
VAX DOCUMENT
User Manual, Volume 1

Order Number: AA-JT84B-TE

July 1988

This manual describes the VAX DOCUMENT product for the new user.
It includes a full description of the doctype-independent tags used in all
types of VAX DOCUMENT documents.

Revision/Update Information: This revised manual supersedes the
VAX DOCUMENT User Manual,
Volume 1 Version 1.0 (Order Number
AA-JT84A-TE).

Operating System and Version: VMS Version 4.7 or higher
Micro VMS Version 4. 7 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX DOCUMENT Version 1 . 1

First printing, July 1987
Revised, July 1988

The information in this document is subject to change without· notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1987, 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

~DrnDD~DTM DECwriter RSX

ZK4747

This document was prepared using VAX DOCUMENT, Version 1.0

Contents

PREFACE

NEW AND CHANGED FEATURES

CHAPTER 1 INTRODUCTION TO VAX DOCUMENT

1.1 THE VAX DOCUMENT DOCUMENTATION SET

1.2 FEATURES OF VAX DOCUMENT

1.3 USING A GENERIC MARKUP LANGUAGE

1.4 INTRODUCTION TO THE DOCUMENT COMMAND LINE

1.5 TYPES OF DOCUMENTS

1.6 OVERVIEW OF THE VAX DOCUMENT SYSTEM
1.6.1 How VAX DOCUMENT Processes a File
1.6.2 Informational Messages
1.6.3 Doctype-lndependent and Doctype-Specific Tags
1.6.4 Context-Sensitive Tags

1.7 PROCESSING BOOKS AND ELEMENTS OF BOOKS

CHAPTER 2 CREATING AN SDML FILE

2.1 GLOBAL TAGS
2.1 . 1 Tag Arguments

2.2 CODING AN SDML FILE

2.3 SPECIAL CODING IN AN SDML FILE
2.3.1 Coding Text That Looks Like a Tag

xv

xix

1-1

1-1

1-2

1-3

1-4

1-4

1-6
1-6
1-7
1-8
1-9

1-9

2-1

2-1
2-2

2-2

2-3
2-3

iii

Contents

2.3.2

2.3.3

2.3.4
2.3.5
2.3.6
2.3.7

Coding File Specifications That Include Angle Brackets
as Arguments
Coding Opening and Closing Parentheses in an
Argument
Coding a Backslash in an Argument
Coding a Vertical Bar or Ampersand in an Argument
Coding a Hyphen in Text
Coding Tab Characters in Text

CHAPTER 3 USING COMMON TAGS

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

iv

PARAGRAPHS

HEADINGS

CHAPTERS

FRONT MATTER
3.4.1 Title Page
3.4.2 Copyright Page
3.4.3 Preface

BACK MATTER
3.5.1 Appendixes
3.5.2 Glossary

LISTS

TABLES
3.7.1 Controlling Table Attributes

3.7.1.1 Controlling a Table's Margins• 3-10
3.7.1.2 Controlling Page Breaks in Tables• 3-11

FIGURES
3.8.1 Figure Elements
3.8.2 Controlling Figure Attributes

3.8.2.1 Controlling a Figure's Margins • 3-16
3.8.2.2 Controlling Page Breaks in Figures • 3-17

3.8.3 Including Graphics Files

2-4

2-5
2-5
2-6
2-6
2-7

3-1

3-1

3-2

3-2

3-3
3-3
3-4
3-4

3-4
3-5
3-5

3-5

3-6
3-9

3-14
3-15
3-16

3-18

3.9 EXAMPLES
3.9.1 Informal Examples
3.9.2 Formal Examples

Contents

3-19
3-20
3-20

CHAPTER 4 PROCESSING AND PRINTING FILES AND BOOKS 4-1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

THE FOUR TYPES OF PROCESSES

CHAIN OF PROCESSING

PROCESSING INDIVIDUAL FILES

CONTROLLING FILE PROCESSING
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

4.4.6

4.4.7
4.4.8

4.4.9

Keeping Intermediate Files (Using /KEEP)
Processing in Batch ·Mode (Using /BATCH)
Printing an Existing File
Reprocessing a File for a Different Destination
Processing or Reprocessing Selected Pages (Using
/DEVICE_CONVERTER)
Altering Page Parameters (Using
/DEVICE_CONVERTER)
Including Additional Files (Using /INCLUDE)
Conditionalizing Files (Using /CONDITION)
4.4.8. 1 Using the <SELCONDITION> Tag • 4-8
4.4.8.2 Setting More than One Condition • 4-8
Assigning a New Output File Name

BOOKBUILDING
4.5.1
4.5.2
4.5.3

4.5.4

Creating Input Files
Creating a Profile
Processing a Profile
4.5.3.1 Listing the Input Files• 4-11
4.5.3.2 Defining Logical Names for Included Files• 4-11
Recovering from Errors

PROCESSING AN ELEMENT OF A BOOK
4.6.1 Building a Conditionalized Book Element

PROCESSING A SUBELEMENT OF A BOOK

SIMULTANEOUS ELEMENT BUILDS AND BOOKBUILDS

4-1

4-2

4-2

4-3
4-4
4-5
4-5
4-6

4-6

4-7
4-7
4-7

4-8

4-9
4-9

4-10
4-11

4-13

4-13
4-14

4-14

4-15

v

Contents

CHAPTER.5 TROUBLESHOOTING SDML FILES

5.1

5.2

CHAPTER 6

6.1

6.2

6.3

6.4

6.5

6.6

ERROR MESSAGES

OUTPUT PROBLEMS
5.2.1 Incorrect Paragraph Spacing
5.2.2 Problems with Examples
5.2.3 Incorrect Sequencing of Formal Elements

REFERENCING SYMBOL-NAMES

CREATING SYMBOL-NAMES

STORING SYMBOL-NAMES IN A CROSS-REFERENCE FILE

CREATING SYMBOL-NAMES FOR TEXT AND BOOK ELEMENTS

REFERENCING TEXT AN.D BOOK ELEMENT SYMBOL-NAMES
6.4.1 Controlling the Output of Your Reference
6.4.2 Referencing Symbol-Names in Other Files

CREATING A PRELIMINARY PROFILE

ADDING NEW SYMBOL-NAMES

CHAPTER 7 GENERATING A TABLE OF CONTENTS, INDEX, AND

5-1

5-1

5-3
5-3
5-3
5-4

6-1

6-1

6-2

6-2

6-4
6-4
6-6

6-6

6-7

MASTER INDEX 7-1

7.1

7.2

vi

CREATING A TABLE OF CONTENTS

CREATING AN INDEX
7 .2.1 Creating Main Index Entries

7-1

7-2
7-4

Contents

7.2.2 Using Indexing Tag Attributes 7-5
7.2.2.1 Using the BEGIN and END Attributes • 7-5
7.2.2.2 Using the BOLD Attribute • 7-6
7.2.2.3 Using the IT ALIC Attribute • 7-6
7.2.2.4 Using the MASTER Attribute• 7-7
7.2.2.5 Using the <XAPPEND> Attribute• 7-7
7.2.2.6 Using the <XSORT> Attribute• 7-7

7.2.3 Creating Cross-Reference Index Entries 7-8
7.2.4 Processing an Index 7-8
7.2.5 Using Indexing Options 7-9

7.2.5.1 Using the GUIDE_HEADINGS and
NOGUIDE_HEADINGS Keywords• 7-10

7.2.5.2 Using the OVERRIDE_MASTER and
NOOVERRIDE_MASTER Keywords• 7-10

7.2.5.3 Using the SORT Keyword • 7-10

7.3 CREATING A MASTER INDEX 7-11
7.3.1 Creating Intermediate Index Files 7-12
7.3.2 Creating the Master Index Data File 7-12
7.3.3 Creating the Master Index File 7-13

CHAPTER 8 SPECIAL FEATURES 8-1

8.1 PROVIDING EMPHASIS 8-1

8.2 USING FOOTNOTES 8-3

8.3 USING CALLOUTS 8-4

8.4 DRAWING LARGE BRACES AND BRACKETS 8-5

8.5 CONTROLLING CASE 8-6

8.6 PROVIDING QUOTATION MARKS 8-6

8.7 PLACING PARENTHESES AROUND A SINGLE CHARACTER 8-7

8.8 DRAWING HORIZONTAL AND VERTICAL ELLIPSES 8-7

8.9 SHOWING SPECIAL CHARACTERS 8-8

vii

Contents

8.10 USING FORMATTING TAGS 8-8
8.10. 1 Specifying Page Breaks 8-8
8.10.2 Specifying Line Breaks 8-8
8.10.3 Keeping Text on a Single Line 8-9
8.10.4 Controlling Page and Line Breaks for Final Production _ 8-9

CHAPTER 9 DOCTYPE-INDEPENDENT TAG DESCRIPTIONS 9-1
<ABSTRACT> 9-2

<ACCENT> 9-3

<ALIGN_AFTER> 9-4

<ALIGN_CHAR> 9-5

<ALIGN_NUMBER> 9-7

<AMPERSAND> 9-9

<APPENDIX> 9-10

<BACKSLASH> 9-11

<BOX> 9-12

<CALLOUT> 9-13

<CALLOUT_REF> 9-14

<CALLOUTS> 9-15

<CENTER_LINE> 9-17

<CHAPTER> 9-18

<CHEAD> 9-19
<CHECK_FOR_INCLUSION> 9-20

<CO> 9-22

<CODE_EXAMPLE> 9-23

<COMMENT> 9-26

<CONDITION> 9-28

<CONTENTS_FILE> 9-31

<COPYRIGHT_DATE> 9-32

<COPYRIGHT_PAGE> 9-33

<CP> 9-34

<CPAREN> 9-35

<DATE> 9-36
<DEFINE_BOOK_NAME> 9-38

<DEFINE_SVMBOL> 9-40

<DEFINITION_LIST> 9-42

<DEFINITION_LIST_HEAD> 9-44

< DEFLIST_DEF> 9-45

<DEFLIST_ITEM> 9-46

<DELAYED> 9-47

<DOCTYPE> 9-49

viii

Contents

<DOUBLE_QUOTE> 9-51
<ELEMENT> 9-53
<ELLIPSIS> 9-54
<EMPHASIS> 9-55
<ENDCOPYRIGHT_PAGE> 9-57
<ENDPART_PAGE> 9-58
<ENDTITLE_PAGE> 9-59
<EXAMPLE> 9-60
<EXAMPLE-ATTRIBUTES> 9-63
<EXAMPLE_FILE> 9-67
<EXAMPLE_SPACE> 9-68
<FCMD> 9-70
<FIGURE> 9-72
<FIGURE-ATTRIBUTES> 9-81
<FIGURE_FILE> 9-83
<FIGURE_SPACE> 9-87
<FILE_SPEC> 9-89
<FINAL_CLEANUP> 9-91
<FOOTNOTE> 9-93
<FOOTNOTE_ TEXT> 9-96
<FOOTREF> 9-98
<FORMAT> 9-100
<FPARM> 9-101
<FPARMS> 9-102
<FRONT_MATTER> 9-103
<GDEF> 9-105
<GLOSSARY> 9-106
<GREF> 9-108
<GTERM> 9-109
<HEADX> 9-110
<HELLI PSIS> 9-112
<HYPHENATE> 9-113
<ICON> 9-114
<ICON_FILE> 9-116
<ICON_ TEXT> 9-118
<INCLUDE> 9-119
<INCLUDES_FILE> 9-120
<INDEX_FILE> 9-122
<INTERACTIVE> 9-123
<KEEP> 9-125
<KEYWORD> 9-126
<LE> 9-127

ix

Contents

<LINE> 9-128
<LINE_ART> 9-131
<LIST> 9-133
<LITERAL> 9-140
<LOWERCASE> 9-141
<MARK> 9-142
<MATH> 9-144
<MATH_CHAR> 9-157
<MCS> 9-166
<NESTED_TABLE_BREAK> 9-170
<NEWTERM> 9-172
<NOTE> 9-173
<OPAREN> 9-174
<ORDER_NUMBER> 9-175
<P> 9-176
<PAGE> 9-178
<PARENDCHAR> 9-180
<PART> 9-182
<PART_PAGE> 9-184
<PREFACE> 9-185
<PREFACE_SECTION> 9-186
<PRINT_DATE> 9-187
<PROFILE> 9-188
<QUOTE> 9-190
<REFERENCE> 9-192
<REVISION> 9-195
<REVISION_INFO> 9-197
<RIGHT_LINE> 9-198
<RULE> 9-199
<S> 9-200
<SAMPLE_ TEXT> 9-202
<SET_APPENDIX_LETTER> 9-203
<SET_CHAPTER_NUMBER> 9-205
<SET_CONDITION> 9-207
<SET_FIGURE_FILE_SPACING_DEFAULT> 9-208
<SET_ TABLE_ROW_BREAK_DEFAULT> 9-210
<SINGLE_QUOTE> 9-212
 9-214
<SPECIAL_CHAR> 9-217
<SUBHEADx> 9-219
<TABLE> 9-220

x

<TABLE_ATTRIBUTES > 9-222
<TABLE_FILE> 9-224
<TABLE_HEADS> 9-226
<TABLE_KEY> 9-227
<TABLE_KEYREF> 9-229
<TABLE_RQW> 9-230
<TABLE_RQW_BREAK> 9-232
<TABLE_SETUP> 9-235
<TABLE_SPACE> 9-237
<TABLE_UNIT> 9-239
<TABLE_UNIT_HEADS> 9-241
<TAG> 9-243
<TITLE> 9-244
<TITLE_PAGE> 9-245
<U> 9-246
<UNDERLINE> 9-247
<UPDATE_RANGE> 9-248
<UPPERCASE> 9-251
<USER_LMESSAGE> 9-252
< USER_W_MESSAGE> 9-254
<VALID_BREAK> 9-256
<VALID_TABLE_RQW_BREAK> 9-257
<VARIABLE> 9-258
<VBAR> 9-259
<X> 9-260
<Y> 9-264

APPENDIX A VAX DOCUMENT COMMAND SUMMARY

APPENDIX B USING LSE WITH VAX DOCUMENT

B.1 USING LSE WITH VAX DOCUMENT
B.1.1
B.1.2
B.1.3

Entering Source Code Using Tokens and Placeholders _
Compiling Source Code
Examples
B. 1.3. 1 Lists • B-5
B. 1.3.2 Tables • B-5
B. 1.3.3 Profile • B-6
B.1.3.4 Sample Template• B-7

Contents

A-1

B-1

B-1
B-1
B-3
B-4

xi

Contents

B.1.4 VAX DOCUMENT Tokens and Placeholders B-8

APPENDIX C MESSAGES C-1

C.1 DOCUMENT COMMAND MESSAGES C-2

C.2 TAG TRANSLATOR MESSAGES C-9

C.3 TEXT PROCESSOR MESSAGES C-47

C.4 DEVICE CONVERTER MESSAGES C-70

C.5 INDEX FACILITY MESSAGES C-76

APPENDIX D SUMMARY OF VAX DOCUMENT TAGS D-1

INDEX

TABLES
1-1 VAX DOCUMENT Doctypes 1-5
1-2 VAX DOCUMENT Processors 1-7
2-1 Coding Special Characters 2-3
2-2 How to Code a Hyphen in Text 2-6
3-1 Table Tags 3-7
3-2 Special Table Functions 3-8
3-3 Figure Tags 3-15
3-4 Tags for Including Graphics Files 3-18
3-5 Special Example Functions 3-21
4-1 Destination Keywords 4-3
4-2 DCL Commands for Printing Files 4-5
4-3 Profile Tags 4-10
6-1 Element Types and Default Output of Symbol-Names 6-5
8-1 Examples of Emphasis Tags 8-3
9-1 Supported Document Types 9-49
9-2 Summary of Alternate Designs for Doctypes 9-50
9-3 <MA TH> Expressions 9-147
9-4 Tags for Mathematical Functions 9-151

xii

Contents

9-5 <MATH_CHAR> Symbols 9-157
9-6 Element Types and Default Output of Symbol-Names 9-193
A-1 Default File Types A-3
A-2 VAX DOCUMENT Doctypes A-4
B-1 LSEDIT Commands B-2
D-1 Summary of VAX DOCUMENT Tags D-1

xiii

Preface

Document Structure
This manual describes the VAX DOCUMENT generic markup system and the
tags used to create all VAX DOCUMENT types of documentation.

• Chapter 1 provides an introduction of the VAX DOCUMENT system.

• Chapters 2 and 3 describe how to create input files and use basic text
elements within those input files.

• Chapter 4 discusses processing of input files, including how to build a
book.

• Chapter 5 describes some methods to troubleshoot input files.

• Chapter 6 explains how a user can cross-reference symbol-names
throughout files and books.

• Chapter 7 describes how to create a table of contents, an index, or a
master index.

• Chapter 8 explains the coding of some special VAX DOCUMENT features.

• Chapter 9 is the reference section of the book, containing an alphabetic
listing of all the SDML tags that are used in any doctype. Each tag is
explained in full, with examples to illustrate the correct coding.

• Appendix A explains the DOCUMENT command and the command's
parameters and qualifiers.

• Appendix Bis an overview of the Language-Sensitive Editor that can be
used with VAX DOCUMENT.

• Appendix C lists and explains the error messages users could see when
processing source files.

• Appendix Dis a table of all SDML tags (both global and doctype-specific).
It also indicates in which doctype the tag is valid and summarizes the
tag's use.

The VAX DOCUMENT User Manual, Volume 2 provides a description of the
tags used in specific doctypes.

The VAX DOCUMENT Design Samples manual provides information on each
of the doctyp•:? designs available in VAX DOCUMENT and provides samples
of each design.

Intended Audience
This book is intended for writers, editors, and general users who wish to
produce technical manuals, brochures, or even business letters or overhead
slides using VAX DOCUMENT. Familiarity with a text editor is presumed, as
is a basic knowledge of the VMS operating system.

xv

Preface

Associated Documents

Conventions

xvi

The reader of this manual should be familiar with:

• Step-by-Step: Writing with VAX DOCUMENT

Other books in the documentation set for VAX DOCUMENT Version 1.1
which describe the more technical aspects of the product are:

• VAX DOCUMENT User Manual, Volume 2

• VAX DOCUMENT Doctype Designer's Guide

• VAX DOCUMENT Installation Guide

• VAX DOCUMENT Design Samples

Within both the VAX DOCUMENT User Manuals, Volumes 1 and 2, capitalized
words within syntax statements indicate specific commands or keywords to be
entered. Lowercase words indicate user-specified parameters or arguments.
Optional items within syntax statements are enclosed in brackets.

Within the reference chapters in the VAX DOCUMENT User Manuals, Volumes
1 and 2, the discussion of each tag follows a fixed order. First, the name of
the tag is followed by a brief overview that describes the purpose of the tag.
Following the overview is a format section that displays the syntax of the tag:
any optional or required arguments and the information required, any related
tags, any restrictions on the use of the tag, and any required terminators, if
needed.

The category of "related tag" has been defined broadly. A tag is related to the
tag under discussion if one of the following criteria is met:

• It is required for use of the tag under discussion.

• It marks a text element of the same kind as the tag under discussion.

• It is commonly used with the tag under discussion.

Following the format section is an optional description section. The
description expands the overview and presents more detailed information
on the use of the tag. Not every tag requires a description section.

The discussion of a tag concludes with at least one example, or a reference
to an example. The example shows how the tag is used in an SDML file and
what the formatted result is when the file is processed for printing.

Output examples may vary depending on the doctype you processed the
example under or on whether any doctype modifications have been made
to your local installation of VAX DOCUMENT. Each output example is
introduced by a form of the sentence "This example may produce the
following output" to remind you that the output examples may vary.

Preface

The following table lists some of the typographical conventions used in
this manual.

Convention

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated) shown
within a box indicates that you press a key on the
keyboard; in text, a key name is not enclosed in a
box. In this example, the key is the RETURN key.
(Note that the RETURN key is not usually shown
in syntax statements or in all examples; however,
you must press the RETURN key after entering a
command or responding to a prompt.)

In examples, a vertical ellipsis represents the omission
of data that the system would display in response to
a command or of data a user would enter.

In examples, a horizontal ellipsis indicates that
additional parameters, values, or other information
can be entered, that preceding items can be repeated
one or more times, or that optional arguments in a
statement have been omitted.

Brackets indicate that the enclosed item is optional.
(Brackets are not, however, optional in the syntax of
a directory name in a file specification.)

The term quotation marks is used to refer to double
quotation marks ("). The term apostrophe (') is used
to refer to a single quotation mark.

xvii

New and Changed Features

The following table lists the new and changed SDML tags for VAX
DOCUMENT Version 1.1 (see Chapter 9 for a complete description of any of
these tags):

Type SDML Tag

New <DELAYED>

Changed <FIGURE_FILE>

New <FILE_SPEC>

Changed <ICON_FILE>

New <SELFIGURE_FILE_
SPACING_DEFAULT>

New <SELTABLE_RQW_
BREAK_DEF AULT>

Changed <T ABLE_A TTRIBUTES>

Description

A doctype-independent tag that allows
you to specify text that contains SDML
tags in an argument to another tag.

This tag now accepts a keyword
argument of PS rather than POST to
specify a POSTSCRIPT®device, and a
keyword argument of LINE rather than
LINE_PRINTER to specify a monospaced
line printer.

A doctype-independent tag that allows
you to specify a file specification
containing angle brackets as an
argument to an SDML tag without
VAX DOCUMENT interpreting that file
specification as an SDML tag.

This tag now accepts a keyword
argument of PS rather than POST to
specify a POSTSCRIPT device, and a
keyword argument of LINE rather than
LINE_PRINTER to specify a monospaced
line printer.

A doctype-independent tag that allows
you to override the default amount of
blank space that appears before and
after an included graphics file.

A doctype-independent tag that allows
you to override the default value for a
multipage table's first valid break.

This tag now accepts two new keyword
arguments. The CONTROLLED keyword
specifies that the breaking of a table will
be under explicit control of the <TABLE_
ROW_BREAK> tags only. The SINGLE_
SPACED keyword specifies that the rows
in a table are to be single-spaced.

®Postscript is a registered trademark of Adobe Systems, Inc.

xix

New and Changed Features

xx

The following table lists the new and changed qualifiers and parameters for
VAX DOCUMENT Version 1.1 (see Appendix A for a complete description of
any of these parameters or qualifiers):

Qualifier
Type or Parameter

New /OUTPUT

Changed /DEVICE_CONVERTER

Changed LINE_PRINTER

Changed LN03_LASER_PRINTER

Changed /MASTER_INDEX

Changed POSTSCRIPT

Description

Allows the user to redirect the VAX
DOCUMENT output file to a file other
than the default.

The MUL TINATIONAL_CHARACTER_
SET keyword is no longer valid; by
default the DEC multinational character
set is used for line printer type devices.

The new FALLBACK keyword allows
users to disable the DEC multinational
character set for a seven-bit monospaced
device.

LINE_PRINTER is no longer a default
destination keyword for VAX
DOCUMENT Version 1.1; the new default
keyword for that type of destination is
LINE.

LN03_LASER_PRINTER is no longer a
default destination keyword for VAX
DOCUMENT Version 1.1; the new default
keyword for that type of destination is
LN03.

Master index processing no longer
terminates at the text processing stage;
it now runs to completion and generates
a printable file. Also all the keywords
accepted by the /INDEX qualifier are
now accepted by the /MASTER_INDEX
qualifier.

POSTSCRIPT is no longer a default
destination keyword for VAX
DOCUMENT Version 1 . 1 ; the new default
keyword for that type of destination is
PS. In addition the default file types
associated with the POSTSCRIPT
keyword have been changed from
DVl_POST to DVLPS, and POST to PS.

1 Introduction to VAX DOCUMENT

The VAX DOCUMENT system for producing technical documentation is
designed to fully automate the creation of documentation from generically
coded input files. VAX DOCUMENT supports the creation of technical
documentation from the earliest stages of a document's planning to the final
copy that emerges ready for production.

The basis of the VAX DOCUMENT system is an integrated series of software
processors that convert generically coded source files into formatted final
output. This integrated system allows users to perform the following
functions:

• Write and maintain files for a document

• Produce output for a wide range of devices

• Correct errors and incorporate changes into files with a text editor

Although it uses a powerful, high-level language for text processing, VAX
DOCUMENT is not difficult to learn. One or two trial runs of an input file
through the processors is all you need do to get a good grasp of the system. It
is recommended that you work through the exercises in Step-by-Step: Writing
with VAX DOCUMENT before you begin more complex production tasks.

This chapter gives a brief overview of the VAX DOCUMENT system and
introduces concepts you need to understand and use the system.

1.1 The VAX DOCUMENT Documentation Set
The books in the VAX DOCUMENT documentation set are written for three
audiences: a writer or editor who will use VAX DOCUMENT to create
documentation, a system manager who will install and maintain the system,
and a doctype designer who will create new doctypes for local use. The
do~umentation set includes the following books:

• Step-by-Step: Writing with VAX DOCUMENT

• VAX DOCUMENT User Manual, Volume 1

• VAX DOCUMENT User Manual, Volume 2

• VAX DOCUMENT Design Samples

• VAX DOCUMENT Doctype Designer's Guide

New users of VAX DOCUMENT might want to start with Step-by-Step:
Writing with VAX DOCUMENT for a beginning tutorial of how to use the
system. The VAX DOCUMENT User Manual, Volume 1 contains more detailed
information, including a reference chapter of the global tags (tags available
in all the doctypes). The VAX DOCUMENT User Manual, Volume 2 contains
detailed information on the doctype-specific tags.

1-1

Introduction to VAX DOCUMENT

Doctype designers might want to start with Step-by-Step: Writing with VAX
DOCUMENT and then progress to the VAX DOCUMENT Doctype Designer's
Guide. The VAX DOCUMENT Design Samples shows the various doctype
designs available in each of the VAX DOCUMENT doctypes.

1 .2 Features of VAX DOCUMENT
The following are some of the most important features of VAX DOCUMENT.

Text Formatting

• Adjustable text alignment

• All POSTSCRIPT® and LN03 fonts support the full DIGITAL Multinational
Character Set

• Automatic page numbering

• Automatic headers/footers

• Controllable hyphenation

• Multicolumn output

Publishing

• A sophisticated table utility for creating tables in multicolumn formats

• Automated cross-referencing

• Automated collation of table of contents, chapters, and headings

• Automated generation of indexes and master indexes

• Automated generation of table of contents

• Availability of 15 basic document designs

• Batch or interactive processing support

• Generation of footnotes in several formats

Supported Output Devices

• DIGITAL's POSTSCRIPT devices, such as the PRINTSERVER 40 and the
LN03R SCRIPTPRINTER

• Line printers

• LN03 and LN03 PLUS laser printers

• Terminal display, to read output on a terminal screen

• VMS Mail format, to read from within the VMS Mail Utility

® PostScript is a registered trademark of Adobe Systems, Inc.

1-2

Introduction to VAX DOCUMENT

1 .3 Using a Generic Markup Language
The language that is used to mark up a file for processing through VAX
DOCUMENT is referred to as generic because it is used, unchanged, to
produce any type of document. Using a generic markup system requires a
different perspective on writing than is needed when you use a formatting
language (such as DIGITAL Standard Runoff). It takes time to become
accustomed to thinking solely in terms of content rather than format.
You need not think in terms of margins, spacing, and other formatting
characteristics. Instead, when using a markup system like VAX DOCUMENT,
you must think in terms of text elements. This means that for each individual
element of text, such as the start of a paragraph, an emphasized word, a
heading, and so on, you identify that text element for the processor by tagging
it.

For example, compare a sample of DIGITAL Standard Runoff (DSR) code to
the code of VAX DOCUMENT. DSR is coded as follows:

.b.lm5.nf.nj
Here is a sample of text that could be
processed by a text processor .
. lmO.f.j.

This method requires users to remember the current margins, the amount to
indent the text, and so on, each time they type an example. Using SDML,
the underlying format is controlled for consistency by the document type
(doctype). The example is coded with tags that generically label the kind of
text they are formatting:

<CODE_EXAMPLE>
Here is a sample of text that could be
processed by a text processor.
<ENDCDDE_EXAMPLE>

VAX DOCUMENT automatically specifies the correct formatting instructions
for a chosen doctype, freeing the writer from the task of formatting text and
allowing the writer to concentrate on the task of writing.

The language that you use to tag a file, the Standard DIGITAL Markup
Language (SDML), contains a full set of tags for naming all the text elements
commonly found in technical documentation. Tagging text elements is
discussed in detail in Chapters 2 and 4. For now, just realize that you do
not need to control the format as you write. The formatting is taken care of
automatically during processing.

All of your writing is_d911~in an input file, which is also called an SDML file
because of its file extension of .SDML. When you create a new file that will
eventually be processed through VAX DOCUMENT, always give the file an
.SDML extension.

1-3

Introduction to VAX DOCUMENT

1.4 Introduction to the DOCUMENT Command Line
One command, typed at the DCL prompt, is used to process any type of VAX
DOCUMENT file:

$ DOCUMENT input-file-spec doctype.design destination

The DOCUMENT command requires three parameters:

• Input-file-spec

Specifies the input file for VAX DOCUMENT. This file is by default an
SDML file containing SDML tags. However, it may also be one of the
intermediate files generated by VAX DOCUMENT.

• Doctype

Specifies the document type keyword for which the input file should be
processed. This keyword specifies the kind of document to be created
(a letter, a software manual, a journal article, and so on). A doctype can
comprise several different designs; in that case, the design keyword is
specified after the doctype keyword, separated from it by a period.

• Destination

Specifies the final processing destination for the input file. This keyword
typically specifies a format used by a printer, but may specify formats for
terminals or the VMS Mail Utility (MAIL).

You can also add qualifiers to the DOCUMENT command to create indexes,
master indexes, tables of contents, and to modify the default processing of
your input file. The DOCUMENT command, parameters, and qualifiers,
are explained in Appendix A. Chapter 4 discusses various processing tasks
accomplished by using the command line.

1.5 Types of Documents

1-4

One of .,most powerful features of VAX DOCUMENT is its ability to format
the same input file into a variety of document types (doctypes). The standard
doctypes offered with the product cover a range of documentation needs.
For VAX DOCUMENT Version 1.1, there are seven supported doctypes (see
Table 1-1). Also, most doctypes offer more than one design. The doctypes
are explained fully in the VAX DOCUMENT User Manual, Volume 2.

In Table 1-1, the first design listed for each doctype is the default design. It
is designated when you type the doctype with no design on the DOCUMENT
command line. For example, specifying MANUAL on the command line
defaults to MANUAL. REFERENCE.

Table 1-1 VAX DOCUMENT Doctypes

Doctype

ARTICLE

LETTER

MANUAL

MILSPEC

OVERHEADS

REPORT

SOFTWARE

Design

ARTICLE

LETTER

MANUAL.GUIDE

MANUAL.PRIMER

MANUAL.REFERENCE

MILSPEC

OVERHEADS

OVERHEADS.35MM

REPORT

REPORT.TWOCOL

SOFTWARE.BROCHURE

SOFTWARE.GUIDE

SOFTWARE. HANDBOOK

SOFTWARE. POCKET_
REFERENCE

SOFTWARE.REFERENCE

SOFTWARE.SPECIFICATION

Introduction to VAX DOCUMENT

Description

Creates an article format in an 8~ x 11 inch format, with
two columns for text.

Creates memos and letters.

Creates a user manual in a 7 x 9 inch trim size with
numbered headings; it is intended for chapter-oriented
tutorial material.

Creates a user manual in a 7 x 9 inch trim size with
unnumbered headings; it is intended for chapter-oriented
primer material.

Creates a user manual in an 8~ x 11 inch trim size with
numbered headings; it is intended for reference material.

Offers a full implementation of the United States
Department of Defense Military Specification Standard
MIL-STD-490A and MIL-STD-2167. It accepts the full
range of VAX DOCUMENT global tags, with the exception
of the tags used to create part pages.

Creates a page with an 8~ x 11 inch trim size. It can be
used to create slides that fit on overhead projectors, or
figures that fit into an 8~ x 11 inch notebook.

Creates a 6~ x 5~ inch format suitable for camera-ready
copy for making '35MM slides.

Creates general purpose documents such as reports and
formal outlines.

Creates a two column format of the REPORT doctype.

Creates a brochure in a 7 x 9 inch trim size with
unnumbered headings and sequential page numbers; it
is intended for nonchapter-oriented material.

Creates a users' guide in a 7 x 9 inch trim size with
numbered headings.

Creates a handbook in a 7 x 9 inch trim size with numbered
headings.

Creates a pocket reference in a 5 ~ x 7 inch trim size with
numbered headings.

Creates a reference manual in an 8~ x 11 inch trim size
with numbered headings. It provides various formats
and tags for describing computer software. It is equally
well-suited to describing information in a tutorial or in a
reference format, and contains tags customized for use in
describing software in either of these formats.

Creates a specification in an 8~ x 11 inch trim size with
numbered headings.

1-5

Introduction to VAX DOCUMENT

1.6 Overview of the VAX DOCUMENT System

1.6.1

Several integrated software tools form the components of the VAX
DOCUMENT system.

• The Standard DIGITAL Markup Language (SDML), used for coding
the document files as they are written, is a generic, high-level, device­
independent markup language. It is not concerned with formatting; the
information it conveys is information about the logical structure of a
document.

• Three processors work on the file. w~en you execute the DOCUMENT
command. These processors work sequentially, checking and converting
the generically marked text through intermediate files on its way to final
printed form. Each file is given the same name as the original source file
but is suffixed with the file extension specific to that processor. Table 1-2
lists the file extensions generated by each processor.

How VAX DOCUMENT Processes a File

1-6

When you execute the DOCUMENT command, a file is run through three
processes:

1 Tag translation

2 Text formatting

3 Device conversion

These three processes transform your input file into formatted copy. During
the processing of a file, you can observe the following sequence of events on
your terminal (or, after processing, in the log file if the file was processed in
BATCH mode).

First, the tag translator translates the tags in the input file. As the tag
translator processes your file, you might see error messages on the terminal.
For example, if you misspell a tag name or fail to use an ending parenthesis,
an error message is displayed. Processing continues so as to find as many
errors as possible. If you have consistently misspelled a tag, you receive
a message only for the first occurrence of that error, then a final message
announces how many undefined tags the tag translator saw. The tag
translator's output is a file with the same name as the input file but a file
type named TEX (for example, filename.TEX).

The text formatter reads the TEX file and formats the pages of output. This
processor might also issue error messages. The text formatter creates a file
suffixed with the file type extension that reflects the chosen output device.
If you specify on the command line that you want the file processed for the
LN03 printer, the text in the file is proportionately spaced and the DVI file
is named DVl_LN03. For a POSTSCRIPT device, the file is named DVl_PS.
For a line printer, a terminal, or the VMS Mail Utility, the DVI file is named
DVl_LINE.

The device conversion program runs next and creates a device specific file,
with the file type of either LN03, LINE, PS, TERM, or TXT. This file reflects
the destination that you specified on the command line. In particular, if
you specified LN03 or PS the text in the file will be proportionally spaced,
whereas if you specified LINE, the text will be monospaced.

1.6.2

Introduction to VAX DOCUMENT

The device-specific file is ready for printing (or reading on an ASCII terminal
or mailing through the VMS Mail Utility). The file is printed automatically if
it has been run through the three processors, unless you specified /NOPRINT
on the command line. The file output by the device converter is printed by
default on the device associated with the destination on the command line.

The processors are summarized in Table 1-2.

Table 1-2 VAX DOCUMENT Processors

Processor

The Tag
Translator

The Text
Formatter

The Device
Converter

File Types
Created

TEX

DVl_LN03,
DVl_LINE,
DVl_PS

LN03,
LINE,
PS,
TERM, or
TXT

Description

A macro processor that translates the source files into files used by
the text formatter. The tag translator makes two passes over the
source file, first checking for invalid tags and then translating the
tags.

The text formatter reads the TEX file and formats the pages of
output. This processor also searches for errors, but only for errors
in the format, not in text elements or tags. Like the tag translator,
it may issue error messages. It creates a DVI file, suffixed by the
destination that you specified on the command line. The DVl_LINE
file is produced for the destinations LINE, TERM, and TXT.

As the text formatter makes up a page, it automatically formats all
page parameters. For example, it considers the best arrangement
of paragraphs and text elements and appends to the page the
appropriate running head and folio.

The device conversion program runs after the text formatter, and
reads the .DVLdevice file created by the text formatter. Whereas
the text formatter has already made the page and line breaking
decisions, based on the group of fonts in a given doctype, the device
converter makes the formatted file into a printable file.

These final output files are ready to be printed, read on an ASCII
terminal, or mailed through the VMS Mail Utility. After processing, a
printable file is automatically printed unless /NOPRINT was specified
on the command line.

Informational Messages
Each of the processors displays an informational message when the
DOCUMENT command is used interactively, as shown in the following
example:

~ $ DOCU myreport REPORT LN03

%DOC-I-IDENT, VAX DOCUMENT V1.1

1-7

1.6.3

Introduction to VAX DOCUMENT

fJ [Tag Trans 1 at ion] ...
%TAG-I-DEfSLOADD, End of Loading of Tag Definitions
%TAG-I-ENDPASS_1, End of first pass over the input

0 [T e x t F o r m a t t i n g] ...
%TEX-I-PAGESOUT, 17 pages written.
-TEX-I-OUTFILENAME, 'DUA!: [DOCFILES]MYREPORT.DVI_LN03'

0 [D e v i c e C o n v e r s i o n] . . .
%DVC-I-PAGESOUT, 18 pages written to file:

DUA!: [DOCFILES]MYREPORT.LN03
0 [P r i n t i n g F i 1 e] . . .

Job MYREPORT (queue SYS$LN03, entry 832) started on SYS$LN03

$

0 Identifies the DOCUMENT command line that you type at the DCL
prompt. In this example, the DOCUMENT command was issued for a
file called MYREPORT.SDML, (the SDML file type is assumed by the tag
translator). The file is to be processed for the REPORT doctype, and the
output will be printed on the default LN03 laser printer.

Note: On the command line, the command, qualifiers, and keywords· can be
abbreviated to the shortest unique string. For example, DOCUMENT
can be abbreviated to DOCU, and the local destination, LN03_LQCAL _
PRINTER, can be abbreviated to LN03.

8 Identifies the message that indicates that the tag translator is starting to
process the file, and will now log its activities. If there are any tag translator
errors, they are reported at this point.

0 Identifies the point when text formatting begins. Any text formatting errors
are seen at this point.

0 Identifies the point when device conversion begins.

0 Shows the point that the file has started printing on the specified device.
Jobs will print by default in both interactive and batch processing.

Doctype-lndependent and Doctype-Specific Tags

1-8

The majority of the SDML tags used for marking your text are valid in any
of the doctypes. These tags are called "doctype-independent," or "global," as
they work in all doctypes for which they are appropriate. For example, all
doctypes use paragraphs and lists, so <P> and <LIST> are accepted in all
doctypes.

A few of the tags that are listed as global in this manual have restricted
use, as they are not appropriate in one or more doctypes. For example, the
doctypes LETTER or OVERHEADS do not contain front matter, such as a
title page or preface, so the front matter tags (accepted in most doctypes) are
restricted in these doctypes.

Tags that are used specifically in one doctype only are called "doctype­
specific." For example, only a letter contains an address from the person
sending the letter, so the doctype-specific tag <FROM_ADDRESS> can be used
only in the LETTER doctype.

Appendix D lists all the global and doctype-specific tags. It also identifies the
doctype to which each doctype-specific tag belongs.

Introduction to VAX DOCUMENT

When first experimenting with the system, process your input file using the
MANUAL doctype because it has no restrictions on the use of global tags.
Later, you can experiment with the other doctypes, by reprocessing your
SDML files and specifying the new doctype on the command line. If the
SDML files include tags that are not recognized in the specified doctype,
informational messages are issued, and you can either fix the errors or go
back to using the MANUAL doctype.

1 .6.4 Context-Sensitive Tags
Some tags are used in a group rather than individually. They are grouped
according to function and are defined in the context of other tags. Such
context-sensitive tags need a tag that enables the rest of the tags in that
group. You generally place the tags in the group in a specific order, and
terminate the ordered group with a terminating tag. For example, a table
begins with a <TABLE> tag and ends with an <ENDTABLE> tag. Between
these tags are additional tags that supply information about the number of
columns, column widths, column headings; this pattern of tags is the same
for every table.

Other examples of global context-sensitive tags include lists, examples, and
figures. An example of doctype-specific context-sensitive tags is the group of
reference template tags used in the SOFTWARE doctype.

1 . 7 Processing Books and Elements of Books
You can use VAX DOCUMENT to process files that are individual
components of a large book. A book is usually divided into chapters, whereas
other types of documents are not chapter-oriented. In a book, each chapter is
considered its own book element, and is kept in its own file. By setting up a
book in this way, you can process the book's chapters either separately or as
a whole. The processing of a whole book is called a bookbuild.

Processing a document in a nonbook format (not using a bookbuild) is
generally useful when you have a smaller document and plan to process the
entire document every time you make a change, and you are not concerned
with maintaining cross-references in the book. A bookbuild allows you
to build a large book and then process elements of it while maintaining
cross-references.

To perform a bookbuild, you must create a separate file that contains a list of
all the book's elements in the order that they will appear in the book. The
separate file profiles the order of the book, from front to back, and hence
is called a profile. The book's profile becomes the main vehicle used for
processing the book.

1-9

2 Creating an SDML File

2.1 Global Tags

This chapter provides guidelines for creating an SDML file with VAX
DOCUMENT. It explains the use of the various types of code in an SDML
file, including tags and arguments. The principal rules of coding syntax
are also explained. The use of these rules permits VAX DOCUMENT' s tag
translator to recognize and act on the tags that mark your text.

In all files generically coded with VAX DOCUMENT, text must be marked,
or "tagged," so that the text is formatted correctly when the file is processed.
For every text element (that is, every individually treated portion of text), you
insert a unique ASCII character sequence to identify that type of text element.
These character sequences identify a paragraph as a paragraph, a table as a
table, and so on.

Tags are used to identify the text elements. A tag is a term or abbreviation
enclosed in angle brackets (< ... >). When VAX DOCUMENT processes your
SDML file, it recognizes the tags, translates them, and formats the text.

There are three rules concerning VAX DOCUMENT use.

RULE #1:

Type each tag as shown, adding no punctuation or spaces. Use angle brackets
to enclose tags. The tag name may be in uppercase or lowercase letters, or a
combination of both. ·

Here are some sample tag formats:

Tag Format Function

Starts a paragraph <P>

<CHAPTER>

<TABLE>

<NOTE>

<ENDNOTE>

Marks the beginning of a chapter and specifies its title

Starts a table (like this one)

Starts text that receives distinctive treatment

Ends the text that receives distinctive treatment

There are two types of tags: tags that mark the starting point of a text element
(for example, <P> , <TABLE> , or <NOTE>) and tags that completely
encompass a text element (for example, <HEADl> or <CHAPTER>). Of the
first type, some require explicit termination (for example, <NOTE> requires
<ENDNOTE>) and some do not (for example, <P>). All the text that lies

between the starting and terminating tags receives distinctive treatment.

All VAX DOCUMENT global tags are listed alphabetically and described in
Chapter 9. The description of every tag in that chapter indicates whether that
tag requires explicit termination.

2-1

2.1.1

Creating an SDML File

Tag Arguments
There are two types of tag arguments, those that provide additional
characteristics or identify requirements of the text associated with a tag
and those that provide actual text. Some tags require one or more arguments,
while other tags do not require arguments but can accept them as additional
information. Still other tags do not accept any arguments.

An argument is enclosed in parentheses and immediately follows the closing
angle bracket of the tag. If you use an argument with a tag that will not
accept one, VAX DOCUMENT issues warning messages when you process
the file. More than one argument can be included within the parentheses
(this is called an argument list). A space or an end of line cannot separate the
tag from its argument list.

RULE #2:

Supply only those arguments that are permitted by the tag's format. Use
parentheses to enclose arguments.

Use a backslash (\) to separate multiple arguments. For example, the
<CHAPTER> tag takes two arguments, a chapter title and a symbol name

for that title. Therefore, the title for a chapter of a book would be coded with
a backslash, as follows:

<CHAPTER>(Introduction to Farming\intro_farm)

Each tag description in Chapter 9 includes a list of valid or required
arguments to that tag. Use of symbol names is discussed in Chapter 6.

2.2 Coding an SDML File

2-2

RULE #3:

Tag every text element.

This rule is true whether or not the tag requires an argument list, a
terminating tag, or both.

For example, the following text contains two text elements and so requires
two tags:

<P>Employment opportunities grew throughout the company. If the president
of the company had realized what a <NEWTERM>(matrix) would start
developing . . .

In this example, the writer started a new paragraph and so tagged it with the
<P> tag. The writer also wanted to identify a new term in this document

with some special format, so treated the term as an individual text element
and tagged it. The output of this paragraph might appear like this:

Employment opportunities grew throughout the company. If the president of
the company had realized what a matrix would start
developing . . .

The three rules concerning the use of VAX DOCUMENT cover the
requirements for coding any SDML file. By remembering these rules, you
should be able to code your files with few errors. However, there are several
special cases to keep in mind when you want to show coding characters,
characters used by VAX DOCUMENT internally, in your output. The
following discussion explains these unusual cases.

Creating an SDML File

2.3 Special Coding in an SDML File

2.3.1

VAX DOCUMENT treats certain characters and character-strings in a special
manner when they are placed in an argument to an SDML tag. Table 2-1
summarizes these characters and how to correctly code them.

Table 2-1 Coding Special Characters

Character

<text>

<P> (

USER$: <SMITH>

\
I

&

Placement of Character

Angle brackets enclose a tag
name not meant to be translated
as a tag.

Opening parenthesis following a
tag which accepts no arguments.

Angle brackets enclose a file
specification not meant to
be translated as a tag in an
argument.

Unmatched opening parenthesis
in an argument.

Correct Coding in Text

<LITERAL> (<text>)

Leave space between the closing angle bracket
(>) and the opening parenthesis (() of the tag.

<FILE_SPEC> (USER$: <SMITH>)

<OPAREN>

Unmatched closing parenthesis in <CPAREN>
an argument.

Backslash in an argument.

Vertical bar in an argument.

Ampersand in an argument.

<BACKSLASH>

<VBAR>

<AMPERSAND>

The tag translator displays a message when you have incorrectly coded any of
these special characters in an argument. The correct coding of each of these
characters is explained in detail in the following sections.

Two other special cases are also discussed in this section: Section 2.3.6
discusses how to code a hyphen in text, and Section 2.3.7 discusses the usage
of tabs in SDML files.

Coding Text That Looks Like a Tag
When a word is surrounded by angle brackets, the tag translator attempts to
evaluate it as a tag. If it is a valid tag, it is translated like any other tag; if it
is not a valid tag, a warning message is issued when the file is processed, and
the word, enclosed in angle brackets, is placed in the output unchanged.

For example, the following text contains the terms <reroute> and
<return> , coded as if they are tags:

<P>When marking packages for delivery, do not confuse the
<reroute> destination with the <return> destination.

During processing, the tag translator tries to translate these terms as tags. It
produces two warning messages because <reroute> and <return> are
not defined as valid tags.

2-3

Creating an SOM L File

To avoid this problem, use the <LITERAL> tag, which directs the tag
translator to ignore everything (including the angle bracket characters) in
its argument. To have <reroute> and <return> appear in the text but
not generate warning messages, the above example should be coded like this:

<P>When marking packages for delivery, do not confuse the
<LITERAL>(<reroute>) destination with the
<LITERAL>(<return>) destination.

Notice that the entire term that you want to include in the text, including the
angle brackets, is treated as an argument to the <LITERAL> tag.

Use the <LITERAL> tag to document any characters that are prefixed with
angle brackets. For example, the control characters of the ASCII character set
commonly are surrounded by angle brackets, such as <STX> or <NAC> .
Another case where you might show an angle bracket is in an equation. For
instance, in the equation "If M <P then ... ,"the tag translator tries to define
this as part of the paragraph tag (<P>), and issues a warning.

Note: You can place a single angle bracket anywhere in the file, as long as the
next few characters do not look like they begin a tag. If they do look
like tags to the tag translator but are not valid tags, you will receive
a warning message. Coding the angle bracket within a <LITERAL>
argument (<LITERAL> (<)) ensures that you will not receive a warning
message for placing a single angle bracket in a file.

2.3.2 Coding File Specifications That Include Angle Brackets as
Arguments

2-4

VAX DOCUMENT provides several tags that allow you to include separate
files into your SDML file; such tags require a file specification argument to
access an external file. Because the directory portion of a file specification can
be delimited with angle brackets, and so resemble a tag in these arguments,
such file specifications must receive special treatment.

Use the <FILE_SPEC> tag to designate a file specification that contains angle
brackets as the file-spec argument to an SDML file-inclusion tag.

For example, to include the file <SMITH> picture.sixel into a figure and not
have VAX DOCUMENT translate <SMITH> as a tag, you would use the
<FILE_SPEC> tag as follows:

<FIGURE_FILE>(LN03\<FILE_SPEC>(<smith>picture.sixel)\20)

The following SDML tags let you include external files, and so are the only
tags that might require the use of the <FILE_SPEC> tag in an argument:

• <ELEMENT>

• < EXAMPLE_FILE >

• < FIGURE_FILE >

• <ICON_FILE>

• <INCLUDE>

• <INCLUDES_FILE>

• <TABLE_FILE>

Creating an SOM L File

Section 2.3.1 lists the ways in which you can code file specifications that
appear in text and not as file-spec arguments to tags.

2.3.3 Coding Opening and Closing Parentheses in an Argument
When the closing angle bracket of a tag is followed immediately by an
opening parenthesis, the tag translator assumes that an argument follows.
The tag translator reads the argument, looking for a matching closing
parenthesis to mark its end. If one of your arguments includes an unmatched
closing parenthesis, the parenthesis will be mistaken for the end of the
argum.ent.

If an argument needs to include an unmatched opening or closing parenthesis,
you can code it with special tags created for this purpose. Use either
the <OPAREN> (that is, opening parenthesis) or the <CPAREN> (closing
parenthesis) tag. A parenthesis that is coded this way is not matched with its
counterpart by the tag translator. It does not disturb the counting of matched
pairs of parentheses, nor the recognition of the true end of the argument list.
For example:

<HEAD1>(A (CLOSE Statement)

must be coded as:

<HEAD1>(A <OPAREN>CLOSE Statement)

Outside of an argument, parentheses cause no problems. For example, the
following line is coded correctly:

<P>We always use a (CLOSE Statement in the code ...

You need only use the <OPAREN> and <CPAREN> tags within arguments
because parenthesis characters have no special meaning outside of arguments.
For more information on <OPAREN> and <CPAREN>, refer to the tag
descriptions in Chapter 9.

Note: Open parentheses following tags that do not accept arguments must be
preceded by one or more blank spaces. For example, in the following code
a space must be placed after the <P> tag, or the text in the parentheses
must be placed on a new line.

<P>
(See Section X.)

2.3.4 Coding a Backslash in an Argument
A backslash is used to separate arguments. If you want to include a
backslash character within one of your arguments, you must code it using
the <BACKSLASH> tag. Otherwise, the backslash in your argument is
interpreted as an argument separator. In effect, the tag translator will make
two arguments out of what you perceive as one argument. For example:

<P>Insert the part numbered <KEYWORD>(ABC\123) into ...

The tag translator treats this as two arguments and issues an error message
because this tag cannot accept two arguments. To include a backslash that
will not be evaluated by VAX DOCUMENT, write the following:

<P>Insert the part numbered <KEYWORD>(ABC<BACKSLASH>123)
into ...

2-5

2.3.5

2.3.6

Creating an SDML File

The following is produced:

Insert the part numbered ABC\123 into

You need to use this special coding only within arguments. For more
information on <BACKSLASH>, refer to its description in Chapter 9.

Coding a Vertical Bar or Ampersand in an Argument
The tag translator assigns special meanings to the vertical bar (I) and the
ampersand (&) characters, recognizing them as a pair of internal coding
characters. When the tag translator is reading an argument list and finds a
vertical bar, it starts looking for a matching ampersand.

Because these tags have special meaning within argument lists, you should
code the vertical bar character with the <VBAR> tag and the ampersand
character with <AMPERSAND> within your arguments. You need do this
only within arguments, however, because these characters have no special
meaning outside of arguments.

The following example that shows the difference between using an
ampersand in a tag argument and using it in text:

<HEAD3>(The Ampersand (<AMPERSAND>) Character)

<P>The ampersand character (&) is used to continue a BASIC
statement on the next line. . . .

Within the argument to the <HEAD3> tag, the ampersand must be coded
with the <AMPERSAND> tag. In the text, the ampersand can be coded with
the ampersand character.

Coding a Hyphen in Text

2-6

When two or three hyphens are used consecutively in proportionally-spaced
text, VAX DOCUMENT translates them into en dashes and em dashes. (An
en dash is slightly longer than a hyphen, and an em dash is slightly longer
than an en dash.) This does not occur in monospaced text, such as text in
examples. Table 2-2 illustrates how to code a hyphen, an en dash, an em
dash, and a minus sign in text and gives an example of each use.

Table 2-2 How to Code a Hyphen in Text

Character
Produced

hyphen

en dash

em dash 1

em dash 1

minus sign

Sample of
SDML coding

two-column

1981--1983

That is -- what I mean to say

That is---what I mean to say

<MATH>(a<MINUS>b)

Result of
SDML coding

two-column

1981-1983

That is-what I mean to say

That is-what I mean to say

a-b

1 An em dash may be produced either by using three consecutive hyphens with no
space on either side of them, or by two consecutive hyphens with space on each
side of the hyphens. Two consecutive hyphens without spaces surrounding them
will produce an en dash.

Creating an SDML File

2.3. 7 Coding Tab Characters in Text
VAX DOCUMENT processes tab characters in an SDML file into spaces. For
example, if you had pressed the TAB key three consecutive times to insert
space into your SDML file, VAX DOCUMENT would interpret the three tabs
as three spaces, but would output them differently depending on whether the
three spaces occurred in monospaced or proportionally-spaced text.

If those three tabs occurred in a monospaced example (for example, within
<CODE_EXAMPLE> and <ENDCODEJ:XAMPLE>), they would be output as

three spaces; however if they occurred in proportionally-spaced text (for
example, within a paragraph), then the three spaces would be replaced by a
single space.

Generally, you should avoid using the TAB key in order to eliminate
confusion about the spacing in the SDML file; however, entering tabs into an
SDML file is not invalid.

2-7

3 Using Common Tags

3.1 Paragraphs

This chapter discusses the coding of text elements frequently used in almost
every doctype. These text elements include the following:

• Paragraphs

.• Headings

• Chapters

• Front Matter text elements, including title page, copyright page, and
preface

• Back Matter elements, including appendixes and glossary

• Lists

• Tables

• Figures

• Examples

This chapter describes some of the most basic tags used in any doctype within
VAX DOCUMENT. The tags are also described in Chapter 9.

A paragraph is labeled with the <P> tag. Within a doctype, the tag
creates the same output, no matter where it is placed in a document. It is
unnecessary to leave blank lines before or after the paragraph, or to recall any
of the other usual formatting conventions required when a typewriter is used.
For example, spacing, justification, and indention of a paragraph are provided
by the specified doctype. As writer, you must only inform the text processor
that you want this specific text element. Anywhere you place a <P> tag, the
text processor will begin a new paragraph. The only reason that you might
want to leave blank lines or spaces in your file is to make it easier to read
your source file.

The following example shows the use of the <P> tag in a doctype that calls
for space between paragraphs, with no indentation.

<P>The species is the basic unit of classification. Clearly,
not all species resemble each other to the same degree or
are closely related. <P>In any careful study,
one of the vital early steps is the organization and naming of objects.

Output

The species is the basic unit of classification. Clearly, not all species
resemble each other to the same degree or are closely related.

In any careful study, one of the vital early steps is the organization
and naming of objects.

Note that the paragraphs are formatted correctly no matter how your source
file is broken across lines.

3-1

3.2

3.3

Using Common Tags

Headings

Chapters

3-2

If you want a paragraph enclosed in parentheses, be careful to place a space
or an end ofline between the tag <P> and the parenthetical text. For
example:

The species is the basic unit of classification.
<p> (Clearly, not all species resemble each other to the same degree or
are closely related.)

Headings are intended to label a section of text. Depending on the
doctype, headings can be numbered automatically during processing. VAX
DOCUMENT keeps a count of each heading level and consecutively numbers
each heading within a level.

A first level heading is labeled with the tag <HEADl > and the output is in
the form x.x. In the same way, a second level head is labeled with the tag
<HEAD2>. You can use up to six heading levels, as required.

The number of a chapter is not counted as a heading level. If the document
has a <CHAPTER> tag, the chapter number is included in the heading level
number. For example, this chapter is number 3, and so the heading level
number of this section became 3.2. If there is no <CHAPTER> tag, only the
heading level number is used.

Example

<HEAD1>(Physical Features)
<P>Alaska consists of a compact central mass

<HEAD2>(General Physiographic Features)
<P>The main features are mountains . . .
<HEAD3>(Physiographic Features)
<P>Between the Pacific and Rocky Mountain systems

This example shows the use of the <HEADx> tag for creating three heading
levels. To see the output of this example, refer to the MANUAL doctype
chapter in VAX DOCUMENT Design Samples.

The <CHAPTER> tag is used to label the chapter title at the beginning of a
new chapter. If a source file contains a chapter in a book, the <CHAPTER>
tag must be the first tag in the file, as it enables all cross-references within
that file. The tag requires a chaper-title as its first argument. It can accept a
symbol-name (for the chapter-title) as its second argument and requires one if
the file is used in a bookbuild.

A chapter is a basic text element in many types of documentation. However,
it is treated as a book element during a bookbuild. You can make chapters
of a book number correctly during processing only if the chapter is listed as
a book element in the book's profile, and the profile is processed through a
bookbuild procedure. An example of the beginning of a chapter follows:

<CHAPTER>(Introduction to VAX DOCUMENT)

In this example the chapter tag has one argument, the title for that chapter.
The first chapter tag in a book automatically receives the chapter number 1,
and each following chapter is incremented by one.

3.4 Front Matter

3.4.1 Title Page

Using Common Tags

If you prefer to maintain a document in a single source file, you can include
more than one chapter in a file, and therefore more than one <CHAPTER>
tag. The chapters are still numbered automatically. However, you would
have to move any chapter manually if you want to reorganize the document.

The front matter of a book typically consists of four components:

• The title page

• The copyright page

• The table of contents (discussed in Chapter 7)

• The preface

The profile for your book should name a single book element as the front
matter. This book element file might contain all the front matter material or
it might use the <INCLUDE> tag to bring in separate SDML files containing
front matter material, such as the title page, copyright page and preface.

The following is an example of front matter in a single SDML file:

<FRONT_MATTER>(front)
<TITLE_PAGE>
<TITLE>(User Manual, Volume 1)
<ORDER_NUMBER>(11-222-333)
<ENDTITLE_PAGE>

<COPYRIGHT_PAGE>
<PRINT_DATE>(August 1988)
<COPYRIGHT_DATE>(1988)
<ENDCOPYRIGHT_PAGE>

<CONTENTS_FILE>

<PREFACE>(11)
<PREFACE_SECTION>(Intended Audience)

<PREFACE_SECTION>(New and Changed Features)

<ENDPREFACE>
<ENDFRONT_MATTER>

The title page is produced by a group of context-sensitive tags. The title page
consists of the following tags:

<TITLE_PAGE>
<TITLE>(. . .)
<ORDER_NUMBER> (. .)
<ABSTRACT>

<ENDABSTRACT>
<REVISION_ INFO> (. . .)

<ENDTITLE_PAGE>

3-3

Using Common Tags

3.4.2 Copyright Page

3.4.3 Preface

3.5 Back Matter

3-4

The <TITLE_PAGE> tag is defined only within the context of the
<FRONLMATTER> tag. The title page of this book illustrates the output of

each of the tags.

The copyright page is produced by a group of context-sensitive tags. The
copyright page tags include:

<COPYRIGHT_PAGE>
<PRINT_DATE>(. . .)
<COPYRIGHT_DATE>(...

<ENDCOPYRIGHT_PAGE>

The <COPYRIGHLPAGE> tag is defined only within the <FRONLMATTER>
tag. The copyright page of this book illustrates the output of each of the tags.

The <PREFACE> tag is defined only within the front matter. The preface
pages of this book illustrate the type of output these tags produce for this
book's doctype and destination.

The preface always begins on a right-hand page following the table of
contents, thus it always begins with an odd page number. However, because
the table of contents is produced separately from the rest of the. book, VAX
DOCUMENT cannot automatically supply the correct starting page number
for the preface.

When you are doing a final bookbuild, you must determine the actual number
of pages in the table of contents and then, if necessary, edit the file that
contains the preface, supplying the desired page number as an argument to
the <PREFACE> tag.

Calculate the preface page number by adding two to the number of pages
in the table of contents, to account for the title and copyright pages. If this
number is even, add one to it and use the result as the argument to the
<PREFACE> tag. For example, if the table of contents requires six pages, the

first part of the calculation yields eight, an even number. Add 011e and use
nine as the argument to the <PREFACE> tag. However, if the sum of two
plus the number of pages in the table of contents is odd, add two to the result
to obtain the next highest odd number. Then reprocess the front matter with
the DOCUMENT command to obtain front matter output that displays the
correct page numbers.

The back matter of a book can consist of the following:

• Appendixes

• Glossary

• Index (discussed in Chapter 7)

3.5.1 Appendixes

3.5.2 Glossary

3.6 Lists

Using Common Tags

Appendixes are structured exactly the same as chapters. They consist of
hierarchically numbered sections containing paragraphs, illustrations, and
so forth. Use the <APPENDIX> and <ENDAPPENDIX> tags to enclose each
appendix. Appendixes are automatically given sequence letters in the order
corresponding to the order in which they appear relative to one another in
the bookbuild. Thus, you need to give your appendixes symbolic names so
that you can refer to them in the book.

The glossary is a simple structure that is produced using a template. The
glossary template consists of the following pattern of tags:

<GLOSSARY>(Glossary\gloss_chap)
<GTERM> (. . .) <GDEF> (.
<GTERM> (. . .) <GDEF> (. . .

<ENDGLOSSARY>

The glossary begins automatically on a right-hand page with a proper
heading. You should arrange glossary terms alphabetically.

There are several types of lists:

The list element identifiers are alphabetic letters. ALPHABETIC

CALLOUT The list element identifiers are reverse-print callout numbers
(on supported output devices), for example 0.
The list element identifiers are arabic numerals.

The list element identifiers are roman numerals.

There are no list element identifiers.

NUMBERED

ROMAN

SIMPLE

STACKED List elements do not have identifiers, but are stacked within
the specified set of delimiters (braces, brackets, or double
brackets).

UNNUMBERED List element identifiers are special characters, such as bullets.

The following tags are needed to create any type of list:

• <LIST> (with a required argument that specifies the type of list)

• <LE> (meaning "list element")

• <END LIST>

The following example shows the use of the <LIST> tag to create an
unnumbered list.

3-5

Using Common Tags

3.7 Tables

3-6

Example

<P>Mammalian classification of the order Lagomorpha follows:
<LIST>(UNNUMBERED)
<LE>Kingdom Animal
<LE>Phylum Chordata
<LE>Class Mammalia
<LE>Order Lagomorpha
<LE>Family Leporidae
<LE>Genus Lepus
<LE>Species Lepus calif ornicus
<END LIST>

Output

Mammalian classification of the order Lagomorpha follows:

• Kingdom Animal

• Phylum Chordata

• Class Mammalia

• Order Lagomorpha

• Family Leporidae

• Genus Lepus

• Species Lepus californicus

As shown in this example, a <LIST> tag requires a terminating tag,
<ENDLIST> . The <ENDLIST> tag terminates any type of list and does

not require an argument.

The <LE> tag identifies each element within the list.

The <TABLE> tag is used to create both informal and formal tables. The two
types of tables differ in the following ways:

Informal

Formal

Given no caption, is unnumbered and is not listed in the table
of contents.

Given a caption and numbered. Listed in the table of contents.
Can be referenced with the <REFERENCE> tag.

Only four tags are required to create either type of table:

• <TABLE>

• <TABLE-SETUP>

• <TABLE_ROW>

• <ENDTABLE>

Table 3-1 describes the four required tags. It also describes several other
tags that are not required to create a table but are useful to specify special
formatting. Table 3-1 lists the tags in the order that they should be used in
your SDML file. Note that the <TABLE_ROW> tag can be used throughout
a table. In Table 3-1, arguments are not shown for any tag except for the
<TABLE> and <TABLE_RQW_BREAK> tags.

Using Common Tags

Table 3-1 Table Tags

Tag, in order of use Description

<TABLE> (table-caption\symbol-name) Creates a table and enables all other table tags. The optional
symbol-name argument can be used to reference the table. 1

<T ABLE_ATTRIBUTES>

<T ABLE_SETUP>

<T ABLE_HEADS>

<T ABLE_ROW>

Specifies special formatting for the table, such as wide, multipage,
or a table that is not to be broken between pages. The table's
attributes are ignored if this tag does not precede <TABLE_
SETUP>.

Establishes, or "sets up," the number of columns in the table and
the table width. If excluded, the table will not be created. You
always list each column width except for the width of the last
column.

Specifies headings for the table columns.

Specifies text for one row of the table. Each argument supplies
the text for a column in a row. Can precede or follow table units
(grouped sections of the table) as required. Can be repeated
throughout the sequence of table tags.

<TABLE_RQW_BREAK> (first)
<T ABLE_ROW_BREAK> (last)

Specify the boundaries within which a table can be broken onto
a new page. Not required, but useful for controlling the format of
the table.

<VALID_ TABLE_RQW_BREAK> Controls the pagination of long table rows. Required in tables with
long table rows.

<ENDTABLE> Terminates <TABLE> .

1 In the <TABLE> tag, the table-caption argument is required in a first level formal table, but is not permitted
in a nested table (a table embedded in another table).

A second group of table tags exists to perform special table functions. For
example, you can embed a heading in a table that spans several of the table's
columns, or you can embed a table within another table. These special
tags are not required to create a table, but are available for more complex
formatting needs.

Table 3-2 lists the special table functions available, the tags required for each
function, and the location where an example of each function can be found in
Chapter 9.

3-7

Using Common Tags

Table 3-2 Special Table Functions

Location of Example
of Function in

Function Tags Used Tag Description Chapter 9

Aligning numbers in <ALIGN_CHAR> Specifies a special character See <ALIGN_CHAR>
a table. that is replaced by a space

wherever it appears in table
rows. The character can
be used to achieve vertical
alignment within a column.

Nesting (embedding) All table tags are used. Marks a place that a nested See <NESTED_ TABLE_
a table within <NESTED_ TABLE_ table may be broken across BREAK>
another table. BREAK> is required. pages.

Creating a table key <TABLE_KEY> Begins a key for the table. If See <TABLE_KEY>
(legend) to explain used, it must follow <TABLE_
abbreviations used in SETUP>.
the table.

<ENDTABLE_KEY> Terminates the <TABLE_
KEY> tag.

<TABLE_KEYREF> Specifies that the table key
or legend should be printed
below the table. Required if a
table key or legend is included
in the table.

Embedding a Causes a heading to span See <TABLE_UNIT>
heading in a table more than one table column.
that spans the length
of several table
columns.

<RULE> Specifies that a horizontal
rule should appear below the
embedded heading.

Grouping sections of <T ABLE_UNIT> Divides a table into groups. See <T ABLE_UNIT>
a table and labeling The groups can have headings
the sections. within the table.

<T ABLE_UNILHEADS> Specifies the table unit
headings. If used, must
follow <TABLE_UNIT>.

<ENDT ABLE_UNIT> Terminates the <TABLE_
UNIT> tag.

Including in the <T ABLE_FILE> Includes a separate file which See <T ABLE_flLE>
source file a contains a table. Not required.
separate file that
contains a table.

3-8

3.7.1

Using Common Tags

Table 3-2 (Cont.) Special Table Functions

Function

Referring to the
symbol-name given
to the table.

Tags Used

<REFERENCE>

Example

Tag Description

If a symbol-name is specified
in a <TABLE> tag, this tag
can be used to reference the
symbol name in other places
in the document, thereby
always producing the correct
table number and caption.

<P>See <REFERENCE>(heart_rate_tab) for a list of
the heart rates of selected mammals.

<TABLE>(Heart Rates of Selected Mammals\heart_rate_tab)
<TABLE_ATTRIBUTES>(keep)
<TABLE_SETUP>(3\19\16)

Location of Example
of Function in
Chapter 9

See <REFERENCE>

<TABLE_HEADS>(Common Name\Weight\Heart Rate, Beats per Minute)
<TABLE_ROW>(European hedgehog\500-700 g.\246)
<TABLE_ROW>(Gray shrew\3-4 g.\782)
<TABLE_ROW>(Least chipmunk\40 g.\684)
<TABLE_ROW>(Gray squirrel\500-600 g.\390)
<TABLE_ROW>(Harbor porpoise\170 kg.\40-110)
<TABLE_ROW>(Mink\0.7-1.4 kg.\272)
<TABLE_ROW>(Harbor seal\20-25 kg.\18-25)
<ENDTABLE>

The output of this example follows:

Output

See Table x-x for a list of the heart rates of selected mammals.

Table x-x Heart Rates of Selected Mammals

Common Name Weight

European hedgehog 500-700 g.

Gray shrew 3-4 g.

Least chipmunk 40 g.

Gray squirrel 500-600 g.

Harbor porpoise 170 kg.

Mink 0.7-1.4 kg.

Harbor seal 20-25 kg.

Heart Rate, Beats per
Minute

246

782

684

390

40-110

272

18-25

Controlling Table Attributes
You can control the following attributes of tables:

• Formality (that is, if the table has a number and a caption or not)

• Its overall width and the size of the text

3-9

Using Common Tags

3.7.1.1

3-10

• Whether it is allowed to break across pages or if the entire table must be
kept on a single page

The formality is controlled by the presence of the caption argument in the
<TABLE> tag. If you do not specify this argument, no number is assigned to

the table. Tables are automatically numbered. The numbers are sequential
throughout a document, or numbered beginning at 1 in each chapter.
With the exception of the REPORT document type, you cannot control
the numbering; that is an attribute of the overall document type and design.

You have control over the table attributes of width (the table's margins) and
page-breaking. These two attributes are discussed in the following sections.

Controlling a Table's Margins
The width of a table, that is the left and right margins, is determined by the
following default attributes:

• For formal tables, the left margin of the table is, by default, the same as
the normal left margin of text, regardless of whether the text immediately
preceding the table is indented.

• For informal tables, the left margin of the table is the same as the current
left margin of the text. If the text is indented, (for example if it is a list
element) the table is indented at the same margin.

• In either case, the right margin of the table is always the same as the
right margin of the text.

For example, if you coded Table x-x without arguments to the <TABLE> tag,
and in the context of a list, it would be output as follows:

Output

• These are the heart rates:

Common Name Weight Heart Rate, Beats per Minute

European hedgehog 500-700 246

Gray shrew 3-4 g. 782

Least chipmunk 40 g. 684

Harbor porpoise 170 kg. 40-110

Mink 0.7-1.4 kg 272

Harbor seal 20-25 kg. 18-25

If you specify table width values that extend the table beyond the right
margin of text, the following actions occur:

• The text formatter makes an attempt to switch the size of the text in the
table to a smaller size to see if the table will fit.

• If the table still does not fit, the text formatter issues a warning message;
the device converter normally issues a message also. These messages
alert you that you must make some adjustments in your table.

In many cases, you can lower the width values to the <TABLE_SETUP> tag to
reduce the widths of the individual columns.

Common Name

European hedgehog

Gray shrew

Least chipmunk

Harbor porpoise

Mink

Harbor seal

3.7.1.2

Using Common Tags

In some doctype designs, there is a wide left margin. In those doctypes,
the keyword attribute WIDE to the <TABLE_ATTRIBUTES> tag tells the text
formatter to use the full page width for the table. Here is the same table
coded with <TABLE_ATTRIBUTES> (WIDE):

Weight Heart Rate, Beats per Minute

500-700 246

3-4 g. 782

40 g. 684

170 kg. 40-110

0.7-1.4 kg 272

20-25 kg. 18-25

The <TABLE_ATTRIBUTES> tag, if specified, must precede the <TABLE_

SETUP> tag in your SDML file.

You can use the attribute WIDE to avoid having the text formatter switch
to a smaller text size. If you require the smaller text size, you can specify
<TABLE_ATTRIBUTES> (MAXIMUM).

Controlling Page Breaks in Tables
One of VAX DOCUMENT' s more powerful features is its ability to handle
long tables, that is, tables that require more than a page of output. By default,
when the text of a table does not fit on a single page, VAX DOCUMENT
assumes that it can break the table across pages, and prints as much of the
table as it can on each page.

When a table is continued across several pages, the text formatter repeats the
following text at the top of the second page and each subsequent page of
output:

• The table number and caption (with the text "Cont'd") if the table is a
formal table1

• The table column headings, if any

If a table is short and you want to keep it on a single page, you can specify
<TABLE_ATTRIBUTES> (KEEP). In this case, the text formatter determines if the

table fits on the current page. If the table does not fit, the text formatter starts
a new page of output, leaving the page preceding the table short, that is, with
blank space at the bottom.

You can control the page breaks in multipage tables in several ways:

• Use both the <TABLE_ROW_BREAK> (FIRST) and <TABLE_Row_
BREAK> (LAST) tags to indicate good first and last places at which page
breaks are allowed.

• Group sequences of table rows that must be kept together using the
<TABLE_UNIT> tag.

In some cases, you may also need to provide special information to the text
formatter to help in breaking complex tables.

1 The continued caption's placement and the continuation text may vary from one doctype to another.

3-11

Using Common Tags

3-12

The following list summarizes the rules for breaking tables. If you are having
difficulty getting a table to come out correctly, review these rules to see what
you might need to do.

Rules for Page Breaking in Tables

The following list gives some basic rules for page breaking within tables.

• <TABLE_RQW_BREAK> (first) specifies the first place within a table at
which a page break is acceptable. You can choose this based on the text
in the table rows themselves. For example, if each row in the table has
only a single line of text, you would probably place the <TABLE_Row_
BREAK> (first) tag after 3 or more <TABLE_ROW> tags. On the other
hand, if each row in the table (or even just the first) has ten or more lines
of text, you might want to allow breaking after the first row.

• <TABLE_ROW_BREAK> (last) specifies the last place within a table at which
a page break is acceptable.

• Between these two tags, the text formatter assumes that it is okay to break
the table between any two table rows. It assumes that all text before the
first place and after the last place must be on the same page. If the text
before the first place or after the last place is more than a page, the text
formatter chooses a place to break the table anyway.

• If you do not specify these tags, the text formatter first tries to keep the
entire table on one page. If the table does not fit, it breaks the table
anyway, fitting as much as it can on each page.

• By default, all table rows within the bounds of a table unit are places
where page breaks must not occur. Therefore, the text formatter will
always try to keep all the rows in a table unit on the same page. If the
table unit does not fit on the page, it breaks the table anyway, fitting
as much as it can on each page. Within the bounds of <TABLE_UNIT>
and <ENDTABLE_UNIT> ' you can specify <TABLE_ROW_BREAK> (FIRST)
and <TABLE_ROW_BREAK> (LAST) tags to indicate the best first and last
places, as in the table itself.

• If a table has footnotes, the text formatter does all the page breaking. The
<TABLE_ROW_BREAK> tags are ignored.

• By default, the text formatter never breaks a table in the middle of a table
row. Consider the following example of a table row:

(this text may be
a half-page or more
in length.)

Because the text formatter always tries to keep this table row on the same
page, you might get short, uneven pages. If you want to allow page
breaks within a table row, use the <VALID_TABLE_ROW_BREAK> tag in the
middle of the column of the table row:

<table_row>(column 1 text \ column 2 text

<valid_table_row_break>
<p>--------------

Using Common Tag's

You should generally put the <VALID_TABLE_ROW_BREAK> tag
immediately before a <P>, <LIST> , or <LE> tag. The <VALID_TABLE_
ROW_BREAK> tag is valid only in two- and three-column tables, and is
only valid in the last column of the table.

• The text formatter's rule about never breaking a table in the middle of a
table row also applies if a column in a table row contains a nested table.
For example:

<table_row>(column 1 text \ column 2 text

<table>
<table_setup>(2\10)
<table_row>(one\two

<p> this is now text in a nested table.

Sometimes this text gets long, too.)

<end table>

To specify that it is allowable to break a page within this nested table,
you must use the <NESTED_TABLE_BREAK> tag. This tag should be
placed just before <P> or <LE> tags, where there is already some
vertical space. For example:

<table_row>(column 1 text \ column 2 text

<table>
<table_setup>(2\10)
<table_row>(one\two

<end table>

<p> this is now text in a nested table.

Sometimes this text gets long, too.
<nested_table_break>
<p>Here is some more text for this
column.

• The more places you indicate acceptable page breaks in a table, the better
the text formatter is able to select the best page breaks and not cause a lot
of short, uneven pages.

• If you specify KEEP when you code a table tag, the text formatter tries to
keep the table all on one page, no matter if it is too long. You receive a
warning message that a page is too long, the device converter also issues
an error message, and the part of the table that did not fit on the page
probably will not print in the output.

• Use the <PAGE> or <FINAL_CLEANUP> (PAGE_BREAK) tags in tables
to control paging explicitly. Note, however, that when you control page
breaks, you might have unexpected results when you modify the input
file for a device other than the one for which you coded the page breaks.

Whenever the text formatter detects a possible problem, it issues an
informational message to alert you to check your output.

3-13

Using Common Tags

3.8 Figures

3-14

• Use the <TABLE_ATTRIBUTES> (CONTROLLED) tag to indicate that you
are going to explicitly specify the range in which the table will be allowed
to break. You then must use <TABLE_ROW-BREAK> (FIRST) and <TABLE_
ROW_BREAK> (LAST) to indicate the first and last allowable page break
points. Between these two tags, the table may be broken between any
two <TABLE_ROW> tags.

• Use the <SELTABLE_RQW_BREAK_DEFAULT> tag to provide a default
number of rows that must be on the first page of the table. For example,
if you specify <SELTABLE_RQW_BREAK_DEFAULT> (3), any subsequent
table will not be broken until after the third row. You might want to use
this default if your table consists of single-line items.

Use the <FIGURE> tag to indicate a text element that illustrates a point. It
might be a graphic file, a hand-drawn illustration that you need to paste in
your output file, or a series of keystokes that represents an item in a diagram.

A set of required tags identifies the text as a figure, establishes the figure's
attributes, and identifies the end of the figure. A separate set of figure tags
can be used to identify whether the figure is line art, an icon, located in a
different file that you want included, or simply blank lines that you want
inserted so that a figure can be pasted in later.

The tags that enable the context of a figure are <FIGURE> (figure­
caption\symbol-name) and <ENDFIGURE> . Within these two tags, you
must include at least one tag that labels the figure text element.

Table 3-3 summarizes the figure text element tags available for use in
figures.

3.8.1

Using Common Tags

Table 3-3 Figure Tags

Description of Each Tag,
Function Tags Used Location of Example in Chapter 9

Including in the SDML file a <FIGURE_FILE> Includes a figure contained in a separate file and
1 pica of space before and after the included
figure. See <FIGURE_FILE> .

separate file that contains a
figure.

Leaving blank space for a <FIGURE_SPACE> Leaves a user-specified amount of space for
a figure to be pasted in later. See <FIGURE_
SPACE>.

figure.

Including a section of code <CODE_EXAMPLE> Marks a section of code. See <CODE_
EXAMPLE>. as a figure.

Including a figure that <INTERACTIVE> Marks a system and user dialogue. See
<INTERACTIVE>. specifies a dialogue

between the system and a
user.

Identifying a rough sketch
produced at the keyboard
for draft output.

Including an illustration of
sample text.

Estimating a good page
breaking point in a long
figure.

Referring to the symbol­
name given to a figure.

Figure Elements

<LINE_ART>

<SAMPLE_ TEXT>

<VALID_BREAK>

<REFERENCE>

Identifies the following text as ~ine-art. See
<FIGURE>.

Distinguishes an illustration of sample text from
the surrounding text. See <SAMPLE_ TEXT> .

Indicates an acceptable page breaking point.
Used in the context of <CODE_EXAMPLE> or
<INTERACTIVE>. See <VALID_BREAK>.

If a symbol-name is specified in a <FIGURE>
tag, you can reference the symbol-name in
other places in your document via this tag.
See <REFERENCE>.

When placing a figure in your input file, the tags that you use to label the
figure as a text element must be used in the context of a <FIGURE> tag. The
figure element (for example, a code example or a figure file) is enabled by
<FIGURE> . The <FIGURE> tag, itself, does not include the figure element,

but assigns the figure's caption and the figure's symbol-name (if used).

Choose the figure element tag based on the type of figure. The valid tags are
included in Table 3-3. A figure can consist of more than one type of figure
element, and the types of figure elements can be mixed. For example, you
can label a small graphic file and some text that accompanies it by using a
<FIGURE_FILE> and a <SAMPLE_TEXT> tag:

<FIGURE>(How to Load a Tape\tape_fig)
<FIGURE_FILE>(LN03\mydisk: [mydirectory]tape_fig.six\10)
<SAMPLE_ TEXT>
<P>This figure illustrates how to load a tape ...
<ENDFIGURE>

The output of this example would be a formal figure titled "How to Load a
Tape." The figure in [mydirectory]tape_fig.six would be included, along with
the sample text explaining the figure.

3-15

3.8.2

Using Common Tags

Controlling Figure Attributes

3.8.2.1

3-16

You can control the following attributes of figures:

• Formality (that is, if the figure has a number and a caption or not)

• The margin at which the caption is printed, if the figure has a caption

• Whether it is allowed to break across pages or if the entire figure must be
kept on a single page, or whether it is allowed to "float"

The formality is controlled by the presence of the caption argument in the
<FIGURE> tag. If you do not specify this argument, no number is assigned

to the figure. Figures are automatically numbered. The numbers may be
sequential throughout a document, or numbered beginning at 1 in each
chapter. With the exception of the REPORT document type, you cannot
control the numbering; that is an attribute of the overall document type and
design.

The attributes that you have more control over are the margins and the
page-breaking. These attributes are discussed in the following sections.

Controlling a Figure's Margins
The width, that is the left and right margins of a figure, is determined by the
following default attributes:

• For formal figures, the left margin of the figure caption is the same as
the normal left margin of text, regardless of whether the text immediately
preceding the figure is indented.

• For informal figures, the left margin of the figure caption is the same as
the current left margin of the text. If the text is indented (for example, if
it is a list element) the figure is indented at the same margin.

The body of a figure, that is, the set of tags that specify the content of the
figure, is processed independently of the <FIGURE> tag and its caption. For
example, some writers use the <FIGURE> tag to formalize examples so that
they can refer to them from anywhere in a document. For example:

<FIGURE>(Status Message\stat_fig)
<FIGURE_ATTRIBUTES>(WIDE)
<CODE_EXAMPLE>(WIDE)
%SYSTEM-S-SUCCESS, YOU HAVE SUCCESSFULLY COMPLETED ALL THE EXERCISES
<ENDCODE_EXAMPLE>
<ENDFIGURE>

Here, the WIDE attribute is specified in both the <FIGURE> tag and in the
<CODE-EXAMPLE> tag to ensure that the caption will align with the example

text. You must use the WIDE attribute in the context of the figure's content
as well as in the <FIGURE_ATTRIBUTES> tag.

3.8.2.2

Using Common Tags

Controlling Page Breaks in Figures
The body of a <FIGURE> may consist of one or more individual elements;
for instance, two or more graphics figures may comprise a single figure,
or monospaced examples may be mixed with graphics in a figure with a
single label. Or, a figure may consist of a monospaced example that is more
than a page in length. In these cases, you should be aware of the rules for
controlling page breaks in figures.

By default, the text formatter makes the following assumptions about a figure:

• It is less than a single page in length

• If it is a formal figure, it is allowed to "float," that is, if it does not fit
immediately following its preceding text on a page, the text formatter
moves the figure (usually to the top of the next page of output), and fills
it in with texf to avoid making a short page

• If it is an informal figure, it is not allowed to float

You can use the attribute keywords KEEP and MUL TIP AGE in figures as
follows:

• KEEP tells the text formatter that you want the figure to be kept with the
preceding text and not to float, regardless of whether a page is short

• MUL TIP AGE tells the text formatter that the figure has several elements
and that page breaks are legal between the elements

If a figure that requires more than a page is coded without the MUL TIP AGE
attribute, the text formatter issues a message and breaks the figure anyway,
according to the following rules:

• If the figure consists of multiple elements such as <FIGURE_SPACE>,
<FIGURE_FILE>, and so on, the text formatter will only cause a page

break between the individual elements.

• If a figure consists of a monospaced example that is more than a page in
length, the text formatter chooses page breaks based on the following:

If the example contains <VALID_BREAK> tags, the text formatter uses
their positions as valid page break points

If the example contains no <VALID_BREAK> tags, but has blank lines,
the text formatter chooses the blank lines as valid page break points

If the example contains neither <VALID_BREAK> tags nor blank lines,
the text formatter puts as much text as possible on each page and
breaks the page at the bottom

• Use the <PAGE> or <FINAL_CLEANUP> (PAGE-BREAK) tags in figures
to control the page breaking explicitly. Note, however, that when you
control the page breaks, you may have unexpected results when you
modify the input file or process the input file for a device other than the
one for which you coded the page breaks.

3-17

3.8.3

Using Common Tags

Including Graphics Files
Table 3-4 describes the tags that are used for including graphics in source
files.

Table 3-4 Tags for Including Graphics Files

Function Tags Used to Do Function
Description of Each Tag, Location of
Example in Chapter 9

Enabling a small graphics
file to be placed to the right
or the left of your text.

<ICON> This feature has several restrictions. Refer
to the restrictions in the tag description.
See <ICON>.

<ICON_FILE>

<ICON_ TEXT>

<ENDICON>

Identifies the graphics file to be included
in your text. This tag must be used in the
context of the <ICON> and <ENDICON>
tags.

Accompanies an icon file with text. Must
be used in the context of the <ICON> and
<ENDICON> tags.

Terminates the <ICON> tag.

Including in the source file a <FIGURE_FILE> Includes a separate figure file. Valid only
within the context of <FIGURE> and separate file that contains a

figure.

3-18

<ENDFIGURE> . See <FIGURE_FILE> .

An example of how to include a figure follows:

Example

<FIGURE>(Keypad Illustration)
<FIGURE_ATTRIBUTES>(Float)
<FIGURE_FILE>(ln03\mydisk: [mydirectory]keypad.six\22)

<FIGURE_FILE>(PS\mydisk: [mydirectory]keypad.ps\22)

<ENDFIGURE>

This example contains a figure file that includes another file (a graphics file)
in this location. The tag requires the graphics file's specification. Chapter 9
contains full descriptions of all the figure tags, including <FIGURE_FILE> .

3.9 Examples

Using Common Tags

Output

Figure x-x Keypad Illustration

LJLJLJLJ
[]~[JD
[JEJUD
[] [] [] Enter

[a JD
ZK-7715-HC

An example is used to display an excerpt of a programming or command
language, the interaction between a user and the system, and the like. There
are two types of examples in VAX DOCUMENT, informal and formal. Both
types require their own set of tags.

The two types of examples differ in the following ways:

Informal

Formal

Remains unnumbered and is not listed in the table of contents.

Given a caption and numbered. Listed in the table of contents.
Can be cross-referenced with the <REFERENCE> tag.

3-19

3.9.1

3.9.2

Using Common Tags

Informal Examples
To create an informal example, use the <CODE_EXAMPLE> and <ENDCODE_
EXAMPLE> tags to label your text or code excerpt. An informal example
follows:

Example

<CODE_EXAMPLE>
$!
$! The next two lines redefine the cmd. line prompt to be the node
$! name's initial.
$!
$NODE :== 1F$LOGICAL(11 SYS$NODE 11) 1

$SET PROMPT="' 'F$EXTRACT(1,1,NODE)' :"
$!
<ENDCODE_EXAMPLE>

Output

$!
$! The next two lines redefine the cmd. line prompt to be the node
$! name's initial.
$!
$NODE :== 1F$LOGICAL(11 SYS$NODE 11) 1

$ SET PROMPT=" I I F$EXTRACT (1. 1, NODE) I : II

$!

Formal Examples

3-20

To create a formal example, use the <EXAMPLE> (example-caption\symbol­
name) and <ENDEXAMPLE> tags to label your text.

The example shown in the previous section could be made into a formal
example as follows:

Example

<EXAMPLE>(Login Commands\login_exam)
<CODE_EXAMPLE>
$!
$! The next two lines redefine the cmd. line prompt to be the node
$! name's initial.
$!
$NODE :== 1F$LOGICAL(11 SYS$NODE 11) 1

$SET PROMPT="' 'F$EXTRACT(1,1,NODE)' :"
$!
<ENDCODE_EXAMPLE>
<END EXAMPLE>

Output

Example x-x Login Commands

$!
$! The next two lines redefine the cmd. line prompt to be the node
$! name's initial.
$!
$NODE :== 1F$LOGICAL(11 SYS$NODE 11

)
1

$SET PROMPT="' 'F$EXTRACT(1,1,NODE)' :"
$!

Using Common Tags

For the purposes of the text formatter, the <FIGURE> tags and the
<EXAMPLE> tags are similar in function. The example and figure tags

provide an alternate way to label (for cross-referencing purposes) a distinct
type of example. See Section 3.8.2 for an explanation of how attributes
are processed and how to control page breaks in multipage examples (the
information in that section applies to both figures and examples).

In addition to the tags listed for a formal example, you can use any of a
second group of example tags inside a formal example to do a specialized
function. Table 3-5 lists possible special functions and the associated tags, as
well as the location of examples of the functions in Chapter 9.

Table 3-5 Special Example Functions

Function

Beginning an example of
interactive dialog.

Specifying a wide format
for the example.

Estimating a good page
break point in a long
example.

Specifying exact placement
of the example on the page.

Leaving blank space for an
example.

Including a separate
example file to be placed in
your source file.

Referring to a symbol-name
given to an example.

Tags

<INTERACTIVE>

<S>

<U>

<EXAMPLE_
ATTRIBUTES> (wide)

<VALID BREAK>

<EXAMPLE_
ATTRIBUTES> (KEEP)

<EXAMPLE_SPACE>

<EXAMPLE _FILE>

<REFERENCE>

Description of Tags, Location of Example
In Chapter 9

Enables the <S> and <U> tags to
distinguish system text from user text. See
<INTERACTIVE> and <U>.

Labels the system text of an interactive
example. See <INTERACTIVE>.

Labels the user text of an interactive
example. See <INTERACTIVE>.

Formats the example's caption as wide.
See <EXAMPLE>.

Indicates an acceptable page breaking point.
See <VALID_BREAK> .

Specifies special formatting for the example.
See <EXAMPLE>.

Leaves space for an example to be pasted
up during production. See <EXAMPLE_
SPACE>.

Causes the entire contents of the specified
file to be included in your source file. See
<EXAMPLE_FILE> .

If a symbol-name is specified in an
<EXAMPLE> tag, <REFERENCE> can be

used to reference the symbol-name in other
places in the document, thereby always
producing the correct example number. See
<REFERENCE> .

3-21

4 Processing and Printing Files and Books

Chapter 2 and Chapter 3 describe the basics of using the VAX DOCUMENT
system, including how to create an input file and how to code the basic text
elements of an input file. After you correctly code input files, the next step is
to process the files and print or read them on various supported devices.

Processing and printing are done by using the DOCUMENT command
line. The components of the command line are discussed in Appendix A.
This chapter describes the specific use of these components for processing
an individual file or a group of files, and identifies several command line
qualifiers used to enhance the process.

Appendix A describes the processing commands and qualifiers that are
available from the VAX DOCUMENT command line.

4.1 The Four Types of Processes
The DOCUMENT command is used to process your input files in any of four
ways:

• As an individual file (processed in a file build)

You have an individual file that contains all the SDML tags required to
create an entire document. For example, a file containing a letter or a
set of overhead slides normally contains all the tags for the complete
document. An individual file can contain several chapters, and when
processed, the chapters are automatically numbered in the order that
you place them in the file. Processing individual files is discussed in
Section 4.3.

• As a book (processed in a bookbuild)

You have a set of SDML files, each of which contains a portion of a
book. To do a bookbuild, you must put the text and SDML tags for each
individual chapter in a unique file. You then create a file called a profile
that lists the files that contain the individual chapters. Bookbuilding is
discussed in Section 4.5.

• As an element of a book (processed in a book element build)

An element is a single file that is a part of a book; for example, the tags
and text for a single chapter. When you have made extensive changes to
an element of a book, or when a colleague requests a copy of a particular
chapter, you can use an element build to process and print the single
chapter only. Book element processing is discussed in Section 4.6.

• As a subelement of a book ,(processed in a book subelement build)

A book element can be divided into smaller parts, with each part kept
in its own file. Each is considered a subelement of the book, and can be
processed individually. Subelement processing is discussed in Section 4.7.

4-1

Processing and Printing Files and Books

Processing a file that is an element or subelement of a book is useful if you
need only part of a book for review purposes or if you want to make sure that
your references to other parts of the book are correct after you make changes
to the input file. You do not have to process the entire book to resolve the
references correctly. (Using cross-references is discussed in Chapter 6.)

4.2 Chain of Processing
The chain of processing begins when you invoke VAX DOCUMENT from the
command line. Each processor creates an intermediate file and passes that file
on to the next processor. The input file is processed in the following order:

1 The tag translator creates a . TEX file.

2 The text formatter creates a .DVl_device file.

3 The device converter creates an output specific file, with the file type of
LN03, LINE, PS, TERM, or TXT. This final file is sent to the output device
for printing or reading through the VMS Mail Utility or on the terminal
screen.

No matter the type of build, the input file you specify on the command line is
processed in the order of the tag translator, the text formatter, and the device
converter, and then sent to a print queue. You can specify that one or more
processors be skipped during the processing of a file. The reasons for doing
this and the qualifiers used are discussed in the following sections.

4.3 Processing Individual Files

4-2

A single generically coded input file can be processed and printed on a
hardcopy device, viewed on a terminal screen, or viewed from within
electronic mail.

After creating an input file, you process it by typing the DOCUMENT
command line using the following syntax:

$DOCUMENT input-file-spec doctype.design destination

The command line parameters must be specified in the order shown.

On the command line, the input-file-spec is the name of the input file you
want to process. Usually, you do not have to specify the file type of the input
file; VAX DOCUMENT assumes the correct file type.

The doctype for your file is the second parameter on the command line. The
doctype you choose depends on the type of information you are documenting
and on the document design you prefer. Certain doctypes contain tags
specific to certain types of information. For more information on these
doctype-specific tags, see VAX DOCUMENT User Manual, Volume 2. If you
are not sure which doctype to use, you can look through VAX DOCUMENT
Design Samples to choose an appropriate design.

Specify the destination to which you intend to send the output as the third
parameter. When processing an individual file, you can specify any of five
destinations on the command line: three supported types of printers, a
terminal, and an electronic mail destination. The keywords you use to specify
these destinations are shown in Table 4-1.

Processing and Printing Files and Books

Your system manager may set up site-specific destination keywords for your
installation. Destination keywords can be abbreviated.

Table 4-1 Destination Keywords

Keyword

LINE

LN03

MAIL

PS

TERMINAL

Destination

Any line printer supported at your site. Produces a file
that uses overstriking to achieve bold and underlined
text.

The DIGITAL LN03 or LN03 PLUS laser printers.

The VMS Mail Utility. Produces a file that does not
display bold or underlined characters.

Any supported POSTSCRIPT device.

Any ANSI terminal, such as the VT100, VT200 or
VT300 series. Produces a file that uses ANSI control
sequences to achieve bold and underlined text.

The command line accepts qualifiers to control aspects of the processing.
Those qualifiers are discussed in this chapter; the entire set of qualifiers is
explained in Appendix A.

After being processed, the file is printed automatically (except when using the
terminal or mail destinations) unless you specify the /NOPRINT qualifier on
the command line.

Note: When processing interactively, it is good practice to use the /LIST
qualifier on the DOCUMENT command line to capture any error
messages. The LIS file that is created to hold the messages is placed
in your current directory and named input-file-spec.LIS. To use this
qualifier on the command line, type the following command line:

$ DOCUMENT input-file-spec doctype destination /LIST

4.4 Controlling File Processing
So far, this chapter has mentioned several qualifiers that, when added to
the command line, allow you to process book elements, include other input
files into the final output, or map the files processed during a bookbuild.
DOCUMENT command line qualifiers also can be used to control how
processing occurs, which processors will be used, and what portion of a
document gets processed.

Each qualifier should be specified on the command line only once. If a
qualifier is specified more than once, only the last use of that qualifier takes
effect. The following qualifiers are discussed in this section:

4-3

4.4.1

Processing and Printing Files and Books

/BATCH

/CONDITION

Causes the process to be done in batch
mode.

Sets a condition for the file being
processed.

/DEVICE _CONVERTER=(HORIZONT AL _OFFSET =points)
/DEVICE_CONVERTER=(VERTICAL _OFFSET =points)

Each of these qualifiers alters the default
position of the text page for the whole
document.

/DEVICE _CONVERTER=(ST ARTING _PAGE=fo/io) Each of these qualifiers processes and
prints only those pages selected. /DEVICE _CONVERTER=(ENDING_P AGE=fo/io)

/DEVICE_CONVERTER=(NUMBER_OF _PAGES=tota/-pages)

/INCLUDE

/KEEP

/NODEVICE _CONVERTER

/NOT AG_ TRANSLATOR

/NOTEXT_FORMATTER

/OUTPUT

/SYMBOLS

Includes an additional SDML file before the
input-file.

Specifies that the intermediate files should
be kept in the current directory.

Processes a file without running it through
the device converter.

Processes a file without running it through
the tag translator.

Processes a file without running it through
the text formatter.

Specifies a new name for the output file.

Includes a file containing symbol name
definitions for symbols that are referenced
in a source file.

Keeping Intermediate Files (Using /KEEP)

4-4

By default, the intermediate files are automatically deleted from your directory
after they are used in the processing chain. You can keep the intermediate
files for later use by specifying the /KEEP qualifier on the command line.

If you keep the intermediate files, you can reprocess a document from any
stage of the processing chain. By specifying the appropriate combination of
command line qualifiers, processing starts at the specified point:

• To start the processing chain after tag translation, specify /NOTAG_
TRANSLATOR on the VAX DOCUMENT command line. You must have
a TEX file to start at this point.

• To start the processing chain after text formatting, specify /NOTAG_
TRANSLATOR and /NOTEXTJORMATTER on the VAX DOCUMENT
command line to suppress the tag translator and the text formatter. You
must have a DVl_device file to start at this point.

• To print the output file without reprocessing it, specify /NOTAG_
TRANSLATOR, /NOTEXT_FORMATTER, and /NODEVICE­
CONVERTER to suppress the tag translator, the text formatter, and
the device converter. You must have a device-specific output file, such as
a FILENAME.LN03 file.

Processing and Printing Files and Books

4.4.2 Processing in Batch Mode (Using /BATCH)
You can specify a qualifier on the command line that submits your
DOCUMENT command for processing as a batch job, instead of running it
interactively (interactive processing occurs by default). By specifying /BATCH
with the rest of your command line, you can continue processing while your
terminal is free for other use. Also, by default, the /BATCH qualifier creates a
log file, with the same file name as the input file and a file type of .LOG. The
log file, which is placed in your current directory, contains a listing of any
processing errors found by the tag translator or by the text formatter. The log
file can be typed or edited.

When processing in batch, there is no need to use the /LIST qualifier if the
batch log file is printed or kept.

The /BATCH qualifier accepts many keywords to modify the batch processing
activity. These keywords are the same as the DIGITAL Command Language
(DCL) SUBMIT command qualifiers, which are explained in the VAX/VMS
DCL Dictionary. An example is shown in Appendix A of this manual.

4.4.3 Printing an Existing File
Ordinarily, a file is printed automatically when you issue the DOCUMENT
command, unless you specify the /NOPRINT qualifier or the destination as
TERMINAL or MAIL on the command line. However, you might want to
print a file that has been previously processed and printed or one for which
you previously suppressed printing. In this case, specify that the file does
not require tag translation, text formatting, or device conversion, by using the
following qualifiers on the command line:

$ DOCUMENT file-spec doctype destination /NOTAG_TRANSLATOR -
$_/NOTEXT_FORMATTER /NODEVICE_CONVERTER

Print only those files that were successfully processed through the device
converter. Use the DOCUMENT command line, specifying the command
line qualifiers /NOTAG_TRANSLATOR, /NOTEXT_FORMATTER, and
/NODEVICE_CONVERTER.

You can use the DCL PRINT command to print files if you want to get a hard
copy of your input file, including the untranslated code, or if you want a hard
copy of the LOG or LIS file. You can also use the DCL PRINT command to
print, with the appropriate qualifiers, any of your final output files, as shown
in Table 4-2. The queue names are defined by your system manager.

Table 4-2 DCL Commands for Printing Files

Type of Output File

LINE, TXT, or TERM

LN03

PS

DCL Command

$ PRINT filename /QUEUE=queue-name

$ PRINT filename /OUEUE=queue-name /NOFEED
/PASSALL

$ PRINT filename /OUEUE=queue-name
/PARAMETER=(DAT A_ TYPE=POSTSCRIPT)

4-5

Processing and Printing Files and Books

4.4.4 Reprocessing a File for a Different Destination
You cannot reprocess a DVI_device file to make the file readable by a
device other than the one for which the file was originally processed.
The exceptions to this rule are files processed for the LINE, TERMINAL,
and MAIL destinations. These destinations all use the same DVI_LINE
intermediate file, so you can reprocess for these different destinations.
Files processed for LN03 or PS destinations should be sent to a different
destination by specifying the following command line:

$ DOCUMENT file-spec doctype destination

Or you can reprocess a TEX file (if the TEX file was kept) by skipping the tag
translation stage:'

$DOCUMENT file-spec.TEX doctype destination /NOTAG_TRANSLATOR

The TEX file has already been processed through tag translation, so the
/NOTAG_TRANSLATOR qualifier specifies that the file should not be
processed through the tag translator again.

Note: You cannot reprocess a TEX file using a different doctype than the one
specified on the original command line. This could cause errors and the
results are unpredictable.

4.4.5 Processing or Reprocessing Selected Pages (Using
/DEVICE_CONVERTER)

4-6

If you want to process and print (or reprocess and print) selected pages of
a document, you must have kept the DVI_device file. To process selected
pages, use the /DEVICE_CONVERTER command line qualifier with the
following keywords:

• /DEVICE_CONVERTER=STARTING_PAGE=S, which instructs the
printer to begin printing with page 5 of the document.

• /DEVICE_CONVERTER=ENDING_PAGE=3, which instructs the printer
to print pages 1, 2, and 3.

• /DEVICE_CONVERTER=(START=S, NUMBER=3), which instructs the
printer to print pages 5, 6, and 7.

Alternately, you can use the following qualifier:

• /DEVICE_CONVERTER=(NUMBER_QF_PAGES=total-pages) which
specifies the number of pages to print, when no ENDING_PAGE
keyword is specified.

Note: When you specify more than one keyword to the /DEVICE_
CONVERTER qualifier, enclose the keywords in parentheses and separate
them by a comma.

The ENDING_PAGE and NUMBER_OF_PAGES keywords cannot be
used together on the same command line. If they are used together VAX
DOCUMENT will issue an error message.

Refer to Appendix A for more information on these /DEVICE_CONVERTER
qualifier keywords.

Processing and Printing Files and Books

4.4.6 Altering Page Parameters (Using /DEVICE_CONVERTER)
The /DEVICE_CONVERTER=(device-keyword) qualifier contains a useful
feature for altering the page positioning of an entire document. The following
qualifiers shift the printed image on the page:

• /DEVICE_CONVERTER=(HORIZONTAL _OFFSET= number-of-points)
is used to specify the text positioning of a document's left margin. The
HORIZONTAL_OFFSET keyword shifts the image horizontally.

• /DEVICE_CONVERTER=(VERTICAL _OFFSET=number-of-points) is
used to specify the text positioning of a document's top margin. The
VERTICAL_OFFSET keyword shifts the image vertically.

In both cases, the number of points is an integer that specifies how far from
the margin the text should be shifted (72 points is equal to 1 inch). The
default horizontal and vertical offsets are both set to 72 points.

4.4. 7 Including Additional Files (Using /INCLUDE)
To include an additional file in your final output, specify the /INCLUDE
qualifier on the DOCUMENT command line.

The /INCLUDE qualifier specifies that a file is included at the front of
your output. It assumes a file type of SDML for the included file if none is
specified, but accepts other file types.

An example of a file that might be included with the /INCLUDE qualifier is
a cover page that reads "For Internal Use Only." The input file that contains
the cover page text, perhaps called COVERP AGE.SDML, would be specified
on the command line with /INCLUDE=coverpage.

Another way to include a file is to use the <INCLUDE> (file-spec) tag. This tag
serves the same purpose as /INCLUDE, except that the file is included into
your output file at the exact location of the tag.

4.4.8 Conditionalizing Files (Using /CONDITION)
VAX DOCUMENT allows you to conditionalize an input file so that you can
process the same file to obtain different output for different purposes. The
/CONDITION qualifier can be used on the DOCUMENT command line to
establish the condition under which the file is processed.

For an example of a conditionalized file, consider the following situation: you
want to write two letters, one to a friend and one to an acquaintance. You
want most of the text of the two letters to be the same, but you want to add
a personal note only to your friend. In this case, you actually need to write
only one letter.

If the file that contains the letter is called MYLETTER, you can create
conditional sections in MYLETTER, with <CONDITION> (personal) tags, where
"personal" is the condition-name. Then, you process this file twice. You
process the letter to the acquaintance, using the usual DOCUMENT command
line. You also process the letter to your friend, but this time, you use the
/CONDITION qualifier on the command line, specifying the condition as
"personal." For example:

$ DOCUMENT myletter LETTER LN03 /CONDITION=personal

4-7

Processing and Printing Files and Books

4.4.8.1

4.4.8.2

When the same condition-name used in the <CONDITION> tag is specified
on the command line, all text that was tagged with that condition-name
is included in the output. In this example, all of the text tagged with
<CONDITION> (Personal) is included. The same text is suppressed when

the /CONDITION qualifier is not specified on the command line.

If you have placed <CONDITION> tags in your file, but do not set the
condition during processing, no error message is generated. In this case, the
conditionalized text is suppressed.

Using the <SELCONDITION> Tag
You can set a condition by using the <SELCONDITION> tag. Then, you do
not use the /CONDITION qualifier when you process the file, but instead set
the condition in the file, itself, at the top of the file.

Continuing with the same example, you could place the tag
<SELCONDITION> (personal) in a separate SDML file (called FRIEND_

NOTES.SDML) and include that file at the beginning of your input
file, MYLETTER.SDML, by using /INCLUDE=FRIEND_NOTES. In
FRIEND_NOTES, you could also define symbols to be used only when
Condition=personal is set. You can even include text in that file, so that the
text is included only when the condition is set.

There is no distinction between a condition that is set with a /CONDITION
qualifier on the command line and a condition that is set by a
<SELCONDITION> tag in an input file.

If you set the same condition on both the command line and in the file, no
error will result.

Setting More than One Condition
It is possible to use more than one condition name to create conditional
sections of an input file. You can tag some text elements with one condition
name, and other text elements with a different condition name. During
processing, the conditional text that does not match a set condition is not
included in the output.

To set more than one condition in a file, you must use <SELCONDITION>
tags on all but one condition, because the /CONDITION qualifier can set
only one condition.

For information on using conditions during bookbuilding or related
processing, see Section 4.6.1.

4.4.9 Assigning a New Output File Name

4-8

If you choose to process a conditional file twice to get two different output
files, you may want to use a DOCUMENT command line qualifier that
assigns a name to the output other than the one assigned by default.
/OUTPUT=file-spec gives the final output file any name that you choose.

Continuing with the previous example, the letter to your friend can be
processed and the output given a name that clearly identifies it, if you used
the following command line:

$ DOCUMENT myletter LETTER LN03 /CONDITION=personal /OUTPUT=friend_letter

4.5 Bookbuilding

Processing and Printing Files and Books

Besides processing an individual file, you can process a group of files as a
book. This process is called a bookbuild. The major benefit to processing
a file as part of a book is that the bookbuild creates a file that contains
all the symbol names that you have used throughout the book. You can
subsequently reprocess individual elements of the book using the file of
symbol names to resolve cross-references to other elements of the book.

There are three steps to processing a group of input files through a bookbuild:

1 Create the book element input files, naming them with SDML file types.
These files can be empty but each file must contain a book element tag,
and these must have symbol-names. Book elements are discussed in
Section 4.5.1.

2 Create a prafile, naming this file with an SDML extension also. A profile
contains a list of <ELEMENT> tags that specify the elements that compose
your book. Once created, this profile becomes the file that you specify on
the DOCUMENT command line for processing.

3 Process the profile.

Each step in building a book is described in the following sections.

4.5.1 Creating Input Files
When the structure of the book is clearly known, create a file for each
element. All of the text need not be written. Use a <CHAPTER> or
<APPENDIX> tag to head each element, and add <HEADx> tags if you

have an outline of the chapter. The actual paragraphs of text can be filled in
when you come to write the chapter.

If you have not yet decided on the order of the chapters, or if the order could
change, name each chapter with a descriptive name (for example, INTRO_
CHAP.SDML) instead of a numbered title (as in CHAPl.SDML). You can
then easily reorder the chapters without renaming the files that contain them.

When creating your book element input files, remember the following points:

• Place each book element in a separate file by placing one of the following
book element tags in the file as its first tag:

<APPENDIX>
<CHAPTER>
<FRONLMATTER>
<GLOSSARY>
<PART>

• A book element file should contain only one of the book element tags.
For example, two <CHAPTER> tags should not be placed in one file if
you want to process that file in a bookbuild. The tag that identifies the
file as a book element must be the first tag to appear in the file.

• Each book element tag must contain a symbol-name argument if it will
be part of a bookbuild.

• There must be one file for each book element.

4-9

4.5.2

Processing and Printing Files and Books

Creating a Profile

4-10

A profile is an SDML file that contains a list of all of the elements in a book,
including the front matter, chapters, appendixes and glossary, if any. The
profile also can contain tags that specify where a table of contents or index
should be placed in the book and tags that specify logical names for files that
are included. Only a specific set of tags can be placed in the profile. All valid
profile tags are listed in Table 4-3.

Table 4-3 Profile Tags

Tag Purpose

<PROFILE> Signals VAX DOCUMENT that the file is a profile
submitted for a bookbuild.

<ELEMENT> (file-spec)

<INCLUDES_FILE> (logical­
name\file-spec)

<CONTENTS_FILE> t

<INDEX_FILE> t

<COMMENT> t

<ENDPROFILE>

Identifies the file specification of an elen:ient of the
book.

Defines a logical name for the file specification of a
file included within the previous book element. See
Section 4.5.3.2.

Specifies the location in the book where a table of
contents file should be included.

Specifies the location in the book where an index
file should be included.

Used to make comments about the elements of
the profile.

Terminates the profile.

tThese tags are also valid in files other than profiles.

To create a profile that reflects the structure of the book, list (in a separate
input file) all the files that are part of the book, tagging each file name in the
list with an <ELEMENT> tag. In the front of the file, place the <PROFILE>
tag, and at the end of the file, place the <ENDPROFILE> tag. Give this SDML
file a unique name that indicates it is a profile (for example, MYBOOK_
PRO.SDML); processing a profile file that is named the same as one of your
other SDML files can cause a fatal processing error.

Each <ELEMENT> tag should specify a file that contains a book element. An
example of a profile for a book named How to Use a Computer follows:

<PROFILE> <COMMENT>(***Profile for How to Use a Computer***)

<CONTENTS_FILE> <COMMENT>(***insert table of contents here***)
<ELEMENT>(Mydisk: [Mydirectory]intro_chap.sdml)
<ELEMENT>(Mydisk:[Mydirectory]applications_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]tools_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]conclusion_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]questions_app.sdml)

<INDEX_FILE> <COMMENT>(***insert index here***)
<END PROFILE>

Each of the book element files listed in the example must contain a book
element tag and a symbol name for that element. For example, the chapter
TOOLS_CHAP .SDML should begin with the following tag:

<CHAPTER>(Using Basic Computer Tools\comp_tools_chap)

Processing and Printing Files and Books

"Using Basic Computer Tools" is the chapter title and "comp_tools_chap" is
the symbol name of the chapter.

4.5.3 Processing a Profile

4.5.3.1

4.5.3.2

To perform a bookbuild, use the following command on the command line:

$ DOCUMENT profile-spec doctype destination

Profile-spec specifies the name of the SDML file containing the profile of the
book being processed.

VAX DOCUMENT recognizes that it is building a book when it reads the
<PROFILE> tag in the profile. Processing the profile creates a cross-reference

(XREF) file for the book. For example, if MYBOOK_PRO.SDML is the profile
name, typing the following line creates a complete cross-reference file of all
the symbol-names in the book. The cross-reference file is called MYBOOK_
PRO.XREF and the final output file (processed for the REPORT doctype) is
called MYBOOK_PRO.LN03.

$ DOCUMENT MYBOOK_PRO REPORT LN03 /CONTENTS /INDEX

You might want to process a profile with the /NOPRINT qualifier so that the
book is not printed by default. You must specify /CONTENTS and /INDEX
if you want table of contents and index files.

Listing the Input Files
A command line qualifier that is useful during a bookbuild is /MAP. This
qualifier lists all the input files processed by VAX DOCUMENT in one
separate MAP_LIS file, thereby keeping track of the files included and their
order. The list starts with the first input file processed and includes any input
files specified by <ELEMENT> or <INCLUDE> tags. In the list, files that are
included by other files are indented under those files.

If you do not specify a file type, the MAP file is given the same name as the
profile with a file type of MAP_LIS.

The /MAP· qualifier is valid only if tag translation is being done. If
/NOTAG_TRANSLATOR is specified with the /MAP qualifier, the /MAP
qualifier is ignored, and VAX DOCUMENT issues an informational message
stating that you have specified conflicting qualifiers.

Defining Logical Names for Included Files
To define logical names for included files in book. elements, use the
<INCLUDES_FILE> tag in your profile. The <INCLUDES_FILE> equates a

logical name with a file specification during VAX DOCUMENT execution.
The tag's format follows:

<INCLUDES_FILE>(logical-name\file-spec)

Place the <INCLUDES_FILE> tag in your profile to define a logical name for
a file whose contents are included in one of your element files. The first
argument to <INCLUDES_FILE> is the logical name for the included file. You
then use this name as the argument to the <INCLUDE> tag in one of the book
element input files. The second argument specifies the actual file specification
into which the logical name translates.

4-11

Processing and Printing Files and Books

4-12

The <INCLUDES_FILE> tag is valid only within a profile. You should place
it directly after the <ELEMENT> tag that names the book element file that
includes the input file. During a bookbuild, VAX DOCUMENT establishes the
logical name definition for each <INCLUDES_FILE> tag before it actually reads
and processes the element file name in the preceding <ELEMENT> tag. The
logical name remains defined during the processing of later elements.

When an element or subelement is processed by itself (when you use
the /PROFILE qualifier on the command line), VAX DOCUMENT
again establishes the logical name definitions that were specified by the
<INCLUDES_FILE> tags in the profile.

The following example illustrates the use of the <INCLUDES_FILE> tag in a
profile:

A writer is drafting a book titled Purebred Dogs. The book contains two
chapters, one discussing different breeds, and one on the care of purebreds.
In addition, there is front matter (title page and preface) and an appendix.

The file identified in each <ELEMENT> tag corresponds to the exact file-name
of each book element file. The profile, named CANINE_PRO.SDML, looks
like this:

<PROFILE>
<ELEMENT>(FRONT.SDML)
<ELEMENT>(BREEDS.SDML)
<ELEMENT>(CARE.SDML)
<ELEMENT>(APPENDIX.SDML)

<ENDPROFILE>

If the book element "CARE.SDML" itself includes two figures and each figure
is in a separate SDML file, those figure files could be included by logical­
names instead of full file specifications. The logical-names could be defined
right in the profile, as follows:

<PROFILE>
<ELEMENT>(FRONT.SDML)
<ELEMENT>(BREEDS.SDML)
<ELEMENT>(CARE.SDML)

<INCLUDES_FILE>(bassets_fig\mydevice: [mydirectory]dogcare_fig1.sdml)
<INCLUDES_FILE>(beagles_fig\mydevice: [mydirectory]dogcare_fig2.sdml)

<ELEMENT>(APPENDIX.SDML)
<END PROFILE>

In CARE.SDML, you might have the figures referenced and included as
follows:

<P>The following illustration shows all the basset hound breeds of North
America.
<INCLUDE>(bassets_fig)

<P>In comparison, the next figure illustrates the beagle types throughout
North and South America.
<INCLUDE>(beagles_fig)

Notice that the <INCLUDES_FILE> tag in the profile does not actually include
the figure, but assigns a logical name to the figure file. Refer to the tag
description in Chapter 9 for an explanation of the tag's syntax.

4.5.4

Processing and Printing Files and Books

Recovering from Errors
If any of your book element input files contain enough tag translator errors
to halt the processor, the tag translator will not produce a .TEX file of
that element, and the bookbuild will stop after the last element has been
processed. To fix this, you should take the following steps:

1 Fix the errors in the book element input files.

2 Reprocess each revised book element file by typing the following
command:

$ DOCUMENT input-file-spec doctype destination /NOTEXT_FORMATTER
/PROFILE=profile-spec

The input-file-spec is the specification of that individual book element file
and the profile-spec is the specification of the profile.

3 Submit the bookbuild again, this time using the /NOTAG_
TRANSLATOR qualifier to avoid sending the entire book through the
tag translator for a second time:

$ DOCUMENT profile-spec doctype destination /NOTAG_TRANSLATOR

Chapter 5 discusses troubleshooting of errors in more detail.

4.6 Processing an Element of a Book
As mentioned in Section 4.1, you can process a book element individually
by treating it as a stand-alone file and specifying the file name on the
DOCUMENT command line. However, any references to symbol names
outside of that element will not be resolved.

To process an individual book element and have all its references resolved
correctly, you must have previously processed the entire book through a
bookbuild to create an XREF file. Then, to process only one element, you
can specify the name of the XREF file to the command line, telling VAX
DOCUMENT where to find the symbol-names to resolve the references in the
element. The name of the XREF file is specified on the command line with
the /PROFILE qualifier.

The XREF file has the same name as your profile, but has the file type of
XREF.

To process a book element individually, use the following command on the
command line:

$ DOCUMENT input-file-spec doctype destination /PROFILE=profile-spec

Input-file-spec specifies the input file to be processed. Profile-spec identifies
the name of the cross-reference file that contains the symbol names of the
book.

This command line processes an element of a book and sends it to the
specified destination. All symbol-name references within the element are
resolved; however, the page numbering begins with 1.

Notice that the /PROFILE qualifier is used only to identify the XREF file
during an element or subelement build. You should not use the /PROFILE
qualifier when doing a bookbuild because you specify the profile. name as the
file to be processed.

4-13

4.6.1

Processing and Printing Files and Books

For more information about referencing symbol names, see Chapter 6.

Building a Conditionalized Book Element
When you build a book element after building the whole book with a
condition set, the condition is automatically set in the element build. This
happens because the /CONDITION qualifier is stored in the cross-reference
file during the bookbuild and then re-used.

If you want to build an element of a conditional book without the condition,
you need to specifically override the condition during the element build.
At the time of the element build, use the /CONDITION qualifier on the
command line, specifying a new condition name. The new condition name
supplants the original condition for that element. The new condition name
can be any fictitious name (for example, /CONDITION=FAKE). Since you
have no <CONDITION> (fake) tags in your book element input file, no text will
be eliminated from the output file.

4. 7 Processing a Subelement of a Book

4-14

If a book element is long enough to be divided into more than one file,
creating subelement files, you can process any of those subelements
individually. To do this, use the following command on the command
line:

$ DOCUMENT input-file-spec doctype destination -
_$ /ELEMENT=file-spec /PROFILE=prof ile-spec

input-file-spec specifies the subelement input file to be processed.

/ELEMENT=file-spec identifies one of the files listed in the profile; the file
specified in the input-file-spec is a subelement of this element.

/PROFILE=profile-spec identifies the XREF file containing the book's symbol
names.

This command line processes a subelement of a book and sends it to the
specified destination. Cross-references within the subelement are resolved
and a new XREF file is created; however, the page numbering begins with 1.

Note: For a subelement build, the book element file and all the other
subelement files need to be present, because the tag translator reads the
whole element and all its included files even though the entire element is
not included in the output.

You only need to do a subelement build if one of the following conditions
exists:

• The file is included in another file that is listed as an <ELEMENT> in a
profile.

• The file contains references to symbols defined in other files.

• You want the output file to have the same heading level numbers, table
and figure numbers, and so on, as if the file were processed with the
entire element.

Heading level numbers, figure numbers, and table numbers, are correct only
if they have symbol-name arguments.

Processing and Printing Files and Books

You do not need to use a subelement build if you are only processing a file
to check text content or spelling. in this case, you can process the subelement
file as a stand-alone file.

4.8 Simultaneous Element Builds and Bookbuilds
If two or more users are working on the same book and try to process
separate elements of the book simultaneously, specifying the /PROFILE
qualifier to reference the XREF file for the book, the XREF file may not be
accessible by one of the users and cross-references will not be resolved.

For example, one user opens the XREF file and loads it into memory
prior to doing the build on a book element. The tag translator locks the
existing XREF file, so that no one else can use it until a new XREF has been
successfully written. The file is locked to ensure that any symbol name
changes introduced by an element build will get incorporated in subsequent
builds.

VAX DOCUMENT protects against the use of an old XREF file by locking the
file. A second user will be unable to open the XREF file. That user receives
an error message about the XREF file failing to open, and the tag translator
halts.

Writers can work independently on separate chapters of a book and can do
their element builds without concern for the actions of other writers. But
they should be prepared for an error message from the tag translator if they
attempt to do an element build at the precise moment that another writer has
the XREF file locked.

If you get such a message, wait a minute or two and try the element build
again. The lock happens only during the first pass of the tag translator, when
it is reconstructing the XREF file, so even though it may take several minutes
to completely process a chapter, the actual time that the XREF is locked will
be less.

Likewise, when someone starts a bookbuild, and the <PROFILE> tag is
encountered, any existing XREF file is locked. Therefore, other users cannot
be doing element builds using this XREF file. If the writer doing an element
build opens the XREF file right before a bookbuild begins, the bookbuild itself
will abort.

A writer doing a bookbuild should coordinate with other writers working on
the book. The locking action acts as a safeguard against a book or element
build using an old XREF file for resolving cross-references.

4-15

5 Troubleshooting SDML Files

5.1 Error Messages

During processing, VAX DOCUMENT diagnoses the source file and checks
for errors. Error messages are produced when VAX DOCUMENT encounters
the following error conditions:

• Misspelled SDML tags and argument names

• Tags used out of proper context

• Missing terminating tags

VAX DOCUMENT issues a message that provides the line number, the
probable cause, and other information about the error. The user returns to
the source file to correct the error and reprocess the file.

However, in some cases, the file processes without producing any error
messages, but the printed output clearly indicates that something has been
forgotten or that something needs to be adjusted. A few problems of this
nature are quite common and examples of incorrect and correct input are
shown in this chapter.

If you have a batch process running for an abnormally long amount of time,
have your system manager check that the system parameters are set correctly,
including the required space quota amount.

Error messages and informational messages are produced by each of the
processing programs in the VAX DOCUMENT system:

• The tag translator

• The text formatter

• The device converter

VAX DOCUMENT messages have the following general format, consisting of
four fields:

%FACILITY-S-IDENT, text ...

Facility
The facility field in the message identifies the program that issues the
message.

The following are VAX DOCUMENT facility, prefixes:

• %DOC

• %TAG

• %DVC

5-1

Troubleshooting SDML Files

5-2

Severity
The severity field indicates the seriousness of the error.

• I-The message is informational; processing is not affected.

• W-The message provides a warning; processing is not terminated.
A warning is produced if arguments are supplied where they are not
necessary, or if a tag has been misspelled, such as <TABLER> .

If the tag translator generates more than 30 warnings by the time it
finishes its first pass through a file, it stops processing at the end of
that pass. You can see the error messages and fix the errors before
reprocessing the file.

• E-A major error has occurred; processing continues, but no output may
be produced.

• F-The message indicates a fatal problem; processing is terminated.

Fatal problems, such as missing terminator tags, must be corrected before
the file can be processed further.

Identification
The identification field is an abbreviation of the problem found by the
processing program.

Text
The text of the message, if present, describes the problem found by the
processing program. The following error message is an example of the
message format:

%TAG-W-GTMAXARGS at tag <P> on line 1 in file
disk: [directory]filename.SDML
More than 0 arguments supplied to tag <P>

% TAG-W-GTMAXARGS
The facility, severity, and identification of the message. This warning message
was issued by the tag translator.

at tag <P> on line 1 in file
The first line of text provides the line number and the name of the tag being
evaluated when the message was issued.

disk:[directory]filename.SDML
The second line of text provides the name of the file being read.

More than 0 arguments supplied to tag <P>

The third line identifies the problem.

If VAX DOCUMENT is running interactively, error messages from the tag
translator are displayed on the screen and recorded in a LIS file if the /LIST
qualifier is used. The LIS file has the same name as the source file, with the
LIS file extension. Error messages from the text formatter are written to a LIS
file.

If VAX DOCUMENT is running in batch mode, error messages are
automatically written to a LOG file.

Troubleshooting SOM L Files

5.2 Output Problems

5.2.1

5.2.2

Sometimes processing completes without an error, but when the output is
printed, it is easy to see that things have somehow gone awry.

This section illustrates some common solutions to problems that a writer must
diagnose after seeing the formatted output.

Incorrect Paragraph Spacing
A common mistake when coding a file is to leave out <P> tags. Most often,
the tags are left out after major headings, such as chapter titles and headings.

The problem is only apparent in doctypes that place headings at a different
margin than paragraphs.

Incorrect Input

<CHAPTER>(symbol-name)
Paragraph text ...

<HEAD1>(First-level Heading)
The information in this chapter covers ...

<P>Also including is ...

<HEAD2>(Second-level Heading)
First item under discussion.

<P>Details ...

Correct Input

<CHAPTER>(symbol-name)

<P>Paragraph text ...

<HEAD1>(First-level Heading)

<P>The information in this chapter covers ...

<P>Also including is ...

<HEAD2>(Second-level Heading)

<P>First item under discussion.

<P>Details ...

Problems with Examples
Code examples, interactive examples, and syntax examples appear on the
printed page as monospaced output. Because of the change to a monospaced
font, examples restrict the use of many tags. Tags that require special
text formatting, such as lists, tables, and headings, cannot be used within
monospaced examples, nor may index tags be used.

When the <CODE_EXAMPLE> tag is used with the <ENDCODE_EXAMPLE>
tag, spacing is preserved. However, when the <CODE_EXAMPLE> tag is used
with an argument and no terminating tag, any leading or trailing spaces are
not preserved.

5-3

5.2.3

Troubleshooting SOM L Files

Incorrect Input

<TABLE>
<TABLE_SETUP>(2\10)
<TABLE_HEADS>(Variable\Value)

<TABLE_ROW>(<CODE_EXAMPLE>(ABC)\<CODE_EXAMPLE>(1))
<TABLE_ROW>(<CODE_EXAMPLE>(XYZ)\<CODE_EXAMPLE>(100))

<ENDTABLE>

Correct Input

In this example, the writer was trying to use the spaces to align the values in
the table. The <ALIGN_CHAR> tag produces correct alignment:

<ALIGN_CHAR>(#)
<TABLE>
<TABLE_SETUP>(2\10)
<TABLE_HEADS>(Variable\Value)

<TABLE_ROW>(<CODE_EXAMPLE>(ABC)\<CODE_EXAMPLE>(##1))
<TABLE_ROW>(<CODE_EXAMPLE>(XYZ)\<CODE_EXAMPLE>(100))

<ENDTABLE>
<ENDALIGN_CHAR>

Incorrect Sequencing of Formal Elements

5-4

Formal elements can be output out of sequence if coded inconsistently.
For example, it is possible to code three figures that the tag translator
automatically numbers l, 2, and 3. In the output, the figures could possibly
appear out of sequence, for example, as 2, 1 and 3.

The problem arises if the figures are coded with the FLOAT attribute. After
the tag translator numbers the figures, it is possible for the text formatter to
float them out of order.

Incorrect Input

<FIGURE>(Caption\symbol1)
<FIGURE_ATTRIBUTES>(FLOAT)
<FIGURE_SPACE>(10)

<ENDFIGURE>

<FIGURE>(Caption\symbol2)
<FIGURE_ATTRIBUTES>(FLOAT)
<FIGURE_SPACE>(10)

<ENDFIGURE>

<FIGURE>(Caption\symbol3)
<FIGURE_ATTRIBUTES>(FLOAT)
<FIGURE_SPACE>(10)

<ENDFIGURE>

If all three figures are short, any of the figures could float out of order. To
correct this problem, code all three figures with the KEEP attribute.

Correct Input

<FIGURE>(Caption\symbol1)
<FIGURE_ATTRIBUTES>(KEEP)

<FIGURE>(Caption\symbol2)
<FIGURE_ATTRIBUTES>(KEEP)

<FIGURE>(Caption\symbol3)
<FIGURE_ATTRIBUTES>(KEEP)

Troubleshooting SDML Files

5-5

6 Referencing Symbol-Names

VAX DOCUMENT allows you to create and reference symbol-names for any
type of information that is subject to change. This ensures that documents
are always up to date, especially in regard to the following references:

• References to text elements that might change, such as the name of a
product or project.

• References to book elements that have numbers associated with them,
such as chapters.

This chapter describes how to create symbol-names for text and book
elements and how to reference them.

A symbol-name is a term that you assign to some text which, once created,
becomes an easy and reliable way to refer to past or future chapters, tables in
other sections of the book, figures, other writers' books, and numerous other
references.

6.1 Creating Symbol-Names
You can create symbol-names for both text elements and book elements.
Each symbol-name is assigned as a tag argument. For example, to assign a
symbol-name to an example captioned VAXcluster Multi-file Summary, you
could put the following tag into your SDML file:

<EXAMPLE>(VAXcluster Multi-file Summary\multi_file_exam)

The symbol-name multLfile_exam could then be referenced anywhere in the
document, with the <REFERENCE> tag:

<REFERENCE>(multi_file_exam)

When VAX DOCUMENT processes the <REFERENCE> tag, it substitutes the
actual name for the symbol-name in your output. In this case the symbol­
name "multLfile_exam" would be replaced with "VAXcluster Multi-file
Summary."

Symbol-names must not exceed 31 characters, and can consist only of
alphabetic letters, numbers, and underscores. Do not begin a symbol-name
with an underscore.

The following naming convention might be useful: in each symbol-name,
suffix the name with the type of text element for which you are creating a
symbol. For example, a symbol-name for a table might be called "american_
kings_tab," or for a chapter, "american_kings_chap." This convention makes
it easy to identify different types of symbol-names as you edit a source file.

6-1

Referencing Symbol-Names

6.2 Storing Symbol-Names in a Cross-Reference File
An automatic function of VAX DOCUMENT is to create a cross-reference
file, which is a file containing a list of the symbol-names used in one or
more files. An entry in the cross-reference file may have some or all of the
following information associated with it:

• The symbol-name. As previously described, symbol-names must be no
more than 31 characters in length, and must have only alphabetic letters,
numbers, or underscores in them.

• A symbol-type. Each cross-reference file entry must have a symbol-type,
which not only indicates the type of element to which a symbol refers
(for example, Figure, Table, or Chapter), but may also control the output
when the symbol is referenced. For example, if the element is a Chapter
type, the output associated with the reference to it is the default text
"Chapter."

• A symbol-value. Cross-reference file entries for text elements that have
numeric values associated with them (header levels, figures, numbered
tables, and so on) always associate this number with the symbol-value.

• The symbol-text. The text associated with a cross-reference file entry is the
text string associated with it: the chapter title, a figure caption, heading
level text, or a user-defined string.

When you process an individual file that contains symbol-names, those
symbol-names are temporarily placed in the cross-reference file (in your
computer system's memory). VAX DOCUMENT uses the table to resolve all
symbol-name references, then erases the table from memory.

When you process a book through a bookbuild, or an element of a book
through an element build, VAX DOCUMENT again creates a cross-reference
file and uses it to resolve all references. However, the bookbuilding process
requires that the symbol-names be stored for later use, so VAX DOCUMENT
saves the cross-reference file by copying it into the directory that contains
the profile used to perform the bookbuild. This copied file is named with the
profile name and is given the filetype of XREF.

Note: The XREF file is not readable; you should never attempt to edit it. Also,
do not delete it; if it is deleted accidentally, you must perform a new
bookbuild before any subsequent element builds can be done.

6.3 Creating Symbol-Names for Text and Book Elements

6-2

Text and book elements can be divided into two groups, sequenced and
nonsequenced elements.

A sequenced element is labeled in the output. The number or letter assigned
is relative to the other elements of the same type in the rest of the book. For
example, a table is assigned the number three only if there are two tables
before it in the book element being processed.

Referencing Symbol-Names

The following tags mark sequenced elements and are used to create symbol­
names for these elements:

• <APPENDIX>

• <CHAPTER>

• <EXAMPLE>

• <HEADx>

• <FIGURE>

• <PART>

• <TABLE>

A nonsequenced element is any text string or book element that does not
need to be numbered. An often used sentence or statement is an example of
a nonsequenced text string. A book title is also a nonsequenced text element,
as it does not receive a number.

The following tags are used to create symbol-names for nonsequenced text
elements:

• <DEFINE_BOOK_NAME>

• <DEFINE_SYMBOL>

• <FRONLMATTER>

• <GLOSSARY>

See Chapter 9 for full descriptions of these tags.

The <DEFINE-SYMBOL> and <DEFINE_BOOK_NAME> tags accept a symbol­
name as their first arguments. The book element tag <FRONLMATTER>
accepts a symbol-name as its only argument. For all other tags that accept
symbol-names, assign the symbol-name as the tag's second argument.

Each book element requires a symbol-name if the book is to be processed
through a bookbuild; if you use these tags without symbol-name arguments,
no entry is added to the cross-reference file during processing and you receive
a warning message.

For example, a chapter might have its title and symbol-name identified as
follows:

<CHAPTER>(Running the Program\ref_chap)

The <CHAPTER> tag creates a cross-reference file entry for this chapter. The
chapter's symbol-name is saved in the table as ref_chap. Other information
associated with this symbol is also saved, including the chapter title, Running
the Program, and the chapter number (which is assigned automatically). This
chapter's symbol-name, which appears in the <CHAPTER> tag argument
at the head of the book element, becomes the key to element building, as
described in Section 4.6 of Chapter 4.

6-3

Referencing Symbol-Names

6.4 Referencing Text and Book Element Symbol-Names

6.4.1

The <REFERENCE> tag is used to reference any kind of symbol-name.
The first argument to this tag is always the symbol-name you want to
reference. Any symbol-name specified by the <REFERENCE> tag causes
the tag translator to search the cross-reference file for the definition of the
symbol-name and to replace the reference with the definition. For example:

See <REFERENCE>(ref_chap) for step-by-step instructions.

This book element reference causes the tag translator to look in the cross­
reference file for the symbol-name ref_chap and to replace the tag and
argument with the default symbol type keyword associated with the chapter
(for example, "Chapter") and the chapter number. Therefore, if the preceding
example referenced the third chapter of a book, the output would be as
follows:

See Chapter 3 for step-by-step instructions.

In your source file, the reference to a symbol-name can precede or follow the
tag that defines the symbol-name. Therefore, the following line:

<Define_Symbol>(plan_tab\The 43rd Project Plan)

could be placed anywhere in the document, before or after the following line:

<p>The series of steps are identified in <reference>(plan_tab).

Relative placement of the two tags is unimportant. because the tag translator
makes two passes over a document during processing, creating the cross­
reference file during its first pass and not using the file to resolve the
references until the second pass. Therefore, the correct symbol-names are
always entered in the file before the references are translated.

Controlling the Output of Your Reference

6-4

The <REFERENCE> tag allows you to control the output of a reference
through use of its second argument. You can use this argument to specify
that you want either a portion of your reference or the entire reference placed
in your output.

Optional second arguments to <REFERENCE> include the following:

• VALUE-specifies that, if a symbol-name has a value associated with
it, you want only that symbol-value (number or letter) included in the
output.

• TEXT-specifies that you want only the text of a symbol included in the
output (for example, a chapter title or table caption).

• FULL-specifies that you want both the value and the text included in
the output.

Consider the earlier example of the <CHAPTER> tag. VAX DOCUMENT
automatically assigns to the book element symbol-name its symbol-type
keyword, "Chapter," and its symbol-value, the sequential number of the
chapter during processing. By default, both the symbol-type keyword and
the symbol-value are used to replace the symbol-name reference. However,
if you want the output to include the associated text of the symbol-name
with the symbol-type keyword and value, you need to specify \FULL in the

Referencing Symbol-Names

reference. If "Running the Program" is the title of the fourth chapter, and you
want that title to be included in your reference, you would use the \FULL
argument. For example:

<reference>(ref_chap\FULL)

Such a reference would automatically output the following text:

Chapter 4, Running the Program

When you do not specify a second argument, the output defaults according to
the symbol-type. Table 6-1 summarizes the default output for each type of
text or book element.

Table 6-1 Element Types and Default Output of Symbol-Names

Text Element

EXAMPLE

FIGURE

HE A Ox

TABLE

BOOK TITLE

TEXT STRING

Book Elements

APPENDIX

CHAPTER

PART

SECTION

FRONT MATTER

GLOSSARY

Second Argument to <REFERENCE>

(null) VALUE TEXT FULL

"Example" number caption "Example" number,
number caption

"Figure" number number caption "Figure" number,
caption

"Section" number number caption "Section" number,
caption

"Table" number number caption "Table" number,
caption

The title argument specified in <DEFINE_BQQK_NAME> .

The text-string argument specified in <DEFINE_SYMBOL>.

(null) VALUE TEXT FULL

"Appendix" letter letter title "Appendix" letter, title

"Chapter" number number title "Chapter" number, title

"Part" number number title "Part" number, title

"Section" number number title "Section" number, title

none none none none

none none none none

Here is an example of a figure reference with a defaulted second argument:

<P><reference>(keyboard_fig) shows the keypad layout.

<FIGURE>(The Default Keys\keyboard_fig)
<FIGURE_SPACE>(20)
<ENDFIGURE>

In this example, the figure titled The Default Keys was assigned the symbol­
name of keyboard-fig in the tag <FIGURE>. The reference to this symbol­
name does not contain a second argument, which means the writer accepts
the default output. Therefore, if this reference and figure were to occur
in a chapter numbered three, and would be the fourth formal figure, the
paragraph containing the reference would have the following output:

Figure 3-4 shows the keypad layout.

6-5

6.4.2

Referencing Symbol-Names

If the second argument to the <REFERENCE> tag was \FULL, the output
would be as follows:

Figure 3-4, The Default Keys shows the keypad layout.

Referencing Symbol-Names in Other Files
For text strings that you reference frequently in separate files of the same
book, it is useful to place all of your <DEFINE-SYMBOL> and <DEFINE_
BOOK_NAME> tags in one file, in a symbol definitions file. Then, to reference
the symbol-names stored there, specify the name of the symbol definition file
with the /SYMBOLS qualifier on the DOCUMENT command line when you
process the file.

For example, you could create a symbol definitions file named INTRO_
BOOK_SYMS.SDML. This file might contain the following symbol-names:

<define_symbol>(PROGRAM_NAME\Matrix Maker)
<define_symbol>(PROGRAM_VERSION\3.2)

When processing a file that references either of these symbols, you would
specify the name of the symbol definitions file on the DOCUMENT command
by typing the following line:

$ DOCUMENT filename doctype destination /SYMBOLS=INTRO_BOOK_SYMS

The /SYMBOLS qualifier assumes a filetype of .SDML by default.

6.5 Creating a Preliminary Profile

6-6

Before you write your book, use the following procedure to make sure that
your symbol-names will be referenced correctly in the entire book or in
individual elements of the book. If you follow this procedure before you
begin to write, your symbol-name references will be correct throughout the
writing process.

1 When the structure of the book is clearly defined, create a file for each
element. All of the text need not be written. Use the <CHAPTER> or
<APPENDIX> tags to head each element, and add <HEADx> tags if you

have an outline of the chapter. The actual paragraphs of text can be filled
in when you come to write the chapter.

2 Create a profile that reflects the structure of the book. To do this, in
a separate SDML file list all the files that are part of the book, tagging
each file name in the list with an <ELEMENT> tag. In the front of the
file, include the <PROFILE> tag, and at the end of the file, add the
<ENDPROFILE> tag. Name this SDML file with any name that indicates

it is a profile, for example, MYBOOK_PRO.SDML.

Each <ELEMENT> tag should specify a file that contains a book element.
No other files should be included in the profile.

3 Process the profile to create the cross-reference file for the book. Indicate
that you want to build the book by specifying the profile as the filename
in the DOCUMENT command line. In this case, MYBOOK_PRO.SDML
is the name of the profile.

$ DOCUMENT MYBOOK_PRO doctype destination

Referencing Symbol-Names

After completing this procedure, you have a complete cross-reference table of
all your book element symbol-names.

6.6 Adding New Symbol-Names
As you write, you will probably add or delete tags that supply symbol-names.
To reference new symbol-names and have each reference resolved correctly,
you must rebuild the affected book elements as you go. You might want to
rebuild any of the following:

• An entire book (through a bookbuild)

• An individual book element (through an element build)

• A portion of a book element (through a subelement build)

See Chapter 4 for the procedures for reprocessing files.

Rebuilding an Entire Book

You need to reprocess the entire book through a bookbuild only when you
change the book in either of the following ways:

• Reorder book elements that have incremental values associated with
them, for example, reorder the chapters of the book

• Add additional book elements that affect the numbering of other
elements, for example, insert a new chapter

Rebuilding an Individual Element of a Book

To rebuild a file that contains one element of a book, use the /PROFILE
qualifier on the DOCUMENT command line. The /PROFILE qualifier causes
the tag translator to rebuild the cross-reference file with the newest symbol­
names for that element.

Rebuilding a Subelement of a Book

Some books contain a large single element. The element might not be
subdivided into chapters or appendixes, but instead consists of many
pages of a highly structured reference section. Each item described in the
reference section could be written as a separate SDML file, and it becomes
convenient to process these files individually. In essence, you want to process
a subelement of a book.

To process a subelement, two qualifiers are added to the command line,
/PROFILE and /ELEMENT. The tag translator processes the entire element
through its first pass to correctly update the cross-reference file, but produces
output only for the subelement that you specify as the input file on the
DOCUMENT command line.

6-7

7 Generating a Table of Contents, Index, and
Master Index

This chapter describes how to create a table of contents, an index and a
master index for your document. Complete reference information on the tags
described in this chapter can be found in Chapter 9.

7. 1 Creating a Table of Contents
You create a table of contents by specifying the /CONTENTS qualifer when
you process your SDML file. VAX DOCUMENT automatically generates a
table of contents entry for each of the following in your SDML file:

• Appendixes, chapters, glossaries, indexes, parts, and prefaces

• Formal examples, figures, and tables (if specified with a caption or a
symbol-name argument)

• Numbered heading tags (table of contents entries for the <HEADS> and
<HEAD6> tags are doctype-dependent)

• SOFTWARE doctype reference-element tags: <COMMAND>,
<ROUTINE> , <SDML_TAG> , <STATEMENT> , and <FUNCTION>

• SOFTWARE doctype subcommand tags: <SUBCOMMAND> and
< SUBCOMMAND_SECTION_HEAD >

• REPORT doctype <SECTION> tag

See the table of contents in this manual for a sample of a table of contents
created by VAX DOCUMENT.

The table of contents is created during the text formatting of your document.
If you omit text formatting by using the /NOTEXT_FORMATTER qualifier,
contents generation is also omitted. If you use the /CONTENTS and
/NOTEXT_FORMATTER qualifiers together, VAX DOCUMENT issues an
error message.

VAX DOCUMENT creates a separate file for the table of contents. It names
this file by taking the file name of the input-file-spec parameter you specify
on the DOCUMENT command line and appending "_CONTENTS" to it. You
need do nothing more than specify /CONTENTS on the command line if
you want to maintain your table of contents in a separate file; however, if
you want this file automatically incorporated into your document, use the
<CONTENTS_FILE> tag in your SDML file.

When the <CONTENTS_FILE> tag is processed by VAX DOCUMENT,
the latest table of contents file is incorporated into the final output file
where the <CONTENTS_FILE> tag occurs in the SDML file. If you use the
/NODEVICE_CONVERTER qualifier, the table of contents will not be
incorporated into your file.

7-1

Generating a Table of Contents, Index, and Master Index

You can make sure that the latest version of the table of contents is
incorporated into your file by specifying the /CONTENTS qualifier whenever
you process a file that contains the <CONTENTS_FILE> tag. This action
guarantees that the table of contents file correctly reflects the organization
and pagination of your SDML file. If you do not specify /CONTENTS, an
out of date table of contents may be included into your document.

When you create a table of contents using the /CONTENTS qualifier,
whatever parameters and other qualifiers you specify affect the processing
of both the table of contents file and your SDML file. For example, if
the LN03 destination and the /NOPRINT qualifier are specified, both
files are formatted for the LN03 laser printer (input-filename.LN03 and
input-filename_CONTENTS.LN03) but neither is printed.

The following example shows how a table of contents may be created along
with the output of the file MYREPORT.SDML:

$ DOCUMENT myreport REPORT LN03 /CONTENTS

The table of contents generated by the previous command would be
MYREPORT_CONTENTS.LN03.

7 .2 Creating an Index

7-2

You can automatically generate an index file from your SDML file by using
the /INDEX qualifier to the DOCUMENT command. To create an index
using VAX DOCUMENT, you mark the text elements within your SDML file
that you want included in your index with <X> and <Y> tags, and then
you process your SDML file using the /INDEX qualifier to generate an index
file from your SDML file.

The <X> tag is used to create main entries in the index. Main entries have
page numbers associated with them. The <Y> tag is used to create cross­
reference entries in the index. Cross-reference entries (also called "See" or
"See also" entries) do not have page numbers associated with them, instead
they refer the reader to a main entry in the index.

Both <X> and <Y> tags can have subentries (also called subheadings or
modifications), which are index entries that are indented under either a main
entry created using the <X> tag, or a cross-reference created using the <Y>
tag.

The following example shows a part of an SDML file that contains <X> and
<Y> tags. The <XSUBENTRY> tag is used to create subentries in both tags.

<head1>(Usage of Official Vehicles)
<X>(Vehicles<XSUBENTRY>usage of)
<Y>(CORP-AUTO report<XSUBENTRY>See Vehicles)
<p>
Official vehicle usage is listed in a separate report CORP-AUT0-1439u2.
This report is organized as in the following outline.

If these tags occurred on page 3-1, they would create the following index
entries (under the headings "-C-" and "-V-", respectively):

CORP__AUTO

See Vehicles

Vehicles

usage of, 3-1

Generating a Table of Contents, Index, and Master Index

See the index in this manual for an example of an index produced using VAX
DOCUMENT.

The following example shows a command line that will create an index file
along with the output of the file MYREPORT.SDML:

$ DOCUMENT myreport.sdml REPORT LN03 /INDEX

You can tailor your index in several ways by using the arguments and
keywords explained later in this chapter, or you can accept the VAX
DOCUMENT default index file characteristics. The following list describes
the default characteristics of an index file:

• Capitalization of index entries is retained in the index as entered.

• Index entries are formatted in two columns on each page. On the last
page the entries are balanced so that the two columns are of equal length.

• Guide headings are automatically inserted into the index before each
entry that begins a new alphabetic section. For example, when the
first index entry beginning with the letter "B" is encountered, the guide
heading "-B-" is placed before it. The exact format of the guide heading
is doctype-dependent.

• Index entries are sorted in the index according to the following default
rules:

Entries with all nonalphabetic characters are placed before all other
entries.

Entries beginning with nonalphabetic characters are sorted by the
alphabetic characters following the nonalphabetic characters.

Entries are sorted on a word-by-word basis in which spaces and
hyphens are treated as significant sorting characters.

Index entries generated by the <Y> tag are placed at the beginning
of each subentry level. This is done on the assumption that cross­
reference information should be positioned at the top of each
subentry level so that the user can find it easily.

• Index entries are merged only when they have identical spelling, spacing,
emphasis, and capitalization in the SDML file. Page-number references
are merged only if they refer to the same page and are specified with
identical attributes such as emphasis and appended text. Even if index
entries or page numbers look identical on the printed page, they will not
be merged unless they are coded identically in the SDML file.

For example, the entries <X> (<TAG> (LINE)) and
<X> (<TAG> (line)) would appear the same on the printed page

because the <TAG> tag would format both tag-names in uppercase
characters. However, these entries would create separate index entries
because the tag-name is not capitalized consistently in the SDML code for
both entries.

7-3

7.2.1

Generating a Table of Contents, Index, and Master Index

• Either a bullet (•) or a comma (,) is placed between each index entry and
its first page reference. The character used for punctuation is doctype­
dependent. For example, if the doctype specifies that commas are to be
used, the entry appears as follows:

Command qualifiers, 4-10

If a main level index entry is followed by a subentry rather than a page
reference, no punctuation is placed after the main entry. Instead, the
punctuation is placed after the subentry to set off the page reference as in
the following example:

Command qualifiers

description, 4-10
examples, 4-12

Creating Main Index Entries

7-4

Use the <X> tag to create a main index entry. The <X> tag places an entry
in the index that contains the page number of the output page on which this
tag occurs. For example, if the <X> tag in your SDML file is processed while
page 2-132 is being created by the text formatter, the index entry from that
<X> tag would reference page 2-132.

The <X> tag has the following syntax:

<X> (index-entry[\attribute])

Use the index-entry argument to supply the text for the main entry and
subentries in the index. The text used in this argument is placed in the index
entry exactly as entered, including any capitalization. Use the <XSUBENTRY>
tag within this argument to separate the main entry from the first subentry,
and the second subentry from the first, as follows:

<X> (Main entry <XSUBENTRY> subentry-1 <XSUBENTRY> subentry-2)

The <XSUBENTRY> tag can be abbreviated as <XS>. You can use no more
than three subentries in an index.

Use the attribute arguments to control the sorting and formatting of the
index entry. You can specify up to five attribute arguments to the <X> tag.
Section 7.2.2 describes the indexing tag attributes.

Use the following <x> tag coding rules to ensure that the page references in
your main index entries are correct:

• Place <X> tags after tags in your SDML file that are likely to begin a
new page, such as <CHAPTER> or <HEADl > .

• Index entries that are to be merged in the index should be coded
identically in the SDML file, including emphasis, capitalization, spacing
and spelling.

• When inserting <X> tags into tables, place the <X> tags within the
arguments to the <TABLE_ROW> tag, so that the page references will be
correct if the text formatter breaks the table across pages.

7.2.2

Generating a Table of Contents, Index, and Master Index

• Do not place <X> tags within examples. Doing so may interfere with
the formatting of the examples.

The following example shows the correct positioning of the <X> tag that
provides an indexing entry for a chapter:

<CHAPTER>(Creating Routines\creating_routine_sec)
<X>(Routines<XSUBENTRY>creation of)
<P>
In order to create a routine, you must first

If the previous text appeared on page 11-2, this <X> tag would create the
following index entry:

Routines

creation of, 11-2

Using Indexing Tag Attributes

7.2.2.1

The attribute arguments to the <X> and <Y> tags control the sorting
and formatting of individual index entries. These attributes are described
alphabetically in the following sections. All of these attributes can be used
with the <X> tag; however, only the MASTER and <XSORT> attributes can
be used with the <Y> tag.

Using the BEGIN and END Attributes
Use the BEGIN and END attributes to create an index entry for consecutive
pages. These attributes create an index entry with a page range such as
"System Concepts, 12-3 to 12-7." When you use a BEGIN and END pair, the
index entries and indexing attributes you specify must be identical for the
index entries to be sorted correctly.

The following example shows how a page range can be coded using the
BEGIN and END attributes. In this example, the tag with the BEGIN attribute
is processed on page 12-3 and the tag with the END attribute is processed on
page 12-7.

<HEAD1>(Concepts of the System\sys_con)
<X>(System Concepts\BEGIN)
<P>

<X>(System Concepts\END)
<HEAD1>(Using the System\sys_using)

These index tags would create a page range as follows:

System Concepts, 12-3 to 12-7

<X> tags that occur between a BEGIN and END pair that have entry
text identical to that of the BEGIN and END pair are ignored, and VAX
DOCUMENT issues an informational message stating that this index entry
was ignored when it creates the index.

For example, if an index entry for "System Concepts" was proces';ed on
output page 12-4, between the index entries specified with the Bb~IN and
END attributes in the previous example, the code would appear as in the
following example:

7-5

Generating a Table of Contents, Index, and Master Index

7.2.2.2

7.2.2.3

7-6

<X>(System Concepts\BEGIN)

<X>(System Concepts)
<X>(System Concepts<XS>entering files)

<X>(System Concepts\END)

These index tags would create the following index entry:

System Concepts, 12-3 to 12-7
entering files, 12-4

The <X> (System Concepts) tag on page 12-4 would be ignored, and VAX
DOCUMENT would issue an informational message about that tag when
it creates the index. Note that the <X> tag whose entry text included the
subentry "entering files" was not ignored during the creation of the index.

Using the BOLD Attribute
Use the BOLD attribute to cause page numbers to appear in bold type in your
index. If both the BOLD and ITALIC attributes are specified, the page number
will be output in bold italic type.

Page number references that are output in a bold type face using the BOLD
attribute are sorted as being distinct from page number references that are
output in a bold type face using some other means (such as the global

<EMPHASIS> (\BOLD) tag).

The following is an example of an <X> tag that uses the BOLD attribute:

<X>(System Concepts\BOLD)

If this index tag occurred on page 12-3, it would create an entry in the index
as follows:

System Concepts, 12-3

Using the ITALIC Attribute
Use the ITALIC attribute to cause page numbers to appear in italic type in
your index. If both BOLD and ITALIC are specified, the page number will be
output in bold italic type.

Page number references that are output in an italic type face using the ITALIC
attribute are sorted as being distinct from page number references that are
output in an italic type face using some other means (such as the global
<EMPHASIS> tag).

The following is an example of an <X> tag that uses the ITALIC attribute:

<X>(System Formats\ITALIC)

If this index tag occurred on page 6-11, it would create an entry in the index
as follows:

System Concepts, 6-11

7.2.2.4

7.2.2.5

7.2.2.6

Generating a Table of Contents, Index, and Master Index

Using the MASTER Attribute
Use the MASTER attribute to specify an index entry that you want to appear
in a master index. The following is an example of an <X> tag that uses the
MASTER attribute:

<X>(System formats\MASTER)

By default, entries labeled with the MASTER attribute are included only in
the master index and entries not labeled with the MASTER attribute are
included only in the index of a single document.

You can override these defaults by using the following DOCUMENT
command line qualifiers:

/INDEX=OVERRIDE_MASTER

/MASTER_INDEX=OVERRIDE_
MASTER

Creates a single document index containing
both master and nonmaster index entries.

Creates a master index containing both
master and nonmaster index entries.

See Section 7.2.5 for more information on the OVERRIDE__MASTER
keyword. See Section 7.3 for information on creating a master index.

Using the <XAPPEND> Attribute
Use the <XAPPEND> attribute to append a specified string to the end of a
main entry page reference. You append the string by passing that string as
an argument to the <XAPPEND> attribute as <XAPPEND> (string). Use the
<XAPPEND> attribute to add information to a main index entry, for example,

to mark an index page as referring to a table (9-8tab) or to insert common
indexing terms such as "page 3ff" or "5-3 to 5-6 passim."

The following example shows an <X> tag that appends the string "ff" to the
page reference using the <XAPPEND> attribute:

<X>(File structure\<XAPPEND>(ff))

If this tag were processed on page 3, this tag would create the following main
index entry:

File structure, 3ff

Using the <XSORT> Attribute
Use the <XSORT> attribute to control the default sorting of individual index
entries. For example, if you wanted the entry "$$" to appear in your index
sorted as the words "double dollar," you could place the <XSORT> tag in.
your SDML file as follows:

<X>($$\<XSORT>(double dollar))

This attribute is especially useful for overriding the default sorting of leading
nonalphabetic characters in individual index entries.

7-7

Generating a Table of Contents, Index, and Master Index

7 .2.3 Creating Cross-Reference Index Entries
The <Y> tag creates an entry in an index file that has no output page
associated with it. This tag is typically used to create cross-references to other
index entries ("See" or "See also" entries). The <Y> tag has the following
syntax:

< Y > (index-entry[\ attribute])

The <Y> tag accepts the same index-entry argument as the <X> tag. Index
subentries are specified within the index-entry using the <XSUBENTRY>
(abbreviated as <XS>) tag just as for the <X> tag. The <Y> tag accepts
only the MASTER and <XSORT> indexing tag attributes because all other
attributes are for manipulating page numbers.

MASTER indicates that the index entry should only occur in the master index
and <XSORT> lets you override the sorting algorithm for an individual entry.
See Section 7.2.1 for more information on these attibutes. Section 7.2.2
describes the indexing tag attributes.

The following example shows the <Y> tag used with the <x> tag. The
<X> tag creates an index entry with a page number reference and the <Y>

tag creates a "See also" index entry:

<X>(File structure designators)
<Y>(File structure designators<XSUBENTRY>See also Header blocks)

These indexing tags create the following index entry (assuming these tags
appeared on page 1-3):

File stucture designators, 1-3
See also Header blocks

7 .2.4 Processing an Index

7-8

When you use the DOCUMENT /INDEX qualifier, VAX DOCUMENT
processes the index entries you created in your SDML file, and places them
in a separate index file. VAX DOCUMENT names this file by taking the
file name of the input-file-spec parameter you specified on the DOCUMENT
command line and appending "_INDEX" to it.

If you omit text formatting by using the /NOTEXT_FORMATTER qualifier,
index processing will also be omitted, because the index is processed during
text formatting. If you use the /INDEX and /NOTEXT_FORMATTER
qualifiers together, VAX DOCUMENT issues an error message.

You need do nothing more than specify /INDEX on the command line if you
want to maintain your index in a separate file; however, if you want this file
automatically incorporated into your document, place the <INDEX_FILE> tag
in your SDML file.

When the <INDEX_FILE> tag is processed by VAX DOCUMENT, the latest
index file is incorporated into the final output file where the <INDEX_FILE>
tag occurs in the SDML file. If you use the /NODEVICE_CONVERTER
qualifier, the index will not be incorporated into your file.

7.2.5

Generating a Table of Contents, Index, and Master Index

Use the /INDEX qualifier whenever you process a file that contains the
<INDEX_FILE> tag to make sure that the latest version of the index is

incorporated into your file. This action ensures that the index file correctly
reflects the organization and pagination of your SDML file. If you do not
specify /INDEX, an out of date index may be included into your document.

When you create an index using the /INDEX qualifier, whatever parameters
and other qualifiers you specify affect the processing of both the index file
and your SDML file. For example, if you specify LN03 as a destination and
also use the /PRINT qualifier, both files will be printed on the LN03 laser
printer (input-filename.LN03 and input-filename_JNDEX.LN03).

The following example shows how an index may be created and printed
using the /INDEX and /PRINT qualifiers. Both the SDML file (MYREPORT)
and the index file created from that SDML file (MYREPORT_INDEX) are
formatted for the LN03 laser printer and printed on it as specified on the
command line. VAX DOCUMENT concatenates the printing of the two files
into a single print job so VMS issues only one print message.

$ DOCUMENT myreport.sdml REPORT LN03 /INDEX /PRINT=(NOTIFY)

%DOC-I-IDENT, VAX DOCUMENT 1.1

[T a g T r a n s 1 a t i o n] . . .
%TAG-I-DEFSLOADD, End of Loading of Tag Definitions
%TAG-I-ENDPASS_1, End of first pass over the input
[T e x t F o r m a t t i n g] . . .
%TEX-I-PAGESOUT, 17 pages written.
-TEX-I-OUTFILENAME, 'DUA1: [DOCFILES]MYREPORT.DVI_LN03'
[I n d e x G e n e r a t i o n] . . .

%INX-I-ENDPASS_1, End of first pass over input file:
'DUA1: [DOCFILES]MYREPORT_INDEX.INX'

%INX-I-ENDPASS_2, End of second pass over input file.

%INX-I-CREATED, 'DUA1: [DOCFILES]MYREPORT_INDEX.TEX;1' created
[T e x t F o r m a t t i n g I n d e x] . . .
%TEX-I-PAGESOUT, 1 page written.
-TEX-I-OUTFILENAME, 'DUA1: [DOCFILES]MYREPORT_INDEX.DVI_LN03'
[D e v i c e C o n v e r s i o n] . . .
%DVC-I~PAGESOUT, 18 pages written to file:

DUA1: [DOCFILES]MYREPORT.LN03
[I n d e x D e v i c e C o n v e r s i o n] . . .
%DVC-I-PAGESOUT, 1 page written to file:

DUA1: [DOCFILES]MYREPORT_INDEX.LN03
[P r i n t i n g F i 1 e] .. .
[P r i n t i n g I n d e x] . . .

Job MYREPORT (queue SYS$LN03, entry 835) started on SYS$LN03

$

Using Indexing Options
The following subsections describe the optional keywords that can be used
with the /INDEX and /MASTER_INDEX qualifiers; the keywords have the
same meanings for both qualifiers except where noted.

These keywords allow you to control whether guide headings are used, how
master index entries should be processed, and how index entries should be
sorted. The indexing option keywords are as follows:

• [NO]GUIDE_HEADINGS

• [NO]OVERRIDE_MASTER

• SORT

7-9

Generating a Table of Contents, Index, and Master Index

7.2.5.1

7.2.5.2

7.2.5.3

7-10

These keywords are described alphabetically in the following subsections, and
are specified as follows:

/INDEX[=(index-keyword [,index-keyword ...])]
/MASTER_INDEX[=(index-keyword [,index-keyword ...])]

Using the GUIDE-HEADINGS and NOGUIDE_HEADINGS Keywords
Use the GUIDE_HEADINGS and NOGUIDE_HEADINGS keywords to
specify whether alphabetic headings are inserted into the index whenever an
entry beginning with a new letter occurs. The GUIDE_HEADINGS keyword
is the default.

For example, when the first index entry beginning with the letter "B" is
encountered, the guide heading /1 -B-" is placed before it.

NOGUIDE_HEADINGS suppresses guide headings in the index output file.

Using the OVERRIDE_MASTER and NOOVERRIDE_MASTER
Keywords
The OVERRIDE_MASTER and NOOVERRIDE_MASTER keywords specify
how index entries with and without the MASTER attribute are included in a
single document index and a master index.

• Use /INDEX=NOOVERRIDE_MASTER to create a single document
index that contains only the index entries that are not marked with the
MASTER keyword; this is the default.

• Use /INDEX=OVERRIDE_MASTER to create a single document index
that contains both the index entries that are not marked with the
MASTER keyword and the entries that are marked with the MASTER
keyword.

• Use /MASTER_INDEX=NOOVERRIDE_MASTER to create a master
index that contains only the index entries that are marked with the
MASTER keyword; this is the default.

• Use /MASTER_INDEX=OVERRIDE_MASTER to create a master index
that contains both the index entries that are not marked with the
MASTER keyword and those entries that are marked with the MASTER
keyword.

Using the SORT Keyword
Use the SORT keyword to specify the sorting algorithm used to order entries
in an index. The SORT keyword has the following syntax:

SORT[=sort-keyword[, sort-keyword[=value]]]

The following are valid sort-keywords:

• SORT=LETTER sorts the entries letter-by-letter and ignores spaces and
hyphens. SORT=LETTER is the default.

For example the entry /1 A directory" would be sorted after the entry
11 Add," because the space is ignored in the sorting and so /1 A di" is placed
after /1 Add" by the sort.

• SORT=WORD sorts the entries letter-by-letter and treats spaces and
hyphens as significant.

Generating a Table of Contents, Index, and Master Index

For example the entry "A directory" would be sorted with other entries
that began with "A d" rather than with the entry "Add" because the
space is treated as a significant part of the entry during the sorting; this
results in "Ad" being placed before "Add" by the sort (because by default
nonalphabetic characters are sorted before alphabetic characters).

• SORT=NONALPHA positions entries with initial nonalphanumeric
characters in the index based on the following keyword, supplied with
the NONALPHA keyword:

The AFTER keyword causes entries with initial nonalphanumeric
characters to be placed at the end of the index.

The BEFORE keyword causes entries with initial nonalphanumeric
characters to be placed at the beginning of the index.

The IGNORE keyword causes entries with initial nonalphanumeric
characters to be sorted by the first alphanumeric characters in the
entry. The default is NONALPHA=IGNORE.

7 .3 Creating a Master Index
VAX DOCUMENT lets you combine the indexes from several documents to
create a master index for a documentation set. This master index has the
same format as that of a single-document index, with the following additions:

• Master index entries are cited both by the title of the document from
which they originated and by page number. Document titles are italicized
in these index entries.

• Index entries that were specified using the MASTER keyword attribute in
individual documents are automatically entered into the master index.

You can modify your master index by specifying indexing option keywords.
The /MASTER_INDEX qualifier accepts the same indexing option keywords
as the /INDEX qualifier. See Section 7.2.5 for more information on the
indexing option keywords.

You create a master index by performing the following steps:

1 Create individual intermediate index (INX) files using the /INDEX and
/KEEP=(INX) qualifiers to the DOCUMENT command.

2 Create a master index data file, which lists each of the intermediate index
files with the title of the book from which the index file was generated.

3 Run VAX DOCUMENT using the /MASTER_INDEX qualifier and
specifying the master data file as the input-file-spec parameter.

This will produce a final printable master index file with the same file
name as the master data file and with a file type associated with the
destination keyword specified on the command line (for example, LN03).

7-11

7.3.1

Generating a Table of Contents, Index, and Master Index

Creating Intermediate Index Files
You create intermediate index files whenever you use the /INDEX qualifier to
create an index. However, VAX DOCUMENT deletes these files unless you
also specify the /KEEP specifier with the INX keyword argument. You can
specify these qualifiers, as in the following example:

$ DOCUMENT mychapter.sdml REPORT LN03 /INDEX /KEEP=(INX)

7 .3.2 Creating the Master Index Data File

7-12

You create the master index data file just as you would create any ASCII
file (by using an editor, using the VMS CREATE command, and so on). The
master index data file lists all the index files that are to be collated into the
master index. Give the master index data file a unique file name. When you
use the master index data file as the source file for your master index, the
DOCUMENT command will expect a default file type of INX_LIST.

Each master, index entry is associated with the book that it came from.
You can use the /BOOK_IDENTIFIER qualifier inside of the data file to
specify the title of that book. If you do not specify the /BOOK-1DENTIFIER
qualifier, the title of the book will be the file name of the INX file. The
/BOOK_IDENTIFIER qualifier has the following syntax:

/BOOK_IDENTIFIER="book-title"

If you specify the /BOQK_IDENTIFIER without the book-title value, VAX
DOCUMENT issues an error message. If you want to generate a master index
without book titles, you can specify null strings to the /BOOK_IDENTIFIER
qualifier for all your intermediate index files as follows:

2041.INX/BOOK_IDENTIFIER=" "
2323.INX/BOOK_IDENTIFIER=" "

Use the following rules in entering intermediate index file specifications
(filename.INX files) into the master index data file:

• Each index file specification must be entered on a single line in the data
file with no other characters preceding it.

• Each index file specification must be an intermediate indexing file
(filename.INX) and must be specified completely including the INX
file type. You can also use a process logical name for the intermediate
indexing file.

• Comments can be made in the data file using the exclamation point (!)
character. This character excludes from processing only those characters
that follow it on the same line.

The following is a sample of a master index data file. Because the books listed
in this file all have numeric names, the /BOOK_IDENTIFIER qualifier was
used to specify more meaningful book titles.

7.3.3

Generating a Table of Contents, Index, and Master Index

!Master index data file
!Created Dec 1, 1986
!Updated Jan 4, 1987
!

2041.INX/BOOK_IDENTIFIER="System Generation"
2323.INX/BOOK_IDENTIFIER="Writing I/O Driver"
2050.INX/BOOK_IDENTIFIER="MCR Operations"
2053.INX/BOOK_IDENTIFIER="Program Development"
2054.INX/BOOK_IDENTIFIER="Executive"
2055.INX/BOOK_IDENTIFIER="Task Builder"
2056.INX/BOOK_IDENTIFIER="System Library"
2057.INX/BOOK_IDENTIFIER="Utilities"
2059.INX/BOOK_IDENTIFIER="I/0 Drivers"
2176.INX/BOOK_IDENTIFIER="Release Notes"

Creating the Master Index File
You create the printable master index file by running the DOCUMENT
command with the /MASTER_INDEX qualifier and specifying the master
index data file as the input-file-spec parameter. The master data file has a
default file type of INX_LIST.

In the following example, the master index data file MYMASTER.INX_
LIST is processed using the /MASTER--1NDEX qualifier to create the file
MYMASTERINDEX.LN03:

$DOCUMENT MYMASTER.INX_LIST REPORT LN03 /MASTER_INDEX
%DOC-I-IDENT, VAX DOCUMENT V1.1
[Master Index Gener at ion] ...
%INX-I-ENDPASS_1, End of first pass over input file:

'DUA1: [DOCFILES]2041.INX'
%INX-I-ENDPASS_2, End of second pass over input file.
%INX-I-ENDPASS_1, End of first pass over input file:

'DUA1: [DOCFILES]2323.INX'
%INX-I-ENDPASS_2, End of second pass over input file.
%INX-I-ENDPASS_1, End of first pass over input file:

'DUA1: [DOCFILES]2050.INX'
%INX-I-ENDPASS_2, End of second pass over input file.
%INX-S-CREATED, 'DUA1: [DOCFILES]MYMASTER.TEX;1' created
[Text Formatting] ...
%TEX-I-PAGESOUT, 8 pages written.

-TEX-I-OUTFILENAME, 'DUA1: [DOCFILES]MYMASTER.DVI_LN03'
[D e v i c e C o n v e r s i o n] . . .
%DVC-I-PAGESOUT, 18 pages written to file:

DUA1: [DOCFILES]MYMASTER.LN03
[P r i n t i n g F i 1 e] . . .

Job MYMASTER (queue SYS$LN03, entry 835) started on LN03

$

7-13

8 Special Features

This chapter describes various special features that you can request in the
formatted output. The features include the following:

• Providing emphasis, such as holding or italicizing

• Using footnotes

• Using callouts

• Drawing large braces and brackets

• Controlling case

• Formatting mathematical formulas

• Providing quotation marks

• Placing parentheses around a single character

• Drawing horizontal and vertical ellipses

8.1 Providing Emphasis
There are numerous methods available to lend emphasis to words or phrases
in your printed output. In most methods, you pass the text to be emphasized
as an argument to a special tag.

This section discusses the tags as global tags, because they are always
available for use. The formatted effect of each tag is also described here,
but you should be aware that the effect can differ depending on the doctype.

The <EMPHASIS> tag provides italic or holding emphasis. At first glance,
those capabilities would seem to be adequate for most purposes, but in fact
there are many additional tags that provide emphasis. The variety of tags
relates to the numerous possible reasons for emphasis.

The reasons vary: the word might be the name of something, it might be
a reserved word in a programming language, or it might be being used for
the first time in your book. In a generic markup language, you should be
tagging the word according to the reason for its emphasis, not according to
the desired effect in the formatted output. In other words, you should be
thinking, "This is the first use of this phrase," and not thinking, "This phrase
needs to be italicized."

Accordingly, the tags for emphasis attempt to name the reason for the
emphasis rather than to name the formatting effect. If you use the tags
properly in your SDML files, the book designer is free to change the effect
for a single tag. Thus, the tag that lends emphasis to a first-time use,
<NEWTERM>, might be changed from simple italic to an italic font that is

larger or bolder. However, another tag that also gives an italic effect might be
left unchanged. If you fail to distinguish these two uses when you code the
SDML file (by coding both with the <EMPHASIS> tag), you will not be able

8-1

Special Features

8-2

to make a selective change in the type of emphasis for the <NEWTERM> tag
without affecting your output.

A description of each of the emphasis tags follows:

• <GREF> and <NEWTERM>

These two tags are similar, in that they are used to refer to a word or
phrase in a special first-time use, where the word is about to be defined.
Use the <GREF> tag if the word is also in the glossary.

• <KEYWORD>

Use this tag in a discussion of a word or phrase from a computer program
or a programming language (sometimes called a "reserved word").

• <VARIABLE>

When you write about the effect of executing some computer program
command or programming language statement, you may want to refer to
a variable by name and then refer to its value. Tagging the variable name
with this tag ensures that it has the proper emphasis in the output.

• <EMPHASIS> and <UNDERLINE>

These tags are appropriate for situations where the other emphasis tags
are unsuitable. Because they specify the formatting effect in the output
rather than the reason for the effect, use them sparingly.

• <NOTE>

This tag has a pronounced formatting effect, because it not only bolds
the text, but it breaks the text out of its surrounding text and supplies an
attention-getting heading. An example of an appropriate use follows:

. . . the unary minus in this expression.
<NOTE>Observe how the precedence of the unary minus operator
requires the use of parentheses in this expression.
<ENDNOTE>

This example might produce the following:

... the unary minus in this expression.

Note: Observe how the precedence of the unary minus operator requires the
use of parentheses in this expression.

Table 8-1 shows each of the tags (except <NOTE>) used in text. Your output
might differ, according to the design chosen for your system.

Special Features

Table 8-1 Examples of Emphasis Tags

Coding

The <GREF> (abc def) letters

The <NEWTERM> (abc def) letters

The <KEYWORD> (abc def) letters

The <VARIABLE> (abc def) letters

The <EMPHASIS> (abc def) letters

The <EMPHASIS> (abc def\BOLD) letters

The <EMPHASIS> (abc def\SMALLCAPS) letters

The <EMPHASIS> (abc def\SMALL_BOLDCAPS)
letters

The <UNDERLINE> (abc def) letters

Output1

The abc def letters

The abc def letters

The abc def letters

The abc def letters

The abc def letters

The abc def letters

The ABC DEF letters

The ABC DEF letters

The abc def letters

1 The output of the samples included in this table is dependent on the doctype
and printing device used.

As you read about each tag, remember that the punctuation that follows a
bolded or italic font should be printed in the same font. This means that you
should always include the punctuation as part of the argument.

8.2 Using Footnotes
Three tags are available for creating a footnote, the <FOOTNOTE> 1tag, the
<FOOTNOTE_TEXT> tag, and the <FOOTREF> tag. Their syntax is as follows:

<FOOTNOTE>(char\footnote-text)
<FOOTNOTE_TEXT>(char\text)
<FOOTREF>(char-1[\char-2 ... \char-9])

A footnote consists of two parts, the character that appears as a small
superscript in the text, and the correspondingly noted sentence or paragraph
at the foot of Jhe same page. The <FOOTNOTE> tag provides both the
superscript and the actual text.

You supply the superscript character as the first argument of the
<FOOTNOTE> tag and the footnote text as its second argument. Place

the <FOOTNOTE> tag precisely where you want the number to appear. This
is generally at the end of a phrase or sentence and usually after the closing
punctuation. Do not leave space between the punctuation and the opening
angle bracket of the <FOOTNOTE> tag.

VAX DOCUMENT places the character as a small superscript in the text, and
floats the text to the foot of the page.

You can use the <FOOTREF> tag to place the same number at another place
in the text, although this practice is discouraged.

Use the <FOOTNOTE> and <FOOTREF> tags to create footnotes in tables.
Table footnotes appear at the foot of the table, rather than at the foot of the
page. When you need a footnote in a table, place the <FOOTNOTE> tag at
the beginning of the table immediately after the <TABLE_SETUP> tag. Then,
at the desired points within the table, supply the <FOOTREF> tag. With this
method, you can place the same superscript at more than one point in the
table.

8-3

Special Features

8.3 Using Callouts

8-4

For multipage tables, the footnote text repeats on each page that carries a
reference to that note, provided that you call the footnotes out in the table
heading. If the reference is in the heading, the footnotes and references
appear on all pages of the table.

The output device must have a character font that displays these superscript
characters.

The <FOOTNOTE_TEXT> tag is necessary when a footnote must be provided
on a title or copyright page or in the context of header-level text.

Three tags are available for annotating examples by what is termed a callout.
The callout is a number that draws special attention, possibly by being
printed as a white digit on a black background, for example 8, or through
some other graphic display. Writers frequently display numbers this way to
mark points in an example that are then explained by entries in a numbered
list that follows the example. The numbers of the list entries are displayed in
the same format (white digit on a black background).

Callouts are used within a restricted area of the SDML file that you indicate
by <CALLOUTS> and <ENDCALLOUTS> tags. Within the example or text that
is t<? be annotated, you locate the desired numbers by using the <CO> tag
with the correct number as its argument. Following the area of the callouts,
you supply the list of explanations or notes by introducing the list with the
<LIST> (CALLOUT) tag. The list entries are introduced by the <LE> tag

and the list is ended with the <ENDLIST> tag. However, when the list is
formatted, the number of each entry in a noted-list is displayed as a white
number on a black/,background.

When you begin an example that will include callouts, you can specify
\PREFIX as an argument of the <CALLOUTS> tag. This causes the example
to be indented, leaving a gutter on the left. Then, if you specify the <CO>
tag at the left end of an example line, the callout number will be placed in
the left gutter. In this way, VAX DOCUMENT does not disturb the normal
indentation that might be important in your example. Here are two identical
example lines, coded as follows:

<C0>(2)PROGRAM Calculator (INPUT, OUTPUT);
TYPE

Yes_No =(Yes, No);

Without the \PREFIX argument, the output format is as follows:

@PROGRAM Calculator (INPUT, OUTPUT);
TYPE

Yes_No = (Yes, No);

With the \PREFIX argument, the output format is as follows:

fJ PROGRAM Calculator (INPUT, OUTPUT);
TYPE

Yes_No =(Yes, No);

Callouts are not limited to use within monospaced examples. For example,
if you want to number certain paragraphs of text, or if you want to place
callouts into a template to distinguish one group of entries from another,
you can surround the area with the <CALLOUTS> ... <ENDCALLOUTS>
tags and then place the <CO> tags wherever numbers are desired. For text
paragraphs, you must be sure to place the <CO> tag after the <P> tag

Special Features

that starts a paragraph, and in other cases you may have to place the <CO>
tag within an argument list so that the callout number is associated with the
proper text elements. If you use the \PREFIX argument on the <CALLOUTS>
tag when you put callouts on paragraphs, the paragraphs are not indented,
but the callout number is pushed to the left of the normal text margin, as
follows:

0 This is a paragraph with a callout. The \PREFIX argument was used on the
<CALLOUTS> tag.

If you need to refer to a noted-list entry, you should use the <CALLOUL
REF> (callout-number) tag. This tag need not occur within the
<CALLOUTS> ... <ENDCALLOUTS> tags. The word "callout" is editorial

jargon and is probably not in your reader's vocabulary, so do not write "see
callout O." Instead, refer to the numbered item as a note. For example, "see
note O."

Each device treats callouts in a distinct way typographically. This might vary
from device to device according to the available fonts.

8.4 Drawing Large Braces and Brackets
When you are documenting the syntax of a programming language, you often
use the convention that shows choices (or options) as items that are vertically
stacked inside large brackets or braces. You tell· the reader that the brackets
mean an optional choice and the braces mean a required choice.

These brackets or braces are produced in the output by using the
<LIST> (STACKED) tag. The <LIST> (STACKED) tag works like other list

tags in that the list begins with the <LIST> tag, each element is introduced
by the <LE> tag, and the list is ended by the <ENDLIST> tag. The size of
the bracket or brace is adjusted automatically to enclose the list elements and
the enclosed list is aligned with other elements on the same line. Here is an
SDML file excerpt:

<P>
SET
<LIST>(STACKED\BRACES)
<LE> LOZENGE
<LE>UNDERSCORE
<LE>GRAPHIC
<END LIST>
CURSOR
<LIST>(STACKED\BRACKETS)
<LE>ON
<LE>OFF
<END LIST>
(Default is ON)

The result is as follows:

{
LOZENGE }

SET UNDERSCORE CURSOR [g~] (Default is ON)
GRAPHIC

The output device must have a character font that displays these braces and
brackets.

8-5

Special Features

8.5 Controlling Case
Usually, you control the case of the letters in the output by the case of the
letters in the SDML file. If you put a lowercase letter in the SDML file, it
remains lowercase in the output. In rare cases, an argument to a tag is forced
into upper- or lowercase by the action of the tag. If you want to avoid this
case conversion, you can force letters into the output (in the stated case) by
using either the <UPPERCASE> or <LOWERCASE> tags.

8.6 Providing Quotation Marks

8-6

Many keyboards provide a key for a quotation mark, sometimes called
a double-quote, that produces an effect such as shown in the following
example:

"Hello, sailor!"

The quotation marks used by typesetters, on the other hand, produce an
effect such as the following:

"Hello, sailor!"

In software documentation, you might want the programmer's double-quote
character (/1

). Occasionally, you will also want to surround something with
the typesetter's quotation marks (" ").

When you want the typesetter's quotation marks around a string, pass the
quoted string as an argument to the <QUOTE> tag. For example, to obtain
"Hello, sailor!" you must specify the following:

<QUOTE>(Hello, sailor!)

Include ending punctuation as part of the argument to the <QUOTE> tag if
you want it to appear inside the quotation marks.

VAX DOCUMENT outputs one of the typesetter's quotation marks (the")
when it finds the ASCII double-quote character (11

) in a proportionally spaced
part of your SDML file. However, in an example, where monospaced text is
the default, the ASCII double-quote character is output as (/1

).

If you need to show the ASCII double-quote character in text as it normally
appears in a listing or on the screen (as /1

), code it with the <DOUBLE_
QUOTE> tag. Suppose you want to show the following:

. . . in the expression NAME : = "Smith",

You must code this text as follows:

... in the expression NAME:= <DOUBLE_QUOTE>Smith<DOUBLE_QUOTE>, ...

Similarly, the text output for a single-quote character (ASCII 39) is the
apostrophe ('), so if you need to show the ASCII single-quote character in
text as it normally appears in a listing or on the screen (as '), code it with the
<SINGLE_QUOTE> tag. Suppose you want to show the following:

. . . in the expression NAME : = ' Smith' ,

You must code this text as follows:

... in the expression NAME := <SINGLE_QUOTE>Smith<SINGLE_QUOTE>, ...

Special Features

This might appear complicated, but you often achieve what you want with
minimum effort. The rules are as follows:

1 In examples, where you are illustrating what appears on the screen, use
single- or double-quote characters. Just press the keyboard's single- or
double-quote key. Because it is within an example, the key results in
the screen's single- or double-quote character (' or 11

) rather than the
apostrophe or the typesetter's quotation mark.

2 In text, when you want the apostrophe, press the keyboard's single-quote
key. Because it is within text, it prints as an apostrophe.

3 In text, when you need to cite text from another source or cite an excerpt
of a speech, use the <QUOTE> tag, to obtain the typesetter's quotation
marks.

4 You will rarely want to show the screen or listing version of the single­
quote key (') or the double-quote key (/1

) in text. However, when
necessary, use the <SINGLE_QUOTE> and <DOUBLE_QUOTE> tags.

The output device must have a character font that displays these typesetter's
characters.

8. 7 Placing Parentheses Around a Single Character
When you enclose something in parentheses in your text, the opening and
closing parentheses snug up against the enclosed text. However, if you are
enclosing a single character, especially a punctuation character, the close
placement of the parentheses overwhelms the character, for example (,). ·If
you anticipate this possible problem and place a space on either side of the
character, (,), you run the risk that a line break will occur at one of the
spaces, leaving some of the parenthesized character at the end of one line and
the rest at the start of the next line.

Instead, you can pass the character as an argument to the <PARENDCHAR>
tag, which will supply the parentheses and some extra space around the
character, for example, (,). The argument to <PARENDCHAR> need not be
limited to one character, but if the characters being parenthesized are letters
or digits the <PARENDCHAR> tag may be unnecessary.

The output device must have a character font that displays these
proportionally spaced characters.

8.8 Drawing Horizontal and Vertical Ellipses
Writers sometimes use ellipses to emphasize the omission of text. It is not
possible to achieve proper spacing of the ellipses by simply supplying three
periods, because periods snug up against the preceding character. If you
insert space characters between them, you run the risk that a line break will
occur between them. Accordingly, use the <HEbLIPSIS> tag to supply a
horizontal ellipsis (. . .).

To create a vertical ellipsis, use the <ELLIPSIS> tag.

8-7

Special Features

8.9 Showing Special Characters

8.10

VAX DOCUMENT provides facilities for including special characters in the
text. Among the special characters supported are the following:

• Mathematical special symbols, such as operators and the uppercase Greek
letters

• Multinational Character Set (MCS), which includes such symbols as the
British pound, the Japanese yen, umlauts, and so forth

• Opening double brackets and closing double brackets

The <MATH_CHAR> tag allows you to specify a wide range of mathematical
symbols. The <MCS> tag offers the full range of symbols in the DIGITAL
Multinational Character Set. The <SPECIAL_CHAR> tag supports a series of
keywords that identifies such special symbols as the trademark symbol, the
dagger, and the opening double bracket and closing double bracket.

Using Formatting Tags
The following tags provide special formatting:

• <PAGE>

• <LINE>

• <KEEP>

• <FINAL_CLEANUP>

Be aware when using these tags that your output can vary between devices.
If you were to use these tags in a file processed for an LNOl printer, your
output could look much different than you planned if you were to reprocess
your file for a POSTSCRIPT device. Adding or deleting text can also affect the
output when these tags are used.

8.10.1 Specifying Page Breaks
Use the <PAGE> tag whenever you need to force the text to begin on a
new page of output. You can optionally direct whether the text continuation
should begin on the next even- or odd-numbered page.

8.10.2 Specifying Line Breaks

8-8

Use the <LINE> tag whenever you must force text to begin on a new line
of output. It is possible to include arguments that determine the amount of
space before the next line or whether the text should be indented.

In addition, the <CENTER_LINE> tag identifies a line of text that is to be
centered within the current text margins. Its arguments also permit you to
specify the amount of space introduced prior to outputting the line.

The <RIGHLLINE> tag right-adjusts a line of text within the current text
margins. Optionally, you can specify that a large or small amount of space is
desired.

Special Features

8.10.3 Keeping Text on a Single Line
The <KEEP> tag allows you to specify text that must be forced to occur on
a particular line of output and, therefore, must not be either hyphenated
or broken at an existing hyphen. For example, this is important whenever
it is undesirable to break a hyphenated word, such as a product name
like PDP~ 11 or when a widow or orphan might be created by automatic
hyphenation.

Note that when you use the <KEEP> tag in combination with the
<HYPHENATE> tag, the hyphenation does not occur; that is, the <KEEP>

tag overrides the normal effects of the <HYPHENATE> .

8.10.4 Controlling Page and Line Breaks for Final Production
The <FINAL_CLEANUP> tag is useful for performing specialized adjustments
of line or page breaks during final production, when the use of a particular
output device or some other consideration indicates that the normal page or
line break should be overridden.

8-9

9 Doctype-lndependent Tag Descriptions

This chapter includes descriptions of all doctype-independent (globally used)
tags. The tags are listed alphabetically.

9-1

<ABSTRACT>

<ABSTRACT>

Begins a summary description of a document on the title page or part page
of a document.

FORMAT <ABSTRACT> [(title)}

ARGUMENTS title
Specifies a title for the abstract.

related tags • <FRONLMATTER>

• <TITLE_PAGE>

• <PARLPAGE>

restrictions Can be used only in the context of a <TITLE_PAGE> or <PARLPAGE> tag.

required <END ABSTRACT>

terminator

DESCRIPTION The <ABSTRACT> tag begins a summary description of a document on the
title page or part page of a document.

EXAMPLES See the examples in the discussion of the <PARLPAGE> tag.

9-2

<ACCENT>

<ACCENT>

Supplies a freestanding accent mark.

FORMAT <ACCENT> (accent-mark)

ARGUMENTS accent-mark
Specifies one of the following keywords to indicated the accent mark:

• UMLAUT

• ACUTE

• GRAVE

related tags • <MCS>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <ACCENT> tag supplies a freestanding accent mark in the printed
output.

EXAMPLE
<P>Accents used in the DEC Multinational Character Set include the
following:
<LIST>(UNNUMBERED)
<LE>Grave accents <PARENDCHAR>(<ACCENT>(GRAVE))
<LE>Acute accents <PARENDCHAR>(<ACCENT>(ACUTE))
<LE>Umlauts <PARENDCHAR>(<ACCENT>(UMLAUT))
<ELS>

This example may produce the following output:

Accents used in the DEC Multinational Character Set include the following:

• Grave accents (')

• Acute accents (

• Umlauts ("')

9-3

<ALIGN_AFTER>

<ALIGN_AFTER>

Allows you to position formatted text in a list.

FORMAT <ALIGN_AfTER> (text)

ARGUMENTS text
Specifies the string under which you want to align a stack of text.

related tags • <LINE> [(INDENT)]

• <LIST> (STACKED)

• <ALIGN_NUMBER>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <ALIGN_AFTER> tag enables you to position text in a list after the text
specified in the argument.

EXAMPLE
<LIST>(STACKED\BRACES)
<LE><ALIGN_AFTER>(UN)NUMBERED
<LE> UNNUMBERED
<ELS>

9-4

This example shows how to create a stacked list where the text is aligned
after the the string "UN." This example may produce the following output:

{ NUMBERED }
UNNUMBERED

<ALIGN_CHAR>

<ALIGN_CHAR>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

Identifies a nonprinting character to be used to align numeric information
within a column of a list or table.

<ALIGN_CHAR> (character[\ DELTA])

character
Specifies the character to be used for alignment.

The character must be one of the following special characters:

$

% * @

< >

DELTA
Specifies the character indicated for alignment is replaced on output with a
delta character to indicate spacing.

• <ALIGN-AFTER>

• <TABLE_ROW>

• <ALIGN_NUMBER>

Invalid in math.

Invalid in monospaced examples. Aligned characters might be referenced in
an example, but the <ALIGN-CHAR> and <ENDALIGN_CHAR> tags must
occur outside the example.

<ENDALIGN_CHAR>

The <ALIGN_CHAR> tag identifies the character that is to be used to signify
a space in a table row. The tag translator replaces each occurrence of the
character with a space. The space is the same width as the numeric characters
in the font that is active. (All numeric characters of a font have a uniform
width.)

Items in a column are aligned on the left by default. You may want to display
a column of numbers aligned on the right. You can use the <ALIGN_CHAR>
tag to define "#," for example, as the alignment character. You make all
the numeric entries of equal length by prefixing the shorter entries with the
alignment character. Because the numeric characters are of uniform width,
they will then align on the right. You can also use the alignment character to

9-5

<ALIGN_CHAR>

add space within the number. For example, you could separate the digits of a
number at the thousands position.

EXAMPLES
[I <ALIGN_CHAR>(#)

9-6

<TABLE>
<TABLE_SETUP>(2\16)
<TABLE_ROW>(0#123#456#781\01234567.89)
<TABLE_ROW>(#######35#279\#######6.0)
<TABLE_ROW>(########4#341\####1429.857)
<ENDTABLE>
<ENDALIGN_CHAR>

<TABLE>

This example defines the number sign as the alignment character. The
number sign is then used to align the columns in a two-column list. This
example may produce the following output:

0 123 456 789
35 279

4 361

01234567.89
6.0

1429.857

<TABLE_SETUP>(2\16)
<TABLE_ROW>(0123456789\01234567.89)
<TABLE_ROW>(35279\6.0)
<TABLE_ROW>(4361\1429.857)
<ENDTABLE>

This example shows the two-column list used in the previous example
without the use of an alignment character. This example may produce the
following output:

0123456789

35279
4361

01234567.89
6.0

1429.857

<P>The sum may be padded on the left with blanks, resulting in
<ALIGN_CHAR> (#)
<KEEP>('###7.56')
<ENDALIGN_CHAR>

This example shows how blank output characters can be represented using
the <ALIGN_CHAR> tag. This example may produce the output:

The sum may be padded on the left with blanks, resulting in ' 7.56'

<P>The sum may be padded on the left with blanks, resulting in
<ALIGN_CHAR>(#\DELTA)
<KEEP>('###7.56')
<ENDALIGN_CHAR>

This example shows how delta output characters can be represented using the
<ALIGN_CHAR> tag. This example may produce the output:

The sum may be padded on the left with delta characters, resulting in
166.67.56'

<ALIGN_NUMBER>

<ALIGN_NUMBER>

Specifies a numeric value with alignment characters.

FORMAT <ALIGN_NUMBER> (number)

ARGUMENTS number
Specifies a number, which can include commas and decimal points, that is to
be aligned with other numbers in the same column. Fields in the number that
are to be left blank may contain pound sign (#) characters representing blank
numbers or semicolon (;) characters representing commas or decimal points.

related tags • <ALIGN-AFTER>

• <ALIGN_CHAR>

• <TABLE_ROW>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <ALIGN_NUMBER> tag lets you align columns of numbers in a table,
when the numbers you need to enter have suppressed leading or trailing
fields. You enter the number using the pound-sign and semicolon characters
to represent fields in the number that are to be blank on output.

Items in a column are aligned on the left by default. You may want to
display a column of numbers aligned on the right, or aligned around the
decimal point. To do this, you use the <ALIGN_NUMBER> tag to tag each
number.

EXAMPLES
[I <table>

<table_setup>(2\8)
<table_row>(one\<align_number>(l00,000,000.##))
<table_row>(one\<align_number>(###;###;240.40))
<table_row>(one\<align_number>(###;###;###.60))
<table_row>(one\<align_number>(###;230,425))
<endtable>

9-7

<ALIGN_NUMBER>

9-8

This example shows a series of numbers aligned at the decimal point. This
example may produce the output:

<table>

one

one

one

one

100,000,000.

240.40

.60

230,425

<table_setup>(3\15\10)
<table_heads>(Item\Net Revenue\Percentage)
<table_row>(Fish knives\<align_number>(#;#20;435;##)\<align_number>(%#10.44))
<table_row>(Clam cleaners\<align_number>(1,432,064.23)\<align_number>(%#45.0#))
<table_row>(Shrimp peelers\<align_number>(#;###;245;##)\<align_number>(%###.86))
<endtable>

This table may produce the output:

Item Net Revenue Percentage

Fish knives 20,435 % 10.44

Clam cleaners 1 ,432,064.23 % 45.0

Shrimp peelers 245 % .86

<AMPERSAND>

<AMPERSAND>

Supplies an ampersand within an argument to a tag or in math.

FORMAT <AMPERSAND>

ARGUMENTS None.

related tags • The following tags label other characters that must be tagged when they
occur in an argument to a global tag:

<BACKSLASH>
<CPAREN>
<OPAREN>
<VBAR>

restrictions Can only be used within an argument to a tag.

required None.

terminator

DESCRIPTION Use the <AMPERSAND> tag to output an ampersand within an argument to
a tag. Outside of an argument to an SDML tag, use the regular ampersand
character rather than the tag.

EXAMPLE

The ampersand has a special meaning to the tag translator when it occurs
within an argument to a tag. If you use a literal ampersand within an
argument, it may be misinterpreted, and may cause an error in your output.
Use the <AMPERSAND> tag to avoid any misinterpretation.

<SUBHEAD1>(Continuing the Line with <AMPERSAND>)
<P>Your BASIC statement may be formatted over two or more lines
by terminating all lines but the last with an ampersand(&).

This example can produce the following output.

Continuing the Line with &

Your BASIC statement may be formatted over two or more lines by
terminating all lines but the last with an ampersand(&).

9-9

<APPENDIX>

<APPENDIX>

Begins an appendix.

FORMAT <APPENDIX> (appendix-title[\ symbol-name])

ARGUMENTS appendix-title

related tags

restrictions

required
terminator

DESCRIPTION

9-10

Specifies the title for the appendix.

symbol-name
Specifies the symbol-name to be used in all cross-references to this appendix.

The value of the symbol in the cross-reference file is the number assigned to
the appendix. If the appendix is an element in a book, the appendix number
is determined based on the position of the appendix with respect to other
appendixes in the book.

If the file being processed is not currently part of a book, the first appendix
in the source file will be lettered A, and additional appendixes will be
sequentially lettered thereafter.

If the file containing this tag is to be included in a bookbuild, the symbol­
name is required.

• <SELAPPENDIX_LETTER>

None.

<END APPENDIX>

The <APPENDIX> tag starts the appendix section of a book and can contain
any number of other tags. Appendixes contain supplementary material at the
end of a book.

<BACKSLASH>

<BACKSLASH>

Supplies a backslash within an argument to a tag.

FORMAT <BACKSLASH>

ARGUMENTS None.

related tags • The following tags label other characters that must be tagged when they
occur in an argument to a global tag:

<AMPERSAND>
<CPAREN>
<OPAREN>
<VBAR>

restrictions Can be used only within an argument to a tag.

required None.

terminator

DESCRIPTION Use the <BACKSLASH> tag to output a backslash within an argument to a tag.

EXAMPLE

Outside of an argument to an SDML tag use the regular backslash character
rather than the tag.

Because the literal backslash character is used to separate the arguments in
the argument list, you must use the <BACKSLASH> tag to include a backslash
as part of your argument.

<SUBHEAD1>(Using the Backslash (<BACKSLASH>))
<P>Use the backslash character (\) to separate BASIC statements
on the same line.

This example may produce the following output:

Using the Backslash (\)

Use the backslash character (\) to separate BASIC statements on the same
line.

As shown in this example, a simple backslash character is used in ordinary
text. When a literal backslash is used in the argument to the <SUBHEAD!>
tag, the text following the backslash is not output.

9-11

<BOX>

<BOX>

FORMAT

ARGUMENTS

related tags

restrictions

Produces a box that surrounds a user-specified character string.

<BOX> (label)

label
Specifies the character string to be surrounded by the box.

None.

Valid in any context except math.

The character string must be 15 characters or fewer. The box format might
not be available for all output devices.

required None.

terminator

DESCRIPTION The <BOX> tag produces a box that surrounds a user-specified character
string in the printed output.

EXAMPLE
<P>In EDT, the <BOX>(GOLD) key
changes the function of the other keys on the keypad.

This example produces the following output:

In EDT, the I GOLD I key changes the function of the other keys on the keypad.

9-12

<CALLOUT>

<CALLOUT>

Labels a callout in an example. The <CALLOUT> tag is identical to the
<CO> tag.

FORMAT <CALLOUT> [(number)]

ARGUMENTS number
Specifies the number to be used as the callout. If not specified, the next
number in the callout sequence is output.

related tags • <CALLOUTS>

• < CALLOULREF>

• <CO>

• <LIST> (CALLOUT)

restrictions None.

required None.

terminator

DESCRIPTION The <CALLOUT> tag identifies a number that will be printed as a white
letter in a black box in an example. It is used within the <CALLOUTS> and
<ENDCALLOUTS> tags.

EXAMPLES See the examples in the discussion of the <CALLOUTS> tag.

9-13

<CALLOUT_REF>

<CALLOUT_REF>

FORMAT

ARGUMENTS

related tags

restrictions

Labels a reference to a callout in text.

<CALLOUT_REF> (callout number)

callout number
Specifies the number to be included in the callout.

• <CALLOUTS>

• <CALLOUT>

• <CO>

• The following tags label other types of references:

<REFERENCE> (symbol)
<GREF> (reference text)

Invalid in the context of math.

Cannot be used in examples.

required None.

terminator

DESCRIPTION The <CALLOULREF> tag identifies a reference in text to a callout number
created by the <CALLOUT> tag in an example or figure.

EXAMPLE
<P>In <REFERENCE>(page_transitions_fig),
callout <CALLOUT_REF>(1)
labels the beginning of the process. The initial conditions are the same
as in the previous figure and the copy-on-reference bit is set.

9-14

This example may produce the following output:

In Figure 3-3, callout 0 labels the beginning of the process. The initial
conditions are the same as in the previous figure and the copy-on-reference
bit is set.

<CALLOUTS>

<CALLOUTS>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

EXAMPLES
i] <CALLOUTS>

<CODE_EXAMPLE>

Labels the beginning of a series of callouts contained in an example and
enables the use of the <CALLOUT> and <CO> tags. (<CALLOUT> and
<CO> are identical in their use.)

<CALLOUTS> [([callout-number] \ [PREFIX]])}

callout-number
Sets the number with which to begin numbering the callouts. If no number is
specified, the numbering begins with one.

PREFIX
Determines that the callouts will appear before the line they label, rather than
at the end of the line. All callouts in any one example must precede the line
they label or appear inside or at the end of the line they label. Location of
the callouts cannot be mixed.

• <CALLOUT>

• <CO>

• <CALLOULREF>

• <LIST> (CALLOUT)

The <CALLOUTS> and <ENDCALLOUTS> tags must surround the examples
within which the callouts are used.

The PREFIX argument, if specified, must be the second argument. The first
argument can be null. For example, <CALLOUTS> (\PREFIX) is valid.

<ENDCALLOUTS>

DO WHILE (-EOF); <CALLOUT>
READ FILE(INFILE) INTO(Y);
PUT LIST(Y); <CALLOUT>
END;

<ENDCODE_EXAMPLE>
<ENDCALLOUTS>
<LIST>(CALLOUT)
<LE>This is a <KEYWORD>(DO) statement.
<LE>This <KEYWORD>(PUT) statement outputs the line read.
<END LIST>

9-15

<CALLOUTS>

This example may produce the following output:

DO WHILE (AEOF); 0
READ FILE(INFILE) INTO(Y);
PUT LIST(Y); 0
END;

0 This is a DO statement.

0 This PUT statement outputs the line read.

~ <CALLDUTS>(3\PREFIX)
<CODE_EXAMPLE>

<ENDCDDE_EXAMPLE>
<ENDCALLOUTS>

<CALLOUTS>
<CODE_EXAMPLE>

<ENDCDDE_EXAMPLE>
<ENDCALLDUTS>

9-16

<CALLOUT>

<CALLOUT>

DO WHILE (AEOF) ;
READ FILE(INFILE) INTO(Y);

PUT LIST(Y);
END;

This example shows how you can set the number from which to begin
numbering the callout sequence and how you can cause the callouts to
precede the line to which they belong by using the argument PREFIX. This
example may produce the following output: '

., DO WHILE (AEOF);
READ FILE(INFILE) INTO(Y);

G» PUT LIST(Y);

DO WHILE <CALLOUT>(9) (AEOF);
READ FILE(INFILE) INTO(Y);
PUT <CALLDUT>(12) LIST(Y);
END;

END;

This example shows how you can place callouts inside of lines and how you
can use an argument to the <CALLOUT> tag to control the number of the
callout. This example may produce the following output:

DO WHILE C) (AEOF);
READ FILE(INFILE) INTO(Y);
PUT CB LIST (Y) ;
END;

<CENTER_LINE>

<CENTER_LINE>

FORMAT

ARGUMENTS

related tags

restrictions

Specifies a line of text that is to be centered within the current margin.

<CENTER_LINE> (text [\ { BJGSKIP }])
SMALLSKIP

text
Specifies a line of text to be centered.

BIGSKIP
SMALLSKIP
Specifies a set amount of vertical space to precede the element identified as a
line or block of text. The actual amount of space created is determined by the
document's design.

• <LINE>

• <RIGHLLINE>

Invalid in monospaced examples, in math, and in arguments to tags that
provide title or heading text.

Centered text must fit within the current text margin. If you specify text that
is too wide, the text formatter issues a warning message, and you should
examine your output.

DESCRIPTION The <CENTER-LINE> tag specifies a line of text that is to be centered within
the current margin.

EXAMPLE
<P>Please include the following information:

<CENTER_LINE>(Name\smallskip)
<CENTER_LINE>(Address)
<CENTER_LINE>(Phone Number)

This example may produce output like the following:

Please include the following information:

Name

Address
Phone Number

9-17

<CHAPTER>

<CHAPTER>

Begins a chapter.

FORMAT <CHAPTER> (chapter-title[\ symbol-name})

ARGUMENTS chapter-title

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

9-18

Specifies the name of the chapter. The book design may also use this
argument in the running title.

symbol-name
Specifies the symbol-name to be used in all cross-references to this chapter.

The XREF file entry for the chapter will consist of the following:

• The value of the symbol is the number assigned to the chapter. If the
chapter is an element in a book, the chapter number is determined based
on the position of the chapter with respect to other chapters in the book.

• If the file being processed is not currently part of a book, the first chapter
in the source file will be numbered 1, and additional chapters will be
sequentially numbered thereafter.

Symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol-name
with an underscore.

• <REFERENCE>

Invalid within <FRONLMATTER> and <ENDFRONLMATTER>.

If the file containing this tag is to be included in a bookbuild, the symbol­
name is required.

None.

The <CHAPTER> tag labels the beginning of a chapter. When printed, the
chapter title and number is printed in a larger font type. VAX DOCUMENT
automatically increments chapter numbers.

To see an example of the output that a <CHAPTER> tag produces, refer to
the beginning of this chapter.

<CHEAD>

FORMAT

ARGUMENTS

related tags

<CHEAD>

Marks an unnumbered centered heading. Similar to the <CENTER_LINE>
tag.

<CHEAD> (heading-text)

heading-text
Specifies the text of the subsidiary heading.

• <CENTER>

• <HEADl> through <HEAD6>

• <SUBHEADl>

• <SUBHEAD2>

restrictions None.

required None.

terminator

DESCRIPTION The <CHEAD> tag labels an unnumbered subsidiary heading.

EXAMPLE

Subheadings are not numbered and do not appear in the table of contents.
They cannot be readily used for cross-references and should be used only
when the clarity of your exposition absolutely requires such a fine level of
distinction.

<CHEAD>(How to Use the <TAG>(chead) Tag)
<P>The use of centered headings should be restricted to occasions when the
clarity of your exposition absolutely requires one.

This example might produce output like the following:

How to Use the <CHEAD> Tag

The use of centered headings should be restricted to occasions when the
clarity of your exposition absolutely requires one.

9-19

<CH ECK_FOR_I NCLUSION >

<CH ECK_FQR_I NCLUSION >

FORMAT

ARGUMENTS

Marks a file to ensure the file is included only once in the output.

<CH ECK_FOR _INCLUSION> (file-label)

file-label
Specifies a string that uniquely identifies this file. This string is not the
name of the file, rather, it simply sets an internal switch to indicate that
the following input should be read only once. The string can contain up
to 15 alphanumeric characters or underscores and must not begin with an
underscore character.

related tags None.

restrictions This tag is conditional, and has no relationship to the structure or content of
the document.

required <ENDCHECK_FQR_INCLUSION>

terminator

DESCRIPTION The <CHECK_FQR_INCLUSION> tag checks if the file containing the tag (the
current input file) has been previously read. If it has, the rest of the file is
ignored until the <ENDCHECK_FQR_INCLUSION> tag is found. If this is the
first time that the file is being read, processing continues.

9-20

An input file that contains this tag will not be processed from the point
that the text processor finds this tag until the terminating tag is found. This
can be useful for specifying the name of a definitions file that has already
been processed for an entire book and does not need to be processed for an
individual element of the book.

You must use the <ENDCHECK_FOR_INCLUSION> tag at the bottom of a
file in which the <CHECK_FOR_INCLUSION> appears. If you do not include
the terminating tag, you might not get output after the <CHECK_FOR_
INCLUSION> tag, or you may receive a fatal error from the tag translator
when it does not find the specified label.

The position of the <CHECK-FOR-INCLUSION> tag within a file is important.
Make sure to put the tag at the top of your file, to avoid partial processing
of the file. Partial processing could result in illogical nesting of tags or other
error conditions.

<CHECK_FQR_INCLUSION>

EXAMPLE
<CHECK_FOR_INCLUSION>(MY_DEFS)

<ENDCHECK_FOR_INCLUSION>

This example shows how the <CHECK_FQR_INCLUSION> tag can be used to
exclude a file (in this example, the file "MY_DEFS") from processing during
a bookbuild. This can be useful if the file specified contains tag definitions
that are defined within each file as well as in the local definition file. To
force the tag translator to process the definitions twice would be a waste of
processing time. Instead, it is better to identify the definitions file with this
tag and exclude the file from processing.

9-21

<CO>

<CO>
Labels a callout in an example. The <CO> tag is identical to the
<CALLOUT> tag.

FORMAT <CO> [(number)]

ARGUMENTS number
Specifies the number to be used as the callout.

related tags • <CALLOUT>

• <CALLOUTS>

• <LIST> (CALLOUT)

restrictions None.

required None.

terminator

DESCRIPTION The <CO> tag identifies a number in an example and is used within the
<CALLOUTS> and <ENDCALLOUTS> tags.

EXAMPLES See the examples in the discussion of the <CALLOUTS> tag.

9-22

<CODE_EXAMPLE>

<CODE_EXAMPLE>

FORMAT

ARGUMENTS

Begins an example of code. Code consists of words or lines of
instructions written in a programming language or a command language.

<CODE_EXAMPLE> (code)

or

Co [KEEP] < DE_EXAMPLE> [([WIDE[\ MAXIMUM]])]

code_example text

<ENDCODE_EXAMPLE>

code
Specifies a code fragment you want to insert into your text.

If this argument is not specified, the terminator <ENDCODE_EXAMPLE> is
required.

KEEP
Specifies that the example is not to be broken across pages, that is, if the
example does not fit on the current page, it will be placed on the next page.
If the example itself does not fit on a single page of output, it will be broken
anyway.

WIDE
Specifies that the width of the example exceeds the document's default width
for text. Depending on the document type, this argument can be interpreted
as follows:

• If the document style contains a left margin area that is normally used for
headings, the example's width will span that area as well as the normal
text area.

• If the document uses a multicolumn format, the example suspends the
multicolumn output while the example is processed. The example will be
output and multicolumn output is then restored.

• If the document style provides a range of sizes and styles for examples,
this argument may be interpreted to mean that a specific size should be
used for the example.

9-23

<CODE_EXAMPLE>

related tags

restrictions

MAXIMUM
Can be used in conjunction with WIDE to indicate that the example may
require additional adjustment to fit within the bounds of the text page.
This argument must be used with discretion, and may not be suitable in all
document styles.

• <INTERACTIVE>

• <VALID_BREAK>

Indexing tags.(<X> and <Y> tags) are not permitted within code examples.

Tab characters cannot be used to format code examples. You must use spaces
rather than tabs.

Do not use text element tags within a code_example (for example, <P>,
<LIST> , or <NOTE> .)

required <ENDCODE_EXAMPLE> -Required if the code example is not passed as an
terminator argument.

DESCRIPTION The code that is begun with a <CODE-EXAMPLE> tag is distinguished
typographically in the output. The size of the example, whether it will be
indented, and how much it will be indented from the current left margin of
text is controlled by the document design.

9-24

There are two types of code examples. The first is a short fragment that
you want run in with the surrounding text. The second is one or more lines
that you want broken out of the text that surrounds it (whether or not it is
a "formal" example with its own number, caption, and entry in the table of
contents).

In the first instance, where you want the example run in with the surrounding
text, you pass the code as an argument to the <CODE_EXAMPLE> tag. In this
instance, you do not need a terminating tag.

In the second instance, you should enter the code between the
<CODE_EXAMPLE> and <ENDCODE_EXAMPLE> tags. In this context, the

character spaces and blank lines you enter to format the code will be retained.
Also, within this context you can use the <ELLIPSIS> tag to achieve a vertical
ellipsis showing that you have omitted some lines of code. If your code
example is longer than a few lines, use the <VALID_BREAK> tag to indicate
the acceptable points for a page break.

<CODE_EXAMPLE>

EXAMPLES

D <P>The <CODE_EXAMPLE>(WHILE INLOOP) statement causes the
following block to be repeated until the <VARIABLE>(INLOOP) variable
is set to FALSE.

This example illustrates the case of a short code example that is run in with
the surrounding text. (One other related tag is also used.) The example may
produce the following output:

The WHILE INLOOP statement causes the following block to be repeated until
the INLOOP variable is set to FALSE.

<P>The call frame is built on the stack by the following four instructions:
<CODE_EXAMPLE>

PUSHAB a-sRVEXIT
PUSHL FP
PUSHL AP
CLRQ -(SP)

<ENDCODE_EXAMPLE>

This example illustrates the use of the <CODE-EXAMPLE> tag with a longer
example that is broken out of the surrounding text. This example may
produce the following output:

The call frame is built on the stack by the following four instructions:

PUSHAB
PUSHL
PUSHL
CLRQ

a-sRVEXIT
FP
AP
-(SP)

<P>The instruction sequence listed here (patterned after code in
module PROCSTRT) shows this second technique.
<CODE_EXAMPLE>
PUSHL executive-mode-PSL
BSBB DORE I
<ELLIPSIS>
PUSHL user-mode-PSL
BSBB DORE I
<ELLIPSIS>
DORE!: REI
<ENDCODE_EXAMPLE>

This example shows a longer code example that uses the <ELLIPSIS> tag as
well. This example may produce the following output:

The instruction sequence listed here (patterned after code in module
PROCSTRT) shows this second technique.

PUSHL
BSBB

PUSHL
BSBB

DORE!:

executive-mode-PSL
DORE I

user-mode-PSL
DORE I

REI

9-25

<COMMENT>

<COMMENT>

FORMAT

Marks a portion of your SDML input file that you do not want to appear
in your output. Text marked by a <COMMENT> tag is ignored by the tag
translator during processing.

<COMMENT> (comment-text)
or

<COMMENT>
comment-text

<ENDCOMMENT>

ARGUMENTS text
Specifies the text you do not want to appear in your output.

related tags None.

restrictions You cannot nest <COMMENT> and <ENDCOMMENT> tags.

required <ENDCOMMENT> - Required if the text is not passed as an argument.

terminator

DESCRIPTION Comments can provide useful reminders' for your own use or use by writers
who may modify your SDML file in the future. Comments can also be used
to exclude portions of text from the output file, but that you might wish to
save for later inclusion. The text remains in the SDML file, but does not
appear in the output.

9-26

<COMMENT>

EXAMPLE
<CODE_EXAMPLE>

; SECONDARY POOL COMMAND BUFFER BLOCKS

.=O
000000 C.CLK:
000002 C.CTCB:
000004 C.CUCB:
000006 C.CCT:
000010 C.CSTS:
<COMMENT>
000012 C.CMCD:
000012 C.CSO:
<ENDCOMMENT>
000014 C.CTR:
000015 C.BLK:
000016 C.CTXT:
<ENDCODE_EXAMPLE>

.BLKW 1 ;LINK WORD

.BLKW 1 ;TCB ADDRESS OF TASK TO RECEIVE COMMAND

.BLKW 1 ;UCB ADDRESS IF RESPONSIBLE TERMINAL

.BLKW 1 ;CHARACTER COUNT, EXCLUDING TRAILING CR

.BLKW 1 ;STATUS MASK

;SYSTEM MESSAGE CODE
.BLKW 1 ;STARTING OFFSET OF VALID COMMAND TEXT

.BLKW 1 TERMINATING CHARACTER

.BLKW 1 SIZE OF PACKET IN SEC POOL (32 WD.) BLOCKS
COMMAND TEXT, FOLLOWED BY CR

This example shows a code example with comments embedded in the code.
The tag translator ignores the text between the <COMMENT> tag and the
<ENDCOMMENT> tag. This example may produce the following output:

; SECONDARY POOL COMMAND BUFFER BLOCKS

.=0
000000 C.CLK: .BLKW 1 ;LINK WORD
000002 C.CTCB: .BLKW 1 ;TCB ADDRESS OF TASK TO RECEIVE COMMAND
000004 C.CUCB: .BLKW 1 ;UCB ADDRESS IF RESPONSIBLE TERMINAL
000006 C.CCT: .BLKW 1 ;CHARACTER COUNT, EXCLUDING TRAILING CR
000010 C.CSTS: .BLKW 1 ;STATUS MASK

000014 C.CTR: .BLKW 1 TERMINATING CHARACTER
000015 C.BLK: .BLKW 1 SIZE OF PACKET IN SEC POOL (32 WD.) BLOCKS
000016 C.CTXT: COMMAND TEXT, FOLLOWED BY CR

9-27

<CONDITION>

<CONDITION>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

9-28

Marks a section of an SDML file that is not processed unless one
of the arguments to the tag matches the argument in the related
<SELCONDITION> tag.

<CONDITION> (condition-name[\ condition-name}
[\condition-name})

condition-name
Specifies a condition name created with the <SELCONDITION> tag.

• <SELCONDITION>

<CONDITION> tags cannot be nested. There must be a strict correspondence
between <CONDITION> and <ENDCONDITION> tags.

In monospaced examples, <CONDITION> and <ENDCONDITION> tags cannot
occupy the same line as text for the example.

<ENDCONDITION> - Required if the text is not passed as an argument.

The <CONDITION> tag indicates that the following section of text should
be processed only upon the condition that one of the tag's arguments
matches the argument in the related <SELCONDITION> tag. If the two
tags' arguments are identical, the marked text is processed and included in
the output file. If the arguments differ, the text is excluded from processing.
The <ENDCONDITION> tag marks the end of the conditional text.

This tag can be very useful if you must produce two or more documents
that differ in minor ways but contain much of the same text. It is efficient to
maintain one SDML file and identify the portions of text that are unique to
each document.

Before processing the SDML file, you can specify the condition-name for the
desired document in the <SELCONDITION> tag or in the /CONDITION
qualifier in the DOCUMENT command line. When the tag translator
processes the file, it includes all portions of text tagged with that condition­
name argument and ignores all portions of text tagged with any other
condition name. To obtain another version of the document, change the
condition name in the argument to the <SELCONDITION> tag, and reprocess
the file.

When you supply more than one condition-name argument to the
<CONDITION> tag, only one of the condition names need be present for

the conditional text to be processed.

This is shown in the first example.

<CONDITION>

EXAMPLES
ii <CONDITION>(Christmas)

<P>Christmas, by convention, is celebrated on December 25th ...
<ENDCONDITION>

<CONDITION>(Chanukah)
<P>Chanukah is called the Festival of Lights
<ENDCONDITION>

<CONDITION>(Wash_Bday)
<P>Washington's Birthday is on February 22nd .
<ENDCONDITION>

<CONDITION>(Christmas\Chanukah)
<HEAD1>(Religious Holidays)
<P>This paragragh contains general information about several religious
holidays ...
<ENDCONDITION>

~ <SET_CONDITION>(VMS)

When the

This example shows how a file could be organized if you were writing about
holidays in general, and Christmas, Chanukah, and Washington's Birthday
in particular. Any of three different condition states could be set at the top
with the tag <SELCONDITION> (Christmas), <SELCONDITION> (Chanukah), or
<SELCONDITION> (Wash_Bday). The example contains four paragraphs, with

each paragraph conditionalized differently.

If the file is processed with <SELCONDITION> (Christmas), the information
on Christmas and religious holidays is processed. If the file is processed
with <SELCONDITION> (Chanukah), the information on Chanukah
and religious holidays is processed. If the file is processed with
<SELCONDITION> (Wash_Bday), the information on Washington's birthday

is processed.

The function of the <SELCONDITION> tag can be obtained by using the
/CONDITION qualifier on the DOCUMENT command line instead.

<CONDITION>(VMS)VAX/VMS<ENDCONDITION>
<CONDITION>(RSX)RSX11M/RSX11M-PLUS<ENDCONDITION>
command language interpreter translates the logical name

This example shows how one of two clauses can be omitted from processing
based on the condition name specified in the <SELCONDITION> tag. The
section of text that is identified with <CONDITION> (VMS) would be processed
and placed in the output file, whereas the other text would be omitted. This
example would have the following output:

When the VAX/VMS command language interpreter translates the logical
name ...

9-29

<CONDITION>

~ <SET_CONDITION>(RSX)
<P>When RSX .

<CONDITION>(VMS\RSX)
<P>When the operating system .

<ENDCONDITION>
<CONDITION>(RSTS)
<P>When RSTS .

<ENDCOND IT ION>

9-30

This example shows how text that is applicable to the two condition names
"VMS" and "RSX" can be differentiated from text that is applicable to the
condition-name "RSTS." By supplying both the VMS and RSX arguments to
the first <CONDITION> tag, the writer ensures that the text will be included
in the output if either the VMS or RSX condition-name is set. (Other text in
the same SDML file might be conditional for only one of these condition­
names.)

<CONTENTS_FILE>

<CONTENTS_FILE>

Specifies that the table of contents output file for a document should be
included when the document is processed.

FORMAT <CONTENTS_FILE> [(file-spec)]

ARGUMENTS file-spec
If you place the <CONTENT5-FILE> tag in an SDML file that will be included
in another file later, you must specify the exact file name of the contents as
the <CONTENTS_FILE> tag's argument.

restrictions <CONTENTS_FILE> is valid only within the context of front matter or within
a profile of a book.

related tags • <PROFILE>

required None.

terminator

DESCRI PTIQN The <CONTENTS_FILE> tag specifies the position in a source file where a
table of contents output file should be included. This tag does not produce
a table of contents, but simply indicates placement of the contents file. A
contents file is produced when the qualifier /CONTENTS is specified on the
DOCUMENT command line.

EXAMPLE

The profile tags <CONTENTS_FILE> and <INDEX_FILE> can be placed in
either the profile of a book or in a source file. If you are creating a book (with
a profile to be processed through a bookbuild), place these tags in the profile
to be sure of correct placement in the output.

A contents file always receives the filetype .DVI _device, where device is
the type of output device you specified on the command line. For more
information on contents generation, see Chapter 7.

To create a table of contents from an individual file that contains a
<CONTENTS_FILE> tag, specify the /CONTENTS qualifier on the command

line.

To see the result of the <CONTENTS_FILE> tag, refer to the table of contents
in this manual. The <CONTENTS_FILE> tag was placed in the profile file
before the preface file.

9-31

<COPYRIGHT_DATE>

<COPYRIGHT_DATE>

Inserts a copyright date line on the copyright page along with other
system-specific copyright information.

FORMAT <COPYRIGHT_DATE> (date{\ owner})

ARGUMENTS date
Specifies official printing date information for the book.

owner
Specifies the owner of the copyright. Local conventions might preclude use
of this argument.

restrictions The <COPYRIGHLDATE> tag is valid only within the context of a
<COPYRIGHLPAGE> <ENDCOPYRIGHLPAGE> .

required None.

terminator

DESCRIPTION The <COPYRIGHLDATE> inserts a copyright date line on the copyright page
along with other system-specific copyright information.

EXAMPLE

<Copyright_page>
<Copyright_date>(1987\Tomato Magnates, Inc.)
<Endcopyright_page>

This example produces a full page of output with the following text:

Copyright ©1987 Tomato Magnates, Inc.

9-32

<COPYRIGHT_PAGE>

<COPYRIGHT_PAGE>

Begins a copyright page and enables copyright page tags.

FORMAT <COPYRIGHT_PAGE>

ARGUMENTS None.

restrictions This tag can only be used in the context of a copyright page and in the front
matter of a book.

required <ENDCOPYRIGHLPAGE>

terminator

related tags • <FRONLMATTER>

• <PRINLDATE>

• <COPYRIGHLDATE>

DESCRIPTION The following copyright page tags that are enabled by <COPYRIGHLPAGE>:

EXAMPLE
<FRONT_MATTER>(front)
<COPYRIGHT_PAGE>
<PRINT_DATE>(March 1987)
<COPYRIGHT_DATE>(1987)
<ENDCOPYRIGHT_PAGE>
<ENDFRONT_MATTER>

• <PRINLDATE>

• <COPYRIGHLDATE>

This example shows the order in which the copyright page tags are
used. Notice that you must enable the copyright page tags within the
<FRONLMATTER> tag. The output of this example is a separate copyright

page, containing the print and copyright dates, in the front matter of the
book.

To see an example of all the front matter tags in their correct order, refer to
the example in the <FRONLMATTER> tag.

9-33

<CP>

<CP>

FORMAT

related tags

ARGUMENTS

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Marks the continuation of a paragraph that has been interrupted by another
text element.

<CP>

• <P>

None.

Invalid in math.

None.

The <P> and <CP> tags may have no visible difference in effect. In a book
design in which all new paragraphs begin flush left, the formatted results
achieved by a <CP> tag and by a <P> tag are identical. However, in a
book design in which paragraphs are indented, the continued paragraph may
still begin flush left.

In some instances, the <CP> tag will keep text that follows a list or
monspaced example from being "widowed" at the top of the following
page. In other words, a continued paragraph is more closely attached to the
text element it follows.

<P>Each time you log in, the system automatically executes
two types of login command procedures:
<LIST>(UNNUMBERED)
<LE>A system login command procedure
<LE>Your personal login command procedure
<END LIST>
<CP>These login procedures are described in the following sections.

9-34

This example may produce the following output using a book design in which
paragraphs are indented:

Each time you log in, the system automatically executes two types of
login command procedures:

• A system login command procedure

• Your personal login command procedure

These login procedures are described in the following sections.

<CPAREN>

<CPAREN>

Supplies an unmatched closing parenthesis in an argument to a tag.

FORMAT <CPAREN>

ARGUMENTS None.

related tags • The following tags label other characters that must be tagged when they
occur in an argument to a global tag:

<AMPERSAND>
<BACKSLASH>
<OPAREN>
<VBAR>

restrictions None.

required None.

terminator

DESCRI PTIQN The <CPAREN> tag can be used anywhere to insert a closed parenthesis
character into text. However, it is only beneficial (in terms of keystrokes and
control of the output) as an unmatched closing parenthesis in an argument
passed to a tag.

EXAMPLE

An unmatched parenthesis in an argument can cause errors when processed
because the parentheses are used to determine the beginning and ending of
an argument list. The <CPAREN> tag inserts the closed parenthesis character
but is not evaluated as a closed parenthesis.

<SUBHEAD1>(Using a Closed Parenthesis
<PARENDCHAR>(<CPAREN>) in an Argument to a Tag)

This example may produce the following output:

Using a Closed Parenthesis ()) in an Argument to a Tag

9-35

<DATE>

<DATE>

FORMAT

Produces the current system date or time, or the user-specified date and
time.

<DATE> [(FULL)]
· date-text

ARGUMENTS FULL

related tags

restrictions

required
terminator

DESCRIPTION

9-36

Produces a full VMS date and time string in the format "dd-mmm-yyyy
hh:mm:ss.hh." If no argument is specified, only the date may be produced
in the format "Month day, year." (The precise format may be modified in
different doctypes.)

date-text
Text that you provide as the current date. If no argument is specified, only
the date may be produced in the format "Month day, year." (The precise
format may be modified in different doctypes.)

None.

Invalid in math.

None.

The <DATE> produces a date that is based either on the time at which the
tag translator begins execution, or the time as specified by the user. The
<DATE> tag produces a date in one of three forms as shown in the following

table:

<DATE>

<DATE> (FULL)

<DATE> (February 26th, 1988 A.O.)

February 26, 1988

26-FEB-1988 15:46:00.29

February 26th, 1988 A.O.

Note that even if the <DATE> (FULL) tag is specified multiple times in a source
file, it will always produce the same value and so cannot be used for timing
information.

<DATE>

EXAMPLES
D <DATE>

Example 1 may produce the following output: June 29, 1988

~ <DATE>(FULL)

Example 2 produces the following output: 29-JUN-1988 16:40:33.52

9-37

< DEFI NE_BOOK_NAME>

<DEFINE_BOOK_NAME>

Defines the title of a book and associates a user-defined symbol-name
with that title for later reference.

FORMAT <DEFINE_BOOK_NAME> (symbol-name\ title)

ARGUMENTS symbol-name

related tags

Specifies the symbol that is associated with the title of the book. Symbol­
names must not exceed 31 characters, and must only contain alphabetic
letters, numbers, or underscores in them. Do not begin a symbol-name with
an underscore.

title
Specifies the exact text of the book's title.

• <DEFINE-SYMBOL>

• <REFERENCE>

restrictions None.

required None.

terminator

DESCRIPTION The <DEFINE_BOOK_NAME> tag specifies a book's title and adds an
associated user-defined symbol-name to the cross-reference file. When

9-38

you subsequently reference this title with the <REFERENCE> tag, supplying
the same symbol-name as an argument to <REFERENCE> , the book title is
retrieved from the cross-reference file and is substituted for the reference.

Depending on the document type, the title may be output with emphasized
text (for example, italicized).

Note that the symbol-name argument is the first argument to the tag. In text
element tags, the symbol-name is always the second argument. Only the
<DEFINE_BOOK_NAME> and <DEFINE_SYMBOL> tags take a symbol-name as

a first argument. Placing the symbol-name as the first argument to these tags
makes it easy to keep track of your symbol-names when you list them in a
local definitions file. All of the symbol-names will be aligned and easy to find
in the file.

<DEFINE_BOOK_NAME>

EXAMPLE
<DEFINE_BOOK_NAME>(games_book\Book of Games, Volume 2)

This example illustrates the use of the <DEFINE_BOOK_NAME> tag for
defining the symbol-name of the book "Book of Games" as games_book. The
tag <REFERENCE> (games_book) can be used anywhere in the document to refer
to this book name.

9-39

<DEFINE_SVMBOL>

<DEFINE_SVMBOL>

FORMAT

Associates a string of text with a user-defined symbol, so that the text
can be referenced via this symbol throughout the document.

<DEFINE_SVMBOL> (symbol-name\ text-string)

ARGUMENTS symbol-name

related tags

Specifies the name assigned to the symbol. All symbol-names must not
exceed 31 characters, and must only contain alphabetic letters, numbers, or
underscores in them. Do not begin a symbol-name with an underscore.

text-string
Specifies the text that will be referenced via the symbol-name. Throughout
the document, you can specify the symbol-name in the <REFERENCE> tag,
and this text-string will be substituted for the symbol-name during processing.

• <DEFINE_BOOK_NAME>

• <DELAYED>

• <REFERENCE>

restrictions None.

required None.

terminator

DESCRIPTION The <DEFINE_SYMBOL> tag specifies a string of text and associates the text
with a user-defined symbol-name. It adds the symbol-name and the text to
the symbol table. When you subsequently reference this text by using the

9-40

<REFERENCE> tag and specifying the same symbol-name as its argument, the
current value of the symbol-name is retrieved from the table and the text is
substituted for the reference.

For more information on the use of the symbol table, see Chapter 6.

Note: The symbol-name argument to the <DEFINE_SYMBOL> tag must be on the
same line as the tag; spaces and carriage returns are significant and are
interpreted as part of the symbol-name.

Only the <DEFINE-SYMBOL> and <DEFINE_BOOK_NAME> tags use a symbol­
name as a first argument. In text element tags, the symbol-name is often the
second argument. Placing the symbol-name as the first argument to these
tags makes it ~asy to keep track of your symbol-names when you list them in
a local definitions file. All of the symbol-names will be aligned and easy to
find in the file.

<DEFINE_SVMBOL>

EXAMPLE
<define_symbol>(set_logical\RTL routine Set Logical Name, LIB$SET_LOGICAL,)

<P>The <REFERENCE>(set_logical) requests the calling process's CLI to
define or redefine a supervisor-mode logical name.

This example shows how a phrase, "RTL routine Set Logical Name, LIB$SET_
LOGICAL," can be defined as a symbol-name, "seLJogical," and then
referenced in text by that symbol-name. By referencing the symbol-name
in the places you want the phrase to occur, you can save keystrokes and
ensure that you never have a typing error in that phrase.

The example produces the following output:

The RTL routine Set Logical Name, LIB$SET_LQGICAL, requests the calling
process's CLI to define or redefine a supervisor-mode logical name.

9-41

<DEFINITION _LIST>

<DEFINITION_LIST>

Begins a definition list.

FORMAT <DEFINITION_LIST>

ARGUMENTS None.

related tags • <DEFINITION_LISLHEAD>

• < DEFLIST_ITEM >

• <DEFLISLDEF>

restrictions None.

required <ENDDEFINITION_LIST>

terminator

DESCRIPTION A definition list contains paired entries, consisting of the item being defined,
introduced by the <DEFLISLITEM> tag; and the item's definition, introduced
by the <DEFLISLDEF> tag. The definition list differs from a list created
with the <LIST> tag in that the definition list items are not numbered or
called-out in any way.

EXAMPLE

9-42

The definition list can be given a heading with the <DEFINITION_LISLHEAD>
tag. Each list can contain one or more items, tagged with <DEFLISLITEM> ,
and each item can have a definition, tagged with <DEFLISLDEF>.

<definition_list>
<deflist_item>(Hargreaves, James)
<deflist_def>
d. 1778. English inventor.
<deflist_item>(Harris, Joel Chandler)
<deflist_def>
1848-1908. American author.
<deflist_item>(Harvey, William)
<deflist_def>
1578-1657. English physician and anatomist.
<deflist_item>(Hauptmann, Gerhard)
<deflist_def>
1862-1946. German author.
<enddefinition_list>

< DEFINITIQN_LIST>

This example may produce the following output:

llargreaves,James
d. 1778. English inventor.

llarris, Joel Chandler
1848-1908. American author.

llarvey, William
1578-1657. English physician and anatomist.

llauptmann, Gerhard
1862-1946. German author.

9-43

<DEFINITION_LIST_HEAD>

< DEFINITIQN_LIST_HEAD>

Supplies the heading to precede a definition list. Output formatting is
controlled by the document-type.

FORMAT <DEFINITION_LIST_HEAD> (heading-text)

ARGUMENTS heading-text
Specifies the text for a heading to precede the definition list.

related tags • <DEFINITION _LIST>

• <DEFLISLITEM>

• <DEFLISLDEF>

restrictions Can be used only in the context of a <DEFINITION_usr> tag.

required None.

terminator

DESCRIPTION The <DEFINITION_LISLHEAD> tag adds a heading to a list of defined items
specified by the <DEFINITION_LIST> tag.

EXAMPLE
<definition_list>
<definition_list_head>(Worldwide Associates)
<deflist_item>(IAAF)
<deflist_def >
International Amateur Athletic Federation.
<deflist_item>(IAEA)
<deflist_def>
International Atomic Energy Agency.
<enddefinition_list>

This example might have the following output, depending on the document
type specified:

WORLDWIDE IAAF
ASSOC IA TES International Amateur Athletic Federation.

IAEA
International Atomic Energy Agency.

9-44

< DEFLIST_DEF>

<DEFLIST_DEF>

Begins the text that defines an item in a definition list.

FORMAT <DEFLIST_DEF> text

ARGUMENTS text
Specifies the text of the definition.

related tags • <DEFINITION _LIST>

• <DEFINITION _LISLHEADS>

• <DEFLISLITEM>

restrictions Can be used only in the context of a <DEFINITION_LIST> tag.

required None.

terminator

DESCRIPTION A definition list contains paired entries, consisting of the item being defined,
introduced by the <DEFLISLITEM> tag; and the item's definition, introduced
by the <DEFLISLDEF> tag.

EXAMPLE See the example in the discussion of the <DEFINITION_LIST> tag.

9-45

<DEFLIST_ITEM>

< DEFLIST_ITEM >
Marks an item to be defined in a definition list.

FORMAT < DEFLIST_ITEM > (item[\ item ...])

ARGUMENTS item
Specifies the item to be defined. Up to seven items can be stacked.

related tags • <DEFINITION _LIST>

• <DEFINITION_LISLHEADS>

• <DEFLISLDEF>

restrictions Can be used only in the context of a <DEFINITION _LIST> tag.

required <DEFLISLDEF>

terminator

DESCRIPTION A definition list contains paired entries, consisting of the item being defined,
introduced by the <DEFLISLITEM> tag; and the item's definition, introduced
by the <DEFLISLDEF> tag.

EXAMPLE
<definition_list>
<deflist_item>(Hargreaves, James\d. 1778.)
<deflist_def>English inventor.
<deflist_item>(Harris, Joel Chandler\Born 1848.\Died 1908.)
<deflist_def>American author.
<enddefinition_list>

9-46

This example may have the following output:

Hargreaves, James
d. 1778.
English inventor.

Harris, Joel Chandler
Born 1848.
Died 1908.
American author.

<DELAYED>

<DELAYED>

FORMAT

Allows you to specify text that contains tags in an argument to another
tag. Execution of tags is delayed until the text is output.

<DELA YEO> (delayed-text)
or

<DELAYED>
delayed-text

<ENDDELAYED>

ARGUMENTS delayed-text

related tags

restrictions

required
terminator

DESCRIPTION

The text containing tags whose execution is delayed until the text is output.

• <DEFINE_BOOK_NAME>

• <DEFINE_SYMBOL>

The <DELAYED> tag may not be nested within itself.

<ENDDELAYED> -Required if the delayed text is not specified as an
argument.

You can use a tag within an argument to another tag. This is called nesting
a tag in an outer tag's argument. Normally, the tag translator evaluates the
nested tag first, then evaluates the outer tag.

When the outer tag is the <DEFINE_SYMBOL> tag, a nested tag in the text
argument will be evaluated before the <DEFINE_SYMBOL> tag is evaluated.
Often, this leads to an undesirable result. You would like the text argument
of the· <DEFINE_SYMBOL> tag to be preserved as it is stated until the text is
recalled at another place by the <REFERENCE> tag.

The <DELAYED> tag can be used to surround the text argument of a
<DEFINE_SYMBOL> tag. The effect of the <DELAYED> tag is to delay the

evaluation of the tags within it until those tags are about to be output where
the symbol has been referenced.

9-47

<DELAYED>

EXAMPLE
<define_symbol>(TEMP_CHART_EX\<delayed>
<example>(Temperature Chart)
<code_ example>

Centigrade 0 Fahrenheit 32
Centigrade 100 Fahrenheit 212

<endcode_example>
<end example>
<enddelayed>)

9-48

The symbol TEMP_CHART_EX is associated with the text string that was
enclosed by the <DELAYED> and <ENDDELAYED> tags. None of the
enclosed tags will have been evaluated.

Subsequently, the symbol may be referenced by a <REFERENCE> tag as in
the following code fragment.

<REFERENCE>(temp_chart_ex)

The previous code fragment may have the following output.

Example x-x Temperature Chart

Centigrade 0
Centigrade 100

Fahrenheit 32
Fahrenheit 212

<DOCTYPE>

<DOCTYPE>

Specifies the document type for your file. This tag is for informational
purposes only.

FORMAT <DOCTYPE> (document-type)

ARGUMENTS document-type
Specifies the design you want to use for your file.

restrictions None.

required None.

terminator

DESCRIPTION The <DOCTYPE> tag specifies the document type for your file. The
designated doctype determines how the file's formatted output will appear.
Each doctype follows a book design as determined by the writer and editor.

You do not have to include the <DOCTYPE> tag in your file in order to
process your file. You can include this tag for information purposes. You
must specify the doctype in the DOCUMENT command line. Doing so allows
you to process your file using different doctypes to determine which one suits
your needs without having to modify the file.

Table 9-1 summarizes the supported doctypes and the DOCUMENT
command keyword names to be specified in processing these doctypes.

Table 9-1 Supported Document Types

Document Type
Keyword

ARTICLE

Usage

Articles

Letters or memos

Users' manuals

Military specifications

Overhead slides for transparencies

General-purpose documents

LETTER

MANUAL

MILSPEC

OVERHEADS

REPORT

SOFTWARE User manuals containing software-specific information

In addition, a number of the document types listed in Table 9-1 have a choice
of designs. The design selected is specified during document processing by
appending the design name to the document-type keyword. Table 9-2
summarizes the key characteristics of the doctypes and their designs.

9-49

<DOCTYPE>

Table 9-2 Summary of Alternate Designs for Doctypes

Keywords Size Headings1 Characteristics

ARTICLE 8~ x 11 u Two columns for text

LETTER 8~ x 11 u Uses full page width

MANUAL.GUIDE 7x9 N Chapter-oriented; headings unruled

MANUAL.PRIMER 7x9 u Chapter-oriented with sequential page numbering;
headings unruled

MANUAL. REFERENCE 8~ x 11 N Chapter-oriented; headings unruled

MILSPEC 8~ x 11 N Chapter-oriented with sequential page numbering;
two-line running headings unruled

OVERHEADS 8~ x 11

OVERHEADS.35MM 6~ x 5~
REPORT 8~ x 11 N Uses the full page width for text; headings are not

ruled

REPORT. TWOCOL 8~ x 11 N Two columns for text

SOFTWARE.BROCHURE 7x9 u Headings set in left margin, ruled

SOFTWARE.GUIDE 7x9 N Headings set in left margin, ruled

SOFTWARE_HANDBOOK 7x9 N Headings set in left margin, ruled

SOFTWARE.POCKET_ 5~ x 7 u Headings optionally numbered or unnumbered
REFERENCE

SOFTWARE.REFERENCE 8~ x 11 N Headings set in left margin, ruled

SOFTWARE.SPECIFICATION 8~ x 11 N Headings unruled; uses full page width

1 N=numbered headings, U=unnumbered headings

EXAMPLE
<DOCTYPE>(report)

9-50

Tags unique to specific document types are summarized in the VAX
DOCUMENT User Manual, Volume 2.

This example shows how a book's doctype can be specified as "report."

Refer to the document VAX DOCUMENT Design Samples for examples of the
output of the various doctypes.

<DOUBLE_QUOTE>

<DOUBLE_QUOTE>

Supplies a double quotation mark as it appears on the screen.

FORMAT <DOUBLE_QUOTE>

ARGUMENTS None.

related tags • <SINGLE_QUOTE>

• <QUOTE>

restrictions None.

required None.

terminator

D ESC RI PTI Q N Typesetters distinguish between opening quotation marks and closing
quotation marks, for example, "a quoted string." Your terminal, on the
other hand, has two possible characters you can use for quotation marks:
the double quote, (11

) (ASCII 34) and the single quote (') (ASCII 39). In
programming languages, a quoted string is usually delimited at each end with
the same character, either "a quoted string,'1 or 'a quoted Siring.'

If you use the terminal's double quotation mark in normal text in your SDML
file, you get the typesetter's closing quotation mark in the output. Thus, if
you enter "abc" in your SDML file, you will see "abc" in your printed output.
This is usually undesirable.

You have two choices:

• To cause your typeset output to show a double quotation mark as it is
shown on the terminal, use the <DOUBLE_QUOTE> tag. This is your
most likely choice for showing examples of user input or screen displays.

• To cause your typeset output to follow typesetting conventions by using
distinct opening and closing quotation marks, use the <QUOTE> (text)
tag. You would use this in citing a passage from another book.

Thus, there are very few occasions in which you press the double quote
character on your keyboard while editing an SDML file.

9-51

< DOUBLE_QUOTE>

EXAMPLES

il <P>You can cause the translation of a symbol by using a double
quotation mark (<DOUBLE_QUOTE>) directly in front of it.

This example shows the use of the <DOUBLE_QUOTE> tag. It may produce
the following output:

You can cause the translation of a symbol by using a double quotation mark
(") directly in front of it.

<P>You can cause the translation of a symbol by using a double
quotation mark (") directly in front of it.

This example shows what your output would be like without using the tag,
but just entering the character from the keyboard.

You can cause the translation of a symbol by using a double quotation mark
(") directly in front of it.

9-52

<ELEMENT>

<ELEMENT>

Identifies a file that contains an element of a book.

FORMAT <ELEMENT> (file-spec)

ARGUMENTS file-spec
Specifies a file. The file type must be supplied.

related tags • <PROFILE>

• <INCLUDES_FILE>

restrictions Must be used in the context of a profile.

required None.

terminator

DESCRIPTION A profile of a book is required in order to build (process) a book. A book's
profile contains an ordered list of the elements that comprise the book. In
the profile, you label each of these elements with an <ELEMENT> tag. Only
those files listed with <ELEMENT> tags are included in the book during the
bookbuild. They should be listed in the profile in the order in which they are
presented in the book.

EXAMPLE

A file specified as an element must begin with one of the following tags:

• <APPENDIX>

• <CHAPTER>

• <FRONT MATTER>

• <GLOSSARY>

• <PART>

For more information on creating a profile and bookbuilding, see Chapter 4.

Assume that a writer is writing a book that contains several chapters and that
one of the chapters is the file My_lntro_Chap.SDML. At the top of this file is
included the tag: <CHAPTER> (Introduction\intro_chap).

Along with the other <ELEMENT> tags for this book, the profile for this book
would then contain the following:

<ELEMENT> (My_lntro_Chap.SDML)

9-53

<ELLIPSIS>

<ELLIPSIS>

Supplies vertical ellipsis points to show omitted material in text and tables.

FORMAT <ELLIPSIS>

ARGUMENTS None.

related tags • <HELLIPSIS>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <ELLIPSIS> tag supplies vertical ellipsis points to show omitted material
in text and tables. The vertical ellipsis is positioned with respect to the current
left margin.

EXAMPLE
<P>The instruction sequence listed here (patterned after code in
module PROCSTRT) shows this second technique.
<CODE_EXAMPLE>
PUSHL executive-mode-PSL
BSBB DORE!
<ELLIPSIS>
PUSHL user-mode-PSL
BSBB DORE!
<ELLIPSIS>
DORE!: REI
<ENDCODE_EXAMPLE>

9-54

This example may produce the following output:

The instruction sequence listed here (patterned after code in module
PROCSTRT) shows this second technique.

PUSHL executive-mode-PSL
BSBB DORE!

PUSHL user-mode-PSL
BSBB DORE!

DORE!: REI

<EMPHASIS>

<EMPHASIS>

FORMAT

Marks a word or phrase for distinctive typographical treatment.

<EMPHASIS> (text

\BOLD
\ITALIC
\SMALLCAPS
\ SMALL_BOLDCAPS

)

ARGUMENTS TEXT

related tags

restrictions

required
terminator

DESCRIPTION

Specifies the text to be emphasized.

BOLD
Indicates that the text should be set in a boldface font, rather than the default
italic.

ITALIC
Indicates that the text should be set in the current italic font. This is the
default.

SMALLCAPS
Indicates that the text is to be set in small capital letters.

SMALL_BOLDCAPS
Indicates that the text is to be set in small capital letters.

• <QUOTE>

• <UNDERLINE>

None.

None.

The default form of emphasis is to set the text in an italic font. Use one of
the optional keyword arguments to change the emphasis to another font.

9-55

<EMPHASIS>

EXAMPLE
<P>An <EMPHASIS>(overuse) of the <TAG>(emphasis) tag
<EMPHASIS>(inevitably\bold) <EMPHASIS>(reduces\small_boldcaps) its
<EMPHASIS>(smallcaps)(effectiveness).

This example may produce the following output:

An overuse of the <EMPHASIS> tag inevitably REDUCES its EFFECTIVENESS.

9-56

<ENDCOPYRIGHT_PAGE>

< ENDCOPYRIGHT_PAGE>

FORMAT

ARGUMENTS

restrictions

required
terminator

DESCRIPTION

EXAMPLE
<FRONT_MATTER>(front)
<COPYRIGHT_PAGE>
<PRINT_DATE>(March 1987)
<COPYRIGHT_DATE>(1987)
<ENDCOPYRIGHT_PAGE>
<ENDFRONT_MATTER>

Terminates the copyright page and optionally provides text that may be
used on a document-type specific basis.

< ENDCOPYRIGHT_PAGE> [(identification)}

identification
Is a local convention for information to be supplied on the copyright page.

This tag can only be used in the context of a copyright page.

None.

The <ENDCOPYRIGHLPAGE> terminates the copyright page and optionally
provides text that may be used on a document-type specific basis.

This example shows the order in which the copyright page tags are
used. Notice that you must enable the copyright page tags within the
<FRONLMATTER> tag. The output of this example is a separate copyright

page in the front matter of the book, and the page contains the print and
copyright dates.

To see an example of all the front matter tags in their correct order, refer to
the example in the <FRONLMATTER> tag.

9-57

<ENDPART_PAGE>

<ENDPART_PAGE>

Terminates a part page and optionally specifies paging attributes for text
that follows.

FORMAT <ENDPART_PAGE> [(RENUMBER)]

ARGUMENTS RENUMBER
Specifies that the part page is to be numbered 1. If this argument is not
specified, page numbering continues following the part page with the next
odd-numbered page.

restrictions This tag must be used in the context of a part page.

required None.

terminator

DESCRIPTION The <ENDPARLPAGE> tag terminates a part page and optionally specifies
paging attributes for text that follows.

9-58

<ENDTITLE_PAGE>

< ENDTITLE_PAGE>

Terminates a title page and optionally specifies text to appear at the
bottom of the title page.

FORMAT <ENDTITLE_PAGE> (text)

ARGUMENTS text
Specifies a line to appear at the bottom of the title page.

restrictions The <ENDTITLEPAGE> tag is valid only within the context of a title page.

required None.

terminator

DESCRIPTION The <ENDTITLE_PAGE> tag terminates a title page and optionally specifies
text to appear at the bottom of the title page.

EXAMPLE Because the <ENDTITLLPAGE> tag only terminates the title page, refer to the
title page of this manual for an example of title page output.

9-59

<EXAMPLE>

<EXAMPLE>

FORMAT

ARGUMENTS

related tags

Labels the beginning of a formal example.

<EXAMPLE> (example-caption[\ symbol-name})

example-caption
Specifies the text of the caption to be associated with the example, if any.
The example caption and the associated example number will be written to
the table of contents for the document.

symbol-name
Specifies the symbolic identifier to be associated with the example. The
symbol identifier will be assigned a numeric value, which will be the current
example number. The symbol and its value are placed in the symbol table.

Symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores. Do not begin a symbol-name
with an underscore.

• <CODE_EXAMPLE>

• <EXAMPLE_ATTRIBUTES>

• <EXAMPLE_FILE>

• <EXAMPLE_SPACE>

• <INTERACTIVE>

• <VALID_BREAK>

restrictions Cannot contain <TABLE> , <FIGURE> , or <MATH> tags.

required <ENDEXAMPLE>

terminator

DESCRIPTION The <EXAMPLE> tag begins an example.

9-60

If the body of the example spans more than a single page of text, the example
caption is repeated on each page on which the example continues.

If the example is more than a page, page breaks are handled automatically
by the text processor. You can control the page breaking by using <PAGE>
tags to specify explicit page breaks, or <VALID_BREAK> tags to specify good
breaking points.

Note that the presence of the symbol-name argument and the example­
caption argument indicate that the example is a formal, numbered example.

EXAMPLE

<EXAMPLE>

When a floating figure or floating example precedes a multipage table (all
tables not marked with the KEEP keyword are multipage), a succession of
short pages may occur before the page on which the table begins. This is
because a multipage table forces any previous floating figures or examples to
be output before the table begins.

If this situation occurs, code the preceding floating figures or examples with
the KEEP keyword so that they will be kept with the text preceding them,
and so result in better-balanced pages.

<EXAMPLE>(VAXcluster Multi-file Summary\multi_file_exam)
<EXAMPLE_ATTRIBUTES>(WIDE)
<EXAMPLE_FILE>(monitor_multi_file_summary)
<END EXAMPLE>

This example illustrates a one-page example, which uses the WIDE argument
of the <EXAMPLE_ATTRIBUTE> tag. Assume that this example is the first
example in the fourth chapter.

The contents of the example are included using the <EXAMPLE_FILE> tag.
The file that is included must contain either a code example or interactive
example.

9-61

<EXAMPLE>

This example may produce the following output:

Example x-x VAXcluster Multi-file Summary

+-----+ VAX/VMS Monitor Utility
I AVE I TIME IN PROCESSOR MODES

MULTI-FILE SUMMARY

Node: MOE CURLEY LARRY
From: 15-APR-1984 18: 17 15-APR-1984 18: 17 15-APR-1984 18: 17 Row Row Row
To: 15-APR-1984 20: 17 15-APR-1984 20:17 15-APR-1984 20:17 Sum Average Minimum

Interrupt Stack 6.51 0.50 6.25 13.2 4.4 0.50
Kernel Mode 25. 73 0.42 12;43 38.5 12.8 0.42
Executive Mode 9.46 0.95 1. 81 12.2 4.0 0.95
Supervisor Mode 1. 97 0.00 0.16 2.1 0.7 0.00
User Mode 13. 24 5.33 56.14 74.7 24.9 5.33
Compatibility Mode 0.00 0.07 0.00 0.0 0.0 0.00
Idle Time 23.61 0.02 92.63 116.2 38. 7 0.02

+-----+ VAX/VMS Monitor Utility
I AVE I PAGE MANAGEMENT STATISTICS
+-----+ MULTI-FILE SUMMARY

Node: MOE CURLEY LARRY
From: 15-APR-1984 18: 17 15-APR-1984 18: 17 15-APR-1984 18:17 Row Row Row
To: 15-APR-1984 20: 17 15-APR-1984 20: 17 15-APR-1984 20:17 Sum Average Minimum

Page Fault Rate 36. 73 8.81 0.49 46.0 15.3 0.49
Page Read Rate 14. 28 4.71 0.00 19.0 6.3 0.00
Page Read I/0 Rate 1. 20 0.70 0.00 1.9 0.6 0.00
Page Write Rate 0.00 0.00 0.00 0.0 0.0 0.00
Page Write I/O Rate 0.00 0.00 0.00 0.0 0.0 0.00

Free List Fault Rate 8.60 1.40 0.24 10.2 3.4 0.24
Modified List Fault Rate 5.83 2.29 0.00 8.1 2.7 0.00
Demand Zero Fault Rate 12.96 1.68 0.24 14.8 4.9 0.24
Global Valid Fault Rate 8.10 2.69 0.00 10.8 3.6 0.00
Wrt In Progress Fault Rate 0.00 0.00 0.00 0.0 0.0 0.00
Syste~ Fault Rate 4.92 0.53 0.18 5.6 1.8 0.18

Free List Size 7586.30 8630 .14 9665.06 25881. 5 8627.1 7586.30
Modified List Size 87 .69 324 .07 32.12 443.8 147 .9 32.12

9-62

<EXAMPLE_ATTRIBUTES>

<EXAMPLE_ATTRIBUTES>

FORMAT

ARGUMENTS

Specifies attributes for the current example.

[
MULTIPAGE]

<EXAMPLE_ATTRIBUTES> (KEEP
FLOAT

[\WIDE])

MULTIPAGE
Specifies that the example has multiple elements, and that each element is
allowed to break at the start of a new page. This argument is required if the
example will be on more than one page. When an example is continued, the
example caption is automatically repeated at the beginning of each new page
of output.

KEEP
Specifies whether the example is to be kept with the text that immediately
precedes it.

FLOAT
Specifies whether the location of a one-page example is allowed to float.
FLOAT indicates that if there is not enough room on the current page for the
example, the text processor will fill the current page with the text from the
source file that follows the <EXAMPLE> tag sequence, and place the example
at the top of the next page of output.

Float is the default for an example that has a caption and does not specify
MUL TIP AGE or KEEP.

WIDE
Specifies that the width of the example exceeds the document's default width
for text. Depending on the doctype, this argument can be interpreted as
follows:

• If the document style contains a left margin area that is normally used for
headings, the example's width will span that area as well as the normal
text area.

• If the document uses a multicolumn format, the example suspends
multicolumn output while the example is processed. The example is
output and the multicolumn output is then restored.

• If the document style provides a range of sizes and styles for examples,
this argument can be interpreted to mean that a specific size should be
used for the example.

9-63

<E-XAMPLE_ATTRIBUTES>

related tags • <EXAMPLE>

• <EXAMPLE_FILE>

• <EXAMPLE_SPACE>

restrictions Must be enabled by <EXAMPLE> .

required None.

terminator

DESCRIPTION By default, if an example does not fit on the current output page, it is placed
at the top of the next page. The text that follows the example in the SDML
file is used to fill the current output page. Thus, the example's position in the
text may change. It is said to "float."

EXAMPLE

If the example will be longer than a page, use the MUL TIP AGE argument.
The presence of the MUL TIP AGE argument indicates that the example
requires more than one page of output. The example will not be· allowed to
float.

Formal examples that are coded with the default FLOAT argument may
appear at the bottom of a page preceding text that should normally be at the
top of a new page. Use <EXAMPLE_ATTRIBUTES> (KEEP) to force the formal
example to be output before the new page.

<EXAMPLE>(Command Procedure for Adding a User\adduserex)
<EXAMPLE_ATTRIBUTES>(WIDE\MULTIPAGE)
<CODE_EXAMPLE>(WIDE)
$!
$! ADDUSER.COM -- Adds a new user to the system authorization file
$!
$ USERDISK = "WRKD$:" ! Default disk for new users
$ UAF = "$AUTHORIZE"
$ ON CONTROLY THEN GOTO CLEANUP
$ ON WARNING THEN GOTO CLEANUP
$ OLDDIR = F$LOGICAL("SYS$DISK") + F$DIRECTORY0 I

$ PREVPRIV = F$SETPRV("SYSPRV")
$ IF .NOT. F$PRIVILEGE("SYSPRV") THEN GOTO NOPRIV
$ SET DEFAULT SYS$SYSTEM
$!
$! Request account information
$!
$ INQUIRE USERNAME "Username"
$ INQUIRE FULLNAME "Full name"
$ SET TERMINAL/NOECHO
$INQUIRE PASSWORD "Password[' 'Username']"
$ SET TERMINAL/ECHO
$ IF PASSWORD .EQS. "" THEN PASSWORD = USERNAME
<VALID_BREAK>
$GET_GRP:
$ INQUIRE GRP "UIC Group Number"
$ IF GRP .EQS. "" THEN GRP = "*"
$ WRITE SYS$0UTPUT ""
$WRITE SYS$0UTPUT "Determine the UIC from the following listing:"
$ WRITE SYS$0UTPUT ""

9-64

<EXAMPLE_ATTRIBUTES>

$ UAF SHOW ['GRP' ,*]/BRIEF
$ INQUIRE UIC
$ IF UIC .EQS. "" THEN GOTO GET_GRP
$IF F$LOCATE("[",UIC) .EQ. F$LENGTH(UIC) .AND. -

F$LOCATE("<",UIC) .EQ. F$LENGTH(UIC) THEN UIC = "[" + UIC + "]"

$ INQUIRE ACCOUNT "Account Name [VMS]"
$ IF ACCOUNT .EQS. "" THEN ACCOUNT = "VMS"
$INQUIRE PRIVS "Privileges [NONE]"
$ IF PRIVS .NES. "" THEN PRIVS = "/PRIV=(" + PRIVS + ")"

$ USERDIR = F$EXTRACT(0,9,USERNAME)
$ INQUIRE TMP "Login Directory [' 'USERDIR']"
$ IF TMP .NES. "" THEN USERDIR = TMP
$INQUIRE TMP "Login Device [' 'USERDISK']"
$ IF TMP .NES. "" THEN USERDISK = TMP
$ DQUOTA = 0
$ IF F$SEARCH(111 1 USERDISK 1 [O,O]QUOTA.SYS") .EQS. "" THEN GOTO NQO
$ DQUOTA = 1
<VALID_BREAK>

$!
$! Restore prior working environment
$!
$CLEANUP:
$ SET TERMINAL/ECHO
$ PREVPRIV = F$SETPRV(PREVPRIV)
$ SET DEFAULT 'OLDDIR'
$ EXIT
$!
$! In case proper privileges are not set
$!
s$NOPRIV:
$ WRITE SYS$0UTPUT "You need SETPRV or SYSPRV privilege to run this procedure"
$ GOTO CLEANUP
<ENDCODE_EXAMPLE>
<END EXAMPLE>

This example illustrates the use of the <MULTIPAGE> argument. Two points
especially should be noted:

• The <VALID_BREAK> tags in the <CODE_EXAMPLE> provide the text
formatter with information about suitable places to break pages.

• Because the example is wide, the WIDE argument was specified not only
for the <EXAMPLE> tag, but also for the <CODE_EXAMPLE> tag within
the example.

9-65

<EXAMPLE_ATTRIBUTES>

This example may produce the following output:

Example x-x Command Procedure for Adding a User

$
$ ADDUSER.COM -- Adds a new user to the system authorization file
$
$ USERDISK = 11 WRKD$: 11 ! Default disk for new users
$ UAF = "$AUTHORIZE"
$ ON CONTROLY THEN GOTO CLEANUP
$ ON WARNING THEN GOTO CLEANUP
$ OLDDIR = F$LOGICAL(11 SYS$DISK 11) + F$DIRECTORY() I

$ PREVPRIV = F$SETPRV(11 SYSPRV 11)

$ IF .NOT. F$PRIVILEGE(11 SYSPRV 11
) THEN GOTO NOPRIV

$ SET DEFAULT SYS$SYSTEM
$!
$! Request account information
$!
$ INQUIRE USERNAME "Username"
$ INQUIRE FULLNAME "Full name"
$ SET TERMINAL/NOECHO
$INQUIRE PASSWORD "Password [11 Username 1

]
11

$ SET TERMINAL/ECHO
$ IF PASSWORD .EQS. 1111 THEN PASSWORD = USERNAME
$GET_GRP:
$ INQUIRE GRP "UIC Group Number"
$ IF GRP .EQS. 1111 THEN GRP = "*"
$ WRITE SYS$0UTPUT
$WRITE SYS$0UTPUT "Determine the UIC from the following listing:"
$ WRITE SYS$0UTPUT 1111

$ UAF SHOW [1 GRP 1 ,*]/BRIEF
$ INQUIRE UIC
$ IF UIC . EQS. 1111 THEN GOTO GET_GRP
$IF F$LOCATE(11 [11 ,UIC) .EQ. F$LENGTH(UIC) .AND. -

F$LOCATE(11 <11 ,UIC) .EQ. F$LENGTH(UIC) THEN UIC 11 [11 + UIC + 11] 11

$INQUIRE ACCOUNT "Account Name [VMS]"
$ IF ACCOUNT .EQS. 1111 THEN ACCOUNT = "VMS"
$INQUIRE PRIVS "Privileges [NONE]"
$ IF PR IVS . NES. 1111 THEN PRIVS = II /PRIV= (II + PRIVS + II) II
$ USERDIR = F$EXTRACT(0,9,USERNAME)
$INQUIRE TMP "Login Directory [11 USERDIR 1

] 11

$ IF TMP .NES. 1111 THEN USERDIR = TMP
$ INQUIRE TMP "Login Device [1 1 USERDISK 1] 11

$ IF TMP .NES. 1111 THEN USERDISK = TMP
$ DQUOTA = 0
$IF F$SEARCH(1111 USERDISK 1 [0,0]QUOTA.SYS") .EQS. 1111 THEN GOTO NQO
$ DQUOTA = 1
$
$! Restore prior working environment
$!
$CLEANUP:
$ SET TERMINAL/ECHO
$ PREVPRIV = F$SETPRV(PREVPRIV)
$ SET DEFAULT 1 0LDDIR 1

$ EXIT
$!
$! In case proper privileges are not set
$!
$NOPRIV:
$ WRITE SYS$0UTPUT "You need SETPRV or SYSPRV privilege to run this procedure"
$ GOTO CLEANUP

9-66

<EXAMPLE_FILE>

<EXAMPLE_FILE>

Causes a separate file containing an example to be included in the source
file.

FORMAT <EXAMPLE_FILE> (file-spec)

ARGUMENTS file-spec
Specifies the file containing the example.

related tags • <EXAMPLE>

• <EXAMPLE_SPACE>

• <EXAMPLE_ATTRIBUTES>

restrictions Cannot be used in an argument to a tag.

required None.

terminator

DESCRIPTION The <EXAMPLE_FILE> tag causes the entire contents of the file to be included
at this point in the SDML file. (It is identical in action to the <INCLUDE>
tag.)

EXAMPLE

The included file should be an SDML file containing a complete coded
example, perhaps using <CODE_EXAMPLE> or <INTERACTIVE> tags. If the
<EXAMPLE> tag specifies the WIDE argument, the included file must specify

the WIDE argument on the appropriate tags. For more information on correct
coding of examples and example files, including how to specify valid breaks,
see Cha pt er 3.

The <EXAMPLE_FILE> tag may have a logical name for an argument. The
logical name can be defined by first entering an <INCLUDES_FILE> tag in the
profile. The information in that tag is used to make the proper logical name
assignment during processing.

See the example in the discussion of the <EXAMPLE> tag.

9-67

< EXAMPLE_SPACE>

<EXAMPLE_SPACE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

9-68

Leaves space for an example that will be pasted in during, final production.

<EXAMPLE_SPACE> ([value] [\text])
FULL_PAGE

value
Specifies the size of the space in picas, a scale used by typesetters. There are
approximately 6 picas to the inch. Thus, if the example is 4 inches high, you
should specify 24 picas. The value must not exceed page depth limitations for
the current document design. If you omit the value, a default value of 2 picas
is used.

FULL_PAGE
If you specify the keyword FULL _p AGE, a full blank page is reserved for the
example.

text
Specifies text to be printed in the center of the space. (For example, an art file
number, a file name that contains the example, or some other note.)

• <EXAMPLE>

• <EXAMPLE_FJLE>

• <EXAMPLE_ATTRIBUTES>

• <REFERENCE>

Can be used only in the context of an <EXAMPLE> tag. The value must not
exceed page-depth limitations.

None.

The <EXAMPLE-SPACE> tag causes vertical space to be left on the output
page for an example that will be pasted in by hand during final production.
Any text supplied as the second argument is printed in the center of the
space.

< EXAMPLE_SPACE>

EXAMPLE
<EXAMPLE>(Completing Form DD-214\annotated_dd214_exam)
<EXAMPLE_ATTRIBUTES>(wide)
<EXAMPLE_SPACE>(12\Photo-reduced copy of the end of DD-214 here.)
<END EXAMPLE>

This example may produce the following output:

Example x-x Completing Form DD-214

Photo-reduced copy of the end of DD-214 here.

9-69

<FCMD>

<FCMD>

FORMAT

ARGUMENTS

related tags

Specifies the keyword portion of a formatted command/parameter pair in
a format section.

< FCM D > (keyword-part[\ parameter-list})

keyword-part
Specifies the keyword portion of the keyword/parameter pair.

parameter-list
Lists the command parameters, if any.

Parameters specified in this argument will differ on output from arguments
specified using <FPARMS>. If you do specify <FCMD> with a null second
argument, it is recommended that you explicitly declare the absence of
parameters using <FPARMS> as follows:

<FCMD>(KEYWORD-PART) <FPARMS>()

If you do not specify a second argument, and if <FPARMS> is not specified,
SDML will issue a warning message that it has no explicit declaration of
parameters.

• <FORMAT>

• <FPARM>

• <FPARMS>

restrictions Enabled only within the context of the <FORMAT> tag.

required None.

terminator

DESCRIPTION The <FCMD> tag identifies a command or keyword within a format section.

9-70

You can specify the command or keyword's argument list as the second
argument to this tag. The <FCMD> tag should be used only in the context
of a format section. A format section is established by <FORMAT> and
<ENDFORMAT> .

If the parameter-list argument text does not fit on one line, the text formatter
chooses suitable line breaks based on the presence of spaces.

<FCMD>

EXAMPLES
iJ <FORMAT>

<FCMD>(exit) <FPARMS>()
<ENDFORMAT>

<FORMAT>

Specifies a single command keyword. <FPARMS> is explicitly specified as
null. The output from this code fragment is shown in Output Sample 1.

<FCMD>(append) <FPARMS>(input-file-spec output-file-spec)
<ENDFORMAT

This example specifies the command keyword and its parameters using both
the <FCMD> and <FPARMS> tags. The output that this example produces is
shown in Output Sample 2.

Notice the difference between Output Sample 2 and 3. In Sample 2, space is
left between the command-keyword and the parameter-list. In Sample 3, no
space is left. This formatting is produced by the syntax used in the <FCMD>
command.

<FORMAT>
<FCMD>(f$element\(element-number,delimiter,string))
<ENDFORMAT

<FORMAT>

This example specifies both the command-keyword and the parameter-list
arguments to the <FCMD> tag. The output that this example produces is
shown in Output Sample 3.

<FCMD>(set protection\[=code]<keyword>(/DEFAULT))
<ENDFORMAT

OUTPUT
SAMPLE 1

OUTPUT
SAMPLE 2

OUTPUT
SAMPLE 3

OUTPUT
SAMPLE 4

This example illustrates how to control the interpretation of keywords tagged
with the global <KEYWORD> tag when they are mixed in with the parameter
list of a format specification. The output that this example produces is shown
in Output Sample 4.

exit

append input-file-spec output-file-spec

f$element(element-number,delimiter,string)

set protection[=code]/DEFAUL T

9-71

<FIGURE>

<FIGURE>

Labels the beginning of a figure.

FORMAT <FIGURE> [(figure-caption[\ symbol-name})}

ARGUMENTS figure-caption

related tags

restrictions

required
terminator

DESCRIPTION

9-72

Specifies the text of the caption to be associated with the figure. The figure­
caption and the associated figure number will be written to the table of
contents for the document.

symbol-name
Specifies the symbolic identifier to be associated with the example. The
symbol-name is assigned a numeric value, which becomes the current figure
number. The symbol-name and its value are placed in the symbol table.

All symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores in them. Do not begin a symbol­
name with an. underscore.

• <FIGURE_ATTRIBUTES>

• <FIGURE_FILE>

• <FIGURE_SPACE>

• <LINE_ART>

• <REFERENGE>

• <ICON>

• <ICON_FILE>

None.

<ENDFIGURE>

The <FIGURE> tag is used to label formal and informal figures. A formal
figure is listed in the table of contents, has a unique number by which it is
cross-referenced from other parts of your book, and has a caption that labels
it. An informal figure does not appear in the table of contents and has no
caption or number identifier.

The presence of a figure-caption and symbol-name indicate that the figure is
a formal, numbered figure.

<FIGURE>

The figure-caption argument of this tag specifies the text of the caption
associated with the figure. The figure caption and the associated figure
number will be written to the table of contents for the document. If the
body of the figure spans more than a single page of text, the figure caption is
repeated on each page on which the figure continues.

The symbol-name specifies the symbolic identifier to be associated with the
figure. The symbol identifier will be assigned a numeric value, which will be
the current figure number. The symbol and its value are placed in the symbol
table.

A formal figure is sometimes long. If you think one of your figures
will be longer than a page, label it as a multipage figure in the
<FIGURE_ATTRIBUTES> tag.

If the figure does not fit on the current output page, the figure is placed at the
top of the next page. The text that follows the example in the SDML file is
used to fill the current output page. Thus, the figure's position in the text may
change or "float." If floating is undesirable you must use the KEEP argument
to fix the figure at its current position in the text. If it does not fit on the page,
the page is terminated, and the figure begins on a new page. Use of KEEP
ensures that the figure and its accompanying text remain in the same order.
However, KEEP should be used sparingly and only where examples are short
and frequent, in order to avoid excessively short pages.

When a floating figure or floating example precedes a multipage table (all
tables not marked with the KEEP keyword are multipage), a succession of
short pages may occur before the page on which the table begins. This is
because a multipage table forces any previous floating figures or examples to
be output before the table begins.

If this situation occurs, code the preceding floating figures or examples with
the KEEP keyword so that they will be kept with the text preceding them,
and so result in better-balanced pages.

EXAMPLES

ii <FIGURE>(Example of Terminal-Created Art\transfer_vector_exam)
<FIGURE_ATTRIBUTES>(KEEP)
<LINE_ART>(KEEP)

Shareable Image Executable Image
+-----------+ +------------+

+----1 Vector A I<-------+ I
I +-----------+ I
I +--1 Vector B I<---+ +----- Invoke A
I I +-----------+ I
+--->I I I

I I Routine A I +--------- Invoke B

<ENDLINE_ART>
<END FIGURE>

I I I
I +-----------+
+->I I

I Routine B I
I I
+-----------+

+------------+

In this example, the <FIGURE_ATTRIBUTES> tag contains a KEEP argument,
to specify that the figure should be kept with the immediately preceding text.

9-73

<FIGURE>

The <LINE_ART> tag also has a KEEP argument, to specify that the figure
should not break across pages.

The figures you are able to create using your terminal keyboard may be
adequate for draft purposes, but will not be acceptable in the context of
typeset output. This example may produce the following output:

Figure x-x Example of Terminal-Created Art

Shareable Image
+-----------+

+----1 Vector A I<-------+
I +-----------+ I

Executable Image
+------------+

I +--1 Vector B I<---+ +----- Invoke A
I I +-----------+ I
+--->I I

I I Routine A I +--------- Invoke B
I I I
I +-----------+
+->I +------------+

I Routine B I
I I
+-----------+

<DEFINE_SYMBOL>(ZK_2347\2)
<FIGURE>(Illustration of the Workshop Layout Showing Forklift\ZK_2347)
<FIGURE_SPACE>(FULL_PAGE\An illustration of the memory management workshop
analogy, complete with picture of the forklift.)
<ENDFIGURE>

9-74

This example illustrates how to code a figure that will take one page. This
example may produce output like that found on the following page.

<FIGURE>

Figure x-x Illustration of the Workshop Layout Showing Forklift

An illustration of the memory management workshop
analogy complete with picture of the forklift.

9-75

<FIGURE>

<FIGURE>(Discreet Portions of the Process Header\proc;.,.head~fig)
<FLGURE_ATTRIBUTES>(Multipage)
<FIGURE_SPACE>(15\Shows general structure of process header)
<F·IGURE_SPACE>(15\Shows structure of process page tables)
<FIGURE_SPACE>(15\Shows structure of different forms of page table entry)
<END FIGURE>

9-76

This example shows how to code a figure that is allowed to extend over
several pages. The MUL TIP AGE argument to the <FIGURE-ATTRIBUTES> tag
tells the text formatter that the figure is more than one page.

<FIGURE>

Figure x-x Discrete Portions of the Process Header

Shows general structure of process header

Figure x-x Cont'd. on next page

9-77

<FIGURE>

Figure x-x (Cont.) Discrete Portions of the Process Header

Shows structure of process page tables

Figure x-x Cont'd. on next page

9-78

<FIGURE>

Figure x-,-x (Cont.) Discrete Portions of the Process Header

Shows structure of different forms of page table entry

9-79

<FIGURE>

<P> ... and then procedes to linking the object
modules into an executable image. (You are not required to
put object modules in a library. You can link them directly.) The following
figure illustrates the implementation cycle.

<FIGURE>
<FIGURE_SPACE>(17\ZK--8769--84)
<ENDFIGURE>
<P>
The first cycle shows that . . .

9-80

This example shows how to code an informal figure that appears within text
without floating, without a number, and without a caption. It may produce
the following output:

... and then proceeds to linking the object modules into an executable image.
(You are not required to put object modules in a library. You can link them
directly.) The following figure illustrates the implementation cycle.

ZK-8769-84

The first cycle shows that ...

< FIGURE_ATTRIBUTES>

<FIGURE_ATTRIBUTES>

FORMAT

ARGUMENTS

Specifies the placement of a figure on the page. Also specifies valid page
breaks for that figure.

[
MULTIPAGE]

<FIGURE_ATTRIBUTES> (KEEP
FLOAT

[\WIDE})

MULTIPAGE
Specifies that the figure has multiple elements, and that each element is
allowed to break at the start of a new page. This argument is required if the
figure will be on more than one page. When a figure is continued, the figure
caption and figure column heads, if any, are automatically repeated at the
beginning of each new page of output.

KEEP
Specifies that the figure is to be kept with the immediately preceding text.
This is the default for a figure without a caption.

FLOAT
Specifies whether the location of a one-page figure is allowed to float. FLOAT
indicates that if there is not enough room on the current page for the figure,
the text processor will fill the current page with the text from the source file
that follows the <FIGURE> tag sequence, and place the figure at the top of
the next page of output.

Float is the default for a figure that has a caption and does not specify
MUL TIP AGE or KEEP.

WIDE
Specifies that the width of the figure exceeds the document's default width
for text. Depending on the document type, this argument can be interpreted
as follows:

• If the document style contains a left margin area that is normally used for
headings, the figure's width will span that area as well as the normal text
area.

• If the document uses a multicolumn format, the figure suspends
multicolumn output while the figure is processed. The figure is output
and multicolumn output is then restored.

• If the document style provides a range of sizes and styles for figures, this
argument may be interpreted to mean that a specific size should be used
for the figure.

9-81

< FIGURE_ATTRI BUTES>

related tags • <FIGURE>

• <FIGURE_FILE>

• <FIGURE_SPACE>

restrictions This tag must be used within the context of a <FIGURE> tag.

required None.

terminator

DESCRIPTION This tag is used in the context of a formal figure. Use <FIGURE_ATTRIBUTES>
to adjust the pagination and placement of the figure.

EXAMPLE

9-82

A formal figure is sometimes long. If you think one of your figures will be
longer than a page, use the MUL TIP AGE argument. Your figure will then
be placed on the current page and continued on following pages, as space
permits.

A multipage figure can contain one or more elements (that is, one or more
<FIGURE_FILE>, <FIGURE_SPACE>, and <CODE_EXAMPLE> tags).

If your multipage figure (consisting of a single <CODE_EXAMPLE>) contains
no blank lines, you might want to insert <VALID_BREAK> tags in the figure.
The <VALID_BREAK> tags specify reasonable page breaking points. See the
description of the <VALID_BREAK> tag for more information.

A one-page (or smaller) figure's position in the output file can change. If the
figure does not completely fit on the current page, the entire figure is placed
at the top of the next page. The text that follows the example in the SDML
file then is used to fill the current output page. When the figure's position can
change, the figure is said to float.

Floating is the default condition for a figure that has a caption and fits on
one page. If you want the placement of a figure without a caption to float,
you must specify the FLOAT argument if your figure fits on one page. A
multipage figure never floats.

The argument KEEP will override the default FLOAT condition for a figure
with a caption.

Figures that are coded with the default FLOAT argument may appear at the
bottom of a page preceding text that should normally be at the top of a new
page. Use <FIGURE_ATTRIBUTES> (KEEP) to force the figure to be output before
the new page.

See the first example in the <FIGURE> tag.

<FIGURE_FILE>

<FIGURE_FILE>

Includes a graphics file in your output file if the output device has graphics
capability.

FORMAT <FIGURE_FILE> (target-device

{
\ file-spec }
\SPACE

\ vertical-size
[\ position])

ARGUMENTS target-device
Specifies a keyword indicating the output device for the graphics file.
Keywords are provided both for devices that do (LN03 and PS) and do
not (LINE, MAIL, and TERMINAL) support graphics. Each keyword allows
you to insert the necessary amount of white space for the specific output
device; keywords for devices that do not support graphics allow you to insert
blank space in place of a figure. The following table lists the output devices
and expected output for each keyword.

Keyword

LN03

PS

LINE
MAIL
TERMINAL

Device

LN03 Laser Printer

PRINTSERVER 40 or
LN03R SCRIPTPRINTER

Lme Printer

Output

The specified sixel graphics file is
output as a figure.

The specified POSTSCRIPT
graphics file 1 is output as a figure.

If specified, blank space is output
with the file-spec argument
written in that blank space. Only
one of these three keywords
should be used to indicate a
monospaced destination.

1 PosrScRIPT graphics files must conform to the Encapsulated PosrScRIPT File Format
published by Adobe Systems Incorporated.

If you specify <FIGURE_FILE> for a given device and subsequently process
the file on another output device, no output will appear in the position of the
<FIGURE_FILE> tag.

file-spec
Specifies the graphics file.

SPACE
Lets you reserve blank space in the output file for a figure. Use this keyword
to reserve space for art that will be pasted in at a later date or when you
expect to process a file for more than one output device, but do not have
graphics files for all devices.

9-83

<FIGURE_FILE>

related tags

restrictions

required
terminator

DESCRIPTION

9-84

vertical-size
Specifies the vertical size of the printed graphic in picas (six picas equal an
inch). This argument may be a nonnegative integer or decimal number,
including zero.

position
Specifies an optional keyword that determines how the graphic aligns in
relationship to the text:

• null - aligns with the normal left text margin.

• WIDE - aligns at the leftmost position of the image area (if your format
has a wide left gutter).

• <ICON>

• <ICON_FILE>

• <FIGURE>

• < SELFIGURE_FILE_SP ACING_DEFAULT>

You must use an LN03 or POSTSCRIPT laser printer to print graphics files.

You must use the <FIGURE_FILE> tag in the context of the <FIGURE> tags.

If you use the <FIGURE_FILE> tag in a file that you process for multiple
output devices, you must supply a tag for each device, using the SP ACE
keyword for devices for which you do not have graphics.

None.

The <FIGURE_FILE> tag enables you to automatically include graphics files
for printing along with your text in the output file.

To ensure that your figure is the right size for inclusion with your output,
follow this procedure:

1 Create and print your graphics file full size (100 percent).

2 Measure it.

3 If the figure at 100 percent is the desired size and will fit on the page,
incorporate that measurement into the <FIGURE_FILE> tag. Otherwise,
calculate a percentage reduction and use the graphics editor to reduce
the figure to the desired size. Print and measure the graphics file and
incorporate the measurement in the <FIGURE-FILE> tag.

4 Process the SDML file and print the output.

<FIGURE_FILE>

5 Evaluate the result. If it is satisfactory, you are finished. Otherwise,
change either of the following.

• One or both keywords specified in <FIGURE_FILE> to correct the
alignment, spacing, or both, for the figure.

• The graphics file itself to correct the size, content, or both

Because there is an interaction between changing the contents or size of
the graphics file and specifying its placement in the <FIGURE_FILE> tag,
satisfactory results may require several loops through the process, much like
coding complicated tables. Refer to Chapter 3 for information on coding
tables.

If you plan to process your file for more than a single destination, you can
use multiple <FIGURE_FILE> tags to ensure that the appropriate figure will be
included for the appropriate destination; an example of this coding is given
in the following "Examples" section. If you use multiple <FIGURE_FILE> tags
in this way, you should specify only a single <FIGURE_FILE> tag for all the
monospaced destination keywords (MAIL, TERMINAL, or LINE).

EXAMPLES

ii <FIGURE>(The Front View)
<FIGURE_FILE>(LN03\frontpanel.six\6)
<END FIGURE>

This example shows how to code a numbered figure.

<FIGURE>
<FIGURE_FILE>(LN03\example1.six\10)
<END FIGURE>

This example shows how to code an unnumbered figure.

<FIGURE>
<FIGURE_FILE>(LN03\SANTA.SIX\15)
<FIGURE_FILE>(PS\SANTA.PS\15)
<FIGURE_FILE>(LINE\SPACE\10)
<END FIGURE>

This example shows how to use multiple <FIGURE_FILE> tags so that your
figure will process for multiple destinations. If this file is processed for a
POSTSCRIPT destination, the file included would be SANTA.PS. If this file is
processed for an LN03 laser printer destination, the file included would be
SANTA.SIX. If this file is processed for a line printer destination no file would
be included, but instead 10 blank lines would be reserved for the graphic.

9-85

<FIGURE_FILE>

9-86

A sixel file included into a document as in the previous code example may
have the following output:

ZK-7713-HC

<FIGURE_SPACE>

<FIGURE_SPACE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

Marks the space required for a figure that will be pasted in during final
production.

<FIGURE_SPACE> ({ value } [\text])
FULL_PAGE

value
Specifies the amount of vertical space to be left on the page. The value should
be specified in picas, a scale used by typesetters. There are approximately 6
picas to the inch. Thus, if the figure to be pasted in is 4 inches high, you
should specify 24. If you do not specify a value, a default value of 2 is used.

FULL_PAGE
Specifies that a full blank page is reserved for the figure.

text
Specifies text that describes the status of the figure, an art file number or the
words "To Be Set." The text is output in the middle of the space left for the
figure.

• <FIGURE>

• <FIGURE_ATTRIBUTES>

• <FIGURE_FILE>

• <REFERENCE>

• <FIGURE_SPACE>

• <LINE_ART>

Must be used in the context of a <FIGURE> tag.

The value of the <FIGURE-SPACE> tag must not exceed page depth
limitations.

None.

9-87

<FIGURE_SPACE>

DESCRIPTION

EXAMPLE

9-88

The <FIGURE_SPACE> tag causes a blank space to be left on the page for a
figure that will be pasted in by hand during final production.

If you specify some descriptive text in the second argument, that text is output
in the middle of the space left for the figure.

See the example in the discussion of the <FIGURE> tag.

<FILE_SPEC>

<FILE_SPEC>

Allows you to use a file specification that contains angle brackets as an
argument to an SDML tag without VAX DOCUMENT interpreting that file
specification as an SDML tag.

FORMAT <Fl LE_SPEC > (file-specification)

ARGUMENTS file-specification
The file specification that contains angle brackets.

related tags • <ELEMENT>

• < EXAMPLE_FILE >

• < FIGURE_FILE >

• <ICON_FILE>

• <INCLUDE>

• <INCLUDES_FILE>

• <TABLE_FILE>

restrictions None.

DESCRIPTION The <FILE_SPEC> tag allows you to use a file specification containing angle
brackets as the file-spec argument to SDML tags that let you include external
files, such as <INCLUDE> and <FIGURE_FILE> . A complete list of such tags
is found in the "Related Tags" section of this tag description.

Some keyboards do not provide square brackets ([) and (]), so it is common
for the directory portion of a file specification to be delimited by angle
brackets. Because VAX DOCUMENT would normally interpret text within
angle brackets as an SDML tag, the <FILE_SPEC> tag converts any angle
brackets in its argument into the corresponding square brackets.

You do not have to use the <FILE_SPEC> tag to specify logical names in a
file specification whose equivalence strings contain angle brackets.

9-89

<FILE_SPEC>

EXAMPLE
<figure_file>(ln03\<file_spec>(mydisk:<figure>diagram.six)\20)

9-90

The directory name in this file specification would normally be seen as a
<FIGURE> tag, which would lead to erroneous results. Because the file

specification is used as an argument to the <FILE_SPEC> tag, the angle
brackets will be converted to square brackets before the apparent <FIGURE>
tag is recognized. Thus, the example is equivalent to the following.

<figure_file>(ln03\mydisk: [figure]diagram.six\20)

<FINAL_CLEANUP>

< FINAL_CLEANUP>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

Provides explicit formatting instructions for the text formatter to be used
for final formatting and cleanup.

<FINAL_CLEANUP> (LINE_BREAK) I
COLUMN_BREAK l
PAGE_BREAK
SPECIAL_BREAK

COLUMN_BREAK
Specifies that a new column of text is to be started at the place where the
<FINAL_CLEANUP> tag occurs. This argument is only valid in a two-column

design (ARTICLE or REPORT.TWOCOL) and should be used only to make
the final documentation look better.

LINE_BREAK
Specifies that the text formatter is to place the remaining text in the paragraph
onto a new line of output.

PAGE_BREAK
Specifies that the text formatter should place following text on a new page of
output.

SPECIAL_BREAK
Specifies a special break when vertical spacing appears to be lost. In some
circumstances, the output of a two-column page may have had some of
its vertical spacing lost due to the text formatter processing, for example,
a heading tag may not have any space before it. The SPECIAL _BREAK
argument should be used only if there is a spacing problem and only after
you are ready to give your document a final format check, because changes to
the source file may help the text formatter resolve the spacing problem.

• <COLUMN> - ARTICLE and REPORT.TWOCOL

• <LINE>

• <PAGE>

None.

None.

9-91

< FINAL_CLEANUP>

DESCRIPTION The <FINAL_CLEANUP> tag is not a generic markup tag; it explicitly instructs
the text formatter to change aspects of a page makeup.

9-92

In a single-column doctype, the <FINAL-CLEANUP> tag enables you to
specify line breaks and page breaks using the LINE_BREAK and PAGE_
BREAK keyword arguments. In a two-column doctype, you can use the
COLUMN _BREAK keyword argument to start a new column of text. The
SPECIAL _BREAK keyword argument is used only rarely at the final stage of
production to place "finishing touches" into your document.

When you are working with the ARTICLE or REPORT.TWOCOL doctypes,
you may need to make some final adjustments when your text is complete.
The text formatter makes formatting decisions based on your source file. It
is more difficult for the text formatter to create a well-formatted two-column
page than it is a well-formatted one-column page. Therefore, the output of
these doctypes may need additional "finishing touches" during the last stage
of document production.

<FOOTNOTE>

<FOOTNOTE>

FORMAT

ARGUMENTS

related tags

restrictions

Places a footnote character in text, using the character specified in the
tag's argument, and places the footnote text at the bottom of the page.

<FOOTNOTE> (char\ footnote-text)

char
Specifies the footnote character. The character can be a single character,
a number, or one of the following keywords denoting special characters
associated with footnote references:

DAG (t)
DDAG (:j:)
R (®)
s (§)
TM(®)

When placing a footnote in a table, you must use a number or one of the
keywords as the footnote character.

If you use more than one of the keywords allowed for table footnotes, you
should declare them in the following order to ensure that the footnotes print
in the correct order at the bottom of the page:

1 TM

2 R

3 s
4 DAG

5 DDAG

footnote-text
Specifies the text of the footnote.

• <FOOTREF>

• <FOOTNOTE_TEXT>

Invalid in math.

No more than four footnotes may be placed within a stacked list or a
monospaced example.

The following restrictions apply to footnotes within tables:

• There can be no more than twelve footnotes in a table. If you use a
nonnumeric footnote character, there can be no more than seven numeric
footnotes.

9-93

<FOOTNOTE>

• All table footnotes must be declared at the top of the table using a
<FOOTNOTE> tag just after the <TABLE_SETUP> tag. <FOOTNOTE> tags

must not be specified in a nested table.

• Callouts within the body of a table must be labeled with a <FOOTREF>
tag. It is the <FOOTREF> tag that causes the footnote character to appear.

• Footnotes in the body of a multipage table appear at the bottom of a page
only if they are called out on that page.

• Footnotes called out in the heading of a multipage table appear at the
bottom of each page of the table.

• Footnotes on a title page and copyright page should be specified using
the <FOOTNOTE_TEXT> tag.

required None.

terminator

DESCRIPTION The <FOOTNOTE> tag causes a footnote character to appear in text at the
place where the tag is located. The text of the footnote is specified as the
second argument to the tag, and appears at the bottom of the page.

EXAMPLES

ii <P>The <TAG>(footnote) tag may produce output that looks like
this.<FOOTNOTE>(1\Note how
footnote text appears at the bottom of the page.)

This example may produce the following output:

The <FOOTNOTE> tag may produce output that looks like this. 1

<TABLE>(Rules for Determining Expression Modes\express_modes_tab)
<TABLE_ATTRIBUTES>(MULTIPAGE)
<TABLE_SETUP>(2\43)
<FOOTNOTE>(1\A footnote in a table.)
<TABLE_HEADS>(Expression\Value Type)
<TABLE_ROW>(Integer value\Integer)
<TABLE_ROW>(String value\String<FOOTREF>(1))
<TABLE_ROW>(Integer lexical function\Integer)
<TABLE_ROW>(String lexical function\String)
<TABLE_ROW>(Integer symbol\Integer)
<TABLE_ROW>(String symbol\String)
<TABLE_ROW>(Any value .AND. or .OR. any value\Integer)
<TABLE_ROW>(Any value\Integer)
<TABLE_ROW>(Any value\Integer)
<ENDTABLE>

This example shows how to produce a two-column table that contains a
footnote. A <FOOTNOTE> tag is placed directly after the <TABLE_SETUP>
tag to declare the existence of a footnote and to identify the footnote text.
A <FOOTREF> tag then is placed in the exact location of the footnote
superscripted reference mark in the table.

Make sure to place the <FOOTREF> tag within the argument to a <TABLE_
ROW> tag.

1 Note how footnote text appears at the bottom of the page.

9-94

<FOOTNOTE>

The example may produce the following output:

Table x-x Rules for Determining Expression Modes

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

Any value .AND. or .OR. any value

Any value

Any value

1 A footnote in a table.

Value Type

Integer

String 1

Integer

String

Integer

String

Integer

Integer

Integer

9-95

<FOOTNOTE_ TEXT>

<FOOTNOTE_TEXT>

FORMAT

ARGUMENTS

related tags

Specifies the text of a footnote in the context of a heading, title page, or
copyright page.

<FOOTNOTE_ TEXT> (char\ text)

char
Specifies the footnote character. The character can be a single character
or number, or it can be one of the following keywords denoting special
characters associated with footnote references:

DAG (t)
DDAG(t)
R (®)
s (§)
TM(®)

text
Specifies the text associated with the footnote.

• <FOOTREF>

• <FOOTNOTE>

restrictions Required when footnotes are specified in the context of header-level text
and title pages/copyright pages. Must not be used for table footnotes. The
<FOOTNOTE_TEXT> tag must follow the related <FOOTREF> tag in the

source file.

required None.

terminator

DESCRIPTION The tag <FOOTNOTE-TEXT> allows you to specify the text, placement, or
both, of a footnote in the following special circumstances:

9-96

• When you want to specify a footnote in an argument to a header-level
tag (<HEADl > , <HEAD2> , etc.)

• When you want to specify footnote text related to a footnote character on
the title page of a document.

In all other cases, you should use the <FOOTNOTE> tag.

<FOOTNOTE_ TEXT>

EXAMPLES
ii <HEAD1>(Introduction to The News Today<footref>(TM))

<footnote_text>(TM\The News Today
is a trademark of the American Television
Society.)

This example illustrates the use and placement of the <FOOTNOTE_TEXT> tag
and its related <FOOTREF> .

<front_matter>
<TITLE_PAGE>
<product>(CATCHUP<footref>(TM))
<title>(Guide to Growing Premium Fruit Bearing Plants)
<ABSTRACT>(June 1986)
This document describes how to cultivate smooth-skinned
tomato plants.
<END ABSTRACT>

<footnote_text>(TM\CATCHUP is a trademark of Tomato Magnates, Inc.)
<ENDTITLE_PAGE>

This example illustrates the placement of a footnote on the title page of a
document. The exact placement of the footnote, in the final output, is based
on the document-specific design specified by the book designer.

9-97

<FOOTREF>

<FOOTREF>

FORMAT

ARGUMENTS

related tags

restrictions

Creates one or more footnote characters in text or in a table using the
footnote numbers or characters as arguments.

<FOOTREF> (char-1 [\ char-2 ... \ char-9})

char-1 ... 9
The character(s) for the footnote. A character can be a single character or
number, or it can be one of the following special characters associated with
footnote references:

DAG (t)
DDAG(t)
R (®)
s (§)
TM(®)

In a table, the reference must be to a number or to one of the special
characters.

• <FOOTNOTE>

• <FOOTNOTE_ TEXT>

Invalid in math.

Can only be used at the end of an argument list and cannot be embedded in
text; the end of an argument list is indicated by a backslash (\) or a closing
parenthesis ()).

required None.

terminator

DESCRIPTION The <FOOTREF> tag causes as many as nine superscripted characters to
appear in the text at the place where the tag is located in the SDML file.

9-98

There are two occasions that require use of the <FOOTREF> tag:

• Where the same footnote in text needs to be called out more than once

• Wherever a footnote is called out in a table

If you have a footnote in the text to which you want to refer more than
once, you should use a <FOOTNOTE> tag to label the first occurrence of the
footnote and the <FOOTREF> tag to label the subsequent characters to that
note.

The text formatter does not automatically repeat text footnotes if references
are output on more than one page.

<FOOTREF>

If you have one or more footnotes within a table, you must declare the
footnotes using the <FOOTNOTE> tag just after the <TABLE_SETUP> tag.
You can then use the <FOOTREF> tag to label the characters within the table
body. Within a table, the presence of the <FOOTREF> tag causes the text of
the footnote to appear at the bottom of the table, rather than at the bottom of
the page. If the table is longer than a single page, and if the <FOOTREF> tag
appears multiple times, the footnote text appears at the bottom of the table
on each page containing the reference.

EXAMPLE

Make sure to place the <FOOTREF> tag within the argument to a
<TABLE_ROW> tag.

<P>The macro format for a $GETDVI request is:<FOOTNOTE>(1\The
eighth (last)
argument is not used; it is reserved for future use.)
<CODE_EXAMPLE>

$GETDVI [efn], [chan], [devnam] ,itmlst, [iosb], [astadr], [astprm]
<ENDCODE_EXAMPLE>
<P>The high-level language format for a $GETDVI request is:<FOOTREF>(1)
<CODE_EXAMPLE>
SYS$GETDVI([efn], [chan], [devnam] ,itmlst, [iosb], [astadr], [astprm])

<ENDCODE_EXAMPLE>

This example may produce the following output:

The macro format for a $GETDVI request is: 1

$GETDVI [efn],[chan],[devnam],itmlst,[iosb],[astadr],[astprm]

The high-level language format for a $GETDVI request is:1

SYS$GETDVl([efn],[chan],[devnam],itmlst,[iosb],[astadr],[astprm])

1 The eighth (last) argument is not used; it is reserved for future use.

9-99

<FORMAT>

<FORMAT>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

EXAMPLE

9--100

Enables <FCMD> , <FPARMS> , and <FPARM> to distinguish formatted
command keywords and parameters.

<FORMAT> [([Heading-text])}
WIDE

heading-text
Specifies a heading.

WIDE
Indicates, for document styles in which the left margin is indented, that the
body of the formatted text should be extended into the margin.

• <FCMD>

• <FPARM>

• <FPARMS>

Invalid in math, monospaced examples, tables, and figures.

<ENDFORMAT>

See the examples in the discussion of the <FCMD> tag.

<FPARM>

<FPARM>

Specifies a parameter to be formatted following <FPARMS>, aligned under
the parameter list portion of a keyword/parameter list pair.

FORMAT <FPARM> (parameter-list)

ARGUMENTS parameter-list

related tags

restrictions

required
terminator

EXAMPLE

Lists additional command parameters, if any.

• <FCMD>

• <FORMAT>

• <FPARMS>

Enabled only within <FORMAT> .

None.

See the examples in the discussion of the <FCMD> tag.

9-101

<FPARMS>

<FPARMS>

Specifies the parameter portion of a formatted command/parameter pair
in a format section.

FORMAT <FPARMS> (parameter-list)

ARGUMENTS parameter-list

related tags

restrictions

required
terminator

EXAMPLE

9-102

Lists the command parameters, if any. If there are no parameters, you can
specify the argument as null: <FPARMS>.

• <FCMD>

• <FORMAT>

• <FPARM>

Enabled only within <FORMAT> .

None.

See the examples in the discussion of the <FCMD> tag.

<FRONT_MATTER>

<FRONT_MATTER>

Begins the front matter of a book.

FORMAT <FRONT_MATTER> [(~ymbol-name)}

ARGUMENTS symbol-name

related tags

Specifies the term that you assign to the front matter. A symbol-name
argument is required if the front matter is to be part of a bookbuild.

Symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores in them. Do not begin a symbol­
name with an underscore.

• See the list of t(lgs in the description.

restrictions None.

required <ENDFRONLMATTER>

terminator

DESCRIPTION The <FRONLMATTER> tag enables the tags that create the front matter of a
book. The following tags are used to create the front matter:

• <ABSTRACT>

• < CONTENTS_FILE>

• <COPYRIGHLDATE>

• <COPYRIGHLPAGE>

• <FRONLMATTER>

• <ORDER_NUMBER>

• <PREFACE>

• <PREFACE_SECTION>

• <PRINLDATE>

• <REVISION _INFO>

• <TITLE>

• <TITLE_PAGE>

Each of these tags is listed alphabetically within this chapter. The order that
these tags are used is shown in the following example.

9-103

< FRONT_MA TTER >

EXAMPLE
<FRONT_MATTER>(front)
<TITLE_PAGE>
<TITLE>(My Latest Book)
<ORDER_NUMBER>(xx-12345)
<ABSTRACT>
This book describes the latest changes to any product.
<END ABSTRACT>
<REVISION_INFO>(Revision/Update Information:\This is a new manual.)
<ENDTITLE_PAGE>
<COPYRIGHT_PAGE>
<PRINT_DATE>(March 1987)
<COPYRIGHT_DATE>(1987)
<ENDCOPYRIGHT_PAGE>
<PREFACE>(11)
<PREFACE_SECTION>(The changes to your system)
<ENDPREFACE>
<ENDFRONT_MATTER>

9-104

This example shows the order of all the front matter tags, and how they could
be used in a file that contains the front matter of a book.

<GDEF>

<GDEF>

Begins the text that defines a term in a glossary.

FORMAT <GDEF> (definition)

A-RGUMENTS definition
Specifies the definition of the term.

related tags • <GLOSSARY>

• <GTERM>

• <GREF>

restrictions Can only be used between <GLOSSARY> and <ENDGLOSSARY> tags.

required None.

terminator

DESCRIPTION See the description of the <GLOSSARY> tag.

EXAMPLE See the example in the discussion of the <GLOSSARY> tag.

9-105

<GLOSSARY>

<GLOSSARY>

FORMAT

ARGUMENTS

related tags

Formats a glossary of terms in a document or book.

<GLOSSARY> (text[\ symbol-name])

text
Specifies any text string that you want to label the start of the glossary. If no
text is specified, the default text is the term "Glossary."

symbol-name
Specifies the term that you assign to the glossary and then use to reference it.

All symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores in them. Do not begin a symbol­
name with an underscore.

• <GTERM>

• <GDEF>

restrictions The symbol-name argument is required if this file will be included as part of
a bookbuild.

required <ENDGLOSSARY>

terminator

DESCRIPTION To create a glossary of terms, use the <GLOSSARY> tag to establish the
beginning format. Follow this with a list of <GTERM> tags, with the glossary
words defined as arguments to the <GTERM> tags.

9-106

Typically, a definition of each glossary term follows the term itself. Create
each definition with a <GDEF> (definition) tag.

Remember to terminate the glossary with an <ENDGLOSSARY> tag.

EXAMPLE
<Glossary>
<gterm>(habitat)
<gdef>(An area or natural environment.)
<gterm>(habitual)
<gdef>(Acting according to habit.)
<gterm>(hack)
<gdef>(A worn-out horse.)
<gterm>(hackneyed)
<gdef>(Trite, banal.)
<endglossary>

Glossary

This example produces the following output:

habitat: An area or natural environment.

habitual: Acting according to habit.

hack: A worn-out horse.

hackneyed: Trite, banal.

<GLOSSARY>

9-107

<GREF>

<GREF>

Marks a cross-reference to a term within a glossary.

FORMAT <GREF> (glossary-term)

ARGUMENTS glossary-term

related tags

Specifies the term referred to.

• <GLOSSARY>

• <GTERM>

• <GDEF>

• The following tags label other types of cross-references:

<REFERENCE>
< CALLOULREF>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <GREF> tag marks a cross-reference to a term within a glossary. The
glossary-term argument appears in an italic typeface in some document
designs.

9-108

<GTERM>

<GTERM>

Labels a term to be defined in a glossary.

FORMAT <GTERM> (term)

ARGUMENTS term
Specifies the term to be defined in the glossary.

related tags • <GLOSSARY>

• <GDEF>

• <GREF>

restrictions Can only be used between <GLOSSARY> and <ENDGLOSSARY> tags.

required <GDEF>

terminator

DESCRIPTION The <GTERM> tag labels a term to be defined in a glossary.

EXAMPLE See the example in the tag <GLOSSARY>.

9-109

<HEADx>

<HEADx>

FORMAT

ARGUMENTS

related tags

Marks a heading of the level specified (1 through 6).

<HEADx> (heading-text[\ symbol-name})

heading-text
Specifies the text of the heading. If the book design you are using produces
headings that are all capital letters in your output, those letters will appear
that way regardless of how you enter them in your input file. You should,
however, use uppercase and lowercases letters according to your local
conventions in order to obtain the proper capitalization of the heading in
the table of contents and in cross-references.

symbol-name
The name of the symbol to be used in all references to this heading and the
text following. Symbol-names must not exceed 31 characters, and must only
contain alphabetic letters, numbers, or underscores in them. Do not begin a
symbol-name with an underscore.

• <SUBHEADl>

• <SUBHEAD2>

• <CHEAD>

restrictions None.

required None.

terminator

DESCRIPTION Each of the six tags, <HEADl>, <HEAD2>, <HEAD3>, and <HEAD4>,

9-110

<HEADS> , and < HEAD6 > does the following:

• Outputs the heading text passed to it in its first argument

• Automatically numbers the heading

• Resets all of the counters for lower heading levels (if any)

• Specifies the symbol-name with which cross-references to that heading
should be made

Entries for each of the headings may appear in the table of contents,
depending on the doctype design.

EXAMPLES

<HEADx>

The proper choice of the heading level depends on an understanding of the
logical structure of the document you are writing. A <HEAD2> tag will
always be logically subordinate to a <HEADl > tag. The same is true for the
relationship between <HEAD3> and <HEAD2>; <HEAD4> and <HEAD3>;
and so on.

iJ <HEAD1>(Running Tasks\tasks)

This tag labels a first-level heading.

Ea <HEAD2>(SET and SHOW Commands\set_show_sec)

This tag labels a second-level heading.

You could make a cross reference to this heading by using the tag
<REFERENCE> (set_show_sec). In this example, if the heading was the

second sublevel of the first section in the document, the reference would be
output as Section 1.2.

To control the output of the reference, use one of the formats listed in the
following table:

Reference

<REFERENCE> (set_show_sec)

<REFERENCE> (set_show_sec\ value)

<REFERENCE> (set_show_sec\ text)

<REFERENCE> (set_show_sec\full)

Output

Section 1.2

1.2

Set and Show Commands

Section 1.2, Set and Show
Commands

9-111

<HELLIPSIS>

<HELLI PSIS>

FORMAT

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Places horizontal ellipsis points on a line.

<HELLIPSIS>

• <ELLIPSIS>

Invalid in math.

None.

The <HELLIPSIS> tag places horizontal ellipsis points on a line. Often, it is
used to label omitted material.

<P>A horizontal ellipsis may provide an indefinite ending <HELLIPSIS>

This example may produce the following output:

A horizontal ellipsis may provide an indefinite ending ...

9-112

<HYPHENATE>

<HYPHENATE>

Provides information about legal hyphenation of a word of text.

FORMAT <HYPHENATE> (part1 \part2[\ ... part9})

ARGUMENTS part1 ... part9

related tags

Specifies the word of text and its valid hyphenation points. Each argument
to the tag specifies a portion of the word. Use the argument delimiter, the
backslash, to indicate the hyphenation points.

• <FINAL-CLEANUP> -LINE_BREAK

• <LINE>

• <KEEP>

restrictions This tag is invalid in math and in monospaced examples.

DESCRIPTION Use this tag when you are not satisfied with line breaks within paragraphs in
your final output and you determine that the line breaks are caused because
a word is not being hyphenated. This tag is also useful when a word or term
(usually a technical term that is not commonly used) is not being hyphenated
correctly.

EXAMPLE

This tag does not force a term to be hyphenated; it merely provides the text
formatter with information about legal places to break this occurrence of the
word, should you need to break the word.

<p>Among the more common literary devices used by poets are
<hyphenate>(on\o\mat\o\poe\ia) and anthropomorphism.

The following shows the output this example may produce:

Among the more common literary devices used by poets are onomato­
poeia and anthropomorphism.

9-113

<ICON>

<ICON>

FORMAT

ARGUMENTS

related tags

restrictions

Allows you to include a graphic image in your printed output and print text
parallel to the image. The text is printed either to the right or left of the
picture.

<ICON>

None.

• <FIGURE_FILE>

• <ICON_FILE>

• <ICON_TEXT>

Use the <ICON> tag for graphics that have a depth and width of
approximately 2 inches. Use the <FIGURE_FILE> tag for larger graphics.

The output device must be able to support graphics.

required <ENDICON>

terminator

DESCRIPTION Use the <ICON> tag when you want to print a small graphic with
explanatory text printed next to it.

EXAMPLES
[] <ICON>

<ICON_FILE>(LN03\small_art.six\1.5\2.0\RIGHT)
<ICON_TEXT>(The text accompanying the
small piece of art. The text can be smaller or larger
tha'.n the graphic; the <tag>(ICON) tags make the necessary
adjustments for the output.)
<END ICON>

This example shows how to code a graphic on the right, with text on the left.

9-114

<ICON>
<ICON_FILE>(LN03\SANTA.SIX\15\11)
<ICON_FILE>(LINE\Santa\3\8)
<ICON_TEXT>(The image at the left is of an American icon.
The personification of the spirit of Christmas,
usually represented as a jolly, fat old man with
a white beard and a red suit, is also called
<quote>(Saint Nicholas) or <quote>(Saint Nick.))
<END ICON>
<ICON>
<ICON_FILE>(LN03\ELLIPSE.SIX\15\10\RIGHT)
<ICON_FILE>(LINE\ellipse\3\8\RIGHT)
<ICON_TEXT>(The image at the right is of an ellipse:
a conic section taken neither parallel to an element nor parallel
to the axis of the intersected cone.
<END ICON>

<ICON>

This example shows one graphic placed on the left, with text on the right,
followed by a second graphic placed on the right, with text on the left. The
output appears as follows:

ZK-7713-HC

The image at the left is of an American
icon. The personification of the spirit of
Christmas, usually represented as a jolly, fat
old man with a white beard and a red suit,
is also called "Saint Nicholas" or "Saint
Nick."

The image at the right is of an ellipse: a conic
section taken neither parallel to an element
nor parallel to the axis of the intersected cone.

ZK-7714-HC

9-115

<ICON_FILE>

<ICQN_FILE>

Specifies a graphics file that accompanies text within the <ICON> and
<ENDICON> tags.

FORMAT <ICQN_FILE> (target-device
\file-spec
\ vertical-size
\ horizontal-size
[\RIGHT])

ARGUMENTS target-device

9-116

Specifies a keyword indicating the output device for the graphics file.
Keywords are provided both for devices that do (LN03 and PS) and do
not (LINE, MAIL, and TERMINAL) support graphics. Each keyword allows
you to insert the necessary amount of white space for the specific output
device; keywords for devices that do not support graphics allow you to insert
blank space in place of an icon. The following table lists the output devices
and expected output for each keyword.

Keyword

LN03

PS

LINE
MAIL
TERMINAL

Device

LN03 Laser Printer

PRINTSERVER 40 or
LN03R SCRIPTPRINTER

Line Printer

Output

The specified sixel graphics file is
output as an icon.

The specified POSTSCRIPT
graphics file 1 is output as an
icon.

If specified, blank space is output
with the file-spec argument
written in that blank space. Only
one of these three keywords
should be used to indicate a
monospaced destination.

1 PosTScRIPT graphics files must conform to the Encapsulated PosTSCRIPT File Format
published by Adobe Systems Incorporated.

file-spec
Specifies the graphics file. No default file type is supplied.

vertical-size
Specifies the vertical size of the printed graphic in picas (there are 6 picas to
an inch). This argument may be a nonnegative integer or decimal number,
including zero.

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

<ICQN_FILE>

horizontal-size
Specifies the width of the printed graphic in picas (there are 6 picas to an
inch). This argument may be a nonnegative integer or decimal number,
including zero.

RIGHT
Indicates that the graphic image is to be placed to the right of the text. If
you do not specify this argument, the image is placed on the left of the text
specified in the <ICON_TEXT> tag.

• <FIGURE _FILE>

• <ICON>

• <ICON_TEXT>

You must have an output device that can print graphics files.

Only valid when used between the <ICON> and <ENDICON> tags.

None.

Specifies a graphics file that accompanies text within the <ICON> and
<ENDICON> tags. The specified file should be a graphics file suitable for

printing on the specified output device.

If you plan to process your file for more than a single destination, you can
use multiple <ICON_FILE> tags to ensure that the appropriate icon will be
included for the appropriate destination; an example of this coding is given
in the examples in the <ICON> tag description. If you use multiple <ICON_
FILE> tags in this way, you should specify only a single <ICON_FILE> tag
for all the monospaced destination keywords (MAIL, TERMINAL, or LINE).

See the examples in the <ICON> tag description.

9-117

<ICON_ TEXT>

<ICON_TEXT>

Labels the text that accompanies a graphic image included in text with the
<ICON> and <END_ICON> tags.

FORMAT <ICON_TEXT> (text)

ARGUMENTS text

related tags

Specifies the text that accompanies the graphic. It can be as long as you wish
and can include paragraphs and lists.

• <ICON>

• <ICON_FILE>

restrictions Must be used within the context of the <ICON> tag.

required None.

terminator

DESCRIPTION The <ICON_TEXT> tag labels the text that accompanies a graphic image
included in text with the <ICON> and <END_ICON> tags.

EXAMPLE See the <ICON> tag description.

9-118

<INCLUDE>

<INCLUDE>

FORMAT

ARGUMENTS

related tags

Causes the contents of a specified file to be included in the current input
file for processing.

<INCLUDE> (file-spec)

file-spec
Specifies the file to be included.

If a logical name is specified, instead, and the source file is an element of a
book, you can define the logical name using an <INCLUDES_FILE> tag in the
book's profile. If the source file is not an element of a book, or if the profile
does not contain the <INCLUDES_FILE> tag, be sure to define the logical
name before processing the file through VAX DOCUMENT.

• <EXAMPLE _FILE>

• <TABLE_FILE>

restrictions The <INCLUDE> tag is invalid in an argument to a tag.

In a file that contains a book element to be processed through a bookbuild,
make sure to place the book element tag (for example, <CHAPTER>) as the
first tag in the file. The <INCLUDE> tag should never be placed before the
book element tag.

required None.

terminator

DESCRIPTION The <INCLUDE> tag causes the contents of a specified file to be included in
the current input file for processing.

EXAMPLE
<INCLUDE>(doc_local_templates:boilerplate.sdml)

This example shows the inclusion of a file that does the following:

• Contains text that might be repeated multiple times in a source file

• Is used in more than one document

If the file specification doc_locaLtemplates:boilerplate.sdml was not used, but
instead substituted with a logical name, the logical name could be equated to
the file specification by using the <INCLUDES_FILE> tag in the profile.

9-119

<INCLUDES_FILE>

< INCLUDES_FILE>

Equates a logical name with a file specification during processing of a
profile.

FORMAT <INCLUDES_FILE> (logical-name\ file-spec)

ARGUMENTS logical-name

related tags

restrictions

required
terminator

DESCRIPTION

9-120

Specifies the logical name for the included file. You can use this name as the
argument to an <INCLUDE> tag.

file-spec
Specifies the file specification into which the logical name translates.

• <PROFILE>

• <ELEMENT>

• <INCLUDE>

Must be used in the context of a profile.

None.

You can place the <INCLUDES_FILE> tag in your profile to define a logical
name for a file whose contents are included in one of your element files.
The first argument to <INCLUDES_FILE> is the logical name for the included
file. You use this name as the argument to the <INCLUDE> tag. The second
argument specifies the actual file specification into which the logical name
translates.

The <INCLUDES_FILE> tags follow the <ELEMENT> tag for which they
are needed. During a bookbuild, VAX DOCUMENT establishes the logical
name definition for each <INCLUDES_FILE> tag before it actually reads and
processes the book element file names in the preceding <ELEMENT> tag. The
logical name remains defined during the processing of later book elements.

When a book element is processed by itself (when you use the /PROFILE
qualifier on the command line), VAX DOCUMENT again establishes the
logical-name definitions that were specified by the <INCLUDES_FILE> tags in
the profile.

<INCLUDES_FILE>

EXAMPLE
<ELEMENT>(error_chap.SDML)
<INCLUDES_FILE>(Error_msg_tab\Mydisk: [Mydirectory]my_very_long_table.sdml)

This example illustrates how the <INCLUDES-FILE> tag is used to define a
logical name for a file (called "my_very-1ong_table.sdml") which is being
kept in the directory [Mydirectory]. In the book element file ERROR_
CHAP .SDML, the writer includes the table of error message codes with
the tag:

<include>(error_msg_tab).

9-121

<INDEX_FILE>

<INDEX_FILE>

Specifies the position in a book (or document) where an index file should
be included in the output.

FORMAT <INDEX_FILE> [(file-spec)}

ARGUMENTS file-spec

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

9-122

If you place the <INDEX_FILE> tag in an SDML file that will be included
in another file later, you must specify the exact file-spec of the index as the
<INDEX_FILE> tag's argument.

• <PROFILE>

None.

None.

The <INDEX_FILE> tag specifies the position in a source file where an index
output file should be included. This tag does not produce an index, but
simply indicates placement of the index file. An index file is produced when
the qualifier /1 /INDEX" is specified on the DOCUMENT command line.

The profile tags <INDEX_FILE> and <CONTENTS_FILE> can be placed in
either the profile of a book or in a source file. If you are creating a book (with
a profile to be processed through a bookbuild), place these tags in the profile
to be sure of correct placement in the output.

An index file always receives the filetype .DVI _device, where device is
the type of output device you specified on the command line. For more
information on index generation, see Chapter 7.

To create an index from an individual file that contains an <INDEX_FILE>
tag, specify the /1 /INDEX" qualifier on the command line.

To see the result of the <INDEX_FILE> tag, refer to the index in this manual.
The <INDEX_FILE> tag was placed in the profile file after the last appendix
file.

<INTERACTIVE>

<INTERACTIVE>

FORMAT

ARGUMENTS

Begins an example dialog between user and system and enables the tags
<S> and <U> to distinguish system text from user text.

<INTERACTIVE> (code)
or

[
[KEEP\] l

<INTERACTIVE> [([WIDE[\ MAXIMUM]])]

interactive code or text

<ENDINTERACTIVE>

code
Specifies a code fragment you want to insert into your text.

If this argument is not specified, the terminator <ENDINTERACTIVE> is
required.

KEEP
Specifies that the example is not to be broken across pages, that is, if the
example does not fit on the current page, it will be placed on the next page.
If the example itself does not fit on a single page of output, it will be broken
anyway.

WIDE
Specifies that the width of the example exceeds the document's default width
for text. Depending on the document type, this argument can be interpreted
as follows:

• If the document style contains a left margin area that is normally used for
headings, the example's width will span that area as well as the normal
text area.

• If the document uses a multicolumn format, multicolumn output is
suspended while the example is processed. The example is output and
multicolumn output is then restored.

• If the document style provides a range of sizes and styles for examples,
this argument may be interpreted to mean that a specific size should be
used for the example.

9-123

<INTERACTIVE>

related tags

restrictions

MAXIMUM
Can be used in conjunction with WIDE to indicate that the example may
require additional adjustment to fit within the bounds of the text page.
This argument must be used with discretion, and may not be suitable in all
document styles.

• <S>

• <U>

• <VALID_BREAK>

Indexing tags (<X> and <Y> tags) are not permitted within interactive
examples.

Tab characters cannot be used to format interactive examples; use spaces
instead.

Do not use text element tags within interactive examples (for example, <P> ,
<LIST> , or <NOTE>).

required <END INTERACTIVE>

terminator

DESCRIPTION The <INTERACTIVE> tag indicates the beginning of an example dialog
between user and system. It enables the tags <S> and <U>. If your
interactive example is longer than a few lines, use the <VALID_BREAK> tag to
indicate the acceptable points for a page break within that example.

EXAMPLE
<P>If you do not specify the full command line, DCL will prompt
you for the missing information. For example, if you do not specify an
input file and an output file when you enter the COPY command, you will
be prompted as follows:
<INTERACTIVE>
<S>($)<U>(COPY)
<S>($_From:)<U>(INTERACT.GNC)
<S>($_To:)<U>(NEWFILE.GNC)
<END INTERACTIVE>

9-124

Note that you should specify whatever space follows the system prompt
within the <S> tag. This example may produce the following output:

If you do not specify the full command line, DCL will prompt you for the
missing information. For example, if you do not specify an input file and an
output file when you enter the COPY command, you will be prompted as
follows:

$ COPY
$_From:
$_To:

INTERACT.GNC
NEWFILE.GNC

<KEEP>

FORMAT

ARGUMENTS

related tags

<KEEP>

Specifies that a string of text should always occur on the same line of
output.

<KEEP> (text)

text
Specifies the text string to be kept on the same line of output.

• The following tags are used in conjuction with <KEEP> to allow a user
to specify formatting attributes:

<EMPHASIS>
<DEFINE_SYMBOL>
<HYPHENATE>

restrictions None.

required None.

terminator

DESCRIPTION Specifies that a string of text should always occur on the same line of output;
that is, it should not be broken between lines. The <KEEP> tag is used either
to prevent hyphenation of a word or to prevent a string of text from breaking
across a line.

EXAMPLES
i] <P>

The complete file specification is: <KEEP>(DISK$: [SMITH.TRIPS.EXPENSES]MILEAGE.TXT)

In this example, the file specification is specified as an argument to the keep
tag so that it will not be broken across a line. This code fragment may
produce the following output:

The complete file specification is:
DISK$:[SMITH. TRIPS.EXPENSES]MILEAGE. TXT

~ <define_symbol>(VAX11\<delayed><keep>(VAX--11)<enddelayed>)

This defines a text element symbol-name using an en dash and specifies that
the line should not break between the en dash and the 11 in the reference
<REFERENCE> (vaxl 1).

A reference to this defined symbol would produce the following output:

VAX-11

9-125

<KEYWORD>

<KEYWORD>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Labels a significant word that deserves to be distinguished typographically.

<KEYWORD> (word)

word
Specifies the word to be distinguished.

• <VARIABLE>

• <SPECIAL_NAME>

None.

None.

The <KEYWORD> tag labels a word or term that you want to distinguish
typographically. The default action of the <KEYWORD> tag outputs the
keyword in boldface. From the point of view of formatted result, the
<KEYWORD> tag may appear similar to the <EMPHASIS> tag with the

BOLD argument. However, by using separate tags to label different kinds of
information, the book designer is free to change the format of any one kind
without affecting the others.

What constitutes a keyword is something about which both editor and writer
must agree. The presence of keywords must be taken into account in. the
book design. Use of the <KEYWORD> tag should be consistent within a
document and across a document set.

<P>A <KEYWORD>(field) is a set of contiguous bytes in a logical record.

This example may produce the following output:

A field is a set of contiguous bytes in a logical record.

9-126

<LE>

<LE>
Labels a list element.

FORMAT <LE> [(callout-number)}

ARGUMENTS callout-number
Used only within the context of <LIST> (CALLOUT) to set the callout
number identifying the list element. See the examples in the discussion of
<LIST> (CALLOUT).

related tags • <LIST>

restrictions Must be used within the context of the <LIST> tag.

required None.

terminator

DESCRIPTION The <LE> tag identifies a list element and is only valid when used within
the context of the <LIST> tag.

EXAMPLES See the examples in the discussion of the <LIST> tag.

9-127

<LINE>

<LINE>

FORMAT

ARGUMENTS

related tags

Specifies that the text that follows is to be placed on a new line of output.

[

INDENT[\ unit-number}]
<LINE> [([BIGSKIP])]

SMALLSKIP

INDENT
Specifies that the next line or block of text is to be indented from the
preceding text. If the INDENT argument is specified, the next argument
must be an integer from 1 to 9 indicating the number of units that the text
is to be indented. The size of these units is determined separately for each
document design.

The default indent is 1 unit; the maximum indent is 9 units.

BIGSKIP
SMALLSKIP
Specifies that a set amount of vertical space is to precede the element
identified as a line or block of text. The actual amount of space created is
determined by the document's design.

• <FINAL_CLEANUP>

• <CENTER_LINE>

• <RIGHLLINE>

restrictions Invalid in monospaced examples and math.

required None.

terminator

DESCRIPTION The result produced by this tag differs according to whether it is used in the
context of a <P> tag, a <TABLE_ROW> tag, or a <FORMAT> tag:

9-128

• When you specify <LINE> in the context of a paragraph of text or a list
element, the <LINE> tag causes the current paragraph to be terminated
and then starts a new block of text. By default, the text block is not
preceded by any extra vertical space nor is it indented.

• When you specify the <LINE> tag in the context of a <TABLE_ROW> or
a <FORMAT> tag, the <LINE> tag causes the next text to begin on a new
line of output, but does not modify the current paragraph.

EXAMPLES
IJ <LIST>(NUMBERED)

<le> ITEM

<LINE>

Do not use the <LINE> tag in a paragraph to cause the text formatter to
break a line within the paragraph. Breaking a line to override a specific
line break is a final formatting/ cleanup instruction and you should use the
<FINAL_CLEANUP> (LINE_BREAK) tag for this.

<LINE>This item specifies ...

The output may be formatted as follows:

1 ITEM
This item specifies ...

<P>This is a normal paragraph.
<line>(INDENT\1\SMALLSKIP)
This is a block paragraph, indented with skip.

This may produce:

This is a normal paragraph.

This is a block paragraph, indented with skip.

<P>Flashy designs are inappropriate for software manuals or for
any serious or formal books because they do not reflect the
intention of the writer. The purpose of any book design is
<LINE>
to clarify what the author is conveying, to translate the text
attractively as print on a page, to communicate the message
visually in harmony with the ideas.

This output illustrates misuse of the <LINE> tag for formatting within a
paragraph. Although correct results may be obtained on a given output
device for a particular run of a file, the output may also be formatted as
follows:

Flashy designs are inappropriate for software manuals or for any serious or
formal books because they do not reflect the intention of the writer. The
purpose of any book design is

to clarify what the author is conveying, to translate the text attractively as
print on a page, to communicate the message visually in harmony with the
ideas.

9-129

<LINE>

<TABLE>(Card Reader Errors: Causes and Corrective Actions\cardread_tab)
<TABLE_ATTRIBUTES>(wide\multipage)
<TABLE_SETUP>(3\12\21)
<TABLE_HEADS>(Error\Causes\Corrective Action)
<TABLE_ROW>(READ CHECK\Card edges torn <LINE> Punch in column 0
or 81\Remove the faulty card from the output stacker, duplicate the card, place
it in the input hopper, and press the <EMPHASIS>(RESET\bold) button.)
<TABLE_ROW_BREAK>(FIRST)
<TABLE_ROW>(PICK CHECK\Damage to leading edge <LINE> Torn webs
<LINE> Cards
stapled together\Remove the card from the input hopper, duplicate
the faulty card, place the card back in the input
hopper, and press the <EMPHASIS>(RESET\bold) button.)
<TABLE_ROW_BREAK>(LAST)
<TABLE_ROW>(STACK CHECK\Jam in the card track <LINE> Badly mutilated card
\Correct the jam and/or remove the mutilated card from the output stacker,
duplicate the card, place it in the input hopper, and press the
<EMPHASIS>(RESET\bold) button.)
<TABLE_ROW>(HOPPER CHECK\Input hopper empty <LINE> Output stacker full\Load
the input hopper. <LINE> Unload the output stacker.)
<ENDTABLE>

This example shows the use of the <LINE> tag in a three-column table. It
may produce the following output:

Table x-x Card Reader Errors: Causes and Corrective Actions

Error

READ CHECK

PICK CHECK

STACK CHECK

HOPPER CHECK

Causes

Card edges torn
Punch in column 0 or 81

Damage to leading edge
Torn webs
Cards stapled together

Jam in the card track
Badly mutilated card

Input hopper empty
Output stacker full

<FORMAT>(MY COMMAND)
<FCMD>()
<FPARMS>(one parameter<line>two<line>three)
<END FORMAT>

Corrective Action

Remove the faulty card from the output stacker,
duplicate the card, place it in the input hopper, and
press the RESET button.

Remove the card from the input hopper, duplicate
the faulty card, place the card back in the input
hopper, and press the RESET button.

Correct the jam and/or remove the mutilated card
from the output stacker, duplicate the card, place it
in the input hopper, and press the RESET button.

Load the input hopper.
Unload the output stacker.

This example shows the <LINE> tag in a <FORMAT> tag. This example may
produce the following output:

MY
COMMAND

9-130

one parameter
two
three

<LINE_ART>

<LINE_ART>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

Labels a rough sketch produced at the terminal keyboard for draft output,
to give some idea of what the final figure will look like.

<LINE_ART> [(f~'ii'J[\ MAXIMUM]])]

KEEP
Specifies that the line art is not to be broken across pages, that is, if the line
art does not fit on the current page, it will be placed on the next page. If the
line art itself does not fit on a single page of output, it will be broken anyway.

WIDE
Specifies that the width of the line art exceeds the document's default width
for text. Depending on the document type, this argument can be interpreted
as follows:

• If the document style contains a left margin area that is normally used for
headings, the line art's width will span that area as well as the normal
text area.

• If the document uses a multicolumn format, the line art will result in
suspension of multicolumn output while it is being processed. The line
art will be output, and then multicolumn output will be restored.

• If the document style provides a range of sizes and styles for examples,
this argument may be interpreted to mean that a specific size should be
used for the line art.

MAXIMUM
Can be used in conjunction with WIDE to indicate that the line art might
require additional adjustment to fit within the bounds of the text page.
This argument must be used with discretion, and may not be suitable in all
document styles.

• <FIGURE>

• <VALID_BREAK>

None.

<ENDLINE_ART>

9-131

<LINE_ART>

DESCRIPTION The <LINE_ART> tag labels a rough sketch produced at the terminal
keyboard for draft output, to give some idea of what the final figure will
look like.

EXAMPLE

9-132

Note that the results of keyboard drawing may be adequate for draft
purposes, but will not be acceptable in the context of laser printer output.

See the examples in the discussion of the <FIGURE> tag.

<LIST>

FORMAT

ARGUMENTS

<LIST>

Begins a list. The type of list (for example, numbered or stacked) is
specified by the argument to the <LIST> tag.

<LIST> (keyword[\ attributes})

KEYWORD
Specifies the type of list.

ALPHABETIC

CALLOUT

NUMBERED

ROMAN

SIMPLE

STACKED

UNNUMBERED

The list element identifiers are alphabetic letters.

The list element identifiers are reverse-print callout numbers
(on supported output devices), for example 0.
The list element identifiers are Arabic numerals.

The list element identifiers are Roman numerals.

There are no list element identifiers.

Individual list elements do not have identifiers, but the entire
list is stacked within the specified set of delimiters (braces,
brackets, double brackets, or single or double vertical rules.)

List element identifiers are special characters.

ATTRIBUTES
Specifies the attributes of the list element identifiers. More than one attribute
can be specified.

Start-letter

Uppercase

Start-number

BRACES
BRACKETS
DOUBLE_BRACKETS
VERTICAL _RULE
DOUBLE_ VERTICAL _RULE

For an ALPHABETIC list. Specifies the alphabetic
letter to use for the first item in the sequence.
Subsequent items are automatically incremented.

For an ALPHABETIC or ROMAN list. Specifies
that the list element identifiers (alphabetic
letters or Roman numerals) are to be printed
in uppercase letters. By default, Alphabetic and
Roman numeral list element identifiers are printed
using lowercase letters.

For a NUMBERED or ROMAN list. Specifies the
number to be assigned to the first list element.
Subsequent list elements are automatically
incremented.

For a STACKED list. Each attribute for a
STACKED list specifies the delimiter to be used
to surround the stacked elements. If no keyword
is specified, list elements are stacked without a
surrounding delimiter.

9-133

<LIST>

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLES

Char

• <LE>

For an UNNUMBERED list. Specifies a single
character or a tag that results in a single printed
character of output that will be used to indicate
list elements. If char is not specified, the bullet
character is used.

The <LIST> tag should only used in the context of a paragraph or table.

<LIST> tags that use the following keywords may be nested (that is,
an element of a list may itself contain the beginning of another list):
ALPHABETIC, NUMBERED, UNNUMBERED, ROMAN, or SIMPLE.
However, none of these list types are compatible with <LIST> (STACKED).
Stacked lists may only be nested within other stacked lists, and stacked lists
may not be nested within any of the previously noted lists.

<END LIST>

The <LIST> (ALPHABETIC), <LIST> (NUMBERED), and <LIST> (ROMAN)
tags begin a list whose elements have a particular sequence or priority. Use
the UNNUMBERED or SIMPLE arguments to begin a list that has no inherent
order or priority.

Alphabetic lists are useful nested within numbered lists. A numbered list is
used to indicate a particular sequence or priority within the list elements.

The SIMPLE argument labels a simple list with no enumerator or special
character preceding each list element.

The STACKED argument begins a list whose elements are left-justified
on successive lines of an imaginary box. The box can have large braces
or brackets placed on each side. The box is then centered vertically so
that it aligns with text to the left or right on the same line. (By contrast,
<LIST> (SIMPLE) terminates the current paragraph and indents the list,

so that it is seen as a separate entity from the text above and below it.)
<LIST> (STACKED) is especially useful for showing syntactic elements with a
<FORMAT> tag.

The UNNUMBERED argument labels lists that have no particular order or
priority within the list element. Normally a bullet is the character used before
each list element. You can specify another character by passing it as an
argument.

iJ <LIST>(NUMBERED)
<LE>Review doc plan
<LE>Find out these numbers:

<LIST>(UNNUMBERED)
<LE> LPN

9-134

<LE>DPN
<LE>order number
<ENDLIST>
<LE>For revisions of books not already in the library, have

production or the writer rename the file
according to its new LPN.

<LE>Open a library for the book if none exists (except for
one-shot jobs).

<LIST>(ALPHABETIC)
<LE>Decide with writer about timing:

<LIST>(UNNUMBERED)
<LE>Must be done before final production.
<LE>Shouldn't be done until text is stable.
<LE>Preferred time is at major edit pass.
<ENDLIST>

<LE>Cooperate with production librarian on paperwork.
<LE>Help writers name new element files correctly.
<LE>Verify that all files are of the same file type.
<LE>For a revision, be sure files are renamed using the
revision's LPN when the library is created for the revision.
<ENDLIST>

<END LIST>

<LIST>

In this example, the first nested list has no particular sequence. The second
nested list does have an order to it and this order is reflected in the use of the
<LIST> (alphabetic) tag.

This example may produce the following output:

1 Review doc plan

2 Find out these numbers:

• LPN

• DPN

• order number

3 For revisions of books not already in the library, have production or the
writer rename the file according to its new LPN.

4 Open a library for the book if none exists (except for one-shot jobs).

a. Decide with writer about timing:

• Must be done before final production.

• Shouldn't be done until text is stable.

• Preferred time is at major edit pass.

b. Cooperate with production librarian on paperwork.

c. Help writers name new element files correctly.

d. Verify that all files are of the same file type.

e. For a revision, be sure files are renamed using the revision's LPN
when the library is created for the revision.

9-135

<LIST>

<P>Items e and f describe the $GETJPI AST activity:
<LIST>(ALPHABETIC\5)
<LE>An ACB is constructed for a special kernel AST.
<LE>When the special kernel mode AST routine executes in the context of
the target process, the requested information is moved into the system buffer.
The ACB is then reset to deliver a special kernel mode AST back to the
requesting process.
<END LIST>

This example may produce the following output:

Items e and f describe the $GETJPI AST activity:

e. An ACB is constructed for a special kernel AST.

f. When the special kernel mode AST routine executes in the context of the
target process, the requested information is moved into the system buffer.
The ACB is then reset to deliver a special kernel mode AST back to the
requesting process.

<P>At this point, you can log in to the system as the system manager
by performing the following steps at the console terminal:
<LIST>(NUMBERED)
<LE>Press RETURN.
<LE>In response to the system's request for your user name, type SYSTEM.
<LE>In response to the system's request for your password, type MANAGER.
<END LIST>

This example produces the following output:

At this point, you can log in to the system as the system manager by
performing the following steps at the console terminal:

1 Press RETURN.

2 In response to the system's request for your user name, type SYSTEM.

3 In response to the system's request for your password, type MANAGER.

<P>Items six and seven describe two main principles of a generic
markup language:
<LIST>(NUMBERED\6)
<LE>Descriptive markup predominates and is distinguished from processing
instructions.
<LE>Markup is formally defined for each type of document.
<END LIST>

9-136

This example has the following output:

Items six and seven describe two main principles of a generic markup
language:

6 Descriptive markup predominates and is distinguished from processing
instructions.

7 Markup is formally defined for each type of document.

<P>The following items are needed:
<LIST>(SIMPLE)
<LE> bread
<LE>milk
<LE>cheese
<LE>cereal
<LE>fruit
<END LIST>

<P>

This example produces the following output:

The following items are needed:

bread
milk
cheese
cereal
fruit

ON <LIST>(stacked\braces)
<LE>ANYCONDITION
<LE>ENDFILE(ref erence)
<LE>ENDPAGE(ref erence)
<LE> FINISH
<LE>KEY(reference)
<LE>UNDEFINEDFILE(reference)
<LE> ERROR
<LE>FIXEDOVERFLOW
<LE> OVERFLOW
<LE> UNDERFLOW
<LE>VAXCONDITION(expression)
<LE>ZERODIVIDE

<END LIST>

<LIST>(stacked\braces)
<LE>statement
<LE>begin-block

<END LIST>

<LIST>

Notice that the tags are indented to help in visually checking the matching of
the <LIST> (stacked) and <ENDLIST> tags. This indentation has no effect on
the output, however. This example may produce the following:

ANYC'.:ONDITION
END FILE(reference)
ENDP AGE(reference)
FINISH
KEY(reference)

ON UNDEFINEDFILE(reference)
ERROR
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
VAXCONDITION(expression)
ZERO DIVIDE

{
statement }
begin-block

9-137

<LIST>

<P>
OPEN FILE (reference) [TITLE(expression)]
<P>
<LIST>(stacked\brackets)

<LE>[STREAM] <LIST>(stacked\brackets)
<LE>[INPUT]
<LE>OUTPUT [LINESIZE] [PRINT [PAGESIZE(integer)]]

<ENDLIST>
<LE>RECORD <LIST>(stacked\brackets)

<LE>[INPUT]
<LE> OUTPUT
<LE> UPDATE

<ENDLIST>

<ENDLIST>
<LIST>(stacked\brackets)

<LE> DIRECT
<LE>[SEQ[UENTIAL]]

<END LIST>
[KEYED]

This example may produce the following:

OPEN FILE (reference) [TITLE(expression)]

[[INPUT] l] [STREAM] OUTPUT [LINESIZE] [PRINT [P AGESIZE(integer)]]

[
[INPUT] l [DIRECT l

RECORD OUTPUT [SEQ[UENTIAL]] [KEYED]
UPDATE

<TABLE>
<TABLE_SETUP>(2\20)
<TABLE_HEADS>(Some stacked\Stuff in a Table)
<TABLE_ROW>(<LIST>(stacked\braces)

<LE>one
<LE>two
<LE>three

<ENDLIST>\That was stacked in a table.)
<TABLE_ROW>(Just a second item\<LIST>(stacked\braces)

<LE> one
<LE>two
<LE>three

<ENDLIST>)
<TABLE_ROW>(this is the last item)
<ENDTABLE>

Here, <LIST> (stacked) arguments are used within a table. Again, the generic
code is indented simply as an aid for visually checking the nesting of tags.
This example may produce the following:

Some stacked Stuff in a Table

{

one }
two
three

That was stacked in a table.

Just a second item

{
one }
two
three

this is the last item

9-138

<P>To create a system that more closely suits the requirements of
your site, you can do any of the following:
<LIST>(UNNUMBERED)
<LE>Select a default bootstrap command procedure
<LE>Modify system parameters for special hardware configuration needs or
special workload requirements
<LE>Perform other site-specific modifications
<END LIST>

This example may produce the following output:

<LIST>

To create a system that more closely suits the requirements of your site, you
can do any of the following:

• Select a default bootstrap command procedure

• Modify system parameters for special hardware configuration needs or
special workload requirements

• Perform other site-specific modifications

<P>To create a system that more closely suits the requirements of
your site, you can do any of the following:
<LIST>(UNNUMBERED\+)
<LE>Select a default bootstrap command procedure
<LE>Modify system parameters for special hardware configuration needs or
special workload requirements
<LE>Perform other site-specific modifications
<END LIST>

This example shows how you can specify a character other than a bullet to
label each list element. This example may produce the following output:

To create a system that more closely suits the requirements of your site, you
can do any of the following:

+ Select a default bootstrap command procedure

+ Modify system parameters for special hardware configuration needs or
special workload requirements

+ Perform other site-specific modifications

9-139

<LITERAL>

<LITERAL>

FORMAT

Allows you to specify text that contains words in angle brackets that
might otherwise be interpreted as tags.

<LITERAL> (literal-text)
or

<LITERAL>
literal-text

<ENDLITERAL>

ARGUMENTS literal-text

related tags

restrictions

required
terminator

EXAMPLE

The literal text to be passed through the tag translator unprocessed.

None.

None.

<ENDLITERAL> -Required if the text is not specified as an argument.

<P> I've experimented with my own method for noting questionable
phrases, by placing <LITERAL><NOTE_PROBLEM><ENDLITERAL> near the
phrase.

9-140

This example may have the following output:

I've experimented with my own method for noting questionable phrases, by
placing <NOTE_PROBLEM> near the phrase.

<LOWERCASE>

<LOWERCASE>

Labels text that should appear as lowercase in the final output.

FORMAT <LOWERCASE> (text)

ARGUMENTS text
Specifies the text to appear in lowercase.

related tags • <UPPERCASE>

restrictions None.

required None.

terminator

DESCRIPTION In your book, there may be a text element, such as a heading, that normally
appears in uppercase. For example, in some book designs, first-level headings
use all uppercase letters.

EXAMPLE

You may encounter a situation where you need to overcome the default case
in one of your tags and ensure that the result in the final output appears in
lowercase. The <LOWERCASE> tag allows you to do this.

<HEAD2>(HeRe iS aN ExAmPlE oF <LOWERCASE>(lOwErCaSe) tExT)

In this example, assume that the doctype being used causes the tag <HEAD2>
to output a heading that is in uppercase, no matter what the case of the text
passed to it.

The example may produce the following output:

HERE IS AN EXAMPLE OF lowercase TEXT

The default to uppercase letters causes the heading to be uniformly uppercase,
with the exception of the text passed to the <LOWERCASE> tag.

9-141

<MARK>

<MARK>

Indicates the beginning of new or modified information.

FORMAT <MARK>

ARGUMENTS None.

related tags • <REVISION>

• <UPDATE_RANGE>

restrictions Output is enabled only if the <REVISION> tag has been specified.

required <END MARK>

terminator

DESCRIPTION The <MARK> and <ENDMARK> tags delimit a sequence of text that has
been modified. These tags will produce vertical bars in the margin of the
document.

EXAMPLE
<P>

Make sure to place the <MARK> and <ENDMARK> tags next to the text
they mark, without preceding or following the text with other tags. The text
formatter interprets <MARK> based on the last text character encountered
before the <MARK> tag.

The following characters are legal in MACR0-11 source programs:
<LIST>(UNNUMBERED)
<LE>The letters A through Z. Both upper- and lowercase letters are
acceptable, although, upon input, lowercase letters are converted to
uppercase.
<LE>The digits 0 through 9.
<LE>The characters period <PARENDCHAR>(.) and dollar sign
<PARENDCHAR>($). These characters are reserved for use as Digital
Equipment Corporation system program symbols.
<END LIST>

9-142

<MARK>

<REVISION>

<P>
The following characters are legal in MACR0-11 source programs:
<LIST>(UNNUMBERED)
<LE>The letters A through Z. Both upper- and lowercase letters are
acceptable, although, upon input, lowercase letters are converted to
uppercase.

<MARK>
<LE>Characters in the DEC multinational character set (MCS). A chart
showing the MCS is located in <REFERENCE>(mcs_app),
with a list of directives that
support the MCS.
<ENDMARK>

<LE>The digits 0 through 9.
<LE>The characters period <PARENDCHAR>(.) and dollar sign
<PARENDCHAR>($). These characters are reserved for use as Digital

'Equipment Corporation system program symbols.
<END LIST>

In this example, the first paragraph is the original and the second paragraph
is the modified version with the <MARK> and <ENDMARK> tags coded in.
The formatted output for the original paragraph and the modified paragraph
may be as follows:

The following characters are legal in MACR0-11 source programs:

• The letters A through Z. Both upper- and lowercase letters are acceptable,
although, upon input, lowercase letters are converted to uppercase.

• The digits 0 through 9.

• The characters period (.) and dollar sign ($). These characters are
reserved for use as Digital Equipment Corporation system program
symbols.

The following characters are legal in MACR0-11 source programs:

• The letters A through Z. Both upper- and lowercase letters are acceptable,
although, upon input, lowercase letters are converted to uppercase.

• Characters in the DEC multinational character set (MCS). A chart showing
the MCS is located in Appendix A, with a list of directives that support
the MCS.

• The digits 0 through 9.

• The characters period (.) and dollar sign ($). These characters are
reserved for use as Digital Equipment Corporation system program
symbols.

9-143

<MATH>

<MATH>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

9-144

Labels a short mathematical expression or the beginning of an extended
mathematical example.

<MA TH> ({ math-expression })
DISPLAY[\ symbol-name}

math-expression
Specifies a mathematical expression to be included in the text of a sentence or
paragraph.

DISPLAY
Specifies a keyword indicating that an extended mathematical equation or
expression is to be set off from the surrounding text.

symbol-name
Specifies a symbol-name by which the extended mathematical equation is to
be referenced. If this argument is specified, the equation is assigned a number
and the number is printed to the right of the equation.

Symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores in them. Do not begin a symbol­
name with an underscore.

Once the symbol-name is defined, the equation can be referenced using the
<REFERENCE> tag.

• <MATH_CHAR>

• <CODE_EXAMPLE>

• <REFERENCE>

• The use of extended mathematical examples is not valid within tables or
monospaced examples.

• The set of tags valid within a mathematical expression is limited to those
listed in the tables in the following "Description" section.

<ENDMATH> -Required when DISPLAY is specified as an argument to
<MATH>.

<MATH>

DESCRIPTION Within an argument to <MATH> or within the bounds of
<MATH> (DISPLAY) . . . <ENDMATH> , you can specify simple or complex

mathematical expressions, according to the rules outlined below. The context
in which you enter text and tags within a mathematical expression is severely
restricted.

In a mathematical expression, all formatting is controlled by the text
processor. When you use the keyword DISPLAY, the output will be
offset from the surrounding text, but you do not have any control over its
positioning. Furthermore, blank spaces and carriage returns are ignored;
the text processing program assumes that all text strings are mathematical
variable names, and makes all decisions regarding the output formatting.

Simple Expressions

The following tags are used to indicate simple binary operations. In the
context of a mathematical expression, you can use either the tag name or the
function's symbol.

<TIMES> Multiplication

<PLUS> + Plus

<MINUS> Minus

<DIVIDED_BY> I Division

<EQUALS> Equality

For example, the following are equivalent:

<MATH>(total = A + B - C * D / E)
<MATH>(total <EQUALS> A <PLUS> B <MINUS> C <TIMES> D <DIVIDED_BY> E)

Both produce the output: total = A + B - C * D / E

Note: The use of any nonalphanumeric characters other than those specified
above in the context of math may produce unpredictable results, including
errors from the text formatter.

Operators are evaluated using the normal mathematical rules for precedence
of operators. You can control the evaluation by using the <GROUP> tag,
much as you would use parentheses in a mathematical expression. Note the
use of the <GROUP> tag in the second math expression in the following code
fragment:

<MATH>(total = A +B-C*D<OVER>(e))
<P>
<MATH>(total = <GROUP>(<GROUP>(A +B-C*D)<OVER>(e))

This code fragment may produce the following output:
total=A+B-C*D

e

total = A+B-C*D
e

The effect of the <GROUP> tag is supplied by default for fractional
expressions when you use the <FRACTION> tag:

<MATH>(display)
total = <FRACTION>(A + B - C * D\E)
<ENDMATH>

9-145

<MATH>

9-146

Variable Names

The text formatter assumes that variable names are primarily alphabetic letters
or special characters represented by the <MATH_CHAR> tag. If you need to
specify any variable names in expressions that contain special characters, you
must use the <VARIABLE> or <TEXT> tags. For example:

<MATH>(<variable>(event_flag) = 1)

If you require multiword variable names, you must use the <SP> tag to
indicate spacing:

<MATH>(display)
<VARIABLE>(SUCCESS<sp>RATE) <equals>
<group>(
<VARIABLE>(TOTAL<SP>HITS) <over>(<VARIABLE>(TOTAL<sp>HITS) <plus>

<VARIABLE>(TOTAL<sp> MISSES)

<times> 100
<ENDMATH>

)

This example may produce the following output:

TOTAL HITS
SUCCESS RATE= TOTAL HITS+ TOTAL MISSES* lOO

You can provide special annotation for variable names by using the following
tags:

Tag Output

<BAR_CHAR> (x) x
<DOLCHAR> (x) ±
<HAT> (xyz) -xyz

<HALCHAR> (x) x
<OVERLINE> (var) var

<TILDE> (xyz) xyz

<TILDE_CHAR> (x) x
<UNDERLINE> (var) var

<VECTOR> (x) x

Parentheses

Most of the tags valid in math do not accept arguments. However,
parentheses are frequently used in mathematical expressions. You must
be careful, therefore, to use spaces preceding the parentheses. For example:

<MATH>(A <minus> (B<PLUS>C))

<MATH>

Summary of Tags

Table 9-3 summarizes the tags that are valid in mathematical expressions.

Table 9-3 <MATH> Expressions

Tag Operation and Output

<AMPERSAND>

<ATOP> (expression)

<BACKSLASH>

<CAL> (Jetten

<CASES>
<CASE_ROW>
<ENDCASES>

<COOTS>

<CHOOSE> (expression 1\ expression2)

<DDOTS>

< DIVIDED_BY >

<DOTS>

<DOT_ TIMES>

<EQUALS>

<FRACTION> (numerator \ denominaton

<FUNC> (expression)

<GROUP> (expression)

<INTEGRAL>

<INTEGRAL_LIMITS>

<INTEGRAL _NOLIMITS>

<MATRIX>
<MATRIX_ROW>
<ENDMATRIX>

<MINUS>

<MOD>

Specifies a literal ampersand
character in a math expression.

Stacks an expression, as in ~.

Specifies a literal backslash character
in a math expression.

Specifies a calligraphic uppercase
letter, as in A.

Specifies a case construction. See
"Matrices and Cases."

Specifies centered dots, as in · · ·.

Parenthetical notation, as in (~).

Specifies diagonal dots, as in · · ..

Division, as in a/b.

Specifies horizontal dots, as in

Multiplication, as in a · b.

Equality, as in a = b.

Specifies a fraction, as in % .

Specifies a function, as in f(a).

Provides control over the order of
operation. See "Examples," in the
following section.

7r

Specifies an integral, as in f0"1. See
"Operators With and Without Limits."

Specifies an integral that places
superscripts and subscripts above
and below the sign, rather than to
the right. See "Operators With and
Without Limits." ·

Specifies an integral that places
superscripts and subscripts to the
right of the sign, rather than above
and below. See "Operators With and
Without Limits."

Specifies a matrix. See "Matrices and
Cases."

Minus, as in a - b.

Modulo, as inn mod p.

9-147

<MATH>

9-148

Table 9-3 (Cont.)

Tag

<LBAR>

<LBRACE>

<LBRACKET>

<LCEIL>

<LFLOOR>

<LPAREN>

<OVER> (expression)

<Pl>

<PLUS>

<PMOD> (expression)

<PROD>

< PROO_LIMITS >

< PROD_NOLIMITS >

<RBAR>

<RBRACE>

<RBRACKET>

<MATH> Expressions

Operation and Output

Begins an expression delimited
with vertical bars. See NDelimited
Expressions."

Begins an expression delimited
with curly braces. See "Delimited
Expressions."

Begins an expression delimited with
square brackets. See "Delimited
Expressions."

Begins an expression delimited with
ceil characters (f). See "Delimited
Expressions."

Begins an expression delimited with
floor characters (L). See "Delimited
Expressions."

Begins an expression delimited
with parentheses. See "Delimited
Expressions."

Division, as in % .
The pi character, 11".

Plus, as in a+ b.

Parenthetical mod, as in a (mod p).

Specifies a product, as in TI! . See
"Operators With and Without Limits ...

Specifies a product that places
superscripts and subscripts above
and below the sign, rather than to
the right. See "Operators With and
Without Limits."

Specifies a product that places
superscripts and subscripts to the
right of the sign, rather than above
and below. See "Operators With and
Without Limits."

Ends an expression delimited
with vertical bars. See "Delimited
Expressions."

Ends an expression delimited
with curly braces. See "Delimited
Expressions."

Ends an expression delimited with
square brackets. See "Delimited
Expressions."

<MATH>

Table 9-3 (Cont.) <MATH> Expressions

Tag Operation and Output

< RCEIL> Ends an expression delimited with
ceiling characters (l). See "Delimited
Expressions."

<RFLOOR> Ends an expression delimited with
floor characters (J). See "Delimited
Expressions."

<RPAREN> Ends an expression delimited
with parentheses. See "Delimited
Expressions."

<SP> Provides space in a variable name or
expression.

<SORT> (expression) The square root, as in y'a.

<SUBSCRIPT> (expression)

<SUM>

<SUM_LIMITS>

<SUM_NOLIMITS>

<SUPERSCRIPT> (expression)

<TEXT>

<TIMES>

<TO>

<VARIABLE>

<VDOTS>

<VECTOR> (van

<X_TIMES>

Subscription, as in ab.

Specifies summation, as in a Eb.
See "Operators With and Without
Limits."

Specifies summation that places
superscripts and subscripts above
and below the sign, rather than to
the right. See "Operators With and
Without Limits."

Specifies summation that places
superscripts and subscripts to the
right of the sign, rather than above
and below. See "Operators With and
Without Limits."

Exponentiation, as in ab. See
"Operators With and Without Limits."

Specifies text in a math expression.

Multiplication, as in a* b.

Indicates progression, as in 1 -+ 10.

Specifies a variable name that
contains nonalphanumeric characters.

Specifies vertical dots, as in : .

A vector, as in x.
Multiplication, as in a x b.

9-149

<MATH>

9-150

Operators With and Without Limits

When you specify <SUBSCRIPT> and <SUPERSCRIPT> tags, the superscription
or subscription applies to the immediately preceding variable or expression.
These tags can be specified in any order, as shown in the following code
fragment:

<MATH>(a<subscript>(2)<superscript>(n-1))

This code fragment may produce the following output: a~- l

In extended mathematical expressions, the <SUPERSCRIPT> and
<SUBSCRIPT> tags produce differing results in conjunction with the
<INTEGRAL>, <PROD>, and <SUM> functions and their complementary

tags <INTEGRAL_LIMITS> and <INTEGRAL_NOLIMITS>, <PROD_LIMITS> and
<PROD_NOLIMITS> , and <SUM_LIMITS> and <SUM_NOLIMITS> .

The <INTEGRAL>, <PROD>, and <SUM> tags place their subscripts and
superscripts depending on whether the tags are used in math text mode (used
as an argument to the <MATH> tag) or in math display mode (used between
the <MATH> (DISPLAY) and <ENDMATH> tags).

In math text mode, the <INTEGRAL> , <PROD> and <SUM> tags all place
the superscript and subscript to the right. These tags are coded as follows:

<MATH>(<integral><subscript>(n=1)<superscript>(<pi><over>(2) <sp>
<MATH>(<prod><subscript>(n=1)<superscript>(<pi><over>(2) <sp>
<math>(<sum><subscript>(n=1)<superscript>(<pi><over>(2)

This code fragment may have the following output:

11" 11" 11"

f n:1 TIJ=1 L:J=1
In math display mode, the <PROD> and <SUM> tags place the superscript
and subscript above and below their respective signs; however, the
<INTEGRAL> tag places superscripts and subscripts to the right. These

tags are coded as follows:

<MATH>(display)
<integral><subscript>(n=1)<superscript>(<pi><over>(2) <sp>

<prod><subscript>(n=1)<superscript>(<pi><over>(2) <sp>
<sum><subscript>(n=1)<superscript>(<pi><over>(2)

<ENDMATH>

This code fragment may have the following output:

{~ht
Jn=l n=1 n=1

The <INTEGRAL_NOLIMITS> , <PROD_NOLIMITS> , and <SUM_NOLIMITS>
tags always place the subscripts and superscripts to the right of the signs,
regardless of the math mode. These tags are coded as follows:

<MATH>(display)
<integral_nolimits><subscript>(n=1)<superscript>(<pi><over>(2) <sp>

<prod_nolimits><subscript>(n=1)<superscript>(<pi><over>(2) <sp>
<sum_nolimits><subscript>(n=1)<superscript>(<pi><over>(2)

<ENDMATH>

<MATH>

This code fragment may have the following output:

f I II!~1 L!~1
The <INTEGRAL_LIMITS> , <PROD_LIMITS> , and <SUM_LIMITS> tags always
place the subscripts and superscripts above and below the signs, regardless of
the math mode. These tags are coded as follows:

<MATH>(display)
<integral_limits><subscript>(n=1)<superscript>(<pi><over>(2) <sp>

<prod_limits><subscript>(n=1)<superscript>(<pi><over>(2) <sp>
<sum_limits><subscript>(n=1)<superscript>(<pi><over>(2)

<ENDMATH>

This code fragment may have the following output:

j ht
n=l n=l n=l

Mathematical Functions

In addition to the operations and special functions listed in Table 9-3, you
can specify mathematical functions using any of the tags listed in Table 9-4.
These tags all let you specify the tag with or without an argument. If you
specify an argument, it is placed in parentheses following the function name.
For example:

<MATH>(<SIN>(d))

This produces: sin(d).

Table 9-4 Tags for Mathematical Functions

Tag

<ARCCOS>

<ARCSIN>

<ARCTAN>

<ARG>

<COS>

<COSH>

<COT>

<COTH>

<CSC>

<DEG>

<DET>

<DIM>

<EXP>

Function

arc cos

arcs in

arc tan

arg

cos

cosh

cot

co th

csc

deg

<let

dim

exp

9-151

<MATH>

9-152

Table 9-4 (Cont.) Tags for Mathematical Functions

Tag Function

<GCD> gcd

<HOM> horn

<INF> inf

<KER> ker

<LG> lg

<LIM> lim

<LIMINF> lim inf

<LIMSUP> lim sup

<LN> ln

<LOG> log

<MAX> max

<MIN> min

<MOD> mod

<PMOD> (mod n)

<PR> Pr

<SEC> sec

<SIN> sin

<SINH> sinh

<SUP> sup

<TAN> t~

<TANH> tanh

For example, the following:

<LIST>(UNNUMBERED)

<le><math>(
<sin>2<math_char>(theta)

<equals>2<sin><math_char>(theta)<cos><math_char>(theta)

<le><math>(
O(n <log>n <log><log>n)
)

<le><math>(
<pr>(X >x)= <exp>(-x/<math_char>(mu))
)

<le><math>(
<max><subscript>(1<math_char>(geq)n<math_char>(geq)m)
<log><subscript>(2)P<subscript>(n)

<le><math>(
<lim><subscript>(x<to>O)<group>(

<sin>x<over>(x))
<equals>!
)
<END LIST>

<MATH>

Produce:

•
•
•
•
•

sin 2() = 2 sin () cos ()

O(nlognlog logn)

Pr(X > x) = exp(-x/µ)

max1~n~m log2 Pn

ll·m sinx = l
x-+0 x

Delimited Expressions

To produce delimited expressions in mathematics, you must use one of the
following pairs of tags:

• <LBAR> and <RBAR> -for opening and closing vertical bars

• <LBRACE> and <RBRACE> -for opening and closing curly braces

• <LBRACKET> and <RBRACKET> -for opening and closing square
brackets

• <LCEIL> and <RCEIL> -for opening and closing ceiling delimiters

• <LFLOOR> and <RFLOOR> -for opening and closing floor delimiters

• <LPAREN> and <RPAREN> -for opening and closing parentheses.

The text formatter automatically assumes that text within these pairs is to be
grouped, and it sizes the delimiters automatically.

For example:

<MATH>(display)
<group>(

C<subscript>(dg)
) =

<fraction>(<math_char>(partial)Q<subscript>(d)\
<math_char>(partial)V<subscript>(g))

-C<subscript>(oxt)

[0.5
+

<lparen>f<subscript>(O) DVG -
<group>(2f<subscript>(O) V<subscript>(com)<over>(f<subscript>(1))
)

<rparen>
<group>(1 <over>(f<subscript>(1)<superscript>(2)))

<ENDMATH>

This produces:

8Qd [(2foVcom) 1] Cdg = avg = -Coxt 0.5 + f oDVG - ft If

9-153

<MATH>

9-154

Matrices and Cases

You can construct matrices and case constructs using the tags provided with
<MATRIX> and <CASES> .

The <MATRIX> tag has the format:

[

BRACES]
<MATRIX> (BRACKETS

VERTICAL _RULE

Where the keywords BRACES, BRACKETS, and VERTICAL-RULE override
the default matrix delimiter, parentheses.

When you construct a matrix, each row in the matrix must be specified using
the <MATRIX_ROW> tag. You can specify a maximum of nine columns for
the row. The matrix must be terminated with the <ENDMATRIX> tag. For
example:

<matrix>(brackets)
<matrix_row>(A)
<matrix_row>(B)
<matrix_row>(C)
<matrix_row>(D)

<endmatrix>

This simple, one-column matrix may produce the following output:

A more complex example shows how to code a multi-column matrix:

<math>(display)
<det><matrix>(vertical_rule)

<matrix_row>(c<subscript>(O)\c<subscript>(1)\
c<subscript>(2)\<dots>\c<subscript>(n))

<matrix_row>(c<subscript>(1)\c<subscript>(2)\
c<subscript>(3)\<dots>\c<subscript>(n+1))

<matrix_row>(c<subscript>(2)\c<subscript>(3)\
c<subscript>(4)\<dots>\c<subscript>(n+2))

<matrix_row>(<vdots>\<vdots>\<vdots>\<vdots>)
<matrix_row>(c<subscript>(n)\c<subscript>(n+1)\

c<subscript>(n+2)\<dots>\c<subscript>(2n))
<endmatrix> > 0.

<endmath>

Would produce:

<let

Co Ct
Ct C2
C2 C3

Cn Cn+l

C2 Cn

C3 Cn+l
C4 Cn+2

Cn+2 C2n

>0.

<MATH>

<CASES> is similar to <MATRIX>, but it produces only a large left-hand
brace; there is no closing delimiter. It is specified as:

<MATH>(display)
<cases>
<case_row>(1/3\if\0> x\;)
<case_row>(2/3\if\3< x\;)
<case_row>(O\elsewhere.)
<endcases>
<ENDMATH>

This might produce:

{

1/3
2/3
0

if 0 > x;
if 3 < x;
elsewhere.

EXAMPLES

il The circumference of a circle is calculated using the
formula <MATH>(c<equals><pi>r<superscript>(2)).

This example illustrates a simple mathematical expression used in the text of a
sentence. This example produces: "The circumference of a circle is calculated
using the formula c = 7rr2 ."

<MATH>(DISPLAY)
vsize <equals> psize <minus>(<minus>topglue) <minus> topdepth <minus> footerglue
<ENDMATH>

This example produces:

vsize = psize - (-topglue) - topdepth - f ooterglue

Note that the parenthetical expression following the first <MINUS> tag must
have a space in front of it; otherwise the expression will be interpreted as an
argument to <MINUS>.

<LIST>(NUMBERED)
<le><MATH>(1<over>(2))
<le><MATH>(n+1<over>(3))
<le><MATH>(<choose>(N+1\3))
<le><MATH>(<sum><subscript>(n=1)<superscript>(3)Z<subscript>(n)<superscript>(2))
<END LIST>

This list of simple inline expressions produces:

1 1
2

2 n+1
3

3 (N;t)

4 E~=1 z~

9-155

<MATH>

<MATH>(DISPLAY)
<GROUP>(
a<over>(x<plus>y<superscript>(3))
)

<EQUALS> <SQRT>(<times><pi>)
<ENDMATH>

This example illustrates how to use the <GROUP> tag to indicate the order
of operation. Its output is:

a -- = v'*'i
x+y3

Note what the output would be if the <GROUP> tag is not present:

a

~ <MATH>(total = A + B - C * D / E)

In this example, the characters representing the mathematical operations are
used directly. The output is: total= A+ B - C * D/E. Note that this is
equivalent to:

<MATH>(total <EQUALS> A <PLUS> B <MINUS> C <TIMES> D <DIVIDED_BY> E)

~ <MATH>(--)This begins a comment line.

This example illustrates how to use the <MATH> tag to generate true minus
signs in your SDML files. This example results in:

--This begins a comment line.

~ <MATH>(DISPLAY\widget_equation)
widgets = crickets + bats
<ENDMATH>
<p>As <REFERENCE>(widget_equation) shows, the relationship between
bats and widgets must include crickets.

This example shows how you may use the <REFERENCE> tag to refer to an
equation. This example may produce the following output:

9-156

widgets = crickets + bats (9-1)

As (9-1) shows, the relationship between bats and widgets must include
crickets.

<MATH_CHAR>

<MATH_CHAR>

Creates a special mathematical symbol.

FORMAT <MATH_CHAR> (keyword)

ARGUMENTS keyword

related tags

restrictions

A keyword indicating the special symbol you want to access. The keywords,
and the symbols they produce, are listed in Table 9-5.

• <MATH> -provides tags for operations in constructing mathematical
expressions.

• <MCS> -provides access to special characters available in the DEC
Multinational Character Set.

• <SPECIAL_CHAR>

• The <MATH_CHAR> tag is invalid in the monospaced example tags.

• The characters produced using <MATH_CHAR> are sized only for normal
text sizes and therefore will not produce good visual results in header
levels, text in the OVERHEADS doctype, and so on.

required None.

terminator

DESCRIPTION Table 9-5 summarizes the keywords and special symbols you can access with
the <MATH_CHAR> tag.

Table 9-5 <MATH_CHAR> Symbols

Keyword Symbol

The Greek Letters

ALPHA Q

BETA (3

GAMMA 1

DELTA 8

EPSILON €

VAREPSILON c

ZETA ~

ETA
"' THETA (}

9-157

<MATH_CHAR>

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

The Greek Letters

VARTHETA {)

IOTA

KAPPA "'
LAMBDA .X

MU µ

NU v

XI e
OMICRON 0

Pl 7r

VARPI w

RHO p

VARRHO e
SIGMA u

VARSIGMA c;

TAU T

UPSILON v

PHI <P

VARPHI r.p

CHI x
PSI 1/;

OMEGA w

The Uppercase Greek Letters

UPPERCASE_ALPHA A

UPPERCASE_BET A B

UPPERCASE_GAMMA r
UPPERCASE_DEL TA L1

UPPERCASE_EPSILON E

UPPERCASE_ZET A z
UPPERCASE _ET A H

UPPERCASE_ THETA e
UPPERCASE_IOT A I

UPPERCASE_KAPPA K

UPPERCASE_LAMBDA A

UPPERCASE_MU M

UPPERCASE_NU N

UPPERCASE_XI

9-158

<MATH_CHAR>

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

The Uppercase Greek Letters

UPPERCASE_OMICRON

UPPERCASE_PI

UPPERCASE _RHO

UPPERCASE _SIGMA

UPPERCASE_ TAU

UPPERCASE_UPSILON

UPPERCASE_PHI

UPPERCASE_CHI

UPPERCASE_PSI

UPPERCASE_OMEGA

The Ordinal Operators

ALEPH

ANGLE

BACKSLASH

BOT

CLUBSUIT

DIAMONDSUIT

DOUBLE_ VERT

ELL

EMPTY SET

EXISTS

FLAT

FORA LL

HBAR

HEARTSUIT

IMATH

IM

INFTY

JMATH

NABLA

NATURAL

NEG

PARTIAL

PRIME

RE

SHARP

0

II

p

E

T

T

<P

x
I//

[}

N

L

\
J_

•
0

II
f,

0
:J

~

v
n
<::>

00

a

9-159

<MATH_CHAR>

9-160

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

The Ordinal Operators

SPADESUIT •

SURD J
TOP T

TRIANGLE 6.

WP ~

Binary Operators

AMALG II

AST *
BIGCIRC 0
BIGTRIANGLEDOWN \l

BIGTRIANGLEUP 6.

BULLET •

CAP n
COOT

CIRC o

CUP u
DAGGER t
DDAGGER +
DIAMOND o

DIV

MP

ODOT

OM I NUS

OPLUS

OS LASH

OT I MES

=f

0

e
EB

0

®

<MATH_CHAR>

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

Binary Operators

PM

SETMINUS

SQ CAP

SQ CUP

STAR

TIMES

TRIANGLELEFT

TRIANGLERIGHT

UPLUS

VEE

WEDGE

WR

±
\
n

u

*
x

<l

I>

v
/\

9-161

<MATH_CHAR>

9-162

Table 9-5 (Cont.)

Keyword

Relational Operators

APPROX

ASYMP

BO WT IE

CONG

DASHV

DOTEQ

EQUIV

FROWN

GEO

GG

IN

LL

LEO

MID

MODELS

NI

NOTSUBSETEQ

NOT_APPROX

NOT_ASYMP

NOT_CONG

NOT_EQUIV

NOT_EQ

NOT_GEQ

<MATH_CHAR> Symbols

Symbol

[X]

~

»
E

«
~

I
F=

<MATH_CHAR>

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

Relational Operators

NQT_GT />
NQT_LEQ f;

NOT_LT f:.
NQT_PRECEQ ~
NQT_PREC ~
NOT_SIMEO '!-
NQT_SIM rf

NOT _SQSUBSETEQ !l
NOT _SQSUPSETEQ i'.!
NQT_SUBSET <t-

NOT_SUCCEQ ~
NQT_SUCC 'f
NOT _SUPSETEQ ~
NOT_SUPSET ~
PARALLEL II
PERP J_

PRE CEO ::;
PREC -<
PRO PTO ex

SIMEQ ~

SIM

SMILE

SOSUBSETEO ~

SQSUPSETEQ ~

SUBSETEQ ~

SUBSET c
SUCCEQ '.'.:::

succ >-
SUPSETEO 2
SUPSET ~

VD ASH f-

9-163

<MATH_CHAR>

9-164

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

Arrows

DOUBLE_DOWNARROW .J).

DOUBLE_LEFT ARROW ~

DOUBLE_LEFTRIGHT ARROW <=>

DOUBLE_LONGLEFT ARROW <==
DOUBLE_LONGLEFTRIGHT ARROW <==>
DOUBLE_LONGRIGHT ARROW ==>

DOUBLE_RIGHT ARROW =>

DOUBLE_UPARROW '(t

DOUBLE_UPDOWNARROW ~

DOWNARROW !
HOOKLEFT ARROW +--->

HOOKRIGHT ARROW ~

LEFT ARROW r-

LEFTHARPOONDOWN

LEFTHARPOONUP

LEFTRIGHT ARROW

LONGLEFT ARROW

LONGLEFTRIGHT ARROW

LONGMAPSTO

LONGRIGHT ARROW

MAPSTO

NEARROW

NWARROW

RIGHT ARROW

RIGHTHARPOONDOWN

RIGHTHARPOONUP

RIGHTLEFTHARPOONS

SE ARROW

SWARROW

UPARROW

UPDOWNARROW

""' /
i
1

<MATH_CHAR>

Table 9-5 (Cont.) <MATH_CHAR> Symbols

Keyword Symbol

Delimiters

LANG LE

RANGLE

LB RACE

RBFY~CE

LB RACK

RB RACK

LCEIL

RCEIL

LFLOOR

RFLOOR

(

)

{

}

[

l
r
1
l
J

9-165

<MCS>

<MCS>

Labels a character in the DEC Multinational Character Set.

FORMAT <MCS> (character)

ARGUMENTS character
Specifies the character referred to. The character may be any one of the
following:

Argument Character Decimal Value

spanish_inverted_exclamation 161

cents ¢ 162

british_pound £ 163

[reserved] 164

japanese_yen ¥ 165

[reserved] 166

section_sign § 167

general _currency 181 168

copyright © 169

feminine_ordinal .a 170

double_open_angle_brackets « 171

[reserved] 172

[reserved] 173

[reserved] 174

[reserved] 175

degree 176

plus_or _minus ± 177

superscript2 2 178

superscript3 3 179

[reserved] 180

micro µ 181

pi I crow ~ 182

raised_period 183

[reserved] 184

superscript 1 185

masculine_ordinal Q 186

double_close_angle_brackets » 187

one_fourth ~ 188

9-166

<MCS>

Argument Character Decimal Value

one_half % 189

[reserved] 190

spanish_inverted_question l 191
cap_a_grave A 192

cap_a_acute A 193

cap_a_circumflex A 194
cap_a_tilde A 195
cap_a_umlaut A. 196
cap_a_ring A 197

cap_ae)E 198

cap_c_cedilla c; 199
cap_e_grave E 200
cap_e_acute E 201

cap_e_circumflex E 202

cap_e_umlaut E 203
cap_i_grave 204

cap_Lacute 205

cap_Lcircumflex 206
cap_i_umlaut T 207

[reserved) 208

cap_n_tilde N 209
cap_o_grave 6 210
cap_o_acute 6 211

cap_o_circumflex 6 212

cap_o_tilde 6 213

cap_o_umlaut 0 214

cap_oe CE 215

cap_o_slash 0 216

cap_u_grave 0 217

cap_u_acute 0 218

cap_u _circumflex 0 219

cap_u_umlaut 0 220

cap_y_umlaut y 221

[reserved] 222
german_ss B 223

small_a_grave a 224

small_a_acute a 225
small_a_circumflex a 226
small_a_tilde a 227

9-167

<MCS>

related tags

restrictions

required
terminator

DESCRIPTION

9-168

Argument Character Decimal Value

small _a_umlaut a 228
small_a_ring a 229
small_ae ~ 230
small_c_cedilla ~ 231
small_e_grave e 232
small_e_acute e 233
small _e_circumflex e 234
small _e_umlaut e 235
small_Lgrave 236
small_i_acute 237
small _Lcircumflex 238
small _i_umlaut 'i 239

[reserved] 240
small_n_tilde ii 241
small_o_grave 0 242
small_o_acute 6 243
small_o_circumflex 6 244
small_o_tilde 0 245
small _o_umlaut 0 246
small_oe ce 247
small_o_slash 0 248
small_u_grave u 249
small _u _acute u 250
small _u _circumflex G 251
small_u_umlaut Li 252
small_y_umlaut y 253

[reserved] 254

• <MATH_CHAR>

• <SPECIAL_CHAR>

Invalid in math.

None.

The <MCS> tag labels a character in the DEC Multinational Character Set.
Note that this tag is required only when the input device (terminal) you are
using does not accept or display these special characters.

EXAMPLE
<P>The DEC Multinational Character Set includes the currency sign
for the Japanese yen (<MCS>(japanese_yen)).

This example may produce the following output:

<MCS>

The DEC Multinational Character Set includes the currency sign for the
Japanese yen(¥).

9-169

<NESTED_TABLE_BREAK>

< NESTED_T ABLE_BREAK>

Marks a place that a nested table may be broken across pages.

FORMAT <NESTED_ TABLE_BREAK>

ARGUMENTS None.

related tags

restrictions

required
terminator

DESCRIPTION

9-170

• <TABLE>

• <TABLE_FILE>

• <TABLE_SPACE>

• <REFERENCE>

The <NESTED_TABLE_BREAK> tag must be used within a nested table, that
is, a table begun within a table row. Also, breakpoints for long tables nested
inside multipage tables have the following limitations:

• The first level table must not use the KEEP attribute.

• The first level table must be set up with only two or three columns.

None.

The <NESTED_TABLE_BREAK> tag marks a place that a nested table may be
broken across pages. A nested table is a table that is coded within another
table. You create a nested table by placing the appropriate table tags within
an argument to the <TABLE_ROW> tag of the outer table. See the Example
section in this tag description for an example of this coding.

If you place a <NESTED_ TABLE_BREAK> tag in a nested table that contains
headings, the headings are not repeated on subsequent pages. Also, a rule
may be output at the point that the tag is included, thereby appearing to end
the nested table which continues on the next page.

<NESTED_TABLE_BREAK>

EXAMPLE
<TABLE>(Table Caption\tab_log_name)
<TABLE_SETUP>(2\10)
<TABLE_HEADS>(First Head\Second Head)
<TABLE_ROW>(Item Here\Definition for Item here.)

<TABLE_ROW>(Item Here\Definition that tells about nested table.
<COMMENT>(*nested table begins*)

<TABLE>
<TABLE_SETUP>(2\15)
<TABLE_ROW>(Item\Text of item description here)
<TABLE_ROW>(Item\Text of item description here)

<TABLE_ROW>(Item\Text of item description here)
<TABLE_ROW>(Item\Text of item description here)
<NESTED_TABLE_BREAK>
<TABLE_ROW>(Item\Text of item description here)

<TABLE_ROW>(Item\Text of item description here)
<NESTED_TABLE_BREAK>
<TABLE_ROW>(Item\Text of item description here)

<TABLE_ROW>(Item\Text of item description here)

<TABLE_ROW>(Item Here\Definition for Item here.)
<TABLE_ROW>(Item Here\Definition for Item here.)
<ENDTABLE>

<COMMENT>(*nested table ends*)

<TABLE_ROW>(Item Here\Definition for Item here.)
<TABLE_ROW>(Item Here\Definition for Item here.)
<TABLE_ROW>(Item Here\Definition for Item here.)
<ENDTABLE>

This example illustrates the coding of the <NESTED_TABLE_BREAK> tag.

9-171

<NEWTERM>

<NEWTERM>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Labels a term first introduced into the text in order to emphasize the term.

<NEWTERM> (term)

term
Specifies the word just introduced.

• <KEYWORD>

• <VARIABLE>

Invalid in math.

None.

The <NEWTERM> tag labels a term first introduced into the text in order to
emphasize the term. In output, the term will be italicized.

<P>To begin a session at the terminal, you must first <NEWTERM>(log in).
Logging in consists of getting the system's attention and identifying yourself as
an authorized user.

9-172

This example may produce the following output:

To begin a session at the terminal, you must first log in. Logging in consists
of getting the system's attention and identifying yourself as an authorized
user.

<NOTE>

FORMAT

<NOTE>

Labels a note, caution, warning, or some other portion of text to which
you wish to draw attention.

<NOTE> [(heading-text)}
note-text

<ENDNOTE>

ARGUMENTS heading-text

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Specifies text for a heading other than the default heading "Note:".

note-text
Specifies the text of the note. A paragraph is implied here, so no <P> tag is
needed.

None.

None.

<ENDNOTE>

The <NOTE> tag labels a note, caution, warning, or some other portion of
text to which you wish to draw attention. A note will be formatted differently
depending on the doctype specified on the DOCUMENT command line.

<NOTE>(Caution)You should abort the system generation command
procedure only after Phase 1 has completed processing.
<ENDNOTE>

This example might produce the following output, depending on the doctype
specified:

Caution: You should abort the system generation command procedure only after
Phase 1 has completed processing.

9-173

<OPAREN>

<OPAREN>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Supplies an unmatched opening parenthesis in an argument to a tag.

<OPAREN>

None.

• The following tags label other characters that must be tagged when they
occur in an argument to a global tag:

<AMPERSAND>
<BACKSLASH>
<CPAREN>
<VBAR>

None.

None.

The <OPAREN> tag can be used anywhere to insert an open parenthesis
character into text. However, it is only beneficial (in terms of keystrokes and
control of the output) as an unmatched opening parenthesis in an argument
passed to a tag.

An unmatched parenthesis in an argument can cause errors when processed
because the parentheses are used to determine the beginning and ending
of an argument list. The <OPAREN> tag inserts the opened parenthesis
character but is not evaluated as an opened parenthesis.

<SUBHEAD1>(Using an Opened Parenthesis <PARENDCHAR>(<OPAREN>) in an Argument to a Tag)

This example may produce the following output:

Using an Opened Parenthesis (() in an Argument to a Tag

9-174

<ORDER_NUMBER>

<ORDER_NUMBER>

Labels the order number or part number that may appear on the title page
of a book.

FORMAT <ORDER_NUMBER> (number)

ARGUMENTS number
Specifies the order number for the book.

related tags None.

restrictions The <ORDER_NUMBER> tag is valid only within a title page.

required None.

terminator

DESCRIPTION The <ORDER_NUMBER> tag labels the order number or part number that may
appear on the title page of a book.

EXAMPLE See the example in the <FRONLMATTER> discussion.

9-175

<P>

<P>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLES
<P>

Marks the beginning of a new paragraph.

<P>

None.

• <CP>

• <LINE>

• <CENTER_LINE>

• <RIGHLLINE>

None.

None.

The <P> tag marks a new paragraph of text. An internal counter keeps track
of the context in which the new paragraph begins, so that you can freely use
<P> tags inside lists and in other contexts where you want to start a new

paragraph, while maintaining the same logical level of discussion.

A <P> tag is expected after every heading. If you dO not immediately start a
new paragraph after a heading, you must label the beginning of another text
element, such as a list.

D
Here is a sentence or two in a paragraph. The following paragraph
will show the <TAG>(P) tag at work separating paragraphs.
<P>Here is the second paragraph so that you can observe the relationship
it has to the first.

9-176

This example may produce the following output, depending on the doctype
specified:

Here is a sentence or two in a paragraph. The following paragraph will show
the <P> tag at work separating paragraphs.

Here is the second paragraph so that you can observe the relationship it has
to the first.

<P>

~ <list>(unnumbered)

<endlist>

<le>Oranges
<le> Apples

<p>Note that there are several types of apples<hellipsis>
<le>Bananas

This example shows how a paragraph can be used within a list. This example
may produce the following output:

• Oranges

• Apples

Note that there are several types of apples ...

• Bananas

9-177

<PAGE>

<PAGE>

FORMAT

Breaks a page of text, forcing the text that follows the tag to begin on a
new page.

<PAGE> [({EVEN })]
ODD

ARGUMENTS EVEN
ODD

related tags

restrictions

Specifies whether the new page of output should have an even or an odd
page number.

Note that if you use one of these arguments, you might have two consecutive
pages of output numbered such as 13 or 15. There will be no blank page of
output between the pages.

• <FINAL_CLEANUP> -page_break

The arguments EVEN and ODD are invalid in tables.

Invalid in math.

required None.

terminator

DESCRIPTION The <PAGE> tag breaks a page of text, forcing the text that follows the tag to
begin on a new page.

9-178

Note: Use this tag only in special cases, where a page must be broken at that
point. This tag is not for general use, such as for overall pagination;
this can jeopardize the output format and device independence of your
generically coded source file.

EXAMPLE
<HEAD1>(Survey Results)

<PAGE>
<HEAD2>(Brand X)

<PAGE>
<HEAD2>(Brand Z)

<PAGE>

This example shows the coding of a short document in which the information
might be easier to index when specific headings start on new pages.

9-179

<PARENDCHAR>

<PARENDCHAR>

FORMAT

ARGUMENTS

Labels a character that will appear alone within parentheses to achieve
better spacing.

<PARENDCHAR> (char)

char
Specifies the character within parentheses. Specify only the character. The
parentheses will be added during processing.

related tags None.

restrictions Invalid in math.

required None.

terminator

DESCRIPTION Frequently writers use the name for a special character followed by that
character in parentheses. For instance, in discussing wildcard characters it is
natural to say, "The percent sign (%)is the wildcard for a single character."

9-180

A problem in using proportionally spaced fonts is that single characters
surrounded by parentheses can look quite crowded, like this: "The percent
sign (%) is the wildcard for a single character." (Compare the percent sign
in parentheses in this paragraph to the percent sign in parentheses in the
previous paragraph; you can see the slight crowding at the top left corner of
the percent sign.)

Typographers put a small amount of space, called a "thin space," between the
parentheses and the single character to achieve a balance. When you use the
<PARENDCHAR> tag, that thin space is added for you.

You should use the <PARENDCHAR> tag to label characters that are small or
that are more vertical than horizontal in shape.

When using the <PARENDCHAR> tag, do not enter the parentheses that will
surround the character. The parentheses will be added during processing.

<PARENDCHAR>

EXAMPLE
<P>The tilde <PARENDCHAR>(-) is used to prevent the word
following it from becoming a main entry in the index.

This example may produce the following output:

The tilde (,.....,) is used to prevent the word following it from becoming a main
entry in the index.

Without the <PARENDCHAR> tag, your output would looklike this:

The tilde (,.....,) is used to prevent the word following it from becoming a main
entry in the index.

9-181

<PART>

<PART>

FORMAT

ARGUMENTS

Labels the start of a major division within a document, and starts it on a
new page.

<PART> [(zone-title\ symbol-name)}

zone-title
Specifies the title for this part of your document.

symbol-name
Specifies the term that you assign to this part and then use to reference the
part throughout your document. The symbol-name argument is required only
if the part will be included in a bookbuild.

Symbol-names must not exceed 31 characters, and must only contain
alphabetic letters, numbers, or underscores in them. Do not begin a symbol­
name with an underscore.

restrictions None.

required None.

terminator

DESCRIPTION A document may be logically divided into units called "Parts," which may
consist of the following:

9-182

• A set of chapters or appendixes whose contents are logically related.

• A collection of units of logically related information, for example,
reference items in the SOFTWARE doctype.

The <PART> tag begins a new part and optionally assigns a title to it. Like
chapters, parts are automatically numbered. If you specify a symbol-name
argument, a symbol table entry is created for the part.

The <PARLPAGE> tag creates a divider page for a part and optionally
provides an abstract describing information in the part.

By default, the part page is assigned the next odd page number in the
current numbering sequence in a document that does not have chapters.
If RENUMBER is specified in the <ENDPARLPAGE> tag, the part page
is assigned the page number of l, and the next printed page of output is
numbered page 3.

EXAMPLES
iJ <part>(Reference Information\ref_part)

<part_page>
<title>(<reference>(ref_part)\<reference>(ref_part\text))
<abstract>
This part contains reference chapters. <reference>(intro_part)
contains tutorial information.
<endabstract>
<endpart_page>

<PART>

This example shows how to code the tags <PART> and <PARLPAGE>,
assigning a zone-title and a symbol-name to a part.

<part>(Introduction\intro_part)
<part_page>
<title>(<reference>(intro_part)\<reference>(intro_part\text))
<abstract>
This part contains introductory chapters. <reference>(ref_part)
contains more detailed reference information.
<endabstract>
<endpart_page>

This example results in the following if this is the first part specified in the
document.

• A symbol table entry for the symbol-name intro_part, whose value is 1
and whose text is "Introduction."

• The <PARLPAGE> tag creates a new page of output. The page is
assigned the next odd page number in the numbering sequence.

• The title: "PART I Introduction" will be printed at the top of the page.
The use of uppercase roman numerals to display the part number is a
document-type-specific design attribute.

• The abstract text is printed.

9-183

<PART_PAGE>

<PART_PAGE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE
<PART_PAGE>
<TITLE>(Part II)
<ABSTRACT>

Begins a divider page for a new part of a document.

<PART_PAGE>

None.

• <TITLE>

• <RUNNING_ TITLE>

• <ABSTRACT>

None.

<ENDPARLPAGE>

The <PART> tag divides a document into one of its major constituent parts.
The <PARLPAGE> tag (together with <ENDPARLPAGE>) simply inserts an
extra page in between major sections.

By labeling a, part page, you also define three related tags: <TITLE>,
<ABSTRACT>, and <RUNNING_TITLE>. You can use these related tags to

put either a title or an abstract on the page (or both), and you can determine
the running title for the text that follows the part page as well.

Part II provides reference information on each global tag in SDML.
<END ABSTRACT>
<RUNNING_TITLE>(Descriptions of Global Tags)
<ENDPART_PAGE>

9-184

This example illustrates the use of both the <PARLPAGE> and <ENDPARL
PAGE> tags, and the related tags that can be used to put a title on the page,
print a brief abstract, and set the running title for the text that follows.

<PREFACE>

<PREFACE>

Labels the beginning of a preface.

FORMAT <PREFACE> [(page-number)}

ARGUMENTS page-number
Specifies the page number on which you wish the preface to begin. You must
specify the number with an Arabic numeral (the number in the formatted
result will be a lowercase Roman numeral). If you do not specify a number,
the default page on which to begin the preface is Roman numeral five.

The page-number can be either a positive or negative value.

related tags None.

restrictions This tag must be used in the context of a <FRONLMATTER> tag.

required <ENDPREFACE>

terminator

DESCRIPTION If the preface of a document is placed after the table of contents, you must
specify the starting page number for the preface. You cannot know what this
number will be until the document is nearly completed and you know what
the page count is for the table of contents.

The table of contents file usually begins~ on page 3, which is normally output
as iii. When you have examined the table of contents output, you then can
know the table of contents' last page. Specify the next odd number to set the
correct page number for the preface.

EXAMPLE See the example in the discussion of the <FRONLMATTER> tag.

9-185

<PREFACE_SECTION>

< PREFACE_SECTION >
Creates a major section in the preface of a book to provide information
such as a summary of changes to the book.

FORMAT <PREFACE_SECTION> (title)

ARGUMENTS title

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

9-186

Specifies the title given to this preface section.

• <PREFACE>

The <PREFACE_SECTION> tag is valid only within the front matter.

None.

The <PREFACE-SECTION> tag creates a major section in the preface of a book
to provide information such as a summary of changes to the book.

See the example in the discussion of the <FRONLMATTER> tag.

<PRINT_DATE>

<PRINT_DATE>

Inserts a print date line on the copyright page.

FORMAT <PRINT_DATE> (date)

ARGUMENTS date
Specifies official printing date information for the book.

related tags None.

restrictions The <PRINLDATE> tag is valid only within a copyright page, within
<FRONLMATTER> and <ENDFRONLMATTER> .

required None.

terminator

DESCRIPTION The <PRINLDATE> inserts a print date line on the copyright page.

EXAMPLE See the example in the <FRONLMATTER> tag.

9-187

<PROFILE>

<PROFILE>

Indicates that the source file is a profile and that a book build is to be
performed.

FORMAT <PROFILE>

ARGUMENTS None.

related tags

restrictions

required
terminator

DESCRIPTION

9-188

• <ELEMENT>

• <INCLUDES_FILE>

None.

<END PROFILE>

A profile of a book is required in order to build (process) a book. A book's
profile begins with a <PROFILE> tag and ends with the <ENDPROFILE> tag.
Between the <PROFILE> and <ENDPROFILE> tags, each element of the book
is introduced with an <ELEMENT> tag.

Only those files listed with <ELEMENT> tags are included in the book during
the bookbuild. They should be listed in the profile in the order in which they
are presented in the book.

Within a profile file, never include a tag that contains text. Also, do not place
an <INCLUDE> tag in a profile.

There are several optional tags that can be included between the <PROFILE>
and <ENDPROFILE> tags, other than <ELEMENT> tags. These include the
following:

• <INDEX_FILE>

• <CONDITION> and <ENDCONDITION>

• < CONTENTS_FILE >

• <COMMENT> and <ENDCOMMENT>

• <INCLUDES_FILE>

See Chapter 4 for more information on bookbuilding.

EXAMPLE
<PROFILE> <COMMENT>(***Profile for How to Use a Computer***)

<CONTENTS_FILE> <COMMENT>(***insert table of contents here***)
<ELEMENT>(Mydisk: [Mydirectory]intro_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]applications_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]tools_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]conclusion_chap.sdml)
<ELEMENT>(Mydisk: [Mydirectory]questions_app.sdml)

<INDEX_FILE> <COMMENT>(***insert index here***)
<END PROFILE>

<PROFILE>

This example illustrates the profile of a book that contains a table of contents,
four chapters, an appendix and an index. The profile shown in this example
must be in a file by itself. The file might be called by a name that indicates it
is a profile, such as "COMPUTER_PROFILE.SDML."

Each of the files named in the <ELEMENT> tags should begin with one of the
book element tags, such as <CHAPTER> (Introduction\introduction_chap).

9-189

<QUOTE>

<QUOTE>

FORMAT

Labels quoted material in the output.

<QUOTE> (quote-text)
or

<QUOTE>
quote-text

<ENDQUOTE>

ARGUMENTS quote-text

related tags

Specifies the quoted text.

• The following tags are used to label single occurrences of a quotation
mark:

<DOUBLE_QUOTE>
<SINGLE_QUOTE>

restrictions None.

required <ENDQUOTE> -Required if the text is not passed as an argument.

terminator

DESCRIPTION The reason for the <QUOTE> tag lies in a mismatch between conventions
used in the typesetting world and conventions used in the computing world.
Your terminal keyboard has two possible characters you can use for quotation
marks: /1 (ASCII 34) and' (ASCII 39). Neither distinguishes between open
quotation marks and close quotation marks. You use the same character twice
to enclose a word in quotation marks:

9-190

"a quoted string"

Typesetters, on the other hand, scrupulously distinguish between open
quotation marks and closed quotation marks. The former look like small
sixes; the latter, like small nines. Look carefully at a typeset document and
you will immediately see the difference between open and close quotation
marks.

<QUOTE>

In order to obtain the proper quotation marks in your typeset output, you
must label material inside quotation marks with the <QUOTE> tag. If you
use the keyboard quote character instead of the <QUOTE> tag, the open and
close quotes in your typeset document will both look like small, double nines.
If you use the tag, your output will contain the proper opening and closing
quotation marks for the font in which your text is set.

EXAMPLES

D <P>The symbol B will be defined to be the string <QUOTE>(April
showers).

This example may produce the following output:

The symbol B will be defined to be the string /1 April showers."

Note the placement of the period at the end of the sentence. If you want
a punctuation mark enclosed outside the quotes, you must not make the
punctuation mark part of the argument to the <QUOTE> tag.

<P>Abraham Lincoln once wrote, <QUOTE> I claim not to have controlled
events, but confess plainly that events have controlled me. <ENDQUOTE>

This example may produce the following output:

Abraham Lincoln once wrote, /1 I claim not to have controlled events, but
confess plainly that events have controlled me. "

9-191

<REFERENCE>

<REFERENCE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

9-192

Makes a reference to a symbol-name in a book element or text element.
When processed, <REFERENCE> is replaced with the current value of the
symbol-name.

<REFERENCE> (symbol-name[\ keyword})

symbol-name
Specifies the name of a symbol assigned in a book element or text element
tag (for example, <HEADx> or <TABLE>).

Make sure that the symbol-names, that you define in the book element or
text element tags, do not exceed 31 characters, and only contain alphabetic
letters, numbers, or underscores in them. Do not begin a symbol-name with
an underscore.

keyword
Specifies an optional keyword indicating the type of text replacement to occur
in conjunction with the reference:

Keyword

null

VALUE

TEXT

FULL

None.

None.

None.

Reference Output

Outputs the current value of the symbol and its related
symbol type text, for example "Figure 3-2." This is the
default.

Outputs only the current value of the symbol, for example,
the heading level number or the table number, without any
related text.

Outputs only the text associated with the symbol table
entry, that is, the caption (for figures, tables, and
examples), or the heading-text (for chapter, section
and heading-level tags).

Outputs all information associated with the symbol,
including the value, type, and text.

<REFERENCE>

DESCRIPTION This tag refers to a symbol-name that is specified as an argument in a text or
book element. When processed, the <REFERENCE> tag is replaced with the
current value of the symbol-name that is stored in the cross-reference file.

A second argument to the tag controls the exact output of the reference.
When you do not specify a second argument, the output defaults according to
the symbol type. Table 9-6 summarizes the default output for each type of
text or book element.

Table 9-6 Element Types and Default Output of Symbol-Names

Second Argument to <REFERENCE>

Text Element (null) VALUE TEXT FULL

BOOK TITLE The title argument specified in <DEFINE_BOOK_NAME>.

EXAMPLE Example number number Caption argument Example number,
Caption argument

FIGURE Figure number number Caption argument Figure number, Caption
argument

HEADx Heading number number Caption argument Heading number,
Caption argument

TABLE Table number number Caption argument Table number, Caption
argument

TEXT STRING The text-string argument specified in <DEFINE_SYMBOL>.

Book Elements (null) VALUE TEXT FULL

APPENDIX Appendix letter letter Title argument Appendix letter, Title
argument

CHAPTER Chapter number number Title argument Chapter number, Title
argument

FRONT MATTER None None None None

GLOSSARY None None None None

PART Part number number Title argument Part number, Title
argument

See Chapter 6 for more information on symbol-names and cross-referencing.

EXAMPLES

il <REFERENCE>(lognames_tab) shows ten default system logical names.
<TABLE>(system logical name\lognames_tab)

This example shows the use of <REFERENCE> and <TABLE> to reference the
symbol-name of a table. As shown, the symbol-name "lognames_tab" was
defined in <TABLE> and then referenced with the <REFERENCE> tag. This
example has the following output:

Table 1-4 shows ten default system logical names.

9-193

<REFERENCE>

<P>See Chapters <REFERENCE>(lognames_chap\VALUE) and
<REFERENCE>(filespec_chap\VALUE) to see ...

9-194

This example shows the use of the tag <REFERENCE> to make a chapter
number reference without outputting any related information, such as the
chapter title. This example has the following output:

See Chapters 3 and 4 to see ...

<REVISION>

<REVISION>

FORMAT

ARGUMENTS

related tags

Indicates that the document contains either new or modified information
and enables the output of the <MARK> tag.

<REVISION> [(UPDATE[\ update-info])]

UPDATE
Must be specified if the document is being produced for an update. If
you specify UPDATE, the file must contain the <UPDATE_RANGE> and
<ENDUPDATE_RANGE> tags to indicate the pages to be processed. If no
<UPDATE_RANGE> tags are present, no output will be produced.

update-info
Specifies information that is related to the system version and the date of the
update. If specified, this text appears on the bottom of each page of output in
the update.

• <MARK>

• <UPDATE_RANGE>

restrictions None.

required None.

terminator

DESCRIPTION The <REVISION> tag can be used in any document type for which you want
to indicate to reviewers new or changed information.

This tag enables the <MARK>, <ENDMARK>, <UPDATE_RANGE>, and
<ENDUPDATE_RANGE> tags. By default, these tags are defined for all

document types to be non-operational; thus, if a file is processed without
the <REVISION> tag, they produce no output.

When a file that contains the <REVISION> (UPDATE) tag is processed, the table
of contents and index are handled as follows:

• If the <CONTENTS_FILE> or <INDEX_FILE> tag occurs between the
bounds of <UPDATE_RANGE> and <ENDUPDATE_RANGE>, and
/CONTENTS or /INDEX is specified on the command line, the contents
file or index file is included within the pages for the update range.

• If the <CONTENTS_FILE> or <INDEX_FILE> tag occurs in the file but is
specified outside the bounds of <UPDATE_RANGE> and <ENDUPDATE_
RANGE> tags, and if /CONTENTS or /INDEX is specified on the
command line, the table of contents file or index file is included in
the output file.

9-195

I

<REVISION>

EXAMPLES
ii <DOCTYPE>(SOFTWARE)

<REVISION>

<P>
The following characters are legal in MACR0-11 source programs:
<LIST>(UNNUMBERED)
<LE>The letters A through Z. Both upper- and lowercase letters are
acceptable, although, upon input, lowercase letters are converted to
uppercase.
<MARK>
<LE>Characters in the DEC multinational character set (MCS). A chart
showing the MCS is located in <REFERENCE>(mcs_app),
with a list of directives that support the MCS.
<LE>The digits 0 through 9.
<ENDMARK>
<LE>The characters period <PARENDCHAR>(.) and dollar sign
<PARENDCHAR>($). These characters are reserved for use as Digital
Equipment Corporation system program symbols.
<END LIST>

This example shows the use of the <REVISION> tag in a document that is
extensively revised. The formatted output may be as follows:

The following characters are legal in MACR0-11 source programs:

• The letters A through Z. Both upper- and lowercase letters are acceptable,
although, upon input, lowercase letters are converted to uppercase.

• Characters in the DEC multinational character set (MCS). A chart showing
the MCS is located in Appendix A, with a list of directives that support
the MCS.

• The digits 0 through 9.

• The characters period (.) and dollar sign ($). These characters are
reserved for use as Digital Equipment Corporation system program
symbols.

~ <REVISION>(UPDATE\July 1986)

<UPDATE_RANGE>(3\10)

9-196

This example shows the use of the <REVISION> tag in a manual that was
updated in July of 1986. See the <UPDATE_RANGE> tag for more information
on ide~tifying a section of updated material.

<REVISION_INFO>

<REVISION_INFO>

Labels a section on a title page that provides information on what previous
books have been superseded by the current one.

FORMAT <REVISION_INFO> ([title-text \}information)

ARGUMENTS title-text
Provides heading information. If this argument is not specified, the default
text "Revision/Update Information" is supplied.

information
Provides revision and update information.

related tags None.

restrictions The <REVISION_INFO> tag is valid only within a title page.

required None.

terminator

DESCRIPTION The <REVISION_INFO> tag labels a section on a title page that provides
information on what previous books have been superseded by the current
one.

EXAMPLE See the example in the discussion of the <FRONLMATTER> tag.

9-197

<RIGHT_LINE>

<RIGHT_LINE>

FORMAT

ARGUMENTS

related tags

restrictions

EXAMPLE

Specifies a line of text that is to be right-justified in the current text margin.

<RIGHT_LINE> (text [\ { BIGSKIP }])
SMALLSKIP

text
Specifies a line of text to be set on the right-hand side of the page.

BIGSKIP
SMALLSKIP
Specifies that a set amount of vertical space is to precede the element
identified as a line or block of text. The actual amount of space inserted
is determined by the doctype's design.

• <LINE>

• < CENTER_LINE >

Invalid in monospaced examples and math.

Right-adjusted text must fit within the current text margin. If you specify text
that is too wide, the text formatter issues a warning message, and you should
examine your output.

<P>Please include the following information:
<RIGHT_LINE>(Name)
<RIGHT_LINE>(Address\smallskip)
<RIGHT_LINE>(Phone Number)

This example may produce the following output:

Please include the following information:

9-198

Name

Address
Phone Number

<RULE>

<RULE>

Outputs a rule following headings within a table.

FORMAT <RULE>

ARGUMENTS None.

related tags

restrictions

• <TABLE_ROW>

• <TABLE_HEADS>

•

• <TABLE_UNILHEADS>

Can be used only with an argument to the <TABLE_ROW> , <TABLE_HEADS>
or <TABLE_UNILHEADS> tags.

Must immediately follow the argument text under which the rule is to be
placed.

required None.

terminator

DESCRIPTION You can specify that a horizontal rule should be included in a table by placing
a <RULE> tag inside an argument to one of the following tags:

EXAMPLE

• <TABLE-ROW>

• <TABLE_HEADS>

• <TABLE_UNILHEADS>

The horizontal length of the rule does not correspond to the dimensions of
the table. The horizontal length of the rule equals the width of the table
column (or the spanned columns, if the argument also is preceded by a
 tag).

See the example in the description of the <TABLE_UNIT> tag.

9-199

<S>

<S>

FORMAT

ARGUMENTS

related tags

Labels the system portion of a dialog between user and system in an
interactive example.

<S> (text)

text
Specifies the text of the system message.

• <INTERACTIVE>

• <U>

restrictions Invalid in math.

required None.

terminator

DESCRIPTION The <S> tag labels the system portion of a dialog between the system and

EXAMPLES

a user. An example containing this type of dialog needs to have both parts
identified in order to differentiate the two types of text in the source code, the
output, or both.

The <S> and <U> tags are used also to differentiate the system and user
text inside of examples created with the <EXAMPLE_SEQUENCE> and <EXI>
tags, in the Software Doctype. For more information on this doctype, refer to
the VAX DOCUMENT User Manual, Volume 2.

iJ <P>The system prompt <8>($) indicates you can enter a command.

This example may produce the following output:

The system prompt$ indicates you can enter a command.

9-200

<P>The following example of VAXMAIL contains messages from both
the system and a user of the system: ·
<INTERACTIVE>
<U>(mail)
<S>(MAIL>)<U>(send)
<S>(To:)<U>(nodename: :Courtney)
<S>(%MAIL-E-NOSUCHUSR, no such user COURTNEY at node NODENAME)
<END INTERACTIVE>

<S>

Note that one space is included after a prompt in an <S> tag argument.

This example may produce the following output:

The following example of VAXMAIL contains messages from both the system
and a user of the system:

mail
MAIL> send
To: nodename::Courtney
%MAIL-E-NOSUCHUSR, no such user COURTNEY at node NODENAME

For another example, see the example in the discussion of the
<INTERACTIVE> tag.

9-201

<SAMPLE_ TEXT>

<SAMPLE_TEXT>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

Distinguishes, typographically, an extract of text.

<SAMPLE_ TEXT>

None.

• < CENTER_LINE >

Within the sample text, if you want to show a paragraph, you must label
it with a <P> tag. The <SAMPLE_TEXT> tag does not provide paragraph
spacing.

<ENDSAMPLE_ TEXT>

The <SAMPLE_TEXT> tag labels text that requires distinctive formatting. The
text so labeled will be filled and justified and indented from the normal text
margins.

<P>An evolutionary trend toward niche divergence typically results.
<SAMPLE_ TEXT>
<P>Taken from Brown,T.J.: The Skull of the Pronghorn. The McMullen Company,
1970.
<ENDSAMPLE_TEXT>

9-202

This example may produce the following output:

An evolutionary trend toward niche divergence typically results.

Taken from Brown,T.J.: The Skull of the Pronghorn. The
McMullen Company, 1970.

<SET_APPENDIX_LETTER>

<SET_APPENDIX_LETTER>

Overrides the default appendix letter assigned to an appendix by VAX
DOCUMENT.

FORMAT <SET_APPENDIX_LETTER> (appendix-letter)

ARGUMENTS appendix-letter

related tags

restrictions

Specifies the letter of the appendix. This argument must be a letter from A to
z.

• <APPENDIX>

• <SELCHAPTER_NUMBER>

• The MILSPEC doctype <SELAPPENDIX_NUMBER> tag.

This tag should not be used in a file that will be included in a bookbuild
or element build. Processing this tag in a bookbuild generates a warning
message.

required None.

terminator

DESCRIPTION Use the <SELAPPENDIX_LETTER> tag to override the default appendix letter
created by VAX DOCUMENT. The <SELAPPENDIX_LETTER> tag resets
the current appendix letter; if you specified C as the argument, the next
<APPENDIX> tag would be Appendix C.

You should place the <SELAPPENDIX_LETTER> tag in your SDML
file before the <APPENDIX> tags you want it to affect, because the
<SELAPPENDIX_LETTER> tag affects only the <APPENDIX> tags that follow

it. The new appendix letter you specify resets the numbering for all following
appendixes. For example, if you use the <SELAPPENDIX_LETTER> tag to
set the appendix letter to "C," the next appendix will be Appendix C, the
appendix following that appendix will be Appendix D, and so on.

<SELAPPENDIX_LETTER> can be used multiple times in an SDML file.

9-203

<SET_APPENDIX_LETTER>

EXAMPLE In the following example the appendix "Error Messages" is explicitly set to
C using the <SELAPPENDIX-LETTER> tag. This will cause any subsequent
appendixes to be numbered beginning with the letter D unless another
<SELAPPENDIX_LETTER> tag is used to reset the current appendix letter.

<SET_APPENDIX_letter>(C)
<APPENDIX>(Error Messages\error_msg_ap)
<p>
The following error messages ...

9-204

<SET_CHAPTER_NUMBER>

<SET_CHAPTER_NUMBER>

Overrides the default chapter number assigned to a chapter by VAX
DOCUMENT.

FORMAT <SET_CHAPTER_NUMBER> (chapter-number)

ARGUMENTS chapter-number

related tags

restrictions

Specifies the number of the chapter. This argument must be a positive
integer.

• <CHAPTER>

• <SELAPPENDIX_LETTER>

This tag should not be used in a file that will be included in a bookbuild
or element build. Processing this tag in a bookbuild generates a warning
message.

required None.

terminator

DESCRIPTION Use the <SELCHAPTER_NUMBER> tag to override the default chapter number
created by VAX DOCUMENT. The <SELCHAPTER_NUMBER> tag resets the
current chapter number; if you specify 13 as the chapter number, the next
<CHAPTER> tag becomes Chapter 13. This numbering also affects all other
<CHAPTER> tags in your SDML file so that the subsequent chapter becomes

Chapter 14, and so on.

The <SELCHAPTER_NUMBER> tag should be placed in your SDML file before
the <CHAPTER> tags that you want to affect, because the <SELCHAPTER_
NUMBER> tag affects only the <CHAPTER> tags that follow it.

The new chapter number you specify resets the numbering for all following
chapters. For example, if you use the <SELCHAPTER_NUMBER> tag to set the
chapter number to 13, the next chapter will be Chapter 13, and the chapter
following that chapter will be Chapter 14, and so on.

The <SELCHAPTER_NUMBER> can be used multiple times in an SDML file.

9-205

<SET_CHAPTER_NUMBER>

EXAMPLE In the following example the chapter is set to 13 using the
<SELCHAPTER_NUMBER> tag. This will cause any subsequent chapters

to be numbered beginning with number 14 unless another <SELCHAPTER_
NUMBER> tag is used to reset the current chapter number.

<SET_CHAPTER_NUMBER>(13)
<CHAPTER>(Supported Devices\sup_dev_chap)
<p>
The primary supported devices ...

9-206

<SET_CONDITION >

<SET_CONDITION>

FORMAT

ARGUMENTS

related tags

Creates or removes a condition name.

<SET_CONDITION > (condition-name[\ REMOVE])

condition-name
Specifies a name used to conditionalize a portion of your SDML file. This
name is limited to 28 characters in length.

REMOVE
Causes the condition-name to be removed.

• <CONDITION>

restrictions None.

required None.

terminator

DESCRIPTION The <SELCONDITION> tag is used to create or remove a condition name.

EXAMPLE

Conditions are specified with the <CONDITION> tag.

For a complete explanation of creating conditional text, refer to Chapter 4.

Normally, a condition name is created at the front of your input and remains
in effect for the whole of the input file. In the rare occasion when you want to
process a portion of the input without the condition name, it can be removed
by repeating the <SELCONDITION> tag with the REMOVE argument.

You can use the /CONDITION qualifier on the DOCUMENT command line
instead of placing the <SELCONDITION> tag into your file. For example,
you might use the command line qualifier /1 /CONDITION=local" instead of
putting /1

<SELCONDITION> (local)" in your input file.

See the example under the discussion of the <CONDITION> tag.

9-207

<SET~FIGURE_FILE_SPACING_DEFAULT>

<SET_FIGURE_FILE_SPACING_DEFAUL T>

Overrides the default for vertical blank space that appears before and after
the inclusion of a graphics file.

FORMAT <sET_flGURE_FILE_SPACING_DEFAULT> ([space-before]

\ [space-after])

ARGUMENTS space-before

related tags

restrictions

required
terminator

DESCRIPTION

9-208

Specifies the amount of vertical space in picas that is to be output before
the graphic file (there are 6 picas to an inch). This argument may be a
nonnegative integer or decimal number, including zero.

space-after
Specifies the amount of vertical space in picas that is to be output following
the graphic file (there are 6 picas to an inch). This argument may be a
nonnegative integer or decimal number, including zero.

• <FIGURE_FILE>

None.

None.

Each document design specifies default values for spacing that is inserted
before and after a graphics file included using the <FIGURE_FILE> tag. These
defaults assume that the actual graphic file itself does not have any built-in
white space.

In some instances, graphics files may have included white space, and you
may not be able to remove it from the graphics file itself. In these instances,
you can use the <SELFIGURE_FILE_SPACING_DEFAULT> tag to modify the
amount of white space that VAX DOCUMENT places before and after the
graphics file.

The values specified by the <SELFIGURE_FILE_SPACING_DEFAULT> tag
remain in effect for all subsequent figures, or until you use the <SELFIGURE_
FILE_SPACING_DEFAULT> tag again.

If you do not specify one of the arguments to the <SELFIGURE_FILE_
SPACING_DEFAULT> tag, then that spacing remains the same as though
the tag had not been used.

<SET_FIGURE_FILE_SPACING_DEFAUL T>

EXAMPLES
iJ <SET_FIGURE_FILE_SPACING_DEFAULT>(0\1.24)

<FIGURE>(Graphic File Inclusion)
<FIGURE_FILE>(LN03\MY_FILES:SANTA.SIX\13.76)
<ENDFIGURE>

In this example, the figure file spacing is set to 0 picas before a figure and
1.24 picas after a figure. All subsequent graphics files included using the
<FIGURE-FILE> tag will also have this amount of white space around the

graphic figure.

<SET_FIGURE_FILE_SPACING_DEFAULT>(10\0)
<FIGURE>(Graphic File Inclusion)
<FIGURE_FILE>(LN03\MY_FILES:SANTA.SIX\13.76)
<ENDFIGURE>
<SET_FIGURE_FILE_SPACING_DEFAULT>(2\2)

In this example, the figure file spacing is set to 10 picas before the figure and
0 picas after it. The use of the second <SELFIGURE_FILE_SPACING_DEFAULT>
tag resets the amount of spacing for any subsequent figures to 2.0 picas before
the graphic figure and 2.0 picas after the graphic figure.

9-209

<SET_ TABLE_ROW_BREAK_DEFAUL T>

<SET_TABLE_RQW_BREAK_DEFAULT>

FORMAT

ARGUMENTS

related tags

Overrides the default value for a multipage table's first valid break.

<SET_ TABLE_RQW_BREAK_DEFAULT> (number-of-rows)

number-of-rows
Specifies the number of rows that the table tags will use as a default when it
creates multipage tables. number-of-rows must be a positive integer.

You can specify <SELTABLE_ROW_BREAK_DEFAULT> anywhere in an SDML
file. The value you specify using this tag will affect subsequent tables until
the next occurrence of the tag or until the end of the file.

• <TABLE_RQW_BREAK>

restrictions None.

required None.

terminator

DESCRIPTION By default, tables are considered "multipage," that is, if there is not enough
room on the current page for a table, it will be continued onto subsequent
pages, with any captions and headings repeated at the top of each new page.
When the text formatter chooses places in the table at which to insert page
breaks, it normally breaks the table between <TABLE_ROW> tags. By default,
it assumes that it is all right to break a table between any two table rows after
the first.

9-210

You can override this default behavior in the following ways:

• Specify the <SELTABLE_ROW_BREAK_DEFAULT> tag to provide a default
number of rows that must be on the first page of the table. For example,
if you specify <SELTABLE_RQW_BREAK_DEFAULT> (3), any subsequent
table will not be broken until after the third row. (You might want to use
this default if your table consists of single-line items, for instance.)

• Specify the table attribute CONTROLLED, which indicates that you are
going to specify, explicitly, the range in which the table will be allowed
to break. You then must use <TABLE_ROW_BREAK> (FIRST) and <TABLE_
ROW_BREAK> (LAST) to indicate the first and last allowable page break
points. Between these two tags, the table may be broken between any
two <TABLE_ROW> tags.

• Use the KEEP attribute to indicate that the table must not be broken
across pages, unless it is longer than a page.

• Use <VALID_TABLE_ROW_BREAK> to indicate a place within a long table
row that is an allowable break point.

<SET_ TABLE_RQW_BREAK_DEFAUL T>

• Use <NESTED_TABLE_BREAK> to indicate a place in a nested table that is
an allowable break point (a nested table is a table that is nested within an
argument to another table's <TABLE_ROW>).

EXAMPLE
<SET_TABLE_ROW_BREAK_DEFAULT>(5)
<TABLE>
<TABLE_ATTRIBUTES>(SINGLE_SPACED)
<TABLE_SETUP>(2\5)
<TABLE_HEADS>(Code\Numeric Value)
<TABLE_ROW>(A\1)
<TABLE_ROW>(B\2)

<TABLE_ROW>(Z\26)
<ENDTABLE>

In this example, a table consists of short, one-line items. The <SELTABLE_
ROW_BREAK_DEFAULT> tag is used to indicate that this table, and any
following it, must not be broken until after the fifth row.

9-211

<SINGLE_QUOTE>

<SINGLE_QUOTE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

9-212

Outputs, within text, a single quotation mark as it appears on a keyboard.

<SINGLE_QUOTE>

None.

• <DOUBLE-QUOTE>

• <QUOTE>

None.

None.

The reason for the <SINGLE_QUOTE> tag lies in a mismatch between
conventions used in the typesetting world and conventions used in the
computing world. Your terminal keyboard has two possible characters
you can use for quotation marks: " (ASCII 34) and ' (ASCII 39). Neither
distinguishes between open quotation marks and closed quotation marks.
You use the same character twice to enclose a word in quotation marks:

11 a quoted string"
or

'a quoted string'

Typesetters, on the other hand, scrupulously distinguish between open
quotation marks and closed quotation marks. The former look like small
sixes; the latter, like small nines. (Actually, in the text font used on the LNOl,
the open quotation marks look like splinters with their points up; the closed
quotation mark looks like splinters with their points down.) Look carefully at
any typeset document and you will immediately see the difference between
open and closed quotation marks.

To obtain a single quotation mark in your output, looking as it does when
shown on the terminal (as an apostrophe), use the <SINGLE-QUOTE> tag. If
you simply use the keyboard single quotation mark instead of the tag, your
output will contain unmatched closed single quotation marks-one half of
what should be a matched pair. (See the example section.) If you use the
tag, your output will contain a single quotation mark that looks like the one
produced by the terminal keyboard.

<SINGLE_QUOTE>

EXAMPLE
<P>You can cause the translation of a symbol by using a single

quotation mark <PARENDCHAR>(<SINGLE_QUOTE>) directly in front of it.

This example shows the use of the <SINGLE_QUOTE> tag. It may produce
the following output:

You can cause the translation of a symbol by using a single quotation mark
(') directly in front of it.

<P>You can cause the translation of a symbol by using a single

quotation mark (') directly in front of it.

This example shows what your output would be like without using the tag,
but just entering the character from the keyboard.

You can cause the translation of a symbol by using a single quotation mark
(') directly in front of it.

9-213

Specifies that the accompanying argument in a table row or a table head
should span more than one table column.

FORMAT (number-of-columns[\ LEFT})

ARGUMENTS number-of-columns

related tags

restrictions

required
terminator

DESCRIPTION

9-214

Specifies the number of table columns to be spanned by the text immediately
following the tag. This argument must be a whole number and
must be no larger than the number of table columns remaining in the table
row, including the table column in which the tag itself was placed.

LEFT
Specifies that the text of the argument should be aligned to the left in the
left-most of the spanned columns. If this argument is omitted the text of the
argument is centered in the spanned columns.

• <RULE>

• <TABLE_HEADS>

• <TABLE_UNILHEADS>

Can be used only within an argument to the <TABLE_ROW> , <TABLE_
HEADS>, or <TABLE_UNILHEADS> tags.

Must immediately precede the argument text.

None.

The tag specifies that the argument text that follows the tag should
not be confined to a single table column, but should span additional columns.
The text is displayed without regard for the gutter that separates the columns.
The text is centered in the spanned columns, unless the LEFT argumerlt is
supplied.

If the text length exceeds the width of the spanned columns it is broken at a
word boundary and displayed on additional table lines. Any additional lines
of text are centered or left justified to agree with the alignment of text in the
first line.

Use the <RULE> tag to place a rule beneath a spanned heading created using
the tag.

EXAMPLES

il <TABLE>
<TABLE_SETUP>(3\12\12)
<TABLE_HEADS>((3)Types of Ancient Weaponry)
<TABLE_ UNIT>
<TABLE_UNIT_HEADS>(Polearms)
<TABLE_ROW>(Spear\Javelin\Halberd)
<ENDTABLE_UNIT>
<TABLE_ UNIT>
<TABLE_UNIT_HEADS>(Maces\(2\LEFT)Swords<RULE>)
<TABLE_UNIT_HEADS>(\Short swords\Long swords)
<TABLE_ROW>(Great Mace\Gladius\Great Sword)
<ENDTABLE_UNIT>
<ENDTABLE>

This example shows how the tag is used to center the table heading
over three columns and also how the LEFT keyword is used to position a
table unit heading; note the use of the global <RULE> tag in this example.
This example may have the following output:

Types of Ancient Weaponry

Polearms

Spear

Maces

Great Mace

<TABLE>
<TABLE_SETUP>(5\9\9\9\9)

Javelin

Swords

Short swords

Gladi us

<TABLE_ROW>(\(2)Small Fixture\(2)Large Fixture)

<TABLE_ROW>(Component\Minimum\Maximum\Minimum\Maximum)
<ENDTABLE>

Halberd

Long swords

Great Sword

The output of this example is expected to look approximately like this:

Small Fixture Large Fixture
Component Minimum Maximum Minimum Maximum

However, the tag will actually center "Small Fixture" correctly, but
"Large Fixture" may be pushed too far to the right:

Small Fixture

Component Minimum Maximum Minimum

Large Fixture

Maximum

9-215

<table>
<table_setup>(6\8\8\8\8\8)

This occurs because the tag attempts to span the last column to
the margin. To fix this problem, code the table to specify an additional
column and specify a width for the next to last column, thereby limiting the
distance that is spanned. The following example gives an example of such a
correction:

<table_row>(\(2)Small Fixture\(2)Large Fixture)
<table_row>(Component\Minimum\Maximum\Minimum\Maximum)
<endtable>

Produces:

Small Fixture Large Fixture

Component Minimum Maximum Minimum Maximum

9-216

<SPECIAL_CHAR>

<SPECIAL_CHAR>

Provides access to special characters that are not available on the terminal
keyboard.

FORMAT <SPECIAL_CHAR> (keyword)

ARGUMENTS keyword
Specifies a keyword associated with the special character you want to produce
in your output file. The following are valid keywords:

Keyword Character

FULL_DIAMOND •
TRADEMARK_SYMBOL

@

REGISTERED_SYMBOL ®

SECTIQN_SIGN §

DAGGER t
DOUBLE_DAGGER :j:

OPEN_DQUBLE_BRACKET [

CLOSE_DQUBLE_BRACKET]

related tags • <MCS>

• <MATH_CHAR>

restrictions The character must be a non-math character.

required None.

terminator

DESCRIPTION The <SPECIAL_CHAR> tag provides access to special characters that are not
available on the terminal keyboard.

9-217

<SPECIAL_CHAR>

EXAMPLE

%COPY-I-COPIED, $DISK1: [MYDIRECTORY]MYFILE.PLI;5<SPECIAL_CHAR>(FULL_DIAMOND)
copied to $DISK1: [YOURDIRECTORY]YOURFILE.PLI;5

In this example, the special character + is used in an example of terminal
output to show that text wraps at the end of a line. The example may
produce the following output:

%COPY-I-COPIED, $DISK1: [MYDIRECTORY]MYFILE.PLI;5 •
copied to $DISK1:[YOURDIRECTORY]YOURFILE.PLI;5

9-218

<SUBHEADx>

<SUBHEADx>
Marks an unnumbered subsidiary heading.

FORMAT <SUBHEAD1 > (heading-text)
<SUBHEAD2> (heading-text)

ARGUMENTS heading-text
The text of the subsidiary heading.

related tags • <HEADl > through <HEAD6>

• <CHEAD>

restrictions None.

required None.

terminator

DESCRIPTION The <SUBHEADl> and <SUBHEAD2> tags label unnumbered subsidiary
headings. Each reflects a logical hierarchy within the structure of the text.

EXAMPLE
<SUBHEAD1>(Using a Subhead)

These subheadings are not numbered and do not appear in the table of
contents. They cannot be readily used for cross-references and should be
used only when the clarity of your exposition requires such a fine level of
distinction.

In some book doctypes, the distinction is made between <SUBHEAD I> and
<SUBHEAD2> by making <SUBHEAD2> a run-in heading. The doctype

design controls the text formatter's placement of the text following the
<SUBHEAD2>. Whether or not you expect the heading to be run-in, always

tag the text element following the heading (for example, always mark a
paragraph with a <P> tag).

<P>The use of subheads should be restricted to occasions when the clarity
of your exposition absolutely requires one.

This example might produce output like the following:

Using a Subhead

The use of subheads should be restricted to occasions when the clarity of
your exposition absolutely requires one.

9-219

<TABLE>

<TABLE>

Begins a sequence of columnar data.

FORMAT <TABLE> [(table-caption[\ symbol-name})]

ARGUMENTS table-caption

related tags

restrictions

required
terminator

9-220

Specifies the text of the caption to be associated with the table. The table
caption and the associated table number will be written to the table of
contents for the document.

Note that the presence of this argument indicates that the table is a formal,
numbered table. If the body of the table spans more than a single page of
text, the table caption is repeated on each page on which the table continues.

symbol-name
Specifies the symbolic identifier to be associated with the table. The symbol
identifier will be assigned a numeric value which will be the current table
number. The symbol and its value are placed in the symbol table.

The symbol name can consist of up to 64 alphanumeric characters or
underscores. It must not begin with a leading underscore.

• <TABLE_A TTRIBUTES >

• <TABLE_SETUP>

• <TABLE_HEADS>

• <TABLE_ROW>

• <TABLE_FILE>

• <TABLE_UNIT>

• <TABLE_KEY>

• <TABLE_SPACE>

•

• <RULE>

The <TABLE> tag is not valid in monospaced examples, in math, or in
figures.

<ENDTABLE>

EXAMPLE
<P>An expression can evaluate to either an integer or
a string value, depending on the types of values used in the expression
and the operations used to manipulate them.
<REFERENCE>(express_modes_tab) summarizes the rules
for determining the mode of an expression.
<TABLE>(Rules for Determining Expression Modes\express_modes_tab)
<TABLE_ATTRIBUTES>(MULTIPAGE)
<TABLE_SETUP>(2\33)
<TABLE_HEADS>(Expression\Value Type)

<TABLE_ROW>(Integer value\Integer)
<TABLE_ROW>(String value\String)
<TABLE_ROW>(Integer lexical function\Integer)
<TABLE_ROW_BREAK>(first)
<TABLE_ROW>(String lexical function\String)
<TABLE_ROW>(Integer symbol\Integer)
<TABLE_ROW>(String symbol\String)

<ENDTABLE>

<TABLE>

This example shows how to produce a two-column table. This example may
produce the following output:

An expression can evaluate to either an integer or a string value, depending
on the types of values used in the expression and the operations used to
manipulate them. Table x-x summarizes the rules for determining the mode
of an expression.

Tablex-x Rules for Determining Expression Modes

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

Value Type

Integer

String

Integer

String

Integer

String

9-221

<TABLE_ATTRIBUTES >

<TABLE_ATTRIBUTES >
Specifies special formatting for a table.

FORMAT <TABLE_ATTRIBUTES> (keyword-1
[\ keyword-2 ... \ keyword-5])

ARGUMENTS keyword-1 ... keyword-5

Keyword

CONTROLLED

KEEP

MAXIMUM

MULTIPAGE

Specifies one to five keywords that indicate special formatting for the table.
These keywords are listed in the following table. Note that the MUL TIP AGE
and KEEP keywords are mutually exclusive and cannot be used together.

Description

Indicates, for a multipage table, that the table page breaking will be under explicit
control of <TABLE_RQW_BREAK> tags. When you use the CONTROLLED keyword,
you must specify <TABLE_RQW_BREAK> (FIRST) and <TABLE_RQW_BREAK> (LAST)
tags to give the text formatter an allowance for page breaking.

This keyword may not be used with the KEEP keyword.

Indicates that the table must be kept on one page. If there is not enough room on the
current page, a new page is output. If the table exceeds the length of a page, the text
formatter issues a warning message and not all the table will be output.

Indicates that the text of the table will be adjusted to a smaller point size in order to fit
within the left and right margins of the page. Note that if this argument is not specified,
and if a table is determined during text formatting to be too wide, the text formatter
will adjust the size of the text automatically.

Indicates that the table is either of the following:

• Longer than a page

• Allowed to break across pages

This is the default. If MULTIPAGE is specified, the <TABLE_RQW_BREAK> tag can be
used to control page breaks.

SINGLE_SPACED Specifies that the rows in the table are to be single-spaced; that is, there should be no
more vertical space between lines of different table rows than there are between lines
within the same table row.

WIDE Specifies that the width of the table exceeds the document's default width for text.

9-222

Depending on the document type, this argument may be interpreted as follows:

• If the document style contains a left margin area that is normally used for headings,
the table's width will span that area as well as the normal text area.

• If the document uses a multicolumn format, the table suspends multicolumn output
while the table is processed. The table is output, and then multicolumn output is
restored.

<TABLE_ATTRIBUTES >

related tags • <TABLE>

• <TABLE_SETUP>

restrictions
• Must be in the context of a table.

• Must precede the <TABLE_SETUP> tag.

• WIDE and MAXIMUM might not produce error-free output for
monospaced output devices.

required
terminator

EXAMPLE

None.

<TABLE>(Equivalence Names for Default Process Logical Names\equiv_names_proc_tab)
<TABLE_ATTRIBUTES>(WIDE\KEEP)
<TABLE_SETUP>(4\8\10\12)
<TABLE_HEADS>(Logical Name\Interactive\Batch\Command Procedure)
<TABLE_ROW>(SYS$COMMAND\Terminal\Disk\Terminal)
<TABLE_ROW>(SYS$DISK\Disk\Disk\Disk)
<TABLE_ROW>(SYS$INPUT\Terminal\Disk\Disk)
<TABLE_ROW>(SYS$ERROR\Terminal\Log file\Terminal)
<TABLE_ROW>(SYS$LOGIN\Directory\Directory\Directory)
<TABLE_ROW>(SYS$NET\\\)
<TABLE_ROW>(SYS$0UTPUT\Terminal\Log file\Terminal)
<TABLE_ROW>(SYS$SCRATCH\Directory\Directory\Directory)
<TABLE_ROW>(TT\Terminal\Null device\Terminal)
<ENDTABLE>

This example may produce the following output:

Tablex-x Equivalence Names for Default Process Logical Names

Logical Name Interactive Batch Command Procedure

SYS$COMMAND Terminal Disk Terminal

SYS$DISK Disk Disk Disk

SYS$1NPUT Terminal Disk Disk

SYS$ERROR Terminal Log file Terminal

SYS$LOGIN Directory Directory Directory

SYS$NET

SYS$0UTPUT Terminal Log file Terminal

SYS$SCRATCH Directory Directory Directory

TT Terminal Null device Terminal

9-223

<TABLE_FILE>

<TABLE_FILE>

Causes a separate file containing a formal table to be included in the SDML
input file.

FORMAT <TABLE_FILE> (file-spec)

ARGUMENTS file-spec

related tags

restrictions

The file specification of the file to be included. If a logical name is specified
instead, and the SDML input file is an element of a book, you can define
the logical name using an <INCLUDES_FILE> tag in the book's profile. If the
source file is not an element of a book, or if the profile does not contain the
<INCLUDES_FILE> tag, be sure to define the logical name before processing

the file through VAX DOCUMENT.

• <TABLE>

Can be used only in the context of a <TABLE> tag.

The <TABLE_FILE> tag must be placed after the <TABLE> tag.

required None.

terminator

DESCRIPTION The <TABLE_FILE> tag causes the entire contents of a specified file to be
included at this point in the SDML file. (It is identical in action to the

EXAMPLES

<INCLUDE> tag.) The included file should be an SDML file containing a
completely coded table.

By keeping a table in a separate SDML file, you can include the table in more
than one document, or in chapters of the same document, without having
to reproduce the code. In each location, the table can be given a different
number.

ii <TABLE>(Default VMS File Types\Stand_Filetypes_Tab)
<TABLE_ATTRIBUTES>(wide)
<TABLE_FILE>(Standard_Filetypes)
<ENDTABLE>

9-224

This example shows a wide table that is contained in a separate file. The
logical name of the file (Standarc:LFiletypes) should be recorded in the profile
along with the proper file specification for the file. See the next example for a
sample profile entry.

<TABLE_FILE>

It should be noted that this included table file will not process individually.
It will only process when included in another SDML file that specifies the
<TABLE> and <ENDTABLE> tags.

<REFERENCE>(command_sum_tab) lists all the commands.
<TABLE_FILE>(endlist.sdml)

In this example, the file ENDLIST.SDML may contain all the tags required for
the table:

<TABLE>(Command Summary\command_sum_tab)
<TABLE_ATTRIBUTES>(Multipage)
<TABLE_SETUP>(2\18)

This example assumes that the table is being used in only one document.
Placing the table in a separate file allows you to process it individually, or in
the context of the file in which it occurs.

9-225

<TABLE_HEADS>

<TABLE_HEADS>

Specifies column headings for each column in the table.

FORMAT <TABLE_HEADS> (col-heading[\ col-heading ... })

ARGUMENTS col-heading

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLE

9-226

Specifies the heading for each column; the first argument is the heading for
the first column. Up to nine arguments can be specified, depending on the
number of columns in the table.

• <TABLE_UNIT>

• <TABLE_HEADS>

•

• <RULE>

• Only used in the context of a <TABLE> tag.

• Maximum of nine column headings.

None.

This tag is not required in a table tags sequence. However, it allows you to
specify a heading for each column of a table if headings are needed.

A heading can be any length, and is automatically formatted correctly on one
or more lines (see the long heading in the example in <TABLE_ROW>).

Within tables, the <TABLE_HEADS> tag can be used to specify multipage
headings for a table. It can also be used to place new headings in the middle
of a table. However, they can not be used in a table unit.

See the example for the <TABLE_ROW> tag.

<TABLE_KEY>

<TABLE_KEY>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

Begins a key or legend for a table.

<T ABLE_KEY>

None.

• <TABLE_KEYREF>

• <FOOTNOTE>

Can be used only within the context of a table.

Must appear immediately after the tag <TABLE_SETUP> , either before or after
any <FOOTNOTE> tags.

When a <TABLE_KEY> is used, the number of possible footnotes for the same
table is reduced from 12 to 11.

The tags that can be used between <TABLE_KEY> and <ENDTABLE_KEY> are
restricted to the <P> , <LIST> and emphasis tags. For example, you cannot
use a <TABLE_ROW> tag within the table key.

The <TABLE_KEY> tag is not valid in a nested table. <TABLE_KEY> must
follow the <TABLE_SETUP> tag for the outermost table.

<ENDTABLE_KEY>

Abbreviations or special terms are often used in a table, either in the column
headings, or in the entries of the table. The table may then need a key or
legend printed below it that explains the special terms. The <TABLE_KEY>
tag begins such a table key.

A table key differs from a table footnote as the table key is not numbered and
does not refer to a callout in the table. Only one table key can be declared
for a table, whereas up to 12 footnotes are possible.

The table key is declared immediately after the <TABLE_SETUP> tag that
begins the table and before the first tag that begins the table rows. This
placement is identical to the placement for footnotes in a table. If footnotes
are present also, they either can precede or follow the table key declaration.

The table key is printed at the foot of the table, following any footnotes. It is
printed only if the <TABLE_KEYREF> tag appears in the table. Place <TABLE_
KEYREF> anywhere in the argument list that supplies the column heads. This
placement guarantees that the table key is printed at the foot of the table and
on each page of a multipage table. (If you want the table key to appear only

9-227

<T ABLE_KEY>

on selected pages of a multipage table, place <TABLE_KEYREF> with the table
row tags for the selected pages.)

EXAMPLE
<table>(Compatability of Lock Modes\lock_tab)

<table_attributes>(wide\keep)
<table_setup>(7\10\5\5\5\5\5)

<table_key>
<emphasis>(Key to Lock Modes\bold)
<list>(simple)

<le>NL---Null lock
<le>CR---Concurrent read
<le>CW---Concurrent write
<le>PR---Protected read
<le>PW---Protected write
<le>EX---Exclusive lock

<END LIST>
<endtable_key>

<table_heads>(Mode of Requested\
(5)Mode of Currently Granted Locks<rule>)

<table_heads>(Lock<table_keyref>\NL\CR\CW\PR\PW\EX)
<table_row>(NL\Yes\Yes\Yes\Yes\Yes\Yes)
<table_row>(CR\Yes\Yes\Yes\Yes\Yes\No)
<table_row>(CW\Yes\Yes\Yes\No\No\No)
<table_row>(PR\Yes\Yes\No\Yes\No\No)
<table_row>(PW\Yes\Yes\No\No\No\No)
<table_row>(EX\Yes\No\No\No\No\No)

<endtable>

This example produces the following output:

Tablex-x Compatibility of Lock Modes

Mode of Mode of Currently Granted Locks
Re9uested
Lock NL

NL Yes

CR Yes

cw Yes

PR Yes

PW Yes

EX Yes

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

9-228

CR

Yes

Yes

Yes

Yes

Yes

No

cw PR PW

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No No No

No No No

EX

Yes

No

No

No

No

No

<TABLE_KEYREF>

<TABLE_KEYREF>

Specifies that a table key be printed below the table (or portion of the
table) in which this tag appears.

FORMAT <TABLE_KEYREF>

ARGUMENTS None.

related tags

restrictions

• <TABLE_KEY>

Can be used only within the context of a table in which <TABLE_KEY> is
specified.

Invalid in nested tables.

Can only be used at the end of an argument list and cannot be embedded in
text; the end of an argument list is indicated by a backslash (\) or a closing
parenthesis ()).

required None.

terminator

DESCRIPTION The <TABLE_KEYREF> tag specifies that the table key (defined with the

EXAMPLE

<TABLE_KEY> . . . <ENDTABLE_KEY> tags) should be printed at the foot of
the table. The table key is printed only if the <TABLE_KEYREF> tag appears
in the table.

When the table is a multipage table, the table key can be printed at the foot
of any or all portions of the table.

If you want the table key printed at the foot of all portions of a multipage
table, place the <TABLE_KEYREF> tag at the end of the argument list to the
<TABLE_HEADS> tag that defines the table's column headings. This will

cause the table key to be repeated on each page of the table.

If the table key is to be printed only on specified pages of a multipage table,
place the <TABLE_KEYREF> tag in the <TABLE_ROW> tags in the reference to
the table key.

See the example under the discussion of the <TABLE_KEY> tag.

9-229

<TABLE_ROW>

<TABLE_ROW>

FORMAT

ARGUMENTS

related tags

restrictions

Specifies text for each column in the current table.

<TABLE_ROW> (column-text1[\ column-text2[\ ... }])

column-text
Specifies text for a single column in the table row. The number of arguments
specified to this tag is dependent on the number of columns specified for
the table. This value is specified in the <TABLE_SETUP> tag. If the number
of arguments to <TABLE_ROW> exceeds the number of columns currently
in effect for the table, the excess columns are ignored. If the number of
arguments is less than the number of columns currently in effect for the table,
unspecified columns are output as blanks.

•

• <RULE>

• <TABLE_ROW_BREAK>

Must be used in the context of a table.

If the text in a single table row column exceeds the depth of an output page,
the text formatter issues an error message and terminates processing.

Page breaking of long table rows may be controlled, with additional
restrictions, with the <VALID_RQW_BREAK> tag.

required None.

terminator

DESCRIPTION The <TABLE-ROW> tag specifies text for each column in the current table.

9-230

EXAMPLE
<REFERENCE>(express_modes_tab) summarizes
the rules for determining the mode of an expression.

<TABLE>(Rules for Determining Expression Modes\express_modes_tab)
<TABLE_ATTRIBUTES>(MULTIPAGE)
<TABLE_SETUP>(2\43)
<TABLE_HEADS>(Expression\Value Type)
<TABLE_ROW>(Integer value\Integer)
<TABLE_ROW>(String value\String)
<TABLE_ROW>(Integer lexical function\Integer)
<TABLE_ROW>(String lexical function\String)
<TABLE_ROW>(Integer symbol\Integer)
<TABLE_ROW>(String symbol\String)
<TABLE_ROW>(Any value .AND. or .OR. any value\Integer)
<TABLE_ROW>(Any value\Integer)
<TABLE_ROW>(Any value\Integer)

<ENDTABLE>

<TABLE_ROW>

This example shows how to produce a two-column table. This example may
produce the following output:

Table x-x summarizes the rules for determining the mode of an expression.

Tablex-x Rules for Determining Expression Modes

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

Any value .AND. or .OR. any value

Any value

Any value

Value Type

Integer

String

Integer

String

Integer

String

Integer

Integer

Integer

9-231

<TABLE_ROW_BREAK>

<TABLE_RQW_BREAK>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

9-232

Specifies the boundaries within which a long table can be broken onto a
new page.

<TABLE_ROW_BREAK> ({FIRST })
LAST

FIRST
LAST
Specifies the bounds within which a multipage table may be broken. After
<TABLE_ROW_BREAK> (FIRST) is specified, any row in the table up to the

occurrence of <TABLE_ROW_BREAK> (LAST) is treated as a suitable page­
breaking point.

• <NESTED_TABLE_BREAK>

• <VALID_TABLE_ROW_BREAK>

The <TABLE_ROW_BREAK> tag is invalid in a table specified with the KEEP
option, or in a table that is specified in an argument to a <TABLE_ROW> tag.

None.

The <TABLE_ROW_BREAK> tag provides an allowable place for a long table to
be broken across pages.

Tables in VAX DOCUMENT are, by default, multipage tables. If
<TABLE_ROW_BREAK> is not specified to provide the text formatter with

reasonable guidelines to break tables across pages, the text formatter will
nonetheless select page breaks. The page breaks selected will not always be
suitable. Therefore, use of the <TABLE_RQW_BREAK> tag is recommended.

By default, the text formatter will not break a page within a table row. With
some restrictions, valid page breaks within table rows can be specified using
<VALID_TABLE_ROW_BREAK>.

Nested tables (that is, tables that are specified within an argument to a
<TABLE_ROW> tag) can, with some restrictions, be given valid page breaks

using the <NESTED_TABLE_BREAK> tag.

<TABLE_RQW_BREAK>

EXAMPLE
<P> An expression can evaluate to either an integer or
a string value, depending on the types of values used in the expression
and the operations used to manipulate them.
Table <REFERENCE>(express_modes_tab) summarizes
the rules for determining the mode of an expression.

<TABLE>(Rules for Determining Expression Modes\express_modes_tab)
<TABLE_ATTRIBUTES>(MULTIPAGE)
<TABLE_SETUP>(2\43)
<TABLE_HEADS>(Expression\Value Type)
<TABLE_ROW>(Integer value\Integer)
<TABLE_ROW>(String value\String)
<TABLE_ROW>(Integer lexical function\Integer)
<TABLE_ROW>(String lexical function\String)
<TABLE_ROW>(Integer symbol\Integer)
<TABLE_ROW>(String symbol\String)
<TABLE_ROW>(Any value .AND. or .OR. any value\Integer)
<TABLE_ROW>(Any value\Integer)

<COMMENT>(OK to break after this)
<TABLE_ROW_BREAK>(first)
<TABLE_ROW>(Any value\Integer)
<TABLE_ROW>(Integer value\Integer)
<TABLE_ROW>(String value\String)
<TABLE_ROW>(Integer lexical function\Integer)
<TABLE_ROW>(String lexical function\String)

<COMMENT>(Don't break after this)
<TABLE_ROW_BREAK>(last)

<TABLE_ROW>(Integer symbol\Integer)
<TABLE_ROW>(String symbol\String)
<TABLE_ROW>(Any value .AND. or .OR. any value\Integer)
<TABLE_ROW>(Any value\Integer)
<TABLE_ROW>(Any value\Integer)

<ENDTABLE>

This example shows how to produce a two-column table. This example may
produce the following output:

An expression can evaluate to either an integer or a string value, depending
on the types of values used in the expression and the operations used to
manipulate them. Table x-x summarizes the rules for determining the mode
of an expression.

Tablex-x Rules for Determining Expression Modes

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

Any value .AND. or .OR. any value

Any value

Any value

Value Type

Integer

String

Integer

String

Integer

String

Integer

Integer

Integer

9-233

<TABLE_RQW_BREAK>

Table x-x (Cont.) Rules for Determining Expression Modes

Expression

Integer value

String value

Integer lexical function

String lexical function

Integer symbol

String symbol

Any value .AND. or .OR. any value

Any value

Any value

9-234

Value Type

Integer

String

Integer

String

Integer

String

Integer

Integer

Integer

<TABLE_SETUP>

<TABLE_SETUP>

FORMAT

ARGUMENTS

related tags

restrictions

Declares the number of columns in a table and the effective (approximate)
width values to be assigned to each column.

<T~BLE_SETUP> (number\ width,[.
\ widthnumber-1])

number
Specifies the number of columns in the table. The argument must be a
numeric argument in the range of 2 through 9.

width1
widthnumber-1
Specify the approximate widths of columns 1 through number - 1. The last
column, whose width is unspecified, uses the balance of the right-hand side
of the page of output.

The width unit is measured in characters. However, this is an approximante
measurement because the width of each character depends on the fonts being
used in the doctype. You may need to modify the width argument after
processing the table and viewing the output.

• <TABLE_ATTRIBUTES>

• The <TABLE-SETUP> tag must be used in the context of a table.

• If <TABLE_SETUP> is omitted from a sequence of <TABLE> tags, no table
will be included in your output.

• The <TABLE-SETUP> tag must be placed after the <TABLE_ATTRIBUTES>
tag and before the <TABLE_ROW> tags in the table tag sequence.

required None.

terminator

DESCRIPTION The arguments to this tag define the number of columns in a multicolumn
table and the approximate width of each column. A table can have a
maximum of nine columns.

In the width argument, define the width of each column except the last. This
last column width is supplied automatically.

Values specified in <TABLE_SETUP> are checked during processing to
determine whether the values specified exceed or approach the table's
threshold for the given document type. Warning or error messages are
issued as appropriate.

9-235

<TABLE_SETUP>

If the table-column widths do not allow the table to fit within the page width,
the text processor substitutes a smaller point size for the font in which the
table is set. It then makes another attempt to fit the table within the text
margin.

EXAMPLE
<TABLE>(Names of Cheeses from around the world\cheeses_tab)
<TABLE_ATTRIBUTES>(wide\multipage)
<TABLE_SETUP>(4\14\14\14)
<TABLE_HEADS>(Cheese Name\Location of production\Type\Color)
<TABLE_ROW>(Spreadable\Great Britain\Curdled\White)
<TABLE_ROW>(Smooth\Switzerland\Aged and Tasty\Off yellow)
<TABLE_ROW>(Chunky\American\Bland\Yellow)
<ENDTABLE>

This example may produce the following output:

Table x-x Names of Cheeses from around the world

Location of
Cheese Name production Type Color

Spreadable Great Britain Curdled White

Smooth Switzerland Aged and Tasty Off yellow

Chunky American Bland Yellow

9-236

<TABLE_SPACE>

<TABLE_SPACE>

Marks the space required for a table that will be pasted in during final
production.

FORMAT <TABLE_SPACE> (value\text)

ARGUMENTS value
Specifies the amount of vertical space to be left on the page, specified in picas.

text
Specifies text that describes the status of the table ("To Be Set," an art file
number, or some other note). The text will be output in the middle of the
space left for the table.

related tags None.

restrictions Must be used inside a <TABLE_Row> tag.

required None.

terminator

DESCRIPTION The <TABLE_SPACE> tag causes a blank space to be left in a table that will
be pasted in by hand during final production. The value in the <TABLE_
SPACE> tag should be specified in picas, a scale used by typesetters. There
are approximately six picas to the inch. Thus, if the table to be pasted in is
four inches high, you should specify 24 picas. If you do not specify a value, a
default value of eight picas is used.

If you specify some descriptive text in the second argument, that text is output
in the middle of the space left for the table.

EXAMPLE
<TABLE>(Script Control Blocks\script_tab)

<TABLE_SETUP>(2\22)
<TABLE_HEADS>(Block ID\Layout)
<TABLE_ROW>(SCBEG; starts the scripting

sequence\<TABLE_SPACE>(4\SCBEG diagram))

<TABLE_ROW>(SCMID; gives the body of the script\<TABLE_SPACE>(4\SCMID
diagram))

<TABLE_ROW>(SCEND; ends the scripting sequence\<TABLE_SPACE>(4\SCEND
diagram))
<ENDTABLE>

9-237

<TABLE_SPACE>

This example shows how a table is coded with the <TABLE_SP ACE> tag. In
this example, the <TABLE_SPACE> tags reserve space inside of each table row
for three separate diagrams.

Table x-x Script Control Blocks

Block ID

SCBEG; starts the scripting
sequence

SCMID; gives the body of the
script

SCEND; ends the scripting
sequence

9-238

Layout

SCBEG diagram

SCMID diagram

SCEND diagram

<TABLE_UNIT>

<TABLE_UNIT>

Begins a portion of a table containing rows that are to be grouped as
logical units.

FORMAT <TABLE_UNIT>

ARGUMENTS None.

related tags • <TABLE_UNILHEADS>

restrictions Can be used only within the context of a table established with the <TABLE>
tag.

The table must not be declared with the KEEP argument.

If table units are long and you want to allow them to break across pages, you
must use the <TABLE_RQW_BREAK> (first) and <TABLE_ROW_BREAK> (last) tags
within the bounds of <TABLE_UNIT> and <ENDTABLE_UNIT>.

required <ENDTABLLUNIT>

terminator

DESCRIPTION The <TABLLUNIT> tag and its terminating tag, <ENDTABLE_UNIT>, are
used to subdivide a table by grouping some number of rows of the table into
a unit. The table unit can be given a heading.

EXAMPLE
<Table>(String Passing Techniques Used by the Run-Time Library\Str_Tech_Tab)
<X>(String Passing Techniques Used by the Run-Time Library)<comment>(*)
<TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)
<Table_Setup>(4\20\7\10)
<Table_Heads>(\(3)String Descriptor Fields<RULE>)
<Table_Heads>(String Type\Class\Length\Pointer)

<Table_Unit>
<Table_Unit_Heads>((4\LEFT)Input Argument to Procedures)
<Table_Row>(Input string passed by descriptor\Read\Read\Read)
<Endtable_Unit>

<Table_Unit>
<Table_Unit_Heads>((4\LEFT)Output Argument from Procedures;
Called Procedure Assumes the Descriptor Class)
<Table_Row>(Output string passed by descriptor,
fixed-length\Ignored\Read\Read)
<Table_Row>(Output string passed by descriptor, dynamic\Ignored\Read, may be
modified\Read, may be modified)
<Endtable_Unit>

9-239

<TABLE_UNIT>

<Table_Unit>
<Table_Unit_Heads>((4)0utput Argument from Procedures, Calling Program
Specifies the Descriptor Class in the Descriptor)
<Table_Row>(Output string, fixed-length ---DSC$K_CLASS = S, Z, A, NCA, SD
\Read\Read\Read)
<Table_Row>(Output string, dynamic ---DSC$K_CLASS_D
\Read\Read, may be modified\Read, may be modified)
<Table_Row>(Output string, varying-length ---DSC$K_CLASS_VS
\Read\MAXSTRLEN is read; CURLEN is modified\Read)
<Endtable_Unit>

<Endtable>

This example produces the following output:

Table x - x String Passing Techniques Used by the Run-Time Library

String Descriptor Fields

String Type Class Length Pointer

Input Argument to Procedures

Input string passed by Read Read Read
descriptor

Output Argument from Procedures; Called Procedure Assumes the Descriptor Class

Output string passed by Ignored Read Read
descriptor, fixed-length

Output string passed by
descriptor, dynamic

Ignored Read, may be Read, may be modified
modified

Output Argument from Procedures, Calling Program Specifies the Descriptor Class in the Descriptor

Output string, fixed-length Read Read Read
-DSC$K_CLASS = S, Z,
A,NCA,SD

Output string, dynamic
-DSC$K_CLASS_D

Output string, varying­
length -DSC$K_CLASS_
vs

9-240

Read Read, may be Read, may be modified
modified

Read MAXSTRLEN Read
is read;
CURLEN is
modified

<TABLE_UNIT_HEADS>

<TABLE_UNIT_HEADS>

Specifies headings to be used for a table unit.

FORMAT <TABLE_UNIT_HEADS> (col-heading[\ col-heading ... })

ARGUMENTS col-heading

related tags

restrictions

Specifies the text for the heading for each column; the first argument is
the heading for the first column. Up to nine arguments can be specified,
depending on the number of columns in the table.

• <TABLE_UNIT>

•

• <RULE>

Can be used only within the context of a table unit established with the
<TABLE_UNIT> tag.

Must immediately follow the <TABLE_UNIT> tag.

required None.

terminator

DESCRIPTION The <TABLLUNILHEADS> tag specifies column headings for each column
of the table. The number of column headings depends on the number of
columns in the table, as determined by the tag <TABLE_SETUP> .

Often, the heading for a table unit is used to supply a single heading that
spans the columns of the table and serves to label the table unit, rather than
the individual columns. In this case, an argument is supplied that begins with
the tag.

A null argument leaves the corresponding table column blank.

Notice that more than one <TABLE_UNILHEADS> tag can be supplied
following a <TABLE_UNIT> tag.

9-241

<TABLE_UNIT_HEADS>

EXAMPLE

9-242

When the heading text for a table column requires multiple lines, you can do
the following:

• Supply the text as a long argument to a single <TABLE_UNILHEADS>
tag. The text is automatically displayed on the required number of lines.

• Supply the text of the heading as shorter arguments to successive
<TABLE_UNILHEADS> tags. In this way, you can control how the

text is displayed on successive lines of the heading.

If a page break occurs in the table unit, all lines of the table unit heading are
repeated at the top of the next page.

See the example in the description of the <TABLE_UNIT> tag.

<TAG>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLES

<TAG>

Labels a tag.

<TAG> (tag-name[\ tag-arg [\ tag-arg]])

tag-name
Specifies the name of the tag.

tag-arg
Specifies arguments to the tag.

• <LITERAL>

Invalid in math.

None.

The <TAG> places angle brackets (< ... >) around any text and
optionally creates an argument for the specified tag. For example, when
<TAG> (newtag\new_argument) is placed in an SDML file it produces
<NEWTAG> (new_argument) in the output but is not evaluated as a tag.

iJ <P>You use the <TAG>(p) tag to begin a new paragraph.

This example may produce the following output:

You use the <P> tag to begin a new paragraph.

~ Use <TAG>(code_example\WIDE) if your example
has long lines.

This example may produce the following output:

Use <CODE_EXAMPLE> (WIDE) if your example has long lines.

~ A writer can use the <tag>(line_art) tag to label a rough sketch. A writer
should not use the <literal><icon><endliteral> tag for that purpose.

This example shows the difference fu output caused by <TAG> and
<LITERAL>: A writer can use the <LINE_ART> tag to label a rough sketch.

A writer should not use the <icon> tag for that purpose.

9-243

<TITLE>

<TITLE>

FORMAT

ARGUMENTS

related tags

restrictions

Labels the title used on either a title page or part page.

<TITLE> (title-text-1 [\ title-text-2[\ title-text-3]])

title-text-n
Specifies the 1 to 3 lines of text for the title.

• <TITLE_PAGE>

• <PARLPAGE>

May only be used in the context of a <PARLPAGE> tag.

Must be preceded by <TITLE_PAGE>.

Accepts only two title-text arguments when used in the
SOFTWARE.BROCHURE doctype.

required None.

terminator

DESCRIPTION The <TITLE> tag labels the title to appear on a title page or part page. It
accepts arguments for one to three lines of title-text in all doctypes except
SOFTWARE.BROCHURE.

EXAMPLE

9-244

In the SOFTWARE.BROCHURE doctype, the <TITLE> tag accepts one or two
title-text arguments. If only the first argument is specified, that title text is
placed at the top of the first page and at the bottom of each successive page;
if the optional second argument is also specified, that title text is placed at
the bottom of each page. The title text placed at the bottom of the page by
the SOFTWARE.BROCHURE <TITLE> tag will be overridden by the text
argument of any subsequent <CHAPTER> tags.

See the example in the <PARLPAGE> tag description.

<TITLE_PAGE>

<TITLE_PAGE>

Labels the beginning of a title page and enables the title page tags.

FORMAT <TITLE_PAGE>

ARGUMENTS None.

related tags None.

restrictions This tag must be used in the context of a <FRONLMATTER> tag.

If you are using a preface, the title page must be terminated before the
<PREFACE> tag.

required <ENDTITLE_PAGE >

terminator

DESCRIPTION The following title page tags are enabled by the <TITLE_PAGE> tag:

• <TITLE>

• <ORDER_NUMBER>

• <ABSTRACT>

• <REVISION_INFO>

EXAMPLE See the example in the <FRONLMATTER> tag description.

9-245

<U>

<U>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

DESCRIPTION

EXAMPLES

Labels the user portion of a dialog between user and system in an
interactive example.

<U> (text)

text
Specifies the text of the user input.

• <INTERACTIVE>

• <S>

None.

None.

The <U> tag labels the user portion of a dialog between the system and
a user. An example containing this type of dialog needs to have both parts
identified in order to differentiate the two types of text in the source code, the
output, or both.

The <U> and <S> tags are also used to differentiate the system and user
text inside of examples created with the <EXAMPLE_SEQUENCE> and <EXI>
tags, in the SOFTWARE doctype. For more information on this doctype, refer
to the VAX DOCUMENT User Manual, Volume 2.

iJ <P>The following example of VAXMAIL contains messages from both
the system and a user of the system:
<INTERACTIVE>
<U>(mail)
<S>(MAIL>)<U>(send)
<S>(To:)<U>(nodename: :Courtney)
<S>(%MAIL-E-NOSUCHUSR, no such user COURTNEY at node NODENAME)
<END INTERACTIVE>

9-246

This example may produce the following output:

The following example of VAXMAIL cont.ains messages from both the system
and a user of the system:

mail
MAIL> send
To: nodename: :Courtney
%MAIL-E-NOSUCHUSR, no such user COURTNEY at node NODENAME

<UNDERLINE>

<UNDERLINE>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

EXAMPLE

Marks a portion of text to be underlined.

<UNDERLINE> (text)
or

<UNDERLINE>
text

<ENDUNDERLINE>

text
Specifies the text string to be underlined.

None.

Because the text string that is marked for underlining will be kept on the
same line in the output, do not make the underline longer than the page
width or errors might be generated.

<ENDUNDERLINE> - Required if the text is not passed as an argument.

<P>If you use the appropriate flags, your output
may look like this:
<P>
<SAMPLE_ TEXT>
<UNDERLINE>(The Decline and Fall of the Roman Empire)
<ENDSAMPLE_TEXT>

This example may produce the following output:

If you use the appropriate flags, your output may look like this:

The Decline and Fall of the Roman Empire

9-247

<UPDATE_RANGE>

<UPDATE_RANGE>

FORMAT

ARGUMENTS

related tags

Marks the location at which a new section of updated pages begins.

<UPDATE_RANGE> (start-page\ end-page)

start-page
Specifies the page number from the printed documentation of the first page
that must be printed. This must be an odd-numbered page.

end-page
Specifies either the last page to be included in a set of update pages or
the keyword EOF. If end-page is a number, that number must be an
even number. The text formatter output routines that handle updates will
automatically generate point-numbered pages if text within the bounds of
start-page and end-page will not fit within those pages. If EOF is specified,
then the update range continues to the end of a chapter or section.

• <REVISION>

• <MARK>

restrictions Must be used in the context of the <REVISION> tag, and <REVISION> must
specify the keyword UPDATE. If the <REVISION> tag is not specified, then
the <UPDATE_RANGE> and <ENDUPDATE_RANGE> tags are nonoperational;
that is, no output will be generated from these tags when the file is processed.

required <ENDUPDATE_RANGE>

terminator

DESCRIPTION Files coded with the <REVISION> (UPDATE\update-level) tag and containing
<UPDATE_RANGE> tags will process as follows:

9-248

• When the text formatter processes a file that has been marked as an
update, it processes all text and commands in the file, but does not
produce actual output for the DVI file except for those pages marked
within an update range.

• When the text formatter reaches the beginning of an update range, it
sets the page number to the page number specified as the start of the
update. Therefore, it is not important that previous versions of the text
formatter file were modified for pagination during final production. All
pages processed outside of an update range are not output.

<UPDATE_RANGE>

The following rules apply to the placement of the <UPDATE_RANGE> tag:

• If the text on the first update page is in the middle of a text element
(for example, a paragraph, a list element, a code example), then the
<UPDATE_RANGE> tag must precede the word of text that is the first

word on the page.

• If the text on the first update page represents the beginning of a new text
element (<P> , <LIST> , <LE> , <CODE_EXAMPLE> , and so on), the
<UPDATE_RANGE> tag must be placed immediately preceding the tag for

the text element.

• If an update range begins on a page that starts with a continued table,
the file must specify the start of the update range on the odd-numbered
page preceding the beginning of that table, or (if the table begins on an
odd-numbered page) the page on which the table begins. If these pages
are not to be a part of the update, they may be discarded.

• If one or more pages before an update range begins contains
a floating figure or example, the <FIGURE_ATTRIBUTES> or
<EXAMPLE_ATTRIBUTES> tags must be modified to specify KEEP. This

will prevent the text formatter from floating the figure or example to the
top of the first update page.

Put a <COMMENT> tag in the file to indicate that the modification was
made for the purposes of the update only. For example:

<COMMENT>(KEEP added to example for update only ...)

When the file is subsequently revised, the KEEP arguments can be
removed.

• When a file that contains the <REVISION> (UPDATE) tag is processed, the
table of contents and index are handled as follows:

• If the <CONTENTS_FILE> or <INDEXJILE> tag occurs between
the bounds of <UPDATE_RANGE> and <ENDUPDATE_RANGE> , and
/CONTENTS or /INDEX is specified on the command line, the
contents file or index file is included within the pages for the update
range.

• If the <CONTENTS_FILE> or <INDEX_FILE> tag occurs in the file
but is specified outside the bounds of <UPDATE_RANGE> and
<ENDUPDATE_RANGE> tags, and if /CONTENTS or /INDEX is

specified on the command line, the table of contents file or index file
is included in the output file.

9-249

<UPDATE_RANGE>

EXAMPLE
<REVISION>(UPDATE\July 1986)

<UPDATE_RANGE>(5\24)
<P>
The first sentence on page 5 goes here.

20 or more pages of modified text goes here.

The last sentence on page 24.n goes here.
<ENDUPDATE_RANGE>

9-250

In this example, the updated material begins on page 5 and continues through
page 24. When page 24 is reached, the page numbering becomes 24.1, 24.2,
etc., until the end of the update range is reached. The <ENDUPDATE_RANGE>
tag must be placed in the source file at the position corresponding to the place
at which an update sequence ends.

<UPPERCASE>

<UPPERCASE>

Labels text that should appear as uppercase in the final output.

FORMAT <UPPERCASE> (text)

ARGUMENTS text
Specifies the text to appear in uppercase.

related tags • <LOWERCASE>

restrictions None.

required None.

terminator

DESCRIPTION If your book contains a text element, such as a heading, that normally appears
in lowercase, you may encounter a situation where you need to overcome the
default case in one of your tags and ensure that the result in the final output
appears in uppercase. The <UPPERCASE> tag allows you to do this.

EXAMPLE
<HEAD2>(here is an example of <UPPERCASE>(uppercase) text)

In this example, assume that the doctype being used causes the tag <HEAD2>
to output a heading that is in lowercase, no matter what the case of the text
passed to it. The <UPPERCASE> tag overrides the default in this <HEAD2>
tag. This example produces the following output:

here is an example of UPPERCASE text

9-251

<USER_l_MESSAGE>

<USER_l_MESSAGE>

FORMAT

Sends an informational message to the terminal or log file during
processing of a file.

<USER_l_MESSAGE> (text)

ARGUMENTS text

related tags

restrictions

Specifies the text you wish to appear on the terminal or in the log file.

• <USER_W_MESSAGE>

You must process the file with the /LOG qualifier in order to see any <USER_
LMESSAGE> messages.

The message text is limited to 150 characters.

required None.

terminator

DESCRIPTION The <USER_LMESSAGE> tag generates a message when the file is processed,
but only when the /LOG qualifier is specified on the command line. The
message is sent to the terminal if the file is processed interactively or to the
log file if it is processed as a batch job.

9-252

The messages are listed in the .LIS file if you specify the /LIST qualifier on
the command line.

You can use the tag to broadcast any important information that should be
noted or flagged during tag translation; for example, you might use it as a
reminder that a part of the file is incomplete.

The tag translator displays the line number and the file name in which the
tag appears. The message is output in the following format:

%TAG-I-USER_IMSG, mmmrnmrnmmrnmrnmmmmmmm
Line is nnn of file fffffffffffff

Note: To receive any messages tagged with <USER_LMESSAGE> tags, you must
process the file with the /LOG qualifier on the command line. If you
want to generate only a few messages, you might choose to use the
<USER_W_MESSAGE> tag and not process the file with the additional

qualifier.

<USER_l_MESSAGE>

EXAMPLE
<USER_I_MESSAGE>(Section 2 is incomplete and requires
information from Tom Jones.)

This example shows how a <USER_LMESSAGE> tag can be used to flag a
section of a file that requires further work. The message would only be sent
to the terminal if the user processed the file with the /LOG qualifier on the
command line. If the text element containing this tag were processed as a
batch job, the log file would contain the following entry:

%TAG-I-USER_IMSG, Section 2 is incomplete and requires information
from Tom Jones.

Line is 68 of file part2.gnc

9-253

<USER_W_MESSAGE>

<USER_W_MESSAGE>

FORMAT

Sends a warning message to the terminal or log file during processing of a
file.

< USER_W_MESSAGE> (warning-text)

ARGUMENTS warning-text
The text you wish to appear on the terminal or in the log file.

related tags • <USER_LMESSAGE >

restrictions The message text is limited to 150 characters.

required None.

terminator

DESCRIPTION The <USER_W_MESSAGE> tag generates a message when the file is processed,
sending it to the terminal if processed interactively or the log file if processed
as a batch job.

9-254

Note: This type of message is counted by the tag translator as a warning
message. After thirty warning messages, tag translation halts. Therefore,
use the <USER_W_MESSAGE> tag for generating messages only if you
are issuing few messages. For a file that contains many messages, tag
messages with <USER_LMESSAGE> tags and process the file with the
/LOG qualifier.

You can use it to flag any important information that should be noted during
processing; for example, you might use it as a reminder that a part of the file
is incomplete. Whatever message you enter as an argument to the <USER_W_
MESSAGE> tag is written to the terminal or to the batch log file when the text
element that contains it is processed through the tag translator.

The tag translator displays the line number and the file name in which the
<USER_W_MESSAGE> tag appears. The message is output in the following

format:

%TAG-W-USER_WMSG, at tag <USER_W_MESSAGE> on line nnn of file
ffffffff
mmmmmmmmmmmmmmmmmmmmmmmmmmm

The messages are listed in the .LIS file if you specify the /LIST qualifier on
the command line.

<USER_W_MESSAGE>

EXAMPLE
<USER_W_MESSAGE>(Reviewers: Please note missing parameters here.)

This example shows how the <USER_W_MESSAGE> tag is used to identify
a notice in a file. If the file containing this message was called "Reviewers_
copy.SDML," and it was processed as a batch job, the log file wquld contain
the following entry:

%TAG-W-USER_WMSG, at tag USER_W_MESSAGE on line nn of file
Reviewers_copy.SDML.
Reviewers: Please note missing parameters here.

9-255

<VALID_BREAK>

<VALID_BREAK>

Labels a permissible page break within a monospaced example.

FORMAT <VALi D_BREAK>

ARGUMENTS None.

related tags • <CODE_EXAMPLE>

• <DISPLAY>

• <INTERACTIVE>

• <LINE_ART>

restrictions This tag can be used only within monospaced examples created using the
<CODE_EXAMPLE> , <DISPLAY> , <INTERACTIVE> , or <LINE_ART> tags.

required None.

terminator

DESCRIPTION The text formatter attempts to keep an example together on a single page.

EXAMPLE
<INTERACTIVE>

<S>($)
<U>(©SYS$SYSTEM:SHUTDOWN)

If there is not enough room for an example on the current page, the text
formatter chooses page breaks using blank lines in the example as "good"
places to break. If your example contains no blank lines, or if you want to
specify better breaking points, you can use <VALID_BREAK> to specify the
places that are acceptable page breaks.

<S>(SHUTDOWN -- Perform an Orderly System Shutdown)
<ELLIPSIS>
<S>(CENTRAL, PRINTER, TAPES, DISKS, DEVICES, CARDS, NETWORK, OPER1)
<S>(OPER3, OPER4, OPER5, OPER6, OPER7, OPER8, OPER9, OPER10, OPER11,)
<S>(OPER12)
<VALID_BREAK>

<S>(%SHUTDOWN-I-DISLOGINS, Interactive logins will now be disabled.)
<S>(%SET-I-INTSET, login interactive limit = 0 current interactive value= 17)
<S>(%SHUTDDWN-I-SHUTNET, The DECnet network will now be shut down.)
<S>(%SHUTDOWN-I-STOPQUEMAN, The queue manager will now be stopped.)
<END INTERACTIVE>

This example shows the use of the <VALID_BREAK> tag.

9-256

<VALID_ TABLE_ROW_BREAK>

<VALi D_TABLE_RQW_BREAK>

Marks a permissible place that a first-level table row may be broken across
pages.

FORMAT <VALi D_ T ABLE_ROW _BREAK>

ARGUMENTS None.

related tags • <NESTED_TABLE_BREAK>

restrictions This tag must be used in the context of a table. May only be used in the last
column of a 2- or 3-column, first-level table. That is, this tag may not be
specified in a table that is specified inside a <TABLE_ROW> tag.

required None.

terminator

DESCRIPTION The <VALID_TABLLROW_BREAK> tag provides an allowable place for
a long table column to be broken across a page. If you do not use the
<VALID_TABLE_ROW_BREAK> tag inside a long table row, the text formatter

tries to keep all the text on the same page of output and might issue a PAGE­
TOO-LONG error message. In extreme cases, the text formatter could run out
of memory trying to process the table row and terminate processing.

EXAMPLE
<TABLE>
<TABLE_ATTRIBUTES>(MULTIPAGE)
<TABLE_SETUP>(2\9) .
<TABLE_ROW>(Item\Text that goes on for several paragraphs.
<VALID_TABLE_ROW_BREAK>
Text that is still inside the first table row.
<P>
<VALID_TABLE_ROW_BREAK>
The last paragraphs for this table row.)
<ENDTABLE>

This example shows the use of the <VALID_TABLE_ROW_BREAK> tag in a table
with a long row.

9-257

<VARIABLE>

<VARIABLE>

Labels a program variable or number.

FORMAT <VARIABLE> (variable-name)

ARGUMENTS variable-name
Specifies the name of the variable to be typographically distinguished.

related tags • <KEYWORD>

restrictions None.

required None.

terminator

DESCRIPTION The <VARIABLE> tag names a variable discussed in text. Use of the
<VARIABLE> tag and its result in formatted text must be agreed upon by

writer, editor, and book designer. Above all, you should seek a consistent
usage within a document and across a document set.

EXAMPLE
<P>At this point in the processing,

<VARIABLE>(NUMBER_OF_JELLYBEANS) has the
value
of 2.

9-258

This example may produce the following output:

At this point in the processing, NUMBER_QF_JELLYBEANS has the value of
2.

<VBAR>

<VBAR>
Labels an occurrence of a vertical bar in an argument to a tag.

FORMAT <VBAR>

ARGUMENTS None.

related tags • The following tags label other characters that must be tagged when they
occur in an argument to a global tag:

<AMPERSAND>
<BACKSLASH>
<CPAREN>
<OPAREN>

restrictions Can only be used within an argument to a tag.

required None.

terminator

DESCRIPTION The tag translator uses a vertical bar (I) to begin a quoted string. An
ampersand concludes a quoted string. If you use a literal vertical bar within
an argument to an SDML tag, the tag translator reads the vertical bar as
beginning a section of text it should treat literally. The vertical bar may
prevent the tag translator from evaluating a tag when it should and may
cause an error in your output.

To process a vertical bar in an argument to a tag (through to your output),
use the <VBAR> tag.

EXAMPLE
<SUBHEAD1>(Labeling the Vertical Bar (<VBAR>) Within Your
Code)
<P>To pass a vertical bar (I) in an argument to a tag through
to your output , . . .

This example produces the following output:

Labeling the Vertical Bar (I) Within Your Code

To pass a vertical bar (I) in an argument to a tag through to your output, ...

9-259

<X>

<X>

FORMAT

ARGUMENTS

9-260

Creates an index entry with a reference to the page on which this tag
appears.

<X> (index-entry[\ attribute})

index-entry
Specifies the index entry to appear in the index. The capitalization you use in
this string will be the capitalization that appears in the index.

Use the <XSUBENTRY> tag to separate the main entry from the first subentry,
if used, and the second subentry from the first, as follows:

<X> (main entry <XSUBENTRY> subentry <XSUBENTRY> subentry)

You should use no more than two levels of subentries in a book index.

attribute
Specifies the attributes that control the sorting and formatting of the index
entry. You can specify a maximum of five attribute arguments from among
the following possibilities. Each attribute must be passed as a separate
argument.

Attribute

<XAPPEND> (string)

BEGIN

BOLD

END

ITALIC

Function

Causes the indexing software to append the specified
string to the page reference in the index.

Causes the indexing program to begin a page-range
reference. When you use this attribute, you must pair it
with a following <X> tag that has identical text and the
END attribute.

Causes the page reference number to appear in boldface.
This is distinct from any boldfacing that appears in the
text of the index entry itself.

Causes the index program to end a page-range reference.
When you use this attribute, you must pair it with a
previous <X> tag that has identical text and the BEGIN
attribute.

Causes page reference numbers to appear in italic type in
your index entry. If both BOLD and ITALIC are specified,
the entry is output in bold italic type. Entries that use the
IT ALIC attribute are sorted as being distinct from entries
that are output in an italic type face using some other
means (such as the global <EMPHASIS> tag).

related tags

restrictions

Attribute

MASTER

<XSORT> (string)

<X>

Function

Causes the index program to insert the entry only in the
master index. By default, the entries are inserted only
in the local index. This attribute allows you to specify
different entries for a book's local index and for the
master index of the document set.

Causes the index program to use the specified string as
the sort key when placing this entry in the index. Use
this attribute to override the sorting algorithm of the index
utility for single index entries (for example, to force an
entry with a leading nonalphanumeric character to the top
of the index).

• <Y> -Used for entering a cross-reference index entry

Do not place <X> tags within any kind of example. Doing so will interfere
with the formatting of the example.

Be sure <X> tags follow headings, commands, and other major text elements
that are likely to begin a new page.

In tables, place <X> tags directly next to the items to be indexed. In doing
so, the <X> tag will be included within the argument string for table tags
such as <TABLE_ROW> or <TABLE_HEADS>.

required None.

terminator

DESCRIPTION The <X> tag creates an entry in the index to the book. The entry is
composed of the main entry and optional subentries specified in the first
argument to the tag.

You can control how the index entry is sorted and how it appears by
specifying particular attributes.

For instance, the <XAPPEND> attribute is useful when appending text to
the end of a page reference, as when referring to an example (5-4ex) or to a
table (9-8tab). The <XAPPEND> attribute can also be used for such common
indexing terms as "page 3ff" or "5-3 to 5-6 passim."

The appended string is boldfaced or italicized if its page reference is boldfaced
or italicized. BOLD and ITALIC can be used together.

You can create an index entry for several inclusive pages by using the BEGIN
and END attributes. When using a BEGIN and END pair, you must be certain
that the index entries are identical and that any other attributes you specify
are the same for each entry, as well.

You can specify that an index entry appear in a master index by using the
MASTER attribute. By default, an entry appears in the master index only if
this attribute has been specified. It is possible to override this arrangement at
the time the master index is built and include every entry in the local index in
the master. No entry marked with the MASTER attribute appears in the local
index.

9-261

<X>

EXAMPLES

If you have an index entry for which you want to control the sorting, you
can do so by using the <XSORT> attribute. For example, since leading
nonalphabetic characters are ignored by default, the main entry $SEARCH
normally appears with other entries beginning with the letter "S." To force
the indexing software to place $SEARCH before the "A" section, use the
<XSORT> attribute as follows:

<X>($SEARCH\<XSORT>($))

You must use the <XSORT> attribute if your main entry begins with a double
backslash or a right angle bracket.

The <XSUBENTRV> Tag

You can use the <XSUBENTRY> tag within this argument to separate the
main entry from the first subentry, and the second subentry from the first, as
follows:

<X> (Main entry <xsubentry> subentry-1 <xsubentry> subentry-2)

The <XSUBENTRY> tag can be abbreviated as <XS> . Using this shorter form
of the tag, the previous example could be expressed as follows:

<X> (Main entry <xs> subentry-1 <xs> subentry-2)

You can use no more than three levels of subentries in an index.

i] <X>(File structure\begin)

<X>(File structure\end)

These index tags create an inclusive page entry, and may produce the
following output.

File structure, 5-4 to 5-7

~ <X>(File structure\begin)

<X>(File structure\end\<XAPPEND>(passim))

This index tag creates an index entry that may produce the following output.

File structure, 5-4 to 5-7 passim

9-262

<TABLE_ROW>(apples\oranges\pears)
<TABLE_ROW>(<X>(Tropical fruits<XS>bananas)bananas\pineapples\mangos)
<TABLE_ROW>(blackberries\blueberries\strawberries)

<X>

The <X> tag in this example creates an index entry that will correctly
specify the page that the text "bananas" appears on, no matter where VAX
DOCUMENT chooses to break the table that contains "bananas." This index
entry may produce the following output.

Tropical fruits

bananas, 3-21

9-263

<Y>

<Y>

FORMAT

ARGUMENTS

related tags

restrictions

required
terminator

9-264

Creates an index entry with no reference to the page on which this tag
appears. Used for cross-references ("See" or "See also" entries).

<Y> (index-entry[\ attribute})

index-entry
Specifies the string that supplies additional information to the main entry and
subentries that will appear in the index. The capitalization you use in this
string will be the capitalization that appears in the index.

Use the <XSUBENTRY> tag to separate the main entry from the first subentry,
and the second subentry from the first, as follows:

Main entry <xsubentry> subentry

You should use no more than two levels of subentries in a book index.

attribute
Specifies the attributes that control the sorting and formatting of the index
entry. You can specify a maximum of two attribute arguments from among
the following possibilities. Each attribute must be passed as a separate
argument.

Attribute

MASTER

<XSORT> (string)

• <X>

Function

Causes the index program to insert the entry only in the
master index. By default, the entry is inserted only in the
local index. This attribute allows you to specify different
entries for a book's local index and for the master index of
the document set.

Causes the index program to use the specified string as the
sort key when placing this entry in the index. You must
enclose the string in either double quotation marks (") or
single quotation marks ('). Use this attribute to override
the sorting algorithm of the index utility for single index
entries.

Do not place <Y> tags within any kind of example. Doing so will interfere
with the formatting of the examples.

None.

<Y>

· DESCRIPTION The <Y> tag creates an unpaged entry in the index to the book. The entry
that appears in the index is composed of the main entry and "See" or "See
also" subentries specified in the first argument to the tag.

EXAMPLE

You can control how the index entry is sorted and where it will appear by
specifying particular attributes in arguments two through four of the <Y>
tag.

You can specify that an index entry appear in a master index by using the
MASTER attribute. By default, an entry will appear in the master index only
if this attribute has been specified. It is possible to override this arrangement
and include every entry in the local index in the master.

If you have an index entry for which you want to control the sorting, you
can do so by using the <XSORT> attribute. For example, because leading
nonalphabetic characters are ignored by default, the main entry $SEARCH
normally appears with other entries beginning with the letter "S." To force
the indexing software to place $SEARCH before the "A" section, you can use
the SORT attribute as follows:

<Y> ($SEARCH <XS> See System Services\ <XSORT> ($))

<X>(File structure designators)
<Y>(File structure designators<XSUBENTRY>See also Header blocks)

This index command would create the following index entry, assuming these
tags appeared on page 1-3:

File stucture designators, 1-3
See also Header blocks

9-265

A VAX DOCUMENT Command Summary

This appendix describes the DCL command line interface to VAX
DOCUMENT. A summary of this information can be obtained by typing
the following command once VAX DOCUMENT is installed:

$ HELP DOCUMENT

See Chapter 4 for tutorial information on how to process your files using the
DOCUMENT command.

A-1

DOCUMENT

DOCUMENT

FORMAT

Invokes the VAX DOCUMENT document production system.

DOCUMENT input-file-spec doctype destination

Command Qualifier
/[NO]BA TCH[=qualifier-keyword]
/CONDITION=condition-name
/[NO]CONTENTS
/[NO]DEVICE_CONVERTER[=device-keyword}
/[NO]DIA GNOSTICS[=file-spec]
/ELEMENT =file-spec
/INCLUDE=fi/e-spec
/[NO}INDEX[=index-keyword]
/[NO }KEEP[=filetype-keyword]
/[NO }L/ST[=file-spec]
/[NO]LOG
/[NO]MAP[=file-spec]
/[NO]MASTER_/NDEX[=index-keyword]
/OUTPUT =file-spec
/[NO]PRINT[=qualifier-keyword]
/PROFILE=file-spec
/[NO]SYMBOLS=file-spec
/[NO]TAG_ TRANSLATOR
/[NO]TEXT _FORMATTER

Default
/NOBATCH
None.
/NOCONTENTS
/DEVICE_CONVERTER
/NOD/AGNOSTICS
None.
None.
/NOINDEX
/NOKEEP
/NOL/ST
/LOG
/NOMAP
/NOMASTER_/NDEX
See text.
/PRINT
None.
/NOSYMBOLS
/TAG_ TRANSLATOR
/TEXT _FORMATTER

restrictions None.

PARAMETERS input-file-spec

A-2

Specifies the input file to be processed. Note that wildcards are not allowed
in the input file specification.

The default file type of the input file specification expected by VAX
DOCUMENT is SDML. If qualifiers are specified, VAX DOCUMENT
determines the default file type based on the qualifiers and the destination
keyword you specify.

Table A-1 lists the default file types and the qualifiers and default
destinations that provide them.

DOCUMENT

Table A-1 Default File Types

VAX DOCUMENT Default Destination Default Input
Qualifiers Used Keyword Used File Type

None. Any SDML

/TAG_ TRANSLATOR Any SDML

{ /NOT AG_ TRANSLATOR
} 1

Any TEX
/TEXT _FORMATTER

{ /NOT AG_ TRANSLATOR } LN03 DVl_LN03
/NOTEXT_FORMATTER PS DVl_PS
/DEVICE_CONVERTER LINE DVl_LINE

TERMINAL DVLLINE
MAIL DVLLINE

{
/NOT AG_ TRANSLATOR

}
LN03 LN03

/NOTEXT _FORMATTER PS PS
/NODEVICE_CONVERTER LINE LINE
/PRINT TERMINAL TERM

MAIL TXT

1 Braces in this table indicate that the enclosed qualifiers occur together on the
command line.

doctype
Specifies the type of document being produced. The doctype you select on the
command line determines the style of your output and determines the SDML
tags you can use. Note that some tags are valid only in specific doctypes.
See the VAX DOCUMENT User Manual, Volume 2, for more information on
doctype-specific tags.

All doctypes have a default design. Some doctypes have several designs.
These doctypes accept a design keyword as part of the doctype specification.
The design keyword specifies an alternate design within the doctype. For
example, the SOFTWARE doctype has designs for different page sizes,
heading level formats, and so on.

The design keyword is specified as part of the doctype and is separated from
the doctype keyword by a period (.). For example, the REPORT doctype
has two alternate designs: one in which the text runs the full text page
width (the default), and another in which the text is placed in two columns.
You specify the default design as REPORT and the two-column design as
REPORT. TWOCOL. You can abbreviate the doctype keyword to any unique
string. For example, you could abbreviate REPORT.TWOCOL to REP.TWO,
or even R.T as long as each keyword is unique.

Table A-2 summarizes the supported VAX DOCUMENT doctype keywords
and includes a basic use for each keyword, and a summary description of the
available designs. See the VAX DOCUMENT Design Samples manual for more
information on each of these doctype designs.

A-3

DOCUMENT

Table A-2 VAX DOCUMENT Doctypes

Doctype Keyword

ARTICLE

LETTER

MANUAL.GUIDE

MANUAL.PRIMER

MANUAL.REFERENCE

MILSPEC

OVERHEADS

OVERHEADS.35MM

REPORT

REPORT. TWOCOL

SOFTWARE.BROCHURE

Used to Create

Articles

Letters or memos

User manuals

Military specifications

Overhead slides for
transparencies

General-purpose
documents

Design Description

8~ x 11 inches, numbered or unnumbered
headings, text is placed in a two-column format

8~ x 11 inches, unnumbered headings

7 x 9 inches, numbered headings

7 x 9 inches, unnumbered headings

8~ x 11 inches, numbered headings

8~ x 11 inches, numbered headings

8~ x 11 inches, no headings

6~ x 5~ inches, no headings

8~ x 11 inches, numbered headings

8~ x 11 inches, numbered headings, text is
placed in a two-column format

User manuals 7 x 9 inches, unnumbered headings
containing detailed
information on software

SOFTWARE.GUIDE

SOFTWARE.HANDBOOK

SOFTWARE. POCKET _REFERENCE

SOFTWARE.REFERENCE

SOFTWARE.SPECIFICATION

7 x 9 inches, numbered headings

7 x 9 inches, numbered headings

5~ x 7 inches, numbered headings

8~ x 11 inches, numbered headings

8~ x 11 inches, numbered headings

A-4

You can have additional local doctype keywords defined at your site. See
your VAX DOCUMENT system administrator for information on local doctype
keywords.

destination
Specifies the output device destination keyword for the document. VAX
DOCUMENT supports the following output destination keywords (these
keywords are the default keywords provided when VAX DOCUMENT is
installed, your local destination keywords may be different):

Destination Keyword

LINE 1

LN03 1

PS,

TERMINAL

MAIL

Formatted For

A line printer

An LN03 laser printer

Any Digital-supported POSTSCRIPT output device,
such as the PRINTSERVER 40 or the LN03R
SCRIPTPRINTER

A standard ANSI terminal, such as the VT-100

Sending through the VMS Mail Utility

1 These destinations are installed at your site only if they were selected during the
installation procedure.

DOCUMENT

You can abbreviate the destination keyword to any unique string. For
example, you could abbreviate LN03 to LNO, or even LN as long as that
string is unique.

You can have additional local destination keywords defined at your site.
See your VAX DOCUMENT system administrator for information on local
destination keywords.

DESCRIPTION DOCUMENT is the command you specify to invoke VAX DOCUMENT. VAX
DOCUMENT is a document production system that lets you create documents
in many different formats for a variety of output devices. All documents are
created by entering SDML tags into an input file which is then processed by
VAX DOCUMENT.

COMMAND
QUALIFIERS

The DOCUMENT command requires three parameters:

• Input File Specification

Specifies the input file for VAX DOCUMENT. This file is by default an
SDML file containing SDML tags, however, it can also be one of the
intermediate files generated by VAX DOCUMENT.

• Doctype

Specifies the document type keyword for which the input file should be
processed. This keyword specifies the kind of document to be created (a
letter, a software manual, a journal article, and so on).

• Destination

Specifies the final processing destination for the input file. This keyword
typically specifies a format used by a printer, but can specify formats for
terminals or the VMS Mail Utility.

You can use the qualifiers to the DOCUMENT command to create indexes,
master indexes, tables of contents, and to modify the default processing of
your input file.

/BATCH[=(qualifier-keyword[,qualifier-keyword .. .])]
/NO BATCH
Specifies whether VAX DOCUMENT should be run interactively or submitted
as a batch job. The default qualifier is /NOBATCH, which specifies that VAX
DOCUMENT should be run interactively.

The /BATCH qualifier builds and issues a DCL SUBMIT command that
submits a job to SYS$BATCH with a job name that has the same file name
as the input-file-spec used on the command line, prefixed with the string
"DOC$." For example, the file ROUTINES.SDML would be submitted as the
job DOC$ROUTINES.

You can use any of the DCL SUBMIT command qualifiers with VAX
DOCUMENT by passing these qualifiers as keywords to the /BATCH
qualifier. For example, if you want a command procedure to be run after
9:00 and want to be notified when it completes, you could use the following
command:

$ SUBMIT somefile.com /AFTER=09:00/NOTIFY

A-5

DOCUMENT

A-6

You can specify the same options for your document processing using the
/BATCH qualifier on the command line as follows:

$ DOCUMENT somefile /BATCH=(AFTER=09:00,NOTIFY) LETTER LN03

When you use the /BATCH qualifier, a file is created in your current default
directory that contains information about the batch job. This file has the same
file name as the input-file-spec used on the command line with a default file
type of LOG. When your batch job completes, this file is printed to the queue
defined by the logical SYS$PRINT and the file is deleted.

Note that any process logical names you enter on the DOCUMENT command
line must be defined in your LOGIN.COM file, otherwise VAX DOCUMENT
will be unable to translate the logical name during batch processing and will
issue an error message.

/CONDITION=condition-name
Specifies a condition keyword for a conditionalized SDML input file. Using
this qualifier has the same effect as using the <SELCONDITION> tag at the
beginning of your input file. This qualifier accepts a condition-name argument
that is a text string used to mark the condition being set.

The /CONDITION qualifier is valid only if tag translation is being done.
If /NOTAG_TRANSLATOR is specified with the /CONDITION qualifier,
the /CONDITION qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

/CONTENTS
/NOCONTENTS
Specifies whether a table of contents file should be produced. The
/NOCONTENTS qualifier is the default and specifies that no table of
contents should be produced. When the /CONTENTS qualifier is specified,
VAX DOCUMENT creates a table of contents file with a file name of
input-filename_CONTENTS.

If you place the <CONTENTS_FILE> tag in your SDML file and also specify
/DEVICE_CONVERTER on the command line, the current table of contents
file is included at the corresponding point in the final printable output
file (filename.LN03, filename.PS, and so on). If you do not place the
<CONTENTS_FILE> tag in your SDML file, the table of contents is not

incorporated into your final output file, but is placed in the separate file
input-filename_CONTENTS and processed separately.

The file type of this table of contents output file depends upon the destination
keyword and the processing qualifiers you have selected on the DOCUMENT
command line. You can use the /KEEP qualifier to retain any intermediate
table of contents files.

If you do not specify /CONTENTS on the DOCUMENT command line when
you process a file that contains a <CONTENTS_FILE> tag, VAX DOCUMENT
issues warning messages and the most recent version of the table of contents
file is included. Note that this may result in an out-dated table of contents
being included in your document. If there is no previous table of contents file
to be included, the device converter issues an error message.

Device Keyword

DOCUMENT

The /CONTENTS qualifier is valid only if text formatting is being done.
If /NOTEXT_FORMATTER is specified with the /CONTENTS qualifier,
the /CONTENTS qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

Note that if you process your document with the /NOTAG_TRANSLATOR
and /CONTENTS qualifiers, and the table of contents is included using
the <CONTENTS_FILE> tag, the table of contents is both incorporated into
your document and placed in the file filename_CQNTENTS and processed
separately.

Note: The maximum length of a VMS file name is 39 characters. If you want to
generat~ a contents file, your input file name must have no more than 30
characters, because appending _CONTENTS to it adds 9 more characters.

/DEVICE_CONVERTER[=(device-keyword [,device­
keyword .. .])]
/NODEVICE_CONVERTER
Specifies whether the device converter should be run.

The device converter reads and processes an intermediate device-specific
file and converts it to a file suitable for output on the destination device.
The output from the device converter has the same file name as the input
file specified on the command line, and a file type based on the destination
keyword specified on the command line.

The /DEVICE_CONVERTER qualifier optionally accepts the following
keywords for special processing of your file:

Description

HORIZONTAL _OFFSET =number-of-points Specifies where the text is to be positioned, relative to the left
edge of the paper. The default horizontal offset for the page is
one inch (72 points).

VERTICAL _OFFSET =number-of-points

ST ARTING_PAGE=fo/io-spec

The number-of-points argument specifies the number of points
the text page should be moved to the right from the left edge
of the paper. This argument must be zero or a positive integer.
The left edge of the paper is assumed to be zero.

Specifies where the text is to be positioned, relative to the top
edge of the paper. The default vertical offset for the page is
one inch (72 points).

The number-of-points argument specifies the number of points
the text page should be moved toward the page bottom from
the top edge of the page. This argument must be zero or a
positive integer. The top edge of the paper is assumed to be
zero.

Specifies the beginning page number of the first page in a range
of pages to be printed. If no ending page is specified, the rest
of the file is printed. The folio-spec value can be any valid page
number that VAX DOCUMENT produces on the page 1

•

1 See the definition of a folio-spec in the description of the /DEVICE_CONVERTER qualifier.

A-7

DOCUMENT

Device Keyword

ENDING_PAGE=fo/io-spec

Description

Specifies the ending page number of the last page in a range of
pages to be printed. The folio-spec value can be any valid page
number that VAX DOCUMENT produces on the page 1

• If both
the ENDING_PAGE and NUMBER_OF _PAGES keywords are
used together on the same command line, VAX DOCUMENT
issues an error message.

NUMBER_QF _PAGES=maximum-pages Specifies the number of pages to print, when no ENDING_
PAGE keyword is specified. If both the ENDING_PAGE and
NUMBER_OF _PAGES keywords are used together on the same
command line, VAX DOCUMENT issues an error message.

FALLBACK

The maximum-pages value must be an integer specifying the
total number of pages to print. If this number is specified as a
number larger than the number of pages in the document (for
example, 99999), all pages of the document are printed.

Specifies that the device converter should not process the input
file using the multinational character set. Use this keyword
only when you do not want to use the multinational character
set when processing a file for a device that does not support
the multinational character set; for example, certain 7-bit line
printers and terminals.

1 See the definition of a folio-spec in the description of the /DEVICE_CONVERTER qualifier.

A-8

Use the STARTING_PAGE and ENDING-PAGE keywords to specify the
page numbers that are to be processed. Each of these keywords accepts a
folio-spec argument. A folio-spec has the following syntax:

[{folio-prefix}{ separator\] {page-number}

The following list describes the rules for each of the folio-spec syntax
elements.

• page-number

Specifies the page number portion of a folio-spec. In the folio-spec 11-3, ~
"3" is the page-number. The page-number can be a Roman number, an ~
Arabic number, or an asterisk (*). Roman numbers specify a page in the
preface of a document, Arabic numbers specify pages outside the preface
section, and the asterisk (*) specifies the first page of the document
section specified by the folio-prefix.

• folio-prefix

Specifies the numbers or letters that prefix the folio-spec. A folio-prefix
can be any of the following:

Any single letter. Specifies an appendix in your document, for
example the letter "B" in the folio-spec B-6.

Any single number. Specifies a chapter number, for example the
number "13" in the folio-spec 13-1.

The keywords GLOSSARY or INDEX. Specifies a page in the glossary
or index, for example "INDEX" in the folio-spec INDEX-6.

The keyword PARTn where n is an integer of one or greater. Specifies
a section begun using a <PARLPAGE> tag, for example "PART2" in
the folio-spec PART2-7.

DOCUMENT

•
- An asterisk (*). Specifies the first section of your document.

separator

Specifies the character that separates the folio-prefix from the page­
number. The separator can be any single character that is not a space,
a number, or a letter. In the folio-spec 11-3, "-"is the folio-prefix. A
separator must be omitted if no folio-prefix is specified.

The following DOCUMENT command specifies that pages 11-3 through 11-8
of file MYREPORT.DVl_LN03 should be processed by the device convertor.

$ DOCUMENT/NOTAG/NOTEXT myreport REPORT LN03 -
_$ /DEVICE=(STARTING=11-3,ENDING=11-8)

/DIAGNOSTICS[=file-spec]
/NOD/AGNOSTICS
Causes the tag translator to write VAX Language-Sensitive Editor (LSE)
diagnostics records to a file. LSE uses these records during its REVIEW
phase to locate and describe translation errors. See Appendix B for more
information on LSE.

If you omit the file specification, the output file has the same name
as the input file, with a file type of DIA. The default qualifier is
/NODIAGNOSTICS.

The /DIAGNOSTICS qualifier is valid only if tag translation is being done.
If /NOTAG_TRANSLATOR is specified with the /DIAGNOSTICS qualifier,
the /DIAGNOSTICS qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

/ELEMENT=file-spec
Names the file specification of the book element that includes the input file
specified on the DOCUMENT command line. If you use the /ELEMENT
qualifier, the /PROFILE qualifier must also be used to specify the profile for
the book that contains the book element. If you do not specify the file type
of the element file, t~e default element file type is SDML.

The /ELEMENT qualifier is valid only if tag translation is being done.
If /NOTAG_TRANSLATOR is specified with the /ELEMENT qualifier,
the /ELEMENT qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

//NCLUDE=file-spec
Specifies a VAX DOCUMENT file that you want to be included before the
input file you specified on the command line. If you do not specify the file
type of the file to be included, SDML is the default file type.

The /INCLUDE qualifier is valid only if tag translation is being done.
If /NOTAG_TRANSLATOR is specified with the /INCLUDE qualifier,
the /INCLUDE qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

/INDEX[=(index-keyword [,index-keyword ...])]
/NOINDEX
Specifies whether an index file should be produced. The /NOINDEX qualifier
is the default and specifies that no index should be produced. When the
/INDEX qualifier is specified, VAX DOCUMENT creates an index file with a
file name of input-filename_INDEX.

A-9

DOCUMENT

A-10

If you place the <INDEX_FILE> tag in your SDML file and also specify
/DEVICE_CONVERTER on the command line, the current index file
is included at the corresponding point in the final printable output file
(filename.LN03, filename.PS, and so on). If you do not place the <INDEX_
FILE> tag in your SDML file, the index is not incorporated into your final
output file, but is placed in the separate file input-filename_INDEX.

The file type of this index output file depends upon the destination keyword
and the processing qualifiers you have selected on the DOCUMENT
command line. You can use the /KEEP qualifier to retain any intermediate
index files.

If you do not specify /INDEX on the DOCUMENT command line when you
process a file that contains an <INDEX_FILE> tag, VAX DOCUMENT issues
a warning message and the most recent version of the index file is included.
This may result in an out-dated index being included in your document. If no
previous index file exists, the device converter issues an error message.

The /INDEX qualifier is valid only if text formatting is being done. If
/NOTEXT_FORMATTER is specified with the /INDEX qualifier, the /INDEX
qualifier is ignored, and VAX DOCUMENT issues an informational message
stating that you have specified conflicting qualifiers.

Note that if you process your document with the /NOTAG_TRANSLATOR
and /INDEX qualifiers, and the index is included using the <INDEX_FILE>
tag, the index is both incorporated into your document and placed in the file
filename-1NDEX and processed separately.

Note: The maximum length of a VMS file name is 39 characters. If you want to
generate an index file, your input file name must have no more than 33
characters, because appending _INDEX to it adds 6 more characters.

The following list describes the optional indexing keywords that can be used
with the /INDEX qualifier.

Index Keyword

{
GUIDE_HEADINGS }
NOGUIDE_HEADINGS

DOCUMENT

Description

Specifies whether alphabetic headings are created for each
letter group in the index. (The entries beginning with "A" will
have an A at the start of the group, and so on.) The GUIDE_
HEADINGS keyword is the default. The NOGUIDE_HEADINGS
keyword suppresses guide headings in the index output file.

SORT=([{ LETTER
WORD {

NONALPHA=AFTER }
} [I NONALPHA=BEFORE])

NONALPHA=IGNORE

{
OVERRIDE_MASTER }
NOOVERRIDE_MASTER

Specifies the sorting algorithm used to order entries in an
index.

• SORT =LETTER sorts the entries letter by letter and
ignores spaces and hyphens. SORT=LETTER is the
default.

• SORT=WORD sorts the entries letter by letter and treats
spaces and hyphens as significant.

• SORT =NON ALPHA positions entries with initial
nonalphanumeric characters in the index based on the
keyword supplied with the NONALPHA keyword.

The AFTER keyword causes entries with initial
nonalphanumeric characters to be placed at the end
of the index.

The BEFORE keyword causes entries with initial
nonalphanumeric characters to be placed at the
beginning of the index.

The IGNORE keyword causes entries with initial
nonalphanumeric characters to be sorted by the first
alphanumeric characters in the entry. The default is
NONALPHA=IGNORE.

Specifies the disposition of index entries in both single­
document indexes and master indexes; NOOVERRIDE_
MASTER is the default keyword for both /INDEX and
/MASTER_INDEX.

Use /INDEX=NOOVERRIDE_MASTER to create a single
document index that contains only the index entries that
are not marked with the MASTER keyword; this is the
default.
Use /INDEX=OVERRIDE_MASTER to create a single
document index that contains both the index entries
that are not marked with the MASTER keyword and the
entries that are marked with the MASTER keyword.
Use /MASTER_INDEX=NOOVERRIDE_MASTER to create
a master index that contains only the index entries that
are marked with the MASTER keyword; this is the default.
Use /MASTER_INDEX=OVERRIDE_MASTER to create a
master index that contains both the index entries that are
not marked with the MASTER keyword and those entries
that are marked with the MASTER keyword.

A-11

DOCUMENT

A-12

/KEEP[=(filetype-keyword [,filetype-keyword .. .])]
/NOKEEP
Specifies whether intermediate files should be kept or deleted. The default
qualifier /NOKEEP indicates that the intermediate files should be deleted by
VAX DOCUMENT after processing.

The following keywords can be used to specify individual intermediate files
that are to be kept:

File Type
Keyword

DVI

INX

TEX

File Contents

Specifies an intermediate output file from the text formatter. You
may want to keep this file for reprocessing at a later date, or to
selectively process and print only certain pages.

The actual file type of this file is based on the destination keyword
you specified on the DOCUMENT command line. These file types
and the destination keywords that create them are listed under the
description of the /TEXT_FORMATTER qualifier.

Specifies an ASCII file that contains index entries in page-number
order. This file can be used to create master indexes.

Specifies an input file for the text formatter. Note that a TEX file
processed under a certain doctype design can produce errors if it
is reprocessed using a different doctype.

/LIST[=file-spec]
/NOL/ST
Specifies whether a listing file is produced. The /NOLIST qualifier is the
default and suppresses the generation of a listing file. If no file specification is
provided as an argument to the /LIST qualifier, the qualifier causes a listing
file to be produced with the file name of the input file specification and a
default file type of LIS. If a file specification is provided as an argument, then
that file specification is used as the output file.

The listing file contains the following information:

• All messages generated by the tag translator

• All messages generated by the text processor

• All messages generated by the device converter

• A brief summary section. This summary includes the following
information:

The original command line

The time and day that processing began

The total CPU time used

/LOG
/NO LOG
Specifies whether informational messages should be issued during processing.
The /LOG qualifier is the default and specifies that informational messages
should be issued. The /NOLOG qualifier suppresses informational messages.

DOCUMENT

The following example shows the typical informational messages displayed
during tag translation (not specifying /NOLOG is the same as specifying the
default qualifier /LOG):

$ DOCUMENT myarticle ARTICLE LN03

%DOC-I-IDENT, VAX DOCUMENT V1.1

[T a g T r a n s 1 a t i o n] . . .
%TAG-I-DEFSLOADD, End of Loading of Tag Definitions
%TAG-I-ENDPASS_1, End of first pass over the input
[T e x t F o r m a t t i n g] . . .

The following example shows how no messages are displayed when
/NOLOG is specified. Note that only the DCL dollar ($) prompt is returned
after the DOCUMENT command is finished.

$ DOCUMENT myarticle ARTICLE LN03 /NOLOG
$

/MAP[=file-spec]
/NOMAP
Specifies whether all the input files processed by VAX DOCUMENT should
be listed in a file, which starts with the SDML input file and includes the tag
table and any SDML files specified by the /INCLUDE or /SYMBOLS qualifier
or the <ELEMENT> or <INCLUDE> tags. Files that are included by other files
are indented under those files in this listing. The default file type of the file
to be created is MAP_LIS. The default qualifier is /NOMAP.

The /MAP qualifier is valid only if tag translation is being done. If
/NOTAG_TRANSLATOR is specified with the /MAP qualifier, the /MAP
qualifier is ignored, and VAX DOCUMENT issues an informational message
stating that you have specified conflicting qualifiers.

/MASTER_/NDEX[=(index-keyword [,index­
keyword .. .])]
/NOMASTER_/NDEX
Causes indexing files to be collated into a master index file.

When the /MASTER_INDEX qualifier is specified, VAX DOCUMENT expects
a master index data file as the input-file-spec parameter. This file lists the
index output (INX) files generated from the individual books that are being
referenced in the master index. The default file type of this input file is
INX_LIST.

This qualifier accepts the same optional indexing keywords as the /INDEX
qualifier; see the description of the /INDEX qualifier for a list of these
keywords and their uses. See Chapter 7 for more information on creating a
master index.

/OUTPUT=file-spec
Specifies a new name for the output file. If the /OUTPUT qualifier is not
used, the output file is given the same file name as the input file, but with a
file type based on the other qualifiers and destinations chosen.

The output file type is determined by the output device specified by the
destination keyword. An example of a command line that uses the /OUTPUT
qualifier follows:

$ DOC somefile LETTER LN03 /NOTEXT_FORMATTER /OUTPUT=anotherfile

A-13

DOCUMENT

A-14

This command line would create the file ANOTHERFILE.TEX because
the processing was completed before the text formatter was run by the
/NOTEXT_FORMATTER qualifier. If /NOTEXT_FORMATTER had been
omitted from the preceding command line, the output file would have been
ANOTHERFILE.LN03

The following table lists the output file types and the default destination
keywords that produce them.

Default Destination Keyword

LINE

LN03

PS

TERMINAL

MAIL

Default File Type

LINE

LN03

PS

TERM

TXT

/PRINT[=(qualifier-keyword [,qualifier-keyword ...])]
/NOPRINT
Specifies whether the output file should be printed. The /PRINT qualifier
builds and issues a DCL PRINT command. You can use any of the DCL
PRINT command qualifiers with VAX DOCUMENT by passing these
qualifiers as keywords to the /PRINT qualifier.

For example, if you want to print two copies of a VAX DOCUMENT file with
no flag page, you can use the PRINT command as follows:

$ PRINT somefile.line /NOFLAG/COPIES=2

You can specify the same options using the following /PRINT qualifier on the
DOCUMENT command line.

$ DOC/NOTAG/NOTEXT/NODEV somefile -
_$/PRINT=(NOFLAG,COPIES=2) LETTER LINE

When you use the /PRINT qualifier, you do not need to specify an output
device; VAX DOCUMENT determines the appropriate output device from the
destination keyword specified on the DOCUMENT command line.

Default print queues for each of the destination keywords available at your
site are established when VAX DOCUMENT is installed. These queues
include all DCL PRINT command qualifiers needed for correct printing on
that output device.

If you choose to specify a print queue other than the default, you must
also specify the correct qualifier-keywords needed for that queue. These
keywords vary depending on the type of file to be printed (indicated by the
file extension) and the type of output device.

Output
File Type

LINE

LN03

PS

Output
File Type

LINE

LN03

PS

DOCUMENT

The following table shows the keywords to use for each file and output device
combination.

Print
Device

Line Printer
LN03 Laser Printer
LN03 PLUS Laser Printer

LN03R SCRIPTPRINTER
PRINTSERVER 40

LN03 Laser Printer
LN03 PLUS Laser Printer

LN03R SCRIPTPRINTER
PRINTSERVER 40

LN03R SCRIPTPRINTER
PRINTSERVER 40

DOCUMENT /PRINT Qualifier-Keywords

/PRINT =(QUEUE=queuename)

/PRINT =(QUEUE=queuename,PARAM=DA TA_ TYPE= ANSI)

/PRINT =(QUEUE=queuename,NOFEED ,PASSALL)

/PRINT=(OUEUE=queuename,PARAM=DATA_ TYPE=ANSI)

/PRINT=(OUEUE=queuename,PARAM=DAT A_ TYPE=POST)

If you wish to print your file using the DCL PRINT command, the following
table shows the qualifiers you must use for each supported device.

Print
Device

Line Printer

DCL PRINT Command Qualifiers

LN03 Laser Printer
$ PRINT filename.LINE
_$ /QUEUE=queuename

LN03 PLUS Laser Printer

LN03R SCRIPTPRINTER
PRINTSERVER 40

LN03 Laser Printer
LN03 PLUS Laser Printer

LN03R SCRIPTPRINTER
PRINTSERVER 40

LN03R SCRIPTPRINTER
PRINTSERVER 40

$ PRINT /PARAM=(DAT A_ TYPE=ANSI) filename.LINE
_$ /QUEUE=queuename

$ PRINT /NOFEED/PASSALL filename.LN03
_$ /QUEUE=queuename

$ PRINT /PARAM=(DAT A_ TYPE=ANSI) filename.LN03
_$ /QUEUE=queuename

$ PRINT /PARAM=(DATA_ TYPE=POST) filename.PS
_$ /QUEUE=queuename

When you specify /DEVICE-CONVERTER on the DOCUMENT command
line, /PRINT is the default printing qualifier when the destination keywords
are LN03, PS, or LINE. The /NOPRINT qualifier is the default when the
destination keywords are TERMINAL or MAIL.

Note that if any serious errors are encountered during processing, the file is
not sent to the print device.

/PROF/ LE=file-spec
Specifies that the input file is a file referenced by the <ELEMENT> tag in
a bookbuild profile and that a cross-reference data file created by a VAX
DOCUMENT bookbuild should be used to resolve any cross references in
the input file. The cross-reference data file is specified as an argument to the
/PROFILE qualifier and has a file type of XREF.

A-15

DOCUMENT

A-16

The /PROFILE qualifier is valid only if tag translation is being done. If
/NOTAG_TRANSLATOR is specified with the /PROFILE qualifier, the
/PROFILE qualifier is ignored, and VAX DOCUMENT issues an informational
message stating that you have specified conflicting qualifiers.

/SYMBOLS=file-spec
/NOSYMBOLS
Controls whether a file of symbol definitions is to be read automatically
during tag translation. The default qualifier is /NOSYMBOLS. The SDML
input file accessed through the /SYMBOLS qualifier should contain only
symbol definitions created by the <DEFINE-SYMBOL> and the <DEFINE_
BOOK_NAME> tags. The default file type of this file is SDML.

The /SYMBOLS qualifier is valid only if tag translation is being done.
If /NOTAG_TRANSLATOR is specified with the /SYMBOLS qualifier,
the /SYMBOLS qualifier is ignored, and VAX DOCUMENT issues an
informational message stating that you have specified conflicting qualifiers.

/TAG_ TRANSLATOR
/NOTAG_ TRANSLATOR
Controls whether the tag translator is run. If this qualifier is not specified, the
default qualifier is /TAG_TRANSLATOR.

If the input-file-spec parameter specified on the command line does not
include a file type, the default file type is SDML. By default, the tag translator
produces an output file with the file name of the input file and a file type of
TEX. This file can then be used as an input file to the text formatter.

/TEXT _FORMATTER
/NOTEXT _FORMATTER
Controls whether the text formatting program is run. If /NOTEXT_
FORMATTER is specified, VAX DOCUMENT processing stops after the
tag translator completes. /TEXT_FORMATTER is the default.

If /NOTAG_TRANSLATOR is specified and the input file specified on the
command line does not include a file type, the default file type is TEX. The
output file from the text formatter can have one of several file types based on
the destination parameter entered on the command line. These default output
file types and their related destination keywords are given in the following
list.

Destination Intermediate Final
Keyword Output File Type Output File Type

LINE DVl_LINE LINE

LN03 DVl_LN03 LN03

MAIL DVl_LINE TXT

PS DVl_PS PS

TERMINAL DVl_LINE TERM

The output file from the text formatter can then be used as an input file to the
device converter.

VAX DOCUMENT Command Summary

EXAMPLE When you process your input file using the DOCUMENT command, you are
actually running your file through several processors. The following example
shows a typical use of the VAX DOCUMENT command:

$DOCUMENT myreport.SDML REPORT LN03 /CONTENTS

%DOC-I-IDENT, VAX DOCUMENT V1.1

[T a g T r a n s 1 a t i o n] . . .
%TAG-I-DEFSLOADD, End of Loading of Tag Definitions
%TAG-I-ENDPASS_1, End of first pass over the input
[T e x t F o r m a t t i n g] . . .
%TEX-I-PAGESOUT, 17 pages written.
-TEX-I-OUTFILENAME, 'DUA!: [DOCFILES]MYREPORT.DVI_LN03'
[C o n t e n t s G e n e r a t i o n] . . .
[Text Formatting Contents] ...
%TEX-I-PAGESOUT, 1 page written.
-TEX-I-OUTFILENAME, 'DUA!: [DOCFILES]MYREPORT_CONTENTS.DVI_LN03'
[D e v i c e C o n v e r s i o n] . . .
%DVC-I-PAGESOUT, 18 pages written to file:

DUA!: [DOCFILES]MYREPORT.LN03
[C o n t e n t s D e v i c e C o n v e r s i o n] . . .
%DVC-I-PAGESOUT, 1 page written to file:

DUA!: [DOCFILES]MYREPORT_CONTENTS.LN03
[P r i n t i n g F i 1 e] . . .
Job MYREPORT (queue SYS$LN03, entry 833) started on SYS$LN03

[P r i n t i n g C o n t e n t s] ...

Job MYREPORT_CONTENTS (queue SYS$LN03, entry 834) started on SYS$LN03

$

A-17

B Using LSE with VAX DOCUMENT

This appendix provides an overview of an optional productivity tool, the
VAX Language-Sensitive Editor. This tool is not included with the VAX
DOCUMENT software; it must be purchased separately. Using LSE can
increase your productivity as a VAX DOCUMENT user. For information on
how to purchase this tool, contact your DIGITAL sales representative.

B.1 Using LSE with VAX DOCUMENT

B.1.1

The VAX Language-Sensitive Editor (LSE) is a powerful and flexible text
editor designed specifically for software development. LSE has important
features that help you produce syntactically correct SDML markup in VAX
DOCUMENT.

To invoke LSE, issue the LSEDIT command followed by a file name with a
SDML file type at the DCL prompt. For example:

$ LSEDIT USER.SDML

The following sections describe some of the key features of LSE. Section B.1.1
discusses how to enter source code using LSE and Section B.1.2 describes
LSE's compiler interface features. Section B.1.3 gives examples of how to
generate VAX DOCUMENT source code with LSE.

For more details on advanced features of LSE, see the Guide to VAX Language­
Sensitive Editor and VAX Source Code Analyzer.

Entering Source Code Using Tokens and Placeholders
LSE simplifies the tasks of developing and maintaining documents. LSE
provides the functions of a traditional text editor, plus additional powerful
features: language-specific placeholders and tokens, aliases, compile and
review features.

Placeholders are markers in the source code that indicate locations where you
can provide text. Placeholders help you to supply the appropriate syntax in a
given context. Generally, you do not need to type placeholders; rather, they
are inserted for you by LSE.

Placeholders are either optional or required. Required placeholders, which are
delimited by braces ({}), represent places in the source code where you must
provide text. Optional placeholders, which are delimited by brackets ([]),
represent places in the source code where you can either provide additional
constructs or delete the placeholder.

There are three types of LSE placeholders.

8-1

Using LSE with VAX DOCUMENT

B-2

Type of
Placeholder

Terminal

Nonterminal

Menu

Description

Provides text that describes valid replacements for the
placeholder

Expands into additional language constructs

Provides a list of options corresponding to the placeholder

You can move forward or backward from placeholder to placeholder. In
addition, you can delete or expand placeholders as needed. Section B.1.3
shows examples of expanding placeholders.

Tokens typically represent each tag in VAX DOCUMENT. When expanded,
tokens provide the complete syntax of a tag. You can type tokens directly
into the buffer. Generally, you use tokens when you want to add a tag and
there are no placeholders in an existing program. For example, typing COM
and issuing the EXP AND command causes the tags for a comment to appear
on your screen. You can also use tokens to by-pass long menus in cases
where expanding a placeholder, such as [element-or-template], would result
in a lengthy menu.

You can use tokens to insert text when editing an existing file by typing the
name for a function or keyword and issuing the EXP AND command.

LSE commands allow you to manipulate tokens and placeholders. These
commands and their default key bindings are as follows:

Table B-1 LSEDIT Commands

Command

EXPAND

UNEXPAND

Key
Binding Function

CTRL/E Expands a placeholder

PF 1-CTRL/E Reverses the effect of the
most recent placeholder
expansion

GOTO PLACEHOLDER/FORWARD CTRL/N Moves the cursor to the
next placeholder

GOTO PLACEHOLDER/REVERSE CTRL/P Moves the cursor to the
previous placeholder

ERASE PLACEHOLDER/FORWARD CTRL/K Erases a placeholder

UN ERASE PLACEHOLDER PF 1-CTRL/K Restores the most recently
erased placeholder

None Down arrow Moves the indicator down
through a menu

None

None

Up arrow Moves the indicator up
through a menu

{ ENTER } Selects a menu option
RETURN

You can display a list of all defined tokens and placeholders, or a particular
token or placeholder, with the LSE commands--- SHOW TOKEN and SHOW
PLACEHOLDER.

Using LSE with VAX DOCUMENT

To copy the listed information into a separate file, first issue the appropriate
SHOW command to put the list into the $SHOW buffer. Then issue the
following commands:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename

To obtain a hard copy of the list, use the PRINT command at DCL level to
print the file you created.

B.1.2 Compiling Source Code
To compile your code and review compilation errors without leaving the
editing session, you can use the LSE commands COMPILE and REVIEW.
The COMPILE command issues a DCL command in a subprocess to invoke
the VAX DOCUMENT tag translator. The compiler then generates a file of
compile-time diagnostic information that LSE can use to review compilation
errors. The diagnostic information is generated with the /DIAGNOSTICS
qualifier that LSE appends to the compilation command.

For example, to issue the COMPILE command while in the buffer
USER.SDML, you would use the following command:

COMPILE $ doctype destination

The doctype and destination are any valid VAX DOCUMENT keywords. When
the COMPILE command is issued, the following DCL command executes:

$ DOCUMENT USER.SDML/DIAGNOSTICS=USER.DIA doctype destination

LSE supports all of VAX DOCUMENT' s command qualifiers.

The REVIEW command displays any diagnostic messages that result from
a compilation. LSE displays the compilation errors in one window and the
corresponding source code in a second window so that you can review your
errors while examining the associated source code. This capability eliminates
tedious steps in the error correction process and helps ensure that all the
errors are fixed before you recompile your program.

LSE provides several commands to help you review errors and examine
your source code. These commands, and their default key bindings where
applicable, are as follows:

Command Key Binding

COMPILE None

REVIEW None

END REVIEW None

GOTO SOURCE CTRL/G

Function

Compiles the contents of the source buffer.
You can issue this command with the
/REVIEW qualifier to put LSE in REVIEW
mode immediately after the compilation.

Puts LSE into REVIEW mode and displays
any errors resulting from the last compilation.

Removes the buffer $REVIEW from the
screen; returns the cursor to a single window
containing the source buffer.

Moves the cursor to the source buffer that
contains the error.

B-3

B.1.3

Using LSE with VAX DOCUMENT

Examples

B-4

Command

NEXT STEP

PREVIOUS
STEP

Key Binding

CTRL/F

CTRL/B

Function

Moves the cursor to the next error in the
buffer $REVIEW.

Moves the cursor to the previous error in the
buffer $REVIEW.

{
Down arrow }M h · h' b ff aves t e cursor wit in a u er.
Up arrow

The following sections show examples of using some common tokens and
placeholders to write VAX DOCUMENT code. The examples are expanded
to show the formats and guidelines LSE provides; however, not all of the
examples are fully expanded.

The examples show expansions of the following VAX DOCUMENT features:

• Tags as tokens: <LIST> and <TABLE>

• Initial string: [element-or-template]

• Sample template: Data Item Description (DID) for U.S. Department of
Defense military specification

Instructions and explanations precede each example, and an arrow (~)
indicates the line in the code where an action has occurred.

See Table B-1 for the commands that manipulate tokens and placeholders.

Remember that braces ({}) enclose required placeholders; brackets ([])
enclose optional placeholders. Note that when you erase an optional
placeholder, LSE also deletes any associated text before and after that
placeholder.

When the editor is used to create a new VAX DOCUMENT file, the initial
string, {element-or-template}, will appear at the top of the screen. Expansion
of the initial string will produce the following

-> [profile]
[front_matter]
[chapter]
[part]
[appendix]
[glossary]
[tag-groups]
[article-tags]
[letter-tags]
[report-tags]
[overheads-tags]
[milspec-templates]
[software-documentation-templates]

A convention in VAX DOCUMENT is to place a single element, such as a
chapter or appendix, or a single template, such as a milspec template or a
software documentation template, into a single file.

8.1.3.1

B.1.3.2

Using LSE with VAX DOCUMENT

Lists
Select the token LIST by typing LIS and expanding the token.

From the menu of possible list types, select the option Alphabetical-list. The
following then appears on the screen in the editing buffer:

<LIST>(ALPHABETIC\[start-no]\[case])
{list-element} ...
<END LIST>

Erase the placeholder [start-number] and expand the placeholder [case]. Select
J]PPERCASE.

<LIST>(ALPHABETIC\UPPERCASE)
{list~~lement} ...
<ENDL!'t;>T>

Move fo the next placeholder and expand to get an individual list element
tag.

<LIST>(ALPHABETIC\UPPERCASE)
<LE>{ text}
[list-element] ...
<END LIST>

Type over the {text} placeholder to insert the text for the first list item.

Tables
Enter all or part of the token TABLE and expand.

<TABLE>({caption}\(symbol])
[<TABLE_ATTRIBUTES>~
<TABLE_SETUP>({number}[\col-width] ...)
<TABLE_HEADS>({heading}[\heading] ...)
{rows} ...
<ENDTABLE>

The <TABLE> tag takes two arguments: the caption to the table and a
symbol to use for cross-references. With the cursor positioned on {caption},
enter caption text. With the cursor positioned on [symbol], enter symbol text.

-> <TABLE>(Caption for the Table\newsymbol_tab)
[<TABLE_ATTRIBUTES>]
<TABLE_SETUP>({number}[\col-width] ...)
<TABLE_HEADS>({heading}[\heading] ...)
{rows} ...
<ENDTABLE>

Next, expand the placeholder <TABLE_ATTRIBUTES> and choose a set of
attributes from the menu.

<TABLE>(Caption for the Table\newsymbol_tab)
-> <TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)

<TABLE_SETUP>({number}[\col-width] ...)
<TABLE_HEADS>({heading}[\heading] ...)
{rows} ...
<ENDTABLE>

B-5

Using LSE with VAX DOCUMENT

8.1.3.3

8-6

Next, set up the table for the number and width of columns desired. Enter
a number indicating the number of columns (2 through 9). Then expand the
[\col-width] placeholder to enter a number indicating the width of the first
table column.

<TABLE>(Caption for the Table\newsymbol_tab)
<TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)

-> <TABLE_SETUP>(3\{number}[\col-width] ...)
<TABLE_HEADS>({heading}[\heading] ...)
{rows} ...
<ENDTABLE>

Notice that the expansion of [\col-width] gives you the backslash needed to
separate arguments and the {number} placeholder. If you enter a number
into [\col-width] without expanding it first, you would not get the backslash.
Enter column widths for each column in the table except the last column.
Delete the last [\col-width] placeholder.

<TABLE>(Caption for the Table\newsymbol_tab)
<TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)

-> <TABLE_SETUP>(3\15\15)
<TABLE_HEADS>({heading}[\heading] ...)
{rows} ...

The {heading} placeholders work very similarly to the [\col-width]
placeholder:

<TABLE>(Caption for the Table\newsymbol_tab)
<TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)
<TABLE_SETUP>(3\15\15)

-> <TABLE_HEADS>(First heading\Second Heading\{heading}[\heading] ...)
{rows} ...
<ENDTABLE>

Enter a heading for each column and delete the last [\heading] placeholder.

Expand the {rows} placeholder to get tags for the body of the table.

<TABLE>(Caption for the Table\newsymbol_tab)
<TABLE_ATTRIBUTES>(WIDE\MULTIPAGE)
<TABLE_SETUP>(3\15\15)
<TABLE_HEADS>(First heading\Second Heading\{heading}[\heading] ...)

-> <TABLE_ROW>({item}[\item] ...)
[rows] ...

Enter an item for each column and keep expanding the [rows] placeholder
until the table body is complete. Delete the last [rows] placeholder and the
table is ready for processing.

Profile
To place the tags for a document's profile into the editing buffer, type PRO
and expand the token.

<PROFILE>

{element} ...

<END PROFILE>

B.1.3.4

Using LSE with VAX DOCUMENT

Expand the placeholder {element} to get the <ELEMENT> tag and the
optional <INCLUDES_FILE> tag.

<PROFILE>

-> <ELEMENT>({element-name})

[<INCLUDES_FILE>]

[element] ...

<ENDPROFILE>

Expand or delete the placeholder <INCLUDES_FILE> and expand the
placeholder [element] as many times as needed.

Sample Template
There are two methods of accessing the Data Item Description (DIDs)
templates for DOD-STD-2167-related military specifications:

• Select [milspec-templates] from the initial placeholder

• Enter part of the token "DID-800 ... " and expand to get a list of the
available data item descriptions

Select one of the DIDs from the list.

-> DI-MCCR-80012:
DI-MCCR-80025:
DI-MCCR-80026:
DI-MCCR-80027:
DI-MCCR-80028:
DI-MCCR-80031:

Software Top Level Design Document
Software Requirements Specification
Interface Requirements Specification
Interface Design Document
Data Base Design Document
Software Detailed Design Document

Select one of the DIDs, for example, DI-MCCR-80012. The menu that
appears is a list of templates that make up the individual files in the Software
Top Level Design Document.

For example, select DI-MCCR-80012 __ cover_page:

DI-MCCR-80012 __ profile
DI-MCCR-80012 __ symbols

-> DI-MCCR-80012 __ cover_page
DI-MCCR-80012 __ Scope
DI-MCCR-80012 __ Referenced_Documents
DI-MCCR-80012 __ Requirements
DI-MCCR-80012 __ Qualification_Requirements
DI-MCCR-80012 __ Preparation_for_Delivery
DI-MCCR-80012 __ Notes
DI-MCCR-80012 __ Appendix

Each of the menu items displayed for DI-MCCR-80012 contains a template
for a section of the Software Top Level Design Document and should be
placed in a separate file.

<comment>(begin front matter component)
<front_matter>
<title_page>
<specification_info>(<reference>(control_number)\\<DATE>\)
<spec_title>(<reference>(DID80012_title)\For the\{text}\
Contract No. <reference>(contract_number)\
CORL Sequence No. <reference>(CDRL_number)\<DATE>)

<subtitle>(Prepared for:\{text}\ \
Prepared by:\{text}\{text})

B-7

Using LSE with VAX DOCUMENT

<endtitle_page>

<contents_file>

<endf ront_matter>
<comment>(end front matter component)

The tags in the cover page template mark standard title page text. Fill in the
variable information by typing over the {text} placeholders.

B.1 .4 VAX DOCUMENT Tokens and Placeholders

B-8

To see all of the defined tokens provided by VAX DOCUMENT, enter the
following Editor command:

LSE> SHOW TOKEN

To see all of the defined placeholders provided by the VAX DOCUMENT,
enter the following Editor command:

LSE> SHOW PLACEHOLDER

To print a copy of either of these lists, you must first enter the appropriate
SHOW command. This enters the list into the $SHOW buffer. Then enter
the following commands:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename

At DCL level, you can use the PRINT command to obtain a hard copy of the
list.

You may also specify a token name or placeholder name after the SHOW
TOKEN or SHOW PLACEHOLDER command to obtain information about a
particular token or placeholder.

C Messages

A message has the following format:

% facility--severity--identification, text

Messages in VAX DOCUMENT can come from the following facilities:

Facility code

DOC

TAG

TEX

DVC

INX

Facility

The DOCUMENT command line

The tag translator

The text processor

The device converter

The index facility

The messages from these sources are given in the following sections.

To locate a message, use the facility code to locate the appropriate section and
then look for the identification text in that section. Messages are alphabetical
within sections.

For example, consider the following message:

%TAG-W-ISTHISTAG, at text on line 245 in file
WRT_: [YOURNAME.BOOK]INTRO.GNC;
Ignoring <list. Is this a tag without a closing angle bracket?

The facility code in this error is TAG, so you look in the section for tag
translator message. The identification text is ISTHISTAG, so you locate that
within the section.

C-1

Messages
DOCUMENT Command Messages

C.1 DOCUMENT Command Messages

C-2

ACTION _EXCL , qualifier is not available for the chosen destination

Warning: Indicates that the default qualifier has been excluded for the
desired destination and will therefore be ignored.

User Action: None.

AMB_DESIGN, Ambiguous design keyword design-keyword

Fatal: An ambiguous design keyword was specified.

User Action: Change the specified design keyword to be a unique design
keyword.

AMB_DEST , Ambiguous destination keyword destination-keyword

Fatal: An ambiguous destination keyword was specified.

User Action: Change the specified destination keyword to be a unique
keyword.

AMB_P APER_SIZE , Ambiguous paper size value

Error: The specified paper size value is ambiguous.

User Action: Specify a unique paper value and reexecute the DOCUMENT
command.

CANT_GET_ VALUE , Cannot get value of /qualifier qualifier

Fatal: A required value associated with the qualifier was not provided.

User Action: Reexecute the DOCUMENT command and specify a value for
the qualifier.

CANT_OPEN , Error detected opening file file-spec

Error: An error has occurred while opening the specified file.

User Action: Fix problem if you can or else refer problem to your system
manager. After fixing the problem, reexecute the DOCUMENT command.

CANT_USE_SHR, Cannot use file-spec

Fatal: A shareable image file for text processing could not be found or used.

User Action: Consult system manager.

DCL _ERROR , An error was detected while parsing
\DCL-command\

Error: An error was detected by the DCL parser.

User Action: Correct error on the specified line and reexecute the
DOCUMENT command. .

Messages
DOCUMENT Command Messages

DESIGN _ERROR , Bad design entry in design-file-directory DOC$DESIGNS data
file

Error: An error was found in a design data file, erroneous design entries are
ignored.

User Action: Correct error and reexecute the DOCUMENT command.

DESIGN _SYNTAX , Ignoring design-keyword design entry

Error: A syntax error is detected in the design data file.

User Action: Correct error and reexecute the DOCUMENT command.

DEST_ERROR , Bad destination entry in destination-file-directory
DOC$DESTINATIONS data file

Error: An error was found in a destination data file. Any involved entries
ignored.

User Action: Correct error and reexecute the DOCUMENT command.

DEST_SYNTAX , Ignoring destination-keyword destination data entry

Error: An error has been detected in a destination data file.

User Action: Correct errors in the destination data file and reexecute the
DOCUMENT command.

DO_CONTENTS , [C o n t e n t s G e n e r a t i o n] ...

Informational: Indicates that a contents file is being created.

User Action: None.

DO_DEVICE , [D e v i c e C o n v e r s i o n] ...

Informational: Indicates that the document input is being processed into a
printable form.

User Action: None.

DO_DVC_CONTENTS , [C o n t e n t s D e v i c e C o n v e r s i o n] ...

Informational: Indicates that the document contents is being processed into
a printable form.

User Action: None.

DO_DVC_INDEX , [I n d e x D e v i c e C o n v e r s i o n] ...

Informational: Indicates that the document index is being processed into a
printable form.

User Action: None.

DO_INDEX , [I n d e x G e n e r a t i o n] ...

Informational: Indicates that an index file is being created.

User Action: None.

C-3

Messages
DOCUMENT Command Messages

C-4

DO_MASTER_INDEX , [M a s t e r I n d e x G e n e r a t i o n] ...

Informational: Indicates that a master index file is being created.

User Action: None.

DO_PRINT , [P r i n t i n g F i 1 e] ...

Informational: Indicates that your output file is being sent to the designated
print queue.

User Action: None.

DO_ TAG , [T a g T r a n s 1 a t i o n] ...

Informational: Indicates that the tag translator is processing your SDML
input file.

User Action: None.

DO_TEXT , [T e x t F o r m a t t i n g] ...

Informational: Indicates that the text formatter is processing.

User Action: None.

DO_ TEXT_CONTENTS , [T e x t F o r m a t t i n g C o n t e n t s] ...

Informational: Indicates that the text formatter is processing the contents file.

User Action: None.

DO_TEXT_INDEX, [Text Formatting Index] ...

Informational: Indicates that the text formatter is processing the index file.

User Action: None.

ERROR-CONVERTER, Errors found by the device converter

Error: The device converter has ended in error, processing cannot continue.

User Action: Correct errors found by the device converter and reexecute the
DOCUMENT command.

ERROR_FORMATTER, Errors found by the text formatter

Error: The text formatter has ended in error, processing cannot continue.

User Action: Correct errors found by the text formatter and reexecute the
DOCUMENT command.

ERROR_IN _DESIGN , Internpl design date file error

Fatal: An unspecified error in the design data file was found.

User Action: Refer problem to system manager. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

Messages
DOCUMENT Command Messages

ERROR_IN _DEST , Internal destination data file error

Fatal: An unspecified error in the destination data file was found.

User Action: Refer problem to system manager. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

ERROR_TAG, Errors found by the tag translator

Error: The tag translator has ended in error, processing cannot continue.

User Action: Correct errors found by the tag translator and reexecute the
DOCUMENT command.

ERROR_WRITE, Error writing to file file-spec

Fatal: An RMS error was reported when DOCUMENT tried to read the
specified file.

User Action: Correct RMS error and reexecute DOCUMENT command.

ERR_CRE8_LIST , Listing file file-spec cannot be created

Fatal: The specified listing file could not be created.

User Action: Correct error in the listing file specification.

FILLM_TOO_LOW , Process open file limit too low, required value is minimum­
value

Fatal: The FILLM of the current process in not large enough to run the
DOCUMENT command.

User Action: Contact system manager to increase quota.

IDENT , VAX Document version number

Informational: DOCUMENT version number identification message

User Action: None.

IGNOR_DESIGN , Ignoring optional logical-name design data file

Informational: Optional DOC$LOCAL_FORMATS or DOC$STANDARD_
FORMATS design file cannot be opened. Any designs which are in that file
will be unavailable.

User Action: Correct reported problem or contact system manager, then
reexecute the DOCUMENT command.

INVALID-DESIGN , design-keyword is not a valid design

Fatal: An unrecognized design parameter was specified on the DOCUMENT
command line.

User Action: Reexecute the DOCUMENT command with a valid design
parameter.

C-5

Messages
DOCUMENT Command Messages

C-6

INVALID_DEST , destination-keyword is not a valid destination

Fatal: An unrecognized destination keyword was specified on the
DOCUMENT command line.

User Action: Reexecute the DOCUMENT command with a valid destination
keyword.

INVALID_DVI_ARG, qualifier-arg is not a valid /DEVICE_CONVERTER
argument

Fatal: The argument value specified to /DEVICE-CONVERTER is
unrecognized.

User Action: Reexecute DOCUMENT command with a valid qualifier
argument.

INVALID_ENTRY , qualifier-entry is not a valid /qualifier entry

Fatal: An invalid qualifier entry was specified on the DOCUMENT command.

User Action: Reexecute the DOCUMENT command with a valid qualifier.
Refer to Appendix A in this manual for information on valid DOCUMENT
command qualifiers.

INVALID_INPUT , Cannot use file-spec as an input file

Fatal: The specified input file is invalid.

User Action: Reexecute the DOCUMENT command with a valid input file
specification.

INVALID_ VALUE, Cannot use file-spec as a file for /qualifier

Fatal: The specified input file associated with the qualifier cannot be opened.

User Action: Reexecute DOCUMENT command with a valid input file
specification.

NEED_ VALUE , Destination entry parameter command needs /VALUE or a
keyword

Error: Syntax error found when parsing the destination data file.

User Action: Refer problem to system manager. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

NO_CONTENTS , No contents; /CONTENTS qualifier unnecessary

Warning: No contents information was available to generate a contents file;
no contents file will be produced.

User Action: Do not use the /CONTENTS qualifier when processing
this input file. An SDML file must contain at least one <CHAPTER> ,
<APPENDIX> , or <HEADx> tag to produce a table of contents file.

Messages
DOCUMENT Command Messages

NO_INDEX, No index; /INDEX qualifier unnecessary

Warning: No index information was available to generate an index file; no
index file will be produced.

User Action: Do not use the /INDEX qualifier when processing this input
file. An SDML file must contain at least one <X> or <Y> tag to produce an
index file.

OPEN _DESIGN , Error opening design data file in DOC$STANDARD_
FORMATS

Fatal: An error occurred when trying to open the DOC$STANDARD_
FORMATS:DOC$DESIGNS.DAT data file.

User Action: Check for existence of DOC$STANDARD_
FORMATS:DOC$DESIGNS.DAT data file; if it exists, then check the file
protection on that file.

OPEN _DEST , Error opening DOC$STANDARD_
FORMATS:DOC$DESTINATIONS data file

Fatal: There was an RMS error when trying to open the destination data file.

User Action: Check for existence of DOC$STANDARD_
FORMATS:DOC$DESTINATIONS.DAT data file; if it exists, then check
the file protection on that file.

PGFLQ_TOO_LOW, Process paging file quota too low, required value is
minimum-value

Fatal: The PGFLQUOTA of the current process is not large enough to run the
DOCUMENT command.

User Action: Contact system manager to increase quota.

PRINT_ CONTENTS , [P r i n t i n g C o n t e n t s] ...

Informational: Indicates that your contents file is being sent to the
designated print queue.

User Action: None.

PRINT_INDEX , [P r i n t i n g I n d e x] ...

Informational: Indicates that your index file is being sent to the designated
print queue.

User Action: None.

THESE_DESIGNS , Choose one of these designs:

Informational: Inquires for choice of document design types, this is required
input to the DOCUMENT command.

User Action: At the prompt, type the desired design from the choices offered.

C-7

Messages
DOCUMENT Command Messages

C-8

THESE_DESTS, Choose one of these destinations:

Informational: Inquires for choice of document destinations, this is required
input to the DOCUMENT command.

User Action: At the prompt, type the desired destination from the choices
offered.

TYPE_INPUT, input file

Informational: Inquires for the input file.

User Action: At the prompt, type the name of the input file.

UNR_DESIGN , Unrecognized design - please check your spelling

Fatal: An unrecognized design parameter has been specified to the
DOCUMENT command.

User Action: Reexecute the DOCUMENT command with a valid design
parameter.

UNR_DEST, Unrecognized destination - please check your spelling

Fatal: An unrecognized destination parameter has been specified to the
DOCUMENT command.

User Action: Reexecute the DOCUMENT command with a valid destination
parameter.

C.2

Messages
Tag Translator Messages

Tag Translator Messages
ABORTFORE, at tag or text on line n of file

file-spec
There have been more than number error messages of severity
level E

Fatal: The tag translator did not produce an output file because it detected
too many errors in the SDML source file with a severity level of Error. SDML
defines the minimum number of error messages of severity E as 0, although
this default value can be modified in local usage.

User Action: Examine the output from the preceding messages to determine
the errors you need to correct.

ABORTFORW, at tag or text on line n of file
file-spec
There have been more than number error messages of severity
level W

Fatal: The tag translator did not produce an output file because it detected
too many errors in the SDML source file with a severity level of Warning.
SDML defines the minimum number of error messages of severity Was 30,
although this default value can be modified in local usage.

User Action: Examine the output from the preceding messages to determine
the errors you need to correct.

ARGBADOPR, at tag or text on line n of file
file-spec
Argument 2 to tag <COUNTER> has an illegal arithmetic operator

Warning: The tag translator has found an illegal operator. The second
argument to the <COUNTER> tag consists of pairs of operators and operands,
and an optional trailing comment. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Verify that the operators and the comment character are correct.

ARGINCMPL, at tag or text on line n of file
file-spec
Argument 2 to tag <COUNTER> is incomplete.

Warning: The tag translator has not found at least one operator and one
operand. The second argument to the <COUNTER> tag requires at least
one operator and one operand. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Verify that the second argument begins with an operator and
an operand.

ARGINVALD, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is an invalid argument.

Warning: The argument in the specified position is not valid for the specified
tag.

User Action: Verify the tag's argument and correct it.

C-9

Messages
Tag Translator Messages

C-10

ARGMENTIS, The argument is string

Informational: Follows a message that indicates that an argument is invalid,
for example, when a numeric argument is required, but a character string
argument is specified.

User Action: Use the information to correct your source file.

ARGMISSNG, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is missing

Warning: The tag translator found no text for the indicated argument, but
the argument is required for the indicated tag.

User Action: Supply a value for the indicated argument.

ARGNOTCHR, at tag or text on line n of file
file-spec
Argument to tag <CHR> is not in the range 32 to 126

Warning: The <CHR> built-in tag requires a numeric argument whose value
is in the range of 32 to 126. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Correct the reference to the <CHR> built-in tag so that it
specifies a value that is in the correct numeric range.

ARGNOTKEY, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is not a keyword

Warning: The argument in the indicated position is not a valid keyword
argument for the indicated tag. This message is generally followed by a
message that shows the keyword that was specified.

User Action: Using the information in this message and the accompanying
message, determine the keyword in error. Check the VAX DOCUMENT User
Manual, Volume 1 to determine the valid arguments for the tag in question
and correct your source file.

ARGNOTLET, at tag or text on line n of file
file-spec
Argument to tag <SELAPPENDIX_LETTER> is not a letter

Warning: The <SELAPPENDIX_LETTER> tag requires a letter (A to Z).

User Action: Correct the source file to supply a letter as the first character of
the argument.

Messages
Tag Translator Messages

ARGNOTMSG, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is not a valid message
code

Warning: The indicated argument to the <TAG_DIAGNOSTIC> built-in tag is
not a recognized message code. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Verify the spelling of the message code and correct your source
file.

ARGNOTNAM, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is not a valid name

Warning: The indicated argument does not obey the rules for formation of
a name. A name must have only letters, digits and the underscore character.
A name must not begin with two underscores. Spaces, tabs, and carriage
returns are not allowed.

User Action: Correct the argument so that the name is valid.

ARGNOTNUM, at tag or text on line n of file
file-spec
Argument number to tag < tagname > is not a number

Warning: A non-numeric argument was specified to a tag that requires a
numeric argument.

User Action: Verify that the argument is in the correct position in the tag's
argument list. Supply a numeric argument to the tag.

ARGNOTPOS, at tag or text on line n of file
file-spec
Argument to tag <SELCHAPTER_NUMBER> is not a positive
integer

Warning: The <SELCHAPTER_NUMBER> tag requires a positive integer for
the chapter number argument.

User Action: Correct the ~ource file to supply a positive integer.

ARGNOTTYP, at tag or text on line n of file
file-spec
Argument string to tag < tagname > is not valid for doctype string

Warning: The indicated argument is not valid for this tag in the indicated
doctype.

User Action: Verify that you specified the correct doctype keyword on the
DOCUMENT command line.

ARGOUTRAN, at tag or text on line n of file
file-spec
Argument number is not in the range 0 to 9

Warning: The indicated argument cannot be less than 0 or greater than 9.

User Action: Correct the argument so that the number is in range.

C-11

Messages
Tag Translator Messages

C-12

ARGOVRFLW, at tag or text on line n of file
file-spec
More than number characters in an argument

Fatal: The argument is too large. This often indicates that an argument
list was not terminated correctly. The tag translator may be including large
portions of the input text as part of the argument.

User Action: Check the tag indicated by the location information and supply
the correct termination to the argument list.

AUXOVRFLW, at tag or text on line n of file
file-spec
More than number auxiliary files open

Fatal: The number of auxiliary files that can be open simultaneously is
limited. If you receive this message and are under a service contract with
DIGITAL, call your customer service center. Otherwise, submit a Software
Performance Report.

User Action: Be sure to close an auxiliary file when you have finished
reading or writing it.

BADLSTARG, at tag or text on line n of file
file-spec
Argument string is not valid for <LIST> type string

Warning: Verify the argument you specified to the <LIST> tag. Each type of
list accepts different keyword arguments, for example, UPPERCASE is a valid
keyword for alphabetic lists, but not for numbered lists.

User Action: Verify that you have specified the correct type of list. If you
specify a keyword argument, be sure that it is spelled correctly.

BNOTESOUT, at tag or text on line n of file
file-spec
Accumulated string not referenced.
Notes will not be output

Warning: A document contained <BACK_NOTE> or <BIB_NOTE> tags, but
no corresponding <BACK_NOTES> or <BIB_NOTES> was specified to output
the accumulated notes.

User Action: Place the <BACK_NOTES> or <BIB_NOTES> tag in the source
file at the position at which you want them output.

BOXTOOBIG, at tag or text on line n of file
file-spec
Length number of boxed item exceeds number characters.

Warn: An argument to the <BOX> tag exceeds the maximum number of
characters allowed. The text will be output as null.

User Action: Correct the <BOX> tag to specify an argument with fewer
characters.

Messages
Tag Translator Messages

CALL_NEST, at tag or text on linen of file
file-spec
Callouts inaccurately nested in a monospaced example.

Error: A monospaced example using callouts incorrectly nests
<EXAMPLE> ... <ENDEXAMPLE> tags (or tags that produce monospaced

output, such as <CODE_EXAMPLE>) with respect to the <CALLOUTS>
<ENDCALLOUTS> tags. For example, the following is incorrect:

<CALLOUTS>(\PREFIX)
<CODE_EXAMPLE>

<ENDCALLOUTS>
<ENDCODE_EXAMPLE>

User Action: Correct the SDML source file so that the begin and end tags for
the example and the callouts are correctly nested, for example:

<CALLOUTS>(\PREFIX)
<CODE_EXAMPLE>

<ENDCODE_EXAMPLE>
<ENDCALLOUTS>

CANTOPINT, Cannot open intermediate input file:
file_spec

Fatal: The post translator cannot open the .int_tex file.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to open the file.

CANTOPOUT, Cannot create output file:
file_spec

Fatal: The post translator cannot create the .tex file for some reason.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to create the file.

CASOVRFLW, <CASE> tags have been nested beyond the limit of number

Fatal: The <CASE> built-in tag has been nested beyond the allowed limit.
Submit a Software Performance Report.

User Action: Verify that the tag definition that uses the <CASE> or
<CASE_NUMERIC> tag has been correctly coded.

COMNOTEND, at tag or text on linen of file
file-spec
A <COMMENT> in a tag definition has not been terminated

Error: A tag's definition contains a comment that is not properly terminated.

User Action: Examine the tag definition to be certain that the comment
text is terminated. If the comment text contains characters such as
ampersand, backslash, vertical bar, or parentheses, use the <COMMENT>
<ENDCOMMENT> format.

C-13

Messages
Tag Translator Messages

C-14

CPU_USAGE, Pass 1: number Pass 2: number Total: number seconds

Informational: The tag translator reports its CPU usage during pass 1 and
pass 2 and the total for both passes.

User Action: None.

CPYNAMHID, at tag or text on linen of file
file-spec
<COPY_TAG> is referencing a tag (<tagname>) that is hidden

Warning: The name referenced by the <COPY_TAG> is hidden, and therefore
cannot be copied as a new tag definition. If you receive this message and are
under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a Software Performance Report.

User Action: Be sure that the name is spelled correctly and that the sequence
of tag executions allows the copy to take place when the tag is not hidden.

CPYNAMUND, at tag or text on linen of file
file-spec
<COPy_TAG> is referencing a name (string) that is undefined

Warning: The name referenced by the <COPY_TAG> is not defined, and
therefore cannot be copied as a new tag definition. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

User Action: Be sure that the name is spelled correctly and that the tag is
already defined.

DEFSLOADD, End of Loading of Tag Definitions

Informational: This message is issued after the tag definitions have been
loaded and before the reading of any input files. If any error messages appear
before this message, the errors were detected during the loading of the tag
definitions.

User Action: None.

DIVBYZERO, at tag or text on line n of file
file-spec
Argument 2 to tag <COUNTER> is attempting to divide by zero

Warning: Division by zero is undefined. (Processing continues. The result
is as if a divisor of 1 had been used.) If you receive this message and are
under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a Software Performance Report.

User Action: Verify that the correct divisor is specified. You may want to use
the <COMPARE-NUMERIC> built_in tag to test the divisor before using it.

Messages
Tag Translator Messages

DUPHIDNAM, at tag or text on line n of file
file-spec
A <HIDE_TAGS> tag is reusing the hide-name, string

Warning: The hide-name is already in use. Once tags have been hidden
under a specific hide-name that hide-name cannot again be used until the
tags have been revealed with the <REVEAL_TAGS> tag. If you receive this
message and are under a service contract with DIGITAL, call your customer
service center. Otherwise, submit a Software Performance Report.

User Action: Examine the sequence in which <HIDE_TAGS> and <REVEAL_
TAGS> tags are invoked using the indicated hide-name. Correct the sequence
so that the hide and reveal actions alternate in sequence.

DUPSYMBOL, at tag or text on line n of file
file-spec
The symbol string is being defined twice.
The earlier definition is replaced by the new definition

Warning: The same symbol is being defined for two different purposes. The
tag translator requires that each symbol be unique. If your symbols exceed 31
characters in length, the automatic truncation to 31 characters may be causing
two different symbols to look alike.

User Action: Verify that both symbols are defined uniquely within the first
31 characters.

ENDNOTBEG, at tag or text on linen of file
file-spec
< tagname > specified without corresponding < tagname > .

Warn: A terminating tag was specified without the tag that it terminates. The
tag is ignored.

User Action: Verify that you correctly entered the beginning tag. Or, remove
the extraneous ending tag from your source file.

ENDPASS_l, End of first pass over the input

Informational: The tag translator reports the end of the first pass over all
input files. Error messages that appear ahead of this message were issued
during the first pass. Error messages that follow this message are issued
during the second pass over the input files.

User Action: None.

EOFARGLST, End of file encountered while searching for closing
parenthesis. See argument list of tag <tagname> on line number
of file
filename

Fatal: An argument list is not terminated before the end of the current input
file. Either a right parenthesis is missing, or an <INCLUDE> tag occurred in a
tag's argument list.

User Action: Verify that the indicated tag's argument list is terminated, and
that no tag's argument list is unterminated at the end of an included file.

C-15

Messages
Tag Translator Messages

C-16

EOFCOLECT, End of file encountered while searching for tag <tagname> .
See <COLLECT> tag on line number of file
filename

Fatal: A <COLLECT> built-in tag has encountered an end of file before
encountering the indicated stop-tag. If you receive this message and are
under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a Software Performance Report.

User Action: Verify the spelling of the stop-tag argument, and the presence
of the stop-tag in the input file.

EOFENDCAS, End of file encountered while searching for tag <ENDCASE>.
See <CASE> or <CASE_NUMERIC> tag on line number of file
filename

Fatal: A <CASE> (or <CASE_NUMERIC>) built-in tag is not terminated
before the end of file. If you receive this message and are under a service
contract with DIGITAL, call your customer service center. Otherwise, submit
a Software Performance Report.

User Action: Verify that every <CASE> and <CASE_NUMERIC> built-in tag
is terminated by an <ENDCASE> tag, even if the <CASE> built-in tags are
nested.

EOFENDCOM, End of file encountered while searching for tag <ENDCOMMENT> .
See <COMMENT> tag on line number of file
filename

Fatal: Comment text, introduced by the <COMMENT> built-in tag, was not
enclosed as an argument, and therefore requires an <ENDCOMMENT> tag as
a terminator.

User Action: Verify that the comment text is either enclosed as an
argument to the <COMMENT> built-in tag, or that it is terminated with
an <ENDCOMMENT> tag.

EOFENDLIT, End of file encountered while searching for <ENDLITERAL>
or <ENDDELAYED> . See <LITERAL> or <DELAYED> tag on line
number of file
filename

Fatal: Literal text, introduced by the <LITERAL> or <DELAYED> tag, was
not enclosed as an argument, and therefore requires an <ENDLITERAL> or
<ENDDELAYED> tag as a terminator.

User Action: Verify that the literal text is either enclosed as an argument
to the <LITERAL> or <DELAYED> tag, or that it is terminated with an
<ENDLITERAL> or <ENDDELAYED> tag.

EOFIGNORE, at tag or text on line n of file
file-spec
End of file encountered while searching for tag or label

Fatal: An <IGNORE> built-in tag has encountered the end of the input file
without finding one of the tags or labels supplied in the argument list. If you
receive this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance Report.

User Action: Verify the spelling of the tags and labels in the argument list.
You may want to add the label __ EOF to the argument list.

Messages
Tag Translator Messages

ERRCLSINP, at tag or text on line n of file
file-spec
Input files not closed at end of pass.

Fatal: Files that were included as part of the input have not been properly
closed.

User Action: Submit a Software Performance Report.

ERRDEFLNM, at tag or text on line n of file
file-spec
Attempt to define logical name was unsuccessful
Logical: string
Equivalence: string

Warning: An <INCLUDES_FILE> tag in the <PROFILE> template has failed in
its attempt to define the logical name with the given equivalence string.

User Action: Examine the arguments to the <INCLUDES_FILE> tag to ensure
that they are a correctly formed name and a file specification. Correct the
<INCLUDES_FILE> arguments.

ERRDURGET, at tag or text on linen of file
file-spec
Error reading line number of file:
filename.
Perhaps the line is too long

Warning: The indicated line probably exceeds the tag translator's buffer size.
Processing continues with a truncated line (which may introduce other errors
if the information that was lost includes part of an argument list to a tag).

User Action: Edit the input file and shorten the line, or break it into two
lines if possible.

ERRDURPUT, at tag or text on linen of file
file-spec
Error detected writing output file:
filename

Fatal: An error was detected while attempting to write to the indicated output
file.

User Action: Check that your process has sufficient privilege and access
rights and that the output device has sufficient free space to hold the file.

ERROPEAUX, at tag or text on line n of file
file-spec
Cannot open auxiliary file:
filename

Warning: An attempt to open an auxiliary file failed. The next Informational
message may supply the reason for the failure. Processing continues, but
attempts to read or write the auxiliary file will fail and will generate error
messages. If you receive this message and are under a service contract with
DIGITAL, call your customer service center. Otherwise, submit a Software
Performance Report.

User Action: If the file is being opened for input, verify that the correct file is
being accessed and can be read. If the file is being opened for output, verify

C-17

Messages
Tag Translator Messages

C-18

that the file specification is correct, and that you have sufficient resources and
access rights to create the file.

ERROPEDMP, at tag or text on line n of file
file-spec
Cannot open dump file:
filename

Warning: The <RETRIEVE> built-in tag has failed to open a file for output.
The next Informational message may indicate the reason for the failure. If
you receive this message and are under a service contract with DIGITAL,
call your customer service center. Otherwise, submit a Software Performance
Report.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to create the file.

ERROPEINC, at tag or text on line n of file
file-spec
Cannot open included file:
filename

Warning: The indicated file cannot be opened for input. The next
Informational message may indicate the reason for the failure. Processing
continues without the included file.

User Action: Verify that the correct file is being accessed and can be read. If
you are using a logical name to access the file, verify that the logical name
is defined. If you are relying on an <INCLUDES_FILE> tag to define the
logical name, verify that the spelling of the logical name is the same in the
<INCLUDES_FILE> tag, and that the <INCLUDES_FILE> tag has been specified

for the book element that contains the <INCLUDE> tag.

ERROPEINP, at tag or text on line n of file
file-spec
Cannot open input file:
filename

Fatal: The input file specified on the command line cannot be opened. The
next Informational message may indicate the reason for the failure.

User Action: Verify that the correct file is being accessed and can be read.

ERROPELOG, at tag or text on linen of file
file-spec
Cannot open log file:
filename

Warning: The <SET> built-in tag has failed to open a file for trace output.
The next Informational message may indicate the reason for the failure. If
you receive this message and are under a service contract with DIGITAL,
call your customer service center. Otherwise, submit a Software Performance
Report.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to create the file.

Messages
Tag Translator Messages

ERROPEOUT, at tag or text on linen of file
file-spec
Cannot open output file:
filename

Fatal: The tag translator cannot open the output file. The next Informational
message may indicate the reason for the failure.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to create the file.

ERROPESEC, at tag or text on line n of file
file-spec
Cannot open secondary output file:
filename

Warning: An attempt to open a secondary output file failed. Processing
continues, but output will go to the primary output file. If you receive this
message and are under a service contract with DIGITAL, call your customer
service center. Otherwise, submit a Software Performance Report.

User Action: Verify that the file specification is correct, and that you have
sufficient resources and access rights to create the file.

ERROPESIN, at tag or text on line n of file
file-spec
Cannot open cross reference input file:
filename

Fatal: The tag translator failed to open the file that contains the symbols used
for cross-references. The next Informational message indicates the reason for
the failure.

User Action: The file that contains the symbols used in cross-referencing can
be used by only one user at a time. The tag translator locks the file to ensure
that users have only serial access to it. If the reason for the failure to open
the file was due to the fact that another user was currently using the file, you
must wait and reissue the command when the file is no longer in use.

ERROPESOT, at tag or text on linen of file
file-spec
Cannot open cross reference output file:
filename

Fatal: The tag translator failed to open a file for writing the symbols used for
cross-references. The next Informational message may indicate the reason for
the failure.

User Action: Verify that you have sufficient resources and access rights to
create the file.

ERRPRSFSP, at tag or text on line n of file
file-spec
Error parsing file specification:
filename

Warning: The file specification contains an error.

User Action: Correct the file specification or logical name definition.

C-19

Messages
Tag Translator Messages

C-20

ERRVMZONE, at tag or text on line n of file
file-spec
Internal error. Failure to create VM zone.

Fatal: The tag translator failed to create space in virtual memory for storage
of data.

User Action: Submit a Software Performance Report.

EXAMINLIN, Examine line number of file filename

Informational: This message follows other messages of greater severity, and
directs you to a possible error in the input.

User Action: Use the information to examine and correct your input.

EXFOOTNOT, at tag or text on linen of file
file-spec
Footnotes in a monospaced example exceed maximum of 4.

Warning: You have specified more than four <FOOTNOTE> tags in a
<CODE_EXAMPLE> or other monospaced example. The maximum allowed is

four. The footnote will not be processed.

User Action: Correct the source file by removing the extraneous footnotes.

EXPAPPLET, Explicit appendix letter string set on line number of file
filename

Informational: This message warns that the letter assigned to the next
<APPENDIX> tag has been supplied explicitly by a <SELAPPENDIX_LETTER>

tag. The appendixes may be lettered out of sequence.

User Action: No action is required.

EXP APPNUM, Explicit appendix number number set on line number of file
filename

Informational: This message warns that the number assigned to the next
<APPENDIX> tag has been supplied explicitly by a <SELAPPENDIX_

NUMBER> tag. The appendices may be numbered out of sequence.

User Action: No action is required.

EXPCHAPNO, Explicit chapter number number set on line number of file
filename

Informational: This message warns that the number assigned to the next
<CHAPTER> tag has been supplied explicitly by a <SELCHAPTER_NUMBER>

tag. The chapters may be numbered out of sequence.

User Action: No action is required.

FILEWRTNG, File filename written (0 length)

Informational: An Error or Fatal message has been issued during the tag
translation of a book element. The output file for that book element is
reduced to 0 length.

User Action: Correct the problems indicated in the Error and Fatal messages
and reprocess.

Messages
Tag Translator Messages

FILEWRTOK, File filename written

Informational: An element of a book has been processed through the tag
translation phase.

User Action: None.

FCMDP ARMS, at tag or text on line n of file
file-spec
< tagname > specified without < tagname > in Format.

Using <tagname> alone

Warning: The tags <FCMD> and <FPARMS> must be used together to
produce predictable results.

User Action: Modify your source file so that it contains both the <FCMD>
and <FPARMS> tags. Arguments to either of these tags may be null, that is,
it is valid to specify <FCMD> .

FIG_DEPTH, at tag or text on linen of file
file-spec
Tag < tagname > value number exceeds the maximum NUMBER or
is 0.

Warning: The indicated tag specifies a depth for a figure or space to be left
for a figure that will overrun the page boundaries. Or, the argument was
specified as 0. In either case, the document's default full page depth will be
used.

User Action: Correct the tag so that you specify no more than the maximum
allowed.

FIG_WIDTH, at tag or text on line n of file
file-spec
Tag < tagname > value number exceeds the maximum NUMBER or
is 0.

Warning: The indicated tag specifies a width for a figure or space to be left
for a figure that will overrun the page boundaries. Or, the argument was
specified as 0. In either case, the document's default full page width will be
used.

User Action: Correct the tag so that you specify no more than the maximum
allowed.

FIGINDENT, at tag or text on line n of file
file-spec
The value number specified for a block indent exceeds the
current allowed maximum of number.

Warning: A <FIGURE_FILE> tag specified the INDENT argument and a value
that exceeds the current maximum allowed. The maximum value will be
used.

User Action: Correct the numeric argument specified with INDENT so that it
does not exceed the indicated maximum.

C-21

Messages
Tag Translator Messages

C-22

FIGLINMAX, at tag or text on line n of file
file-spec
Monospaced example lines in < tagname > exceed maximum
number.

Error: A monospaced example specified in the context of a <FIGURE> or
<EXAMPLE> tag is too long to fit on the current page and either no <VALID_

BREAK> tags were specified to provide valid break points, or there are too
many lines between <VALID_BREAK> tags.

User Action: Put <VALID_BREAK> tags at suitable places in the monospaced
example to allow the pages to break automatically.

FILENUMNG, at tag or text on linen of file
file-spec
File number is out of range

Warning: A number supplied to the <FILE_NAME> tag is not within the
range of 1 to the number of files that have been opened. If you receive this
message and are under a service contract with DIGITAL, call your customer
service center. Otherwise, submit a Software Performance Report.

User Action: Do not attempt to pass a number to the <FILE_NAME> tag
unless that number was previously returned by an invocation of the <FILE_
NUMBER> tag. This guarantees that only legal file numbers will be used as
arguments to the <FILE_NAME> tag.

FILISOPEN, at tag or text on line n of file
file-spec
Auxiliary file:
filename
is already open

Warning: An <OPEN> built-in tag is specifying a file that is already open.
The request is ignored, and processing continues. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

User Action: Check the file specification to be sure that the correct file is
being specified. Remove the second request to open the same file.

FILNOTOPN, at tag or text on line n of file
file-spec
Auxiliary file:
filename
is not open

Warning: A <READ> or <WRITE> built-iµ tag is addressing a file that
has not been opened. If you receive this message and are under a service
contract with DIGITAL, call your customer service center. Otherwise, submit
a Software Performance Report.

User Action: Verify that the file is being correctly referenced and that the file
has been opened with the <OPEN> built-in tag.

Messages
Tag Translator Messages

FMTDEVICE, Tag < tagname > produces device-specific output.

Informational: A tag that produces specific formatting controls has been
processed. The output may not be suitable if the file is processed for another
document type, destination, or both. For example, <FINAL_CLEANUP> (LINE_
BREAK) tells the text processor to create a new line of output, but the line
break may not be suitable on all output devices.

User Action: Use explicit formatting commands sparingly.

GTMAXARGS, at tag or text on linen of file
file-spec
More than number arguments supplied to tag < tagname >

Error: The indicated tag does not expect more than the indicated number
of arguments. Perhaps you included a backslash character in one of the
arguments, which the tag translator interpreted as an argument separator.

User Action: Verify that the argument list is correctly coded. If necessary,
use the <BACKSLASH> tag to code a backslash character that is actually part
of an argument.

HIDNOTHID, at tag or text on line n of file
file-spec
Internal error. A hidden tag was invoked,
but was not found in the data structure of hidden tag names

Fatal: The algorithm for hiding and revealing tags has failed. If you receive
this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance Report.

User Action: Submit a Software Performance Report.

ICON_TEXT, at tag or text on line n of file
file-spec
No text supplied for <ICON> .

Warning: An <ICON> tag was specified, but no <ICON_TEXT> tag specified
text to accompany the graphics. No text will be output.

User Action: Verify that you specified <ICON_TEXT> correctly.

IGNAMEILL, at tag or text on linen of file
file-spec
Argument string to <IGNORE> is illegal

Warning: The argument is not a legal name or label. The argument is
dropped from the argument list, and processing continues. If you receive this
message and are under a service contract with DIGITAL, call your customer
service center. Otherwise, submit a Software Performance Report.

User Action: Examine the argument list to the <IGNORE> tag.

C-23

Messages
Tag Translator Messages

C-24

IGNAMEMIS, at tag or text on line n of file
file-spec
An argument to <IGNORE> tag is a null string

Warning: One of the arguments to an <IGNORE> tag is empty. If you
receive this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance Report.

User Action: Examine the argument list to the <IGNORE> tag. The tag
names should not have brackets around them.

IGNORESET, Ignoring <SELCHAPTER_NUMBER> or <SELAPPENDIX_LETTER>
on line number of file
filename

Informational: The <SELCHAPTER_NUMBER> and <SELAPPENDIX_LETTER>
tags are ignored when doing a book build or element build, because the
numbering of book elements is done automatically.

User Action: Remove the tag.

IGNOTDONE, at tag or text on line n of file
file-spec
The <IGNORE> tag has no arguments, so it is ignored

Warning: Missing or illegal arguments have resulted in an <IGNORE> tag
that has no legal arguments. The <IGNORE> tag is not executed. If you
receive this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance Report.

User Action: Examine the argument list to the <IGNORE> tag.

INCNOTARG, at tag or text on line n of file
file-spec
An <INCLUDE> tag cannot be invoked in an argument

Error: An <INCLUDE> tag can be invoked only in text.

User Action: Move the <INCLUDE> tag outside the argument list.

INCOVRFLW, at tag or text on line n of file
file-spec
More than number nested levels of included files

Fatal: The number of included files that can be open at the same time is
limited. The limit has been exceeded.

User Action: Consider whether the included files can be included
sequentially rather than simultaneously. If file A includes file B, and file
B includes file C, consider whether file A can include both B and C, one after
the other.

INDENTVAL, at tag or text on line n of file
file-spec
The < tagname > specifies an indent value of number.
This exceeds the maximum number allowed for this tag.

Warning: The INDENT argument to the specified tag specified an indent
value that exceeds the maximum allowed. The maximum value will be used.

User Action: Correct the tag to specify an indent value less than or equal to
the maximum allowed.

Messages
Tag Translator Messages

INT_LOGIC, at tag or text on line n of file
file-spec
Internal error processing tag <NAME>

Error: An SDML tag definition has an error in it.

User Action: Submit a Software Performance Report.

ISTHISTAG, at tag or text on line n of file
file-spec
Ignoring <string. Is this a tag without a closing angle bracket?

Warning: An apparent tagname has been found, but without the closing
angle bracket that is needed to make it a complete tag invocation. This
sometimes occurs when an underscore is typed as a hyphen. For example,
<TABLE_SETUP> is typed as <TABLE-SETUP>. The tag translator stops on the

hyphen because that is an illegal character in a tagname, and it assumes that
you may have meant to type <TABLE>-.

User Action: If this is a typo, simply add the closing angle bracket or change
the hyphen to an underscore. If this is not a typo (you really want the left
angle bracket and the tagname to appear in the output), use the <LITERAL>
tag to enclose the left angle bracket. This action will suppress the warning
message.

KEYPAD ROW, at tag or text on line n of file
file-spec
Too many keypad rows. Extra rows ignored

Warning: A set of tags within a <KEYPAD_SECTION> specifies more than
four <KEYPAD_ROW> tags. The keyboard keypad has only four rows and
one end row.

User Action: Determine which <KEYPAD_ROW> tag is extra and remove it
from your source file.

LASTAGWAS, Last occurrence of <tagname> was on line number

Informational: This message is issued when a tag is not ended before a
particular context or the end-of-file. It tells you the line number of the last
occurrence of the tag.

User Action: Use the indicated line number to determine where to correct
your source file.

LISTYPWAS, List type was string

Informational: This message accompanies an error that indicates that a
<LIST> tag was not terminated. It indicates the type of list, for example,

NUMBERED, UNNUMBERED, and so on.

User Action: Use this information to correct your SDML source file.

C-25

Messages
Tag Translator Messages

C-26

LITOVRFLW, More than number characters in literal. See line number of file
filespec

Fatal: The size of the text encompassed by a <LITERAL> or <DELAYED> tag
is limited. This error may indicate that a <LITERAL> or <DELAYED> .,.tag was
incorrectly terminated. '

User Action: Verify that the <LITERAL> or <DELAYED> tag has been
correctly coded. If the text to be encompassed by the tag exceeds the limit,
you must break it up and use more than one <LITERAL> or <DELAYED> tag.

L TMINARGS, at tag or text on line n of file
file-spec
Fewer than number arguments supplied to tag < tagname >

Error: The indicated tag requires a minimum number of arguments. Perhaps
one of the arguments has an unmatched right parenthesis in it, and the tag
translator has treated that character as the terminator of the argument list.

User Action: Review and correct the argument list. Be sure that the open
parenthesis for the argument list is not preceded with a space, for example
<TAG> (ARG) should be <TAG> (ARG).

MARKUNBAL, at tag or text on linen of file
file-spec
<MARK> tags are unbalanced.

Error: A <MARK> tag and its corresponding <ENDMARK> tag cross a tag's
boundary or are incorrectly nested with respect to another pair of tags. For
example, if a <MARK> tag is specified before <FORMAT> and <ENDMARK>
is specified before <ENDFORMAT>, the tags are considered unbalanced.

User Action: Look at the source file location of the indicated tag, and move
it. In particular look for instances where a <MARK> tag is specified in a tag
argument, but the <ENDMARK> tag is specified outside that tag's argument
or in an argument to another tag.

MINEXCMAX, at tag or text on linen of file
file-spec
Minimum argument count (number) exceeds maximum argument
count (number).
(Minimum argument count is being reset to zero)

Warning: A <DEFINE> or <REDEFINE> tag is specifying a minimum and
maximum number of arguments and the minimum exceeds the maximum.
If you receive this message and are under a service contract with DIGITAL,
call your customer service center. Otherwise, submit a Software Performance
Report.

User Action: Correct the minimum and maximum argument values.

Messages
Tag Translator Messages

MSGIDISNG, at tag or text on line n of file
file-spec
The message identification string is invalid.
The <HIDE_TAGS> tag is ignored

Warning: The second argument to a <HIDE_TAGS> tag is supplying an
unknown message identification. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Check the spelling of the message identification argument to be
sure that it agrees with one of the error messages in the message file.

NAMETRUNC, at tag or text on line n of file
file-spec
Name string exceeds 31 characters.
Name string is truncated version

Warning: Names may not exceed 31 characters in length. The name that was
supplied is a legal name, but it is too long. It is truncated to 31 characters.

If more than one name is truncated, the shortened names may not be unique
and other errors may occur depending on the type of name.

User Action: Shorten this name (and any other names that are too long) to
31 characters or less, so that there is no potential for other errors.

NAME2LONG, at tag or text on line n of file
file-spec
Condition name string exceeds 28 characters

Error: Condition names may not exceed 28 characters in length.

User Action: Shorten this name (and any other condition names that are too
long) to 28 characters or less.

NESTEDCOM, A <COMMENT> tag on line number of file
filename
is nested within <COMMENT> ... <ENDCOMMENT> that starts on
line number of file
filename

Warning: <COMMENT> tags cannot be nested.

Sometimes an error is made in typing a <COMMENT> tag in the format
<COMMENT> (text). The typo makes it appear that the tag does not have an

argument list, and it is assumed that an <ENDCOMMENT> tag is present to
end the comment text. During the search for the <ENDCOMMENT> tag, if
another <COMMENT> tag is encountered it will appear to be nested within
the first <COMMENT> tag's text.

User Action: Correct any typographical errors in the initial <COMMENT> tag
or remove the nested <COMMENT> tag.

C-27

Messages
Tag Translator Messages

C-28

NODEFITEM, at tag or text on line n of file
file-spec
Definition list specified no items before < tagname > .

Warning: A <DEFINITION_LIST> tag, or a corresponding tag in the
SOFTWARE doctype, was specified but no <DEFLISLITEM> / <DEFLISL
DEF> tags were specified for the list. No output will be produced.

User Action: Remove the definition list start/end tags; or provide item text
for the definition list.

NOENDPROF, at tag or text on line n of file
file-spec
The <PROFILE> tag was not terminated by an <ENDPROFILE>
tag

Warning: In order for the bookbuild process to be completed, the <PROFILE>
tag must be terminated by an <ENDPROFILE> tag. The <ENDPROFILE> tag is
supplied by default in this case.

User Action: If the <PROFILE> tag is not terminated by an <ENDPROFILE>
tag, add one after the final <ELEMENT> or <INCLUDES_FILE> tag.

NOFIGELMS, at tag or text on line n of file
file-spec
< tagname > has no elements.

Warning: A <FIGURE> or <EXAMPLE> tag was specified and terminated
but there were no elements (for example, <FIGURE_SPACE>), to place in the
figure.

User Action: Verify that you correctly spelled and entered tags for the figure
or example. ' ·

NOHIDERVL, at tag or text on line n of file
file-spec
Ignoring request to hide the <REVEAL_TAGS> tag

Warning: The <REVEAL_TAGS> built-in tag cannot be hidden by the action
of a <HIDE_TAGS> built-in tag. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Remove the word REVEAL_TAGS from the argument list of
the <HIDE_TAGS> tag.

NONESTING, at tag or text on line n of file
file-spec
Invalid attempt to nest tag < tagname > . Ignored

Warning: A tag is referenced when its context is already active. For example,
this message is issued when <CODE_EXAMPLE> is specified when a previous
<CODE-EXAMPLE> is not terminated.

User Action: The indicated tag is ignored; however, you should verify your
source file to determine whether the tag is a duplicate or whether, in fact, you
did not terminate an earlier occurrence of the same tag.

Messages
Tag Translator Messages

NONEWFILE, at tag or text on line n of file
file-spec
< tagname > specified without string. No new file will be

generated.

Warning: A <CONTENTS_FILE> or <INDEX_FILE> was encountered in the
input file, but the corresponding /CONTENTS or /INDEX qualifier was not
present on the command line. No new contents or index will be produced.
An earlier version of a contents or index file, if it exists, may be included in
the output.

User Action: If you want to include the current table of contents or index
file, you should reissue the DOCUMENT command using the appropriate
qualifier.

NOPROFILE, at tag or text on line n of file
file-spec
Tag can appear only following a <PROFILE> tag

Fatal: The tag is part of a profile and can be used only in that context and
only within the same file as the <PROFILE> tag.

User Action: Check that the tag appears after a <PROFILE> tag, and in the
same file as the <PROFILE> tag.

NOREADOUT, at tag or text on line n of file
file-spec
Cannot read from file:
filename
The file is opened as output

Warning: A <READ> built-in tag cannot be addressed to an auxiliary file
that is opened as output. (The <OPEN> tag defaults to output mode unless
INPUT is specified.) If you receive this message and are under a service
contract with DIGITAL, call your customer service center. Otherwise, submit
a Software Performance Report.

User Action: Correct the <OPEN> built-in tag to open the file as input.

Tag < tagname > is not allowed in the string doctype

Error: The indicated tag is not meaningful in the context of the doctype
specified on the command line and cannot be processed. For example, the
LETTER doctype does not allow <CHAPTER> or heading-level tags.

User Action: Verify that you specify the correct doctype keyword on the
DOCUMENT command line. If the doctype is correct, remove the tags from
the SDML source file.

C-29

Messages
Tag Translator Messages

C-30

NOTHIDNAM, at tag or text on linen of file
file-spec
A <REVEAL_TAGS> tag is referencing an unknown hide-name,
string

Warning: The hide-name specified by a <REVEAL_TAGS> tag is not in use.
If you receive this message and are under a service contract with DIGITAL,
call your customer service center. Otherwise, submit a Software Performance
Report.

User Action: Examine the sequence in which <HIDE-TAGS> and <REVEAL_
TAGS> tags are invoked using the indicated hide-name. Correct the sequence
so that the hide and reveal actions alternate in sequence.

NOTINELEM, at tag or text on line n of file
file-spec
Tag can appear only within the context established by
an element heading tag such as <CHAPTER>, <PART>, etc

Error: When a bookbuild is done, all text and the tags that accompany the
text must appear within some element of the book. The text and tags must
follow the element heading tag in order to be considered to be in the context
of the element.

User Action: Correct the source text so that the tag that is in error follows a
tag that heads an element of the book.

NOTINPROF, at tag or text on line n of file
file-spec
The < tagname > tag must appear in the same file as the
<PROFILE> tag

Error: All the tags that make up a profile must appear in the same file.

User Action: Move the tag into the same file as the <PROFILE> tag.

NOZONEYET, at tag or text on line n of file
file-spec
Tag <tagname> specified outside its valid zone or context.
It must be preceded by tag < tagname > .

Error: A tag was specified outside the context that enables it, for example, a
<COPYRIGHLPAGE> tag was specified when the tag <FRONLMATTER> has

not been specified to enable the front matter zone.

User Action: Be sure that you have specified the correct tag. Add the
appropriate zone-enabling tag.

NOWRITEIN, at tag or text on line n of file
file-spec
Cannot write to file:
filename
The file is opened as input

Warning: The <WRITE> built-in tag cannot write to an auxiliary file that has
been explicitly opened as input. If you receive this message and are under a

Messages
Tag Translator Messages

service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Correct the <OPEN> built-in tag or use the proper tag
(<READ> or <WRITE>) to agree with the mode in which the file has been
opened.

NOUNDEFBI, at tag or text on line n of file
file-spec
Ignoring <UNDEFINE> or <REDEFINE> of the built-in definition of
<tagname>

Warning: A tag translator built-in tag cannot be deleted by the action of a
<REDEFINE> or <UNDEFINE>. The built-in tag can be "stacked" by issuing

a <DEFINE> tag for it, however. If you receive this message and are under a
service contract with DIGITAL, call your customer service center. Otherwise,
submit a Software Performance Report.

User Action: Change a <REDEFINE> to a <DEFINE> . Change an
<UNDEFINE> to a <DEFINE> that has an empty definition.

NUMBERARG, at tag or text on linen of file
file-spec
Argument number is not valid for < tagname > .

Warning: The numeric argument is not valid for the tag.

User Action: Consult the tag's documentation to determine the valid values.

NUMLTZERO, The argument is less than 0.

Informational: This message accompanies a message about an invalid
numeric argument; it indicates that a negative value was specified for a tag
argument which must be a positive number.

User Action: Consult the tag's documentation to determine the valid values.

OTL_TITLE, at tag or text on line n of file
file-spec
< tagname > not valid within outlines.

Enter the title as an argument to the <OUTLINE> tag

Warning: A <TITLE> tag was specified within the context of the
<OUTLINE> tags.

User Action: Correct your source file so that the title of the outline is
supplied in arguments to the <OUTLINE> tag.

OTL_LEVEL, at tag or text on linen of file
file-spec
Outline level specified, number, is not in range
The argument must specify 1 through 6

Warning: An invalid number was specified in a <LEVEL> tag in an outline.
Only levels of 1 through 6 are valid.

User Action: Correct your source file so that no outline level has a number
greater than 6.

C-31

Messages
Tag Translator Messages

C-32

OUTLIN2BG, at tag or text on line n of file
file-spec
Output line exceeded number bytes, and had to be broken

Warning: Text in an output line exceeded the tag translator's buffer. No text
was lost because the line was written as two lines, but the division into two
lines may have broken a word into two words, or interfered with the correct
formatting of the text. This usually happens when the tag translator inserts a
great many formatting commands into an output line. It also happens when
a tag reference on a long input line is replaced by a very long string of text.

User Action: Check the formatted output that corresponds to the input line
specified in the location information to see if breaking the line affected the
formatting.

POSTERROR, at tag or text on line n of file
file-spec
Error encountered during post-translation

Fatal: An error has been detected during the final step in tag translation.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

PQLISNONE, at tag or text on line n of file
file-spec
< tagname > specifies 'NONE' when no heading is specified

Warning: The keyword argument "NONE" was specified to a
<PARAMDEFLIST> or <QUALDEFLIST> tag in a context in which no default

heading is in effect. The use of NONE in this context is meaningless.

User Action: Determine if you intended to be using default headings for
the <PARAMDEFLIST> or <QUALDEFLIST> tag. If not, remove the tag from
your source file. Otherwise, verify whether you should have invoked one
of the reference templates to set an environment for parameter/ qualifier list
descriptions.

PROFORDER, at tag or text on line n of file
file-spec
<PROFILE> tag is out of order.

Fatal: A <PROFILE> tag has been detected after an element heading tag,
such as <CHAPTER>.

User Action: Place a single <PROFILE> . . . <ENDPROFILE> sequence in a
file by itself in order to do a bookbuild.

PROFQ _ILL, at tag or text on line n of file
file-spec
/PROFILE qualifier illegal during a bookbuild

Fatal: The /PROFILE qualifier was supplied on the command line indicating
that an element build is desired, but the SDML file contains a <PROFILE>
tag, indicating that a bookbuild is desired. The /PROFILE qualifier (which
indicates an element build) should not be supplied when a bookbuild is
desired.

User Action: Invoke DOCUMENT without the /PROFILE qualifier.

Messages
Tag Translator Messages

QUALVALUE, at tag or text on line n of file
file-spec
Value string to /CONDITION qualifier is not a valid name

Fatal: The condition name supplied with the /CONDITION qualifier must
contain only alphabetic and numeric characters and the underscore character.

User Action: Correct the spelling of the condition name.

REV_P AGES, Update pages number through number will be output.

Informational: This message indicates the pages that will be output for an
update.

User Action: None.

REVISINFO, Document is using revision indicators

Informational: This message indicates that the <REVISION> tag is being
processed. Text that is delimited by <MARK> and <ENDMARK> tags will be
accompanied by revision indicators on output.

User Action: If you intend for revision bars to print in your text, you do
not need to take any action. However, if you intended for text indicated
by <MARK> tags to not appear in the output, you should remove the
<REVISION> tag from the file.

REVISTEXT, Revised pages will contain the text 'string'.

Informational: This message verifies the text specified in the second
argument to the revision tag and reminds you that only pages specified
in an update range will be processed and printed.

User Action: None.

REVIS_UPD, Revision will contain update pages only.

Informational: This message reminds you that you specified
<REVISION> (UPDATE) and that your output file will only contain the text

for pages specified between <UPDATE_RANGE> and <ENDUPDATE_RANGE>
tags.

User Action: None.

RMVCONDTN, Removing condition condition-name
on line number of file filespec

Informational: A <SELCONDITION> (REMOVE) tag is being executed.

User Action: None.

C-33

Messages
Tag Translator Messages

C-34

SAVTAGACT, at tag or text on linen of file
file-spec
Tag <tagname> has a before or after action that is
ignored when saving a tag table

Warning: You are attempting to invoke a tag that has a before action or an
after action. The before action or after action cannot be executed while you
are saving the tag in a tag table. The before action or after action will be
executed when the saved tag table is loaded. If you receive this message and
are under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a Software Performance Report.

User Action: No action. However, you may want to verify that this tag
should be invoked when the saved tag table is actually loaded.

SA VTAGILL, at tag or text on line n of file
file-spec
This built-in tag cannot be invoked during the saving of a tag table

Error: Only certain built-in tags can be stored in a saved tag table for
invocation when the saved tag table is loaded. This tag is not one that can
be saved. If you receive this message and are under a service contract with
DIGITAL, call your customer service center. Otherwise, submit a Software
Performance Report.

User Action: Examine your need to invoke this tag when the tag table is
loaded. If you still need to invoke the tag, store it as a quoted string in a
string variable. Then reference the string variable. Here is an example:

Suppose that you want to invoke the <FILE_NAME> tag during the loading
of the saved tag table. You must store the <FILE_NAME> tag in a st;ring and
then output the string.

<STRING> (my_file_name\I <FILE_NAME> &)

<STRING> (my_file_name)

This works because the <STRING> tag is one of the tags that can be saved in
the saved tag table.

SAVTAGLEV, at tag or text on linen of file
file-spec
Tag <tagname> cannot be invoked within an argument list
during saving of a tag table

Error: During the saving of a tag table, the arguments to all tags must be
constant or must be made constant by quoting them. If you receive this
message and are under a service contract with DIGITAL, call your customer
service center. Otherwise, submit a Software Performance Report.

User Action: Place a vertical bar before the first character of the argument
and an ampersand after the last character of the argument.

SD ML _INFO, message

Informational: An SDML tag is describing action taken during tag loading.

User Action: None. The message is purely informational.

Messages
Tag Translator Messages

SECFILOPN, at tag or text on line n of file
file-spec
Cannot open a secondary output file named
filename
A secondary output file is already open. It is named
filename

Error: Only one secondary output file can be open at a time. If you receive
this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance Report.

User Action: Use the <CLOSE_SECONDARY_OUTPUT> tag to close any
secondary output file before using the <OPEN-:-SECONDARY_OUTPUT> tag
to open a new file.

SETCONDTN, Setting condition condition-name
on line number of file filespec

Informational: A <SELCONDITION> tag is being executed or a condition is
being set in response to a /CONDITION qualifier on the command line.

User Action: None.

SKIPITEMS, at tag or text on line n of file
file-spec
number <tagname> outside of <tagname> skipped.

Warning: This message is usually preceded by a message indicating that an
<LE> or <TABLE_ROW> tag was encountered; it indicates the number of

additional. tags that were specified. The tags will not be processed, and will
be written, unformatted, to the output file.

User Action: Determine if the tags are considered invalid because there is no
preceding <TABLE> or <LIST> tag, or if the <TABLE> or <LIST> tag was
specified incorrectly. Correct your source file.

STKOVRFLW, at tag or text on linen of file
file-spec
More than number nested levels of tags. (These are
tags that are invoked inside other tags' argument lists)

Fatal: The tag translator limits the number of tags that can be invoked
simultaneously. Tag B is invoked simultaneously with tag A, if it is invoked
in the argument list to tag A. Thus, <A> ((<C>)) requires that three
tags are being invoked simultaneously. This may occur unexpectedly when
the argument list to one of the tags is not properly terminated.

User Action: Verify that the argument list of the tag that is specified in the
location information has been properly terminated.

STRFREEBA, at tag or text on line n of file
file-spec
Internal error. Attempt to free string with bad address

Fatal: The tag translator'~ memory allocation algorithm has failed.

User Action: Submit a Software Performance Report.

C-35

Messages
Tag Translator Messages

C-36

STRFREE2T, at tag or text on linen of file
file-spec
Internal error. Attempt to free the same string twice

Fatal: The tag translator's memory allocation algorithm has failed.

User Action: Submit a Software Performance Report.

STRTOOBIG, at tag or text on line n of file
file-spec
Internal error. Attempting to allocate number-byte string

Fatal: The tag translator's memory allocation algorithm has failed.

User Action: Submit a Software Performance Report.

SYMFREEBA, at tag or text on line n of file
file-spec
Internal error. Attempt to free symbol table entry with bad address

Fatal: The tag translator's memory allocation algorithm has failed.

User Action: Submit a Software Performance Report.

SYMISSING, at tag or text on line n of file
file-spec
Missing symbol argument.
Each book element must have a symbol argument

Fatal: Each element of a book must have a unique symbol so that the element
can be processed independently. The symbol table cannot be saved from this
run.

User Action: Supply a symbol as an argument to the tag.

SYMISUSED, at tag or text on line n of file
file-spec
The symbol string is already in use as a symbol of type string

Error: Each element of a book must have a unique symbol. You have
supplied a symbol on this element of the book that conflicts with an earlier
use of this symbol. The symbol table cannot be saved from this run.

User Action: Correct the use of symbols on elements of the book so that each
element has a unique symbol. If you are doing a bookbuild you must repeat
the bookbuild in order to produce a good symbol table. If you are doing an
element build, just correct the symbol in this tag so that this element of the
book has a unique symbol and then repeat the element build.

SYMNOTDEF, at tag or text on line n of file
file-spec
Symbol string is undefined

Warning: A symbol has been referenced but is not in the symbol table.

User Action: Verify that the symbol is spelled correctly and that the same
symbol has been entered in the symbol table by the invocation of a tag that
defines the symbol.

Messages
Tag Translator Messages

TAG_FAILS, The tag translator has detected a fatal error

Error: The tag translator is terminating execution with failure status. The
accompanying error message supplies details of the error.

User Action: See the description of the accompanying error message.

TAGFREEBA, at tag or text on line n of file
file-spec
Internal error. Attempt to free tag table entry with bad address

Fatal: The tag translator's memory allocation algorithm has failed.

User Action: Submit a Software Performance Report.

TAG_INARG, at tag or text on linen of file
file-spec
< tagname > is invalid in an argument to < tagname > .

Fatal: The indicated tag was specified in an argument to a tag that does not
allow it. For example, a header level tag was specified in an argument to
<TABLE_ROW> .

User Action: Verify that you correctly terminated the argument list for the
tag in which this tag was specified.

TAGINFILE, The tag was in the file filename

Informational: This message may accompany a message indicating that a tag
that must be ended was not terminated. This message is output when the
starting tag is not in the current input file.

User Action: Use the file-spec given to determine which file contains the tag
that was not properly terminated and terminate it.

TAGINVALD, at tag or text on linen of file
file-spec
Tag <tagname> is invalid in this context.
The context was established by < tagname > on line number of
filename

Error: A tag was specified in a context where it is not valid, for example, a
header-level tag was specified within the context of a monospaced example.
The message tells you what tag established the context.

User Action: Determine the current context at the point at which the message
was issued to determine if you have forgotten a required terminator and
correct your source file.

TAGINZONE, at tag or text on line n of file
file-spec
Tag < tagname > is invalid in the bounds of string.

Error: A tag was specified in a context where it is not valid, for example, a
header-level tag was specified within the context of a monospaced example.

User Action: Determine the current context at the point at which the message
was issued to determine if you have forgotten a required terminator and
correct your source file.

C-37

Messages
Tag Translator Messages

C-38

TAGNOTDEF, at tag or text on line n of file
file-spec
Tag < tagname > is undefined

Warning: A tag has been invoked, but no definition exists for the tag. This
message appears for the first invocation of an undefined tag. Subsequent
invocations of the same undefined tag are counted, but the message is not
repeated. A count of the total number of all invocations of undefined tags is
reported at the end of the tag translator's processing.

User Action: Correct the spelling of the tag, or supply a definition for the
tag.

TAGNOTEND, at tag or text on linen of file
file-spec
Tag <tagname> from line number not terminated

Error: A tag that has a required terminator was not terminated.

User Action: Locate the tag that was not terminated and include its
terminating tag at the appropriate position in your source file.

TAGNOTHID, at tag or text on line n of file
file-spec
Cannot reveal tag < tagname > . It is not hidden

Warning: A <REVEAL_TAGS> tag is requesting that a hidden tag be revealed,
but the tag is not currently hidden. If you receive this message and are
under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a Software Performance Report.

User Action: After a tag is hidden through the action of a <HIDE_TAGS>
tag, it can only be revealed through the action of a <REVEAL_TAGS> tag. If
the tag is given a new definition (using the <DEFINE> tag) while it is hidden,
it will not appear to be hidden when the <REVEAL_TAGS> tag is executed,
and this error message will occur. Check the sequence of your use of the
<HIDE_TAGS> , <DEFINE> , and <REVEAL_TAGS> tags.

TAGNOTPRE, at tag or text on line n of file
file-spec
Tag < tagname > invalid unless preceded by string

Warn: A tag is being invoked that is invalid because it is being used out of
context.

User Action: Check the sequence of tags to ensure that the proper context is
established before the tag is used. Correct the SDML source file.

TBLATTRIB, at tag or text on line n of file
file-spec
Argument string to tag < tagname > is not a valid table attribute

Warn: A keyword was specified in a <TABLE_ATTRIBUTES> tag that is not a
valid keyword attribute for tables.

User Action: Verify that the specified value is a valid table attribute and
check its spelling. Correct the SDML source file.

Messages
Tag Translator Messages

TBLATTIGN, at tag or text on line n of file
file-spec
<TABLE_ATTRIBUTES> specified following <TABLE_SETUP>

ignored.

Warning: The <TABLE_ATTRIBUTES> tag must be specified preceding the
<TABLE_SETUP> tag. The specified attributes will be ignored.

User Action: Move the <TABLE_ATTRIBUTES> tag in front of the <TABLE_

SETUP> tag.

TBLBRKCOL, at tag or text on line n of file
file-spec
Table cannot be broken in column number.

Warning: The <VALID_TABLE_ROW_BREAK> tag is valid only in columns 2
through 4 of a table.

User Action: Remove the <VALID_TABLE_ROW_BREAK> tag. If the text in
the column is too long for a page, consider restructuring the table to be less
complex.

TBLCOLCNT, at tag or text on line n of file
file-spec
Tag <TABLE_SETUP> argument 1 'string' is missing or is not a
number in the range 2 through 9

Error: The <TABLE_SETUP> tag must specify a numeric value in the range
of 2 through 9 to specify the number of columns in the table. The indicated
argument is invalid.

User Action: Correct the <TABLE_SETUP> tag.

TBLCOLNUM, at tag or text on line n of file
file-spec
Table column size argument 'string' is missing or is not numeric

Error: An argument specified as a width for table rows in setting up the table
is not a numeric argument.

User Action: Correct the <TABLE_SETUP> tag that specifies a non-numeric
value for a table column width.

TBLCOLWID, at tag or text on line n of file
file-spec
Sum of table column widths number is too large or is 0 or less.

Error: The sum of the values specified for the column widths in the <TABLE_
SETUP> tag is excessive, or is less than or equal to 0. The message displays
the current summed value of all column widths specified.

User Action: Verify that the numbers you specified in <TABLE_SETUP>
are accurate. Adjust them to smaller numbers so that the table will fit. If
you did not specify <TABLE_ATTRIBUTES> (WIDE) and the document design
you are using provides an extra margin for wide tables, specify <TABLE_
ATTRIBUTES> (WIDE) in front of the <TABLE_SETUP> tag. To request that the
table appear in a smaller typesize, use <TABLE_ATTRIBUTES> (MAXIMUM).

C-39

Messages
Tag Translator Messages

C-40

TBLDUPSET, at tag or text on line n of file
file-spec
Tag <TABLE_SETUP> specified twice. Duplicate setup ignored.

Warning: A table contains two <TABLE_SETUP> tags. The second tag is
being ignored.

User Action: Determine which <TABLE_SETUP> tag is correct and remove
the extra one.

TBLFNOTEM, at tag or text on linen of file
file-spec
Table footnote number number exceeds maximum number

Warning: A numeric argument specified for a footnote declaration in a table
exceeds the maximum. The maximum number of table footnotes is normally
12; however, if you use any non-numeric keywords in table footnotes, the
maximum number allowed is reduced to 6.

User Action: Verify the number of footnotes in the table, and the numeric
arguments you use to declare and reference them.

TBLKEYDUP, at tag or text on line n of file
file-spec
Table already specifies <TABLE_KEY> . Duplicate ignored.

Warning: Only one key can be specified in a table. The second key specified
is being ignored.

User Action: Determine which table key is the one that you want and
remove the duplicate one.

TBLKEYNES, at tag or text on line n of file
file-spec
< tagname > is not valid in a nested table.

Nested table on line string in file string.

Warning: A <TABLE_KEY> or <TABLE_KEYREF> tag was specified in a
nested table, that is a table that is specified in another table's <TABLE_ROW>.
Table keys and table key references are invalid in nested tables.

User Action: Place the table key and/ or the reference to it in the outer table.

TBLKEYNUM, at tag or text on linen of file
file-spec
The <TABLE_KEY> tag will replace table footnote 12.

Warning: When a key is specified in a table, you cannot specify a table
footnote numbered 12. The text of the table. key will replace the footnote
number 12, and references to footnote 12 will result in the table key being
printed.

User Action: Check the arguments you specified to the <FOOTNOTE> tags in
the table and do not specify a number greater than 11.

Messages
Tag Translator Messages

TBLKNOREF, at tag or text on line n of file
file-spec
Tag <TABLE_KEYREF> tag encountered in a table that has no key.

Warning: A <TABLE_KEYREF> tag is not valid because there is no key in the
table to reference.

User Action: Verify that the <TABLE_KEY> tag is correctly specified in the
main table (it must not be specified in a nested table). If the table has no key,
remove the <TABLE_KEY> tag.

TBLNBREAK, at tag or text on line n of file
file-spec
A nested table with more than three columns cannot be broken.

Error: The <NESTED_TABLE_BREAK> was specified in a nested table that has
more than three columns.

User Action: Verify that the <TABLE_SETUP> tag for the table you are trying
to break was correctly specified. If the nested table has four columns, you
may need to restructure your information.

TBLNONEST, at tag or text on line n of file
file-spec
Invalid table nesting. Ignored.

Warning: You coded a nested table incorrectly. There are three possible
problems:

1 You specified a <TABLE> tag with a caption argument in an argument
to a <TABLE_ROW> tag. You cannot place a formal table inside another
formal table.

2 You specified a <TABLE> tag inside another table, but outside of a
<TABLE_ROW> tag. All text (including nested tables) that occur within a

table must be coded within <TABLE_ROW> tags.

3 You specified <TABLE_UNIT> inside a table that is nested in another
table. <TABLE_UNIT> tags are not valid in nested tables.

User Action: Based on the above situations, you should take one of the
following actions:

1 Remove the caption argument from the nested table tag.

2 Nest the table inside a <TABLE_ROW> tag.

3 Remove the <TABLE_UNIT> tags.

TBLNOROWS, at tag or text on line n of file
file-spec
A table was specified without any table rows.

Error: <TABLE> and <ENDTABLE> tags were encountered in the file, but
there were no <TABLE_ROW> tags between them.

User Action: Verify that you specified <TABLE-ROW> tags correctly. Or,
remove the <TABLE> and <ENDTABLE> tags if you did not want to place a
table there.

C-41

Messages
Tag Translator Messages

C-42

TBLNOTDEC, at tag or text on line n of file
file-spec
Table footnote number is referenced but not declared.

Warning: A <FOOTREF> tag is specified in a table, but there is no
corresponding <FOOTNOTE> tag at the beginning of the table. The footnote
reference will not be printed.

User Action: Verify that you specified the <FOOTNOTE> tag correctly at the
beginning of the table. Verify that the number specified in the declaration
matches the number in the <FOOTREF> tag.

TBLNOTROW, at tag or text on linen of file
file-spec
Tag < tagname > specified outside of <TABLE_ROW> .

Error: A tag is specified between two <TABLE_ROW> tags and is therefore
not valid in this context.

User Action: Correct your source file to move the tags and related text, if
any, to within the bounds of a <TABLE_ROW> tag.

TBLNOTSET, at tag or text on line n of file
file-spec
Table from line number has no <TABLE_SETUP> attributes.

Error: A <TABLE_ROW> tag was encountered in a table without a <TABLE_
SETUP> tag.

User Action: Correct your source file to specify the number of columns and
widths for the table.

TBLNOTMTP, at tag or text on line n of file
file-spec
< tagname > invalid in table that is not multipage

Error: A tag, for example <TABLE_UNIT> was specified in a table that does
not have the multipage attribute.

User Action: Determine whether the table is a multipage table. If so, be sure
that it is not specified with the KEEP attribute.

TBLSPANNO, at tag or text on line n of file
file-spec
Argument number to tag is invalid for the current
column count.

Warning: A tag's argument exceeded the number of remaining
columns in the table. For example, you specified (3) in a table with
only 2 columns.

User Action: Correct your source file to specify the number of columns to
span. Be sure that your numeric argument, plus the current column number,
do not exceed the number of columns in the table.

TMPNONEST, at tag or text on line n of file
file-spec

Messages
Tag Translator Messages

Invalid attempt to nest reference templates.
Last template was string

Error: A tag invoking a reference template was encountered when a reference
template was already in effect; for example, a <ROUTINE_SECTION> is
specified before a previous <COMMAND_SECTION> was terminated.

User Action: Correct your source file to correctly terminate the reference
section that was not terminated.

TMPTAGDEF, You cannot redefine <tagname> using <tagname> .

Informational: A tag that defines a template tag specified a tag name that is
already a defined tag. This message indicates one of the following:

• Your input file has more than one reference template section, and you
used the same template tag names in both. (For example, a <SEL
TEMPLATE_ROUTINE> tag may specify the same tag name in more than
one occurrence of <ROUTINE_SECTION> .

• You have specified a name that is the name of an SDML global tag.

User Action: If the message occurred because you used the same template
tag names in more than one reference template section, you need take no
action. If you have used a name that is the name of an SDML tag, you
should select another name; future use of the SDML tag name in the same
source file may produce unpredictable results.

TMPTAGEND, at tag or text on line n of file
file-spec
< tagname > not terminated before < tagname > .

Warning: A tag occurring within the context of a reference template was
not terminated before the end of the file or before the beginning of the next
reference section. For example, an <OVERVIEW> tag from a <COMMAND>
description was not terminated before the next <COMMAND> description was
encountered.

User Action: Correct the source file so that you correctly terminate the
template tag.

TMPTAGNAM, at tag or text on line n of file
file-spec
string is an invalid template tag name.

Error: A template tag, for example <SELTEMPLATE_COMMAND>, specifies
that the tag name is already defined in SDML, or it is an invalid name, that is,
it contains more than 31 characters or it contains nonalphanumeric characters.

User Action: Choose another name for the tag, and modify your source file.

C-43

Messages'
Tag Translator Messages

C-44

UNBALP ARS, at tag or text on line n of file
file-spec
Unbalanced parentheses in argument number

Warning: One or more left parentheses are present without matching right
parentheses. A sufficient number of right parentheses are appended to the
argument to achieve a balance.

User Action: Correct the unbalance, either by adding the proper number of
right parentheses or by coding the left parentheses using the <OPAREN> tag.

UNDEFSYMS, There were number undefined symbol references

Informational: This message reports the total number of references that were
made to undefined symbols. Only the first reference to a specific undefined
symbol is reported.

User Action: Either define the undefined symbol, or correct the spelling of
the symbols being referenced. The undefined symbols were reported in other
messages.

UNDEFTAGS, There were number undefined tag invocations

Informational: This message reports the total number of invocations of
undefined tags. Only the first invocation of a specific undefined tag is
reported.

User Action: Either define the undefined tags, or correct the spelling of the
tag being invoked. The undefined tags were reported in other messages.

UPDATINFO, Update page label string, <tagname>

Informational: A document that is being processed to produce update pages
may have associated update information. The information indicated will be
printed on the bottom of each page output.

User Action: Verify that the update page label is correct for your document.

USER_IMSG, string
Line is number of file filename

Informational: This message code is used for messages written to the
terminal or output stream when a <USER_LMESSAGE> tag is specified in
the input file.

User Action: The action you take depends on the content of the user's
message.

USER_WMSG, at tag or text on line n of file
file-spec
string

Warning: This message code is used for messages written to the terminal or
output stream when a < USER_W_MESSAGE> tag is specified in the input file.

User Action: The action you take depends on the content of the user's
message.

Messages
Tag Translator Messages

USETAGDEF, Using tag's default: number

Informational: This informational message accompanies other warning
messages. It generally indicates that a default value is being taken.

User Action: Edit the SDML source file to correct the argument.

VBARINARG, at tag or text on line n of file
file-spec
A vertical bar was found in argument number to tag < tagname > .
Use the <VBAR> tag to code a vertical bar in an argument

Fatal: The tag translator treats the vertical bar character as a special operator
character in arguments to tags. If you include a vertical bar character in
an argument, the tag translator may overlook the right parenthesis that
terminates the argument list, and may scan all of the remaining input looking
for the proper terminator.

If you have mistakenly omitted the closing parenthesis of an argument list,
the tag translator begins to search the remainder of your file for a closing
parenthesis. If it encounters a vertical bar (perhaps in a figure or code
example), it then begins to search for a matching ampersand. Thus, this error
message may be issued instead of the EOFARGLST error message.

User Action: Correct the argument list by replacing the vertical bar with the
<VBAR> tag, or by properly closing the argument list.

VMOVRFLOW, at tag or text on linen of file
file-spec
Internal error. Failure to allocate additional space in virtual
memory

Fatal: This error message is generally caused by one of two types of error in
the SDML file. These errors, and the action that you should take to correct
them are as follows

• An unterminated argument list. If you fail to terminate an argument list,
the tag translator regards the text that follows the argument list as part of
the last argument. Suppose you write

<EMPHASIS>(always\BOLD> press the RETURN key.

instead of

<EMPHASIS>(always\BOLD) press the RETURN key.

The tag translator does not realize that the right angle bracket should
have been a right parenthesis. It tries to include all the following words
as part of the second argument of the <EMPHASIS> tag. This means
that it may store large portions of the SDML file in memory while it
searches for a closing parenthesis to the argument list. If memory limits
are exceeded, the VMOVRFLOW error message is issued.

• Too many tag definitions. The tag translator has no limit on the number
of tag definitions. However, a limit is imposed by the memory allocation
algorithm. When this limit is exceeded, it usually indicates that one or
both of the following conditions are present:

A file that contains tag definitions is being repeatedly included. This
file is often a global definitions file that is being used to define tags
or symbols for text substitution. You can avoid memory limitation
problems by using the <CHECK_FOR_INCLUSION> tag at the start of

C-45

Messages
Tag Translator Messages

C-46

such a file. This ensures that the file's definitions are actually loaded
only once, even though the file is included many times.

A tag's definition changes frequently during execution, perhaps
when the tag is being used to temporarily hold a text string. If the
tag's definition is established each time by the <DEFINE> tag rather
than by the <REDEFINE> tag, the definitions pile up in memory. A
reference to the tag always retrieves the latest definition, and if you
never use the <UNDEFINE> tag to erase the latest definition, you-will
never see the old definitions, but they are still occupying memory
space.

User Action: Determine if the error was caused by an unclosed argument
list. The error is generally located by the information supplied in the error
message.

Otherwise, examine your tag definitions to determine whether you are
defining the same tag name multiple times. You can avoid memory limitation
problems by defining your tags with the <REDEFINE> tag, rather than the
<DEFINE> tag. Unless you specifically intend to "stack" tag definitions,

and use the <UNDEFINE> tag to "pop" definitions off the stack, you should
always establish a tag definition with the <REDEFINE> tag.

XRFINCMPL, at tag or text on line n of file
file-spec
The file containing cross reference symbols is incomplete.
filename

Fatal: During the reading of the file containing cross reference symbols, an
error was detected that indicates that the file was not recorded correctly.

User Action: Submit a Software Performance Report.

XRFINVALD, at tag or text on line n of file
file-spec
The file containing cross reference symbols is invalid.
filename

Fatal: The file was opened without error, but it does not contain cross
reference symbols.

User Action: The wrong file is being referenced. Check the file name
supplied with the /PROFILE qualifier.

XRFNORENM, at tag or text on line n of file
file-spec
The temporary cross reference file cannot be renamed to
filename

Fatal: The tag translator creates a temporary cross reference file with a file
type TMP. When the file is complete, it renames it with a file type XREF. The
rename operation has failed.

User Action: Submit a Software Performance Report.

C.3

Messages
Text Processor Messages

Text Processor Messages
ATPT , Font was read at number pt

Informational: This is an internal error.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADALPHA , Improper alphabetic constant

Warning: Text formatter expected to scan a constant consisting only of letters.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADCHAR, Text line contains an invalid character

Warning: Text formatter could not scan a character from current input line.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADCODE, Bad code number: value, must be between smaller number and larger
number
using zero instead

Warning: Text formatter expected to find code value within range shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADCS , Bad control sequence: 'Command'

Warning: Text formatter could not understand how user meant to use the
shown command in the current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADDISC, Improper discretionary list. Must contain only
'kerns' and 'boxes'

Warning: Discretionary list contained unexpected information.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-47

Messages
Text Processor Messages

C-48

BADDISCMATH , Illegal 'discretionary break' in 'math' mode.
The third part of a discretionary break must be empty
in this mode. Attempting to recover ...

Warning: Discretionary break was improperly coded.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADDUMP , Cannot '\dump' inside a group

Warning: Command '\dump' occurred when there was one group or more
still active.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADFONTFMT , Fatal font format file error

Error: Text formatter could not load the font format file, or the font format
file was fatally flawed.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADFRACTION , Ambiguous fraction ignored.

Warning: Text formatter could not determine the meaning of a fraction.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADGLUE , Infinite glue. Attempting to recover

Warning: Text formatter was asked to typeset a box using infinite glue. Glue
was made finite and text formatter attempted to continue.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADHALIGN , Improper '\halign'

Warning: Command '\halign' was invalid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADHRULE, Cannot use '\hrule' in an '\hbox'.
Use '\leaders' or '\hrulefill' instead

Warning: Command '\hrule' is invalid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

BADHYPHEN , Improper \hypenation ignored.
Must contain only letters and hyphens

Warning: Text formatter can only read letters and hyphens in a hyphenation
pattern.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADHYPHFMT , Fatal hyphenation format file error

Error: Text formatter could not load the hyphenation format file, or the
hyphenation format file was fatally flawed.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADLASTBOX , '\box255' is not empty, attempting to continue

Warning: Text formatter expected '\box255' to be empty.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADLEADERS , '\leaders' not followed by proper 'glue'

Warning: Glue specification was not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADLETINP AT , Non-letter found in '\patterns'

Warning: Text formatter can only read letters in a 'pattern'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADLIMIT , Ignoring misplaced '\limits' or '\nolimits' command

Warning: Text formatter did not expect to see '\limits' or '\nolimits' in this
context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADMACROFMT , Fatal macro format file error

Error: Text formatter could not load the macro format file, or the macro
format file was fatally flawed.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-49

Messages
Text Processor Messages

C-50

BADMAG , Illegal magnification ratio: bad number, value set to good number

Warning: Text formatter could not set magnification to requested value.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADMATHCHAR, 'font' number font-number is missing this character: 'character'

Warning: Text formatter could not typeset the character shown, because that
character was missing from the font shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADMATHDELIM, Inserted missing or misplaced math delimiter

Warning: Text formatter became confused while closing a math formula.

User Action: Check the SDML file for <MATH> sequences and verify that
all parentheses are matched and that all math tags and delimiters are correctly
terminated. If this does not correct the problem and you are under a service
contract with Digital, call your customer service center. Otherwise, submit a
Software Performance Report.

BADNOALIGN , '\noalign' can only appear after '\er'

Warning: Command '\noalign' is not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADOMIT, '\omit' can only appear after '\er' or'&'

Warning: Command '\omit' is not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADOUTLOOP, Output loop repeated number of cycles times without doing a
'\shipout'
Attempting to recover. Increase '\maxdeadcycles' if neccesary

Warning: Text formatter cycled through its output loop too many times
without doing a '\shipout'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADP ARAMNUM , Illegal parameter number

Warning: Text formatter became confused while scanning parameters to a
macro.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

BADP ARAMSEQ , Parameter was numbered out of sequence

Warning: Text formatter became confused while scanning parameters to a
macro because a parameter was numbered out of sequence.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADP ATTERNS , Bad \patterns

Warning: Text formatter became confused while reading a 'pattern'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADPREAMBLE , Cannot nest alignment preambles

Error: Text formatter became confused during current alignment, because it
found an alignment within an alignment.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADPREFIX2, Can't use \long' or \outer' with 'command'

Warning: Text formatter will ignore '\long' or '\outer' or '\global' when used
with the shown command.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADPREFIX3, Can't use \long' or \outer' or \global' with 'command'

Warning: Text formatter will ignore '\long' or '\outer' when used with the
shown command.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADPREVGRAF, '\prevgraf' =number . Value must be positive

Warning: Text formatter expected to see '\prevgraf' specified with a positive
value.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADPT , Bad font size = number pt, replaced by 10 pt

Warning: Text formatter attempted to read a font at an improper font size.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-51

Messages
Text Processor Messages

C-52

BADUNBOX, Cannot 'unbox' a 'hbox or vbox' in 'Text formatter mode' mode

Warning: command 'unbox' is invalid under current circumstances.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BAD UNIT , Bad unit of· measure, replaced by 'string'

Warning: Text formatter could not use the unit of measure user asked for.
Unit was changed to shown value.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report. ·

BADVALUE, 'quantity'= number. Value must be between smaller number and
larger number

Warning: Text formatter was expecting to read a value within the range
shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BUFFERSIZE, Maximum number of characters in the input buffer is number

Informational: User has exceeded total size of text formatter's input buffer.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

CANNOTRESETMAG , Cannot change magnification, using old value: number

Warning: Text formatter can only set magnification value once.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

CONFUSION, Text formatter became confused doing this: 'Command'
, job is aborting

Error: Text formatter became confused doing the shown activity, and had to
exit.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

CONFUSION , Text formatter became confused doing this: 'Command'
, job is aborting

Error: Text formatter became confused doing the shown activity, and had to
exit.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

DIMENTOOBIG , Dimension too large

Warning: Text formatter became confused while scanning a dimension,
because the dimension was too big.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

DISCTOOLONG, Discretionary list is too long. Attempting to recover

Warning: Discretionary list was too long.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

DOUBLESUB , Double subscript

Warning: Text formatter found a quantity with two subscripts. In these cases,
x"l "2 will be treated like x"1{}"2.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

DOUBLESUPER , Double superscript

Warning: Text formatter found a quantity with two superscripts. In these
cases, x_l_2 will be treated like x_l{)_2,

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

DURING , Error occurred during a 'command'

Warning: Error occurred during a specified command or control sequence.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

DURINGOR , Error occurred during a 'command' or 'command'

Warning: Error occurred during one of the two commands or control
sequences shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

EMERGENCYSTOP , Job is aborting

Error: Text formatter became hopelessly confused, and must exit.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-53

Messages
Text Processor Messages

C-54

ENDDURING, '\end' occurred during 'command'

Warning: The command '\end' occurred unexpectedly.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

ENDINGROUP , '\end' occurred inside group at level number

Warning: The command '\end' occurred when there was one group or more
still active. Examine the input and output files and attempt to determine what
tag was not terminated.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

EOF , Unexpected end of file

Warning: Text formatter encountered the end of the current file
unexpectedly.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

EOP , Paragraph ended before the following completed:

Warning: Text formatter encountered the end of a paragraph unexpectedly.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

EXTRATAB, Extra '\halign' or'&' in alignment has been changed to '\er'

Warning: Text formatter found extra or unexpected '\halign' or'&'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

FILENAME , 'file-name'

Informational: Identifies current file being used as input.

User Action: This message always occurs in conjunction with other messages.
Action depends upon associated message.

FONTDIMEN , The following font has only number fontdimen parameters
To increase the number of font parameters you must use
\fontdimen immediately after the \font is loaded

Warning: The current font has too many parameters.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

FONTERROR , Error occurred in the following font:

Warning: Text formatter found an error in the current font.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

FONTMEMSIZE , Font memory size = number words

Informational: Reports the total size of text formatter's font memory.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

FONTTYPE , Font was declared by: 'string'

Warning: Identifies the font's type, e.g. \preloaded.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

FUNNYCS, Missing control sequence inserted

Warning: Text formatter became confused while defining a control sequence.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

IGNORED , Extra 'command' ignored

Warning: An unneccesary text formatting command was found.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

IGNOREDTEXT , All text was ignored after line string

Warning: Text formatter could not typeset any of the text following the line
shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

IGNORING, Ignored the following: 'command'

Warning: Text formatter encountered an unexpected command, and ignored
it.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-55

Messages
Text Processor Messages

C-56

IMPROPERCMD , Improper command found: 'command'

Warning: Command shown is not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INCOMPLETECMD , Incomplete command found: 'command'

Warning: Text formatter became confused while trying to scan the shown
command.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INFO , text - on page number

Informational: A text formatting macro has generated an informational
message. A problem occurred while the text formatter was processing the
output. Text provides a description of the problem. In most cases, the file
will continue processing successfully and you can examine the output. The
message indicates the page on which the problem occurred, and you can use
this information to correct the problem.

User Action: The following is a list of the messages you may see and the
associated action that will correct the problem.

• Callout number 0 undefined. Using 1.

A <CALLOUT> or <CO> tag was specified as 0.

• Callout number exceeds 99. Using 99.

A <CALLOUT> or <CO> tag's value is greater than 99. POSTSCRIPT
output devices cannot print numbers greater than 99.

• Error in setting note type; using default.

A local or personal DESIGN file specified an invalid value for the
\noteformattype. Refer to the VAX DOCUMENT Doctype Designer's
Guide for value values.

• Error. Maximum number of table footnotes exceeded.

Too many <FOOTNOTE> tags were specified for a table. The largest
number that is allowed is 12.

Messages
Text Processor Messages

• Error pushing/popping revision bars.

<MARK> and <ENDMARK> tags are not evenly matched, or are not
suppressed around heading levels in the correct sequence. If you receive
this message and are under a service contract with DIGITAL, call your
customer service center. Otherwise, submit a Software Performance
Report.

• Possible problem in output of revision bars.

The text formatter encountered a complex situation while a revision mark
(from the <MARK> tag) was active. Examine your output closely to
determine if the revision mark output is correct. A revision mark may not
appear, or appear where you did not intend it to. If there is a problem,
you can change your source file to decrease the range in which a revision
mark is active. For example, if you have changes in two rows of a table,
you might place the <MARK> and <ENDMARK> tags inside each of the
two <TABLE_ROW> tags instead of around the entire table.

• Figure is too large for a single page.

A value specified in <FIGURE_SPACE> or <FIGURE_FILE> exceeds the
depth of the output page. The text formatter will use only the depth of
the page.

Correct the invalid depth argument in the SDML file.

• <FOOTREF> before <FOOTNOTE> in table ignored.

A tag <FOOTREF> tag occurred in a table for which no corresponding
<FOOTNOTE> tag occured. Footnotes in tables must be specified at the

beginning of the table, before any references to them occur.

• Graphics files cannot be included on this device.

A <FIGURE_FILE> or <ICON_FILE> tag was encountered that specified
a graphics file to be included on a device that does not support the
inclusion of graphics. The tag is ignored.

• Index subentry more than 4 levels deep; ignored.

An indexing tag (<X> or <Y>) contained more than four
<XSUBENTRY> tags. Only four levels of subentry are allowed.

Correct the indexing tag to remove the excessive subentries.

• Included files are not allowed to float.

An included text formatter file in a figure is assumed to be multipage and
cannot float.

Remove the FLOAT attribute.

• Internal error while processing a table.

The text formatter has received bad input. Submit an SPR.

• Invalid table of contents entry.

A local or personal doctype specified an invalid value for a table of
contents entry. Correct the table of contents entry to use a valid code.

If this error occurs using a standard VAX DOCUMENT design, submit an
SPR.

C-57

Messages
Text Processor Messages

C-58

• Monospaced example is too big to keep.

The keyword KEEP was specified as an attribute to a <CODE_EXAMPLE>
tag or other tag that specifies a monospaced example. The number of
lines in the example cannot fit on a single page of output.

Remove the keyword KEEP from the tag and provide <VALID_BREAK>
tags to indicate acceptable page break points.

• Multipage figure will not be allowed to float.

A figure was specified with both the attributes FLOAT and MULTIPAGE.
Multipage figures cannot float; the text processor will output it at the
location of its occurrence in the source file.

Remove the FLOAT attribute.

• No template heading defined at this level; using level two.

• <PAGE> ignored in floating figure.

A <PAGE> or <FINAL_CLEANUP> (PAGE) tag was encountered in a figure
that had the default attribute float.

Specify <FIGURE_ATTRIBUTES> (MULTIPAGE) for all figures that are more
than a page in length.

• <PAGE> tag ignored in table that is not multipage.

A <PAGE> or <FINAL-CLEANUP> (PAGE) tag was encountered in a table
that had the default attribute float.

Specify <TABLE__ATTRIBUTES> (MULTIPAGE) for all tables that are more
than a page in length.

• Possible table paging problem.

A table that is output on more than one page is being forced to break
across pages without explicit page breaking or sufficient valid table break
points.

In most cases, the output will be perfectly all right. The text formatter
makes its best decision about breaking tables across pages when there are
<TABLE_ROW_BREAK> tags to specify the first and last valid breaks for

the table.

• Revision bars cannot be output on this device.

<REVISION>, <MARK>, and <ENDMARK> tags cannot be processed for
this device. No change bars will be printed.

• at end of table column ignored.

The tag, which specifies that text is to span 2 or more columns
in a table, must precede the text in the argument. For example,

<TABLE_ROW>((3)This text sits across all three columns)

Move the tag to the beginning of the tag's argument.

• The table, as specified, is too wide for the page.

The values specified in <TABLE_SETUP> result in a table that will not
fit on the current page. Recheck the arguments you specified to the
<TABLE_SETUP> tag, and decrease them. You will be able to tell from

the output how much of the table is excessive.

Messages
Text Processor Messages

• <TABLE_HEADS> preceding <TABLE_SETUP> ignored.

Table headings must be specified following the <TABLE_SETUP> tag.
Move the <TABLE_HEADS> so that it precedes the <TABLE_SETUP> tag.

• <TABLE_HEADS> within <TABLE_UNIT> ignored.

The <TABLE_HEADS> should not be used inside <TABLE_UNIT>
sequences; use the <TABLE_UNILHEADS> tag instead.

• <TABLE_ROW> encountered outside of a <TABLE> .

A <TABLE_ROW> tag was specified, but there was no <TABLE> tag. The
tag will be ignored. Correct the file so that a valid <TABLE> tag precedes
it.

• <TABLE_RQW_BREAK> tags in single-page table ignored.

The tag <TABLE_ROW_BREAK> was specified in a table that had the
attribute KEEP specified.

Remove the KEEP attribute from the table or remove the <TABLE_ROW_
BREAK> tag.

• <TABLE_UNILHEADS> outside of table unit ignored.

A <TABLE_UNILHEADS> tag was encountered before a <TABLE_UNIT>
tag was specified to begin a table unit.

Remove the tag; or insert a <TABLE_UNIT> tag to enclose a table unit.

• Tracing is disabled in VAX DOCUMENT.

An instruction to accumulate tracing information occurred in a TEX file.
VAX DOCUMENT does not support these instructions.

• Too many columns specified for multi-column output.

A local or personal doctype specified too many columns of output.

If this error occurs using a standard doctype, submit an SPR.

INITEXP AT , '\patterns' can only be used by Initex

Warning: Text formatter only recognizes '\patterns' when it is building
format files, not during a run of VAX DOCUMENT.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INSERTED , Missing 'command' inserted

Warning: A missing command was inserted into input stream.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-59

Messages
Text Processor Messages

C-60

INSERTHBOX , '\insert' can only be added to a '\ vbox'

Warning: command '\insert' is not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INSERTING , Inserting 'command'

Warning: Text formatter attempted to resolve an unexpected situation by
inserting shown command into input stream.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INSUFEXTFON , Math formula deleted: Insufficient 'extension' fonts

Warning: Math formula could not be typeset because 'extension' fonts were
inadequate or missing.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INSUFSYMFON , Math formula deleted: Insufficient 'symbol' fonts

Warning: Math formula could not be typeset because 'symbol' fonts were
inadequate or missing.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

INTERNALERROR , Internal error number: 'error number'. Job is aborting

Error: Text formatter found an internal inconsistency.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

LINE, Error occurred on or around line number: number

Informational: Reports the current line of input that the text formatter is
processing.

User Action: This message always occurs in conjuction with other messages.
Action depends upon associated message.

LINETOOLONG, Line too long by Integer.remainder points

Informational: The text formatter found an overly lengthy line.

User Action: This message always occurs in conjuction with other messages.
Action depends upon associated message.

Messages
Text Processor Messages

LINETOOSHORT , Line too short - on page Page number

Informational: The text formatter found a line that was too short.

User Action: This message always occurs in conjuction with other messages.
Action depends upon associated message.

MATHOVERFLOW, Arithmetic overflow

Warning: The result of a mathematical operation was too large.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXFONTS , Maximum number of fonts is: number

Informational: User has exceeded maximum number of fonts.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXGROUPS , Maximum number of groups is: number

Informational: User has exceeded maximum number of groups.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXHASH , Maximum number of entries in hash table is: number

Informational: User has exceeded maximum number of entries on text
formatter's hash table.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXHYPHS , Number of hyphenation exceptions is: number

Informational: User has exceeded maximum number of hyphenations.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXINPUTS , Maximum number of simultaneous input files is: number

Informational: User has exceeded maximum number of simultaneous input
files.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-61

Messages
Text Processor Messages

C-62

MAXNESTS , Maximum number of simultaneous semantic levels is number

Informational: User has exceeded maximum number of simultaneous
semantic levels in text formatter.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXP ARAMS , Maximum number of simultaneous text macro parameters is
number

Informational: User has exceeded maximum number of parameters to a
macro.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXSAVE , Maximum number of entries on save stack is: number

Informational: User has exceeded maximum number of entries on text
formatter's save stack.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MAXSTRINGS , Maximum number of strings is: number

Informational: User has exceeded maximum number of strings.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MEMORYSIZE , Main memory size = number words

Informational: User has exceeded total size of text formatter's main memory.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MESSAGE , text - on page number

Warning: A text formatter macro generated a warning message. The
following is a list of possible messages and actions.

User Action: See the action associated with each of the following messages.

• Error in window size.

An error occurred in a local or personal doctype; an invalid value was
specified in a \window.

If this error occurs in a standard doctype, submit an SPR.

• Internal error in setting block indents.

Too many arguments were specified to \blockindents, or the values were
not valid. This error should only occur if a local or personal DESIGN file
contains an invalid value.

Messages
Text Processor Messages

• Internal error in figure key definition.

Submit an SPR.

• Too many floating figures.

There are too many <FIGURE> tag sequences within a short span of text
specified, and the default attribute "float" is in effect for all of them.

The text formatter cannot produce meaningful output when there are too
many figures that are floating. When you have a large number of figures
in a short span of text, you should use the <FIGURE_ATTRIBUTES> (KEEP)
tag to keep them in sequential order.

• No room for a new [item].

Internal use.

MISSINGBOOL , ' <' or'=' or '> '
Warning: Text formatter expected to scan one of the Boolean values shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report. Determine which Boolean value is needed
and insert it in the right place.

MISSINGLBRACE , Possible missing '{'

Warning: Text formatter did not see an'{'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MISSINGRBRACE , Possible missing '}'

Warning: Text formatter did not see an'}'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

MODE , Error occurred in 'string' mode'

Informational: Reports the current mode that the text formatter is in.

User Action: This message always occurs in conjunction with other messages.
Action depends upon associated message.

MUERROR , Mismatched glue units. Assuming that lmu=l pt

Warning: Text formatter scanned glue specifications that are incompatible.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-63

Messages
Text Processor Messages

C-64

NOBOX , Expected to find '\hbox' or '\ vbox' or
'\copy' or '\box' or something like that.
Some text may be missing from output.

Warning: Text formatter expected to find a box.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOEND , No '\end' was found

Error: Text formatter expected to see a '\end' command.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOFONTID, Could not find font identifier for the following font:

Warning: Font identifier for current font is missing.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOINSLASTBOX, '\insert255' is illegal. Changing to '\insertO'

Warning: Text formatter register '\insert255' cannot be used in current
context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOMATHACCENT , Changed '\accent' to '\mathaccent'

Warning: The text formatter command '\accent' works differently in formulas
than it does in normal text.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NONUMBER, Missing number, using zero

Warning: Text formatter expected to find a number.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOROOM , Exceeded memory capacity:

Error: Text formatter exceeded one of its memory capacities. The message
immediately following indicates which quantity was exceeded.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

NOUSEAFTER, After this: 'command.', the following is invalid:

Warning: Text formatter cannot use the command shown in the next message
directly after the command shown in this message.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NUMBERTOOBIG , Number too large, using 2147483647 instead

Warning: Text formatter could not use specified number because it is too big.
Text formatter used 2147483647 instead, which is the largest number possible
in that con text.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

ONEOFFOUR , Some or all of the following 4 messages apply:

Warning: One or more of the four messages that follow on your screen
apply.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

ONEOFTWO , One or both of the following messages apply:

Warning: One or both of the two messages that follow on your screen apply.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

ONP AGE , on page number

Informational: Identifies the current page being output.

User Action: This message always occurs in conjunction with other messages.
Action depends upon associated message.

OUTFILENAME , 'file-name'

Informational: Identifies the output file name.

User Action: None.

PAGESOUT , number page(s) written.

Informational: Reports the number of pages written to the output file.

User Action: None.

P AGETOOBIG , Cannot ship out huge page. More than 18 feet wide or long.

Warning: Text formatter became confused during typesetting of current page
because page was too large.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-65

Messages
Text Processor Messages

C-66

PAGETOOLONG , Page too long by string.string points

Warning: Text formatter could not fit contents of current page into
boundaries of current page. Such errors are common with a line printer
because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

P AGETOOSHORT , Page too short - on page Page number

Informational: The text formatter had trouble composing the current page.
There were not enough lines to reach the bottom. Such errors are common
with a line printer because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

P ATTERNEXISTS , Duplicate 'pattern' found

Warning: Text formatter found a duplicate 'pattern'.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

P ATTERNMEMSIZE , Hyphenation pattern memory size = number words

Informational: User has exceeded total size of text formatter's hyphenation
memory.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

POOLSIZE, String memory size= number bytes

Informational: User has exceeded total size of text formatter's string memory.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

RUNAWAY , Runaway 'kind of text'

Warning: Text formatter became confused while scanning the shown kind of
text.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

SCALED , Font was scaled: number

Informational: This is an internal error.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

SHOWCONTEXT , 'text'

Informational: Displays input stream that the text formatter was attempting
to read when something went wrong.

User Action: This message always occurs in conjunction with other messages.
Action depends upon associated message.

SHOWTOKEN , 'text'

Informational: Displays part of text formatter's current token list.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

TIGHTSP ACING , Insufficient inter-word spacing - on page Page number

Informational: The text formatter had trouble composing a line - there was
not enough white space on the line. Such errors are common with a line
printer because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

TOOFEWLINES , Excess inter-line spacing - on page Page number

Informational: The text formatter had trouble composing the current page.
There was too much white space between the lines. Such errors are common
with a line printer because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

TOOMANYERRORS , Error limit is 30

Error: Text formatter found more than 30 errors.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-67

Messages
Text Processor Messages

C-68

TOOMANYLINES , Insufficient inter-word spacing - on page Page number

Informational: The text formatter had trouble composing the current page.
There was not enough white space between the lines. Such errors are
common with a line printer because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

TOOMANYP ARAMS , More than nine parameters were passed to a macro

Warning: Text formatter became confused while scanning parameters to a
macro because there were too many parameters.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

TRACE, text

Informational: User has turned on text formatter's tracing mechanism. Text
contains information about VAX DOCUMENT's text formatter's internals.

User Action: None.

UNDEFINEDCS , Undefined control sequence

Warning: Text formatter encountered an undefined control sequence.

User Action: This can happen if a TEX file, created using one doctype, is
reprocessed using another doctype; for example, if you created a TEX file
using the LETTER doctype then reprocessed the file using /NOTAG and the
OVERHEADS doctype. Reprocess the file using /TAG_TRANSLATORT and
/TEXT_FORMATTER. If you receive this message and are under a service
contract with DIGITAL, call your customer service center. Otherwise, submit
a Software Performance Report.

UNKNOWNUNIT, Dimension unit must be: em,ex,in,pt,pc,cm,mm,dd,cc,bp,sp

Warning: Text formatter expected to read one of the dimensions shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

USINGZERO, Bad 'value', must be between smaller number and larger number,
using zero instead

Warning: Text formatter expected to scan a value in the range shown.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

Messages
Text Processor Messages

VSPLITHBOX , Attempted to '\ vsplit' a '\hbox'

Warning: Command '\ vsplit' is not valid in current context.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

WIDESP ACING , Excess inter-word spacing - on page Page number

Informational: The text formatter had trouble composing a line; there was
too much white space on the line. Such errors are common with a line printer
because it is monospaced.

User Action: Examine output on page shown to determine if there is a
problem with the coding of the SDML file. Ignore the problem if it is not
serious. You also have the options of changing destinations or changing the
doctype, if possible.

C-69

C.4

Messages
Device Converter Messages

Device Converter Messages

C-70

BADFILABORT, file bad-aborting run

Error: The device converter cannot use the font file named in an adjacent
message.

User Action: Another file may have been given the same name. Use the
DIRECTORY /FULL DCL command to see that the size and format are similar
to other font files. If necessary, reinstall the font data.

BADFONT , font file bad-using blanks

Warning: The file that describes the font design is unusable. The program
will substitute blanks for the characters in this font.

User Action: Use the DIRECTORY/FULL DCL command to see if the size
and format of this file resembles other font files. If necessary, reinstall the
font data.

BADINCLUDE, included file is bad

Warning: The program has encountered errors in processing the contents or
index file requested.

User Action: Check that previous processing steps generated the contents or
index file expected; this may be an old, incompatible file, it may be another
file with the same name, or it may be the correct file made unreadable
because of an 1/0 error.

BADMETRIC , bad metric file

Error: The device converter has encountered errors in processing the
indicated font metric file.

User Action: This may be another file named the same; check the file size
and format with the DIRECTORY /FULL DCL command to see if it resembles
other font metric files. It may be necessary to reinstall the font data.

CANNOTCONNECT, cannot connect along a diagonal

Warning: While attempting to draw change bars, the program has
encountered an attempt to draw a non-vertical line. Only vertical change
bars are allowed.

User Action: This is controlled by the macros that describe change bar
positioning. Look there for errors and inconsistencies.

CANNOTCREATE , cannot create output file

Error: The program cannot create an output file.

User Action: Check that the output directory exists, that the user has
permission to write in it, and that the device is available and is not full.

CANNOTOPEN , cannot open input file

Error: The program cannot open the input DVI file.

User Action: Check that the input directory exists; check that the file exists
or was created by earlier processing steps; check that the user has permission
to read the file, and that the device is available.

Messages
Device Converter Messages

CONFIGERROR , error in configuration file

Error: An error has been detected in reading the file that describes
POSTSCRIPT fonts. An adjacent error message gives more details.

User Action: Check that the device is available and that the user has
permission to read the file. Take the action suggested by the adjacent error
message. If necessary, reinstall the font data.

FILENESTING , one included file cannot include another file

Warning: One contents or index file may not include another.

User Action: Check the macros that describe contents and index files to see
that they are correctly generating the filespecs; see if the filespec generated
for the contents or index file is the same as an existing file.

FONTCONFIG, font description missing or illegal in configuration file

Error: The specified font is not present, or not fully described, in the file that
describes POSTSCRIPT fonts.

User Action: If necessary, reinstall the POSTSCRIPT support.

FONTERROR , error in font
string

Warning: An error has occurred while processing the named font. The
specific problem is identified in an adjacent message.

User Action: Note the name of the font. Take the action suggested by the
adjacent error message.

FONTTOOBIG , too many characters in font-limit is 188

Error: The document uses too many characters from the named font.

User Action: Reinstall the font files. If problem persists, and if you are
under a service contract with DIGITAL, call your customer service center.
Otherwise, submit a software performance report (SPR).

IGNORING , ignoring included input file
filespec

Warning: The program cannot process the included DVI file for the reason
specified in an adjacent message.

User Action: Note the name of the file. Take the action suggested by the
adjacent error message.

INCLUDING , including input file:
file spec

Informational: Reports that the program is processing a DVI file other than
the file named on the command line; this is typically a contents or index file.

User Action: None.

C-71

Messages
Device Converter Messages

C-72

INPUTBAD , bad input file-aborting run

Error: The program has encountered errors in the named input file and
cannot continue.

User Action: Check the messages generated by earlier processing steps to see
if a complete DVI file was created.

INPUTFILE , input file is:
filespec

Informational: Reports the name of the primary DVI file; i.e., the file named
on the command line.

User Action: None.

INTERNALERROR, internal error

Error: A problem internal to the device converter prevents it from continuing.

User Action: This sometimes represents a document so large or complex
that it exceeds internal buffer sizes; sometimes you can work around this by
running contents and index processing as separate jobs, rather than including
them in place. You may be able to process the document in two or more
pieces by using the STARTING_PAGE and ENDING-PAGE or NUMBER_
QF_P AGES parameters to the device converter. If you receive this message
and are under a service contract with DIGITAL, call your customer service
center. Otherwise, submit a Software Performance Report.

INVALIDPOINT , invalid point number 'number'

Warning: An error has occurred in the macros used to describe change bars.
Specifically, an attempt has been made to locate a point off the page, or the
point is incorrectly described.

User Action: This is controlled by the macros that describe change bar
positioning. Look there for errors and inconsistencies.

NOFILABORT, cannot open file-aborting run

Error: The device converter cannot open the named file.

User Action: Check to see that the device is available, that the file exists, and
that the user has privileges to access that file.

NOFONT, cannot open font file-using blanks

Warning: The device converter cannot open the named font file.

User Action: Check that the device exists and is available, and that the user
has permission to read the file.

NOINCLUDE, cannot open included file

Warning: The device converter cannot open the contents or index file named
in the adjacent message. Either the pathname and filename are incorrect,
or the program cannot gain access because of file protection or locking by
another process. Processing will continue without this file.

User Action: Check that the named file exists and that the user has access to
it.

Messages
Device Converter Messages

NOINPUTP AGE , no pages in input file

Error: The input file named in an adjacent message contains no pages;
therefore, there will be no output to print.

User Action: Check to see if errors reported in earlier processes caused there
to be no pages generated.

NOMETRIC , cannot open metric file

Error: The font metric file named in an adjacent message does not exist, or
the user does not have access to it because of file protection or problems with
the device.

User Action: Check that the file exists and is available, and that the user has
access to it. Check thaf the user is specifying a DVI input file appropriate for
the destination requested.

NOSIXELIMAGE , cannot find sixel image in figure file

Warning: The figure file named in an adjacent message does not contain the
command sequence that identifies a sixel image. White space appears where
the figure is expected.

User Action: Check the figure file. For LN03 use, it must be a sixel file.

NOSUBSTITUTE , no adequate alternate font found

Error: The text formatter has requested a down-loaded font for which the
device converter cannot find a reasonable substitute.

User Action: Check the document design for the fonts used; check that the
corresponding font files exist at the sizes desired.

NOSUCHUNIT , no such unit of measure

Warning: A DVI special command used to position change bars or describe
graphics files contains an unknown unit of measure, or no unit at all.

User Action: This is controlled by the macros that describe change bar
positioning or figure file characteristics. Look there for errors.

OFFP AGE , cannot set text outside page boundaries

Warning: An attempt has been made to set text outside the boundaries of the
physical page specified.

User Action: Check the messages from the text formatter for lines too long;
check that you specified a destination that can print a page as large as
required by your design; check to see if you specified a horizontal or vertical
offset that will push your design off the page.

ONPAGE , on page [string]

Informational: Reports the number of the output page on which the
condition reported in the associated messages occurred.

User Action: Note this page number if you need to refer to the output.

C-73

Messages
Device Converter Messages

C-74

OUTPUTFAIL, error writing to output file

Error: The program encountered an error in writing to the output file. This
usually means that the output disk is full, the user's disk quota is exceeded,
or the output disk has become unusable.

User Action: Check that the output device is usable. If the disk is full or
the user's disk quota is used up, delete unwanted files and run the device
converter again.

P AGENOTFOUND , starting page not found

Error: The user has specified a starting page number, but that page does not
exist in the input file.

User Action: Check the starting page specified; check the input file specified.

PAGESOUT , number page(s) written to file:
filespec

Informational: This reports the number of pages written to the output file
named.

User Action: No direct action needed; however, if the number is zero, or less
than expected, check other messages for errors or examine the commands,
filespecs, options, and input files for problems.

P AGETOOCOMPLEX , cannot hold all font data-using blanks

Warning: The amount of font data required to describe all the characters
on this page will not fit in the LN03 font memory, so the characters in the
current font will be represented as blanks.

User Action: If using a design that allows you to change text~size, choose
a smaller size; or use only one kind of emphasis on the page if possible; or
move portions of the text to adjacent pages.

PLOTFILEF AIL , cannot open figure file

Warning: The program cannot find the figure file named, or can find it but
cannot open it.

User Action: Check that you have specified the right filespec, that the
file exists in the path specified (or current default directory, if no path is
specified), that you have permission to read that file, and that the file is not
locked by the action of some other program running at the same time.

PROLOGERROR , error in prolog file

Error: The device converter cannot read its file that contains the POSTSCRIPT
prolog for output.

User Action: Check that the device is available, that the file exists, and that
the user has privileges to access the file. If necessary, reinstall the POSTSCRIPT
support.

Messages
Device Converter Messages

SPECIALERROR , error in \special
string

Warning: This lists the text of a DVI special command as received by the
device converter. This command is generated by macros, but may contain
some user-specified information, such as a filespec or size. The specific
problem associated with this special will be described in an adjacent message.

User Action: Consult the adjacent message for a description of the problem.
If necessary, check this message for a filespec or size that may have been
incorrectly entered in a tag describing a figure file, contents file, or index file.

SPECTOOLONG , \special too long-will try to process anyway

Warning: This DVI special command exceeds the maximum length of 1000
characters. The program will truncate the command and try to process it.

User Action: Check the macros that generate this special command­
they may be appending too many spaces or extraneous text following the
command.

TOOMANYDVI , too many included input files

Warning: Too many included contents or index files have been requested.

User Action: Remove excess contents_file and index_file tags from input
file.

TOOMANYFONTS , too many fonts-limit is 100

Error: The document contains too many fonts.

User Action: Change the document design so it does not require so many
fonts, or use SDML tags that do not require so many fonts, or break
the document into separate documents, or process the contents or index
separately.

TOOMANYGLYPHS, too many glyphs used in all fonts combined

Error: The document contains too many characters in too many fonts. The
LN03 cannot hold this many characters.

User Action: Break the device conversion of this document into two or more
jobs, specifying the starting page and ending page or number of pages. End
one job before the page on which this error was reported.

UNRECOGOPTN, unrecognized option

Warning: This DVI special command contains an option not supported by
this device converter, or the program cannot find an option at all.

User Action: Check to see if you have requested a figure file, contents
file, index file, change bars, or other function which is not supported for
this destination; check for errors in the macros that generate this special
command.

C-75

C.5

Messages
Index Facility Messages

Index Facility Messages

C-76

ARGLST_TOO_LONG, The argument list is too long, or is not terminated.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

ATRLST_INVALID , The attribute list is not validly constructed.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADLOGIC , internal logic error detected

Error: The INDEX utility has detected an internal failure.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

BADVALUE , 'string' is an invalid keyword value

Error: The indicated string is not a valid keyword value.

User Action: Reprocess the input file specifying a correct value for the
qualifier keyword.

BEGIN_QUOTE, Needs a" character or a' character to begin string.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

CANT_CREATE_BRN , Can't create intermediate file

Error: A necessary intermediate file cannot be created.

User Action: Check to be sure your INX file has not been corrupted, that
you have sufficient disk space, that you have access to the current directory,
and that there are no other factors in your current environment that would
prevent the creation of a file during processing.

CREATED, 'string' created

Success: The indicated output file has been created.

User Action: None.

CUT_P AGE_PREFIX , Page prefix was truncated to string.

Warning: A page prefix is greater then eight characters.

User Action: If truncation is not accepted, change the prefix to eight
characters or less in the INX file and resubmit.

Messages
Index Facility Messages

DUPBEGIN , duplicate BEGIN attribute ignored.

Warning: A BEGIN was encountered withitt the scope of another BEGIN.

User Action: Check the index entries in your source file to be sure that
BEGIN' s and END' s match.

EMPTYIN , empty intermediate input file.

Warning: The intermediate work file is empty.

User Action: Check the command line to be sure that the input file was
spelled correctly.

ENDP ASS_l , End of first pass over input file:
'filename'

Informational: Indicates that the INDEX utility has started processing the
specified input file.

User Action: None.

ENDP ASS_2 , End of second pass over the input.

Success: The indexing utility has completed processing the input file.

User Action: None.

END_QUOTE_l , Needs a ' character to end string.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

END_QUOTE_2, Needs a" character to end string.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

IGNORED , 'string' ignored

Warning: The indicated command line qualifier or qualifier keyword was
ignored. One or more messages follow to indicate the reason.

User Action: See the explanation in the error messages that follow on your
screen.

INPUT_OVERFLOW , Overflowed input put-back stack; element too large.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

C-77

Messages
Index Facility Messages

C-78

INSVIRMEM , insufficient virtual memory

Error: The INDEX utility does not have sufficient virtual memory to generate
the index.

User Action: Either reduce the size of the index or increase the SYSGEN
parameter, VIRTUALPAGECNT, reboot, and reprocess your file.

INVINPUT , invalid input file format for intermediate file.

Warning: The intermediate input file is not compatible with the INDEX
utility. It may have been corrupted.

User Action: Reprocess to get a new file.

INVRECORD , invalid record type in intermediate file.

Warning: The intermediate input file is not compatible with the INDEX
utility. It may have been corrupted.

User Action: Reprocess to get a new file.

LANG_IGNORED , LANGUAGE tag not at beginning of file - being ignored.

Warning: The language tag was encountered in the INX file after index entry
processing has started.

User Action: Reposition the language tag to the start of the INX file.

LANG_NAME, The string language name is not valid.

Fatal: The language specified is not supported.

User Action: Modify the language tag in the INX file to specify Danish,
English, Finnish, French, German, Italian, Norwegian, Portuguese, Spanish,
or Swedish.

NEEDS_START, Needs a= character in front of the string.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOBEGIN, END attribute ignored; no corresponding BEGIN.

Warning: An END was encountered and no previous BEGIN was
encountered.

User Action: Check the index entries in your source file to be sure BEGIN's
and END's match.

NOBRN , error converting 'string' to internal file

Error: The indicated input file was not converted to an internal index
workfile.

User Action: Correct any problems noted by the file conversion routine.

Messages
Index Facility Messages

NOEND , BEGIN has no corresponding END

Warning: A BEGIN was encountered and the matching END was not.

User Action: Check the index entries in your source file to be sure BEGIN's
and END' s match.

NOINDEX , no index information in intermediate file.

Warning: No index information was found in the intermediate work file.

User Action: Check your input file to see if it includes any index entries.

NOLIST , parameter list not allowed

Warning: More than one file was specified on a line of a master index options
file.

User Action: Modify the options file so that it contains only one name on
each line.

NOREF, page reference not found

Error: An internal logic error was detected.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NOT_UNDELIM_STR , Not an undelimited string.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NO__ARGLST , string tag not followed by a starting argumentlist.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

NO_ENTRY_BLOCK , Attribute build failure - no entry block built.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

OPENIN, error opening 'filename' for input

Error: The input file is erroneous, the file does not exist, or you do not have
access to the file.

User Action: Check the file specification for errors and check to see if you
have access to the file.

C-79

Messages
Index Facility Messages

C-80

OPENOUT , error opening 'string' for output

Error: An output file cannot be opened. This message is usually accompanied
by a VAX RMS message.indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

PAGE_NUMBER , Illegal page number.

Error: An error occurred when the indexer read your INX file.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

SECTION _NAME , The string section name is not valid.

Error: The indicated section name is not CHAPTER, PREFIX or APPENDIX.

User Action: Change the section name in the INX file and resubmit.

SKIPPED , n reference(s) inside page range - ignored

Warning: The INDEX utility detected n index entries inside a BEGIN/END
page range. These entries were ignored.

User Action: Check the input file to be sure that the BEGIN and END are
positioned properly. If so, remove the intervening index entries.

SYNTAX, error parsing 'string'

Warning: The indicated string encountered during the processing of a master
index options file is erroneous. One or more messages follow indicating the
nature of the error.

User Action: See the description in the messages that follow on your screen.

TEXT , string

Informational: This message follows other error messages that are generated
when an error in a master index file or text processor character file is detected.
It shows the full line of the options file that was in error. It is accompanied
by one or more other error messages.

User Action: See the action for the accompanying error messages on your
screen.

TEXTD, entry text: 'string'

Informational: This message follows other messages generated due to some
error in an index entry. It shows the complete text of the index entry.

User Action: See the action for the accompanying error messages on your
screen.

TOKEN _OVERFLOW , A token is more than string characters long.

Error: A control string is more than the indicated length.

User Action: Check the item reported and modify the INX file for proper
format.

Messages

TOODEEP , maximum subindex depth exceeded

Warning: An index entry containing ten or more levels of subindexing was
detected. The subindexing was ignored.

User Action: Generate index entries with fewer levels of subindexing.

TRUNCATED, string too long - truncated

Warning: A character string is too large to fit into an INDEX utility internal
buffer.

User Action: If you receive this message and are under a service contract
with DIGITAL, call your customer service center. Otherwise, submit a
Software Performance Report.

VALERR, specified value is out of legal range

Error: This message is part of a compound message.

User Action: Look at the associated messages for an indication of what is out
of range.

WHERE , in string tag on line number of the INX file.

Informational: Locates the error.

User Action: See the action for the accompanying error messages on your
screen.

WHERE , in string tag on line number of the INX file.

Informational: Locates the error.

User Action: See the action for the accompanying error messages on your
screen.

C-81

D Summary of VAX DOCUMENT Tags

Table D-1 provides an alphabetic list of the tags that VAX DOCUMENT
recognizes. For each tag, the doctype is given. The doctype is shown in the
table as Global or as one of the doctypes.

If the doctype is specified as Global, the tag is recognized in all doctypes. 1

Global tags are described in VAX DOCUMENT User Manual, Volume 1.

If the doctype listed is one of the standard doctypes, the tag is recognized
only for that doctype and is described in VAX DOCUMENT User Manual,
Volume 2.

Table D-1 Summary of VAX DOCUMENT Tags

Tag

<ABSTRACT>

<ABSTRACT>

<ACCENT>

<ACKNOWLEDGMENTS>

< ALIGN_AFTER>

<ALIGN_CHAR>

<ALIGN_NUMBER>

<AMPERSAND>

<APPENDIX>

<ARGDEF>

<ARGDEFLIST>

<ARGITEM>

<ARGTEXT>

<ARGUMENT>

<AUTHOR>

Doctype

ARTICLE

Global

Global

ARTICLE

Global

Global

Global

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

ARTICLE

Description

Creates an article abstract and can also specify a
heading for that abstract.

Begins a summary description of a document on
the title page or part page of a document.

Supplies a freestanding accent mark.

Creates an acknowledgments section in an article.

Allows you to position formatted text in a list.

Identifies a nonprinting character to be used to
align numeric information within a column of a list
or table.

Specifies a numeric value with alignment
characters.

Supplies an ampersand within an argument to a
tag or in math.

Begins an appendix.

Begins the text that defines an item in an
argument definition list.

Begins a definition list describing zero or more
routine arguments.

Labels one to seven routine argument items to be
defined in an argument definition list outside of
the Routine template, or a single routine argument
and its attributes within the Routine template.

Labels definition text in an argument definition list
which replaces the information contained in a pair
of <ARGITEM> and <ARGDEF> tags.

Emphasizes an argument name within text.

Specifies an author of an article.

1 A few exceptions to this rule are noted in the introductions to the doctypes in VAX DOCUMENT User Manual, Volume 2.

D-1

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<AUTHOR>

<AUTHOR>

< AUTHOR_ADDR>

<AUTHOR_AFF>

<AUTHOR_INFO>

< AUTHOR_LIST>

< AUTO_NUMBER>

<BACKSLASH>

<BACK_NOTE>

<BACK_NOTES>

<BIBLIOGRAPHY>

<BIB_ENTRY>

<BOX>

<BYLINE>

<BYLINE>

<CALLOUT>

<CALLOUTS>

<CALLOUT_REF>

<CC>

<CCLIST>

< CENTER_LINE>

D-2

Doctype

REPORT

SOFTWARE

ARTICLE

ARTICLE

OVERHEADS

ARTICLE

OVERHEADS

Global

ARTICLE

ARTICLE

ARTICLE

ARTICLE

Global

REPORT

SOFTWARE

Global

Global

Global

LETTER

LETTER

Global

Description

Places the name of an author and one or two
additional lines of information about the author in
the front matter portion of a document.

Places the name of an author and one or two
additional lines of information about the author in
the front matter portion of a document.

Specifies the address of the author.

Specifies information about the organizational
affiliation of the author.

Specifies informational text about the overhead
presentation.

Creates a list of authors for an article with
multiple authors.

Specifies that slides are to be numbered
automatically, and that the slide number is to be
placed at the bottom of every slide. Optionally,
specifies a text string to be placed in front of the
slide number on each page.

Supplies a backslash within an argument to a tag.

Creates a back note entry, and creates a
superscript reference number in the article text.

Causes any accumulated back notes to be output.

Begins a bibliography.

Specifies a single entry in a bibliography.

Produces a box that surrounds a user-specified
character string.

Places a name and other optional information
below a ruled line in a signature list.

Places a name and other optional information
below a ruled line in a signature list.

Labels a callout in an example. The <CALLOUT>
tag is identical to the <co> tag.

Labels the beginning of a series of callouts
contained in an example and enables the use
of the <CALLOUT> and <CO> tags. (The
<CALLOUT> tag is equivalent to the <CO>

tag.)

Labels a reference to a callout in text.

Lists the name of someone who is to receive a
copy of a memo or letter.

Begins a list of persons to whom you want to
send a copy of a memo or letter.

Specifies a line of text that is to be centered in
the current text margin.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<CHAPTER>

<CHEAD>

<CHEAD>

<CHEAD>

< CHECK_FOR_INCLUSION >

<CLOSING>

<CO>

<CODE _EXAMPLE>

<COLUMN>

<COLUMN>

<COMMAND>

< COMMAND_SECTION>

<COMMENT>

<CONDITION>

<CONSTRUCT>

<CONSTRUCT _LIST>

<CONTENTS_FILE>

<COPYRIGHT_DATE>

<COPYRIGHT_PAGE>

<CP>

Doctype

Global

Global

LETTER

REPORT

Global

LETTER

Global

Global

ARTICLE

REPORT

SOFTWARE

SOFTWARE

Global

Global

SOFTWARE

SOFTWARE

Global

Global

Global

Global

Description

Begins a chapter.

Marks an unnumbered centered heading. Similar
to the <CENTER> tag.

Creates a centered heading.

Creates a centered heading.

Marks a file to ensure the file is included only
once in the output.

Specifies the closing of a letter.

Labels a callout in an example. The <CO> tag is
identical to the <CALLOUT> tag.

Begins an example of code. Code consists
of words or lines of instructions written in a
programming language or a command language.

Specifies that a new column of output should
begin in a two-column doctype.

Specifies that a new column of output should
begin in a two-column doctype.

Begins a new command description.

Begins a command reference section, enables
tags reserved for use in command sections, and
sets paging attributes.

Marks a portion of your SDML input file that
you do not want to appear in your output. Text
marked by a <COMMENT> tag is ignored by the
tag translator during processing.

Marks a section of an SDML file that is not
processed unless one of the arguments to
the tag matches the argument in the related
<SELCONDITION> tag.

Specifies a variable construct and gives its
expansion.

Begins a list of construct items and definitions
that expand on variables specified in the context
of the <STATEMENT_FORMAT> tag.

Specifies that the table of contents output file
for a document should be included when the
document is processed.

Inserts a copyright date line on the copyright
page along with other system-specific copyright
information.

Begins a copyright page and enables copyright
page tags.

Marks the continuation of a paragraph that has
been interrupted by another text element.

D-3

Summary of VAX DOCUMENT Tags

Table 0-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<CPAREN>

<CPOS>

<DATE>

<DEFINE _BOOK_NAME >

<DEFINE_SYMBOL>

<DEFINITION _LIST>

<DEFINITION _LIST _HEAD>

< DEFLIST _DEF>

<DE FUST _ITEM>

<DELAYED>

<DELETE_KEY>

<DESCRIPTION>

<DISPLAY>

<DISTLIST>

<DOCTYPE>

<DOCUMENT_ATTRIBUTES>

<DOCUMENT _ATTRIBUTES>

<DOCUMENT_ATTRIBUTES>

<EMPHASIS>

<ENDCOPYRIGHT_PAGE>

D-4

Doctype

Global

SOFTWARE

Global

Global

Global

Global

Global

Global

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

LETTER

Global

ARTICLE

REPORT

SOFTWARE

Global

Global

Description

Supplies an unmatched closing parenthesis in an
argument to a tag.

Marks the cursor position in a screen display.

Produces the current system date or time.

Defines the title of a book and associates a
user-defined symbol-name with that title for later
reference.

Associates a string of text with a user-defined
symbol, so that the text can be referenced via
this symbol throughout the document.

Begins a definition list.

Supplies the heading to precede a definition
list. Output formatting is controlled by the
document-type.

Begins the text that defines an item in a definition
list.

Marks an item to be defined in a definition list.

Allows you to specify text that contains SDML
tags in an argument to another tag and delays the
execution of those contained tags.

Creates a special character resembling a DELETE
key on a keyboard.

Begins a section of descriptive text providing
detailed information on the current reference
element.

Simulates the appearance and position of
characters on a terminal screen.

Begins a list of persons to whom you want to
distribute a memo or letter.

Specifies the document type for your file. This
tag is for informational purposes only.

Enables doctype-specific tags that override the
default design format of the ARTICLE doctype.

Enables doctype-specific tags that override the
default design format of the REPORT doctype.

Enables doctype-specific tags that override
the default design format of the SOFTWARE
doctype.

Marks a word or phrase for distinctive
typographical treatment.

Terminates the copyright page and optionally
provides text that may be used on a document­
type specific basis.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<ENDPART_PAGE>

<ENDTITLE_PAGE>

<EXAMPLE>

<EXAMPLES_INTRO>

< EXAMPLE_ATTRIBUTES>

<EXAMPLE_FILE>

<EXAMPLE _SEQUENCE>

<EXAMPLE_SPACE>

<EXC>

<EXI>

<EXTEXT>

<FARG>

<FARGS>

<FCMD>

<FCMD>

<FFUNC>

<FIGURE>

<FIGURE_ATTRIBUTES>

<FIGURE_FILE>

<FIGURE_SPACE>

<FILE_SPEC>

Doctype

Global

Global

Global

SOFTWARE

Global

Global

SOFTWARE

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

SOFTWARE

SOFTWARE

Global

Global

Global

Global

Global

Description

Terminates a part page and optionally specifies
paging attributes for text that follows.

Terminates a title page and optionally specifies
text to appear at the bottom of the title page.

Labels the beginning of a formal example.

Provides introductory text before an example.

Specifies attributes for the current example.

Causes a separate file containing an example to
be included in the source file.

Begins a numbered sequence of informal
examples.

Leaves space for an example that will be pasted
in during final production.

Begins a code example within a series of
numbered informal examples.

Begins an interactive example within a series of
numbered informal examples.

Terminates an example and begins an explanation
in a sequence of numbered examples.

Adds a single argument line to a list of arguments
in a routine syntax format section.

Provides the argument portion of a routine syntax
statement within the context of the <FORMAT>
tag.

Specifies the keyword portion of a formatted
command/parameter pair in a format section.

Identifies a command or statement keyword,
and an optional parameter list, within a format
section.

Labels a function within the context of a
<FORMAT> or <STATEMENLFORMAT> tag

section.

Labels the beginning of a figure.

Specifies the placement of a figure on the page.
Also specifies valid page breaks for that figure.

Includes a graphics file in your output file if the
output device has graphics capability.

Marks the space required for a figure that will be
pasted in during final production.

Allows you to use a file specification that
contains angle brackets as an argument to an
SDML tag without VAX DOCUMENT interpreting
that file specification as a tag.

D-5

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag Doctype

<FINAL _CLEANUP> Global

<FOOTNOTE> Global

<FOOTNOTE_ TEXT> Global

<FOOTREF> Global

<FORMAT> Global

<FORMAT> SOFTWARE

<FORMAT_SUBHEAD> SOFTWARE

<FPARM> Global

<FPARM> SOFTWARE

<FPARMS> Global

<FPARMS> SOFTWARE

< FROM_ADDRESS> LETTER

< FRONT_MA TTER> Global

<FRTN> SOFTWARE

<FTAG> SOFTWARE

<FUNCTION> SOFTWARE

<GDEF> Global

<GLOSSARY> Global

<GRAPHIC> SOFTWARE

D-6

Description

Provides explicit formatting instructions for the
text formatter to be used for final formatting and
cleanup.

Places a footnote character in text, using the
character specified in the tag's argument, and
places the footnote text at the bottom of the
page.

Specifies the text of a footnote associated with a
footnote reference.

Creates one or more footnote callouts in text
or in a table using the footnote numbers or
characters as arguments.

Enables <FCMD>, <FPARMS> , and <FPARM>
to distinguish formatted command keywords and
parameters.

Begins a section that highlights the syntax of a
tag, command, or routine, including keywords
and arguments.

Introduces one of the multiple formats in the
statement format section.

Specifies a parameter to be formatted following
<FPARMS> , aligned under the parameter list

portion of a keyword/parameter list pair.

Adds a single parameter line to a list of
parameters in a command or statement syntax
format section.

Specifies the parameter portion of a formatted
command/parameter pair in a format section.

Specifies the parameters to a command or
statement keyword.

Specifies the name and address of the sender of
a letter, and places this information flush left near
the right margin.

Begins the front matter of a book.

Specifies the routine-keyword portion of a routine
syntax statement within the context of the
<FORMAT> tag.

Specifies the name of a tag and its arguments
within the context of a <FORMAT> tag.

Begins a new function description.

Begins the text that defines a term in a glossary.

Begins a glossary of terms in a document or
book.

Displays terminal graphics characters.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<GREF>

<GTERM>

<HEAD>

<HEAD>

<HEADx>

< HELLIPSIS>

<HYPHENATE>

<ICON>

<ICON_FILE>

<ICON_ TEXT>

<INCLUDE>

< INCLUDES_FILE >

<INDEX_FILE>

<INTERACTIVE>

< INTRO_SUBTITLE >

<INTRO_ TITLE>

<KEEP>

<KEY>

<KEYPAD>

<KEYPAD_ENDROW>

Doctype

Global

Global

LETTER

REPORT

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

OVERHEADS

OVERHEADS

Global

SOFTWARE

SOFTWARE

SOFTWARE

Description

Marks a cross-reference to a term within a
glossary.

Labels a term to be defined in a glossary.

Creates a main heading which is placed on the
left side of the page.

Creates a main heading which is placed on the
left of the output page.

Marks a heading of the level specified (1 through
6).

Labels omitted material in a horizontal dotted line.

Provides information about legal hyphenation of a
word of text.

Allows you to include a graphic image in your
printed output and print text parallel to the image.
The text is printed either to the right or left of the
picture.

Specifies a graphics file that accompanies text
within the <ICON> and <ENDICON> tags.

Labels the text that accompanies a graphic image
included in text with the <ICON> and <END_
ICON> tags.

Causes the contents of a specified file to be
included in the current input file for processing.

Equates a logical name with a file specification
during processing of a profile.

Specifies the position in a book (or document)
where an index file should be included in the
output.

Begins an example dialog between user and
system and enables the tags <S> and <U> to
distinguish system text from user text.

Creates a secondary title of up to four lines on an
introductory slide.

Creates a main title of up to four lines on an
introductory slide.

Specifies that a string of text should always occur
on the same line of output, that is, should not be
hyphenated between lines.

Depicts a key from a keyboard or keypad
graphically.

Specifies an individual keypad diagram and
optionally supplies a title for that. diagram.

Displays the bottom row of an editing keypad
that has up to three keys.

D-7

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<KEYPAD_ROW>

< KEYP AD_SECTION >

<KEYWORD>

<KEY_NAME>

<KEY_PLUS>

<KEY _SEQUENCE>

<KEY_TYPE>

<LE>

<LEVEL>

<LINE>

<LINE_ART>

<LIST>

<LITERAL>

<LOWERCASE>

<MARK>

<MATH>

<MATH_CHAR>

<MCS>

<MEMO_DATE>

< MEMO_FROM >

< MEMO_HEADER>

<MEMO_LINE>

D-8

Doctype

SOFTWARE

SOFTWARE

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

REPORT

Global

Global

Global

Global

Global

Global

Global

Global

Global

LETTER

LETTER

LETTER

LETTER

Description

Displays a row of an editing keypad that has up
to four keys.

Begins a series of one or more keypad diagrams.

Labels a significant word that deserves to be
distinguished typographically.

Emphasizes the name of a key within text.

Creates a plus sign between keys in a key
sequence example.

Begins a section containing one or more key
representations.

Provides a descriptive label for keys within a key
sequence.

Labels a list element.

Specifies an outline entry and the organizational
level of that outline entry.

Specifies that the text that follows is to be placed
on a new line of output.

Labels a rough sketch produced at the terminal
keyboard for draft output, to give some idea of
what the final figure will look like.

Begins a list. The type of list (for example,
numbered or stacked) is specified by the
argument to the <LIST> tag.

Allows you to specify text that contains words
in angle brackets that might otherwise be
interpreted as tags.

Labels text that should appear as lowercase in
the final output.

Indicates the beginning of new or modified
information.

Labels a short mathematical expression or the
beginning of an extended mathematical example.

Creates a special mathematical symbol.

Labels a character in the DEC Multinational
Character Set.

Creates a line in a memo or letter that displays
the date after the heading "Date:".

Identifies the name and address of the sender of
a memo, and places this information flush left on
the left margin, with a heading of "From:".

Centers the heading "Interoffice Memorandum" in
bold letters on the current output line.

Lets you create your own titled informational
lines.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<MEMO_ TO>

< MESSAGE_SECTION>

<MESSAGE_ TYPE>

<MSG>

<MSGS>

<MSG_ TEXT>

<NESTED_ T ABLE_BREAK>

<NEWTERM>

<NOTE>

<OPAREN>

<ORDER_NUMBER>

<OUTLINE>

<OVERVIEW>

<P>

<PAGE>

<PARAMDEF>

< PARAMDEFLIST>

<PARAMITEM>

<PARENDCHAR>

<PART>

<PART_PAGE>

Doctype

LETTER

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

Global

Global

Global

Global

REPORT

SOFTWARE

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

Global

Global

Global

Description

Specifies the name and address of the receiver of
a memo, and places this information flush left on
the left margin, with a heading of "To:".

Begins a section of error message descriptions.

Establishes the format for error messages and
affects the numbers of arguments passed to the
<MSG> and <MSGS> tags.

Formats the text of a message within a series of
error message descriptions.

Formats the text of one or more messages within
a series of error message descriptions.

Labels text which describes a message in a
<MESSAGE_SECTION> tag section.

Marks a place that a nested table may be broken
across pages.

Labels a term first introduced into the text in
order to emphasize the term. In output, the term
will be italicized.

Labels a note, caution, warning, or some other
portion of text to which you wish to draw
attention.

Supplies an unmatched opening parenthesis in an
argument to a tag.

Labels the order number or part number that may
appear on the title page of a book.

Begins an outline and specifies a title for the
outline.

Provides a summary description of a reference
element.

Marks the beginning of a new paragraph.

Breaks a page of text, forcing the text that
follows the tag to begin on a new page.

Begins the text that defines an item in a
parameter definition list.

Begins a definition list describing zero or more
parameters or arguments.

Labels one to seven items to be defined in a
parameter definition list.

Labels a character that will appear alone within
parentheses to achieve better spacing.

Labels the start of a major division within a
document, and starts it on a new page.

Begins a divider page for a new part of a
document.

D-9

Summary of VAX DOCUMENT Tags

Table D-1 {Cont.) Surt'mary of VAX DOCUMENT Tags

Tag

<PREFACE>

<PREFACE_SECTION>

<PRINT_DATE>

<PROFILE>

<PROMPT>

<PROMPTS>

<QPAIR>

<QUALDEF>

< QUALDEFLIST>

<QUALITEM>

<QUAL_LIST>

<QUAL_LIST_DEFAUL T_

HEADS>

<QUAL_LIST_HEADS>

<QUOT A TION >

<QUOTE>

<REFERENCE>

<REF_NOTE>

<REF _NOTES>

<RELATED_ITEM>

<RELATED_ TAG>

<RELATED_ TAGS>

D-10

Doctype

Global

Global

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

ARTICLE

Global

Global

ARTICLE

ARTICLE

SOFTWARE

SOFTWARE

SOFTWARE

Description

Labels the beginning of a preface.

Creates a major section in the preface of a
book, to contain information such as a summary
of changes to the book or other relevant
information.

Inserts a print date line on the copyright page.

Indicates that the source file is a profile and that
a bookbuild is to be performed.

Identifies a prompt which appears on a separate
line from other prompts, and any parameters
associated with that prompt.

Begins a summary of interactive prompts.

Labels a qualifier pair within a qualifier format list.

Begins the text that defines an item in a qualifier
definition list.

Begins a definition list describing zero or more
command qualifiers.

Labels one to seven items to h defined in a
qualifier definition list.

Begins a qualifier summary list.

Modifies the default heading used by the
<OUAL_LIST> tag.

Labels the headings you want to use for one or
both of the columns in a qualifier format list when
<OUAL_LIST> (SPECIAL) is used in unusual cases

for formatting control.

Begins a quotation in which the spacing is
retained and the text is not filled or justified.

Labels quoted material in the output.

Makes a reference to a symbol-name in a book
element or text element. When processed,
<REFERENCE> is replaced with the current value

of the symbol-name.

Specifies the text of a reference note, and creates
a bracketed reference number in the article text.

Causes all accumulated reference notes to be
output.

Provides a text description of a set of tags or the
usage of a set of tags that may be related to the
tag being described.

Specifies a single tag that is related to the current
tag.

Provides a summary of tags whose usage is
related to the tag being described.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<RESTRICTIONS>

<RETTEXT>

<RETURNS>

<RETURN_ VALUE>

<REVISION>

<REVISION _INFO>

<RIGHT_LINE>

<RITEM>

<ROUTINE>

< ROUTINE_SECTION >

< RSDEFLIST>

<RSITEM>

<RULE>

<RUNNING_FEET>

< RUNNING_FEET>

< RUNNING_FEET>

< RUNNING_FEET>

<RUNNING_ TITLE>

<RUNNING_ TITLE>

<RUNNING_ TITLE>

<RUNNING_ TITLE>

<S>

<SALUTATION>

<SAMPLE_ TEXT>

<SDML_TAG>

Doctype

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

ARTICLE

OVERHEADS

REPORT

Description

Labels the restrictions on the use of a reference
element within a SOFTWARE reference template.

Provides general information about the attributes
of the value returned by the routine.

Provides information about the value returned by
a routine.

Labels a character string return value.

Indicates that the document contains either new
or modified information and enables the output of
the <MARK> tag.

Labels a section on a title page that provides
information on what previous books have been
superseded by the current one.

Specifies a line of text that is to be right-adjusted
in the current text margin.

Labels an item in a list of restrictions.

Begins a new routine description.

Begins a routine reference section, enables tags
reserved for use in routine sections, and sets
paging attributes.

Begins a return status definition list in the routine
template.

Specifies the return status value of a routine and
lists its meaning.

Outputs a rule within a table.

Creates a heading at the bottom of each page.

Specifies text to be placed at the bottom of the
next slide and all subsequent slides.

Creates a heading at the bottom of each page.

SOFTWARE.SPEC Creates a heading at the bottom of each page.

ARTICLE

OVERHEADS

REPORT

Creates a one or two line running heading at the
top of each page.

Specifies text to be placed at the top of the next
slide and all subsequent slides.

Creates a one or two line running heading at the
top of each page.

SOFTWARE.SPEC Creates a one or two line running heading at the
top of each page.

Global

LETTER

Global

SOFTWARE

Labels the system portion of a dialog between
user and system in an interactive example.

Specifies the salutation for the letter.

Distinguishes, typographically, an extract of text.

Begins a new tag description.

D-11

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<SECTION>

<SET _APPENDIX _LETTER>

<SET_APPENDIX_NUMBER>

<SET_CHAPTER_NUMBER>

<SET _CONDITION>

<SET_FIGURE_FILE_SPACING_
DEFAULT>

<SET_ TABLE_ROW_BREAK_
DEFAULT>

<SET_ TEMPLA TE_COMMAND >

<SET_ TEMPLATE_HEADING>

<SET_ TEMPLATE_LIST>

<SET_ TEMPLATE_PARA>

<SET_ TEMPLATE_ROUTINE>

<SET_ TEMPLATE_
STATEMENT>

<SET_ TEMPLATE_
SUBCOMMAND>

<SET_ TEMPLATE_ TABLE>

<SET_ TEMPLATE_ TAG>

<SHOW _LEVELS>

<SIGNATURES>

<SIGNATURES>

D-12

Doctype

REPORT

Global

MILSPEC

Global

Global

Global

Global

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

REPORT

REf'ORT

SOFTWARE

Description

Begins a new page and creates a major heading
on the left side of that page.

Overrides the default appendix letter assigned to
an appendix by VAX DOCUMENT.

Overrides the default appendix roman number
assigned to an appendix by VAX DOCUMENT.

Overrides the default chapter number assigned to
a chapter by VAX DOCUMENT.

Creates or removes a condition-name.

Overrides the default amount of vertical blank
space that appears before and after an included
graphics file.

Overrides the default value for a multipage table's
first valid break.

Defines a new tag with the same function as the
<COMMAND> tag, and changes the format of

command descriptions produced using the new
tag.

Overrides the heading for all subsequent uses of
a template tag.

Creates a user-defined set of tags for listing
information.

Defines a set of template tags for setting the
format of a paragraph of information.

Defines a new reference element tag name to
use in the routine template, and specifies the
formatting attributes for the new tag.

Defines a new reference element tag name to
use in the statement template, and specifies the
formatting attributes for the new tag.

Changes the name of the <SUBCOMMAND> tag
to the name you specify, and specifies formatting
attributes for the new tag.

Defines a set of template tags for setting
information in two- or three-column lists.

Defines a new reference element tag name to
use in the tag template, and specifies formatting
attributes for the newly-defined tag.

Emphasizes text within an outline.

Begins a list of signatures which are to appear in
the front matter of a document.

Begins a list of signatures which are to appear in
the front matter of a document.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<SIGNATURE_LINE>

<SIGNATURE_LIST>

<SINGLE_QUOTE>

<SLIDE>

<SOURCE_NOTE>

<SPECIAL _CHAR>

<SPECIFICATION_INFO>

<SPEC_ TITLE>

<STATEMENT>

<ST ATEMENT_FORMAT>

<ST ATEMENT_LINE>

<ST ATEMENT_SECTION>

<SUBCOMMAND>

<SUBCOMMAND_SECTION>

< SUBCOMMAND_SECTION_
HEAD>

<SUBHEADx>

<SUBJECT>

<SUBTITLE>

<SUBTITLE>

<SUBTITLE>

Doctype

MILSPEC

MILSPEC

Global

OVERHEADS

ARTICLE

Global

MILSPEC

MILSPEC

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

SOFTWARE

Global

LETTER

ARTICLE

MILSPEC

OVERHEADS

Description

Creates up to two rules on a line and places a
name below each rule; each rule is used as a
signatory line for the person listed below it.

Begins a two-column listing of signature lines
on the title page of a document and supplies
headings for each of those columns.

Outputs, within text, a single quotation mark as it
appears on a keyboard.

Begins a new overhead slide.

Provides information pertaining to the original
source of information for an article.

Provides access to special characters that are not
available on the terminal keyboard.

Creates a listing of information about the
specification on the title page and creates a
two-line running heading for the rest of the
document.

Creates a title with up to seven centered lines on
the title page.

Begins a new statement description.

Begins a section that illustrates the syntax of a
statement or function including keywords and
parameters.

Indicates the position of a valid statement line
within the context of a statement format or a
construct list.

Begins a statement reference section, enables
tags reserved for use in statement sections, and
sets paging attributes.

Begins a new subcommand description.

Begins a subcommand reference section within
the command section. Use this section of a
reference document for subordinate commands.

Specifies the heading for text that precedes a
subcommand section.

Marks an unnumbered subsidiary heading.

Specifies the subject of a memo or letter
and places this information with a heading of
"Subject:" at the left margin.

Specifies a subtitle for an article.

Creates a subtitle with up to seven centered lines
on the title page.

Specifies a secondary title line for a new slide.

D-13

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag

<SYNTAX>

<SYNTAX_DEFAUL T_HEAD>

<TABLE>

<TABLE_ATTRIBUTES>

<TABLE_FILE>

<TABLE_HEADS>

<TABLE_KEY>

<TABLE_KEYREF>

<TABLE_ROW>

<TABLE_ROW_BREAK>

<T ABLE_SETUP>

<TABLE_SPACE>

<TABLE_UNIT>

<TABLE_UNIT_HEADS>

<TAG>

<TAG_SECTION>

<TERMINATING_ TAG>

<TEXT_SIZE>

<TITLE>

<TITLE>

<TITLE>

<TITLE_PAGE>

<TITLE_SECTION>

<TOPIC>

D-14

Doctype

SOFTWARE

SOFTWARE

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

Global

SOFTWARE

SOFTWARE

OVERHEADS

ARTICLE

Global

OVERHEADS

Global

ARTICLE

OVERHEADS

Description

Labels a statement that illustrates the syntax of a
programming language.

Creates a default heading for the <SYNTAX>
tag.

Begins a sequence of columnar data.

Requests special formatting.

Causes a separate file containing a formal table to
be included in the SDML input file.

Specifies column headings for each column in the
table.

Begins a key or legend for a table.

Specifies that a table key should be printed below
the table (or portion of the table) in which this tag
appears.

Specifies text for each column in the current
table.

Specifies the boundaries within which a long table
can be broken onto a new page.

Declares the number of columns in a table and
the effective (approximate) width values to be
assigned to each column.

Marks the space required for a table that will be
pasted in during final production.

Begins a portion of a table containing rows that
are to be grouped as logical units.

Specifies headings to be used for a table unit.

Labels a tag.

Begins a tag reference section, enables tags
reserved for use in tag sections, and sets paging
attributes.

Specifies the required terminator for a tag.

Changes the size of type used within the context
of topics, tables, and lists.

Specifies the main title line for an article.

Labels the title used on either a title page or part
page.

Specifies a title line for a new slide.

Labels the beginning of a title page and enables
the title page tags.

Begins the title section of an article which spans
both columns of the article.

Specifies a line of topic text for a slide.

Summary of VAX DOCUMENT Tags

Table D-1 (Cont.) Summary of VAX DOCUMENT Tags

Tag Doctype

<TO_ADDRESS> LETTER

<U> Global

<UNDERLINE> Global

<UPDATE_RANGE> Global

<UPPERCASE> Global

<USER_l_MESSAGE> Global

<USER_W_MESSAGE> Global

<VALID_BREAK> Global

<VALID_ T ABLE_RQW_BREAK> Global

<VARIABLE> Global

<VBAR> Global

<VITA> ARTICLE

<X> Global

<Y> Global

Description

Identifies the name and address of the receiver of
a letter and places this information flush left on
the left margin.

Labels the user portion of a dialog between user
and system in an interactive example.

Marks a portion of text to be underlined.

Marks the location at which a new section of
updated pages begins.

Labels text that should appear as uppercase in
the final output.

Sends an informational message to the terminal
or log file during processing of a file.

Sends a warning message to the terminal or log
file during processing of a file.

Labels a permissible page break within a
monospaced example.

Marks a permissible place that a first-level table
row may be broken across pages.

Labels a program variable or number.

Labels an occurrence of a vertical bar in an
argument to a tag.

Provides information about the author's
professional history.

Creates an index entry with a reference to the
page on which this tag appears.

Creates an index entry with no reference to
the page on which this tag appears. Used for
cross-references ("See" or "See also" entries).

D-15

... ~;

Index

A
<ABSTRACT>

definition of• 9-2
<ACCENT>

definition of• 9-3
< ALIGN_AFTER>

definition of• 9-4
< ALIGN_CHAR >

definition of• 9-5 to 9-6
< ALIGN_NUMBER>

definition of• 9-7 to 9-8
<AMPERSAND>

definition of• 9-9
Angle bracket in text

coding an• 2-3
Appendix

creating • 3-5
<APPENDIX>

definition of• 9-10
Arguments to tags

See Tags

B
Backslash

coding a•2-5
<BACKSLASH>

definition of• 9-11
<BAR_CHAR>

in math expressions• 9-146
/BATCH qualifier• A-5
Bolding text

See Emphasizing text
Bookbuilding • 1-9, 4-9
Book element

definition of• 1-9
<BOX>

definition of• 9-12
Boxes, creating in text

See <BOX>

c
<CALLOUT>

definition of• 9-13
<CALLOUTS>

definition of• 9-15 to 9-16
<CALLOULREF>

definition of• 9-14
Centered headings, creating

See <CHEAD>

<CENTER_LINE>

definition of• 9-1 7
Change bars

See <MARK>

<CHAPTER>

definition of• 9-18
Chapters

creating• 3-2
<CHEAD>

definition of• 9-19
< CHECK_FOR_INCLUSION >

definition of• 9-20 to 9-21
<CO>

definition of• 9-22
<CODE_EXAMPLE>

definition of• 9-23 to 9-25
Command line

See DOCUMENT command
<COMMENT>

definition of• 9-26 to 9-2 7
<CONDITION>

definition of• 9-28 to 9-30
Conditionalized book elements

building• 4-14
/CONDITION qualifier• A-6
/CONTENTS qualifier• A-6
< CONTENTS_FILE >

definition of• 9-31
Copyright page

creating • 3-4
< COPYRIGHLDA TE>

definition of• 9-32
<COPYRIGHLPAGE>

definition of• 9-33
<CP>

definition of• 9-34

lndex-1

Index

<CPAREN>

definition of• 9-35
Cross-reference file• 6-2

D
<DATE>

definition of• 9-36 to 9-37
<DEFINE_BOQK_NAME> • 9-38

definition of• 9-38 to 9-39
<DEFINE_SYMBOL>

definition of• 9-40 to 9-41
<DEFINITION_LIST>

definition of• 9-42 to 9-43
< DEFINITION_LISLHEAD >

definition of• 9-44
< DEFLISLDEF >

definition of• 9-45
< DEFLISLITEM >

definition of• 9-46
Degree character

See <Mes>

<DELAYED>

definition of• 9-4 7 to 9-48
Destination

See DOCUMENT command, destination
parameter

/DEVICE_CONVERTER qualifier• A-7
/DIAGNOSTICS qualifier• A-9
Doctype

See DOCUMENT command, doctype parameter
<DOCTYPE>

definition of• 9-49 to 9-50
Documentation set

VAX DOCUMENT• 1-1
DOCUMENT command

introduction to• 1-4
parameters• A-2 to A-5

destination• A-4
doctype• A-3
input-file-spec• A-2

qualifiers• A-5 to A-16
/BATCH•A-5
/CONDITION• A-6
/CONTENTS• A-6
/DEVICE_CONVERTER • A-7
/DIAGNOSTICS• A-9
/ELEMENT• A-9
/INCLUDE• A-9

lndex-2

DOCUMENT command
qualifiers (cont'd.)

/INDEX•A-9
/KEEP• A-12
/LIST• A-12
/LOG•A-12
/MAP•A-13
/MASTER_INDEX • A-13
/OUTPUT• A-13
/PRINT• A-14
/PROFILE• A-15
/SYMBOLS• A-16
/TAG_TRANSLATOR•A-16
/TEXT_FORMATTER • A-16

summary of• A-1 to A-17
syntax of• A-2

Document type

See DOCUMENT command, doctype parameter
<DOLCHAR>

in math expressions• 9-146
<DOUBLE_QUOTE >

definition of• 9-51 to 9-52

E
Editors

See LSE
<ELEMENT>

definition of• 9-53
/ELEMENT qualifier• A-9
<ELLIPSIS>

definition of• 9-54
<EMPHASIS>

definition of• 9-55 to 9-56
Emphasizing text• 8-1 to 8-3
< ENDCOPYRIGHLPAGE >

definition of• 9-5 7
<ENDPARLPAGE>

definition of• 9-58
<ENDTITLE_PAGE>

definition of• 9-59
Equations, creating

See <MATH>

Error messages

See Messages
<EXAMPLE>

definition of• 9-60 to 9-62
Examples

creating • 3-19

Examples (cont'd.)

formal• 3-20
informal• 3-20

<EXAMPLE-ATTRIBUTES>

definition of• 9-63 to 9-66
< EXAMPLE_FILE >

definition of• 9-67
<EXAMPLE_SPACE>

definition of• 9-68 to 9-69

F
<FCMD>

definition of• 9-70 to 9-72
<FIGURE>

definition of• 9-7 2 to 9-80
Figures

controlling attributes of• 3-16
creating • 3-14
margins in• 3-16
page breaks in • 3-1 7

• <FIGURE_A TTRIBUTES>

definition of• 9-8 1 to 9-82
<FIGURE_FILE>

definition of• 9-83 to 9-86
<FIGURE_SPACE>

definition of• 9-87 to 9-88
File building• 4-2
File specifications

coding in tag arguments• 2-4
<FILE_SPEC>

definition of• 9-89 to 9-90
<FINAL_CLEANUP>

definition of• 9-91 to 9-92
<FOOTNOTE>

definition of• 9-93 to 9-95
Footnotes

effect on page breaking in tables• 3-12
<FOOTNOTE_ TEXT>

definition of• 9-96 to 9-97
<FOOTREF>

definition of• 9-98 to 9-99
<FORMAT>

definition of• 9-100
<FPARM>

definition of• 9-101
<FPARMS>

definition of• 9-102
< FRONLMA TTER>

definition of• 9-103 to 9-104

G
<GDEF>

definition of• 9-105
Generic markup language

See also SDML file
definition of• 1-3

Global tags• 2-1
Glossary

creating • 3-5
<GLOSSARY>

definition of• 9-106 to 9-107
Graphics files

included in SDML file~• 3-18
<GREF>

definition of• 9-108
<GTERM>

definition of• 9-109

H
<HAT>

in math expressions • 9-146
<HALCHAR>

in math expressions• 9-146
Headings

creating• 3-2
<HEADX>

definition of• 9-110 to 9-111
<HELLIPSIS>

definition of• 9-112
Hyphen

coding in text• 2-6
<HYPHENATE>

definition of• 9-113

I
<ICON>

definition of• 9-114 to 9-115
<ICON_FILE>

definition of• 9-116 to 9-11 7
<ICON_ TEXT>

definition of• 9-118
<INCLUDE>

definition of• 9-119

Index

lndex-3

Index

/INCLUDE qualifier• A-9
< INCLUDES_FILE >

definition of• 9-120 to 9-121
Index and <REv1s10N> tag• 9-195
/INDEX qualifier• A-9
<INDEX_FILE>

definition of• 9-122
Input file

See SDML file
<INTERACTIVE>

definition of• 9-123 to 9-124
Italicizing text

See Emphasizing text

K
<KEEP>

definition of• 9-125
/KEEP qualifier• A-12
<KEYWORD>

definition of• 9-126

L
Language-Sensitive Editor

See LSE
<LE>

definition of• 9-127
<LINE>

definition of• 9-128 to 9-130
<LINE_ART>

definition of• 9-131 to 9-132
<LIST>

definition of• 9-133 to 9-139
/LIST qualifier• A-12
Lists

creating various types• 3-5
<LITERAL>

definition of• 9-140
Logical names• 4-11
/LOG qualifier• A-12
<LOWERCASE>

definition of• 9-141
LSE • B-1 to B-8

VAX DOCUMENT tokens and placeholders•
8-8

lndex-4

M
/MAP qualifier• A-13
<MARK>

definition of• 9-142 to 9-143
/MASTER_INDEX qualifier• A-13
<MATH>

definition of• 9-144 to 9-156
<MATH_CHAR> • 9-157

definition of• 9-15 7 to 9-165
<MCS>

definition of• 9-166 to 9-169
Messages

general syntax of• 5-1
summary of• C-1 to C-81

N
Nested tables

See Tables, nested
<NESTED_ T ABLE_BREAK>

definition of• 9-1 70 to 9-171
<NEWTERM>

definition of• 9-1 72
<NOTE>

definition of• 9-173

0
<OPAREN>

definition of• 9-1 7 4
< ORDER_NUMBER>

definition of• 9-175
Output device, specifying to DOCUMENT

command '
See DOCUMENT command, destination

parameter
/OUTPUT qualifier• A-13
<OVERLINE>

in math expressions• 9-146

p
<P>

definition of• 9-176 to 9-177
<PAGE>

definition of• 9-178 to 9-179
Paragraphs

creating• 3-1
Parameters, DOCUMENT command

See DOCUMENT command, parameters
< PARENDCHAR >

definition of• 9-180 to 9-181
Parentheses in an argument

coding•2-5
<PART>

definition of• 9-182 to 9-183
<PART_PAGE>

definition of• 9-184
Preface

creating• 3-4
<PREFACE>

definition of• 9-185
<PREFACE_SECTION>

definition of• 9-186
Printing

an existing file• 4-5
/PRINT qualifier• A-14
<PRINLDATE>

definition of• 9-187
Processing • 4-1 to 4-1 5

bookbuilding • 4-9
element building• 4-13
individual input files (book elements)• 4-2
steps of• 1-6, 4-9
subelement building• 4-14

Profile
creating• 4-10
example of• 4-10
preliminary• 6-6
processing

See also Bookbuilding
valid tags of• 4-10

<PROFILE>

definition of• 9-188 to 9-189
/PROFILE qualifier• A-15

Q
Qualifiers

See DOCUMENT command, qualifiers
for controlling file proce~sing • 4-3

<QUOTE>

definition of• 9-190 to 9-191

R
<REFERENCE>

definition of• 9-192 to 9-194
Referencing symbol-names

See Symbol-names
<REVISION>

definition of• 9-195 to 9-196
<REVISION_INFO>

definition of• 9-197
< RIGHLLINE >

definition of• 9-198
<RULE>

definition of• 9-199

s
<S>

definition of• 9-200 to 9-201
<SAMPLE_ TEXT>

definition of• 9-202
Scientific characters, creating

See <MATH_CHAR>

SDML file
coding•2-2
creating• 2-1 to 2-7
specifying to DOCUMENT command

Index

See DOCUMENT command, input-file-spec
parameter

< SELCONDITION >

definition of• 9-207
< SELFIGURE_FILE_SPACING_DEFAUL T>

definition of• 9-208 to 9-209
<SEL TABLE_RQW_BREAK_DEFAUL T>

definition of• 9-210 to 9-211

lndex-5

Index

< SINGLE_QUOTE >

definition of• 9-212 to 9-213

definition of• 9-214 to 9-216
<SPECIAL_CHAR>

definition of• 9-217 to 9-218
<SUBHEADx>

definition of• 9-219
Symbol definitions file • 6-6
Symbol-names

controlling the output of references to
See also <REFERENCE> • 6-4

for text and book elements• 6-2
referencing • 6-4
referencing in other files• 6-6
rules for creating• 6-1
storing in cross-reference file• 6-2

/SYMBOLS qualifier• A-16
Syntax

See DOCUMENT command, syntax of

T
Tab characters

in SDML files• 2-7
<TABLE>

definition of• 9-220 to 9-221
Table of Contents and <REv1s10N> tag• 9-195
Tables

controlling attributes of• 3-9
creating • 3-6
margins in • 3-10
nested

page breaks in • 3-13
page breaks in • 3-11 to 3-14

<T ABLE_A TTRIBUTES>

definition of• 9-222 to 9-223
<TABLE_FILE>

definition of• 9-224 to 9-225
<T ABLE_HEADS>

definition of• 9-226
<TABLE_KEY>

definition of• 9-227 to 9-228
<TABLE_KEYREF>

definition of• 9-229
<TABLE_ROW>

definition of• 9-230 to 9-231
<TABLE_ROW_BREAK>

definition of• 9-232 to 9-234

lndex-6

< T ABLE_SETUP>

definition of• 9-235 to 9-236
<TABLE_SPACE> • 9-237

definition of• 9-237 to 9-238
<T ABLE_UNIT>

definition of• 9-239 to 9-240
<T ABLE_UNILHEADS >

definition of• 9-241 to 9-242
<TAG>

definition of• 9-243
Tags

arguments to• 2-2
context-sensitive• 1-9
doctype-independent • 1-8
doctype-specific • 1-8
for mathematical quantities

See <MATH>

using• 3-1 to 3-22
/TAG_ TRANSLATOR qualifier• A-16
Text elements

creating

See Tags, using
definition of• 2-1

/TEXT _FORMATTER qualifier• A-16
<TILDE>

in math expressions • 9-146
<TILDE_CHAR>

in math expressions• 9-146
<TITLE>

definition of• 9-244
Title page

creating • 3-3
<TITLE_PAGE>

definition of• 9-245
Trademarks, creating

see <FOOTNOTE>

See <SPECIAL_CHAR>

Troubleshooting output problems• 5-3
missing spaces in code examples• 5-3
paragraph spacing• 5-3
problems with examples• 5-3
sequencing of formal elements• 5-4

u
<U>

definition of• 9-246
<UNDERLINE>

definition of• 9-24 7

<UNDERLINE> (cont'd.)

in math expressions• 9-146
<UPDATE_RANGE>

definition of• 9-248 to 9-250
<UPPERCASE>

definition of• 9-251
< USER_l_MESSAGE >

definition of• 9-252 to 9-253
<USER_W_MESSAGE>

definition of• 9-254 to 9-255

v
< V ALID_BREAK >

definition of• 9-256
<VALID_ TABLE-ROW_BREAK>

definition of• 9-25 7
<VARIABLE>

definition of• 9-258
VAX DOCUMENT

See DOCUMENT command
<VBAR>

definition of• 9-259
<VECTOR>

in math expressions • 9-1 46

Vertical bar or ampersand
coding a•2-6

x
<X>

definition of• 9-260 to 9-263
using to create index entries• 7-2

XREF file• 6-2
<XS>

See <X>

See <Y>

<XSUBENTRY>

See <X>

See <Y>

y
<Y>

definition of• 9-264 to 9-265

Index

using to create index cross-references• 7-2

lndex-7

Reader's· Comments VAX DOCUMENT
User Manual, Volume 1

AA-JT84B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

I

I
I
I

,. I
· Do Not Tear - Fold Here and Tape -------------------~lllr--------------­

No Postage

mnmnamn™ N·7~:Ei

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

United States

- Do Not Tear - Fold Here --

