is ready for
execution.

DDT -86 Command Conventions

When DDT -86 is ready to accept a command, it prompts the
operator with a hyphen, "_". In response, the operator can type
a command line or a Ctrl-C to end the debugging session. A
command line can have up to 64 characters, and must be
terminated with a carriage return. While entering the
command, use standard CP/M-86 line-editing functions
(Ctrl-X, Ctrl-H, Ctrl-R, etc.) to correct typing errors.
DDT -86 does not process the command line until a carriage
return is entered.

11-3

11-4

The first character of each command line determines the
command action. The table below summarizes DDT -86
commands. DDT -86 commands are defined individually in
the following secti.ons.

A enter assembly language statements
B compare blocks of memory
D display memory in hexadecimal and ASCII
E load program for execution
F fill memory block with a constant
G begin execution with optional breakpoints
H hexadecimal arithmetic
I set up file control block and command tail
L list memory using 8086 mnemonics
M move memory block
R read disk file into memory
S set memory to new values
T trace program execution
U untraced program monitoring
V show memory layout of disk file read
W write contents of memory block to disk
X examine and modify CPU state

The command character may be followed by one or more
arguments, which may be hexadecimal values, file
specifications or other information, depending on the
command. Arguments are separated from each other by
commas or spaces. No spaces are allowed between the
command character and the first argument. Note that if the
first character of a DDT -86 command line is a semicolon, ;,
the entire line is treated as a comment and is ignored.

Specifying a 20-Bit Address

Most DDT -86 commands require one or more addresses as
operands. Because the 8088 can address up to 1 megabyte of
memory, addresses must be 20-bit values. Enter a 20-bit
address as follows:

ssss:oooo

where ssss represents an optional 16-bit segment number and
0000 is a 16-bit offset. DDT -86 combines these values to

produce a 20-bit effective address as follows:

ssssO
+ 0000

eeeee

The optional value ssss may be a 16-bit hexadecimal value or
the name of a segment register. If a segment register name is
specified, the value of ssss is the contents of that register in the
user's CPU state, as displayed by the X command. If omitted,
a default value appropriate to the command being executed is
used as described in the following section.

Terminating DDT -86

Terminate DDT -86 by typing a Ctrl-C in response to the
hyphen prompt. This returns control to CP/M-86. If you use
DDT-86 to patch a file, write the file to disk using the W
command before exiting DDT-86.

DDT-86 Operation With Interrupts

DDT -86 operates with interrupts enabled or disabled, and
preserves the interrupt state of the program being executed
under DDT -86. When DDT -86 has control of the CPU,
either when it is initially invoked or when it regains control
from the program being tested, the condition of the interrupt
flag is the same as it was when DDT-86 was invoked. While
the program being tested has control of the CPU as the result
of a G command, the user's CPU state determines the state of
the interrupt flag. When the program is being traced using T
or U commands, interrupts are always disabled during the
execution of the traced instruction. This allows normal tracing
of programs in systems where interrupts occur frequently; for
example, from a timer.

11-5

DDT-86 Commands

11-6

This section defines DDT-86 commands and their arguments.
DDT -86 commands give the user control of program
execution and allow the user to display and modify system
memory and the CPU state.

The A (Assemble) Command

The A command assembles 8086 mnemonics directly into
memory. The form is:

As

where s is the 20-bit address where assembly is to start.
DDT -86 responds to the A command by displaying the
address of the memory location where assembly is to begin. At
this point the operator enters assembly language statements as
described in "Assembly Language Syntax." When a statement
is entered, DDT -86 converts it to machine code, places the
value(s) in memory, and displays the address of the next
available memory location. This process continues until the
user enters a blank line or a line containing only a period.

DDT -86 responds to invalid statements by displaying a
question mark, ?, and redisplaying the current assembly
address.

The B (Block Compare) Command

The B command compares two blocks of memory and displays
any differences on the screen. The form is:

Bsl,fl,s2

where s 1 is the 20-bit address of the start of the first block; fl
is the offset of the final byte of the first block, and s2 is the
20-bit address of the start of the second block. If the segment
is not specified in s2, the same value is used that was used for
s1.

Any differences in the two blocks are displayed at the screen in
the following form:

sl:ol bl s2:02 b2

where sl:ol and s2:02 are the addresses in the blocks; bi and
b2 are the values at the indicated addresses. If no differences
are displayed, the blocks are identical.

The D (Display) Command

The D command displays the contents of memory as 8-bit or
16-bit hexadecimal values and in ASCII. The forms are:

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f
is the 16-bit offset within the segment specified in s where the
display is to finish.

Memory is displayed on one or more display lines. Each
display line shows the values of up to 16 memory locations.
For the first three forms, the display line appears as follows:

ssss:oooo bb bb ... bb cc ... c

where ssss is the segment being displayed and 0000 is the offset
within segment ssss. The bb's represent the contents of the
memory locations in hexadecimal, and the c's represent the
contents of memory in ASCII. Any non-graphic ASCII
characters are represented by periods.

11-7

11-8

In response to the first form shown above, DDT-86 displays
memory from the current display address for 12 display lines.
The response to the second form is similar to the first, except
that the display address is first set to the 20-bit address s. The
third form displays the memory block between locations sand
f. The next three forms are analogous to the first three, except
that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown below:

ssss:oooo wwww wwww ... wwwwcccc ... cc

During a long display, you can terminate the D command by
typing any character at the keyboard.

The E (Load for Execution) Command

The E command loads a file generated by the GENCMD
utility into memory so that a subsequent G, T or U command
can begin program execution. The E command takes the form:

E filespec

where filespec is the name of the file to be loaded. If no filetype
is specified, .CMD is assumed. The contents of the user
segment registers and IP register are altered according to the
information in the header of the file loaded.

An E command releases any blocks of memory allocated by any
previous E or R commands or by programs executed under
DDT -86. Thus only one file at a time can be loaded for
execution.

When the load is complete, DDT-86 displays the start and
end addresses of each segment in the file loaded. Use the V
command to redisplay this information at a later time.

If the file does not exist or cannot be successfully loaded in the
available memory, DDT-86 issues an error message.

The F (Fill) Command

The F command fills an area of memory with a byte or word
constant. The forms are:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled,
and f is a I6-bit offset of the final byte of the block within the
segment specified in s.

In response to the first form, DDT -86 stores the 8-bit value b
in locations s through f. In the second form, the I6-bit value w
is stored in locations s through f in standard form, low 8 bits
first followed by high 8 bits.

If s is greater than f or the value b is greater than 255,
DDT -86 responds with a question mark. DDT -86 issues an
error message if the value stored in memory cannot be read
back successfully, indicating faulty or non-existent RAM at
the location indicated.

The G (Go) Command

The G command transfers control to the program being tested,
and optionally sets one or two breakpoints. The forms are:

G
G,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start,
and bi and b2 are 20-bit addresses of breakpoints. If no
segment value is supplied for any of these three addresses, the
segment value defaults to the contents of the CS register.

11-9

11-10

In the first three forms, no starting address is specified, so
DDT -86 derives the 20-bit address from the user's CS and IP
registers. The first form transfers control to the user's program
without setting any breakpoints. The next two forms set one
and two breakpoints, respectively, before passing control to

the user's program. The next three forms are analogous to the
first three, except that the user's CS and IP registers are first set
to s.

Once control has been transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, DDT-86 regains control, clears all breakpoints, and
indicates the address at which execution of the program under
test was interrupted as follows:

*ssss:oooo

where ssss corresponds to the CS and 0000 corresponds to the
IP where the break occurred. When a breakpoint returns
control to DDT -86, the instruction at the breakpoint address
has not yet been executed.

The H (Hexadecimal Math) Command

The H command computes the sum and difference of two
16-bit values. The form is:

Ha,b

where a and b are the values whose sum and difference are to be
computed. DDT -86 displays the sum (ssss) and the difference
(dddd) truncated to 16 bits on the next line as shown below:

ssss dddd

The I (Input Command Tail) Command

The I command prepares a file control block and command tail
buffer in DDT-86's base page, and copies this information into
the base page of the last file loaded with the E command. The
form is:

I command tail

where command tail is a character string which usually
contains one or more file specifications. The first file
specification is parsed into the default file control block at
005CH. The optional second file specification (if specified) is
parsed into the second part of the default file control block
beginning at 006CH. The characters in the command tail are
also copied into the default command buffer at 0080H. The
length of the command tail is stored at 0080H, followed by
the character string terminated with a binary zero.

If a file has been loaded with the E command, DDT-86 copies
the file control block and command buffer from the base page
ofDDT-86 to the base page of the program loaded. The
location of DDT-86's base page can be obtained from the SS
register in the user's CPU state when DDT -86 is invoked. The
location of the base page of a program loaded with the E
command is the value displayed for DS upon completion of the
program load.

The L (List) Command

The L command lists the contents of memory in assembly
language. The forms are:

L
Ls
Ls,f

where s is a 20-bit address where the list is to start, and f is a
16-bit offset within the segment specified in s where the list is
to finish.

ll-ll

11-12

The first form lists twelve lines of disassembled machine code
from the current list address. The second form sets the list
address to s and then lists twelve lines of code. The last form
lists disassembled code from s through f. In all three cases, the
list address is set to the next unlisted location in preparation
for a subsequent L command. When DDT-86 regains control
from a program being tested (see G, T and U commands), the
list address is set to the current value of the CS and IP
registers.

Terminate displays by typing any key during the list process.
Or, enter Ctrl-S to halt the display temporarily.

The section "Assembly Language Syntax" discusses the syntax
of statements produced by the L command ..

The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is:

Ms,f,d

where s is the 20-bit starting address of the block to be moved;
f is the offset of the final byte to be moved within the segment
described by s, and d is the 20-bit address of the first byte of
the area to receive the data. If the segment is not specified in d,
the same value is used that was used for s. Note that if dis
between sand f, part of the block being moved is overwritten
before it is moved, because data is transferred starting from
location s.

The R (Read) Command

The R command reads a file into a contiguous block of
memory. The form is:

R filespec

where filespec is the name and type of the file to be read.

DDT -86 reads the file into memory and displays the start and
end addresses of the block of memory occupied by the file. A
V command can redisplay this information at a later time. The
default display pointer (for subsequent D commands) is set to
the start of the block occupied by the file.

The R command does not free any memory previously
allocated by another R or E command. Thus a number of files
can be read into memory without overlapping. The number of
files that can be loaded is limited to seven, which is the
number of memory allocations allowed by the BOOS, minus
one for DOT-86 itself.

If the file does not exist or there is not enough memory to load
the file, DDT-86 issues an error message.

The S (Set) Command

The S command can change the contents of bytes or words of
memory. The forms are:

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT -86 displays the memory address and its current contents
on the following line. In response to the first form, the display
format is:

ssss:oooo bb

and in response to the second form:

ssss:oooo wwww

where bb and wwww are the contents of memory in byte and
word formats, respectively.

11-13

11-14

In response to one of the above displays, you can choose to alter
the memory location or to leave it unchanged. If a valid
hexadecimal value is entered, the contents of the byte (or
word) in memory is replaced with the value. If no value is
entered, the contents of memory are unaffected and the
contents of the next address are displayed. In either case,
DDT -86 continues to display successive memory addresses and
valiIes until either a period or an invalid value is entered.

DDT -86 issues an error message if the value stored in memory
cannot be read back successfully, indicating faulty or
non-existent RAM at the location indicated.

The T (Trace) Command

The T command traces program execution for 1 to OFFFFH
program steps. The forms are:

T
Tn
TS
TSn

where n is the number of instructions to execute before
returning control to the screen .

. Before DDT -86 traces an instruction, it displays the current
CPU state and the disassembled instruction. In the first two
forms, the segment registers are not displayed, which allows
the entire CPU state to be displayed on one line. The next two
forms are analogous to the first two, except that all the
registers are displayed, which forces the disassembled
instruction to be displayed on the next line as in the X
command.

In all of the forms, control transfers to the program under test
at the address indicated by the CS and IP registers. If n is not
specified, one instruction is executed. Otherwise DDT -86
executes n instructions, displaying the CPU state before each
step. A long trace can be terminated before n steps have been
executed by typing any character at the keyboard.

After a T command, the list address used in the L command is
set to the address of the next instruction to be executed.

Note that DDT -86 does not trace through a system
instruction, since DDT-86 itself makes operating system calls
and the operating system is not reentrant. Instead, the entire
sequence of instructions from the system interrupt through the
return from the operating system is treated as one traced
instruction.

The U (Untrace) Command

The U command is identical to the T command except that the
CPU state is displayed only before the first instruction is
executed, rather than before every step. The forms are:

U
Un
US
USn

where n is the number of instructions to execute before
returning control to the screen. Terminate the U command by
striking any key at the keyboard.

The V (Value) Command

The V command displays information about the last file loaded
with the E or R commands. The form is:

V

If the last file was loaded with the E command, the V
command displays the start and end addresses of each of the
segments contained in the file. If the last file was read with the
R command, the V command displays the start and end
addresses of the block of memory where the file was read .. If
neither the R nor E commands have been used, DDT-86
responds to the V command with a question mark, ?

11-15

11-16

The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The forms are:

W filespec
W filespec,s,f

where filespec is the filename and filetype of the disk file to

receive the data, and sand f are the 20-bit first and last
addresses of the block to be written. If the segment is not
specified in f, DDT -86 uses the same value that was used for s.

If the first form is used, DDT -86 assumes the sand f values
from the last file read with an R command. If no file was read
with an R command, DDT -86 responds with a question mark,
? This first form is useful for writing out files after patches
have been installed, assuming the overall length of the file is
unchanged.

In the second form where sand fare specified as 20-bit
addresses, the low four bits of s are ignored. Thus the block
being written must always start on a paragraph boundary.

If a file by the name specified in the W command already
exists, DDT-86 deletes it before writing a new file.

The X (Examine CPU State) Command

The X command allows you to examine and alter the CPU
state of the program under test. The forms are:

X
Xr
Xf

where r is the name of one of the 8086 CPU registers and f is
the abbreviation of one of the CPU flags. The first form
displays the CPU state in the format:

AX BX CX SS ES IP
--------- xxxx xxxx xxxx xxxx xxxx xxxx
instruction

The nine hyphens at the beginning of the line indicate the
state of the nine CPU flags. Each position may be either a
hyphen, indicating that the corresponding flag is not set (0),
or a one-character abbreviation of the flag name, indicating
that the flag is set (1). The abbreviations of the flag names are
shown in the table below. The instruction is the disassembled
instruction at the next location to be executed, which is
indicated by the CS and IP registers.

o Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows you to alter the registers in the CPU
state of the program being tested. The r following the X is the
name of one of the 16-bit CPU registers. DDT-86 responds by
displaying the name of the register followed by its current
value. If a carriage return is typed, the value of the register is
not changed. If a valid value is typed, the contents of the
register are changed to that value. In either case, the next
register is then displayed. This process continues until a period
or an invalid value is entered, or the last register is displayed.

The third form allows the operator to alter one of the flags in
the CPU state of the program being tested. DDT -86 responds
by displaying the name of the flag followed by its current
state. If a carriage return is typed, the state of the flag is not
changed. If a valid value is typed, the state of the flag is
changed to that value. Only one flag may be examined or
altered with each Xf command. Set or reset flags by entering a
value of 1 or O.

11-17

Default Segment Values

DDT-86 internally keeps track of the current segment value,
making segment specification an optional part of a DDT -86
command. DDT-86 divides the command set into two types of
commands, according to which segment a command defaults if
no segment value is specified in the command line.

The first type of command pertains to the code segment: A
(Assemble), L (List Mnemonics) and W (Write). These
commands use the internal type-I segment value if no segment
value is specified in the command.

When invoked, DDT-86 sets the type-I segment value to 0,
and changes it when one of the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the
type-I segment value to the value of the CS register.

When a file is read by an R command, DDT -86 sets the
type-I·segment value to the base segment where the file
was read.

When an X command changes the value of the CS register,
DDT -86 changes the type-I segment value to the new
value of the CS register.

• When DDT -86 regains control from a user program after a
G, Tor U command, it sets the type-I segment value to
the value of the CS register.

• When a segment value is specified explicitly in an A or L
command, DDT-86 sets the type-I segment value to the
segment value specified.

The second type of command pertains to the data segment: B
(Block Compare), D (Display), F (Fill), M (Move) and S (Set).
These commands use the internal type-2 segment value if no
segment value is specified in the command.

When invoked, DDT-86 sets the type-2 segment value to 0,
and changes it when one of the following actions is taken:

• When a file is loaded by an E command, DDT -86 sets the
type-2 segment value to the value of the DS register.

When a file is read by an R command, DDT-86 sets the
type-2 segment value to the base segment where the file
was read.

• When an X command changes the value of the DS register,
DDT -86 changes the type-2 segment value to the new
value of the DS register.

• When DDT -86 regains control from a user program after a
G, Tor U command, it sets the type-2 segment value to
the value of the DS register.

When a segment value is specified explicitly in a B, D, F,
M or S command, DDT-86 sets the type-2 segment value
to the segment value specified.

When evaluating programs that use identical values in the CS
and DS registers, all DDT -86 commands default to the same
segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group,
since it defaults to the CS register.

11-19

The table below summarizes DDT-86's default segment
values.

Command type-1 type-2

A x
B x
D x
E u u
F x
G u u
H
I
L x
M x
R u u
S x
T u u
U u u
V
W x
X u u

x - use this segment default if none specified; change default
if specified explicitly

u - update this segment default

Assembly Language Syntax for A and L Commands

11-20

In general, the syntax of the assembly language statements
used in the A and L commands is standard 8086/8088
assembly language. Several minor exceptions are listed below.

•

•

DDT -86 assumes that all numeric values entered are
hexadecimal.

Up to three prefixes (LOCK, repeat, segment override) may
appear in one statement, but they all must precede the
opcode of the statement. Alternately, a prefix may be
entered on a line by itself.

• The distinction between byte and word string instructions
is made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer
instructions are as follows:

short

]MPS

normal

]MP
CALL
RET

far

]MPF
CALLF
RETF

• If the operand of a CALLF or]MPF instruction is a 20-bit
absolute address, it is entered in the form:

ssss:oooo

where ssss is the segment and 0000 is the offset of the
address.

• Operands that could refer to either a byte or word are
ambiguous, and must be preceded either by the prefix
"BYTE" or "WORD". These prefixes may be abbreviated
to "BY" and "WO". For example:

INC
NOT

BYTE [BP]
WORD [1234]

Failure to supply a prefix when needed results in an error
message.

• Operands which address memory directly are enclosed in
square brackets to distinguish them from immediate
values. For example:

ADD
ADD

AX,5
AX,[5]

;add 5 to register AX
;add the contents of 5 to AX

11-21

11-22

• The forms of register indirect memory operands are:

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index
registers are SI and DI. Any of these forms may be preceded
by a numeric offset. For example:

ADD
ADD
ADD

BX,[BP+SI]
BX,3[BP+SI]
BX,ID47[BP+SI]

--I N
\j.,j

DDT-86 Sample Session

In the following sample session, the user interactively debugs a
simple sort program. Comments in square brackets explain the
steps involved.

[Source file of program to test.]

A>type sort.aS6

simple sort program

sort:
mov si,O ;initialize index
mov bx,offset nlist ;bx = base of list
mov sw,O ;clear switch flag

comp:
mov al,[bx+si] ;get byte from list
cmp al,1[bx+si] ;compare with next byte
jna inci ;don't switch if in order
xchg al,1[bx+si] ;do first part of switch
mov [bx+si],al ; do second part
mov sw,1 ;set switch flag

inci:
inc si ;increment index
cmp si,count ;end of list?
jnz comp ;no, lceep going

--I N
~

test sw,1
jnz sort

dlJne:
jmp done

dseg
org 100h

nlist db 3,8,4,6,31,6,4,1
cllunt equ offset $ - offset nlist
S1l\l db 0

end

[Assemble program.]

A>asm86 sort

CP/M 8086 ASSEMBLER VER 1.1
EI\jO OF PASS 1
EI\lO OF PASS 2

;done - any switches?
;yes, sort some more

;get here when list ordered

;Ieave space for base page

EI\lO OF ASSEMBLY. NUMBER OF ERRORS: 0

[Type listing file generated by ASM-86.]

A>type sort.lst

CP/M ASM861.1 SOURCE: SORT.A86

simple sort program

sort:
0000 BEOOOO mov si,O ;initialize index
0003 BBOO01 mov bx,offset nlist ;bx = base of list
0006 C606080100 mov sw,O ;clear switch flag

comp:
OOOB 8AOO mov al,[bx+si] ;get byte from list
OOOD 3A4001 cmp al,1[bx+si] ;compare with next byte
0010 760A jna mCI ;donrt switch if in order
0012 864001 xchg al,1 [bx + si] ;do first part of switch
0015 8800 mov [bx+si],al ;do second part
0017 C606080101 mov sw,1 ;set switch flag

inci:
001C 46 inc si ;increment index
001D 83FE08 cmp si,count ;end of list?
0020 75E9 jnz comp ;no, Iceep going
0022 F606080101 test sw,1 ;done-any switches?
0027 75D7 jnz sort ;yes, sort some more

done:
0029 E9FDFF jmp done ;get here when list ordered

- dseg -I 100h ;Ieave space for base page tv org
VI

--I
N
0\

,
0100 030B04061F06 nlist db 3,8,4,6,31,6,4,1

0401
0008 count equ offset $-offset nlist

0108 00 sw db 0
end

E~ID OF ASSEMBLY. NUMBER OF ERRORS: 0

[Type symbol table file generated by ASM-86.]

A>type sort.sym
0000 VARIABLES
0100 NLiST 0108 SW

DODO NUMBERS
0008 COUNT

0000 LABELS
OODB COMP 0029 DONE 001C INCI

[Type hex file generated by ASM-86.]

A>type sort.hB6
:O~00000300000000F9

0000 SORT

: 1 BOOOOB1 8 E00008 80001 C6060B01 00BA003A4001760AB64001 BBOOC60608016C
:110018B10146B3FEOB75E9F6060B010175D7E9FDFFEE
:O,J010082030B04061 F0604010035

-I N
---.J

:00000001FF

[Generate CMD file from .H86 file.]

A>gencmd sort

BYTES READ 0039
RECORDS WRITTEN 04

[Invoke DDT-86 and load SORT.CMD.]

A>ddt86 sort
DDT861.0

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

[Display initial register values.]

-x
AX BX CX DX SP BP SI DI CS DS SS ES IP

--------- 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000
MOV SI, 0000

[Disassemble the beginning of the code segment.]

--I
~ 0470:0000 MOV

-I
SI,OOOO
BX,0100 0470:0003 MOV

0470:0006 MOV
0470:000B MOV
0470:0000 CMP
0470:0010 JBE
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 CMP
0470:0020 JNZ

BYTE [0108],00
AL,[BX+SI]
AL,Ol[BX + SI]
001C
AL,Ol [BX + SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB

[Display the start of the data segment.]

-dIOO,lOf
0480:0100 03 08 04 06 1 F 06 04 01 00 00 00 00 00 00 00 00

[Disassemble the rest of the code.]

0470:0022 TEST
0470:0027 JNZ
0470:0029 JMP
0470:002C AOO

-I
BYTE [0108],01
0000
0029
[BX+SI],AL

.....
I

N
\0

0410:002E AOO
0410:00300AS
0410:0031 AOO
0410:0033?? =
0410:0034 POP
0410:0035 ADD
0410:0031 AOO
0410:0039?? =

[BX+SI],AL

[BX+SI],AL
6C
ES
[BX],GL
[8X+SI],AX
6F

[Execute program from IP (= 0) setting breakpoint at 29H.]

-g,29

[Breakpoint encountered.]

*0410:0029

[Display sorted list.]

-d100,1Of
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[Doesn't look good; reload file.]

-esort
START END

CS 047D:0000 047D:002F

--I U.l
o

[Trace 3 instructions.]

--·--z-p-
--·--z-p-
---- ·z-p-
*0170:000B

AX B)(CX OX SP BP SI 01 IP
0000 0100 0000 0000 119E 0000 0008 0000 0000 MOV SI,OOOO
0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100
0000 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108],00

[Trace some more.]

-t~:

-----z-P-
-----Z-P-
----S-A-C
*()170:001C

AX BX CX OX SP BP SI DI IP
0000 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL,[BX + SI]
0003 0100 0000 0000 119E 0000 0000 0000 0000 CMP AL,01[BX + SI]
0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C

[Display unsorted list.]

-d1100,1Of
O1JUO:0100 03 08 04 05 1 F OS 04 01 00 00 00 00 00 00 00 00

[Display next instructions to be executed.]

-I
0470:001C INC
0470:0010 CMP
0470:0020 JNZ
0470:0022 TEST
0470:0027 JNZ
0470:0029 JMP
0470:002C AOO
0470:002E AOO
0470:00300AS
0470:0031 AOO
0470:003311 =
0470:0034 POP

SI
SI,0008
OOOB
BYTE [0108],01
0000
0029
[BX+SI],AL
[BX+SI],AL

[BX+SI],AL
6C
ES

[Trace some more.]

-t3

----S-A-C
--------C
----S-APC
*0470:000B

AX BX CX OX SP BP SI DI IP
0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI
0003 0100 0000 0000 119E 0000 0001 0000 0010 CMP SI,0008
0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB

[Display instructions from current IP.]

-I
0470:000B MOV AL,[8X+SI]

0,170:0000 CMP
0,170:0010 JBE
01170:0012 XCHG
01'70:0015 MOV
OjJ70:0017 MOV
04J70:001C INC
01170:0010 CMP
0~170:0020 JNZ
0~17D:0022 TEST
OL170:0027 JNZ
OL170:0029 JMP

-u

AL,01 [B}' + SI]
001C
AL,Ol [BX + SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB
BYTE [0108],01
0000
0029

AX BX CX OX SP BP SI DI IP
--·-S-APC
--·-S-APC

0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV AL,[BX + SI]
0008 0100 0000 0000 119E 0000 0001 0000 0000 CMP AL,01[BX + SI]
0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001C

*['470:0012

-I
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 CMP
0470:0020 JNZ
047D:0022 TEST

AL,01 [BX + SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB
BYTE [0108],01

0470:0027 JNZ
0470:0029 JMP
0470:002C AOO
0470:002EAOO
0470:00300AS

0000
0029
[BX+SI],AL
[BX+SI],AL

[Go until switch has been performed.]

-g,20
*0470:0020

[Display list.]

-d100,1Of
0480:0100 03 04 08 06 1 F 06 04 01 01 00 00 00 00 00 00 00

[Looks like 4 and 8 were switched okay. (And toggle is true.)]

-t
AX BX CX OX SP BP SI DI IP

----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB
*0470:000B

[Display next instructions.]

-I
0470:0008 MOV AL,[8X+SI]

----I \j.l

~

0470:0000 CMP AL,Ol[BX + SI]
0470:0010 JBE 001C
0470:0012 XCHG AL,Ol [BX + SI]
0470:0015 MOV [BX+SI],AL
0470:0017 MOV BYTE [0108],01
0~70:001C INC SI
0470:0010 CMP SI,0008
0470:0020 JNZ OOOB
0470:0022 TEST BYTE [0108],01
0470:0027 JNZ 0000
0170:0029 JMP 0029

[Since switch worked, let's reload and check boundary conditions.]

-Ilsort
START ENO

CS 047D:0000 0470:002F
OS 0480:0000 0480:010F

[Make it quicker by setting list length to 3. (Could also have used s47d: Ie = 3 to patch.)]

-clld
OjJ70:1l010 cmp si,3

[Display unsorted list.]

-d100
0480:0100
0480:0110
0480:0120

03 08 04 06 1 F 06 04 01 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20

[Set breakpoint when first 3 elements of list should be sorted.]

-g,29
*0470:0029

[See iflist is sorted.]

-d100,1Of
04n0:0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 00 00

[Interesting, the fourth element seems to have been sorted in.]

-esort
START ENO

CS 0470:0000 0470:002F
OS 0430:0000 0480:010F

[Let's try again with some tracing.]

-a1d
~ 0470:0010 cmp si,3

I

~ 0470:0020.

·1.9
AX BX CX DX SP BP SI DI IP

··,···Z·p·
·····Z·p·
·····Z·p·
·····Z·p·
·_···Z·P·
·-··S·A·C
·-··S·A·C

0006 0100 0000 0000 119E 0000 0003 0000 0000 MOV SI,OOOO
0006 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100
0006 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108],00
0006 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL,[BX + SI]
0003 0100 0000 0000 119E 0000 0000 0000 DODD CMP AL,Ol[BX + SI]
0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI

.-...... C
·-··S·A·C
*1I47D:000B

0003 0100 0000 0000 119E 0000 0001 0000 001D CMP SI,0003
0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB

·1
Oi17D:000B MOV
Oi17D:000D CMP
Ol17D:0010 JBE
Ol17D:0012 XCHG
Ol17D:0015 MOV
OlI7D:0017 MOV
OL~7D:001C INC
OL~7D:001D CMP
OL~7D:0020 JNZ
OL~7D:0022 TEST
0(~7D:0027 JNZ
0(17D:0029 JMP

AL,[BX+SI]
AL,Ol [BX + SI]
001C
AL,Ol [BX + SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0003
OOOB
BYTE [0108],01
0000
0029

,.... ,....

-t3
AX BX CX OX SP BP SI DI IP

----S-A-C
----S-A-C

0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV AL,[BX + SI]
0008 0100 0000 0000 119E 0000 0001 0000 0000 CMP AL,Ol[BX+SI]
0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001C

*0470:0012

-I
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 CMP
0470:0020 JNZ
0470:0022 TEST

-t3

AL,Ol [BX + SI]
[BX + SI[],AL
BYTE [0108],01
SI
SI,0003
OOOB
BYTE [0108],01

AX BX CX OX SP BP SI DI IP
0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHGAL,01[BX + SI]
0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX + SI],AL
0004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [0108],01

*0470:001C

-dl00,10f
0480:0100 03 04 08 06 1 F 06 04 01 01 00 00 00 00 00 00 00

~ [So far, so good.]

~ -13
I

U..I
00

AX . 8X CX OX SP 8P SI DI IP
0004 0100 0000 0000 119E 0000 0001 0000 001C INC SI

----S-APC
*1)470:0008

0004 0100 0000 0000 119E 0000 0002 0000 0010 CMP SI,0003
0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 0008

-I
OjJ70:000B MOV
OjJ70:0000 CMP
OjJ70:0010 J8E
OjJ70:0012 XCHG
OjJ70:0015 MOV
OjJ70:0017 MOV
OjJ70:001C INC
OjJ70:0010 CMP
Oj170:0020 JNZ
Oj170:0022 TEST
Oj170:0027 JNZ
Oj170:0029 JMP

-t3

AL,[8X+SIJ
AL,Ol [8X + SIJ
001C
AL,Ol [8X + SIJ
[8X+SIJ,AL
8YTE [0108J,01
SI
SI,0003
0008
8YTE [0108J,01
0000
0029

AX 8X CX OX SP 8P SI DI IP
----S-APC
----S-APC

0004 0100 0000 0000 119E 0000 0002 0000 0008 MOVAL,[8X+SIJ
0008 0100 0000 0000 119E 0000 0002 0000 0000 CMP AL,01[8X + SIJ
0008 0100 0000 0000 119E 0000 0002 0000 0010 J8E 001C

*11470:0012

[Sure enough, it's comparing the third and fourth elements of the list. Reload program.]

-esort
START

CS 0470 :0000
OS 0480:0000

-I
0470:0000 MOV
0470:0003 MOV
0470:0006 MOV

. 0470:0008 MOV
0470:0000 CMP
0470:0010 J8E
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
0470:001C INC
0470:0010 CMP
0470:0020 JNZ

ENO
0470:002F
0480:010F

SI,OOOO
8X,0100
8YTE [0108],00
AL,[8X+SI]
AL,Ol [8X + SI]
001C
AL,Ol [8X + SI]
[8X+SI],AL
8YTE [0108],01
SI
SI,0008
0008

[Patch length.]

-ald
0470:0010
0470:0020

cmp si,7

--I ~
o

[Try it out.]

-g,29
*(1470:0029

[See if list is sorted.]

-d100,1Df
0480:0100 01 03 04 04 06 06 08 1 F 00 00 00 00 00 00 00 00

[Looks better; let's install patch in disk file. To do this, we must read CMD file including header, so we use R
command.]

-r:;ort.cmd
START END

2~00:0000 2000:01FF

[First BOh bytes contain header, so code starts at BOh.]

-IU~

2~00:0080 MOV
2~00:0083 MOV
2~OO:0086 MOV
2~OO:008B MOV
2~00:008D CMP
2~OO:0090 JBE
2DOO:0092 XCHG

SI,OOOO
BX,0100
BYTE [0108],00
AL,[BX+SI]
AL,01 [BX + SI]
009C
AL,01[BX + SI]

2000:0095 MOV
2000:0097 MOV
2000:009C INC
2000:0090 CMP
2000:00AO JNZ

[BX+SI],Al
BYTE [0108],01
SI
SI,0008
008B

[Install patch.]

-a9d
2000:0090 cmp si,7

[Write file back to disk. (Length of file assumed to be unchanged since no length specified.)]

-wsort.cmd

[Reload file.]

-esort

START END
CS 0470:0000 0470:002F
OS 0480:0000 0480:010F

[Verify that patch was installed.]
-I
0470:0000 MOV
047D:0003 MOV

SI,OOOO
BX,0100

OjJ7D:OOOS MOV
OjJ7D:OOOB MOV
OjJ7D:OOOD CMP
OjJ7D:0010 JBE
OjJ7D:0012 XCHG
OjJ7D:0015 MOV
OjJ7D:0017 MOV
OjJ7D:001C INC
OjJ7D:001D CMP
OjJ7D:0020 JNZ

[Run it.]

-u,29
*1I47D:0029

BYTE [0108],00
AL,[BX+51]
AL,Ol [BX + 51]
001C
AL,Ol [BX + 51]
[BX+51],AL
BYTE [0108],01
51
51,0007
OOOB

[Still looks good. Ship it!]

-11100,101
()4J80:0100
_AC

A>

01 03 04 04 06 06 08 1 F 00 00 00 00 00 00 00 00

APPENDIX A. MESSAGES

Contents

Status Line Messages " A-3
Diskette/Drive Error Status Line Messages. " A-4
Printer Error Status Line Messages " A-6

CP/M-86 Command Error Messages. A-7

A-I

A-2

Appendix A. Messages

CP/M-86 communicates with you through messages displayed
on your screen. CP/M-86 keeps you informed of the date,
time, and status of your IBM Personal Computer by
maintaining a "Status Line" on the last line of your screen.
CP/M-86 responds to a mistyped command or other error by
displaying a message directly beneath the command line that
contained or caused the error. This Appendix describes Status
Line Messages and CP/M-86 Error Messages.

Status Line Messages

CP/M-86 maintains a Status Line at the bottom of your screen.
Normally the Status Line looks like this:

[IU = 101 mm/dd/yy 1 05:42:271]

The part of the screen to the left of the Status Line display is
generally blank. The second field of the Status Line shows the
current user number. In the example above, the user number is
10. When you first bring CP/M-86 into memory, the second
field tells the date your CP/M-86 system was created and the
third field shows the time elapsed since CP/M-86 was
initiated. You can set either of these fields to the current date
and time with a TOD command.

Sometimes CP/M-86 replaces the normal message~ in the
Status Line with information about light pen input,
diskette/drive errors and printer errors.

When a program requires that you make a selection from the
screen with the light pen, the Status Line displays the
message, "Waiting for Light Pen Input" until you depress the
tip of the pen against the screen's surface. When the program
receives your input, the Status Line returns to its normal state.

A-3

A-4

Diskette/Drive Error Status Line Messages

If CP/M-86 detects an error while operating on a diskette or
drive, it retries the operation five times before sending a
diskette/drive error message to the Status Line and ringing the
bell. A diskette/drive error message has the following format:

Disk d: message R/I/C/D?

In an actual error message, CP/M-86 replaces d: with the drive
specification of the drive where the error occurred, and
message with one of the messages listed below. When you
receive this error message, CP/M-86 asks you to type a
character and thereby select one of four options. The character
you type is not echoed at the screen. To retry the operation
that caused the error, type R. To ignore the error, type I. To
cancel and return to the operating system, type C. To display
details of the error, type D. The detail message, which appears
in the Status Line if you press D, has the following format:

Operation Trk 00 Sec 00 RlI/C/D?

In an actual detail message, CP/M-86 replaces Operation with
the name of the operation it was performing when the error
took place, and also inserts the track and sector numbers where
the error occurred. The following list defines the operation
names that can appear in a detail message.

Status error occurred while trying to obtain diskette
status

Read error occurred while trying to read from
diskette

W rite error occurred while trying to write to
diskette

Verify error occurred while comparing data on
diskette with data stored in memory

Unknown Op error occurred during an unknown operation

The following messages can appear in the diskette/drive error
Status Line. These messages can indicate problems with
hardware. If the error persists contact your point of sale.

ADDRESS MAR" MISSING

Diskette is worn or improperly formatted. Reformat diskette
with NEWDISK or retry with new diskette.

BAD DIS" COMMAND

This could be a hardware problem, or could indicate that the
part of memory in which CP/M-86 resides has been violated.
Try starting CP/M-86 from another system disk.

CONTROLLER FAILED

This is a hardware problem; retry.

DATA ERROR

Check detail message. If the error occurred during a read
operation, you could ignore the error and read what you can
from the disk. If the error occurred during a write operation,
you should retry with a fresh diskette.

DMA ADDRESS ERROR

A program has instructed the DMA chip to read data into a
memory area that straddles a 64K boundary. Take careful note
of the situation that caused the error. If the running program
was an application program you have written then you must
correct your error in attempting to instruct the DMA chip to
read data into a memory area that straddles a 64K boundary. If
a standard utility program was executing at the time of the
error, it may indicate a hardware problem. Retry the
operation.

DMA CHIP FAILURE

This is a hardware problem; retry the operation.

A-5

A-6

FAILED TO RESPOND

There is no diskette in the drive, the diskette is improperly
inserted, or the drive latch is not closed. Correct the problem
and press R for retry.

SECTOR NOT FOUND

Diskette is worn or improperly formatted. Reformat the
diskette with NEWDISK or try a new diskette.

SEEI(FAILED

This could be a hardware problem or a symptom of a worn
diskette. Retry the operation with a new diskette.

WRITE-PROTECTED

Diskette has a foil tab over the write-protect notch. Check that
you have the correct diskette. If you want to write on the
diskette, remove the foil tab and retry.

Printer Error Status Line Messages

If you have an IBM 80 cps Matrix Printer added to your IBM
Personal Computer, CP/M-86 displays printer error messages
in the Status Line in the format shown below:

BUSY

Check cabling and retry.

NOT ONLINE

Check that the green light next to Online is illuminated. If
not, press Online switch and retry. If the light is illuminated,
check cabling and retry.

INPUT/OUTPUT ERROR

There is no power to the printer. Apply power to the printer
and retry. Check cabling.

OUT OF PAPER

Your printer has a tiny switch that is depressed when
continuous-feed paper is threaded through the printer
correctly. This error message appears when the printer is out of
paper or the paper is incorrectly threaded. Correct the problem
and retry.

PRINTER #: MESSAGE Rille?

In an actual printer error message, CP/M-86 replaces # with
the printer number (0, lor 2), and message with one of the
messages defined below.

STATUS = 0000 0000

This message shows the printer error status byte in binary as
two groups of four digits. The Status Code is displayed for
diagnostic purposes; note the code value and the circumstances
that caused the error.

CP/M-86 Command Error Messages

CP/M-86 command error messages can occur when you type a
program name at the console. The program can be one
supplied with the CP/M-86 system diskette or it can be from
other software designed to run under the CP/M-86 system. Of
course, this list does not include all the error messages that can
occur when running other software, but it is a good idea to
check the list if you think the error message might have
originated from CP/M-86. IfCP/M-86 cannot find the
program you typed, it simply repeats what you typed followed
by a question mark. You can easily tell if you made a typing
error. If not, you might have the wrong diskette inserted in
the drive.

A-7

A-8

Command error messages are not displayed on the Status Line.
They are printed on the line below the current cursor position.
In this Appendix the error messages are organized
alphabetically.

COMMAND NAME?

If CP/M-86 cannot find the command you specified, it returns
the command name you entered followed by a question mark.
Check that you have typed the command name correctly.
Check that the command you requested exists as a . CMD file
with the current user number on the default or specified.
diskette.

GENCMD. An invalid GENCMD command line was
entered. If the command was mistyped then try again;
otherwise, review GENCMD operation (Appendix C).

ALL DATA WILL BE ERASED FROM THE DISlt
IS THIS WHAT YOU WANT? YIN

NEWDISK. This message is displayed by NEWDISK to
verify that the operator understands that the program erases all
the data from the disk in the process of formatting it.

AMBIGUOUS OPERAND

DDT-86. An attempt was made to assemble a command with
an ambiguous operand. Precede the operand with the prefix
"BYTE" or "WORD".

ATTRIBUTE INCORRECTLY SPECIFIED

SPEED. You have made an error in specifying an attribute.
Refer to the description of the SPEED command to correct
your error.

BAD DIRECTORY ON 0:
SPACE ALLOCATION CONFLICT

STAT. This message is followed by a list of one or more
filenames. The files listed contain data blocks that are already
allocated to another file on the diskette. The error can be
caused by a hardware or software failure. The error can be
corrected by erasing the file(s) displayed and rebooting
CP/M-86. Note that if CP/M-86 is not rebooted after erasing
the files, the problem will reappear.

BAD PARAMETER

PIP. An illegal parameter has been entered in a PIP
command. Retype the entry correctly.

BOOS ERR ON d:

CP/M-86 replaces d: with the drive specification of the drive
where the error occurred.

BOOS ERR ON d: BAD SECTOR

This could indicate a hardware problem or a worn or
improperly formatted diskette. Press Ctrl-C to terminate the
program and return to CP/M-86, or press the Enter key to

ignore the error.

BOOS ERR ON d: FILE RIO

An erase, rename or set file attributes operation was
attempted on a Read-Only file. The file should first be set
to Read-Write (RlW) with the command: "STAT filespec
$RlW".

BOOS ERR ON d: SELECT

CP/M-86 has received a request specifying a non-existent
drive, or diskette in drive is improperly formatted. CP/M-86
terminates the current program as soon as you press any key.

A-9

A-IO

BOOS ERR ON d: RIO

Drive has been assigned Read-Only status with a STAT
command, or the diskette in the drive has been changed
without being initialized with a Ctrl-C. CP/M-86 terminates
the current program as soon as you press any key.

BREAI{ "x" AT c

ED. "x" is one of the symbols described below and c is the
command letter being executed when the error occurred.

Search failure. ED cannot find the string specified
in an F, S, or N command.

Unrecognized command letter c. ED does not
recognize the indicated command letter, or an E,
H, Q, or 0 command is not alone on its command
line.

o The file specified in an R command could not be
found.

> Buffer full. ED cannot put any more characters in
the memory buffer, or the string specified in an F,
N, or S command is too long.

E Command terminated. A keystroke at the console
terminated command execution.

F Disk or directory full. This error is followed by
either the disk or directory full message. Refer to
the recovery procedures listed under these
messages.

CANNOT CLOSE
CANNOT CLOSE FILE

DDT -86. The disk file written by a W command cannot be
closed. This is a fatal error that terminates DDT-86 execution.
The user should take appropriate action after checking to see if
the correct diskette is in the drive and that the diskette is not
wri te-protected.

GENCMD. The CMD file written by GENCMD cannot be
closed. This-is a fatal error that terminates GENCMD
execution. The user should take appropriate action after
checking to see if the correct diskette is in the drive and that
the diskette is not write-protected.

CANNOT CLOSE, READ/ONLY?

SUBMIT. The $$$.SUB file could not be closed. Check to
see if the correct system diskette is in the "A" drive and that
the diskette is not write-protected. The SUBMIT job can be
restarted after rebooting CP/M-86.

CANNOT OPEN SOURCE

GENCMD. The hex file specified in the GENCMD
command line could not be found. The hex file must have the
filetype ". H86". Check to see that the correct diskette was
specified and try again.

CHECICSUM ERROR

GENCMD. A hex record checksum error was encountered.
The hex record that produced the error must be corrected,
probably by recreating the hex file.

CLOSE FILE - {filespec}

PIP. An output file cannot be closed. The user should take
appropriate action after checking to see if the correct diskette
is in the drive arid that the diskette is not write-protected.

COMMAND BUFFER OVERFLOW

SUBMIT. The SUBMIT buffer allows up to 2048 characters
in the input file.

A-II

A-12

COMMAND TOO LONG

SUBMIT. A command in the SUBMIT file cannot exceed
125 characters.

DEFECTIVE DlSICETTE

NEWDISK. The diskette could not be formatted. The
diskette should be discarded and a new one tried. If the
problem persists, the diskettes may be the wrong type or the
drive may need servicing.

DESTINATION IS RIO, DELETE (YIN)?

PIP. The destination file specified in a PIP command already
exists and it is Read-Only. If you type "Y" the destination file
will be deleted before the file copy is done.

DEVICE IS NOT ON-LINE

ASSIGN, PROTOCOL & SPEED. The ASSIGN,
PROTOCOL or SPEED command that you have entered
specifies a device that is not currently on-line on your
computer. If you do have the device on-line, the message can
indicate that the device has failed. If the error persists, you
should contact your point of sale.

DIRECTORY FULL

ED. There is not enough directory space for the file being
written. You can use the "OXfilespec" command to erase any
unnecessary files on the diskette without leaving the editor.
Alternatively, you can save the contents of the memory buffer
on another diskette with the command "B#Xfilespec", where
filespec is a file on a different drive. You can then quit the edit.
If you reedit the file the output should be placed on a different
drive with the command "ED filespec d:", where d: is a valid
drive name other than the drive containing the source file. You
can read the file saved with the "Rfilespec" command.
Caution: Part of the file may not be in the memory buffer when
you save it (if you have not appended the whole file or if you
have issued any "w" commands).

SUBMIT. There is not enough directory space to write the
$$$.SUB file used for processing SUBMITS. Erase some files
or select a new disk, and retry.

DlSIC DRIVE DOES NOT EXIST ON THIS SYSTEM

NEWDISK. You have specified a drive which does not exist
on your system. Try again with a correct drive specification.

DlSIC FORMAT IN PROGRESS

NEWDISK. The NEWDISK program is currently
formatting a diskette. Wait until it is complete before taking
any further action.

DlSIC FULL

ED. There is not enough disk space for the output file. This
error may occur on the W, E, H, or X commands. If it occurs
with the X command you can repeat the command prefixing
the filename with a different drive. Otherwise you can try the
recovery methods described under the Directory Full error.

DlSIC READ ERROR
DISI(READ - {filespec}

DDT -86. The disk file specified in an R command could not
be read properly. This is usually the result of an unexpected
end of file. Correct the problem in your file.

GENCMD. The specified hex file could not be read
properly. This is usually the result of an unexpected end of file.
Correct the problem by regenerating the H86 file.

PIP. The input disk file specified in a PIP command could
not be read properly. This is usually the result of an
unexpected end of 6.le. Correct the problem in your file.

A-13

A-14

DlSI(WRITE ERROR
DlSI{ WRITE - {filespec}

DDT -86. A disk write operation could not be successfully
performed during a W command, probably due to a full disk.
You should either erase some unnecessary files or get another
diskette with more room.

PIP. A disk write operation could not be successfully
performed during a PIP command, probably due to a full disk.
You should either erase some unnecessary files or get another
diskette with more room and run PIP again.

SUBMIT. The SUBMIT program could not write the
$$$.SUB file to the disk. Erase some files or select a new disk;
retry.

DIVISION BY ZEnO TOAP
** PROGnAM ADORTED *if

CP/M-86 prints this message when the user program executes
a DIV or IDIV instruction and the CPU generates a divide
error interrupt.

~nnOn: ~rror message

Refer to the error message following the word "ERROR:".

PIP. All of the messages generated by the PIP program are
displayed in the format shown above.

SUBMIT. The SUBMIT program displays its messages in
the format shown above, where nnn represents the line number
of the SUBMIT file. Refer to the message following the line
number.

ERROR READING HELP.HLP INDEX

HELP. The HELP. HLP file used by the HELP command is
invalid. This may be caused by an unexpected end of file. The
distributed HELP. HLP file should be copied to the diskette
from the CP/M-86 system diskette.

FILE EXISTS

REN. You have tried to rename a file to a name already
assigned to another file. Either delete the existing file or
rename the file.

FILE IS READ/ONLY

ED. A Read-Only file cannot be edited with the ED
command "ED filespec". The command "ED inputfilespec
outputfilespec" should be used instead.

FILE NOT FOUND
FILE NOT FOUND - {filespec}

ED. ED could not find the specified file. Check that you
have entered the correct drive specification or that you have the
correct diskette in the drive.

PIP. An input file which you have specified does not exist.

STAT. STAT could not find the specified file; check to see if
the correct diskette is in the drive.

FILENAME REQUIRED

ED. The ED command was typed without a filename.
Reenter the ED command followed by the name of the file you
wish to edit or create.

HEX RECORD CHECI(SUM - {filespec}

PIP. A hex record checksum error was encountered during
the transfer of a hex file. The hex file with the checksum error
should be corrected, probably by recreating the hex file.

A-IS

A-16

HELP.HLP READ ERROR

HELP. An error occurred in reading the HELP. HLP help
file. Usually this error is caused by an unexpected end of file. A
new copy of the HELP. HLP file should be copied from the
CP/M-86 system diskette.

ILLEGAL DlSI{ NAME
ILLEGAL DlSI{ETTE DRIVE

NEWDISK. The drive must be A:, B:, C: or D:. Reenter
the command correctly.

COPYDISK. An invalid or non-existent drive was specified.

ILLEGAL TYPE COMBINATION

ASSIGN. You have probably specified an output device as an
input device, or an input device as an output device. Re-enter
the ASSIGN command correctly.

ILLEGAL TYPE SPECIFIED

NEWDISK. Only type specifications of $S, $N, $DS or
$DN are allowed.

INCORRECT LOGICAL DEVICE SPECIFICATION

ASSIGN. You have specified a logical device that is
incorrect.

INCORRECT PHYSICAL DEVICE SPECIFICATION

ASSIGN. You have specified a physical device that is
incorrect.

INCORRECT TYPE DELIMITER

NEWDISK. A "$" must be used to delimit the type ($S,
$N, $DS, or $DN). An example of a valid command is
"NEWDISK B: $S".

INPUT CANNOT BE ASSIGNED TO MORE THAN ONE DEVICE AT
ATIME

ASSIGN. Specify.only one device for input.

IS THIS WHAT YOU WANT TO DO (YIN)?

COPYDISK. If the displayed COPYDISK function is what
you want performed, then type "Y".

INSUFFICIENT MEMORY

DDT-86. There is not enough memory to load the file
specified in an R or E command.

INSUFFICIENT MEMORY AVAILABLE FOR COPY

COPYDISK. There is not enough memory available to copy
a track from the specified diskette.

INSUFFICIENT MEMORY TO CREATE CMD FILE

GENCMD. There is not enough memory to create a CMD
file from the H86 file specified.

INVALID ASSIGNMENT

STAT. An invalid drive or file assignment was attempted.
This error message may be followed by a list of the valid file
assignments which can follow a filename. If an invalid drive
assignment was attempted, the message "Use: d: = RO" is
displayed showing the proper syntax for drive assignments.

INVALID CONTROL CHARACTER

SUBMIT. The only valid control characters in the
SUBMIT files of type SUB are" A through "Z. Note that in
a SUBMIT file, the control character is represented by
typing the circumflex, ", not by depressing the Control
Key.

A-I?

A-18

INVALID DESTINATION

PIP. The destination specified in your PIP command is
illegal. You have probably specified an input device as a
destination.

INVALID FORMAT

PIP. The format of your PIP command is illegal. See the
description of the PIP command.

INVALID HEX DIGIT
INVALID HEX DIGIT - {filespec}

GENCMD &PIP. An invalid hex digit has been
encountered while reading a hex file. The hex file with the
invalid hex digit should be corrected, probably by recreating
the hex file.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator
between two input filenames.

INVALID SOURCE

PIP. The source specified in your PIP command is illegal.
You have probably specified an output device as a source.

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User
numbers are in the range 0 to 15.

MEMORY REQUEST DENIED

DDT-86. A request for memory during an R command
could not be fulfilled. Up to eight blocks of memory can be
allocated at a given time.

rir~ErJJORY NOT AVAILABLE

CP/M-86. There is not enough memory available for loading
the program specified.

MESSAGE LENGTU INCORRECTLY SPECIFIED

PROTOCOL. Enter a correct message length.

NO DEVICES SPECIFIED

ASSIGN. Devices must be specified in an ASSIGN
command.

NO DIRECTORY SPACE ~ {filespec}

PIP. There is not enough directory space for the output file.
You should either erase some unnecessary files or get another
diskette with more directory room and run PIP again.

NO DIS(C NAME on TYPE SPECIFIED

NEWDISK. Enter a correct disk name or type. For example,
to format a new double-sided system diskette on the B
drive, you use the command "NEWDISK B: $DS".

NO FILE

DIR, ERA & REN. CP/M-86 could not find the specified
file, or no files exist.

DDT-86. The file specified in an R or E command could not
be found on the disk.

NO .HLP fiLE ON THE DEFAULT DmVE

HELP. The HELP.HLP file was not found on the default
drive. It should be copied from the CP/M-86 system diskette.

A-19

A-20

NO MORE DIRECTORY SPACE

GENCMD. There is insufficient directory space for creating
the output file. A new diskette should be selected or
unnecessary files erased.

NO SERIAL PORT SPECIFIED

PROTOCOL. Enter a correct serial port.

SPEED. Enter a correct serial port.

NO SPACE

DDT-86. There is no space in the directory for the file being
written by a W command.

NO SUB FILE PRESENT

SUBMIT. For SUBMIT to operate properly, you must create
a file with a filetype of SUB. The SUB file contains normal
CP/M-86 commands. Use one command per line.

NO TYPE SPECIFIED

NEWDISK. Enter a NEWDISK command with a type
specified. Valid types are system ($S or $DS), or normal
($N or $DN). System means that the diskette is formatted
and the CP/M-86 system is copied from the system
diskette. Normal means that the diskette is formatted for
data only.

NOT A PROGRAMMABLE I(EY - TRY AGAIN

FUNCTION. If you are trying to set up a programmable
key, you should try again. If you are trying to exit the
FUNCTION program by entering a carriage return, you
should press Ctrl-Break.

OUTPUT FILE EXISTS, ERASE IT

ED. The destination filename already exists when you are
placing the destination file on a different diskette than the
source. It should be erased or another diskette selected to
receive the output file.

PARAMETER ERROR

SUBMIT. Within the SUBMIT file of type SUB, valid
parameters are $0 through $9.

PERMANENT ERROR ON TRACIC n
PERMANENT ERROR, SECTOR n

COPYDISK. n is the track or sector number. A bad sector
exists on the source diskette if the error occurred during a track
read. Otherwise, the bad sector is on the destination diskette.
If the destination diskette has the error it can be reformatted
with NEWDISK; if the error persists it should be discarded.

** PROGRAM ABORTED **

The program has been terminated due to one of the following
conditions: a Ctrl-Break has been entered, the C option has
been selected after a disk error message, or a division by zero
trap has occurred.

PROTOCOL INCORRECTLY SPECIFIED

PROTOCOL. Your PROTOCOL command is incorrect;
refer to the description of the PROTOCOL command.

QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found in
your input file.

A-21

A-22

READ ERROR

TYPE. An error occurred when reading the file specified in
the TYPE command. Check the diskette and try again. The
"STAT filespec" command can be helpful in diagnosing
trouble.

SERIAL PORT INCORRECTLY SPECIFIED

PROTOCOL. Enter a correct serial port.

SPEED. Enter a correct serial port.

SOURCE AND DESTINATION CANNOT BE THE SAME

COPYDISK. The source and destination drives must be
different, although drives A, B, C and D can all be mapped to

the same physical drive. The system will prompt for you to

change diskettes when the drive changes.

SOURCE AND DESTINATION DlSICS MUST BE THE SAME TYPE

COPYDISK. Both the source and destination diskettes must
have the same characteristics. (The "STAT DSK:" command
displays the disk characteristics.)

START NOT FOUND

PIP. The string argument to an S parameter could not be
found in the source file.

** SUBMIT FILE ABORTED **

The SUBMIT program has been terminated due to one of the
following conditions: a Ctrl-Break has been entered, the C
option has been selected after a disk error message, or a
division by zero trap has occurred.

TOO MANY FILES
TOO MANY ENTRIES IN INDEX TABLE

HELP. There is not enough memory available to run the
HELP utility.

STAT. There is not enough memory for STAT to sort the
files specified or more than 512 files were specified.

TOPIC NOT FOUND

HELP. The topic requested does not exist in the HELP. HLP
file. A topic should be selected from the menu displayed.

UNABLE TO FIND FILE HELP.HLP

HELP. The HELP. HLP file could not be found on the
default drive. Copy it to the default drive from the CP/M-86
system diskette.

UNEXPECTED END OF HE}(FILE - {filespec}

PIP. An end of file was encountered prior to a termination
hex record. The hex file without a termination record should
be corrected, probably by recreating the hex file.

UNICNOWN ID

FUNCTION. The internal code for this key is not known.
This key cannot be programmed.

USER ABORTED

PIP. The user has terminated a PIP operation by pressing a
key.

A-23

VERIFY - {filespec}

PIP. When copying with the V option, PIP found a
difference when rereading the data just written and comparing
it to the data in its memory buffer. Usually this indicates a
failure of either the destination diskette or drive.

VERIFY ERROR AT s:o

DDT-86. The value placed in memory by a Fill, Set, Move,
or Assemble command could not be read back correctly,
indicating bad user memory or attempting to write to ROM or
non-existent memory at the indicated location.

APPENDIX B. COMMAND SETUP AND
EXECUTION UNDER CP/M-86

Contents

Transient Program Execution Models B-3
The 8080 Memory Model. B-4
The Small Memory Model B-6
The Compact Memory Model. B-7

Base Page Initialization. B-IO
Transient Program Load and Exit. B-12

B-1

B-2

Command Setup and Execution Under
CP/M-86

The 8086 microprocessor uses segment registers to reference
memory. CP/M-86 provides three different memory
organizations in which programs may execute. Each memory
organization is called a memory model. CP/M-86 uses a
256-byte area of memory as a base page to store information
about the program being executed. This area is also used by a
program to communicate with CP/M-86.

Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program,
and described in the CMD file header. The three memory
models are summarized in the table below.

Model

8080 Model

Small Model

Compact Model

CP/M-86 Memory Models

Group Relationships

Code and Data Groups Overlap

Independent Code and Data Groups

Three or More Independent Groups

The 8080 Model supports programs which are directly
translated from CP/M-80 when code and data areas are
intermixed. The 8080 Model consists of one group which
contains all the code, data, and stack areas. Segment registers
are initialized to the starting address of the region containing
this group. The segment registers can, however, be managed
by the application program during execution so that multiple
segments within the group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data
group. The Small Model is suitable for use by programs where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, 64K
byte segments.

B-3

8-4

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in programs. Each group may
consist of one or more segments, but if any group exceeds 64K
in size, or if auxiliary groups are present, then the application
program must manage its own segment registers during
execution in order to address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program
loading. The operating system program load function
determines the memory model used by a transient program by
examining the program group usage, as descri bed in the
following sections.

The 8080 Memory Model

The simplest memory model is the 8080 model. The name is
derived from the similarity to the 8080 microprocessor
memory organization. It provides only 64K for all the
program's code and data. In this case, the CS, DS, and ES
registers are initialized to the beginning of the code group,
while the SS and SP registers remain set to a 96-byte stack area
in the CCP. The Instruction Pointer Register (IP) is set to

100H to allow base page values at the beginning of the code
group. Following program load, the 8080 Model appears as
shown in the figure below where low addresses are shown at
the top of the diagram:

SS:

SS + SP:

CS OS ES:
OS + OOOOH:

CCP

CCP Stack

base
page

CS + 0 lOOH: IP = 0 lOOH
code

data

~
~

CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable.
The "base page" values, described in the "Base Page
Initialization" section, are similar to CP/M-80, allowing
translation from 8080, 8085, or Z80 code into the 8086 and
8088 environment. The following ASM-86 example shows
how to code an 8080 model transient program.

cseg
org lOOh

(code)
endcs equ $

dseg
org offset endcs

(data)
endds equ $

cseg
org offset endds
end

B-5

B-6

The Small Memory Model

The Small Model is assumed when the transient program
contains both a code and data group. (In ASM-86, all code is
generated following a CSEG directive, while data is defined
following a DSEG directive with the origin of the data
segment independent of the code segment.) In this model, CS
is set to the beginning of the code group, the DS and ES are set
to the start of the data group, and the SS and SP registers
remain in the CCP's stack area as shown in the figure below.

SS:

SS + SP:

CS:

DSES:

DS+OIOOH:

CCP

CCP Stack

IP = OOOOH
code

base
page

data.

CP/M-86 Small Memory Model

The machine code begins at CS + OOOOH, the "base page"
values begin at DS + OOOOH, and the data area starts at
DS + OIOOH. The following ASM-86 example shows how to
code a small model transient program.

cseg

(code)
dseg
org IOOh

(data)
end

The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra,
or auxiliary groups. In this case, the CS, DS, and ES registers
are set to the base addresses of their respective areas. The figure
below shows the initial configuration of segment registers in
the Compact Model. The values of the various segment
registers can be programmatically changed during execution
by loading from the initial values placed in base page by the
CCP, thus allowing access to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The
SS and SP registers remain in the CCP area, even if a stack
group is defined. Although it may appear that the SS and SP
registers should be set to address the stack group, there are two
contradictions. First, the transient program may be using the
stack group as a data area. In that case, the Far Call instruction
used by the CCP to transfer control to the transient program
could overwrite data in the stack area. Second, the SS register
would logically be set to the base of the group, while the SP
would be set to the offset of the end of the group. However, if
the stack group exceeds 64K the address range from the base to

the end of the group exceeds a 16-bit offset value.

CP/M-86 Compact Memory Model
B-7

B-8

The following ASM-86 example shows how to code a compact
model transient program.

cseg

(code)
dseg
org lOOh

(data)
eseg

(more data)
sseg

(stack area)
end

The following example shows how to initialize the stack
segment register from the values contained in the base page.

00009c
00015B
0002 FA
00038E161500
0007 BC4000
OOOA 53
OOOB 90

0015
0017

010000

0000
004000

Sst:

Sspage

End_Data_Area

StackSeg
Stackbase

End

Cseg

Pushf
Pop Bx
Cli
Mov Ss, SSpage
Mov Sp, Offset Stackbase
Push Bx
Popf

Dseg
Org 015H

Rw 1
Rs 100H -(15H +word)

Db 0

Sseg
Rs 40H
Db 0

~ END OF ASSEMBLY. NUMBER OF ERRORS: O. USE FACTOR: 0%

;save flags in Bx

; location of the stack
;segment in the base page

;Reserve this area for
;base page values
;For Gencmd to determine
; length of group

;Stack Area
;For Gencmd to determining
;Iength of group

Base Page Initialization

B-IO

Similar to CP/M-80, the CP/M-86 base page contains
default values and locations initialized by the CCP and used
by the transient 'program. The base page occupies a region
of user memory from offset OOOOH through OOFFH relative
to the DS register. The values stored in the base page are as
follows:

os + 0000:

os + 0003:

os + 0006:

os + 0009:

os + OOOC:

os + OOOF:

os + 0012:

os + 0015:

os + 0018:

os + 001B:

os + 001E:

os + 0021:

os + 0024:

os + 0027:

os + 002A:

os + 0020:

os + 0030:

os + 005B:

os + 005C:

os + OOBO:

os + 0100:

LCO

BCO

LDO

BOO

LEO

BEO

LSO

BSO

U{Q

BJ{O

U{Q

BXO

U(Q

BXO

LXO

BXO

LCl

BCl

LOl

BOl

LEl

BEl

LSl

BSl

un

BXl

un

BXl

un

BXl

LXl

BXl

Not
Currently

Used

Default FCB

Default Buffer

Begin User Data

CP/M-86 Base Page Values

LC2

MBO

L02

xxx

LE2

XX)(

LS2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

B-ll

Each byte is indexed by 0, 1, and 2, corresponding to the
standard Intel storage convention of low, middle, and
high-order (most significant) byte. "xxx" in the figure above
marks unused bytes. LC is the last code group location
(24-bits, where the 4 high-order bits equal zero).

BC is the base paragraph address of the code group (16-bits).
LD and BD provide the last position and paragraph base of the
data group. The last position is one byte less than the group
length. The M80 byte is equal to 1 when the 8080 Memory
Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the
optional stack group length and base. The bytes marked LX
and BX correspond to a set of four optional independent
groups which may be required for programs which execute
using the Compact Memory Model. The initial values for these
descriptors are derived from the header record in the memory
image file, described in Appendix C.

Transient Program Load and Exit

B-12

The CCP parses up to two filenames following the command
and places the properly formatted FCB's at locations 005CH
and 006CH in the base page relative to the DS register.
Therefore, the default DMA base is initialized to the value of
DS, and the default DMA offset is initialized to 0080H.
CP/M-86 assumes the default DMA buffer occupies the second
half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the
96-byte CCP stack and return directly to the CCP upon
program termination by executing a "Far Return."
Optionally, the user may set his/her own stack using the
example of stack segment initialization shown in the previous
section on the CP/M-86 Compact Memory Model. The
program will also terminate when BDOS function zero is
executed. The operator may terminate program execution by
typing a single Ctrl-C during line edited input. This has the
same effect as executing BDOS function zero.

APPENDIX C. COMMAND (CMD) FILE
GENERATION

Contents

Intel 8086 Hex File Format C-3
Operation ofGENCMD C-5
Command (CMD) File Format C-8

C-I

C-2

Command (CMD) File Generation

As mentioned previously, a utility program is provided with
CP/M-86, called GENCMD, which is used to produce CMD
memory image files suitable for execution under CP/M-86.
GENCMD accepts Intel 8086 "hex" format files as input.
GENCMD is used to process output from the Digital Research
ASM-86 assembler or Intel's OH86 utility.

Intel 8086 Hex File Format

GENCMD input is in Intel "hex" format produced by both
the Digital Research ASM-86 assembler and the standard Intel
OH86 utility program (see Intel document #9800639-03
entitled "CS-86 Software Development Utilities Operating
Instructions Jor ISIS-II Users"). The CMD file produced by
GENCMD contains a header record which defines the memory
model and memory size requirements for loading and
executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

:11 a a a at t d d d ... dec

where the beginning of the record is marked by an ASCII
colon, and each subsequent digit position contains an ASCII
hexadecimal digit in the range 0-9 or A-F. The fields are
defined below.

'Intel Hex Field Definitions

Field Contents

11 Record Length OO-FF (0-255 in decimal)

aaaa Load Address

tt Record Type:

Record Types Generated When $FI
Switch Is Used With ASM86:

C-3

C-4

Field

dd ... d

cc

Intel Hex Field Definitions (continued)

Contents

00 data record, loaded starting at offset aaaa
from current base paragraph

o 1 end of file
02 extended address, aaaa is paragraph base for

subsequent data records
03 start address is aaaa (ignored, IP set

according to memory model in use)

Record Types Generated When $FD
Switch (Default) Is Used With ASM-86:

01 end of file
81H data belongs to code segment
82H data belongs to data segment
83H data belongs to stack segment
84H data belongs to extra segment
85H paragraph address for absolute code

segment
86H paragraph address for absolute data

segment
87H paragraph address for absolute stack

segment
88H paragraph address for absolute extra

segment

Data Byte

Check Sum (OO-Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in Chapter
11, and in Intel's document #9800821A entitled MCS-86
Absolute Object File Formats.)

Operation of GENCMD

The GENCMD utility is invoked at the command level by
typing

GENCMD filename parameter-list

where the filename corresponds to the hex input file with an
assumed (and unspecified) file type of H86. GENCMD accepts
optional parameters to specifically identify the 8080 Memory
Model and to describe memory requirements of each segment
group. The GENCMD parameters are listed following the
filename, as shown in the command line above where the
parameter-list consists of a sequence of keywords and values
separated by commas or blanks. The keywords are:

8080 CODE DATA EXTRA STACK

The 8080 keyword forces a single code group so that the
BDOS load function sets up the 8080 Memory Model for
execution, thus allowing intermixed code and data within a
single segment. The form of this command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080
option and define specific memory requirements for each
segment group, corresponding one-to-one with the segment
groups defined in the previous section. In each case, the values
corresponding to each group are·enclosed in square brackets
and separated by commas. Each value is a hexadecimal number
representing a paragraph address or segment length in
paragraph units denoted by hhhh, prefixed by a single letter
which defines the meaning of each value:

Ahhhh
Bhhhh
Mhhhh
Xhhhh

Load the group at absolute location hhhh
The group starts at hhhh in the hex file
The group requires a minimum of hhhh * 16 bytes
The group can address a maximum of hhhh * 16
bytes

Generally, the CMD file header values are derived directly
from the hex file and the parameters shown above need not be
included. The following situations, however, require the use
ofGENCMD parameters.

C-5

•

•

C-6

8080 Keyword-The 8080 keyword is included whenever
ASM -86 is used in the conversion of 8080 programs to the
8086/8088 environment when code and data are
intermixed within a single segment, regardless of the use of
CSEG and DSEG directives in the source program.

Absolute Address-An absolute address (A value) must be
given for any group which must be located at an absolute
location. Normally, this value is not specified since
CP/M-86 cannot generally ensure that the required
memory region is available, in which case the CMD file
cannot be loaded.

Beginning Address of Groups-The B value is used when
. GENCMD processes a hex file produced by Intel's OH86,
or similar utility program that contains more than one
group. The output from OH86 consists of a sequence of
data records with no information to identify code, data,
extra, stack, or auxiliary groups. In this case, the B value
marks the beginning address of the group named by the
keyword, causing GENCMD to load data following this
address to the named group (see the examples below).
Thus, the B value is normally used to mark the boundary
between code and data segments when no segment
information is included in the hex file. Files produced by
ASM-86 do not require the use of the B value since
segment information is included in the hex file.

Minimum Memory Value-The M value (minimum
memory value) is included only when the hex records do
not define the minimum memory requirements for the
named group. Generally, the code group size is determined
precisely by the data records loaded into the area. That is,
the total space required for the group is defined by the
range between the lowest and highest data byte addresses.
The datagroup, however, may contain uninitialized
storage at the end of the group and thus no data records are
present in the hex file which define the highest referenced
data item. The highest address in the data group can be
defined within the source program by including a "DB 0"
as the last data item. Alternatively, the M value can be
included to allocate the additional space at the end of the
group. Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by data
records in the hex file.

• Maximum Memory Size-The maximum memory size,
given by the X value, is generally used when additional free
memory may be needed for such purposes as I/O buffers or
symbol tables. If the data area size is fixed, then the X
parameter need not be included. In this case, the X value is
assumed to be the same as the M value. The value XFFFF
allocates the largest memory region available but, if used,
the transient program must be aware that a three-byte
length field is produced in the base page for this group
where the high-order byte may be non-zero. Programs
converted directly from CP/M-SO or programs that use a
2-byte pointer to address buffers should restrict this value
to XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file
X.HS6 into the file X.CMD with the proper header record:

In this case, the code group is forced to paragraph address
40H, or equivalently, byte address 400H. The data group
requires a minimum of 300H bytes, but can use up to OFFFOH
bytes, if available.

Assuming a file Y. HS6 exists on drive B containing Intel hex
records with no interspersed segment information, the
command

produces the file Y.CMD on drive B by selecting records
beginning at address OOOOH for the code segment, with
records starting at 300H allocated to the data segment. The
extra segment is filled from records beginning at 500H, while
the stack segment is an uninitialized area requiring a
minimum of 400H bytes. In this example, the data area
requires a minimum of 200H bytes. Note again, that the B
value need not be included if the Digital Research ASM-S6
assembler is used.

C-7

Command (CMD) File Format

C-8

The CMD file produced by GENCMD consists of the 128-byte
header record followed immediately by the memory image.
Under normal circumstances, the format of the header record
is of no consequence to a programmer. For completeness,
however, the various fields of this record are shown below.

<---- 128 Bytes ---->

GD#l GD#2 GD#3 GD#4
Code,

Data,
Extra,

Stack

CMD File Header Format

In the figure above, GD#l through GD#4 represent "Group
Descriptors." Each Group Descriptor corresponds to an
independently loaded program unit and has the following
fields:

8-bit 16-bit 16-bit
G-Form G-Length A-Base

16-bit
G-Min

16-bit
G-Max

where G-Form describes the group format, or has the value
zero if no more descriptors follow. IfG-Form is non-zero, then
the 8-bit value is parsed as two fields:

G-Form:
4-bit 4-bit

x x x x G-Type

The G-Type field determines the Group Descriptor type. The
valid Group Descriptors have a G-Type in the range 1 through
4, as shown in the table below.

Group Descriptors

G-Type

1
2
3
4

5-14

Group Type

Code Group
Data Group
Extra Group
Stack Group
Unused,but Reserved

All remaining values in the Group Descriptor are given in
increments of 16-byte paragraph units with an assumed
low-order 0 nibble to complete the 20-bit address. G-Length
gives the number of paragraphs in the group. Given a
G-Length of0080H, for example, the size of the group is
00800H = 2048D bytes. A-Base defines the base paragraph
address for a non-relocatable group while G-Min and G-Max
define the minimum and maximum size of the memory area to
allocate to the group.

The memory model described by a header record is implicItly
determined by the Group Descriptors. The 8080 Memory
Model is assumed when only a code group is present, since no
independent data group is named. The Small Model is implied
when both a code and data group are present, but no
additional Group Descriptors occur. Otherwise, the Compact
Model is assumed when the CMD file is loaded.

C-9

C-IO

APPENDIX D. BASIC DISK OPERATING
SYSTEM (BDOS) FUNCTIONS

BDOS Parameters and Function Codes 0-3
Simple BOOS Calls 0-5
BOOS File Operations. 0-11
BOOS Memory Management and Load .. " 0-33

D-1

D-2

Basic Disk Operating System (BDOS)
Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS
functions. The BDOS calls correspond closely to CP/M-80
Version 2 in order to simplify translation of existing CP/M-80
programs for operation under CP/M-86. BDOS entry and exit,
conditions are described first, followed by a presentation of the
individual BDOS function calls.

BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use
by CP/M-86. The function code is passed in register CL with
byte parameters in DL and word parameters in DX. Single
byte values are returned in AL, word values in both AX and
BX, and double word values in ES and BX. All segment
registers, except ES, are saved upon entry and restored upon
exit from the BDOS (corresponding to PLlM-86 conventions).
The table below summarizes input and output parameter
passing.

BDOS Parameter Summary

BDOS Entry Registers

CL Function Code
DL Byte Parameter
DX Word Parameter
DS Data Segment

BDOS Return Registers

Byte value returned in AL
Word value returned in both AX

andBX
Double-word value returned with

offset in BX and segment in ES

Note that the CP/M-80 BDOS requires an "information
address" as input to various functions. This address usually
provides buffer or File Control Block information used in the
system call. In CP/M-86, however, the information address is
derived from the current DS register combined with the offset
given in the DX register. That is, the DX register in CP/M-86
performs the same function as the DE pair in CP/M-80, with
the assumption that D~ is properly set. This poses no

D-3

D-4

particular problem for programs which use only a single data
segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must
ensure that the DS register is set to the segment containing the
data area related to the call. It should also be noted that zero
values are returned for function calls which are out-of-range.

A list of CP/M-86 calls is given below with an asterisk
following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

CP/M-86 BDOS Functions

F# Result F# Result

0* System Reset 24 Return Login Vector
1 Console Input 25 Return Current Disk
2 Console Output 26 Set DMA Address
3 Reader Input 27* Get Addr(Alloc)
4 Punch Output 28 Write Protect Disk
5 List Output 29 Get Addr(R/O Vector)
6* Direct Console I/O 30 Set File Attributes
7 Get I/O Byte 31 * Get Addr(Disk Parms)
8 Set I/O Byte 32 Set/Get User Code
9 Print String 33 Read Random

10 Read Console Buffer 34 W ri te Random
11 Get Console Status 35 Compute File Size
12 Return Version 36 Set Random Record

Number 37* Reset Drive
13 Reset Disk System 40 Write Random With Zero Fill
14 Select Disk 50* Direct BIOS Call
15 Open File 5 1 * Set DMA Segment Base
16 Close File 52* Get DMA Segment Base
17 Search for First 53* Get Max Memory Available
18 Search for Next 54* Get Max Mem at Abs Location
19 Delete File 55* Get Memory Region
20 Read Sequential 56* Get Absolute Memory Region
21 Write Sequential 57* Free Memory Region
22 Make File 58* Free All Memory
23 Rename File 59* Program Load

The individual BDOS functions are described below in three
sections which cover the simple functions, file operations, and
extended operations for memory management and program
loading.

Simple BDOS Calls

The first set ofBDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character I/O.

Function 0: System Reset

Entry Return

CL: OOH (none)

OL: Abort
Code

The System Reset Function returns control to the CP/M
operating system at the CCP command level. The abort code
in OL has two possible values: if OL = OOH then the currently
active program is terminated and control is returned to the
CCP; ifOL is a 01H, the program remains in memory and the
memory allocation state remains unchanged.

Function 1: Console Input

Entry Return

CL: 01H AL: ASCII Character

The Console Input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line-feed, and
backspace (Ctrl-H) are echoed to the console. Tab characters
(Ctrl-I) are expanded in columns of eight characters. The
BOOS does not return to the calling program until a character
has been typed, thus suspending execution if a character is not
ready.

0-5

D-6

Function 2: Console Output

Entry Return

CL: 02H (none)

DL: ASCII
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In
addition, a check is made for start/stop scroll (Ctrl-S).

Function 3: AXI: Input

Entry Return

CL: 03H AL: ASCII Character

The AXI: Input function reads the next character from the
logical AXI: device into register AL. Control does not return
until the character has been read.

Function 4: AXO: Output

Entry Return

CL: 04H (none)

DL: ASCII
Character

The AXO: Output function sends the character from register
DL to the logical AXO: device.

Function 5: List Output

Entry Return

CL: 05H (none)

DL: ASCII
Character

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

Function 6: Direct Console 110

Entry Return

CL: 06H AL: char or status

DL: OFFH (input/status) (no value)
or

OFEH (status)
or

char (output)

Direct Console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and
output is required. Use of this function should, in general, be
avoided since it bypasses all of CP/M-86's normal control
character functions (e.g., Ctrl-S and Ctrl-P). Programs which
perform direct 110 through the BIOS under previous releases
ofCP/M-80, however, should be changed to use direct I/O
under the BDOS so that they can be fully supported under
future releases of CP/M.

Upon entry to Function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input/status request,
or (2) a hexadecimal FE, denoting a CONSOLE status request,
or (3) an ASCII character to be output to CONSOLE where
CONSOLE is the logical console device. If the input value is
FF, then Function 6 checks to see if a character is ready. If a
character is ready, Function 6 with FF returns the character;
otherwise it returns a zero. You cannot use Function 6 with FF
or FE in combination with Function 1 or Function 11.
Function 6 must be used independently.

D-7

D-8

The next console input character is returned in AL. If the
input value is FE, then Function 6 returns AL = 00 if no
character is ready and AL = FF otherwise. If the input value
in DL is not FE or FF, then Function 6 assumes that DL
contains a valid ASCII character which is sent to the console.

Function 7: Get I/O Byte

Entry Return

CL: 07H AI: I/O Byte Value

The Get I/O Byte function returns the current value of
IOBYTE in register AL. The IOBYTE contains the current
assignments for the logical devices CONSOLE, READER.
PUNCH, and LIST, provided the IOBYTE facility is
implemented in the BIOS.

Function 8: Set I/O Byte

Entry Return

CL: 08H (none)

DL: I/O Byte
Value

The Set I/O Byte function changes the system IOBYTE value
to that given in register DL. This function allows transient
program access to the IOBYTE in order to modify the current
assignments for the logical devices CONSOLE, READER,
PUNCH, and LIST.

Function 9: Print String

Entry Return

CL: 09H (none)

DX: String
Offset

The Print String function sends the character string stored in
memory at the location given by OX to the logical console
device (CONSOLE), until a "$" is encountered in the string.
Tabs are expanded as in Function 2, and checks are made for
start/stop scroll and printer echo.

Function 10: Read Console Buffer

Entry Return

CL: OAH Console Characters

ox: Buffer in Buffer
Offset

The Read Buffer function reads a line of edited console input
into a buffer addressed by register OX from the logical console
device (CONSOLE). Console input is terminated when either
the input buffer is filled or when a return (Ctrl-M) or a
line-feed (Ctrl-J) character is entered. The input buffer
addressed by OX takes the form:

OX: + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + n
mx nc c 1 c2 c3 c4 c5 c6 c7 ??

where "mx" is the maximum number of characters which the
buffer will hold, and "nc" is the number of characters placed in
the buffer.

The characters entered by the operator follow the "nc" value.
The value "mx" must be set prior to making a Function 10 call
and may range in value from 1 to 2 5 5. Setting mx to zero is
equivalent to setting mx to one. The value "nc" is returned to

the user and may range from 0 to mx. If nc < mx, then
uninitialized positions follow the last charact~r, denoted by
"??" in the above figure. Note that a terminating return or
line-feed character is not placed in the buffer and not included
in the count" nc" .

D-9

D-10

A number of editing control functions are supported during
console input under Function 10. These are summarized in the
table below.

Keystroke

Crrl-C
Ctrl-E
Ctrl-H
Ctrl-J
Crrl-M
Ctrl-R
Ctrl-U
Crrl-X

Line Editing Controls

Result

reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line-feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes current line after new line
backspaces to beginning of current line

Certain functions which return the carriage to the leftmost
position (e.g., Crrl-X) do so only to the column position
where the prompt ended. This convention makes operator data
input and line correction more legible.

Function 11: Get Console Status

Entry Return

CL: OBH AL: Console Status

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE). If a
character is ready, the value 01H is returned in register Ai.
Otherwise a OOH value is returned.

Function 12: Return Version Number

Entry Return

CL: OCH BX: Version Number

Function 12 provides information which allows version
independent programming. A two-byte value is returned,
with BH = 00 designating the CP/M release and BL = 00 for
all releases previous to 2.0. CP/M 2.0 returns a hexadecimal
20 in register BL, with subsequent Version 2 releases in the
hexadecimal range 21,22, through 2F. To provide version
number compatibility, the initial release of CP/M-86 returns a
2.2.

BDOS File Operations

Functions 12 through 52 are related to disk file operations
under CP/M-86. In many of these operations, OX provides the
OS-relative offset to a file control block (FCB). The File
Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, or a sequence of 36 bytes in the case
that the file is accessed randomly. The default file control
block normally located at offset 005CH from the OS register
can be used for random access files, since bytes 0070H,
007EH, and 007FH are available for this purpose. Here is the
FCB format, followed by definitions of each of its fields:

dr fl f2 II f8 tl t2 t3 ex s 1 s2 rc dO II dn cr rO rl r2
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr

f1. .. f8

tl,t2,t3

drive code (0-16)
o - > use default drive for file
1 - > auto disk select drive A,
2 - > auto disk select drive B,

16-> auto disk select drive P. (Note that
CP/M-86 on the IBM Personal Computer
supports drives 0-4, corresponding to A-D.)

contain the file name in ASCII upper case, with
high bit = 0

contain the file type in ASCII
upper-case, with high-bit = 0
tl', t2', and t3' denote the high­
bit of these positions,
t1' = 1-> Read/Only file,
t2' = 1-> SYS file, no OIR list

D-ll

D-12

ex

sl

s2

rc

dO ... dn

cr

rO,rl,r2

contains the current extent number, normally
set to 00 by the user, but in range 0-31 during
file I/O

reserved for internal system use

reserved for internal system use, set to zero on
call to OPEN, MAKE, SEARCH

record count for extent "ex," takes on values
from 0-128

filled-in by CP/M, reserved for system use

current record to read or write in a sequential
file operation, normally set to zero by user

optional random record number in the range
0-65535, with overflow to r2, rO,rl constitute
a 16-bit value with low byte rO, and high byte
r1

For users of earlier versions of CP/M, it should be noted that
both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect
write buffer content, except in the case of Search and Search
Next where the directory record is copied to the current DMA
address.

There are three error situations that the BDOS may encounter
during file processing, initiated as a result of a BDOS File I/O
function call. When one of these conditions is detected, the
BDOS issues a message of the following form:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT RIO

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the
error is detected. No indication of the error situation is
returned to the transient program.

The "BAD SECTOR" error is issued as the result of an error
condition returned to the BDOS from the BIOS module. The
BDOS makes BIOS sector read and write commands as part of
the execution ofBDOS file-related system calls. If the BIOS
read or write routine detects a hardware error, it returns an
error code to the BDOS resulting in this error message. The
operator may respond to this error in two ways: a Ctrl-C
terminates the executing program.

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The
BDOS makes a BIOS disk select call prior to issuing any BIOS
read or write to a particular drive. If the selected drive is not
supported in the BIOS module, it returns an error code to the
BDOS resulting in this error message. CP/M-86 terminates
the currently running program and returns to the command
level of the CCP following any input from the console.

The "RIO" message occurs when the BDOS receives a
command to write to a drive that is in Read-Only status.
Drives may be placed in Read-Only status explicitly as the
result of a STAT command or BDOS function call, or
implicitly if the BDOS detects that a diskette has been
changed without performing a "warm start." The ability to
detect changed media is optionally included in the BIOS, and
exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the
transient program is terminated, and control returns to the
CCP.

Function 13: Reset Disk System

Entry Return

CL: ODH (none)

The Reset Disk function is used to programmatically restore
the file system to a reset state where all disks are set to
Read/Write (see functions 28 and 29); only disk drive A is
selected. This function can be used, for example, by an
application program which requires disk changes during
operation. Function 37 (Reset Drive) can also be used for this
purpose.

D-13

D-14

Function 14: Select Disk

Entry Return

CL: OEH (none)

DL: Selected
Disk

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations,
with DL = 0 for drive A, 1 for drive B, and so forth through
15 corresponding to drive P in a full 16-drive system. In
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive's directory until the next cold start,
warm start, disk system reset, or drive reset operation. FeB's
that specify drive code zero (dr = OOH) automatically
reference the currently selected default drive. Drive code
values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

Function 15: Open File

Entry Return

CL: OFH AL: Return Code

DX: FeB
Offset

The Open File function is used to activate an FeB specifying a
file which currently exists in the disk directory for the
currently active user number. The BDOS scans the disk
directory of the drive specified by byte 0 of the FeB referenced
by DX for a match in positions 1 through 12 of the referenced
FCB, where positions 1-8 specify the filename, positions 9-11
specify the filetype, and position 12 specifies the extent.
Normally, the extent byte is set to zero.

If a directory element is matched, the relevant directory
information is copied into bytes dO through dn of the FCB,
thus allowing access to the files through subsequent read and
write operations. Note that an existing file must not be
accessed until a successful open operation is completed.
Further, an FCB not activated by either an open or make
function must not be used in BDOS read or write commands.
Upon return, the open function returns a "directory code"
with the value 0 through 3 if the open was successful, or OFFH
(255 decimal) if the file cannot be found. With the exception
of the BDOS search functions, Directory Code values (0-3)
have no significance other than to indicate a successful result.
However, for the search functions, a successful Directory Code
identifies the relative starting position of the directory element
in the calling process's current DMA buffer. Note that the
current record ("cr") must be zeroed by the program if the file
is to be accessed sequentially from the first record.

Function 16: Close File

Entry Return

CL: 10H AL: Return Code

DX: FCB
Offset

The Close File function performs the inverse of the Open File
function. Given that the FCB addressed by DX has been
previously activated through an Open or Make function (see
functions 15 and 22), the Close function permanently records
the new FCB in the referenced disk directory. The FCB
matching process for the close is identical to the Open
function. The directory code returned for a successful close
operation is 0, 1, 2, or 3, while a OFFH (255 decimal) is
returned if the file name cannot be found in the directory. A
file need not be closed if only read operations have taken place.
If write operations have occurred, however, the close operation
is necessary to permanently record the new directory
information.

D-15

D-16

Function 17: Search For First

Entry Return

Ci: 11H Ai: Directory

DX: FCB
Offset

Code

Search for First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255
(hexadecimal FF) is returned if the file is not found, otherwise
0, 1, 2, or 3 is returned indicating the file is present. In the
case that the file is found, the buffer at the current DMA
address is filled with the record containing the directory entry,
and its relative starting position is Ai * 32 (i.e., rotate the Ai
register left 5 bits). Although not normally required for
application programs, the directory information can be
extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding
field of any directory entry on the default or auto-selected disk
drive. If the "dr" field contains an ASCII question mark, then
the auto disk select function is disabled, the default disk is
searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This
latter function is not normally used by application programs,
but does allow complete flexibility to scan all current directory
values. If the "dr" field is not a question mark, the "s2" byte is
automatically zeroed.

Function 18: Search For Next

Entry Return

CL: 12H AL: Directory
Code

The Search for Next function is similar to the Search for First
function, except that the directory scan continues from the last
matched entry. Similar to Function 17, Function 18 returns
the decimal value 255 in A when no more directory items
match. In terms of execution sequence, a Function 18 call
must follow either a Function 17 or Function 18 call with no
other intervening BDOS disk-related function calls.

Function 19: Delete File

Entry Return

CL: 13H AL: Return Code

DX: FCB
Offset

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain
ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as
in the Search for First and Search for Next functions. Function
19 returns a OFFH (decimal 255) if the referenced file or files
cannot be found, otherwise a value of zero is returned.

Function 20: Read Sequential

Entry Return

CL: 14H AL: Return Code

DX: FCB
Offset

Given that the FCB addressed by DX has been activated
through an open or make function (numbers 15 and 22), the
Read Sequential function reads the next 128-byte record from
the file into memory at the current DMA address. The record

D-17

D-18

is read from position "cr" of the extent, and the "cr" field is
automatically incremented to the next record position. If the
"cr" field overflows then the next logical extent is
automatically opened and the "cr" field is reset to zero in
preparation for the next .read operation. The "cr" field must be
set to zero following the open call by the user if the intent is to
read sequentially from the beginning of the file. The value
OOH is returned in the AL register if the read operation was
successful, while a value of 0 IH is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, it can
also occur if an attempt is made to read a data block which has
not been previously written, or an extent which has not been
created. These situations are usually restricted to files created
or appended by use of the BDOS Write Random commmand
(Function 34).

Function 21 : Write Sequential

Entry Return

CL: I5H AL: Return Code

DX: FCB
Offset

Given that the FCB addressed by DX has been activated
through an open or make function (numbers 15 and 22), the
W rite Sequential function writes the 12S-byte data record at
the current DMA address to the file named by the FCB. The
record is placed at position "cr" of the file, and the "cr" field is
automatically incremented to the next record position. If the
"cr" field overflows then the next logical extent is
automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can
take place into an existing file, in which case newly written
records overlay those which already exist in the file. The "cr"
field must be set to zero following an open or make call by the
user if the intent is to write sequentially from the beginning of
the file. Register AL = OOH upon return from a successful
write operation, while a non-zero value indicates an
unsuccessful write due to one of the following conditions:

01 No available directory space-This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block-This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Function 22: Make File

Entry Return

CL: 16H AL: Return Code

DX: FCB
Offset

The Make File operation is similar to the Open File operation
except that the FCB must name a file which does not exist in
the currently referenced disk directory (i.e., the one named
explicitly by a non-zero "dr" code, or the default disk if "dr" is
zero). The BDOS creates the file and initializes both the
directory and main memory value to an empty file. The
programmer must ensure that no duplicate filenames occur,
and a preceding delete operation is sufficient if there is any
possibility of duplication. Upon return, register A = 0, 1, 2,
or 3 if the operation was successful and OFFH (255 decimal) if
no more directory space is available. The Make function has
the side-effect of activating the FCB and thus a subsequent
open is not necessary.

D-19

D-20

Function 23: Rename File

Entry Return

CL: 17H AL: Return Code

DX: FCB
Offset

The Rename File function uses the FCB addressed by DX to
change all directory entries of the file specified by the filename
in the first 16 bytes of the FCB to the filename in the second 16
bytes. It is the user's responsibility to ensure that the filenames
specified are valid CP/M unambiguous filenames. The drive
code "dr" at position 0 is used to select the drive, while the
drive code for the new filename at position 16 of the FCB is
ignored. Upon return, register AL is set to a value of zero if the
rename was successful, and OFFH (255 decimal) if the first
filename could not be found in the directory scan.

Function 24: Return Login Vector

Entry Return

(none) BX: Login Vector

The login vector value returned by CP/M-86 is a 16-bit value
in BX, where the least significant bit corresponds to the first
drive A, and the high-order bit corresponds to the sixteenth
drive, labelled P. A "0" bit indicates that the drive is not
on-line, while a "1" bit marks a drive that is actively on-line
due to an explicit disk drive selection, or an implicit drive
select caused by a file operation which specified a non-zero "dr"
field.

Function 25: Return Current Disk

Entry Return

CL: 19H AL: Current Disk

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

Function 26: Set DMA Address

Entry Return

CL: 1AH (none)

DX: DMA
Offset

"DMA" is an abbreviation for Direct Memory Address, which
is often used in connection with disk controllers which directly
access the memory of the mainframe computer to transfer data
to and from the disk subsystem. Although many computer
systems use non-DMA access (i.e., the data is transferred
through programmed I/O operations), the DMA address has,
in CP/M, come to mean the address at which the 128-byte
data record resides before a disk write and after a disk read. In
the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current
DMA base. Therefore, to specify the DMA address, both a
Function 26 call and a Function 51 call are required. Thus, the
DMA address becomes the value specified by DX plus the
DMA base value until it is changed by a subsequent Set DMA
or Set DMA base function.

Function 27: Get ADDR (ALLOC)

Entry Return

CL: 1BH BX: ALLOC Offset

ES: Segment Base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the
information provided by the allocation vector to determine the
amount of remaining storage (see the STATprogram).
Function 27 returns the segment base and the offset address of
the allocation vector for the currently selected disk drive . The
allocation information may, however, be invalid if the selected
disk has been marked Read/Only ..

D-21

D-22

Function 28: Write Protect Disk

Entry Return

CL: lCH (none)

The Write Protect Disk function provides temporary write
protection for the currently selected disk. Any attempt to
write to the disk, before the next cold start, warm start, disk
system reset, or drive reset operation produces a message of the
following form:

Bdos Err on d: RIO

Function 29: Get Read/Only Vector

Entry Return

CL: IDH BX: R/O Vector Value

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/only bit set. Similar to
Function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O
bit is set either by an explicit call to Function 28, or by the
automatic software mechanisms within CP/M-86 which detect
changed disks.

Function 30: Set File Attributes

Entry Return

CL: lEH AL: Return Code .

DX: FCB
Offset

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O, System and Archive attributes (t1', t2',
and t3') can be set or reset. The DX pair addresses an FCB
containing a filename with the appropriate attributes set or
reset. It is the user's responsibility to ensure that an
ambiguous filename is not specified. Function 30 searches the
default disk drive directory area for directory entries that

belong to the current user number and that match the FCB
specified name and type fields. All matching directory entries
are updated to contain the selected indicators. Indicators fl'
through f4' are not presently used, but may be useful for
applications programs, since they are not involved in the
matching process during file open and close operations.
Indicators f5' through f8' are reserved for future system
expansion. The currently assigned attributes are defined as
follows:

t 1': The R/O attribute indicates if set that the file is in
Read/Only status. BDOS will not allow write commands
to be issued to files in R/O status.

t2': The System attribute is referenced by the CP/M PIR
utility. If set, DIR will not display the file in a directory
display.

t3': The Archive attribute is reserved but not actually used by
CP/M-86. If set it indicates that the file has been written
to back up storage by a user-written archive program. To
implement this facility, the archive program sets this
attribute when it copies a file to back up storage; any
programs updating or creating files reset this attribute.
Further, the archive program backs up only those files that
have the Archive attribute reset. Thus, an automatic
back-up facility restricted to modified files can be easily
implemented.

Function 30 returns with register AL set to OFFH (255
decimal) if the referenced file cannot be found, otherwise a
value of zero is returned.

Function 31: Get ADDR (Disk Parms)

Entry Return

CL: IFH BX: DPB Offset

ES: Segment Base

The offset and the segment base of the BIOS resident disk
parameter block of the currently selected drive are returned in
BX and ES as a result of this function call. This control block
can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space

D-23

0-24

computation purposes, or transient programs can dynamically
change the values of current disk parameters when the disk
environment changes, if required. A disk parameter block has
the following form:

SPT IBSHIBLMIEXMI DSM I DRM IALOIALII CKS OFf
\

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

The disk parameter block fields are defined in the table below.

Field

SPT
BSH
BLM
EXM
DSM
DRM
ALO, ALl
CKS
OFF

Disk Parameter Block.Fields

Description

is the total number of sectors per track
determines data block allocation size
mask used by operating system
mask used by operating system
total storage capacity of disk drive
total number of directory entries
reserved directory allocation blocks
size of directory check vectors
is the number of reserved tracks at the beginning of
the logical disk

Normally, application programs will not require this facility.

Function 32: Set/Get User Code

Entry Return

CL: 20H AL: Current Code

DL: OFFH(get)
or
User Code (set)

or no value

An application program can change or interrogate the
currently active user number by calling Function 32. If
register DL = OFFH, then the value of the current user
number is returned in register AL, where the value is in the
range 0 to 15. If register DL is not OFFH, then the current
user number is changed to the value of DL (modulo 16).

Function 33: Read Random

Entry Return

CL: 21H AL: Return Code

DX: FCB
Offset

The Read Random function is similar to the sequential file
read operation of previous releases, except that the read
operation takes place at a particular record number, selected by
the 24-bit value constructed from the three-byte field
following the FCB (byte positions rO at 33, rl at 34, and r2 at
35). Note that the sequence of 24 bits is stored with least
significant byte first (rO), middle byte next (rl), and high byte
last (r2). CP/M does not reference byte r2, except in
computing the size of a file (Function 35). Byte r2 must be
zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the rO,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to"read. This value
ranges from ° to 65535, providing access to any particular
record of any size file. In order to access a file using the Read
Random function, the base extent (extent 0) must first be
opened. Although the base extent mayor may not contain any
allocated data, this ensures that the FCB is properly initialized
for subsequent random access operations. The selected record
number is then stored into the random record field (rO,rl), and
the BDOS is called to read the record. Upon return from the
call, register AL either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the buffer at the current DMA address contains the
randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus,
subsequent random read operations continue to read the same
record.

D-25

D-26

Upon each random read operation, the logical extent and
current record values are automatically set. Thus, the file can
be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case,
the last randomly read record will be reread as you switch from
random mode to sequential read, and the last record will be
rewritten as you switch to a sequential write operation. You
can, of course, simply advance the random record position
following each random read or write to obtain the effect of a
sequential I/O operation.

Error codes returned in register AL following a random read
are lIsted in the table below.

Function 33-Read Random Error Codes

C ode Meaning

01 Reading unwritten data-This error code is returned
when a random read operation accesses a data block
which has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent-This error code is
returned when BDOS cannot close the current extent
prior to moving to the new extent containing the
record specified by bytes rO,rl of the FCB. This error
can be caused by an overwritten FeB or a read random
operation on an FCB that has not been opened.

04 Seek to unwritten extent-This error code is returned
when a random read operation accesses an extent that
has not been created. This error situation is equivalent
to error 01.

05 (not returned by the Random Read command)

06 Random record number out of range-This error code
is returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing
data, with zero return codes indicating operation complete.

Function 34: Write Random

Entry Return

CL: 22H AL: Return Code

DX: FCB
Offset

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues.
As in the Read Random operation, the random record number
is not changed as a result of the write. The logical extent
number and current record positions of the file control block
are set to correspond to the random record which is being
written. Sequential read or write operations can commence
following a random write, with the note that the currently
addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the
random record position following each write to get the effect of
a sequential write operation. In particular, reading or writing
the last record of an extent in random mode does not cause an
automatic extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read
Random function, this ensures that the FCB is properly
initialized for subsequent random access operations. If the file
is empty, a Make File function must be issued for the base
extent. Although the base extent mayor may not contain any
allocated data, this ensures that the file is properly recorded in
the directory, and is visible in DIR requests.

Upon return from a Write Random call, register AL either
contains an error code, as listed below, or the value 00
indicating the operation was successful.

D-27

D-28

Function 34-Write Random Error Codes

Code Meaning

01 (not returned by the Random Write command)

02 No available data block-This condition is
encountered when the Write Random command
attempts to allocate a new data block to the file and no
unallocated data blocks exist on the selected disk
drive.

03 Cannot close current extent-This error code is
returned when BDOS cannot close the current extent
prior to moving to the new extent containing the
record specified by bytes rO,rl of the FCB. This error
can be caused by an overwritten FCB or a write
random operation on an FCB that has not been
opened.

04 (not returned by the Random Write command)

05 No available directory space-This condition occurs
when the write command attempts to create a new
extent that requires a new directory entry and no
available directory entries exist on the selected disk
drive.

06 Random record number out of range-This error code
is returned whenever byte r2 of theFCB is non-zero.

Function 35: Compute File Size

Entry Return

CL: 23H Random Record
Field Set

DX: FCB
Offset

When computing the size of a file, the DX register addresses
an FCB in random mode format (bytes rO, r1, and r2 are
present). The FCB contains an unambiguous filename which is
used in the directory scan. Upon return, the random record
bytes contain the "virtual" file size which is, in effect, the
record address of the record following the end of the file. If,

following a call to Function 35, the high record byte r2 is 01,
then the file contains the maximum record count 65536.
Otherwise, bytes rO and r1 constitute a 16-bit value (rO is the
least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by simply
calling Function 35 to set the random record position to the
end of file, then performing a sequence of random writes
starting at the preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. If,
for example, a single record with record number 65535
(CP/M's maximum record number) is written to a file using
the Write Random function, then the virtual size of the file is
65536 records, although only one block of data is actually
allocated.

Function 36: Set Random Record

Entry Return

CL: 24H Random Record
Field Set

OX: FCB
Offset

The Set Random Record function causes the BOOS to
automatically produce the random record position of the next
record to be accessed from a file which has been read or written
sequentially to a particular point. The function can be useful
in two ways.

First, it is often necessary to initially read and scan a sequential
file to extract the positions of various "key" fields. As each key
is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the
data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their
record numbers, you can move instantly to a particular keyed
record by performing a random read using the corresponding
random record number which was saved earlier. The scheme is
easily generalized when variable record lengths are involved

0-29

D-30

since the program need only store the buffer-relative byte
position along with the key and record number in order to find
the exact starting position of the keyed data at a later time.

Second, you can use Function 36 to switch from a sequential
read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, Func'tion
36 is called which sets the record number, and subsequent
random read and write operations continue from the next
record in the file.

Function 37: Reset Drive

Entry Return

CL: 25H AL: OOH
DX: Drive

Vector

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register
DX is a 16-bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the
high-order bit corresponds to the sixteenth drive, labelled P.
Bit values of ''1'' indicate that the specified drive is to be reset.
CP/M returns a zero value for this function.

Function 40: Write Random With Zero Fill

Entry Return

CL: 28H AL: Return Code

DX: FCB
Offset

The Write Random With Zero Fill function is similar to the
Write Random function (Function 34) with the exception that
a previously unallocated data block is initialized to records
filled with zeros before the record is written. If this function
has been used to create a file, records accessed by a read random
operation that contain all zeros identify unwritten random
record numbers. Unwritten random records in allocated data
blocks of files created using the Write Random function
contain uninitialized data.

Function 50: Direct BIOS Call

Entry Return

CL: 32H (none)

DX: BIOS
Descriptor

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a
five-byte memory area containing the BIOS call parameters:

8-bit 16-bit 16-bit
Func value(CX) value(DX)

where Func is a BIOS function number (see the table below),
and value (CX) and value (DX) are the 16-bit values which
would normally be passed directly in the CX and DX registers
with the BIOS call. The CX and DX values are loaded into the
8086 registers before the BIOS call is initiated.

D-31

BIOS Jump Vector

Offset from
Suggested BIOS Beginning Description

of BIOS Instruction F#

2500H JMP INIT 0 Arrive Here from Cold
(Boot

2503H JMPWBOOT 1 Arrive Here for Warm
Start

2506H JMPCONST 2 Check for Console
Character Ready

2509H JMPCONIN 3 Read Console Character
In

250CH JMPCONOUT 4 W rite Console Character
Out

250FH JMPLIST 5 Write Listing Character
Out

2512H JMPPUNCH 6 Write Char to Punch
Device

2515H]MPREADER 7 Read Reader Device
2518H]MPHOME 8 Move to Track 00
251BH]MPSELDSK 9 Select Disk Drive
251EH]MPSETTRK 10 Set Track Number (
2521H]MPSETSEC 11 Set Sector Number
2524H]MPSETDMA 12 Set DMA Offset Address
2527H]MPREAD 13 Read Selected Sector
252AH]MPWRITE 14 Write Selected Sector
252DH]MP LISTST 15 Return List Status
2530H]MPSECTRAN 16 Sector Translate
2533H]MPSETDMAB 17 Set DMA Segment

Address
2536H]MPGETSEGB 18 Get MEM DESC Table

Offset
2539H]MPGETIOB 19 Get I/O Mapping Byte
253CH]MPSETIOB 20 Set I/O Mapping Byte

Function 51: Set DMA Base

Entry Return

CL: 33H (none)

DX: Base Address

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a paragraph address
and is used with the DMA offset to specify the address of a
128-byte buffer area to be used in the disk read and write
functions. Note that upon initial program loading, the default
DMA base is set to the address of the user's data segment (the
initial value ofDS) and the DMA offset is set to 0080H, which
provides access to the default buffer in the base page.

Function 52: Get DMA Base

Entry Return

CL: 34H BX: DMA Offset

ES: DMA Segment

Function 52 returns the current DMA Base Segment address in
ES, with the current DMA Offset in DX.

BDOS Memory Management and Load

Memory is allocated in two distinct ways under CP/M-86. The
first is through a static allocation map, located within the
BIOS, that defines the physical memory which is available on
the host system. In this way, it is possible to operate CP/M-86
in a memory configuration which is a mixture of up to eight
non-contiguous areas of RAM or ROM, along with reserved,
missing, or faulty memory regions. In a simple RAM-based
system with contiguous memory, the static map defines a
single region, usually starting at the end of the BIOS and
extending up to the end of available memory.

D-33

D-34

Once memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support
transient program loading and execution. CP/M-86 allows
dynamic allocation of memory into, again, eight regions. A
request for allocation takes place either implicitly, through a
program load operation, or explicitly through the BDOS calls
given in this section. Programs themselves are loaded in two
ways: through a command entered at the CCP level, or
through the BDOS Program Load operation (Function 59).
Multiple programs can be loaded at the CCP level, as long as
each program executes a System Reset (Function 0) and
remains in memory (DL = OlH). Multiple programs of this
type receive control only by intercepting interrupts, and thus
under normal circumstances there is only one transient
program in memory at any given time. If, however, multiple
programs are present in memory, then Ctrl-C characters
entered by the operator delete these programs in the opposite
order in which they were loaded no matter which program is
actively reading the console.

Any given program loaded through a CCP command can,
itself, load additional programs and allocate data areas.
Suppose four regions of memory are allocated in the following
order: A, B, C, and D. A program is loaded at the CCP level
through an operator command. The CMD file header is read,
and the entire memory image consisting of the program and its
data is loaded into region A, and execution begins. This
program, in turn, calls the BDOS Program Load function (59)
to load another program into region B, and transfers control to
the loaded program. The region B program then allocates an
additional region C, followed by a region D. The order of
allocation is shown in the figure below:

Region A

Region B

Region C

Region D

Example Memory Allocation

There is a hierarchical ownership of these regions: the program
in A controls all memory from A through D. The program in
B also controls regions B through D. The program in A can
release regions B through D, if desired, and reload yet another
program. DDT-86, for example, operates in this manner by
executing the Free Memory call (Function 57) to release the
memory used by the current program before loading another
test program. Further, the program in B can release regions C
and D if required by the application. It must be noted,
however, that if either A or B terminates by a System Reset
(BDOS Function 0 with DL = OOH) then all four regions A
through D are released.

A transient program may release a portion of a region,
allowing the released portion to be assigned on the next
allocation request. The released portion must, however, be at
the beginning or end of the region. Suppose, for example, the
program in region B above receives 800H paragraphs at
paragraph location lOOH followi"ng its first allocation request.
The result is as shown in the figure below.

lOOOH:

Length =
8000H Region C

Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting
region D by releasing the 200H paragraphs beginning at
paragraph base 700H, resulting in the memory arrangement
shown in the figure below.

lOOOH:
Length =
6000H Region C

Length = 7000H: IIIIIIIIIII
2000H IIIIIIIIIII

Example Memory Regions

D-35

D-36

The region beginning at paragraph address 7000H is now
available for allocation in the next request. Note that a
memory request will fail if eight memory regions have already
been allocated. Normally, if all program units can reside in a
contiguous region, the system allocates only one region.

Memory management functions beginning at 53 reference a
Memory Control Block (MCB), defined in the calling
program, which takes the form:

MCB:
16-bit

M-Base
16-bit

M-Length
8-bit

M-Ext

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph units, and M-Ext is a returned
byte value, as defined specifically with each function code. An
error condition is normally flagged with a OFFH returned
value in order to match the file error conventions of CP/M.

Function 53: Get MAX MEM

Entry Return

CL: 35H AL: Return Code

DX: Offset
ofMCB

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful,
M -Base is set to the base paragraph address of the available
area, and M-Length to the paragraph length. AL has the value
OFFH upon return if no memory is available, and OOH if the
request was successful. M-Ext is set to 1 if there is additional
memory for allocation, and 0 if no additional memory is
available.

Function 54: Get ABS MAX

Entry Return

CL: 36H AL: Return Code

ox: Offset
ofMCB

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a
maximum ofM-Length paragraphs. M-Length is set to the
actual length if successful. AL has the value OFFH upon return
if no memory is available at the absolute address, and OOH if
the request was successful.

Function 55: ALLOC MEM

Entry Return

CL: 37H AL: Return Code

ox: Offset
ofMCB

The Allocate Memory function allocates a memory area
according to the MCB addressed by ox. The allocation
request size is obtained from M-Length. Function 55 returns
in the user's MCB the base paragraph address of the allocated
region. Register AL contains a OOH if the request was
successful and a OFFH if the memory could not be allocated.

D-37

D-38

Function 56: ALLOC ABS MEM

Entry Return

CL: 38H AL: Return Code

DX: Offset
ofMCB

The Allocate Absolute Memory function allocates a memory
area according to the MCB addressed by DX. The allocation
request size is obtained from M-Length and the absolute base
address from M-Base. Register AL contains a OOH if the
request was successful and a OFFH if the memory could not be
allocated.

Function 57: Free MEM

Entry Return

CL: 39H (none)

DX: Offset
ofMCB

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation
of this function: ifM-Ext = OFFH then all memory areas
allocated by the calling program are released. Otherwise, the
memory area of length M-Length at location M-Base given in
the MCB addressed by DX is released (the M-Ext field should
be set to OOH in this case). As described above, either an entire
allocated region must be released, or the end of a region must
be released; the middle section cannot be returned under
CP/M-86.

Function 58: Free All MEM

Entry Return

CL: 3AH (none)

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon
ini tialization).

Function 59:

Entry

CL: 3BH

DX: Offset
ofFCB

Program Load

Return

AX: Return Code/
Base Page Addr

BX: Base Page Addr

Function 59 loads a CMD file. Upon entry, register DX
contains the DS relative offset of a successfully opened FCB
which names the input CMD file. AX has the value OFFFFH if
the program load was unsuccessful. Otherwise, AX and BX
both contain the paragraph address of the base page belonging
to the loaded program. The base address and segment length
of each segment are stored in the base page. Note that upon
program load at the CCP level, the DMA base address is
initialized to the base page of the loaded program, and the
DMA offset address is initialized to 0080H. However, this is a
function of the CCP, and a Function 59 does not establish a
default DMA address. It is the responsibility of the program
which executes Function 59 to execute Function 51 to set the
DMA base and Function 26 to set the DMA offset before
passing control to the loaded program.

D-39

D-40

Appendix E. Sample Random Access
Program

This appendix contains an extensive and complete example of
random access operation. The program listed here performs the
simple function of reading or writing random records upon
command from the terminal. Given that the program has been
created, assembled, and placed into a file labelled
RANDOM. CMD, the command:

RANDOM X,DAT

starts the test program. The program looks for a file by the
name X.DAT (in this particular case) and, iffound, proceeds
to prompt the console for input. If not found, the file is created
before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage
return. The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W,
R, and Q are simple command characters corresponding to
random write, random read, and quit processing, respectively.
If the W command is issued, the RANDOM program issues
the prompt

type data:

The operator then responds by typing up to 127 characters,
followed by a carriage return. RANDOM then writes the
character string into the X. DAT file at record n. If the R
command is issued, RANDOM reads record number nand
displays the string value at the console. If the Q command is
issued, the X.DAT file is closed, and the program returns to
the console command processor. The only error message is

error, try again

E-1

E-2

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop
at the label "ready" where the individual commands are
interpreted. The default file control block at offset 005CH and
the default buffer at offset 0080H are used in all disk
operations. The utility subroutines then follow, which contain
the principal input line processor, called "readc." This
particular program shows the elements of random access
processing, and can be used as the basis for further program
development. In fact, with some work, this program could
evolve into a simple data base management system.

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A
program, called GETKEY, could be developed which first
reads a sequential file and extracts a specific field defined by the
operator. For example, the command

GETICEY NAMES.DAT LASTNAME 1020

would cause GETKEY to read the data base file NAMES.DAT
and extract the LASTNAME field from each record, starting at
position 10 and ending at character 20. GETKEY builds a
table in memory consisting of each particular LASTNAME
field, along with its 16-bit record number location within the
file. The GETKEY program then sorts this list, and writes a
new file, called LASTNAME.KEY, which is an alphabetical
list of LAST NAME fields with their corresponding record
numbers. (This list is called an "inverted index" in
information retrieval par lance.)

Rename the program shown above as QUERY, and enhance it
a bit so that it reads a sorted key file into memory. The
command line might appear as:

QUERY NAMES.DAT LASTNAME.I{EY

Instead of reading a number, the QUERY program reads an
alphanumeric string which is a particular key to find in the
NAMES.DAT data base. Since the LASTNAME.KEY list is
sorted, you can find a particular entry quite rapidly by
performing a "binary search," similar to looking up a name in
the telephone book. That is, starting at both ends of the list,
you examine the entry halfway in between and, if not
matched, split either the upper half or the lower half for the
next search. You'll quickly reach the item you're looking for
(in log2(n) steps) where you'll find the corresponding record

number. Fetch and display this record at the console, just as
we have done in the program shown above.

At this point you're just getting started. With a little more
work, you can allow a fixed grouping size which differs from
the 128-byte record shown above. This is accomplished by
keeping track of the record number as well as the byte offset
within the record. Knowing the group size, you randomly
access the record containing the proper group, offset to the
beginning of the group within the record read sequentially
until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing
boolean expressions which compute the set of records which
satisfy several relationships, such as a LASTNAME between
HARDY and LAUREL, and an AGE less than 45. Display all
the records which fit this description. Finally, if your lists are
getting too big to fit into memory, randomly access your key
files from the disk as well.

E-3

1· . · ,
2· .** · ,
3· .* · , *
4: ;* Sample Random Access Program for CP/M-86 *
5· .* · , *
6· .** · ,
7· . · ,
8: ; BOOS Functions
9: ;

10: coninp
11: conout
12: pstring
13: rstring
14: version
15: openf
16: closef
17: makef
18: readr
19: writer

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

1
2
9
10
12
15
16
22
33
34

20: ;
21: ; Equates for non graphic characters
22: cr
23: If
24: ;
25: ;
26: ;
27: ;

equ Odh
equ Oah

load SP, ready file for random access

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;carriage return
;Iine feed

28:
29:
30:
31:
32:
33:
34:
35:
36:
37: ;
38: ;
39: ;
40: ;
41: ;
42:
43:
44:
45:
46:
47:
48:
49:
50: ;
51: versolc
52: ;
53:
54:

cseg
pushf
pop
cli
mov
mov
mov
push
popf

ax

bX,ds
sS,bx
sp,offset stack
ax

;push flags in CCP stack
;save flags in AX
;disable interrupts
;set SS register to base
;set SS, SP with interrupt

for 8088
; restore the flags

CP/M-86 initial release returns the file
system version number of 2.2: check is
shown below for illustration purposes.

mov
call
cmp
jnb

cl,version
bdos
al,20h
versol<

;version 2.0 or later?

mov
call
jmp

bad version, message and go back
dX,offset badver
print
abort

correct version for random access
mov cl,openf ;open default fct
mov dX,offset fcb

~
I

55: call bdos
0\ 56: inc al ;err 255 becomes zero

57: jnz ready
58: ;
59: ; cannot open file, so create it
60: mov cl,makef
61: mov dx,offset fcb
62: call bdos
63: inc al ;err 255 becomes zero
64: jnz ready
65: ;
66: ; cannot create file, directory full
67: mov dx,offset nospace
68: call print
69: jmp abort ;back to ccp
70: ;
71: ; loop back to "ready" after each command
72: ;
73: ready:
74: ; file is ready for processing
75: ;
76: call readcom ;read next command
77: mov ranrec,dx ;store input record#
78: mov ranovf,Oh ;clear high byte if set
79: cmp al,'a' ;quit?
80: jnz notq
81: ;

82: ;
83:
84:
85:
86:
87:
88:
89: ;

quit processing, close file
mov cl,closef
mov dx,offset fcb
call bdos
inc al
jz error
jmps abort

;err 255 becomes 0
;error message, retry
;back to ccp

90: ;
91: ;
92: ;
93: ;

end of quit command, process write

94: notq:
95: ;
96:
97:
98: ;
99: ;

100:
101 :
102:
103:
104: rloop:
105:
106:
107:
108:

not the quit command, random write?
cmp al,'W'
jnz notw

this is a random write, fill buffer until cr
mov dx,offset datmsg
call print
mov cx,127
mov bx,offset buff
;read next character to buff
push cx
push bx
call getchr
pop bx

;data prompt
;up to 127 characters
;destination

;save loop control
;next destination
; character to Al
;restore destination

t"r1 109:
I

00 110:
111:
112: ;
113:
114:
115:
116: erloop:
117: ;
118:
119: ;
120: ;
121 :
122:
123:
124:
125:
126:
127: ;
128: ;
129: ;
130: ;
131: ;
132: ;
133: notw:
134: ;
135:

pop cx
cmp al,cr
jz erloop
not end, store character
mov byte ptr [bx],a I
inc bx
loop ~Ioop

end of read loop, store 00
mov byte ptr [bx],Oh

; restore counter
;end of line?

;next to fill
;decrement cx .. loop if

write the record to selected record number
mov cl,writer
mov dx,offset fcb
call bdos
or al,al ;error code zero?
jz ready ;for another recor
jmps error ;message if not

end of write command, process read

not a write command, read record?
cmp al,'R'

136: iz ranread
137: imps error ;skip if not
138: ;
139: ; read random record
140: ranread:
141 : mov cl,readr
142: mov dx,offset fcb
143: call bdos
144: or al,al ;return code DO?
145: iz readolc
146: imps error
147: ;
148: ; read was successful, write to console
149: readok:
150: call crlf ;new line
151 : mov cx,128 ;max 128 characters
152: mov si,offset buff ;nextto get
153: wloop:
154: lods al ;next character
155: and al,07fh ;maslc parity
156: inz wloop1
157: imp ready ;for another command if
158: wloop1:
159: push cx ;save counter
160: push si ;save next to get
161 : I" ;graphic? cmp a,

t'l'1 162: jb skipw ;skip output if not graphic -..b

t'rj 163: call putchr ;output character
I - 164: skipw: 0

165: pop si
166: pop cx
167: loop wloop ;decrement CX and check
168: jmp ready
169: ;
170: ;
171: ; end of read command, all errors end-up here
172: ;
173: ;
174: error:
175: mov dx,offset errmsg
176: call print
177: jmp ready
178: ;
179: ; BDOS entry subroutine
180: bdos:
181: int 224 ; entry to BDOS if by INT
182: ret
183: ;
184: abort: ;return to CCP
185: mov cl,O
186: call bdos ;use function 0 to end e
187: ;
188: ; utility subroutines for console i/o
189: ;

190: getchr:
191:
192:
193:
194:
195: ;
196: putchr:
197:
198:
199:
200:
201:
202: ;
203: crlf:
204:
205:
206:
207:
208:
209:
210: ;
211: print:
212:
213:
214:
215:
216:

;read next console character to a
mov cl,coninp
call bdos
ret

;write character from a to console
mov cl,conout
mov dl,al
call bdos
ret

;send carriage return line feed
mov al,cr
call putchr
mov al,lf
call putchr
ret

; character to send
;send character

;carriage return

;Iine feed

;print the buffer addressed by dx until $
push dx
call crlf
pop dx ;new line
mov cl,pstring

~ 217: call bdos ;print the string
I

I-" 218: ret
N

219: ;
220: readcom:
221: ;read the next command line to the conbuf
222: mov dx,offset prompt
223: call print ;command?
224: mov cl,rstring
225: mov dx,offset conbuf
226: call bdos ;read command line
227: ; ;command line is present, scan it
228: mov ax,O ;start with 0000
229: mov bx,offset conlin
230: readc: mov dl,[bx] ;next command character
231: inc bx ;to next command position
232: mov dh,O ;zero high byte for add
233: or dl,dl ;check for end of command
234: jnz getnum
235: ret
236: ; not zero, numeric?
237: getnum:
238: sub dl,'O'
239: cmp dl,10 ;carry if numeric
240: jnb endrd
241: mov cl,10
242: mul cl ;multiply accumulator by
243: add ax,dx ; +digit

244: jmps readc ;for anoth ... -char
245: endrd:
246: ; end of read, restore value in a and return value
247: mov dx,ax ;return value in DX
248: mov al,-1[bx]
249: cmp al,'a' ;check for lower case
250: jnb transl
251: ret
252: transl: and al,5fH ;translate to upper case
253: ret
254: ;
255: ;
256: ; Template for Page 0 of Data Group
257: ; Contains default FCB and DMA buffer
258: ;
259: dseg
260: org 05ch
261: fcb rb 33 ;default file control block
262: ranrec rw 1 ;random record position
263: ranovf rb 1 ;high order (overflow) b
264: buff rb 128 ;default DMA buffer
265: ;
266: ; string data area for console messages
267: badver db 'sorry, you need cp/m version 2S'
268: nospace db 'no directory spaceS'

trJ 269: datmsg db 'type data: S'
a

t;: 270: errmsg db 'error, try again.S'

tTl 271: prompt db 'next command? $'
I - 272: ; .+:>-

273: ;
274: ; fixed and variable data area
275: ;
276: conbuf db conlen ;Iength of console buffer
277: consiz rs 1 ;resulting size after read
278: conlin rs 32 ; length 32 buffer
279: conlen equ offset $-offset consiz
280: ;
281: rs 31 ;16 level staclc
282: stack rb 1
283: db 0 ;end byte for GENCMD
284: end

APPENDIX F. LIGHT PEN AND ESCAPE
CODE SEQUENCES

light Pen .. F-3
Escape Code Sequences " F-4

ESC a-Set Console Mode F-5
ESC b-Set Foreground Color " F-5
ESC c-Set Background Color F-6
ESC d, e, f, g, h-I/O Redirection " F-7
ESC i-Enable/Disable Transparent Mode F-8
ESC j-Save Cursor Position F-8
ESC k-Restore Cursor Position " F-8
ESC I-Enable/Disable Console Status Mode .. F-8
ESC A-Cursor Up F-9
ESC B-Cursor Down F-9
ESC C-Cursor Forward " F-9
ESC D-Cursor Backward F-9
ESC E-Clear Screen (and Home Cursor) ... " F-9
ESC H-Home Cursor. F-9
ESC K-Clear to End of line F-IO
ESC V-Position Cursor. F-IO
ESC I-Set Color Palette F-IO
ESC ?-Get Time, Date, Background

Message F-IO
ESC :-Program Function Keys. F-ll

F-l

F-2

Light Pen and Escape Code Sequences

Light Pen

This appendix describes the operation of the light pen and the
format of the data it sends to an application program. This
appendix also describes the escape code sequences you can use
in a program to control the cursor, change colors on your
display, and assign logical device input and output.

If a program requests input from the Light Pen and there is no
data waiting, CP/M .. B6 displays a status line message:
"Waiting for Light Pen Input". When CP/M-86 obtains a
data set from the Pen, it resets the status line and places the
data into the console status stream.

The Light Pen sends data to the console input (or auxiliary
input) stream in the following format:

Byte 1- Character Row + 20H
Byte 2 - Character Column + 20H
Byte 3 - Dot Row + 20H
Byte 4 - Most Significant 6 bits of Dot Column + 20H
Byte 5 - Least Significant 6 bits of Dot Column + 20H
Byte 6 - Terminator, always 00 (ASCII NUL)

To avoid misinterpreting characters, the driver converts all
binary values to graphic ASCII characters by adding 20H (32
decimal) to each byte. The character row, column and the
raster scan line values can be obtained by simply subtracting
20H from the respective Light Pen input bytes. The dot
column is more difficult to obtain because it is actually a
12-bit binary value which has been broken into two bytes. The
first byte contains the most significant 6 bits qf the dot
column, offset by adding 20H as in the case of the first three
bytes from the Light Pen. The second byte contains the least
significant 6 bits of the dot column, also offset by adding
20H. The dot column can be obtained from these two bytes in
the following manner: first, subtract 20H from the most
significant byte and then shift the result left six places forming
a 16-bit value; and second, subtract 20H from the least
significant byte and add it to the 16-bit value from the first
step. This technique will reconstruct the dot column value
from the input bytes.

F-3

Escape Code Sequences

F-4

You can use Escape codes to control the cursor, change display
colors, redirect logical input and output, and program the
Function keys and Cursor keypad keys. An ASCII Escape
character (hex IB) triggers Escape sequence processing. The
Escape character can be followed by one or more characters
depending on the function required. The character
immediately following the Escape character indicates which
function is to be performed. You must send Escape character
sequences directly to the operating system, for example,
through an assembly language routine. When Escape
sequences are read from the input stream, it is necessary to
read two characters for each Escape sequence. You cannot send
the Escape character sequence through the Console Command
Processor (CCP). The following table summarizes the Escape
codes and their functions.

ESC a
ESCb
ESCc
ESCd
ESCe
ESCf
ESCg
ESCh
ESC i
ESC j
ESCk
ESC I
ESCA
ESCB
ESCC
ESCD
ESCE
ESCH
ESCK
ESCY
ESC/
ESC?
ESC:
ESC ESC

Set Console Mode
Set Foreground Color
Set Background Color
Redirect Console Input
Redirect Console Output
Redirect Auxiliary Input
Redirect Auxiliary Output
Redirect list Output
Enable/Disable Transparent Mode
Save Cursor Position
Restore Cursor Position
Enable/Disable Console Status Mode
Cursor Up
Cursor Down
Cursor Forward
Cursor Backward (non-destructive)
Clear Screen (and Home Cursor)
Home Cursor
Clear to End of line
Position Cursor
Set Color Palette
Get Time, Date, Background Message
Program Function/Cursor Keys
Display Escape Graphics Character

ESC a-Set Console Mode

The console mode selects the number of rows and columns on
the CRT screen, as well as Color or Monochrome display.
Escape-a must be followed by a number from 0 to 7. This
number selects a mode according to the table below:

0-40 X 25 Black & White on the Color Board
1- 40 X 25 Color
2 - 80 X 25 Black & White on the Color Board
3 - 80 X 25 Color
4 - 320 X 200 Color Graphics
5 - 320 X 200 Monochrome Graphics
6 - 640 X 200 Monochrome Graphics
7 - 80 X 25 Monochrome (IBM Monochrome Display)

Only the least significant three bits of the mode number are
used.

ESC b-Set Foreground Color

The Foreground Color displays the character. Associated with
the foreground color is an intensity selection bit, although
many color monitors do not support high and low intensity
characters.

Escape-b must be followed by a color selection character. Only
the four least significant bits of the color character are used,
with the individual bits having the following significance:

Bit Pattern of Control Byte:

7 6 5 4 3 2 1 0

r I I Le I

Green
Red

Hi-intensity

F-5

F-6

Here are some examples of color selection:

Sample Byte Values for Various Colors:

a - Black (Used with Non-black Backgrounds)
1- Blue
2 - Green
3 - Blue + Green (Cyan)
4-Red
5 - Red + Blue (Magenta)
6 - Red + Green (Yellow)
7 - Red + Green + Blue (White)

ESC c-Set Background Color

This function selects Background Color, the color of the screen
"behind" the characters. In addition, this function can make
individual characters blink on and off.

Escape-c must be followed by a color selection character. Only
the four least significant bits of the color character are used,
with the individual bits having the following significance:

Bit Pattern of Control Byte.:

7 6 5 4 3 2 a

1
r r
I' Blue
Green

Red
Blink

The background color selection characters are the same as for
foreground. Note that White Background combined with
Black Foreground is effectively Inverse Video.

To combine color selection with blink, use the following
characters:

h Black m Red + Blue (Magenta)
Blue n - Red + Green (Yellow)

J Green a Red + Green + Blue
k Blue + Green (Cyan) (White)

Red

ESC d,e,f,g,h-I10 Redirection

These Escape Sequences can redirect input and output between
logical and physical devices. The function letter (d, e, f, g, or
h) must be followed by two bytes. CP/M-86 uses the most
significant seven bits of each byte. Therefore, you should set
the most significant bit to 1 so that CP/M-86 never mistakes
the values you are outputting for carriage return or tab
characters.

To understand how the I/O redirection works you must view
the two bytes as a set of bits. Each bit is associated with a
physical device driver. When you are specifying Input Source
(such as Console Input-ESC d) you can specify only a single
physical device. Output Destinations (such as Console
Output-ESC e) can have several output devices.

The bit values for each of the physical devices are shown
below. Note that Byte 1 is output after the selection letter;
Byte 2 follows Byte 1.

Byte 1 Byte 2 Physical Device

Binary Hex Binary Hex

10000001 81H 10000000 80H Keyboard
10000010 82H 10000000 80H Screen
10000100 84H 10000000 80H Serial Port #0
10001000 88H 10000000 80H Serial Port # 1
10010000 90H 10000000 80H Printer #0
10100000 AOH 10000000 80H Printer # 1
11000000 COH 10000000 80H Printer #2

10000000 80H 10000001 81H Light Pen
10000000 80H 10000010 82H Reserved for Cassette I/O
10000000 80H 10000100 84H Reserved for Game Card I/O
10000000 80H 10001000 88H Dummy Device

The function selection letters are:

d - Console Input
e - Console Output
f - Auxiliary Input
g - Auxiliary Output
h - List Output

F-7

F-8

ESC i-Enable/Disable Transparent Mode

When transparent mode is enabled, the following characters
are output to the screen without special processing:

Carriage Return
Line Feed
Backspace
Bell

When transparent mode is disabled (which is the default
state), these characters cause their appropriate function to
occur. Enable transparent mode when you want the special
symbols assigned to these characters to appear on the screen.

The least signficant bit of the character following the "i"
enables or disables transparent mode. The recommended
values are:

o - Disable transparent mode
1 - Enable transparent mode

ESC j-Save Cursor Position

This sequence preserves the current cursor position. You can
restore the cursor to the previously saved position with
Escape-k.

ESC k-Restore Cursor Position

This sequence restores the cursor to a previously saved
position. If you use this sequence without having previously
saved the cursor position, then the cursor is moved "home" to
the top left-hand corner of the screen.

ESC I-Enable/Disable Console Status Mode

This sequence enables or disables the special feature in the
console status routine that alters whether CaNST reports any
keyboard characters waiting. When the console status mode is
enabled, CaNST reports only that logical input is waiting for
physical keyboard input. When disabled, CaNST reports not
only keyboard input, but also input from internal character
strings such as function keys or the light pen.

Programs that poll the console to check for incoming data
characters simply do not work if you have enabled console
status mode.

ESC A-Cursor Up

This moves the cursor up one line. If the cursor is already on
the top line of the screen, this Escape sequence has no effect.

ESC B-Cursor Down

This moves the cursor down one line. If the cursor is already on
the last line of the screen, that is, the one above the status line,
then this Escape sequence has no effect.

ESC C-Cursor Forward

This moves the cursor one position to the right. If this
function would move the cursor off the screen, this Escape
sequence has no effect.

ESC D-Cursor Backward

This moves the cursor one position to the left. This is a
"non-destructive" move because the character over which the
cursor now rests is not replaced by a blank. If the cursor is
already in column 0, this Escape sequence has no effect.

ESC E-Clear Screen (and Home Cursor)

This moves the cursor to column 0, row ° (the top left-hand
corner of the screen), and clears all characters from the screen.

ESC H -Home Cursor

This moves the cursor to column 0, row 0. The screen is NOT
cleared.

F-9

F-IO

ESC K -Clear to End of Line

This clears the line from the current cursor position to the end
of the line.

ESC Y - Position Cursor

The two characters that follow the "Y" specify the row and
column to which the cursor is to be moved. The first character
specifies the row, the second specifies the column. Rows
number from ° to 23 (24 being the status line), column
numbers from ° to 79.

To avoid confusing row and column values with control
characters, row and column values have 20H (32 decimal)
added to them. For example, to move the cursor to the home
position (0,0), the two characters following the "Y" would be
ASCII spaces (20H).

ESC I-Set Color Palette

The character following the "I" sets the color palette for the
display. CP/M-86 uses the least significant 7 bits of this
character.

ESC ?-Get Time, Date, Background Message

This Escape sequence causes a string of characters to be
injected into the console input stream. The exact character
sequence is shown below:

MM/DD/YY,HH:MM:SS, .,. blanks ...

The character string is exactly as shown above; the commas
and carriage return are included in the data stream.

Note: The interrupt handler in the ROM BIOS provides
approximately 18.2 timer interrupts per second. CP/M-86 has
reprogrammed the 8253 timer to provide approximately 19
ticks per second.

ESC: -Program Function Keys

This sequence programs the function keys, Fl to FlO, and the
cursor control keys on the number pad. The overall format of
this escape sequence is:

ESC: kid string OOH

"kid" is a key indentifier and tells CP/M-86 which function
key/cursor control key you want to program. "string" is an •
arbitrary string of characters; for function keys this can be up
to 18 characters long. For cursor control keys this can be up to

4 characters. "OOH" is a byte of hexadecimal 0 and terminates
the string.

The valid key identifiers and their default string settings are
shown below. Note that the symbol "<cr>" represents the
Enter key.

; - Fl
< -F2
= -F3
> -F4
? - F5

@ -F6
A -F7
B -F8
C -F9
D -FlO
G - Home
H - UpArrow
I - Page Up
K - Left Arrow
M - Right Arrow
o -End
P - Down Arrow
Q - Page Down
R - Ins
S - Del

dir<cr>
dir b:<cr>
stat<cr>
stat b:<cr>
pip<cr>
pip b: = a:*. *[v]
stat *. *<cr>
stat b:*. *<cr>
(not programmed)
(not programmed)
ESCH(Home)
ESC A (Cursor Up)
(not programmed)
ESC D (Cursor Left)
ESC C (Cursor Right)
'END'
ESC B (Cursor Down)
(not programmed)
(not programmed)
DEL (ASCII delete)

F-ll

F-12

INDEX

A

.A86 filetype 6-3
absolute address C-6
access mode 4-60, 4-63
addition operators 7-16
address conventions in ASM-86 8-3
address expressions 7 -19
Allocate Absolute Memory

function D-38
Allocate Memory function D-3 7
allocation vector D-2l
archive attri~ute D-23
arithmetic instructions 9-12 to

9-14
arithmetic operators 7-13
ASM-86 3-4, 4-8
ASM-86 errors 10-1
ASM-86 filetypes 6-3
ASM-86 output files 4-8,6-3
assembler 4-8
assembler directive 7-6
ASSIGN 2-12,3-4,4-11,4-12
attributes 2-7
AXI 2-12, 4-11, 4-44
AXO 2-12, 4-11, 4-44

B

back-space key (+-) 1-6, 1-7
backing-up CP/M-86 diskette 1-8
backing-up diskettes 1-7
back-up diskettes 1-8
back-up file 5-9
BAD SECTOR error D-13
base extent D-25, D-27
base page B-1 °
base page values B-5

basic editing commands 5-10, 5-11
basic processing 4-66
batch processing 4-66
baud rate 4-56
BDOS entry registers D-3
BDOS error messages A-9, D-12
BDOS functions-see under

individual function names and in
AppendixD

BDOS return registers D-3
beginning address of groups C-6
bracketed expressions 7 -19
buffer 4-22
built-in commands 1-5, 3-3
BYTE 7-10
byte string instructions 11-21

c
changing diskettes 2-9
character pointer 4-22, 5-10, 5-12,

5-20
changing the default drive 2-10
Close File function D-15
CMD file header format C-8
CMD file header values C-5
CMD filetype 2-4
code segment 7-10, 8-3
combined-command line 5-20
combining files 4-42
command error messages A-7
command keyword 1-4, 1-5, 3-3,

3-5
command line 1-4, 3-3
command line notation 4-5
command mode 4-22, 5-17
command tail 1-4, 1-5
command types 1-5
comment 7-20

X-I

compact memory model B-3, B-4
Compute File Size function D-28
CON 2-12, 4-11, 4-44
concatenation 4-42
Console Input function D-5
Console Output function D-6
Console Status function D-10
context editor 4-22
control characters 1-6
COPYDISK 1-8, 1-10, 3-4, 4-15
correcting simple typing mistakes

1-6
CPU flags 11-16
current user number 2-9, 2-10,

4-73

D

data bits 4-57
data file 2-3
data segment 7-10,8-5
data transfer instructions 9-9
DDT-86 3-4,4-17
DDT-86 arguments 11-4
DDT-86 command line 11-3, 11-4
DDT-86 commands 4-17,4-18,

11-4
DDT-86's default segment values

11-20
default drive 1-4, 2-10, 2-11, 4-4
default user number 4-41, 4-73
Delete File function D-17
delimiters 2-4
dest-filespec 4-7
detail message A-4
device names 6-6
DIR 3-3,4-19
DIR attribute 2-8,4-19, 4-60
DIRS 4-60
Direct BIOS Call function D-31
Direct Console I/O function D-7
Direct Memory Address (DMA)

D-21
directives 7-20
directive statements 8-3
directory 2-3,2-7,2-8,4-73
X-2

directory code D-15
directory space 2-9
directory verification 4-62
DIks 3-3, 4-19
disk file operations D-11
disk parameter block D-24
disk parameter block fields D-24
disk space allocation 4-61
diskette/drive error message format

A-4
diskette/drive error messages A-4
diskette sectors 2-9
display user numbers 4-65
division operators 7-16
DMA (Direct Memory Access)

D-21
dollar-sign operator 7 -17
double-sided diskettes 2-10
double-sided drives 1-8
double-sided format 1-8
drive specification 2-4,2-5,2-6,

4-3, 4-4
drive specifier 4-3
DWORD 7-10
dynamic allocation 2'-9, D-34

E

ED 3-4,4-22
ED commands 4-22, 4-23, 5-10
ED disk file error messages 5-34
ED error symbols 5-33
ED prompt 5-4
ED text transfer commands 5 -5
editors 5-3
effects of arithmetic instructions on

flags 9-11
8080 keyword C-6
8080 model B-3
8080 memory model 4-32, C-5
end of file (EOF) 4-44
ending ASM -86 6-7
Enter key (+-l) 3-7
EOF (end of file) 4-44
ERA 3-3, 4-27

error messages-see Chapter 5, 10
and Appendix A

error reporting 3-6
ESC sequences F-4
ETX protocol 4-5 1
extra segment 8-6, 9-18, 7-10

F

far call B-12
FCB (File Control Block) 4-61,

D-11
file 2-3,5-10
file attributes 2-7, 2-8, 4-39
file concatenation 4-42
File Control Block (FCB) 4-61,

D-11
file families 2-4,2-5
filename 2-4, 4-3
file specification 2-4, 2-6, 4-3, 4-4
filetype 2-4, 2-5, 4-3
filetype . $$$ 4-39
flag registers 9-8, 9-25
flag register symbols 9-8
Free All MEM function D-38
Free MEM function D-38
free storage space 4-59
FUNCTION 3-4,4-29
Functions-see under individual

function names and in Appendix D
function key assignments 4-29
function keys 3-7, 3-8

G

GENCMD 3-4,4-32, C-3
GENCMD parameters C-5
Get ABS MAX function D-37
Get ADDR function D-21
Get DMA Base function D-33
Get I/O Byte function D-8
Get MAX MEM function D-36
Get Read/Only Vector function

D-22
group descriptors C-8

H

.H86 file 6-3
HELP 3-4,4-15,4-34

I

information address D-3
insert mode 4-22, 4-25, 5-17, 5-18
instructions 7-20
Intel hex field definitions C-3
Intel hex file C-3
Intel storage convention B-12
Intel 8086 hex format files C-3
I/O BYTE D-8
inverse video F-6

L

labels 7-10,7-11,7-20
library file 5-30
Light Pen F-3
line editing command characters

5-18
line editing controls D-I0
line numbers 4-25,5-7
line-oriented 4-22
Lisl: Output function D-7
loac.ing CP/M-86 1-3
logged-in D-14
logic and shift instructions 9-15 to

9-17
logical device 2- ~2, 4-11
logical drives 2-11
logical device names 4-44
logical operators 7-12
long form of PIP 4-40
.LST 2-12, 4-11, 4-44
. LST file 6-3

X-3

M

Make File function D-19
maximum memory size C-7
memory D-33
memory buffer 5 -5, 5-7
memory control block D-36
memory model, compact B-3
memory model, 8080 B-3
memory model, small B-3
minimum memory value C-6
mnemonic 7-20, 9-6
multiple command mode 4-45
multiple file copy 4-41
multiplication operators 7-16

N
NEWDISK 1-8,3-4,4-15,4-36
NUL 4-44
numbers 7-10,7-11
numeric expressions 7-19
numeric keypad 4-29
numeric keypad keys 3-8
Numlock key 3-8

o
offset 7 - 10, 7 -11
offset value 8-3
one drive support 1-11, 4-15
on-line 2-9, D-14
on-line diskette 2-9
Open File function D-14
operand type symbols 9-7
operands 7-20, 9-6, 9-18, 11-21
override operator 7-16

p

parity 4-56
period operator 7 - 17
peripheral devices 2-12
X-4

physical file size D-29
physical devices 2-12, 4-11
PIP 1-11, 2-8, 4-7, 4-38, 4-40,

4-42,4-46
PIP, input prompt 4-46
PIP, long form 4-40
PIP options 4-40, 4-42, 4-46
PIP, short form 4-40
prefix 7-20
prefix instructions 9-20
Print String function D-8
printers 4-11,4-51,4-56
printer error messages A-6
PRN 4-44
program file 2-3, 2-4
Program Load function D-39
PROTOCOL 3-5, 4-5 1
PTR operator 7 - 17
Punch Output function D-6

R
random access operation E-l
Read Buffer function D-9
Read-Only (RIO) 2-8
Read-Only (RIO) attribute 4-58,

4-60, D-23
Read-Only (RIO) drive 2-11
Read-Only (RIO) message D-13
Read Random error codes D-26
Read Random function D-25
Read Sequential function D-17
Read-Write (RlW) 2-8
Read-Write (RlW) attribute 2-8,

4-58,4-60
Read-Write (RlW) drive 2-11
Reader Input function D-6
real file size 4-62
Rename File function D-20
recovering from common editing

errors 5-32
register indirect memory operands

11-22
relational operators 7 -15
REN 3-4,4-54

repeated execution of editing
commands 5-28

reserved words 7 -8
Reset Disk function D-13
Reset Drive function D-30
Return Current Disk function

D-20
Return Login Vector function D-20
Return Version Number function

D-I0
run-time parameters 6-5, 6-6, 6-7

s
saving your editing changes 5-8
Search for First function D-16
Search for Next function D-17
segment 7-10, 7-11
segment base value 8-3
segment override 7-13
segment registers B-3
Select Disk function D-14
select error D-13
serial port 4-11,4-51,4-56
serial port attributes 4-51, 4-56
Set DMA Address function D-21
Set DMA Base function D-33
Set File Attributes function D-22
SetlGet User Code function D-24
Set I/O Byte function D-8
Set Random Record function D-29
Setting drives to RIO 4-58
setting the time of day 4-69
short form of PIP 4-40
single-sided diskettes 2-10
single-sided drives 1-8
single..,sided format 1-8
single file copy 4-38
small memory model B-3
source-filespec 4-7
SPEED 3-5,4-56
stack segment 8-5
STAT 3-5,4-60
static allocation map D-33
status line 1-4,4-69,4-73, A-4
stop bits 4-57

storage space 2-9
string constant 7-6
SUB file 4-66, 4-67
SUBMIT 3-5,4-66
SUBMIT parameters 4-66, 4-67,

4-68
subtraction operators 7-16
. SYM file 6-3
SYS attributes 2-8, 4-19, 4-60, .

D-23
system prompt 1-4, 2-10
system reset 1-3
System Reset function D-5

T

temporary file 4-39
terminating assembly language

statements 7-20
TaD (Time of Day) 3-5,4-69
tokens 7-20
transient utility 3-3
transient utility commands 1-5,

3-4
TYPE 3-4, 4-72
Type 7-10
type-l segment value 11-18
type-2 segment value 11-18

u
unary operators 7-16
upper-case translation 4-25, 5-18,

5-25
user numbers 2-7, 4-73
USER 3-4,4-73
user memory 4-22

X-5

v
variable 7-10, 7-11
variable manipulator 7-17
variable manipulators, creators

7-14
version number 1-3
virtual file size 4-61,4-62, D-28

w
wildcard character 4-41
wildcard characters 2-6, 2-7
wildcards 4-4
WORD 7-10
word string instructions 11-21
Write Protect Disk function D-22
write-protect notch 2-8, 4-15
Write Random error codes D-28
Write Random function D-27
Write Random with Zero Fill

function D-30
Write Sequential function D-18

x
XON/XOFF protocol 4-51

X-6

Product Comment Form

Personal Computer
Computer Language Series

6936616

Your comments assist us in im proving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame---
Address ____________________________________ _

City--------------

7.i D Code -----------------

S ta te -------------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
9J94 PIO::!

--- ------ - ---- ---- - ---- - - ---
=~=~=®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936616

Printed in United States of America

