DATA GENERAL
CORPORATION

Southboro,

Massachusetis 01772
(617) 485-9100

PROGRAM

Single User BASIC

TAPES

Absolute Binary: 091-000018 - /4

ABSTRACT

Single User BASIC is a dedicated interpretive system that allows
conversational entry and execution of programs written in the BASIC
language as developed by Dartmouth College. It includes use of all
elementary and advanced BASIC statements as defined in Basic
Programming by J. G. Kemeny and T. E. Kurtz (cmyrighted 1967
by john Wiley & Soms, Inc.), but does not include string or matrix
manipulation functions. The Data General implementation also per-
mits ezecution of certain statements in a "desk calculator”
or "keyboard" mode which is most useful in testing or debugging
programs as well as in performing simple computations or evaluat-
ing complex formulas without the necessity of writing a program.
The system will operatein a 4K or larger memory configuration and
requires a teletypewriter for input/output.

Copyright (C) Data General Corp., 1970
Printed in U, S. A.

093-000042-01

Introduction
Operating Procedures
Loading, Restarting, and Clearing User's Space
Entering and Editing a Program
Keyboard Commands
Ground Rules on Numbers, Variables, Arrays and Expressions
Summary of BAS'IC Statements
Appendices
A, Punching and Loading Tapes of User’s Programs
B. Programming Hints
C. Short Summary of BASIC Statements

D. Error Messages

INTRODUCTION

Data General Corporation's single-user BASIC allows programming
in the standard BA SIC language using a Nova or Supernova central processor with 4K
or more memory words and a teletypewriter. It includes use of all the elementary
and advanced BASIC statements as defined in BASIC Programmingby
John G. Kemeny and Thomas E. Kurtz (c. 1967 by John Wiley & Sons, Inc.),
but does not include matrix manipulation functions. The BASIC language

developed by Dartmouth College allows conversational program entry, editing,
execution, and input/output operations. The Data General Corporation
implementation also permits execution of certain statements in a 'desk calculator’
or 'keyboard' mode which is most useful in testing or debugging programs as
well as in performing simple computations or evaluating complex formulas
without the necessity of writing a program. The purpose of this write-up is

to inform the user of operating procedures, including error messages, and

to provide a brief summary of the BASIC statements available. Beginning
programmers, or programmers not familiar with the use of BASIC are

referred to the above mentioned book by Kemeny and Kurtz,

,WM

OPERATING PROCEDURES

Loading, Restarting and Clearing User's Space

The binary tape of single user BASIC is loaded like any other absolute binaxy
tape by the binary loader. Once loaded, the BASIC system takes control and the
first task it performs is to determine the size of memory it has to operate in. When
the system finds itself in a 4K environment it types out the question: "DO YOU WISH
TO OVERWRITE THE FUNCTIONS SIN, COS, ATN AND TAN (TYPE Y ORN)7 "

If the user responds with a Y the core required for these functions is made available
for storage of user's program and data, thereby expanding the total storage available
for this purpose by sixty percent. The number of spaces represented by a comma in
a PRINT statement may now be selected to be either 14 or 15. Once selected, the
system will treat the full page as either 70 or 75. Thus, the function TAB will reduce
its argument modulo 70 or 75, etc. (See "PRINT and TAB"). The following message
will be typed:

"DO YOU WISH COMMA'S TO BE 14 SPACES (TYPE Y), OR 15 (TYPE N}7 "
The appropriate key, Y or N may then be typed. To change the number of spaces
~ represented by comma, the system must be reloaded. It then initializes itself and
in that process destroys the binary loader, but it leaves intact the bootstrap loader,
If it finds memory is larger than 4K words, it will preserve both the binary and
bootstrap loaders and will use the additional core to store the user's data and program.
Hence, larger memory configurations provide the user with the capability of handling
larger programs with larger bodies of data, After it has sized memory and initalized
itself, the BASIC system performs a carriage-return/line-feed on the teletypewriter,
and waits for the user to respond.

If at some point in working with the system the user wishes to restart the program,
due to a power failure for example, he may do so by setting the Nova/Supernova panel
data switches to the restart address (000002), and pressing the RESET and START
operating switches., This action will place the system in a state of suspended animation
until the user strikes the ESC key on the teletypewriter, All other teletypewriter keys
will give no response until the ESC key is hit, When struck it will cause the system to
do a carriagereturn on the teletypewriter and type the message "*READY",

Restarting BASIC does notdestroy the program or data that the user had entered
previously. To accomplish this the user must issue the keyboard command "NEW",
which causes the user's program area to be cleared in preparation for a new program.
The keyboard command NEW, always typed without a preceding line number, can be
given at any point, and is not necessarily connected with restarting the system. Thus;,
if during the entry and editing of a program, or following the execution of a program, 2

NEW command was given, it would also clear the user's program area.

Entering and Editing a Program

The BASIC system is ready to accept program statements from the teletypewriter
_ at any point except during execution of a program. Even during execution, it is possible
to halt a program by hitting the ESC key, and then to enter additional statements or
alterations to statements and to re-enter or re-start the interrupted program. Each
line of a program is entered by typing a statement number followed by the statement.
When statements are not preceded by a statement number, the BASIC system will
attempt to execute the statement in keyboard mode if that is possible, and if it is not,
the system will return an error message (usually error 12). Statement or line numbers
must be integers, and they are limited to a maximum of four digits. Lines are termi-
nated by typing a carriage-return, and spaces are permitted at any point on a line,
including before the line number. Spaces have no significance in BASIC, except in
messages enclosed in quotation marks which are to be printed out,

To correct errors made while typing a statement, two keyboard commands are
available: "control A" and "control X'. The user can delete (rub out) the preceding
character in a line by pressing down the CTRL and the A keys ("control A") which will
print on a teletypewriter as a backwards arrow e, He can then type in the correct
character. Pressing "control A' a number of imes will erase from the current line the
characters in that number of preceding spaces. To delete all of the present line, the
user should press the CTRL key and the X key ("control X") which will printas a back-
wards slash ’N, and automatically cause a carriage-return and 2 line ~feed on a tele-
typewriter,

If, after having entered a program, the user wishes a listing of his program, he
can obtain one simply by typing the keyboard command "LIST" followed by a carriage-
return. The BASIC system will then produce a listing of the program as it currently

stands in line number sequence,

The command LIST has two forms:
LIST List entire program,

nnnnLIST List entire program starting
at statement number nnnn,

If the statement number cannot be found, the message

ERR 13
will be typed.
In cither form, the listing may be stopped at any time with the use of the ESC key. it
the user wishes a paper tape copy of his program he may cbtain one by turning on the
teletypewriter punch unit just before he types the carriage-return at the end of his LIST
command. The tape produced may then be reloaded at a later time by mountint it on the
teletypewriter reader and moving the control switch to START (See Appendix A). After
reviewing his listed program, the user may desire to alter some line ox lines. This can
be done by typing the line number of the statement to be changed followed by the new or
revised statement, To eliminate entirely a statement in his program, the user need
only type the line number of the statement followed by a carriage-return., Additional
lines may be inserted in a program by typing statements with intermediate line numbers,
ie, if a statement is to be inserted between lines 1% and 11¢ the user simply types a

line number of say 145 followed by the statement he wishes to insert.

Keyboard Mede

Data General Corporation’s. BASIC system will accept certain statements
not preceded by line numbers and execute them 1mmed1ateiy. These keyboard commands
are: RUN, NEW, LIST, PRINT, GOTO, DIM, LET, REM, RESTORE, and the ESC key |
on the teletypewriter, They are useful in testing and debugging programs, and they also

allow the system to be used as a simple desk calculator,

After typing a complete program, the user causes sequential execution of his pro-
gram to begin starting at the lowest statement number by typing the keyboard command
"RUN" followed by a carriage-return. If the program is correct, it will be run and will
cause whatever output is specified in the program to be printed on the teletypewriter.
Errors detected after RUN are structural (incorrect nesting of loops, GOSUBs without
matching returns) or arithmetic errors. Grammatical errors or errors of form are

not possible at this point, because they are previously detected during the typing of each

-4~

statement. If it is obvious that the program running is giving the wrong answers, the
user can hit the ESC key on the teletypewriter which will cause computation to cease and
the BASIC system to type "STOP @ XXXX'" where XXXX is the line number of the state-
ment about to be executed when execution was interrupted. The user can then inquire
what the values of program variables are by means of the PRINT statement, For
example, if A is a variable in the user's program, he can find its value at the time of
interruption by simply typing "PRINT A" and the BASIC system will reply with the
values. When using PRINT (or ;) in the keyboard or desk calculator mode, only the
expression up to the first comma, semi-colon, or carriage-return will be printed. For
example,
; 1,2(CR)

will respond with 1. He may also change the value of a variable or variables before
returning to program control by means of the LET command. If he wishes to change the
value of A to 15 the user may give the keyboard command "LET A = 15".

In much the same way it is possible following such an interruption to redimension
a previously defined array by entering a DIM statement with the same array name, This
redimensioning does not in any way effect the amount of storage or the contents of stor-
age previously allocated by a DIM program statement. It neither expands nor contracts
the storage available, but in the two-dimensional case it changes the subscript address
which refers to a given entry. For example, if the user had defined 2 3 x 4 array A in
his program by means of a DIM A(2; 3) program statement, and, after interrupting
execution, gave the keyboard command DIM A(3, 2) to redimension A as a 4 x 3 array,

the array would be transformed as illustrated:

0 1 2 3 0 1 2
011! 2| 3] 4 gl1y 2| 3
115/ 6[{7{8 |—~ 114 5] 6
2191101112 217 81 9

3110|1112

Thus, entry A(1,0) which contained a 5 must subsequently be referenced as A(l, 1)
entry A(0, 3) must be referenced as A(1, 0); entry A(2, 2) must be referenced as A3, 1)
etc, It should be noted that redimensioning is confined to transforming an array into

one with the same or fewer numbers of entries, and that subscript references outside

“Ha

the newly defined range (s) of the subscript (s) will cause errors. For example, re-
dimensioning a 3 x 5 array as a 2 x 8 array is not permitted {(error 28), and in the above
example (transforming a 3 x 4 to a 4 x 3) it would cause an error to use a 3 as a column
subscript once the redimensioning had taken place (A(2; 3) would generate error 31).

During an interrupt, a user may also restore the data block pointer to the top of
the data block by issuing the keyboard command "RESTORE". He may insert a line
of comments at any point in keyboard mode simply by preceding the comments with
"REM". I a line number is typed, the comments following REM will be stored as a pro-
gram statement, but as a keyboard command the comments will not be retained.

To resume execution of 2 prograﬁz following a programmed STOP or keyboard
interruption, the user must type "GOTO XXXX" where XXXX is the line number of the
statement at which the program should be re-entered. If the user types "RUN" all
variables and arrays in the program will be re-initialized to zero, a RESTORE will be
executed on the data block, and the program will be started again from the lowest state-

ment number,

Ground Rules on Numbers, Variables, Arrays, and Expressions
Numbers handled by Data General Corporation’s singleuser BASIC are

constrained as follows:

Input - 7 significant digits
Cutput ~ 6 gignificant digits
Internal - 23 significant bits
Range - Positive Powers:

s -2 M) 2 170141 x 0%
Negative Powers:
+1/2 (2"127)’;:’: 2.0x 10
Variable names in BA SIC must consist of a single letter or a single letter fol -
lowed by a single digit. Some acceptable variable names would by: A, A7,Q,Q3; etc.

Variable names such as 1X, SR, and Y23 would be regarded as errors.

39

In addition to ordinary variables BASIC allows the use of array variables to
designate elements in an array, Arrays may be of one or two dimensions and array
names must consist of a single letter. Array names and simple variable names must
be distinct, the single letter used to denote an array name may not be used as a simple
variable name. It is most efficient to declare an array by means of a dimension (DIM)

-6 -

statement in a program, but this is not necessary if the subscript (s) will not exceed
the range of 0 to 10. If no DIM statement for an array is given in a program the BASIC
system will, upon encountering a reference to the array in some statement, automatical -
1y allocate storage for 11 entries (1 x 11) if the array reference showed only a single
dimension, or for 121 entries (11 x 11) if the array reference showed two dimensions.
In light of this it behooves the user to conserve program storage space by declaring
small arrays with a DIM statement, particularly if he is working in a 4K environment.
If the user requires arrays larger than 1 x 11 or 11 x 11 he must declare them with 2
DIM statement, Dimensions are limited to the range 0 < dimension < 255. Anarray
may not have nore than 1024 entries.

Expressioms in BASIC can be constructed using simple variables, arrays, and

functions linked together by parentheses and the following five arithmetic operators:

SYMBOL EXAMPLE MEANING
+ XY Addition (add X to Y}
X-Y Subtraction (subtract Y from X)
* XY Multiplication (multiply Y by X)
/ X/Y Division (divide X by Y)
§ X43.2 Raise to the power (find XS.Z}

(Single User BASIC computes A%B by means of the identity AYB EXP(B*LOG(AY)).
This may result in some slight arithmetic exrors in the sixth decimal position of the
result. In addition, an arithmetic error (ERR 16) will result if A is negative, To raise
variables and constants to integer exponents, multiplication should be used rather than
exponentiation if this slight azithmetic exrror is objectionable.)

Parentheses cre used to enclose subexpressions which are to be treated as entities
within the larger expression. The computer evaluates an expression beginning with the
lowest subexpressiors and moves upwards uniil the whole is evaluated. Within each sub-
expression arithmetic operations are performed in the usual precedence adopted for
computer languages: first exponentiations, then multiplications and/or divisions, and
lastly additions and/or subtractions. In the absence of parentheses in an expression in-

volving operations of the same priority, the operations are performed from left to right.

SUMMARY OF BASIC COMMANDS

LET
This statement is used to instruct the BASIC system to perform a computation

and assign the value obtained to a variable. Each LET statement is of the form:
LET @ariable) = bxpression). The statement can be executed as a program statement,
or, when not preceded by a line number, it can be executed immediately as a keyboard
command, For example,

100 LET X = X*X 4+ X+ 3

255 LET Y =Z - 24+ X#3.32

LETX=2+5%*A

READ, DATA, and RESTCRE
The READ statement is used to retrieve values stored in DATA statements and to

assign these values to the variables specified. Neither the READ statement nor the
DATA statement can be used without the other. A READ statement causes the variables
listed in it to be assigned, in order, the next available numbers from the whole body of
DATA statements. It should be mentioned here that before running a program, the
BASIC systern assembles all the DATA statements, in the order which they appear
in the program (line number sequence), into a single large data block. Thus, whenever
a READ statement is encountered during execution, the BA SIC system removes the
next available unused entry or entries from the data block and assigns these values to
the variable or variables specified in the READ statement. Normally, READ statements
are placed in the program at those points where the data is to be manipulated, but the
placement of DATA statements is arbitrary so long as they are in the correct order and
the programmer keeps in mind that the data will be collected into a single block. For
this reason, it is a common practice to collect all data statements and place them to-
gether at the beginning or end of 2 program. It should be remembered that only numbers
are permitted in DATA statements and that formulas such as SQR(3), 17 3, 16*7, and
15/9 will be rejected as errors. Also, READ and DATA statements are only acceptable
to the system as program statements and may not be executed as keyboard commands.

If it is necessary to use data stored by DATA statements more than once in a
program, the user may reset the data block pointer to the first number in the data

block by means of the RESTORE statement. Thus, whenever a RESTORE statement is
- 8 -

encountered in a program, a subsequent READ statement will hegiﬁ reading from the top |
of the block created by the DATA statements. If the data which the programmer wishes
to reuse will not be stored at the top of the data block, he must take care to insert the
correct number of dummy READ statements to move the pointer down the block to the
data he desires. The RESTORE statement may also be used as a keyboard command.

INPUT

The INPUT statement is used to permit entry of data from the teletypewriter dur-
ing the running of 2 program. [t serves the same function as a READ statement, but it
does not require a DATA statement from which to draw numbers. Further, data entered
with an INPUT statement is not saved within the program. The statement is acceptable
only within a program and may not be used as a keyboard command.

When an INPUT statement is encountered during execution, the BASIC system
types a question mark and waits for the user to enter the value for the argument, The
user responds with a number terminated by a carriage-return. If more than one argu-
ment is specified in the INPUT statement the system will assign to the first argument
the first value typed in. It will respond with another question mark., The user should
then type the value to be assigned to the second argument, and if a third argument is
specified, the system will respond with a third question mark, etc., until values for all
the arguments have been entered; at which point the system will automatically continue
execution of the program. Each value must, of course, be terminated by a carriage-
return as it is typed. If the user makes an error in typing a number (he types a comma
instead of a decimal point, for example) the computer will return a backwards slash
"N\!' followed by another question mark, and he must enter the value again, Frequent-
ly, INPUTs are preceded by PRINT statement containing 2 message to inform the user
what the question mark signifies. For example,

100 PRINT " THE VALUES OF A, B, AND C ARE™;
110 INPUT A;B,C

and during execution the computer types:
THE VALUES OF A, B, AND C ARE?
Note that the semicolon at the end of the PRINT statement causes the computer

to type the question mark at the end of the message instead of on the next line.

PRINT and TAB
The PRINT statement may be used either as a program statement or as a keyboard

command to cause printing operations on the Teletype. (The special character semi-
colon (;) may be used interchangeably with the word PRINT. On listing, it will be con-
verted to PRINT.) As a statement in a program it can be used a) to print results of
computations, b) to print verbatim a message stored in the program, c) to printa
combination of the two, and d) to skip a line, As a keyboard command it can be used
€) to print the value of variables defined in the user's program or functions of these
variables, and f) it can be used to print the results of computations on numbers in desk

calculator fashion, Some examples of how the PRINT statement may be used in a pro-

gram are:
129 PRINT "X VALUE", "SINE", " COSINE" ®)
209 PRINT X, SIN (X), COS (X) (2)
390 PRINT "THE SQUARE ROOT OF"; X; "IS"; SQR (X) (c)
App PRINT (d)

Formatdng of output from a PRINT statement is automatically performed by the
system unless the user specifies another format for his output. Whenever the arguments
of the FRINT statement are separated by cominas the BASIC system employs automatic
formatting under which the teletypewriter line is divided into five zones starting at
positions @, 15, 3@, 45 and 6f. (If the comma has been initialized to represent 14
spaces, the five zones would start at positions 55}14? 28, 42, 56.) Each comma in the
PRINT statement causes the system to move to the next zone before typing the value of
the next variable, or, if the fifth zone has been filled, to move to the first zone of the
next line. The end of a PRINT statement signals a new line and causes a carriage-
return/line-feed on the teletype unless this action is suppressed by placing a comma (or
semicolon) at the end of the PRINT statement.

The user may override automatic formatting to specify compact formatting or
particular line formats by means of the simicolon and the TAB function. Compact
formatting, or elimination of spacing between the printing zones of the arguments being
printed, is caused by the use of the simicolon to separate the variables in the PRINT
statement. For example, the statement

198 PRINT X, Y, Z
would cause the values of the variables X, Y and Z to be printed under automatic

-10-

formatting on a single teletypewriter line beginning at print positions @, 15, and 37
respectively; whereas the statement -

1¢3 PRINT X:Y:Z
would cause the values of the three variables to be printed on a single line beginning at
print position §§ with no spacing between each of the argument’s print zones. The size
and spacing within each of the variable's print zones depends on the value and type of the
number being printed as described below. The caret symbol, A, represents a space
typed on the teletypewriter. If the absolute value of the variable is in the range 10"
< Variable < 1{}6 or if the absolute value can be represented exactly as a six-digit
decimal fraction, then fixed format is used, Non-significant leading and trailing
zeros are suppressed. The decimal point is omitted from integers.
examples:

-.001
n 425,321 A
p -EBFBTLA

Floating format is used in all other cases and has the form & d.dddddﬁ-;ee where each
d is a decimal digit and ee is a one or two digit exponent of ten. Numbers are preceded
by a minus sign or a space and are followed by a space.

TAB cl auses or functions, each with an argument of its own, may be inserted in
PRINT statements to cause the Teletype to move to specific positions cn the line before
printing the variables. The argument of the TAB function may be either an integer or
an expression and is evaluated modulo 70 or 75 depending upon whether the space has
been initialized to represent 14 or 15 spaces respectively. Ifitis the latter, the value
of the expression will be computed and its integer part taken. If the comma has been
initialized to represent 15 spaces, gﬁeﬁi the value of the argument is greater than 71 or
less than 75 the teletype will print at the end of the current line. There are only 72
print positions on a teletypewriter, numbered § through 71. Commas following TAB
clauses have no effect on positioning, but commas following arguments will cause auto-
matic formétﬁng unless the next argument is preceded by a TAB function.

If the user, having interrupted a program's execution by striking the ESC key,
wishes to know the current value of the program variable X, he may employ the PRINT
statement as a keyboard command. If he types

PRINT X {e)
without a preceding line number, he would cause the current value of this variable to be
printed out just following the keyboard command. A user who at any time wishes to

perform a quick calculation may do so using the PRINT statement or a combination of the
..1 1 -

LET and PRINT statements in keyboard mode.

For example,

PRINT SQR (5*5+12%12)
or

LET Q=(5%5+12*12)
PRINT SQR (Q) £)

2
will cause the system to return the square root of (5 + 122) on the same line as the
PRINT commands,
GO TO

The GOTO statement is used to direct the flow of execution in a program and may

he employed as a keyboard command. When a GOTO statement is encountered in a pro-
gram it causes the system to continue execution from the line number specified. It is
possible to transfer control to a non-executable statement {a DATA statement, for ex-
ample) in which case control passes to the next sequential executable statement, For
example,

5% DATA 2.0,3.1416,7.8,4.1
68 LET X1=SQR(B*B-4*A*C)

2

207 GO TO 50
IF-THEN (IF -GOTO)

The IF-THEN statement is used to cause branching to another point in a program

when a condition is fulfilled. For this reason it is also known as a conditional GOTO
statement and is typed by the system as IF-GCTO when the keyboard command LIST is
given. Both IF-THEN and IF-GOTO are perfectly acceptable variations of the statement
for input to the system, Most commonly, the IF-THEN statement will have the form:

IF [expression | [relational operator 1 [expression 1 THEN
[line mumber] Thus, a statement to cause branching when the variable A was not
equal to 2 would be

199 IF A <>2 THEN 5§

where the concatenated symbols ""<>'" mean "is not equal to".

In a mathematically more general sense, the IF-THEN statement would have the
form: |

IF [eapression] THEN [line mumber |

where the expression is evaluated and the result treated as true when non-zero, or

-

ok

false when equal to zerc. Using this form the above example would become
139 IF A - 2 GOTO 5%
This would cause the system to take its next instruction from line number 5(so long as
A does not equal 2. If A = 2 control would pass to the next sequential instruction follow -
ing line 19@.
The first form is more readily readable and is thus more often used. The following

six standard relational operators are permitted:

SYMBOL EXAMPLE MEANING
= X=Y Is equal to (X is equal to Y)
< X <Y Is less than (X is less than Y)
<= X<=Y Is less than or equal to .(X is less
than or equal to Y)
> X>Y Is greater than .(X is greater than Y)
>= X>=Y Is greater than or equal to (X is

greater than or equal to Y)
<> X<>Y Is not equal to .(X is not equal to Y)

The IF-THEN statement may not be used as a keyboard command,

FOR, NEXT, and STEP
The FOR and NEXT statements and the STEP clause are used in setting up and

operating a loop in the user's program. They must always appear together: the FOR
statement, with or without a STEP specified, at the entrance to the lcop; and the NEXT
statement at the exit, peinting back to the entrance.
Every FOR statement is of the form

FOR [variable] = | expression | TO [expression]| STEP [ewpression |
where the variable may be any nonsubscripted variable. Most often, the expressions
will be integers with the STEP clause omitted in which case the system assumes a step
size of 4+1. Note that when specified, the step-size may be an expression which resolves
to either a positive or negative number, Note too that the FOR and NEXT statements are

not acceptable as keyboard commands.

GOSUB and RETURN
"The GOSUB and RETURN statements are used to transfer control to, and return

from, subroutines in the user's program. The subroutine is entered by means of a
GOSUB statement where the argument is the line number of the first statement in the sub-

routine, At the logical end of the subroutine there should be a RETURN statement
-1 3..

(which has no argument) directing the computer to return control to the statement fol-
lowing the GOSUB that called the subroutine. GOSUBs may be "nested, " that is, one
subroutine may call another, but it is necessary that each subroutine be exited by a
RETURN statement when it completes its work. This is because actual return addres -
ses are stored in a push-down list as each GOSUB is executed and must be picked off
by RETURN statements in the reverse sequence. If the user exits a subroutine by
means of a2 GOTO instead of a RETURN it is extremely likely that he will foul the
correct passage of control between levels of subroutines. This does not mean that it
is impossible to use several RETURN statements in a given subroutine if it is to be
exited at several different points, but that the user should keep in mind how the system
works. GOSUBS may not be used as keyboard commands.

DIM
The DIM statement is used to inform the system to allocate a specific amount of

storage for a one or two-dimensional array with a given name. Array names must
consist of a single letter. One-dimensional arrays may have a maximum of 236
entries { ,DIM A (255) since there will be a zeroth entry) and two -dimensional ar-
rays may have a maximum of 1024 entries (, DIM B (31, 31) or DIM C (15, 63) since
there will be both a row §§ and a column @, For example, the statements

14 DIM X (17)

20 DIM Y (14,9)
would cause the BASIC system to allocate storage for a one -dimensional array, X, with

18 entries, and for a two-dimensional array, Y, with 15§ entries.

Functicns and DEF

A) Standard Functions

Data General Corporation's single user BASIC allows the use in expressions of the
five arithmetic operations {addition, subtraction, multiplication, division, exponentia -
tion, 4+, -» %, /, 4)and the eleven functions normally defined for BASIC. The arguments

of these functions may themselves be expressions. The eleven functions are:

-14 -

Function Meaning

N
SIN (X) - Find the sine of X :3 where X is interpreted
COS (X) Find the cosine of X . as an angle measured
TAN (X) Find the Tangent of X /% in radians

ATN (X) Find the Arctangent of X (result expressed in radians)
EXP (X) Find &* ‘

LOG (X) Find the natural logarithm of X (1nX)

SQR (30 Find the square root of X (vX)

ABS (X) - Find the absolute value of X (‘ X))

SGN (X) Find the sign of X

INT (X) Find the largest integer < X

RND (X) Generate a random number between @ and 1

Most of these are well known functions and need no explanation, but the following few
comments should be noted.

The arguments of the functions SIN, COS, TAN, ATN and ABS are confined to the
range of acceptable real numbers (2 x 1{)“39 < }x{f_ 1.7x 1(}38).

The LOG and SQR functions require their arguments to be positive.
A negative or zero argument in the LOG function will cause the system to respond
with the largest possible negative number (-1.70141 E+38) plus an error message
(error 16). A negative argument in the SQR function will cause the system to respond
with the square root of the same positive number plus an error message (€rror 16).

The argument of the EXP function is confined to those values which will generate
the largest and smallest acceptable real numbers, g e88”5 1.7x 10 8 and hence
arguments greater than 88 will cause the system to return 1.70141E438 as the answer
along with error message 16.

The SGN function generates as its result a +1 if its argument is a positive number,
a § if its argument is a zero, and a -1 if its argument is a negative number. Thus,
SGN (.452) = 1, SGN (f.%%) = §, and SGN (-24.8) = -1.

The INT function yields as its result the largest integer less than or equal to (not
greater than) its argument, where the argument is limited to a six digit number with
absolute value less than 231 or 2,147,483, 648. Arguments of larger absolute value
will be reduced to + 2,14748E+9, The INT function is frequently used in rounding
operations: INT (¥+.5) will round X to its nearest integer, whereas INT (10%4+.,5)/10
will round X to one decimal place, or, more generally, INT (1ED*X+.5)/1ED will

round X to D decimal places. -15-

The RND function is used to generate a random number between # and 1. Although
- the form of the function réquires ar. argument, it has no significance, and any number,
or previously defined variable, may be substituted as the argument.

B) DEF

The DEF Statement is used to define as functions those expressions which a
programmer uses several times in the course of his program, and which he wishes
to abbreviate after having onece wristten them. The name of each defined function must
consist of three letters, the first two of which are "FN". Hence, up to 26 funetions
may be defined, eg, FNA, FNB, . . . , FNZ. For example, 2 function equivalent
to X2+ €3X+2 could be defined by the line

50 DEF FNT (X) = X*X + EXP (3X+ 2)

Thereafter in his program the user would call for various values of the function
simply by using FNT (2.4), FNT (-3.1), FNT (A), etc, A DEF statement may occur
anywhere in a program, and the expression to the right of the equal sign may be any
formula which can be fitted on a sirgle line, It may include any combination of other
fumctions, including ones defined by other DEF statements, and it can involve other
variables besides the one denoting the argument of the function. Functions are not

actually defined until the DEF Statcment has been executed.

STOP.

The STOP statement is used to cause a halt in the execution of the user's program
at any point, When a STOP is encountered, the BASIC system will cease execution of
the user's program, type the message "STOP @ XXXX", where XXXX is the line num-
ber of the STOP statement, and wait for the user to type in additional program state-

ments or alterations to statements, or, to type in a keyboard command.

REM

The REM statement is used to insert explanatory remarks in 2 program.
Everything following the REM is stored exactly as typed and is reproduced when
a listing is requested by 2 LIST statement. The BASIC system completely ignores
the whole statement during execution. For example,

1¢¢ REM THIS IS A REMARK STATEMENT !

-16-

END
The END statement is used to signal the end of execution of a program. Every
program must have an END statement and it is often assigned the highest line number
in the program. Its form is:
9999 END
After an END statement has been executed the BASIC system will inform the user that
it has completed processing of the program by typing the message "*READY".

APPENDIX A
Punching a Tape of a User's Program

To punch a BASIC program tape with blank leader and trailer, follow this
procedure:

1. Turn the power switch on the front of the teletypewriter to the LOCAL position.
Press the ON button on top of the teletype punch unit, Then press the HERE IS*
key to punch blank tape. When enough blank tape has been produced press the OFF
button on top of the punch unit and turn the power switch back to the LINE position.

2. Type the Keyboard command LIST, but do not press the RETURN key yet.
Press the ON button on top of the teletype punch unit and then press the RETURN
key, After waiting until the punching and listing is complete press the OFF button
on the teletype punch unit,

3. Repeat step 1 to punch a length of blank trailer on the tape.

4, Remove the tape by pulling straight up. This produces arrows on the ends of the
tape to indicate the direction in which the tape should be read through the reader,
It is usually wise to write the name of the program on the tape for easy identification

at a later dme,

* On some teletypewriters the HERE IS key may not punch blank tape.
In this case the user should hold down CTRL, SHIT'T, REPT, and P keys
simultaneously to punch blank tape, The REPT and P keys should be released first,

A2~
Loading a Tape of a User's Program

To load a BASIC program tape, follow this procedure:

1. Set the switch on the teletypewriter's paper tape reader to the STCOP position.
Release the plastic tape guide on the tape reader and mount the beginning end
of the tape in the reader with the arrow at the end of the tape pointing forward
and the punched portion hanging down behind. Be sure the sprocket holes in the
tape leader are fitted on the sprocket wheel.

2. Close the plastic tape guide and move the switch on the reader to the START
position. Wait until the entire tape has been read and listed, and then move
the reader switch to the FREE position, and pull out the remaining tape.

Eigﬁg: Before loading a tape of a BASIC program it is usual to give the keyboard
command "NEW" which clears the user's space of all statements. Ifa NEW
command is not given, the program will still be loaded, but any statements
previously stored which bear the same line numbers as statements in the
program being loaded will be replaced by the statements from the tape.
Statements with line numbers not used in the program being loaded will not
be affected. This feature is useful in loading subroutines or portions of

programs from several pieces of tape.

S

APPENDIX B
Programming Hints

The following suggestions are offered in the interest of making the most

efficient use of user's storage. These hints become important if a2 Storage Over-

flow error occurs while entering or running a program,

}-.

Enter data which changes for each run by means of INPUT statements rather
than by READ and DATA statements. '

Keep remarks (REM statements) to a minimum.

Re-use variables and arrays used earlier in the program if the old value(s) will

no longer be needed,

Dimension all arrays.

Dimensicn arrays as closely as possible to the largest subscripts that will be used.
Utilize the zeroth column and row of arrays.

Wherever possible utilize one lengthy statement (such as READ, DATA, INPUT,

or PRINT) instead of two or more statements to accomplish the same results,

Define functions (DEF statement) whenever the same expression will be used at

least twice in a program.

1.

APPENDIX C

Short Summary of BASIC Statements

Elementary BASIC

Purpose Example
READ Reads data from data block 5¢ READ X, Y1, M({, 3)
DATA Stores data in data block 50 DATA -1,2.007, 31416E -4, 127829
PRINT Types numbers and labels 5@ PRINT "ANSWER="; X
; Same as PRINT |
LET Computes and assigns value 50 LET X2= X+Y 2
GO TO Transfers control 59 GO TO 175
IF Conditional transfer 5@ IF T(I,J)=25 THEN 175
FOR Sets up and operates a loop 50 FOR N=1f TO 1 STEP -1
NEXT | Closes loop 5 NEXT N
END Final statement in program 5¢ END
Advances BASIC
INPUT Reads data from the Teletype 5§ INPUT X, Y4, Z
DEF Defines a function 5¢ DEF FNG (X) = 2* SIN (X)

GOSUB Transfers to a subroutine 5@ GO SUB 8¢9

RETURN Returns control from subroutine
to statement following GOSUB 5@ RETURN

RESTORE Restores data block pointer to

beginning of data block 5¢ RESTORE
REM Permits comments 5¢ REM BEGINNING OF SUBROUTINE
DIM Declares dimensions of arrays 5§ DIM B (3, 5)
STCP Stops program 5@ STOP
TAB Clause used in PRINT

statement 50 PRINT TAB (2*A+5); "™*"

k2

3.

Notes

Variables

Array Names

Arithmetic
Operators

Relational
Operators

Functions

Single letter or single letter plus single
digit

Single letter

"'*“9"9*;/3

<, L=,z Py D>, <>

SQR, SIN, COS, TAN, ATN, LOG, EXP, ABS;
SGN, INT, RND

6o
01
02

G5

07
08
0s
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25

28
29
30
31
32
33

35

APPENDIX D

Single-User BASIC Error Messages

Format Error

Iliegal Character

Syntax Error

System Error

Ilegal Statement Number

Too Many Variable Names

Spelling Error

Spelling Error

No Such Word

Incorrect Subscript Closure

Incorrect Parenthesis Closure

Not A Keyboard Command

No Such Line Number

Storage Overflow (While Inputting Program)
Read Statement Is Out Of Data
Arithmetic Overflow (MNumber Too Large)
Too Many Nested GOSUBs

Too Many RETURNs

Too Many Nested FORs

FOR Without NEXT

NEXT Without FOR

Out Of Storage (While Assigning Variabie Storage)
Array Too Large

Attempt To Dimension Simple Variable
Variable Name Is Not Dimensionable
Redimensioned Arxray Is Larger Than Previously Defined
Expression Is Too Complex

Iilegal Format In Defined Function
Subscript Exceeds Dimension

Undefined User Function

Too Many Nested Functions

Negative Subscript

Function Not Yet Implemented

	Intro
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	Appendix A
	Appendix A2
	Appendix B
	Appendix C
	Appendix C2
	Appendix D

