

VMS Compound Document
Architecture Manual

Order Number: AA-MG30A-TE

December 1988

This manual describes the DIGITAL Compound Document Architecture
and the tools that support it.

Revision/Update Information: This is a new manual.
Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’'s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASSBUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUl
DECwindows UNIBUS

DIGITAL VAX

LNO3 VAXcluster dlilgli[t]a] I8

PostScript is a registered trademark of Adobe Systems, Inc.

ZK4737

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LNO3 laser
printer and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xxiii

CHAPTER 1 INTRODUCTION 1-1
1.1 COMPOUND DOCUMENTS 1-1
1.2 OVERVIEW OF THE COMPOUND DOCUMENT ARCHITECTURE 1-2
1.2.1 The DIGITAL Document Interchange Format 1-3
1.2.2 The CDA Toolkit 1-3
1.2.3 The CDA Converter Architecture 1-3
1.3 DOCUMENT PROCESSING CONCEPTS 1-4
1.3.1 Document Structure 1-4
1.3.2 Document Layout 14
1.3.3 Logical Structure and Layout 1-6
1.34 Structured and Unstructured Markup Systems 1-6
1.3.5 Interactive and Batch Processing 1-7
14 SEPARATION OF LAYOUT FROM CONTENT 1-7
1.4.1 Replacement of Layout 1-7

CHAPTER 2 CDA CONVERTER ARCHITECTURE 2-1
2.1 CDA CONVERTER 2-1
211 Components of a Converter 2-2
21.2 DCL CONVERT/DOCUMENT Command 2-3
2.1.3 CONVERT Routine 24
22 DDIF VIEWER 2-7
2.2.1 DCL VIEW Command 2-7
23 INPUT FORMATS 2-9
2.3.1 DDIF Front End 2-9
2.3.1.1 Data Mapping « 2-9

2.3.1.2 Data Loss « 2-9

Contents

2.3.1.3 External File References » 2-9

2.3.14 Document Syntax Errors « 2-9

23.2 Text Front End 2-10

2.3.2.1 Data Mapping « 2-10

2.3.2.2 Data Loss « 2-10

2.3.2.3 External File References « 2-10

2.3.24 Document Syntax Errors < 2-10

24 OUTPUT FORMATS 2-10

2.4.1 DDIF Back End 2-10

2.4.1.1 Data Mapping « 2-11

2.4.1.2 Data Loss * 2-11

2.4.2 Text Back End 2-11

2.4.2.1 Data Mapping + 2-11

2422 Data Loss « 2-11

2423 Processing Options + 2-11

243 PostScript Back End 2-11

2.4.3.1 Data Mapping « 2-11

2432 Data Loss * 2-12

2.4.3.3 Processing Options « 2—12

2.434 Paper Size Processing Option « 2-12

2.4.35 Paper Height Processing Option 2-13

2.4.3.6 Paper Width Processing Option « 2-13

2.4.3.7 Top Margin Processing Option « 2-13

2.4.3.8 Bottom Margin Processing Option « 2-13

2.4.3.9 Left Margin Processing Option + 2-13

2.4.3.10 Right Margin Processing Option » 2—13

2.4.3.11 Paper Orientation Processing Option « 2-14

2.4.3.12 Eight Bit Output Processing Option « 2-14

2.4.3.13 Output Buffer Size Processing Option « 2—14

2.4.3.14 Soft Directives Processing Option « 2-14

2.4.3.15 Word Wrap Processing Option » 2-14

2.4.3.16 Page Wrap Processing Option « 2-15

2.4.3.17 Layout Processing Option * 2-15

244 Analysis Back End 2-15
CHAPTER 3 OVERVIEW OF DDIF 3-1

3.1 DOCUMENT CONTENT 3-1

3.1.1 Document Hierarchy 3-2

3.1.2 Document Root 3-3

313 Document Descriptor 3-4

3.1.4 Document Header 3-4

vi

Contents

3.15 Root Segment 3-4

3.1.5.1 Text Content * 3-5

3.1.5.2 Graphics Content « 3-5

3.1.53 Image Content « 3-5

3.1.5.4 Computed Content « 3-5

3.1.55 Restricted Content « 3-6

3.1.5.6 Private Data « 3-6

3.16 Relationships in Revisable Documents 3-6

3.1.6.1 Attribute Inheritance ¢ 3-8

3.1.6.2 Generic Types * 3-8

3.1.6.3 Generic Content » 3-8

3.1.64 References to Generic Types « 3-9

3.1.6.5 References to Generic Content + 3-9

3.1.7 Example of Document Content 3-9

3.2 DOCUMENT LAYOUT 3-14

3.21 Page Description 3-14

3.2.2 Page Set 3-14

323 Page Layout 3-15

3.24 Galley 3-15

3.25 Implementation of Layout Separation 3-15

3.2.5.1 Wrap Attributes « 3—16

3.25.2 Layout Attributes * 3-16

3.2.6 Content Streams in Layout 3-16
CHAPTER 4 OVERVIEW OF THE CDA TOOLKIT 4-1

4.1 CDA TOOLKIT ROUTINES TERMINOLOGY 4-1

4.2 FILE MANAGEMENT 4-2

4.3 STREAM MANAGEMENT 4-3

44 ROOT AGGREGATE MANAGEMENT 4-3

4.5 AGGREGATE MANAGEMENT 44

vii

Contents

4.6 ITEM ACCESS 4-5

4.7 DOCUMENT CONVERSION 4-9

4.71 Document Transfer 4-10

4.7.2 Aggregate Transfer 4-10

4.8 CDA CONVERTERS 4-13
CHAPTER 5 WRITING CONVERTER FRONT AND BACK ENDS 5-1

5.1 DOCUMENT CONVERSION 5-1

5.2 FRONT END 5-2

5.2.1 DDIF$READ_format Entry Point 5-4

5.2.2 Get-Aggregate Entry Point 5-6

5.2.3 Get-Position Entry Point 5-7

5.24 Close Entry Point 5-8

5.2.5 Front End Document-Method Conversion 5-8

5.2.5.1 DDIF$READ_format Routine » 5-9

5.2.5.2 Get-Aggregate Routine * 5-10

5.2.5.3 Get-Position Routine « 5-10

5254 Close Routine * 5-10

5.2.6 Front End Aggregate-Method Conversion 5-10

5.2.6.1 Gel-Aggregate Routine + 512

5.2.6.2 Get-Position Routine « 5-12

5.2.6.3 Close Routine * 5-13

5.3 USER-SUPPLIED INPUT PROCEDURES 5-13

54 BACK END ROUTINE 5-14

5.4.1 DDIF$WRITE_format Entry Point 5-14

5.4.2 User-Supplied Output Procedures 5-17

vili

Contents

CHAPTER 6 DDIF STRUCTURES 6-1
6.1 DDIF DOCUMENT STRUCTURE OVERVIEW 6-1
6.2 GENERIC AGGREGATE ITEMS 6-2
6.3 DOCUMENT ROOT AGGREGATE 6-2
6.4 DOCUMENT DESCRIPTOR 6-3
6.5 DOCUMENT HEADER 64
6.6 DOCUMENT CONTENT 6—6
6.6.1 Content Categories 6-8
6.6.2 Segment Tags 6-9
6.6.3 Presentation Attributes of Content 6-9
6.7 TEXT CONTENT 6-9
6.7.1 Latin1 Text Content 6-10
6.7.2 General Text Content 6-10
6.8 DIRECTIVES 6-11
6.8.1 Hard Directive 6-11
6.8.2 Soft Directive 6-11
6.8.3 Directive Values 6-12
6.8.4 Hard Value Directive 6-13
6.8.5 Soft Value Directive 6-14
6.9 BEZIER CURVE CONTENT 6-15
6.10 POLYLINE CONTENT 6-16
6.11 ARC CONTENT 6-18
6.12 FILL AREA SET CONTENT 6—-20

ix

Contents

6.13 IMAGE CONTENT 6-21
6.14 CONTENT REFERENCE AGGREGATE 6-22
6.15 RESTRICTED CONTENT 6-22
6.15.1 External (PDL) Content 6-22
6.15.2 Private Content 6-24
6.16 LAYOUT GALLEY 6-25
6.17 EXTERNAL REFERENCE 6-28
6.18 IMAGE DATA UNIT 6-30
6.19 COMPOSITE PATH 6~-32
6.20 SEGMENT ATTRIBUTES 6-35
6.20.1 General Segment Attributes 6-35
6.20.2 Computed Content Attributes 6-37
6.20.2.1 Copied and Remote Computed Content « 6-38

6.20.2.2 Variable Computed Content « 6-38

6.20.2.3 Cross-Reference Computed Content + 6-38

6.20.2.4 Function Computed Content ¢ 6-38

6.20.3 Structure Attributes 6-39
6.20.4 Language 6-39
6.20.5 Legend 6-40
6.20.6 Measurement 6-40
6.20.7 Alternate Presentation 6-41
6.20.8 Layout 6-41
6.20.8.1 Galley-Based Layout * 6—42

6.20.8.2 Path-Based Layout ¢ 642

6.20.8.3 Position-Relative Layout » 6—45

6.20.8.4 Text Position + 6-46

6.20.9 Font Definitions 6-47
6.20.10 Pattern Definitions 647
6.20.11 Path Definitions 647
6.20.12 Line-Style Definitions 6-47
6.20.13 Content Definitions 6-47
6.20.14 Type Definitions 6-48
6.20.15 Text Attributes 6-48
6.20.15.1 Text Mask Pattern » 648

Contents

6.20.15.2 Text Font « 6-48
6.20.15.3 Text Rendition - 6-49
6.20.15.4 Text Size » 6-50
6.20.15.5 Text Direction « 6-51
6.20.15.6 Text Character Decimal Alignment » 6-51
6.20.15.7 Text Leader Attributes « 6-51
6.20.15.8 Text Kerning « 6-52
6.20.16 Line Attributes 6-52
6.20.17 Marker Attributes 6-55
6.20.18 Galley Attributes 6-55
6.20.19 Image Attributes 6-56
6.20.20 Image Component Space Attributes 6-58
6.20.21 Frame Parameters 6-60
6.20.21.1 Frame Flags « 6-60
6.20.21.2 Frame Bounding Box « 6-61
6.20.21.3 Frame Outline + 6-61
6.20.21.4 Frame Clipping *+ 6-62
6.20.21.5 Frame Position « 6—62

6.20.21.5.1 Fixed Frame Parameters * 663

6.20.21.5.2 Inline Frame Parameters + 6-63

6.20.21.5.3 Galley Frame Parameters * 6-63

6.20.21.5.4 Margin Frame Parameters « 6-64
6.20.21.6 Frame Content Transformation « 6-65
6.20.22 Item Change List 6-65
6.20.23 Segment Attribute ltems and Types 6-66
6.21 CONTENT DEFINITION 6-69
6.22 FONT DEFINITION 6-70
6.23 LINE-STYLE DEFINITION 6-71
6.24 PATH DEFINITION 6-72
6.25 PATTERN DEFINITION 6-73
6.26 SEGMENT BINDING 6-75
6.26.1 Counter Variable Values 6-76
6.26.2 Computed Variable Values 6-77
6.26.3 List Variable Values 6-77
6.26.4 Segment Binding ltems and Types 6-78

xi

Contents

xii

6.27 TYPE DEFINITION 6-78
6.28 COUNTER STYLE 6-79
6.29 OCCURRENCE DEFINITION 6-80
6.30 RECORD DEFINITION 6-81
6.31 IMAGE LOOKUP TABLE ENTRY 6-82
6.32 TRANSFORMATION 6-83
6.33 GENERIC LAYOUT 6-84
6.34 SPECIFIC LAYOUT 6-85
6.35 WRAP ATTRIBUTES 6-86
6.36 LAYOUT ATTRIBUTES 6-88
6.37 GALLEY ATTRIBUTES 6-91
6.38 PAGE DESCRIPTION 6-93
6.39 PAGE LAYOUT 6-94
6.40 PAGE SELECT 6-96
6.41 TAB STOP 6-97

Contents

CDA REFERENCE SECTION
CDA$AGGREGATE_TYPE_TO_OBJECT ID CDA-3
CDA$CLOSE_FILE CDA-5
CDA$CLOSE_STREAM CDA-7
CDASCLOSE_TEXT_FILE CDA-8
CDA$CONVERT CDA-9
CDA$CONVERT_AGGREGATE CDA-26
CDA$CONVERT_DOCUMENT CDA-29
CDA$CONVERT_POSITION CDA-31
CDA$COPY_AGGREGATE CDA-33
CDA$CREATE_AGGREGATE CDA-35
CDASCREATE_FILE CDA-37
CDA$CREATE_ROOT AGGREGATE CDA-42
CDA$CREATE_STREAM CDA-46
CDA$CREATE_TEXT FILE CDA-51
CDA$DELETE_AGGREGATE CDA-54
CDA$DELETE_ROOT_AGGREGATE CDA-56
CDASENTER_SCOPE CDA-57
CDASERASE_ITEM CDA-68
CDASFIND_DEFINITION CDA-70
CDA$FIND_TRANSFORMATION CDA-73
CDA$FLUSH_STREAM CDA-75
CDASGET_AGGREGATE CDA-77
CDA$GET_ARRAY_SIZE CDA-80
CDA$GET_DOCUMENT CDA-82
CDA$GET EXTERNAL_ENCODING CDA-84
CDA$GET_STREAM_POSITION CDA-86
CDASGET_TEXT_POSITION CDA-89
CDASINSERT_AGGREGATE CDA-91
CDA$LEAVE_SCOPE CDA-94
CDAS$LOCATE_ITEM CDA-96
CDASNEXT_AGGREGATE CDA-99
CDASOBJECT_ID_TO_AGGREGATE_TYPE CDA-101
CDA$OPEN_CONVERTER CDA-103
CDAS$OPEN_FILE CDA-106
CDA$OPEN_STREAM CDA-112
CDA$OPEN_TEXT_FILE CDA-116
CDA$PRUNE_AGGREGATE CDA-119
CDA$PRUNE_POSITION CDA-121
CDA$PUT_AGGREGATE CDA-123

CDA$PUT_DOCUMENT CDA-126

Xiii

Contents

CDASREAD_TEXT_FILE CDA-128
CDASREMOVE_AGGREGATE CDA-130
CDA$STORE_ITEM CDA-131
CDASWRITE_TEXT_FILE CDA-137

APPENDIX A VMS SUPPORT FOR CDA IN DECWINDOWS A-1
A1 VMS COMMANDS AND UTILITIES A1
A11 Displaying RMS File Tags A-2
A1.1.1 DIRECTORY/FULL « A-2
A1.1.2 ANALYZE/RMS_FILE « A-2
A1.2 Creating RMS File Tags A-3
A13 Preserving RMS File Tags and DDIF Semantics A-4
A.1.3.1 COPY Command - A-4
A.1.3.2 VMS Mail Utility « A-5
A14 APPEND Command A-5
A2 DDIF SUPPORT IN A HETEROGENEOUS ENVIRONMENT A-6
A21 EXCHANGE/NETWORK Command A-6
A22 Using the COPY Command in a Heterogeneous Environment _ - A-6
A23 VMS Mail Utility in a Heterogeneous Environment A-6
A3 VMS RMS INTERFACE CHANGES A-7
A3.1 Programming Interface for File Tagging A-7
A3.2 Accessing a Tagged File A-10
A.3.2.1 File Accesses That Do Not Sense Tags *+ A-11
A32.2 File Accesses That Sense Tags « A-11
A3.3 Preserving Tags A-13
A4 DISTRIBUTED FILE SYSTEM SUPPORT FOR DDIF TAGGED

FILES A-14
A5 VMS RMS ERRORS A-14
APPENDIX B CDA TOOLKIT EXAMPLE PROGRAM B-1

xiv

Contents

APPENDIX C TEXT FRONT END SOURCE FILE c-1
APPENDIX D DDIF AGGREGATE STRUCTURES D-1
APPENDIX E DDIF SYNTAX DIAGRAMS E-1
E.1 DDIS BUILT-IN DATA TYPES E-1
E.2 BUILT-IN OPERATORS E-3
E.3 DDIS DEFINED TYPES E-4
E.4 DDIF SYNTAX DIAGRAMS E-4
APPENDIX F DDIF FILL PATTERNS F—1
GLOSSARY OF TERMS Glossary-1
INDEX
EXAMPLES
31 DDIF Document Sample 3-3
3-2 DDIF Document Attribute Inheritance 3-10
A1 Tagging a File A-9
A-2 Accessing a Tagged File A-12
B-1 Sample CDA Toolkit Program B-1
B-2 Analysis Output of DDIF File B-33

Contents

FIGURES

xvi

2-1
2-2
3-1
3-2
3-3
4-1
5-1
61
E-1
E-2
E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-10
E-11
E-12
E-13
E-14
E-15
E-16
E-17
E-18
E-19
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-27
E-28

Stages of Document Conversion

Converter Components Diagram

Document Hierarchy
Typical DDIF Document

lllustration of Inheritance Example Document
Document Segment Aggregate

Document Conversion Flowchart

Compound Document Structure

DDIF Document Syntax Diagram

Document Descriptor Syntax Diagram

Document Header Syntax Diagram

Document Root Segment

Segment Primitive Syntax Diagram

Begin-Segment Syntax Diagram

Text Primitive Syntax Diagram

Text Attributes Syntax Diagram

Rendition Code Syntax Diagram
Leader Style Syntax Diagram

Text Layout Syntax Diagram

Text String Layout Syntax Diagram
Formatting Primitive Syntax Diagram

Value Directive Syntax Diagram

Directive Syntax Diagram
Escapement Directive Syntax Diagram

Variable Reset Syntax Diagram

Graphics Primitive Syntax Diagram
Polyline Syntax Diagram

Cubic Bézier Syntax Diagram

Arc Syntax Diagram
Fill Area Set Syntax Diagram

Line Attributes Syntax Diagram

Line Style Number Syntax Diagram

Line End Number Syntax Diagram

Line Join Syntax Diagram

Marker Attributes Syntax Diagram

Marker Number Syntax Diagram

2-1
2-2
3-2

3-13
4-6
5-3
6-1
E-5
E-5
E-5
E-6
E-6
E-6
E-7
E-7
E-7
E-8
E-8
E-9
E-9

E-10

E-10

E-10

E-11

E-11

E-11

E-12

E-12

E-12

E-13

E-13

E~13

E-14

E-14

E-14

Contents

E-29 Image Primitive Syntax Diagram E-15
E-30 Image Coding Attributes Syntax Diagram E-15
E-31 Image Attributes Syntax Diagram E-16
E-32 Image Lookup Table Data Syntax Diagram E-17
E-33 Image Component Space Attributes Syntax Diagram E-17
E-34 Restricted Content Syntax Diagram E-17
E-35 Content Reference Primitive Syntax Diagram E-18
E-36 Content Reference Syntax Diagram E-18
E-37 Bounding Box Syntax Diagram E-18
E-38 Color Syntax Diagram E-18
E-39 Red/Green/Blue Syntax Diagram E-19
E-40 Compute Definition Syntax Diagram E-19
E-41 Cross Reference Syntax Diagram E-19
E-42 Escapement Syntax Diagram E-20
E-43 External Reference Syntax Diagram E-20
E-44 Font Definition Syntax Diagram E-20
E-45 Format Syntax Diagram E-21
E-46 Frame Parameters Syntax Diagram E-21
E-47 Inline Frame Parameters Syntax Diagram E-21
E-48 Galley Frame Parameters Syntax Diagram E-22
E-49 Galley Vertical Position Syntax Diagram E-22
E-50 Margin Frame Parameters Syntax Diagram E-22
E-51 Margin Horizontal Position Syntax Diagram E-23
E-52 Function Link Syntax Diagram E-23
E-53 External Reference Index Syntax Diagram E-23
E-54 Language Index Syntax Diagram E-23
E-55 Content Definition Syntax Diagram E-24
E-56 Label Syntax Diagram E-24
E-57 Label Types Syntax Diagram E-24
E-58 ASCII String Syntax Diagram E-24
E-59 Variable Label Syntax Diagram E-25
E-60 Legend Units Syntax Diagram E-25
E-61 Angle Syntax Diagram E-25
E-62 AngleRef Syntax Diagram E-25
E-63 Measurement Syntax Diagram E-25
E-64 Position Syntax Diagram E-26
E-65 Ratio Syntax Diagram E-26
E-66 Right Angle Syntax Diagram E-26
E-67 Size Syntax Diagram E-26
E-68 X-Coordinate Syntax Diagram E-27

xvii

Contents

xviii

E-69
E-70
E-71
E-72
E-73
E-74
E-75
E-76
E-77
E-78
E-79
E-80
E-81
E-82
E-83
E~-84
E-85
E-86
E-87
E-88
E-89
E-90
E-91
E-92
E-93
E-94
E-95
E-96
E-97
E-98
E-99
E-100
E-101
E-102
E-103
E-104
E-105
E~-106
E-107
E-108

Y-Coordinate Syntax Diagram

Measurement Units Syntax Diagram

Named Value Syntax Diagram
Value Data Syntax Diagram

Named Value List Syntax Diagram

Font Number Syntax Diagram

Marker Number Syntax Diagram

Path Number Syntax Diagram
Pattern Number Syntax Diagram

Path Definition Syntax Diagram

Composite Path Syntax Diagram
Arc Path Syntax Diagram

Cubic Bézier Path Syntax Diagram

Line Definition Syntax Diagram

Polyline Path Syntax Diagram

Pattern Definition Syntax Diagram
Standard Pattern Syntax Diagram

Reference Syntax Diagram

Segment Attributes Syntax Diagram

Segment Type Definition Syntax Diagram

Structure Definition Syntax Diagram
Occurrence Definition Syntax Diagram

Structure Element Syntax Diagram

Tag Syntax Diagram
Category Tag Syntax Diagram

Conformance Tag Syntax Diagram

Named Value Tag Syntax Diagram

Segment Tag Syntax Diagram

Storage System Tag Syntax Diagram
Stream Tag Syntax Diagram

Transformation Syntax Diagram

Variable Binding Syntax Diagram

Counter Definition Syntax Diagram

Layout Object Type Syntax Diagram
Expression Syntax Diagram

Counter Style Syntax Diagram

String Expression Syntax Diagram
Record List Syntax Diagram

Record Definition Syntax Diagram

Generic Layout Syntax Diagram

E-27
E-27
E-27
E-28
E-28
E-28
E-28
E-29
E-29
E-29
E-29
E-30
E~30
E-30
E-31
E-31
E-31
E-31
E-32
E-32
E-33
E-33
E-33
E-33
E-34
E-34
E-34
E-34
E-34
E-35
E-35
E-35
E-36
E-36
E-36
E-37
E-37
E-37
E-38
E-38

Contents

E-109 Page Description Syntax Diagram E-38
E-110 Page Set Syntax Diagram E-39
E-111 Page Layout Syntax Diagram E-39
E-112 Layout Primitive Syntax Diagram E~39
E-113 Layout Galley Syntax Diagram E-40
E-114 Galley Attributes Syntax Diagram E-40
E-115 Specific Layout Syntax Diagram E-40
E-116 Wrap Attributes Syntax Diagram E41
E-117 Layout Attributes Syntax Diagram E-41
E-118 Break Criteria Syntax Diagram E-42
E-119 General Measure Syntax Diagram E-42
E-120 General Size Syntax Diagram E-42
E-121 Tab Stop List Syntax Diagram E-42
E-122 Tab Stop Syntax Diagram E-43
F-1 CDA Fill Patterns F-6
TABLES
1-1 Layout Terminology 1-5
2-1 Converter Format Keywords 24
3-1 Relationships in Revisable Documents 3-6
41 Routines Terminology 4-1
4-2 ltem Data Types 4-6
51 Top-Level Aggregate Types 5-12
6-1 Generic Aggregate ltems 62
6-2 Document Root Aggregate (DDIF$_DDF) 6-2
6-3 Document Descriptor Aggregate (DDIF$_DSC) 6-4
64 Document Header Aggregate (DDIF$_DHD) 6-6
6-5 Document Segment Aggregate (DDIF$_SEG) 6-8
6-6 Latin1 Text Content Aggregate (DDIF$_TXT) 6-10
6-7 General Text Content Aggregate (DDIF$_GTX) 6-10
6-8 Character Set Identifiers 6-10
6-9 Hard Directive Aggregate (DDIF$_HRD) 6-11
6-10 Soft Directive Aggregate (DDIF$_SFT) 6~11
611 Directive Values 6-12
6-12 Hard Value Directive Aggregate (DDIF$_HRV) 6-14
6-13 Soft Value Directive Aggregate (DDIF$_SFV) 6-15
6-14 Bézier Curve Aggregate (DDIF$_BEZ) 6-16
6~-15 Polyline Aggregate (DDIF$_LIN) 6-18
6-16 Arc Content Aggregate (DDIF$_ARC) 6-19

xix

Contents

XX

Fill Area Set Content Aggregate (DDIF$_FAS)
Image Content Aggregate (DDIF$_IMG)

Content Reference Aggregate (DDIF$_CRF)

External Content Aggregate (DDIF$_EXT)

Private Content Aggregate (DDIF$_PVT)
Layout Galley Aggregate (DDIF$_GLY)

Object Identifier Table

External Reference Aggregate (DDIF$_ERF)

Image Data Unit Aggregate (DDIF$_IDU)

Composite Path Aggregate (DDIF$_PTH)

Normal Alignment

Line Style

Segment Attributes Aggregate (DDIF$_SGA)
Content Definition Aggregate (DDIF$_CTD)

Font Definition Aggregate (DDIF$_FTD)

Line-Style Definition Aggregate (DDIF$_LSD)

Path Definition Aggregate (DDIF$_PHD)

Pattern Definition Aggregate (DDIF$_PTD)
Segment Binding Aggregate (DDIF$_SGB)

Type Definition Aggregate (DDIF$_TYD)

Counter Style Aggregate (DDIF$_CTS)

Occurrence Definition Aggregate (DDIF$_OCC)

Record Definition Aggregate (DDIF$_RCD)
RGB Lookup Table Entry Aggregate (DDIF$_RGB)
Transformation Aggregate (DDIF$_TRN)

Generic Layout 1 Aggregate (DDIF$_LG1)
Specific Layout 1 Aggregate (DDIF$_LS1)

Wrap Attributes 1 Aggregate (DDIF$_LW1)

Layout Attributes 1 Aggregate (DDIF$_LL1)

Galley Attributes Aggregate (DDIF$_GLA)

Page Description Aggregate (DDIF$_PGD)
Page Layout Aggregate (DDIF$_PGL)

Page Select Aggregate (DDIF$_PGS)

Tab Stop Aggregate (DDIF$_TBS)

Tag Support ltem Codes

Document Root Aggregate (DDIF$_DDF)
Document Descriptor Aggregate (DDIF$_DSC)
Document Header Aggregate (DDIF$_DHD)

Document Segment Aggregate (DDIF$_SEQG)

Latin1 Text Content Aggregate (DDIF$_TXT)

D-6

D-7

D-8

D-9

D-10
D-11
D-12
D-13
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-26
D-27
D-28
D-29
D-30
D-31
D-32
D-33
D-34
D-35
D-36
D-37
D-38
D-39
D-40
D41
D-42
D-43
D-44
E-1

General Text Content Aggregate (DDIF$_GTX)
Hard Directive Aggregate (DDIF$_HRD)

Soft Directive Aggregate (DDIF$_SFT)
Hard Value Directive Aggregate (DDIF$_HRV)
Soft Value Directive Aggregate (DDIF$_SFV)

Bézier Curve Aggregate (DDIF$_BEZ)

Polyline Aggregate (DDIF$_LIN)

Arc Content Aggregate (DDIF$_ARC)
Fill Area Set Content Aggregate (DDIF$_FAS)
Image Content Aggregate (DDIF$_IMG)

Content Reference Aggregate (DDIF$_CRF)

External Content Aggregate (DDIF$_EXT)

Private Content Aggregate (DDIF$_PVT)
Layout Galley Aggregate (DDIF$_GLY)

External Reference Aggregate (DDIF$_ERF)

Image Data Unit Aggregate (DDIF$_IDU)
Composite Path Aggregate (DDIF$_PTH)

Segment Attributes Aggregate (DDIF$_SGA)
Content Definition Aggregate (DDIF$_CTD)

Font Definition Aggregate (DDIF$_FTD)

Line Style Definition Aggregate (DDIF$_LSD)
Path Definition Aggregate (DDIF$_PHD)

Pattern Definition Aggregate (DDIF$_PTD)

Segment Binding Aggregate (DDIF$_SGB)

Type Definition Aggregate (DDIF$_TYD)

Counter Style Aggregate (DDIF$_CTS)
Occurrence Definition Aggregate (DDIF$_OCC)
Record Definition Aggregate (DDIF$_RCD)

RGB Lookup Table Entry Aggregate (DDIF$_RGB)

Transformation Aggregate (DDIF$_TRN)

Generic Layout 1 Aggregate (DDIF$_LG1)

Specific Layout 1 Aggregate (DDIF$_LS1)

Wrap Attributes 1 Aggregate (DDIF$_LW1)

Layout Attributes 1 Aggregate (DDIF$_LL1)
Galley Attributes Aggregate (DDIF$_GLA)

Page Description Aggregate (DDIF$_PGD)

Page Layout Aggregate (DDIF$_PGL)

Page Select Aggregate (DDIF$_PGS)

Tab Stop Aggregate (DDIF$_TBS)
DDIS Built-In Primitives

Contents

D-2
D-3
D-3
D-3
D-3
D-4
D-4
D4
D-5
D-5
D-5
D-5
D-6
D-6
D-7
D-7
D-7
D-8
D-12
D-12
D-12
D-13
D-13
D-13
D-14
D-14
D-14
D-14
D-15
D-15
D-15
D-15
D-16
D-16
D-17
D-17
D-17
D-18
D-18
E-1

xxi

Contents

xxii

E-2
E-3
E—4
F-1

DDIS Built-In Constructors
DDIS Built-In Operators

DDIS Defined Types
DDIF Fill Patterns

E-3
E-3
E-4
F-1

Preface

This manual is designed to introduce the concepts and tools associated
with the DIGITAL Compound Document Architecture (CDA), including
the DIGITAL Document Interchange Format (DDIF). Using representation
formats such as this, the Compound Document Architecture provides

a method for manipulating files that contain a number of integrated
components.

The tools associated with the Compound Document Architecture include
the CDA Toolkit, the CDA Converter, and the DDIF Viewer. The CDA
Toolkit is a collection of routines that support the creation of CDA
applications. The CDA Converter is used to convert files of a specified
input format to a specified output format. The DDIF Viewer is used to
display DDIF-encoded files on a workstation display or character cell
terminal.

All of the following products support CDA-encoded files. If you only intend
to manipulate DDIF files, and do not have an interest in the particulars
of the file format, you can use any one of these products to manipulate a

CDA-encoded file.

DECpaint PrintScreen CardFiler
GKS PHIGS DDIF Viewer
DECwindows MAIL image Services Library ~ Converters

Intended Audience

This manual is intended for system and application programmers who
want to make use of DIGITAL’s new Compound Document Architecture.
Some knowledge of the tasks and terminology associated with document
typesetting is helpful.

Document Structure

This manual consists of two parts: an introductory section and a
reference section. The first part of this manual provides general user and
application programmer information regarding the Compound Document
Architecture (CDA), the DIGITAL Document Interchange Format (DDIF),
the CDA Converter, and the CDA Toolkit routines. The CDA reference
section describes each of the CDA Toolkit routines individually.

The chapters are summarized as follows:

¢ Chapter 1 provides an overview of the components of the Compound
Document Architecture.

¢ Chapter 2 discusses the use of the CDA Converter, the DDIF Viewer,
and the various supported file-encoding formats.

¢ Chapter 3 provides an overview of the concepts incorporated in the
DIGITAL Document Interchange Format (DDIF) architecture.

xxiii

Preface

* Chapter 4 discusses the CDA Toolkit routines.

¢ Chapter 5 provides suggestions and guidelines that should be followed
when creating CDA Converter front and back ends.

* Chapter 6 describes the structure and encoding of each aggregate
supported by the DDIF architecture and the CDA Toolkit.

Each of the routines contained in the CDA Toolkit is described individually
in the CDA reference section. The routines are documented in alphabetical
order. Each routine description specifies the calling format, the encoding
of the parameters, a detailed description of the function of the routine, and
what condition values the routine can return.

In addition, a glossary and several appendixes are provided. The
glossary defines the terminology associated with the Compound Document
Architecture and the DDIF architecture. The appendixes are as follows:

¢ Appendix A discusses the support provided by VMS for the CDA
Toolkit and the tagging of DDIF-encoded files.

¢ Appendix B contains an example program that uses the CDA Toolkit
to create a DDIF file, and an illustration of the file created by the
example program.

* Appendix C contains the source code for the Text front end to be used
as an example for those wanting to develop their own front or back
ends.

¢ Appendix D contains tables describing the items contained in each
DDIF aggregate and their item encodings.

e Appendix E contains a brief overview of the DIGITAL Data
Interchange Syntax (DDIS) followed by the syntax diagrams for the
various constructs supported by the DDIF architecture.

* Appendix F illustrates the CDA-defined fill patterns.

Associated Documents

The Compound Document Architecture is supported by a variety of
DIGITAL products. Descriptions of the support provided by each product
are contained in that product’s documentation. For example, GKS support
for CDA is described in the GKS documentation set, and so on.

Conventions

xxiv

The following conventions are used in this manual:

mouse The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.
MB1, MB2, MB3 MB1 indicates the left mouse button, MB2 indicates

the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

PB1, PB2, PB3, PB4

SB1, SB2
Ctrl/x

PF1 x

[l

{}

red ink

boldface text

italic text

italic text

UPPERCASE TEXT

Preface

PB1, PB2, PB3, and PB4 indicate buttons on the
puck.

SB1 and SB2 indicate buttons on the stylus.

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

A key name Is shown enclosed to indicate that you
press a key on the keyboard.

in examples, a horizontal ellipsis indicates one of the
following possibilities:

= Additional optional arguments in a statement
have been omitted.

= The preceding item or items can be repeated one
or more times.

« Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

ltalic text represents information that can vary
in system messages (for example, Internal error
number).

ltalic text represents user-written routines (for
example, get-aggregate).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

XXv

Preface

XXvi

UPPERCASE TEXT

numbers

Uppercase letters indicate the name of a CDA
Toolkit routine, the name of a file, the name of a
file protection code, or the abbreviation for a system
privilege.

Hyphens in coding examples indicate that additional

arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radices—binary,
octal, or hexadecimal—are explicitly indicated in the
coding examples.

1 Introduction

Compound documents contain integrated components such as
proportionally spaced text, synthetic graphics, and scanned or natural
images. DIGITAL’s Compound Document Architecture (CDA) is an open
architecture that establishes a framework in which compound documents
can be handled in the same easy and universal way as simple ASCII text.
With CDA, you can write applications that handle compound documents
easily, regardless of the environment in which you or application users are
working. You do not need to be concerned with how a compound document
is created and processed or how users will access the document.

The use of CDA provides numerous benefits. For example:

* CDA provides application independence. This means that applications
other than the creator software can access revisable-form data and
can use devices and operating environments other than the creator
hardware.

* CDA makes application development easier by making the most
of development resources. You can use standard CDA facilities
for multiple functions (including file display and copying), thereby
reducing the amount of code that has to be written.

¢ The use of CDA means that users can exchange documents with
anyone anywhere on a DIGITAL network.

In addition, CDA satisfies the demand for inter-application data exchange
by providing file conversion capabilities, including the presentation

of compound document data to ASCII-oriented utilities like language
compilers (using CDA filters). When an application supports CDA, it
participates in the entire DIGITAL document processing environment,
including live links, electronic mail of revisable compound documents, and
hardware- and system-independent display and printing.

1.1 Compound Documents

The purpose of CDA is to simplify the manipulation of revisable compound
documents so that complex files can be created, stored, and interchanged
among users. To understand this goal, it is first important to understand
the definition of a revisable compound document.

A document can be defined as a collection of data that is intended for
display. A revisable document contains the content of a document, as
well as parameters and directives that are used when creating the final
form of the document. These parameters and directives specify abstract
relationships between the components of the document and are used to
determine the final appearance of the document (for example, line breaks
and page breaks).

Introduction

1.1 Compound Documents

A revisable document does not contain page numbers, section numbers, or
even a table of contents. Instead, it specifies parameters that control the
creation of these elements in the final form of the document. A revisable
document also does not specify the exact layout of the content of the
document. Instead, it contains the basic template for the page layout and
the parameters that control the way the content is arranged in the final
form.

In the final form of a document, all the formatting decisions (such as
hyphenation, line breaks, page breaks, and so on) have been resolved.
Any text elements that are based on calculations, such as page numbers
and section numbers, have been inserted. Also, any externally referenced
document content has been included. A final form document generally does
not make any distinction between document content that a user entered
and document content that was generated by a formatter.

A compound document is a unified collection of data that can be edited,
formatted, or otherwise processed as a document. Compound documents
can contain a number of integrated components, including proportionally
spaced text, synthetic graphics, and scanned images. That is, a compound
document is a document that has the ability to contain not only text but
also other integrated components. Compound documents can also contain
data elements from applications such as spreadsheets.

For example, an ASCII text file is a document that comprises only text. It
cannot contain integrated graphics, unless those graphics are in the form
of “line art,” which is represented and stored as standard text characters.
A compound document, on the other hand, can include graphics that were
generated by a graphics editor or scanned images. A document containing
only text is considered a compound document if the document storage
format has the ability to store integrated components.

A compound document also integrates the structure of a document. For
example, the relationships in a chapter, that a paragraph is part of a
section, and a section is part of a chapter, are integrated into a compound
document that represents a chapter of a manual. This concept of structure
is especially important when you are defining styles or attributes for a
manual.

1.2 Overview of the Compound Document Architecture

The Compound Document Architecture provides a set of tools and utilities
that simplify the treatment of compound document information. These
tools and utilities are as follows:

¢ The DIGITAL Document Interchange Format (DDIF) for the creation,
storage, and interchange of document data

¢ The CDA Toolkit, which is a library of callable routines that enable
you to easily read, write, create, and modify compound documents

¢ The CDA Converter Architecture, which provides a standard CDA
Converter Kernel that works with front and back ends to convert an
input file of any supported format to an output file of any supported
format

1.2.1

1.2.2

1.2.3

Introduction
1.2 Overview of the Compound Document Architecture

¢ Viewers, which are callable services that display formatted output data
on a workstation window or character cell terminal

* Mail Utility support for sending, receiving, and displaying compound
documents

¢ Record Management Services (RMS) support for filtering the ASCII
text from a compound document for compilation, display, and printing

The DIGITAL Document Interchange Format

The DIGITAL Document Interchange Format (DDIF) is the format of
choice for all new compound document application programs. While
maintaining a strong similarity to the Office Document Architecture (ODA)
and other standards, DDIF also extends the capabilities of these existing
standards to reflect the growing needs of document processing.

DDIF represents structured documents that contain revisable text,
graphics, and images. It supports advanced document processing features,
including generic structure, independent or attached style information,
logical and presentation attributes, attribute inheritance, cross-references,
and “live links” (dynamic external references). DDIF is discussed in more
detail in Chapter 3.

The CDA Toolkit

The CDA Toolkit is a collection of routines that enable you to do the
following:

¢ Create your own CDA-conforming application
* Invoke the CDA converter from an application

* Create your own front end (to convert a document of a particular input
format to its CDA in-memory representation)

¢ Create your own back end (to convert the CDA in-memory
representation of a document to a particular output format)

The CDA Toolkit routines support a standard VMS interface and follow
the VMS guidelines for condition handling. For an overview of the CDA
Toolkit routines, see Chapter 4.

The CDA Converter Architecture

The CDA Converter Architecture defines a methodology to simplify the
conversion of compound documents using a common converter kernel and
a series of front and back ends. This methodology is implemented as
follows:

* The conversion process is invoked through the DCL
CONVERT/DOCUMENT command or through a call to the CDA
Toolkit CONVERT routine.

Introduction
1.2 Overview of the Compound Document Architecture

* The converter kernel performs all the “generic” conversion functions
that must be performed for every document conversion. The kernel is
also responsible for invoking the appropriate front and back ends for
the specified input and output file formats.

¢ The front end reads the input file or stream (encoded in any supported
format) and converts it to its CDA in-memory representation. A front
end is responsible for translating a document of a particular input
format to the CDA in-memory representation. There must be a front
end for every supported input format.

¢ The back end converts the CDA in-memory representation of the
document to a particular output format and writes the data to a file or
stream. A back end is responsible for translating the CDA in-memory
representation of a document to a particular output format. There
must be a back end for every supported output format.

The CDA Converter Architecture is discussed in more detail in Chapter 2.

1.3 Document Processing Concepts

The Compound Document Architecture is designed to simplify the
processing of compound documents. The following sections discuss some
of the concepts associated with compound documents and document
processing.

1.3.1 Document Structure

A revisable document is an ordered hierarchy of logical elements. For
example, a chapter contains sections, sections contain paragraphs and
lists, and paragraphs in turn contain the text of the document. The
hierarchy of these individual logical elements in a document makes up
the document’s specific logical structure.

To make it easier to share and interchange documents, it is useful to
develop a set of structuring rules for documents. This set of structuring
rules specifies the organization and appearance of all documents following
those rules, thereby creating a generic logical structure. That is, a
generic logical structure describes the legal arrangements of the logical
elements within a certain type of document, such as memos, reports,
letters, and so on. For example, a generic logical structure might specify
that chapters can contain one or more sections, and sections can contain
one or more paragraphs, but appendixes cannot contain chapters. A
specific logical structure of a document is simply an instance of the generic
logical structure for that type of document.

1.3.2 Document Layout

Document layout is defined as the manner in which document content
elements (graphics, text, and images) are arranged on a page or series of
pages. A compound document can be presented using a variety of page

layout schemes. For example, the number of columns on a page and the

1-4

Introduction
1.3 Document Processing Concepts

placement of page numbers and footnotes are all aspects of a document’s
layout.

More than any other aspect of document processing, the layout algorithm
for a document differs between document processors and depends on the
capabilities of the target device. Some terms associated with document
layout are defined in Table 1-1.

Table 1-1 Layout Terminology

Term Definition

Formatting The process of fixing text in galleys; it involves breaking
the stream of characters and floating frames into lines that
fit within the assigned galleys. Formatting can also involve
optimization of page layouts, the selection of appropriate
page templates, and hyphenation decisions.

Galley A rectangular guide, such as a column or footnote area.
DDIF galleys are modeled by areas (usually rectangles)
that are filled with text and relocatable illustrations during
the formatting process.

Galley-based layout In galley-based layout, characters and frames flow through
a set of connected galleys and across pages instead of
being fixed with respect to a coordinate system.

Generic layout A set of rules that are used to determine the layout of a
document or set of documents.

Page A unit of display, such as a traditional sheet of paper, a
video display, or a 35mm slide. A page is a discrete unit
of content presented for viewing.

Specific layout The layout of a particular document or document element.

Wrapping The process of breaking a stream of characters into lines
that fit within the assigned galleys.

The layout of a page is largely open to interpretation and preference. Page
layout is generally guided by typographic conventions that have evolved
throughout the history of printing. It is also influenced by the capabilities
of the selected output device, as well as the capabilities of the formatter
that is preparing the document for display.

Document layout can be generic or specific:

* The term generic layout describes a set of parameters and implicit
(or explicit) methods used to determine the layout of document content.
Generic layout typically specifies one or more page layouts and the
linkages between them. For example, the first page of a chapter can
contain a centered title and a half page of text, while the next page
contains a full complement of text.

* Specific layout typically occurs in the final form of a document.
That is, the layout of a document in its final form is referred to as
the document’s specific layout. However, specific layout can also
occur in revisable documents where the content has been tied to a
predetermined layout.

Introduction

1.3 Document Processing Concepts

1.3.3 Logical Structure and Layout

The specific logical structure of a document often does not correspond to
the layout. That is, the text content in the specific layout of the final form
of a document can occur in a different order than it does in the specific
logical structure of the revisable form. For example, a footnote would be
stored at the first point of reference in a revisable document, but would
appear at the bottom of the page in the final form.

The layout can also contain content that is not part of the logical structure.
For example, page numbers inserted by a formatter are not part of the
logical structure, but are part of the layout.

In revisable documents, content is stored and processed in the order
corresponding to the logical structure. Final form documents are stored
and processed in the order of the layout structure.

1.3.4 Structured and Unstructured Markup Systems

The extent to which the author of a document can control the arrangement
of content on the page varies from system to system, from document to
document, and often from place to place within a given document. Many
formatters lay out text automatically, based on the galleys and the content
at hand, while still allowing the author to insert formatting directives
such as new line and new page. These kinds of directives are called hard
directives, in the sense that they are permanent unless the user removes
them. Soft directives are inserted by the software and are replaceable.
(Soft directives are typically used by interactive editors to store pagination
in order to reduce startup time for the next editing session.)

In markup languages that support structured documents (such as SGML),
the layout process is governed by a style guide, which provides parameters
to the formatter for each document type. The author of the document has
little or no control over the layout process — each element of the document
is formatted according to the corresponding set of parameters in the style
guide. A given generic structure can have multiple styles, each specifying
a different layout, so that the document can be formatted and displayed
using different formats, perhaps for use with different display devices.

For example, a given system might support several style guides for
manuals. The same chapter can be processed using these different style
guides to produce 8%" by 11" output or 7" by 9" output, monospaced fonts
or proportionally spaced fonts, and so on.

Some markup languages are not strictly structured, and allow the user to
include layout directives in the document, in addition to or instead of a
style guide.

Introduction
1.3 Document Processing Concepts

1.3.5 Interactive and Batch Processing

An interactive editor may or may not support structure and a style guide;
however, an interactive editor almost always allows the author to control
the formatting process directly. Usually, an interactive editor provides
some default format for a user-modifiable template that can be changed
as needed. The formatting process must be fast; therefore, relatively little
time can be spent on optimization. The user is compensated by the ability
to interactively optimize the layout.

When the formatting process is not interactive, relatively ample processing
time can be spent optimizing the layout of the document. For example,
illustrations can be kept on the same page as the references, or on one of
two pages when the document is intended for two-sided printing.

1.4 Separation of Layout from Content

Content laid out in galleys, on the basis of rules and parameters expressed
as generic layout, can be laid out in a variety of ways — the number of
columns, and the size and position of the columns, can be varied. Likewise,
the line and page breaks can vary because of a variety of factors, such as
the hyphenation decisions and the amount of white space optimization.
Document content, such as a table, that is not laid out in a galley-based
fashion generally cannot be rearranged without user interaction.

When specific layout instructions have been inserted into the document —
that is, when the author has marked up the document for layout — then
separation of the content from its layout involves removing or ignoring
the specific markup and using only the generic markup of the document,
or a default generic layout. For example, if a document that has been
manually laid out in newspaper fashion is presented in a magazine, the
specific layout is ignored and the generic layout model is used to format
the document. If the same newspaper-formatted document is presented on
a character-cell terminal, both the generic layout and specific layout are
ignored and the content is laid out using a generic layout model suitable
for character-cell terminals.

1.4.1 Replacement of Layout

In order to interchange documents, it is necessary to allow the layout of
the document to be chosen by the software that encodes the document, and
for the layout to be able to be changed by the software that receives the
document.

The encoding application must be able to choose a layout scheme
appropriate for its layout model — for example, an interactive editor
cannot express the specific layout of a document using a generic layout
model that is appropriate for a markup system. (A markup system
typically consists of an integrated series of software processors that
convert generically coded source files into formatted output.) Nor can
markup systems express complex generic layout using the layout model
supported by most interactive systems.

Introduction

1.4 Separation of Layout from Content

There are two reasons why it might be necessary for the receiving
application to replace the encoder’s layout:

* The receiving application may not have a formatter capable of
formatting the document.

¢ The receiving system might lack adequate display technology to
support the encoder’s selected layout.

For example, it is impossible to meaningfully display a multicolumn
document set in 8-point type on an 80-column character-cell display.
Instead, it is necessary to format the content in a way suited to the display
device. Optionally, the receiving user might want to display and/or modify
the document with an interactive editor that cannot support the CPU-
intensive formatting that might have been specified in the document by
the encoding application.

The sender’s layout is replaced in the document itself only if the document
is being modified. Otherwise, the new layout parameters are simply
substituted during formatting and display. For example, if a document

is mailed to a user with a character-cell terminal and a laser printer, the
user can reformat the document so that it can be read on the terminal and
then print the document in its original format on the laser printer to see
the layout as the sender intended.

2

2.1

CDA Converter Architecture

The CDA Converter Architecture defines a methodology to simplify the
conversion of compound documents. The CDA Converter Architecture is
implemented through the following applications:

¢ The CDA Converter
e The DDIF Viewers

¢ The Converter front and back ends

The following sections discuss each of these applications in more detail.

CDA Converter

The CDA Converter is an integral part of the Compound Document
Architecture. It enables you to translate your compound document files to
and from various file-encoding formats. The CDA Converter can be viewed
as a “black box” that reads in an input file of the specified file-encoding
format and converts it to an output file of the specified file-encoding
format.

To accomplish this conversion, the CDA Converter uses the DIGITAL
Document Interchange Format (DDIF) as the integral step in the
conversion process. The converter reads the input file and translates it

to a CDA in-memory format, and then translates this in-memory format to
the specified output format. In other words, any input file-encoding format
that is supported by the CDA Converter can be translated to a CDA in-
memory format, and this in-memory format can subsequently be converted
to any supported output file-encoding format. Figure 21 illustrates these
basic stages of document conversion.

Figure 2-1 Stages of Document Conversion

Front End Back End
Conversion Conversion

Input In-Memory
File

Structure

ZK-0279A-GE

2-1

2.1.1

CDA Converter Architecture

2.1 CDA Converter

Components of a Converter

2-2

From the user’s perspective, the converter is a “black box” that reads in
the specified input file and converts it to the specified output file. For
this single converter to be able to convert the wide variety of supported
file-encoding formats, it actually comprises the following four parts:

* An interface (both a command line interface and an interface that is
callable from within an application program)

* The CDA Converter Kernel that performs all the functions that must
be completed for each conversion process, regardless of input and
output formats

¢ A front end that converts a particular input format to the in-memory
format

¢ A back end that converts the in-memory format to a particular output
format

The relationship of the various converter components is shown in
Figure 2-2.

Figure 2-2 Converter Components Diagram

Application
Program

Common Converter Kernel

Front End Back End

ZK-0280A-GE

When you invoke the converter, you always invoke the converter kernel
first. This kernel performs the following functions:

¢ It performs all of the “generic” conversion functions that must be
completed for every document conversion, regardless of input and
output formats.

CDA Converter Architecture
2.1 CDA Converter

¢ It invokes the appropriate front end to translate the input file to the
CDA in-memory format.

* It invokes the appropriate back end to translate the CDA in-memory
format to an output file of the specified format.

The CDA Converter, therefore, actually consists of the CDA Converter
Kernel, one front end for each supported input file-encoding format, and
one back end for each supported output file-encoding format. The kernel
translates the various file formats by calling the appropriate front end and
back end to perform the requested conversion.

For example, if you have the CDA Converter Kernel, a DDIF front end,
and an Analysis back end, you can invoke the converter to translate a
DDIF-encoded input file to an Analysis-encoded output file. The common
converter kernel invokes the DDIF front end and the Analysis back end
to perform the requested conversion. In general, front ends and back ends
are “paired.” That is, if a file-encoding format is supported by a front
end, it generally is also supported by a back end. However, this is not
always the case. For example, the Analysis back end does not have a
corresponding front end.

The front ends and back ends that are provided with the operating system
are documented later in this chapter. Other available converters are
documented in the appropriate application documentation sets. The
interfaces to the CDA Converter are as follows:

* A DCL command line interface (CONVERT/DOCUMENT)
* A callable interface (the CONVERT routine) that is accessible from
application programs

Each of these interfaces is discussed in the following sections. The
supported input formats are discussed in Section 2.3 and the supported
output formats are discussed in Section 2.4.

2.1.2 DCL CONVERT/DOCUMENT Command

The DCL CONVERT/DOCUMENT command invokes the conversion of a
revisable format file to another revisable or final form file from the DCL
command line. This command has the following format:

CONVERT/DOCUMENT[/OPTIONS=filespec]
input-file[[FORMAT=fmt-name] output-file/FORMAT=fmt-name}

The /FORMAT qualifier enables you to specify the encoding formats of the
input and output files. (DDIF is the default input and output format.) The
format keywords for the supported input and output formats are listed in
Table 2-1.

2-3

CDA Converter Architecture

2.1 CDA Converter

Table 2-1 Converter Format Keywords

Input Formats Output Formats
DDIF DDIF

TEXT TEXT

N/A PS

N/A ANALYSIS

The /OPTIONS qualifier enables you to specify a file that contains options
to be applied during the conversion of the file. Each line of the file
specifies a format name that can contain upper- and lowercase alphabetic
characters, digits, dollar signs, and underscores, optionally preceded by
spaces and tabs, and terminated by any character other than those listed.
Alphabetic case is not significant. The syntax and interpretation of the
text that follows the format name are specified by the supplier of the front
and back ends for the specified format. Multiple lines that specify the
same format are permitted.

The following example illustrates a simple example of an options file that
specifies options to be used when converting some file to a PostScript
output file. The options disable word wrapping and page wrapping and
specify the desired paper size.

ps word_wrap 0

ps page_wrap 0O

ps paper_size legal

ps paper_orientation portrait

2.1.3 CONVERT Routine

2-4

The CONVERT routine invokes the conversion of a revisable format file
to another revisable format or final form file from within an application
program. This routine entry point has the following format:

CDASCONVERT (function-code ,standard-item-list ,private-item-list
,converter-context)

The parameters to this routine are as follows:

¢ Function-code is a symbolic constant that identifies the function to
be performed. Valid values for this argument are as follows:

— CDAS$_START begins the conversion. This function code must be
specified to begin a document conversion.

— CDA$_CONTINUE continues a conversion that was suspended.
This function code can only be specified if a previous call to the
CONVERT routine returned the value CDA$_SUSPEND. If CDAS$_
SUSPEND is returned by a call to the CONVERT routine, either
CDA$_CONTINUE or CDA$_STOP must be specified so that
resources locked by the conversion can be released.

CDA Converter Architecture
2.1 CDA Converter

— CDA$_STOP discontinues a conversion that was suspended. This
function code can only be specified if the previous call to the
CONVERT routine returned the value CDA$_SUSPEND. If CDA$_
SUSPEND is returned by a call to the CONVERT routine, either
CDA$_STOP or CDA$_CONTINUE must be specified so that
resources locked by the conversion can be released.

Standard-item-list is an item list that identifies the document source
and destination and can also contain options to control processing.
Valid code values for the items in the standard-item-list are as
follows:

CDAS$_INPUT_FORMAT

The address and length of a string that specifies the input document
format.

CDAS$_INPUT_FRONT_END_PROCEDURE

The address of the front end’s main entry point: DDIF$READ_format.
The item list length field must be 0. This item enables a caller to
provide a front end that is part of the calling application rather
than a separate image. If this item code is used, the CDA$_INPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the front end.

CDAS$_INPUT_FILE

The address and length of a string that contains the file specification
of the input document.

CDAS$_INPUT_DEFAULT

The address and length of a string that specifies the default input
file type. To simplify the porting of applications to other operating
systems, the string should consist of only a file type in lowercase
characters. If this parameter is omitted, a front end must supply an
appropriate default file specification.

CDAS$_INPUT_PROCEDURE

The address of a procedure to provide input. The item list length field
must be 0. The input procedure must conform to the requirements for
a user get routine. For more information on a user get routine, refer to
the CONVERT routine description in Part II of this manual.

CDA$_INPUT_PROCEDURE_PARM

The address of a longword parameter to the input procedure. The item
list length field must be 4.

CDAS$_INPUT_ROOT_AGGREGATE

The address of a longword handle to a root aggregate that specifies
an in-memory input document. The item list length field must be 4.
The in-memory structure, except for the root aggregate itself, is erased
by this operation. The root aggregate must specify standard memory
allocation.

CDA$_OUTPUT_FORMAT

The address and length of a string that specifies the output document
format.

2-5

CDA Converter Architecture

2.1 CDA Converter

CDA$_OUTPUT_BACK_END_PROCEDURE

The address of the back end’s main entry point: DDIF$WRITE_format.
The item list length field must be 0. This item enables a caller to
provide a back end that is part of the calling application rather than
a separate image. If this item code is used, the CDA$_OUTPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the back end.

CDA$_OUTPUT FILE

The address and length of a string that contains the file specification
of the output document.

CDA$_OUTPUT_DEFAULT

The address and length of a string that specifies the default output
file type. To simplify the porting of applications to other operating
systems, the string should consist of only a file type in lowercase
characters. If this parameter is omitted, the back end must supply an
appropriate default file specification.

CDA$_OUTPUT_PROCEDURE
The address of a procedure to receive output. The item list length field
must be 0. The output procedure must conform to the requirements

for a user put routine. For more information on a user put routine,
refer to the CONVERT routine description in Part II of this manual.

CDA$_OUTPUT PROCEDURE_PARM

The address of a longword parameter to the output procedure. The
item list length field must be 4.

CDA$_OUTPUT_PROCEDURE_BUFFER

The address and length of the initial output buffer for the output
procedure.

CDA$_OUTPUT_ROOT_AGGREGATE

The address of a longword handle to a root aggregate that receives

an in-memory output document. The item list length field must be 4.
The root aggregate must be empty, and must specify standard memory
allocation.

CDA$_OPTIONS_FILE

The address and length of a string that contains the file specification
of an options file specifying options to control processing. On VMS
systems, the default file type is CDA$OPTIONS. Each line of the file
specifies a format name, which may contain upper- and lowercase
alphabetic characters, digits, dollar signs, and underscores, optionally
preceded by spaces and tabs, and terminated by any character other
than those listed. Alphabetic case is not significant. The syntax and
interpretation of the text that follows the format name are specified
by the supplier of the front and back ends for the specified format.
Multiple lines that specify the same format are permitted.

Private-item-list is a private item list that is passed directly to the
back end invoked by the converter. The specification of this item list
is the responsibility of the back end. Its purpose is direct two-way
communication between the caller of the CONVERT routine and the
back end.

2.2

2.2.1

CDA Converter Architecture
2.1 CDA Converter

¢ Converter-context is set to CDA$_START; this argument receives a
value that must be specified as the converter context parameter when
this routine is called with CDA$_CONTINUE or CDA$_STOP as the
function code. This value is invalidated when the CONVERT routine
returns a status other than CDA$_SUSPEND.

You can use this routine to invoke the converter from within an application
program to perform file conversion.

DDIF Viewer

The DDIF Viewer is an application that enables you to view compound
document files on a character cell terminal or workstation window. This
Viewer works with the CDA Converter Architecture, so that a file of any
input format supported by CDA can be viewed on a character cell terminal.

The Viewer works by converting an input file to the in-memory format
used by the CDA Converter. This in-memory format is then formatted for
output to the screen. In other words, the Viewer is a specific instance of
the CDA Converter in which the output format is a screen display.

The interface to the DDIF Viewer is the DCL VIEW command. This
command is discussed in the following section. The supported input
formats for the DDIF viewer are described in Section 2.3.

DCL VIEW Command

The DCL VIEW command invokes the DDIF Viewer, which lets you view
a compound document file on a character cell terminal or DECwindows
display. Note that many of the text display attributes are not processed
when displaying the document, because of the limitations of the viewing
device.

The VIEW command has the following format:
VIEW input-file[/qualifiers]

The input file specifies the name of the file to be viewed. You cannot use
wildcard characters in the file specification. The default input file-encoding
format is DDIF, and the default file type is DDIF. Valid input file formats
are DDIF and TEXT; these input formats are described in more detail in
Section 2.3.

The qualifiers that you can specify to the view command are as follows:
¢ /FORMAT[=format-name]

Specifies the format of the input file. The default format is DDIF.
The appropriate front end must be available in SYS$LIBRARY for the
specified format-name. The valid formats are DDIF and TEXT.

2-7

CDA Converter Architecture
2.2 DDIF Viewer

* /OUTPUT[=output-file-spec]

Specifies a file that receives the text output. The default is
/NOOUTPUT. If an output file specification is not specified, the output
file specification defaults to input-file.LIS. If this qualifier is specified,
the output of the VIEW command is not displayed on the screen, but
is instead written to the specified file. Note that if you specify the
/OUTPUT qualifier, you cannot also specify the /PAGE qualifier.

* /PAGE

Controls the display of output, providing the same effect as the DCL
TYPE/PAGE command when used on a non-DECwindows device. The
default is /NOPAGE. The /PAGE qualifier has no effect when used
with a DECwindows display because the scroll bars provide the same
capability. Note that if you specify the /PAGE qualifier, you cannot
also specify the /OUTPUT qualifier.

¢ /OPTIONS=file-spec

Specifies a file that contains options to be applied during the
conversion of the file to the CDA in-memory format. The default
file type is DDIF$OPTIONS.

e /SELECT=select-list

Allows the user to tailor the CDA Viewer output. The selection items
you can specify are as follows:

[NOJGRAPHICS Directs the viewer either to mark the location
of graphics embedded in the DDIF file being
processed by the DDIF viewer, or to ignore the
graphics.

[NOJIMAGES Directs the viewer either to mark the location
of the images embedded in the DDIF file being
processed by the DDIF viewer, or to ignore the
images.

[NOJTEXT Directs the viewer either to process the text
contained in the DDIF file being processed, or to
ignore the text.

ALL Directs the viewer to process all information
contained in the DDIF file being processed.
[NOJSOFT_DIRECTIVES Directs the viewer either to process or ignore

soft directives in the DDIF file being processed
in order to format output. Soft directives specify
such formatting commands as new line, new
page, and tab.

[NOJAUTO_WRAP Directs the viewer to perform word wrapping
of any text that would exceed the right margin.
NOAUTO_WRAP allows the text to exceed the
margin.

2-8

2.3

2.3.1

CDA Converter Architecture
2.2 DDIF Viewer

[NOJX_DISPLAY Directs the viewer to create a DECwindows
widget to be used when viewing the file on a
workstation display defined by the logical name
DECWS$DISPLAY. NOX_DISPLAY, the default,
invokes the DDIF viewer. Note that X_DISPLAY
cannot be specified if the /OUTPUT qualifier is
also specified.

The default format is

/SELECT = (GRAPHICS, IMAGES, TEXT, SOFT_DIRECTIVES,
AUTO_WRAP, NOX_DISPLAY)

Input Formats

The CDA Converter Architecture works by supplying a common converter
kernel and front and back ends to support the various input and output
formats. The following sections describe each supported front end, the
data mapping between that input format and the in-memory format,

any data loss that might occur during the conversion, and any other
information specific to that front end.

The DDIF front end reads a file encoded in DDIF format and converts the
information in the file to the CDA in-memory structure.

Because the input file format is DDIF, the information in the file maps
directly to the CDA in-memory structure.

The DDIF front end does not lose any data when converting a DDIF input
file to the CDA in-memory structure. Again, this is because the input
document type and the in-memory structure type are both DDIF.

When the DDIF front end encounters an external file reference that is
specified in the document header of your DDIF input file, it passes the
reference through to the CDA Converter Kernel.

DDIF Front End
2.3.11 Data Mapping
23.1.2 Data Loss
23.1.3 External File References
2314

Document Syntax Errors

If a document syntax error is encountered in the DDIF front end, that
represents a fatal input processing error. The only way that this can occur
is if the input document is invalid. If the DDIF front end does encounter
a document syntax error, the conversion process is stopped and no further
input processing is performed.

2-9

2.3.2

2.4

241

CDA Converter Architecture

2.3 Input Formats

Text Front End

The Text front end reads a standard text (ISO Latinl) file and converts
the information in the file to the CDA in-memory structure. If the text file
was entered as a DEC Multinational Character Set file on a character cell
terminal or terminal emulator, the following conversions occur:

Original Character Converted Character
Concurrency sign Diaeresis

Capital OE ligature Mulitiplication sign

Capital Y with diaeresis Capital Y with acute accent
Small oe ligature Division sign

Small y with diaeresis Y with acute accent

2.3.21

Data Mapping

When you invoke the converter for a Text input file, all of the text in the
input file is mapped to DDIF text content. Line breaks and form feeds
are mapped to DDIF directives. One or more contiguous blank lines are
interpreted as end-of-paragraph markers.

2322

Data Loss

The Text front end does not lose any data when converting a Text input file
to the CDA in-memory structure. This is because no structure information
is contained in a text file.

23.23

External File References
Text files do not contain external file references. Therefore, the Text front
end does not evaluate external file references.

2.3.24

Document Syntax Errors
Because text files do not have any syntax defined, syntax errors cannot be
encountered by the Text front end.

Output Formats

The following sections describe each back end supported by the CDA
Converter Architecture, the data mapping between the in-memory format
and the particular output format, any data loss that might occur during
the conversion, and any other information specific to that back end.

DDIF Back End

2-10

The DDIF back end takes the CDA in-memory structure that has been
converted from some input format, converts it to a DDIF output format,
and writes the information to the specified DDIF output file.

CDA Converter Architecture
2.4 Output Formats

2411

Data Mapping

When you invoke the converter with the DDIF back end, the data
mapping between the information in the CDA in-memory structure and
the converted output file is one-to-one. This is because the in-memory
structure type and the output document type are both DDIF.

24.1.2

Data Loss

The DDIF back end does not lose any data when converting a CDA
in-memory structure to a DDIF output file. Again, this is because the
in-memory structure type and the output document type are both DDIF.

2.4.2 Text Back End

The Text back end takes the CDA in-memory structure that has been
converted from some input format, converts only the text content of the
file, and writes the information to the specified text output file.

24.21

Data Mapping
When you invoke the converter for a text output file, all Latinl text is
written to the output text file.

2422

Data Loss

When the Text back end is converting the in-memory structure to a text
output file, all graphics, images, attributes, and formatting information
are lost.

2423

Processing Options
The text back end supports the following options:

ASCII_FALLBACK This option causes the back end to output text in 7-bit
ASCII. The fallback representation of the characters is
described in the ANSI ASC!I standard.

CONTENT_MESSAGES This option causes the back end to put a message
in the output file each time a nontext element is
encountered in the in-memory CDA structures.

2.4.3 PostScript Back End

The PostScript back end takes the CDA in-memory structure that has

been converted from some input format, converts the content of the file
to PostScript-formatted information, and writes the information to the

specified PostScript output file.

2.4.3.1

Data Mapping
When you invoke the converter for a PostScript output file, all document
content is written to the output file.

2-11

CDA Converter Architecture
2.4 Output Formats

2-12

When converting the in-memory structure to a PostScript output file, all
document content is converted.

The PostScript back end supports the following processing options:
* PAPER_SIZE paper-size

e PAPER_HEIGHT paper-height

e PAPER_WIDTH paper-width

¢ PAPER_TOP_MARGIN paper-top-margin

¢ PAPER_BOTTOM_MARGIN paper-bottom-margin
e PAPER_LEFT MARGIN paper-left-margin

¢ PAPER_RIGHT MARGIN paper-right-margin

* PAPER_ORIENTATION orientation

* EIGHT_BIT _OUTPUT eight-bit-output-state

* OUTPUT _BUFFER_SIZE output-buffer-size

* SOFT_DIRECTIVES soft-directives-state

¢ WORD_WRAP word-wrap-state

¢ PAGE_WRAP page-wrap-state

The keyword is separated from its assigned value by one or more spaces
or tabs. Note that, for all of the measurement options, the default unit of
measure is inches (specified as “in”). Other supported units of measure are
points (pts), centimeters (em) and millimeters (mm).

The processing options are discussed individually in the following sections.

24.3.2 Data Loss
24.3.3 Processing Options

* LAYOUT layout-state
2434

Paper Size Processing Option

The PAPER_SIZE paper-size option lets you specify the size of the paper to
be used when formatting the resulting PostSecript output file. Valid values
for paper-size are as follows:

Keyword Size

A0 841 x 1189 millimeters (33.13 x 46.85 inches)

A1 594 x 841 millimeters (23.40 x 33.13 inches)

A2 420 x 594 millimeters (16.55 x 23.40 inches)

A3 297 x 420 millimeters (11.70 x 16.55 inches)

A4 210 x 297 millimeters (8.27 x 11.70 inches)
8.5 x 11 inches

B 11 x 17 inches

CDA Converter Architecture
2.4 Output Formats

Keyword Size

C 17 x 22 inches
D 22 x 34 inches
E 34 x 44 inches
LEDGER 11 x 17 inches
LEGAL 8.5 x 14 inches
LETTER 8.5 x 11 inches
LP 13.7 x 11 inches
VT 8 x 5 inches

The A paper size (8.5 x 11 inches) is the default.

Paper Height Processing Option

The PAPER_HEIGHT paper-height processing option, in combination with
the PAPER_WIDTH processing option, lets you specify a paper size other
than one of the predefined values provided. The default paper height is

Paper Width Processing Option

The PAPER_WIDTH paper-width processing option, in combination with
the PAPER_HEIGHT processing option, lets you specify a paper size other
than one of the predefined sizes provided. The default paper width is

Top Margin Processing Option
The PAPER_TOP_MARGIN top-margin processing option lets you select
the width of the margin provided at the top of the page. The default value

Bottom Margin Processing Option
The PAPER_BOTTOM_MARGIN bottom-margin processing option lets you
select the width of the margin provided at the bottom of the page. The

Left Margin Processing Option
The PAPER_LEFT_MARGIN left-margin processing option lets you select
the width of the margin provided on the left-hand side of the page. The

2.4.35

11 inches.
2.4.3.6

8.5 inches.
2.4.3.7

is .25 inches.
24.3.8

default value is .25 inches.
2439

default value is .25 inches.
2.4.3.10

Right Margin Processing Option

The PAPER_RIGHT_MARGIN right-margin processing option lets you
select the width of the margin provided on the right-hand side of the page.
The default value is .25 inches.

2-13

CDA Converter Architecture
2.4 Output Formats

2-14

2.4.3.11

Paper Orientation Processing Option

The PAPER_ORIENTATION orientation processing option lets you select
the paper orientation to be used in the output PostScript file. The valid
values for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension is parallel
to the vertical axis.

LANDSCAPE The page is oriented so that the larger dimension is parallel
to the horizontal axis.

The default is PORTRAIT.

2.4.3.12

Eight Bit Output Processing Option

The EIGHT_BIT_OUTPUT eight-bit-output-state processing option lets
you select whether or not the PostScript back end should use 8-bit output.
You can specify a value of either ON or OFF for the eight-bit-output-state
argument. The default is ON.

2.4.3.13

Output Buffer Size Processing Option

The OUTPUT_BUFFER_SIZE output-buffer-size processing option lets you
select the size of the output buffer. The value you specify must be within
the following range:

64 < output — buf fer — size < 256

The default is 132.

2.4.3.14

Soft Directives Processing Option

The SOFT_DIRECTIVES soft-directives-state processing option lets you
select whether or not the PostScript back end processes soft directives
in the DDIF file in order to format output. (Soft directives specify such
formatting commands as new line, new page, and tab.) If the PostScript
back end processes soft directives, the output file will look more like you
intended.

You can specify a value of either ON or OFF for the soft-directive-state
argument. The default is ON.

2.4.3.15

Word Wrap Processing Option

The WORD_WRAP word-wrap-state processing option lets you specify
whether or not the PostScript back end performs word wrapping of any
text that would exceed the right margin. You can specify a value of either
ON or OFF for the word-wrap-state argument. The default is ON. If
you specify OFF, the PostScript back end allows text to exceed the right
margin.

CDA Converter Architecture
2.4 Output Formats

2.4.3.16 Page Wrap Processing Option
The PAGE_WRAP page-wrap-state processing option lets you specify
whether or not the PostScript back end performs page wrapping of any
text that would exceed the bottom margin. You can specify a value of
either ON or OFF for the page-wrap-state argument. The default is ON.

24317 Layout Processing Option
The LAYOUT layout-state processing option lets you specify whether or
not the PostScript back end processes the layout specified in the DDIF
document. You can specify a value of either ON or OFF for the layout-state
argument. The default is ON.

2.4.4 Analysis Back End

This back end produces an analysis of the CDA in-memory structure in
the form of text output showing the named objects and values stored in
the document. This is useful for debugging DDIF application programs.

The Analysis back end supports an /INHERITANCE processing option that
specifies that the analysis is shown with attribute inheritance enabled.
Inherited attributes are marked by “[default]” in the output.

2-15

3 Overview of DDIF

The DIGITAL Document Interchange Format (DDIF) describes the format
used for the creation, storage, and interchange of revisable compound
documents. In order to write a DDIF-conforming application using the
CDA Toolkit routines, it is important to first understand some of the basic
concepts of DDIF.

3.1 Document Content

Document content is defined as the information contained in the
fundamental units of a document. Document content includes characters,
lines, raster images, and so on. This is different from the attributes
that are applied to content. Attributes specify how the information is
presented; for example, attributes specify content characteristics such

as font, line thickness, and color. Attributes can also specify how the
information is stored; for example, image attributes control the storage of
image content.

DDIF supports several types of document content:

¢ Text content consists of text in ASCII and alternate character sets
(including 16-bit text).

* Graphics content consists of primitives such as polylines and filled
areas.

¢ Image content or raster image content consists of digitized images
represented by actual values of monochrome, gray-scale, or color
images.

* Computed content is document content (most often text content)
that is calculated based on the current formatting state or other
inclusion of external data. One example is a reference to the current
page number, or to the page number on which a particular document
element appears. The revisable form of the document describes the
means by which the content is computed, while the final form of the
document contains only the result of the computation (for example, the
page number itself).

Document content can be either hard or soft. Hard content is entered by
the creator of the document. Soft content is generated by software and is
subject to recalculation when the document is revised. Page numbers used
as cross-references are an example of soft text content. A chart generated
from data to which the document is linked is an example of soft graphics
content.

3-1

Overview of DDIF
3.1 Document Content

3.1.1 Document Hierarchy

DDIF represents a document as an ordered hierarchy of document
segments. A document segment, or simply segment, is defined as a
quantity of content that is set off from the surrounding data by a change
in presentation or processing attributes. Each segment in a document
contains document content, and can also contain nested segments. You can
look at the hierarchy of segments as an inverted tree structure, in which
case the segments are transmitted (or stored) from the top down and from
left to right, simulating a depth-first traversal of the segment hierarchy.
Content elements (the text, graphics, and images of the document) are
displayed in this order.

Figure 3—1 Document Hierarchy

= Element

. =Segment X

ZK-0281A-GE

For example, the segments of the document illustrated in Figure 3-1
would be transmitted in the order A, B, C, D, and E. In this figure, the
segment named A has B, C, and E as contents. Segments B and E are
each shown as having three primitive content elements. Segment C also
has three content elements, but one of these (D) is a nested segment.
Segment D has no content; instead D contains computed content.

Example 3-1 illustrates the DDIF constructs (with the content omitted)
representing the document shown in Figure 3-1.

3-2

3.1.2

Overview of DDIF
3.1 Document Content

Example 3-1 DDIF Document Sample

DDIF_DOCUMENT
{
DDF_DESCRIPTOR
{
DSC_MAJOR_VERSION 1
DSC_MINOR VERSION O
DSC_PRODUCT IDENTIFIER "DDIF$"
DSC_PRODUCT_ NAME
(
ISO_LATIN1l "Hand-generated Standard DDIF Example"
)
1
DDF_HEADER
{
DHD VERSION
(
ISO_LATINLI "vi.0"
)
}
DDF_CONTENT
{
SEG_ID A"
SEG_CONTENT
{
SEG_ID "B"
}
{
SEG_ID "C"
SEG_CONTENT
{
SEG_ID "D"
t

SEG_ID "E"
}
}
}

There are some structures (aggregates) that are required for every DDIF
document; other constructs are optional, depending on the content of the
document. An example of the hierarchical structure of a typical DDIF
document is shown in Figure 3-2.

In Figure 3-2, the document is described in terms of a document root, a
document descriptor, a document header, and the segments of document
content that make up the document. Each of these pieces is described in
the following sections.

Document Root

The document root identifies the document to an application that is
processing the document. The encoding of the actual document root
aggregate, as well as all other DDIF aggregates, is described in Chapter 6.

3-3

3.1.3

3.14

3.1.5

Overview of DDIF
3.1 Document Content

Figure 3-2 Typical DDIF Document

Document |

Document Document Root
Header

Segment

Descriptor

Text

Image
Content

Computed |
Content

Graphics |
Content

Private External

Content

Content

ZK-0282A-GE

Document Descriptor

The document descriptor specifies information about the document, such
as the DDIF version level used to encode the document and the software
that created the document.

Document Header

The document header specifies certain information about the document
as a whole. For example, the document header can specify the title of the
document, the author, the version number of the document, a creation
date, and any style guides to which the document conforms.

Root Segment

The content of a DDIF document is contained in a single segment called a
root segment. This root segment contains zero or more content elements,
including text, graphics, images, and nested segments. These standard
content types express the basic units of meaning in a document and are
described in the following sections.

34

Overview of DDIF
3.1 Document Content

Text content consists of graphic characters and spaces from standard and
private character sets. The presentation of the text is defined by text
attributes that are specified using a segment attributes aggregate. Layout
attributes describe the layout path to be used when the text is processed

In addition, directives (such as new line and new page) are considered text
content. These directives can either be hard (explicitly set by the user)

or soft (inserted by the software that created the document for its own
subsequent use). For example, if you specify a page break in a particular
place in your document, that is a hard directive. If a text editor paginates
your document during editing and saves these page breaks to reduce
startup time, those are soft directives.

If a document is reformatted, the receiving or modifying application
can ignore a soft directive. On the other hand, a hard directive cannot
be ignored or removed, even if the document is reformatted. However,
modifying applications enable the user to remove hard directives.

Graphics content consists of such objects as polylines, cubic Bézier curves,
arcs, fill areas, and paths that are created from a combination of the
preceding objects. The presentation of graphics is defined by graphics
attributes that are specified using a segment attributes aggregate. These
graphics attributes describe such things as the line style, marker style,
and fill patterns used for graphics content.

Image content contains image data that is represented as a frame of
data within a DDIF document. The origin of the frame is located at the
lower left-hand corner of the frame. A frame can contain a single still
image or a sequence of time-varying images with identical attributes. The
presentation of these images is defined by image attributes that describe
such presentation attributes as the pixel path and its aspect ratio, the
brightness polarity of the image, and the physical format of the pixel
grid in the image. Additionally, you can specify the attributes of the
image component space, such as the number of data planes per pixel (and
therefore per image) and the significance of the data planes.

3.1.5.1 Text Content

for presentation.
3.1.5.2 Graphics Content
3.1.53 Image Content
3.1.54 Computed Content

Computed content is document content that is computed by a formatter
or other document processor. Examples of computed content include
section numbers, page numbers, and cross-references, in which the text
content of the segment is generated by calculating the value of variables,
such as the current page number. A segment whose content is computed
must describe the method of its computation. It can additionally store its
previously computed value, so that if none of its computation parameters
have changed, the document formatter can eliminate the time required to
recompute all of the computed content.

3-5

3.1.6

Overview of DDIF
3.1 Document Content

3.1.5.5

Restricted Content

Restricted content is provided in addition to the standard revisable
content types. There are two types of restricted content: page description
language (PDL) content and private content. In general, PDL content
can only be displayed by the supporting devices, and is not suitable for
revision. Private content indicates content that is restricted either to

a particular document-processing implementation, or to a set of related
implementations that support identical private encodings.

PDL content includes a stream of page description language in the content
of the document; it is defined as an external data synax. Private content
allows products or closely related product sets to include private markers,
tags, and status information in document content.

3.1.5.6

Private Data

Private data is defined as document semantics that is restricted either
to a particular document-processing implementation, or to a set of tightly
coupled implementations that mutually support private encodings.

DDIF provides several instances where document processors can escape to
private data, for example:

* In the header (for document-wide private indicators)
¢ In segment attributes (for hierarchical or inheritable data)

* As a content type (for content-like private data or markers)

Private data can be, for example, a marker in the document content
that indicates the user’s last editing position in the document, or a data
element in the header of the document that indicates the menu setups or
operation modes that the user had active at the time the document was
written.

Relationships in Revisable Documents

3-6

In order to make a document revisable, DDIF defines different classes of
relationships. These relationships are listed in Table 3-1.

Table 3—1 Relationships in Revisable Documents

Relationship Meaning

Inheritance This relationship defines a method for defaulting the attributes
of content so that each segment of content does not need to
specify all of its attributes. Instead, each segment inherits the
attributes of the surrounding segment, and specifies only the
difference between the attributes of its content and that of the
surrounding content.

(continued on next page)

Table 3—-1 (Cont.)

Overview of DDIF
3.1 Document Content

Relationships in Revisable Documents

Relationship

Meaning

Generic attributes

Specific attributes

Generic type

Type reference

Generic content

Content reference

Variables

Style guide

This relationship defines attributes that can be applied to a
number of segments, as opposed to being associated with a
single segment.

This relationship defines attributes that are associated only
with a single segment of content. These types of attributes
are deliberately limited to a specific segment of the document.

This relationship defines a set of attributes and processing
tags that define a type. Elements of the document can
reference a defined type and become an “instance” of
the type, thus inheriting the attributes and processing
characteristics of the generic type.

This actually represents a shorthand notation for the phrase
“reference to generic type.” When segments reference the
same generic type, they inherit common attributes, and
therefore take on common processing and presentation
styles.

This relationship defines document content that can be
included in multiple places in the document. For example,
a document containing several related illustrations might
contain common graphics components that can be shared
throughout the document or across a set of documents.

This actually represents a shorthand notation for the phrase
“reference to generic content.” A content reference causes
the generic content to be inserted into the final form when the
document is formatted.

This relationship defines content that can be generated
based on the values of variables, thereby ensuring that
multiple elements of content are identical, have the same
position, or can be modified by standard functions. For
example, variables are used to indicate the numbering of list
elements.

This relationship defines a collection of generic types that
are defined for use from a set of documents. A style guide
takes the form of a document with definitions on the root
segment, including type definitions, content definitions, font
definitions, pattern definitions, line style definitions, and
generic page descriptions. A document can contain only
segmented content, and can make references to types in the
externally defined style guide. Using different style guides
makes it convenient to vary the style of a set of documents,
or to vary the appearance of a given document. An example
would be a style guide designed to match the capabilities of
a target printer.

These revisable document relationships are referred to in the following

sections.

3-7

Overview of DDIF
3.1 Document Content

3-8

As defined in Table 3—1, inheritance describes a method for defaulting
the attributes of content so that each segment of content does not need to
specify all of its attributes. In the document hierarchy, content attributes
only affect the segment that declares or references them. In Figure 3-1,
the attributes of C affect only the contents of C and its descendant, D.
Segment D inherits all the attributes of C that D itself does not override,
and also inherits the attributes of A that are not overridden by C. Any
segment can therefore define the default attributes for its nested segments.

More specifically, the attributes that are inherited are those attributes
that require some current value in order to make sense. For example,
attributes such as line width, color, patterns, font definitions, and current
font must always have some value; these attributes are therefore inherited
if not explicitly declared. Attributes that are not inherited include segment
identifiers, transformations, positions, and so on. These attributes are
only specified through segment (generic) type inheritance or by direct
specification, not through inclusion in the parent segment.

Any segment can define generic types which, in turn, can be referenced
by nested segments. A generic type is defined as a set of attributes

and processing tags that define a type. For example, you might create

a generic type representing a footnote. Elements of the document can
reference a generic type and become an instance of that type, inheriting
the attributes and processing characteristics of the generic type. To
continue the footnote example, whenever a footnote is required you can
reference the generic footnote type to inherit the appropriate attributes for
all footnotes throughout the document.

In Figure 3-1, segment C could define generic types that could be
referenced from D, and segment A could define generic types that could
be referenced from B, C, D, and E. Note that segments do not have to
reference the generic type of the parent. However, if a segment wants
to inherit the attributes associated with the generic type of its parent, it
must explicitly reference that generic type.

3.1.6.1 Attribute Inheritance
3.1.6.2 Generic Types
3.1.6.3 Generic Content

In addition to generic types, a segment can also define generic content
elements that can be used in any of its nested segments. Generic
content is defined as document content that can be included in multiple
places in the document. For example, a document that contains several
related illustrations might contain common graphics components, which
can be shared throughout the document or across a set of documents.
Generic content can contain any of the DDIF content types, including
nested segments. By using nested segments to define a generic content
element, you can define complex content types in which content elements
are differentiated by attributes.

For example, the user of a graphics editor might define a wheel consisting
of a black tire, white spokes, and a gray wheel hub. This wheel could be
defined in terms of graphics primitives and segmentation, and could then
be referenced throughout all the diagrams of cars in the document. A
change to the generic wheel would change the appearance of that wheel

Overview of DDIF
3.1 Document Content

throughout the entire document, because all specific instances of it are
expanded from the single definition during the creation of the final-form
document.

You can use references to a generic type when you are defining a generic
content element. The definition of the generic type can be supplied either
as part of the generic content definition, or it can be inherited through
the parentage of the content reference. Note that a nested segment can
redefine a generic type or a generic content element that is defined in a
parent segment. In this case, the redefining segment and all its nested
segments actually refer to the redefined generic element instead of to the
original element.

3.164 References to Generic Types
When a segment references a generic type, it becomes a segment of that
type and inherits any generic attributes associated with that type. These
inherited attributes also apply to the descendants of the referencing
segment. For example, in Figure 3-1, if A defines a generic type Q, and
C references @, then the generic attributes defined for Q take effect tor C,
and form the default attributes for D.

If an attribute is specified both in the referenced generic attributes and
in the specific attributes, the specific attribute takes precedence. That is,
specific attributes override generic attributes.

3.1.6.5 References to Generic Content
When you reference generic content, that content is inserted into the final
form of the document when the document is formatted. This referenced
generic content inherits the attributes of the segment in which the content
reference occurs. However, segments within a generic content element can
override the inherited attributes, just as they would if the generic content
had occurred there directly. You can also use generic content to specify
only some attributes, leaving others to be inherited from the segment in
which they are referenced.

A content reference can specify a transformation to be applied to the
generic content. All sizes and positions in generic content can be scaled,
rotated, and translated.

3.1.7 Example of Document Content

Example 3-2 illustrates a small DDIF document and the various methods
used to specify rendition attributes. This example is illustrated in the
Analysis format — the format output by the Analysis Back End. In most
cases, braces are used to enclose an aggregate, and parentheses are used
to enclose an item that is encoded as an array.

3-9

Overview of DDIF
3.1 Document Content

Example 3—-2 DDIF Document Attribute Inheritance

DDTF_DOCUMENT @

{

DDF_DESCRIPTOR

{
DSC_MAJOR VERSION 1 @
DSC_MINOR_VERSION 0
DSC_PRODUCT_ IDENTIFIER "DDIF$"
DSC_PRODUCT NAME ©
(

ISO_LATINl T"Hand-generated Standard DDIF Example"

)

}
DDF_HEADER

{
DHD_VERSTON @
(
ISO_LATIN1 "v0.1"
)
}
DDF_CONTENT
{
SEG_SPECIFIC_ATTRIBUTES ©
{
SGA_TYPE_DEFNS
{
TYD LABEL "BOLD" @
TYD_ATTRIBUTES
{
SGA_TXT RENDITION
(
RND HIGHLIGHT
)
}
}
{
TYD LABEL "UNDERLINED" @
TYD ATTRIBUTES
{
SGA_TXT RENDITION
(
RND_UNDERLINE
)
}
}
) O
SEG_CONTENT @
{
sgc_1p "a" @
SEG_SPECIFIC ATTRIBUTES
{
SGA_TXT RENDITION
(
RND_CROSS_OUT
)
}

(continued on next page)

3-10

Overview of DDIF
3.1 Document Content

Example 3-2 (Cont.) DDIF Document Attribute Inheritance

SEG_CONTENT

{

TXT_CONTENT "Textl" @
}

sEc_ 10 "B" @
SEG_SEGMENT TYPE "BOLD"
SEG_SPECIFIC_ATTRIBUTES
{
SGA_TXT_RENDITION
(
RND_DEFAULT
RND_UNDERLINE
)
}
SEG_CONTENT
{
TXT_CONTENT "Text2"
}
) ®
{
TXT_CONTENT "Text3"
}
}
{
SEG_ID "Goodness" @
SEG_CONTENT
{
SEG_SEGMENT TYPE "BOLD"
SEG_CONTENT @
{
TXT_CONTENT "bold "
}
{
SEG_SEGMENT TYPE "UNDERLINED"
SEG_CONTENT
{
TXT CONTENT "bold underlined " @

}
} @
{
TXT_CONTENT "bold again"
}
} ®
®
1 20)
} @

@ This corresponds to the DDIF$_DDF_DESCRIPTOR item in the
DDIF$_DDF aggregate. This item is encoded as the handle of a
DDIF$_DSC aggregate which follows it in the structure.

® The DDIF$_DSC aggregate specifies the version number and product
information of the product that created the document.

3-11

Overview of DDIF
3.1 Document Content

3]

The DDIF$_DSC_PRODUCT_NAME item in the DDIF$_DSC
aggregate is encoded as an array of type character string. In this
example, there is only one array value specified: ISO_LATIN1 “Hand-
generated Standard DDIF Example”.

The items in the DDIF$_DHD aggregate are optional. In this example,
only the version number is indicated. The DDIF$_DHD_VERSION
item is encoded as an array of type character string. In this example,
a single array item is specified: ISO_LATIN1 “V0.1".

These segment-specific attributes are specified on the root segment
of the document; hence, they can be referenced at any point in the
document content. The attributes specified are “BOLD” (highlighted)
and “UNDERLINED” (underlined).

The bold attribute can be referenced using the label “BOLD”. It is
defined using a segment attributes (DDIF$_SGA) aggregate with
the text rendition item (DDIF$_SGA_TXT_RENDITION) specified as
DDIF$K_RND_HIGHLIGHT.

The underlined attribute can be referenced using the label
“UNDERLINED”. It is defined using a segment attributes (DDIF$_
SGA) aggregate with the text rendition item (DDIF$_SGA_TXT_
RENDITION) specified as DDIF$K_RND_UNDERLINE.

This right brace indicates the end of the definition of the segment-
specific attributes.

This marks the beginning of the content of the document. That is,
this marks the DDIF$_SEG_CONTENT item of the root segment of
the document. All of the document content is nested under this root
segment.

Segment “A” is the first segment nested under the root segment. This
segment specifies a segment-specific attribute of crossed-out, so that
all of its content will have a default attribute of crossed-out.

The first content aggregate in segment A is a text aggregate whose
content is the string “Text1”.

The second aggregate in segment A is a nested segment (B). This
segment references the defined attribute “BOLD”, and also specifies
segment-specific attributes of default and underlined. The content of
segment B is a text aggregate containing the string “Text2”.

This right brace marks the end of the nested segment B. Segment A
contains a third content aggregate — another text aggregate whose
content is “Text3”.

At this point, segment A and its content have been specified. This
line marks the beginning of the segment entitled “Goodness”. This
segment, like segment A, is nested under the root segment.

Segment Goodness contains a nested segment that does not have a
label but instead references the defined type BOLD. There are three
aggregates nested under this aggregate: a text content aggregate, a
nested segment, and another text content aggregate. The first text
content aggregate contains the string “bold ”. When this text is output,
it will appear bolded.

Overview of DDIF
3.1 Document Content

® The nested segment (nested under the segment referencing BOLD)

references the defined type UNDERLINED. The content of this

segment is a text aggregate containing the string “bold

underlined ”. When this text is output, it will appear bolded and

underlined.

@ This right brace ends the nested segment (nested under the segment

referencing BOLD). The last content aggregate of the segment

referencing BOLD is a text content aggregate containing the string

“bold again”. When this text is output, it will appear bolded.

This right brace ends the segment referencing BOLD.
This right brace ends the segment Goodness.
This right brace ends the root segment.

© 06 86

This right brace ends the document.

Figure 3-3 illustrates the DDIF document described by the previous

example.

Figure 3-3 lllustration of Inheritance Example Document

SGA E %
default E 2
underlined = T

TYD
UNDERLINED

|
SEG"B"

SEG ©
(ref. BOLD) k2

S ssSEses Co o

"Text2"

ZK-0283A-GE

3-13

3.2

3.2.1

3.2.2

Overview of DDIF
3.1 Document Content

The renditions of the various text segments would be as follows:

e Textl’s rendition list is { crossed-out }

¢ Text2’s rendition list is { crossed-out, highlighted, default, underlined }
e Text3’s rendition list is once again { crossed-out }

* The rendition of the “Goodness” segment would be as follows:
bold bold underlined bold again

In general, to form the current rendition for any segment, the receiving
software must process the list of renditions specified for the segments,
modifying its current rendition state in response to each rendition. The
“Goodness” segment illustrates the preferred method for using renditions:
define types for the renditions and nest the segments on a per-rendition
basis.

Document Layout

Document layout is defined as the manner in which document content
elements (graphics, text, and images) are arranged on a page or series of

pages.

The following sections summarize some of the typical approaches to layout
in document processing systems.

To specify the generic layout of a document, you must define the layout
parameters described in the following sections. Each of these parameters
corresponds to a DDIF aggregate type; these aggregate types are described
in Chapter 6. Note that generic layout descriptions can only be placed on
the root segment of a document. Generic layout descriptions placed on
segments other than the root segment are ignored. The same is true for
specific layout descriptions.

Page Description

The page description provides a page model in the form of either a single
page layout or a set of page layouts. If the page description is modeled
by a set of page layouts, the description also specifies the conditions
under which the different page layouts are used. In other words, if

a page description is defined using a set of varying page layouts, you
must also specify in the description which layout should be used under
which conditions. For example, you might have a page description that
consists of two actual page layouts: one for left-hand pages and one for
right-hand pages.

Page Set

3-14

The page set specifies one or more pages, one of which is selected based
on the current formatting state. Each page in the page set contains the
following information:

* A pointer to a page in the list of page layouts

Overview of DDIF
3.2 Document Layout

e The criteria for selection of that page

3.23 Page Layout

The page layout is used to describe a page, including such information as
the page size, what galleys are on the page, and any content specific to
that particular page. Note that this page layout syntax is used when you
are specifying both generic and specific layout.

3.24 Galley

The galley layout specifies the shape and attributes of a single galley. A
galley controls the flow of text along a series of parallel paths. These paths
are determined by a formatter based on the following information:

¢ The outline of the galley
* The height of the characters on the lines

* Other layout parameters such as leading (L.eading refers to the
distance between lines of type.)

Galleys are relative to either a page frame defined by the page layout
description, or to a floating frame. A galley will not be imaged when
selected for filling with text, but rather in the normal sequence in which
objects in the frame are imaged. A page frame and its contents are imaged
when the first galley on the page is selected.

3.2.5 Implementation of Layout Separation

The content of a DDIF-encoded document is stored in logical order — the
order in which the reader of the document would normally read it. The
content of a document laid out in a newspaper style, for example, would be
stored one article at a time, as opposed to having parts of the articles be
interspersed with one another as they are in the page-ordered final form.
The change in content order when the revisable form is converted to the
final form is performed by the formatter.

The logically ordered content of the document is preceded by a specification
of the generic and/or specific page descriptions. These are selected from
within the content, or are simply used in the specified sequence.

Layout parameters and attributes are isolated from other types of
attributes and from content, so a layout specification can be skipped
without the formatter even knowing the syntax of that specification. It is
therefore possible to display a DDIF document with complex galley-based
layouts on character-cell devices even if the encoding application used an
unrecognized layout specification.

The attributes that affect the layout of text (and floating frames) in the
context of a galley-based layout are isolated in two individual attributes:
wrap attributes and layout attributes.

3-15

Overview of DDIF
3.2 Document Layout

Wrap attributes let you specify parameters to control the process of
wrapping text at the margin, as well as specifying hyphenation attributes
and line format (centered, flush left, and so on). These attributes are
applicable even if the galleys specified for the document are not used.

Wrap attributes do not determine where the line break occurs; they

do not include margins or other dimensional parameters. Because

the wrap attributes are independent of the dimensions, they can be
applied when layout dimensions are discarded. For example, when

an application is presenting a compound document on a character-cell
device, the hyphenation limits and the line format still convey meaningful

3.25.1 Wrap Attributes
information.
3.25.2 Layout Attributes

Layout attributes, unlike the wrap attributes, include physical dimensions
that require a layout template as a frame of reference. Examples of such
dimensions include margins, indents, and tab stops. A formatter that

is not using the specified page layout templates cannot use the layout
attributes, and should replace them with attributes appropriate for the
page descriptions actually being used.

3.2.6 Content Streams in Layout

3-16

A given galley on a page accepts content only from certain streams. For
example, footnote galleys accept content only from the footnote stream.
Thus, while the footnote content is logically embedded within the content
of the paragraph that references it, it appears in the galley at the bottom
of the page, or even at the end of the chapter. Therefore, DDIF provides a
method to tag content elements by stream.

Once a content element is tagged by stream, a formatter can be instructed
to include only certain streams in the document layout, so that variants on
a document can be produced at the user’s option. For example, comments
on the document can be left out of production runs, while being included
in special review drafts.

Each stream type is identified by a label or tag. The types of streams that
exist for a document include:

* Document body content stream ($DB)
* Table of contents stream ($TOC)

* Index content stream ($IX)

¢ Footnote stream ($FN)

* Margin note stream ($MN)

¢ End note stream ($3EN)

Overview of DDIF
3.2 Document Layout

Elements that appear in both the table of contents and the document
body (for example, section heads) should be tagged for appearance in
two streams — the document body and the table of contents. When a
revisable document includes a table of contents, the table of contents is
contained in a segment with a computed content attribute that specifies
a table-of-contents generating function. The content of that segment does
not have the table of content stream ($TOC) tag, but rather the document
body ($DB) tag because it is part of the body of that document. If the
table of contents is regenerated, the contents of the table of contents
segment are discarded and regenerated from the $TOC-tagged elements
in the document. The same situation applies to indexes, except that index
elements often do not appear in the body of the document and therefore
are not part of that stream.

3-17

4

4.1

Overview of the CDA Toolkit

The CDA Toolkit routines enable you to write a DDIF-conforming
application without having to know the specifics of the DIGITAL Document
Interchange Format. This chapter provides an overview of the capabilities
of the CDA Toolkit, as well as a description of the terminology associated
with the Toolkit.

CDA Toolkit Routines Terminology

The definitions discussed in Chapter 3 are used in reference to the
DIGITAL Document Interchange Format. In the discussion of the CDA
Toolkit routines, the terminology listed in Table 41 is also used.

Table 4-1 Routines Terminology

Term Definition

Aggregate An in-memory structure that is used to pass compound
document data between the application and the Toolkit
routines. An aggregate corresponds to a manageable
unit of the compound document. Aggregates are typed
and self-describing; the type of an aggregate is indicated
by a symbolic constant. An aggregate can be a member
of an aggregate sequence, which can be traversed from
beginning to end. Aggregates are defined for such objects
as a document root, document descriptor, document header,
document segments, text content, and so on.

Attribute A presentation or processing characteristic.

Document An entire hierarchical structure in memory, created by the
CDA Toolkit routines.

Handle The identifier of an aggregate.

ltem The identifier of a specific unit of information stored in an

aggregate. The handle of an item is a symbolic constant
defined in the file DDIF$DEF.SDL.

Root aggregate An aggregate that represents the root of the in-memory
document hierarchy. It also contains context private to
the Toolkit routines. The type of the root aggregate is

DDIF$_DDF.

Segment A quantity of content that is set off from surrounding data by
a change in presentation or processing attributes.

Sequence A linked series of aggregates.

Stream An access path by which encoded compound document data

is transferred.

The CDA Toolkit routines are designed to simplify the creation and
manipulation of compound document data. The routines provided by
the Toolkit perform the following operations:

4-1

Overview of the CDA Toolkit
4.1 CDA Toolkit Routines Terminology

¢ File management

¢ Stream management

* Aggregate management
* Document conversion

* Item access

* Front end activation

The CDA Toolkit routines are discussed in the following sections.

4.2 File Management

4-2

The CDA Toolkit provides several routines to implement file management.
To open or create a compound document file, the CDA Toolkit provides
two routines: the OPEN FILE routine opens an existing compound
document file for input, and the CREATE FILE routine creates a new
compound document file for output. Each of these routines is discussed in
the following paragraphs.

The OPEN FILE routine opens an existing compound document file

for input and confirms that the contents of the file are valid compound
document data. Once the file is opened, the OPEN FILE routine returns
the file and stream handles (identifiers) for the opened file; these
handles must be used in all subsequent operations on the file or stream.
The OPEN FILE routine also creates a document root aggregate and
returns the root aggregate handle, which must be used in all subsequent
operations on that document root aggregate. You therefore do not have to
invoke the CREATE ROOT AGGREGATE routine after calling the OPEN
FILE routine.

The CREATE FILE routine creates a new compound document file for
output and prepares it to receive data from a compound document stream.
Once the new file is created, the CREATE FILE routine returns the

file and stream handles for the new document; these handles must be
used in all subsequent operations on the file or stream. Because the
CREATE FILE routine creates a new file, you must create a document root
aggregate (by a call to the CREATE ROOT AGGREGATE routine) prior
to a call to CREATE FILE; this root aggregate handle must be passed to
the CREATE FILE routine to identify the document being created. This
root aggregate handle must be used in all subsequent operations on that
document root aggregate.

The CLOSE FILE routine closes the currently open compound document
stream and file. In the case of an output file, the CLOSE FILE routine
writes any remaining buffered data to the output stream before closing the
compound document file.

The CDA Toolkit also provides several routines to simplify text file
management. On VMS systems, a standard text file has variable-length
records and CR carriage control.

Overview of the CDA Toolkit
4.2 File Management

The OPEN TEXT FILE routine opens a standard text file for input. On
VMS systems, a standard text file is any RMS file with variable-length
records and carriage return record attributes. You can then use the READ
TEXT FILE routine to read a line from a standard text file. On VMS
systems, the line that is read is the next RMS record.

The CREATE TEXT FILE routine creates a standard text file for output.
You can then use the WRITE TEXT FILE routine to write a line to this
standard text file. On VMS systems, the line becomes an RMS record.

The CLOSE TEXT FILE routine closes a standard text file. The handle of
the text file is invalid after a call to this routine.

4.3 Stream Management

Stream management routines are provided for application programs that
require additional control (not provided by the file management routines)
over the source or destination of a compound document stream. For
example, the stream management routines can be used when the source or
destination is not necessarily a file that resides on the host system.

The stream management routines are as follows:

* The OPEN STREAM routine opens a compound document stream for
input.

¢ The CREATE STREAM routine creates a compound document stream
for output.

¢ The CLOSE STREAM routine closes the specified stream and
invalidates the stream handle. In the case of an output stream,
this routine writes any buffered data before closing the stream.

* The FLUSH STREAM routine ensures that the data has been
physically transferred to the receiving medium by writing any buffered
data to the specified output stream.

An in-memory document exists independently of a stream. Once you
create an in-memory document, you can populate it either by reading
compound document data from a stream or by creating the aggregates
that make up the document. Once you populate the in-memory document,
you can write its data to a stream. The number of documents that can
exist simultaneously in memory is limited only by the amount of memory
available.

4.4 Root Aggregate Management

The first aggregate that must be created for a compound document is the
document root aggregate. If you are reading a compound document file,
you do not have to create a root aggregate explicitly because, when you
open a compound document file, the OPEN FILE routine automatically
creates a root aggregate and returns the root aggregate handle. However,
if you are opening a file for output using the CREATE FILE routine, you
must explicitly create an aggregate.

4-3

Overview of the CDA Toolkit
4.4 Root Aggregate Management

If you are reading or writing a file that is not a compound document,
you must explicitly create a document root aggregate before creating any
other aggregates. The document root aggregate is used to identify the
compound document and to begin the tree structure that contains all of
the aggregates that make up that compound document.

The CREATE ROOT AGGREGATE routine creates a document root
aggregate and returns its handle. This root aggregate handle must be
used to identify the compound document in all subsequent operations on
that compound document. The CREATE ROOT AGGREGATE routine
accepts a processing-options parameter that you can use to specify
processing options that remain in effect for the life of the document.
Processing options that you can specify include inheriting attributes,
retaining definitions, evaluating contents, and discarding information.

The DELETE ROOT AGGREGATE routine deletes a document root
aggregate and all of its substructure. It does not, however, delete
aggregates that were created with the root but not connected to it
physically in the tree. The handle of the root aggregate, as well as the
handle of any aggregate linked to the root aggregate either directly or
indirectly, is invalid after a call to this routine.

The CDA Toolkit provides routines to translate a root aggregate to a
DIGITAL Document Interchange Syntax (DDIS) type object identifier,

and to translate an object identifier to a root aggregate. The AGGREGATE
TYPE TO OBJECT ID routine translates a root aggregate type to an object
identifier; the OBJECT ID TO AGGREGATE TYPE routine translates a
DDIS object identifier to a root aggregate.

4.5 Aggregate Management

Note:

Once you have created the document root aggregate, you should use the
CREATE AGGREGATE routine to create aggregates of the following types:

¢ A document header aggregate (type DDIF$_DHD)
* A document descriptor aggregate (type DDIF$_DSC)
* A parent segment aggregate (type DDIF$_SEG)

These aggregates must be present in every compound document.

The CREATE AGGREGATE routine creates a new aggregate that contains
empty items. Once an aggregate is created, it can be filled or populated
using the STORE ITEM routine. For more information on the STORE
ITEM routine, see Section 4.6.

Along with the parent or root segment aggregate, you should also create
any generic type definition aggregates that you want to be available to
the entire document content. An example of generic types is illustrated
in Chapter 3. Once all of these aggregates are created, you can begin
creating the aggregates that contain the actual document content.

If an aggregate (A) contains an item whose value is the handle of
another aggregate (B), then the latter aggregate (B) is called

a subaggregate. That is, a subaggregate is connected to the
document hierarchy by storing its handle as an item in another

4.6

Overview of the CDA Toolkit
4.5 Aggregate Management

aggregate. For example, the generic layout item in the segment
aggregate contains the handle of the generic layout aggregate; the
generic layout aggregate is therefore a subaggregate.

The COPY AGGREGATE routine creates a copy of the specified aggregate.
This aggregate copy is assigned a unique aggregate handle and becomes
part of the document associated with the specified root aggregate. If the
specified aggregate is part of a sequence, only the aggregate specified,
rather than the entire sequence, is copied.

The DELETE AGGREGATE routine deletes an aggregate and all of its
substructure. If the aggregate being deleted is part of a sequence, it is
first cut from the sequence before being deleted. The aggregate handle of
the deleted aggregate, and the aggregate handles of any aggregates linked
to the deleted aggregate either directly or indirectly, are invalid after a call
to this routine.

The PRUNE AGGREGATE routine removes the next sequential document
content aggregate from an existing in-memory document and returns the
handle and type of the removed aggregate. This routine should be used
by the get-aggregate procedure that is invoked when a front end builds an
entire compound document in memory before returning its content. For
more information on writing converter front and back ends, see Chapter 5.

The CDA Toolkit also provides aggregate-structuring routines that
are used to scan and modify an aggregate sequence. These aggregate-
structuring routines provide the following capabilities:

* DPlace a new aggregate in a sequence
¢ Delete an aggregate from a sequence

¢ Scan all the aggregates in a sequence

The INSERT AGGREGATE routine inserts an aggregate into a sequence.
The position at which the aggregate is to be inserted is specified by
indicating the aggregate handle of the preceding aggregate in the
sequence. If the aggregate being inserted is the first aggregate in its
own sequence, then the entire sequence is inserted after the specified
aggregate and before the subsequent aggregate in the original sequence.
If the aggregate being inserted is part of a sequence, but is not the first
aggregate in the sequence, an error is returned.

The REMOVE AGGREGATE routine removes an aggregate that is part of
a sequence from that sequence. If the specified aggregate is not part of a
sequence, no operation is performed.

The NEXT AGGREGATE routine locates the next aggregate in a sequence.

Item Access

A compound document aggregate is a type of record or data structure.
Each aggregate contains certain items that identify that particular
instance of the aggregate. The items that are contained in each aggregate
are described in Chapter 6.

4-5

Overview of the CDA Toolkit

4.6 ltem Access

4-6

Figure 4-1 Document Segment Aggregate

DDIF$_SEG aggregate

DDIF$_SEG_ID
DDIF$_SEG_USER_LABEL
DDIF$_SEG_SEGMENT_TYPE
DDIF$_SEG_SPECIFIC_ATTRIBUTES
DDIF$_SEG_GENERIC_LAYOUT
DDIF$_SEG_SPECIFIC_LAYOUT
DDIF$_SEG_CONTENT

ZK-0284A-GE

For example, Figure 41 illustrates the structure of a segment aggregate
(type DDIF$_SEG) with all of its items present.

The item access routines are used to write, delete, and locate the items in
an aggregate. Each item in an aggregate can be read, modified, or erased
individually. Aggregate items can be of a number of data types, or can
contain handles of other aggregates, so that you can read an item that
contains an aggregate handle and then use that handle to read or modify
the subaggregate. Table 4-2 lists the possible item data types and their
meanings.

Table 4-2 Item Data Types

Data Type Meaning
Byte A byte. The length of the item buffer is always 1.
Boolean A byte representing a Boolean value. The length of the

item buffer is always 1. If the low bit of the value is
set, the value is true. If the low bit is clear, the value is

false.
Word A word. The length of the item buffer is always 2.
Longword A longword bit-encoded structure. The bits are

interpreted according to a defined structure. The
length of the item buffer is always 4.

Integer A longword integer. The length of the item buffer is
always 4.
Enumeration A longword integer. The allowed values of the integer

are defined by symbolic constants. The length of the
item buffer is always 4.

(continued on next page)

Overview of the CDA Toolkit
4.6 Iltem Access

Table 4-2 (Cont.) Item Data Types

Data Type Meaning

String A string of bytes. The length of the string is specified in
bytes.

Bit string A string of bits. The length of the item buffer is
expressed in bits rather than bytes.

DDIF$_xyz A longword aggregate handle to an aggregate of the

Character string

Variable

Content

Measurement enumeration

specified type. The length of the item buffer is always
4.

A string of bytes in a particular character set (for
example, ISO Latin1). The add-info parameter receives
the character set designator. The symbolic constants
for the character set designators are defined in module
CDASDEF.SDL.

The data type of the item is determined by a reference
to the value of the preceding enumeration item. A
variable type is always preceded by an enumeration
item that specifies the data type of the variable item.

A shorthand for any one of the following:

. DDIF$_SEG
. DDIF$_TXT
. DDIF$_GTX
. DDIF$_HRD
. DDIF$_SFT
. DDIF$_HRV
. DDIF$_SFV
.+ DDIF$_BEZ
. DDIF$_LIN

- DDIF$_ARC
. DDIF$_FAS
. DDIF$_IMG
. DDIF$_CRF
. DDIF$_EXT
- DDIF$ _PVT
. DDIF$_GLY

An enumeration that specifies the data type of an item
of DDIF type Measurement, which is encoded as an
integer or string. A DDIF Measurement type can either
specify a specific number of measurement units, or it
can specify the number of measurement units given by
the value of the referenced variable.

(continued on next page)

4-7

Overview of the CDA Toolkit

4.6 ltem Access

Table 4-2 (Cont.) Iltem Data Types
Data Type Meaning

AngleRef enumeration An enumeration that specifies the data type of an item
of DDIF type AngleRef, which is encoded as a floating
point or string. A DDIF AngleRef type can either specify
a constant angle value, measured in degrees, or it can
specify an angle value derived from the value of the
referenced variable.

Expression enumeration An enumeration that specifies the data type of an item
of DDIF type Expression, which is encoded as an
integer or string. A DDIF Expression type can either
specify a constant expression value, or it can specify
an expression value derived from the value of the
referenced variable.

Single-precision floating A VAX F_floating point value. The length of the buffer
is always 4.
Obiject identifier Two or more longwords that specify the value of the

DDIS type OBJECT IDENTIFIER. (DDIS is the DIGITAL
Document Interchange Syntax.) Each longword
specifies a single component of the object handle.

The length of the item buffer is expressed in bytes.

Binary relative time A binary relative time whose buffer length is always 16.

Document A longword aggregate handle that contains the root
aggregate handle of a subdocument.

DDIS encoding A string of bytes. The length of the string is specified in
bytes.

ltem change list A vector of longwords in which each longword contains

the item code of an item in a segment attribute
aggregate (DDIF$_SGA).

String with add-info A string of bytes that represents the value of the
DDIF type Tag, where standard tag values have been
defined. As a service to the application, the CDA
Toolkit provides encoding and decoding services for the
standard tags.

In addition, in the descriptions of the encodings of aggregate items, the
notation “Array of” indicates that the CDA Toolkit stores the item values
in an array. To fill this array, you must specify one item value at a time,
along with an aggregate index value. The initial aggregate index value is
0; you must increment this aggregate index each time you write an item
value into the item encoded as an array.

The notation “Sequence of” indicates that the value of an item can be

an aggregate sequence. A sequence is a linked list of aggregates of the
specified type. The value of the aggregate item that is encoded as a
sequence is actually the handle of an aggregate of the same type, and that
aggregate can also contain an item that is actually the handle of another
aggregate of that type.

Overview of the CDA Toolkit
4.6 ltem Access

The LOCATE ITEM routine determines the address of an item within

an aggregate. The STORE ITEM routine writes the contents of an item
in an aggregate, thereby filling in the contents of the aggregate. Each
DDIF aggregate and the items it contains is specified in Chapter 6. If the
aggregate item is indexed, the index specified must not exceed one more
than the number of existing items. If the item is of data type Variable, the
value of the item that determines the data type must have been previously
established.

Note that the STORE ITEM routine erases the previous item value,
unless the item is “aggregate-valued” and not empty. (An aggregate-valued
item is one in which the value of the aggregate is actually the handle

of another aggregate.) In the case of an item that is aggregate-valued
and not empty, calling the STORE ITEM routine causes the specified
aggregate to be inserted in sequence before the existing aggregate. If the
specified aggregate is the beginning of a sequence, the entire sequence is
inserted before the existing aggregate. If the specified aggregate is part
of a sequence but is not the first aggregate in the sequence, an error is
returned.

The ERASE ITEM routine erases (sets to empty) the contents of an item
within an aggregate. If you erase an item that is indexed, the index of
each subsequent item is decreased by 1. The GET ARRAY SIZE routine
determines the number of elements present in an array-valued aggregate
item.

4.7 Document Conversion

There are two different methods that you can use to perform document
conversion:

¢ You can read or write an entire document to or from a stream.

* You can read or write single aggregates to or from a stream.

Both of these methods accomplish the same end result; in general, the
second (incremental) method should be used when the characteristics of
the output document format do not require that the entire input document
be available in memory in order to complete the conversion.

The CDA Toolkit supplies corresponding routines to simplify both
document conversion methods. These routines are as follows:

Document Method Aggregate Method Function

CONVERT CONVERT Used by the back end to request the appropriate information

DOCUMENT AGGREGATE from the front end

GET DOCUMENT GET AGGREGATE Used by the front end to read the appropriate data from a
compound document file

PUT DOCUMENT PUT AGGREGATE Used by a back end to write the converted information to a

PRUNE POSITION

CONVERT POSITION

compound document file

Used by a viewer back end to determine current location in
the document

4-9

Overview of the CDA Toolkit
4.7 Document Conversion

Each of these routines is discussed in more detail in the following sections.

4.7.1 Document Transfer

The CONVERT DOCUMENT routine is used by a back end to invoke

a front end. The front end reads in the entire document so that, on
return from this routine, the entire compound document is present

in memory in the form of aggregates linked from the document root
aggregate. The CONVERT DOCUMENT routine accepts a front-end-
handle argument. This argument specifies the front end that will perform
the input processing.

If the input document is DDIF-encoded, the front end can invoke the
GET DOCUMENT routine to read the entire compound document from
the specified stream, create the appropriate aggregates, and insert them in
the hierarchical structure. (Note that a root aggregate must exist before
you call the GET DOCUMENT routine.) When a call to this routine is
completed, the entire document is present in aggregates linked from the
document root aggregate.

If the input document is encoded in some format other than DDIF, the
appropriate front end must perform its own processing to create the
necessary aggregates and insert them in the document structure in
memory. For more information on writing a front end, see Chapter 5.

The PRUNE POSITION routine returns the current position in and total
size of an in-memory document. This routine is used by viewer back ends
that provide scroll bar support to indicate the current position in the
document.

The PUT DOCUMENT routine is used by a back end that is writing
DDIF-encoded output. This routine traverses an existing complete
document hierarchy and writes the information in the aggregates to
the compound document output stream. The document is unchanged by
this operation. If, after a call to this routine, you no longer require the
in-memory document, you should call the DELETE ROOT AGGREGATE
routine to destroy the document and all its substructure.

If the selected output format is not DDIF, the appropriate back end must
perform its own processing to convert the in-memory document to the
specified format and write the information to the output stream. For more
information on writing a back end, see Chapter 5.

4.7.2 Aggregate Transfer

4-10

The aggregate transfer routines let you incrementally process a compound
document. Your application regains control after each header or content
aggregate and its subaggregates are read or written.

The CONVERT AGGREGATE routine is used by a back end to invoke a
front end. The front end reads a single aggregate and its subaggregates
at one time so that, on return from this routine, a single aggregate and

its subaggregates, not the entire document, are present in memory at
any given time. The CONVERT AGGREGATE routine reads the next

Note:

Overview of the CDA Toolkit
4.7 Document Conversion

aggregate from the specified front end module; this returned aggregate is
not part of a sequence. The CONVERT AGGREGATE routine accepts a
front-end-handle argument; this argument specifies the front end that
will perform the input processing.

If the input document is DDIF-encoded, the front end can invoke the GET
AGGREGATE routine to read the next aggregate from the document.
(Note that the aggregate returned is not part of a sequence.) If the input
document is encoded in some format other than DDIF, the appropriate
front end must perform its own processing to create the necessary
aggregate and fill in the appropriate items. For more information on
writing a front end, see Chapter 5.

The GET AGGREGATE routine reads the aggregates in a document in a
hierarchical fashion. That is, whenever GET AGGREGATE encounters a
segment, it descends to the next level of hierarchy and reads the contents
of that segment before reading the remaining contents of the parent
segment. The GET AGGREGATE routine only returns to the parent
segment’s level of hierarchy when it encounters a DDIF$_EOS (end of
segment) aggregate to indicate that the nested segment is completed.
These rules can be generalized as follows:

¢ If the aggregate being read is a content aggregate, the aggregate is
simply returned and the next aggregate returned is the next aggregate
in the segment.

e If the aggregate being read is a segment aggregate (DDIF$_SEG), the
content nested in the segment is returned, using these same ordering
rules, followed by a dummy DDIF$_EOS (end of segment) aggregate
to indicate the end of the nested segment. Once the nested segment
and its content have been returned and the end of the segment has
been indicated, the next aggregate read is the next aggregate in the
(current) segment.

All segments must be completed by a DDIF$_EOS aggregate.

The CONVERT POSITION routine returns the current position in and
total size of the input stream being processed. This routine is used by
viewer back ends providing scroll bar support that indicates the current
position of the data being viewed in the document.

The PUT AGGREGATE routine writes one or more aggregates to the
specified compound document stream. (If the aggregate being written is
part of a sequence, the entire sequence is written.) The aggregate that

is written is unchanged by this operation. If the aggregate is no longer
required after you call the PUT AGGREGATE routine, you should call the
DELETE AGGREGATE routine to destroy the aggregate.

If the selected output format is not DDIF, the appropriate back end

must perform its own processing to convert the aggregates in the in-
memory document to the specified format and write each aggregate and
its subaggregates to the output stream. For more information on writing a
back end, see Chapter 5.

4-11

Overview of the CDA Toolkit
4.7 Document Conversion

When you are incrementally writing a document, you must invoke the
ENTER SCOPE and LEAVE SCOPE routines to properly structure the
output stream as aggregates are output. The ENTER SCOPE routine
opens a document scope for incremental writing. The scope-code
parameter to this routine lets you specify the type of scope being opened:

Document scope DDIF$K_DOCUMENT_SCOPE
Content scope DDIF$K_CONTENT_SCOPE
Segment scope DDIF$K_SEGMENT_SCOPE

The LEAVE SCOPE routine completes a scope that was being
incrementally written.

If you are incrementally writing a document (that is, writing the document
one aggregate at a time), you should perform the following steps to ensure
that the output stream is properly structured:

1 Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

Write an aggregate of type DDIF$_DSC.
Write an aggregate of type DDIF$_DHD.

Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

5 Write a root segment of type DDIF$_SEG. The root segment is a top
level segment that contains the document content. This document
content can consist of content aggregates as well as nested segments.
If the document contains only one segment, that segment is the
root segment and it contains all of the document content. If the
document contains multiple segments, they must be nested within a
root segment.

You can use either of the methods outlined in the following steps to
create the root segment. Because the first method requires that the
entire segment be completed before calling the PUT AGGREGATE
routine, once you select that method you must continue to use that
method while writing all of the document content. If you select

the second method, you can use either method to write any nested
segments. Again, if while writing nested segments, you select the first
method, you must continue to use that method, and so on.

a. Call the PUT AGGREGATE routine with a completed aggregate of
type DDIF$_SEG, whose DDIF$_SEG_CONTENT item references
a sequence of aggregates that make up the entire content for that
segment, including any nested segments. Using this method, you
need only call the PUT AGGREGATE routine once, because the
DDIF$_SEG aggregate written in the call to PUT AGGREGATE is
already completely populated.

b. Call the ENTER SCOPE routine, specifying scope-code as
DDIF$K_SEGMENT_SCOPE, with a completed aggregate of type
DDIF$_SEG whose DDIF$_SEG_CONTENT item is empty. You
can then call the PUT AGGREGATE routine for each aggregate
that makes up the segment content, in order. Once that segment
and all its nested segments have been output, call the LEAVE

4-12

4.8

Overview of the CDA Toolkit
4.7 Document Conversion

SCOPE routine, specifying scope-code as DDIF$K_SEGMENT _
SCOPE, to complete that segment.

6 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

7 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K _
DOCUMENT_SCOPE.

CDA Converters

The OPEN CONVERTER routine activates a front end module that
processes files of a specified format. This format can be the same or

a different format from that of the file currently being processed. Any
processing options that were specified to the CONVERT routine for the
document format are retrieved and appended to the item list that is
specified for this routine.

4-13

5 Writing Converter Front and Back Ends

As described in Chapter 2, the CDA Converter actually comprises the
converter kernel and a collection of front and back ends that process the
supported input and output file-encoding formats. This chapter describes
the techniques involved in writing converter front ends and back ends.

51 Document Conversion

Document conversion is accomplished by using the DIGITAL Document
Interchange Format. The CDA Converter reads the input file and
translates it to a CDA in-memory format, which is then translated to
the specified output format. This conversion can be accomplished using
either of two methods:

¢ In document method conversion, the entire document is read into
memory before being converted.

* In aggregate (incremental) method conversion, each aggregate (along
with its subaggregates) is converted individually so that, at any given
time, only a few aggregates are available in memory.

Regardless of which method you use to perform document conversion, front
ends and back ends convert a document of the specified input format to a
document of the specified output format, using DDIF as the intermediate
(in-memory) format. In general, front and back ends should use the
incremental conversion method when the characteristics of the output
document format are such that the entire input document does not have to
be available in memory in order to be converted.

The basic steps involved in document conversion are as follows:

1 The user invokes the converter by issuing either the
CONVERT/DOCUMENT DCL command or a call to the CONVERT
routine. Regardless of which interface is used, the initial steps in the
conversion process are performed by the converter.

2 The converter kernel invokes the main entry point in the front end
(DDIF$READ_format) so that the front end is initialized and an input
file or stream is opened.

3 The converter kernel then calls the main entry point in the appropriate
back end (DDIF$WRITE_format) so that an output stream (and
possibly an output file) is created.

4 The back end calls the converter kernel and requests information
(either the entire document or an aggregate from the document) from
the front end.

5.2

Writing Converter Front and Back Ends
5.1 Document Conversion

In the aggregate (incremental) conversion method, the following
steps must be performed to actually translate the input document
to the specified output format:

¢ The back end calls the CONVERT AGGREGATE routine to
request an aggregate.

¢ The converter kernel calls the front end get-aggregate entry
point in the front end to retrieve the requested aggregate.

* The front end get-aggregate routine reads enough information
from the input stream to create a valid DDIF aggregate. This
aggregate is then returned to the converter kernel.

* The converter kernel passes control, and the requested
aggregate, to the back end.

* The back end translates the aggregate data to the specified
output format and writes the information to the output
stream.

The back end repeats these steps until the converter kernel returns
an end-of-document status. The back end then closes the output
stream, performs cleanup operations, and passes control to the
converter kernel.

In the document conversion method, a single call to the CONVERT
DOCUMENT routine performs all of the steps outlined in a. On
return from a call to this routine, the entire document is available
in memory. The back end translates the document data to the
specified output format and writes the information to the output
stream.

The converter kernel calls the close entry point in the front end. The
front end then closes the input stream, performs cleanup operations,
and returns control to the converter kernel.

The converter kernel performs final cleanup operations and returns
control to its caller (the command line interface).

Figure 5-1 illustrates the basic flowchart of document conversion. The
following sections discuss some programming guidelines that you should
follow when writing front and back ends.

Front End

5-2

Each front end must meet certain criteria in order to work properly with
the CDA Converter Kernel and with the supported back ends. Some of the
recommendations that should be followed in order to ensure cooperation
between the front end, kernel, and back end are as follows:

To minimize memory usage, you should use the aggregate conversion
method unless the desired document output format is such that the
entire document must be in memory in order for the conversion to be
performed.

Writing Converter Front and Back Ends
5.2 Front End

Figure 5-1 Document Conversion Flowchart

Converter Kernel
Start

Call
v CDASREAD _ format

Front end intialized All steps within this area
Input stream (file) open

Root aggregate created 8°r/'f SggﬁvtgF?Tca"(t)%UMENT
D D
using CDASCREATE _ $ -

ROOT _AGGREGATE ol
L o CDASWRITE_format

Front End Back End

il e

Call get aggregate Call CDA$CONVERT.
entry point in front end AGGREGATE

Read data from input
stream and translate
to DDIF aggregate

reached the end Translate aggregate to
of the document? output format and write
to the output stream

Es+

Call close entry P Close output stream
¥ pointinfrontend |~ Perform cleanup

Close input file
Perform cleanup

Perform cleanup
L—-———b Return control to CLI

v
Converter Kernel
End

ZK-0285A-GE

¢ You should ensure that the front end is reentrant so that multiple
front ends can be invoked at one time.

You should use the C programming language to develop the front

and back ends, thus providing ease of portability between operating
systems.

In addition, you must follow the predefined formats for the front end entry
points as outlined in the following sections.

5-3

5.2.1

Writing Converter Front and Back Ends

5.2 Front End

DDIF$SREAD_format Entry Point

The DDIF$READ_format entry point is the initial entry point in the front
end. This routine initializes the conversion process and establishes any
special processing information for the front end. The term format in the
entry point name refers to the name of the document format that is read
by this particular front end. For example, the entry point for the Text
front end is DDIF$READ_TEXT.

The main entry point for a front end must have the following format:

DDIF$SREAD_format standard-item-list
,converter-context ,front-end-context
,get-aggregate-procedure
,get-position-procedure
,close-procedure

The arguments are defined as follows:

standard-item-list

VMS usage: item_list 2

type: record

access: read only

mechanism: by reference, array reference

An item list that identifies the document source and may also contain

options to control processing. The standard-item-list argument is the
address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length

buffer address

To terminate the item list, you must specify the final entry or longword as
zero, Valid code values for the items in the front end standard-item-list
are as follows:

* CDA$_INPUT_FILE
The address and length of the file specification of the input document.
e CDA$_INPUT DEFAULT

The address and length of a string that specifies the default input file
type. To simplify the porting of applications, the string should consist
of only a file type in lowercase characters. If this parameter is omitted,
the front end must supply an appropriate default file specification.

* CDA$_INPUT_PROCEDURE

The address of a user get procedure that provides input. The item list
length field must be set to 0. The input procedure must conform to the
requirements for a user get routine. The calling sequence for a user
get routine is defined in Section 5.3.

Writing Converter Front and Back Ends
5.2 Front End

* CDAS$_INPUT_PROCEDURE_PARM

The address of a longword parameter to the 1nput procedure. The item
list length field must be set to 4.

* CDA$_INPUT_POSITION_PROCEDURE

The parameter is the address of a procedure that provides position
information. The item-list length field must be set to 0. The get-
position procedure is specified in Section 5.2.3.

* CDA$_PROCESSING_OPTION

The address and length of a string that contains an option to control
processing. The format name and leading spaces and tabs have been
removed from the string. This item code may occur more than once in
the item list.

Either the CDA$_INPUT_FILE item or the CDA$_INPUT_PROCEDURE
item, but not both, must occur once in the item list. If the CDA$_INPUT_
PROCEDURE item is specified, then a single value for CDA$_INPUT_
PROCEDURE_PARM can also be specified.

converter-context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Converter context required to call the OPEN CONVERTER routine. The
converter-context argument is the address of an unsigned longword that
contains this context.

front-end-context

VMS usage: context

type: longword (unsigned)

access: write only

mechanism: by reference

Receives a front-end-defined value that identifies this particular instance
of the front end. The front-end-context argument is the address of an
unsigned longword that receives this context. This value is returned to
the get-aggregate-procedure and the close-procedure arguments
described later. All writable memory used by the front end must be
allocated from dynamic memory and located by reference to this value.

get-aggregate-procedure

VMS usage: procedure

type: procedure entry mask

access: write only

mechanism: by reference

Receives the address of the get-aggregate routine. The get-aggregate-
procedure argument receives the address of this procedure entry
mask. The calling sequence for the get-aggregaie routine is described
in Section 5.2.2.

5-5

Writing Converter Front and Back Ends

5.2 Front End

get-position-procedure

VMS usage: procedure

type: procedure entry mask

access: write only

mechanism: by reference

Receives the address of the get-position routine. The get-position-
procedure argument receives the address of this procedure entry

mask. The calling sequence for the get-position routine is described in
Section 5.2.3.

close-procedure

VMS usage: procedure

type: procedure entry mask

access: write only

mechanism: by reference

Receives the address of the close routine. The close-procedure argument

receives the address of this procedure entry mask. The calling sequence
for the close routine is described in Section 5.2.4.

The possible status codes that DDIF$READ_format can return are either
CDA$_NORMAL or any front end-specific error conditions.

5.2.2 Get-Aggregate Entry Point

5-6

The get-aggregate routine returns the next aggregate in the document

to the converter kernel. Depending on the conversion method used, the
get-aggregate routine either creates and populates the next document
content aggregate (see Section 5.2.6.1) or it reads the next aggregate
from the in-memory document (see Section 5.2.5.2). In either case, the
returned aggregate must not be part of a sequence, and the DDIF$_SEG_
CONTENT item of a DDIF$_SEG aggregate must be empty; the content
must be returned one aggregate at a time followed by a DDIF$_EOS (end
of segment) aggregate.

The call format for the get-aggregate routine is as follows:

get-aggregate-procedure front-end-context ,aggregate-handie
,aggregate-type

The arguments for this entry point are defined as follows:

front-end-context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Context returned from DDIF$READ_format. The front-end-context
argument is the address of an unsigned longword that contains this
context. Typically, this argument is used to specify the type of content
aggregate to be created by the get-aggregate routine.

Writing Converter Front and Back Ends
5.2 Front End

aggregate-handle

VMS usage: identifier

type: longword (unsigned)

access: write only

mechanism: by reference

Receives the handle of the created and populated aggregate. The
aggregate-handle argument is the address of an unsigned longword
that receives this aggregate handle. This handle must be used in all
subsequent operations on that aggregate.

aggregate-type

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. If
the aggregate is of type DDIF$_EOS (end of segment), aggregate-handle

is 0.

The possible status codes that the get-aggregate routine can return are as
follows:

CDA$_NORMAL Normal successful completion.

CDA$_ENDOFDOC End of document.

The get-aggregate routine can also return any front end-specific error
conditions. Note that the get-aggregate routine must return the status
CDAS$_ENDOFDOC when the document has been completely transferred.

5.2.3 Get-Position Entry Point

The get-position routine returns the current position in and total size of
the current data stream. The call format for this routine is as follows:

get-position-procedure front-end-handle ,stream-position
,stream-size

The arguments for this entry point are defined as follows:

front-end-handle

VMS usage: identifier

type: longword (unsigned)

access: read only

mechanism: by reference

Identifier of the front end. The front-end-handle argument is the
address of an unsigned longword that contains this handle. The front
end handle is returned by DDIF$READ_format.

5-7

Writing Converter Front and Back Ends

5.2 Front End

stream-position

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

stream-size

VMS usage: longword_unsigned

type: longword (unsigned)

access: write only

mechanism: by reference

Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

5.2.4 Close Entry Point

The close routine is used to terminate the operation of a front end
by closing all open files and releasing all dynamic memory and other
resources that have been allocated by the front end.

The call format for a close procedure is as follows:
close-procedure front-end-context
The argument for this entry point is defined as follows:

front-end-context

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Context returned by DDIF$READ_format. The front-end-context

argument is the address of an unsigned longword that contains this
context. This context must specify the input file or stream to be closed.

The possible status codes that the close routine can return are either
CDA$_NORMAL or any input converter-specific error conditions.

5.2.5 Front End Document-Method Conversion

5-8

When a front end performs document conversion by reading the entire
document into memory, it typically follows these steps:

1 After being invoked by the CDA Converter Kernel, the front end
performs the following initialization steps:

a. Allocates a context block that stores pertinent information in
dynamic memory. The context block typically stores information
such as file, stream, and root aggregate handles, status, buffers,
and other information extracted from the processed item list.

Writing Converter Front and Back Ends
5.2 Front End

b. Processes the item list supplied by the standard-item-list
argument to the CONVERT routine.

¢. Processes any processing options specified.
Opens an input file.

Creates the document root aggregate (by calling the CREATE
ROOT AGGREGATE routine).

f. Reads data from the input stream and creates the entire document
in memory.

g. Closes the input stream (and, if applicable, the input file).
At this point, the entire document is in memory.

2 When the converter kernel invokes the get-aggregate entry point in
the front end, the front end uses the PRUNE AGGREGATE routine
to read each aggregate, pass it to the converter kernel (and thus to
the back end), and remove it from the in-memory document after it
has been processed. This step is repeated until the entire document is
converted.

3 Upon completion of document conversion, the front end deletes the root
aggregate from the in-memory document and deallocates the context
block, and then returns control to the converter kernel.

The following sections discuss in more detail the steps that should be
performed in each entry point of the front end.

5.2.5.1

DDIF$READ_format Routine

In order to initialize a document-method conversion, the DDIF$READ_
format routine must first process the user-supplied item list, storing all
pertinent information in the context block. The item list structure that

is used to pass this information between the front end, back end, and the
kernel is created by the CDA Converter Kernel; this structure contains the
following fields:

e CDA$W_ITEM_LENGTH specifies the length of the item.

e CDA$W_ITEM_CODE specifies the item code, selected from the list
specified in Section 5.2.1.

¢ CDA$W_ITEM_ADDRESS specifies the address of the item.

These fields are defined in the file CDA$DEF.SDL.

In addition, the DDIF$READ_format routine must process any specified
processing options that the user selects for this conversion. If the format
of the input file is not DDIF or Text, the front end must supply its own file-
opening capability, typically through the use of the RMS $OPEN service,
or the open C run-time library routine or equivalent language statement.

It is also recommended that the DDIF$READ_format routine define values
for at least the following aggregate items:

e DDIF$_DSC_PRODUCT_IDENTIFIER specifies the registered facility
mnemonic for the product that encoded the document.

5-9

Writing Converter Front and Back Ends

5.2 Front End

¢ DDIF$_DSC_PRODUCT_NAME specifies the name of the product that
encoded the document.

The DDIF$READ_format routine must call the CREATE ROOT
AGGREGATE routine to create the document root aggregate. In the case
of document-method conversion, the DDIF$READ_format routine must
also create the DDIF$_DSC, DDIF$_DHD, and DDIF$_SEG aggregates
before reading the entire document from the input stream and placing it in
memory. Once the entire document is in memory, the DDIF$READ_format
routine must close the input stream (and, if applicable, the input file).
Again, if the format of the input file is not DDIF or Text, the DDIF$READ_
format routine must supply its own file-closing capability, typically through
the use of the RMS $CLOSE service, or the close C run-time library
routine or equivalent language statement. At this point, control passes
back to the converter kernel.

A front end should create aggregates on demand, rather than first creating
the entire document in memory. However, if the entire document must

be available in memory in order for the conversion to take place, the get-
aggregate routine must use the PRUNE AGGREGATE routine to return
the next content aggregate from the in-memory document. The PRUNE
AGGREGATE routine removes the next sequential document content
aggregate from an existing in-memory DDIF document and returns the
aggregate identifier and type.

The get-position routine provides a method for a back end to determine the
total size of the current input stream, as well as to determine the current
position within the stream. This routine is useful for viewer back ends
that provide a scroll bar indicating the current position in the document

5.25.2 Get-Aggregate Routine

5.2.5.3 Get-Position Routine
being viewed.

5.25.4 Close Routine

In document-method conversion, the input file or stream has already been
closed by the DDIF$READ_format routine. Therefore, the close routine
simply performs regular cleanup operations and returns control to the
CDA Converter Kernel.

5.2.6 Front End Aggregate-Method Conversion

5-10

When a front end performs document conversion by reading each
aggregate into memory, it typically follows these steps:

1 After being invoked by the CDA Converter Kernel, the front end
performs the following initialization steps:

a. Allocates a context block that stores pertinent information in
dynamic memory. The context block typically stores information
such as file, stream, and root aggregate handles, status, buffers,
and other information extracted from the processed item list.

b. Processes the item list supplied by the standard-item-list
argument to the CONVERT routine.

Writing Converter Front and Back Ends
5.2 Front End

€. Processes any processing options specified.
Opens an input file.

Creates the document root aggregate (by calling the CREATE
ROOT AGGREGATE routine).

2 When the kernel invokes the get-aggregate entry point in the front end,
the front end reads enough information from the input file to complete
a single content aggregate and its subaggregates. The front end then
creates the appropriate aggregates, fills in the required information,
and passes the completed aggregate back to the kernel. In this way,
only a few aggregates at a time are in memory.

3 Once all of the information from the input file has been read and
converted to the CDA in-memory format, the front end closes the input
stream (and file, if appropriate), deallocates the context block, and
returns control to the CDA Converter Kernel.

In order to initialize an aggregate-method conversion, the DDIF$READ_
format routine must first process the user-supplied item list, storing all
pertinent information in the context block. The item list structure that

is used to pass this information between the front end, back end, and
kernel is created by the CDA Converter Kernel; this structure contains the
following fields:

* CDA$W_ITEM_LENGTH specifies the length of the item.

* CDA$W_ITEM_CODE specifies the item code, selected from the list
specified in Section 5.2.1.

¢ CDA$W_ITEM_ADDRESS specifies the address of the item.

These fields are defined in the file CDA$DEF.SDL.

In addition, the DDIF$READ_format routine must process any specified
processing options that the user selected for this conversion. If the format
of the input file is not DDIF or Text, the front end must supply its own file-
opening capability, typically through the use of the RMS $OPEN service,
or the open C run-time library routine or equivalent language statement.

The DDIF$READ_format routine should also define values for at least the
fol