

VMS Compound Document
Architecture Manual

Order Number: AA-MG30A-TE

December 1988

This manual describes the DIGITAL Compound Document Architecture
and the tools that support it.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA
DDIF
DEC
DECnet
DECUS
DECwindows
DIGITAL
LN03

MASS BUS
PrintServer 40
Q-bus
ReGIS
ULTRIX
UNIBUS
VAX
VAXcluster

VAX RMS
VAXstation
VMS
VT
XUI

Postscript is a registered trademark of Adobe Systems, Inc.

ZK4737

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LN03 laser
printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xx iii

CHAPTER 1 INTRODUCTION 1-1

1.1 COMPOUND DOCUMENTS 1-1

1.2 OVERVIEW OF THE COMPOUND DOCUMENT ARCHITECTURE 1-2
1.2.1 The DIGITAL Document Interchange Format 1-3
1.2.2 The CDA Toolkit 1-3
1.2.3 The CDA Converter Architecture 1-3

1.3 DOCUMENT PROCESSING CONCEPTS 1-4
1.3.1 Document Structure 1-4
1.3.2 Document Layout 1-4
1.3.3 Logical Structure and Layout 1-6
1.3.4 Structured and Unstructured Markup Systems 1-6
1.3.5 Interactive and Batch Processing 1-7

1.4 SEPARATION OF LAYOUT FROM CONTENT 1-7
1.4.1 Replacement of Layout 1-7

CHAPTER2 CDA CONVERTER ARCHITECTURE 2-1

2.1 CDA CONVERTER 2-1
2.1.1 Components of a Converter 2-2
2.1.2 DCL CONVERT/DOCUMENT Command 2-3
2.1.3 CONVERT Routine 2-4

2.2 DDIF VIEWER 2-7
2.2.1 DCL VIEW Command 2-7

2.3 INPUT FORMATS 2-9
2.3.1 DDIF Front End 2-9
2.3.1.1 Data Mapping • 2-9
2.3.1.2 Data Loss • 2-9

v

Contents

2.3.1.3 External File References • 2-9
2.3.1.4 Document Syntax Errors • 2-9
2.3.2 Text Front End
2.3.2.1 Data Mapping • 2-10
2.3.2.2 Data Loss • 2-10
2.3.2.3 External File References • 2-10
2.3.2.4 Document Syntax Errors • 2-10

2.4 OUTPUT FORMATS
2.4.1 DDIF Back End
2.4.1.1 Data Mapping • 2-11
2.4.1.2 Data Loss • 2-11
2.4.2 Text Back End
2.4.2.1 Data Mapping • 2-11
2.4.2.2 Data Loss • 2-11
2.4.2.3 Processing Options • 2-11
2.4.3 Postscript Back End
2.4.3.1 Data Mapping • 2-11
2.4.3.2 Data Loss • 2-12
2.4.3.3 Processing Options • 2-12
2.4.3.4 Paper Size Processing Option • 2-12
2.4.3.5 Paper Height Processing Option • 2-13
2.4.3.6 Paper Width Processing Option • 2-13
2.4.3.7 Top Margin Processing Option • 2-13
2.4.3.8 Bottom Margin Processing Option • 2-13
2.4.3.9 Left Margin Processing Option • 2-13
2.4.3.10 Right Margin Processing Option • 2-13
2.4.3.11 Paper Orientation Processing Option • 2-14
2.4.3.12 Eight Bit Output Processing Option • 2-14
2.4.3.13 Output Buffer Size Processing Option • 2-14
2.4.3.14 Soft Directives Processing Option • 2-14
2.4.3.15 Word Wrap Processing Option • 2-14
2.4.3.16 Page Wrap Processing Option • 2-15
2.4.3.17 Layout Processing Option • 2-15
2.4.4 Analysis Back End

CHAPTER 3 OVERVIEW OF DDIF

vi

3.1

3.1.1
3.1.2
3.1.3
3.1.4

DOCUMENT CONTENT

Document Hierarchy

Document Root
Document Descriptor
Document Header

2-10

2-10
2-10

2-11

2-11

2-15

3-1

3-1
3-2
3-3
3-4
3-4

Contents

3.1.5 Root Segment 3-4
3.1.5.1 Text Content • 3-5
3.1.5.2 Graphics Content • 3-5
3.1.5.3 Image Content• 3-5
3.1.5.4 Computed Content • 3-5
3.1.5.5 Restricted Content• 3-6
3.1.5.6 Private Data • 3-6
3.1.6 Relationships in Revisable Documents 3-6
3.1.6.1 Attribute Inheritance • 3-8
3.1.6.2 Generic Types • 3-8
3.1.6.3 Generic Content • 3-8
3.1.6.4 References to Generic Types • 3-9
3.1.6.5 References to Generic Content • 3-9
3.1.7 Example of Document Content 3-9

3.2 DOCUMENT LAYOUT 3-14
3.2.1 Page Description 3-14
3.2.2 Page Set 3-14
3.2.3 Page Layout 3-15
3.2.4 Galley 3-15
3.2.5 Implementation of Layout Separation 3-15
3.2.5.1 Wrap Attributes • 3-16
3.2.5.2 Layout Attributes • 3-16
3.2.6 Content Streams in Layout 3-16

CHAPTER 4 OVERVIEW OF THE CDA TOOLKIT 4-1

4.1 CDA TOOLKIT ROUTINES TERMINOLOGY 4-1

4.2 FILE MANAGEMENT 4-2

4.3 STREAM MANAGEMENT 4-3

4.4 ROOT AGGREGATE MANAGEMENT 4-3

4.5 AGGREGATE MANAGEMENT 4-4

vii

Contents

4.6

4.7
4.7.1
4.7.2

4.8

CHAPTERS

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.5.1
5.2.5.2
5.2.5.3
5.2.5.4
5.2.6
5.2.6.1
5.2.6.2
5.2.6.3

5.3

5.4
5.4.1
5.4.2

viii

ITEM ACCESS

DOCUMENT CONVERSION
Document Transfer
Aggregate Transfer

CDA CONVERTERS

WRITING CONVERTER FRONT AND BACK ENDS

DOCUMENT CONVERSION

FRONT END
DDIF$READ_format Entry Point
Get-Aggregate Entry Point
Get-Position Entry Point
Close Entry Point
Front End Document-Method Conversion

DDIF$READ_format Routine • 5-9
Get-Aggregate Routine • 5-10
Get-Position Routine • 5-10
Close Routine • 5-10

Front End Aggregate-Method Conversion
Get-Aggregate Routine • 5-12
Get-Position Routine • 5-12
Close Routine • 5-13

USER-SUPPLIED INPUT PROCEDURES

BACK END ROUTINE
DDIF$WRITE_format Entry Point
User-Supplied Output Procedures

4-5

4-9
4-10
4-10

4-13

5-1

5-1

5-2
5-4
5-6
5-7
5-8
5-8

5-10

5-13

5-14
5-14
5-17

Contents

CHAPTERS DDIF STRUCTURES 6-1

6.1 DDIF DOCUMENT STRUCTURE OVERVIEW 6-1

6.2 GENERIC AGGREGATE ITEMS 6-2

6.3 DOCUMENT ROOT AGGREGATE 6-2

6.4 DOCUMENT DESCRIPTOR 6-3

6.5 DOCUMENT HEADER 6-4

6.6 DOCUMENT CONTENT 6-6
6.6.1 Content Categories 6-8
6.6.2 Segment Tags 6-9
6.6.3 Presentation Attributes of Content 6-9

6.7 TEXT CONTENT 6-9
6.7.1 Latin1 Text Content 6-10
6.7.2 General Text Content 6-10

6.8 DIRECTIVES 6-11
6.8.1 Hard Directive 6-11
6.8.2 Soft Directive 6-11
6.8.3 Directive Values 6-12
6.8.4 Hard Value Directive 6-13
6.8.5 Soft Value Directive 6-14

6.9 BEZIER CURVE CONTENT 6-15

6.10 POLYLINE CONTENT 6-16

6.11 ARC CONTENT 6-18

6.12 FILL AREA SET CONTENT 6-20

ix

Contents

6.13 IMAGE CONTENT 6-21

6.14 CONTENT REFERENCE AGGREGATE 6-22

6.15 RESTRICTED CONTENT 6-22
6.15.1 External (POL) Content 6-22
6.15.2 Private Content 6-24

6.16 LAYOUT GALLEY 6-25

6.17 EXTERNAL REFERENCE 6-28

6.18 IMAGE DATA UNIT 6-30

6.19 COMPOSITE PATH 6-32

6.20 SEGMENT AITRIBUTES 6-35
6.20.1 General Segment Attributes 6-35
6.20.2 Computed Content Attributes 6-37
6.20.2.1 Copied and Remote Computed Content • 6-38
6.20.2.2 Variable Computed Content • 6-38
6.20.2.3 Cross-Reference Computed Content • 6-38
6.20.2.4 Function Computed Content • 6-38
6.20.3 Structure Attributes 6-39
6.20.4 Language 6-39
6.20.5 Legend 6-40
6.20.6 Measurement 6-40
6.20.7 Alternate Presentation 6-41
6.20.8 Layout 6-41
6.20.8.1 Galley-Based Layout • 6-42
6.20.8.2 Path-Based Layout • 6-42
6.20.8.3 Position-Relative Layout • 6-45
6.20.8.4 Text Position • 6-46
6.20.9 Font Definitions 6-47
6.20.10 Pattern Definitions 6-47
6.20.11 Path Definitions 6-47
6.20.12 Line-Style Definitions 6-47
6.20.13 Content Definitions 6-47
6.20.14 Type Definitions 6-48
6.20.15 Text Attributes 6-48
6.20.15.1 Text Mask Pattern • 6-48

x

Contents

6.20.15.2 Text Font • 6-48
6.20.15.3 Text Rendition • 6-49
6.20.15.4 Text Size • 6-50
6.20.15.5 Text Direction • 6-51
6.20.15.6 Text Character Decimal Alignment • 6-51
6.20.15.7 Text Leader Attributes • 6-51
6.20.15.8 Text Kerning • 6-52
6.20.16 Line Attributes 6-52
6.20.17 Marker Attributes 6-55
6.20.18 Galley Attributes 6-55
6.20.19 Image Attributes 6-56
6.20.20 Image Component Space Attributes 6-58
6.20.21 Frame Parameters 6-60
6.20.21.1 Frame Flags • 6-60
6.20.21.2 Frame Bounding Box • 6-61
6.20.21.3 Frame Outline • 6-61
6.20.21.4 Frame Clipping • 6-62
6.20.21.5 Frame Position • 6-62

6.20.21.5.1 Fixed Frame Parameters • 6-63
6.20.21.5.2 lnline Frame Parameters • 6-63
6.20.21.5.3 Galley Frame Parameters • 6-63
6.20.21.5.4 Margin Frame Parameters • 6-64

6.20.21.6 Frame Content Transformation • 6-65
6.20.22 Item Change List 6-65
6.20.23 Segment Attribute Items and Types 6-66

6.21 CONTENT DEFINITION 6-69

6.22 FONT DEFINITION 6-70

6.23 LINE-STYLE DEFINITION 6-71

6.24 PATH DEFINITION 6-72

6.25 PATTERN DEFINITION 6-73

6.26 SEGMENT BINDING 6-75
6.26.1 Counter Variable Values 6-76
6.26.2 Computed Variable Values 6-77
6.26.3 List Variable Values 6-77

6.26.4 Segment Binding Items and Types 6-78

xi

Contents

6.27 TYPE DEFINITION 6-78

6.28 COUNTER STYLE 6-79

6.29 OCCURRENCE DEFINITION 6-80

6.30 RECORD DEFINITION 6-81

6.31 IMAGE LOOKUP TABLE ENTRY 6-82

6.32 TRANSFORMATION 6-83

6.33 GENERIC LAYOUT 6-84

6.34 SPECIFIC LAYOUT 6-85

6.35 WRAP ATTRIBUTES 6-86

6.36 LAYOUT ATTRIBUTES 6-88

6.37 GALLEY ATTRIBUTES 6-91

6.38 PAGE DESCRIPTION 6-93

6.39 PAGE LAYOUT 6-94

6.40 PAGE SELECT 6-96

6.41 TAB STOP 6-97

xii

CDA REFERENCE SECTION
CDA$AGGREGATE_ TVPE_ TO_ OBJECT _ID

CDA$CLOSE_FILE

CDA$CLOSE_STREAM

CDA$CLOSE_TEXT_FILE

CDA$CONVERT

CDA$CONVERT_AGGREGATE

CDA$CONVERT_DOCUMENT

CDA$CONVERT _POSITION

CDA$COPY_AGGREGATE

CDA$CREATE_AGGREGATE

CDA$CREATE_FILE

CDA$CREATE_ROOT_AGGREGATE

CDA$CREATE_STREAM

CDA$CREATE_TEXT_FILE

CDA$DELETE_AGGREGATE

CDA$DELETE_ROOT_AGGREGATE

CDA$ENTER_SCOPE

CDA$ERASE_ITEM

CDA$FIND_DEFINITION

CDA$FIND _TRANSFORMATION

CDA$FLUSH_STREAM

CDA$GET_AGGREGATE

CDA$GET_ARRAY_SIZE

CDA$GET_DOCUMENT

CDA$GET_EXTERNAL_ENCODING

CDA$GET_STREAiVl_POSITION

CDA$GET _TEXT _POSITION

CDA$1NSERT _AGGREGATE

CDA$LEAVE_SCOPE

CDA$LOCATE_ITEM

CDA$NEXT_AGGREGATE

CDA$0BJECT _ID_ TO_ AGGREGATE_ TYPE

CDA$0PEN_CONVERTER

CDA$0PEN_FILE

CDA$0PEN_STREAM

CDA$0PEN_ TEXT_FILE

CDA$PRUNE_AGGREGATE

CDA$PRUNE_POSITION

CDA$PUT_AGGREGATE

CDA$PUT_DOCUMENT

CDA-3

CDA-5

CDA-7

CDA-8

CDA-9

CDA-26

CDA-29

CDA-31

CDA-33

CDA-35

CDA-37

CDA-42

CDA-46

CDA-51

CDA-54

CDA-56

CDA-57

CDA-68

CDA-70

CDA-73

CDA-75

CDA-77

CDA-80

CDA-82

CDA-84

CDA-86

CDA-89

CDA-91

CDA-94

CDA-96

CDA-99

CDA-101

CDA-103

CDA-106

CDA-112

CDA-116

CDA-119

CDA-121

CDA-123

CDA-126

Contents

xiii

Contents

APPENDIX A

A.1
A.1.1
A.1.1.1
A.1.1.2

A.1.2
A.1.3
A.1.3.1
A.1.3.2
A.1.4

A.2
A.2.1
A.2.2
A.2.3

A.3
A.3.1
A.3.2
A.3.2.1
A.3.2.2

A.3.3

A.4

A.5

CDA$READ_TEXT_FILE

CDA$REMOVE_AGGREGATE

CDA$STORE_ITEM

CDA$WRITE_ TEXT _Fl LE

VMS SUPPORT FOR CDA IN DECWINDOWS

VMS COMMANDS AND UTILITIES
Displaying RMS File Tags

DIRECTORY/FULL • A-2
ANALYZE/RMS_FILE • A-2

Creating RMS File Tags
Preserving RMS File Tags and DDIF Semantics

COPY Command • A-4
VMS Mail Utility· A-5

APPEND Command

CDA-128

CDA-130

CDA-131

CDA-137

DDIF SUPPORT IN A HETEROGENEOUS ENVIRONMENT
EXCHANGE/NETWORK Command
Using the COPY Command in a Heterogeneous Environment
VMS Mail Utility in a Heterogeneous Environment

VMS RMS INTERFACE CHANGES
Programming Interface for File Tagging
Accessing a Tagged File

File Accesses That Do Not Sense Tags • A-11
File Accesses That Sense Tags • A-11

Preserving Tags

DISTRIBUTED FILE SYSTEM SUPPORT FOR DDIF TAGGED
FILES

VMS RMS ERRORS

APPENDIX B CDA TOOLKIT EXAMPLE PROGRAM

xiv

A-1

A-1
A-2

A-3
A-4

A-5

A-6
A-6

· A-6
A-6

A-7
A-7

A-10

A-13

A-14

A-14

B-1

Contents

APPENDIX C TEXT FRONT END SOURCE FILE C-1

APPENDIX D DDIF AGGREGATE STRUCTURES D-1

APPENDIX E DDIF SYNTAX DIAGRAMS E-1

E.1 ODIS BUILT-IN DATA TYPES E-1

E.2 BUILT-IN OPERATORS E-3

E.3 ODIS DEFINED TYPES E-4

E.4 DOif SYNTAX DIAGRAMS E-4

APPENDIX F DDIF FILL PATTERNS F-1

GLOSSARY OF TERMS Glossary-1

INDEX

EXAMPLES
3-1 DDIF Document Sample 3-3

3-2 DDIF Document Attribute Inheritance 3-10

A-1 Tagging a File A-9

A-2 Accessing a Tagged File A-12

B-1 Sample CDA Toolkit Program B-1

B-2 Analysis Output of DDIF File B-33

xv

Contents

FIGURES
2-1 Stages of Document Conversion 2-1

2-2 Converter Components Diagram 2-2

3-1 Document Hierarchy 3-2

3-2 Typical DDIF Document 3-4

3-3 Illustration of Inheritance Example Document 3-13

4-1 Document Segment Aggregate 4-6

5-1 Document Conversion Flowchart 5-3

6-1 Compound Document Structure 6-1

E-1 DDIF Document Syntax Diagram E-5

E-2 Document Descriptor Syntax Diagram E-5

E-3 Document Header Syntax Diagram E-5

E-4 Document Root Segment E-6

E-5 Segment Primitive Syntax Diagram E-6

E-6 Begin-Segment Syntax Diagram E-6

E-7 Text Primitive Syntax Diagram E-7

E-8 Text Attributes Syntax Diagram E-7

E-9 Rendition Code Syntax Diagram E-7

E-10 Leader Style Syntax Diagram E-8

E-11 Text Layout Syntax Diagram E-8

E-12 Text String Layout Syntax Diagram E-9

E-13 Formatting Primitive Syntax Diagram E-9

E-14 Value Directive Syntax Diagram E-10

E-15 Directive Syntax Diagram E-10

E-16 Escapement Directive Syntax Diagram E-10

E-17 Variable Reset Syntax Diagram E-11

E-18 Graphics Primitive Syntax Diagram E-11

E-19 Polyline Syntax Diagram E-11

E-20 Cubic Bezier Syntax Diagram E-12

E-21 Arc Syntax Diagram E-12

E-22 Fill Area Set Syntax Diagram E-12

E-23 Line Attributes Syntax Diagram E-13

E-24 Line Style Number Syntax Diagram E-13

E-25 Line End Number Syntax Diagram E-13

E-26 Line Join Syntax Diagram E-14

E-27 Marker Attributes Syntax Diagram E-14

E-28 Marker Number Syntax Diagram E-14

xvi

Contents

E-29 Image Primitive Syntax Diagram E-15

E-30 Image Coding Attributes Syntax Diagram E-15

E-31 Image Attributes Syntax Diagram E-16

E-32 Image Lookup Table Data Syntax Diagram E-17

E-33 Image Component Space Attributes Syntax Diagram E-17

E-34 Restricted Content Syntax Diagram E-17

E-35 Content Reference Primitive Syntax Diagram E-18

E-36 Content Reference Syntax Diagram E-18

E-37 Bounding Box Syntax Diagram E-18

E-38 Color Syntax Diagram E-18

E-39 Red/Green/Blue Syntax Diagram E-19

E-40 Compute Definition Syntax Diagram E-19

E-41 Cross Reference Syntax Diagram E-19

E-42 Escapement Syntax Diagram E-20

E-43 External Reference Syntax Diagram E-20

E-44 Font Definition Syntax Diagram E-20

E-45 Format Syntax Diagram E-21

E-46 Frame Parameters Syntax Diagram E-21

E-47 lnline Frame Parameters Syntax Diagram E-21

E-48 Galley Frame Parameters Syntax Diagram E-22

E-49 Galley Vertical Position Syntax Diagram E-22

E-50 Margin Frame Parameters Syntax Diagram E-22

E-51 Margin Horizontal Position Syntax Diagram E-23

E-52 Function Link Syntax Diagram E-23

E-53 External Reference Index Syntax Diagram E-23
E-54 Language Index Syntax Diagram E-23

E-55 Content Definition Syntax Diagram E-24

E-56 Label Syntax Diagram E-24

E-57 Label Types Syntax Diagram E-24

E-58 ASCII String Syntax Diagram E-24

E-59 Variable Label Syntax Diagram E-25

E-60 Legend Units Syntax Diagram E-25

E-61 Angle Syntax Diagram E-25

E-62 AngleRef Syntax Diagram E-25

E-63 Measurement Syntax Diagram E-25

E-64 Position Syntax Diagram E-26

E-65 Ratio Syntax Diagram E-26

E-66 Right Angle Syntax Diagram E-26

E-67 Size Syntax Diagram E-26

E-68 X-Coordinate Syntax Diagram E-27

xvii

Contents

E-69 V-Coordinate Syntax Diagram E-27

E-70 Measurement Units Syntax Diagram E-27

E-71 Named Value Syntax Diagram E-27

E-72 Value Data Syntax Diagram E-28

E-73 Named Value List Syntax Diagram E-28

E-74 Font Number Syntax Diagram E-28

E-75 Marker Number Syntax Diagram E-28

E-76 Path Number Syntax Diagram E-29

E-77 Pattern Number Syntax Diagram E-29

E-78 Path Definition Syntax Diagram E-29

E-79 Composite Path Syntax Diagram E-29

E-80 Arc Path Syntax Diagram E-30

E-81 Cubic Bezier Path Syntax Diagram E-30

E-82 Line Definition Syntax Diagram E-30

E-83 Polyline Path Syntax Diagram E-31

E-84 Pattern Definition Syntax Diagram E-31

E-85 Standard Pattern Syntax Diagram E-31

E-86 Reference Syntax Diagram E-31

E-87 Segment Attributes Syntax Diagram E-32

E-88 Segment Type Definition Syntax Diagram E-32

E-89 Structure Definition Syntax Diagram E-33

E-90 Occurrence Definition Syntax Diagram E-33

E-91 Structure Element Syntax Diagram E-33

E-92 Tag Syntax Diagram E-33

E-93 Category Tag Syntax Diagram E-34

E-94 Conformance Tag Syntax Diagram E-34

E-95 Named Value Tag Syntax Diagram E-34

E-96 Segment Tag Syntax Diagram E-34

E-97 Storage System Tag Syntax Diagram E-34

E-98 Stream Tag Syntax Diagram E-35

E-99 Transformation Syntax Diagram E-35

E-100 Variable Binding Syntax Diagram E-35

E-101 Counter Definition Syntax Diagram E-36

E-102 Layout Object Type Syntax Diagram E-36

E-103 Expression Syntax Diagram E-36

E-104 Counter Style Syntax Diagram E-37

E-105 String Expression Syntax Diagram E-37

E-106 Record List Syntax Diagram E-37

E-107 Record Definition Syntax Diagram E-38

E-108 Generic Layout Syntax Diagram E-38

xviii

Contents

E-109 Page Description Syntax Diagram E-38

E-110 Page Set Syntax Diagram E-39

E-111 Page Layout Syntax Diagram E-39

E-112 Layout Primitive Syntax Diagram E-39

E-113 Layout Galley Syntax Diagram E-40

E-114 Galley Attributes Syntax Diagram E-40

E-115 Specific Layout Syntax Diagram E-40

E-116 Wrap Attributes Syntax Diagram E-41

E-117 Layout Attributes Syntax Diagram E-41

E-118 Break Criteria Syntax Diagram E-42

E-119 General Measure Syntax Diagram E-42

E-120 General Size Syntax Diagram E-42

E-121 Tab Stop List Syntax Diagram E-42

E-122 Tab Stop Syntax Diagram E-43

F-1 CDA Fill Patterns F-6

TABLES
1-1 Layout Terminology 1-5

2-1 Converter Format Keywords 2-4

3-1 Relationships in Revisable Documents 3-6

4-1 Routines Terminology 4-1

4-2 Item Data Types 4-6

5-1 Top-Level Aggregate Types 5-12

6-1 Generic Aggregate Items 6-2

6-2 Document Root Aggregate (DDIF$_DDF) 6-2

6-3 Document Descriptor Aggregate (DDIF$_DSC) 6-4

6-4 Document Header Aggregate (DDIF$_DHD) 6-6

6-5 Document Segment Aggregate (DDIF$_SEG) 6-8

6-6 Latin1 Text Content Aggregate (DDIF$_TXT) 6-10

6-7 General Text Content Aggregate (DDIF$_GTX) 6-10

6-8 Character Set Identifiers 6-10

6-9 Hard Directive Aggregate (DDIF$_HRD) 6-11

6-10 Soft Directive Aggregate (DDIF$_SFT) 6-11

6-11 Directive Values 6-12

6-12 Hard Value Directive Aggregate (DDIF$_HRV) 6-14

6-13 Soft Value Directive Aggregate (DDIF$_SFV) 6-15

6-14 Bezier Curve Aggregate (DDIF$_BEZ) 6-16

6-15 Polyline Aggregate (DDIF$_LIN) 6-18

6-16 Arc Content Aggregate (DDIF$_ARC) 6-19

xix

Contents

6-17 Fill Area Set Content Aggregate (DDIF$_FAS) 6-21

6-18 Image Content Aggregate (DDIF$_1MG) 6-22

6-19 Content Reference Aggregate (DDIF$_ CRF) 6-22

6-20 External Content Aggregate (DDIF$_EXT) 6-23

6-21 Private Content Aggregate (DDIF$_PVT) 6-25

6-22 Layout Galley Aggregate (DDIF$_GLV) 6-27

6-23 Object Identifier Table 6-28

6-24 External Reference Aggregate (DDIF$_ERF) 6-29

6-25 Image Data Unit Aggregate (DDIF$_1DU) 6-31

6-26 Composite Path Aggregate (DDIF$_PTH) 6-34

6-27 Normal Alignment 6-45

6-28 Line Style 6-52

6-29 Segment Attributes Aggregate (DDIF$_SGA) 6-66

6-30 Content Definition Aggregate (DDIF$_CTD) 6-70

6-31 Font Definition Aggregate (DDIF$_FTD) 6-71

6-32 Line-Style Definition Aggregate (DDIF$_LSD) 6-72

6-33 Path Definition Aggregate (DDIF$_PHD) 6-73

6-34 Pattern Definition Aggregate (DDIF$_PTD) 6-75

6-35 Segment Binding Aggregate (DDIF$_SGB) 6-78

6-36 Type Definition Aggregate (DDIF$_TVD) 6-79

6-37 Counter Style Aggregate (DDIF$_CTS) 6-80

6-38 Occurrence Definition Aggregate (DDIF$_0CC) 6-81

6-39 Record Definition Aggregate (DDIF$_RCD) 6-82

6-40 RGB Lookup Table Entry Aggregate (DDIF$_RGB) 6-82

6-41 Transformation Aggregate (DDIF$_ TRN) 6-84

6-42 Generic Layout 1 Aggregate (DDIF$_LG1) 6-85

6-43 Specific Layout 1 Aggregate (DDIF$_LS1) 6-86

6-44 Wrap Attributes 1 Aggregate (DDIF$_LW1) 6-88

6-45 Layout Attributes 1 Aggregate (DDIF$_LL 1) 6-91

6-46 Galley Attributes Aggregate (DDIF$_GLA) 6-92

6-47 Page Description Aggregate (DDIF$_PGD) 6-94

6-48 Page Layout Aggregate (DDIF$_PGL) 6-96

6-49 Page Select Aggregate (DDIF$_PGS) 6-97

6-50 Tab Stop Aggregate (DDIF$_TBS) 6-98

A-1 Tag Support Item Codes A-7

D-1 Document Root Aggregate (DDIF$_DDF) D-1

D-2 Document Descriptor Aggregate (DDIF$_DSC) D-1

D-3 Document Header Aggregate (DDIF$_DHD) D-1

D-4 Document Segment Aggregate (DDIF$_SEG) D-2

D-5 Latin1 Text Content Aggregate (DDIF$_TXT) D-2

xx

Contents

D-6 General Text Content Aggregate (DDIF$_GTX) D-2

D-7 Hard Directive Aggregate (DDIF$_HRD) D-3

D-8 Soft Directive Aggregate (DDIF$_SFT) D-3

D-9 Hard Value Directive Aggregate (DDIF$_HRV) D-3

D-10 Soft Value Directive Aggregate (DDIF$_SFV) D-3

D-11 Bezier Curve Aggregate (DDIF$_BEZ) D-4

D-12 Polyline Aggregate (DDIF$_LIN) D-4

D-13 Arc Content Aggregate (DDIF$_ARC) D-4

D-14 Fill Area Set Content Aggregate (DDIF$_FAS) D-5

D-15 Image Content Aggregate (DDIF$_1MG) D-5

D-16 Content Reference Aggregate (DDIF$_CRF) D-5

D-17 External Content Aggregate (DDIF$_EXT) D-5

D-18 Private Content Aggregate (DDIF$_PVT) D-6

D-19 Layout Galley Aggregate (DDIF$_GLV) D-6

D-20 External Reference Aggregate (DDIF$_ERF) D-7

D-21 Image Data Unit Aggregate (DDIF$_1DU) D-7

D-22 Composite Path Aggregate (DDIF$_PTH) D-7

D-23 Segment Attributes Aggregate (DDIF$_SGA) D-8

D-24 Content Definition Aggregate (DDIF$_CTD) D-12

D-25 Font Definition Aggregate (DDIF$_FTD) D-12

D-26 Line Style Definition Aggregate (DDIF$_LSD) D-12

D-27 Path Definition Aggregate (DDIF$_PHD) D-13

D-28 Pattern Definition Aggregate (DDIF$_PTD) D-13

D-29 Segment Binding Aggregate (DDIF$_SGB) D-13

D-30 Type Definition Aggregate (DDIF$_ TVD) D-14

D-31 Counter Style Aggregate (DDIF$_CTS) D-14

D-32 Occurrence Definition Aggregate (DDIF$_0CC) D-14

D-33 Record Definition Aggregate (DDIF$_RCD) D-14

D-34 RGB Lookup Table Entry Aggregate (DDIF$_RGB) D-15

D-35 Transformation Aggregate (DDIF$_ TRN) D-15

D-36 Generic Layout 1 Aggregate (DDIF$_LG1) D-15

D-37 Specific Layout 1 Aggregate (DDIF$_LS1) D-15

D-38 Wrap Attributes 1 Aggregate (DDIF$_LW1) D-16

D-39 Layout Attributes 1 Aggregate (DDIF$_LL 1) D-16

D-40 Galley Attributes Aggregate (DDIF$_GLA) D-17

D-41 Page Description Aggregate (DDIF$_PGD) D-17

D-42 Page Layout Aggregate (DDIF$_PGL) D-17

D-43 Page Select Aggregate (DDIF$_PGS) D-18

D-44 Tab Stop Aggregate (DDIF$_TBS) D-18

E-1 ODIS Built-In Primitives E-1

xxi

Contents

xx ii

E-2
E-3
E-4
F-1

ODIS Built-In Constructors

ODIS Built-In Operators

ODIS Defined Types

DDIF Fill Patterns

E-3
E-3
E-4
F-1

Preface

This manual is designed to introduce the concepts and tools associated
with the DIGITAL Compound Document Architecture (CDA), including
the DIGITAL Document Interchange Format (DDIF). Using representation
formats such as this, the Compound Document Architecture provides
a method for manipulating files that contain a number of integrated
components.

The tools associated with the Compound Document Architecture include
the CDA Toolkit, the CDA Converter, and the DDIF Viewer. The CDA
Toolkit is a collection of routines that support the creation of CDA
applications. The CDA Converter is used to convert files of a specified
input format to a specified output format. The DDIF Viewer is used to
display DDIF-encoded files on a workstation display or character cell
terminal.

All of the following products support CDA-encoded files. If you only intend
to manipulate DDIF files, and do not have an interest in the particulars
of the file format, you can use any one of these products to manipulate a
CDA-encoded file.

DECpaint

GKS

DECwindows MAIL

PrintScreen Card Filer

PHIGS DDIF Viewer

Image Services Library Converters

Intended Audience
This manual is intended for system and application programmers who
want to make use of DIGITAL's new Compound Document Architecture.
Some knowledge of the tasks and terminology associated with document
typesetting is helpful.

Document Structure
This manual consists of two parts: an introductory section and a
reference section. The first part of this manual provides general user and
application programmer information regarding the Compound Document
Architecture (CDA), the DIGITAL Document Interchange Format (DDIF),
the CDA Converter, and the CDA Toolkit routines. The CDA reference
section describes each of the CDA Toolkit routines individually.

The chapters are summarized as follows:

• Chapter 1 provides an overview of the components of the Compound
Document Architecture.

• Chapter 2 discusses the use of the CDA Converter, the DDIF Viewer,
and the various supported file-encoding formats.

• Chapter 3 provides an overview of the concepts incorporated in the
DIGITAL Document Interchange Format (DDIF) architecture.

xx iii

Preface

• Chapter 4 discusses the CDA Toolkit routines.

• Chapter 5 provides suggestions and guidelines that should be followed
when creating CDA Converter front and back ends.

• Chapter 6 describes the structure and encoding of each aggregate
supported by the DDIF architecture and the CDA Toolkit.

Each of the routines contained in the CDA Toolkit is described individually
in the CDA reference section. The routines are documented in alphabetical
order. Each routine description specifies the calling format, the encoding
of the parameters, a detailed description of the function of the routine, and
what condition values the routine can return.

In addition, a glossary and several appendixes are provided. The
glossary defines the terminology associated with the Compound Document
Architecture and the DDIF architecture. The appendixes are as follows:

• Appendix A discusses the support provided by VMS for the CDA
Toolkit and the tagging of DDIF-encoded files.

• Appendix B contains an example program that uses the CDA Toolkit
to create a DDIF file, and an illustration of the file created by the
example program.

• Appendix C contains the source code for the Text front end to be used
as an example for those wanting to develop their own front or back
ends.

• Appendix D contains tables describing the items contained in each
DDIF aggregate and their item encodings.

• Appendix E contains a brief overview of the DIGITAL Data
Interchange Syntax (DDIS) followed by the syntax diagrams for the
various constructs supported by the DDIF architecture.

• Appendix F illustrates the CDA-defined fill patterns.

Associated Documents

Conventions

xxiv

The Compound Document Architecture is supported by a variety of
DIGITAL products. Descriptions of the support provided by each product
are contained in that product's documentation. For example, GKS support
for CDA is described in the GKS documentation set, and so on.

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

PB1, PB2, PB3, PB4

SB1, SB2

Ctrl/x

PF1 x

()

[]

{}

red ink

boldface text

italic text

italic text

UPPERCASE TEXT

Preface

PB1, PB2, PB3, and PB4 indicate buttons on the
puck.

SB 1 and SB2 indicate buttons on the stylus.

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1 , then
press and release another key or a pointing device
button.

A key name Is shown enclosed to indicate that you
press a key on the keyboard.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

Additional optional arguments in a statement
have been omitted.
The preceding item or items can be repeated one
or more times.
Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Italic text represents information that can vary
in system messages (for example, Internal error
number).

Italic text represents user-written routines (for
example, get-aggregate).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

xxv

Preface

UPPERCASE TEXT

numbers

xxvi

Uppercase letters indicate the name of a CDA
Toolkit routine, the name of a file, the name of a
file protection code, or the abbreviation for a system
privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radices-binary,
octal, or hexadecimal-are explicitly indicated in the
coding examples.

1 Introduction

Compound documents contain integrated components such as
proportionally spaced text, synthetic graphics, and scanned or natural
images. DIGITAL's Compound Document Architecture (CDA) is an open
architecture that establishes a framework in which compound documents
can be handled in the same easy and universal way as simple ASCII text.
With CDA, you can write applications that handle compound documents
easily, regardless of the environment in which you or application users are
working. You do not need to be concerned with how a compound document
is created and processed or how users will access the document.

The use of CDA provides numerous benefits. For example:

• CDA provides application independence. This means that applications
other than the creator software can access revisable-form data and
can use devices and operating environments other than the creator
hardware.

• CDA makes application development easier by making the most
of development resources. You can use standard CDA facilities
for multiple functions (including file display and copying), thereby
reducing the amount of code that has to be written.

• The use of CDA means that users can exchange documents with
anyone anywhere on a DIGITAL network.

In addition, CDA satisfies the demand for inter-application data exchange
by providing file conversion capabilities, including the presentation
of compound document data to ASCII-oriented utilities like language
compilers (using CDA filters). When an application supports CDA, it
participates in the entire DIGITAL document processing environment,
including live links, electronic mail of revisable compound documents, and
hardware- and system-independent display and printing.

1.1 Compound Documents
The purpose of CDA is to simplify the manipulation of revisable compound
documents so that complex files can be created, stored, and interchanged
among users. To understand this goal, it is first important to understand
the definition of a revisable compound document.

A document can be defined as a collection of data that is intended for
display. A revisable document contains the content of a document, as
well as parameters and directives that are used when creating the final
form of the document. These parameters and directives specify abstract
relationships between the components of the document and are used to
determine the final appearance of the document (for example, line breaks
and page breaks).

1-1

Introduction
1.1 Compound Documents

A revisable document does not contain page numbers, section numbers, or
even a table of contents. Instead, it specifies parameters that control the
creation of these elements in the final form of the document. A revisable
document also does not specify the exact layout of the content of the
document. Instead, it contains the basic template for the page layout and
the parameters that control the way the content is arranged in the final
form.

In the final form of a document, all the formatting decisions (such as
hyphenation, line breaks, page breaks, and so on) have been resolved.
Any text elements that are based on calculations, such as page numbers
and section numbers, have been inserted. Also, any externally referenced
document content has been included. A final form document generally does
not make any distinction between document content that a user entered
and document content that was generated by a formatter.

A compound document is a unified collection of data that can be edited,
formatted, or otherwise processed as a document. Compound documents
can contain a number of integrated components, including proportionally
spaced text, synthetic graphics, and scanned images. That is, a compound
document is a document that has the ability to contain not only text but
also other integrated components. Compound documents can also contain
data elements from applications such as spreadsheets.

For example, an ASCII text file is a document that comprises only text. It
cannot contain integrated graphics, unless those graphics are in the form
of "line art," which is represented and stored as standard text characters.
A compound document, on the other hand, can include graphics that were
generated by a graphics editor or scanned images. A document containing
only text is considered a compound document if the document storage
format has the ability to store integrated components.

A compound document also integrates the structure of a document. For
example, the relationships in a chapter, that a paragraph is part of a
section, and a section is part of a chapter, are integrated into a compound
document that represents a chapter of a manual. This concept of structure
is especially important when you are defining styles or attributes for a
manual.

1.2 Overview of the Compound Document Architecture

1-2

The Compound Document Architecture provides a set of tools and utilities
that simplify the treatment of compound docu:rµent information. These
tools and utilities are as follows:

• The DIGITAL Document Interchange Format (DDIF) for the creation,
storage, and interchange of document data

• The CDA Toolkit, which is a library of callable routines that enable
you to easily read, write, create, and modify compound documents

• The CDA Converter Architecture, which provides a standard CDA
Converter Kernel that works with front and back ends to convert an
input file of any supported format to an output file of any supported
format

1.2.1

1.2.2

1.2.3

Introduction
1.2 Overview of the Compound Document Architecture

• Viewers, which are callable services that display formatted output data
on a workstation window or character cell terminal

• Mail Utility support for sending, receiving, and displaying compound
documents

• Record Management Services (RMS) support for filtering the ASCII
text from a compound document for compilation, display, and printing

The DIGITAL Document Interchange Format

The CDA Toolkit

The DIGITAL Document Interchange Format (DDIF) is the format of
choice for all new compound document application programs. While
maintaining a strong similarity to the Office Document Architecture (ODA)
and other standards, DDIF also extends the capabilities of these existing
standards to reflect the growing needs of document processing.

DDIF represents structured documents that contain revisable text,
graphics, and images. It supports advanced document processing features,
including generic structure, independent or attached style information,
logical and presentation attributes, attribute inheritance, cross-references,
and "live links" (dynamic external references). DDIF is discussed in more
detail in Chapter 3.

The CDA Toolkit is a collection of routines that enable you to do the
following:

• Create your own CDA-conforming application

• Invoke the CDA converter from an application

• Create your own front end (to convert a document of a particular input
format to its CDA in-memory representation)

• Create your own back end (to convert the CDA in-memory
representation of a document to a particular output format)

The CDA Toolkit routines support a standard VMS interface and follow
the VMS guidelines for condition handling. For an overview of the CDA
Toolkit routines, see Chapter 4.

The CDA Converter Architecture
The CDA Converter Architecture defines a methodology to simplify the
conversion of compound documents using a common converter kernel and
a series of front and back ends. This methodology is implemented as
follows:

• The conversion process is invoked through the DCL
CONVERT/DOCUMENT command or through a call to the CDA
Toolkit CONVERT routine.

1-3

Introduction
1.2 Overview of the Compound Document Architecture

• The converter kernel performs all the "generic" conversion functions
that must be performed for every document conversion. The kernel is
also responsible for invoking the appropriate front and back ends for
the specified input and output file formats.

• The front end reads the input file or stream (encoded in any supported
format) and converts it to its CDA in-memory representation. A front
end is responsible for translating a document of a particular input
format to the CDA in-memory representation. There must be a front
end for every supported input format.

• The back end converts the CDA in-memory representation of the
document to a particular output format and writes the data to a file or
stream. A back end is responsible for translating the CDA in-memory
representation of a document to a particular output format. There
must be a back end for every supported output format.

The CDA Converter Architecture is discussed in more detail in Chapter 2.

1.3 Document Processing Concepts

1.3.1

1.3.2

The Compound Document Architecture is designed to simplify the
processing of compound documents. The following sections discuss some
of the concepts associated with compound documents and document
processing.

Document Structure
A revisable document is an ordered hierarchy of logical elements. For
example, a chapter contains sections, sections contain paragraphs and
lists, and paragraphs in turn contain the text of the document. The
hierarchy of these individual logical elements in a document makes up
the document's specific logical structure.

To make it easier to share and interchange documents, it is useful to
develop a set of structuring rules for documents. This set of structuring
rules specifies the organization and appearance of all documents following
those rules, thereby creating a generic logical structure. That is, a
generic logical structure describes the legal arrangements of the logical
elements within a certain type of document, such as memos, reports,
letters, and so on. For example, a generic logical structure might specify
that chapters can contain one or more sections, and sections can contain
one or more paragraphs, but appendixes cannot contain chapters. A
specific logical structure of a document is simply an instance of the generic
logical structure for that type of document.

Document Layout

1-4

Document layout is defined as the manner in which document content
elements (graphics, text, and images) are arranged on a page or series of
pages. A compound document can be presented using a variety of page
layout schemes. For example, the number of columns on a page and the

Introduction
1.3 Document Processing Concepts

placement of page numbers and footnotes are all aspects of a document's
layout.

More than any other aspect of document processing, the layout algorithm
for a document differs between document processors and depends on the
capabilities of the target device. Some terms associated with document
layout are defined in Table 1-1.

Table 1-1 Layout Terminology

Term Definition

Formatting The process of fixing text in galleys; it involves breaking
the stream of characters and floating frames into lines that
fit within the assigned galleys. Formatting can also involve
optimization of page layouts, the selection of appropriate
page templates, and hyphenation decisions.

Galley

Galley-based layout

Generic layout

Page

Specific layout

Wrapping

A rectangular guide, such as a column or footnote area.
DDIF galleys are modeled by areas (usually rectangles)
that are filled with text and relocatable illustrations during
the formatting process.

In galley-based layout, characters and frames flow through
a set of connected galleys and across pages instead of
being fixed with respect to a coordinate system.

A set of rules that are used to determine the layout of a
document or set of documents.

A unit of display, such as a traditional sheet of paper, a
video display, or a 35mm slide. A page is a discrete unit
of content presented for viewing.

The layout of a particular document or document element.

The process of breaking a stream of characters into lines
that fit within the assigned galleys.

The layout of a page is largely open to interpretation and preference. Page
layout is generally guided by typographic conventions that have evolved
throughout the history of printing. It is also influenced by the capabilities
of the selected output device, as well as the capabilities of the formatter
that is preparing the document for display.

Document layout can be generic or specific:

• The term generic layout describes a set of parameters and implicit
(or explicit) methods used to determine the layout of document content.
Generic layout typically specifies one or more page layouts and the
linkages between them. For example, the first page of a chapter can
contain a centered title and a half page of text, while the next page
contains a full complement of text.

• Specific layout typically occurs in the final form of a document.
That is, the layout of a document in its final form is referred to as
the document's specific layout. However, specific layout can also
occur in revisable documents where the content has been tied to a
predetermined layout.

1-5

1.3.3

1.3.4

Introduction
1.3 Document Processing Concepts

Logical Structure and Layout
The specific logical structure of a document often does not correspond to
the layout. That is, the text content in the specific layout of the final form
of a document can occur in a different order than it does in the specific
logical structure of the revisable form. For example, a footnote would be
stored at the first point of reference in a revisable document, but would
appear at the bottom of the page in the final form.

The layout can also contain content that is not part of the logical structure.
For example, page numbers inserted by a formatter are not part of the
logical structure, but are part of the layout.

In revisable documents, content is stored and processed in the order
corresponding to the logical structure. Final form documents are stored
and processed in the order of the layout structure.

Structured and Unstructured Markup Systems

1-6

The extent to which the author of a document can control the arrangement
of content on the page varies from system to system, from document to
document, and often from place to place within a given document. Many
formatters lay out text automatically, based on the galleys and the content
at hand, while still allowing the author to insert formatting directives
such as new line and new page. These kinds of directives are called hard
directives, in the sense that they are permanent unless the user removes
them. Soft directives are inserted by the software and are replaceable.
(Soft directives are typically used by interactive editors to store pagination
in order to reduce startup time for the next editing session.)

In markup languages that support structured documents (such as SGML),
the layout process is governed by a style guide, which provides parameters
to the formatter for each document type. The author of the document has
little or no control over the layout process - each element of the document
is formatted according to the corresponding set of parameters in the style
guide. A given generic structure can have multiple styles, each specifying
a different layout, so that the document can be formatted and displayed
using different formats, perhaps for use with different display devices.

For example, a given system might support several style guides for
manuals. The same chapter can be processed using these different style
guides to produce 81h'' by 11" output or 7" by 9" output, monospaced fonts
or proportionally spaced fonts, and so on.

Some markup languages are not strictly structured, and allow the user to
include layout directives in the document, in addition to or instead of a
style guide.

1 ~3.5 Interactive and Batch Processing

Introduction
1.3 Document Processing Concepts

An interactive editor may or may not support structure and a style guide;
however, an interactive editor almost always allows the author to control
the formatting process directly. Usually, an interactive editor provides
some default format for a user-modifiable template that can be changed
as needed. The formatting process must be fast; therefore, relatively little
time can be spent on optimization. The user is compensated by the ability
to interactively optimize the layout.

When the formatting process is not interactive, relatively ample processing
time can be spent optimizing the layout of the document. For example,
illustrations can be kept on the same page as the references, or on one of
two pages when the document is intended for two-sided printing.

1.4 Separation of Layout from Content

1.4.1

Content laid out in galleys, on the basis of rules and parameters expressed
as generic layout, can be laid out in a variety of ways - the number of
columns, and the size and position of the columns, can be varied. Likewise,
the line and page breaks can vary because of a variety of factors, such as
the hyphenation decisions and the amount of white space optimization.
Document content, such as a table, that is not laid out in a galley-based
fashion generally cannot be rearranged without user interaction.

When specific layout instructions have been inserted into the document -
that is, when the author has marked up the document for layout - then
separation of the content from its layout involves removing or ignoring
the specific markup and using only the generic markup of the document,
or a default generic layout. For example, if a document that has been
manually laid out in newspaper fashion is presented in a magazine, the
specific layout is ignored and the generic layout model is used to format
the document. If the same newspaper-formatted document is presented on
a character-cell terminal, both the generic layout and specific layout are
ignored and the content is laid out using a generic layout model suitable
for character-cell terminals.

Replacement of Layout
In order to interchange documents, it is necessary to allow the layout of
the document to be chosen by the software that encodes the document, and
for the layout to be able to be changed by the software that receives the
document.

The encoding application must be able to choose a layout scheme
appropriate for its layout model - for example, an interactive editor
cannot express the specific layout of a document using a generic layout
model that is appropriate for a markup system. (A markup system
typically consists of an integrated series of software processors that
convert generically coded source files into formatted output.) Nor can
markup systems express complex generic layout using the layout model
supported by most interactive systems.

1-7

Introduction
1.4 Separation of Layout from Content

1-8

There are two reasons why it might be necessary for the receiving
application to replace the encoder's layout:

• The receiving application may not have a formatter capable of
formatting the document.

• The receiving system might lack adequate display technology to
support the encoder's selected layout.

For example, it is impossible to meaningfully display a multicolumn
document set in 8-point type on an 80-column character-cell display.
Instead, it is necessary to format the content in a way suited to the display
device. Optionally, the receiving user might want to display and/or modify
the document with an interactive editor that cannot support the CPU­
intensive formatting that might have been specified in the document by
the encoding application.

The sender's layout is replaced in the document itself only if the document
is being modified. Otherwise, the new layout parameters are simply
substituted during formatting and display. For example, if a document
is mailed to a user with a character-cell terminal and a laser printer, the
user can reformat the document so that it can be read on the terminal and
then print the document in its original format on the laser printer to see
the layout as the sender intended.

2 CDA Converter Architecture

2.1 CDA Converter

The CDA Converter Architecture defines a methodology to simplify the
conversion of compound documents. The CDA Converter Architecture is
implemented through the following applications:

• The CDA Converter

• The DDIF Viewers

• The Converter front and back ends

The following sections discuss each of these applications in more detail.

The CDA Converter is an integral part of the Compound Document
Architecture. It enables you to translate your compound document files to
and from various file-encoding formats. The CDA Converter can be viewed
as a "black box" that reads in an input file of the specified file-encoding
format and converts it to an output file of the specified file-encoding
format.

To accomplish this conversion, the CDA Converter uses the DIGITAL
Document Interchange Format (DDIF) as the integral step in the
conversion process. The converter reads the input file and translates it
to a CDA in-memory format, and then translates this in-memory format to
the specified output format. In other words, any input file-encoding format
that is supported by the CDA Converter can be translated to a CDA in­
memory format, and this in-memory format can subsequently be converted
to any supported output file-encoding format. Figure 2-1 illustrates these
basic stages of document conversion.

Figure 2-1 Stages of Document Conversion

Input
File

Front End
Conversion

Back End
Conversion

: l In-Memory l _., .., Structure r'

···=·

...

Output
File

.. ~.·.-

ZK-0279A-GE

2-1

2.1.1

CDA Converter Architecture
2.1 CDA Converter

Components of a Converter

2-2

From the user's perspective, the converter is a "black box" that reads in
the specified input file and converts it to the specified output file. For
this single converter to be able to convert the wide variety of supported
file-encoding formats, it actually comprises the following four parts:

• An interface (both a command line interface and an interface that is
callable from within an application program)

• The CDA Converter Kernel that performs all the functions that must
be completed for each conversion process, regardless of input and
output formats

• A front end that converts a particular input format to the in-memory
format

• A back end that converts the in-memory format to a particular output
format

The relationship of the various converter components is· shown in
Figure 2-2.

Figure 2-2 Converter Components Diagram

Command Application
Line Program

L J
I

Common Converter Kernel

l
l

Front End Back End

'"

ZK-0280A-GE

When you invoke the converter, you always invoke the converter kernel
first. This kernel performs the following functions:

• It performs all of the "generic" conversion functions that must be
completed for every document conversion, regardless of input and
output formats.

2.1.2

CDA Converter Architecture
2.1 CDA Converter

• It invokes the appropriate front end to translate the input file to the
CDA in-memory format.

• It invokes the appropriate back end to translate the CDA in-memory
format to an output file of the specified format.

The CDA Converter, therefore, actually consists of the CDA Converter
Kernel, one front end for each supported input :file-encoding format, and
one back end for each supported output :file-encoding format. The kernel
translates the various file formats by calling the appropriate front end and
back end to perform the requested conversion.

For example, if you have the CDA Converter Kernel, a DDIF front end,
and an Analysis back end, you can invoke the converter to translate a
DDIF-encoded input file to an Analysis-encoded output file. The common
converter kernel invokes the DDIF front end and the Analysis back end
to perform the requested conversion. In general, front ends and back ends
are "paired." That is, if a :file-encoding format is supported by a front
end, it generally is also supported by a back end. However, this is not
always the case. For example, the Analysis back end does not have a
corresponding front end.

The front ends and back ends that are provided with the operating system
are documented later in this chapter. Other available converters are
documented in the appropriate application documentation sets. The
interfaces to the CDA Converter are as follows:

• A DCL command line interface (CONVERT/DOCUMENT)

• A callable interface (the CONVERT routine) that is accessible from
application programs

Each of these interfaces is discussed in the following sections. The
supported input formats are discussed in Section 2.3 and the supported
output formats are discussed in Section 2.4.

DCL CONVERT/DOCUMENT Command
The DCL CONVERT/DOCUMENT command invokes the conversion of a
revisable format file to another revisable or final form file from the DCL
command line. This command has the following format:

CONVERT/DOCUMENT[/OPTIONS=filespec]

input-file[/FORMAT =fmt-name] output-file[/FORMAT =fmt-name]

The /FORMAT qualifier enables you to specify the encoding formats of the
input and output files. (DDIF is the default input and output format.) The
format keywords for the supported input and output formats are listed in
Table 2-1.

2-3

2.1.3

CDA Converter Architecture
2.1 CDA Converter

Table 2-1 Converter Format Keywords

Input Formats

DDIF

TEXT

N/A

N/A

Output Formats

DDIF

TEXT

PS

ANALYSIS

The /OPTIONS qualifier enables you to specify a file that contains options
to be applied during the conversion of the file. Each line of the file
specifies a format name that can contain upper- and lowercase alphabetic
characters, digits, dollar signs, and underscores, optionally preceded by
spaces and tabs, and terminated by any character other than those listed.
Alphabetic case is not significant. The syntax and interpretation of the
text that follows the format name are specified by the supplier of the front
and back ends for the specified format. Multiple lines that specify the
same format are permitted.

The following example illustrates a simple example of an options file that
specifies options to be used when converting some file to a Postscript
output file. The options disable word wrapping and page wrapping and
specify the desired paper size.

ps word_wrap 0
ps page_ wrap 0
ps paper_size legal
ps paper_orientation portrait

CONVERT Routine

2-4

The CONVERT routine invokes the conversion of a revisable format file
to another revisable format or final form file from within an application
program. This routine entry point has the following format:

CDA$CONVERT (function-code ,standard-item-list ,private-item-list
,converter-context)

The parameters to this routine are as follows:

• Function-code is a symbolic constant that identifies the function to
be performed. Valid values for this argument are as follows:

CDA$_START begins the conversion. This function code must be
specified to begin a document conversion.

CDA$_CONTINUE continues a conversion that was suspended.
This function code can only be specified if a previous call to the
CONVERT routine returned the value CDA$_SUSPEND. If CDA$_
SUSPEND is returned by a call to the CONVERT routine, either
CDA$_CONTINUE or CDA$_STOP must be specified so that
resources locked by the conversion can be released.

CDA Converter Architecture
2.1 CDA Converter

CDA$_STOP discontinues a conversion that was suspended. This
function code can only be specified if the previous call to the
CONVERT routine returned the value CDA$_SUSPEND. If CDA$_
SUSPEND is returned by a call to the CONVERT routine, either
CDA$_STOP or CDA$_CONTINUE must be specified so that
resources locked by the conversion can be released.

• Standard-item-list is an item list that identifies the document source
and destination and can also contain options to control processing.
Valid code values for the items in the standard-item-list are as
follows:

CDA$_1NPUT_FORMAT
The address and length of a string that specifies the input document
format.

CDA$_1NPUT_FRONT_END_PROCEDURE
The address of the front end's main entry point: DDIF$READJormat.
The item list length field must be 0. This item enables a caller to
provide a front end that is part of the calling application rather
than a separate image. If this item code is used, the CDA$_INPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the front end.

CDA$_1NPUT_FILE
The address and length of a string that contains the file specification
of the input document.

CDA$_1NPUT_DEFAULT
The address and length of a string that specifies the default input
file type. To simplify the porting of applications to other operating
systems, the string should consist of only a file type in lowercase
characters. If this parameter is omitted, a front end must supply an
appropriate default file specification.

CDA$_1NPUT _PROCEDURE
The address of a procedure to provide input. The item list length field
must be 0. The input procedure must conform to the requirements for
a user get routine. For more information on a user get routine, refer to
the CONVERT routine description in Part II of this manual.

CDA$_1NPUT_PROCEDURE_PARM
The address of a longword parameter to the input procedure. The item
list length field must be 4.

CDA$_1NPUT_ROOT_AGGREGATE
The address of a longword handle to a root aggregate that specifies
an in-memory input document. The item list length field must be 4.
The in-memory structure, except for the root aggregate itself, is erased
by this operation. The root aggregate must specify standard memory
allocation.

CDA$_0UTPUT_FORMAT
The address and length of a string that specifies the output document
format.

2-5

CDA Converter Architecture
2.1 CDA Converter

2-6

CDA$_0UTPUT_BACK_END_PROCEDURE
The address of the back end's main entry point: DDIF$WRITEJormat.
The item list length field must be 0. This item enables a caller to
provide a back end that is part of the calling application rather than
a separate image. If this item code is used, the CDA$_0UTPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the back end.

CDA$_0UTPUT_FILE
The address and length of a string that contains the file specification
of the output document.

CDA$_0UTPUT_DEFAULT
The address and length of a string that specifies the default output
file type. To simplify the porting of applications to other operating
systems, the string should consist of only a file type in lowercase
characters. If this parameter is omitted, the back end must supply an
appropriate default file specification.

CDA$_0UTPUT_PROCEDURE
The address of a procedure to receive output. The item list length field
must be 0. The output procedure must conform to the requirements
for a user put routine. For more information on a user put routine,
refer to the CONVERT routine description in Part II of this manual.

CDA$_0UTPUT_PROCEDURE_PARM
The address of a longword parameter to the output procedure. The
item list length field must be 4.

CDA$_0UTPUT_PROCEDURE_BUFFER
The address and length of the initial output buffer for the output
procedure.

CDA$_0UTPUT_ROOT_AGGREGATE
The address of a longword handle to a root aggregate that receives
an in-memory output document. The item list length field must be 4.
The root aggregate must be empty, and must specify standard memory
allocation.

CDA$_0PTIONS_FILE
The address and length of a string that contains the file specification
of an options file specifying options to control processing. On VMS
systems, the default file type is CDA$0PTIONS. Each line of the file
specifies a format name, which may contain upper- and lowercase
alphabetic characters, digits, dollar signs, and underscores, optionally
preceded by spaces and tabs, and terminated by any character other
than those listed. Alphabetic case is not significant. The syntax and
interpretation of the text that follows the format name are specified
by the supplier of the front and back ends for the specified format.
Multiple lines that specify the same format are permitted.

• Private-item-list is a private item list that is passed directly to the
back end invoked by the converter. The specification of this item list
is the responsibility of the back end. Its purpose is direct two-way
communication between the caller of the CONVERT routine and the
back end.

2.2 DDIF Viewer

CDA Converter Architecture
2.1 CDA Converter

• Converter-context is set to CDA$_START; this argument receives a
value that must be specified as the converter context parameter when
this routine is called with CDA$_CONTINUE or CDA$_STOP as the
function code. This value is invalidated when the CONVERT routine
returns a status other than CDA$_SUSPEND.

You can use this routine to invoke the converter from within an application
program to perform file conversion.

The DDIF Viewer is an application that enables you to view compound
document files on a character cell terminal or workstation window. This
Viewer works with the CDA Converter Architecture, so that a file of any
input format supported by CDA can be viewed on a character cell terminal.

The Viewer works by converting an input file to the in-memory format
used by the CDA Converter. This in-memory format is then formatted for
output to the screen. In other words, the Viewer is a specific instance of
the CDA Converter in which the output format is a screen display.

The interface to the DDIF Viewer is the DCL VIEW command. This
command is discussed in the following section. The supported input
formats for the DDIF viewer are described in Section 2.3.

2.2.1 DCL VIEW Command
The DCL VIEW command invokes the DDIF Viewer, which lets you view
a compound document file on a character cell terminal or DECwindows
display. Note that many of the text display attributes are not processed
when displaying the document, because of the limitations of the viewing
device.

The VIEW command has the following format:

VIEW input-file[/qualifiers]

The input file specifies the name of the file to be viewed. You cannot use
wildcard characters in the file specification. The default input file-encoding
format is DDIF, and the default file type is DDIF. Valid input file formats
are DDIF and TEXT; these input formats are described in more detail in
Section 2.3.

The qualifiers that you can specify to the view command are as follows:

• /FORMAT[=format-name]

Specifies the format of the input file. The default format is DDIF.
The appropriate front end must be available in SYS$LIBRARY for the
specified format-name. The valid formats are DDIF and TEXT.

2-7

CDA Converter Architecture
2.2 DDIF Viewer

2-8

• /OUTPUT[=output-file-spec]

Specifies a file that receives the text output. The default is
/NOOUTPUT. If an output file specification is not specified, the output
file specification defaults to input-file.LIS. If this qualifier is specified,
the output of the VIEW command is not displayed on the screen, but
is instead written to the specified file. Note that if you specify the
/OUTPUT qualifier, you cannot also specify the /PAGE qualifier.

• /PAGE

Controls the display of output, providing the same effect as the DCL
TYPE/PAGE command when used on a non-DECwindows device. The
default is /NOPAGE. The /PAGE qualifier has no effect when used
with a DECwindows display because the scroll bars provide the same
capability. Note that if you specify the /PAGE qualifier, you cannot
also specify the /OUTPUT qualifier.

• /OPTIONS=file-spec

Specifies a file that contains options to be applied during the
conversion of the file to the CDA in-memory format. The default
file type is DDIF$0PTIONS.

• /SELECT=select-list

Allows the user to tailor the CDA Viewer output. The selection items
you can specify are as follows:

[NO]GRAPH ICS

[NO] IMAGES

[NO]TEXT

ALL

[NO]SOFT _DIRECTIVES

[NO]AUTO_WRAP

Directs the viewer either to mark the location
of graphics embedded in the DDIF file being
processed by the DDIF viewer, or to ignore the
graphics.

Directs the viewer either to mark the location
of the images embedded in the DDIF file being
processed by the DDIF viewer, or to ignore the
images.

Directs the viewer either to process the text
contained in the DDIF file being processed, or to
ignore the text.

Directs the viewer to process all information
contained in the DDIF file being processed.

Directs the viewer either to process or ignore
soft directives in the DDIF file being processed
in order to format output. Soft directives specify
such formatting commands as new line, new
page, and tab.

Directs the viewer to perform word wrapping
of any text that would exceed the right margin.
NOAUTO_WRAP allows the text to exceed the
margin.

2.3 Input Formats

2.3.1 DDIF Front End

2.3.1.1

2.3.1.2

2.3.1.3

2.3.1.4

[NO]X_DISPLAY

The default format is

CDA Converter Architecture
2.2 DDIF Viewer

Directs the viewer to create a DECwindows
widget to be used when viewing the file on a
workstation display defined by the logical name
DECW$DISPLAY. NOX_DISPLAY, the default,
invokes the DDIF viewer. Note that X_DISPLAY
cannot be specified if the /OUTPUT qualifier is
also specified.

/SELECT = (GRAPHICS, IMAGES, TEXT, SOFT_DIRECTIVES,
AUTO_WRAP, NOX_DISPLAY)

The CDA Converter Architecture works by supplying a common converter
kernel and front and back ends to support the various input and output
formats. The following sections describe each supported front end, the
data mapping between that input format and the in-memory format,
any data loss that might occur during the conversion, and any other
information specific to that front end.

The DDIF front end reads a file encoded in DDIF format and converts the
information in the file to the CDA in-memory structure.

Data Mapping
Because the input file format is DDIF, the information in the file maps
directly to the CDA in-memory structure.

Data Loss
The DDIF front end does not lose any data when converting a DDIF input
file to the CDA in-memory structure. Again, this is because the input
document type and the in-memory structure type are both DDIF.

External File References
When the DDIF front end encounters an external file reference that is
specified in the document header of your DDIF input file, it passes the
reference through to the CDA Converter Kernel.

Document Syntax Errors
If a document syntax error is encountered in the DDIF front end, that
represents a fatal input processing error. The only way that this can occur
is if the input document is invalid. If the DDIF front end does encounter
a document syntax error, the conversion process is stopped and no further
input processing is performed.

2-9

2.3.2

CDA Converter Architecture
2.3 Input Formats

Text Front End

2.3.2.1

2.3.2.2

2.3.2.3

2.3.2.4

The Text front end reads a standard text (ISO Latinl) file and converts
the information in the file to the CDA in-memory structure. If the text file
was entered as a DEC Multinational Character Set file on a character cell
terminal or terminal emulator, the following conversions occur:

Original Character

Concurrency sign

Capital OE ligature

Capital Y with diaeresis

Small oe ligature

Small y with diaeresis

Data Mapping

Converted Character

Diaeresis

Multiplication sign

Capital Y with acute accent

Division sign

Y with acute accent

When you invoke the converter for a Text input file, all of the text in the
input file is mapped to DDIF text content. Line breaks and form feeds
are mapped to DDIF directives. One or more contiguous blank lines are
interpreted as end-of-paragraph markers.

Data Loss
The Text front end does not lose any data when converting a Text input file
to the CDA in-memory structure. This is because no structure information
is contained in a text file.

External File References
Text files do not contain external file references. Therefore, the Text front
end does not evaluate external file references.

Document Syntax Errors
Because text files do not have any syntax defined, syntax errors cannot be
encountered by the Text front end.

2.4 Output Formats

2.4.1 DDIF Back End

2-10

The following sections describe each back end supported by the CDA
Converter Architecture, the data mapping between the in-memory format
and the particular output format, any data loss that might occur during
the conversion, and any other information specific to that back end.

The DDIF back end takes the CDA in-memory structure that has been
converted from some input format, converts it to a DDIF output format,
and writes the information to the specified DDIF output file.

2.4.2

2.4.3

2.4.1.1

2.4.1.2

Text Back End

2.4.2.1

2.4.2.2

2.4.2.3

Data Mapping

CDA Converter Architecture
2.4 Output Formats

When you invoke the converter with the DDIF back end, the data
mapping between the information in the CDA in-memory structure and
the converted output file is one-to-one. This is because the in-memory
structure type and the output document type are both DDIF.

Data Loss
The DDIF back end does not lose any data when converting a CDA
in-memory structure to a DDIF output file. Again, this is because the
in-memory structure type and the output document type are both DDIF.

The Text back end takes the CDA in-memory structure that has been
converted from some input format, converts only the text content of the
file, and writes the information to the specified text output file.

Data Mapping
When you invoke the converter for a text output file, all Latinl text is
written to the output text file.

Data Loss
When the Text back end is converting the in-memory structure to a text
output file, all graphics, images, attributes, and formatting information
are lost.

Processing Options
The text back end supports the following options:

ASCI l_FALLBACK

CONTENT _MESSAGES

This option causes the back end to output text in 7-bit
ASCII. The fallback representation of the characters is
described in the ANSI ASCII standard.

This option causes the back end to put a message
in the output file each time a nontext element is
encountered in the in-memory CDA structures.

Postscript Back End

2.4.3.1

The PostScript back end takes the CDA in-memory structure that has
been converted from some input format, converts the content of the file
to Postscript-formatted information, and writes the information to the
specified Postscript output file.

Data Mapping
When you invoke the converter for a PostScript output file, all document
content is written to the output file.

2-11

CDA Converter Architecture
2.4 Output Formats

2.4.3.2

2.4.3.3

2.4.3.4

2-12

Data Loss
When converting the in-memory structure to a PostScript output file, all
document content is converted.

Processing Options
The PostScript back end supports the following processing options:

• PAPER_SIZE paper-size

• PAPER_HEIGHT paper-height

• PAPER_ WIDTH paper-width

• PAPER_TOP _MARGIN paper-top-margin

• PAPER_BOTTOM_MARGIN paper-bottom-margin

• PAPER_LEFT_MARGIN paper-left-margin

• PAPER_RIGHT_MARGIN paper-right-margin

• PAPER_ORIENTATION orientation

• EIGHT_BIT_OUTPUT eight-bit-output-state

• OUTPUT_BUFFER_SIZE output-buffer-size

• SOFT_DIRECTIVES soft-directives-state

• WORD_ WRAP word-wrap-state

• PAGE_ WRAP page-wrap-state

• LAYOUT layout-state

The keyword is separated from its assigned value by one or more spaces
or tabs. Note that, for all of the measurement options, the default unit of
measure is inches (specified as "in"). Other supported units of measure are
points (pts), centimeters (cm) and millimeters (mm).

The processing options are discussed individually in the following sections.

Paper Size Processing Option
The PAPER_SIZE paper-size option lets you specify the size of the paper to
be used when formatting the resulting PostScript output file. Valid values
for paper-size are as follows:

Keyword

AO
A1

A2

A3

A4

A

B

Size

841 x 1189 millimeters (33.13 x 46.85 inches)

594 x 841 millimeters (23.40 x 33.13 inches)

420 x 594 millimeters (16.55 x 23.40 inches)

297 x 420 millimeters (11. 70 x 16.55 inches)

210 x 297 millimeters (8.27 x 11.70 inches)

8.5 x 11 inches

11 x 17 inches

2.4.3.5

2.4.3.6

2.4.3.7

2.4.3.8

2.4.3.9

2.4.3.10

Keyword

c
D
E
LEDGER
LEGAL
LETTER
LP
VT

Size

17 x 22 inches

22 x 34 inches

34 x 44 inches

11 x 17 inches

8.5 x 14 inches

8.5 x 11 inches

13.7 x 11 inches

8 x 5 inches

CDA Converter Architecture
2.4 Output Formats

The A paper size (8.5 x 11 inches) is the default.

Paper Height Processing Option
The PAPER_HEIGHT paper-height processing option, in combination with
the PAPER_ WIDTH processing option, lets you specify a paper size other
than one of the predefined values provided. The default paper height is
11 inches.

Paper Width Processing Option
The PAPER_ WIDTH paper-width processing option, in combination with
the PAPER_HEIGHT processing option, lets you specify a paper size other
than one of the predefined sizes provided. The default paper width is
8.5 inches.

Top Margin Processing Option
The PAPER_TOP _MARGIN top-margin processing option lets you select
the width of the margin provided at the top of the page. The default value
is .25 inches.

Bottom Margin Processing Option
The PAPER_BOTTOM_MARGIN bottom-margin processing option lets you
select the width of the margin provided at the bottom of the page. The
default value is .25 inches.

Left Margin Processing Option
The PAPER_LEFT_MARGIN left-margin processing option lets you select
the width of the margin provided on the left-hand side of the page. The
default value is .25 inches.

Right Margin Processing Option
The PAPER_RIGHT_MARGIN right-margin processing option lets you
select the width of the margin provided on the right-hand side of the page.
The default value is .25 inches.

2-13

CDA Converter Architecture
2.4 Output Formats

2.4.3.11

2.4.3.12

2.4.3.13

2.4.3.14

2.4.3.15

2-14

Paper Orientation Processing Option
The PAPER_ORIENTATION orientation processing option lets you select
the paper orientation to be used in the output PostScript file. The valid
values for the orientation argument are as follows:

Keyword

PORTRAIT

LANDSCAPE

Meaning

The page is oriented so that the larger dimension is parallel
to the vertical axis.

The page is oriented so that the larger dimension is parallel
to the horizontal axis.

The default is PORTRAIT.

Eight Bit Output Processing Option
The EIGHT_BIT_OUTPUT eight-bit-output-state processing option lets
you select whether or not the PostScript back end should use 8-bit output.
You can specify a value of either ON or OFF for the eight-bit-output-state
argument. The default is ON.

Output Buffer Size Processing Option
The OUTPUT_BUFFER_SIZE output-buffer-size processing option lets you
select the size of the output buffer. The value you specify must be within
the following range:

64 ::; output - buff er - size ::; 256

The default is 132.

Soft Directives Processing Option
The SOFT_DIRECTIVES soft-directives-state processing option lets you
select whether or not the Postscript back end processes soft directives
in the DDIF file in order to format output. (Soft directives specify such
formatting commands as new line, new page, and tab.) If the PostScript
back end processes soft directives, the output file will look more like you
intended.

You can specify a value of either ON or OFF for the soft-directive-state
argument. The default is ON.

Word Wrap Processing Option
The WORD_ WRAP word-wrap-state processing option lets you specify
whether or not the Postscript back end performs word wrapping of any
text that would exceed the right margin. You can specify a value of either
ON or OFF for the word-wrap-state argument. The default is ON. If
you specify OFF, the PostScript back end allows text to exceed the right
margin.

2.4.4

2.4.3.16

2.4.3.17

Page Wrap Processing Option

CDA Converter Architecture
2.4 Output Formats

The PAGE_ WRAP page-wrap-state processing option lets you specify
whether or not the PostScript back end performs page wrapping of any
text that would exceed the bottom margin. You can specify a value of
either ON or OFF for the page-wrap-state argument. The default is ON.

Layout Processing Option
The LAYOUT layout-state processing option lets you specify whether or
not the PostScript back end processes the layout specified in the DDIF
document. You can specify a value of either ON or OFF for the layout-state
argument. The default is ON.

Analysis Back End
This back end produces an analysis of the CDA in-memory structure in
the form of text output showing the named objects and values stored in
the document. This is useful for debugging DDIF application programs.

The Analysis back end supports an /INHERITANCE processing option that
specifies that the analysis is shown with attribute inheritance enabled.
Inherited attributes are marked by "[default]" in the output.

2-15

3 Overview of DDIF

The DIGITAL Document Interchange Format (DDIF) describes the format
used for the creation, storage, and interchange of revisable compound
documents. In order to write a DDIF-conforming application using the
CDA Toolkit routines, it is important to first understand some of the basic
concepts of DDIF.

3.1 Document Content
Document content is defined as the information contained in the
fundamental units of a document. Document content includes characters,
lines, raster images, and so on. This is different from the attributes
that are applied to content. Attributes specify how the information is
presented; for example, attributes specify content characteristics such
as font, line thickness, and color. Attributes can also specify how the
information is stored; for example, image attributes control the storage of
image content.

DDIF supports several types of document content:

• Text content consists of text in ASCII and alternate character sets
(including 16-bit text).

• Graphics content consists of primitives such as polylines and filled
areas.

• Image content or raster image content consists of digitized images
represented by actual values of monochrome, gray-scale, or color
images.

• Computed content is document content (most often text content)
that is calculated based on the current formatting state or other
inclusion of external data. One example is a reference to the current
page number, or to the page number on which a particular document
element appears. The revisable form of the document describes the
means by which the content is computed, while the final form of the
document contains only the result of the computation (for example, the
page number itself).

Document content can be either hard or soft. Hard content is entered by
the creator of the document. Soft content is generated by software and is
subject to recalculation when the document is revised. Page numbers used
as cross-references are an example of soft text content. A chart generated
from data to which the document is linked is an example of soft graphics
content.

3-1

3.1.1

Overview of DDIF
3.1 Document Content

Document Hierarchy

3-2

DDIF represents a document as an ordered hierarchy of document
segments. A document segment, or simply segment, is defined as a
quantity of content that is set off from the surrounding data by a change
in presentation or processing attributes. Each segment in a document
contains document content, and can also contain nested segments. You can
look at the hierarchy of segments as an inverted tree structure, in which
case the segments are transmitted (or stored) from the top down and from
left to right, simulating a depth-first traversal of the segment hierarchy.
Content elements (the text, graphics, and images of the document) are
displayed in this order.

Figure 3-1 Document Hierarchy

* =Element

[I} =SegmentX

* * * *

A

c

*
D

* * *
+ Computed Contents

ZK-0281A-GE

For example, the segments of the document illustrated in Figure 3-1
would be transmitted in the order A, B, C, D, and E. In this figure, the
segment named A has B, C, and E as contents. Segments B and E are
each shown as having three primitive content elements. Segment C also
has three content elements, but one of these (D) is a nested segment.
Segment D has no content; instead D contajns computed content.

Example 3-1 illustrates the DDIF constructs (with the content omitted)
representing the document shown in Figure 3-1.

3.1.2 Document Root

Example 3-1 DDIF Document Sample

DDIF DOCUMENT
{

DDF DESCRIPTOR
{

DSC MAJOR VERSION 1
DSC MINOR VERSION 0
DSC PRODUCT IDENTIFIER "DDIF$"
DSC PRODUCT NAME
(

Overview of DDIF
3.1 Document Content

ISO LATINl "Hand-generated Standard DDIF Example"

}

)
}

DDF HEADER
{

DHD VERSION
(

ISO LATINl "Vl.0"
)

}

DDF CONTENT
{

}

SEG ID "A"
SEG CONTENT
{

}

{

}

{

SEG ID "B"

SEG ID "C"
SEG CONTENT
{

SEG ID "D"
}

SEG ID "E"
}

There are some structures (aggregates) that are required for every DDIF
document; other constructs are optional, depending on the content of the
document. An example of the hierarchical structure of a typical DDIF
document is shown in Figure 3-2.

In Figure 3-2, the document is described in terms of a document root, a
document descriptor, a document header, and the segments of document
content that make up the document. Each of these pieces is described in
the following sections.

The document root identifies the document to an application that is
processing the document. The encoding of the actual document root
aggregate, as well as all other DDIF aggregates, is described in Chapter 6.

3-3

3.1.3

3.1.4

3.1.5

Overview of DDIF
3.1 Document Content

Figure 3-2 Typical DDIF Document

Document

l
l I

Document Document Root
Descriptor Header Segment

l I I l
Text Graphics Image Computed

Content Content Content Content

Private External
Content Content

ZK-0282A-GE

Document Descriptor
The document descriptor specifies information about the document, such
as the DDIF version level used to encode the document and the software
that created the document.

Document Header

Root Segment

3-4

The document header specifies certain information about the document
as a whole. For example, the document header can specify the title of the
document, the author, the version number of the document, a creation
date, and any style guides to which the document conforms.

The content of a DDIF document is contained in a single segment called a
root segment. This root segment contains zero or more content elements,
including text, graphics, images, and nested segments. These standard
content types express the basic units of meaning in a document and are
described in the following sections.

3.1.5.1

3.1.5.2

3.1.5.3

3.1.5.4

Text Content

Overview of DDIF
3.1 Document Content

Text content consists of graphic characters and spaces from standard and
private character sets. The presentation of the text is defined by text
attributes that are specified using a segment attributes aggregate. Layout
attributes describe the layout path to be used when the text is processed
for presentation.

In addition, directives (such as new line and new page) are considered text
content. These directives can either be hard (explicitly set by the user)
or soft (inserted by the software that created the document for its own
subsequent use). For example, if you specify a page break in a particular
place in your document, that is a hard directive. If a text editor paginates
your document during editing and saves these page breaks to reduce
startup time, those are soft directives.

If a document is reformatted, the receiving or modifying application
can ignore a soft directive. On the other hand, a hard directive cannot
be ignored or removed, even if the document is reformatted. However,
modifying applications enable the user to remove hard directives.

Graphics Content
Graphics content consists of such objects as polylines, cubic Bezier curves,
arcs, fill areas, and paths that are created from a combination of the
preceding objects. The presentation of graphics is defined by graphics
attributes that are specified using a segment attributes aggregate. These
graphics attributes describe such things as the line style, marker style,
and fill patterns used for graphics content.

Image Content
Image content contains image data that is represented as a frame of
data within a DDIF document. The origin of the frame is located at the
lower left-hand corner of the frame. A frame can contain a single still
image or a sequence of time-varying images with identical attributes. The
presentation of these images is defined by image attributes that describe
such presentation attributes as the pixel path and its aspect ratio, the
brightness polarity of the image, and the physical format of the pixel
grid in the image. Additionally, you can specify the attributes of the
image component space, such as the number of data planes per pixel (and
therefore per image) and the significance of the data planes.

Computed Content
Computed content is document content that is computed by a formatter
or other document processor. Examples of computed content include
section numbers, page numbers, and cross-references, in which the text
content of the segment is generated by calculating the value of variables,
such as the current page number. A segment whose content is computed
must describe the method of its computation. It can additionally store its
previously computed value, so that if none of its computation parameters
have changed, the document formatter can eliminate the time required to
recompute all of the computed content.

3-5

3.1.6

Overview of DDIF
3.1 Document Content

3.1.5.5

3.1.5.6

Restricted Content
Restricted content is provided in addition to the standard revisable
content types. There are two types of restricted content: page description
language (PDL) content and private content. In general, PDL content
can only be displayed by the supporting devices, and is not suitable for
revision. Private content indicates content that is restricted either to
a particular document-processing implementation, or to a set of related
implementations that support identical private encodings.

PDL content includes a stream of page description language in the content
of the document; it is defined as an external data synax. Private content
allows products or closely related product sets to include private markers,
tags, and status information in document content.

Private Data
Private data is defined as document semantics that is restricted either
to a particular document-processing implementation, or to a set of tightly
coupled implementations that mutually support private encodings.

DDIF provides several instances where document processors can escape to
private data, for example:

• In the header (for document-wide private indicators)

• In segment attributes (for hierarchical or inheritable data)

• As a content type (for content-like private data or markers)

Private data can be, for example, a marker in the document content
that indicates the user's last editing position in the document, or a data
element in the header of the document that indicates the menu setups or
operation modes that the user had active at the time the document was
written.

Relationships in Revisable Documents

3-6

In order to make a document revisable, DDIF defines different classes of
relationships. These relationships are listed in Table 3-1.

Table 3-1 Relationships in Revisable Documents

Relationship Meaning

Inheritance This relationship defines a method for defaulting the attributes
of content so that each segment of content does not need to
specify all of its attributes. Instead, each segment inherits the
attributes of the surrounding segment, and specifies only the
difference between the attributes of its content and that of the
surrounding content.

(continued on next page)

Overview of DDIF
3.1 Document Content

Table 3-1 (Cont.) Relationships in Revisable Documents

Relationship Meaning

Generic attributes This relationship defines attributes that can be applied to a
number of segments, as opposed to being associated with a
single segment.

Specific attributes This relationship defines attributes that are associated only
with a single segment of content. These types of attributes
are deliberately limited to a specific segment of the document.

Generic type This relationship defines a set of attributes and processing
tags that define a type. Elements of the document can
reference a defined type and become an "instance" of
the type, thus inheriting the attributes and processing
characteristics of the generic type.

Type reference This actually represents a shorthand notation for the phrase
"reference to generic type." When segments reference the
same generic type, they inherit common attributes, and
therefore take on common processing and presentation
styles.

Generic content This relationship defines document content that can be
included in multiple places in the document. For example,
a document containing several related illustrations might
contain common graphics components that can be shared
throughout the document or across a set of documents.

Content reference This actually represents a shorthand notation for the phrase
"reference to generic content." A content reference causes
the generic content to be inserted into the final form when the
document is formatted.

Variables This relationship defines content that can be generated
based on the values of variables, thereby ensuring that
multiple elements of content are identical, have the same
position, or can be modified by standard functions. For
example, variables are used to indicate the numbering of list
elements.

Style guide This relationship defines a collection of generic types that
are defined for use from a set of documents. A style guide
takes the form of a document with definitions on the root
segment, including type definitions, content definitions, font
definitions, pattern definitions, line style definitions, and
generic page descriptions. A document can contain only
segmented content, and can make references to types in the
externally defined style guide. Using different style guides
makes it convenient to vary the style of a set of documents,
or to vary the appearance of a given document. An example
would be a style guide designed to match the capabilities of
a target printer.

These revisable document relationships are referred to in the following
sections.

3-7

Overview of DDIF
3.1 Document Content

3.1.6.1

3.1.6.2

3.1.6.3

3-8

Attribute Inheritance
As defined in Table 3-1, inheritance describes a method for defaulting
the attributes of content so that each segment of content does not need to
specify all of its attributes. In the document hierarchy, content attributes
only affect the segment that declares or references them. In Figure 3-1,
the attributes of C affect only the contents of C and its descendant, D.
Segment D inherits all the attributes of C that D itself does not override,
and also inherits the attributes of A that are not overridden by C. Any
segment can therefore define the default attributes for its nested segments.

More specifically, the attributes that are inherited are those attributes
that require some current value in order to make sense. For example,
attributes such as line width, color, patterns, font definitions, and current
font must always have some value; these attributes are therefore inherited
if not explicitly declared. Attributes that are not inherited include segment
identifiers, transformations, positions, and so on. These attributes are
only specified through segment (generic) type inheritance or by direct
specification, not through inclusion in the parent segment.

Generic Types
Any segment can define generic types which, in turn, can be referenced
by nested segments. A generic type is defined as a set of attributes
and processing tags that define a type. For example, you might create
a generic type representing a footnote. Elements of the document can
reference a generic type and become an instance of that type, inheriting
the attributes and processing characteristics of the generic type. To
continue the footnote example, whenever a footnote is required you can
reference the generic footnote type to inherit the appropriate attributes for
all footnotes throughout the document.

In Figure 3-1, segment C could define generic types that could be
referenced from D, and segment A could define generic types that could
be referenced from B, C, D, and E. Note that segments do not have to
reference the generic type of the parent. However, if a segment wants
to inherit the attributes associated with the generic type of its parent, it
must explicitly reference that generic type.

Generic Content
In addition to generic types, a segment can also define generic content
elements that can be used in any of its nested segments. Generic
content is defined as document content that can be included in multiple
places in the document. For example, a document that contains several
related illustrations might contain common graphics components, which
can be shared throughout the document or across a set of documents.
Generic content can contain any of the DDIF content types, including
nested segments. By using nested segments to define a generic content
element, you can define complex content types in which content elements
are differentiated by attributes.

For example, the user of a graphics editor might define a wheel consisting
of a black tire, white spokes, and a gray wheel hub. This wheel could be
defined in terms of graphics primitives and segmentation, and could then
be referenced throughout all the diagrams of cars in the document. A
change to the generic wheel would change the appearance of that wheel

3.1.7

3.1.6.4

3.1.6.5

Overview of DDIF
3.1 Document Content

throughout the entire document, because all specific instances of it are
expanded from the single definition during the creation of the final-form
document.

You can use references to a generic type when you are defining a generic
content element. The definition of the generic type can be supplied either
as part of the generic content definition, or it can be inherited through
the parentage of the content reference. Note that a nested segment can
redefine a generic type or a generic content element that is defined in a
parent segment. In this case, the redefining segment and all its nested
segments actually refer to the redefined generic element instead of to the
original element.

References to Generic Types
When a segment references a generic type, it becomes a segment of that
type and inherits any generic attributes associated with that type. These
inherited attributes also apply to the descendants of the referencing
segment. For example, in Figure 3-1, if A defines a generic type Q, and
C references Q, then the generic attributes defined for Q take effect for C,
and form the default attributes for D.

If an attribute is specified both in the referenced generic attributes and
in the specific attributes, the specific attribute takes precedence. That is,
specific attributes override generic attributes.

References to Generic Content
When you reference generic content, that content is inserted into the final
form of the document when the document is formatted. This referenced
generic content inherits the attributes of the segment in which the content
reference occurs. However, segments within a generic content element can
override the inherited attributes, just as they would if the generic content
had occurred there directly. You can also use generic content to specify
only some attributes, leaving others to be inherited from the segment in
which they are referenced.

A content reference can specify a transformation to be applied to the
generic content. All sizes and positions in generic content can be scaled,
rotated, and translated.

Example of Document Content
Example 3-2 illustrates a small DDIF document and the various methods
used to specify rendition attributes. This example is illustrated in the
Analysis format - the format output by the Analysis Back End. In most
cases, braces are used to enclose an aggregate, and parentheses are used
to enclose an item that is encoded as an array.

3-9

Overview of DDIF
3.1 Document Content

Example 3-2 DDIF Document Attribute Inheritance

DDIF DOCUMENT tt
{

DDF DESCRIPTOR
{

DSC MAJOR VERSION 1 ~ - -
DSC MINOR VERSION 0
DSC PRODUCT IDENTIFIER "DDIF$"
DSC=PRODUCT=NAME @)
(

ISO LATINl "Hand-generated Standard DDIF Example"

3-10

)

}

DDF HEADER
{

}

DHD VERSION 8
(
ISO LATINl "V0.1"

)

DDF CONTENT
{

SEG SPECIFIC ATTRIBUTES CB
{

SGA TYPE DEFNS
{

}

{

TYD LABEL "BOLD" (3
TYD ATTRIBUTES
{

}

SGA TXT RENDITION
(

RND HIGHLIGHT
)

TYD LABEL "UNDERLINED" @
TYD ATTRIBUTES
{

}

SGA TXT RENDITION
(

RND UNDERLINE
)

}

}@)
SEG CONTENT (!}
{

SEG ID "A" I)
SEG SPECIFIC ATTRIBUTES
{

}

SGA TXT RENDITION
(

RND CROSS OUT
)

(continued on next page)

Overview of DDIF
3.1 Document Content

Example 3-2 (Cont.) DDIF Document Attribute Inheritance

}

{

SEG CONTENT
{

TXT CONTENT "Textl" «9
}

{

SEG ID "B" ~
SEG SEGMENT TYPE "BOLD" - -
SEG SPECIFIC ATTRIBUTES

- -
{

SGA TXT RENDITION
(

)

}

RND DEFAULT
RND UNDERLINE

SEG CONTENT
{

TXT CONTENT "Text2"
}

} .,
{

TXT CONTENT "Text3"
}

SEG ID "Goodness" CD
SEG CONTENT
{

SEG SEGMENT TYPE "BOLD"
SEG-CONTENT-Gi)
{

TXT CONTENT "bold "
}

{

SEG SEGMENT TYPE "UNDERLINED"
SEG CONTENT
{

TXT CONTENT "bold underlined " 8
} }.

{

TXT CONTENT "bold again"
}

} G)
} 4B
}~ }.

0 This corresponds to the DDIF$_DDF _DESCRIPTOR item in the
DDIF$_DDF aggregate. This item is encoded as the handle of a
DDIF$_DSC aggregate which follows it in the structure.

8 The DDIF$_DSC aggregate specifies the version number and product
information of the product that created the document.

3-11

Overview of DDIF
3.1 Document Content

3-12

0 The DDIF$_DSC_PRODUCT_NAME item in the DDIF$_DSC
aggregate is encoded as an array of type character string. In this
example, there is only one array value specified: ISO_LATINl "Hand­
generated Standard DDIF Example".

8 The items in the DDIF$_DHD aggregate are optional. In this example,
only the version number is indicated. The DDIF$_DHD_ VERSION
item is encoded as an array of type character string. In this example,
a single array item is specified: ISO_LATINl ''V0.1".

0 These segment-specific attributes are specified on the root segment
of the document; hence, they can be referenced at any point in the
document content. The attributes specified are "BOLD" (highlighted)
and "UNDERLINED" (underlined).

8 The bold attribute can be referenced using the label "BOLD". It is
defined using a segment attributes (DDIF$_SGA) aggregate with
the text rendition item (DDIF$_SGA_TXT_RENDITION) specified as
DDIF$K_RND _HIGHLIGHT.

@ The underlined attribute can be referenced using the label
"UNDERLINED". It is defined using a segment attributes (DDIF$_
SGA) aggregate with the text rendition item (DDIF$_SGA_TXT_
RENDITION) specified as DDIF$K_RND_UNDERLINE.

~ This right brace indicates the end of the definition of the segment­
specific attributes.

0 This marks the beginning of the content of the document. That is,
this marks the DDIF$_SEG_CONTENT item of the root segment of
the document. All of the document content is nested under this root
segment.

~ Segment "A" is the first segment nested under the root segment. This
segment specifies a segment-specific attribute of crossed-out, so that
all of its content will have a default attribute of crossed-out.

'9 The first content aggregate in segment A is a text aggregate whose
content is the string "Textl ".

48 The second aggregate in segment A is a nested segment (B). This
segment references the defined attribute "BOLD", and also specifies
segment-specific attributes of default and underlined. The content of
segment Bis a text aggregate containing the string "Text2".

G> This right brace marks the end of the nested segment B. Segment A
contains a third content aggregate - another text aggregate whose
content is "Text3".

e At this point, segment A and its content have been specified. This
line marks the beginning of the segment entitled "Goodness". This
segment, like segment A, is nested under the root segment.

e Segment Goodness contains a nested segment that does not have a
label but instead references the defined type BOLD. There are three
aggregates nested under this aggregate: a text content aggregate, a
nested segment, and another text content aggregate. The first text
content aggregate contains the string "bold". When this text is output,
it will appear bolded.

Overview of DDIF
3.1 Document Content

4D The nested segment (nested under the segment referencing BOLD)
references the defined type UNDERLINED. The content of this
segment is a text aggregate containing the string "bold
underlined". When this text is output, it will appear bolded and
underlined.

48 This right brace ends the nested segment (nested under the segment
referencing BOLD). The last content aggregate of the segment
referencing BOLD is a text content aggregate containing the string
"bold again". When this text is output, it will appear bolded.

ll This right brace ends the segment referencing BOLD.

G> This right brace ends the segment Goodness.

Ci> This right brace ends the root segment.

• This right brace ends the document.

Figure 3-3 illustrates the DDIF document described by the previous
example.

Figure 3-3 Illustration of Inheritance Example Document

SGA
default

underlined

DSC DHD

DDF

SEG

SGA
crossed-out

TXT
"Text1"

SGA

1YD
UNDERLINED

SEG

1YD
BOLD

SGA
default

underlined

SGA
highlight

SEG
"Goodness" :

(ref. UNDERLINED)
TXT

"bold"

TXT
"bold underlined"

ZK-0283A-GE

3-13

Overview of DDIF
3.1 Document Content

The renditions of the various text segments would be as follows:

• Textl's rendition list is {crossed-out}

• Text2's rendition list is { crossed-out, highlighted, default, underlined}

• Text3's rendition list is once again { crossed-out}

• The rendition of the "Goodness" segment would be as follows:
bold bold underlined bold again

In general, to form the current rendition for any segment, the receiving
software must process the list of renditions specified for the segments,
modifying its current rendition state in response to each rendition. The
"Goodness" segment illustrates the preferred method for using renditions:
define types for the renditions and nest the segments on a per-rendition
basis.

3.2 Document Layout

3.2.1 Page Description

3.2.2 Page Set

3-14

Document layout is defined as the manner in which document content
elements (graphics, text, and images) are arranged on a page or series of
pages.

The following sections summarize some of the typical approaches to layout
in document processing systems.

To specify the generic layout of a document, you must define the layout
parameters described in the following sections. Each of these parameters
corresponds to a DDIF aggregate type; these aggregate types are described
in Chapter 6. Note that generic layout descriptions can only be placed on
the root segment of a document. Generic layout descriptions placed on
segments other than the root segment are ignored. The same is true for
specific layout descriptions.

The page description provides a page model in the form of either a single
page layout or a set of page layouts. If the page description is modeled
by a set of page layouts, the description also specifies the conditions
under which the different page layouts are used. In other words, if
a page description is defined using a set of varying page layouts, you
must also specify in the description which layout should be used under
which conditions. For example, you might have a page description that
consists of two actual page layouts: one for left-hand pages and one for
right-hand pages.

The page set specifies one or more pages, one of which is selected based
on the current formatting state. Each page in the page set contains the
following information:

• A pointer to a page in the list of page layouts

3.2.3

3.2.4

3.2.5

Page Layout

Galley

• The criteria for selection of that page

Overview of DDIF
3.2 Document Layout

The page layout is used to describe a page, including such information as
the page size, what galleys are on the page, and any content specific to
that particular page. Note that this page layout syntax is used when you
are specifying both generic and specific layout.

The galley layout specifies the shape and attributes of a single galley. A
galley controls the flow of text along a series of parallel paths. These paths
are determined by a formatter based on the following information:

• The outline of the galley

• The height of the characters on the lines

• Other layout parameters such as leading (Leading refers to the
distance between lines of type.)

Galleys are relative to either a page frame defined by the page layout
description, or to a floating frame. A galley will not be imaged when
selected for filling with text, but rather in the normal sequence in which
objects in the frame are imaged. A page frame and its contents are imaged
when the first galley on the page is selected.

Implementation of Layout Separation
The content of a DDIF-encoded document is stored in logical order - the
order in which the reader of the document would normally read it. The
content of a document laid out in a newspaper style, for example, would be
stored one article at a time, as opposed to having parts of the articles be
interspersed with one another as they are in the page-ordered final form.
The change in content order when the revisable form is converted to the
final form is performed by the formatter.

The logically ordered content of the document is preceded by a specification
of the generic and/or specific page descriptions. These are selected from
within the content, or are simply used in the specified sequence.

Layout parameters and attributes are isolated from other types of
attributes and from content, so a layout specification can be skipped
without the formatter even knowing the syntax of that specification. It is
therefore possible to display a DDIF document with complex galley-based
layouts on character-cell devices even if the encoding application used an
unrecognized layout specification.

The attributes that affect the layout of text (and :floating frames) in the
context of a galley-based layout are isolated in two individual attributes:
wrap attributes and layout attributes.

3-15

3.2.6

Overview of DDIF
3.2 Document Layout

3.2.5.1

3.2.5.2

Wrap Attributes
Wrap attributes let you specify parameters to control the process of
wrapping text at the margin, as well as specifying hyphenation attributes
and line format (centered, flush left, and so on). These attributes are
applicable even if the galleys specified for the document are not used.

Wrap attributes do not determine where the line break occurs; they
do not include margins or other dimensional parameters. Because
the wrap attributes are independent of the dimensions, they can be
applied when layout dimensions are discarded. For example, when
an application is presenting a compound document on a character-cell
device, the hyphenation limits and the line format still convey meaningful
information.

Layout Attributes
Layout attributes, unlike the wrap attributes, include physical dimensions
that require a layout template as a frame of reference. Examples of such
dimensions include margins, indents, and tab stops. A formatter that
is not using the specified page layout templates cannot use the layout
attributes, and should replace them with attributes appropriate for the
page descriptions actually being used.

Content Streams in Layout

3-16

A given galley on a page accepts content only from certain streams. For
example, footnote galleys accept content only from the footnote stream.
Thus, while the footnote content is logically embedded within the content
of the paragraph that references it, it appears in the galley at the bottom
of the page, or even at the end of the chapter. Therefore, DDIF provides a
method to tag content elements by stream.

Once a content element is tagged by stream, a formatter can be instructed
to include only certain streams in the document layout, so that variants on
a document can be produced at the user's option. For example, comments
on the document can be left out of production runs, while being included
in special review drafts.

Each stream type is identified by a label or tag. The types of streams that
exist for a document include:

• Document body content stream ($DB)

• Table of contents stream ($TOC)

• Index content stream ($IX)

• Footnote stream ($FN)

• Margin note stream ($MN)

• End note stream ($EN)

Overview of DDIF
3.2 Document Layout

Elements that appear in both the table of contents and the document
body (for example, section heads) should be tagged for appearance in
two streams - the document body and the table of contents. When a
revisable document includes a table of contents, the table of contents is
contained in a segment with a computed content attribute that specifies
a table-of-contents generating function. The content of that segment does
not have the table of content stream ($TOC) tag, but rather the document
body ($DB) tag because it is part of the body of that document. If the
table of contents is regenerated, the contents of the table of contents
segment are discarded and regenerated from the $TOC-tagged elements
in the document. The same situation applies to indexes, except that index
elements often do not appear in the body of the document and therefore
are not part of that stream.

3-17

4 Overview of the CDA Toolkit

The CDA Toolkit routines enable you to write a DDIF-conforming
application without having to know the specifics of the DIGITAL Document
Interchange Format. This chapter provides an overview of the capabilities
of the CDA Toolkit, as well as a description of the terminology associated
with the Toolkit.

4.1 CDA Toolkit Routines Terminology
The definitions discussed in Chapter 3 are used in reference to the
DIGITAL Document Interchange Format. In the discussion of the CDA
Toolkit routines, the terminology listed in Table 4-1 is also used.

Table 4-1 Routines Terminology

Term Definition

Aggregate An in-memory structure that is used to pass compound
document data between the application and the Toolkit
routines. An aggregate corresponds to a manageable
unit of the compound document. Aggregates are typed
and self-describing; the type of an aggregate is indicated
by a symbolic constant. An aggregate can be a member
of an aggregate sequence, which can be traversed from
beginning to end. Aggregates are defined for such objects
as a document root, document descriptor, document header,
document segments, text content, and so on.

Attribute A presentation or processing characteristic.

Document An entire hierarchical structure in memory, created by the
CDA Toolkit routines.

Handle The identifier of an aggregate.

Item The identifier of a specific unit of information stored in an
aggregate. The handle of an item is a symbolic constant
defined in the file DDIF$DEF.SDL.

Root aggregate

Segment

Sequence

Stream

An aggregate that represents the root of the in-memory
document hierarchy. It also contains context private to
the Toolkit routines. The type of the root aggregate is
DDIF$_DDF.

A quantity of content that is set off from surrounding data by
a change in presentation or processing attributes.

A linked series of aggregates.

An access path by which encoded compound document data
is transferred.

The CDA Toolkit routines are designed to simplify the creation and
manipulation of compound document data. The routines provided by
the Toolkit perform the following operations:

4-1

Overview of the CDA Toolkit
4.1 CDA Toolkit Routines Terminology

4.2 File Management

4-2

• File management

• Stream management

• Aggregate management

• Document conversion

• Item access

• Front end activation

The CDA Toolkit routines are discussed in the following sections.

The CDA Toolkit provides several routines to implement file management.
To open or create a compound document file, the CDA Toolkit provides
two routines: the OPEN FILE routine opens an existing compound
document file for input, and the CREATE FILE routine creates a new
compound document file for output. Each of these routines is discussed in
the following paragraphs.

The OPEN FILE routine opens an existing compound document file
for input and confirms that the contents of the file are valid compound
document data. Once the file is opened, the OPEN FILE routine returns
the file and stream handles (identifiers) for the opened file; these
handles must be used in all subsequent operations on the file or stream.
The OPEN FILE routine also creates a document root aggregate and
returns the root aggregate handle, which must be used in all subsequent
operations on that document root aggregate. You therefore do not have to
invoke the CREATE ROOT AGGREGATE routine after calling the OPEN
FILE routine.

The CREATE FILE routine creates a new compound document file for
output and prepares it to receive data from a compound document stream.
Once the new file is created, the CREATE FILE routine returns the
file and stream handles for the new document; these handles must be
used in all subsequent operations on the file or stream. Because the
CREATE FILE routine creates a new file, you must create a document root
aggregate (by a call to the CREATE ROOT AGGREGATE routine) prior
to a call to CREATE FILE; this root aggregate handle must be passed to
the CREATE FILE routine to identify the document being created. This
root aggregate handle must be used in all subsequent operations on that
document root aggregate.

The CLOSE FILE routine closes the currently open compound document
stream and file. In the case of an output file, the CLOSE FILE routine
writes any remaining buffered data to the output stream before closing the
com pound document file.

The CDA Toolkit also provides several routines to simplify text file
management. On VMS systems, a standard text file has variable-length
records and CR carriage control.

Overview of the CDA Toolkit
4.2 File Management

The OPEN TEXT FILE routine opens a standard text file for input. On
VMS systems, a standard text file is any RMS file with variable-length
records and carriage return record attributes. You can then use the READ
TEXT FILE routine to read a line from a standard text file. On VMS
systems, the line that is read is the next RMS record.

The CREATE TEXT FILE routine creates a standard text file for output.
You can then use the WRITE TEXT FILE routine to write a line to this
standard text file. On VMS systems, the line becomes an RMS record.

The CLOSE TEXT FILE routine closes a standard text file. The handle of
the text file is invalid after a call to this routine.

4.3 Stream Management
Stream management routines are provided for application programs that
require additional control (not provided by the file management routines)
over the source or destination of a com pound document stream. For
example, the stream management routines can be used when the source or
destination is not necessarily a file that resides on the host system.

The stream management routines are as follows:

• The OPEN STREAM routine opens a compound document stream for
input.

• The CREATE STREAM routine creates a compound document stream
for output.

• The CLOSE STREAM routine closes the specified stream and
invalidates the stream handle. In the case of an output stream,
this routine writes any buffered data before closing the stream.

• The FLUSH STREAM routine ensures that the data has been
physically transferred to the receiving medium by writing any buffered
data to the specified output stream.

An in-memory document exists independently of a stream. Once you
create an in-memory document, you can populate it either by reading
compound document data from a stream or by creating the aggregates
that make up the document. Once you populate the in-memory document,
you can write its data to a stream. The number of documents that can
exist simultaneously in memory is limited only by the amount of memory
available.

4.4 Root Aggregate Management
The first aggregate that must be created for a compound document is the
document root aggregate. If you are reading a compound document file,
you do not have to create a root aggregate explicitly because, when you
open a compound document file, the OPEN FILE routine automatically
creates a root aggregate and returns the root aggregate handle. However,
if you are opening a file for output using the CREATE FILE routine, you
must explicitly create an aggregate.

4-3

Overview of the CDA Toolkit
4.4 Root Aggregate Management

If you are reading or writing a file that is not a compound document,
you must explicitly create a document root aggregate before creating any
other aggregates. The document root aggregate is used to identify the
compound document and to begin the tree structure that contains all of
the aggregates that make up that compound document.

The CREATE ROOT AGGREGATE routine creates a document root
aggregate and returns its handle. This root aggregate handle must be
used to identify the compound document in all subsequent operations on
that compound document. The CREATE ROOT AGGREGATE routine
accepts a processing-options parameter that you can use to specify
processing options that remain in effect for the life of the document.
Processing options that you can specify include inheriting attributes,
retaining definitions, evaluating contents, and discarding information.

The DELETE ROOT AGGREGATE routine deletes a document root
aggregate and all of its substructure. It does not, however, delete
aggregates that were created with the root but not connected to it
physically in the tree. The handle of the root aggregate, as well as the
handle of any aggregate linked to the root aggregate either directly or
indirectly, is invalid after a call to this routine.

The CDA Toolkit provides routines to translate a root aggregate to a
DIGITAL Document Interchange Syntax (DDIS) type object identifier,
and to translate an object identifier to a root aggregate. The AGGREGATE
TYPE TO OBJECT ID routine translates a root aggregate type to an object
identifier; the OBJECT ID TO AGGREGATE TYPE routine translates a
DDIS object identifier to a root aggregate.

4.5 Aggregate Management

4-4

Once you have created the document root aggregate, you should use the
CREATE AGGREGATE routine to create aggregates of the following types:

• A document header aggregate (type DDIF$_DHD)

• A document descriptor aggregate (type DDIF$_DSC)

• A parent segment aggregate (type DDIF$_SEG)

These aggregates must be present in every compound document.

The CREATE AGGREGATE routine creates a new aggregate that contains
empty items. Once an aggregate is created, it can be filled or populated
using the STORE ITEM routine. For more information on the STORE
ITEM routine, see Section 4.6.

Along with the parent or root segment aggregate, you should also create
any generic type definition aggregates that you want to be available to
the entire document content. An example of generic types is illustrated
in Chapter 3. Once all of these aggregates are created, you can begin
creating the aggregates that contain the actual document content.

Note: If an aggregate (A) contains an item whose value is the handle of
another aggregate (B), then the latter aggregate (B) is called
a subaggregate. That is, a subaggregate is connected to the
document hierarchy by storing its handle as an item in another

4.6 Item Access

Overview of the CDA Toolkit
4.5 Aggregate Management

aggregate. For example, the generic layout item in the segment
aggregate contains the handle of the generic layout aggregate; the
generic layout aggregate is therefore a subaggregate.

The COPY AGGREGATE routine creates a copy of the specified aggregate.
This aggregate copy is assigned a unique aggregate handle and becomes
part of the document associated with the specified root aggregate. If the
specified aggregate is part of a sequence, only the aggregate specified,
rather than the entire sequence, is copied.

The DELETE AGGREGATE routine deletes an aggregate and all of its
substructure. If the aggregate being deleted is part of a sequence, it is
first cut from the sequence before being deleted. The aggregate handle of
the deleted aggregate, and the aggregate handles of any aggregates linked
to the deleted aggregate either directly or indirectly, are invalid after a call
to this routine.

The PRUNE AGGREGATE routine removes the next sequential document
content aggregate from an existing in-memory document and returns the
handle and type of the removed aggregate. This routine should be used
by the get-aggregate procedure that is invoked when a front end builds an
entire compound document in memory before returning its content. For
more information on writing converter front and back ends, see Chapter 5.

The CDA Toolkit also provides aggregate-structuring routines that
are used to scan and modify an aggregate sequence. These aggregate­
structuring routines provide the following capabilities:

• Place a new aggregate in a sequence

• Delete an aggregate from a sequence

• Scan all the aggregates in a sequence

The INSERT AGGREGATE routine inserts an aggregate into a sequence.
The position at which the aggregate is to be inserted is specified by
indicating the aggregate handle of the preceding aggregate in the
sequence. If the aggregate being inserted is the first aggregate in its
own sequence, then the entire sequence is inserted after the specified
aggregate and before the subsequent aggregate in the original sequence.
If the aggregate being inserted is part of a sequence, but is not the first
aggregate in the sequence, an error is returned.

The REMOVE AGGREGATE routine removes an aggregate that is part of
a sequence from that sequence. If the specified aggregate is not part of a
sequence, no operation is performed.

The NEXT AGGREGATE routine locates the next aggregate in a sequence.

A compound document aggregate is a type of record or data structure.
Each aggregate contains certain items that identify that particular
instance of the aggregate. The items that are contained in each aggregate
are described in Chapter 6.

4-5

Overview of the CDA Toolkit
4.6 Item Access

4-6

Figure 4-1 Document Segment Aggregate

DDIF$_SEG aggregate

DDIF$_SEG_ID

DDIF$_SEG_USER_LABEL

DDIF$_SEG_SEGMENT _TYPE

DDIF$_SEG_SPECIFIC_ATTRIBUTES

DDIF$ SEG GENERIC LAYOUT

DDIF$_SEG_SPECIFIC_LAYOUT

DDIF$_SEG CONTENT

ZK-0284A-G E

For example, Figure 4-1 illustrates the structure of a segment aggregate
(type DDIF$_SEG) with all of its items present.

The item access routines are used to write, delete, and locate the items in
an aggregate. Each item in an aggregate can be read, modified, or erased
individually. Aggregate items can be of a number of data types, or can
contain handles of other aggregates, so that you can read an item that
contains an aggregate handle and then use that handle to read or modify
the subaggregate. Table 4-2 lists the possible item data types and their
meanings.

Table 4-2 Item Data Types

Data Type

Byte

Boolean

Word

Longword

Integer

Enumeration

Meaning

A byte. The length of the item buffer is always 1.

A byte representing a Boolean value. The length of the
item buffer is always 1. If the low bit of the value is
set, the value is true. If the low bit is clear, the value is
false.

A word. The length of the item buffer is always 2.

A longword bit-encoded structure. The bits are
interpreted according to a defined structure. The
length of the item buffer is always 4.

A longword integer. The length of the item buffer is
always 4.

A longword integer. The allowed values of the integer
are defined by symbolic constants. The length of the
item buffer is always 4.

(continued on next page)

Overview of the CDA Toolkit
4.6 Item Access

Table 4-2 (Cont.) Item Data Types

Data Type

String

Bit string

DDIF$_xyz

Character string

Variable

Content

Measurement enumeration

Meaning

A string of bytes. The length of the string is specified in
bytes.

A string of bits. The length of the item buffer is
expressed in bits rather than bytes.

A longword aggregate handle to an aggregate of the
specified type. The length of the item buffer is always
4.

A string of bytes in a particular character set (for
example, ISO Latin1). The add-info parameter receives
the character set designator. The symbolic constants
for the character set designators are defined in module
CDA$DEF.SDL.

The data type of the item is determined by a reference
to the value of the preceding enumeration item. A
variable type is always preceded by an enumeration
item that specifies the data type of the variable item.

A shorthand for any one of the following:

DDIF$_SEG

DDIF$_TXT

DDIF$_GTX

DDIF$_HRD

DDIF$_SFT

DDIF$_HRV

DDIF$_SFV

DDIF$_BEZ

DDIF$_LIN

DDIF$_ARC

DDIF$_FAS

DDIF$_1MG

DDIF$_CRF

DDIF$_EXT

DDIF$_PVT

DDIF$_GLY

An enumeration that specifies the data type of an item
of DDIF type Measurement, which is encoded as an
integer or string. A DDIF Measurement type can either
specify a specific number of measurement units, or it
can specify the number of measurement units given by
the value of the referenced variable.

(continued on next page)

4-7

Overview of the CDA Toolkit
4.6 Item Access

4-8

Table 4-2 (Cont.) Item Data Types

Data Type

AngleRef enumeration

Expression enumeration

Single-precision floating

Object identifier

Binary relative time

Document

DDIS encoding

Item change list

String with add-info

Meaning

An enumeration that specifies the data type of an item
of DDIF type AngleRef, which is encoded as a floating
point or string. A DDIF AngleRef type can either specify
a constant angle value, measured in degrees, or it can
specify an angle value derived from the value of the
referenced variable.

An enumeration that specifies the data type of an item
of DDIF type Expression, which is encoded as an
integer or string. A DDIF Expression type can either
specify a constant expression value, or it can specify
an expression value derived from the value of the
referenced variable.

A VAX F _floating point value. The length of the buffer
is always 4.

Two or more longwords that specify the value of the
ODIS type OBJECT IDENTIFIER. (ODIS is the DIGITAL
Document Interchange Syntax.) Each longword
specifies a single component of the object handle.
The length of the item buffer is expressed in bytes.

A binary relative time whose buffer length is always 16.

A longword aggregate handle that contains the root
aggregate handle of a subdocument.

A string of bytes. The length of the string is specified in
bytes.

A vector of longwords in which each longword contains
the item code of an item in a segment attribute
aggregate (DDIF$_SGA).

A string of bytes that represents the value of the
DDIF type Tag, where standard tag values have been
defined. As a service to the application, the CDA
Toolkit provides encoding and decoding services for the
standard tags.

In addition, in the descriptions of the encodings of aggregate items, the
notation "Array of' indicates that the CDA Toolkit stores the item values
in an array. To fill this array, you must specify one item value at a time,
along with an aggregate index value. The initial aggregate index value is
O; you must increment this aggregate index each time you write an item
value into the item encoded as an array.

The notation "Sequence of' indicates that the value of an item can be
an aggregate sequence. A sequence is a linked list of aggregates of the
specified type. The value of the aggregate item that is encoded as a
sequence is actually the handle of an aggregate of the same type, and that
aggregate can also contain an item that is actually the handle of another
aggregate of that type.

Overview of the CDA Toolkit
4.6 Item Access

The LOCATE ITEM routine determines the address of an item within
an aggregate. The STORE ITEM routine writes the contents of an item
in an aggregate, thereby filling in the contents of the aggregate. Each
DDIF aggregate and the items it contains is specified in Chapter 6. If the
aggregate item is indexed, the index specified must not exceed one more
than the number of existing items. If the item is of data type Variable, the
value of the item that determines the data type must have been previously
established.

Note that the STORE ITEM routine erases the previous item value,
unless the item is "aggregate-valued" and not empty. (An aggregate-valued
item is one in which the value of the aggregate is actually the handle
of another aggregate.) In the case of an item that is aggregate-valued
and not empty, calling the STORE ITEM routine causes the specified
aggregate to be inserted in sequence before the existing aggregate. If the
specified aggregate is the beginning of a sequence, the entire sequence is
inserted before the existing aggregate. If the specified aggregate is part
of a sequence but is not the first aggregate in the sequence, an error is
returned.

The ERASE ITEM routine erases (sets to empty) the contents of an item
within an aggregate. If you erase an item that is indexed, the index of
each subsequent item is decreased by 1. The GET ARRAY SIZE routine
determines the number of elements present in an array-valued aggregate
item.

4.7 Document Conversion

Document Method

CONVERT
DOCUMENT

GET DOCUMENT

PUT DOCUMENT

PRUNE POSITION

There are two different methods that you can use to perform document
conversion:

• You can read or write an entire document to or from a stream.

• You can read or write single aggregates to or from a stream.

Both of these methods accomplish the same end result; in general, the
second (incremental) method should be used when the characteristics of
the output document format do not require that the entire input document
be available in memory in order to complete the conversion.

The CDA Toolkit supplies corresponding routines to simplify both
document conversion methods. These routines are as follows:

Aggregate Method

CONVERT
AGGREGATE

GET AGGREGATE

PUT AGGREGATE

CONVERT POSITION

Function

Used by the back end to request the appropriate information
from the front end

Used by the front end to read the appropriate data from a
compound document file

Used by a back end to write the converted information to a
compound document file

Used by a viewer back end to determine current location in
the document

4-9

4.7.1

4.7.2

Overview of the CDA Toolkit
4.7 Document Conversion

Each of these routines is discussed in more detail in the following sections.

Document Transfer
The CONVERT DOCUMENT routine is used by a back end to invoke
a front end. The front end reads in the entire document so that, on
return from this routine, the entire compound document is present
in memory in the form of aggregates linked from the document root
aggregate. The CONVERT DOCUMENT routine accepts a front-end­
handle argument. This argument specifies the front end that will perform
the input processing.

If the input document is DDIF-encoded, the front end can invoke the
GET DOCUMENT routine to read the entire compound document from
the specified stream, create the appropriate aggregates, and insert them in
the hierarchical structure. (Note that a root aggregate must exist before
you call the GET DOCUMENT routine.) When a call to this routine is
completed, the entire document is present in aggregates linked from the
document root aggregate.

If the input document is encoded in some format other than DDIF, the
appropriate front end must perform its own processing to create the
necessary aggregates and insert them in the document structure in
memory. For more information on writing a front end, see Chapter 5.

The PRUNE POSITION routine returns the current position in and total
size of an in-memory document. This routine is used by viewer back ends
that provide scroll bar support to indicate the current position in the
document.

The PUT DOCUMENT routine is used by a back end that is writing
DDIF-encoded output. This routine traverses an existing complete
document hierarchy and writes the information in the aggregates to
the compound document output stream. The document is unchanged by
this operation. If, after a call to this routine, you no longer require the
in-memory document, you should call the DELETE ROOT AGGREGATE
routine to destroy the document and all its substructure.

If the selected output format is not DDIF, the appropriate back end must
perform its own processing to convert the in-memory document to the
specified format and write the information to the output stream. For more
information on writing a back end, see Chapter 5.

Aggregate Transfer

4-10

The aggregate transfer routines let you incrementally process a compound
document. Your application regains control after each header or content
aggregate and its subaggregates are read or written.

The CONVERT AGGREGATE routine is used by a back end to invoke a
front end. The front end reads a single aggregate and its subaggregates
at one time so that, on return from this routine, a single aggregate and
its subaggregates, not the entire document, are present in memory at
any given time. The CONVERT AGGREGATE routine reads the next

Overview of the CDA Toolkit
4.7 Document Conversion

aggregate from the specified front end module; this returned aggregate is
not part of a sequence. The CONVERT AGGREGATE routine accepts a
front-end-handle argument; this argument specifies the front end that
will perform the input processing.

If the input document is DDIF-encoded, the front end can invoke the GET
AGGREGATE routine to read the next aggregate from the document.
(Note that the aggregate returned is not part of a sequence.) If the input
document is encoded in some format other than DDIF, the appropriate
front end must perform its own processing to create the necessary
aggregate and fill in the appropriate items. For more information on
writing a front end, see Chapter 5.

The GET AGGREGATE routine reads the aggregates in a document in a
hierarchical fashion. That is, whenever GET AGGREGATE encounters a
segment, it descends to the next level of hierarchy and reads the contents
of that segment before reading the remaining contents of the parent
segment. The GET AGGREGATE routine only returns to the parent
segment's level of hierarchy when it encounters a DDIF$_EOS (end of
segment) aggregate to indicate that the nested segment is completed.
These rules can be generalized as follows:

• If the aggregate being read is a content aggregate, the aggregate is
simply returned and the next aggregate returned is the next aggregate
in the segment.

• If the aggregate being read is a segment aggregate (DDIF$_SEG), the
content nested in the segment is returned, using these same ordering
rules, followed by a dummy DDIF$_EOS (end of segment) aggregate
to indicate the end of the nested segment. Once the nested segment
and its content have been returned and the end of the segment has
been indicated, the next aggregate read is the next aggregate in the
(current) segment.

Note: All segments must be completed by a DDIF$_EOS aggregate.

The CONVERT POSITION routine returns the current position in and
total size of the input stream being processed. This routine is used by
viewer back ends providing scroll bar support that indicates the current
position of the data being viewed in the document.

The PUT AGGREGATE routine writes one or more aggregates to the
specified compound document stream. (If the aggregate being written is
part of a sequence, the entire sequence is written.) The aggregate that
is written is unchanged by this operation. If the aggregate is no longer
required after you call the PUT AGGREGATE routine, you should call the
DELETE AGGREGATE routine to destroy the aggregate.

If the selected output format is not DDIF, the appropriate back end
must perform its own processing to convert the aggregates in the in­
memory document to the specified format and write each aggregate and
its subaggregates to the output stream. For more information on writing a
back end, see Chapter 5.

4-11

Overview of the CDA Toolkit
4.7 Document Conversion

4-12

When you are incrementally writing a document, you must invoke the
ENTER SCOPE and LEAVE SCOPE routines to properly structure the
output stream as aggregates are output. The ENTER SCOPE routine
opens a document scope for incremental writing. The scope-code
parameter to this routine lets you specify the type of scope being opened:

Document scope

Content scope

Segment scope

DDIF$K_DOCUMENT _SCOPE

DDIF$K_CONTENT _SCOPE

DDIF$K_SEGMENT _SCOPE

The LEAVE SCOPE routine completes a scope that was being
incrementally written.

If you are incrementally writing a document (that is, writing the document
one aggregate at a time), you should perform the following steps to ensure
that the output stream is properly structured:

1 Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

2 Write an aggregate of type DDIF$_DSC.

3 Write an aggregate of type DDIF$_DHD.

4 Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

5 Write a root segment of type DDIF$_SEG. The root segment is a top
level segment that contains the document content. This document
content can consist of content aggregates as well as nested segments.
If the document contains only one segment, that segment is the
root segment and it contains all of the document content. If the
document contains multiple segments, they must be nested within a
root segment.

You can use either of the methods outlined in the following steps to
create the root segment. Because the first method requires that the
entire segment be completed before calling the PUT AGGREGATE
routine, once you select that method you must continue to use that
method while writing all of the document content. If you select
the second method, you can use either method to write any nested
segments. Again, if while writing nested segments, you select the first
method, you must continue to use that method, and so on.

a. Call the PUT AGGREGATE routine with a completed aggregate of
type DDIF$_SEG, whose DDIF$_SEG_CONTENT item references
a sequence of aggregates that make up the entire content for that
segment, including any nested segments. Using this method, you
need only call the PUT AGGREGATE routine once, because the
DDIF$_SEG aggregate written in the call to PUT AGGREGATE is
already completely populated.

b. Call the ENTER SCOPE routine, specifying scope-code as
DDIF$K_SEGMENT_SCOPE, with a completed aggregate of type
DDIF$_SEG whose DDIF$_SEG_CONTENT item is empty. You
can then call the PUT AGGREGATE routine for each aggregate
that makes up the segment content, in order. Once that segment
and all its nested segments have been output, call the LEAVE

4.8 CDA Converters

Overview of the CDA Toolkit
4.7 Document Conversion

SCOPE routine, specifying scope-code as DDIF$K_SEGMENT_
SCOPE, to complete that segment.

6 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

7 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

The OPEN CONVERTER routine activates a front end module that
processes files of a specified format. This format can be the same or
a different format from that of the file currently being processed. Any
processing options that were specified to the CONVERT routine for the
document format are retrieved and appended to the item list that is
specified for this routine.

4-13

5 Writing Converter Front and Back Ends

As described in Chapter 2, the CDA Converter actually comprises the
converter kernel and a collection of front and back ends that process the
supported input and output file-encoding formats. This chapter describes
the techniques involved in writing converter front ends and back ends.

5.1 Document Conversion
Document conversion is accomplished by using the DIGITAL Document
Interchange Format. The CDA Converter reads the input file and
translates it to a CDA in-memory format, which is then translated to
the specified output format. This conversion can be accomplished using
either of two methods:

• In document method conversion, the entire document is read into
memory before being converted.

• In aggregate (incremental) method conversion, each aggregate (along
with its subaggregates) is converted individually so that, at any given
time, only a few aggregates are available in memory.

Regardless of which method you use to perform document conversion, front
ends and back ends convert a document of the specified input format to a
document of the specified output format, using DDIF as the intermediate
(in-memory) format. In general, front and back ends should use the
incremental conversion method when the characteristics of the output
document format are such that the entire input document does not have to
be available in memory in order to be converted.

The basic steps involved in document conversion are as follows:

1 The user invokes the converter by issuing either the
CONVERT/DOCUMENT DCL command or a call to the CONVERT
routine. Regardless of which interface is used, the initial steps in the
conversion process are performed by the converter.

2 The converter kernel invokes the main entry point in the front end
(DDIF$READJormat) so that the front end is initialized and an input
file or stream is opened.

3 The converter kernel then calls the main entry point in the appropriate
back end (DDIF$WRITEJormat) so that an output stream (and
possibly an output file) is created.

4 The back end calls the converter kernel and requests information
(either the entire document or an aggregate from the document) from
the front end.

5-1

Writing Converter Front and Back Ends
5.1 Document Conversion

5.2 Front End

5-2

a. In the aggregate (incremental) conversion method, the following
steps must be performed to actually translate the input document
to the specified output format:

• The back end calls the CONVERT AGGREGATE routine to
request an aggregate.

• The converter kernel calls the front end get-aggregate entry
point in the front end to retrieve the requested aggregate.

• The front end get-aggregate routine reads enough information
from the input stream to create a valid DDIF aggregate. This
aggregate is then returned to the converter kernel.

• The converter kernel passes control, and the requested
aggregate, to the back end.

• The back end translates the aggregate data to the specified
output format and writes the information to the output
stream.

The back end repeats these steps until the converter kernel returns
an end-of-document status. The back end then closes the output
stream, performs cleanup operations, and passes control to the
converter kernel.

b. In the document conversion method, a single call to the CONVERT
DOCUMENT routine performs all of the steps outlined in a. On
return from a call to this routine, the entire document is available
in memory. The back end translates the document data to the
specified output format and writes the information to the output
stream.

5 The converter kernel calls the close entry point. in the front end. The
front end then closes the input stream, performs cleanup operations,
and returns control to the converter kernel.

6 The converter kernel performs final cleanup operations and returns
control to its caller (the command line interface).

Figure 5-1 illustrates the basic flowchart of document conversion. The
following sections discuss some programming guidelines that you should
follow when writing front and back ends.

Each front end must meet certain criteria in order to work properly with
the CDA Converter Kernel and with the supported back ends. Some of the
recommendations that should be followed in order to ensure cooperation
between the front end, kernel, and back end are as follows:

• To minimize memory usage, you should use the aggregate conversion
method unless the desired document output format is such that the
entire document must be in memory in order for the conversion to be
performed.

Writing Converter Front and Back Ends
5.2 Front End

Figure 5-1 Document Conversion Flowchart

Front End

+
Front end initialized

Input stream (file) open
Root aggregate created
using CDA$CREATE_
ROOT_AGGREGATE

.... ·; Read data from input
,~ .. ;;.:,: stream and translate
:··._, .. ~: to DDIF aggregate
:~~..:::

Close input file
Perform cleanup

Call
CDA$READ _format

Call close entry
point in front end

Perform cleanup
Return control to CLI

Back End

All steps within this area
correspond to a call to
CDA$CONVERT_DOC~

.. :·;·::":.':-: :.~ ;::::.::.: _;:.::::::: .. : .· ::":(:: :·:""

. · :· .. ::.

Close output stream
Perform cleanup

ZK-0285A-GE

• You should ensure that the front end is reentrant so that multiple
front ends can be invoked at one time.

• You should use the C programming language to develop the front
and back ends, thus providing ease of portability between operating
systems.

In addition, you must follow the predefined formats for the front end entry
points as outlined in the following sections.

5-3

5.2.1

Writing Converter Front and Back Ends
5.2 Front End

DDIF$READ _format Entry Point

5-4

The DDIF$READJormat entry point is the initial entry point in the front
end. This routine initializes the conversion process and establishes any
special processing information for the front end. The term format in the
entry point name refers to the name of the document format that is read
by this particular front end. For example, the entry point for the Text
front end is DDIF$READ_TEXT.

The main entry point for a front end must have the following format:

DDIF$READ_format standard-item-list
,converter-context , front-end-context
,get-aggregate-procedure
,get-position-procedure
,close-procedure

The arguments are defined as follows:

standard-item-list
VMS usage: item_list_2
type: record
access: read only
mechanism: by reference, array reference
An item list that identifies the document source and may also contain
options to control processing. The standard-item-list argument is the
address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length

buffer address

0

4

To terminate the item list, you must specify the final entry or longword as
zero. Valid code values for the items in the front end standard-item-list
are as follows:

• CDA$_INPUT_FILE

The address and length of the file specification of the input document.

• CDA$_INPUT_DEFAULT

The address and length of a string that specifies the default input file
type. To simplify the porting of applications, the string should consist
of only a file type in lowercase characters. If this parameter is omitted,
the front end must supply an appropriate default file specification.

• CDA$_INPUT_PROCEDURE

The address of a user get procedure that provides input. The item list
length field must be set to 0. The input procedure must conform to the
requirements for a user get routine. The calling sequence for a user
get routine is defined in Section 5.3.

Writing Converter Front and Back Ends
5.2 Front End

• CDA$_INPUT_PROCEDURE_PARM

The address of a longword parameter to the input procedure. The item
list length field must be set to 4.

• CDA$_INPUT_POSITION_PROCEDURE

The parameter is the address of a procedure that provides position
information. The item-list length field must be set to 0. The get­
position procedure is specified in Section 5.2.3.

• CDA$_PROCESSING_OPTION

The address and length of a string that contains an option to control
processing. The format name and leading spaces and tabs have been
removed from the string. This item code may occur more than once in
the i tern list.

Either the CDA$_INPUT_FILE item or the CDA$_INPUT_PROCEDURE
item, but not both, must occur once in the item list. If the CDA$_INPUT_
PROCEDURE item is specified, then a single value for CDA$_INPUT_
PROCEDURE_PARM can also be specified.

converter-context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Converter context required to call the OPEN CONVERTER routine. The
converter-context argument is the address of an unsigned longword that
contains this context.

front-end-context
VMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a front-end-defined value that identifies this particular instance
of the front end. The front-end-context argument is the address of an
unsigned longword that receives this context. This value is returned to
the get-aggregate-procedure and the close-procedure arguments
described later. All writable memory used by the front end must be
allocated from dynamic memory and located by reference to this value.

get-aggregate-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the get-aggregate routine. The get-aggregate­
procedure argument receives the address of this procedure entry
mask. The calling sequence for the get-aggregate routine is described
in Section 5.2.2.

5-5

5.2.2

Writing Converter Front and Back Ends
5.2 Front End

get-position-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the get-position routine. The get-position­
procedure argument receives the address of this procedure entry
mask. The calling sequence for the get-position routine is described in
Section 5.2.3.

close-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the close routine. The close-procedure argument
receives the address of this procedure entry mask. The calling sequence
for the close routine is described in Section 5.2.4.

The possible status codes that DDIF$READJormat can return are either
CDA$_NORMAL or any front end-specific error conditions.

Get-Aggregate Entry Point

5-6

The get-aggregate routine returns the next aggregate in the document
to the converter kernel. Depending on the conversion method used, the
get-aggregate routine either creates and populates the next document
content aggregate (see Section 5.2.6.1) or it reads the next aggregate
from the in-memory document (see Section 5.2.5.2). In either case, the
returned aggregate must not be part of a sequence, and the DDIF$_SEG_
CONTENT item of a DDIF$_SEG aggregate must be empty; the content
must be returned one aggregate at a time followed by a DDIF$_EOS (end
of segment) aggregate.

The call format for the get-aggregate routine is as follows:

get-aggregate-procedure front-end-context ,aggregate-handle
,aggregate-type

The arguments for this entry point are defined as follows:

front-end-context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Context returned from DDIF$READJormat. The front-end-context
argument is the address of an unsigned longword that contains this
context. Typically, this argument is used to specify the type of content
aggregate to be created by the get-aggregate routine.

5.2.3

Writing Converter Front and Back Ends
5.2 Front End

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the created and populated aggregate. The
aggregate-handle argument is the address of an unsigned longword
that receives this aggregate handle. This handle must be used in all
subsequent operations on that aggregate.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. If
the aggregate is of type DDIF$_EOS (end of segment), aggregate-handle
is 0.

The possible status codes that the get-aggregate routine can return are as
follows:

CDA$_NORMAL

CDA$_ENDOFDOC

Normal successful completion.

End of document.

The get-aggregate routine can also return any front end-specific error
conditions. Note that the get-aggregate routine must return the status
CDA$_ENDOFDOC when the document has been completely transferred.

Get-Position Entry Point
The get-position routine returns the current position in and total size of
the current data stream. The call format for this routine is as follows:

get-position-procedure front-end-handle ,stream-position
,stream-size

The arguments for this entry point are defined as follows:

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end. The front-end-handle argument is the
address of an unsigned longword that contains this handle. The front
end handle is returned by DDIF$READJormat.

5-7

5.2.4

5.2.5

Writing Converter Front and Back Ends
5.2 Front End

stream-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

stream-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

Close Entry Point
The close routine is used to terminate the operation of a front end
by closing all open files and releasing all dynamic memory and other
resources that have been allocated by the front end.

The call format for a close procedure is as follows:

close-procedure front-end-context

The argument for this entry point is defined as follows:

front-end-context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Context returned by DDIF$READJormat. The front-end-context
argument is the address of an unsigned longword that contains this
context. This context must specify the input file or stream to be closed.

The possible status codes that the close routine can return are either
CDA$_NORMAL or any input converter-specific error conditions.

Front End Document-Method Conversion

5-8

When a front end performs document conversion by reading the entire
document into memory, it typically follows these steps:

1 After being invoked by the CDA Converter Kernel, the front end
performs the following initialization steps:

a. Allocates a context block that stores pertinent information in
dynamic memory. The context block typically stores information
such as file, stream, and root aggregate handles, status, buffers,
and other information extracted from the processed item list.

5.2.5.1

Writing Converter Front and Back Ends
5.2 Front End

b. Processes the item list supplied by the standard-item-list
argument to the CONVERT routine.

c. Processes any processing options specified.

d. Opens an input file.

e. Creates the document root aggregate (by calling the CREATE
ROOT AGGREGATE routine).

f. Reads data from the input stream and creates the entire document
in memory.

g. Closes the input stream (and, if applicable, the input file).

At this point, the entire document is in memory.

2 When the converter kernel invokes the get-aggregate entry point in
the front end, the front end uses the PRUNE AGGREGATE routine
to read each aggregate, pass it to the converter kernel (and thus to
the back end), and remove it from the in-memory document after it
has been processed. This step is repeated until the entire document is
converted.

3 Upon completion of document conversion, the front end deletes the root
aggregate from the in-memory document and deallocates the context
block, and then returns control to the converter kernel.

The following sections discuss in more detail the steps that should be
performed in each entry point of the front end.

DDIF$READ format Routine
In order to i;;_itialize a document-method conversion, the DDIF$READ_
format routine must first process the user-supplied item list, storing all
pertinent information in the context block. The item list structure that
is used to pass this information between the front end, back end, and the
kernel is created by the CDA Converter Kernel; this structure contains the
following fields:

• CDA$W _ITEM_LENGTH specifies the length of the item.

• CDA$W_ITEM_CODE specifies the item code, selected from the list
specified in Section 5.2.1.

• CDA$W _ITEM_ADDRESS specifies the address of the item.

These fields are defined in the file CDA$DEF.SDL.

In addition, the DDIF$READ Jormat routine must process any specified
processing options that the user selects for this conversion. If the format
of the input file is not DDIF or Text, the front end must supply its own file­
opening capability, typically through the use of the RMS $OPEN service,
or the open C run-time library routine or equivalent language statement.

It is also recommended that the DDIF$READJormat routine define values
for at least the following aggregate items:

• DDIF$_DSC_PRODUCT_IDENTIFIER specifies the registered facility
mnemonic for the product that encoded the document.

5-9

5.2.6

Writing Converter Front and Back Ends
5.2 Front End

5.2.5.2

5.2.5.3

5.2.5.4

• DDIF$_DSC_PRODUCT_NAME specifies the name of the product that
encoded the document.

The DDIF$READJormat routine must call the CREATE ROOT
AGGREGATE routine to create the document root aggregate. In the case
of document-method conversion, the DDIF$READJormat routine must
also create the DDIF$_DSC, DDIF$_DHD, and DDIF$_SEG aggregates
before reading the entire document from the input stream and placing it in
memory. Once the entire document is in memory, the DDIF$READ Jormat
routine must close the input stream (and, if applicable, the input file).
Again, if the format of the input file is not DDIF or Text, the DDIF$READ_
format routine must supply its own file-closing capability, typically through
the use of the RMS $CLOSE service, or the close C run-time library
routine or equivalent language statement. At this point, control passes
back to the converter kernel.

Get-Aggregate Routine
A front end should create aggregates on demand, rather than first creating
the entire document in memory. However, if the entire document must
be available in memory in order for the conversion to take place, the get­
aggregate routine must use the PRUNE AGGREGATE routine to return
the next content aggregate from the in-memory document. The PRUNE
AGGREGATE routine removes the next sequential document content
aggregate from an existing in-memory DDIF document and returns the
aggregate identifier and type.

Get-Position Routine
The get-position routine provides a method for a back end to determine the
total size of the current input stream, as well as to determine the current
position within the stream. This routine is useful for viewer back ends
that provide a scroll bar indicating the current position in the document
being viewed.

Close Routine
In document-method conversion, the input file or stream has already been
closed by the DDIF$READ Jormat routine. Therefore, the close routine
simply performs regular cleanup operations and returns control to the
CDA Converter Kernel.

Front End Aggregate-Method Conversion

5-10

When a front end performs document conversion by reading each
aggregate into memory, it typically follows these steps:

1 After being invoked by the CDA Converter Kernel, the front end
performs the following initialization steps:

a. Allocates a context block that stores pertinent information in
dynamic memory. The context block typically stores information
such as file, stream, and root aggregate handles, status, buffers,
and other information extracted from the processed item list.

b. Processes the item list supplied by the standard-item-list
argument to the CONVERT routine.

Writing Converter Front and Back Ends
5.2 Front End

c. Processes any processing options specified.

d. Opens an input file.

e. Creates the document root aggregate (by calling the CREATE
ROOT AGGREGATE routine).

2 When the kernel invokes the get-aggregate entry point in the front end,
the front end reads enough information from the input file to complete
a single content aggregate and its subaggregates. The front end then
creates the appropriate aggregates, fills in the required information,
and passes the completed aggregate back to the kernel. In this way,
only a few aggregates at a time are in memory.

3 Once all of the information from the input file has been read and
converted to the CDA in-memory format, the front end closes the input
stream (and file, if appropriate), deallocates the context block, and
returns control to the CDA Converter Kernel.

In order to initialize an aggregate-method conversion, the DDIF$READ_
format routine must first process the user-supplied item list, storing all
pertinent information in the context block. The item list structure that
is used to pass this information between the front end, back end, and
kernel is created by the CDA Converter Kernel; this structure contains the
following fields:

• CDA$W _ITEM_LENGTH specifies the length of the item.

• CDA$W_ITEM_CODE specifies the item code, selected from the list
specified in Section 5.2.1.

• CDA$W _ITEM_ADDRESS specifies the address of the item.

These fields are defined in the file CDA$DEF.SDL.

In addition, the DDIF$READJormat routine must process any specified
processing options that the user selected for this conversion. If the format
of the input file is not DDIF or Text, the front end must supply its own file­
opening capability, typically through the use of the RMS $OPEN service,
or the open C run-time library routine or equivalent language statement.

The DDIF$READJormat routine should also define values for at least the
following aggregate items:

• DDIF$_DSC_PRODUCT_IDENTIFIER specifies the registered facility
mnemonic for the product that encoded the document.

• DDIF$_DSC_PRODUCT_NAME specifies the name of the product that
encoded the document.

The DDIF$READJormat routine must call the CREATE ROOT
AGGREGATE routine to create the document root aggregate. Once the
root aggregate is created, control passes back to the kernel.

5-11

Writing Converter Front and Back Ends
5.2 Front End

5.2.6.1

5.2.6.2

5-12

Get-Aggregate Routine
Before creating any of the document content aggregates, the get-aggregate
routine must first create a DDIF$_DSC aggregate, a DDIF$_DHD
aggregate, and a DDIF$_SEG aggregate. Once these aggregates are
created and the appropriate items have been stored (using the STORE
ITEM routine), the get-aggregate routine creates and populates each
sequential document content aggregate (and its subaggregates) that
results from the translation of the input document. Once these aggregates
are created and populated, the get-aggregate routine returns the handle
and type of the parent aggregate. The aggregate type created must be a
top-level content type, as listed in Table 5-1.

Table 5-1 Top-Level Aggregate Types

Aggregate Type Meaning

DDIF$_DSC Document descriptor

DDIF$_DHD Document header

DDIF$_SEG Document segment

DDIF$_TXT Text content

DDIF$_GTX General text content

DDIF$_HRD Hard directive

DDIF$_SFT Soft directive

DDIF$_HRV Hard value directive

DDIF$_SFV Soft value directive

DDIF$_BEZ Bezier curve content

DDIF$_LIN Polyline content

DDIF$_ARC Arc content

DDIF$_FAS Fill area set content

DDIF$_1MG Image content

DDIF$_CRF Content reference

DDIF$_EXT External content

DDIF$_PVT Private content

DDIF$_GLY Layout galley

DDIF$_EOS End of segment

Get-Position Routine
The get-position routine provides a method for a back end to determine the
total size of the current input stream, as well as to determine the current
position within the stream. This routine is useful for viewer back ends
that provide a scroll bar indicating the current position in the document
being viewed.

5.2.6.3 Close Routine

Writing Converter Front and Back Ends
5.2 Front End

In aggregate-method conversion, the close routine must close the currently
open file or stream in addition to performing the regular cleanup work.
If the format of the input file is not DDIF or Text, the front end must
supply its own file-closing capability, typically through the use of the RMS
$CLOSE service, or the close C run-time library routine or equivalent
language statement. Once all cleanup work has been completed, the close
routine passes control back to the CDA Converter Kernel.

5.3 User-Supplied Input Procedures
The get-rtn and get-prm arguments are used to invoke a user stream
get routine and to supply an argument to that routine. This routine reads
bytes from an input stream. The application that creates the get routine
also creates the buffer. Therefore, the application determines the buffer
size and buffer management techniques. The caller of the get routine
(namely, the CDA Toolkit) treats the buffer as read-only; it must contain
valid data until the next call to the get routine.

The call format for a user get routine is as follows:

get-rtn get-prm ,num-bytes ,buf-adr

get-prm
VMS usage: user _arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The get-prm argument contains the value of the
parameter to be passed to the user get routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the number of bytes contained in the buffer. The num-bytes
argument is the address of an unsigned longword that receives this
number. The number of bytes is zero only if the stream does not contain
any more data.

buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of the buffer. The buf-adr argument is the address
of an unsigned longword that receives the buffer address.

5-13

Writing Converter Front and Back Ends
5.4 Back End Routine

5.4 Back End Routine

5.4.1

Each back end must meet certain criteria in order to work properly with
the converter kernel and with the supported back ends. Some of the
recommendations that should be followed in order to ensure cooperation
between the back end, CDA Converter Kernel, and front end are as
follows:

• To minimize memory usage, you should use the aggregate conversion
method unless the desired output format of your document is such
that the entire document must be in memory in order to perform the
conversion.

• You should use the C programming language to develop the front
and back ends, thus providing ease of portability between operating
systems.

• Unless your application is a document viewer, you should ensure
that the conversion process runs to completion and never returns the
CDA$_SUSPEND status. The standard VMS DCL command interface
recalls the output converter procedure immediately in this situation.

In addition, you must follow the predefined format for the back end entry
point as outlined in the following section.

DDIF$WRITE_format Entry Point

5-14

The DDIF$WRITEJormat entry point is the entry point in the back end.
This routine requests aggregates from the front end, converts them from
the CDA in-memory format to the specified output format, and writes the
information to the specified output file. The term format in the entry point
name refers to the name of the document format that is being written by
this particular back end. For example, the entry point for the Text back
end is DDIF$WRITE_TEXT.

The call format for a DDIF$WRITEJormat routine is as follows:

DDIF$WRITE_format function-code ,standard-item-list
,private-item-list ,front-end-handle
,back-end-context

function-code
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Symbolic constant that identifies the function to be performed. The
function-code argument is the address of an unsigned longword that
contains this symbolic constant. These constant values are defined in file
CDA$DEF.SDL. Valid values are as follows:

• CDA$_START

Start conversion. This function code must be specified to begin a
document conversion.

Writing Converter Front and Back Ends
5.4 Back End Routine

• CDA$_CONTINUE

Continue a conversion that was suspended. This function code may
only be specified if a previous call to DDIF$WRITEJormat returned
the value CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call
to DDIF$WRITEJormat, either CDA$_CONTINUE or CDA$_STOP
must be specified so that resources locked by the conversion may be
released.

• CDA$_STOP

Discontinue a conversion that was suspended. This function code may
only be specified if the previous call to DDIF$WRITEJormat returned
the value CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call
to DDIF$WRITEJormat, either CDA$_STOP or CDA$_CONTINUE
must be specified so that resources locked by the conversion may be
released.

standard-item-list
VMS usage: item_list_2
type: record
access: read only
mechanism: by reference, array reference
An item list that identifies the document destination and may also contain
options to control processing. The standard-item-list argument is the
address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length

buffer address

0

4

To terminate the item list you must specify the final entry or longword as
zero. The standard-item-list argument is ignored when function-code
is set to either CDA$_CONTINUE or CDA$_STOP. Valid code values for
the items in the standard-item-list are as follows:

• CDA$_0UTPUT_FILE

The address and length of the file specification of the output document.

• CDA$_0UTPUT_DEFAULT

The address and length of the default file specification of the output
document. If this parameter is omitted, the back end must supply an
appropriate default file specification.

• CDA$_0UTPUT_PROCEDURE

The address of a procedure to receive output. The item list length
field must be set to 0. The output procedure must conform to the
requirements for a user put routine. The calling sequence for a user
put routine is defined in Section 5.4.2.

5-15

Writing Converter Front and Back Ends
5.4 Back End Routine

5-16

• CDA$_0UTPUT_PROCEDURE_PARM

The address of a longword parameter to the output procedure. The
item list length field must be set to 4.

• CDA$_0UTPUT_PROCEDURE_BUFFER

The address and length of the initial output buffer for the output
procedure.

• CDA$_PROCESSING_OPTION

The address and length of a string that contains an option to control
processing. The format name and leading spaces and tabs have been
removed from the string. This item code may occur more than once in
the item list.

Either CDA$_0UTPUT_FILE or CDA$_0UTPUT_PROCEDURE, but
not both, must occur once in the item list. If the CDA$_0UTPUT_
PROCEDURE item occurs, then the CDA$_0UTPUT_PROCEDURE_
PARM item and the CDA$_0UTPUT_PROCEDURE_BUFFER item may
each occur once in the item list.

private-item-I ist
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference
A private item list that is passed directly to the back end. The private­
item-list argument is the address of this private item list. The
specification of this item list is the responsibility of the back end. Its
purpose is to provide for direct two-way communication between the caller
of the CONVERT routine and the back end.

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end that will process the document content. The
front-end-handle argument is the address of an unsigned longword
that contains this front end handle. This handle is passed to either the
CONVERT DOCUMENT routine or the CONVERT AGGREGATE routine.

back-end-context
VMS usage: context
type: longword (unsigned)
access: read only or write only
mechanism: by reference
When function-code is set to CDA$_START, this argument receives a
value defined by the back end that identifies this particular instance of the
back end. The back-end-context argument is the address of an unsigned
longword that either receives or specifies the converter context. This
value will be returned to DDIF$WRlTEJormat for the functions CDA$_
CONTINUE and CDA$_STOP. If a back end returns CDA$_SUSPEND, all
writable memory used by the back end must be allocated from dynamic
memory and located by reference to this value.

5.4.2

Writing Converter Front and Back Ends
5.4 Back End Routine

The possible status codes that DDIF$WRITEJormat can return are as
follows:

CDA$_NORMAL

CDA$_SUSPEND

CDA$_1NVFUNCOD

CDA$_1NVITMLST

CDA$_UNSUPFMT

Normal successful completion.

Converter is suspended.

Invalid function code.

Invalid item list.

Unsupported document format.

DDIF$WRITEJormat can also return any error returned by the specific
front end or the specific back end.

In order for the back end to call through to the front end, two routines are
provided:

• The CONVERT DOCUMENT routine invokes the document-method
conversion of an input file to the specified output format.

• The CONVERT AGGREGATE routine invokes the aggregate-method
conversion of an input file to the specified output format.

The back end must use one of these routines to request the appropriate
information from the front end.

If the format of the output file is not DDIF or Text, the back end must
supply its own file-creation capability, typically through the use of the
creat C run-time library routine or equivalent language statement.

In order to initialize a document-method conversion, the DDIF$WRITE_
format routine must first process the user-supplied item list, storing all
pertinent information in the context block. The item list structure that
is used to pass this information between the front end, back end, and
kernel is created in the CDA Converter Kernel; this structure contains the
following fields:

• CDA$W _ITEM_LENGTH specifies the length of the item.

• CDA$W _ITEM_CODE specifies the item code, selected from the list
specified in this section.

• CDA$W _ITEM_ADDRESS specifies the address of the item.

These fields are defined in the file CDA$DEF.SDL.

User-Supplied Output Procedures
The put-rtn and put-prm arguments are used to invoke a user stream
put routine, and to supply an argument to that routine. The call format
for this user routine is as follows:

put-rtn put-prm ,num-bytes ,buf-adr ,next-buf-len ,next-buf-adr

5-17

Writing Converter Front and Back Ends
5.4 Back End Routine

5-18

The arguments for this routine are defined as follows:

put-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The put-prm argument is the value of the
parameter to be passed to the user put routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Number of bytes contained in the buffer. The num-bytes argument is the
address of an unsigned longword that contains this value.

buf-adr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference
Address of the buffer. The buf-adr argument is the address of an array of
unsigned bytes.

next-buf-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Length of the buffer specified by next-buf-adr. The next-buf-len
argument is the address of an unsigned longword that receives this length.

next-buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Address of a buffer that will receive further output data. The next-buf­
adr argument is the address of an unsigned longword that receives this
address. Next-buf-adr may simply be the current buffer, or a different
buffer.

6 DDIF Structures

This chapter provides an overview of the general structure of a DDIF
document, and then provides detailed references for each DDIF-supported
aggregate structure.

6.1 DDIF Document Structure Overview
Every DDIF document has the same general structure. The document
must have a root aggregate, a document descriptor aggregate, a document
header aggregate, and content. It is the content that differentiates one
document from another; however, the overall document structure is the
same and is shown in Figure 6-1.

Figure 6-1 Compound Document Structure

DSC

Content or Segment
Aggregates

• • •

DHD

SGA

DDF

SEG

SEGB
•
• •

SGA •••

SGA SEG E • ••

ZK-0286A-G E

Each DDIF aggregate type and its corresponding items is discussed in this
chapter. Appendix D contains the tables that define each DDIF aggregate
and the aggregate item encodings.

6-1

DDIF Structures
6.2 Generic Aggregate Items

6.2 Generic Aggregate Items
In addition to the items defined by each individual aggregate, DDIF
also supports three "generic" aggregate items that can be specified for
every aggregate described in this chapter. These items are described in
Table 6-1.

Table 6-1 Generic Aggregate Items

Item Name Encoding

DDIF$_USER_CONTEXT Longword

DDIF$_AGGREGATE_ TYPE Word

DDIF$_ALL_MAX Longword

Meaning

Specifies user context

Specifies the type of the aggregate

Specifies the number of items in the
aggregate

6.3 Document Root Aggregate

6-2

The DDIF document root aggregate (type DDIF$_DDF) identifies this
particular instance of a DDIF document. This aggregate contains the
following items:

• A document descriptor item (type DDIF$_DDF _DESCRIPTOR) that
describes the document encoding. This item is encoded as the handle
of a DDIF$_DSC aggregate. For more information on the DDIF$_DSC
aggregate, see Section 6.4.

• A document header item (type DDIF$_DDF _HEADER) that contains
parameters and processing instructions that apply to the document
as a whole. This item is encoded as the handle of a DDIF$_DHD
aggregate. For more information on the DDIF$_DHD aggregate, see
Section 6.5.

• A document content item (type DDIF$_DDF _CONTENT) that specifies
the content of the document. This item is encoded as the handle of
a DDIF$_SEG aggregate. This DDIF$_SEG aggregate specifies the
root or parent segment of the document. For more information on the
DDIF$_SEG aggregate, see Section 6.6.

Table 6-2 lists the items in a document root aggregate and their
corresponding encodings.

Table 6-2 Document Root Aggregate {DDIF$_DDF)

Item Name

DDIF$_DDF _DESCRIPTOR

DDIF$_DDF _HEADER

DDIF$_DDF _CONTENT

Item Encoding

Handle of DDIF$_DSC aggregate

Handle of DDIF$_DHD aggregate

Handle of DDIF$_SEG aggregate

6.4 Document Descriptor

DDIF Structures
6.4 Document Descriptor

The document descriptor aggregate (type DDIF$_DSC) specifies the
version level of the DIGITAL Document Interchange Format used by
this document, and identifies the software that created the document.
This aggregate contains the following items:

• A major version indicator (type DDIF$_DSC_MAJOR_ VERSION) that
acts as the primary indicator of compatibility between the current
version of DDIF and the version of DDIF used to encode the document.
This item is encoded as an integer.

The literal DDIF$K_MAJOR_ VERSION is defined to represent the
highest major version supported by the CDA Toolkit. Applications
should use this literal for the major version indicator. On output,
the CDA Toolkit ignores the current value of this item and instead
supplies the current version.

• A minor version indicator (type DDIF$_DSC_MINOR_ VERSION) that
specifies the revision number of the current DDIF encoding. This item
is encoded as an integer.

The literal DDIF$K_MINOR_ VERSION is defined to represent the
highest minor version supported by the CDA Toolkit. Applications
should use this literal for the minor version indicator. On output,
the CDA Toolkit ignores the current value of this item and instead
supplies the current version.

• A product identifier item (type DDIF$_DSC_PRODUCT_IDENTIFIER)
that contains a registered facility mnemonic representing the software
that encoded the document. This item is encoded as a string.

The product identifier can be an acronym or abbreviation for the
product name. This identifier is constant across versions of the
product. If a product places private segment tags in the document,
the product identifier string is used to prefix those segment tags.

• A product name item (type DDIF$_DSC_PRODUCT_NAME) that
indicates the name of the product that encoded the document. This
item is encoded as an array of type character string so that, if desired,
the product name can be specified in multiple languages.

The product name string contains the version number of the product.
The name of the product should be spelled in full, and should include
a baselevel of version number.

Table 6-3 lists the items in a document descriptor aggregate and their
corresponding encodings.

6-3

DDIF Structures
6.4 Document Descriptor

Table 6-3 Document Descriptor Aggregate (DDIF$_DSC)

Item Name

DDIF$_DSC_MAJOR_ VERSION

DDIF$_DSC_MINOR_ VERSION

DDIF$_DSC_PRODUCT_IDENTIFIER

DDIF$_DSC_PRODUCT _NAME

Item Encoding

Integer

Integer

String

Array of type character string

6.5 Document Header

6-4

The document header aggregate contains data that pertains to the
document as a whole; it describes the document to processors that receive
it. The DDIF document header aggregate (type DDIF$_DHD) contains the
following items:

• An optional private header data item (type DDIF$_DHD_PRIVATE_
DATA) that contains global information about the document not
currently standardized by DDIF. This item is encoded as a sequence
of DDIF$_PVT aggregates. (For mure information on the DDIF$_PVT
aggregate, see Section 6.15.2.) All interpretations of the private data
are subject only to private agreements between the parties concerned.

• An optional title item (type DDIF$_DHD_TITLE) that contains the
user-visible name of the document. This item is encoded as an array of
type character string.

• An optional author item (type DDIF$_DHD_AUTHOR) that contains
the name of the person or persons responsible for the information
content of the document. This item is encoded as an array of type
character string.

• An optional version item (type DDIF$_DHD_ VERSION) that contains
a character string used to distinguish this version of the document
from all other versions. This item is encoded as an array of type
character string.

• An optional date item (type DDIF$_DHD_DATE) that contains the
date associated with this version of the document. This item is
encoded as a string.

• An optional conformance tags item (type DDIF$_DHD_
CONFORMANCE_TAGS) that contains a set of tags indicating the
processing restrictions that apply to the document, and what subset
of DDIF syntax has been used to describe the document. This item is
encoded as an array of type string with add-info, where add-info can
take the following values:

DDIF$K_PRIVATE_CONFORMANCE Indicates nonstandard processing
restrictions

DDIF$K_SRQ_CONFORMANCE Indicates that the structure descriptions
in this document were strictly observed

DDIF Structures
6.5 Document Header

• An optional external references item (type DDIF$_DHD_EXTERNAL_
REFERENCES) that contains a list of file names (or other system­
specific file specifiers) that are referenced from within the document.
This item is encoded as a sequence of DDIF$_ERF aggregates. (For
more information on the DDIF$_ERF aggregate, see Section 6.1 7 .) In
the body of the document, external references are specified as indexes
into this list.

• An optional languages indicator (type DDIF$_DHD_LANGUAGES_C)
that specifies the natural languages and programming languages that
are delineated for processing by language tools. This item is encoded
as an array of type enumeration. Valid values are as follows:

DDIF$K_IS0_639_LANGUAGE

DDIF$K_OTHER_LANGUAGE

A string that selects a language and dialect
that are specified using the ISO 639
Standard. In this case, the DDIF$_DH.D_
LANGUAGES item is encoded as a string.

A character string that indicates the language
and dialect using a "user-readable" name;
this is used for those languages and dialects
not covered by the ISO 639 Standard. In this
case, the DDIF$_DHD_LANGUAGES item is
encoded as a character string.

• The optional language item (type DDIF$_DHD_LANGUAGES) that
contains a list of the actual languages from the selected language type
that are delineated for processing. This item is encoded as an array of
type variable.

If you specify DDIF$_DHD_LANGUAGES_C as DDIF$K_IS0_639_
LANGUAGE, you must specify DDIF$_DHD_LANGUAGES as one of
the natural languages defined by the ISO 639 Standard, specifying
the language symbol and country code. The following table illustrates
some common examples:

Language/Country

English/US

English/Britain

French/France

German/Germany

String

E/USA/

E/GB/

F/F/

DIDI

• An optional style guide item (type DDIF$_DHD_STYLE_GUIDE) that
provides a reference to an external style guide that contains all or
some of the presentation and layout attributes for the elements in the
document. This item is encoded as an integer; it acts as an index into
the DDIF$_DHD_EXTERNAL_REFERENCES item. The style guide
may or may not be encoded in DDIF format.

Table 6-4 lists all of the items in a document header aggregate and their
corresponding encodings.

6-5

DDIF Structures
6.5 Document Header

Table 6-4 Document Header Aggregate (DDIF$_DHD)

Item Name

DDIF$_DHD_PRIVATE_DATA

DDIF$_DHD_ TITLE

DDIF$_DHD_AUTHOR

DDIF$_DHD_ VERSION

DDIF$_DHD_DATE

DDIF$_DHD_CONFORMANCE_ TAGS

DDIF$_DHD_EXTERNAL_REFERENCES

DDIF$_DHD_LANGUAGES_C

DDIF$_DHD_LANGUAGES

DDIF$_DHD_STYLE_GUIDE

Item Encoding

Sequence of DDIF$_PVT aggregates

Array of type character string

Array of type character string

Array of type character string

String

Array of type string with add-info

Sequence of DDIF$_ERF aggregates

Array of type enumeration

Array of type variable

Integer

6.6 Document Content

6-6

The content of a document is contained in a single segment called the
root segment. The root segment, in turn, contains zero or more content
segments or elements, including (but not restricted to) text, graphics,
images, and nested segments. Each individual content segment aggregate
type is discussed in a separate section of this chapter.

The standard content aggregates specify the basic contents of a document,
including characters, lines, and pixels. Each of these content types can
be presented on a video display or hardcopy device. The presentation
style for the document content is governed by the presentation attributes
specified for the segment in which the various aggregates are contained.
By grouping the various aggregates in segments, you can create larger
units (for example, paragraphs of text).

The document segment aggregate contains the following items:

• An optional segment identifier (type DDIF$_SEG_ID) that identifies
the segment for reference from other segments. This item is encoded
as a string.

References to labeled segments are not limited to those segments
nested under the labeled segment; labeled segments can be referenced
from any segment in the document and from other documents. Note
that segments should be labeled only if they are referenced.

• An optional segment user label item (type DDIF$_SEG_USER_
LABEL) that specifies the user-assigned name of the particular
segment of content. This item is encoded as an array of type character
string. This string is only for use by the user; it cannot be used to
reference the segment from other segments. A typical use of a user
label would be to allow users to name graphic objects and manipulate
them by name.

DDIF Structures
6.6 Document Content

• An optional segment type item (type DDIF$_SEG_SEGMENT_TYPE)
that references a segment type definition in the segment attributes
of a parent segment or in the style guide. This item is encoded as a
string.

This string is equivalent to the string specified by the DDIF$_TYD_
LABEL item in the type definition (DDIF$_TYD) aggregate. For more
information on the DDIF$_TYD aggregate, see Section 6.27. Note that
when a segment references a segment type, it acquires the attributes
bound to the segment type.

• An optional segment attribute item (type DDIF$_SEG_SPECIFIC_
ATTRIBUTES) that binds presentation and processing attributes to
the segment, and defines generic types and content for reference from
nested segments. This item is encoded as the handle of a DDIF$_SGA
aggregate. For more information on the DDIF$_SGA aggregate, see
Section 6.20.

• An optional segment generic layout item (type DDIF$_SEG_
GENERIC_LAYOUT) that specifies an element of generic layout
for the segment. This item is encoded as the handle of a DDIF$_
LGl aggregate. (For more information on the DDIF$_LG1 aggregate,
see Section 6.33.) Note that this item can only be specified on the
root segment of a document. Generic layout descriptions placed on
segments other than the root segment are ignored.

• An optional segment specific layout item (type DDIF$_SEG_
SPECIFIC_LAYOUT) that specifies an element of specific layout
for the segment. This item is encoded as the handle of a DDIF$_
LSl aggregate. (For more information on the DDIF$_LS1 aggregate,
see Section 6.34.) Note that this item can only be specified on the
root segment of a document. Specific layout descriptions placed on
segments other than the root segment are ignored.

• An optional segment content item (type DDIF$_SEG_CONTENT)
that specifies the content of the segment. This item is encoded as a
sequence of content. A sequence of content is a linked list of any of the
following aggregate types:

DDIF$_ARC DDIF$_BEZ DDIF$_CRF

DDIF$_EXT DDIF$_FAS DDIF$_GTX

DDIF$_HRD DDIF$_HRV DDIF$_1MG

DDIF$_LIN DDIF$_PVT DDIF$_SEG

DDIF$_SFT DDIF$_SFV DDIF$_TXT

The DDIF$_SEG_CONTENT item contains the handle of the first
aggregate in the sequence of content aggregates.

Table 6-5 lists the items in a document segment aggregate and their
corresponding encodings.

6-7

6.6.1

DDIF Structures
6.6 Document Content

Table 6-5 Document Segment Aggregate (DDIF$_SEG)

Item Name

DDIF$_SEG_ID

DDIF$_SEG_USER_LABEL

DDIF$_SEG_SEGMENT _TYPE

DDIF$_SEG_SPECIFIC_ATTRIBUTES

DDIF$_SEG_GENERIC_LAYOUT

DDIF$_SEG_SPECIFIC_LAYOUT

DDIF$_SEG_CONTENT

Item Encoding

String

Array of type character string

String

Handle of DDIF$_SGA aggregate

Handle of DDIF$_LG1 aggregate

Handle of DDIF$_LS1 aggregate

Sequence of content

Content Categories

6-8

DDIF content is divided into categories. The content category of a segment
is denoted by a tag on that segment or on a parent segment. The standard
content category tags are as follows:

Content Category Tag

Image $1

Graphics $20

Text $T

Table $TBL

Page Description Language $POL

These content category tags are stored in the DDIF$_SGA_CONTENT_
CATEGORY item of the segment attributes aggregate (type DDIF$_
SGA). For more information on the segment attributes aggregate, see
Section 6.20. Other standard content category tags are reserved.

The content category constrains the content types that can occur within
the categorized segment. For example, the graphics content category ($2D)
is restricted to the graphics and text content. To include an image in
the context of the graphics segment, the image must be contained in a
segment tagged with the image content category ($!).

Content is always represented in a standard encoding without respect to
content category. For example, graphics text is represented in the same
encoding as document text, although it may (but does not have to) be
processed by a graphics processor rather than a text formatter.

Most content categories can be nested. Graphics can be nested within
document text, and document text within graphics. Individual content
categories can place restrictions on the way other categories are nested
within them.

You can determine the content category of a segment through inheritance,
through a generic type reference, or by actually binding a content category
tag to the segment itself.

6.6.2 Segment Tags

DDIF Structures
6.6 Document Content

Segment tags are used to indicate the processing characteristics of content,
including relationships to user interfaces and indications of special
constraints on content.

Two types of tags are allowed:

• Standard tags defined by DDIF

• Private tags defined by individual DDIF processors

A given segment can have both a standard tag and a private tag, in
cases where the processing of the segment meets the basic criteria of
the standard tag, but the private tag provides a finer granularity of the
naming scheme or the potential for additional processing. For example,
DDIF provides a paragraph tag ($P). An editor that allows two types of
paragraphs might define two segment types, each with a $P tag, but with
different private tags and different presentation attributes.

Tags have no effect on the presentation of content. Instead, they can
denote public or private rules about editing behavior, whether content
is included in indexes, and other abstract relationships between content
elements in the segment.

6.6.3 Presentation Attributes of Content

6.7 Text Content

The rendering of document content is specified by the presentation
attributes bound to the segment, either directly or through inheritance
mechanisms. It is not necessary for all attributes of content to be
specified in the document; an initial state of attributes is defined by
DDIF. Conceptually, each DDIF document is enclosed in a segment that
establishes the default attributes for document content. Creators can
specify the defaults for the content by binding them to the root segment.

Textual document content consists of graphics characters and spaces from
standard and private character sets. Format directives such as new-line
and new-page are expressed as DDIF-defined directives.

Text presentation style is controlled by text attributes. For more
information on text attributes, see Section 6.20.15. Text layout is specified
by layout attributes. For more information on layout attributes, see
Section 6.36.

Text that is wrapped, formatted, and paginated is limited to the $T content
category. Text that is imaged along a path is limited to the $2D content
category. Text content and presentation attributes are specified identically
in both document text categories; only the layout differs.

6-9

6.7.1

6.7.2

DDIF Structures
6. 7 Text Content

Latin1 Text Content
The Latinl text content aggregate (type DDIF$_TXT) contains the text
content item (type DDIF$_TXT_CONTENT) that indicates that the
character set to be used is Latinl. This item is encoded as a string.

Table 6-6 lists the item in a Latinl text content aggregate and its
corresponding encoding.

Table 6-6 Latin1 Text Content Aggregate (DDIF$_TXT)

Item Name Item Encoding

DDIF$_ TXT _CONTENT String

General Text Content

6-10

The general text content aggregate (type DDIF$_GTX) contains the text
content item (type DDIF$_GTX_CONTENT) that indicates the character
set to be used. This item is encoded as a character string.

Table 6-7 lists the item in a general text content aggregate and its
corresponding encoding.

Table 6-7 General Text Content Aggregate {DDIF$_GTX)

Item Name Item Encoding

DDIF$_GTX_CONTENT Character string

The valid values for the character set identifier are listed in Table 6-8.

Table 6-8 Character Set Identifiers

Identifier

DDIF$K_ISO_LATIN1

DDIF$K_ISO_LATIN2

DDIF$K_ISO_LATIN6

DDIF$K_ISO_LATIN7

DDIF$K_ISO_LATIN8

DDIF$K_JIS_KATAKANA

DDIF$K_DEC_TECH

DDIF$K_DEC_MATH_ITALIC

DDIF$K_DEC_MATH_SYMBOL

DDIF$K_DEC_MATH_EXTENSION

DDIF$K_DEC_PUBLISHING

Character Set

ISO Latin 1

ISO Latin 2

ISO Latin 6

ISO Latin 7

ISO Latin 8

JIS Roman, JIS Katakana

DEC Special Graphics, DEC Technical

DEC Mathematics Italic

DEC Mathematics Symbol

DEC Mathematics Extension

DEC Publishing

(continued on next page)

6.8 Directives

6.8.1 Hard Directive

6.8.2 Soft Directive

DDIF Structures
6. 7 Text Content

Table 6-8 (Cont.} Character Set Identifiers

Identifier

DDIF$K_DEC_KANJI

DDIF$K_DEC_HANZI

Character Set

DEC Kanji

DEC Hanzi

Directives guide the formatting of text. DDIF directives are either hard or
soft, depending on whether they are requested by the user or inserted by
software. All directives are restricted to the $T content category.

The hard directive aggregate (type DDIF$_HRD) contains the hard
directive item (type DDIF$_HRD_DIRECTIVE) that specifies a hard
directive (for example, a user-specified page break). This item is encoded
as an enumeration. The valid values for this enumeration are listed in
Section 6.8.3.

Table 6-9 lists the item in a hard directive aggregate and its corresponding
encoding.

Table 6-9 Hard Directive Aggregate (DDIF$_HRD}

Item Name Item Encoding

DDIF$_HRD_DIRECTIVE Enumeration

The soft directive aggregate (type DDIF$_SFT) contains the soft directive
item (type DDIF$_SFT_DIRECTIVE) that specifies a soft directive (for
example, a software-inserted page break). This item is encoded as
an enumeration. The valid values for this enumeration are listed in
Section 6.8.3.

Table 6-10 lists the item in a soft directive aggregate and its corresponding
encoding.

Table 6-10 Soft Directive Aggregate (DDIF$_SFT}

Item Name Item Encoding

DDIF$_SFT _DIRECTIVE Enumeration

6-11

6.8.3

DDIF Structures
6.8 Directives

Directive Values

6-12

The items DDIF$_HRD_DIRECTIVE, DDIF$_SFT_DIRECTIVE, and
DDIF$_LL1_INITIAL_DIRECTIVE (from the layout attributes aggregate
described in Section 6.36) can all take any one of the values listed in
Table 6-11.

Table 6-11 Directive Values

Directive Meaning

DDIF$K_DIR_NEW_PAGE

DDIF$K_DIR_NEW_LINE

DDIF$K_D I R_N EW _GALLEY

DDIF$K_DIR_ TAB

DDIF$K_DIR_SPACE

DDIF$K_DIR_HYPHEN_NEW_LINE

DDIF$K_DIR_WORD_BREAK_POINT

DDIF$K_DIR_LEADERS

DDIF$K_DIR_BACKSPACE

DDIF$K_NULL

DDIF$K_DIR_NO_HYPHEN_WORD

Begins a new page.

Begins a new line of text.

Begins a new layout galley (such as a
column). Software that does not support
galley layout interprets the new galley
directive as a new page.

Moves the horizontal text position to the
next tab stop.

Is treated as a space in the current font.
The space directive is usually soft, and
is used to indicate that software has
inserted a space between wrapped lines.

Specifies that the line break is preceded
by a hyphen. This directive is typically
soft, and is used to indicate that software
has inserted a hyphen at the place it
broke the line.

Identifies an embedded point at which
a word may be broken, if need be, for
justification.

Inserts leader characters according
to the current leader attributes. A
leader directive is treated like a space
during justification, except that leader
characters are inserted instead of space.
The rendering of leaders is controlled by
the current leader attributes and other
text attributes.

Specifies that the first character following
this directive should be centered over
the last character imaged.

Suppresses the inheritance of the initial­
directive element of layout attributes.
This directive has no effect on imaging
or processing.

Suppresses hyphenation until the next
space character or space directive is
encountered.

6.8.4 Hard Value Directive

DDIF Structures
6.8 Directives

The hard value directive aggregate (type DDIF$_HRV) is a hard directive
that has a parametric value. The hard value directive aggregate contains
the following items:

• A hard value directive indicator (type DDIF$_HRV _C) that specifies
whether the hard value directive is an escapement directive or a
variable reset directive. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_DIR_ESCAPEMENT Indicates an escapement directive that
specifies the relative or constant distance
by which to increment the current text
position. If you specify this value, you must
supply values for the items DDIF$_HRV_
ESC_RATIO_N through DDIF$_HRV_ESC_
CONSTANT.

DDIF$K_DIF _ VARIABLE_RESET Indicates a variable reset directive that
specifies a directive to reset the value of
the specified variable. If you specify this
value, you must supply values for the items
DDIF$_HRV_RESET_VARIABLE through
DDIF$_HRV _RESET_ VALUE.

• An escapement ratio numerator item (type DDIF$_HRV _ESC_
RATIO_N) that specifies the magnitude of a ratio that is multiplied
by a context-dependent measurement to obtain a proportional
measurement. This item is encoded as an integer.

• An escapement ratio denominator item (type DDIF$_HRV_ESC_
RATIO_D) that specifies the units of precision used in the ratio. This
item is encoded as an integer.

• An escapement constant indicator (type DDIF$_HRV_ESC_
CONSTANT_C) that indicates whether the escapement constant is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An escapement constant item (type DDIF$_HRV _ESC_CONSTANT)
that specifies the constant measurement to be used as an escapement.
This item is encoded as a variable.

• A reset variable item (type DDIF$_HRV _RESET_ VARIABLE) that
specifies the label of the variable to be reset by the hard value
directive. This item is encoded as a string.

• A reset value indicator (type DDIF$_HRV _RESET_ VALUE_C) that
indicates whether the hard value directive reset value is specified as
a variable or constant value. This item is encoded as an expression
enumeration.

• A reset value item (type DDIF$_HRV _RESET_ VALUE) that specifies
the new value of the variable. This item is encoded as a variable.

6-13

6.8.5

DDIF Structures
6.8 Directives

Table 6-12 lists the items in a hard value directive aggregate and their
corresponding encodings.

Table 6-12 Hard Value Directive Aggregate (DDIF$_HRV)

Item Name

DDIF$_HRV _C

DDIF$_HRV _ESC_RATIO_N

DDIF$_HRV _ESC_RATIO_D

DDIF$_HRV _ESC_CONSTANT _C

DDIF$_HRV _ESC_CONSTANT

DDIF$_HRV _RESET_ VARIABLE

DDIF$_HRV _RESET_ VALUE_C

DDIF$_HRV_RESET_VALUE

Item Encoding

Enumeration

Integer

Integer

Measurement enumeration

Variable

String

Expression enumeration

Variable

Soft Value Directive

6-14

The soft value directive aggregate (type DDIF$_SFV) is a soft directive
that has a parametric value. The soft value directive aggregate contains
the following items:

• A soft value directive indicator (type DDIF$_SFV _C) that specifies
whether the soft value directive is an escapement directive or a
variable reset directive. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_DIR_ESCAPEMENT Indicates an escapement directive that
specifies the relative or constant distance
by which to increment the current text
position. If you specify this value, you must
supply values for the items DDIF$_SFV _
ESC_RATIO_N through DDIF$_SFV _ESC_
CONSTANT.

DDIF$K_DIF _ VARIABLE_RESET Indicates a variable reset directive that
specifies a directive to reset the value of
the specified variable. If you specify this
value, you must supply values for the items
DDIF$_SFV _RESET_ VARIABLE through
DDIF$_SFV _RESET_ VALUE.

• An escapement ratio numerator item (type DDIF$_SFV _ESC_
RATIO_N) that specifies the magnitude of a ratio that is multiplied
by a context-dependent measurement to obtain a proportional
measurement. This item is encoded as an integer.

• An escapement ratio denominator item (type DDIF$_SFV _ESC_
RATIO_D) that specifies the units of precision used in the ratio. This
item is encoded as an integer.

• An escapement constant indicator (type DDIF$_SFV _ESC_
CONSTANT_C) that indicates whether the escapement constant is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

DDIF Structures
6.8 Directives

• An escapement constant item (type DDIF$_SFV _ESC_CONSTANT)
that specifies the constant measurement to be used as an escapement.
This item is encoded as a variable.

• A reset variable item (type DDIF$_SFV _RESET_ VARIABLE) that
specifies the label of the variable to be reset by the soft value directive.
This item is encoded as a string.

• A reset value indicator (type DDIF$_SFV _RESET_ VALUE_C) that
indicates whether the soft value directive reset value is specified as
a variable or constant value. This item is encoded as an expression
enumeration.

• A reset value item (type DDIF$_SFV _RESET_ VALUE) that specifies
the new value of the variable. This item is encoded as a variable.

Table 6-13 lists the items in a soft value directive aggregate and their
corresponding encodings.

Table 6-13 Soft Value Directive Aggregate (DDIF$_SFV)

Item Name

DDIF$_SFV_C

DDIF$_SFV _ESC_RATIO_N

DDIF$_SFV _ESC_RATIO_D

DDIF$_SFV _ESC_CONSTANT _C

DDIF$_SFV _ESC_CONSTANT

DDIF$_SFV _RESET_ VARIABLE

DDIF$_SFV _RESET_ VALUE_C

DDIF$_SFV _RESET_ VALUE

6.9 Bezier Curve Content

Item Encoding

Enumeration

Integer

Integer

Measurement enumeration

Variable

String

Expression enumeration

Variable

A cubic Bezier curve is defined by four points. The first set of control
points is the first four points in the sequence. Each subsequent set of
three points uses the last point of the previous sequence as the first
control point in the new sequence.

The Bezier curve content aggregate (type DDIF$_BEZ) contains the
following items:

• A flags item (type DDIF$_BEZ_FLAGS) that is used to control the
rendition of the curve. This item is encoded as a longword. The flags
values are as follows:

DDIF$M_BEZ_DRAW_CURVE

DDIF$M_BEZ_FILL_CURVE

If set, the curve is drawn.

If set, the area within the curve is filled
according to the current fill attributes.

6-15

6.10

DDIF Structures
6.9 Bezier Curve Content

Polyline Content

6-16

DDIF$M_BEZ_CLOSE_CURVE Determines whether an open or closed curve
is drawn. (An open curve whose first and last
points are connected by a straight line differs
from a closed curve in that a closed curve
reuses the first control point as the last control
point. A closed cubic curve must consist of at
least 6 points.)

The default is DDIF$M_BEZ_DRAW_CURVE.

• A curve path indicator (type DDIF$_BEZ_PATH_C) that specifies
whether the layout of the curve is specified as a variable or constant
value. This item is encoded as an array of type measurement
enumeration.

• A curve path item (type DDIF$_BEZ_PATH) that contains the x,y pairs
that define the control points of the curve. This item is encoded as an
array of type variable.

The points of the curve are stored in an array in a repeating x,y-pair
format. For example, if you are storing values in this item, the first
value you specify must be the x position of the first control point; the
second value must be the y position of the first control point, and so
on. Because these points are stored in an array, you must increment
the aggregate index associated with the array each time you read or
write a control point. The initial aggregate index value is 0.

If the layout is frame based, each coordinate is relative to the frame in
which it is being rendered. If the layout is path based, each coordinate
is relative to the current position on the path.

Table 6-14 lists the items in a Bezier curve aggregate and their
corresponding encodings.

Table 6-14 Bezier Curve Aggregate (DDIF$_BEZ)

Item Name

DDIF$_BEZ_FLAGS

DDIF$_BEZ_PATH_C

DDIF$_BEZ_PATH

Item Encoding

Longword

Array of type measurement enumeration

Array of type variable

The polyline content aggregate (type DDIF$_LIN) represents polylines,
polymarkers, and filled areas. It contains the following items:

• A flags item (type DDIF$_LIN_FLAGS) that is used to control the
rendering of the polyline. This item is encoded as a longword. Valid
values for this item are as follows:

DDIF$M_LIN_DRAW_POLYLINE If set, a line is drawn between the
specified points; if clear, no line is
drawn.

DDIF$M_LIN_FILL_POLYLINE

DDIF$M_LIN_DRAW_MARKERS

DDIF$M_LIN_REGULAR_POLYGON

DOI F$M_LIN_ CLOSE_POLYLIN E

DDIF$M_LIN_ROUNDED_POLYLINE

DDIF$M_LIN_RECTANGULAR_
POLYGON

DDIF Structures
6.10 Polyline Content

If set, the area defined by the points is
filled; if clear, the area is not filled.

If set, a marker is placed at each point;
if clear, no markers are drawn.

If set, the object is a regular polygon.

If set, the last point of the object is
connected to the first.

If set, the line joints of the polyline are
rounded.

If set, the polyline represents a
rectangle. The polyline must consist
of four points. If all four lines must
be drawn, the DDIF$M_LIN_CLOSE_
POLYLINE value must also be specified.

• A draw pattern item (type DDIF$_LIN_DRAW_PATTERN) that
determines which line segments are drawn. This item is encoded
as a bit string.

Starting from the first bit and the line between the first two points of
the object, if the corresponding bit is set, the line is drawn. Otherwise,
the line is not drawn, but does limit the fill area.

The number of bits in the draw pattern does not have to match the
number of line segments in the polyline. If the draw pattern contains
fewer flags than the object contains line segments, the pattern is
repeated. For example, a bit pattern of 1 causes every line to be
drawn, and a pattern of 0 suppresses all lines. A pattern of 01 causes
every other line to be drawn, beginning with the second. The default
is "l"B.

A draw pattern can be provided even if the DDIF$M_LIN_DRAW _
POLYLINE flag is clear, with the implication that it forms the pattern
if the flag is later set.

• A line path indicator (type DDIF$_LIN_PATH_C) that specifies
whether the layout of the polyline is specified as a variable or
constant value. This item is encoded as an array of type measurement
enumeration.

• A line path item (type DDIF$_LIN_PATH) that lists the control points
of the polyline. This item is encoded as an array of type variable.

The points of the polyline are stored in an array in a repeating x,y-pair
format. For example, if you are storing values in this item, the first
value you specify must be the x position of the first control point; the
second value must be the y position of the first control point, and so
on. Because these points are stored in an array, you must increment
the aggregate index associated with the array each time you read or
write a control point. The initial aggregate index value is 0.

If the layout is frame based, each coordinate is relative to the frame in
which it is being rendered. If the layout is path based, each coordinate
is relative to the current position on the path.

6-17

6.11

DDIF Structures
6.10 Polyline Content

Arc Content

6-18

Table 6-15 lists the items in a polyline aggregate and their corresponding
encodings.

Table 6-15 Polyline Aggregate (DDIF$_LIN)

Item Name

DDIF$_LIN_FLAGS

DDIF$_LIN_DRAW_PATTERN

DDIF$_LIN_PATH_C

DDIF$_LIN_PATH

Item Encoding

Longword

Bit string

Array of type measurement enumeration

Array of type variable

The arc content aggregate (type DDIF$_ARC) contains the following items:

• A flags item (type DDIF$_ARC_FLAGS) that is used to control the
rendition of the arc. This item is encoded as a longword. Valid values
for this item are as follows:

DDIF$M_DRAW_ARC

DDIF$M_FILL_ARC

DDIF$M_PIE_ARC

DDIF$M_CLOSE_ARC

If set, a line 1s drawn along the arc, rendered as
specified by the active line attributes. The line-style
pattern should begin at the starting point.

If set, the arc is filled in the area defined by the arc
primitive.

If set, the boundary for filling/outlining the arc is
formed by the arc and the line segments joining the
arc endpoints to the center.

If set, and if the DDIF$M_DRAW_ARC flag is set, the
outline of the arc is closed. If DDIF$M_PIE_ARC is
set, the outline is closed by lines joining the endpoints
of the arc with the center. If DDIF$M_PIE_ARC is not
set, the outline is closed by a line joining the two arc
endpoints.

• An arc center x indicator (type DDIF$_ARC_CENTER_X_C) that
indicates whether the x-coordinate of the center of the arc is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An arc center x item (type DDIF$_ARC_CENTER_X) that specifies
the x-coordinate of the center of the arc. This item is encoded as a
variable.

• An arc center y indicator (type DDIF$_ARC_CENTER_Y_C) that
indicates whether they-coordinate of the center of the arc is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An arc center y item (type DDIF$_ARC_CENTER_Y) that specifies
the y coordinate of the center of the arc. This item is encoded as a
variable.

DDIF Structures
6.11 Arc Content

• An arc radius x indicator (type DDIF$_ARC_RADIUS_X_C) that
indicates whether the x radius of the arc is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• An arc radius x item (type DDIF$_ARC_RADIUS_X) that specifies
the distance from the center of the arc to the perimeter of the arc as
measured along the x-axis. This item is encoded as a variable.

• An arc radius delta y indicator (type DDIF$_RADIUS_DELTA_Y_C)
that indicates whether the delta y radius of the arc is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

• An arc radius delta y item (type DDIF$_ARC_RADIUS_DELTA_Y)
that specifies the length difference between they radius and the
x radius (for example, if the arc is the arc of an ellipse). This item is
encoded as a variable. The default value for this item is 0.

• An arc start indicator (type DDIF$_ARC_START_C) that indicates
whether the starting angle of the arc is specified as a variable or
constant value. This item is encoded as an AngleRef enumeration.

• An arc start item (type DDIF$_ARC_START) that specifies the angle
at which the arc is begun. This item is encoded as a variable. The
default value for this item is 0.

• An arc extent indicator (type DDIF$_ARC_EXTENT_C) that indicates
whether the extent of the arc is specified as a variable or constant
value. This item is encoded as an AngleRef enumeration.

• An arc extent item (type DDIF$_ARC_EXTENT) that is added to the
arc start angle to determine the end of the arc. This item is encoded
as a variable. The default value for this item is 360 degrees.

• An arc rotation indicator (type DDIF$_ARC_ROTATION_C) that
indicates whether the angle of rotation of the arc is specified as a
variable or constant value. This item is encoded as an AngleRef
enumeration.

• An arc rotation item (type DDIF$_ARC_ROTATION) that specifies the
angle of rotation of the entire arc relative to the coordinate system.
(This item is usually specified for elliptical arcs.) This item is encoded
as a variable. The default value for this item is 0 degrees.

Table 6-16 lists the items in an arc content aggregate and their
corresponding encodings.

Table 6-16 Arc Content Aggregate {DDIF$_ARC)

Item Name Item Encoding

DDIF$_ARC_FLAGS Longword

DD I F$_ARC _ CENTER_X_ C Measurement enumeration

(continued on next page)

6-19

6.12

DDIF Structures
6.11 Arc Content

Table 6-16 (Cont.) Arc Content Aggregate (DDIF$_ARC)

Item Name

DDIF$_ARC_CENTER_X

DDIF$_ARC_CENTER_ Y_C

DDIF$_ARC_CENTER_ Y

DDIF$_ARC_RADIUS_X_C

DDIF$_ARC_RADIUS_X

DDIF$_ARC_RADIUS_DELTA_ Y _C

DDIF$_ARC_RADIUS_DELTA_ Y

DDIF$_ARC_START_C

DDIF$_ARC_START

DDIF$_ARC_EXTENT _C

DDIF$_ARC_EXTENT

DDIF$_ARC_ROTATION_C

DDIF$_ARC_ROTATION

Item Encoding

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

Fill Area Set Content

6-20

The fill area set content aggregate (type DDIF$_FAS) specifies an arbitrary
path that is filled as a unit, or an arbitrary outline. This aggregate
contains the following items:

• A fill area set flags item (type DDIF$_FAS_FLAGS) that is used
to control the rendition of the fill area. This item is encoded as a
longword. Valid values for this item are as follows:

DDIF$M_FAS_CO_DRAW_BORDER If set, a line is drawn along the path, using
the current line attributes. If the start and
end points of the path components are
not coincident, a straight line connects the
points.

DDIF$M_FAS_CO_FILL_AREA If set, the composite area is filled. The fill
is performed using the odd winding rule,
just as for polylines. (The odd winding
rule states that if a ray is drawn from a
point to infinity, the origin of the ray is
considered inside the area (and hence
is filled) if it crosses the area border an
odd number of times.) If the start and end
points of the path components are not
coincident, a straight line connects the
points.

The default value is DDIF$M_FAS_CO_DRAW _BORDER.

• A fill area set path item (type DDIF$_FAS_PATH) that specifies the
composite path that constitutes the fill area set. This item is encoded
as a sequence of DDIF$_PTH aggregates. For more information on the
DDIF$_PTH aggregate, see Section 6.19.

6.13 Image Content

DDIF Structures
6.12 Fill Area Set Content

Table 6-17 lists the items in a fill area set content aggregate and their
corresponding encodings.

Table 6-17 Fill Area Set Content Aggregate (DDIF$_FAS)

Item Name

DDIF$_FAS_FLAGS

DDIF$_FAS_PATH

Item Encoding

Longword

Sequence of DDIF$_PTH aggregates

Image data is represented as a frame of data within a DDIF document.
The origin of a frame is located at the lower left-hand corner of the frame.
Any page can contain one or more frames of image data. A frame can
contain a single still image, or a sequence of time-varying images with
identical attributes. A frame containing a single image content definition
is a still image. A frame containing more than one image content primitive
is a time-varying image sequence. Each frame has an attribute that
identifies it as either still or time-varying.

Although a DDIF document frame can contain compound data by way
of nested frames, a frame of image data is considered atomic. Frames
containing any sort of data can be overlaid on a frame of image data to
provide some desired effect. For example, you can overlay a frame with
text over a frame of image data to create the effect of a border around a
picture with text inside. There are no restrictions placed on the inclusion
of image frames within other frames of nonimage data.

The image attributes specify the number of pixels in a scan line, and the
number of lines, but not the resolution at which the image was scanned.
The size of the frame that bounds the image is assumed to represent the
original size of the image, and when the image is displayed, it is scaled to
fit the bounding box of the frame.

The image content aggregate (type DDIF$_IMG) contains an image content
item (type DDIF$_IMG_CONTENT) that specifies the content of the
image. This value is encoded as a sequence of DDIF$_IDU aggregates.
For more information on the DDIF$_IDU aggregate, see Section 6.18.

It is important to note that the bounding box items of the frame attributes
must be respecified in the segment attributes aggregate (type DDIF$_SGA)
associated with image content; frame attributes for image content are not
inherited from a type definition.

Table 6-18 lists the item in an image content aggregate and its
corresponding encoding.

6-21

6.14

6.15

6.15.1

DDIF Structures
6.13 Image Content

Table 6-18 Image Content Aggregate (DDIF$_1MG)

Item Name Item Encoding

DDIF$_1MG_CONTENT Sequence of DDIF$_1DU aggregates

Content Reference Aggregate
The content reference aggregate (type DDIF$_CRF) enables you to
reference a generic content definition. This aggregate contains the
following items:

• An optional content reference transformation item (type DDIF$_
CRF _TRANSFORM) that specifies a transformation to be applied to
all measurements in the referenced content definition. This item
is encoded as a sequence of DDIF$_TRN aggregates. (For more
information on the DDIF$_TRN aggregate, see Section 6.32.) If a
transformation is not supplied, the measurements in the defined
content are used unmodified.

• An optional content reference item (type DDIF$_CRF _REFERENCE)
that contains the label of the content definition being referenced. This
item is encoded as a string.

Table 6-19 lists the items in a content reference aggregate and their
corresponding encodings.

Table 6-19 Content Reference Aggregate (DDIF$ _ CRF)

Item Name

DDIF$_CRF _TRANSFORM

DDIF$_CRF _REFERENCE

Item Encoding

Sequence of DDIF$_ TRN aggregates

String

Restricted Content
In addition to the standard revisable content types, two restricted types
are provided: PDL content and private content. Restricted types are
limited in terms of interchangeability. In general, PDL content can only be
displayed on supporting devices, and is not suitable for revision. Private
content is supported only by the creator of the document and perhaps by a
limited set of cooperating processors.

External (POL) Content

6-22

The external content aggregate (type DDIF$_EXT) contains the following
items:

• An optional direct reference item (type DDIF$_EXT_DIRECT_
REFERENCE) that is used to identify the data type (syntax and
semantics) of the external element. This item is encoded as an object
identifier.

DDIF Structures
6.15 Restricted Content

• An optional indirect reference item (type DDIF$_EXT_INDIRECT_
REFERENCE). This item is encoded as an integer and is reserved for
future standardization.

• An optional data value descriptor (type DDIF$_EXT_DATA_ VALUE_
DESCRIPTOR) that is a text string describing the external data value
to programs and/or users. This item is encoded as a string.

• An encoding indicator (type DDIF$_EXT_ENCODING_C) that
indicates the method of encoding of the data value. This item is
encoded as an enumeration. Valid values for the encoding indicator
are as follows:

DDIF$K_DOCUMENT_ENCODING

DDIF$K_DDIS_ENCODING

DDIF$K_OCTET _ENCODING

DDIF$K_ARBITRARY _ENCODING

Nested document. In this case, the
DDIF$_EXT _ENCODING item is encoded
as a document root aggregate.

Nested document. In this case, the
DDIF$_EXT _ENCODING item uses a
ODIS encoding.

Octet-aligned encoding. In this case, the
DDIF$_EXT _ENCODING item is encoded
as a string.

Arbitrary. In this case, the DDIF$_EXT_
ENCODING item is encoded as a bit
string.

• An encoding item (type DDIF$_EXT_ENCODING) that specifies the
external data value in the specified encoding. This item is encoded as
a variable.

• An encoding length item (type DDIF$_EXT_ENCODING_L) that
specifies the length (on input) of the encoding. This item is encoded as
an integer.

Table 6-20 lists all the items in an external content aggregate and their
corresponding encodings.

Table 6-20 External Content Aggregate {DDIF$_EXT}

Item Name Item Encoding

DDIF$_EXT_DIRECT_REFERENCE Object identifier

DDIF$_EXT _INDIRECT _REFERENCE Integer

DDIF$_EXT _DATA_ VALUE_DESCRIPTOR String

DDIF$_EXT _ENCODING_ C Enumeration

DDIF$_EXT_ENCODING Variable

DDIF$_EXT _ENCODING_L Integer

6-23

DDIF Structures
6.15 Restricted Content

6.15.2 Private Content

6-24

Private data is defined as compound document semantics that are
restricted either to a particular document processing implementation, or to
a set of related implementations that support identical private encodings.

There are three places in a compound document where a document
processor can escape to private data:

• In the header (for document-wide private indicators)

• In segment attributes (for hierarchical or inheritable data)

• As a content type (for content-like private data or markers)

For example, you can use private data in the following ways:

• As a marker in the document content that indicates the user's last
editing position in the document

• As a data element in the header of the document that indicates the
menu setups or operation modes that were active at the time the
document was written

• To indicate special hyphenation rules that cannot be represented by
other means in DDIF

• To specify data that allows the graphics in the document to be edited
by a special flowchart editor

The private content aggregate (type DDIF$_PVT) contains the following
items: '

• A value name item (type DDIF$_PVT_NAME) that uniquely identifies
the value. This item is encoded as a string.

• A value data indicator (type DDIF$_PVT_DATA_C) that indicates
the type of data that has been named. This item is encoded as an
enumeration. Valid values for the data indicator are as follows:

DDIF$K_ VALUE_BOOLEAN

DDIF$K_ VALUE_INTEGER

DDIF$K_ VALUE_ TEXT

DDIF$K_ VALUE_GENERAL

Indicates a Boolean value. In this case, the
DDIF$_PVT _DATA item is encoded as a type
Boolean.

Indicates an integer value. In this case, the
DDIF$_PVT _DATA item is encoded as an
integer.

Indicates a text string value. In this case, the
DDIF$_PVT _DATA item is encoded as an
array of type character string.

Indicates a stream of bytes in any format.
In this case, the DDIF$_PVT_DATA item is
encoded as a string.

6.16 Layout Galley

DDIF Structures
6.15 Restricted Content

DDIF$K_VALUE_REFERENCE Indicates a data value that is a reference to
a segment in the document or a segment in
another document. In this case, the DDIF$_
PVT_DATA item is encoded as a string. For
this case, DDIF$_PVT_REFERENCE_ERF _
INDEX must also be specified.

DDIF$K_VALUE_LIST Indicates a list of data values such as the
above. In this case, the DDIF$_PVT_DATA
item is encoded as a sequence of DDIF$_
PVT aggregates. In the nested DDIF$_PVT
aggregates, the DDIF$_PVT _NAME item is
ignored.

DDIF$K_VALUE_EXTERNAL Indicates a data value that is represented in
a syntax. In this case, the DDIF$_PVT _DATA
item is encoded as the handle of an aggregate
of type DDIF$_EXT.

• A value data item (type DDIF$_PVT_DATA) that specifies the data
value of the specified type. This item is encoded as a variable.

• An external reference index item (type DDIF$_PVT_REFERENCE_
ERF _INDEX) that specifies an index into a list of external references.
This item is encoded as an integer.

Table 6-21 lists the items in a private content aggregate and their
corresponding encodings.

Table 6-21 Private Content Aggregate (DDIF$_PVT)

Item Name Item Encoding

DDIF$_PVT _NAME

DDIF$_PVT_DATA_C

DDIF$_PVT _DATA

DDIF$_PVT_REFERENCE_ERF _INDEX

String

Enumeration

Variable

Integer

The layout galley aggregate (type DDIF$_GLY) lets you describe the shape
and attributes of a single galley.

A galley can be used to control the flow of text along a series of parallel
paths. These paths are determined by a formatter based on the outline
of the galley, the height of the characters on the lines, and other layout
parameters such as leading.

Like graphic objects such as lines and curves, galleys are relative to a
frame: either the page frame defined by a page layout description, or a
floating frame. Also like graphic objects, galleys are imaged in the order
in which they are described. Graphic elements can be described and
imaged before, after, and between galleys. A galley is not imaged when it
is selected for filling with text, but rather in the normal sequence in which
objects in the frame are imaged. A page frame and its contents are imaged
when the first galley on the page is selected.

6-25

DDIF Structures
6.16 Layout Galley

6-26

The layout galley aggregate contains the following items:

• A galley label item (type DDIF$_GLY_ID) that specifies a label by
which the galley can be referenced. This item is encoded as a string.

• A lower left corner x position indicator (type DDIF$_GLY_
BOUNDING_BOX_LL_X_C) that indicates whether the lower left
corner x-coordinate is specified as a variable or constant value. This
item is encoded as a measurement enumeration.

• A lower left corner x position item (type DDIF$_GLY_BOUNDING_
BOX_LL_X) that specifies the x-coordinate of the lower left corner of
the galley. This item is encoded as a variable.

• A lower left corner y position indicator (type DDIF$_GLY_
BOUNDING_BOX_LL_ Y_ C) that indicates whether the lower left
corner y-coordinate is specified as a variable or constant value. This
item is encoded as a measurement enumeration.

• A lower left corner y position item (type DDIF$_GLY_BOUNDING_
BOX_LL_ Y) that specifies the y-coordinate of the lower left corner of
the galley. This item is encoded as a variable.

• An upper right corner x position indicator (type DDIF$_GLY_
BOUNDING_BOX_UR_X_C) that indicates whether the upper right
corner x-coordinate is specified as a variable or constant value. This
item is encoded as a measurement enumeration.

• An upper right corner x position item (type DDIF$_GLY_BOUNDING_
BOX_UR_X) that specifies the x-coordinate of the upper right corner of
the galley. This item is encoded as a variable.

• An upper right corner y position indicator (type DDIF$_GLY_
BOUNDING_BOX_UR_Y_C) that indicates whether the upper right
corner y-coordinate is specified as a variable or constant value. This
item is encoded as a measurement enumeration.

• An upper right corner y position item (type DDIF$_GLY_BOUNDING_
BOX_UR_Y) that specifies they-coordinate of the upper right corner of
the galley. This item is encoded as a variable.

• An optional galley outline item (type DDIF$_GLY_OUTLINE) that
specifies the path to which content within the galley is formatted. This
item is encoded as a sequence of DDIF$_PTH aggregates. (For more
information on the DDIF$_PTH aggregate, see Section 6.19.) The
outline is constrained to fit within the bounding box, and defaults to
the rectangle defined as the bounding box. Content is formatted inside
the path, where the inside is determined by the odd winding rule. (The
odd winding rule states that, if a ray is drawn from a point to infinity,
the origin of the ray is considered inside the area (and hence will be
filled) if it crosses the area border an odd number of times.)

• An optional layout galley flags item (type DDIF$_GLY_FLAGS) that
controls the display of the galley or its content. This item is encoded
as a longword. Valid values are as follows:

DDIF$M_GLY _ VERTICAL_ALIGN

DDIF$M_GLY_BORDER

DDIF$M_GLY _AUTOCONNECT

DDIF$M_GLY_BACKGROUND_FILL

DDIF Structures
6.16 Layout Galley

The elements in the galley are adjusted
so that the vertical space in the galley is
completely used.

A border is drawn around the outline of
the galley.

If text overflows the galley during layout,
it automatically flows into the successor
galley. If the successor is a generic
galley (is on a generic page) then an
instance of that page will be created.

The current fill pattern or color is used
to fill the galley before the text that flows
into the galley is imaged.

• An optional galley streams item (type DDIF$_GLY_STREAMS) that
specifies the content streams that can appear in the galley. This item
is encoded as an array of type string.

• A galley successor indicator (type DDIF$_GLY_SUCCESSOR_C) that
indicates the type of galley to be used when text overflows. This item
is encoded as an enumeration. Valid values are as follows:

DDIF$K_GENERIC_GALLEY Indicates a galley on a page in the
generic layout. In this case, the DDIF$_
GLY _SUCCESSOR item is encoded as
a string.

DDIF$K_SPECIFIC_GALLEY Indicates a galley on a page in specific
layout. In this case, the DDIF$_GLY_
SUCCESSOR item is encoded as a
string.

DDIF$K_NO_SUCCESSOR_GALLEY Indicates that there is no successor
galley and overflow text is not displayed.
In this case, you should not specify the
DDIF$_GLY _SUCCESSOR item.

• A galley successor item (type DDIF$_GLY_SUCCESSOR) that specifies
the galley used when text overflows. This item is encoded as a
variable.

Table 6-22 lists all the items in the layout galley aggregate and their
corresponding encodings.

Table 6-22 Layout Galley Aggregate (DDIF$_GLY)

Item Name

DDIF$_GLY_ID

DDIF$_GLY _BOUNDING_BOX_LL_X_C

DDIF$_GLY _BOUNDING_BOX_LL_X

DDIF$_GLY _BOUNDING_BOX_LL_ Y _C

Item Encoding

String

Measurement enumeration

Variable

Measurement enumeration

(continued on next page)

6-27

6.17

DDIF Structures
6.16 Layout Galley

Table 6-22 (Cont.) Layout Galley Aggregate (DDIF$_GLY)

Item Name

DDIF$_GLY _BOUNDING_BOX_LL_ Y

DDIF$_GLY_BOUNDING_BOX_UR_X_C

DDIF$_GLY _BOUNDING_BOX_UR_X

DDIF$_GLY _BOUNDING_BOX_UR_ Y _C

DDIF$_GLY _BOUNDING_BOX_UR_ Y

DDIF$_GLY _OUTLINE

DDIF$_GLY_FLAGS

DDIF$_GLY_STREAMS

DDIF$_GLY_SUCCESSOR_C

DDIF$_GLY _SUCCESSOR

Item Encoding

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Sequence of DDIF$_PTH aggregates

Longword

Array of type string

Enumeration

Variable

External Reference

6-28

An external reference element describes a source of data that is outside
the document. It does so by specifying the data syntax and location of
the external reference element. An external reference agg-.cegate (type
DDIF$_ERF) contains the following items:

• A reference data type item (type DDIF$_ERF _DATA_TYPE) that
identifies the data type of the external data object. This item is
encoded as an object identifier. An object identifier is specified as
an array of seven longwords. Table 6-23 lists each supported object
identifier, as well as the seven longword data values used to specify
that object identifier type. Note that the values must be written to
the array in the order in which they appear in Table 6-23 (from left to
right).

Table 6-23 Object Identifier Table

Array Values Object Identifier Type

3 12 1011 3 DIGITAL Document Interchange Format
(DDIF)

3 12 1011 3 2 Data Object Transport Syntax (DOTS)

3 12 1011 3 4 ASCII-text data stream

3 12 1011 3 5 Application-dependent data

3 12 1011 3 6 Postscript

Object identifiers are used by the CDA Toolkit to denote the assigned
semantics of stored DDIF files. These data formats are uniquely
identifiable because an object identifier consists of a hierarchy of
subidentifiers that designate those groups that have registered the
subregistry or the data type.

DDIF Structures
6.17 External Reference

• A reference descriptor item (type DDIF$_ERF _DESCRIPTOR) that
provides a human-readable description of the data type. This item is
encoded as an array of type character string.

• A reference label item (type DDIF$_ERF _LABEL) that provides the
label by which the user or the system identifies the data object (that
is, the file specification of the external file). This item is encoded as a
character string.

• A storage item (type DDIF$_ERF _LABEL_ TYPE) that contains a
tag that identifies the type of storage system in which the external
reference is located. This item is encoded as a string with add-info.
The following table lists the values for add-info and the corresponding
string values.

DDIF$K_PRIVATE_LABEL_
TYPE

DDIF$K_RMS_LABEL_ TYPE

DDIF$K_UTX_LABEL_ TYPE

DDIF$K_MDS_LABEL_ TYPE

The label is a private label. In this case, the
string can be any user-specified string.

The label is an RMS file specification. In this
case, the string must be "$RMS".

The label is an ULTRIX file specification. In
this case, the string must be "$UTX".

The label is an MS-DOS or OS/2 file
specification. In this case, the string must
be "$MOS".

DDIF$K_STYLE_LABEL_ TYPE The label type is a style-guide file
specification. In this case, the string must
be "$STYLE".

• A control item (type DDIF$_ERF _CONTROL) that specifies how the
referenced data object is treated when the document is transferred
from one system to another. This item is encoded as an enumeration.
Valid values for this item are as follows:

DDIF$K_COPY _REFERENCE

DDIF$K_NO_COPY _REFERENCE

The referenced data object
is transmitted along with the
document, and is stored on the
receiving system.

The referenced data is not
transmitted with the document.

Table 6-24 lists the items in an external reference aggregate and their
corresponding encodings.

Table 6-24 External Reference Aggregate (DDIF$_ERF)

Item Name

DDIF$_ERF _DATA_ TYPE

DDIF$_ERF _DESCRIPTOR

DDIF$_ERF _LABEL

DDIF$_ERF _LABEL_ TYPE

DDIF$_ERF _CONTROL

Item Encoding

Object identifier

Array of type character string

Character string

String with add-info

Enumeration

6-29

6.18

DDIF Structures
6.18 Image Data Unit

Image Data Unit

6-30

The image data unit aggregate (type DDIF$_IDU) describes image data
in terms of its image coding attributes and the actual image data. This
aggregate contains the following items:

• An optional private coding attributes item (type DDIF$_IDU_
PRIVATE_CODING_ATTR) that provides for the addition of
application-private image coding attributes. This item is encoded
as a sequence of DDIF$_PVT aggregates. Data placed here can be of
any type and any structure. For more information on the DDIF$_PVT
aggregate, see Section 6.15.2.

• A pixels-per-line item (type DDIF$_IDU_PIXELS_PER_LINE) that
specifies the total number of pixels per scanline. This item is encoded
as an integer. Note that the pixels-per-line item does not necessarily
represent the total number of bits per scanline.

• A number-of-lines item (type DDIF$_IDU_NUMBER_OF _LINES)
that specifies the total number of scanlines in an image. This item is
encoded as an integer.

• A compression type item (type DDIF$_IDU_COMPRESSION_TYPE)
that indicates the compression scheme used to encode a particular
plane of image data. This item is encoded as an enumeration. Valid
values for this item are as follows:

DDIF$K_PRIVATE_COMPRESSION

DDIF$K_PCM_COMPRESSION

DDIF$K_G31 D_COMPRESSION

DDIF$K_G32D_COMPRESSION

Private compression scheme

Raw bitmap

Consultative Committee on
International Telephony and
Telegraphy (CCITT) Group 3
1-dimensional

CCITT Group 3 2-dimensional

DDIF$K_G42D_COMPRESSION CCITT Group 4 2-dimensional

DDIF$K_PCM_COMPRESSION is the default.

• An optional compression parameters item (type DDIF$_1DU_
COMPRESSION_PARAMS) that contains the parameters required
for the specified compression. This item is encoded as a sequence of
DDIF$_PVT aggregates. For more information on the DDIF$_PVT
aggregate, see Section 6.15.2.

• A data offset item (type DDIF$_IDU_DATA_OFFSET) that specifies
the offset (in bits) from the start of the octet string to the first bit of
image data. This item is encoded as an integer. The default for the
data offset item is 0.

• An optional pixel stride item (type DDIF$_IDU_PIXEL_STRIDE) that
specifies the difference in bit addresses between successive pixels. This
item is encoded as an integer.

Pixel stride is typically equal to the number of bits per pixel stored in
a particular data plane. If pixel alignment requires fill bits between
pixels, the difference between this value and the number of bits per
pixel per component equals the fill value.

DDIF Structures
6.18 Image Data Unit

• An optional scanline stride item (type DDIF$_IDU_SCANLINE_
STRIDE) that specifies the difference in bit addresses between the
starting bits of successive scanlines. This item is encoded as an
integer.

Scanline stride is typically equal to the number of bits (not pixels) per
scanline. If scanline alignment requires fill bits between scanlines, the
difference between scanline stride and the number of bits per scanline
equals the fill value. In most cases, when image data is compressed,
scanline stride has little meaning and is not present.

• A pixel order item (type DDIF$_IDU_PIXEL_ORDER) that specifies
the order in which pixel data is stored within each byte. This item is
encoded as an enumeration. Valid values for this item are as follows:

DDIF$K_STANDARD_PIXEL_ORDER

DDIF$K_REVERSE_PIXEL_ORDER

Indicates standard pixel order

Indicates reverse pixel order

The default value is DDIF$K_STANDARD_PIXEL_ORDER.

• An optional plane-bits-per-pixel item (type DDIF$_IDU_BITS_PER_
PIXEL) that indicates the total number of bits per pixel. This item
is encoded as an integer. This value also represents the sum of the
number of bits per component for all components. For bitonal images,
the plane-bits-per-pixel item always has a value of 1, and is therefore
omitted.

• A plane data item (type DDIF$_IDU_PLANE_DATA) that specifies the
actual data. This item is encoded as a string.

Table 6-25 lists all the items in an image data unit aggregate and their
corresponding encodings.

Table 6-25 Image Data Unit Aggregate (DDIF$_1DU)

Item Name

DDIF$_1DU_PRIVATE_CODING_ATTR

DDIF$_1DU_PIXELS_PER_LINE

DDIF$_1DU_NUMBER_OF _LINES

DDIF$_1DU_COMPRESSION_ TYPE

DDIF$_1DU_COMPRESSION_PARAMS

DDIF$_1DU_DATA_OFFSET

DDIF$_1DU_PIXEL_STRIDE

DDIF$_1DU_SCANLINE_STRIDE

DDIF$_1DU_PIXEL_ORDER

DDIF$_1DU_BITS_PER_PIXEL

DDIF$_1DU_PLANE_DATA

Item Encoding

Sequence of DDIF$_PVT aggregates

Integer

Integer

Enumeration

Sequence of DDIF$_PVT aggregates

Integer

Integer

Integer

Enumeration

Integer

String

6-31

6.19

DDIF Structures
6.19 Composite Path

Composite Path

6-32

A composite path type defines an arbitrary path as a sequence of other
path types (polylines, arcs, cubic Beziers, and other composite paths). The
composite path aggregate (type DDIF$_PTH) contains the following items:

• A path indicator (type DDIF$_PTH_C) that indicates the type of path
component being defined. This item is encoded as an enumeration.
Valid values for this item are as follows:

DDIF$K_PATH_LINE

DDIF$K_PATH_BEZIER

DDIF$K_PATH_ARC

DDIF$K_PATH_REFERENCE

Indicates a polyline component of the path.
If you specify this value, you must supply
values for the items DDIF$_PTH_LIN_
PATH_C through DDIF$_PTH_LIN_PATH.

Indicates a cubic Bezier component of the
path. If you specify this value, you must
supply values for the items DDIF$_PTH_
BEZ_PATH_C through DDIF$_PTH_BEZ_
PATH.

Indicates an arc component of the path.
If you specify this value, you must supply
values for the items DDIF$_PTH_ARC_
CENTER_X_C through DDIF$_PTH_ARC_
ROTATION.

Indicates a reference to a defined component
of the path. If you specify this value, you
must supply a value for the item DDIF$_
PTH_REFERENCE.

• A line path indicator (type DDIF$_PTH_LIN_PATH_C) that specifies
whether the layout of the polyline is specified as a variable or
constant value. This item is encoded as an array of type measurement
enumeration.

• A line path item (type DDIF$_PTH_LIN_PATH) that lists the control
points of the polyline. This item is encoded as an array of type
variable.

The points of the polyline are stored in an array in a repeating x,y-pair
format. For example, if you are storing values in this item, the first
value you specify must be the x position of the first control point; the
second value must be the y position of the first control point, and so
on. Because these points are stored in an array, you must increment
the aggregate index associated with the array each time you read or
write a control point. The initial aggregate index value is 0.

Note that each coordinate is relative to the frame in which it is being
rendered.

• A curve path indicator (type DDIF$_PTH_BEZ_PATH_C) that specifies
whether the layout of the curve is specified as a variable or constant
value. This item is encoded as an array of type measurement
enumeration.

• A curve path item (type DDIF$_PTH_BEZ_PATH) that contains the
x,y-pairs that define the control points of the curve. This item is
encoded as an array of type variable.

DDIF Structures
6.19 Composite Path

The points of the curve are stored in an array in a repeating x,y-pair
format. For example, if you are storing values in this item, the first
value you specify must be the x position of the first control point; the
second value must be the y position of the first control point, and so
on. Because these points are stored in an array, you must increment
the aggregate index associated with the array each time you read or
write a control point. The initial aggregate index value is 0.

• An arc center x indicator (type DDIF$_PTH_ARC_CENTER_X_C) that
indicates whether the x-coordinate of the center of the circle of which
this arc is a part is specified as a variable or constant value. This item
is encoded as a measurement enumeration.

• An arc center x item (type DDIF$_PTH_ARC_CENTER_X) that
specifies the x-coordinate of the center of the circle of which this
arc is a part. This item is encoded as a variable.

• An arc center y indicator (type DDIF$_PTH_ARC_CENTER_Y_C) that
indicates whether the y-coordinate of the center of the circle of which
this arc is a part is specified as a variable or constant value. This item
is encoded as a measurement enumeration.

• An arc center y item (type DDIF$_PTH_ARC_CENTER_Y) that
specifies the y-coordinate of the center of the circle of which this
arc is a part. This item is encoded as a variable.

• An arc radius x indicator (type DDIF$_PTH_ARC_RADIUS_X_C) that
indicates whether the x-radius of the arc is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• An arc radius x item (type DDIF$_PTH_ARC_RADIUS_X) that
specifies the distance from the center of the arc to the perimeter
of the arc as measured along the x-axis. This item is encoded as a
variable.

• An arc radius delta y indicator (type DDIF$_PTH_ARC_RADIUS_
DELTA_Y_C) that indicates whether the delta y-radius of the arc is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An arc radius delta y item (type DDIF$_PTH_ARC_RADIUS_DELTA_
Y) that specifies the length difference between they-radius and the
x-radius (for example, if the arc is the arc of an ellipse). This item is
encoded as a variable. The default value for this item is 0.

• An arc start indicator (type DDIF$_PTH_ARC_START_C) that
indicates whether the starting angle of the arc is specified as a variable
or constant value. This item is encoded as an AngleRef enumeration.

• An arc start item (type DDIF$_PTH_ARC_START) that specifies the
angle at which the arc is begun. This item is encoded as a variable.
The default value for this item is 0.

• An arc extent indicator (type DDIF$_PTH_ARC_EXTENT_C) that
indicates whether the extent of the arc is specified as a variable or
constant value. This item is encoded as an AngleRef enumeration.

6-33

DDIF Structures
6.19 Composite Path

6-34

• An arc extent item (type DDIF$_PTH_ARC_EXTENT) that is added
to the arc start angle to determine the end of the arc. This item is
encoded as a variable. The default value for this item is 360 degrees.

• An arc rotation indicator (type DDIF$_PTH_ARC_ROTATION_C) that
indicates whether the angle of rotation of the arc is specified as a
variable or as a constant value. This item is encoded as an AngleRef
enumeration.

• An arc rotation item (type DDIF$_PTH_ARC_ROTATION) that
specifies the angle of rotation of the entire arc relative to the
coordinate system. (This item is usually specified for elliptical arcs.)
This item is encoded as a variable. The default value for this item is 0
degrees.

• A path reference item (type DDIF$_PTH_REFERENCE) that provides
a reference to a defined component of the path, which is itself a
composite path. This item is encoded as an integer.

Table 6-26 lists all of the items in a composite path aggregate and their
corresponding encodings.

Table 6-26 Composite Path Aggregate (DDIF$_PTH)

Item Name

DDIF$_PTH_C

DDIF$_PTH_LIN_PATH_C

DDIF$_PTH_LIN_PATH

DDIF$_PTH_BEZ_PATH_C

DDIF$_PTH_BEZ_PATH

D DI F$_PTH_ARC _ CENTER_X_ C

DDIF$_PTH_ARC_CENTER_X

DDIF$_PTH_ARC_CENTER_ Y_C

DDIF$_PTH_ARC_CENTER_ Y

DDIF$_PTH_ARC_RADIUS_X_C

DDIF$_PTH_ARC_RADIUS_X

DDIF$_PTH_ARC_RADIUS_DELTA_ Y _C

DDIF$_PTH_ARC_RADIUS_DELTA_ Y

DDIF$_PTH_ARC_START_C

DDIF$_PTH_ARC_START

DDIF$_PTH_ARC_EXTENT_C

DDIF$_PTH_ARC_EXTENT

DDIF$_PTH_ARC_ROTATION_C

DDIF$_PTH_ARC_ROTATION

DDIF$_PTH_REFERENCE

Item Encoding

Enumeration

Array of type measurement enumeration

Array of type variable

Array of type measurement enumeration

Array of type variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

Integer

6.20

6.20.1

Segment Attributes

DDIF Structures
6.20 Segment Attributes

The segment attributes aggregate (type DDIF$_SGA) defines the
presentation and processing characteristics of a segment of document
content. The items in this aggregate can be broken down into the following
logical groups:

• General segment attribute items

• Computed content attribute items

• Structure items

• A language attribute item

• Legend items

• Measurement items

• An alternate presentation item

• Layout items

• A font definition item

• A pattern definition item

• A path definition item

• A line-style definition item

• A content definition item

• A type definition item

• Text attribute items

• Line attribute items

• Marker attribute items

• A galley attribute item

• Image attribute items

• Image space items

• Frame items

• An item-change-list item

Each of these items, or groups of items, is discussed in the following
sections. Where appropriate, default or initial values are specified.
Section 6.20.23 lists all of the items in the DDIF$_SGA aggregate and
their corresponding encodings.

General Segment Attributes
The segment attributes aggregate contains the following items that specify
general segment attributes:

• An optional private attributes item (type DDIF$_SGA_PRIVATE_
DATA) that specifies any product-specific attributes for the segment.
This item is encoded as a sequence of DDIF$_PVT aggregates. (For

6-35

DDIF Structures
6.20 Segment Attributes

6-36

more information on the DDIF$_PVT aggregate, see Section 6.15.2.)
No initial private attributes are defined.

• An optional content streams item (type DDIF$_SGA_CONTENT_
STREAMS) that specifies the content streams to which the segment
content belongs. This item is encoded as an array of type string. The
initial content stream is "$DB", which denotes the document body.

• An optional content category item (type DDIF$_SGA_CONTENT_
CATEGORY) that indicates the category of content, such as text
($T), graphics ($2D), or image ($1), to which the content of the segment
belongs. This item is encoded as a string with add-info, where add-info
can take the following values:

DDIF$K_PRIVATE_CATEGORY

DOI F$K_I_ CATEGORY

DDIF$K_2D_CATEGORY

DDIF$K_T_CATEGORY

DDIF$K_ TBL_CATEGORY

DD I F$K_PDL_ CATEGORY

The content is nonstandard or was
standardized after the release of the Toolkit.

The content is of the image ($1) category.

The content is of the graphics ($20)
category.

The content is of the text ($T) category.

The content is of the table ($TBL) category.

The content is of the page description
language ($POL) category.

The initial value is DDIF$K_T_CATEGORY, meaning that the content
category is text ($T).

• An optional segment tags item (type DDIF$_SGA_SEGMENT_TAGS)
that specifies tags that denote the processing characteristics of the
content. This item is encoded as an array of type string with add-info,
where add-info can take the following values:

DDIF$K_PRIVATE_ TAG

DDIF$K_CRF _TAG

DDIF$K_F _TAG

DDIF$K_P _TAG

DDIF$K_S_ TAG

DDIF$K_I_ TAG

DDIF$K_E_ TAG

DDIF$K_L_ TAG

DDIF$K_LE_ TAG

DDIF$K_LIT _TAG

DDIF$K_FN_ TAG

DDIF$K_AN_ TAG

DDIF$K_LBL_ TAG

DDIF$K_ TTL_ TAG

DDIF$K_GRP _TAG

DDIF$K_GO_ TAG

The segment tag is a nonstandard tag.

The segment tag is a cross-reference ($CRF) tag.

The segment tag is a figure ($F) tag.

The segment tag is a paragraph ($P) tag.

The segment tag is a section ($S) tag.

The segment tag is an index ($1) tag.

The segment tag is an emphasis ($E) tag.

The segment tag is a list ($L) tag.

The segment tag is a list element ($LE) tag.

The segment tag is a literal ($LIT) tag.

The segment tag is a footnote ($FN) tag.

The segment tag is an annotation ($AN) tag.

The segment tag is a label ($LBL) tag.

The segment tag is a title ($TTL) tag.

The segment tag is a group member ($GRP) tag.

The segment tag is a graphic object ($GO) tag.

Initially, there are no segment tags specified.

DDIF Structures
6.20 Segment Attributes

• An optional segment binding item (type DDIF$_SGA_BINDING_
DEFNS) that lists the variables bound to the segment. This item
is encoded as a sequence of DDIF$_SGB aggregates. (For more
information on the DDIF$_SGB aggregate, see Section 6.26.) Initially
there are no segment bindings.

6.20.2 Computed Content Attributes
The segment attributes aggregate contains items used to control computed
content attributes. The computed content attributes are specified by first
selecting the type of computed content, and then specifying the appropriate
information for that type.

To select the computed content type, a computed content indicator
(type DDIF$_SGA_COMPUTE_C) is used. This value is encoded as an
enumeration. Valid values are as follows:

DDIF$K_COPY_COMPUTE Indicates that the content originates from another
segment in this document, or an external
document, and that the content is updated
only at the user's request. If you specify this
computed content type, you must supply values
for the items DDIF$_SGA_CPTCPY_TARGET
and DDIF$_SGA_CPTCPY _ERF _INDEX.

DDIF$K_REMOTE_COMPUTE Indicates that the content originates from another
segment in this document, or an external
document, and that the content is updated
every time it is displayed. If you specify this
computed content type, you must supply values
for the items DDIF$_SGA_CPTCPY _TARGET
and DDIF$_SGA_CPTCPY _ERF _INDEX.

DDIF$K_ VARIABLE_COMPUTE Indicates the content source as the current value
that is bound to a variable by this segment or
in some parent segment. If you specify this
computed content type, you must supply a value
for the item DDIF$_SGA_CPTVAR_ VARIABLE.

DDIF$K_XREF _COMPUTE Indicates the content source as the current
value that is bound to a variable at the indicated
target segment. If you specify this computed
content type, you must supply values for the
items DDIF$_SGA_CPTXRF _TARGET through
DDIF$_SGA_CPTXRF _VARIABLE.

DDIF$K_FUNCTION_COMPUTE Indicates the content source as the result of
some external process applied to parameters.
If you specify this computed content type, you
must supply values for the items DDIF$_SGA_
CPTFNC_NAME and DDIF$_SGA_CPTFNC_
PARAMETERS.

Each of these computed content types is discussed in the following
sections, along with its corresponding items.

6-37

DDIF Structures
6.20 Segment Attributes

6.20.2.1

6.20.2.2

6.20.2.3

6.20.2.4

6-38

Copied and Remote Computed Content
The copied computed content (selected by specifying DDIF$_SGA_
COMPUTE_C as DDIF$K_COPY_COMPUTE or DDIF$K_REMOTE_
COMPUTE) is specified using the following items:

• A reference target item (type DDIF$_SGA_CPTCPY_TARGET) that
indicates the label of the segment being referenced. This item is
encoded as a string. If this item is not specified, the entire document
is being referenced.

• A reference index item (type DDIF$_SGA_CPTCPY_ERF _INDEX)
that specifies an index into a list of external references stored in the
document header. This item is encoded as an integer. If this item is
not specified, the reference is to the current document.

In the case of remote computed content, the same aggregate items apply.
The difference is that, for copied computed content, the content of the
segment is updated only at the user's request. In the case of remote
content, the content of the segment is updated when the document is
received.

Variable Computed Content
The variable computed content (selected by specifying DDIF$_SGA_
COMPUTE_C as DDIF$K_VARIABLE_COMPUTE) contains a variable
item (type DDIF$_CPTVAR_ VARIABLE) that specifies the name of the
variable. This item is encoded as a string.

Cross-Reference Computed Content
The cross-reference computed content (selected by specifying DDIF$_
SGA_COMPUTE_C as DDIF$K_XREF _COMPUTE) contains the following
items:

• A cross-reference target segment label (type DDIF$_SGA_CPTXRF _
TARGET) that specifies the label by which the target segment is
referenced. This item is encoded as a string. If you do not specify a
target segment label, the document root segment is referenced.

• A cross-reference index item (type DDIF$_SGA_CPTXRF _ERF _
INDEX) that specifies an index into a list of external references stored
in the document header. This item is encoded as an integer. If you do
not specify a value for this item, the current document is referenced.

• A cross-reference variable label (type DDIF$_SGA_CPTXRF _
VARIABLE) that specifies the name of the variable containing the
value being referenced. This item is encoded as a string.

Function Computed Content
The function computed content (selected by specifying DDIF$_SGA_
COMPUTE_C as DDIF$K_FUNCTION_COMPUTE) contains the following
items:

• A function name item (type DDIF$_SGA_CPTFNC_NAME) that
specifies the name of the function, which is used in conjunction with
user-preference information to uniquely identify a program that is to

DDIF Structures
6.20 Segment Attributes

be invoked with the indicated parameters. This item is encoded as a
string.

• A function parameters item (type DDIF$_SGA_CPTFNC_
PARAMETERS) that indicates the sequence of parameters required
by the function. This item is encoded as a sequence of DDIF$_PVT
aggregates. For more information on the DDIF$_PVT aggregate, see
Section 6.15.2.

6.20.3 Structure Attributes

6.20.4 Language

The structure attributes specify the legal logical structure of references
to segment type definitions within the segment. They describe a set
of constraints placed on the ordering, the grouping, and the number
of segments with type references. The structure description is initially
absent - all combinations of reference are valid.

The structure attributes are specified using the following items:

• A structure description indicator (type DDIF$_SGA_STRUCTURE_
DESC_C) that specifies the type of legal logical structure. This item is
encoded as an enumeration. Valid values are as follows:

DDIF$K_SEQUENCE_STRUCTURE Indicates a sequence of element
occurrences that are constrained to occur
in the order specified. In this case, the
DDIF$_SGA_STRUCTURE_DESC item is
encoded as a sequence of DDIF$_0CC
aggregates.

DDIF$K_SET _STRUCTURE Indicates a set of element occurrences
that are not constrained with respect to
order. In this case, the DDIF$_SGA_
STRUCTURE_DESC item is encoded as
a sequence of DDIF$_0CC aggregates.

DDIF$K_CHOICE_STRUCTURE Indicates a group of element occurrences
from which only one can be selected.
In this case, the DDIF$_SGA_
STRUCTURE_DESC item is encoded as
a sequence of DDIF$_0CC aggregates.

• A structure description item (type DDIF$_SGA_STRUCTURE_DESC)
that specifies the structure itself. This item is encoded as a sequence
of DDIF$_0CC aggregates, regardless of which structure is selected
using the DDIF$_SGA_STRUCTURE_DESC_C item. (For more
information on the DDIF$_0CC aggregate, see Section 6.29.)

The segment attributes aggregate contains an optional language item
(type DDIF$_SGA_LANGUAGE) that defines the natural or synthetic
(programming) language of text in the segment. This item is encoded as
an integer.

6-39

DDIF Structures
6.20 Segment Attributes

6.20.5 Legend

6.20.6 Measurement

6-40

The language does not imply text direction or formatting conventions, as
these are expressed by presentation and layout attributes. Instead, the
language is used to select language tools such as spelling checkers. An
initial language is not specified.

The legend attributes describe the world coordinate system for the content
of a segment. Legend units do not affect the rendition of document
content. Instead, they indicate the scale of an illustration. There are
three legend attribute items:

• A legend unit numerator item (type DDIF$_SGA_LEGEND_UNIT_N)
that specifies the magnitude of the ratio of the user coordinate system
to the document coordinate system. This item is encoded as an integer.
The default value of the ratio is 1 :1.

• A legend unit denominator item (type DDIF$_SGA_LEGEND_UNIT_
D) that specifies the units of precision used in the ratio. This item is
encoded as an integer. The default value for the units of precision is
100.

• A legend unit name item (type DDIF$_SGA_LEGEND_UNIT_NAME)
that specifies the name of the user coordinate system. This item is
encoded as an array of type character string and has an initial value
of inches.

The optional measurement attributes describe the coordinate system used
within the segment. Measurement units always specify the number of
units per inch, regardless of the nesting of segments with measurement
unit declarations. The measurement attribute items specify the precision
of measurements, rather than the scale of measurements. Note that
measurement units specified in specific attributes are in effect for the
measurements specified in subsequent attributes.

There are two measurement attribute items:

• A units per measurement item (type DDIF$_SGA_UNITS_PER_
MEASURE) that specifies the number of units per inch. This item is
encoded as an integer and has an initial value of 1200.

• A unit name item (type DDIF$_SGA_UNIT_NAME) that specifies the
name of the measurement system. This item is encoded as an array of
type character string and has an initial value of "BMU". The BMU is
a Basic Measurement Unit that is a standard unit of measure used in
DDIF and equal to 1/1200th of an inch.

DDIF Structures
6.20 Segment Attributes

6.20. 7 Alternate Presentation

6.20.8 Layout

The optional alternate presentation item (type DDIF$_SGA_ALT_
PRESENTATION) contains a string that can be presented to the user
when the content of the segment cannot be displayed. This item is encoded
as an array of type character string.

This is an optional string for use with the application's error message
under that particular condition. This string is initially absent.

Layout defines how a text processor images characters along paths. DDIF
defines four mechanisms for describing the layout path of text:

1 Galley-based layout describes the flow of text among galleys
(columns and pages). The parameters used to describe galley-based
layout include layout blocks, margins, page sizes, external hyphenation
libraries, widow and orphan penalties, and user-specified layout
directives such as new-page.

In galley-based layout, the location of each successive path is
determined algorithmically, but the algorithm may require several
passes in order to optimize white space or arrange an illustration close
to its referencing text.

Layout of text content in the Text ($T) content category is always
galley based. Positional graphics text is usually path based.

2 Path-based layout describes the flow of text along a path. This path
can be a straight line, a series of line segments, or a curve. Along the
path, characters have an orientation with respect to the path itself
or with respect to the frame in which they are imaged. For example,
characters can be tangent to the path, or upright with respect to the
frame. Path-based layout is restricted to the Graphics ($2D) content
category.

While segments that specify layout paths are not normally nested
within other segments that specify a layout path, such a situation has
a defined behavior: text within a segment is placed on the current
path. At the end of a nested segment, the previous path is restored.

3 Frame-based layout describes the position of each unit of text. Note
that the origin of the frame is located at the lower left-hand corner of
the frame. Frame-based layout requires that the text unit be located
in a subframe, within which one of the above layout methods is used.

Frame-based layout is also the normal layout for graphics objects.

4 Positional layout describes the position of the text relative to the
current baseline.

The segment attributes aggregate contains items that enable you to
specify the layout of content. The layout of the content is described by
first selecting the type of layout and then specifying the appropriate
information for that type. To select the layout type, an optional layout

6-41

DDIF Structures
6.20 Segment Attributes

6.20.8.1

6.20.8.2

6-42

indicator (type DDIF$_SGA_LAYOUT_C) is used. This value is encoded as
an enumeration. Valid values are as follows:

DDIF$K_GALLEY _LAYOUT

DDIF$K_PATH_LAYOUT

DDIF$K_RELATIVE_LAYOUT

DDIF$K_POSITION_LAYOUT

Galley-Based Layout

Indicates text laid out in galleys. If you specify this
layout type, you must supply values for the items
DDIF$_SGA_LAYGLY_WRAP and DDIF$_SGA_
LAYGLY_LAYOUT.

Defines a path along which all strings in the
segment are imaged. If you specify this layout
type, you must supply values for the items
DDIF$_SGA_LAYPTH_PATH through DDIF$_
SGA_LAYPTH_ V _ALIGN.

Indicates that the text is positioned relative to the
frame defined by the current segment attributes
or those of a parent segment. If you specify
this layout type, you must supply values for the
items DDIF$_SGA_LAYREL_H_RATIO_N through
DDIF$_SGA_LAYREL_V_CONSTANT.

Specifies the position of the segment relative to
the current baseline. If you specify this layout type,
you must supply a value for the item DDIF$_SGA_
LAYPOS_ TEXT _POSITION.

The galley-based layout (selected by specifying DDIF$_SGA_LAYOUT_C
as DDIF$K_GALLEY_LAYOUT) is specified using the following items:

• An optional wrap attributes item (type DDIF$_SGA_LAYGLY_ WRAP)
that indicates the wrap attributes of the galley layout. This item
is encoded as the handle of a DDIF$_LW1 aggregate. For more
information on the DDIF$_LW1 aggregate, see Section 6.35.

• An optional galley layout item (type DDIF$_SGA_LAYGLY_LAYOUT)
that specifies the general layout attributes. This item is encoded as
the handle of a DDIF$_LL1 aggregate. For more information on the
DDIF$_LL1 aggregate, see Section 6.36.

Path-Based Layout
The path-based layout (selected by specifying DDIF$_SGA_LAYOUT_C as
DDIF$K_PATH_LAYOUT) is specified using the following items:

• A layout path item (type DDIF$_SGA_LAYPTH_PATH) that identifies
the path along which strings are imaged. This item is encoded as a
sequence of DDIF$_PTH aggregates. For more information on the
DDIF$_PTH aggregate, see Section 6.19.

• A layout format item (type DDIF$_SGA_LAYPTH_FORMAT) that
specifies the format of text strings along the string path. The start
and end points of the path define the end points for justification. This
item is encoded as an enumeration and can accept any of the following
values:

DDIF$K_FMT _FLUSH_PATH_BEGIN

DDIF$K_FMT _CENTER_OF _PATH

DOI F$K_FMT _FLUSH_PATH_EN D

DDIF$K_FMT _FLUSH_PATH_BOTH

DDIF Structures
6.20 Segment Attributes

The first character is imaged at
the start of the text path, and
successive characters are imaged
at successive positions determined
by the escapement of the characters
imaged. If the string layout path is
shorter than the text string in this case,
the path is extended tangent to the
slope at the end of the path from the
end of the path to the frame clipping
outline.

The length of text strings, as given by
the sum of the character escapements,
is subtracted from the length of the
path; the remaining space is evenly
distributed between the first character
and the start of the path, and the last
character and the end of the path. If
the string layout path is shorter than
the text string in this case, the text is
forced onto the path by reducing the
escapement of the characters in the
string.

The text string is imaged such that
the right alignment point of the last
character is aligned with the end of the
text string when normal escapement
is applied. If the string layout path
is shorter than the text string in this
case, the path is extended tangent to
the beginning of the path, from the
beginning of the path to the frame
clipping outline.

The text string is imaged such that
the left alignment point of the first
character is aligned with the start of
the text path, and the right alignment
point of the last character is aligned
with the end of the path. If the string
layout path is shorter than the text
string in this case, the text will be
forced onto the path by reducing the
escapement of the characters in the
string.

The default is DDIF$K_FLUSH_PATH_BEGIN.

• A layout path orientation indicator (type DDIF$_SGA_LAYPTH_
ORIENTATION_C) that selects the format used to specify the
orientation of characters along the path. This item is encoded as
an enumeration. Valid values are as follows:

6-43

DDIF Structures
6.20 Segment Attributes

6-44

DDIF$K_PATH_FIXED

DDIF$K_PATH_RELATIVE

The characters are oriented at a fixed angle
relative to the current frame. In this case, the
DDIF$_SGA_LAYPTH_ORIENTATION item is
encoded as a single-precision floating-point value.

The characters are oriented at an angle that is
relative to the slope of the path at the point at
which the character is imaged. In this case, the
DDIF$_SGA_LAYPTH_ORIENTATION item is
encoded as an enumeration. Valid values are as
follows:

DDIF$K_RIGHT _ANGLE_
RIGHT

An angle at O degrees with respect to
the current coordinate system.

DD I F$K_RIGHT _ANGLE_LEFT

DDIF$K_RIGHT _ANGLE_UP

DDIF$K_RIGHT _ANGLE_
DOWN

An angle at 180 degrees with respect
to the current coordinate system.

An angle at 90 degrees with respect
to the current coordinate system.

An angle at 270 degrees with respect
to the current coordinate system.

• A layout path orientation item (type DDIF$_SGA_LAYPTH_
ORIENTATION) that specifies the actual character orientation along
the path. This item is encoded as a variable.

• A horizontal alignment item (type DDIF$_SGA_LAYPTH_H_ALIGN)
that specifies the horizontal alignment point for characters along a
path. This item is encoded as an enumeration. Valid values are as
follows:

DDIF$K_PATH_NORMAL_HORIZONTAL

DDIF$K_PATH_LEFTLINE

DDIF$K_PATH_CENTERLINE

DDIF$K_PATH_RIGHTLINE

Characters are horizontally aligned
relative to the active position
using the value defined for normal
horizontal alignment in Table 6-27.

Characters are horizontally aligned
such that the active position is a
point on the left line of the character.

Characters are horizontally aligned
such that the active position is
a point on the center line of the
character.

Characters are horizontally aligned
such that the active position is
a point on the right line of the
character.

The default is DDIF$K_PATH_NORMAL_HORIZONTAL.

• A vertical alignment item (type DDIF$_SGA_LAYPTH_V_ALIGN) that
specifies the vertical alignment point for characters along a path. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_PATH_NORMAL_ VERTICAL The character is aligned using the value
defined for normal vertical alignment in
Table 6-27.

DDIF$K_PATH_BASELINE

DDIF$K_PATH_CAPLINE

DOI F$K_PATH_BOTTOMLIN E

DDIF$K_PATH_HALFLINE

DDIF$K_PATH_ TOPLINE

DDIF Structures
6.20 Segment Attributes

Characters are vertically aligned such
that the active position is a point on the
baseline.

Characters are vertically aligned such
that the active position is a point on the
cap line.

Characters are vertically aligned such
that the active position is a point on the
bottom line.

Characters are vertically aligned such
that the active position is a point on the
half line.

Characters are vertically aligned such
that the active position is a point on the
top line.

The default is DDIF$K_PATH_NORMAL_ VERTICAL.

Table 6-27 lists the normal alignments for the various orientations.

Table 6-27 Normal Alignment

Orientation

Horizontal

Vertical

Up Right Down Left Angle

LEFTLINE

BASELINE

CENTERLINE

BOTTOM LINE

RIGHTLINE

BASELINE

CENTERLINE

TOP LINE

CENTERLINE

HALFLINE

6.20.8.3 Position-Relative Layout
Position-relative layout specifies that the characters in the segment are
positioned relative to the current text position. This layout type is selected
by specifying DDIF$_SGA_LAYOUT_C as DDIF$K_RELATIVE_LAYOUT.
The layout itself is specified using the following items:

• A horizontal ratio numerator item (type DDIF$_SGA_LAYREL_H_
RATIO_N) that specifies the magnitude of the escapement ratio to be
used in determining the horizontal position of the character relative to
the current text. This item is encoded as an integer.

• A horizontal ratio denominator item (type DDIF$_SGA_LAYREL_H_
RATIO_D) that specifies the units of precision used in the escapement
ratio to be used in determining the horizontal position of the character
relative to the current text. This item is encoded as an integer.

• A relative horizontal position constant indicator (type DDIF$_SGA_
LAYREL_H_CONSTANT_C) that indicates whether the horizontal
position is specified as a variable or constant value. This item is
encoded as a measurement enumeration.

• A relative horizontal position constant item (type DDIF$_SGA_
LAYREL_H_CONSTANT) that specifies a constant measurement to
be used as an escapement. This item is encoded as a variable.

6-45

DDIF Structures
6.20 Segment Attributes

6.20.8.4

6-46

• A vertical ratio numerator item (type DDIF$_SGA_LAYREL_V_
RATIO_N) that specifies the magnitude of the escapement ratio to
be used in determining the vertical position of the character relative to
the current text. This item is encoded as an integer.

• A vertical ratio denominator item (type DDIF$_SGA_LAYREL_ V _
RATIO_D) that specifies the units of precision used in the escapement
ratio to be used in determining the vertical position of the character
relative to the current text. This item is encoded as an integer.

• A relative vertical position constant indicator (type DDIF$_SGA_
LAYREL_V_CONSTANT_C) that indicates whether the vertical
position is specified as a variable or constant value. This item is
encoded as a measurement enumeration.

• A relative vertical position constant item (type DDIF$_SGA_LAYREL_
V _CONSTANT) that specifies a constant measurement to be used as
an escapement. This item is encoded as a variable.

Text Position
The text position layout (selected by specifying DDIF$_SGA_LAYOUT_
C as DDIF$K_POSITION_LAYOUT) is specified using a text position
indicator (type DDIF$_SGA_LAYPOS_TEXT_POSITION) that indicates
the relational position of the segment relative to the current baseline. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_ TEXT _POS_BASE

DDIF$K_ TEXT _POS_L_SUBSCRIPT

DDIF$K_ TEXT _POS_L_SUPERSCRIPT

DDIF$K_ TEXT _POS_R_SUBSCRIPT

DDIF$K_ TEXT _POS_R_SUPERSCRIPT

DDIF$K_ TEXT _POS_ TOP _CENTER

DDIF$K_ TEXT _POS_BOTTOM_CENTER

DDIF$K_ TEXT _POS_RUBI

The text in the segment forms the base
for special positions in the segment.
The text rests on the current baseline.

The right alignment position of the
last character of the subscript string is
placed at the left subscript position.

The right alignment position of the last
character of the superscript string is
placed at the left superscript position.

The left alignment position of the first
character of the subscript string is
placed at the right subscript position.

The left alignment position of the first
character of the superscript string is
placed at the right superscript position.

The segment is centered above the
total string of the base.

The segment is centered below the
total string of the base.

The segment is centered above the
total string of the base.

There are certain restrictions that must be observed when specifying text
position.

• No changes in segment layout can take place within positional layout
segments unless those segments are in a frame.

6.20.9 Font Definitions

DDIF Structures
6.20 Segment Attributes

• Frames in positional layout segments must have an inline frame
position.

• The base segment must be the first child of the parent segment.

The font definitions item (type DDIF$_SGA_FONT_DEFNS) specifies a
list of fonts defined for use within the segment. This item is encoded
as a sequence of DDIF$_FTD aggregates. (For more information on the
DDIF$_FTD aggregate, see Section 6.22.) Each font definition assigns a
number to a font by which it is referenced within the segment. Initially,
there are no font definitions.

6.20.10 Pattern Definitions

6.20.11 Path Definitions

The pattern definitions item (type DDIF$_SGA_PATTERN_DEFNS)
specifies a list of patterns and solid colors defined for use within the
segment. This item is encoded as a sequence of DDIF$_PTD aggregates.
For more information on the DDIF$_PTD aggregate, see Section 6.25.

The path definitions item (type DDIF$_SGA_PATH_DEFNS) specifies a
list of predefined paths that can be referenced within the segment. This
item is encoded as a sequence of DDIF$_PHD aggregates. (For more
information on the DDIF$_PHD aggregate, see Section 6.24.) Initially, no
paths are defined.

6.20.12 Line-Style Definitions
The line-style definitions item (type DDIF$_SGA_LINE_STYLE_DEFNS)
specifies a list of predefined line styles that can be referenced within the
document. This item is encoded as a sequence of DDIF$_LSD aggregates.
For more information on the DDIF$_LSD aggregate, see Section 6.23.

6.20.13 Content Definitions
The optional content definitions item (type DDIF$_SGA_CONTENT_
DEFNS) specifies a list of content definitions that can be referenced
within the segment. This item is encoded as a sequence of DDIF$_CTD
aggregates. (For more information on the DDIF$_CTD aggregate, see
Section 6.21.) Initially, there are no content definitions.

6-47

DDIF Structures
6.20 Segment Attributes

6.20.14 Type Definitions

6.20.15 Text Attributes

6.20.15.1

6.20.15.2

6-48

The type definitions item (type DDIF$_SGA_TYPE_DEFNS) specifies a
list of segment type definitions that can be referenced within the segment.
This item is encoded as a sequence of DDIF$_TYD aggregates. (For more
information on the DDIF$_TYD aggregate, see Section 6.27.) Initially,
there are no type definitions.

The text attribute items define the default presentation attributes of text
within the segment. The text attribute items fall into the following groups:

• Text mask pattern

• Text font

• Text rendition

• Text size

• Text direction

• Text character decimal alignment

• Text leader attributes

• Text kerning

• Text kerning delta attributes

• Text letter spacing

The items in each of these groups are discussed in the following sections.

Text Mask Pattern
The text mask pattern item (type DDIF$_SGA_TXT_MASK_PATTERN)
specifies the pattern and color of glyphs, using an index into the current
list of patterns. This item is encoded as an integer. In addition to user­
defined pattern numbers, several predefined patterns are supplied. These
patterns are listed in Appendix F.

The text mask pattern is initialized to DDIF$K_PATT_FOREGROUND,
which corresponds to DDIF fill pattern number 2.

Text Font
The text font item (type DDIF$_SGA_TXT_FONT) specifies the font in
which the text is rendered. This item is encoded as an integer. The text
font is specified as an index into the list of fonts defined by the current
segment and/or parent segment. The character set specified in the font
identifier of the referenced font definition must match the character set of
the text content that appears in the segment. The text font is initialized
to font number 1.

6.20.15.3 Text Rendition

DDIF Structures
6.20 Segment Attributes

The text rendition item (type DDIF$_SGA_TXT_RENDITION) specifies
one or more text renditions. (A text rendition modifies the appearance
of characters or strings.) This item is encoded as an array of type
enumeration. Valid values are as follows:

DDIF$K_RND_DEFAULT

DDIF$K_RND_HIGHLIGHT

DDIF$K_RND_FAINT

DDIF$K_RND_ITALIC

DDIF$K_RND_NORMAL

DDIF$K_RND_SLOW_BLINK

DDIF$K_RND_FAST_BLINK

DDIF$K_RND_NO_BLINK

DDIF$K_RND_NEGATIVE

DDIF$K_RND_POSITIVE

DDIF$K_RND _CONCEAL

DDIF$K_RND_NO_CONCEAL

DDIF$K_RND_UNDERLINE

DDIF$K_RND_2_UNDERLINE

DDIF$K_RND_NO_UNDERLINE

The text is imaged as defined by the current
"nonrendition" text presentation attributes,
without any additional change in rendition.

The text is rendered in a higher than
normal intensity, or a heavier typeface. This
rendition is usually used when the document
is intended for a video display device.

The text is rendered in a lower than normal
intensity. This rendition is usually used when
the document is intended for a video display
device.

The text is rendered in the italic or slant style
of the current font.

The text is rendered in normal intensity.

The intensity of the characters alternates
between two states at a relatively slow
rate. This is used only for documents
intended primarily for video display. The
fallback rendition on static displays is text in
a different color.

The intensity of the characters alternates
between two states at a relatively high
rate. This is used only for documents
intended primarily for video display. The
fallback rendition on static displays is text in
a different color.

The intensity of the characters is steady.

The normal relationship between the text
foreground and background color is reversed.

The text color is not reversed.

The text string occupies the same space
as usual but the characters are not imaged.
Note that underlines, overlines, and cross­
cuts are not concealed by this attribute.

The text is imaged rather than concealed.

A line parallel with the text path is drawn
under the text. Note that spaces are
underlined except when the space is omitted
from the presentation form by word wrap and
justification software.

The text is underlined twice, with an
implementation-defined distance between
the lines.

Text is not underlined.

6-49

DDIF Structures
6.20 Segment Attributes

6.20.15.4

6-50

DDIF$K_RND_CROSS_OUT

DDIF$K_RND_BOX

A line that is thin compared to the weight
of the text is drawn through the string. The
location of the line is determined by the
implementation.

The text is enclosed in a box. The size of
the box is the smallest that will enclose the
text without touching any character.

DDIF$K_RND_ENCIRCLE The text is enclosed in an ellipse or rounded
rectangle. The total area of the ellipse is the
minimum that will enclose the text without
touching any character.

DDIF$K_RND_OVERLINE A line is drawn parallel to the text path and
above it relative to the text.

DDIF$K_RND_IDEO_UNDERLINE A line parallel to the text path is drawn under
the text, or along the right side of text that is
presented vertically.

DDIF$K_RND_IDE0_2_UNDERLINE Two lines parallel to the text path are drawn
under the text, or along the right side of text
that is presented vertically.

DDIF$K_RND_IDEO_OVERLINE A line parallel to the text path is drawn over
the text, or along the left side of text that is
presented vertically.

DDIF$K_RND_IDE0_2_0VERLINE Two lines parallel to the text path are drawn
under the text, or along the left side of text
that is presented vertically.

DDIF$K_RND_IDEO_STRESS Characters have ideographic stress markers.

The initial value of this item is DDIF$K_RND_DEFAULT.

Text Size
The text size attributes specify the height and width of the text in the
segment. These attributes are specified using the following items:

• A text height indicator (type DDIF$_SGA_TXT_HEIGHT_C) that
indicates whether the text height is specified as a variable or constant
value. This item is encoded as a measurement enumeration.

• A text height item (type DDIF$_SGA_TXT_HEIGHT) that specifies the
height of the text in the segment. This item is encoded as a variable.
The current font of the segment is scaled if the type size specified in its
font metrics definition does not equal the text size. The initial value of
this item is 1.

• A text size numerator item (type DDIF$_SGA_TXT_SET_SIZE_N) that
specifies the magnitude of the ratio of the actual character width to
the design width for the current font at the current text height. This
item is encoded as an integer with a default value of 1.

• A text size denominator item (type DDIF$_SGA_TXT_SET_SIZE_D)
that specifies the units of precision used in the character width ratio.
This item is encoded as an integer with a default value of 100.

6.20.15.5

6.20.15.6

6.20.15.7

Text Direction

DDIF Structures
6.20 Segment Attributes

The text direction item (type DDIF$_SGA_TXT_DIRECTION) defines the
placement of characters along the current text path with respect to the
logical ordering of the characters. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_ TXT _DIR_FORWARD The text proceeds in the direction of the path.

DDIF$K_TXT_DIR_BACKWARD The text proceeds opposite the direction of the
path.

The initial value of this item is DDIF$K_TXT_DIR_FORWARD.

Text Character Decimal Alignment
The text character decimal alignment item (type DDIF$_SGA_TXT_
DEC_ALIGNMENT) specifies the characters in a decimal-aligned tab
field on which the alignment occurs. This item is encoded as an array
of type character string. The order in which the characters are listed
indicates their alignment priority. The initial value of this item contains
the following characters:

Period

Comma

Close parenthesis

Text Leader Attributes
The optional text leader attributes items describe the presentation
attributes of leaders. Leaders are rows of dashes or dots that are used
to guide the eye across the page. The text leader attributes are controlled
using the following items:

• An optional leader space indicator (type DDIF$_SGA_TXT_LEADER_
SPACE_C) that indicates whether the leader space is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

• An optional leader space item (type DDIF$_SGA_TXT_LEADER_
SPACE) that specifies the amount of additional space that is inserted
between leader characters. This item is encoded as a variable. The
initial value of this item is 0.

• An optional leader bullet item (type DDIF$_SGA_TXT_LEADER_
BULLET) that specifies the text string, usually a single character, that
is used to fill leader space. This item is encoded as a character string.
Characters are selected from the current font.

• An optional leader alignment item (type DDIF$_SGA_TXT_LEADER_
ALIGN) that specifies the alignment of leaders. This item is encoded
as an enumeration. Valid values are as follows:

DDIF$K_ALIGNED_LEADER

DDIF$K_STAGGERED_LEADER

DDIF$K_NON_ALIGNED_LEADER

Leader characters should be aligned.

The center points of leader characters
should alternate.

No alignment has been selected.

6-51

DDIF Structures
6.20 Segment Attributes

6.20.15.8

6.20.16 Line Attributes

6-52

• An optional leader style item (type DDIF$_SGA_TXT_LEADER_
STYLE) that specifies the type of leader to use. This item is encoded
as an enumeration. Valid values are as follows:

DDIF$K_X_RULE_LEADER

DDIF$K_BULLET _LEADER

Text Kerning

Draws a horizontal rule.

Uses the current leader-bullet string.

In typesetting, kerning is defined as the operation of subtracting the
space between two characters so that they appear closer together. This
concept is used in proportionally spaced fonts to make the distance
between characters appear equal. The text pair kerning item (type
DDIF$_SGA_TXT_PAIR_KERNING) specifies a Boolean value that
controls whether text in the segment is kerned based on kerning pair
tables for the current font. This item is encoded as a Boolean value. If no
kerning pair information is available for the font, all kerning deltas for
that font are assumed to be zero. The initial value for this item is false.

The line attributes are specified using the following items:

• An optional line width indicator (type DDIF$_SGA_LIN_ WIDTH_C)
that indicates whether the line width is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• An optional line width item (type DDIF$_SGA_LIN_WIDTH) that
specifies the width of the line in Basic Measurement Units (BMUs).
This item is encoded as a variable. The initial value is 0, indicating
the thinnest visible line width on the display device.

• An optional line style item (type DDIF$_SGA_LIN_STYLE) that
specifies the pattern used for drawing lines as either a standard
representation or as a pattern to replicate. This item is encoded as an
integer. Valid values are listed in Table 6-28.

Table 6-28 Line Style

Line Style

DDIF$K_SOLID_LINE_STYLE

DDIF$K_DASH_LINE_STYLE

DDIF$K_DOT _LINE_STYLE

DDIF$K_DASH_DOT _LINE_STYLE

Repeating Pattern

1111

1100

1010

11010

The initial line style is DDIF$K_SOLID_LINE_STYLE.

• An optional line pattern size indicator (type DDIF$_SGA_LIN_
PATTERN_SIZE_C) that indicates whether the pattern size is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

DDIF Structures
6.20 Segment Attributes

• An optional line pattern size item (type DDIF$_SGA_LIN_PATTERN_
SIZE) that specifies the size of the line pattern. This item is encoded
as a variable. The initial value of this item is 0. This item acts as a
multiplier for the line pattern specified by DDIF$_LSD_PATTERN.

• An optional line mask pattern (type DDIF$_SGA_LIN_MASK_
PATTERN) that specifies the mask pattern of the line as an index into
the current pattern definitions. This item is encoded as an integer.
In addition to the user-defined pattern numbers, several predefined
patterns are provided. These patterns are illustrated in Appendix F.

The initial line mask pattern is DDIF$K_PATT_FOREGROUND,
which corresponds to pattern number 2.

• An optional line-end start item (type DDIF$_SGA_LIN_END_START)
that determines the shape of the line ending at the first point on the
path that describes the line. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_BUTI_LINE_END The line begins exactly at the starting point, with
a flat end.

DDIF$K_ROUND_LINE_END The line begins with a circle the width of the line
centered at the starting point.

DDIF$K_SQUARE_LINE_END The line begins with a square the width of the
line centered at the starting point.

DDIF$K_ARROW_LINE_END The line begins with a triangular area, with the
same mask pattern as the line itself, whose
base is three times the width of the line and
centered on the starting point of the line. The
apex of the triangle is on a line tangent to the
direction of the line at its starting point. The
distance from the apex to the beginning of the
line is equal to the width of the line.

The initial value of this item is DDIF$K_ROUND_LINE_END.

Note: The DDIF$_SGA_LIN_END_START and DDIF$_LIN_END_
FINISH items are only different for lines that have an arrow
line ending in cases where one end has an arrow and the other
does not.

• An optional line-end finish item (type DDIF$_SGA_LINE_END_
FINISH) that determines the shape of the line ending. This item is
encoded as an enumeration. Valid values are as follows:

DDIF$K_BUTI_LINE_END The line ends exactly at the end point, with a
flat end.

DDIF$K_ROUND_LINE_END The line ends with a circle the width of the line
centered at the end point.

DDIF$K_SQUARE_LINE_END The line ends with a square the width of the line
centered at the end point.

6-53

DDIF Structures
6.20 Segment Attributes

6-54

DDIF$K_ARROW_LINE_END The line ends with a triangular area, with the
same mask pattern as the line itself, whose
base is three times the width of the line and
centered on the end point of the line. The
apex of the triangle is on a line tangent to
the direction of the line at its end point. The
distance from the apex to the line end is equal
to the width of the line.

The initial value of this item is DDIF$K_ROUND_LINE_END.

• An optional line-end size indicator (type DDIF$_SGA_LIN_END_
SIZE_C) that indicates whether the ending size of the line is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An optional line-end size item (type DDIF$_SGA_LIN_END_SIZE)
that specifies the ending size of the line. This item is encoded as a
variable. The initial value of this item is 0.

• An optional line join item (type DDIF$_SGA_LIN_JOIN) that specifies
an integer with defined values that determine the shape of line joins.
This item is encoded as an enumeration. Valid values are as follows:

DDIF$K_MITERED_LINE_JOIN

DD I F$K_ROUN DED _LIN E_JOIN

DD I F$K_BEVELED _LIN E_JOIN

The join of the line is mitered.

The join of the line is rounded.

The join of the line is beveled.

The initial value of this item is DDIF$K_ROUNDED_LINE_JOIN.

• An optional miter limit numerator item (type DDIF$_SGA_LIN_
MITER_LIMIT_N) that specifies the magnitude of the allowed ratio
between the length of the mitered line joint and the width of the line.
This item is encoded as an integer. When the miter limit is exceeded,
the joint is beveled instead. The initial value for this item is 10.

• An optional miter limit denominator item (type DDIF$_SGA_LIN_
MITER_LIMIT_D) that specifies the units of precision of the allowed
ratio between the length of the mitered line joint and the width of the
line. This item is encoded as an integer. The initial value for this item
is 100.

• The line interior pattern item (type DDIF$_SGA_LIN_INTERIOR_
PATTERN) specifies the fill pattern or solid color to be used for objects
designated as filled or as having a background, including polylines,
arcs, curves, fill area sets, frame borders, and galley borders. This
item is encoded as an integer. In addition to the user-defined pattern
numbers, several predefined patterns are provided. These patterns are
described in Appendix F.

The initial value for this item is DDIF$K_PATT_BACKGROUND. The
application of the fill pattern is controlled by a flag on the object to be
filled.

DDIF Structures
6.20 Segment Attributes

6.20.17 Marker Attributes

6.20.18 Galley Attributes

The marker attributes specify the default presentation attributes for
markers within the segment. The marker attributes are specified using
the following items:

• An optional marker style item (type DDIF$_SGA_MKR_STYLE) that
specifies the symbol used as the marker. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_DOT _MARKER

DDIF$K_PLUS_MARKER

DDIF$K_ASTERISK_MARKER

DDIF$K_CIRCLE_MARKER

DDIF$K_CROSS_MARKER

Dot marker

Plus sign marker

Asterisk marker

Circle marker

Diagonal cross marker

The marker type is initially defined to be DDIF$K_DOT_MARKER.

• An optional marker mask pattern item (type DDIF$_SGA_MKR_
MASK_PATTERN) that defines an index into the pattern list for
markers. This item is encoded as an integer. In addition to the user­
defined pattern numbers, several predefined patterns are provided.
These patterns are described in Appendix F.

The initial marker mask pattern is DDIF$K_PATT_FOREGROUND.

• An optional marker size indicator (type DDIF$_SGA_MKR_SIZE_C)
that indicates whether the marker size is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• An optional marker size item (type DDIF$_SGA_MKR_SIZE) that
defines the size of markers in BMUs (which can be scaled). This
item is encoded as a variable. The initial marker size is the smallest
marker size supported by the application, indicated by a value of 0.

Galley attributes apply to galleys defined within a segment. The galley
attributes of a segment containing text within the document body do not
affect the layout of text. Thus, galley attributes are normally used only in
the context of defining galleys in a page frame or in a floating frame that
has galleys.

The galley attributes item (type DDIF$_SGA_GLY_ATTRIBUTES) controls
the presentation attributes of galleys in a segment. This item is encoded
as the handle of a DDIF$_GLA aggregate. For more information on the
DDIF$_GLA aggregate, see Section 6.37.

6-55

DDIF Structures
6.20 Segment Attributes

6.20.19 Image Attributes

6-56

The image attributes control the default presentation attributes of images
within the segment. The image attributes are specified using the following
items:

• An optional private data item (type DDIF$_SGA_IMG_PRIVATE_
DATA) that allows for the inclusion of application-private data needed
for the presentation of image data. This item is encoded as a sequence
of DDIF$_PVT aggregates. For more information on the DDIF$_PVT
aggregate, see Section 6.15.2.

• An optional pixel path item (type DDIF$_SGA_IMG_PIXEL_PATH)
that specifies the direction of the pixel capture path along an
individual scanline. This item is encoded as an integer value that
corresponds to an angular measure in minutes of an arc with respect
to the standard orientation of an image. To ensure compatibility with
ISO and CCITT standards, values equivalent to 0, 90, 180, and 270
degrees should be used. The default is 0 degrees.

• An optional line progression item (type DDIF$_SGA_IMG_LINE_
PROGRESSION) that specifies the direction of scanline capture
across the image plane. This item is encoded as an integer value that
corresponds to an angular measure in minutes of an arc with respect
to the standard orientation of an image. To ensure compatibility with
ISO and CCITT standards, values equivalent to 90 and 270 degrees
should be used. The initial value is 16200, which is equivalent to 270
degrees expressed in minutes.

• An optional pixel path aspect ratio item (type DDIF$_SGA_IMG_PP _
PIXEL_DIST) that specifies the ratio of the distance between pixel
centers along the pixel path and along the line progression path. This
item is encoded as an integer. The default ratio is 1:1 or 1.

• An optional line progression path aspect ratio item (type DDIF$_SGA_
IMG_LP _PIXEL_DIST) that specifies the aspect ratio along the line
progression path. This item is encoded as an integer. The initial ratio
is 1:1 or 1.

• A brightness polarity item (type DDIF$_SGA_IMG_BRT_POLARITY)
that is used to interpret the manner in which pixel values represent
minimum and maximum intensity; that is, whether a value of 0
represents the minimum or maximum intensity value. This item is
encoded as an enumeration. Valid values are as follows:

DDIF$K_ZERO_MAX_INTENSITY Zero represents the maximum intensity.

DDIF$K_ZERO_MIN_INTENSITY Zero represents the minimum intensity.

The default is DDIF$K_ZERO_MAX_INTENSITY.

• An optional grid type item (type DDIF$_SGA_IMG_GRID_TYPE) that
identifies the physical format of the pixel grid. This item is encoded as
an enumeration. Valid values are as follows:

DDIF$K_RECTANGULAR_GRID Rectangular grid

DD I F$K_H EX_EVEN_IN DENT

DDIF$K_HEX_ODD_INDENT

DDIF Structures
6.20 Segment Attributes

Hexagonal grid with even indentation

Hexagonal grid with odd indentation

The initial value is DDIF$K_RECTANGULAR_GRID.

• An optional timing descriptor item (type DDIF$_SGA_IMG_TIMING_
DESC) that signifies that the frame containing multiple image data
descriptors (or multiple image content elements) is a motion sequence.
In a motion sequence, each image content element represents a single
picture cell or cell in the sequence. This item is encoded as a binary
relative time. This value is initially absent.

• An optional spectral component mapping item (type DDIF$_SGA_
IMG_SPECTRAL_MAPPING) that designates the correlation between
the physical image data and the spectral components of an image.
This item is encoded as an enumeration. Valid values are as follows:

DDIF$K_PRIVATE_MAP

DDIF$K_MONOCHROME_MAP

DDIF$K_GENERAL_MAP

DDIF$K_LUT_MAP

DDIF$K_RGB_MAP

DDIF$K_CMY _MAP

DDIF$K_ YUV _MAP

DDIF$K_HSV _MAP

DDIF$K_HIS_MAP

DDIF$K_ YIQ_MAP

Correlation is privately mapped.

Correlation is monochrome mapped.

Correlation is general multispectral.

Correlation is lookup table mapped.

Correlation is RGB (red/green/blue) mapped.

Correlation is CMY (cyan/magenta/yellow)
mapped.

Correlation is YUV mapped.

Correlation is HSV (hue saturation value)
mapped.

Correlation is HIS (hue intensity saturation)
mapped.

Correlation is YIQ mapped.

The initial value of this item is DDIF$K_MONOCHROME_MAP.

• An optional lookup table indicator (type DDIF$_SGA_IMG_LOOKUP _
TABLES_C) that specifies the type oflookup table to be specified. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_PRIVATE_LUT The lookup table contains a sequence of one or more
named values, where each named value contains
lookup table information that is private to the creator
of the document. In this case, DDIF$_SGA_IMG_
LOOKUP_ TABLES is encoded as a sequence of
DD I F$_PVT aggregates, described in Section 6.15.2.

DDIF$K_RGB_LUT The lookup table contains a sequence of lookup table
entries, where each entry describes a lookup table
index corresponding to the pixel that it maps, and
describes the red, gree, and blue intensities that are
generated for that pixel. The index corresponds to
the integer value of the lookup-table-mapped pixel,
and can range in value between O and 216

- 1. In
this case, DDIF$_SGA_IMG_LOOKUP _TABLES is
encoded as a sequence of DDIF$_RGB aggregates,
described in Section 6.31.

6-57

DDIF Structures
6.20 Segment Attributes

• An optional lookup table item (type DDIF$_SGA_IMG_LOOKUP _
TABLES) that contains an octet string containing application private
lookup tables. This item is encoded as a variable.

• An optional component wavelength indicator (type DDIF$_SGA_
IMG_COMP _ WAVELENGTH_C) that specifies the wavelength being
supplied by the DDIF$_SGA_IMG_COMP _WAVELENGTH item. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_APPLICATION_WAVELENGTH Specifies application-specific data
for each component. In this case,
the DDIF$_SGA_IMG_COMP _
WAVELENGTH item must be
encoded as an array of type string.

DDIF$K_WAVELENGTH_MEASURE

DDIF$K_WAVELENGTH_BAND_ID

Specifies a wavelength measure in
angstroms that can represent either
a single wavelength or the most
significant frequency within a range of
frequencies. In this case, the DDIF$_
SGA_IMG_COMP _WAVELENGTH
item must be encoded as an array of
type integer.

Specifies the spectral band
identification codes that are permitted
by the application. In this case,
the DDIF$_SGA_IMT_COMP _
WAVELENGTH item must be
encoded as an array of type string.

• An optional component wavelength information item (type DDIF$_
SGA_IMG_COMP _WAVELENGTH) that specifies the information
selected by DDIF$_SGA_IMG_COMP _ WAVELENGTH_C. This item is
encoded as a variable.

6.20.20 Image Component Space Attributes

6-58

The image component space attributes describe characteristics of the
component space. These attributes are specified using the following items:

• A component space organization item (type DDIF$_SGA_IMG_COMP_
SPACE_ORG) that designates how the component space data is
physically organized. This item is encoded as an enumeration. Valid
values are as follows:

DDIF Structures
6.20 Segment Attributes

DDIF$K_FULL_COMPACTION Indicates that all the component bits for a pixel
are collected into a single data plane and are
adjacent to one another within the physical
bit field designated as a single logical pixel.
For example, in a 3-3-2 RGB image, a single
pixel comprises three bits of red, followed
by three bits of green, followed by two bits
of blue. The next logical pixel is of identical
composition. Aside from possible padding at
the end of the component bits for each pixel,
this organization implies maximal adjacency
between uncompressed pixel component data.
This organization always implies that only one
data plane exists for each content element.

DDIF$K_PARTIAL_EXPANSION Indicates that the component bits for a pixel
are spread across multiple data planes in
the following manner: the pixel data for each
component occupies a separate data plane.
This organization only applies to multispectral
images. For example, the data for an RGB
image can be partitioned such that the first
plane contains the red bits for all pixels, the
second plane the green bits, and the third
plane the blue bits, for a total of three planes.

DDIF$K_FULL_EXPANSION Indicates that the component bits for a pixel
are spread across multiple data planes in the
following manner: each bit per component
exists in a separate data plane, so that the
logical index into the pixel data of a single
plane physically references a bit field that is
a single bit in length, and the logical index
into the data plane set references the pixel

~component bits by order of significance. For
example, the data for a 3-3-2 RGB image
would occupy eight data planes: three for
red, three for green, and two for blue. In this
organization, the pixel bits of a gray-scale
image could be expanded by significance into
separate data planes.

The initial value of this item is DDIF$K_FULL_EXPANSION.

• An optional data-planes-per-pixel item (type DDIF$_SGA_IMG_
PLANES_PER_PIXEL) that specifies the number of data planes
per pixel (and consequently per image) used to span the component
space. This item is encoded as an integer whose value corresponds to
the number of image data units used to represent a particular image.
The initial value is 1.

• An optional data plane significance item (type DDIF$_SGA_IMG_
PLANE_SIGNIF) that only has meaning for image data organized in
Expanded Component Sequential Form. This item is encoded as an
enumeration. Valid values are as follows:

6-59

DDIF Structures
6.20 Segment Attributes

DDIF$K_LSB_MSB

DDIF$K_MSB_LSB

Least significant bit to most significant bit.

Most significant bit to least significant bit.

The default is DDIF$K_LSB_MSB.

• An optional number-of-components item (type DDIF$_SGA_IMG_
NUMBER_OF _COMP) that specifies the number of spectral
components in a multispectral image. This item is encoded as an
integer.

• An optional bits-per-component item (type DDIF$_SGA_IMG_BITS_
PER_ COMP) that specifies the number of bits used for each image
component in a data plane. The sum of all bits per component for all
data planes equals the number of bits per pixel. This item is encoded
as an array of type integer.

6.20.21 Frame Parameters

6.20.21.1

6-60

The frame parameters cause the content of the segment to be bounded
within a frame whose origin is located at the lower left-hand corner of the
frame. The frame parameters fall into the following categories:

• Frame flags

• Frame bounding box

• Frame outline

• Frame clipping

• Frame position

• Frame content transformation

• Frame border attributes

• Frame background color

• Frame galleys

The items used to specify each of these categories are discussed in the
following sections. Note that there are no initial frame parameters.

Frame Flags
The optional frame flags item (type DDIF$_SGA_FRM_FLAGS) specifies
the flags that control the presentation of the frame and/or text around the
frame. This item is encoded as a longword. Valid frame flag values are as
follows:

DDIF$M_FLOW_AROUND

DDIF$M_FRAME_BORDER

Document text flows around the path
given by the frame outline.

A line is drawn around the frame outline
using the current line attributes.

6.20.21.2

6.20.21.3

DDIF$M_FRAME_BACKGROUND_FILL

Frame Bounding Box

DDIF Structures
6.20 Segment Attributes

The frame is filled with the pattern or
color given by the current line interior
fill item (DDIF$_SGA_LIN_INTERIOR_
PATTERN) before the content of the
frame is imaged.

The frame bounding box items specify a rectangular area that outlines
the frame and defines the origin of the frame. The frame bounding box is
described using the following items:

• A lower left corner x position indicator (type DDIF$_SGA_FRM_BOX_
LL_X_C) that indicates whether the lower left corner x-coordinate is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• A lower left corner x position item (type DDIF$_SGA_FRM_BOX_LL_
X) that specifies the x-coordinate of the lower left corner of the frame
bounding box. This item is encoded as a variable.

• A lower left corner y position indicator (type DDIF$_SGA_FRM_BOX_
LL_Y_C) that indicates whether the lower left corner y-coordinate is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• A lower left corner y position item (type DDIF$_SGA_FRM_BOX_LL_
Y) that specifies the y-coordinate of the lower left corner of the frame
bounding box. This item is encoded as a variable.

• An upper right corner x position indicator (type DDIF$_SGA_FRM_
BOX_UR_X_C) that indicates whether the upper right corner x­
coordinate is specified as a variable or constant value. This item is
encoded as a measurement enumeration.

• An upper right corner x position item (type DDIF$_SGA_FRM_BOX_
UR_X) that specifies the x-coordinate of the upper right corner of the
frame bounding box. This item is encoded as a variable.

• An upper right corner y position indicator (type DDIF$_SGA_FRM_
BOX_UR_Y_C) that indicates whether the upper right corner y­
coordinate is specified as a variable or constant value. This item is
encoded as a measurement enumeration.

• An upper right corner y position item (type DDIF$_SGA_FRM_BOX_
UR_ Y) that specifies the y-coordinate of the upper right corner of the
frame bounding box. This item is encoded as a variable.

Frame Outline
The optional frame outline item (type DDIF$_SGA_FRM_OUTLINE)
specifies the path to which text flowing around the frame is aligned.
This item is encoded as a sequence of DDIF$_PTH aggregates. For more
information on the DDIF$_PTH aggregate, see Section 6.19.

If the frame outline item is not specified, the default path is the path given
by the bounding box. The path defined by the frame outline is constrained
to fit within the specified bounding box.

6-61

DDIF Structures
6.20 Segment Attributes

6.20.21.4

6.20.21.5

6-62

Frame Clipping
The optional frame clipping item (type DDIF$_SGA_FRM_CLIPPING)
specifies the clipping path of the frame, specified as a path whose
coordinates are relative to the origin (0,0) of the frame. This item is
encoded as a sequence of DDIF$_PTH aggregates. For more information
on the DDIF$_PTH aggregate, see Section 6.19.

The path that is specified as the clipping region is constrained to fit within
the specified bounding box, and it can be different from the outline. No
content is imaged outside the clipping region. The inside of the clipping
region is determined by the odd winding rule. (The odd winding rule
states that, if a ray is drawn from a point to infinity, the origin of the ray
is considered inside the area (and hence will be filled) if it crosses the area
border an odd number of times.)

Frame Position
The frame position items specify the fixed or preferred position of the
frame relative to the enclosing frame. The frame position information is
described by first selecting the type of position, and then specifying the
appropriate information for that position type. (The origin of a frame is
located at the lower lefthand corner.) To select the position type, a position
item (type DDIF$_SGA_FRM_POSITION_C) is used. This item is encoded
as an enumeration. Valid values are as follows:

DDIF$K_FRAME_FIXED The origin of the frame is placed at the specified
position relative to the current frame of reference (a
page or a frame). If you specify this position type,
you must supply values for the items DDIF$_SGA_
FRMFXD_POSITION_X_C through DDIF$_SGA_
FRMFXD_POSITION_ Y.

DDIF$K_FRAME_INLINE The origin of the frame is positioned along the current
text path. The frame behaves like a character the width
of the frame. If you specify this position type, you must
supply values for the items DDIF$_SGA_FRMINL_
BASE_OFFSET_C and DDIF$_SGA_FRMINL_BASE_
OFFSET.

DDIF$K_FRAME_GALLEY The origin of the frame is placed at a preferred position
within the current galley. This type of frame positioning
should be specified only for content using galley-based
layout. If you specify this position type, you must
supply values for the items DDIF$_SGA_FRMGL Y _
VERTICAL and DDIF$_SGA_FRMGLY _HORIZONTAL.

DDIF$K_FRAME_MARGIN The origin of the frame is placed at a preferred position
relative to the current position, but outside the current
galley. This type of frame positioning should be
specified only for content using galley-based layout.
If you specify this position type, you must supply values
for the items DDIF$_SGA_FRMMAR_BASE_OFFSET_
C through DDIF$_SGA_FRMMAR_HORIZONTAL.

The following sections discuss each of these frame positions.

6.20.21.5.1 Fixed Frame Parameters

DDIF Structures
6.20 Segment Attributes

The fixed position frame parameters (selected by specifying DDIF$_SGA_
FRM_POSITION_C as DDIF$K_FRAME_FIXED) are specified using the
following items:

• An x position indicator (type DDIF$_SGA_FRMFXD_POSITION_X_
C) that indicates whether the x position is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• An x position item (type DDIF$_SGA_FRMFXD_POSITION_X) that
specifies the x position of the origin of the frame. This item is encoded
as a variable.

• A y position indicator (type DDIF$_SGA_FRMFXD_POSITION_Y_
C) that indicates whether the y position is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A y position item (type DDIF$_SGA_FRMFXD_POSITION_Y) that
specifies they position of the origin of the frame. This item is encoded
as a variable.

6.20.21.5.2 lnline Frame Parameters
The inline position frame parameters (selected by specifying DDIF$_SGA_
FRM_POSITION_C as DDIF$K_FRAME_INLINE) are specified using the
following items:

• A base offset indicator (type DDIF$_SGA_FRMINL_BASE_OFFSET_
C) that indicates whether the base offset value is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

• A base offset item (type DDIF$_SGA_FRMINL_BASE_OFFSET) that
specifies the vertical offset of the origin (0,0) of the frame relative to
the baseline on which the frame is positioned. This item is encoded as
a variable.

6.20.21.5.3 Galley Frame Parameters
The galley frame parameters (selected by specifying DDIF$_SGA_FRM_
POSITION_C as DDIF$K_FRAME_GALLEY) are specified using the
following items:

• A vertical galley frame parameter (type DDIF$_SGA_FRMGLY_
VERTICAL) that defines a standard or private label that specifies the
preferred vertical positioning of the lower edge of the frame. This item
is encoded as an enumeration. Valid values are as follows:

DDIF$K_FRMGLY_BELOW_CURRENT The frame is positioned so that the top
of the frame is on what would be the
next baseline.

DDIF$K_FRMGLY _BOTIOM The frame is positioned so that the
lower edge of the frame is on the lower
edge of the galley in which it is imaged.

6-63

DDIF Structures
6.20 Segment Attributes

6-64

DDIF$K_FRMGLY _TOP The frame is positioned so that the
upper edge of the frame is on the
upper edge of the galley in which it is
imaged.

• A horizontal galley frame parameter (type DDIF$_SGA_FRMGLY_
HORIZONTAL) that specifies the horizontal position of the
frame relative to its reference frame. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_FMT_FLUSH_PATH_BEGIN The first character is imaged at the
start of the text path, and successive
characters are imaged at successive
positions determined by the escapement
of the characters imaged.

DDIF$K_FMT _CENTER_OF _PATH The length of text strings, as given by
the sum of the character escapements,
is subtracted from the length of the
path, and the remaining space is evenly
distributed between the first character
and the start of the path, and the last
character and the end of the path.

DDIF$K_FMT_FLUSH_PATH_END The text string is imaged such that the
right alignment point of the last character
is aligned with the end of the text string
when normal escapement is applied.

DDIF$K_FMT_FLUSH_PATH_BOTH The text string is imaged such that the
left alignment point of the first character
is aligned with the start of the text path,
and the right alignment point of the last
character is aligned with the end of the
path.

6.20.21.5.4 Margin Frame Parameters
The margin frame parameters (selected by specifying DDIF$_SGA_FRM_
POSITION_C as DDIF$K_FRAME_MARGIN) are specified using the
following items:

• A margin base offset indicator (type DDIF$_SGA_FRMMAR_BASE_
OFFSET_C) that indicates whether the base offset is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

• A margin base offset item (type DDIF$_SGA_FRMMAR_BASE_
OFFSET) that specifies the vertical offset from the current baseline for
the lower edge of the frame. This item is encoded as a variable.

• A margin near offset indicator (type DDIF$_SGA_FRMMAR_NEAR_
OFFSET_C) that indicates whether the horizontal offset is specified as
a variable or constant value. This item is encoded as a measurement
enumeration.

• A margin near offset item (type DDIF$_SGA_FRMMAR_NEAR_
OFFSET) that specifies the horizontal offset from the side of the frame
nearest the reference frame to the corresponding side of the ref ere nee
frame. This item is encoded as a variable.

6.20.21.6

6.20.22 Item Change List

DDIF Structures
6.20 Segment Attributes

• A margin horizontal item (type DDIF$_SGA_FRMMAR_
HORIZONTAL) that defines a standard or private label that specifies
the preferred horizontal position of the lower left corner of the frame.
This item is encoded as an enumeration. Valid values are as follows:

DDIF$K_FRMMAR_CLOSEST_EDGE The position of the frame depends on
the page side. If the page is a left
page, the frame is positioned to the left
of the left-most galley; if the page is a
right page, the frame is positioned to
the right of the right-most galley.

DDIF$K_FRMMAR_FURTHEST _EDGE The frame is positioned opposite the
page side. If the page is a left page,
the frame is positioned to the right of
the right-most galley; if the page is a
right page, the frame is positioned to
the left of the left-most galley.

DDIF$K_FRMMAR_LEFT The frame is positioned so that it is to
the left of the left-most galley.

DDIF$K_FRMMAR_RIGHT The frame is positioned so that it is to
the right of the right-most galley.

Frame Content Transformation
The optional frame content transformation item (type DDIF$_SGA_FRM_
TRANSFORM) specifies a transformation to be applied to the coordinates
of content element within the frame, but not to the clipping region, outline,
or other parameters associated with the frame. This item is encoded as a
sequence of DDIF$_TRN aggregates. For more information on the DDIF$_
TRN aggregate, see Section 6.32.

Frame content transformations are normally used when it is desirable to
keep the coordinates of the content untransformed while providing the
ability to view the content under different transformations. This avoids
using repeated transformations on the content that would have the effect
of altering the precision of the coordinates due to arithmetic roundoff
during matrix multiplication.

The segment attributes aggregate supplies an item-change-list item (type
DDIF$_SGA_ITEM_CHANGE_LIST) that specifies which attributes, as
defined in this segment attributes aggregate, are explicitly defined at this
segment level. That is, the item change list is an array of item codes
that correspond to those items that are specifically defined in the segment
attributes aggregate. Items that are inherited at this level from either
default DDIF values (supplied by the CDA Toolkit), or from attributes
defined at higher segment levels, are not referenced in this change list.
Also, item codes of empty attributes are not included as part of this list.

Specifically, those item codes that return a status of CDA$_NORMAL in
response to a call to the LOCATE ITEM routine make up this item change
list. By using the item change list, an application can locate only those
items in the segment attributes aggregate that are explicitly specified and
interesting to the application.

6-65

DDIF Structures
6.20 Segment Attributes

The item change list item (type DDIF$_SGA_ITEM_CHANGE_LIST) is
encoded as an array of type longword, where each longword contains the
item code of the corresponding attribute items that are specified on this
segment. This item is only valid if DDIF$_INHERIT _ATTRIBUTES is
specified as a processing option.

6.20.23 Segment Attribute Items and Types

6-66

The previous sections discussed the various groups of related segment
attributes. Table 6-29 lists all of the items in the segment attributes
aggregate and their corresponding encodings.

Table 6-29 Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_PRIVATE_DATA

DDIF$_SGA_CONTENT_STREAMS

DDIF$_SGA_CONTENT_CATEGORY

DDIF$_SGA_SEGMENT _TAGS

DDIF$_SGA_BINDING_DEFNS

DDIF$_SGA_COMPUTE_C

DDIF$_SGA_CPTCPY _TARGET

DDIF$_SGA_CPTCPY _ERF _INDEX

DDIF$_SGA_CPTVAR_ VARIABLE

DDIF$_SGA_CPTXRF _TARGET

DDIF$_SGA_CPTXRF _ERF _INDEX

DDIF$_SGA_CPTXRF _VARIABLE

DDIF$_SGA_CPTFNC_NAME

DDIF$_SGA_CPTFNC_PARAMETERS

DDIF$_SGA_STRUCTURE_DESC_C

DDIF$_SGA_STRUCTURE_DESC

DDIF$_SGA_LANGUAGE

DDIF$_SGA_LEGEND_UNIT_N

DDIF$_SGA_LEGEND_UNIT _D

DDIF$_SGA_LEGEND_UNIT_NAME

DDIF$_SGA_UNITS_PER_MEASURE

DDIF$_SGA_UNITS_NAME

DDIF$_SGA_ALT_PRESENTATION

DDIF$_SGA_LAYOUT _C

DDIF$_SGA_LAYGLY _WRAP

DDIF$_SGA_LAYGLY _LAYOUT

Item Encoding

Sequence of DDIF$_PVT aggregates

Array of type string

String with add-info

Array of type string with add-info

Sequence of DDIF$_SGB aggregates

Enumeration

String

Integer

String

String

Integer

String

String

Sequence of DDIF$_PVT aggregates

Enumeration

Sequence of DDIF$_0CC aggregates

Integer

Integer

Integer

Array of type character string

Integer

Array of type character string

Array of type character string

Enumeration

Handle of DDIF$_LW1 aggregate

Handle of DDIF$_LL 1 aggregate

(continued on next page)

DDIF Structures
6.20 Segment Attributes

Table 6-29 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_LAYPTH_PATH

DDIF$_SGA_LAYPTH_FORMAT

DDIF$_SGA_LAYPTH_ORIENTATION_C

DDIF$_SGA_LAYPTH_ORIENTATION

DDIF$_SGA_LAYPTH_H_ALIGN

DDIF$_SGA_LAYPTH_ V _ALIGN

DDIF$_SGA_LAYREL_H_RATIO_N

DDIF$_SGA_LAYREL_H_RATIO_D

DDIF$_SGA_LAYREL_H_CONSTANT_C

DDIF$_SGA_LAYREL_H_CONSTANT

DDIF$_SGA_LAYREL_ V _RATIO_N

DDIF$_SGA_LAYREL_ V _RATIO_D

DDIF$_SGA_LAYREL_V_CONSTANT_C

DDIF$_SGA_LAYREL_ V _CONSTANT

DDIF$_SGA_LAYPOS_ TEXT _POSITION

DDIF$_SGA_FONT _DEFNS

DDIF$_SGA_PATTERN_DEFNS

DDIF$_SGA_PATH_DEFNS

DDIF$_SGA_LINE_STYLE_DEFNS

DDIF$_SGA_CONTENT _DEFNS

DDIF$_SGA_ TYPE_DEFNS

DDIF$_SGA_ TXT _MASK_PATTERN

DDIF$_SGA_ TXT _FONT

DDIF$_SGA_ TXT_RENDITION

DDIF$_SGA_ TXT _HEIGHT _C

DDIF$_SGA_ TXT _HEIGHT

DDIF$_SGA_ TXT_SET_SIZE_N

DDIF$_SGA_ TXT _SET _SIZE_D

DDIF$_SGA_ TXT _DIRECTION

DDIF$_SGA_ TXT _DEC_ALIGNMENT

DOI F$_SGA_ TXT _LEADER_SPACE_ C

DDIF$_SGA_ TXT _LEADER_SPACE

DDIF$_SGA_ TXT_LEADER_BULLET

DDIF$_SGA_ TXT _LEADER_ALIGN

DOI F$_SGA_ TXT _LEADER_ STYLE

DOI F$_SGA_ TXT _PAIR_KERNING

Item Encoding

Sequence of DDIF$_PTH aggregates

Enumeration

Enumeration

Variable

Enumeration

Enumeration

Integer

Integer

Measurement enumeration

Variable

Integer

Integer

Measurement enumeration

Variable

Enumeration

Sequence of DDIF$_FTD aggregates

Sequence of DDIF$_PTD aggregates

Sequence of DDIF$_PHD aggregates

Sequence of DDIF$_LSD aggregates

Sequence of DDIF$_CTD aggregates

Sequence of DDIF$_ TYD aggregates

Integer

Integer

Array of type enumeration

Measurement enumeration

Variable

Integer

Integer

Enumeration

Array of type character string

Measurement enumeration

Variable

Character string

Enumeration

Enumeration

Boolean

(continued on next page)

6-67

DDIF Structures
6.20 Segment Attributes

Table 6-29 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

6-68

Item Name

DDIF$_SGA_LIN_WIDTH_C

DDIF$_SGA_LIN_WIDTH

DDIF$_SGA_LIN_STYLE

DDIF$_SGA_LIN_PATTERN_SIZE_C

DDIF$_SGA_LIN_PATTERN_SIZE

DDIF$_SGA_LIN_MASK_PATTERN

DDIF$_SGA_LIN_END_START

DDIF$_SGA_LIN_END_FINISH

DDIF$_SGA_LIN_END_SIZE_C

DDIF$_SGA_LIN_END_SIZE

DDIF$_SGA_LIN_JOIN

DDIF$_SGA_LIN_MITER_LIMIT_N

DDIF$_SGA_LIN_MITER_LIMIT _D

DDIF$_SGA_LIN_INTERIOR_PATTERN

DDIF$_SGA_MKR_STYLE

DDIF$_SGA_MKR_MASK_PATTERN

DDIF$_SGA_MKR_SIZE_C

DDIF$_SGA_MKR_SIZE

DDIF$_SGA_GLY _ATTRIBUTES

DDIF$_SGA_IMG_PRIVATE_DATA

DDIF$_SGA_IMG_PIXEL_PATH

DDIF$_SGA_IMG_LINE_PROGRESSION

DDIF$_SGA_IMG_PP _PIXEL_DIST

DDIF$_SGA_IMG_LP _PIXEL_DIST

DDIF$_SGA_IMG_BRT_POLARITY

DDIF$_SGA_IMG_GRID_TYPE

DDIF$_SGA_IMG_TIMING_DESC

DDIF$_SGA_IMG_SPECTRAL_MAPPING

DDIF$_SGA_IMG_LOOKUP _ TABLES_C

DDIF$_SGA_IMG_LOOKUP _TABLES

DDIF$_SGA_IMG_COMP _
WAVELENGTH_C

DDIF$_SGA_IMG_COMP _WAVELENGTH

DDIF$_SGA_IMG_COMP _SPACE_ORG

DDIF$_SGA_IMG_PLANES_PER_PIXEL

DDIF$_SGA_IMG_PLANE_SIGNIF

Item Encoding

Measurement enumeration

Variable

Integer

Measurement enumeration

Variable

Integer

Enumeration

Enumeration

Measurement enumeration

Variable

Enumeration

Integer

Integer

Integer

Enumeration

Integer

Measurement enumeration

Variable

Handle of DDIF$_GLA aggregate

Sequence of DDIF$_PVT aggregates

Integer

Integer

Integer

Integer

Enumeration

Enumeration

Binary relative time

Enumeration

Enumeration

Variable

Enumeration

Variable

Enumeration

Integer

Enumeration

(continued on next page)

DDIF Structures
6.20 Segment Attributes

Table 6-29 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_IMG_NUMBER_OF _COMP

DDIF$_SGA_IMG_BITS_PER_COMP

D DI F$_SGA_FRM_FLAGS

DDIF$_SGA_FRM_BOX_LL_X_C

DDIF$_SGA_FRM_BOX_LL_X

DDIF$_SGA_FRM_BOX_LL_ Y _C

DDIF$_SGA_FRM_BOX_LL_ Y

DDIF$_SGA_FRM_BOX_UR_X_C

DDIF$_SGA_FRM_BOX_UR_X

DDIF$_SGA_FRM_BOX_UR_ Y _C

DDIF$_SGA_FRM_BOX_UR_ Y

DDIF$_SGA_FRM_OUTLINE

DDIF$_SGA_FRM_CLIPPING

DDIF$_SGA_FRM_POSITION_C

DDIF$_SGA_FRMFXD_POSITION_X_C

DDIF$_SGA_FRMFXD_POSITION_X

DDIF$_SGA_FRMFXD_POSITION_ Y _C

DDIF$_SGA_FRMFXD_POSITION_ Y

DDIF$_SGA_FRMINL_BASE_OFFSET_C

DDIF$_SGA_FRMINL_BASE_OFFSET

DDIF$_SGA_FRMGLY _VERTICAL

DDIF$_SGA_FRMGLY _HORIZONTAL

DDIF$_SGA_FRMMAR_BASE_OFFSET_C

DDIF$_SGA_FRMMAR_BASE_OFFSET

DDIF$_SGA_FRMMAR_NEAR_OFFSET_C

DDIF$_SGA_FRMMAR_NEAR_OFFSET

DDIF$_SGA_FRMMAR_HORIZONTAL

DDIF$_SGA_FRM_ TRANSFORM

DDIF$_SGA_ITEM_CHANGE_LIST

6.21 Content Definition

Item Encoding

Integer

Array of type integer

Longword

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Sequence of DDIF$_PTH aggregates

Sequence of DDIF$_PTH aggregates

Enumeration

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Enumeration

Enumeration

Measurement enumeration

Variable

Measurement enumeration

Variable

Enumeration

Sequence of DDIF$_ TRN aggregates

Item change list

The content definition aggregate (type DDIF$_CTD) lets you specify
a labeled generic content definition that can be referenced by nested
segments. The content definition can be specified using any one of the
following items:

• A content label item (type DDIF$_CTD_LABEL) that specifies the
label by which the content is referenced. This item is encoded as a
string.

6-69

6.22

DDIF Structures
6.21 Content Definition

Font Definition

6-70

• An optional content external target item (type DDIF$_CTD_
EXTERNAL_ TARGET) that specifies the label of the segment being
referenced. This item is encoded as a string. If it is not specified, the
entire document is being referenced.

• An optional external reference index item (type DDIF$_CTD_
EXTERNAL_ERF _INDEX) that specifies an index into a list of
external references stored in the document header. This item is
encoded as an integer. If it is not specified, the reference is to the
current document.

• An optional content value item (type DDIF$_CTD_ VALUE) that
specifies the content elements. This item is encoded as a sequence of
content, which can be the handle of any of the following aggregates:

DDIF$_ARC DDIF$_BEZ DDIF$_CRF

DDIF$_EXT DDIF$_FAS DDIF$_GRP

DDIF$_GTX DDIF$_HRD DDIF$_1MG

DDIF$_LIN DDIF$_PVT DDIF$_SEG

DDIF$_SFT DDIF$_TXT

• An optional content private data item (type DDIF$_CTD_PRIVATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

Table 6-30 lists all the items in a content definition aggregate and their
corresponding encodings.

Table 6-30 Content Definition Aggregate (DDIF$_CTD)

Item Name

DDIF$_CTD_LABEL

DDIF$_CTD_EXTERNAL_ TARGET

DDIF$_CTD_EXTERNAL_ERF _INDEX

DDIF$_CTD_ VALUE

DDIF$_CTD_PRIVATE_DATA

Item Encoding

String

String

Integer

Sequence of content

Sequence of DDIF$_PVT aggregates

The font definition aggregate (type DDIF$_FTD) defines a font for use
within a segment. This aggregate contains the following items:

• A font number item (type DDIF$_FTD_NUMBER) that is used to
reference the font within the defining segment. This item is encoded
as an integer.

• A font identifier item (type DDIF$_FTD_IDENTIFIER) that specifies a
font name. This item is encoded as a string.

6.23

DDIF Structures
6.22 Font Definition

• An optional font private data item (type DDIF$_FTD_PRIVATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

Table 6-31 lists all the items in a font definition aggregate and their
corresponding encodings.

Table 6-31 Font Definition Aggregate (DDIF$_FTD)

Item Name

DDIF$_FTD_NUMBER

DDIF$_FTD_IDENTIFIER

DDIF$_FTD_PRIVATE_DATA

Line-Style Definition

Item Encoding

Integer

String

Sequence of DDIF$_PVT aggregates

The line-style definition aggregate (type DDIF$_LSD) models the
description of a line-style pattern for reference within the assigned scope.
The line-style definition aggregate contains the following items:

• A line-style number (type DDIF$_LSD_NUMBER) that specifies a
number by which the defined line style is referenced from within the
scope of the definition. This item is encoded as an integer.

• A line-style pattern item (type DDIF$_LSD_PATTERN) that specifies
the line-style pattern being defined. This item is encoded as an array
of type integer.

Each bit in each integer value provided is interpreted to determine the
state of the corresponding pixel. For example, the following longword
value would correspond to the line pattern shown.

11110001111000111100011110001111

This value for DDIF$_LSD_PATTERN produces the following line-style
pattern:

,, ___ _
----"

6-71

6.24

DDIF Structures
6.23 Line-Style Definition

Path Definition

6-72

If your pattern must be defined using more than 32 bits, you must
use additional longwords in an array to specify the pattern. For each
longword specified, you must increment the aggregate index by 1. The
initial value of the aggregate index is 0.

• An optional line-style private data item (type DDIF$_LSD_PRIVATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

Table 6-32 lists all the items in the line-style definition aggregate and
their corresponding encodings.

Table 6-32 Line-Style Definition Aggregate (DDIF$_LSD)

Item Name

DDIF$_LSD_NUMBER

DDIF$_LSD_PATTERN

DDIF$_LSD_PRIVATE_DATA

Item Encoding

Integer

Array of type integer

Sequence of DDIF$_PVT aggregates

The path definition aggregate (type DDIF$_PHD) models the description
of a composite path for reference within the assigned scope. The path
definition aggregate contains the following items:

• A path number item (type DDIF$_PHD_NUMBER) that specifies a
number by which the defined path is referenced from within the scope
of the definition. This item is encoded as an integer.

• A path description item (type DDIF$_PHD_DESCRIPTION) that
specifies the composite path being defined. This item is encoded as
a sequence of DDIF$_PTH aggregates. For more information on the
DDIF$_PTH aggregate, see Section 6.19.

• An optional path private data item (type DDIF$_PHD_PRNATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

Table 6-33 lists all the items in the path definition aggregate and their
corresponding encodings.

6.25

DDIF Structures
6.24 Path Definition

Table 6-33 Path Definition Aggregate (DDIF$_PHD}

Item Name Item Encoding

DDIF$_PHD_NUMBER

DDIF$_PHD_DESCRIPTION

DDIF$_PHD_PRIVATE_DATA

Integer

Sequence of DDIF$_PTH aggregates

Sequence of DDIF$_PVT aggregates

Pattern Definition
The pattern definition aggregate (type DDIF$_PTD) contains the following
items:

• A pattern number item (type DDIF$_PTD_NUMBER) that specifies a
number by which the pattern is referenced. This item is encoded as
an integer. In addition to the user-defined pattern numbers, several
predefined patterns are provided. These patterns are described in
Appendix F.

• A pattern definition indicator (type DDIF$_PTD_DEFN_C) that selects
the definition of the pattern as either a solid color or a standard
pattern. This item is encoded as an enumeration. Valid values are as
follows:

DDIF$K_SOLID_COLOR Indicates a predefined solid fill pattern,
assigned a single color. If this value is
specified, you must supply values for the
items DDIF$_PTD_SOL_COLOR_C through
DDIF$_PTD_SOL_COLOR_B.

DDIF$K_STANDARD_PATTERN Indicates a reference to a standard pattern and
a color map for it. The color map is defined in
terms of previously defined solid patterns. If
this value is specified, you must supply values
for the items DDIF$_PTD_PAT_NUMBER and
DDIF$_PTD_PAT _COLORS.

DDIF$K_RASTER_PATTERN Indicates an image data unit that represents
the pattern. If this value is specified, you must
supply a value for the item DDIF$_PTD_RAS_
PATTERN.

• An optional solid color indicator (type DDIF$_PTD_SOL_COLOR_C)
that must be completed if DDIF$_PTD_DEFN_C was specified as
DDIF$K_SOLID_COLOR. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_RGB_COLOR Indicates that red/green/blue colors are available.
If you specify this color type, you must supply
values for the items DDIF$_PTD_SOL_COLOR_R
through DDIF$_PTD_SOL_COLOR_B.

DDIF$K_ TRANSPARENCY Indicates that colors are not available. If you
specify this color type, you should not supply any
values for the additional background color items.

6-73

DDIF Structures
6.25 Pattern Definition

6-74

• A red intensity item (type DDIF$_PTD_SOL_COLOR_R) that indicates
the level of red intensity. This item is encoded as a single-precision
floating-point value in the range of 0.0 to 1.0.

• A green intensity item (type DDIF$_PTD_SOL_COLOR_G) that
indicates the level of green intensity. This item is encoded as a
single-precision floating-point value in the range of 0.0 to 1.0.

• A blue intensity item (type DDIF$_PTD_SOL_COLOR_B) that
indicates the level of blue intensity. This item is encoded as a single­
precision floating-point value in the range of 0.0 to 1.0.

• A standard pattern number item (type DDIF$_PTD_PAT_NUMBER)
that must be completed if DDIF$_PTD_DEFN_C was specified as
DDIF$K_STANDARD_PATTERN. This item specifies the number of
a standard pattern selected from the available patterns. This item is
encoded as an integer. The standard patterns consist of pixel masks.
Pixels are imaged in the indicated pattern color, according to the pixel
values.

You must select one of the predefined pattern numbers for this item.
These patterns are described in Appendix F.

• A pattern colors item (type DDIF$_PTD_PAT_COLORS) that must
be completed if DDIF$_PTD_DEFN_C was specified as DDIF$K_
STANDARD_PATTERN. This item specifies a sequence of colors that
form the color map for the pattern mask. This item is encoded as an
array of type integer.

The sequence of colors models an array in which the color of each
entry maps to the number formed by the corresponding bit pattern in
the pattern definition. A single bit-plane pattern mask has two colors,
while a two-plane pattern has four. The significance of bits in the bit
plane is specified along with the standard pattern definitions.

• A raster pattern item (type DDIF$_PTD_RAS_PATTERN) that must
be completed if DDIF$_PTD_DEFN_C was specified as DDIF$K_
RASTER_PATTERN. This item specifies the image data unit that
represents the pattern. This item is encoded as the handle of a
DDIF$_IDU aggregate. For more information on the DDIF$_IDU
aggregate, see Section 6.18.

• An optional pattern private data item (type DDIF$_PTD_PRIVATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

Table 6-34 lists all the items in the pattern definition aggregate and their
corresponding encodings.

6.26 Segment Binding

DDIF Structures
6.25 Pattern Definition

Table 6-34 Pattern Definition Aggregate (DDIF$_PTD)

Item Name

DDIF$_PTD_NUMBER

DDIF$_PTD_DEFN_C

DDIF$_PTD_SOL_COLOR_C

DDIF$_PTD_SOL_COLOR_R

DDIF$_PTD_SOL_COLOR_G

DDIF$_PTD_SOL_COLOR_B

DDIF$_PTD _PAT _NUMBER

DDIF$_PTD_PAT _COLORS

DDIF$_PTD_RAS_PATTERN

DDIF$_PTD_PRIVATE_DATA

Item Encoding

Integer

Enumeration

Enumeration

Single-precision floating-point

Single-precision floating-point

Single-precision floating-point

Integer

Array of type integer

Handle of DDIF$_1DU aggregate

Sequence of DDIF$_PVT aggregates

The segment binding aggregate (type DDIF$_SGB) defines a variable
by its name, and defines the method used to calculate its value. This
aggregate contains the following items:

• A variable name item (type DDIF$_SGB_ VARIABLE_NAME) that
specifies the name of the variable being defined. This item is encoded
as a string.

• A variable value indicator (type DDIF$_SGB_ VARIABLE_ VALUE_C)
that indicates the type of variable value. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_COUNTER_ VARIABLE

DDIF$K_COMPUTED _VARIABLE

A variable that counts occurrences of
nested segments with a specified tag,
or occurrences of designated types of
layout objects within nested segments.
Note that the value of a counter variable
varies within the segment, and cannot be
cross-referenced from outside the segment.
However, its value can at some point be
captured in the definition of computed
variables, which can be cross-referenced
if the segment has a segment identifier.
If you specify this value, you must supply
values for the items DDIF$_SGB_CTR_
TRIGGER_C through DDIF$_SGB_CTR_
TYPE.

A variable that has a constant value
throughout the segment; its value is the
value of the expression at the point of
definition. If you specify this value, you
must supply values for the items DDIF$_
SGB_COM_STRING_EXPR_C and DDIF$_
SGB_COM_STRING_EXPR.

6-75

DDIF Structures
6.26 Segment Binding

DDIF$K_LIST _VARIABLE A variable that contains an array of records.
If you specify this value, you must supply a
value for the item DDIF$_SGB_RCD_LIST.

Each of these types of variable values is discussed in the following
sections, along with its corresponding aggregate items.

6.26.1 Counter Variable Values

6-76

Counter variable values (selected by specifying DDIF$_SGB_ VARIABLE_
VALUE_C as DDIF$K_COUNTER_ VARIABLE) are described using the
following items:

• An optional counter trigger indicator (type DDIF$_SGB_CTR_
TRIGGER_C) that indicates the type of object to be counted. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_TAGGED_SEGMENT_TRIGGER Counts tagged segments. In this
case, the DDIF$_SGB_CTR_
TRIGGER item is encoded as a
string.

DDIF$K_LAYOUT_OBJECT_TRIGGER Counts layout objects. In this case,
the DDIF$_SGB_CTR_TRIGGER
item is encoded as an enumeration
that can accept any one of the
following values:

DDIF$K_DOCUMENT_LAYOUT_OBJECT Specifies that document
layout objects are to be
counted.

DDIF$K_PAGE_SET_LAYOUT_OBJECT Specifies that page set
layout objects are to be
counted.

DDIF$K_PAGE_LAYOUT_OBJECT Specifies that page layout
objects are to be counted.

DDIF$K_FRAME_LAYOUT_OBJECT Specifies that frame layout
objects are to be counted.

DDIF$K_BLOCK_LAYOUT _OBJECT Specifies that block layout
objects are to be counted.

DDIF$K_LINE_LAYOUT_OBJECT Specifies that line layout
objects are to be counted.

• A counter trigger item (type DDIF$_SGB_CTR_TRIGGER) that
specifies the object to be counted. This item is encoded as a variable.

• A counter initialization indicator (type DDIF$_SGB_CTR_INIT_C) that
indicates the method used to express the initial value for the counter.
This item is encoded as an expression enumeration.

• A counter initialization item (type DDIF$_SGB_CTR_INIT) that
specifies the initial value for the counter. This item is encoded as a
variable. The default value for this item is 1.

DDIF Structures
6.26 Segment Binding

• An optional counter style item (type DDIF$_SGB_CTR_STYLE) that
determines how the counter value should be converted to text for
display. This item is encoded as a sequence of DDIF$_CTS aggregates.
For more information on the DDIF$_CTS aggregate, see Section 6.28.

• A counter type item (type DDIF$_SGB_CTR_TYPE) that determines
how nested occurrences of counted objects should be displayed, and on
what conditions the counter should be reset to its initial value. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_MILITARY_COUNTER

DDI F$K_ OFFICE_ COUNTER

DDIF$K_PAGE_RELATIVE_
COUNTER

All variables of this name in the current
and parent segments are displayed,
separated by text.

Only the value of the variable in the
current segment is displayed.

This style is never hierarchical, and
is reset for every page. Footnote
numbering on a per-page basis is an
example of page-relative counting.

6.26.2 Computed Variable Values
Computed variable values (selected by specifying DDIF$_SGB_
VARIABLE_VALUE_C as DDIF$K_COMPUTED_VARIABLE) are
described using the following items:

• A computed string expression indicator (type DDIF$_SGB_COM_
STRING_EXPR_C) that indicates whether an element of the
expression is a text constant or a string representation. This item
is encoded as an array of type enumeration. Valid values are as
follows:

DDIF$K_ TEXT _ELEMENT An element of the expression is a text
constant. In this case, DDIF$_SGB_COM_
STRING_EXPR is encoded as a character
string.

DDIF$K_VARIABLE_ELEMENT An element of the expression is a string
representation. In this case, DDIF$_SGB_
COM_STRING_EXPR is encoded as a string.

• A computed string expression item (type DDIF$_SGB_COM_STRING_
EXPR) that specifies the string expression. This item is encoded as an
array of type variable.

6.26.3 List Variable Values
List variable values (selected by specifying DDIF$_SGB_VARIABLE_
VALUE_C as DDIF$K_LIST_VARIABLE) are described using a record
list item (type DDIF$_SGB_RCD_LIST). This item defines a record
structure that consists of one or more primitive data types, expressed
as references to variables. This item is encoded as a sequence of DDIF$_
RCD aggregates. For more information on the DDIF$_RCD aggregate, see
Section 6.30.

6-77

DDIF Structures
6.26 Segment Binding

6.26.4 Segment Binding Items and Types

6.27 Type Definition

6-78

The items described in the previous sections make up the segment binding
aggregate. Table 6-35 lists all the items in the segment binding aggregate
and their corresponding encodings.

Table 6-35 Segment Binding Aggregate (DDIF$_SGB)

Item Name

DDIF$_SGB_ VARIABLE_NAME

DDIF$_SGB_ VARIABLE_ VALUE_C

DDIF$_SGB_ CTR_ TRIGGER_ C

DDIF$_SGB_CTR_ TRIGGER

DDIF$_SGB_CTR_INIT _C

DDIF$_SGB_CTR_INIT

DDIF$_SGB_CTR_STYLE

DDIF$_SGB_CTR_ TYPE

DDIF$_SGB_COM_STRING_EXPR_C

DDIF$_SGB_COM_STRING_EXPR

DDIF$_SGB_RCD_LIST

Item Encoding

String

Enumeration

Enumeration

Variable

Expression enumeration

Variable

Sequence of DDIF$_CTS aggregates

Enumeration

Array of type enumeration

Array of type variable

Sequence of DDIF$_RCD aggregates

The segment type definition aggregate (type DDIF$_TYD) defines a labeled
set of generic segment attributes for reference from nested segments. This
aggregate contains the following items:

• A type label item (type DDIF$_TYD_LABEL) that specifies the label
by which the type is referenced. This item is encoded as a string. If
segment types with the same name are defined in the document, the
most recent definition is used.

• An optional type parent item (type DDIF$_TYD_PARENT) that
specifies the label of a segment type whose attributes are applied
prior to applying the attributes of this type. This item is encoded as a
string.

• An optional type attributes item (type DDIF$_TYD_ATTRIBUTES)
that specifies the segment attributes that are applied to segments that
reference the type being defined. This item is encoded as the handle
of a DDIF$_SGA aggregate. For more information on the DDIF$_SGA
aggregate, see Section 6.20.

• An optional type private data item (type DDIF$_TYD_PRIVATE_
DATA) that specifies the private data associated with the definition.
This item is encoded as a sequence of DDIF$_PVT aggregates. For
more information on the DDIF$_PVT aggregate, see Section 6.15.2.

6.28 Counter Style

DDIF Structures
6.27 Type Definition

Table 6-36 lists all the items in the type definition aggregate and their
corresponding encodings.

Table 6-36 Type Definition Aggregate (DDIF$_ TYD)

Item Name Item Encoding

DDIF$_ TYD_LABEL String

String DDIF$_ TYD_PARENT

DDIF$_ TYD_ATTRIBUTES

DDIF$_ TYD_PRIVATE_DATA

Handle of DDIF$_SGA aggregate

Sequence of DDIF$_PVT aggregates

The counter style aggregate (type DDIF$_CTS) describes a display style to
be used for counters. This aggregate contains the following items:

• A counter style indicator (type DDIF$_CTS_STYLE_C) that indicates
the counter style to be used. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_NUMBER_STYLE The type of conversion used to present the
variable as an alphanumeric string. In this case,
the DDIF$_CTS_STYLE item is encoded as
an enumeration that accepts any one of the
following values:

DDIF$K_ARABIC_COUNTER

DDIF$K_L_ROMAN_COUNTER

DDIF$K_U_ROMAN_COUNTER

DDIF$K_L_LATIN_COUNTER

DDIF$K_U_LATIN_COUNTER

DDIF$K_W_ARABIC_COUNTER

DDIF$K_WL_ROMAN_COUNTER

DDIF$K_WU_ROMAN_COUNTER

DDIF$K_WL_LATIN_COUNTER

DDIF$K_WU_LATIN_COUNTER

DDIF$K_WK_50_COUNTER

DDIF$K_WK_IROHA_COUNTER

DDIF$K_HEBREW_COUNTER

Arabic numbers

Lowercase roman numerals

Uppercase roman numerals

Lowercase Latin letters

Uppercase Latin letters

Wide arabic numbers

Wide lowercase roman numerals

Wide uppercase roman numerals

Wide lowercase Latin letters

Wide uppercase Latin letters

Wide Katakana 50

Wide Katakana lroha

Hebrew

DDIF$K_BULLET _STYLE An array of type character string, for which the
counter value constitutes an index that selects
the bullet. If the counter value exceeds the
number of elements in the array, then the array
is reused. In this case, the DDIF$_CTS_STYLE
item is encoded as an array of type character
string.

6-79

6.29

DDIF Structures
6.28 Counter Style

DDIF$K_STYLE_SEPARATOR A constant text string added to the converted
string as a value separator for the military style.
In this case, the DDIF$_CTS_STYLE item is
encoded as a character string.

• A counter style item (type DDIF$_CTS_STYLE) that contains the
counter. This item is encoded as a variable.

Table 6-37 lists the items in the counter style aggregate and their
corresponding encodings.

Table 6-37 Counter Style Aggregate (DDIF$_CTS)

Item Name

DDIF$_CTS_STYLE_C

DDIF$_CTS_STYLE

Item Encoding

Enumeration

Variable

Occurrence Definition

6-80

The occurrence definition aggregate (type DDIF$_0CC) describes the
number of times the element of a structure definition can occur, and
whether or not it can be omitted. This aggregate contains the following
items:

• An occurrence indicator (type DDIF$_0CC_OCCURRENCE_C) that
specifies the type of occurrence to be permitted. This item is encoded
as an enumeration. Valid values are as follows:

DDIF$K_REQUIRED_OCCURRENCE The construction must occur once and
only once.

DDIF$K_OPTIONAL_OCCURRENCE The construction can occur once or not
at all.

DDIF$K_REPEAT _OCCURRENCE The construction can occur one or more
times.

DDIF$K_OPT_RPT_OCCURRENCE The construction can occur zero or more
times.

There is no default or initial value for this aggregate item.

• A structure element indicator (type DDIF$_0CC_STRUCTURE_
ELEMENT_C) that indicates whether a given element in the structure
definition is the label of the referenced type or is a structure definition
that is itself a defined substructure. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_SEQUENCE_STRUCTURE Indicates a sequence of element
occurrences that are constrained to
occur in the order specified. In this
case, the DDIF$_0CC_STRUCTURE_
ELEMENT item is encoded as a
sequence of DDIF$_ OCC aggregates.

6.30

DDIF$K_SET_STRUCTURE

DDIF$K_CHOICE_STRUCTURE

DDIF$K_REFERENCED _TYPE

DDIF Structures
6.29 Occurrence Definition

Indicates a set of element occurrences
that are not constrained with respect
to order. In this case, the DDIF$_
OCC_STRUCTURE_ELEMENT item is
encoded as a sequence of DDIF$_0CC
aggregates.

Indicates a group of element
occurrences from which only one can
be selected. In this case, the DDIF$_
OCC_STRUCTURE_ELEMENT item is
encoded as a sequence of DDIF$_0CC
aggregates.

Indicates the label assigned to the
type reference whose occurrence
in the document structure is being
constrained. In this case, the DDIF$_
OCC_STRUCTURE_ELEMENT item is
encoded as a string.

• A structure item (type DDIF$_0CC_STRUCTURE_ELEMENT) that
specifies the structure itself. This item is encoded as a variable.

Table 6-38 lists the elements in an occurrence definition aggregate and
their corresponding encodings.

Table 6-38 Occurrence Definition Aggregate (DDIF$_0CC)

Item Name

DDIF$_0CC_OCCURRENCE_C

DDIF$_0CC_STRUCTURE_ELEMENT_C

DDIF$_0CC_STRUCTURE_ELEMENT

Record Definition

Item Encoding

Enumeration

Enumeration

Variable

The record definition aggregate (type DDIF$_RCD) defines a record
structure that consists of one or more primitive data types, expressed
as references to variables. Records are used in the calculation of computed
content items, such as tables of figures and indexes. The record definition
aggregate contains the following items:

• A record type item (type DDIF$_RCD_TYPE) that specifies the record
type that will be applied to the variable when it is displayed. This
item is encoded as a string.

• A record tag item (type DDIF$_RCD_TAG) that specifies an identifier
that indicates which segments within the scope of this record definition
cause the creation of a data record of this type. This item is encoded
as a string.

• A record contents item (type DDIF$_RCD_CONTENTS) that specifies
the variables of the record. Each variable name and its value at the
segment in question become part of the record. This item is encoded
as an array of type string.

6-81

DDIF Structures
6.30 Record Definition

Table 6-39 lists the items in a record definition aggregate and their
corresponding encodings.

Table 6-39 Record Definition Aggregate (DDIF$_RCD)

Item Name

DDIF$_RCD_ TYPE

DDIF$_RCD_ TAG

DDIF$_RCD_CONTENTS

Item Encoding

String

String

Array of type string

6.31 Image Lookup Table Entry

6-82

The image (RGB) lookup table entry aggregate (type DDIF$_RGB)
provides a method for creating a sequence of lookup table entries, where
each entry describes a lookup table index that corresponds to the pixel
that it maps. The RGB lookup table entry aggregate contains the following
items:

• A lookup table index item (type DDIF$_RGB_LUT_INDEX) that
specifies the integer value of the lookup-table-mapped pixel. This item
is encoded as an integer that can range in value between 0 and 216 -1.

• A lookup table red value item (type DDIF$_RGB_RED_ VALUE) that
specifies the red intensity value for the lookup-table-mapped pixel.
This item is encoded as a single-precision floating-point value between
0.0and1.0.

• A lookup table green value item (type DDIF$_RGB_GREEN_ VALUE)
that specifies the green intensity value for the lookup-table-mapped
pixel. This item is encoded as a single-precision floating-point value
between 0.0 and 1.0.

• A lookup table blue value item (type DDIF$_RGB_BLUE_ VALUE) that
specifies the blue intensity value for the lookup-table-mapped pixel.
This item is encoded as a single-precision floating-point value between
0.0and1.0.

Table 6-40 lists the items in the lookup table entry aggregate and their
corresponding encodings.

Table 6-40 RGB Lookup Table Entry Aggregate (DDIF$_RGB)

Item Name

DDIF$_RGB_LUT _INDEX

DDIF$_RGB_RED_ VALUE

DDIF$_RGB_GREEN_ VALUE

DDIF$_RGB_BLUE_ VALUE

Item Encoding

Integer

Single-precision floating-point

Single-precision floating-point

Single-precision floating-point

6.32 Transformation

DDIF Structures
6.32 Transformation

The transformation aggregate (type DDIF$_TRN) provides mapping from
one coordinate system to another. It provides the following capabilities:

• Asymmetric scaling

• Symmetric rotation or skewing of the axes

• Translation

The transformation aggregate contains the following items:

• A transformation parameter indicator (type DDIF$_TRN_
PARAMETER_C) that indicates which parameter is being specified by
DDIF$_TRN_PARAMETER. This item is encoded as an enumeration.
Valid values are as follows:

DDIF$K_X_SCALE

DDIF$K_ Y _SCALE

DDIF$K_X_ TRANSLATE

DDIF$K_ Y _TRANSLATE

DDIF$K_ROTATE

DDIF$K_SKEW

DDIF$K_MATRIX_2_BY _3

Indicates the scale factor for x-coordinates. In
this case, the DDIF$_ TRN_PARAMETER item
is encoded as a single-precision floating-point
value.

Indicates the scale factor for y-coordinates. In
this case, the DDIF$_ TRN_PARAMETER item
is encoded as a single-precision floating-point
value.

Indicates translation values for x-coordinates. In
this case, the DDIF$_ TRN_PARAMETER item
is encoded as a single-precision floating-point
value.

Indicates translation values for y-coordinates. In
this case, the DDIF$_ TRN_PARAMETER item
is encoded as a single-precision floating-point
value.

Indicates rotation of x- and y-coordinates. In
this case, the DDIF$_ TRN_PARAMETER item
is encoded as a single-precision floating-point
value.

Indicates a difference in rotation of x- and y­
coordinates. In this case, the DDIF$_ TRN_
PARAMETER item is encoded as a single­
precision floating-point value.

Indicates two columns of a 3x3 transformation
matrix, specified in column order. Given 6
numbers in the order A-B-C-D-E-F, the matrix
is as follows:

A D 0
B E 0
C F 1

In this case, the DDIF$_ TRN_PARAMETER
item is encoded as an array (with 6 elements) of
single-precision floating-point values.

6-83

6.33

DDIF Structures.
6.32 Transformation

Generic Layout

6-84

DDIF$K_MATRIX_3_BY _3 Indicates a 3x3 transformation matrix, specified
in column order. Given 9 numbers in the order
A-B-C-D-E-F-G-H-1, the matrix is as follows:

A D G
B E H
C F I

In this case, the DDIF$_ TRN_PARAMETER
item is encoded as an array (with 9 elements) of
single-precision floating-point values.

• A transformation parameter item (type DDIF$_TRN_PARAMETER)
that contains the actual value of the translation parameter. This item
is encoded as a variable.

Table 6-41 lists the items in the transformation aggregate and their
corresponding encodings.

Table 6-41 Transformation Aggregate (DDIF$_TRN)

Item Name

DDIF$_ TRN_PARAMETER_C

DDIF$_ TRN_PARAMETER

Item Encoding

Enumeration

Variable

The generic layout aggregate (type DDIF$_LG1) specifies a set of page
descriptions along with rules about when to use a particular page
description. It also enables you to describe a set of content descriptions
that can be referenced from generic and/or specific pages to form content
that appears on one or more pages.

The generic layout aggregate contains the following items:

• A private data item (type DDIF$_LG1_PRIVATE_DATA) that
specifies nonstandard information associated with the generic layout
descriptions. This item is encoded as a sequence of DDIF$_PVT
aggregates. (For more information on the DDIF$_PVT aggregate, see
Section 6.15.2.) The private data is typically used to associate names
or relationships with the page and/or content descriptions.

• A page descriptions item (type DDIF$_LG1_PAGE_DESCRIPTIONS)
that provides descriptions of actual page templates and rules for their
use. This item is encoded as a sequence of DDIF$_PGD aggregates.
For more information on the DDIF$_PGD aggregate, see Section 6.38.

Table 6-42 lists the items in the generic layout aggregate and their
corresponding encodings.

6.34 Specific Layout

DDIF Structures
6.33 Generic Layout

Table 6-42 Generic Layout 1 Aggregate (DDIF$_LG1)

Item Name

DDIF$_LG1_PRIVATE_DATA

DDIF$_LG1_PAGE_DESCRIPTIONS

Item Encoding

Sequence of DDIF$_PVT aggregates

Sequence of DDIF$_PGD aggregates

The specific layout aggregate (type DDIF$_LS1) contains one page
description for each page of the document, although pages that have
identical layout can share a description for the sake of representational
efficiency.

A document that contains specific layout can also have a generic layout
specification, which is used to add new pages to the document. Specific
page layouts can be derived from a generic layout, they can be manually
generated, or they can be user-modified versions of layouts derived from
generic layouts.

The specific layout of a document is represented as a list of page
descriptions, or references to page descriptions that have been previously
declared. The first specific page description is by default the first page, but
you can override this by making selections within the content stream.

The specific layout aggregate contains the following items:

• A layout indicator (type DDIF$_LS1_LAYOUT_C) that indicates
whether the layout is for a specific page or is a reference to a
previously defined page. This item is encoded as an array of type
enumeration. Valid values are as follows:

DDIF$K_SPECIFIC_PAGE

DDIF$K_REFERENCED_PAGE

Indicates that the layout specified is the
description of a specific page. In this case,
the DDIF$_LS1_LAYOUT item is encoded as
the handle of a DDIF$_PGD aggregate.

Indicates that the layout specified is actually
the label of a page layout description
previously defined. In this case, the DDIF$_
LS1_LAYOUT item is encoded as a string.

• A layout item (type DDIF$_LS1_LAYOUT) that defines the specific
layout. This item is encoded as an array of type variable.

Note that the array items in each array must correspond. For example, if
the first value in the layout indicator array specifies a referenced page, the
first value in the layout array must contain a string specifying the label of
the page layout description being referenced, and so on.

Table 6-43 lists the items in the specific layout aggregate and their
corresponding encodings.

6-85

6.35

DDIF Structures
6.34 Specific Layout

Wrap Attributes

6-86

Table 6-43 Specific Layout 1 Aggregate (DDIF$_LS1)

Item Name

DDIF$_LS1_LAYOUT _C

DDIF$_LS1_LAYOUT

Item Encoding

Array of type enumeration

Array of type variable

The wrap attributes aggregate (tpe DDIF$_LW1) contains the following
items:

• An optional wrap format item (type DDIF$_LW1_ WRAP _FORMAT)
that specifies the format of text lines wrapped by the formatter. This
item is encoded as an enumeration. Valid values are as follows:

DDIF$K_FMT_FLUSH_PATH_BEGIN The first character is imaged at the
start of the text path, and successive
characters are imaged at successive
positions determined by the escapement
of the characters imaged.

DDIF$K_FMT_CENTER_OF _PATH The length of text strings, as given by
the sum of the character escapements,
is subtracted from the length of the
path, and the remaining space is evenly
distributed between the first character
and the start of the path, and the last
character and the end of the path.

DDIF$K_FMT_FLUSH_PATH_END The text string is imaged such that the
right alignment point of the last character
is aligned with the end of the text string
when normal escapement is applied.

DDIF$K_FMT _FLUSH_PATH_BOTH The text string is imaged such that the
left alignment point of the first character
is aligned with the start of the text path,
and the right alignment point of the last
character is aligned with the end of the
path.

• An optional quad format item (type DDIF$_LW1_QUAD_FORMAT)
that specifies the format of text lines that end in a hard (user-entered)
new line. This item is encoded as an enumeration. Valid values are as
follows:

DDIF$K_FMT_FLUSH_PATH_BEGIN The first character is imaged at the
start of the text path, and successive
characters are imaged at successive
positions determined by the escapement
of the characters imaged.

DDIF$K_FMT_CENTER_OF _PATH

DOI F$K_FMT _FLUSH_PATH_EN D

DD I F$K_FMT _FLUSH_PATH_BOTH

DDIF Structures
6.35 Wrap Attributes

The length of text strings, as given by
the sum of the character escapements,
is subtracted from the length of the
path, and the remaining space is evenly
distributed between the first character
and the start of the path, and the last
character and the end of the path.

The text string is imaged such that the
right alignment point of the last character
is aligned with the end of the text string
when normal escapement is applied.

The text string is imaged such that the
left alignment point of the first character
is aligned with the start of the text path,
and the right alignment point of the last
character is aligned with the end of the
path.

• An optional hyphenation flags item (type DDIF$_LW1_
HYPHENATION_FLAGS) that specifies the Boolean parameters that
affect hyphenation. This item is encoded as a longword. The possible
values are as follows:

DDIF$M_HYPH_ALLOWED

DDIF$M_HYPH_PARAGRAPH

DDIF$M_HYPH_GALLEY _END

DDIF$M_HYPH_PAGE_END

If set, hyphenation is allowed in this
segment.

If set, the last line in the paragraph can
end in a hyphen.

If set, hyphenation is allowed at the
end of a galley.

If set, words can be hyphenated across
pages.

DDIF$M_HYPH_CAPITALIZED_WORD If set, capitalized words can be
hyphenated.

• An optional maximum hyphenation lines item (type DDIF$_LW1_
MAXIMUM_HYPH_LINES) that specifies the maximum number of
consecutive lines that can end with a hyphen. This item is encoded as
an integer.

• An optional maximum orphan size (type DDIF$_LW1_MAXIMUM_
ORPHAN_SIZE) that specifies the maximum orphan size. This item is
encoded as an integer. This value specifies the maximum number of
lines of text within the segment that can be left at the bottom of the
galley if the rest of the lines are on the succeeding galley.

• An optional maximum widow size (type DDIF$_LW1_MAXIMUM_
WIDOW _SIZE) that specifies the maximum widow size. This item is
encoded as an integer. This value specifies the maximum number of
lines of text within the segment that can be placed in the succeeding
galley when the first line or lines are in the current galley.

6-87

6.36

DDIF Structures
6.35 Wrap Attributes

Table 6-44 lists all the items in the wrap attributes aggregate and their
corresponding encodings.

Table 6-44 Wrap Attributes 1 Aggregate (DDIF$_LW1)

Item Name

DDIF$_LW1_WRAP _FORMAT

DDIF$_LW1_QUAD_FORMAT

DDIF$_LW1 _HYPH ENATION_FLAGS

DDIF$_LW1_MAXIMUM_HYPH_LINES

DDIF$_LW1_MAXIMUM_ORPHAN_SIZE

DDIF$_LW1_MAXIMUM_WIDOW_SIZE

Item Encoding

Enumeration

Enumeration

Longword

Integer

Integer

Integer

Layout Attributes

6-88

The layout attributes aggregate (type DDIF$_LL1) contains the following
items:

• An optional initial directive item (type DDIF$_LL1_INITIAL_
DIRECTIVE) that forces a new line, galley, or page by means of a
directive. This item is encoded as an enumeration. Valid values are as
follows:

DDIF$K_DIR_NEW_PAGE Begins a new page.

DDIF$K_DIR_NEW_LINE Begins a new line of text.

DDIF$K_DIR_NEW_GALLEY Begins a new layout galley (such as a
column). Software that does not support
galley layout interprets the new galley
directive as a new page.

DDIF$K_DIR_ TAB Moves the horizontal text position to the
next tab stop.

DDIF$K_DIR_SPACE Specifies a space in the current font.
The space directive is usually soft, and
is used to indicate that software inserted
a space between wrapped lines.

DDIF$K_DIR_HYPHEN_NEW_LINE Specifies that the line break is preceded
by a hyphen. This directive is typically
soft, and is used to indicate that software
inserted a hyphen at the place it broke
the line.

DDIF$K_DIR_WORD_BREAK_POINT Identifies an embedded point at which
a word may be broken, if need be, for
justification.

DDIF$K_DIR_LEADERS Inserts leader characters according to
the current leader attribut&s.

DDIF$K_DIR_BACKSPACE Specifies that the first character following
this directive should be centered over
the last character imaged.

DDIF$K_NULL

DDIF$K_DIR_NO_HYPHEN_WORD

DDIF Structures
6.36 Layout Attributes

Suppresses the inheritance of the initial­
directive element of layout attributes.
This directive has no effect on imaging
or processing.

Suppresses hyphenation until the next
space character or space directive is
encountered.

• An optional galley selection item (type DDIF$_LL1_GALLEY_
SELECT) that forces the selection of a new layout galley by name.
This item is encoded as a string.

• An optional pre-segment break condition item (type DDIF$_LL1_
BREAK_BEFORE) that specifies the condition on which a break occurs
before the segment. This item is encoded as an enumeration. Valid
values are as follows:

DDIF$K_BREAK_ALWAYS Always break to a new galley or page

DDIF$K_BREAK_NEVER Never break to a new galley or page

DDIF$K_BREAK_IF _NEEDED The formatter can break to a new galley or page
at its discretion

• An optional in-segment break condition item (type DDIF$_LL1_
BREAK_ WITHIN) that specifies the condition on which a break occurs
within a segment. This item is encoded as an enumeration. Valid
values are as follows:

DDIF$K_BREAK_ALWAYS Always break to a new galley or page

DDIF$K_BREAK_NEVER Never break to a new galley or page

DDIF$K_BREAK_IF _NEEDED The formatter can break to a new galley or page
at its discretion

• An optional post-segment break condition item (type DDIF$_LL1_
BREAK_AFTER) that specifies the condition on which a break occurs
after the segment. This item is encoded as an enumeration. Valid
values are as follows:

DDIF$K_BREAK_ALWAYS Always break to a new galley or page

DDIF$K_BREAK_NEVER Never break to a new galley or page

DDIF$K_BREAK_IF _NEEDED The formatter can break to a new galley or page
at its discretion

• An optional initial indent indicator (type DDIF$_LL1_INITIAL_
INDENT_C) that specifies whether the initial indent value is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An optional initial indent item (type DDIF$_LL1_INITIAL_INDENT)
that specifies the distance added to the current left indent to determine
the minimum distance between the start of the path and the left
alignment point of the first character in the text layout path. This
item is encoded as a variable. The initial value is 0.

• An optional left indent indicator (type DDIF$_LL1_LEFT_INDENT_C)
that indicates whether the left indent value is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

6-89

DDIF Structures
6.36 Layout Attributes

6-90

• An optional left indent item (type DDIF$_LL1_LEFT_INDENT) that
specifies the distance added to the current left indent to create a new
left indent, which determines the minimum distance between the start
of the text layout path and the left alignment position of the first
character on every wrapped line. This item is encoded as a variable.
If no initial indent is specified, the left indent is used for the initial
indent. The initial value of the left indent is 0. Note that the left
indent inherited by a segment is the sum of the left indents specified
by its parent segments.

• An optional right indent indicator (type DDIF$_LL1_RIGHT_
INDENT_C) that indicates whether the right indent value is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An optional right indent item (type DDIF$_LL1_RIGHT_INDENT)
that specifies the distance added to the current right indent to
determine the new right indent, which is the minimum distance
between the end of the text path and the last character imaged along
the path. This item is encoded as a variable. The initial value of the
right indent is 0. Note that the right indent inherited by a segment is
the sum of the right indents specified by its parent segments.

• A space-before indicator (type DDIF$_LL1_SPACE_BEFORE_C) that
indicates whether the space-before value is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A space-before item (type DDIF$_LL1_SPACE_BEFORE) that specifies
the amount of space before the segment. This item is encoded as a
variable with a default value of 0.

• A space-after indicator (type DDIF$_LLl_SPACE_AFTER_C) that
indicates whether the space-after value is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A space-after item (type DDIF$_LL1_SPACE_AFTER) that specifies
the amount of space after the segment. This item is encoded as a
variable with a default value of 0.

• An optional leading ratio numerator item (type DDIF$_LL1_
LEADING_RATIO _N) that specifies the magnitude of the escapement
ratio to be used to increment or decrement the interline spacing in
layout. This item is encoded as an integer. This ratio specifies the
proportion of the normal line spacing used as "additional" line spacing.
For example, a leading ratio of 1:1 doubles the total line spacing, and
2:1 triples it.

• An optional leading ratio denominator item (type DDIF$_LL1_
LEADING_RATIO_D) that specifies the units of precision used in
the escapement ratio that is used to increment or decrement the
interline spacing in layout. This item is encoded as an integer.

• An optional leading constant indicator (type DDIF$_LL1_LEADING_
CONSTANT_C) that indicates whether the interline spacing value is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

6.37 Galley Attributes

DDIF Structures
6.36 Layout Attributes

• An optional leading constant item (type DDIF$_LLl_LEADING_
CONSTANT) that specifies the interline spacing value in the current
measurement units. This item is encoded as a variable.

• An optional tab stops item (type DDIF$_LL1_TAB_STOPS) that
specifies a sequence of fields along the current text path that cause
text between tab directives to become aligned within the fields. This
item is encoded as a sequence of DDIF$_TBS aggregates. For more
information on the DDIF$_TBS aggregate, see Section 6.41.

Table 6-45 lists all the items in the layout attributes aggregate and their
corresponding encodings.

Table 6-45 Layout Attributes 1 Aggregate (DDIF$_LL 1)

Item Name Item Encoding

DDIF$_LL 1_1NITIAL_DIRECTIVE Enumeration

DDIF$_LL 1_GALLEY _SELECT String

DDIF$_LL 1_BREAK_BEFORE Enumeration

DDIF$_LL 1_BREAK_WITHIN Enumeration

DDIF$_LL 1_BREAK_AFTER Enumeration

DDIF$_LL 1_1NITIAL_INDENT_C Measurement enumeration

DDIF$_LL 1_1NITIAL_INDENT Variable

DDIF$_LL 1 _LEFT _INDENT _C Measurement enumeration

DDIF$_LL 1_LEFT_INDENT Variable

DDIF$_LL 1_RIGHT_INDENT_C Measurement enumeration

DDIF$_LL 1_RIGHT _INDENT Variable

DDIF$_LL 1_SPACE_BEFORE_C Measurement enumeration

DDIF$_LL 1_SPACE_BEFORE Variable

DDIF$_LL 1_SPACE_AFTER_C Measurement enumeration

DDIF$_LL 1_SPACE_AFTER Variable

DDIF$_LL 1_LEADING_RATIO_N Integer

DDIF$_LL 1_LEADING_RATIO_D Integer

DDIF$_LL 1_LEADING_CONSTANT_C Measurement enumeration

DDIF$_LL 1_LEADING_CONSTANT Variable

DDIF$_LL 1_TAB_STOPS Sequence of DDIF$_TBS aggregates

The galley attributes aggregate (type DDIF$_GLA) lets you specify the
characteristics of a galley that can be acquired from a generic galley
definition or specified locally. This aggregate contains the following items:

• An optional galley top margin indicator (type DDIF$_GLA_TOP _
MARGIN_C) that indicates whether the top margin is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

6-91

DDIF Structures
6.37 Galley Attributes

6-92

• An optional galley top margin item (type DDIF$_GLA_TOP _MARGIN)
that specifies the distance from the top of the galley to the top of the
topmost text line or frame displayed in the galley. This item is encoded
as a variable. The initial value of this item is 0.

• An optional galley left margin indicator (type DDIF$_GLA_LEFT_
MARGIN_C) that indicates whether the left margin is specified as a
variable or constant value. This item is encoded as a measurement
enumeration.

• An optional galley left margin item (type DDIF$_GLA_LEFT_
MARGIN) that specifies the distance between the left side of the
galley and the left side of the text lines and frames displayed in the
galley. This item is encoded as a variable. The initial value of this
item is 0.

• An optional galley right margin indicator (type DDIF$_GLA_RIGHT_
MARGIN_C) that indicates whether the right margin is specified as
a variable or constant value. This item is encoded as a measurement
enumeration.

• An optional galley right margin item (type DDIF$_GLA_RIGHT_
MARGIN) that specifies the distance between the right side of the
galley and the right side of the text lines and frames displayed in the
galley. This item is encoded as a variable. The initial value of this
item is 0.

• An optional galley bottom margin indicator (type DDIF$_GLA_
BOTTOM_MARGIN_C) that indicates whether the bottom margin
is specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• An optional galley bottom margin item (type DDIF$_GLA_BOTTOM_
MARGIN) that specifies the distance from the bottom of the galley
to the bottom of the lowest text line or frame displayed in the galley.
This item is encoded as a variable. The initial value of this item is 0.

Table 6-46 lists all the items in the galley attributes aggregate and their
corresponding encodings.

Table 6-46 Galley Attributes Aggregate (DDIF$_GLA)

Item Name

DDIF$_GLA_ TOP _MARGIN_C

DDIF$_GLA_ TOP _MARGIN

DDIF$_GLA_LEFT_MARGIN_C

DDIF$_GLA_LEFT_MARGIN

DDIF$_GLA_RIGHT _MARGIN_C

Item Encoding

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

(continued on next page)

6.38 Page Description

DDIF Structures
6.37 Galley Attributes

Table 6-46 (Cont.) Galley Attributes Aggregate (DDIF$_GLA)

Item Name

DDIF$_GLA_RIGHT _MARGIN

DDIF$_GLA_BOTTOM_MARGIN_C

DDIF$_GLA_BOTTOM_MARGIN

Item Encoding

Variable

Measurement enumeration

Variable

The page description aggregate (type DDIF$_PGD) describes a page either
as a single page layout or as a set of page layouts with conditions under
which the different page layouts are used. A page layout is used when one
of the galleys on the page is given text content. Galleys are connected to
form a chain of successors used to format a flow of text. As each galley is
invoked, the page on which it is described is invoked.

The page description aggregate contains the following items:

• A page description label item (type DDIF$_PGD_LABEL) that specifies
the label by which the page description is referenced. This item is
encoded as a string.

• An optional private data item (type DDIF$_PGD_PRIVATE_DATA)
that allows for the inclusion of application-private data. This item
is encoded as a sequence of DDIF$_PVT aggregates. For more
information on the DDIF$_PVT aggregate, see Section 6.15.2.

• A page description indicator (type DDIF$_PGD_DESC_C) that
indicates whether the page description is actually a set of page layouts
or is a page layout defined for reference. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_PAGE_SET _DESC A description of a set of page layouts, one of
which is chosen based on the criteria presented
in the page set. In this case, the DDIF$_
PGD_DESC item is encoded as a sequence of
DDIF$_PGS aggregates.

DDIF$K_PAGE_LAYOUT A page layout description defined for reference
from content or from page set descriptions.
In this case, the DDIF$_PGD_DESC item
is encoded as the handle of a DDIF$_PGL
aggregate.

• A page description item (type DDIF$_PGD_DESC) that specifies the
actual page description to be used. This item is encoded as a variable.

Table 6-47 lists all the items in the page description aggregate and their
corresponding encodings.

6-93

6.39

DDIF Structures
6.38 Page Description

Page Layout

6-94

Table 6-47 Page Description Aggregate (DDIF$_PGD)

Item Name

DDIF$_PGD_LABEL

DDIF$_PGD_PRIVATE_DATA

DDIF$_PGD_DESC_C

DDIF$_PGD_DESC

Item Encoding

String

Sequence of DDIF$_PVT aggregates

Enumeration

Variable

The page layout aggregate (type DDIF$_PGL) describes a page, including
its size, the galleys on the page, and any content specific to that particular
page. The same page layout is shared by generic and specific layout.

The page layout aggregate contains the following items:

• A page layout identifier item (type DDIF$_PGL_LAYOUT_ID) that
specifies a label used to reference the page layout. This item is
encoded as a string.

• A page size nominal measure indicator (type DDIF$_PGL_SIZE_
X_NOM_C) that indicates whether the nominal x measurement is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• A page size nominal measure item (type DDIF$_PGL_SIZE_X_NOM)
that specifies the nominal x measurement. This item is encoded as a
variable.

• A page size x stretch indicator (type DDIF$_PGL_SIZE_X_STR_C) that
indicates whether the x stretch amount is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A page size x stretch item (type DDIF$_PGL_SIZE_X_STR) that
specifies the amount by which the x measurement can be extended.
This item is encoded as a variable.

• A page size x shrink indicator (type DDIF$_PGL_SIZE_X_SHR_C) that
indicates whether the x shrink amount is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A page size x shrink item (type DDIF$_PGL_SIZE_X_SHR) that
specifies the amount by which the x measurement can be contracted.
This item is encoded as a variable.

• A page size nominal measure indicator (type DDIF$_PGL_SIZE_
Y_NOM_C) that indicates whether the nominal y measurement is
specified as a variable or constant value. This item is encoded as a
measurement enumeration.

• A page size nominal measure item (type DDIF$_PGL_SIZE_Y_NOM)
that specifies the nominal y measurement. This item is encoded as a
variable.

DDIF Structures
6.39 Page Layout

• A page size y stretch indicator (type DDIF$_PGL_SIZE_Y_STR_C) that
indicates whether the y stretch amount is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A page size y stretch item (type DDIF$_PGL_SIZE_Y_STR) that
specifies the amount by which the y measurement can be extended.
This item is encoded as a variable.

• A page size y shrink indicator (type DDIF$_PGL_SIZE_Y_SHR_C) that
indicates whether the y shrink amount is specified as a variable or
constant value. This item is encoded as a measurement enumeration.

• A page size y shrink item (type DDIF$_PGL_SIZE_Y_SHR) that
specifies the amount by which the y measurement can be contracted.
This item is encoded as a variable.

• A page orientation item (type DDIF$_PGL_ORIENTATION) that
defines the orientation of the page relative to the height and width.
This item is encoded as an enumeration. Valid values are as follows:

DDIF$K_PORTRAIT _ORIENT Portrait orientation puts the y axis along the
height of the page.

DDIF$K_LANDSCAPE_ORIENT Landscape orientation puts they axis along
the width of the page.

• An optional page prototype item (type DDIF$_PGL_PROTOTYPE)
that specifies the label of the generic page description from which the
layout being defined was derived. This item is encoded as a string.
Any objects other than galleys in the page frame of the prototype
definition are imaged in the new page layout.

• An optional page content item (type DDIF$_PGL_CONTENT) that
must represent a frame whose origin is located at the lower lefthand
corner of the frame. This item is encoded as a sequence of content. A
sequence of content is a linked list of any of the following aggregate
types:

DDIF$_ARC DDIF$_BEZ DDIF$_CRF

DDIF$_EXT DDIF$_FAS DDIF$_GRP

DDIF$_GTX DDIF$_HRD DDIF$_1MG

DDIF$_LIN DDIF$_PVT DDIF$_SEG

DDIF$_SFT DDIF$_TXT

The DDIF$_PGL_CONTENT item contains the handle of the first
aggregate in the sequence of content aggregates. Page content can
reference definitions in the document content, but the document
content cannot reference definitions in the page content. All page
content coordinates are relative to the page coordinate system, but
frames can be nested in the page content.

Table 6-48 lists all the items in the page layout aggregate and their
corresponding encodings.

6-95

6.40

DDIF Structures
6.39 Page Layout

Page Select

6-96

Table 6-48 Page Layout Aggregate (DDIF$_PGL)

Item Name

DDIF$_PGL_LAYOUT _ID

DDIF$_PGL_SIZE_X_NOM_C

DDIF$_PGL_SIZE_X_NOM

DDIF$_PGL_SIZE_X_STR_C

DDIF$_PGL_SIZE_X_STR

DDIF$_PGL_SIZE_X_SHR_C

DDIF$_PGL_SIZE_X_SHR

DDIF$_PGL_SIZE_ Y _NOM_C

DDIF$_PGL_SIZE_ Y _NOM

DDIF$_PGL_SIZE_ Y _STR_C

DDIF$_PGL_SIZE_ Y _STR

DDIF$_PGL_SIZE_ Y _SHR_C

DDIF$_PGL_SIZE_ Y _SHR

DDIF$_PGL_ORIENTATION

DDIF$_PGL_PROTOTYPE

DDIF$_PGL_CONTENT

Item Encoding

String

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Enumeration

String

Sequence of content

The page selection aggregate (type DDIF$_PGS) consists of one or more
pages, one of which is selected based on the current formatting state. Each
page selection aggregate consists of a pointer to a page in the list of page
layouts, and the criteria that cause that particular page in the set to be
selected.

The page select aggregate contains the following items:

• A page-side criteria item (type DDIF$_PGS_PAGE_SIDE_CRITERIA)
that specifies the criteria for the side of the page that must be
satisfied to use this page layout description. This item is encoded
as an enumeration. Valid values are as follows:

DDIF$K_LEFT _PAGE

DDIF$K_RIGHT_PAGE

DDIF$K_EITHER_PAGE

Used for left-hand pages when two pages are side
by side. A page set that contains a left page must
also contain a right page, and cannot contain a page
specified as either page.

Used for right-hand pages when two pages are side
by side. A page set that contains a right page must
also contain a left page, and cannot contain a page
specified as either page.

The same page description is used for either left or
right pages.

The default is DDIF$K_EITHER_PAGE.

6.41 Tab Stop

DDIF Structures
6.40 Page Select

• A select page layout indicator (type DDIF$_PGS_SELECT_PAGE_
LAYOUT_C) that indicates whether the selected page layout is
specified by label or by definition. This item is encoded as an
enumeration. Valid values are as follows:

DDIF$K_SELECT _BY _LABEL Selects a page layout by specifying the label.
In this case, the DDIF$_PGS_SELECT _
PAGE_LAYOUT item is encoded as a string.

DDIF$K_SELECT _BY _DEFN Selects a page layout by specifying its
definition. In this case, the DDIF$_PGS_
SELECT_PAGE_LAYOUT item is encoded as
the handle of a DDIF$_PGL aggregate.

• A select page layout item (type DDIF$_PGS_SELECT_PAGE_
LAYOUT) that specifies the selected page layout. This item is encoded
as a variable.

Table 6-49 lists the items in the page select aggregate and their
corresponding encodings.

Table 6-49 Page Select Aggregate (DDIF$_PGS)

Item Name

DDIF$_PGS_PAGE_SIDE_CRITERIA

DDIF$_PGS_SELECT _PAGE_LAYOUT _C

DDIF$_PGS_SELECT _PAGE_LAYOUT

Item Encoding

Enumeration

Enumeration

Variable

The tab stop aggregate (type DDIF$_TBS) defines a set of fields along a
text path. The tab stop measurements are always relative to the current
path. A tab directive selects the next tab stop beyond the current text
position in the current text direction. If no further tab stops are defined,
the tab settings are repeated by adding the position of the last tab to each
of the defined tab stops. All tab stops are relative to the beginning of the
current path as defined by a galley or a string layout.

The tab stop aggregate contains the following items:

• A tab stop horizontal position indicator (type DDIF$_TBS_
HORIZONTAL_POSITION_C) that indicates whether the horizontal
position of the tab stop is specified as a variable or constant value.
This item is encoded as a measurement enumeration.

• A tab stop horizontal position item (type DDIF$_TBS_HORIZONTAL_
POSITION) that specifies the position of the tab stop relative to the
origin of the current text path. This item is encoded as a variable.

• A tab stop type item (type DDIF$_TBS_TYPE) that specifies the type
of tab stop alignment. This item is encoded as an enumeration and
accepts any one of the following values:

6-97

DDIF Structures
6.41 Tab Stop

6-98

DDIF$K_LEFT_ TAB

DDIF$K_CENTER_ TAB

DDIF$K_RIGHT_ TAB

DDIF$K_DECIMAL_ TAB

The characters in the tab field are positioned with
the left alignment point of the first character at the
tab position.

The character following the tab directive is
positioned such that the center alignment point
is on the horizontal position of the tab stop.

The string of characters is positioned such that the
right alignment point of the last character is on the
position of the right tab.

The first decimal point character subsequent to
the tab directive is positioned such that the center
alignment point of that character is at the horizontal
position of the tab stop.

The default tab type is DDIF$K_LEFT_TAB.

• An optional tab stop leader item (type DDIF$_TBS_LEADER) that
specifies an optional leader character to appear repeatedly between the
tab directive in the document text and the character following the tab
directive. This item is encoded as a character string.

If no leader character is specified, none appears after that tab. The
leader character is presented in the typeface and size attributes of the
segment in which the tab directive occurs. Only one character can be
specified.

Table 6-50 lists all the items in the tab stop aggregate and their
corresponding encodings.

Table 6-50 Tab Stop Aggregate (DOif$_ TBS)

Item Name

DDIF$_ TBS_HORIZONTAL_POSITION_C

DDIF$_ TBS_HORIZONTAL_POSITION

DDIF$_ TBS_ TYPE

DDIF$_ TBS_LEADER

Item Encoding

Measurement enumeration

Variable

Enumeration

Character string

CDA Reference Section
This section provides detailed discussions of the routines provided by the
Compound Document Architecture toolkit.

CDA$AGGREGATE_ TYPE_ TO_ OBJECT _ID

CDA$AGGREGATE_ TYPE_ TO_ OBJECT _ID
AGGREGATE TYPE TO OBJECT ID

FORMAT

RETURNS

ARGUMENTS

Translates a root aggregate type to an object identifier.

CDA$AGGREGATE_ TYPE_ TO_ OBJECT _ID
aggregate-type ,but-Jen ,buf-adr
,nam-len ,nam-buf, act-nam-len ,act-fen

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Type of the aggregate being translated. The aggregate-type argument is
the address of an unsigned longword that specifies the root aggregate type.
The root aggregate type must be DDIF$_DDF.

but-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the object identifier buffer. The buf-len argument is
the address of an unsigned longword that specifies this buffer length.

buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of the object identifier. The buf-adr argument is the
address of an unsigned longword that receives the address of an array of
unsigned longwords that contains the object identifier.

nam-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

CDA-3

CDA$AGGREGATE_ TYPE_ TO_ OBJECT _ID

Length (in bytes) of the domain name buffer. The nam-len argument
is the address of an unsigned longword that contains the domain name
buffer length.

nam-buf
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference, array reference
Receives the address of the domain name buffer. The nam-buf argument
is the address of an unsigned longword that receives the address of the
domain name buffer.

act-nam-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the domain name in the nam-buf
buffer. The act-nam-len argument is the address of an unsigned longword
that receives this length.

act-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the object identifier. The act-len
argument is the address of an unsigned longword that receives the object
identifier length.

DESCRIPTION The AGGREGATE TYPE TO OBJECT ID routine translates a root
aggregate type to an object identifier.

CONDITION
VALUES
RETURNED

CDA-4

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVBUFLEN

Normal successful completion.

Invalid aggregate type.

Invalid buffer length.

CDA$CLOSE_FILE

CDA$CLOSE_FILE CLOSE FILE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

Closes the specified compound document file and stream. In the case of an
output file, the CLOSE FILE routine writes any buffered data before closing
the file and stream.

CDA$CLOSE_FILE stream-handle ,file-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Handle of the stream to be closed. The stream-handle argument is the
address of an unsigned longword containing this stream handle. This
handle is returned by a call to either the OPEN FILE routine or the
CREATE FILE routine.

file-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Handle of the file to be closed. The file-handle argument is the address of
an unsigned longword containing this file handle. This handle is returned
by a call to either the OPEN FILE routine or the CREATE FILE routine.

The CLOSE FILE routine closes the specified stream and compound
document file. In the case of an output stream, this routine writes out any
buffered data before closing the stream. Note that the stream-handle
and file-handle handles are invalid after a call to this routine.

CDA$_NORMAL Normal successful completion.

Any error returned by the memory deallocation routines.

Any error returned by the file routines.

CDA-5

CDA$CLOSE_FILE

EXAMPLE

CDA-6

/* output to a DDIF file */
printf("Writing document ... \n");

status= cda$put document(&root aggregate handle, &stream handle);
if (FAILURE(status)) return(status); -

status= cda$close file(&stream handle, &file handle);
if (FAILURE(status)) return(status); -

status= cda$delete root aggregate(&root aggregate handle);
if (FAILURE(status)) return(status); - -

This example illustrates a typical call to the CLOSE FILE routine. The
entire document is written to the output file prior to a call to the CLOSE
FILE routine. After the file has been closed, the document root aggregate
is deleted.

CDA$CLOSE_STREAM

CDA$CLOSE_STREAM CLOSE STREAM

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

Closes an open compound document stream.

CDA$CLOSE_STREAM stream-handle

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Handle of the stream to be closed. The stream-handle argument is the
address of an unsigned longword containing this stream handle. This
handle is returned by a call to either the OPEN STREAM routine or the
CREATE STREAM routine.

The CLOSE STREAM routine closes an open compound document stream.
In the case of an output stream, the CLOSE STREAM routine writes out
any buffered data before closing the stream. Note that the stream-handle
argument is invalid after a call to this routine.

CDA$_NORMAL Normal successful completion.

Any error returned by the memory deallocation routines.

CDA-7

CDA$CLOSE_ TEXT _FILE

CDA$CLOSE_ TEXT _FILE CLOSE TEXT FILE

FORMAT

RETURNS

ARGUMENT

Closes a text file.

CDA$CLOSE_ TEXT _FILE text-file-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

text-file-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the text file to be closed. The text-file-handle argument is
the address of an unsigned longword containing this text file handle. This
handle is returned by a call to either the CREATE TEXT FILE routine or
the OPEN TEXT FILE routine.

DESCRIPTION The CLOSE TEXT FILE routine closes a text file. The text-file-handle is
invalid after a call to this routine.

CONDITION
VALUES
RETURNED

CDA-8

CDA$_NORMAL Normal successful completion.

Any error returned by the memory deallocation routines.

Any error returned by the file routines.

CDA$CONVERT

CDA$CONVERT CONVERT

FORMAT

RETURNS

ARGUMENTS

Lets the user perform document conversion from within an application. This
includes beginning, continuing, or discontinuing the conversion of a document.

CDA$CONVERT function-code ,standard-item-list
,private-item-list ,converter-context

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

function-code
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Symbolic constant that identifies the function to be performed. The
function-code argument is the address of an unsigned longword that
contains this symbolic constant. These symbolic constant values are
defined in the file CDA$DEF.SDL. Valid values are as follows:

CDA$_START
Start conversion. This function code must be specified to begin a document
conversion.

CDA$_CONTINUE
Continue a conversion that was suspended. This function code may only
be specified if a previous call to the CONVERT routine returned the
value CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to the
CONVERT routine, either CDA$_CONTINUE or CDA$_STOP must be
specified so that resources locked by the conversion are released.

CDA$_STOP
Discontinue a conversion that was suspended. This function code may
only be specified if the previous call to the CONVERT routine returned
the value CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to
the CONVERT routine, either CDA$_STOP or CDA$_CONTINUE must be
specified so that resources locked by the conversion are released.

standard-item-list
VMS usage: item_list_2
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

CDA-9

CDA$CONVERT

An item list that identifies the document source and destination, and
can also contain options to control processing. The standard-item-list
argument is the address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length 0

CDA-10

buffer address 4

To terminate the item list, you must specify the final entry or longword as
0. The standard-item-list argument is only valid when function-code is
set to CDA$_START; otherwise, standard-item-list is ignored. Valid code
values for the items in the standard-item-list are as follows:

CDA$_1NPUT_FORMAT
The parameter is the address and length of a string that specifies the
input document format.

CDA$ _INPUT _FRONT_ END _PROCEDURE
The parameter is the address of the front end module's main entry point,
DDIF$READJormat. The term format in the entry point name refers to
the name of the specific document format that is read by this front end.

The item-list length field for this item must be set to 0. This item enables
a caller to provide a front end that is part of the calling application rather
than a separate image. If this item code is used, the CDA$_INPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the front end.

CDA$_1NPUT_FILE
The parameter is the address and length of the file specification of the
input document.

CDA$_1NPUT _DEFAULT
The parameter is the address and length of a string that specifies the
default input file type. To simplify the porting of applications to other
operating systems, the string should consist only of a file type in lowercase
characters. If this parameter is omitted, the front end must supply an
appropriate backup default file specification.

CDA$_1NPUT_PROCEDURE
The parameter is the address of a procedure to provide input. The item­
list length field must be set to 0. The input procedure must conform to the
requirements for a user get routine. The calling sequence for a user get
routine is defined in the Description section of this routine.

CDA$_1NPUT_PROCEDURE_PARM
The parameter is the address of a longword parameter to the input
procedure. The item-list length field must be set to 4.

CDA$CONVERT

CDA$ _INPUT _POSITION _PROCEDURE
The parameter is the address of a procedure that provides position
information. The item-list length field must be set to 0. The get-position
procedure is specified in the description of the OPEN CONVERTER
routine.

CDA$_1NPUT_ROOT_AGGREGATE
The parameter is the address of a longword root aggregate handle that
specifies an in-memory input document. The item-list length field must
be set to 4. The in-memory structure, except for the root aggregate itself,
is erased by this operation. Note that the root aggregate must specify
standard memory allocation.

CDA$_0UTPUT_FORMAT
The parameter is the address and length of a string that specifies the
output document format.

CDA$_0UTPUT_BACK_END_PROCEDURE
The parameter is the address of the back end module's main entry point,
DDIF$WRITEJormat. The term format in the entry point name refers to
the name of the specific document format that is written by this back end.

The item-list length field must be set to 0. This item enables a caller to
provide a back end that is part of the calling application rather than a
separate image. If this item code is used, the CDA$_0UTPUT_FILE item
can be used to pass any information (not necessarily a file specification) to
the back end.

CDA$_0UTPUT_FILE
The parameter is the address and length of the file specification of the
output document.

CDA$_0UTPUT_DEFAULT
The parameter is the address and length of a string that specifies the
default output file type. To simplify the porting of applications to other
operating systems, the string should consist only of a file type in lowercase
characters. If this parameter is omitted, the back end must supply an
appropriate backup default file specification.

CDA$_0UTPUT_PROCEDURE
The parameter is the address of a procedure to receive output. The item­
list length field must be set to 0. The output procedure must conform to
the requirements for a user put routine. The calling sequence for a user
put routine is defined in the Description section of this routine.

CDA$_0UTPUT_PROCEDURE_PARM
The parameter is the address of a longword parameter to the output
procedure. The item-list length field must be set to 4.

CDA$_0UTPUT_PROCEDURE_BUFFER
The parameter is the address and length of the initial output buffer for
the output procedure.

CDA-11

CDA$CONVERT

DESCRIPTION

CDA-12

CDA$_0UTPUT_ROOT_AGGREGATE
The parameter is the address of a longword root aggregate handle that
receives an in-memory output document. The item-list length field must
be set to 4. The root aggregate must be empty, and must specify standard
memory allocation.

CDA$_0PTIONS_FILE
The parameter is the address and length of the file specification of an
options file that contains options to control processing. The default file
type is CDA$0PTIONS. Each line of the file specifies a format name,
which can contain upper- and lowercase alphabetic characters, digits,
dollar signs, and underscores, optionally preceded by spaces and tabs,
and terminated by any character other than those listed. Alphabetic case
is not significant. The syntax and interpretation of the text that follows
the format name is specified by the supplier of the front and back ends
for the specified format. Multiple lines that specify the same format are
permitted.

private-item-list
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference
A private item list that is passed directly to the output converter module
that is invoked. The private-item-list argument is the address of this
private item list. The specification of this item list is the responsibility
of the particular back end. Its purpose is to provide for direct two-way
communication between the caller of the CONVERT routine and the back
end.

converter-context
VMS usage: context
type: longword (unsigned)
access: read only or write only
mechanism: by reference
If function-code is set to CDA$_START, this argument receives a value
that must be specified as the converter-context parameter when the
CONVERT routine is called with CDA$_CONTINUE or CDA$_STOP as
the function code. The converter-context argument is the address of an
unsigned longword that either receives or specifies the converter context.
This value is invalidated when the CONVERT routine returns a status
other than CDA$_SUSPEND.

The CONVERT routine lets you perform document conversion from within
an application. This includes beginning, continuing, or discontinuing the
conversion of a document.

To specify the input and output information, and any processing options
files, you should construct an item list with the appropriate fields as
specified in the description of the standard-item-list argument. Note
that the standard-item-list argument is only valid when function-code
is set to CDA$_START. The following restrictions apply when you are
constructing the standard-item-list:

CDA$CONVERT

• Either the CDA$_INPUT_FORMAT item or the CDA$_INPUT_
FRONT_END_PROCEDURE item, but not both, can be specified
once in the item list. If neither is specified, the default input format is
DDIF.

• The CDA$_INPUT_FILE item, the CDA$_INPUT_PROCEDURE item,
or the CDA$_INPUT_ROOT_AGGREGATE item must be specified once
in the item list. If the CDA$_INPUT_PROCEDURE item is specified,
the CDA$_INPUT_PROCEDURE_PARM item can also be specified
once.

• Either the CDA$_0UTPUT_FORMAT item or the CDA$_0UTPUT_
BACK_END _PROCEDURE item, but not both, can be specified once in
the item list. If neither is specified, the default output format is DDIF.

• The CDA$_0UTPUT_FILE item, the CDA$_0UTPUT_PROCEDURE
item, or the CDA$_0UTPUT_ROOT_AGGREGATE item must be
specified once in the item list. If the CDA$_0UTPUT_PROCEDURE
item is specified, the CDA$_0UTPUT_PROCEDURE_PARM item
and the CDA$_0UTPUT_PROCEDURE_BUFFER item can each be
specified once.

• The CDA$_0PTIONS_FILE item can only be specified once in the item
list.

Call Format for User Get Routines

The get-rtn and get-prm arguments are used to invoke a user stream get
routine, and to supply an argument to that routine. The call format for
this user routine is as follows:

get-rtn get-prm ,num-bytes ,buf-adr

get-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The get-prm argument contains the value of the
parameter to be passed to the user get routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the number of bytes contained in the buffer. The num-bytes
argument is the address of an unsigned longword that receives this
number. The number of bytes is zero if and only if the stream does not
contain any more data.

buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

CDA-13

CDA$CONVERT

CDA-14

Receives the address of the buffer. The buf-adr argument is the address
of an unsigned longword that receives the buffer address.

Call Format for User Put Routines

The put-rtn and put-prm arguments are used to invoke a user stream
put routine, and to supply an argument to that routine. The call format
for this user routine is as follows:

put-rtn put-prm ,num-bytes ,buf-adr ,next-buf-len ,next-buf-adr

put-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The put-prm argument is the value of the
parameter to be passed to the user put routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Number of bytes contained in the buffer. The num-bytes argument is the
address of an unsigned longword that contains this value.

buf-adr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference
Address of the buffer. The buf-adr argument is the address of an array of
unsigned bytes.

next-buf-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the length of the buffer specified by next-buf-adr. The next­
buf-len argument is the address of an unsigned longword that receives
this length.

next-buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of a buffer that will receive further output data.
The next-buf-adr argument is the address of an unsigned longword that
receives this address. Next-buf-adr may simply be the current buffer, or
a different buffer.

CDA$CONVERT

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its caller; if the low bit of the return value is set, the caller continues
execution.

Front End Module

The DDIF$READJormat routine executes a compound document
conversion from a specified input format to the CDA in-memory format.
The term format in the entry point name refers to the name of the
compound document format that is read by this front end.

Each front end must supply the DDIF$READJormat entry point. As
described in the CDA$_INPUT_PROCEDURE item list discussion, the
procedure address for the front end may be specified as a parameter to the
CONVERT routine. Otherwise, on VMS systems, the front end must be a
universal symbol in a shareable image named SYS$SHARE:DDIF$READ_
format.EXE.

The call format for a front end is as follows:

DDIF$READ _format standard-item-list
,converter-context , front-end-context
,get-aggregate-procedure ,get-position-procedure
,close-procedure

standard-item-list
VMS usage: item_list_2
type: record
access: read only
mechanism: by reference, array reference
An item list that identifies the document source and can also contain
options to control processing. The standard-item-list argument is the
address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length

buffer address

0

4

To terminate the item code you must specify the final entry or longword
as 0. The standard-item-list argument is only valid when the function­
code argument is set to CDA$_START; otherwise, standard-item-list is
ignored. Valid code values for the items in the standard-item-list are as
follows:

CDA-15

CDA$CONVERT

CDA-16

CDA$_1NPUT_FILE
The parameter is the address and length of the file specification of the
input document.

CDA$_1NPUT_DEFAULT
The parameter is the address and length of a string that specifies the
default input file type. To simplify the porting of applications, the string
should consist of only a file type in lowercase characters. If this parameter
is omitted, a front end must supply an appropriate backup default file
specification.

CDA$_1NPUT_PROCEDURE
The parameter is the address of a procedure to provide input. The item­
list length field must be set to 0. The input procedure must conform to the
requirements for a user get routine. The calling sequence for a user get
routine is defined in the Description section of this routine.

CDA$_1NPUT_PROCEDURE_PARM
The parameter is the address of a longword parameter to the input
procedure. The item-list length field must be set to 4.

CDA$_PROCESSING_OPTION
The parameter is the address and length of a string that contains an
option to control processing. The format name and leading spaces and tabs
have been removed from the string. This item code may occur more than
once in the item list.

Either the CDA$_INPUT_FILE item or the CDA$_INPUT_PROCEDURE
item, but not both, must occur once in the item list. If the CDA$_
INPUT_PROCEDURE item occurs, then a single value for CDA$_INPUT_
PROCEDURE_PARM can also be specified.

converter-context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Converter context required to call the OPEN CONVERTER routine. The
converter-context argument is the address of an unsigned longword that
contains this context.

front-end-context
VMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a front-end-defined value that identifies this particular front end.
The front-end-context argument is the address of an unsigned longword
that receives this context. This value is returned to the get-aggregate­
procedure and the close-procedure arguments described below. All
writable memory used by the input converter module must be allocated
from dynamic memory and located by reference to this value.

CDA$CONVERT

get-aggregate-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the get-aggregate routine. The get-aggregate­
procedure argument receives the address of this procedure entry mask.
The calling sequence for the get-aggregate routine is described in the
Description section of this routine.

get-position-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the get-position routine. The get-position­
procedure argument receives the address of this procedure entry
mask. The calling sequence for the get-position routine is described in
the Description section of this routine.

close-procedure
VMS usage: procedure
type: procedure entry mask
access: write only
mechanism: by reference
Receives the address of the close routine. The close-procedure argument
receives the address of this procedure entry mask. The calling sequence
for the close routine is described in the Description section of this routine.

The possible status codes that DDIF$READJormat can return are either
CDA$_NORMAL, or any input converter-specific error conditions.

Call Format for Get-Aggregate Procedure

The get-aggregate procedure returns the handle and type of the next
aggregate in the document to the converter kernel. For more information
on the function of a get-aggregate procedure, see Chapter 5.

The call format for the get-aggregate procedure is as follows:

get-aggregate-procedure front-end-context ,aggregate-handle

front-end-context
VMS usage: context

,aggregate-type

type: longword (unsigned)
access: read only
mechanism: by reference
Context returned from DDIF$READJormat. The front-end-context
argument is the address of an unsigned longword that contains this
context.

CDA-17

CDA$CONVERT

CDA-18

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the created and populated aggregate. The
aggregate-handle argument is the address of an unsigned longword
that receives this aggregate handle. This handle must be used in all
subsequent operations on that aggregate.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. If
the aggregate is of type DDIF$_EOS (end of segment), aggregate-handle
is 0.

The possible status codes that a get-aggregate procedure can return are as
follows:

CDA$_NORMAL

CDA$_ENDOFDOC

Normal successful completion.

End of document.

A get-aggregate procedure can also return any front end-specific error
conditions. Note that the get-aggregate procedure must return the status
CDA$_ENDOFDOC when the document has been completely transferred.

Call Format for a User Get-Position Procedure

The user get-position routine returns the current position in and total size
of the current data stream. The call format for this routine is as follows:

get-position-procedure front-end-handle ,stream-position
,stream-size

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end performing document processing. The front­
end-handle argument is the address of an unsigned longword that
contains this handle. The front end handle is returned by DDIF$READ_
format.

stream-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

CDA$CONVERT

stream-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

Call Format for a User Close Procedure

The close procedure terminates the operation of a front end by closing
all open files and releasing all dynamic memory and other resources that
have been allocated by the particular front end identified by front-end­
context.

The call format for a close procedure is as follows:

close-procedure front-end-context

front-end-context
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Context returned from DDIF$READJormat. The front-end-context
argument is the address of an unsigned longword that contains this
context.

The possible status codes that a close procedure can return are either
CDA$_NORMAL, or any front end-specific error conditions.

Back End

The DDIF$WRITEJormat procedure executes a document conversion from
the DDIF in-memory format to a specified output format. The term format
in the entry point name refers to the name of the document format that is
written by this back end.

Each back end must supply the DDIF$WRITEJormat entry point. As
described in the CDA$_0UTPUT_PROCEDURE item list discussion,
the procedure address for the back end may be specified as a
parameter to the CONVERT routine. Otherwise, on VMS systems,
the back end must be a universal symbol in a shareable image named
SYS$SHARE:DDIF$WRITEJormat.EXE.

The call format for a back end is as follows:

DDIF$WRITE_format function-code
,standard-item-list ,private-item-list
, front-end-handle ,back-end-context

function-code
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

CDA-19

CDA$CONVERT

Symbolic constant that identifies the function to be performed. The
function-code argument is the address of an unsigned longword that
contains this symbolic constant. These constant values are defined in
module CDA$DEF.SDL. Valid values are as follows:

CDA$_START
Start conversion. This function code must be specified to begin a document
conversion.

CDA$_CONTINUE
Continue a conversion that was suspended. This function code can only
be specified if a previous call to DDIF$WRITEJormat returned the value
CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to the back
end, either CDA$_CONTINUE or CDA$_STOP must be specified so that
resources locked by the conversion can be released.

CDA$_STOP
Discontinue a conversion that was suspended. This function code can
only be specified if the previous call to the back end returned the value
CDA$_SUSPEND. If CDA$_SUSPEND is returned by a call to the back
end, either CDA$_STOP or CDA$_CONTINUE must be specified so that
resources locked by the conversion can be released.

standard-item-list
VMS usage: item_list_2
type: record
access: read only
mechanism: by reference, array reference
An item list that identifies the document destination and can also contain
options to control processing. The standard-item-list argument is the
address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length 0

CDA-20

buffer address 4

To terminate the item list, you must specify the final entry or longword
as 0. The standard-item-list argument is only valid when the function­
code argument is set to CDA$_START; otherwise, standard-item-list is
ignored. Valid code values for the items in the standard-item-list are as
follows:

CDA$_0UTPUT_FILE
The parameter is the address and length of the file specification of the
output document.

CDA$_0UTPUT_DEFAULT
The parameter is the address and length of the default file specification
of the output document. If this parameter is omitted, the back end must
supply an appropriate backup default file specification.

CDA$CONVERT

CDA$_0UTPUT_PROCEDURE
The parameter is the address of a procedure to receive output. The item­
list length field must be set to 0. The output procedure must conform to
the requirements for a user put routine. The calling sequence for a user
put routine is defined in the Description section of this routine.

CDA$_0UTPUT_PROCEDURE_PARM
The parameter is the address of a longword parameter to the output
procedure. The item-list length field must be set to 4.

CDA$_0UTPUT_PROCEDURE_BUFFER
The parameter is the address and length of the initial output buffer for
the output procedure.

CDA$_PROCESSING_OPTION
The parameter is the address and length of a string that contains options
to control processing. The format name and leading spaces and tabs have
been removed from the string. This item code can occur more than once in
the item list.

Either the CDA$_0UTPUT_FILE item or the CDA$_0UTPUT_
PROCEDURE item, but not both, must occur once in the item list. If
you specify the CDA$_0UTPUT_PROCEDURE item, then you can also
specify a single value for both the CDA$_0UTPUT_PROCEDURE_PARM
item and the CDA$_0UTPUT_PROCEDURE_BUFFER item.

private-item-list
VMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference
A private item list that is passed directly to the back end that is invoked.
The private-item-list argument is the address of this private item list.
The specification of this item list is the responsibility of the back end. Its
purpose is to provide for direct 2-way communication between the caller of
the CONVERT routine and the back end.

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end that processes the document content. The
front-end-handle argument is the address of an unsigned longword that
contains this front end handle. This identifier is passed to the CONVERT
DOCUMENT routine or the CONVERT AGGREGATE routine.

back-end-context
VMS usage: context
type: longword (unsigned)
access: read only or write only
mechanism: by reference
When function-code is set to CDA$_START, this argument receives a
value defined by the back end that identifies this particular instance of the
back end. The back-end-context argument is the address of an unsigned

CDA-21

CDA$CONVERT

CONDITION
VALUES
RETURNED

EXAMPLE

longword that either receives or specifies the converter context. This
value will be returned to DDIF$WRITEJormat for the functions CDA$_
CONTINUE and CDA$_STOP. If a back end returns CDA$_SUSPEND, all
writable memory used by the back end must be allocated from dynamic
memory and located by reference to this value.

The possible status codes that DDIF$WRITEJormat can return are as
follows:

CDA$_NORMAL

CDA$_SUSPEND

CDA$_1NVFUNCOD

CDA$_1NVITMLST

CDA$_UNSUPFMT

Normal successful completion.

Converter is suspended.

Invalid function code.

Invalid item list.

Unsupported document format.

Back ends can also return any error returned by the specific back end, or
any error returned by the specific front end.

CDA$_NORMAL

CDA$_SUSPEND

CDA$_UNSUPFMT

Normal successful completion.

Converter is suspended.

Unsupported document format.

Any error conditions returned by the specific front end.

Any error conditions returned by the specific back end.

I* TEXT CONV - test callable converter interface for DDIF
* and TEXT converters.
*/

#ifdef vms
#include <cda$def.h>
#include <cda$msg.h>
#include <fab.h>
#include <rab.h>
#include <rmsdef.h>
#else
#include <cda def. h>
#include <cda_msg.h>
#include <sys/file.h>
#endif

#define FAILURE(x)

#define text ubf size

#ifdef vms
struct FAB text -
struct RAB text -
#else
struct urab text -
#endif
unsigned char text -

(((x) &

2048

fab;
rab;

rab;

ubf [text

1) 0)

ubf size]; -
static unsigned char ddif_format[] = "DDIF";
static unsigned long ddif_format_length = sizeof (ddif_format) - 1;

CDA-22

CDA$CONVERT

static unsigned char text format [] = "TEXT";
static unsigned long text_format_length = sizeof (text format) --
static unsigned char text file [] = "text";

-
static unsigned long text file _length - = sizeof(text file) - 1; -
static unsigned char text - default [] = II .txt";
static unsigned long text default _length = sizeof (text default) - -
static unsigned char ddif file[] = "output";

-
static unsigned long ddif file _length = sizeof(ddif file) - 1; - -
static unsigned char ddif default [] = II• ddif"; -
static unsigned long ddif default _length = sizeof(ddif default) - -
unsigned long input_text_procedure(get_prm, num_bytes, buf_adr)
#ifdef vms
struct RAB *get _prm;
#else
struct urab *get_prm;
#endif
unsigned long *num_bytes;
unsigned char **buf adr; -
{
unsigned long status;

#ifdef vms

#else

status= sys$get(get_prm);
if (FAILURE(status))

{

if (status == RMS$ EOF)
status = CDA$_ENDOFDOC;

return status;
}

*num_bytes = get_prm->rab$w_rsz;
*buf adr = get_prm->rab$l_rbf;
return status;

unsigned long buffer_length;

1;

- 1;

- 1;

status= fgets(get_prm->fil_buffer, get_prm->fi~_buflen, get_prm->fs);
if (status == NULL)
{

*num bytes = 0;
return CDA$_ENDOFDOC;

buffer_length = strlen(get_prm->fil_buffer);
/* if ((get_prm->fil_buffer) [buffer_length-1] '\n')

#endif
}

main()
{

*num bytes buffer length - 1;
else */ - -

*num_bytes buffer_length;
*buf_adr = get_prm->fil_buffer;
return CDA$_NORMAL;

unsigned long status;
unsigned long text parameter;
struct item_list standard_item_list[15];
unsigned long integer value;
unsigned long index;
unsigned char text_filename[8];

printf ("Starting TEXT to DDIF procedure conversion\n");

CDA-23

CDA$CONVERT

#ifdef vms

#else

#endif

CDA-24

/* Open input text file */
text_fab = cc$rms_fab;
text rab = cc$rms rab;
text-fab.fab$1 fna text file;
text:fab.fab$b=fns text=file_length;
text_fab.fab$l_fop FAB$M_SQO;
text_fab.fab$b_rfm FAB$C_VAR;
text_fab.fab$l_dna text_default;
text_fab.fab$b_dns text_default_length;
text rab.rab$1 fab &text fab;
text:rab.rab$l:rop RAB$M=LOC I RAB$M_RAH;
text_rab.rab$l_ubf text_ubf;
text rab.rab$w_usz text_ubf_size;

status= sys$open(&text_fab);
if (FAILURE(status)) return status;
status= sys$connect(&text_rab);
if (FAILURE(status))

{

sys$close(&text fab);
return status;

strcpy(text filename, text_file);
strcat(text_filename, text_default);
text filename[text file length+ text_default_length] 0;
text:rab.fil_buffer &text_ubf;
text_rab.fil_buffer = &text_ubf;
text_rab.fil_buflen = text_ubf_size;
text_rab.fs = fopen(text_filename, "r");
if (text_rab.fs NULL) return CDA$_0PENFAIL;

/* Setup for conversion */
text_parameter = (unsigned long) &text rab;

integer_value = CDA$_START;

I* Input conversion parameters */
index = 0;
standard item list[index] .cda$w item length= text format length;
standard-item-list[index] .cda$w-item-code = CDA$ INPUT FORMAT;
standard=item=list[index] .cda$a=item:address = (char*) &text format;
index += 1;
standard_item_list[index] .cda$w_item_length = 0;
standard item list[index] .cda$w item code= CDA$ INPUT PROCEDURE;
standard=item=list[index] .cda$a=iterrCactdress = (char*)

&input_text_procedure;
index += 1;
standard_item_list[index] .cda$w_item_length = 4;
standard_item_list[index] .cda$w_item_code = CDA$ INPUT_PROCEDURE_PARM;
standard_item_list[index] .cda$a_item_address = (char*)

&text_parameter;
index += 1;

CDA$CONVERT

I* Output conversion parameters */
standard item list[index] .cda$w item length= ddif format length;
standard-item-list[index] .cda$w-item-code = CDA$ OUTPUT FORMAT;
standard-item-list[index] .cda$a-item-address = (char *)-&ddif format;
index +=-1; - - - -
standard item list[index] .cda$w item length= ddif file length;
standard-item-list[index] .cda$w-item-code = CDA$ OUTPUT-FILE;
standard-item-list[index] .cda$a-item-address = (char *)-&ddif file;
index +=-1; - - - -
standard item list[index] .cda$w item length= ddif default length;
standard-item-list[index] .cda$w-item-code = CDA$ OUTPUT DEFAULT;
standard-item-list[index] .cda$a-item-address = (char *)-&ddif default;
index +=-1; - - - -

standard item list[index] .cda$w item length= 0;
standard=item=list[index] .cda$w=item=code = O;

/* Perform the conversion */
status= cda$convert(&integer value, standard item list, O,

&integer=value); - -
if (FAILURE(status))
return (status);

#ifdef vms

#else

#end if

/* Close the input file */
status= sys$close(&text fab);
if (FAILURE(status)) return status;

fclose(text_rab.fs);

printf ("Completed TEXT to DDIF procedure conversion\n");

This example illustrates the use of the CONVERT routine to invoke the
DDIF and Text converters. To compile this program, you must use the
following DCL commands:

$ CC /INCLUDE=DDIF$LIB SRC: -
$ /OPTIMIZE=NODISJOINT -

-$ /OBJECT = TEXT CONV -
-$ /NOLIST - -
=$ TEXT_CONVERTER.C

$ LINK /EXE=TEXT CONVERTER -
$ /NOMAP - -

-$ TEXT_CONVERTER,SYS$INPUT:/OPTION
DDIF$LIB_OBJ:CDA$ACCESS/SHARE
SYS$SHARE:VAXCRTL/SHARE

$ RUN TEXT CONVERTER

CDA-25

CDA$CONVERT_AGGREGATE

CDA$CONVERT_AGGREGATE
CONVERT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

CDA-26

Reads the next aggregate from a specified front end.

CDA$CONVERT_AGGREGATE
root-aggregate-handle
,front-end-handle ,aggregate-handle
, aggregate-type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the aggregate to be read.
The root-aggregate-handle argument is the address of an unsigned
longword that contains this root aggregate handle. This handle is returned
by a call to the CREATE ROOT AGGREGATE routine.

When reading aggregates using this routine, you must use the same value
for root-aggregate-handle consistently to read all the aggregates in the
compound document. Once you have read all of the aggregates, you cannot
specify the same root-aggregate-handle again when calling this routine.

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end that reads the aggregate. The front-end­
handle argument is the address of an unsigned longword that contains
this front end handle. This handle is either returned by a call to
the OPEN CONVERTER routine or is passed as a parameter to the
DDIF$WRITEJormat entry point in the back end.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

CDA$CONVERT_AGGREGATE

Receives the handle of the aggregate just read. The aggregate-handle
argument is the address of an unsigned longword that receives this
aggregate handle. This handle must be used in all subsequent operations
on that aggregate.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. If
the aggregate type is DDIF$_EOS (end of segment), then the value of
aggregate-handle is 0.

DESCRIPTION The CONVERT AGGREGATE routine lets you call through from a back
end to read the next aggregate from the specified front end. This routine
should only be invoked by a back end.

The aggregate type returned is one of the following:

Aggregate Type Meaning

DDIF$_DSC Document descriptor

DDIF$_DHD Document header

DDIF$_SEG Document segment

DDIF$_TXT Text content

DDIF$_GTX General text content

DDIF$_HRD Hard directive

DDIF$_SFT Soft directive

DDIF$_HRV Hard value directive

DDIF$_SFV Soft value directive

DDIF$_BEZ Bezier curve content

DDIF$_LIN Polyline content

DDIF$_ARC Arc content

DDIF$_FAS Fill area set content

DDIF$_1MG Image content

DDIF$_CRF Content reference

DDIF$_EXT External content

DDIF$_PVT Private content

DDIF$_GLY Layout galley

DDIF$_EOS End of segment

Note that the returned aggregate is not part of a sequence.

CDA-27

CDA$CONVERT_AGGREGATE

CONDITION
VALUES
RETURNED

CDA-28

CDA$_NORMAL

CDA$_ENDOFDOC

CDA$_1NVDOC

Normal successful completion.

End of document.

Invalid document content.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA$CONVERT_DOCUMENT

CDA$CONVERT_DOCUMENT
CONVERT DOCUMENT

FORMAT

RETURNS

ARGUMENTS

Reads an entire document from a specified front end.

CDA$CONVERT_DOCUMENT root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

, front-end-handle

Identifier of the root aggregate associated with the document being read.
The root-aggregate-handle argument is the address of an unsigned
longword that contains this root aggregate handle. This root aggregate
handle is returned by a call to the CREATE ROOT AGGREGATE routine.

Once you read an entire document, you cannot call the CONVERT
DOCUMENT routine specifying the same root aggregate handle again.
That is, you can only read a document associated with a particular root
aggregate once.

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end that reads the document. The front-end­
handle argument is the address of an unsigned longword that contains
this front end handle. This handle is either returned by a call to
the OPEN CONVERTER routine, or is passed as a parameter to the
DDIF$WRITEJormat entry point in the back end.

DESCRIPTION The CONVERT DOCUMENT routine lets you call through from a back
end to read an entire document from the specified front end. This routine
should only be invoked by a back end. On return from this routine, the
entire document is present in aggregates linked from the document root
aggregate.

CDA-29

CDA$CONVERT_DOCUMENT

CONDITION
VALUES
RETURNED

CDA-30

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVDOC

Normal successful completion.

Invalid aggregate type.

Invalid document content.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA$CONVERT _POSITION

CDA$CONVERT _POSITION CONVERT POSITION

FORMAT

RETURNS

ARGUMENTS

Returns the current position in and total size of the input stream being
processed.

CDA$CONVERT _POSITION
front-end-handle ,stream-position
, stream-size

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

front-end-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the front end that is processing the input stream. The front­
end-hand.le argument is the address of an unsigned longword that
contains this identifier. The front end handle is either returned by a
call to the OPEN CONVERTER routine, or is passed as a parameter to
DDIF$WRITEJormat.

stream-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

stream-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

DESCRIPTION The CONVERT POSITION routine returns the current position in and
total size of a document being processed by the CONVERT AGGREGATE
routine.

CDA-31

CDA$CONVERT _POSITION

CONDITION
VALUES
RETURNED

CDA-32

CDA$_NORMAL Normal successful completion.

Any condition value returned by the front end get-position procedure.

CDA$COPV_AGGREGATE

CDA$COPY _AGGREGATE COPY AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Creates a copy of an aggregate. If the specified aggregate is part of a
sequence, only the aggregate specified, rather than the entire sequence, is
copied.

CDA$COPV _AGGREGATE root-aggregate-handle
,input-aggregate-handle
,output-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate with which the copied aggregate is
associated. The root-aggregate-handle argument is the address of
an unsigned longword that contains this root aggregate handle. The new
copy of the aggregate becomes part of the document identified by this
root aggregate handle. This root aggregate handle is returned by a call
to either the OPEN FILE routine or the CREATE ROOT AGGREGATE
routine.

input-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be copied. The input-aggregate-handle
argument is the address of an unsigned longword that contains this
aggregate handle.

output-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the new copy of the specified aggregate. The
output-aggregate-handle argument is the address of an unsigned
longword that receives the handle of the new aggregate. This new
aggregate handle must be used in all subsequent operations on that
aggregate.

CDA-33

CDA$COPY_AGGREGATE

DESCRIPTION The COPY AGGREGATE routine makes a copy of the specified aggregate.

CONDITION
VALUES
RETURNED

CDA-34

This copy becomes part of the document identified by the specified
root aggregate handle argument, and it is assigned a unique aggregate
identifier, specified by the output aggregate handle argument.

CDA$_NORMAL

CDA$_1NVAGGTYP

Normal successful completion.

Invalid aggregate type.

CDA$CREATE_AGGREGATE

CDA$CREATE_AGGREGATE CREATE AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Creates a new aggregate that contains empty items. Once this aggregate is
created, it can be populated using the STORE ITEM routine.

CDA$CREATE_AGGREGATE root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

,aggregate-type
,aggregate-handle

Identifier of the root aggregate with which the newly created aggregate is
associated. The root-aggregate-handle argument is the address of an
unsigned longword that contains this root aggregate handle. This handle
is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The type of aggregate to be created, expressed as a symbolic constant. The
aggregate-type argument is the address of an unsigned longword that
specifies this aggregate type. The aggregate type symbolic constants are
defined in the module DDIF$DEF.SDL.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the identifier of the newly created aggregate. The aggregate­
handle argument is the address of an unsigned longword that receives
this aggregate handle. This handle must be used in all subsequent
operations on that aggregate.

CDA-35

CDA$CREATE_AGGREGATE

DESCRIPTION The CREATE AGGREGATE routine creates a new aggregate that contains
empty items. Once this aggregate is created, it can be populated using
the STORE ITEM routine. The created aggregate is part of the document
specified by the root aggregate handle.

CONDITION
VALUES
RETURNED

CDA-36

CDA$_NORMAL

CDA$_1NVAGGTYP

Normal successful completion.

Invalid aggregate type.

Any error returned by the memory allocation routines.

CDA$CREATE_FILE

CDA$CREATE_FILE CREATE FILE

FORMAT

RETURNS

ARGUMENTS

Creates a new compound document file for output. An output stream is also
created.

CDA$CREATE_FILE file-spec-Jen ,file-spec
,default-file-spec-Jen
,default-file-spec ,alloc-rtn
, dealloc-rtn , alloc-dealloc-prm
,root-aggregate-handle
,result-file-spec-Jen
,result-file-spec ,result-file-ret-len
,stream-handle, file-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

file-spec-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The length (in bytes) of the string specified by the file-spec parameter.
The file-spec-len argument is the address of an unsigned longword that
contains this file specification length.

file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
The file specification. The file-spec argument is the address of a character
string that contains this file specification.

default-file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The length (in bytes) of the buffer specified by default-file-spec. The
default-file-spec-len argument is the address of an unsigned longword
that contains this buffer length. If you specify a value of 0 for both the
default-file-spec-len and default-file-spec arguments, a default file
specification of ".DDIF" is used.

CDA-37

CDA$CREATE_FILE

CDA-38

default-file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
The default file specification. The default-file-spec argument is the
address of a character string that contains the default file specification. In
order to simplify the porting of applications, the character string should
consist of only a file type in lowercase characters. If you specify an address
of 0 for both the default-file-spec-len and default-file-spec arguments,
a default file specification of ".DDIF" is used.

alloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a memory allocation routine. The alloc-rtn argument is the
address of a procedure entry mask for this allocation routine. The calling
sequence for an allocation routine is defined in the Description section
of this routine. On VMS systems, if you specify 0 for this argument,
LIB$GET_VM is used as the memory allocation routine.

dealloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a memory deallocation routine. The dealloc-rtn argument is
the address of a procedure entry mask for this deallocation routine. The
calling sequence for a deallocation routine is defined in the Description
section of this routine. On VMS systems, if you specify 0 for this
argument, LIB$FREE_ VM is used as the memory deallocation routine.

alloc-dealloc-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the memory allocation and deallocation
routines. The alloc-dealloc-prm argument contains the value of this
user context. If the VMS system default memory allocation or deallocation
routine is used, this value must be a zone identifier or 0 for the default
zone.

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the newly created
compound document. The root-aggregate-handle argument is the
address of an unsigned longword that contains this root aggregate handle.

CDA$CREATE_FILE

This handle must be used in all subsequent operations on that root
aggregate.

The root-aggregate-handle argument is used to specify the file type of
the newly created document using the aggregate type DDIF$_DDF.

result-file-spec-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the buffer specified by result-file-spec. The result­
file-spec-len argument is the address of an unsigned longword containing
this length. If you specify 0 for this parameter, the length of the resultant
file specification is not returned.

result-file-spec
VMS usage: char_string
type: character string
access: write only
mechanism: by reference
Receives the resultant file specification. The result-file-spec argument is
the address of a character string that receives this file specification. If you
specify 0 for this parameter, the resultant file specification is not returned.
This file specification is the result of a VMS RMS $CREATE operation.

result-file-ret-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the resultant file specification. The
result-file-ret-len argument is the address of an unsigned longword that
receives the actual length of the resultant file specification. If you specify
0 for this parameter, the actual length of the resultant file specification is
not returned.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the newly created compound document stream. The
stream-handle argument is the address of an unsigned longword that
receives this stream handle. This handle must be used in all subsequent
operations on that stream.

file-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the newly created compound document file. The
file-handle argument is the address of an unsigned longword that receives

CDA-39

CDA$CREATE_FILE

DESCRIPTION

CDA-40

this file handle. This handle must be used in all subsequent operations on
that file.

The CREATE FILE routine creates a new compound document file for
output and also creates an output stream. Note that you must have
created a document root aggregate (by a call to the CREATE ROOT
AGGREGATE routine) prior to calling this routine. The handle of this
document root aggregate must be passed to the CREATE FILE routine,
and must also be used in all subsequent operations on that root aggregate.

Call Format for User Allocation/Deallocation Routines

The alloc-rtn, dealloc-rtn, and alloc-dealloc-prm arguments are used
to invoke a user routine that performs memory allocation or deallocation,
and to supply an argument to that routine. The call format for each of
these user routines is as follows:

user-rtn num-bytes ,base-adr ,alloc-dealloc-prm

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The number of bytes to allocate or free. The num-bytes argument is the
address of an unsigned longword that contains this number of bytes. The
value of num-bytes must be greater than zero.

base-adr
VMS usage: address
type: longword (unsigned)
access: read only or write only
mechanism: by reference
Virtual address of the first byte of memory allocated or freed. The base­
ad.r argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine, and read-only for
a free routine.)

alloc-dealloc-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The alloc-dealloc-prm argument contains the
value of the parameter to be passed to the user routine.

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its caller; if the low bit of the return value is set, the caller continues
execution.

CONDITION
VALUES
RETURNED

EXAMPLE

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$CREATE_FILE

Normal successful completion.

Invalid aggregate type.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

I* set up file for DDIF file */
spec_length = 12;
result length= sizeof(result buffer);
status-= cda$create_file(&spec_length, "example.ddif", 0, O,

O, O, O,
&root_aggregate_handle, &result_length,
&result buffer[O], &result length,
&stream=handle, &file_handle);

if (FAILURE(status)) return(status);

This example illustrates a typical call to the CREATE FILE routine. The
length of the file specification is specified by the spec_length parameter,
and the file specification itself is "example.ddif'. This call does not
specify a default file specification length or a default file specification;
this combination defaults to a default file specification of ".ddif'. The
system memory allocation and deallocation routines are passed as a zero
value, meaning that the default system memory routines are used. The
default system memory routines are LIB$GET_ VM and LIB$FREE_ VM.
The root aggregate handle specifies the root aggregate of the document.
This root aggregate must exist prior to a call to this rout~ne.

The result_length, result_buffer, and result_length arguments contain
information about the actual resultant file specification of the created file.
The stream_handle and file_handle arguments receive the identifiers of
the newly created stream and file.

CDA-41

CDA$CREATE_ROOT_AGGREGATE

CDA$CREATE_ROOT_AGGREGATE
CREATE ROOT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

CDA-42

Creates a document root aggregate.

CDA$CREATE_ROOT_AGGREGATE
alloc-rtn , dealloc-rtn , alloc-dealloc-prm
,processing-options ,aggregate-type
, root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

alloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a memory allocation routine. The alloc-rtn argument is the
address of a procedure entry mask for this allocation routine. The calling
sequence for an allocation routine is defined in the Description section
of this routine. On VMS systems, if you specify 0 for this argument,
LIB$GET_ VM is used as the memory allocation routine.

dealloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a memory deallocation routine. The dealloc-rtn argument is
the address of a procedure entry mask for this deallocation routine. The
calling sequence for a deallocation routine is defined in the Description
section of this routine. On VMS systems, if you specify 0 for this
argument, LIB$FREE_ VM is used as the memory deallocation routine.

alloc-dealloc-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the memory allocation and deallocation
routines. The alloc-dealloc-prm argument is the value of this user
context. If the VMS system default memory allocation or deallocation
routine is used, this value must be a zone identifier or 0 for the default
zone.

CDA$CREATE_ROOT_AGGREGATE

processing-options
VMS usage: item_list_2
type: record
access: read only
mechanism: by reference, array reference
An item list containing options to control input processing. The
processing-options argument is the address of this item list. Each
entry in the item list is a 2-longword structure. To terminate the item list
you must specify the final entry or longword as 0. Valid item codes are as
follows:

DDIF$_1NHERIT_ATTRIBUTES If a style guide is specified in the document
header, definitions in the style guide are
appended to the definitions present on the
root segment, provided they are not hidden by
definitions in the document.

DDIF$_RETAIN_DEFINITIONS Segment definitions that enable the operation
of CDA$FIND_DEFINITION are retained.
This item code is required only if neither
DDIF$_1NHERIT _ATTRIBUTES nor DDIF$_
EVALUATE_CONTENT is specified.

DDIF$_EVALUATE_CONTENT If a content reference is external, the content
is fetched from the external document provided
it is either remote content or copy content that
is not present in the document.

DDIF$_DISCARD_l_SEGMENTS Segments of the image ($1) content category,
and any nested segments, are discarded.

DDIF$_DISCARD_2D_SEGMENTS Segments of the graphics ($20) content
category, and any nested segments, are
discarded.

DDIF$_DISCARD_T_SEGMENTS Segments of the text ($T) content category,
and any nested segments, are discarded.

DDIF$_DISCARD_TBL_SEGMENTS Segments of the table ($TBL) content
category, and any nested segments, are
discarded.

DDIF$_DISCARD_PDL_SEGMENTS Segments of the page description language
($POL) content category, and any nested
segments, are discarded.

This item list contains options only to control input processing. If you are
creating a root aggregate for output processing, you must specify both an
item length and an item buffer address of 0.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The type of aggregate to be created, expressed as a symbolic constant.
The aggregate-type argument is the address of an unsigned longword
that specifies the aggregate type. The only valid root aggregate type is
DDIF$_DDF.

CDA-43

CDA$CREATE_ROOT_AGGREGATE

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly created root aggregate. The
root-aggregate-handle argument is the address of an unsigned longword
that receives this root aggregate handle. This handle must be used in all
subsequent operations on that root aggregate.

DESCRIPTION The CREATE ROOT AGGREGATE routine creates a document root
aggregate.

CDA-44

Call Format for User Allocation/Deallocation Routines

The alloc-rtn, dealloc-rtn, and alloc-dealloc-prm arguments are used
to invoke a user routine that performs memory allocation or deallocation,
and to supply an argument to that routine. The call format for one of
these user routines is as follows:

user-rtn num-bytes ,base-adr ,alloc-dealloc-prm

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The number of bytes to allocate or free. The num-bytes argument is the
address of an unsigned longword that contains this number of bytes. The
value of num-bytes must be greater than zero.

base-adr
VMS usage: address
type: longword (unsigned)
access: read only or write only
mechanism: by reference
Virtual address of the first byte of memory allocated or freed. The base­
adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a ge.t routine, and read-only for
a free routine.)

alloc-dealloc-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The alloc-dealloc-prm argument contains the
value of the parameter to be passed to the user routine.

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its caller; if the low bit of the return value is set, the caller continues
execution.

CONDITION
VALUES
RETURNED

EXAMPLE

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMLST

CDA$CREATE_ROOT_AGGREGATE

Normal successful completion.

Invalid aggregate type.

Invalid item list.

Any error returned by the memory allocation routines.

aggregate type = DDIF$ DDF;
status = cda$create_root_aggregate(O, 0, 0, 0, &aggregate_type,

&root_aggregate_handle);
if (FAILURE(status)) return(status);

This code segment illustrates a typical call to the CREATE ROOT
AGGREGATE routine. The first four parameters are passed as zero
values, indicating that the default system memory allocation and
deallocation routines (LIB$GET_ VM and LIB$FREE_ VM) are used and
that no processing options are specified. The aggregate type passed is
DDIF$_DDF, which is the document root aggregate, and the root aggregate
handle that is returned is used to identify that document throughout the
program.

CDA-45

CDA$CREATE_STREAM

CDA$CREATE_STREAM CREATE STREAM

FORMAT

RETURNS

ARGUMENTS

CDA-46

Opens a compound document stream for output.

CDA$CREATE_STREAM alloc-rtn ,dealloc-rtn

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

alloc-rtn
Vf)llS usage: procedure
type: procedure entry mask
access: call after stack unwind

, alloc-dealloc-prm ,put-rtn
,put-prm ,buf-len ,buf-adr
,stream-handle

mechanism: by reference, procedure reference
Address of a memory allocation routine. The alloc-rtn argument is the
address of a procedure entry mask for this allocation routine. The calling
sequence for an allocation routine is defined in the Description section
of this routine. On VMS systems, if you specify 0 for this argument,
LIB$GET_VM is used as the memory allocation routine.

dealloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a memory deallocation routine. The dealloc-rtn argument is
the address of a procedure entry mask for this deallocation routine. The
calling sequence for a deallocation routine is defined in the Description
section of this routine. On VMS systems, if you specify 0 for this
argument, LIB$FREE_ VM is used as the memory deallocation routine.

alloc-dealloc-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the memory allocation and deallocation
routines. The alloc-dealloc-prm argument is the value of this user
context. If the VMS system default memory allocation or deallocation
routine is used, this value must be a zone identifier or 0 for the default
zone.

CDA$CREATE_STREAM

put-rtn
VMS usage: procedure
type: procedure entry mask
access: read only
mechanism: by reference, procedure reference
Address of a stream put routine. The put-rtn argument is the address of
a procedure entry mask for this stream put routine. The calling sequence
for a put routine is defined in the Description section. If you specify 0 for
this argument, the VMS RMS $PUT service is used. If you specify a value
other than the default for this argument, you must also specify a value for
the put-prm argument.

put-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the stream put routine. The put-prm
argument is the value of this user context. If the VMS system default
put routine is used, the value must be a pointer to a RAB.

buf-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length of the buffer specified by the buf-adr parameter. The buf-len
argument is the address of an unsigned longword that contains this
length.

buf-adr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference
Address of a buffer that receives the output data. The buf-adr argument
is the address of an array of unsigned bytes that make up the buffer.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the newly created stream. The stream-handle
argument is the address of an unsigned longword that receives this stream
handle. This handle must be used in all subsequent operations on that
stream.

DESCRIPTION The CREATE STREAM routine opens a compound document stream for
output. The number of streams that you can open simultaneously is
limited only by the amount of memory available.

CDA-47

CDA$CREATE_STREAM

CDA-48

Call Format for User Allocation/Deallocation Routines

The alloc-rtn, dealloc-rtn, and alloc-dealloc-prm arguments are used
to invoke a user routine that performs memory allocation or deallocation,
and to supply an argument to that routine. The call format for each of
these user routines is as follows:

user-rtn num-bytes ,base-adr ,alloc-dealloc-prm

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The number of bytes to allocate or free. The num-bytes argument is the
address of an unsigned longword that contains this number of bytes. The
value of num-bytes must be greater than zero.

base-adr
VMS usage: address
type: longword (unsigned)
access: read only or write only
mechanism: by reference
Virtual address of the first byte of memory allocated or freed. The base­
adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine, and read-only for
a free routine.)

alloc-dealloc-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The alloc-dealloc-prm argument contains the
value of the parameter to be passed to the user routine.

Call Format for User Put Routines

The put-rtn and put-prm arguments are used to invoke a user stream
put routine, and to supply an argument to that routine. A put routine
writes bytes of information to an output stream. The output buffer
is initially supplied by the application through a call to the CREATE
STREAM routine. Each call to the put routine supplies the next output
buffer; therefore, the application can use any buffer management
technique. The caller of the put routine makes no further use of the
buffer described by num-bytes and buf-adr.

The call format for a user put routine is as follows:

put-rtn put-prm ,num-bytes ,buf-adr ,next-buf-len ,next-buf-adr

CDA$CREATE_STREAM

put-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The put-prm argument is the value of the
parameter to be passed to the user put routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Number of bytes contained in the buffer. The num-bytes argument is the
address of an unsigned longword that contains this value.

buf-adr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference
Address of the buffer. The buf-adr argument is the address of an array of
unsigned bytes.

next-buf -len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the length (in bytes) of the buffer specified by next-buf-adr.
The next-buf-len argument is the address of an unsigned longword that
receives this length.

next-buf-adr

VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of a buffer that will receive further output data.
The next-buf-adr argument is the address of an unsigned longword that
receives this address. Next-buf-adr may simply be the current buffer, or
a different buffer.

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its calling procedure; if the low bit of the return value is set, the caller
continues execution.

CDA-49

CDA$CREATE_STREAM

CONDITION
VALUES
RETURNED

CDA-50

CDA$_NORMAL Normal successful completion.

Any error returned by the memory allocation routines.

CDA$CREATE_ TEXT _FILE

CDA$CREATE_ TEXT _FILE CREATE TEXT FILE

FORMAT

RETURNS

ARGUMENTS

Creates a standard text file for output.

CDA$CREATE_ TEXT _FILE file-spec-Jen ,file-spec
,default-file-spec-Jen

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

, default-file-spec
, result-file-spec-Jen
,result-file-spec
, resu lt-file-ret-len
, text-file-handle

Length (in bytes) of the string specified by the file-spec argument. The
file-spec-len argument is the address of an unsigned longword that
contains this length.

file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
File specification of the text file to be created for output. The file­
spec argument is the address of a character string containing this file
specification.

default-file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the string specified by default-file-spec. The
default-file-spec-len argument is the address of an unsigned longword
that contains this default file specification length. If you specify 0 for this
parameter, no default file specification is used.

CDA-51

CDA$CREATE_ TEXT _FILE

default-file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
Default file specification. The default-file-spec argument is the address
of a character string that contains this default file specification. If you
specify 0 for this parameter, no default file specification is used. The
string should consist only of a file type in lowercase characters.

result-file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the buffer specified by result-file-spec. The result­
file-spec-len argument is the address of an unsigned longword that
contains this buffer length. If you specify 0 for this parameter, the length
of the resultant file specification is not returned.

result-file-spec
VMS usage: char_string
type: character string
access: write only
mechanism: by reference
Receives the resultant file specification. The result-file-spec argument is
the address of a character string that receives this file specification. This
file specification is the result of a VMS RMS $CREATE operation.

result-file-ret-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actµal length (in bytes) of the resultant file specification. The
result-file-ret-len argument is the address of an unsigned longword that
receives the actual length of the resultant file specification. If you specify
0 for this parameter, the actual length of the resultant file specification is
not returned.

text-file-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the text file. The text-file-handle argument is the
address of an unsigned longword that receives this text file handle. This
handle must be used in all subsequent operations on that text file.

DESCRIPTION The CREATE TEXT FILE routine creates a standard text file for output.

CDA-52

CONDITION
VALUES
RETURNED

CDA$CREATE_ TEXT _FILE

CDA$_NORMAL Normal successful completion.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA-53

CDA$DELETE_AGGREGATE

CDA$DELETE_AGGREGATE DELETE AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Destroys an aggregate and all of its substructure. If the specified aggregate
is part of a sequence, the aggregate is cut from the sequence before being
destroyed.

CDA$DELETE_AGGREGATE root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

,aggregate-handle

Identifier of the root aggregate associated with the aggregate to be
deleted. The root-aggregate-handle argument is the address of an
unsigned longword that contains this root aggregate handle. This handle
is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

You must use identical memory management procedures when creating
and deleting an aggregate, to ensure consistent treatment of memory
allocation and deallocation.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be destroyed. The aggregate-handle
argument is the address of an unsigned longword that contains this
aggregate identifier.

DESCRIPTION The DELETE AGGREGATE routine destroys an aggregate and all of

CDA-54

its substructure. If the specified aggregate is part of a sequence, the
aggregate is cut from the sequence before being destroyed. Note that the
specified aggregate handle, and the handles of any subaggregates linked to
the specified aggregate either directly or indirectly, are invalid after a call
to this routine.

CONDITION
VALUES
RETURNED

CDA$DELETE_AGGREGATE

CDA$_NORMAL

CDA$_1NVAGGTYP

Normal successful completion.

Invalid aggregate type.

Any error returned by the memory deallocation routines.

CDA~->5

CDA$DELETE_ROOT_AGGREGATE

CDA$DELETE_ROOT_AGGREGATE
DELETE ROOT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA-56

Destroys a document root aggregate and all of its substructure.

CDA$DELETE_ROOT_AGGREGATE
root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate to be deleted. The root-aggregate-handle
argument is the address of an unsigned longword that contains this root
aggregate handle. This handle is returned by a call to either the OPEN
FILE routine or the CREATE ROOT AGGREGATE routine.

The DELETE ROOT AGGREGATE routine destroys a document root
aggregate and all of its associated substructure. The root aggregate and
its substructure form a tree structure, so that when the root aggregate is
deleted, any aggregates attached to that root aggregate are also deleted.
The root-aggregate-handle, as well as the handles of any aggregates
that are linked to the root aggregate either directly or indirectly, are
invalid after a call to this routine.

CDA$_NORMAL Normal successful completion.

Any error returned by the memory deallocation routines.

CDA$ENTER_SCOPE

CDA$ENTER_SCOPE ENTER SCOPE

FORMAT

RETURNS

ARGUMENTS

Opens a document scope for incremental writing.

CDA$ENTER_SCOPE root-aggregate-handle
,stream-handle ,scope-code
[,aggregate-handle]

VMS usage: cond_value
type: longword (unsigned}
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned}
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the document content to
be incrementally written. The root-aggregate-handle argument is the
address of an unsigned longword that contains this root aggregate handle.
This handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

stream-handle
VMS usage: identifier
type: longword (unsigned}
access: read only
mechanism: by reference
Identifier of the stream associated with the document to be written. The
stream-handle argument is the address of an unsigned longword that
contains this stream handle. This handle is returned by a call to either
the CREATE FILE routine or the CREATE STREAM routine.

scope-code
VMS usage: longword_unsigned
type: longword (unsigned}
access: read only
mechanism: by reference
Symbolic constant identifying the scope to be opened. The scope-code
argument is the address of an unsigned longword containing this code.
Valid values are as follows:

CDA-57

CDA$ENTER_SCOPE

Code

DDIF$K_DOCUMENT _SCOPE

DDIF$K_CONTENT _SCOPE

DDIF$K_SEGMENT _SCOPE

aggregate-handle
VMS usage: identifier

Meaning

Document scope

Content scope

Segment scope

type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of an aggregate of the appropriate type, if required by the scope
code specified. The aggregate-handle argument is the address of an
unsigned longword that contains this aggregate handle.

The aggregate must be completely populated, except that its content
sequence must be empty. The DDIF scoped sections that require that the
aggregate-handle be specified are as follows:

Scope

DDIF$K_SEGMENT_SCOPE

Value of Aggregate-Handle

Aggregate-handle is the handle of an aggregate
of type DDIF$_SEG.

DESCRIPTION The ENTER SCOPE routine lets you open a particular document scope for
incremental writing. The types of scopes that you can open for a document
are the following:

CDA-58

• Document scope

• Content scope

• Segment scope

When performing incremental writing, you should perform the following
steps:

1 Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

2 Write an aggregate of type DDIF$_DSC.

3 Write an aggregate of type DDIF$_DHD.

4 Call the ENTER SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

5 Write a root segment of type DDIF$_SEG. The root segment is a top
level segment that contains the document content. This document
content can consist of content aggregates as well as nested segments.
If the document contains only one segment, that segment is the
root segment and it contains all of the document content. If the
document contains multiple segments, they must be nested within a
root segment.

CDA$ENTER_SCOPE

You can use either of the methods outlined below to create the root
segment. Because the first method requires that the entire segment
be completed before calling the PUT AGGREGATE routine, once
you select that method you must continue to use that method while
writing all of the document content. If you select the second method,
you can use either method to write any nested segments. Again, if
while writing nested segments, you select the first method, you must
continue to use that method, and so on.

a. Call the PUT AGGREGATE routine with a completed aggregate of
type DDIF$_SEG, whose DDIF$_SEG_CONTENT item references
a sequence of aggregates that make up the entire content for that
segment, including any nested segments. Using this method, you
need only call the PUT AGGREGATE routine once, because the
DDIF$_SEG aggregate written in the call to PUT AGGREGATE is
already completely populated.

b. Call the ENTER SCOPE routine, specifying scope-code as
DDIF$K_SEGMENT_SCOPE, with a completed aggregate of type
DDIF$_SEG whose DDIF$_SEG_CONTENT item is empty. You
can then call the PUT AGGREGATE routine for each aggregate
that makes up the segment content, in order. Once that segment
and all its nested segments have been output, call the LEAVE
SCOPE routine, specifying scope-code as DDIF$K_SEGMENT_
SCOPE to complete that segment.

6 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
CONTENT_SCOPE.

7 Call the LEAVE SCOPE routine, specifying scope-code as DDIF$K_
DOCUMENT_SCOPE.

When you call the ENTER SCOPE routine with scope-code specified as
DDIF$K_SEGMENT_SCOPE, you can write aggregates of the following
types within the segment, provided that the appropriate restrictions on
content types within content categories are observed:

Aggregate Type Meaning

DDIF$_SEG Document segment

DDIF$_TXT Text content

DDIF$_HRD Hard directive

DDIF$_SFT Soft directive

DDIF$_LIN Polyline content

DDIF$_ARC Arc content

DDIF$_BEZ Bezier curve content

DDIF$_1MG Image content

DDIF$_CRF Content reference

DDIF$_EXT External content

DDIF$_PVT Private content

CDA-59

CDA$ENTER_SCOPE

CONDITION
VALUES
RETURNED

CDA$_NORMAL

CDA$_1NVSCOCOD

Normal successful completion.

Invalid scope code.

Any errors returned by the file routines.

EXAMPLES
D

CDA-60

I* Get the document from the front end using the aggregate method */
while (SUCCESS(status = cda$convert_aggregate (&root_aggregate_handle,

fre_handle,
&aggregate_handle,
&aggregate_type)))

switch (aggregate_type)

/* If the aggregate type is DDIF$_DSC, the document
descriptor aggregate, then enter document scope
and write the aggregate to the stream */

case DDIF$ DSC:
scope ~ DDIF$K_DOCUMENT_SCOPE;
status = cda$enter_scope (&root_aggregate_handle,

&stream_handle,
&scope);

if (!SUCCESS(status))
CLEANUP (status);

status = cda$put_aggregate (&root_aggregate_handle,
&stream_handle,
&aggregate_handle);

if (!SUCCESS(status))
CLEANUP (status);

break;

/* If the aggregate type is DDIF$_DHD, the document
header aggregate, then simply write the aggregate
to the stream, since we're already in the document
scope */

case DDIF$_DHD:
status = cda$put_aggregate (&root_aggregate_handle,

&stream_handle,
&aggregate_handle);

if (!SUCCESS(status))
CLEANUP (status);

scope = DDIF$K_CONTENT_SCOPE;
status = cda$enter_scope (&root_aggregate_handle,

&stream_handle,

if (!SUCCESS(status))
CLEANUP (status);

break;

&scope);

CDA$ENTER_SCOPE

I* If the aggregate type is DDIF$_SEG, the segment
aggregate, then enter the segment scope and write
the aggregate to the stream */

case DDIF$ SEG:
scope ~ DDIF$K_SEGMENT_SCOPE;
status = cda$enter_scope (&root aggregate handle,

&stream_handle,

if (!SUCCESS(status))
CLEANUP (status);

break;

&scope,
&aggregate_handle);

/* If the aggregate type is DDIF$_EOS, end of
segment aggregate, then leave the segment scope */

case DDIF$ EOS:
scope ~ DDIF$K_SEGMENT_SCOPE;
status = cda$leave_scope (&root_aggregate_handle,

&stream_handle,
&scope);

if (!SUCCESS(status))
CLEANUP (status);

break;

/* For any other aggregate type, simply write the
aggregate to the stream */

default:
status = cda$put_aggregate (&root_aggregate_handle,

&stream_handle,
&aggregate_handle);

if (!SUCCESS(status))
CLEANUP (status);

break;

/* Delete the aggregate(s) just processed */
status = cda$delete_aggregate (&root_aggregate_handle,

&aggregate_handle);
if (!SUCCESS(status))

CLEANUP (status);

/* Once all aggregates are processed, leave the content scope and
the document scope */

This example illustrates the use of the ENTER SCOPE and LEAVE
SCOPE routines to read an input document using the aggregate
(incremental) method.

The following example also illustrates the incremental method of creating
a document, using both of the methods outlined for writing nested
segments.

CDA-61

CDA$ENTER_SCOPE

~ /*

*/

This is an example of using the incremental method to create a document
with nested segments being output using different options.

#include <cda$def.h>
#include <ddif$def.h>
#define FAILURE (x) (((x) & 1) 0)

main()
{

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned char
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned char
unsigned long
unsigned long

status;
aggregate_type;
aggregate_handle;
prev_aggregate_handle;
aggregate_item;
aggregate index;
add_info;
spec_length;
result length;
result_buffer[255];
stream_handle;
file_handle;
root_aggregate_handle;
segment_handle;
integer_value;
byte_value;
buff er_length;
scope_code;

CDA-62

/* Create the root aggregate */
aggregate_type = DDIF$_DDF;
status = cda$create_root_aggregate(O, 0, 0, 0, &aggregate_type,

&root_aggregate_handle);
if (FAILURE(status)) return(status);

/* Create the file */
spec_length = 9;
result length= sizeof(result_buffer);
status = cda$create_file(&spec_length, "test.ddif", 0, O,

0, 0, 0,
&root_aggregate_handle, &result length,
&result_buffer[O], &result_length,
&stream_handle, &file_handle);

if (FAILURE(status)) return(status);

/* Enter Document Scope */
scope_code = DDIF$K_DOCUMENT_SCOPE;
status= cda$enter_scope(&root_aggregate_handle, &stream_handle,

&scope_code);
if (FAILURE(status)) return(status);

/* Create, populate, put, and delete the descriptor aggregate */
aggregate_type = DDIF$_DSC;
status = cda$create aggregate(&root aggregate handle,

- &aggregate_type~ &aggregate_handle);
if (FAILURE(status)) return(status);

aggregate_item = DDIF$_DSC_MAJOR_VERSION;
buffer_length = sizeof(integer_value);
integer_value = 1;
status = cda$store item(&root aggregate handle, &aggregate handle,

&aggregate_item, &buffer_length, &integer_~alue);
if (FAILURE(status)) return(status);

CDA$ENTER_SCOPE

aggregate_item = DDIF$_DSC_MINOR_VERSION;
buffer_length = sizeof(integer_value);
integer value = 0;
status ~ cda$store item(&root aggregate handle, &aggregate handle,

-&aggregate=item, &buffer_length, &integer_value);
if (FAILURE(status)) return(status);

aggregate_item = DDIF$_DSC_PRODUCT_IDENTIFIER;
buffer length = 4;
status-= cda$store_item(&root_aggregate_handle, &aggregate handle,

&aggregate_item, &buffer_length, "Test");
if (FAILURE(status)) return(status);

aggregate_item = DDIF$_DSC_PRODUCT_NAME;
buffer length = 19;
add_info = CDA$K_ISO_LATIN1;
aggregate index = 0;
status = ~da$store_item(&root_aggregate handle, &aggregate handle,

&aggregate_item, &buffer_length,
"Example Application", &aggregate_index, &add_info);

if (FAILURE(status)) return(status);

status = cda$put_aggregate(&root_aggregate_handle,
&stream_handle, &aggregate_handle);

if (FAILURE(status)) return(status);

status = cda$delete_aggregate(&root_aggregate_handle,
&aggregate_handle) ;

if (FAILURE(status)) return(status);

/* Create, populate, put, and delete the header aggregate. */
aggregate_type = DDIF$_DHD;
status= cda$create_aggregate(&root_aggregate_handle,

&aggregate_type, &aggregate_handle);
if (FAILURE(status)) return(status);
prev_aggregate_handle = aggregate_handle;

/* Store header items here */

status= cda$put_aggregate(&root_aggregate handle, &stream_handle,
&aggregate_handle);

if (FAILURE(status)) return(status);

status= cda$delete_aggregate(&root_aggregate_handle,
&aggregate_handle) ;

if (FAILURE(status)) return(status);

/* Enter Content Scope */
scope_code = DDIF$K_CONTENT_SCOPE;
status = cda$enter_scope(&root_aggregate_handle, &stream_handle,

&scope_code);
if (FAILURE(status)) return(status);

/* Create the "root sement" aggregate, and fill it in except for
the content. This will be output using cda$enter_scope, and
its contents will be output incrementally.

*/
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate(&root aggregate handle,

&aggregate_type, &aggregate_handle);
if (FAILURE(status)) return(status);
segment_handle aggregate_ handle;

CDA-63

CDA$ENTER_SCOPE

CDA-64

/* Fill in any items needed at the top level. */
aggregate_type = DDIF$_SGA;
status= cda$create_aggregate(&root_aggregate_handle,

&aggregate type, &aggregate handle);
if (FAILURE(status)) return(status); - -

aggregate_item = DDIF$_SEG_SPECIFIC_ATTRIBUTES;
buffer length= sizeof(aggregate handle);
status-= cda$store_item(&root_aggregate_handle, &segment handle,

&aggregate item, &buffer length, &aggregate_handle);
if (FAILURE(status)) return(status); -

aggregate item = DDIF$ SGA CONTENT CATEGORY;
add info ~ DDIF$K T CATEGORY; -
status = cda$store_item(&root_aggregate_handle, &aggregate handle,

&aggregate_item, 0, 0, 0, &add_info);
if (FAILURE(status)) return(status);

/* Enter Segment Scope. This requires the segment aggregate handle,
and causes the segment aggregate to be output. */

scope_code = DDIF$K_SEGMENT_SCOPE;
status = cda$enter_scope(&root_aggregate_handle, &stream_handle,

&scope_code, &segment_handle);
if (FAILURE(status)) return(status);

/* Delete the segment aggregate */
status= cda$delete_aggregate(&root aggregate handle, &segment_handle);
if (FAILURE(status)) return(status);

/* Incrementally, create the content aggregates and put them out. */
aggregate_type = DDIF$_TXT;
status = cda$create_aggregate(&root_aggregate_handle, &aggregate_type,

&aggregate handle);
if (FAILURE(status)) return(status); -

aggregate_item = DDIF$_TXT_CONTENT;
buffer_length = 5;
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate item, &buffer length, "Hello");
if (FAILURE(status)) return(status); -

status= cda$put_aggregate(&root_aggregate_handle, &stream_handle,
&aggregate handle);

if (FAILURE(status)) return(status); -

/* Delete the text aggregate */
status = cda$delete_aggregate(&root_aggregate_handle,

&aggregate_handle);
if (FAILURE(status)) return(status);

/* The next content element is a segment
*Create a sement aggregate, link all it's content to it, and output
*the aggregate. (This segment does not use cda$enter_scope.)
*I

aggregate type = DDIF$ SEG;
status = cda$create_aggregate(&root aggregate handle,

&aggregate type, &aggregate_handle);
if (FAILURE(status)) return(status);
segment_handle = aggregate_handle;

aggregate type = DDIF$ SGA;
status = cda$create_aggregate(&root aggregate_handle,

&aggregate type, &aggregate handle);
if (FAILURE(status)) return(status); -

CDA$ENTER_SCOPE

aggregate item = DDIF$ SEG SPECIFIC ATTRIBUTES;
buffer length= sizeof(aggregate handle);
status-= cda$store_item(&root_aggregate_handle, &segment handle,

&aggregate_item, &buffer_length,
&aggregate_handle);

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_SGA_CONTENT_CATEGORY;
add info = DDIF$K_T_CATEGORY;
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate_item, O, O, 0, &add_info);
if (FAILURE(status)) return(status);

/* Create content aggregates, and link them to
* the segment aggregate.
*/

aggregate type = DDIF$ TXT;
status= cda$create_aggregate(&root_aggregate handle, &aggregate_type,

&aggregate_handle);
if (FAILURE(status)) return(status);
prev_aggregate_handle = aggregate_handle;

aggregate item = DDIF$ SEG CONTENT;
buffer length= sizeof(aggregate handle);
status-= cda$store_item(&root_aggregate_handle, &segment handle,

&aggregate_item, &buffer_length,
&aggregate_handle);

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_TXT_CONTENT;
buffer_length = 5;
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate_item, &buffer_length,
"There");

if (FAILURE(status)) return(status);

aggregate type = DDIF$ HRD;
status = cda$create_aggregate(&root_aggregate_handle, &aggregate_type,

&aggregate_handle);
if (FAILURE(status)) return(status);

cda$insert_aggregate(&aggregate_handle, &prev aggregate_handle);

aggregate_item = DDIF$_HRD_DIRECTIVE;
buffer length= sizeof(integer value);
integer value = DDIF$K DIR NE~PAGE;
status ~ cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate_item, &buffer_length,
&integer_value);

if (FAILURE(status)) return(status);

/* Output the segment aggregate (Since the content is attached,
* it is output also.)
*/

status= cda$put_aggregate(&root_aggregate_handle, &stream_handle,
&segment_handle);

if (FAILURE(status)) return(status);

/* Delete the segment aggregate and all aggregates
* attached to it.
*/

status= cda$delete aggregate(&root aggregate handle, &segment_handle);
if (FAILURE(status)) return(status); -

l'.~

/* Output more content aggregates within the root segment */

CDA-65

CDA$ENTER_SCOPE

/* Leave Segment Scope. This is for the segment that was output
using cda$enter_scope. */

scope_code = DDIF$K_SEGMENT_SCOPE;
status= cda$leave_scope(&root_aggregate_handle, &stream_handle,

&scope_code);
if (FAILURE(status)) return(status);

/* Leave Content Scope */
scope_code = DDIF$K_CONTENT_SCOPE;
status= cda$leave scope(&root_aggregate_handle, &stream_handle,

&scope_code);
if (FAILURE(status)) return(status);

/* Leave Document Scope */
scope_code = DDIF$K_DOCUMENT_SCOPE;
status = cda$leave_scope(&root_aggregate_handle, &stream_handle,

&scope_code);
if (FAILURE(status)) return(status);

/* Close the file */
status= cda$close_file(&stream_handle, &file_handle);
if (FAILURE(status)) return(status);

/* Delete the root aggregate */
status= cda$delete root aggregate(&root aggregate handle);
if (FAILURE(status)) ret~rn(status); - -

return 1;

This example illustrates the use of both methods of incremental writing:
using the PUT AGGREGATE routine with a completed segment or using
ENTER SCOPE and incrementally writing the segment's content. This
program creates a DDIF file whose analysis would appear as follows:

i] DD IF DOCUMENT
{

DDF DESCRIPTOR
{

Longword Integer DSC MAJOR VERSION 1
DSC MINOR VERSION 0
DSC PRODUCT IDENTIFIER

Longword Integer
"%H54657374" ! Byte string - -

DSC PRODUCT NAME
(

ISO LATINl "Example Application"
)

}

DDF HEADER
{
}

DDF CONTENT
{

SEG SPECIFIC ATTRIBUTES
{

SGA_CONTENT_CATEGORY T CATEGORY "$T"
}

SEG CONTENT
{

TXT CONTENT "%H48656C6C6F"
}
{

SEG SPECIFIC ATTRIBUTES
{

Byte string

SGA CONTENT CATEGORY T CATEGORY "$T"
}

CDA-66

"Hello"

"Test"

}
}

}

SEG CONTENT
{

TXT CONTENT "%H5468657265"
}

{
HRD DIRECTIVE DIR NEW PAGE

}

CDA$ENTER_SCOPE

Byte string = "There"

Integer 1

CDA-67

CDA$ERASE_ITEM

CDA$ERASE_ITEM ERASE ITEM

FORMAT

RETURNS

ARGUMENTS

CDA-68

Erases (sets to empty) the contents of an item within an aggregate. If you
erase an item that is indexed, the index of each subsequent item (each item
with a higher index) decreases by 1.

CDA$ERASE_ITEM root-aggregate-handle

VMS usage: cond_value

,aggregate-handle
,aggregate-item
[,aggregate-index]

type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate of which the aggregate containing the item
is a part. The root-aggregate-handle argument is the address of an
unsigned longword that contains this root aggregate handle. This handle
is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

You must use identical memory management procedures when creating
and deleting an aggregate, to ensure consistent treatment of memory
allocation and deallocation.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate containing the item to be erased. The
aggregate-handle argument is the address of an unsigned longword
that contains this aggregate handle.

aggregate-item
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Identifying code of the item to be erased, expressed as a symbolic constant.
The aggregate-item argument is the address of an unsigned longword
that contains this code. The DDIF aggregate item symbolic constants are

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA$ERASE_ITEM

defined in the file DDIF$DEF.SDL and are discussed in Chapter 6 and
Appendix D.

aggregate-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Index of the item to be erased (relative to 0). The optional aggregate­
index argument is the address of an unsigned longword that contains
this index. This argument is required whenever the notation "Array of'
appears in the data type of the specified item handle. Otherwise, this
argument is ignored and may be omitted. If an address of 0 is specified,
all of the array elements in the item are erased.

The ERASE ITEM routine erases (sets to empty) the contents of an item
within an aggregate. If you erase an item that is indexed, the index of
each subsequent item (each item with a higher index) decreases by 1. If
you specify 0, all array elements in the item are erased.

Note that if you erase an item that contains the handle of a subaggregate,
the subaggregate is erased in addition to the item.

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMCOD

CDA$_EMPTY

CDA$_1NDEX

CDA$_ VAREMPTY

CDA$_VARINDEX

CDA$_VARVALUE

Normal successful completion.

Invalid aggregate type.

Invalid item code.

Item is empty.

Index exceeds array bounds.

Variant item is empty.

Variant index exceeds bounds.

Variant value is undefined.

CDA-69

CDA$FIND_DEFINITION

CDA$FIND _DEFINITION FIND DEFINITION

FORMAT

RETURNS

ARGUMENTS

CDA-70

Looks up the specified definition in a list of definitions.

CDA$FIN D _DEFINITION root-aggregate-handle
,aggregate-type ,but-fen
,buf-adr ,aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate with which the definition aggregate being
searched for is associated. The root-aggregate-handle argument is the
address of an unsigned longword that contains this root aggregate handle.
This handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The type of definition aggregate being searched for, expressed as a
symbolic constant. The aggregate-type argument is the address of
an unsigned longword that contains this symbolic constant. The DDIF
aggregate type symbolic constants are defined in the file DDIF$DEF.SDL
and are discussed in Chapter 6 and Appendix D.

but-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length of the buffer (in bytes) specified by buf-adr. The buf-len
argument is the address of an unsigned longword that contains this
buffer length. This buffer is used as a selector value to select the desired
definition from the list of definitions. For aggregate types DDIF$_FTD,
DDIF$_LSD, DDIF$_PHD, DDIF$_ERF, and DDIF$_PTD, the buffer
length must be 4. For a DDIF$_ERF aggregate, the buffer contains a
longword value that indexes the external reference (beginning at 1).

DESCRIPTION

CDA$FIND_DEFINITION

but-adr
VMS usage: vector_byte_unsigned
type: byte {unsigned)
access: read only
mechanism: by reference, array reference
The buffer that contains the selector value used to indicate the desired
definition from the list of definitions. The buf-adr argument is the
address of an array of unsigned bytes that comprise this buffer. The
definition aggregate types DDIF$_FTD, DDIF$_LSD, DDIF$_PHD,
DDIF$_ERF, and DDIF$_PTD are identified in a series of definitions
by a unique number. Therefore, for these aggregate types, the buf-adr
value must be a longword. For aggregate types DDIF$_CTD, DDIF$_TYD,
and DDIF$_SGB, which are assigned string labels, the value must be a
string.

aggregate-handle
VMS usage: identifier
type: longword {unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly located definition aggregate.
The aggregate-handle argument is the address of an unsigned longword
that receives this aggregate handle. This handle must be used in all
subsequent operations on that aggregate.

The FIND DEFINITION routine looks up the specified definition in a
series of definition aggregates. For example, if you have several font
definition (DDIF$_FTD) aggregates and you want to retrieve the definition
of the font identified by the index 3, you would invoke this routine,
specifying the aggregate-type as DDIF$_FTD and the selector value
(buf-adr) as 3. The aggregate types that can be specified for this routine
are as follows:

DDIF$_CTD

DDIF$_ERF

DDIF$_FTD

DDIF$_LSD

DDIF$_PHD

DDIF$_PTD

DDIF$_SGB

DDIF$_TYD

Content definition aggregate

External reference aggregate

Font definition aggregate

Line style definition aggregate

Path definition aggregate

Pattern definition aggregate

Segment bindings aggregate

Type definition aggregate

In order for this routine to return the correct information, you must have
specified one or more of the following processing options in the call to the
CREATE ROOT AGGREGATE routine:

• DDIF$_INHERIT_ATTRIBUTES

• DDIF$_EVALUATE_CONTENT

• DDIF$_RETAIN_DEFINITIONS

CDA-71

CDA$FIND _DEFINITION

CONDITION
VALUES
RETURNED

CDA-72

This routine is only valid when you are using the aggregate (incremental)
method of document conversion, because the definition being determined
is dependent upon the current location in the document. If you call this
routine when you are performing document method conversion, the current
position is the top of the document, so that no definition is available.

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVBUFLEN

CDA$_DEFNOTFOU

Normal successful completion.

Invalid aggregate type.

Invalid buffer length.

Definition not found.

CDA$FIND _TRANSFORMATION

CDA$FIND _TRANSFORMATION
FIND TRANSFORMATION

FORMAT

RETURNS

ARGUMENTS

Returns the current transformation matrix values.

CDA$FIND _TRANSFORMATION
root-aggregate-handle , transf or ma ti on

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate. The root-aggregate-handle argument
is the address of an unsigned longword that contains this root aggregate
handle. This handle is returned by a call to either the OPEN FILE routine
or the CREATE ROOT AGGREGATE routine.

transformation
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of a vector of nine F _floating elements. The
transformation argument is the address of an unsigned longword that
receives the address of this array.

The elements of this vector specify the current content transformation in
column order. For example, the elements of the following array would be
returned in the order (A,B,C,D,E,F,G,H,l).

A
B
c

D
E
F

G

H
I

DESCRIPTION The FIND TRANSFORMATION routine returns the current values
of the transformation matrix. In order for this routine to return the
correct information, you must have specified one or more of the following
processing options in the call to the CREATE ROOT AGGREGATE routine:

CDA-73

CDA$FIND _TRANSFORMATION

CONDITION
VALUES
RETURNED

CDA-74

• DDIF$_INHERIT_ATTRIBUTES

• DDIF$_EVALUATE_CONTENT

• DDIF$_RETAIN_DEFINITIONS

CDA$_NORMAL

CDA$_DEFNOTFOU

Normal successful completion.

Definition not found.

CDA$FLUSH_STREAM

CDA$FLUSH_STREAM FLUSH STREAM

FORMAT

RETURNS

ARGUMENTS

Flushes the contents of the stream and ensures that the data has been
physically transferred to the receiving medium.

CDA$FLUSH_STREAM stream-handle ,flush-rtn
,flush-prm

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the output stream to be flushed. The stream-handle
argument is the address of an unsigned longword that contains this
stream handle. This handle is returned by a call to the CREATE STREAM
routine.

flush-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference, procedure reference
Address of a stream flush routine. The flush-rtn argument is the address
of a procedure entry mask for this stream flush routine. The calling
sequence for a flush routine is defined in the Description section of this
routine. If you specify 0 for this argument, the VMS RMS $FLUSH service
is used. If you specify a value other than the default for this argument,
you must also specify a value for the flush-prm argument.

flush-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the stream flush routine. The flush-prm
argument is the value of this user context. This argument should contain
the value of the put-prm argument passed in a call to the CREATE
STREAM routine. If the VMS system default flush procedure is used, the
value must be a pointer to a RAB.

CDA-75

CDA$FLUSH_STREAM

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA-76

The FLUSH STREAM routine writes any buffered data to an output
stream and ensures that the data has been physically transferred to the
receiving medium.

Call Format for User Flush Routines

The flush-rtn and flush-prm arguments are used to invoke a user stream
flush routine, and to supply an argument to that routine. The call format
for this user routine is as follows:

flush-rtn flush-prm

flush-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The flush-prm argument is the value of the
parameter to be passed to the user flush routine.

This routine must return a completion status. The VMS convention for
completion codes is followed: if the low bit of the return value is clear, an
error has occurred and the caller returns control to its caller; if the low bit
of the return value is set, the caller continues execution.

CDA$_NORMAL Normal successful completion.

Any error returned by the file routines.

CDA$GET_AGGREGATE

CDA$GET_AGGREGATE GET AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Reads the next aggregate from the specified stream.

CDA$GET _AGGREGATE root-aggregate-handle
,stream-handle
,aggregate-handle
,aggregate-type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the aggregate to be read.
The root-aggregate-handle argument is the address of an unsigned
longword that contains this root aggregate handle. This handle is
returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

When reading aggregates using this routine, you must use the same value
for root-aggregate-handle consistently to read all the aggregates in the
compound document. Once you have read all of the aggregates, you cannot
specify the same root-aggregate-handle again when calling this routine.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream from which the aggregate is to be read. The
stream-handle argument is the address of an unsigned longword that
contains this stream handle. This handle is returned by a call to either
the OPEN FILE routine or the OPEN STREAM routine.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the retrieved aggregate. The aggregate-handle
argument is the address of an unsigned longword that receives this

CDA-77

CDA$GET_AGGREGATE

DESCRIPTION

CDA-78

aggregate handle. This aggregate handle is used to identify the retrieved
aggregate to any other aggregate transfer procedure.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. The
DDIF aggregate type symbolic codes are defined in the file DDIF$DEF.SDL
and are described in Chapter 6 and Appendix D.

Valid aggregate types are as follows:

Aggregate Type Meaning

DDIF$_DSC Document descriptor

DDIF$_DHD Document header

DDIF$_SEG Document segment

DDIF$_TXT Text content

DDIF$_GTX General text content

DDIF$_HRD Hard directive

DDIF$_SFT Soft directive

DDIF$_HRV Hard value directive

DDIF$_SFV Soft value directive

DDIF$_BEZ Bezier curve content

DDIF$_LIN Polyline content

DDIF$_ARC Arc content

DDIF$_FAS Fill area set content

DDIF$_1MG Image content

DDIF$_CRF Content reference

DDIF$_EXT External content

DDIF$_PVT Private content

DDIF$_GLY Layout galley

DDIF$_EOS End of segment

If the aggregate type is DDIF$_EOS (end of segment), the aggregate­
handle is 0.

The GET AGGREGATE routine reads the next aggregate from a specified
stream. This routine is used by a front end to read the next aggregate
from a compound document file. Note that the aggregate returned is not
part of a sequence.

CONDITION
VALUES
RETURNED

CDA$GET_AGGREGATE

The GET AGGREGATE routine reads the aggregates in a document in a
hierarchical fashion. That is, whenever GET AGGREGATE encounters
a segment, it descends to the next level of hierarchy and reads the
contents of that segment before reading the remaining content of the
parent segment. The GET AGGREGATE routine only returns to the
parent segment's level of hierarchy when it encounters a DDIF$_EOS (end
of segment) aggregate to indicate that the nested segment is completed.
These rules can be generalized as follows:

• If the aggregate being read is a content aggregate, the aggregate is
simply returned and the next aggregate returned is the next aggregate
in the segment.

• If the aggregate being read is a segment aggregate (DDIF$_SEG), the
content nested in the segment is returned, using these same ordering
rules, followed by a dummy DDIF$_EOS (end of segment) aggregate
to indicate the end of the nested segment. Once the nested segment
and its content have been returned and the end of the segment has
been indicated, the next aggregate read is the next aggregate in the
(current) segment.

Note: All segments must be completed by a DDIF$_EOS aggregate.

Following these generalized rules, if a document contains a document
root aggregate (DDIF$_DDF), a document descriptor (DDIF$_DSC), a
document header (DDIF$_DHD), and a root segment (DDIF$_SEG) with
text content (DDIF$_TXT), a nested segment (DDIF$_SEG), and Bezier
content (DDIF$_BEZ), where the segment nested under the root segment
contains arc content (DDIF$_ARC), the aggregates returned by consecutive
calls to GET AGGREGATE would be as follows:

1 DDIF$_DSC

2 DDIF$_DHD

3 DDIF$_SEG (root segment)

4 DDIF$_TXT

5 DDIF$_SEG (segment with nested arc content)

6 DDIF$_ARC (nested arc content aggregate)

7 DDIF$_EOS (dummy aggregate indicating end of segment with nested
arc content)

8 DDIF$_BEZ (Bezier content)

9 DDIF$_EOS (dummy aggregate indicating end of root segment)

CDA$_NORMAL

CDA$_ENDOFDOC

CDA$_1NVDOC

Normal successful completion.

End of document.

Invalid document content.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA-79

CDA$GET_ARRAY_SIZE

CDA$GET _ARRAY _SIZE GET ARRAY SIZE

FORMAT

RETURNS

ARGUMENTS

Determines the number of elements present in an array-valued aggregate
item.

CDA$GET _ARRAY _SIZE aggregate-handle
,aggregate-item ,array-size

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate containing the array-valued item. The
aggregate-handle argument is the address of an unsigned longword
containing this aggregate identifier.

aggregate-item
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Identifying code of the array-valued aggregate item, expressed as a
symbolic constant. The aggregate-item argument is the address of
an unsigned longword that contains this code. The DDIF aggregate item
symbolic constants are defined in the module DDIF$DEF.SDL and are
defined in Chapter 6 and Appendix D.

array-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the number of elements present in the array-valued item. The
array-size argument is the address of an unsigned longword that receives
this array size. Because the index is zero-based, this number is equal to
one more than the value of the highest valid aggregate index.

DESCRIPTION The GET ARRAY SIZE routine determines the number of elements present
in an array-valued aggregate item.

CDA-80

CONDITION
VALUES
RETURNED

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMCOD

CDA$_EMPTY

CDA$GET _ARRAY _SIZE

Normal successful completion.

Invalid aggregate type.

Invalid item code.

Item is empty.

CDA-81

CDA$GET _DOCUMENT

CDA$GET _DOCUMENT GET DOCUMENT

FORMAT

RETURNS

ARGUMENTS

Reads an entire compound document from the specified stream.

CDA$GET _DOCUMENT root-aggregate-handle
,stream-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the document to be read.
The root-aggregate-handle argument is the address of an unsigned
longword that contains this root aggregate handle. This handle is
returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

Once you read an entire document, you cannot call the GET DOCUMENT
routine specifying the same root aggregate handle again. That is, you can
only read a document associated with a particular root aggregate once.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream from which the document is to be read. The
stream-handle argument is the address of an unsigned longword that
contains this stream handle. This handle is returned by a call to either
the OPEN FILE routine or the OPEN STREAM routine.

DESCRIPTION The GET DOCUMENT routine reads an entire document from the
specified stream. This routine is used by a front end module to read
an entire compound document file into memory.

CDA-82

Upon completion of the call to this routine, the entire document is present
in aggregates that are linked from the document root aggregate.

CONDITION
VALUES
RETURNED

CDA$GET _DOCUMENT

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVDOC

Normal successful completion.

Invalid aggregate type.

Invalid document content.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA-83

CDA$GET _EXTERNAL_ENCODING

CDA$GET _EXTERNAL_ENCODING
GET EXTERNAL ENCODING

FORMAT

RETURNS

ARGUMENTS

CDA-84

Reads the value of an external encoding from the specified stream and
stores it as the value of the DDIF$_EXT _ENCODING item in a DDIF$_EXT
aggregate.

CDA$GET _EXTERNAL_ENCODING
root-aggregate-handle ,stream-handle
,aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate. The root-aggregate-handle argument
is the address of an unsigned longword that contains this root aggregate
handle. This handle is returned by a call to either the OPEN FILE routine
or the CREATE ROOT AGGREGATE routine.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream containing the external encoding. The stream­
handle argument is the address of an unsigned longword that contains
this stream handle. This handle is returned by a call to either the OPEN
FILE routine or the OPEN STREAM routine.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference
Identifier of an aggregate of type DDIF$_EXT. The aggregate-handle
argument is the address of an unsigned longword that contains this
aggregate handle. The external encoding value that is read from the
stream is written to the DDIF$_EXT_ENCODING item in this aggregate,
and the DDIF$_EXT aggregate becomes the root aggregate for the external
document.

CDA$GET _EXTERNAL_ENCODING

DESCRIPTION The GET EXTERNAL ENCODING routine reads the value of an external
encoding and stores the value in the DDIF$_EXT_ENCODING item of the
DDIF$_EXT aggregate specified by aggregate-handle. The DDIF$_EXT
aggregate becomes the root aggregate for the external document.

CONDITION
VALUES
RETURNED

If used, the GET EXTERNAL ENCODING routine must be invoked
immediately after an aggregate of type DDIF$_EXT has been returned
by the GET AGGREGATE routine. Alternatively, the caller can read the
DDIS encoding of an inner document by calling the CDA Toolkit input
routines for an inner document root aggregate.

CDA$_NORMAL

CDA$_1NVDOC

CDA$_1NVAGGTYP

Normal successful completion.

Invalid document.

Invalid aggregate type.

CDA-85

CDA$GET_STREAM_POSITION

CDA$GET _STREAM_POSITION
GET STREAM POSITION

FORMAT

RETURNS

ARGUMENTS

CDA-86

Returns the current position in and size of a CDA data stream.

CDA$GET_STREAM_POSITION
stream-handle ,position-rtn
,position-prm , stream-position
, stream-size

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream. The stream-handle argument is the address
of an unsigned longword that contains this stream handle. The handle
is returned by a call to either the OPEN STREAM routine or the OPEN
FILE routine.

position-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a get-position routine. The position-rtn argument is the
address of a procedure entry mask for this get-position routine. The
calling sequence for a get-position routine is defined in the Description
section. If you specify 0 for this argument, the CDA Toolkit provides a
default get-position routine. If you specify a value other than the default
for this parameter, you must also specify a value for the position-prm
argument.

position-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the get-position routine. The position-prm
argument contains the value of this user context. This argument should
contain the value of the get-prm argument passed in a call to the OPEN
STREAM or CREATE STREAM routine, or the value of the file handle

DESCRIPTION

CDA$GET_STREAM_POSITION

in a call to the OPEN FILE or CREATE FILE routine. If you specify a
value for the position-rtn argument, you must also specify a value for
this argument.

stream-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

stream-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

The GET STREAM POSITION routine returns the current position and
total size of the CDA data stream being processed.

Call Format for User Get-Position Routines

The position-rtn and position-prm arguments are used to invoke a user
stream get-position routine, and to supply an argument to that routine.
This routine returns the size and position of the current data stream.

The call format for a user get-position routine is as follows:

position-rtn position-prm ,stream-position ,stream-size

position-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference
User context information that is passed to the GET STREAM POSITION
routine. The position-prm argument is the address of an unsigned
longword that contains this user context.

stream-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of
the input stream being processed. The stream-position argument is the
address of an unsigned longword that receives this position.

CDA-87

CDA$GET _STREAM_POSITION

CONDITION
VALUES
RETURNED

CDA-88

stream-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the input stream being processed.
The stream-size argument is the address of an unsigned longword that
receives this size.

This user routine must return a completion status. The VMS convention
for completion codes is followed: if the low bit of the return value is clear,
an error has occurred and the caller returns control to its caller; if the low
bit of the return value is set, the caller continues execution.

CDA$_NORMAL Normal successful completion.

CDA$GET _TEXT _POSITION

CDA$GET _TEXT _POSITION GET TEXT POSITION

FORMAT

RETURNS

ARGUMENTS

Returns the current position in and size of a text file.

CDA$GET _TEXT _POSITION file-handle, file-position
,file-size

VMS usage: cond_value
type: longword (unsigned}
access: write only
mechanism: by value

file-handle
VMS usage: identifier
type: longword (unsigned}
access: read only
mechanism: by reference
Identifier of the text file being processed. The file-handle argument is
the address of an unsigned longword that contains this file handle. This
handle is returned by a call to the OPEN TEXT FILE routine.

file-position
VMS usage: longword_unsigned
type: longword (unsigned}
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of the
input text file being processed. The file-position argument is the address
of an unsigned longword that receives this position.

file-size
VMS usage: longword_unsigned
type: longword (unsigned}
access: write only
mechanism: by reference
Receives the total size (in bytes) of the text file being processed. The file­
size argument is the address of an unsigned longword that receives this
file size.

DESCRIPTION The GET TEXT POSITION routine returns the current position in and
total size of an input text file being processed.

CDA-89

CDA$GET _TEXT _POSITION

CONDITION
VALUES
RETURNED

CDA-90

CDA$_NORMAL Normal successful completion.

CDA$1NSERT _AGGREGATE

CDA$1NSERT _AGGREGATE INSERT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Inserts an aggregate into a sequence. The location at which the aggregate
is to be inserted is determined by specifying the preceding aggregate in the
sequence.

CDA$1NSERT _AGGREGATE aggregate-handle
,prev-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be inserted into the sequence. The
aggregate-handle argument is the address of an unsigned longword
that contains the handle of the aggregate to be inserted.

prev-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate after which the aggregate identified by
aggregate-handle is to be inserted in the sequence. The prev­
aggregate-handle argument is the address of an unsigned longword
that contains this handle.

DESCRIPTION The INSERT AGGREGATE routine inserts an aggregate into a sequence.
The location at which the aggregate is to be inserted is indicated by
specifying the preceding aggregate in the sequence.

If the aggregate indicated by aggregate-handle is the first aggregate
in its own sequence, this entire sequence is inserted into the sequence
containing the aggregate specified by prev-aggregate-handle. If the
aggregate specified as aggregate-handle is part of a sequence but is not
the first aggregate in that sequence, or if it is the value of an item, an
error is returned.

CDA-91

CDA$1NSERT _AGGREGATE

CONDITION
VALUES
RETURNED

CDA$_NORMAL

CDA$_1NVINSERT

Normal successful completion.

Aggregate already in a sequence.

EXAMPLE

CDA-92

aggregate_type = DDIF$_PTH;
status= cda$create_aggregate(&root_aggregate_handle,&aggregate_type,

&inner aggregate handle) ;
if (FAILURE(status)) return(status);- -

aggregate item = DDIF$ SGA FRM OUTLINE;
item_length = 4; - - -
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate_item,&item_length,
&inner_aggregate_handle) ;

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_PTH_C;
local_length = sizeof(integer_value);
integer_value = DDIF$K_PATH_REFERENCE;
status = cda$store item(&root aggregate handle,

- &inner aggregate handle, &aggregate item,
&local=length, &integer_value); -

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_PTH_REFERENCE;
local_length = sizeof(integer_value);
integer_value = 1;
status = cda$store item(&root aggregate handle,

- &inner aggregate handle, &aggregate item,
&local=length, &integer_ value);

if (FAILURE(status)) return(status);

aggregate_type = DDIF$_PTH;
status= cda$create aggregate(&root aggregate handle,

- &aggregate type,&inner-aggregate handle 2);
if (FAILURE(status)) return(status); - - -

status= cda$insert_aggregate(&inner_aggregate_handle_2,
&inner aggregate handle);

if (FAILURE(status)) return(status);- -

aggregate_item = DDIF$_PTH_C;
local length= sizeof(integer value);
integer_value = DDIF$K_PATH_BEZIER;
status = cda$store item(&root aggregate handle,

- &inner aggregate handle 2, &aggregate item,
&local=length, &integer=value); -

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_PTH_BEZ_PATH_C;
local length= sizeof(integer value);
integer value = DDIF$K VALUE CONSTANT;
aggregate_index = O; - -
status = cda$store item(&root aggregate handle,

- &inner aggregate handle 2,
&aggregate item,-&local-length,
&integer_value, &aggregate_index);

if (FAILURE(status)) return(status);

CDA$1NSERT _AGGREGATE

aggregate item = DDIF$ PTH BEZ PATH;
local length= sizeof(integer value);
integer_value = 20; -
aggregate_index = O;
status = cda$store item(&root aggregate handle,

- &inner aggregate handle 2, &aggregate item,
&local=length, &integer=value, -
&aggregate_index);

if (FAILURE(status)) return(status);

This example illustrates the use of the INSERT AGGREGATE routine to
insert an aggregate into a sequence.

CDA-93

CDA$LEAVE_SCOPE

CDA$LEAVE_SCOPE LEAVE SCOPE

FORMAT

RETURNS

ARGUMENTS

CDA-94

Completes a document that was incrementally written.

CDA$LEAVE_SCOPE root-aggregate-handle
,stream-handle ,scope-code

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the document being
incrementally written. The root-aggregate-handle argument is the
address of an unsigned longword that contains this root aggregate handle.
This handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream associated with the document being incrementally
written. The stream-handle argument is the address of an unsigned
longword that contains this stream handle. This handle is returned by a
call to either the CREATE FILE routine or the CREATE STREAM routine.

scope-code
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Symbolic constant identifying the scope to be completed. The scope-code
argument is the address of an unsigned longword containing this code.
Valid values are as follows:

Code

DDIF$K_DOCUMENT _SCOPE

DDIF$K_CONTENT _SCOPE

DDIF$K_SEGMENT _SCOPE

Meaning

Document scope

Content scope

Segment scope

CDA$LEAVE_SCOPE

DESCRIPTION The LEAVE SCOPE routine completes a compound document that was
incrementally written. For more information on incremental writing of
documents, see the description for the ENTER SCOPE routine.

CONDITION
VALUES
RETURNED

CDA$_NORMAL

CDA$_1NVSCOCOD

Normal successful completion.

Invalid scope code.

Any errors returned by the file routines.

CDA-95

CDA$LOCATE_ITEM

CDA$LOCATE_ITEM LOCATE ITEM

FORMAT

RETURNS

ARGUMENTS

CDA-96

Locates an item within an aggregate by returning its address.

CDA$LOCATE_ITEM root-aggregate-handle

VMS usage: cond_value

,aggregate-handle
,aggregate-item ,item-address
,item-length [,aggregate-index]
[,add-info]

type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate with which the aggregate containing the
item to be located is associated. The root-aggregate-handle argument
is the address of an unsigned longword that contains this root aggregate
handle. This identifier is returned by a call to either the OPEN FILE
routine or the CREATE ROOT AGGREGATE routine.

You must use identical memory management procedures when storing and
locating an item within an aggregate, to ensure consistent treatment of
memory allocation and deallocation.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate containing the item to be located. The
aggregate-handle argument is the address of an unsigned longword
that contains this aggregate handle.

aggregate-item
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Identifying code of the item, expressed as a symbolic constant. The
aggregate-item argument is the address of an unsigned longword that
contains this code. The DDIF aggregate item symbolic constants are

CDA$LOCATE_ITEM

defined in the file DDIF$DEF.SDL and are described in Chapter 6 and
Appendix D.

The aggregate item DDIF$_USER_CONTEXT is defined for every
aggregate type. It is a longword that can be used by the application
for any purpose. If you specify this item, the value of aggregate-item is
initially 0.

For the purpose of this routine, a DDIF$_AGGREGATE_TYPE item is
defined for every DDIF aggregate type. If you specify this aggregate item,
it returns the type of the aggregate.

item-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of the item's value. The item-address argument is
the address of an unsigned longword that receives the address of the value
of this item. This storage area can only be read by the calling program;
that is, it is read-only. The returned item-address is valid until either
the Store Item or the ERASE ITEM routine is called for any item in the
aggregate, or until the aggregate is deleted.

item-length
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the length (in bytes) of the item's value. The item-length
argument is the address of an unsigned longword that receives this length.

aggregate-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Index of the item (relative to 0). The aggregate-index argument is the
address of an unsigned longword that contains this index. This argument
is required whenever the notation "Array of' appears in the data type of
the specified item handle. Otherwise, this argument is only required if the
add-info argument is also required.

add-info
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a data type-specific modifier for the data types "Character string"
and "string with add-info". The add-info argument is the address of an
unsigned longword that receives this data type-specific information. For
data types other than "Character string" and "string with add-info", this
argument is not written and may be omitted.

CDA-97

CDA$LOCATE_ITEM

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA-98

For the data type "Character string'', the add-info parameter receives
the character set designator. For the data type "string with add-info", if
the string value is equal to one of the standard tag values, the add-info
parameter receives a value that identifies the tag. Otherwise, add-info
receives a value that indicates that the tag is private.

The LOCATE ITEM routine determines the address of an item within
an aggregate. If the located item is encoded as an "Array of', the user
must call the GET ARRAY SIZE routine to determine the array size, and
then use the LOCATE ITEM routine to read each item in the array by
incrementing the aggregate-index argument.

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMCOD

CDA$_EMPTY

CDA$_1NDEX

CDA$_ VAREMPTY

CDA$_VARINDEX

CDA$_VARVALUE

CDA$_DEFAULT

Normal successful completion.

Invalid aggregate type.

Invalid item code.

Item is empty.

Index exceeds array bounds.

Variant item is empty.

Variant index exceeds bounds.

Variant value is undefined.

Value returned is either a default value that is not in
the data stream or is an inherited value if inheritance
is enabled for the root aggregate.

CDA$NEXT_AGGREGATE

CDA$NEXT_AGGREGATE NEXT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Locates the next aggregate in an aggregate sequence.

CDA$NEXT _AGGREGATE aggregate-handle
,next-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be used in locating the next aggregate. The
aggregate-handle argument is the address of an unsigned longword
containing the handle of the aggregate that precedes the desired
aggregate.

next-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the aggregate that follows the aggregate specified
by aggregate-handle. The next-aggregate-handle argument is
the address of an unsigned longword that receives the handle of this
aggregate. If the aggregate specified by aggregate-handle is the last
aggregate in the sequence, next-aggregate-handle receives a value of 0.

DESCRIPTION The NEXT AGGREGATE routine locates the next aggregate in a sequence
of aggregates. This aggregate is located by searching for the preceding
aggregate, specified by aggregate-handle. When using this routine,
you should :first use the LOCATE ITEM routine to retrieve the aggregate
handle of the :first aggregate in the sequence. After that, you can use the
NEXT AGGREGATE routine to retrieve each additional aggregate in the
sequence. All aggregates in the sequence have been retrieved when the
status CDA$_ENDOFSEQ is returned.

For example, the DDIF$_CRF _TRANSFORM item in the DDIF$_CRF
aggregate is encoded as a sequence of DDIF$_TRN aggregates. After
using the LOCATE ITEM routine to retrieve the aggregate handle of the
:first DDIF$_TRN aggregate in the sequence, you should use the NEXT

CDA-99

CDA$NEXT_AGGREGATE

CONDITION
VALUES
RETURNED

CDA-100

AGGREGATE routine to return each additional aggregate in this encoded
sequence, until the status CDA$_ENDOFSEQ is returned.

If you are interested in retrieving aggregates from a particular input
stream that are not encoded as a sequence, refer to the description of the
GET AGGREGATE routine.

CDA$_NORMAL

CDA$_ENDOFSEQ

Normal successful completion.

No successor aggregate found.

CDA$0BJECT _ID_ TO _AGGREGATE_ TYPE

CDA$0BJECT _ID_ TO _AGGREGATE_ TYPE
OBJECT ID TO AGGREGATE TYPE

FORMAT

RETURNS

ARGUMENTS

Translates an object identifier to a root aggregate type.

CDA$0BJECT _ID_ TO _AGGREGATE_ TYPE
but-Jen ,buf-adr ,nam-len ,nam-adr
,act-nam-len ,aggregate-type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

buf-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the object identifier buffer. The buf-len argument is
the address of an unsigned longword that contains this buffer length.

buf-adr
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference
Address of the object identifier. The buf-adr argument is the address of
an array of unsigned longwords that make up the buffer.

nam-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the domain name buffer. The nam-len argument
is the address of an unsigned longword that contains the length of this
domain name buffer.

nam-adr
VMS usage: vector _longword _unsigned
type: longword (unsigned)
access: write only
mechanism: by reference, array reference

CDA-101

CDA$0BJECT _ID_ TO _AGGREGATE_ TVPE

Receives the address of the domain name buffer. The nam-adr argument
is the address of an array of unsigned longwords that comprise the domain
name buffer.

act-nam-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the domain name in the nam-adr
buffer. The act-nam-len argument is the address of an unsigned longword
that receives this actual length.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the translated aggregate type. The aggregate-type argument is
the address of an unsigned longword that receives the aggregate type.

DESCRIPTION The OBJECT ID TO AGGREGATE TYPE routine translates an object
identifier to a root aggregate type.

CONDITION
VALUES
RETURNED

CDA-102

CDA$_NORMAL

CDA$_1NVAGGTYP

Normal successful completion.

Invalid aggregate type.

CDA$0PEN_CONVERTER

CDA$0PEN_CONVERTER OPEN CONVERTER

FORMAT

RETURNS

ARGUMENTS

Activates a front end to process nested content, which can be in the same
format as the current document or in a different format.

CDA$0PEN _CONVERTER standard-item-list
, converter-context
, front-end-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

standard-item-list
VMS usage: item_list_2
type: longword (unsigned)
access: read only
mechanism: by reference, array reference
An item list that identifies the document source and destination, and
can also contain options to control processing. The standard-item-list
argument is the address of this item list.

Each entry in the item list is a 2-longword structure with the following
format:

item code buffer length

buffer address

To terminate the item list, you must specify the final entry or longword
as 0. Valid code values for the items in the standard-item-list are as
follows:

CDA$_1NPUT _FORMAT
The parameter is the address and length of a string that specifies the
input document format.

CDA$ _INPUT _FRONT _END _PROCEDURE

0

4

The parameter is the address of the front end's main entry point,
DDIF$READJormat. The item list length field must be 0. This item
enables a caller to provide a front end that is part of the calling application
rather than a separate image. If this item code is used, the CDA$_INPUT_
FILE item can be used to pass any information (not necessarily a file
specification) to the front end.

CDA-103

CDA$0PEN_CONVERTER

CDA-104

CDA$_1NPUT_FILE
The parameter is the address and length of the file specification of the
input document.

CDA$_1NPUT _DEFAULT
The parameter is the address and length of the default file specification
of the input document. If this parameter is omitted, the front end must
supply an appropriate backup default file specification.

CDA$_1NPUT_PROCEDURE
The parameter is the address of a procedure to provide input. The item
list length field mµst be 0. The input procedure must conform to the
requirements for a get routine. The calling sequence for a user get routine
is defined in the Description section of this routine.

CDA$_1NPUT _PROCEDURE_PARM
The parameter is the address of a longword parameter to the input
procedure. The item list length field must be 4.

CDA$_1NPUT _POSITION_PROCEDURE
The parameter is the address of a procedure that provides position
information. The item list length field must be set to 0.

CDA$ _INPUT_ ROOT_ AGGREGATE
The parameter is the address of a longword handle to a root aggregate
that specifies an in-memory input document. The item list length field
must be 4. The in-memory structure, except for the root aggregate itself,
is erased by this operation. The root aggregate must specify standard
memory allocation.

converter-context
VMS usage: context
type: longword (unsigned}
access: read only
mechanism: by reference
Context value passed as a parameter to the DDIF$READJormat entry
point in the front end. The converter-context argument is the address of
an unsigned longword containing this context.

front-end-handle
VMS usage: identifier
type: longword (unsigned}
access: write only
mechanism: by reference
Receives the handle of the front end that will process the nested content.
The front-end-handle argument is the address of an unsigned longword
that receives this front end handle. This handle must be used in all
subsequent operations relating to that front end.

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA$0PEN_CONVERTER

The OPEN CONVERTER routine activates a front end to process nested
content, which may be in the same format as the current document or in a
different format. Processing options that were specified to the CONVERT
DOCUMENT routine for the document format are retrieved and appended
to the item list.

Call Format for User Get Routines

The get-rtn and get-prm arguments are used to invoke a user stream get
routine, and to supply an argument to that routine. The call format for
this user routine is as follows:

get-rtn get-prm ,num-bytes ,buf-adr

get-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The get-prm argument contains the value of the
parameter to be passed to the user get routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the number of bytes contained in the buffer. The num-bytes
argument is the address of an unsigned longword that receives this
number. The number of bytes is zero if and only if the stream does not
contain any more data.

buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of the buffer. The buf-adr argument is the address
of an unsigned longword that receives the buffer address.

This user routine must return a completion status. The VMS convention
for completion codes is followed: if the low bit of the return value is clear,
an error has occurred and the caller returns control to its caller; if the low
bit of the return value is set, the caller continues execution.

CDA$_NORMAL

CDA$_UNSUPFMT

Normal successful completion.

Unsupported document format.

Any error returned by the specific front end.

CDA-105

CDA$0PEN_FILE

CDA$0PEN_FILE OPEN FILE

FORMAT

RETURNS

ARGUMENTS

CDA-106

Opens the specified file for input and validates that its contents are valid
compound document data. An input stream and a root aggregate are also
created.

CDA$0PEN_FILE file-spec-Jen ,file-spec
default-file-spec-Jen
,default-file-spec

VMS usage: cond_value

,alloc-rtn ,dealloc-rtn
,alloc-dealloc-prm ,aggregate-type
,processing-options
,result-file-spec-Jen ,result-tile-spec
,result-tile-ret-len , stream-handle
,file-handle ,root-aggregate-handle

type: longword (unsigned)
access: write only
mechanism: by value

file-spec-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The length of the string specified by the file-spec parameter. The file­
spec-len argument is the address of an unsigned longword that contains
this file specification length.

file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
The file specification. The file-spec argument is the address of a character
string that contains this file specification.

default-file-spec-Jen
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The length (in bytes) of the buffer specified by default-file-spec. The
default-file-spec-len argument is the address of an unsigned longword

CDA$0PEN_FILE

that contains this buffer length. If you specify an address of 0 for both
the default-file-spec-len and default-file-spec arguments, a default file
specification of ".DDIF" is used.

default-file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
The default file specification. The default-file-spec argument is the
address of a character string that contains the default file specification. In
order to simplify the porting of applications, the character string should
consist of only a file type in lowercase characters. If you specify an address
of 0 for both the default-file-spec-len and default-file-spec arguments,
a default file specification of ".DDIF" is used.

alloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a memory allocation routine. The alloc-rtn argument is the
address of a procedure entry mask for this allocation routine. The calling
sequence for an allocation routine is defined in the Description section
of this routine. On VMS systems, if you specify 0 for this argument,
LIB$GET_ VM is used as the memory allocation routine.

dealloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a memory deallocation routine. The dealloc-rtn argument is
the address of a procedure entry mask for this deallocation routine. The
calling sequence for a deallocation routine is defined in the Description
section of this routine. On VMS systems, if you specify 0 for this
argument, LIB$FREE_ VM is used as the memory deallocation routine.

alloc-dealloc-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the memory allocation and deallocation
routines. The alloc-dealloc-prm argument contains the value of this
user context. If the VMS system default memory allocation or deallocation
routine is used, this value must be a zone identifier or 0 for the default
zone.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

CDA-107

CDA$0PEN_FILE

CDA-108

The type of aggregate, expressed as a symbolic constant. The aggregate­
type argument is the address of an unsigned longword that contains this
symbolic constant. The only valid root aggregate type is DDIF$_DDF.

processing-options
VMS usage: item_list_2
type: longword (unsigned)
access: read only
mechanism: by reference, array reference
An item list containing options to control processing. The processing­
options argument is the address of this item list. Each entry in the item
list is a 2-longword structure; to terminate the item list you must specify a
final entry or longword of zero. Valid item codes are as follows:

DDIF$_1NHERIT_ATTRIBUTES If a style guide is specified in the document
header, definitions in the style guide are
appended to the definitions present on the
root segment, provided they are not hidden by
definitions in the document.

DDIF$_RETAIN_DEFINITIONS Segment definitions that enable the operation
of CDA$FIND_DEFINITION are retained.
This item code is required only if neither
DDIF$_1NHERIT_ATTRIBUTES nor ODIF$_
EVALUATE_CONTENT is specified.

DDIF$_EVALUATE_CONTENT If a content reference is external, the content
is fetched from the external document provided
it is either remote content or copy content that
is not present in the document.

DDIF$_DISCARD_l_SEGMENTS Segments of the image ($1) content category,
and any nested segments, are discarded.

DDIF$_DISCARD_2D_SEGMENTS Segments of the graphics ($20) content
category, and any nested segments, are
discarded.

DDIF$_DISCARD_ T _SEGMENTS Segments of the text ($T) content category,
and any nested segments, are discarded.

DDIF$_DISCARD_TBL_SEGMENTS Segments of the table ($TBL) content
category, and any nested segments, are
discarded.

DDIF$_DISCARD_PDL_SEGMENTS Segments of the page description language
($PDL) content category, and any nested
segments, are discarded.

result-file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length of the buffer (in bytes) specified by result-file-spec. The
result-file-spec-len argument is the address of an unsigned longword
containing this length. If you specify 0 for this parameter, the resultant
file specification length is not returned.

result-file-spec
VMS usage: char_string
type: character string
access: write only
mechanism: by reference

CDA$0PEN_FILE

Receives the resultant file specification. The result-file-spec argument is
the address of a character string that receives this file specification. If you
specify 0 for this parameter, the resultant file specification is not returned.
This file specification is the result of a VMS RMS $OPEN operation.

result-file-ret-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the resultant file specification. The
result-file-ret-len argument is the address of an unsigned longword that
receives the actual length of the resultant file specification. If you specify
0 for this parameter, the actual length of the resultant file specification is
not returned.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly created stream. The stream­
handle argument is the address of an unsigned longword that receives
this stream handle. This handle must be used in all subsequent operations
on that stream.

file-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly opened file. The file-handle
argument is the address of an unsigned longword that receives this file
handle. This handle must be used in all subsequent operations on that
file.

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly created root aggregate. The
root-aggregate-handle argument is the address of an unsigned longword
that receives this root aggregate handle. This handle must be used in all
subsequent operations on that root aggregate.

CDA-109

CDA$0PEN_FILE

DESCRIPTION

CONDITION
VALUES
RETURNED

CDA-110

The OPEN FILE routine opens a file for input and validates that the
contents of the file are compound document data. At the same time, this
routine also creates an input stream and a root aggregate.

Call Format for User Allocation/Deallocation Routines

The alloc-rtn, dealloc-rtn, and alloc-dealloc-prm arguments are used
to invoke a user routine that performs memory allocation or deallocation,
and to supply an argument to that routine. The call format for one of
these user routines is as follows:

user-rtn num-bytes ,base-adr ,alloc-dealloc-prm

num-bytes
VMS usage: longword_unsigned
type: longword {unsigned)
access: read only
mechanism: by reference
The number of bytes to allocate or free. The num-bytes argument is the
address of an unsigned longword that contains this number of bytes. The
value of num-bytes must be greater than zero.

base-adr
VMS usage: address
type: longword {unsigned)
access: read only or write only
mechanism: by reference
Virtual address of the first byte of memory allocated or freed. The base­
adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine, and read-only for
a free routine.)

alloc-dealloc-prm
VMS usage: user_arg
type: longword {unsigned)
access: read only
mechanism: by value
User context argument. The alloc-dealloc-prm argument contains the
value of the parameter to be passed to the user routine.

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its caller; if the low bit of the return value is set, the caller continues
execution.

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMLST

Normal successful completion.

Invalid aggregate type.

Invalid item list.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA$0PEN_FILE

EXAMPLE

/* Open the file for input */

aggregate type = DDIF$ DDF;
status = cda$open_file(&filename_length,

&testl filename[O],
O,
O,
0,
O,
0,
&aggregate_ type,
0,
&result file_spec_len,
&result file spec[O],
&result_file_ret_len,
&stream_handle,
&file_handle,
&root_aggregate handle);

if (FAILURE(status)) return(status);

/* Read the entire document in, then close the file */
print£ ("Reading document ... \ n");
status= cda$get document(&root aggregate handle, &stream handle);
if (FAILURE(status)) return(status); - -

status= cda$close file(&stream handle, &file_handle);
if (FAILURE(status)) return(status);

This example illustrates a typical call to the OPEN FILE routine.
Following a call to this routine, the file is read using the GET
DOCUMENT routine and subsequently closed.

CDA-111

CDA$0PEN_STREAM

CDA$0PEN_STREAM OPEN STREAM

FORMAT

RETURNS

ARGUMENTS

CDA-112

Opens a compound document stream for input.

CDA$0PEN_STREAM alloc-rtn ,dealloc-rtn
,alloc-dealloc-prm ,get-rtn
,get-prm ,stream-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

alloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a memory allocation routine. The alloc-rtn argument is the
address of a procedure entry mask for this allocation routine. The calling
sequence for an allocation routine is defined in the Description section
of this routine. On VMS systems, if you specify 0 for this argument,
LIB$GET_ VM is used as the memory allocation routine.

dealloc-rtn
VMS usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a memory deallocation routine. The dealloc-rtn argument is
the address of a procedure entry mask for this deallocation routine. The
calling sequence for a deallocation routine is defined in the Description
section of this routine. On VMS systems, if you specify 0 for this
argument, LIB$FREE_ VM is used as the memory deallocation routine.

alloc-dealloc-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the memory allocation and deallocation
routines. The alloc-dealloc-prm argument contains the value of this
user context. If the VMS system default memory allocation or deallocation
procedure is used, this value must be a zone identifier or 0 for the default
zone.

DESCRIPTION

CDA$0PEN_STREAM

get-rtn
V~S usage: procedure
type: procedure entry mask
access: call after stack unwind
mechanism: by reference
Address of a stream get routine. The get-rtn argument is the address of
a procedure entry mask for this stream get routine. The calling sequence
for a get routine is defined in the Description section of this routine. If you
specify 0 for this argument, the VMS RMS $GET service is used. If you
specify a value other than the default for this argument, you must also
specify a value for the get-prm argument.

get-prm
VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by value
User context to be passed to the stream get routine. The get-prm
argument contains the value of this user context. If the VMS system
default get routine is used, the value must be a pointer to a RAB.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives a value that identifies the newly created stream. The stream­
handle argument is the address of an unsigned longword that receives
this stream handle. This handle must be used in all subsequent operations
on that stream.

The OPEN STREAM routine opens a compound document stream for
input. The number of streams that you can open simultaneously is limited
only by the amount of memory available.

Call Format for User Allocation/Deallocation Routines

The alloc-rtn, dealloc-rtn, and alloc-dealloc-prm arguments are used
to invoke a user routine that performs memory allocation or deallocation,
and to supply an argument to that routine. The call format for one of
these user routines is as follows:

user-rtn num-bytes ,base-adr ,alloc-dealloc-prm

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
The number of bytes to allocate or free. The num-bytes argument is the
address of an unsigned longword that contains this number of bytes. The
value of num-bytes must be greater than 0.

CDA-113

CDA$0PEN_STREAM

CDA-114

base-adr
VMS usage: address
type: longword (unsigned)
access: read only or write only
mechanism: by reference
Virtual address of the first byte of memory allocated or freed. The base­
adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine, and read-only for
a free routine.)

alloc-dealloc-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The alloc-dealloc-prm argument contains the
value of the parameter to be passed to the user routine.

Call Format for User Get Routines

The get-rtn and get-prm arguments are used to invoke a user stream
get routine and to supply an argument to that routine. This routine
reads bytes from an input stream. The buffer is supplied by a call to the
get routine; therefore, the application can use any buffer management
technique. The caller of the get routine treats the buffer as read-only; it
must contain valid data until the next call to the get routine.

The call format for a user get routine is as follows:

get-rtn get-prm ,num-bytes ,buf-adr

get-prm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value
User context argument. The get-prm argument contains the value of the
parameter to be passed to the user get routine.

num-bytes
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the number of bytes contained in the buffer. The num-bytes
argument is the address of an unsigned longword that receives this
number. The number of bytes is 0 only if the stream does not contain any
more data.

buf-adr
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

CONDITION
VALUES
RETURNED

CDA$0PEN_STREAM

Receives the address of the buffer. The buf-adr argument is the address
of an unsigned longword that receives the buffer address.

Each of these user routines must return a completion status. The VMS
convention for completion codes is followed: if the low bit of the return
value is clear, an error has occurred and the caller returns control to
its caller; if the low bit of the return value is set, the caller continues
execution.

CDA$_NORMAL Normal successful completion.

Any error returned by the memory allocation routines.

CDA-115

CDA$0PEN_ TEXT _FILE

CDA$0PEN_ TEXT _FILE OPEN TEXT FILE

FORMAT

RETURNS

ARGUMENTS

CDA-116

Opens a standard text file for input.

CDA$0PEN_TEXT_FILE file-spec-fen ,file-spec
, default-file-spec-fen

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

, def au It-file-spec
, resu It-file-spec-I en
, resu It-file-spec
,result-file-ret-len
, text-file-handle

Length (in bytes) of the string specified by the file-spec argument. The
file-spec-len argument is the address of an unsigned longword that
contains this length.

file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
File specification of the text file to be opened for input. The file­
spec argument is the address of a character string containing this file
specification.

default-file-spec-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the string specified by default-file-spec. The
default-file-spec-len argument is the address of an unsigned longword
that contains this default file specification length. If you specify 0 for this
parameter, no default file specification is used.

default-file-spec
VMS usage: char_string
type: character string
access: read only
mechanism: by reference

CDA$0PEN_ TEXT _FILE

Default file specification. The default-file-spec argument is the address
of a character string that contains this default file specification. If you
specify a 0 for this parameter, no default file specification is used. The
string should consist only of a file type in lowercase characters.

result-file-spec-Jen
VMS usage: longword_unsigned
type: longword {unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the buffer specified by result-file-spec. The result­
file-spec-len argument is the address of an unsigned longword that
contains this buffer length. If you specify 0 for this parameter, the length
of the resultant file specification is not returned.

result-file-spec
VMS usage: char_string
type: character string
access: write only
mechanism: by reference
Receives the resultant file specification. The result-file-spec argument
is the address of a character string that receives this resultant file
specification. This file specification is the result of a VMS RMS $OPEN
operation. If you specify 0 for this parameter, a resultant file specification
is not returned.

resLJlt-file-ret-len
VMS usage: longword_unsigned
type: longword {unsigned)
access: write only
mechanism: by reference
Receives the actual length (in bytes) of the resultant file specification. The
result-file-ret-len argument is the address of an unsigned longword that
receives the actual length of the resultant file specification. If you specify
0 for this parameter, the actual length of the resultant file specification is
not returned.

text-file-handle
VMS usage: identifier
type: longword {unsigned)
access: write only
mechanism: by reference
Receives the handle of the text file. The text-file-handle argument is the
address of an unsigned longword that contains this text file handle. This
handle must be used in all subsequent operations on that text file.

DESCRIPTION The OPEN TEXT FILE routine opens a standard text file for input.

CDA-117

CDA$0PEN_ TEXT _FILE

CONDITION
VALUES
RETURNED

CDA-118

CDA$_NORMAL Normal successful completion.

Any error returned by the memory allocation routines.

Any error returned by the file routines.

CDA$PRUNE_AGGREGATE

CDA$PRUNE_AGGREGATE PRUNE AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Removes the next sequential document content aggregate from an existing
in-memory compound document, and returns its handle and type.

CDA$PRUNE_AGGREGATE
root-aggregate-handle
,aggregate-handle ,aggregate-type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the aggregate to be
removed. The root-aggregate-handle argument is the address of
an unsigned longword that contains this root aggregate handle. This
aggregate handle is returned by a call to either the OPEN FILE routine or
the CREATE ROOT AGGREGATE routine.

When removing aggregates using the PRUNE AGGREGATE routine,
you must use the same value for the root aggregate handle argument
consistently to remove all the aggregates in the compound document.
Once you have removed all of the aggregates, you cannot specify the
same root aggregate handle again when calling the PRUNE AGGREGATE
routine.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the handle of the removed aggregate. The aggregate-handle
argument is the address of an unsigned longword that receives this
aggregate handle. This handle must be used in all subsequent operations
on that aggregate.

aggregate-type
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

CDA-119

CDA$PRUNE_AGGREGATE

Receives the aggregate type. The aggregate-type argument is the
address of an unsigned longword that receives this aggregate type. If
the aggregate type returned is DDIF$_EOS (end of segment), the value of
the aggregate handle argument is 0.

DESCRIPTION The PRUNE AGGREGATE routine removes the next sequential document
content aggregate from an existing in-memory compound document, and
returns the aggregate identifier and type. A front end should invoke this
routine from the get-aggregate entry point module in cases where it builds
an entire compound document in memory before returning its content.

CONDITION
VALUES
RETURNED

CDA-120

CDA$_NORMAL

CDA$_ENDOFDOC

Normal successful completion.

End of document.

CDA$PRUNE_POSITION

CDA$PRUNE_POSITION PRUNE POSITION

FORMAT

RETURNS

ARGUMENTS

Returns the position in and size of an in-memory document.

CDA$PRUNE_POSITION root-aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

, file-position , file-size

Identifier of the root aggregate associated with the in-memory document.
The root-aggregate-handle argument is the address of an unsigned
longword that contains this root aggregate handle. The handle is returned
by a call to either the OPEN FILE routine or the CREATE ROOT
AGGREGATE routine.

file-position
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the current position (in bytes) as measured from the start of the
document being processed. The file-position argument is the address of
an unsigned longword that receives this position.

file-size
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the total size (in bytes) of the in-memory document being
processed. The file-size argument is the address of an unsigned longword
that receives this size.

DESCRIPTION The PRUNE POSITION routine returns the current position in and total
size of the in-memory document being processed. This routine must
be used by the get-position routine when a front end builds an entire
document in memory before returning its content.

CDA-121

CDA$PRUNE_POSITION

CONDITION
VALUES
RETURNED

CDA-122

CDA$_NORMAL Normal successful completion.

CDA$PUT_AGGREGATE

CDA$PUT _AGGREGATE PUT AGGREGATE

FORMAT

RETURNS

ARGUMENTS

Writes one or more aggregates to a specified stream.

CDA$PUT _AGGREGATE root-aggregate-handle
,stream-handle
,aggregate-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the aggregate to be
written. The root-aggregate-handle argument is the address of an
unsigned longword that contains this root aggregate handle. This handle
is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

When writing aggregates using the PUT AGGREGATE routine, you must
use the same value for root-aggregate-handle consistently to write all
the aggregates in the compound document. Once you have written all
of the aggregates, you cannot specify the same root-aggregate-handle
again when calling this routine.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream to which the aggregate is to be written. The
stream-handle argument is the address of an unsigned longword that
contains this stream handle. This handle is returned by a call to either
the CREATE FILE routine or the CREATE STREAM routine.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be written. The aggregate-handle
argument is the address of an unsigned longword that contains this
aggregate handle. This handle is returned by a call to any one of the

CDA-123

CDA$PUT_A~GREGATE

following routines: CONVERT AGGREGATE, CREATE AGGREGATE,
GET AGGREGATE, or LOCATE ITEM.

DESCRIPTION The PUT AGGREGATE routine writes one or more aggregates to a
specified stream. Note that the aggregates remain unchanged after a
call to this routine. If you do not require these aggregates after you call
this routine, your application should include a subsequent call to the
DELETE AGGREGATE routine to destroy these aggregates.

CDA-124

If the aggregate is part of a sequence, a call to the PUT AGGREGATE
routine causes the entire sequence to be written. The aggregate type of
the written aggregate is one of the following:

Aggregate Type Meaning

DDIF$_DSC Document descriptor

DDIF$_DHD Document header

DDIF$_SEG Document segment

DDIF$_TXT Text content

DDIF$_GTX General text content

DDIF$_HRD Hard directive

DDIF$_SFT Soft directive

DDIF$_HRV Hard value directive

DDIF$_SFV Soft value directive

DDIF$_8EZ Bezier curve content

DDIF$_LIN Polyline content

DDIF$_ARC Arc content

DDIF$_FAS Fill area set content

DDIF$_1MG Image content

DDIF$_CRF Content reference

DDIF$_EXT External content

DDIF$_PVT Private content

DDIF$_GLY Layout galley

DDIF$_EOS End of segment

If the aggregate is of type DDIF$_SEG, the segment content must be
specified by the value of the DDIF$_SEG_CONTENT item. If the segment
does not contain content, you must use the ENTER SCOPE routine to
write the segment aggregate. Note that any lower-level content must be
attached to the segment aggregate before it is written.

CONDITION
VALUES
RETURNED

CDA$PUT_AGGREGATE

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVDOC

Normal successful completion.

Invalid aggregate type.

Invalid document content.

Any error returned by the file routines.

CDA-125

CDA$PUT_DOCUMENT

CDA$PUT _DOCUMENT PUT DOCUMENT

FORMAT

RETURNS

ARGUMENTS

Writes an entire document to the specified stream. The document is not
changed by this operation.

CDA$PUT _DOCUMENT root-aggregate-handle
,stream-handle

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate associated with the document to be
written. The root-aggregate-handle argument is the address of an
unsigned longword that contains this root aggregate handle. This handle
is returned by a call to either the OPEN FILE routine or the CREATE
ROOT AGGREGATE routine.

Once you write an entire document, you cannot call the PUT DOCUMENT
routine specifying the same root aggregate handle again. That is, you can
only write a document associated with a particular root aggregate once.

stream-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the stream to which the document is to be written. The
stream-handle argument is the address of an unsigned longword that
contains this stream handle. This handle is returned by a call to either
the CREATE FILE routine or the CREATE STREAM routine.

DESCRIPTION The PUT DOCUMENT routine writes an entire document to a specified
stream. Note that the document remains unchanged after a call to this
routine. If you do not require the in-memory structure after you call this
routine, your application should include a subsequent call to the DELETE
ROOT AGGREGATE routine to destroy this structure.

CDA-126

CONDITION
VALUES
RETURNED

CDA$PUT_DOCUMENT

CDA$_NORMAL

CDA$_1NVDOC

Normal successful completion.

Invalid document content.

Any error returned by the file routines.

CDA-127

CDA$READ _TEXT _FILE

CDA$READ_TEXT_FILE READ TEXT FILE

FORMAT

RETURNS

ARGUMENTS

Reads a line from a standard text file.

CDA$READ _TEXT _FILE text-file-handle ,buffer-length
,buffer-address

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

text-file-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the text file from which the line is to be read. The text-file­
handle argument is the address of an unsigned longword that contains
this text file handle. This handle is returned by a call to the OPEN TEXT
FILE routine.

buffer-length
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the length (in bytes) of the line that is read. The buffer-length
argument is the address of an unsigned longword that receives this length.

buffer-address
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference
Receives the address of the line that is read. The buffer-address
argument is the address of an unsigned longword that receives the address
of this line. No trailing record delimiter is present.

DESCRIPTION The READ TEXT FILE routine reads a line from a standard text file. On
VMS systems, the line is the next RMS record in the file.

CDA-128

CONDITION
VALUES
RETURNED

CDA$READ _TEXT _FILE

CDA$_NORMAL

CDA$_ENDOFDOC

Normal successful completion.

End of document.

Any error returned by the file routines.

CDA-129

CDA$REMOVE_AGGREGATE

CDA$REMOVE_AGGREGATE REMOVE

FORMAT

AGGREGATE

Removes an aggregate from a sequence. If the specified aggregate is not
part of a sequence, no operation is performed.

CDA$REMOVE_AGGREGATE aggregate-handle

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

ARGUMENTS aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate to be removed from the sequence. The
aggregate-handle argument is the address of an unsigned longword
that contains this aggregate handle.

DESCRIPTION The REMOVE AGGREGATE routine removes an aggregate that is part of
a sequence from that sequence. If the specified aggregate is not part of a
sequence, no operation is performed.

CONDITION
VALUES
RETURNED

CDA-130

CDA$_NORMAL Normal successful completion.

CDA$STORE_ITEM

CDA$STORE_ITEM STORE ITEM

FORMAT

RETURNS

ARGUMENTS

Writes the contents of an item within an aggregate. If the item is indexed, the
index must not exceed one more than the number of existing items.

CDA$STORE_ITEM root-aggregate-handle
,aggregate-handle
,aggregate-item ,but-Jen ,buf-adr
[,aggregate-index] [,add-info]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

root-aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the root aggregate with which the aggregate containing the
item is associated. The root-aggregate-handle argument is the address
of an unsigned longword that contains this root aggregate handle. This
handle is returned by a call to either the OPEN FILE routine or the
CREATE ROOT AGGREGATE routine.

You must use identical memory management procedures when storing and
locating an item within an aggregate, to ensure consistent treatment of
memory allocation and deallocation.

aggregate-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the aggregate into which the item is written. The aggregate­
handle argument is the address of an unsigned longword that contains
this aggregate handle.

aggregate-item
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Identifying code of the item, expressed as a symbolic constant. The
aggregate-item argument is the address of an unsigned longword that
contains this code. The DDIF aggregate item symbolic constants are

CDA-131

CDA$STORE_ITEM

CDA-132

defined in the file DDIF$DEF.SDL and are described in Chapter 6 and
Appendix D.

buf-len
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the buffer specified by the buf-adr argument. The
buf-len argument is the address of an unsigned longword that contains
this buffer length.

buf-adr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference
Buffer containing the item's value. The buf-adr argument is the address
of an array of unsigned bytes that make up the buffer.

aggregate-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Index of the item (relative to 0). The aggregate-index argument is the
address of an unsigned longword that contains this index. This argument
is required whenever the notation "Array of' appears in the data type of
the specified item handle. Otherwise, this argument is only required if the
add-info argument is also required.

add-info
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Data type-specific modifier for the data types "character string'' and
"string with add-info". The optional add-info argument is the address of
an unsigned longword that contains this data type-specific information.
For data types other than "character string'' and "string with add-info",
this argument is ignored and may be omitted.

For the data type "character string'', the add-info parameter contains
the character set designator. For the data type "string with add-info", if
the string value is equal to one of the standard tag values, the add-info
parameter contains a value that identifies the tag. Otherwise, add-info
contains a value that indicates that the tag is private.

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLES

D

CDA$STORE_ITEM

The STORE ITEM routine lets you store the value of each item within
an aggregate. After creating an aggregate, you must use this routine to
fill in the appropriate items in the aggregate. The items that exist for
each aggregate are defined in the file DDIF$DEF.SDL and are described
in Chapter 6 and Appendix D. Note that there are optional and required
aggregate items. If the text does not specify that the item is optional, then
it must be specified in order to create a valid aggregate of that type.

If an aggregate item is indexed, the index must not exceed one more than
the number of existing items. If the item is of data type variable, the
value of the item that determines the data type must have been previously
established.

The STORE ITEM routine erases the previous item value, unless the
item is "aggregate-valued" and not empty. (An "aggregate-valued" item is
one in which the value of the aggregate is actually the handle of another
aggregate.) In the case of an item that is aggregate valued and not
empty, the specified aggregate is inserted in sequence before the existing
aggregate. If the specified aggregate is the beginning of a sequence,
the entire sequence is inserted before the existing aggregate. If the
specified aggregate is part of a sequence but is not the first aggregate in
the sequence, or if the specified aggregate is the value of an item, an error
is returned.

CDA$_NORMAL

CDA$_1NVAGGTYP

CDA$_1NVITMCOD

CDA$_1NDEX

CDA$_ VAREMPTY

CDA$_ VARINDEX

CDA$_ VARVALUE

CDA$_1NVINSERT

CDA$_1NVBUFLEN

Normal successful completion.

Invalid aggregate type.

Invalid item code.

Index exceeds array bounds.

Variant item is empty.

Variant index exceeds bounds.

Variant value is undefined.

Aggregate already in a sequence.

Invalid buffer length.

static unsigned char
product_ name [] {"Sample Product"};

aggregate type = DDIF$ DSC;
status= cda$create_aggregate(&root_aggregate_handle,

&aggregate type, &aggregate handle);
if (FAILURE(status)) return(status); - -

CDA-133

CDA$STORE_ITEM

CDA-134

aggregate item = DDIF$ DDF DESCRIPTOR;
local length= sizeof(aggregate handle);
status = cda$store item(&root aggregate handle,

- &root=aggregate=handle, &aggregate_item,
&local_length, &aggregate_handle);

if (FAILURE(status)) return(status);

aggregate item = DDIF$ DSC MAJOR VERSION;
local length= sizeof(integer value);
integer_value = 1; -
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate item, &local length,
&integer_ value); -

if (FAILURE(status)) return(status);

aggregate item = DDIF$ DSC MINOR VERSION;
local length= sizeof(integer value);
integer value = O; -
status ~ cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate_item, &local_length,
&integer_value);

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_DSC_PRODUCT_IDENTIFIER;
local length = 7;
status = cda$store_item(&root_aggregate_handle, &aggregate_handle,

&aggregate item, &local length, "Example");
if (FAILURE(status)) return(status); -

aggregate item = DDIF$ DSC PRODUCT NAME;
local_len-= sizeof(product=name); -
aggregate index = O;
add info ~ CDA$K ISO LATINl;
status = cda$sto;e_item(&root_aggregate_handle, &aggregate_handle,

&aggregate item, &local length,
product_name, &aggregate_index,
&add_ info);

if (FAILURE(status)) return(status);

This example illustrates the creation of a document descriptor aggregate
(type DDIF$_DSC), and the use of the STORE ITEM routine to fill in the
items in the aggregate.

aggregate_type = DDIF$_TRN;
status = cda$create aggregate(&root aggregate handle,

- &aggregate type, &inner aggregate handle);
if (FAILURE(status)) return(status); - -

aggregate item = DDIF$ SGA FRM TRANSFORM;
item_length = 4; - - -
status = cda$store_item(&root_aggregate_handle,

&aggregate handle, &aggregate item,
&item_length, &inner_aggregate_handle);

if (FAILURE(status)) return(status);

CDA$STORE_ITEM

aggregate item = DDIF$ TRN PARAMETER C;
local length= sizeof (lnteger value);
integer value = DDIF$K x SCALE;
status ~ cda$store item(&root aggregate handle,

- &inner_aggregate_handle, &aggregate_item,
&local_length, &integer_value);

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_TRN_PARAMETER;
local length= sizeof(float value);
float-value = 3.5; -
status = cda$store_item(&root_aggregate_handle,

&inner_aggregate_handle, &aggregate item,
&local_length, &float_value);

if (FAILURE(status)) return(status);

aggregate type = DDIF$ TRN;
status= cda$create aggregate(&root aggregate handle,

- &aggregate type, &inner aggregate handle 2);
if (FAILURE(status)) return(status); - -

status = cda$insert aggregate(&inner aggregate handle 2,
- &inner-aggregate-handle);

if (FAILURE(status)) return(status);- -

aggregate item = DDIF$ TRN PARAMETER C;
local length= sizeof (lnteger value);
integer value = DDIF$K MATRIX-2 BY 3;
status ~ cda$store_item(&root=aggregate_handle,

&inner_aggregate_handle_2, &aggregate item,
&local_length, &integer_value);

if (FAILURE(status)) return(status);

aggregate item = DDIF$ TRN PARAMETER;
local length= sizeof(float value);
float=value = 4.75; -
aggregate index = O;
status = cda$store item(&root aggregate handle,

- &inner_aggregate_handle_2, &aggregate_item,
&local_length, &float_value,
&aggregate_index);

if (FAILURE(status)) return(status);

aggregate item = DDIF$ TRN PARAMETER;
local_length = sizeof(float_value);
float_value = 6.11;
aggregate_index = 1;
status = cda$store item(&root aggregate handle,

- &inner_aggregate_handle_2, &aggregate item,
&local length, &float value,
&aggregate_index); - ·

if (FAILURE(status)) return(status);

aggregate item = DDIF$ TRN PARAMETER;
local length= sizeof(float value);
float=value = 2.22; -
aggregate index = 2;
status = cda$store_item(&root_aggregate_handle,

&inner_aggregate_handle_2, &aggregate_item,
&local length, &float value,
&aggregate_index); -

if (FAILURE(status)) return(status);

CDA-135

CDA$STORE_ITEM

CDA-136

aggregate_item = DDIF$_TRN_PARAMETER;
local_length = sizeof(float_value);
float value = 3.0;
aggregate index = 3;
status = cda$store item(&root aggregate handle,

- &inner_aggregate_handle_2, &aggregate_item,
&local length, &float value,
&aggregate_index); -

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_TRN_PARAMETER;
local_length = sizeof(float_value);
float_value = 1.25;
aggregate index = 4;
status = cda$store item(&root aggregate handle,

- &inner_aggregate_handle_2, &aggregate_item,
&local_length, &float_value,
&aggregate_index);

if (FAILURE(status)) return(status);

aggregate_item = DDIF$_TRN_PARAMETER;
local_length = sizeof(float_value);
float_value = 2.15;
aggregate index = 5;
status = cda$store item(&root aggregate handle,

- &inner aggregate handle 2, &aggregate item,
&local=length, &float_value, -
&aggregate_index);

if (FAILURE(status)) return(status);

This example illustrates the use of the STORE ITEM routine to specify two
transformation aggregates (type DDIF$_TRN). The type of transformation
specified by the DDIF$_TRN aggregate is indicated by the value of the
DDIF$_TRN_PARAMETER_C item. The first transformation aggregate
specifies an x-scale transformation. The second transformation aggregate
specifies a 2 x 3 matrix transformation of the following format:

A D 0
B E 0
C F 1

Each matrix coefficient is stored in the DDIF$_TRN aggregate in each
call to the STORE ITEM routine. The first call to STORE ITEM for this
matrix writes the A matrix coefficient into array item O; the second call
writes B to array item 1, and so on until coefficients A through F are
written to the array. You are responsible for updating the aggregate index
of the array each time a coefficient is written. One matrix coefficient is
stored in each call to the STORE ITEM routine. The aggregate index is
used to specify which matrix coefficient is being written.

CDA$WRITE_ TEXT _FILE

CDA$WRITE_ TEXT _FILE WRITE TEXT FILE

FORMAT

RETURNS

ARGUMENTS

Writes a line of text to a standard text file.

CDA$WRITE_ TEXT _FILE text-file-handle
,buffer-length
,buffer-address

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

text-file-handle
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference
Identifier of the text file to which the line is written. The text-file-handle
argument is the address of an unsigned longword that contains this text
file handle. This handle is returned by a call to the CREATE TEXT FILE
routine.

buffer-length
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Length (in bytes) of the buffer specified by the buffer-address argument.
The buffer-length argument is the address of an unsigned longword that
contains this buffer length.

buffer-address
VMS usage: char_string
type: character string
access: read only
mechanism: by reference
The line to be written to the text file. The buffer-address argument is
the address of a character string containing this line.

DESCRIPTION The WRITE TEXT FILE routine writes a line of text to a standard text
file. On VMS systems, the written line becomes an RMS record.

CDA-137

CDA$WRITE_ TEXT _FILE

CONDITION
VALUES
RETURNED

CDA-138

CDA$_NORMAL Normal successful completion.

Any error returned by the file routines.

A VMS Support for CDA in DECwindows

VMS commands and utilities, as well as existing application programs that
accept text input, can now use the text content of DECwindows compound
documents.

To support the use of DDIF text, VMS RMS has implemented a new RMS
file attribute, stored semantics, and a DDIF-to-Text RMS extension.
The value of the stored semantics attribute is called the file tag; it
specifies how file data is to be interpreted. When file data is to be
interpreted in accordance with the DDIF specification, the appropriate
file tag is DDIF. The use of file tags is limited to disk files on VMS
DECwindows systems.

The DDIF-to-Text RMS extension transparently extracts text from DDIF
files as variable-length text records that can be accessed through the VMS
RMS interface.

The enhancements made to support the reading of text from DDIF files are
transparent to the user and to the application programmer. This support
requires that all DDIF files in a VMS DECwindows environment be tagged
with the DDIF file tag. DDIF files created by VMS DECwindows software
are tagged appropriately.

Section A.1 describes various VMS file management commands and
utilities that display, create and preserve file tags where appropriate.
Section A.1 also describes the way various VMS commands and utilities
respond to DDIF file input. Section A.2 describes VMS support for DDIF
files in heterogeneous computing environments. Section A.3 describes the
changes made to the VMS RMS program interface to support the stored
semantics attribute and to control access to the content of DDIF files.

A.1 VMS Commands and Utilities
This section describes the VMS commands and utilities that support tag
maintenance by displaying, creating and preserving the RMS file tags used
with DDIF files. It also provides additional information that is relevant to
the way selected VMS commands and utilities respond to DDIF file input.

The following table lists the VMS commands and utilities that support tag
maintenance.

Command/Utility

DIRECTORY/FULL

ANALYZE/RMS_FILE

SET FILE/SEMANTICS

Tag Maintenance Function

Displays file tag

Displays file tag

Creates file tag

A-1

A.1.1

VMS Support for CDA in DECwindows
A.1 VMS Commands and Utilities

Command/Utility

VMS MAIL

COPY
BACKUP

tSee text for exceptions.

Tag Maintenance Function

Preserves file tagt

Preserves file tagt

Preserves file tag

Tags are made up of binary values that can be up to 64 bytes long and can
be expressed using hexadecimal notation. The hexadecimal value of the
DDIF tag, for example, is 2BOC8773010301. VMS permits you to assign
mnemonics to tag values so that DCL commands like DIRECTORY/FULL
and VMS utilities like FDL and ANALYZE/RMS_FILE display a mnemonic
for the DDIF tag instead of the hexadecimal value. The following DCL
commands have been included in the system startup command file to
assign the mnemonic DDIF to the hexadecimal value for a DDIF tag.

$ DEFINE/TABLE=RMS$SEMANTIC TAGS DDIF 2BOC8773010301
$ DEFINE/TABLE=RMS$SEMANTI(::OBJECTS "2BOC8773010301" DDIF

Using the appropriate DEFINE commands, you can assign mnemonics for
other tags, including tags used with international program applications.

Displaying RMS File Tags

A.1.1.1

A.1.1.2

A-2

The DIRECTORY/FULL command and the Analyze/RMS_File Utility now
display the RMS file tag for DDIF files.

DIRECTORY/FULL
Where applicable, the DIRECTORY/FULL command now provides the
value of the stored semantics tag as part of the file information returned
to the user. This is the recommended method for quickly determining
whether or not a file is tagged. The following display illustrates how the
DIRECTORY/FULL command returns the RMS attributes for a DDIF file
named X.DDIF.

X.DDIF;l File ID: (767,20658,0)

RMS attributes: Stored semantics: DDIF

ANALVZE/RMS_FILE
When you use the ANALYZE/RMS_FILE command to analyze a DDIF file,
the utility returns the file tag as an RMS file attribute.

A.1.2

VMS Support for CDA in DECwindows
A.1 VMS Commands and Utilities

FILE HEADER
File Spec: USERD$: [TEST]X.DDIF;l

Stored semantics: DDIF

One ANALYZE/RMS_FILE command option is to create an output FDL
file that reflects the results of the analysis.

$ ANALYZE/RMS_FILE/FDL filespec

When you use this option for analyzing a tagged file, the output FDL
file includes the file tag as a secondary attribute to the FILE primary
attribute. This is illlustrated in the following FDL file excerpt:

IDENT " 9-JUN-1988 13:27:30 VMS/VMS ANALYZE/RMS_FILE Utility"

SYSTEM
SOURCE VMS

FILE
ALLOCATION 3

STORED SEMANTICS %X'2BOC8773010301' DDIF

Creating RMS File Tags
The CDA$CREATE_FILE routine in the Compound Document
Architecture toolkit creates and tags DDIF files. However, you may
encounter a DDIF file that was created without a file tag or a DDIF file
whose file tag was not preserved during file processing.

The DCL command SET FILE provides a new qualifier,
/[NO]SEMANTICS, that permits you to tag a DDIF file through the DCL
interface for VMS DECwindows systems. You can also use the qualifier to
change a tag or to remove a tag from a file.

The following command line tags the file X.DDIF as a DDIF file by
assigning the appropriate value to the /SEMANTICS qualifier:

$ SET FILE X.DDIF/SEMANTICS=DDIF

See Section A.1 for information about how to use logical name tables to
assign a mnemonic to a tag.

A subsequent DIRECTORY/FULL command displays the following line as
part of the file header:

A-3

A.1.3

VMS Support for CDA in DECwindows
A.1 VMS Commands and Utilities

RMS attributes: Stored semantics: DDIF

The next example illustrates how to use the SET FILE command to delete
an RMS file tag:

$ SET FILE X.DDIF/NOSEMANTICS

Preserving RMS File Tags and DDIF Semantics

A.1.3.1

A-4

The COPY command and the VMS Mail Utility preserve RMS file tags
and DDIF semantics when you copy or mail a DDIF file on a VMS
DECwindows system, except for conditions described in Sections A.1.3.1
and A.1.3.2.

The Backup Utility always preserves file tags and semantics when you
back up a DDIF file to magnetic tape.

COPY Command
This section describes the results of using the COPY command with DDIF
files for various operations.

When you copy a DDIF file to a disk on a VMS DECwindows system using
the COPY command, VMS RMS preserves the DDIF tag and the DDIF
semantics of the input file in the output file.

When you copy a DDIF file to a nondisk device on a VMS DECwindows
system using the COPY command, VMS RMS does not preserve the
DDIF tag or the DDIF semantics of the input file in the output file.
Instead, VMS RMS writes the text from the input file to the output file as
variable-length records.

When you copy two or more DDIF and text files in any combination to a
single output file, the output file takes the characteristics of the first input
file, as shown in the following examples.

1 In the first example, the first input file is a text file, so the output file
(FOO.TXT) contains variable-length text records from X.TXT, Y.DDIF,
and Z.TXT, but does not include the DDIF tag from Y.DDIF.

$COPY X.TXT,Y.DDIF,Z.TXT FOO.TXT

2 In the next example, the first input file (A.DDIF) is a DDIF file, so
the output file (FOO.DDIF) includes the DDIF tag as well as the DDIF
semantics from A.DDIF. The attempt to copy the text input file (Z.TXT)
fails because there is no Text-to-DDIF RMS extension, but the contents
of B.DDIF and C.DDIF are copied to the output file. However, the
output file has no practical use because, as a result of the way DDIF
files are structured, only the data from the first input file (A.DDIF) is
accessible in the output file.

$ COPY A.DDIF,B.DDIF,Z.TXT,C.DDIF FOO.DDIF

A.1.4

A.1.3.2

VMS Support for CDA in DECwindows
A.1 VMS Commands and Utilities

3 In the final example, the first input file (A.DDIF) is a DDIF file, so the
output file (FOO.DDIF) includes the DDIF tag as well as the contents
of A.DDIF. FOO.DDIF also includes the contents of B.DDIF and
C.DDIF. Again, however, the output file has no practical use because,
as a result of the way DDIF files are structured, only the data from
the first input file (A.DDIF) is accessible in the output file.

$ COPY A.DDIF,B.DDIF,C.DDIF FOO.DDIF

VMS Mail Utility
The VMS Mail Utility preserves the DDIF file tag when DDIF files are
mailed between systems running VMS DECwindows. The VMS Mail
Utility also preserves the DDIF file tag when you create an output file on
a VMS DECwindows system using the EXTRACT command.

When you read a mail message that is a DDIF file, the VMS Mail Utility
outputs only the text portion of the file. Similarly, if you edit a DDIF mail
file, you can access only the file text; the output file is a text file that can
no longer be used as a DDIF file. However, if you forward a message that
consists of a DDIF file, the VMS Mail Utility sends the entire DDIF file,
including DDIF semantics and the DDIF tag, to the addressee.

APPEND Command
This section describes what happens when you attempt to use the
APPEND command in conjunction with DDIF and text files.

In the first example, the APPEND command appends a DDIF file to a text
file:

$ APPEND X.DDIF Y.TXT

The output file, Y. TXT, contains its original text records as well as text
from the input file, X.DDIF, reformatted as variable-length text records.

In the next example, the APPEND command appends a DDIF file to
another DDIF file:

$APPEND X.DDIF Y.DDIF

The output file, Y.DDIF, contains the DDIF tag, the original contents
of Y.DDIF, and the contents of X.DDIF. However, the portion of the file
that contains X.DDIF is not accessible because of the way DDIF files are
structured.

In the final example, the APPEND command attempts to append a text
file to a DDIF file:

$ APPEND X.TXT Y.DDIF

This append operation fails because there is no Text-to-DDIF RMS
extension.

A-5

VMS Support for CDA in DECwindows
A.2 DDIF Support in a Heterogeneous Environment

A.2 DDIF Support in a Heterogeneous Environment

A.2.1

A.2.2

A.2.3

This section describes the implementation of DDIF support in two
heterogeneous environments. The first heterogeneous environment
includes VMS DECwindows systems and non-VMS systems. The second
heterogeneous environment includes VMS DECwindows systems and VMS
systems that do not support VMS DECwindows.

EXCHANGE/NETWORK Command
A new DCL command, EXCHANGE/NETWORK, has been created
to support the transfer of files between VMS systems and non-VMS
systems that do not support VMS file types. The EXCHANGE/NETWORK
command transfers files in either record mode or block mode but can only
be used when both systems support DECnet file transfers.

To interactively tag a DDIF file and transfer the file between a non­
VMS operating system and a VMS system running DECwindows, do the
following:

1 Create the following file, assigning it the name DDIF.FDL:

FILE

RECORD

ORGANIZATION
STORED SEMANTICS

CARRIAGE CONTROL
FORMAT
SIZE

sequential
DDIF

none
fixed
512

2 Use the following DCL command to transfer the desired file:

$ EXCHANGE/NETWORK/FDL=DDIF.FDL input_filespec output_filespec

Using the COPY Command in a Heterogeneous Environment
If you use the COPY command to copy tagged DDIF files to systems other
than VMS DECwindows systems, the results will vary depending on the
target system:

• If the target system is a non-VMS system, the file is copied, but the
DDIF tag is not preserved.

• If the target system is a VMS system that does not support VMS
DECwindows, the copy operation fails.

VMS Mail Utility in a Heterogeneous Environment

A-6

If you try to send mail messages containing DDIF files to non-VMS
systems that do not support tagged files, the VMS Mail Utility returns the
NOACCEPTMSG error message, indicating that the remote node cannot
accept the message format.

VMS Support for CDA in DECwindows
A.2 DDIF Support in a Heterogeneous Environment

Similarly, the VMS Mail Utility does not support the mailing of DDIF
files to VMS systems that do not support VMS DECwindows. As with
non-VMS systems, the VMS Mail Utility returns the NOACCEPTMSG
error message, indicating that the remote node cannot accept the message
format.

A.3 VMS RMS Interface Changes

A.3.1

This section provides details about the changes made to the VMS RMS
interface that support access to text in VMS DECwindows DDIF files. It
includes information related to tagging files and accessing tagged files
through the VMS RMS interface. The section also describes how tags are
preserved at the VMS RMS interface.

Programming Interface for File Tagging
This appendix focuses on the use of the DDIF tag for supporting VMS
DECwindows files, although VMS RMS also supports file tagging for other
compound document data formats.

You can tag a file from the VMS RMS interface by using the $CREATE
service in conjunction with a new extended attribute block (XAB) called
the item XAB ($XABITM). The $XABITM macro is a general-purpose
macro that was added to the RMS interface to support several Version 5.0
features. Tagged file support involves the use of the two item codes shown
in Table A-1.

Table A-1 Tag Support Item Codes

Item Buffer Size

XAB$_STORED_SEMANTICS 64 bytes
maximum

XAB$_ACCESS_SEMANTICS 64 bytes
maximum

Function

Defines the file semantics
established when the file is
created

Defines the file semantics
desired by the accessing
program

The entries XAB$_STORED_SEMANTICS and XAB$_ACCESS_
SEMANTICS in the item list can represent either a control (set) function
or a monitor (sense) function that can be passed to VMS RMS from the
application program by way of the RMS interface.

The symbolic value XAB$K_SEMANTICS_MAX_LEN represents the tag
length. This value may be used to allocate buffer space for sensing and
setting stored semantics for the DDIF file.

Within any one $XABITM, you can activate either the set function or
the sense function for the XAB$_STORED_SEMANTICS and XAB$_
ACCESS_SEMANTICS items, because a common field (XAB$B_MODE)
determines which function is active. If you want to activate both the set
function and the sense function for either or both items, you must use two
$XABITM control blocks, one for setting the functions and one for sensing
the functions.

A-7

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

FORMAT

A-8

Each entry in the item list addressed by the $XABITM is made up of
three longwords and a longword 0 terminates the list. You can locate the
item list anywhere within the readable address space for a process, but
any buffers required by the related function must be located in read/write
memory. If the item list is invalid, RMS returns a status of RMS$_XAB in
the RAB$L_STS field and the address of the XAB in RAB$L_STv.

The format and arguments of the $XABITM macro are as follows. Note
that the block length field and the type code field are statically initialized
by the $XABITM macro, or may be explicitly initialized using a high-level
language.

$XABITM ITEMLIST =item-list-address,
MODE= { sensemode }

setmode '
NXT =next-xab-address

Arguments

The ITEMLIST argument defaults to 0 but a valid pointer must be
specified when you use a XABITM. MODE defaults to sensemode. The
symbolic offset, size, and a brief description of each XABITM field are
described in the following list:

• The block length field (XAB$B_BLN) is a 1-byte static field that
defines the length of the XABITM, in bytes. This field is initialized to
the value XAB$C_ITMLEN.

• The type code (XA.B$B_COD) field is a 1-byte static field that identifies
this control block as a XABITM. This field is initialized to the value
XAB$C_ITM.

• The XAB$L_ITEMLIST field is a longword field that contains the
symbolic address of the item list.

• The XAB$B_MODE field is a 1-byte field that specifies whether or not
the items can be set by the program. It contains either the symbolic
value XAB$K_SETMODE or the symbolic value XAB$K_SENSEMODE
(default).

• The XAB$L_NXT field is a longword field that contains the symbolic
address of the next XAB in the XAB chain. A value of 0 (the default)
indicates that the current XAB is the last (or only) XAB in the chain.

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

Example A-1 illustrates a BLISS-32 program that tags a file through
the RMS interface. The tag value shown is a 6-byte hexadecimal number
representing the code for the DDIF tag. The VMS RMS program interface
accepts only hexadecimal tag values.

To write to a tagged file without using an RMS extension, the application
program must specify access semantics that match the file's stored
semantics. As shown in the example, the $CREATE service tags the file
and the $CONNECT service specifies the appropriate access semantics.

Example A-1 Tagging a File

MODULE TYPE$MAIN (
IDENT = 'X-1' I

MAIN = MAIN,
ADDRESSING MODE (EXTERNAL=GENERAL)
) =

BEGIN

FORWARD ROUTINE
MAIN : NOVALUE; Main routine

! INCLUDE FILES:

LIBRARY 'SYS$LIBRARY:LIB';
OWN

NAM
RETLEN,
DDIF TAG

FAB XABITM

RAB XABITM

FAB

REC
STATUS,

: $NAM() I

: BLOCK[7, BYTE]
INITIAL (BYTE (%X' 2B' I %X' OC' I %X' 87 I %X' 73 I I %X' 01' I

%X'03' I %X'01')),

$xabitm
(itemlist=

$ITMLST_UPLIT
(

) I

(ITMCOD=XAB$_STORED SEMANTICS,
BUFADR=DDIF_TAG,
BUFSIZ=%ALLOCATION(DDIF_TAG))

mode= SETMODE),

$xabitm
(itemlist=

$ITMLST_UPLIT
(

) I

(ITMCOD=XAB$_ACCESS SEMANTICS,
BUFADR=DDIF_TAG,
BUFSIZ=%ALLOCATION(DDIF_TAG))

mode= SETMODE),
$FAB(fnm = 'TAGGED-FILE.TEST',

nam = NAM,
mrs = 512,
rfm = FIX,
fac = <GET,PUT,UPD>,
xab = FAB_XABITM),

BLOCK[512,BYTE],

(continued on next page)

A-9

A.3.2

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

Example A-1 (Cont.) Tagging a File

RAB : $RAB(xab = RAB_XABITM,
f ab = FAB,
rsz = 512,
rbf = REC,
usz = 512,
ubf = REC),

DESC BLOCK[8,BYTE] INITIAL(O);
ROUTINE MAIN NOVALUE =
BEGIN
STATUS= $CREATE(FAB = FAB);
IF NOT .STATUS
THEN

SIGNAL (.STATUS);
STATUS= $CONNECT(RAB= RAB);
IF NOT .STATUS
THEN

SIGNAL (.STATUS);
STATUS= $CLOSE(FAB = FAB);
IF NOT .STATUS
THEN

SIGNAL (.STATUS);
END;
END
ELUDOM

Accessing a Tagged File

A-10

This section provides details of how VMS RMS handles access to tagged
files at the program level. When a program accesses a tagged file, VMS
RMS must determine whether and when to associate an RMS extension
with the access. This is important to the programmer because an RMS
extension may change the attributes of the accessed file.

For example, a DDIF file is stored as a sequentially organized file having
512-byte, fixed-length records. If the DDIF-to-Text RMS extension is
used to extract text data from a DDIF file, the accessed file appears as a
sequentially organized file having variable-length records with an implicit
carriage return.

One consideration in determining whether an access requires the RMS
extension is the type of access (FAB$B_FAC). When an application
program opens a file through the VMS RMS program interface, it must
specify whether it will be doing record 1/0 (default), block 1/0 (BIO), or
mixed 1/0 (BRO), where the program has the option of using either block
1/0 or record 1/0 for each access. For example, if block 1/0 operations are
specified, VMS RMS does not associate the RMS extension with the file
access.

Another consideration is whether the program senses the tag when it
opens a file. If the program does not sense the tag when it opens a DDIF
file for record access, VMS RMS associates the RMS extension during the
$OPEN and returns the file attributes that have been modified by the
extension.

A.3.2.1

A.3.2.2

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

The final consideration is the access semantics the program specifies
and the file's stored semantics (tag). If the program specifies block I/O
(FAB$V_BIO) operations, RMS does not associate the RMS extension and
the $OPEN service returns the file's stored attributes to the accessing
program regardless of whether the program senses tags.

File Accesses That Do Not Sense Tags
This section describes what happens when a program does not use the
XABITM to sense a tag when it opens a file.

When a program opens a DDIF file for record operations and does not
sense the tag, VMS RMS assumes that the program wants to access text
data in the file. In this case, VMS RMS associates the RMS extension,
which provides file attributes that correspond to record-mode access.

When a program opens a DDIF file with the FAB$V _BRO option and does
not sense the tag, any subsequent attempt to use block I/O fails. If the
program specifies block I/O (FAB$V_BIO) when it invokes the $CONNECT
service, the operation fails because the file attributes returned at $OPEN
permit record access only. Similarly, if the program specifies the FAB$V _
BRO option when it opens the file, and then specifies mixed mode
(block/record) operations by not specifying RAB$V_BIO at $CONNECT
time, block operations such as READ and WRITE are disallowed.

File Accesses That Sense Tags
VMS RMS does not associate the RMS extension as part of the $OPEN
service if a program opens a DDIF file and senses the stored semantics.
This allows the program to specify access semantics with the $CONNECT
service. VMS RMS returns the file attributes, including the stored
semantics attribute (tag value), to the program as part of the $OPEN
service.

When the program subsequently invokes the $CONNECT service, VMS
RMS uses the specified operations mode to determine its response. If the
program specified FAB$V _BRO with the $OPEN service and then specifies
block I/O (RAB$V_BIO) when it invokes the $CONNECT service, VMS
RMS does not associate the RMS extension.

But if the program specifies record access or FAB$V _BRO when it opens
the file and then decides to use record I/O when it invokes the $CONNECT
service, VMS RMS compares the access semantics with the file's stored
semantics to determine whether to associate the RMS extension. If the
access semantics match the stored semantics, VMS RMS does not associate
the RMS extension. If the access semantics do not match the stored
semantics, VMS RMS associates the access with the RMS extension. In
this case, the program must use the $DISPLAY service to obtain the
modified file attributes. If VMS RMS cannot find the appropriate RMS
extension, the operation fails and the $CONNECT service returns the
EXTNOTFOU error message.

If the application program senses the file's stored semantics, VMS RMS
allows mixed-mode operations. In this case, mixed block and record
operations are permitted because the application gets record mode file
attributes and data from the RMS extension and block mode file attributes
and data from the file.

A-11

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

Example A-2 illustrates a BLISS-32 program that accesses a tagged file
from an application program that does not use an RMS extension.

Example A-2 Accessing a Tagged File

MODULE TYPE$MAIN (
IDENT='X-1',
MAIN = MAIN,
ADDRESSING MODE (EXTERNAL=GENERAL)
) =

BEGIN

FORWARD ROUTINE
MAIN : NOVALUE;

INCLUDE FILES:

LIBRARY 'SYS$LIBRARY:STARLET';
OWN

NAM : $NAM(),

Main routine

ITEM BUFF
RETLEN,
FAB XABITM

BLOCK[XAB$K_SEMANTICS MAX LEN,BYTE],

RAB ITEMLIST
RAB XABITM

FAB

REC
STATUS,

$xabitm
(itemlist=

$ITMLST UPLIT
((ITMCOD=XAB$_STORED SEMANTICS,

BUFADR=ITEM BUFF,
BUFSIZ=XAB$K_SEMANTICS_MAX_LEN,
RETLEN=RETLEN)),

mode= SENSEMODE),
BLOCK[ITM$S ITEM+ 4, BYTE],
$XABITM -
itemlist=RAB_ITEMLIST,
mode=SETMODE) ,

$FAB(fnm = 'TAGGED-FILE.TEST',
nam = NAM,
fac = <GET,PUT,UPD>,
xab = FAB_XABITM),

BLOCK[512,BYTE],

RAB $RAB(xab RAB_XABITM,
fab FAB,
rsz 512,
rbf REC,
usz 512,
ubf REC),

DESC BLOCK[8,BYTE] INITIAL(O);
ROUTINE MAIN NOVALUE =
BEGIN
STATUS= $OPEN(FAB = FAB);
IF NOT .STATUS
THEN

SIGNAL (.STATUS);
RAB ITEMLIST[ITM$W BUFSIZ .RETLEN;
RAB-ITEMLIST[ITM$L-BUFADR ITEM_BUFF;
RAB-ITEMLIST[ITM$W-ITMCOD XAB$_ACCESS_SEMANTICS;
STATUS= $CONNECT(RAB= RAB);
IF NOT .STATUS
THEN

A-12

(continued on next page)

A.3.3

VMS Support for CDA in DECwindows
A.3 VMS RMS Interface Changes

Example A-2 (Cont.) Accessing a Tagged File

SIGNAL (.STATUS);
STATUS= $CLOSE(FAB = FAB);
IF NOT .STATUS
THEN

SIGNAL (.STATUS);
END;
END
ELUDOM

Preserving Tags
In order to preserve the integrity of a tagged file that is being copied or
transmitted, the tag must be preserved in the destination (output) file.
The most efficient way to use the RMS interface for propagating tags is to
open the source file (input) and sense the tag using a $XABITM with the
item code XAB$_STORED_SEMANTICS:

ITEMLIST[ITM$W BUFSIZ = XAB$K_SEMANTICS_MAX_LEN;
ITEMLIST[ITM$L-BUFADR = ITEM_BUFF;
ITEMLIST[ITM$L-RETLEN = RETLEN;
ITEMLIST[ITM$W=ITMCOD = XAB$_STORED_SEMANTICS;

XABITM[XAB$B_MODE] = XAB$K_SENSEMODE;
STATUS= $OPEN(FAB = FAB);

Then create the destination (output) file and set the tag using a $XABITM
with the item code XAB$_STORED_SEMANTICS:

IF .RETLEN GTR 0
THEN

BEGIN
ITEMLIST[ITM$W_ITMCOD] = XAB$_STORED_SEMANTICS;
ITEMLIST[ITM$L SIZE] = .RETLEN;
XABITM[XAB$B_MODE] = XAB$K_SETMODE;
END;

STATUS= $CREATE(FAB = FAB);

END;
END
ELUDOM

A-13

VMS Supp~rt for CDA in DECwindows
A.4 Distributed File System Support for DDIF Tagged Files

A.4 Distributed File System Support for DDIF Tagged Files

A.5 VMS RMS Errors

A-14

Version 1.1 of the Distributed File System (DFS) includes limited support
for DDIF tagged files. You can create and read DDIF files on a DFS device
when the DFS client node is running VMS DECwindows. You can also use
the DIRECTORY/FULL command to determine whether or not a DDIF file
on a DFS device is tagged.

You cannot use the SET FILE/[NOJSEMANTICS command either to
tag DDIF files or to remove the tags from DDIF files on a DFS device.
Furthermore, the Backup Utility does not preserve the DDIF tag or the
DDIF stored semantics for data files on a DFS device.

Four VMS RMS error messages signal the user when the appropriate error
condition exists:

• RMS$_EXTNOTFOU

• RMS$_SEMANTICS

• RMS$_EXT_ERR

• RMS$_0PNOTSUP

The RMS$_EXTNOTFOU error message indicates that VMS RMS has not
found the specified RMS extension. Verify that the file is correctly tagged,
using the DIRECTORY/FULL command, and that the application program
is specifying the appropriate access semantics.

VMS RMS returns the RMS$_SEMANTICS error message when you try to
create a tagged file on a remote VMS system that does not support VMS
DECwindows from a system that does support VMS DECwindows.

VMS RMS returns the RMS$_EXT_ERR error when the DDIF RMS
extension detects an inconsistency.

VMS RMS returns the RMS$_0PNOTSUP error when the RMS DDIF
extension is invoked by an RMS operation. For example, if the extension
does not support write access to a DDIF file, verify that the application
program is not performing record operations that modify the file.

B CDA Toolkit Example Program

This appendix illustrates a sample program, written in VAX C, that uses
the CDA Toolkit to create a DDIF document. Example B-1 contains
comments where necessary, and Example B-2 illustrates the analysis
output of the DDIF document created by the program. The callouts in
this example correspond to the callouts in Example B-2. For example, if a
callout corresponds to a call to the CREATE ROOT AGGREGATE routine
in Example B-1, the callout in Example B-2 identifies the beginning of
the document root aggregate created by that call.

Example 8-1 Sample CDA Toolkit Program

#include <ddif$def .h>
#include <cda$def .h>

/* Include DDIF keyword definitions. */
/* Include CDA Toolkit keyword definitions. */

#define FAILURE(x) (((x) & 1) == 0)

/*
** Subroutines to generate frequently-used aggregates.
*/

extern unsigned long create_sft_dir();
extern unsigned long create_hrd_dir();
extern unsigned long create_gtx();

main()
{

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

unsigned long
unsigned long
unsigned long
unsigned long

unsigned long
unsigned long
unsigned long

aggregate_type;
aggregate_item;
aggregate_index;
add_info;
buffer_length;
file_handle;
integer value;
integer=length sizeof(integer_value);
local_length;
status;
stream_handle;

aggregate_handle;
aggregate_handle_length = sizeof(aggregate_handle);
root_aggregate_handle;
previous_aggregate_handle;

aggregate_handle_stack[100];
ahs_index = O;
document_type;

/* Data and structures for the frame definition. */

struct frm_flags

unsigned long
unsigned long

sga_frame flags;

frame_ur_x_value 6000;
frame_ur_y_value = 2400;

(continued on next page)

8-1

CDA Toolkit Example Program

Example 8-1 {Cont.) Sample CDA Toolkit Program

/* Data for the polyline and Bezier curve. */

#define MAX_POINTS 4
unsigned long
unsigned long

i;
poly_points[MAX_POINTS] [2]

{

{ 500, 500 },
{ 2500, 2000 } ,
{ 3500, 2000 } ,
{ 5500, 500}
} ;

I* Data for the arc. */

struct arc_flags set arc flags;

float
float

arc_start = 4.5el;
arc_extent = 9.0el;

unsigned long

unsigned char
unsigned long
unsigned char
unsigned long
unsigned long

unsigned long
unsigned long

unsigned long
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char

unsigned long

unsigned char

unsigned long

8-2

arc_line_width = 60;

filename[] = "DDI?_EXAMPLE.DDIF";
filename_length = sizeof (filename) - 1;
result file_spec[255];
result_file_spec_len = sizeof(result file spec);
result_f ile_ret_len;

dsc_major_version = 1;
dsc_major_version_length sizeof(dsc_major_version);

dsc_minor_version = 0;
dsc_minor_version_length = sizeof(dsc minor version);

dsc_product_identifier[] = "DDIF$";
dsc product identifier length =

- sizeof (dsc_pr~duct_identifier) - 1;

dsc_product_name[] = "Test Vl.0";
dsc_product_name_length = sizeof(dsc_product_name) - 1;

dhd_languages_l[] = "E/USA/";
dhd_languages_length_l = sizeof (dhd_languages 1 - 1;

dhd languages 2 [] = "Mandarin"; \
dhd=languages=length_2 = sizeof (dhd_languages_2) - 1;

sga_content_category_l[] = "$T";
sga content category length 1 =

- sizeof (sga_content=category_l) - 1;

sga_content_category_2[] = "$2D";
sga content category length 2 =

- sizeof(sga_content=category_2) - 1;

txt_content[] = "This is the first line of the example text.";
txt_content_length = sizeof(txt_content) - 1;

gtx content 1[] = "This is the second line of the example text,
and-should be separated from the first line by a single space.";
gtx_content length_l = sizeof (gtx_content_l) - 1;

gtx_content_2[] = "The third line of the example text will
begin on a new line.";
gtx_content_length_2 = sizeof (gtx_content_2) - 1;

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

unsigned char

unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

unsigned char
unsigned long

gtx_content_3[] ="The fourth line of the example text will be
separated from the previous lines by a blank line.";
gtx_content_length_3 = sizeof(gtx_content_3) - 1;

tyd_label[] = "FRAME";
tyd_label_length =

sizeof(tyd_label) - 1;

pline_label[] = "pline";
pline_label length =

sizeof (pline_label) - 1;

bline label[] = "bline";
bline=label_length =

sizeof(bline_label) - 1;

filled arc label[] = "filled arc";
filled-arc-label length = -

- si~eof (filled_arc_label) - 1;

printf("Creating in-memory DDIF structure ... \n");

/*

**
** The overall structure is as follows:
**
**
**
**
**
**
**
**
**

Root
Aggregate

I I \
I I \

I I \
I I \

I I \
Descriptor Header Content

**

*I

/*
** Create the DDIF Root Aggregate.
*/

aggregate_type = DDIF$_DDF;
status= cda$create_root_aggregate(O, 0, 0, 0, tt

if(FAILURE(status))
return (status) ;

&aggregate_type,
&root_aggregate_handle);

(continued on next page)

8-3

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

/*

**
** DESCRIPTOR:
**
**
**
**
**

1) create the Descriptor aggregate
2) attach it to the Root aggregate
3) fill in the items in the Descriptor aggregate.

*/

B-4

/*
** Create the Descriptor aggregate and attach it to the Root aggregate
** by storing its handle in the Descriptor item of the Root aggregate.
*/

aggregate_type = DDIF$_DSC;
status= cda$create_aggregate(&root_aggregate_handle, ~

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

if(FAILURE(status))
return (status);

aggregate_item = DDIF$_DDF_DESCRIPTOR;
status = cda$store_item(&root_aggregate_handle,

&root_aggregate_handle,

if(FAILURE(status))
return (status);

/*

&aggregate item,
&aggregate handle length,
&aggregate=handle=stack[ahs_index]) ;

** Fill in the Major Version item of the Descriptor aggregate.
*/

aggregate_item = DDIF$_DSC_MAJOR_VERSION;

status = cda$store_item(

if (FAILURE(status))
return (status);

/*

&root aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dsc_major_version_length,
&dsc_major_version);

** Fill in the Minor Version item of the Descriptor aggregate.
*/

aggregate_item = DDIF$_DSC_MINOR_VERSION;
status = cda$store_item(

if(FAILURE(status))
return (status);

&root aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dsc minor version length,
&dsc-minor=version-);

(continued on next page}

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

I*
** Fill in the Product Identifier item of the Descriptor aggregate.
*/

aggregate_item = DDIF$_DSC_PRODUCT_IDENTIFIER;
status = cda$store_item(&root aggregate handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

I*

&dsc product identifier length,
dsc=product=identifier-);

** Fill in the Product Name item of the Descriptor aggregate.
*/

aggregate index = 0;
aggregate=item = DDIF$_DSC_PRODUCT NAME;
add_info = CDA$K_ISO_LATIN1;
status = cda$store_item(&root_aggregate_handle, CB

if(FAILURE(status))
return (status) ;

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dsc_product_name_length,
dsc_product_name,

&aggregate_index,
&add info);

I*

**
** HEADER:
**
**
**
**
**

1) create the Header aggregate
2) attach it to the Root aggregate
3) fill in the items in the Header aggregate

*/

/*
** Create the Header aggregate and attach it to the Root aggregate
** by storing its handle in the Header item of the Root aggregate.
*/

aggregate_type = DDIF$_DHD;
status= cda$create_aggregate(&root_aggregate_handle, CD

if (FAILURE(status))
return (status);

&aggregate type,
&aggregate=handle_stack[ahs_index]);

(continued on next page)

8-5

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

B-6

aggregate_item = DDIF$_DDF_HEADER;
status = cda$store_item(&root_aggregate_handle,

&root_aggregate_handle,
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs index]) ;

if (FAILURE(status))
return (status);

/*
** Fill in the Languages item in Header aggregate. First, the enumeration
** value must be stored, then the data value. An index must be used since
** these are arrays.
*I

aggregate item = DDIF$_DHD_LANGUAGES_C;
integer value = DDIF$K ISO 639 LANGUAGE;
aggregate_index = O; - - -

status = cda$store_itern(&root aggregate handle, «;)
&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

&integer_length,
&integer_value,
&aggregate_index);

aggregate_item = DDIF$_DHD_LANGUAGES;
local_length = 7;
aggregate_index = O;
status = cda$store_item(&root_aggregate_handle, CD

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&dhd_languages_length_l,

dhd _languages_ 1,
&aggregate_index);

aggregate_item = DDIF$_DHD_LANGUAGES_C;
integer value = DDIF$K OTHER LANGUAGE;
aggregate_index = l; - -

status = cda$store_item(&root_aggregate_handle, GD

if (FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value,
&aggregate_index);

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

/*

aggregate item = DDIF$ DHD LANGUAGES;
integer_value = DDIF$K=OTHER_LANGUAGE;
aggregate_index = l;
add info = CDA$K_ISO_LATIN1;
status = cda$store_item(&root_aggregate_handle, 4D

if (FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_ item,
&dhd_languages_length_2,

dhd_languages_2,
&aggregate_index,
&add info);

**
** CONTENT:
**
** 1) create the Segment aggregate
** 2) attach it to the Root aggregate
** 3) fill in the items in the Segment aggregate
**

*I

/*
** Create the Segment aggregate and attach it to the Root aggregate
** by storing its handle in the Content item of the Root aggregate.
*/

aggregate_type = DDIF$_SEG;
status = cda$create_aggregate(&root_aggregate_handle, (9

if (FAILURE(status))
return (status) ;

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

aggregate_item = DDIF$_DDF_CONTENT;
status = cda$store_item(&root aggregate_handle,

&root_aggregate_handle,
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs index]);

if (FAILURE(status))
return (status);

/*
** Now fill in the items in the Segment aggregate.
*I

ahs_index++;
aggregate_type = DDIF$_SGA;
status= cda$create_aggregate(&root_aggregate_handle, Cl

if (FAILURE(status))
return (status);

&aggregate type,
&aggregate=handle_stack[ahs_index]);

(continued on next page)

8-7

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

8-8

aggregate_item = DDIF$_SEG_SPECIFIC_ATTRIBUTES;

status = cda$store_item(&root_aggregate_handle, I)

if (FAILURE(status))
return (status);

/*

&aggregate_handle_stack[ahs_index-1],
&aggregate_ item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

** Store content category in specific-attribute aggregate.
*/

aggregate_item = DDIF$_SGA_CONTENT_CATEGORY;
aggregate_index = 0;
add_info = DDIF$K_T_CATEGORY;
status = cda$store_item(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate item,
&sga_content_category_length_l,
sga_content_category_l,

&aggregate_index,
&add info);

ahs index--; /* End of segment attributes section */

I*
** Create Text Content aggregate and store its handle in the SEG_CONTENT
** item in DDF_CONTENT. (This is the first aggregate in a Sequence Of,
** so it is attached with a store. The rest will be inserted.)
*/

ahs index++;
aggregate_type = DDIF$_TXT;

status = cda$create_aggregate(&root_aggregate_handle, 48
&aggregate type,
&aggregate=handle_stack[ahs_index]);

if (FAILURE(status))
return (status);

aggregate_item = DDIF$_SEG_CONTENT;
status = cda$store_item(&root aggregate_handle, I)

if (FAILURE(status))
return (status);

/*
** Add a text line.
*/

&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

(continued on next page)

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_TXT_CONTENT;

status = cda$store_item(&root_aggregate_handle, G>

if (FAILURE(status))
return (status) ;

&aggregate_handle_stack[ahs index],
&aggregate_item,
&txt_content length,
txt_content);

/* Save the handle of the segment_content aggregate. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

/* Insert a space (hard) directive. */

status = create hrd dir &root_aggregate_handle, @.!>
&previous_aggregate_handle,
&aggregate handle stack[ahs index],

DDIF$K_DIR_SPACE-); -
if (FAILURE(status))

return (status);

/* Create a General Text Content aggregate. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

status = create_gtx (&root_aggregate_handle, ~
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
gtx_content_l) ;

if (FAILURE(status))
return (status);

/* Insert a new-line (soft) directive to force a new line. */

previous_aggregate_handle aggregate_handle_stack[ahs index];

status = create sft dir (&root_aggregate_handle, ~
&previous aggregate handle,
&aggregate handle stack[ahs index],

DDIF$K_DIR_NEW_LINE); -
if (FAILURE(status))

return (status);

I* Create another General Text Content aggregate. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create_gtx &root_aggregate_handle, ~

&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
gtx_content_2) ;

if(FAILURE(status))
return (status);

/* Insert two new-line directives to cause a skipped line. */

(continued on next page)

8-9

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

previous_aggregate_handle =aggregate handle_stack[ahs_index];

status = create sft dir

if (FAILURE(status))
return (status);

&root_aggregate_handle, ~
&previous_aggregate_handle,
&aggregate_handle_stack[ahs index],

DDIF$K_DIR_NEW_LINE) ;

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft_dir (&root_aggregate_handle,

if(FAILURE(status))
return (status);

&previous aggregate handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);

/* Create another General Text Content aggregate. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

status = create_gtx (&root_aggregate_handle, ~
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],
gtx_content_3) ;

if (FAILURE(status))
return (status);

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle = aggregate_handle_stack[ahs index];

status = create sft dir

if(FAILURE(status))
return (status);

&root_aggregate_handle, ~
&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE) ;

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft dir (&root_aggregate_handle,

&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);
if (FAILURE(status))

return (status);

/* Insert next general-text line. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

status = create_gtx (&root_aggregate_handle, ti
&previous aggregate handle,
&aggregate_handle_stack[ahs_index],

"The following is a polyline within a frame:") ;
if (FAILURE(status)

return (status);

/* Insert two new-line directives to cause a skipped line. */

B-10

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft dir (&root_aggregate_handle, ~

if(FAILURE(status))
return (status) ;

&previous_aggregate_handle,
&aggregate_handle_stack[ahs index],

DDIF$K_DIR_NEW_LINE);

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft dir (&root_aggregate_handle,

&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);
if(FAILURE(status))

return (status) ;

/*
** Create a new segment aggregate for the next part of the example.
*/

previous aggregate handle= aggregate handle stack[ahs index];
aggregate_type = DDIF$_SEG; - - -

status = cda$create aggregate(&root_aggregate_handle, ~

if(FAILURE(status))
return (status) ;

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

/* Insert after previous aggregate */

status= cda$insert_aggregate(&aggregate_handle_stack[ahs index],
&previous_aggregate_handle);

if (FAILURE(status))
return (status) ;

/*
** Create new segment attributes aggregate to define a galley frame.
** Store it in the segment aggregate just created.
*I

ahs_index++;
aggregate_type = DDIF$ SGA;
status = cda$create_aggregate(&root_aggregate_handle, ~

if(FAILURE(status))
return (status) ;

&aggregate_type,
&aggregate_handle_stack[ahs index]);

aggregate_item = DDIF$_SEG_SPECIFIC_ATTRIBUTES;
status = cda$store_item(&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

&aggregate_handle_stack[ahs index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs index]);

(continued on next page)

B-11

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

/*
** Create a type-definition aggregate and attach to the segment
** attribute aggregate.
*I

ahs_index++;
aggregate_type = DDIF$_TYD;
status= cda$create_aggregate(&root_aggregate_handle, eJ

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

if(FAILURE(status))
return (status);

aggregate_item = DDIF$_SGA_TYPE DEFNS;
status = cda$store_item(&root aggregate_handle, ~

if (FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index-1),
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

/* Now store the type-definition label. */

aggregate_item = DDIF$_TYD_LABEL;
status = cda$store_item(&root aggregate_handle, ~

if(FAILURE(status))
return (status);

/*

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&tyd_label_length,
tyd_label) ;

** Create an attribute aggregate, and attach to the
** type-def aggregate.
*I

ahs_index++;
aggregate_type = DDIF$ SGA;
status = cda$create_aggregate(&root_aggregate_handle, ~

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

if(FAILURE(status))
return (status);

aggregate_item = DDIF$_TYD_ATTRIBUTES;
status = cda$store_item(&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

/*

&aggregate_handle_stack[ahs_index-1),
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

** Now that the type-def attributes aggregate is in place, store
** each desired attribute there.
*/

B-12

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_SGA_CONTENT_CATEGORY;
aggregate index = 0;
add_info ~ DDIF$K_2D_CATEGORY;
status = cda$store_item(&root_aggregate_handle, .,

if (FAILURE(status))
return (status);

&aggregate handle stack[ahs index],
&aggregate=item, - -
&sga_content_category_length_2,
sga_content_category_2,

&aggregate_index,
&add info);

/* Store the flags, indicating border on frame. */

aggregate_item = DDIF$_SGA_FRM_FLAGS;
sga_frame flags.ddif$v_flow_around = 0;
sga_frame_flags.ddif$v_frame_border = l;
sga_frame_flags.ddif$v_frame_background_fill O;
sga frame flags.ddif$v frm fill = O;
integer_length = sizeof(sga_frame_flags);
status = cda$store item(&root_aggregate_handle,

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&sga_frame_flags);

/* Store the bounding coordinates of the frame. (Note indexing.) */

aggregate_item = DDIF$_SGA_FRM_BOX_LL_X_C;
integer_value = DDIF$K_VALUE_CONSTANT;
integer_length = sizeof(integer_value);
aggregate_index = 0;
status = cda$store item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

&integer_length,
&integer_ value,
&aggregate_index) ;

aggregate item = DDIF$ SGA FRM BOX LL X;
aggregate=index = 0; - -
integer_value = O;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate item,

if(FAILURE(status))
return (status);

&integer_length,
&integer_ value,
&aggregate_index);

(continued on next page)

B-13

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

aggregate item = DDIF$ SGA FRM BOX LL Y C;
integer value = DDIF$K-VALUE CONSTANT; -
aggregate_index = l; - -
status = cda$store_item(&root aggregate handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

&integer_ length,
&integer_ value,
&aggregate_ index) ;

aggregate_item = DDIF$_SGA_FRM_BOX_LL_Y;
aggregate_index = l;
integer value = O;
status ~ cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,

if(FAILURE(status))
return (status);

&integer_length,
&integer_value,
&aggregate_index);

/* And now the upper-right coordinates ... */

aggregate item = DDIF$ SGA FRM BOX UR X C;
integer_value = DDIF$K=VALUE_CONSTANT;
aggregate_index = 0;
status = cda$store_item(

if(FAILURE(status))
return (status);

&root aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_ item,
&integer_length,
&integer_ value,
&aggregate_index);

aggregate item = DDIF$ SGA FRM BOX UR X;
aggregate-index = O; - -
integer value = frame ur x value;
status ~ cda$store it~m(-&root aggregate handle,

- &aggregate_handle_stack[ahs_index],

if (FAILURE(status))
return (status);

8-14

&aggregate_item,
&integer_length,
&integer_value,
&aggregate_index);

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate item = DDIF$ SGA FRM BOX UR Y C;
integer_value = DDIF$K=VALUE_CONSTANT7 -
aggregate index = 1;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

&integer_length,
&integer_value,
&aggregate_index);

aggregate item = DDIF$ SGA FRM BOX UR Y;
aggregate=index = 1; - -
integer value = frame ur y value;
status ~ cda$store_item(-&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

&integer length,
&integer:=value,
&aggregate_index);

/* Now store the form-position item. */

aggregate item = DDIF$ SGA FRM POSITION_C;
integer_value = DDIF$K=FRAME_GALLEY;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value);

if (FAILURE (status))

return (status) ;

ahs - index--; /* End of type attributes. */
ahs index--; /* End of type-definition *I -
ahs - index--; /* End of segment attributes aggregate. */

/*
** Create a new segment aggregate in which to define the polyline,
** and store as the segment content.
*/
ahs_index++;
aggregate_type = DDIF$_SEG;
status= cda$create_aggregate(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

/* Store into this segment. */

&aggregate type,
&aggregate=handle_stack[ahs_index]);

(continued on next page)

8-15

CDA Toolkit Example Program

Example B-1 {Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_SEG_CONTENT;

status = cda$store_item(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

/* Store the segment ID. */

aggregate_item = DDIF$_SEG_ID;

status = cda$store_item(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&pline_label length,
pline label);

/* Store the segment type ("FRAME"). */

aggregate_item = DDIF$_SEG_SEGMENT_TYPE;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

&tyd_label_length,
tyd_label);

/* Create a Polyline aggregate. */

ahs_index++;
aggregate_type = DDIF$_LIN;

status= cda$create_aggregate(&root_aggregate_handle, ~
&aggregate_type,
&aggregate_handle_stack[ahs_index]);

if(FAILURE(status))
return (status);

I* Store the Polyline aggregate. */

aggregate_item = DDIF$_SEG_CONTENT;

status = cda$store_item(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index-1),
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]) ;

/* Store Polyline Flags into the Polyline aggregate. */

B-16

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_LIN_FLAGS;
local_length = sizeof(integer_value);
integer value = Oxl;
status ~ cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,
&local_length,
&integer_value);

if (FAILURE(status))
return (status);

/* Store the Line Pattern bit string into the Polyline aggregate. */

aggregate_item = DDIF$_LIN_DRAW_PATTERN;
local_length = sizeof(integer_value);
integer value = OxF;
status ~ cda$store_item(&root aggregate handle,

&aggregate_handle_stack[ahs_index],
&aggregate item,
&local_length,
&integer_value);

if(FAILURE(status))
return (status);

/*
** For the points to be used, store "VALUE CONSTANT" as the data type
** choice, followed by the value of the point.
*/

for (i = 0; i < MAX_POINTS; i++)
{

aggregate_item = DDIF$_LIN_PATH_C;
local_length = sizeof(integer_value);
integer_value = DDIF$K_VALUE_CONSTANT;
aggregate_index = i * 2;
status = cda$store_item(&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_value,
&aggregate_index);

/* Store the x-coordinate integer value in the polyline path array. */

aggregate_item = DDIF$_LIN_PATH;
local length= sizeof(integer value);
integer_value = poly_points[iJ[OJ;
aggregate_index = i * 2;
status = cda$store_item(&root_aggregate_handle, CD

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_ value,
&aggregate_index);

(continued on next page)

8-17

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

/*
** Now store the y-coordinate for each point.
*I

aggregate_item = DDIF$_LIN_PATH_C;
local_length = sizeof(integer_value);
integer value = DDIF$K VALUE CONSTANT;
aggregate_index = ((2 * i) +-1);

status = cda$store_item(&root_aggregate_handle, 6'
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local length,
&integer_ value,
&aggregate_index);

if(FAILURE(status))
return (status) ;

aggregate_item = DDIF$_LIN_PATH;
local_length = sizeof(integer_value);
integer_value = poly_points[i] [l];
aggregate_index = ((2 * i) + 1);

status = cda$store_item(&root_aggregate_handle, ~
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_value,
&aggregate_index);

if(FAILURE(status))
return (status);

}; /* End of "for" loop */

ahs_index--; /* End of pline. */

/* Insert a new-page (hard) directive. */

previous_aggregate_handle aggregate_handle_stack[ahs_index];

status = create hrd dir (&root_aggregate_handle, I)
&previous aggregate handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_PAGE);
if(FAILURE(status))

return (status);

/* Insert next general-text line. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

status = create_gtx (&root_aggregate_handle, G>
&previous_aggregate_handle,
&aggregate handle stack[ahs index],

"The following iS" a Bezier-curve, using
the same path as the polyline, within a frame:");

if (FAILURE(status)
return (status) ;

/* Insert two new-line directives to cause a skipped line. */

B-18

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

previous_aggregate_handle = aggregate_handle_stack[ahs index];
status = create sft dir &root aggregate handle, ~

&previous_aggregate_handle,

if (FAILURE(status))
return (status);

&aggregate handle stack[ahs_index],
DDIF$K_DIR_NEW_LINE);

previous aggregate handle= aggregate_handle_stack[ahs_index];
status =-create sft dir (&root aggregate_handle,

&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);
if(FAILURE(status))

return (status);

/*
** Create new segment to define Bezier curve.
*/

previous aggregate handle= aggregate handle stack[ahs index];
aggregate_type = DDIF$_SEG; - - -

status = cda$create_aggregate(&root_aggregate_handle, q)

if(FAILURE(status))
return (status);

/*

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

** Insert after previous aggregate. (Insert rather than store, as
**this is a sequence of aggregates.)
*/

status= cda$insert_aggregate(&aggregate_handle_stack[ahs_index],
&previous_aggregate_handle);

if(FAILURE(status))
return (status);

/* Store the segment ID. */

aggregate item = DDIF$ SEG_ID;
status = cda$store_item(&root_aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&bline label length,
bline:=label-);

/* Store the segment type ("FRAME"). */

aggregate item = DDIF$ SEG SEGMENT TYPE;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_ item,

if (FAILURE(status))
return (status);

&tyd_label_length,
tyd_label);

/* Create a Bezier Curve aggregate. */

(continued on next page)

B-19

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

aggregate_type = DDIF$_BEZ;
previous aggregate handle= aggregate_handle_stack[ahs_index];
ahs_inde~++; -

status= cda$create_aggregate(&root_aggregate_handle, ~
&aggregate_type,
&aggregate_handle_stack[ahs_index]);

if (FAILURE(status))
return (status);

/* Store the Bezier Curve aggregate */

aggregate_item = DDIF$_SEG_CONTENT;
status = cda$store_item(

if(FAILURE(status))
return (status);

&root aggregate handle, ~
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

/* Store the Flags item into the Bezier Curve aggregate. */

aggregate_item = DDIF$_BEZ_FLAGS;
local length= sizeof(integer value);
integer_value = Oxl; -
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

/*

&local_length,
&integer_value);

** For the points to be used, store "VALUE CONSTANT" as the data type
** choice, followed by the value of the point.
*/

for (i = 0; i < MAX_POINTS; i++)
{

aggregate item = DDIF$ BEZ PATH C;
local length= sizeof(-integer value);
integer_value = DDIF$K_VALUE_CONSTANT;
aggregate_index = i * 2;
status = cda$store_item(&root aggregate_handle, ~

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_ value,
&aggregate_index);

/* Store the x-coordinate integer value in the polyline path array. */

(continued on next page)

B-20

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_BEZ_PATH;
local length= sizeof(integer value);
integer_value = poly_points[i][O];
aggregate_index = i * 2;
status = cda$store_item(

if(FAILURE(status))
return (status);

/*

&root aggregate handle, ~
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_value,
&aggregate index);

** Now store the y-coordinate for each point.
*/

aggregate_item = DDIF$_BEZ_PATH_C;
local_length = sizeof(integer_value);
integer_value = DDIF$K_VALUE_CONSTANT;
aggregate_index = ((2 * i) + 1);
status = cda$store_item(&root_aggregate_handle, {fl

if(FAILURE(status))
return (status);

&aggregate_handle_stack[ahs_index],
&aggregate item,
&local_length,
&integer_ value,
&aggregate_index);

aggregate_item = DDIF$_BEZ_PATH;
local_length = sizeof(integer_value);
integer_value = poly_points[i] [1];
aggregate_index = ((2 * i) + 1);
status = cda$store_item(

if (FAILURE(status))
return (status);

&root aggiegate handle, ~
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_value,
&aggregate_index);

} ; /* End of "for" loop *I

ahs_index--; /* End of Bezier segment */

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft dir (&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

&previous aggregate handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);

(continued on next page)

B-21

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

previous_aggregate_handle = aggregate_handle stack[ahs_index];
status = create_sft_dir (&root_aggregate_handle,

&previous_aggregate_handle,
&aggregate_handle_stack[ahs index],

DDIF$K_DIR_NEW_LINE);
if(FAILURE(status))

return (status);

/* Insert next general-text line. */

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create_gtx (&root_aggregate_handle, (i

&previous_aggregate_handle,
&aggregate_handle_stack[ahs index],

if(FAILURE(status)
return (status);

"The following is a basketweave-f illed arc
within a frame:");

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle = aggregate_handle_stack[ahs index];
status = create sft dir (&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

&previous_aggregate_handle,
&aggregate_handle_stack[ahs_index],

DDIF$K_DIR_NEW_LINE);

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
status = create sft dir (&root_aggregate_handle,

&previous_aggregate_handle,
&aggregate_handle_stack[ahs index],

DDIF$K_DIR_NEW_LINE);
if (FAILURE(status))

return (status);

I*
** Create new segment to define special segment attributes for
** the arc.
*/

previous_aggregate_handle = aggregate_handle_stack[ahs_index];
aggregate_type = DDIF$_SEG;
status= cda$create_aggregate(&root_aggregate_handle, ~

&aggregate_type,
&aggregate_handle_stack[ahs_index]) ;

if(FAILURE(status))
return (status) ;

/* Insert after previous aggregate. */

status= cda$insert_aggregate(&aggregate_handle_stack[ahs_index],

if(FAILURE(status))
return (status);

I* Store the segment ID. */

8-22

&previous_aggregate_handle);

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_SEG_ID;
status = cda$store_item(&root_aggregate_handle, (I)

if(FAILURE(status))
return (status) ;

&aggregate_handle stack[ahs_index],
&aggregate_item,
&filled_arc_label_length,
filled_arc_label);

/* Store the segment type ("FRAME"). */

aggregate item = DDIF$ SEG SEGMENT TYPE;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

/*

&tyd_label length,
tyd_label);

** Create a segment aggregate and store in the seg-content item.
*/

ahs_index++;
aggregate_type = DDIF$_SEG;
status = cda$create_aggregate(&root_aggregate_handle, ~

if(FAILURE(status))
return (status) ;

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

aggregate_item = DDIF$_SEG_CONTENT;
status = cda$store_item(

if(FAILURE(status))
return (status) ;

/*

&root aggregate handle,
&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

**Create new segment attributes aggregate to define the arc's
** attributes, and store it in the segment aggregate just created.
*/

ahs_index++;
aggregate_type = DDIF$_SGA;

status = cda$create_aggregate(&root_aggregate_handle, ~

if (FAILURE(status))
return (status);

&aggregate_type,
&aggregate_handle_stack[ahs_index]);

(continued on next page)

8-23

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$ SEG_SPECIFIC_ATTRIBUTES;

status = cda$store_item(&root_aggregate_handle, fl

if (FAILURE(status))
return (status);

I*

&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

** Now store the specific attributes for the arc.
*/

aggregate item = DDIF$ SGA LIN WIDTH C;
integer_value = DDIF$K=VALUE_CONSTANT;
status = cda$store_item(&root aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status);

&integer_length,
&integer_value);

aggregate item = DDIF$ SGA LIN WIDTH;
integer value = arc line width;
status ~ cda$store_item(-&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

&integer_length,
&integer_value);

aggregate item = DDIF$ SGA LIN STYLE;
integer value = DDIF$K-SOLID LINE STYLE;
status ~ cda$store_item(&root aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&integer_length,
&integer_value);

if (FAILURE(status))
return (status);

aggregate item = DDIF$ SGA LIN END START;
integer value = DDIF$K-ROUND LINE END;
status ~ cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate item,

if (FAILURE(status))
return (status);

B-24

&integer length,
&integer=value);

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_SGA_LIN_END_FINISH;
integer_value = DDIF$K_ROUND_LINE_END;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status) ;

&integer_length,
&integer_value);

aggregate item = DDIF$ SGA LIN JOIN;
integer_value = DDIF$K=MITERED=LINE_JOIN;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

&integer_length,
&integer_value);

aggregate_item = DDIF$_SGA_LIN_INTERIOR_PATTERN;
integer_value = DDIF$K_PATT_BASKET_WEAVE;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,

if(FAILURE(status))
return (status) ;

&integer_length,
&integer_value);

ahs_index--; /* End of arc attributes */

/* Create an Arc Content aggregate. */

aggregate_type = DDIF$_ARC;
previous_aggregate_handle = aggregate_handle_stack[ahs_index];
ahs_index++;
status = cda$create_aggregate(&root_aggregate_handle, ~

if (FAILURE(status))
return (status) ;

I*

&aggregate type,
&aggregate=handle_stack[ahs_index]);

** Store the arc-content aggregate as the seg_content of the previous
** aggregate.
*/

aggregate_item = DDIF$_SEG_CONTENT;
status = cda$store_item(&root_aggregate_handle, fl!>

if (FAILURE(status))
return (status) ;

&aggregate_handle_stack[ahs_index-1],
&aggregate_item,
&aggregate_handle_length,
&aggregate_handle_stack[ahs_index]);

I* Store the Flags item into the arc aggregate. */

(continued on next page)

8-25

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

set arc flags.ddif$v arc draw arc = l;
set-arc-flags.ddif$v-arc-fill-arc = 1;
set-arc-flags.ddif$v-arc-pie arc = l;
set-arc-flags.ddif$v-arc-clo;e arc = O;
set=arc=flags.ddif$v=arc=flags=fill = 0;

aggregate_item = DDIF$_ARC_FLAGS;
local_length = sizeof(integer_value);
status = cda$store item(&root aggregate handle,

- &aggregate handle stack[ahs index],

if(FAILURE(status))
return (status);

&aggregate=item, - -
&local_length,
&set_arc_flags);

/* Store "VALUE CONSTANT" as the data type choice for the arc
center x-coordinate. */

aggregate_item = DDIF$_ARC_CENTER_X_C;
local length= sizeof(integer value);
integer_value = DDIF$K_VALUE_CONSTANT;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,

if(FAILURE(status))
return (status) ;

&local_length,
&integer_value);

/* Store an integer value for the arc center x-coordinate. */

aggregate_item = DDIF$_ARC_CENTER_X;
local_length = sizeof(integer_value);
integer_value = 3000;
status = cda$store_item(

if(FAILURE(status))
return (status);

&root aggregate handle,
&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local_length,
&integer_value);

/* Store "VALUE CONSTANT" as the data type choice for the arc
center y-coordinate. */

aggregate item = DDIF$ ARC CENTER Y C;
local length= sizeof(-integer value);
integer value = DDIF$K VALUE CONSTANT;
status ~ cda$store ite~(&root aggregate handle,

- &aggregate_handle_stack[ahs_index],

if (FAILURE(status))
return (status);

&aggregate_item,
&local_length,
&integer_value);

/* Store an integer value for the arc center y-coordinate. */

8-26

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_ARC_CENTER_Y;
local_length = sizeof(integer_value);
integer_value = 150;
status = cda$store_item(&root aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,

if(FAILURE(status))
return (status) ;

&local_length,
&integer_value);

/* Store "VALUE CONSTANT" as the data type choice for the arc
radius x value. */

aggregate_item = DDIF$_ARC_RADIUS_X_C;
local length= sizeof(integer value);
integer value = DDIF$K VALUE CONSTANT;
status ~ cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs index],
&aggregate_item,
&local_length,
&integer_value);

if(FAILURE(status))
return (status) ;

/* Store an integer value for the arc radius x value. */

aggregate_item = DDIF$_ARC_RADIUS_X;
local_length = sizeof(integer_value);
integer_value = 2000;
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle stack[ahs index],
&aggregate_item,

if(FAILURE(status))
return (status) ;

&local_length,
&integer_value);

/* Store "ANGLE CONSTANT" as the data type choice for the arc
start value. */

aggregate_item = DDIF$_ARC_START_C;
local_length = sizeof(integer_value);
integer_value = DDIF$K_ANGLE_CONSTANT;
status = cda$store_item(&root aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if (FAILURE(status))
return (status) ;

&local_length,
&integer_value);

/* Store an integer value for the arc start value. */

(continued on next page)

8-27

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

aggregate_item = DDIF$_ARC_START;
local length= sizeof(arc start);
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,

if(FAILURE(status))
return (status);

&local length,
&arc start);

/* Store "ANGLE CONSTANT" as the data type choice for the arc
EXTENT value. */

aggregate item = DDIF$ ARC EXTENT C;
local_length = sizeof(-integer_value);
integer_value = DDIF$K_ANGLE_CONSTANT;
status = cda$store item(&root aggregate_handle,

&aggregate_handle_stack[ahs_index],
&aggregate_item,
&local length,
&integer_value);

if (FAILURE(status))
return (status);

/* Store an integer value for the arc EXTENT value. */

aggregate_item = DDIF$_ARC_EXTENT;
local length= sizeof(arc extent);
status = cda$store_item(&root_aggregate_handle,

&aggregate_handle stack[ahs index],
&aggregate_item,
&local_length,
&arc extent);

if (FAILURE(status))
return (status);

ahs index--; /* End of arc. */
ahs_index--; /* End of arc-attribute segment */

/* Insert two new-line directives to cause a skipped line. */

previous_aggregate_handle =aggregate handle stack[ahs_index];

status = create sft dir &root_aggregate_handle, fl

if(FAILURE(status))
return (status);

&previous_aggregate_handle,
&aggregate handle stack[ahs index],

DDIF$K_DIR_NEW_LINE);

previous_aggregate_handle = aggregate_handle_stack[ahs index];
status = create sft dir (&root aggregate handle,

&previous_aggregate_handle,
&aggregate handle stack[ahs index],

if(FAILURE(status))
return (status);

DDIF$K_DIR_NEW_LINE); -

/* Insert next general-text line. */

8-28

(continued on next page)

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

previous_aggregate_handle = aggregate_handle_stack[ahs_index];

status = create_gtx (&root_aggregate_handle, fB
&previous aggregate handle,
&aggregate_handle_stack[ahs_index],

"This ends the examples.");
if (FAILURE(status

return (status) ;

ahs_index--; /* End of image segment */
ahs_index--; /* End of document content. */

/* Create an output file to receive the DDIF stream. */

status = cda$create_file(

if(FAILURE(status))
return (status);

&filename length,
filename:-
0, 0, 0, 0, 0,

&root_aggregate handle,
&result_f ile_spec_len,
result_file_spec,

&result_file_spec_len,
&stream_handle,
&file_handle,
&root_aggregate handle);

result file spec[result file spec len] = 0;
printf("Created file: %s\n" ,result file_spec) ;

/* Write the DDIF stream to the output file */

printf("Writing document ... \n");

status= cda$put_document(&root aggregate_handle,
&stream handle);

if(FAILURE(status))
return (status);

/* Close the output file. */

status = cda$close_file(&stream_handle,
&file handle);

if (FAILURE(status))
return (status);

/* Delete the Root aggregate structure. */

status= cda$delete_root_aggregate(&root_aggregate_handle);
if(FAILURE(status))

return (status);

return;

(continued on next page)

8-29

CDA Toolkit Example Program

Example B-1 (Cont.) Sample CDA Toolkit Program

/*
** This routine creates a soft-directive aggregate for the specified
** directive type, and inserts it after the specified previous
** aggregate. It returns the handle of the newly-created aggregate.
*/

unsigned long create sft dir (root_handle,
previous_handle,
return_handle,
dir_type)

unsigned long *root_handle;
unsigned long *previous_handle;
unsigned long *return_handle;
unsigned long dir_type;

/* Root aggregate handle. */
/* previous handle */
/* Handle to be returned. */
/* Directive item code. */

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

aggregate_ handle;
aggregate_handle_length
aggregate_type;
aggregate_item;
integer_ value;
local_length;
status;

sizeof(aggregate_handle);

/* Create a Soft Directive aggregate. */

aggregate_type = DDIF$_SFT;
status= cda$create_aggregate(root_handle,

&aggregate_type,
&aggregate_handle);

if (FAILURE(status))
return (status);

/* Insert the Soft Directive aggregate in the sequence of aggregates. */

status= cda$insert_aggregate(&aggregate_handle,

if(FAILURE(status))
return (status);

previous_handle);

/* Store the designated directive as an item in the
Soft Directive aggregate. */

aggregate_item = DDIF$_SFT_DIRECTIVE;
local_length = sizeof(integer_value);
integer value = dir type;
status ~ cda$store_item(root_handle,

&aggregate_handle,
&aggregate_item,
&local_length,
&integer_value);

if (FAILURE(status))
return (status);

*return handle aggregate_handle;

return(l);

8-30

(continued on next page)

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

/*
** This routine creates a hard-directive aggregate for the specified
** directive type, and inserts it after the specified previous
** aggregate. It returns the handle of the newly-created aggregate.
*/

unsigned long create hrd dir (root_handle,
previous_handle,
return_handle,
dir_type)

unsigned long *root_handle;
unsigned long *previous_handle;
unsigned long *return_handle;
unsigned long dir_type;

/* Root aggregate handle. */
/* previous handle */
/* Handle to be returned. */
/* Directive item code. */

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

aggregate_handle;
aggregate_handle_length
aggregate_type;
aggregate item;
integer_ value;
local_length;

sizeof(aggregate_handle);

status;

/* Create a Hard Directive aggregate. */

aggregate_type = DDIF$_HRD;
status= cda$create_aggregate(root handle,

&aggregate_type,
&aggregate_handle);

if(FAILURE(status))
return (status) ;

/* Insert the Hard Directive aggregate in the sequence of aggregates. */

status= cda$insert_aggregate(&aggregate_handle,

if(FAILURE(status))
return (status) ;

previous_handle);

I* Store the designated directive as an item in the
Hard Directive aggregate. */

aggregate item = DDIF$ HRD DIRECTIVE;
local_length = sizeof(-integer_value);
integer value = dir type;
status ~ cda$store_Item(root_handle,

&aggregate_handle,
&aggregate_item,
&local_ length,
&integer_value);

if (FAILURE(status))
return (status);

*return handle = aggregate_handle;

return(l);

(continued on next page)

8-31

CDA Toolkit Example Program

Example 8-1 (Cont.) Sample CDA Toolkit Program

/*
** This routine creates a general-text aggregate for the specified
** text, and inserts it after the specified previous aggregate. It
** returns the handle of the newly-created aggregate.
*/

unsigned long create_gtx (root_handle,
previous_handle,
return_handle,
gtx_string)

unsigned long *root_handle;
unsigned long *previous_handle;
unsigned long *return_handle;
char *gtx_string;

/* Root aggregate handle. */
/* previous handle */
/* Handle to be returned. */
/* Ptr to text string. */

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

aggregate_handle;
aggregate_handle_length
aggregate_type;
aggregate_item;
add_info;
integer_value;
local_length;

sizeof(aggregate_handle);

status;

/* Create another General Text Content aggregate. */

aggregate_type = DDIF$_GTX;
status= cda$create_aggregate(root_handle,

&aggregate_type,
&aggregate_handle);

if(FAILURE(status))
return (status);

/* Insert the Text aggregate in the sequence of aggregates. */

status= cda$insert_aggregate(&aggregate_handle,
previous_handle);

if(FAILURE(status))
return (status);

/* Store more text into the General Text aggregate. */

aggregate item = DDIF$ GTX CONTENT;
add_info ~ CDA$K_ISO_LATINl;
local length= strlen(gtx string);
status = cda$store_item(root_handle,

if (FAILURE(status))
return (status);

&aggregate_handle,
&aggregate_item,
&local_length,
gtx_string,
0,

&add info);

*return handle aggregate_handle;

return(l);

B-32

CDA Toolkit Example Program

Example B-2 illustrates the Analysis output of the DDIF document
created by Example B-1. The callouts in Example B-1 correspond to the
callouts in Example B-2.

In the Analysis output of a DDIF file, the following symbols are used.

• A left brace indicates the beginning of an aggregate.

• A right brace indicates the end of an aggregate.

• A left parenthesis indicates the beginning of an array.

• A right parenthesis indicates the end of an array.

Additionally, in this example all hexadecimal values produced by the
Analysis back end have been restored to their ASCII representations.

Note that default values are indicated by the comment "[Default value.]".
These values are not specified in Example B-1; instead, the default values
specified by the CDA Toolkit are accepted.

Example B-2 Analysis Output of DDIF File

DDIF DOCUMENT
0{ -
@) DDF DESCRIPTOR
8 { -
., DSC MAJOR VERSION 1

DSC MINOR VERSION 0 - -
DSC PRODUCT IDENTIFIER - -

@) DSC PRODUCT NAME
(

Longword Integer
Longword Integer
"DDIF$"

ISO LATINl "Test Vl.0"
)

}

@ DDF HEADER
C)

DHD LANGUAGES C - -
(

ISO 639 LANGUAGE
OTHER LANGUAGE

)
DHD LANGUAGES
(

C!) "E/USA/"

! Integer 0
Integer = 1

48 ISO LATINl "Mandarin"
)

}

48 DDF CONTENT
49 { -
~ SEG SPECIFIC ATTRIBUTES

(continued on next page)

B-33

CDA Toolkit Example Program

Example B-2 (Cont.) Analysis Output of DDIF File

e
~ SGA CONTENT CATEGORY T CATEGORY "$T"

}

~ SEG CONTENT

48
41> TXT CONTENT "This is the first line of the example text."

}

~ {

HRD DIRECTIVE DIR SPACE
} .{ Integer 5

GTX_CONTENT ISO_LATINl "This is the second line of the example text,
and should be separated from the first line by a single space." ! Char. string.

}

~ {

SFT DIRECTIVE DIR NEW LINE
}

@) {

Integer 2

GTX CONTENT ISO LATINl "The third line of the example text will begin
on a new line." ! Char. string.

} .{
SFT DIRECTIVE DIR NEW LINE

}

{

SFT DIRECTIVE DIR NEW LINE
}

ti {

Integer 2

Integer 2

GTX CONTENT ISO LATINl "The fourth line of the example text will be
separated from the previous lines by a blank line." ! Char. string.

}

~{
SFT DIRECTIVE DIR NEW LINE Integer 2

}

{

SFT DIRECTIVE DIR NEW LINE Integer 2
}

{

GTX CONTENT ISO LATINl "The following is a polyline within a frame:"
Char. string.
}

{

}

{

}

{

B-34

SFT DIRECTIVE DIR NEW LINE

SFT DIRECTIVE DIR NEW LINE

SEG SPECIFIC ATTRIBUTES
{

SGA TYPE DEFNS
{

TYD LABEL "FRAME"
TYD ATTRIBUTES

Integer 2

Integer 2

SGA CONTENT CATEGORY TWOD CATEGORY "$2D"
SGA FRM FLAGS "%B01000000000000000000000000000000" Flags

(continued on next page)

CDA Toolkit Example Program

Example B-2 (Cont.) Analysis Output of DDIF File

SGA FRM BOX_LL_X_C VALUE CONSTANT ! Integer 0
SGA FRM BOX LL X 0 ! Longword Integer
SGA FRM BOX_LL_Y_C VALUE_CONSTANT ! Integer 0
SGA FRM BOX LL Y 0 ! Longword Integer
SGA FRM BOX_UR_X_C VALUE_CONSTANT ! Integer 0
SGA FRM BOX UR X 6000 ! Longword Integer
SGA FRM BOX_UR_Y_C VALUE CONSTANT ! Integer 0
SGA FRM BOX UR Y 2400 ! Longword Integer
SGA FRM POSITION C FRAME GALLEY ! Integer = 2
SGA_FRMGLY_VERTICAL FRMGLY_BELOW_CURRENT ! Integer
SGA FRMGLY HORIZONTAL FMT CENTER OF PATH ! Integer

}

}
}

G) SEG CONTENT
G {
G SEG_ID "pline"

SEG SEGMENT TYPE "FRAME" - -fJ SEG CONTENT . {
LIN FLAGS "%B10000000000000000000000000000000"
LIN DRAW PATTERN "%Bllll" ! Bit string
LIN PATH C - -
(

)

VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT

LIN PATH
(

~ 500 Integer

}
{

)
}

500
2500
2000
3500
2000
5500
500

Integer
Integer
Integer
Integer
Integer
Integer

! Integer

Integer = 0
Integer = 0
Integer 0
Integer 0
Integer 0
Integer 0
Integer 0
Integer 0

HRD DIRECTIVE DIR NEW PAGE
}

{

Integer 1

Flags

1 [Default value.]
2 [Default value.]

GTX CONTENT ISO LATINl "The following is a Bezier curve, using the
same path as the polyline, within a frame:" Char. string.

}

~ {
SFT DIRECTIVE DIR NEW LINE

}
{

Integer 2

(continued on next page)

8-35

CDA Toolkit Example Program

Example B-2 (Cont.) Analysis Output of DDIF File

~
&

~
~

~

SFT DIRECTIVE DIR NEW LINE ! Integer = 2
}
{

SEG ID "bline"
SEG SEGMENT TYPE "FRAME"
SEG CONTENT
{

BEZ FLAGS "%B10000000000000000000000000000000"

}
}

{

BEZ PATH C
(

VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT
VALUE CONSTANT

)

BEZ PATH
(

500 Integer
500 Integer
2500 Integer
2000 Integer
3500 Integer
2000 Integer
5500 Integer
500 ! Integer

)

Integer = 0
Integer = 0
Integer 0
Integer 0
Integer 0
Integer 0
Integer 0
Integer 0

SFT DIRECTIVE DIR NEW LINE
}

{

Integer 2

SFT DIRECTIVE DIR NEW LINE ! Integer = 2
}

<i {

Flags

GTX CONTENT
within a frame:"

ISO LATINl "The following is a basketweave-f illed arc
! Char. string.

} . {
SFT DIRECTIVE DIR NEW LINE

}

{

SFT DIRECTIVE DIR NEW LINE
}

{

SEG ID "filled arc"
SEG SEGMENT TYPE "FRAME"

SEG CONTENT
{

SEG SPECIFIC ATTRIBUTES

Integer 2

Integer 2

SGA_LIN_WIDTH_C VALUE CONSTANT ! Integer 0
SGA LIN WIDTH 60 ! Longword Integer

B-36

(continued on next page)

CDA Toolkit Example Program

Example B-2 (Cont.) Analysis Output of DDIF File

~ }

SGA LIN STYLE SOLID_LINE_STYLE Integer = 1
SGA_LIN_END START ROUND_LINE END ! Integer = 2
SGA LIN END FINISH ROUND_LINE_END ! Integer = 2
SGA_LIN_JOIN MITERED_LINE JOIN Integer = 1
SGA LIN INTERIOR PATTERN 41 ! Longword Integer

il) SEG CONTENT
I> {

ARC FLAGS "%B11100000000000000000000000000000'' Flags
ARC CENTER X C VALUE CONSTANT ! Integer 0
ARC CENTER X 3000 ! Longword Integer
ARC CENTER Y C VALUE CONSTANT ! Integer 0
ARC CENTER Y 150 ! Longword Integer
ARC RADIUS X C VALUE_CONSTANT ! Integer 0
ARC_RADIUS_X 2000 Longword Integer
ARC RADIUS DELTA Y C VALUE_CONSTANT ! Integer= 0 [Default value.]
ARC RADIUS DELTA_Y 0 ! Longword Integer [Default value.]
ARC START C ANGLE_CONSTANT ! Integer = 0
ARC START "%F4.500000e+01" ! Single Pree. Floating Point
ARC EXTENT C ANGLE CONSTANT ! Integer = 0
ARC EXTENT "%F9.000000e+01" Single Pree. Floating Point
ARC ROTATION C ANGLE CONSTANT ! Integer= 0 [Default value.]
ARC ROTATION "%F0.000000e+00" ! Single Pree. Floating Point [Default value.]

}

}

} . {

0

}

}

}

SFT DIRECTIVE DIR NEW LINE Integer 2
}

{

SFT DIRECTIVE DIR NEW LINE Integer 2
}

{

GTX CONTENT ISO LATINl "This ends the examples."
}

Char. string.

B-37

c Text Front End Source File

This appendix contains the source code for the Text front end provided
with the CDA Toolkit. This front end should be used as a sample when
writing your own front or back ends. The Text front end reads in a
standard text file and creates a DDIF in-memory document.

In this appendix, the source code for the Text front end is divided into
subsections. Where appropriate, the subsections are annotated with a list
following each section explaining the annotations.

The following callouts correspond to the callouts in the main module of the
Text front end.

8 All of these routines from the CDA Toolkit are used by the Text front
end.

8 These are the additional entry points in the Text front end.

8 This is the context block that is used to share information between the
front end, the CDA Converter Kernel, and the back end.

/*
**++
**
** COPYRIGHT (c) 1987 BY
** DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

ALL RIGHTS RESERVED.
**

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
** ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
** INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
** COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
** OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
** TRANSFERRED.
**
** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
** CORPORATION.
**

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
**
** FACILITY:
**

Compound Document Converters
**

ABSTRACT:
**
** This is a Text Converter Front End that reads a text input
**
**
**

file (or stream), creates DDIF aggregates from this text, and
passes each DDIF Aggregate back to the calling converter kernel.

**--
**/

/*
**
** INCLUDE FILES
**
**/

#include <ddif$def.h>
#include <cda$def.h>
#include <cda$msg.h>

/* Contains values of al DDIF$xxxx keywords */
/* Contains values of all CDA$xxxx keywords */
/* CDA error messages */

C-1

Text Front End Source File

#ifdef vrns /* Use VMS RMS to manipulate files */
#include <fab.h> /* Defines the file access block structure */
#include <rab.h> /* Defines the record access block structure */
#include <nam.h> /* Defines the name block structure */
#include <rmsdef.h> /* Defines the completion status codes that RMS returns

after every file- or record-processing operation */

/* NOTE: The pervious #include statements can be replaced with <rms.h> */

#include <descrip.h> /* Allows program to pass arguments by descriptor.
* A descriptor is a structure that describes the
* data type, size, and address of a data structure. */

#endif

/* Declare routines used in the Toolkit */

extern unsigned long cda$open text file();
extern unsigned long cda$close text file();
extern unsigned long cda$read text file();
extern unsigned long cda$get_~ggregate();
extern unsigned long cda$get_text__position();
extern unsigned long cda$create root aggregate();
extern unsigned long cda$delete-root-aggregate();
extern unsigned long cda$create_aggregate();
extern unsigned long cda$store_item();

unsigned long get_aggregate();
unsigned long create_dsc();
unsigned long create_dhd();
unsigned long create_seg();
unsigned long create_txt();
unsigned long create_eos();
unsigned long look_ahead();
unsigned long create dir();
unsigned long get_position();
unsigned long close_front_end();

/* Define literals for characters used */
#define HORIZONTAL TAB 9
#define FORM FEED -12
#define DDIF_BUFFER_SIZE 2048

/* Front End Context structure (text context)
* The front end context contains all variables needed to keep track
* of a conversion in progress. Since the front end, back end, and
* converter kernel are re-entrant, it is possible to have several
* conversions occurring simultaneously. A pointer to this structure
* is passed back and forth between the front and back ends, so
* that the front end knows where it is in any particular conversion.
*/

struct text ext {

};

unsigned long text a file handle;
unsigned long text=a=root=aggregate_handl~;
unsigned long (*text a input routine)();
unsigned long text_a=input_routine_param;
unsigned long (*text_a_position_routine) ();
unsigned long text_a_position_param;
unsigned long text l state;
unsigned char *text_a_buffer address;
unsigned long text_l_buffer_length;
unsigned char *text a local buffer;
unsigned char text l local length;
unsigned long text l directive_type;
unsigned long text l directive content;
unsigned char text a title[32];
unsigned long text-1-title length;
unsigned long text=b=scope=level;
unsigned long text_l_newline_count;
unsigned char text_v_end_of_paragraph 1;
unsigned char text v root segment 1;
unsigned char text v end of document 1;
unsigned char : O;

/* Default file extension */
static unsigned char default file[] II .tXt";
static unsigned long default length sizeof(default file) - 1;

C-2

0

Text Front End Source File

/* Name for Root Segment */
static unsigned char seg_id[] = "RootSegment";
static unsigned long seg_id_length = sizeof(seg_id) - 1;

/* Name for style guide file */
static unsigned char style_guide_name[] = "defstyle";
static unsigned long style_length sizeof(style_guide_name) - l;

/* Name for paragraph */
static unsigned char para_buffer[]
static unsigned long para_length

= "PARA";
sizeof(para_buffer) - 1;

literal buffer [] "LITERAL";
/* Name for literal */
static unsigned char
static unsigned long literal length sizeof(literal_buffer) - 1;

/* Name for erf descriptor */
static unsigned char erf desc type[]
static unsigned long erf=desc=length

"Style Guide";
sizeof(erf_desc_type) - l;

/* Name for erf label type */
static unsigned char erf_label type[] = "$STYLE";
static unsigned long erf_length sizeof(erf_label_type) - 1;

/*

MACROS

**/

/* Error check macros */

#define FAILURE(status)
(((status) & 1) 0)

#define SUCCESS(status)
(((status) & 1) == 1)

/* Memory allocation and deallocation */

#ifdef vms
extern unsigned long lib$free vm();
extern unsigned long lib$get_:;:;Tn();
#else
extern char *malloc();
extern free();
#endif

/* Literals used in creation of aggregates */

static unsigned char dsc identifier [] "DDIF$"; -
static unsigned long dsc id_length sizeof(dsc - identifier)
static unsigned char dsc=prod_name [] "DDIF Text Front End";
static unsigned long dsc nam length sizeof(dsc_prod_name) -
static unsigned char dhd_author[] "DDIF Text Front End";
static unsigned long dhd_aut length sizeof(dhd_author) - 1;

- 1;

l;

/* Lookup table for DEC MCS character set. These values are taken from DEC
* Standard 169. This table has the space character inserted in the control
* character and holes positions. This ensures no such characters appear
* in the DDIF TXT aggregates.
*/

static unsigned char lookup_buffer[256]
{32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, llO,

ll2, 113, 114, ll5, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,

32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
32, 161, 162, 163, 32, 165, 32, 167' 168, 169, 170, 171, 32, 32, 32,

176, 177, 178, 179, 32, 181, 182, 183, 32, 185, 186, 187, 188, 189, 32,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
208, 209, 210, 2ll, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 32,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237' 238,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 32,

32,
32,
47'
63,
79,
95,

lll,
32,

32,
32,
32,

191,
207,
223,
239,
32);

C-3

Text Front End Source File

/*
**++

The following callout corresponds to the callout in the jacket entry point
for the Text front end.

8 This is a jacket routine that supports the ULTRIX entry point to the
Text front end.

** FUNCTIONAL DESCRIPTION:
**
**
**
**
**
**
**
**
**

The name of this routine is CDA$READ_FORMAT().
This routine is the jacket entry point for the text Front End on
Ultrix and OS/2. It is called from the converter kernel to
call the "real" entry point which initializes the conversion.
When employed on VMS systems, this routine is not called (or even
compiled). On VMS systems, the converter kernel calls the
DDIF$READ_TEXT() routine.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**
**
**
**
**
**
**

item list.rr.ra

cvt context.rlu.v

text context.wlu.v

get_aggr.wa.r

get_pos.wa.r

close text.wa.r

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$_NORMAL
CDA$_INVAGGTYP

item list

value for cda$open_converter

value to identify this converter

address of get aggregate routine

address of get position routine

address of close front end routine

**
**
**
**
**

Memory allocation error conditions
File error conditions

** SIDE EFFECTS:
**
**
**
**--
**/

none

#ifndef vms
unsigned long

C-4

cda$read_format(item_list,
cvtr_context,
text_context_ptr,
get_aggr,
get_pos,
close_text)

Text Front End Source File

struct item list
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

*item_list;
cvtr_context;
*text context_ptr;
*get_aggr;
*get_pos;
*close_text;

unsigned long ddif$read_text();

#endif

return (ddif$read_text(item_list, cvtr_context, text_context_ptr,
get_aggr, get_pos, close_text));

The following callouts correspond to the callouts in the main entry point of
the Text front end.

/*
**++

0 This is the main entry point of the Text front end.

C) This loop reads the items in the item list passed to the Text front end.
This item list can contain information such as the file specification of
the file to be used for input, the routine to be used to read the input, a
parameter to the input routine, and so on.

8 This statement creates the DDIF root aggegate (type DDIF$_DDF).
This aggregate is required in every DDIF document.

«;) The next aggregate to be created is the document descriptor aggregate
(type DDIF$_DSC). This aggregate is also required in every DDIF
document.

** FUNCTIONAL DESCRIPTION:
**
**
**

This routine is the entry point for the Text Front End. It
is called from the converter kernel to initialize the

** conversion.
**
** GENERAL DESCRIPTION:
**
**
**
**
**
**
**
**
**
**
**
**
**

The DDIF$READ_format entry point is the initial entry point in the
front end. This routine initializes the conversion process and
establishes any special processing information for the front end.
The term "format" in the entry point name refers to the name of the
document format that is read by this particular front end --­
"TEXT", in this instance.

This routine is required and must be named according to the above
convention. Three other routines/entry points are also required.
The parameters to this routine specify their addresses to the
converter kernel.

C-5

Text Front End Source File

** FORMAL PARAMETERS:
**
** item list.rr.ra
**

item list

**
**
**
**

cvt context.rlu.v value for cda$open_converter

text context.wlu.v value to identify this converter

** The next three parameters are the addresses of the other required
** entry points in any front end.
**
**
**
**
**
**
**

get_aggr.wa.r address of get aggregate routine

get_pos.wa.r address of get position routine

close text.wa.r address of close front end routine

** IMPLICIT INPUTS:
**
** text file or data stream
**
** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**
** CDA$ NORMAL
** CDA$ INVAGGTYP
** Memory allocation error conditions
** File error conditions
**
** SIDE EFFECTS:
**
**
**
**--
**/

none

unsigned long ddif$read_text (item_list,
cvtr_context,
text_context_ptr,
get_aggr,
get_pos,

struct item list
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

status;

close_ text)

*item list;
cvtr_context;
*text context_ptr;
*get_aggr;
*get_pos;
*close_text;

/* return status */ unsigned long
unsigned long
unsigned long
unsigned long
unsigned char
unsigned long
unsigned char
unsigned long
unsigned char
unsigned long
struct text ext

struct_size;
aggregate_type;
result_length;
result_buffer[255];
filespec_length;
*default file address;
default_f ile_length;
*input file address;
input_f ile_length;
*text_context;

/* holds context block size *I
/* aggregate type*/
I* result file length */
/* result file buffer */
/* file specification length */

/* points to context block */

C-6

Text Front End Source File

/* Allocate the context block for this front end */
struct size = sizeof
text_context = O;
default file address - -
default_file_length
input_file_address
input_file_length

(struct text_cxt);

default_file;
default length;
O;
O;

#ifdef vms
status lib$get_vm(&struct size, &text_context, 0);

#else

#endif

text_context = (struct text_cxt *) malloc(struct size);
(text_context == 0) ? (status= CDA$_ALLOCFAIL) (status 1);

if (FAILURE(status))
return (status);

/* Initialize the context block */
text context->text a file handle - - - -
text_context->text_a_root_aggregate_handle
text_context->text_a_input_routine
text_context->text_a_input_routine_param
text_context->text_a_position_routine
text_context->text_a_position_param
text context->text 1 state - - -
text_context->text_l_title_length
text context->text a buff er address

- - - -
text_context->text_l_buffer_length
text context->text a local buffer - - - -
text_context->text 1 local_length
text_context->text_l_directive_type
text context->text 1 directive content - - -
text_context->text_b_scope_level
text context->text 1 newline count - - -
text_context->text_v_root_segrnent
text_context->text_v_end_of_paragraph
text context->text v end of document - - - - -
/* Scan item list until item code is 0 */
while (item_list->cda$w_item_code != 0)
{

status = 1;
switch (item_list->cda$w item code)
{

0;
0;
O;
0;
0;
0;
0;
0;
0;
0;
0;
0;
O;
O;
0;
0;
1;
0;
0;

0

case CDA$ INPUT FILE: - -
input_file_length
input_file_address

/* Input filename */
itern_list->cda$w_item_length;
(unsigned char *)
item_list->cda$a_item_address;

break;

case CDA$_INPUT_DEFAULT:
default file_length
default file address

break;

I* Default input filename */
item_list->cda$w_item_length;
(unsigned char *)
item_list->cda$a_item_address;

case CDA$_INPUT_PROCEDURE: /* Input procedure address */
text_context->text_a_input_routine =

break;

(unsigned long (*) ())
item_list->cda$a_item_address;

C-7

Text Front End Source File

case CDA$ INPUT PROCEDURE PARM: /* Input procedure param */
text_context->text_a_input_routine_param =

break;

((unsigned long)
item_list->cda$a_item_address);

case CDA$ INPUT_POSITION_PROCEDURE: /* Input position
proc address */

text_context->text_a_position_routine
(unsigned long (*) ())
item_list->cda$a_item_address;

break;

default:
break;

/* Any problems? */
if (FAILURE(status))

return (status);

/* All others */

/* Point to next item in item list */
/* Note that this advances the item list a full two longwords */
/* (i.e. + 1 * sizeof(item_list)) */

item list += l;

/* Create a DDIF root aggregate */
aggregate_type = DDIF$_DDF;
status = cda$create_root_aggregate (0,

O,
0,
o,
&aggregate_type,
&text_context->text_a_root_aggregate_handle);

/* If there is an error, deallocate context block and return */
if (FAILURE(status))

return (status);

/* Try to open the input file if specified */
if (input file_address != 0)
{

result_length = sizeof (result_buffer);

status = cda$open_text_file (&input_file_length,
input_file_address,
&default_file_length,
default_file_address,
&result_length,
result_buffer,
&result_length,
&text context->text_a_file handle);

#ifdef vms

C-8

I* Parse filename from file specification
* for use as the Title field in the Header
*I

if (SUCCESS(status))
{

struct FAB fil fab; /* File access block */
struct NAM fil_nam; /* Name block */
unsigned long esa length = 255 /* file length */
unsigned char esa_buffer[255]; /*file buffer*/

/* Initialize fab and nam blocks */
f il fab cc$rms_fab;
fil nam cc$rms_nam;

#endif

Text Front End Source File

fil fab.fab$1 dna
fil-fab.fab$b-dns
fil=fab.fab$l=fna
fil_fab.fab$b_fns
fil_fab.fab$l_nam
fil fab.fab$1 fop

fil_nam.nam$b_nop
fil_nam.nam$l_rlf
fil nam.nam$1 esa - -
fil_nam.nam$b_ess

O;
O;
result_buffer;
result_length;
&fil_nam;
FAB$M_NAM;

NAM$M_SYNCHK;
O;
esa_buffer;
esa_length;

/* Parse the file specification */
status= sys$parse(&fil_fab);
if (FAILURE(status))

return (status);

/* Copy the filename into the title area */
text context->text 1 title length = fil_nam.nam$b_name;
strncpy(text_context=>text=a_title,

fil nam.nam$1 name,
fil=nam.nam$b=name);

/* Copy the file extension into the title area */
strncpy(text context->text a title +

text=context->text_l_title_length,
fil_nam.nam$l_type,
fil_nam.nam$b_type);

text_context->text_l_title length += fil_nam.nam$b_type;

/* If an input procedure was specified, set
* the position parameter to the input parameter
* otherwise, use the file handle.
*/

if (text_context->text_a_input_routine != 0)
text_context->text_a_position_param =

text_context->text_a_input_routine_param;
else

text_context->text_a_position_param =
text context->text a file_handle;

/*
* The state value tells the Get Aggregate routine what
*aggregate to return next. In this case (first), we want
* it to return a document descriptor.
*/

text context->text 1 state = DDIF$_DSC;

/* Fill in get and close procedure addresses */
*text_context_ptr
*get_aggr
*get_pos
*close text

/* How did we do? */
return status;

(unsigned long) text_context;
(unsigned long) get_aggregate;
(unsigned long) get_position;
(unsigned long) close_front_end;

The following callouts correspond to the callouts in the get_aggregate
routine in the Text front end.

0 This routine reads the input data and calls the appropriate routines to
create the necessary aggregates. Before doing so, however, this routine

C-9

Text Front End Source File

/*
**++

creates a DDIF$_DSC aggregate and a DDIF$_DHD aggregate, both of
which are required in every DDIF document.

• Before reading the input and creating the appropriate content
aggregates, this routine creates a document descriptor (DDIF$_DSC)
and document header (DDIF$_DHD) aggregate. These aggregates,
along with the document root aggregate, are required in every DDIF
document.

The text_context->text_l_state argument is used to specify the
next aggregate to be created. After the DDIF$_DSC and DDIF$_DHD
aggregates have been created, the state is set to DDIF$_SEG, so that
the next aggregate created will be the root segment aggregate.

** FUNCTIONAL DESCRIPTION:
**
**
**
**
**

This routine is the entry point for the 'get aggregate' procedure.
It reads an aggregate from the input DDIF stream and returns
this aggregate to the caller.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v value to identify this converter instance

aggregate_handle.wlu.r address to store aggregate handle

aggregate_type.wlu.r address to store aggregate type

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$ NORMAL
CDA$ ~)NDOFDOC

**
**
**
**
**

Memory allocation error conditions
File error conditions

** SIDE EFFECTS:
**
**
**
**--
**/

none

static unsigned long

unsigned long
unsigned long
unsigned long

unsigned long status;

get_aggregate (text_context_ptr,
aggregate_handle,
aggregate_type)

*text_context_ptr;
*aggregate_ handle;
*aggregate_type;

struct text ext *text_context;

C-10

Text Front End Source File

/* Dereference */
text context (struct text_cxt *) *text_context_ptr;

/*
* The state value tells the Get Aggregate routine what aggregate
* to return next. We will test the state value here to determine
* what type of aggregate is needed. Each time an aggregate is
* returned, the state value is set to return the next type of
* aggregate.
*/

/* Find what DDIF aggregate we, need to return */

switch (text_context->text_l_state)
{

/* Build a document descriptor */
case DDIF$_DSC:

status = create dsc (&text_context,
aggregate_type,
aggregate_handle);

break;

/* Build a document header */
case DDIF$ DHD:

status = create dhd (&text_context,
aggregate_ type,
aggregate_handle);

break;

/* Build a document segment */
case DDIF$ SEG:

/* Create the SEG aggregate */
status = create_seg (&text_context,

aggregate_type,
aggregate_handle);

break;

/* Build a text aggregate */
case DDIF$ TXT:

/* Create a TXT aggregate */
status = create txt (&text_context,

aggregate_type,
aggregate_handle);

break;

/* Build a directive (new_line or new_page) */
case DDIF$ SFT:
case DDIF$_HRD:

/* Create a hard or soft directive aggregate */
status = create dir (&text_context,

aggregate_type,
aggregate_handle);

break;

/* Build an end of segment */
case DDIF$_EOS:

/* Create an end of segment aggregate */
status = create eos (&text_context,

aggregate_type,
aggregate_handle);

break;

C-11

Text Front End Source File

/* If we got here it is surely an insidious bug */
default:

status
break;

CDA$_INTERR;

/* Return the status */
return status;

The following callout corresponds to the callout in the create_dsc routine
in the Text front end.

/*
**++

4D This routine creates and fills in the required DDIF$_DSC aggregate,
sets the state to DDIF$_DHD, and returns to the switch statement
referenced by 8.

** FUNCTIONAL DESCRIPTION:
**
**
**
**

This routine creates a document descriptor aggregate and
fills it in.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v value to identify this converter

aggregate_type.wlu.r pointer to aggregate type

aggregate_handle.wlu.r pointer to aggregate handle

** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$ NORMAL **
** Aggregate creation errors
**
**

Memory deallocation error conditions

** SIDE EFFECTS:
**
**

**
**--
**/

none

static unsigned long

unsigned long
unsigned long
unsigned long

C-12

create dsc (text_context_ptr,
aggregate_type,
aggregate_handle)

*text context_ptr;
*aggregate_type;
*aggregate_handle;

Text Front End Source File

unsigned long
struct text ext
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

status;
*text_context;
aggregate_item;
item_length;
item_index = 0;
add_info;
major_version;
minor_version;

/* Dereference */
text_context = (struct text ext *) *text_context_ptr;

/* Set the aggregate type */
*aggregate_type = DDIF$_DSC;

/* Create the aggregate */
status = cda$create aggregate

(&text_context->text_a_root aggregate handle,
aggregate_type,
aggregate_handle);

if (FAILURE(status))
return (status);

/* First item to include is the major version. */
major_version = DDIF$K_MAJOR_VERSION;
item length= sizeof(major version);
aggregate item= DDIF$ DSC-MAJOR VERSION
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,

if (FAILURE(status))
return (status);

&aggregate_item,
&item_length,
&major_version);

I* The next item is the minor version */
minor_version = DDIF$K_MINOR_VERSION;
item length= sizeof(minor version);
aggregate item = DDIF$ DSC-MINOR VERSION
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,
&aggregate_item,
&item_length,
&minor_version);

if (FAILURE(status))
return (status);

/* Now the product identifier */
aggregate item = DDIF$ DSC PRODUCT IDENTIFIER;
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,

if (FAILURE(status))
return (status);

&aggregate_item,
&dsc_id_length,
dsc_identifier);

C-13

Text Front End Source File

/*
**++

/* And the product name */
aggregate item = DDIF$ DSC PRODUCT NAME
add info ~ CDA$K ISO LATINl; -
status = cda$sto~e_item (&text context->text_a_root_aggregate_handle,

aggregate_handle,
&aggregate_item,
&dsc_nam_length,
dsc_prod_name,
&item_ index,
&add_info);

/* Document header next */
text context->text 1 state= DDIF$_DHD;

/* Say how we did */
return (status);

The following callout corresponds to the callout in the create_dhd routine
in the Text front end.

~ This routine creates and fills in the required DDIF$_DHD aggregate,
sets the state to DDIF$_SEG, and returns to the switch statement
referenced by I>.

** FUNCTIONAL DESCRIPTION:
**
** This routine creates a document header aggregate and
** fills it in.
**
** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v

aggregate_type.wlu.r

aggregate_handle.wlu.r

*~ IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**
** CDA$_NORMAL
** Aggregate creation errors

value to identify this converter

pointer to aggregate type

pointer to aggregate handle

**
**

Memory deallocation error conditions

** SIDE EFFECTS:
**
**
**
**--
**I

none

static unsigned long

C-14

create dhd (text_context_ptr,
aggregate_type,
aggregate_handle)

Text Front End Source File

unsigned long
unsigned long
unsigned long

*text_context_ptr;
*aggregate_type;
*aggregate_handle;

unsigned long status; /* return status */
struct text_cxt *text_context; /* points to context block */
unsigned long aggregate_item;
unsigned long item_index = 0;
unsigned long int_length;
unsigned long add_info;
unsigned long erf_type;
unsigned long erf _handle;
unsigned char *erf _aggregate;
unsigned long object_identifier[7];

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Set the aggregate type to document header */
*aggregate_type = DDIF$_DHD;
add_info = CDA$K_ISO_LATIN1;

/* Create the aggregate */
status = cda$create_aggregate

(&text_context->text_a_root_aggregate_handle,
aggregate_type,
aggregate_handle);

if (FAILURE(status))
return (status);

/* Fill in the Author */
aggregate_item = DDIF$_DHD_AUTHOR;
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,
&aggregate_item,
&dhd_aut_length,
dhd author,
&item_index,
&add_info);

/* Fill in the Title if we have one */
if ((text_context->text_l_title_length != 0) &&

(SUCCESS(status)))

aggregate_item = DDIF$_DHD_TITLE;
status = cda$store_item

(&text_context->text_a_root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&text_context->text_l_title_length,
text_context->text_a_title,
&item_index,
&add_info);

/* Create and external reference aggregate */
erf_type = DDIF$_ERF;

/* Create the aggregate */
status = cda$create_aggregate

(&text_context->text_a_root_aggregate_handle,
&erf _type,
&erf_handle);

if (FAILURE(status))
return (status);

C-15

Text Front End Source File

C-16

/* Store the object identifier of DDIF */
object identifier[O] 1;
object-identifier[l] 3;
object=identifier(2] 12;
object_identifier[3] 1011;
object_identifier[4] 1;
object_identifier[5] 3;
object_identifier[6] 1;
aggregate_item = DDIF$_ERF_DATA_TYPE;
int_length = sizeof(object_identifier);
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

&erf_handle,
&aggregate_item,
&int_length,
object identifier);

if (FAILURE(status))
return (status);

/* Store the style guide name */
aggregate item = DDIF$ ERF LABEL;
add_info ~ CDA$K_ISO_LATINl;
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

&erf_handle,
&aggregate_item,
&style_length,
style_guide_name,
&item_index,
&add_info);

if (FAILURE(status))
return (status);

/* Store the descriptor */
aggregate item = DDIF$ ERF DESCRIPTOR;
add_info ~ CDA$K_ISO_LATINl;
item_index = O;
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

&erf_handle,

if (FAILURE(status))
return (status);

&aggregate item,
&erf_desc_length,
erf_desc_type,
&item_index,
&add_info);

/* Store the label type */
aggregate item = DDIF$ ERF LABEL TYPE;
add_info ~ DDIF$K_STYLE_LABEL_TYPE;
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

&erf_handle,

if (FAILURE(status))
return (status);

&aggregate_item,
&erf _length,
erf_label_type,
&item index,
&add_info);

Text Front End Source File

/* Store the copy info */
aggregate item = DDIF$ ERF CONTROL;
int length= sizeof(unsigned long);
item index = DDIF$K NO COPY REFERENCE;
stat~s = cda$store_item (&text_context->text_a_root_aggregate_handle,

&erf _handle,
&aggregate_item,
&int_length,
&item_index);

if (FAILURE(status))
return (status);

/* Store the Style Guide External Reference */
aggregate item = DDIF$ DHD EXTERNAL REFERENCES;
int length= sizeof(unsigned long);-
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,
&aggregate_item,
&int_length,
&erf_handle);

if (FAILURE(status))
return (status);

/* Fill in the Style Guide */
aggregate_item = DDIF$_DHD_STYLE_GUIDE;
item_index = 1;
int_length = sizeof(unsigned long);
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,
&aggregate_item,
&int_length,
&item_index);

/* Segment next */
text context->text 1 state= DDIF$_SEG;

I* Say how we did */
return status;

The following callouts correspond to the callouts in the create_seg routine
in the Text front end.

8 The first time this entry point is invoked, this routine creates the
required document root segment and returns to the switch statement
referenced by 8 with the state still set to DDIF$_SEG. All subsequent
calls to this routine create nested segments that contain the document
content.

• If the root segment has just been created, this routine also creates a
segment attributes aggregate (type DDIF$_SGA) and a type definition
aggregate (type DDIF$_TYD) to define types that are accessible to
all of the document content aggregates. Once these aggregates are
created, this routine passes control back to the switch statement
referenced by 8. Because the state is still set to DDIF$_SEG, 8
immediately passes control back to this routine to create the first
nested segment of the document.

8 If this routine is not creating the root segment, it simply creates a
nested segment aggregate and sets the state to DDIF$_TXT before
passing control back to 8.

C-17

Text Front End Source File

/*
**++
** FUNCTIONAL DESCRIPTION:
**
**
**
**

This routine creates a document segment aggregate and
fills it in.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v

aggregate_type.wlu.r

aggregate_handle.wlu.r

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
** none
**
** FUNCTION VALUE:
**

CDA$ NORMAL
Aggregate creation errors

value to identify this converter

pointer to aggregate type

pointer to aggregate handle

**
**
**
**

Memory deallocation error conditions

** SIDE EFFECTS:
**
**
**
**--
**/

none

static unsigned long create_seg (text_context_ptr,
aggregate_type,
aggregate_handle)

unsigned long
unsigned long
unsigned long

unsigned long
struct text ext
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

*text context_ptr;
*aggregate_type;
*aggregate_handle;

status;
*text_context;
aggregate_item;
item_length;
item index = 0;
add_info;
tyd_handle;
tyd_type;
sga_handle;
sga_type;

/* Dereference */

C-18

text_context = (struct text_cxt *) *text_context_ptr;

/* Set the aggregate type to segment */
*aggregate_type = DDIF$_SEG;

Text Front End Source File

/* Create the root segment */
status = cda$create_aggregate (&text_context->text_a_root_aggregate_handle,

aggregate_type,
aggregate_handle);

if (FAILURE(status))
return (status);

/* If this is the root segment, then setup to create a */
/* child segment. */
if (text_context->text_v_root_segment == 1) G>
{

/* Reset flags */
text context->text_v_root_segment O;

/* Store SEG ID in segment */
aggregate item = DDIF$ SEG ID;
status = cda$store_item -

(&text_context->text_a_root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&seg_id_length,
seg_id) ;

if (FAILURE(status))
return (status);

/* Create an attribute aggregate */
sga type = DDIF$ SGA;
status = cda$create_aggregate

(&text_context->text_a_root_aggregate_handle,
&sga_type,
&sga_handle);

if (FAILURE(status))
return (status);

/* Store SGA in segment */
aggregate item = DDIF$ SEG SPECIFIC ATTRIBUTES;
item_length = sizeof (;ga_handle);
status = cda$store item

(&text_context->text_a_root_aggregate_handle,
aggregate_handle,
&aggregate_item,
&item_length,
&sga_handle);

if (FAILURE(status))
return (status);

/* Create a type definition aggregate */
tyd_type = DDIF$_TYD;
status = cda$create_aggregate

(&text_context->text_a_root_aggregate_handle,
&tyd_type,
&tyd_handle);

if (FAILURE(status))
return (status);

C-19

Text Front End Source File

C-20

else
{

/* Store TYD in SGA */
aggregate item = DDIF$ SGA TYPE DEFNS;
item_length = sizeof (tyd_handle);
status = cda$store_item

(&text_context->text_a_root aggregate handle,
&sga_handle,
&aggregate_item,
&item_ length,
&tyd_handle);

if (FAILURE(status))
return (status);

/* Store TYD LABEL in TYD */
aggregate item = DDIF$ TYD LABEL;
status = cda$store_item -

(&text_context->text_a_root_aggregate_handle,
&tyd_handle,
&aggregate_item,
¶_length,
para_buffer);

if (FAILURE(status))
return (status);

/* Store TYD PARENT in TYD */
aggregate_item = DDIF$_TYD_PARENT;
status = cda$store_item

(&text_context->text_a_root_aggregate_handle,
&tyd_handle,
&aggregate_item,
&literal_length,
literal_buffer);

if (FAILURE(status))
return (status);

/* Not a root segment; tag as paragraph */
aggregate item = DDIF$_SEG_SEGMENT_TYPE; ~
status = cda$store item

(&text_context->text_a_root aggregate_handle,
aggregate_handle,
&aggregate_item,
¶_length,
para_buffer);

if (FAILURE(status))
return (status);

text_context->text_l_state= DDIF$_TXT;

/* Bump scope level */
text_context->text_b_scope_level += 1;

/* Say how we did */
return status;

The following callouts correspond to the callouts in the create_txt routine
in the Text front end.

8 This routine creates and fills in a text content aggregate.

e If a user-supplied text file input procedure was specified in the item
list, use that procedure. Otherwise, use the CDA Toolkit routine READ
TEXT FILE.

/*
**++

Text Front End Source File

f) If we reached the end of the document, pass control back to I>.
e This loop reads each character on the line of text. If a form-feed

character is encoutered, the ff_found flag is set.

9 If a horizontal tab character is encountered, the ht_found flag is set.

9 The characters are passed through a filter to ensure that there are no
control characters.

• If write_length was not zero, there was text on the line, so a DDIF$_
TXT aggregate is created and the text is stored in the aggregate.

@) If a form-feed character was encountered (indicated by ff_found = 1),
this corresponds to a DDIF hard directive. Therefore, the value of the
directive is set to DDIF$K_DIR_NEW _PAGE and the state is set to
DDIF$_HRD.

e If a tab character was encountered (indicated by ht_found = 1), this
corresponds to a DDIF soft directive. Therefore, the value of the
directive is set to DDIF$K_DIR_TAB and the state is set to DDIF$_
SFT.

~ If the tab or form-feed directive was the first character encountered
on the line, pass control to the create_dir entry point to create the
necessary directive aggregate.

~ If there was no form-feed or horizontal tab directive on the line,
this statement checks to see if the line was completely read or if
there are more characters on the line to be processed. If the line has
been completely read, the next aggregate to be created is a new line
(DDIF$K_DIR_NEW_LINE) soft directive aggregate (type DDIF$_
SFT). Otherwise, create another DDIF$_TXT aggregate because there
is more text to read.

fi If the line was empty, the next aggregate to be created is new line
(DDIF$K_DIR_NEW_LINE) soft directive aggregate (type DDIF$_
SFT). If this is the case, the value of the directive is set to DDIF$K_
DIR_NEW_LINE, the state is set to DDIF$_SFT, and the create_dir
routine is invoked.

** FUNCTIONAL DESCRIPTION:
**
**
**

This routine creates a text aggregate and fills it in.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v

aggregate_type.wlu.r

aggregate_handle.wlu.r

** IMPLICIT INPUTS:
**
**
**

none

value to identify this converter

pointer to aggregate type

pointer to aggregate handle

C-21

Text Front End Source File

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$_NORMAL **
**
**
**

Aggregate creation errors
Memory deallocation error conditions

** SIDE EFFECTS:
**
**
**
**--
**/

none

static unsigned long create txt (text_context_ptr,
aggregate_type,
aggregate_handle)

unsigned long
unsigned long
unsigned long

unsigned long
struct text ext
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

*text context ptr;
*aggregate_type;
*aggregate_handle;

status;
*text_context;
aggregate item;
item index;
add Info;
write_length;
ff _found;
ht found;
junk;

/* Dereference */

C-22

text context (struct text ext *) - *text_context_ptr;
write length 0;
ff found 0;
ht found O;
item index 0;

/* Do we need to get a line of text from the text file? */
if (text_context->text_l_buffer_length == 0)
{

/* File or procedure? */
if (text context->text_a_input routine 0)

else
{

status = cda$read_text file
(&text_context->text_a_file_handle,
&text_context->text_l_buffer_length,
&text_context->text_a_buffer_address);

status (*text_context->text_a_input_routine)
(text_context->text_a_input_routine_param,
&text context->text l buffer length,
&text=context->text=a=buffer=address);

Text Front End Source File

/* Check for ENDOFDOC. If found, then
stack for later processing. */

if (status == CDA$_ENDOFDOC)
{

text context->text v_end_of_document = 1; I)

/* Create an end of segment aggregate */
status = create eos (&text_context,

aggregate_type,
aggregate_handle);

/* Get out of here; no further processing in TXT */
return status;

if (FAILURE(status))
return (status);

else
text context->text 1 newline count += 1;

/* Allocate text buffer */
if (text_context->text_l_local_length < text_context->text_l_buffer_length)
{

/* Deallocate old one first */
if text_context->text 1 local_length > 0)

#ifdef vms

#else

#endif

lib$free_vm(&text_context->text_l_local_length,
&text_context->text_a_local_buffer, 0);

free(text_context->text_a_local_buffer);

/* Allocate larger buffer */
if (DDIF_BUFFER_SIZE > text_context->text_l_buffer_length)

text_context->text_l_local_length DDIF_BUFFER_SIZE;
else

text_context->text_l_local_length
text_context->text_l_buffer_length;

#ifdef vms

#else

#endif

status = lib$get_vm(&text_context->text_l_local_length,
&text context->text_a_local_buffer, 0);

text_context->text_a_local_buffer = (unsigned char *)
malloc(text context->text 1 local length);

(text_context->text_a_local_buffer == 0) ? - - -
(status CDA$_ALLOCFAIL) (status = 1);

if (FAILURE(status))
return (status);

/* Were there characters on the line? */
if (text_context->text_l_buffer_length != 0)
{

while (write_length < text_context->text_l_buffer_length) 4B
{

/* Look for the Form Feed character (12) which is translated to
* a new page soft directive
*/ -

if (text context->text_a_buffer_address[write_length]
FORM_FEED)

ff found 1;
break;

C-23

Text Front End Source File

C-24

else
if (text_context->text_a_buffer_address[write_length]

else
{

HORIZONTAL_TAB) ti

ht found = 1;
break;

/* Make sure no control characters
* pass through */ ~

text_context->text_a_local_buffer[write_length]
= lookup_buffer

[text_context->text_a_buffer_address[write_length]];

write_length += 1;

/* Is there anything to write? May not be if
FF is first on line */

if (write_length != 0)
{

/* There was text on the line so
we set the aggregate type to text */

*aggregate_type = DDIF$_TXT;

status = cda$create_aggregate
(&text_context->text_a_root_aggregate_handle,
aggregate_type,
aggregate_handle);

if (FAILURE(status))
return (status);

/* We now store the text line as a text content item */
aggregate item = DDIF$ TXT CONTENT;
add_info ~ CDA$K_ISO_LATINl;
status = cda$store_item

(&text_context->text_a_root_aggregate_handle,
aggregate handle,
&aggregat-e item,
&write_length,
text context->text_a_local buffer,
&item_index,
&add_info);

if (FAILURE(status))
return (status);

/* Adjust buffer count and address for next pass */
text_context->text_l_buffer_length write_length;
text context->text a buffer address += write_length;

/* Special case for FORM FEED or HORIZONTAL TAB characters;
skip over it */

if ((ff_found 1) I I
(ht_found == 1))

text_context->text_l_buffer_length 1;
text_context->text_a_buffer_address += 1;

Text Front End Source File

/* Setup for directive */
if (ff_found == 1)
{

else
{

text context->text l directive content - - -
DDIF$K_DIR_NEW_PAGE;

text context->text l state = - - -
DDIF$_HRD;

text context->text l directive_type
DDIF$_HRD;

text context->text l directive content - - -
DDIF$K_DIR_TAB;

text_context->text_l_state = DDIF$_SFT;
text_context->text_l_directive_type DDIF$_SFT;

/* Create a directive aggregate if it is
first on line */

if (write_length == 0)
{

status = create dir (&text_context,
aggregate_type,
aggregate_handle);

/* Finished with the line? */
else

if (text_context->text_l_buffer_length == 0)
{

/* Empty line */
else

else

/* Set next aggregate as new_line directive */
text context->text l directive content = - - - -

DDIF$K DIR NEW LINE;
text_context->text l state-= DDIF$ SFT;
text_context->text_l_directive_type DDIF$ SFT;

/* Otherwise, next aggregate is TXT */
text_context->text l state= DDIF$_TXT;

/* Set directive to be new line */
text context->text l directive content DDIF$K_DIR_NEW_LINE;

DDIF$ SFT;
- - - -

text_context->text_l_directive_type

/* Create a directive aggregate */
status = create_dir (&text_context,

/* Say how we did */
return status;

aggregate_type,
aggregate_handle);

The following callouts correspond to the callouts in the create_eos routine
in the Text front end.

9 This routine creates an end-of-segment (type DDIF$_EOS) aggregate.
This aggregate is a "dummy'' aggregate in that it is not actually stored

C-25

Text Front End Source File

/*
**++

in the DDIF document. Instead, it is used to indicate the end of a
segment.

~ If the front end has reached the end of the document and if the scope
level is greater than or equal to 1 (the scope level indicates the level of
nesting of segments), the previous DDIF$_EOS aggregate completed a
nested segment and there are more segments to be completed before
the document itself can be completed. In this case, the routine must
continue to create DDIF$_EOS aggregates until the scope level is 0,
meaning that the end of the root segment has been reached. At that
point, the status CDA$_ENDOFDOC can be returned.

i> If the front end has not reached the end of the document, this routine
only creates one DDIF$_EOS aggregate to complete the current nested
segment. In this case, the state is set to DDIF$_SEG so that the next
aggregate created is another nested segment.

G This statement decrements the scope level to indicate that a nested
segment has been completed by a DDIF$_EOS aggregate.

** FUNCTIONAL DESCRIPTION:
**
**
**

This routine creates an end of segment aggregate

** FORMAL PARAMETERS:
**
** text context.wlu.v value to identify this converter
**
**
**
**
**

aggregate_type.wlu.r pointer to aggregate type

aggregate_handle.wlu.r pointer to aggregate handle

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$ NORMAL **
**
**
**

Aggregate creation errors
Memory deallocation error conditions

** SIDE EFFECTS:
**
**
**
**--
**I

none

static unsigned long

unsigned long
unsigned long
unsigned long

C-26

create eos (text_context_ptr,
aggregate_type,
aggregate_handle)

*text context ptr;
*aggregate_type;
*aggregate_handle;

Text Front End Source File

unsigned long status;
struct text ext *text_context;

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Return EOS as current aggregate */
*aggregate_type = DDIF$_EOS;
*aggregate_handle = 0;

/* If end of document, then set status */
if (text_context->text_v_end_of_document == 1)
{

else
{

if (text_context->text_b_scope_level >= 1)
{

else

/* Set next directive to be EOS for content */
text context->text 1 state= DDIF$_EOS;

/* Set status to success */
status = CDA$_NORMAL;

/* Set status to end of document */
status CDA$_ENDOFDOC;

/* Set state to be SEG*/
text_context->text_l_state= DDIF$_SEG;

/* Set status to success */
status = CDA$_NORMAL;

/* Decrement scope level */
text_context->text_b_scope_level - l;

return (status);
•

The following callout corresponds to the callout in the look_ahead routine
in the Text front end.

G This routine is called by the create_dir routine to scan through
multiple blank lines in the text file.

/*
**++
** FUNCTIONAL DESCRIPTION:
**
**
**
**
**

This routine looks ahead for multiple blank lines in the text stream.
Multiple blank lines indicate end of paragraph. They become
hard newline directives.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v

aggregate_type.wlu.r

aggregate_handle.wlu.r

value to identify this converter

pointer to aggregate type

pointer to aggregate handle

C-27

Text Front End Source File

** IMPLICIT INPUTS:
**
** none
**
** IMPLICIT OUTPUTS:
**
** none
**
** FUNCTION VALUE:
**
** CDA$ NORMAL
** Aggregate creation errors
** Memory deallocation error conditions
**
** SIDE EFFECTS:
**
** none
**
**--
**/
static unsigned long look_ahead (text context_ptr)

*text_context_ptr; unsigned long

unsigned long status = 1;
struct text ext *text_context;

C-28

/* Dereference */
text context = (struct text_cxt *) *text_context_ptr;

/* Look ahead and compress blank lines */
while ((text_context->text l_buffer_length 0) &

(SUCCESS(status)))

/* File or procedure? */
if (text_context->text_a_input routine 0)
{

else
{

status = cda$read_text file
(&text_context->text_a_file_handle,
&text_context->text_l_buffer_length,
&text_context->text_a_buffer_address);

status (*text_context->text_a_input_routine)
(text_context->text_a_input_routine_param,
&text_context->text_l_buffer_length,
&text_context->text_a_buffer_address);

if (SUCCESS(status))
text context->text l newline count += 1;

/* Check for ENDOFDOC. If found, then stack for later processing. */
if (status == CDA$_ENDOFDOC)
{

text context->text v end of document 1;
status = CDA$_NORMAL;

return status;

/*
**++

Text Front End Source File

The following callouts correspond to the callouts in the create_dir routine
in the Text front end.

G If the directive content was set to DDIF$K_DIR_NEW _LINE
(regardless of whether it indicates the end of a paragraph or the
end of the document), this directive must be stored as a hard directive
in a DDIF$_HRD aggregate.

9 Otherwise, the appropriate type of aggregate is created and filled in.

G If the directive was a new-line directive, the new-line counter is
decremented and the routine checks to see if it is at the end of a
paragraph, the end of the document, or if there are more new lines to
process. The appropriate values are specified according to which case
applies.

** FUNCTIONAL DESCRIPTION:
**
**
**
**

This routine creates a directive aggregate and
fills it in.

** FORMAL PARAMETERS:
**
**
**
**
**
**
**

text context.wlu.v value to identify this converter

aggregate_type.wlu.r pointer to aggregate type

aggregate_handle.wlu.r pointer to aggregate handle

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**

CDA$ NORMAL **
**
**
**

Aggregate creation errors
Memory deallocation error conditions

** SIDE EFFECTS:
**
**
**
**--
**/

none

static unsigned long

unsigned long
unsigned long
unsigned long

create dir (text_context_ptr,
aggregate_type,
aggregate_handle)

*text context_ptr;
*aggregate_type;
*aggregate_handle;

C-29

Text Front End Source File

unsigned long status;
struct text ext *text_context;
unsigned long aggregate_item;
unsigned long item_length;

C-30

/* Dereference */
text_context = (struct text_cxt *) *text_context_ptr;

/* Look ahead for blank lines? */
if ((text_context->text_l_newline_count == 1) &&

(text_context->text_v_end_of_paragraph == 0) &&
(text_context->text_l_buffer_length == 0))

status= look_ahead (&text_context);
if (FAILURE(status))

return (status);

/* Is this a new line? */ @)
if (text_context->text_l_directive content == DDIF$K_DIR_NEW_LINE)
{

/* End of paragraph? (current newline plus at least 2 more) */
if (text_context->text_l_newline_count > 2)

text_context->text_v_end_of_paragraph = 1;

/* Set HRD directive if end of paragraph or document */
if (text context->text v end of paragraph == 1)

text_context->text_l=directive_type = DDIF$_HRD;

if ((text_context->text_v_end_of_document == 1) &&
(text context->text 1 newline count== 1))
text=context->text=l=directi;e_type DDIF$_HRD;

/* We are to return a directive */
*aggregate_type = text_context->text_l_directive_type;

/* Create the aggregate */ ~
status = cda$create_aggregate

(&text_context->text_a_root_aggregate_handle,
aggregate_type,
aggregate_handle);

if (FAILURE(status))
return (status);

/* Set the directive type */
if (text_context->text_l_directive_type == DDIF$ SFT)

aggregate_item DDIF$_SFT_DIRECTIVE;
else

aggregate item DDIF$_HRD_DIRECTIVE;

/* Store it */
item_length = sizeof(text context->text_l_directive_content);
status = cda$store_item (&text_context->text_a_root_aggregate_handle,

aggregate_handle,

if (FAILURE(status))
return (status);

&aggregate_item,
&item_ length,
&text context->text_l_directive_content);

/* If this is a new line directive, then decrement counter */ ~
if (text_context->text_l_directive_content DDIF$K_DIR_NEW_LINE)

text_context->text_l_newline_count -= 1;

Text Front End Source File

/* Decide what aggregate to process next */
/* End of Document? */
if (text_context->text_v_end_of _document 1)
{

else

/* Soft newlines to end of document */
if (text_context->text_l_newline_count >= 1)
{

else

text context->text l state = DDIF$ HRD;
text-context->text-1-directive type= DDIF$ HRD;
text=context->text=l=directive=content DDIF$K_DIR_NEW LINE;

/* EOS terminates paragraph and document */
text_context->text_l_state= DDIF$_EOS;

/* End of Paragraph? */
if (text_context->text_v_end_of_paragraph == 1)
{

else

/* Hard newlines to end of paragraph */
if (text_context->text_l_newline_count >= 2)
{

else

text context->text l state = DDIF$ HRD;
text=context->text=l=directive_type = DDIF$_HRD;
text_context->text_l_directive content DDIF$K_DIR_NEW LINE;

/* EOS terminates paragraph */
{

text context->text l state= DDIF$_EOS;
text context->text v end of_paragraph 0;

/* Not end of paragraph or document, but more newlines */
if (text_context->text_l_newline_count > 1)
{

}

text_context->text_l_state= DDIF$_SFT;
text context->text 1 directive type = DDIF$ SFT;
text=context->text=l=directive=content DDIF$K_DIR_NEW LINE;

/* No more newlines; just text */
else

text_context->text_l_state= DDIF$_TXT;

/* Say how we did */
return status;

The following callout corresponds to the callout in the get-position routine
in the Text front end .

., This routine determines the current location of the front end within
the input stream. This routine is used primarily by viewer applications
for scroll bar support.

C-31

Text Front End Source File

I*
**++
** FUNCTIONAL DESCRIPTION:
**
**
**
**
**

This routine is the entry point for the 'get_position' procedure.
It returns the total size of the text stream and the current
position (or offset) within the text stream.

** FORMAL PARAMETERS:
**
**
**
**
**

text context.wlu.v value to identify this converter instance

stream_position.wlu.r address to store stream position

**
**

stream size.wlu.r address to store stream size

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**
**
**

CDA$_NORMAL
CDA$_ENDOFDOC

**
**
**

Memory allocation error conditions
File error conditions

** SIDE EFFECTS:
**
** none
**
**--
**/
static unsigned long get_position (text_context_ptr,

stream_position,
stream_size)

*text_context_ptr;
stream_position;

unsigned long
unsigned long
unsigned long stream_size;

unsigned long status;
struct text ext *text_context;

C-32

/* Dereference */
text context = (struct text_cxt *) *text_context_ptr;

/* Do we have a user supplied position routine? */
if (text context->text a position routine == 0)

7* Ask the CDA-Toolkit fo~ the position and size information */
status = cda$get_text_position (&text_context->text_a_file_handle,

stream_position,

else
stream_size);

/* Ask user routine for position and size information */
status (*text context->text a position routine)

- (text=context->text_a_position_param,
stream_position,
stream_size);

Text Front End Source File

return status;

The following callout corresponds to the callout in the close routine in the
Text front end.

G This routine closes the front end and deallocates all resources.

/*
**++
** FUNCTIONAL DESCRIPTION:
**
**
**
**
**

This routine is the entry point for the 'close front end' procedure.
It closes the input DDIF file (or stream) and deallocates the
converter context.

** FORMAL PARAMETERS:
**
**
**

text context.wlu.v

** IMPLICIT INPUTS:
**
**
**

none

** IMPLICIT OUTPUTS:
**
**
**

none

** FUNCTION VALUE:
**
** CDA$ NORMAL

value to identify this converter

** Memory deallocation error conditions
** File error conditions
**
** SIDE EFFECTS:
**
**
**
**--
**I

none

static unsigned long close front end (text_context_ptr)

unsigned long *text_context_ptr;

unsigned long status;
unsigned long struct_size;
struct text ext *text_context;

/* return status */
/* holds context block size */
/* points to context block */

/* Dereference */
text context = (struct text_cxt *) *text_context_ptr;

/* Do we have a file or just a stream? */
status = CDA$_NORMAL;
if (text_context->text_a_file_handle != 0)
{

/* Close the input file */
status = cda$close_text file

(&text_context->text_a_file_handle);
if (FAILURE(status))

return (status);

C-33

Text Front End Source File

/* Delete the root aggregate */
status = cda$delete_root_aggregate

(&text_context->text_a_root aggregate handle);

/* Deallocate text buffer and front end context block if we have one */
struct size= sizeof (struct text_cxt);

#ifdef vms

#else

#endif

C-34

if (text_context->text_l_local_length > 0)
lib$free_vm(&text_context->text_l_local_length,

&text context->text a local buffer, 0);
lib$free_vm (&struct_size, &text_context, o);

if (text_context->text_l_local_length > 0)
free(text_context->text_a_local_buffer);

free(text_context);

/* Say how we did */
return status; }

D DDIF Aggregate Structures

This appendix lists the tables describing the structure and encoding of
each DDIF aggregate.

Table D-1 lists the items in the document root aggregate and their
encodings.

Table D-1 Document Root Aggregate (DDIF$_DDF)

Item Name Item Encoding

DDIF$_DDF _DESCRIPTOR

DDIF$_DDF _HEADER

DDIF$_DDF _CONTENT

Handle of DDIF$_DSC aggregate

Handle of DDIF$_DHD aggregate

Handle of DDIF$_SEG aggregate

Table D-2 lists the items in the document descriptor aggregate and their
encodings.

Table D-2 Document Descriptor Aggregate (DDIF$_DSC)

Item Name

DDIF$_DSC_MAJOR_ VERSION

DDIF$_DSC_MINOR_ VERSION

DDIF$_DSC_PRODUCT_IDENTIFIER

DDIF$_DSC_PRODUCT_NAME

Item Encoding

Integer

Integer

String

Array of type character string

Table D-3 lists the items in the document header aggregate and their
encodings.

Table D-3 Document Header Aggregate (DDIF$_DHD)

Item Name

DOI F$_DH D _PRIVATE_DATA

Item Encoding

Sequence of DDIF$_PVT
aggregates

Array of type character string

Array of type character string

Array of type character string

String

DDIF$_DHD_ TITLE

DDIF$_DHD_AUTHOR

DDIF$_DHD_VERSION

DDIF$_DHD_DATE

DDIF$_DHD_CONFORMANCE_ TAGS Array of type string with add-info

(continued on next page)

D-1

DDIF Aggregate Structures

D-2

Table D-3 (Cont.) Document Header Aggregate (DDIF$_DHD)

Item Name

DDIF$_DHD_EXTERNAL_REFERENCES

DDIF$_DHD_LANGUAGES_C

DOI F$_DHD _LANGUAGES

DDIF$_DHD_STYLE_GUIDE

Item Encoding

Sequence of DDIF$_ERF
aggregates

Array of type enumeration

Array of type variable

Integer

Table D-4 lists the items in the document segment aggregate and their
encodings.

Table D-4 Document Segment Aggregate (DDIF$_SEG)

Item Name

DDIF$_SEG_ID

DDIF$_SEG_USER_LABEL

DDIF$_SEG_SEGMENT _TYPE

DDIF$_SEG_SPECIFIC_ATTRIBUTES

DDIF$_SEG_GENERIC_LAYOUT

DDIF$_SEG_SPECIFIC_LAYOUT

DDIF$_SEG_CONTENT

Item Encoding

String

Array of type character string

String

Handle of DDIF$_SGA aggregate

Handle of DDIF$_LG1 aggregate

Handle of DDIF$_LS1 aggregate

Sequence of content

Table D-5 lists the item in the Latinl text content aggregate and its
encoding.

Table D-5 Latin1 Text Content Aggregate (DDIF$_ TXT)

Item Name Item Encoding

DDIF$_ TXT _CONTENT String

Table D-6 lists the item in the general text content aggregate and its
encoding.

Table D-6 General Text Content Aggregate (DDIF$_GTX)

Item Name Item Encoding

DDIF$_GTX_CONTENT Character string

Table D-7 lists the item in the hard directive aggregate and its encoding.

DDIF Aggregate Structures

Table D-7 Hard Directive Aggregate (DDIF$_HRD)

Item Name Item Encoding

DDIF$_HRD_DIRECTIVE Enumeration

Table D-8 lists the item in the soft directive aggregate and its encoding.

Table D-8 Soft Directive Aggregate (DDIF$_SFT)

Item Name Item Encoding

DDIF$_SFT _DIRECTIVE Enumeration

Table D-9 lists the items in the hard value directive aggregate and their
encodings.

Table D-9 Hard Value Directive Aggregate (DDIF$_HRV)

Item Name

DDIF$_HRV_C

DDIF$_HRV_ESC_RATIO_N

DDIF$_HRV_ESC_RATIO_D

DDIF$_HRV _ESC_CONSTANT_C

DDIF$_HRV _ESC_CONSTANT

DDiF$_HRV _RESET_ VARIABLE

DDIF$_HRV _RESET_ VALUE_C

DDIF$_HRV_RESET_VALUE

Item Encoding

Enumeration

Integer

Integer

Measurement enumeration

Variable

String

Expression enumeration

Variable

Table D-10 lists the items in the soft value directive aggregate and their
encodings.

Table D-10 Soft Value Directive Aggregate (DDIF$_SFV)

Item Name

DDIF$_SFV_C

DDIF$_SFV _ESC_RATIO_N

DDIF$_SFV_ESC_RATIO_D

DDIF$_SFV _ESC_CONSTANT_C

DDIF$_SFV _ESC_CONSTANT

DDIF$_SFV_RESET_VARIABLE

DDIF$_SFV _RESET_ VALUE_C

DDIF$_SFV _RESET_ VALUE

Item Encoding

Enumeration

Integer

Integer

Measurement enumeration

Variable

String

Expression enumeration

Variable

Table D-11 lists the items in the Bezier curve aggregate and their
encodings.

D-3

DDIF Aggregate Structures

D-4

Table D-11 Bezier Curve Aggregate (DDIF$_BEZ)

Item Name

DDIF$_BEZ_FLAGS

DDIF$_BEZ_PATH_C

DDIF$_BEZ_PATH

Item Encoding

Longword

Array of type measurement enumeration

Array of type variable

Table D-12 lists the items in the polyline aggregate and their encodings.

Table D-12 Polyline Aggregate (DDIF$_LIN)

Item Name

DDIF$_LIN_FLAGS

DDIF$_LIN_DRAW_PATTERN

DDIF$_LIN_PATH_C

DDIF$_LIN_PATH

Item Encoding

Longword

Bit string

Array of type measurement enumeration

Array of type variable

Table D-13 lists the items in the arc content aggregate and their
encodings.

Table D-13 Arc Content Aggregate (DDIF$_ARC)

Item Name

DDIF$_ARC_FLAGS

DDIF$_ARC_CENTER_X_C

DDIF$_ARC_CENTER_X

DDIF$_ARC_CENTER_ Y _C

DDIF$_ARC_CENTER_ Y

DDIF$_ARC_RADIUS_X_C

DDIF$_ARC_RADIUS_X

DDIF$_ARC_RADIUS_DELTA_ Y _C

DDIF$_ARC_RADIUS_DELTA_ Y

DDIF$_ARC_START_C

DDIF$_ARC_START

DDIF$_ARC_EXTENT _C

DDIF$_ARC_EXTENT

DDIF$_ARC_ROTATION_C

DDIF$_ARC_ROTATION

Item Encoding

Longword

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

Table D-14 lists the items in the fill area set content aggregate and their
encodings.

DDIF Aggregate Structures

Table D-14 Fill Area Set Content Aggregate (DDIF$_FAS)

Item Name

DDIF$_FAS_FLAGS

DDIF$_FAS_PATH

Item Encoding

Longword

Sequence of DDIF$_PTH aggregates

Table D-15 lists the items in the image content aggregate and their
encodings.

Table D-15 Image Content Aggregate (DDIF$_1MG)

Item Name Item Encoding

DDIF$_1MG_CONTENT Sequence of DDIF$_1DU aggregates

Table D-16 lists the items in the content reference aggregate and their
encodings.

Table D-16 Content Reference Aggregate (DDIF$_CRF)

Item Name

DDIF$_CRF _TRANSFORM

DDIF$_CRF _REFERENCE

Item Encoding

Sequence of DDIF$_TRN aggregates

String

Table D-17 lists the items in the external content aggregate and their
encodings.

Table D-17 External Content Aggregate (DDIF$_EXT)

Item Name Item Encoding

DDIF$_EXT_DIRECT_REFERENCE Object identifier

DDIF$_EXT _INDIRECT _REFERENCE Integer

DDIF$_EXT _DATA_ VALUE_DESCRIPTOR String

DDIF$_EXT_ENCODING_C Enumeration

DDIF$_EXT_ENCODING Variable

DDIF$_EXT_ENCODING_L Integer

Table D-18 lists the items in the private content aggregate and their
encodings.

D-5

DDIF Aggregate Structures

D-6

Table D-18 Private Content Aggregate (DDIF$_PVT)

Item Name

DDIF$_PVT _NAME

DDIF$_PVT_DATA_C

DDIF$_PVT _DATA

DDIF$_PVT _REFERENCE_ERF _INDEX

Item Encoding

String

Enumeration

Variable

Integer

Table D-19 lists the items in the layout galley aggregate and their
encodings.

Table D-19 Layout Galley Aggregate (DDIF$_GLY)

Item Name

DDIF$_GLY_ID

DDIF$_GLY_BOUNDING_BOX_LL_X_C

DDIF$_GLY _BOUNDING_BOX_LL_X

DDIF$_GLY_BOUNDING_BOX_LL_Y_C

DDIF$_GLY _BOUNDING_BOX_LL_ Y

DDIF$_GLY_BOUNDING_BOX_UR_X_C

DDIF$_GLY _BOUNDING_BOX_UR_X

DDIF$_GLY _BOUNDING_BOX_UR_ Y _C

DDIF$_GLY _BOUNDING_BOX_UR_ Y

DDIF$_GLY_OUTLINE

DDIF$_GLY_FLAGS

DDIF$_GLY _STREAMS

DDIF$_GLY_SUCCESSOR_C

DDIF$_GLY _SUCCESSOR

Item Encoding

String

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Sequence of DDIF$_PTH aggregates

Longword

Array of type string

Enumeration

Variable

Table D-20 lists the items in the external reference aggregate and their
encodings.

DDIF Aggregate Structures

Table D-20 External Reference Aggregate (DDIF$_ERF)

Item Name

DDIF$_ERF _DATA_ TYPE

DDIF$_ERF _DESCRIPTOR

DDIF$_ERF _LABEL

DDIF$_ERF _LABEL_ TYPE

DDIF$_ERF _CONTROL

Item Encoding

Object identifier

Array of type character string

Character string

String with add-info

Enumeration

Table D-21 lists the items in the image data unit aggregate and their
encodings.

Table D-21 Image Data Unit Aggregate (DDIF$_1DU)

Item Name Item Encoding

DDIF$_1DU_PRIVATE_CODING_ATTR

DDIF$_1DU_PIXELS_PER_LINE

DDIF$_1DU_NUMBER_OF _LINES

DDIF$_1DU_COMPRESSION_ TYPE

DDIF$_1DU_COMPRESSION_PARAMS

DDIF$_1DU_DATA_OFFSET

DDIF$_1DU_PIXEL_STRIDE

DDIF$_1DU_SCANLINE_STRIDE

DDIF$_1DU_PIXEL_ORDER

DDIF$_1DU_BITS_PER_PIXEL

DDIF$_1DU_PLANE_DATA

Sequence of DDIF$_PVT aggregates

Integer

Integer

Enumeration

Sequence of DDIF$_PVT aggregates

Integer

Integer

Integer

Enumeration

Integer

String

Table D-22 lists the items in the composite path aggregate and their
encodings.

Table D-22 Composite Path Aggregate (DDIF$_PTH)

Item Name

DDIF$_PTH_C

DDIF$_PTH_LIN_PATH_C

DDIF$_PTH_LIN_PATH

DDIF$_PTH_BEZ_PATH_C

DDIF$_PTH_BEZ_PATH

DDIF$_PTH_ARC_CENTER_X_C

DDIF$_PTH_ARC_CENTER_X

Item Encoding

Enumeration

Array of type measurement
enumeration

Array of type variable

Array of type measurement
enumeration

Array of type variable

Measurement enumeration

Variable

(continued on next page)

D-7

DDIF Aggregate Structures

D-8

Table D-22 (Cont.) Composite Path Aggregate (DDIF$_PTH)

Item Name

DDIF$_PTH_ARC_CENTER_ Y _C

DDIF$_PTH_ARC_CENTER_ Y

DDIF$_PTH_ARC_RADIUS_X_C

DDIF$_PTH_ARC_RADIUS_X

DDIF$_PTH_ARC_RADIUS_DELTA_ Y _C

DDIF$_PTH_ARC_RADIUS_DELTA_ Y

DDIF$_PTH_ARC_START_C

DDIF$_PTH_ARC_START

DDIF$_PTH_ARC_EXTENT_C

DDIF$_PTH_ARC_EXTENT

DDIF$_PTH_ARC_ROTATION_C

DDIF$_PTH_ARC_ROTATION

DDIF$_PTH_REFERENCE

Item Encoding

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

AngleRef enumeration

Variable

Integer

Table D-23 lists the items in the segment attributes aggregate and their
encodings.

Table D-23 Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_PRIVATE_DATA

DDIF$_SGA_CONTENT_STREAMS

DDIF$_SGA_CONTENT _CATEGORY

DDIF$_SGA_SEGMENT _TAGS

DDIF$_SGA_BINDING_DEFNS

DDIF$_SGA_COMPUTE_C

DDIF$_SGA_CPTCPY _TARGET

DDIF$_SGA_CPTCPY _ERF _INDEX

DDIF$_SGA_CPTVAR_ VARIABLE

DDIF$_SGA_CPTXRF _TARGET

DDIF$_SGA_CPTXRF _ERF _INDEX

DDIF$_SGA_CPTXRF _VARIABLE

DDIF$_SGA_CPTFNC_NAME

DDIF$_SGA_CPTFNC_PARAMETERS

DDIF$_SGA_STRUCTURE_DESC_C

DDIF$_SGA_STRUCTURE_DESC

DDIF$_SGA_LANGUAGE

Item Encoding

Sequence of DDIF$_PVT aggregates

Array of type string

String with add-info

Array of type string with add-info

Sequence of DDIF$_SGB aggregates

Enumeration

String

Integer

String

String

Integer

String

String

Sequence of DDIF$_PVT aggregates

Enumeration

Sequence of DDIF$_0CC aggregates

Integer

(continued on next page)

DDIF Aggregate Structures

Table D-23 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_LEGEND_UNIT_N

DDIF$_SGA_LEGEND_UNIT _D

DDIF$_SGA_LEGEND_UNIT_NAME

DDIF$_SGA_UNITS_PER_MEASURE

DDIF$_SGA_UNITS_NAME

DDIF$_SGA_ALT_PRESENTATION

DDIF$_SGA_LAYOUT _C

DDIF$_SGA_LAYGLY _WRAP

DDIF$_SGA_LAYGLY _LAYOUT

DDIF$_SGA_LAYPTH_PATH

DDIF$_SGA_LAYPTH_FORMAT

DDIF$_SGA_LAYPTH_ORIENTATION_C

DDIF$_SGA_LAYPTH_ORIENTATION

DDIF$_SGA_LAYPTH_H_ALIGN

DDIF$_SGA_LAYPTH_ V _ALIGN

DDIF$_SGA_LAYREL_H_RATIO_N

DDIF$_SGA_LAYREL_H_RATIO_D

DDIF$_SGA_LAYREL_H_CONSTANT_C

DDIF$_SGA_LAYREL_H_CONSTANT

DDIF$_SGA_LAYREL_ V _RATIO_N

DDIF$_SGA_LAYREL_ V _RATIO_D

DDIF$_SGA_LAYREL_ V _CONSTANT _C

DDIF$_SGA_LAYREL_ V _CONSTANT

DDIF$_SGA_LAYPOS_ TEXT _POSITION

DDIF$_SGA_FONT _DEFNS

DDIF$_SGA_PATIERN_DEFNS

DDIF$_SGA_PATH_DEFNS

DDIF$_SGA_LINE_STYLE_DEFNS

DDIF$_SGA_CONTENT _DEFNS

DDIF$_SGA_ TYPE_DEFNS

DDIF$_SGA_ TXT _MASK_PATTERN

DDIF$_SGA_ TXT_FONT

DDIF$_SGA_ TXT _RENDITION

DDIF$_SGA_ TXT _HEIGHT _C

DDIF$_SGA_ TXT _HEIGHT

DDIF$_SGA_TXT_SET_SIZE_N

Item Encoding

Integer

Integer

Array of type character string

Integer

Array of type character string

Array of type, character string

Enumeration

Handle of DDIF$_LW1 aggregate

Handle of DDIF$_LL 1 aggregate

Sequence of DDIF$_PTH aggregates

Enumeration

Enumeration

Variable

Enumeration

Enumeration

Integer

Integer

Measurement enumeration

Variable

Integer

Integer

Measurement enumeration

Variable

Enumeration

Sequence of DDIF$_FTD aggregates

Sequence of DDIF$_PTD aggregates

Sequence of DDIF$_PHD aggregates

Sequence of DDIF$_LSD aggregates

Sequence of DDIF$_CTD aggregates

Sequence of DDIF$_TYD aggregates

Integer

Integer

Array of type enumeration

Measurement enumeration

Variable

Integer

(continued on next page)

D-9

DDIF Aggregate Structures

Table D-23 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

D-10

Item Name

DDIF$_SGA_ TXT _SET _SIZE_D

DDIF$_SGA_ TXT _DIRECTION

DDIF$_SGA_ TXT _DEC_ALIGNMENT

DDIF$_SGA_ TXT _LEADER_SPACE_C

DDIF$_SGA_ TXT _LEADER_SPACE

DDIF$_SGA_ TXT _LEADER_BULLET

DDIF$_SGA_ TXT _LEADER_ALIGN

DDIF$_SGA_ TXT _LEADER_STYLE

DDIF$_SGA_ TXT _PAIR_KERNING

DDIF$_SGA_LIN_WIDTH_C

DDIF$_SGA_LIN_WIDTH

DDIF$_SGA_LIN_STYLE

DDIF$_SGA_LIN_PATTERN_SIZE_C

DDIF$_SGA_LIN_PATTERN_SIZE

DDIF$_SGA_LIN_MASK_PATTERN

DDIF$_SGA_LIN_END_START

DDIF$_SGA_LIN_END_FINISH

DDIF$_SGA_LIN_END_SIZE_C

DDIF$_SGA_LIN_END_SIZE

DDIF$_SGA_LIN_JOIN

DDIF$_SGA_LIN_M ITER_LIMIT _N

DDIF$_SGA_LIN_MITER_LIMIT_D

DDIF$_SGA_LIN_INTERIOR_PATTERN

DDIF$_SGA_MKR_STYLE

DDIF$_SGA_MKR_MASK_PATTERN

DDIF$_SGA_MKR_SIZE_C

DDIF$_SGA_MKR_SIZE

DDIF$_SGA_ GLY _ATTRIBUTES

DDIF$_SGA_IMG_PRIVATE_DATA

DDIF$_SGA_IMG_PIXEL_PATH

DDIF$_SGA_IMG_LINE_PROGRESSION

DDIF$_SGA_IMG_PP _PIXEL_DIST

DDIF$_SGA_IMG_LP _PIXEL_DIST

DDIF$_SGA_IMG_BRT_POLARITY

DDIF$_SGA_IMG_GRID_ TYPE

DDIF$_SGA_IMG_ TIMING_DESC

Item Encoding

Integer

Enumeration

Array of type character string

Measurement enumeration

Variable

Character string

Enumeration

Enumeration

Boolean

Measurement enumeration

Variable

Integer

Measurement enumeration

Variable

Integer

Enumeration

Enumeration

Measurement enumeration

Variable

Enumeration

Integer

Integer

Integer

Enumeration

Integer

Measurement enumeration

Variable

Handle of DDIF$_GLA aggregate

Sequence of DDIF$_PVT aggregates

Integer

Integer

Integer

Integer

Enumeration

Enumeration

Binary relative time

(continued on next page)

DDIF Aggregate Structures

Table D-23 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_IMG_SPECTRAL_MAPPING

DDIF$_SGA_IMG_LOOKUP _ TABLES_C

DDIF$_SGA_IMG_LOOKUP _TABLES

DDIF$_SGA_IMG_COMP _
WAVELENGTH_C

DDIF$_SGA_IMG_COMP _WAVELENGTH

DDIF$_SGA_IMG_COMP _SPACE_ORG

DDIF$_SGA_IMG_PLANES_PER_PIXEL

DDIF$_SGA_IMG_PLANE_SIGNIF

DDIF$_SGA_IMG_NUMBER_OF _COMP

DDIF$_SGA_IMG_BITS_PER_COMP

DDIF$_SGA_FRM_FLAGS

DDIF$_SGA_FRM_BOX_LL_X_C

DDIF$_SGA_FRM_BOX_LL_X

DDIF$_SGA_FRM_BOX_LL_ Y _C

DDIF$_SGA_FRM_BOX_L~ Y

DDIF$_SGA_FRM_BOX_UR_X_C

DDIF$_SGA_FRM_BOX_UR_X

DDIF$_SGA_FRM_BOX_UR_ Y _C

DDIF$_SGA_FRM_BOX_UR_ Y

DDIF$_SGA_FRM_OUTLINE

DDIF$_SGA_FRM_CLIPPING

DDIF$_SGA_FRM_POSITION_C

DDIF$_SGA_FRMFXD_POSITION_X_C

DDIF$_SGA_FRMFXD_POSITION_X

DDIF$_SGA_FRMFXD_POSITION_ Y_C

DDIF$_SGA_FRMFXD_POSITION_ Y

DDIF$_SGA_FRMINL_BASE_OFFSET_C

DDIF$_SGA_FRMINL_BASE_OFFSET

DDIF$_SGA_FRMGLY _VERTICAL

DDIF$_SGA_FRMGLY _HORIZONTAL

DDIF$_SGA_FRMMAR_BASE_OFFSET_C

DD IF$_SGA_FRMMAR_BASE_ OFFSET

DDIF$_SGA_FRMMAR_NEAR_OFFSET_C

DDIF$_SGA_FRMMAR_NEAR_OFFSET

DDIF$_SGA_FRMMAR_HORIZONTAL

Item Encoding

Enumeration

Enumeration

Variable

Enumeration

Variable

Enumeration

Integer

Enumeration

Integer

Array of type integer

Longword

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Sequence of DDIF$_PTH aggregates

Sequence of DDIF$_PTH aggregates

Enumeration

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Enumeration

Enumeration

Measurement enumeration

Variable

Measurement enumeration

Variable

Enumeration

(continued on next page}

D-11

DDIF Aggregate Structures

D-12

Table D-23 (Cont.) Segment Attributes Aggregate (DDIF$_SGA)

Item Name

DDIF$_SGA_FRM_ TRANSFORM

DDIF$_SGA_ITEM_CHANGE_LIST

Item Encoding

Sequence of DDIF$_TRN aggregates

Item change list

Table D-24 lists the items in the content definition aggregate and their
encodings.

Table D-24 Content Definition Aggregate (DDIF$_ CTD)

Item Name

DDIF$_CTD_LABEL

DDIF$_CTD_EXTERNAL_ TARGET

DDIF$_CTD_EXTERNAL_ERF _INDEX

DDIF$_CTD_ VALUE

DDIF$_CTD_PRIVATE_DATA

Item Encoding

String

String

Integer

Sequence of content

Sequence of DDIF$_PVT aggregates

Table D-25 lists the items in the font definition aggregate and their
encodings.

Table D-25 Font Definition Aggregate (DDIF$_FTD)

Item Name

DDIF$_FTD_NUMBER

DDIF$_FTD_IDENTIFIER

DDIF$_FTD_PRIVATE_DATA

Item Encoding

Integer

String

Sequence of DDIF$_PVT aggregates

Table D-26 lists the items in the line style definition aggregate and their
encodings.

Table D-26 Line Style Definition Aggregate (DDIF$_LSD)

Item Name

DDIF$_LSD_NUMBER

DDIF$_LSD_PATTERN

DDIF$_LSD_PRIVATE_DATA

Item Encoding

Integer

Array of type integer

Sequence of DDIF$_PVT aggregates

DDIF Aggregate Structures

Table D-27 lists the items in the path definition aggregate and their
encodings.

Table D-27 Path Definition Aggregate (DDIF$_PHD)

Item Name

DDIF$_PHD_NUMBER

DDIF$_PHD_DESCRIPTION

DDIF$_PHD_PRIVATE_DATA

Item Encoding

Integer

Sequence of DDIF$_PTH aggregates

Sequence of DDIF$_PVT aggregates

Table D-28 lists the items in the pattern definition aggregate and their
encodings.

Table D-28 Pattern Definition Aggregate (DDIF$_PTD)

Item Name

DDIF$_PTD_NUMBER

DDIF$_PTD_DEFN_C

DDIF$_PTD_SOL_COLOR_C

DDIF$_PTD_SOL_COLOR_R

DDIF$_PTD_SOL_COLOR_G

DDIF$_PTD_SOL_COLOR_B

DDIF$_PTD_PAT _NUMBER

DDIF$_PTD_PAT_COLORS

DDIF$_PTD_RAS_PATTERN

DDIF$_PTD_PRIVATE_DATA

Item Encoding

Integer

Enumeration

Enumeration

Single-precision floating-point

Single-precision floating-point

Single-precision floating-point

Integer

Array of type integer

Handle of DDIF$_1DU aggregate

Sequence of DDIF$_PVT aggregates

Table D-29 lists the items in the segment binding aggregate and their
encodings.

Table D-29 Segment Binding Aggregate (DDIF$_SGB)

Item Name

DDIF$_SGB_ VARIABLE_NAME

DDIF$_SGB_ VARIABLE_ VALUE_C

DDIF$_SGB_CTR_ TRIGGER_C

DDIF$_SGB_CTR_ TRIGGER

DDIF$_SGB_CTR_INIT_C

DDIF$_SGB_CTR_INIT

DDIF$_SGB_CTR_STYLE

DDIF$_SGB_CTR_ TYPE

DDIF$_SGB_COM_STRING_EXPR_C

Item Encoding

String

Enumeration

Enumeration

Variable

Expression enumeration

Variable

Sequence of DDIF$_CTS aggregates

Enumeration

Array of type enumeration

(continued on next page)

D-13

DDIF Aggregate Structures

D-14

Table D-29 (Cont.) Segment Binding Aggregate (DDIF$_SGB)

Item Name

DDIF$_SGB_COM_STRING_EXPR

DDIF$_SGB_RCD_LIST

Item Encoding

Array of type variable

Sequence of DDIF$_RCD aggregates

Table D-30 lists the items in the type definition aggregate and their
encodings.

Table D-30 Type Definition Aggregate (DDIF$_ TYD)

Item Name

DDIF$_ TYD_LABEL

DDIF$_ TYD_PARENT

DDIF$_ TYD_ATTRIBUTES

DDIF$_ TYD_PRIVATE_DATA

Item Encoding

String

String

Handle of DDIF$_SGA aggregate

Sequence of DDIF$_PVT aggregates

Table D-31 lists the items in the counter style aggregate and their
encodings.

Table D-31 Counter Style Aggregate (DDIF$_CTS)

Item Name

DDIF$_CTS_STYLE_C

DDIF$_CTS_STYLE

Item Encoding

Enumeration

Variable

Table D-32 lists the items in the occurrence definition aggregate and their
encodings.

Table D-32 Occurrence Definition Aggregate (DDIF$_0CC)

Item Name

DDIF$_0CC_OCCURRENCE_C

DDIF$_0CC_STRUCTURE_ELEMENT_C

DDIF$_0CC_STRUCTURE_ELEMENT

Item Encoding

Enumeration

Enumeration

Variable

Table D-33 lists the items in the record definition aggregate and their
encodings.

Table D-33 Record Definition Aggregate (DDIF$_RCD)

Item Name Item Encoding

DDIF$_RCD_ TYPE String

(continued on next page)

DDIF Aggregate Structures

Table D-33 {Cont.) Record Definition Aggregate {DDIF$_RCD)

Item Name

DDIF$_RCD_ TAG

DDIF$_RCD_CONTENTS

Item Encoding

String

Array of type string

Table D-34 lists the items in the RGB lookup table entry aggregate and
their encodings.

Table D-34 RGB Lookup Table Entry Aggregate {DDIF$_RGB)

Item Name

DDIF$_RGB_LUT _INDEX

DDIF$_RGB_RED_ VALUE

DDIF$_RGB_GREEN_ VALUE

DDIF$_RGB_BLUE_ VALUE

Item Encoding

Integer

Single-precision floating-point

Single-precision floating-point

Single-precision floating-point

Table D-35 lists the items in the transformation aggregate and their
encodings.

Table D-35 Transformation Aggregate {DDIF$_ TRN)

Item Name

DDIF$_ TRN_PARAMETER_C

DDIF$_ TRN_PARAMETER

Item Encoding

Enumeration

Variable

Table D-36 lists the items in the generic layout 1 aggregate and their
encodings.

Table D-36 Generic Layout 1 Aggregate {DDIF$_LG1)

Item Name

DDIF$_LG1_PRIVATE_DATA

DDIF$_LG1_PAGE_DESCRIPTIONS

Item Encoding

Sequence of DDIF$_PVT aggregates

Sequence of DDIF$_PGD aggregates

Table D-37 lists the items in the specific layout 1 aggregate and their
encodings.

Table D-37 Specific Layout 1 Aggregate {DDIF$_LS1)

Item Name

DDIF$_LS1_LAYOUT_C

DDIF$_LS1_LAYOUT

Item Encoding

Array of type enumeration

Array of type variable

Table D-38 lists the items in the wrap attributes 1 aggregate and their
encodings.

D-15

DDIF Aggregate Structures

D-16

Table D-38 Wrap Attributes 1 Aggregate (DDIF$_LW1)

Item Name

DDIF$_LW1_WRAP _FORMAT

DDIF$_LW1_QUAD_FORMAT

DDIF$_LW1_HYPHENATION_FLAGS

DDIF$_LW1_MAXIMUM_HYPH_LINES

DDIF$_LW1_MAXIMUM_ORPHAN_SIZE

DDIF$_LW1_MAXIMUM_WIDOW_SIZE

Item Encoding

Enumeration

Enumeration

Longword

Integer

Integer

Integer

Table D-39 lists the items in the layout attributes 1 aggregate and their
encodings.

Table D-39 Layout Attributes 1 Aggregate (DDIF$_LL 1)

Item Name

DDIF$_LL 1_1NITIAL_DIRECTIVE

DDIF$_LL 1_GALLEY _SELET

DDIF$_LL 1_BREAK_BEFORE

DDIF$_LL 1_BREAK_WITHIN

DDIF$_LL 1_BREAK_AFTER

DDIF$_LL1_1NITIAL_INDENT_C

DDIF$_LL 1_1NITIAL_INDENT

DDIF$_LL 1_LEFT_INDENT_C

DDIF$_LL 1_LEFT_INDENT

DDIF$_LL 1_RIGHT _INDENT _C

DDIF$_LL 1_RIGHT _INDENT

DDIF$_LL 1_SPACE_BEFORE_C

DDIF$_LL 1_SPACE_BEFORE

DDIF$_LL 1_SPACE_AFTER_C

DDIF$_LL 1_SPACE_AFTER

DDIF$_LL 1_LEADING_RATIO_N

DDIF$_LL 1_LEADING_RATIO_D

DDIF$_LL 1_LEADING_CONSTANT_C

DDIF$_LL 1_LEADING_CONSTANT

DDIF$_LL 1_ TAB_STOPS

Item Encoding

Enumeration

String

Enumeration

Enumeration

Enumeration

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Integer

Integer

Measurement enumeration

Variable

Sequence of DDIF$_ TBS aggregates

Table D-40 lists the items in the galley attributes aggregate and their
encodings.

DDIF Aggregate Structures

Table D-40 Galley Attributes Aggregate (DDIF$_GLA)

Item Name

DDIF$_GLA_ TOP _MARGIN_C

DDIF$_GLA_TOP _MARGIN

DDIF$_GLA_LEFT _MARGIN_C

DDIF$_GLA_LEFT _MARGIN

DDIF$_GLA_RIGHT_MARGIN_C

DDIF$_GLA_RIGHT _MARGIN

DDIF$_GLA_BOTTOM_MARGIN_C

DDIF$_GLA_BOTTOM_MARGIN

Item Encoding

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Table D-41 lists the items in the page description aggregate and their
encodings.

Table D-41 Page Description Aggregate (DDIF$_PGD)

Item Name Item Encoding

String DDIF$_PGD_LABEL

DDIF$_PGD_PRIVATE_DATA

DDIF$_PGD_DESC_C

DDIF$_PGD_DESC

Sequence of DDIF$_PVT aggregates

Enumeration

Variable

Table D-42 lists the items in the page layout aggregate and their
encodings.

Table D-42 Page Layout Aggregate (DDIF$_PGL)

Item Name

DDIF$_PGL_LAYOUT_ID

DDIF$_PGL_SIZE_X_NOM_C

DDIF$_PGL_SIZE_X_NOM

DDIF$_PGL_SIZE_X_STR_C

DDIF$_PGL_SIZE_X_STR

DDIF$_PGL_SIZE_X_SHR_C

DDIF$_PGL_SIZE_X_SHR

DDIF$_PGL_SIZE_ Y _NOM_C

DDIF$_PGL_SIZE_ Y _NOM

DDIF$_PGL_SIZE_ Y _STR_C

DDIF$_PGL_SIZE_ Y _STR

DDIF$_PGL_SIZE_ Y _SHR_C

Item Encoding

String

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

Variable

Measurement enumeration

(continued on next page)

D-17

DDIF Aggregate Structures

D-18

Table D-42 (Cont.) Page Layout Aggregate (DDIF$_PGL)

Item Name

DDIF$_PGL_SIZE_ Y _SHR

DDIF$_PGL_ORIENTATION

DDIF$_PGL_PROTOTYPE

DDIF$_PGL_CONTENT

Item Encoding

Variable

Enumeration

String

Sequence of content

Table D-43 lists the items in the page select aggregate and their
encodings.

Table D-43 Page Select Aggregate (DDIF$_PGS)

Item Name

DDIF$_PGS_PAGE_SIDE_CRITERIA

DDIF$_PGS_SELECT _PAGE_LAYOUT _C

DDIF$_PGS_SELECT_PAGE_LAYOUT

Item Encoding

Enumeration

Enumeration

Variable

Table D-44 lists the items in the tab stop aggregate and their encodings.

Table D-44 Tab Stop Aggregate (DDIF$_TBS)

Item Name

DDIF$_ TBS_HORIZONTAL_POSITION_C

DDIF$_ TBS_HORIZONTAL_POSITION

DDIF$_ TBS_ TYPE

DDIF$_ TBS_LEADER

Item Encoding

Measurement enumeration

Variable

Enumeration

Character string

E DDIF Syntax Diagrams

This appendix lists the syntax diagrams for each construct defined by the
DIGITAL Document Interchange Format. The abstract syntax notation
used to define these constructs at the lowest level is the DIGITAL Data
Interchange Syntax (DDIS). The elements of the DDIS abstract syntax
notation that are used in this appendix are summarized in the following
sections.

E.1 ODIS Built-In Data Types
Table E-1 lists the built-in types that are primitive data types:

Table E-1 ODIS Built-In Primitives

Type Definition

NULL A data element with no value

INTEGER

BOOLEAN

BIT STRING

OCTET STRING

FLOATING-POINT

A signed, two's complement binary number

A Boolean value, constrained to be true or false

A string of bits

A character string or other data type that logically
consists of a series of "octet" (8-bit quantity) values

An element that consists of a sign magnitude, with bit
7 of the second octet representing the sign bit. Bits
6 through O of the second octet and bits 7 through O
of the first octet collectively encode an excess-16384
binary exponent. The bits of the exponent decrease in
significance from bit 6 to bit O of the second octet, and
then from bit 7 to bit 0 of the first octet. The remaining
(zero or more) octets of the value encode a normalized
fraction with the redundant most significant bit not
represented. The fraction is encoded such that bits
increase in significance from bit 0 through bit 15 of
each octet pair, and successive pairs of octets become
less significant.

(continued on next page)

E-1

DDIF Syntax Diagrams
E.1 ODIS Built-In Data Types

E-2

Table E-1 (Cont.) ODIS Built-In Primitives

Type

OBJECT IDENTIFIER

EXTERNAL

Definition

A list of object identifier components, which are
integer values that identify branches in a tree of
object identifiers. The value field of an element of type
OBJECT IDENTIFIER consists of an ordered list of
subidentifiers, where each subidentifier is an unsigned
integer value. Each subidentifier is represented as
one or more octets. If bit 7 of a given octet is set,
the subidentifier is continued in the next octet. Bits 6
through O of the octets in the subidentifier collectively
encode an integer that represents a branch in the
registration tree. These bits are concatenated to form
an unsigned integer whose most significant bit is bit 6
of the first octet and whose least significant bit is bit O
of the last octet.

A data value whose basic encoding may or may not
conform to the DIGITAL Data Interchange Syntax. The
direct-reference element in the EXTERNAL data type
indicates the data type (syntax and semantics) of the
external element. The data-value descriptor element is
a text string that describes the data value in a human­
readable form. The encoding field contains the data
value itself.

The DDIF syntax diagrams also refer to a Generalized Time universal
defined type. This type represents a calendar date and time of day to
various precisions. The time of day can be specified as local time only, as
Coordinated Universal Time (UTC) only, or as both local and UTC.

The Generalized Time type represents time by a string of characters
consisting of:

• A calendar date

• A time of day

• The local Time Differential Factor (TDF)

In addition to these primitive data types, DDIS also provides built-in
constructors (records and arrays). Table E-2 shows the DDIS constructors
used in the DDIF syntax diagrams.

DDIF Syntax Diagrams
E.1 ODIS Built-In Data Types

Table E-2 ODIS Built-In Constructors

Constructor

SEQUENCE

SEQUENCE OF

Definition

A list of elements that can be primitive or themselves
constructed, which must occur in the order in which the
elements are specified. A SEQUENCE can be viewed as a
record in which each field has a type identifier in the data
stream. All elements of a SEQUENCE are enclosed within
braces.

A list of elements that can be primitive or themselves
constructed, which are all of a specified type. For example, a
"SEQUENCE OF INTEGER" models a list of integers.

DDIS also provides tagged types. Elements in the syntax are often
assigned tags for the purpose of making them unique within their context.
These tags, shown in the syntax as a number between square brackets,
serve to identify the element. Note that they are not counters; while they
are conventionally assigned in ascending order to elements of a constructor
type, they are not constrained to do so. Elements of a SEQUENCE occur
in the order in which they are listed.

Tagged types can use the IMPLICIT keyword to specify that the tagged
type assumes the encoding of the referenced type, rather than forming a
constructor containing a built-in element. Use of the IMPLICIT keyword
reduces the number of bytes required to represent the encoded data, but
requires that decoding software have knowledge of the type.

E.2 Built-In Operators
Table E-3 describes the DDIS built-in operators. They are best described
as operators because they affect the way the built-in types are encoded.
The keywords for built-in operators are expressed in uppercase letters.

Table E-3 ODIS Built-In Operators

Operator

CHOICE

OPTIONAL

DEFAULT

Effects

Only one of the list of alternative types can be chosen. Note
that CHOICE is not a type that has a tag. It therefore cannot
be preceded by the IMPLICIT operator. CHOICE can force a
tagged type to become a constructor that then contains the
chosen alternative.

The designated element can be omitted at the option of the
sending application.

The designated element has a default value. Elements with
default values are also optional and can be omitted at the
option of the sending application. The receiving application
uses the specified default value when the element is missing
from the encoding.

(continued on next page)

E-3

DDIF Syntax Diagrams
E.2 Built-In Operators

Table E-3 (Cont.) ODIS Built-In Operators

Operator

ANY

Assignment

Named number

Comments

Effects

Any tagged element can be inserted in the encoding, at the
option of the sending application.

The assignment operator, represented by two colons and
an equal sign (::=), assigns a name to a syntax definition by
which it can be referenced in other definitions. Elements of a
syntax can therefore share a definition.

The assignment of an identifier to a specific value. Named
numbers are often used for clarity in referring to values with
specific meaning, and to provide for automatic generation
of symbolic values for use in software development. (By
convention, named integer values in DDIF start from 1 and
named bits start from bit 0.)

The comment delimiter, represented by two consecutive
hyphen characters (- -), causes the text following this
delimiter to be treated as a comment.

E.3 ODIS Defined Types
Table E-4 shows the types defined by DDIS:

Table E-4 ODIS Defined Types

Defined Type

Latin 1-String

Character-String

Text-String

Encoding

An element encoded as an OCTET STRING in
which all octet values represent characters from the
Latin1 character set. Characters 32 through 126 of
this character set are the same as the 7-bit ASCII
code.

An element in which the first octet or octets
identify the character set, and the remaining octets
constitute the codes of characters selected from that
character set. The characters in a Character-String
type can be chosen from 8-bit, 16-bit, and 32-bit
character sets.

An element that consists of a sequence of
Character-String elements, and can thus represent
a text string in which characters are selected from
more than one character set.

E.4 DDIF Syntax Diagrams

E-4

This section lists all of the syntax diagrams that are used to describe
the DIGITAL Document Interchange Format constructs. Figure E-1
illustrates the syntax used to create a DDIF document construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-1 DDIF Document Syntax Diagram

DDIFDocument ··= [PRIVATE 16383] IMPLICIT SEQUENCE
document-descriptor [0] IMPLICIT DocumentDescriptor,
document-header [1] IMPLICIT DocumentHeader,
document-content [2] IMPLICIT Content

}

Figure E-2 illustrates the syntax used to create a document descriptor
construct.

Figure E-2 Document Descriptor Syntax Diagram

DocumentDescriptor : : = SEQUENCE {
major-version
minor-version
product-identifier
product-name

[0] IMPLICIT INTEGER,
[1] IMPLICIT INTEGER,
[2] IMPLICIT ASCIIString,
[3] IMPLICIT Text-String
}

Figure E-3 illustrates the syntax used to create a document header
construct.

Figure E-3 Document Header Syntax Diagram

DocumentHeader ··=
private-header-data
title
author
version
date
conformance-tags
external-references

languages
iso-639-language
other-language

style-guide

SEQUENCE {
[0] IMPLICIT NamedValueList OPTIONAL,
[1] IMPLICIT Text-String OPTIONAL,
[2] IMPLICIT Text-String OPTIONAL,
[3] IMPLICIT Text-String OPTIONAL,
[4] IMPLICIT GeneralizedTime OPTIONAL,
[5] IMPLICIT SEQUENCE OF ConformanceTag OPTIONAL,
[6] IMPLICIT SEQUENCE OF ExternalReference

OPTIONAL,
[7] IMPLICIT SEQUENCE OF CHOICE {

[0] IMPLICIT ASCIIString,
[1] IMPLICIT Character-String
} OPTIONAL,

[8] IMPLICIT ExternalRefindex OPTIONAL
}

Figure E-4 illustrates the syntax used to create a document root segment
construct.

E-5

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-4 Document Root Segment

Content ::=SEQUENCE OF ContentPrimitive

ContentPrimitive
segment-primitive
text-primitive
formatting-primitive
graphics-primitive
image-primitive
content-ref-primitive
restricted-content
layout-primitive
}

: := CHOICE {
SegmentPrimitive,
TextPrimitive,
FormattingPrimitive,
GraphicsPrimitive,
ImagePrimitive,
ContentReferencePrimitive,
RestrictedContent,
LayoutPrimitive

Figure E-5 illustrates the syntax used to create a segment primitive
construct.

Figure E-5 Segment Primitive Syntax Diagram

SegmentPrimitive
end-segment
begin-segment

: : = CHOICE {
[APPLICATION 1] IMPLICIT NULL,
[APPLICATION 2] IMPLICIT BeginSegment
}

Figure E-6 illustrates the syntax used to create a construct.

Figure E-6 Begin-Segment Syntax Diagram

BeginSegment .. - SEQUENCE {

segment-id [0] IMPLICIT Segment Label OPTIONAL,
user-label [1] IMPLICIT Text-String OPTIONAL,
segment-type [2] IMPLICIT TypeDefnLabel OPTIONAL,
specific-attributes [3] IMPLICIT SegmentAttributes OPTIONAL,
generic-layout [4] GenericLayout OPTION{\L,
specific-layout [5] SpecificLayout OPTIONAL

}

ANY
ANY

Figure E-7 illustrates the syntax used to create a text primitive
construct.

E-6

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-7 Text Primitive Syntax Diagram

: := CHOICE { TextPrimitive
latinl-content
general-text-content

[APPLICATION 3] IMPLICIT Latinl-String,
[APPLICATION 4] IMPLICIT Character-String
}

Figure E-8 illustrates the syntax used to create a text attributes
construct.

Figure E-8 Text Attributes Syntax Diagram

TextAttributes
text-mask-pattern
text-font
text-rendition

text-height
text-set-size
text-direction

: :=

text-dir-forward(l),
text-dir-backward(2)

decimal-align-chars

leader-attributes
pair-kerning

SEQUENCE {

[0] IMPLICIT PatternNumber
[1] IMPLICIT FontNumber
[2] IMPLICIT SEQUENCE OF

RenditionCode
[3] Size
[4] IMPLICIT Ratio
[5] IMPLICIT INTEGER

[6] IMPLICIT SEQUENCE OF
Character-String

[7] IMPLICIT LeaderStyle
[8] IMPLICIT BOOLEAN
}

OPTIONAL,
OPTIONAL,

OPTIONAL,
OPTIONAL,
OPTIONAL,

OPTIONAL,

OPTIONAL,
OPTIONAL,
OPTIONAL

Figure E-9 illustrates the syntax used to create a rendition code
construct.

Figure E-9 Rendition Code Syntax Diagram

RenditionCode ::=INTEGER {
default(O),
highlighted(l),
faint(2),
italic(3),
underlined(4),
slow-blink (5),
rapid-blink (6) ,
negative-image(7),
concealed-chars(8),
crossed-out(9),
double-underlined(21),
normal-intensity(22),
not-underlined(24),
steady (25),
positive(27),
revealed-chars(28),
boxed (51),
encircled(52),
overlined(53),
ideogram-underlined(60),
ideogram-db-underlined(61),

(continued on next page)

E-7

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-9 (Cont.) Rendition Code Syntax Diagram

ideogram-overlined(62),
ideogram-db-overlined(63),
ideogram-stress-mark(64)

Figure E-10 illustrates the syntax used to create a leader style construct.

Figure E-10 Leader Style Syntax Diagram

LeaderStyle
leader-space
leader-bullet

SEQUENCE {
[0] Size OPTIONAL,
[1] IMPLICIT Character-String OPTIONAL,
[2] IMPLICIT INTEGER { leader-align

aligned-leader(l),
staggered-leader(2),
non-aligned-leader(3) }

leader-style [3]
ls-x-rule(l),
ls-bullet (2)

OPTIONAL,
IMPLICIT INTEGER

OPTIONAL

Figure E-11 illustrates the syntax used to create a text layout construct.

Figure E-11 Text Layout Syntax Diagram

TextLayout ··= CHOICE {

E-8

galley-based-layout
wrap-attributes
galley-layout

[0] IMPLICIT SEQUENCE {
[0] WrapAttributes OPTIONAL, Defined as ANY
[1] GalleyLayout OPTIONAL Defined as ANY

} '
path-based-layout
position-relative

vertical-offset
horizontal-offset

[1] IMPLICIT StringLayout,
[2] IMPLICIT SEQUENCE {

[0] IMPLICIT Escapement OPTIONAL,
[1] IMPLICIT Escapement OPTIONAL

} '
text-position [3] IMPLICIT INTEGER

tp-base (1) ,
tp-left-subscript(2),
tp-left-superscript(3),
tp-right-subscript(4),
tp-right-superscript(5),
tp-top-center(6),
tp-bottom-center(7),
tp-rubi(8)

Figure E-12 illustrates the syntax used to create a text string layout
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-12 Text String Layout Syntax Diagram

StringLayout
string-layout-path
string-layout-format
character-orientation

SEQUENCE {

char-angle-fixed
char-angle-path

[0] IMPLICIT CompositePath,
[l] IMPLICIT Format DEFAULT flush-path-begin,
CHOICE {

[2] IMPLICIT Angle,
[3] IMPLICIT RightAngle
} DEFAULT { char-angle-path up },

char-horizontal-align [4] IMPLICIT INTEGER {
normal-horizontal(l),
leftline(2),
centerline(3),
right line (4)

char-vertical-align
normal-vertical(l),
baseline(2),
capline(3),
bottomline(4),
halfline(5),
topline (6) }

DEFAULT normal-horizontal,
[5] IMPLICIT INTEGER {

DEFAULT normal-vertical

Figure E-13 illustrates the syntax used to create a formatting primitive
construct.

Figure E-13 Formatting Primitive Syntax Diagram

FormattingPrimitive
soft-value-directive
hard-value-directive
hard-directive
soft-directive

CHOICE {
[APPLICATION 7] ValueDirective,
[APPLICATION 8] ValueDirective,
[APPLICATION 9] IMPLICIT Directive,

[APPLICATION 10] IMPLICIT Directive
}

Figure E-14 illustrates the syntax used to create a value directive
construct.

E-9

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-14 Value Directive Syntax Diagram

ValueDirective ··=CHOICE {
escapement-directive [0] IMPLICIT EscapementDirective,
variable-reset [l] IMPLICIT VariableReset

}

Figure E-15 illustrates the syntax used to create a directive construct.

Figure E-15 Directive Syntax Diagram

Directive : : = INTEGER {
new-page(l),
new-line(2),
new-galley(3),
tab(4),
space(S),
hyphen-new-line(6),
word-break-point(7),
leaders(8),
backspace(9),
null-directive(lO),
no-hyphen-word(ll)

Figure E-16 illustrates the syntax used to create an escapement directive
construct.

Figure E-16 Escapement Directive Syntax Diagram

EscapementDirective

E-10

: : = Escapement

Figure E-17 illustrates the syntax used to create a variable reset
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-17 Variable Reset Syntax Diagram

VariableReset ::=SEQUENCE {
reset-variable [0] IMPLICIT VariableLabel,
reset-value [1] Expression

}

Figure E-18 illustrates the syntax used to create a graphics primitive
construct.

Figure E-18 Graphics Primitive Syntax Diagram

GraphicsPrimitive
cubic-curve-object
polyline-object
arc-object
fill-area-set

.. - CHOICE {
[APPLICATION 11] IMPLICIT CubicBezier,
[APPLICATION 12] IMPLICIT Polyline,
[APPLICATION 13] IMPLICIT Arc,
[APPLICATION 14] IMPLICIT FillAreaSet
}

Figure E-19 illustrates the syntax used to create a polyline construct.

Figure E-19 Polyline Syntax Diagram

Polyline SEQUENCE {
[0] IMPLICIT BIT STRING { polyline-flags

draw-polyline(O),
fill-polyline(l),
draw-markers(2),
regular-polygon(3),
close-polyline(4),
rounded-polyline(5),
rectangular-polygon(6) }

polyline-draw-pattern [1]
polyline-path [2]

}

DEFAULT { draw-polyline },
IMPLICIT BIT STRING DEFAULT 'l'B,
IMPLICIT PolyLinePath

E-11

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-20 illustrates the syntax used to create a cubic Bezier construct.

Figure E-20 Cubic Bezier Syntax Diagram

CubicBezier : : = SEQUENCE {
cubic-Bezier-f lags

draw-cb(O),
f i 11-cb (1) ,
close-cb(2)

cubic-Bezier-path

[0] IMPLICIT BIT STRING {

DEFAULT { draw-cb },
[1] IMPLICIT CubicBezierPath
}

Figure E-21 illustrates the syntax used to create an arc construct.

Figure E-21 Arc Syntax Diagram

Arc
arc-flags

draw-arc (0),
fill-arc{l),
pie-arc (2) ,
close-arc(3)

arc-path

· · = SEQUENCE {
[0] IMPLICIT BIT STRING {

DEFAULT { draw-arc },
[1] IMPLICIT ArcPath
}

Figure E-22 illustrates the syntax used to create a fill area set construct.

Figure E-22 Fill Area Set Syntax Diagram

FillAreaSet SEQUENCE

E-12

fas-flags
co-draw-border(O),
co-fill-area(l) }

fas-path

[0] IMPLICIT BIT STRING {

DEFAULT { co-draw-border },
[1] IMPLICIT CompositePath
}

Figure E-23 illustrates the syntax used to create a line attributes
construct.

Figure E-23 Line Attributes Syntax Diagram

LineAttributes : := SEQUENCE {

line-width [OJ Size
line-style [l] IMPLICIT
line-pattern-size [2] Size
line-mask-pattern [3] IMPLICIT
line-end-start [4 J IMPLICIT
line-end-finish [5] IMPLICIT
line-end-size [6] Size
line-join [7 J IMPLICIT
line-miter-limit [8] IMPLICIT
line-i~terior-pattern [9] IMPLICIT

}

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

OPTIONAL,
LineStyleNumber OPTIONAL,

OPTIONAL,
PatternNumber OPTIONAL,
LineEndNumber OPTIONAL,
LineEndNumber OPTIONAL,

OPTIONAL,
LineJoin OPTIONAL,
Ratio OPTIONAL,
PatternNumber OPTIONAL

Figure E-24 illustrates the syntax used to create a line style number
construct.

Figure E-24 Line Style Number Syntax Diagram

LineStyleNumber
solid (1),
dash(2),
dot (3) f

dash-dot(4)

INTEGER {

Figure E-25 illustrates the syntax used to create a line end number
construct.

Figure E-25 Line End Number Syntax Diagram

LineEndNumber ··=INTEGER {
butt-line-end(l),
round-line-end(2),
square-line-end(3),
arrow (4)

E-13

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-26 illustrates the syntax used to create a line join construct.

Figure E-26 Line Join Syntax Diagram

LineJoin ::=INTEGER {
mitered-line-join(l),
rounded-line-join(2),
beveled-line-join(3)

Figure E-27 illustrates the syntax used to create a marker attributes
construct.

Figure E-27 Marker Attributes Syntax Diagram

MarkerAttributes
marker-style
marker-mask-pattern
marker-size

SEQUENCE {
[0] IMPLICIT
[1] IMPLICIT
[2] Size
}

MarkerNumber OPTIONAL,
PatternNumber OPTIONAL,

OPTIONAL

Figure E-28 illustrates the syntax used to create a marker number
construct.

Figure E-28 Marker Number Syntax Diagram

MarkerNumber : := INTEGER {

E-14

marker-dot(l),
marker-plus-sign(2),
marker-asterisk(3),
marker-circle(4),
marker-diagonal-cross(5)
}

Figure E-29 illustrates the syntax used to create an image primitive
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-29 Image Primitive Syntax Diagram

· · = CHOICE { ImagePrimitive
image-content [APPLICATION 17] IMPLICIT ImageDataDescriptor

}

ImageDataDescriptor · ·= SEQUENCE OF ImageDataUnit

ImageDataUnit · ·= SEQUENCE {
image-coding-attrs
image-comp-plane-data

[0] IMPLICIT ImageCodingAttrs,
[l] IMPLICIT OCTET STRING
}

Figure E-30 illustrates the syntax used to create an image coding
attributes construct.

Figure E-30 Image Coding Attributes Syntax Diagram

ImageCodingAttrs : := SEQUENCE {
pvt-img-coding-attrs
pixels-per-line
number-of-lines
compression-type

[0] IMPLICIT NamedValueList OPTIONAL,
[l] IMPLICIT INTEGER,
[2] IMPLICIT INTEGER,
[3] IMPLICIT INTEGER {

private-compression
pcm-compression
g3ld-compression
g32d-compression
g42d-compression

(1)'
(2)'
(3)'
(4)'
(5)

(raw bitmap)
CCITT Group 3 1 dimensional
CCITT Group 3 2 dimensional
CCITT Group 4 2 dimensional

} DEFAULT pcm-compression,

compression-parameters [4] IMPLICIT NamedValueList OPTIONAL,
data-offset [5] IMPLICIT INTEGER DEFAULT 0,
pixel-stride [6] IMPLICIT INTEGER OPTIONAL,
scanline-stride [7] IMPLICIT INTEGER OPTIONAL,
pixel-order [8] IMPLICIT INTEGER

standard-pixel-order (1),
reverse-pixel-order (2) } DEFAULT standard-pixel-order,

planebits-per-pixel [9] IMPLICIT INTEGER OPTIONAL
}

Figure E-31 illustrates the syntax used to create an image attributes
construct.

E-15

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-31 Image Attributes Syntax Diagram

ImageAttributes
img-present-attrs
img-comp-space-attrs

SEQUENCE {
[OJ IMPLICIT ImgPresentAttrs OPTIONAL,
[1] IMPLICIT ImgCmptSpcAttrs OPTIONAL
}

ImgPresentAttrs .. - SEQUENCE {

E-16

prvt-img-present-attrs [0] IMPLICIT NamedValueList OPTIONAL,
pixel-path
line-progression
pixel-aspect-ratio

[1] IMPLICIT INTEGER OPTIONAL,
[2] IMPLICIT INTEGER OPTIONAL,
[3] IMPLICIT SEQUENCE

pxl-path-pxl-distance
line-prog-pxl-distance

[0] IMPLICIT INTEGER
[1] IMPLICIT INTEGER
}

brightness-polarity [4] IMPLICIT INTEGER {
zero-maximum-intensity(l),
zero-minimum-intensity(2)

grid-type [5] IMPLICIT INTEGER {
rectangular-grid(l),
hex-even-indent(2),
hex-odd-indent(3) } OPTIONAL,

DEFAULT 1,
DEFAULT 1
OPTIONAL,

OPTIONAL,

timing-descriptor [6] IMPLICIT Binary-Relative-Time OPTIONAL,
spectral-comp-mapping [7] IMPLICIT INTEGER {

privately-mapped (1),
monochrome-mapped (2),
general-multispectral (3),
lut-mapped (4),
rgb-mapped (5),
cmy-mapped (6) ,
yuv-mapped (7),
hsv-mapped (8),
hls-mapped (9),
yiq-mapped (10) OPTIONAL,

lookup-tables [8] ImgLutData OPTIONAL,
component-wlength-info [9] CHOICE {

application-wlen-info [0] IMPLICIT SEQUENCE
wavelength-measure [1] IMPLICIT SEQUENCE
wavelength-band-id [2] IMPLICIT SEQUENCE

} OPTIONAL

OF OCTET STRING,
OF INTEGER,
OF Latinl-String

Figure E-32 illustrates the syntax used to create an image lookup table
data construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-32 Image Lookup Table Data Syntax Diagram

ImgLutData
application-pvt-luts
rgb-lut-entries

RgbLutEntry
lut-index
red-value
green-value
blue-value

• • = CHOICE {
[0] IMPLICIT NamedValueList,
[1] IMPLICIT SEQUENCE OF RgbLutEntry
}

• • = SEQUENCE {
[0] IMPLICIT INTEGER,
[1] IMPLICIT Colorintensity,
[2] IMPLICIT Colorintensity,
[3] IMPLICIT Colorintensity
}

Figure E-33 illustrates the syntax used to create an image component
space attributes construct.

Figure E-33 Image Component Space Attributes Syntax Diagram

ImgCmptSpcAttrs : := SEQUENCE {
comp-space-org [0] IMPLICIT INTEGER {

full-compaction(l),
partial-expansion(2),
full-expansion(3) }

data-planes-per-pixel
data-plane-signif

lsb-msb (1),
msb-lsb (2)

number-of-components
bits-per-component-1st

[l]

[2]

[3]
[4]
}

IMPLICIT INTEGER
IMPLICIT INTEGER

IMPLICIT INTEGER,
IMPLICIT SEQUENCE OF INTEGER

OPTIONAL,

OPTIONAL,

OPTIONAL,

Figure E-34 illustrates the syntax used to create a restricted content
construct.

Figure E-34 Restricted Content Syntax Diagram

RestrictedContent ::=CHOICE {
pdl-content [APPLICATION 18] IMPLICIT EXTERNAL,
private-content [APPLICATION 30] IMPLICIT NamedValue

}

Figure E-35 illustrates the syntax used to create a content reference
primitive construct.

E-17

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-35 Content Reference Primitive Syntax Diagram

ContentReferencePrimitive .. - CHOICE {
content-ref [APPLICATION 15] IMPLICIT ContentReference

}

Figure E-36 illustrates the syntax used to create a content reference
construct.

Figure E-36 Content Reference Syntax Diagram

ContentRef erence
content-transform
content-reference

SEQUENCE {
[0] IMPLICIT Transformation OPTIONAL,
[l] IMPLICIT ContentDefnLabel
}

Figure E-37 illustrates the syntax used to create a bounding box
construct.

Figure E-37 Bounding Box Syntax Diagram

BoundingBox
lower-left
upper-right

• • = SEQUENCE {
[0] IMPLICIT Position,
[l] IMPLICIT Position
}

Figure E-38 illustrates the syntax used to create a color construct.

Figure E-38 Color Syntax Diagram

Color
rgb-color
transparency

E-18

· ·= CHOICE
[0] IMPLICIT RGB,
[l] IMPLICIT NULL
}

Figure E-39 illustrates the syntax used to create a red/green/blue
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-39 Red/Green/Blue Syntax Diagram

RGB
red-intensity
green-intensity
blue-intensity

Colorintensity

• · = SEQUENCE {
[0] IMPLICIT Colorintensity DEFAULT 0.0,
[1] IMPLICIT Colorintensity DEFAULT 0.0,
[2] IMPLICIT Colorintensity DEFAULT 0.0
}

: := FLOATING-POINT

Figure E-40 illustrates the syntax used to create a compute definition
construct.

Figure E-40 Compute Definition Syntax Diagram

ComputeDefn
copy-content
remote-content
variable-reference
cross-reference
function-link

· ·= CHOICE {
[0] IMPLICIT Reference,
[1] IMPLICIT Reference,
[2] IMPLICIT VariableLabel,
[3] IMPLICIT CrossReference,
[4] IMPLICIT FunctionLink
}

Figure E-41 illustrates the syntax used to create a cross-reference
construct.

Figure E-41 Cross Reference Syntax Diagram

CrossReference
xref-seg-label
xref-var-label

• · = SEQUENCE {
[0] IMPLICIT Reference,
[1] IMPLICIT VariableLabel
}

Figure E-42 illustrates the syntax used to create an escapement
construct.

E-19

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-42 Escapement Syntax Diagram

Escapement
escapement-ratio
escapement-constant

: : = SEQUENCE {
[OJ IMPLICIT Ratio OPTIONAL,
[lJ Measurement OPTIONAL
}

Figure E-43 illustrates the syntax used to create an external reference
construct.

Figure E-43 External Reference Syntax Diagram

ExternalRef erence
reference-data-type
reference-descriptor
reference-label
reference-label-type
reference-control

copy-reference(l),
no-copy-reference(2)
}

SEQUENCE {
[0] IMPLICIT OBJECT IDENTIFIER,
[lJ IMPLICIT Text-String,
[2] IMPLICIT Character-String,
[3] IMPLICIT StorageSystemTag,
[4J IMPLICIT INTEGER {

DEFAULT copy-reference

Figure E-44 illustrates the syntax used to create a font definition
construct.

Figure E-44 Font Definition Syntax Diagram

FontDefn

E-20

font-number
font-identifier
font-private

• · = SEQUENCE {
[OJ IMPLICIT FontNumber,
[1] IMPLICIT Latinl-String,
[2] IMPLICIT NamedValueList OPTIONAL
}

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-45 illustrates the syntax used to create a format construct.

Figure E-45 Format Syntax Diagram

Format ··=INTEGER { flush-path-begin(l), center-of-path(2),
flush-path-end(3), flush-path-both(4)
}

Figure E-46 illustrates the syntax used to create a frame parameters
construct.

Figure E-46 Frame Parameters Syntax Diagram

FrameParameters ::=SEQUENCE {
frame-flags [0] IMPLICIT BIT STRING {

flow-around (0),
frame-border(l),
frame-background-fill(2) OPTIONAL,

frame-bounding-box [l] IMPLICIT BoundingBox,
frame-outline [2] IMPLICIT CompositePath OPTIONAL,
frame-clipping [3] IMPLICIT CompositePath OPTIONAL,
frame-position CHOICE {

fp-fixed [4] IMPLICIT Position,
fp-inline [5] IMPLICIT InlineFrameParams,
fp-galley [6] IMPLICIT GalleyFrameParams,
fp-margin [7] IMPLICIT MarginFrameParams

} I

frame-content-trans [8] IMPLICIT Transformation OPTIONAL
}

Figure E-4 7 illustrates the syntax used to create an inline frame
parameters construct.

Figure E-47 lnline Frame Parameters Syntax Diagram

InlineFrameParams
ifp-base-off set

: : = SEQUENCE {
[0] Size DEFAULT { integer-constant 0 }
}

Figure E-48 illustrates the syntax used to create a galley frame
parameters construct.

E-21

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-48 Galley Frame Parameters Syntax Diagram

GalleyFrameParams
gfp-vertical

gfp-horizontal

· · = SEQUENCE {
[0] IMPLICIT GalleyVerticalPosition

DEFAULT below-current-line,
[l] IMPLICIT Format DEFAULT center-of-path
}

Figure E-49 illustrates the syntax used to create a galley vertical position
construct.

Figure E-49 Galley Vertical Position Syntax Diagram

GalleyVerticalPosition ::=INTEGER
below-current-line(l),
bottom-of-galley(2),
top-of-galley(3)
}

Figure E-50 illustrates the syntax used to create a margin frame
parameters construct.

Figure E-50 Margin Frame Parameters Syntax Diagram

MarginFrameParams
mfp-base-off set
mfp-near-off set
mfp-horizontal

E-22

: : = SEQUENCE {
[0] Size DEFAULT { integer-constant 0 },
[l] Size DEFAULT { integer-constant 0 },
[2] IMPLICIT MarginHorizontalPosition

DEFAULT side-closest-edge

Figure E-51 illustrates the syntax used to create a margin horizontal
position construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-51 Margin Horizontal Position Syntax Diagram

MarginHorizontalPosition ::=INTEGER {
side-closest-edge(l),
side-furthest-edge(2),
left-of-galleys(3),
right-of-galleys(4)
}

Figure E-52 illustrates the syntax used to create a function link
construct.

Figure E-52 Function Link Syntax Diagram

FunctionLink
function-name
function-parameters

SEQUENCE
[0] IMPLICIT ASCIIString,
[l] IMPLICIT NamedValueList
}

Figure E-53 illustrates the syntax used to create an external reference
index construct.

Figure E-53 External Reference Index Syntax Diagram

ExternalRefindex ::=INTEGER

Figure E-54 illustrates the syntax used to create a language index
construct.

Figure E-54 Language Index Syntax Diagram

Languageindex ::=INTEGER

Figure E-55 illustrates the syntax used to create a content definition
construct.

E-23

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-55 Content Definition Syntax Diagram

ContentDefn
content-label
content-external
content-value
content-private

: : = SEQUENCE {
[OJ IMPLICIT ContentDefnLabel,
[1] IMPLICIT Reference OPTIONAL,
[2] IMPLICIT Content OPTIONAL,
[3] IMPLICIT NamedValueList OPTIONAL
}

Figure E-56 illustrates the syntax used to create a label construct.

Figure E-56 Label Syntax Diagram

Label : := ASCIIString

Figure E-57 illustrates the syntax used to create a label types construct.

Figure E-57 Label Types Syntax Diagram

VariableLabel

SegmentLabel

TypeDefnLabel

ContentDefnLabel

GalleyLabel

PageDescLabel

PageLayoutLabel

.. Label

: := Label

: := Label

. ·= Label

: := Label

.. - Label

. ·= Label

Figure E-58 illustrates the syntax used to create an ASCII string
construct.

Figure E-58 ASCII String Syntax Diagram

ASCIIString ··= Latinl-String

E-24

Figure E-59 illustrates the syntax used to create a variable label
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-59 Variable Label Syntax Diagram

VariableLabel : : = Label -- used to refer to variable by name

Figure E-60 illustrates the syntax used to create a legend units construct.

Figure E-60 Legend Units Syntax Diagram

LegendUnits
legend-unit
legend-unit-name

.. - SEQUENCE {
[0] IMPLICIT Ratio,
[l] IMPLICIT Text-String
}

Figure E-61 illustrates the syntax used to create an angle construct.

Figure E-61 Angle Syntax Diagram

Angle ::=FLOATING-POINT

Figure E-62 illustrates the syntax used to create an AngleRef construct.

Figure E-62 AngleRef Syntax Diagram

AngleRef
angle-constant
angle-variable

• · = CHOICE {
[0] IMPLICIT Angle,
[l] IMPLICIT VariableLabel
}

Figure E-63 illustrates the syntax used to create a measurement
construct.

Figure E-63 Measurement Syntax Diagram

Measurement
integer-constant
variable-measure

: := CHOICE {
[0] IMPLICIT INTEGER,
[l] IMPLICIT VariableLabel
}

E-25

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-64 illustrates the syntax used to create a position construct.

Figure E-64 Position Syntax Diagram

Position
x-coordinate
y-coordinate

· · = SEQUENCE {
[0] XCoordinate,
[l] YCoordinate
}

Figure E-65 illustrates the syntax used to create a ratio construct.

Figure E-65 Ratio Syntax Diagram

Ratio
numerator
denominator

• • = SEQUENCE {
[0] IMPLICIT INTEGER DEFAULT 1,
[l] IMPLICIT INTEGER DEFAULT 100
}

Figure E-66 illustrates the syntax used to create a right angle construct.

Figure E-66 Right Angle Syntax Diagram

RightAngle ::=INTEGER { right(l),
left(2),
up(3),
down (4)

Figure E-67 illustrates the syntax used to create a size construct.

Figure E-67 Size Syntax Diagram

Size

E-26

: : = Measurement

Figure E-68 illustrates the syntax used to create an x-coordinate
construct.

Figure E-68 X-Coordinate Syntax Diagram

XCoordinate : := Measurement

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-69 illustrates the syntax used to create a y-coordinate construct.

Figure E-69 Y-Coordinate Syntax Diagram

YCoordinate : : = Measurement

Figure E-70 illustrates the syntax used to create a measurement units
construct.

Figure E-70 Measurement Units Syntax Diagram

Measurement Units
units-per-measurement
unit-name

SEQUENCE {
[0] IMPLICIT INTEGER,
[1] IMPLICIT Text-String
}

Figure E-71 illustrates the syntax used to create a named value
construct.

Figure E-71 Named Value Syntax Diagram

NamedValue
value-name
value-data

: : = SEQUENCE {
NamedValueTag,
ValueData
}

E-27

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-72 illustrates the syntax used to create a value data construct.

Figure E-72 Value Data Syntax Diagram

ValueData
value-boolean
value-integer
value-text
value-general
value-reference
value-list
value-external

.. CHOICE {

[0] IMPLICIT BOOLEAN,
[1] IMPLICIT INTEGER,
[2] IMPLICIT Text-String,
[3] IMPLICIT OCTET STRING,
[4] IMPLICIT Reference,
[5] IMPLICIT SEQUENCE OF ValueData,
[6] IMPLICIT EXTERNAL
}

Figure E-73 illustrates the syntax used to create a named value list
construct.

Figure E-73 Named Value List Syntax Diagram

NamedValueList ::=SEQUENCE OF NamedValue

Figure E-7 4 illustrates the syntax used to create a font number construct.

Figure E-74 Font Number Syntax Diagram

FontNumber : := INTEGER

Figure E-75 illustrates the syntax used to create a marker number
construct.

Figure E-75 Marker Number Syntax Diagram

MarkerNumber

E-28

: := INTEGER

Figure E-76 illustrates the syntax used to create a path number
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-76 Path Number Syntax Diagram

PathNumber : := INTEGER

Figure E-77 illustrates the syntax used to create a pattern number
construct.

Figure E-77 Pattern Number Syntax Diagram

PatternNumber : := INTEGER

Figure E-78 illustrates the syntax used to create a path definition
construct.

Figure E-78 Path Definition Syntax Diagram

PathDefn
path-number
path-description
path-private

SEQUENCE
[0) IMPLICIT PathNumber,
[l) IMPLICIT CompositePath,
[2) IMPLICIT NamedValueList
}

OPTIONAL

Figure E-79 illustrates the syntax used to create a composite path
construct.

Figure E-79 Composite Path Syntax Diagram

CompositePath
line-path-component
cubic-path-component
arc-path-component
path-reference

· ·= SEQUENCE OF CHOICE {
[0] IMPLICIT PolyLinePath,
[l) IMPLICIT CubicBezierPath,
[2] IMPLICIT ArcPath,
[3) IMPLICIT PathNumber
}

E-29

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-80 illustrates the syntax used to create an arc path construct.

Figure E-80 Arc Path Syntax Diagram

ArcPath : := SEQUENCE {

arc-center-x
arc-center-y
arc-radius-x
arc-radius-delta-y
arc-start

arc-extent

arc-rotation

[0]
[1]
[2]
[3]
[4]

[5]

[6]

XCoordinate,
YCoordinate,
Size,
Size DEFAULT { integer-constant 0 } I

AngleRef
DEFAULT { angle-constant 0.0 } I

AngleRef
DEFAULT { angle-constant 360.0 } '
AngleRef
DEFAULT { angle-constant 0.0 }

Figure E-81 illustrates the syntax used to create a cubic Bezier path
construct.

Figure E-81 Cubic Bezier Path Syntax Diagram

CubicBezierPath ::=SEQUENCE OF Measurement

Figure E-82 illustrates the syntax used to create a line definition
construct.

Figure E-82 Line Definition Syntax Diagram

LineDefn SEQUENCE {

E-30

line-style-number
line-style-pattern
line-style-private

[0] IMPLICIT LineStyleNumber,
[1] IMPLICIT SEQUENCE OF INTEGER OPTIONAL,
[2] IMPLICIT NamedValueList OPTIONAL
}

Figure E-83 illustrates the syntax used to create a polyline path
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-83 Polyline Path Syntax Diagram

PolyLinePath ::=SEQUENCE OF Measurement

Figure E-84 illustrates the syntax used to create a pattern definition
construct.

Figure E-84 Pattern Definition Syntax Diagram

PatternDefn
pattern-number
pattern-defn

solid-color
std-pattern
raster-pattern

pattern-private

SEQUENCE {
[0] IMPLICIT PatternNumber,
CHOICE {

[1] Color,
[2] IMPLICIT StandardPattern,
[3] IMPLICIT ImageDataUnit
} ,

[4] IMPLICIT NamedValueList OPTIONAL
}

Figure E-85 illustrates the syntax used to create a standard pattern
construct.

Figure E-85 Standard Pattern Syntax Diagram

StandardPattern
std-pattern-number
pattern-colors

: : = SEQUENCE {
[0] IMPLICIT INTEGER,
[1] IMPLICIT SEQUENCE OF PatternNumber

DEFAULT {INTEGER 1, INTEGER 2}

Figure E-86 illustrates the syntax used to create a reference construct.

Figure E-86 Reference Syntax Diagram

Reference
ref-target
ref-x-index

SEQUENCE
[0] IMPLICIT SegmentLabel OPTIONAL,
[1] IMPLICIT ExternalRefindex OPTIONAL
}

Figure E-87 illustrates the syntax used to create a segment attributes
construct.

E-31

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-87 Segment Attributes Syntax Diagram

SegmentAttributes . ·= SEQUENCE {

private-attributes [0] IMPLICIT NamedValueList
content-streams [1] IMPLICIT SEQUENCE OF StreamTag
content-category [2] IMPLICIT CategoryTag
segment-tags [3] IMPLICIT SEQUENCE OF Segment Tag
segment-bindings [4] IMPLICIT SEQUENCE OF Binding
computed-content [5] ComputeDefn
structure-description [6] StructureDefn
language [7] IMPLICIT Languageindex
legend-units [8] IMPLICIT LegendUnits
measurement-units [9] IMPLICIT Measurement Units
alt-presentation [10] IMPLICIT Text-String
layout-attributes [11] Text Layout
font-definitions [12] IMPLICIT SEQUENCE OF FontDefn
pattern-definitions [13] IMPLICIT SEQUENCE OF PatternDefn
path-definitions [14] IMPLICIT SEQUENCE OF PathDefn
line-style-definitions [15] IMPLICIT SEQUENCE OF LineDefn
content-defns [16] IMPLICIT SEQUENCE OF ContentDefn
segment-type-defns [17] IMPLICIT SEQUENCE OF SegTypeDefn
text-attributes [18] IMPLICIT TextAttributes
line-attributes [19] IMPLICIT LineAttributes
marker-attributes [20] IMPLICIT MarkerAttributes
galley-attributes [21] GalleyAttributes
image-attributes [22] IMPLICIT ImageAttributes
frame-parameters [23] IMPLICIT FrameParameters

}

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL, -- ANY
OPTIONAL,
OPTIONAL

Figure E-88 illustrates the syntax used to create a segment type definition
construct.

Figure E-88 Segment Type Definition Syntax Diagram

SegTypeDefn
type-label
type-parent
type-attributes
type-private

E-32

SEQUENCE {
[0] IMPLICIT TypeDefnLabel,
[1] IMPLICIT TypeDefnLabel OPTIONAL,
[2] IMPLICIT SegmentAttributes OPTIONAL,
[3] IMPLICIT NamedValueList OPTIONAL
}

Figure E-89 illustrates the syntax used to create a structure definition
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-89 Structure Definition Syntax Diagram

StructureDefn ··=CHOICE
sequence-structure [0] IMPLICIT SEQUENCE OF OccurrenceDefn,
set-structure [l] IMPLICIT SEQUENCE OF OccurrenceDefn,
choice-structure [2] IMPLICIT SEQUENCE OF OccurrenceDefn

}

Figure E-90 illustrates the syntax used to create an occurrence definition
construct.

Figure E-90 Occurrence Definition Syntax Diagram

OccurrenceDefn
required-element
optional-element
repeat-element
opt-repeat-element

· · = CHOICE {
[0] StructureElement,
[1] StructureElement,
[2] StructureElement,
[3] StructureElement
}

Figure E-91 illustrates the syntax used to create a structure element
construct.

Figure E-91 Structure Element Syntax Diagram

StructureElement
expression-element
referenced-type

CHOICE {
StructureDefn,
TypeDefnLabel
}

Figure E-92 illustrates the syntax used to create a tag construct.

Figure E-92 Tag Syntax Diagram

Tag · · = ASCIIString

E-33

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-93 illustrates the syntax used to create a category tag construct.

Figure E-93 Category Tag Syntax Diagram

CategoryTag : := Tag

Figure E-94 illustrates the syntax used to create a conformance tag
construct.

Figure E-94 Conformance Tag Syntax Diagram

Conf ormanceTag : := Tag

Figure E-95 illustrates the syntax used to create a named value tag
construct.

Figure E-95 Named Value Tag Syntax Diagram

NamedValueTag : := Tag

Figure E-96 illustrates the syntax used to create a segment tag construct.

Figure E-96 Segment Tag Syntax Diagram

Segment Tag : := Tag

Figure E-97 illustrates the syntax used to create a storage system tag
construct.

Figure E-97 Storage System Tag Syntax Diagram

StorageSystemTag : := Tag

E-34

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-98 illustrates the syntax used to create a stream tag construct.

Figure E-98 Stream Tag Syntax Diagram

StrearnTag : := Tag

Figure E-99 illustrates the syntax used to create a transformation
construct.

Figure E-99 Transformation Syntax Diagram

Transformation
x-scale
y-scale
x-translation
y-translation
xy-rotate
xy-skew
transform-2x3
transform-3x3

SEQUENCE OF CHOICE {
[0] IMPLICIT FLOATING-POINT,
[l] IMPLICIT FLOATING-POINT,
[2] IMPLICIT FLOATING-POINT,
[3] IMPLICIT FLOATING-POINT,
[4] IMPLICIT Angle,
[5] IMPLICIT Angle,
[6] IMPLICIT SEQUENCE OF FLOATING-POINT,
[7] IMPLICIT SEQUENCE OF FLOATING-POINT
}

Figure E-100 illustrates the syntax used to create a variable binding
construct.

Figure E-100 Variable Binding Syntax Diagram

Binding
variable-name
variable-value

counter-variable
computed-variable
list-variable

SEQUENCE {
[0] IMPLICIT VariableLabel,
CHOICE {

[l] IMPLICIT CounterDefn,
[2] IMPLICIT StringExpression,
[3] IMPLICIT RecordList
}

Figure E-101 illustrates the syntax used to create a counter definition
construct.

E-35

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-101 Counter Definition Syntax Diagram

CounterDefn ::=SEQUENCE {
counter-trigger CHOICE {

counts-tagged-segments [0] IMPLICIT SegmentTag,
counts-layout-objs [1] IMPLICIT LayoutObjectType

counter-init
counter-style
counter-type

military(l),
office(2),
page-relative(3)

} OPTIONAL,
[2] Expression DEFAULT { exp-integer 1 },
[3] IMPLICIT SEQUENCE OF CounterStyle OPTIONAL,
[4] IMPLICIT INTEGER {

DEFAULT office

Figure E-102 illustrates the syntax used to create a layout object type
construct.

Figure E-102 Layout Object Type Syntax Diagram

LayoutObjectType ··=INTEGER { document-layout-object(l),
page-set-layout-object(2),
page-layout-object(3),
frame-layout-object(4),
block-layout-object(S),
line-layout-object(6)
}

Figure E-103 illustrates the syntax used to create an expression
construct.

Figure E-103 Expression Syntax Diagram

Expression
exp-integer
exp-variable

E-36

.. - CHOICE {
[0] IMPLICIT INTEGER,
[1] IMPLICIT VariableLabel
}

Figure E-104 illustrates the syntax used to create a counter style
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-104 Counter Style Syntax Diagram

CounterStyle ::=CHOICE {
number-style [0] IMPLICIT INTEGER {

arabic(l), l-roman(2),
u-roman(3), l-latin(4),
u-latin(5), w-arabic(6),
wl-roman(7), wu-roman(8),
wl-latin(9), wu-latin(lO),
w-katakana-50(11),
w-katakana-iroha(l2),
hebrew (13) } '

bullet-style
style-separator

[l] IMPLICIT SEQUENCE OF Character-String,
[2] IMPLICIT Character-String
}

Figure E-105 illustrates the syntax used to create a string expression
construct.

Figure E-105 String Expression Syntax Diagram

StringExpression
text-element
variable-ref-element

SEQUENCE OF CHOICE {
[0] IMPLICIT Character-String,
[l] IMPLICIT VariableLabel
}

Figure E-106 illustrates the syntax used to create a record list construct.

Figure E-106 Record List Syntax Diagram

RecordList SEQUENCE OF RecordDefn

Figure E-107 illustrates the syntax used to create a record definition
construct.

E-37

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-107 Record Definition Syntax Diagram

RecordDefn
record-type
record-tag
record-contents

: : = SEQUENCE {
[0] IMPLICIT TypeDefnLabel,
[1] IMPLICIT SegmentTag,
[2] IMPLICIT SEQUENCE OF VariableLabel
}

Figure E-108 illustrates the syntax used to create a generic layout
construct.

Figure E-108 Generic Layout Syntax Diagram

GenericLayout ··=
gl-private-data
gl-page-descriptions

[APPLICATION 31) IMPLICIT SEQUENCE {
[0] IMPLICIT NamedValueList OPTIONAL,
[1] IMPLICIT SEQUENCE OF PageDescription
}

Figure E-109 illustrates the syntax used to create a page description
construct.

Figure E-109 Page Description Syntax Diagram

PageDescription
pd-label
pd-private-data
pd-desc

E-38

page-set-desc
page-layout

SEQUENCE {
[0] IMPLICIT PageDescLabel,
[1] IMPLICIT NamedValueList OPTIONAL,
CHOICE {

[2] IMPLICIT PageSet,
[3] IMPLICIT PageLayout
}

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-110 illustrates the syntax used to create a page set construct.

Figure E-110 Page Set Syntax Diagram

Page Set

PageSelect
page-side-criteria

left-page(l),
right-page(2),
either-page(3)

selected-page-layout
select-by-label
select-by-defn

··=SEQUENCE OF PageSelect

· · = SEQUENCE {
[0] IMPLICIT INTEGER {

} DEFAULT either-page,
CHOICE {

[1] IMPLICIT PageLayoutLabel,
[2] IMPLICIT PageLayout

Figure E-111 illustrates the syntax used to create a page layout
construct.

Figure E-111 Page Layout Syntax Diagram

PageLayout
page-layout-id
page-size
page-orientation

portrait(l),
landscape(2)

page-prototype
page-content

PageFrame

SEQUENCE {
[0] IMPLICIT PageLayoutLabel,
[1] IMPLICIT GenSize,
[2] IMPLICIT INTEGER {

DEFAULT portrait,
[3] IMPLICIT PageLayoutLabel OPTIONAL,
[4] IMPLICIT PageFrame OPTIONAL
}

Content -- Must be a frame

Figure E-112 illustrates the syntax used to create a layout primitive
construct.

Figure E-112 Layout Primitive Syntax Diagram

LayoutPrimitive : := [APPLICATION 35] ANY

Figure E-113 illustrates the syntax used to create a layout galley
construct.

E-39

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-113 Layout Galley Syntax Diagram

LayoutGalley ··= [APPLICATION 36] IMPLICIT SEQUENCE
galley-id [0] IMPLICIT GalleyLabel,
galley-bounding-box [1] IMPLICIT BoundingBox,
galley-outline [2] IMPLICIT CompositePath
galley-flags [3] IMPLICIT BIT STRING {

galley-vertical-align(O),
galley-border(l),
galley-autoconnect(2),
galley-background-fill(3)

OPTIONAL,

}

galley-streams
galley-successor

generic-galley
specific-galley
no-successor-galley

OPTIONAL,
[4] IMPLICIT SEQUENCE OF StreamTag OPTIONAL,
CHOICE {

[5] IMPLICIT GalleyLabel,
[6] IMPLICIT GalleyLabel,
[7] IMPLICIT NULL
}

Figure E-114 illustrates the syntax used to create a galley attributes
construct.

Figure E-114 Galley Attributes Syntax Diagram

GalleyAttributes ··= [APPLICATION 37] IMPLICIT SEQUENCE
[0] Measurement galley-top-margin

galley-left-margin
galley-right-margin
galley-bottom-margin

[1] Measurement
[2] Measurement
[3] Measurement
}

OPTIONAL,
OPTIONAL,
OPTIONAL,
OPTIONAL

Figure E-115 illustrates the syntax used to create a specific layout
construct.

Figure E-115 Specific Layout Syntax Diagram

SpecificLayout .. - [APPLICATION 32] IMPLICIT SEQUENCE OF CHOICE {
[0] IMPLICIT PageDescription,

E-40

specific-page
referenced-page [l] IMPLICIT PageDescLabel

}

Figure E-116 illustrates the syntax used to create a wrap attributes
construct.

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-116 Wrap Attributes Syntax Diagram

WrapAttributes ··= [APPLICATION 33] IMPLICIT SEQUENCE
wrap-format [0] IMPLICIT Format OPTIONAL,
quad-format [1] IMPLICIT Format OPTIONAL,
hyphenation-flags [2] IMPLICIT BIT STRING {

hyphenation-allowed(O),
paragraph-end(l),
galley-end (2),
page-end(3),
capitalized-word(4)

maximum-hyph-lines
maximum-orphan-size
maximum-widow-size

OPTIONAL,
[3] IMPLICIT INT~GER OPTIONAL,
[4] IMPLICIT INTEGER OPTIONAL,
[5] IMPLICIT INTEGER OPTIONAL
}

Figure E-117 illustrates the syntax used to create a layout attributes
construct.

Figure E-117 Layout Attributes Syntax Diagram

LayoutAttributes . ·= [APPLICATION 34] IMPLICIT SEQUENCE {

initial-directive [0] IMPLICIT Directive OPTIONAL,
galley-select
break-before
break-within
break-after
initial-indent
left-indent
right-indent
space-before
space-after
leading
tab-stops

[1] IMPLICIT GalleyLabel OPTIONAL,
[2] IMPLICIT BreakCriteria OPTIONAL,
[3] IMPLICIT BreakCriteria OPTIONAL,
[4] IMPLICIT BreakCriteria OPTIONAL,
[5] Measurement OPTIONAL,
[6] Measurement OPTIONAL,
[7] Measurement OPTIONAL,
[8] Measurement OPTIONAL,
[9] Measurement OPTIONAL,

[10] IMPLICIT Escapement OPTIONAL,
[11] IMPLICIT TabStopList OPTIONAL

}

Figure E-118 illustrates the syntax used to create a break criteria
construct.

E-41

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-118 Break Criteria Syntax Diagram

BreakCriteria
break-always(l),
break-never(2),
break-if-needed(3)

INTEGER {

Figure E-119 illustrates the syntax used to create a general measure
construct.

Figure E-119 General Measure Syntax Diagram

GenMeasure
nominal-measure
stretch-measure
shrink-measure

.. SEQUENCE {

[OJ Measurement DEFAULT integer-constant 0 } ,
[lJ Measurement DEFAULT integer-constant 0 } ,
[2J Measurement DEFAULT integer-constant 0 }

}

Figure E-120 illustrates the syntax used to create a general size
construct.

Figure E-120 General Size Syntax Diagram

GenSize
x-size
y-size

SEQUENCE {
[OJ IMPLICIT GenMeasure,
[lJ IMPLICIT GenMeasure
}

Figure E-121 illustrates the syntax used to create a tab stop list
construct.

Figure E-121 Tab Stop List Syntax Diagram

TabStopList ::=SEQUENCE OF TabStop

E-42

DDIF Syntax Diagrams
E.4 DDIF Syntax Diagrams

Figure E-122 illustrates the syntax used to create a tab stop construct.

Figure E-122 Tab Stop Syntax Diagram

TabStop
horizontal-position
tab-stop-type

left-tab (1),
center-tab(2),
right-tab(3),
decimal-tab(4)

tab-stop-leader

· ·= SEQUENCE
[0] Measurement,
[l] IMPLICIT INTEGER

DEFAULT left-tab,
[2] IMPLICIT Character-String OPTIONAL
}

E-43

F DDIF Fill Patterns

This appendix describes the various fill patterns supported by the CDA
Toolkit. These fill patterns correspond to those used by the Graphics
Kernel System (GKS). They are valid for the following aggregate items:

• The text mask pattern item (DDIF$_SGA_TXT_MASK_PATTERN) in
the DDIF$_SGA aggregate

• The line mask pattern item (DDIF$_SGA_LIN_MASK_PATTERN) in
the DDIF$_SGA aggregate

• The line interior pattern item (DDIF$_SGA_LIN_INTERIOR_
PATTERN) in the DDIF$_SGA aggregate

• The marker mask pattern item (DDIF$_SGA_MKR_MASK_PATTERN)
in the DDIF$_SGA aggregate

• The pattern number item (DDIF$_PTD_NUMBER) in the DDIF$_PTD
aggregate

• The pattern colors item (DDIF$_PTD_PAT_NUMBER) in the DDIF$_
PTD aggregate

Table F-1 describes each predefined fill pattern, its symbolic name, and
its corresponding DDIF pattern number. Figure F-1 illustrates each
predefined fill pattern.

Table F-1 DDIF Fill Patterns

Pattern Name

DDIF$K_PATT _BACKGROUND

DDIF$K_PATT _FOREGROUND

DDIF$K_PATT _ VERT1_1

DDIF$K_PATT _ VERT1 _3

DDIF$K_PATT _ VERT2_2

DDIF$K_PATT_VERT3_1

DDIF$K_PATT_ VERT1_7

DDIF$K_PATT _ VERT2_6

Number Description

1 The pattern is white.

2 The pattern is black.

3 The ratio of black to white vertical
lines in the pattern is 1 :1.

4 The ratio of black to white vertical
lines in the pattern is 1 :3.

5 The ratio of black to white vertical
lines in the pattern is 2:2.

6 The ratio of black to white vertical
lines in the pattern is 3:1.

7 The ratio of black to white vertical
lines in the pattern is 1 :7.

8 The ratio of black to white vertical
lines in the pattern is 2:6.

(continued on next page)

F-1

DDIF Fill Patterns

Table F-1 (Cont.) DDIF Fill Patterns

Pattern Name Number Description

DDIF$K_PATT_VERT4_ 4 9 The ratio of black to white vertical
lines in the pattern is 4:4.

DDIF$K_PATT _ VERT6_2 10 The ratio of black to white vertical
lines in the pattern is 6:2.

DDIF$K_PATT _HORIZ1_ 1 11 The ratio of black to white
horizontal lines in the pattern
is 1 :1.

DDIF$K_PATT _HORIZ1_3 12 The ratio of black to white
horizontal lines in the pattern
is 1 :3.

DDIF$K_PATT_HORIZ2_2 13 The ratio of black to white
horizontal lines in the pattern
is 2:2.

DDIF$K_PATT _HORIZ3_ 1 14 The ratio of black to white
horizontal lines in the pattern
is 3:1.

DDIF$K_PATT _HORIZ1 _7 15 The ratio of black to white
horizontal lines in the pattern
is 1 :7.

DDIF$K_PATT_HORIZ2_6 16 The ratio of black to white
horizontal lines in the pattern
is 2:6.

DDIF$K_PATT_HORIZ4_ 4 17 The ratio of black to white
horizontal lines in the pattern
is 4:4.

DDIF$K_PATT _HORIZ6_2 18 The ratio of black to white
horizontal lines in the pattern
is 6:2.

DDIF$K_PATT_GRID4 19 The area enclosed in each grid
box is 4 units.

DDIF$K_PATT_GRID8 20 The area enclosed in each grid
box is 8 units.

DDIF$K_PATT _UPDIAG1_3 21 The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 1 :3.

DDIF$K_PATT_UPDIAG2_2 22 The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 2:2.

DDIF$K_PATT _UPDIAG3_ 1 23 The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 3:1.

DDIF$K_PATT_UPDIAG1_7 24 The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 1 :7.

(continued on next page)

F-2

DDIF Fill Patterns

Table F-1 (Cont.) DDIF Fill Patterns

Pattern Name

DDIF$K_PATT_UPDIAG2_6

DDIF$K_PATT_UPDIAG4_ 4

DDIF$K_PATT _UPDIAG6_2

DDIF$K_PATT_DOWNDIAG1_3

DDIF$K_PATT _DOWNDIAG2_2

DDIF$K_PATT _DOWNDIAG3_ 1

DDIF$K_PATT_DOWNDIAG1_7

DDIF$K_PATT _DOWNDIAG2_6

DDIF$K_PATT _DOWNDIAG4_ 4

DDIF$K_PATT_DOWNDIAG6_2

DDI F$K_PATT _BRICK_HORI~

DDI F$K_PATT _BRICK_ VERT

DDIF$K_PATT_BRICK_DOWNDIAG

Number Description

25

26

27

28

29

30

31

32

33

34

35

36

37

The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 2:6.

The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 4:4.

The ratio of black to white upward
diagonal lines (going up from left
to right) in the pattern is 6:2.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 1 :3.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 2:2.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 3:1.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 1 :7.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 2 :6.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 4:4.

The ratio of black to white
downward diagonal lines (going
down from left to right) in the
pattern is 6:2.

The pattern is composed of bricks
oriented in a horizontal direction.

The pattern is composed of bricks
oriented in a vertical direction.

The pattern is composed of bricks
oriented in a downward diagonal
pattern (going down from left to
right).

(continued on next page)

F-3

DDIF Fill Patterns

Table F-1 (Cont.) DDIF Fill Patterns

Pattern Name Number Description

DDIF$K_PATT_BRICK_UPDIAG 38 The pattern is composed of bricks
oriented in an upward diagonal
pattern (going up from left to right).

DDIF$K_PATT_GREY4_ 16D 39 The ratio of black to white dots in
the pattern is 4: 16.

DDIF$K_PATT_GREY12_ 160 40 The ratio of black to white dots in
the pattern is 12:16.

DDIF$K_PATT_BASKET_WEAVE 41 The pattern is composed of a
basket-weave pattern.

DDIF$K_PATT _SCALE_DOWN 42 The pattern is composed of
downward-oriented scales.

DDIF$K_PATT _SCALE_UP 43 The pattern is composed ot
upward-oriented scales.

DDIF$K_PATT _SCALE_RIGHT 44 The pattern is composed of
rightward-oriented scales.

DDIF$K_PATT _SCALE_LEFT 45 The pattern is composed of
leftward-oriented scales.

DDIF$K_PATT _FILLER6 46 The pattern is a filler pattern.

DDIF$K_PATT _FILLER7 47 The pattern is a filler pattern.

DDIF$K_PATT _GREY1_ 16 48 The ratio of black to white dots in
the pattern is 1 : 16.

DDIF$K_PATT _GREY2_ 16 49 The ratio of black to white dots in
the pattern is 2:16.

DDIF$K_PATT _GREY3_ 16 50 The ratio of black to white dots in
the pattern is 3:16.

DDIF$K_PATT_GREY4_16 51 The ratio of black to white dots in
the pattern is 4:16.

DDIF$K_PATT_GREY5_ 16 52 The ratio of black to white dots in
the pattern is 5:16.

DDIF$K_PATT_GREY6_ 16 53 The ratio of black to white dots in
the pattern is 6: 16.

DDIF$K_PATT _ GREY7_16 54 The ratio of black to white dots in
the pattern is 7:16.

DDIF$K_PATT_GREY8_ 16 55 The ratio of black to white dots in
the pattern is 8: 16.

DDIF$K_PATT_GREY9_ 16 56 The ratio of black to white dots in
the pattern is 9:16.

DDIF$K_PATT_GREY10_ 16 57 The ratio of black to white dots in
the pattern is 10:16.

DDIF$K_PATT_GREY11_ 16 58 The ratio of black to white dots in
the pattern is 11 :16.

(continued on next page)

F-4

DDIF Fill Patterns

Table F-1 (Cont.) DDIF Fill Patterns

Pattern Name Number Description

DDIF$K_PATT_GREY12_16 59

DDIF$K_PATT_GREY13_ 16 60

DDIF$K_PATT _ GREY14_ 16 61

DDIF$K_PATT _GREY15_ 16 62

The ratio of black to white dots in
the pattern is 12:16.

The ratio of black to white dots in
the pattern is 13:16.

The ratio of black to white dots in
the pattern is 14:16.

The ratio of black to white dots in
the pattern is 15:16.

F-5

DDIF Fill Patterns

Figure F-1 CDA Fill Patterns

F-6

Glossary of Terms

aggregate: An in-memory structure that is used to pass compound document data
between the application and the CDA Toolkit routines. An aggregate corresponds
to a manageable unit of the compound document. Aggregates are typed and
self-describing; the type of an aggregate is indicated by a symbolic constant. An
aggregate can be a member of an aggregate sequence, which can be traversed
from beginning to end. Aggregates are defined for such objects as document
roots, document descriptors, document headers, document segments, text content,
and so on.

AngleRef enumeration: A compound document data type that is an enumeration
specifying the data type of an item of DDIF type AngleRef, which is encoded as a
floating-point or string value.

attribute: A term used to describe content characteristics such as font, line
thickness, and color.

binary relative time: A compound document data type that specifies a binary
relative time.

bit string: A compound document data type that is encoded as a string of bits. The
length of the item is expressed in bits.

Boolean: A compound document data type, encoded as a byte, that represents a
Boolean value.

byte: A compound document data type that is encoded as a byte.

character string: A compound document data type that is encoded as a string of
bytes in a particular character set.

compound document: A unified collection of data that can be edited, formatted, or
otherwise processed as a document.

computed content: Document content (most often text content) that is calculated
based on the current formatting state or other inclusion of external data.

content: The class of data that makes up the fundamental units of documents.
Document content includes characters, lines, raster images, and so on.

content reference: A shorthand notation for the phrase "reference to generic
content." A content reference is a relationship in a revisable document that
defines the situation in which a content reference causes the generic content to
be inserted into the final form when the document is formatted.

document: An entire hierarchical structure in memory, created by the CDA Toolkit
routines.

Glossary-1

Glossary of Terms

Glossary-2

document content: See content.

document segment: See segment.

enumeration: A compound document data type that is encoded as a longword
integer. An item that is encoded as an enumeration must specify the possible
values for the enumeration. If the item following the enumeration item is of
DDIF type variable, then the value selected for the enumeration item affects the
encoding of the subsequent item.

expression enumeration: A compound document data type that is an enumeration
that specifies the data type of an item of DDIF type expression.

final form: Stage of a document in which all the formatting decisions (such as
hyphenation, line breaks, and page breaks) have been resolved.

formatting: The process of fixing text in galleys. Formatting involves breaking the
stream of characters and floating frames into lines that fit within the assigned
galleys. Formatting can also involve optimization of page layouts, the selection
of appropriate page templates, and hyphenation decisions.

galley: A rectangular guide, such as a column or footnote area.

generic attributes: A relationship in a revisable document that defines attributes
that can be applied to a number of segments, as opposed to being associated with
a single segment.

generic content: A relationship in a revisable document that defines document
content that can be included in multiple places in the document.

generic type: A relationship in a revisable document that defines a set of attributes
and processing tags that define a type. Elements of the document can reference
a defined type and become an instance of the type, thus inheriting the attributes
and processing characteristics of the generic type.

graphics content: Content that consists of primitives such as polylines and filled
areas.

handle: The identifier of an aggregate, stream, file, front end, or back end.

hard content: Content that is entered by the creator of the document.

image content: Content that consists of digitized images represented by actual
values of monochrome, grey-level, or color images.

inheritance: A relationship in a revisable document that defines a method for
defaulting the attributes of content so that each segment of content does not
need to specify all of its attributes. Instead, each segment inherits the attributes
of the surrounding segment, and specifies only the differences between the
attributes of its content and those of the surrounding content.

integer: A compound document data type that represents a longword integer.

item: A specific unit of information stored in an aggregate.

Glossary of Terms

item change list: A compound document data type that specifies a vector of
longwords in which each longword contains the item code of an item in a segment
attributes aggregate that has changed.

kerning: In typesetting, subtracting the space between two characters so that they
appear closer together.

leaders: In composition, rows of dashes or dots that are used to guide the eye across
the page. Leaders are used in tabular work, programs, tables of contents, and so
on.

leading: In composition, the distance between lines of type measured in points.

longword: A compound document data type representing a longword bit-encoded
structure. The bits are interpreted according to a defined structure.

measurement enumeration: A compound document data type that is an
enumeration specifying the data type of an item of DDIF type measurement,
which is encoded as an integer or string.

object identifier: A compound document data type that contains two or more
longwords that specify the value of the DDIS type object identifier.

raster image content: See image content.

revisable document: A document that contains abstract relationships between the
components of the document. That is, the characteristics of the document that
determine the final appearance are specified as parameters and directives that
are used to create the final form.

root aggregate: An aggregate that represents the root of the in-memory document
hierarchy. A root aggregate contains context private to the Toolkit routines. The
type of a root aggregate is DDIF$_DDF.

root segment: A top level segment that contains the document content. This
document content can consist of content aggregates as well as nested segments.
If a document contains only one segment, that segment is the root segment
and contains all of the document content. If the document contains multiple
segments, they must be nested within a root segment.

segment: A quantity of content that is set off from surrounding data by a change in
presentation or processing attributes.

sequence: A linked series of aggregates.

single precision floating: A compound document data type that specifies a VMS
F _floating point value.

soft content: Content that is generated by software and is subject to recalculation
when the document is revised.

specific attributes: Attributes that are associated only with a single segment of
content. These types of attributes are deliberately limited to a specific segment
of the document.

Glossary-3

Glossary of Terms

Glossary-4

stream: An access path by which encoded compound document data is read from or
written to a storage medium.

string: A compound document data type that is encoded as a string of bytes. The
length of the string is also specified in bytes.

string with add-info: A compound document data type, encoded as a string of bytes,
that represents the value of the DDIF type tag.

style guide: A relationship in a revisable document that defines a collection of
generic types defined for use by a set of documents.

text content: Content that consists of text in ASCII and alternate character sets.

type reference: A shorthand notation for the phrase "reference to generic type." A
type reference is a relationship in a revisable document that defines the situation
of segments referencing the same generic type and therefore inheriting common
attributes and processing and presentation styles.

variable: A compound document data type for which the data type of the item is
determined by a preceding enumeration item. The enumeration item determines
the data type of the variable item.

variables: A relationship in a revisable document that defines content that can
be generated based on the values of variables, thereby ensuring that multiple
elements of content are identical, have the same position, or can be modified by
standard functions.

word: A compound document data type that is encoded as a word.

Index

A
Aggregate

See also Root aggregate
copying • 4-5, CDA-33
creating • 4-4, CDA-35
definition of• 4-1
deleting • 4-5, CDA-54
determining number of array elements in •

CDA-80
handle of • 4-1
inserting • CDA-91
inserting into a sequence • 4-5
locating an item in • CDA-96
locating in a sequence • 4-5
locating next in sequence • CDA-99
populating • 4-4
reading from a front end • CDA-26
reading from a stream• CDA-77
reading the next from a stream • 4-11
removing from a document• 4-5, CDA-119
removing from a sequence• 4-5, CDA-130
writing the contents of • 4-11, CDA-123,

CDA-131
Aggregate-method conversion • 5-1 O to 5-13

Close• 5-13
Get-Aggregate • 5-12
Get-Position· 5-12

Aggregate transfer• 4-10 to 4-13
AGGREGATE TYPE TO OBJECT ID routine• 4-4,

CDA-3
Allocation routine• CDA-40, CDA-44, CDA-48,

CDA-110, CDA-113
Alternate presentation • 6-41
Analysis back end • 2-15
AngleRef enumeration • 4-7
Arc

controlling the rendition of • 6-18
specifying angle of rotation of• 6-19
specifying center x-coordinate of• 6-18
specifying center y-coordinate of • 6-18
specifying delta y radius of• 6-19
specifying the extent of• 6-19
specifying the starting angle of• 6-19
specifying x radius of• 6-18

Arc content aggregate • 6-18 to 6-20

Arc content aggregate (cont'd.)

See also DDIF$_ARC aggregate
arc extent indicator item in • 6-19
arc start indicator item in • 6-19
center x indicator item in • 6-18
center y indicator item in • 6-18
delta y indicator item • 6-19
flags item in • 6-18
items in • 6-19t, D-4t
rotation indicator item in • 6-19
x radius item in • 6-18

Attribute
definition of• 3-1, 4-1
for layout • 3-16
for wrapping text • 3-16
generic • 3-6
inheritance of• 3-8
layout• 6-9
precedence of • 3-9
specific • 3-7
specifying for a galley • 6-55
specifying for a line • 6-52 to 6-54
specifying for a marker • 6-55
specifying for an image • 6-56 to 6-58
specifying for document content• 6-9
specifying for image component space • 6-58 to

6-60
specifying for text • 6-48 to 6-52
text• 6-9

B
Back end• 5-14 to 5-18, CDA-19

analysis • 2-15
DDIF • 2-10 to 2-11
DDIF$WRITE_format entry point• 5-14
entry point· CDA-11
Postscript • 2-11 to 2-15
text• 2-11

BMU (Basic Measurement Unit)
definition of• 6-40

Buffer
specifyng size of • 5-13

Bezier curve
controlling rendition of • 6-15
specifying layout of • 6-16

lndex-1

Index

Bezier curve aggregate • 6-15 to 6-16

See also DDIF$_BEZ aggregate
curve path indicator item in • 6-16
flags item in• 6-15
items in • 6-16t, D-3t

c
CDA$AGGREGATE_TYPE_TO_OBJECT_ID • 4-4,

CDA-3
CDA$CLOSE_FILE • 4-2, CDA-5
CDA$CLOSE_STREAM • 4-3, CDA-7
CDA$CLOSE_TEXT_FILE • 4-3, CDA-8
CDA$CONVERT • 2-3, 2-4 to 2-7, COA-9
CDA$CONVERT_AGGREGATE • 4-10, CDA-26
CDA$CONVERT_DOCUMENT • 4-10, CDA-29
CDA$CONVERT_POSITION • 4-11, CDA-31
CDA$COPY _AGGREGATE• 4-5, CDA-33
CDA$CREATE_AGGREGATE • 4-4, CDA-35
CDA$CREATE_FILE • 4-2, CDA-37
CDA$CREATE_ROOT_AGGREGATE • 4-4,

CDA-42
CDA$CREATE_STREAM • 4-3, CDA-46
CDA$CREATE_TEXT_FILE • 4-3, CDA-51
CDA$DELETE_AGGREGATE • 4-5, CDA-54
CDA$DELETE_ROOT _AGGREGATE• 4-4, CDA-56
CDA$ENTER_SCOPE • 4-12, CDA-57
CDA$ERASE_ITEM • 4-9, CDA-68
CDA$FIND_DEFINITION • CDA-70
CDA$FIND_ TRANSFORMATION• CDA-73
CDA$FLUSH_STREAM • 4-3, CDA-75
CDA$GET_AGGREGATE • 4-11, CDA-77
CDA$GET_ARRAY_SIZE • 4-9, CDA-80
CDA$GET _DOCUMENT• 4-10, CDA-82
CDA$GET_EXTERNAL_ENCODING • CDA-84
CDA$GET _STREAM_POSITION • CDA-86
CDA$GET _TEXT _POSITION • CDA-89
CDA$1NSERT _AGGREGATE • 4-5, CDA-91
CDA$LEAVE_SCOPE • 4-12, CDA-94
CDA$LOCATE_ITEM • 4-9, CDA-96
CDA$NEXT_AGGREGATE • 4-5, CDA-99
CDA$0BJECT_ID_TO_AGGREGATE_TYPE • 4-4,

CDA-101
CDA$0PEN_CONVERTER • 4-13, CDA-103
CDA$0PEN_FILE • 4-2, CDA-106
CDA$0PEN_STREAM • 4-3, CDA-112
CDA$0PEN_TEXT_FILE • 4-3, CDA-116
CDA$PRUNE_AGGREGATE • 4-5, CDA-119
CDA$PRUNE_POSITION • 4-10, CDA-121

lndex-2

CDA$PUT_AGGREGATE• 4-11, CDA-123
CDA$PUT_DOCUMENT • 4-10, CDA-126
CDA$READ_TEXT_FILE • 4-3, CDA-128
CDA$REMOVE_AGGREGATE • 4-5, CDA-130
CDA$STORE_ITEM • 4-9, CDA-131
CDA$WRITE_TEXT_FILE • 4-3, CDA-137
CDA converter kernel • 2-2
CDA Toolkit• 1-3
Character set

identifiers for • 6-1 Ot
CLOSE FILE routine• 4-2, CDA-5
CLOSE STREAM routine• 4-3, CDA-7
CLOSE TEXT FILE routine • 4-3, CDA-8
Color

See Pattern definition
Composite path

arc component of • 6-32
Bezier component of• 6-32
indicating angle of rotation of• 6-34
indicating center x-coordinate of an arc in• 6-33
indicating center y-coordinate of an arc in • 6-33
indicating delta y-radius of an arc in • 6-33
indicating extent of an arc in • 6-33
indicating type of path defined in • 6-32
indicating x radius of an arc in • 6-33
polyline component of• 6-32
referencing a component of• 6-32, 6-34
specifying layout of the curve in • 6-32
specifying polyline path in • 6-32
specifying starting angle of an arc in • 6-33

Composite path aggregate • 6-32 to 6-34

See also DDIF$_PTH aggregate
arc center x indicator item in • 6-33
arc center y indicator item in • 6-33
arc extent indicator item in • 6-33
arc radius delta y indicator item in • 6-33
arc radius x indicator item in • 6-33
arc rotation indicator item in • 6-34
arc start indicator item in • 6-33
curve path indicator item in • 6-32
items in • 6-34t, 0-7t
line path indicator item in • 6-32
path indicator item in • 6-32
path reference item in • 6-34

Compound document • 1-2
validating contents of• CDA-106
viewing• 2-7

Computed content • 3-1 , 3-5
copied • 6-38
cross-reference • 6-38
function • 6-38

Computed content (cont'd.)

indicating function parameters for• 6-39
specifying an index into a list of references for•

6-38
specifying attributes for • 6-37 to 6-39
specifying function name in• 6-38
specifying label of a segment being referenced

by• 6-38
specifying label of the target segment • 6-38
specifying name of the variable in• 6-38
specifying reference index for • 6-38
specifying the name of the referenced variable in•

6-38
variable • 6-38

Content• 3-1 to 3-14
See also Root segment
computed • 3-1 , 3-5

specifying attributes for • 6-37 to 6-39
definition of• 3-1
generic • 3-8 to 3-9

referencing • 3-9
graphics• 3-1, 3-5
hard• 3-1
image• 3-1, 3-5, 6-21 to 6-22
indicating relational position of a segment of•

6-46
indicating the processing characteristics of • 6-9
normal alignments for character orientations in •

6-45t
presentation attributes of• 6-9
presentation styles for • 6-6
restricted • 3-6, 6-22 to 6-25

external • 6-22 to 6-23
private • 6-24 to 6-25

separating from layout• 1-7
soft• 3-1
specifying alternate presentation string for• 6-41
specifying character horizontal alignment point

for• 6-44
specifying character vertical alignment point for•

6-44
specifying general character set for• 6-1 O
specifying general layout attributes for• 6-42
specifying Latin1 character set for• 6-10
specifying magnitude of coordinate system ratio

for• 6-40
specifying name of the measurement system of•

6-40
specifying number of units per inch of• 6-40
specifying precision in coordinate system ratio for•

6-40
specifying string format of• 6-42

Index

Content (cont'd.)

specifying the character orientation in • 6-43
specifying the layout of• 6-41
specifying the name of the coordinate system of•

6-40
specifying the string imaging path of• 6-42
specifying world coordinate system for • 6-40
specifying wrap attributes for • 6-42
text • 3-1 , 3-5, 6-9

general • 6-1 O
Latin1 • 6-10

Content attribute • 3-8
Content category • 6-8
Content category tags

text content • 6-9
Content definition

specifying elements in• 6-70
specifying index into list of external references in •

6-70
specifying label of• 6-69
specifying label of the referenced segment in •

6-69
specifying private data for• 6-70

Content definition aggregate• 6-69 to 6-70

See also DDIF$_CTD aggregate
external reference index item in • 6-70
external target item in • 6-69
items in • 6-70t, D-12t
label item in • 6-69
private data item in• 6-70
value item in • 6-70

Content reference
specifying label for • 6-22
specifying transformation for• 6-22

Content reference aggregate • 6-22

See also DDIF$_CRF aggregate
items in • 6-22t, D-5t
label item in • 6-22
transformation item in • 6-22

Content stream • 3-16
Conversion

input formats • 2-9 to 2-10
output formats • 2-1 O to 2-15
types of • 5-1

CONVERT/DOCUMENT command• 2-3, 2-3 to
2-4

CONVERT AGGREGATE routine• 4-10, CDA-26
CONVERT DOCUMENT routine• 4-10, CDA-29
Converter

activating• CDA-103
calling from an application • CDA-9

lndex-3

Index

Converter (cont'd.)

calling from within an application• 2-3, 2-4 to
2-7

components of • 2-2 to 2-3
format keywords for • 2-3t

Converter kernel • 2-2
CONVERT POSITION routine• 4-11, CDA-31
CONVERT routine • 2-3, 2-4 to 2-7, CDA-9
Copied computed content • 6-38
COPY AGGREGATE routine • 4-5, CDA-33
Counter

specifying style for• 6-79
Counter style aggregate• 6-79 to 6-80

See also DDIF$_CTS aggregate
items in • 6-80t, D-14t
style indicator item in• 6-79

CREATE AGGREGATE routine • 4-4, CDA-35
CREATE FILE routine • 4-2, CDA-37
CREATE ROOT AGGREGATE routine• 4-4,

CDA-42
CREATE STREAM routine• 4-3, CDA-46
CREATE TEXT FILE routine• 4-3, CDA-51
Cross-reference computed content• 6-38

D
Data

private • 6-24
Data loss

in DDIF back end• 2-11
in DDIF front end• 2-9
in Postscript back end • 2-12
in Text back end • 2-11
in Text front end • 2-10

Data mapping
in DDIF back end• 2-11
in DDIF front end• 2-9
in Postscript back end • 2-11
in Text back end• 2-11
in Text front end• 2-1 O

DDDIF$_FTD aggregate
DIF$_FTD_NUMBER item in• 6-70

DDIF$READ_format• 5-1, CDA-10, CDA-15
DDIF$WRITE_format• 5-1, 5-14, CDA-11, CDA-19
DDIF$_ARC aggregate• 6-18 to 6-20

DDIF$_ARC_CENTER_X item in· 6-18
DDIF$_ARC_CENTER_X_C item in• 6-18
DDIF$_ARC_CENTER_Y item in• 6-18
DDIF$_ARC_CENTER_Y_C item in• 6-18
DDIF$_ARC_EXTENT item in• 6-19

lndex-4

DDIF$_ARC aggregate (cont'd.)

DDIF$_ARC_EXTENT_C item in• 6-19
DDIF$_ARC_FLAGS item in• 6-18
DDIF$_ARC_RADIUS_DELTA_ Y item in• 6-19
DDIF$_ARC_RADIUS_X item in• 6-19
DDIF$_ARC_RADIUS_X_C item in• 6-18
DDIF$_ARC_ROTATION item in• 6-19
DDIF$_ARC_ROTATION_C item in• 6-19
DDIF$_ARC_START item in• 6-19
DDIF$_ARC_START_C item in• 6-19
DDIF$_RADIUS_DELTA_Y_C item in• 6-19
items in • 6-19t, D-4t

DDIF$_BEZ aggregate• 6-15 to 6-16
DDIF$_BEZ_FLAGS item in• 6-15
DDIF$_BEZ_PATH item in• 6-16
DDIF$_BEZ_PATH_C item in• 6-16
items in• 6-16t, D-3t

DDIF$_CRF aggregate• 6-22
DDIF$_CRF _REFERENCE item in• 6-22
DDIF$_CRF _TRANSFORM item in• 6-22
items in• 6-22t

DDIF$_CTD aggregate• 6-69 to 6-70
DDIF$_CTD_EXTERNAL_ERF _INDEX item in•

6-70
DDIF$_CTD_EXTERNAL_ TARGET item in• 6-69
DDIF$_CTD_LABEL item in• 6-69
DDIF$_CTD_PRIVATE_DATA item in• 6-70
DDIF$_CTD_VALUE item in• 6-70
items in• 6-70t, D-12t

DDIF$_CTS aggregate• 6-79 to 6-80
DDIF$_CTS_STYLE item in• 6-80
DDIF$_CTS_STYLE_C item in• 6-79
items in• 6-80t, D-14t

DDIF$_DDF aggregate• 6-2
DDIF$_DDF _CONTENT item in• 6-2
DDIF$_DDF _DESCRIPTOR item in• 6-2
DDIF$_DDF _HEADER item in• 6-2

DDIF$_DDIF$_SGB aggregate
DDIF$_SGB_CTR_TRIGGER item in• 6-76

DDIF$_DHD aggregate• 6-4 to 6-6
DDIF$_DHD_AUTHOR item in• 6-4
DDIF$_DHD_CONFORMANCE_ TAGS item in•

6-4
DDIF$_DHD_DATE item in• 6-4
DDIF$_DHD_EXTERNAL_REFERENCES item

in• 6-4
DDIF$_DHD_LANGUAGES item in• 6-5
DDIF$_DHD_LANGUAGES_C item in• 6-5
DDIF$_DHD_PRIVATE_DATA item in• 6-4
DDIF$_DHD_STYLE_GUIDE item in• 6-5
DDIF$_DHD_TITLE item in• 6-4
DDIF$_DHD_ VERSION item in• 6-4

DDIF$_DSC aggregate• 6-3 to 6-4
DDIF$_DSC_MAJOR_ VERSION item in• 6-3
DDIF$_DSC_MINOR_ VERSION item in• 6-3
DDIF$_DSC_PRODUCT_IDENTIFIER item in•

6-3
DDIF$_DSC_PRODUCT_NAME item in• 6-3

DDIF$_ERF aggregate• 6-28 to 6-29
DDIF$_ERF _CONTROL item in• 6-29
DDIF$_ERF _DATA_TYPE item in• 6-28
DDIF$_ERF _DESCRIPTOR item in• 6-28
DDIF$_ERF _LABEL item in • 6-29
DDIF$_ERF _LABEL_ TYPE item in • 6-29
items in • 6-29t, D-7t

DDIF$_EXT aggregate• 6-22 to 6-23
DDIF$_EXT _DATA_ VALUE_DESCRIPTOR item

in• 6-23
DDIF$_EXT _DIRECT _REFERENCE item in •

6-22
DDIF$_EXT_ENCODING item in· 6-23
DDIF$_EXT_ENCODING_C item in• 6-23
DDIF$_EXT _ENCODING_L item in • 6-23
DDIF$_EXT_INDIRECT_REFERENCE item in•

6-22
items in • 6-23t, D-5t

DDIF$_FAS aggregate • 6-20 to 6-21
DDIF$_FAS_FLAGS item in • 6-20
DDIF$_FAS_PATH item in • 6-20
items in• 6-21t, D-4t

DDIF$_FTD aggregate• 6-70 to 6-71
DDIF$_FTD_IDENTIFIER item in• 6-70
DDIF$_FTD_PRIVATE_DATA item in• 6-70
items in• 6-71t, D-12t

DDIF$_GLA aggregate• 6-91 to 6-93
DDIF$_GLA_BOTTOM_MARGIN item in• 6-92
DDIF$_GLA_BOTTOM MARGIN C item in•

6-92 - -

DDIF$_GLA_LEFT_MARGIN item in• 6-92
DDIF$_GLA_LEFT_MARGIN_C item in• 6-92
DDIF$_GLA_RIGHT_MARGIN item in· 6-92
DDIF$_GLA_RIGHT_MARGIN_C item in• 6-92
DDIF$_GLA_ TOP _MARGIN item in• 6-91
DDIF$_GLA_ TOP _MARGIN_C item in• 6-91
items in • 6-92t, D-16t

DDIF$_GLY aggregate• 6-25 to 6-28
DDIF$_GLY_BOUNDING BOX LL X item in•

6-26 - - -

DDIF$_GLY_BOUNDING_BOX_LL X C item in•
6-26 - -

DDIF$_GLY_BOUNDING BOX LL Y item in•
6-26 - - -

DDIF$_GLY_BOUNDING_BOX LL Y C item in•
6-26 - - -

Index

DDIF$_GLY aggregate (cont'd.)

DDIF$_GLY_BOUNDING BOX UR X item in•
6-26 - - -

DDIF$_GLY_BOUNDING BOX UR X C item in•
6-26 - - - -

DDIF$_GLY_BOUNDING_BOX_UR_Y item in•
6-26

DDIF$_GLY _BOUNDING BOX UR Y C item in•
6-26 - - - -

DDIF$_GLY _FLAGS item in• 6-26
DDIF$_GLY_ID item in• 6-26
DDIF$_GLY_OUTLINE item in• 6-26
DDIF$_GLY _STREAMS item in• 6-27
DDIF$_GLY_SUCCESSOR item in• 6-27
DDIF$_GLY_SUCCESSOR_C item in• 6-27
items in • 6-27t, D-6t

DDIF$_GTX aggregate• 6-10
DDIF$_GTX_CONTENT item in• 6-10

DDIF$_HRD aggregate• 6-11
DDIF$_HRD_DIRECTIVE item in• 6-11

DDIF$_HRV aggregate• 6-13 to 6-14
DDIF$_HRV_C item in• 6-13
DDIF$_HRV_ESC_CONSTANT item in• 6-13
DDIF$_HRV_ESC_CONSTANT_C item in• 6-13
DDIF$_HRV_ESC_RATIO_D item in· 6-13
DDIF$_HRV_ESC_RATIO_N item in• 6-13
DDIF$_HRV_RESET_VALUE item in• 6-13
DDIF$_HRV_RESET_VALUE_C item in• 6-13
DDIF$_HRV_RESET_VARIABLE item in· 6-13

DDIF$_1DU aggregate• 6-30 to 6-31
DDIF$_1DU_BITS_PER_PIXEL item in• 6-31
DDIF$_1DU_COMPRESSION PARAMS item in•

6-30 -

DDIF$_1DU_COMPRESSION TYPE item in•
6-30 -

DDIF$_1DU_DATA_OFFSET item in• 6-30
DDIF$_1DU_NUMBER_OF _LINES item in• 6-30
DDIF$_1DU_PIXELS_PER_LINE item in• 6-30
DDIF$_1DU_PIXEL_ORDER item in• 6-31
DDIF$_1DU_PIXEL_STRIDE item in• 6-30
DDIF$_1DU_PLANE_DATA item in• 6-31
DDIF$_1DU_PRIVATE CODING ATTR item in•

6-30 - -

DDIF$_1DU_SCANLINE_STRIDE item in• 6-30
items in• 6-31t, D-7t

DDIF$_1MG aggregate • 6-21
DDIF$_1MG_CONTENT item in• 6-21
items in• 6-21 t, D-5t

DDIF$_LG1 aggregate• 6-84 to 6-85
DDIF$_LG1_PAGE_DESCRIPTIONS item in•

6-84
DDIF$_LG1_PRIVATE_DATA item in• 6-84

lndex-5

Index

DDIF$_LG1 aggregate (cont'd.)

items in • 6-84t, D-15t
DDIF$_LIN aggregate• 6-16 to 6-18

DDIF$_LIN_DRAW_PATIERN item in• 6-17
DDIF$_LIN_FLAGS item in• 6-16
DDIF$_LIN_PATH item in• 6-17
DDIF$_LIN_PATH_C item in• 6-17
items in • 6-18t, D-4t

DDIF$_LL 1 aggregate• 6-88 to 6-91
DDIF$_LL 1_BREAK_AFTER item in• 6-89
DDIF$_LL 1_BREAK_BEFORE item in• 6-89
DDIF$_LL 1_BREAK_WITHIN item in• 6-89
DDIF$_LL 1_GALLEY _SELECT item in• 6-89
DDIF$_LL 1_1NITIAL_DIRECTIVE item in• 6-88
DDIF$_LL 1_1NITIAL_INDENT item in• 6-89
DDIF$_LL 1_1NITIAL_INDENT_C item in• 6-89
DDIF$_LL 1_LEADING_CONSTANT item in• 6-90
DDIF$_LL 1_LEADING_CONSTANT_C item in•

6-90
DDIF$_LL 1_LEADING_RATIO_D item in• 6-90
DDIF$_LL 1_LEADING_RATIO_N item in• 6-90
DDIF$_LL 1_LEFT _INDENT item in• 6-89
DDIF$_LL1_LEFT_INDENT_C item in• 6-89
DDIF$_LL 1_RIGHT _INDENT item in• 6-90
DDIF$_LL1_RIGHT_INDENT_C item in• 6-90
DDIF$_LL 1_SPACE_AFTER item in• 6-90
DDIF$_LL 1_SPACE_AFTER_C item in• 6-90
DDIF$_LL 1_SPACE_BEFORE item in• 6-90
DDIF$_LL 1_SPACE_BEFORE_C item in• 6-90
DDIF$_LL 1_ TAB_STOPS item in• 6-91
items in• 6-91t, D-16t

DDIF$_LS1 aggregate• 6-85 to 6-86
DDIF$_LS1_LAYOUT item in• 6-85
DDIF$_LS1_LAYOUT_C item in• 6-85
items in • 6-85t, D-15t

DDIF$_LSD aggregate • 6-71 to 6-72
DDIF$_LSD_NUMBER item in• 6-71
DDIF$_LSD_PATTERN item in• 6-53, 6-71
DDIF$_LSD_PRIVATE_DATA item in• 6-72
items in• 6-72t, D-12t

DDIF$_LW1 aggregate• 6-86 to 6-88
DDIF$_LW1_HYPHENATION_FLAGS item in•

6-87
DDIF$_LW1_HYPH_LINES item in• 6-87
DDIF$_LW1_MAXIMUM_ORPHAN_SIZE item in•

6-87
DDIF$_LW1_MAXIMUM_WIDOW_SIZE item in•

6-87
DDIF$_LW1_QUAD_FORMAT item in• 6-86
DDIF$_LW1_WRAP _FORMAT item in• 6-86
items in • 6-88t, D-15t

DDIF$_0CC aggregate• 6-80 to 6-81

lndex-6

DDIF$_0CC aggregate (cont'd.)

DDIF$_0CC_OCCURRENCE_C item in• 6-80
DDIF$_0CC_STRUCTURE_ELEMENT item in•

6-81
DDIF$_0CC_STRUCTURE_ELEMENT _C item

in• 6-80
items in• 6-81t, D-14t

DDIF$_PGD aggregate• 6-93 to 6-94
DDIF$_PGD_DESC item in• 6-93
DDIF$_PGD_DESC_C item in· 6-93
DDIF$_PGD_LABEL item in• 6-93
DDIF$_PGD_PRIVATE_DATA item in• 6-93
items in • 6-93t, D-17t

DDIF$_PGL aggregate • 6-94 to 6-96
DDIF$_PGL_CONTENT item in• 6-95
DDIF$_PGL_LAYOUT_ID item in• 6-94
DDIF$_PGL_ORIENTATION item in• 6-95
DDIF$_PGL_PROTOTYPE item in• 6-95
DDIF$_PGL_SIZE_X_NOM item in • 6-94
DDIF$_PGL_SIZE_X_NOM_C item in• 6-94
DDIF$_PGL_SIZE_X_SHR item in• 6-94
DDIF$_PGL_SIZE_X_SHR_C item in• 6-94
DDIF$_PGL_SIZE_X_STR item in • 6-94
DDIF$_PGL_SIZE_X_STR_C item in• 6-94
DDIF$_PGL_SIZE_ Y _NOM item in • 6-94
DDIF$_PGL_SIZE_ Y _NOM_C item in• 6-94
DDIF$_PGL_SIZE_ Y _SHR item in• 6-95
DDIF$_PGL_SIZE_Y_SHR_C item in• 6-95
DDIF$_PGL_SIZE_ Y _STR item in• 6-95
DDIF$_PGL_SIZE_ Y _STR_C item in• 6-94
items in • 6-95t, D-17t

DDIF$_PGS aggregate • 6-96 to 6-97
DDIF$_PGS_SELECT_PAGE_LAYOUT item in•

6-97
DDIF$_PGS_SELECT_PAGE_LAYOUT _C item

in• 6-96
DDIF$_PGS_SIDE_CRITERIA item in• 6-96
items in • 6-97t, D-18t

DDIF$_PHD aggregate• 6-72 to 6-73
DDIF$_PHD_DESCRIPTION item in• 6-72
DDIF$_PHD_NUMBER item in• 6-72
DDIF$_PHD_PRIVATE_DATA item in• 6-72
items in• 6-72t, D-13t

DDIF$_PTD aggregate• 6-73 to 6-75
DDIF$_PTD_DEFN_C item in• 6-73
DDIF$_PTD_NUMBER item in• 6-73
DDIF$_PTD_PAT_COLORS item in• 6-74
DDIF$_PTD_PAT_NUMBER item in• 6-74
DDIF$_PTD_PRIVATE_DATA item in• 6-74
DDIF$_PTD_RAS_PATTERN item in• 6-74
DDIF$_PTD_SOL_COLOR_B item in• 6-74
DDIF$_PTD_SOL_COLOR_C item in• 6-73

DDIF$_PTD aggregate (cont'd.)

DDIF$_PTD_SOL_COLOR_G item in• 6-74
DDIF$_PTD_SOL_COLOR_R item in• 6-73
items in• 6-74t, D-13t

DDIF$_PTH aggregate• 6-32 to 6-34
DDIF$_PTH_ARC_CENTER_X item in• 6-33
DDIF$_PTH_ARC_CENTER_X_C item in• 6-33
DDIF$_PTH_ARC_CENTER_ Y item in• 6-33
DDIF$_PTH_ARC_CENTER_ Y _C item in• 6-33
DDIF$_PTH_ARC_EXTENT item in • 6-33
DDIF$_PTH_ARC_EXTENT _C item in• 6-33
DDIF$_PTH_ARC_RADIUS_DELTA_Y item in•

6-33
DDIF$_PTH_ARC_RADIUS_DELTA_ Y_C item in•

6-33
DDIF$_PTH_ARC_RADIUS_X item in• 6-33
DDIF$_PTH_ARC_RADIUS_X_C item in• 6-33
DDIF$_PTH_ARC_ROTATION item in• 6-34
DDIF$_PTH_ARC_ROTATION_C item in • 6-34
DDIF$_PTH_ARC_START item in• 6-33
DDIF$_PTH_ARC_START _C item in• 6-33
DDIF$_PTH_BEZ_PATH item in • 6-32
DDIF$_PTH_BEZ_PATH_C item in• 6-32
DDIF$_PTH_C item in• 6-32
DDIF$_PTH_LIN_PATH item in • 6-32
DDIF$_PTH_LIN_PATH_C item in• 6-32
DDIF$_PTH_REFERENCE item in• 6-34
items in • 6-34t, D-7t

DDIF$_PVT aggregate• 6-24 to 6-25
DDIF$_PVT _DATA item in • 6-25
DDIF$_PVT _DATA_C item in• 6-24
DDIF$_PVT_NAME item in• 6-24
DDIF$_PVT_REFERENCE_ERF _INDEX item in•

6-25
items in • 6-25t, D-6t

DDIF$_RCD aggregate• 6-81 to 6-82
DDIF$_RCD_CONTENTS item in• 6-81
DDIF$_RCD_ TAG item in• 6-81
DDIF$_RCD_TYPE item in• 6-81
items in• 6-82t, D-14t

DDIF$_RGB aggregate• 6-82
DDIF$_RGB_BLUE_VALUE item in• 6-82
DDIF$_RGB_GREEN_ VALUE item in• 6-82
DDIF$_RGB_LUT_INDEX item in• 6-82
DDIF$_RGB_RED_ VALUE item in• 6-82
items in• 6-82t, D-15t

DDIF$_SEG aggregate• 6-6 to 6-8
DDIF$_SEG_CONTENT item in• 6-7
DDIF$_SEG_GENERIC_LAYOUT item in• 6-7
DDIF$_SEG_ID item in• 6-6
DDIF$_SEG_SEGMENT _TYPE item in• 6-6

Index

DDIF$_SEG aggregate (cont'd.)

DDIF$_SEG_SPECIFIC_ATTRIBUTES item in•
6-7

DDIF$_SEG_SPECIFIC_LAYOUT item in• 6-7
DDIF$_SEG_USER_LABEL item in• 6-6

DDIF$_SFT aggregate• 6-11
DDIF$_SFT_DIRECTIVE item in• 6-11

DDIF$_SFV aggregate• 6-14 to 6-15
DDIF$_SFV_C item in• 6-14
DDIF$_SFV_ESC_CONSTANT item in• 6-14
DDIF$_SFV_ESC_CONSTANT_C item in• 6-14
DDIF$_SFV _ESC_RATIO_D item in• 6-14
DDIF$_SFV_ESC_RATIO_N item in• 6-14
DDIF$_SFV_RESET_VALUE item in• 6-15
DDIF$_SFV_RESET_VALUE_C item in• 6-15
DDIF$_SFV_RESET_VARIABLE item in• 6-15

DDIF$_SGA aggregate• 6-35 to 6-69
DDIF$_SGA_ALT_PRESENTATION item in• 6-41
DDIF$_SGA_BINDING_DEFNS item in• 6-36
DDIF$_SGA_COMPUTE_C item in• 6-37
DDIF$_SGA_CONTENT _CATEGORY item in•

6-8, 6-36
DDIF$_SGA_CONTENT _DEFNS item in• 6-47
DDIF$_SGA_CONTENT_STREAMS item in•

6-36
DDIF$_SGA_CPTCPY _ERF _INDEX item in•

6-38
DDIF$_SGA_CPTCPY_TARGET item in• 6-38
DDIF$_SGA_CPTFNC_NAME item in• 6-38
DDIF$_SGA_CPTFNC_PARAMETERS item in•

6-39
DDIF$_SGA_CPTVAR_ VARIABLE item in• 6-38
DDIF$_SGA_CPTXRF _ERF _INDEX item in•

6-38
DDIF$_SGA_CPTXRF _TARGET item in• 6-38
DDIF$_SGA_CPTXRF _VARIABLE item in• 6-38
DDIF$_SGA_FONT_DEFNS item in• 6-47
DDIF$_SGA_FRMFXD_POSITION_X item in•

6-63
DDIF$_SGA_FRMFXD_POSITION_X_C item in•

6-63
DDIF$_SGA_FRMFXD_POSITION_ Y item in•

6-63
DDIF$_SGA_FRMFXD_POSITION_ Y _C item in•

6-63
DDIF$_SGA_FRMGL Y _HORIZONTAL item in •

6-64
DDIF$_SGA_FRMGLY_VERTICAL item in• 6-63
DDIF$_SGA_FRMINL_BASE_OFFSET item in•

6-63
DDIF$_SGA_FRMINL_BASE_OFFSET_C item

in• 6-63

lndex-7

Index

DDIF$_SGA aggregate (cont'd.)

DDIF$_SGA_FRMMAR_BASE_OFFSET item in•
6-64

DDIF$_SGA_FRMMAR_BASE_OFFSET_C item
in• 6-64

DDIF$_SGA_FRMMAR_HORIZONTAL item in •
6-64

DDIF$_SGA_FRMMAR_NEAR_OFFSET item in•
6-64

DDIF$_SGA_FRMMAR_NEAR_OFFSET_C item
in• 6-64

DDIF$_SGA_FRM_BOX_LL_X item in • 6-61
DDIF$_SGA_FRM_BOX_LL_X_C item in• 6-61
DDIF$_SGA_FRM_BOX_LL_ Y item in • 6-61
DDIF$_SGA_FRM_BOX_LL_ Y _C item in• 6-61
DDIF$_SGA_FRM_BOX_UR_X item in• 6-61
DDIF$_SGA_FRM_BOX_UR_X_C item in• 6-61
DDIF$_SGA_FRM_BOX_UR_ Y item in• 6-61
DDIF$_SGA_FRM_BOX_UR_ Y _C item in• 6-61
DDIF$_SGA_FRM_CLIPPING item in• 6-62
DDIF$_SGA_FRM_FLAGS item in • 6-60
DDIF$_SGA_FRM_OUTLINE item in• 6-61
DDIF$_SGA_FRM_POSITION_C item in• 6-62
DDIF$_SGA_FRM_ TRANSFORM item in • 6-65
DDIF$_SGA_GLY _ATTRIBUTES item in• 6-55
DDIF$_SGA_IMG_BITS_PER_COMP item in•

6-60
DDIF$_SGA_IMG_BRT _POLARITY item in• 6-56
DDIF$_SGA_IMG_COMP _SPACE_ORG item in•

6-58
DDIF$_SGA_IMG_COMP _WAVELENGTH item

in• 6-58
DDIF$_SGA_IMG_COMP _WAVELENGTH_C item

in• 6-58
DDIF$_SGA_IMG_GRID_ TYPE item in• 6-56
DDIF$_SGA_IMG_LINE_PROGRESSION item in•

6-56
DDIF$_SGA_IMG_LOOKUP _TABLES item in •

6-57
DDIF$_SGA_IMG_LOOKUP _ TABLES_C item in•

6-57
DDIF$_SGA_IMG_LP _PIXEL_DIST item in • 6-56
DDIF$_SGA_IMG_NUMBER_OF _COMP item in•

6-60
DDIF$_SGA_IMG_PIXEL_PATH item in • 6-56
DDIF$_SGA_IMG_PLANES_PER_PIXEL item in•

6-59
DDIF$_SGA_IMG_PLANE_SIGNIF item in• 6-59
DDIF$_SGA_IMG_PP _PIXEL_DIST item in •

6-56
DDIF$_SGA_IMG_PRIVATE_DATA item in• 6-56
DDIF$_SGA_IMG_SPECTRAL_MAPPING item

in• 6-57

lndex-8

DDIF$_SGA aggregate (cont'd.)

DDIF$_SGA_IMG_ TIMING_DESC item in • 6-57
DDIF$_SGA_ITEM_CHANGE_LIST item in• 6-65
DDIF$_SGA_LANGUAGE item in • 6-39
DDIF$_SGA_LAYGLY _LAYOUT item in• 6-42
DDIF$_SGA_LAYGLY_WRAP item in• 6-42
DDIF$_SGA_LAYOUT_C item in• 6-41
DDIF$_SGA_LAYPOS_TEXT_POSITION item in•

6-46
DDIF$_SGA_LAYPTH_FORMAT item in· 6-42
DDIF$_SGA_LAYPTH_H_ALIGN item in• 6-44
DDIF$_SGA_LAYPTH_ORIENTATION item in•

6-44
DDIF$_SGA_LAYPTH_ORIENTATION_C item in•

6-43
DDIF$_SGA_LAYPTH_PATH item in• 6-42
DDIF$_SGA_LAYPTH_ V _ALIGN item in • 6-44
DDIF$_SGA_LAYREL_H_CONSTANT item in•

6-45
DDIF$_SGA_LAYREL_H_CONSTANT_C item in•

6-45
DDIF$_SGA_LAYREL_H_RATIO_D item in• 6-45
DDIF$_SGA_LAYREL_H_RATIO_N item in• 6-45
DDIF$_SGA_LAYREL_V_CONSTANT item in•

6-46
DDIF$_SGA_LAYREL_V_CONSTANT_C item in•

6-46
DDIF$_SGA_LAYREL_ V _RATIO_D item in• 6-46
DDIF$_SGA_LAYREL_ V _RATIO_N item in• 6-45
DDIF$_SGA_LEGEND_UNIT _D item in· 6-40
DDIF$_SGA_LEGEND_UNIT_NAME item in•

6-40
DDIF$_SGA_LEGEND_UNIT _N item in• 6-40
DDIF$_SGA_LINE_STYLE_DEFNS item in• 6-47
DDIF$_SGA_LIN_END_FINISH item in• 6-53
DDIF$_SGA_LIN_END_SIZE item in• 6-54
DDIF$_SGA_LIN_END_SIZE_C item in• 6-54
DDIF$_SGA_LIN_END_START item in• 6-53
DDIF$_SGA_LIN_INTERIOR_PATTERN item in •

6-54
DDIF$_SGA_LIN_JOIN item in • 6-54
DDIF$_SGA_LIN_MASK_PATTERN item in•

6-53
DDIF$_SGA_LIN_MITER_LIMIT_D item in• 6-54
DDIF$_SGA_LIN_MITER_LIMIT_N item in• 6-54
DDIF$_SGA_LIN_PATTERN_SIZE item in • 6-52
DDIF$_SGA_LIN_PATTERN_SIZE_C item in•

6-52
DDIF$_SGA_LIN_STYLE item in• 6-52
DDIF$_SGA_LIN_WIDTH item in• 6-52
DDIF$_SGA_LIN_WIDTH_C item in• 6-52
DDIF$_SGA_MKR_MASK_PATTERN item in•

6-55

DDIF$_SGA aggregate (cont'd.)

DDIF$_SGA_MKR_SIZE item in· 6-55
DDIF$_SGA_MKR_SIZE_C item in• 6-55
DDIF$_SGA_MKR_STYLE item in• 6-55
DDIF$_SGA_PATH_DEFNS item in• 6-47
DDIF$_SGA_PATTERN_DEFNS item in• 6-47
DDIF$_SGA_PRIVATE_DATA item in• 6-35
DDIF$_SGA_SEGMENT _TAGS item in• 6-36
DDIF$_SGA_STRUCTURE_DESC item in• 6-39
DDIF$_SGA_STRUCTURE_DESC_C item in•

6-39
DDIF$_SGA_TXT_DEC_ALIGNMENT item in•

6-51
DDIF$_SGA_TXT_DIRECTION item in• 6-51
DDIF$_SGA_TXT_FONT item in• 6-48
DDIF$_SGA_ TXT _HEIGHT item in • 6-50
DDIF$_SGA_TXT_HEIGHT_C item in• 6-50
DDIF$_SGA_TXT_LEADER_ALIGN item in•

6-51
DDIF$_SGA_ TXT _LEADER_BULLET item in •

6-51
DDIF$_SGA_ TXT _LEADER_SPACE item in •

6-51
DDIF$_SGA_ TXT _LEADER_SPACE_C item in•

6-51
DDIF$_SGA_TXT_LEADER_STYLE item in•

6-51
DDIF$_SGA_TXT_MASK_PATTERN item in•

6-48
DDIF$_SGA_TXT_PAIR_KERNING item in• 6-52
DDIF$_SGA_TXT_RENDITION item in• 6-49
DDIF$_SGA_TXT_SET_SIZE_D item in• 6-50
DDIF$_SGA_TXT_SET_SIZE_N item in• 6-50
DDIF$_SGA_ TYPE_DEFNS item in • 6-48
DDIF$_SGA_UNITS_PER_MEASURE item in•

6-40
DDIF$_SGA_UNIT_NAME item in• 6-40
items in • 6-66t, D-8t

DDIF$_SGB aggregate• 6-75 to 6-78
DDIF$_SGB_COM_STRING_EXPR item in• 6-77
DDIF$_SGB_COM_STRING_EXPR_C item in•

6-77
DDIF$_SGB_CTR_INIT item in• 6-76
DDIF$_SGB_CTR_INIT_C item in• 6-76
DDIF$_SGB_CTR_STYLE item in• 6-76
DDIF$_SGB_CTR_ TRIGGER_C item in• 6-76
DDIF$_SGB_CTR_ TYPE item in• 6-77
DDIF$_SGB_RCD_LIST item in• 6-77
DDIF$_SGB_ VARIABLE_NAME item in• 6-75
DDIF$_SGB_ VARIABLE_ VALUE_C item in• 6-75
items in• 6-78t, D-13t

DDIF$_ TBS aggregate• 6-97 to 6-98

Index

DDIF$_ TBS aggregate (cont'd.)

DDIF$_ TBS_HORIZONTAL_POSITION item in•
6-97

DDIF$_ TBS_HORIZONTAL_POSITION_C item
in• 6-97

DDIF$_ TBS_LEADER item in• 6-98
DDIF$_TBS_TYPE item in• 6-97
items in • 6-98t, D-18t

DDIF$_ TRN aggregate • 6-83 to 6-84
DDIF$_ TRN_PARAMETER item in• 6-84
DDIF$_ TRN_PARAMETER_C item in• 6-83
items in• 6-84t, D-15t

DDIF$_TXT aggregate• 6-10
DDIF$_TXT_CONTENT item in• 6-10

DDIF$_ TYD aggregate • 6-78 to 6-79
DDIF$_ TYD_ATTRIBUTES item in• 6-78
DDIF$_ TYD_LABEL item in• 6-78
DDIF$_ TYD_PARENT item in• 6-78
DDIF$_ TYD_PRIVATE_DATA item in· 6-78
items in• 6-79t, D-14t

DDIF (DIGITAL Document Interchange Format)
analyzing files encoded in • 2-15
VMS RMS support of • A-1

DDIF back end• 2-10 to 2-11
data loss in • 2-11
data mapping in • 2-11

DDIF front end• 2-9
data loss in• 2-9
data mapping in • 2-9
document syntax errors in • 2-9
external file references in • 2-9

DDIF-to-Text RMS extension• A-1
DDIF viewer• 2-7
DDIF _CRF aggregate

items in • D-5t
ODIS encoding

definition of• 4-8
Deallocation routine • CDA-40, CDA-44, CDA-48,

CDA-110, CDA-113
DELETE AGGREGATE routine• 4-5, CDA-54
DELETE ROOT AGGREGATE routine• 4-4,

CDA-56
DIGITAL Document Interchange Format

See DDIF
Directive• 6-11 to 6-15

hard• 6-11
hard value• 6-13 to 6-14
soft• 6-11
soft value• 6-14 to 6-15
values for• 6-12t

Document
See also Compound document

lndex-9

Index

Document (cont'd.)

converting• 4-10, 5-1 to 5-2
creating for output• CDA-37
definition of• 4-1
describing the encoding of• 6-2
distinguishing versions of• 6-4
final form • 1-2
hierarchy of• 3-2 to 3-8
indicating the name of• 6-3
reading• 4-10, CDA-29
reading from a stream • CDA-82
representing the encoding software of • 6-3
returning position in • CDA-121
returning size of• CDA-121
revisable • 1-1

relationships in • 3-6 to 3-7
specifying external style guide for• 6-5
specifying file references in• 6-4
specifying parameters for• 6-2
specifying private information for• 6-4
specifying processing languages in • 6-5
specifying processing restrictions for• 6-4
specifying the author of • 6-4
specifying the content of• 6-2
specifying the title of• 6-4
specifying version date of• 6-4
structured• 1-4
structure of• 6-1, 6-1 f
testing the compatibility of versions for • 6-3
types of• 1-1 to 1-2
writing• 4-10, CDA-126

Document content
See Content

Document content aggregate • 6-6 to 6-8

See also DDIF$_SEG aggregate
generic layout item in• 6-7
items in • 6-7t, D-2t
segment attribute item in• 6-7
segment content item in• 6-7
segment identifier item in • 6-6
segment type item in • 6-6
segment user label item in • 6-6
specific layout item in • 6-7

Document conversion
types of • 5-1

Document descriptor• 3-4
Document descriptor aggregate • 6-3 to 6-4

See also DDIF$_DSC aggregate
items in • 6-3t, D-1 t
major version item in • 6-3
minor version item in • 6-3

lndex-10

Document descriptor aggregate (cont'd.)

product identifier item in • 6-3
product name item in • 6-3

Document format
see Layout

Document header • 3-4
Document header aggregate • 6-4 to 6-6

See also DDIF$_DHD aggregate
author item in • 6-4
conformance tags item in • 6-4
date item in • 6-4
external references item in • 6-4
items in • 6-5t, D-1 t
language item in • 6-5
languages indicator item in • 6-5
private header data item in • 6-4
style guide item in • 6-5
title item in • 6-4
version item in • 6-4

Document hierarchy • 3-2 to 3-8
Document layout

See Layout
Document-method conversion • 5-8 to 5-1 O

Close• 5-10
DDIF$READ_format• 5-9 to 5-10
Get-Aggregate • 5-1 O
Get-Position· 5-1 O

Document root• 3-3
Document scope • 4-12 to 4-13

completing • CDA-94
entering • CDA-57

Document segment

See Segment
Document syntax errors

in DDIF front end• 2-9
in Text front end • 2-10

Document transfer• 4-9 to 4-10
determining position in• 4-10, 4-11
using an entire document• 4-1 O

E
ENTER SCOPE routine• 4-12, CDA-57
Enumeration

AngleRef • 4-7
encoding of • 4-6
expression • 4-8
measurement• 4-7

ERASE ITEM routine • 4-9, CDA-68

Escapement type• E-19
Expression enumeration • 4-8
External reference

identifying data type of• 6-28
identifying storage system of• 6-29
in DDIF front end• 2-9
in Text front end • 2-1 O
processing• 4-13, CDA-103
specifying description of the data type of • 6-28
specifying label for• 6-29
specifying treatment of• 6-29

External reference aggregate • 6-28 to 6-29

See also DDIF$_ERF aggregate
control item in • 6-29
items in• 6-29t, D-7t
reference data type item in • 6-28
reference descriptor item in • 6-28
reference label item in • 6-29
storage item in • 6-29

External restricted content aggregate • 6-22 to
6-23

See also DDIF$_EXT aggregate
data value descriptor item in• 6-23
direct reference item in • 6-22
encoding indicator item in • 6-23
encoding length item in • 6-23
indirect reference item in • 6-22
items in • 6-23t, D-5t

F
File

See also Text file
closing • 4-2, CDA-5
creating • 4-2, CDA-37
opening • 4-2, CDA-106

Files
specifying processing options during conversion

of• 2-8
File tag

accessing• A-10
creation of• A-1
DDIF • A-1
disposition by COPY command • A-4
preserving • A-13
requirement for• A-1
use of• A-1

Fill area set
controlling the rendition of• 6-20

Index

Fill area set (cont'd.)

specifying the composite path of • 6-20
Fill area set content aggregate• 6-20 to 6-21

See also DDIF$_FAS aggregate
flags item in • 6-20
items in • 6-21 t, D-4t
set path item in • 6-20

Final form document• 1-2
FIND DEFINITION routine• CDA-70
FIND TRANSFORMATION routine• CDA-73
Flush routine• CDA-76
FLUSH STREAM routine • 4-3, CDA-75
Font definition

specifying for the defining segment• 6-70
specifying name for• 6-70
specifying private data for• 6-70

Font definition aggregate• 6-70 to 6-71

See also DDIF$_FTD aggregate
identifier item in• 6-70
items in• 6-71t, D-12t
number item in • 6-70
private data item in • 6-70

Frame
controlling presentation of • 6-60
fixed position • 6-63
galley• 6-63
inline position • 6-63
margin • 6-64
origin of • 3-5
specifying a coordinate transformation for• 6-65
specifying attributes of • 6-60 to 6-65
specifying lower left corner x position of• 6-61
specifying lower left corner y position of· 6-61
specifying the clipping path of• 6-62
specifying the horizontal offset of the base for •

6-64
specifying the horizontal positioning of• 6-64
specifying the horizontal position of the lower left

corner of • 6-64
specifying the outline path of• 6-61
specifying the position of • 6-62
specifying the vertical offset from the base for •

6-64
specifying the vertical offset of the origin of • 6-63
specifying the vertical positioning of the lower

edge of • 6-63
specifying the x position of the origin of • 6-63
specifying the y position of the origin of • 6-63
specifying upper right corner x position of• 6-61
specifying upper right corner y position of• 6-61

Frame-based layout • 6-41

lndex-11

Index

Front end• 5-2 to 5-13, CDA-15
aggregate-method conversion • 5-1 O to 5-13
Close entry point • 5-8
DDIF• 2-9
DDIF$READ_format entry point• 5-4 to 5-6
document-method conversion • 5-8 to 5-10
entry point • CDA-1 O
Get-Aggregate entry point• 5-6 to 5-7
Get-Position entry point• 5-7 to 5-8
invoking during conversion • 4-13
text• 2-10

Function computed content• 6-38

G
Galley• 3-15

specifying attributes for• 6-55
specifying bottom margin for• 6-92
Specifying content streams for • 3-16
specifying left margin for• 6-92
specifying right margin for• 6-92
specifying top margin for• 6-91

Galley attributes aggregate• 6-91 to 6-93

See also DDIF$_GLA aggregate
galley bottom margin item in • 6-92
galley left margin item in • 6-92
galley right margin item in• 6-92
galley top margin item in • 6-91
items in • 6-92t, D-16t

Galley-based layout • 6-41, 6-42
General text content • 6-10
General text content aggregate • 6-1 O

See also DDIF$_GTX aggregate
text content item in• 6-1 O

Generic content • 3-8 to 3-9
referencing• 3-9

Generic layout
specifying descriptions of page templates and

rules for• 6-84
specifying private data in• 6-84

Generic layout aggregate • 6-84 to 6-85

See also DDIF$_LG1 aggregate
items in • 6-84t, D-15t
page descriptions item in• 6-84
private data item in• 6-84

Generic type • 3-8
referencing• 3-9

GET AGGREGATE routine• 4-11, CDA-77
GET ARRAY SIZE routine • 4-9, CDA-80

lndex-12

GET DOCUMENT routine• 4-10, CDA-82
GET EXTERNAL ENCODING routine• CDA-84
Getroutine• 5-13, CDA-114
GET STREAM POSITION routine• CDA-86
GET TEXT POSITION routine • CDA-89
Graphics

controlling interior fill pattern for• 6-54
Graphics content• 3-1, 3-5

H
Handle

definition of• 4-1
Hard content • 3-1
Hard directive • 6-11

values for • 6-12t
Hard directive aggregate • 6-11

See also DDIF$_HRD aggregate
hard directive item in • 6-11

Hard value directive• 6-13 to 6-14
specifying escapement constant for • 6-13
specifying escapement ratio denominator for•

6-13
specifying escapement ratio numerator for• 6-13
specifying new variable value for• 6-13
specifying type of • 6-13
specifying variable to be reset by • 6-13

Hard value directive aggregate• 6-13 to 6-14

I

See also DDIF$_HRV aggregate
directive choice item in • 6-13
escapement constant indicator in• 6-13
escapement ratio item in• 6-13
items in• 6-14t, D-3t
reset value item in• 6-13
reset variable item in • 6-13

Image
specifying application-private lookup tables for•

6-57
specifying aspect ratio along the pixel path of •

6-56
specifying attributes for • 6-56 to 6-58
specifying correlation between physical image

data and spectral components of• 6-57
specifying direction of scanline capture for• 6-56

Image (cont'd.)

specifying line progression path aspect ratio for•
6-56

specifying motion sequence in • 6-57
specifying private data for• 6-56
specifying the contents of• 6-21
specifying the direction of pixel capture path for •

6-56
specifying the physical format of the pixel grid of •

6-56
specifying the representation of intensity levels in •

6-56
specifying wavelength information for • 6-58

Image component space
specifying attributes for• 6-58 to 6-60
specifying number of bits used for each image in •

6-60
specifying number of data planes for pixel in •

6-59
specifying number of spectral components in •

6-60
specifying physical organization of• 6-58
specifying significance of data planes in • 6-59

Image content • 3-1, 3-5, 6-21 to 6-22
Image content aggregate• 6-21

image content item in • 6-21
items in· 6-21t, D-5t
See also DDIF$_1MG aggregate• 6-21

Image data· 6-21
containing parameters for compression of• 6-30
indicating compression scheme for a plane of •

6-30
specifying actual values of • 6-31
specifying distance between pixels in • 6-30
specifying distance between scanlines in• 6-30
specifying number of pixels per scanline in • 6-30
specifying number of scanlines in • 6-30
specifying offset to first bit of • 6-30
specifying pixel order in• 6-31
specifying private coding attributes for• 6-30
specifying total number of bits per pixel in• 6-31

Image data unit aggregate• 6-30 to 6-31

See also DDIF$_1DU aggregate
compression parameters item in • 6-30
compression type item in • 6-30
data offset item in • 6-30
items in• 6-31t, D-7t
number of lines item in • 6-30
pixel order item in• 6-31
pixels per line item in • 6-30
pixel stride item in • 6-30
plane bits per pixel item in • 6-31

Image data unit aggregate (cont'd.)

plane data item in • 6-31
private coding attributes item in • 6-30
scanline stride item in • 6-30

Incremental processing • 4-12 to 4-13
Input formats • 2-9 to 2-1 O

Index

INSERT AGGREGATE routine• 4-5, CDA-91
Item

accessing • 4-5 to 4-9
array-valued • CDA-80
data types for • 4-6t
definition of• 4-1
determining the address of• 4-9
determining the number of elements in • 4-9
erasing • CDA-68
erasing the contents of• 4-9
finding definition of• CDA-70
locating • CDA-96
writing the contents of• 4-9, CDA-131

Item change list • 6-65

K
Kerning

definition of• 6-52

L
Languages

specifying for processing • 6-5
Latin1 text content• 6-10
Latin1 text content aggregate• 6-1 O

See also DDIF$_TXT aggregate
Layout• 1-4, 3-14 to 3-17, 6-41

definition of• 3-14
forcing new line, galley, or page through • 6-88
frame-based • 6-41
galley-based • 6-41 , 6-42
path-based • 6-41 , 6-42
positional • 6-41
position-relative • 6-45
selecting new galley for• 6-89
specifying amount of space after a segment in •

6-90
specifying amount of space before a segment in •

6-90
specifying indentation distance in • 6-89
specifying in-segment break condition in • 6-89

lndex-13

Index

Layout (cont'd.)

specifying leading space between lines in• 6-90
specifying new left indent in• 6-89
specifying new right indent in• 6-90
specifying post-segment break condition in • 6-89
specifying pre-segment break condition in • 6-89
specifying tab stops in• 6-91
text position • 6-46

Layout attribute • 6-9
Layout attributes aggregate• 6-88 to 6-91

See also DDIF$_LL 1 aggregate
galley selection item in • 6-89
initial directive item in • 6-88
initial indent indicator item in • 6-89
in-segment break condition item in • 6-89
items in• 6-91t, D-16t
leading ratio item in • 6-90
left indent indicator item in • 6-89
post-segment break condition item in • 6-89
pre-segment break condition item in • 6-89
right indent indicator item in • 6-90
space-after indicator item in • 6-90
space-before indicator item in • 6-90
tab stops item in• 6-91

Layout galley
specifying bounding box information for• 6-26
specifying content streams for• 6-27
specifying flag parameters for• 6-26
specifying outline path for content in • 6-26
specifying reference label for • 6-26
specifying text overflow galley type in• 6-27

Layout galley aggregate • 6-25 to 6-28

See also DDIF$_GLY aggregate
bounding box items for• 6-26
flags item in • 6-26
galley label item in • 6-26
galley outline item in • 6-26
galley streams item in • 6-27
galley successor item in • 6-27
items in • 6-27t, D-6t

LayoutGalley type • E-39
LayoutPrimitive type• E-39
LEAVE SCOPE routine• 4-12, CDA-94
Legend

See Content
Legend attributes • 6-40
Line

specifying attributes for • 6-52 to 6-54
specifying denominator of miter ratio of• 6-54
specifying ending shape of• 6-53
specifying ending size of• 6-54

lndex-14

Line (cont'd.)

specifying mask pattern of • 6-53
specifying numerator of miter ratio of• 6-54
specifying pattern for • 6-52
specifying pattern size of• 6-52
specifying shape of joins of • 6-54
specifying shape of the endings of • 6-53
specifying width of • 6-52

Line-style definition
specifying line-style pattern in• 6-71
specifying private data for• 6-72
specifying reference number for• 6-71

Line-style definition aggregate • 6-71 to 6-72

See also DDIF$_LSD aggregate
items in• 6-72t, D-12t
line-style number item in • 6-71
line-style pattern item in • 6-71
line-style private data item in • 6-72

LOCATE ITEM routine • 4-9, CDA-96
Lookup table entry aggregate • 6-82

See also DDIF$_RGB aggregate
blue value item in• 6-82
green value item in • 6-82
index item in• 6-82
items in • 6-82t, D-15t
red value item in• 6-82

M
Marker

specifying attributes for • 6-55
specifying pattern for • 6-55
specifying size for • 6-55
specifying symbol used as • 6-55

Markup system • 1-6
Measurement enumeration • 4-7
Memory management routines• CDA-40, CDA-44,

CDA-48, CDA-110, CDA-113

N
NEXT AGGREGATE routine• 4-5, CDA-99

0
Object identifier

Object identifier (cont'd.)

translating to root aggregate • 4-4
OBJECT ID TO AGGREGATE TYPE routine• 4-4,

CDA-101
Occurrence definition

specifying permitted types of• 6-80
specifying structure definition in• 6-80

Occurrence definition aggregate• 6-80 to 6-81

See also DDIF$_0CC aggregate
items in • 6-81 t, D-14t
occurrence indicator item in • 6-80
structure element indicator item in • 6-80

OPEN CONVERTER routine• 4-13, CDA-103
OPEN FILE routine• 4-2, CDA-106
OPEN STREAM routine • 4-3, CDA-112
OPEN TEXT FILE routine• 4-3, CDA-116
Options file • 2-4
Output formats • 2-1 O to 2-15

p
Page description

including private data in • 6-93
specifying reference label for • 6-93
specifying the type of• 6-93

Page description aggregate • 6-93 to 6-94

See also DDIF$_PGD aggregate
indicator item in • 6-93
items in• 6-93t, D-17t
label item in• 6-93
private data item in• 6-93

Page layout
specifying frame for• 6-95
specifying nominal measure for• 6-94
specifying orientation of• 6-95
specifying prototype for• 6-95
specifying reference label for• 6-94
specifying x shrink amount for• 6-94
specifying x stretch amount for• 6-94
specifying y nominal measurement for • 6-94
specifying y shrink amount for• 6-95
specifying y stretch amount for• 6-94

Page layout aggregate • 6-94 to 6-96

See also DDIF$_PGL aggregate
content item in • 6-95
items in • 6-95t, D-17t
layout identifier item in • 6-94
nominal measure indicator item in • 6-94
orientation item in • 6-95

Page layout aggregate (cont'd.)

prototype item in• 6-95
x shrink indicator item in • 6-94
x stretch indicator item in • 6-94
y shrink indicator item in • 6-95
y stretch indicator item in • 6-94

Page selection
specifying page-side criteria for • 6-96
specifying selected layout for • 6-96

Page selection aggregate • 6-96 to 6-97

See also DDIF$_PGS aggregate
items in• 6-97t, D-18t
page-side criteria item in • 6-96
select page layout indicator item in• 6-96

Page set• 3-14
Path-based layout • 6-41 , 6-42
Path definition

specifying composite path in• 6-72
specifying private data for• 6-72
specifying reference number for• 6-72

Path definition aggregate• 6-72 to 6-73

See also DDIF$_PHD aggregate
description item in • 6-72
items in· 6-72t, D-13t
number item in • 6-72
private data item in• 6-72

Pattern definition

Index

selecting as either solid color or standard pattern •
6-73

selecting color type for• 6-73
specifying blue intensity for• 6-74
specifying color map for• 6-7 4
specifying green intensity for• 6-74
specifying image data unit for• 6-74
specifying private data for• 6-74
specifying red intensity for• 6-73
specifying reference number for• 6-73
specifying standard pattern number for• 6-74

Pattern definition aggregate • 6-73 to 6-75

See also DDIF$_PTD aggregate
blue intensity item in• 6-74
colors item in• 6-74
definition indicator item in • 6-73
green intensity item in• 6-74
items in• 6-74t, D-13t
number item in • 6-73
private data item in• 6-74
raster-pattern item in • 6-7 4
red intensity item in • 6-73
solid color indicator item in • 6-73
standard pattern number item in• 6-74

lndex-15

Index

Polyline
controlling the drawing of line segments of• 6-17
controlling the rendition of• 6-16
specifying the layout of • 6-17

Polyline content aggregate • 6-16 to 6-18

See also DDIF$_LIN aggregate
draw pattern item in • 6-17
flags item in • 6-16
items in • 6-18t, D-4t
line path indicator item • 6-17

Positional layout • 6-41
Position-relative layout • 6-45
Postscript back end • 2-11 to 2-15

data loss in • 2-12
data mapping in • 2-11
processing options in • 2-12

Private content aggregate • 6-24 to 6-25

See also DDIF$_PVT aggregate
external reference index item in• 6-25
items in • 6-25t, D-6t
value indicator item in • 6-24
value name item in • 6-24

Private data • 3-6, 6-24
examples of • 6-24
uses of • 6-24

Private item list • 2-6
Processing options

in Postscript back end • 2-12
in Text back end • 2-11

PRUNE AGGREGATE routine• 4-5, CDA-119
PRUNE POSITION routine• 4-10, CDA-121
PUT AGGREGATE routine• 4-11, CDA-123
PUT DOCUMENT routine• 4-10, CDA-126
Put routine• 5-17, CDA-48

R
Raster image content

See Image content
READ TEXT FILE routine • 4-3, CDA-128
Record definition

specifying segments creating instances of• 6-81
specifying type identifier of• 6-81
specifying variables of• 6-81

Record definition aggregate• 6-81 to 6-82

See also DDIF$_RCD aggregate
contents item in • 6-81
items in • 6-82t, D-14t
tag item in• 6-81

lndex-16

Record definition aggregate (cont'd.)

type item in • 6-81
Reference

processing external • CDA-103
REMOVE AGGREGATE routine• 4-5, CDA-130
Restricted content • 3-6, 6-22 to 6-25

external • 6-22 to 6-23
describing data value of• 6-23
identifying data type of• 6-22
indicating encoding of• 6-23
specifying encoding length of• 6-23

private • 6-24 to 6-25
identifying value of• 6-24
indicating type of data in • 6-24
specifying external reference index for• 6-25

Revisable document • 1-1
relationships in • 3-6 to 3-7

Root aggregate • 6-2
creating • 4-4, CDA-42
definition of• 4-1
deleting • 4-4, CDA-56
document content item in • 6-2
document descriptor item in • 6-2
document header item in • 6-2
items in• 6-2t, D-1t
translating to object identifier• 4-4, CDA-3

Root segment • 3-4, 6-6
Routines

CDA$AGGREGATE_ TYPE_ TO_OBJECT _ID•
4-4, CDA-3

CDA$CLOSE_FILE • 4-2, CDA-5
CDA$CLOSE_STREAM • 4-3, CDA-7
CDA$CLOSE_ TEXT _FILE • 4-3, CDA-8
CDA$CONVERT • CDA-9
CDA$CONVERT_AGGREGATE • 4-10, CDA-26
CDA$CONVERT_DOCUMENT • 4-10, CDA-29
CDA$CONVERT_POSITION • 4-11, CDA-31
CDA$COPY _AGGREGATE• 4-5, CDA-33
CDA$CREATE_AGGREGATE • 4-4, CDA-35
CDA$CREATE_FILE • 4-2, CDA-37
CDA$CREATE_ROOT _AGGREGATE• 4-4,

CDA-42
CDA$CREATE_STREAM • 4-3, CDA-46
CDA$CREATE_TEXT_FILE • 4-3, CDA-51
CDA$DELETE_AGGREGATE • 4-5, CDA-54
CDA$DELETE_ROOT _AGGREGATE• 4-4,

CDA-56
CDA$ENTER_SCOPE • 4-12, CDA-57
CDA$ERASE_ITEM • 4-9, CDA-68
CDA$FIND_DEFINITION • CDA-70
CDA$FIND_ TRANSFORMATION• CDA-73
CDA$FLUSH_STREAM • 4-3, CDA-75

Routines (cont'd.)

CDA$GET _AGGREGATE• 4-11, CDA-77
CDA$GET _ARRAY _SIZE• 4-9, CDA-80
CDA$GET_DOCUMENT • 4-10, CDA-82
CDA$GET_EXTERNAL_ENCODING • CDA-84
CDA$GET _STREAM_POSITION • CDA-86
CDA$GET _TEXT _POSITION • CDA-89
CDA$1NSERT _AGGREGATE • 4-5, CDA-91
CDA$LEAVE_SCOPE • 4-12, CDA-94
CDA$LOCATE_ITEM • 4-9, CDA-96
CDA$NEXT _AGGREGATE• 4-5, CDA-99
CDA$0BJECT_ID_TO_AGGREGATE_TYPE •

CDA-101
CDA$0PEN_CONVERTER • 4-13, CDA-103
CDA$0PEN_FILE • 4-2, CDA-106
CDA$0PEN_STREAM • 4-3, CDA-112
CDA$0PEN_TEXT_FILE • 4-3, CDA-116
CDA$PRUNE_AGGREGATE • 4-5, CDA-119
CDA$PRUNE_POSITION • 4-10, CDA-121
CDA$PUT_AGGREGATE• 4-11, CDA-123
CDA$PUT _DOCUMENT• 4-10, CDA-126
CDA$READ_TEXT_FILE • 4-3, CDA-128
CDA$REMOVE_AGGREGATE • 4-5, CDA-130
CDA$STORE_ITEM • 4-9, CDA-131
CDA$WRITE_TEXT_FILE • 4-3, CDA-137

s
Scope• 4-12 to 4-13
Segment • 3-2 to 3-6

binding attributes to• 6-7
definition of • 4-1
identifying changed attributes in • 6-65
indicating category of the content of• 6-36
listing the variables bound to • 6-36
referencing a type definition for • 6-6
referencing generic content from • 3-9
referencing generic type from • 3-9
root• 6-6
specifying a reference label for• 6-6
specifying available content definitions for• 6-47
specifying available font definitions for• 6-47
specifying available line style definitions for• 6-47
specifying available path definitions for• 6-47
specifying available pattern definitions for• 6-47
specifying available type definitions for· 6-48
specifying content of• 6-7
specifying content streams for • 6-36
specifying generic layout for• 6-7
specifying language for• 6-39

Index

Segment (cont'd.)

specifying name for • 6-6
specifying private attributes for • 6-35
specifying processing characteristics for • 6-36
specifying specific layout for• 6-7
specifying the type of computed content in • 6-37
using generic content with • 3-8 to 3-9
using generic types with • 3-8

Segment attributes aggregate• 6-35 to 6-69

See also DDIF$_SGA aggregate
alternate presentation item in • 6-41
bits per component item in • 6-60
brightness polarity item in • 6-56
component space organization item in• 6-58
component wavelength indicator item in • 6-58
computed content indicator item in • 6-37
content category item in • 6-36
content definition item in• 6-47
content streams item in • 6-36
cross-reference index item in• 6-38
cross-reference segment label item in• 6-38
cross-reference variable label item in• 6-38
data plane significance item in • 6-59
data-planes-per-pixel item in• 6-59
fixed frame position items in • 6-63
font definition item in• 6-47
frame bounding box items• 6-61
frame clipping path item in • 6-62
frame content transformation item in • 6-65
frame flags item in • 6-60
frame outline item in• 6-61
frame position item in • 6-62
function name item in • 6-38
function parameters item in• 6-39
galley frame items in • 6-63 to 6-64
galley layout item in • 6-42
grid type item in • 6-56
horizontal alignment item in • 6-44
inline frame items in • 6-63
item change list item in• 6-65
items in• 6-66t, D-8t
language item in • 6-39
layout format item in • 6-42
layout indicator item • 6-41
layout path item in • 6-42
legend unit denominator item in • 6-40
legend unit name item in • 6-40
legend unit numerator item in • 6-40
line end finish item in • 6-53
line end size indicator item in • 6-54
line end start item in • 6-53

lndex-17

Index

Segment attributes aggregate (cont'd.)

line interior pattern item in • 6-54
line joint item in • 6-54
line mask pattern item in • 6-53
line pattern size item in • 6-52
line progression item in • 6-56
line progression path aspect ratio item in• 6-56
line style definition item in• 6-47
line style item in • 6-52
line width indicator item in • 6-52
lookup table item in • 6-57
margin frame items in • 6-64 to 6-65
marker mask pattern item in • 6-55
marker size indicator item in • 6-55
marker style item in • 6-55
miter limit denominator item in • 6-54
miter limit numerator item in • 6-54
number of components item in • 6-60
path definition item in• 6-47
path orientation indicator item • 6-43
pattern definition item in • 6-47
pixel path aspect ratio item in • 6-56
pixel path item in • 6-56
private attributes item in • 6-35
private data item in • 6-56
reference index item in • 6-38
reference target item in • 6-38
relative horizontal character position item in •

6-45
relative vertical character position item in • 6-45
segment binding item in • 6-36
segment tags item in• 6-36
spectral component mapping item in • 6-57
structure attributes items in• 6-39
text character decimal alignment item in• 6-51
text direction item in• 6-51
text font item in• 6-48
text kerning item in • 6-52
text leader attribute items in • 6-51 to 6-52
text mask pattern item in • 6-48
text position indicator item in • 6-46
text rendition item in • 6-49
text size attribute items in • 6-50
timing descriptor item in • 6-57
type definition item in • 6-48
unit name item in • 6-40
units per measurement item in • 6-40
variable item in • 6-38
vertical alignment item in • 6-44
wrap attributes item in • 6-42

lndex-18

Segment binding
specifying computed variable items in• 6-77
specifying counter variable items for• 6-76 to

6-77
specifying list variable items in• 6-77
specifying name of variable being defined in •

6-75
specifying type of variable value in• 6-75

Segment binding aggregate • 6-75 to 6-78

See also DDIF$_SGB aggregate
computed variable items in • 6-77
counter variable items in • 6-76 to 6-77
items in • 6-78t, D-13t
list variable items in • 6-77
variable name item in • 6-75
variable value indicator item in• 6-75

Segment tag • 6-9
private • 6-9
standard • 6-9

Sequence
definition of• 4-1
inserting an aggregate into • 4-5
locating next aggregate in • 4-5
removing an aggregate from· 4-5, CDA-130

Soft content • 3-1
Soft directive • 6-11

values for• 6-12t
Soft directive aggregate • 6-11

DDIF$_SFT aggregate
soft directive item in• 6-11

Soft value directive • 6-14 to 6-15
specifying escapement constant for • 6-14
specifying escapement ratio denominator for •

6-14
specifying escapement ratio numerator for• 6-14
specifying new variable value for• 6-15
specifying type of• 6-14
specifying variable to be reset by • 6-15

Soft value directive aggregate • 6-14 to 6-15

See also DDIF$_SFV aggregate
directive choice item in • 6-14
escapement constant indicator in • 6-14
escapement ratio item in • 6-14
items in • 6-15t, D-3t
reset value item in• 6-15
reset variable item in • 6-15

Specific attribute
precedence of • 3-9

Specific layout
specifying type of layout for• 6-85

Specific layout aggregate • 6-85 to 6-86

Specific layout aggregate (cont'd.)

See also DDIF$_LS1 aggregate
items in• 6-85t, D-15t
layout indicator item in • 6-85

Still image • 6-21
Stored semantics file attribute • A-1

See also File tag
STORE ITEM routine• 4-9, CDA-131
Stream

closing • 4-2, 4-3, CDA-5, CDA-7
creating• 4-2, 4-3, CDA-37, CDA-46, CDA-106
definition of• 4-1
flushing contents of• 4-3, CDA-75
opening• 4-2, CDA-112
retrieving position in • CDA-86
retrieving size of • CDA-86
returning position in • CDA-31
returning size of• CDA-31
writing a document to • CDA-126
writing aggregates to • CDA-123

Structure attributes
specifying legal types of• 6-39

Structured document • 1-4
Subaggregate

definition of • 4-4
Syntax diagrams

Angle• E-25
AngleRef • E-25
Arc• E-12
ArcPath • E-30
ASCllString • E-24
BeginSegment • E-6
Binding • E-35
BoundingBox • E-18
BreakCriteria • E-41
Category Tag• E-34
Color• E-18
CompositePath • E-29
ComputeDefn • E-19
Conformance Tag• E-34
ContentDefn • E-23
ContentReference • E-18
ContentReferencePrimitive • E-17
CounterDefn • E-35
CounterStyle • E-36
CrossRef • E-19
CubicBezier • E-12
CubicBezierPath • E-30
DDIFDocument • E-4
Directive • E-1 O
DocumentDescriptor • E-5

Syntax diagrams (cont'd.)

DocumentHeader • E-5
Document root segment • E-5
Escapement• E-19
EscapementDirective • E-1 O
Expression • E-36
ExternalReference • E-20
ExternalReflndex • E-23
FillAreaSet • E-12
FontDefn • E-20
FontNumber • E-28
Format• E-21
FormattingPrimitive • E-9
FrameParameters • E-21
Function link• E-23
Galley Attributes • E-40
GalleyFrameParams • E-21
GalleyVerticalPosition • E-22
GenericLayout • E-38
GenMeasure • E-42
GenSize • E-42
GraphicsPrimitive • E-11
lmageAttributes • E-15
lmageCodingAttrs • E-15
lmagePrimitive • E-14
lmgCmptSpcAttrs • E-17
lmgLutData • E-16
lnlineFrameParams • E-21
Label• E-24
Label types • E-24
Languagelndex • E-23
LayoutAttributes • E-41
LayoutGalley • E-39
LayoutObjectType • E-36
LayoutPrimitive • E-39
LeaderStyle • E-8
LegendUnits • E-25
LineAttributes • E-12
LineDefn • E-30
LineEndNumber • E-13
LineJoin • E-14
LineStyleNumber • E-13
MarginFrameParams • E-22
MarginHorizontalPosition • E-22
MarkerAttributes • E-14
MarkerN umber • E-14, E-28
Measure • E-25
MeasurementUnits • E-27
NamedValue • E-27
NamedValuelist • E-28
NamedValueTag • E-34
OccurrenceDefn • E-33

Index

lndex-19

Index

Syntax diagrams (cont'd.)

PageDescription • E-38
PageLayout• E-39
PageSet • E-39
Path Defn • E-29
Path Number• E-28
PatternDefn • E-31
PatternNumber • E-29
Polyline• E-11
PolylinePath • E-30
Position • E-26
Ratio• E-26
RecordDefn • E-37
Recordlist • E-37
Reference • E-31
RenditionCode • E-7
RestrictedContent • E-17
RGB • E-18
RightAngle • E-26
SegmentAttributes • E-31
SegmentPrimitive • E-6
SegmentTag • E-34
SegTypeDefn • E-32
Size• E-26
SpecificLayout • E-40
StandardPattern • E-31
StorageSystem Tag • E-34
Stream Tag • E-35
StringExpression • E-37
Stringlayout • E-8
StructureDefinition • E-32
StructureElement • E-33
TabStop • E-43
TabStoplist • E-42
Tag• E-33
TextAttributes • E-7
Textlayout • E-8
TextPrimitive • E-6
Transformation • E-35
ValueData • E-28
ValueDirective • E-9
Variablelabel • E-24
Variable Reset • E-10
WrapAttributes • E-40
XCoordinate • E-26
YCoordinate • E-27

T
Tab stop

lndex-20

Tab stop (cont'd.)

specifying horizontal position of • 6-97
specifying leader character for • 6-98
specifying type of alignment for • 6-97

Tab stop aggregate• 6-97 to 6-98

See also DDIF$_ TBS aggregate
items in• 6-98t, D-18t
tab stop horizontal position indicator item in•

6-97
tab stop leader item in • 6-98
tab stop type item in • 6-97

Tag

See File tag
Text

controlling kerning for • 6-52
specifying alignment characters for• 6-51
specifying amount of space used by the leader

character in• 6-51
specifying attributes for • 6-48 to 6-52
specifying format of lines wrapped by the formatter

• 6-86
specifying format of lines wrapped by the user•

6-86
specifying leader alignment in• 6-51
specifying maximum consecutive hyphenated lines

of• 6-87
specifying maximum orphan size of • 6-87
specifying maximum widow size of• 6-87
specifying one or more renditions for • 6-49
specifying pattern and color of glyphs in • 6-48
specifying rules that affect hyphenation of • 6-87
specifying string used to fill leader space in • 6-51
specifying the direction of characters in• 6-51
specifying the font used for • 6-48
specifying the height of • 6-50
specifying the ratio for character widths in • 6-50
specifying type of leader to use in • 6-51

Text attribute• 6-9, 6-48
Text back end• 2-11

data loss in• 2-11
data mapping in • 2-11
processing options in • 2-11

Text content • 3-1, 3-5, 6-9
general • 6-1 O
Latin 1 • 6-1 0
specifying general character set for • 6-1 O
specifying Latin1 character set for• 6-10

Text content aggregate

See also DDIF$_ TXT aggregate
item in• 6-10

Text file
closing • 4-3, CDA-8
creating • 4-3, CDA-51
opening • 4-3, CDA-116
reading a line from• 4-3, CDA-128
returning position in • CDA-89
returning size of• CDA-89
writing a line to• 4-3, CDA-137

Text front end• 2-10
data loss in• 2-1 O
data mapping in • 2-10
document syntax errors in• 2-1 O
external file references in • 2-1 0

Text kerning • 6-52
Time-varying image • 6-21
Transformation

returning information about• CDA-73
specifying type of parameter specified for• 6-83
specifying value of the parameter for • 6-84

Transformation aggregate • 6-83 to 6-84

See also DDIF$_ TRN aggregate
items in • 6-84t, D-15t
transformation parameter indicator item in • 6-83

Type
generic • 3-8

referencing • 3-9
Type definition

specifying parent for• 6-78
specifying private data for• 6-78
specifying reference label for• 6-78
specifying segment attributes for• 6-78

Type definition aggregate• 6-78 to 6-79

See also DDIF$_ TYD aggregate
attributes item in• 6-78
items in• 6-79t, D-14t
label item in• 6-78
parent item in• 6-78
private data item in• 6-78

u
User routine

allocation • CDA-40, CDA-44, CDA-48,
CDA-110, CDA-113

deallocation • CDA-40, CDA-44, CDA-48,
CDA-110, CDA-113

Flush• CDA-76
Get• 5-13, CDA-114
Get-position• CDA-87

User routine (cont'd.)

Put• CDA-48

v
Variable

encoding of• 4-7
Variable computed content • 6-38
VIEW command• 2-7
VMS

support for CDA in • A-1

w
Wrap attributes aggregate• 6-86 to 6-88

See also DDIF$_LW1 aggregate
hyphenation flags item in• 6-87
hyphenation lines item in • 6-87
items in• 6-88t, D-15t
maximum orphan size item in • 6-87
maximum widow size item in • 6-87
quad format item in • 6-86
wrap format item in • 6-86

WRITE TEXT FILE routine • 4-3, CDA-137

Index

lndex-21

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS Compound Document
Architecture Manual

AA-MG30A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape ------------------~lllr--------------­
No Postage

~amnoma™ ~=~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

-- Do Not Tear - Fold Here --

I

I
I
I
I
I
I

Reader's Comments VMS Compound Document
Architecture Manual

AA-MG30A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·- ~o;~t;;;:d Here ~d Ta~ ------------------~lllf-------;~~;~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

-- Do Not Tear - Fold Here --

I
I
I
I
I
I

