DATA GENERAL
CORPORATION

Southboro,

Massachusetis 01772
(617) 485-9100

PROGRAM

Single User BASIC

TAPES

Absolute Binary: 091-000018 - /4

ABSTRACT

Single User BASIC is a dedicated interpretive system that allows
conversational entry and execution of programs written in the BASIC
language as developed by Dartmouth College. It includes use of all
elementary and advanced BASIC statements as defined in Basic
Programming by J. G. Kemeny and T. E. Kurtz (cmyrighted 1967
by john Wiley & Soms, Inc.), but does not include string or matrix
manipulation functions. The Data General implementation also per-
mits ezecution of certain statements in a "desk calculator”
or "keyboard" mode which is most useful in testing or debugging
programs as well as in performing simple computations or evaluat-
ing complex formulas without the necessity of writing a program.
The system will operatein a 4K or larger memory configuration and
requires a teletypewriter for input/output.

Copyright (C) Data General Corp., 1970
Printed in U, S. A.

093-000042-01

Introduction
Operating Procedures
Loading, Restarting, and Clearing User's Space
Entering and Editing a Program
Keyboard Commands
Ground Rules on Numbers, Variables, Arrays and Expressions
Summary of BAS'IC Statements
Appendices
A, Punching and Loading Tapes of User’s Programs
B. Programming Hints
C. Short Summary of BASIC Statements

D. Error Messages

INTRODUCTION

Data General Corporation's single-user BASIC allows programming
in the standard BA SIC language using a Nova or Supernova central processor with 4K
or more memory words and a teletypewriter. It includes use of all the elementary
and advanced BASIC statements as defined in BASIC Programmingby
John G. Kemeny and Thomas E. Kurtz (c. 1967 by John Wiley & Sons, Inc.),
but does not include matrix manipulation functions. The BASIC language

developed by Dartmouth College allows conversational program entry, editing,
execution, and input/output operations. The Data General Corporation
implementation also permits execution of certain statements in a 'desk calculator’
or 'keyboard' mode which is most useful in testing or debugging programs as
well as in performing simple computations or evaluating complex formulas
without the necessity of writing a program. The purpose of this write-up is

to inform the user of operating procedures, including error messages, and

to provide a brief summary of the BASIC statements available. Beginning
programmers, or programmers not familiar with the use of BASIC are

referred to the above mentioned book by Kemeny and Kurtz,

,WM

OPERATING PROCEDURES

Loading, Restarting and Clearing User's Space

The binary tape of single user BASIC is loaded like any other absolute binaxy
tape by the binary loader. Once loaded, the BASIC system takes control and the
first task it performs is to determine the size of memory it has to operate in. When
the system finds itself in a 4K environment it types out the question: "DO YOU WISH
TO OVERWRITE THE FUNCTIONS SIN, COS, ATN AND TAN (TYPE Y ORN)7 "

If the user responds with a Y the core required for these functions is made available
for storage of user's program and data, thereby expanding the total storage available
for this purpose by sixty percent. The number of spaces represented by a comma in
a PRINT statement may now be selected to be either 14 or 15. Once selected, the
system will treat the full page as either 70 or 75. Thus, the function TAB will reduce
its argument modulo 70 or 75, etc. (See "PRINT and TAB"). The following message
will be typed:

"DO YOU WISH COMMA'S TO BE 14 SPACES (TYPE Y), OR 15 (TYPE N}7 "
The appropriate key, Y or N may then be typed. To change the number of spaces
~ represented by comma, the system must be reloaded. It then initializes itself and
in that process destroys the binary loader, but it leaves intact the bootstrap loader,
If it finds memory is larger than 4K words, it will preserve both the binary and
bootstrap loaders and will use the additional core to store the user's data and program.
Hence, larger memory configurations provide the user with the capability of handling
larger programs with larger bodies of data, After it has sized memory and initalized
itself, the BASIC system performs a carriage-return/line-feed on the teletypewriter,
and waits for the user to respond.

If at some point in working with the system the user wishes to restart the program,
due to a power failure for example, he may do so by setting the Nova/Supernova panel
data switches to the restart address (000002), and pressing the RESET and START
operating switches., This action will place the system in a state of suspended animation
until the user strikes the ESC key on the teletypewriter, All other teletypewriter keys
will give no response until the ESC key is hit, When struck it will cause the system to
do a carriagereturn on the teletypewriter and type the message "*READY",

PRINT and TAB
The PRINT statement may be used either as a program statement or as a keyboard

command to cause printing operations on the Teletype. (The special character semi-
colon (;) may be used interchangeably with the word PRINT. On listing, it will be con-
verted to PRINT.) As a statement in a program it can be used a) to print results of
computations, b) to print verbatim a message stored in the program, c) to printa
combination of the two, and d) to skip a line, As a keyboard command it can be used
€) to print the value of variables defined in the user's program or functions of these
variables, and f) it can be used to print the results of computations on numbers in desk

calculator fashion, Some examples of how the PRINT statement may be used in a pro-

gram are:
129 PRINT "X VALUE", "SINE", " COSINE" ®)
209 PRINT X, SIN (X), COS (X) (2)
390 PRINT "THE SQUARE ROOT OF"; X; "IS"; SQR (X) (c)
App PRINT (d)

Formatdng of output from a PRINT statement is automatically performed by the
system unless the user specifies another format for his output. Whenever the arguments
of the FRINT statement are separated by cominas the BASIC system employs automatic
formatting under which the teletypewriter line is divided into five zones starting at
positions @, 15, 3@, 45 and 6f. (If the comma has been initialized to represent 14
spaces, the five zones would start at positions 55}14? 28, 42, 56.) Each comma in the
PRINT statement causes the system to move to the next zone before typing the value of
the next variable, or, if the fifth zone has been filled, to move to the first zone of the
next line. The end of a PRINT statement signals a new line and causes a carriage-
return/line-feed on the teletype unless this action is suppressed by placing a comma (or
semicolon) at the end of the PRINT statement.

The user may override automatic formatting to specify compact formatting or
particular line formats by means of the simicolon and the TAB function. Compact
formatting, or elimination of spacing between the printing zones of the arguments being
printed, is caused by the use of the simicolon to separate the variables in the PRINT
statement. For example, the statement

198 PRINT X, Y, Z
would cause the values of the variables X, Y and Z to be printed under automatic

-10-

formatting on a single teletypewriter line beginning at print positions @, 15, and 37
respectively; whereas the statement -

1¢3 PRINT X:Y:Z
would cause the values of the three variables to be printed on a single line beginning at
print position §§ with no spacing between each of the argument’s print zones. The size
and spacing within each of the variable's print zones depends on the value and type of the
number being printed as described below. The caret symbol, A, represents a space
typed on the teletypewriter. If the absolute value of the variable is in the range 10"
< Variable < 1{}6 or if the absolute value can be represented exactly as a six-digit
decimal fraction, then fixed format is used, Non-significant leading and trailing
zeros are suppressed. The decimal point is omitted from integers.
examples:

-.001
n 425,321 A
p -EBFBTLA

Floating format is used in all other cases and has the form & d.dddddﬁ-;ee where each
d is a decimal digit and ee is a one or two digit exponent of ten. Numbers are preceded
by a minus sign or a space and are followed by a space.

TAB cl auses or functions, each with an argument of its own, may be inserted in
PRINT statements to cause the Teletype to move to specific positions cn the line before
printing the variables. The argument of the TAB function may be either an integer or
an expression and is evaluated modulo 70 or 75 depending upon whether the space has
been initialized to represent 14 or 15 spaces respectively. Ifitis the latter, the value
of the expression will be computed and its integer part taken. If the comma has been
initialized to represent 15 spaces, gﬁeﬁi the value of the argument is greater than 71 or
less than 75 the teletype will print at the end of the current line. There are only 72
print positions on a teletypewriter, numbered § through 71. Commas following TAB
clauses have no effect on positioning, but commas following arguments will cause auto-
matic formétﬁng unless the next argument is preceded by a TAB function.

If the user, having interrupted a program's execution by striking the ESC key,
wishes to know the current value of the program variable X, he may employ the PRINT
statement as a keyboard command. If he types

PRINT X {e)
without a preceding line number, he would cause the current value of this variable to be
printed out just following the keyboard command. A user who at any time wishes to

perform a quick calculation may do so using the PRINT statement or a combination of the
..1 1 -

LET and PRINT statements in keyboard mode.

For example,

PRINT SQR (5*5+12%12)
or

LET Q=(5%5+12*12)
PRINT SQR (Q) £)

2
will cause the system to return the square root of (5 + 122) on the same line as the
PRINT commands,
GO TO

The GOTO statement is used to direct the flow of execution in a program and may

he employed as a keyboard command. When a GOTO statement is encountered in a pro-
gram it causes the system to continue execution from the line number specified. It is
possible to transfer control to a non-executable statement {a DATA statement, for ex-
ample) in which case control passes to the next sequential executable statement, For
example,

5% DATA 2.0,3.1416,7.8,4.1
68 LET X1=SQR(B*B-4*A*C)

2

207 GO TO 50
IF-THEN (IF -GOTO)

The IF-THEN statement is used to cause branching to another point in a program

when a condition is fulfilled. For this reason it is also known as a conditional GOTO
statement and is typed by the system as IF-GCTO when the keyboard command LIST is
given. Both IF-THEN and IF-GOTO are perfectly acceptable variations of the statement
for input to the system, Most commonly, the IF-THEN statement will have the form:

IF [expression | [relational operator 1 [expression 1 THEN
[line mumber] Thus, a statement to cause branching when the variable A was not
equal to 2 would be

199 IF A <>2 THEN 5§

where the concatenated symbols ""<>'" mean "is not equal to".

In a mathematically more general sense, the IF-THEN statement would have the
form: |

IF [eapression] THEN [line mumber |

where the expression is evaluated and the result treated as true when non-zero, or

-

ok

false when equal to zerc. Using this form the above example would become
139 IF A - 2 GOTO 5%
This would cause the system to take its next instruction from line number 5(so long as
A does not equal 2. If A = 2 control would pass to the next sequential instruction follow -
ing line 19@.
The first form is more readily readable and is thus more often used. The following

six standard relational operators are permitted:

SYMBOL EXAMPLE MEANING
= X=Y Is equal to (X is equal to Y)
< X <Y Is less than (X is less than Y)
<= X<=Y Is less than or equal to .(X is less
than or equal to Y)
> X>Y Is greater than .(X is greater than Y)
>= X>=Y Is greater than or equal to (X is

greater than or equal to Y)
<> X<>Y Is not equal to .(X is not equal to Y)

The IF-THEN statement may not be used as a keyboard command,

FOR, NEXT, and STEP
The FOR and NEXT statements and the STEP clause are used in setting up and

operating a loop in the user's program. They must always appear together: the FOR
statement, with or without a STEP specified, at the entrance to the lcop; and the NEXT
statement at the exit, peinting back to the entrance.
Every FOR statement is of the form

FOR [variable] = | expression | TO [expression]| STEP [ewpression |
where the variable may be any nonsubscripted variable. Most often, the expressions
will be integers with the STEP clause omitted in which case the system assumes a step
size of 4+1. Note that when specified, the step-size may be an expression which resolves
to either a positive or negative number, Note too that the FOR and NEXT statements are

not acceptable as keyboard commands.

GOSUB and RETURN
"The GOSUB and RETURN statements are used to transfer control to, and return

from, subroutines in the user's program. The subroutine is entered by means of a
GOSUB statement where the argument is the line number of the first statement in the sub-

routine, At the logical end of the subroutine there should be a RETURN statement
-1 3..

(which has no argument) directing the computer to return control to the statement fol-
lowing the GOSUB that called the subroutine. GOSUBs may be "nested, " that is, one
subroutine may call another, but it is necessary that each subroutine be exited by a
RETURN statement when it completes its work. This is because actual return addres -
ses are stored in a push-down list as each GOSUB is executed and must be picked off
by RETURN statements in the reverse sequence. If the user exits a subroutine by
means of a2 GOTO instead of a RETURN it is extremely likely that he will foul the
correct passage of control between levels of subroutines. This does not mean that it
is impossible to use several RETURN statements in a given subroutine if it is to be
exited at several different points, but that the user should keep in mind how the system
works. GOSUBS may not be used as keyboard commands.

DIM
The DIM statement is used to inform the system to allocate a specific amount of

storage for a one or two-dimensional array with a given name. Array names must
consist of a single letter. One-dimensional arrays may have a maximum of 236
entries { ,DIM A (255) since there will be a zeroth entry) and two -dimensional ar-
rays may have a maximum of 1024 entries (, DIM B (31, 31) or DIM C (15, 63) since
there will be both a row §§ and a column @, For example, the statements

14 DIM X (17)

20 DIM Y (14,9)
would cause the BASIC system to allocate storage for a one -dimensional array, X, with

18 entries, and for a two-dimensional array, Y, with 15§ entries.

Functicns and DEF

A) Standard Functions

Data General Corporation's single user BASIC allows the use in expressions of the
five arithmetic operations {addition, subtraction, multiplication, division, exponentia -
tion, 4+, -» %, /, 4)and the eleven functions normally defined for BASIC. The arguments

of these functions may themselves be expressions. The eleven functions are:

-14 -

The RND function is used to generate a random number between # and 1. Although
- the form of the function réquires ar. argument, it has no significance, and any number,
or previously defined variable, may be substituted as the argument.

B) DEF

The DEF Statement is used to define as functions those expressions which a
programmer uses several times in the course of his program, and which he wishes
to abbreviate after having onece wristten them. The name of each defined function must
consist of three letters, the first two of which are "FN". Hence, up to 26 funetions
may be defined, eg, FNA, FNB, . . . , FNZ. For example, 2 function equivalent
to X2+ €3X+2 could be defined by the line

50 DEF FNT (X) = X*X + EXP (3X+ 2)

Thereafter in his program the user would call for various values of the function
simply by using FNT (2.4), FNT (-3.1), FNT (A), etc, A DEF statement may occur
anywhere in a program, and the expression to the right of the equal sign may be any
formula which can be fitted on a sirgle line, It may include any combination of other
fumctions, including ones defined by other DEF statements, and it can involve other
variables besides the one denoting the argument of the function. Functions are not

actually defined until the DEF Statcment has been executed.

STOP.

The STOP statement is used to cause a halt in the execution of the user's program
at any point, When a STOP is encountered, the BASIC system will cease execution of
the user's program, type the message "STOP @ XXXX", where XXXX is the line num-
ber of the STOP statement, and wait for the user to type in additional program state-

ments or alterations to statements, or, to type in a keyboard command.

REM

The REM statement is used to insert explanatory remarks in 2 program.
Everything following the REM is stored exactly as typed and is reproduced when
a listing is requested by 2 LIST statement. The BASIC system completely ignores
the whole statement during execution. For example,

1¢¢ REM THIS IS A REMARK STATEMENT !

-16-

APPENDIX A
Punching a Tape of a User's Program

To punch a BASIC program tape with blank leader and trailer, follow this
procedure:

1. Turn the power switch on the front of the teletypewriter to the LOCAL position.
Press the ON button on top of the teletype punch unit, Then press the HERE IS*
key to punch blank tape. When enough blank tape has been produced press the OFF
button on top of the punch unit and turn the power switch back to the LINE position.

2. Type the Keyboard command LIST, but do not press the RETURN key yet.
Press the ON button on top of the teletype punch unit and then press the RETURN
key, After waiting until the punching and listing is complete press the OFF button
on the teletype punch unit,

3. Repeat step 1 to punch a length of blank trailer on the tape.

4, Remove the tape by pulling straight up. This produces arrows on the ends of the
tape to indicate the direction in which the tape should be read through the reader,
It is usually wise to write the name of the program on the tape for easy identification

at a later dme,

* On some teletypewriters the HERE IS key may not punch blank tape.
In this case the user should hold down CTRL, SHIT'T, REPT, and P keys
simultaneously to punch blank tape, The REPT and P keys should be released first,

S

APPENDIX B
Programming Hints

The following suggestions are offered in the interest of making the most

efficient use of user's storage. These hints become important if a2 Storage Over-

flow error occurs while entering or running a program,

}-.

Enter data which changes for each run by means of INPUT statements rather
than by READ and DATA statements. '

Keep remarks (REM statements) to a minimum.

Re-use variables and arrays used earlier in the program if the old value(s) will

no longer be needed,

Dimension all arrays.

Dimensicn arrays as closely as possible to the largest subscripts that will be used.
Utilize the zeroth column and row of arrays.

Wherever possible utilize one lengthy statement (such as READ, DATA, INPUT,

or PRINT) instead of two or more statements to accomplish the same results,

Define functions (DEF statement) whenever the same expression will be used at

least twice in a program.

3.

Notes

Variables

Array Names

Arithmetic
Operators

Relational
Operators

Functions

Single letter or single letter plus single
digit

Single letter

"'*“9"9*;/3

<, L=,z Py D>, <>

SQR, SIN, COS, TAN, ATN, LOG, EXP, ABS;
SGN, INT, RND

