RUN TIME
LIBRARY

User's Manual
FORTRAN |V

093-000068--05

Ordering No. 093-000068

- ©Data General Corporation, 1975
- All Rights Reserved.

Printed in the United States of America
Rev. 05, February 1975

i
|
i
|
|
%
i
1
1
|

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release - December 1971
First Revision - March 1972
Second Revision - July 1972

Third Revision - February 1973
Fourth Revision - September 1974
Fifth Revision - February 1975

This revision of the FORTRAN IV Run Time User's Manual,
093-000068-05, supersedes 093-000068-04 and constitutes a
minor revision.

Licensed Material - Property of Data General Corporation

CHAPTER 1 - RUN TIME LIBRARY STRUCTURE

DATA STORAGE

Fixed Point Numbers. . . v v .o v v vu . e e e e e e 1-1
Real Numbers e e e e 1-2
Complex Numbers e e e ettt e e, 1-2
BYTE MANIPULATION | e e e 1-3
CHAPTER 2 - STACK STRUCTURE AND LINKAGE
SPSTACK. ... ov ... e e e e e e e L2-1
NUMBER STACK .. ittt ininnn an s s e v e e e 2-1
RUNTIME STACK &4t i s vttt ee et eneenennnen e s e e s e 2-2
STACK ALLOCATION IN A SINGLE TASK
ENVIRONMENT. . . v v e v nn e 22
STACK ALLOCATION IN A MULTITASKING
ENVIRONMENT . ..o oo tn et en e 2-4
INTER-SUBROUTINE LINKAGE, FLINK. 0., Ch e e 2-7
- FLINK Entries. e e e e e 2-7
Stack Length Word et e ceees..2=8
Subroutine Calls. ce e C e ae e c s e 2-8
FORTRAN ADDRESSING
Library Conversion of FORTRAN ADDRESSes
to Absolute Addresses e sas e 2-13
Passing Arguments from the Caller....... f e et e s 2-14
Returning Results to the CalleT. « v v v v v v v v v I A)
STACK ALLOCATION ATRUN TIME. e e e 2-15
Single Task Environment. fe e e cse et s e se2-15
Multitask EnVITONMENT v v v v v v v v e vt oo ensmesonenens cere2-16
CHAPTER 3 - ARRAY STRUCTURE AND HANDLING
CHAPTER 4 - PROGRAM SEGMENTATION
TASKS . i i e e i e Sttt ettt 4-1
Task Priorities v v v v v i i v e v e nnnss L R |
Task States . v v v v s v s v v e enan E cees.4-1
Task Control Blocks . v v v v v v i n e i v i e et e st e 4=-2
Task Scheduler e e e e e e e 4-3
Multitasking Commands and Subroutines I]
Activating a Task..... S et e e F I
Intertask Communication. c e e ce e e cee.d-4
Suspending a Task e e s s c e 4-4
Readyinga Task ..o iinen i enennnnn. f e ceee.4d-5
Changing Task Priority e e e svesesad-5
Killinga Task . o v v ss v vnnnn. S e e e e ce e 4-5
Obtaining Task StatS o v v vt ittt st v e v e teee s nsveennnnsas 4-5
OVERLAYS e e e e e s aea e 4-6
Overlay Statements and Routmes «sasnns s [R)
Opening and Closing an Overlay File P P
Loading an Overlay - Single Task Environment ceaes 47
Loading an Overlay - Multitask Environment ..., .. see e 48
Releasing an Overlay ATEA . . v v v vt vttt tetnsnnseennanennn 4-8
Periodic Execution of Overlay or Core Resident Tasks4-8
PROGRAM SWAPPING AND CHAINING B

Licensed Material - Property of Data General Corporation

CHAPTER 5 - USING RDOS FEATURES

FILE MAINTENANCE AND I/O . v e vt v s s s s v na v B B
DIRECTORY/DEVICE MAINTENANCE e e Che e 5~
INTERRUPTS . vt it i e ennnsnsen taseseeesseneearan [P ..
User Interrupts e e s e [e P
Identifying a User Interrupt Device s ee s es e
Removing a Service Interrupt Device I R
Preserving Reentrancy During Interrupt
Processing A
FOREGROUND/BACKGROUND PROGRAMMING + ¢« v s v e v e n e ac v e nann
Mapped and Unmapped Environmentso .0 s vss P B
OPERATING PROCEDURES UNDERRDOS I
Loading - Single Task Environment -
Loading - Multitask Environment. srasrr oo e 5
Undefined Symbols .o iv et o nersoasocecensasss seesasead
LIMITATIONS OF RTOS. « 4 e e e v s s s soncnsroncsssssonnsasonsessd

Wy wn
¥
B BO DO bed et e

o4
t

t
UL Ut U Utk b o N

1

CHAPTER 6 - INPUT/OUTPUT

VARIABLE DATAELEMENTt erassnn cee e e eaan
ARRAY ELEMENTot e i e
COMPLETE ARRAY. T T 6-
LEFTPARENTHESIS. v v v et inivenns R <
RIGHT PARENTHESIS T
STRING ELEMENT et e e teeeeaaaab

6

6

N O
1

1

£
G b b 0 NN e

END-OF-FILE ELEMENT vt ce e e e e
ERROR RETURN ADDRESS, , oo vv e cer e

CHAPTER 7 - USING THE RUN TIME LIBRARY

STRUCTURE OF SUBROUTINE DESCRIPTIONS + s v vt vvnvennsnsneess/=1
INTERFACE BETWEEN ASSEMBLY LANGUAGE

AND FORTRAN PROGRAMS05 Y A
RUN TIME ERROR MESSAGES s e ch et e ceee7-3

CHAPTER 8 - INTEGER ROUTINES

CHAPTER 9

1

¥

ISING

ces e S NN . .
MNMX0

AVIINIVAAY 0 o v s s e L I N I R L I L LR N N I I .

[B B |

oo 0o oo oo GO 00 00 00 00 00 OO
]
WO 0N NN U W

- SINGLE PRECISION FLOATING ROUTINES

ABS it it ittt s e 9-
AINT it iie s ce e e s O
ALG ottt ee et e e P

AMNX1

MI e crrar e e e
AMOD i iiii i et s e e s ..
ATN , ..

R-RN-RNCIN AN
1
SO U oW

Licensed Material - Property of Data General Corporation

CHAPTER 9 - SINGLE PRECISION FLOATING ROUTINES (Continued)

L

i)

t

FPWER « ottt it ittt s ennansenssanonoseesoenseenannnsns

RA TN 4t i i i e s ts s s s neosasenansennnennsesn

1

S L

NDOMD OO D D D D D D ND
1]
[N e)

O
1

SQRT & 4ttt ettt e et e e

D
t

7
£

P s et
0o o N OON WU s G O

h)
1

TANH ¢ 4ttt it it et et i it et e s tnaneneneennenenns

CHAPTER 10 - DOUBLE PRECISION FLOATING POINT ROUTINES

O 4
COSIN. ¢ttt ittt ettt neseenseasonesnssasseansenease 104

.

DINT e i i it it et e et e eee. 1020
DLOG B T [N 11

.
DMNMX ¢ttt ittt esteaseaosanenansennnnssss 10-11
DMOD s ttttteitteaasannnnnearsneosnsanessnnanesennn 10-13
DPOLY t ot e ottt e e eesennenesononnnnsssnnanennnnneanen 10-13
) L L T e 1
D (8 10-15

L B T T I 1
A DSQRT S T T e [N 1)
DT ANH ittt v ettt oot s v onoaensonsosnsonnscsnssssasenss 10-17
RATNZ vttt ettt ittt entnsanssesansnaneeaneeas 10-18"
TANGE A R e I I I I I A N I N T TS S 10"18

.

.

CHAPTER 11 - SINGLE PRECISION COMPLEX ROUTINES

L 11-3
CADD . i ittt ittt it st st ts e anasssenanenenneennass 11-3
] 0 2 T
GO0 vt ittt it it tesneenossssosnssnacnensessennneaeas 11-5
CDIV 5
e e et s e s e e s e s et s se s araresssas 11-5
CEXPO ¢ttt ittt it sttt tetasnnsssssnsssaseaseanes 116
L £ B
CLOAD . . ittt ittt st esstssenasecenonnoneensaannenes 117
L 7 S I
L T B
NEG
C D T T T S 1 s
v
e e e s as e s e s e e s x s e e e ee e e e s e et s e e e
CONJG 11-10
L g L R S B |
;
L T T T T
CSIN 11-11
L) T S)
CSTOR &t v s ettt na s s s st sastsseeensessnsenonesnneenees 11-12

ROABS ittt it tian e taeeeniaasoesossnsasasasonnnns

.

D

.

P,
oy
e

o

Licensed Material - Property of Data General Corporation

CHAPTER 12 - DOUBLE PRECISION COMPLEX ROUTINES

DOABS . 4 vttt tsss e cvsncenansesseenssonesssssessasssasal2=3
DOADD &t s et et ss st neasseseneeneeessonssaneseneannaaat2-3
DOCEQ + o ittt sensossnsnnssnenssonosesnasssnsssssanssal2-4
DOCOS, v v s s s senoesaneeensensnsnsosseannansssensssesl2=5
1570753 4 V250 P
{370} 25 ¢ P DS
DOLOD 4 st sttt esensneonssenesosnesnsonssssseaseanaseal2-0
DOMUL L it it vttt sesesenennessssneanosssscssnsnensosnasal2=7
DOPWR & vt s s st osseonconnsessosasesssesssasonsosnsneeecl2=7
DCSIN . st v e s s sonoenanennsseeennsensnasnsssessnnsnessal2=8
DCSQR 4 i i v et veenonenaenssneaessaenssnsssesnsenesssssl2=9
DOSTR v vt s s et enesonneeneonensenesesenansasensssaeessl2-9
DDCLO LJ.12-10
DREAL &ttt seeenonenuenseesenssseneneseeesnoasennsaansal2-10
RDCAB, & i it et s s ensoasesaesnsnssesassesanssoseeseseseaasasl2=11

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

CHAPTER 13 - MIXED MODE ROUTINES

AMNXD £ttt v e ansoenonsenensnenssenensasasasasennnesasald3-3
BREAK ittt esnosnsosesenesenenseeacensnenesanenanesss.l3-4
CMPLX 4 vt s v e et eenesonnsesnesensseeeeensessnsenanesld3-d
CRCXL vttt ssneeeseonasnseseseonsessneeesseesnaneaneasld=d
CRCXZ v vt essneneaseaesenessessssnsssasosossnsssssnasld-6
CXFLL v v et eenneseoeoennanssssnsnsnseassasensnanssasssl3=6
CXFLZ it it siseeseseenasseennssessassesesssansennssssld-7
DBREAK, & i vt e vt eeeseeanensnsnasesnnsasaensasanssasssald=7
DOMPL . ittt e snsenansesensnosssnsensesssnnsnssasaasl3-8
DIPWER . o v e s s e eneensssnsesseseessanensessssassaseaasl3=9
FLIP. . .13-9
115 £\ 1 AP B R ¢

25 0.

B
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3 A - R

IDREG &+ttt v et venosenssassassasssesncnaansssessassal3=-12
MNMXL + o vt e eseneseeeonensasessesneecnssnsanasaasss.13-12
RIPWR . v v e e eeene e neeseannsonesnoanssesnneneannnass13-12
STREG. + v v s se v eeeeenosensassssscssoansansenneneesa 1314

CHAPTER 14 - STRING/BYTE MANIPULATION ROUTINES

COMP . ittt i it tnsesoessesssosasncassassssesessnnssnald=3
LS B, v st vt v seeoeeaneanssssssssnssansnsssnasssenssneasld=-4
MOVEF & ittt tiesseeeesosesosonsssssssssasnsssnssncsnssessld=6
MVUBT et it evesaeneasossososssssssnssonsssnssossensald=-0
L X R

MVZ sttt it sennoenansesesssasssesssssensssssenessanesld=8

CHAPTER 15 - POINTERS AND DISPLACEMENTS

ARDUM .\ ..t titii vt scnonananscssssssssssssosssseassasald=3
FPTRS. .ttt s s st nsssosesecanssesnenssssssssnsasessnsnsldi=3
FPZERO. . v ittt tnssesseerseesanessssssssssscsnssnsssseldi-4
NPTRI. . it ittt tinesaesosanaesssennssssssnsesassassseel5=5
NPTR3 . . sttt tsneessssnosocosssnsassssssaasscsnseacssssali -5
NRPTR, . i v i st teenosssncsnsensssenssosasenssessnsansssl5=6

iv

e

Licensed Material - Property of Data General Corporation

CHAPTER 16 - LINKAGE AND INITIALIZATION ROUTINES

AFRTN ..
ARGUM . .
CPYARG. .
FARGO. ..
FLINK , ..

FRGLD ...

WRCH -« -

CHAPTER 18 - MISCELLANEOUS FORTRAN SUPPORT ROUTINES

BSTRING .
CGT .
CHSAV .
FINIT .
FOPEN .
ITEST .
LE .
RTER .

STOP .

THREAD .

L I A
D A A I I
P I .
D A I A

CHAPTER 19 - ARRAY HANDLING ROUTINES

ARYSZ. ..
FALOC. ..
FREDI. ..

FSBR.....

D I .
s e e s s LY
. I .

e e D R I I I R R R I R S s e s e 0 e
D I I I R L R IR P BT I 8o s s .
. e e e P s e e e . e ..
R A A LI N R SR Y LR S a . “ e .

16-3
16-3
16-4
16-5
16-6
16-9
16-9
16-11
16-12

+16-13

16-14

17-3
17-3

«17-5

17 -7
17 -8
17-10
17-11
17-13

18-3

- 18-5

18-5
18-6
18-7
18-38
18-9
18-9
18-11
18-12

19-3
19-3
19-4
19-5

Licensed Material - Property of Data General Corporation

CHAPTER 20 - DEVICE/DIRECTORY MAINTENANCE ROUTINES

CDIR. « e v v s s

CHSTS. v v s e v v v ns .
CPART. ¢ v s s s v e s

DULNK ++ v v e v ss s .
EQUIV.........

FSPOL. .o v v v v e .

CHAPTER 21 - OVERLAY ROUTINES

FOVLD « v oo e v e .o
FOVLY ¢+ vvossoeans

OVEXT «v.a v
OVKIL. « s 0o

.

.

CHAPTER 22 - TASK ROUTINES

ABORT. . .+« o™

ASSOC. e s e s e s

CHNGE + .+«
FACAL
FDELY .+ vo ..
FPEND

STTSK

TRNON ¢ s v vvevenonse

.

.

P R R R A . .. e s ae s s e w s e e

R e » s
P R R PRI v e s e 2 s s .
. IR . s e s . PETER

- s e e P I I I R AR s s
I S A I A xa s o s e s e s s oen s e 0w

PRI R P I
I A P I I I A I
v e s R] s e e s 0 s s e v
s e s e e e s e e R I R RN
e s e s s s s e s s s s e e e s e s e e
+a s e e e s P I A IR R AT R N R)
R PR I I e .
P I T I R A) I I N N A

e s s e s e e e s s e s s e e s e s s

. s e e s s e 00 s s I
e % e e e s e e s e e s s s s s 2 e DR ..
P T T R T T T R A I

e e s e 0 s e e .
s s e s e e e e e
I e I
s s s e v s v e
v s s s s 8 s s s e e
PRI SR S ..
« e s 0 s e . ..
s s 6 e 2 s 0 s .
e e s s e e e 0 s
2 e e s s e 2 e 8w
I I AR SRR

.. .
..
LRI Y

s e e s e e e

P

« s e s e

e e s e s
“ s e e
e e

e oe s
e e
.o LR

......

LR Y

P

CHAPTER 23 - FOREGROUND/BACKGROUND ROUTINES

EXBGe v vsveonnocnnsassencns

EXFG s+ o v s v e
FGND

CHAPTER 24 - COMMUNICATION ROUTINES

FXMT .. .v. ..

e s

P
s e e e . .
.. LR

vi

s e e o R
s e v e e s ...
« o v s 0 s e » .
« v a e s e s
e e s s s a0 s
20 s e s e s e e

s e e s s s e s e
s DI ..
e s e e 0 s s
s e ke e e
P T R
LI NS S . »

. a e .-
...... .
....... B
........
........
LRI .

.o > . .
LA - .
........
s s e s 2 s s s
AR .
PRI S IR

.. v e e
D
. v
s e e e e
s s s e e .
..... .
DRI RIS
. e Ly
s e s .
...
e s e e

........

o e ..
s e e e s e
P
..... R
. s e e
CEEEEY -

e s s e s s
a e e a e

20-3
20-3
20-4
20-5
20-6
20-6
20-7
20-8
20-9
20-9
20-10
20-11
20-11
20-12

21-3
21-3
21-5
21-6

22-3
22-3
22-4
22-4
22-6
22-7
22-7
22-8
22-9
22-10
22-11
22-12
22-12
22-13
22-14
22-15

23-3
23-3
23-4

24 -3
24 -4
24 -5
24 -6
24 -7

S

Licensed Material - Property of Data General Corporation

CHAPTER 25 - INTERRUPT ROUTINES

CHAPTER 26 - FILE MAINTENANCE ROUTINES

CFILW
C et e e et e e e e S e s e e e

CLOSE
OSE.....cu.. D
DFILW.ot e i, ceesr e s ean N
DLINK . o s i i s v ns cesscan s s s aa s etnse s
FFILE....... t e s e s e C e s e e 2 ea s
FSEEK......... S e e et e e e e e e e ns e a e e
FSTAT

B O O T T I T T T L T I I I I * * o« & ®
FSWAP...... e e c e s e e s e e v e s
GTATR. . v i it i it i i et en e [e

UPDATE . et ittt it i et sancnsassnannaassas

CHAPTER 27 - CLOCK ROUTINES

DATE. . i v i ii i is i e e aase
8 0 5 ce e

FTIME. ..o eiin i enne S e et e e e

GSYS..... Ch e e C i s et et

APPENDIX A - RUNTIME ROUTINE TITLES AND NREL ENTRIES

INDEX

vii

..... s e e ox s
e s e s s -

...........
PR e

....... .

e . s
L
« oe e . .
...........
. Y
LR I
. e s e .

. e e .
....... .. .
.
P Y o s
L I N RN .

26-3
26-4
26-5
26-6
26-7
26-7
26-8
26-9
26-9
26~-10
26-11
26-13
26-13
26-14

27-3
27-3
27 -4
27-5
27-6
27-6

Licensed Material - Property of Data General Corporation

CHAPTER ONE

RUN TIME LIBRARY STRUCTURE

The FORTRAN IV Run Time Library allows the user to execute FORTRAN programs in
either a single-task or multitask real time environment. In addition to the 8K Stand Alone
FORTRAN, operating systems supported are Data General Corporation’s SOS (Stand Alone
Operating System), RTOS (Real Time Operating System), and RDOS/MRDOS (Real Time Disk
Operating System and Mapped Real Time Disk Operating System.) -

All routines in the Run Time Library are reentrant and relocatable, making them suitable
for use in time-sharing environments. The stack structure of the library is fundamental
to its reentrancy, as all variables not declared as being in COMMON storage are stored on
the stacks.

The appropriate version of the Run Time Library must be configured with the operating
system being used. Certain routines, found in FORTL. LB, FORT2. LB, and FORT3. LB

are common to all versions of the Run Time Library. The diagram below
illustrates which libraries are used with which operating system. Note that RDOS

and RTOS use FMT. LB and that MRDOS is supplied with MFMT. LB instead, Additional
libraries containing the multiply Adivide routines may be supplied according to customer
configuration requirements. These libraries are: SOFTMPYD. LB, HMPYD. LB, NMPYD. LB.

For the purpose of discussing the FORTRAN IV Run Time Library, the SOS single task
environment may be considered a subset of the RTOS and RDOS single task environments.
Except where noted, discussions of RDOS and RTOS single task FORTRAN are also
applicable to SOS.

(MFMT. LB

T 5
FORTIL. LB

MRDOS § FORT2. LB ,
b SOS

FORTS3. LB } RTOS} RDOS

\ FSYS. LB
FMT. LB / J

DATA STORAGE

Fixed Point Numbers (Integers)

A fixed point number is represented by a 16-bit word, with bit O containing the sign

(0 for positive, 1 for negative). Bits 1-15 express the magnitude of the number in two's
complement notation. The magnitude ranges from -(215-1) o (215-1), or -32, 76710 to
32,76710. The representation for zero is a word consisting of all zeroes. (100000 is
an illegal number.)

* Note that the FMT libraries for RDOS and RTOS are different. Other libraries are the same.

1-1

DATA STORAGE (Continued) Licensed Material - Property of Data General Corporation

Fixed Point Numbers (Integers) (Continued)

S Two's Complement Magnitude
0 12 3 15

where S = 0 for positive, 1 for negative

Real Numbers

Real numbers may be either single or double precision, in packed or unpacked form.
Numbers on the number stack are always unpacked; all other numbers are usually in
packed form.

Single precision floating point numbers (SPFL) in packed format are stored in two
sequential sixteen bit words, with the high order word preceding the low order word in
memory. Bit 0 contains the sign (0 for positive, 1 for negative); bits 1-7 represent the
exponent, and bits 8-31 are the mantissa.

The exponent is expressed in excess 64 form; the exponent is to the base 16, to which is
added an offset of 100,. A negative number is formed by setting the sign bit of the
corresponding positive number.

Zero is represented as two sequential all zero words, but any SPFL number input to a
routine will be considered zero if it has an all zero mantissa.

All SPFL numbers input to the library routines must be in normalized form; in addition,
all floating point numbers in computations are maintained in normalized form. An SPFL
number is considered normalized if there is at least one binary 1 in any of the first four
bit pos_i%igns of the mantissa (bits 8-11). The range of values of an SPFL number are
2.4710 to 7.2%10° 7, with significance in excess of 6 decimal digits.

Double precision floating point real numbers (DPFL) in packed form are stored in four
sequential sixteen bit words. The sign and exponent are stored in the same manner as
for packed SPFL numbers. The remaining 56 bits express the rest of the mantissa.
Rules for normalization and expressing negative numbers and zero are the same as for
SPFL numbers., The range of values is identical to the range for SPFL numbers, 2.4*10
to 7.2%107°, with significance in excess of 16 decimal digits.

-78

Complex Numbers

Single precision complex numbers in packed format consist of two sequential packed
SPFL numbers, the high order portion representing the real portion of the number and
the second representing the imaginary part of the complex number. Four sequential
memory locations are required, and the bit definitions, range and significance of the real
and imaginary parts are the same as those for SPFL numbers.

Double precision complex numbers in packed format consist of two sequential packed
DPFL numbers, the high order portion representing the real portion of the number and
the second representing the imaginary part of the complex number. Eight sequential
memory locations are required, and the bit definitions, range and significance of the
real and imaginary parts are the same as those for DPFL numbers.

S—

DATA STORAGE (Continued) Licensed Material - Property of Data General Corporation

BYTE MANIPULATION

For processing 8-bit bytes, a byte pointer is used in which bits 0-14 are the address of
the memory location that contains or will receive the byte, and bit 15 specifies which half
(0 left, 1 right). Note that this is exactly the reverse of the convention described in
"How To Use the Nova Computers”. In order to insure that packing occurs left to right
in accordance with the pointer structure, ", TXTM 1" should be included in any source
program which generates ASCII text messages,

ot
i
o

Ee—

Licensed Material - Property of Data General Corporation

CHAPTER TWO

STACK STRUCTURE AND LINKAGE

In a multitasking environment, the Run Time (RT) initializer partitions the Run Time Area
into equal segments, one segment for each task specified at the beginning of the FORTRAN
program. Each run time segment has a link to the following segment built into its first
word, and a flag bit is allocated to indicate whether the segment has yet been assigned to

a specific task. Note that the segmenting of the Run Time Area is determined by the number
of tasks specified, not by the number of tasks actually active at any given time.

Each segment has an SP Stack, Number Stack, and Run Time Stack. The SP Stack is 40g
words in length, and the Number Stack is 330g words; the Run Time Stack occupies the
rest of the segment area. The Number Stack size may not be adjusted, and the allocation
of a selected Number Stack may not be omitted.

Each segment is preceded by an eight word state save area, containing a family of pointers
and displacements to describe it uniquely. These stack pointers and flags are FSP, .NDSP,
AFSE, Sp, QsP, .,OVFL, .SVO, and NSP.

SP STACK

The SP Stack is a block of 40g sequential locations with a page zero pointer, SP; it is used
for general purpose temporary storage, primarily by the single and double precision
routines. The following example shows how it might be used to save and then restore ACI:

STA 1,@sp
ISZ Sp

.

DSZ sp
LDA 1,@Sp

SP Stack overflow is a fatal error and is undetected by the library routines.

NUMBER STACK

The Number Stack is a 330g word block of locations reserved for the storage of numeric
values. The numbers may be I/0 for the arithmetic routines or temporary storage for
computations from the routines. The entire storage area of the number stack need not be
used. The number stack expands dynamically as numbers are loaded onto it and contracts
as they are removed; however, it never exceeds its maximum of 330g words., The stack is
built in the direction of increasing addresses, with . NDSP pointing to the end of the stack
and NSP pointing to the current top of the stack (the most recently loaded number).

All numbers on the stack are stored in sequential six word frames (or multiples of six
word frames), illustrated in the following diagrams. An attempt to load a number onto an
already filled number stack will result in error message FENSO. No check is made for
stack underflow, an attempt to load a number below the first frame on the stack.

Licensed Material - Property of Data General Corporation
NUMBER STACK (Continued)

0 15 Sign
Word 1 i 5 / 0 = positive
Word 2 | Two's Complement Exp, +100g] Exp. to base 16
Word 3 | MSB MANTISSA]
Word 4 | MANTISSA 1SB |
Word 5 | 0 }
Word 6 | ’ 0 |

Unpacked SPFL Number Map

0 15 Sign
Word 1 | : 1/ 0 = positive
Word 2 ! Two's Complement Exp. + 1008] Exp. to base 16
Word 3 | MSB MANTISSA |
Word 4 | MANTISSA |
Word 5 | MANTISSA]
Word 6 | MANTISSA Ls3 |

Unpacked DPFL Number Map

An integer to be loaded onto the number stack is first converted to an unpacked SPFL
number. Single precision complex numbers are composed of two sequential unpacked
SPFL numbers; the first (topmost in core) SPFL number represents the imaginary portion,
and the next SPFL number represents the real position of the complex number.

RUN TIME STACK

Each Run Time Stack consists of one or more FORTRAN stack frames. The Run Time
Stack expands and contracts dynamically with the execution of a main program, expanding
when more nests of subroutines are called or as subroutines are called which demand
temporary storage. As the Run Time Stack within a given segment expands, any FORTRAN
stacks created earlier for subroutines already executed are overwritten by the new stacks.
The stack is built in the direction of increasing memory addresses, and stack overflow
occurs if more storage area than memory available at run time is demanded. .AFSE is

a word used to determine the end or uppermost memory location available for the Run

Time Stack.

FORTRAN Linkage Stack frames are variable length blocks of sequential locations
allocated for use by the main program and each run time subroutine requiring temporary
storage. Each FORTRAN frame within a run time stack consists of an initial 11g word
header; most routines also require a varying length series of temporary locations following
each header.

2-2

S

Licensed Material - Property of Data General Corporation
RUN TIME STACK (Continued)

Each header location is used to store a specific type of information pertaining to the
subroutine that owns it, and each header location is at a fixed displacement from a pointer
called the current FSP,

PARF, the FORTRAN parameter tape, defines FSP to be stored in location 16g, and also
defines the fixed displacements and mnemonic assignments of each location in the stack
header. These mnemonic assignments and fixed displacements from FSP are listed below:

FLGT -200 Length of variable portion of stack

FOSp -177 Old Fsp

FPLP -176 Unused.

FEAD -175 Entry address to the last routine called by this routine.

FCRY -174 State of carry at the time this routine issues a subroutine call.

Bit 15=0 if carry was O,

FACO-173 Contents of ACO when this routine issues a subroutine call.
FAC1 -172 Contents of AC1 when this routine issues a subroutine call.
FAC2 -171 Contents of AC2 when this routine issues a subroutine call.
FRTN -170 Address of next sequential instruction when the routine issues

a subroutine call,

The parameter stored in location 164 is actually an address which is the FSP pointer of
the current routine. It is this address from which the fixed displacements are calculated
in order to determine the effective addresses of the header locations.

Following FRTN is the series of temporary locations used for general purpose storage.
The first of these is called FTSTR or TMP. The calling routine's accumulators, carry and
return address are always recoverable from its stack header at locations FCRY through
FRTN. FPLP is not currently ased by the library routines,

There is a page zero pointer, called QSP, which may reside anywhere from 20g through
377g, that points to FAC2. This is the location where AC2 will be stored should the
current routine call out, and it tracks FSP by an offset of -171g. This pointer is used
for immediate temporary storage by the FORTRAN linkage subroutines. For example,
STA 2,@QSP frees AC2 while STA 2, @FSP is not acceptable.

The stack mnemonics are really negative displacements which are added to the indexable
center (FSP) of the current stack to obtain the effective address locations used for header
and temporary storage.

In every case upon subroutine entry, AC2 will then be set to contain a pointer to the
calling program’s stack frame (the old FSP) and AC3 will contain a pointer to the called
routine's stack frame (new FSP) if one has been allocated, or -1 if no frame has been
allocated. Upon return to the caller, carry and all registers except AC3 will be restored
to their original values. AC3 will contain the caller’'s FSP.

2-3

Licensed Material - Property of Data General Corporation

STACK ALLOCATION IN A SINGLE TASK ENVIRONMENT

In single task environments there is a single SP Stack, a variable length Number Stack,
and a single Run Time Stack. The stack structures and maintenance are essentially the
same as those in a multitask environment. However, since there is only one run time
stack segment, it is not necessary to have the eight word save area or a link to the next
segment.

The Number Stack in a single task environment may be variable length. The default
length is 630g locations, but the size may be redefined by the user at assembly time by
means of the following statements:

.ENT .FLSZ
JFLSZ =1

where n represents an absolute integer expression that can be evaluated at agsembly

time. The maximum length of the number stack will then be equal to 2"n+30g. (These
two statements might be included in the FORTRAN source program, with an A in column
one, so that they will be passed on to the assembler directly; see the FORTRAN IV User's
Manual.)

STACK ALLOCATION IN A MULTITASKING ENVIRONMENT.,

Stack allocation in a multitasking environment is illustrated on the following page.

2-4

g

Licensed Material - Property of Data General Corporation
STACK ALLOCATION IN A MULTITASKING ENVIRONMENT (Continued)

Use increasing addresses
bit
1 word | Link to next segment
10g words State save area ;
i
%
40, words SP Stack
. § Run Time
3308 words Number Stack ! Stack Segment
§ Segment Size =
Run Time Stack ; 4018 + X words
(variable length) /;
1 word Link to next segment N
108 words State save area
408 words SP Stack
Run Time
330 8 words Number Stack Stack Segment
Run Time Stack J
(variable length)
1 word Link to next segment ~
108 words State save area
Run Time
404 words SP Stack Stack Segment
3308 words Number Stack
Run Time Stack
(variable length) J

Licensed Material - Property of Data General Corporation

STACK ALLOCATION IN A MULTITASKING ENVIRONMENT (Continued)

Header
11 g words

Temporaries
(variable length)

Run Time Stack

(Multitasking Environment)

FORTRAN Stack
Frame A

Header
11 g words
FORTRAN Stack
Frame B
Temporaries
(variable length) J
Header
1 18 words FORTRAN Stack
Frame C
Temporaries
(variable length) J

Licensed Material - Property of Data General Corporation

INTER-SUBROUTINE LINKAGE, FLINK

The FLINK module of the run time library contains entries which enable the calling of other
library routines and perform all required stack frame creation/deletion and maintenance
functions, FLINK forms the nucleus of the run time subroutines’ communications facility.

FLINK Entries

Library routines, including FLINK, have two types of entry points: page zero (, ZREL) and
normally relocatable (. NREL) locations outside page zero, Those with ., ZREL entries must
be specified in an . EXTD statement, while those with . NREL entries require . EXTN state~
ments. Following is a list of the mnemonic entries of the FLINK module:

LEXTN .EXTD
FCALL (JSR @ FCALL) .FCALL
FRCAL

FSAV (JMP @. FSAV) .FSAV
FRET (JSR @, FRET) .FRET
FQRET

FRCAL and FQRET also have page zero entries, but these have not been specified with an
. ENT statement and are not available for programming use.

The purpose of each FLINK entry is outlined below:

Entry Purpose
FCALL Calls a library routine by its . NREL entry
(or JSR @.FCALL) point. Also performs FSAV functions.
FRCAL Calls a library routine with its . NREL entry
contained in AC2. Also performs FSAV
functions.
FSAV Maintains the caller's header, allocates
(or JMP @. FSAV) a frame for the called subroutine, and
updates FSP.
FRET Restores control to the caller, restores
(or JSR @. FRET) the caller's registers and carry, updates FSP.
FQRET Provides a quick return to a caller when

the called subroutine has no stack frame;
restores the caller’'s registers and carry.

FSAV and an integer stack length word must immediately precede any subroutine which has a
page zero entry point. The method of calling such a routine is JSR @. ADR where . ADR
represents the page zero address containing two less than the entry point:

FLINK Entries (Continued) Licensed Material - Property of Data General Corporation

.ZREL
.SBR: SBR-2
.NREL
(page zero call) JSR @.SBR
FSAV
N ; Stack Length Word
.SBR: ; True beginning of the subroutine

FRET (or FQRET)

Stack Length Woxrd

The Stack Length Word (SLW) immediately precedes the true beginning of a called subroutine and
may be any positive integer, zero or -1. If the SLW is -1, no stack header or temporary storage
locations will be allocated for the called subroutine, and no further calls can be made from the
called routine. Subroutines which have a -1 SLW use the FLINK subroutine FQRET for exit and
return to the next sequential location after the original subroutine call, unless the user modifies
FRTN. Subroutines with a -1 SLW typically provide quicker call and return to the caller, since
no creation or maintenance of a stack for the called subroutine is required.

If the SLW is either zero or a positive integer, a new stack frame is created for the called
subroutine, and the subroutineFRET must be used to provide a return of program control to the
caller. If the SLW is zero, only a stack header is created, providing for the storage and
restoration of the values in accumulators ACO through AC3 and the state of carry should this
subroutine make a call to another routine.

If the SLW is a positive integer, a stack is created with both a header and the specified number
of temporary storage locations.

Subroutine Calls

Whenever one subroutine with a stack allocated for it calls another subroutine with a stack, the
contents of ACO through AC2,carry, and the return address of the call are stored on the caller’s
stack, AC3 is set to the FSP value of the stack belonging to the new called subroutine, and AC2
is set to the FSP of the caller's stack. Should the subroutine have no stack allocated for it, AC2
is set to the caller's FSP but AC3 is left free for general purpose use.

If a subroutine in the library has no page zero entry, the FCALL entry of the FLINK module may
be used to perform the subroutine call:

FCALL
SBR

where SBR represents the . NREL entry point to the routine. Subroutines called by FCALL need
not be preceded by FSAV, as FCALL performs the functions of FSAV; however, such subroutines
must be preceded by a stack length word. Subroutines which have normal entry points in page
zero can also be called by means of FCALL to the . NREL entry point. Note however that this
type of call requires 2 words as opposed to 1 word for the alternate call.

2-8

Licensed Material - Property of Data General Corporation
Subroutine Calls {(Continued)

The FLINK module contains one other subroutine which permits the calling of a subroutine by
its . NREL entry point: FRCAL. Subroutines called by means of FRCAL must have their entry
points preceded by appropriate SLW's and, as with FCALL, no FSAV is needed preceding the
SLW. FRCAL is not followed by the name of the subroutine to be called; instead, AC2 is set
to the address of the subroutine, and then FRCAL is issued. FRCAL accomplishes the same
functions as FCALL,

FORTRAN ADDRESSING

The placing of current FSP values in AC3 and next-to-most-recent values of FSP in AC2 by
FLINK permits an addressing scheme called FORTRAN ADDRESSING, which is used by the
library and the FORTRAN Compiler.

FORTRAN ADDRESSING extends the NOVA family addressing scheme in two ways:
1. Variables on the stack are referenced relative to that stack's FSP.

2. Full word addressing for all absolute addresses is effected by subroutines .LDO
and .ST0.

Since NOVA family computers can address 256, words in an indexed instruction, by using a
bias of -200 through +177, each address on the stack can be referenced by using the centerpoint,
FSP,and an offset stack displacement. Indirect stack displacements are also generated for
dummy arguments of a function or a subroutine. Stack addresses are encoded as being between
0 and 377g inclusive, or as between 100000g and 100377g (indirect addressing; the address of

a variable, not the variable itself). FORTRAN ADDRESSes, when referring to locations on a
frame, are equal to the displacement relative to FSP, minus FZD (=-200). Thus the FORTRAN
ADDRESS of FLGT (=-200, see PARF) is equal to 0, since FLGT - FZD = -200-(-200)= 0.
Using similar reasoning, all direct FORTRAN stack ADDRESSes are positive, with a range of
0 through 377¢ inclusive.

FLGT N

FORTRAN ADDRESS 0

FORTRAN ADDRESS 1 FOSsp
FORTRAN ADDRESS 2 FPLP
FORTRAN ADDRESS 3 FEAD
FORTRAN ADDRESS 4 FCRY > Header
FORTRAN ADDRESS 5 FACO
FORTRAN ADDRESS 6 FAC1
FORTRAN ADDRESS 7 FAC2
FORTRAN ADDRESS 10 FRTN
FORTRAN ADDRESS 11 FTSTR or TMP
FORTRAN ADDRESS 200 FsSp

2-9

Licensed Material - Property of Data General Corporation

FORTRAN ADDRESSING (Continued)

FORTRAN ADDRESSes greater than 377, are treated as absolute , NREL addresses. The
following chart illustrates the decisions made by library routines in interpreting FORTRAN

ADDRESSes:

| | | | FORTRAN ADDRESS, FADR

Given a FORTRAN ADDRESS, FADR
to regolve

4

—
N
o
Bits 1-7= ot

A
FADR + (current FSP) -200 is
the partially resolved address, ADR

Bit 0 ® ADR is resolved
=1? absolute address

Yes

[(ADR —X—— FADR___|
- }
Since the most recent FSP is always placed in AC3 by the linkage routines (FLINK), any of

377glocations on a frame can be addressed in such instructions as:

LDAO, -167,3

which is equivalent to
LDA 0, TMP,3

The variable nature of the length of a stack frame does not preclude the possibility of a stack
frame length exceeding 377¢ locations. If frames exceed 377 locations, variations on the
FORTRAN ADDRESSing scheme must be employed, possibly by placing pointers to new index
values in the frame so that all locations may be accessed:

Licensed Material - Property of Data General Corporation

FORTRAN ADDRESSING (Continued)

Over-size Frame

Header

New Index

? 377 8 locations

FSP enmmdii-

New INdeX g

FORTRAN array handling presents another means of accessing locations on a stack (see
Chapter 3).

The following examples illustrate FORTRAN ADDRESSing applications. To ad just a caller's
FRTN (without using further linkage routines, which will be discussed), the following method
might be employed:

FCALL

NAME

Parameter

Next Sequential Instruction

Stack Length Word

NAME: LDA 0,@FRTN,2 ; Parameter g ACO
ISZ FRTN, 2 ; Return can now be made
. ; to the NSI

.

FRET

One of the duties of FSAV is to preserve a caller's registers upon issuance of a further call.
In order to do this, a register must be freed. The following example shows how FSAV's use
of QSP accomplishes this end:

.ZREL
TEMP: .BLK 1 FSAV: STA 2, @QSP

.NREL LDA 2, FSp Using
FSAV: STA 2, TEMP Without STA 0, FACO, 2 Qsp

LDA 2, FSP > Using STA 1, FAC1,2

STA 0, FACO,2 | QSP STA 3, FRTN, 2

STA 1, FAC1,2
STA 3, FRTN,2
LDA 0, T™MP

STA 0,FAC2,2 ~

Licensed Material - Property of Data General Corporation

FORTRAN ADDRESSING (Continued)

QSP may be used for temporary storage by a routine provided it is not being so used when a
call out is made to a subroutine by means of FLINK:

NAME:

JSR NAME
Next Sequential Instruction

STA 3,@QsP

-

.

LDA 3, FSP
JMP @FAC2, 3

Despite the fact that FLINK restores the original values of a caller’s registers, it is possible
to pass results to a caller in one of the free registers. The following example illustrates one

possible method:

NAME:

FCALL
NAME

SLw

LDA 3,FSP

LDA 2,FOSP, 3 ; Theresult is returned in
STA 1,FACO0, 2 ; the caller's ACO

FRET

Similarly, conditional return can be provided by altering the caller’s FRTN:

NAME:

FCALL

NAME

Return if condition 1 satisfied
Return if condition 2 satisfied

.

SLW

LDA 2,FOSpP, 3

SUB 0,1,SZR ; Condition 2 satisfied?
ISZ FRTN, 2 ; Yes

FRET

2-12

S

g

Licensed Material - Property of Data General Corporation

Library Conversion of FORTRAN ADDRESSes to Absolute Addresses

Several library routines are available for transforming FORTRAN ADDRESSes into absolute
addresses when they reference stack displacements: FRGUO/FRGI1, MAD/MADO, FRGLD,
CPYARG/CPYLS, and FARG. In addition to performing an effective address calculation, when
the FORTRAN ADDRESS references a stack displacement, FRGLD loads the contents of this
address in ACO; if the FORTRAN ADDRESS exceeds 3778, it is treated as an absolute address
and FRGLD loads the contents of this address in ACO.

CPYARG/CPYLS and FARG transfer effective addresses to the caller's stack. FRGO computes

the effective address of a stack frame displacement with respect to the current IFSP, while
FRGI performs this calculation with respect to the next most current FSP.

FRGO Operation

User Routine A

JSR B
FORTRAN ADDRESS of argument

B:
Address of FORTRAN ADDRESS—sAC2
JSR @. FRGO

Return to A

effective address of argument—+ACO

Routine A's argument (if FORTRAN ADDRESS of
Stack Frame argument was between 0-377 8)

Subroutine B must not specify a stack frame.

FRGLD computes the effective address of an argument stored at a FORTRAN ADDRESS, and
then loads the contents of that address in ACO, If the address is a stack frame displacement,
it must be a displacement on the next-most-recently created frame. FRGLD calls FRGI to
resolve the effective address of the argument.

The MAD /MADO module also computes effective addresses from FORTRAN ADDRESSes.

If the address exceeds 377, then it is resolved as either an absolute . NREL address or as an
indirect address needing further resolution as shown on page 2-10, If the address is from

0 to 377g inclusive, the address is a stack frame displacement. The question "Which stack
frame?” is answered by the entry which was selected to this module. If MAD entry, then the
caller's stack frame is meant and the current FSP is used as a base for the address calculation.
The resulting effective address is returned in AC2. The MAD/MADO module itself has no
stack frame and does not restore the accumulators or carry to their entry values when return
is made to the caller.

2-13

Licensed Material - Property of Data General Corporation

Passing Arguments from the Caller

There are two subroutines in the library available for resolving FORTRAN ADDRESSes passed
by a caller (either referencing stack displacements or absolute addresses of parameters) and
storing them on the stack frame of called subroutine B: FARG and CPYARG/CPYLS. FARG is
used to pass argument addresses to the stack frame of the called subroutine without restoring
caller B's accumulators and state of carry upon return to B.

CPYARG/CPYLS performs the same function, but restoring the original contents of accumulators
and state of carry upon return to caller B, The only difference between CPYARG and CPYLS is
in the calling sequence which each accepts,

Routine A

Call Subroutine B

n

FADDRI

FADDR2

etc.

Next Sequential Instruction

Subroutine B
Call CPYLS

.

CPYLS resolves effective addresses
of Subroutine A's calling parameters,
places these on Subroutine B's stack,
updates Subroutine A's FRTN to NSI

Stack A FRTN

effective address FADDRI
Stack B effective address FADDR2
etc.

Note that the parameters to be passed will be on Subroutine A's stack only if the FORTRAN
ADDRESSes (FADDRn) in the call to Subroutine B were between 0 and 377 g

o

Licensed Material - Property of Data General Corporation

Returning Results to the Caller

The order of the calling sequence generated by the FORTRAN statement
CALL SUB2 (Pi’ vees PN}
is as follows:

JSR @, FCAL

SUB2

n

FORTRAN ADDRESS of Parameter 1

FORTRAN ADDRESS of Parameter N
Next Sequential Instruction

The called subroutine, SUB2, must fetch the FORTRAN ADDRESSes of each of the parameters,
perform its function on the parameters, and return the result it has obtained back to the caller
at the FORTRAN ADDRESS of the result (which may be one of the parameters). It can do this
by first calling CPYARG (or CPYLS), using the effective addresses it has received, and then
returning the result to the specified address. Remember that the FORTRAN ADDRESSes of the
caller's parameters can be either displacements on a stack frame or actual pointers to the
parameters. One way of returning the result is to load it into an accumulator and then store
it:

STA @0, TMP, 3

where AC3 contains the current (i.e., SUB2's) FSP. Assuming Parameter 1 is the result
address, TMP would contain the effective address of SUB1's Result, since the list of addresses
of SUBI's parameters was transferred in order onto SUB2's stack. The effective address of

the Result was transferred to SUB2's TMP+1, and so on by CPYARG. Often in assembly
language programs it will be helpful to assign mnemonics to the displacements of the temporary
storage locations following TMP, especially in cases where many of these storage locations are
being used.

STACK ALLOCATION AT RUN TIME

Single Task Environment

Certain initialization procedures, performed by single task .1 at the beginning of run time,
are necessary before a main FORTRAN program may be run.

Single task .Iis an entry in the library routine 1. .T allocates a stack for itself consisting
of 60g locations plus header, where the Channel Assignment Table is placed. .1 1is called by
the operating system at the beginning of run time. At the end of the successful running of the
FORTRAN program, return will be made to .1, which transfers control unconditionally to the
STOP routine. STOP outputs the message "STOP 999" to the system output device and returns
control to the operating system.

Under SOS a system call is issued at the start, .SYSI, which initializes system I/0 (this
call is a no-op to RDOS). Then 40g locations are allocated for the SP stack immediately
following the last loaded run time subroutine; a pointer to the beginning of the SP stack is also
created,

Licensed Material - Property of Data General Corporation

Single Task Environment (Continued)

Immediately following the last location in the SP stack, the number stack is defined and is
allocated if floating point arithmetic is used in . MAIN ox any of its subprograms. This stack
will be 630g words long, or 30g plus twice whatever value a user has specified in a . FLSZ
statement. The default value sets aside enough storage for 68 single precision floating point
numbers, or 34 double precision complex numbers.

After allocating the number stack (or after allocating the SP stack if no number stack is called
for}, a pointer to the beginning of the run time stack is defined, and .I's stack is allocated here.
.MAIN's stack frame will be created as soon as transfer is made to . MAIN,

Before this happens, a check is made to see whether or not there is enough room for blank
common allocation, and blank common is allocated at the high end of memory if there is enough
room for both it and the stacks which have been allocated. If not, a memory overflow message
will be output and the system will wait for operator intervention. Assuming there is enough
room, .NMAX is updated to acknowledge the stack allocations by means of 2 system call, .MEML
The Channel Assignment Table is initialized and deposited in . I's temporary stack area, and
program control is given to .MAIN,

The fact that no memory overflow is detected by .1 in no way implies that there will be enough
core space for all stack allocations which will be necessary at the peak requests of run time.
Instead, a stack overflow check is made by the FLINK module each time a stack allocation
request is issued, and a stack overflow error message is issued if insufficient space is detected.
A simplified version of ,I, which illustrates the elements of .1 as they might be used in an
assembly language program, is given in Appendix B. AFSE, referenced in both versions of .1,
is a pointer used to determine whether stack overflow has occurred.

Multitask Environment

Multitask . I is an entry in the multitasking library routine MTI. The Channel Assignment Table,
60g locations in length, is written over a section of .1 after that part of the initialization code
has been executed.

A system call, .RESET, is issued to initialize system I/O. USTCS of the User Status Table
(UST) is examined to determine the size of blank common. Blank common is then allocated, if
possible, and a pointer to the start of blank common is created. If there is not enough memory
available for blank common allocation, error message MEMOVFL is output and a return to the
next higher program level (usually CLI under RDOS) is made by means of . SYSTM, .RTN. A
temporary SP stack is then created {and will later be overwritten). The number of tasks and
FORTRAN channels which will be required is determined by examining USTCH of the UST. DVD
is then called, and the remaining free memory is partitioned into equal segments, one for each
task's later run time use. Each run time segment has a link to the following segment built
into its first word, and a flag bit is allocated to indicate whether the segment has yet been
assigned to a specific task,

ITCB is then called, setting up stacks and stack pointers in the first run time segment area for
the first FORTRAN task. The Channel Assignment Table is then built over the beginning of . 1
code, which is of no further use in a multitasking environment after its initial execution. Control
is then given to the FORTRAN Task Scheduler.

g

Licensed Material - Property of Data General Corporation

CHAPTER THREE

ARRAY STRUCTURE AND HANDLING

An array is an ordered set of data of one or more dimensions up to 128 dimensions are
allowed. Array structure and handling present an exception to the discussion of the library's
stack allocation presented earlier.

An array may be defined to be any size in up to 128 dimensions, provided it does not exceed
the limits of available memory. Array elements are referenced by integer subscripts, one for
each dimension. Element values are assigned so that the first subscript varies most rapidly,
then the second subscript, etc.; the element values themselves are numbers in packed format.

An array is allocated by a call to FALOC. The required number of locations is appended to the
current end of the caller's stack, thus extending the stack by the size of the designated array.
FALOC also adjusts the caller's FLGT to ensure that any further creation of stacks will follow
the end of the array.

Array elements are not referenced by the FORTRAN ADDRESSing scheme of relative stack
displacements. Instead, routines FSBR, FSUB are used to calculate the absolute address of an
array element, with the result an absolute NREL address instead of a relative stack displacement.

The array handling routines require two tables for array allocation and element addressing.
An additional table is required when an array is to be redimensioned and passed as a dummy
argument.

The first table is the Subscript Bound Specifier (SBS). It describes each subscript's boundaries
(both upper and lower index values are included, since array indices may begin at values other
than 1) and specifies both the type and size of the array elements (i.e., integers, 1 word;
SPFL's, 2 words; DPFL's and SPFL complex, 4 words; and DPFL complex, 10¢ words). The
element type coding is 1, integer; 2, SPFL; 3, DPFL; 4, SPFL complex; and 5, DPFL complex.

If N is the number of dimensions of an array of the general form Array A (lower bound 1:
upper boundy, ..., lower boundy: upper boundy), then the SBS table will have the following form:

Word 1 Integer value = 2N-1
Word 2 element size (words)| element type
Word 3 1st subscript lower boundary (lbi)
Word 4 u.bl - 1bl + 1
Word 5 2nd subscript lower boundary (lbz)
- # -
Word 6 (ul:sl 1b1+1) (ubz lbz«{»l)
Word 2N+1 nth subscript lower boundary
Word 2N+2 (ubl-lbii-l)*. .e *(ubn-lbn+l) total number of elements

in array
Subscript Bound Specifier (SBS) Table

3-1

Licensed Material- Property of Data General Corporation

ARRAY STRUCTURE AND HANDLING {Continued)

The Three Word Array Specifier (TWS) is a smaller table which is set up within the caller’s Run
Time Stack. It contains a pointer to the SBS, a pointer to the beginning of the array, and the
toral number of words {(not elements) in the array:

Word 1 FORTRAN ADDRESS of SBS
Word 2 FORTRAN ADDRESS of first array element
Array size in words

Three Word Array Specifier (TWS)

Space for the TWS is reserved on the caller's stack before calling FALOC, which then fills

in the three word table with the appropriate information. The SBS is built in NREL memory by
the compiler for an array defined in the main program (or in a subroutine if the array is not

a passed argument).

The following diagrams illustrate memory maps after a FORTRAN statement DIMENSION A
(x,y,z) generates a call to FALOC:

Map after FALOC is called and its stack
is allocated, but before FALOC is executed:

T™MP
variable portion Blank N
of . MAIN stack Blank f TWS
Blank
.
FALOC Header
FALOC TMP
FALOC TMP+1

Licensed Material - Property of Data General Corporation
Map After FALOC Execution

. NREL address of SBS
variable portion Array Address Pointer
of . MAIN stack < Integer size of Array

TWS

—

.

.

Memory Area
Allocated

for Array

If an array is to be redimensioned and passed to a subroutine as a dummy argument, a new

8BS is created in the run time stack, reflecting the new index values. When the array is passed
to the subroutine as an argument, the subroutine accesses the array via the new SBS. Array
redimensioning and passing are done by FREDI.

As with FALOC, FREDI requires a 3 word area on the caller's stack into which it builds the
new TWS., FREDI also requires the address of the array being passed, and the address of
another table called the Special Subscript Bound Specifier (SSBS) so that re-dimensioning can
be accomplished. SSBS is similar in structure to SBS; in place of literal values and cumulative
partial products for each index, the addresses of the upper and lower bounds of each index are
given. The SSBS is built by the compiler in NREL memory.

Integer value = 2N+1
element size (words)| element type
address of first subscript lower bound

.

address of nth subscript upper bound

Special Subscript Bound Specifier (SSBS)

3-3

Licensed Material - Property of Data General Corporation

The new SBS, built by FREDI for the caller, is appended to FREDI's own stack. The TWS

is built into the area of the caller's stack reserved for that purpose. The stack area used by
FREDI in its computations becomes a waste area, unused by the caller upon completion of
FREDI's operation. FREDI adjusts the caller's FLGT, making the new SBS part of the
caller's stack and protecting it from being overwritter by future stacks. The array itself

is not appended to the caller's stack, since it is already defined by the calling program.

The following diagrams illustrate memory maps after a call to FREDI:

Map after FREDI is called and its stack
is allocated, but before FREDI is executed

CALLER'S STACK

Blank

Blank

Blank

FREDI STACK

TWS

After FREDI execution, FREDI updates the caller's FLGT to include the stack area and SBS

appended from FREDI.

CALLER'S STACK

Pointer to New SBS

Pointer to Array Start

Array size in words

FREDI's used Stack
area

(Unrecoverable

TWS

new SBS

g

Sty

griinroumrod sstensn sl 1o vinegort - leitsisl bodieenbed Material - Property of Data General Corporation

CHAPTER FOUR
2450k lovinoD dasT

PROGRAM SEGMENTATION
orode of bx 1o Vodoold lowinon Hdegy A
olubedos odT e
8 ol ol rarbogos
4 o1 38 Inamolsie

sviion us 1o

brasdinid

i boilioooge 2e ,omib

A task is a logically complete execution path through a user program that demands use of
system resources (I/O devices, system or user overlays, CPU control, etc.). Its execution
may be independent of and occur asynchronously with other tasks. A FORTRAN IV program
in a multitasking environment may consist of any number of tasks.

Tasks compete simultaneously for the use of system resources in a multitasking environment,
although only one task may receive CPU control and the desired resources at a given mdment.
A task scheduler allocates control to each task, based on task priority and readiness to use
system resources. .

FORTRAN IV uses the multitask programming facilities available under RDOS, allowing
execution of various routines to be performed asynchronously as distinct tasks.

Task Priorities

Task priorities are assigned when tasks are activated and may range from O (highest priority)

to 25510 (lowest priority). Several tasks may exist at the same priority level; the time of a
task's creation or priority modification determines its initial rank within a given priority level--
the first task assigned to a given level has the highest priority within it.

The relative priority of ready tasks within a common priority level is determined by the
relative positions of their respective task control blocks (TCB's) on the active chain maintained
by the task scheduler. Each time a task receives control of the processor, its TCB is moved
to the end of the active chain. This gives ready tasks within a common priority level approx-
imately equal access to the processor.

There is no limit placed on the number of tasks which may be created within a program.
However, each task requested causes a decrease in the size of the run time stacks allocated
for each task; thus only the minimum number of tasks necessary for the running of a program
should be requested.

Task States

At any given point during the execution of a multitask program, a task may be in any one of

four states: dormant, suspended, ready or executing., A dormant task has not yet been activated
or has been terminated. A ready task can proceed as soon as it is given control of the processor.
A suspended task is not ready to receive control of the processor yet but has not been terminated.
An executing task is in control of the processor.

Executing, ready and suspended tasks are said to be active and are linked together in a queue
called the active chain; tasks which have been deleted are removed from the active chain and
placed in the inactive chain.

When a task is activated (through an FTASK or ITASK call) it becomes ready and competes with
other ready tasks, on the basis of its assigned priorities, for control of the processor. When a
task receives control of the processor from the scheduler, it goes into the executing state and
retains control until it has been completed or some event forces it to relinquish control. A
task is suspended when it cannot proceed until the occurrence of some event, such as an
appropriate system call or a hardware (I/0O) interrupt. The task remains suspended until the
required event occurs.

4-1

Licensed Material - Property of Data General Corporation

Task Control Blocks

A task control block (TCB) consists of eleven locations used to store the status of an active

task. The scheduler maintains a separate TCB for each active task; the TCB's are linked
together to form an active chain, TCB's are created at load time, as specified in the CHANTASK
statement at the beginning of a multitask program.

Task Control Block

Word 1 Program Counter and Carry
Word 2 Task's ACO
Word 3 .| Task's AC1
Word 4 Task's AC2
Word 5 Task's AC3
Word 6 Status Bits and Priority
Word 7 System Call Word
Word 10 Link to next TCB in Chain
Word 11 FSsp
Pointer to Run Time Stack
Word 12 Segment for this Task
Temporary location for use
TCB Chain
Start R . = -1
of - i
Chain - - - b -

4-2

g

Licensed Material - Property of Data General Corporation

Task Control Blocks (Continued)

During execution, those TCB's that are not being used are linked together to form the free chain.

When a task is activated, a free TCB is removed from the free chain and linked to the active
chain; status information for the newly activated task is then placed in this TCB.

Task Scheduler

During the execution of a multitask program, the task scheduler receives control of the processor
after each system call. The scheduler then scans the active chain, searching for the TCB of the
ready task with the highest priority; this task then receives control of the processor. In the case
where several tasks are at the same priority level, the scheduler moves the TCB of the first ready
task encountered along the active chain to the end of the chain, and gives control of the processor
to the corresponding task. If there are no ready tasks in the active chain, the scheduler will wait
until some event causes a task to become ready.

Multitasking Commands and Subroutines

The main FORTRAN program and one or more task subprograms are written as program units of

a multitasking program. The main program is at priority level 0 initially and thus receives control
at the initiation of execution. If the main FORTRAN unit is killed, it cannot be reactivated unless
the program is restarted. The main FORTRAN program cannot be activated by a call to FTASK or
ITASK.

The next statement after COMPILER DOUBLE PRECISION, COMPILER NOSTACK, and OVERLAY
statements (if any are used) in the main FORTRAN program of a multitask program is a

CHANTASK statement:

CHANTASK number of channels, number of tasks

where: number of channels is an integer constant in the range of 1 to 641 0 representing the
number of channels that can be open at any one time.

number of tasks is an integer decimal constant representing the maximum number of
tasks that can be simultaneously active at a time during program execution.

If the CHANTASK statement is omitted, the default values are 8 channels and only one active task
during program execution.

The specification of number of tasks could also be made in an assembly language program loaded
just before the run time library. The program is named FRTSK and has the following source code:

. TITL FRTSK

.ENT FRTSK
FRTSK = (n) where n is the number of tasks
.END

FRTSK, if it appears in the RLDR line, will also override a task specification made in the CHANTASK
statement.

The CHANTASK statement (or the specification of number of tasks in FRTSK) may be overridden at load
time by using the /C and /K local switches of the RLDR command. The /C switch specifies that the
octal value immediately preceding the switch is the number of required chamels. The /K switch
specifies that the octal value immediately preceding is the number of required tasks.

Licensed Material - Property of Data General Corporation

Multitasking Commands and Subroutines (Continued)

The number of channels specified in CHANTASK (or in RLDR) determines the number of FORTRAN
logical channels available for concurrent use. A minimum of 16,4 FORTRAN logical channels

will be allocated even though fewer channels may be specified; in this case the number of channels
available for concurrent use will be limited to the number specified.

The number of tasks in the CHANTASK specification determines the number of TCB's that will
be available at run time. If an attempt is made to activate a task when all available TCB's are in
use, an error condition results,

At load time, the total run time stack area available is divided equally into as many parts as

there are tasks specified by CHANTASK. Each task has only the space of one of these equal
segments available to it at run time, If a task needs more space than is available to it at run time,
a fatal error results. Thus the user should not specify the number of tasks to be any greater than
he actually needs.

Each task subprogram must begin with a TASK statement and end with an END statement. The TASK
statement is of the form

TASK taskname

where taskname is the name assigned to the task program unit, This name must be unique in its
first five characters with respect to all function and subroutine names as well as all other task
names and overlay names.

A task name must be declared as EXTERNAL in each external program unit that references it.
Each task subprogram may be executed an arbitrary number of times during a single execution of
the multitasking program.

Activating a Task

All tasks except the main FORTRAN program are activated by executing a call to either the FTASK,
FQTASK, ITASK or ASSOC routine. FTASK activates a task by its taskname; ITASK associates
an identifier with the task by which it can later be referenced. FQTASK causes periodic execution
of a task contained in a user overlay.

Intertask Communication

Active tasks may communicate with each other through shared COMMON (either labeled or blank).
‘Information generated by one executing task can be retained in data or subprogram units until

one or more other tasks are executing and can access this information. However, no synchroni-
zation of creation and use of information is implicit in this scheme., Unless precautions are taken
attempts may be made to use information that has not yet been generated.

Synchronized transmission of one word messages between active tasks can be accomplished by use
of the FXMT library subroutine. Entry points for this routine are XMT, XMTW, and REC.
Through calls to these entry points a task may transmit a message to another task and continue
exccuting (XMT), transmit a message to another task and wait for its receipt (XMTW), or receive
a message from another task (REC). In the case of calls to XMTW or REC, the calling task is
suspended immediately following the call until the transmission is complete.

Suspending a Task

There are seven conditions which can cause the suspension of a task:

4-4

S

Licensed Material - Property of Data General Corporation

Suspending a Task (Continued)

[
.

A CALL SUSP is executed.

A CALL HOLD is executed,

The task must await some /O event,

A CALL FDELY is executed,

A CALL ASUSP is executed to suspend all tasks of the same priority as the executing task.

A CALL REC is executed to receive a message not yet sent,

A CALL XMTW is executed to transmit a message for which a corresponding CALL REC has
not yet been executed.

B

.

B

RS SV Y SN SO)

A task may be doubly suspended, as by a call to ASUSP and I/O completion. In such a case two
separate suspend bits are set and both must be reset before the task may become ready.

Readying a Task

A task is put into the ready state when it is activated; while active, it remains in either the ready
state, the executing state or the suspended state. There are five conditions which may cause a
task to become ready:

1. A task suspended by execution of a call to SUSP, HOLD, or ASUSP may be readied by
execution of a call to ARDY or RELSE.

2, A task suspended for performance of I1/0 is readied automatically upon completion of 1/0,

3. A task suspended by execution of a call to FDELY is readied by execution at the the of time
period specified.

4. A task suspended by execution of a call to REC is readied by execution of a corresponding
call to XMT or to XMTW.

5. A task suspended by execution of a call to XMTW is readied by a corresponding call to
REC.

As noted previously, a task that has been doubly suspended must be doubly readied.

Changing Task Priority

When a task is activated it is assigned a priority number. Execution of a call to PRI causes the
priority number of the executing task to be changed. A task may change its priority number any
number of times while it is active.

Execution of a call to CHNGE causes the priority number of the task having the identification
number given in the call to be changed to the specified priority number.

Killing a Task

A task may be killed by a call to KILL (kills the executing task), AKILL (immediately terminates
all ready or executing tasks of the priority number specified; suspended tasks with the specified
priority number are killed immediately after they become ready), or ABORT (terminates the task
with the specified i.d. number).

Obtaining Task Status

The user can obtain the current status of a given task (ready, suspended, inactive) by a call to
the STTSK routine. There are nine possible status codes:

Licensed Material - Property of Data General Corporation

Obtaining Task Status (Continued)

0 Ready
1 Suspended by a .SYSTM call.
2 Suspended by an ASUSP call.
3 Wait due to XMTW or REC.
4 Wait for an overlay node,
5 Suspended by ASUSP, SUSP or HOLD and by a .SYSTM call.
6 Suspended by XMT/REC and by ASUSP, SUSP or HOLD.
7 Wait for overlay node and suspended by ASUSP, SUSP, oxr HOLD.
8§ No task exists for this i.d,
OVERLAYS

Separately compilable FORTRAN program units (subroutine, function, block data, and task sub-
programs) may be divided into root programs and overlay programs. When a given program is
executing, its root will be core resident; overlay programs will be disk resident and will be
brought into core as they are needed for continued execution.

Several overlay programs may be grouped into overlays, and a number of overlays may time share
an area of core (overlay-area). Segments of programs that need not be simultancously core resident
can be made into disk resident overlays, and, when required, can be loaded into a common overlay
arca in core. Obviously, only one of the overlays assigned to an overlay area can be resident in it
at a time.

At run time, all overlays are maintained as core images in a single file on disk; these disk resident
core images are never altered during program execution. Each time an overlay is loaded into
core, it is in its original form, regardless of whether or not it contains a non-reentrant routine.

No part of an overwritten overlay is saved.

After compilation, each program unit contained in an overlay or root program (including a single
main program unit) is contained in a separate file in relocatable binary form. The RDOS extended
relocatable loader accepts these relocatable binary files and builds the root and overlays in core-
image executable form. Two files are produced: a save file containing the root, and an overlay
file containing all the overlays. The overlays may be divided into overlay areas, each assigned to
a different area of core. Each overlay area starts at a different point, called a node point; there
may be up to 128 node points, When the save file is in core for execution, the overlay file remains
on disk. Overlays may be loaded during execution as they are needed.

A single overlay arca is a multiple of 400g locations and must be large enough to accommodate the
largest overlay assigned to it. Overlays may exist in either single or multiple task environments.
In either case the overlay must be assigned a name and the overlay file must be opened before the
overlay is loaded into core; the overlay file must also be closed when it is no longer needed.

In 2 multitasking environment, overlays and their corresponding overlay area may be shared by
several tasks, It is therefore necessary that a determination of whether or not a given overlay area
is already in use be made before an overlay is loaded into it,

Different loading routines are called in single and multitasking environments; in a multitasking
environment an overlay must be released after use. A task waiting for an overlay area that is in

use must be suspended until the overlay area is released.

Overlay Statements and Routines

In both single and multiple task environments each overlay must be assigned a name in an OVERLAY
statement. OVERLAY is a non-executable specification statement:

4-6

g

Licensed Material - Property of Data General Corporation

Overlay Statements and Routines (Continued)

OVERLAY overlayname

where overlayname is the name of the overlay. This name must be unique in its first five chara-
cters with respect to all function and subroutine names as well as all other overlay names and
task names.

An overlay name must be declared as EXTERNAL in any external program unit that references it.
An OVERLAY specification statement must appear as the first statement in one of the program
units belonging to the overlay. If more than one subprogram of an overlay contains an OVERLAY
statement, each overlayname specified in these statements may be used interchangeably to

reference the overlay.

Opening and Closing an Overlay File

In both single and multiple task environments, the overlay file associated witha program using
overlays must be opened by execution of a call to the OVOPN routine before any overlays can be
loaded,

In both single and multiple task environments, each overlay file is closed by a call to CLOSE. An
overlay used by multiple programs in a multitasking environment must be closed by any program

that opens it before another program can use the overlay.

Loading an Overlay--Single Task Environment

An overlay is loaded in a single task environment by execution of a call to the OVLOD routine.

The resulting load may be either conditional or unconditional. In the case of an unconditional load,
the user overlay is loaded regardless of whether it is already in core. This allows for initiali-
zation of non-reentrant code.

A request for a conditional overlay load causes the user overlay to be loaded only if it is not
already present in core. This may save time in some cases, but conditional loading should be
specified only when overlays are reentrant.

Each overlay has a corresponding overlay use count (OUC) that indicates whether or not the
overlay is core resident. Specification of a conditional load results in a check of the OUC; an OUC
of one indicates that the overlay is core-resident, zero indicates that the overlay is not resident in
core. Following are the conditions determining the loading of an overlay:

1. If the load request is conditional (flagt0) and the area is free (OUC=0), the QOUC is
incremented, the overlay is loaded, and the error return is set to 1 to indicate the
overlay has been loaded.

2. If the load request is conditional and the overlay area already contains the requested
overlay (OUC=1), the overlay remains in the area, the OUC is decremented, and the

error return is set to 1 to indicate that the overlay has been loaded.

3. If the load request is unconditional, the OUC is set to 1, the overlay is loaded, and the
error return is set to 1.

4. If for any reason the overlay cannot be loaded, an appropriate error return is set.

4-7

Licensed Material - Property of Data General Corporation

Loading an Overlay--Multitask Environment

An overlay is loaded in a multiple task environment by execution of a call to the FOVLD routine.

The loading of an overlay depends upon the state of the conditional flag and the OUC. However,
since overlays and overlay areas may be shared by two or more tasks, the conditions for loading
are more complex than in a single task environment.

When a task causes an overlay to be loaded, the task is suspended until the loading process is
completed. When a task tries to load an overlay into an overlay area and cannot because the over-
lay area is already in use, the task is suspended until the overlay area is freed and the desired
overlay is successfully loaded. If more than one task is suspended waiting for an overlay area to
be freed, the task with the bighest priority waiting for the overlay area has its desired overlay
loaded when the overlay area is freed, and this task is readied when loading is completed.

The overlay use count is incremented each time a task causes an overlay to be loaded and is
decremented each time a task causes the overlay to be released. Since more than one task can
use an overlay, the OUC may be greater than 1, An overlay area is free only when the OUC
goes to 0. Following are the conditions for loading an overlay in a multitask environment:

1. If the load request is conditional (flag#0) and if the area is free (OUC=0), then the OUC
is incremented, the overlay is loaded, and the error return is set to 1 to indicate the
overlay has been loaded.

2. If the load request is conditional and if the area is not free but already contains the
requested overlay, the overlay remains in the area, the OUC is decremented, and the
error return is sct to 1 to indicate that the overlay has been loaded.

3. If the load request is conditional and the area is not free and does not contain the requested
overlay, the caller is suspended until the area is freed.

4. If the load request is unconditional {flag=0) and if the area is free (OUC), the OUC is
incremented and the overlay is loaded regardless of whether it is core resident or not.

5, If the load request is unconditional and if the OUC has not gone to zero freeing the area,
the calling task is suspended until the area becomes free.

6. If for any reason the overlay cannot be successfully loaded, the error specification in the
call is set to the appropriate error code.

When a task causes an overlay to be loaded, the task is suspended during the loading process as it
would be for any other 1/0 operation. For those cases in which no loading occurs, and the task

does not have to wait for an overlay area to become available, the task is not suspended.

Releasing an Overlay Area

All overlay loads (FOVLD) in the multitask environment must eventually be paired with overlay
releases or overlay areas will be reserved indefinitely. An overlay arca can be released from
outside the overlay by execution of a call to FOVRL; this causes the OUC for the specified overlay
area to be decremented. (The overlay area is freed only when the OUC goes to zero.) If an
overlay other than the one resident in the specified overlay area is named in the subroutine call,
an error condition results and the overlay area is not released.

S

g’

Licensed Material - Property of Data General Corporation

Releasing an Overlay Area {Continued)

Overlays may be released from inside the overlay area, cither from the routine in which the
overlay was named or {rom some other routine within the overlay.

A call to OVKIL can be made from the routine in which the overlay was named in an OVERLAY
statement and causes the overlay to be released and the task containing the overlay w be killed.

A call to OVKIX is made from a routine outside that in which the overlay was named. The OVKIX
routine causes the overlay to be released and the task containing the overlay to be killed.

A call to OVEXT can be made from the routine in which the overlay is named. It causes the over-
lay to be released and provides a return location.

A call to OVEXX is made from outside the routine in which the overlay is named. OVEXX causes
the overlay to be released and provides a return location.

Periodic Execution of Overlay or Core Resident Tasks

Real time overlay tasks are periodic executions of a task contained in a user overlay. Execution
of a call to FQTASK causes the overlay containing the specified task to be loaded so that the task
can be executed. Provision is made in the call in case the task is already core resident.

Before the call to FQTASK is executed, the file containing the specified overlay must have been
opened (OVOPN). When the call is executed, the specified overlay is loaded at the specified time
and the required task is first executed. The task is executed periodically after each specified
increment until the task has been executed the required number of times. If the task is core
resident, a dummy name is specified instead of the overlay name.

If the necessary overlay area for the specified overlay is not available, or if there is no TCB

available for the required task, task execution is postponed until the necessary resource is
available. An error code of 1 represents successful completion of the FQTASK call.

PROGRAM SWAPPING AND CHAINING

During run time, programs may be chained or swapped. In chaining, the currently executing
program issues a call to FCHAN that causes the program to be overwritten in core by another
program loaded from disk. The core image of the calling program is not saved. In swapping, the
currently executing program issues a call to FSWAP that causes its core image to be saved on disk
and a new program to be loaded from disk for execution. The saved program can later be restored
by a call to FBACK.

When a program calls another in a swap, the calling program is said to execute at a higher level
than the called program. The RDOS CLI executes at level 0 and user programs execute at levels
1-4, When a program issues a call to FSWAP, the execution level is incremented, and when a
program issues a call to FBACK the level is decremented. If an attempt is made to nest swaps to
a level deeper than 5, an RDOS error results.

When a program issues a call to FCHAN, the called program replaces the calling program at the
same execution level. Thus, any number of chaining calls may be made.

Program chaining can be used to subdivide a program that would exceed the limits of core into

sequentially executable units. Program swapping allows core images of programs to be saved and
called for execution more than once during program execution.

4-9

Licensed Material - Property of Data General Corporation

PROGRAM SWAPPING AND CHAINING (Continued)

Bach save file that is swapped or chained must contain a single complete FORTRAN 1V program
consisting of a2 main program unit and all subprograms whether directly or indirectly linked to it.
Each swapped or chained program can be independent of all others except for linkage through
swapping or chaining statements and shared data. Each swapped or chained program can have its
own independent task or overlay structure.

Swapped or chained programs can communicate through commonly accessed files and unlabeled
COMMON areas in core. The user can insure that data necessary for swapped or chained programs
in unlabeled COMMON is not overwritten by an incoming core image by declaring the same size
area. Additionally, all participating FORTRAN programs must be either single tasking or multi-
tasking, not a combination of the two.

g

Licensed Material - Property of Data General Corporation
CHAPTER FIVE

USING RDOS FEATURES

FILE MAINTENANCE AND 1/0

FORTRAN IV Run Time routines provide an interface to RDOS file maintenance features. The
following functions may be performed by use of the indicated calls:

Create an RDOS disk file, (CFILW)

Delete an RDOS disk file. (DFILW)

Open an RDOS file. (OPEN)

Open an RDOS file for appending. (APPEND)
Rename an RDOS disk file. (RENAME)
Close an RDOS file., (CLOSE)

Close all open files. (RESET)

Examine the attributes of an RDOS file (GTATR)
Set the attributes of an RDOS file. (FSTAT)
10, Read a series of blocks. (RDBLK)

11. Read a series of records. (READR)

12, Write a series of blocks. (WRBLK)

13. Write a series of records. (WRITR)

. » .

.

‘-DOO\J@SI!W&WNM

.

Calling sequences, parameter definitions, error codes and other pertinent information are given
in the routine descriptions.

DIRECTORY/DEVICE MAINTENANCE

FORTRAN IV run time routines also interface with RDOS directory/device maintenance features.
The following functions may be performed with the indicated calls:

1. Change the current directory. (DIR)
2. Initialize a directory. (INIT)
3. Release a directory. (RLSE)

Consult the routine descriptions.

INTERRUPTS

User Interrupts

Users wishing to incorporate non-SYSGENed devices into real time FORTRAN programs must
provide for the interrupt servicing to be done in assembly language and for the creation of a three
word device control table (DCT) as detailed in the RDOS USER'S MANUAL (093-000075).

Interrupts from special (non-SYSGENed) devices do not generally change the status of tasks in a
FORTRAN multitask environment. Instead, such interrupts freeze the environment until servicing
of the interrupt is completed and the multitask environment is unfrozen. Tasks will resume their
former states when the environment becomes unfrozen unless the user transmits a message to

one of them by means of the transmit interrupt message command, IXMT. If the task for which
the message is intended has issued a REC call for the message, the task state is changed from
suspended to ready even though the task activity is in suspension,

5-1

Licensed Material - Property of Data General Corporation

User Interrupts (Continued)

Since control does not go through the FORTRAN Task Scheduler when the environment is
unfrozen, IXMT is not a command which can be issued via FORTRAN source code; rather, IXMT
is a Task Call identical to . IXMT described in the RDOS USER'S MANUAL. This is the only
situation in which user interrupt servicing may alter the task environment.

Identifying a User Interrupt Device

It is still necessary, however, to identify the interrupt device to the system by means of a
FORTRAN call to FINTD, and it is possible to remove this device by means of another FORTRAN
call to FINRV,

FINTD is used to identify to the system a device capable of generating interrupt requests but
which was not SYSGENed. FINTD causes an entry for the specified device code to be placed in the
system interrupt vector table,

There is a special usage of a call to FINTD to provide for automatic restart of user-defined

devices after a power failure. Users having hardware option 4006 (power monitor/automatic restart
hardware) may make use of the call to provide power-up service for user devices in a user-

written routine, as indicated in the routine description,

Removing a Service Interrupt Device

A previously added (FINTD) user interrupt device can be removed from the system interrupt
vector table by a call to FINRV. If an attempt is made to remove a SYSGENed device or if the
device code argument is not within legal range of user interrupt devices 76), a fatal run time
error occurs and execution is terminated.

S

Preserving Reentrance During Interrupt Processing

No savingof task states is required when processing interrupts, since interrupt processing
occurs apart from task considerations. If, however, users wish to issue FORTRAN calls as
part of their interrupt processing, it is imperative that certain stack variables be saved before
these calls are made. Failure to preserve stack variables will disrupt management of the run
time stack when the multitask environment becomes unfrozen. (Note that the system saves these
variables when interrupts are generated by SYSGENed devices.) l

When the multitask environment is frozen, page zero contains the variables for the stack segment
of the FORTRAN task which was in control of the CPU at the time of the interrupt. Therefore if
FORTRAN calls are to be issued from interrupt service routines, these routines must utilize the
remaining free area in the frozen executing task's segment for run time variable storage. Although
interrupts must be turned off while the interrupt processing logic is saving the segment variables,
interrupts may be enabled as soon as these state variables have been preserved.

The segment stack variables which must be saved by the interrupt processing routine are . SV0,
.OVFL, FSP, SPand NSP. Additionally, a new QSP must be calculated which corresponds to the
new FSP,

Of the five variables which must be saved, .5V0 and . OVFL may be saved in the new stack frame.
SP may simply be incremented by one before the first FORTRAN call, and decremented by one
after the last FORTRAN call in the interrupt servicing routine. NSP must be incremented by 6
and decremented by 6 after the last FORTRAN call. A convenient location in which to store the
old FSP is in the new frame’s FOSP. The old FSP must be restored upon exit from the interrupt
service routine. In order to create the new frame (and new FSP), the following adjustment must
be made to the old FSP:

g

Licensed Material - Property of Data General Corporation

Preserving Reentrance During Interrupt Processing (Continued)

C{QSP") = F(FSP) + FLOGT + 2FFEL

where C(FSP) indicates the contents of FSP and FFEL is as defined in the description of the FPZERO
module. A new value for QSP is calculated by adding PARF dispacement FAC2 to its associated FSP:

C(QSP"y = FAC2Z + C(FSP)
The old value for QSP must be restored when its associated FSP value is restored.

The following example adjusts ISP, stores the old FSP in the new frame's FOSP, and stores .SVO
and .OVFL in this frame’s two temporaries:

LDA 3, FSP ; GET THE FROZEN FSP
MOV 3,2
LDA 0, FLGT, 3 ; ADJUST NEW FSP
LDA 1, MAGIC ; ADJUST NEW FSP
ADD 0,1 ; ADJUST NEW FSp
ADD 1,3 ; ADJUST NEW FSp
STA 3, FSP ; INSTALL THE NEW FSP
LDA 0, TWO ; RESERVE TWO TEMPORARIES FOR ., SVO
STA 0,FLGT, 3 ; AND .OVFL
STA 2, FOsp, 3 ; SAVE THE FROZEN FSP
LDA 0,.8V0 ; GET THE FROZEN . SV0
STA 0,5AV0, 3 ; SAVE IT
LDA 0,.OVFL ; GET THE FROZEN ,OVFL
STA 0,0VFL,3 ; SAVE IT
MAGIC: 2*FFEL ; FFEL=11 OCTAL, FOUND ON PARF
TWO: 2
SAVO: FTSTR
OVFL= SAVO+1

FOREGROUND/BACKGROUND PROGRAMMING

Throughout the preceding discussion of a multitasking environment the environment was under-~
stood to be confined to a single program, although tasks within that program could execute
asynchronously.

A dual programming environment allows two separate and distinct programs, either or both of
which may be multitasking, to share system resources simultaneously in much the same manner
as tasks in a multitasking environment.

In dual programming, one program is designated as the foreground program; the other is
designated as operating in the background. Each program is independent of the other, and each
maintains its own task scheduler. The two programs may have the same priority, or the fore-
ground program may operate at a higher priority than the background program. If the foreground
program has a higher priority, the background program will receive control only when there are
no ready tasks in the foreground.

Foreground and background programs may communicate with each other despite their independence.

This is accomplished through definition of a communication area within each program to be used for
transmitting and receiving messages.

5-3

Licensed Material - Property of Data General Corporation

FOREGROUND/BACKGROUND PROGRAMMING (Continued)

A user-written module, FHMA, specifies the highest memory address for the background to
ensure room for the foreground. FHMA must be loaded immediately before the Run Time Library
and has the following structure:

.TITLE FHMA

.ENT FHMA
FHMA = (n)
.END

Mapped and Unmapped Environments

A mapped environment includes the Memory Management and Protection Unit (MMPU); the
foreground and background programs are separated by absolute hardware protection. Foreground
save and overlay files are built in the same way as for a single program environment; an entire
page zero and NREL memory is reserved for the foreground.

In an unmapped environment (1. E., lacking the MMPU), the foreground and background areas are
separated by software partitions; the boundaries are set by the user at relocatable load time.

OPERATION PROCEDURES UNDER RDOS

The user receives the FORTRAN IV compiler as two dumped tapes. Before the compiler can be
used, save files must be created from the tapes with the LOAD command. After the compiler has
been loaded, the FORTRAN library tapes must be transferred to disk using the XFER command.
The library tapes to be transferred are

FMT.LB (FORTRAN multitask library)
FORTIL.LB

FORT2.LB

FORT3. LB

SOFTMPYD. LB

NMPYD, LB one will be supplied.
HMPYD. LB

Once the compiler and library are properly loaded onto disk, the FORTRAN 1V compiler can be
invoked with a FORT command followed by appropriate arguments, as described in the RDOS
USER'S MANUAL.

Each FORTRAN main program, external subroutine, or external function is separately compiled.
When the main program and its external subroutines and functions have been successfully compiled,
the programs are loaded using the RLDR command. The FORTRAN libraries must be loaded with
the programs.

The following example illustrates a series of commands for compiling, loading and running a
FORTRAN program:

FORT MAIN)
FORT XSUBI)
FORT XFUN)
FORT XSUB2
RLDR/D MAIN XSUBlI XFUN XSUB2 FORTI.LB FORT2.LB FORT3.LB FORT4.LB)

In the above example the /D switch will also cause loading of the symbolic debugger DEBUG III.

5-4

C———

.{«:

g

Licensed Material - Property of Data General Corporation

Loading - Single Task Environment

The RLDR command is used to load the relocatable binary output of compilation. The main program
is leaded first, followed by any external subroutines and then the FORTRAN library files, FORTI., LB,
FORT2.LB, FORT3, LB and FORT4. LB:

RLDR mainfile subfiles libraryfiles

To load main program MAIN and subprograms SBR1, SBR2, and SBR3, the user would issue the

command:
RLDR MAIN SBR! SBR2 FORTI1, 1B FORTZ2.LB FORT3.LB FORT4.LB

Loading - Multitask Environment

In a multitask environment, the multitask library FMT. LB must be loaded before the other
libraries. To load a multitasking FORTRAN program consisting of MAIN, TASKIl and TASK2, the
user would issue the command:

RLDR MAIN TASK! TASK2 FMT.LB FORTI.LB FORT2.LB FORT3.LB FORT4.LB

When overlays are used, the overlays that belong to a given overlay area are enclosed in square
brackets in the command line:

RLDR MAIN [OV1,0V2 OV3] TASK1 TASK2 [OV4 OV5,0V6,0V7] [OVS, OV9)]
FMT,.LB FORTL.LB FORT2.LB FORT3.LB FORT4.LB

In this example,

1. MAIN, the main program, and task subprograms TASKI and TASK2 are loaded
into save file MAIN. SV. Space is allotted in the save file for three overlay areas.

2. Overlay-areaq is shared by two overlays, the first containing OV1 and the other
OV2 and OV3.

3. Overlay-area) is shared by three overlays, the first containing OV4 and OV5,
the second OV6, and the third OV7.

4. Overlay-areay contains two overlays, OV8 and OV9.

5. The overlays, divided into overlay areas, are loaded into MAIN, OL.

Undefined Symbols

At the end of loading, the only remaining symbol that should be undefined is . DSI (used in Stand -
alone). To provide definition on batch runs, .DSI can be defined as

.DSI= -1

LIMITATIONS OF RTOS

Since RTOS is a compatible subset of RDOS, RTOS will support a subset of DGC Real Time
FORTRAN 1V. The only restriction on use of RT FORTRAN IV under RTOS is that only those real
time calls which have corresponding system and task calls implemented in RTOS may be used. Thus
CHANTASK and OVERLAY statements may not be used, and the following calls are not allowed:

FCHAN DIR OVKIX
FOVLD FSTAT OVLOD
FOVRL GTATR OVOPN
FSWAP CHNGE READR
OVEXT CFILW RENAM
OVEXX DFILW WRITR
OVKIL

5-5

Licensed Material - Property of Data General Corporation

LIMITATIONS OF RTOS (Continued)

In general, no magnetic tape, cassette, or disk I/O-related calls are available, with the exception
of WRBLK and RDBLK for disk 1/0,

Memory Map of . MAIN at Run Time

Top of Memory

Core Resident RDOS
RDOS
Disk Resident RDOS
Blank Common
Task Processing Modules
Overlay Area
Run Time
Stack Segments
.MAIN
and all its subroutines
1000
Overlay Directory
START OF , MAIN — 440 User File Tables
IN SOS 427
ENVIRONMENT
User Status Table Ares
400
377 :
0 . ZREL Pointers, Displacements
5
47 ; — QSP
USP 16 Spare Programming Area SSP
0 RDOS Communication Area

g

g

Licensed Material - Property of Data General Corporation

CHAPTER SIX

INPUT/OUTPUT

The FORTRAN statements READ and WRITE generate calls to entries in the FREAD routine of
the Run Time library. These entries perform formatted or free form FORTRAN 1/0 of ASCI
data or FORTRAN 1/0 of binary data,

When formatted data is to be read or written, the general form of the call is

ISR @. SUBR

FORTRAN ADDRESS of the logical channel number
FORTRAN ADDRESS of the format statement text string
ELEMENT DESCRIPTOR SEGQUENCE (S)

5

where SUBR is . FREAD for ASCII read, .FWRIT for ASCII write, .BRD for binary read, and . BWR
for binary write. The integer 5 indicates the end of the calling sequence. This is necessary because
the ELEMENT DESCRIPTOR SEQUENCES may be variable length.

The ELEMENT DESCRIPTOR SEQUENCES describe fully the nature of each data type in the 1/O
list. One sequence is selected to describe each data element type in the 1/0 list. For example, the
FORTRAN statement :

WRITE (10) 'REAL RESULT IS' , X

contains two data types: string and variable. Thus there will be two ELEMENT DESCRIPTOR
SEQUENCES in the call to . FWRIT which is generated.

The first word of each ELEMENT DESCRIPTOR SEQUENCE is an integer tag which labels the type
of sequence which is to follow. There are eight possible tag descriptions:

Tag Data Element Type

Variable

Array Element

Array

Left Parenthesis

End of Loop Right Parenthesis
String

End of File Address

Error Return Address

O w1 ON B W R e D

VARIABLE DATA ELEMENT

A variable data ELEMENT DESCRIPTOR SEQUENCE consists of three words. The first is the
tag 0, as indicated above. The second is a code for the variable type:

Code Variable Type

1 Integer, lLogical, Alphabetic/Hollerith
2 SPFL
3 DPFL
4 SPCX
5 DPCX

Licensed Material - Property of Data General Corporation

VARIABLE DATA ELEMENT (Continued)

The third word is the FORTRAN ADDRESS of the variable. Thus the FORTRAN statement
READ (11, HTEST

gencrates the following complete call to FREAD

JSR @. FREA

.C1 ;sFORTRAN ADDRESS of logical channel number

L2, ;FORTRAN ADDRESS of format statement text string
0 ;Data element type - variable

2 ;SPFL

V.+0 ;FORTRAN ADDRESS of variable

5 ;Terminator

ARRAY ELEMENT

The second ELEMENT DESCRIPTOR SEQUENCE describes an Array Element in the 1/0 list and
consists of a variable number of words. The first is the tag 1. The second is an integer indicating
the number of parameters to follow, excluding the calling sequence delimiter (5). The third word
is the FORTRAN ADDRESS of the Three Word Specifier, as described on page 3-2 The fourth
word is 0. The fifth and subsequent words are the FORTRAN ADDRESSes of the subscripts in the
1/0 list. Thus the FORTRAN statements

DIMENSION NAME (2)

READ (11, 100)NAME(1)

generates the following call to FREAD:

JSR @. FREA

.C3 ;FORTRAN ADDRESS of logical channel number

L2, ;FORTRAN ADDRESS of format statement text string
1 ;Data element type - array element

3 ;Number of parameters following

V.40 ;FORTRAN ADDRESS of Three Word Specifier

0 ; Predefined

.C2 ;FORTRAN ADDRESS of subscript

5 ; Terminator

COMPLETE ARRAY

A complete array ELEMENT DESCRIPTOR SEQUENCE consists of two words. The first is the
tag 2. The second word is the FORTRAN ADDRESS of the Three Word Specifier. The FORTRAN
statements

DIMENSION A(10)

READ BINARY (13)A

Siaaaas”

Licensed Material - Property of Data General Corporation

COMPLETE ARRAY (Continued)

generate the following call to FREAD:

JSR @.BRD
.C3 ;FORTRAN ADDRESS of logical channel number
0 ;No format string
2 ;Data element type - array
V., +0 ;FORTRAN ADDRESS of Three Word Specifier
5 ;Terminator

LEFT PARENTHESIS

There are two possible ELEMENT DESCRIPTOR SEQUENCES for left parenthesis data elements,
depending on whether the parenthesis is significant. Left parentheses are significant only in
implied DO-loops or nests of implied DO-loops.

An insignificant left parenthesis ELEMENT DESCRIPTOR SEQUENCE consists of two words. The

first is the tag 3. The second is the FORTRAN ADDRESS of useless-right-parenthesis flag

(integer 4), described in the RIGHT PARENTHESIS SEQUENCE., The FORTRAN statement
READ (11, 1) (TEST)

generates the following call to FREAD:

JSR @. FREA

.Cl ;FORTRAN ADDRESS of logical channel number

L2 ;FORTRAN ADDRESS of format statement text string

3 ;Data element type - left parenthesis

L3. ;FORTRAN ADDRESS of useless- right-parenthesis flag
0 ;Data element type - variable

2 ;SPFL

V.40 ;FORTRAN ADDRESS of variable

4 ;Data element type - right parenthesis

5 ; Terminator

A significant left parenthesis ELEMENT DESCRIPTOR SEQUENCE also consists of two words.
The first is the tag 3. The second is the FORTRAN ADDRESS of useful -right-parenthesis flag
(# integer 4), described in the RIGHT PARENTHESIS SEQUENCE. The FORTRAN statements
described in the RIGHT PARENTHESIS SEQUENCE. The FORTRAN statements

DIMENSION TEST 1 (10)

READ (11, 1) (TESTI(D,1=1,7)

generate the following call to FREAD:

6=-3

Licensed Material - Property of Data General Corporation

LEFT PARENTHESIS (Continued)

JSR @. FREA
.C3 ;FORTRAN ADDRESS of the logical channel number
L2, ;FORTRAN ADDRESS of the format text string
3 ;Data element type - left parenthesis
L3. ;FORTRAN ADDRESS of useful -right-parenthesis flag
1 ;Data element type - array element
3 ;Number of additional parameters in this DESCRIPTOR
V.40 ;FORTRAN ADDRESS of Three Word Specifier
0 ;Predefined
V.+3 ;FORTRAN ADDRESS of subscript
4 ;Data element type - right parenthesis
V.+4 ;FORTRAN ADDRESS of indexing variable
.C2 ;FORTRAN ADDRESS of start value
.C4 ;FORTRAN ADDRESS of test value
.C2 ;FORTRAN ADDRESS of increment value
. =4 ;Significant right parenthesis flag
5 ;Terminator
RIGHT PARENTHESIS

Corresponding to the two left parenthesis sequences are two right parenthesis ELEMENT DESCRIPTOR
SEQUENCES. Both have been illustrated in the examples for left parenthesis.

An insignificant right parenthesis sequence consists of a single word, integer 4. A significant right
parenthesis sequence consists of sixwords. The first is the tag 4. The second word is the FORTRAN
ADDRESS of the indexing variable, followed by the FORTRAN ADDRESS of the start value, the
FORTRAN ADDRESS of the test value, and FORTRAN ADDRESS of the increment value; the last

word is . -4, which points to the FORTRAN ADDRESS of the indexing variable.

STRING ELEMENT

A string ELEMENT DESCRIPTOR SEQUENCE consists of a one word tag (6) and the text string.
The FORTRAN statement

WRITE (10) "MESSAGE"
generates the following call to FREAD:

JSR @, FWRI

.C1 ;sFORTRAN ADDRESS of the logical channel number
0 ;No format text string

6 ;Data element type - string

L TXT /MESSAGE/

5 ;Terminator

END-OF-FILE ELEMENT

1t is possible for program control to branch from a reading or writing sequence upon receipt of
an end -of -file. An END-OF-FILE DESCRIPTOR SEQUENCE consists of two words. The first is the
tag 7. The second word is the FORTRAN ADDRESS of EOF Return. The FORTRAN statement

READ (11, 1, END=T)A

-4

g

Licensed Material - Property of Data General Corporation

END-OF-FILE ELEMENT (Continued)

generates the following call to FREAD:

JSR @. FREA

.Ci ;FORTRAN ADDRESS of logical channel number

L2. ;FORTRAN ADDRESS of format statement fext string
7 ;Data element type - end-of-file element

L3. ;FORTRAN ADDRESS of EOF return

0 ;Data element type - variable

2 ;SPFL

V.40 ;FORTRAN ADDRESS of variable

5 ; Terminator

ERROR RETURN ADDRESS

If a user wishes to gain program control after an 1/0 error at the device level has been detected
(parity, record size, etc.), the ERROR ELEMENT DESCRIPTOR SEQUENCE must be employed.
The ERROR ELEMENT DESCRIPTOR SEQUENCE consists of two words. The first is the tag 8,
and the second is the FORTRAN ADDRESS of the Error Return. The FORTRAN statement

READ (11, 1, ERR=7)A

generates the following call to FREAD:

JSR @. FREA

.Cl1 ;FORTRAN ADDRESS of logical channel number

L2, ;FORTRAN ADDRESS of format statement text string
10 ;Data element type - error return

L3. ;FORTRAN ADDRESS of error return

0 ;Data element type - variable

2 ;SPFL

V.40 ;FORTRAN ADDRESS of variable

5 ; Terminator

6-3

Licensed Material - Property of Data General Corporation

CHAPTER SEVEN

USING THE RUN TIME LIBRARY

STRUCTURE OF SUBROUTINE DESCRIPTIONS

Not all subroutines in the FORTRAN IV Run Time Library are fully described in the following
pages. Documentation is not included for those routines which the user is not likely to need to
access, such as the multitask scheduler, FTMAX. However, Appendix A includes a complete
list of routine titles and meaningful NREL entries.

Each subroutine description is divided into the following categories: Title, Supporting Subroutines
(and Displacements), Subroutine Size, Entry Points, Funetion, Calling Sequence(s), and Notes.

The ""Title" is a name selected to describe the subroutine being discussed, corresponding to
loader -recognized titles. Appendix A summarizes loader-recognized titles and NREL entry
points.

The "Function" section is followed by "Calling Sequence” for each distinct functional entry

point. ‘The "Calling Sequence" illustrates the applicable entry point, input parameters, and output
result. Requisite inputs and output results are enclosed in parentheses. In most cases where
alternate entry points or alternate entry means (such as FCALL and JSR @ entries) are possible,
the JSR @ entry will usually be given in the calling sequence, with the FCALL entry point listed

in the "Notes''.

The section titled "Subroutine Size" gives the octal number of locations required in both page zero
and in the remainder of core memory for this routine, including all entries to the routine. The
figures do not include the storage requirements of any auxiliary subroutines required and called
by this routine for support. Subroutines with the same Loader Title in the Summary Table share
common coding in a load module. Thus, if either one or all of the subroutines in a module are
loaded, the core storage requirements for these subroutines are the same and are equal to the
size given for the module.

Selected subroutines have been measured to determine their typical execution times, and these

are given in the "Notes". The following comparisons of typical execution times of single precision
real arithmetic funccions on the SUPERNOVA are given to illustrate the advantage obtained by
using the hardware fixed point multiply /divide option.

Single Precision Typical Execution Time With Typical Execution Time
Real Subroutine Software Multiply/Divide Hardware Multiply/Divide

SIN 3.3 ms 2.0 ms

COS 3.0 ms 1.9 ms

TAN 4.2 ms 2.5 ms

ATAN 3.6 ms 2.2 ms

EXP 4.9 ms 2.9 ms

LN 3.7 ms 2.4 ms

TANH 6.3 ms 4.2 ms

SQRT 2.9 ms 1.7 ms

ALOG10 4.1 ms 2.6 ms

ATAN2 5.3 ms 3.4 ms

SAMPLE SUPERNOVA EXECUTION TIMES

~1
1
ot

Licensed Material - Property of Data General Corporation

INTERFACE BETWEEN ASSEMBLY LANGUAGE AND FORTRAN PROGRAMS

Several rules must be followed when writing a function or subroutine in assembly language which
will be called by a FORTRAN program, or which will call FORTRAN programs or subprograms:

. The first five letters in the name must be unique and distinct from library defined entries.
2. Include the statement .ENT name,
3. Select a unique title {. TITL title.)

The code generated by the FORTRAN statement CALL NAME (argl, arg2,...,argn) is as follows:

.EXTN NAME

JSR @.FCAL

NAME

n ; number of arguments
FORTRAN ADDRESS of argl

FORTRAN ADDRESS of arg2

FORTRAN ADDRESS of argn

All externals which are to be resolved in the displacement field of an instruction at load time are
specified by .EXTD . Examples of these are page zero entries and page zero flags. All other
externals (primarily FCALL entries) are specified by .EXTN ,

n_represents an integer equal to the number of parameters in the calling sequence. The .FCAL
“routine saves accumulators, carry and the current FSP, and allocates a stack frame for the called
subprogram. The statement . EXTN NAME need appear only once in a program, regardless of
how many times NAME is called from within the program.

Corresponding to the calling sequence generated by the FORTRAN CALL statement is the
receiving sequence in the called subroutine. This is the means by which the called subroutine
fetches the calling parameters. The form of the receiving sequence generated by use of the
FORTRAN statement SUBROUTINE is as follows:

FS
NAME: JSR @.CPYL

.

where FS is the number of temporary locations required by the subroutine NAME in the FORTRAN
stack. FS must be large enough to provide the maximum number of arguments expected by the
routine. .CPYL converts the n argument addresses to effective addresses and places these
addresses in locations TMP, TMP+1,..., TMP+n-1 on the subroutine's FORTRAN stack. Even

if no arguments are passed, .CPYL is still called to correct the contents of FRTN so that
program control will return to the next sequential FORTRAN statement.

The assembly language code generated by the FORTRAN RETURN statement is JSR @. FRET .
This routine restores accumulators, carry, the contents of FSP, and places the current FSP in
AC3.

To call a FORTRAN subroutine or function in an assembly level program, the arguments passed

to the subprogram must agree in number, order and type with the arguments required by the
subprogram. Given the following FORTRAN subroutine statement,

7-2

Licensed Material - Property of Data General Corporation

INTERFACE BETWEEN ASSEMBLY LANGUAGE AND FORTRAN PROGRAMS (Continued)

SUBROUTINE name f{argl, arg2,...,argn)
the assembly language code required to call this routine would be
.EXTN name

FCALL
name

N

FORTRAN ADDRESS 1
Argument Addresses
FORTRAN ADDRESS N
Similarly, given the following FORTRAN function,
FUNCTION name (argl,arg2,...,argn)
the assembly language code required to call this function would be
.EXTN name
FCALL
name
N+1

FORTRAN ADDRESS of result
FORTRAN ADDRESS 1

Argument Addresses
FORTRAN ADDRESS N

If there is no argument list in either a subroutine or function definition, N=0 must be specified
explicitly.

If any text strings are to be passed to FORTRAN routines, the first must be preceded by a
statement to force the string of text in left to right order: |, TXTN 1

RUN TIME ERROR MESSAGES

At the initiation of execution, if there is not enough space to allocate unlabeled COMMON and the
initial stack frame, the message

MEMOVFL
will be typed.
All other non-fatal runtime error messages are printed as follows:
RUNTIME ERROR nn AT LOC. xxxxxx CALLED FROM LOC. yyyyyy
where nn is a decimal number representing a non-fatal error code.
xxxxxx is the address where the error was detected.
yyyyyy is the address of the first machine instruction of the FORTRAN statement that was

being executed when the failure occurred. The address will be within the user's
main program or one of his subroutines.

Licensed Material - Property of Data General Corporation

RUN TIME ERROR MESSAGES (Continued)

Execution will continue for non-fatal errors. If the error is fatal the message will read:
FATAL RUNTIME ERROR mn AT LOC. xooox CALLED FROM LOC. yyyvyy
and execution will halt,

The decimal error codes and their meanings are

Code Meaning

Stack overflow.

Computed GO TO error.

Division by zero.

Integer overflow.

Integer power error (illegal or overflow).

On U e BN e

7 Floating point underflow.
8 Floating point overflow.
9 Illegal format syntax.

11 Logical conversion error.

13 Number conversion error.

14 1/O error.

15 Field error (i.e., F5.10, E5.4, etc.).
16 Square root of negative number.

17 Log of negative number.

18 Channel not open.

19 Channel already open.

20 No channels available.

21 RDOS/S0S exceptional status.

24 Exponential over/underflow.

25 Array element out of bounds.

26 ~ Negative base for floating-point power.
27 Number Stack overflow.

28 BACKSPACE not implemented.

29 Attempt to restore status of channel when the status was not saved.
30 Queued task error.

31 Seek on a non-random file.

32 Overlay aborted.

33 lilegal argument.

34 Delete error (file open).

35 Overlay error in overlay kill.

36 Undefined entry. **

*% Occurs when an attempt is made to call a
subroutine that was not loaded.

S

g

INTEGER ROUTINES

BASE L . e e e e e e e e e e 8-3
BDASC . e e e e e e e e e e 8-3
IABS L i e e e e e e e e e 8-4
55 0 &-5
IPWE R L L e e e e e e e e 8§-5
553 N 8=6
MNMXO L et e e e e 8-6
MOD L .. it e e e e e e e e e e e 8-7
MUL T Lt s e i e it et e et e e e e e e s 8=3
SOV D . L e e e e e e e et e s e e s 8-9
SMPY.......... et e e e e e e e e s 8-10

8-1

§-2

Licensed Material - Property of Data General Corporation

Integer

---ROUTINE: BASC

Supporting Subroutines: FRET, FSAV; .STBT

Subroutine Size: No page zero locations and 35g locations of normally relocatable

memory.
Entry: .BASC
Function: Converts an unsigned fixed point number to an ASCII string of six
digits,

Calling Sequence:

(ACO contains the byte pointer to the returned string. ACI contains the
number to be converted.)

FCALL
.BASC

(Leading zeroes are not suppressed; string is terminated with a null byte,
ACO contains updated pointer to null byte,)

(1) Accumulators and carry are restored on exit,

(2) .BASC must be referenced by an , EXTN statement.

(3) The input fixed point number is of the form
2\362\’51\’4?%N2N1

where N is an octal digit.

(4) The output ASCII string is of the form
AghAs
Aghg

AxhAy
00

7 N
where A, corresponds to N

(5) No error messages are output

--- ROUTINE: BDASC

Supporting Subroutines: FRET, FSAV; ,STBT

Subroutine Size: No page zero locations and 62g locations of normally relocatable
memory.

Entry: | BDASC

Function: Converts an unsigned fixed point number to a string of ASCII decimal
characters,

Licensed Material - Property of Lo a Gooerel Corporation

integer

ROUTINE: BDASC {(Continued)

Entrz: .BDASC (Continued)

Calling Sequence:

(ACO contains the output string pointer, ACI contains the number which is
to be converted.)

FCALL
.BDASC

(Leading zeroes are suppressed; string is terminated with a null byte.
ACO contains the updated pointer to the null byte.)

(1) Accumulators and carry are restored on exit,
(2) .BDASC must be referenced by an . EXTN statement
(3) No error messages are generated.

--- ROUTINE: IABS

Supporting Subroutines: FRET, FSAV; .CPYARG

S

Subroutine Size: 1 page zero location and 11g locations of normally relocatable
memory.

Entry: IA.S

Function: Computes the absolute value of an integer argument.

Calling Sequence:

JSR @I1A.S
FORTRAN ADDRESS of result
FORTRAN ADDRESS of argument

(The location containing the result will be expressed as a FORTRAN
ADDRESS immediately following the call.)

Notes:
(1) Accumulators and carry are restored on exit,

(2) IA.S must be referenced by an . EXTD statement. The FCALL entry point . IABS
must be referenced by an . EXTN statement.

(3) No error messages are generated,

g

Licensed Material - Property of Data General Corporation

g S

--- ROUTINE: IDIM

Supporting Subroutines: FRET, FSAV; .FARG

Subroutine Size: 1 page zero location and 134 locations of normally relocatable
memory,

Entry: ID.M

Function: Computes the positive difference of two integers I and J.

Calling Sequence:

JSR @ID.M

FORTRAN ADDRESS of result

FORTRAN ADDRESS of I

FORTRAN ADDRESS of |
Notes:

(1) Accumulators and carry are restored on exit,

(2) ID.M must be referenced by an . EXTD statement, The FCALL entry .IDIM must
be referenced by an . EXTN statement.

(3) No error messages are generated,

(4) If I-]=0, the result is 0; otherwise, the result is the difference I-J.

--- ROUTINE: IPWER

Supporting Subroutines: MPY; SP, .RTES

Subroutine Size: 1 page zero location and 53¢ locations of normally relocatable
memory.

Entry: .IPWR

Function: Raises an integer to an integer power, with an integer result,

Calling Sequence:
(The integral base is in AC1, and the integral power is in ACO.)
JSR @.IPWR
(The result is in ACL.)

(1) Accumulators and carry are not restored on exit.

(2) An error message is issued if overflow occurs or if a zero base was input.

(3) .IPWR must be referenced by an , EXTD statement.
8-5

Licensed Material - Property of Data General Corporation

Integer

--- ROUTINE: ISIGN

Supporting Subroutines: FRET, FSAV; .FARG

Subroutine Size: 1 page zero location and l4g locations of normaily relocatable
memory,

Entry: 1S.GN

Function: Transfers the sign of one integer to another integer.

Calling Sequence:

ISR @IS.GN

FORTRAN ADDRESS of result

FORTRAN ADDRESS of integer receiving the sign
FORTRAN ADDRESS of integer whose sign to transfer

Notes:
(1) Accumulators and carry are restored on exit,

(2) IS.GN must be referenced by an . EXTD statement. The FCALL entry . ISIGN
must be referenced by an ., EXTN statement.

(3) No error messages are generated.

---ROUTINE: MNMXO0

Supporting Subroutines: FRET, FSAV; .FARG

Subroutine Size: 2 page zero locations and 44¢ locations of normally relocatable
memory.

Entry: MA.0

Function: Selects the largest member from a set of integers, expressing the sclection
as an integer.

Calling Sequence:

JSR @MA.0

N+1 (where N is the number of members in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of I

FORTRAN ADDRESS of Iy

FORTRAN ADDRESS of 1 _,

(The integer result is stored at the FORTRAN ADDRESS of the result
given in the calling sequence.)

Entry: MLO

Function: Selects the smallest member from a set of integers, expressing the
selection as an integer,

8-6

e

Licensed Material - Property of Data General Corporation

Integer

ROUTINE: MNMXO0 (Continued)

Entry: MLO (Continued)

Calling Sequence:

JSR @ML0

N+1 (where N is the number of members in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of Iy

FORTRAN ADDRESS of Iy

FORTRAN ADDRESS of I,

(The integer result is stored at the FORTRAN ADDRESS of the result
given in the calling sequence,)

Notes:

(1) Accumulators and carry are restored on exit,

(2) MA.0 and ML O must be referenced by ,EXTD statements. The FCALL entry
points, MAX0 and MINQ, must be referenced by , EXTN statements.

--- ROUTINE: MOD

Supporting Subroutines: FSAV, FRET; .FARG, .SDVD

Subroutine Size: 1 page zero location and 11g locations of normally relocatable
memory.

Entry: MO,

Function: Fetches the remainder of an integer quotient when integer 13 is divided
by integer I .

Cal]igg Seguence:
JSR @MO,
FORTRAN ADDRESS of result

FORTRAN ADDRESS of integer I,
FORTRAN ADDRESS of integer I

(The location of the result is expressed as a FORTRAN ADDRESS
immediately following the call.)

Notes:
(1) Accumulators and carry are restored on exit.

(2) MO. must be referenced by an , EXTD statement. The FCALL entry .MOD
must be referenced by an , EXTN statement.

(3) In the case of an illegal division, an error return will be made by .SDVD, and
a zero result will be returned.

--- ROUTINE: MULT

Licensed Material - Property of Data General Corporation

-

. Integer

SR

(
|
|

Supporting Subroutines: ; .SVO

Subroutine Size: 3 page zero locations and 33g locations of normally relocatable

Entry: MPY

Function:

memory.

Performs unsigned integer multiplication on NOVA family machines
lacking the hardware multiply /divide.

Calling Sequence:

Entry: MPYO

Function:

(AC1 and AC2 contain the multiplier and multiplicand upon entry to
the routine; contents of ACO will be added to the product.)

MPY

(The product of AC1 and AC2 is computed, and the entry contents of
ACO is added to the product. This sum is returned with the more sig~
nificant half in ACO, the less significant half in ACl. AC3 contains
the caller's FSP upon exit.)

Performs unsigned integer multiplication on NOVA family machines
lacking the hardware multiply/divide.

Calling Sequence:

Entry: DVD

Function:

(AC1 and AC2 contain the multiplier and multiplicand upon entry.)
MPYO
(The product of AC1 and AC2 is returned with the less significant

half in AC1, and the more significant half in ACO. AC3 contains
the caller's FSP on exit.)

Performs unsigned integer division on NOVA family machines
lacking the hardware multiply /divide.

Calling Sequence:

(The high and low parts of the dividend are in ACO and AC1, the
divisor is in AC2.)

DVD
(The remainder is in ACO, the quotient is in AC1, AC2 is unchanged,
and carry is cleared; AC3 is set to FSP. Upon overflow, carry is

set, FSP is placed in AC3, and return is made with the accumulators
unchanged.)

8-8

Licensed Material - Property of Data General Corporation

Integer

ROUTINE: MULT (Continued)

Notes:
(1) MPY, MPYO, and DVD must each be referenced by an . EXTN statement,

(2) Typical execution times for MPY0 are 74 us on the SUPERNOVA and 349 us
on the NOVA,

(3) Typical execution times for MPY are 73 us on the SUPERNOVA and 343 s
on the NOVA,

(4) Typical execution times for DVD are 96 us on the SUPERNOVA and 491us
on the NOVA,

===~ ROUTINE: SDVD

Supporting Subroutines: DVD; ,RTES, SP

Subroutine Size: 1 page zero location and 46g locations of normally relocatable
memory.

Entry: .SDVD

Function: Performs a division of two signed integers.
Calling Sequence:
(ACO contains the signed divisor, AC1 contains the signed dividend,)
JSR @.SDVD
(ACO contains the signed remainder, ACI1 contains the signed quotient,)
(1) Accumulators and carry are restored except as noted.
(2) ,SDVD must be referenced by an , EXTD statement,

(3) Division by zero or input value 215 will cause an error message to be issued,
with a zero quotient and remainder.

8-9

Licensed Material - Property of Data General Corporation

Integer

--- ROUTINE: SMPY

Supporting Subroutines: MPY; .RTES, SP

Subroutine Size: 1 page zero location and 24y locations of normally relocatable
memory.

Entry: ., SMPY

Function: Performs a multiplication of two signed integers.

Calling Sequence:

(ACO contains the signed multiplicand, AC1 contains the signed
multiplier.)

JSR @,SMrYy

(AC1 contains the signed result; the result is 0 if overflow occurs.)
(1) Accumulators and carry are restored except as noted.
(2) .SMPY must be referenced by an ,EXTD statement,

(3) An error message is output if overflow occurs. '

s

SINGLE

AINT......
ALG.
AMNX1
AMOD
COS.......

DIM........

EXP.......
EXPC......
FL
FPWER
PLYL

PRECISION FLOATING ROUTINES

D I I RN S e 0 e .
R A I Y L e e e e .
L I R R A S I P .o
D P R IR SRR
et s e e s s e s e e s » . P A
“ e 2 e e s 0 0 .. D A I RS Y
........... R I I I I AT R R PR
e e R I B IR o e 00 s
4 0 4 0 8 s s s e e e s et e e e Ey
2 e e s 0 0 e D I R I B I R R R
e e s e 0 0o D I I R A)
L I I R A I I
........ s 5 e 00 D R
P T I I T PR P A
R R N s e 00 s e P)
s s 0 s e 0 s e e I I I I I .

\OO\D\D\?\O\D\O‘O\D

\D\O\D\O\'D\D\D\O\D

LI R S D I e) L L D
ot et et ped e s D00 OO S ON O o GO

1

)
bt et et o

0 o0 N ONUt U WO O

A,

9-2

Licensed Material - Property of Data General Corporation

SPFL

--- ROUTINE: ABS

Supporting Subroutines: FSAV, FQRET; NSP

Subroutine Size: 1 page zero location and 6 locations of normally relocatable
memory.

Entry: . ABS
Function: Computes the absolute value of any real number,

Calling Sequence:

(The number whose absolute value is to be calculated is on top of
the number stack.)

JSR @.ABS
(The absolute value of the original num'ber is on top of the number stack.)
(1) Accumulators and carry are restored on exit,
(2) ABS., XAS., and DABS. are all equivalent to ,ABS . .ABS must be referenced by
an ., EXTD statement, and ABS,, XAS., and DABS. by .EXTN statements. The

FCALL entry, ABS, must be referenced by an . EXTN statement.

(3) No error messages are generated.

--- ROUTINE: AINT

Supporting Subroutines: ;. FRGO, FFLDI, NSP, SP

Subroutine Size: 1 page zero location and 60g locations of normally relocatable
memory.

Entry: Al T

Function: Truncates a single precision real number.

Calling Sequence:

JSR @AL T
FORTRAN ADDRESS of number to be truncated.

(The truncated real is placed on the number stack.)
(1) Accumulators and carry are not restored on exit.
(2) XA, T is equivalent to AL, T and both must be referenced by , EXTD statements,

(3) No error messages are generated,

9-3

Licensed Material - Property of Data General Corporation

SPFL

---ROUTINE: ALG

Supporting Subroutines: FRET, FSAV; NSP, .RTER, ,FARG, FRLDI,
FSBl, FAD1, FML1, FDV1, FFLD1, FPLYI,
FCLE1L, FXFLI1, FLIP1

Subroutine Size: 2 page zero locations and 2053 locations of normally relocatable
memory.

Entry: ALOG,

Function: Computes the single precision real natural logarithm of a single precision
real positive argument X.

Calling Sequence:

(Input argument x is placed on top of the number stack.)
ALOG,
(Output result replaces x on top of the number stack.)

Entry: AL.GO

Function: Computes the single precision real base 10 logarithm of a single precision
real argument x.

Calling Sequence:

JSR @AL.GO
FORTRAN ADDRESS of x

(Output result is placed on top of number stack.)
(1) Accumulators and carry are restored on exit,
(2) ALOG, and its FCALL entry, ALG, must both be referenced by , EXTN statements.
AL. GO must be referenced by an . EXTD statement and its FCALL entry, ,ALGIO0,

must be referenced by an , EXTN statement.

(3) Inthe case of a zero argument, an error message is given and the largest possible
real number is returned as a result.

(4) In the case of a negative argument, an error message is given and the logarithm
of the argument is computed.

Licensed Material - Property of Data General Corporation

SPFL

---ROUTINE: AMNX1

Supporting Subroutines: FSAV, FRET; ,FARG, FFLDIl, FFST1, FCLTI!

Subroutine Size: 2 page zero locations and 74g locations of normally relocatable
memory.

Entry: AM.XI, AMAXL

Function: Selects the largest member from a set of single precision real numbers,
expressing the result as a single precision real number,

Calling Sequence:

ISR @AM.1

N (the number of members in the set)
FORTRAN ADDRESS of Ry
FORTRAN ADDRESS of R}

FORTRAN ADDRESS of Rﬂ_1
(The result is placed on the number stack.)
OR

FCALL

AMAX1

N+1 (where N is the number of elements in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of Ry

FORTRAN ADDRESS of Ry

FORTRAN ADDRESS of Ryy.1
(The result is expressed as a single precision real stored at the FORTRAN

ADDRESS of the result given in the calling sequence.)

Entry: AM.NI1, AMINL

Function: Selects the smallest member from a set of single precision real numbers,
expressing the selection as a single precision real number.

Calling Sequence:
JSR @ AM.1
N (the number of members in the set)
FORTRAN ADDRESS of Ry
FORTRAN ADDRESS of Ry

FORTRAN ADDRESS of Ry,

(The result is placed on the number stack)

OR

9-5

Licensed Material - Property of Dat General Corporation 2

SPFL

ROUTINE: AMNX1 (Continued)

Calling Sequence: (Continued)

FCALL

AMINL

N+1 (where N is the number of elements in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of Rg

FORTRAN ADDRESS of Ry

FORTRAN ADDRESS of R

(The result is expressed as a single precision real stored at the FORTRAN
ADDRESS of the result given in the calling sequence.)

Notes:;
(1) Accumulators and carry are restored on exit.

(2) AM,Xland AM,Nlmust be referenced by .EXTD statements. AMAXland AMIN1
must be referenced by ,EXTN statements.

(3) No error messages are generated.

3
F
7

--- ROUTINE: AMOD

Supporting Subroutines: ; .FRGO, NSP, FML1, FDV1, FFLD1

Subroutine Size: 1 page zero location and 1004 locations of normally relocatable
memory.

Entry: AM.D

Function: Fetches the remainder in the quotient of two single precision real arguments.

Calling Sequence:
JSR @AM.D
FORTRAN ADDRESS of dividend
FORTRAN ADDRESS of divisor
(Result is placed on the top of the number stack.)
Notes:
(1) Contents of accumulators and carry are lost,

(2) AM.D must be referenced by an , EXTD statement,

(3) If the quotient causes overflow or underflow, an error message is output by
FDV1 and no meaningful result is obtained.

9-6

Licensed Material - Property of Data General ¢

Sorporation
i
z SPFL)

--- ROUTINE: ATN L

Supporting Subroutines: FRET, FSAV; NSP, .FARG, FRLDI, FADI, FML1,
FDV1, FPLY1, FSBl, FLIPl, FCLTIl, FNEGl, FFLD1

Subroutine Size: 2 page zero locations and 222g locations of normally relocatable
memory,

Entry: ATAN,
Function: Computes the real arctangent of a real argument
Calling Sequence:

(Input argument x on top of the number stack.)

ATAN.

(Output argument replaces x on the number stack,)

Entry: AT.N2

Function: Computes the real arctangent of the quotient of two real arguments, y/X.

Calling Sequence:

JSR @AT.N2
FORTRAN ADDRESS of y
FORTRAN ADDRESS of x

(Output argument is placed on top of the stack.)
Notes:
(1) Accumulators and carry are restored on exit.

(2) ATAN. must be referenced by an . EXTN statement.
AT,N2 must be referenced by an , EXTD statement.

ATAN, has an FCALL entry point, ATN, which must be referenced by an .EXTN
statement,

(3) Typical execution times are 13 ms for the NOVA with software multiply /divide
and 2.2 ms for the SUPERNOVA with hardware fixed point multiply/divide.

(4) The routine will accept input arguments of any size, but results computed by
the routine will fall within the following ranges:

-7 /2<ATN(X) < 7/2
- T=ATNZ2(x, y)=7

(5) Overflow is possible as the divisor x approaches zero. In the case of overflow,
+or - 7/2 is returned.

Licensed Material - Property of Data General Corporation

--- ROUTINE: COS

Supporting Subroutines: FRET, FSAV; NSP, FPLYIL, FRLDI1, FDVI1, FMLI,
FSB1, FNEGI, FBRKI

Subroutine Size: 2 page zero locarions and 1454 locations of normally relocatable
memory.

Entry: COS.

Function; Computes the real cosine of an argument x expressed as a single precision
real number.

Calling Sequence:
(Input argument x is placed on top of the number stack.)
COs.,
(Output result replaces x on the number stack.)
Entry: SIN,

Function: Computes the real sine of an argument x expressed as a single precision
real number.

Calling Sequence:
(Input argument X is placed on top of the number stack.)
SIN,
(Output result replaces x on the number stack.)
(1) Accumulators and carry are restored on exit,
(Zy COS. and SIN., must be referenced by .EXTN statements,
(3) Typical execution trimes are 13 ms for the NOVA with software multiply /divide

and 1.9 ms for the SUPERNOVA with hardware fixed point multiply /divide.

(4) In the case of large arguments of the form 207+6, -7< © <5, when n becomes
very large, significant digits will be lost in the result.

--~-ROUTINE: DIM

Supporting Subroutines: ; ,FRGO, NSp, FFLD1, FRLDI1, FCLT1, FSBl
Subroutine Size: 1 page zero location and 32g locations of normally relocatable
MEemory.
Entry: DI,

Function: Computes the positive difference of two SPFL real numbers, R and S,

Licensed Material - Property of Data General Corporation

SPFL

ROUTINE: DIM (Continued)

Entry: DI, (Continued)

Calling Sequence:

JSR @ DL
FORTRAN ADDRESS of R
FORTRAN ADDRESS of S
Notes:
(1) Accumulators and carry are not restored on exit.

(2) XD. is equivalent to DI, and both must be referenced by .EXTD statements.

(3) If R-S < 0 the result is zero; otherwise, the result is the difference R-S. The
result is placed on the number stack.

---ROUTINE: EXP

Supporting Subroutines: FRET, FSAV; NSP, .RTER, FPLY1l, FSGN1, FRLDI,
FSB1, FDV1, FMLI1, FLIPl, FBRKI1

Subroutine Size: 1 page zero location and 160g locations of normally relocatable
memory.

Entry: EXP.

Function: Computes the real value of e* for x any single precision floating point
argument.

Calling Sequence:
(Input argument X on top of number stack.)
EXP,
(Output replaces x on top of number stack.)
Notes:
(1) Accumulators and carry are restored on exit,

(2) EXP. must be referenced by an . EXTN statement. The FCALL entry point
EXPO must also be referenced by an ., EXTN statement.

(3) If x is the input argument, the routine performs the following calculation:
e® = x*loge2 =2 (I+F)

where I and F are the integral and fractional portions of the power whose base
is 2. The argument x of e* must be selected so that 1< 175g.

(4) If either underflow or overflow occurs, an error message is typed on the TTY
printer, and zero or the greatest possible real value replaces x on the stack.

9-9

Licensed Material - Property of Data General Corporation

SPFL

ROUTINE: EXP (Continued)
Notes: {Continued)

(3) In the case of very large I values, wherel > n*zlé, an error message is
output by FLFX1 (which is called by FBRKI1),

--- ROUTINE: EXPC

Supporting Subroutines: : FRLDI1, FML1, FLIPl, FPLYl, FSBl, FDVI,
.NIR, SP

Subroutine Size: 1 page zero location and 100g locations of normally relocatable
memory.

Entry: EXPC

Function: Calculates the value ¢X-1 for x a single precision real number.
Calling Sequence:
(Input argument X is on top of number stack.)
JSR @EXPC
(Result replaces x on number stack.)
(1) Accumulators and carry are not restored on exit,
(2) EXPC must be referenced by an . EXTD statement.

(3) x must be selected such that 0 =x*logjpe <1/2. No error message is issued if
x is selected to yield a value outside the acceptable range.

---ROUTINE: FL

Supporting Subroutines: DVD, MPY; SP, FLSP, .RTES, ,NDSP

Subroutine Size: 174 page zero locations and 754¢ locations of normally relocatable
memory.

Entry: FFLDI
Function: Unpacks and loads a single precision real number onto the number stack.

Calling Sequence:

FFLDI1
FORTRAN ADDRESS of packed number

Entry: FFSTI1

Function: Packs and stores a single precision real number from the number stack
into a FORTRAN ADDRESS

5-10

Licensed Material - Property of Data General Corporation

SPFL

[T —————

ROUTINE: FL (Continued

Entr;_z: FFST1 {Continued)

Calling Sequence:

FFST1
FORTRAN ADDRESS of destination

(The number stack is popped, and the popped number is packed and
stored at the specified FORTRAN ADDRESS, with rounding.)

Entry: FADIL

Function: Adds two single precision real numbers,

Calling Sequence:
FADIL

(The sum of the top, OP1, and next-to-top, OP2, numbers on the
number stack is computed; OP1 is popped and the sum replaces OP2.)

Entry:; FSB1
Function: Subtracts two single precision real numbers.
Calling Sequence:
FSB1

(The top number on the stack, OP1, is subtracted from the next-to-top
number, OP2; OP1 js popped and the value of OP2-OPl replaces OP2.

Entry: FCLTI, FCLE1l, FCEQIl, FCGEl, FCGTI1

Function: Compares the size and sign of two single precision real numbers, and
sets the carry bit to a one if the specified condition is true. Conditions
which may be examined are as follows:

OP2 < OP1 -- FCLTI
OP2 < OP1 -- FCLEIL
oP2 = OP1 -- FCEQ!L
OP2 = 0Pl -- FCGEl
OoP2 > OPL -- FCGT1

where OP1 is the top number on the number stack and OP2 is the next-
to-top number on the stack.

Calling Sequence:
(The two numbers to be compared are loaded on the number stack.)
FCLTI (oxr FCLE1, FCEQI!, etc.)

(Carry is set to a one if the comparison yields an affirmative result,
otherwise carry is set to a zero. Both compared numbers are popped
from the stack,)

Licensed Material - Property of Data General Corporation

% SPFL

ROUTINE: FL (Continued)

Entry: FMLI
Function: Multiplies two single precision real numbers.
Calling Sequence:
FML1
(The product of the top, OP1, and next-to-top, OF2, numbers on the

number stack is computed; OP1 is popped, and the product replaces
OP2.)

Entry: FDVI
Function: Divides two single precision real numbers.
Calling Sequence:
FDV1
(The quotient of the next-to-top, OP2 and top, OP1, numbers on thé

number stack is computed; OP1 is popped, and OP2/OPlreplaces OF2
on the stack.)

Entry: FNEG1

Function: Changes the sign of a single precision real number at the top of the
number stack.

Calling Sequence:
FNEGL
(The sign of the number on the top of the number stack is changed.)
Entry: FSGNI
Function: Examines the sign of a single precision real number.

Calling Sequence:

(The number which is to be examined is at the top of the number
stack.)

FSGN1
(ACO is returned with -1, 0, or 1, corresponding to a negative, zero,

or positive state of the examined number, The examined number is
popped from the number stack.)

Entry: FXFLI

Function: Converts a fixed point number to an unpacked single precision real and
loads it on the number stack.

)

Licensed Material - Property of Data General Corporation

SPFL

ROUTINE:

FL (Continued)

Entry: FXFL1 (Continued)

Calling Sequence:

FXFL1
FORTRAN ADDRESS of fixed point number

(1 is converted to a single precision floating point number which is
loaded on the number stack.)

Entry: FLFX1

Function: Pops a single precision real number from the number stack, converts
it to fixed point format, and stores it at a specified FORTRAN ADDRESS.

Calling Sequence:

FLFX1
FORTRAN ADDDRESS to receive I

(The top number on the number stack is converted to a fixed point
number I, the stack is popped, and 1 is stored at the FORTRAN ADDRESS
following the call.)

Notes:

--- ROUTINE:

(1) Accumulators and carry are not restored on exit.

(2) FFLD1, FFSTl, FADl, FSBl, FCLT1, FCLEIL, FCEQl, FCGE]L,
FCGT1, FML1, FDV1, FNEGl, FXFLI1 and FLFX1 must all be referenced
by .EXTN statements.

(3) JSR @DB.E is equivalent to FFLDI and DB, E must be referenced by an . EXTD
statement. JSR @FL,AT is equivalent to FLFX1 and must be referenced by an
. EXTD statement.

(4) Error messages are generated on stack overflow or underflow. Error messages
are also generated whenever a truncation of significant exponent digits occurs as
the result of packing an unpacked number. An error message will also be issued
if the input argument to FLFXI falls outside the range {—21 +1, +2 15—1], and a
signed maximum integer is returned as a result, If the input argument for FLFX1
is in the range <-1, +1 >, zero is returned as a result.

(5) Numbers to be placed on the number stack are normalized after arithmetic
operations.

FPWER

Supporting Subroutines:: FLIPI, NSP, .RTES, SP, FRLDI, FMLI, ALOG. EXP.

Subroutine Size: 1 page zero location and 53g locations of normally relocatable
memory.

Licensed Material - Property of Data General Corporation

SPFL

ROUTINE: FPWER (Continued)

Entry: FPWRI

Function: Raises a non-negative single precision real base to a single precision
real power.

Calling Sequence:

(The real power is loaded on the number stack, and the real base is
placed just below the power on the stack.)

FPWRI1

(The real power is removed from the number stack and the result
replaces the base at the top of the stack.)

Notes:

(1) Accumulators and carry are not restored on exit.

(2) FPWRI must be referenced by an , EXTN statement,

(3) This routine generates an error message on receipt of a negative base argument,
and returns the negative base as the result; error messages are generated by
the supporting routines if stack underflow or overflow occurs.

(4) Typical execution times are 31 ms for the NOVA with software multiply /divide

and 4.9 ms for the SUPERNOVA with hardware fixed point multiply /divide.

--- ROUTINE: PLY1

Supporting Subroutines: ; FRST1, FRLD1, FML1, FADI, NSP, SP

Subroutine Size: 1 page zero location and 33g locations of normally relocatable
memory.

Entg}:: FPLY1

Function: Computes a polynomial P(x) for x a single precision real argument.

Calling Sequence:

(The input argument X is at the top of the number stack. ACO contains
the start address of LIST + 1. See Notes.)

FPLY1
(The output result replaces the input argument on the number stack.)
Notes:

(1) Accumulators and carry are not restored on exit,

(2) FPLY! must be referenced by an , EXTN statement.

g

% i
s

Licensed Material - Property of Data General Corporation

SPFL

ROUTINE: PLY1 (Continued)

Notes: (Continued)

(3) P(x) is of the formP(x) = Cg + C1x + Cox? +... +CpX" where Cy--+Cn
are single precision real coefficients and all powers of x are positive integers.

The order of the coefficients list is

LIST: Single precision fixed point order of the polynomial.
LIST+1: Real coefficient Cp in unpacked form.

LIST+7: Real coefficient Cg in unpacked form.
LIS’I‘+1+6n: Real Coefficient Cgy in unpacked form.

(4) The coefficient list requires 6n + 2 locations of normally relocatable memory.

---ROUTINE: RATNI

Supporting Subroutines: ; ATAN., NSP, FDV1, SP, FRLDI, FS5Bl

Subroutine Size: 1 page zero location and 35g locations of normally relocatable
memory.

Entry: RATNI

Function: Calculates the arctangent of the quotient of two single precision real
arguments on the number stack.

Calling Sequence:

(The argument divisor, OPl, is at the top of the number stack. The
argument dividend, OP2, is at the frame following OP1 on the number
stack.)
RATNI

(Argument OP! is removed from the number stack and the arctangent
of OP2 /OP1 replaces the input argument OP2 on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) RATNI must be referenced by an . EXTN statement.

--- ROUTINE: SIGN

Supporting Subroutines: FRET, FSAV; FFLDl, FFSTIl, NSP, .FARG

Subroutine Size: 1 page zero location and 33g locations of normally relocatable
memory.

Licensed Material - Property of Data General Corporation ;

{ SPFL

L

ROUTINE: SIGN (Continued)

Entry: SLN, SIGN

Function: Transfers the sign of one single precision real number to another
single precision real number,

Calling Sequence:

JSR @SLN
FORTRAN ADDRESS of Rl
FORTRAN ADDRESS of R2

(The sign of R2 is transferred to R1 which is then stored on the
number stack.)

OR

FCALL

SIGN

Integer 3

FORTRAN ADDRESS of Result
FORTRAN ADDRESS of R1
FORTRAN ADDRESS of R2

(The sign of R2 is transferred to R1 which is then stored at the
FORTRAN ADDRESS of the result.)

(1) Accumulators and carry are restored on exit.
(2) No error messages are generated.
(3) SLN must be referenced by an , EXTD statement and SIGN by an ,EXTN

statement.

--- ROUTINE: SINH

Supporting Subroutines: FRET, FSAV; NSP, EXP, EXPC, .FARG, FDVI,
FRLDI1, FLIP1, FCLT1, FML1, FSBl, FFLDI1

Subroutine Size: 2 page zero locations and 66g¢ locations of normally relocatable
memory.

Entry: .SHIN
Function: Computes the hyperbolic sine of a single precision real number.
Calling Sequence:
(Input argument is on top of number stack.)

JSR @.SHIN

{Result is placed on the number stack.)

9-16

Licensed Material - Property of Data General Corporation

SPFL
ROUTINE: SINH (Continued)
Entry: SLLH
Function: Computes the hyperbolic sine of a single precision real number,
Calling Sequence:
JSR @SL.H
FORTRAN ADDRESS of argument
(Result is placed on the number stack.)
Notes:
(1) Accumulators and carry are restored on exit,
(2) .SHIN and SI.H have FCALL entry points SHIN and SNH,
SHIN and SNH must be referenced by .EXTN statements;
. SHIN and SL. H must be referenced by .EXTD statements.
(3) No error messages are generated.
--- ROUTINE: SQRT
Supporting Subroutines: FRET, FSAV; NSP, .RTER, FRLDIl, FDVI, FLIPI,
FAD1
Subroutine Size: 1 page zero location and 142 g locations of normally relocatable
memory.
Entry: SQRT,

Function: Computes the single precision real square root of a non-negative single
precision real argument x,

Calling Sequence:
(Input argument x on top of number stack.)
SQRT,

(Output result replaces x on top of number stack.)

Notes:

(1) Accumulators and carry are restored on exit.

(2) Both SQRT. and the FCALL entry point SQR must be referenced by .EXTN
statements.

(3) Typical execution times are 13 ms for the NOVA with software multiply /divide
and 1.7 ms for the SUPERNOVA with hardware fixed point multiply /divide,

(4) If the input argument is negative, an error message is output and the square
root of the absolute value of the argument is calculated,

Licensed Material - Property of Data General Corporation
——
SPFL

--- ROUTINE: TAN !

Supporting Subroutines: FRET, FSAV; NSP, FNEGL, FRLD1, FMLI1, FBRKI,
FSBl, FLIPL, FPLYl, FDVI

Subroutine Size: 1 page zero location and 1164 locations of normally relocatable
memory.

Entry: TAN,

Function: Computes the single precision real tangent of a single precision real
argument X.

Calling Sequence:
(Input argument X is on top of the number stack.)
TAN.
(Output result replaces x on top of number stack.)
(1) Accumulators and carry are restored on exit,

(2) Both TAN. and the FCALL entry point TN must be referenced by .EXTN
statments.

(3) Typical execution times are 19 ms for the NOVA with software multiply/divide
and 2.4 ms for the SUPERNOVA with hardware fixed point multiply /divide.

--- ROUTINE: TANH

Supporting Subroutines: FRET, FSAV; .FARG, NSP, FRLD1, FRST1, FSB1,
FAD1, FML1, FDV1, FFLD1, FCLEl, FLI?1, EXP,,
FNEG1

Subroutine Size: 1 page zero location and 126g locations of normally relocatable
memory.

Entry: TA.H
Function: Calculates the hyperbolic tangent of a single precision real number.

Calling Sequence:

JSR @TA.H
FORTRAN ADDRESS of the argument

(The result is loaded on top of the number stack.)
Notes:
(1) Accumulators and carry are restored on exit.

(2) TA.H must be referenced by an .EXTD statement. The FCALL entry point
TNH must be referenced by an . EXTN statement.

(3) Error messages may be generated by the supporting routines.

9-18

& F
g

DOUBLE PRECISION FLOATING POINT ROUTINES

ARTCA
COSIN . .ovvnnnan
DEXPC..ivvvneunn
DEXPOve0v0
DFL tivvinnennnn
DINT eiuinnennens
DLOG ¢..vvenennn
DMNMXovvunns
DMODovuvnn
DPOLY0ven
DPWER00u.
DSIGN ¢ vvvenennns
DSINH ...ieunen.
DSQRT ...evevunne
DTANH
RATN200n
TANGE ..evvevnen

10-1

LRI Y

.

..

..

..

s

..

..

..

s .

..

..

..

* .

Y

..

. 10-3
. 10-4
. 10-5
. 10-5
. 10-6
. 10-9
. 10-10
. 10-11
. 10-13
. 10-13
. 10-14
. 10-15
. 10-16
» 10“16
. 10-17
. 10-18
. 10-18

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: ARCTA

Supporting Subroutines: FRET, FSAV; FML2, FDV2, FSBZ, FFLD2, FPLY2
FaD2z, FCLT2, FRLD2Z, FLIP2, NSP, ,FARG

Subroutine Size: 2 page zero locations and 301g lccations of normally relocatable
memory,

Entrg: DATA,

Function: Calculates the arctangent of a double precision real number.

Caliing Segquence:

(The single argument whose arctangent is to be calculated is loaded
on the number stack.)

DATA,
(The result replaces the input argument on the number stack.)

Entrz: DA, N2

Function: Calculates the arctangent of the guotient of two double precision
real numbers,

Calling Sequence:
JSR @DA, N2

FORTRAN ADDRESS of argument dividend
FORTRAN ADDRESS of argument divisor

(The arctangent of the quotient of the input arguments is loaded on
the number stack,)

Notes:

(1) Accumulators and carry are restored on exit,

(2) XA.N2 and DA, A2 are equivalent to DA, N2 and all must be referenced by
. EXTD statements. XAAN, isequivalent to DATA. and both must be referenced
by .EXTN statements.

(3) The sign of the result is the same as the sign of the single input argument or
argument quotient,

(4) Typical execution times for DA, N2 are 120 ms for the NOVA with software
multiply /divide and 14 ms for the SUPERNOVA with hardware fixed point multiply/
divide. Timings for DATA, are 74 ms for the NOVA with software multiply /divide
and 15 ms for the SUPERNOVA with hardware fixed point multiply /divide.

10-3

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: COSIN

Supporting Subroutines: FRET, FSAV; NSP, FPLY2, FBRK2, FMIL2, FDV2,
FLIP2, FSB2, FRLD2

Subroutine Size: 2 page zero locations and 161g locations of normally relocatable
memory.

Entry; DCOS,

Function: Calculates the cosine of a double precision real number.
Calling Sequence:
{The input argument is loaded on the number stack.)
DCOS,
(The result replaces the input argument on the number stack.)

Entry: DSIN

Function: Calculates the sine of a double precision real number.
Calling Sequence:

(The input argument is loaded on the number stack.)

DSIN,

(The result replaces the input argument on the number stack.)
(1) Accumulators and carry are restored on exit.

(2) XCS. is equivalent to DCOS, and XSN, is equivalent to DSIN. All must be
referenced by ., EXTN statements.

(3) Typical execution times for DCOS. are 86 ms for the NOVA with software multiply
divide and 12 ms for the SUPERNOVA with hardware fixed point multiply /divide.
Typical execution times for DSIN, are 90 ms for the NOVA with software multiply/
divide and 11 ms for the SUPERNOVA with hardware fixed point multiply /divide.

10-4

s

g

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: DEXPC

Supporting Subroutines: ; FRLD2, FML2, FLIP2, FPLY2, FSB2, FDV2, NSP,
SP, .NR1

Subroutine Size: 1 page zero location and 1374 locations of normally relocatable
memory.

Entry: DEXPC

Function: Calculates the value e¥*-1 for x a double precision real number,

Calling Sequence:
(The input argument is loaded on the number stack.)
JSR @DEXPC

(The result replaces the input argument on the number stack.)

(1) Accumulators and carry are not restored on exit,
(2) DEXPC must be referenced by an , EXTD statement.
(3) Error messages may be generated by the supporting routines.

(4) The range of value for input arguments is restricted such that 0= 1ogme *x < 1/2.

--- ROUTINE: DEXPO

Supporting Subroutines: FRET, FSAV; NSP, .RTER, FSGN2, FRLD2, FSB2,
FML2, FDV2, FLIP2, FBRK2, FPLY2, FRST2, FAD2

Subroutine Size: 1 page zero location and 232g locations of normally relocatable
memory.

Entry: XEP,

Function: Calculates the value eX for x any double precision real number,

Calling Sequence:

(The input argument is loaded on the number stack.)
XEP,

(The result replaces the input argument on the number stack.)

10-5

Licensed Material - Property of Data General Corporation

DPFL 1

:

ROUTINE: DEXPO (Continued)

Notes:
(1) Accumulators and carry are restored on exit,

(2) DEXP, is equivalent to XEP, and both must be referenced by ,EXTN statements.
The FCALL entry point DEXP must also be referenced by an . EXTN statement,

(3) An error message is issued upon overflow or underflow and either the largest
possible value or zero is returned as a result,

(4) Typical execution times are 76 ms for the NOVA with software multiply /divide
and 11 ms for the SUPERNOVA with hardware fixed point multiply /divide.

--- ROUTINE: DFL

Supporting Subroutines: DVD, MPY; SP, FLSP, .RTES, .NDSP, .SVO

Subroutine Size: 17g page zero locations and 1233g locations of normally relocatable
memory.

Entry: FAD2

Function: Adds two double precision real numbers.

Calling Sequence:

FAD2

(The sum of the top, OPl, and next-to-top, OP2, numbers on the
number stack is computed; OP1 is popped and the sum replaces OF2.)

Entry; FSB2

Function: Subtracts two double precision real numbers.

Calling Sequence:

FSB2

(The top number on the stack, OF1, is subtracted from the next-to-top
number, OP2; OP! is popped, and the value OP2-OP1 replaces OP2.)

10-6

Licensed Material - Property of Data General Corporation

DPFL

ROUTINE: DFL (Continued)

Entry: FCLT2, FCLE2, FCEQ2, FCGE2, FCGT2

Function: Compares the size and sign of two double precision real numbers, and
sets the carry bit to a one if the specified condition is true. Conditions
which may be examined are as follows:

OP2 < OPl -- FCLT2
OP2 < OPl -- FCLE2
OP2 = OPl -- FCEQ2
OP2 = OPl -- FCGE2
OP2 > OPl -- FCGT2

where OP1 is the top number on the number stack and OP2 is the next-to-
top number on the stack.

Calling Sequence:
(The two numbers to be compared are loaded on the number stack.)

FCLT2 (or FCLE2, FCEQ2, etc,)

(Carry is set to a one if the comparison yields an affirmative result,
otherwise carry is set to a zero. Both compared numbers are popped
from the stack.)

Entry: FFLD2

Function: Unpacks and loads a double precision real number onto the number stack.

Calling Sequence:

FFLD2
FORTRAN ADDRESS of packed number

Entry: FFST2

Function: Packs and stores a single precision real number from the number stack
into a FORTRAN ADDRESS.

Calling Sequence:

FFST2
FORTRAN ADDRESS of destination

(The number is popped, and the popped number is packed and stored
at the specified FORTRAN ADDRESS, with rounding.)

Entry: FML2

Function: Multiplies two double precision real numbers.

Cal]ing Sequence:
FML2

(The product of the top, OPl, and next-to-top, OP2, numbers on the
number stack is computed; OP1 is popped, and the product replaces OP2.)

10-7

Licensed Material - Property of Data General Corporation

DPFL

ROUTINE: DFL (Continued)

Emry: FDV2
Function: Divides two double precision real numbers.
Calling Sequence:
FDV2
(The quotient of the next-to-top, OF2, and top, OP1, numbers on the

number srack is computed; OP1 is popped, and 0P2 /OP! replaces OP2 on
the stack.)

Entry: FNEG2

Function: Changes the sign of a double precision real number at the top of the
number stack.

Calling Sequence:
FNEG2

(The sign of the number on the top of the number stack is changed.)

0

Entry: FSGN2

Function: Examines the sign of a double precision real number.

Calling Sequence:

(The number which is to be examined is at the top of the number stack.)

FSGN2

Entry: FSGN2 (Continued)

(ACO is returned with -1,0, or 1 corresponding to a negative, zero, or
positive state of the examined number. The examined number is popped
from the number stack.)

Entry: FXFL2

Function: Converts a fixed point number to an unpacked double precision real, and
loads it on the number stack.

Calling Sequence:

FXFL2
FORTRAN ADDRESS of fixed point number I

(1 is converted to a double precision floating point number which is
loaded on the number stack.)

10-8

S

Licensed Material - Property of Data General Corporation

DPF L

ROUTINE: DFL (Continued)

Entry: FLFX2

Function: Pops a double precision real number from the number stack, converts it
to fixed point format, and stores it at a specified FORTRAN ADDRESS.

Calling Sequence:

FLFX2
FORTRAN ADDRESS to receive |

(The top member from the number stack is converted to a fixed point
number I, the stack is popped, and I is stored at the FORTRAN ADDRESS
following the call.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) FFLD2, FFST2, FAD2, FSB2, FCLT2, FCLE2, FCEQ2, FCGE2, FCGT2,
FML2, FDV2, FNEG2, FXFL2, and FLFX2 must all be referenced by .EXTN
statements,

(3) JSR @XD.E is equivalent to FFLD2 and XD, E must be referenced by an .EXTD

statement. JSR @DF. OT is equivalent to FLFX2 and DF.OT must be referenced by

an .EXTD statement.

N

(4) Error messages are generated on stack overflow or underflow. Error messages
are also generated whenever a truncation of significant exponent digits occurs as
the result of packing an unpacked number. An error message will also be issued
if the input argument to FLFX2 falls outside the range [-215+1, 4+215-11, anda
signed maximum integer is returned as a result. If the input argument for FLFX2
is in the range <-1, +1 >, zerxo is returned as a result.

(5) Numbers to be placed on the number stack are normalized after arithmetic
operations.

--- ROUTINE: DINT

Supporting Subroutines: ;. FRGO, FFLD2, NSP, SP

Subroutine Size: 1 page zero location and 105g of normally relocatable memory.
Entry: DI.T

Function: Truncates a double precision real number.

Calling Sequence:

JSR @CIL. T
FORTRAN ADDRESS of number to be truncated

(The truncated real number is placed on the number stack.)

10-9

Licensed Material - Property of Data General Corporation

I DPFL

i

ROUTINE: DINT (Continued)

Notes:
(1) Accumulators and carry are not restored on EXIT.

(2) XDIT is eguivalent to DL T and both must be referenced by .EXTD
statements.

(3) no error messages are generated.

---ROUTINE: DLOG

Supporting Subroutines: FRET, FSAV; .RTER, NSP, .FARG, FFLD2, FML2,
FCLT2, FLIP2, FSB2, FDV2, FAD2, FRLD2, FPLY2,
FXFL2

Subroutine Size: 2 page zero locations and 275g locations of normally relocatable
memory.

Entry: DLOG.

Function: Calculates the natural logarithm of a double precision real number,

Calling Sequence:

(The argument whose natural logarithm is to be calculated is loaded
on the number stack.)

DLOG.

(The result is loaded on the top of the number stack.)

Entry: DL.GO, XA.GO

Function: Calculates the logarithm to the base 10 of a double precision real number.

Calling Sequence:

JSR @DL.GO(or @XA.GO)
FORTRAN ADDRESS of argument whose base 10 logarithm is to be
calculated.

(The result is loaded on the number stack.)

10-10

Licensed Material - Property of Data General Corporation
e

DPF L §

ROUTINE: DLOG (Continued)

Notes:
(1) Accumulators and carry are restored on exit,

(2) DLOG, and XAOG. are equivalent and must be referenced by . EXTN statements,
DL.GO and XA, G0 are equivalent and must be referenced by ,EXTD statements.

(3) If the input argument is negative an error message is issued and the logarithm of
the absolute value is calculated. On receipt of a zero argument the largest
possible negative number will be returned.

(4) Typical execution times for the natural logarithm function are 99 ms for the
NOVA with software multiply /divide and 13 ms for the SUPERNOVA with hardware
fixed point multiply /divide. Typical timings for the base 10 logarithm function
are 103 ms for the NOVA with software multiply /divide and 14 ms for the SUPERNOVA
with hardware fixed point multiply /divide.

~--ROUTINE: DMNMX

Supporting Subroutines: FSAV, FRET; .FARG, FFST2, FFLD2, FCLT2

Subroutine Size: 2 page zero locations and 12g locations of normally relocatable
memory.

Entry: DM.X1, DMAXI1

Function: Selects the largest member from a set of double precision real numbers,
expressing the result as a double precision real number.

Calling Sequence:
JSR @DM.X1

N (number of members in the set)

FORTRAN ADDRESS of DR1

FORTRAN ADDRESS of DR2

FORTRAN ADDRESS of DRN

(The largest member of the set is placed on the number stack.)

OR

10-11

Licensed Material - Property of Data General Corporation

DPFL

ROUTINE: DMNMX (Continued)
Calling Sequence: {Continued)

FCALL

DMAX1

N+1 (N is the number of members in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of DR1

§ORTRAN ADDRESS of DR2

i‘“ORTRAN ADDRESS of DRN

Entry: DM.NI1, DMINI

Function: Selects the smallest member from a set of double precision real numbers,
expressing the result as a double precision real number.

Calling Sequence:

JSR @DM,N1

N (number of members in the set)
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

FORTRAN ADDRESS of DRN

(The smallest member of the set is placed on the number stack.)
OR

FCALL

DMIN1

N+1 (N is the number of members in the set)

FORTRAN ADDRESS of result

FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

FORTRAN ADDRESS of DRN
Notes:
(1) Accumulators and carry are restored on exit.

(2) No error messages are generated.

(3) XA.X1 is equivalent to DM, X1, and XA.N1 is equivalent to DM, N1. All must
be referenced by .EXTD statements.

(4) DMAX1 and DMIN1 must be referenced by .EXTN statments.

10-12

p—

St

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: DMOD

Supporting Subroutines: ; FFLD2, FDV2, ¥FML2, _[FRGO, NSP, SpP, FFST2

Subroutine Size: 1 page zero location and 127g locations of normally relocatable
Memory,

Entry: DM.D

Function: Fetches the remainder of a double precision real quotient when DR1
is divided by DR2,

Calling Sequence:

JSR @DM.D
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

{Result is placed on the top of the number stack.)

Notes:
(1) XA.D is equivalent to DM. D and both must be referenced by , EXTD statements,

(2) If the quotient DR1/DR2 causes overflow or underflow, an error message will
be output by FDV2 and no meaningful result will be returned.

--- ROUTINE: DPOLY

Supporting Subroutines: ; NSP, SP, FRLD2, FML2, FAD2, FRST2

Subroutine Size: 1 page zero location and 33g locations of normally relocatable
mermory.

Entry: FPLY2

Function: Computes a polynomial P(x) for x a double precision real number,

Calling Sequence:

{The input argument x is at the top of the number stack, ACO contains
the start address of LIST +1. See Notes.)

FPLY2

(The output result replaces the input argument on the number stack.)

10-13

Licensed Material - Property of Data General Corporation

i DPFL

|

ROUTINE: DPOLY: (Continued)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) FPLY2 must be referenced by an , EXTN statement,

(3) P(x) is of the form P(x)=Cq + Cyx + szz +...+ Cpx® where Cq... Cy, are double
precision real coefficients and all powers of x are positive integers,

The order of the coefficients list is:

LIST: Single precision fixed point order of the polynomial
LIST +1: DPFL real coefficient Cp in unpacked form

LIST +7: DPFL real coefficient Cp-1 in unpacked form
LIST+1+6n: DPFL real coefficient Cy in unpacked form.

(4) The coefficient list requires 6n+2 locations of normally relocatable memory.

---ROUTINE: DFWER .

Supporting Subroutines: FLIP2, NSP, .RTES, SP, FRLD2, FML2, DLOG,, DEXP,

P

Subroutine Size: 1 page zero location and 55g locations of normally relocatable
memory.

Entry: FPWR2

Function: Raises a non-negative double precision real number to a double precision
real power,

Calling Sequence:

(The real power is loaded onto the number stack, and the real base is
placed just below the power on the stack.)

FPWR2

(The real power is loaded onto the number stack, and the result replaces
the base at the top of the stack.)

Notes:

(1) Accumulators and carry are not restored on exit.

(2) FPWR2 must be referenced by an .EXTN statement.

(3) This routine generates an error message and returns the base as the result
upon receipt of a negative base argument; the supporting routines generate
error messages if underflow or overflow occurs.

(4) Typical execution times are 180 ms for the NOVA with software fixed point
multiply /divide and 24 ms for the SUPERNOVA with hardware fixed point
multiply /divide.

L

10-14

Licensed Material - Property of Data General Corporation
—
i DPFL

| ———

--- ROUTINE: DSIGN

Supporting Subroutines: FRET, FSAV; FFLD2, NSP, ,FARG, FFST2

Subroutine Size: 1 page zero location and 33g locations of normally relocatable
memory.

Entry: DS.GN, DSIGN

Function: Transfers the sign of one double precision real number to another double
precision real number.

Calling Sequence:

JSR @DS. GN
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

(The sign of DR2 is transferred to DR1, which is then stored on the
number stack.)

OR
FCALL
DSIGN
Integer 3
FORTRAN ADDRESS of result
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

(The sign of DR2 is transferred to DR1, which is then stored at the
FORTRAN ADDRESS of the result.)

Notes:
(1) Accumulators and carry are restored on exit,
(2) No error messages are generated.
(3) XS.N is equivalent to DS, GN and both must be referenced by ,EXTD statements.

(4) DSIGN must be referenced by an ,EXTN statement,

10-15

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: DSINH

Supporting Subroutines: FRET, FSAV; NSP, DEXP, DEXPC, FDV2, FRLD2,
FLIP2, FCLT2, FML2, FSB2, ,FARG, FFLD2

Subroutine Size: 2 page zero locations and 72g locations of normally relocatable
memory.

Entry: DSHIN
Function: Calculates the hyperbolic sine of a double precision real number.
Calling Sequence:
(The argument is placed on the number stack.)
JSR @, DSHIN
(The result replaces the argument on the number stack.)
Entry: DS,NH
Function: Calculates the hyperbolic sine of a double precision real number,

Calling Sequence:

JSR @DS. NH
FORTRAN ADDRESS of argument

(The result is placed on the number stack.)
(1) Accumulators and carry are restored on exit,
(2) XS.H is equivalent to ,DSHIN, DS,NH, .DSHIN, and XS, H must all be
referenced by , EXTD statements. ,DSHIN and DS.NH have FCALL entry

points DSINH and DHNH, DSINH and DSNH must be referenced by .EXTN
statements.

--- ROUTINE: DSQRT

Supporting Subroutines: FRET, FSAV; FRLD2, FML2, FAD2, FLIPZ,
FPLY2, FDV2, NSP, .RTER

Subroutine Size: 1 page zero location and 127g locations of normally relocatable
memory.

Entry: DSQR.
Function: Calculates the square root of a double precision real numbexr.
Calling Sequence:
(The input argument is loaded on the number stack.)

DSQR.
(The result replaces the input argument on the number stack.)

10-16

g

Licensed Material - Property of Data General Corporation

DPFL

ROUTINE: DSQRT (Continued)

Notes:
(1) Accumulators and carry are restored on exit.
{2) XSRT. is equivalent to DSQR. and both must be referenced by . EXTN
statements. The FCALL entry point DSQR must also be referenced by an ,EXTN

statement,

(3) An error message is output on receipt of 2 negative argument. In this case the
square root of the absolute value of the argument is calculated.

(4) Typical execution times are 82 ms for the NOVA with software multiply /divide
and 8.1 ms for the SUPERNOVA with hardware fixed point multiply /divide.

--- ROUTINE: DTANH

Supporting Subroutines: FRET, FSAV; FAD2, FML2, FDV2, FFLD2, DEXP.,
FSB2, FLIP2, FCLT2, FRST2, FRLD2

Subroutine Size: 1 page zero location and 136g locations of normally relocatable
memory.

Entry: DT.NH

Function: Calculates the hyperbolic tangent of a double precision real number.

Calling Sequence:

JSR @DT.NH
FORTRAN ADDRESS of argument

(The result is loaded onto the number stack.)
Notes:
(1) Accumulators and carry are restored on exit.
(2) XT.H is equivalent to DT.NH and both must be referenced by .EXTD statements.
(3) Error messages may be generated by the supporting routines.
(4) The FCALL entry point must be referenced by an . EXTN statement.

(5) Typical execution times are 185 ms for the NOVA with software multiply/divide
and 21.5 ms for the SUPERNOVA with hardware fixed point multiply/divide.

10=-17

Licensed Material - Property of Data General Corporation

DPFL

--- ROUTINE: RATN2

Supporting Subroutines: ; DATA., NSP, FDV2, SP, FRLD2, FSB2
Subroutine Size: 1 page zero i_écation and 37g locations of normally relocatable memory.

Entry: RATN2

Function: Calculates the arctangent of the quotient of two double precision real
arguments on the number stack,

Calling Sequence:

(The argument divisor, OP1, is at the top of the number stack. The
argument dividend, OF2, is at the frame following OPl on the number
stack.)

RATN2

(Argument OP! is removed from the number stack and the arctangent
of OF2/OP1 replaces the input argument OP2 on the number stack.)

Notes;
(1) Accumulators and carry are not restored on exit.

(2) RATN2 must be referenced by an . EXTN statement.

--- ROUTINE: TANGE

Supporting Subroutines: FRET, FSAV; FML2, FDV2, FRLD2, FSB2, FBRK2,
FPLY2, FLIP2, NSP

Subroutine Size: 1 page zero location and 165g locations of normally relocatable
memory.

Entry: DTAN.

Function: Calculates the tangent of a double precision real number.
Calling Sequence:

(The input argument is loaded on the number stack.)

DTAN,

(The result replaces the input argument on the number stack.)
(1) Accumulators and carry are restored on exit.

(2) XTN. is equivalent to DTAN. and both must be referenced by .EXTN statements,
The FCALL entry DTN must also be referenced by an . EXTN statement,

(3) Typical execution times are 84 ms for the NOVA with software multiply /divide
and 9.3 ms for the SUPERNOVA with hardware fixed point multiply /divide.

10-18

s

Sy

SINGLE PRECISION COMPLEX ROUTINES

L7 - 11-3
L I 5 11-3
CCEQ e e e e 11-4
L 1 11-5
1103 5. 11-5
CEXPO e v e v ettt e et et et etssenannnnan 11-6
Lol % 1 11-6
CLOAD. & vt ittt et e e iieenen [11-7
CLOG .. e e e e e e ... 11-8
CMUL .ot ittt ittt e e s e it e e e 11-9
CNEG t ittt ittt sttt s ae e eiennnnnns 11-9
CONJG . vt it it ettt ittt en e PN 17-10
100 2 11-11
L0 11-11
(07500) 2 A 11-12
CSTOR......... e e e e e e 11-12
RCABS & i vt ettt ettt ettt s eee e 11-13
REAL C ot e e e et e e e e e e 11-13

11-1

s,

11-2

Licensed Material - Property of Dat General Corporation

i SPCX

|

--- ROUTINE: CABS

Supporting Subroutines: ; .FRGO, FFLD1, RCABS, SP

Subroutine Size: 1 page zero location and 17g locations of normally relocatable
memory.

Entry: CA.S

Function: Obtains the absolute value of a single precision complex number.

Calling Sequence:

JSR @CA.S
FORTRAN ADDRESS of argument

(The absolute value of the argument is loaded onto the number stack.) ‘
(1) Accumulators and carry are not restored on exit.
(2) CA.S must be referenced by an .EXTD statement.
(3) Stack overflow messages may be issued by the supporting routines.
(4) The result obtained by this routine is a real number, thus occupying only one

6-word frame on the number stack.

--- ROUTINE: CADD

Supporting Subroutines: ; FADI1, FRST1, FRLD1, ,NR2, SP, NSP

Subroutine Size: 2 page zero locations and 22g locations of normally relocatable
memory.

Entry: CADIL

Function: Adds the topmost two single precision complex numbers on the number
stack.

Calling Sequence:
(The two arguments are loaded on the number stack.)
CAD1L

(The top argument is removed from the stack, and the sum replaces the
second argument.)

Entry: CSB1

Function: Subtracts the top single precision complex number on the number stack
from the next-to-top single precision complex number on the stack.

PLicensed Material - Property of Data General Corporation

|
SPCX

ROUTINE: CADD (Continued)

Entry: CBS1 (Continued)
Calling Sequence:

(The two arguments are loaded on the number stack.)
CSBl

{The top argument is removed from the stack and the difference replaces
the second argument,)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CADI and CSB1 must be referenced by .EXTN statements.

(3) Error messages are generated by supporting routines if overflow or underflow
occurs.

--- ROUTINE: CCEQ

Supporting Subroutines: ; FCEQl, .NR2, .NRl, .NR3, FRSTI, FRLDI, NSP,
SP.

Subroutine Size: 1page zero location and 21g locations of normally relocatable
memory.

Entry: CCEQl
Function: Compares two single precision complex numbers for equivalence,

Calling Sequence:

(The two complex numbers to be compared are the topmost numbers
on the number stack.)

CCEQ1

(Carry is set to one if the numbers are equal; otherwise it is set to
zero. The two complex numbers are removed from the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) CCEQ! must be referenced by an . EXTN statement.

11-4,

S

Licensed Material - Property of Data General Corporation

|
| SPCX
|

| S—— S—

--- ROUTINE: CCOS

Supporting Subroutines: ; COS., SIN., .SHIN, EXP., ,NR2, FADL, FML1, FRSTI1,
FRLDL, FLIP1, SP, NSP

Subroutine Size: 1 page zero location and 43g locations of normally relocatable |
memory.

Entry: CCOS,

Function: Computes the cosine of a single precision complex number.
Calling Sequence:
(A complex number is loaded on the top of the number stack.)
CCOs.

(The cosine of the argument is expressed as a single precision complex
number and replaces the input argument on the number stack.)

(1) Accumulators and carry are not restored on exit.

(2) CCOS. must be referenced by an .EXTN statement,

(3) Error messages are generated by EXP, or FMLI on underflow or overflow.
(4) Typical execution times are 111 ms for the NOVA with software multiply /divide

and 17 ms for the SUPERNOVA with hardware fixed point multiply /divide,

--- ROUTINE: CDLV

Supporting Subroutines: ; FRLD1, FCLEl, FDVI1, .NR2, CML1, FLIPl, FMLI,
.NR3, FADI, FRSTI1, .NR1l, SP, NSP

Subroutine Size: 1 page zero location and 75g locations of normally relocatable
memory.

Entry: CDVI1
Function: Divides one single precision complex number by another.

Calling Sequence:

(The argument divisor is placed on the top of the number stack, and
the dividend is immediately below the divisor,)

CDV1

(The divisor is removed from the number stack and the quotient replaces
the dividend on the number stack,)

11-5

Licensed Material - Property of Data General Corporation

—
|

SPCX
L
ROUTINE: CDIV (Continued)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CDV1 must be referenced by an . EXTN statement.

(3) Error messages are generated by supporting routines if overflow or underflow occurs.,

--- ROUTINE: CEXPO

Supporting Subroutines: ; EXP,, SIN,, .NR2, FLIPI1, FRLD1, FRST1, FMLI1,
SP, NSP

Subroutine Size: 1 page zero location and 24¢ locations of normally relocatable
memory,

Entry: CEXP.

Function: Computes the value of eC for C any single precision complex number.

Calling Sequence:

(The complex argument is loaded onto the number stack.)

CEXP,

(The complex result replaces the argument on the number stack.)
(1) Accurmulators and carry are not restored on exit,
(2) CEXP, must be referenced by an , EXTN statement.

(3) Error messages are generated on underflow or overflow,

(4) Typical execution times are 47 ms for the NOVA with software multiply /divide and
7.8 ms for the SUPERNOVA with hardware fixed point multiply/divide,

g

Licensed Material - Property of Data General Corporation

SPCX

--- ROUTINE: CLIP

Supporting Subroutines: ; .NR3, SP, NSP, .NRIl, .NR2, .FLIP

Subroutine Size: 1 page zero location and 15g locations of normally relocatable
memory,

Entry: CLIP1, CLIP2

Function: Swaps positions of the two topmost complex numbers on the number
stack (whether single precision, double precision, or both).

Calling Sequence:

(Two complex numbers are on top of the number stack.)

CLIP1 (or CLIP2)

(The positions of the two complex numbers are swapped.)
(1) Accumulators and carry are not restored on exit.

(2) CLIPL and CLIP2 are equivalent and both must be referenced by .EXTN
statements.

--- ROUTINE: CLOAD

Supporting Subroutines: ; ,FRGO, FFLD1, SP

Subroutine Size: 1 page zero location and 16g locations of normally relocatable
memory.

Entry: CFLDI

Function: Unpacks and loads a single precision complex number onto the number
stack.

Calligg Sequence:

CFLD1
FORTRAN ADDRESS of the packed complex number.

(The complex number is unpacked and loaded onto the number stack,)

11-7

Licensed Material - Property of Data General Corporation
e
| spex
i H
ROUTINE: CLOAD (Continued)

Notes:

(1) Accumulators and carry are not restored on exit.

(2) CFLDI must be referenced by an . EXTN statement.

(3) An error message is issued by FFLDI if number stack overflow occurs,

(4) The FORTRAN ADDRESS of the packed complex number points to four
sequential locations containing first the real portion (in single precision packed
format) and then the imaginary portion (also in single precision packed format)
of the argument. The argument is then unpacked and loaded onto the number

stack in two sequential six word frames. The top frame contains the imaginary
portion and the next-to-top frame contains the real portion of the argument,

--- ROUTINE: CLOG

Supporting Subroutines: ; .NRZ, RATNI, FRLDI, FRST1, ALOG., CLIPL,
RCABS, SP, NSP

Subroutine Size: 1 page zero location and 21g locations of normally relocatable
Memory.

L

Entry: CLOG.

Function; Computes the natural logarithm of a single precision complex number.

Calling Sequence:
(The single precision argument is loaded on the number stack.)

CLOG.

(The result replaces the input argument on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CLOG. must be referenced by an , EXTN statement.

(3) Error messages are generated on underflow or overflow by the supporting
routines,

(4) Typical execution times are 60 ms for the NOVA with software multiply /divide
and 8.3 ms for the SUPERNOVA with hardware fixed point multiply /divide.

L I

Licensed Material - Property of Data General Corporation

SPCX

--- ROUTINE: CMUL

Supporting Subroutines: ; FML1, FRLD1, FADI1, FRST1, FSBl, .NR1, ,NR2,
.NR3, SP, NSP

Subroutine Size: 1 page zero location and 47g locations of normally relocatable
memory.

Entry: CMLI

Function: Multiplies a single precision complex number by another single precision
complex number.

Calling Sequence:
(The two arguments are loaded on the number stack,)

CML1

(The topmost argument is removed, and the product replaces the
second argument on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit,
(2) CMLI1 must be referenced by an , EXTN statement.

(3) Error messages are issued by supporting routines if overflow or underflow
occurs.

--- ROUTINE: CNEG

Supporting Subroutines: ; NSP

Subroutine Size: 1 page zero location and 6 locations of normally relocatable
memory.

Entry: CNEGI, CNEG2

Function: Negates the real and imaginary parts of any complex number,

Calling Sequence:

(The complex number to be negated is at the top of the number stack.)

CNEG1 (or CNEG2)

(The negated complex number replaces the input argument on the
number stack.)

Licensed Material - Property of Data General Corporation

SPCX

ROUTINE: CNEG (Continued)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CNEG! and CNEG2 must be referenced by ,EXTN statements,

(3) No error messages are generated.

--- ROUTINE: CONJG

Supporting Subroutines: ; NSP

Subroutine Size: 1 page zero location and 5 locations of normally relocatable
memory.

Entry: CONJ.

Function: Produces the conjugate of any complex number.

Calling Sequence:

(The complex number whose conjugate is to be obtained is loaded
onto the number stack.)

p——

CON]J.

(The sign of the imaginary portion of the input argument is complemented,
replacing the original value.)

Notes:
(1) Accumulators and carry are not restored and AC3 contains FSP on exit,

(2) XCN], and DCON, are both equivalent to CONJ. and all must be referenced
by ,EXTN statements.

(3) Either single or double precision complex numbers may be used as input
arguments.

11-10

Licensed Material - Property of Data General Corporation

SPCX

--- ROUTINE: CPWR

Supporting Subrourines: CLOG., CEXP., CMLI, .NR3, ,NR2, FRLDI,
FRST1, SP.

Subroutine Size: 1 page zero location and 20g locations of normally relocatable
memory,

Entry: CPWRIL

Function: Raises a single precision complex number to a single precision complex
power.

Calling Sequence:

(The complex power is on top of the stack, the complex base is
immediately below it.)

CPWRI1

(The power and base are removed from the stack; the complex result
is loaded on the stack.)

Notes:

(1) Accumulators and carry are not restored on exit.
(2) CPWRI must be referenced by an , EXTN statement,

(3) Error messages can arise from the supporting routines.

--- ROUTINE: CSIN

Supporting Subroutines: ; SP, NSP, COS., SIN., .SHIN, EXP., .NR2, FADI,
FML1, FRST1, FRLD1, FLIpPl

Subroutine Size: 1 page zero location and 423 locations of normally relocatable
memory.

Entry: CSIN,
Function: Computes the sine of a single precision complex number,
Calling Sequence:
(The complex argument is placed at the top of the number stack.)
CSIN,
(The result replaces the input argument on the number stack.)
Notes:

(1) Accumulators and carry are not restored on exit,

(2) CSIN. must be referenced by an .EXTN statement,

(3) Error messages may be generated by the éupporting routines,

11-11

Licensed Material - Property of Data General Corporation

SPCX

--- ROUTINE: CSQRT

Supporting Subroutines: ; ,NR2, FRLDI, RATNIL, FLIP1, ¢cLIP1, FMLI1, SQRT.,
RCABS, SIN,, COS., FRSTi, SP, NSP

Subroutine Size: 1 page zero location and 47g locations of normally relocatable
memory.

Entry: CSQR.
Function: Computes the square root of a single precision complex number,
Calling Sequence:
(The complex arguﬁient is placed at the top of the number stack.)
CSQR.
(The result replaces the input argument on the number stack.)
(1) Accumulators and carry are not restored on exit.
(2) CSQR, must be referenced by an ,EXTN statement,

(3) Typical execution times are 89 ms on the NOVA with software multiply/divide
and 12 ms for the SUPERNOVA with hardware fixed point multiply/divide.

--- ROUTINE: CSTOR

Supporting Subroutines: ; .FRGO, FFSTL, SP

Subroutine Size: 1 page zero location and 17g locations of normally relocatable
memory.

Entry: CFSTI

Function: Packs and stores a single precision complex number located on the
number stack.

Calling Sequence:
(The argument is at the top of the number stack.)

CFST1
FORTRAN ADDRESS to receive the argument

(The top two six word frames are removed from the stack.)
Notes:
(1) Accumulators and carry are not restored on exit.

(2) CFST1 must be referenced by an .EXTN statement.

(3) No error messages are generated.
11-12

S

Licensed Material - Property of Data General Corporation

SPCX

ROUTINE: CSTOR (Continued)

Notes: (Continued)

(4) The argument on the number stack occupies two sequential six-word frames,
with the top frame containing the imaginary portion of the argument. After
the argument has been packed and stored at the indicated FORTRAN ADDRESS,
it occupies only four sequential locations with the first pair of words containing
the real portion of the argument.

--- ROUTINE: RCABS

Supporting Subroutines: ; SP, NSP, _NR2, .NRl, SQRT, FLIPl, FML1, FDV1
FAD1, FRLDI, FCLElL

Subroutine Size: 1 page zero location and 42g locations of normally relocatable
memory.

Entry: RCABS

Function: Obtains the absolute value of a single precision complex number located
on the number stack.

Calling Sequence:
(The complex argument is loaded on the number stack.)
JSR @RCABS

(The complex argument is removed from the number stack, and the absolute
value of the argument is loaded there.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) RCABS must be referenced by an . EXTD statement.

(3) Error messages are generated by supporting routines.

--- ROUTINE: REAL

Supporting Subroutines: ; .FRGO, FFLDI1, SP

Subroutine Size: 2 page zero locations and 223 locations of normally relocatable
memory.

Entry: RE.L
Function: Fetches the real part of a single precision complex number.

Calling Sequence:

JSR @RE. L
FORTRAN ADDRESS of complex number

(The real portion of the complex number is loaded onto the number stack.)

11-13

Licensed Material - Property of Data General Corporation

SPCX

ROUTINE: REAL (Continued)

Entry: AL AG

Function: Fetches the imaginary part of a single precision complex number,

Calling Sequence:

JSR @AI AG
FORTRAN ADDRESS of complex number

(The imaginary portion of the complex number is loaded onto the
number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) RE.L and AL AG must be referenced by .EXTD statements,

(3) No error messages are generated,

11-14

S

DOUBLE PRECISION COMPLEX ROUTINES

DCABS
DCCEQ

DCDIV

B R

R I I

.........

.........

.............. P R
------ R .

P A I R Y . . CEE R
...... DR A I I Y .
........ . P - .
D I R R R R e
D DR
. P IR . . .
......... D A
................... ..
e e v e o 0 e . D I T
. D I T T L I T
.« D R R P ..
R I B . . s et s
L I R I P A

i2-1

12-2

Licensed Material - Property of Data General Corporation

DPCX

--- ROUTINE: DCABS

Supporting Subroutines: ; .FRGO, FFLD2, RDCABS, SP

Subroutine Size: 1 page zero location and 22g locations of normally relocatable
memory.

Entry: DC.BS

Function: Obtains the absolute value of a double precision complex number.

Calling Sequence:

JSR @DC. BS
FORTRAN ADDRESS of argument

(The absolute value of the argument is loaded onto the number stack.)
(1) Accumulators and carry are not restored on exit.
(2) XC.S is equivalent to DC.BS and both must be referenced by .EXTD statements.
(3) Stack overflow messages may be issued by the supporting routines.
(4) The result obtained by this routine is a real number and occupies only one

6~word frame on the number stack.

--- ROUTINE: DCADD

Supporting Subroutines: ; FAD2, FRST2, FRLD2, .NR2, SP, NSP

Subroutine Size: 2 page zero locations and 22g locations of normally relocatable
memory.

Entry: CAD2

Function: Adds the topmost two double precision complex numbers on the number
stack,

Calling Sequence:
(The two arguments are loaded on the number stack.)
CAD2

(The top argument is removed from the stack, and the sum replaces
the second argument.)

12-3

Licensed Material - Property of Data General Corporation

DPCX

ROUTINE: DCADD (Continued)

Entry: CSB2

Function: Subtracts the topdouble precision complex number on the stack from the
next-to-top double precision complex number on the stack.

Calling Sequence:

(The two arguments are loaded on the number stack,)
CSB2

(The top argument is removed from the stack, and the difference replaces
the second argument,)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CAD2 and CSB2 must be referenced by .EXTN statements.

(3) Error messages are generated by supporting routines if overflow or underflow occurs.

--- ROUTINE: DCCEQ

Supporting Subroutines: FCEQ2, .NR2, .NRl, .NR3, FRST2, FRLD2, SP, NSp

Subroutine Size: 1 page zero location and 218 locations of normally relocatable
memory.

Entry: CCEQ2
Function: Compares two double precision complex numbers for equivalence.
Calling Sequence:

(The two complex numbers to be compared are the topmost numbers
on the number stack.)

CCEQ2

(Carry is set to one if the numbers are equal; otherwise it is set to
zero. The two complex numbers are removed from the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) CCEQ2 must be referenced by an . EXTN statement,

12-4

Mg

g™

Licensed Material - Property of Data General Corporation
PR

DPCX
- ROUTINE: DCCOS

Supporting Subroutines: ; SP, NSP, DCOS,, DSIN,, .DSHI, DEXP., .NRZ, FAD2,
FML2, FRSTZ, FRLD2, FLIPZ

Subroutine Size: 1 page zero location and 455 locations of normally relocatable memory.

Entry: DCCO,
Function: Computes the cosine of a double precision complex number,
Calling Sequence:

(The double precision complex argument is placed on the top of the
number stack.)

DCCO.

(The result replaces the argument on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) XCOS. is equivalent to DCCO, and both must be referenced by an ,EXTN
statement.

(3) Error messages may be generated by the supporting subroutines.

(4) Typical execution times are 580 ms for the NOVA with software multiply/divide
and 89 ms for the SUPERNOVA with hardware fixed point multiply/divide.

--- ROUTINE: DCDIV

Supporting Subroutines: ; FRLD2, FCLE2, FDV2, CMLZ, FLIP2, FML2, .NR3,
.NR2, .NR1, FAD2, FRST2, SP, NSP

Subroutine Size: 1 page zero location and 101g locations of normally relocatable
memory.

Entry: CDV2

Function: Divides one double precision complex number by another.

Calling Sequence:

(The argument divisor is placed on the top of the number stack, and
the dividend is immediately below the divisor.)

CDV2

(The divisor is removed from the number stack and the quotient replaces
the dividend on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CDV2 must be referenced by an . EXTN statement.

(3) Error messages are generated by supporting routines if overflow or underflow occurs.

12-5

Licensed Marerial - Property of Data General Corporation

DPCX

--- ROUTINE: DCEXP

Supporting Subroutines: ; DEXP., DCOS., DSIN., .NR2, FLIPZ, FRLD2,
FRST2, FML2, SP, NSP

Subroutine Size: 1 page zero location and 24g locations of normally relocatable
memory.

Entry: DCEX,

Function: Computes the value of e for C any double precision complex number,
Calling Sequence:

(The complex argument is loaded onto the number stack.)

DCEX.

(The complex result replaces the argument on the number stack.)
(1) Accumulators and carry are not restored on exit.
(2) XCXP. is equivalent to DCEX. and both must be referenced by .EXTN statements.
(3) Error messages are generated on underflow or overflow.
(4) Typical execution times are 295 ms for the NOVA with software multiply /divide

and 36.5 ms for the SUPERNOVA with hardware fixed point multiply/divide,

--- ROUTINE: DCLOD

Supporting Subroutines: ; .FRGO, FFLD2, SP

Subroutine Size: 1 page zero location and 21g locations of normally relocatable
memory.

Entry: CFLD2

Function: Unpacks and loads a double precision complex number onto the number
stack.

Calling Sequence:

CFLD2
FORTRAN ADDRESS of the packed complex number

{The complex number is unpacked and loaded onto the number stack,)
Notes:

(1) Accumulators and carry are not restored on exit.
(2) CFLD2 must be referenced by an .EXTN statement.

(3) An error message is issued by FFLD2 if number stack overflow occurs.

12-6

i

St

Licensed Material - Property of Data General Corporation
—
| DPCX

i
i
i

s e oot 4
ROUTINE: DCLOD (Continued)

Notes: (Continued)

(4) The FORTRAN ADDRESS of the packed complex number points to eight
sequential locations containing first the real portion (in double precision
packed format) and then the imaginary portion (also in double precision
packed format) of the argument, The argument is then unpacked and loaded
onto the number stack in two sequential six-word frames. The top frame

contains the imaginary portion and the next-to—top frame contains the real
portion of the argument.

--- ROUTINE: DCMUL

Supporting Subroutines: ; FML2, FRLD2, FAD2, FRST2, SP, NSP, .NR2,
FSB2, .NRI, .NR3

Subroutine Size: 1 page zero location and 47g locations of normally relocatable
memory.

Entry: CML2

Function: Multiplies one double precision complex number by another double
precision complex number.

Calling Sequence:
(The two arguments are loaded on the number stack.)

CML2

(The topmost argument is removed and the product replaces the
second argument on the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CML2 must be referenced by an , EXTN statement.

(3) Error messages are generated by supporting routines if overflow or underflow
occurs,

--- ROUTINE: DCPWR

Supporting Subroutines: ; DCLO., DCEX., CML2, .NRz, .NR3, FRLD2Z, SP,
FRST2.

Subroutine Size: 1 page zero location and 20g locations of normally relocatable
memory.

Entry: CPWR2

Function: Raises a double precision complex number to a double precision complex
power,

Licensed Marerial - Property of Data General Corporation

DPCX

ROUTINE: DCPWR (Continued

Entry: CPWR2 (Continued)
Calling Sequence:

(The complex power is on the top of the stack, the complex base is
immediately below it,)

CPWR2

(The power and base are removed from the stack; the complex result
is loaded on the stack.)

Notes:
(1) Accumulators and carry are not restored on exit,
(2) CPWR2 must be referenced by an , EXTN statement,

(3) Error messages can arise from the supporting routines.

--- ROUTINE: DCSIN

Supporting Subroutines: ; DCOS., .DSHI, DSIN., DEXP., .NR2, FADZ,)
FML2, FRST2, FRLD2, FLIP2, SP, NSP et

Subroutine Size: 1 page zero location and 44g locations of normally relocatable
memory.

Entry: DCSIL,
Function: Computes the sine of a double precision complex number,
Calling Sequence:

(The double precision complex argument is placed at the top of the
number stack,)

DCSI.

(The result replaces the argument on the number stack,)
(1) Accumulators and carry are not restored on exit.
(2) XCIN, is equivalent to DCSI. and both must be referenced by .EXTN statements,
(3) Error messages may be generated by the supporting routines.

(4) Typical execution times are 585 ms for the NOVA with software multiply /divide
and 90 ms for the SUPERNOVA with hardware fixed point multiply /divide,

Licensed Material - Property of Data General Corporation

DPCX

e
--- ROUTINE: DCSQR

Supporting Subroutines: ; SP, NSP, ,NR2, FRLD2, RATNZ, FLip2, CLIPZ,
FML2, DSQR., RDCAB, DSIN., DCOS., FRSTZ

Subroutine Size: 1 page zero location and 3lg locations of normally relocatable
memory,

Entry: DCSQ
Function: Computes the square Toot of a double precision complex number,
Calling Sequence:

(The complex argument is placed at the top of the number stack.)

DCsSQ.

(The result replaces the input argument on the number stack,)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) XCQR. is equivalent to DCSQ. and both must be referenced by . EXTN
statements. :

(3) Typical execution times are 655 ms for the NOVA with software multiply /divide
and 70.5 ms for the SUPERNOVA with hardware fixed point multiply/divide.

--- ROUTINE: DCSTR

Supporting Subroutines: ; .FRGO, FFST2, SP

Subroutine Size: 1 page zero location and 20g locations of normally relocatable
memory.

Entry: CFST2

Function: Packs and stores a double precision complex number located on the
number stack.

Calling Sequence:

(The argument is at the top of the number stack.)

CFST2
FORTRAN ADDRESS to receive the argument.

(The top two six-word frames are removed from the stack.)
(1) Accumulators and carry are not restored on exit.
(2) CFST2 must be referenced by an .EXTN statement.

(3) No error messages are generated,
i2-9

Licensed Material - Property of Data General Corporation

oo |

ROUTINE: DCSTR (Continued)

Notes: {Continued)

(4) The argument on the number stack occupies two sequential six-word frames,
with the top frame containing the imaginary portion of the argument. After
the argument has been packed and stored at the indicated FORTRAN ADDRESS
it occupies eight sequential locations, with the first group of four words con-
taining the real portion of the argument.

--- ROUTINE: DDCLO

.

Supporting Subroutines: ; .NR2, RATN2, FRLD2, FRST2, DLOG., CLIPZ,
RDCABS, SP, NSP

Subroutine Size: 1 page zero location and 21g locations of normally relocatable
memory.

Entry: XCOG.

Function: Computes the natural logarithm of a double precision complex number,
Calling Sequence:
(The double precision argument is loaded on the number stack.)
XCOG,
(The result replaces the input argument on the number stack.)
(1) Accumulators and carry are not restored on exit,

(2) DCLO. is equivalent to XCOG. and both must be referenced by . EXTN
statments.

(3) Error messages are generated on underflow or overflow by the supporting
routines.

(4) Typical execution times are 430 ms for the NOVA with software multiply/divide
and 45.5 ms for the SUPERNOVA with hardware fixed point multiply/divide.

--- ROUTINE: DREAL

Supporting Subroutines: ,FRGO, FFLD2, SP

Subroutine Size: 2 page zero locations and 24g locations of normally relocatable
memory,

Entry: DR.AL

Function: Fetches the real part of a double precision complex number.

12-10

g

Licensed Material - Property of Data General Corporation
DPCX |
S—

ROUTINE: DREAL (Continued)

Entry: DR,AL {Continued)

Calling Sequence:

JSR @DR.AL
FORTRAN ADDRESS of complex number

(The real portion of the complex number is loaded on the number stack.)
Entry: DA.MG
Function: Fetches the imaginary part of a double precision complex number.

Calling Sequence:

JSR @DA.MG
FORTRAN ADDRESS of complex number

(The imaginary portion of the complex number is loaded on the number
stack.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) XR.L is equivalent to DR, AL, and XA.AG is equivalent to DA.MG. All must
be referenced by ,EXTD statements.

(3) No error messages are generated.

--- ROUTINE: RDCAB

Supporting Subroutines: ; SP, NSP, .NR2, .NRI1, DSQR, FLIP2, FML2Z,
FDV2, FAD2, FRLD2, FCLE2

Subroutine Size: 1 page zero location and 444 locations of normally relocatable
memory.

Entry: RDCAB

Function: Obtains the absolute value of a double precision complex number
located on the number stack.

Calling Sequence:
(The complex argument is loaded onto the number stack.)
JSR @RDCABS

(The complex argument is removed from the number stack, and the
absolute value of the argument is loaded there.)

12-11

Licensed Material - Property of Data General Corporation

——

| ppcx |
i

| orox

ROUTINE: RDCAB (Continued)

(1) Accumulators and carry are not restored on exit,
(2) RDCAB must be referenced by an , EXTD statement,
(3) Error messages are generated by supporting routines.

(4) The result obtained is a real number occupying only one 6-word frame on the
number stack,

12-12

g

MIXED MODE ROUTINES

ANMNXYO. o vt it e e e e
BREAK........... e e e e e e s
OMPLE, & et it e e e as e e .
CRCX1..... e e e e e e e e ..
CRCX2....... D

DBREAK . & vt i i v e et v s s sesneen s e e -
DCMPL ..o i v e e e e e e e .

IFIX e T

MNMXL oo e s e ie oo e e
RIPWR ..o v i ve e v e e e e e e e ..
STREG. e e e e

s

b
'

bt

[
ol
L b s

ot
Ca G Lo L o L La Lo e
i 1
fo !

1

™

S

13-2

Licensed Material - Property of Data General Corporation

i
Mixed Mode

---ROUTINE: AMNXO

Supporting Subroutines: FRET, FSAV: ,FARG, FXFLLl, FFST!

Subroutine Size: 2 page zero locations and 76g locations of normally relocatable
memory.

Entry: AM.NO, AMINO

Function: Selects the smallest member from a set of integers, expressing the
selection as a single precision real value,

Calling Sequence:

JSR @ AM.NO
N ({integer representing the number of members in set)

FORTRAN ADDRESS of I
FORTRAN ADDRESS of 11

FORTRAN ADDRESS of Iy}

(The result is expressed as a single precision real on the top of the
number stack.)

OR

FCALL

AMINO

N+1 (where N is the number of members in the set)
FORTRAN ADDRESS of result

FORTRAN ADDRESS of Ip

FORTRAN ADDRESS of 11

FORTRAN ADDRESS of Iy

(The result is expressed as a single precision real stored at the
FORTRAN ADDRESS of the result given in the calling sequence,)

Entry: AM.X0, AMAXO

Function: Selects the largest member from a set of integers, expressing the selection
as a single precision real value.

Calling Sequence:
JSR @AM, X0
N (integer representing the number of members in set)

FORTRAN ADDRESS of Ip
FORTRAN ADDRESS of I3

FORTRAN ADDRESS of I,y

(The result is expressed as a single precision real on the top of the
number stack,)

OR

Licensed Material - Property of Data General Corporarion

Mixed Mode

ROUTINE: AMNXO0 (Continued)

Calling Sequence: {Continued)
FCALL
AMAXO
N+1 (where N is the number of members in the set)
FORTRAN ADDRESS of Ip
FORTRAN ADDRESS of Iy
FORTRAN ADDRESS of I

(The result is expressed as a single precision real stored at the
FORTRAN ADDRESS of the result given in the calling sequence,)

Notes:
(1) Accumulators and carry are restored on exit,

(2) AM.NO and AM. X0 must be referenced by .EXTD statements.
AMAXO and AMING must be referenced by , EXTN statemtnts,

(3) No error messages are generated,

---ROUTINE: BREAK

Supporting Subroutines: ; NSP, SP, FXFL1, FLFX1, FRLDI1, FSBl

Subroutine Size: 1 page zero location and 158 locations of normally relocatable
memory.

Entrz: FBRK1

Function: Separates a single precision real number x into its integer and fractional
components,

Calling Sequence:
{Input argument x is on top of number stack.)
FBRK1

(Output fractional result replaces x on the number stack; integer
result is placed in ACO,)

{1} Accumulators and carry are not restored on exit.
(2) FBRKI must be referenced by an , EXTN statement.

(3) FLFX1 will generate an error message whenever the integer portion of the
argument exceeds the range + (215-1).

st

Licensed Material - Property of Data General Corporation

|
Mixed Mode

---ROUTINE: CMPLX

Supporting Subroutines: FSAY, FRET; FFST1, .FARG, FFLDI

Subroutine Size: 1 page zero location and 40g locations of normally relocatable
memory.

Entry: CM,LX, CMPLX

Function: Constructs a single precision complex number from two single precision
real numbers,

Calling Sequence:

JSR @CM.LX
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and loaded on the number stack.)
OR
FCALL
CMPLX
Integer 3
FORTRAN ADDRESS of result
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion
Notes:
(1) Accumulators and carry are restored on exit.
(2) CM. LX must be referenced by an , EXTD statement and CMPLX by an .EXTN

statement.
(3) No error messages are generated,

---ROUTINE: CRCX1

Supporting Subroutines: ;.FRGO, FFLD1, FRLDI1, SP

Subroutine Size: 1 page zero location and 22g locations of normally relocatable
memory,

Entry: CRCX1

Function: Converts a packed single precision real number R to a single precision
complex number of the form R+0i .

Calling Sequence:

CRCX1
FORTRAN ADDRESS of single precision real argument R

(The real argument R is expanded to a complex number of the form
R+0i, which is loaded on the number stack.)

13-3

Licensed Material - Property of Data General Corporation

Mixed Mode

ROUTINE: CRCX1 (Continued)

Notes:

{1y Accumulators and carry are not restored cn exit,
(2y CRCXI1 must be referenced by an , EXTN statement,

(3) Error messages may be generated by the supporting subroutines.

---ROUTINE: CRCX2

Supporting Subroutines: ; ,FRGO, FFLD2, FRLD2, SP

Subroutine Size: 1 page zero location and 24y locations of normally relocatable
memory.

Entry: CRCX2

Function: Converts a packed double precision real number D to a double precision
complex number of the form D+0i |

Calling Sequence:

CRCX2
FORTRAN ADDRESS of double precision real argument D

(The real argument D is expanded to a complex number of the form
D+0i, which is loaded onto the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CRCX2 must be referenced by an , EXTN stateinent.

(3) An error message will be generated by FFLD2Z or FRLD2 if stack overflow occurs.

---ROUTINE: CXFL1

Supporting Subroutines: ; FXFL1, FRLDIL, ,FRGO, SP

Subroutine Size: 1 page zero location and 21g locations of normally relocatable
Memory.

Entry: CXFLI1

Function: Converts an integer I to a single precision complex number of the form
+0i .

Calling Sequence:

CXFLL
FORTRAN ADDRESS of the integer argument 1

(The integer argument I is expanded to a complex number of the form
I+0i which is loaded onto the number stack.)

13-6

S

Licensed Material - Property of Data General Corporation

Mixed Mode

ROUTINE: CXFLI1 (Continued)

Notes :
(1) Accumulators and carry are not stored on exit.
(2) CXFL1 must be referenced by an . EXTN statement.

(3) An error message is issued by a supporting routine on stack overflow,

---ROUTINE: CXFL2

Supporting Subroutines: ; FXFL2, FRLDZ, .FRGO, SP

Subroutine Size: 1 page zero location and 23g locations of normally relocatable
memory.

Entry: CXFL2

Function: Converts an integer [to a double precision complex number of the form
+0i .

Calling Sequence:

CXFL2
FORTRAN ADDRESS of integer argument I

(The integer argument I is expanded to a double precision complex
number of the form I+0i which is loaded onto the number stack.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) CXFL2 must be referenced by an .EXTN statement.

(3) An error message is issued by a supporting routine if stack overflow occurs.

---ROUTINE: DBREAK

Supporting Subroutines: ; NSP, SP, FXFL2, FRLD2, FSB2, FLFX2

Subroutine Size: 1 page zero location and 15g locations of normally relocatable
memory.
Entry: FBRK2

Function: Separates a double precision real number into its integer and fractional
components.

Licensed Material - Property of Data General Corporation

Mixed Mode

ROUTINE: DBREAK (Continued)

Entry: FBRK2 (Continued)

Calling Sequence:
(The input argument is loaded on the number stack.)
FBRK2
(The integer portion is expressed as a single precision fixed point
value which is loaded into ACO. The fractional component replaces
the input argument on the number stack.)

(1) Accumulators and carry are not restored on exit.

(2) FBRK2 must be referenced by an , EXTN statement.

(3) Error messages may be generated by the supporting routines.

--~ROUTINE: DCMPL

Supporting Subroutines: FSAV, FRET; .FARG, FFLD2, FFST2

Subroutine Size: 1 page zero location and 43¢ locations of normally relocatable
memory,

Entry: DC.PX, DCMPL

Function: Constructs a double precision complex number from two double precision
real numbers,

Calling Sequence:

ISR @DC. PX
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and loaded on the number stack.)
OR

FCALL

DCMPL

Integer 3

FORTRAN ADDRESS of result

FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

Notes:

(1) Accumulators and carry are restored on exit.

(2) XC.LX is equivalent to DC, PX and both must be referenced by .EXTD statements.

DCMPL must be referenced by an , EXTN statement.

(3) No error messages are generated.

13-8

gt

S

Licensed Material - Property of Data General Corporation

Mixed Mode

--- ROUTINE: DIPWR

Supporting Subroutines: FRET, FSAV; .FARG, NSP, FLIPZ, FDV2, FMLZ,
’ FRST2, FRLD2, FFLD2
Subroutine Size: 1 page zero location and 525 locations of normally relocatable
Memory.

Entry: FIPR2
Function: Raises a double precision real number to an integer power.
Calling Sequence:
FIPRZ
FORTRAN ADDRESS of the integer power, 1
FORTRAN ADDRESS of the real base
{The real result is loaded on the number stack.)
Notes:

(1) Accumulators and carry are restored on exit.

(2) FIPR2 must be referenced by an . EXTN statement. The FCALL entry point,
DIPWR, must also be referenced by an . EXTN statement.

(3) Typical execution times on the NOVA with software multiply /divide are
S ms*1-1) when =1, or 5 ms when I=0. When I= -1, the execution time is
17.5 ms + (~I-1)*5.5 ms.

4) Typical execution times on the SUPERNOVA with hardware multiply /divide are
425 ys when 1=0, and 1 ms + (I-1)*. 6 ms when I= 1. Execution times when

1< -1 are correspondingly larger.

(3) Each of the above execution times includes the time required for one floating
point store operation.

--- ROUTINE: FLIP

Supporting Subroutines: ; SP, NSP

Subroutine Size: 2 page zero locations and 26 3 locations of normally relocatable
memory.

Entry: .FLIP
Function: Interchanges two single or double precision real numbers.

Calling Sequence:

{ACO and AC1 point to two six-word frames {usually on the number stack,
but they could be anywhere) which are to be swapped.)

JSR @, FLIP

(The contents of the two frames are now exchanged.)

13-9

Licensed Material - Property of Data General Corporation

Mixed Mode

ROUTINE: FLIP (Continued)

Entry: FLIPL, FLIP2

Function: Interchanges two single or double precision real numbers on the number
stack.

Calling Sequence:

(The two topmost frames on the number stack contain variables which
will be interchanged,)

FLIPL or FLIF2
{The two topmost variables on the number stack are swapped.)
(1} Accumulators and carry are not restored on exit,

(2) . FLIP must be referenced by an , EXTD statement. FLIPI and FLIP2 are
equivalent and both must be referenced by .EXTN statements.

(3) No error messages are generated.

---ROUTINE: IDINT

Supporting Subroutines: FSAV, FRET; FLFX2, FFLD2, .FARG

Subroutine Size: 1 page zero location and 11g locations of normally relocatable
memory.

Entry: ID.NT

Function: Truncates a double precision real number and expresses the result as
a fixed point number,

Calling Sequence:
JSR @ID.NT
FORTRAN ADDRESS of result
FORTRAN ADDRESS of real DR to be truncated
Notes:

(1) Accumulators and carry are restored on exit,

(2) DR is truncated, converted to a fixed point number, and is stored at the
FORTRAN ADDRESS of the result,

(3) XIL. is equivalent to ID.NT and both must be referenced by .EXTD statements,
The FCALL entry .IDIN must be referenced by an ,EXTN statement,

4) Error messages are generated if the truncated real number is greater than
I & g gr
215-1 or less than -(215-1).

13-10

M

Licensed Material - Property of Data General Corporation

Mixed Mode

-—— ROUTINE: IFIX

Supporting Subroutines: FSAV, FRET; .FARG, FFLDI, FLFX1, NSP

Subroutipe Size: 1 page zero location and 21y locations of normally relocatable
memory.

Entry: 1IF. X

Function: Truncates a single precision real number and expresses it as a fixed
point number,

Calling Sequence:
JSR @IF.X
FORTRAN ADDRESSof integer result
FORTRAN ADDRESS of real value to be truncated

Notes:
(1) Accumulators and carry are restored on exit,
(2) XI.X is equivalent to IF, X and both must be referenced by ., EXTD statements,
The FCALL entry point .IFIX must be referenced by an ,EXTN statement,

-~-=-ROUTINE: INT

Supporting Subroutines: FSAV, FRET; .FARG, FFLDI1, FLFXI1

Subroutine Size: 1 page zero location and 11 g locations of normally relocatable
memory.

Entry: IN,

Function: Truncates a single precision real and expresses the result as the nearest
integer.

Calling Sequence:
JSR @IN,
FORTRAN ADDRESS of result
FORTRAN ADDRESS of real R to be truncated.
Notes:

(1) Accumulators and carry are restored on exit.

(2) R is truncated, converted to a fixed point number and is stored at the FORTRAN
ADDRESS indicated in the calling sequence.

(3) 1If the truncated real is greater than 215-1 or less than -(2}5-1}, FLFX1 will
generate an error message.

(4) Result = Sign of argument * largest integer < largument! .

(5) IN. must be referenced by an ,EXTD statement. The FCALL entry point . INT
must be referenced by an , EXTN statement.

i3-11

Licensed Material - Property of Data General Corporation

Mixed Mode

---ROUTINE: LDREG

Supporting Subroutines: ; NSP, Sp, .NDSP, .RTER

Subroutine Size: 2 page zero locations and 328 locations of normally relocatable
Memory.

Entry: FRILDI

Function: Loads an unpacked single precision real number onto the number stack.

Calling Sequence:

(ACO contains the address of the sign word of a single precision real
number which is to be loaded onto the number stack.)

FRLDI

(The single precision real number is loaded onto the top of the number
stack.)

Entry: FRLD?2
Function: Loads an unpacked double precision real number onto the number stack.
Calling Sequence:

(ACO contains the address of the sign word of a double precision real
number which is to be loaded onto the number stack.)

FRLD2

(The double precision real number is loaded onto the top of the number
stack.)

(1) Accumulators and carry are not restored on exit,

(2) FRLD! and FRLD2 must be referenced by .EXTN statements.

(3) A fatal error message is generated on stack overflow.

(4) An unpacked single precision real number in normally relocatable memory
oceupies four sequential memory locations. This four word block is expanded to

6 words by padding the two least significant mantissa words with zeroes so that
all frame lengths on the number stack will be of equal size.

---ROUTINE: MNMX1

Supporting Subroutines: FSAV, FRET; .FARG, FLFX1, FFLD1, FCLT!

Subroutine Size: 2 page zero locations and 463 locations of normally relocatable
memory.

Entry: MA,1

Function: Selects the largest member from a set of single precision real numbers
and expresses the result as a fixed point number.

13-12

S

Licensed Material - Property of Data General Corporation

|
Mixed Mode

ROUTINE: MNMX1 (Continued)

Entry: MA.1 (Continued)

Calling Sequence:
JSR@MA, 1
N+1 {where N is the number of members in the set)
FORTRAN ADDRESS of result
FORTRAN ADDRESS of R1
FORTRAN ADDRESS OF RN
Entry: MIL1

Function: Selects the smallest member from a set of single precision real numbers
and expresses the result as a fixed point number,

Calling Sequence:
JSR @MI. 1
N+1 (where N is the number of members in the set)
FORTRAN ADDRESS of result
FORTRAN ADDRESS of R1
FORTRAN ADDRESS of RN
Notes:

(1) Accumulators and carry are restored on exit.

(2) XA.1lis equivalent to MA.1 and XI. 1 is equivalent to MI, 1. All must be
referenced by , EXTD statements.

(3) FCALL entries MAX1 and MINI must be referenced by .EXTN statements.

(4) An error message is generated if the truncated real exceeds 21°-1 or is less
than ~(215-1).

---ROUTINE: RIPWR

Supporting Subroutines: FRET, FSAV; .FARG, NSP, FLIP1, FDV1, FMLI,
FRSTI, FRLDI1, FFLDI1

Subroutine Size: 1 page zero location and 50g locations of normally relocatable
memory.

Entry: FIPR1

Function: Raises a single precision real base to an integer power.

Calling Sequence:

FIPR1
FORTRAN ADDRESS of the integer power, I
FORTRAN ADDRESS of the real base

(The real result is loaded on the number stack.)
13-13

Mixed Mode

ROUTINE: RIPWR (Continued)

Notes:
(1) Accumulators and carry are restored on exit.

{2) FIPRI must be referenced by an ,EXTN statement, The FCALL entry RIFPWR
must also be referenced by an , EXTN statement,

{3) Error messages are issued by supporting routines whenever appropriate,

(4) Typical execution times on the NOVA with software multiply /divide are 1.45 ms
when I=0, and 3 ms + {I-1)*1.7 ms when I > 1. When I <-1, NOVA execution times
are 5.3 ms + {~1-1)% 1.6 ms.

(5) Typical execution times on the SUPERNOVA with hardware multiply /divide are
360 s when I=0, and 550 us + (I-1)* 180 us when I > 1. Execution times when
I < -1 are correspondingly larger.

(6) Each of the above execution times includes the time required for one floating
store operation.

---ROUTINE: STREG

Supporting Subroutines: ; SP, NSP

Subroutine Size: 2 page zero locations and 25g locations of normally relocatable
memory.

Entry: FRSTL

Function: Stores a single precision real number located on the number stack at a
specified address, in unpacked form.
Calling Sequence:

(Address to receive sign word of single precision real number is
contained in ACO.)

FRST1

(The single precision number is stored, unpacked, at the four sequential
addresses specified, and the number is popped from the number stack.)

Entry: FRST2

Function: Stores a double precision real number located on the number stack
at a specified address, in unpacked form.

Calling Sequence:

(Address to receive sign word of double precision real number is
contained in ACO.)

FRST2
(The double precision real number is stored, unpacked, at the six

sequential addresses specified, and the number is popped from the
number stack.)

13-14

s

Licensed Material - Property of Data General Corporation
S —

Mixed Mode

ROUTINE: STREG (Continued)

Notes:
(1) Accumulators and carry are not restored on exit.
{2) FRST! and FRSTZ must be referenced by . EXTN statements.

{3) No error messages are generated and no check is made by this routine to
ascertain whether or not there really is a number on the number stack.

13-15

STRING/BYTE MANIPULATION ROUTINES

COMP. i 14-3
LDO. .o 14-3
LDSTB. oo ., 14-4
MOVE 14-

<

os)

o

.

i .
L

1
[EEERS e NN NNV}

Licensed Material - Property of Data General Corporation

—

String /Byte
Manipulation

--- ROUTINE: COMP H

T ——

Supporting Subroutines: FSAV, FRET; ,LDBT

Subroutine Size: 1 page zero location and 34g locations of normally relocatable
memory.

Entry: . COMP
Function: Compares two character strings for identity.
Calling Sequence:
(String byte pointers in ACO and AC1)
JSR @, COMP

(Return is to the next sequential address if the strings match,
and to one after the next sequential address if they do not match,)

Notes:
(1) Accumulators and carry are restored on exit,

(2) .COMP must be referenced by an ,EXTD statement. The FCALL entry
COMP must be referenced by an . EXTN statement.

(3) No error messages are generated.

B

(4) Each string must be terminated with a null byte.

--- ROUTINE: LDO

Supporting Subroutines: ; QSP

Subroutine Size: 6 page zero locations and 17g locations of normally relocatable
memory.

Entry: ,LDO, .1DI1, .LD2

Function: Permits the loading of any accumulator except AC3 from any absolute
address.

Calling Sequence:

JSR@.1LDO (.LD1, .LD2)
Any Absolute Address

(ACO -- or AC1L, AC2 -~ is loaded with the contents of the
absolute address.)

Entry: .STO, .STl, .ST2

) Function: Permits the storing of any accumulator except AC3 into any absolute
% address.

14-3

Licensed Material - Property of Data General Corporation

i String/Byte |
g Manipulation §
ROUTINE: LDO (Continued) L !

Fotry: .STO, .ST1, .ST2 {(Continued)

Caliing Seguence:
ISR @,87T0 (.8T1, .ST2)

Any absolute address

{The contents of ACO ~- or AC1, AC2Z -~ is stored at the absolute
address.)

Notes:

(1) The value of FSP contained in AC3 prior to the call is restored in AC3
upon exit from the routine,

(2) .1LDO, .LD1, ,LD2, ,STO, .ST1, and .ST2 must be referenced
by . EXTD statements.

(3) No error messages are generated if an attempt is made to reference a
non-existent location.

(4) This routine uses QSP for temporary storage, so the existence of at least
one FORTRAN stack frame is required for operation of the routine.

--- ROUTINE: LDSTB

Supporting Subroutines: ; .SV0

Subroutine Size: 2 page zero locations and 30g locations of normally relocatable
memory.

Entry: |, LDBT
Function: Loads a byte by means of a byte pointer.

Calling Sequence:

(ACO contains the byte pointer.)

&)

JSR @. LDBT

(s

{

(AC! contains the byte, right justified.)
Entry: STBT
Function: Stores a byte by means of a byte pointer.
Calling Sequence:

(AC! contains the word whose right byte is to be srored. ACO
contains the byte pointer.)

JSR @.STBT

o
N
1

i

R

j

Licensed Material - Property of Data General Corporation

]
String /Byte
Manipulation

ROUTINE: LDSTBE (Continued)

Notes:

o~
[
N

Accumulators and carry are not restored on exit, except for ACO, AC3
contains FSP on exit,

(2) ,LDBT and STBT must be referenced by . EXTD statements.
(3) No error messages are generated,

(4) The byte pointer is left unchanged on exit,

-~- ROUTINE: MOVE

Supporting Subroutines: FRET, FS5AV

Subroutine Size: No page zero locations and 44g locations of normally relocatable
memory.

Entry: MOVE
Function: Moves all of a byte string.

Calling Sequence:

(ACO contains the byte pointer to the beginning of the source
string. ACI contains a byte pointer to the beginning of the
destination string. The source byte string is terminated by an
all zero byte.)

FCALL
MOVE

(AC! points to the null byte in the destination string.)
Entry: CMOVE
Function: Moves part of a byte string.

Calling Sequence:

(ACO contains the byte pointer to the beginning of the source
string. AC1 contains a byte pointer to the beginning of the
destination string. AC2 contains the number ofbytes which
are to be moved.)

FCALL
CMOVE

(AC! points to the last byte moved to the destination string.)
Notes:
(1) Accumulators and carry are restored on exit,

(2) MOVE and CMOVE must be referenced by . EXTN statements.
14-5

Licensed Material - Property of Dara General Corporation
e —
|

String /Byte

|
g Manipulation
!

e ——

ROUTINE: MOVE: (Continued)

Notes: (Continued)

(3) No error messages are generated. No check is made by CMOVE to
determine if the value in AC2 exceeds the number of bytes in the source
string. The original source string remains unaltered in both move
operations,

--- ROUTINE: MOVEF

Supporting Subroutines: ; SP, . MAD, QSP

Subroutine Size; 1 page zero location and 23g locations of normally relocatable
memory,

Entry: .MOVE
Function: Moves a block of words.
Calling Sequence:
JSR @.MOVE
Word Count -

FORTRAN ADDRESS of word block }
FORTRAN ADDRESS of word block destination .

Notes:
(1) Accumulators and carry are not restored on exit,
(2) Upon completion of this routine, the word block is found both at its original

location and at the destination location.

--- ROUTINE: MVBT

Supporting Subroutines: FRET, FSAV; . LDBT, .STBT

Subroutine Size: 2 page zero locations and 37g locations of normally relocatable
memory,

Entry: . MVBC
Function: Moves a byte string,
Calling Sequence:
(ACO contains a byte pointer to the byte string to be moved;
ACI contains a byte pointer to the destination of the string;

and ACZ contains the number of bytes in the string.)

JSR @, MVBC

%

14-5

Licensed Material - Property of Data General Corporation
R

String /Byte

S

L
Vlanipulation

ROUTINE: MVBT (Continued)

Entry: .MVBT
Function: Moves a byte string.
Calling Sequence:
(ACO contains a byte pointer to the byte string to be moved;
ACI contains a byte pointer to the destination of the string;
and AC2 contains the terminal character in the byte string.)
ISR @.MVBT
Notes:

(1) Accumulators and carry are restored on exit.

(2) .MVBC and . MVBT must be referenced by .EXTD statements. The FCALL
entry points MVBC and MVBT must be referenced by . EXTN statements,

(3) On exit from the routine, the byte string is found both at the specified
destination and at its original location.

(4) Bytes are packed left to right. Bits 0-14 of the byte pointer specify a
memory address, and bit 15 is 0 for left and 1 for the right byte at this
address.

--= ROUTINE: MVF

Supporting Subroutines: FQRET, FSAV

Subroutine Size: 1 page zero location and 16g locations of normally relocatable
memory.

Entry: ,MVF
Function: Moves blocks of whole words within core memory.

Calling Sequence:
(Beginning address of the word block to be moved is in ACO;
the destination address is in AC1; the number of words in the
block is a positive integer in ACZ.)
JSR @.MVF
Notes:

(1) Accumulators and carry are restored on exit,

(2) .MVF must be referenced by an .EXTD statement. The FCALL entry
point MVF must be referenced by an . EXTN statement.

(3) No error messages are generated,
(4) The original word block is unchanged.

14-7

Licensed Material - Property of Data General Corporation

S

!
§ String /Byte

;
| i

; Manipulation |
--~ ROUTINE: MVZ SR

Supporting Subroutines: FQRET, FSAV

Subroutine Size: 1 page zero location and 13y locations of normally relocatable
memory,

Entry: .MVZ
Function: Clears blocks of memory words.

Calling Sequence:

(Beginning address of block in ACI, number of words in the
block to be zeroed is in ACO,)

a4 MV
Notes - ISR @.MVZ

(1) Accumulators and carry are restored on exit.,

(2) .MVZ must be referenced by an ,EXTD statement. The FCALL entry
point MVZ must be referenced by an , EXTN statement,

(3) No error messages are generated,

st

INTERS AND DISPLACEMENTS

ARDUM L, .. i naanaas 15-3
FPTRS . e e i e cas 15-3
FPZERO. . . ittt i et i ieenenn s 15-4
NPTRL L i e e i enaans e 15-5
NPTR . i i i i e 15-5
NRPTR . .. i e e e 15-6

S

1l Corpor

Displacements

Si

s/ |
|

N

--- ROUTINE: ARDUM

Supporting Subroutines: None

Subroutine Size:; 1 page zero location
Entry: LFLSP
Function: Enables . [to determine whether or not real or complex arithmeric is

used, so that it may decide whether or not to allocate core space for
the number stack.

Definition:
.NREL
LFLSP: FLSP
.END
Notes:

O——

(1) .FLSP will always be loaded along with the run time initialization program,
.1 If real or complex arithmetic is used by the main program, the FPTRS
module will have been loaded and resolved, assigning a location to the number
stack pointer which is equivalent to FLSP.

i (2) ., FLSP contains the default value 000377 at load time unless the FPTRS module
has been loaded, in which case it will contain the resolved value for FLSP,
which is some other ZREL address, and either allocate space for the number
stack or not, depending upon the result of this test.

--- ROUTINE: FPTRS

Supporting Subroutines: None

Subroutine Size: 1 page zero location

Function: Defines a page zero pointer, NSP {(or FLSP), to the current top of the
number stack. This position will also be used by .1 at initialization
time to determine whether or not arithmetic routines have been used
and thus whether the number stack should be allocated,

Definition:
LZREL
FLSP: 0
NSP= FLSP
.END

Notes:

(1) NSP and FLSP are synonyomous labels for the page zero location containing
a pointer to the current top of the number stack. This module will be loaded
only if real arithmetic routines are called for by . MAIN .

Licensed Material - Property of Dara General Corporation

Pointers/
i Displacements

ROUTINE: FPTRS (Continued) !

Notes (Continued)
{2) FLSP is the label of 2 ZREL location other than 377g. This label is
tested by .1 which then either allocates a number stack or not,

depending on the result of this test,

{3) FLSP and NSP must both be referenced by , EXTD statements.

---ROUTINE: FPZERO

Supporting Subroutines: None

Subroutine Size: 11g page zero locations

Function: These page zero locations are reserved for use by run time routines.

Definitions:
SP - Pointer to the Return Address Stack, which is a stack located
after the .I stack, and whose size is determined by .1,
Utilized by routines which do not use any of the FSAV family
for storage of return addresses for exiting subroutines, and for
miscellaneous storage.
.NDSP - Pointer to one greater than the topmost possible location in the
number stack.
SUCOM - Start of unlabeled common,
.OVFL - A flag used to indicate whether or not overflow (or underflow)
has occurred, and therefore whether errvor messages should
be issued. If all zero, no overflow has occurred; if set to a
one, overflow has occurred.
AFSE - Indication of the end (top most memory location) of available
run time stack area,
JIOCAT - Pointer to the I/O Channel Assignment Table's starting address,
. DS1 - Flag indicating whether or not the Stand-Alone-Operating System
has been loaded. If non-zero, SOS was loaded.
.SVO - Return save for zero level routines like MPY,
Qsp - Pointer to FACZ,
Notes:

(1) Each of the above-named locations must be referenced by an , EXTD statement.
Under RDOS, TVR is defined to be the starting address of the series of page
zero locations.

R

| e

Licensed Material - Property of Data General Corporation

|

H
Pointers/
. Displacements

--- ROUTINE: NPTRI1

Supporting Subroutines: ; NSP

Subroutine Size: 1 page zero location and 5 locations of normally relocatable
memory.

Entry: . NRI

Function: Obtains a pointer to the first frame below the top frame of the
number stack.

Calling Sequence:
JSR @.NR1
{Pointer is returned in ACO.)
(1) Accumulators and carry are not restored on exit.
(2) .NR1 must be referenced by an . EXTD statement.
(3) No error messages are generated,
(4) A frame is understood to be a block of six consecutive locations on the

number stack.

--- ROUTINE: NPTR3

Supporting Subroutines: ; NSP

Subroutine Size: 1 page zero location and 5 locations of normally relocatable
memory,

Entry: . NR3

Function: Obtains a pointer to the third frame below the top frame of the
number stack.

Calling Sequence:
JSR @, NR3
(Pointer is returned in ACO,)
(1) Accumulators and carry are not restored and AC3 loses FSP on exit.
(2) .NR3 must be referenced by an , EXTD statement,
(3) No error messages are generated.

(4) A frame consists of a block of six consecutive locations on the number stack.

Licensed Material - Property of Data General Corporation

Poinrers/
Displacements

-=~ ROUTINE: NRPIR

Supporting Subroutines: ; NSP

Subroutine Size: 1 page zero location and 5 locations of normally relocatable
MEemory.

Entry: . NR2

Function: Obtains a pointer to the second frame below the top frame of the
number stack.

Calling Sequence:
JSR @.NR2
{Pointer is returned in ACO.)

Notes:

(1) Accumulators and carry are not restored and AC3 loses FSP on exit,
(2) .NR2 must be referenced by an , EXTD statement.

(3) No error messages are generated.

(4) A frame consists of a block of six consecutive locations on the number stack.

15-6

LINKAGE AND INITIALIZATION ROUTINES

AR TN, v e e e e et e e et e e e s 16-3
ARGUM ottt e e e e e e e s 16-3
CPYARG vttt e et es e e et e e 16-4
FARGO . ot sttt et e et e e e e 16-5
FLINK ottt et et st ettt e i 16-6
FRGLD . © i s e e e et enrasaaan s 15-9
L o e e e e e e e e e e e e e s 16-9
-9 5 16-11
£, 0 16-12
NERTN vt e vn e me e ettt e ea e e 16-13
@174 2 & T 16-14

16-1

N

16-2

Licensed Material ~ Property of Data General Corporation

Linkage/
| Initialization

--- ROUTINE: AFRTN §

Supporting Subroutines: FRET; .FRGO

Subroutine Size: 1 page zero location and 5 locations of normally relocatable
memory.

Entry: JAFRTN

Function: Provides an abnormal means of return from a FORTRAN subroutine.
Return is to an address specified on the called subroutine’s stack
instead of the first location following the caller's parameter list.

Calling Sequence:

JSR @. AFRTN
FORTRAN ADDRESS of variable containing the return address

(1) Accumulators and carry are restored on exit.
(2) .AFRTN must be referenced by an .EXTD statement.

(3) No error messages are generated.

--- ROUTINE: ARGUM

Supporting Subroutines: ; SP

Subroutine Size: 1 page zero location and 34 8 locations of normally relocatable
Memory.

Entry: . FARG

Function: Fetches a called subroutine's argument addresses when these are
stored as FORTRAN ADDRESSes immediately following the caller.

Calling Sequence:
(ACO contains the number of argument addresses to be fetched. }
JSR @.FARG

(Caller's argument addresses are stored on current stack. Caller’'s
FRTN is updated.)

Notes:
(1) Accumulators and carry are not restored on exit.

(2) .FARG must be referenced by an .EXTD statement.

o~
(5]
P

The following example illustrates the use of . FARG:

Licensed Material - Property of Data General Corporation

T,
i i
g Linkage/ |
5 Initialization 3
! |
ROUTINE: ARGUM (Continued) ! :
Notes: Continued)
VZREL
AL.GO LALGIO-2
JNREL NREL
. MAIN
CAL1: JSR @AL.GO ; THIS IS THE CALLING ROUTINE
FORTRAN ADDRESS of argument
FSAV
3
LALGIO SUBZL 0, 0; PUT 1 IN ACO, SINCE THERE IS ONLY
; ONE ARGUMENT FOLLOWING MAIN CALLER
.CAL2: JSR @.FARG ; ARGUMENT ADDRESS IS STORED ON

;ALG10'S STACK.

--- ROUTINE: CPYARG

Supporting Subroutines: FRET, FSAV; .MADO

Subroutine Size: 2 page zero locations and 42
memory.

3 locations of normally relocatable

Entry: .CPYA

Function: Transfers effective addresses of a caller’s argument list to its called
subroutine's stack.

Calling Sequence:

FCALL

SUBR

N ; NUMBER OF ARGUMENTS IN LIST
FADDR

FADDR

SUBR: .

(ACO contains the number of arguments to be passed.)

JSR @.CPYA ; ADDRESSES OF CALLER'S ARGUMENTS
; ARE NOW ON SUBR STACK

16-4

&
g

Licensed Material - Property of Data General Corporation

% R
§ Linkage/ i
I Initrialization 1
ROUTINE: CPYARG (Continued) , S
Entry: .CPYL
Function: Transfers effective addresses of a caller’s argument list to its
called subroutine’s stack.
Calling Sequence:
FCALL
SUBR
N ; NUMBER OF ARGUMENTS IN LIST
FADDR
FADDR

SUBR:

(ACO contains the number of arguments to be passed.)

ISR @.CPYL . ADDRESS OF CALLER’S ARGUMENTS ARE
; NOW ON SUBR STACK

Notes:
(1) Accumulators and carry are restored on exit.

(2) .CPYL and .CPYA must be referenced by LEXTD statements. The FCALL
entry point CPYAR must be referenced by an . EXTN statement.

(3) This routine is more generalized than FARG.

{4) .CPYL updates the caller's return address (stored in FRIN) to the next
sequential instruction following the call.

--- ROUTINE: FARGO

Supporting Subroutines: 3 SP

Subroutine Size: 2 page zero locations and 24 8 locations of normally relocatable

memory.

Entry: . FRGO

Function: Calculates the effective address of an argument on the current stack
frame, given its FORTRAN ADDRESS pointed to by ACZ.

Calling Sequence:
(FORTRAN ADDRESS is pointed to by ACZ.)
ISR @, FRGO

(The address is returned in ACO0)

16-3

Licensed Material - Property of Data General Corporation

! i
§ Linkage/ |
; Initialization |
| :
ROUTINE: FARGO (Continued) —_
Entry: .FRGI
Function: Calculates the effective address of an argument on thr next-most-current
stack frame, given its FORTRAN ADDRESS pointed to by AC2,
Calling Sequence:
(FORTRAN ADDRESS is pointed to by AC2,)
JSR @.FRG1
(The address is returned in ACO.)
Notes:
(1) Accumulators and carry are not restored on exit.
(2) .FRGO and .FRGI must be referenced by .EXTD statements.
(3) This routine avoids the need for reserving stack storage and is also useful
when an argument list is variable in length and contains single word arguments,
--- ROUTINE: FLINK

Supporting Subroutines: .I; AFSE, .RTEO, QSP

Subroutine Size: 5 page zero locations and }408 locations of normally relocatable
memory.

Entry: FCALL

Function: Used to call a subroutine which has no page zero entry, or to call a
subroutine which has a page zero entry without using its page zero
entry.

Calling Sequence:

FCALL
SUBRT 5 NAME OF SUBROUTINE WHICH HAS NO
; PAGE ZERO ENTRY
or,
. ZREL
.SUBR: SUBR-2 ; BOTH SUBR and . SUBR HAVE BEEN ENTERED
.NREL
FCALL
SUBR ; SUBR HAS A ZREL ENTRY
NSI: - ; NEXT SEQUENTIAL INSTRUCTION
; FOLLOWING CALL TO SUBR
FSAV
SLW: Integer 1
SUBR: - ; FIRST TRUE INSTRUCTION OF CALLED SUBR

S

Fangat

Licensed Material - Property of Data General Corporation

T)
Linkage/ |
Initialization |
|

i

ROUTINE: FLINK (Continued) | U

Entry: FRCAL

Function: Calls a subroutine whose address is contained in AC2, and creates
a stack for this subroutine if needed.

Calling Sequence:

.ZREL
.SUBR: SUBR

.NREL

LDA 2, .SUBR

FRCAL

SLw ; STACK LENGTH WORD

SUBR:
Entry: FSAV

Function: Saves a caller's accumulators and state of carry upon a subroutine
page zero call, creates a new stack frame with temporary storage
allocated if needed, and checks for stack overflow.

Calling Sequence;

FSAV
I ; STACK LENGTH WORD

.ZREL

.SUBR: SUBR-2
.NREL

JSR @.SUBR ; NEXT SEQUENTIAL INSTRUCTION FOLLOWING

NSI: . ; RETURN FROM SUBR

FSAV ; SAVE ACCUMULATORS, CARRY
SLW: I ; STACK LENGTH WORD
SUBR: cen ; FIRST TRUE CALLED INSTRUCTION

Entry: FRET
Function: Restores a caller’s accumulators and state of carry upon exit from

the called subroutine, and returns to the next instruction following the
call,

16-7

Licensed Material - Pronerty of Data General Corporation

H
|
Linkage/ Z
Initialization |

i
{
H
:
:
|
1

B . P . R
ROUTINE: FLINK (Continued)
Entry: FRET (Continued)
Calling Sequence:
.ZREL
LSUBR: SUBR-2Z
. NREL
JSR @, SUBR
NEXT: cae
FSAV
SLW
SUBR: R
FRET ; RESTORE CALLER'S ACCUMULATORS AND RETURN

Entry: FOQRET

Function: Provides return from a called subroutine which neither requires
temporary storage nor calls other subroutines.

Calling Sequence:
FSAV

-1 5 NO TEMPORARY STORAGE
SUBR e

FOQRET
Notes:

(1) Accumulators (except AC3) and carry are restored on exit; AC3 contains
the caller's FSP.

(2) JSR @.FCALL is equivalent to FCALL. JSR @.FSAV is cquivalent to FSAV .
FRET is equivalent to JSR @.FRET .

(3) FCALL, FRCAL, FSAV, FRET, and FQRET must all be referenced by
. EXTN statements.

(4) .FCALL, .FSAV, .FRET must all be referenced by .EXTD statements.

(5) A fatal error message is generated if insufficient core is available
for creation of the called routine's stack frame.

(6) On entry to SUBR, ACO and AC! and carry will be the same as the calling
program's; AC2 will contain the calling program’s FSP and AC3 will contain
the called program’s FSP,

(7) All subroutines which neither call others nor require temporary storage

(i.e., all subroutines lacking stack frames) must use FQRET for return to
the caller,

16-8

R

Licensed Material - Property of Data General Corporation

|

i

Linkage/
Inirialization

--- ROUTINE: FRGLD

Supporting Subroutines: ; SP, .I'RGI

Subroutine Size: 1 page zero location and 1{}% locations of normally relocatable
SEDIOULING 2t : s

memory.

Function: Fetches the contents of the FORTRAN ADDRESS pointed to by ACZ.
Calling Sequence:
(FORTRAN ADDRESS is pointed to by AC2.)
ISR @.FRGLD
(Result is returned in ACO.)
(1) Accumulators and carry are not restored on exit,
(2) .FRGLD must be referenced by an . EXTD statement.

(3) I the FORTRAN ADDRESS is a stack displacement, it is resolved with
respect to the next-most-current stack frame, the caller's stack frame.

--- ROUTINE: 1

Supporting Subroutines: .FLSZ, .FLSP, FCALL, .MAIN; QSP, SUCOM,
AFSE, .NDSP, SP, .STOP

Subroutine Size: 1 page zero location and 241 8 locations of normally relocatable
memory.

Entry: .1

Function: Allocates number and SP stacks and blank and unlabeled common for
FORTRAN compiled programs, initializes the Run Time Stack, and
constructs pointers in a SOS or single task RDOS environment.

Calling Sequence:

Instead of being called, .I receives program control when the loaded
program is started, since the .END statement in this routine has the
argument .1, wherecas each other library routine is terminated by a
simple . END statement. .1 invokes the TCB initializer, after which it
transfers control to the FORTRAN task scheduler.

ROUTINE:

I (Continu

v of Data General Corporation

ial - Prope

ed)

Em_:_::g: I (Continued)

Entry:

Descriptio
Zesblpion

FERTN

Function:

Entg: FERTO

Entry:

Function:
FERT1

Function:

13

tem 1/0 under SOS,

A system call, .SYSI, is issued to initialize sy
and then a s em reset (L RESET) is issued. Forty octal locations are
then allocated for the SP stack immediately following the last loaded run
time subroutine. A -1 is placed in the first location of the SP stack,
and a pointer to the next location in the stack is created. The SP

stack is simply a series of temporary locations for use by subroutines
which have no stack set aside for their use.

1
1

3

Z

Next, the number stack pointer is defined and number stack storage

is allocated if floating point arithmetic is used in . MAIN, the FORTRAN
program which is about to be run. This storage will be 630 words long
or 30, plus twice whatever a user has specified in a , FLSZ ‘statement,

The d%efault value creates enough room for 68 real numbers or 34 complex
numbers, either single or double precision. After the allocation of the
number stack {(or after the allocation of the SP stack if no number stack

is called for), .I's stack with 60 temporary storage locations is allocated;
the Channel Assignment Table wul be placed in these locations,

Next, a check is made to see whether or not there is room enough for
blank common allocation, and blank common is allocated at the high end
of memory. .NMAX is now updated with the system call . MEMI;

the Channel Assignement Table is initialized and placed in the .1 stack,

Upon completion of the initialization procedure, .Iissues an FCALL to
the assembly language routine having the entry .MAIN, generated from
the main FORTRAN program. At the completion of , MAIN, return is
made to .1 . Under RDOS, .Icalls STOP, whichthen transfers control
back to .1 after out-putting STOP 999 on the console. The system
performs an effective halt, TMP . , under SOS.

B
~3
>

Transfers control to the CLI via the call ,SYSTM, R

Transfers control to the CLI via the call .SYSTM, .ERTN .

Transfers control to the debugger.

o

s

Licensed Material - Property of Data General Corporation

Linkage/
Initialization 1

—

--- ROUTINE: MAD

Supporting Subroutines: None

Subroutine Size: 2 page zero locations and 25 8 locations of normally relocatable
memory.

Entry: . MAD
Function: Resolves an effective address from a given FORTRAN ADDRESS.

Calling Sequence:

{(Input FORTRAN ADDRESS in ACZ; current (i.e., caller's) FSPis
base used in calculation.)

JSR @.MAD

(AC2 contains effective address on exit; AC3 does not contain caller's
FSP on exit.)

Entry: MADO

Function: Resolves an effective address from a given FORTRAN ADDRESS.
Calling Sequence:

(Input FORTRAN ADDRESS in AC2; base FSP in ACL.)

JSR @.MADO

(AC2 contains effective address on exit; AC3 does not contain caller's
FSP on exit.)

Notes:
(1) Accumulators and carry are not restored on exit.
(2) .MAD and .MADO must be referenced by .EXTD statements.

(3) No error messages are generated,
g g

16-11

---ROUTINE:

MTI e

Licensed Material - Property of Data General Corporation

5

Entry:

Supporting Subroutines: INHIB, FRTSK, FHMA, DVD, FCALL, KILL,
SVVAR, TMAX2, .BASC, .MAIN; SUCOM, FLSP,
OVFL, SP, .WRCH, .IOCAT

Subroutine Size: No page zero locations and 426g locations of normally relocatable
memory. The Channel Assignment Table, 603 locations, over-

writes part of . I after that section of initialization code has
been executed.

.1

Function: (1) Performs initialization functions in a multitasking environment.

(2) Partitions the free memory area into equal segments for the
creation of cach task’s run time stacks.

(3) Allocates a blank common area if needed.

(4) Builds an /O Channel Assignment Table inirialized to the default
values of the logical FORTRAN channels.

(5) Allocates number, SP, and run time stacks, and creates the
associated stack pointers for the first task by means of a call
to the TCB initializer.

Calling Sequence:

Instead of being called, .I receives program control when the loaded
program is started,since the .END statement in this routine has the
argument .I, whereas each other library routine is terminated by a

simple .END statement. .l invokes the TCB initializer, after which
it transfers control to the FORTRAN task scheduler.

Description:

A system call, .RESET, is issued to initialize system I/O. USTCS

of the User Status Table (UST} is examined to determine the size of

blank common. Blank common is then allocated, if possible, and a

pointer to the start of blank common is created. If there is not enough
memory available for blank common allocation, error message MEMOVFL
is output and a return to the next higher program level (usually the CLD

is made by means of .SYSTM, .RTN.

A temporary SP stack is then created (and will later be overwritten).
The number of tasks and FORTRAN channels which will be required
is determined by examining USTCH of the UST. DVD is then called,
and the remaining free memory is partitioned into equal segments,
one for each task’s later run time use. Each run time segment has

a link to the following segment built into its first word, and a flag bit
is allocated to indicate whether the segment has yet been assigned to a
specific task, For a more detailed discussion of run time segments,
see Chapter 2.

I'TCB is then called, setting up stacks and stack pointers in the first
run time segment area for the first FORTRAN task, The Channel
Assignment Table is then built over the beginning of .1 code, which
is of no further use in a multi-tasking environment after its initial
execution. Control is then given to the FORTRAN Task Scheduler.

16-12

Hiias”

Licensed Material - Property of Data General Corporation

Linkage/
Initialization

ROUTINE: MTI (Continued)

Entry: FERTN
Function: Transfers control to the CLI via the call ,SYSTM, .RTN .
Entry: FERTO

Function: Transfers control to the CLI via the call .SYSTM, .ERTN .

Entry: FERTIL

Function: Transfers control to the debugger.

Entry: ITCB

Function: Allocates number, SP, and run time stacks and stack pointers in
a FORTRAN task's run time segment area.

Calling Sequence:
Input:
ACO - priority of the task which is to be assigned the stack area

segment
AC1 - starting address of the task's TCB

JSR @.TTCB
Output:
sp, NSP, .NDSP, AFSE, .IOCAT, FSP, QSP, .OVFL are
initialized
Notes:
‘.1 calls ITCB as part of the initialization process, and .ITCBis called each

time a stack segment is to be used by a FORTRAN task for the first time.

--- ROUTINE: NFRTN

Supporting Subroutines: FRET

Subroutine Size: 1 page zero location and }08 locations of normally relocatable
MEeMmory.

Entry: . NFRTN

Function: Provides a called subroutine with a means of return to the first
location following the caller’'s parameter list.

16-13

Licensed Material - Property of Data General Corporation

. Linkage/
i Initialization

{

‘L—‘ﬂmn.

ROUTINE: NFRTN (Continued)

Entry: .NFRTN (Continued)

Calling Sequence:
JMP @. NFRTN
(1) Accumulators and carry are restored on exit.
(2) .NFRT must be referenced by an , EXTD statement.
(3) No error messages are generated.,

(4) This routine assumes that FRTN points to N, the first item in the caller's
parameter list,

--- ROUTINE: OVFLO

Supporting Subroutines: ; .AFRT, .OVFL, .CPYL

Subroutine Size: No page zero locations and 23(; locations of normally relocatable
QUOTOUMNE olze: S
memory.

Entry: OVERFLOW

Function: Provides a means of abnormal return from a subroutine by checking
for the occurrence of non-integer arithmetic overflow.

Calling Sequence:

FCALL

OVERFLOW

Integer 2 or 3

FORTRAN ADDRESS of return on overflow

FORTRAN ADDRESS of return if no overflow

optional FORTRAN ADDRESS of string literal "S” or "N"

Notes:
(1) Accumulators and carry are not restored on exit.

(2) OVERFLOW must be referenced by an . EXTN statement.

~—

(3) The string literal argument consists of an ASCII § or N, left justified
and followed by a null byte. If the argument is S, overflow messages are
suppressed; if N, overflow messages are not suppressed. S is the default
value if no string literal argument address is given.

16-14

Sigagg”

INPUT/OUTPUT ROUTINES

COUT L e e i i e e e s e ns 17-3
MTDIO. L . it st e e e i s ae s 17-5
RDBLEK . .. i i v et es e e e 17-7
RDFLD. . i it iiinevaann s 17-8
READL. L .o i it i i i e sssas e 17-10
READR. . v v i it e i e s s e aa s 17-11
WRCH Lo e i e s e s 17-13

e,

17-2

Licensed Material - Property of Data General Corporation

1/0

--- ROUTINE; COUT

Supporting Subroutines: FQRET, FSAV

Subroutine Size: 2 page zero locations and 23g locations of normally relocatable
memory.

Entry: .COUT

Function: Outputs a character on a teletype.
Calling Sequence:
{ACO contains the character to be output, right justified,)
JSR @.CouT
(The character is output to a TTY printer/punch.)
Entry: . CIN
Functjon: Inputs a character on a teletype.
Calling Sequence:
JSR @.CIN
(ACO contains a character input from a TTY reader/keyboard.)
(1) Accumulators and carry are restored on exit,
(2) .COUT and . CIN must be referenced by ,EXTD statements,

(3) The FCALL entry points COUT and CIN must be referenced by EXTN
statements,

(4) No error messages are generated.
(5) Characters input via .CIN will also be echoed on the TTY printer /punch,

(6) If the character output was a carriage return, a line feed will also be output,

---ROUTINE: FREAD

Supporting Subroutines: FSAV, FRET, MPY, DVD, FERTG; .WRTS, .REDS,
JALLOC, .THREAD, .FRG1, .FRGLD, .READL,
CWRITL, .RDFCH, .RTER, .RDFLD, .STBT, .LDBT,
.MVBC, .ARYSZ, .FSBR, .WRCH, 5P, .SVO

Subroutine Size: 24g page zero locations and 3670g locations of normally relocatable
memory,

Entry: .BRD

Function: Performs FORTRAN input of binary data,

17-3

Licensed Material - Property of Data General Corporation
(! b i

i/0

-
|
H
i
{

ROUTINE: FREAD (Continued)

Entry: ,BRD (Continued)
Calling Sequence:
JSR @ .BRD
FORTRAN ADDRESS of the logical channel number
0

ELEMENT DESCRIPTOR SEQUENCE (8) (see Chapter 6)
5

Entry: _BWR
Function: Performs FORTRAN output of binary data.

Calling Sequence:

JSR @.BWR
FORTRAN ADDRESS of the logical channel number

0
ELEMENT DESCRIPTOR SEQUENCE (S) (see Chapter6)
5

Entry: FREAD

Function: Performs formatted or free form FORTRAN input of ASCII data.
Calling Sequence:

ISR @ ,FREAD

FORTRAN ADDRESS of the logical channel number
FORTRAN ADDRESS of the format statement text string
ELEMENT DESCRIPTOR SEQUENCE (S) (see Chapter6)
b)

Entry: ,FWRIT

Function: Performs formatted or free form FORTRAN output of ASCII data,

Calling Sequence:

JSR @, FWRIT

FORTRAN ADDRESS of the logical channel number
FORTRAN ADDRESS of the format statement text string
ELEMENT DESCRIPTOR SEQUENCE (S) (see Chapter6)

5

Notes:
(1) Contents of accumulators and carry are restored on exit,

(2} LFREAD, ,FWRI, .BRD, and .BWR must all be referenced by . EXTD
statements.

(3) If free form FORTRAN 1/0 of ASCII data is to be performed, the FORTRAN
ADDRESS of the format statement text string in the calling sequence must be 0,

17-4

e

Licensed Material - Property of Data General Corporation
| |
| 1I/0 |

|

ROUTINE: FREAD (Continued)

Notes: (Continued)

(4) If the contents of the first word in the formart text string are .002401, then
the first four bytes in this string are ignored. This permits FREAD to be
used by the FORTRAN compiler, which always precedes the format text
string with]MP @, +1, which assembles as 002401,

(5) The ELEMENT DESCRIPTOR SEQUENCES describe in detail the nature of
each data type in the list of elements to be input or output. Each SEQUENCE
is in reality a set of eight possible calling sequences. One sequence is
selected to describe each data element in the 1/0 list. Refer to Chapter 6
for a detailed description,

(6) There are four FCALL entry points corresponding to . FREAD, . FWRIT,
.BRD and .BWR: FREAD, FWRIT, BRD and BWR, which must be referenced
by .EXTN statements.

--- ROUTINE MTDIO

Supporting“Subroutines: FRET; .CPYL, .IOCAT

Subroutine Size: No page zero locations and 55g locations of normally relocatable
memory.

Entry: MTDIO
Function: Allows machine level 1/O on magnetic tape and cassette units as
described in the RDOS and RTOS manuals.

Calling Sequence:

FCALL

MTDIO

Integer5 or 6

FORTRAN ADDRESS of channel number
FORTRAN ADDRESS of command word
FORTRAN ADDRESS of /0 array specifier
FORTRAN ADDRESS of status word

FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of WRD/REC count

Notes:
(1) Accumulators and carry are restored on exit.
(2) MTDIO must be referenced by an . EXTN statement.

(3) The command word specifies the operation to be performed:

17-5

ROUTINE: MTDIO (Continued)

Notes: (Continued)
Bits
0

-3

Licensed Material - Property of Data General Corporation

Mean ing

Parity bit {I=even, O=odd)

read

rewind the tape

space forward {over record or over file of
any size)

space backward (over record or over file of
any size)

write (words)

write end of file

read device status word

Q3 s D
1

.
i

i

~1On
1

Word or record count. If a 0 on a space forward
or backward, the tape is positioned to the beginning
of the next or previous file on the tape. K QOona
read or write command, 4096 words are read or
written unless an end of record is detected.

(4) The I/0 array specifier points to an integer array used for I/0. This 1/O

array will be used to return the status information of the transfer according to

the following definition:

Bit

G50 0 N O D LN e O

[

11
12
13
14
15

Error (bits 1, 3, 5, 6, 7, 8, 10, or 14 ser)
Data late

Tape is rewinding

Hlegal command

High density if =1 (always 1 for cassettes)
Parity error

End of tape

End of file

Tape is at load point

9 track if 1, 7 track if O (always 1 for cassettes)
Bad tape or write failure

Send clock {always zero for cassettes)
First character (always O for cassettes)
Write protected or write locked

Odd character (always 0 for cassettes)

Unit ready

(5) In addition to being returned in the 1/0 array if the command word contained a
7 in bits 1-3, the status information is always returned in the status word defined
The bit meanings are defined in (4) above.

in the calling sequence.

!

WARNING

% C AU T 1O N
BY P ASSES
C HECKTIN
I/ O. 1T
DESTROY

H

WARNING

G

i

THIS R OUTINE
T HE NORMAL ERR OR
A N D R ECOVERY F O R
s POSSIBLE T O 5
T HE S Y S TE M.

17-6

Licensed Material - Property of Data General Corporation

H

|

ROUTINE: MTDIO (Continued)

Notes: {(Continued)

---ROUTINE:

Only very limited error checking is performed. The error code will be set to
one of the following states: i

0 - Indeterminate error
1 - No error occurred or error ignored
3...n - RDOS system error code +3

An indeterminate error indicates that bit 0 of the device status word was set,
However, an indeterminate error will not be indicated if this error bit was set
as a result of end of tape or end of file.

The RDOS error codes will provide limited system and file error information,
but fatal device errors can go undetected.

The optional WRD/REC count will return the actual number of words or records
processed.

This routine issues the RDOS system call . MTDIO,

RDBLK

Supporting Subroutines: FRET; .CPYL, ,IOCAT

Subroutine Size: No page zero locations and 72g locations of normally relocatable
memory.

Entry: RDBLK

Function: Reads into an array a series of disk blocks from a file that is
organized either randomly or contiguously.

Calling Sequence:

FCALL

RDBLK

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of starting block number
FORTRAN ADDRESS of array to receive block of data
FORTRAN ADDRESS of number of blocks to be read
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of block count

Entry: WRBLK

Function: Writes a series of 256-word blocks from an array into an RDOS disk
file, The disk file must be organized either randomly or contiguously.

17-7

ROUTINE:

Licensed Material - Property of Data General Corporation

RDBLK (Continued)

Entry: WRBLK (Continued)

Calling Sequence:

FCALL

WRBLK

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channe! number
FORTRAN ADDRESS of starting block number
FORTRAN ADDRESS of array transmitting block of data
FORTRAN ADDRESS of number of blocks to be written
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of block count

Notes:

ROUTINE :

(1) Accumulators and carry are restored upon exit,
(2) RDBLK and WRBLK must be referenced by . EXTN statements.

(3) The starting block number is the logical (or relative) number of the block
within the file to or from which reading or writing will occur. The first
block in the file is logical block 0, the second is block 1, etc.

(4) Since disk blocks are each 2561(words in length, the array size must be
n*256, where n is the number of blocks to be read or written. No check is
made to determine whether the size of the array is adequate. In the case
where a premature end of file is detected on a read, or disk overflow occurs
on a write, the optional block count argument will be set to the number of
blocks actually read or written..

(5) The error code word will be set to one of the following states:
0 - Indeterminate error

1= No error occurred
3...n - RDOS system error code + 3

RDFLD

Supporting Subroutines: FSAV, FRET; .FARG, .LDBT, .STBT, .RTER

Subroutine Size: 2 page zero locations and 115¢ locations of normally relocatable
memory,

Entry: .RDFLD

Function: Reads and transfers a portion of an ASCII string from one buffer
to another by counting characters in the transferred field.

17-8

Licensed Material - Property of Data General Corporation

o
i

ROUTINE: RDFLD (Continued)

Entry: .RDFLD (Continued)

Calling Sequence:

{AC2 contains number of characters to be read)

JSR @.RDFLD

FORTRAN ADDRESS of "FROM" string byte pointer
FORTRAN ADDRESS of "TO" string byte pointer
abnormal return {character count retained in AC1)
normal return

(Both the "FROM" and "TO" string pointers are updated upon exit,)
Entry: RDFCH

Function: Reads and transfers a portion of an ASCII string from one buffer to
another by reading to a specified character.

Calling Sequence:

(AC2 contains the terminal field character.)

JSR @, RDFCH

FORTRAN ADDRESS of "FROM'" string byte pointer
FORTRAN ADDRESS of "TO" string byte pointer
abnormal return (character count retained in AC1)
normal return

(Both the "FROM" and "TO" string pointers are updated upon exit.)

Notes:
(1) Original contents of accumulators and carry are restored upon exit.

(2) .RDFLD and .RDFCH must be referenced by .EXTD statements. RDFLD
and RDFCH are FCALL entry points which must be referenced by ,EXTN
statements.

(3) A fatal error message will be output on overflow of the "TO" buffer only
if the last buffer location contains a word consisting of two ASCII rubouts,
077577. FREAD will ensure that such a buffer terminator exists in every
case where it issues a call to RDFLD or RDFCH.

(4) Both RDFLD and RDFCH examine each character that is rransferred, U
a null is detected before the scheduled end of the field, a branch is made
to the abnormal return. AC! is then set to the number of characters
(excluding the null) which were read and rransferred before the branch.

(5) If a carriage return or form feed character is detected by RDFLD, a
branch will be made to the abnormal return location.

Licensed Material - Property of Data General Corporation
b ¥

1/O

--- ROUTINE: READL

Supporting Subroutines: FSAV, FRET, FCALL, OPEN; LSTBT, L I0CA,
.LDBT, ,SOSW, |[FARG

Subroutine Size: 4 page zero locations and 3043 locations of nermally relocatable
menmory,

Entry: ,WRITL

Function: Performs line output of ASCII dara strings on a FORTRAN channel.
Calling Sequence:

(ACO contains a byte pointer to the beginning of the output string,
AC2 contains the FORTRAN logical channel number.)

JSR @, WRITL

FORTRAN ADDRESS of format flag

error return (System error code returned in AC2)
normal return

Notes:

(1) The format flag is simply a one word flag used to indicate whether the data
string will be output in free format or not, If the flag is nonzero, formatted
output is indicated and a carriage return will be appended to the output string.
If the flag is all zero, free format is indicated and a null will be appended to
the end of the string.

(2) If formatted output is indicated, the first character in the output string will
be examined. If this character is ASCII 0, this zero will be replaced by a
carriage return. If the first character is ASCII 1, it will be replaced by a
form feed character. All other first characters which are neither ASCII 0
nor 1 will be dropped from the output string.

Entry: WRTS
Function: Performs line output of binary data strings on a FORTRAN channel.

Calling Sequence:

(ACO contains a byte pointer to the beginning of the output string.
ACI contains the number of bytes to be written. AC2 contains the
FORTRAN logical channel number.)

JSR @, WRTS
error return (Systemerror code returned in AC2)

normal return

Entry: .READL

Function: Performs line input of ASCII data strings on a FORTRAN channel,

17-10

S

Licensed Material - Property of Data General Corporation
1
o |
| /0
I

ROUTINE: READL (Continued)

Entry: .READL (Continued)

Calling Sequence:

{ACO contains a byte pointer to the beginning of the input string
buffer. AC2 contains the FORTRAN logical channel number.)

JSR @.READL
error return (System error code returned in AC2)
normal return

Entry: .REDS

Function: Performs line input of binary data strings on a FORTRAN channel.

Calling Sequence:

(ACO contains a byte pointer to the beginning of the input string
buffer. AC1 contains the number of bytes to be read. AC2 contains
the FORTRAN logical channel number.)

JSR @.REDS

error return (System error code returned in AC2)
normal return

Notes:
(1) Contents of accumulators and carry are restored upon exit.

(2) Leading nulls are ignored and a trailing null is recognized as 2 terminator
under RDOS.

(3) .WRITL, .WRTS, .READL, and . REDS must be referenced by . EXTD
statements.

---ROUTINE: READR

Supporting Subroutines: FRET, MPY, DVD; .CPYL, L IOCAT, .RTER

Subroutine Size: No page zero locations and 768 locations of normally relocatable
_ memory.

Entry: READR

Function: Reads a series of records from a file into an array.

17-11

ROUTINE:

Licensed Material - Property of Data General Corporation

|

I
||

e 1

READR (Contineud)

Entry: READR (Continued)

Calling Sequence:

FCALL

READR

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of the starting record number
FORTRAN ADDRESS of array to receive records
FORTRAN ADDRESS of number of records to be read
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of byte count

Entry: WRITR

Notes:

Function: Writes a series of records from an array into a file,

Calling Sequence:

FCALL

WRITR

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of the starting record number
FORTRAN ADDRESS of array transmitting records
FORTRAN ADDRESS of number of records to be written
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of byte count

(1) Accumulators and carry are restored on exit.

(2) The starting record number is the logical (or relative) number of the
block within the file to which writing will occur or which will be read.
The first record within the file is logical record number 0, the second is

logical record number 1, etc.

(3) The routine performs sequential reads or writes by issuing RDOS system
calls \RDSor .WRS, Ifapremature end-of-file is detected on a read,
the routine returns a byte count for all bytes read during the call, and
places this count in the FORTRAN ADDRESS of the byte count, if one is
provided. No check is made to determine whether the size of the array is

adequate.
(4) The error code word will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred
3...n - RDOS system error code +3

If disk overflow occurs on a write, RDOS system error code ERSPC
will be given,

(5) READR and WRITR must be referenced by .EXTN statements.

17-12

Licensed Material - Property of Data General Corporation

r !
Lo |
|
i i
--- ROUTINE: WRCH
Supporting Subroutines: FRET, FSAV; .LDBT, . couT
Subroutine Size: 1 page zero location and 15 3 locations of normally relocatable
mMemory.
Entry: . WRCH
Function: Prints a string of ASCII characters on a teletype printer.
Calling Sequence:
(ACO contains a byte pointer to the beginning of the byte string.)
JSR @, WRCH
(Upon exit from the routine, ACI contains the number of characters
in the string.)
Notes:

(1) Accumulators and carry are restored on exit, except for ACl. The contents
of AC1 will be as noted above.

(2) .WRCH must be referenced by an .EXTD statement. The FCALL entry
point, WRCH, must be referenced by an .EXTN statement.

(3) ASCII characters in the string must be packed left to right, 2 characters
per word.

17-13

MISCELLANEOUS FORTRAN SUPPORT ROUTINES

COT e i s et e s s e s i e 18-3
CHSAV . L i i it e s s s s e s 18-3
FINIT o i i e e e s ie e aa e 18-4
FOPEN . L e it i et e it e i se s e e v es 1&-35
ITEST ottt i e i e e i e s e oo 18-6
LE i e e e 15-7
RTER . i ettt it nnse s sanan 15-7
STOP e e e 18-9
THREAD ... ittt e e n e 18-10

18-2

Licensed Material - Property of Data General Corporation

[Misc. FORTRAN
| support

i

]
i
|
;
1
j

--- ROUTINE: BSTRING

Supporting Subroutines: .CPYL, FRET

Subroutine Size: 63g locations of normally relocatable memory.

Entry: IOR (m,n)

Function: Inclusive OR where m and n designate arguments that are logically
added, bit by bit,

Calling Sequence:

FCALL

I0R

N (number of arguments)
FORTRAN address of result
FORTRAN address of M
FORTRAN address of N

Entry: IAND (m,n)

v
.

Function: Logical product where m and n designate arguments that are logically
manipulated.

Calling Sequence:

FCALL

IAND

N (number of arguments)
FORTRAN address of result
FORTRAN address of M '
FORTRAN address of N

Entry: NOT (m)

Function: Logical complement where m designates an argument that is logically
complemented,

Calling Sequence:

FCALL

NOT

N (number of arguments)
FORTRAN address of result
FORTRAN address of M

18-3

Licensed Material - Property of Data General Corporation

Misc, FORTRAN
Support

ROUTINE: BSTRING (Continued)

Entry: IEOR (m,n)

Function: Exclusive OR where m and n designate arguments that are
exclusively added.

Calling Sequence:

FCALL

IEOR

N (number of arguments)
FORTRAN address of result
FORTRAN address of M
FORTRAN address of N

Entry: ISHFT (m,n)

Function: Shifts argument m, n positions. The direction of the shift is:

~n< 0 shift right
n =0 no shift
n >0 shift left

Calling Sequence:

FCALL

ISHFT

N (number of arguments)
FORTRAN address of result
FORTRAN address of M
FORTRAN address of N

18-4

L

Licensed Material - Property of Data General Corporation

Misc., FORTRAN

Support
--- ROUTINE: CGT
Supporting Subroutines: FRET, FSAV; .RTER, .FRGL
Subroutine Size: 1 page zero location and 238 locations of normally relocatable
Memory.
Entry: .CGT
Function: Implements the FORTRAN "Computed GO TO" facility.
Calling Sequence:
JSR @.CGT
N, the number of statement numbers which can be gone to
FORTRAN ADDRESS of the non-subscripted integer variable V
Effective address Ny
Effective address Ny
Effective address Nn
Notes:
(1) Accumulators and carry are restored on exit.
(2) .CGT must be referenced by an .EXTD statement. The FCALL entry, CGT,
must be referenced by an .EXTN statement.
(3) The above calling sequence is generated by the FORTRAN statement
GO TO (nl,nz. e ,nn)V
(4) A fatal error message is generated if the integer variable V is less than 1
or greater than N, and program control remains in the error message routine.
--- ROUTINE: CHSAV

Supporting Subroutines: FRET; ,IOCAT, .RTER, .CPYL

Subroutine Size: No page zero locations and 538 locations of normally relocatable
memory.

Entry: CHSAV

Function: Saves the status of a FORTRAN channel to permit rereading or
rewriting of FORTRAN records on disk.

Calling Sequence:

FCALL
CHSAV
2

FORTRAN ADDRESS of logical channel number
FORTRAN ADDRESS of 3-word integer array for saved channel status data

18-5

¥

Licensed Material - Property of Data General Corporation

Misc. FORTRAN
Support

ROUTINE: CHSAV (Continued)

Entry: CHRST

Function: Restores the original status of the channel after a call to CHSAV has
been issued to permit rereading or rewriting of FORTRAN records on
disk.

Calling Sequence:

FCALL

CHRST

2

FORTRAN ADDRESS of logical channel number

FORTRAN ADDRESS of 3-word integer array containing previously
saved channel status data.

Notes:
(1) Accumulators and carry are restored on exirt,

(2) A non-fatal error message is issued if the specified channel has not been
opened. CHRST will also issue a non-fatal error message if an attempt is
made to restore channel status information which was not previously saved
in a call to CHSAV.

(3) The status of more than one channel may be saved in the same array.
For example, an array declared as I (3, 100) can be used to save up to 100
blocks of channel status information.

4) The method of using this routine is to first save the status of a FORTRAN
channel (CHSAV), issue anynumber of reads or writes, and then restore
the original status of the channel (CHRST). Records processed between the
status save and status restore operations may then be reread or rewritten.

--- ROUTINE: FINIT

Supporting Subroutines: FRET, FSAV; SUCOM

Subroutine Size: 1 page zero location and 24 3 locations of normally relocatable
memory.

Entry: LFINI

Function: Allocates unlabeled common storage.

Calling Sequence: &

ISR @.FINI
Absolute address of L1
Absolute address of L2

(L1 and L2 are the first and last entries respectively in the blank
common displacement table generated by the FORTRAN Compiler,
The last entry in the table, L2, is zero unless blank common storage
has been requested more than once.)

18-6

Licensed Material - Property of Data General Corporation

Misc., FORTRAN
Support

FINIT {(Continued)

(1) Accumulators and carry are restored on exit,

(2) .FINI must be referenced by an .EXTD statement. The FCALL entry
point must be referenced by an . EXTN statement.

(3) This routine is of limited usefulness to assembly language programmers
and is only described here for completeness.

Supporting Subroutines: FRET, FSAV, IOPTR; .IOCAT, .RTER, .CPYL,
.SOSW

Subroutine Size: 1 page zero location and 123 locations of normally relocatable

memory.

8

Function: Opens a FORTRAN channel.

Calling Sequence:

JSR @.FOPEN

Integer number of arguments - 2, 3, or 4

FORTRAN ADDRESS of logical channel number

FORTRAN ADDRESS of file name

optional FORTRAN ADDRESS of binary specifier

optional FORTRAN ADDRESS of random record byte length

(The specified channel is now assigned to the named file.)

ROUTINE:
Notes:
--- ROUTINE: FOPEN
Entry: .FOPEN
Notes:

(1) .FOPEN must be referenced by an ,EXTD statement. The FCALL entry
point FOPEN must be referenced by an .EXTN statement.

(2) Up to 64 FORTRAN channel numbers are allowed. Channel numbers are
represented by integer constants with values 0 through 631 o

(3) The file name is an ASCII byte string terminated by a null byte. Similarly,
the binary specifier is a single word ASCII byte string consisting of an ASCII
B, left justified, followed by a null byte. If a binary specifier is given, the
named file is opened with all particular device characteristics inhibited, such
as a rubout character following a tab character output by a paper tape punch.

(4) The random record length parameter, given only when random devices are
selected, is an integer specifying the random record length in bytes. If the
file does not exist, a file is created and then opened. This file is organized
randomly under RDOS.

--- ROUTINE:

Licensed Material - Property of Data General Corporation

{ Misc, FORTRAN

L Support

ITEST

Supporting Subroutines: FRET; ,CPYL, .RTER

Subroutine Size: No page zero locations and 588 locations of normally relocatable
memory.

Entry: ITEST

Function: Examines a bit in a 16-bit word; performs a logical AND between the
word to be examined and a bit mask, placing the result in the FORTRAN
ADDRESS of the result.

Calling Sequence:

FCALL

ITEST

Integer 3

FORTRAN ADDRESS of result

FORTRAN ADDRESS of word to be examined
FORTRAN ADDRESS of bit position indicator

Entry: ISET

Function: Sets a bit in a 16-bit word.

Calling Sequence:

FCALL

ISET

Integer 2

FORTRAN ADDRESS of word with bit position to be set
FORTRAN ADDRESS of bit position indicator

Entry: ICLR

Notes:

Function:; Clears a bit in a 16-bit word.

Calling Sequence:

FCALL

ICLR

Integer 2

FORTRAN ADDRESS of word with bit position to clear
FORTRAN ADDRESS of bit position indicator

(1) Accumulators and carry are restored on exit,

(2) The bit position indicator is an integer from 0 to 15. The following bit

position indicators cause the following bit positions to be acted on:

Bit Position Bit Acted

Indicator Upon
0 Least significant bit
15 Most significant bit

18~8

et

ROUTINE:

Entry:

Licensed Material - Property of Data General Corporation

Misc. FORTRAN
Suppert

LE

Supporting Subroutines: FRET, FSAV

Subroutine Size: 4 page zero locations and }’68 locations of normally relocatable
MEmMoTy.

.GT, .GE, .LT, .LE

Function: Performs signed comparisons between the contents of registers
ACO through AC2.

RI > R2 -- GT
R1 > R2 -- GE
Ri< R2 -- LT
R1< Rz -- LE

Calling Sequence:

(The contents of the first register, R1, is multiplied by 4008, and the
contents of the second register, R2, is added to that product. The product
must be stored in the next sequential location following the call before
issuing the call.)

?

JSR @.GT (.GE, .LT, .LE)

CODE: 40{)8 *R1+R2

(If it is true that (R1) is greater than -- greater than or equal to, less
than, or less than or equal to -- (R2), -1 isloaded into R2. Otherwise,
0 is loaded into R2.)

(1) Original states of all accumulators but AC3 and R2 are restored on exit,
and the entry state of carry is also restored.

) .GT, .GE, .LT, and .LE must all be referenced by .EXTD statements.
The FCALL entry points GT, GE, LE, and LT must all be referenced by

Supporting Subroutines: FCALL, FERTI, FRET, FSAV, .BASC, .BDAS,
.I; .WRCH, .OVFL, 8P, .FSAV

Subroutine Size: 3 page zero locations and 214 3 locations of normally relocatable

Notes:
.EXTN statements.
(3) No error messages are generated.
ROUTINE: RTER
memory.
Entry: RTEO, RTER, RTES

Function: Indicates that a run time error has occurred, either by specifying an
error code (RTER) and the program counter contents, or by specifying
an error code and the location from which a call was issued upon
detection of an error (RTEO, RTES). In all cases, the message will
specify whether the error is fatal or non fatal.

18-9

Licensed Material - Property of Data General Corporation

Misc., FORTRAN
Support

ROUTINE: RTER (Continued

Entry: RTEO, RTER, RTES (Continued)

Calling Sequence:

(ACO set to called-from address.)

ERROR CODE
JSR @.RTEO

(Latest entry in SP stack is the called -from address,)

ERROR CODE
JSR @.RTES

ERROR CODE
JSR @. RTER

(The value of the program counter just prior to the call to ,RTER will
be printed, along with the appropriate error code.)

(1) Accumulators and carry are restored on exit.

(2) .RTER, .RTES, and .RTEO must be referenced by .EXTD statements.

(3) .RTEO is used by the FLINK module, .RTES by the signed integer and
single and double precision real arithmetic routines, and .RTER by the

remainder of the run time routines.

(4) The ERROR CODE word has the following structure:

Bit Meaning

0 Always 1

1 1 for fatal error, O for non-fatal
2-11 Specific error code

12 Always 1

13-14 Always 0

15 Always 1

(5) The specific error code will be converted to decimal and output by this
routine. A list of all run time error codes is given in the FORTRAN Manual,
Appendix B. The definition of the error code structure and mnemonic error
code assignments are defined on the PARF tape,

(6) The fixed values of bits zero, twelve, thirteen, fourteen, and fifteen cause
all ERROR CODES to be effective skips. Thus the call to the error routine
can be made conditional on the result of a skip test, skipping to the ERROR
CODE if no error message should be output. The code will then be
executed as an arithmetic /logical no load, skip instruction, skipping over the
call to the error processing routine.

18-10

Mg

Licensed Material - Property of Data General Corporation

Misc, FORTRAN
Support

ROUTINE: RTER ({(Continued)

Notes: (Continued)

(7) The non-fatal error messages output by these routines are of the form
RUNTIME ERROR NN AT LOC, xxxxxx, CALLED FROM LOC. yyyyvy
where NN is the decimal run time error code (a complete list of error codes
is found in the FORTRAN IV User's Manual), xxxxxx is the NREL starting
address of the subroutine detecting the error. yyyyyy is the address (+1)
in the main program or user subroutine of the assembly language instruction

causing the error.

(8) Fatal error messages will be of the same form as non-fatal error messages
with the specifier FATAL appended to the message.

(9) All fatal error conditions cause program control to return to the Debugger
(if it is loaded), or otherwise to the operating system.

--- ROUTINE: STOP

Supporting Subroutines: FSAV, FRET, FERTN; .WRCH

Subroutine Size: 2 page zero locations and 52 3 locations of normally relocatable
memory.

Entry: . STOP

Function: Implements the FORTRAN STOP function.

Calling Sequence:

JSR @.STOP
TEXT

(The message "STOP" is output on the TTY printer, then the text
message is output with a terminating carriage return and control
returns to the operating system.)

Entry: .PAUSE

Function: Implements the FORTRAN PAUSE function.

Calling Sequence:

JSR @.PAUSE
TEXT
NSI)

(The message "PAUSE" is output on the TTY printer, then the text
message is output, followed by a carriage return. Control reverts
to the operating system until any key is struck, when control then
returns to the Next Sequential Instruction.)

18-11

Licensed Material - Property of Data General Corporation

Misc, FORTRAN
Support

ROUTINE: STOP (Continued)
(1) Accumulators and carry are restored on exit,
(2) .STOP and .PAUSE must be referenced by .EXTD statements,
(3) If no text output is desired, a -1 should replace the text string in the calling
sequence.
--- ROUTINE: THREAD
Supporting Subroutines: FSAV, FRET; .CPYARG
Subroutine Size: 2 page zero locations and 44 8 locations of normally relocatable
memory.
Entry: THREAD
Function: Transfers the latest five word element of one list to a second list.
Calling Sequence:
JSR @.THREAD
FORTRAN ADDRESS of "FROM" list pointer
FORTRAN ADDRESS of "TO" list pointer

(1) Contents of accumulators and carry are restored on exit.
(2) No error messages are generated.

(3) .THREAD must be referenced by an .EXTD statement. THREAD is an FCALL
entry point and must be referenced by an .EXTN statement.

(4) Each five word element of a list consists of a block of five sequential locations.
The first location (i.e., the one with the lowest core address) is the link word;
the remaining four words are reserved for list data storage:

LINK
data

data List Element
data
data

Lists are variable in length, and list elements may be found in scattered
locations throughout available core. The oldest member of a list has a LINK
of zero; each successive list element has a LINK which points to the next
earlier element. Finally, each list has a pointer to the most recent list
element:

18-12

|

Licensed Material - Property of Data General Corporation
Misc, FORTRAN i
Support }
ROUTINE: THREAD (Continued)
Notes: {(Continued)

T List I ; T 1
o LINK LINK = = LINK e LINK=0 |
Pointer e | R % e

! | !
bl !
| |
D 2 B i c r
- | j E j
| | |
i i i
'
!
!

-

(5) .THREAD takes the most recent element from one list, the "FROM" list,
and attaches it to a second list, the "TO" list, where it then becomes the
most recent entry in the list.

g Entry: . ALLOC

Function: Examines a list and, if it is a null list, creates a five word element
and transfers it to a second list.

Calling Sequence:

JSR @, ALLOC
FORTRAN ADDRESS of "FROM" list pointer
FORTRAN ADDRESS of "TO" list pointer

Notes:

(1) Contents of accumulators and carry are restored on exit.

(2) No error messages are generated.

(3) .ALLOC must be referenced by an .EXTD statement. ALLOC is an FCALL
entry point and must be referenced by an . EXTN statement,

(4) .ALLOC operates onlists such as those described above. CALLOC first
examines the FROM list pointer; if it is non-zero, then the list has at least
one element, and .ALLOC calls . THREAD . If the pointer contains zero,
then the FROM list is a null list. In this case, .ALLOC creates a five word
list element, appending it to the stack frame of the routine (or. MAIN) which
called .ALLOC . This new element is preserved by adjusting the caller’s
FLGT, and the new element is added to the TO list by .THREAD .

18-13

ARRAY HANDLING ROUTINES

ARYSZ v it s i it ie e . 19-3
FALOC........ e e e 19-3
FREDI .« v ittt v i e e iieeee e 19-4
FSBR @ v vt v ve o smannoennsansnss 19-5

19-2

Licensed Material - Property of Dawa General Corporation

H

i
|
Array/ %
. Handlers |

--- ROUTINE: ARYSZ

Supporting Subroutines: FRET, FSAV, MPYO

Subroutine Size: 1 page zero location and 208 locations of normally relocatable
memory.

Entry: .ARYSZ

Function: Determines the size of an array in terms of both elements in the array and
core locations needed to contain the array.

Calling Sequence:

(ACO contains the starting address of the subscript bound specifier.)
ISR @.ARYSZ

(ACO contains the total number of elements in the array, and AC1
contains the total number of words in the array.)

Notes:

(1) Accumulators and carry are restored on exit.

(2) .ARYSZ must be referenced by an .EXTD statement. The FCALL entry
point, ARYSZ, must be referenced by an .EXTN statement.

(3) No error messages are generated.

--- ROUTINE: FALOC

Supporting Subroutines: FSAV, FRET; .CPYARG, .RTER, AFSE

Subroutine Size: 1 page zero location and 34 3 locations of normally relocatable
memory.

Entry: .FALOC

Function: Allocates an array on a caller's stack.

Calling Sequence:
JSR @.FALOC
FORTRAN ADDRESS of subscript bound specifier

FORTRAN ADDRESS of array specifier
Integer value of array size in words (not elements)

Notes:
(1) Accumulators and carry are restored upon exit.

(2) .FALOC must be referenced by an .EXTD statement.

. (3) A fatal error message is generated if there is insufficient run time stack area
! for allocation of the array.

19-3

ROUTINE:

Licensed Material - Property of Data Gereral Corporarion
e ——
i
Array/
Handlers
|
T ET——

FALOC ({(Continued)

Notes: {Continued)

'(4) The caller's FLGT is adjusted to include array size so that newly created
stacks will not overwrite the array,

(5) The FCALL entry point, FALOC, must be referenced by an .EXTN statement.

Supporting Subroutines: FRET, FSAV, MPYO, .OFLO; AFSE, .CPYAR,
.FRGL, QSP

Subroutine Size: 1 page zero locationand 111 g locations of normally relocatable
memory.

Function: Permits the redefinition of array subscript values when arrays are
passed as dummy arguments,

Calling Sequence:

JSR @.FRED

FORTRAN ADDRESS of special subscript bound specifier (built by
compiler)

FORTRAN ADDRESS of area reserved for 3-word array specifier

(A new three word specifier and subscript bound specifier are
consutructed. The SBS is appended to the caller's stack. See
Chapter 3.)

--- ROUTINE: FREDI
Entry: .FREDI
Notes:

(1) Accumulators and carry are restored upon exit.

(2) .FREDI must be referenced by an . EXTD statement. The FCALL entry point,
FREDI, must be referenced by an . EXTN statement.

(3) Upon stack overflow, the contents of the caller’'s FRTN are printed as an
error message.

(4) The call to FREDI is generated by FORTRAN statements of the general form

SUBROUTINE TESTSUB (X, ¥, 2585444
DIMENSION (x(1), y(m), z(n))

(5) If there is insuffient run time stack area for the creation of a new SBS, a call
is made to .OFLO . .OFLO is an entry in the FLINK module, used by FLINK
to collapse run time stack frames to permit the issuing of a stack overflow
message. Except for the FLINK subroutines, only FREDI needs to use the
.OFLO entry. This is true because at run time only FSAV and FREDI
allocate storage on the run time stack.

s

Licensed Material - Property of Data General Corporation

Array/
Handlers

--- ROUTINE: FSBR
Supporting Subroutines: MPY; .MADO, .RTES, SP
Subroutine Size: 2 page zero locations and E?SS locations of normally relocatable
memory.
Entry: .FSUB
Function: Calculates the effective address of an array element for the compiled
program.
Calling Sequence:
JSR @.FSUB
Integer number of arguments
FORTRAN ADDRESS of 3 word address specifier
FORTRAN ADDRESS of result
FORTRAN ADDRESS of subscript 1
FORTRAN ADDRESS of subscript 2
FORTRAN ADDRESS of last subscript
(The effective address of the array element selected by the input
subscript choices is placed in the FORTRAN ADDRESS of the result.)
Entry: .FSBR
Function: Calculates the effective address of an array element for subroutine
FREAD in a formatted 1/O entry.
Calling Sequence:
(ACO contains a pointer to FREAD argument list with ELEMENT
DESCRIPTOR SEQUENCE = 1)
ISR @.FSBR
(The effective address of the selected array element is returned in
AC1.)
Notes

(1) Accumulators and carry are not restored on exit.
(2) .FSBR and .FSUB must be referenced by .EXTD statements.

(3) Subscript calculation errors will be flagged by a fatal error message.

19-5

DEVICE/DIRECTORY MAINTENANCE ROUTINES

[0 11 SR P 20.3
1) =235 1 TP O I I 20 -3
CPAR T . e s s et e e s i a st e cets s e asaa s 20 -4
1) 12 R 20-5
DULNK. vt s e e o s vt es e e s s et s an s 20-6
BOUIV L ettt ittt e e et 20-5
FEEoy =1 } O T 20-7
[Tk 1 A 20-8
GOOUT . v s e e s ettt saeaas s e easeassneonnn 20-9
T30) 12 S I I T 20-9
INIT e e e it e e e n st e e s s s na e s 20-10
%15 3 12 O T 20-1
RENAM Lttt it e et et aese s o eese e 20-11
RISE ... it i ivnee e e e e e e e 20-12

20-1

20-2

Licensed Material - Property of Dawa General Corporation

Device /Directory
Maintenance

--- ROUTINE: CDIR
Supporting Subroutines: FRET; .CPYL
Subroutine Size: No page zero locations and 16 8 locarions of normally relocatable
memory.
Entry: CDIR

Function: Creates a subdirectory with a specified name.

Calling Sequence:
FCALL
CDIR
Integer 2
FORTRAN ADDRESS of subdirectory name
FORTRAN ADDRESS of error code

Notes:

(1) Accumulators and carry are restored on exit.

(2) CDIR must be referenced by an .EXTN statement.

(3) This routine issues the RDOS system call .CDIR .

(4) The name of the subdirectory to be created is an ASCII string.

(5) The error code will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred

3...n - RDOS system error code + 3
--- ROUTINE: CHSTS

Supporting Subroutines: FRET; .CPYL, .IOCAT

Subroutine Size: No page zero locations and 26 8 locations of normally relocatable
memory.

Entry: CHSTS

Function: Returns a copy of the current directory status information for a
file on a specified channel.

Calling Sequence:

FCALL

CHSTS

Integer 3

FORTRAN ADDRESS of channel number

FORTRAN ADDRESS of array to receive status information
FORTRAN ADDRESS of error code

20-3

Licensed Material - Property of Data General Corporation

Device /Directory
Maintenance

ROUTINE: CHSTS {(Continued)

(1) Accumulators and carry are restored on exit.

(2) CHSTS must be referenced by an .EXTN statement.

(3) is routine issues the RDOS system call CHSTS .

(4) This routine differs from STAT in that it obtains the current directory status
information for whatever file is open on the specified channel; STAT obtains

status informationabout a specified file. The array size and definition are the
same as those for STAT:

Word Contents
1-5 File name
6 Extension
7 File attributes
10 Link access attributes
11 Number of the last block in the file
12 Number of bytes in the last block
13 Starting logical block address of the file (the
random file index for random files)
14 Year/day last accessed
15 Year/day created
16 Hour/minute created
17 UFD temporary
20 UFD temporary
21 User count
22 DCT link

(5) The error code is set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: CPART

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 17 8 locations of normally relocatable
Memory.

Entry: CPART

Function: Creates a secondary partition and enters the name of the secondary
partition in the primary partition’s directory.

20-4

Licensed Material - Property of Data General Corporation

H

Device /Directory 3
Maintenance

|
|
|

ROUTINE: CPART (Continued)

Entry: CPART {Continued)

Calling Sequence:

Notes:
1)
(2)
)
@)

()
(©)

--- ROUTINE: DIR

FCALL

CPART

Integer 3

FORTRAN ADDRESS of name of secondary partition to be created
FORTRAN ADDRESS of size of partition

FORTRAN ADDRESS of error code

Accumulators and carry are restored on exit.
CPART must be referenced by an . EXTN statement.
The name of the secondary partition is an ASCII string.

The size of the secondary partition is the number of contiguous blocks in
the partition.

This routine issues the RDOS system call .CPAR .
The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and Iég locations of normally relocatable
<

memory.

Entry: DIR

Function: Defines a current default directory.

Calling Sequence:

Notes:

FCALL

DIR

Integer 2

FORTRAN ADDRESS of device name or directory name
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.

(2) The device or directory name is an ASCII byte string.

20-5

ROUTINE:

Licensed Material - Property of Data General Corporation

Device /Directory
Maintenance

DIR (Continued)

Notes: (Continued)

--- ROUTINE:

(3) This routine issues the RDOS system call .DIR .
(4) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

DULNK

Entry:

Notes:

--- ROUTINE:

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 16 8 locations of normally relocatable
memory.

DULNK
Function: Deletes a link entry in the current directory.

Calling Sequence:

FCALL

DULNK

Integer 2

FORTRAN ADDRESS of link entry name
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.

(2) DULNK must be referenced by an .EXTN statement.

(3) This routine issues the RDOS system call . ULNK .

(4) The error code is set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

EQUIV

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 20 8 locations of normally relocatable
memory.

Entry: EQUIV

Function: Assigns a temporary name to the master file device.

20-6

S

ROUTINE:

Licensed Material - Property of Data General Corporation

Device /Directory
Maintenance

EQUIV (Continued)

Entry: EQUIV (Continued)

Notes:

--- ROUTINE:

Calling Sequence:
FCALL
EQUIV
Integer 3
FORTRAN ADDRESS of master file device name
FORTRAN ADDRESS of temporary name
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.

(2) EQUIV must be referenced by an .EXTN statement.

(3) This routine issues the RDOS system call .EQIV .

(4) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

FSPOL

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 36 3 locations of normally relocatable
memory.

Entry: SPEBL

Entry:

Function: Enables spooling on a specified device.

Calling Sequence:

FCALL

SPEBL

Integer 2

FORTRAN ADDRESS of device name
FORTRAN ADDRESS of error code

SPDIS
Function: Disables spooling on a specified device.

Calling Sequence:

FCALL

SPDIS

Integer 2

FORTRAN ADDRESS of device name
FORTRAN ADDRESS of error code

20-7

ROUTINE:

Licensed Material ~ Property of Data General Corporation

Device /Directory
Maintenance

FSPOL (Continued)

Eﬁtrg: SPHIL

¥
Function: Stops a spooling operation which is currently in progress.

Calling Sequence:

FCALL

SPKIL

Integer 2

FORTRAN ADDRESS of device name
FORTRAN ADDRESS of error code

Notes:
(1) Accumulators and carry are restored on exit,
(2) SPEBL, SPDIS, and SPKIL must all be referenced by .EXTN statements.
(3) This routine issues the RDOS system calls .SPEA, .SPDA, and .SPKL .
(4) The error code will be set to one of the following states:
0 - Indeterminate error
- No error occurred
3...n - RDOS system error + 3
--- ROUTINE: GCIN
Supporting Subroutines: FRET; .CPYL
Subroutine Size: No page zero locations and 10 g locations of normally relocatable
memory.
Entry: GCIN
Function: Obtains the name of the current console input device.
Calling Sequence:
FCALL
GCIN
Integer 1
FORTRAN ADDRESS of array to receive name
Notes:

(1) Accumulators and carry are restored on exit.
(2) GCIN must be referenced by an . EXTN statement.
{3y This routine issues the RDOS system call ,GCIN .

(4) No error messages are generated.

20-8

Licensed Material - Property of Data General Corporation

Device /Directory
Maintenance

--- ROUTINE: GCOUT

Supporting Subroutines: FRET; .CPYL

locations of normally relocatable

Subroutine Size: No page zero locations and 10 8

memory.
Entry: GCOUT
Function: Obtains the name of the current console output device.

Calling Sequence:
FCALL
GCOUT
Integer 1
FORTRAN ADDRESS of array to receive device name
Notes:
(1) Accumulators and carry are restored on exit.
(2) CCOUT must be referenced by an . EXTN statement.
(3) This routine issues the RDOS system call .GCOUT .

(4) No error messages are issued.

--- ROUTINE: GDIR

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 16 a locations of normally relocatable
memory, -

Entry: GDIR
Function: Gets the name of the current default directory/device.
Calling Sequence:
FCALL
GDIR
Integer 2
FORTRAN ADDRESS cf array to receive name
FORTRAN ADDRESS of error code
Notes:
(1) Accumulators and carry are restored on exit.
(2) GDIR must be referenced by an .EXTN statement.
(3) This routine issues the RDOS system call .GDIR .

(4) The array to receive the current default directory/device name must be large
enough to accomodate 13 bytes.

20-9

Licensed Material ~ Property of Data General Corporation

Device /Directory
Maintenance

ROUTINE: GDIR (Continued)

Notes: (Continued)
(5) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: INIT

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 17 s locations of normally relocatable
memory.

Entry: INIT
Function: Causes a device to be initialized.

Calling Sequence:

FCALL

INIT

Integer 3

FORTRAN ADDRESS of device name
FORTRAN ADDRESS of mode indicator
FORTRAN ADDRESS of error code

Notes:
(1) Accumulators and carry are restored on exit.
(2) INIT must be referenced by an .EXTN statement,
(3) This routine issues the RDOS system call . INIT ,
(4) The mode indicator is one of the following values:
1 - Partial initialization with overlays
0 - Partial initialization
-1 - Full initialization
(5) The error code is set to one of the following states:
0 - Indeterminate error
1 - No error occurred
3... n - RDOS system error code + 3
(6) Only full or partial initialization is permitted on magnetic tape transports.
Full initialization causes a tape to be rewound and two end -of -file characters
to be written. Partial initialization simply rewinds the tape and resets the

tape file pointer to file zero.

(7) The device name is an ASCII string consisting of a valid string mnemonic
for either a disk or magnetic tape transport and is terminated by a null byte.

20-10

S

Licensed Material - Property of Data Ueneral Corporation

Device /Directory
Maintenance

---ROUTINE: MDIR

Supporting Subroutines: FRET; . CPYL

Subroutine Size; No page zero locations and 168 locations of normally relocatable
Memory.

Entry: MDIR
Function: Obtains the logical name of the current master device.

Calling Sequence:
FCALL
MDIR
Integer 2
FORTRAN ADDRESS of array to receive name
FORTRAN ADDRESS of error code
Notes:
(1) Accumulators and carry are restored on exit,
(2) MDIR must be referenced by an . EXTN statement.
(3) This routine issues the RDOS system call .MDIR .
(4) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: RENAM

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 20 3 locations of normally relocatable
Memory.

Entry: RENAM

Function: Renames a disk file.

Calling Sequence:
FCALL
RENAM
Integer 3
FORTRAN ADDRESS of old name string
FORTRAN ADDRESS of new name string
FORTRAN ADDRESS of error code

Notes:

(1) Accumulators and carry are restored on exit.

20-11

Licensed Material - Property of Data General Corporation

Device /Directory
Maintenance

ROUTINE: RENAM (Continued)

Notes: {Continued)

{2} RENAM must be referenced by an , EXTN statement.

(3} This routine issues the RDOS system call .RENAM .

(4) The error code will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred

3...n - RDOS system error code + 3
(5) Each name string is an ASCII byte string terminated by a carriage return,

null, form feed, or space.

--- ROUTINE: RLSE

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 16 3 locations of normally relocatable
memory.

Entry: RLSE

Function: Releases a previously initialized device or directory from the system.

Calling Sequence:

FCALL

RLSE

Integer 2

FORTRAN ADDRESS of device or directory name
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.,
(2) RLSE must be referenced by an .EXTN statement.
(3) This routine issues the RDOS system call .RLSE .

(4) The device name is an ASCII byte string terminated by a carriage return,
null, form feed, or space.

(5) The error code word will be set to one of the following states:
0 - Indeterminate error

I - No error occurred
3...n - RDOS system error code + 3

20-12

OVERLAY ROUTINES

FOVLD i vt is i nt i vnononsens 21-3

FOVLY (... T SRS 21-3

OVEXT vt inn e nnonacnneonneses 21-5

OVKIL o i ittt s veennnnes veees 21-0
21-1

21-2

--- ROUTINE:

Licensed Material - Property of Data General Corporation

r |
|

| |
{Overlay |
| |

| S ———

FOVLD #

Supporting Subroutines: FRET; .CPYA, .IOCAT

Subroutine Size: No page zero locations and 46 8 locations of normally relocatable
Memory.

Entry: FOVLD

Notes:

--- ROUTINE:

Function: Loads a FORTRAN overlay into an overlay area in a single task
environment.,

Calling Sequence:

FCALL

FOVLD {or OVLOD)

Integer 4

FORTRAN ADDRESS of channel number on which overlay has been
opened.

Overlay number

FORTRAN ADDRESS of conditional load flag

FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.

(2) OVLOD and FOVLD are equivalent and must be referenced by .EXTN
statements.

(3) The overlay file which is specified must have been previously opened by a
call to OVOPN. The overlay number parameter contains the overlay area
number in its left byte and the overlay number in its right byte. This
number must have been declared either by an . ENTO pseudo-op or in a
FORTRAN OVERLAY statement.

(4) If the conditional load flag is zero, overlay loading is to be done unconditionally;
if non-zero, overlay loading is to be done conditionally. Refer to Chapter 4.

(5) The error code word will be set to one of the following states:
- Indeterminate error

0
1 - No error occurred
n - RDOS System error code + 3

FOVLY

Supporting Subroutines: FRET, TOVLD, TOVRL; .CPYL, .IOCA

Subroutine Size: 45 8 locations of normally relocatable memory.

Entry: FOVLD

Function: Loads a FORTRAN overlay into an overlay area in a multitask
environment.

Licensed Material - Property of Daix General Corporation

|
§ Overlay

ROUTINE: FOVLY {Continued)
Entry: FOVLD (Continued)

Celling Sequence:

FCALL

FOVLD

Integer 4

FORTRAN ADDRESS of the channel number upon which the overlay

file has been opened
Overlay number (overlay name may be used if previously declared in

an ENTO or OVERLAY statement)
FORTRAN ADDRESS of the conditional load flag
FORTRAN ADDRESS of the error code

Notes:
(1) Accumulators and carry are restored on exit,

(2) The overlay file which is to be used must have been opened previously by a
call to OVOPN. The overlay number is a word which contains the overlay
area number in its left byte and the overlay number in its right byte, This
number must have been declared in .ENTO or OVERLAY statement.

(3) The conditional load flag is a word which is set to zero if overlay loading is
to be done unconditionally; a nonzero value indicates that overlay loading is
to be done conditionally.

(4) In conditional loading, if the overlay area is free the overlay is loaded (unless
it is already core resident, in which case return is made directly to the Task
Scheduler). An area is considered to be free if the overlay use count of the
currently resident overlay has gone to zero and if the area has been released
by the FOVRL call.

(5) In unconditional loading, if an area is free the requested overlay is loaded
regardless of whether it is currently core resident or not. If the area is not
iree, the caller is suspended until the area is released. Consult the RDOS
User's Manual for more information about conditional and unconditional loading.

(6) The error code word will be set to one of the following states:

0 - Indeterminate error

1 - No error occurred

2 - System action in progress
3...n - RDOS System error code + 3

(7) This routine is found in the FORTRAN multitask library. To cause this routine
to be loaded (instead of FOVLD, the single task overlay load module, the
multitask library must precede the RDOS FORTRAN library when relocatable
loading is performed.

Entry: FOVRL

Function: To release an overlay area.

™

Licensed Material - Property of Data General Corporation

1

Qverlayi

»

ROUTINE: FOVLY (Continued)

Entry: FOVRL (Continued)
Calling Sequence:

FCALL

FOVRL

Integer 2

Overlay number {overlay name may be used if previously declared in
an . ENTO or OVERLAY statement)

FORTRAN ADDRESS of the error code

Notes:
(1) Accumulators and carry are restored upon exit.
(2) Same as (2) for FOVLD.
(3) This call should be issued each time a user completes his use of a given overlay,
in order 1o decrement the overlay use count. When no users remain who wish
to use the currently resident overlay, the overlay use count goes to zero and

the overlay area becomes free for the loading of other overlays.

(4) This call must not be issued from within the overlay area which is to be
released.

(5) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: OVEXT

Supporting Subroutines: FRET, TOVRL; .CPYL, .RTER

Subroutine Size: No page zero locations and 22 8 locations of normally relocatable
memory.

Entry: OVEXT

Function: Releases an overlay from the routine in which the overlay is named
in an OVERLAY statement and provides a return location.

Calling Sequence:

FCALL

OVEXT

Integer 2

FORTRAN ADDRESS of Overlay Name
FORTRAN ADDRESS of Return

Notes:

OVEXT must be referenced by an .EXTN statement.

21-5

Licensed Material - Property of Data General Corporation
oo
Overlay |

|

ROUTINE: OVEXT (Continued)

Entry: OVEXX

Function: Releases an overlay from a routine outside that in which the overlay
was named in an OVERLAY statement and provides a return locarion.

Calling Sequence:

FCALL

OVEXX

Integer 2

FORTRAN ADDRESS of Overlay Name
FORTRAN ADDRESS of Return

Notes:

OVEXX must be referenced by an .EXTN statement.

--- ROUTINE: OVKIL

Supporting Subroutines: FRET, KILL, TOVRL; .CPYL, .RTER

Subroutine Size: No page zero locations and 20_ locations of normally relocatable

memory.

8

Entg: OVKIL

Function: Releases an overlay from within the routine in which the overlay was
named in an OVERLAY statement; also causes the task containing the
overlay to be killed.

Calling Sequence:

FCALL
OVKIL
Integer 1
FORTRAN ADDRESS of Overlay Name
(Control returns to the FORTRAN Task Scheduler)
Notes:
(1) OVKIL causes the task issuing the call to be killed.
(2) OVKIL must be referenced by an ,EXTN statement.
Entry: OVKIX
Function: Releases an overlay from a routine outside that in which the overlay

was named in an OVERLAY statement; also causes the task containing
the overlay to be killed.

Licensed Material - Property of Data General Corporation

% Overlay

ROUTINE: OVKIL (Continued)

Entry: OVK IX {Continued)

Calling Sequence:

FCALL

OVKIX

Integer 1

FORTRAN ADDRESS of Overlay Name

(Control returns to the FORTRAN Task Scheduler)

Notes:

OVKIX must be referenced by an .EXTN statement.

21-7

ABORT
ASSOC
CHNGE
FACAL
FDELY
FPEND
FPRI

FQTAS
FTASK
HOLD .
IOPC . .
ITASK .
RELSE
START
STTSK .
TRNON

.

.

.

.

TASK ROUTINES

22-1

.

.

.

22-14

.

22-2

Licensed Material - Property of Data General Corporation

g

| Task

|
—

SR

--- ROUTINE: _ABORT

Supporting Subroutines: FRET, KTID; .CPYL

Subroutine Size: 15 8 locations of normally relocatable memory
Entry: ABORT

Function: To kill a task specified by i.d. number.

Calling Sequence:

FCALL

ABORT

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

Notes:

s s s i

(1) Accumulators and carry are saved in the caller's TCB unless it is the
caller who is killed.

(2) ABORT must be referenced in an . EXTN statement.

(3) The calling task itself may be killed by this call.

(4) The TCB which is removed from the active queue is placed in the free element
TCB chain. If the specified task is suspended due to an outstanding .SYSTM
call, it is killed as soon as the .SYSTM call is completed.

(3) If no task exists with the specified i.d. number, no action is taken and control
goes to the scheduler.

--- ROUTINE: ASSOC

Supporting Subroutines: CTASK, FRET, FRCAL, TPEND; .CPYL

Subroutine Size: No page zero locations and 65 8 locations of normally relocatable
memory.

Entry: ASSOC

Function: Associates a unique i.d. with a FORTRAN task, without activating
the task.

Calling Sequence:

FCALL

ASS0OC

Integer 4 or 5

FORTRAN ADDRESS of task name

FORTRAN ADDRESS of i.d.

FORTRAN ADDRESS of priority

FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of no-stack flag

22-3

Licensed Material - Property of Data General Corporation
[?
| Task |
!
i i

ROUTINE: ASSOC (Continued)

(1) Accumulators and carry are restored on exit.
(2} ASSOC must be referenced by an . EXTN statement.
(3) The specified task is associated with the specified i.d, and put into the suspended

state.

--- ROUTINE: CHNGE

Supporting Subroutines: FRET, TCHNG; .CPYL

Subroutine Size: 168 locations of normally relocatable memory,

Entry: CHNGE

Function: Changes the priority of a task specified by i.d.

Calling Sequence:

FCALL

CHNGE

Integer 3

FORTRAN ADDRESS of i.d.
FORTRAN ADDRESS of new priority
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit,

(2) CHNGE must be referenced by an .EXTN statement.

(3) The error code is set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3... n - RDOS system error code + 3

--- ROUTINE: FACAL

Supporting Subroutines: FRET, TAKIL, TAPEN, TAUNP; .CPYL

Subroutine Size: 22 8 locations of normally relocatable memory.
Entryv: ASUSP

Function: Suspends all tasks of a given priority.

j—

Licensed Material - Property of Data General Corporation

i
Task é

ROUTINE: FACAL {(Continued) I

Entry: ASUSP (Continued)

Calling Sequence:
FCALL
ASUSP
Integer 1
FORTRAN ADDRESS of the task priority
(Control returns to the FORTRAN Task Scheduler.)
Notes:
(1) Accumulators and carry are saved in the caller's TCB.
(2) ASUSP must be referenced by an , EXTN statement.
(3) The calling task may itself be suspended by this command.
(4) The suspended tasks can be readied only by an ARDY command.

(5) If no tasks exist at the given priority, this call is an effective no-op.

Entry: ARDY

Function: Readies all tasks of a given priority.

Calling Sequence:

FCALL

ARDY

Integer 1

FORTRAN ADDRESS of the Task Priority

(Control returns to the FORTRAN Task Scheduler.)
(1) Accumulators and carry are saved in the caller’s TCB.
(2) ARDY must be referenced by an .EXTN statement,
(3) This command unconditionally readies all tasks of a given priority. It is the

caller's responsibility to insure that the tasks to be readied are not awaiting
the occurrence of some other event, such as I/O completion.

Entry: AKILL
Function: Deletes all tasks of a given priority.

Calling Sequence:

FCALL

AKILL

Integer 1

FORTRAN ADDRESS of the task priority

(Control returns to the FORTRAN Task Scheduler.)
22-5

Licensed Material - Property of General Data Corporation

|
t Task

ROUTINE: FACAL (Continued)

Notes:

(1)

2)
3

(€]

Accumulators and carry are saved in the caller's TCB (unless the caller is
also deleted).

AKILL must be referenced by an . EXTN statement.
The calling task itself may be deleted by this command.

All TCB's that are removed from the active queue are placed in the free element
TCB chain,

If a task to be deleted is already suspended (as when the task is waiting for
completion of a system call) it will be killed as soon as it becomes ready.

If no task exists at the given priority level, this call is an effective no -op and
control goes to the Scheduler.

ROUTINE: FDELY

Supporting Subroutines: FRET; .CPYL

Subroutine Size: 1 page zero location and 7 normally relocatable locations.

Entry: FDELY

Function: Suspends a FORTRAN task for a specified period of time.

Calling Sequence:

Notes:
8y
(2)
(3

FCALL

FDELY

Integer 1

FORTRAN ADDRESS of time interval

(Control returns to the FORTRAN Task Scheduler.)

Accumulators and carry are stored in the caller's TCB.
FDELY must be referenced by an . EXTN statement.
The time interval word indicates the number of real time clock pulses during

which the task will be suspended. (The real time clock frequency was set at
SYSGEN time.)

Vg

22-6

Licensed Material - Property of Data General Corporation

- ROUTINE: FPEND

Supporting Subroutines: FRET, TPEND; .CPYL

Subroutine Size: 5 locations of normally relocatable memory.

Entry: SUSP
Function: Suspends the calling task.
Calling Sequence:
FCALL

SUSP
0

{Control returns to the FORTRAN Task Scheduler.)
Notes:
(1) Accumulators and carry are saved in the caller's TCB.

(2) SUSP must be referenced by an .EXTN statement.

Task

o o)

(3) The suspended task remains suspended until it is readied by an ARDY or

RELSE call.
Entry: PEND

Equivalent to FPEND

--- ROUTINE: FPRI

Supporting Subroutines: FRET, TPRL .CPYL

Subroutine Size: 6 words of normally relocatable memory.
Entry: PRI
Function: To change the priority of the calling task.

Calling Sequence:

FCALL

PRI

Integer 1

FORTRAN ADDRESS of the new task priority

(Control returns to the FORTRAN Task Scheduler.)

22-7

Licensed Material - Property of Data General Corporation
Task §
|
% ~ H

ROUTINE: FPRI (Continued)

Notes:
(1) Accumulators and carry are saved in the caller's TCE,
{2) PRI must be referenced by an . EXTN statement,

(3) The calling task is assigned the lowest priority of all tasks within the new
priority level.

(4) It is permissible to issue a PRI command without changing the caller's present

priority level. This will cause the calling task to be assigned the lowest priority
of all tasks within its priority level.

--- ROUTINE: FQTAS

Supporting Subroutines: FRET, TQTSK; .CPYL

Subroutine Size: 51 8 locations of normally relocatable memory.

Entry: FQTAS

Function: Loads a user overlay and periodically executes a task within the overlay,
or periodically executes a core-resident task.

Calling Sequence:

FCALL

FQTAS

Integer number of arguments, 4 or 5

Overlay number or dummy argument

FORTRAN ADDRESS of task entry point
FORTRAN ADDRESS of task queue array
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of task descriptor

{Control returns to the FORTRAN Task Scheduler.)
Notes:

(1) Accumulators and carry are saved in the caller's TCB.

(2) The first argument is either an overlay number (not the FORTRAN ADDRESS of
an overlay number) in the case of an overlay task, or a dummy argument in the
case of a core resident task. The overlay number is a word which contains the
overlay area number in its left byte and the overlay number in its right byte.

(3) The task entry point is the entry point within either the overlay or the core

resident task where program control is to begin execution; this point must have
been globally ENTered,

22-8

Licensed Material - Property of Data General Corporation

Task
ROUTINE: FQTAS (Continued)
Notes: {Continued)
(4) The task queue array is a 13g word integer array, supplied by a user, whose
elements contain the following parameters and whose displacements are given
the following mnemonic assignments:
Displacement Contents
QPC Used by the system
QNUM Number of times to execute task
QTOV Used by the system
QSH Starting hour of task execution
QSMS Starting second within hour QSH
QPRI Task priority
QRR Rerun increment in seconds
QTLNK Used by system
QOCH Overlay channel number (dummy for core resident task s)
QCOND Overlay conditional load flag (dummy for core resident tasks)
QCOND+1 Task i.d. number
(3) The error code will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred
3...n - RDOS system error code + 3
(6) The last parameter (task descriptor) is optional. A -1 indicates that the task
is core resident and no overlay load is necessary. -2 indicates that no FORTRAN
Run Time Stack is necessary. -3 indicates both that the task is core resident and
that no stack is needed.
§
(7) FQTASK must be referenced in an .EXTN statement.
--- ROUTINE: FTASK

Supporting Subroutines: CTASK, FRET; .CPYL

Subroutine Size: 268 locations of normally relocatable memory.

Entry: FTASK

Function: Initiates a task in a real-time FORTRAN environment.

Calling Sequence:

FCALL

FTASK

Integer 3 or 4

FORTRAN ADDRESS of Task Entry Point
FORTRAN ADDRESS of Exror Return
FORTRAN ADDRESS of Task Priority
optional FORTRAN ADDRESS of no-stack flag

(Control returns to the FORTRAN Task Scheduler.)

22-9

Licensed Material - Property of Data General Corporation

f,
Task

ROUTINE: FTASK (Continued)

Notes:
8]
(2)

(3)

Accumulators and carry are stored in the caller's TCB.
FTASK must be referenced by an .EXTN statement.

When the RT FORTRAN program is loaded and first run, only one task exists,
This command must be issued to create a multitask environment.

The error return is taken if there are no TCBs available, which occurs if the
maximum number of tasks specified in CHANTASK was too small.

A non-zero argument for the optional no-stack flag indicates that no FORTRAN
stack is required.

ROUTINE: HOLD

Supporting Subroutines: FRET, STID; .CPYL

Subroutine Size: 158 locations of normally relocatable memory.

Entry: HOLD

Function: To suspend a task with a specified i.d. number.
zuncton: sp sp

Calling Sequence:

Notes:
(1
@
(3

@)

FCALL

HOLD

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

Accumulators and carry are saved in the caller's TCB.
HOLD must be referenced by an .EXTN statement.
This call sets bit 1 of the task's priority and status word, TPRST. Thus if the
task is already suspended, it becomes doubly suspended and can be readied only
when all its suspend bits have been set to ready.
The error code word will be set to one of the following states:

0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

22-10

S

Licensed Material - Property of Data General Corporation

b Task

10PC

~--- ROUTINE:

Entry:

Notes:

Supporting Subroutines: FRET, .CPYL, PCTMP, TERCM, TIOFC,

Subroutine Size: 134

TMAX2, TSAVE

8 locations of normally relocatable memory.

10PC

Function: To initialize the OPCOM package.

Calling Sequence:

FCALL

10PC

FORTRAN address of program array
FORTRAN address of number of programs
FORTRAN address of queue array
FORTRAN address of number of queues
FORTRAN address of overlay channel
FORTRAN address of error .

(1) One TCB must be reserved for the OPCOM package.

(2) When running without a program table (IOPROG) set the first five arguments
£0 zZero.

(3) IOPC may be called more than once. Additional calls will remove the previous
program array. A mew array must be given for each call,

IOPROG

Entry:

Function: To build a program table of task information for reference by

the OPCOM commands RUN and QUE.

Calling Sequence:

FCALL

IOPROG

FORTRAN address of program name
FORTRAN address of program number
FORTRAN address of task identifier
FORTRAN address of task priority
FORTRAN address of overlay node/number
FORTRAN address of conditional load .
FORTRAN address of error ,
FORTRAN address of ASM

22-11

Licensed Material - Property of Data General Corporation

R
2 :

Task

--- ROUTINE: ITASK

Supporting Subroutines: CTASK, FRET; .CPYL

Subroutine Size: 368 locations of normally relocatable memory

Entry: ITASK

Function: Initializes a task in a real-time FORTRAN environment and assigns a
unique i.d. to the task,

Calling Sequence:

FCALL

ITASK

Integer 4 or 5

FORTRAN ADDRESS of Task Entry Point
FORTRAN ADDRESS of Task I. D.
FORTRAN ADDRESS of Task Priority
FORTRAN ADDRESS of Error Code

optional FORTRAN ADDRESS of no-stack flag

(Control returns to the FORTRAN Task Scheduler.)

Notes:
(1) Accumulators and carry are stored in the caller's TCB.
(2) ITASK must be referenced in an .EXTN statement.

(3) A non-zero argument for the optional no-stack flag indicates that no FORTRAN
stack is required.

(4) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: RELSE

Supporting Subroutines: FRET, RTID; .CPYL

Subroutine Size: 15 8 locations of normally relocatable memory.

Entry: RELSE

Function: To ready a task with a specified i.d. number.

Calling Sequence:

FCALL

RELSE

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

2212

Licensed Material - Property of Data General Corporation

1
N i
Task |
| z
U

ROUTINE: RELSE (Continued)

Notes:
(1) Accumulators and carry are saved in the caller's TCB.
(2) RELSE must be referenced in an . EXTN statement,

(3) This call resets bit 1 of the task’s priority and status field word, TPRST. I
the task has bits 0 and for 12 set as the result of an outstanding .SYSTM call
or a REC/XMTW, these bits would also have to be reset before the task could
be readied.

(4) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: START

Supporting Subroutines: FRET, DVD, MPY; .CPYL

Subroutine Size: No page zero locations and 114 8 locations of normally relocatable
memory.

Entry: START

Function: Starts a task after a specified delay.

Calling Sequence:

FCALL

START

é Integer 4

§ FORTRAN ADDRESS of task i.d.
FORTRAN ADDRESS of delay
FORTRAN ADDRESS of unit code
FORTRAN ADDRESS of error code’

Notes:
(1) Accumulators and carry are restored on exit.
(2) START must be referenced by an . EXTN statement.

(3) The delay is an integer variable or constant which specifies the length of
time of the delay in units.

(4) The unit code is one of the following:

0 - pulse of RTC
1 - milliseconds
2 - seconds
3 - minutes

(3) The error code is set to zero on input of an illegal unit code or if there is no
clock in the system.

22-13

Licensed Material ~ Property of Data General Corporation

pr e

3 Task

--- ROUTINE: STTSK

Supporting Subroutines: FRET, TIDST; .CPYL

Subroutine Size: 11 8 locations of normally relocatable memory.

Entry: STTSK

Function: To obtain the status of a task with a specified i.d. number.

Calling Sequence:
FCALL
STTSK
Integer 3
FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of location to receive task status code
FORTRAN ADDRESS of error code

Notes:
(1) Accumulators and carry are saved in the caller's TCB.
(2) SSTSK must be referenced in an . EXTN statement.
{3) The task status code will be one of the following:

0 - Ready

1 - Suspended by a .SYSTM call

2 - Suspended by SUSP, ASUSP, or HOLD

3 - Waiting for a message to be transmitted or received
4 - Waiting for an overlay area to become free

5 - Codes 1 and 2 both apply

6 - Code 2 and also suspended by XMTW or REC

7 - Codes 2 and 4 both apply

8 - No task exists with this i.d. number

(4) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

22-14

Licensed Material - Property of Data General Corporation

--- ROUTINE: TRNON

Supporting Subroutines: DVD, MPY, FRET, RTD, TIDSR; .CPYL

Subroutine Size: No page zero locations and 141 g locations of normally relocatable
memory.

Entry: TRNON

Function: Executes a task at a specified time of day.

Calling Sequence:

FCALL

TRNON

Integer 3

FORTRAN ADDRESS of task i.d.
FORTRAN ADDRESS of time array
FORTRAN ADDRESS of error code

Notes: '
(1) Accumulators and carry are restored on exit.
(2) TRNON must be referenced by an . EXTN statement,
(3) The time array consists of three words. The first word specifies hours, the

second specifies minutes, and the third specifies seconds of the time of day for
task execution.

(4) If the specified time is negative, the task is started immediately.

(5) The error code is set to zero if an illegal time is specified or there is no clock
in the system.

22-15

FOREGROUND /BACKGROUND ROUTINES

.................................
.................................

.................................

23-1

23-2

---ROUTINE:

Licensed Material - Property of Data General Corporation

Foreground/
Background

EXBG

Entry:

Notes:

--- ROUTINE:

T

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 228 locations of normally relocatable

memory.

EXBG
Function: Loads and executes a user program in the background.
Calling Sequence:

FCALL

EXBG

Integer 3

FORTRAN ADDRESS of file name to be executed

FORTRAN ADDRESS of priority
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit,
(2) EXBG must be referenced by an . EXTN statement.
(3) This réutine issues the RDOS system call , EXBG

(4) The priority is 0 if the background has a lower priority than the foreground
and 1 if they have the same priority.

(3) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occured
3...n - RDOS system error code + 3

EXFG

Entry:

Support ing Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 228 locations of normally relocatable
memory.

EXFG

Function: Loads and executes a user program in the foreground.

Calling Sequence:

FCALL

EXFG

Integer 3

FORTRAN ADDRESS of file name to be executed
FORTRAN ADDRESS of priority

FORTRAN ADDRESS of error code

Licensed Material - Property

ROUTINE: EXFG (Continved)

it.

(1) Accumulators and carry are restored on e
(2) EXFG must be referenced by an . EXTN statement.

(3) This routine issues the RDOS system call |EXFG .,

(4) The priority is 0 if the foreground has 2 higher priority than the background
and 1 if they have the same priority.

(5) This call can only be made from a background program.

(6) The error code is set to one of the following states:

)
o]

- Indeterminate error
- No error occurred
3...n - RDOS system error code + 3

[,

--~- ROUTINE: FGND

Supporting Subroutines: FRET; CPYL

Subroutine Size: No page zero locations and 7 locations of normally relocatable
memory.

Entry: FGND

Function: Determines whether or not a foreground program is running in the
system.

Calling Sequence:
FCALL
FGND
Integer 1
FORTRAN ADDRESS of result

Notes:
(1) Accumulators and carry are restored on exit,
(2) FGND must be referenced by an . EXTN statement.

(3) This routine issues the RDOS system call ,FGND .

(4) The result is 1if a foreground program is executing and 0 if a foreground
program is not executing.

(5) No error messages are generated.

COMMUNICATION ROUTINES

FXMT ..o v vn e ans
ICMN ...
RDOPR....... PR
RWCMN
WROPR. . oo u v e e e .

R DR
I I BRI B S P ..
R R T EEEEE R
I I R SR A A) .

............... ..

24-1

e,

24-2

Licensed Material - Property of Data General Corporation

Communication

ROUTINE: FXMT

Supporting Subroutines: FRET, RECC, XMTT, XMTTW; .CPYL

Subroutine Size: 338 locations of normally relocatable memory

Entry: XMT

Function: Transmits a one word message to a receiving task, then remains
ready to resume other task activity.

Calling Sequence:

FCALL

XMT

Integer 3

FORTRAN ADDRESS of the message location (key location)
FORTRAN ADDRESS of the one word message

i FORTRAN ADDRESS of the error return

(Control returns to the FORTRAN Task Scheduler)
(1) Accumulators and carry are saved in the caller's TCB.
(2) XMT must be referenced by an .EXTN statement.

(3) A one word message is placed in the key location if thetask for whom it is
intended has not yet requested its receipt. As soon as the receiving task issues
a receive request, the message is placed in the address specified by the
receiving task, and the contents of the key location are reset to all zerces.

If the receiving task has requested the message before its transmission, the

§ message is sent directly to the receiver's address, bypassing the key

“ location entirely.

(4) The error return is taken if the message address is already in use, which
is indicated by non-zero contents.

Entry: XMTW

Function: Transmits a one word message and waits, staying suspended until
the message is received.

Calling Sequence:

FCALL

XMTW

Integer 3

FORTRAN ADDRESS of the message location (key location)
FORTRAN ADDRESS of the one word message

FORTRAN ADDRESS of the error return

{Control returns to the FORTRAN Task Scheduler.)

Licensed Material - Property of Data General Corporation

Communication

ROUTINE: FXMT ({(Continued)

Notes:
(1) XMTW must be referenced by an , EXTN statement.
(2) Notes (1), (3), and (4) for XMT also apply to XMTW.
Entry: REC
Function: To receive a one word message from a transmitting task.
Calling Sequence:
FCALL
REC
Integer 2
FORTRAN ADDRESS of the message location (key location)
FORTRAN ADDRESS to receive the one word message
(must be different from the key)
(Control returns to the FORTRAN Task Scheduler.)
Notes:

(1) Accumulators and carry are saved in the caller's TCB.
(2) REC must be referenced by an .EXTN statement.

(3) If the contents of the key location are non-zero at the time of this call (i.e., if
a message has been sent), the message is passed directly to the receiving task
and the contents of the key location are reset to zeroes. If the contents of the
key location are zero when this call is issued (i.e., if the message has not yet
been sent), the receiving task is suspended until the message is sent. When the
message is transmitted, it is sent directly to the receiving task, bypassing the
key location entirely, and the receiving task becomes ready.

---ROUTINE: ICMN
Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 16 8 locations of normally relocatable
memory.

Entry: ICMN

Function: Defines an array area for use in sending or receiving messages between
user programs.

Calling Sequence:
FCALL
ICMN
Integer 3
FORTRAN ADDRESS of array pointer
FORTRAN ADDRESS of length specifier (# of words)
FORTRAN ADDRESS of error code

24-4

Licensed Material - Property of Data General Corporation

Communication

ROUTINE: ICMN (Continued)

(1) Accumulators and carry are restored on exit,

(2) ICMN must be referenced by an . EXTN statement,

(3) This routine issues the RDOS system call .ICMN.

(4) The error code is set to one of the following states:
- Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: RDOPR

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 228 locations of normally relocatable
memory.

Entry: RDOPR

Function: Causes transmission of an operator message to either the foreground
or background program.

Calling Sequence:

FCALL

RDOPR

Integer 3

FORTRAN ADDRESS of array
FORTRAN ADDRESS of byte specifier
FORTRAN ADDRESS of error code.

(1) Accumulators and carry are restored on exit.
(2) RDOPR must be referenced by an . EXTN statement.
(3) This routine issues the RDOS system call .RDOP

(4) The array in the calling sequence is an array large enough to handle 132
characters, including a carriage return terminator.

(3) The byte specifier is set to the number of bytes transferred, including the
terminating character. On an error, it is set to 0.

(6) The first character in the message transmitted from the system console must
be a CTRL E (which is echoed as an exclamation point) followed by either F or B,
T indicates that a foreground program is to receive the message, and B
indicates that the background is the receiver. If some character other than

24-5

ROUTINE:

Licensed Material - Property of Data General Corporation

Communication

EDOPR {(Continued)

Notes: {Continued)

(6) (Continued)

For B is typed, no further text string will be accepted until an F or B
is typed. If the user tries to transmit a message for which there is no
outstanding read operator message call, the bell sounds when CTRL E
is depressed. The last character must be the carriage return and the
entire message string can be up to 132 characters.

(7) The error code is set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

--- ROUTINE: RWCMN
Supporting Subroutines: FRET; .CPYL
Subroutine Size: No page zero locations and 388 locations of normally relocatable
memory.
Entry: RDCMN
Function: Causes the calling program to read a message from another
program’s communizations area,
Calling Sequence:
FCALL
RDCMN
Integer 4
FORTRAN ADDRESS of area to receive message
FORTRAN ADDRESS of word offset
FORTRAN ADDRESS of number of words to be read
FORTRAN ADDRESS of error code
Entry: WRCMN

Function: Causes the calling program to write a message in another program’s
communications area.

Calling Sequence:

FCALL

WRCMN

Integer 4

FORTRAN ADDRESS of start of message
FORTRAN ADDRESS of word offset

FORTRAN ADDRESS of number of words to write
FORTRAN ADDRESS of error code

24-6

S,

pe—

i

--- ROUTINE:

Licensed Material - Property of Data General Corporation

Communication

ROUTINE: RWCMN (Continued)

(1)
@)
(3

)

(6)
%)

Accumulators and carry are restored on exit,
RDCMN and WRCMN must be referenced by . EXTN statements,

The program issuing a call to RDCMN or WRCMN may be executing in
either the foreground or background.

The word offset in the calling sequence specifies the offset of the message
to be read or written within the communication area.

The message that is to be sent or received may originate or be written
anywhere within the calling program’s address space.

This routine issues the RDOS system call .RDCMN.
The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3,...n - RDOS system error code + 3

WROPR

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 208 locations of normally relocatable

memory.

Entry: WROPR

Function: Writes an operator message.

Calling Sequence:

(1)
(2)
3

4)

FCALL

WROPR

Integer 2

FORTRAN ADDRESS of message array
FORTRAN ADDRESS of error code

Accumulators and carry are restored on exit.

WROPR must be referenced by an . EXTN statement.

This routine issues the RDOS system call . WROP .

An ouput string is written from either the foreground or background areas to

the system console, The message consists of an ASCII string less than or
equal to 129 characters in length, including the required carriage return

24~

~1

Licensed Material - Property of Data General Corporation

Communication

ROUTINE: WROPR (Continued)

Notes: (Continued)
{4} (Continued)

an F for foreground or B for background to indicate where the message
originated.

(5) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

INTERRUPT ROUTINES

.............

25-1

25-2

Licensed Material - Property of Data General Corporation

Interrupt

--- ROUTINE: FCNS

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 148 locations of normally relocatable
Memory.

Entry: OEBL
Function: Enables console interrupts CTRL A, CTRLC, and CTRL F.

Calling Sequence:

FCALL
OEBL

Entry: ODIS

Function: Disables console interrupts CTRL A, CTRL C, and CTRL F.

Calling Sequence:

FCALL
ODIS

(1) Accumulators and carry are restored on exit,

(2) OEBL and ODIS must both be referenced by .EXTN statements.

(3) This routine issues the RDOS system calls .ODIS and .OEBL..

(4) No error messages are generated.

(5) Console interrupts CTRL A, CTRL C, and CTRL F are enabled when a

system is first bootstrapped. A call to ODIS is used to disable the interrupts,
a call to OEBL reenables them within its program environment.

--- ROUTINE: FINTD

Supporting Subroutines: FRET; .CPYL, .RTER

Subroutine Size: 2 page zero locations and 21 8 locations of normally relocatable
memory.

Entry: FINTD

Function: Introduces to the system a non-SYSGENed device capable of generating
interrupt requests.

25-3

Licensed Material - Property of Data General Corporation

i Interrupt }

ROUTINE: FINTD (Continued)

Entry: FINTD {(Continued)

Calling Sequence:

FCALL

FINTD

Integer 2

FORTRAN ADDRESS of the device code
FORTRAN ADDRESS of the three word DCT

Notes:
(1) Accumulators and carry are saved.
(2) FINTD must be referenced in an . EXTN statement.

(3) This call causes an entry for this device to be placed in the system interrupt
vector table.

(4) A system error code ERDNM is output if an illegal device code is given, and
return is made to the CLL

Entry: FINRV

Function: Removes a non-SYSGENed device, which had been identified by FINTD,
from the system's recognition,

Calling Sequence:

FCALL

FINRV

Integer 1

FORTRAN ADDRESS of the device code

(1) Accumulators and carry are saved,
(2) FINRV must be referenced by an .EXTN statement.
(3) This call removes the device entry from the system interrupt vector table.

(4) A system error code ERDNM is output if an illegal device code is given, and
return is made to the CLI.,

25-4

Licensed Material ~ Property of Data General Corporation

i Interrupt |

--- ROUTINE: IXMT

Supporting Subroutines: FRET, IXMTT; .CPYL

Subroutine Size: No page zero locations and 15
memory.

8 locations of normally relocatable

Entry: IXMT

Function: Transmits a message from a user interrupt service routine to a
task in the multitasking environment.

Calling Sequence:

FCALL
XMT
Integer 3
FORTRAN ADDRESS of the message address
FORTRAN ADDRESS of the message
FORTRAN ADDRESS of the error code

Notes:

(1) Accumulators and carry are restored upon exit.

(2) Return is to the caller, not to the task scheduler.

(3) This routine is issued only in a user interrupt service routine, outside
the multitasking environment.

(4) IXMT must be referenced by an .EXTN statement.
(5) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3....n - RDOS system error code + 3

25-5

i

e

g S

FILE MAINTENANCE ROUTINES

CFILW . ot i it s i v e e e snesaaas 26-3
CHLAT . i i it v i st s ennneens 26 -4
CLOSE . . vt v vt es s nnsasananens 26-5
DFILW . it i it e e s tnans s 26 -6
DLINK . oo ve v is v e s e ne . e ee e 26-7
FFILE....... e e e 26 -7
FSEEK...... ... e e s an 26 -8
FSTAT....... e e e 26 -9
FSWAP, et 26-9
GTATR. v i e vt i s escse s ane e 26-10
OPEN L.ttt ie e cne e cnnnnns ;e 26-11
RESET . v it v i i as vt sn oo nnes 26-13
STAT . v vt i i e e e e ns e e . 26-13
UPDATE . s vt vttt e s n s o oenonsas 26 -14
26~-1

26-2

--- ROUTINE:

Licensed Material - Property of Data General Corporation

SUNUISNINSRERESSSE L

Maintenance

CFILW S

T

! .

| File
|

Supporting Subroutines: FRET; .CPYL, .RTER

Subroutine Size: No page zero locations and 468 locations of normally relocatable
Mermory.

Entry: CFILW

Notes:

Function: Creates an RDOS disk file.

Calling Sequence:

FCALL

CFILW

Integer number of arguments, 3 or4
FORTRAN ADDRESS of file name
FORTRAN ADDRESS of file type indicator
optional FORTRAN ADDRESS of file size
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.
(2) The file name is an ASCII byte string.

(3) The file type indicator is 1 for a sequentially organized file, 2 for a
randomly organized file, and 3 for a contiguously organized file,

(4) The file size argument is used only when a contiguously organized file is
being created. The file size is an integer describing the number of disk
blocks in the file.

(3) The error code word will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred

3... n - RDOS system error code + 3

(6) A call to DELETE is equivalent to a call to DFILW.

26-3

Licensed Material - Property of Data General Corporation

File
Maintenance

--- ROUTINE: CHLAT

Supporting Subroutines: FRET; .CPYL, .IOCAT

Subroutine Size: No page zero locations and 26 3 locations of normally relocatable
Memory.

Entry: CHLAT

Function: Changes, adds or deletes link file access attributes of a file on a
specified channel.

Calling Sequence:
FCALL
CHLAT
Integer 3
FORTRAN ADDRESS of channel number
FORTRAN ADDRESS of attributes specifier
FORTRAN ADDRESS of error code

Notes:

(1) Accumulators and carry are restored on exit.

(2) CHLAT must be referenced by an .EXTN statement.

(3) This routine issues the RDOS system call .CHLAT .

(4) The attributes specifier is a word with the following bit representations:

Bit Meaning

0 Read -protected file

1 Attribute-protected file

2 Save file

3 Link entry

4 Partition

5 Directory file

6 Link resolution (temporary). Some or all of the
other attributes persist for the duration of the open.

7 No link resolution allowed

8 Accessible by direct block 1/0 only

12 Contiguous file

13 Random file

14 Permanent file

15 Write -protected file

(5) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3... n - RDOS system error code + 3

26-4

Licensed Material - Property of Data General Corporation

File

]
Maintenance |

--- ROUTINE: CLOSE

Supporting Subroutines: FRET, FSAV; .IOCAT, .RTER, .CPYL, . SOSW

Subroutine Size: No page zero locations and 47 8 locations of normally relocatable
memory.

Entry: CLOSE

Function: Frees a FORTRAN logical channel and closes the file associated with
that channel. (under RDOS)

Calling Sequence:

FCALL

CLOSE

Integer 2

FORTRAN ADDRESS of logical channel number
FORTRAN ADDRESS of error code

Entry: FCLOS

Function: Frees a FORTRAN logical channel and closes the file associated
with that channel.

Calling Sequence:

FCALL
FCLOS
Integer 1
FORTRAN ADDRESS of logical channel number
Notes:
(1) Contents of accumulators and carry are restored on exit.

(2) CLOSE and FCLOS must be referenced by . EXTN statements.

(3) The logical channel number is an integer constant with a value between
0 and 6310 .

(4) CLOSE issues the RDOS system call .CLOSE .
(5) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

26-5

Licensed Material - Property of Data General Corporation

SOU—

f
i
| File
| Maintenance |
i H
--- ROUTINE: DFILW
Supporting Subroutines: FRET; .CPYL, .RTER
Subroutine Size: No page zero locations and 27 8 locations of normally relocatable
memory,
Entry: DFILW
Function: Deletes a disk file.
Calling Sequence:
FCALL
DFILW
Integer number of arguments, 1 or 2
FORTRAN ADDRESS of file name
optional FORTRAN ADDRESS of error code
Notes:

(1)
2)
(3)
)
6]
(6)

Contents of accumulators and carry are restored on exit.

DFILW must be referenced by an .EXTN statement.

DELET is equivalent to DFILW,

The file name is an ASCII byte string.

This routine issues the RDOS system call .DELET .

If a file requested to be deleted is open on one or more FORTRAN channels,
the file will not be deleted. Instead, if nc error code argument is supplied,

a run time error message will be issued. If the error code argument is
supplied, the error code will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred
3...n - RDOS system error code + 3

26-6

Licensed Material - Property of Data General Corporation

File
Maintenance

---ROUTINE: DLINK

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 2{‘:% locations of normally relocatable
memory. '

Entry: DLINK

Function: Creates a link entry in the current directory to a file in another
directory.

Calling Sequence:
FCALL
DLINK
Integer 3
FORTRAN ADDRESS of name of link entry

FORTRAN ADDRESS of file name
FORTRAN ADDRESS of error code

(1) Accumulators and carry are restored on exit.
(2) DLINK must be referenced by an . EXTN statement.
(3) This routine issues the RDOS system call ,LINK .

(4) The error code is set to one of the following states:

0 - Indeterminate error
1 - No error occurred

3...n - RDOS system error code + 3

--- ROUTINE: FFILE

Supporting Subroutines: FSAV, FRET, FCLOS, FSEEK, FCALL, IOPTR;
.CPYARG, .RTER, .IOCAT, .FCALL

Subroutine Size: 1 page zero location and 64 8 locations of normally relocatable
MemoTy.

Entry: .FFILE

Function: Positions a sequential file which has been assigned a FORTRAN channel
number.

Calling Sequence:
ISR @.FFIL

File positioning code
FOFTRAN ADDRESS of FORTRAN channel number

(File positioning codes are 1 for position the file at its initial record
and 2 for close the file associated with this channel.)

26-7

Licensed Material - Property of Data General Corporation
; ;
Maintenance

ROUTINE: FFILE (Continued)

Notes:
(1) Accumulators and carry are restored upon exit,

(2) .FFIL must be referenced by an ,EXTD statement. The FCALL entry FFIL
must be referenced by an L EXTN statement,

(3) 1/O error conditions and unopened files will cause error messages to be
generated,

--- ROUTINE: FSEEK

Supporting Subroutines: FRET, MPY; .CPYL, .IOCAT, .RTER

Subroutine Size: No page zero locations and Sig locations of normally relocatable
QUPTOULING Slze: s
Memory.

Entry: FSEEK

Function: Accesses a particular record on a random access file.

Calling Sequence:

JSR @.FCALL (or FCALL)
FSEEK
Integer 2
FORTRAN ADDRESS of FORTRAN logical channel number
FORTRAN ADDRESS of the record number to be accessed
Notes:
(1) Contents of accumulators and carry are restored upon exit.

(2) FSEEK must be referenced by an .EXTN statement.

(3) When more than one record is to be written or read without intervening
calls to FSEEK, records will be written or read sequentially.

(4) The file with the given channel number is positioned at the first byte
of the first random record whose length was specified by FOPEN,

(5) A run time error is given if the file is not randomly organized or if the
file is not open.

26-8

--- ROUTINE:

Licensed Material - Property of Data General Corporation
| File ;
Maintenance -

FSTAT

Supporting Subroutines: FRET; .CPYL, .IOCA

Subroutine Size: No page zero locations and 26 8 locations of normally relocatable
memery.

Entry: FSTAT

Notes:

--- ROUTINE:

Function: Sets the attributes of a FORTRAN file (not a device),

Calling Sequence:

FCALL

FSTAT

Integer 3

FORTRAN ADDRESS of the FORTRAN channel number
FORTRAN ADDRESS of the file attributes word
FORTRAN ADDRESS of the error code.

(1) Accumulators and carry are restored on exit.

(2) This routine issues the RDOS system call .CHRAT ., A 1 inthe specified
bit position of the attributes word sets the given attribute for the file:

bit 0 - File is read-protected.
bit 1 - File is attribute-protected.
bit 2 - The file is a save file.
bit 15 - The file is write -protected,

(3) The error code word will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error code + 3

FSWAP

Entry:

Supporting Subroutines: FERTO, FERTN; .CPYL, .FRET, .RTER

Subroutine Size: No page zero locations and 43 8 locations of normally relocatable
memory.

FSWAP

Function: Saves the current core image as a disk save file and reads in a new
save file at a lower program level.

Calling Sequence:

FCALL

FSWAP

Integer 1

FORTRAN ADDRESS of the save file name

26-9

Licensed Material - Property of Data General Corporation

I File
Maintenance

| !

i

ROUTINE: FSWAP (Continued)

Entry: FCHAN

Function: Performs a program chain; a new save file is read from disk, over-
writing the current core image without changing program levels.
Calling Sequence:

FCALL

FCHAN

Integer 1

FORTRAN ADDRESS of the save file name

Entry: FBACK

Function: Reads in from disk the next higher program level swap.

Calling Sequence:

FCALL
FBACK

Notes:

(1) In a call to FSWAP the calling program is suspended and is saved on disk.
The caller's task control block is used to save its accumulators, carry and
PC to allow the caller to be resumed when control is transferred back to
this level. Control is returned to the caller by a call to FBACK,

(2) The calling program is overwritten and accumulators and carry are lost in
calls to FBACK and FCHAN. Data can be passed via blank common, since

blank common is not overwritten during program swapping or chaining.

(3) When the new save file is read into core, control goes to the highest priority
ready task within it.

--- ROUTINE: GTATR

Supporting Subroutines: FRET; .CPYL, .IOCAT

Subroutine Size: No page zero locations and 268 locations of normally relocatable
memory.

Entry: GTATR
Function: Gets the attributes of a FORTRAN file (not a device).

Calling Sequence:

FCALL

GTATR

Integer 3

FORTRAN ADDRESS of the FORTRAN channel number
FORTRAN ADDRESS to receive the attributes word
FORTRAN ADDRESS of the error code

26-10

Licensed Material - Property of Data General Corporation

File

Maintenance |

ROUTINE: GTATR (Continued)
Notes:
(1) Accumulators and carry are restored on exit.
(2) This routine issues the RDOS system call .GTATR . Al in the specified
bit position of the attributes word indicates that the file has the given attribute:

pit 0 - File is read-protected.
bit 1 - File is attribute -protected.
bit 2 - The file is a save file.
bit 12 - The file is organized contiguously.
bit 13 - The file is organized randomly.
bit 14 - The file is a permanent file.
bit 15 - The file is write-protected.

(3) The error code word will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred

3...n - RDOS system error code + 3
--- ROUTINE: OPEN

Supporting Subroutines:

FRET, IOPTR; .CPYL,

JIOCAT , .SOSW

Subroutine Size: No page zero locations and 147 g locations of normally relocatable

Entry: OPEN

memory.

Function: Opens a file on a FORTRAN channel, optionally specilying a blocking

factor for the file.

Calling Sequence:

Entry: OVOPN

FCALL

OPEN

Integer number of arguments, 4 or 5

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of open mode or open array
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of blocking factor

Function: Opens an overlay file on a FORTRAN channel

Calling Sequence:

FCALL

OVOPN

Integer 3

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of error code

26-11

icensed Material - Property of Data General Corporation
-]

File

Maintenance

|
S |

ROUTINE: OPEN (Continued)

Entry:

APPEND

Entry:

Function: Opens a file so that new file information may be appended to that file.

An optional blocking factor may be specified for the record size.

Calling Sequence:

FCALL

APPEND

Integer number of arguments, 4 or 5

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of open mode or open array
FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of blocking factor

MTOPD

Notes:

(H
(2)

3

)

Function: Opens a magnetic or cassette tape device for direct access

with the given device mask.

Calling Sequence:

FCALL

MTOPD

Integer number of arguments, 4

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of device characteristic mask
FORTRAN ADDRESS of error code

Accumulators and carry are restored upon exit.
OPEN, OVOPN, MTOPD, APPEND must be referenced by . EXTN statements

The file name is an ASCII byte string, including the file . OL extension
for a call to OVOPN.

OVOPN issues the RDOS system call . OVOPN and must be used before FORTRAN
overlays can be loaded in either a single or multitask environment. The
FORTRAN routine FCLOS is used to close the overlay file and release its
FORTRAN channel.

The open mode or array is used to indicate the type of open preferred on the
given file and optionally the device characteristic mask. A call to MTOPD
must give the device characteristic mask. The alternate settings of the
argument are given below:

open mode: an integer constant or variable

1 - open for reading only
3 - open for writing by out user but reading by one or more users
other than 1 or 3 - open for yser-shared reading and writing

26-12

Notes: (Continued)

--- ROUTINE:

Licensed Material - Property of Data Ceneral Corporation

File
Maintenance

i

open array: 3-element integer array

First element - contains -1 (the array flag)
Second element - contains the open mode given
above (1, 3, or other than 1 or 3)
Third element - contains the device characteristic mask

The bit/characteristic correspondence used in setting the device characteristic
mask is:

Bit Meaning

1BO Spooling enabled (0BO is spooling disabled)”

1B1 80-column device

1B2 device changing lower case ASCII to upper case

1B3 device requiring form feeds on opening

184 full word device (reads or writes more than a byte)

185 Spoolable device

1B6 output device requiring line feeds after carriage returns

1B7 input device requiring a parity check; output device requiring | ‘
parity to be computed !

1B8 output device requiring a rubout after every tab

189 output device requiring nulls after every form feed

1B10 a keyboard input device

1811 a teletype output device

1812 output device without form feed hardware

1B13 device requiring operator intervention

1B14 output device requiring tabbing hardware

1B15 output device requiring leader/trailer

(6) The error code will be set to one of the following:
0 - Indeterminate error
1 - No error occurred
3... n - RDOS system error code +3

(7) The blocking factor constant is an integer indicating the number of bytes/record.
For random record I/0, the blocking factor should be 128,

(8) Upto 64 FORTRAN channel numbers are allowed, 0 through 63.

(9) If the file does not currently exist on an OPEN or APPEND call, a random disk
file will be created or opened.

RESET

Supporting Subroutines: FRET; .IOCAT

Subroutine Size: No page zero locations and 21 3 locations of normally relocatable
memory.

Entry: RE SET

Function: Closes all currently open files and all FORTRAN channels.

26-13

Licensed Material - Property of Data General Corporation

File
Maintenance |

!

Entry: RESE T(Continued)

Calling Sequence:

FCALL
RESET

Notes:
(1) Accumulators and carry are restored on exit.
(2) This routine issues the RDOS system call .RESET . If this call is issued in a
multitask environment, it must be issued only when no other task is performing

any channel-related operations.

--- ROUTINE: STAT

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 17 3 locations of normally relocatable
memory.

Entry: STAT

Function: Obtains status information about the current file directory.

Calling Sequence:

FCALL

STAT

Integer 3

FORTRAN ADDRESS of file name

FORTRAN ADDRESS of array to receive status
FORTRAN ADDRESS of error code

Notes:
(1) Accumulators and carry are restored on exit.

(2) STAT must be referenced by an .EXTN statement.

26-14

Licensed Material - Property of Data General Corporation
!

File
Maintenance

|
i
|
|
i

ROUTINE: STAT (Continued)

Notes: (Continued)

(3) The array to receive the file status must be 22% words in length and is
supplied with the following data: :

Word Contents
1-5 File name
6 Extension
7 File Attributes
10 Link access attributes
11 Number of the last block in the file
12 Number of bytes in the last block
13 Starting logical block address of the file (the random
file index for random files)
14 Year/day last accessed
15 Year/day created
16 Hour/minute created
17 UFD temporary
20 UFD temporary
21 User count
22 DCT link

(4) The error code is set to one of the following states:
0 - Indeterminate exrror
1 - No error code occurred

3... n - RDOS system error +3

(5) This routine issues the RDOS system call .STAT.

--- ROUTINE: UPDATE

Supporting Subroutines: FRET; .CPYL, .10OCAT

Subroutine Size: No page zero locations and 258 locations of normally relocatable
memory.

Entry: UPDATE

Function: Updates the file size of the named file.

Calling Sequence:

FCALL

UPDATE

Integer 2

FORTRAN ADDRESS of channel number
FORTRAN ADDRESS of error code

26-15

Licensed Material - Property of Data General Corporation

ROUTINE: UPDATE (Continued)

Notes:

(2)

(4)

Accumulators and carry are restored on exit.
UPDATE must be referenced by an , EXTN statement,
This routine issues the RDOS system call .UPDAT .
The error code is set to one of the following states:

0 - Indeterminate error

1 - No error occurred

2 - Channel not open
3... n - RDOS system error code +3

26-16

File
Maintenance

e—_

s

DATE........

CLOCK ROUTINES

DUCLK: v o v s e s e)
FTIME. . oo veun o . .

GFREQ. « e vt v v v v s vennonens
RUCLK. . v vttt sav s e nns e
TIME . o v v s vt i s oo n s aeenn

27-1

. 27-3

27 -3
27 -4
27 -5
27 -6
27 -6

27-2

Licensed Material - Property of Data General Corporation

ey
i
i

1
i
!
i
i

Clock
--- ROUTINE: DATE

Supporting Subroutines: FRET; LCPYL

Subroutine Size: No page zero locations and 158 locations of normally relocatable
memory.

Entry: DATE
Function: Gets the current day of the year.
Calling Sequence:

FCALL

DATE

Integer 2

FORTRAN ADDRESS of date array
FORTRAN ADDRESS of error code

Notes:

(1) Accumulators and Carry are restored upon exit.

(2) This routine issues the RDOS system call .GDAY. The date is stored in an
integer array of 3 words as follows: Month - element 1, Day - element 2,
Year - element 3; and is returned on execution of the call. The year is re-
turned as a two-digit number, i.e,, 74, 75, etc.

(3) The error code word will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred

--- ROUTINE: DUCLK

‘Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 168 locations of normally relocatable

memory.
Entry: DUCLK
Function: Defines a user clock.

Calling Sequence:

FCALL
DUCLK
Integer 3

FORTRAN ADDRESS of number of ticks between interrupts
FORTRAN ADDRESS of interrupt response code
FORTRAN ADDRESS of error code

Notes:

(1) Accumulators and carry are restored on exit.

(2) DUCLK must be referenced by an .EXTN statement.

27-3

s

Licensed Material - Property of Data General Corporation

|
ROUTINE: DUCLK (Continued) i

Notes: {Continued)
(3) This routine issues the RDOS system call ,DUCLK .

(4) The number of ticks is an integer variable or constant specifying the integer
number of RTC cycles which are to elapse between user clock intervals.

(5) The interrupt response code is a pointer to the user routine which will
receive control when an interrupt occurs from the user clock.

(6) The current environment is frozen when the user clock generates an
interrupt, and it remains frozen while control goes to the interrupt service
routine,

(7) The error code will be set to one of the following states:
0 - Indeterminate error

1 - No error occurred
3...n - RDOS system error + 3

--- ROUTINE: FTIME

Supporting Subroutines: FRET; .CPYL, .RTER

Subroutine Size: 2 page zero locations and 41 8 locations of normally relocatable
memory.

Entry: FGTIM

Function: Gets the time of day

Calling Sequence:

FCALL

FGTIM

Integer 3

FORTRAN ADDRESS to receive the hour
FORTRAN ADDRESS to receive the minute
FORTRAN ADDRESS to receive the second

(1) ‘Accumulators and carry are saved.
(2) FGTIM must be referenced in an . EXTN statement,
(3) No error message is possible.

(4) The time of day is given by a 24 hour clock.

27-4

ROUTINE:

Licensed Material - Property of Data General Corporation

Clock

FTIME (Continued)

Entry: FSTIM

Notes:

--- ROUTINE:

Function; Sets the system clock.

Calling Sequence:

FCALL

FSTIM

Integer 3

FORTRAN ADDRESS of the current hour
FORTRAN ADDRESS of the current minute
FORTRAN ADDRESS of the current second

(1) Accumulators and carry are saved.
(2) FSTIM must be referenced in an . EXTN statement.
(3) A fatal run time error message, ERTIM, is issued if an attempt is made to

set an illegal time., Upon issuance of an error message, control returns
either to the Debugger or to the CLL

GFREQ

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 7 locations of normally relocatable
memory.

Entry: GFREQ

Notes:

Function: Examines the system real time clock and returns the clock frequency.

Calling Sequence:

FCALL

GFREQ

Integer 1

FORTRAN ADDRESS of word to receive frequency

(1) Accumulators and carry are restored on exit,
(2) GFREQ must be referenced by an .EXTN statement.
(3) No error messages are generated.

(4) This routine issues the RDOS system command .GHRZ .

27-5

ROUTINE:

Licensed Material - Property of Data General Corporation

i
Clock

|

GFREQ (Continued)

Notes: (Continued)

(5) The word receiving the frequency will be set to one of the following values:

0 - No real time clock in system
1 - 10HZ
2 - 100 HZ
3 - 1000 HZ
4 - 60 HZ
5 - 50 HZ
--- ROUTINE: RUCLK
Supporting Subroutines: FRET; .CPYL
Subroutine Size: No page zero locations and 6 locations of normally relocatable
memory.
Entry: RUCLK
Function: Removes a previously defined user clock.
Calling Sequence:
FCALL
RUCLK
Notes:
(1) Accumulators and carry are restored on exit.
(2) RUCLK must be referenced by an .EXTN statement.
(3) No error messages are generated.
(4) This routine issues the RDOS system call .RUCLK .
--- ROUTINE: TIME
Supporting Subroutines: FRET; .CPYL
Subroutine Size: No page zero locations and 168 locations of normally relocatable
memory,
Entry: TIME

Function: Fetches the current time of day.

Callirﬁg Sequence:

FCALL

TIME

Integer 2

FORTRAN ADDRESS of time array
FORTRAN ADDRESS of error code

27-6

ROUTINE:

Licensed Material - Property of Data General Corporation

Clock

TIME (Continued)

G

Notes:

(1)

(2)

(3)

Accumulators and Carry are restored upon exit.

This routine issues the RDOS system call .GTOD . The time is returned
in the order hours, minutes, and seconds, and is stored in the time array.
This array is an integer array of at least three words.

The error code word will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred

27-7

Gt

........

O/S ROUTINES

....................

28-1

28-2

Licensed Material ~ Property of Data General Corporation

0/s

--- ROUTINE: BOOT

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 14 8 locations of normally relocatable
memory.

Entry: BOOT

Function: Bootstraps a new operating system.

Calling Sequence:

FCALL
BOOT
Integer 2
FORTRAN ADDRESS of name of a primary global device
FORTRAN ADDRESS of error code
Notes:

(1) Accumulators and carry are restored on exit.

(2) BOOT must be referenced by an . EXTN statement.

(3) This routine issues the RDOS system call .BOOT.

(4) A call to this routine causes all open files in a currently executing system

(both foreground and background) to be closed, all directories to be released,

and all system 1/0 to be reset. Control is then transferred to HIPBOOT,
which will then bootstrap a new operating system.

(5) A call to BOOT should not be issued from the background when the foreground
is active.

(6) The error code will be set to one of the following states:
0 - Indeterminate error
1 - No error occurred
3... n - RDOS system error code + 3

--- ROUTINE: GSYS

Supporting Subroutines: FRET; .CPYL

Subroutine Size: No page zero locations and 7 locations of normally relocatable
memory.

Entry: GSYS
Function: Gets the name of the current operating system.

Calling Sequence:
FCALL
GSYS
Integer 1
FORTRAN ADDRESS of array to receive name

28-3

Licensed Material - Property of Data General Corporation

0O/s

ROUTINE: GSYS {(Continued)

(1) Accumulators and carry are restored on exit,

(2) GSYS must be referenced by an .EXTN statement.

(3) This routine issues the RDOS system call .GSYS .

(4) The array to receive the system name requires 138 words,

(5) The name returned will consist of the name plus its two character extension,
terminated by a null terminator.

(6) No error messages are generated.

28-4

Licensed Material - Property of Data General Corporation

APPENDIX A

RUN TIME ROUTINE TITLES AND NREL ENTRIES

To aid the debugging of FORTRAN programs and facilitate the interpretation of loader symbol
tables, the following list of run time routines’ NREL entry points is given. This information
can be obtained by the user by running an LFE analysis of library programs. The alternate
names listed here are confined to those that represent meaningful entry points. FORT. LB,
FMT. LB, and FSYS. LB are listed separately. The entry points are listed under each title.

FORT. LB
ABSLT CCEQ CPWR DCSIN DPWER
ABS CEQL CPW1 DCSIN DPW
AFRTN Cccos CPYAR DCSQR DREAL
AFRTN cCos CPYARG DCSQR DREAL
AINT CDIV CPYLS DCSTR DAIMA
JAINT CDV CRCX1 DCFST DSIGN
ALG CEXPO CRX2 DDCLO DSIGN
ALG CEXPO CRCXZ DCLOG DSYGN
LALG10 CFILW DCRX2 DEXPC DSINH
AMNXO CFILW CSIN DXPC DSHIN
AMAXO CcGT CsIN DEXPO DSNH
AMINO CGT CSQRT DEXP DSQRT
AMXO0 CHSAV CSORT DFL DSQR
AMNX1 CHSAV CSTOR DFL DTANH
AMAX1 CHRST CFST DFS DTNH
MAINI CcLIP CXFLI1 DFA EXP
L AMX1 CcLP CIxX DFB EXPO
. AMN1 CLOAD CXFL2 DEM EXPC
AMOD CFLD DCIV DED XPC
. AMOD CLOG DATE DFXL FALOC
ARCTAN CLOG DATE DFLX FALOC
DATN2 CLOSE DBREAK DESG FARGO
DATN CLOSE DBRK DFLE FRC1
ARDUM FCLOS DCABS DFLT FRGO
.FLSP CMPLX .DCAB DEGE FDELY
ARGUM CMPLX DCADD DFGT FDELY
FARGU CMUL DCSUB DFEQ FFILE
ARYSZ CMUL DCAD DENG FFIL
ARYSZ CNEG DCCEQ DIM FINIT
ATN CNEG CEQ2 .DIM FINIT
ATN2 COMP DCCOS DIPWR FINTD
ATN COMP DCCOS DIPWR FINRV
BASC CONJG DCDIV DLOG FINTD
.BASC CONJG DCDV DLOG FL
BDASC Ccos DCEXPO .LDGI1 FL
.BDASC Cs CEXP DMNMX FS
BREAK SN DCLOD DMAX1 FA
BRK COSIN DCFLD DMINI FB
CABS pDCs DCMPLX . DMN1 FM
.CABS DSN DCMPLX . DMX1 FD FSC
CADD couT DCMUL DMOD FEQ FNG
csuB couT DCMUL .DMOD FGE FLE
CAD CIN DCPWR DPOLY FXL FGT
CPW2 DPLY2 FLX FLT

FLINK
SAVO
SAV2
SAV3
RSTR
QRSTR

FLIP
FLP
FLPO

FOPEN
FOPEN

FOVLD
OVLOD

FPWER
FPW

FREAD
FREAD
FRWRIT
BRD
BWR

FREDI
FREDI

FRGLD
FRGLD

FSBR
FSBR
FSUBA

FSEEK
FSEEK

FSTAT
FSTAT

FSWAP
FBACK
FCHAN
FSWAP

FTIME
FGTIM
FSTIM

Licensed Material - Property of Data General Corporation

RUN TIME ROUTINE TITLES AND NREL ENTRIES (Continued)

IABS
.IABS

IDIM
. IDIM

IDINT
.IDIN

IFIX
JFIX

INT
JNT

IPWER
IPWR

ISIGN
.ISIG

ITEST
ICLR
ISET
ITEST

LDO
LDO
LD1
LD2
STO
STl
ST2

LDREG
LDR1
LDR2

LDSTB
LDB
STB

LE
LE
LT
GE
GT

MAD
MAD
MADO

MNMX0
MAXO
MING

MNMX1
MAX1
MIN1
. MX1
. MN1

MOD
.MOD

MOVE
MOVE
CMOVE

MOVEF
MOVEF

MULT
MPY
MPYO
DVD

MVBT
MVBT
MVBC

MV
MVF

MVZ
MVZ

NFRTN
NFRTN

NPTR1
NR

NPTR3
NR3

NPRTR
NR2

OPEN
APPEND
OPEN
MTOPD

OVFLO
OVERF

PLY1
PLY1

RATNI
RATN

RATN2
RTN2

RCABS
CABS

RDBLK
RDBLK

RDCABS
RCAB

RDFLD
RDFLD
RDFCH

READL
READL
WRITL
REDS
WRITS

READR
READR

REAL
.REAL
LAIMA

RESET
RESET

RIPWR
RIPWR

RTER
RTER
RTEO
RTES

SDVD
SDVD

SIGN
SIGN
SYGN

SINH
SHIN
SNH

SMPY
SMPY

SQRT
SQR

STOP
STOP
PAUSE

STREG
ST1
ST2

TAN
TN

TANGE
DTN

TANH
TNH

THREA
ALLOC
THREAD

TIME
TIME

WRCH
WRCH

FMT. LB

ABORT
ABORT

ASSOC
ASSOC

CHNGE
CHNGE

FACAL
ASUSP
AKILL
ARDY

FOVLY
FOVLD
FOVRL

FPEND
SUSP
PEND

FPRI
PRI

FQTASK
FQTAS

FTASK
FTASK

FTMAX
FTMAX
TMAX2Z
SYST2
TSAVE
TKILL
KILL
CTASK
SVVAR
TNXTI
TUNLK
TLINK
TREL
LNKPR
TERCM
LQTSC
QTCNT
TIDSR

FXMT
XMT
XMTW
REC

HOLD
HOLD

10PC
10PC
I0PROG

ITASK
ITASK

IXMT
IXMT

MTI
d
1TCB
FERTO
FERTI!
FERTN
IOPTR

OVEXT
OVEXT
OVEXX

OVKIL
OVKIL
OVKIX

RELSE
RELSE

START
START

TACAL
TAKIL
TAPEN
TAUNP

TIDC
TIDST
STID
RTID
KTID

TPEND
TPEND

TPRI
TPRI

TQTAS

TQTSK
QTCK

Licensed Material - Property of Data General Corporation

TOVLY
TOVRL
TOVLD
OVWRT

TRNON
TRNON

TUMOD
SMSK

TXMT
XMTT
IXMTT
XMTTW
RECC
XSRH

FSYS. LB

BOOT
BOOT

CDIR
CDIR

CHLAT
CHLAT

CHSTS
CHSTS

CPART
CPART

DIR
DIR

DLINK
DLINK

DUCLK
DUCLK

DULNK
DULNK

EQUIV
EQUIV

EXBG
EXBG

EXFG
EXFG

FCNS
ODIS
OEBL

FGND
FGND

FSPOL
SPEBL
SPDIS
SPKIL

GCIN
GCIN

GCoUT
GCoUT

Licensed Material - Property of Data General Corporation

UPDATE
UPDATE

WROPR
WROPR

GDIR
GDIR

GFREQ
GFREQ

GSYS
GSYS

GTATR
GTATR

ICMN
ICMN

INIT
INIT

MDIR
MDIR

MTDIO
MTDIO

RDOPR
RDOPR

RENAM
RENAM

RLSE
RLSE

RUCLK
RUCLK

RWCMN
RDCMN
WRCMN

STAT

ABORT 22-3, A-3

ABS 9-3

ABSLT A-1

absolute address, conversion to 2-13

activating a task 4-1

addressing, FORTRAN 2-13
conversion to absolute 2-13
passing arguments 2-14
returning results 2-15

ADVD §-9

AFRTN 16-3

AFSE 2-1

CAIMA A-2

AINT 9-3

JAINT A-1

AKILL A-3

ALG 94

LALGIO A-1

ALLOC A-2

allocation
at run time 21-6
in multiple tasking 2-4, 2-16
in single tasking 2-2, 2-15

AMAXO A-1

AMAX1 A-1

AMINO A-1

AMNXO0 13-3

AMNX1 9-5

.AMN1 A-1

AMOD 9-6

.AMOD A-1

AMX0 A-1

LAMX1 A-1

APPEND A-2, 26-12

ARCTA 10-3

ARDUM 15-3

ARDY A-3

ARGUM 16-3

arguments, passing and returning 2-14

arrays
general Chapter 3
handling routines Chapter 19
input/output 6-2

ARYSZ 19-3

assembly language interface to FORTRAN 7-2

ASSOC 22-3, A-3

ASUSP A-3

ATN 9-7

ATNZ A-1

background
programming 5-3
routines Chapter 23

BASC 8-3

.BASC A-1

BDASC 8-3

.BDASC A-1

Licensed Material - Property of Data General Corporation

BOOT 28-3, A-4
BRD A-2
BREAK 13-4
BRK A-1
BSTRING 18-3
BWR A-1
Byte
manipulation 1-3

manipulation routines Chapter 14
.

CABS 11-3, A-2
.CABS A-1
CAD A-1
CADD 11-3
calls and returns, implementation 7-2
calendar routines Chapter 27
CCOS 11-5
CCEQ 11-4
CDIR 20-3, A-4
CDIV 11-5
CDV A-1
CEQl A-1
CEQ2 A-1
CEXP A-1
CEXPO 11-6
CFILW 5-5, 19-3
CFLD A-1
CFST A-1
CGT 18-5
chaining programs 4-9
changing task priority 4-5
CHLAT 19-4, A-4
CHNGE 5-5, 22-4, A-3
CHRST A-1
CHSAV 18-5
CHSTS 20-3, A-4
CIN A-1
CIX A-1
CLIP 11-6
CLOAD 11-7
clock routines Chapter 27
CLOG 11-8
CLOSE 19-5
CLP A-1
CMOVE A-2
CMPLX 13-5
CMUL 11-9
CNEG 11-9
communication routines Chapter 24
COMP 14-3
compiling FORTRAN programs 5-4
complete array 6-2
complex
double precision routines Chapter 12
number storage 1-2
single precision routines Chapter 11

INDEX-1

Licensed Material - Property of Data General Corporation

CONJG 11-10 DFA A-1
CO8 9-8 DFB A-1
COSIN 10-4 DFD A-1
CoUT 17-3 DFEQ A-1
CPART 20-4, A-4 DFGE A-1
CPW1 A-1 DFGT A-1
CPW2 A-1) DFILW 5-5, 26-6
CPWR 11-11 DFL 10-6, A-1
CPYARG 16-4 DFLE A-1
CPYLS A-1 DFLT A-1
CRCX1 13-5 DFLX A-1
CRCX2 13-6 DFM A-1
CS A-1 DENG A-1
CSIN 11-11, A-1 DFS A-1
CSQRT 11-12, A-1 DFSG A-1
CSTOR 11-12 DFXL A-1
CSUB A-1 .DIM A-1
CTASK A-3 DIPWR 13-9, A-1
CXFL1 13-6 DIM 9-8
CXFL2 13-7 DINT 10-9
.DINT A-1

DIR 5-5, 20-5, A-4
directory maintenance

DAIMA A-1 general 5-1

data storage 1-1 routines Chapter 20
DATE 27-3, A-1 displacement routines Chapter 15
DBREAK 13-7 DLINK 26-7, A-4

DBRK A-1 DLOG 10-10, A-1
.DCAB A-1 DMAX1 A-1

DCABS 12-3 DMINI A-1

DCAD A-1 . DMNI

DCADD 12-3 DMNMX 10-11

DCCEQ 12-4 DMOD 10-13

DCCOs 12-5, A-1 .DMOD A-1

DCDIV 12-5 .DMX1 A-1

DCDV A-1 double precision

DCEXP 12-6 complex routines Chapter 12
DCFLD A-1 floating routines Chapter 10
DCFST A-1 number storage 1-1
DCIV A-1 DPFL 1-2

DCLOD 12-6 DPLY2 A-1

DCLOG A-1 DPOLY 10-13

DCPWR 12-7 DPW A-1

DCMPL 13-8 DPWER 10-14

DCMPLX A-1 DREAL 12-10, A-1
DCMUL 12-7, A-1 DSHIN A-1

DCRX2 A-1 . .DSI symbol §-5

DCSIN 12-8, A-1 DSIGN 10-15, A-1
DCSQR 12-9, A-1 DSINH 10-16

DCSTR 26-9 DSNH A-1

DCSUB A-1 DSQR A-1

DDCLO 12-10 DSQRT 10-16

debugger 5-4 DSYGN A-1

device maintenance routines Chapter 20 DTANH 10-17

DEXP A-1 DTN A-2

DEXPC 10-5 DTNH A-1

DEXPO 10-5 dual programming 5-3

DUCLK 27-3, A-4
DULNK 20-6, A-4
DVD A-2
DXPC A-1

INDEX - 2

Licensed Material - Property of Data General Corporation

element descriptor sequence 5-1 foreground /background programming 5-3, Chapter 23
end-of-file element 6-4 FORTRAN addressing 2-13
EQUIV 20-6, A-4 FORTRAN library tapes 5-4, 5-3
error return address 6-3 FOSP 5-2
EXBG 23-3, A-4 FOVLD 3-5, 21-3, A-3
execution time of routines 7-1 FOVLY 21-3
EXFG 23-3, A-4 FOVRL 5-5, A-3
EXP 9-9 FPEND 22-7
EXPC 9-10 FPRI 22-7
EXPO A-1 FPTRS 15-3
FPW A-2
FPWEP 9-13
FPZERO 15-4
FA A-1 FQTAS 22-8, A-3
FACAL 22-4) FREAD 6-1, 17-3, A-2
FALOC 3-1, 3-2, 19-3, A-1 FREDI 3-3, 3-4, 19-4, A-1
FARGO 16-5 FRGO A-1
FB A-1 FRG1 A-1
FBACK A-2 FRGLD 16-9, A-2
FCHAN 5-5, A-2 FRWRIT A-2
FCNS 25-3 FS 7-2, A-1
FD A-1 FSBR 19-3, A-2
FDELY 22-6, A-1 - FSEEK 26-8, A-2
FEQ A-1 FSG A-1
FERTO A-3 FSp 2-1, 5-2
FERT1 A-3 FSPOL 20-7
FFIL A-1 FSTAT 5-5, 20-9, A-2
FFILE 26-7 FSTIM A-2
FGE A-1 FSUBA A-2
FGND 23-4, A-4 FSWAP 20-9," 5-5, A-2
FGT A-1 FTASK 22-9, A-3
FGTIM A-2 FTIME 27-4
FHMA 5-4 FTMAX A-3
file maintenance function statement assembly interface 7-3
and I/O 5-1 FXL A-1
routines Chapter 26 FXMT 24-3

FINRV 5-2, A-1
FINIT 18-6, A-1

FINTD 5-2, 25-3, A-1 GCIN 20-8, A-4
fixed point storage 1-1 GCOUT 20-9, A-4
FL 9-10, A-1 GDIR 20-9, A-4
flags 2-1 GE A-2
FLE A-1 GFREQ 27-5, A-4
FLGT 3-1 GSYS 28-3, A-4
FLINK 2-7, 16-6 GT A-2
FLIP 13-9 GTAT: 5-5, 26-10, A-4
FLPO A-2
FLP A-2
floating point storage 1-2
FLT A-1 HOL! 02-10, A-3
FLX A-1
FM A-1
FNG A-1
FOPEN 18-7, A-2 1 16-9
foreground .1 A-2, A-3
programming 5-3 IABS 8-4
routines Chapter 23 JIABS A-2

INDEX -3

ICLR A-2, 18-6
ICMN 24-4, A-4
IDIM 8-5
LIDIM A-2
LIDIN A-2
IDINT 13-10
IFIX 13-11
JIFIX A-2
INIT 20-10, A-4
initialization routines Chapter 16
input /output
general Chapter 6
routines Chapter 17
INT 13-11
JINT A-2
integer
routines Chapter 8
storage 1-1
interface between assembly language and
FORTRAN programs 7-2
interprogram linkage 2-7
interrupts 5-1
inter-subroutine linkage, FLINK 2-7
intertask communication 4-4
IOPC 22-11
IOPTR A-3
IPWER 8-5
IPWR A-2
ISET A-2, 18-6
.ISIG A-2
ISING 8-6
ITASK 22-12, A3
ITCB A-3
ITEST 18«8, A=2
IXMT 5-1, 25-6, A-3
IXMTT A-3

KILL A-3
killing a task 4-5
KTID A-3

LDO 14-3, A-2

LDl A-2

LD2 A-2

LDB A-2

- LDG1 A-1

LDR1 A-2

LDR2 A-2

LDREG 13-12

LDSTB 14-4

LE 18-9, A-2

left parenthesis 6-3

limitations of RTOS 5-5

linkage
general Chapter 2
routines Chapter 16

Licensed Material - Property of Data General Corporation

LNKPR A-3

loading the FORTRAN IV system 5-4
LQTSC A-3

LT A-2

MAD 16-11, A-2
MADO A-2
mapping environment 5-4
MAX0O A-2

MAX! A-2

MDIR 20-11, A-4
MEMOVFL 7-3
MINO A-2

MIN1 A-2

mixed mode routines Chapter 13
«MN1 A-2
MNMX0 8-6
MNMX1 13-12
MCD 8-7

+MOD A-2

MOVE 14-5, A-2
MOVEF 14-6, A-2
MPY A-2

MPYO A-2
MTDIO 17-5, A-4
MTOPD 26-12
MTI 16-12
MULT 8-8
multitasking 1-1
MVBC A-2

MVBT 14-6, A-2
MVF 14-7, A-2
MVZ 14-8, A-2
.MX1 A-2

.NDSP 2-1

NFRTN 16-13, A-2

NPTR1 15-5

NPTR3 15-5

NR A-2

NR2 A-2

NR3 A-2

NRPTR 15-6

NSP 5-2

number
range Chapter 1
stack 2-1
storage Chapter 1

ODIS A-4

OEBL A-4

OPEN 26-11, A-2

operating procedures under RDOS 5-4
operating system routines Chapter 28

INDEX-4

operating systems 1-1
output routines Chapter 17
OVOPN 5-5, 2(-12
OVERF A-2
overlays
loading
multiple tasking 4-8
single tasking 4-7
opening and closing 4-7
periodic execution 4-8
routines Chapter 21
OVEXT 5-5, 21-5, A-3
OVEXX 5-5, A-3
.OVFL 2-1, 5-2
OVFLO 16-14
OVKIL 5-5, 21-6, A-3
OVKIX 5-5, A-3
OVLOD 5-5, A-2
OVWRT A-3

PAUSE A-2

PEND A-3

PLY1 9-14, A-2

pointer routines Chapter 15

PRI A-3

program
segmentation Chapter 4
swapping/chaining 4-9
tasking of 4-1

QRSTR A-2
QSpP 2-1

QTCK A-3
QTCNT A-3

RATN A-2

RATNI 9-15

RATN2 10-18

RCAB A-2

RCABS 11-13
RDBLK 17-7, A-2
RDCAB 12-11
RDCMN A-4

RDFCH A-2

RDFLD 17-8, A-2
RDOPR 24-5, A-4
RDOS 1-1, Chapter 5
READ statement 6-1
READL 17-10, A-2
READR 5-5, 17-11, A-2
readying a task 4-5
REAL 11-13

Licensed Material - Property of Data General Corporation

.REAL A-2

real number storage 1-2

real time disk operating system 1-1, 5-4

real time operating system 1-1, 5-5

REC A-3

RECC A-3

REDS A-2

reentrant routines 1-1

RELSE 22-12, A-3

RENAM 53-5, 20-11, A-4

RESET 26-13, A-2

return from routine 2-15

right parenthesis 6-4

RIPWR 13-12, A-2

RLSE 20-12, A-4

RSTR A-2

RTE0 A-2

RTER 18-9, A-2

RTES A-2

RTID A-3

RTN2 A-2

RTOS 1-1, 5-5

RUCLK 27-6, A-4

runtime
error messages 7-3, 7-4
library 1-1
library structure Chapter 1
stack 1-2, 2-2

RWCMN 24-6

SAV(Q A-2

SAV2 A-2

SAV3 A-2

SDVID A-2

SHIN A-2

SIGN 9-15

single precision
cdmplex routines Chapter 11
floating routines Chapter 9
number storage 1-1

SINH 9-16

SMPY 8-10, A-2

SMSK A-3

SNH A-2

SOs 1-1

SP 5-2

SP stack 2-1

SPDIS A-4

SPEBL A-4

special subcript bound specifier (TWS) 3-2

SPFL 1-2

SPKIL A-4

SQR A-2

SQRT 9-17

STO A-2

ST1 A-2

INDEX-5

Licensed Material - Property of Data General Corporation

ST2
stack
allocation in a multitasking
enviyonment 2-4
allocation in a single tasking
environment 2-2
pointer 2-1
runtime 2-1
structure Chapter 2
stand-alone operating system 1-1
START 22-13, A-3
STAT 26-14
STB A-2
STID A-3
TOP 18-11, A-2
STREG 13-14
string
input/output 6-4
manipulation routines Chapter 14
structure of subroutine descriptions
STTSK 22-14
subroutine
assembly interface 7-3
calls 2-8
subscript ground specifier table (SBS) 3-1
SJUSP A-3
suspending a task 4-4
.SVO 2-1, 5-2
SVVAR A-3
swapping programs 4-9
SYGN A-2
SYST2 A-3

A-2

7-1

TAKIL A-3

TAN 9-18

TANGE 10-18

TANH 9-18

TAPEN A-3

TASK
activating 4-4
changing priority 4-5
control block 4-2
communication between 4-4
multitasking commands and subroutines 4-3
killing 4-5
priorities 4-1
readying 4-3
routines Chapter 22
scheduler 4-3
states of 4-1
status 4-5
suspending 4-4

TAUNP A-3

TERCM A-3

THREAD 18-12, A-2

INDEX -6

three word array specifier (TWS) 3-2
TIDSR A-3
TIDST A-3

TIME 27-6, A-2
timings of routines
TKILL A-3
TLINK A-3
TMAX2 A-3

TN A-2
TNH A-2
TNXTL A
TOVLD
TOVRL
TPEND
TPRI A-3

TQTSK A-3

TREL A-3
TRNON 22-15, A-4
TSAVE A-3
TUNLK A-3

7-1

G Ly W

A-
A=l
A-3

unmapped environment 5-1
UPDATE 26-15, A-4
user interrupts 5-2

variable data element 6-1

WRCH 17-13, A-4
WRCMN A-4
WRITE statement 6-1
WRITL A-2

WRITR 3-5

WRITS A-2

WROPR 24-7, A-4

XMT A-3
XMTT A-3
XMTTW A-3
XMTW A-3
XPC A-1
XSRH A-3

g

PROGRAMMING DOCUMENTATION
DaiaGeneral i?F?,,“"Es/’.[é?x RKS FORM

Document Title Document No. Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM;

Name [Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004

FOLD DOWN FIRST FOLD DOWN

-—-_--»--.—-....._-_......_---_----..---—---------——--—a-——-.--—----—-—————------------_----_-——---—---—--

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass 01772

BUSI NESS REPLY MA!L

No Postage Ne it Marled !

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

-—--a—-n--------------—--_-—------------—--------—--....no_-.---—---_--..__-____,...-_-...._.—-------_--.

FOLD UP SECOND FOLD UP

g

STAPLE

	Cover
	i
	ii
	iii
	ib
	v
	vi
	vii
	1-1
	1-2
	1-3
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-1
	3-2
	3-3
	3-4
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	6-1
	6-2
	6-3
	6-4
	6-5
	7-1
	7-2
	7-3
	7-4
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	16-13
	16-14
	17-1
	17-2
	17-3
	17-4
	17-5
	17-6
	17-7
	17-8
	17-9
	17-10
	17-11
	17-12
	17-13
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	18-10
	18-11
	18-12
	18-13
	19-1
	19-2
	19-3
	19-4
	19-5
	20-1
	20-2
	20-3
	20-4
	20-5
	20-6
	20-7
	20-8
	20-9
	20-10
	20-11
	20-12
	21-1
	21-2
	21-3
	21-4
	21-5
	21-6
	21-7
	22-1
	22-2
	22-3
	22-4
	22-5
	22-6
	22-7
	22-8
	22-9
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	23-1
	23-2
	23-3
	23-4
	24-1
	24-2
	24-3
	24-4
	24-5
	24-6
	24-7
	24-8
	25-1
	25-2
	25-3
	25-4
	25-5
	26-1
	26-2
	26-3
	26-4
	26-5
	26-6
	26-7
	26-8
	26-9
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	27-1
	27-2
	27-3
	27-4
	27-5
	27-6
	27-7
	28-1
	28-2
	28-3
	28-4
	A-1
	A-2
	A-3
	A-4
	Index - 1
	Index - 2
	Index - 3
	Index - 4
	Index - 5
	Index - 6

