
VAXcluster Disk 1/0 Internals Manual
Ord~r Number:

March 1988

This Manual describes the Internals of performing MSCP access to disks

AUTHOR: Roy G. Davis

Updated By: Robert A. Premov1ch

Revh~ion/Update Information:

Operating System and Version:

Software Version:

This manual supersedes the Dis.k
1/0 IQternals Manual, Version 1.0
Last Update (16-Sep-1992)

VMS Version 5.5

Version 5.5

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Copyright © March 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystern VAX
DEC/MMS IAS VA.Xcluster
DECnet MASS BUS VMS
DECsystem-IO PDP VT
DECSYSTEM-20 PDT
DECUS RSTS mnmnama™ DECwriter RSX
October 1990

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xv

CHAPTER 1 SCA AND SCS CONCEPTS 1-1

1.1 INTRODUCTION 1-1

1.2 MASS STORAGE COMMUNICATIONS 1-1

1.3 INTER-SYSTEM COMMUNICATIONS 1-3

1.4 INFORMATION EXCHANGE 1-3
1.4.1 Datagrams 1-3
1.4.2 Messages 1-4
1.4.3 Block Data Transfers 1-4

1.5 COMMUNICATION MECHANISMS 1-4
1.5.1 SCA Ports 1-4

1.5.1.1 Definition • 1-4
1.5.1.2 Port Drivers • 1-5
1.5.1.3 Local Controllers • 1-6
1.5.1.4 Port Descriptors • 1-6

1.5.2 SCA Virtual Circuits 1-7
1.5.2.1 Definition • 1-7
1.5.2.2 Virtual Circuit Data Structures • 1-7
1.5.2.3 System Blocks • 1-7
1.5.2.4 Path Blocks • 1-8
1.5.2.5 Virtual Circuit Data Organization • 1-8

1.5.3 SCA Connections 1-8
1.5.3.1 Definition • 1-8
1.5.3.2 Connection Descriptors • 1-9
1.5.3.3 Connection Structures • 1-9

1.5.4 Communications Mechanisms Example 1-10

1.6 ARCHITECTURAL LAYERS OF SCA 1-11
1.6.1 SYSAP Layer 1-12

1.6.1.1 Definition • 1-12
1.6.2 SCS Layer 1-12

1.6.2.1 Port Independent SCS Services • 1-12
1.6.2.1.1 Connection Management Services • 1-12
1.6.2.1.2 Directory Services • 1-13
1.6.2.1.3 SCS Process Polling Services • 1-14
1.6.2.1.4 SYSAP Connection Analogy • 1-15
1.6.2.2 Port Dependent SCS Operations • 1-16

1.6.3 PPD Layer 1-17
1.6.4 Pl Layer 1-17

1.7 VMS IMPLEMENTATION OF SCA ARCHITECTURAL LAYERS 1-17
1.7.1 DUDRIVER CONNECTS to MSCP Disk Server 1-20

1.7.1.1 Local Node • 1-20
1.7.1.2 Remote Node • 1-20
1.7.1.3 Connection Data Structures • 1-21

Ill

Contents

1.7.2 DUDRIVER Sends MSCP Command to MSCP Disk Server 1-22
1.7.2.1 Buffer Allocation • 1-23
1.7.2.2 Identifying the Receiving Sysap and Connection • 1-23

1.7.3 MSCP Server Sends END Message to DUDRIVER 1-23
1.7.3.1 Locating the Connection Associated with an End

Message • 1-23
1.7.4 Response IDs and Command Reference Numbers 1-24

1.7.4.1 Class Driver Request Packet• 1-24
1.7.4.2 Request Descriptor Table Entries • 1-24
1.7.4.3 MSCP Server End messages• 1-25

1.7.5 DUDRIVER and Block Data Transfers 1-26
1.7.5.1 Buff er Descriptors • 1-26
1.7.5.2 Buffer Handles • 1-27

1.7.6 Concept of Flow Control 1-28
1.7.6.1 Credit Scheme • 1-28
1.7.6.2 Piggybacking • 1-29

1.7.7 MSCP Server in a Controller 1-30
1.7.7.1 Local Server Handles SCA Events Essentially the

Same• 1-30

CHAPTER 2 DUDRIVER 1/0 DATABASE 2-1

2.1 INTRODUCTION 2-1

2.2 DATA STRUCTURES 2-1
2.2.1 SB - System Block 2-2

2.2.1.1 Configuration List of System Blocks • 2-3
2.2.1.2 System Blocks and Cl Ports • 2-3
2.2.1.3 System Blocks and NI Ports• 2-4
2.2.1.4 System Blocks and Local DSA Controllers • 2-5

2.2.2 DOB - Device Data Block 2-5
2.2.2.1 DDBs and Remote DSA Controllers • 2-5
2.2.2.2 DDBs and Remote MSCP-Served Disks • 2-6
2.2.2.3 DOB Chain for Local DSA Disks• 2-7
2.2.2.4 DOB for Boot Device• 2-8

2.2.3 UCB - Unit Control Block 2-8
2.2.3.1 Linked Lists of UCBs • 2-8
2.2.3.2 UCBs for DSA and MSCP-Served Disks • 2-9

2.2.4 CDDB - Class Driver Data Block 2-11
2.2.4.1 Linkage From UCBs to CDDB for Controller • 2-12
2.2.4.2 Linkage from CDDB to UCBs on that Controller • 2-14
2.2.4.3 Linkage from CDDB to DDBs on that Controller • 2-14
2.2.4.4 Extensions to Disk Class Driver CDDB • 2-15

2.2.5 CRB - Channel Request Block 2-16
2.2.6 Dual-Pathed Disks 2-20

2.3 DUDRIVER 1/0 DATABASE INITIALIZATION 2-24
2.3.1 DUDRIVER's Controller Initialization Routine 2-24

2.3.1.1 DU_CONTROLLER_INIT • 2-24

iv

2.4

2.3.2

2.3.3

2.3.4

2.3.5

Overview of DUDRIVER's Controller Initialization Routine
2.3.2.1 CDDB Creation and Initialization • 2-29
2.3.2.2 MAKE_CONNECTION Establishes a Connection to MSCP

Server • 2-29
2.3.2.3 Poll for Disk Units • 2-29
2.3.2.4 Check for Controller Based Shadow Set • 2-29
2.3.2.5 Handling of Secondary Path Discovery • 2-30
Determine Access Paths Processing
2.3.3.1 Determination of Topology of Disk Units • 2-32
2.3.3.2 Access Path Attention Messages • 2-32
2.3.3.3 Setup of Dual Path if Found • 2-32
2.3.3.4 OAP Scheduling • 2-32
2.3.3.4.1 DAPBSY Flag Set in the CDDB if OAP Processing in

Progress • 2-33
2.3.3.4.2 DAPBSY Flag Checked for OAP Already in

Progress • 2-33
2.3.3.4.3 DAPCOUNT Field used to Determine Frequency of OAP

Processing • 2-33
Attention Messages
2.3.4.1 Unit Available Attention Message • 2-34
2.3.4.2 Duplicate Unit Attention Message• 2-34
2.3.4.3 Access Path Attention Message• 2-34
The CONFIGURE Process
2.3.5.1 Configure uses SCS Process Polling to Discover MSCP

Servers • 2-35
2.3.5.2 Requesting Polling • 2-36
2.3.5.3 Discovery of MSCP Controllers • 2-36

DUDRIVER 1/0 DATABASE INITIALIZATION ROUTINES
2.4.1 DU_ CONTROLLER_INIT

2.4.1.1 Routine Process • 2-39
2.4.2 MAKE_CONNECTION

2.4.2.1 Establishing a Connection • 2-41
2.4.3 DUTU$POLL_FOR_ UNITS

2.4.3.1 Polling Loop • 2-43
2.4.3.2 Polling for Units Complete • 2-45

2.4.4 DUTU$NEW _UNIT
2.4.4.1 Determines if Unit Already Seen on Controller • 2-46
2.4.4.2 Unit Already Seen On This Controller • 2-46
2.4.4.3 Unit Not Already Seen On This Controller• 2-47

2.4.5 DUTU$DODAP
2.4.5.1 Preparations for Performing OAP Processing • 2-48
2.4.5.2 Issues OAP Commands to Controller • 2-49

2.4.6 ATTN_MSG
2.4.6.1 Unit Available Attention Message • 2-50
2.4.6.2 Duplicate Unit Attention Message• 2-51
2.4.6.3 Access Paths Attention Message• 2-51

2.4.7 Routines In the CONFIGURE Process
2.4.7.1 Polling for MSCP Servers on Other Nodes• 2-51
2.4.7.2 CONFIGURE Notified of Discovery of MSCP$DISK • 2-52

Contents

2-28

2-32

2-34

2-35

2-38
2-39

2-41

2-43

2-45

2-48

2-49

2-51

v

Contents

CHAPTER 3 $010 SYSTEM SERVICE AND DUDRIVER

vi

3.1

3.2

3.3

3.4

3.5

3.6

INTRODUCTION

ASSIGNING AN 1/0 CHANNEL TO A DISK
3.2.1
3.2.2

3.2.3
3.2.4

Assign System Service
Channel Control Blocks
3.2.2.1 Maximum Channel Limit • 3-2
3.2.2.2 Channel Number • 3-2
3.2.2.3 Numerical Representation of Access Mode • 3-3
Volume Set Considerations
Overview of Steps Taken by SYS$ASSIGN

OPENING A FILE
3.3.1 Window Control Blocks and Mapping a File

3.3.1.1 Virtual Blocks • 3-5
3.3.1.2 Logical Blocks • 3-6
3.3.1.3 Bad Block Replacement • 3-6
3.3.1.4 Window Control Blocks • 3-6

3.3.2 Mapping Situations Requiring Special Handling
3.3.2.1 Window Turns • 3-8
3.3.2.2 Bound Volume Sets • 3-8
3.3.2.3 File Fragmentation • 3-9

DRIVER DATA STRUCTURES, THE IRP, DDT AND FDT
3.4.1 110 Request Packet

3.4.1.1 Class Driver Request Packet • 3-1 O
3.4.2 Driver Dispatch Table
3.4.3 Function Decision Table

3.4.3.1 Valid 1/0 Function Mask• 3-13
3.4.3.2 Buffered 1/0 Function Mask • 3-13
3.4.3.3 Applicability and Routine Entries • 3-13

OVERVIEW OF THE FLOW OF A $010
3.5.1 The Process's Point of View

3.5.1.1 Queuing the Request to the Driver • 3-16
3.5.1.2 Driver Handles $010 Request • 3-17
3.5.1.3 AST Notification • 3-17
3.5.1.4 Event Flag Notification • 3-17

3.5.2 What VMS Sees
3.5.2.1 Cl and DSSI Ports • 3-19
3.5.2.2 Local Ports • 3-19
3.5.2.3 NI Ports • 3-19
3.5.2.4 1/0 Pre-processing • 3-19
3.5.2.5 DUDRIVER Builds MSCP Command • 3-20
3.5.2.6 Transmission of the Command to the Controller • 3-20
3.5.2.7 End Message Received from Controller • 3-20
3.5.2.8 Class Driver Processes End Message • 3-20
3.5.2.9 1/0 Postprocessing and AST Delivery • 3-21

DETAILS OF THE FLOW OF A $010
3.6.1 Device Independent 1/0 Pre-processing
3.6.2 Device and Function Dependent 110 Pre-processing
3.6.3 Class Driver SCS Resource Allocation

3-1

3-1

3-1
3-1
3-2

3-4
3-4

3-5
3-5

3-8

3-9
3-9

3-11
3-12

3-14
3-16

3-18

3-21
3-23
3-24
3-26

3.7

3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9

DUDRIVER Builds MSCP Command
Transmission of Message by SCS and PPD Layers
End Message Received by PPD and SCS Layers
Disk Class Driver Message Input Dispatching Routine
Class Driver Thread Resumes
1/0 Postprocessing and AST Delivery

IMPACT ON $QIO FLOW DUE TO LOCAL DSA CONTROLLER
3. 7.1 Allocating an SCS Message Buffer

3.7.1.1 Ring Buffer Count Calculation• 3-34
3.7.2 Mapping the IRP

3.7.3

3.7.4
3.7.5

3.7.2.1 The Case of the UDA50 • 3-37
3.7.2.2 Other DSA Controllers• 3-42
Transmission of SCS Message Buffer Containing MSCP Command
3. 7 .3.1 Use of the Command Ring • 3-43
3.7.3.2 Reclaiming Descriptors and Buffers from the Command

Ring• 3-46
Receiving MSCP End Message from a Local DSA Controller
Deallocating the SCS Message Buffer

CHAPTER 4 DISK CLASS DRIVER ERROR HANDLING AND BUGCHECKS

4.1

4.2

4.3

4.4

4.5

INTRODUCTION

DUDRIVER TIMEOUT MECHANISM
4.2.1 Overview of the Timeout Mechanism
4.2.2 Detailed Flow of DU$TMR

4.2.2.1 No Commands active for Controller • 4-3
4.2.2.2 Commands Are Still active for Controller• 4-4

MSCP END MESSAGES WITH ERROR STATUS CODES
4.3.1
4.3.2
4.3.3

4.3.4
4.3.5

Detecting File Read/Write Errors and Dispatch
Errors Returned in End Messages for File Read/Write Requests
Handling Errors Returned in Read/Write End Messages
4.3.3.1 Specially Handled Error Conditions • 4-14
4.3.3.1.1 Invalid Command Major Status Code • 4-14
4.3.3.1.2 Host Buffer Access Error Major Status Code • 4-15
4.3.3.1.3 Available Major Status Code • 4-15
4.3.3.1.4 All Other Errors • 4-15
Errors Returned in Other End Messages
Error Logging and Error Count Incrementing

SYNCHRONIZING WITH AN "MSCP SPEAKING" CONTROLLER
4.4.1 Errors Causing Resynchronization with an MSCP Server
4.4.2 Overview of Resynchronization Due to Errors
4.4.3 DU$RE_SYNCH and DU$CONNECT_ERR Detail

MOUNT VERIFICATION
4.5.1
4.5.2
4.5.3

Circumstances Leading to Mount Verification
Disks Which Qualify for Mount Verification
Failover of Dual-Pathed Disks

Contents

3-28
3-29
3-30
3-31
3-31
3-32

3-33
3-34

3-37

3-43

3-47
3-50

4-1

4-1

4-1
4-2
4-3

4-6
4-10
4-11
4-13

4-15
4-16

4-17
4-17
4-18
4-22

4-26
4-29
4-31
4-32

vii

Contents

4.5.4 Mount Verification Volume Validation 4-35
4.5.4.1 Perform_ Validate Routine • 4-36 .
4.5.4.2 PACKACK_ VOLUME Routine • 4-37
4.5.4.3 VALIDATE_ VOLUME Routine• 4-39

4.5.5 Mount Verification Timeout 4-39
4.5.6 Disks Requiring Special Handling 4-39

4.5.6.1 Foreign Disks • 4-40
4.5.6.2 System Disk and Quorum Disk • 4-40

4.5.7 Stalling and Unstalllng 110 During Mount Verification 4-40
4.5.8 Aborting Mount Verification 4-42
4.5.9 Mount Verification - The Big Picture 4-42
4.5.10 Mount Verification Routines 4-45

4.5.10.1 DUTU$REVALIDATE • 4-45
4.5.10.2 EXE$MOUNTVER • 4-47
4.5.10.3 PACKACK_ VOLUME • 4-54
4.5.10.4 EXE$MNTVERSIO and Handling 10$_PACKACK

MVIRP • 4-55
4.5.10.5 Restarting CDRPs • 4-57
4.5.10.5.1 DUTU$RESTART_NEXT _CDRP and

DUTU$END_SINGLE_STREAM • 4-57
4.5.10.5.2 Preventing an Infinite Loop• 4-58

4.6 DUDRIVER BUGCHECKS FOR NON-SHADOWED DISKS 4-59

CHAPTER 5 THE VMS BASED MSCP SERVER 5-1

5.1 INTRODUCTION 5-1

5.2 MSCP DISK SERVING 5-1
5.2.1 Automatic Disk Serving 5-2
5.2.2 Selective Disk Serving 5-2
5.2.3 Dual Ported Disks 5-2
5.2.4 The MSCP Server 5-3

5.3 MSCP SERVER DATABASE AND INITIALIZATION 5-4
5.3.1 MSCP Server Data Structures 5-5

5.3.1.1 HRB - Host Request Block • 5-5
5.3.1.2 HOB - Host Queue Block • 5-6
5.3.1.3 UQB - Unit Queue Block • 5-7
5.3.1.4 HULB - Host Unit Load Block• 5-8
5.3.1.5 DSRV - Disk Server Structure • 5-8

5.4 MSCP UNIT NUMBERS AND IDENTIFIERS 5-11
5.4.1 MSCP Media Identification 5-11
5.4.2 Unit Identifier 5-13

5.4.2.1 MSCP Class Number• 5-16
5.4.2.2 MSCP Model Number • 5-16
5.4.2.3 MSCP Unique Device Number• 5-16

5.4.3 Host Numbers 5-19
5.4.4 Transfer Buffers 5-20

5.4.4.1 Transfer Buffer Allocation • 5-21
5.4.5 VMS based MSCP server Flow Control 5-25
5.4.6 Controller Timeout 5-25

viii

Contents

5.4.7 MSCP Server Initialization Overview 5-25
5.4.8 Loading and Starting the MSCP Server 5-26
5.4.9 Serving Devices 5-27
5.4.10 ACCEPTlng an SCS CONNECT From a Remote Host 5-28

5.5 MSCP SERVER LOAD BALANCING 5-30
5.5.1 Static Load Balancing 5-30
5.5.2 Load Monitoring Thread 5-31

5.6 MSCP SERVER'S HANDLING OF READ AND WRITE COMMANDS 5-32
5.6.1 Overview of MSCP Server Handling READ Command 5-35
5.6.2 Overview of MSCP Server Handling WRITE Command 5-39
5.6.3 Command Status 5-40
5.6.4 Details of the Routines for Handling READ and WRITE Commands 5-42

5.6.4.1 MSG_IN - Receiving Command and Server Resource
Allocation • 5-42

5.6.4.2 NONSEQB - Verifying that Command Processing may
Continue• 5-43

5.6.4.3 READ - Processing MSCP READ Command • 5-44
5.6.4.4 IOC$10POST - 1/0 Postprocessing for READ• 5-46
5.6.4.5 Read Request Resumes Following DO _DISK • 5-46
5.6.4.6 WRITE - Processing MSCP WRITE Command• 5-48
5.6.4.7 IOC$10POST - 1/0 Postprocessing for WRITE • 5-50
5.6.4.8 Write Request Resumes Following DO _DISK • 5-50
5.6.4.9 SEND_END - Send End Message and Cleanup • 5-51

5.7 OTHER CLASSES OF COMMANDS HANDLED BY THE SERVER 5-51
5.7.1 Overview 5-52

5.7.1.1 Immediate Commands • 5-52
5.7.1.2 NonSequential Commands • 5-52
5.7.1.3 Sequential Commands• 5-53

5.7.2 Immediate Class Commands 5-54
5.7.2.1 Routines for Handling Immediate Commands• 5-58
5.7.2.1.1 ABORT• 5-58
5.7.2.1.2 GET_COMMAND_STATUS • 5-60
5.7.2.1.3 GET_UNIT_STATUS • 5-60
5.7.2.1.4 SET_CONTROLLER_CHAR • 5-61

5.7.3 Non-Sequential Non-Buffered Class Commands 5-62
5.7.3.1 Access Command • 5-63
5.7.3.2 Replace Command • 5-63
5.7.3.3 Compare Controller Data and Flush Commands • 5-63
5.7.3.4 Erase Command • 5-63

5.7.4 Routines for Handling Non-Sequential Non-Buffered Commands 5-65
5.7.4.1 ACCESS Routine • 5-65
5.7.4.2 COMP_ CTRL_DATA Routine • 5-65
5.7.4.3 ERASE Routine • 5-65
5.7.4.4 FLUSH Routine • 5-67
5.7.4.5 REPLACE Routine • 5-67

5.7.5 Sequential Class Commands 5-67

Ix

Contents

5.7.6 Routines For Handling Sequential Commands 5-71
5.7.6.1 AVAILABLE • 5-71
5.7.6.2 ONLINE• 5-72
5.7.6.3 SET_UNIT_CHR • 5-73
5.7.6.4 DET_ACC_PATH • 5-74

5.7.7 Sequential Commands, Nonsequentlal Commands, and Blocking 5-74
5.7.7.1 Basic Scenario• 5-75
5.7.7.2 Special Case • 5-81

5.8 ERROR HANDLING 5-82

APPENDIX A SYMBOL TABLES AND DATA STRUCTURES A-1

A.1 SDA SYMBOL TABLES A-1

A.2 PUBLIC LIBRARIES A-2

A.3 SDL FILES A-4

A.4 USER CREATED SYMBOL TABLES A-6

A.5 DATA TYPE NAMING CONVENTIONS A-7

APPENDIX B DATA STRUCTURES B-1

B.1 CCB - CHANNEL CONTROL BLOCK B-2

B.2 CDDB - CLASS DRIVER DATA BLOCK B-4

B.3 CORP - CLASS DRIVER REQUEST PACKET B-11

B.4 CAB - CHANNEL REQUEST BLOCK B-15

B.5 DDB • DEVICE DATA BLOCK B-19

B.6 DSRV • DISK SERVER STRUCTURE B-21

B.7 HQB • HOST QUEUE BLOCK B-29

B.8 HRB • HOST REQUEST BLOCK B-31

B.9 HULB • HOST UNIT LOAD BLOCK B-35

B.10 IRP • 1/0 REQUEST PACKET B-36

B.11 SB - SYSTEM BLOCK B-43

B.12 UCB • UNIT CONTROL BLOCK B-46

B.13 UCB ERROR LOG EXTENSION B-58

B.14 UCB DUAL PORT EXTENSION B-60

B.15 UCB DISK EXTENSION B-61

B.16 UCB MSCP EXTENSION B-62

B.17 UCB DUDRIVER EXTENSION B-68

B.18 UQB - UNIT QUEUE BLOCK B-70

B.19 VCB - VOLUME CONTROL BLOCK COMMON DEFINITIONS B-74

x

B.19.1 Volume Control Block fields for Disks

APPENDIX C CROSS REFERENCE

INDEX

FIGURES
1-1

1-2

1-3
1-4

1-5
1-6

1-7
1-8

1-9

1-10

1-11

1-12
1-13

1-14

1-15

2-1
2-2
2-3
2-4

2-5
2-6

2-7
2-8

2-9

2-10

2-11

2-12

2-13

2-14
2-15
2-16

3-1

3-2

3-3

Cl Node, Port and Physical Interconnect relationship

Port Driver, Port and Physical Interconnect configuration for both the Cl and NI
model

System Block and Path Block linkage

MSCP Server to Class Driver Message Flow

Telephone System Analogy to Systems Communications Architecture

The Architectural Layers of SCA

Example of a SYSAP in a Listening State

SCS Process Poll Block Linkage

SCA Flow as Implemented on VMS

The Message Flow of a Disk Class Driver Forming a Connection with an MSCP
Server

Data Structures for a Formed Connection

Fork Process Thread association through the RSPID

Layout of the Buffer Descriptor

Example of a Buffer Descriptor for a Three Page Transfer

The Buffer Handle

System Block List

DDB Linkage off of the System Block

DDB Linkage for a Local Served Disk

DOB Linkage Showing Four Disks

UCB Extensions for MSCP Served Disk

CDDB Linkage Maintained by each UCB
CDDB Format and Class Driver Extensions

CRB Timeout Linkage

CRB Linkage and the General Related Data Structures

Data Structures Supporting Secondary Paths

Provisions for Secondary Paths Offered by Multiple Servers

Configuration of Devices by Sysboot and lnit

Configuration of Devices by Sysinlt and Startup

DU_CONTROLLER_INIT flow

Attention Message Dispatching

Configure Process Polling and Device Configuration

Window Control Block Fields for VBN to LBN Translation

Window Control Block Mapping
IRP/CDRP pair organization

Contents

B-76

C-1

1-5

1-6

1-8

1-10

1-11

1-11

1-14
1-15

1-19

1-21
1-22

1-25
1-26

1-27
1-28

2-3
2-6

2-7
2-9

2-11

2-13
2-16
2-17
2-19

2-21

2-23
2-27
2-28

2-31
2-35
2-37
3-7
3-7

3-11

xi

Contents

xii

3-4

3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14

3-15
4-1
4-2
4-3

4-4

4-5
4-6

4-7
4-8

4-9
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13

5-14

5-15
5-16
5-17

5-18

5-19
5-20
5-21

FDT layout

FDT processing

QIO Flow Through the Class Driver

Local Port Buffer Initial Layout

Vax 11/780 Adapter Configuration

Unibus to SBI Mapping

Buffer Handle for a UDA buffer

Unibus to CMI Mapping

Command Ring Format

Command Ring Descriptors

Local Port SCS Message Buffer Format

Response Ring Buffer Pointers

CRB Timeout Mechanism and linkage

MSCP End Message Status Return Format

MSCP Read Request Message Flow

MSCP Write Request Message Flow

DUDRIVER resynchronization flow

Mount Verification Validation Flow

Dual Pathed Disk Device Configuration

Failover of a Dual Pathed HSC disk

Volume Validation Flow

MSCP Server Flow

HRB fields

HRB relationship to the Host Queue Block

Disk Server Structure Layout

Server Local Unit Number

MSCP Unit Number for the VMS based MSCP Server

64 bit Unique Identifiers

Unit Identifier Format for VMS Based MSCP Servers

Host Index Bitfield at DSRV$B_HOSTS in the DSRV

UQB's Online Field Bitmap of Hosts Accessing a Specific Unit

Free Transfer Buffer Linkage

Initial State of the Transfer Buffer

Transfer Buffer Allocation and Deallocation

General Flow of VMS based MSCP server Reads and Writes

Data Structures and Linkage Involved in a Server Receiving a Command

Data Structures Involved with MSCP Read and Write Commands

General Flow of Immediate Class Commands

NonSequential NonBuffered Command Flow

General Flow of Sequential Commands

Processing NonSequentlal Commands with No Sequential Commands Issued

Sequential Command Received While Processing NonSequentlal Commands

3-12
3-14

3-22
3-36
3-38

3-39

3-41
3-42
3-44

3-44

3-45
3-49
4-2
4-7
4-8

4-9
4-21
4-28
4-33

4-34

4-36

5-4

5-6
5-7

5-10
5-12
5-12
5-13
5-19
5-20
5-20
5-21

5-22
5-23
5-34
5-36
5-38
5-57

5-64
5-70
5-75
5-76

5-22
5-23
5-24
5-25
5-26

TABLES
3-1
3-2
4-1
5-1
5-2
5-3

5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
A-1
C-1
C-2
C-3

C-4

C-5
C-6

C-7
C-8

C-9

Sequential Command Pending With NonSequentlal Commands Arriving

Currently Executing Commands Have Completed With Commands Queued

Sequential Command Begins Execution

Sequential Command Executing with NonSequential Commands Arriving

Sequential Command Completes and NonSequential Commands Resume

QIO System Service Parameters

SCS message buffer fields

MSCP to VMS Error Code mapping

Sysgen Parameter MSCP _LOAD settings

Sysgen Parameter MSCP _SERVE_ALL settings

MSCP Server Data Structures

DEC Standard 144 Disk Device Codes

Default Load Capacity

Routines Invoked by the SEND_DATA Macro

Routines Invoked by the REQUEST_DATA Macro

Supported Immediate Class Commands

NonSequential NonBuffered Commands

Supported Sequential Class Commands

VMS Error Status to MSPC ·Status Translation

Expected Opcodes for Immediate Commands

Expected Opcodes for Sequential Commands

Expected Opcodes for NonSequential NonBuffered Commands

Acceptable Request States for Connection Failures

Data Type Definitions

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

Contents

5-n
5-78
5-79
5-80
5-81

3-15
3-45

4-11
5-2
5-2
5-5

5-17
5-31
5-47
5-49
5-54
5-62
5-67
5-72
5-84
5-85
5-85
5-85
A-8
C-1
C-4

C-7
C-11

C-13
C-16
C-19
C-22
C-25

xiii

Preface

COURSE DESCRIPTION

Overview
This course covers the internals of performing a $QIO to a disk on an "MSCP speaking"
controller (e.g. HSCs, ISEs, KDBs, and KDMs), and to a disk which is being served to other
VAXes by means of the VMS-based MSCP server. The main focus is on DUDRIVER and the
VMS-based MSCP server.

It begins with a brief introduction and overview of SCA and SCS concepts which support
the disk class driver communicating with the MSCP disk server in an HSC, ISE, local DSA
controller, or remote VAX.

A survey is made of the VMS 1/0 database related to DSA disks and controllers, and how
that database is configured. Then the fl.ow of a typical $QIO for both a read and a write is
presented in detail. Included in this flow are the major differences that arise from VMS's point
of view due to the different types of DSA controllers.

Next, disk class driver error recovery topics such as mount verification, disk failover, controller
reset, the handling of MSCP error status codes, and loss of the SCS connection with the server
are studied.

The course then delves into the internals of the VMS-based MSCP server in terms of both
functionality and error handling.

Course Format
Lecture/Lab.

Course Length
Five days.

Digital Equipment Corporation I Confidential and Proprietary xv

Preface

Prerequisites

Formal Training

For Software Specialists or Field Service Engineers, at least one of the following is required:

1. VAX/VMS Internals and Data Structures.
2. VAX/VMS Level II.

Experience

At least one year supporting clusterable VAXes.

Curriculum Map

VAX/VMS Internals
and Data Structures

VAX/VMS Level II

xvi Digital Equipment Corporation I Confidential and Proprietary

VAXcluster
Disk I/O
Internals

CXN-0000-01

Preface

Course Goals
The overall objective of this course is to provide an in depth knowledge of how VMS handles
110 requests and error recovery for disks on "MSCP speaking" controllers. The information
presented here should be particularly useful to senior level Field Service and Software Services
employees involved in high level technical support, troubleshooting, and VMS crash analysis.

The three major topics to be covered are as follows:

• $QIO flow for both non-shadowed DSA disks and shadow set virtual units.
• Error recovery for both non-shadowed DSA disks and shadow sets.
• VMS-based MSCP server operations.

The emphasis of this course is on the VMS disk class driver and the VMS-based MSCP
server. An introduction to SCA, and selected information about DSA controllers and MSCP
are provided, but only to the extent that they support an understanding of DUDRIVER,
DSDRIVER, SHDRIVER and the MSCP server. This is not a course on the internals of SCA,
DSA controllers, or MSCP; there are other courses that cover those topics.

Digital Equipment Corporation I Confidential and Proprietary xvii

Preface

Topic Outline

1. SCA and SCS Concepts Which Support DUDRIVEWDSDRIVER Operations
1. Datagrams, Messages, and Block Data Transfers
2. Ports, Virtual Circuits, and Connections
3. Overview of SCA Architecture
4. Selected Topics from VMS Implementation of SCA

2. Disk Class Driver Database
a. Major Data Structures and Their Use
b. DUDRIVER Database Initialization

3. $QIO Flow for Read and Write Operations
a. Overview of 1/0 Channel Assignment and Related Data Structures
b. Overview of Opening a File and Related Data Structures
c. Flow of a $QIO for Non-shadowed DSA Disk

4. Error Recovery for Non-shadowed DSA Disks
a. Disk Class Driver Timeout Mechanism
b. MSCP End Messages with Error Status Codes
c. Synchronizing/Resynchronizing with a DSA Controller
d. Mount Verification

5. VMS-based MSCP Server
a. MSCP Server's Database
b. Handling of Commands from Disk Class Drivers in other Hosts
c. Error Handling

xviii Digital Equipment Corporation I Confidential and Proprietary

Preface

Acknowledgments
The author wishes to express his appreciation to those who have either reviewed the drafts of
the material in this book, or contributed with their suggestions. In particular, special thanks
goes to Bruce Kelsey of VMS CSSE. Bruce spent an enormous amount of time personally
reviewing this material, as well as securing the services of others in this endeavor. Special
thanks also goes to Randy Elmer of HSC CSSE for serving as a technical resource in resolving
issues related to DSA controllers. Finally, special thanks to Tom Gonzales and Don Smith of
the Colorado Springs Training Department for their review of selected chapters.

Digital Equipment Corporation I Confidential and Proprietary xix

SCA and SCS Concepts

Chapter 1

SCA and SCS Concepts

1.1 Introduction

Systems Communications Architecture (SCA) was originally designed to serve as an 1/0
architecture for systems and controllers. The modularity and transportability of its implemen
tation on the VMS operating system has made it the mechanism of choice for inter-system
communications for other non-1/0 entities as well.

SCA has been optimized for high performance through the creation of specialized commu
nications services and by imposing stringent constraints on topologies. SCA provides the
framework for communication among drivers and servers that manipulate devices conforming
to the Digital Storage Architecture (DSA) standards.

Systems Communications Architecture defines the following:

• The functional layers into which SCA is organized, and their role in providing or support-
ing the communications services

• The topology (types of configurations) supported
• The types of information exchange
• The "logical" concepts that support the information exchange, such as ports, virtual circuits

and connections
• The systems communications services provided
• The interface between each pair of layers.

Systems Communication Services (SCS) is the VMS operating system's implementation of
SCA and provides the services to allow the communication of entities within a VAXcluster
environment.

1.2 Mass Storage Communications

1/0 requests are generated as the result of a need by a host system to communicate with a
mass storage device. These 110 requests are passed to a device driver that handles a given
"class" of devices. The class driver formats the request into Mass Storage Control Protocol
(MSCP) packets. The class driver utilizes SCS to pass the request to a software layer called
the MSCP Server in the device's controller where it is resolved.

Digital Equipment Corporation I Confidential and Proprietary 1-1

SCA and SCS Concepts

Class drivers are responsible for the following types of activities:

• Initializing and maintaining the operating system's database for those devices
• Converting 110 requests into commands to be sent to controllers for those devices
• Passing such commands to the software component within the operating system which

actually transmits them to the controllers
• Handling responses received from the controller for such commands
• Activating the host operating system's mechanism for passing completion status and other

related information to the initiator of an 110 request
• Handling errors related to its class of devices and their controllers on behalf of the host

operating system.

MSCP Servers are responsible for the following types of activities:

• Initializing and maintaining various components of the controller's database related to the
devices which it is serving.

• Transferring data between a host and a device on the controller.
• Returning to a host current execution or completion status of a command received from

that host.
• Maintaining and/or altering the status of a device.
• Reporting controller and device status information to a host.

The VMS class driver for handling disk devices ported to DSA controllers is called
DUDRIVER. Certain software extensions to the disk class driver are required to support
the controller based shadowing (shadowing phase I) product. When these extensions are
required, DSDRIVER is used as the disk class driver in lieu of DUDRIVER. ·

Several DSA controllers are available. Some examples of controllers which provide the server
function are indicated in the following table:

Controller

HSC

ISE

UDA

IIDA

KDB

KDM

Application

CI based Hierarchical Storage Controller

DSSI based Integrated Storage Element

UNIBUS based local controller

QBUS based local controller

BI based local controller

XMI based local controller

A VMS host system is capable of emulating a DSA controller through software and can
provide the MSCP server function on behalf of its local disks. This action is referred to as
MSCP serving and is not limited to DSA compliant devices. The VMS emulation of the server
is transparent to the disk class driver and provides access to local disks to all VAXcluster
members.

1-2 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

The class driver for the DSA compliant tape devices is TUDRIVER. As with the disk class
driver, the tape class driver is responsible for formatting an 1/0 request into the Mass Storage
Control Protocol. To distinguish the tape protocol from the disk protocol, it is referred to as
Tape MSCP or simply TMSCP.

Once the TMSCP packet has been created, the tape class driver utilizes SCS to send the
packet to a TMSCP server in a DSA controller.

VMS provides for the software emulation of a DSA tape controller in VMS V5.5. Prior to that
release, VMS was incapable of providing access to local tape devices to VAX.cluster members
other than the local host. This access is provided through a TMSCP server SYSAP. As with
the disk server, it is transparent to the tape class driver.

1.3 Inter-System Communications

VAX.cluster members function in a cooperative and coordinated manner. This requires the
exchange and sharing of information between all members.

The VMS Lock Manager software provides the tool that allows cooperating processes to
synchronize their access to shared resources. Within the context of a VAX.cluster, there is a
distributed component of the Lock manager which provides this synchronization on a cluster
wide basis. Lock management information is exchanged among the hosts in a VAX.cluster
within the framework of SCA.

The VMS Connection Manager provides the tool that coordinates and controls the membership
in a VAX.cluster (the connectivity of the cluster). The connection manager software on all
active nodes (VMS nodes) collectively maintain the connectivity of the cluster. The connection
managers ensure that all active nodes in the VAX.cluster can communicate and consequently
coordinate their activities.

When a VAX.cluster is first formed, the Connection Manager on one of the hosts assumes the
role of "coordinator". The coordinator steps all remaining Connection Managers through the
formation of the VAX.cluster. When a host joins or leaves a VAX.cluster, one of the Connection
Managers will act as coordinator in transitioning the other Connection Managers through
the change. Connection Manager information is exchanged among the hosts in a VAX.cluster
within the framework of SCA.

1.4 Information Exchange

Systems Communication Architecture defines three forms of information exchange.

1.4.1 Datagrams

Datagrams are units of information exchange whose delivery is on a "best effort" basis.
There is a "high probability" that datagrams will arrive at their destination, but there is no
guarantee that they will. Furthermore, there is no guarantee that a sequence of datagrams
will be delivered in the same order that they were sent. A user of the datagram service (e.g.
DECnet if it is run on the Cl) typically performs its own message loss detection and recovery.

Digital Equipment Corporation I Confidential and Proprietary 1-3

SCA and SCS Concepts

1.4.2 Messages

Messages are units of information exchange whose delivery is guaranteed without loss or
duplication. Furthermore, the SCA message service is said to be "sequenced". This guarantees
that a series of messages all sent with the same priority will be delivered in the same order
that they were sent in. The disk class driver uses messages for issuing commands to an MSCP
disk server. An MSCP disk server uses messages to send completion status for commands to
the disk class driver.

1.4.3 Block Data Transfers

Block data transfers are the direct transmission of data between a named local buffer and a
named remote buffer. The block data is guaranteed to arrive completely, or an error condition
is indicated to the sender. Typical uses of block data transfers are DSA disk read and write
operations.

1.5 Communication Mechanisms

Definitions of three fundamental concepts are essential to the understanding of Systems
Communication Architecture: the port, the virtual circuit, and the connection. These terms
have specific meaning in the context of SCA and may differ from traditional translations.

1.5.1 SCA Ports

1.5.1.1 Definition

On a given node, an SCA port is the interface between that node and the interconnect provid
ing a physical communication path to the other nodes/servers.

The following table lists some examples of SCA ports:

Interface

CIXCD

Cl780

CIBCA

SHAC

KDM70

DE MFA

Application

XMI bus to CI, VAX 9000 etc.

SBI bus to CI, VAX 780, 8600 etc.

BI bus to CI, VAX 8350 etc.

4000 Cpu module to DSSI, VAX 4000

XMI bus to local controller, VAX 9000 etc.

XMI bus to FDDI, VAX 9000 etc.

Figure 1-1 depicts the relationship between the node, the port and the physical interconnect
for a typical Cl model.

1-4 Digital Equipment Corporation I Confidential and Proprietary

SCA and scs Concepts

Figure 1-1: Cl Node, Pon and Physical Interconnect relatlonshlp

CIXCD CI
VAX-9000 HARDWARE - ~ TO OTHER NODES

AND U-CODE

CXN-0001-01

1.5.1.2 Pon Drivers

The VMS operating system provides a software interface to the port called a Port Driver.
The port driver is responsible for controlling the port as well as exchanging commands and
information with the port.

The Computer Interconnect (CI) and some Digital Storage Systems Interconnect (DSSI) based
SCA ports are completely implemented through a combination of hardware and microcode.
The port driver for these ports, (PADRIVER), is capable of directly manipulating the port
hardware and passing information directly to the host memory.

For some implementations of the DSSI port and for the Network Interconnect (NI), an addi
tional layer of software is required to interact with the physical port.

For the DSSI, this additional layer is required for transferring information from the port's
local memory to the host's memory. For the NI, the additional software layer is referred to
as the Port Emulator (PEM) and is used to communicate with a network interconnect device
driver.

The port driver for the NI, (PEDRIVER), implements this additional PEM software layer. The
NI port driver through its Port emulator actually communicates with the physical interconnect
through an ethernet (NI) driver. It is the NI driver that is capable of directly manipulating
the physical interconnect.

The port driver for some DSSI implementations, (PIDRIVER), includes an additional software
layer to transfer information between the port and the host's memory. The transferrence
requires the host's assistance since the port is incapable of performing the transfer through
DMA as does the PADRIVER.

Figure 1-2 depicts the relationship between the port driver and the interconnect for a typical
CI implementation and contrasts it with a typical NI implementation:

Digital Equipment Corporation I Confidential and Proprietary 1-5

SCA and SCS Concepts

Figure 1-2: Port Driver, Pon and Physical Interconnect configuration for both the Cl and NI
model

CI Imp_lementation:

PADRIVER

NI Implementation:

....----i

TO
NETWORK ..__ ---SOFTWARE N

I

PE DRIVER D
R T I

NON-PEM v
COMPONENT I PEM -- __,.,

E - -
R

I

l ..__

1.5.1.3 Local Controllers

CI PORT

.... _ HARDWARE - ~

& U-CODE

NI PORT
..,_

HARDWARE --
& U-CODE

~

~

CI
~

NI

TO
OTHER
NODES

TO
OTHER
NODES

CXN-0001-02

Local DSA controllers are also handled in a similar manner. Local DSA controllers provide
both the port functions and the MSCP server functions combined in one controller. The port
driver for local devices, (PUDRNER), performs the same type of manipulation of the hardware
controller as its CI, DSSI and NI counterparts.

1.5.1.4 Pon Descriptors

Corresponding to each port on a node, VMS builds a data structure known as a Port Descriptor
Table (PDT). Each PDT contains the following types of information:

• Identification of the type of port and characteristics
• The addresses of various queues associated with the port

1-6 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

• The addresses of port specific routines to perform the following types of operations:
• Buffer allocations for building commands
• Buffer deallocations
• Accepting of connections
• Sending data

• The UCB address for the port

1.5.2 SCA Virtual Circuits

1.5.2.1 Definition

A Virtual Circuit is a communication path between two nodes over a physical interconnect. To
establish a virtual circuit, the nodes must successfully enter into a dialogue and complete the
following three tasks:

• Each node's port identifies itself to the other node
• Each node identifies itself to the other node
• The integrity of the physical path between the nodes is verified.

The virtual circuit will exist as long as the integrity of the communication path remains intact.
The path is periodically verified by. exercising it in the absence of actual communications
traffic.

1.5.2.2 Virtual Circuit Data Structures

VMS utilizes two data structures to maintain the virtual circuits to other active nodes and
to Passive Nodes (remote DSA controllers). A System Block (SB) exists for each node with
which the node has communications and a Path Block (PB) exists for each port over which
the communication may occur. These data structures are maintained by both active nodes
as well as passive nodes. Local DSA controllers do not require such structures since their
communication is restricted to a local host.

1.5.2.3 System Blocks

The System Blocks are used to describe each of the nodes that are accessible over a physical
interconnect. A system block also exists for the local system as well as for each local DSA
controller. The following types of information are found in each system block:

• The node's hardware type (e.g. 8800, 9000, HSC90, ...)
• The node's operating system and version (e.g. VMS V5.5-2, HSC V650, ...)
• The node's name

Digital Equipment Corporation l Confidential and Proprietary 1-7

SCA and scs Concepts

1.5.2.4 Path Blocks

The Path Blocks are used to describe each virtual circuit between the current node and the
other nodes. A path block exists for each local system block as well, but contains minimal
information since the need for virtual circuit formation does not exist with local devices. The
following types of information are found in each path block:

• Indication of the state of the virtual circuit (e.g. open, closed, etc.)
• The address of the port descriptor table
• The local port name
• The remote port type

1.5.2.5 Vinual Circuit Data Organization

Figure 1-3 depicts how the system blocks are linked together off of the system location
SCS$GQ_CONFIG. The corresponding path blocks are linked from each system block describ
ing the possible paths to the associated node.

Figure 1-3: System Block and Path Block linkage

SCS$GQ_CONFIG::..._. ___ _

SB ------ii..m SB

CXN-0001-03

1.5.3 SCA Connections

1.5.3.1 Definition

To exchange information between entities on two nodes, a logical communication path must
exist between the entities involved in the communication. This logical communication path is
known as a Connection.

Whereas the virtual circuit represents communication between ports, the connection repre
sents communication between entities. Connections utilize virtual circuits as their communi
cations path. An example of a connection would be a disk class driver communicating with an
MSCP server. This communication would be performed over a virtual circuit between the two
ports involved.

1-8 Digital Equipment Corporation I Confidential and- Proprietary

SCA and SCS Concepts

1.5.3.2 Connection Descriptors

As connections are formed, Connection Descriptor Table (CDT) entries are allocated on each
node and an associated entry is made in the Connection Descriptor List (CDL) to contain a
pointer to this CDT structure. The offset into this list is the Connection Identifier (CONID).
Since this operation occurs on each node for a single connection, two connection identifiers
result (the local and the remote identifiers). Only the low order 16 bits of these longword
connection identifier values is used for the index into the list.

Each CDT contains the following types of information:

• The state of the connection (e.g. open, closed, ...)
• The addresses of the ASCII text strings which provide the names of the two "entities"

which are exchanging information by means of the connection.
• The addresses of the routines to which messages and datagrams are to be passed when

they are received from the "entity" at the other end of the connection.
• The address of the PB describing the virtual circuit supporting the connection.
• The Local Connection Identifier (LCONID) which identifies the corresponding CDT on the

local node
• The Remote Connection Identifier (RCONID) which identifies the corresponding CDT on

the remote node.

1.5.3.3 Connection Structures

When a message is to be sent from a remote node across a connection, the RCONID value is
copied from the remote node's CDT into a destination CONID field within the message. The
sending node also copies its local connection id into the message so that the receiving node
knows where the message is from.

When this request is received on the local node, the low order 16 bits from the destination
CONID are used to locate the associated CDT. Within the CDT will be the address of the
routine which is to be executed based on the type of message that was received. Between
the node identifiers (SCS system ids) and the connection identifiers, a specific connection
can be uniquely identified within a VAX.cluster. The CDT and CDL structures are the VMS
implementation of the SCA concept of connection blocks.

Figure 1-4 illustrates an example of an MSCP server sending the disk class driver a message:

Digital Equipment Corporation I Confldentlal and Proprietary 1-9

SCA and SCS Concepts

Figure 1-4: MSCP Server to Class Driver Message Flow

CDT

----otcdt$l_msginput

__,.cdt$l_dginput

CDL

.Max t CDTs . (From RCONID field in

.First Free . MSCP servers CDT)

. size/type . 1
ROUTINE
TO HANDLE
RECEIVED
MESSAGES
(DU$IDR)

. Alloc Fails. '
SCS$GL_CDL:: DEST CONID

cdt$l_lprocnam

cdt$l_rprocnam
seq index

-----... cdt address.,.. ____ _

ROUTINE
TO HANDLE
RECEIVED
DATAGRAMS
(DU$DGDR)

VMS$DISK CL DRVR
MSCP$DISK -

1.5.4 Communications Mechanisms Example

CXN-0001-04

The telephone system provides a good analogy to emphasize the distinction between the
concept of a virtual circuit and a connection. Consider the situation wherein three people in
one city wish to have phone conversations with three people in another city. Next to each
city is a microwave tower. The microwave beam between the towers represents a virtual
circuit. The cities represent two nodes, and the microwave towers represent SCA ports. The
people then represent the "entities" within the nodes, and their phone conversations represent
connections.

Figure 1-5 illustrates the SCA concepts of Virtual Circuits and Connections as applied to the
telephone system.

1-10 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

Figure 1-5: Telephone System Analogy to Systems Communications Architecture

CXN-0001-05

The communication between entities is not restricted to a single protocol (format) , much as
telephone conversations are not restricted to a given language.

1.6 Architectural Layers of SCA

The traditional model for SCA is organized into four major levels as shown in Figure 1-6.

Figure 1-6: The Architectural Layers of SCA

SYSAP LAYER System Application Layer

SCS LAYER Systems Communication Services Layer

PPD LAYER Port to Port Driver Layer

PI LAYER Physical Interconnect Layer

CXN-0001-06

When extended to support the NI, the SCA model was modified such that the Port to Port
Driver (PPD) and Physical Interconnect (Pl) layers were replaced by seven functionally equiv
alent layers. For the purposes of this discussion, the traditional model of SCA will be used.

Digital Equipment Corporation I Confidential and Proprietary 1-11

SCA and SCS Concepts

1.6.1 SYSAP Layer

1.6.1.1 Definition

The "entities" in a host or controller which utilize the communication facilities defined by SCA
to exchange information with their counterparts in other hosts and controllers are known as
System Applications (SYSAPs).

DUDRIVER and the MSCP disk server are examples of SYSAPs. TUDRIVER and the MSCP
tape server are another pair of SYSAPs. The VMS Connection Manager, the distributed
portion of the VMS Lock Manager, and a few other VAX.cluster specific software components
are combined into one SYSAP called SYS$CLUSTER. This SYSAP was formerly known as
CLUSTRLOA.

SYSAPs may be implemented in software. Such is the case for DUDRIVER and TUDRIVER
residing on a VAX, and the disk and tape servers residing on an HSC controller. SYSAPs may
also be implemented by microcode. Such is the case for the MSCP disk server in the KDM70.

1.6.2 SCS Layer

The SCS (Systems Communications Services) layer defines the actual services necessary
to establish, use, and maintain logical communication paths (connections) among SYSAPs.
SCS operations are classified as being either ''port independent" or "port dependent". Within
VMS, the port independent operations are implemented in module SYS$SCS (SCSLOA),
and the port dependent operations are implemented in certain portions of the port drivers
(PADRIVER, PEDRIVER, PIDRIVER and PUDRIVER).

1.6.2.1 Pon Independent scs Services

Some of the port independent SCS services are as follows:

1.6.2.1.1 Connection Management Services

There are five SCS services invoked directly by a SYSAP to govern the creation and existence
of a connection.

CONNECT

ACCEPT

REJECT

Used by a SYSAP to request the creation of a connection with another SYSAP.

A SYSAP which is the target of a connect request uses this SCS service to
accept that request.

Instead of accepting a connect request, a SYSAP can reject a connect request
and optionally supply a "reject reason".

1-12 Digital Equipment Corporation I Confidential and Proprietary

DISCONNECT

LISTEN

SCA and SCS Concepts

Once a connection has been established between two SYSAPs, either SYSAP
may terminate communication by using the DISCONNECT service.

Before one SYSAP can "connect" to another, the other must declare its willing
ness and ability to handle incoming connect requests.

1.6.2.1.2 Directory Services

The SCS Directory Service allows a SYSAP to determine if a particular SYSAP exists on a
remote node. A name is associated with each SYSAP to facilitate this lookup. The following
table lists some examples of SYSAP names:

SY SAP

Disk Class Driver

'Th.pe Class Driver

MSCP Disk Server

MSCP Tape Server

SYS$CLUSTER/CLUSTRLOA

SYSAPName

VMS$DISK_CL_DRVR

VMS$TAPE_CL_DRVR

MSCP$DISK

MSCP$TAPE

VMS$VAXcluster

When a SYSAP on one node (host or controller) uses the SCS LISTEN service to declare
its willingness and ability to handle connect requests, its name is registered into a "list of
listening SYSAPs" on that node. When a message containing a connect request is received
from another node, the SCS layer scans this list. If the name of the SYSAP specified in the
message as being the target of the request is in the list, the request is passed to that SYSAP.
If, however, the name is not in the list, then the SCS layer rejects the request.

SCA also specifies that each node maintains a special SYSAP to respond to inquiries from
other nodes seeking to know if a particular SYSAP name is in its "list" of listening SYSAPs.
The name of this special SYSAP is SCS$DIRECTORY, and the inquiry is called a "directory
lookup".

The implementation of the directory service depends upon the type of host or controller
involved. When a SYSAP in VMS invokes the LISTEN service, two data structures are
allocated:

• a special "listening CDT"
• an SCS Directory Entry (SDIR).

The address of the SYSAP's routine for handling incoming connect requests, (supplied by the
SYSAP as an argument to the LISTEN service), is stored in the listening CDT. The CONID of
the listening CDT is stored in the SDIR along with the name of the SYSAP, and the SDIR is
inserted into a queue. Figure 1-7 shows these results for a local VMS MSCP disk server after
it has used the SCS listen service.

Digital Equipment Corporation I Confidential and Proprietary 1-13

SCA and SCS Concepts

Figure 1-7: Example of a SYSAP In a Listening State

SCS$GQ DIRECT::
(SDIRs) --

SYSAP A MSCP$DISK

CON ID t-

CDL
SCS$GL_CDL: : .-

LISTENING
CDT -- cdt address I--

cdt$l_msginput """'-

~
ROUTINE TO HANDLE
INCOMING CONNECT
REQUESTS

SYSAP B

CXN-0001-07

If the local host receives a connect request for the MSCP disk server, it scans the queue of
SDIRs looking for one containing the name MSCP$DISK. From the SDIR it extracts the
pointer to the address of the listening CDT. From the listening CDT it obtains the address of
the server's routine to which the connect request is to be passed.

1.6.2.1.3 SCS Process Polling Services

The SCS Process Poller Service allows SYSAPs to be notified of the existence of their coun
terpart SYSAPs that are in a listening state on other nodes. The name of this SYSAP is
SCS$DIR_LOOKUP.

A SYSAP such as VMS$VAXcluster wishing to be notified of the discovery of a companion
SYSAP on another node registers its interest with the local SCS$DIR_LOOKUP service
through a call to the SCS$POLL_PROC routine. The SCS process poller will periodically con
nect to the remote node's SCS directory service to determine if the given SYSAP is available in
a listening state. If an affirmative response is received, the inquiring SYSAP is notified and a
connection request is sent.

The SCS process poller keeps a list of SYSAPs to be polled for in a queue of data structures
called SCS Process Polling Blocks (SPPBs). Each SPPB is assigned an index number to be
used as a bit offset into each System Block's Enabled Mask (SB$B_ENBMSK).

When process polling is due, the process poller checks the next scheduled System block's mask
to determine which SYSAPs are to be polled for on that remote system. For each bit set in
the mask, the associated SYSAP name is placed in a SCS Process Name Block (SPNB). The
name block is then used by the SCS$DIR_LOOKUP service to inquire as to the existence of
the given SYSAP on the remote node. Figure 1-8 illustrates the data structures associated
with process polling.

1-14 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

Figure 1-8: SCS Process Poll Block Linkage

scs$gq_poll: : SPPB SPPB SPPB
_,.

sppb$l_flink sppb$l_flink sppb$l_flink
_,. --sppb$l_blink sppb$l_blink sppb$l_blink

MSCP$DISK MSCP$TAPE VMS$VAXcluster

sppb$l_rtn ~ sppb$l_rtn ~ sppb$l_rtn ,____
.....- sppb$l_ctx- sppb$l_ctx sppb$l_ctx

sppb$w_bit (2) sppb$w_bit (1) sppb$w_bit (0)

...._ ----
System Routine System Routine Notification
For Write to For Write to Routine in
Configure Configure Connection
MailBox MailBox Manager

...... --~ ~

Unit Control
Block for

Notification
Mailbox

CXN-0001-15

NOTE

The term "process" is used in this context because the VMS implemenation of
SYSAPs is as fork processes.

Locating MSCP disk servers is a bit more complex. As will be explained in the
next chapter, the CONFIGURE process requests SCS$DIR_LOOKUP to poll for
disk servers through a call to the SCS$POLL_MBX routine. When CONFIGURE is
notified by SCS$DIR_LOOKUP that one is found, it builds certain data structures.
It then calls the disk class driver's controller initialization routine, passing it these
data structures.

1.6.2.1.4 SYSAP Connection Analogy

The act of a remote SYSAP attempting to connect with a local SYSAP is somewhat analogous
to a person placing a telephone call to a person in another city. The SCS system id is used to
route the request to the appropriate node similar to the telephone caller using an area code
to specify the destination city. The SCS SYSAP name is likewise analogous to the specific
telephone number within the destination city.

Digital Equipment Corporation/ Confidential and Proprietary 1-15

SCA and SCS Concepts

A SYSAP performing the listen service is similar to the act of requesting that a person's
telephone number be placed into the local telephone book. The SCS directory service then
performs similarly to the directory assistance that is provided by the telephone company. The
list of listening SYSAPs can be thought of as a telephone book.

1.6.2.2 Pon Dependent SCS Operations

There are a number of SCS operations which by their nature are best handled in the port
driver. In fact, some of these are actually port dependent. Here are three SCS operations
implemented by port driver routines:

• Allocation and Deallocation of Command and Message Buffers.
For local DSA controllers, all buffers are pre-allocated during controller initialization.
When a message buffer is needed by a SYSAP, an attempt is made to allocate the buffer
from a free queue. If the free queue is empty, a "command ring" of buffers containing port
commands is searched for a buffer whose "ownership" has been returned by the port to
VMS. When a SYSAP releases a received message buffer, the buffer is either placed in a
"response ring" for receiving packets from the port, or into the free queue if the "response
ring" is full.
For remote DSA controllers, buffers are dynamically allocated from nonpaged pool for
SYSAPs wishing to send messages. When a SYSAP releases received message buffers,
they are either inserted into a free queue of buffers for receiving messages from remote
nodes, or deallocated to nonpaged pool if that free queue already has a sufficient number
of buffers.

• Mapping and Unmapping Block Data Transfers.
Given a UDA50, traditional UNIBUS mapping registers are used for mapping block
data transfers. For a KDA50, QBUS map registers are used. For a KDB50, a software
emulation technique using "pseudo-map registers" allows the KDB to be treated similarly
to a UNIBUS controller. This is covered in the chapter entitled "$QIO System Service and
DUDRIVER".
When the block data transfer involves a remote controller, then a CI-SCA, a DSSI-SCA
or NI-SCA port is involved. The block data transfer is first mapped to system space. A
special buffer descriptor is then initialized to indicate where in system space the transfer
begins and how large the transfer is. This descriptor is later included in a command
passed to the port for processing. A separate section in this chapter provides details on
this subject.

• Handling SCS routing information.
Port driver code is responsible for inserting SCS routing information, such as source and
destination CONIDs, into packets being handed to the port for transmission. The port
driver also uses that same SCS routing information to deliver received packets to the
SYSAPs to which they have been sent.

1-16 Dlgltal Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

1.6.3 PPD Layer

The PPD layer provides a number of services, among which are the following:

• Passing packets to and receiving packets from a port.
• Processes commands from the port dependent portion of the SCS layer.
• Initiates the actual transmission of data to remote ports.
• Handles the physical reception of data from remote ports.
• Has responsibility for insuring the integrity of data packets exchanged across the physical

communication path between ports.
• Implements the protocol necessary to insure the guarantees associated with messages and

block data transfers discussed in an earlier section of this chapter.
• Provides for virtual circuit control.
• Manages the physical communication path between ports.

In general, most PPD activities are implemented primarily by the port. Only the first of those
listed above are actually performed by the port driver. The name of this layer is subsequently
a bit misleading.

It should be noted that some of these tasks only "appear" to be performed by the "port" for a
local DSA controller. This is due to the controller's dual role as both controller and port. With
a local DSA controller, there really isn't a remote port.

1.6.4 Pl Layer

The PI layer provides the physical communication path managed by the PPD layer. It is
implemented by the medium (e.g. CI, DSSI, NI) over which packets are sent and received.

1.7 VMS Implementation of SCA Architectural Layers

The block diagram on the next page illustrates the VMS-specific implementation of SCA as it
relates to disk class driver and VMS-based MSCP server operations.

The following items should be kept in mind as the diagram is examined:

• This book is concerned with Systems Communications Architecture only in so far as
it supports the activities of the disk class driver and the VMS-based MSCP server.
Consequently, SYSAPs such as CNDRIVER (which optionally implements DECnet on
the Cl) are omitted since they are not germane to the subject at hand. TUDRIVER has
been included only because it has been referenced earlier in this chapter.

• The SCS Process Poller and SCS Directory Service are SYSAPs. Hence, architecturally
they belong in the SYSAP layer. The VMS implementation actually places them as part of
module SYS$SCS (SCSLOA).
It is important to understand that an architecture defines a unifying functionality and
coherent structure to which its different implementations must conform. Implementations
may vary on the details of how they provide this functionality and structure.

Digital Equipment Corporation I Confidential and Proprietary 1-17

SCA and SCS Concepts

Consider the VAX 11/785, 8200, 8650, and 9000. They are varying implementations of the
same VAX CPU architecture; however, they all implement the same VAX instruction set.
This conformity is also true with software.

Both a VAX and an HSC implement the SCS Directory Service such that it provides the
same architecturally defined functionality; but the details of these implementations vary.

• As was pointed out earlier in this chapter, the VMS Connection Manager, the distributed
portion of the VMS Lock Manager, and certain other VAX.cluster specific software compo
nents are combined into one SYSAP called SYS$CLUSTER (CLUSTRLOA). It should be
emphasized that the only interaction the non-distributed portion of the Lock Manager has
with SYS$CLUSTER is with its distributed component. There is no interaction between
the non-distributed portion of the Lock Manager and the remainder of SYS$CLUSTER.

• VMS supports both shadowed and non-shadowed disks. Only the disk class driver for
non-shadowed disks, (DUDRIVER), is shown in the diagram. If controller based volume
shadowing is in use, then DSDRIVER replaces DUDRIVER to handle both the shadowed
and non-shadowed disks.

The next few sections of this chapter are intended to "tie together" what has been presented
thus far about SCA, and do so within the context of how it relates to the disk class driver and
the VMS-based MSCP server.

Figure 1-9 provides an overall view of the flow of information for the VMS implementation of
SCA:

1-18 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

Figure 1-9: SCA Flow as Implemented on VMS

MSCP

l

[USER WRITTEN PROGRAM

$ENQ, $DEQ, $GETLKI

RMS J
NON-DISTRIBUTED
PART OF LCK MGR

$QIO SYSTEM SERVICE]

c ~
SERVER DUD RIVER TUDRIVER SYS$CLUSTER

(CLUSTRLOA)

J

[SYS$SCS
(SCSLOA)

PORT DRIVERS

(PADRIVER, PEDRIVER, PUDRIVER)
PIDRIVER

CI-SCA PORT, DSSI-SCA PORT, NI-SCA PORT
LOCAL CONTROLLER

CI, DSSI OR NI BUS
(NOT APPLICABLE IF LOCAL CONTROLLER)

G
E
N V
E M
R S
A
L

S L
y A
s y
A E
p R

L
S A
c y
S E

L
p A
p y
D E

R

R

L
p A
I y

E
R

CXN-0001-08

Digital Equipment Corporation· I Confidential and Proprietary 1-19

SCA and SCS Concepts

1.7.1 DUDRIVER CONNECTS to MSCP Disk Server

1.1.1.1 Local Node

When the local SCS Process Poller has discovered a "listening" MSCP disk server on a remote
VAX, the CONFIGURE process will be notified. The Configure process will in tum call the
class driver's controller initialization routine.

The controller initialization routine will call the SCS Connect service (implemented in
SYS$SCS (SCSLOA)) to attempt to form a connection with the remote server.

As indicated in the following diagram, SCS will build a "connect request" message and will
pass it to the appropriate port driver for transmission.

1. 7.1.2 Remote Node

The remote port physically receives the message and passes it to the port driver. The port
driver in turn passes it to the remote SYS$SCS (SCSLOA) where the list of listening SYSAPs
will be scanned for a corresponding MSCP disk server entry.

If a corresponding entry is found, the connect request is passed to the servers routine for
handling connects as found in the listening CDT. The remote SYS$SCS (SCSLOA) will also
generate and transmit a connect response to notify the local SYS$SCS (SCSLOA) of the
successful reception.

NOTE

If the remote list of listening SYSAPs did not include the server, the response would
be a "no such SYSAP" message, and an error would be returned to DUDRIVER by
the local SYS$SCS (SCSLOA).

The remote server will check the MSCP protocol being used by the disk class driver against its
own and if it is deemed compatible, it will generate an "accept" message.

The remote SYS$SCS (SCSLOA) will build an "accept request" message and will pass it to the
appropriate port driver for transmission back to the local VAX.

The local port physically receives the message and passes it to the local port driver. The local
port driver in turn passes it to the local SYS$SCS (SCSLOA).

The local SYS$SCS (SCSLOA) notifies the class driver that the connect has succeeded and will
also generate and transmit an accept response to notify the remote SYS$SCS (SCSLOA) of the
successful reception.

1-20 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

Figure 1-10 illustrates a disk class driver forming a connection with a VMS based MSCP
server:

Figure 1-10: The Message Flow of a Disk Class Driver Forming a Connection with an
MSCP Server

- ,....___, ..--
CONNECT p p 0 A CON REQ p 0 M

D __., RN - __., 0 R __,. s
u s T D R T s c
D c CON RSP T c p
R s - D p D - s
I L R 0 AR L ACCEPT s
v 0 I R ACC REQ N I 0 .-. E ~

E NOTIFY A ..._ V T -- - D V A R -- ~ --R -- E E v -- R ACC RSP R E _., - _., R -- - --
- ---- ---

CXN-0001-09

1. 7 .1.3 Connection Data Structures

A CDT will be built on each VAX that was involved in the connect request to describe the
resulting connection. Each VAX will store the following information in its own CDT:

• The CONID identifying the other VAX!s CDT. This is called the "remote CONID", and is
kept in the RCONID field

• The name of the SYSAP at the other end of the connection on the other VAX. This is called
the "remote process name", and is kept in the RPROCNAM field.

• The CONID identifying this VAX!s CDT. This is called the "local CONID" and is kept in
the LCONID field

• The name of the its own SYSAP involved in the connection. This is called the "local
process name", and is kept in the LPROCNAM field

Figure 1-11 illustrates these relationships:

Digital Equipment Corporation I Confidential and Proprietary 1-21

SCA and SCS Concepts

Figure 1-11: Data Structures for a Formed Connection

ON LOCAL SYSTEM ON REMOTE SYSTEM

scs$gl_cdl:: COL scs$gl_cdl:: COL

_.. cdt address --
cdt address -

CDT CDT

cdt$1_rconid ~ -- cdt$1 rconid -

cdt$1_rprocnam cdt$1_rprocnam

r--- cdt$l_lprocnam cdt$l_lprocnam ~

~VMS$DISK_CL_DRVR MSCP$DISK ,._.

-=- MSCP DISK $ VMS DISK CL DRVR $ -
CXN-0001-10

1.7.2 DUDRIVER Sends MSCP Command to MSCP Disk Server

A user program may request an 1/0 operation for a disk either by directly using the $QIO
system service, or by indirectly using $QIO through RMS. Based on the parameters it is
supplied, $QIO builds an I I 0 Request Packet (IRP) describing the operation to be performed.
This IRP is then passed to the driver responsible for the type of disk involved. For disks
handled by an MSCP server, that driver would be DUDRIVER (or DSDRIVER if the 1/0
operation is for a controller based shadow set).

1-22 Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

1.7.2.1 Buffer Allocation

DUDRIVER allocates a buffer in which to build an MSCP command for the remote server.
The routine which does this also copies the RCONID field from the CDT into the buffer's
"destination CONID" field; this will facilitate directing the command to the proper SYSAP on
the remote node. Using the information contained in the IRP, the routine will complete the
build of the MSCP command. Finally, it passes the buffer to the port driver for transmission
to the remote node.

1. 7.2.2 Identifying the Receiving Sysap and Connection

On the remote node, the port driver extracts the destination CONID field from the buffer
containing the received command. The low order 16 bits of the destination CONID are used as
an index into the CDL to obtain the address of the CDT used by the remote node to represent
the connection. Within the CDT is the address of the MSCP server's message input routine.
The message input routine is called, passing it the command received from the class driver on
the local VAX.

1.7.3 MSCP Server Sends END Message to DUDRIVER

Mass Storage Control Protocol defines that for each command received by an MSCP server,
the server must return an END message upon completion of the command. This END message
contains completion status and other information, depending on the type of command sent by
the disk class driver.

The VMS-based MSCP server doesn't need to allocate a message buffer for this purpose. It
merely re-uses the buffer containing the received command, changing selected fields to reflect
that what it is sending is in fact the corresponding END message.

When DUDRIVER sent the MSCP command to the server, it not only included a destination
CONID, but also a source CONID. The server must also interchange the contents of these
fields. It can then pass the buffer containing what is now an END message to its port driver
for transmission back to the local VAX.

1.7.3.1 Locating the Connection Associated with an End Message

When the END message is received by the local port, it is passed to the local port driver.
The local port driver uses the END message's destination CONID field (which now contains
the local CONID) to index into the CDL to fetch the CDT on the local VAX representing the
connection with the remote server. It then passes the END message to DUDRIVER's message
input routine, the address of which is in the CDT.

Digital Equipment Corporation I Confidential and Proprietary 1-23

SCA and SCS Concepts

1.7.4 Response IDs and Command Reference Numbers

VMS utilizes a Response Identifier Service to distinguish which 1/0 request is associated with
each MSCP request. This identifier is part of the VMS implementation of SCS.

1.7.4.1 Class Driver Request Packet

A data structure called the Class Driver Request Packet (CDRP) is used by the class driver for
each IRP it receives to define a request to be passed to the SCS layer. The IRP will be located
at negative offsets from the CDRP information.

1. 7.4.2 Request Descriptor Table Entries

The class driver's STAR.TIO routine will allocate an entry called a Request Descriptor Table
Entry (RDTE) from the Request Descriptor Table (RDT) to keep track of each IRP/CDRP pair.
The RDTE consists of two longword values.

The first longword is initialized with the address of the requests CDRP.

The second longword will hold a value called the Response Identifier (RSPID). The low order 16
bits of the RSPID will be an index into the RDT to identify this particular request. This value
will be passed in the MSCP command as the Command Reference Number field to uniquely
identify this request.

The class driver also stores in the CDRP the address of the buffer in which it has built the
MSCP command.

When the port driver actually transmits the command, the 110 request is suspended with the
PC of where to resume (along with other data) being stored in the CDRP. (Each 110 request is
handled within the context of a fork process. It is this fork process which is suspended here.)
Figure 1-12 illustrates how the correct fork thread is located.

1--24 Digital Equipment Corporation I Confidential and Proprietary

SCA and scs Concepts

Figure 1-12: Fork Process Thread association through the RSPID

WITHIN DUDRIVER

LAST INSTRUCTION
BEFORE SCS ASKED
TO SEND MSCP CMD
TO MSCP SERVER

WHERE TO RESUME
WHEN END MESSAGE
RECEIVED

1.7.4.3 MSCP Server End messages

RDT

• Wait Q Fl •
• Wait Q Bl •
• Size/Type •
• First Free •
• Max I RDTs •
• Waited Rqsts.

SCS$GL_RDT:: -.-----.

IRP/CDRP

SAVED PC
(fork PC/R3/R4)

cdrp$l_msg_buf

MSCP CMD

cdrp address

seq/flg

RSPID

CXN-0001-11

When the MSCP server sends an END message to DUDRIVER corresponding to some MSCP
command, it includes in the END message the command reference number supplied in the
command. As was pointed out above, this command reference number is actually a RSPID.
Once the class driver determines that the message it has received is an END message, it does
the following:

• Uses the low order 16 bits of the RSPID to index into the RDT, and then fetches the RDTE
associated with the RSPID.

• From this RDTE it obtains the address of the CDRP (and hence also the IRP) associated
with the 1/0 request.

• From the CDRP it obtains the address of where to resume the 1/0 request, processing the
status and other information contained within the END message.

The command reference number also serves another purpose. In situations wherein
DUDRIVER must inquire with the MSCP server about the current status of a command,
it includes the command reference number (RSPID) in the inquiry. In this way the server
knows which command DUDRIVER is concerned with.

Digital Equipment Corporation I Confidential and Proprietary 1-25

SCA and scs Concepts

1.7.5 DUDRIVER and Block Data Transfers

1\vo additional concepts from the VMS implementation of SCS services need to be explained:
the Buffer Descriptor, and the buffer handle. The information presented here is specific
to DUDRIVER's dealing with remote DSA controllers (or remote VAXes emulating DSA
controllers). Equivalent information for local DSA controllers is presented at the end of the
chapter entitled "$QIO System Service and DUDRIVER".

1. 7 .5.1 Buffer Descriptors

When data is to be transferred to or from a disk, a buffer for holding the data must be locked
in host physical memory and a description of the buffer needs to be built. This description,
known as a Buffer Descriptor Table Entry, consists of four longwords. The buffer descriptors
are kept in a Buffer Descriptor Table whose listhead is at system location SCS$GL_BDT.
Fields in the buffer descriptor that are relevant to this discussion are illustrated in the next
diagram. These fields are explained in the paragraphs which follow. Figure 1-13 displays the
layout of the buff er descriptor.

Figure 1-13: Layout of the Buffer Descriptor

I OFFSET

BUFFER LENGTH

SVAPTE

CORP ADDRESS OR LINK TO NEXT UNUSED DESCRIPTOR

CXN-0001-12

When locked in physical memory, the buffer is also mapped to one or more consecutive pages
of system virtual address space. The system virtual address of the first system page -table
entry (PTE) used to do this mapping is stored in the SVAPTE (System Virtual Address Page
Table Entry) field.

The total length of the buffer in bytes is stored in the Buffer Length field.

The buffer does not have to begin on a page boundary. The buffer descriptor provides an Offset
field to indicate the byte offset into the first page where the buffer actually begins.

The fourth longword serves a dual purpose. For active buffer descriptor entries, it contains
the address of the CDRP for the 1/0 request with which this descriptor is associated. For non
active buffer descriptors, the longword contains a link to the next free buffer descriptor. The
listhead of free buffer descriptors is kept at negative offset CIBDT$L_FREEBD from location
SCS$GL_BDT.

Figure 1-14 illustrates the use of a buffer descriptor to map a 1533-byte transfer beginning at
byte 2 of the of the first buffer page.

1~2s Digital Equipment Corporation I Confidential and Proprietary

SCA and SCS Concepts

Figure 1-14: Example of a Buffer Descriptor for a Three Page Transfer

Wait Q FL
Wait Q BL
Size/Type

Pre 4.4 Backlink
First Free BOT

Max t BOTS
Queued BDT Cnt

BUFFER NAME

seq indx
FIRST BYTE = BYTE 2

scs$gl_bdt::_..,_ ______________ __

1. 7 .5.2 Buffer Handles

boff 2

bent 1533

SVAPTE

cdrp address
....,.. spte buff 1

spte buff 2..__....,.

510
bytes

buffer
page 1

512 buffer
bytes page 2

spte buff 3 .,._ ______________________ _

SO PAGE TABLE

511 buffer
bytes page 3

LAST BYTE BYTE 510 OF THIRD BUFFER PAGE

CXN-0001-13

The low order 16 bits of the Buffer Name contains an index into the buffer descriptor table
to locate a particular buffer descriptor. The buffer name is used as part of still another data
structure called a Buffer Handle, which consists of three longwords as seen in Figure 1-15:

Digital Equipment Corporation I Confidential and Proprietary 1-27

SCA and SCS Concepts

Figure 1-15: The Buffer Handle

SECONDARY OFFSET INTO BUFFER

BUFFER NAME

REMOTE CONID

CXN-0001-14

The buffer name and remote CONID have previously been explained. The Secondary Offset
Into A Buffer may be modified for "third party 1/0", but is set to 0 by the class driver at the
beginning of an 1/0 request. The secondary offset field is used for segmented data transfers
which will be discussed later.

The buffer handle is inserted into commands that are queued to the local port for the trans
fer of data to or from a disk on a remote DSA controller (or remote VAX emulating a DSA
controller).

The local port functions as a DMA device capable of directly accessing local host memory., It is
also capable of performing VAX virtual to physical address translations. Consequently, using
the buffer name contained in the buffer handle, the local port can access the buffer descriptor
which identifies the transfer address of the buffer in memory.

The local port can extract data directly from or write data directly into the buffer when
requested to do so by a remote controller or VAX.

1. 7 .6 Concept of Flow Control

SCS Flow Control is a mechanism for preventing a SYSAP on one node from sending messages
to a SYSAP on another node when that other node is not prepared to accept them. This
is accomplished by having the SCS layer on each node "know" how much buffer space is
available on the other node for receiving messages.

When two SYSAPs form a connection, each SYSAP requests the SCS layer to allocate to its
own port a certain number of buffers for receiving messages from the other SYSAP. As part
of the connection formation dialogue, the SCS layer in each node tells its counterpart in the
other node how many message receive buffers it has allocated.

1. 7.6.1 Credit Scheme

Each SYSAP is said to be extending "send credits" to the other. Thus, by requesting the SCS
layer to allocate 5 message receive buffers for a connection, the local SYSAP is extending 5
send credits to the SYSAP at the other end of the connection.

1-28 Digital Equipment Corporation /-Confidential and Proprietary

SCA and scs Concepts

Free buffers to receive messages are kept in a common pool, regardless of which SYSAP
requested them; but the buffers are managed on a "per connection" basis. This is somewhat
like a bank keeping all of its depositors' money in one vault, but assigning an individual non
interest bearing account to each depositor. A person can withdraw from such an account only
as much money as he/she has on deposit in that account.

So it is with SYSAPs. At any point in time, a SYSAP should be allowed to receive only as
many messages on a connection as it has buffers "on deposit" for that connection in the free
buffer pool. Furthermore, SYSAPs should not be allowed to "borrow" receive buffers from
one connection to be used for another connection; and they certainly should not be allowed to
practice "deficit spending".

~
NOTE

For CI-SCA ports, DSSI-SCA ports and NI-SCA ports, this pool is a queue called the
Message Free Queue. For a local DSA controller, a "Buffer Ring" serves this purpose.
Details of this ring are presented in the chapter entitled "$QIO System Service and
DUDRIVER".

The SCS layer in each node has the responsibility for enforcing the rules of flow control. It
uses the CDT as a "passbook" to keep track of the number of available buffers "on deposit"
for the connection. Specifically, the CDT's send credit field indicates the number of mes
sage receive buffers the local SCS layer ''believes" are available in the remote node for the
connection.

To request a buffer in which to build a message, a SYSAP calls a routine in the SCS layer.
This routine checks the send credit field in the CDT for that connection. If no send credits are
available, the SCS layer suspends the request. If there is at least one send credit, the field is
decremented and the buffer is allocated to the requesting SYSAP.

1. 7 .6.2 Piggybacking

As the remote node processes received messages, it returns the buffers back to its SCS layer.
The remote SCS layer records in its CDT associated with the connection the send credits
possessed by the local node for that connection. When the remote SYSAP sends the local
SYSAP a message, the remote SCS layer stores in a protocol defined field within the message
the actual send credits available to the local SYSAP. The local SCS layer updates its CDT with
this information. This technique is sometimes called "Piggybacking".

If most of the message traffic is "one way", then another mechanism must be used to update
the local node. As the remote SYSAP releases buffers back to its SCS layer, the local node
won't be updated if there is no traffic returning to the local node. Each time the remote
SYSAP releases a message buffer, its SCS layer checks to see if the local node's send credit is
getting "dangerously low". If so, it will generate a "special credit" message to update the local
SCS layer about send credits it has for this connection. The definition of "dangerously low" is
SYSAP dependent, but it is typically around 2.

Digital Equipment Corporation I Confidential and Proprietary 1-29

SCA and SCS Concepts

NOTE

Each node uses the CDT "receive credit" and ''pending credit" fields to keep track of
the other node's send credits. The receive credit field reflects the other node's send
credit. Each time a message is received, the receive credit field is decremented. The
pending credit field counts the number of buffers returned by the SYSAP to the SCS
layer, but which the other node does not yet know about. Any time one node updates
another node's send credit, it computes the sum of the receive credit and pending
credit fields, and sends this sum as the "actual send credit" to the other node. It
also stores this sum in its own CDT receive credit field, and zeros the pending credit
field.

1.7.7 MSCP Server in a Controller

1.7.7.1 Local Server Handles SCA Events Essentially the Same

These sections presenting the "VMS Implementation of SCA Architectural Layers" presumed
that the disk class driver resides in the local VAX, and that the MSCP disk server with which
it communicates resides in a remote VAX. If, instead, the server resides in a remote or local
DSA controller, then the events just described would remain essentially unchanged except
where explicitly noted.

The controller would have its own equivalent microcode and/or software implementation for
the tasks described here as being performed by remote VAX's SYS$SCS (SCSLOA) and port
driver. But it would still all look the same from the class driver's point of view since the
remote VAX's VMS-based MSCP server is merely emulating a DSA controller.

1-30 Digital Equipment Corporation I Confidential-and Proprietary

DUDRIVER 1/0 DATABASE

Chapter 2

DUDRIVER 1/0 DATABASE

2.1 Introduction

There are four major VMS data structures used by the disk class driver to keep track of
"MSCP speaking" controllers, VMS systems which emulate such controllers, and the disks
they make available to the nodes on the CI, DSSI and/or NI.

System blocks and class driver data blocks provide information about controllers DUDRIVER
deals with. Device data blocks contain information about classes of devices on a controller.
Unit control blocks provide the disk class driver with information specific to particular units.

To follow the details of a $QIO operation for a disk handled by DUDRIVER, it is essential to
understand what is in each of these structures and how they are linked together. It is also
very useful to understand the steps involved in building DUDRIVER's database as "MSCP
speaking" controllers are discovered by the local VAX.

2.2 Data Structures

System Blocks contain the identifying hardware and software information about "systems"
which is essential in facilitating SCS communication between SYSAPs in those systems. These
system blocks are created and maintained by the SCA layers of software beneath the SYSAPs.
They do not contain SYSAP specific information, but rather "system level'' hardware and
software information needed by Systems Communication Services to support communication
between any pair of SYSAPs.

Different SYSAPs, such as disk and tape class drivers, must maintain information about a
system which is specific to the SYSAP's nature and function, and beyond that which is kept in
a system block. The Class Driver Data Block (CDDB) serves this, purpose for DUD RIVER. It
supplements the information contained in a system block with queues and information specific
to the handling of MSCP commands issued by DUDRIVER to the system represented by a
system block.

A Device Data Block (DDB) contains information applicable to a generic class of devices
attached to a single controller. For example, DUDRIVER would maintain one DDB for all
disks called "DUA" on one controller, another DDB for all disks called "DJA" on that same
controller, and a third DDB for all disks called "DUA" on some other controller .

. Digital Equipment Corporation /.Confidential and Proprietary .2-1

DUDRIVER 1/0 DATABASE

A Unit Control Block (UCB) contains information specific to a particular unit within a generic
class of units attached to some controller.

For each system/controller with which DUDRIVER is speaking, there will be one SB and one
CDDB. For each generic class of disks on that system/controller pair, there will be one DDB.
And for each disk within a generic class, there will be one UCB.

There will be additional DDBs and UCBs supporting shadow set virtual units. However, while
some references to volume shadowing are made in this chapter, the topic in general is covered
in a later chapter.

2.2.1 SB - System Block

VMS maintains a "configuration list" of System Blocks to describe the local host, as well as
"remote systems" with which it communicates via Systems Communication Services (SCS).
The phrase "remote system" here is not limited just to other VAXes. However, in the event
that the remote system is a VAX, here are some of the typical items of information about that
system found in its corresponding SB:

• N odename (assigned when the software is installed on that node).
• Hardware type (e.g. "9000", "8800", "780", ...).
• Hardware version.
• Software type (i.e. "VMS").
• Software version.
• When the system was initialized.
• Queue of path blocks describing available SCS communication paths between the local

host and the remote system.

As indicated above, the term "system" is used here in a more general sense than just the
traditional notion of a host VAX CPU running the VMS operating system. For example,
HSC40, HSC50, HSC60, HSC70 and HSC90 intelligent controllers have SYSAPs which
communicate with VAX-based SYSAPs by means of the standard SCS services and associated
protocol. An example of this would be the VMS disk class driver, VMS$DISK_CL_DRVR,
communicating with the MSCP disk server, MSCP$DISK, in an HSC90. (VMS$DISK_CL_
DRVR is implemented by the VMS DUDRIVER code.)

VMS maintains an SB for each HSC with which it communicates. The system block for an
HSC is functionally equivalent to one for a VAX; but certain fields reflect obvious differences.
For example, the hardware type for an HSC50 would be "HS50", and the software type would
be "HSC".

HSCs are merely one category of DSA controllers containing SYSAPs with which the VMS
SYSAPs communicate via SCS. Other DSA controllers, such as UDAs, KDAs, KDBs, and
KDMs also implement SYSAPs. This implementation is done by means of controller microcode
rather than software. VMS SYSAPs communicate with the SYSAPs in local DSA controllers
using SCS services in the same manner as they would with SYSAPs in remote VAXes and
HSCs. For example, there is a microcoded SYSAP called MSCP$DISK in a local UDA50 to
which the local disk class driver issues commands for RA-type disks on that local controller.

2-2 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

By means of SCS services, the local UDA50 "appears" to DUDRIVER as if it were a remote
system running an MSCP disk server. Consequently, VMS maintains an SB for each such local
DSA controller. Certain fields within this SB are not used (e.g. software and hardware types,
software and hardware versions, node name, etc ...).

2.2.1.1 Configuration List of System Blocks

As pointed out at the beginning of this section, all the system blocks maintained by VMS are
kept in a queue called a "configuration list" as depicted in Figure 2-1. The head of this queue
is location SCS$GQ_CONFIG.

Figure 2-1: System Block List

-- : : SCS$GQ _CONFIG:: --
sb$1 fl ink sb$1 fl ink sb$1 flink - - ---- ~ ---- ~

sb$1 _blink sb$l_blink sb$1 blink

CXN-0002-01

A system block representing the local VAX is setup during VMS initialization by module INIT,
and begins at global location SCS$GA_LOCALSB. Consequently, it is the first SB placed in
this queue and is called the permanent local System Block.

System blocks corresponding to remote VAXes and HSCs are allocated and initialized when
these remote systems are discovered on the SCS communication medium (Cl, NI, ...). How
remote systems are discovered depends on the type of communications port used.

2.2.1.2 System Blocks and Cl Ports

If a pair of systems are using CI ports to communicate, then each system's CI port driver
(PADRIVER in VMS, and CIMGR in an HSC) periodically polls for all other possible ports on
the CI. Each VAX and HSC periodically issues a Request ID (REQID) packet for every other
possible node on the CI.

When a CI port in an enabled state (or any of the maintenance states) receives a REQID,
it responds with a packet which identifies itself to the system which issued the REQID.
Virtual circuit formation dialogue occurs between two CI-based nodes as a result of each node
receiving a response (IDREC) to its REQID. During this dialogue, each node describes its own
CPU and operating system to the other node. As a result of this dialogue, each node allocates

Digital Equipment Corporation I, Confidential and Proprietary 2-3

DUDRIVER 1/0 DATABASE

and initializes a system block corresponding to the other. The information in the system block
comes from the packets exchanged during this dialogue.

2.2.1.3 System Blocks and NI Pons

A system using an NI port for SCS communication has an NI port driver which interfaces be
tween the SYSAPs and the NI controller software. In VMS, the NI port driver is PEDRIVER,
but the NI controller software depends upon which NI controller is used. Two examples would
be XEDRIVER for a DEUNA and DELUA, and EXDRIVER for the DEMNA For purposes
of this discussion, the name "NIDRIVER" will be generically applied to the NI controller
software.

PEDRIVER consists of an SCS component and a PEM (port emulator) component. When
a SYSAP on one system wishes to use SCS to exchange information across the NI with its
counterpart SYSAP on another system, it interfaces with the SCS component of PEDRIVER
in the same way it would with PADRIVER or PIDRIVER. Thus, it is effectively transparent to
the SYSAP whether a CI, DSSI or NI is being used. The PEM component of PEDRIVER has
the responsibility of emulating a CI port; it makes the NI controller and associated NIDRIVER
appear like a CI port to the SCS component of PEDRIVER.

When a local SYSAP wishes to send a message to a remote SYSAP, it builds the message
in a buffer formatted according to its own SYSAP-dependent protocol and then passes the
buffer to the SCS component of PEDRIVER. PEDRIVER's SCS component adds standard "CI
port style" SCS protocol bytes and inserts the packet into what "appears" to be a standard
CI port command queue. The PEM portion of PEDRIVER, emulating a CI port, removes the
packet from the command queue and passes it to NIDRIVER in the appropriate manner for
transmission on the NI.

When NIDRIVER receives an incoming SCS packet from the NI controller, it passes it to the
PEM component of PEDRIVER. There the packet is reformatted to look like it was received
from a CI port and inserted into a standard CI response queue. The SCS component of
PEDRIVER removes the packet from the response queue, strips away the "CI port style"
SCS protocol bytes, and passes the remaining buffer to the SYSAP for which it is intended.

The PEM layer of a system's PEDRIVER periodically issues multicast HELLO messages for
two purposes. One is merely to inform other nodes on the NI that the local node is still "alive
and well". The other purpose is to initiate the dialogue and exchange of information necessary
to establish communication between the NI port drivers in the two nodes.

Based on this exchange of information, the PEM component of PEDRIVER fabricates a "CI
port style" IDREC and passes it to the SCS component. From this point on, SCS virtual
circuit formation across the NI appears the same as on the CI. The SCS components of the two
nodes' PEDRIVERs exchange the CPU and operating system information necessary for each
node to build a System Block describing the other node's CPU and operating system using the
Start I Stack I Ack dialogue.

2-4 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.2.1.4 System Blocks and Local DSA Controllers

The disk class driver uses SCS for the exchange of MSCP packets with the disk server in a
local DSA controller's microcode. To make this possible, SCS routines must have access to the
same data structures that would be present with a normal SCS virtual circuit.

One of the initialization steps performed for each local DSA controller by routine INIT_
CTLR in module PUDRIVER is the building of a system block for the controller. However,
this is done without the dialogue that is present in virtual circuit formation across the CI,
DSSI, or NI. Such dialogue is unnecessary since these steps are taken as part of the normal
configuration of local devices performed by VMS as it boots.

2.2.2 DOB - Device Data Block

A Device Data Block (DDB) identifies a generic class of devices and associated controller
name (e.g. DUA, DJA, DRB, DIA, ...) attached to a single controller. Some of the items of
information found in a DDB are:

• Generic name of the class of devices represented by the DDB.
• Name of the device driver for the controller.
• Allocation class.

2.2.2.1 DDBs and Remote DSA Controllers

For a remote DSA controller such as an HSC90, the DDBs for that controller's disks are kept
in a list which is linked to the system block representing that controller. The head of the list,
at offset SB$L_DDB in the SB, contains the address of the first DDB in the list. At offset
DDB$L_LINK of each DDB is the address of the next DDB in the list.

Figure 2-2 illustrates a case of where the DSA controller is an HSC40 having RA81s (DUA),
RA90s (also DUA), and RA60s (DJA).

Digital Equipment Corporation·-/ Confidential and Proprietary 2-5

DUDRIVER 1/0 DATABASE

Figure 2-2: DOB Linkage off of the System Block

DOB
SB for HSC40 RA81s and RA90s

..... (ddb$l_link)

DUA

sb$l_ddb i-- DUD RIVER

DOB for
RA60s

0

OJA

DUDRIVER

CXN-0002-02

Each DDB also contains at offset DDB$L_SB the address of the SB to which it is linked.

2.2.2.2 DDBs and Remote MSCP-Served Disks

By default, any disk on an HSC is available to any VAX on the CI. However, a VAX may also
make one or more of its own disks available as cluster-wide resources as well. That VAX
merely has to run the VMS based MSCP disk server (MSCP.EXE), and then explicitly set
"served" those of its own disks which it wishes to make available to other VAXes. A VAX may
set served only its own disks, and not those attached to some other VAX or HSC. Furthermore,
this may be performed across both the CI and the NI.

As an example, assume that a remote VAX is serving a MASSBUS disk to the cluster. A user
process on the local VAX wishing to read or write that disk merely issues a $QIO request just
as if that disk was being served by an HSC. After certain initial 1/0 pre-processing, the $QIO
system service code passes the request to DUDRIVER. DUDRIVER then builds an MSCP
command corresponding to the request and passes that command to the SCS routines for
transmission to the MSCP server on the remote VAX.

There is no difference between the format of an MSCP command sent to an HSC and one sent
to a remote VAX running the VMS based MSCP server. The remote VAX is "emulating" an
DSA controller for such 1/0 requests.

Suppose that a remote VAX is serving two MASSBUS disks (DRA2 and DRA3) and one RA81
(DUA5) to the cluster. Then the local VAX allocates and links two corresponding DDBs to the
SB it maintains to describe the remote VAX. This is illustrated by Figure 2-3.

2-6 Digital Equipment Corporation I Confidential and Proprietary

Figure 2-3: DOB Linkage for a Local Served Disk

SB for
Remote VAX

sb$l_ddb

~

DOB
for RA81s

ddb$l_link

DUA

DUD RIVER

.

DUDRIVER 1/0 DATABASE

DOB for
MASSBUS disks

0

ORA

DUDRIVER

CXN-0002-03

Note in the above diagram that the local VAX still uses DUDRIVER when dealing with a
remote VAX's MASSBUS disks. If the remote VAX receives an MSCP command for one of its
MASSBUS disks, it will convert the command into an equivalent MASSBUS operation and
pass it to its own DRDRIVER (the MASSBUS disk driver).

Also note that if the remote VAX had been serving another MASSBUS disk called DRB3 in
addition to the above, the local VAX would allocate a third DDB corresponding to "DRB" and
link it in with the other two.

2.2.2.3 DOB Chain for Local DSA Disks

If a VAX has a local DSA controller (UDA, KDA, KDB, KDM, ...), it will have an SB corre
sponding to that controller. However, there will be no DDBs linked to that SB, and the SB$L_
DDB field will contain a 0.

DDBs for local DSA disks will be included in the list of DDBs for all local devices. The head of
that list is at offset SB$L_DDB in the system block that the local host maintains to describe
itself.

Location IOC$GL_DEVLIST traditionally served as the head of the list of all DDBs for local
devices before clustering. It still continues to serve in that role. Therefore, offset SB$L_DDB
in the local system block and location IOC$GL_DEVLIST should be expected to contain the
same address, namely the address of the first DDB in the chain of DDBs for all local devices.
The DDB$L_LINK field of each DDB is a forward pointer to the next DDB in the list, with the
last DDB in the list having a 0 in this location.

Digital Equipment Corporation I Confidential and Proprietary 2-7

DUDRIVER 1/0 DATABASE

2.2.2.4 DOB for Boot Device

Location SYS$AR,_BOOTDDB contains the address of the DDB for the boot device, no matter
what type of controller that device is on.

2.2.3 UCB - Unit Control Block

VMS creates and maintains a Unit Control Block (UCB) corresponding to each device unit
it accesses. The general purpose of a UCB is to specifically identify the unit, describe its
characteristics and status, and provide information as to the controller, driver, and current
outstanding 1/0 activity. Here are some of the most frequently referenced items in a UCB:

• Media identification (i.e. RAGO, RA92, ...).
• Unit number.
• Characteristics flags that indicate such things as whether the device is

Directory structured.
Shareable.
Capable of providing input.
Capable of providing output.
Available cluster-wide.
Dual-pathed.
A member of a shadow set.
MSCP-served.

• Status flags that indicate such things about the device as the following:
Device is online.
Unit has timed out.
Power failed while unit was busy.
Volume on this unit is software valid.
Mount verification is in progress for the volume on this device.

• For traditional non-DSA disks, the address of the IRP currently being processed on this
device; and for DSA disks, the address of another data structure (the CDDB) containing
the queue of all active IRPs for this and other units on this unit's controller.

2.2.3.1 Linked Lists of UCBs

UCBs are kept in linked lists. The head of each such list is at offset DDB$L_UCB in the DDB
describing the generic device class and linked to the SB corresponding to the controller to
which the unit is attached. Offset UCB$L_LINK in each UCB provides the address of the next
UCB in the list. A UCB with its LINK field being 0 is at the end of a UCB list.

2-8 Dlgltal Equipment Corporation I Confidential and ·Proprietary

DUDRIVER 1/0 DATABASE

Figure 2--4 shows an example of an HSC90 with four disks: an RA82 called DUAlO, an RA90
called DUAll, and two RA60s called DJAl and DJA4.

Figure 2-4: DDB Linkage Showing Four Disks

DOB
SB for HSC90 RA82s and RA90s

,__.. ddb$l_link

ddb$l_ucb I--

DUA

sb$l_ddb DUD RIVER

UCB for DUAlO

14--
ucb$l_link ~

UCB for DUAll

i..-

0

-...,,.

DOB for
RA60s

0

ddb$l_ucb

OJA

DUD RIVER

UCB for DJAl

ucb$l_link

UCB for DJA4

0

I--

~

~

!.-

CXN-0002-04

Each UCB also contains at offset UCB$L_DDB the address of the DDB to which it is linked.

2.2.3.2 UCBs for DSA and MSCP-Served Disks

The length of a UCB depends on the type of device it describes. All UCBs begin with a
common set of fields. Beyond those common fields are various UCB extensions based on the
device type.

There are five UCB extensions for UCBs representing DSA disks (both remote and local),
and also UCBs representing disks on remote VAXes which are serving those disks to the
VAXcluster. These extensions are as indicated in the following list:

• Error Log Extension.

. Digital Equipment Corporation I Confidential and Proprietary 2-9

DUDRIVER 1/0 DATABASE

Common to all disks, this region contains information useful for logging errors related to
the unit represented by the UCB, such as the address of an error message buffer. However,
most of the fields in this region are not used for DSA disks.

• Dual Port Extension.
This UCB is present for all disks, even if they are not dual ported. It indicates if they are
dual ported. And if so, it provides secondary path information, such as the address of a
secondary DDB linked to the SB representing the other controller.

• Standard Disk Extension.
Common to all disks, this extension of the UCB contains items such as:

The number of times this unit has been placed online since VMS booted.
Maximum number of logical blocks on a random access device. (For DSA disks, this is
the number of logical blocks available for host data storage.)
Maximum transfer byte count.

• MSCP Extension.
This extension is appended to a disk UCB if either
- The disk is a DSA-type disk (remote or local), or
- The disk is on a remote VAX which is serving it to the cluster.
Some of the items of information provided by the MSCP UCB extension include the
following:

Address of active/primary class driver data block (CDDB) containing the queue of all
active IRPs for the controller currently handling this disk.
Address of a secondary CDDB for failover to another controller, if there is a secondary
controller ported to this unit.
Address of the CDT representing the connection between the disk class driver on the
local node and the MSCP disk server in the controller handling this disk (or the MSCP
server in the remote VAX which is acting as a "logical controller" by MSCP-serving this
unit to the cluster).
MSCP unit number.
Various MSCP unit flags which indicate such things as whether the disk is formatted
for 512 bytes or 576 bytes per sector, if the media is removable, if the unit is write
protected, etc.
Virtual Unit Pointer to Host Based Shadowing SHAD (discussed in a later chapter)

• "Special" DUDRIVER Extension.
This is DSA specific information. Much of it relates to the geometry of DSA disks and is
used by volume shadowing to insure that proposed members of a shadow set in fact have
the "same geometry". Three of the items of information are:

Number of LBN s per track.
- Number of tracks per group.
- Number of groups per cylinder.
SDA currently does not display this information pertaining to this extension with the UCB
format command, but the symbolic offsets are globaly available.

2-1 O Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-5 illustrates the general format of a UCB representing a DSA disk, or a disk which
is MSCP-served by its remote VAX host.

Figure 2-5: UCB Extensions for MSCP Served Disk

FIELDS COMMON TO

EVERY UCB

ERROR LOG

EXTENSION

DUAL PORT

EXTENSION

STANDARD DISK

EXTENSION

MSCP

EXTENSION

"SPECIAL" DUDRIVER

EXTENSION

CXN-0002-05

2.2.4 CDDB - Class Driver Data Block

A class driver data block contains parameter and status information specific to an "MSCP
speaking" controller and its MSCP server. It also keeps a queue of active MSCP commands
issued to that controller but for which no corresponding end messages have been received.
Some of the specific items of information kept in a CDDB are:

• Queue of active MSCP commands (CDRP/IRP pairs) issued to the controller but for which
corresponding MSCP end messages have not yet been received.

• Whether or not controller is making progress with oldest active command.

Digital Equipment Corporation I Confidential and Proprietary 2-11

DUDRIVER 1/0 DATABASE

• Controller's class, model, unique device number, and system ID.
• Controller flags such as if the controller supports volume shadowing, if it supports disks

formatted with 576-byte sectors, and if it handles bad block replacement by itself.
• Status flags related to the controller's MSCP server, such as:

Currently no connection exists between local disk class driver and controller's MSCP
server.
Connection between the local disk class driver and the controller's MSCP server is
being initialized.
Local disk class driver is reconnecting to controller's MSCP server.
Connection closed for Port Load Balancing
Local host is currently polling controller's MSCP server for units to determine what
units the local host should include in its 1/0 database.
MSCP server is being handed 1/0 requests by the local host in single stream mode.

• Allocation class of the controller (or 0 if none).

2.2.4.1 Linkage From UCBs to CDDB for Controller

Figure 2-6 illustrates that each UCB contains the address of the CDDB corresponding to
the DSA controller currently handling its 1/0 requests. This address is stored at UCB offset
UCB$L_CDDB.

2-12 Digital Equipment Corporation I Confidential and Proprietary

Figure 2-6: CDDB Linkage Maintained by each UCB

DOB
SB for HSC90 RA80s and RA81s

r---+- ddb$1 link -
ddb$l_ucb ti--

DUA

sb$l_ddb DUD RIVER

UCB for DUAlO

~

ucb$1 link t---

...- ucb$l_cddb

UCB for DUAll

~

0

~ ucb$l_cddb

CDDB

i....... cddb$l_cdrp --

-

-

~

cdrp

DUDRIVER 1/0 DATABASE

DOB for
RA60s

0

ddb$l_ucb

OJA

DUD RIVER

UCB for DJAl

ucb$l_link

ucb$l_cddb

UCB for DJA4

0

ucb$l_cddb

- - cdrp

~

...,__
1--

f4-

~ cdrp

Queue of Active I/O
Requests (IRP/CDRP Pairs)

CXN-0002-06

If a remote VAX is running the VMS based MSCP server and is serving disks to the
VAX.cluster, then that remote VAX appears to the local VAX as a "logical DSA controller".
The local disk class driver issues MSCP commands to the remote VAX's VMS based MSCP
server in exactly the same way that it would to the server on an HSC.

Digital Equipment Corporation I Confidential and Proprietary 2-13

DUDRIVER 1/0 DATABASE

The preceding diagram applies to such a situation. The SB in the diagram would actually be
for the remote VAX rather than a DSA controller. The UCBs could be for any type of disk on
the remote VAX that have been "set served". And the CDDB would play the same role for the
remote "logical DSA controller" as it would for an HSC.

The preceding diagram also applies if the DSA controller is local (such as a KDM70 on a local
VAX.) However, remember that while there is an SB representing the local DSA controller,
the DDBs are not linked to that SB. DDBs for the local DSA controller are linked to the
permanent local SB instead.

2.2.4.2 Linkage from CDDB to UCBs on that Controller

By means of its UCB$L_CDDB field, each UCB keeps track of the particular CDDB for the
controller currently handling its 1/0 requests. However, it is also necessary for the CDDB to
keep track of all UCBs that can give it 1/0 requests. This is facilitated by a linked list. At
offset CDDB$L_UCBCHAIN is the address of the first UCB in this list. Then, within each
UCB, offset UCB$L_CDDB_LINK provides the address of the next UCB in the list. The list
ends with a UCB whose CDDB_LINK field contains a 0.

This linkage proves useful when DUDRIVER needs to determine if a particular disk is already
known to be on a controller. It merely fetches the CDDB corresponding to the controller and
then scans this list looking for a matching UCB. (This also applies to the case where the
"controller" is actually a VAX running the VMS based MSCP server.)

2.2.4.3 Linkage from CDDB to DDBs on that Controller

All DDBs for disks handled by a DSA controller are kept in a singly linked list. The address
of the first DDB in this list is kept at offset CDDB$L_DDB in the CDDB associated with the
controller. Each DDB then contains the address of the next DDB in this list at offset DDB$L_
CONLINK. A DDB whose CONLINK field is set to 0 represents the last DDB in the list.

One application for this list occurs when a UCB is created for a newly discovered unit on a
DSA controller which will provide the primary path for the unit. The list of DDBs attached to
the CDDB is searched for one with a matching generic name (DUA, DJA, ...). If one is found,
the new UCB is linked into that DDB's list of UCBs. If a matching DDB is not found, it is
created and then the new UCB becomes the first in the DD B's list of UCBs. (Again, this also
applies to CDDBs associated with a disk on a remote VAX acting as a "logical controller" by
running the VMS based MSCP server.)

2-14 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.2.4.4 Extensions to Disk Class Driver CDDB

There are two extensions to the disk class driver CDDB. The first is the ''permanent
IRPICDRP", and the second is the "DAP IRP/CDRP".

The permanent IRP/CDRP is used by DUDRIVER's timeout mechanism for two purposes:

• During periods of inactivity, DUD RIVER will issue what effectively amounts to a NOP to
the controller so that it knows the local host is still "alive and well".

• If the oldest active MSCP command to a controller has been pending for an "excessively
long period of time", DUDRIVER issues a GET COMMAND STATUS to the controller to
see if any progress has been made on that command.

The DAP IRP/CDRP is used by DUDRIVER for Determine Access Paths processing. This is a
mechanism for finding out if a unit is dual pathed between two DSA controllers (e.g. an RA81
statically dual pathed between two HSC90s).

See the discussions on DUDRIVER's timeout mechanism and Determine Access Paths process
ing elsewhere in this book for details.

Figure 2-7 illustrates the general format of a CDDB used by the disk class driver., This in
cludes the two special class driver extensions. Symbolic offset names relative to the beginning
of the CDDB indicate where the basic CDDB ends and where each of the two extensions
begin.

Digital Equipment Corporation /Confidential and Proprietary 2-:-15

DUDRIVER 1/0 DATABASE

Figure 2-7: CDDB Format and Class Driver Extensions

Basic CDDB Fields

CDDB$L_RSVD4 (reserved longword)

CDDB$L_PERMCDRP or CDDB$A_PRMIRP

First CDDB Extension

(Permanent IRP/CDRP)

CDDB$L_DAPCDRP or CDDB$A_DAPIRP

Second CDDB Extension

(OAP IRP/CDRP)

CXN-0002-07

2.2.5 CRB - Channel Request Block

Within a generic channel request block is the head of a queue of waiting fork blocks, each of
which represents the suspended context of a driver fork process waiting to gain control of a
controller data channel. A generic CRB also holds the addresses of entry points for driver
interrupt service routines as well as device and controller initialization routines.

While port drivers make use of these generic CRB fields, DUDRIVER is essentially uncon
cerned with them. This is because no device directly interacts with or interrupts DUDRIVER.
The disk class driver exchanges information with the controllers for its disks through the SCS
and port driver layers of software between it and the controllers.

DUD RIVER still creates a CRB for each controller to which it "talks". The purpose of each
such CRB is to trigger periodic tasks which DUDRIVER needs to perform for the controller
associated with the CRB. These tasks include:

2-16 Digital Equipment Corporation/. Confidential and Proprietary

DUDRIVER 1/0 DATABASE

• Determining if progress has been made on the oldest active command issued to that
controller and taking appropriate action.

• If no commands are active, issuing a NOP to the controller so that it knows that
DUDRIVER on this host is still "alive and well".

• Invoking DAP (determine access paths) processing to find secondary paths to dual-ported
disks.

Thus, there are three fields in a CRB that are of principal interest to DUDRIVER:

• DUETIME
All CRBs are kept in a list whose head is at location IOC$GL_CRBTMOUT-2C. Scanning
the list for timed out CRBs is one of the "once a second" tasks performed by routine
EXE$TIMEOUT in module TIMESCHDL. A CRB's DUET/ME field (crb$l_duetime)
contains the time in seconds when the CRB will time out. If the content of this field is less
than or equal to the content of EXE$GL_ABSTIM, then the CRB has timed out and the
routine to perform periodic tasks associated with this CRB is called.
Figure 2-8 illustrates the CRB timeout list. Location IOC$GL_CRBTMOUT contains
the address of the field CRB$L_TIMELINK in the first CRB in the list. The CRB$L_
TIMELINK field of each CRB contains the address of the next CRB timelink field in the
list. A zero value in the CRB$L_TIMELINK field terminates the list.

Figure 2-8: CRB Timeout Linkage

CRB CRB CRB

IOC$GL_CRBTMOUT:: ..,.: crb$l_timelink ~ crb$l_timelink t---- 0

CXN-0002-08

NOTE

All CRBs created by all drivers are in this same CRB timeout list, and not just
CRBs created by DUDRIVER.

• TOUTROUT
The TOUTROUT field of a CRB contains the address of the routine to be called when the
CRB times out. This routine performs the periodic tasks associated with the CRB. For
DUDRIVER, these are the tasks described on the previous page.

Digital Equipment Corporation I Confidential and. Proprietary 2-17

DUDRIVER 1/0 DATABASE

The CRB's timeout routine should also reset the DUETIME field to reflect the next
wakeup time for itself. For DUDRIVER, this is done by merely adding to the current
time the "controller delta" stored in the CNTRLTMO field of the CDDB associated with
the controller.

• AUXSTRUC
This field contains the address of an "auxiliary structure" to be passed to the routin.e whose
address is in the TOUTROUT field.
DUDRIVER has one common timeout routine for all controllers, namely DU$TMR. It is
therefore necessary to identify to that routine the particular controller for which it is being
called. This is accomplished by having the CDDB associated with the controller be the
"auxiliary structure" for the CRB also associated with that controller.
When DUDRIVER creates and inserts a CRB for the controller into the IOC$GL_
CRBTMOUT list, it stores the address of the controller's CDDB in the CRB$L_
AUXSTRUC offset of the CRB.

Figure 2-9 illustrates the relationship of the CRB to the DUDRIVER 1/0 database diagram
which has been evolving in this chapter.

2-18 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-9: CRB Linkage and the General Related Data Structures

SB for HSC90

sb$l_ddb

CRB

crb$l_auxstruc

DOB
RA80s and RA81s

~ ddb$l_link

ddb$l_ucb ~

DUA

DUD RIVER

UCB for DUAlO

~

ucb$l_link ~

~ ucb$l_cddb

UCB for DUAll

14-
0

~ ucb$l_cddb

~

CDDB

' -""' cddb$l_cdrp ""'- ---- ~

~

~

14-

DOB for
RA60s

0

ddb$l_ucb

OJA

DUD RIVER

UCB for DJAl

ucb$l_link

ucb$l_cddb

UCB for DJA4

0

ucb$l_cddb

cdrp ~ cdrp ""'-
~

Queue of Active
Requests (IRP/CDRP

~

~

~

~

_., cdrp ~

I/O
Pairs)

CXN-0002-09

Digital Equipment Corporation I ConfidentJal and Proprietary ,2-19

DUDRIVER 1/0 DATABASE

2.2.6 Dual-Pathed Disks

Thusfar in this chapter, data structures have been presented on the assumption that there is
only one controller for each disk. However, it is often desirable to port a disk to two different
controllers, thus providing two different paths to that disk. The objective in doing so is to
avoid the situation wherein a controller is a single point of failure for software needing that
device.

No new data structures are needed to handle dual-pathed disks. In fact, the impact on the
previously introduced data structures involves merely a few more fields in those structures.

The following diagram is a simplified illustration of data structure linkages for a disk, (DUAl),
dual-pathed between two controllers named TOM and DON. Controllers TOM and DON are in
allocation class 255. Note the following points in this illustration that facilitate dual-pathing:

• There are two DDBs for the generic class of disks "DUA". One of them is in the SB$L_
DDB list for controller TOM, and the other is in the SB$L_DDB list for controller DON.
The DDB$L_NAME fields for both DDBs contain the generic "DUA". The DDB$L_
ALLOCLS field for both contain the quantity "255".

• Both DDBs for generic DUA "point" to a UCB whose UCB$W _UNIT field contains "1".
Hence, the disk is named DU Al regardless of which controller is used to access the disk.
However, the local VAX will direct its 1/0 to the disk using only the "primary path". The
"secondary path" exists strictly for failover of the disk in the event that the primary path
to the disk is lost for some reason. Since the primary path for the disk is controller TOM,
the UCB for the disk is in the DDB$L_UCB list for controller TOM. But since controller
DON provides the secondary path, the UCB for this disk is in the DDB$L_2P _UCB list for
DON's DDB.

• Within the UCB, the DDB field contains the address of the primary path DDB, and the
2P _DDB field contains the address of the secondary path DDB.

• Within the UCB are pointers to two CDDBs. The UCB$L_CDDB field contains the address
of the primary path CDDB, whereas the UCB$L_2P _CDDB field contains the address of
the secondary path CDDB.
All CDRPs representing 1/0 requests for this unit are queued to the primary path CDDB.
It will be seen in the chapter presenting the detailed flow of a $QIO that the primary path
is always selected by the disk class driver. Figure 2-10 shows the data structures involved
for secondary paths.

2--20 Digital Equipment Corporation I Confidential and Proprietary

~:SCS$G0 CONFIG

PRIMARY
PATH SB

Cl .--.... sb$l_f link

ca·
:::;.-
!!.

"TOM"
sb$t_nodename

.a1 c sb$l_ddb I---'

if
3
CD
:::s -
~ ..

"'CS
0 a
0
::J -(')
0
:::s - SECONDARY

i
:::s -

PATH SB

L....,_. sb$l_f link --
!:
D> 0 :::s x a. z

"DON"
sb$t_nodename

I ,, 0
0 a 0
I\)

sb$l_ddb lo--

"'CS !. ..
0 ii' -D>

-<
~

,_....

....-.l

PRIMARY
PATH DOB

ddb$l_ucb

"DUA"

ddb$l_sb

.. 255"

ddb$1_2p_ucb

SECONDARY
PATH DOB

ddb$l_ucb

"DUA"

ddb$l_sb

"255"

ddb$1_2p_ucb

--....
1--

i.....,

'"" ,a·
c a
I\)
I

0

c
!a
D>

CRB FOR ~
CONTROLLER "TOM" .. c

£?. -- crb$l_auxstruc c a
tn
tJ)
c
"C
"C

PRIMARY 0
UCB PATH CDDB :i

..... cddb$l_cdrpqfl :;
ca

ucb$l_ddb lo-- tJ)
CD n

ucb$w_unit(l) 0
:::s a.
D>

ucb$1_2p_ddb lo-- <
"ti

SECONDARY
ucb$l_cddb PATH COOB

!a
::r

ucb$1_2p_cddb cddb$l_cdrpqf l tn

c
c:
c

CRB FOR
CONTROLLER "DON" ::D

< m
L-. crb$1 auxstruc ::D

~

0
c
~
l>
m
J>
tJ)
m

DUDRIVER 1/0 DATABASE

As has already been pointed out, the diagram on the previous page is somewhat simplified. Here is
an explanation of those simplifications.

Only the two system blocks corresponding to HSC controllers TOM and DON are shown to
be in the SCS$GQ_CONFIG queue. The first entry in this queue would actually be the local
system's SB, and the SBs for TOM and DON would be linked off of that entry.

There would also be system block entries for all other nodes, such as other VAXes and HSCs
with which the local VAX communicates via SCS. There would be still more SBs for local DSA
controllers, such as a local KDM70.

The next simplification is that only one DDB is shown to be present in each system block's
SB$L_DDB list. In fact, these DDBs may merely be the first DDBs in these lists. For example,
if controller TOM had disks called DJA 7 and DJAS, then the DDB$L_LINK field of TOM's
DUA DDB would contain the address of another DDB with generic name "DJA".

What if there were more DUA disks for which controller TOM were providing the primary
path? In this case, the UCB shown would be only one of several in a list linked to TOM's
DDB. The DDB$L_UCB field of controller TOM's DDB woti.ld contain the address of the first
UCB in this list. The UCB$L_LINK field of each UCB in this list would contain the address
of the next UCB in this primary path list. A zero value in the UCB$L_LINK field would
terminate the list.

Similarly, if controller DON were providing the secondary path to more than just one DUA
disk, then there would be a secondary path list of UCBs linked to DON's DDB. The DDB$L_
2P _UCB field of DON's DDB would contain the address of the first UCB in this list. The
UCB$L_2P _LINK field of each UCB in this list would contain the address of the next UCB in
the list. The UCB$L_2P _LINK field is not part of the basic UCB, but is found in the dual path
extension. -

It is even permissible for a controller to provide the primary path for some disks and provide
the secondary path to other disks. Figure 2-11 shows a simplified illustration of how controller
TOM provides the primary path for DUAl and DUA2, and the secondary path for DUA3.
DON, on the other hand, provides the secondary path for DUAl and DUA2, but the primary
path for DUA3.

2-22 Dlgltal Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-11: Provisions for Secondary Paths Offered by Multiple Servers

System Block
for TOM

sb$l_ddb

"DUA" DDB

ddb$l_ucb

ddb$1 _2p_ucb

UCB - DUAl

ucb$1 link -

ucb$1_2p_link

UCB - DUA2

ucb$1 link (0) -

ucb$1 _2p_link
(0)

.._

I- - ~ I- ,

.._ ----

I- _..

L

r -I- - -

-- ---- ---

system Block
for DON

sb$1 ddb -

"DUA" DDB

ddb$l_ucb

ddb$1_2p_ucb

UCB - DUA3

ucb$1 link(O) -

ucb$1 _2p_ link
(0)

CXN-0002-11

Dig Ital Equipment Corporation I Confidential and Proprietary . 2-23

DUDRIVER 1/0 DATABASE

2.3 DUDRIVER 1/0 Database Initialization

The disk class driver's database consists of CDDBs and CRBs associated with "MSCP speak
ing" controllers, and the DDBs and UCBs associated with the disks on those controllers.
In general, DUDRIVER initializes these data structures within the context of two general
scenarios:

• Controller Initialization.
Once VMS has become aware of the existence of an "MSCP speaking" controller, it estab
lishes an SCS connection with the MSCP disk server (MSCP$DISK) on that controller.
Based on the information exchanged between the disk class driver and the server, a CDDB
and CRB are initialized. Then the class driver queries the server regarding disks and
builds UCBs and DDBs corresponding to them. As a result of the dialogue that occurs
during controller initialization, the server is set to a "controller online" state from the class
driver's point of view.

• Attention Messages Received by DUDRIVER from MSCP$DISK
An MSCP server sends an AVAILABLE ATI'ENTION message to a disk class driver which
it considers "controller online" anytime a unit asynchronously becomes available to that
class driver. An ACCESS PATHS ATTENTION message is used by an MSCP server to
report an alternate (i.e. secondary) access path for a disk. When DUDRIVER receives
such messages, it builds new UCBs to reflect newly discovered units, or alters existing
UCBs to reflect secondary paths to already known units.
A third type of attention message, DUPLICATE UNIT NUMBER, is used to notify hosts
that two or more units have conflicting unit numbers so that an operator can take appro
priate action.

The next few sections of this chapter are concerned with when these scenarios occur, and what
happens during each.

2.3.1 DUDRIVER's Controller Initialization Routine

2.3.1.1 DU_CONTROLLER_INIT

DU _CONTROLLER_INIT is DUDRIVER's top level controller initialization routine. It is
called whenever it is necessary to establish an SCS connection with the MSCP disk server on
an "MSCP speaking" controller. It then proceeds to modify the local host's 1/0 database to re
flect disk units accessible to this host through the server in that controller. This can typically
happen under any of four circumstances which are described in this section and illustrated by
the flowchart which follows. The following list indicates some of these circumstances:

• System disk for local host is on an "MSCP speaking" controller.
VMS initialization begins when SYSBOOT transfers control to module INIT. At location
INI_BOOTDEVIC, INIT performs the allocation and initialization of the database to
describe the system disk.

2-24 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

If the system disk is handled by a DSA controller, then SYSBOOT has loaded the port
driver and disk class driver into nonpaged pool at locations BOO$GL_PRTDRV and
BOO$GL_DSKDRV, respectively.
INI_BOOTDEVIC calls routine IOC$INITDRV twice: once to initialize the port driver
(which also causes port microcode to be loaded and started), and the second time to
initialize the disk class driver. It is this second call to IOC$INITDRV that invokes DU_
CONTROLLER_INIT. It should be observed, however, that the calling of IOC$INITDRV
twice here pertains only to the controller handling the system disk, and no other controller.

NOTE

If this host has been booted from a remote system (i.e. this host is participating
in a VAXcluster via the ETHERNET), then IOC$INITDRV will also allocate and
initialize a System Block for the remote system.

• Local Host Participates in a VAXcluster.
When INIT completes its work, it transfers control to the scheduler which selects the
swapper to run. The first time the swapper runs, it creates the SYSINIT process. At
location SIP _CLUSTER_INIT, the SYSINIT process tests to see if the local host is going
to participate in a cluster. If this test proves true, SYSINIT creates the "stand alone
configure" process (STACONFIG). STACONFIG calls B00$CONFIGALL to autoconfigure
all local adapters and devices specified by a list it passes to the routine.

If the local host does not have NI cluster potential, (NISCS_LOAD_PEAO sysgen pa
rameter equals zero), then the list includes only devices (and hence drivers) beginning
with the letters D, P and M1.

If the local host does have the potential to use the NI for cluster communication
(NISCS_LOAD_PEAO nonzero), then the list includes all devices (and hence drivers)
beginning with the letters X, E and F2as well as D, P and M.

NOTE

If the local host booted from a local disk, then the NI or CI port driver would
not have been started (and hence port microcode not loaded and started) by
INIT. However, here is where that task would be done in such a case if the
local VAX is going to participate in a cluster.

Within BOO$CONFIGALL, a call is made to IOGEN$LOADER to load the database and
driver if necessary. And from within IOGEN$LOADER, DU_CONTROLLER_INIT would
be called.

1 Device code for TAPE drivers has been included in VMS V5.4-3
2 Device code for FDDI drivers has been included in VMS V5.4-3

Digital Equipment Corporation I Confidential and Proprietary 2...;25

DUDRIVER 1/0 DATABASE

NOTE

If the SYSGEN parameters for the local host indicate that a quorum disk is
being used, then STACONFIG also starts fork threads to autoconfigure MSCP
and HSC-served disks so that the quorum disk can be found.

• "Autoconfigure All" in STARTUP.COM .
SYSINIT eventually invokes the STARTUP.COM procedure. Among the many operations
performed by this procedure is to perform an "autoconfigure all" for local adapters and
devices. Thus, even if the stand alone configure process was not created, SCS port drivers
and their associated ports would be loaded and started. This would also subject local DSA
controllers to the processing done by DU_CONTROLLER_INIT if not already done by
STACONFIG.

• Remote "MSCP Speaking" Controllers Discovered by CONFIGURE.
After doing the "autoconfigure all", STARTUP.COM then creates the CONFIGURE process
if either the local host is participating in a VAX.cluster or at least one of the following ports
are present (CI, DSSI, or a local DSA port).
The role of the CONFIGURE process is to discover remote DSA controllers which have
not as yet been found. This applies both to HSCs and remote VAX.es running the VMS
based MSCP server. Once found, these controllers will also be subjected to local DU_
CONTROLLER_INIT processing.
CONFIGURE performs its remote MSCP Server locating by establishing a periodic polling
mechanism with the assistance of SCS routines. Thus, anytime an HSC makes an unex
pected appearance on the CI, or a DSSI based device becomes known, it will be seen and
subjected to DU_CONTROLLER_INIT by CONFIGURE. This also applies to a remote VAX
on the CI or NI running the VMS based MSCP server. Figure 2-12 and Figure 2-13 depict
the fl.ow of device configuration.

2-26 Digital ·Equipment Corporation./ Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-12: Configuration of Devices by Sysboot and lnlt

SYSBOOT

SYSTEM DISK ON
"MSCP SPEAKING"
CONTROLLER ?

NO

!NIT

SYSTEM DISK ON
"MSCP SPEAKING"
CONTROLLER ?

NO

SWAPPER

T
SYSINIT

T

YES--,._

SYSBOOT LOADS PORT DRIVER

INIT INITIALIZES PORT
AND PORT DRIVER

!NIT CALLS DUDRIVER'S
CNTRL INIT RTN

CXN-0002-12

Digital Equipment Corporation./ Confidential and Proprietary 2-27

DUDRIVER 1/0 DATABASE

Figure 2-13: Configuration of Devices by Sysinit and Stanup

SYSINIT

WILL LOCAL HOST
PARTICIPATE IN
A VAXcluster ?

NO

STARTUP.COM

AUTOCONFIGURE ALL
TO CONFIGURE ALL
LOCAL DEVICES

YES

CREATES CONFIGURE PROCESS TO
FIND DEVICES ON REMOTE "MSCP
SPEAKING" CONTROLLERS

CONFIGURE PROCESS SETS UP A
PERIODIC POLLING MECHANISM
(DUDRIVER'S CNTRL !NIT RTN
WILL BE CALLED IF POLLING
DISCOVERS REMOTE "MSCP
SPEAKING" CONTROLLER)

SYSINIT CREATES STACONFIG PROC

STACONFIG AUTOCONFIGURES ALL
LOCAL DEVICES BEGINNING WITH
THE LETTERS "D" AND "P" (AND
"E" and "X" IF CLOSTER
PARTICIPATION VIA ETHERNET)

STACONFIG INVOKES DUDRIVER'S
CNTRL INIT ROUTINE

CXN-0002-13

2.3.2 Overview of DUDRIVER's Controller Initialization Routine

2-28 Digital Equipment Corporation ·1 ·Confidential and Proprietary

DUDRIVER 1/0 DATAf

2.3.2.1 CDDB Creation and Initialization

First, DU_CONTROLLER_INIT allocates and initializes a CDDB for the controller. The
controller's system ID is copied into the CDDB. Among the flags which get set here are the
INITING and NOCONN flags. These indicate that the CDDB is being initialized and that
there is as yet no SCS connection between the local disk class driver and the controller's
MSCP server.

2.3.2.2 MAKE_CONNECTION Establishes a Connection to MSCP Server

Next, DU_CONTROLLER_INIT calls MAKE_CONNECTION to establish an SCS connection
with the MSCP server. At this time, the addresses of routines within DUDRIVER for receiving
datagrams and messages from the controller are declared. And various controller characteris
tics such as its timeout period, controller flags, software and hardware versions, and allocation
class are established and recorded in the CDDB.

Upon return from MAKE_CONNECTION, DU_CONTROLLER_INIT sets up the timeout
routine address and duetime fields in the CRB associated with the controller.

2.3.2.3 Poll for Disk Units

It then calls DUTU$POLL_FOR_UNITS to query the controller's MSCP$DISK about disks
which it may access. The polling mechanism is "conceptually0 quite simple. A series of GET
UNIT STATUS commands (each with the "next unit" flag set) is issued to the server.

A UCB will be setup by one of the two following routines based on the content of the end
messages corresponding to the commands.

• Routine DUTU$NEW _UNIT sets up the UCB if the disk reported in the end message is
not the system disk.

• Routine DO_ORIG_UCB sets up the UCB if the disk is the system disk. This routine will
complete filling in the original UCB created l?Y the INIT process.

2.3.2.4 Check for Controller Based Shadow Set

If the Restart Parameter Block indicates that the system disk is part of a CONTROLLER
based shadow set, DO_ORIG_UCB creates a shadow set virtual unit consisting of this one
member. (The remaining members of the system disk shadow set virtual unit should be added
by a MOUNT/SHADOW command in the SYSTARTUP _ V5.COM procedure.) DDBs will also
be created as needed. For HOST based shadow sets, this would have been performed when we
configured the secondary class driver in Init.

At the end of the polling procedure, units which have never been seen before will have their
UCBs linked into the database such that the controller just polled will be the primary path
for these units. Such would be the case for single ported units, and units which are statically
dual-ported.

Digital Equipment Corporation-/ Conf.ldential and. Proprietary 2-29

DUDRIVER 110 DATABASE

2.3.2.5 Handling of Secondary Path Discovery

If the unit is dynamically dual-ported, then polling may find a secondary path to an already
known unit. While there is some special casing here (see the detailed routine description),
in general this latter case will result in an already existing UCB having its secondary path
linkages setup. However, secondary path linkages for shadow set virtual unit UCBs are not
setup by this procedure.

Finally, the INITING and NOCONN flags in the CDDB are cleared.

Figure 2-14 illustrates tl~e general flow of the events that occur in DU_CONTROLLER_INIT.

2-30 ·Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-14: DU_CONTROLLER_INIT flow

DU_CONTROLLER_INIT

~~

l Allocates and initializes CDDB,

J sets INITING and NOCONN flags.

'
MAKE_CONNECTION

Establishes scs connection
with server. Determines
and records the controller
characteristics in CDDB.

~

DUTU$POLL_FOR_UNITS

Loops, issuing GET UNIT STATUS commands with "next unit"
flag set. For unit reported in each end message, checks
if it is the sy_stem disk.

If unit not system disk If unit is system disk
------------------------- -------------------------

DUTU$NEW_UNIT DO_ORIG_UCB

Initializes new UCB Already existing UCB
if unit not already filled in. If system
known. sets up dual disk is to be a
path linkages for UCB controller based
if unit already known shadow set, create
on other controller. virtual unit with one

member.

~

l INITING and NOCONN flags in CDDB cleared.]

CXN-0002-14

Dlgltal Equipment CQrporatlon I Confidential and Proprietary 2-31

DUDRIVER 1/0 DATABASE

2.3.3 Determine Access Paths Processing

2.3.3.1 Determination of Topology of Disk Units

Determine access paths (DAP) processing is used by class drivers to determine the topology of
units that are ported to more than one controller.

2.3.3.2 Access Path Attention Messages

For the disk class driver, DAP processing involves issuing a Determine Access Paths MSCP
command for each unit on the controller whose UCB indicates that it is online and that it is
not a shadow set virtual unit. Upon receipt of the DAP command, the unit will identify itself
to any other controller to which it is connected; and that other controller's MSCP server will
then issue Access Path Attention messages to all disk class drivers to which it is "controller
online".

Observe that in this situation, only the first controller knows who issued the Determine Access
Paths command, and not the second. Therefore, the second controller must send the Access
Path Attention messages to all disk class drivers to which it is "controller online".

Because of this, the local DUDRIVER may receive an unsolicited Access Path Attention
message. In fact, there is the possibility that the local DUDRIVER may receive an Access
Path Attention message for a unit it does not yet even know about (i.e. that it has not yet
discovered and for which it has not yet set up a primary path).

2.3.3.3 Setup of Dual Path if Found

Upon receipt of an Access Path Attention message from any controller for any unit,
DUDRIVER will call routine DUTU$SETUP _DUAL_PATH to search out the UCB corre
sponding to the unit reported in the message. If DUTU$SETUP _DUAL_PATH finds the UCB,
then it sets up the appropriate dual-path linkage for it. If the UCB is not found, the message
is merely ignored. (For further details, see the detailed description of routine ATTN_MSG
near the end of this chapter. Also, an overview of routine DUTU$SETUP _DUAL_PATH is
presented in the detailed description of routine DUTU$NEW _UNIT.)

2.3.3.4 OAP Scheduling

DAP processing is performed by routine DUTU$DODAP in DUDRIVER for non emulated
MSCP servers. It is invoked as part of the disk class driver timeout mechanism driven by
routine DU$TMR. Periodically, the CRB associated with a particular controller times out and
invokes DU$TMR. Routine DU$TMR invokes DAP processing if either of two conditions is
true:

• It finds that there are no MSCP commands active for that controller.

2-32 ·Digita.I Equipment .corporation I Confidential and Proprietary

DUDRIVER 110 DATABASE

• The oldest active command has been around a "very long time"; but, nevertheless, the
controller is "making progress" on this command. (Details of DU$TMR and a detailed
description of this routine are presented in a later chapter of this book dealing with
DUDRIVER error handling.)

2.3.3.4.1 DAPBSY Flag Set In the CDDB If OAP Processing In Progress

DAP processing is, in fact, not done every time DUTU$DODAP is called. If DUTU$DODAP
actually initiates DAP processing, the DAPBSY flag is set in the CDDB associated with the
controller. The address of this CDDB is in the AUXSTRUC field of the CRB associated with
the controller. The DAPBSY flag is not cleared until DAP commands have been issued for all
UCBs which are online and do not represent shadow set virtual units.

2.3.3.4.2 DAPBSY Flag Checked for OAP Already In Progress

Since each invocation of DUTU$DODAP is actually a fork thread, it is possible under certain
very heavy load situations that a previous DAP processing fork thread has not completed by
the time a new fork thread is initiated. Consequently, if this flag is found to be still set, the
new fork thread terminates itself without doing anything. Also, there is a DAPCOUNT field
in the CDDB. Each time DUTU$DODAP is called, it decrements this field. If the field is still
greater than or equal to zero, DAP processing is not done.

2.3.3.4.3 DAPCOUNT Field used to Determine Frequency of OAP Processing

The DAPBSY flag and DAPCOUNT field serve to strike a balance between the desirability of
quickly finding secondary paths to units and the undesirability of inducing excess overhead
and a negative performance impact by doing DAP processing too often.

NOTE

Each time the DAPCOUNT field in the CDDB becomes negative and DAP process
ing is therefore actually done, the DAPCOUNT field is reset to the value of the
parameter DAI' _COUNT. In VMS V5.5 the value of DAP _COUNT is hard coded as
11 (decimal) at the beginning of routine DUTU$DODAP.

One final observation should be made about DAP processing. This technique serves to detect
new or changed alternate paths to a disk. However, the loss of a previously existing alternate
path will not be detected.

Digital Equipment Corporation I Confidential and Proprietary 2-33

DUDRIVER 1/0 DATABASE

2.3.4 Attention Messages

MSCP servers use attention messages to report certain asynchronous events relevant to a
unit's availability and/or status to class drivers.

DUDRIVER's attention message processing routine, ATTN _MSG, dispatches based on the
OPCODE field of the message buffer for the following three valid attention message types:
Unit Available, Duplicate Unit, and Access Paths.

Otherwise, the message is considered invalid and logged as such, and the A'l'TN_MSG
branches to DU$RE_SYNCH to reset what is assumed to be a "very ill" controller.

2.3.4.1 Unit Available Attention Message

ATTN_MSG dispatches to UNIT _AVAILABLE_ATl'N to handle a unit available attention
message. Routine DUTU$NEW_UNIT will either add a new unit to the local 1/0 database
if the unit is not as of yet known, or it will alter the database to reflect the discovery of a
secondary path to a known unit.

2.3.4.2 Duplicate Unit Attention Message

ATTN_MSG dispatches to DUPLICATE_UNIT _ATTN in the duplicate unit case. The only
action taken upon receipt of a duplicate unit attention message is the notification of the
operator about the discovery of two units on the same controller with the, same MSCP unit
number. The operator is then expected to resolve the situation.

2.3.4.3 Access Path Attention Message

ATTN_MSG dispatches to ACCESS_PKI'H_ATTN if an access paths attention message is
received. This results in the calling of routine DUTU$SETUP _DUAL_PATH to alter the 110
database to reflect a secondary path to a known unit if that secondary path has not yet been
found. (The flow of routine DUTU$SETUP _DUAL_PATH is presented within the detailed
description of DUTU$NEW_UNIT.) Figure 2-15 illustrates the attention message dispatching.

2-34 Digital Equipment ·Corporation l Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Figure 2-15: Attention Message Dispatching

ATTN_MSG

1 1~ ..

UNIT_AVAILABLE_ATTN DUPLICATE_UNIT_ATTN ACCESS_PATHS_ATTN

Setup new UCB or Notify the operator Set up secondary
a secondary path about the condition path if none has
for existing UCB been found yet

CXN-0002-15

2.3.5 The CONFIGURE Process

The CONFIGURE process has the responsibility for discovering remote "MSCP speaking"
controllers not found during the early stages of VMS initialization, and then subjecting them
to DU _CONTROLLER_INIT processing.

Additionally, if the sysgen parameter MSCP _SERVE_ALL indicates that automatic disk
serving is to be performed, the main routine of the configure process (CONFIGMN) establishes
an executive mode timer AST to perform routine AST _REC. This routine executes every 15
seconds (VMS V5.5) and examines the local IO database using routine SCAN _ALL_DEVICES
to determine if there are any new local devices that need to be MSCP served. If any are found,
routine MSCP$ADDUNIT is called to perform the addition.

2.3.5.1 Configure uses SCS Process Polling to Discover MSCP Servers

To accomplish this, CONFIGURE requests the SCS process poller to seek out MSCP servers
on remote nodes (HSCs, DSSI nodes and other VAXes). When one is found, the SCS process
poller notifies the CONFIGURE process of this discovery, and also on what node the server
is running. CONFIGURE then calls routine B00$CONNECT, which in tum invokes DU_
CONTROLLER_INIT.

The CONFIGURE process consists of two major components: one to request the SCS process
poller to poll for MSCP servers (disk and tape), and a second to handle the discovery of such
servers.

Digital Equipment Corporation I Confidential and Proprietary 2-35

DUDRIVER 1/0 DATABASE

2.3.5.2 Requesting Polling

Routine BOO$CONFIGURE requests SCS process polling. It does so in three steps:

• First, it creates a mailbox which is to be used by the SCS process poller to notify the
CONFIGURE process when an MSCP server is found.

• Second, it calls routine REQ_POLL to request process polling by the SCS process poller.
In so doing, B00$CONFIGURE passes to the SCS process poller the 1/0 channel number
of the mailbox, and also the names of the SYSAPs for which to poll.

• Finally, it uses the $QIO system service to create a "write attention" AST by which it will
be notified anytime the mailbox is written (i.e. anytime a message is placed in the mailbox
by the SCS process poller).

NOTE

The CONFIGURE process requests polling for both the disk and tape servers.
However, only the disk server MSCP$DISK is of concern here.
The SCS process poller sends inquiries to what "appear to be logical remote
controllers" from its point of view. This clearly includes actual remote controllers
such as HSCs and ISEs. It also includes other VAXes in the cluster since, by
means of the VMS based MSCP server code, these VAXes may appear as logical
controllers.
If the SCS process poller receives a reply indicating that the desired server is
"listening" for incoming CONNECT requests, then it delivers the write attention
AST to the CONFIGURE process.

2.3.5.3 Discovery of MSCP Controllers

Writing to the mailbox triggers the delivery of the write attention AST. Routine FOUND_
PROC in the CONFIGURE process is invoked to handle messages in the the mailbox. For
each such message, FOUND_PROC calls B00$CONNECT to do the following:

• Allocate a DDB corresponding to node_name$DUA.
• Initialize NAME, DRVNAME, SB, and ALLOCLS fields in DDB.
• Allocate and initialize a CRB for the controller.
• Allocate a UCB and initialize its UNIT field to 0.

• Call DU_CONTROLLER_INIT, passing it these data structures.

The interactions between the CONFIGURE process poller, the SCS process poller, and DU_
CONTROLLER_INIT are illustrated by Figure 2-16.

2-36 Digital Equipment Corporation I Confidential and Proprietary

2
u::a
:=:.
!!.

!'
c
if
3
CD
::J -g .. -a
0 a
0
::::s

fl a.
a: a
!:
DJ
::J
CL .,,
a -a ..
!
-<
~

()
x z
I
0
0

2
!..
Q)

CONFIGURE PROCESS

(Normally Hibernating)

BOO$CONNECT

LOADS DUDRIVER (if not
yet loaded), ALLOCATES
DDB for node name$DUA,
also CRB, IDB, and UCB

DU_CONTROLLER_INIT

DUDRIVER CONTROLLER
INITIALIZATION

Requests scs Process Polling for MSCP$DISK (SCS$POLL_MBX)

I ------- ,--------------.. I
MAILBOX USED BY

CONFIGURE PROCESS

CONTROLLER

MSG: FOUND
MSCP$DISK

CONTROLLER

scs
PROCESS
POLLER

CONTROLLER

"Tl ca·
c
;
I\)
I

en

0
0
::::s -ca·
c ...
CD
"tJ ...
0 n
CD

"' "' "tJ

~
::::s ca
D>
::::s
Q.

c
~ c:;·
CD

0
0
:J -ce·
c
DJ -0
::::s c c:

c :a
< m :a -0
c
!i
l>
m
)>
en m

DUDRIVER 1/0 DATABASE

2.4 DUDRIVER 1/0 Database Initialization Routines

The remainder of this chapter presents detailed descriptions of the major routines involved in
configuring the principal components of the VMS 1/0 database referenced by DUDRIVER.

DU_CONTROLLER_INIT

MAKE_ CONNECTION

DUTU$POLL_FOR_UNITS

DUTU$NEW_UNIT

DUTU$DODAP

ATTN_MSG

DUDRIVER's controller initialization. Invoked when it is necessary
to add an "MSCP speaking" controller to the local node's database.

Called by DUDRIVER to establish a connection to the MSCP disk
server in a controller. Also called during certain error handling when
it is necessary to reconnect to a disk server.

After a connection has been made with an MSCP server, this routine
queries the server for disks it is making accessible to the local VAX.

Invoked to search the 1/0 database to see if a unit is already known.
If it is not, then this routine will add the unit into the database. If it
is already known on some other controller, DUTU$NEW _UNIT will
dual-path it if appropriate.

Issues Determine Access Paths commands to facilitate discovery of
secondary paths for dual-ported disks.

Processes incoming attention messages.

2-38 Digital Equipment Corporation I Confidential and Proprietary·

DUDRIVER 1/0 DATABASE

2.4.1 DU_CONTROLLER_INIT

2.4.1.1 Routine Process

Controller initialization begins with creating and initializing the CDDB to be associated with
the controller. Next, it calls a routine to make a connection with the MSCP disk server in that
controller. It then sets up the MSCP timeout mechanism. And finally, it polls the MSCP disk
server for information with which it builds disk data structures within its 1/0 database.

• Routine DU_CONTROLLER_INIT sets the ONLINE flag in the UCB which it was passed.

NOTE

The UCB passed to DU_CONTROLLER_INIT may be for the boot device. If it is
not, it will be deallocated shortly.

• The system id of the controller is stored in the UCB$Q_UNJT _ID field for later use in
creating a CDDB corresponding to the controller.

• DU_CONTROLLER_INIT then creates a fork thread to perform the remainder of controller
initialization at IPL$_SCS.

NOTE

This is done since numerous time consuming messages will be exchanged
between this host and the remote controller. The number of tasks here increases
with the number of disks on the controller.

• It calls DUTU$CREATE_CDDB to create and initialize a CDDB corresponding to con-
troller. DUTU$CREATE_CDDB does the following:

Allocates a CDDB from nonpaged pool and zeros it.
Copies the controller's system id from the UCB into the SYSTEMID field of the CDDB.
Sets the INITING and NOCONN flags in the STATUS field of the CDDB to indicate
that it is initializing the CDDB, but also that a connection has not yet been established
with the MSCP disk server in the controller.
Sets ATTN (enable attention messages), MISC (enable miscellaneous error log entries)
and THIS (enable this host's error log messages) flags in the CNTRLFLGS field of the
CDDB for later use when setting controller characteristics.
Initializes empty CDDB queues: CDRP, RSTRT, and CANCL.
Initializes the failover control block within the CDDB.
Initializes permanent and DAP CDRPs within CDDB by clearing each CDRP's
RWCPTR field and setting each CDRP's PERM flag.
Stores addresses of CRB and DDB into CDDB.
Clears CONLINK field in the DDB.

Digital Equipment Corporation I Confidential and Proprietary 2-39

DUDRIVER 1/0 DATABASE

If UCB is not for the boot device, (i.e. if its VALID flag is not yet set), unlinks the UCB
from the DDB by clearing the DDB$L_UCB field and then deallocates the UCB.
If UCB is for the boot device (i.e. its VALID flag is already set and its address is
already in location SYS$GL_BOOTUCB), the UCB address is stored in the ORIGUCB
field of the CDDB.
Searches chain of CDDBs, DU$DATA+DUTU$L_CDDB_LISTHEAD, to verify that
there is no other CDDB with the same system id (i.e. to verify that this controller is
not already known).
o If some other CDDB with the same system id is already in the chain, then the

CDDB just allocated would duplicate an already known controller's CDDB. Thus,
this CDDB and associated UCB and CRB are deallocated so as not to make a
second connection with the same MSCP$DISK, and this controller initialization
fork thread terminates here without performing further work.

o If no other CDDB with the same system id already exists in the chain, then the
controller has just been discovered. So the newly allocated CDDB is inserted at
the end of the CDDB chain and this controller initialization thread proceeds on.

Calls IOC$THREADCRB to insert CRB on IOC$GL_CRBTMOUT list. CRB set to
"infinite" timeout for now.
Address of CDDB stored in AUXSTRUC field of CRB.

• DU_CONTROLLER_INIT calls MAKE_CONNECTION to establish an SCS connection
with the MSCP disk server, MSCP$DISK, in the controller, and to determine the con
troller's characteristics.

• It tests the CDDB$W _CNTRLFLGS field to determine if the controller handles bad block
replacement by itself. The MSCP$V _CF _REPLC bit will be set if so. If not, DU$INIT _
HIRT is called to initialize the HIRT (Host Initiated Replacement Table) if the HIRT is not
already initialized.
• Clears HIRTs Replacement Request Queue (RPLQ).
• Allocates permanent CDRP, RSPID, and MSCP command buffer to HIRT.
• Allocates 4 pages of memory needed by replacement algorithm.

• The permanent timeout routine for this controller is established.
• The CRB$L_TOUTROUT field is set to contain the address DU$TMR.
• The CRB$L_DUETIME field is set to the current time plus the content of the

CDDB$W_CNTRLTMO field, which was just set up by "set controller characteristics"
transactions which occurred in MAKE_CONNECTION.

NOTE

The permanent CDRP in the CDDB is used only by routine DU$TMR.
DU$TMR always resets the DUETIME field in the CRB to the "then current"
time plus the "controller delta" stored in the CNTRLTMO field of the CDDB.

2-40 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

• DUTU$POLL_FOR_UNITS is called to poll MSCP$DISK for units known to the controller
and to alter the 1/0 database accordingly.

NOTE

DUTU$POLL_FOR_UNITS uses the DAP CDRP. The DAPBSY flag is set
in the CDDB prior to the call to DUTU$POLL_FOR_UNITS so as to inhibit
coincidental DAP processing requests for the controller from this host during
polling.

• The NOCONN, DAPBSY, and INITING flags are cleared in the CDDB, and the controller
initialization fork thread terminates itself.

2.4.2 MAKE_CONNECTION

2.4.2.1 Establishing a Connection

DUDRIVER establishes an SCS connection with the MSCP disk server in a controller. It then
determines and records the controller's characteristics.

• Using the SYSAP name VMS$DISK_CL_DRVR, DUDRIVER uses the SCS service
CONNECT to establish communication with SYSAP MSCP$DISK in the controller.

Routine

MSGINP

DGINP

ERRADR

DUDRIVER Routine Name

DU$IDR

DU$DGDR

DU$CONNECT_ERR

NOTE

If the CONNECT fails, the code pauses here retrying the CONNECT every
CONNECT_DELTA seconds using a CRB-based timeout. (The CONNECT_
DELTA parameter is hard coded at the beginning of DUDRIVER to be 10
seconds in V5.5 of VMS.)
The Path Move bit in the CDDB status word indicating an entry resulting from
a forced move request is cleared to allow the failover code to attempt to locate
an alternate path.

The address of the CDT associated with the connection is stored in the CDT field
within the permanent CDRP in the CDDB, and also in DAPCDT field within DAP

Digital Equipment Corporation I Confidential and Proprietary 2-41

DUDRIVER 1/0 DATABASE

CDRP in the CDDB. The address of the PDT corresponding the port supporting this
connection is also stored in the CDDB.

• The MSCP command SET CONTROLLER CHARACTERISTICS is issued to MSCP$DISK
Allocates RSPID and message buffer in which to build command.
Builds command.
o Host settable characteristics from CDDB$W _CNTRLFLGS inserted into command.
o Time from EXE$GQ_SYSTIME inserted into command.
o Host timeout temporarily set to "infinite" via this command.
Sends command.

• The data from SET CONTROLLER CHARACTERISTICS end message received from
controller is recorded in the CDDB:

CNTRLFLGS.
Sets/clears BSHADOW flag depending on whether or not controller supports volume
shadowing.
CNTRLTMO.
CNTRLID.
CSVRN (software and hardware version).
MAXBCNT.

• The correct allocation class for the controller is stored in the CDDB and all DDBs currently
linked to the CDDB.

NOTE

End message returns the allocation class (or 0 if none set) for controller.
During controller initialization, only one DDB should be linked to the CDDB at
this time.

• The message buffer containing the end message is recycled, as is the RSPID.
• The correct host timeout interval is determined and set in the controller.

For controllers which have dual path capability, it is computed as the larger of the
value of the controller timeout just returned in the end message and the constant
HOST_TIMEOUT as fixed in module DUDRIVER (30 seconds for VMS V5.5).
Another SET CONTROLLER CHARACTERISTICS is issued to properly set the final
host timeout in controller. The data from the associated end message is recorded in
the CDDB and the RSPID and Message buffer are recylced.
For controllers which do not have dual path capability the timeout field is set to an
infinite value (zero).

2-42 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.4.3 DUTU$POLL_FOR_UNITS

Polling an MSCP server for units is performed by DU_CONTROLLER_INIT calling routine
DUTU$POLL_FOR_UNITS after it has established a connection with the MSCP disk server
within a controller. This operation is also invoked during error recovery after a connection has
been re-established with the MSCP server.

The purpose of this routine is to determine which units are available through the MSCP
disk server in the controller. This is accomplished by issuing GET UNIT STATUS commands
with the "next unit" flag set until all available units have been reported by the server. The
operation begins with unit 1 and works its way "uphill" until it wraps around to unit 0.

As each unit is reported, routine DUTU$NEW _UNIT is called to modify the 1/0 database to
account for the reported unit. DUTU$NEW_UNIT may create new UCBs (and possibly DDBs),
and it may setup secondary path linkages for existing UCBs.

There is a special limited form of mount verification performed for the system disk. If the
system disk is to be a member of a controller based shadow set, then the associated shadow
set virtual unit is created at this time.

2.4.3.1 Polling Loop

• First, DUTU$POLL_FOR_UNITS sets the POLLING flag in the CDDB$W _STATUS field
to indicate that polling is in progress for this CDDB.

• Next, it allocates a RSPID and a message buffer in which to build a GET UNIT STATUS
command.

• Looping, it issues GET UNIT STATUS commands with the MD_NXUNT modifier set.
Starting with unit number 1, DUTU$POLL_FOR_UNITS works "uphill". For each end
message received, it does the following:

If the ORI GU CB field of the CDDB has been zeroed or if the Unit number/Server Local
Unit Number (SLUN) returned in the end message does not match the unit in the
ORIGUCB, then this is not the boot device.
In this case, if the end message STATUS field is any of SUCC, AVLBL, or DRIVE, or
if the end message Status field is OFFLN with either the NOVOL or EXUSE subcodes
set, then the following steps are taken:
o Load Balancing information is copied from the end message to the CDDB.
o DUTU$NEW_UNIT is called to modify the 1/0 database for a possible newly

discovered disk unit or a second path to an already known unit.
o If DUTU$NEW_UNIT either creates a new UCB or reports an already existing

one, and ifthe unit is online (end message STATUS= SUCC), then the UNT_FLGS
field of the end message is copied to the UNIT_FLAGS field in the UCB.

If the STATUS of the end message is not one of these four, then the message (and
hence also the unit) is merely ignored.

Dig Ital Equipment Corporation I Confidential and ,Proprietary 2-43

DUDRIVER 110 DATABASE

If the UNIT/SLUN field in the end message matches the the ORIGUCB field in the
CDDB, then the unit is the boot device and routine DO_ORIG_UCB is invoked to
perform "special handling":
o The media and MSCP unit numbers are copied from the end message into the

MEDIA_ID and MSCPUNIT fields of the UCB.
o If the Restart Parameter Block (RBP BootR3) indicates that the system disk is part

of a controller based shadow set, then routine DU$SYSTEM_SHADOW _SET (in
module DUMNTVER) is invoked for the first time to create a shadow set virtual
unit for the system disk:
* Creates a UCB to serve as the the system disk shadow set virtual unit UCB by

calling DUTU$NEW_UNIT

*

*

The system images WCB's UCB pointers are changed to point to the new
system disk shadow set virtual unit UCB.
Updates the logicals SYS$DISK and SYS$SYSDEVICE to reflect shadow set
usage.

* Changes location EXE$GL_SYSUCB to point to the new system disk shadow
set virtual unit UCB.

* Issues an internal I0$_CRESHAD IRP to effect shadow set creation.
o An IO$_PACKACK function (ONLINE, GET UNIT STATUS) is issued to the disk

as a limited form of mount verification.

NOTE

If the system disk is a member of a shadow set, then the I0$_PACKACK
is issued to the shadow set virtual unit.

o If no I0$_PACKACK error occurs, then the LCL_ VALID flag (local valid flag for
system device) is set in the STS field of the UCB.

NOTE

In the event that an error occurs, the code loops reissuing the IO$_
PACKACK until it succeeds.

o If the Restart Parameter Block (RPB) indicates that the system disk is part of a
shadow set, then routine DU$SYSTEM_SHADOW _SET is invoked for a second
time to copy disk geometry information from the system disk virtual unit UCB
to the member UCB used by DU$SYSTEM_SHADOW _SET the first time it was
called to create the virtual unit UCB:
* Device dependent information (DEVDEPEND).
* Total user visible blocks (MAX.BLOCK).
* LBN s per track (LBNPTRK).

* Tracks per group (TRKPGRP).
* Groups per cylinder (GRPPCYL).

o ORIGUCB field in CDDB is cleared.

2-44 Dlgltal Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

• If the end message is not for unit 0, then the RSPID and message buffer are recycled and
the code branches back up to issue the next GET UNIT STATUS.

2.4.3.2 Polling for Units Complete

After unit numbers in the end messages wrap around to 0 and the unit 0 end message is
processed:

• The RSPID is released and the message buffer is deallocated.
• The POLLING flag in the CDDB is cleared.

2.4.4 DUTU$NEW_UNIT

DUTU$NEW_UNIT is called to perform "new unit processing" each time any one of three
events occurs:

• When the class driver's controller initialization routine DU$CONTROLLER_INIT estab
lishes a connection with the MSCP disk server in the controller, it calls DUTU$POLL_
FOR_UNITS to determine what disks the controller is serving to the cluster. This is done
by a series of GET UNIT STATUS commands, each with its "next unit" flag set. For each
corresponding end message received from the controller indicating the existence of another
disk, DUTU$NEW _UNIT is called.

• After controller initialization, the receipt of a UNIT AVAILABLE ATTENTION message
from the MSCP disk server in a controller indicates that a unit has asynchronously become
available via that controller to this class driver. DUTU$NEW_UNIT is called upon receipt
of each such message.

• During the creation of a shadow set, routine DU$CRESHAD_FDT (called during the 10$_
CRESHAD function) invokes DUTU$NEW_UNIT to create a UCB to represent the shadow
set virtual unit.

NOTE

DU$CRESHAD_FDT constructs a skeleton message containing data equivalent
to what would have been received in the above messages. This constructed
message is then passed to DUTU$NEW_UNIT as if it had been received from a
controller.

DUTU$NEW _UNIT scans the chain of UCBs linked to the CDDB associated with the con
troller looking for a UCB corresponding to the unit described in the message:

• If a matching UCB is found, then the unit is already known and DUTU$NEW_UNIT does
nothing more than report to its caller the UCB's address.

• If a matching UCB is not found, then CDDBs corresponding to other controllers are
considered. If a matching UCB is found linked to some other CDDB, then appropriate
dual pathing linkages are established by a call to routine DUTU$SETUP _DUAL_PATH.

Digital Equipment Corporation I Confidential and Proprietary 2-45

DUDRIVER 1/0 DATABASE

• If no matching UCB is found, then a new UCB is created.

NOTE

Secondary pathing linkages are not established for shadow set virtual unit
UCBs.

2.4.4.1 Determines if Unit Already Seen on Controller

Searches down chain of UCBs for this controller looking for a UCB which matches UCB
described in the message passed to DUTU$NEW _UNIT (Call to routine DUTU$LOOKUP _
UCB.

• If the SHADOW flag (bit 15) is set in the UNIT field of the message (indicating that
the unit is actually a shadow set virtual unit) but the class driver does not support
volume shadowing, then the message is merely ignored and an SS$_IVDEVNAM status is
returned.

• DUTU$NEW _UNIT calls DUTU$LOOKUP _UCB to search down the chain of UCBs
linked to this CDDB trying to find an already existing UCB for this unit. In essence, it is
checking whether or not the unit reported in the message is already known to be on the
controller associated with this CDDB.

CDDB$L_UCBCHAIN is the list head. Linkage is via the UCB$L_CDDB_LINK field
in each UCB.
To have a match, the following conditions must be satisfied:
o The MSCPUNIT field in the UCB and the UNIT field in the message must be

identical.
o The DO and Dl media id fields must match
o If the device's Server Local Unit Number (SLUN) bit is set indicating a served

unit, then the device type (DJ, DU, ...) in the UCB and message must also be the
same. If the SLUN bit is clear, then we assume this is the same unit without the
device type check.

2.4.4.2 Unit Already Seen On This Controller

If DUTU$LOOKUP _UCB does find a matching UCB linked to this CDDB, then the unit is
already known to be on the controller associated with this CDDB. So DUTU$NEW _UNIT
merely performs some minor bookkeeping tasks and returns to its caller without doing any
further work for this unit.

2-46 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.4.4.3 Unit Not Already Seen On This Controller

If DUTU$LOOKUP _UCB does not find a matching UCB linked to this CDDB, then this is the
first time the unit has been seen on the controller corresponding to this CDDB. However, it
may have already seen this unit on some other controller. If so, what has now been found is
actually a secondary path to the same unit.

• Thus, DUTU$SETUP _DUAL_PATH is called to investigate the "secondary path possibil
ity" and set up appropriate secondary path linkages if a secondary path has just been
discovered.

Searches all other CDDBs (i.e. CDDBs corresponding to other controllers) for a combi
nation of a CDDB and UCB which satisfies three conditions:
o The other CDDB is in the same nonzero allocation class as the CDDB passed to

this routine.

NOTE

This necessitates two controllers supporting a dual pathed disk to be in
same allocation class.

o The UCB linked to the other CDDB has the same device type (DJ, DU, ...) as the
UCB in the message.

o The MSCPUNIT field of the UCB matches the unit number of the unit reported in
the message.

A CDDB and UCB combination satisfying all three of these conditions represents an
already established primary path.
If a matching UCB and CDDB combination is found but the UCB represents a shadow
set virtual unit (i.e. UCB has SHAD flag set), then secondary path linkages are not
established here and DUTU$SETUP _DUAL_PATH does no further work for this unit.
However, DUTU$SETUP _DUAL_PATH does report to its caller that it has found a
matching UCB in this case. Thus it will "appear" as if it had set up dual pa thing, even
though it hasn't.
If matching UCB and CDDB are found and the UCB does not represent a shadow set
virtual unit, then UCB secondary path linkages in the 1/0 database are established. If
a DDB corresponding to the device type (DJ, DU, ...) is not already linked to the SB
corresponding to the secondary path controller, then one is created and linked to the
SB at this time.

NOTE

If secondary path linkages do not already exist for the matching UCB, then
the newly discovered path will become the secondary path. However, if
secondary path linkages already exist for the UCB, the newly discovered
path replaces the old secondary path if and only if the new path is not for an
MSCP emulator or if this was a Load Balance Message.

In this case, again DUTU$SETUP _DUAL_PATH reports to its caller that it has found
a matching UCB, thus indicating that it has set up dual pathing for the unit.

Digital Equipment Corporation I Confidential and Proprietary 2-47

DUDRIVER 1/0 DATABASE

• If DUTU$SETUP _DUAL_PATH reports finding the UCB (and thus dual pathed it, or at
least "appears" to have done so), then DUTU$NEW_UNIT merely performs some minor
bookkeeping tasks and returns to its caller without doing further work for this unit.
If DUTU$SETUP _DUAL_PATH reports not finding a UCB with same unit number linked
to some other CDDB in same allocation class as this CDDB, then DUTU$NEW_UNIT:

Calls IOC$COPY _UCB to create a new UCB from the "template" UCB pre-allocated in
the class driver itself.
Invokes LINK_NEW _UCB to link the new UCB into the database. (A new DDB will
also be created if necessary.)

2.4.5 DUTU$DODAP

Determine Access Paths processing is invoked to find as yet unknown secondary paths to
dual-ported disks. It is invoked periodically by DUDRIVER's CRB-based timeout mechanism
in routine DU$TMR.

2.4.5.1 Preparations for Performing DAP Processing

DUTU$DODAP begins by verifying that DAP processing should actually be performed at this
time.

• It examines the DAPBSY flag in the CDDB$W_STATUS field.
If this flag is already set, then previous DAP processing for this CDDB has not yet
completed. So this fork thread merely terminates itself.
If the DAPBSY flag is not already set, then it is set here and this fork thread contin
ues.

• If this is a VMS MSCPserver (emulator) then exit
• The DAPCOUNT field in the CDDB is decremented.

If the DAPCOUNT field is still greater than or equal to 0, the DAPBSY flag is cleared
and this fork thread terminates itself without doing further work.
If decrementing the DAPCOUNT field has now made it negative, then it is reset to the
value of parameter DAP _COUNT and this fork thread is allowed to proceed.

• It allocates a RSPID and associated RDT entry for DAP processing.

2-48 Digital Equipment Corporation l Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.4.5.2 Issues OAP Commands to Controller

DUTU$DODAP now loops through the chain of UCBs linked to the CDDB. It issues a DAP
command to the controller associated with the CDDB for each "qualified" unit on that con
troller.

• For each UCB linked to the CDDB:
Verifies that the unit is qualified for DAP processing. To be qualified, two conditions
must both be met:
o VALID flag is currently set in the UCB$L_STS field (indicating unit is currently

MSCP online).
o UCB does not represent a shadow set virtual unit (i.e. MSCP$V _SHADOW bit is

not set in the MSCPUNIT field of the UCB).
If the unit is not qualified, this routine merely skips it and branches back to consider
the next UCB in the chain.
If the unit is qualified for DAP processing:
o A message buffer is allocated.
o A DAP command is built for this unit in the message buffer.
o The message buffer is passed to the SCS and PPD layers for transmission to the

Server.

NOTE

This fork thread is suspended here until the end message corresponding to the
DAP command is received from the controller. Then the fork thread resumes by
deallocating the buffer containing the end message, recycling the RSPID, and
branching back for the next UCB linked to CDDB.

• After the chain of UCBs linked to the CDDB is exhausted:
The RSPID is released.
The DAPBSY flag is cleared.
This fork thread is terminated.

2.4.6 ATTN_MSG

ATTN_MSG in the class driver's Input Dispatching Routine (DU$IDR) dispatches to one of
three specific attention message handler routines based on the type of attention message if the
message is valid. If the type is not valid, it branches to a routine to reset the controller.

• Dispatch is made to a specific routine based on the type of attention message if it is one of
the valid types:

Digital Equipment Corporation I Confidential an~ Proprietary 2-49

DUDRIVER 1/0 DATABASE

Type of Attn Msg

Unit Available

Duplicate Unit

Access Paths

DUDRIVER Routine

UNIT_AVAILABLE

DUPLICATE_UNIT_ATTN

ACCESS_PATH_ATTN

NOTE

Just prior to dispatching, ATTN_MSG pushes onto the stack the address EXIT_
ATTN _MSG to which specific routines will return for deallocation of the buffer
containing the attention message. If the attention message is not valid, the code
to handle the invalid case merely pops this address from the stack.

• If the attention message is not valid (i.e. is not one of the above types):
The invalid attention message is logged with error code EMB$C_INVATr.
The buffer containing invalid attention message is deallocated.
A branch is taken to routine DU$RE_SYNCH to reset the controller on the presump
tion that the controller must be "very ill" if it issued an invalid attention message.

2.4.6.1 Unit Available Attention Message

This routine processes unit available attention messages. It calls a routine which either adds
the unit to the 1/0 database if is unknown, or alters the 1/0 database to reflect a secondary
path to a known unit.

• DUTU$NEW_UNIT is called to alter the 1/0 database to reflect a new unit or a secondary
path to an already known unit, as appropriate.

• If DUTU$NEW_UNIT returns the address of a newly created UCB or the address of a
UCB for which a secondary path has just been established, the AVL (unit available) flag in
the UCB is set.

NOTE

If the 110 database already reflects a known unit as being dual pathed,
DUTU$NEW _UNIT may ignore this path. In such a case, it will not return
the address of any UCB. See the section detailing routine DUTU$NEW_UNIT.

2-50 ·Dig Ital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

2.4.6.2 Duplicate Unit Attention Message

MSCP$DISK in a controller is notifying this host that two or more units of the same device
class on that controller have the same unit number. Thus, the operator is notified of this
condition.

• Message is sent to operator.
• EMB$C_DUPUN error is logged.

2.4.6.3 Access Paths Attention Message

This routine simply calls DUTU$SETUP _DUAL_PATH to alter the YO database to properly
reflect a secondary path to an already known unit.

NOTE

There once was code here to log an EMB$C_ACPTH error in the event that
DUTU$SETUP _DUAL_PATH could not find a UCB corresponding to the unit
which was supposed to already be known. In V4.6-V5.5 of VMS, however, this code
is effectively NOPed and the access paths attention message is merely ignored. This
may be changed in later releases.

2.4.7 Routines in the CONFIGURE Process

The CONFIGURE process consists of two major routines. The first, B00$CONFIGURE,
requests the SCS process poller to locate MSCP servers (disk and tape) on other nodes. The
second, FOUND_PROC, handles messages received from the SCS process poller via a mailbox
when a sought after server is found.

2.4.7 .1 Polling for MSCP Servers on Other Nodes

B00$CONFIGURE requests the SCS process poller to poll for MSCP$DISK on other nodes by
making a call to SCS$POLL_MBX.

• Using the $CREMBX system service, B00$CONFIGURE creates a permanent mailbox to
communicate with the SCS process poller.

Assigns an YO channel Channel Control Block (CCB).
Allocates and initializes the mailbox UCB.
o Flags set in UCB: MBX, PRMMBX, ONLINE
o Fields initialized in UCB: OWNUIC, UNIT, DEVBUFSIZ

Digital Equipment Corporation I Confidential and Proprietary 2-51

DU DRIVER 1/0. DATABASE

Address of UCB stored in CCB.
UCB linked into mailbox controller's device list via UCB$L_LINK field.
1/0 channel number returned to the CONFIGURE process by the $CREMBX system
service.

NOTE

The mailbox is effectively treated as a virtual device.

• Next, B00$CONFIGURE calls REQ_POLL to request SCS process polling. REQ_POLL
loops, calling SCS$POLL_MBX for each SYSAP name for which polling is to be requested.
The MSCP disk server name to poll for is MSCP$DISK.

SCS$POLL_MBX is passed the 1/0 channel number of the mailbox which the SCS
process poller will use to notify CONFIGURE when a sought after SYSAP is found.
SCS$POLL_MBX returns the address of the SCS Process Polling Block (SPPB) it cre
ates for each SYSAP to be polled for, and this SPPB address is saved by CONFIGURE
in a process information block.

NOTE

Each process information block contains a SYSAP name, associated device name
(e.g. DU) and driver name (e.g. DUDRIVER), and SPPB address field. The
addresses of these process information blocks are kept in list at PROC_INFO.

• Using the $QIO system service (FUNC = 10$_SETMODE!I0$M_ WRTATTN), B00$CONFIGURE
creates a "write attention" AST by which it will be notified anytime the mailbox receives a
message.
- Creates ACB (AST address = FOUND_PROC) and queues it to UCB$L_MB_ W _AST.
- MB_ W _AST and ASTQFL are both overlays of FPC field in the UCB.

• CONFIGURE then hibernates.

2.4.7.2 CONFIGURE Notified of Discovery of MSCP$DISK

AST routine FOUND_PROC is invoked when the mailbox is written by the SCS process poller.
FOUND_PROC requeues the "write attention" AST, reads and processes messages from the
mailbox until the mailbox empty, and then resumes hibernating.

• Using the $QIO system service, it requeues the "write attention" AST to the mailbox UCB.

• Loops, processing all messages in the mailbox.
Using the $QIO system service (FUNC = 10$_READVBLK!I0$M_NOW), FOUND_PROC
reads a message from the mailbox into a local buffer, MSGBUF, and then calls PROCESS_
MSG to process the message as follows:

Calls routine BLDNAME to construct a cluster device name of the form: Node_
name$DUA)

2-52 Digital Equipment Corporation I Confidential and Proprietary

DUDRIVER 1/0 DATABASE

Calls routine B00$CONNECT to build the class driver database, load the class driver
if it has not already been loaded, and call the class driver controller initialization
routine DU_CONTROLLER_INIT.

• To build the class driver database, B00$CONNECT performs various minor supporting
tasks and then calls IOGEN$LOADER to do the real work. IOGEN$LOADER performs
the following tasks:

If DUDRIVER has not yet been loaded, it is loaded here.
Allocates a DDB corresponding to Node_name$DUA (actually just DUA).
Initializes NAME, DRVNAME, SB, and ALLOCLS field in the DDB.

NOTE

ALLOCLS field initialized at this time to local node's allocation class.
Changed to correct value later by controller initialization in DUDRIVER.

Allocates and initializes CRB and IDB.
Allocates a UCB and initializes the UCB$W_UNIT field to 0 at this time.
Address of UCB placed in list of UCB addresses starting at offset UCBLST in IDB.
UCB queued to DDB.
Initializes UCB and ORB based on DUDRIVER prologue table.
Calls controller initialization routine, DU_CONTROLLER_INIT, in DUDRIVER.

Digital Equipment Corporation I Confidential and Proprietary 2-53

$010 System Service and DUDRIVER

Chapter 3

$010 System Service and DUDRIVER

3.1 Introduction

This chapter presents the flow of a typical file read and write request for devices handled
by the Disk Class Driver (DUDRIVER). DUDRIVER's immediate involvement in these $QIO
operations will be covered, as well as the "pre-processing" and "post-processing" surrounding
this involvement.

To properly set the stage for doing file reads and writes, a user process "assigns" an 1/0
channel to the disk on which the file resides. This act establishes a logical path to that device.

The user process then "opens" the file through the use of an ACP QIO function. This function
will return mapping information about the file. The mapping information describes the
location on the disk of the blocks associated with the particular file

Certain major steps performed by these tasks are also presented in this chapter since they are
essential to the topic.

3.2 Assigning an 1/0 Channel to a Disk

3.2.1 Assign System Service

Before a process performs input or output with a device, a logical software path must first be
established between the process and the device. This logical software path is called an 1/0
channel. In essence, the collection of information maintained by the operating system which
describes the device and how to access it must be looked up and made available to the process.

However, it would be extremely inefficient to perform this lookup as part of every 1/0 opera
tion. Consequently, VMS provides the system service SYS$ASSIGN to perform this task once
for a process. In so doing, SYS$ASSIGN returns to the process what amounts to a "pointer" to
the information. This "pointer" is known as an I I 0 channel number.

Digital Equipment Corporation I Confidential and Proprietary 3-1

$010 System Service and DUDRIVER

The collection of information referred to in this conceptual explanation is the Unit Control
Block (UCB) associated with a device. As was pointed out in the chapter on DUDRIVER's
1/0 database, the UCB identifies the media, unit number, characteristics, and status of a disk
unit.

The UCB also maintains the address of the CDDB containing the queue of active MSCP
commands for this unit, and class driver specific information about the controller.

The address of the DDB which provides the name of the driver for the disk is found in the
UCB as well. The DDB also points to a Driver Dispatch Table (DDT) containing the addresses
of entry points in the driver for such tasks as starting an 1/0 operation, canceling an 1/0
operation, and performing unit initialization.

3.2.2 Channel Control Blocks

One of the tasks of the SYS$ASSIGN system service is to lookup the UCB for the device and
store its address in a data structure known as a Channel Control Block (CCB). Each process
has its own collection of CCBs. They are kept in an array in the process's Pl space, the base
address of which is in location CTL$GL_CCBBASE. The channel control blocks are allocated
toward decreasing memory addresses.

NOTE

CTL$GL_CCBBASE is not itself the base address of this array, but rather is a Pl
address location containing the base address of the array.

3.2.2.1 Maximum Channel Limit

Sysgen parameter CHANNELCNT determines the number of CCBs allocated in this array
when a process is created. The value of this parameter is stored in location SGN$GW _
PCHANCNT.

3.2.2.2 Channel Number

The 1/0 channel number returned to the process by the SYS$ASSIGN service is an offset rela
tive to the "base address" of this array, identifying the particular CCB in which SYS$ASSIGN
stored the UCB address.

CCBs are stored at negative offsets relative to this base address. Thus, for example, if the 1/0
channel number returned by SYS$ASSIGN is 100, then the address of the associated CCB is
computed as follows:

<Content of CTL$GL_CCBBASE> - 100

The CCB corresponding to 1/0 channel number 0 is never given out to a process by
SYS$ASSIGN. This CCB is reserved by the operating system for error detection.

3-2 Dig Ital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

There are three fields in the CCB of particular interest to the general flow of a disk read or
write:

• CCB$L_UCB

This is where SYS$ASSIGN stores the address of the UCB describing the disk for which
an 1/0 channel has been assigned.

• CCB$L_WIND

The address of a Window Control Block (WCB) providing mapping information used to
determine where on the disk each of the blocks of the file are located.
This field is not filled in by the SYS$ASSIGN, but rather when the file is opened. It is
discussed later in this chapter.

• CCB$B_AMOD

This field contains the mode plus 1 of the process at the time the 1/0 channel was assigned,
or 0 if the CCB is not in use.

3.2.2.3 Numerical Representation of Access Mode

Value Access Mode

0 Kernel

1 Executive

2 Supervisor

3 User

SYS$QIO system service code can simultaneously verify that a CCB is in use and that the
process is currently allowed to access the 1/0 channel in one operation. If the access mode
of the process at the time it attempts a $QIO operation is numerically less than the content
of the CCB$B_AMOD field, then both conditions are true. Otherwise, either the the CCB
corresponding to the channel is not in use, or the process is not in a sufficiently high access
mode.

For example, assume that the process was in executive mode when the channel was assigned.
Then the AMOD field will contain a 2 (1 higher than the mode when the channel was as
signed). If the process is now in kernel (O) or executive (1) mode, then its current mode is
numerically less than the content of the AMOD field; so the CCB is in use and the channel
may be accessed. However, it the process is in supervisor (2) or user (3) mode, then the pro
cess's current access mode is greater than or equal to the content of the AMOD field; so the
process may not access the channel.

This test is one of those applied toward validating parameters supplied by a process when it
attempts a $QIO to read or write a disk file.

Digital Equipment Corporation I Confidential and Proprietary . 3~

$QIO System Service and DUDRIVER

A related Pl space location of general interest is CTL$GW_CHINDX. It contains the highest
1/0 channel number (CCB index) assigned during the life of the process.

3.2.3 Volume Set Considerations

A volume set is a collection of volumes that are treated as if together they constitute a large
single volume. Created through "binding" two or more volumes together at mount time, they
handle situations such as where a database is too large to fit on a single volume, or where it is
desirable to have a "very large" public file space. In a volume set, one volume takes on special
importance by virtue of having the Master File Directory (MFD) for the entire volume set; this
volume is called the "root volume".

When a process assigns an 1/0 channel to a volume set, it will be the UCB for the root volume
whose address gets stored in the CCB$L_UCB field. Also, the logical name for a volume set is
associated only with the root volume.

3.2.4 Overview of Steps Taken by SYS$ASSIGN

The following is a brief summary of the steps taken by routine EXE$ASSIGN to implement
the assignment of an 1/0 channel to a disk.

• Routine IOC$FFCHAN is called to search the array of CCBs in the process's Pl space for
an unused CCB (i.e. one whose CCB$B_AMOD field contains a 0).

• Routine IOC$SEAR.CH is called to search the 1/0 database for the UCB associated with
the device.
If a logical name is specified, it is translated to a device name. The search then commences
in routine IOC$SEARCHINT. The steps taken in the search depend on whether the device
name involves the node name of the controller, or an allocation class.

Assume that the node name of the controller is used, and not an allocation class. As
an example, consider the device name HSC001$DUA2.
o The SB for HSCOOl is found by scanning the queue of SBs whose head is SCS$GQ_

CONFIG.
o The list of DDBs attached to this SB (list head at offset SB$L_DDB) is searched

for the generic controller type DUA ..
o The list of UCBs attached to this DDB (list head at offset DDB$L_UCB) is

searched for the UCB corresponding to unit number 2.
The secondary path linkage via the offset DDB$L_2P _UCB is not searched.

If the allocation class format is used, for example 255DUA2, then these are the steps
used in the search:
o The first SB in the queue of SBs is selected for consideration.
o The DDB list attached to the SB is searched for the generic controller type DUA

and allocation class 255. If a matching DDB is found, then the UCB lists (first the
primary, and then the secondary) are searched for a UCB corresponding to unit 2.

o If the DDB and UCB are not found, the preceding step is repeated for each suc
ceeding SB until either they are found or the queue of SBs is exhausted.

• The address of the UCB and the process's "access mode+ l" are written into the CCB.

3-4 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

• The index of the CCB is returned to the process to serve as the 1/0 channel number.

3.3 Opening a File

After an 1/0 channel is assigned for a disk, the process opens a file on that channel using a
$QIO. In doing this $QIO, the process specifies a major function of 10$_ACCESS to request a
directory lookup, and a function modifier of 10$M_ACCESS to actually open the file.

By means of other parameters, the process may also specify whether it desires both read and
write access, or just read access, whether to allow others to read or write the file, if write
checking should be enabled, etc.

Opening a file involves a great many file system operations. Most of these operations are
unimportant to understanding the flow of file reads and writes. They belong to the domain
of file system internals, and are thus not presented in the context of this book. However, the
"mapping" information made available by opening a file is essential.

3.3.1 Window Control Blocks and Mapping a File

As a result of the $QIO to open a file on an already assigned 1/0 channel, a data structure
known as a Window Control Block (WCB) is allocated. The address of the WCB is stored, in
the CCB$L_ WIND field of the CCB associated with the channel. The purpose of this data
structure is to assist in determining where on the disk the blocks of the file are located. This
then brings up the terminology of Virtual Blocks, Logical Blocks, and Physical Blocks.

3.3.1.1 Virtual Blocks

To the user process, a file appears as a contiguous stream of "virtual blocks", that is, the
blocks are numbered "uphill" relative to the beginning of the file, starting with virtual block
number 1. The placement of a file's blocks may not be physically contiguous on the disk; this
is referred to as File Fragmentation.

A virtual block number does not directly indicate the actual location of the block on the disk. A
translation mechanism is required to convert a virtual block number to an actual disk address;
and this mechanism is dependent on the type of disk used. These issues are transparent to
the process. It continues to have the "illusion" of the file being an unbroken stream of blocks
starting with a block numbered 1.

Digital Equipment Corporation I Confidential .and Proprietary. 3-5

$QIO System Service and DUDRIVER

3.3.1.2 Logical Blocks

On DSA disks, actual disk addresses are called "logical block numbers". To a VAX host, a DSA
controller presents its disk as a consecutive stream of blocks numbered from 0 through N-1,
where N is the number of logical blocks on the disk. The blocks are called "logical" because
the controller, and not the host, manages the actual geometry of the disk.

The host operating system does not have to deal with the traditional concepts of "cylinder",
"track", and "sector" that are associated with the older MASSBUS and UNIBUS disks. For
normal disk reads and writes, there are basically only two geometry and addressing issues the
host is concerned with:

• The total number of logical blocks available to the host on the particular disk.
• Translating a virtual block number (VBN) relative to the beginning of a file into a logical

block number (LBN) relative to the beginning of a disk.

3.3.1.3 Bad Block Replacement

Another feature of DSA disks is that Bad Block Replacement (BBR) is handled by the con
troller if that controller is "sufficiently intelligent"; otherwise, BBR is handled as a cooperative
effort between the disk class driver and the controller.

BBR on DSA disks is accomplished by maintaining a pool of Replacement Blocks used to
replace host area logical blocks containing media defects leading to hard errors or large
numbers of correctable errors. When DUDRIVER references a logical block number which has
been "replaced", the reference is "revectored" to a Replacement Block Number (RBN) by the
controller without further intervention by DUDRIVER.

What about disks being served on a remote VAX? Since the VMS based MSCP server on the
remote VAX is emulating an HSC, other VAX.es send MSCP read and write commands to it
just as they would to an HSC. Consequently these commands contain logical block numbers,
regardless of the type of disk being served.

If that disk is on a DSA controller, the LBN is passed unaltered to the remote node's
DUD RIVER by the remote MSCP server. If it is a MASSBUS or UNIBUS disk, the logical
block number is first converted by the MSCP server to a traditional "physical block" number
involving a cylinder, track, and sector. Then it is passed to the driver for that particular
device.

3.3.1.4 Window Control Blocks

Given this explanation of VBNs and LBNs, the role of the Window Control Block can now
be summarized by saying that it provides the mechanism used by the $QIO system ser
vice for mapping (i.e. converting) VBNs to LBNs1. In essence, it is a cache of VBN-to-LBN
translations contained in 48-bit entries, each with the format as in Figure 3-1:

1 The 24 bit LBN field in the WCB limits the maximum disk size currently to approximately 16. 7 million blocks

3-6 Digital· Equiptnent corporation / confidential ~nd Proprietary

$010 System Service and DUDRIVER

Figure 3-1: Window Control Block Fields for VBN to LBN Translation

BLOCK_ COUNT

LBN

RVN

WCB$L_LBN WCB$W_COUNT

47 40 39 16 15 0

I RVN LBN BLOCK_COUNT

{ 8bits} {24bits} {16bits}

CXN-0003-12

Number of consecutive logical blocks represent.ad by this entry.

Starting logical block number.
This is the LBN of the first block in the set of consecutive logical blocks repre
sented by this entry.

Relative volume number.
An RVN field of 0 indicat.es that the disk involved is not part of a volume set. If
this field is nonzero, then it is the relative volume number of a unit within the
volume set. The volumes within a volume set are numbered in ascending order,
starting with the root volume being relative volume 1.

Each entry represents a set of consecutive logical blocks. The entire collection of valid entries
in the WCB represents a set of consecutive virtual blocks, starting with the VBN stored at
offset WCB$L_STVBN. Consider as an example the case of where the WCB$L_STVBN field
contains a 1 and the first three entries are as shown in Figure 3-2.

Figure 3-2: Window Control Block Mapping

wcb$l_lbn wcb$w_count

0 1001 4

0 2001 8

0 5001 2

CXN-0003-13

In this situation, the file is fragmented. The first entry in this WCB maps the file's virtual
blocks 1, 2, 3, and 4 to disk logical blocks 1001, 1002, 1003, 1004, respectively. The second
entry takes up with the file's virtual blocks where the first entry left off. The second entry
maps the next 8 virtual blocks, namely 5 through 12, to disk logical blocks 2001 through 2008
respectively. And finally the third entry maps only 2 virtual blocks, 13 and 14, to logical blocks
5001 and 5002, respectively.

Digital Equipment Corporation I Confidential and Proprietary 3-7

$010 System Service and DUDRIVER

The actual number of currently valid entries in a WCB is stored at offset WCB$W _NMAP.
The maximum number of entries, however, depends on the values of three parameters. The
default number of entries is the value of the sysgen parameter ACP _WINDOW. This value is
stored in location ACP$GB_WJNDOW. This default may be overridden for a disk by using the
"/WINDOWS" qualifier when it is initialized. Both of these may optionally be overridden for a
particular file when it is opened _by the $QIO system service.

3.3.2 Mapping Situations Requiring Special Handling

There are special cases whereby multiple WCBs are chained together to form a cathedral win
dow for mapping an entire file. The average user generally uses only one WCB. Furthermore,
that WCB usually has only a moderate number of mapping entries.

The default number of entries in a WCB is set by the Sysgen Parameter ACP _WINDOW and
equals seven. Since the block count field of each WCB entry is limited to 16 bits in size, file
extents exceeding 65535 contiguous blocks require multiple WCB entries. When the $QIO
system service code goes to map a VBN to an LBN, it can run into three additional situations
which require a bit of special handling:

3.3.2.1 Window Turns

The VBN to be mapped is out of the range of VBN s handled by the current entries in the
Window Control Block.

This is resolved by invoking the XQP to refill the WCB from the file header with a new set of
entries. The first entry will map the desired VBN. This event is known as a window turn.

3.3.2.2 Bound Volume Sets

The UCB whose address is stored in the CCB is for the root volume of a volume set, but the
entry mapping the VBN indicates the corresponding LBN is on one of the other volumes in the
set.

This is actually handled automatically by the routine, IOC$MAPVBLK, which maps VBN s to
LBNs. If it finds the RVN field of the WCB entry is nonzero, it merely uses the RVN as an
index in to a list of UCB addresses stored in another data structure called the Relative Volume
Table (RVT).

The UCB corresponding to the proper unit in the volume set is located using the Relative
Volume Number as an index into the list of UCB addresses that are stored starting at location
RVT$L_UCB.

From this point on, the processing of a $QIO uses this new UCB address. This does not alter
the content of the CCB$L_UCB field; this longword continues to contain the address of the
UCB corresponding to the root volume of the volume set.

NOTE

The address of the RVT is found at offset WCB$L_RVT within the WCB.

3-8 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

3.3.2.3 Fiie Fragmentation

Quite frequently, IOC$MAPVBLK is called upon to map a set of consecutive VBNs rather than
just one. Due to file fragmentation, this may involve more than one entry in the WCB. Each
entry taken by itself represents a set of consecutive LBN s, but there are gaps between the sets
of LBNs represented by a pair of entries. Alternatively, the current WCB may map the first
few VBNs, but mapping the remainder would require a window tum.

Starting with the first VBN, routine IOC$MAPVBLK will map as much of the $QIO request
as it can to a set of consecutive logical blocks called a segment. It will return to its caller the
"starting LBN" (i.e. the LBN corresponding to the first in the set of VBNs it mapped). The
number of bytes which were not mapped due to being unable to map the entire set ofVBNs to
consecutive LBN s will also be returned.

If a $QIO request cannot be mapped to a single consecutive set of LBN s without a window
turn, DUDRIVER will be asked to handle the request in portions called transfer segments. As
each segment completes, the next segment will be mapped and passed to DUDRIVER until
the request is completely satisfied. This activity, however, is transparent to the process; so the
process does not have to issue repeated $QI Os if file fragmentation exists.

3.4 Driver Data Structures, the IRP, DDT and FDT

Three more data structures play an essential role in the flow of a $QIO: the I I 0 Request
Packet (IRP), the Driver Dispatch Table (DDT), and the Function Decision Table (FDT).

3.4.1 1/0 Request Packet

When a process queues an 1/0 request for some device, the $QIO system service code allocates
and initializes an 1/0 Request Packet (IRP). The purpose of this data structure is to describe
the request to the particular driver which will handle it. Here are some of the typical items of
information found in an IRP:

• Process identification of the process which issued the request represented by the IRP.
• Address of the process's quadword I I 0 Status Block (IOSB) into which final completion

status is to be written.
• Function code identifying the type of 1/0 operation (read, write, etc.).
• 1/0 channel number for the request (representing the Channel Control Block).
• Address of the UCB corresponding to the device for which the 1/0 operation is to be

performed.
• Address of, or "pointer" to the buffer for holding the data to be read from or written to the

device.
• Number of bytes to be transferred.

Digital Equipment Corporation I Confidential and Proprietary · 3-9

$QIO System Service and DUDRIVER

These data items are fairly generic in the sense that they apply to most any device driver. In
fact, most of the fields of an IRP are driver independent. They are initialized on the basis of
parameter values supplied by the process making the 1/0 request. Then the IRP is passed to
the driver which will actually handle the request.

In describing an 1/0 request, it is very common for a driver to supplement the information in a
generic IRP with additional data which is specific to the type of device involved. Thus an IRP
often has a driver specific extension, the address of which is stored in a longword near the end
of the IRP itself. Data contained in the extension is placed there by the driver. In the case of
DUDRIVER, this extension is a Class Driver Request Packet (CDRP).

The information contained in the IRP is common to most devices. A driver must translate
that information into a command format which is meaningful to the controller for the device
to which the request is directed. Thus, the disk class driver allocates another buffer, builds an
MSCP command in that buffer based on the content of the IRP, and then stores the address of
that buffer in the CDRP. This address is a major component of the driver specific information
supplementing the content of the IRP.

3.4.1.1 Class Driver Request Packet

The CDRP is chosen as DUDRIVER's extension to the IRP rather than some other data
structure for the following reason. From the chapter covering SCA concepts, the purpose of a
CDRP is to facilitate a SYSAP making a request for service from the SCS layer of software;
hence the name "Class Driver Request Packet". The disk class driver is performing that
function.

In addition to the address of the MSCP command buffer, the class driver also places in the
CDRP information identifying the node (or controller) and server to which the MSCP command
is to be sent. It then passes the CDRP to the SCS layer, requesting transmission of the MSCP
command. In essence, the MSCP command is the "letter", the CDRP is the "envelope", and the
SCS layer of software is the "postal service".

IRPs are allocated using the standard nonpaged pool allocation routine. So that two separate
operations are not required for the allocation of IRPs and CDRPs, each IRP pre-allocates
the extra space for a CDRP. The fields in an IRP can be treated as negative offsets from the
beginning of the CDRP since the first byte of the CDRP immediately follows the last byte of
the generic IRP. Thus, when the $QIO system service allocates an IRP, it implicitly allocates a
CDRP. For this reason, together they are often referred to as a IRP I CDRP pair. Some of the
major fields of the IRP/CDRP pair are displayed in Figure 3-3.

3-1 O Digital Equipment Corporation l Confidential and Proprietary

$QIO System Service and DUDRIVER

Figure 3-3: IRP/CDRP pair organization

o PIO

o IOSB address

o I/O function code

o I/O channel number

o UCB address

o Buffer pointer/address

o Number of bytes to xfer

o Address of MSCP command
buffer

o Information used by the
SCS "postal service" to
route MSCP command to
destination server

T
IRP

CORP

J_
CXN-0003-01

It should be noted that IRPs and CDRPs are really distinct data structures, and that the
pairing just described is done for purposes of convenience and efficiency. Other SYSAPs also
use CDRPs to make requests of SCS. Some SYSAPs such as the Connection Manager have no
use for IRPs. They utilize a facility for allocating just CDRPs by themselves.

3.4.2 Driver Dispatch Table

There exists a generic class of operations and corresponding routines common to most device
drivers in VMS. For example, device drivers typically have the following routines:

Routine

Start 1/0

Cancel 110

Register Dump

Unit Initialization

Application

Location to which IRPs are initially handed by $QIO system service code

Invoked to cancel requested 1/0 operations before they complete

Used to obtain the contents of various registers for diagnostic and error logging
purposes

Used to setup initial data structures and conditions for the device

By their very nature, such routines are specific to a particular device or class of devices. It
is therefore necessary that each driver have a table listing the entry points for its own set of
these routines. This table is called a Driver Dispatch Table (DDT).

Digital Equipment Corporation I Confidential and Proprietary :h11

$010 System Service and DUDRIVER

Normally, the DDT should be defined at the beginning of the driver; and its address is always
stored in the UCBs and DDBs associated with that driver.

3.4.3 Function Decision Table

Another very important quantity kept in the DDT is the address of another driver specific
table called the Function Decision Table (FDT).

A driver's FDT provides a mechanism for validating the 1/0 function code by verifying that the
requested function is valid for the devices handled by the driver. It also contains the addresses
of routines to process device and function dependent $QIO parameters and then pass the IRP
to the driver.

Figure 3-4 illustrates an FDT, and is the basis for the discussion which follows it.

Figure 3-4: FDT layout

1-- VALID I/O FUNCTION MASK -
i-- BUFFERED I/0 FUNCTION MASK -
i-- "APPLICABILITY" MASK -

"ACTION" ROUTINE ADDRESS

i-- "APPLICABILITY" MASK -
"ACTION" ROUTINE ADDRESS

"APPLICABILITY" MASK -
"ACTION" ROUTINE ADDRESS

CXN-0003-02

3-12 Dlglta·1 Equipment corporation I Confidential arid Proprietary

$010 System Service and DUDRIVER

3.4.3.1 Valid 1/0 Function Mask

The first quadword forms a bit mask called the Valid I I 0 Function Mask. It represents a
legal function bit mask of all 1/0 function codes which are valid for the devices handled by this
driver. A function code, being a 6-bit unsigned quantity, has a numerical value in the range of
0 to 63. Thus it is used as an index into the quadword Valid 1/0 Function Mask to determine
whether or not the requested operation is legal. If the bit corresponding to the function code is
set, then the operation is legal; if the bit is clear, the operation is megal. ($QIO system service
code uses a BBC instruction to make this determination.)

For disk devices, this is sufficient validation of the function code since they normally do direct
I I 0. The process pages containing the buffer into which data is to be read from disk, or from
which data is to be written to disk, are locked in physical memory and mapped to system
space. In this way the buffer is always addressable by the driver.

3.4.3.2 Buffered 110 Function Mask

Some devices such as line printers perform buffered I I 0. Data is transferred from the process's
buffer to an intermediate system buffer which is always available to the driver, even when the
process is not in physical memory. The second quadword is a Buffered I I 0 Function Mask for
validating those 1/0 functions that are buffered.

3.4.3.3 Applicability and Routine Entries

After the two validation bit masks, each entry consists of three longwords. The first two
longwords collectively form a 64-bit Applicability Mask. If the bit in the mask corresponding
to the function code is set, then the entry applies to that function code; otherwise, it doesn't.

$QIO system service code loops, scanning these entries. For each entry it finds that applies
to the requested function, it calls the "action" routine whose address is in the entry's third
longword. These are the routines that have the responsibility for processing the device and
function dependent $QIO parameters.

The action routine that completes device and function dependent parameter processing has
the added responsibility of branching to code which hands off the IRP to the driver's Start 1/0
routine; it does not return to the loop which called it. Function Decision Table processing is
illustrated in Figure 3-5.

Digital Equipment Corporation I Confidential and Propr·letary ·3-13

$QIO System Service and DUDRIVER

Figure 3-5: FDT processing

EXE$QIO

_J
FDT l ~J - I ROUTINE

CODE IMPLEMENTING

$QIO r FDT l -- --1
ROUTINE -- l SYSTEM SERVICE

0 0 0

J FDT] ~ -, ROUTINE

1

Driver's Start I/O

CXN-0003-03

NOTE

With some drivers and some operations, the last FDT routine may instead branch to
code to complete or abort the request.

The preceding discussion of FDT processing is intended to explain the general case. But in
the sections which present the flow of a $QIO later in this chapter, it will be seen that there is
only one FDT routine for each of the basic disk read and write functions.

3.5 Overview of the Flow of a $QIO

A queued 1/0 operation to transfer data to or from a disk file begins with a process specifying
parameters which define the operation. Then it invokes the $QIO system service to pass these
parameters to VMS, and to request that the operation actually be performed.

There are various approaches to setting up system service parameters and calling the system
service. If a program is being written in VAX/VMS Assembly Language, then a rather straight
forward mechanism is to use various macros defined in the system libraries provided with
VMS. One such macro, defined in SYS$LIBRARY:STARLET.MLB, is $QIO_S.

3:;...14 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

At the point in the program where a file read or write is desired, the programmer uses this
macro to specify the parameters to be passed to the routines in VMS which implement the
$QIO system service. Keywords are used to specify which parameters are being used. At
assembly time, the macro expands into a sequence of instructions which set up an argument
list based on the specified parameters, and provide default values for unspecified optional
parameters. The macro then generates the instruction for actually calling the $QIO system
service.

Here is the generic format for setting up a file read or write $QIO using this macro:

$QIO_S CHAN
FUNC
IOSB
EFN
ASTADR =
ASTPRM =
Pl
P2

P6

... '

Parameters passed to the $QIO system service code are listed in Table 3-1:

Table 3-1 : QIO System Service Parameters

Parameter

CHAN

FUNC

IOSB

EFN

ASTADR

ASTPRM

Pl

Description

Address of the longword containing the I/O channel number assigned to the device
on which the file resides. (This I/O channel is also associated with with the file
which has already been opened on the channel.)

1/0 function code which specifies if the requested operation is a read (10$_
READVBLK) or a write (I0$_ WRITEVBLK).

Address of the quadword I/O status block into which will be stored a system service
completion status code and the number of bytes transferred. (While technically
optional, good programming practice dictates that this always be supplied.)

Event flag that is to be set upon completion of the system service. ([Optional
parameter]. Usually considered redundant if a programmer specifies an AST to be
used for signaling completion of the request.)

Address of the entry mask for a programmer specified AST service routine which
is to be executed upon completion of the system service. ([Optional parameter].
Usually considered redundant if a programmer specifies an event flag to be used for
signaling completion of the request.)

AST parameter. A longword passed to the programmer specified AST service
routine, if there is one defined by the ASTADR parameter. ([Optional parameter].
One application of this parameter arises when different $QIOs use a common AST
service routine. If each $QIO uses a different value for this parameter, then the
AST service routine can easily determine for which particular $QIO's completion it
is being executed.)

[Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the buffer address.

Digital Equipment Corporation I Confidential and Proprietary 3-15

$QIO System Service and DUDRIVER

Table 3-1 (Cont.): QIO System Service Parameters

Parameter

P2

P3

P4

P5

P6

Description

[Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the size of the transfer in bytes.

[Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the starting Virtual Block number.

[Optional parameter], device and function dependent parameter.

[Optional parameter], device and function dependent parameter.

[Optional parameter], device and function dependent parameter.

The following example shows a $QIO set up specifically to read two consecutive virtual blocks
starting at virtual block 3 from a file into a BUFFER . The 1/0 channel number returned
by a previously executed $ASSIGN is stored in the longword at location DEV _CHN, and the
address of the quadword 1/0 status block is IO_STS_BLK An ACP QIO 10$_ACCESS function
has also been executed already to identify the file for the transfer.

DEV_CHN: .WORD 1
IO_STS_BLK: .QUAD 1
BUFFER: .BLKB 1024

$QIO_S CHAN= dev_chn,-
FUNC = #!0$ READVBLK,
IOSB = io sts blk,
EFN = u-;- -
Pl =buffer,-
P2 = U024,-
P3 = :fl:3

3.5.1 The Process's Point of View

From the process's point of view, the execution of a $QIO occurs in two major phases: queuing
the 1/0 request to the driver, and the driver handling the request. Associated with each phase
is a separate condition value returned to the process at the end of that phase.

3.5.1.1 Queuing the Request to the Driver

First, the parameters defining the request are validated. The 110 channel specified by the
CHAN parameter must already be assigned and accessible to the process, and a file must
currently be open on that channel. The operation requested by the FUNC parameter must be
valid for the device associated with the 1/0 channel, and that device had better be online.

If parameter validation is successful, the $QIO system service code passes the request to the
driver which handles the device.

3-16 Diglta·1 Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

The end of this first phase is signaled by a condition value being returned to the process in
register RO and control being passed back to the instruction following the $QIO request.

This condition value reflects whether or not the request was successfully passed to the driver.
In the event of an error, the condition value returned will indicate the reason for the failure.
It does not in any way indicate how successful the driver was in handling the request. Such
information will be returned to the process later in a second condition value returned in the
IOSB field.

Before proceeding further, the process should now examine the condition value returned in
RO. If the condition value indicates that an error occurred, then the request never made it
to the driver. The process should invoke an error handling routine which takes appropriate
corrective action based on this condition value.

If no error is indicated, then the process may proceed to do other work. The process should not
presume anything about the success or failure of its request until it has explicitly been notified
by VMS that its request is complete. This notification occurs at the end of the second phase
and will be in the form of the Event Flag being posted or the delivery of the requested AST.

3.5.1.2 Driver Handles $010 Request

During the second phase, the driver handles the 1/0 request. The process remains totally
oblivious as to how this is done. There are two preferred mechanisms for notifying the process
about the completion of its request (i.e. once the driver has done as much with the request as
it can).

3.5.1.3 AST Notification

One of the two preferred mechanisms is an AST which the process may have optionally
specified when invoking the $QIO. Upon completion of the request (successful or otherwise),
VMS delivers the AST to the process. "Somewhat like" a device interrupting the CPU, the
AST is invoked asynchronously relative to the normal flow of instructions within the process.
VMS builds a call frame on the stack in much the same way as the process would if it had
used a CALLS to invoke the AST. The current PC of the process is preserved on the stack and
the process finds itself in the AST service routine. Because of how ASTs are delivered, they
should generally end with a RET instruction.

3.5.1.4 Event Flag Notification

The second preferred mechanism is the event flag which the process may have optionally
specified. This flag is cleared upon entry to the $QIO system service code, and it is set upon
completion of the request. The process could periodically poll this flag to see if it is set; but
this is wasteful of CPU cycles. If the process can do no further work until the $QIO completes,
then it is generally considered preferable that the process request VMS to place it in a wait
state until the event flag is set.

Digital Equipment Corporation I Confidential and Propr~etary 3-17

$QIO System Service and DUDRIVER

The wait can be performed by means of system services such as $SYNCH and $WAITFR. In
selecting an event flag for this purpose, the process should take care that no other events are
also using this same event flag.

Once the AST is delivered or the event flag is set, the process should examine the 1/0 status
block whose address was specified by the IOSB parameter. This quadword is cleared prior to
the request being handed to the driver. The second condition value returned to the process is
stored in the low order 16 bits of this quadword upon completion of the request, and just prior
to the delivery of the AST or setting of the event flag.

This second condition value indicates how successful the request was handled after it was
passed to the driver.

NOTE

Condition values are 32-bit longwords. However, all condition values returned in an
1/0 status block have zeros for their high order 16 bits. Only the low order 16 bits
of these quantities are actually returned in an 1/0 status block. It is therefore very
common to extract the low order word from the status block and zero extend it into
a 32-bit longword before using it.
In the case of a disk read or write operation, the actual number of bytes transferred
is returned in bits <47:16> of the IOSB, and bits <63:48> are currently cleared by
routine EXE$FINISHIOC as of this writing.

3.5.2 What VMS Sees

For read and write requests directed to disks on "MSCP speaking" controllers, the steps taken
by the operating system fall into six major phases:

• 1/0 pre-processing prior to passing the request to DUDRIVER.
• DUDRIVER building an MSCP command describing the request.
• Transmission of the MSCP command to the controller by the SCS and PPD layers.
• Receipt from the controller of an MSCP end message corresponding to the MSCP com

mand.
• DUDRIVER processing the end message.
• 1/0 postprocessing and AST delivery.

Except for exchanges across the NI, VMS never actually sees the data transfer. Briefly, here is
an explanation of why for each type of port:

3-18 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

3.5.2.1 Cl and DSSI Pons

The different implementations of the CI port hardware (e.g. CI780, CIBCA, CIXCO etc.) and
some OSSI port implementations are Direct Memory Access (OMA) devices. They can read and
write VAX memory without the direct involvement of VMS.

For a Write operation, the MSCP command is sent to the remote controller, which is either an
HSC, ISE, or another VAX running the VMS based MSCP server. When the remote controller
is ready to accept the data, it sends a message to the local CI/OSSI port hardware requesting
the data. The local CI/DSSI extracts the data directly from local VAX memory and transmits
it. For a read operation, the local CI/DSSI port writes the data directly into local VAX memory
when it receives it from the remote controller.

3.5.2.2 Local Ports

Local OSA controllers (e.g. UOA50s, KDB50s, KDM70s, etc.) are also OMA devices. Once
given an MSCP command, they too can extract data directly from or write data directly into
local VAX memory.

3.5.2.3 NI Pons

With NI ports, remember that PEORIVER has a CI Port Emulator (PEM) component. Part
of the emulation performed by this component is the transfer of data to and from local VAX
memory that would otherwise be done by real CI port hardware. Thus, VMS directly sees
these transfers, but only to the extent that they pass through the NIORIVER and the PEM
component of PEDRIVER.

Here, then, is a summary of the tasks performed by each of the six major steps.

3.5.2.4 1/0 Pre-processing

The 1/0 pre-processing step is responsible for allocating and initializing the IRP to describe
the request. In part, this is consistent with what the process perceives as the first phase of
handling a $QIO. The event flag is cleared, the CHAN and FUNC parameters are validated,
and the IOSB is probed to see that it is writeable. Then the IRP is allocated and filled in with
various quantities such as the ASTADR, ASTPRM, and EFN parameters, the process's PID,
and function code. These tasks, however, are all device and function independent.

Next, device and function dependent pre-processing tasks are performed. The data transfer
buffer specified by the Pl and P2 parameters is probed for proper read/write access, locked
in physical memory, and also mapped to system space. The total requested transfer size (P2
parameter) and starting VBN (P3 parameter) are stored in the IRP. Then the first segment of
the transfer is mapped, and the starting LBN and segment size is stored in the IRP.

Now the IRP is queued to DUDRIVER for MSCP specific processing.

Digital Equipment Corporation-/ Confidential and Proprietary 3-19

$QIO System Service and DUDRIVER

3.5.2.5 DUDRIVER Builds MSCP Command

An SCS message buffer is allocated, and in this buffer is stored SCS routing information
necessary to send its contents to the controller. MSCP protocol information describing the
segment represented by the IRP is constructed and stored in the message buffer. This includes
the MSCP unit number, the MSCP op code, and a "buffer handle" by which the controller
can access the data transfer buffer in VAX host memory. Then the message buffer is passed
to the SCS and PPD routines in PADRIVER (Cl), PIDRIVER (DSSI), PEDRIVER (NI), or
PUDRIVER (Local) for transmission.

3.5.2.6 Transmission of the Command to the Controller

What happens here is dependent upon the type of port used. In general, SCS code verifies
that there is an open connection with the controller's disk server. Next, SCS/PPD header
information is inserted into the message buffer. This would include such items as the SCS
message length, the fact that this is an application message bound for a remote SYSAP as
opposed to a control message to be handled by the controller's SCS layer, and an op code of
("send message" as opposed to "send datagram") for the transmitting port.

The message buffer is handed to the port for transmission, and the request is suspended. The
context of the request is saved within the CDRP portion of the associated IRP/CDRP pair.

The contents of the message buffer is transmitted by the port to the controller. When the
controller is "ready", the data to be transferred for this segment is exchanged between the con
troller and local VAX memory. As explained above, this exchange is effectively transparent to
the VMS operating system. However, once all the data for this segment has been transferred,
the controller releases the MSCP end message corresponding to the data transfer segment.

3.5.2.7 End Message Received from Controller

The port level software verifies that there were no local port hardware errors associated with
the reception of the message from the CI, DSSI or NI. Then the end message is passed to SCS
code for routing to the disk class driver.

3.5.2.8 Class Driver Processes End Message

Using the RSPID mechanism discussed in the first chapter, DUD RIVER associates the end
message with the CDRP containing the suspended context of the request, and then resumes
the request. The MSCP status code is checked to see that no errors were reported by the
controller. IOSB information is constructed based on the last segment transferred. Various
SCS resources are released. Finally, the IRP is passed to 1/0 postprocessing.

3-20 Digital Equipment- Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

3.5.2.9 1/0 Postprocesslng and AST Delivery

If more data remains to be transferred for this request, then the IRP is updated to reflect the
next segment. This involves setting up a new starting VBN and a new starting LBN, mapping
as much of the remaining request as possible into another segment, and specifying a new
segment transfer size. Then the IRP is passed back to DUDRIVER.

If the entire request is complete, buffer pages are unlocked, the event flag is set, and AST
delivery occurs.

3.6 Details of the Flow of a $QIO

The remainder of this chapter presents in detail the steps involved in VMS handling a $QIO
request to read or write a disk on an "MSCP speaking" controller.

First the presentation presumes that the "MSCP speaking" controller is either an HSC or a
remote VAX running the VMS based MSCP server, and that the local host is using a CI780 or
CI750 port for SCS communication.

Had the local host been using one of the other CI ports, then the name of the interrupt service
routine would be different. For example, in the case of the CIXCD, the interrupt service
routine would be INTERRUPT_CIXCD. The CI port interrupt service routines all perform
functionally the same tasks. They check port specific registers for local port hardware errors
associated with the receipt of a packet, and then converge to common code to pass the received
packet to its destination within the local host.

For an NI port, it should be remembered that the PEM component of PEDRIVER is emulating
the functions of a CI port. It is also interfacing with the NIDRIVER to accomplish the actual
transmission and reception on the NI. These additional layers of software exist "beneath" the
SCS layer of PED RIVER and are transparent to the class driver.

Because of this, PEDRIVER's "pseudo interrupt service" routine, PE$INT, has no port registers
to check for possible hardware errors. Thus, it promptly branches to its copy of the common
code to which CI port drivers would; and from that point on, there is no difference in the flow
of what is presented here.

There are some noticeable differences if the $QIO request involves a local DSA controller.
These differences are confined strictly to SCS and port driver functionality. They are com
pletely transparent to DUDRIVER and do not affect the overall flow of the $QIO.

For exchanging MSCP commands and end messages with local DSA controllers (UDA50,
KDB50, KDM70 etc.), PUDRIVER uses a Command Ring in place of the CI port command
queues. It also uses a Response Ring in place of the CI port response queue. These concepts
and their impact are presented after the sections detailing $QIO flow involving CI ports.

It should be remembered that what happens in the port drivers is transparent to DUDRIVER,
and beyond the scope of this book. Port driver details presented here are provided merely
for the sake of completeness, and for those who may wish to have some understanding of the
interactions of a class driver with a port driver. Figure 3-6 displays the general flow of the
Qio through the disk class driver.

Digital Equipment Corporation I ConfJdentlal ,and -Proprietary ·· 3-21

~
N

c
i6
!
JI
c: ;:;·
3
CD
a
g
.;
0 ..,
a g -0
0 a
ft
:J -!:
m
:J
D. .,,
0
"' ..,

i ..,
'<

0 x z
8
0
(,)

I

~

PROCESS SPACE

PROCESS CONTEXT

SYSTEM SPACE

PROCESS CONTEXT

SYSTEM SPACE

SYSTEM CONTEXT

HARDWARE

USER PROCESS

PERFORMS $QIO
~

EXE$QIO

DEVICE INDEPENDENT
FDT ROUTINE

I/O

PREPROCESSING FDT ROUTINE

r FDT ROUTINE L

DU DRIVER

CLASS DRIVER

l_ SYSAP LEVEL
CLASS DRIVER FORK PROCESSING

PROCESS RESUMES

-flt
0
6 .,,
"' cc '< c tn

CiJ a;

t 3

"' CD
~

0 c;·
6 CD

m .,,
:::::s

0 a.
~ c
-I c:
:::::s' c a :ti
c <

DIRPOST

ca m
:::::s' :ti ...
:::::s'

I/O COMPLETION CD
KERNEL AST 0

ii

= c ..
< CD ...

~ IOC$IOPOST

I/O
~ POSTPROCESSING

.... { SCS/PPD ROUTINES

CI, DSSI or NI Port

$010 System Service and DUDRIVER

3.6.1 Device Independent 1/0 Pre-processing

Execution of a $QIO begins with routine EXE$QIO. This routine is primarily responsible for
validating the function code and device Independent parameters (those other than Pl, P2,
etc.). EXE$QIO also allocates an IRP/CDRP pair, initializes the device independent fields in
the IRP, and then enters the loop for Function Decision Table processing. The following list
details the steps taken by EXE$QIO:

• Clears the event flag specified by the EFN parameter.
• Validates the 1/0 channel number specified by the CHAN parameter.

First, the 1/0 channel number is range checked by verifying that it is greater than 0
but not greater than the content of CTL$GW _CHINDX. (Remember that CTL$GW _
CHINDX contains the highest 1/0 channel number assigned thusfar during the life of
the process.)
Then it simultaneously checks that the CCB associated with the 1/0 channel number
is "in use" and that the process is allowed to access the channel.
This is done by verifying that the access mode of the process at the time it requested
the $QIO is numerically less than the content of the CCB$B_AMOD field.

• Fetches the address of the UCB from the CCB, the address of the DDT from the UCB, and
then the address of the FDT from the DDT.

• Validates the function code supplied as the FUNC parameter against the FDT's "valid 1/0
function mask". (Since this is not a buffered 1/0 operation, the second quadword function
mask is not used.)

• Examines the status field, UCB$W _STS, to verify that the device is online.
• If an 1/0 status block was specified using the IOSB parameter, then EXE$QIO makes sure

that the status block is writeable and clears it.
• IPL is now set to IPL$_ASTDEL.

System space data structures are about to be allocated and/or modified based on a request
from some process. Therefore, IPL needs to be high enough to block deletion of this
process. Process deletion is accomplished by a special kernel mode AST. Raising IPL to
IPL$_ASTDEL (or higher) prevents deletion of the process which issued the $QIO request.

• Charges appropriate process quota for transfer
• Calls EXE$ALLOCIRP to allocate an IRP from nonpaged pool if IRP lookaside list is

empty.

NOTE

The process is placed in RSN$_NPDYNMEM resource wait if insufficient non
paged pool is available.
IPL is temporarily raised to IPL$_SYNCH during this allocation.

• Initializes device and function independent fields in the IRP.
PID (from PCB of process).

- AST address and parameter ($QIO parameters ASTADR and ASTPRM).

Digital Equipment Corporation I Confidential and Proprietary 3-23

$QIO System Service and DUDRIVER

WCB address (from CCB).
UCB address (from CCB).
Function code ($QIO FUNC parameter).
Event flag ($QIO EFN parameter).
Process base priority (from PCB).
Address of process's 1/0 status block ($QIO IOSB parameter).
1/0 channel number ($QIO CHAN parameter).

• At this point, EXE$QIO falls into the loop which calls FDT routines. For standard read
requests, there is only one FDT routine: ACP$READBLK. For standard write requests,
again there is only one FDT routine: ACP$WRITEBLK.

Since there is only a single FDT routine invoked for either read (ACP$READBLK) or write
(ACP$WRITEBLK) operations, the FDT routine will pass the IRP to the driver rather than
returning to its caller. Once the IRP has been queued to the driver, a branch is taken to
return to the process which issued the request.

3.6.2 Device and Function Dependent 1/0 Pre-processing

Device and function dependent 1/0 pre-processing involves handling the device and function
dependent parameters (Pl, P2, etc.), initializing function and device dependent fields in the
IRP, and then passing the IRP to the driver.

The FDT routines which perform these tasks for standard read and write requests,
ACP$READBLK and ACP$WRITEBLK, differ only in their initial step. They then converge to
common code.

• Both routines check the accessibility of the 1/0 buffer whose address is passed as the
value of the Pl parameter. In so doing, they also lock in physical memory the pages
containing the buffer. For a request to read from a disk to the buffer, this is done by
calling EXE$READLOCK. For a write to disk from the buffer, this is done by calling
EXE$WRITELOCK.

Verifies that the buffer is write accessible if this is a "read from disk" request, or that
the buffer is read accessible if this is "write to disk" request.
The buffer is not required to start on a page boundary. Therefore the byte offset into
the first buffer page for the actual start of the buffer is stored in the BOFF field of the
IRP. (This byte offset is merely the low order 9 bits of the Pl parameter.)
Locks buffer pages in physical memory.
In the process of doing so, consecutive system virtual pages are mapped to this buffer.
The system virtual address of the first of the associated consecutive system PTEs
(Page Table Entries) is stored in the SVAPTE field of the IRP.
If necessary, this operation will fault the buffer pages into physical memory.

• Initializes the OBCNT field of the IRP to contain the total number of bytes to transfer.
This is the value of the P2 parameter. However, it is actually copied from the BCNT field
of the IRP where it was left by routine EXE$READLOCK or EXE$WRITELOCK.
This is known as the original byte count of the transfer.

3-24 Digital Equipment Corporation t Confidential and Proprietary

$QIO System Service and DUDRIVER

• Clears the accumulated byte count (ABCNT) field, of the IRP, indicating that no bytes have
as yet been transferred for this $QIO request.

If the entire request does not map to a single set of consecutive logical blocks, then it will
be broken down into transfer segments. Each of these segments will consist of a set of
consecutive logical blocks. As a transfer segment completes, the sum of the size of that
segment and the content of the ABCNT field is computed. If this sum is less than the
quantity stored in the OBCNT field, then the request is not yet complete.
The ABCNT field is updated by storing this sum there, and the IRP is recycled through
the driver again to transfer the next segment. The segments are processed in ascending
order according to the starting VBN of each segment. (This segmentation is often referred
to as split I I 0).

• For virtual 1/0 functions, checks the IRP to verify that a WCB exists, indicating that the
process has "accessed" (i.e. opened) the file. Flags in the WCB are also checked to verify
that the process has proper read/write access to the pages mapped by the WCB.

• Sets the VIRTUAL function flag in the IRP's 1/0 request status field, IRP$W_STS.
• Saves the starting VBN of the transfer (i.e. the value of the P3 parameter) in the IRP$L_

SEGVBN field of the IRP.

If the request is broken down into segments due to fragmentation of the file, then this
field reflects the starting VBN of the segment currently being transferred. Thus, upon
completion of each segment, the SEGVBN must be updated to contain the starting VBN of
the next segment.

• Calls IOC$MAPVBLK to map the starting VBN to an LBN, and also as much of the
request as possible.

Searches through the WCB for an entry mapping the starting VBN and determines
how much of the transfer maps to consecutive logical blocks. (This depends on the
extent of disk file fragmentation.)

Returns starting LBN, number of unmapped bytes, and the address of the "proper"
UCB. (If there is a volume set involved, then the UCB whose address is in the CCB is
for the root volume. However, the starting VBN may map to some other unit in the
set.) ·

• Address of the "proper" UCB is stored in the IRP at offset IRP$L_ UCB.

• Computes the actual number of bytes to transfer (i.e. the length of this segment) as the
original byte count less the number of unmapped bytes. The result of this computation is
stored in the BCNT field of the IRP.

Observe at this point that the BCNT field contains only the size of the first segment of the
request, whereas the OBCNT contains the total size of the request. These are equal if and
only if the entire request mapped to a single set of consecutive logical blocks; thus, there
would be only one segment.

If, however, the request had to be broken into two or more segments due to file frag
mentation, then the content of the BCNT field will be less than that of the OBCNT
field.

• The starting LBN is stored in the IRP$L_MEDIA field of the IRP. (This is done by a call
to routine IOC$CVTLOGPHY which would convert a logical block number into a physical
block number if the disk were not DSA)

Digital Equipment Corporation I Confidential and Proprietary 3~25

$QIO System Service and DUDRIVER

• Branches to routine EXE$QIODRVPK.T to "queue" the IRP to the driver.
First, EXE$QIODRVPKT calls routine EXE$INSIOQ to actually pass the IRP to the
driver. Routine EXE$INSIOQ takes out the FORK spinlock while it manipulates the
1/0 queue. Upon return from EXE$INSIOQ, it then branches to EXE$QIORETURN,
which sets its IPL to 0 and effects a return to the process which issued the $QIO.
EXE$QIORETURN also supplies the SS$_NORMAL status returned to the process in
RO (as opposed to the status returned in the IOSB).

NOTE

It is key to observe that all subroutine calls and returns have been done
by instructions which merely save and restore the PC, such as JSB/RSB
combinations, but do not alter the FP. FDT processing routines, for example,
are invoked by a JSB. The return done by EXE$QIORETURN is done by a
RET, which makes use of the FP to return to the system service dispatching
mechanism. From there, a return is made to the process.

Routine EXE$INSIOQ calls routine IOC$INITIATE, which verifies that the operation
is allowed on this CPU (check for affinity) and then branches to the driver specific start
1/0 routine whose address is at offset DDT$L_START in the Driver Dispatch Table for
the driver. The start 1/0 routine in DUDRIVER is DU_STARTIO.

NOTE

EXE$INSIOQ uses the FORK.LOCK macro to take out the FORK spinlock.
The BSY flag in the STS field of the UCB has no effect with DSA disks since
the start 1/0 routine immediately clears it. This flag pertains only to older
disks, such as MASSBUS disks, whose controllers can deal with only one
operation per disk at a time.

General Note -
If IOC$MAPVBLK fails to find the necessary mapping information in the WCB as de
scribed above, a branch is taken to EXE$QIOACPPKT which hands off the IRP to the
XQP. (It would pass it to the ACP if the disk had been ODS-1 format.) The XQP performs
a window turn. Then the XQP proceeds in the same manner as FDT processing would
have, had IOC$MAPVBLK been able to map the starting VBN and at least part of the
request. The XQP initializes the UCB, BCNT, and MEDIA fields of the IRP and then
"queues" the IRP to the driver.

3.6.3 Class Driver SCS Resource Allocation

This is where the $QIO request enters the disk class driver. Here, routine DU _STARTIO
allocates SCS resources necessary to support the request. These resources are a RSPID and
a message buffer in which to build an MSCP command to be sent to the "MSCP speaking"
controller. (Remember that the CDRP was allocated as an extension of the IRP.)

• The fork IPL field of the CDRP, CDRP$B_FIPL, is set to contain SPL$C_SCS.

3--26 Dlgltal Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

• If the RWAITCNT field in the UCB is nonzero, normal 1/0 requests for this unit are being
stalled. Under such conditions, the IRP is queued to the UCB and DUDRIVER will take
no further action for this request at this time. The request remains suspended at this
point until the RWAITCNT field is reset to 0, indicating that normal 1/0 on this unit has
been resumed.
One example of this situation would be when the unit is undergoing mount verification.

• The address of the CDT is copied from the UCB into the CDRP.

• A RSPID and associated RDT entry are allocated, and the RSPID is placed in the CDRP.

NOTE

If no RSPIDs are available, the current context is saved in the CDRP, the
CDRP is queued to the RDT, and a return is made to the "caller's caller". This
facilitates a return being made to the process while leaving the fork thread
representing the request suspended. The fork thread is resumed at this point
when some other fork thread releases a RSPID and RDT entry, making them
available to this thread.

• Allocates from nonpaged pool an SCS message buffer in which to build the MSCP com
mand to describe this request to the "MSCP speaking" controller. This is done by calling
routine FPC$ALLOCMSG in PADRIVER.

Verifies that there is an open connection with the MSCP server in the controller.

Verifies that there is at least one send credit.
Allocates a buffer from nonpaged pool. The PPD$B_TYPE field of this buffer is set to
DYN$C_CIMSG (as opposed to DYN$C_CIDG).
Copies destination CONID from RCONID field of the CDT into the message buffer.

Stores the address of the message buffer in the CDRP at offset CDRP$L_MSG_BUF.

Decrements the send credit field in the CDT.

NOTE

If no send credits are available, the CDRP is inserted into a credit wait
queue on the CDT, and the fork thread for this request is suspended at this
point until a send credit is available.
If nonpaged pool is unavailable, the CDRP is queued to the PDT's wait
queue, and the fork thread is suspended at this point until pool is available.

If the connection with the MSCP server in the controller is not open, the
fork thread is effectively "terminated" here.

• Stores RSPID in the message buffer. (The RSPID will serve as an MSCP command
reference number in situations such as where the local DUDRIVER must inquire with the
controller's server as to the status of the command.)

• MSCP unit number is copied from the UCB to the message buffer.

• Dispatches on the basis of the 1/0 function code in the CDRP:

- START_WRITEPBLK - if write operation

Digital Equipment Corporation I Confidential and Proprietary 3-27

$QIO System Service and DUDRIVER

- START _READPBLK - if read operation

3.6.4 DUDRIVER Builds MSCP Command

Routines START_ WRITEPBLK and START_READPBLK differ only in their initial step, and
then converge into common code. They have the responsibility for constructing and storing the
MSCP protocol information in the message buffer. Then they pass the CDRP containing the
address of the MSCP message buffer to the SCS layer, and from there the MSCP command
will be transmitted to the server.

• Sets the MSCP op code field in the message buffer to MSCP$K_OP _WRITE or MSCP$K_
OP_READ.

• Maps the IRP by invoking macro MAP _IRP.

Removes a buffer descriptor from the linked list of free buffer descriptors in the BDT
and initializes the descriptor based on SVAPTE, BCNT, and BOFF fields in the IRP.
Builds the buffer handle in the CDRP.
o Transfer offset set to 0.
o Buffer name based on sequence number and index of the BDT entry used for the

buffer descriptor.
o The RCONID is copied from the CDT.

NOTE

If no free buffer descriptor is available, the CDRP is queued to the BDT wait
queue, and this driver fork thread is suspended at this point until a free
buffer descriptor is available.

• Copies the buffer handle from the CDRP into the SCS message buffer.
• Copies into the SCS message buffer the "byte count to transfer" and starting LBN from

the BCNT and MEDIA fields of the CDRP.
• Passes the message buffer to the SCS layer for transmission.

Inserts the CDRP into the queue of active CDRPs on the CDDB associated with the
con troll er.
Executes a JMP @PDT$L_SNDCNTMSG((pdt address}) to actually send the buffer.

NOTE

The class driver thread is folded into the CDRP fork block and suspended
until the MSCP end message corresponding to this request arrives from
the controller. The end message will contain a copy of the RSPID passed
to the controller in the MSCP command. The RSPID will be used by the
class driver input dispatcher routine to identify and resume this particular
thread.

3-28 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

3.6.5 Transmission of Message by SCS and PPD Layers

Routine FPC$SNDCNTMSG in PADRIVER inserts SCS header information into the mes
sage buffer containing the MSCP command. Next it calls the routine in the PPD layer to
insert PPD header information into the message buffer and queue the buffer to the port for
transmission. Finally, it suspends the driver fork thread representing this $QIO request.

• Verifies that the SCS connection with the disk server to which the message is about to be
sent is still open.

• Clears the register containing the value to be used for the RETFLAG since a RSPID is
associated with this message. This will indicate to the port that the message buffer should
be returned to the MFREEQ, and not the RSPQ, if no errors occur during transmission.
(The presence of a RSPID tells the port driver that a response is expected to this message.
The port should insert an extra buffer into the MFREEQ in anticipation of receiving the
response; and the buffer containing this message is just as good as any other.)

• Increments the PENDREC field in the CDT.
• Establishes the SCS message length in the SCS$W _LENGTH field of the message buffer.
• Sets the SCS$W _MTYPE field in the buffer to SCS$C_APPL_MSG. (This is an application

message intended for a SYSAP on the destination node/controller, and not an SCS control
message intended for the destination's SCS layer.)

• Copies the content of the PENDREC field in the CDT to the CREDIT field in the
SCS header portion of the message buffer to extend pending receive credits to the re
mote SYSAP. Adds the PENDREC field into the REC field of CDT, and then clears the
PENDREC field.

• Copies the local CONID from the CDT into the SCS$L_SRC_CONID field in the message
buffer.

• Calls SCSCI$SNDMSG to fill in the PPD header and transmit the message.
Sets the PPD$W _MTYPE field to PPD$C_SCS_MSG (as opposed to SCS_DG, START,
etc.)
Sets the PPD$B_OPC field to PPD$C_SNDMSG (as opposed to SNDDG, SNDDAT,
etc.)
Copies the destination port number from the RSTATION field in the PB to the PPD$B_
PORT field in the buffer.
Inserts the setting (0 in this case) of the RETFLAG into the PPD$B_FLAGS field.
Queues the buffer to COMQHIGH (Command Queue 1).

• Clears the MSG_BUF field in the CDRP. (The SCS message buffer has been given to the
port; the CDRP no longer "owns" it.)

• Suspends this driver fork thread.
Stores the current contents of R3 and R4, as well as the PC at which to resume this
fork thread, in the CDRP.
Inserts the CDRP into the CDRP wait queue (CDDB$L_CDRPQFL) for the controller
to which the MSCP command is being sent. The CDRP will remain in this queue until
the corresponding MSCP end message is received from the controller's disk server.

Digital Equipment Corporation I Confldentlal and Proprietary .3-29

$QIO System Service and DUDRIVER

3.6.6 End Message Received by PPD and SCS Layers

INTERRUPT_CI780 is the routine in PADRIVER which fields interrupts from a CI780 com
puter interconnect. It removes the packet containing the MSCP end message from the Cl's

1 response queue, and then passes it to the class driver.

• INTERRUPT_ CI780 verifies that there are no local CI port hardware errors associated
with interrupt produced when the CI inserted the received packet into the RSPQ. Then it
calls SCSCl$FORK (an alternate name for routine HANDLE_INT).

• HANDLE_INT verifies that no errors are reported in the PPD status field in the received
packet and passes it to the SCS layer based on the PPD op code.

Creates a fork process to handle packet(s) in the RSPQ.
Pokes the maintenance timer in the CI.
Removes the entry from the RSPQ and verifies that no errors are indicated in the
PPD$B_STATUS field.
Branches to subroutine SCSCl$PROCESS_RSP _PPD to process this entry
Routine SCSCI$PROCESS_RSP _PPD branches to REC_MSGREC on the basis of the
PPD op code (PPD$C_MSGREC in PPD$B_OPC field).

• REC_MSGREC passes the packet to the SCS layer by branching to SCS$REC_MSGREC.
• Routine SCS$REC_MSGREC does SCS bookkeeping and passes the packet to the disk

class driver.
Differentiates this packet from an SCS control message by observing that the SCS$W _
MTYPE field contains SCS$C_APPL_MSG.
Verifies that the destination CONID field is valid. First it range checks the 16-bit
index portion against the length of the CDL. Then it compares the destination CONID
field in the received message with the LCONID field in the CDT pointed to by the
index portion of the destination CONID. (If the destination CONID is not valid,
the buffer is effectively discarded by being placed in the MFREEQ, and no further
processing is done for this packet.)
The CDT$W _REC field (local receive credit, i.e. send credit held by remote server) is
decremented.
Credit extended by the remote node (SCS$W_CREDIT in received packet) is added to
the local send credit, CDT$W _SEND.
The packet (i.e. buffer containing MSCP end message) is passed to the the disk class
driver SYSAP by calling the SYSAP message input routine whose address is in the
MSGINPUT field of the CDT.

3-30 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

3.6.7 Disk Class Driver Message Input Dispatching Routine

This routine, DU$IDR, is to the disk class driver what an interrupt service routine is to a
conventional device driver. The end message is passed here by the port driver (SCS layer).

DU$1DR first verifies that the end message is still "of interest", and then resumes the class
driver thread which issued the MSCP command associated with this end message.

• Uses the RSPID to determine if the end message is still "of interest".
Fetches the RSPID from the MSCP$L_CMD _REF :field in the end message and range
checks the index portion of the RSPID. (The maximum value allowed for this index is
stored in the RDT$L_MAXRDIDX field of the RDT.)
Using the RSPID, DU$1DR fetches the RDT entry and verifies that the RSPID is still
valid. It compares the sequence numbers and checks that the RD$V _BUSY flag is set
in the RDT entry.

NOTE

If the end message is no longer "of interest", or if the RSPID is not valid,
DU$1DR merely logs an EMB$K_BADRSPID (bad or stale RSPID) error and
deallocates the message buffer.

• Fetches the address of the CDRP from the RDT entry, and the address of the CDDB from
the AUXSTRUC field of the CDT.

• Compares the CMD_REF field of the end message with the OLDRSPID field of the
CDDB. If the end message corresponds to the oldest active command for the CDDB,
the OLDRSPID field is cleared.

• The associated class driver thread is resumed by dispatching through the FPC field of the
CDRP. (The thread resumes immediately after the point where the MSCP command was
passed to the SCS and PPD layers for transmission.)

3.6.8 Class Driver Thread Resumes

Resuming immediately after the SEND _MSCP _MSG macro, the driver thread constructs the
information to be returned in the IOSB, releases SCS resources, and branches to the routine
to initiate 1/0 postprocessing.

• Verifies that there was no MSCP error reported in the MSCP end message STATUS field.
• Constructs quadword IOSB information based only on the the segment just completed:

Bits <15:00> are set to contain the status code SS$_NORMAL, indicating success.
Bits <47:16> are set equal to the actual number of bytes transferred by the segment
just completed. This quantity is obtained from the BYTE_CNT field of the MSCP end
message.

Digital Equipment Corporation I Confldentla.1 and Proprietary 3-31

$QIO System Service and DUDRIVER

If the the request mapped to a single set of consecutive logical blocks, then the segment
just completed represents the entire request. This quantity should be equal to the
content of the OBCNT field in the IRP.
If the request involves more than one segment, then this quantity is less than the
content of the OBCNT field since the segment just completed represents only part of
the request.
Bits <63:48> are set to 0.

• Calls DUTU$DEALLOC_ALL to release SCS resources held by the CDRP.
UNMAPs the buffer (and resumes any CDRPs waiting for BDT entries). This is done
by calling routine SCS$FPC_UNMAP to release the buffer descriptor in the BDT.
Deallocates/releases the message buffer containing the end message.
Releases the RSPID (and resumes any CDRP queued to the RDT and waiting for a
RSPID).

• Branches to IOC$ALTREQCOM to initiate 110 postprocessing.
Stores IOSB quadword constructed above into the MEDIA field of the IRP.

NOTE

The IRP$L_MEDIA and IRP$L_IOST1 fields are overlays of each other; and
the IRP$L_IOST2 field immediately follows the IRP$L_IOST1 field. Thus, if
the request was not segmented, the IOSTl and IOST2 longwords have been
loaded with the final 110 status information to be later transferred to the
process's IOSB.

Inserts the IRP into the 110 postprocessing queue IOC$GQ_POSTIQ.

Generates an IPL$_IOPOST software interrupt.
Terminates this class driver thread.

3.6.9 1/0 Postprocessing and AST Delivery

Invoked by an IPL$_IOPOST software interrupt, routine IOC$IOPOST determines if the
entire request is complete. If the request was segmented but is not yet complete, then it
adjusts various IRP fields to reflect the next segment and passes the IRP back to the class
driver. If the request is complete, IOC$IOPOST performs all appropriate 1/0 completion
activity.

• Removes the IRP from the 110 postprocessing queue.
• Determines if the entire requested 110 transfer is complete.

The number of bytes transferred by the most recent segment was just stored in the IOSTl
and IOST2 fields of the IRP by routine IOC$ALTREQCOM. This quantity is compared
with the quantity in the OBCNT field.

If the two quantities are equal, then the request is complete. This could only be true
if the request did not have to be broken up due to file fragmentation into multiple
segments.

3-32 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

If the two quantities are not equal, then the number of bytes transferred by the most
recent segment represents only part of the entire request. The accumulated number
of bytes transferred is updated by adding the number of bytes transferred by the most
recent segment into the IRP$L_ABCNT field. Then, the new content of the ABCNT
field is copied to bits <47:16> of the quadword made up of the IOSTl and IOST2
longwords.
If the contents of the ABCNT and OBCNT fields are now the same, then the most
recent segment was the last and the request is complete. If not, then the request is
not complete and there is at least one more segment to transfer.

• If the 1/0 request is not complete, then IOC$10POST does the following:
Adjusts the IRP$L_SEGVBN to contain the starting VBN of the next segment by
adding the number of blocks just transferred into the SEGVBN field.
Adjusts the IRP$L_SVAPTE field to contain the system virtual address of the system
PTE pointing to buffer page corresponding to beginning of the next segment.
Calls IOC$MAPVBLK as before to map as much of the remaining transfer as possible
into this next segment. The actual number of bytes to transfer by this next segment
and associated starting LBN are stored in the BCNT and MEDIA fields of the IRP.

NOTE

The IRP now represents the next segment in the request.

Routine EXE$INSJOQ is called as before to pass the IRP to back to the disk class
driver (routine DU_STARTIO) again.

• If the 1/0 request is complete, then IOC$10POST takes the following steps:
~uffer pages are unlocked and the associated system virtual PTEs released.
The event flag specified by the $QIO parameter EFN is now set.
Using an IPL$_ASTDEL software interrupt, a kernel AST (address= DIRPOST) is
delivered to the process to write status to the IOSB and deliver any user specified AST
to the process.

3.7 Impact on $QIO Flow Due to Local DSA Controller

There are some significant differences in the flow of a $QIO when a local DSA controller is
involved, instead of a CI, DSSI or NI port. The remainder of this chapter provides an overview
of these differences.

For all intents and purposes, these differences are transparent to the disk class driver. They
depend upon the type of port used to support SCS communication with the DSA controller, and
the internals of that controller. As such, these differences are confined to port driver routines
invoked by DUDRIVER. The port driver for local ports is PUDRIVER.

Digital Equipment Corporation I Confidential and Proprietary 3-33

$QIO System Service and DUDRIVER

3.7.1 Allocating an SCS Message Buffer

The first noticeable difference is when DUDRIVER calls the routine to allocate an SCS
message buffer in which to build an MSCP command. These message buffers are allocated
from a different pool of buffers than for that of a remote port.

During controller initialization, PUDRIVER sets up a pre-allocated pool of buffers within the
Port Descriptor Table (PDT) for each local DSA controller. These buffers are used to exchange
MSCP commands and end messages between itself and the controller. The number of these
buffers is dependent upon the type of adapter being used with the count being stored at
offset PDT$L_NO _BUFFS within the PDT. The size of each of these buffers is found at offset
PDT$L_UDAB_LEN.

3.7.1.1 Ring Buffer Count Calculation

The number of buffers is calculated in routine BUILD_PDT based on the size of both the
command ring and response ring plus some padding to handle stalled requests (VMS V5.5
specifies 8 additional buffers). The command and response ring sizes are derived from an
array of entries contained in (RING EXP _ARRAY) which is indexed by the adapter type. The
default number of each buffer type is 2**4 buffers for VMS V5.5. The KDM70 specifies 2**5
buffers when the array is created using the Create_device_entry macro.

The size of the buffers is calculated using another array of entries contained in (MSGLENGTH_
ARRAY). This array is also indexed by the adapter type. The buffer header overhead (20 bytes)
is added to the base message size (default 80 bytes) to provide the total size of a UDAB buffer.
The message text within the UDAB buffer is pointed to by the UDAB$T _TEXT offset. The
KDM70 specifies a base message size of 108 bytes when the array is created using the Create_
device_entry macro.

The address of the start of these buffers is stored at offset PDT$L_BUFARY within the PDT.
They are indexed by buffer number starting with 0 and going up to PDT$L_NO_BUFFS - 1.

NOTE

While these buffers were originally structured for use with the UDA50, they are
actually used with all controllers handled by PUDRIVER.

At offset PDT$L_CRCONTENT is an array of longwords, each of which will contain the
starting address of one of these buffers in the command ring when required. At controller
initialization, these are preset to contain a value of minus one representing an unused entry.

At offset PDT$L_RRCONTENT is an array of longwords, each of which will contain the
starting address of one of these buffers in the response ring. At controller initialization, these
are preset to contain the address of the first ringexp_array (2**4 or 2**5) number of buffers
based on the adapter type.

Both of these lists are allocated with UDA$K_MAX_RINGSIZE entries regardless of the type
of controller being handled. For VMS V5.5, this value equates to 2**5 entries.

When the PDT is initialized, the remaining portion of these buffers are placed in a message
buffer free queue whose head is at offset PDT$L_PU _FQFL.

3-34 Digital Equipment Corporation I Confidentlal and Proprietary

$QIO System Service and DUDRIVER

For VMS V5.5, the default number of buffers set up in this way is 40 1, and the number set
aside in the response ring is 16. Figure 3-7 is based on these values.

1 The number of buffers for the KDM70 is 72

Digital Equipment Corporation I Confidential and Proprietary 3-35

$QIO System Service and DUDRIVER

Figure 3-7: Local Pon Buffer Initial Layout

uda$k_max_7ingsize{
entries

uda$k_max_7ingsize{
entries

initially allocated {
to

response
ring

pdt$l_pu_fqfl

pdt$l_pu_fqbl

pdt$l_pu_bufqf l

Message Free
Queue

CDRP wait Queue for no
available buffers

_______ ,.. offset PDT$L CRCONTENT
-1 + 0 -

-1 +15

+31 .,_ ______ ..,._offset PDT$L RRCONTENT

buffer O addr + 0 -

buffer 15 addr +15

+31

pdt$l_bufary

buffer 0

buffer 15

buffer 16

buffer 17

buffer 18

·1 buffer 39

CXN-0003-04

When DUDRIVER allocates an SCS message buffer to build an MSCP command for a local
DSA controller, it does not go to nonpaged pool as it would with a CI. Instead, it calls the
routine FPC$ALLOCMSG in PUDRIVER to fetch one from the message buffer free queue in
the controller's PDT.

3-36 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

If this queue is empty, it will try to reclaim one from what is known as the command ring,
(another concept to be explained a bit later). If it still can't get one, then the $QIO request is
suspended until a message buffer becomes available.

Suspending the request in this case consists of inserting the CDRP representing the request
in a PDT message buffer wait queue (PDT$L_PU_BUFQFL). The PC at which to resume the
request, namely within this allocation routine, is saved in the CDRP. When some other request
relinquishes a buffer to the queue, then the suspended request at the head of the wait queue
is resumed.

If the request succeeds in acquiring a buffer, the address of the text portion of the buffer is
stored in the CDRP at offset CDRP$L_MSG_BUF. The text portion of the buffer begins where
the first byte of the MSCP command would be stored.

3.7.2 Mapping the IRP

Assume that DUDRIVER was able to obtain the message buffer. The steps used by
DUDRIVER to build the MSCP command are the same as in the CI case, except for map
ping the IRP. This is done by DUDRIVER calling the appropriate routine in PUDRIVER based
on the following table:

Routine

FPC$MAPIRP

FPC$MAPIRP _UV2

FPC$MAPIRP _UVl

FPC$MAPIRP _BDA

FPC$MAPIRP _KDM

Application

Map a user buffer

Map a buffer for uVax II

Map a buffer for uVax I

Map a buffer for BDA

Map a buffer for KDM

3.7.2.1 The Case of the UDA50

First, consider the UDA50. This is a UNIBUS device. Consequently there exist UNIBUS
adapters to interface a UNIBUS with the main bus structure of a VAX CPU. For example,
the DW780 UNIBUS adapter serves this purpose on VAX-11/780s and VAX-11/785s; and the
DW750 serves the same purpose for a VAX-11/750.

Figure 3-8 illustrates the relationship between the UDA50 and the rest of the VAX-11/780.
(Of course, there can be many more device adapters and devices than are shown here.)

Digital Equipment Corporation I Confidential and Proprietary 3-37

$QIO System Service and DUDRIVER

Figure 3-8: Vax 11/780 Adapter Configuration

Other Devices

OTHER PHYSICAL
DEVICE MEMORY
ADAPTER

VAX-11/780 SBI BOS
CPU

DW780
UNIBUS
ADAPTER

UNIBUS

ODASO

RA-type Disks

CXN-0003-05

A UNIBUS address is composed of only 18 bits, whereas the 780's Synchronous Backplane
Interconnect (SBI) supports 28-bit addressing. One of the roles of the DW780 is to translate
from an 18-bit UNIBUS address to a 28-bit SBI address whenever one of the devices on the
UNIBUS wishes to read or write VAX memory. Here is a brief and very simplified explanation
of how this is done.

As Figure 3-9 indicates, within the DW780 is a collection of 496 mapping registers which
facilitate this translation. The high order 9 bits of a UNIBUS address serve as an index to
select one of the mapping ,registers. From this register comes the SBI page address, which is
actually a VAX Page Frame Number (PFN) identifying the page of VAX physical memory being
referenced. Bits <8:2> identify a longword within that page.

If all transfers between VAX memory and UNIBUS devices were longword aligned, this would
be sufficient. However, they aren't. So given the longword in physical memory identified by
the 28-bit SBI address, how does the SBI addressing logic determine if the transfer begins with
the high order word, or the low order word, within that longword? The answer is UNIBUS
address bit 1.

3-38 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

If this bit is set, then the transfer begins with the high order word. If this bit is clear, then
the transfer begins with the low order word.

Figure 3-9: Unibus to SBI Mapping

cl co control

0 0 DATI
0 1 DATIP
1 0 DATO
1 1 DATOB

.cllcO.

mask-func
encode

3 0 31 27

COLLECTION OF
MAP REGISTERS
WITHIN DW780

17

UNIBUS ADDRESSING of VMS Physical Memory

MAP REGISTER NUMBER

0
1
2

495

7 6 0

9 8 2 1

LONGWORD BYTE

~a~klf~nc----V-A_X_P_H_Y_S_I_C_AL __ ME __ M_O_RY __ P_F_N ____ L_O_N_G_W_O_RD--.

SBI ADDRESS

See the VAX maintenance handbook (EK-VAXV2_HB-003) for additonal information.

0

CXN-0003-06

Getting down to a particular byte provides a special problem. This is because the UNIBUS
does not use address bit 0 for addressing, but rather for control. UNIBUS addresses are
always on word boundaries. To solve this problem, a special bit, called the BYTE OFFSET bit
, is provided in each of the 496 map registers. If this bit is set, the transfer begins with an
"odd" byte; but if this bit is clear, then the transfer begins with an "even" byte.

In essence, the BYTE OFFSET bit and UNIBUS address bit 1 combine to form an offset
relative to byte 0 of the longword specified by the SBI address.

As an example, assume that 32 bits have been assembled in the DW780 for transfer to VAX
memory, and that the map register selected by UNIBUS address bits <17:9> contain the PFN
1000. Further assume that UNIBUS address bits <8:2> are all 0.

Digital Equipment Corporation I Confidential and Proprietary 3-39

$QIO System Service and DUDRIVER

If the BYTE OFFSET bit is 0 but UNIBUS address bit 1 is a 1, then bytes 0, 1, 2, and 3 of
the data will be written to bytes 2, 3, 4, and 5, respectively, of physical memory page 1000.
However, if both the BYTE OFFSET bit and UNIBUS address bit 1 are both set, then bytes 0,
1, 2, and 3 are written to bytes 3, 4, 5, and 6, respectively, of physical memory page 1000.

NOTE

As stated earlier, this is a very simplified explanation. Consider that the example
just presented would really involve two UNIBUS transfers and two SBI transfers.
Thus, for further detail, the reader is referred to the VAX-11/780 DW780 UNIBUS
Adapter Technical Description.

In this way, the DW780's map registers provide translation between the UNIBUS addressing
used by the UDA50 and the SBI physical addressing used by the 11/780 CPU and memory.
Now consider how these map registers are used by PUDRIVER's routine FPC$MAPIRP (or
FPC$MAPIRP _xxx) to map a segment of a $QIO request represented by an IRP/CDRP pair.
This is performed in three major steps:

• First, IOC$REQMAPUDA is called to allocate enough map registers to map this segment.
One register is allocated per page of data to be transferred. These registers must be
consecutive. Also, one additional register is allocated to denote the end of this set of map
registers. The byte count (BCNT) and buffer offset (BOFF) fields from the CDRP are used
to compute the number of registers allocated.

NOTE

If enough consecutive registers are not available, the CDRP is placed in a map
register wait queue until they are. This queue is in a data structure not covered
in this book called an Adapter Control Block (ADP).

• Next, IOC$LUBAUDAMAP is called to load the map registers for this segment. This step
involves two tasks:

A data path must be selected. This is basically a 32-bit buffer within the DW780
wherein two 16-bit UNIBUS transfers can be accepted from the UDA50, and then
assembled into a single 32-bit longword before being passed to the SBI. This is also
where a 32-bit longword can be buffered and broken into two 16-bit UNIBUS transfers
destined for the UDA50. The DW780 has 15 such data paths. (There is one more; but
this is used for single word exchanges between the UNIBUS and the SBI.)
Then the map registers allocated by routine IOC$REQMAPUDA are loaded. Into each
map register is placed the PFN corresponding to one of the process's buffer pages, and
also the data path just selected. If the BOFF field of the CDRP indicates that the
transfer is going to start with an "odd" byte, then the BYTE OFFSET flag is set in
each of these registers.
The extra map register allocated at the end of the set is cleared to 0.

• Finally, the local buffer handle is constructed and stored in the MSCP message buffer, the
address of which is found at offset CDRP$L_LBUFH_AD in the CDRP.

3-40 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

Like the buffer handle that would be used had the port been a CI, this buffer handle also
consists of three longwords. But they have a very different format. In fact, the second
and third longwords both contain zero. See Figure 3-10 for an illustration of the buffer
handle.

Figure 3-10: Buffer Handle for a UDA buffer

31 24 23 18 17

DATA PATH I 0 I NUMBER

0

0

UNIBUS ADDRESS OF BEGINNING
OF PROCESS BUFFER

9 8

1st MAP REG l LOW 9 BITS OF
NUMBER CDRP$W_BOFF

0

CXN-0003-07

The DW750 is the adapter for interfacing the UNIBUS with the 32-bit Cpu Memory
Interconnect (CMI) bus on the VAX-11/750. VMS speaks to the UDA50 via the DW750 in
the same way as it would via the DW780. However, there are two noticeable differences.

• First, the DW750 provides only three buffered data paths for the conversion between a
single 32-bit CMI data transfer and two 16-bit UNIBUS data transfers. (The DW750 does
have a fourth data path to facilitate single word exchanges between the CMI and the
UNIBUS.)

• The CMI supports only 24-bit physical addresses. So while UNIBUS address bits <8:2>
still match up with CMI address bits <8:2>, the map registers supply only 15-bit PFN s to
be used as CMI address bits <23:9>.
Figure 3-11 illustrates UNIBUS to CMI address conversion.

Digital Equipment Corporation I Confidential and Proprietary 3-.41

$QIO System Service and DUDRIVER

Figure 3-11: Unibus to CMI Mapping

UNIBUS ADDRESS

17 9 8 2 1 0

[MAP REGISTER NUMBER I LONGWORD I BYTE J

0
1
2

COLLECTION OF
MAP REGISTERS
WITHIN DW750 ----

495

23 ' 9 8 l~ 2 1 0

l VAX PHYSICAL MEMORY PFN l LONGWORD l / I j

CMI ADDRESS

CXN-0003-08

3.7.2.2 Other DSA Controllers

With other DSA controllers, such as the KDB50 on the BI bus or the KDA50 on the microVAX.
Q-BUS, the steps for mapping the IRP are similar, but with some notable exceptions.

The Q-BUS does not allow DMA transfers to or from odd byte aligned buffers. If the buffer
is not word aligned, then the data is copied into a page aligned buffer in non-paged pool first.
Thus, a direct 1/0 is essentially turned into a buffered 1/0. Also, with the KDA50, Q-bus map
registers are used to map transfer buffers.

The map registers used by PUDRIVER for the KDB50 are also quite different. In fact,
PUDRIVER refers to them as pseudo map registers. While initializing the PDT associated
with the port for each of these controllers, PUDRIVER allocates 4 physically contiguous pages
of memory. Since each page contains 512 bytes, that's a bit more than enough to hold 496
contiguous longwords of physical memory which will serve as these pseudo map registers.

When mapping the IRP, these pseudo map registers are allocated and loaded by the very same
routines that map an IRP in the case of a UDA50. The buffer handle loaded into the SCS
message buffer containing the MSCP command has the same format as with the UDA50. It
can be concluded that these controllers process what appear to be UNIBUS map registers and

3-42 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

MSCP commands in functionally the same way as a UDA50. However, the concept of buffered
data paths do not apply.

3.7.3 Transmission of SCS Message Buffer Containing MSCP Command

In the case of CI port, SCS message buffers ready for transmission are placed in a port
command queue within the port's PDT. Given a port for a local DSA controller, the role of a
command queue is replaced by that of a command ring.

3. 7.3.1 Use of the Command Ring

The command ring consists of a set of consecutive longwords, called descriptors, which are
used in a round robin fashion. The number of descriptors in the command ring is kept in the
PDT offset PDT$L_RINGSIZE and is based on the type of controller being configured. (As of
VMS V5.5, the value for most controllers is 16 and is 32 for the KDM70.)

These descriptors begin at the address pointed to by offset PDT$L_CMDRING. The index
of the next available descriptor to use is kept at offset PDT$B_CRINGINX and the count of
currently used descriptors is kept at offset PDT$B_CRINGCNT. Figure 3-12 illustrates the
Command Ring.

Digital Equipment Corporation I Confidential and Proprietary 3-43

$010 System Service and DUDRIVER

Figure 3-12: Command Ring Format

l:~l
ROBIN
ORDER

L_J

I

pdt$b_cringinx l

pdt$b_cringcnt I

pdt$l_cmdring }

Descriptor 0

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 14

Descriptor 15

Figure 3-13 illustrates the format of each descriptor:

Figure 3-13: Command Ring Descriptors

31 30 18 17

CXN-0003-09

0

\\\\\\\\\\ ENVELOPE ADDRESS

CXN-0003-10

The "Owner" bit indicates the ownership of this descriptor. When the host sets up a descriptor
for processing by the controller, the host sets the "Owner" bit. When the controller returns
ownership of the descriptor back to the host, the controller clears the "Owner" bit.

The ENVELOPE ADDRESS field is set by the host to contain the UNIBUS address of the
beginning of the text portion of a buffer being passed to the port. Unibus mapping of the
buffers is accomplished at port initialization time in routine INIT_UDA_BUFFERS and is
stored at offset UDAB$L_DESCRIP within each buffer.

3-44 Digital Equipment Corporation I Confidential and Proprietary

$010 System Service and DUDRIVER

The format of each SCS message buffer is detailed in Figure 3-14 and described in Table 3-2.

Figure 3-14: Local Port SCS Message Buffer Format

31 0

UDAB$L_FLINK Forward link longword

UDAB$L_BLINK Backward link longword

Buffer -Ring Ring
Number Number Index

UDAB$L_DESCRIP UNIBUS virtual address of this buffer

CONID Msg Cre
typ dit

Message
length

Controller message envelope

--------------...... ~UDAB$T_TEXT

Contents of an MSCP Packet

CXN-0003-15

Table 3-2: SCS message buffer fields

Field

1

2

3

4

5

6

7

Description

A FLINK and a BLINK for queuing the buffer on the free queue and also on the SEND Q.

UDAB$B_RINGINX which contains the index int.o a ring on which this buffer has been
placed (valid only if the buffer is NOT on the free queue).

UDAB$B_RINGNO which contains the number (0 => command ring and 1 => response ring)
of the ring on which the buffer is currently residing.

UDAB$B_BUFFNO which contains the number of this buffer. There are PDT$L_NO_
BUFFS in t.otal, and they are numbered from zero to PDT$L_NO_BUFFS-1.

UDAB$L_DESCRIP which contains the UNIBUS virtual address of the text portion of this
buffer in the low order 30 bytes of this longword, and which also has the two high order
bits (ownership and full bits) set. This is the precise value that must be placed in a ring
longword so as to present the buffer to the controller.

The controller header which contains a word of length (of the following text portion only), a
byte containing two four bit fields encoding the credit field and the message type field, and a
byte of Connection ID.

The message text portion.

When DUDRIVER wants to pass the SCS message buffer containing the MSCP command to
the local DSA controller, it calls PUDRIVER's routine FPC$SNDCNTMSG. This routine does
the following:

Digital Equipment Corporation I Confidential -and Proprietary .3-45

$QIO System Service and DUDRIVER

• First, it verifies that the connection is still open.
• It then verifies that a descriptor is available in the command ring by examining the

PDT$B_CRINGCNT field of the PDT. This field contains the number of command ring
descriptors in use. If this number is less than the value found at offset PDT$L_RINGSIZE,
then at least the next descriptor is available. If not, then the SCS message buffer will be
left queued to the PDT's queue of "backed up" buffers until one is available. (The head of
this queue is offset PDT$L_PU _SNDQFL.)

• Next, it places the buffer address into the CRCONTENT array in the PDT at the offset
indicated by the PDT$B_CRINGINX field.

• It then copies the UNIBUS address of the "text portion" of the SCS message buffer into
the next available command ring descriptor, i.e. the descriptor pointed to by the PDT$B_
CRINGINX field.
The text portion of the SCS message buffer begins with the first byte of the actual MSCP
command. The UNIBUS address of the text portion of each such buffer was stored within
the buffer at offset UDAB$L_DESCRIP when the PDT for the port was initialized.
As part of this step, the host also set the "Owner" bit in the 4escriptor.

• Then, FPC$SNDCNTMSG reads/writes the IP (Initialization and polling) register for the
port. This has the effect of "waking up" the controller's microcode to the fact that there is
something for it to do in the command ring.

NOTE

Dependent upon the type of controller, either a write to the IP register will
force the port to poll the command ring or a read from the IP register will. The
low order bit of the PDT$L_PU _PORTCHAR field in the PDT will determine
whether a read (low bit clear) or write (low bit set) should be performed.

• Finally, it sets the PDT$B_CRINGINX field to point to the next descriptor, and it incre
ments the PDT$B_CRINGCNT field.

3. 7 .3.2 Reclaiming Descriptors and Buffers from the Command Ring

Once the controller has copied the MSCP command from the message buffer pointed to by the
command ring descriptor to its own internal storage, it returns ownership of the descriptor
back to the host. In order for the host to reclaim such buffers, it must "poll" the command ring
for these descriptors. Since descriptors are released in sequence, the host need only traverse
the ring until it finds one still owned by the port.

If a descriptor is found to have been returned to the host, then any buffer queued to the PDT's
message buffer send queue, PDT$L_PU _SNDQFL, has priority for obtaining it.

If there are no waiting message buffers, then the buffer pointed to by the command ring
descriptor is given to the response ring if that ring is not full. The response ring is the
mechanism whereby the controller returns MSCP end messages corresponding to commands it
received through the command ring.

3-46 Digital Equipment Corporation I Confidential and Proprietary

$QIO System Service and DUDRIVER

The response ring is structured the same way as the command ring. However, PUDRIVER
endeavors to keep a buff er assigned to every one of its response ring descriptors at all times.
This is so that the host is always prepared to receive an incoming message from the controller.

If there are no waiting message buffers and if the response ring is full, then the buff er is
placed in the queue of free message buffers, PDT$L_PU _FQBL.

There are three times when this polling is done in attempt to "shake loose" some buffers:

• When FPC$ALLOCMSG is called to allocate a buffer from the queue of free message
buffers, but the queue is empty.

• When FPC$SNDCNTMSG is called to send a message, but finds no free descriptors in the
command ring.

• When routine POLL_RSPRING removes a buffer from the response ring to give it to a
class driver. It attempts to replace this buffer with another from the message buffer free
queue. If that queue is empty, then this routine is called in an attempt to reclaim one for
that purpose.

3.7.4 Receiving MSCP End Message from a Local DSA Controller

The Response Ring is used by the port to pass messages from the controller to the VAX host.
Starting at offset PDT$L_RSPRING in the port's PDT, this ring is structured the same as the
command ring. It consists of a set of consecutive descriptors which have the same format as
those in the command ring. The number of descriptors in the response ring is kept in the PDT
at offset PDT$L_RINGSIZE. (As of VMS V5.5, the value for most controllers is 16 and is 32
for the KDM70.)

Unlike command ring descriptors, each response ring descriptor is given one of the pre
allocated buffers during PDT initialization.

The response ring is traversed by the port in a "round robin" fashion. When a local DSA
controller wishes to pass an MSCP end message to the host, it copies the data into the buffer
whose UNIBUS address is in the next available response ring descriptor (pointed to by
PDT$B_RRINGINX. It then releases ownership of the descriptor to the host by clearing the
"Owner" bit of the descriptor. Finally, it generates a hardware interrupt at IPL 21.

PUDRIVER's interrupt service routine, PU$INT, calls routine POLL_RSPRING to examine
the response ring looking for descriptors that have been released to the host. The port releases
descriptors in sequence; and ownership of a descriptor is returned to the port as soon as the
host is finished processing it.

Routine POLL_RSPRING need only traverse the response ring until it encounters the first
descriptor not owned by the host. The PDT$B_RPOLLINX field contains the index of the next
response ring descriptor to be considered by POLL_RSPRING.

In essence, the host uses routine POLL_RSPRING to logically "chase" the port around the
ring. As the port fills buffers and releases their associated descriptors to the host, the port
gets further ahead of the host. As the host processes descriptors, the host catches up with the
port.

Digital Equipment Corporation J Confidential and Proprietary 3-47

$QIO System Service and DUDRIVER

The next illustration shows that routine POLL_RSPRING obtains the index of the first
response ring descriptor released in sequence to the host from the PDT's RPOLLINX field.
This response ring index is also used as an index into an array of longwords beginning at
offset PDT$L_RRCONTENT.

There is a one to one correspondence between the entries in this array and the response
ring descriptors. AP, a descriptor is given a buffer by placing the UNIBUS address of that
buffer in the descriptor, the buffer address is also stored in the corresponding longword of the
RRCONTENT array.

For example, if PDT$B_RPOLLINX contains the number 2, then it is referencing descriptor
number 2 in the response ring. It is also referencing the second longword in the PDT$L_
RRCONTENT array. The RRCONTENT array provides the address of the buffer contain
ing the MSCP end message from the controller. Figure 3-15 illustrates the Response Ring
configuration:

3-48 Digital Equipment Corporation I Confidential and Proprietary

Figure 3-15: Response Ring Buffer Pointers

RP
(pd

OLLINX FIELD
t$b_rpollinx)

2

pdt$1_c<content~ +o CRCONTENT
ARRAY

+1

+2

+3

+31
pdt$l_rrcontent ~

RRCONTENT +O
ARRAY

+1

buff 1

+3

l:::::j +31

(pdt$l_rspring)~
RESPONSE RING

RRINGINX FIELD
(pdt$b_rringinx)

4

COMMAND RING

$QIO System Service and DUDRIVER

I

pdt$l_cmdring

pdt$l_bufary

descriptor O

descriptor l

ownl \ J UNIBUS ADDRESS

descriptor 3

descriptor 4

descriptor n

descriptor O

descriptor n

buffer number 0

buffer number 1

buff er number 2

buffer number
(pdt$l_no_buffs)

1-----i
l
_J

~

--

I

i.......i Buff e r 1 + UDAB$T_TEXT

} (pdt $l_udab_len)

CXN-0003-11

The message buffer containing the MSCP end message is then passed to DUDRIVER.
However, the mechanism for passing this buffer to DUDRNER is different from what is
employed for CI, DSSI and NI ports. The low order 2 bits of the destination CONID in the
buffer are used as an index into a table of longwords beginning at offset PDT$L_PU _CDTARY
in the Port Descriptor Table for the controller.

This table contains the address of CDTs representing connections between SYSAPS in the local
host and SYSAPs in the controller. In particular, the address of the CDT for the connection
between DUDRIVER and the controller's disk server is fetched. From the CDT is extracted
the address of DUDRIVER's message input routine, and the message buffer is passed to that
routine.

It is undesirable that the response ring descriptor containing the UNIBUS address of the
message buffer just passed to DUDRIVER be unavailable to the port while DUDRIVER
handles the message. During the process of passing the buffer to DUDRIVER, a new buffer
is given to the descriptor. A message buffer is removed from the buffer free queue (PDT$L_
PU _FQFL) if this queue is not empty; otherwise, one is reclaimed from the command ring

Digital Equipment Corporation /. Confidential and Proprietary 3-49

$QIO System Service and DUDRIVER

(routine POLL_RSPRING). The UNIBUS address of this buffer is then stored in the response
ring descriptor.

3. 7 .5 Deallocating the SCS Message Buffer

DUDRIVER calls routine FPC$DEALLOMSG in PUDRIVER to release an SCS message buffer
in which it received a packet from a local DSA controller. This routine decides whether to give
the free buffer to the response ring, or to the message buffer free queue (PDT$L_PU _FQFL).
The response ring has priority; it is selected over the free queue whenever it is not completely
full.

When inserting a buffer on the message buffer free queue, FPC$DEALLOMSG may find that
the queue is otherwise empty. If so, there may be requests suspended because this queue was
empty when those requests needed buffers in which to build MSCP commands. Thus, in this
case, FPC$DEALLOMSG enters code to resume such requests. Their context will be found
saved in CDRPs in the message buffer wait queue (PDT$L_PU_BUFQFL).

3-50 Digital Equipment Corporation I Confidential and Proprietary

Disk Class Driver Error Handling and BUGCHECKs

Chapter 4

Disk Class Driver Error Handling and BUGCHECKs

4.1 Introduction

Errors handled by DUDRIVER fall into three general categories:

• A command which has timed out after being issued to a controller.
• An MSCP end message received from a controller indicating that an error occurred.
• Loss of the SCS connection with the MSCP server in a controller.

This chapter deals with the detection of such errors, and DUDRIVER's response to them. For
errors related to a particular unit, only non-shadowed disks will be considered here; error
detection and handling for shadow set virtual units is covered in a later chapter.

Also presented are the details of DUDRIVER's synchronizing activity with a controller's MSCP
disk server, the handling of a broken SCS connection between DUDRIVER and an MSCP
server, and mount verification of non-shadowed disks.

4.2 DUDRIVER Timeout Mechanism

During disk class driver controller initialization performed by routine DU_CONTROLLER_
INIT, a channel request block (CRB) is initialized and inserted in the CRB timeout list,
IOC$GL_CRBTMOUT. This CRB is setup to periodically timeout every N seconds, where
N is the content of the CNTRLTMO field of the CDDB associated with the controller. DU_
CONTROLLER_INIT also sets the TOUTROUT field of this CRB to contain the address of the
disk class driver timeout routine, DU$TMR.

By means of a 'limer Queue Entry (TQE), routine EXE$TIMEOUT in module TIMESCHDL
is called once a second to perform the "once a second functions", such as checking for device
and lock management request timeouts, and updating the system absolute time in seconds.
One of these "once a second functions" is to scan the CRB timeout list for CRBs which have
timed out. In particular, when the CRB associated with a particular DSA controller times out,
routine DU$TMR in DUDRIVER is called. Figure 4-1 illustrates the relationship of the CRB
and the Timeout Links:

Digital Equipment Corporation/ Internal Use Only 4-1

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-1: CRB Timeout Mechanism and linkage

: :IOC$GL_CRBTMOUT

(ioc$gl_crbtmout-2c:) CRB

crb$l_auxstruc

crb$l_timelink t--+----ti~ {TO NEXT CRB}

crb$l_duetime

crb$1 toutrout
(DU$TMR)

4.2.1 Overview of the Timeout Mechanism

CDDB

cddb$l_cdrpqfl

cddb$l_cdrpqbl

cddb$l_oldrspid

QUEUE OF
ACTIVE CORPS

CXN-0004-01

DU$TMR begins by extracting the address of the CDDB associated with the controller from
the AUXSTRUC field of the CRB. It then determines if any commands are currently active for
this controller by checking the CDRP queue in the CDDB.

If no CDRPs are queued to the CDDB, then no commands are active for the controller. In this
case, DU$TMR merely issues what is effectively a NOP (Get Unit Status) to the controller so
that the controller does not timeout this host due to inactivity between them. After issuing the
NOP, DU$TMR then branches to routine DUTU$DODAP to perform determine access paths
processing.

If one or more CDRPs are queued to the CDDB, then for each such CDRP there is an active
MSCP command which has been issued to the controller, but for which no corresponding end
message has been received from the controller. DU$TMR examines the oldest active CDRP
and determines if it was queued after the last call to DU$TMR. If so, then it is not considered
to be "very old", and DU$TMR does nothing on this call other than reset the CRB's timeout.

If, however, it was queued prior to the last time DU$TMR ran, then it is considered to be
"very old", and possibly "too old"; thus, DU$TMR issues a GET COMMAND STATUS to the
controller for this command. If the end message for the GET COMMAND STATUS indicates
that the controller has made progress on this command since it received it (or since the last
GET COMMAND STATUS), then DU$TMR merely branches to DUTU$DODAP.

4-2 Digital Equipment Corporation I Internal Use. Only

Disk Class Driver Error Handling and BUGCHECKs

If the end message from the controller indicates that no progress has been made, then
DU$TMR branches to DU$RE_SYNCH_PKT to reset the controller on the presumption that
the controller is "very ill".

When issuing the NOP or a GET COMMAND STATUS, DU$TMR sets a flag to "remember"
that it has done so. If the controller is unable to respond to either, then this flag will still
be set the next time DU$TMR is called. This will also cause DU$TMR to branch to the
code to reset the controller. The NOP (which is really a GET UNIT STATUS) and the GET
COMMAND STATUS are both immediate class commands; they should have been responded
to by the next time DU$TMR is called.

4.2.2 Detailed Flow of DU$TMR

DU$TMR Determines whether or not any CDRPs representing MSCP commands are queued
to CDDB, and branches accordingly.

• Fetches address of the CDDB associated with the controller from the AUXSTRUC field of
the CRB.

• Checks to verify that we still have a connection
• Tests to see if the immediate pending flag (CDDB$V _IMPEND) in the CDDB$W _STATUS

field is set and branches to DU$RE_SYNCH if it is (catch timeout routine collisions)

NOTE

If the IMPEND flag is found to be set here, then an immediate command issued
from this routine during the previous pass has not yet been responded to by the
controller. The controller is presumed to be "very ill". DU$TMR takes no further
action here, but rather branches to DU$RE_SYNCH to reset the controller. The
error code EMB$K_CLTRES_IMTMO is passed to DU$RE_SYNCH.

• Checks if any CDRPs are queued to the CDDB. (Such CDRPs represent commands issued
to the controller for which end messages have not yet been received.)

4.2.2.1 No Commands active for Controller

DU$TMR issues a NOP to the controller so that the controller does not timeout this host due
to inactivity between them, and then invokes DAP processing for units on that controller.

• Clears OLDRSPID field in CDDB since no MSCP commands are active. (Prevents a rare
"inadvertent comparison error" in the case of where commands are active.)

• Tests to see if the DAP CDRP is currently in use by testing the DABBSY bit in the status
field. If it is, further tests will be performed to determine why and what action is required.

• The IMPEND flag is now set since an immediate command is about to be sent to the
controller.

Digital Equipment Corporation I Internal Use Only 4-3

Disk Class Driver Error Handling and BUGCHECKs

• Allocates the DAP CDRP by setting the DAPBSY flag in the CDDB$W _STATUS field of
the CDDB to send the immediate command

• Establishes the Credit_stall routine as the new timeout routine and sets the crb$l_duetime
(45 seconds in VMS V5.5).

• Allocates an RSPID and a Message Buffer
• Resets the normal Timeout routine (DU$TMR) and duetime in the CRB.
• Issues a GET UNIT STATUS command to controller for unit 0, even if there is no unit 0.

(state 2)

NOTE

Effectively serves as a NOP so that the controller won't timeout this host due to
inactivity.
Fork thread suspended here until corresponding End Message received from
controller.

• When the end message corresponding to GET UNIT STATUS is received,
Saves Load Available information returned from the controller in the CDDB$W _
LOAD _AVAIL field
Message buffer and RSPID recycled.
The IMPEND flag and DAPBSY flag are cleared.
This routine branches to DUTU$DODAP to perform determine access paths process
ing.

4.2.2.2 Commands Are Still active for Controller

If the oldest active command has been around for a long time (since the last timeout),
DU$TMR interrogates the controller to see if any progress has been made on this command.
It also invokes DAP processing.

• If one or more CDRPs are queued to the CDDB, then the CDRP at the head of the queue
represents the oldest active command (new CDRPs are inserted at the tail of the queue).
This oldest CDRP is examined to see how long it has been around.

• If this CDRP's RSPID field is different from the OLDRSPID field in the CDDB, then
the oldest command was queued to the CDDB since the last call of the timeout routine.
Consequently, the oldest active command is not considered to be "very old".

DU$TMR resets the OLDRSPID field in the CDDB to contain a copy of the content of
the RSPID field from the CDRP. It also sets the OLDCMDSTS field in the CDDB to
contain -1.

NOTE

If this same CDRP is found at the head of the queue on the next pass
through DU$TMR, it will then be considered "very old". Then, as will be

4-4 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

explained later in this section, a GET COMMAND STATUS will be issued to
the same controller to which the command was sent. The command status
returned in the corresponding end message will be compared against the
OLDCMDSTS to determine if the controller has made any progress on the
command.

If the controller type indicates an HSC, proceed to perform a Get Unit Status as for an
empty CDRP queue
If Load information is specifically requested (as indicated by bit MSCP$V _CF _LOAD
in the CDDB$W_CNTRLFLGS field) then perform a Get Unit Status as for an empty
CDRP queue.
DU$TMR resets the CRB$L_DUETIME field to contain the current time plus the
"controller delta" stored in the CDDB$W_CNTRLTMO field.
Clears the IMPEND flag to indicate no immediate commands are pending
Branchs to DUTU$DODAP to perform determine access paths processing.

• If this CDRP's RSPID field matches the OLDRSPID field in the CDDB, then the oldest
active command has been queued to the CDDB for at least one full controller timeout
period and is considered to be "very old" (perhaps "too old").

Tests to see if the DAP CDRP is currently in use by testing the DABBSY bit in the
status field. If it is, further tests will be performed to determine why and what action
is required.
Allocates the DAP CDRP by setting the DAPBSY flag in the CDDB$W _STATUS field
of the CDDB to send the immediate command
Sets the IMPEND bit to indicate that an immediate mode command is about to be
issued (Get Command Status)
Establishes the Credit_stall routine as the new timeout routine and sets the crb$l_
duetime (45 seconds in VMS V5.5).
Allocates an RSPID and a Message Buffer
Resets the normal Timeout routine (DU$TMR) and duetime in the CRB.
Issues GET COMMAND STATUS command to the controller to ask if the controller
has made any progress on this command since it was sent to the controller (or since the
controller received the last GET COMMAND STATUS inquiring about this command.)
o If the UCB actually represents a shadow set virtual unit (MSCP$V _SHADOW

flag is set in the MSCPUNIT field of the UCB), or if the oldest active com
mand's function code in the CDRP$W _FUNC field is IO$_CRESHAD, then rou
tine DU$SHADOW _GTCMD _UNIT is called to fetch the shadow set virtual unit
number.

o The command reference number inserted into the GET COMMAND STATUS
packet is fetched from the OLDRSPID field of the CDDB.

Issues the Get Command Status to the controller

NOTE

Digital Equipment Corporation/ Internal Use Only 4-5

Disk Class Driver Error Handling and BUGCHECKs

The fork thread is suspended here until the corresponding end message
received from controller.

When the end message corresponding to GET COMMAND STATUS is received from
the controller, a 32-bit unsigned comparison of the CMD_STS field of the end message
with the OLDCMDSTS field in the CDDB is made.
If the CMD_STS is smaller, then progress has been made by controller on the com
mand in question:
o CMD_STS field in message copied to OLDCMDSTS field in CDDB.
o Buffer containing end message and RSPID both recycled.
o The IMPEND flag and DAPBSY flag are cleared.
o If the controller type indicates an HSC or if the MSCP$V _CF _LOAD flag is set

indicating Load Availability information is required, then branch back to perform a
Get Unit Status

o Branch made to DUTU$DODAP to perform "determine access paths" processing.
If the CMD_STS is not smaller, then no progress has been made by the controller since
it received the command, or since the last GET COMMAND STATUS. The controller
is presumed to be "very ill", and a branch is made to DU$RE_SYNCH_PK.T to log an
EMB$K_CTLRES_TMO error due to no progress being made on the MSCP command.
The RE_SYNCH_PKT routine will also reset the controller.

4.3 MSCP End Messages With Error Status Codes

DUDRIVER's involvement with a file read or write request is triggered by its start 1/0 routine,
DU_STARTIO, being handed an IRP. This IRP represents a single transfer segment, that is,
a set of consecutive virtual blocks which map to a set of consecutive logical blocks. Due to file
fragmentation, it may be necessary for DUDRIVER to transfer several segments in order to
satisfy one $QIO request.

For each transfer segment, DUDRIVER builds and sends an MSCP Command to the primary
path controller for the disk. (Where there is only one controller for the disk, by default that
controller is the primary path controller.) The data is then exchanged between VAX memory
and the controller when the controller is ready.

Upon completion of the exchange, the controller sends an MSCP End Message to DUDRIVER.
The End Message provides the disk class driver with a completion status code for the segment.
Based on this status code, DUDRIVER will decide whether to enter an error handling routine,
or to continue with normal processing of the $QIO request.

Assuming that the status code indicates "SUCCESS", then normal processing would be to
enter 1/0 postprocessing. There, a determination is made to see if more transfer segments
must be exchanged with the controller to complete the request. If so, then 1/0 postprocessing
updates the IRP to reflect the next segment, and passes the updated IRP to DUDRIVER's
start 1/0 routine. If the entire request has been satisfied, then 110 postprocessing passes the
IRP to the 1/0 completion routines for AST delivery and event flag posting.

4-6 Digital Equipment Corporation I Internal Us& Only

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-3 and Figure 4-4 illustrate the flow of MSCP Commands, Data, and End
Messages for a read request and a write request. Except for a couple of "request data"
messages, port level protocol has been left out of the diagrams since it contributes nothing to
the discussion at hand.

In both the read request and write request, eight blocks are to be transferred. Due to file
fragmentation, both requests must be broken up into two segments. Each segment consists
of four blocks. The important point to notice in both of these diagrams is that an MSCP
Command and matching End Message are associated with each segment of the request.

It is NOT the case that there is a single MSCP Command and End Message for the entire
request unless the request can be mapped to a single transfer segment.

The status code returned in an MSCP End Message is 16 bits wide and consists of two fields.
The low order 5 bits constitute a Major Status Code, and the high order 11 bits are called a
Sub-Code.

The major status code conveys the normal information needed by class drivers; therefore, all
controllers must return the same major status codes for similar situations.

Sub-codes exist for unusual situations, and to refine a major status code. They are primarily
used for diagnostic purposes, and should not generally be needed by a host. Unlike VMS
condition values, MSCP status codes indicate success if the low bit is a "O". In fact, the major
status code for success is 0. Figure 4-2 depicts the format of the 16-bit status code returned in
an MSCP End Message:

Figure 4-2: MSCP End Message Status Return Format

15 5 4 0

SUB-CODE MAJOR STATUS CODE I
CXN-0004-04

Digital Equipment Corporation I Internal Use Only 4-7

t
c
ca
i
_g'
c
ii
3
CD
::J -g
i s·
::J

~
CD
3
!.
c:
I
0
::J

-<"

(')
)(
z
I
0
0
0
~
I
0
I\)

HOST VAX

PROCESS ISSUES $QIO REQUEST

$QIO SYSTEM SERVICE CODE BUILDS
IRP FOR FIRST SEGMENT OF REQUEST,
PASSES IRP TO DUDRIVER

DUDRIVER BUILDS MSCP COMMAND
FOR FIRST SEGMENT OF REQUEST,
PASSES MSCP COMMAND TO PORT

PORT SENDS MSCP COMMAND

PORT RECEIVES DATA, WRITES
DATA TO HOST MEMORY

PORT RECEIVES MSCP END MESSAGE,
PASSES IT TO DUDRIVER

DUDRIVER VERIFIES END MSG STS
OK, INVOKES I/O POSTPROCESSING

I/O POSTPROCESSING UPDATES !RP
TO REFLECT SECOND SEGMENT, PASSES
UPDATED !RP BACK TO DUDRIVER

DUDRIVER BUILDS MSCP COMMAND
FOR SECOND SEGMENT OF REQUEST,
PASSES MSCP COMMAND TO PORT

PORT SENDS MSCP COMMAND

PORT RECEIVES DATA, WRITES
DATA TO HOST MEMORY

PORT RECEIVES MSCP END MESSAGE,
PASSES IT TO DUDRIVER

DUDRIVER VERIFIES END MSG STS
OK, INVOKES I/O POSTPROCESSING

I/O POST PROCESSING INVOKES I/O
COMPLETION (AST DELIVERED, AND
EVENT FLAG SET)

~-REQUEST I

MSCP COMMAND FOR FIRST SEGMENT

FIRST FOUR BLOCKS SENT TO HOST

END MESSAGE FOR FIRST SEGMENT

MSCP COMMAND FOR SECOND SEGMENT

SECOND FOUR BLOCKS SENT TO HOST

END MESSAGE FOR SECOND SEGMENT

CONTROLLER

PORT RECEIVES MSCP COMMAND

CONTROLLER FETCHES FOUR BLOCKS
FOR FIRST SEGMENT FROM DISK

PORT SENDS FOUR BLOCKS TO HOST

CONTROLLER BUILDS MSCP END
MESSAGE FOR FIRST SEGMENT

PORT SENDS END MESSAGE TO HOST

PORT RECEIVES MSCP COMMAND

CONTROLLER FETCHES FOUR BLOCKS
FOR SECOND SEGMENT FROM DISK

PORT SENDS FOUR BLOCKS TO HOST

CONTROLLER BUILDS MSCP END
MESSAGE FOR SECOND SEGMENT

PORT SENDS END MESSAGE TO HOST

-n co.·
c
CiJ

~
s:: en
0
""D
:JJ
CD m
Q.

j
c
CD
!4
s::
CD

= m cc
CD
-n

~

c
ii
~

0
ii' en en
c
~

~·
~

m
~ a ...
::c m
:::J e: :;·
ca
m
:::J
Q.

m
c:
G')
0
::c
~
~

c
cQ

~
_g'
c -s·
~ :s ..
i -g
!
c:r :s

i
"'"I :s
!!.

I
0
~

-<"

t

(')
>< z
I
0
0

~
b
w

HOST VAX

PROCESS ISSUES $QIO REQUEST

$QIO SYSTEM SERVICE CODE BUILDS
!RP FOR FIRST SEGMENT OF REQUEST,
PASSES !RP TO DUDRIVER

DUDRIVER BUILDS MSCP COMMAND
FOR FIRST SEGMENT OF REQUEST,
PASSES MSCP COMMAND TO PORT

PORT SENDS MSCP COMMAND

PORT RECEIVES "REQUEST DATA"

PORT SENDS FOUR BLOCKS (FIRST
SEGMENT) TO CONTROLLER

PORT RECEIVES MSCP END MESSAGE,
PASSES IT TO DUDRIVER

DUDRIVER VERIFIES END MSG STS
OK, INVOKES I/O POSTPROCESSING

I/O POSTPROCESSING UPDATES !RP
TO REFLECT SECOND SEGMENT, PASSES
UPDATED IRP BACK TO DUDRIVER

DUDRIVER BUILDS MSCP COMMAND
FOR SECOND SEGMENT OF REQUEST,
PASSES MSCP COMMAND TO PORT

PORT SENDS MSCP COMMAND

PORT RECEIVES "REQUEST DATA"

PORT SENDS FOUR BLOCKS (SECOND
SEGMENT) TO CONTROLLER

PORT RECEIVES MSCP END MESSAGE,
PASSES IT TO DUDRIVER

DUDRIVER VERIFIES END MSG STS
OK, INVOKES I/O POSTPROCESSING

I/O POST PROCESSING INVOKES I/O
COMPLETION (AST DELIVERED, AND
EVENT FLAG SET)

1-----wRlTE REQUEST I

MSCP COMMAND FOR FIRST SEGMENT

"REQUEST DATA" FOR FIRST SEGMENT

FIRST FOUR BLOCKS SENT TO CONTROLLER

END MESSAGE FOR FIRST SEGMENT

MSCP COMMAND FOR SECOND SEGMENT

"REQUEST DATA" FOR SECOND SEGMENT
SECOND FOUR BLOCKS SENT TO CONTROLLER

END MESSAGE FOR SECOND SEGMENT

~

CONTROLLER

PORT RECEIVES MSCP COMMAND

PORT REQUESTS DATA WHEN
CONTROLLER READY

PORT RECEIVES FOUR BLOCKS
FROM THE HOST

CONTROLLER WRITES DATA TO DISK

PORT SENDS END MESSAGE TO HOST

PORT RECEIVES MSCP COMMAND

PORT REQUESTS DATA WHEN
CONTROLLER READY

PORT RECEIVES FOUR BLOCKS
FROM THE HOST

CONTROLLER WRITES DATA TO DISK

PORT SENDS END MESSAGE TO HOST

.,,
ce·
c
Cil

t
s:: en
0 .,,
=e ... = CD
:0
! c
CD
!!
31:
CD

= m
c ca

CD u; .,,
~

0 0
~ ii

tn
tn
c ...
~ ...
m ... a ...
:c
m :s
B:
5" ca
m :s
Q.

m
c:
C)
0
:c m
0

" tn

Disk Class Driver Error Handling and BUGCHECKs

4.3.1 Detecting File Read/Write Errors and Dispatch

When DUDRIVER's start 1/0 routine, DU_STARTIO, is passed an IRP representing a file read
or write transfer segment, it allocates a RSPID and associated RDT entry. The address of the
CDRP attached to the IRP is stored in the RDT entry, and the RSPID is stored in the CDRP.
It also allocates an SCS message buffer in which to build an MSCP Command to be sent to the
controller. The RSPID is copied into the message buffer, and the address of the message buffer
is saved in the CDRP.

Some of the fields in the CDRP are filled in, and then DU_STARTIO branches either to
START_ WRITEPBLK or START_READPBLK. There, data is supplied for the remaining
fields of the CDRP, the MSCP Command is built, and the CDRP (containing the address of
the MSCP Command buffer) is passed to the SCS layer to effect transmission of the MSCP
Command to the controller.

Passing the CDRP to the SCS layer is done by the macro SEND _MSCP _MSG. This macro
calls routine FPC$SNDCNTMSG in the SCS layer of the appropriate port driver (PADRIVER,
PIDRIVER, PEDRIVER, or PUDRIVER). SCS and PPD routing information is added to
the buffer containing the MSCP Command, and the buffer is then passed to the port for
transmission.

The request is then suspended, with its context saved in the CDRP. Part of this context is
the PC at which to resume when the End Message corresponding to the MSCP Command is
received. This will be the address of the instruction following the SEND _MSCP _MSG macro.

The controller and port(s) exchange the data in the transfer segment to be read from or
written to the disk. The controller then releases an End Message to the host containing both
the 16-bit MSCP status code and a copy of the RSPID in the MSCP Command. The SCS layer
of the host's port driver routes the End Message to DUDRIVER's message input dispatching
routine, DU$1DR.

DU$IDR fetches the address of the CDRP contained in the RDT entry identified by the RSPID.
It then resumes the request represented by the CDRP at the address in the "saved PC" field of
the CDRP.

The request resumes immediately after the SEND_MSCP _MSG macro. Here, the IF _MSCP
macro is used to test the major status code returned in the End Message. If any of the
low order five bits of the MSCP$W _STATUS are nonzero, the controller is indicating to the
host that something went wrong with this transfer segment. A branch is taken to routine
TRANSFER_MSCP _ERROR to determine how to handle the error.

At routine TRANSFER_MSCP_ERROR is a macro called, DO_ACTION, followed by an "Action
Table". For each possible 5-bit major status code returned in the End Message, the action
table specifies a routine to which a dispatch is to be made. The instructions generated by the
DO_ACTION macro cause the dispatch to actually happen.

NOTE

The instructions generated by the DO_ACTION macro varies with the values spec
ified for its parameters. In this particular case, it generates a call to a subroutine,
DUTU$INTR_ACTION_XFER, which uses the stack in a "rather crafty" fashion.

4-10 Digital Equipment Corporation /Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

The subroutine causes the dispatch to occur as if it were a "branch" directly from
location TRANSFER_MSCP _ERROR instead of a call through this intermediate
subroutine. The reader is referred to module DUTUMAC for the definition of this
macro as well as others used in DUDRIVER.

4.3.2 Errors Returned in End Messages for File Read/Write Requests

The first thing TRANSFER_MSCP _ERROR does is select a VMS condition value to correspond
to each of the possible MSCP major status error codes. Table 4-1 lists the major status codes,
the corresponding VMS condition values and descriptions of each.

Table 4-1: MSCP to VMS Error Code mapping

(hex)-MSCP Major Status (hex)-VMS Condition
Code Code Description

(00)-MSCP$K_ST_SUCC (0001)-SS$_NORMAL Normal successful completion

(04)-MSCP$K_ST_AVLBL .(01AC)-SS$_MEDOFL Unit identified by unit number field in
End Message is in the "unit available"
state.

(008C)-SS$_DRVERR If drive inoperative

(03)-MSCP$K_ST_OFFLN (01A4)-SS$_MEDOFL Unit identified by unit number field in
End Message is in the "unit offiine" state.

(08)-MSCP$K_ST_DATA

(OB)-MSCP$K_ST_DRIVE

(0A)-MSCP$K_ST_CNTRL

There are several reasons that make
this possible: unit unknown or online to
another controller, no volume mounted,
drive disabled by RUN/STOP switch, unit
disabled by internal diagnostic, etc.

(2144)-SS$_FORCEDERROR Transfer data error. Invalid or uncor
rectable data was obtained from a drive.
Typical causes are valid header not
found, data sync timeout, one through
eight symbol ECC errors, and the "forced
error" condition.

(2144)-SS$_FORCEDERROR if "forced error" condition

(01F4)-SS$_PARITY

(008C)-SS$_DRVERR

(0054)-88$_ CTRLERR

If not forced error condition

The controller has discovered an error
within the drive. The error is typically,
but not always, mechanical in nature,
since most non-mechanical errors are
reported as "data errors".

The controller has encountered an inter
nal error.

Digital Equipment Corporation/ Internal Use .Of;lly 4-11

Disk Class Driver Error Handling and BUGCHECKs

Table 4-1 (Cont.): MSCP to VMS Error Code mapping

(hex)-MSCP Major Status
Code

(06)-MSCP$K_ST_ WRTPR

(07)-MSCP$K_ST_COMP

(05)-MSCP$K_ST_MFMTE

(02)-MSCP$K_ST_ABRTD

(01)-MSCP$K_ST_ICMD

(09)-MSCP$K_ST_HSTBF

(hex)-VMS Condition
Code

(025C)-SS$_ WRITLCK

(005C)-SS$_DATACHECK

(OOBC)-SS$_FORMAT

(002C)-SS$_ABORT

(0054)-88$_ CTRLERR

(034C)-SS$_1VBUFLEN

4-12 Digital Equipment Corporation/ Internal Use Only

Description

Command required that data be written
to a write protected unit.

COMPARE HOST DATA command, read
compare operation, or write compare
operation found differences in the data
on the unit and in the host buffer; or
COMPARE CONTROLLER DATA com
mand found different data on different
members of a shadow set.

Volume mounted on unit appears to be
formatted incorrectly.

Command aborted by ABORT command.

Invalid command. A controller returns
this status code because it believes the
host made an error in one of two ways:

• Host supplied invalid parameter
values in an MSCP Command (e.g.
nonexistent logical block number, ...).

• Protocol error in MSCP Command
controller received from host (e.g.
reserved field does not contain proper
quantity, command too short to
contain all the required parameters,
....).

Host buffer access error. The controller
encountered an error while trying to
access a buffer in host memory. This
error is also returned when an MSCP
Command's buffer descriptor or byte
count violate any communications mecha
nism dependent restrictions.
It is not, however, used to report errors
encountered by the port(s) when trans
ferring packets between the host and the
controller. Those are handled by termi
nating the connection between the class
driver in the host and the server in the
controller.
'l\vo typical causes would be a local DSA
controller getting a nonexistent memory
error or host memory parity error.

Disk Class Driver Error Handling and BUGCHECKs

Table 4-1 (Cont.): MSCP to VMS Error Code mapping

(hex)-MSCP Major Status (hex)-VMS Condition
Code Code

(OC)-MSCP$K_ST_SHST (2284)-SS$_SHACHASTA

Description

Shadow set state change. Member must
be removed from shadow set because host
requested removal or member is no longer
operative.

4.3.3 Handling Errors Returned in Read/Write End Messages

Once routine TRANSFER_MSCP _ERROR has selected the appropriate VMS condition value,
it executes common steps for handling all errors except the "Invalid Command", the "Host
Buffer Access Error" and the "Available" error with a subcode of "Inoperative". The handling
of these special cases can be found in Section 4.3.3.1.

For the normal error path, the following is performed:

• First, a branch is taken to routine TRANSFER_RTN _BCNT. At this routine, the actual
number of bytes transferred is extracted from the BYTE_CNT field of the End Message,
and combined with the VMS condition value to form a quadword in the proper format for
an 1/0 status block.

• If the controller reports a "bad block" in the FLAGS field of the End Message, then a
branch is taken to XFER_REPLACE to consider performing host initiated bad block
replacement.

NOTE

If this is the case and a branch to XFER_REPLACE is made, then the flow of
handling the error does not return here, and no further processing will be done
by these steps. This, however, should happen only with controllers which do not
perform their own Bad Block Replacement (BBR) , namely most local controllers.
This should not happen with controllers which, from local VMS's point of view,
handle their own BBR (i.e. HSCs, ISEs, KDM70s and remote VAXes running
the MSCP server).

• If the controller does not report a "bad block", then this flow continues by branching to
routine FUNCTION_EXIT where the following occurs:

If the translated VMS status code indicates that an error condition exists (low bit
clear) and this is not the mount verification IRP, then a branch subroutine is taken to
routine DU$MSG_ERR_HNDLR1 to determine whether the devices error count should
be incremented and/or whether to log an error. See Section 4.3.5 for a description of
routine DU$MSG_ERR_HNDLR.
The error logging in progress bit CDRP$M_ERLIP is cleared

1 This routine was introduced in VMS V5.4-3 to identify the correct conditions under which to increment a device's error
count and when to log the error

Digital Equipment corporation/ lriternal Use Only ~13

Disk Class Driver Error Handling and BUGCHECKs

- SCS resources held by this CDRP are released.
- FUNCTION_EXIT branches to IOC$ALTREQCOM to request I/O completion activity.

• IOC$ALTREQCOM performs the following tasks:
VMS condition values corresponding to errors have the low order bit clear.
IOC$ALTREQCOM tests for this, and, finding it to be the case, calls EXE$MOUNTVER
to force mount verification to be performed for the unit.
Mount verification is covered later in this chapter. It is important however to realize
that this procedure may result in the transfer segment being successfully retried. It is
possible for mount verification to change the VMS condition value to "success" (SS$_
NORMAL).

Once mount verification completes (or is terminated), the final I/O status block quad
word is stored in the MEDIA field of the IRP. IOC$ALTREQCOM then passes the IRP
to IJO post processing.

If the VMS condition value that emerges from mount verification indicates other than
"success", the request will be terminated without attempting further segments, and
the error will be stored in the I/O status block specified by the process which issued
the $QIO request. If the condition value does indicate "success", then the request ,
continues on as if the error had never occurred. The problem should be transparent to
the process, other than of course, the delay due to mount verification.

4.3.3.1 Specially Handled Error Conditions

4.3.3.1.1 Invalid Command Major Status Code

For most cases of the "Invalid Command", DUDRIVER is given a second chance to "get
it right". For LBN and BYTE_CNT subcodes or Invalid MSCP Modifier errors, control is
transferred to FUNCTION_EXIT. For all other errors, control is passed to routine DU_
BEGIN _NCMD where an Invalid Command Sequence is set, an Errorlog entry is made and
the function code and modifiers are extracted from the CDRP and are used to dispatch to the
appropriate routine (ie: START_READPBLK). Each routine will test to see if IVCMD handling
is in progress (macro IF_NCMD) and will transfer control to routine TRANSFER_NCMD_
END if appropriate. ,

TRANSFER_IVCMD_END will deallocate all SCS resources held by the CDRP, and then
resubmit the request to DUDRIVER. This resubmission is not to the ordinary start 1/0 entry
point, but rather to an alternate "restart I/O" entry point called DU _RESTARTIO.

DU _RESTARTIO begins directly with the step of copying the address of the CDT from the
UCB into the CDRP. It then executes exactly the same steps that DU_STARTIO would from
that point on.

If this second attempt also results in an End Message with a major status code of MSCP$K_
ST_ICMD, then the VMS condition value SS$_CTRLERR is selected to form an 1/0 status
block quadword with a byte count of 0. Routine FUNCTION_EXIT is entered, and the flow
proceeds as in the previous cases.

4-14 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.3.3.1.2 Host Buffer Access Error Major Status Code

There are two possibilities for a "host buffer access error":

• If the sub-code indicates an Odd Byte Count error caused the problem, then error handling
branches to TRANSFER_RTN_BCNT and proceeds as already described above.

• For any other subcode, a branch is taken to INVALID_STS where routine DU$RE_SYNCH
is called to reset the controller. (Details of resetting a controller are presented later in this
chapter.)

4.3.3.1.3 Available Major Status Code

For the Available status code, the VMS condition code SS$_DRVERR is placed in the high
order word of RO if the subcode indicates that the device is inoperative. For all other subcodes
the VMS condition value is left as SS$_MEDOFL. This test occurs at label TRANSFER_
MEDOFL. Control is then transferred to routine TRANSFER_RTN_BCNT.

4.3.3.1.4 All Other Errors

All values for the major status code in an End Message other than what is listed in Table 4-1
are considered "unexpected". If one is received, the controller is presumed to be "very ill"; so
the code branches to DU$RE_SYNCH to reset the controller.

4.3.4 Errors Returned in Other End Messages

There are three other situations wherein DUDRIVER checks for an invalid major status code
returned in an End Message. These three situations arise when issuing an

• 10$_NOP for a unit.
This function is turned into a SET UNIT STATUS, using current status, by routine
START_NOP.

• 10$_PACKACK for a unit.
Routine START _PACKACK performs this function by issuing an ONLINE followed by a
GET UNIT STATUS for the unit. It is typically done when a unit is first discovered on an
"MSCP speaking" controller, or when trying to establish a path to the unit during mount
verification.

• I0$_AVAILABLE for a unit.
The 10$_AVAILABLE function causes an AVAILABLE command to be issued to the
controller for a unit. This is typically done as part of dismounting the unit, and can
involve optionally spinning down the volume

The following is a table of valid major status error codes which may be returned by a DSA
controller for each of these situations. These codes are a subset of those already listed for file
read/write End Messages.

Digital Equipment CorporatlQn /Internal Use Only 4"".15

Disk Class Driver Error Handling and BUGCHECKs

10$_NOP 10$_PACKACK 10$_AVAILABLE

MSCP$K_ST_OFFLN MSCP$K_ST_OFFLN MSCP$K_ST_OFFLN

MSCP$K_ST_AVLBL MSCP$K_ST_AVLBL MSCP$K_ST_AVLBL

MSCP$K_ST_CNTLR MSCP$K_ST_CNTLR MSCP$K_ST_CNTLR

MSCP$K_ST_DRIVE MSCP$K_ST_DRIVE MSCP$K_ST_DRIVE

MSCP$K_ST_SHST MSCP$K_ST_SHST MSCP$K_ST_SHST

MSCP$K_ST_ICMD MSCP$K_ST_ICMD MSCP$K_ST_ICMD

MSCP$K_ST_ABRTD MSCP$K_ST_ABRTD

MSCP$K_ST_MFMTE

MSCP$K_ST_DATA

Any other major status error codes are considered as "unexpected". The controller is presumed
to be "very ill" if one is received; so a branch is made to DU$RE_SYNCH to reset the controller.

4.3.5 Error Logging and Error Count Incrementing

Error logging and device error count incrementing is handled by routine DU$MSG_ERR_
HNDLR. It determines under what conditions errors are to be logged to the Errorlog file
(SYS$ERRORLOG:ERRLOG.SYS) and under what conditions the device error count (UCB$W _
ERRCNT) is to be incremented. It is called when an error condition is detected in an MSCP
End Message from routine FUNCTION_EXIT.

The general flow through the routine is as follows:

• Test bit MSCP$V_EF_ERLOG to determine if the Errorlog entry was expected. If so,
the device error count will not be incremented, but an Errorlog entry will be recorded
(by calling routine ERL$LOGSTATUS). Control is then returned to FUNCTION_EXIT to
continue processing.

• Determine if error logging is already in progress (bit CDRP$V _ERLIP. If so, the device
error count will not be incremented, but an Errorlog entry will be recorded (by calling
routine ERL$LOGSTATUS). Control is then returned to FUNCTION_EXIT to continue
processing.

• Determine if the device error count is really to be incremented and/or if an Errorlog entry
is to be made:

If the MSCP major status code indicates an Invalid Command (ICMD) the VMS
condition value is set to SS$_CTRLERR and a return is made without incrementing
the device error count or logging the error.
If the MSCP major status code is Available (AVLBL), a test is made to see if the actual
error was due to the device being inoperative. If so, the VMS condition value will have
been set to SS$_DRVERR as described in Section 4.3.3.1.3 and an Errorlog entry will
be logged as well as the device error count will be incremented.
If the MSCP major status code is Offiine (OFFLN) or it is the Available code with a
subcode other than inoperative, only an Errorlog entry will be logged.

4-16 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If the MSCP major status code indicates a Controller Error (CNTLR), a Forced Error
(DATA) or a Format Error (MFMTE) and this is not a bad block replacement, both the
device error count will be incremented and an Errorlog entry will be logged. For bad
block replacement, only the Errorlog entry will be generated.
For Drive Errors (DRIVE), both the device error count will be incremented and an
Errorlog entry will be created.

• All other errors are ignored by this routine and control is passed back to routine
FUNCTION_EXIT.

4.4 Synchronizing with an "MSCP Speaking" Controller

Anytime an SCS connection is established between the local disk class driver and an MSCP
disk server, it is necessary to synchronize the activity between them. This is done by forcing
the dialogue between the driver and the server into a known state. In doing so, we guarantee
that there are no outstanding MSCP commands from the server's point of view.

The MSCP server has the responsibility for insuring that this guarantee is met. 'lb this end,
before allowing synchronization to complete, the server

• Terminates any outstanding MSCP commands it has received.
• Does not send end messages corresponding to the terminated MSCP commands to the host

Thus, once the SCS connection is established, the disk class driver can reissue outstanding
MSCP commands, as well as issue new ones, without worrying about side effects such as
duplicate command reference numbers.

A disk class driver must synchronize with an MSCP disk server whenever the host boots or
recovers from a power failure, whenever the SCS connection between the two is broken, or as
part of the recovery mechanism when certain types of errors occur.

4.4.1 Errors Causing Resynchronization with an MSCP Server

There are six general situations which cause DUDRIVER to resynchronize with a DSA con
troller's MSCP server:

• The controller has made no progress for "too long" a time on the oldest active command
issued to it by the local host.

• An immediate class command, either GET UNIT STATUS or GET COMMAND STATUS,
issued to the controller by the local host has timed out.

• The local host has received an invalid attention message from the controller.
This determination is made based on the MSCP$B_OPCODE field of the attention mes
sage. Valid attention message op codes are:

Digital Equipment Corporation/ lnternaUJse Only 4-17

Disk Class Driver Error Handling and BUGCHECKs

Code

AVATN

DUPUN

ACPTH

Meaning

Unit Available Attention

Duplicate Unit Attention

Access Path Attention

If the op code field of an attention message indicates anything else, the attention message
is considered invalid.

• The local host has received an end message containing an invalid MSCP status code.
• DUDRIVER fails to allocate an SCS message buffer in which to build the SET

CONTROLLER CHARACTERISTICS command after establishing an SCS connection
with the server. (e.g. Insufficient nonpaged pool could cause this.)

• The SCS connection between DUDRIVER and the server is unexpectedly broken.
Some of the typical causes of this are

The controller hangs.
The controller experiences a power failure.
An SCS protocol error.
If the controller is CI-based, both CI paths A and B go "from good to bad".
If the controller is CI-based, a CI port error (local or remote) causing port reinitializa
tion.

As usual, unless otherwise noted, the term "controller" refers to a local "MSCP speaking"
controller, a remote "MSCP speaking" controller, or a remote VAX emulating an "MSCP
speaking" controller by running the VMS based MSCP server.

4.4.2 Overview of Resynchronization Due to Errors

There are two major routines involved in handling the resynchronization that occurs between
the disk class driver and an MSCP server.

DU$CONNECT _ERR is invoked by the SCS layer when the SCS connection between the
driver and the server is unexpectedly lost.

DU$RE_SYNCH (or DU$RE_SYNCH_PKT, an alternate entry point) is invoked by:

• DUDRIVER's timeout mechanism, DU$TMR, to handle the "no progress on oldest com
mand" and "timed out immediate command" situations.

• DUDRIVER's attention message handler, ATTN_MSG, when it receives an invalid atten
tion message.

• DUDRIVER's invalid MSCP status handler, INVALID_STS (also called DU$INVALID_
STS), which handles end messages received with "unexpected" MSCP status codes.

• DUDRIVER's routine, MAKE_CONNECTION, establishing an SCS connection with an
MSCP server, when it fails to allocate an SCS message buffer in which to build a SET
CONTROLLER CHARACTERISTICS command.

~18 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Most of what each of these routines does is common to both. Therefore, DU$RE_SYNCH and
DU$CONNECT_ERR are, in fact, alternate entry points to the same set of instructions. Here
is a brief summary of the principal steps performed by both routines, accompanied with a
flowchart; detailed analysis follows in the next section.

DU$RE_SYNCH begins by first determining if the controller is actually a VAX running the
VMS based MSCP server by examining MSPC$K_CM_EMULA bit in the CNTRLMDL field of
the CDDB for the controller. If the controller is not a VAX, then it sets the RESYNCH flag in
the CDDB's STATUS field; this will cause the local host to later reset the controller by issuing
a Host Clear operation to it. If the controller is really a remote VAX, the local host should
not attempt to cause the remote VAX to reload, but merely break the SCS connection with its
MSCP server; so the RESYNCH flag is left clear.

At this point, the fl.ow of DU$RE_SYNCH merges in with the beginning of routine
DU$CONNECT_ERR.

Since the SCS connection with the controller's MSCP disk server is either already broken, or
about to be, both DU$RE_SYNCH and DU$CONNECT_ERR must stall all new 1/0 requests
being handed to DUDRIVER's start 1/0 routine. This is done by incrementing the RWAITCNT
field of every UCB linked to the controller's CDDB. Until the RWAITCNT field of a UCB is
restored to 0, any new IRPs for the unit associated with that UCB will merely be inserted by
the start 1/0 routine into the UCB's pending IRP queue (UCB$L_IOQFL).

Also, 1/0 requests that have already progressed past the start 1/0 routine's RWAITCNT
checkpoint must be gathered up for resubmission to DUDRIVER in the event that error
recovery being triggered by DU$RE_SYNCH or DU$CONNECT_ERR is successful. CDRPs
representing these "active" requests are collected and inserted into the restart queue on the
CDDB in the exact order in which they were originally handled by DUDRIVER.

At this point, consider only routine DU$RE_SYNCH, and not DU$CONNECT_ERR. Now is
when the RESYNCH flag is used. If this flag is set, then a "host clear" is done to the controller
to force it to reset itself. This is accomplished by issuing to the controller an MSCP RESET
followed immediately by an MSCP START.

Then DU$RE_SYNCH merely returns to its caller. As a result of the controller being re-
set, the SCS connection with the controller's server is broken; and this in turn will cause
DU$CONNECT_ERR to be invoked. Of course, DU$CONNECT_ERR need not increment the
RWAITCNT field since that was already done by DU$RE_SYNCH. However, it will go through
the formality of trying to gather up "active" CDRPs; but this formality will happen quickly
since that was also already done by DU$RE_SYNCH.

If the RESYNCH flag is clear, then one of the following two situations is true:

• This is currently DU$RE_SYNCH executing and the controller is a VAX emulating an
"MSCP speaking" controller. Given this to be true, the next step is to break the SCS
connection with the VAX's MSCP server by means of the SCS service DISCONNECT.

If the CDDB$V_PATHMOVE bit in the CDDB$W_STATUS field indicates that this
is a pathmove, the SCS$C_USE_ALTERNATEJ'ORT reason code is passed to the
disconnect service.
If the CDDB$V _PATHMOVE bit is clear, then a normal disconnect reason is passed .

. Digital Equipment Corporation/ Internal Use Only +19

Disk Class Driver Error Handling and BUGCHECKs

• This is currently DU$CONNECT_ERR executing, either because the SCS connection with
a controller's server was unexpectedly lost, or it was just intentionally broken by DU$RE_
SYNCH. If this situation applies, then the formality of doing an SCS DISCONNECT is
still done, but only to "clean up" the local host's data structures associated with the broken
connection.

Next all mapping resources owned by CDRPs on the restart queue are deallocated. This is
performed by calling routine DUTU$DEALLOC_ALL for each CDRP on the restart queue.

Next, Mount Verification is started for all disks on the controller by branching to routine
DUTU$REVALIDATE. This may cause one or more disk units to failover to an alternate
controller. Details of mount verification and disk failover are presented later in this chapter.

Once mount verification is started, the disk class driver attempts to form an SCS connection
with the MSCP disk server in the controller. This is performed by calling routine Make
Connection. If an SCS CONNECT attempt fails, the code will pause for CONNECT_DELTA
seconds (10 seconds for VMS V5.5), and then retry. This will give the controller time to reload,
if necessary.

Once the connection is established, a standard SET CONTROLLER CHARACTERISTICS is
performed.

Finally, if mount verification is complete for all units remaining on the controller, then CDRPs
in the CDDB's restart queue are retried; and then the IRPs in each UCB's pending IRP
queue are unstalled. If mount verification is not finished for all units on the controller, then
restarting CDRPs and unstalling pending IRPs is handled by mount verification. This basic
fl.ow is illustrated in Figure 4-5.

4-20 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-5: DUDRIVER resynchronization flow

DU$RE_SYNCH

SET RESYNCH FLAG IN CDDB STATUS FIELD IF
CONTROLLER ISN'T A VAX RUNNING MSCP SERVER

DU$CONNECT_ERR

STALL NEW IRPS FOR ALL UNITS ON CONTROLLER: INCREMENT
RWAITCNT FIELD FOR ALL UCBS IF NOT ALREADY INCREMENTED

GATHER "ACTIVE" CORPS INTO CDDB'S CDRP RESTART QUEUE

IS RESYNCH FLAG SET IN CDDB STATUS FIELD ?

YES

"HOST CLEAR" CONTROLLER
BY ISSUING TO IT MSCP
RESET AND MSCP START

DU$RE SYNCH RETURNS
TO ITS CALLER

NO

SCS DISCONNECT FROM THE
CONTROLLER'S MSCP SERVER

START MOUNT VERIFICATION
FOR DISKS ON CONTROLLER:
CALL DU_REVALIDATE_DISKS

RE-ESTABLISH SCS CONNECTION WITH CONTROLLER'S DISK SERVER

IF MOUNT VERIFICATION COMPLETE FOR ALL UNITS, THEN
RESTART CORPS (FOLLOWED BY PENDING IRPS) FOR UNITS
NOT FAILED OVER TO SOME OTHER CONTROLLER

CXN-0004-09

Digital Equipment Corporation/ Internal Use On~y 4-21

Disk Class Driver Error Handling and BUGCHECKs

4.4.3 DU$RE_SYNCH and DU$CONNECT_ERR Detail

Except for the first step, this code is common to both resynchronizing with a controller and
handling the loss of an SCS connection with the MSCP disk server in that controller.

• Steps that are unique to DU$RE_SYNCH.
If the "controller" in question is actually a VAX running the VMS based MSCP server, then
the local disk class driver should merely break its SCS connection with the server and not
attempt a controller reset. Therefore, the content of the CNTRLMDL field of the CDDB is
examined:

If it does not contain the value of the symbol MSCP$K_CM_EMULA, then the con
troller is a "real controller", and not a VAX emulating a controller. Set the RESYNCH
flag in the CDDB$W _STATUS field, insuring that the controller will be reset later in
this routine.
If the controller is actually a VAX, then the RESYNCH flag is not set.

NOTE

This step is executed only if DUD RIVER calls routine DU$RE_SYNCH. It is not
executed by DU$CONNECT_ERR in response to an abruptly failed SCS connec
tion. Consequently, in the case of a failed connection, the CDDB$W _STATUS
will not have its RESYNCH flag set, regardless of what type of controller is
involved. This fact will shortly become critical to the logical fl.ow of events
governed by this procedure.

• This step is executed only if DUDRIVER calls routine DU$CONNECT_ERR. The discon
nect reason code is checked against the value SCS$C_USE_ALTERNATE_PORT. If it is
equal, a Path move is indicated by setting the CDDB$V _PATHMOVE bit in the CDDB$W _
STATUS word.

• Next is the first step that is common to both DU$CONNECT_ERR and DU$RE_SYNCH.
The RECONNECT and NOCONN flags in the CDDB$W _STATUS field are set to indicate
that there is currently no SCS connection with the MSCP disk server in this controller,
and that a reconnect attempt is in progress.
The IMPEND, INITING, and RSTRTWAIT flags in the CDDB are cleared, indicating
that:

There are no immediate class commands active for this controller.
- Controller initialization is not in progress.
- There are no CDRPs currently waiting for restart.
Even if any of these conditions is true, they won't be much longer because of what this
routine is about to do.

• Since the SCS connection with the MSCP server in the controller is about to be broken
(if it isn't already), there is no need for DUDRIVER's timeout mechanism to be active for
this controller. Thus, the DUETIME field of the CRB for this controller is set to minus one
indicating an infinite timeout period.

• Either the connection with the controller's disk server has already been broken, or it is
about to be. Therefore it is necessary to stall further 1/0 requests coming from the $QIO
system service for any disk units on the controller.

4-22 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

The list of UCBs linked to the CDDB via the CDDB$L_UCBCHAIN field is scanned.
The MSCP _ WAITBMP bit in each UCB is checked to see if the UCB's RWAITCNT field
has been "bumped" (i.e. is nonzero) for some other reason. If this flag is found to be set,
then 1/0 is already stalled. If this flag is found not to be set, then the flag is set and the
RWAITCNT word in the UCB is incremented, thereby stalling new 1/0 requests.
When DUDRIVER's start 1/0 routine is handed a new request, it will insert the IRP
representing the request into the UCB's pending IRP queue (UCB$L_IOQFL). No further
processing will be done by DUDRIVER for such IRPs until 1/0 is "unstalled" for the unit.

• Any RSPIDs and SCS message buffers held by the CDDB's permanent or DAP CDRPs are
released. They won't be needed since what's happening effectively terminates the need for
any outstanding GET COMMAND STATUS or DAP processing operations. Also, because
of this, these CDRPs are removed from any resource wait queues they may be on.

• Next, all "active" CDRPs for disks on this controller are gathered up and placed on the
CDDB's 1/0 restart queue, CDDB$L_RSTRTQFL.
These CDRPs are searched for in different places:

First, the Host Initiated Replacement Table (HIRT) wait queue is checked. A CDRP for
the controller in question would be found there only if the controller is local (UDA50,
KDB50, etc.), and only if the CDRP is for a bad block replacement operation for some
disk on the controller.
Then the RDT resource wait queue is checked by routine SCAN _RSPID _WAIT for
CDRPs waiting to be allocated a RSPID and associated RDT entry.
The third place checked is the CDDB's queue of CDRPs for which MSCP commands
have been sent to the controller, but for which end messages have not yet been re
ceived. This is performed by routine DUTU$DRAIN_CDDB_CDRPQ.

And fourth, CDRPs waiting for any SCS resources (flow control, message buffers,
mapping resources, ...) must be found. To do this, the entire RDT is scanned for any
CDRPs whose operation affects this controller.

As the CDRPs are inserted into the CDDB's 1/0 restart queue, any RSPIDs and SCS
message buffers they possess are released.
It is important to note that the only CDRPs "gathered up" in this operation are those that
relate strictly to this controller and its disks. CDRPs related to other controllers and their
disks are unaffected by this whole operation.
At this point, it should also be noted that incrementing the RWAITCNT field for
each unit on the controller (done two steps ago) has an important secondary effect.
EXE$MOUNTVER is about to be called for each of this controller's units which is to
undergo mount verification.
When EXE$MOUNTVER begins the MSCP specific steps for mount verification, it in
crements the RWAITCNT field. The RWAITCNT field is again incremented when when
EXE$MOUNTVER performs an 10$_PACKACK function. The RWAITCNT field is decre
mented when the 10$_PACKACK function is complete, and again when the MSCP specific
functions come to an end. Each time RWAITCNT is decremented, a test is made to see if
it has gone to 0. If so, then the 1/0 requests in the pending IRP queue are unstalled.
Incrementing RWAITCNT here before calling EXE$MOUNTVER insures that RWAITCNT
will not become 0 as a result of the two decrements just described. Instead, it will become
0 when a third decrement is performed after all "active" CDRPs in the controller's CDDB
restart queue have been handled.

Digital Equipment Corporation/ Internal Use Only 4-23

Disk Class Driver Error Handling and BUGCHECKs

• Two important distinctions become critical:
Is the controller a "real DSA controller", or merely a VAX emulating a DSA controller?

Was this procedure entered by an explicit call to DU$RE_SYNCH by DUDRIVER,
or through the entry point DU$CONNECT _ERR due to an abrupt failure of the
connection with the controller's disk server? If DU$RE_SYNCH was called and this
is a "real DSA controller", then the RESYNCH flag in the CDDB$W _STATUS field will
have been set previously. In this case:

DUDRIVER will force the controller to reset itself. It does this by issuing to the
controller an MSCP RESET command, followed immediately by an MSCP START
command.
Any time a DSA controller receives such a "back-to-back" pair of MSCP commands
from a class driver, it will reset itself. In the case of an HSC, this means a full reboot.
The analogy has often been made that sending the MSCP RESET is like pointing a
gun at the controller and cocking the hammer, and then sending the MSCP START is
like pulling the trigger.
Having issued the MSCP RESET and START, DU$RE_SYNCH will then merely return
to its caller. It does not go on to execute the remaining steps described here.
As a result of the controller resetting itself, the connection between its server and the
disk class driver is abruptly broken. (That's reasonable since the server is now "dead"!)
Upon discovering this, the local host's PPD and SCS layers will notify DUDRIVER of
the connection's demise by invoking DUDRIVER's connection error handler, namely
DU$CONNECT _ERR. DU$CONNECT_ERR will execute the remaining steps on behalf
of DU$RE_SYNCH. If, instead of DU$RE_SYNCH, this is really DU$CONNECT_
ERR executing, then major step 1 above will have been skipped. Consequently, the
RESYNCH flag will not have been set, and thus the following will be true:

The flow will bypass the instructions for issuing the RESET and START, so the
controller will not be reset. Furthermore, a return is not made to DU$CONNECT_
ERR's caller at this time; DU$CONNECT_ERR merely goes on to the next major step
in the sequence described herein.

DU$CONNECT_ERR may now be executing because the connection with the con
troller's disk server was abruptly and/or intentionally severed by DU$RE_SYNCH. It
will, of course, execute once again all the major steps described above for DU$RE_
SYNCH (except major step 1). However, it won't find much to do since DU$RE_
SYNCH has already moved all the active CDRPs to the CDDB restart queue.

If the connection with the controller's disk server was lost for reasons other than
DU$RE_SYNCH intentionally breaking it, then the above steps must be executed by
DU$CONNECT_ERR anyway.

Even though it does lead to some redundancy, there is justification for common code
between DU$RE_SYNCH and DU$CONNECT_ERR. If this is DU$RE_SYNCH
executing but the "controller" is really a VAX running the VMS based MSCP server,
then DU$RE_SYNCH also bypasses the sending of the RESET and START and
continues on to the next step without returning to its caller. This is done because the
"right thing to do" here is not to "shoot" the remote VAX, but to merely resynchronize
communications between its server and the local disk class driver by disconnecting and
then reconnecting.

4-24 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

• If the connection between DUDRIVER and the controller's disk server has been broken,
then either it happened unexpectedly due to such things as a port level protocol failure,
or intentionally due to DU$RE_SYNCH resetting the controller. In either case, it is
now necessary for DUDRIVER to "clean up" the data structures at its end of the lost
connection. This is done by the SCS DISCONNECT service. For the DU$CONNECT_ERR
routine, a check is made to see if a Pathmove has been requested. If it has, an SCS$C_
USE_ALTERNATE_PORT reason code is passed to the disconnect service.
If the SCS connection with the server is not yet broken, then this is actually DU$RE_
SYNCH running; and it is now time to break the connection. This is also done by the SCS
DISCONNECT service.
DISCONNECT will return to nonpaged pool the CDT representing the connection. For
CI-based connections, DISCONNECT will also return to nonpaged pool the initial credit
worth of buffers extended when the connection was first made, along with the special SCS
receive buffer associated with this connection.

• If a CDRP reached the point of "mapping the IRP", then it owns "mapping resources"
which map a transfer buffer somewhere in physical memory. These mapping resources are
either a BDT entry if the controller is CI-based, or map registers if the controller is local
CUDA, KDB, KDM, etc.).
So a loop is entered which calls DUTU$DEALLOC_ALL for each CDRP in the CDDB's
restart queue to release mapping resources held by that CDRP. A CDRP holds such
resources if its local buffer handle address field, CDRP$L_LBUFH_AD, is nonzero.
If the IRP is from Host Based Shadowing, it is now removed from the Restart queue and
sent to post processing with a final status of SS$_DEVOFFLINE.

• All mapping resources are deallocated from the Permanent CDRP by calling routine
DUTU$DEALLOC_ALL.

• Routine DUTU$REVALIDATE is called to start mount verification for each of the disks on
the controller.
This is done here to allow failover of disks which are dual-pathed. If a disk is not dual
pathed, then mount verification for the disk will wait until either the connection with the
controller's server is re-established, or until the mount verification timeout period expires
for that disk.

• Next DUDRIVER calls routine MAKE_CONNECTION in an attempt to re-establish the
connection between itself and the controller's disk server, and to SET CONTROLLER
CHARACTERISTICS.

NOTE

MAKE_CONNECTION does not return to its caller until it successfully connects
to the controller's disk server. If its call to the SCS CONNECT service fails,
it pauses for CONNECT_DELTA seconds, and then tries again. The reader
is referred back to the chapter covering the DUDRIVER 1/0 DATABASE for
details.

• If the Host is required for Initiating Bad Block Replacement, HIRT initialization is per
formed.

Digital Equipment Corporation/ Internal Use Only 4-25

Disk Class Driver Error Handling and BUGCHECKs

• The addresses of the CDT and PDT associated with the new connection are copied into all
UCBs on the CDDB's UCB chain. The CDT and PDT addresses were returned by routine
MAKE_ CONNECTION.

• Now that there is an SCS connection with the controller's disk server, DUDRIVER's
timeout mechanism is reactivated for the controller.

The address of timeout routine, DU$TMR, is stored in the CRB.
- The DUETIME field of the CRB is set to the current time plus the content of the

CNTRLTMO field of the controller's CDDB.
• DUTU$POLL_FOR_UNITS is called to poll for units that the local disk class driver may

not have previously known were on this controller.
• Finally, CDRPs in the CDDB's restart queue must be restarted.

However, mount verification may result in disks being failed over to other controllers;
and it would not be "very good" to restart on this controller a CDRP for a disk that may
ultimately be handled by some other controller.
The CDDB$W _ WTUCBCTR field contains the count of the number of UCBs waiting for
mount verification to complete. If it is nonzero, then this routine merely returns to its
caller; the end of the mount verification procedure will then restart the CDRPs. If it is
zero, then this routine restarts CDRPs, but only for units still on this controller. For each
unit mount verification fails over to some other controller, mount verification will remove
that unit's CDRPs from the restart queue on this controller's CDDB and insert them in the
restart queue on the other controller's CDDB.
When single stream processing is complete, the RWAITCNT fields in the UCBs are decre
mented so as to allow new IRPs to be processed by DUDRIVER, beginning with the IRPs
queued to the UCB itself.

4.5 Mount Verification

, Certain serious problems may render one or more disk units inaccessible to their drivers. For
example, perhaps an HSC90 crashes making all of its units inaccessible. Or perhaps only one
unit on the HSC90 becomes inaccessible due to cable problems between the unit and an SDI
in that HSC90. Maybe the local CI port hardware develops an internal parity error and has to
be reloaded, thus making all remote disks inaccessible.

Not all such problems are caused by hardware failures. Suppose an operator accidentally spins
down the wrong disk drive while users are still accessing it, and then replaces the volume in
that drive with some other volume. Or perhaps the operator accidentally "popped out" the port
buttons on a drive.

Sometimes the inaccessibility of a disk drive is even planned, and not a real problem at
all. Consider the case of where an operator intentionally fails over a drive from one HSC to
another. This would briefly make the the drive inaccessible to all hosts until they were able to
acquire a new path to it through the other HSC.

Any time such a situation arises, it is desirable to quickly restore access to the unit and its
volume, and do so in a manner which has minimal impact on the users of that volume. VMS
provides a means of doing just that: Mount Verification.

4-26 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and .BUGCHECKs

Mount verification is the mechanism whereby units are brought back online, and the volumes
in those units validated, after a serious (but hopefully recoverable) problem has rendered the
volumes inaccessible to a host VAX.

In a very general sense, performing mount verification for a disk drive consists of two major
tasks:

• The first of these tasks is bringing the unit back online to the local host.
This is done by the mount verification routines in module MOUNTVER issuing an 10$_
PACKACK (pack acknowledge) function to DUDRIVER.
The disk class driver implements this function as a three-step operation:

DUDRIVER locates a path to the disk through "some" controller.
It then issues an MSCP ONLINE command to the controller to bring the unit online to
the host (and to the controller if it isn't already).
Finally, if the ONLINE is successful, it issues a GET UNIT STATUS to obtain the
status and geometry of the unit.

• The second major task is verifying that the volume in that unit is the same volume that
was there before the occurrence of the event requiring this recovery procedure.
This is a two-step operation. First, the Homeblock is read, and selected fields are com
pared against previously stored values: checksum, volume serial number, and volume
name. Then, the Storage Control Block (SCB) is read, and some of its fields are also com
pared against previously stored values: checksum, mount time, and volume lock name.
For shadow set units, these checks are made from the information in the virtual VCB.
This general flow is depicted in Figure 4-6.

Digital Equipment Corporation / Internal. Use Only 4-27

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-6: Mount Verification Valldatlon Flow

ONLINE ...
END MESSAGE .._ -

GET UNIT STATUS
,

END MESSAGE -- REMOTE DSA CONTROLLE -- R

OR

LOCAL VAX HOST REMOTE VAX EMULATING
READ HOMEBLOCK A DSA CONTROLLER

HOME BLOCK OR ---- END MESSAGE LOCAL DSA CONTROLLER --
READ SCB

SCB

~

END MESSAGE ---
CXN-0004-05

NOTE

There are no MSCP commands specifically for reading the Homeblock or SCB.
Shown in the diagram above are MSCP read commands set up to specifically
reference those disk blocks.

Mount verification is not that simple. A number of very complex issues must be addressed as
part of the total procedure:

• To which disks can mount verification be applied?
• What circumstances lead to mount verification, and from what conditions is it possible for

mount verification to recover?
• What is done with new 1/0 requests for disks while they undergo mount verification?
• What about 1/0 requests which have been partially processed by DUDRIVER?
• What about requests for which MSCP commands have been issued, but for which end

message have not yet been received?

Then, of course, there is the topic of failover for dual-pathed disks. This in itself presents still
more complications. How does DUDRIVER find an alternate path to the disk? How does it
actually trigger failover of the disk once it has found an alternate (i.e. secondary) path?

4-28 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

This section delves into the topic of mount verification as it pertains to disks on "MSCP
speaking" controllers. For now, the discussion is confined to non-shadowed disks. Volume
shadowing is covered in a later chapter.

4.5.1 Circumstances Leading to Mount Verification

Circumstances leading to mount verification can be grouped into a few basic categories.

• The 1/0 request completion routine, IOC$ALTREQCOM, calls EXE$MOUNTVER to
perform mount verification for a particular disk when a read or write request for that disk
completes unsuccessfully. This is characterized by the controller for the disk returning an
MSCP end message with a major status code indicating an error.
Upon receipt of an end message, DUDRIVER extracts the RSPID from the message buffer.
Using the low order 16 bits of the RSPID as an index into the Response Descriptor Table
(RDT), it locates the RDT entry containing the address of the CDRP. The CDRP contains
the preserved context of the 1/0 request with which the end message is associated.
It then resumes the request at the PC saved in the CDRP. The resumed request imme
diately tests the major status code; seeing that the status code indicates an error, the
request branches to TRANSFER_MSCP _ERROR where it converts the MSCP status code
into an equivalent VMS condition value.
After doing appropriate error logging and releasing of SCS resources, a branch is made
to IOC$ALTREQCOM. IOC$ALTREQCOM sees that the VMS condition value reflects
an error; so it passes the associated IRP and UCB to EXE$MOUNTVER. There mount
verification begins for the particular unit associated with the UCB.
One exception to this scenario would be if the FLAGS field indicates that the host needs to
perform bad block replacement on a disk handled by a local DSA controller. Then a branch
is taken from DUDRIVER to XFER_REPLACE instead of invoking mount verification.
This exception would not happen with an HSC or a remote VAX emulating an "MSCP
speaking" controller; they handle bad block replacement themselves without local host
intervention.
The second exception occurs when the major status code field contains an "unexpected"
quantity, something which DUDRIVER is not prepared to handle. This leads to the
connection being broken with the server in routine INVALID_STS and leads into the next
category of events causing mount verification.

• The SCS connection between the local disk class driver and the controller's MSCP disk
server is broken for any reason. There are many events which may lead to this.
All "unexpected" major status codes in an MSCP end message are considered "invalid".
DUDRIVER considers the controller to be "very ill" for issuing such a status code.
Therefore, end message processing branches to routine DU$RE_SYNCH to reset the
controller. There are two possible scenarios:

If the controller is either an HSC or a local DSA controller, then DU$RE_SYNCH does
a "host clear" of the controller by sending it an MSCP RESET followed by an MSCP
START. This causes the controller to reinitialize, thus breaking the SCS connection
between the local DUDRIVER and the controller's MSCP disk server.

Digital Equipment Corporation I Internal Use Only 4-29

Disk Class Driver Error Handling and BUGCHECKs

When the local host's SCS layer within the local port driver discovers the loss
of the connection, it invokes DUDRIVER's connection error handling routine,
DU$CONNECT _ERR. One of the tasks performed by this routine is to call
DUTU$REVALIDATE, which, in turn, calls EXE$MOUNTVER for each "qualified"
disk unit for which the controller was providing the primary path.
DUTU$REVALIDATE is passed the CDDB associated with the controller in question;
and it passes to EXE$MOUNTVER a UCB from the list of UCBs attached to the
CDDB each time it ca11s EXE$MOUNTVER.
Each time EXE$MOUNTVER is called in this scenario, it is passed the UCB associated
with the unit for which mount verification is being requested. Since this scenario is for
a "sick" controller, disks are being submitted to mount verification in potentially large
numbers. A "dummy" IRP is provided to EXE$MOUNTVER with a status of SS$_
DEVOFFLINE each time it is called to facilitate coordination with the class drivers
mount verification routine DUTU$MOUNTVER.
If the contro11er is actually a remote VAX running the VMS based MSCP server, then
DU$RE_SYNCH does not attempt a "host clear". It merely branches into common code
within DU$CONNECT_ERR, intentionally DISCONNECTs from the remote VAX's
MSCP server, and then calls DUTU$REV ALIDATE. From this point on, this scenario
is essentially the same as the first.

Remember that other events can also lead to the calling of DU$RE_SYNCH, and thus also
to mount verification. Some examples would be no progress in the oldest command still
outstanding for a controller, timeout of immediate class commands sent to a controller, and
receiving an invalid attention message from a controller.
The calling of DU$RE_SYNCH intentionally breaks the SCS connection with the server.
However, the connection breaking could be a consequence of numerous unexpected failures
as well. Perhaps a controller had an unrecoverable failure and crashed by itself. Prolonged
noise on the Cl causing a protocol failure between ports could cause the ports at both ends
to close the virtual circuit supporting the connection, and hence break the connection.
Similarly, the failure of the port hardware at either end of a virtual circuit would cause
the port driver to close the circuit, and again the connection would be broken. All such
cases would lead to DU$CONNECT_ERROR, and from there to DUTU$REVALIDATE.

• A third category might be labeled "connection manager induced" mount verification.
If the local host is a member of a VAX.cluster, then the connection manager uses mount
verification to stall disk activity if either quorum has been lost, or if a quorum file read or
write operation completed with a "media offiine" or "volume invalid" error.
The connection manager accomplishes this by calling DUTU$REVALIDATE from within
routine EXE$CLUTRANIO for each "MSCP speaking" controller that the local host can
see. Each time DUTU$REVALIDATE is called, it is passed a CDDB from the list of
CDDBs managed by DUDRIVER. The head of this list is at IOC$GL_DU_CDDB.

4-30 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.5.2 Disks Which Qualify for Mount Verification

DUTU$REVALIDATE and EXE$MOUNTVER apply different criteria for qualifying a unit
on an "MSCP speaking" controller for mount verification. When EXE$MOUNTVER is called
directly, its criteria are the sole determining factors in making this determination. But when
called by DUTU$REVALIDATE, then EXE$MOUNTVER may be thought of as refining the
criteria already applied by DUTU$REVALIDATE.

If the local VAX is not in a cluster, or if quorum has not been lost, then the unit must satisfy
all of the following criteria to be considered qualified by DUTU$REVALIDATE:

• It was previously software valid (i.e. its. homeblock and storage control block previously
validated correctly).

• The unit is not a controller based shadow set member. (This does not preclude a shadow
set virtual unit. Shadow set members are handled within the context of the virtual unit to
which they belong, and not by themselves.)
If the unit is a Host based shadow set member, special processing will be performed by
routine REVAL_HBS_MEMBER

• The unit is not already in mount verification.
• For Path Moue requests, minimal mount verification processing will be performed as with

the quorum lost processing.

Within the context of a VAXcluster, more than one VAX may be accessing a unit if it is either
dual-pathed or attached to a multihost controller. It is therefore necessary for the local host
to stall its 1/0 requests to such a unit if it loses quorum. In the event that quorum is lost,
DUTU$REVALIDATE also considers a unit qualified if, in addition to all the above criteria, it
is either dual-pathed or on a multihost controller.

NOTE

The multihost criteria qualifies disks which are MSCP-served by remote hosts.

In general, the criteria applied by EXE$MOUNTVER are as follows:

• There must be a volume mounted in the unit.
• The volume must not be mounted "foreign".
• Mount verification must be enabled for the unit. (This is the default when a disk is

mounted as a file structured volume.)
• The error which led to EXE$MOUNTVER being called must be one from which mount

verification can recover. These include the following:

Digital Equipment Corporation/ Internal Use Only 4-31

Disk Class Driver Error Handling and BUGCHECKs

Error Code

SS$_MEDOFL

SS$_VOLINV

SS$_DEVOFFLINE

SS$_SHACHASTA

88$_ WRITLCK

Description

Media offiine

Volume invalid

Device offiine (because controller is inoperative)

Shadow set state/membership change

Volume is writelocked

However, ifEXE$MOUNTVER is triggered by the connection manager via EXE$CLUTRANIO,
it does not bother to apply these criteria; it goes directly to mount verification.

There is a special case when disks mounted foreign are subjected to a "limited degree" of
mount verification. This occurs when the connection manager requests mount verification
from within routine EXE$CLUTRANIO. The sole purpose of this is to block 1/0 to such disks
until quorum is regained. Even though the 10$_PACKACK function is performed under these
circumstances, the Homeblock and Storage Control Block are not validated.

4.5.3 Failover of Dual-Pathed Disks

Consider a situation wherein a disk, DJAl, is dual-pathed between two HSCs. This dual
pathing is "static"; all the 1/0 from any host in the cluster is directed through the HSC which
is currently serving as the primary path controller for the disk. The other HSC is there to
handle the disk only if the primary HSC is unable to.

In this situation, a process need not be concerned with which HSC is currently handling the
disk. All that needs to be done is to assign both HSC's to the same Allocation Class, say 255.
Then the process merely refers to the disk as 255DJA1.

By using the allocation class format of a device name, the process is instructing the operating
system to route 1/0 requests through the proper controller; but how that's done is transparent
to the process. Figure 4-7 illustrates a DSA device which is dual pathed between two HSCs.

NOTE

It is often considered desirable to make even the allocation class transparent to the
user process through the use of a logical name.

4-32 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-7: Dual Pathed Disk Device Configuration

VAX HOST

HSCOOO

---..... allocate disk------
255

HSCOOl

allocate disk
255

255DJA1

CXN-0004-06

Based on the previous chapters covering data structures and the flow of a $QIO, the following
rules of setting the allocation class must be observed:

• The two nodes providing the dual-pathing for a disk must be in the same nonzero alloca
tion class.
If they weren't, the disk would appear as two disks. For example, if one HSC were
assigned allocation class 255, and the other 254, then there would appear to be two disks:
one called 255DJA1 and another called 254DJA1. The range of valid allocation classes
as of this writing is 1 through 255. The number zero is used to indicate that the controller
is not assigned an allocation class.

• All cluster accessible disks on nodes with the same nonzero allocation class must have
unique names.
Suppose that two VAXes are both in allocation class 1 and run the VMS based MSCP
server. It is invalid for each VAX to have, and to set served, its own MASSBUS disk
DRA3. If this were done, then it would be ambiguous as to which of the two disks is being
referenced by the name 1DRA3.

• Restricted access disks that are not cluster accessible can have the same name on nodes
which are in the same allocation class. The key point is that these disks MUST NOT be
dual-ported and MUST NOT be set served.

• For a CI VMS disk server to serve HSC based disks to NI cluster members, the allocation
class of the VMS node must match that of the HSC.

Assume that an event occurs rendering a dual-pathed disk inaccessible through its current
primary path controller. Then mount verification will attempt to fail it over to the alternate
path controller. What was the alternate path controller now provides the primary path; and
what was the primary path controller becomes secondary.

As an example, consider an RA60 dual-pathed between two HSC90s called TOM and DON,
with TOM being the primary path controller. If TOM crashes, then mount verification will
failover the disk to DON. DON is now the primary path controller, and TOM is secondary. All
1/0 to the RA60 is directed through DON. Figure 4-8 depicts the stages of Failover for a dual
pathed HSC disk.

Digital Equipment Corporation I Internal. Use Only 4-33

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-8: Fallover of a Dual Pathed HSC disk

I/O FOR DISK
DIRECTED VIA

TOM

TOM

LOCAL VAX
HOST

TOM CRASHES

LOCAL VAX
HOST

I/O FOR DISK
DIRECTED VIA

DON

: TOM : DON

LOCAL VAX
HOST

CXN-0004-07

If sometime after TOM reboots, power is cut to DON, then mount verification will failover the
disk back to TOM, making TOM the primary controller again.

The event causing failover does not have to be as catastrophic as a controller completely
failing. Perhaps one Standard Disk Interface (SDI) module in an HSC fails, but the HSC
survives; then only the disk units on that SDI would failover. It could even be caused by
someone "popping out" the primary path port button on the disk itself.

Consider a "generic event" that inhibits communication between controller TOM and the RA60
disk. After a very short (but disk and event dependent) time period, the disk gives up trying
to re-establish communication with TOM, and sets itself "available" to DON. Meanwhile, the
local host VAX becomes "aware" of the problem. Perhaps TOM sent an end message with a
major status of OFFLINE and a sub-status of INOPERATIVE. Or perhaps TOM crashed, and
the connection between the local disk class driver and TOM's MSCP disk server was broken.

Regardless of which of these events made the local VAX aware of the problem, both of them
will lead to mount verification for the disk. The key difference to note between them is that
with the first, there is still an SCS connection between DUDRIVER and TOM's MSCP server.

Assuming the connection with TOM's server is still active, mount verification will direct
the first ONLINE to controller TOM. But since TOM can't communicate with the unit,
TOM returns an end message with a major status code of OFFLINE and sub-status code
of INOPERATIVE. This will then cause mount verification to arrive at the same point it would
have had the connection with TOM's server been broken. An alternative controller must be
found which can both communicate with the disk and is in the same allocation class as TOM.

4-34 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If the local host already knows about such an alternative controller, then secondary path
linkages will already have been set up in the unit's UCB for this controller. If not, then
all CDDBs corresponding to controllers other than TOM are scanned for those in the same
allocation class as TOM. As each such controller is found, to it is sent a GET UNIT STATUS
command containing the unit number of the RA60. The first controller to respond with an end
message bearing the major status code of AVAILABLE or ONLINE is considered as providing
a viable secondary path for the disk.

Assume that controller DON is selected, either because it provides an already known sec
ondary path, or because it was the first to respond properly during the CDDB scan. The
primary and secondary path linkages in the UCB are adjusted to reflect that DON is now
providing the primary path, and that TOM is now providing the secondary path.

Then the ONLINE is issued to DON to actually bring the RA60 online to the local host (and to
controller DON if it isn't already). If the ONLINE succeeds, a GET UNIT STATUS is issued to
DON to verify that the RA60 is still ONLINE, and to obtain the disk's status and geometry.

4.5.4 Mount Verification Volume Validation

At the very core of the mount verification procedure is a routine, PERFORM_ VALIDATE,
invoked from EXE$MOUNTVER. By calling two subroutines, PERFORM_ VALIDATE executes
the two major tasks that represent the very heart of the entire process:

• PACKACK_ VOLUME

This routine issues the IO$_PACKACK function (ONLINE and GET UNIT STATUS) to
establish a path to the disk, and to bring it online to the local host. Failover, if it occurs,
happens internal to the I0$_PACKACK, and is transparent to PERFORM_ VALIDATE.
PERFORM_ VALIDATE doesn't really care whether or not failover occurred; all it cares
about is that a path has been restored to the disk. In fact, if PACKACK_ VOLUME fails
in its task, it doesn't return to its caller (PERFORM_ VALIDATE); instead it aborts mount
verification for the unit in question.

• VALIDATE_ VOLUME

The second major task is verifying that the volume currently present in the unit is the
same volume present before mount verification became necessary. This is done by routine
VALIDATE_ VOLUME reading the Homeblock and Storage Control Block (SCB), and then
comparing their contents against previously stored information.
The items of comparison are as follows:

Checksums for both the Horneblock and SCB.
Volume serial number and name (Home Block)
Mount time (Storage Control Block)
Volume lock name (If Volume Name did not compare)

What follows is an overview of the inner workings of these routines. It is supported by
Figure 4-9. This illustration is intended as a simplified block diagram. As such, it integrates
the activities of the three routines into one logical flow, and emphasizes the chronology
of events. It is intended to assist in following the overview which, on the other hand, is
concerned with the specifics of the routines.

Dlgltal Equipment Corporation/ Internal Use Only 4-35

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-9: Volume Validation Flow

BEGIN

SELECT CONTROLLER

ONLINE
(INCLUDING RETRIES)

FAILURE SUCCESS

GET UNIT STATUS

FAILURE

Operator
Message

SUCCESS

VALIDATE CONTENTS
OF HOMEBLOCK

AND SCB

WRONG
VOLUME

OTHER SUCCESS
ERRORS

NO PREVIOUS
HOMEBLOCK

OR SCB INFO
AVAILABLE

ABORT MV
FOR UNIT

VOLUME VALID

CXN-0004-08

4.5.4.1 Perform_ Validate Routine

PERFORM_ VALIDATE begins by sending an OFFLINE message to the OPCOM process as
well as explicitly to device OPAO:, notifying any operator terminals of a device offiine condition.
It then calls routine PACKACK_VOLUME to bring the unit back online to the local host.

4-36 Digital Equip·ment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.5.4.2 PACKACK_ VOLUME Routine

PACKACK_ VOLUME issues an I0$_PACKACK request to DUDRIVER's start 1/0 routine.
Servicing this request begins with the selection of a controller to which to send an ONLINE
command. The rules for selection work as follows:

• If the SCS connection with the current primary path controller has not been broken, then
that controller is selected.

• If the SCS connection with the current primary path controller had been broken, then an
alternate controller is selected by calling routine DUTU$LOCATE_UNIT which will in
turn call routine DUTU$BEGIN _CONN_ WALK. This routine will determine if an existing
secondary path is valid and if not will initiate a Connection Walk to locate a valid path.
The steps performed by the Connection Walk routine are as follows:

Check to see if a Preferred Path has been specified by examining the UCB$L_PREF _
CDDB field of the UCB.
If a preferred path has been requested, clear the Load Balance flag in the CDRP and
attempt to validate the path. If valid, the path will be used. If the preferred path is
not valid, a connection walk will be started to find a valid path.
Check to see if a Load Balance request has been made. If so, branch to perform
connection walk.
Check the UCB to see if secondary path linkages have already been set up. If so, then
select the controller associated with that secondary path.
If a secondary path is not yet set up, then scan the list of CDDBs looking for controllers
in the same nonzero allocation class as the current primary path controller. If one
is found, determine if it can access the unit by sending it a GET UNIT STATUS
command. If the controller replies that the unit is either already ONLINE to the
controller, or at least AVAILABLE to it, then that controller is selected. If not, continue
the scan until a controller is selected or the CDDB list is exhausted.

If an alternate controller is selected by either of the these two mechanisms, then the
UCB path linkages are modified such that the current primary path controller becomes
secondary, and the alternate controller becomes primary.

If the 10$_PACKACK fails to select a controller, then PACKACK_ VOLUME merely tries it
again after a pause of approximately one second. In fact, PACKACK_ VOLUME loops here
in the hope that either an SCS connection with the current primary path controller is re
established, or the disk enters the ONLINE or AVAILABLE state with some other controller
with which the local host has an open SCS connection.

NOTE

This loop is not infinite. It does have a timeout mechanism of waiting MVTIMEOUT
seconds. This is presented in Section 4.5.5.

If the I0$_PACKACK does select a controller, then it issues an ONLINE for the unit to the
controller. This operation has three possible outcomes:

• The end message indicates a failure with the major status code OFFLINE and sub-code of
either UNKNOWN or INOPERATIVE.

Digital Equipment Corporation / Internal Use Only 4-37

·01sk Class Driver Error Handling and BUGCHECKs

If this is the case, then the alternate controller selection mechanism described above
is employed to select a different controller. If one is found, then the UCB primary and
secondary path linkages are modified (also as described above), and the ONLINE is retried
with the new primary path controller.

NOTE

This approach is specifically designed to handle the situation where the SCS
connection with the original primary controller survived, but the controller itself
can't communicate with the disk. It attempts to force failover to some other
controller, even though the original primary controller is still "alive".

Now, both primary and secondary path linkages are established. So it can be seen that
ONLINE attempts can ping pong between two controllers so long as the same major
status and sub-status codes remain OFFLINE and either UNKNOWN or INOPERATIVE,
respectively. Thus, a retry limit of 4 is built into this loop for VMS V5.5. This limit is
enforced in routine PACKACK_UNKNO _INOPR in module dudriver.lis.
If the retry limit is exhausted, the 10$_PACKACK returns to PACKACK_ VOLUME with
an error. This merely causes PACKACK_ VOLUME to retry the 10$_PACKACK again after
pausing approximately one second.

• The I0$_PACKACK completes with any other error. Again, PACKACK_ VOLUME will
merely retry the 10$_PACKACK after pausing approximately one second.

NOTE

Observe that PACKACK_ VOLUME will switch between controllers as the UCB's
primary and secondary linkages are interchanged with retries of the 10$_
PACKACK operation.

• The ONLINE is successful. Then the I0$_PACKACK continues by sending a GET UNIT
STATUS command to the controller.

As already stated, the purpose of the GET UNIT STATUS command is to obtain both geometry
and status information about the unit. The outcome here is binary: it either fails or succeeds.
If it fails, the unit is assumed to have gone OFFLINE relative to the controller, and IO$_
PACKACK merely branches back to to the point where it issues an ONLINE. If it succeeds,
then the 10$_PACKACK completes, returning a "success" status code to PACKACK_ VOLUME.
PACKACK_ VOLUME then returns to its caller, PERFORM_ VALIDATE.

Next, PERFORM_VALIDATE executes its second major task by calling routine VALIDATE_
VOLUME. It wants to make sure that the volume now in the unit is the same one that was
there before.

4-38 Dlgltal;Equlpment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.5.4.3 VALIDATE_ VOLUME Routine

VALIDATE_ VOLUME first reads the Homeblock and validates the Homeblock's checksum,
the volume serial number, and the volume name. It then reads the SCB and validates the
SCB's checksum, mount time, and volume lock name (if appropriate). There are four possible
outcomes here:

• If both the Homeblock and SCB validate successfully, then VALIDATE_ VOLUME merely
returns to its caller, PERFORM_ VALIDATE. The volume and unit are considered VALID.

• If wrong volume information is found in either the Homeblock or the SCB, then
VALIDATE_ VOLUME pauses approximately one second, and loops back to try again.
The operator i~ also notified of the problem.

• If previous information is not available against which to check the contents of the
Homeblock and SCB, then VALIDATE_ VOLUME does not return to its caller. Instead,
it aborts mount verification for the unit, leaving it Software Invalid.

• VALIDATE_ VOLUME returns all other errors to its caller, PERFORM_ VALIDATE. This
causes PERFORM_ VALIDATE to loop back to its beginning and start over by again calling
PACKACK_ VOLUME.

4.5.5 Mount Verification Timeout

Once started, mount verification for a unit could turn into an infinite loop if some mechanism
were not explicitly provided to prevent it. The Sysgen Parameter MVTIMEOUT (mount
verification timeout period) provides that mechanism.

EXE$MOUNTVER allocates an internal IRP for use by PERFORM_ VALIDATE when re
questing the 10$_PACKACK, and for reading the Homeblock and SCB. Just before entering
PERFORM_ VALIDATE, EXE$MOUNTVER computes the sum of the current time of day and
the value of the MVTIMEOUT parameter, and stores the sum in the IRP. This sum is called
the Mount Verification Timeout.

Each time PACKACK_VOLUME pauses before retrying the 10$_PACKACK, it checks to see if
the current time of day has progressed past the mount verification timeout for the IRP. If so,
it aborts mount verification for the unit.

The value of MVTIMEOUT is stored in location IOC$GW _MVTIMEOUT. As of VMS V5.5, it
defaults to 3600 seconds (i.e. 60 minutes). It is desirable that this parameter be large enough
to insure controllers have enough time to reinitialize, and also re-establish SCS connections,
before mount verification times out any disks~ they may have which are not dual-pathed. 60
minutes is currently considered reasonable for this.

4.5.6 Disks Requiring Special Handling

Certain disks require special handling, namely system disks, quorum disks, and disks which
are mounted foreign.

Digital Equipment Corporation/ Internal Use Only 4-39

Disk Class Driver Error Handling and BUGCHECKs

4.5.6.1 Foreign Disks

Unless invoked by the connection manager, EXE$MOUNTVER does not perform mount
verification on foreign disks. At its very beginning, it detects the DEV$V _FOR flag set in the
UCB's DEVCHAR field and immediately returns to its caller.

If invoked by the connection manager, then mount verification of foreign disks is permitted to
progress up through routine PACKACK_ VOLUME. Routine PERFORM_ VALIDATE notices
that the disk is foreign, and thus knows that there is no information with which to compare
the contents of the Homeblock and the SCB. PERFORM_ VALIDATE will fake successful
validation as it bypasses the call to VALIDATE_ VOLUME and branches directly to the routine
to wait for quorum to be regained. Again, remember that the reason for doing this is to block
1/0 to the foreign disk until the host is sure that it has quorum.

4.5.6.2 System Disk and Quorum Disk

PERFORM_ VALIDATE must treat the system disk and the quorum disk the same way if they
have not yet been properly mounted. It doesn't have any previous information to compare the
Homeblock and SCB with, so again it bypasses the call to VALIDATE_ VOLUME.

4.5. 7 Stalling and Unstalling 1/0 During Mount Verification

When one looks at the circumstances which induce mount verification for a unit, one can
say that they all place the data on the volume "at risk". It is therefore necessary to stall 1/0
requests for the unit until the volume is no longer at risk.

For purposes of this discussion, 1/0 requests can be classified in terms of how far they have
progressed since they were issued. In this sense, there are two groups of 1/0 requests:

• There are those requests whose IRPs were not passed to DUDRIVER until after mount
verification for the unit began. These are the easiest to deal with and are called New I I 0
requests.

• There are those requests whose IRPs were passed to DUDRIVER before mount verification
began. They are at various stages of processing, but have not yet been completed; so they
are called Active I I 0 requests. Handling these is more complicated.

The key to dealing with new 1/0 requests is a field in the UCB called the Resource Wait Count
(RWAITCNT) field. Before entering PERFORM_ VALIDATE, EXE$MOUNTVER calls a driver
specific "begin mount verification" routine. For DUDRIVER, this is DUTU$BEGIN_MNTVER.
Two of the tasks it performs are:

• Set the UCB$V _MSCP _MNTVERIP flag in the UCB, indicating that MSCP specific steps
for mount verification have begun.

• Increment the RWAITCNT field in the UCB.

Now when new 1/0 requests are handed to DUDRIVER, its start 1/0 routine sees the
RWAITCNT field is nonzero. So the IRP is inserted into a queue on the UCB (UCB$L_IOQFL),
and there it stays until mount verification completes. This queue is called the Pending IRP or
Pending I I 0 Queue.

4-40 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Regardless of whether or not the volume is declared "Software Valid", mount verification for
disks on "MSCP speaking" controllers passes through DUDRIVER's End Mount Verification
Routine, DUTU$END_MNTVER.

Within that routine, the UCB's RWAITCNT field is decremented. This permits the unstalling
of pending IRPs. Of course, if mount verification was unable to restore the volume to the
VALID state, then all such IRPs are terminated.

NOTE

The actual unstalling of requests in the pending IRP queue is done by SCS$UNSTALLUCB,
which is called whenever the RWAITCNT field is decremented. SCS$UNSTALLUCB
tests the RWAITCNT field. If the field contains a zero, then this routine removes
the IRPs from the queue and passes them to the driver's start 1/0 routine. If the
field is still nonzero, then 1/0 is still stalled on this unit; so SCS$UNSTALLUCB
merely returns to its caller without doing anything. One of those reasons will be
presented momentarily.

Various special processing steps must be taken when handling active 1/0 requests:

• One of those steps involves the MSCP _MNTVERIP flag set by DUTU$BEGIN_MNTVER
in the UCB.
End messages received for active 1/0 requests and bearing major status codes indicating
errors are passed along with their associated IRPs to EXE$MOUNTVER, as already
described. When DUTU$BEGIN_MNTVER gets called for these, it sees that mount
verification is already in progress; the MSCP _MNTVERIP flag is already set. So it merely
inserts these IRPs into the pending IRP queue along with the new IRPs.
So as to maintain integrity of the order of 1/0 operations, active IRPs are inserted into this
queue in Sequence Number Order.

NOTE

New IRPs are merely inserted at the end of the queue as they are received by
DUDRIVER. This preserves the natural order among the new IRPs, and also
relative to any active IRPs in the queue.

• If mount verification is triggered by the failure of the connection between DUD RIVER and
the controller's MSCP disk server, then disk failover presents its own special problem.
The disk class driver's connection error routine, DU$CONNECT_ERR, gathers up all
active CDRPs (and hence active IRPs) from wherever they are, and inserts them in
the controller's CDRP restart queue. This is done before DU$CONNECT_ERR calls
DUTU$REVALIDATE, which in tum calls EXE$MOUNTVER for each unit on the con
troller.

NOTE

There is a CDRP sequence number field used to preserve the proper order of the
requests.

Digital Equipment Corporation / Internal Use Only 4-41

Disk Class Driver Error Handling and BUGCHECKs

If a disk is failed over to an alternate controller, its active CDRPs (which are really active
IRPs) are removed from the old controller's CDRP restart queue and inserted at the head
of the UCB's pending IRP queue.

• There is another problem created for mount verification when it results from the loss of
an SCS connection with a controller's disk server. If a connection is re-established, then
the active requests in the controller's CDRP restart queue must all be processed prior to
unstalling any UCB's pending IRP queue.
Here again, the UCB's RWAITCNT field is the key. In the common code they share,
DU$RE_SYNCH and DU$CONNECT_ERR increment the RWAITCNT field of each
UCB on the controller if it has not yet been incremented for mount verification. Thus,
when DUTU$BEGIN_MNTVER increments this field, it will contain at least a 2. Later,
DUTU$END_MNTVER will decrement it; and then it will contain at least a 1. When
SCS$UNSTALLUCB is called, it will see the RWAITCNT field is nonzero; so it will return
to its caller without unstalling the UCB's pending IRPs.
As mount verification completes for each unit on a controller, the count of the num
ber of UCB's waiting for completion is decremented. When this count goes to zero,
DUTU$RESTART _NEXT _CDRP begins single stream processing of the CDRPs re
maining in the controller's CDRP restart queue. When single stream processing com
pletes for a controller, the RWAITCNT field of each of its UCBs is decremented and
SCS$UNSTALLUCB is called for that unit. This time, SCS$UNSTALLUCB should find
the RWAITCNT field zero; so now it can unstall the requests in the UCB's pending IRP
queue.

4.5.8 Aborting Mount Verification

If for any reason mount verification for a unit must be aborted, such as mount verification
timeout, then the following actions are taken:

• The operator is notified that mount verification for the unit has been aborted.
• The VALID flag in the unit's UCB is cleared.
• Mount verification is disabled for the unit.
• 1/0 requests for this unit in the controller's CDRP restart queue are terminated with the

VMS condition value 88$_ VOLINV (Volume Invalid).
• 1/0 requests in this unit's pending IRP queue (UCB$L_IOQFL) are terminated with the

VMS condition value SS$_ VOLINv.

4.5.9 Mount Verification - The Big Picture

To tie together the various pieces of mount verification, here is a general outline of the steps
taken by routine EXE$MOUNTVER when performing mount verification for a disk on an
"MSCP speaking controller". EXE$MOUNTVER will be passed a "dummy" IRP if it is called
from DU$RE_SYNCH or DU$CONNECT_ERR. If called for a single unit due to an error in a
"real" 1/0 request, then the IRP for that request is passed to EXE$MOUNTVER. In both cases,
it is also passed the UCB of the unit for which mount verification is being requested.

4-42 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Remember that if mount verification is invoked by DU$_RESYNCH or DU$CONNECT_ERR,
then the RWAITCNT field of the UCB will have been incremented once before entry into
EXE$MOUNTVER.

• Determine if mount verification possible and necessary for unit.
- NO - Return to caller. (SS$_xxx condition value in IRP unaltered.)
- YES - Continue with next step.

• If mount verification not already in progress, allocate special MVIRP (mount verification
IRP) to be used later for I0$_PACKACK, reading Homeblock, and reading SCB (Storage
Control Block).

• Perform MSCP specific "begin mount verification tasks"
If MSCP _MNTVERIP flag in UCB is zero, then
o Set MSCP _MNTVERIP flag.
o Increment RWAITCNT field in UCB.

NOTE

New 1/0 requests are now stalled. Their IRPs will be inserted onto the
UCB's pending IRP queue when passed to DUDRIVER until mount
verification completes.

• If IRP passed to EXE$MOUNTVER represents a "real 1/0" request (and is not an "inter
nal" IRP, then insert it onto the UCB's pending IRP queue.

• If an MVIRP was not allocated above, then
Abort mount verification if failure to allocate due to lack of nonpaged pool. (SS$_
VOLINV)
Return to "caller's caller" if MVIRP not allocated because mount verification was
already in progress for this unit.

NOTE

The only effect of calling EXE$MOUNTVER if mount verification is already
in progress will be the insertion of an IRP representing a "real 1/0" request
onto the UCB's pending IRP queue.

If an MVIRP was allocated above, then
- Calculate and store in IRP the mount verification timeout.

• Perform volume validation by
Issuing an 10$_PACKACK function
o Sends ONLINE and GET UNIT STATUS commands

NOTE

Brings unit online to host (and controller if not already).

o Failover unit to alternate controller if necessary and possible.

Digital Equipment Corporation I Internal Use Only 4-43

Disk Class Driver Error Handling and BUGCHECKs

Read and verify contents of Homeblock and SCB.

NOTE

Make sure that volume currently in unit is same volume that was there
before mount verification was necessary.

There are four possible outcomes of the this step:
If no previous volume information available, then abort mount verification for this unit
(88$_ VOLINV).
If wrong volume found in unit, issue message and loop until operator resolves problem
(88$_INCVOLLABEL).
For any other errors, repeatedly retry this step until it succeeds, or until mount
verification times out for this unit. If mount verification times out, then abort mount
verification for the unit (SS$_ VOLINV).
If success, then continue with next step.

NOTE

The unit and volume are now considered "Software Valid".

• Wait for quorum to be regained if it was lost.
• Perform MSCP specific "end mount verification" tasks.

Clear MSCP _MNTVERIP flag.
Decrement UCB's RWAITCNT field.
If unit not software valid, then terminate 1/0 requests (SS$_ VOLINV) for unit in
controller's CDRP restart queue and UCB's pending IRP queue.
If unit is software valid, then unstall new 1/0 requests in UCB's pending IRP queue if
RWAITCNT field is zero.

• Decrement CDDB's WTUCBCTR field (number of UCBs on controller waiting for mount
verification to complete).
If WTUCBCTR field is now zero and CDDB's CDRP restart queue is not empty, then
restart CDRPs in CDDB's CDRP restart queue.

NOTE

After handling last CDRP in restart queue, RWAITCNT field will be decre
mented to zero and 1/0 requests in pending IRP queue unstalled.

4-44 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.5.1 o Mount Verification Routines

The next few sections present detailed descriptions of the major routines involved with mount
verification of non-shadowed disks on "MSCP speaking" controllers (including VAXes running
the VMS based MSCP server).

Routine Name

DUTU$REVALIDATE

EXE$MOUNTVER

PACKACK_ VOLUME

EXE$MNTVERSIO

DUTU$RESTART_NEXT_
CDRP

DUTU$END_SINGLE_
STREAM

4.5.10.1 DUTU$REVALIDATE

Routine Description

DUDRIVER's top level routine called to perform mount verification
for all "qualified" disks on a controller.

Handles mount verification for a single disk unit.

Initiates the IO$_PACKACK function required during mount verifi
cation of a disk unit.

Passes mount verification IRPs to DUDRIVER.

Restarts 1/0 requests in a CDDB's CDRP restart queue in single
stream mode.

Ends single stream mode processing of CDRPs after CDDB's CDRP
restart queue is empty, and calls SCS routine to unstall 1/0 requests
in UCB's pending IRP queue.

Routine DUTU$REVALIDATE is the top level routine called to re-validate all disks on an
"MSCP speaking" controller. In these flows, the term controller will apply to any local DSA
controller, an HSC, an ISE, or a remote VAX which is running the VMS based MSCP server.

The times when this routine are called fall into two general categories:

• The SCS connection between the local disk class driver and the MSCP server on the
controller has failed. Then DUTU$REVALIDATE is called from either DU$RE_SYNCH or
DU$CONNECT_ERR.

• The connection manager calls this routine from within EXE$CLUTRANIO to stall disk
activity if the local host is a member of VAXcluster and either

it has lost quorum, or
- a quorum file read or write operation completed with a "media offiine" or "volume

invalid" error.
This category is distinguished from the first by EXE$CLUTRANIO setting to 1 the
QUORLOST flag in the CDDB$W_STATUS field before calling DUTU$REVALIDATE.

The basic input for this routine is the CDDB corresponding to a controller. Thus, for the
first category, DUTU$REVALIDATE is called only for a particular controller. However, for
the second category, EXE$CLUTRANIO calls it for each controller visible to the local VAX.
Regardless of the situation, DUTU$REVALIDATE will perform mount verification for all disks
units being served by each controller for which it is called.

Digital Equipment Corporation / Internal Use Only 4-45

Disk Class Driver Error Handling and BUGCHECKs

The list of UCBs attached to the CDDB is scanned. The listhead is at offset CDDB$L_
UCBCHAIN, and the linkage from one UCB to another is provided by each UCB's CDDB_
LINK field.

• If a disk is not qualified for mount verification, this routine skips it and goes on to the
next.
If the local VAX is not in a cluster, or if quorum has not been lost, then a unit qualifies for
mount verification if the following conditions all apply to it:

The VALID flag must be set in its STS field. This indicates that the volume was
previously software valid.
The SSM flag must not be set in its DEVCHAR2 field. The unit must not be a Member
of a Controller Based Shadow Set.

NOTE

The UCB representing the entire shadow set virtual unit does not have its
SSM flag set; only the member UCBs do. So a shadow set virtual unit UCB
passes this test.

If this is a member of a Host Based Shadow Set branch to special routine REVAL_
HBS_MEMBER.
The MSCP _MNTVERIP flag must not be set in its DEVSTS field. (This flag being
set indicates that the disk has already entered the MSCP specific stages of mount
verification.)
If this is a Pathmove request, signal minimal mount verification required by setting
the UCB$V _CLUTRAN bit in the UCB$L_STS field.

If the local VAX is in a cluster, then some other VAX may be accessing a unit the local VAX
is using if either

The unit is dual-pathed (the 2P flag is set in the UCB$L_DEVCHAR2 field).
- The unit is on a multihost controller such as an HSC (the CF _MLTHS flag is set in the

CDDB$W _CNTRLFLGS field).
It is therefore necessary to stall 1/0 requests for such a unit from the local host if the local
host has lost quorum.
If DUTU$REVALIDATE was called from EXE$CLUTRANIO and the disk is either dual
pathed or on a multihost controller, then the CLUTRAN flag is set in the UCB's STS field
so as to remember this later.

• Routine EXE$MOUNTVER is called to start mount verification for each qualifying disk.
EXE$MOUNTVER is passed a "dummy" IRP, namely the permanent IRP within the
CDDB.

If EXE$MOUNTVER "reports" that it cannot start mount verification for this disk,
then the following is 4one:
o The VALID flag is cleared in the UCB. The unit is no longer software valid.
o DUTU$TERMINATE_PENDING is called to terminate all 1/0 requests for this

unit in the CDDB's restart queue, and all-stalled requests for this unit queued to
the UCB itself (IRPs in UCB$L_IOQFL queue). These requests are sent to 1/0
postprocessing with the condition value SS$_VOLINV (volume is software invalid).

4-46 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If EXE$MOUNTVER "reports" that it did start mount verification for the unit, then
the following steps are performed if this controller is not undergoing initialization and
the QUORLOST flag is not set:
o The count of the number of UCBs linked to this CDDB waiting for mount verifica

. tion to complete (WTUCBCTR field in CDDB) is incremented.
o The address of the CDDB is stored in the UCB$L_WAIT_CDDB field.

NOTE

DUTU$REVALIDATE "knows" that EXE$MOUNTVER returns to its caller
only if it successfully starts mount verification; EXE$MOUNTVER returns
to its caller's caller if it fails to do so. Thus, immediately before calling
EXE$MOUNTVER, DUTU$REVALIDATE pushes onto the stack the address
of where EXE$MOUNTVER is to return in the event of failure.
Then, when EXE$MOUNTVER is actually called, the address of where to return
within DUTU$REVALIDATE is also placed on the stack. So EXE$MOUNTVER
will be "tricked" into returning to its caller in this case, regardless of whether it
succeeds or fails.
The reason for doing this is as follows: EXE$MOUNTVER is called to start
mount verification for a single disk. If it succeeds, it should return to its caller
so that its caller can take appropriate action from there. If it fails, then it leaves
the disk in a software invalid state and terminates pending 1/0 requests for that
unit.
It has no reason for returning to its caller if it fails since it has resolved/terminated
the request which led to its being called (and possibly others); so it returns to its
caller's caller. However, DUTU$REVALIDATE needs to repeatedly call it from
within a loop, once for each disk on a particular controller.
If called from DUTU$REVALIDATE, EXE$MOUNTVER must be "tricked" into
returning to its caller regardless of whether it succeeds or fails.

• Once EXE$MOUNTVER has been called to start mount verification for all disks on
the controller, DUTU$REVALIDATE is done. As disks complete mount verification,
DUTU$MOUNTVER will receive control and perform "end of mount verification" process
ing.

4.5.10.2 EXE$MOUNTVER

This routine is called by DUTU$REVALIDATE as described above. But it is also called by
IOC$ALTREQCOM when an end message is received with an MSCP status code indicating an
error occurred while transferring data to or from a disk.

In both cases, EXE$MOUNTVER is passed the UCB for the unit on which mount verification
is to be performed. If called by IOC$ALTREQCOM, it is also passed the IRP associated with
the failed data transfer. If called by DUTU$REVALIDATE, it is passed a "dummy" IRP.

Dig Ital Equipment Corporation" I Internal Use Only 4-47

Disk Class Driver Error Handling and BUGCHECKs

NOTE

EXE$MOUNTVER can handle situations where it is not passed an IRP. However,
such situations do not arise with DUDRIVER.

Since DUDRIVER is concerned only with disks on "MSCP speaking" controllers, or VAXes
emulating "MSCP speaking" controllers, a few special tests for non-MSCP disks are omitted
from this fl.ow.

• EXE$MOUNTVER begins by determining if mount verification is possible and necessary
for the unit whose UCB it was passed.
First, a necessary condition for mount verification to be performed on a disk device is that
the unit be a file oriented random access device. In other words, either it is a disk, or
"looks enough like a disk to be treated as a disk". For TMSCP tape volumes, the device
must store CRCs and must not be at beginning of tape.
However, these conditions by themselves is not sufficient.
Combined with these first conditions, either of the following two cluster related situations
is sufficient to invoke mount verification:

The local host is a member of a VAXcluster, but has lost quorum. In this case, the
CLUTRAN flag in the UCB is unaltered; it remains set.
EXE$CLUTRANIO invoked mount verification, but quorum has not been lost by the
local host. In this case, the CLUTRAN flag is cleared.

If neither of the cluster related conditions is true, then all the following must be:
There must be a mounted volume in the unit.
The device must not be mounted foreign unless it is an TMSCP tape.
Mount verification must be enabled. (This is normally true by default when a file
structured disk is mounted.)
The error which led to this routine being called must be one from which mount
verification can recover.
EXE$MOUNTVER was passed a VMS condition value. This condition value may
be the 1/0 status associated with the IRP of a failed $QIO operation or the con
dition value may have been chosen by EXE$MOUNTVER's caller to intentionally
force mount verification. This latter case applies when EXE$MOUNTVER is called
by DUTU$REVALIDATE, which intentionally passes the condition value SS$_
DEVOFFLINE.
The condition value passed to EXE$MOUNTVER is looked up in a table of errors for
which recovery is possible. This table is at location MVERR_TABLE, and contains the
following: ·

4--48 Dlgltal Equipment Corporation/ Internal Use Only

Error Code

SS$_MEDOFL

SS$_VOLINV

SS$_DEVOFFLINE

SS$_SHACHASTA

88$_ WRITLCK

Disk Class Driver Error Handling and BUGCHECKs

Description

Media offline

Volume invalid

Device offline (because controller is inoperative)

Shadow set state/membership change

Volume is writelocked

If the disk has been accidentally writelocked, then EXE$MOUNTVER branches to
WRITLCK_HNDLR and does not return here. At WRITLCK_HNDLR, the IRP is
merely recycled over and over again until the operator resolves the problem.
If a shadow set state change is involved, mount verification will still be performed.
Shadow set mount verification is discussed in a separate book entitled VMS Volume
Shadowing Internals.
The "media offiine", "volume invalid", and "device offiine" cases continue on with the
next step described here.

• If the device is Served and if a Server Mount Verification Routine exists, JSB to that
routine.

• The MNTVERIP flag in the STS field of the UCB is tested.
If it is found to be set, then mount verification is already in progress for the disk. So this
step is skipped, and no attempt is made to allocate a special mount verification IRP.
If the MNTVERIP flag is clear, then it is set and this step is performed.
An IRP is allocated from non paged pool This IRP, called an "MVIRP", is to be used
specifically for mount verification operations. The MVIRP flag is set in its IRP$W _STS
field; this will allow the MVIRP to be processed by DUDRIVER Even if Normal 1/0 is
Stalled for the unit.
In the event of an allocation failure due to lack of non paged pool, a loop is provided to retry
the allocation up to 10 times before giving up. EXE$MOUNTVER waits approximately
1 second between consecutive retries. If all the retries fail, this is "remembered" and
handled later.

• If an IRP was passed to EXE$MOUNTVER by its caller, then routine DRIVER_CODE
is called. DRIVER_CODE has the responsibility for branching to driver specific mount
verification code, the address of which is kept in the Driver Dispatch Table at offset
DDT$L_MNTVER. For DUDRIVER, this is routine DUTU$MOUNTVER.
Since this is the first time DUTU$MOUNTVER is being entered for this disk, it in
tum branches to the driver specific "begin mount verification" routine, DUTU$BEGIN _
MNTVER. There, the following tasks are performed:

The MSCP _MNTVERIP flag in the UCB's DEVSTS field is tested to see if
DUTU$BEGIN_MNTVER has been entered for this disk yet. In essence, a check
is being made to see if those steps specific to the mount verification of a disk on an
"MSCP speaking" controller have already begun for this unit.
o If the flag is already set, then this routine has already been entered for this unit.

So the UCB$W_RWAITCNT field is left unaltered.
o If the flag is clear, it is now set and the UCB$W _RWAITCNT field is incremented.

This is the first time this routine has been entered for this unit.

Digital Equipment Corporation/ Internal Use Only 4-49

Disk Class Driver Error Handling and BUGCHECKs

If the IRP passed to EXE$MOUNTVER is not a "dummy" permanent IRP from the
CDDB, but rather an IRP representing a "real 1/0 request", then it is inserted into the
UCB's pending 1/0 request queue (UCB$L_IOQFL) in sequence number order.

This is done so that the IRP can be "remembered" and restarted after mount verifica
tion is completed.

DUTU$BEGIN_MNTVER returns to DRIVER_CODE's caller. That would be
EXE$MOUNTVER, which then continues on with the next step.

• Two steps ago, just prior to calling DRIVER_CODE, EXE$MOUNTVER tested the
MNTVERIP flag. Based on the flag's setting, it decided whether or not to allocate an
MVIRP.
If the MNTVERIP flag was found already set, that step was skipped and no attempt
was made to allocate an MVIRP since mount verification was already in progress for
this unit. If that was the case, then EXE$MOUNTVER does not need to take further
action. However, it does not want to report either "success" or "failure" to its caller. So
EXE$MOUNTVER return's to its caller's caller.

NOTE

Remember, as described above, if EXE$MOUNTVER was called by routine
DUTU$REVALIDATE, it is "tricked" into returning to its caller in this case.

If EXE$MOUNTVER did attempt to allocate an MVffiP but failed, even after the 10
retries, then it does not proceed any further. Instead, it branches to ERROR_EXIT where
it handles the allocation failure in the following manner:

Aborts mount verification for this unit.
Notifies the operator that mount verification for this unit was aborted.

Terminates all pending 1/0 requests for this unit with the error code SS$_ VOLINV.
The unit is left software invalid by having its VALID flag cleared to zero.

If EXE$MOUNTVER did allocate an MVIRP, then it calls routine CALC_MVTIMEOUT
to calculate the mount verification timeout time for this unit. This is computed as the
current time plus the number of seconds stored in location IOC$GW _MVTIMEOUT.

NOTE

IOC$GW _MVTIMEOUT contains the value of the sysgen parameter MVTIMEOUT.
As of VMS V5.5, its value defaults to 3600 seconds (i.e. 60 minutes).

The mount verification timeout time is stored in the ASTPRM field of the MVIRP. (The
ASTPRM field can be used this way here since MVIRPs don't use AST parameters.)

• If the UCB represents a shadow set virtual unit, then the code branches to PERFORM_
SHADOW to perform shadow set mount verification recovery. Otherwise, the ordinary
mount verification is performed by the instructions at PERFORM_ VALIDATE.

• At PERFORM_ VALIDATE, the two major tasks of mount verification are as follows:

First, routine PACKACK_ VOLUME is called to set the unit online and make it acces
sible to the local host.

4-00 Digital Equipment Corporation/ Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If this can be done using the current primary path controller, then it will be. If not,
then an attempt is made to failover the unit to an alternate controller if the current
primary controller is in a nonzero allocation class. A viable secondary path to the unit
is sought.
o Routine DUTU$LOCATE_UNIT is called which in tum calls routine DUTU$BEGIN_

CONN_ WALK This routine will determine if an existing secondary path is valid
and if not will initiate a Connection Walk to locate a valid path.
The steps performed by the Connection Walk routine are as follows:
• Check to see if a Preferred Path has been specified by examining the UCB$L_

PREF_CDDB field of the UCB.
If a preferred path has been requested, the Load Balance flag in the CDRP is
cleared and an attempt to validate the path is made. If the path is valid, it will
be used. If the preferred path is not valid, a connection walk will be started to
find a valid path.

• Check to see if a Load Balance request has been made. If so, branch to perform
connection walk.

o If the UCB already has a secondary path set up, then that path is used.
o If not, controllers in the same allocation as the current primary path controller are

queried to see if they can access the disk until one says "yes", or until the list of
controllers is exhausted. This process is known as connection walking.

If a secondary path is found, then it is made the new primary path, and the old
primary path is made secondary. If not, then the original controller is used.
This task is done by issuing an 10$_PACKACK (pack acknowledge) to the unit. Doing
so causes two MSCP commands to be issued to the controller. First, an ONLINE
command is used to bring the unit online to the host. (This also brings it online to
the controller if it isn't already.) If the ONLINE succeeds, then a GET UNIT STATUS
command is used to ascertain the status and geometry of the unit.
PACKACK_ VOLUME repeats the 10$_PACKACK approximately once a second until
either it succeeds, or mount verification timeout occurs. Only if PACKACK_ VOLUME
succeeds does it return to its caller, PERFORM_ VALIDATE, so that the next major
task can be performed.

NOTE

The details of PACKACK_ VOLUME are presented in the next section of this
chapter. However, it is worth observing here that this repeating of the IO$_
PACKACK operation will alternate between the two controllers to which a
dual-path disk is ported.

The second major task is to validate the volume on the unit; in other words, make sure
that it is the same volume that was there before mount verification was needed. If the
volume is mounted "foreign", then this second task is not performed; there would be
no previous volume information with which to compare what is in the Homeblock and
Storage Control Block.

Digital Equipment Corporation/ Internal Use Only 4-51

Disk Class Driver Error Handling and BUGCHECKs

If this unit has a foreign volume, then a branch is taken to the next step to wait for
quorum to be regained. If the volume is not foreign, then this second task is done by
calling routine VALIDATE_ VOLUME. x>(VALIDATE_ VOLUME)
o The Homeblock is read using an 10$_READPBLK operation. Then the following

items are validated for the homeblock:
• Checksum.
• Volume Serial Number.
• Volume Name.

o Next, the Storage Control Block (SCB) is read using another 10$_READPBLK
operation. The following items from the SCB are validated:
• Checksum.
• Mount time.
• Volume lock name (checked only if volume name didn't match above).

VALIDATE_ VOLUME will now take one of four possible actions:
o If both the homeblock and SCB validate successfully, then VALIDATE_ VOLUME

returns to its caller, indicating "success".
o If previous information was not available with which to compare what is in the

volume's homeblock and SCB, then VALIDATE_ VOLUME aborts mount verifica
tion and leaves the VALID flag clear. The volume is not Software Valid. This, in
turn, leads to the termination of all 1/0 requests in both the CDDB's CDRP restart
queue, and the UCB's pending IRP queue with a Device Offi.ine status.

o If wrong volume information is found in either the homeblock or the SCB, a
message is issued to the operator. VALIDATE_ VOLUME then loops back to its
own beginning to try validating the volume again.

o For all other errors, VALIDATE_ VOLUME will return an error code to its caller.
This causes PERFORM_ VALIDATE to loop back to its beginning and retry both of
its major steps again (both PACKACK_ VOLUME and VALIDATE_ VOLUME).

NOTE

The test made by PACKACK_ VOLUME to see if mount verification timeout has
expired insures that PERFORM_ VALIDATE won't loop within itself "forever".
The 1/0 done by PERFORM_ VALIDATE will not be stalled, even though normal
1/0 is. This is because the IRPs used by PERFORM_ VALIDATE have the flag
set indicating they are MVIRPs.

• When both PACKACK_ VOLUME and VALIDATE_ VOLUME complete successfully, mount
verification for the unit pauses until cluster quorum is regained if required.
After quorum has been regained,

An operator message is sent indicating Mount Verification is Complete
The MVIRP is deallocated
The MNTVERIP and CLUTRAN flags are cleared. (The CLUTRAN may already have
been cleared at the beginning of EXE$MOUNTVER.)
Routine DRIVER_CODE is called to resume 110 for this unit

4-52 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

• DRIVER_CODE branches to DUTU$MOUNTVER a second time. This time, DUTU$MOUNTVER
branches to DUTU$END_MNTVER.

The MSCP _MNTVERIP in the UCB's DEVSTS field is tested.
If it is set (which it should be), then it is cleared and the RWAITCNT field in the UCB
is decremented.

NOTE

This decrement of the RWAITCNT field matches the increment that was
done by DUTU$BEGIN_MNTVER.

The VALID flag in the UCB$L_STS field is tested to see if the unit has been declared
software valid by mount verification.
o If the flag is clear, then the unit is software invalid. Routine DUTU$TERMINATE_

PENDING is called to terminate all all CDRPs in the CDDB's restart queue, and
all IRPs in the UCB's pending IRP queue (UCB$L_IOQFL).

o If the flag is set, then the unit is software valid. In this case, a check is made
to see if Mount Verification was for the system disk unit and if we are a satellite
node. If both of these conditions are met, the PEM_BOOT Block information is
updated to indicate the new scssystemid of the path to the disk.
Next, SCS$UNSTALLUCB is called to process the pending 1/0 requests.
If the RWAITCNT field of the UCB is nonzero, SCS$UNSTALLUCB merely returns
to its caller. If the RWAITCNT field is zero, then it starts up the stalled IRPs in
the UCB$L_IOQFL queue by passing them to DUDRIVER's start 1/0 routine.

NOTE

The RWAITCNT would be nonzero if mount verification was invoked
by the routine DUTU$REVALIDATE for all disks on a controller.
Remember, DUTU$REVALIDATE was itself called either by DU$RE_
SYNCH or by DU$CONNECT_ERR.
Each of these routines intentionally increments the RWAITCNT field if
they find it containing zero. This has the double effect of immediately
stalling new IRPs being handed to DUDRIVER for this unit, and insur
ing that they are not unstalled until all CDRPs in the CDDB restart
queue have been processed.

As DUTU$END _MNTVER completes mount verification for each UCB, it decrements
the WTUCBCTR field in the controller's CDDB. This is the count of the number
of UCBs waiting for mount verification to complete. When this field becomes zero,
DUTU$END_MNTVER checks to see if there are any CDRPs in the CDDB's restart
queue. If there are, then it calls DUTU$RESTART_NEXT_CDRP to restart them.
Details of routine DUTU$RESTART_NEXT_CDRP are presented in a later section of
this chapter; The following is a summary:
o Processes any CDRPs in the CDDB's restart queue in "single stream" mode.
o Decrements the RWAITCNT field to zero.

Digital Equipment Corporation/ Internal Use Only 4-53

Disk Class Driver Error Handling and BUGCHECKs

o Calls SCS$UNSTALLUCB for each UCB linked to the CDDB to unstall any IRPs
in the UCB's pending IRP queue.

4.5.10.3 PACKACK_ VOLUME

This section follows the fl.ow of an I0$_PACKACK function issued for a disk during mount
verification.

• Determines if the 10$_PACKACK function is valid for the unit. It does so by verifying
that the bit corresponding to I0$_PACKACK is set in the valid 1/0 function mask of the
driver's FDT.

NOTE

If 10$_PACKACK is not a valid function for the unit, this routine merely turns
into a NOP, simulates successful completion of the operation, and returns to its
caller. This is not an issue here; 10$_PACKACK is valid for disks handled by
DUD RIVER.

• Sets the VALID flag in the UCB. For now it is presuming success.
• Initializes the MVIRP passed to it by its caller.

Standard SIZE, TYPE, and RMOD fields.
- Sets PHYSIO and MVIRP flags in IRP.
- IRP$W _FUNC field set to contain I0$_PACKACK

• Calls EXE$MNTVERSIO to pass the 10$_PACKACK request to DUDRIVER.
The details of EXE$MNTVERSIO and DUDRIVER's handling of the 10$_PACKACK
MVIRP follow in the next section of this chapter.

• If the 10$_PACKACK function succeeds, then PACKACK_ VOLUME merely returns to its
caller.
If the function fails but mount verification timeout has not expired, then PACKAC:K_
VOLUME loops back on itself and tries again after approximately a one-second pause.
If mount verification timeout has expired, then mount verification for this unit is termi
nated and

A "mount verification aborted" message is sent to the operator.
The VALID flag is cleared in the UCB.
Mount verification is disabled for this unit.

4-54 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

4.5.10.4 EXE$MNTVERSIO and Handling 10$_PACKACK MVIRP

• EXE$MNTVERSIO stores the address of a special 1/0 postprocessing routine, END_IO, in
the PID field of the MVIRP.

NOTE

Eventually, when 1/0 postprocessing is invoked by an IPL$_IOPOST software
interrupt, routine IOC$IOPOST will see that the PID field of the MVIRP does
not actually contain a PID, but rather the address of a system space routine.
This is because the high order bit of the PID field will be a "1". So, instead of
performing normal 1/0 postprocessing, it will call the routine whose address is
in the PID field. In this case, that routine will be END_IO.

END_IO will copy into RO and Rl the 1/0 status quadword from the MVIRP's
IOSTl and IOST2 fields, and then return to EXE$MNTVERSIO's caller.

• Branches to IOC$INITIATE to pass the MVIRP to DUDRIVER's start 1/0 routine, DU_
STARTIO.

DU_STARTIO sees that normal 1/0 requests to the unit are stalled. Since this IRP
is actually an MVIRP, it will branch to routine START_MOUNT_VER for special
handling.

START_MOUNT_VER selects the controller to which the I0$_PACKACK will be
issued. This is where failover is triggered if it is necessary and possible.

o If a Path Move is in progress as denoted by the CDDB$V _PATHMOVE bit being set
in the CDDB$W _STATUS field, the mount verification request will be completed
immediately with a Device Offiine error.

o The NOCONN flag in the CDDB for the controller which is currently providing the
primary path to the disk is examined. If the flag is clear, then there is a connection
with the controller's server, and this controller will be selected to receive the 10$_
PACKACK. No failover will be attempted unless this PACKACK fails.

o If the flag is set, then there is no connection with the primary path controller's
disk server. Routine DUTU$LOCATE_UNIT is called to see if there is a secondary
path controller for the unit.

• DUTU$LOCATE_ UNIT first checks to see if Load Balancing has been re
quested.

• DUTU$LOCATE_UNIT then calls routine DUTU$BEGIN_CONN_WALK to
start a connection walk.

• Routine DUTU$BEGIN_CONN_ WALK performs the following steps:

If a preferred path has been requested, clear the Load Balance flag in the
CDRP and attempt to validate the path. If valid, the path will be used. If
the preferred path is not valid, a connection walk will be started to find a
valid path.

Check to see if a Load Balance request has been made. If so, branch to
perform connection walk.

Digital Equipment Corporation I Internal Use Only 4-55

Disk Class Driver Error Handling and BUGCHECKs

• If the UCB does not reflect a secondary path, then the list of all CDDBs
is scanned for controllers in the same allocation class as the primary path
controller. To each such controller, a GET UNIT STATUS command is issued
in an attempt to locate the disk on that controller. This scan continues until
either a controller returns an end message indicating it already has the disk
unit "online" (status= MSCP$K_ST_SUCC) or "available" (status= MSCP$K_
ST _AVLBL), or until the list of CDDBs is exhausted. A controller returning
an MSCP status code of "online" or "available" is a viable secondary path, even
though this secondary path wasn't known until now.

If DUTU$LOCATE_ UNIT reports the presence of a secondary path, then
o DUTU$MOVE_UNIT is called to alter the UCB linkages so that the secondary

path is now the primary path, and what was the primary path is now the sec
ondary path.

o The new primary path controller is selected to receive the IO$_PACKACK. This is
what will trigger failover.

If DUTU$LOCATE_UNIT fails to find a secondary path, then the MVIRP is passed
to IOC$ALTREQCOM with the condition value SS$_DEVOFFLINE. From there, it
goes to 1/0 postprocessing, which then passes it to the code at END_IO for the reasons
explained above.
Given that START_MOUNT_ VER was able to select a controller to which an IO$_
PACKACK can be sent, it then branches back into the mainstream of routine DU_
STARTIO. From there a standard dispatch is made to START_PACKACK based on
the function code I0$_PACKACK in the IRP$W_FUNC field (which is the same as the
CDRP$W _FUNC field).

• START_PACKACK actually performs the I0$_PACKACK function, which consists of
issuing an MSCP ONLINE command followed by an MSCP GET UNIT STATUS command.

In general, if the end message corresponding to the ONLINE command returns a
status code other than "success" (MSCP$K_ST_SUCC), then the I0$_PACKACK
operation is terminated with an appropriate VMS condition value. The choice of the
condition value depends on the MSCP status returned in the end message. In this
case, the GET UNIT STATUS will not even be issued.
A particularly important exception is when the MSCP status in the end message
is "offiine" (MSCP$K_ST_OFFLN) and the sub-status is either Unknown Unit or
Inoperative Unit. Then DUTU$LOCATE_UNIT is called to locate another path to the
unit. If one is found, DUTU$MOVE_UNIT is called to make the new path primary,
and the old primary path secondary. Then the ONLINE is retried using the new
primary path.
This exception (in particular, the "inoperative" sub-status) addresses the situation
wherein the controller associated with the CDDB passed to START_PACKACK is still
alive, the disk class driver still has a connection with the controller's disk server,
but the controller itself cannot communicate with the unit. This facilitates failover
in situations such as when an SDI on an HSC fails, but the HSC survives and can't
access the disks on that SDI.
There is a retry limit hard coded in START_PACKACK for this exception. The value
for VMS V5.5 is four retry attempts.

4-56 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If the ONLINE succeeds, but the GET UNIT STATUS fails, then the drive is assumed
to have gone offiine, and the code branches back to the beginning of START_PACKACK
to retry both the ONLINE and GET UNIT STATUS commands.
If both operations succeed, RECORD_ONLINE and RECORD_UNIT_STATUS are
called to store information in the UCB. Some of this information includes media
ID, unit size, volume serial number, and geometry of the disk. The condition value
returned will be SS$_NORMAL, and the VALID flag is left set in the UCB.

NOTE

Upon entry to START_PACKACK, the RWAITCNT field in the UCB is incre
mented to stall new IRPs being handed to DUDRIVER for this unit. When
the 10$_PACKACK operation completes, this field is decremented. Within the
context of mount verification, this field will still not be zero; so the stalled IRPs
remain stalled. However, if the 10$_PACKACK was requested in some other
context, then the RWAITCNT field may be zero now. So SCS$UNSTALLUCB is
called to test this field and, if it is zero, unstall any IRPs in the UCB's pending
IRP queue (UCB$L_IOQFL).

4.5.10.5 Restanlng CDRPs

Routine DUTU$RESTART_NEXT_CDRP is responsible for restarting 1/0 requests in a
CDDB's CDRP restart queue after mount verification completes for all units on a controller.
DUTU$END_SINGLE_STREAM restarts 1/0 requests in the pending IRP queue of each UCB
attached to that CDDB after single stream processing of CDRPs is complete.

4.5.10.5.1 DUTU$RESTART_NEXT_CDRP and DUTU$END_SINGLE_STREAM

• Attempts to remove the next CDRP from the CDDB's restart queue.
If there are no more CDRPs in the restart queue, then DUTU$RESTART_NEXT_
CDRP branches to DUTU$END_SINGLE_STREAM where the following is done:
o The SNGLSTRM flag is cleared in the CDDB.
o Loops through all UCBs handled by this controller, resuming IRPs in each UCB's

110 wait queue (UCB$L_IOQFL) if there is no other reason 1/0 is stalled on the
unit.
This is done by decrementing the UCB's RWAITCNT field, and then calling routine
SCS$UNSTALLUCB to remove IRPs from the pending IRP queue and submit them
to the driver's start 1/0 routine, DU_STARTIO.

o Clears the RECONNECT flag in the CDDB.
o Returns to its caller, since single stream mode is now complete for this controller.

Digital Equipment Corporation/ Internal Use Only 4-.57

Disk Class Driver Error Handling and BUGCHECKs

If a CDRP was fetched from the restart queue, then:
o The SNGLSTRM flag in the CDDB is set if this is the first time routine

DUTU$RESTART_NEXT_CDRP was called for this CDDB. (This indicates that
single stream processing is being done for CDRPs queued to the CDDB's restart
queue.)

o A branch is made to DU_RESTARTIO with the CDRP.
From this point on, the processing of the CDRP proceeds just as if it were being
seen for the first time. An MSCP command is built and sent to the controller, and
the request is suspended, pending receipt of the corresponding end message.

• When the end message is received, the request resumes immediately after the SEND_
MSCP _MSG macro.

As explained in the detailed flow for the normal read or write request,
o DUDRIVER verifies that there was no MSCP error reported in the end message

STATUS field. (If there is, and this was a read or write, then a branch is made to
TRANSFER_MSCP _ERROR, where the error is handled in the normal manner.)

o Quadword IOSB information is constructed based only on the segment just com-
pleted.

o DUTU$DEALLOC_ALL is called to release SCS resources held by the CDRP.
Instead of automatically branching to IOC$ALTREQCOM, DUDRIVER sees that the
SNGLSTRM flag is set in the CDDB, indicating that single stream CDRP processing is
in progress.
o If the CDRP is for mount verification, then it is allowed to pass to IOC$ALTREQCOM

through a JMP.
o Otherwise, the code completes the request by a JSB to IOC$ALTREQCOM so that

control can be regained. The code then branches back to DUTU$RESTART_NEXT_
CDRP to pick up the next CDRP in the CDDB's 1/0 restart queue and process it.

4.5.10.5.2 Preventing an Infinite Loop

If single stream processing was in progress when the connection unexpectedly failed, it is
possible that the CDRP at the head of the restart queue is the CDRP being processed at the
time of the connection failure. This situation could lead to an infinite loop if there were no
mechanism in place to prevent it. The following prevents this infinite loop potential.

Within the RSTRTCDRP field of the CDDB is stored the address of the CDRP last fetched
from the CDRP restart queue. If the address of the CDRP just fetched from the restart queue
is different from what is currently in the RSTRTCDRP field, then:

• The RSTRTCDRP field is reset to contain the address of the newly fetched CDRP.
• A retry count field, RETRYCNT, in the CDDB is initialized to the value of the parameter

MAX_RETRY.
• The CDRP is handled as described above.

4-58 Digital Equipment Corporation I Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If the address of the CDRP matches the content of the RSTRTCDRP field, then DUTU$RESTART_
NEXT_CDRP is confronted with this special case. It therefore does the following:

• Decrements the RETRYCNT field in the CDDB.
• If the RETRYCNT field goes to zero, then the CDRP is not retried again; it is submitted to

1/0 postprocessing with the error SS$_CTRLERR to be returned to the process in its 1/0
status block.

• If the RETRYCNT field is still nonzero, then the CDRP is retried as described above.

As of VMS V5.5, the value of MAX_RETRY is hard coded at the beginning of DUD RIVER to
be 2.

4.6 DUDRIVER BUGCHECKs for Non-shadowed Disks

The following table summarizes the four BUGCHECKs that can occur in the disk class driver
when dealing with non-shadowed disk units. All of these, and more, can occur with shadow
set virtual units as well. BUGCHECKs associated with shadow sets are covered in a later
chapter.

BUGCHECK

DISKCLASS

INCONSTATE

Description and Sources

DOB passed to controller initialization routine, DUCONTROLLERINIT, has more
than one UCB attached to it.

The end message from the SLUN RSVP request is found to be inconsistent: The
MSCP unit number is still the SLUN RSVP unit or the SLUN bit is not set.

An MSCP server has returned invalid geometry information in the end message
for a GET UNIT STATUS command for an online unit.

An attempt to send an MSCP message in the DU$TMR routine has returned
with a CDT in invalid state error.

An UNSOLICITED interrupt has been received.

Inconsistency in HIRT or RCT database.

Routine DUTU$CREATE_ CDDB thought it was working with the UCB of the boot
device, then discovered it wasn't.

While creating a secondary path linkage for a UCB, another UCB with a dupli
cate unit number was discovered.

While validating that the DOB returned from routine DUTU$FIND_DDB is the
correct one for the current CDDB, a systemid for a nonexistent System Block is
found in the CDDB.

Dlglta• Equipment Corporation / Internal Use Only 4-59

Disk Class Driver Error Handling and BUGCHECKs

BUGCHECK

MSCPCLASS

Description and Sources

The MSCP server has sent a poisoned end message requesting the bugcheck.

When creating a CDDB, an invalid controller letter was found in the CDDB

When creating a CDDB for a newly discovered controller, another CDDB with
the same system id and UCBs already attached was found in the 1/0 database.

The CDDB$V _DISABLED bit is set in the CDDB$W _STATUS word for the Syst;em
Device indicating that the system device is on a disabled controller.

The operating system has been up at least 45 seconds, but the system device
has not yet been found by unit polling.

The Original UCB (system device) is still in an initing state after returning from
the fork thread that should have linked it in.

"Doubly waiting" UCB. DUTU$REVALIDATE has started mount verification for
a unit on a controller, but then finds that the UCB indicates that some other con
troller is waiting for mount verification to complete for the unit.

DUTU$BEGIN_MNTVER has detected that an attempt is being made to start
mount verification for a unit which is already in mount verification.

Routine DUTU$LOCATE_ UNIT has received the reserved SLUN RSVP unit num
ber from an VMS MSCP server or the SLUN bit was not set in the end message.

Routine DUTU$NEW _UNIT has found an inconsistency in an end message re
turned from a VMS MSCP server. (SLUN bit not set, SLUN RSVP received, invalid
controller letter, invalid unit number)

Routine DUTU$NEW _UNIT has found a previously known nonemulated disk
unit requesting that the MSCPUNIT be recalculated (SLUN RSVP set).

RWAITCNT field in new UCB is not zero at the end of setting up new linkage.

Routine DUTU$SETUP _DUAL_PATH has found an empty controller mask in
the CDDB.

An access path attention message has been received asking to failover a disk, but
the primary path is a nonemulated path.

Routine DUTU$FIND_DDB was called to find a DDB for a generic device name (e.g.
DUA, DJA, ...) without a proper fork block.

4-60 Digital Equipment Corporation/ Internal Use·Only

BUGCllECK

RESEHX

Disk Class Driver Error Handling and BUGCHECKs

Description and Sources

An attempt was made to insert something other than a CDRP into a CDDB's CDRP
restart queue.

An attempt was made to insert something other than an IRP/CDRP pair into
the 1/0 postprocessing queue.

A UCB's RWAITCNT field was found to contain an invalid quantity.

When logging the receipt of an invalid MSCP command end message status code, a
co-routine has improperly attempted to return to its caller due to a problem.

Unable to allocate an IRP to do an IO$_PACKACK for the boot device.

Digital Equipment Corporation/ Internal Use Only 4-:61

The VMS Based MSCP Server

Chapter 5

The VMS Based MSCP Server

5.1 Introduction

The role of the VMS based MSCP Disk Server is to implement Mass Storage Control Protocol
(MSCP) on a VMS system. This allows the VMS system to emulate a DSA controller, and in
so doing, make one or more of its local MASSBUS, UNIBUS, or DSA disks available to other
hosts in a VAX.cluster.

This mechanism also allows VMS members with a direct connection to a remote disk server ·
(such as a Hierarchical Storage Controller (HSC) or Integrated Storage Element (ISE)) to
provide access to its disks to VAX.cluster members that do not have direct connections (ie: NI
members). This process requires that the Allocation Class of the VMS system be the same as
that of the remote MSCP server.

5.2 MSCP Disk Serving

The MSCP server software must be loaded and started at boot time by setting the MSCP _
LOAD Sysgen Parameter. The ability to load the server software interactively from the Sysgen
Utility is no longer supported in VMS V5.x. The Sysgen Utility will return the following error
if an attempt is made to dynamically load the server:

"%SYSGEN-E-CMDOBS, MSCP server must be loaded by setting SYSBOOT parameter
MSCP_LOAD"

The Sysgen Parameter MSCP _LOAD is used to direct the Standalone Configure Process
(STACONFIG) to load the MSCP server software at boot time. This parameter can be set to
the values listed in Table 5-1.

Digital Equipment Corporation / Internal Use Only 5-1.

The VMS Based MSCP Server

Table 5-1: Sysgen Parameter MSCP _LOAD settings

Value

0

1

>1

Description

Do not load the MSCP server. This is the default value.

Load the MSCP server and serve disks as specified by the MSCP _SERVE_ALL parameter.

Load the MSCP server and assign the provided value as the server's Load Capacity

Once the MSCP server has been loaded and started, local disks, HSC disks, and ISE disks can
be either Automatically or Selectively made available to other VMS hosts in the VAXcluster.

5.2.1 Automatic Disk Serving

The Sysgen Parameter MSCP _SERVE_ALL can be used to automatically serve disks at system
startup. This parameter can be set to the values listed in Table 5-2.

Table 5-2: Sysgen Parameter MSCP _SERVE_ALL settings

Value Description

0

1

2

Do not serve any disks. This is the default.

Serve all available disks.

Serve only locally-attached (non-HSC) disks.

5.2.2 Selective Disk Serving

Disks can individually be selected for MSCP serving as well. This would be accomplished by
setting the MSCP _SERVE_ALL parameter to zero and issueing the following DCL command
for each disk to be served:
$SET DEVICE,' SERVED {disk:}

The MSCP server software must be loaded prior to setting any disk served.

5.2.3 Dual Ported Disks

If the local disk being "served" to the cluster is a MASSBUS disk which is also Dual-Ported to
another VAX, then the /DUAL_PORTED qualifier should be included in this DCL command:
$SET DEVICE I SERVED I DUAL_PORTED {disk:}

This DCL command should be issued on BOTH VAXes to which the disk is dual-ported. This
allows remote hosts to see that the disk as dual-pathed.

NOTE

A disk should be set served only on the host(s) to which it is ported.

5-2 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

5.2.4 The MSCP Server

Once the local VAX has loaded and started the MSCP server, remote VAXes can issue MSCP
commands to the local VAX in the same way as they would to an HSC or ISE. The local VAX
is acting as a Logical Controller for any of its local disks or HSC disks which it has set served.
The VMS based MSCP server engages in MSCP dialogue with remote Disk Class Drivers in
the same way as would the MSCP server in an HSC or ISE.

When the local VAX receives an MSCP command from a remote VAX, its SCS layer routes the
command to the message input routine within the MSCP server software. The message input
routine then dispatches the command to an appropriate handler.

If the command requires no actual interaction with a disk unit, (such as a request for the
current unit status), then the command is handled entirely within the MSCP server. An
end message containing an MSCP status code and appropriate information is sent to the
requesting remote host.

If the command requires interaction with a disk, (such as a read or write operation), the
MSCP server allocates and initializes an IRP to represent the request contained within the
MSCP command. The IRP is then passed to the driver for the unit, just as if the request had
originated on the local host. Upon completion of the operation represented by the IRP, 1/0
postprocessing returns the IRP to the server software. If necessary, the server may adjust the
IRP due to segmentation of the request, and resubmit it to the driver.

If a segment of data is to be written to the disk, it is fetched from the remote host before
submitting the IRP to the driver. If a segment of data was read from the disk, it is sent to
the remote host before the IRP is adjusted and resubmitted to the driver to read the next
segment. An end message is sent to the remote host's disk class driver after the server has
completed the entire request defined by the MSCP command, or upon premature termination
of the request for any reason (such as an error).

Figure 5-1 illustrates the basic flow through the server:

Digital Equipment Corporation/ Internal Use Only 5-3

The VMS Based MSCP Server

Figure 5-1: MSCP Server Flow

I/O POSTPROCESSING

IRP

IRP
SPECIFIC

DRIVER
FOR UNIT

IRP

I

.... ----------------~·~l __ M_s_c_P_S_E_R_V_ER--~
t

5.3 MSCP Server Database and Initialization

END
MESSAGE

MSCP
COMMAND

SCS/PPD ROUTINES

scs
MESSAGE
BUFFER

' CI, DSSI or NI PORT

CXN-0005-01

To understand the internals of the VMS based MSCP server, it is essential to be familiar
with the data structures the server maintains as it emulates a DSA controller. The next few
sections of this book introduce these data structures, present some of the most important
information contained within them and how they are linked together, and then surveys the
steps in their initialization.

5-4 Digital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

5.3.1 MSCP Server Data Structures

There are five major data structures used by the VMS based MSCP disk server to maintain
the information it needs to service MSCP commands from remote hosts. These are listed in
Table 5-3:

Table 5-3: MSCP Server Data Structures

Structure

DSRV

UQB

HQB

HULB

HRB

Name

Disk Server Structure

Unit Queue Block

Host Queue Block

Host Unit Load Block

Host Request Block

5.3.1.1 HRB - Host Request Block

Whenever the MSCP server's SCS message input routine, MSG_IN, receives an MSCP com
mand from a remote host, the first major step it takes is to allocate a Host Request Block
(HRB). This data structure represents the context of the request contained within the com
mand. Some of the items of information maintained in an HRB are:

• State of the request (e.g. waiting for SCS credit, mapping a buffer, queued to a driver,
sending or receiving data, sending a message to a host, etc.).

• Command status (decremented at various points in the processing to indicate that progress
has been made by the server on the command represented by the HRB).

• Status flags (e.g. aborted, end message needs to be sent, map resources allocated to the
command, etc.)

• Descriptor address, starting address, and length of a buffer allocated to handle data
transfers if any are associated with the command.

• Quantities typically associated with a data transfer, if one is involved.

LBN

OBCNT

ABC NT

SVAPTE

BOFF

BCNT

Logical Block Number.

Original Byte Count.

Accumulated Byte Count.

System Virtual Address of Page Table Entry for local buffer.

Buffer Offset.

Actual Byte Count for a segment.

Digital Equipment Corporation / Internal Use Only 5-5

The VMS Based MSCP Server

MSCP protocol dictates that for every command received, an end message must be sent to the
the host which issued the command. The VMS based MSCP disk server does this by altering .
selected fields in the received command, and depositing information in others. It then turns
the command around and sends it back. Thus, the address of the received command is also
stored in the HRB.

Any request to transmit a message via SCS services requires that a CDRP be allocated and
initialized to describe the request to the SCS layer. Furthermore, most MSCP commands
received by the server involve requests from remote hosts to transfer data.

This makes it necessary to allocate and initialize an IRP to describe the transfer, and then
queue the IRP to the particular driver for the disk unit involved in the transfer. For both
of these reasons, an IRP/CDRP pair is allocated along with the HRB, and the address of the
IRP/CDRP pair is also stored in the HRB. Figure 5-2 illustrates some of the fields in the
HRB:

Figure 5-2: HRB fields

HRB

hrb$l_msgbuf --
hrb$l_irp_cdrp

IRP/CDRP

5.3.1.2 HQB - Host Queue Block

SCS MESSAGE
BUFFER

scs
HEADER

MSCP
COMMAND

CXN-0005-03

Before passing the Host Request Block to routines which process the command represented by
the HRB, MSG_IN must first associate the HRB with the remote host that sent the command.
This is done by inserting the HRB into a queue maintained in another data structure known
as a Host Queue Block (HQB).

The MSCP server maintains an HQB for each remote host with which it has an SCS connec
tion. (Actually, the connection is between the local host's MSCP server and the remote host's
disk class driver.) An HQB contains information that pertains to its associated host, such as

• Address of the CDT describing the SCS connection with the remote host's disk class driver.
• Host settable controller flags.
• Host timeout interval.
• Time the remote host issued a SET CONTROLLER CHARACTERISTICS command.

5-6 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

• Number of active requests (i.e. HRBs queued to the HQB).
• A pointer to a vector of addresses representing Host Unit Load Balance structures describ

ing 1/0 load information (See Section 5.3.1.4).

Figure 5-3 illustrates the relationship of the HRB to the HQB.

Figure 5-3: HRB relationship to the Host Queue Block

HQB FOR
REMOTE HOST

HRBs REPRESENTING ACTIVE
COMMANDS FROM REMOTE HOST

hqb$l_hrb_fl hrb$l_flink hrb$l_flink hrb$1 - fl ink -- -- -- ---- -- ~ -- -~

hqb$l_hrb_bl hrb$l_blink hrb$l_blink hrb$l_blink

CXN-0005-04

A Host Queue Block is allocated from nonpaged pool and initialized when the local MSCP
server ACCEPrs an incoming SCS CONNECT request from a remote host's disk class driver.
If the SCS connection fails, then the HQB is deallocated.

5.3.1.3 UQB - Unit Queue Block

The local MSCP server maintains one Unit Queue Block (UQB) for each disk which has
been made available to remote hosts through the local VMS MSCP Server. A Server Local
Unit Number (SLUN) is assigned to index each UQB. The following are some of the items of
information contained within a UQB:

• State of the unit.
AVAILABLE

- ONLINE
- OFFLINE

• Flags.
SEQ - sequential command is executing for this unit
WRTPH - unit is hardware write protected
WRTPS - unit software write protected by use of /NOWRITE qualifier when volume
mounted

Digital Equipment Corporation/ Internal Use Only 5-7

The VMS Based MSCP Server

• Unit ID. (Allocation Class, Controller letter, Unit Number etc.)
• Address of UCB for the unit associated with this UQB.
• Queue of "blocked" HRBs, waiting for sequential command to complete.
• Server Local Unit Number

5.3.1.4 HULB • Host Unit Load Block

The local MSCP server maintains one Host Unit Load Block (HULB) for each unique VMS
host and disk unit combination whose served 1/0 requests are being handled by the local VMS
system.

The HULB maintains information related to the 1/0 load being impressed on a particular unit
by a specific host. These statistics are used to distribute the MSCP serving workload equitably
amongst all available VMS based MSCP servers for a device when a new Disk Class Driver to
VMS based MSCP server connection is formed.

The HULB maintains an Operation Count field to account for all 1/0 activity from a particular
host to a given unit. The Host Number and Unit Number are maintained in the structure as
well to identify the combination.

5.3.1.5 DSRV - Disk Server Structure

The Disk Server Structure (DSRV) is the principle data structure dealing with MSCP Server
emulation. It contains the listheads for the HQB, the UQB and the HULB data structures
as well as information about the servers Load Capacity, buffer management information, and
miscellaneous other information to track its connections with remote disk class drivers. The
DSRV also maintains a vector of pointers to each unique UQB. These are used to speed access
to the Unit information in the UQBs by providing a Server Local Unit Number (SLUN) which
is an index into this list. Access to a particular unit can then be made by using its SLUN to
identify it.

Some of the data items kept in the DSRV are as follows:

• Information describing a pool of transfer buffers allocated by the server to act as tem
porary holding areas for data being exchanged between a remote host and a local disk.
Section 5.4.4 provides details of this.)

• Controller information such as controller flags and the controller timeout interval main-
tained by any DSA controller.

• Number of disks being served.
• Number of remote disk class drivers with which SCS connections are open.
• Load Capacity Information
• HQB, HULB and UQB listheads.
• Two tables of statistics.

- Counters for all MSCP op codes received by the MSCP server since it was loaded.

5-8 Dlgltal Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Counters for different size block transfers handled by the MSCP server since it was
loaded.

• Vector of Unit Queue Block addresses

The DSRV is initialized during MSCP server startup. Its address is kept in global location
SCS$GL_MSCP. Figure 5-4 illustrates the format of the DSRV structure and its relationship
to the other server data structures:

Digital Equipment Corporation/ Internal Use Only 5-9

!:
0

CJ

'° ~
J1
c
if
3
CD
a
fl ..
'a
0

i g -i ..
:::s
!!.
c:
I
0
:::s

-<"

0
x
z
I

8
0
O'I
I
0
O'I

slun
index

~ : :scs~GL_MSC?

DSRV

.....
...

dsrv$l_hqb_fl

dsrv$l_hqb_bl

dsrv$l_uqb_fl

dsrv$l_uqb_bl

dsrv$w_load_capacity
...

dsrv$l_hulb_fl
~

dsrv$l_hulb_bl

...

Ll {
dsrv$l_units ~

{next UQB pointer) ~

-I :r
CD .,, <

ii" 3:
c CJ)

; m

~
m
(I)

&
3: c CJ)

ii 0
::ii:- "'O
CJ) en
CD CD

HQHS 1connec~1ons ~o Remo~e HOS~SJ

{Vax A) {Vax Bl {Vax C) ~ C!
CD

hqb$l_flink hqb$l_flink hqb$l_flink !fl
hqb$l_blink hqb$l_blink hqb$l_blink 2

!l c
hqb$l_hrb_fl hqb$l_hrb_fl hqb$l_hrb_fl ;

hqb$l_hulb_vector ~ hqb$l_hulb_vector I- hqb$l_hulb_vector

Host Request Host Request
Unit Queue

Blocks hrb$l_flink hrb$l_flink

r-
~
0 c -

uqb$l_flink
......

hrb$l_blink hrb$l_blink

uqb$l_blink

{unit DJAO) Host Request
hulb ~ hulb
vector hrb$l_flink vector

uqb$l_flink
~

hrb$l_blink ,.....::.. r--
~

uqb$l_blink -~ 1---
{unit DJAl) ---___

~

hulb$l_flink hulb$l_flink hulb$l_flink

hulb$l_blink hulb$l_blink hulb$l_blink

DJAO to DJAl to DJAO to
{Vax Al {Vax Al {Vax Bl

HULBs representing Host-Unit Combinations

The VMS Based MSCP Server

5.4 MSCP Unit Numbers and Identifiers

MSCP Unit Numbers and Identifiers are used to uniquely identify disk units within a
VAXcluster environment.

Device names are typically of the form ddcu, where dd denotes the device type, c is a con
troller designation, and u is a unit number. The VMS disk class driver constructs disk device
names based on the MSCP media identification and MSCP unit number returned in the END
MESSAGE corresponding to a GET UNIT STATUS command.

5.4.1 MSCP Media Identification

When a disk class driver establishes a connection with an MSCP server, the driver polls the
server to determine what disks are available via that server. This is done by a series of GET
UNIT STATUS commands, each with the "next unit" flag set (See Section 2.4.3 for detail).

In response to each such command, the server responds with an End Message containing
the MSCP unit number of a disk. All subsequent commands and associated End Messages
specifically related to the disk unit include the unit's MSCP Unit Number.

The VMS based MSCP server maintains UQBs representing its served disks in a queue, the
head of which is in the DSRV at offset DSRV$L_UQB_FL. When a command related to a
served disk is received from a disk class driver, the appropriate UQB must be located in the
list.

To facilitate this search, the DSRV maintains a list at offset DSRV$L_UNITS called the DSRV
Unit Table with the addresses of all the UQBs in the queue.

A Server Local Unit Number is assigned to each Unit. The SLUN is an index into the unit
table starting with index zero. Location DSRV$W _NUM,....UNIT stores the number of entries in
the list.

Figure 5-5 illustrates the queue of UQBs present for VMS based MSCP servers, and the
SLUN which was introduced in Version 5.0.

Digital Equipment Corporation I Internal Use Only 5-11

The VMS Based MSCP Server

Figure 5-5: Server Local Untt Number

DSRV

Queue of UQBs
dsrv$l_uqb_fl

dsrv$l_uqb_bl

dsrv$1_units SLUN = 2

----------------------..... {uqb address}.._ __________ _.

CXN-0005-23

MSCP commands and End Messages exchanged between a VMS based MSCP server and a
disk class driver contain the following format MSCP unit number for VMS V5.x systems. This
format involves a disk unit's SLUN and is illustrated in Figure 5-6. VMS versions prior to
V5.0 did not implement the DSRV Unit Table and subsequently did not utilize the SLUN.

Figure 5-6: MSCP Unit Number for the VMS based MSCP Server

15 14 13 0

SHAD SLUN UNIT

CXN-0005-24

5-12 Digital Equipment Corporation/ Internal Use Only

Field

SHAD

SLUN

UNIT

The VMS Based MSCP Server

Description

Known as the MSCP$V _SHADOW flag, this bit is set in MSCP unit numbers returned
by HSCs for shadow set virtual units. Otherwise it is clear, even in MSCP unit numbers
returned for virtual units by the VMS-based MSCP server.

This flag, known as the MSCP$V_SLUN flag, is set in MSCP unit numbers returned by a
VMS-based MSCP server. Otherwise, it is clear.

This field contains the actual drive unit number if the server resides in a DSA controller.
But if the server is VMS-based, this field contains the DSRV unit table index identifying the
UQB associated with the disk unit.

The MSCP server anticipates that it may have to process commands from a Version 4. 7 disk
class driver. While it maintains the newer SLUN format MSCP unit number for each disk
unit at offset UQB$W _SLUN in that unit's UQB, it also keeps the Version 4. 7 format MSCP
unit number in the UQB at offset UQB$W_OLD_UNIT.

5.4.2 Unit Identifier

MSCP requires each controller and unit to have a unique 64-bit identifier. VMS V 4. 7 through
V5.5 maintain a controller identifier at offset CDDB$Q_CNTRLID in a CDDB, and a unit
identifier at offset UCB$Q_UNIT_ID. The general format defined by the MSCP specification
for both controller and unit identifiers is shown in Figure 5-7.

Figure 5-7: 64 bit Unique Identifiers

Field

CLASS

31 24 23 16 15

UNIQUE DEVICE NUMBER

CLASS I MODEL 1

Description

0

CXN-0005-25

This field indicates a generic subsystem category, such as controller or disk
unit.

Values defined for this field by the MSCP specification are provided in the
first of the next four tables.

Digital Equipment Corporation/ Internal Use Only 5-13

The VMS Based MSCP Server

Field

MODEL

UNIQUE DEVICE
NUMBER

Description

This field indicates a specific model within the subsystem class specified by
the CLASS field.

Controller model values and disk model values are presented in the last three
of the next four tables.

This field is intended to uniquely identify the device from among all devices
defined by the CLASS and MODEL fields.

The MSCP specification suggests, but does not require that a device serial
number be used as a UNIQUE DEVICE NUMBER.

The next table summarizes the CLASS values supported by VMS Versions 4. 7 and 5.0.

CLASS Value (decimal) Description

MSCP$K_CL_CNTRL 1 MSCP Controller

MSCP$K_CL_DISK 2 Disk Class Device (DEC Standard 166)

MSCP$K_CL_TAPE 3 Tape Class Device

MSCP$K_CL_D144 4 Disk Class Device (DEC Standard 144)

MSCP$K_CL_LDR 5 Media Loader

5-14 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

If the CLASS field indicates the identifier is for an MSCP controller, then the table below
summarizes the MODEL fields that pertain to disk controllers.

MODEL

MSCP$K_CM_HSC50

MSCP$K_ CM_ UDA50

MSCP$K_CM_RC25

MSCP$K_ CM_EMULA

MSCP$K_ CM_ UDA50A

MSCP$K_ CM_RDRX

MSCP$K_CM_RUX50

MSCP$K_ CM_KDA50

MSCP$K_ CM_RV20

MSCP$K_ CM_RRD50

MSCP$K_CM_RRD50Q

MSCP$K_CM_KDB50

MSCP$K_CM_RQDX3

MSCP$K_CM_RQDX4

MSCP$K_CM_DSSI_
DISK

MSCP$K_CM_RRD50U

MSCP$K_CM_KDM70

MSCP$K_CM_HSC70

MSCP$K_CM_HSC40

MSCP$K_CM_HSC60

MSCP$K_CM_HSC90

MSCP$K_CM_RF30

MSCP$K_CM_RF71

MSCP$K_CM_RF31

MSCP$K_CM_RF72

MSCP$K_CM_RF73

Value (decimal)

1

2

3

4

6

7

10

13

15

16

16

18

19

20

21

26

27

32

33

34

35

96

97

100

101

102

Comment (if any)

AZTEC integrated controller

VMS-based MSCP server (software)

also sometimes known as the UDA52

RQDXl and RQDX2 controller

integrated controller

When the disk class driver establishes a connection with an MSCP server in a DSA con
troller, or a VMS based MSCP server in a remote VAX, it issues a SET CONTROLLER
CHARACTERISTICS command to the server. The 64 bit controller identifier is returned by
the server in the End Message corresponding to that command.

The disk class driver stores the controller identifier in the CDDB at offset CDDB$Q_
CNTRLID. Since the VMS based MSCP server is emulating a DSA controller, it maintains
its "emulated" controller identifier in the DSRV at offset DSRV$Q_CTRL_ID.

Digital Equipment Corporation/ Internal Use Only 5-15

The VMS Based MSCP Server

5.4.2.1 MSCP Class Number

The Class and Model fields in controller identifiers for DSA controllers and the VMS based
MSCP server are consistent with what has been described. The Class is set to 1, indicating an
MSCP controller.

5.4.2.2 MSCP Model Number

The Model field then indicates the controller model such as 35 for HSC90 or 27 for KDM70;
and, of course, the controller model for the VMS based MSCP server is 4 indicating that it is
an "emulated controller".

5.4.2.3 MSCP Unique Device Number

There is some variation in the Unique Device Number. With local DSA controllers, this field
contains the Controller Serial Number. With HSCs this field contains the low order 48 bits
of the HSC's ID parameter (its SCS System ID). And with a VMS based MSCP server, the
Unique Device Number is the low order 48 bits of the SCSSYSTEMID parameter for the VAX
in which the server resides.

The next table summarizes the DEC Standard 166 (MSCP) values for the MODEL field when
the CLASS field contains a "2". VMS does not have symbols which equate to these model
numbers; so only their numerical values are shown here.

MODEL (decimal)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Disk Device

RASO

RC25

RCF25

RA60

RA81

RD51

RX50

RD52

RD53

RX33

RA82

RD31

RD54

RRD50

Description

121 MB, 14", fixed

26 MB, 8", removable

26 MB, 8", fixed

205 MB, 14", removable

456 MB, 14", fixed

10 MB, 5.25", fixed, full height

400 KB, 5.25", single-sided 96 TPI floppy, full height,
dual drives (800 KB total)

33 MB, 5.25", fixed, full height

71 MB, 5.25", fixed, full height

1200 KB, 5.25", double-sided 96 TPI floppy, half height

622 MB, 14", fixed

20 MB, 5.25", fixed, half height

160 MB, 5.25", fixed, full height

500 MB, 4.75", removable, DAD (optical format)

5-16 Digital Equipment Corporation/ Internal Use Only

MODEL (decimal) Disk Device

15 RD32

17 RX18

18 RA70

19 RA90

24 RD33

The VMS Based MSCP Server

Description

40 MB, 5.25", fixed, half height

180 KB, 5.25", single-sided, 96 TPI floppy, full height

280 MB, 5.25", fixed, full height

1.216 GB, 9", fixed

80 MB, 5.25", fixed, half height

When a VMS disk class driver establishes a connection with an MSCP server, it polls the
server for disk units by means of GET UNIT STATUS (GUS) commands. GET UNIT STATUS
commands are also used by a disk class driver when a disk unit enters mount verification. If
the server resides in a DSA controller, then the above DEC Standard 166 model numbers are
returned by the server as part of the 64-bit unit identifier in each End Message corresponding
to a GUS command.

Normally, an MSCP speaking controller will return a serial number as the Unique Device
Number for a disk unit. When the unit does not have an intrinsic serial number, the controller
returns the Unit Number instead. For example, an RQDX3 would return "1" as the UNIQUE
DEVICE NUMBER for a RD54 known as DUAL

VMS has symbolic names for the DEC Standard 144 device model numbers. These symbolic
names take the form of DT$_xxx, where xxx is the device name.

The complete table of DEC Standard 144 disk device model numbers known to the VMS disk
class driver is in the routine titled Media-id to Device Type Conversion Table in VMS module
DUDRIVER. Table 5-4 summarizes those that relate to disk devices.

Table 5-4: DEC Standard 144 Disk Device Codes

MODEL Value (decimal) MODEL Value (decimal)

DT$_RK06 1 DT$_RZ24 50

DT$_RK07 2 DT$_RZ55 51

DT$_RP04 3 DT$_RRD40S 52

DT$_RP05 4 DT$_RRD40 53

DT$_RP06 5 DT$_RX23 55

DT$_RM03 6 DT$_RF31 56

DT$_RP07 7 DT$_RF72 57

DT$_RP07HT 8 DT$_RAM_DISK 58

DT$_RL01 9 DT$_RZ25 59

DT$_RL02 10 DT$_RZ56 60

DT$_RX02 11 DT$_RZ57 61

DT$_RX04 12 DT$_RX23S 62

DT$_RM80 13 DT$_RX33S 63

DT$_RM05 15 DT$_RA92 64

Digital Equipment Corporation/ Internal Use Only 5-17

The VMS Based MSCP Server

Table 5-4 (Cont.): DEC Standard 144 Disk Device Codes

MODEL Value (decimal) MODEL Value (decimal)

DT$_RX01 16 DT$_RZ23L 66

DT$_RB02 18 DT$_RX26 67

DT$_RB80 19 DT$_RZ571 68

DT$_RA80 20 DT$_RZ31 69

DT$_RA81 21 DT$_RZ58 70

DT$_RA60 22 DT$_SCSI_MO 71

DT$_RC25 23 DT$_RWZ01 71

DT$_RCF25 24 DT$_RRD42 72

DT$_RD51 25 DT$_CD_LOADER_l 73

DT$_RX50 26 DT$_ESE25 74

DT$_RD52 27 DT$_RFH31 75

DT$_RD53 28 DT$_RFH72 76

DT$_RD26 29 DT$_RF73 77

DT$_RA82 30 DT$_RFH73 78

DT$_RD31 31 DT$_RA72 79

DT$_RD54 32 DT$_RA71 80

DT$_RRD50 34 DT$_RAH72 80

DT$_RX33 36 DT$_RF32 81

DT$_RX18 37 DT$_RF35 81

DT$_RA70 38 DT$_RFH32 82

DT$_RA90 39 DT$_RFH35 82

DT$_RD32 40 DT$_RFF31 83

DT$_R009 41 DT$_RF31F 83

DT$_RX35 42 DT$_RZ72 84

DT$_RF30 43 DT$_RZ73 85

DT$_RF70 44 DT$_RZ35 86

DT$_RF71 44 DT$_RZ24L 87

DT$_RD33 45 DT$_RZ25L 88

DT$_ESE20 46 DT$_RZ55L 89

DT$_RZ22 48 DT$_RZ56L 90

DT$_RZ23 49 DT$_RZ57L 91

In order to ensure that the Disk Unit Identifiers are truly unique in a VAXcluster environ
ment, their format as supplied by the VMS based MSCP server incorporates the allocation
class of the device being served as well as the entire unit name. This format applies only
to unit identifiers supplied by a VMS based MSCP server and not to an MSCP speaking
controller such as an HSC or KDM.

5-18 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Figure 5-8 shows the format of a unit identifier supplied by a VMS based MSCP server:

Figure 5-8: Unit Identifier Format for VMS Based MSCP Servers

ALLOCLASS

DO Dl c UNIT

31 30 26 25 21 20 16 15 0

{5 bits} {5 bits} {5 bits} {16 bits}

Field

ALLOCLASS

DO
Dl
c
UNIT

CXN-0005-28

Description

The allocation class for the VAX in which the VMS-based MSCP server
resides
The first letter of the device name: Ddcu
The second letter of the device name: dDcu
The controller letter in the device name: ddCu
Actual drive unit number used to form the device name: ddcU

The letters from the device name represented by DO , D 1 , and C are normalized to be
numbers in the range of 1 through 26 (RAD Hustvedt). Thus, "A" is represented by a "1", "B"
is represented by a "2", ... , "S" is represented by a "19" (decimal), etc.

Bit 31 in this unit identifier format is currently undefined for VMS V5.5 and is reserved for
future use.

5.4.3 Host Numbers

When the local MSCP server establishes an SCS connection with a remote disk class driver,
it assigns a Host number to that remote host. This is done by searching a bitmap at offset
DSRV$B_HOSTS in the DSRV, starting with bit 0 for a maximum of 256 bits for the first free
bit.

The bit number of the first clear bit is assigned to the remote host as its host number; this
number is stored at offset HQB$B_HOSTNO in the HQB for the remote host. To prevent the
same host number from being assigned to another host, the bit in the bitmap is enabled and
set to a "1".

Figure 5-9 illustrates that "8" is the host number to be assigned to the next remote host with
which an SCS connection is established.

Digital Equipment Corporation/ Internal Use Only 5-.19

The VMS Based MSCP Server

Figure 5-9: Host Index BIHield at DSRV$B_HOSTS In the DSRV

HOSTS BITMAP IN DSRV
(Assigned by First Clear Bit)

------ I o I I I I I I I I I I 0 1 1 1 1 1 1 1 1
- - - - - - - -

Bit Position 256 .•. 9 8 7 6 5 4 3 2 1 0

CXN-0005-06

At offset UQB$B_ONLINE in each Unit Queue Block is a bitmap representing which remote
hosts have the unit online. Part of processing of an ONLINE command from a remote host is
to fetch its host number from the HQB$B_HOSTNO field in its HQB, use this host number
as an index into the UQB's ONLINE bitmap, and then set the bit corresponding to the host
number. If a unit leaves the online state relative to the remote host, then that same bit is
cleared.

Figure 5-10 illustrates that the unit is online to remote hosts 0, 1, 2, and 5, but not online to
remote hosts 3, 4, 6, and 7.

Figure 5-10: UQB's Online Field Bitmap of Hosts Accessing a Specific Unit

ONLINE BITMAP IN A UQB
(Indexed by Host Number)

- - - - I I I I I I I I 0 0 1 0 0 1 1 1
- - - -

Bit Position 256 ... 7 6 5 4 3 2 1 0

CXN-0005-07

5.4.4 Transfer Buffers

From the local MSCP server's point of view, writing data to a disk that is being served on
behalf of a remote host can be thought of as a two phase operation:

• First, the data must be received from the remote host into a buffer in the local host's
memory.

• Second, the data is actually transferred to the disk by building an IRP which references
the buffer, and queuing the IRP to the driver for the disk.

Similarly, the MSCP server perceives reading data from a disk being served on behalf of a
remote host as being another two phase operation:

• The data is first transferred into a buffer residing in the local host's memory.
• Then it is transferred from the buffer to the remote host.

5-20 Digital Equipment Corporation / Internal Use Only

The VMS Based MSCP Server

Buffers used by the MSCP server as temporary holding areas for data being transferred
between a local disk and a remote host are called Transfer Buffers.

5.4.4.1 Transfer Buffer Allocation

When the MSCP server is first loaded and started, it allocates its own pool of transfer buffers
from general nonpaged pool. Then, "fragments" of this pool are dynamically allocated and
released on an "as needed" basis. Unused fragments in this private pool are maintained in a
linked list whose head is at offset DSRV$L_FREE_LIST in the DSRV.

The first longword of each fragment contains the address of the next fragment in the list, with
the last fragment in the list having a zero iri this field. The second longword contains the
number of bytes in the fragment itself. Figure 5-11 illustrates an unused fragment link:

Figure 5-11 : Free Transfer Buffer Linkage

DSRV$L_FREE_LIST: __.., Address of Next Unused Fragment ~ Address of Next Unused Fragment

Number of Bytes in this Fragment Number of Bytes in this Fragment

CXN-0005-08

Digital Equipment Corporation/ Internal Use Only 5-21

The VMS Based MSCP Server

When the the buffer pool is first allocated, it is set up as a standard VMS data structure whose
bytes are all contained within one fragment. Figure 5-12 displays the initial buffer contents.

Figure 5-12: lnltlal State of the Transfer Buffer

POOL FROM WHICH
TRANSFER BUFFERS ARE ALLOCATED

Flink = 0

Blink = 0

Subtype J Type I Structure Size

0

Number of Bytes in this Fragment

DSRV

~ dsrv$l_free_list

CXN-0005-09

Figure 5-13 shows what happens as fragments are allocated from, and released back to the
pool. The diagram assumes that the pool initially contains 32768 free bytes.

• The first four columns illustrate the allocation of fragment A (4096 bytes), fragment B
(8192 bytes), fragment C (4096 bytes), and fragment D (4096 bytes).

• The next two columns show first, the release of fragment A, and then fragment C, and that
they have been placed back in the list of free fragments.

• In the seventh column, fragment D has been released. But it was also merged with other
free fragments with which it was contiguous. This, in turn, caused fragment A to become
the end of the list.

• Finally, the eighth column illustrates that an 8192-byte fragment Eis allocated by essen
tially "deducting" it from the first free fragment that is at least as large as what is being
allocated.

Figure 5-13 illustrates this senario:

5-22 Digital Equipment Corporation I Internal Use Only

~ ;a
~ (T>

"1 Ul ='
a> N
~(T>

~s,
C"t";.
g' (T>

~g
~ e..
~ "C
;:s 0
~g.
~ 0 a....,
~ q-
~ ~
~ ='
.... Ul
~

~"1
C"tj O"'
~=

0
,ii:; ~

6 0:1~
;:::; ~~ !!.

_gm ~g
c ~~
ii" ~

i ~ -f?
g:.

-a
(T>

0 ~ ..
!.
0

rn

::s g"
Ul - (T>

5' - ~

CD a:: .. ::s
!!.

rn a
c:

.,,
I Ul

g
(T>

~

-<"
(T>
"1
Ul

~
(,)

0
x z
I

8
0
c.n
.!.
0

x

4096

[A)

0

28672

FRAGMENT A
ALLOCATED

x

4096

[A)

8192

[B I

0

20480

FRAGMENT B
ALLOCATED

x

4096

[A)

8192

[B I

4096

(c l

0

16384

FRAGMENT C
ALLOCATED

x

4096

[A)

8192

[B I

4096

(c l

4096

[D I

0

12288

FRAGMENT D
ALLOCATED

DSRV$L FREE LIST

I
x

pointer 1-'1

4096

8192

[B]

4096

[c l

4096

[D]

0

12288

FRAGMENT A
RELEASED

x

pointer I-

4096

8192

[B]

pointer 1--'

4096

40 96

[D]

0

12288

FRAGMENT C
RELEASED

I-

x
~

0

4096

8192

I B I

~

pointer 1--'

20480

FRAGMENT D
RELEASED

x

0

4096

8192

[B]

8192

[E J

pointer 1--

12288

FRAGMENT E
ALLOCATED

.,,
ca
c
ca
Y'
-' w

~
:::s
tn -CD .,
m c
i ...
;!?:
0
(')

!.
0
:::s
I»
:::s
Q.

c
CD e.
0
(')

!.
6'
:::s

-f
:I'
CD

<
i:
"' m
I»
tn
CD
Q.

i:
"' 0
"'O

"' CD

< CD ...

The VMS Based MSCP Server

When the VMS based MSCP server is started, the number of pages specified by the MSCP _
BUFFER parameter are allocated from nonpaged pool and reserved for buffer usage. The
value of this parameter is kept at System Location CLU$GL_MSCP _BUFFER

Routine ALLOCATE is called to allocate a transfer buffer from this pool. It searches the
the list of free fragments looking for the first one which is at least as large as what is being
requested. If insufficient pool exists, the following process is followed to allocate a buffer.

The VMS based MSCP server is capable of dynamically calculating an upper and lower limit
to the size of a given transfer buffer that is to be allocated for a particular transfer. It uses the
following procedure to compute this size:

• The server computes the number of bytes it will initially attempt to allocate for the
transfer buffer based on the following:

The smallest multiple of 512 bytes greater than or equal to the total transfer size is
computed. This is done by computing the sum of the total transfer size plus 511, and
then clearing the low order 9 bits of this sum.
The larger of two numbers is computed: one half the number of unused bytes in the
server's local pool, or 512 bytes.
The initial number of bytes the server will attempt to allocate, is then computed as the
smaller of the first value calculated· (actual buffer size required) and the second value
calculated (the greater of one half the number of unused bytes or 512)

If the total transfer size is greater than the available pool, then the server will break the
request into multiple transfers.

• Next, code is entered to actually allocate a transfer buffer consisting of the required
number of bytes from the server's local pool.
This code scans the linked list of unused "chunks" in the pool, looking for the first chunk
containing at least the required number of bytes.

If the chunk contains exactly the number of bytes, then it is removed from the list and
used as the transfer buffer.
If the chunk contains more than the required bytes, then the first required bytes of the
chunk are used for the transfer buffer. The remainder is made into a smaller chunk
and left in the list of unused chunks.

If there are no chunks containing at least the required bytes, then this value is reduced
to half its original value, and the code to allocate a transfer buffer from the list of unused
chunks is again entered.
To prevent the server's local pool from being heavily fragmented, the value of the required
bytes is tested the first and each successive time this code is entered.· If the value satisfies
both of two conditions, then the 1/0 request is suspended. These two conditions are as
follows:

Required size is less than 114 the total size of the transfer.
- Required size is less than the content of the DSRV$L_B UFFER_MIN field in the

server's DSRV.
The deallocation of some other transfer buffer back to the pool triggers this code to attempt
once again the allocation of a transfer buffer to the request.

5-24 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

During MSCP server initialization, the DSRV$L_BUFFER_MIN field is set to contain one
eighth the total size of the pool.

5.4.5 VMS based MSCP server Flow Control

The Server uses the same credit scheme for Flow Control as does a remote MSCP server.
An SCS buffer containing a received MSCP command is not released back to the port by the
server until the server is finished with the command. The Sysgen Parameter MSCP _CREDIT
specifies the number of commands that a server can have active from any individual disk class
driver. The default value for VMS V5.5 is set at eight. This value is stored at System location
CLU$GL_MSCP _CREDITS

5.4.6 Controller Timeout

The VMS based MSCP servers Controller 7lmeout Interval is hard-coded in module
MSCP.MAR, routine SET_CONTROLLER_CHAR to be 20 seconds.

5.4. 7 MSCP Server Initialization Overview

There are three major aspects of server initialization:

• Loading and Starting the MSCP Server.
This accomplishes four major tasks.

The pool of transfer buffers is allocated.
The DSRV is initialized.
The server declares to the SCS layer that it is ready to establish SCS connections with
remote disk class drivers (SCS Listen Routine)

• Start the Load Monitoring Thread if appropriate
• Setting Disks Served to Remote Hosts.

After the MSCP server has been loaded and started on the local host, as new devices
are discovered by the Configure Process, the System location CLU$GL_MSCP _SERVE_
ALL is examined to determine if Auto-Serving is turned on. The value of this location is
determined by the Sysgen Parameter MSCP _SERVE_ALL

The MSCP _SERVE_ALL parameter may have one of the following values:

Value

0

1

2

Description

Do not serve any disks. This is the default.

Serve all available disks.

Serve only locally-attached (non-HSC) disks.

Optionally, the DCL command SET DEVICE/SERVED is used to enter a local disk unit
into the database of served disks.

Dlgltal Equipment Corporation/ Internal Use Only 5-25

The VMS Based MSCP Server

When a device is discovered, a UQB is allocated and initialized for that unit. The UQB is
inserted into the queue of UQBs attached to the DSRV in unit number order; the lower
the unit number, the closer the UQB is to the head of the queue. Finally, an AVAILABLE
ATTENTION message is sent to each remote disk class driver with which the local MSCP
server has an SCS connection. The "database of served disks" is effectively the queue of
UQBs attached to the DSRV.

• Accepting an SCS CONNECT Request from a Remote Host.
When a remote disk class driver wishes to establish an SCS connection with the local
MSCP server, the server allocates and initializes an HQB corresponding to the remote
host, ACCEPrs the CONNECT request, and then inserts the HQB at the end of the
DSRV's queue of HQBs.

The next three sections present the major details of each of these three aspects of MSCP
server initialization.

5.4.8 Loading and Starting the MSCP Server

At system startup time, the STACONFIG process examines the value of the System location
CLU$GL_MSCP _LOAD (Sysgen Parameter MSCP _LOAD). If a nonzero value is found, the
VMS based MSCP server software will be initialized and started at routine STAR,T. The
following is performed for the server's initialization.

• The DSRV structure is initialized
• The minimum transfer buffer size constant is initialized to be 1/8 of the total buffer pool

and is stored in the DSRV$L_BUFFER_MIN offset of the DSRV.
• The server's pool of transfer buffers are allocated

The size of the pool is stored in the SRVBUF$L_SIZE. offset of the buffer pool.
The address of the pool is stored at the DSRV$L_SRVBUF offset in the DSRV.
The sum of the Free Buffer Fragments is stored in the DSRV at offset DSRV$L_AVAIL

The pool is initialized as one large free fragment; and the pool's free fragment listhead,
DSRV$L_FREE_LIST, is initialized to contain the address of that fragment.

NOTE

Failure to allocate the nonpaged pool required for this step results in an SS$_
INSFMEM (insufficient memory) error, and server initialization is terminated.
This will be distinguished by clearing the address of the DSRV stored in location
SCS$GL_MSCP.

• The HQB, UQB, and MEMW (memory wait) queues in the DSRV are initialized as being
empty.

• The Load Balancing fields are initialized
• The HULB queue in the DSRV is initialized as being empty
• The multi-host controller flag, CF _MLTHS and the Load Balance flag, CF _LOAD are set

in the DSRV$W _CFLAGS field of the DSRV.

5-26 Digital Equipment Corporation/ lnterna~ Use Only

The VMS Based MSCP Server

• A Unique Identifier is constructed for the controller based on the hosts SCSSYSTEMID,
the model type of "Emulator" and class type of "MSCP Controller" and is placed in the
CTRL_ID offset of the DSRV.

• The MSCP server invokes the SCS LISTEN service to place itself in the SCS list of
"listening SYSAPs". In essence, it is declaring itself ready and willing to converse with
other SYSAPs, specifically remote disk class drivers, via SCS connections.

• The Load Monitoring Thread is started if we are serving non-local disks.

5.4.9 Serving Devices

Both the DCL command "Set Device/Served" and the Configure Process call routine
MSCP$ADDUNIT when a servable disk unit is made known.

Routine MSCP$ADDUNIT allocates and initializes the UQB, and inserts it into the DSRV's
queue of UQBs. It then calls routine ADD in the MSCP server to actually notify remote hosts
that the unit just set served is now available to them.

• Routine MSCP$ADDUNIT begins by verifying that the MSCP server has been loaded. (If
it hasn't, it merely returns the error SS$_DEVOFFLINE and does no further processing.)

• Validations are made to verify that the disk is a valid candidate for serving:
The device is cluster wide device (noclu flag in the UCB clear)
Device is not already served
The device is of the class DC$_DISK.
System allocation class matches that of device
If allocation class of the device is zero only serve if local
Check that the device is not mounted cluster accessible

• The queue of UQBs attached to the DSRV is searched for a UQB corresponding to the unit
to be set served.

If one is found, then MSCP$ADDUNIT merely returns the VMS condition value SS$_
NORMAL and does no further processing. The unit has already been set served.
If a matching UQB is not found, then then one is allocated from nonpaged pool.

NOTE

If nonpaged pool is not available, MSCP$ADDUNIT returns the "insufficient
memory" condition value SS$_INSFMEM.

• The new UQB is now initialized. In particular:
The STATE field is set to AVAILABLE.
The UNIT number field is initialized.
The Server Local Unit Number is assigned
Set the SLUN bit in Unit Number indicating a Server Local Unit.
Set the DEVNAME field of the UQB
Force bad block replacement flag for all served devices
The software and/or hardware write protect flags, UF _ WRTPS and UF _ WRTPH, are
set in the FLAGS field if appropriate.

Digital Equipment Corporation I Internal Use Only 5-27

The VMS Based MSCP Server

The queue of blocked HRBs, waiting for sequential commands to complete, is initial
ized as being empty.
A unique device name is created using routine IOC$CVT _DEVNAM

• The UQB is inserted into the queue of UQBs attached to DSR'V.

NOTE

This queue is maintained in unit number order. The lower the unit number of
the UQB, the closer the UQB is to the head of the queue.

• Calls routine ADD in the MSCP server to send an AVAILABLE ATTENTION message to
each remote host for which there is an HQB queued to the DSRV.

5.4.10 ACCEPTing an SCS CONNECT From a Remote Host

When the local MSCP server completed its initialization, it used the SCS service LISTEN
to place itself in the SCS list of "listening SYSAPs". One of the arguments it passed to the
LISTEN service was the address of its routine to which the SCS layer should pass incoming
CONNECT requests. The name of this routine is LISTN.

Routine LISTN is passed the packet containing the CONNECT request; so it knows from
where the request originated. The major steps taken by MSCP server routine LISTEN are as
follows:

• It allocates an HQB to represent the host whose disk class driver sent the CONNECT
request.
This allocation is from non paged pool. If it fails due to a lack of sufficient nonpaged pool,
then the CONNECT request is REJECTed and no further processing will be done for the
request. If the allocation succeeds, then routine LISTN continues servicing the request in
the following manner:

Most of the fields in the HQB are cleared to 0.
The HQB's queue of HRBs is initialized as being empty.
The first clear bit in the DSRV's HOSTS bitmap is found. The position of this bit
relative to the beginning of the bitmap will serve as the "host number" of the remote
host which sent the CONNECT request.
o The bit is set in the HOSTS bitmap so that the same host number will not be given

out to some other remote host.
o The bit position number is stored in the HQB$B_NOSTNO field. The bit position

number is now the remote host's "host number".
o The default host timeout value, 60 seconds for VMS V5.5, is stored in the HQB$W_

HTIMO field.

NOTE

If all the bits in the HOSTS bitmap are already in use, then the
CONNECT request is rejected, the HQB is deallocated, and no fur
ther processing is performed by this routine. The Hosts bitmap consists
of 32 bytes providing service for up to 256 hosts in VMS V5.5.

5-28 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

- The HULB vector is allocated and initialized to zeros
• Routine LISTN now invokes the SCS service ACCEPT to actually accept the CONNECT

request.
One of the arguments passed to the ACCEPr service is the address of the MSCP
server's routine (MSG_IN) for handling all incoming SCS messages on this connection.
These messages will be the MSCP commands sent to the local server by the remote
disk class driver at the "other end" of the connection.
o The SCS layer will allocate and initialize a CDT (Connection Descriptor Table) to

describe the connection, and store in the CDT the address of the server's message
input routine.
When an MSCP command arrives via this connection, the SCS layer is able to
identify the routine to which the command is to be passed; it is the message input
routine whose address is in the CDT associated with the connection.

o The local MSCP server maintains one connection for each remote disk class driver
with which it converses in MSCP. However, routine MSG_IN is the common
message input routine for all such connections. This is permissible since each
incoming message contains the identities of the host from which the message
originated and the SYSAP (i.e. disk class driver) in that host which sent the
message.

Another of the parameters passed by the MSCP server to the ACCEPT service is the
number of send credits to extend to the remote disk class driver. This is initialized to
contain the value stored at System location CLU$GL_MSCP _CREDITS.

NOTE

If the ACCEPr fails for any reason (e.g. SCS protocol failure), then the HQB
will be deallocated, the bit position in the HOSTS bitmap will be cleared, a
REJECT of the request will be performed and no further processing will be
done for the CONNECT request.

• The HQB is inserted at the end of the queue ofHQBs maintained by the DSRV.
• The address of the CDT describing the connection with the remote disk class driver is

stored in the HQB.

Digital Equipment Corporation I Internal Use Only 5-29

The VMS Based MSCP Server

5.5 MSCP Server Load Balancing

5.5.1 Static Load Balancing

VMS V5.4 introduced the concept of VMS based MSCP server Static Load Balancing. The
initial implementation is designed to distribute the VMS based MSCP server's work load
across multiple hosts that can provide access to a given device. Load Balancing is performed
on the level of each unique host and unit combination during the initial mount of the device
from a host, or during mount verification.

In a Mixed Interconnect VAXcluster, there will be situations where some hosts will have Direct
Access to a device that is being served from a multihost controller such as an HSC or ISE and
others will not. Other hosts within the VAXcluster that do not have a direct path will rely on
the hosts with the direct path to act as Disk Servers to provide access to the devices. Disk
Serving is provided by the VMS based MSCP server.

For any given disk on a multihost controller, there may be more than one host node with a
direct path. Provided multiple hosts with a direct path are running the VMS based MSCP
server and are offering service for the disks to the remaining VAXcluster members, there may
be several viable paths to the disks through the Disk Servers for the members without a direct
path.

Static load balancing was introduced to attempt to equitably distribute the work load per
formed by the VMS based MSCP servers on behalf of the VAX.cluster members without a
direct path to a given disk.

Each VAX.cluster member acting as a disk server for a device on a multihost controller defines
its ability to perform the work of serving in terms of its Load Capacity. The load capacity of
a given host is the number of Read and Write operations per second that this host should be
capable of performing for its served devices.

The Sysgen parameter MSCP _LOAD may be used to specify the load capacity for a host by
representing it as a positive value greater than one. If a load capacity is not explicitly set for
a host, a default value will be assigned to it in routine LM_INIT _CAPACITY as part of the
VMS based MSCP server's initialization. The Load Capacity is stored in the DSRV at offset
DSRV$W_LOAD_CAPACITY. Table 5-51 lists the default load capacity values assigned for the
current VAX family of processors.

1 Table values reflect VMS V5.5-2 entries

5-30 Digital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

Table 5-5: Default Load Capacity

Load Capacity

20

45

60

70

80

100

120

130

200

325

340

400

100

VAX Processor

MicroVAX 2000, VAXstation 2000

VAX 111750,VAXft 3000, MicroVAX 3100, VAX.station 3100, VAXstation 3500

VAX 82xx, VAX 83xx

VAX 111780

MicroVAX II, VAXstation II

VAX 111785, VAX 86xx

MicroVAX 3500, MicroVAX 3600, MicroVAX 3800, MicroVAX 3900

MicroVAX 3300, MicroVAX 3400

VAX 6000-200, VAX 6000-300

VAX 4000-300

VAX 85xx, VAX 8700, VAX 88xx

VAX 4000-400, VAX 4000-600, VAX 6000-400, VAX 6000-500, VAX 6000-600,
VAX 7000, VAX 9000-xxx

All Other Systems

When a Disk Class Driver on a host without a direct path to a device attempts to place a given
unit online to that host either by a Mount request or through Mount Verification, the Disk
Serving host which will be impacted the least is chosen as the Disk Server. The decision as to
which Disk Server to use for this particular host and unit combination is based on each VMS
based MSCP server's Load Availability.

Load Availability is defined as the host's Load Capacity minus the current total Operation
Count being performed for all host and unit combinations on a given host. The Operation
Count is derived by taking the average Read and Write request rate for each host and unit
combination over the past 20 second interval. The host with the highest Load Availability will
be chosen as the Disk Server for the new host and unit combination.

The selection of the appropriate Disk Server is only performed at the time of a mount request
or during mount verification, so this type of load balancing is known as Static Load Balancing.

Dynamic Load Balancing will be defined as the ability of each host and unit combination
to be switched to other Disk Servers based on the current load being placed on the VMS
based MSCP Server. This form of load balancing is planned for a future release of the VMS
operating system and is not present in VMS V5.5.

5.5.2 Load Monitoring Thread

The Load Monitoring Thread (Routine LOAD_MONITOR) is responsible for calculating the
current load available for the VMS based MSCP server. This is performed by walking the
HULB structures every Load Monitor Interval seconds and totaling the operation count for
each host and unit combination. The Load Monitor Interval is currently hardcoded in routine
LM_INIT as twenty seconds for VMS V5.5.

Digital Equipment Corporation/ Internal Use Only 5-31

The VMS Based MSCP Server

The Load Monitor Thread is executed as a fork thread. It is scheduled to execute by building
a repeating Timer Queue Entry (TQE) in the Load Monitor Initialization Routine (LM_INIT).
The timer queue entry is scheduled to execute every twenty seconds (VMS V5.5).

When the timer queue entry is signaled, routine MSCP$TMR is called. Routine MSCP$TMR
creates the LOAD _MONITOR fork thread.

The Load Monitor fork thread walks the Host Unit Load Block (Hulb) queue that is linked
from the DSRV at offset DSRV$L_HULB_FL. For each valid Hulb encountered, the Operation
Count field (HULB$W _OPCOUNT) is added to a total operation count. The current contents
of the Opcount field are stored in the HULB$W _PREV _OPC field of the Hulb and the Opcount
field is set to zero.

When the end of the Hulb queue is reached, the previous three intervals statistics are shifted
in the DSRV$W _LM_LOAD fields of the DSRV. When the operation count is finally calculated
for the load availability, it will actually be the average of the current plus the last three
intervals average operation counts.

The total Operation Count for this interval is divided by the elapsed time period to provide
the average operations for this load balance interval. This value is stored in the DSRV$W _
LM_LOADl field of the DSRV. The operation count for this interval is then calculated as the
average of the previous three intervals (DSRV$W _LM_LOAD2 through DSRV$W _LM_LOAD4)
plus this intervals operation count.

The Load Availability for this VMS based MSCP server is than calculated as the server's Load
Capacity minus the current Operations Count. This result is stored in the DSRV at offset
DSRV$W _LOAD _AVAIL.

For a future release of VMS, this is where a check will be made to determine if Dynamic Load
Balancing is required. If the Load Availability is less than the Load Threshold (currently
defined as ten I/Os per second) the Load balance thread (LOAD_BALANCE) will be executed
to perform dynamic load balancing. This code is currently not implemented.

The Load Monitoring thread than exits and will be re-executed during the next load monitor
interval.

5.6 MSCP Server's Handling of READ and WRITE Commands

The purpose of the VMS based MSCP server is to make disks that are directly accessible to
one host available for reading and writing to nodes that do not have direct access to the device.
The next few sections of this chapter discuss how the local server handles MSCP READ and
WRITE commands from remote disk class drivers.

The VMS based MSCP server is required to perform the interim handling of data on behalf of
the remote node. In processing a READ command, the MSCP server allocates a local buffer
into which the data can be read from the disk. The server must then pass the data on to the
host which requested it. ·

Similarly, in processing a WRITE command, the server must again allocate a temporary local
buffer and request the data from the remote host. Once the data arrives, it is then transferred
from the buffer to the requested disk. This involves interactions between the MSCP server
and the SCS layers for communication with the remote disk class driver, and interactions
between the server and the local driver for the particular disk unit involved.

5-32 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

In the next few sections, overviews are presented of the server's handling of READ and WRITE
commands'. Then, details of the routines involved in each are provided.

Figure 5-14 illustrates the general fl.ow of both a READ and a WRITE command. It should be
referred to when reading the overviews and detailed descriptions of both of these operations.

Dlgltal Equipment Corporation/ Internal Use Only 5-33

~
~

c
ca
i
f
if
3
CD a
g ..
'8 ..
!.
0
:::s -5'
iD
3
!!.
c:
I
0
:::s
-<

0 x z
I
0
0
0
(11

~

1 xxDRIVER
IOCSIOPOST

DUDRIVER,
I/O -- DRDRIVER,

POSTPROCESSING

1

....
::S"
CD .,, <

tO s:
c en
i m
Y' = - CD

~
Q.

s:
C)

en
CD

0
::::s

"O
CD en

MSCP SERVER
Type of Command

Immediate
READ

Sequential

PROCESSES Non-Seq Non-Buff

; CD - ~ .,, CD

i
...

MSCP READ 0
COMMANDS -NONSEQB < s:

VERIFIES DISK OK en
AND COMMANDS
NOT BLOCKED

WRITE

PROCESSES T MSCP WRITE
COMMANDS Non-se~Buff Cmd

c:r m

I
s: en
0

MSG_IN

r RECEIVES COMMAND
AND DISPATCHES !----'

BASED ON COMMAND
SEND_END CLASS

"O

I
~ ..
::D
CD

BUILDS MSCP m
END MESSAGE Q. en

f»
················· ·············· ::::s

Q.

{ SCS/PPD ROUTINES :e ... :
CI OR NI PORT

The VMS Based MSCP Server

5.6.1 Overview of MSCP Server Handling READ Command

The MSCP server's handling of a READ command from a remote host begins when the SCS
layer passes to the server's message input routine, MSG_IN, the MSCP packet containing the
READ command. MSG_IN is also handed the address of the CDT representing the connection
with the host which sent the command, and the address of the PDT describing the port
through which the command was received.

MSG_IN allocates an HRB and IRP from nonpaged pool to represent the READ command,
and stores the address of the IRP in the HRB. The address of the HQB corresponding to the
host which sent the READ command is copied into the HRB from the Auxiliary Structure field
of the CDT representing the SCS connection with the remote host. The address of the MSCP
READ command packet itself is also stored in the HRB. The opcode, length, modifiers, and
flags in the READ command are validated, and then the HRB is inserted into the HQB's queue
ofHRBs.

Figure 5-15 illustrates the data structures and the linkages that are involved in this step.

Digital Equipment Corporation/ lnt~rnal Use Only 5-35

The VMS Based MSCP Server

Figure 5-15: Data Structures and Linkage Involved In a Server Receiving a Command

scs$gl_mscp: DSRV

dsrv$1 fl ink -
dsrv$l_blink

HOB FOR
REMOTE HOST

dsrv$l_hqb_fl
hqb$ l _fl ink

hqb$l_blink

HRB FOR SOME HRB FOR THIS
OTHER CMD READ CMD

hqb$l_hrb_fl hrb$l_flink hrb$l_flink
~ ~ ~ ~ ~

hqb$l_hrb_bl hrb$l_blink hrb$l_blink

hqb$l_cdt t--

hrb$l_msgbuf t-----1 hrb$l_msgbuf t-----1

hrb$l_irp_cdrp 1--1 hrb$l_irp_cdrp 1--1

!RP/CORP IRP/CDRP

CDT --- irp$l_hrb ~ irp$l_hrb

~ cdt$l_auxstruc

MSCP MSCP
packet ~ packet I--

for for this
other read

command command

CXN-0005-12

MSG_IN now dispatches to one of five routines based on the Class Field within the opcode of
the MSCP command:

Routine

IMMEDIATE

SEQUENTIAL

NONSEQ

BAD_OPC

NONSEQB

Class of Commands Handled by Routine

Immediate Class Commands

Sequential Class Commands

Nonsequential Nonbuffered Class Commands

Maintenance Commands (none supported by this server)

Nonsequential Buffered Class Commands

A READ command is a Nonsequential Buffered Command. Nonsequential commands are com
mands which "MSCP speaking" controllers can re-order for purposes of performance optimiza
tion. They may also be segmented, and their segments interleaved with other nonsequential
commands.

5-36 Digital Equipment Corporation / Internal· Use Only

The VMS Based MSCP Server

A nonsequential command is considered "buffered" if it requires the controller to allocate one
or more intermediate buffers to temporarily hold the data which is being exchanged between a
unit and a remote host. (A WRITE command is another example of a nonsequential buffered
MSCP command.)

The Message Input routine, MSG_IN, dispatches to routine NONSEQB, passing it the address
of the MSCP command and the HRB corresponding to that command.

NOTE

Maintenance Commands are not supported by the VMS based MSCP server. If one
is received, MSG_IN branches to routine BAD_OPC to issue an End Message with
the status code MSCP$K_ST _ICMD (invalid command).
The three remaining classes of commands, Immediate, Sequential, and Nonsequential
N onbuffered, are covered later in this chapter.

Routine NONSEQB scans the queue of UQBs representing units served by this MSCP server,
looking for one whose unit number matches the one in the READ command. The address of
the UQB is stored in the HRB. NONSEQB verifies that the unit is online. It then dispatches
to routine READ to process the READ command. (NONSEQB would have dispatched to
routine WRITE, had this been a WRITE command.)

Passed to routine READ by routine NONSEQB are the addresses of the MSCP command, the
HRB representing the command, and the UQB corresponding to the unit which is referenced
by the command.

Figure 5-16 illustrates the linkages among the MSCP server data structures with which
routine READ works. (This same illustration would also apply to a WRITE command as well,
provided, of course, that the word "READ" is changed to 'WRITE".)

Digital Equipment Corporation /.Internal Use Only 5-37

The VMS Based MSCP Server

Figure 5-16: Data Structures Involved wtth MSCP Read and Write Commands

scs$gl_mscp: DSRV Unit Control Block UQB

dsrv$1 fl ink ucb$l_fqfl uqb$l_flink - ~

dsrv$l_blink

....... uqb$l_ucb
HQB FOR

REMOTE HOST
dsrv$l_hqb_fl

hqb$l_flink HRB FOR SOME HRB FOR THIS
OTHER CMD READ CMD

hqb$l_blink
hrb$1 fl ink hrb$l_flink -
hrb$l_blink hrb$l_blink

hqb$l_hrb_fl

hqb$l_hrb_bl
~ hrb$l_msgbuf i---hrb$l_msgbuf

hqb$l_cdt ~
hrb$l_irp_cdrp 1-- hrb$l_irp_cdrp I--

hrb$l_uqb

IRP/CDRP IRP/CDRP

CDT

----i irp$l_hrb ...__ irp$l_hrb

--- cdt$l_auxstruc

MSCP MSCP
packet ~ packet 14-

for for this
other read

command command

CXN-0005-13

Routine READ copies the total size of the disk transfer to the Original Byte Count field of the
HRB. It then allocates a transfer buffer from the MSCP server's local nonpaged buffer pool.
This buffer will be used to temporarily buffer the data being read from the disk until it is
transferred to the host which issued the READ command.

The content of this buffer will be transmitted to the remote host by means of a local CI, DSSI
or NI port. It will be mapped using mapping resources specific to PADRIVER, PIDRIVER or
PEDRIVER. The local buffer handle resulting from this mapping is stored in the HRB at offset
HRB$B_LBUFF .

Next, routine READ prepares the IRP for at least the first segment of the disk transfer (or
the entire transfer if only one segment is involved), initializing the UCB, SVAPTE, BOFF, and
BCNT fields of the IRP. The IRP's FUNC field is set to 10$_READPBLK.

Routine READ then calls DO_DISK. DO_DISK stores the address of a special 110 postpro
cessing routine, BACK, in the IRP's PID field. It also stores the address of the instruction
following the call to DO_DISK in the HRB at offset HRB$L_RESPC. It then stores the start
ing LBN in the IRP, and queues the IRP to the driver for the unit by jumping to routine
EXE$1NSIOQC.

5-38 Dlgltal Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

The driver handles the IRP just as if the request had originated on the local node. The data
is read from the disk into the transfer buffer mapped above, and eventually 1/0 postprocessing
is invoked. IOC$IOPOST passes the IRP to routine BACK, which in turn resumes the request
within the MSCP server at the instruction in routine READ following the call to DO _DISK

Routine READ then increments the operation count in the Hulb structure. It then initializes
the CDRP attached to the IRP to transmit to the remote host the data just read in from the
disk. The CDRP is set up such that:

• The number of bytes to transfer to the remote host is the number of bytes just read from
the disk.

• The remote host's buffer handle is in the original MSCP read command. So the address of
this buffer handle is copied into the CDRP.

• The offset into the remote node's buffer is merely the accumulated byte count read from
the disk thusfar.

NOTE

This field is kept in the HRB, and was initialized to 0 when the HRB was
allocated.

• The local buffer handle in the CDRP is the local buffer handle in the HRB used to map the
transfer buffer into which the data was read.

SCS routines are then called to allocate an RSPID, allocate an SCS message buffer, build a
send data (SNDDAT) command in the message buffer, and queue the SNDDAT to the local
port. These SCS routines are invoked by the SEND _DATA macro and are provided the CDRP
as a basis for doing their work.

The SNDDAT command causes the local port to transmit the data in the transfer buffer to
the remote host. The request is suspended as a fork thread until the port completes the
transmission. When it resumes, it adds into the accumulated byte count field in the HRB the
number of bytes just sent to the host.

If the entire request is not complete, then routine READ branches back to prepare another IRP
for the next segment of the request. If the request is complete, then an MSCP End Message
bearing a success status code is sent to the remote host, all resources held by the HRB are
released, and the HRB and IRP are deallocated.

5.6.2 Overview of MSCP Server Handling WRITE Command

The MSCP server's handling of a WRITE command from a remote host begins when the SCS
layer passes to the server's message input routine, MSG_IN, the WRITE command. Routines
MSG_IN and NONSEQB process a WRITE command exactly as they would a READ command,
except that NONSEQB dispatches it to routine WRITE instead of READ.

Routine WRITE copies the total size of the transfer into the Original Byte Count field of the
HRB. It then allocates a transfer buffer from the MSCP server's local nonpaged buffer pool.
This buffer will be used to temporarily store the data being sent by the remote host until it is
transferred to the disk for which the WRITE command was issued.

Digital Equipment Corporation I Internal Use Only 5-39

The VMS Based MSCP Server

Since the data is received by means of a local CI, DSSI or NI port, the transfer buffer is
mapped using mapping resources specific to PADRIVER, PIDRIVER or PEDRIVER. The
buffer handle produced by this mapping is stored in the HRB.

Routine WRITE then increments the operation count in the Hulb structure. It then initializes
the CDRP attached to the IRP so that it may be used to request data from the remote host.
This is done in the same manner as when the READ command initialized the CDRP to
transmit data to the remote host.

SCS routines are called to allocate a RSPID, allocate an SCS message buffer, build a REQDAT
(request data) command in the message buffer, and queue the REQDAT to the local port.
These SCS routines are invoked by the REQUEST _DATA macro and base the content of the
REQDAT on the information contained in the CDRP.

The request is suspended as a fork thread until the data is received in the transfer buffer by
the local port from the remote host. When the request resumes, routine WRITE prepares the
IRP for the first segment of the disk write request (or possibly the entire request if all the
data was requested from the remote host at once). This involves setting up the UCB, SVAPTE,
BOFF, and BCNT fields in the IRP, and setting the IRP's FUNC field to "WRITE".

Routine WRITE calls DO_DISK to actually actually execute the disk transfer. DO_DISK
stores the address of the special 1/0 postprocessing routine BACK in the IRP's PID field. It
also stores the address of the instruction following the call to DO _DISK in the HRB. Finally, it
stores the starting LBN in the IRP and queues the IRP to the specific driver for the device.

Just as in the READ case, the driver handles the IRP as if the request had originated on
the local node. The data is written to the disk from the transfer buffer, and eventually 1/0
postprocessing is invoked. IOC$IOPOST passes the IRP to routine BACK, which in turn
resumes the request within the MSCP server at the instruction in routine WRITE following
the call to DO_DISK

Routine WRITE updates the Accumulated Byte Count field in the HRB and compares it
against the HRB's Original Byte Count" field. If more bytes remain to be written to the disk,
then WRITE branches back .to initialize the CDRP to request more data from the remote host.
If the WRITE request is complete, then an MSCP End Message is sent to the remote host
indicating that the transfer was successful.

5.6.3 Command Status

DUDRIVER maintains CDRPs representing commands that are active for a controller in a
queue attached to the CDDB for that controller. The queue is ordered such that the older a
command is, the closer it is to the head of the queue.

Once every controller timeout interval, DUDRIVER's nmeout Mechanism (described in the
preceding chapter) compares the RSPID in the CDDB with the RSPID in the CDRP at the
head of the queue.

• If they are different, then the former oldest command has been completed, another CDRP
has advanced to the head of the queue, and the command represented by this other CDRP
has thus assumed the role of being the oldest. In this case, the RSPID is copied from
the CDRP at the head of the queue into the CD DB's OLDRSPID field, and the CDDB$L_
OLDCMDSTS field is set to -1.

5-40 Digital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

• If they are the same, then the command at the head of the CDRP queue has been the
oldest active command for at least one controller timeout interval. Suspicious that the con
troller may be "very ill", DUD RIVER issues a GET COMMAND STATUS to the controller,
inquiring if the controller has made any progress on this command.

This applies not only to a DSA controller, but also to a VMS based MSCP server which is
emulating a DSA controller. The VMS based MSCP server must keep track of whether or not
it is making progress on a READ or WRITE command it receives from each remote VAX host.

When the MSCP server initializes an HRB for a command received from a remote host, it sets
the CMD_STS field to negative 2. It then decrements the CMD_STS field at strategic points
within its processing of MSCP READ and WRITE commands.

• For a READ command, this happens immediately following the point where the request
resumes after transferring the data to the remote host, and just before adding the number
of bytes read into the HRB's accumulated byte count field.

• For a WRITE command, this happens immediately after the data to be written to the disk
is received from the remote host, and just before preparing the IRP to be handed to the
local host's driver for the disk.

• For both a READ and a WRITE request, the CMD_STS field is decremented in the special
1/0 postprocessing routine BACK, just before routine BACK resumes the request following
the call to DO _DISK

When the MSCP server receives a GET COMMAND STATUS, it scans the queue of HRBs
attached to the HQB corresponding to the host which sent the GET COMMAND STATUS.
Finding the HRB containing a command reference number matching the one in the GET
COMMAND STATUS, it copies the content of the HRB$L_CMD_STS field into the GET
COMMAND STATUS. Finally, it converts the GET COMMAND STATUS into a corresponding
MSCP end message, and sends the end message containing the command status back to the
remote host.

NOTE

The command reference number in the MSCP packets is the RSPID allocated for the
1/0 request by DUDRIVER in the remote host.

The remote host compares the command status in the end message with the OLDCMDSTS
field in the CDDB. If the command status in the end message is numerically less than the
content of the OLDCMDSTS field, then progress has been made by the server on the command.
The command status in the end message is copied into the OLDCMDSTS field just in case the
timeout mechanism finds the same oldest active command the next time it is invoked, and
thus has to issue another GET COMMAND STATUS for it.

On the other hand, if the command status in the message is not less than the content of
the OLDCMDSTS field, then the server has failed to make progress on the command in a
reasonable amount of time. The remote DUD RIVER presumes it to be "very ill" and attempts
to resynchronize activity with the server.

Digital Equipment Corporation/ Internal Use Only 5-41

The VMS Based MSCP Server

5.6.4 Details of the Routines for Handling READ and WRITE Commands

The next few sections detail how the VMS based MSCP server handles MSCP READ and
WRITE commands received from remote hosts.

5.6.4.1 MSG_IN - Receiving Command and Server Resource Allocation

Routine MSG_IN verifies that the connection is not being broken, and then increments the
operation count in the Disk Server Structure. It then validates the MSCP command, allocates
an HRB and IRP to represent the request, and dispatches to the appropriate routine based on
the class of the MSCP command.

• Calls ALLOCATE_HRB to allocate an HRB and IRP/CDRP and initializes selected fields
in these data structures.

An HRB is allocated from nonpaged pool.
Various HRB fields are set to zero: State, Flags, Respc, Msgbuf, lrp_Cdrp, Bufadr,
Svapte, Boff, Bent, Abcnt, Uqb.
The CMD _STS field in the HRB is set to negative 2.
An IRP/CDRP pair is allocated from nonpaged pool and its address is stored in the
IRP _CDRP field of the HRB.
Various IRP fields are set to zero: Rmod, Wind, Efn, Chan, Sts, and Rspid.
The address of the HRB is stored in the IRP.
The CDRP fields FQFL and RWCPTR (Rwaitcnt Pointer) are set to zero, and the Fork
Lock Field (FLCK) is set to contain SPL$C _SCS.

• The STATE_INVALID flag is set in the HRB$W _STATE field, making the HRB the
Current Request.

• The HQB address is copied from the CDT$L_AUXSTRUC offset in the CDT into the
HRB$L_HQB offset of the HRB.

• Store the address of the beginning of the MSCP command buffer passed in the SCS
message in the HRB at offset HRB$L_MSGBUF.

• The HRB is queued to the HQB associated with the host which issued the MSCP com
mand.

• The Opcode, length, modifiers, and flags fields are validated. If any are invalid, an MSCP
End Message is sent to the disk class driver on the remote host with the appropriate
MSCP error code, and no further processing is done for this request.

• MSG_IN dispatches based on the "class field" within the MSCP opcode.

NOTE

READ and WRITE commands are classified as NonSequential Buffered com
mands. The routine to which dispatch is made is NONSEQB.

5-42 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

5.6.4.2 NONSEQB - Verifying that Command Processing may Continue

The NONSEQB routine verifies that the disk is online to the requesting host and that no
Sequential Commands I italic for the disk are either in progress or pending. It none are found,
it then dispatches based on the specified opcode (READ or WRITE).

• Calls routine FIND _UQB to get the address of the Unit Queue Block corresponding to the
disk unit for which the MSCP command is intended.

Fetches the address of the HQB from the HRB, and then the address of the DSRV
from the HQB.
A Check is made to see if the MSCP$W _UNIT field contains the value of MSCP$K_
SLUN _RSVP indicating that this is the first time that a particular Class Driver has
requested a Get Unit Status for this device since its connection to the server was
formed.
o If this is an RSVP, the list of UQBs is scanned for a Unit Identifier that matches

the requested unit. If found, the Server Local Unit Number corresponding to this
unit will be returned to the requesting host in the MSCP$W _UNIT field of the
MSCP packet for future unit referencing. An OFFLINE error will be returned if
the unit is not located.

o If this is Not an RSVP, the Server Local Unit Number is already known and has
been passed in the unit field of the MSCP packet.

The SLUN is used to index into the DSRV$L_UNITS vector to locate the UQB address.
The address of the UQB is then stored in the HRB.

NOTE

If no matching UQB is found, an end message with OFFLINE status and a
"device unknown" subcode is sent to the disk class driver on the remote host,
and no further processing for this request is performed.

• Verifies from the UQB that the unit is online to the requesting host.

NOTE

If not, an end message with MSCP$K_ST_AVLBL status is sent to the class
driver on the remote host, and no further processing is performed for this
command.

• Verifies that no sequential commands are pending, and that no requests are in the blocked
command queue:

SEQ bit in UQB$W_FLAGS not set.
UQB$W_NUM_QUE field contains zero.

NOTE

A request being blocked indicates the presence of a sequential command, either
pending or executing.

Digital Equipment Corporation/ Internal Use Only 5-43

The VMS Based MSCP Server

If either is true, the HRB$W_STATE field is set to contain HRB$K_ST_SEQ_
WAIT (this command is also blocked), and the HRB is inserted at tail of the UQB
blocked queue. Effectively, this request is suspended here until it unblocks.

• NONSEQB dispatches based on the MSCP op code (READ or WRITE).

5.6.4.3 READ • Processing MSCP READ Command

Allocates transfer buffer and SCS mapping resources, prepares the IRP for disk transfer,
executes disk transfer by passing IRP to appropriate driver, sends data to remote host, and
finally sends MSCP end message to remote host.

• Branches to subroutine ALLOCATE to allocate a transfer buffer for data to be read from
the disk.

Copies the total size of the transfer from the MSCP command to the OBCNT field in
the HRB.
Copies the starting LBN from the MSCP command to the HRB$L_LBN field in HRB.
If the requested transfer size is greater than 127 blocks, use 127 blocks for this
segment
Allocates a transfer buffer from the "local" nonpaged transfer buffer pool pre-allocated
to the MSCP server during its initialization.

NOTE

Offset DSRV$L_FREE_LIST in DSRV contains the address of the beginning
of the list of free pool fragments.
If the total number of bytes to transfer, HRB$L_OBCNT, exceeds the largest
number of bytes permitted in a single 1/0 transfer, (the maximum of one
half the available pool or 512) then the requested buffer size is constrained
to this limit.
An Attempt is made to allocate the buffer. If no pool fragment is large
enough, the requested size is divided by two and another attempt is made
to allocate a fragment. This is repeated until the allocation succeeds or
until the requested size is reduced to the point where it meets the following
criteria:
o Requested size is less than one fourth the total size of the transfer.
o Requested size is less than the content of the DSRV$L_BUFFER_MIN

field in the server's DSRV (one eighth the total buffer pool)
If the allocation fails, the HRB is placed in the HRB$K_ST_BUF_WAITstate
and queued to the DSRV Memory Wait Queue (DSRV$L_MEMW _BL) .

The actual length and address of the transfer buffer is stored in the HRB at offsets
HRB$L_BUFLEN and HRB$L_BUFADR, respectively.

5-44 Dlgltal Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

If the buflen returned is less than the original byte count, increment the split transfer
field CDSRV$L_SPLITXFER) in the DSRV.
The lesser of BUFLEN and OBCNT in the HRB is copied to the BCNT field in HRB.
The byte offset (BOFF) is set in the HRB.
The system virtual address of the system PrE pointing to this buffer is stored in the
HRB$L_SVAPTE field of the HRB. (MMG$GL_SPTBASE indexed by the Virtual Page
Number)

• Copies the address of the CDT from the HQB into the CDRP.
• Sets the state of the HRB to HRB$K_ST _MAP_ WAIT.
• Since data is to be read from a disk into the newly allocated buffer and then transferred

from the buffer to the remote host that issued the READ command, this transfer buffer
must be mapped. The data will be sent to the remote host by means of the local host's
CI, DSSI or NI port. Mapping resources specific to PADRIVER, PIDRIVER or PEDRIVER
(whose top layer emulates PADRIVER) will be used for this purpose. The port dependent
Buffer allocation routines will be called by macro MAP to perform the following:

Removes a free buffer descriptor from the linked list in the BDT and initializes the
buffer descriptor based on the SVAPTE, BCNT, and BOFF fields in the HRB.
Initializes the buffer handle at offset HRB$L_LBUFF in the HRB. (Transfer offset =
zero, buffer name = BDT index, RCONID from CDT.)

NOTE

If no free buffer descriptor is available, the CDRP is queued to the BDT
wait queue and the request is suspended at this point until a free buffer
descriptor becomes available.

• Makes the HRB "current" again by setting HRB$M_ST_INVALID flag.
• Sets the MAP flag in HRB$W _FLAGS field, indicating mapping resources have been

allocated for this request.
• Prepares the IRP for the actual disk transfer.

The address of the UCB is copied from the UQB into the IRP.
- SVAPTE, BOFF, and BCNT fields of HRB copied into the IRP.
- FUNC field of the IRP is set to indicate a READ operation (I0$_READPBLK).

• Calls DO_DISK to execute the disk transfer.
Verifies from the UQB that the unit is online relative to the remote host. (If it isn't, an
end message with SS$_MEDOFL status is sent to the remote host.)
The address of where to return after 1/0 postprocessing is popped from the stack into
the HRB$L_RESPC field. (This is the address of the instruction immediately following
the call to DO _DISK)
The address of the I I 0 Postprocessing Routine, BACK, is stored in the IRP$L_PID
field.
Calls IOC$CVTLOGPHY, which stores the starting LBN in the MEDIA field of the
IRP.
Sets the state of the HRB to HRB$K_ST_DRV_WAIT.

Digital Equipment Corporation/ Internal Use Only 5-45

The VMS Based MSCP Server

Branches to EXE$INSIOQ to hand off the IRP to the driver's STARTIO routine as if
the IRP came from a locally issued $QIO.

5.6.4.4 IOC$10POST - 1/0 Postprocesslng for READ

Invoked by IPL$_JOPOST software interrupt requested by the driver after actually executing
the disk transfer. The driver has already constructed and stored IOSB information in the IRP.
110 postprocessing is responsible for resuming this request at the address stored in the RESPC
field of the HRB. For a READ operation, this is the address of the instruction immediately
following the call to DO_DISK made from routine READ.

• Examines the IRP$L_PID field and finds that it does not contain a PID, but rather the
address of an "end action" routine, namely BACK. Routine BACK is called.

• Routine BACK actually resumes the request.
• Sets the INVALID flag in the STATE field of the HRB, making it the "current" HRB.
• Calls the routine whose address is at offset RESPC, resuming this request immediately

following the call to DO _DISK.

5.6.4.5 Read Request Resumes Following DO_DISK

Calls routine to send data just read from disk to remote host, updates accumulated byte count.
Increments the operation count in the HULB. If entire request not yet satisfied, branches back
to read more data from disk. If entire request is satisfied, branches to routine to send end
message to remote host.

• The number of bytes read from the disk is copied from the BCNT field in the IRP to the
BCNT field in the HRB.

• Increments the Operation Count in the HULB structure by locating the HULB_ VECTOR
in the HQB and indexing by the Server Local Unit Number.

• Initializes the CDRP so that it may be used by SCS to send retrieved data to remote host.
• The CDT address is copied into the CDRP from the HQB.
• The number of bytes transferred is copied from the BCNT field in the HRB to the

XCT_LEN field in the CDRP.
• Address of remote buffer handle in original MSCP READ command copied into

RBUFH_AD field of CDRP.
• The offset into the remote host's buffer (i.e. current content of HRB$L_ABCNT field) is

copied to the RBOFF field in the CDRP.
• Defines local buffer handle to be the buffer handle in the HRB by setting the CDRP$L_

LBUFH_AD field to contain the address of offset LBUFF in HRB.
• Clears the CDRP$L_LBOFF field.

• If this is the last transfer required, routine SEND _DATA_ WMSG will be used to piggyback
and MSCP End message onto the final transfer.

5-46 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

• If this is not the last transfer required, set the state of the HRB to HRB$K_SNDAT _WAIT,
and then call routines to send the data read from the disk to the remote host. The CDRP
passed to these routines is the CDRP initialized above to reference the mapped transfer
buffer containing the data.
Table 5-6 lists the routines involved in sending the data to the remote host.

Table 5-6: Routines Invoked by the SEND_DATA Macro

Routine

SCS$ALLOC_RSPID

FPC$ALLOCMSG

FPC$SENDDATA

Description

Allocates a RSPID and associated RDT entry, stores RSPID in CDRP.

Allocates message buffer in which to build SNDDAT command, and
saves address of this buffer in CDRP.

Builds and queues to the port a SNDDAT command to transmit data
read from disk to remote host.

NOTE

The Fork Thread is suspended with context saved in the CDRP until the trans
fer of data to remote host completes. The address of where to resume this fork
thread is saved in CDRP at offset FPC. When the last packet containing data
from the disk is received by the remote host, its port generates a confirmation
packet containing the RSPID.
When the confirmation is received by the local host, its port driver uses the
RSPID to find the CDRP and resumes this fork thread. In so doing, the
RSPID and RDT entry are released. SCS or pool waits may also occur if no
free RSPID and RDT or pool are available when the allocation of these resources
is attempted.

• The request resumes after the transfer of data read from the disk is complete. The HRB
state is set to "current" by setting the INVALID flag in the HRB.

• Indicate progress being made for this command (Decrement CMD_STS)
• The number of bytes just sent to the remote host is added into the accumulated byte count

field, ABCNT, in the HRB. The content of the ABCNT field is subtracted from content of
OBCNT field in the HRB to determine if more bytes remain to be read from the disk and
sent to the remote host.

• If more bytes remain,
The lesser of the number of bytes remaining to be read and the current content of the
HRB$L_BCNT field is stored in the HRB$L_BCNT field.
HRB$L_LBN is updated by adding to it the number of blocks just sent to the remote
host so that it points to the next LBN to be read from the disk.
Branches back to prepare the IRP for the next actual disk transfer.

Digital Equipment Corporation/ Internal Use Only s-47

The VMS Based MSCP Server

• If all desired data has now been read from the disk and sent to the remote host, a spe
cial SEND _DATA will be used to piggyback an MSCP End message onto the last block
transfer.

The content of ABCNT field in the HRB is copied into the BYTE_CNT field of the
buffer containing the original MSCP READ command.
Branches to routine SEND_DATA_WMSG, passing it the status code MSCP$K_ST_
SUCC indicating success.

• Branches to routine CLEANUP _HRB to deallocate the resources held by the HRB.

5.6.4.6 WRITE • Processing MSCP WRITE Command

Allocates transfer buffer and SCS mapping resources, requests data from host wishing to write
data to disk, Increments the Operation Count in the HULB, prepares an IRP for the disk
transfer, executes the disk transfer by passing IRP to appropriate driver, and finally sends an
MSCP end message to the host which issued WRITE request.

• Verifies that the disk is neither Hardware nor Software Write Protected by testing the
UF_WRTPH and UF_WRTPS bits in the UNIT_FLAGS field of the UQB.

NOTE

If either is true, then an end message is sent with an MSCP$K_ST_ WRTPR
status code.

• Calls ALLOCATE to allocate a transfer buffer to hold the data which is to be written to
the disk.

NOTE

ALLOCATE performs the same tasks here for an MSCP WRITE command as it
does when called for an MSCP READ command. See Section 5.6.4.3 for details.

• Copies the address of the CDT from the HQB into the CDRP.
• Sets the state of the HRB to HRB$K_ST_MAP_WAIT.
• Maps newly allocated buffer by calling the MAP macro.

NOTE

The same tasks are performed here as for the MSCP READ command described
in Section 5.6.4.3. The main difference is that the mapping is for purposes
of transferring data from the remote host to the transfer buffer. The same
mapping resources will be used since the same types of ports are involved as
with the READ command.

• Sets the HRB$M_STATE_INVALID flag in the HRB$W _STATE field, thereby making this
HRB the "current" HRB.

5-48 Dlgital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

• Sets the MAP flag in the HRB$W _FLAGS field, indicating that mapping resources have
been allocated for this r~quest.

• Increments the Operation Count field in the HULB structure by locating the HULB_
VECTOR in the HQB and indexing by the Server Local Unit Number.

• Initializes the CDRP so that it may be used by SCS to send data from the system which
issued the MSCP WRITE command.

NOTE

The same tasks are performed here as would be performed for initializing the
CDRP while handling a READ command to send data retrieved from disk to the
remote host. See Section 5.6.4.3 for detail.

• Sets the state of the HRB to HRB$K_ST_SNDAT_ WAIT.
• Calls SCS routines to request that the host which issued the WRITE command send data

to be written to the disk by invoking the REQUEST_DATA macro.
Table 5-7 lists the routines involved in requesting the data from the remote host.

Table 5-7: Routines Invoked by the REQUEST_DATA Macro

Routine Description

SCS$ALLOC_RSPID

FPC$ALLOCMSG

allocates a RSPID and associated RDT entry, stores RSPID in CDRP.

allocates message buffer in which to build SNDDAT command, saves
address of this buffer in CDRP.

FPC$REQDATA builds and queues to port REQDAT command to request data from
host which issued MSCP WRITE command.

NOTE

The Fork Thread is suspended with context saved in the CDRP until the trans
fer of data to the serving host completes. Address of where to resume the fork
thread is also saved in CDRP.
When the last packet containing data to be written to the disk is received, the
local port generates a DATREC containing the RSPID. The local port driver
uses the RSPID to find the CDRP and resume this fork thread. In doing so, the
RSPID and associated RDT entry are released.

• When the request resumes, the HRB state is set to "current" by setting the the HRB$M_
STATE_INVALID flag.

• Prepares the IRP for actual disk transfer.
Copies the address of the UCB from the UQB into the IRP.
SVAPTE, BOFF, and BCNT fields copied from HRB to IRP.
Sets FUNC field of IRP to indicate a WRITE operation (10$_ WRITEPBLK).

Digital Equipment Corporation/ Internal Use Only · 5-49

The VMS Based MSCP Server

• Calls DO_DISK to execute the disk transfer.

NOTE

The same tasks are performed here as would be performed by DO_DISK while
handling a READ command. See Section 5.6.4.3 for details.

5.6.4.7 IOC$10POST • 1/0 Postprocesslng for WRITE

Invoked by IPL$_10POST software interrupt requested by the driver after actually writing the
data to the disk. The driver has already constructed the IOSB information and stored it in the
IRP. 1/0 postprocessing resumes this request at the address stored in RESPC field of the HRB.
For a WRITE operation, this is the address of the instruction immediately following the call to
DO_DISK made from routine WRITE.

The steps here are the same as for a READ command since the IPL$_IOPOST software
interrupt is always serviced by routine IOC$IOPOST:

• Examines the IRP$L_PID field and finds it does not contain a PID, but rather the address
of an "end action" routine, namely BACK Routine BACK is called.

• Routine BACK actually resumes the request.
Sets the INVALID flag in the STATE field of the HRB, making this HRB the "current"
HRB.
Calls the routine whose address is at offset RESPC, resuming this request immediately
following the call to DO_DISK.

5.6.4.8 Write Request Resumes Following DO_DISK

Updates accumulated byte count. If the request is incomplete due to fragmentation, branches
back to request more data to be written to disk from the remote host. If the request is now
complete, branches to a routine which issues the MSCP End message to the remote host.

• Number of bytes just written to disk, IRP$L_BCNT, is added into accumulated byte count
field, ABCNT, in the HRB. The content of the ABCNT field is subtracted from the content
of the OBCNT field in the HRB to determine if more bytes remain to be written to the disk
for this request.

• If more bytes remain:
The lesser of two quantities, the number of bytes remaining to be written to disk and
the current content of HRB$L_BCNT field, is stored in the HRB$L_BCNT field.
HRB$L_LBN is updated by adding to it the number of blocks just written to the disk
so that it points to the next LBN to be written.
Branches back to initialize the CDRP so that the CDRP may be used by SCS to request
still more data from the remote host which issued the MSCP WRITE command.

5-50 Digital Equipment· Corporation t tnternal juse Only

The VMS Based MSCP Server

• If all data for this request has now been written to the disk:
• The content of the ABCNT field in the HRB is copied to the BYTE_CNT field of the

buffer containing original MSCP WRITE command.
• Branches to routine SEND_END, passing it the status code MSCP$K_ST_SUCC

indicating success.

5.6.4.9 SEND_END - Send End Message and Cleanup

This routine is branched to for the completion of WRITE requests. It converts the received
MSCP command into an MSCP End message, sends the MSCP End message to the host which
issued the command, and deallocates any resources still held by the HRB.

• Stores the status code into the MSCP$W _STATUS field of the buffer containing the
original MSCP command.

• Alters the MSCP$B_OPCODE field in the message buffer so that it reflects an MSCP End
message corresponding to the original command issued by the remote host. This is done
by merely setting the OP _END bit within this field.

• Initializes the CDRP in preparation for requesting SCS to send the end message.
- The address of the CDT is copied into the CDRP from the HQB.
- The address of the message buffer is stored in the CDRP.

• Set the HRB state to HRB$K_ST _MSG_ WAIT and the message buffer is recycled in
preparation for sending it back to the remote host as an end message by invoking macro
RECYCL_MSG_BUF.

• The Recycle Message Buffer routine performs the following:
CDT checked to see if at least one send credit available. (If not, this fork thread is
suspended until one is available.)
RCONID copied from CDT into DST_CONID of SCS header in message buffer.
Number of send credits decremented by 1.

• HRB is made "current" by setting the INVALID flag in its STATE field.
• HRB state is then set toHRB$K_ST_SNDMS_WAIT.

• Calls FPC$SNDCNTMSG to pass the buffer containing the MSCP End message to the
SCS layer for transmission to the host which issued the original MSCP command.

• Calls CLEANUP _HRB to deallocate (or at least release) any resources held by the HRB
(IRP/CDRP, local buffer for holding data being transferred between the disk and the
remote host, SCS mapping resources, etc.), and deallocates the HRB itself.

5.7 Other Classes of Commands Handled by the Server

Digital Equipment Corporation/ Internal Use Only 5-51

The VMS Based MSCP Server

5. 7.1 Overview

There are three additional classes of MSCP commands that are handled by the VMS based
MSCP server: Immediate Commands, NonSequential Nonbuffered Commands, and Sequential
Commands.

5. 7 .1.1 Immediate Commands

An immediate command requires very little time to complete, does not cause any unit to expe
rience a context change, and must be processed immediately by an MSCP server. DUDRIVER
expects an MSCP server to complete processing of an immediate command and return an
MSCP End message for that command within one controller timeout period after the command
is issued. If DUDRIVER does not receive the end message within this time frame, it will
attempt to resynchronize its activity with the server.

This involves breaking the SCS connection between itself and the server. If the "MSCP
speaking" controller in which the server resides is not a VAX emulating a controller, then this
also involves issuing a Host Clear to reset the controller.

NOTE

The controller timeout period was established when the SCS connection formed
between the driver and the server.

'1\vo examples of immediate commands are

• ABORT, to abort an MSCP command previously issued to the controller, but for which the
controller has not yet sent to the issuing host a corresponding end message.

• GET COMMAND STATUS, to determine if the controller has made any progress on an
outstanding MSCP command issued to the controller.

Through the use of SCS flow control, the disk class driver is always assured that it has at least
one send credit to issue an immediate command to an MSCP server. This is accomplished by
requiring that DUDRIVER's connection with an MSCP server always have at least two send
credits before being allowed to send any other type of command to the server. Only one send
credit has to be available to send an immediate command.

Of particular concern here is the desirability of guaranteeing that DUDRIVER can always
issue a GET COMMAND STATUS and have it complete within the controller timeout interval.

5. 7 .1.2 NonSequentlal Commands

NonSequential commands are those commands that a controller may re-order for reasons
of performance optimization. Furthermore, they may be segmented, and then performed one
segment at a time. The execution of two or more N onSequential commands may be interleaved
by interleaving the execution of their segments.

5-52 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Read and write requests are examples of NonSequential Buffered commands. The controller
must allocate buffers to hold the data while it is being exchanged between a unit and a
host. NonSequential Nonbuffered commands require no such buffers. Three examples of
NonSequential Nonbuffered commands are:

• ACCESS, to verify that designated data on some unit can be read without errors.
• ERASE, to overwrite a region of a unit with zeros.
• REPLACE, to mark a logical block as being replaced by a replacement block.

The VMS based MSCP server does not handle all immediate, sequential, and NonSequential
nonbuffered commands. The next few sections explain which commands in each category it
does, and to what extent.

5. 7.1.3 Sequential Commands

Sequential commands are commands that, as the name implies, must be executed in a precise
order. Furthermore, they impact the execution of other types of commands. There are three
rules that define the precise order in which sequential commands can be executed, and how
they impact other commands:

• All sequential commands received on the same SCS connection for a particular unit must
be executed in the exact order in which the server receives them.

• NonSequential commands received on the same connection for the same unit as a sequen
tial command, but before that sequential command, must be completed before executing
the sequential command.

• NonSequential commands received on the same connection for the same unit as a sequen
tial command, but after the sequential command, must not begin execution before the
sequential command completes.

Because of these rules, sequential commands are "well ordered", and each one effectively forms
a barrier around or through which NonSequential commands may not pass. The reason for
this is that sequential commands typically alter the context of a unit. To illustrate this, here
are three examples of sequential commands:

• AVAILABLE, to place a unit in the "available" state relative to the host that issued the
command (and relative to all hosts which are clients of the MSCP server if none of them
still have the unit online).

• ONLINE, to set the unit "online" relative to the host which issued the command.
• SET UNIT CHARACTERISTICS, to establish host settable unit characteristics.

Dlgltal Equipment Corporation/ Internal Use Only 5-53

The VMS Based MSCP Server

5.7.2 Immediate Class Commands

The VMS based MSCP server supports four immediate class commands sent to it by a host:

Table 5-8: Supported Immediate Class Commands

Command

ABORT

GET COMMAND STATUS

GET UNIT STATUS

Application

to abort a command being handled by the server

to obtain the disposition of a command

to request the status of a unit which is accessible via the
server

SET CONTROLLER CHARACTERISTICS to establish host settable controller characteristics

All immediate class commands are passed to routine IMMEDIATE by the MSCP server's SCS
message input routine MSG_IN. IMMEDIATE then dispatches each of these commands to
a command specific routine for processing. Here is a summary of each of the four command
specific routines:

• ABORT
All MSCP commands from a particular host are represented by HRBs in a queue attached
to the HQB for that host. This queue is searched for an HRB whose command reference
number and unit number fields match those in the ABORT request. This HRB is marked
as "aborted" by setting the ABORTWS bit in its FLAGS field.
The STATE field of the HRB for the command to be aborted indicates at what stage of
processing the CDRP is for that command, and how the command is actually to be aborted.
If the CDRP for the command being aborted has not yet been handed to a driver, and if it
is not waiting to be allocated SCS mapping resources, then it is under the "jurisdiction" of
the MSCP server. The CDRP (and attached IRP) are released, along with any resources
(buffers, RSPID, RDT entry, etc.) held by the HRB. The HRB itself is then deallocated.
If the CDRP for the command being aborted is currently being handled by a driver, or if
it is waiting to be given SCS mapping resources buffer, then it is not currently under the
"jurisdiction" of the MSCP server. Eventually it will be returned to the server. When this
occurs, the ABORTWS flag being set in the HRB will trigger the release of the CDRP (and
IRP) and resources held by the HRB, and the deallocation of the HRB.
Associated with the ABORT command will be an end message indicating that the com
mand referenced by the ABORT command has been successfully aborted (MSCP major
status code= MSCP$K_ST_SUCC). But an end message will still be sent to the host for
the command which was aborted (MSCP major status code= MSCP$K_ST_ABORTD).

NOTE

The ABORTWS flag discussed here should not be confused with the ABORT flag
discussed in a later section presenting how the MSCP server handles the loss
of the SCS connection with the remote disk class driver. ABORTWS stands for
Abort With Status since an end message corresponding to the aborted command,

S--54 Digital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

and containing the MSCP$K_ST_ABORTD status code, is sent to the remote
host.
When an HRB is terminated due to SCS connection failure, the ABORT flag is
set in the HRB; this indicates that the HRB is to be terminated without status
being being sent to a remote host. If the SCS connection is broken, there is no
remote host to which an end message can be sent.

• GET_COMMAND_STATUS
The queue of HRBs attached to the HQB which issued the GET COMMAND STATUS is
searched for an HRB whose Command Reference Number and unit number fields match
those in the GET COMMAND STATUS request. If the desired HRB is found, then a
copy of the content of the CMD_STS field of the HRB is sent to the requesting host in an
MSCP End message. If the desired HRB is not found, the command status field in the End
message sent to the requesting host is set to 0.

• GET_UNIT_STATUS
The purpose of the GET UNIT STATUS command is to obtain the current status of a unit,
and certain unit characteristics. Some of the items returned in the end message for such a
command are:

MSCP unit number.
Media ID.
Disk geometry.
Unit identifier.
Status code: Available, Offiine, or Online.

The GET UNIT STATUS command can request this information for a specific unit. It
can also request status for the next unit known to the server with a unit number equal
to or greater than the specified unit by specifying the MSCP$V _MD _NXUNT flag in the
MSCP$W _MODIFIER field.
Routine GET_UNIT_STATUS obtains this information from the UQB corresponding to the
unit specified in the command. The UQB is found by using the SLUN to index into the
unit table of the DSRV.
If no matching UQB is found, a device offiine is returned to the requesting node. The
requesting node can then look for an alternate path.

• SET_CONTROLLER_CHAR
This command is the mechanism by which certain host settable characteristics are deter
mined for a controller. The MSCP server will present to a host the "illusion" of taking on
these characteristics since it is emulating an "MSCP speaking" controller.
Host settable characteristics include controller flags (e.g. enable attention messages,
enable miscellaneous error log messages, ...) and the host access timeout period. These
characteristics are stored in the HQB corresponding to the remote host which issued the
SET CONTROLLER CHARACTERISTICS command. The VMS based MSCP server also
stores the local date and time in the HQB at offset HQB$Q_TIME when this command is
received.

Digital Equipment Corporation I lntemal Use Only 5-55

The VMS Based MSCP Server

The end message returned to the remote host includes the MSCP server's allocation class,
controller software version number, controller flag settings, and controller timeout interval.
It also includes a controller identifier which identifies itself to the host as a VMS system
emulating an "MSCP speaking" controller by means of the VMS based MSCP server.
Figure 5-17 Illustrates the general flow for Immediate Class Commands.

5~56 Digital Equipment Corporation/ Internal Use Only

c czr
= !!.
_g'
c -a·
3
CD
:I -g
~

-g
i
0
:I -5"
S'
3
!!.
c:: :
~
-<

~

I GET_COMMAND_STATUS I

I GET_UNIT_STATUS I

I SET_CONTROLLER_CHAR I

I ABORT I

SEND_END

BUILDS MSCP
END MESSAGE

Sequential Cmd

Non-seq Buffered Cmd

Non-seq Non-Buff Cmd

IMMEDIATE

~

Dispatches
To Specific
Routine For
MSCP OPCODE

T
Immediate cmd

l
MSG_IN

Receives Command
And Dispatches ~

Based on command
Class

I • I SCS/PPD ROUTINES

l

j

CI OR NI PORT

"T1
cC c
ca
!

C)
CD
::s
CD

i!.
"T1

i
0 -3
3
&
i
CD
0
ii
~
g
3
3 m
::s a.
0

-t
'::z
CD

<
i: en
m
i a.
i: en
0
"tJ
en
CD

< CD

The VMS Based MSCP Server

5.7.2.1 Routines for Handling Immediate Commands

Following are detailed outlines of the four command specific routines for handling immediate
class commands.

Routine IMMEDIATE passes the addresses of the immediate MSCP command and the HRB
corresponding to the host which sent the command to each routine.

5.7.2.1.1 ABORT

Aborting a command begins with seeking out the HRB representing that command, and
marking the HRB as "aborted". If the IRP/CDRP pair for the command is still within the
jurisdiction of the MSCP server, the IRP/CDRP pair along with the HRB and any resources
held by the HRB are released/deallocated. If the IRP/CDRP pair are not within the jurisdiction
of the MSCP server, then these data structures and resources will be released as soon as
possible.

• Routine ABORT begins by finding the HRB representing the command that is to be
aborted. It fetches the HQB corresponding to the host which issued the ABORT, and then
searches the queue of HRBs attached to the HQB for an HRB with a command reference
number and unit number matching those contained in the ABORT.

If no matching HRB is present in the queue, then ABORT branches to SEND _END
to issue a "success" End message to the host which sent the ABORT command. No
further processing is done for the ABORT request.
If a matching HRB is found, then the command corresponding to the HRB is marked
as being aborted by setting the ABORTWS bit in the FLAGS field of the HRB.

• The HRB representing the request to be aborted is now handled according to to its state
(HRB$W _STATE field).

HRB$K_ST_MSG_ WAIT - Waiting for an SCS message buffer or send credit.
Return Success status back for the Abort Request End message.

HRB$K_ST_SEQ_ WAIT - Waiting for completion of a sequential command.
The HRB is removed from the HQB's blocked command queue, and the UQB$W_NUM_
QUE field in the UQB is decremented. The STATE_INVALID flag is set in the state
field of the HRB. The request is marked as DEQUEUED in the flags field of the HRB.
An Aborted status is set for the End message. The accumulated byte count is set to
reflect any transfers that had succeeded.

HRB$K_ST_BUF _WAIT - Waiting for local MSCP server buffer.
The HRB is removed from the queue of commands waiting for transfer buffers, and the
DSRV$W_MEMW_CNT field is decremented. The STATE_INVALID flag is set in the
state field of the HRB. The request is marked as DEQUEUED in the flags field of the
HRB. An Aborted status is set for the End message. The accumulated byte count is set
to reflect any transfers that had succeeded.

5-58 Dlgltal Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

HRB$K_ST_SNDAT_ WAIT - Waiting for completion of a block data transfer.
The request is currently suspended. The RSPID wait queue (RDT$L_ WAITQFL) is
scanned for the CDRP and Unhooked if found. The Message Buf wait queue is then
scanned looking for the request, and if found it is Unhooked. The CDRP is removed
from the wait queue, or the RDT entry is released. Success status is returned back for
the Abort Request End message.

HRB$K_ST_DRV _WAIT - Waiting for driver to complete request.
The request's IRP has already been queued to the driver, so it is currently outside the
"jurisdiction" of the MSCP server. However, the fact that the ABORTWS flag has been
set in the HRB will cause the command to be aborted when the IRP is handed back to
the server by 110 postprocessing.
This routine merely branches to SEND_END to transmit a "success" End message
to the remote host that issued the ABORT request. It should be observed that this
End message corresponds to the ABORT request, and not the MSCP command being
aborted. A separate "aborted" End message will be sent when the command being
aborted actually is.

HRB$K_ST_MAP _WAIT - Waiting for SCS mapping resources.
The request is waiting for SCS mapping resources. So it is currently outside the
'jurisdiction" of the MSCP server. However, the fact that the ABORTWS flag has been
set in the HRB request will cause it to be aborted when the IRP is handed back to the
server by the mapping routine.
This routine merely branches to SEND_END to transmit a "success" End message
to the remote host that issued the ABORT request. It should be observed that this
End message corresponds to the ABORT Request, and not the actual MSCP command
which is being aborted. A separate "aborted" end message will be sent when the
command being aborted actually is.

• Routine ABORT then calls SEND_END to transmit to the remote host an end message
bearing the status code MSCP$K_ST_ABORTD. This end message corresponds to the
aborted MSCP command.
SEND_END will also release any resources held by the aborted HRB (such as SCS map
ping resources, RDT entry and RSPID, local or SCS buffers, ...), and then deallocate the
HRB itself.

• Upon return from the first call to SEND _END, routine ABORT again branches to SEND_
END to transmit a "success" End message for the Abort command itself.

Dlgltal Equipment Corporation I Internal Use Only 5-59

The VMS Based MSCP Server

5.7.2.1.2 GET_COMMAND_STATUS

This routine locates the HRB corresponding to the command for which status has been
requested. The content of the command status field of the HRB is sent to the requesting host
in an End message.

• Routine GET_COMMAND_STATUS begins by fetching the HQB corresponding to the
requesting host. It then searches the queue of HRBs attached to the HQB, looking for an
HRB satisfying two conditions:

The command reference number in the message buffer attached to the HRB matches
the command reference number in the buffer containing the GET COMMAND STATUS
request.
The unit number in the message buffer attached to the HRB matches the unit number
in the buffer containing the GET COMMAND STATUS request.

• If an HRB matching both these conditions is found, then the content of the command
status field of the message buffer attached to the HRB is copied into the command status
field of the buffer containing the GET COMMAND STATUS request.
If not, then the command status field of the buffer containing the GET COMMAND
STATUS request is set to zero.

• GET_COMMAND_STATUS then branches to SEND_END, passing it an MSCP major
status code ofMSCP$K_ST_SUCC (success). SEND_END will then

Store the MSCP major status code in the buffer containing the GET COMMAND
STATUS request.
Convert the received GET COMMAND STATUS into an MSCP end message.
Send the end message to the requesting host.

5.7.2.1.3 GET_UNIT_STATUS

If the "next unit" modifier is set, the UQB with the first unit number greater than or equal
to the unit number in the GET UNIT STATUS command is sought; otherwise, the UQB
corresponding to the command's unit number is found. Status information is extracted from
the UQB and returned in an end message to the requesting host.

• First, GET_UNIT_STATUS selects the proper UQB from which to extract the information
that is to be returned to the requesting host.

If the "next unit" modifier (MSCP$V _MD_NXTUNT) is set in the MODIFIER field of
the request, then the Server Local Unit Number is used to index into the list of units
kept in the DSRV for the first index that points to a valid UQB.

NOTE

The queue of UQBs is ordered in ascending order by unit number.

o If none is found, then
The MSCP$W _UNIT field in the request is cleared to zero.

- The Status OFFLN is returned in the MSCP End message.

5-60 Dig Ital Equipment· Corporation / Internal Use Only

The VMS Based MSCP Server

o If a UQB is found satisfying the above conditions, then it is selected.
If the "next unit" modifier is not set in the request, then the SLUN is used to locate
the particular UQB being requested.

If none is found, then GET_UNIT_STATUS returns an End message with an
OFFLN status.
If a matching UQB is found, then that UQB is selected.

• The following information is copied from the selected UQB into the buffer containing the
GET UNIT STATUS request:

MSCP unit number. (If the "next unit" modifier was set in the request, it is necessary
to identify for which unit information is being returned.)
Media ID.
Disk geometry information.
o Number of sectors per track.
o Number of tracks per group.
o Number of groups per cylinder.
Whether or not an RCT is present.
Unit identifier.

• An MSCP status code is set up to be returned in the end message.

MSCP$K_ST_AVLBL Unit is available.

MSCP$K_ST_OFFLN Unit is offiine to requesting host.

MSCP$K_ST_SUCC Success (with MSCP$K_ST_ ONLINE sub-code).

• GET_UNIT_STATUS then branches to SEND_END, which does the following:
Stores the MSCP major status code in the buffer containing the GET UNIT STATUS
request.
Converts the received GET UNIT STATUS into an MSCP End message.
Sends the End message to the requesting host.

5. 7.2.1.4 SET_CONTROLLER_CHAR

Host settable characteristics are extracted from the command and inserted into the HQB
corresponding to the controller specified in the command. An end message containing both
host settable and non-host settable characteristics is then returned to the host which issued
the SET CONTROLLER CHARACTERISTICS command.

• Stores the following information in the HQB corresponding to the remote host which
issued the SET CONTROLLER CHARACTERISTICS command:

Host settable controller flags from command (e.g. enable attention messages, enable
miscellaneous error log messages, etc.).
Local host's date and time. (Quadword date and time in command is not used.)

Dlgltal Equipment Corporatton /Internal Use Only 5-61

The VMS Based MSCP Server

- Host access timeout from command.

NOTE

All values of host access timeout greater than 255 are replaced by 255. All
values less than 10 are replaced by 10.

• Copies the following information from the DSRV into the buffer containing SET
CONTROLLER CHARACTERISTICS command:

Server's allocation class.
Server's controller software version number.
Server's controller flag settings.
Server's controller timeout interval.
Server's controller identifier.

• SET_CONTROLLER_CHAR then branches to SEND_END, passing to it the major status
code MSCP$K_ST_SUCC. SEND_END does the following:

Stores the MSCP major status code in the buffer containing the GET UNIT STATUS
request.
Converts the received SET CONTROLLER CHARACTERISTICS into an MSCP end
message.
Sends the end message to the requesting host.

5. 7 .3 Non-Sequential Non-Buffered Class Commands

The VMS based MSCP server deals with five nonsequential nonbuffered commands sent to it
by a remote host:

Table 5-9: NonSequentlal NonBuffered Commands

Command

ACCESS

COMPARE CONTROLLER DATA

ERASE

FLUSH

REPLACE

Definition

The purpose of this command is to verify that designated
data can be read without error. Data is to be read from a
unit, checked for any errors, and then discarded.

The controller is requested to do a consistency check of
data from members of a shadow set virtual unit.

All data in a specified region of of a unit is overwritten by
zeros.

The controller is to flush cached commands or data from a
host.

A logical block is marked as being replaced by a replace
ment block.

5-62 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

5.7.3.1 Access Command

The ACCESS command is not supported by the VMS based MSCP server and returns an end
message bearing the "invalid command" status MSCP$K_ST_ICMD.

5.7.3.2 Replace Command

The VMS based MSCP server handles the REPLACE command in the same way as the
ACCESS command, but for a very good reason. The local host is emulating an "MSCP speak
ing" controller which handles its own bad block replacement. Remote hosts should not be
telling it which logical blocks to replace with replacement blocks.

5. 7.3.3 Compare Controller Data and Flush Commands

Controllers that do not support caching must treat COMPARE CONTROLLER DATA and
FLUSH commands as NOPs that always succeed. The VMS based MSCP server does nothing
more than return an end message with the status code MSCP$K_ST_SUCC.

5.7.3.4 Erase Command

To handle the ERASE command, the server first verifies that the unit is not write protected.
If the local controller for the unit is DSA based, it issues an 10$_DSE (data security erase)
function to DUD RIVER for the unit. If the local controller is not DSA based, it must explicitly
write zeros to the region specified in the ERASE command by issuing an 10$_ WRITEPBLK
function to the unit's driver.

If the server receives a nonsequential nonbuffered command for a local disk which has the
online bit clear in its Unit Queue Block, an MSCP$K_ST _AVLBL status is returned in the
End message.

Figure 5-18 illustrates the basic flow for NonSequential NonBuffered Commands.

Dlghal Equipment Corporation I Internal Use Only .s-63

I
~

c
cs-
(
JI c
if
3
CD a.
g ..

"D
0 ..
!.
0
:::s

5' s ..
:::s
!!.

I
0
:::s
-<

0
)(
z
I
0

8
(1'I
I •

[FLUSH l
I

r REPLACE J

I
[ACCESS l

•
r COMP_CTRL_DATA l

r ERASE l
~

~

~

SEND_END

Builds MSCP
END MESSAGE

-t ::r
CD

"11 <
s· s:
c en

Immediate Cmd ~

Cil m

!:. = CD

~
a.
==:

Sequential Cmd ~

Non-Seq Buffered Cmd

NON SEQ

z en
0

0
:::s -0

E en
CD

c C!
CD CD ... a

Dispatches e:
to Specific
Routine for
MSCP OPCODE

z
0
::s
m c

t
Non-Seq Non-Buff Cmd

l

;:
Cil a.
g
3

MSG IN 3
A>
::s

Receives Command a.
and Dispatches 1--

Based on Command
Class

"11
0
~

I

.... { SCS/PPD ROUTINES

CI OR NI PORT

The VMS Based MSCP Server

5.7.4 Routines for Handling Non-Sequential Non-Buffered Commands

The following are outlines of the routines for handling nonsequential nonbuffered commands
received by the VMS based MSCP server.

Routine NONSEQ passes to ACCESS, COMP _CTRL_DATA, and REPLACE the addresses
of the MSCP command and the HRB corresponding to the remote host which issued the
command. In addition to the MSCP command and HRB addresses, NONSEQ also passes
to ERASE and FLUSH the address of the UQB corresponding to the unit referenced by the
command.

5.7.4.1 ACCESS Routine

This command is not supported by the VMS based MSCP server. Routine ACCESS merely
branches to PACKET_ERROR. PACKET_ERROR then branches to SEND_PKT to send to the
remote host an end message bearing the status code MSCP$K_ST_ICMD (invalid command).

5.7.4.2 COMP _CTRL_DATA Routine

This command is treated as a NOP that always succeeds. Routine COMP _CTRL_DATA merely
branches to SEND_END to send to the remote host an end message bearing the status code
MSCP$K_ST_SUCC (success).

5.7.4.3 ERASE Routine

Overwrites with zeros a region on a disk unit, as specified in an MSCP ERASE command.

• If any of three conditions.is present, then routine ERASE really has no work to do for the
command. It merely branches to SEND_END to issue an end message to the remote host
bearing an appropriate MSCP status code.

If either the software write protect flag (UF _ WRTPS) or the hardware write protect
flag (UF _ WRTPH) is set in the UQB, then no work can be done. So the MSCP status
code sent in the end message is MSCP$K_ST_WRTPR.
If the the byte count field in the ERASE command contains a 0, then this is a "zero
byte transfer"; so there is no work to be done. In this case, the appropriate status code
is "success", MSCP$K_ST_SUCC.
If the operation exceeds the highest LBN on the unit, then the command is invalid.
The status code MSCP$K_ST_ICMD is sent in this case.

• If none of the three conditions just described is present, then the IRP linked to the HRB
(offset HRB$L_IRP _CDRP contains the address of this IRP) is used to pass the ERASE
request to the the driver for the unit.

Digital Equipment Corporation/ Internal Use Only 5-65

The VMS Based MSCP Server

How the IRP is setup and used depends on whether the unit is on a local DSA controller,
or a local non-DSA controller. The DEVCHAR2 field in the UCB for the unit is examined
to see if the the MSCP flag is set. If the flag is set, the controller is DSA; if the flag is not
set, then the controller is not DSA.

If the controller is DSA, then the "data security erase" function, 10$_DSE, is sup
ported.
o The IRP's function field is set to contain 10$_DSE.
o The IRP's starting LBN, offset, and byte count fields are set to reflect the entire

part of the unit to be zeroed. (Since the 10$_DSE function is supported for disks
on "MSCP speaking" controllers, there will be no need to perform this operation in
"segments".)

o Routine DO_DISK is called to pass the IRP to DUDRIVER.
o If the operation completes successfully, then and end message is sent to the remote

host. The end message contains the status code MSCP$K_ST_SUCC, indicating
success, and the number of bytes set to zero.
If the operation fails, then routine ERASE branches to XFER_ERR. At XFER_ERR,
the VMS condition value returned by DUDRIVER is converted to an equivalent
MSCP status code; and this status code is sent to the remote host in an end
message.

If the controller is not DSA, then the erase function is not supported and must be
emulated.
o The erase function is emulated by setting up the IRP to actually write zeros to the

specified region of the disk by means of an 10$_ WRITEPBLK function.
o If the erase request involves more than a 127 blocks, then the operation will be

"segmented".
o As described above in the DSA case, DO_DISK is called upon to actually pass the

IRP to the driver for the non-DSA unit. If the the request is segmented, then this
is done repeatedly until either the operation completes, or a failure occurs.

o If the operation completes successfully, then an end message is sent to the remote
host. The end message contains the status code MSCP$K_ST_SUCC, indicating
success, and the number of bytes set to zero.
If the operation fails, then routine ERASE branches to XFER_ERR. At XFER_ERR,
the VMS condition value returned by DUDRIVER is converted to an equivalent
MSCP status code; and this status code is sent to the remote host in an end
message.

NOTE

Routine XFER_ERR and a table equating VMS condition values with MSCP status
codes are presented in a later section of this chapter covering sequential commands.

~6 Dlglta1 Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

5. 7.4.4 FLUSH Routine

This command is treated as a NOP that always succeeds. Routine FLUSH merely branches to
SEND_END to send to the remote host an end message bearing the status code MSCP$K_ST_
SUCC (success).

5.7.4.5 REPLACE Routine

This command is not supported by the VMS based MSCP server. Routine REPLACE merely
branches to PACKET_ERROR. PACKET_ERROR then branches to SEND_PK.T to send to the
remote host an end message bearing the status code MSCP$K_ST_ICMD (invalid command).

5.7.5 Sequential Class Commands

The VMS based MSCP server supports four sequential class commands sent to it by a host:

Table 5-1 o: Supported Sequential Class Commands

Command Purpose

AVAILABLE to place a unit in the "available" state

ONLINE to set the unit online to the host

SET UNIT CHARACTERISTICS to set the unit's characteristics from the host's point of view

DETERMINE ACCESS PATHS to have the unit identify itself to a secondary controller to which it
is currently ported

All sequential class commands are passed to routine SEQUENTIAL by the MSCP server's
SCS message input routine MSG_IN. If there is no Sequential Command active for this unit,
no requests currently being processed, and no requests on the blocked queue, the command
is processed. Routine SEQUENTIAL will dispatch to the appropriate routine. If there is no
sequential command active for this unit and there are requests currently being processed
for the unit, the command is placed at the tail of the Blocked queue. If there is a sequential
command already in progress for this unit, the command is inserted at the tail of the Blocked
queue.

Here is a summary of each of the four command specific routines:

• AVAILABLE
An AVAILABLE command is issued to the controller by a host processing a dismount
request for a unit on that controller.
The UQB for each unit being served by the VMS based MSCP server contains a bitmap of
client hosts. If the unit is online to a client host, then the bit in that bitmap corresponding
to the client host is a "1"; otherwise, the bit is a "O".

Digital Equipment Corporation/ Internal Use Only 5-67

The VMS Based MSCP Server

First, the bit corresponding to the client host which sent the AVAILABLE command is
cleared. If the bitmap also indicates that the unit is no longer online to any other client
host, then

The AVAILABLE flag will be set in the UQB.
The unit will be unloaded if the "online count" field of the UCB indicates no host (not
even the local host) has the unit online and the Spindown modifier was set in the
AVAILABLE command.

• ONLINE
The MSCP ONLINE command is issued by a host as part of a request to mount a unit.
The MSCP server issues an I0$_PACKACK function to determine if the unit is reachable.
A DSA device receiving this function will return a "success"; but a non-DSA device will
return an "illegal 1/0" status. Either is acceptable since the server merely wishes to see if
it can reach the unit.
If the unit is reachable:

The ONLINE flag is set in the unit's UQB.
The bit corresponding to the remote host is set in the UQB's client ONLINE bitmap.
(This indicates that the unit is now online to the remote host that issued the ONLINE
command.)
The UCB's count of hosts having the unit online is incremented.
The HULB structure is initialized for the Host/Unit combination
Various unit characteristics are returned to the remote host in an end message. These
include the number of LBN s, volume serial number, multi-unit code, unit flags, unit
identifier, and media ID.

If the unit is not reachable, then either an "offiine" or "drive error" status code will be sent
to the remote host in the end message.

• SET_UNIT_CHR
The SET UNIT CHARACTERISTICS command is used to control host settable unit
characteristics, and to obtain unit characteristic information necessary to a host's disk
class driver.
The only characteristic in this command which is of interest to the VMS based MSCP
server is the Enable Set Write Protect modifier, MD_STWRP, in the MODIFIERS field of
the command. The purpose of this flag, if set, is to allow the Software Write Protect unit
flag, UF _ WRTPS, to be host settable. The MD_STWRP modifier being set to "1" in the
SET UNIT CHARACTERISTICS command does not in itself alter the current setting of
the UF _ WRTPS unit flag.
The VMS based MSCP server's interest in this flag is quite minimal. In fact, the only
action taken by the server is to verify that the "software write protect" flag will be a zero
in the end message returned to the remote host if the MD _STWRP modifier is a zero in
this command.
The server doesn't even record the setting of the MD _STWRP modifier. An end message
containing various unit characteristics, including the number of LBN s, volume serial
number, multi-unit code, unit flags, unit identifier, and media ID is sent to the remote
host.

5-68 Digital Equipment Corporation I Internal Use Only

The VMS Based MSCP Server

• DET_AC'C_PATH
The DETERMINE ACCESS PATHS command is used by the disk class driver to determine
which controllers provide paths to a dual-pathed unit. When a DETERMINE ACCESS
PATHS command is received, normally the unit would identify itself to any other con
troller to which it is ported, and then that other controller would send ACCESS PATH
ATTENTION messages to hosts with which it is communicating. This is one way hosts
would find out about an alternate path to the unit.
However, the VMS based MSCP server does not provide any of this functionality. It
effectively treats a DETERMINE ACCESS PATHS command as a NOP. It "pretends"
it implements this command by merely sending an end message with a status code of
MSCP$K_ST_SUCC (success) to the remote host which issued the command.

Figure 5-19 illustrates the general flow of Sequential Commands.

Digital Equipment Corporation I Internal Use Only 5-69

U'I
J.,
0

CJ

'° i
!'
c
if
3
CD a
fl ...

'iJ
0 ... a g

I ...
:s
!.

i
g
-<

(')
x z
I
0
0
0
UI

!.
UI

[DET_ACC_PATH

[SET_UNIT_CHR

l

r AVAILABLE] ,
[ONLINE]

.~

l

....
~

SEND END

Builds MSCP
END MESSAGE

-I
':r
CD .,, <

ca i c ; Z'
Y' tn - & co

i:
Immediate cmd ~

Non-seq Buffered Cmd ~

Non-Seq Non-Buff Cmd

G> "'
CD

0
::s

,,
CD en
DJ CD - C!

SEQUENTIAL
.,, CD
0 ...
==

Dispatches
to Specific
Routine for
MSCP OPCODE

0 -f c
CD

T a
i

Sequential cmd

I
g
3

MSG_IN 3
D)
::s

Receives Command
and Dispatches !---" fi'

Based on Command
Class

~

{ SCS/PPD ROUTINES

CI OR NI PORT

The VMS Based MSCP Server

5.7.6 Routines For Handling Sequential Commands

Following are detailed outlines of the four command specific routines for handling sequential
commands.

Routine SEQUENTIAL passes to each of these routines the addresses of the the sequential
MSCP command, the HRB corresponding to the host which sent the command, and the UQB
corresponding to the unit referenced by the command.

5.7.6.1 AVAILABLE

Sets unit in AVAILABLE state for the client host which issued the AVAILABLE command, and
in the AVAILABLE state for all client hosts if no other client host has the unit online.

• The HULB structure is located and deallocated
• UQB's ONLINE bitmap of client hosts is examined to determine whether or not the unit is

online to the remote host which issued the AVAILABLE command.
If the unit is online to the remote host, then

The bit in the ONLINE bitmap corresponding to the remote host is cleared so that it
no longer is.
The address of the UCB for the unit is fetched from the UQB, and the online count
field in the UCB (UCB$B_ONLCNT) is decremented.

• The UQB's ONLINE bitmap of client hosts is examined to determine if the unit is still
being held online for any other client hosts.
If not, then the following steps are performed:

The unit's state is set to "available for client hosts" by setting the AVAILABLE flag in
the UQB.
If the UCB$B_ONLCNT field is zero, then the unit is no longer online to any host (not
even to the local host). In this case, one of two additional steps will also be taken:
o If the "spindown" modifier was not set in the AVAILABLE command, then an 10$_

AVAILABLE function is issued to the driver for the unit.
o If the "spindown" modifier was set, then an 10$_UNLOAD function is issued to the

driver for the unit.
If the driver for the unit retums to AVAILABLE a VMS condition value indicating
that the 10$_AVAILABLE or 10$_UNLOAD function failed, then AVAILABLE does not
continue as described here, but rather, branches to XFER_ERR to do the following:
o Converts the VMS condition value into an equivalent MSCP status code. (A table

of equivalences is provided at the end of this section.)
o If the condition value was MEDOFL, VOLINV, or TIMEOUT, then the AVAILABLE

flag is set in the UQB's STATE field; if the condition value was WRITLCK, then
the WRTPH flag is set in the UQB's STATE :field ..

o A branch is taken to SEND_END to issue an end message containing the equiva
lent MSCP status code.

If the 10$_AVAILABLE or IO$_ UNLOAD is successful, the following is performed by
routine AVAILABLE.

Digital Equipment Corporation I Internal Use Only 5-71

The VMS Based MSCP Server

- The hardware and software write protect flags in the UQB (UF _ WRTPH and UF _
WRTPS, respectively) are cleared.

• AVAILABLE now branches to routine SEND_END, passing it the major status code
MSCP$K_ST_SUCC. SEND_END does the following:

Stores the MSCP major status code in the buffer containing the GET UNIT STATUS
request.
Converts the received AVAILABLE into an MSCP end message.
Sends the end message to the requesting host.

The following table lists the VMS condition values and the equivalent MSCP status codes
into which they are converted by routine XFER_ERR:

Table 5-11: VMS Error Status to MSPC Status Translation

VMS Error

SS$_ABORT

SS$_MEDOFL

SS$_VOLINV

88$_ WRITLCK

SS$_DATACHECK

SS$_CTRLERR

SS$_FORMAT

SS$_FORCEDERROR

SS$_PARITY

SS$_IVBUFLEN

SS$_TIMEOUT

5.7.6.2 ONLINE

MSCP Status

MSCP$K_ST_ABRTD

MSCP$K_ST_AVLBL

MSCP$K_ST_AVLBL

MSCP$K_ST_ WRTPR

MSCP$K_ST_COMP

MSCP$K_ST_CNTLR

MSCP$K_ST_MFMTE

MSCP$K_ST_DATA

MSCP$K_ST_DATA (subcode = 1)

MSCP$K_ST_HSTBF

MSCP$K_ST_OFFLN (subcode = MSCP$K_SC_UNKNO)

Sets a unit online to a client host if the unit is reachable by the VMS based MSCP server.

• If the ONLINE command was issued for either .a shadow set master unit or a shadow set
member, then no further processing is done for the command by this routine. Instead, an
end message is sent to the host which issued the ONLINE command, this end message
will contain the status code MSCP$K_ST_ICMD (invalid command).

• If the Online if for a Shadow Set Virtual Unit, verify that the Shadow set is still intact.
• An I0$_PACKACK function is issued for the unit to determine if it is reachable.

A DSA device receiving a PACKACK returns a "success" status. But non-DSA devices can
not handle PACKACKs; so they return an "illegal 1/0" status. Either status is acceptable
since the MSCP server is merely trying to see if the unit is reachable.

• If the 10$_PACKACK returns a condition value of either SS$_NORMAL or SS$_
ILLIOFUNC, then:
- The ONLINE flag is set in the UQB$W _STATE field.

5-72 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Create the HULB structure for this Host/Unit combination and initialize
If the UQB's ONLINE bitmap of client hosts indicates that the unit was not already
online for the host which sent the ONLINE command, then:
o Routine ONLINE sets the bit in the bitmap corresponding to the client host which

sent the ONLINE command.
o It increments the UCB$B_ONLCNT field if not a Shadow Set Virtual Unit.
A branch is taken to COPY_CHAR to copy device characteristics into the buffer
containing the ONLINE command.
o Content of UCB$L_MAXBLOCK field (number of LBN s).
o Volume serial number (if already mounted by local host or some other client host),

or recognizable "bogus" value of "X1234.

o Multi-unit code.
o Unit flags.
o Unit identifier.
o Media ID.
COPY_CHAR then branches to SEND_END to convert the ONLINE command into
an end message, and send the end message to the host which issued the ONLINE
command.

• If the 10$_PACKACK function returned neither SS$_NORMAL nor SS$_ILLIOFUNC,
then the device is not reachable via this server. In this case, an end message is sent to the
remote host with one of two MSCP major status codes:

MSCP$K_ST_OFFLN (offiine) if the condition value was wither SS$_MEDOFL or
SS$_DEVNOTSHR.
MSCP$K_ST_DRIVE (drive error) otherwise.

5.7.6.3 SET_UNIT_CHR

Intended to control host settable unit characteristics, this command is treated almost as a
NOP by the VMS based MSCP server.

• If the host which issued the SET UNIT CHARACTERISTICS is not among those client
hosts indicated by the UQB's client bitmap as having the unit online, then an end message
is sent to the host with the status MSCP$K_ST_ICMD (invalid command).

• If the MD_STWRP modifier (enable set write protect) is not set in the MODIFIERS field
of the command, then the SET_UNIT_CHR clears the "software write protect" flag, UF _
WRTPS, in the UNT_FLGS field of the command.

• Routine SET_UNIT_CHR falls into COPY_CHAR, which copies device characteristics into
the buffer containing the command.

Content of UCB$L_MAXBLOCK field (number of logical blocks in host area of unit).
Volume serial number (if already mounted by local host or some other client host), or
recognizable "bogus" value of "X1234.

Multi-unit code.
Unit flags.

Digital Equipment Corporation I Internal Use Only 5-73

The VMS Based MSCP Server

- Unit identifier.
- Media ID.
COPY_CHAR then branches to SEND_END to tum the command into an end message,
and send the end message to the host which issued the command.

5.7.6.4 DET_ACC_PATH

For a VMS based MSCP server, this command is treated as a NOP. Nothing is done other than
returning an end message with an MSCP$K_ST_SUCC (success) status code to the host which
issued the command.

5.7.7 Sequential Commands, Nonsequential Commands, and Blocking

Sequential commands typically alter the context of a unit relative to a remote host through
such actions as setting the unit AVAILABLE or ONLINE to that host. A sequential command
must form a barrier around or through which a nonsequential command may not pass. All
nonsequential commands received on the same SCS connection and for the same unit as
a sequential command, but before the sequential command, must be completed before the
sequential command is executed.

All nonsequential commands received on the same SCS connection and for the same unit as a
sequential command, but after the sequential command, must be blocked until the sequential
command is completed. Furthermore, multiple sequential commands received on the same
connection for the same unit must be executed in the order in which they are received.

There are four components in the VMS based MSCP server's database that enforce these rules:

• UQB$W _CURRENT field in each UQB.
This field contains a count of the number of MSCP commands received from remote hosts
and that are currently active for the unit represented by the UQB.
When a command specific to a particular unit is received by the server, it calls routine
FIND_UQB to locate the UQB corresponding to the unit specified in the command. When
this UQB is found, its CURRENT field is incremented.
When routine SEND_END transmits the End message for this command back to the
remote host, the UQB's CURRENT field is decremented after resources used in processing
the command are released and the command's HRB is deallocated.

• UQB$V _SEQ bit in each UQB's FLAGS field.
When set, this flag indicates that a sequential command is currently being executed.
When clear, this flag indicates there is currently no sequential command being executed.
If a sequential command for a unit has been received but is waiting for other commands
received before it to complete, this flag is clear. It is not set until a sequential command
actually begins execution.

• UQB's queue of blocked commands.
In this queue reside nonsequential HRBs waiting for sequential commands to complete,
and sequential HRBs waiting for nonsequential commands to complete.

5-74 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

The FLINK and BLINK for the head of this queue are at offsets UQB$L_BLOCKED _FL
and UQB$L_BLOCKED _BL, respectively.

• UQB$W_NUM_QUE field in each UQB.
This field contains the count of the number of HRBs in the UQB's queue of blocked
commands.

5.7.7.1 Basic Scenario

To understand the blocking and unblocking mechanism used by the MSCP server, begin
by assuming that it is receiving and processing nonsequential commands (e.g. READs and
WRITEs) for some unit. The UQB$W _CURRENT field is nonzero; it contains the number of
these currently active commands. The UQB$V _SEQ flag is clear since there is no sequential
command in execution. The queue of blocked commands is empty, and the NUM_QUE field is
presently 0. Figure 5-20 illustrates this condition.

Figure 5-20: Processing NonSequentlal Commands with No Sequential Commands Issued

UQB

SEQ FLAG = 0

CURRENT = 1

NUM_QUE = 0

BLOCKED_FL

BLOCKED BL

NO SEQUENTIAL COMMAND
EXECUTING AT THIS TIME

THERE IS ONE READ (OR WRITE)
COMMAND ACTIVE FOR THIS UNIT

NO COMMANDS CURRENTLY IN
BLOCKED COMMAND QUEUE

EMPTY BLOCKED COMMAND QUEUE

CXN-0005-16

Di_gital Equipment Corporation I Internal Use Only 5-75

The VMS Based MSCP Server

Then a sequential command is received. Since the CURRENT field contains at least a 1,
FIND_UQB will increment it to at least a 2 when it finds the UQB for the unit to which the
sequential command is directed. The CURRENT field now being greater than 1 indicates
that at least one other command is already in execution. The sequential command's HRB is
inserted into the blocked command queue, the NUM_QUE field is incremented to 1, and the
CURRENT field is decremented since the sequential command is blocked and will not be put
into execution yet. Figure 5-21 illustrates this condition.

Figure 5-21 : Sequential Command Received Whlle Processing NonSequentlal Commands

UQB

SEQ FLAG = 0

CURRENT = 1

NUM_QUE = 1

BLOCKED FL
BLOCKED BL

NO SEQUENT! AL COMMAND
T THIS TIME EXECUTING A

THERE IS ST
COMMAND ACT

ONE COMMAND
COMMAND) IN

...... -- SEQ
CMD

ILL ONE READ (OR WRITE)
IVE FOR THIS UNIT

(THE SEQUENTIAL
BLOCKED COMMAND QUEUE

CXN-0005-17

As explained earlier in this chapter, routines NONSEQ and NONSEQB dispatch nonsequential
commands to their specific handlers. Before doing so, these routines examine the UQB$V _SEQ
flag and find it still clear. But then they examine the NUM_QUE field and find it nonzero.
Instead of dispatching nonsequential commands, they insert them into the blocked command
queue behind the sequential command and increment NUM_QUE. Figure 5-22 illustrates this
condition.

5-76 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Figure 5-22: Sequential Command Pending With NonSequentlal Commands Arriving

UQB

SEQ FLAG = 0

CURRENT = 1

NUM_QUE = 3

BLOCKED_FL
--

BLOCKED BL

NO SEQUENTIAL COMMAND
EXECUTING AT THIS TIME

THE READ (OR WRITE) COMMAND
IS STILL ACTIVE FOR THIS UNIT

THREE COMMANDS (ONE SEQUENTIAL AND TWO
NONSEQUENTIAL) IN BLOCKED COMMAND QUEUE

SEQ
CMD

NON SEQ
CMD

NON SEQ
CMD

CXN-0005-18

Active nonsequential commands received prior to the sequential command are allowed to
complete. As each one does, routine SEND_END transmits the end message, and then calls
routine UNBLOCK which decrements the CURRENT field. Figure 5-23 illustrates this
condition.

Dlgltal Equipment Corporation/ Internal Use Only 5-77

The VMS Based MSCP Server

Figure 5-23: Currently Executing Commands Have Completed With Commands Queued

UQB

SEQ FLAG = 0 NO SEQUENTIAL COMMAND
EXECUTING AT THIS TIME

CURRENT = 0 THE READ (OR WRITE)
COMMAND COMPLETES

NUM_QUE = 3 THREE COMMANDS (ONE SEQUENTIAL AND TWO
NONSEQUENTIAL) IN BLOCKED COMMAND QUEUE

BLOCKED FL -- -. -. -- -- ~ ~

BLOCKED_BL SEQ NON SEQ NON SEQ
CMD CMD CMD

CXN-0005-19

When the CURRENT field goes to zero, the sequential command is removed from the blocked
command queue and placed in execution. As this is done, the NUM_QUE field is decremented,
the CURRENT field is incremented to 1, and the UQB$V _SEQ flag is set. Figure 5-24
illustrates this condition.

>-78 Digital Equipment Corporation / Internal Use Only

The VMS Based MSCP Server

Figure 5-24: Sequential Command Begins Execution

UQB

SEQ F-LAG = 1 SEQUENTIAL COMMAND
NOW EXECUTING

CURRENT = 1 ONE COMMAND (THE SEQUENTIAL
COMMAND) IS CURRENTLY EXECUTING

TWO COMMANDS (THE NONSEQUENTIAL
NUM_QUE = 2 COMMANDS) REMAIN IN THE

BLOCKED COMMAND QUEUE

BLOCKED FL -- --

BLOCKED_BL NON SEQ NON SEQ
CMD CMD

CXN-0005-20

While the sequential command is executing, the UQB$V _SEQ flag being set causes NONSEQ
and NONSEQB to continue inserting nonsequential commands into the blocked command
queue. (This is important since, if there are no nonsequential commands behind the sequential
command in the blocked command queue at the moment that the sequential command begins
execution, then the NUM_QUE field will go to 0. However, while the sequential command is
executing, it is necessary that newly received nonsequential commands still be inserted into
the blocked command queue.) Figure 5-25 illustrates this condition.

Digital Equipment Corporation I Internal Use Only 5-79

The VMS Based ·MsCP Server

Figure 5-25: Sequential Command Executing with NonSequentlal Commands Arriving

UQB

SEQ FLAG = 1

CURRENT = 1

NUM_QUE = 3

BLOCKED_FL
""-

BLOCKED BL

SEQUENTIAL COMMAND
IS STILL EXECUTING

ONE COMMAND (THE SEQUENTIAL
COMMAND) IS CURRENTLY EXECUTING

THREE COMMANDS (THE NONSEQUENTIAL
COMMANDS) NOW RESIDE IN THE
BLOCKED COMMAND QUEUE

NON SEQ
CMD

NON SEQ
CMD

""-

NEWEST
NONSEQ CMD

NON SEQ
CMD

CXN-0005-21

Finally, the sequential command completes execution. SEND_END transmits the End message
for the sequential command, and then clears the UQB$V _SEQ as part of the procedure for
deallocating the sequential command's HRB. Then SEND_END calls UNBLOCK. UNBLOCK
decrements the CURRENT field to O; then it loops, resuming each of the commands in the
blocked command queue, incrementing the CURRENT field and decrementing the NUM_QUE
field for each command resumed. Figure 5-26 illustrates this condition.

5-80 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Figure 5-26: Sequential Command Completes and NonSequential Commands Resume

UQB

SEQ FLAG = 0

CURRENT = 3

NUM_QUE = 0

BLOCKED_FL

BLOCKED_BL

SEQUENTIAL COMMAND
COMPLETED

ALL THREE NONSEQUENTIAL COMMANDS
THAT WERE IN THE BLOCKED COMMAND
QUEUE ARE NOW IN EXECUTION

NO COMMANDS CURRENTLY IN
BLOCKED COMMAND QUEUE

EMPTY BLOCKED COMMAND QUEUE

CXN-0005-22

Until the last HRB in the blocked command queue is resumed, the NUM_QUE field remains
nonzero. All subsequent commands received for this unit will be inserted into the queue, and
then resumed by UNBLOCK when they reach the head of the queue.

NOTE

Even though a GET UNIT STATUS command is an immediate class command, it
does increment the CURRENT field, so it will cause a sequential command to wait.
However, the converse is not true; a GET UNIT STATUS command will not block,
even if a sequential command is executing.

s. 7. 7 .2 Special case

While processing any sequential or nonsequential command, the CURRENT field is always at
least 1. A subsequent sequential command will be inserted at the tail of the blocked command
queue. As UNBLOCK resumes nonsequential HRBs in the blocked command queue, the
sequential HRB moves toward the head of the queue.

Digital Equipment Corporation l Internal Use Only 5-81

The VMS Based MSCP Server

Eventually, UNBLOCK encounters the sequential HRB. When this happens, UNBLOCK
leaves the sequential command in the blocked command queue and exits the loop. As each
resumed nonsequential command completes, UNBLOCK is called to decrement the CURRENT
field. When the CURRENT field again goes to zero, the sequential command at the head of
the queue is executed, and events progress as described in the previous section.

5.8 Error Handling

There is very little error recovery built into the VMS based MSCP server because there are
very few situations it needs to deal with.

If a remote host sends the server an MSCP command requesting information, the server
merely retrieves the information from its own database and sends that information to the host
in an End message. Such requests don't really give rise to situations which could lead to error
recovery by the server.

If a remote host sends the server an MSCP command which involves transferring data or
altering the context of a unit, then an IRP is constructed and passed to the appropriate driver
to actually accomplish the task. If an error is going to occur, it will most likely occur within
the driver. Such errors will merely be translated into equivalent MSCP status codes by calling
routine XFER_ERR, and then be sent to the remote host in an End message.

There are, however, two situations wherein the server plays an active role in dealing with
errors:

• Loss of SCS Connection with a Remote Host.
The remote host, if it is still running, will attempt to resynchronize its activity with the
local server. The basic philosophy behind the server's handling of such a situation is to
guarantee that, from the server's point of view, there are no commands active from the
remote host. It does this by scanning the queue of HRBs attached to the remote host's
HQB, marking each HRB as being "aborted". All HRBs that are not currently acquiring
mapping resources or being processed by a driver are deallocated. HRBs that are within
the "jurisdiction" of mapping routines or a driver will be deallocated when they return for
further processing by the server; this is because they will then be seen as having been
marked as "aborted". When the last HRB in the HQB's queue is deallocated, the HQB will
be deallocated.
The remote host resynchronizes with the server by establishing a new SCS connection.
The server will allocate a new HQB for the remote host as part of its accepting the
CONNECT request. The remote host can then resubmit to it, one at a time, the MSCP
commands that were active at the time the original connection was lost. This, of course,
presumes that the remote host has not rebooted, and thus still has commands outstanding
for this server.

• BUGCHECKs
There are various situations which lead to the MSCPSERV BUGCHECK, all of which are
fatal.

5-82 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

When the server accepts a CONNECT request from a remote disk class driver, it declares to
the SCS layer that its routine VC_ERR will handle any loss of that SCS connection. Control is
passed to VC_ERR when a failure occurs in the virtual circuit between the local host and the
remote host, or when the remote disk class driver issues a DISCONNECT.

• VC_ERR begins by fetching from the CDT$L_AUXSTRUC field of the CDT the address of
the HQB for the remote host at the other end of the lost connection.

• Routines SCAN_RSPID_WAIT, SCAN_RDT and SCAN_MSGBUF_WAIT are called to
unhook all CDRPs for the CDT on the failed connection.

• Then it loops through the queue of HRBs attached to the HQB to dequeue all nonactive
requests.

Each HRB (and hence MSCP command from the remote host) is marked as aborted by
setting the ABORT bit in the HRB$W _FLAGS field.

NOTE

This ABORT flag should not be confused with the ABORTWS flag set in
an HRB when processing the MSCP ABORT command. The ABORT flag
is used to signify that a command is being aborted due to the failure of the
SCS connection with the remote host which sent the command. No status
will be returned to that remote host since there is no connection with its
disk class driver.
The ABORTWS is used to signify that a command has been aborted at
the explicit request of a remote host. It is "aborted with status" since an
MSCP$K_ST_ABORTD status code is sent to the host.

If the HRB's state is neither HRB$K_ST_DRV _WAIT nor HRB$K_ST_MAP _WAIT,
then its CDRP is within the jurisdiction of the MSCP server; so its CDRP is removed
from any wait queue in which it currently resides.
CDRPs for HRBs in the DRV _WAIT and MAP_ WAIT state are left where they are
for now. Such CDRPs have already been handed to a driver for processing, or are
currently being allocated SCS mapping resources. Therefore, they are currently
outside the "jurisdiction" of the MSCP server.

• Again, VC_ERR loops through the queue of HRBs attached to the HQB. This time it
releases the SCS message buffer held by the HRB, if it has one.

• A formal SCS DISCONNECT is done to clean up the SCS database for the lost connection,
and mainly to release the CDT for the connection if the HQB$V _PAT'HMOVE flag is not
set.

• If the connection was broken to facilitate a Load Balance (HQB$V _PATHMOVE is set), the
DISCONNECT is issued with an SCS$C_USE_ALTERNAT'E_PORT status.

• The client host ONLINE bitmap of each UQB queued to the DSRV is examined to see if
the unit is online to the remote host at the other end of the failed SCS connection. If so,
the MSCP server issues an AVAILABLE command to an alternate entry point into its own
sequential command handler.
The primary effect of this is the clearing of the bit in the UQB's ONLINE bitmap corre
sponding to the remote host; so the unit is no longer online to that host. (See the previous
section in this chapter covering the AVAILABLE command for additional details.)

Digital Equipment Corporation / Internal Use Only 5-83

The VMS Based MSCP Server

To do this, an HRB is allocated along with an attached message buffer. The AVAILABLE
command is built in the message buffer, the VCFAILED flag is set in this HRB's FLAGS
field, and the HRB is queued to the HQB.

• HRBs not in the DRV _WAIT or MAP_ WAIT states and that do not have their VCFAILED
flag set are deallocated. Also, any resources (such as transfer buffers, IRPs, etc.) are
released.

• Finally, the HQB for the remote host itself is deallocated if no HRBs remain queued to it.

NOTE

HRBs that may still be queued to it are those that were found to be in the
DRV _WAIT or MAP_ WAIT states earlier, or that have their VCFAILED flag
set. When either the driver or mapping routines return them to the jurisdiction
of the server, the ABORTED flag set will be seen to be a "1" in the HRB. This
will cause the HRB to be passed to routine CLEANUP _HRB where it will be
deallocated and its resources released.
CLEANUP _HRB will also deallocate the HQB in this case as well. The
AVAILABLE command issued by VC_ERR is a sequential class command.
Consequently, it will wait unit all other commands ahead of it are completed.
Then it completes. The VCFAILED flag being set in its HRB causes CLEANUP_
HRB to deallocate the HQB if there are no other HRBs queued to the HQB; this
should be the case since all other commands completed before it.

BUGCHECKs within the VMS based MSCP server are always Fatal and are of the following
types: MSCPSERV, DISKSERVE or DOUBLDEALO. They fall into five general categories:

• An immediate, sequential, or nonsequential nonbuffered MSCP command containing an
"unexpected" opcode is received from a remote host.
Table 5-12 through Table 5-14 list the "expected" opcodes for each of these three classes.
As described earlier in the chapter, not all of these are implemented as in a normal DSA
controller.

Table 5-12: Expected Opcodes for Immediate Commands

Opcode

MSCP$K_ OP _ABORT

MSCP$K_OP _GTCMD

MSCP$K_OP _GTUNT

MSCP$K_OP _STCON

Definition

Abort a command.

Get command status.

Get unit status.

Set controller characteristics.

5-84 Digital Equipment Corporation/ Internal Use Only

The VMS Based MSCP Server

Table 5-13: Expected Opcodes for Sequential Commands

Opcode

MSCP$K_OP _AVAIL

MSCP$K_OP _ONLIN

MSCP$K_ OP _STUNT

MSCP$K_OP _DTACP

Definition

Set unit available.

Set unit online.

Set unit characteristics.

Determine access paths.

Table 5-14: Expected Opcodes for NonSequentlal NonBuffered Commands

Opcode

MSCP$K_OP _ACCES

MSCP$K_OP_CMPCD

MSCP$K_OP _ERASE

MSCP$K_OP _FLUSH

MSCP$K_OP _REPLC

Definition

Access data.

Compare controller data.

Erase data.

Flush host buffers.

Replace data.

If an MSCP command is in one of these three classes, but the opcode within the message
is not listed in the appropriate table above, then the MSCP server causes a MSCPSERV
BUGCHECK.

• While handling the failure of an SCS connection with a remote host, or while handling an
ABORT command from a remote host, an HRB is found whose STATE field contains an
"unacceptable" value.
In the connection failure case, the HRB can be any of those queued to the HQB associated
with the remote host at the other end of the lost connection. In the ABORT command
case, the HRB would be associated with the command to be aborted.
Table 5-15 lists the "acceptable" request states in the HRB$W _STATE field for the connec
tion failure case:

Table 5-15: Acceptable Request States for Connection Failures

State

HRB$K_MSG_ WAIT

HRB$K_SEQ_ WAIT

HRB$K_BUF _WAIT

HRB$K_SNDAT_ WAIT

HRB$K_DRV _WAIT

HRB$K_MAP _WAIT

Definition

Waiting for SCS msg. buffer/send credit.

Waiting for completion of sequential cmd.

Waiting for local MSCP transfer buffer.

Waiting for completion of block data xfer.

Waiting for driver to complete request.

Waiting for SCS mapping resources.

Finding an HRB with an "unacceptable" STATE field in either of these cases will cause the
MSCP server to MSCPSERV BUGCHECK.

Digital Equipment Corporation I Internal Use Only ~5

The VMS Based MSCP Server

• While processing an AVAILABLE, ERASE, READ, or WRITE, an IRP may be returned to
the server by a driver indicating the unit is suspect: SS$_MEDOFL, SS$_DEVOFFLINE,
SS$_ VOLINV, or SS$_TIMEOUT. The server will decrement the online count field in
the UCB for each remote host having the unit online. If the online count field becomes
negative, the server will MSCPSERV BUGCHECK

• When starting up the Load Monitoring thread, either there is insufficient nonpaged pool
for the repeating timer queue entry or there is insufficient nonpaged pool for the Fork
Block. The MSCP server will exit with a Fatal DISKSERVE BUGCHECK

• When Deallocating buffers back to the local transfer buffer pool, the buffer is found to
already be in the available pool. This will cause the MSCP server to exit with a Fatal
DOUBLDEALO BUGCHECK

5-86 ·01gltal Equipment Corporation / Internal Use Only

Symbol Tables and Data Structures

Appendix A

Symbol Tables and Data Structures

There are generally four methods of accessing data structure definitions. They are as follows:

1. Using SDNs predefined symbol tables: (ie: SDA> read sys$system:{table}.stb)

2. Extracting from the Public Libraries: (ie: sys$share:starlet.mlb, sys$share:lib.mlb)
3. Assembling the source SDL files: (ie: [sysloa.lis]cluster.sdl)
4. Manually creating user defined symbol tables

The general naming convention of a structure definition is to begin the name of the macro
that creates the structure with a dollar sign, followed by the structure name, followed by the
word DEF for definition. An example of the name of the macro defining the Unit Control Block
(UCB) structure follows:

$UCBDEF

A.1 SDA Symbol Tables

The VMS distribution kit includes several default symbol tables. These symbol table files contain
a subset of the structure definitions and symbols defined in the public libraries. The current list of
supplied symbol tables is as follows:

DCLDEF.STB
REQSYSDEF.STB
SYSDEF.STB

DECDTMDEF.STB
RMSDEF.STB

IMGDEF.STB
SCSDEF.STB

NETDEF.STB
SYS.STB

SYS.STB is automatically loaded by the Analyze/{system,crash} utility. It contains symbols
for the bugcheck codes, several system locations, several control region locations, the sysgen
parameter offsets, memory management locations, some of the scheduler global locations, as
well as many others.

SYSDEF.STB is another very useful symbol table. It must be read in manually using the
following syntax:

SD.A> read sys$system:sysdef.stb

Digital Equipment Corporation /Internal Use Only A-1

Symbol Tables and Data Structures

The following structures are defined in the SYSDEF symbol table:

$ACBDEF
$ACFDEF
$ACLDEF
$ADPDEF
$AQBDEF
$ARBDEF
$CCBDEF
$CEBDEF
$CHPCTLDEF
$CHPRETDEF
$CPUDEF
$CRBDEF

$CXBDEF
$DDBDEF
$DDTDEF
$DPTDEF
$FCBDEF
$FKBDEF
$GSDDEF
$IDBDEF
$IPLDEF
$IRPDEF
$IRPEDEF
$JIBDEF

$KFDDEF
$KFEDEF
$KFPBDEF
$KFRHDEF
$LCKCTXDEF
$LDRIMGDEF
$LKBDEF
$LNMSTRDEF
$LOGDEF
$MPBDEF
$MTLDEF
$0RBDEF

$PCBDEF
$PFLDEF
$PHDDEF
$PQBDEF
$PRVDEF
$PSLDEF
$RPBDEF
$RSBDEF
$RSNDEF
$RVTDEF
$SECDEF
$SPLCODDEF

$SPLDEF
$TQEDEF
$TTYDEFS
$UCBDEF
$VADEF
$VCADEF
$VCBDEF
$VECDEF
$WCBDEF

SCSDEF.STB should be read in for viewing VAXcluster data structures. It contains symbols
for the following structures:

$CDDBDEF $CLUICBDEF $LILDEF $PEMCOMPDEF $UCBDEF
$CDLDEF $CLUPBDEF $PAERDEF $PEMREGDEF $UCBNIDEF
$CDRPDEF $CLURCBDEF $PAPDTDEF $PPDDEF $VCIBDEF
$CDTDEF $CNCTDEF $PAREGDEF $RDDEF $VCIBDLLDEF
$CIBDDEF $CRBDEF $PAUCBDEF $RDTDEF $VCRPDEF
$CIBDTDEF $CSBDEF $PBDEF $RHDRDEF $VCRPLANDEF
$CLSMSGDEF $CXBDEF $PDTDEF $SBDEF $BUSDEF
$CLUBDEF $DCBEDEF $PEERLDEF $SCSDEF $NISCADEF
$CLUBTXDEF $DYNDEF $PEMCHDEF $SDIRDEF $PORTQBDEF
$CLUDCBDEF $EMBDEF $PEMCLSTDEF $TR_ERRDEF $VCDEF

The provided symbol tables only contain a subset of the data structures utilized by VMS. If
after reading in the STB files your structure is still undefined, you will need to continue your
search.

A.2 Public Libraries

The VMS distribution kit includes two library files (STARLET.MLB and LIB.MLB). These libraries
describe a majority of the VMS data structure definitions. The libraries are provided in two
formats, an ASCII text file, (BLISS source code) with an extension of .REQ and the macro library
itself with the extension .MLB.

Each entry in the BLISS source code of the libraries has the following format:

macro VCB$B TYPE = 10,0,8,0 %;
macro VCB$V-WRITE SM= 11,1,1,0 %;
macro VCB$B=LRU_LIM = 77,0,8,1 %;

structure type of VCB
Storage map is write accessed
VOLUME DIRECTORY LRU SIZE LIMIT

In the above example, the VCB indicates that these fields are part of the Volume Control Block
structure. The letter following the dollar sign indicates the data type (see Section A.5 for a list
of data types) and the name following the underscore indicates the unique field name.
The four comma separated fields following the equal sign represent the following:

• Byte offset into the structure (ie: 10,11, 77)
This field indicates at what byte within a structure the field is located.

• Starting bit offset within the field (ie: 0,1,0)
This item indicates at which bit within the field the data begins. A value of zero is bit
zero, A value of one is bit one, etc.

A-2 Digital Equipment Corporation I Internal Use Only

Symbol Tables and Data Structures

• Size of the field in bits (ie: 8,1,8)
This field would indicate 1 bit for a bit field, 8 bits for a byte field, 32 bits for a longword,
etc.

• Whether the data is signed or not (ie: 0,0,1)
For this field a value of one indicates that this is a signed field. A value of zero indicates
that this is an unsigned field.

To determine if a given structure is defined in either of these libraries, you can use the VMS
search command to look through the REQ files, or use the librarian utility to list the contents
of the MLB files. An example of looking for the DSRV structure (Disk Server Structure used
with MSCP serving) follows:

Example using the SEARCH command to look for $dsrvdef

$search sys$share:lib.req module,dsrv I match=and
!*** MODULE $DSRVDEF1 ***

Example using the librarian to check the macro library, LIB

$library I list sys$share:lib.mlb

Directory of MACRO library SYS$COMMON: [SYSLIB]LIB.MLB;2 on 14-MAR-1992 17:15:33
Creation date: 12-MAY-1991 13:12:58 Creator: VAX-11 Librarian V04-00
Revision date: 12-MAY-1991 13:13:14 Library format: 3.0
Number of modules: 587 Max. key length: 31
Other entries: 0 Preallocated index blocks: 75
Recoverable deleted blocks: 0 Total index blocks used: 27
Max. Number history records: 20 Library history records: 0

$$10 ROUTINES DATADEF
$$SYSTEM PRIM-DATADEF
$$TTYDIALTYPDEF
$ABDDEF
$ACBDEF
$ACFDEF
$ACMDEF
$ADBDEF
$ADPDEF

$DSRVDEF
$DTSSDEF
$DYNDEF
$ECBDEF

Once you have determined that a given structure is defined in either of the libraries, you
will need to extract that information into a symbol table that will be readable by SDA. To
accomplish this, a small macro program can be written. An example dialogue with SDA and
creating the symbol table follows:

1 The dollar sign and the DEF are part of the actual name of the macro module.

Digital Equipment Corporation / Internal Use Only A-3

Symbol Tables and Data Structures

$analyze/system
VAX/VMS System analyzer
SDA>!Read in predefined symbol tables
SDA> read sys$system:sysdef .stb
%SDA-I-READSYM, reading symbol table SYS$COMMON: [SYSEXE]SYSDEF.STB;l
SDA> read sys$system:scsdef.stb
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SCSDEF.STB;l
SDA>!
SDA>!Atternpt to format the DSRV data structure
SDA> format @scs$gl mscp
%SDA-E-NOSYMBOLS, no "DSRV" symbols found to format this block
SDA>!
SDA>!The dsrv structure is not defined in the provided symbol tables
SDA>!Check the public libraries ...
SDA> spawn
$!
$ search sys$share:starlet.req rnodule,dsrv/match=and
%SEARCH-I-NOMATCHES, no strings matched
$!
$ search sys$share:lib.req module,dsrv/match=and
!*** MODULE $DSRVDEF ***
$!
$! Found the structure definition in the LIB library. Write a short
$! MACRO program to extract the information into a symbol table
$ create dsrvdef.mar
.library /sys$share:lib.mlb/

;Note that the word GLOBAL on the
; following line MUST BE CAPS

$dsrvdef GLOBAL ;Extract the DSRV structure definitions
.end
"Z
$!
$macro dsrvdef.mar
$ link/symbol_table/noexecutable dsrvdef.obj
%LINK-W-USRTFR, image NL:[] .EXE; has no user transfer address
$ logout

Process SYSTEM 1 logged out at 14-MAR-1992 17:46:16.14
SDA>!Read in the-newly created symbol table
SDA> read dsrvdef.stb
%SDA-I-READSYM, reading symbol table SYS$SYSROOT: [SYSMGR]DSRVDEF.STB;l
SDA> format @scs$gl_mscp
80530000 OSRV$L FLINK
80530004 OSRV$L-BLINK
80530008 OSRV$W=SIZE
8053000A OSRV$B TYPE
8053000B OSRV$B-SUBTYPE
8053000C OSRV$W-STATE
8053000E OSRV$W=BUFWAIT

A.3 SOL files

00002850
000007AC

076C
69

01
0000

0000

VMS engineering provides Structure Definition Language files as part of the results disk produced
from a VMS build. The SDL language is a general data Structure Definition Language. A conver
sion utility exists to take the SDL generic form definition and create a language specific version of
the information. Note that the SDL.EXE image and the language specific conversion modules are
NOT typically shipped with the VMS distribution. To convert the SDL file to a macro language
format, the following files must exist:

sys$system:SDL.EXE

A-4 Digital Equipment Corporation I Internal Use Only

Symbol Tables and Data Structures

sys$share:SDLMACRO.EXE
An example of using SDL to create a symbol table follows:

$ analyze/system

VAX/VMS System analyzer
SDA> read sys$system:sysdef.stb
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SYSDEF.STB;l
SDA> read sys$system:scsdef.stb
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SCSDEF.STB;l
SDA>!
SDA>!Check if the structure is described in the predefined symbol tables
SDA> format/type=cluqf 804F6FEO
%SDA-E-NOSYMBOLS, no "CLUQF" symbols found to format this block
SDA>!Not defined
SDA> spawn
$!
$! Check the public libraries
$ search sys$share:starlet.req module,cluqf/match=and
%SEARCH-I-NOMATCHES, no strings matched
$!
$ search sys$share:lib.req module,cluqf/match=and
%SEARCH-I-NOMATCHES, no strings matched
$!
$!Not in the public libraries, must build from the SOL file ...
$ sdl/language=macro vSSdisk: [sysloa.lis]cluster.sdl
$!
$! You must now edit the resulting macro file to force the creation
$! of GLOBAL symbols and to invoke the macros
$ edit/edt/nocommand cluster.mar
*s /EQU=<=>/EQU=<==>/ w

5 .MACRO
596 .MACRO
625 .MACRO
667 .MACRO
702 .MACRO
764 .MACRO

6 substitutions
*insert 99999

$clsmsgdef
$clmdrsdef
$cnctdef
$clubtxdef
$cluqfdef
$incrnf def
.end
"Z

*exit

$CLSMSGDEF, .. EQU=<==>, .. COL=<:>
$CLMDRSDEF, .. EQU=<==>, .. COL=<:>
$CNCTDEF, .. EQU=<==>, .. COL=<:>
$CLUBTXDEF, .. EQU=<==>, .. COL=<:>
$CLUQFDEF, .. EQU=<==>, .. COL=<:>
$INCRNFDEF, .. EQU=<==>, .. COL=<:>

SYS$SYSROOT: [SYSMGR]CLUSTER.MAR;2 841 lines

$ macro cluster.mar
$ link/symbol table/noexecutable cluster.obj
%LINK-W-USRTFR, image NL:[] .EXE; has no user transfer address
$ logout

Process SYSTEM 1 logged out at 14-MAR-1992 18:11:28.53
SDA>!Read the newly defined structure into memory
SDA> read cluster.stb
%SDA-I-READSYM, reading symbol table SYS$SYSROOT:[SYSMGR]CLUSTER.STB;l
SDA> format/type=cluqf 804F6FEO
804F6FEO CLUQF$T_IDENT
804F6FE1 804F72

CLUQF$C_ACT_LENGTH

Digital Equipment Corporation/ Internal Use Only A-5

Symbol Tables and Data Structures

804F6FE4 8050F950
804F6FE8 03650220
804F6FEC CLUQF$W_VERSION

A.4 User Created Symbol Tables

The last possibility is that you are examining memory locations for which a VMS provided structure
symbol table does not exist. In this instance, you will either have to use the system source code to
determine what information is located at what offset in the structure each time you examine the
information, or you can create your own structure definition. By examining the VMS source code,
it is determined that during a lock manager detected exception, register R2 contains the address
of the message portion of a lock request packet. It is determined that at negative offsets from the
lock message itself we can find the SCS header information and the PPD header information. An
example of looking at a Lock Message structure follows.

$ analyze/crash lockmgr.dmp

VAX/VMS system analyzer
Dump taken on 25-JUN-1988 19:18:15.86
LOCKMGRERR, Error detected by Lock Manager

SDA> read sys$system:sysdef.stb
%SDA-I-READSYM, reading symbol table SYS$COMMON: [SYSEXE]SYSDEF.STB;l
SDA> read sys$system:scsdef .stb
%SDA-I-READSYM, reading symbol table SYS$COMMON: [SYSEXE]SCSDEF.STB;l
SDA>!
SDA>!Was the structure defined in the predefined symbol tables?
SDA> format/type=lckmsg @R2
%SDA-E-NOSYMBOLS, no "LCKMSG" symbols found to format this block
SDA>!Not defined by symbol tables.
SDA> spawn

$!
$! Check the public libraries
$ search sys$share:starlet.req module,lckmsg/match=and
%SEARCH-I-NOMATCHES, no strings matched
$!
$ search sys$share:lib.req module,lckmsg/match=and
%SEARCH-I-NOMATCHES, no strings matched
$!
$! Not in public libraries
$! SOL file cannot be located or does not exist
$!
$! Must manually create our own structure
$ create lckmsg.mar
.macro $lckmsgdef Define the Mac.J:O____
lckmsg$l_ppd_flink ==-32 The numeric value is the byte offset
lckmsg$l_ppd_blink ==-28 into the structure
lckmsg$b_ppd_swflag ==-21
lckmsg$b_ppd_type ==-22
lckmsg$w_ppd_size ==-24
lckmsg$b_ppd_flags ==-17
lckmsg$b_ppd_opcode ==-18
lckmsg$b_ppd_status ==-19
lckmsg$b_ppd_port ==-20
lckmsg$W_ppd_mtype ==-14
lckmsg$W_ppd_msglen ==-16
lckmsg$W scs credit ==-10
lckmsg$W-scslnsgtyp ==-12
lckmsg$L-scs-source == -8
lckmsg$L:=scs:=dest == -4

A-6 Digital Equipment Corporation I Internal Use Only

lckmsg$w s seq
lckmsg$w-ack seq
lckmsg$1-rspld
lckmsg$b-lck
lckmsg$b=facility
lckmsg$w func
lckmsg$1-memseq
lckmsg$1-loc lkid
lckmsg$1-rem-lkid
.endm - -

0
2
4
8
9

= 10
= 12
= 16
= 20

$lckmsgdef
.end

;Invoke the Macro

"Z
$ macro lckmsg.mar

Symbol Tables and Data Structures

;R2 will point to here

$ link/symbol table/noexecutable lckmsg.obj
%LINK-W-USRTFR, image NL:[] .EXE; has no user transfer address
$ logout
SDA>!Read in the newly created LCKMSG structure definition
SDA> read lckmsg.stb
%SDA-I-READSYM, reading symbol table SYS$SYSROOT:[SYSMGR]LCKMSG.STB;l
SDA> format/type=lckmsg @R2
80412280 LCKMSG$L PPD FLINK
80412284 LCKMSG$L-PPD-BLINK
80412288 LCKMSG$W=PPD=SIZE
8041228A LCKMSG$B PPD TYPE
8041228B LCKMSG$B-PPD-SWFLAG
8041228C LCKMSG$B-PPD-PORT
80412280 LCKMSG$B-PPD-STATUS
8041228E LCKMSG$B-PPD-OPCODE
8041228F LCKMSG$B-PPD-FLAGS
80412290 LCKMSG$W-PPD-MSGLEN
80412292 LCKMSG$W-PPD-MTYPE
80412294 LCKMSG$W-SCS-MSGTYP
80412296 LCKMSG$W-SCS-CREDIT
80412298 LCKMSG$L-SCS-SOURCE
8041229C LCKMSG$L-SCS-DEST
804122AO LCKMSG$W-S SEQ
804122A2 LCKMSG$W-ACK SEQ
804122A4 LCKMSG$L-RSPID
804122A8 LCKMSG$B-LCK
804122A9 LCKMSG$B-FACILITY
804122AA LCKMSG$W-FUNC
804122AC LCKMSG$L-MEMSEQ
804122BO LCKMSG$L-LOC LKID
804122B4 LCKMSG$L=REM=LKID
SDA>

A.5 Data Type Naming Conventions

FFE643AO
FFE643AO

0090
3C

00

00

oc
00

22

0079
0004

OOOA
0001
7All000A
7All0005

1271
OFCl
6F3E0001

02
07

0000
00000002
OOOF012F
0053025E

The following information is extracted from the Internals and Data Structures Manual, VMS
Version 5.2-Appendix D, Table D.1. Field format is struc$X_fieldname. Letter substitution for
'X' and the data types indicated are as described in Table A-1:

. Digital Equipment Corporation I Internal Use Only A-7

Symbol Tables and Data Structures

Table A-1: Data Type Definitions

Letter

A

B

c
D

E

F

G

H

I

J

K

L

M

N

0
p

Q

R

s
T

u
v
w
x
y

z

$Ax

$Gx

Data Type/Usage

Address

Byte Integer

Character I Constant

Double Precision Floating

Reserved to Digital

Single Precision Floating

G_floating-point

H_floating-point

Reserved for Integer extension

Reserved to customer for escape to other codes

Constant (Preferred over C) (may indicate value or location of field within structure)

Longword Integer

Field Mask (pattern of bits)

Numeric String (byte formXascii numbers)

Reserved to Digital as an escape to other codes

Packed String (compressed data format)

Quadword Integer

Reserved for Record structure

Field Size (size of field/structure)

Character String ('Thxt) (ascii characters)

Smallest Unit of Addressable Storage

Field Position - VAX MACRO (bit location within specified field) Field reference - BLISS

Word Integer

Context-dependent

Context-dependent

Unspecified or Nonstandard

Address of data whose size is specified by x (erl$al_bufaddr)

Address of data whose size is specified by x (exe$gl_scb)

A-8 Digital· Equipment Corporation l Internal Use· Only

Data Structures

Appendix B

Data Structures

This appendix displays in detail the major VMS data structures described in this book.

Variations of a few of these can be found in other references; however, as of this writing, those
other references did not describe fields and flags specific to DUDRIVER and the VMS based
MSCP server. The descriptions provided here not only reflect the traditional use of these
structures, but also the specifics relevant to the disk class driver and the MSCP server.

In addition to the explanations provided for the fields and flags, additional descriptive infor
mation accompanies many of the data structures. This information is intended to enhance
some of the explanations given in this book, as well as provide further useful details.

Digital Equipment Corpqratlon /Internal Use Only B-1

Data Structures

B.1 CCB - Channel Control Block

CCB$L_UCB 0

CCB$L_WIND 4

CCB$W_IOC 1 CCB$B_AMOD 1 CCB$B_STS 8

CCB$L_DIRP 12

Field Name

CCB$L_UCB

CCB$L_WIND

CCB$B_STS

Description and Flags

Address of UCB associated with device to which 1/0 channel has been as
signed.

Address of window control block (WCB).
A WCB is created when a file is accessed on the 1/0 channel with which
this CCB is associated. The WCB provides virtual to logical block mapping
information for the file.

1/0 channel status.

The following fields are defined within CCB$B_STS:

CCB$V _AMB Mailbox associated with channel (bit 0)

CCB$V _IMGTMP Image temporary (bit 1)

CCB$V _RDCHKDON Read protection check completed (bit 2)

CCB$V _ WRTCHKDON Write protection check completed (bit 3)

CCB$V _LOGCHKDON Logical 1/0 access check done (bit 4)

CCB$V _PHYCHKDON Physical 1/0 access check done (bit 5)

CCB$B_AMOD Access mode plus 1 of the process at the time the 1/0 channel was assigned.

When this field contains a 0, then this CCB is not in use.

CCB$W _IOC Number of outstanding 1/0 requests on this 1/0 channel.
This field is incremented by the $QIO system service code immediately
after the IRP representing an 1/0 request has been allocated but not yet
initialized. This field is decremented by the kernel AST queued to the process
by 1/0 postprocessing upon completion of an 1/0 request.

B-2 Digital Equipment Corporation I Internal Use Only

Field Name

CCB$L_DIRP

Data Structures

Description and Flags

Address of IRP for requested deaccess of the I/O channel with which this
CCB is associated.

A number of I/O requests can be pending concurrently on the same I/O
channel. If the process which owns the channel issues I/O request to deac
cess the device, the deaccess request is held until all other outstanding I/O
requests are processed.

Digital Equipment Corporation I Internal Use Only. . B-3

Data Structures

B.2 CDDB - Class Driver Data Block

CDDB$L_CDRPQFL 0

CDDB$L_CDRPQBL 4

CDDB$B_SUBTYPE l CDDB$B_ TYPE CDOB$W_SIZE 8

CDDB$8_SYSTEMID 12

CDDB$W_STATUS 16

CDDB$L_PDT 20

CDD8$L_CRB 24

CDDB$L_DDB 28

CDDB$Q_ CNTRLID 32

CDDB$B_CNTRLCLS I CDDB$B_CNTRLMDL 36

CDDB$W_ CNTRLTMO CDDB$W_ CNTRLFLGS 40

CDDB$L_ OLDRSPID 44

CDDB$L_OLDCMDSTS 48

CDDB$L_RSTRTCDRP 52

CDDB$W_RSTRTCNT CDDB$B_DAPCOUNT 1 CDD8$B_RETRYCNT 56

CDDB$L_RSTRTQFL 60

CDDB$L_RSTRTQBL 64

CDDB$L_SAVED_PC 68

CDDB$L_UCBCHAIN 72

CDDB$L_ORIGUCB 76

CDDB$L_ALLOCLS 80

CDDB$L_DAPCDRP 84

CDDB$L_ CDDBLINK 88

B-4 Digital Equipment Corporation/ Internal Use Only

Data Structures

CDDB$W_WTUCBCTR CDDB$B_STS2 CDDB$B_FOVER_CTR 92

CDDB$W_CPYSEQNUM CDDB$B_CHVRSN CDDB$B_CSVRSN 96

CDDB$W_RSVD4

Field Name

CDDB$L_CDRPQFL

CDDB$L_CDRPQBL

CDDB$W _SIZE

CDDB$B_TYPE

CDDB$B_SUBTYPE

CDDB$B_SYSTEMID

CDDB$L_MAXBCNT

CDDB$L_CTRLTR_MASK

CDDB$W_LOAD_AVAIL

CDDB$L_PERMCDRP

Description and Flags

Outstanding (i.e. active) CDRP queue forward link.

Outstanding (i.e. active) CDRP queue backward link.

Size of this data structure.

Major structure type for class driver.

DUDRIVER sets this field to contain the value of the symbol DYN$C_
CLASSDRV when the CDDB is created.

Structure subtype field.

DUDRIVER sets this field to contain the value of the symbol DYN$C_
CD_CDDB when the CDDB is created.

48-bit system ID field.

For a VAX host (which "looks like" a controller by virtue of running

100

104

108

112

the VMS MSCP server), this is the SCSSYSTEMID assigned to it when it
was installed. For an HSC, this is the value of the ID parameter which is
also assigned at installation time.

for a local controller handled by PUDRIVER, this quantity is constructed
by PUDRIVER as follows:

4 4 3 3
7 6 2 1 0

Iii TR Number CSR Address

CXN-OOOB-03

,Digital Equipment ·Corporation / Internal Use Only B-5

Data Structures

Field Name Description and Flags

CDDB$W _STATUS Status Flags.

The following fields are defined within CDDB$W _STATUS:

CDDB$V _SNGLSTRM

CDDB$V _IMPEND

CDDB$V _INITING

CDDB$V_RECONNECT

CDDB$V _RESYNCH

CDDB$V _POLLING

CDDB$V _ALCLS_SET

CDDB$V _NOCON

CDDB$V _RSTRTWAIT

CDDB$V _QUORLOST

CDDB$V _DAPBSY

CDDB$V _2PBSY

CDDB$V _BSHADOW

CDDB$V _DISABLED

CDDB$V _PATHMOVE

CDDB$V _PRMBSY

CDDB$L_PDT

CDDB$L_CRB

CDDB$L_DDB

CDDB$Q_CNTRLID

Single stream processing of CDRPs (bit 0)

Immediate command pending (bit 1)

Initializing connection with MSCP server in controller (bit 2)

Reconnecting to MSCP server (bit 3)

Reconnect with MSCP server initiated by class driver (bit 4)

Currently polling for units (bit 5)

Allocation class has been set (bit 6)

Currently no connection with MSCP server in controller (bit 7)

Waiting to restart next CDRP (bit 8)

CNXMAN quorum lost processing (bit 9)

DAP CDRP currently in use (bit 10 (A hex))

Failover fork block busy (bit 11 (B hex))

Controller uses "bundled" Shadowing (bit 12 (C hex))

Controller not in use by class driver action (bit 13 (D hex))

Closing connection for port load balance (bit 14 (E hex))

Permanent CDRP in use (bit 15 (F hex))

Port Descript.or Table address.

CRB address.

Address of first DDB in list of DDBs linked 1:o this CDDB by means of the
CONLINK field in each subsequent DDB.

Controller ID.

This 64-bit quantity is returned in the end message from the SET
CONTROLLER CHARACTERISTICS command issued by DUDRIVER
during controller initialization. It consists of three fields:
Class (CDDB$B_CNTRLCLS)
Identifies the type of subsystem. For DSA controllers and VAXes running
the VMS MSCP server software (and thus look like a controller), this field
contains a 1 (i.e. mass storage controller).
Model (CDDB$B_CNTRLMDL)
Identifies the exact model of the subsystem within this class. Some of the
common model numbers as of this writing are as follows:

8-6 Dig Ital Equipment Corporation / Internal Use Orily

Data Structures

Field Name Description and Flags

The following decimal values are defined for the Controller Model:

000 (00 hex)

001 (01 hex)

002 (02 hex)

004 (04 hex)

013 (OD hex)

018 (12 hex)

021 (15 hex)

027 (lB hex)

032 (20 hex)

033 (21 hex)

034 (22 hex)

035 (23 hex)

097 (61 hex)

101 (65 hex)

102 (66 hex)

CDDB$W_CNTRLFLGS

Unknown controller model

HSC50

UDA50

VMS Emulator (software MSCP server)

KDA50

KDB50

DSSI disk

KDM70

HSC70

HSC40

HSC60

HSC90

RF71

RF72

RF73

31 24 23 16 0

Unique Device Number ---------Class l Model l
CXN-OOOB-04

Controller flags returned in end message corresponding to an MSCP SET
CONTROLLER CHARACTERISTICS command.

Dlgltal Equipment Corporation/ Internal Use Only 8;-7

Data Structures·

Field Name Description and Flags

The following fields are defined within CDDB$W _CNTRLFLGS field:

MSCP$V _CF _576

MSCP$V _CF _SHADW

MSCP$V _CF _MLTHS

MSCP$V _CF _THIS

MSCP$V _CF _OTHER

MSCP$V _CF _MISC

MSCP$V _CF _ATTN

MSCP$V _CF _LOAD

MSCP$V _CF _EDCRP

MSCP$V _CF _REPLC

MSCP$V _CF _SRT

CDDB$W_CNTRLTMO

CDDB$L_OLDRSPID

CDDB$L_OLDCMDSTS

CDDB$L_RSTRTCDRP

CDDB$B_RETRYCNT

CDDB$B_DAPCOUNT

CDDB$W _RSTRTCNT

Controller supports disks formatted with 576-byte sectors. (bit 0)

Controller supports volume shadowing (bit 1)

Multiple host controller (bit 2)

Error log messages related to commands issued by this host should be
sent to this host (bit 4)

Error log messages related to commands issued by other hosts should be
sent to this host (bit 5)

Error log messages which do not relate to a specific command should be
sent to this host (bit 6)

Attention messages should be sent to this host (bit 7)

Controller returns load available information (bit 13 (D hex))

Data encrypt/decrypt supported (bit 14 (E hex))

Controller handles bad block replacement for disks connected to controller
(bit 15 (F hex))

Segemented Record Transfer (bit 15 (F hex))

Controller timeout in seconds.

This field is set up by DUDRIVER when it establishes a connection with
the MSCP server in the controller. The quantity stored here determines
how often the CRB associated with the controller expires and invokes the
class driver timeout mechanism routine. In DUDRIVER, this routine is
DU$TMR.

RSPID of oldest outstanding MSCP command.

This field is valid only when the RSPID it contains matches the RSPID
of the CDRP at the head of this CDDB's outstanding (i.e. active) CDRP
queue.

Latest MSCP command status for command corresponding to RSPID
stored in OLDRSPID field.

This field is used to determine if the controller is making progress with
the oldest outstanding command.

Address of only active CDRP if in single stream mode.

Number of retries remaining for currently active CDRP ifin single stream
mode.

Number of remaining calls to DU$TMR before DU$TMR actually initiates
DAP processing.

Number of re synch or connection errors since VMS booted on this host.

8-8 Digital Equipment corporation I Internal Use Only

Field Name

CDDB$L_RSTRTQFL

CDDB$L_RSTRTQBL

CDDB$L_SAVED_PC

CDDB$L_UCBCHAIN

CDDB$L_ ORIGUCB

CDDB$L_ALLOCLS

CDDB$L_DAPCDRP

CDDB$L_CDDBLINK

CDDB$B_FOVER_CTR

CDDB$B_STS2

CDDB$W _ WTUCBCTR

CDDB$B_CSVRSN

CDDB$B_CHVRSN

CDDB$W _CPYSEQNUM

CDDB$L_MAXBCNT

CDDB$L_CTRLTR_MASK

CDDB$L_LOAD_AVAIL

CDDB$L_PERMCDRP

Data Structures

Description and Flags

Forward link of queue wherein CDRPs are accumulated, sorted, and
selected for resubmission to the controller after reestablishing the connec
tion with the MSCP server in that controller.

Backward link of CORP restart queue described above.

Saved PC on internal subroutine calls.

Head of list of UCBs chained to this CDDB.

Address of "original UCB" (i.e. the boot UCB) if unchained.

Device allocation class.

Address of CDRP used for Determine Access Paths processing.

Address of next CDDB in list of CDDBs available to class driver.

Counter of reconnect intervals per fail over try.

Further Status Bits.

Counter of UCBs waiting for mount verification to finish so that single
stream processing of CDRPs may begin.

Controller microcode version.

Controller hardware version.

Base value of 10$_COPYSHAD sequence number.

Maximum byte count for the controller associated with this CDDB.

Mask of controller letters (ddCu:) used by this controller.

Load available from MSCP server.

This is the beginning of the permanent IRP/CDRP pair allocated contigu
ous with the CDDB.

Since the CORP is actually an extension of the IRP, this marks the
beginning of the IRP component of the pair.

Following this first extension of the basic CDDB is a second disk class
driver extension: the OAP IRP/CDRP pair.

NOTE

The fields that follow are actually offsets relative to the beginning of the CDDB and
into the permanent IRP/CDRP which is contiguous with the end of the basic CDDB.

As of this writing, the values of these symbolic offsets are not available by default
to SDA However, they are defined by the macro $DUTUDEF which can be found in
module DUTUMAC of VMS.

·Digital Equipment Corporation/ Internal Use Only B-9

Data Structures

Field Name

CDDB$A_PRMIRP

CDDB$L_PRMUCB

CDDB$L_CANCLQFL

CDDB$L_CANCLQBL

CDDB$A_PRMCDRP

CDDB$L_CDT

CDDB$A_DAPIRP

CDDB$L_DAPUCB

CDDB$A_DAPCDRP

CDDB$L_DAPCDT

CDDB$A_2PFKB

Description and Flags

Beginning of the IRP component of the permanent IRP/CDRP pair allo
cated as a disk class driver extension at the end of the basic CDDB. This
symbol has the same value as CDDB$L_PERMCDRP.

This is an alternate name for the IRP$L_UCB field in the IRP component
of the permanent IRP/CDRP pair.

Forward link of IRPs representing requests to cancel one or more 1/0
requests.

This field overlays the IRP$L_ABCNT field in the IRP component of
the permanent IRP/CDRP pair.

Backward link of IRPs representing requests to cancel one or more 1/0
requests.

This field overlays the IRP$L_ OBCNT field in the IRP component of
the permanent IRP/CDRP pair.

Permanent CDRP.

This field overlays the IRP$L_ CDT field in the permanent IRP/CDRP pair.

This symbol marks the beginning of the IRP component of the DAP
IRP/CDRP pair, the second disk class driver CDDB extension.

This field overlays the IRP$L_IRP field in the IRP component of the DAP
IRP/CDRP pair.

CDRP component of DAP IRP/CDRP begins here.

This field overlays the IRP$L_ CDT field of the DAP IRP/CDRP pair.

Beginning of fork block within DAP IRP/CDRP used for unit failover by
the disk class driver.

This fork block overlaps the last few longwords of the IRP component
of the DAP IRP/CDRP, beginning with the IRP$L_ABCNT byte. This
is permissable since the longwords aren't used anyway for their normal
purpose; so this was done to save nonpaged pool and to use previously
unused space in this CDDB.

There are two longwords which have their own symbolic names rela
tive to the beginning of this fork block:

FKB2P$L_SAVD_RTN - Saved return PC for routine
DUTU$FIND_DDB

FKB2P$L_SAVD_UCB - Saved UCB address for routine
DUTU$MOVE_IODB

B-10 ·Digital Equipment Corporation/ Internal Use Only

B.3 CORP - Class Driver Request Packet

CDRP$L_IOOFL

CDRP$L_IOQBL

CDRP$B_RMOD 1 CDRP$B_IRP _TYPE

CDRP$L_PID

CDRP$L_AST

CDRP$L_ASTPRM

CDRP$L_WIND

CDRP$L_UCB

CDRP$B_PRI 1 CDRP$B_EFN

CDRP$L_IOSB

CDRP$W_STS

CDRP$L_ SVAPTE

~
CDRP$L_BCNT

unused

CDRP$L_IOST1

CDRP$L_IOST2

CDRP$0_NT_PRVMSK

CDRP$L_SEGVBN

CDRP$L_DIAGBUF

CDRP$L_SEQNUM

CDRP$L_EXTEND

CDRP$L_ARB

CDRP$W_IRP _SIZE

CDRP$W _FUNC

CDRP$W _CHAN

CDRP$W_BOFF

CDRP$L_BCNT

Data Structures

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

72

76

80

84

88

Digital. Equipment Corporation / Internal Use. Only 8-11

Data Structures

CDRP$B_FLCK I

Field Name

CDRP$L_IOQFL

CDRP$L_IOQBL

CDRP$W _IRP _SIZE

CDRP$B_IRP _TYPE

CDRP$B_RMOD

CDRP$L_PID

CDRP$L_AST

CDRP$L_ASTPRM

CDRP$L_KEYDESC

CDRP$L_FQFL

CDRP$L_FQBL

CDRP$B_CD_ TYPE I
CDRP$L_FPC

CDRP$L_FR3

CDRP$L_FR4

CDRP$L_SAVD_RTN

CDRP$L_MSG_BUF

CDRP$L_RSPID

CDRP$L_CDT

CDRP$L_RWCPTR

CDRP$L_LBUFH_AD

CDRP$L_LBOFF

CDRP$L_RBUFH_AD

CDRP$L_RBOFF

CDRP$L_XCT _LEN

Description and Flags

1/0 Queue Forward Link

1/0 Queue Backward Link

Size of IRP in Bytes

Structure Type for IRP

Access Mode of Request

Process ID of Requesting Process

Address of AST Routine

AST Parameter

B-12 Digital Equipment Corporation / Internal Use Only

92

96

100

CDRP$W_CDRPSIZE 104

108

112

116

120

124

128

132

136

140

144

148

152

156

Field Name

CDRP$L_ WIND

CDRP$L_UCB

CDRP$W_FUNC

CDRP$B_EFN

CDRP$B_PRI

CDRP$L_IOSB

CDRP$W_CHAN

CDRP$W_STS

CDRP$L_SVAPTE

CDRP$W_BOFF

CDRP$L_BCNT

CDRP$L_IOST1

CDRP$L_IOST2

CDRP$Q_NT_PRVMSK

CDRP$L_SEGVBN

CDRP$L_DIAGBUF

CDRP$L_SEQNUM

CDRP$L_EXTEND

CDRP$L_ARB

CDRP$L_KEYDESC

CDRP$L_FQFL

CDRP$L_FQBL

CDRP$W_CDRPSIZE

Description and Flags

Address of Window Block

Address of Device UCB

1/0 Function Code and Modifiers

Event Flag Number and Event Group

Base Priority of Requesting Process

Address of 1/0 Status Double Longword

Process 1/0 Channel Number

Request Status

System Virtual Address of First PTE

Byte Offset in First Page

Byte Count of Transfer

First 1/0 Status Longword (for 1/0 post)

Second 1/0 Status Longword

Privilege Mask for DECNET

Virtual Block Number of Current Segment

Diagnostic Buffer Address

Sequence Number

Address of IRPE

Access Rights Block Address

Address of Encryption Key Descriptor

Fork queue forward link.

Data Structures

The class driver request may be suspended waiting for a resource or an
event to occur. In such situations, the CDRP representing the request is
queued to a data structure via this queue linkage field. An example would
be a DUDRIVER request waiting for the end message corresponding to an
MSCP command sent to the disk server in an HSC. The CDRP representing
that request would be queued to the CDDB for the HSC.

Fork queue backward link.

Size of this data structure.

The size of a CORP can vary, depending on the presence of CDRP ex
tensions.

CDRPs can be allocated as part of a larger data structure, such as an
IRP.

The permanent CDRP defined at the end of a CDDB is an example of a
CDRP defined in a data structure which is not an IRP. In this case the
CDRPSIZE field is set to a negative number, the offset from the base of the
CDRP to the base of the CDDB.

Digital Equipment Corporation/ Internal Use Only B-13

Data Structures

Field Name

CDRP$B_CD_TYPE

CDRP$B_FLK

CDRP$L_FPC

CDRP$L_FR3

CDRP$L_FR4

CDRP$L_SAVD_RTN

CDRP$L_MSG_BUF

CDRP$L_RSPID

CDRP$L_CDT

CDRP$L_RWCPTR

CDRP$L_LBUFH_AD

CDRP$L_LBOFF

CDRP$L_RBUFH_AD

CDRP$L_RBOFF

CDRP$L_XCT_LEN

Description and Flags

'fype of data structure. This field is loaded with the value of the symbol
DYN$C_CDRP when the CDRP is creat.ed.

Fork Lock.

Fork PC. When a class driver request represent.ad by a CDRP is suspended
waiting for a resource to come available or an event to occur, this field
contains the PC at which to resume the request when its wait is satisfied.

Fork R3. When a class driver request represent.ad by a CDRP is suspended
waiting for a resource to come available or an event to occur, this field
contains the quantity to be restored to regist.er R3 when the request is
resumed.

Fork R4. When a class driver request represent.ad by a CDRP is suspended
waiting for a resource to come available or an event to occur, this field
contains the quantity to be restored to regist.er R4 when the request is
resumed.

Save return address. Various routines use this field to save the return
address of the routine's caller. It is also sometimes used as a scratch area.

Message buffer address.
This field is used to hold the address of an SCS message buffer which is
allocated but not yet queued to the port for transmission. When given a
$QIO request, DUDRIVER allocates an SCS message buffer in which to
build the MSCP command it will send to an "MSCP speaking" controller.
The address of that buffer is kept here while DUDRIVER is building the
MSCP command.
When the CDRP is passed to the SCS/PPD layers, this field is set to 0 once
the message has been sent.

Response ID. When nonzero, the local SYSAP sending a message expects a
response from the SYSAP to which it is sending the message. This quantity
is used by the SCS layer to associated the response, when received, with the
CDRP. Then, using the FPC, FR3, and FR4 fields, the context of the local
SYSAP can be resumed when the response arrives.

Address of the CDT describing the connection between the local SYSAP
which issued the request represented by this CDRP, and the remote SYSAP
with which it is communicating via SCS.

Address of the resource wait count field, UCB$L __ RWAITCNT, in a disk or
tape class driver UCB. Disk and tape class driver 1/0 requests for a unit
are stalled if the RWAITCNT field in the unit's UCB is nonzero.

Block Transfer Extension

Local BUFfer Handle ADdress

Local Byte OFFset

Remote BUFfer Handle ADdress

Remote Byte OFFset

Transfer length in bytes

B-14 Digital Equipment Corporation/ Internal Use Only

Data Structures

B.4 CRB - Channel Request Block

CRB$L_FQFL 0

CRB$L_FOBL 4

CRB$B_FLCK 1 CRB$B_TYPE l CRB$W_SIZE 8

CRB$L_FPC 12

CRB$L_FR3 16

CRB$L_FR4 20

CRB$L_WQFL 24

CRB$L_WOBL 28

CRB$L_RAM_BUFFER_SIZE 32

CRB$B_UNIT_BRK I CRB$B_MASK l CRB$W_REFC 36

CRB$L_AUXSTRUC 40

CRB$L_ TIMELINK 44

CRB$L_DUETIME 48

CRB$L_ TOUTROUT 52

CRB$L_LINK 56

CRB$L_DLCK 60

CRB$L_BUGCHECK 64

~~ CRB$L_RTINTD (12 bytes) ~~ 68

~~ CRB$L_INTD (40 bytes) ~~ 80
..

CRB$L_BUGCHECK2 120

Dlgltal Equipment Corporation/ Internal Use Only B-15

Data Structures

Field Name

CRB$L_FQFL

CRB$L_FQBL

CRB$W_SIZE

CRB$B_TYPE

CRB$B_FLCK

CRB$L_FPC

CRB$L_FR3

CRB$L_FR4

CRB$L_WQFL

CRB$L_WQBL

CRB$L_RAM_
BUFFER_SIZE

CRB$W_REFC

CRB$B_MASK

CRB$B_UNIT_BRK

CRB$L_RTINTD2 (12 bytes)

CRB$L_INTD2 (40 bytes)

Description and Flags

Fork Queue Forward Link

Fork Queue Backward Link

Size of CRB in Byt.es

~~24

Structure Type for CRB. The value of the symbol DYN$C_CRB is stored in
this field when the CRB is creat.ed.

Fork Lock Number

Fork PC

Fork R3

ForkR4

Controller data channel wait queue forward link.

A channel wait queue contains addresses of driver fork blocks that contain
the cont.ext of suspended driver forks waiting to gain control of a controller
data channel.

Controller data channel wait queue backward link.

Size of RAM buffer

UCB reference count.

The number of UCBs corresponding to devices attached to the controller
with which this CRB is associated.

Channel allocation mask.

Also known as the controller status mask. As of this writing, there is only
one flag defined:

CRB$V _BSY - Channel is busy (not free)

Break bits for lines.

B-16 Digital Equipment Corporation/ Internal Use Only

Field Name

CRB$L_AUXSTRUC

CRB$L_TIMELINK

CRB$L_DUETIME

CRB$L_TOUTROUT

CRB$L_LINK

CRB$L_DLCK

CRB$L_BUGCHECK

CRB$L_RTINTD

Data Structures

Description and Flags

Address of auxiliary data structure used by the device driver to store special
controller information.

In the case of the disk class driver, DUDRIVER, this field contains the
address of the CDDB associated with this controller.

Forward link in list of CRBs waiting for periodic wakeups.

This field contains the address of the TIMELINK field of the next CRB in
the list. The last CRB in the list has this field set to 0. Location IOC$GL_
CRBTMOUTis the listhead.

Routine EXE$TIMEOUT in module TIMESCHDL tends to VMS's periodic
"once a second" tasks. One of these tasks is to scan this list for CRBs which
have timed out (see DUETIME field). If a timed out CRB is found, the
routine whose address is in the TOUTROUT field is called.

Time in seconds when this CRB expires and the periodic wakeup associated
with this CRB is to be delivered.

Routine EXE$TIMEOUT compares the content of this field with the con
tent of EXE$GL_ABSTIM. If DUETIME is greater than ABSTIM, then this
CRB has not yet come due. If, however, DUETIME is less than or equal to
ABSTIM, then this CRB has timed out and the wakeup is delivered by calling
the routine whose address is in the TOUTROUT field.

This field contains the address of the routine to be called when this CRB
times out. One of the tasks this routine must do is to reset the DUETIME
field to the next wakeup time.

In the case of DUDRIVER, this routine is DU$TMR. And DU$TMR "knows"
with which controller the wakeup is associated since it has the address of the
CDDB associated with that controller in the AUXSTRUC field of this CRB.

Address of secondary CRB (for MASSBUS devices only).

Address of Device Spinlock

Address of ILLQBUSCFG Bug_ Check

2ND Q-22 BUS Multi-level Intr Dispatch Code Start

Digital Equipment Corporation/ Internal Use Only B-17

Data Structures

Field Name

CRB$L_INTD

CRB$L_BUGCHECK2

CRB$L_RTINTD2

CRB$L_INTD2

Description and Flags

Interrupt transfer vector.

The Driver Prologue Table in each driver for an interrupting device speci
fies the address of an interrupt service routine as well as other information
to be stored in this 36-byte region. However, no devices directly interrupt
the disk class driver. DUDRIVER exchanges messages with the controllers
for its disks. These messages are passed down through the software to a
port driver for transmission to the controller. When a message is received
from a controller. the interrupt is received by a port driver (e.g. PADRIVER,
PUDRIVER, ...). The port driver then passes the message back up through
the software to DUDRIVER. Consequently, DUDRIVER makes makes almost
no use of this region.

See source listings of PADRIVER and PUDRIVER for examples of what
is stored here and its use. See also the manual entitled 'Writing a Device
Driver for VAX/VMS" to obtain details of what is in this region for drivers
that do make use of it.

Address of 2nd ILLQBUSCFG Bug_ Check

2ND Q-22 BUS Multi-level Intr Dispatch Code Start

Second 36-byte interrupt transfer vector for devices with multiple interrupt
vectors.

B-18 Digital Equipment Corporation/ Internal Use Only

Data Structures

B.5 DDB - Device Data Block

$~

$~

unused

Field Name

DDB$L_LINK

DDB$L_UCB

DDB$W_SIZE

DDB$B_TYPE

DDB$L_DDT

J

DDB$L_LINK 0

DDB$L_UCB 4

DDB$B_TYPE J DDB$W_SIZE 8

DDB$L_DDT 12

DDB$L_ACPD 16

DDB$T_NAME (16 bytes) s:l:i 20

DDB$T _DRVNAME (16 bytes) s:~ 36

DDB$L_SB 52

DDB$L_ CONLINK 56

DDB$L_ALLOCLS 60

DDB$L_2P _UCB 64

Description and Flags

Address of next DDB in chain of DDBs linked to an SB. A zero in this field
indicates that this is the last DDB in the chain.

Address of first UCB in chain of UCBs linked to this DDB.

Size of this data structure.

Type of data structure. This field is loaded with the value of the symbol
DYN$C_DDB when the DDB is created.

Address of DDT. The Driver Prologue Table of each device driver specifies
the address to be loaded into this field when the DOB is created.

Digital Equipment Corporation/ Internal Use Only B-19

Data Structures

Field Name

DDB$L_ACPD

DDB$T_NAME

DDB$T_DRVNAME

DDB$L_SB

DDB$L_ CONLINK

DDB$L_ALLOCLS

DDB$L_2P _UCB

Description and Flags

Name of default ACP for controller. ACPs that control access to file
structured devices use the high order byte of this field, called DDB$B_
ACPCLASS, t.o indicate the class of the file-structured device. Both the
default ACP name and class of file-structured device (if there is one) are
specified by the Driver Prologue Table.

The default ACP specified by DUDRIVER's Driver Prologue Table is "Fll".

Values for the DDB$B_ACPCLASS field (the high order byte of the DDB$L_
ACPD field) are:

DDB$K_PACK - Standard disk pack (value 1)
DDB$K_CART- Cartridge disk pack (value 2)
DDB$K_SLOW - Floppy disk (value 3)
DDB$K_TAPE - File-structured magnetic tape (value 4)

Generic name of devices attached to controller (e.g. DU, DJ, ...). The first
byte of this 16-byte field is the number of characters in the generic name.
The remainder of the field consists of a string of up t.o 15 characters.

Name of device driver (e.g. DUDRIVER, DRDRIVER, ...). The first byte
of this 16-byte field is the number of characters in the device driver name.
The remainder of the field consists of a string of up to 15 characters.

Address of System Block.

Address of next DDB in the connection subchain.

For disks handled by DUDRIVER, this connection subchain consists of
a list of DDBs linked into the CDDB. The listhead is the CDDB$L_DDB
field in the CDDB.

Allocation class. If no allocation class is assigned, then this field contains a
zero.

Address of the first in a chain of UCBs on secondary path.

B-20 Digital Equipment Corporation/ Internal Use Only

B.6 DSRV - Disk Server Structure

DSRV$L_FLINK

DSRV$L_BLINK

DSRV$B_SUBTYPE I DSRV$B_TYPE

DSRV$W_BUFWAIT

DSRV$L_LOG_BUF_START

DSRV$L_LOG_BUF _END

DSRV$L_NEXT_READ

DSRV$L_NEXT _WRITE

DSRV$W_INC_HILIM

DSRV$W_EXC_HILIM

DSRV$L_SRVBUF

DSRV$L_FREE_LIST

DSRV$L_AVAIL

DSRV$L_BUFFER_MIN

DSRV$L_SPLITXFER

DSRV$W_ CFLAGS

DSRV$w_reserved

DSRV$Q_CTRL_ID

DSRV$L_MEMW_ TOT

DSRV$W_MEMW_MAX

DSRV$L_MEMW_FL

DSRV$L_MEMW_BL

DSRV$W_SIZE

DSRV$W_STATE

DSRV$W _INC_LOLIM

DSRV$W_EXC_LOLIM

DSRV$W_ VERSION

DSRV$W_ CTIMO

DSRV$W_MEMW_CNT

Data Structures

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

76

80

84

88

Digital Equipment Corporation/ Internal Use Only B-21

Data Structures

DSRV$W_NUM_UNIT

DSRV$L_HQB_FL

DSRV$L_HQB_BL

DSRV$L_UQB_FL

DSRV$L_ UQB_BL

DSRV$W_LOAD_CAPACITY

DSRV$W_LBRESP

DSRV$W_LM_LOAD2

DSRV$W_LM_LOAD4

DSRV$W_LBFAIL_CNT

DSRV$W_LBRESP_CNT

DSRV$L_LBREQ_ TIME

DSRV$L_LBMON_ TIME

DSRV$L_LM_FKB

DSRV$L_LB_FKB

DSRV$B_LB_COUNT2 l DSRV$B_LB_COUNT1

DSRV$L_HULB_FL

DSRV$L_HULB_BL

~~ DSRV$B_HOSTS (32 bytes)

~~ DSRV$L_UNITS (1024 bytes)

DSRV$L_ OPCOUNT

B-22 Digital Equipment Corporation / Internal Use Only

DSRV$W_NUM_HOST

DSRV$W_LOAD_AVAIL

DSRV$W_LBLOAD

DSRV$W_LM_LOAD1

DSRV$W_LM_LOAD3

DSRV$W_LBIN IT_ CNT

DSRV$W_LBREQ_CNT

DSRV$W_LM_INTERVAL

1

1

1

1

1

1

1

1

1

1

1

1

1

1

92

96

00

04

08

12

16

20

24

28

32

36

40

44

48

52

56

60

64

1

1

F~

F~ 96

~ 220

DSRV$L_ABORT_CNT

DSRV$L_GET_CMD_CNT

DSRV$L_GET_UNT_CNT

DSRV$L_SET_CON_CNT

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$L_AVAIL_ CNT

DSRV$L_ ONLIN_ CNT

DSRV$L_SET_UNT_CNT

DSRV$L_DET_ACC_CNT

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$L_ACCES_CNT

DSRV$L_CMP_CON_CNT

DSRV$L_ERASE_CNT

DSRV$L_FLUSH_CNT

DSRV$L_REPLC_CNT

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

Data Structures

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

224

228

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

304

308

312

Digital Equipment Corporation I Internal Use Only B-23

Data Structures

~~

Field Name

DSRV$L_FLINK

DSRV$L_BLINK

DSRV$W _SIZE

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$L_ CMP _HST_ CNT

DSRV$L_READ_ CNT

DSRV$L_WRITE_CNT

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$1_reserved

DSRV$L_ VCFAIL_ CNT

DSRV$L_BLKCOUNT (516 bytes)

Description and Flags

Not used since this structure is not in any queue.

Not used since this structure is not in any queue.

Size of this data structure.

·, B-24 Digital Equipment Corporation / Internal Use Only

~ 316

~ 320

~ 324

~ 328

~ 332

~ 336

~ 340

~ 344

~ 348

~ 352

~ 356

~ 360

~ 364

~ 368

~ 372

~ 376

~ 380

~~ 384

Field Name

DSRV$B_TYPE

DSRV$B_SUBTYPE

DSRV$W _STATE

Data Structures

Description and Flags

Type of data structure.

This field is initialized to contain the value of the symbol DYN$C_
DSRV when the MSCP server initializes.

Data structure subtype.

This field is initialized to contain the value of the symbol DYN$C_
DSRV _DSRV when the MSCP server is initialized.

Current state of the server.

The following fields are defined within DSRV$W _STATE:

DSRV$V_LOG_ENABLD

DSRV$V_LOG_PRESENT

DSRV$V_PKT_LOGGED

DSRV$V _PKT_LOST

DSRV$V _LBSTEP1

DSRV$V _LBSTEP2

DSRV$V _LBEVENT

DSRV$V _HULB_DEL

DSRV$V _MON_ACTIVE

DSRV$V _LB_REQ

DSRV$V _CONFIG_ WAIT

DSRV$W _BUFWAIT

DSRV$L_LOG_BUF_START

DSRV$L_LOG_BUF _END

DSRV$L_NEXT_READ

DSRV$L_NEXT_ WRITE

DSRV$W _INC_LOLIM

DSRV$W _INC_HILIM

DSRV$W_EXC_LOLIM

DSRV$W _EXC_HILIM

DSRV$L_SRVBUF

DSRV$L_FREE_LIST

DSRV$L_AVAIL

DSRV$L_BUF _MIN

Logging is enabled. (bit 0)

Logging code is present. (bit 1)

A packet has been logged. (bit 2)

One or more packets since last read. (bit 3)

Load Balance Step One (bit 4)

Load Balance Step 'l\vo (bit 5)

Load Balance Event (bit 6)

HULB Deletion (bit 7)

Load Monitor Fork Block Active (bit 8)

Load Balance Required (bit 9)

Waiting for STACONFIG to configure devices (bit 10 (A hex))

I/Os that had to Wait

Address of start of buffer.

Address of end of buffer.

Address of next packet to read.

Address of next packet to write.

Low unit number to log.

High unit number to log.

Low unit number not to log.

High unit number not to log.

Address of preallocated pool of transfer buffers.

Head of linked list of free transfer buffers in preallocated pool.

Sum of Byt,es Available in Buffer

Minimum Transfer size based on buffer.

Digital Equipment Corporation/ Internal Use Only B-25

Data Structures

Field Name

DSRV$L_SPLITXFER

DSRV$W _VERSION

DSRV$W _CFLAGS

Description and Flags

Fragmented 1/0 Count.

Server Software Version

Controller Flags

The following fields are defined within DSRV$W _FLAGS:

MSCP$V _CF _576

MSCP$V _CF _SHADW

MSCP$V _CF _MLTHS

MSCP$V _CF _THIS

MSCP$V _CF_ OTHER

MSCP$V _CF _MISC

MSCP$V _CF _ATTN

MSCP$V _CF _LOAD

MSCP$V _CF _EDCRP

MSCP$V _CF _REPLC

MSCP$V _CF _SRT

DSRV$W_CTIMO

DSRV$W _RESERVED

DSRV$Q_CTRL_ID

DSRV$L_MEMW_TOT

DSRV$W _MEMW _CNT

DSRV$W _MEMW _MAX

DSRV$L_MEMW _FL

DSRV$L_MEMW _BL

DSRV$W _NUM_HOST

DSRV$W _NUM_UNIT

DSRV$L_HQB_FL

DSRV$L_HQB_BL

DSRV$L_UQB_FL

DSRV$L_UQB_BL

DSRV$W_LOAD_AVAIL

Controller supports disks formatted with 576-byte sectors. (bit 0)

Controller supports volume shadowing (bit 1)

Multiple host controller (bit 2)

Error log messages related to commands issued by this host should
be sent to this host (bit 4)

Error log messages related to commands issued by other hosts
should be sent to this host (bit 5)

Error log messages which do not relate to a specific command
should be sent to this host (bit 6)

Attention messages should be sent to this host (bit 7)

Controller returns load available information (bit 13 (D hex))

Data encrypt/decrypt supported (bit 14 (E hex))

Controller handles bad block replacement for disks connected to
controller (bit 15 (F hex))

Segemented Record Transfer (bit 15 (F hex))

Controller timeout.

Reserved

Unique MSCP device identifier (controller ID).

Number of I/Os that had to wait

Number of requests in memory wait queue.

Most requests ever in memory wait queue.

Forward link for head of I/O request memory wait queue.

Backward link for head of I/O request memory wait queue.

Count of hosts being served.

Count of disks being served.

Forward link for head of queue of Host Queue Blocks.

Backward link for head of queue of Host Queue Blocks.

Forward link for head of queue of Unit Queue Blocks.

Backward link for head of queue of Unit Queue Blocks.

Current load available

B-26 Digital Equipment Corporation / Internal Use Only

Field Name

DSRV$W _LOAD_ CAPACITY

DSRV$W _LBLOAD

DSRV$W _LBRESP

DSRV$W _LM_LOAD1

DSRV$W _LM_LOAD2

DSRV$W _LM_LOAD3

DSRV$W _LM_LOAD4

DSRV$W _LBINIT_CNT

DSRV$W _LBFAIL_ CNT

DSRV$W_LBREQ_CNT

DSRV$W_LBRESP_CNT

DSRV$L_LBREQ_TIME

DSRV$L_LBMON_TIME

DSRV$L_LM_FKB

DSRV$L_LB_FKB

DSRV$W _LM_INTERVAL

DSRV$B_LB_COUNT1

DSRV$B_LB_COUNT2

DSRV$L_HULB_FL

DSRV$L_HULB_BL

DSRV$B_HOSTS

DSRV$L_UNITS

DSRV$L_ OPCOUNT

DSRV$L_ABORT_CNT

DSRV$L_GET_ CMD_ CNT

DSRV$L_GET_UNT_ CNT

DSRV$L_SET_CON_CNT

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$L_AVAIL_CNT

DSRV$L_ONLIN_CNT

DSRV$L_SET_UNT_CNT

DSRV$L_DET_ACC_CNT

Description and Flags

Server load capacity

Target load for LB request

Load available from other server

previous interval load 1

previous interval load 2

previous interval load 3

previous interval load 4

Count of LB requests we have sent

Count of LB requests that failed

Count of LB requests from other servers

Count of LB requests we to which we responded

Time last LB request was sent

Time of last LB monitor pass

Address of load monitor thread FKB

Address of load balance thread FKB

Load monitoring interval

Counter for load balancing thread

Counter for load balancing thread

HULB queue listhead

Bit array of hosts served

Table of UQB addresses

Data Structures

'futal count of MSCP op codes received from remote hosts.

This is followed by 39 longwords which count the number of in
dividual MSCP op codes received.

- 1 -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

-9-

- 10 -

- 11 -

Digital Equipment Corporation / Internal Use Only B-27

Data Structures

Field Name

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$L_ACCES_CNT

DSRV$L_ CMP _CON_ CNT

DSRV$L_ERASE_CNT

DSRV$L_FLUSH_CNT

DSRV$L_REPLC_CNT

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$L_CMP _HST_CNT

DSRV$L_READ_CNT

DSRV$L_ WRITE_CNT

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$l_reserved

DSRV$L_ VCFAIL_CNT

DSRV$L_BLKCOUNT

Description and Flags

- 12 -

- 13 -

-14 -

- 15 -

- 16 -

- 17 -

- 18 -

- 19 -

- 20 -

- 21 -

- 22 -

- 23 -

- 24 -

- 25 -

- 26 -

- 27 -

- 28 -

- 29 -

- 30 -

- 31 -

- 32 -

- 33 -

- 34 -

- 35 -

- 36 -

- 37 -

- 38 -

- 39 -

Count of virtual circuit failures.

129 (decimal) counters to record the number of transfers for each
transfer size handled by the server.

B-28 Digital Equipment Corporation I Internal Use Only

Data Structures

B.7 HQB - Host Queue Block

<--+

<--+

HOB$L_FLINK 0

HQB$L_BLINK 4

HQB$B_SUBTYPE J HQB$B_TYPE HQB$W_SIZE 8

HQB$W_CNT_FLGS

HOB$W_FLAGS

HOB$W_MAX_QUE

HQB$L_DSRV

HOB$L_HULB_ VECTOR

HQB$W_MAX_HULB

Field Name

HQB$L_FLINK

HQB$L_BLINK

HQB$W_SIZE

HQB$B_TYPE

HQB$B_STATE I HQB$B_HOSTNO 12

HOB$W_HTIMO 16

HOB$0_TIME 20

HQB$W_NUM_QUE 28

HQB$L_HRB_FL 32

HQB$L_HRB_BL 36

HQB$L_CDT 40

HOB$B_SYSTEMID 44

48

HQB$L_DSRV 52

HOB$L_HULB_VECTOR 56

Description and Flags

Forward link to next HQB in queue ofHQBs attached to DSRV.

Backward link to preceding HQB in queue of HQBs attached to DSRV.

Size of this data structure.

Type of data structure.

This field is initialized to contain the value of the symbol DYN$C_
DSRV when the HQB is allocated and initialized. This occurs when
accepting a CONNECT request from a remote disk class driver.

Digital Equipment Corporation / Internal Use Only ,B-29

Data Structures

Field Name

HQB$B_SUBTYPE

HQB$B_HOSTNO

HQB$B_STATE

Description and Flags

Data structure subtype.

This field is initialized to contain the value of the symbol DYN$C_
DSRV _HQB when the HQB is allocated and initialized. This occurs
when accepting a CONNECT request from a remote disk class driver.

Host number.

Host state.

The following fields are defined within HQB$B_STATE:

HQB$V _ VCFAILED

HQB$V _DISCON_INIT

HQB$V _PATHMOVE

HQB$W_CNT_FLGS

HQB$W _HTIMO

HQB$W _FLAGS

Virtual circuit to host has failed. (bit 0)

Disconnect Initialization (bit 1)

PathMove in Progress (bit 2)

Host settable controller flags.

Host access timeout interval.

Host flags.

The following fields are defined within HQB$W _FLAGS:

HQB$V _UNIT_ONLINE

HQB$V_V5CL

HQB$Q_TIME

HQB$W_NUM_QUE

HQB$W _MAX_QUE

HQB$L_HRB_FL

HQB$L_HRB_BL

HQB$L_CDT

HQB$B_SYSTEMID

HQB$L_DSRV

HQB$L_HULB_VECTOR

HQB$W _MAX_HULB

Host has a unit online. (bit 0)

This is the V5 Class Driver (bit 1)

Time host issued SET CONTROLLER CHARACTERISTICS.

Current number of outstanding requests.

Most requests ever outstanding.

Forward link for head of HRB queue.

Backward link for head of HRB queue.

Address of CDT for connection between local MSCP server and remote
disk class driver.

SCS System ID of Host

Address of DSRV.

HULB Vector Address

Size ofHULB Vector

840 Digital Equipment Corporation/ Internal Use Only

Data Structures

B.8 HRB - Host Request Block

HRB$L_FLINK 0

HRB$L_BLINK 4

HRB$8_SUBTYPE J HRB$B_TYPE HRB$W_SIZE 8

HRB$L_RESPC 12

HRB$L_SAVD_RTN 16

HRB$W_FLAGS HRB$W_STATE 20

HRB$L_MSGBUF 24

HRB$L_IRP _CORP 28

~~ HRB$B_LBUFF (12 bytes) ~~ 32
~

HRB$L_BUFLEN 44

HRB$L_BUFADR 48

HRB$L_LBN 52

HRB$L_OBCNT 56

HRB$L_ABCNT 60

HRB$L_SVAPTE 64

c.._.
HRB$L_BCNT HRB$W_BOFF 68

H RB$w _reserved HRB$L_BCNT 72

HR8$L_ WAIT _FL 76

HRB$L_WAIT_BL 80

HRB$L_HQB 84

HRB$L_UQB 88

HRB$L_PDT 92

Digital Equipment Corporation I Internal Use. Only B-31

Data Structures

Field Name

HRB$L_FLINK

HRB$L_BLINK

HRB$W_SIZE

HRB$B_TYPE

HRB$B_SUBTYPE

HRB$L_RESPC

HRB$L_SAVD_RTN

HRB$W _STATE

HRB$L_CMD_STS

Description and Flags

Forward link to next HRB in queue of HRBs attached to HQB.

Backward link to preceding HRB in queue of HRBs attached to HQB.

Size of this data structure.

Type of data structure.

This field is initialized to contain the value of the symbol DYN$C_DSRV
when the HRB is allocated and initialized. This occurs when an MSCP
command is received from the disk class driver on a remote host.

Data structure subtype.

96

This field is initialized to contain the value of the symbol DYN$C_DSRV _
HRB when the HRB is allocated and initialized. This occurs when an MSCP
command is received from the disk class driver on a remote host.

PC to resume on restart.

Saved address of caller.

State of 1/0 request represented by this HRB.

Upon entering a "state", this field is set to contain the value of the appro
priate symbol:

Upon leaving a state, the HRB$V _STATE_INVALID flag is set. When this
field contains 0 or has the HRB$V _STATE_INVALID flag set, the HRB is
within the jurisdiction of the MSCP server.

B-32 Digital Equipment Corporation / Internal Use Only

Field Name Description and Flags

The following values are defined within HRB$W _STATE:

HRB$K_ST_MSG_
WAIT

HRB$K_ST_SEQ_
WAIT

HRB$K_ST_BUF _
WAIT

HRB$K_ST_SNDAT_
WAIT

HRB$K_ST_DRV _
WAIT

HRB$K_ST_MAP _
WAIT

HRB$K_ST_UNMAP _
WAIT

HRB$K_ST_SNDMS_
WAIT

HRB$W _FLAGS

Attn msg buffer/credit wait. (value 1)

Waiting for sequential cmd. (value 2)

Waiting for server buffer. (value 3)

Sending or receiving data. (value 4)

Driver queue. (value 5)

Mapping a buffer. (value 6)

Returning mapping resources. (value 7)

Sending a message. (value 8)

Status flags.

The following fields are defined within HRB$W _FLAGS:

Abort. (bit 0)

Abort with status. (bit 1)

Removed from resource queues. (bit 2)

End message needs to be sent. (bit 3)

Map resources allocated. (bit 4)

Unblock needs to be run. (bit 5)

Virtual circuit for host failed. (bit 6)

Data Structures

HRB$V _ABORT

HRB$V _ABORTWS

HRB$V _DEQUEUED

HRB$V _ENDMSG

HRB$V_MAP

HRB$V _UNBLOCK

HRB$V _ VCFAILED

HRB$V_OLDBUF The buffer allocated for this request is out of the Old Buffer. (bit 7)

HRB$L_MSGBUF

HRB$L_IRP _CDRP

HRB$B_LBUFF

HRB$L_BUFLEN

HRB$L_BUFADR

HRB$L_LBN

HRB$L_OBCNT

Address of MSCP message buffer.

Address of IRP/CDRP pair for this 1/0 request.

Local buffer handle. This is a 12-byte field.

Length of buffer allocated.

Buffer starting address.

LBN place holder for transfer.

Original request byte count.

Digital Equipment Corporation / Internal Use Only B-33

Data Structures

Field Name

HRB$L_ABCNT

HRB$L_SVAPTE

HRB$W_BOFF

HRB$L_BCNT

HRB$W _RESERVED

HRB$L_ WAIT_FL

HRB$L_ WAIT_BL

HRB$L_HQB

HRB$L_UQB

HRB$L_PDT

HRB$L_ CMD _STS

Description and Flags

Accumulated byte count. The number of bytes already exchanged between
the disk and the remote host.

System virtual address of PTE for local buffer.

Byte offset int.o first page of buffer.

Temporary storage for current transfer.

Reserved

Forward link for HRB wait queue attached t.o UQB.

Backward link for HRB wait queue attached to UQB.

Address of Host Queue Block.

Address of Unit Queue Block.

Address of Port Descriptor Table.

MSCP command status.

'B-34 Dlgttal Equipment Corporation/ Internal Use Only

Data Structures

B.9 HULB - Host Unit Load Block

HULB$L_FLINK

HULB$L_BLINK

HUL8$B_SUBTYPE] HULB$B_ TYPE HULB$W_SIZE

HULB$W_UNITNO

HULB$W_PREV_OPC

Field

HULB$L_FLINK

HULB$L_BLINK

HULB$W _SIZE

HULB$B_TYPE

HULB$B_SUBTYPE

HULB$W_HOSTNO

HULB$W_UNITNO

HULB$W_OPCOUNT

HULB$W_PREV_OPC

HULB$L_TIME

HULB$W _STATUS

HULB$W_HOSTNO

HULB$W_OPCOUNT

HULB$L_ TIME

HULB$W_STATUS

Use

Used to link this request

into the DSRV data styructure

Data structure size in bytes

This is an MSCP type struct

with a HULB subtype (4)

Assigned host number

Assigned unit number

Current operation count

Operation count for prev interval

Time of last Load Balance request

Load Balance status bits

The following fields are defined within HULB$W _STATUS:

HULB$V _LB_REQ

HULB$V _DELETE

HULB$V _LB_DISABLED

HULB$V _fi11_2

This unit has been asked to LB (bit 0)

This unit is offiine and the HULB can be deleted (bit 1)

This unit is not available for load balancing (bit 2)

Filler

0

4

8

12

16

20

Digital Equipment Corporation I Internal Use Only B-35

Data Structures

B.10 IRP -1/0 Request Packet

IRP$L_IOQFL

IRP$L_IOQBL

IRP$B_RMOD l IRP$B_TYPE

IRP$L_PID

IRP$L_AST

IRP$L_ASTPRM

IRP$L_WIND

IRP$L_UCB

IRP$B_PRI l IRP$B_EFN

IRP$L_IOSB

IRP$W_STS

IRP$L_SVAPTE

c....+
IRP$L_BCNT

IRP$W_STS2

IRP$L_IOST1

IRP$L_IOST2

IRP$L_ABCNT

IRP$L_OBCNT

IRP$L_SEGVBN

IRP$L_DIAGBUF

IRP$L_SEQNUM

IRP$L_EXTEND

IRP$L_ARB

B-36 Digital Equipment Corporation/ Internal Use Only

IRP$W_SIZE

IRP$W_FUNC

IRP$W_CHAN

IRP$W_BOFF

IRP$L_BCNT

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

Data Structures

IRP$L_KEYDESC 92

IRP$L_FQFL 96

IRP$L_FQBL 100

IRP$B_FLCK I IRP$B_CD_TYPE 1 IRP$W_CDRPSIZE 104

IRP$L_FPC 108

IRP$L_FR3 112

IRP$L_FR4 116

IRP$L_SAVD_RTN 120

IRP$L_MSG_BUF 124

IRP$L_RSPID 128

IRP$L_CDT 132

IRP$L_RWCPTR 136

IRP$L_SHD_PIO_LNK 140

IRP$B_SHD_PIO_ERRCN] IRP$B_SHD_PIO_FLAGS I IRP$B_SHD_PIO_ACT l IRP$B_SHD_PIO_CNT 144

IRP$L_SHD_PIO_ERROR 148

IRP$W_SHD_FILLER 1 $B_SHD_PIO_ERRSEV I $B_SHD_PIO_ERRINDEX 152

Field Name

IRP$L_IOQFL

IRP$L_IOQBL

IRP$L_SHD_LOCK_FPC 156

IRP$L_SHD _LOCK_FR1 160

IRP$L_SHD _LOCK_FR2 164

Description and Flags

1/0 queue forward link.

If 1/0 for a unit is stalled when this IRP is handed to DUDRIVER, the disk
class driver queues the IRP to the UCB using this queue linkage.

This field is the same as the IOQFL field in the CDRP since IRP fields are
actually at negative offsets relative to the beginning of the associated CDRP.

1/0 queue backward link.

Digital Equipment Corporation / Internal Use Only B-37

Data Structures

Field Name

IRP$W_SIZE

IRP$B_TYPE

IRP$B_RMOD

IRP$L_PID

IRP$L_AST

IRP$L_ASTPRM

IRP$L_WIND

IRP$L_UCB

IRP$W_FUNC

IRP$B_EFN

IRP$B_PRI

IRP$L_IOSB

IRP$W_CHAN

IRP$W_STS

Description and Flags

Size of this data structure.

Type of data structure. This field is loaded with the value of the symbol
DYN$C_IRP when the IRP is created.

Access mode of the process at the time the $QIO was requested.

PID of the process that issued the $QIO.

Address of AST routine specified by $QIO parameter ASTADR.

Value of $QIO parameter ASTPRM.

Address of Window Control Block providing mapping information for the file
being accessed by the $QIO request represented by this IRP.

Address of UCB corresponding to the device on which the file resides.

1/0 function code specified by $QIO parameter FUNC.

Event flag number specified by $QIO parameter EFN. If the $QIO request does
not specify an event flag, then event flag 0 is used by default.

Base priority of the process which issued the $QIO.

Address of 1/0 status block specified by $QIO parameter IOSB.

1/0 channel number specified by $QIO parameter CHAN.

Status of 1/0 request represented by this IRP.

B-38 Digital Equipment Corporation / Internal Use Only

Data, Structures

Field Name Description and Flags

The following fields are defined within IRP$W _STS:

IRP$V _BUFIO

IRP$V_FUNC

IRP$V _PAGIO

IRP$V _ COMPLX

IRP$V _VIRTUAL

IRP$V _CHAINED

IRP$V _SWAPIO

IRP$V _DIAGBUF

IRP$V _PHYSIO

IRP$V _TERMIO

IRP$V _MBXIO

IRP$V _EXTEND

IRP$V _FILACP

IRP$V _MVIRP

IRP$V _SRVIO

IRP$V_KEY

IRP$L_SVAPTE

IRP$W_BOFF

Buffered 1/0 function. (bit O)

Read function. (bit 1)

Paging 1/0 function. (bit 2)

Complex-buffered-1/0 function. (bit 3)

Virtual 1/0 function. (bit 4)

Chained-buffered-1/0 function. (bit 5)

Swapping 1/0 function. (bit 6)

Diagnostic buffer present. (bit 7)

Physical 1/0 function. (bit 8)

Terminal 1/0 function. (bit 9)

Mailbox 1/0 function. (bit 10 (A hex))

IRP extension linked to this IRP. (bit 11 (B hex))

File ACP 1/0. (bit 12 (C hex))

Mount verification 1/0 function. (bit 13 (D hex))

SERVER TYPE 1/0 (TRIGGER MOUNTVER ON ERROR BUT DON'T STALL)
(bit 14 (E hex))

KEYDESC field in use. (bit 15 (F hex))

For a direct 1/0 transfer, such as a disk read or write, this field contains the
address of the system PTE for the first page to be used in the transfer. This
address is stored here by the routine used to lock the buffer pages in physical
memory during FDT processing.

For a buffered 1/0 transfer, the address of the buffer in system space is written
here by the FDT routine which allocates the buffer.

If the transfer is segmented, then this field actually applies only to the current
transfer segment.

For a direct 1/0 transfer, byte offset into first page of transfer buffer.

For a buffered 1/0 transfer, number of bytes charged to process for trans
fer.

FDT processing provides the information stored in this field.

Digital Equipment Corporation/ Internal Use Only B-39

Data Structures

Field Name

IRP$L_BCNT

IRP$W_STS2

Description and Flags

Count of bytes in 1/0 transfer.

The general remarks regarding the SVAPTE field apply here as well.

If the transfer is segmented, then the IRP actually represents only one seg
ment of the transfer. This field then represents only the number of bytes in the
current segment. It is updated with each new segment, and depends on how
much of the total request is mapped by that segment.

Extension of Status Word

The following fields are defined within IRP$W _STS2:

IRP$V _START_
PAST_HWM

IRP$V _END_PAST_
HWM

IRP$V _ERASE

IRP$V _PART_~

IRP$V _LCKIO

IRP$V _SHDIO

IRP$V _CACHEIO

IRP$L_IOST1

IRP$L_IOST2

IRP$L_ABCNT

IRP$L_OBCNT

IRP$L_SEGVBN

IRP$L_DIAGBUF

1/0 STARTS PAST HIGHWATER MARK (bit 0)

1/0 ENDS PAST HIGHWATER MARK (bit 1)

ERASE 1/0 FUNCTION (bit 2)

PARTIAL HIGHWATER MARK UPDATE (bit 3)

Locked 1/0 request (DECnet) (bit 4)

This is a shadowing IRP (bit 5)

uses VBN cache buffers (bit 6)

First longword to be written to 1/0 status block specified by $QIO parameter
IOSB.

An alternate name for this field is IRP$L_MEDIA.

Second longword to be written to 1/0 status block specified by $QIO parameter
IOSB.

Accumulate byte counts transferred in a $QIO request.

This field is initialized to 0. Then as each segment of a transfer completes,
the number of bytes transferred by that segment is added into this field.

Original transfer byte count. This field reflects the value of the $QIO parame
ter P2 for read and write requests.

The content of the ABCNT field approaches the content of this field as seg
ments of the request complete.

Starting virtual block number of current transfer segment.

This field is updated with each new segment.

Address of diagnostic buffer in system address space, if one is involved with
the $QIO represented by this IRP.

B-40 Dlgltal Equipment Corporation / Internal Use Only

Data Structures

Field Name Description and Flags

IRP$L_SEQNUM 1/0 transaction sequence number. If an error is logged for the $QIO request,
then this field contains the universal error log sequence number.

IRP$L_EXTEND

IRP$L_ARB

Address of IRP extension linked to this IRP, if there is one.

Address of access rights block (ARB).

IRP$L_KEYDESC Address of encryption key.
Standard ffiP must contain space for Class Driver CDRP fields.

IRP$L_FQFL

IRP$L_FQBL

IRP$W _CDRPSIZE

IRP$B_CD_TYPE

IRP$B_FLCK

IRP$L_FPC

IRP$L_FR3

IRP$L_FR4

Fork Queue FLINK

Fork Queue Blink

Size field for positive section only

fype, always of interest

FORK LOCK NUMBER

Fork PC

Fork R3

Fork R4

IRP$L_SAVD _RTN Saved return address from level 1 JSB

IRP$L_MSG_BUF Address of allocated MSCP buffer

IRP$L_RSPID Allocated Request ID

IRP$L_ CDT Address of Connection Descriptor Table

IRP$L_RWCPTR RWAITCNT pointer
Extensions to the CDRP within the IRP Host-Based Shadowing Extension

IRP$L_SHD _PIO_ Link to clone IRP(s)
LNK

IRP$B_SHD_PIO_ Tot num phys IRPs assoc.
CNT

IRP$B_SHD_PIO_ Tot num phys IRPs active.
ACT

IRP$B_SHD_PIO_ Master Flags Byte
FLAGS

IRP$B_SHD_PIO_ Number of errors in chain
ERRCNT

IRP$L_SHD_PIO_ BCNT and Error Status (SS$_)
ERROR

IRP$B_SHD_PIO_
ERRINDEX

IRP$B_SHD_PIO_
ERRS EV

IRP$W_SHD_
FILLER

Index of erring device

Relative error severity

Digital Equipment Corporation / Internal Use Only B-41

Data Structures

Field Name

IRP$L_SHD_LOCK_
FPC

IRP$L_SHD_LOCK_
FRI
IRP$L_SHD_LOCK_
FR2

Description and Flags

Lock fork PC

Lock fork Rl

Lock fork R2

B-42 Dlgltal Equipment Corporation I Internal Use Only

B.11 SB -System Block

SB$L_FLINK

SB$L_BLINK

SB$B_SUBTYP l SB$B_TYPE

SB$L_PBFL

SB$L_PBBL

SB$L_PBCONNX

SB$B_SYSTEMID

unused

SB$W_MAXMSG

SB$T_SWTYPE

SB$T_SWVERS

S8$Q_SWINCARN

SB$T_HWTYPE

~~ SB$B_HWVERS (12 bytes)

~~ SB$T_NODENAME (16 bytes)

SB$L_DDB

SB$B_ENBMSK

SB$L_CSB

SB$L_PORT_MAP

SB$W_SIZE

SB$W_MAXDG

SB$W_TIMEOUT

Data Structures

~~

~~

0

4

8

12

16

20

24

28

32

36

40

44

52

56

68

84

88

92

96

Digital Equipment Corporation / Internal Use Only B-43

Data Structures

Field Name

SB$L_FLINK

SB$L_BLINK

SB$W_SIZE

SB$B_TYPE

SB$B_SUBTYP

SB$L_PBFL

SB$L_PBBL

SB$L_PBCONNX

SB$B_SYSTEMID

SB$W_MAXDG

SB$W _MAXMSG

SB$T_SWTYPE

Description and Flags

Forward link to next SB in queue of SBs whose header is SCS$GQ_CONFIG.

The local VAX host maintains an SB corresponding to every node known to
be in the cluster: one for itself, one for each other VAX, and one for each HSC.

However, it must also maintain an SB for each local DSA controller (UDA50,
KDB50, KDM70 etc.) as well. The microcode of such a controller implements
SYSAPs which are logically equivalent to the SYSAPs implemented in the soft
ware of a VAX or an HSC. For example, DUDRIVER uses SCS services to form
a connection with an MSCP server called MSCP$DISK in a local KDM70. It
then exchanges MSCP packets with that server in effectively the same manner
as it would with a server in a remote HSC.

Backward link in queue of SBs whose header is SCS$GQ_ CONFIG.

Size of this data structure.

Type of data structure. This field is set to contain the value of the symbol
DYN$C_SCS when the SB is created, indicating that this is one of the SCS
class of data structures.

Subtype of data structure. This field is set to contain the value of the symbol
DYN$C_SCS_SB when the SB is created. This indicates that this is a System
Block.

Forward link in Path Block queue header.

A PB represents an available SCS communication path between the local
host and the "system" represented by the SB to which the PB is queued.

Backward link in Path Block queue header.

Address of next Path Block for a connection.

If multiple SCS communication paths (i.e. PBs) are available between the local
host and the remote node with which a connection is desired, then SYS$SCS
will select PBs on a round robin basis to provide for some load balancing.
This, however, is subject to the constraint that CI and DSSI paths are given
preference over NI paths.

This 48-bit field contains the SCS system ID of the "system" represented by the
SB.

In the case of a VAX, this would be the value of its SYSGEN parameter
SCSSYSTEMID. If the "system" were an HSC, then this is the value of the
HSC's ID parameter. And if the "system" is actually a local DSA controller,
then PUDRIVER constructs this quantity based on the controller's TR level
and CSR address. (See description of CDDB$B_SYSTEMID field for details.)

Maximum datagram size.

Maximum message size.

This 4-byte field contains up to a 4-character ASCII system software type:
"VMS" or "HSC". If the SB is for other than a VAX or an HSC, then all four
bytes of this field are set to 0.

8-44 Digital Equipment Corporation/ Internal Use Only

Field Name

SB$T_SWVERS

SB$Q_SWINCARN

SB$T_HWTYPE

SB$B_HWVERS

SB$T_NODENAME

SB$L_DDB

SB$W_TIMEOUT

SB$B_ENBMSK

SB$L_CSB

SB$L_PORT_MAP

Data Structures

Description and Flags

This 4-byte field contains up to a 4-character ASCII system software version.
If the SB is for other than a VAX or HSC, then all four bytes of this field are
set to 0.

Software incarnation number. This is the time the "system" represented by the
SB was initialized.

This 4-byte field contains up to a 4-character ASCII hardware type (e.g. "9000",
"HS70", ...). If not a VAX or an HSC, this field is set to 0.

12-byte hardware version number.

16-byte field containing the SCS node name as a counted ASCII string.

The first byte contains the number of characters in the string. The remaining
15 bytes contain the actual characters.

Since PPD START messages limit the size of the node name to 8 bytes, that
constraint applies here as well. Also, if this node is running DECnet, then this
name is further restricted by DECnet to being at most 6 characters. This field
is left as zeros if the SB is for a "system" other than a VAX or an HSC (e.g.
local controller such as a UDA50).

Head of DDB list linked to this SB.

SCS Process Poller timeout field.

If greater than 0, then this field represents the number of seconds remain-
ing before this "system" becomes eligible for SCS process polling. If not greater
than 0, then this "system" is eligible for polling or polling is in progress.

SCS Process Poller process enable bit mask.

Indicates which processes on the "system" represented by this SB for which
polling is enabled.

Address of Cluster System Block for this "system", if one exists. CSBs are
maintained only for "active" nodes, i.e. for VAXes.

Load Sharing Port Bit Map

Dlgltal Equipment Corporation I Internal Use ·Only B-45

Data Structures

B.12 UCB - Unit Control Block

UCB$L_FQFL 0

UCB$L_FQBL 4

UCB$B_FLCK l UCB$B_TYPE l UCB$W_SIZE 8

UCB$L_FPC 12

UCB$L_FR3 16

UCB$L_FR4 20

UCB$W_INIQUO 1 UCB$W_BUFQUO 24

UCB$L_ORB 28

UCB$L_LOCKID 32

UCB$L_CRB 36

UCB$L_DLCK 40

UCB$L_DDB 44

UCB$L_PID 48

UCB$L_LINK 52

UCB$L_VCB 56

UCB$Q_DEVCHAR 60

UCB$L_AFFINITY 68

UCB$L_XTRA 72

UCB$W _DEVBUFSIZ 1 UCB$B_DEVTYPE 1 UCB$B_DEVCLASS 76

UCB$Q_DEVDEPEND 80

B-46 Digital Equipment Corporation I Internal Use Only

Data Structures

UCB$0_DEVDEPEND2 88

UCB$L_IOQFL 96

UCB$L_IOQBL 100

UCB$W_RWAITCNT UCB$W_UNIT 104

UCB$L_IRP 108

UCB$B_AMOD l UCB$B_DIPL UCB$W_REFC 112

UCB$L_AMB 116

UCB$L_STS 120

UCB$W_QLEN UCB$W_DEVSTS 124

UCB$L_DUETIM 128

UCB$L_OPCNT 132

UCB$L_SVPN 136

UCB$L_SVAPTE 140

UCB$W_BCNT UCB$W_BOFF 144

UCB$W_ERRCNT UCB$B_ERTMAX I UCB$B_ERTCNT 148

UCB$L_PDT 152

UCB$L_DDT 156

UCB$L_MEDIA_ID 160

Digital Equipment Corporation/ Internal Use Only B-47

Data Structures

Field Name

UCB$L_FQFL

UCB$L_FQBL

UCB$W_SIZE

UCB$B_TYPE

UCB$B_FLCK

UCB$L_FPC

UCB$L_FR3

UCB$L_FR4

UCB$W_BUFQUO

UCB$W_INIQUO

UCB$L_ORB

UCB$L_LOCKID

UCB$L_CRB

UCB$L_DLCK

UCB$L_DDB

UCB$L_PID

UCB$L_LINK

UCB$L_VCB

Description and Flags

Fork queue forward link. This is a queue of UCBs that contain driver fork
process contexts of drivers waiting to continue 1/0 processing.

VMS resource management routines insert UCBs on this queue. An
example would be when requesting UBA map registers via routine
IOC$REQMAPREG in module IOSUBNPAG. If map registers are not
available, the driver fork context is saved in the UCB and the UCB is
queued to the map register wait queue (ADPL_MRQBL, ADPL_MRQFL)
in the ADP for the UBA.

Fork queue backward link.

Size of UCB

Type of data structure. This field is set to the value of the symbol DYN$C_
UCB.

Fork Lock Number at which device driver usually runs. For DUDRIVER,
this is SPL$C_SCS.

Fork process driver address.

Certain resource management routines, such as IOC$REQMAPREG, sus
pend a driver fork process and place the UCB in a resource wait queue with
linkage provided by the UCB's FQFL and FQBL fields. The PC at which the
fork process is to resume is stored here in the UCB$L_FPC field. When the
fork process resumes, it is resumed at the IPL stored in the UCB$B_FLCK
field.

Saved content of R3 at the time that the driver fork process is suspended.

Saved content of R4 at the time that the driver fork process is suspended.

Buffered 1/0 quota if UCB represents mailbox.

Initial Buffered 1/0 Quota for this UCB.

Address of ORB associated with the UCB.

ID of lock on device. Used during volume mounting and also by various
volume shadowing routines.

Address of primary CRB associated with this UCB.

Address of Device IPL SpinLock

Address of DDB associated with this device.

Process identification code of process that has device allocated. See
$ALLOC system service documentation.

Address of next UCB in primary DDB chain of UCBs.

Address of VCB that describes the volume mounted on this device.

B-48 Digital Equipment Corporation / Internal Use Only

Data Structures

Field Name Description and Flags

UCB$L_DEVCHAR First longword of device characteristics flags for this device.

Some of these flags pertain to devices other than DSA disks.

The following values are defined within UCB$L_DEVCHAR:

DEV$V_REC

DEV$V_CCL

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SOD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

DEV$V_FOD

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Record-oriented device (bit 0)

Carriage control device (bit 1)

Terminal device (bit 2)

Directory-structured device (bit 3)

Single directory-structured device (bit 4)

Sequential block-oriented device (for example, tape) (bit 5)

Device is spooled (bit 6)

Operator device (bit 7)

Device contains RCT (bit 8)

Network device (bit 13 (D hex))

File-oriented device (bit 14 (E hex))

Dual-ported device (bit 15 (F hex))

Shareable device (used by more than one program simultaneously) (bit 10
hex)

Generic device (bit 17 (11 hex))

Device available for use (bit 18 (12 hex))

Device mounted (bit 19 (13 hex))

Mailbox device (bit 20 (14 hex))

Device marked for dismounting (bit 21 (15 hex))

Error logging enabled (bit 22 (16 hex))

Device allocated (bit 23 (17 hex))

Device mounted as foreign (bit 24 (18 hex))

Device software write locked (bit 25 (19 hex))

Device capable of providing input (bit 26 (lA hex))

Device capable of providing output (bit 27 (lB hex))

Device allowing random access (bit 28 (lC hex))

Real-time device (bit 29 (lD hex))

Read-checking enabled (bit 30 (lE hex))

Write-checking enabled (bit 31 (IF hex))

Digital Equipment Corporation/ Internal Use. Only &-49

Data Structures

Field Name Description and Flags

UCB$L_DEVCHAR2 Second longword of device characteristics flags for this device.

Some of these flags pertain to devices other than DSA disks.

The following values are defined within UCB$L_DEVCHAR2:

DEV$V_CLU

DEV$V_DET

DEV$V_RTT

DEV$V_CDP

DEV$V_2P

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

DEV$V_RED

DEV$V_NNM

Device available cluster-wide (bit 0)

Detached terminal (bit 1)

Remote-terminal UCB extension (bit 2)

Dual-path device with two UCBs (bit 3)

Two paths known to device (bit 4)

Device accessed using MSCP (bit 5)

Shadow set member (bit 6)

Served by MSCP server (bit 7)

Redirected terminal (bit 8)

See note immediately following (bit 9)

NOTE

Routine IOC$CVT_DEVNAM in module IOSUBNPAG is called from various places
to perform internal conversion of a device name and unit number of a physical device
name string. If the DEV$V _NNM flag is not set, then the string to be output by this
conversion is limited to the format DEV: . To obtain other forms, such as those
involving an allocation class or node name preceding the device name, this flag must

B-50 Dlgltal Equipment Corporation / Internal Use Only

Data Structures

Field Name Description and Flags

The following values are defined within UCB$L_DEVCHAR2:

be set.
DEV$V_WBC Device supports write-back caching (bit 10 (A hex))

DEV$V_WTC

DEV$V_HOC

DEV$V_LOC

DEV$V_DFS

DEV$V_DAP

DEV$V_NLT

DEV$V_SEX

DEV$V_SHD

DEV$V_VRT

DEV$V_LDR

DEV$V_NOLB

DEV$V _NOCLU

DEV$V_VMEM

UCB$L_AFFINITY

UCB$L_XTRA

UCB$B_DEVCLASS

Device supports write-through caching (bit 11 (B hex))

Device supports host caching (bit 12 (C hex))

Device accessible via local (non-emulated) controller (bit 13 (D hex))

Device is DFS-served (bit 14 (E hex))

Device is dap accessed (bit 15 (F hex))

Device is not-last-track (i.e. it has no bad block information on its last
track) (bit 16 (10 hex))

Device (tape) supports serious exception handling (bit 17 (11 hex))

Device is a member of a host based shadow set (bit 18 (12 hex))

Device is a shadow set virtual unit (bit 19 (13 hex))

Loader present (tapes) (bit 20 (14 hex))

Device ignores server load balancing requests (bit 21 (15 hex))

Device will never be available cluster-wide (bit 22 (16 hex))

Virtual member of a constituent set (bit 23 (17 hex))

Device Affinity

Extra Longword (For SMP)

Device class.

Digital Equipment Corporation I tnternal Use Only 8-51

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$B_DEVCLASS:

DC$_DISK

DC$_TAPE

DC$_SCOM

DC$_CARD

DC$_TERM

DC$_LP

DC$_ WORKSTATION

DC$_REALTIME

DC$_DECVOICE

DC$_BUS

DC$_MAILBOX

DC$_REMCSL_
STORAGE

UCB$B_DEVTYPE

UCB$W _DEVBUFSIZ

UCB$L_DEVDEPEND

Disk device (value 1)

Tape device (value 2)

Synchronous communication device (value 32 (20 hex))

Card reader device (value 65 (41 hex))

Terminal device (value 66 (42 hex))

Line Printer (value 67 (43 hex))

Workstations (value 70 (46 hex))

Real time device (value 96 (60 hex))

DECvoice Products (value 97 (61 hex))

Buses (ie: Cl) (value 128 (80 hex))

Mailbox (value 160 (AO hex))

Remote Console Storage (value 170 (AA hex))

Devic~ type.

The Driver Prologue Table of every driver may specify a symbolic constant
for this field. However, all such symbols are define by macro $DCDEF.
The format for these symbols is DT$_xxx , where xxx is the device type.
Examples would be DT$_RA60, DT$_RA82, DT$_RA90, ...

Default buffer size.
For DUDRIVER, this is initialized in the Driver Prologue Table to be 512.

Contains device dependent data.

For a disk device, this longword is broken down into three subfields:

31

UCB$B_SECTORS - Sectors per track
UCB$B TRACKS - Tracks per cylinder
UCB$W=CYLINDERS - Cylinders per disk

For DSA disks, these quantities are computed by
routine DU$RECORD_UNIT_STATUS in module DUDRIVER
based on the contents of a GET UNIT STATUS end
message.

16 15 8 7 0

CYLINDERS TRACKS SECTORS I
CXN-0008-14

8-52 Digital Equipment Corporation/ Internal Use Only

Field Name

UCB$L_DEVDEPND2

UCB$L_IOQFL

UCB$L_IOQBL

UCB$W_UNIT

UCB$W_CHARGE

Data Structures

Description and Flags

Second longword of device dependent data.

1/0 queue listhead forward link. IRPs are placed in this wait queue when
1/0 is stalled on the device, (for example, if a disk is undergoing mount
verification.)

For DSA disks, DUDRIVER places IRPs in this queue when it's start
1/0 routine finds a nonzero RWAITCNT field in the UCB and any of the of
the following conditions is true: mount verification in progress, the volume
is VALID, a PACKACK is in progress, or the CDDB indicates there is no
connection with the MSCP disk server in the controller.

Some drivers order this queue according to base priorities of the processes
which issued the ffiPs in the queue. This, however, is not the case with
DUD RIVER.

1/0 queue listhead backward link.

Number of physical device unit.

For DSA disks, this field is known as the ''VMS Unit Number" and is
derived from the MSCPUNIT field of UCB according to the following rules:

Determine if the unit is "MSCP emulated" (i.e. local to a VAX but served
to the cluster by the VMS MSCP server software). The unit is MSCP emu
lated if the CNTRLMDL field of the CDDB is set to the value of the symbol
MSCP$K_CM_EMULA (value 4).

If not MSCP emulated, then the VMS unit number is a copy of the
MSCPUNIT field but with the MSCP$V _SHADOW flag (high order bit)
forced to 0. It does not matter here whether or not the UCB represents a
shadow set virtual unit.

If the unit is MSCP emulated and bits 11:8 of the MSCPUNIT field are 0,
then the VMS unit number is set to the value of bits 3:0 of the MSCPUNIT
field.

If the unit is MSCP emulated and bits 11:8 of the MSCPUNIT field are
nonzero, then the VMS unit number is set to the value of bits 7:0 of the
MSCPUNIT field.

Bits 11:8 of the MSCPUNIT field for an MSCP emulated disk encode the
type of controller used to access the disk on the host which has direct access
to it. If set to 0, then this indicates that the disk is an "old" MASSBUS or
UNIBUS disk. For further details, see the functional description of routine
DUTU$GET_DEVNAM in module DUTUSUBS.

Mailbox byte count quota charge, if device is a mailbox.

This field and the UCB$W _RWAITCNT field are overlays of each other.

Digital Equipment Corporation I Internal Use Only B-53

Data Structures

Field Name

UCB$W _RWAITCNT

UCB$L_IRP

UCB$W_REFC

UCB$B_DIPL

UCB$B_AMOD

UCB$L_AMB

UCB$L_STS

Description and Flags

Resource wait count for UCB. Also nonzero if unit undergoing mount verifi
cation.

This field and the UCB$W _CHARGE field are overlays of each other.

At the end of FDT 1/0 preprocessing, the address of the IRP being "queued"
to the device driver is stored in this UCB field by routine IOC$INITIATE
immediately before calling the driver's start 1/0 routine.

For traditional non-DSA disks (such as MASSBUS disks), this is the ad
dress of the IRP currently being processed on the device.

However, DUDRIVER can have multiple IRPs outstanding for DSA
disks. Thus, this field is effectively ignored by DUDRIVER, even though
IOC$INITIATE alters it each time an IRP is passed to DUDRIVER's DU_
START_IO routine.

Reference count of processes that currently have 1/0 channels assigned
to this device. This field is incremented by the $ASSIGN and $ALLOC
system services, and decremented by the $DASSGN and $DALLOC system
services.

Interrupt priority level at which device requests hardware interrupts.

DUDRIVER sets this field to contain IPL$_SCS. This is done since the
class driver input dispatching routine, DU$1DR, is to DUDRIVER what an
interrupt service routine is to a conventional device driver; and DU$IDR
runs at the same IPL as the rest of DUDRIVER.

Access mode at which allocation of this device occurred, if the device is
allocated.

Associated mailbox UCB pointer. A spooled device used this field for the
address of its associated device. Devices that are nonshareable and not
file-oriented can use this field for the address of an associated mailbox.

Device unit status.

Some of these flags pertain to devices other than DSA disks.

B-54 Digital Equipment Corporation / Internal Use Only

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$L_STS:

UCB$V_TIM

UCB$V_INT

UCB$V _ERLOGIP

UCB$V_CANCEL

UCB$V _ONLINE

UCB$V _POWER

UCB$V _TIM OUT

UCB$V _INTTYPE

UCB$V_BSY

UCB$V _MOUNTING

UCB$V _DEADMO

UCB$V _VALID

UCB$V_UNLOAD

UCB$V _TEMPLATE

UCB$V _MNTVERIP

UCB$V _ WRONGVOL

UCB$V _DELETEUCB

UCB$V _LCL_ VALID

UCB$V _SUPMVMSG

UCB$V _MNTVERPND

UCB$V _DISMOUNT

UCB$V _CLUTRAN

UCB$V _ WRTLOCKMV

UCB$V _SVPN_END

UCB$V _ALTBSY

UCB$V _SNAPSHOT

UCB$W_DEVSTS

Timeout enabled (bit 0)

Interrupts expected (bit 1)

Error log in progress (bit 2)

Cancel 1/0 on unit (bit 3)

Device is online (bit 4)

Power failed while unit busy (bit 5)

Unit is timed out (bit 6)

Receiver interrupt (bit 7)

Unit is busy (bit 8)

Device is being mounted (bit 9)

Deallocated device at dismount (bit 10 (A hex))

Volume is software valid (bit 11 (B hex))

Unload volume at dismount (bit 12 (C hex))

Template UCB from which other UCBs are made (bit 13 (D hex))

Mount verification is currently in progress (bit 14 (E hex))

Volume name does not match name in VCB (bit 15 (F hex))

Delete this UCB when content of REFC field becomes zero (bit 16 (10 hex))

Volume on this device is valid on local node (bit 17 (11 hex))

Suppress mount verification messages if they indicate success (bit 18 (12
hex))

Mount verification pending and device busy (bit 19 (13 hex))

DISMOUNT IN PROGRESS (bit 20 (14 hex))

VAX.cluster STATE TRANSITION IN PROGRESS (bit 21 (15 hex))

Write-locked mount verification in progress (bit 22 (16 hex))

Last byte used from page mapped by SVPN (bit 23 (17 hex))

Unit is busy via alternate startio path (bit 24 (18 hex))

Restart validation is in progress (bit 25 (19 hex))

Device-dependent status.

General system flags:

The following fields are defined within UCB$W _DEVSTS:

UCB$V_JOB

UCB$V _TEMPL_BSY

Job controller notified (bit 0)

Template UCB is busy (bit 1)

Digital Equipment Corporation/ Internal Use Only B-55

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$W _DEVSTS:

UCB$V _PRMMBX

UCB$V _DELMBX

UCB$V _SHMMBX

UCB$V _MSCP _
MNTVERIP
UCB$V _MSCP _
INITING

UCB$V _MSCP _
WAITBMP

UCB$V _MSCP _FLOVR

UCB$V _MSCP _PKACK

UCB$V_WRTP

UCB$V _MSCP _IGNSRV

UCB$W_QLEN

UCB$L_DUETIM

UCB$L_OPCNT

UCB$L_SVPN

UCB$L_SVAPTE

Mailbox status flags:

Permanent mailbox (bit 0)

Mailbox marked for deletion (bit 1)

Shared memory mailbox (bit 3)
DUDRIVER (disk class driver) flags:

Mount verification is in progress (bit 8)

UCB being initialized (bit 9)

RWAITCNT field has been bumped (i.e. is nonzero) (bit 10 (A hex))

Flag is toggled each time a failover succeeds (bit 11 (B hex))

PACKACK in progress (bit 12 (C hex))

Unit MSCP write protected (bit 13 (D hex))

Ignore Served Paths during connection Failover (bit 14 (E hex))

Length of queue of IRPs whose listhead is UCB$L_IOQFL

Due time for J/O completion.

Count of operations completed on device since VMS booted. This field is
modified each time an IRP is inserted into the J/O postprocessing queue.

Index to virtual address of system PTE permanently allocated to device by
driver loading procedure.

If a Driver Prologue Table sets the DPT$M_SVP bit in the flags argu
ment to the DPTAB macro, the driver loading procedure allocates a page
of nonpaged pool to the device. Disk drivers which perform ECC correction
use this page for that purpose.

At the end of FDT I/O preprocessing, the content of the SVAPTE field in
the IRP being "queued" to the device driver is stored in this UCB field by
routine IOC$INITIATE immediately before calling the driver's start J/O
routine.
Given a traditional non-DSA disk (such as a MASSBUS disk):

For a direct I/O transfer, this is the address of the system PTE for the
first page to be used in the transfer.
For a buffered J/O transfer, this is the address of the system buffer used in
the transfer.
DUDRIVER can have multiple IRPs outstanding for DSA disks. Thus, this
field is effectively ignored by DUDRIVER, even though IOC$1NITIATE sets
it up each time it passes an IRP to DUDRIVER's DU_START_IO routine.

· B-56 Digital Equipment Corporation / Internal Use Only

Field Name

UCB$W_BOFF

UCB$W_BCNT

UCB$B_ERTCNT

UCB$B_ERTMAX

UCB$W _ERRCNT

UCB$L_PDT

UCB$L_DDT

UCB$L_MEDIA_ID

Data Structures

Description and Flags

For direct I/O transfer, byte offset in first page of transfer buffer.

For buffered 1/0 transfer, number of bytes charged to process for trans
fer.

The general remarks regarding the SVAPTE field apply here as well.

Count of byt.es in 1/0 transfer.

The general remarks regarding the SVAPTE field apply here as well.

Error retry count for this unit.

Maximum error retry count allowed for a single 1/0 transfer.

Number of errors that have occurred on this device since VMS boot.ed.
The DCL command SHOW DEVICE displays in its error count column the
cont.ent of this field.

Address of Port Descriptor Table for port servicing virtual circuit to con
troller for this disk, if there is one.

Address of Driver Dispatch Table for this unit.

Bit encoded media identification.

This 32-bit quantity consists of five 5-bit fields and one 7-bit field.

The fields are defined as follows:

DO,Dl

Device type name (DU, DI, DJ, DR, ...). DO and Dl each encode one
alphabetic charact.er. "A" is encoded as a 1, "B" is encoded as a 2, {RAD
HUSTVEDT) etc. DO encodes the left character of the device type name,
and Dl encodes the right charact.er.

AO,Al,A2,N

Name of media (RAGO, RA90, RM80, ...) used on the unit. AO, Al, and
A2 an alphabetic character or null. "A" is encoded as a 1, "B" is encoded
as a 2, etc., and a 0 encodes a null (i.e. the absence of a letter). The N
field encodes the two decimal digit number as a single 7-bit quantity. Thus,
using decimal numbers, an RAGO would be encoded as AO = 18 (R), Al = 1
(A), A2 = 0 (null), and N = GO.

31 26 21 16 11 6 0

DO Dl AO Al A2 N

5 bits 5 bits 5 bits 5 bits 5 bits 7 bits

CXN-OOOB-15

Digital Equipment Corporation / Internal Use Only B-57

Data Structures

B.13 UCB Error Log Extension

s:~ unused (164 bytes) s:~ 0

UCB$B_CEX] UCB$B_FEX J UCB$B_SPR l UCB$B_SLAVE 164

UCB$W_FUNC

Field Name

UCB$B_SLAVE

UCB$B_SPR

UCB$B_FEX

UCB$B_CEX

UCB$L_EMB

] unused

UCB$L_DPC

Description and Flags

Unit number of slave controller.

This field is not referenced by DUDRIVER.

Spare byte. This field is reserved for driver use.

MASSBUS adapter drivers use this field to store a fixed offset to the
MASSBUS adapter registers for the unit.

This field is not referenced by DUDRIVER.

168

172

176

Function dispatch table index. This field is device specific and is reserved
for driver use.

DUDRIVER does not reference this field.

Case table function execution index. This field is device specific and is
reserved for driver use.

DUDRIVER does not reference this field.

B-58 Dlgltal Equipment Corporation / Internal Use Only

Field Name

UCB$L_EMB

UCB$W_FUNC

UCB$L_DPC

Data Structures

Description and Flags

Address of error message buffer.

If error logging is enabled and a device/controller error or timeout occurs,
the driver calls ERL$DEVICERR or ERL$DEVICTMO to allocate an error
message buffer and copy the buffer address into this field. IOC$REQCOM
writes final device status, error counters, and 1/0 request status into the
buffer specified by this field.

ERL$DEVICERR and ERL$DEVICTMO are called by drivers for older
devices such as MASSBUS and UNIBUS disks. However, these routines
are not referenced by DUDRIVER.

1/0 function modifiers. This field is read and written by various drivers that
log errors. However, it is not referenced by DUDRIVER.

Saved driver subroutine address. This field is device specific.

DUDRIVER uses this field to save the caller's return address when
subroutines are called to create a new CDDB or to search a chain of
DDBs for a DDB corresponding to a specific device name. See routines
DUTU$CREATE_CDDB and DUTU$FIND_DDB in module DUTUSUBS.

Dlgltal Equipment Corporation / Internal Use Only B-59

Data Structures

B.14 UCB Dual Port Extension

j:~

Field Name

UCB$L_2P _DDB

UCB$L_2P _LINK

UCB$L_2P _ALTUCB

UCB$b_fill_dualpath (180 bytes)

UCB$L_2P _DOB

UCB$L_2P _LINK

UCB$L_2P _ALTUCB

Description and Flags

Address of alternate DDB for secondary path.

Address of next UCB in secondary DDB chain of UCBs.

Address of alternate UCB for this unit.

j:~ 0

180

184

188

This field is nonzero if the disk is dual-ported between the local host and a
remote host and is also MSCP accessible via that remote host. In this case
there will be two UCBs for such a disk: one representing the local path to
the disk, and one representing the MSCP path to the disk via the remote
host. The 2PALTUCB field in each UCB provides the address of the other
UCB. An example of this would be a MASSBUS disk dual ported between
two VAXes which have MSCP served the disk.

8-60 Digital Equipment Corporation/ Internal Use Only

Data Structures

B.15 UCB Disk Extension

I=~

UC8$b _reserved l

Field Name

UCB$W _DIRSEQ

UCB$B_ONLCNT

UCB$B_RESERVED

UCB$L_MAXBLOCK

UCB$L_MAXBCNT

UCB$L_DCCB

UCB$L_QLENACC

UC8$b_fill_disktape (192 bytes) I=~ 0

UC8$8_0NLCNT 1 UC8$W_DIRSEQ

UC8$L_MAXBLOCK

UC8$L_MAXBCNT

UC8$L_DCCB

UCB$L_QLENACC

Description and Flags

Directory sequence number. If the high order bit of this word, UCB$V _
ASTARMED, is set, it indicates that the requesting process is blocking
ASTs.

Number of times unit has been placed online since VMS booted.

Reserved

Maximum number of logical blocks on a random access device.

DUDRIVER loads this field with a copy of the unit size field from the

192

196

200

204

208

end message corresponding to an MSCP ONLINE command. Consequently,
for DSA disks, this represents the number of logical blocks in the host area
of this unit. This value does not include the logical block range occupied
by the unit's Replacement and Caching Table. (The logical block number of
the first block of the unit's Replacement and Caching Table is equal to this
value.)

Maximum transfer byte count.

Pointer to cache control block.

DUDRIVER does not reference this field

Queue Length Accumulator

Digital Equipment Corporation/ Internal Use Only B-61

Data Structures

B.16 UCB MSCP Extension

~~ UCB$b_mscp_fill (216 bytes) ~~ 0

UCB$W_UNIT_FLAGS

UCB$W_SRV _MSCPUNIT

UCB$W_MSCP_RESVDW

Field Name

UCB$L_CDDB

UCB$L_2P _CDDB

UCB$L_CDDB_LINK

UCB$L_CDT

UCB$L_ WAIT_CDDB

UCB$L_PREF _CDDB

UCB$L_CDDB

UCB$L_2P _CDDB

UCB$L_:_ CDDB_LINK

UCB$L_CDT

UCB$L_WAIT _ CDDB

UCB$L_PREF _CDDB

UCB$Q_UNIT _ID

UCB$W_MSCPUNIT

UCB$W_LCL_MSCPUNIT

UCB$L_MSCPDEVPARAM

UCB$b _reserved

UCB$L_SHAD

Description and Flags

Address of active CDDB.

Address of secondary CDDB.

l UCB$B_FREECAP

Address of next UCB in chain of UCBs attached to active CDDB.

Address of CDT representing connection with MSCP$DISK in con
troller for this disk unit.

216

220

224

228

232

236

240

248

252

256

260

264

Address of CDDB waiting for mount verification to complete on this
UCB

CDDB address for Preferred Path

B-62 Dlgltal Equipment Corporation / Internal Use Only

Field Name

UCB$Q_UNIT_ID

UCB$W _MSCPUNIT

UCB$W_UNIT_FLAGS

UCB$W_UNIT_FLAGS

Data Structures

Description and Flags

Unique MSCP unit identifier. DUDRIVER copies into this field the
unit identifier field from the end message corresponding to an MSCP
ONLINE command.

Primary path MSCP unit number.

When a new unit is discovered, the DUDRIVER copies into this field
the unit number field from the MSCP message reporting the unit. This
can happen during controller initialization when polling for units is
done, after controlling initialization as a result of a UNIT AVAILABLE
ATTENTION message, or during creation of a shadow set. See routine
DUTU$NEW _UNIT for details.

NOTE

The high order bit (i.e. bit 15 (F hex)) in this
field being set indicates this UCB actually rep
resents a shadow set virtual unit. This bit is
known as the MSCP$V _SHADOW flag.

Bit 14 (E hex) being set indicates that this is
a Server Local Unit Number rather than a
Physical Unit Number.

MSCP unit flags

MSCP unit flags.

Dlgltal Equipment Corporation / Internal Use Only ~3

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$W_UNIT_FLAGS:

MSCP$V _UF _CMPRD

MSCP$V _UF _CMPWR

MSCP$V _UF _576

Compare Reads. (bit 0)
If set, all read transfers should be verified with compare operations.
This characteristic is host settable, but the flag is undefined if the unit
is either "unit available" or "unit offline".

Compare Writes. (bit 1)
If set, all write transfers should be verified with compare operations.
This characteristic is host settable, but the flag is undefined if the unit
is either "unit available" or "unit offiine".

576 Byte Sectors. (bit 2)
The volume mounted in this unit has 576 bytes per sector. This flag is
undefined if the unit is either "unit available" or "unit offiine".

8-64 Digital Equipment Corporation/ Internal Use Only

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$W_UNIT_FLAGS:

MSCP$V _UF _ WBKNV

MSCP$V _UF _RMVBL

MSCP$V _UF _ WRTPD

MSCP$V _UF _SSMST

Nonvolatile Write-Back. (bit 6)
If set, all write commands should use write-back caching, rather than
write-through caching, for nonvolatile caches. The controller must
ensure that the existence of pending write-back data is flagged in the
volume's Replacement and Caching Table before actually performing
a write-back operation. This is a host settable characteristic, but the
flag is undefined if the unit is either "unit available" or "unit offiine".

Removable Media. (bit 7)
If set, the unit has removable media. This flag is not host settable and
is valid whenever the controller can determine the unit's characteris
tics.

Data Safety Write Protected. (bit 8)
Set by the controller whenever some condition in the unit or volume
prevents reliable modification of data on the volume. Possible
causes include:

• An incomplete bad block replacement.
• An invalid Replacement Control Table (RCT).
• Unit is only capable of reading volume's format (e.g. single-density

volume in double-density drive).

Shadow Set Master. (bit 9)
If set, this UCB is represents a shadow set virtual unit. Early in
the design of volume shadowing, the shadow set virtual unit was re
ferred to as the "shadow set master unit". This nomenclature has been
dropped because it implied "some form" of master/slave relationship.

Dlgltal Equipment Corporation / Internal Use Only B-65

Data Structures

Field Name Description and Flags

The following fields are defined within UCB$W_UNIT_FLAGS:

MSCP$V _UF _SCCHH

MSCP$V _UF _ WRTPS

MSCP$V _UF _ WRTPH

MSCP$V _UF _SSMEM

MSCP$V _UF _REPLC

MSCP$V _UF _EXACC

MSCP$V _UF _CACFL

MSCP$V _UF _EWRER

MSCP$V _UF _ VARSP

MSCP$V _UF _ VSMSU

MSCP$V _UF _ CACH

UCB$W _LCL_MSCPUNIT

UCB$W _SRV _MSCPUNIT

UCB$L_MSCPDEVPARAM

UCB$B_FREECAP

UCB$B_RESERVED

UCB$W _MSCP _RESVDW

Suppress High Speed Caching. (bit 11 (B hex))
If set, caching using the controller's high speed cache is disabled for
this unit. This is a host settable characteristic.

Software Write Protect. (bit 12 (C hex))
The host has requested software write protection for this unit.

Hardware Write Protect. (bit 13 (D hex))
The unit's hardware write protection mechanism has been activated.
All write operations, including attempts to perform bad block replace
ment, alter the state of "Volume Write Protection", or otherwise modify
the RCT, will be rejected. This flag is not valid if the unit is "unit
available" or "unit offiine".

Shadow Set Member. (bit 14 (E hex))
This unit is currently a member of a shadow set.

Controller Initiated Bad Block Replacement (bit 15 (F hex))
If set, the controller performs bad block replacement. If clear, the does
does it. This flag is undefined if the unit is "unit available" or "unit
offiine".

Exclusive access (bit 10 (A hex))

Cache flushed (bit 2)

Enhanced Write Error Recovery (bit 3)

Variable speed unit (bit 4)

Variable speed mode suppression (bit 5)

Madia Loader Present (bit 9)

Write-back Caching (bit 15 (F hex))

MSCP unit number for local (non-emulated) controllers

MSCP unit number for served (emulated) controllers

Device and/or controller dependent device tuning parameters.

The value zero in this field means that the default or normal tun
ing parameters should be used. Nonzero values are intended for
the selection of alternative optimization algorithms, or enabling and
disabling automatic diagnosis of the unit.

Free Capacity

Reserved

Reserved for future MSCP enhancements.

B-66 Dlgltal Equipment Corporation I Internal Use Only

Data Structures

Field Name Description and Flags

UCB$L_SHAD Virtual Unit Pointer to HBS SHAD

Digital Equipment Corporation/ Internal Use Only ~7

Data Structures

B.17 UCB DUDRIVER Extension

~~ UCB$b_fill_disk_class_driver (268 bytes)

UCB$L_DU_ VOLSER

UCB$L_DU_USIZE

UCB$L_DU_ TOTSZ

UCB$B_DU_RBNPTRK l UCB$B_DU_RCTCPYS UCB$W_DU_RCTSIZE

UCB$W_DU_TRKPGRP UCB$W_DU _LBNPTRK

UCB$W_DU_MUNTC UCB$W_DU_GRPPCYL

Field Name

UCB$L_DU_ VOLSER

UCB$L_DU_USIZE

UCB$L_DU_TOTSZ

UCB$W_DU_RCTSIZE

UCB$B_DU_RCTCPYS

UCB$B_DU_RBNPTRK

UCB$W_DU_LBNPTRK

UCB$W_DU_TRKPGRP

UCB$W_DU_GRPPCYL

UCB$W _DU_MUNTC

UCB$B_DU_UHVR 1 UCB$B_DU_USVR

Description and Flags

Volume serial number as returned in ONLINE end message.

Size of host visible area of unit in logical blocks.

Size of unit, including RCT area, in logical blocks.

Size of RCT area in blocks.

Number ofRCT copies on this unit.

Number of RBNs per track.

Number of LBNs per track.

Used by volume shadowing to insure that members of a shadow set
virtual unit have the same geometry.

Number of tracks per group.

Used by volume shadowing to insure that members of a shadow set
virtual unit have the same geometry.

Number of groups per cylinder.

Used by volume shadowing to insure that members of a shadow set
virtual unit have the same geometry. '

Multi-unit code. Used during host initiated BBR.

B-68 Digital Equipment Corporation /Internal Use Only

~~ 0

268

272

276

280

284

288

Field Name

UCB$B_DU_USVR

_ UCB$B_DU_UHVR

Data Structures

Description and Flags

Unit software version. Used during host initiated BBR.

Unit hardware version. Used during host initiated BBR.

Dlgltal Equipment Corporation/ Internal Use Only B-69

Data Structures

B.18 UQB - Unit Queue Block

UQB$L_FLINK 0

UQB$L_BLINK 4

UQB$B_SUBTYPE I UOB$B_TYPE UQB$W_SIZE 8

UQB$W_FLAGS UQB$W_STATE 12

UQB$W_CURRENT UQB$W_OLD_UNIT 16

UQB$W_UNIT _FLAGS UQB$W_MULT_UNIT 20

UQB$Q_UNIT_ID 24

uae$1_reserved 32

UQB$L_UCB 36

UQB$W_MAX_QUE UQB$W_NUM_QUE 40

UQB$L_BLOCKED _FL 44

UQB$L_BLOCKED_BL 48

s:~ UQB$B_ONLINE (32 bytes) s:~ 52

UQB$L_EXTRA_IO 84

UQB$L_IOCNT 88

UQB$W_SLUN UQB$W_QLEN 92

l UNIQUE_DNAME_CNT 96

s:~ UQB$T_UNIQUE_DNAME (15 bytes) ~~
~

The following are the contents of the aggregate structure UQBDEF:

B-70 Dlgltal Equipment Corporation/ Internal Use Only

Field

UQB$L_FLINK

UQB$L_BLINK

UQB$W_SIZE

UQB$B_TYPE

UQB$B_SUBTYPE

UQB$W_STATE

Use

Used to link together all

UQBs being served

Structure size in bytes

MSCP type structure

with a UQB subtype (5)

Current state of this unit

Data Structures

The following values are defined for UQB$W _STATE:

UQB$K_ST_ONLINE
(value 2)

UQB$K_ST_OFFLINE
(value 3)

UQB$K_ST_AVAILABLE
(value 4)

UQB$W_FLAGS

Sequential command executing

Unit is offiine

Unit is available

Unit usage

The following fields are defined within UQB$W _FLAGS:

UQB$V_SEQ

UQB$V_WRTPH

UQB$V _ WRTPS

UQB$W _OLD_UNIT

UQB$W_CURRENT

UQB$W_MULT_UNIT

UQB$W _UNIT_FLAGS

UQB$Q_UNIT_ID

UQB$L_ALLOCLS

UQB$W_UNIT

UQB$W _DEVNAME

This field is 1 bit long, and starts at bit 0 (0 hex). Sequential command
executing

This field is 1 bit long, and starts at bit 1 (1 hex). Unit is writelocked

This field is 1 bit long, and starts at bit 2 (2 hex). Unit was mounted
/NOWRITE

"Old Style" unit number

Commands active on this unit

This information is set up

in ADDUNIT when the device

is set /SERVED.

The unit identifier is made up

of the allocation class, the unit and the device name

Dlgltal Equipment Corporation/ Internal Use Only B-71

Data Structures

Field Use

The following fields are defined within UQB$W _DEVNAME:

UQB$V_C

UQB$V_Dl

UQB$V_DO

UQB$l_reserved

UQB$L_UCB

UQB$W_NUM_QUE

UQB$W_MAX_QUE

UQB$L_BLOCKED_FL

UQB$L_BLOCKED_BL

UQB$B_ONLINE

UQB$L_EXTRA_IO

UQB$L_IOCNT

UQB$W_QLEN

UQB$W_SLUN

UQB$B_UNIQUE_
DNAME_CNT

UQB$T_UNIQUE_
DNAME

This field is 5 bits long, and starts at bit 0 (0 hex). UCB unit number, the
controller

This field is 5 bits long, and starts at bit 5 (5 hex). letter, and the Dl DO
fields

This field is 5 bits long, and starts at bit 10 (A hex). from the media ID
field

UCB address for this unit

Host requests pending

Most requests ever pending

List head for HRBs pending

sequential cmd completion

Array of hosts with unit online

Splinter requests

Server contribution to total

Server queue length for unit

Server local unit number

.ASCIC string with

Cluster unique name for disk

B-72 Digital Equipment Corporation I Internal Use Only

Data Structures

The following constants are defined in conjunction with UQBDEF:

Constant

UQB$C_LENGTH

UQB$K_LENGTH

Value

112

112

Use

Digital Equipment Corporation / Internal Use, Only B-73

Data Structures

B.19 VCB - Volume Control Block Common Definitions

~~

VCB$L_FCBFL

VCB$L_FCBBL

VCB$B_STATUS] VCB$B_TYPE VCB$W_SIZE

VCB$W_RVN

Field Name

VCB$L_FCBFL

VCB$L_BLOCKFL

VCB$L_FCBBL

VCB$L_BLOCKBL

VCB$W_SIZE

VCB$B_TYPE

VCB$B_STATUS

VCB$W_ TRANS

VCB$L_AQB

VCB$T_VOLNAME (12 bytes)

VCB$L_RVT

Description and Flags

FCB listhead forward link.

Blocked request listhead forward link.

FCB listhead backward link.

Blocked request listhead backward link.

Size of this data structure in bytes.

Data structure type.

This field is set to contain the value of the symbol DYN$C_ VCB when
the VCB is created.

Volume status.

B-74 Digital Equipment Corporation / Internal Use Only

0

4

8

12

16

~ts 20

32

Field Name Description and Flags

The following fields are defined within VCB$B_STATUS:

VCB$V _ WRITE_IF

VCB$V _ WRITE_SM

VCB$V _HOMBLKBAD

VCB$V _IDXHDRBAD

VCB$V _NOALLOC

VCB$V _EXTFID

VCB$V _GROUP

VCB$V _SYSTEM

VCB$V _SHADMAST

VCB$V _FAILED

VCB$V _REBLDNG

VCB$V _BLKASTREC

VCB$V _MVBEGUN

VCB$V _ADDING

VCB$V _PACKACKED

VCB$W_TRANS

VCB$W_RVN

VCB$L_AQB

VCB$T_ VOLNAME

VCB$L_RVT

Index file is writ.e accessed. (bit 0)

Storage map is writ.e accessed. (bit 1)

Primary homeblock is bad. (bit 2)

Primary index file header is bad. (bit 3)

Allocation/deallocation inhibit.ed. (bit 4)

Volume has 24 bit file numbers. (bit 5)

Volume is mounted /GROUP. (bit 6)

Volume is mounted /SYSTEM. (bit 7)

This VCB is for shadow set master (bit 0)

Member failed out of shadow set (bit 1)

Mount verfication rebuilding shadow set (bit 3)

Shadowing lock blocking AST received (bit 4)

Mount verification initiated (bit 5)

Adding member to shadow set (bit 6)

Member PACKACKed during rebuild att.empt (bit 7)

Volume transaction count.

Relative volume number.

Address of AQB.

Volume label.

This field is 12 bytes in length, blank filled.

Address of UCB or Relative Volume Table.

Data Structures

Dlgltal Equipment Corporation/ Internal Use Only B-75

Data Structures

B.19.1 Volume Control Block fields for Disks

~~ VCB$b_filldisks (36 bytes) ~~ 0

VCB$L_HOMELBN 36

VCB$L_HOME2LBN 40

VCB$L_IXHDR2LBN 44

VCB$L_IBMAPLBN 48

VCB$L_ SBMAPLBN 52

VCB$W_IBMAPVBN VCB$W_IBMAPSIZE 56

VCB$W_SBMAPVBN VCB$W_SBMAPSIZE 60

VCB$W_EXTEND VCB$W_CLUSTER 64

VCB$L_FREE 68

VCB$L_MAXFILES 72

VCB$W_FILEPROT VCB$B_LRU_LIM I VCB$B_WINDOW 76

VCB$B_RESFILES VCB$B_EOFDELTA VCB$W_MCOUNT 80

VCB$B_STATUS2 VCB$B_BLOCKFACT VCB$W_RECORDSZ 84

VCB$L_QUOTAFCB 88

VCB$L_CACHE 92

VCB$L_QUOCACHE 96

VCB$W_PENDERR VCB$W_QUOSIZE 100

VCB$L_SERIALNUM 104

VCB$L_RESERVED1 108

VCB$Q_RETAINMIN 112

· B-76 Digltal Equipment Corporation / Internal Use Only

~~

$~

~~

~~

VCB$B_SHAD_STS 1

Field Name

VCB$L_HOMELBN

VCB$L_HOME2LBN

VCB$L_IXHDR2LBN

VCB$L_IBMAPLBN

VCB$L_SBMAPLBN

VCB$B_IBMAPSIZE

VCB$B_IBMAPVBN

VCB$0_RETAINMAX

VCB$L_ VOLLKID

VCB$T_VOLCKNAM (12 bytes)

VCB$L_BLOCKID

VCB$0_MOUNTTIME

VCB$L_MEMHDFL

VCB$L_MEMHDBL

VCB$B_SPL_CNT 1
VCB$L_SHAD_LKID

VCB$B_ACB (28 bytes)

VCB$R_MIN_CLASS (20 bytes)

VCB$R_MAX_CLASS (20 bytes)

Description and Flags

LBN of volume homeblock.

LBN of alternate homeblock.

LBN of alternate index file header.

LBN of index file bitmap.

LBN of storage bitmap.

Size of index file bitmap.

Current VBN in index file bitmap.

Data Structures

12 0

12 8

t13 2

1 44

14 8

15 6

16 0

VCB$W_ACTIVITY 16 4

16 8

$~7 2

~ieo 0

~f22 0

Dlgltal Equipment Corporation/ Internal Use Only B-n

Data Structures

Field Name

VCB$B_SBMAPSIZE

VCB$B_SBMAPVBN

VCB$W_CLUSTER

VCB$W_EXTEND

VCB$L_FREE

VCB$L_MAXFILES

VCB$B_ WINDOW

VCB$B_LRU_LIM

VCB$W _FILEPROT

VCB$W _MCOUNT

VCB$B_EOFDELTA

VCB$B_RESFILES

VCB$W _RECORDSZ

VCB$B_BLOCKFACT

VCB$B_STATUS2

Description and Flags

Size of storage bitmap.

Current VBN in storage bitmap.

Volume cluster size.

Volume default file extension length.

Number of free blocks on volume.

Maximum number of files allowed on volume.

Volume default window size.

Volume directory LRU size limit.

Volume default file protection.

Mount count.

Index file EOF update count.

Number of reserved files on volume.

Number of tyes in a record.

Volume blocking factor.

Second status byte.

The following fields are defined within VCB$B_STATUS2:

VCB$V _ WRITETHRU

VCB$V _NOCACHE

VCB$V _MOUNTVER

VCB$V _ERASE

VCB$V _NOHIGHWATER

VCB$V _NOSHARE

VCB$V _CLUSLOCK

VCB$V _SUBSETO

VCB$L_QUOTAFCB

VCB$L_CACHE

VCB$L_QUOCACHE

VCB$W_QUOSIZE

VCB$W _PENDERR

VCB$L_SERIALNUM

VCB$L_RESERVED1

VCB$Q_RETAINMIN

VCB$Q_RETAINMAX

Volume is to be write-through cached. (bit 0)

All caching is disabled on volume. (bit 1)

Volume can undergo mount verification. (bit 2)

Erase data when blocks removed from file. (bit 3)

'furn off high-water marking. (bit 4)

Non-shared mount. (bit 5)

Cluster-wide locking necessary. (bit 6)

ODS-2 subset 0 volume. (bit 7)

Address ofFCB of disk quota file.

Address of volume cache block.

Andress of volume quota cache.

Length of quota cache to allocate.

Count of pending write errors.

Volume serial number.

Reserved.

Minimum file retention period.

Maximum file retention period.

B-78 Dlgltal Equipment Corporation / Internal Use Only

Field Name

VCB$L_ VOLLKID

VCB$T_ VOLCKNAM

VCB$L_BLOCKID

VCB$Q_MOUNTTIME

VCB$L_MEMHDFL

VCB$L_MEMHDBL

VCB$W_ACTMTY

VCB$B_SPL_CNT

VCB$B_SHAD_STS

VCB$L_SHAD_LKID

VCB$B_ACB

VCB$R_MIN_CLASS

VCB$R_MAX_CLASS

Description and Flags

Volume lock ID.

Volume lock name.

This field is 12 bytes in length.

Volume blocking lock.

Volume mount time.

Shadow set members queue header forward link.

Shadow set members queue header backward link.

Activity count/flag.

Number of Devices Spooled to Volume

Status byte relative to MEMHDFL.

Shadowing lock lock-id.

ACB for blocking AST.

This field is 28 bytes in length.

Minimum classification.

This field is 20 bytes in length.

Maximum classification.

This field is 20 bytes in length.

Data Structures

Digital Equipment Corporation/ Internal Use Only B-79

Cross Reference

Appendix C

Cross Reference

This appendix provides a cross reference to find the routines mentioned in this book. The left
column contains routine names, and the right column contains the modules in VMS where the
routines can be found.

Table C-1: VMS Routine and Module Cross Reference

Routine

ABORTS_DONE_TEST_CANCEL

ABORT

ABORT_READ

ABORT_UNHOOK_CDRP

ABORT_ WRITE

ACCESS

ACCESS_PATH_ATTN

ACCVIO

ACCVIO

ACP$ACCESSNET

ACP$ACCESS

ACP$DEACCESS

ACP$MODIFY

ACP$MOUNT

ACP$READBLK

ACP$WRITEBLK

ACTIVE

ADD

ADD_DOLLAR

ADD_NODE

Module

[DRIVER.LIS]DUTUSUBS.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LISJMSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

Dlgltal Equipment Corporation/ Internal Use Only C-1

Cross Reference

Table C-1 (Cont.): VMS Routine and Module Cross Reference

Routine

AFTER_DEBUGGING_SANITY_CHECK

AFTER_MAP

ALLOCATE

ALLOCATE_HRB

ALLOCATE_HULB

ALLOC

ALLOC_BD

ALLOC_DESCRIP

ALLOC_NAME

AST_REC

ATTN_MSG

AVAILABLE

AVAILABLE_ABORT

AVAILABLE_CTRLERR

AVAILABLE_DRVERR

AVAILABLE_MEDOFL

AVAILABLE_SSSC

AVAILABLE_SUCC

AVAILABLE_THRUPUT_PORTS

AVAIL_CDTERR

AVAIL_IVCMD

AVAIL_IVCMD_END

BACK

BAD_CONID

BAD_CONN

BAD_FLAGS

BAD_LCONID

BAD_LEN

BAD_MOD

;BAD_OPC

BAD_RSPID

BAD_SCONID

BAD_UNIT

BD_SEQ_ERROR

BGXERR

Module

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[BOOTS.LIS]CONFIGMN .LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]DUTUSUBS.LIS

C-2 Digital Equipment Corporation / Internal Use Only

Cross Reference

Table C-1 (Cont.): VMS Routine and Module Cross Reference

Routine

BLOCKED

BRACCVIOl

BRACCVIO

BRMODIFY

BRXQUOTA

BUILDACPBUF

CALCAVGll

CALCULATE_LOAD

CALC_AVAIL

CALC_CRC

CALC_EB

CALC_MAX._MIN

CALC_MVTIMEOUT

CALC_PORT_LOAD

CALL_DRIVER_MNTVER

CAL_DOMAIN

CANT_MV

CDDB_INIT_PRM_CDRP

CDTFOUND

CHECKSUM_BUF

CHECK_ CURRENT

CHECK_DDB_CHAIN

CHECK_DISK

CHECK_MIN_PORT_ WAIT

CHECK_SERVICE

CHECK_SYSTEM_DISK

CHECK_SYSTEM_QUORUM_DISK

CHKDESCR

CHKDISMOUNT

CHKDON

CHKMOUNT

CHKRED

CHK_CRWAIT

Cl780_EB

CIBCAA_EB

Module

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

Digital Equipment Corporation/ Internal Use Only C-3

Cross Reference

Table C-1 (Cont.): VMS Routine and Module Cross Reference

Routine

CIBCAB_EB

CIBCI_EB

CIXCD_EB

CK_FOR

CK_STS

CLEANUP _HRB

CLEANUP_IO

CLEANUP _RTN

CL REF

CLR_Rl_EXIT

COMMON_ALOUBAMAP

COMMON_CALC

COMMON_EXIT

COMMON_PHYS_IO

COMMON_XFER

COMPARE_HOST_DATA

COMP _CTRL_DATA

CONNECTION_MOVE_COUNT

CONTINUE_LOOP

COPY_ASCIC

COPY_CHAR

COPY_STRING

CRC_TABLE

CREATE_LOG

CREATE_UQB

Module

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

Table C-2: VMS Routine and Module Cross Reference

Routine

DACSPND

DBL_WAIT_UCB

DDB_ VALIDATED

DEACCESS_PENDING

DEALLOC_DESCRIP

DEALLOC_HQB

Module

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

C-4 Dlghal Equipment Corporation / Internal Use Only

Cross Reference

Table C-2 (Cont.): VMS Routine and Module Cross Reference

Routine

DEANONPAGED

DEBUGGING_SANITY_CHECK

DEFAULT_EB

DET_ACC_PATH

DEVCHK

DEV_NAME

DGCOM

DG_ALC_FAIL

DIRECT

DIRE RR

DIR_ CLEANUP

DIR_MOVE

DISPLAY_ CTRLERR

DISPLAY _DRVERR

DISPLAY_IVCMD

DISPLAY _NAME

DISPLAY_ OFFLINE

DISPLAY_SUCC

DONEl

DONE2

DONE3

DONE

DONE_PDT

DONT_MV

DONT_MV _CK_SRVIO

DONT_MV _CK_SYS

DO_DISK

DO_MAP

DO_MV

DO_MV_VAL

DO_MV _ VAL_ASSIST

DO_MV _ WRITLCK

DO_ORIG_UCB

DO_ORIG_UCB_IO

DO_PMS

Module

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]IOSUBNPAG.LIS

Digital Equipment Corporation / Internal Use Only C-5

Cross Reference

Table C-2 (Cont.): VMS Routine and Module Cross Reference

Routine

DO_RSB

DO_WRT

DQUEUE_DG

DQ_INCOMPLETE

DRIVER_ CODE

DSE_IVCMD_END

DU$CONNECT_ERR

DU$CREDIT_STALL

DU$DGDR

DU$DSE_FDT

DU$FUNCTION_EXIT

DU$IDR

DU$ILLIOFUNC

DU$INVALID_STS

DU$PATH_MOVE

DU$RECORD_ONLINE

DU$RECORD_UNIT_STATUS

DU$RE_SYNCH

DU$RE_SYNCH_PKT

DU$SETPATH

DU$SHAD_RWCHECK_FDT

DU$TMR

DU$TMR_BROKE

DUPLICATE_SYSTEMID

DUPLICATE_UNIT_ATTN

DUTU$BEGIN_CONN_WALK

DUTU$BEGIN_MNTVER

DUTU$BUILD_ CANIO _ CDRP

DUTU$CANCEL

DUTU$CANCEL_RDTWAIT

DUTU$CANCEL_RDT

DUTU$CHECK_DDB_FOR_CDDB

DUTU$CHECK_NOCANCEL

DUTU$CHECK_RWAITCNT

DUTU$CLEANUP_CANCEL

Module

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS,

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

C-6 Dlgltal Equipment Corporation / Internal Use Only

Table C-2 (Cont.): VMS Routine and Module Cross Reference

Routine

DUTU$CREATE_CDDB

DUTU$DATA

DUTU$DEALLOC_ALL

DUTU$DEALLOC_RSPID_MSG

DUTU$DEVTYPE_TABLE

DUTU$DISCONNECT_CANCEL

DUTU$DISPLAY

DUTU$DODAP

DUTU$DO_CONN_ WALKER

DUTU$DRAIN_CDDB_CDRPQ

DUTU$DUMP _COMMAND

DUTU$DUMP _ENDMESSAGE

DUTU$END_CANCEL

DUTU$END_CONN_WALK

DUTU$END_MNTVER

DUTU$END_SINGLE_STREAM

DUTU$FAILOVER

DUTU$FILL_MSCP _MSG

DUTU$FIND_DDB

DUTU$FIND_DDB_NOLOCK

DUTU$GET_DEVNAM

DUTU$GET_DEVTYPE

DUTU$INIT_CONN_UCB

DUTU$INIT_MSCP _MSG

DUTU$INIT_MSCP _MSG_ UNIT

DUTU$INSERT_RESTARTQ

DUTU$1NTR_ACTION_N

DUTU$1NTR_ACTION_XFER

DUTU$1NTR_SUB_N

DUTU$INTR_SUB_XFER

DUTU$KILL_THIS_THREAD

Module

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

Table C-3: VMS Routine and Module Cross Reference

Cross Reference

Digital Equipment Corporation /-Internal Use Only C-7

Cross Reference

Table C-3 (Cont.): VMS Routine and Module Cross Reference

Routine

Routine

DUTU$LINK_SEC_UCB

DUTU$LINK_UCB2CDDB

DUTU$LOCATE_UNIT

DUTU$LOG_IVCMD

DUTU$LOOKUP _UCB

DUTU$LOOKUP _UCB_RESUME

DUTU$MOUNTVER

DUTU$MOVE_IODB

DUTU$MOVE_UNIT

DUTU$MOVE_UNIT_NOSLUN

DUTU$NEW _UNIT

DUTU$0WN_STORAGE

DUTU$POLL_FOR_UNITS

DUTU$POST_CDRP

DUTU$RECONN_LOOKUP

DUTU$RESET_MSCP_MSG

DUTU$RESTART_NEXT_CDRP

DUTU$RESTORE_CREDIT

DUTU$REVALIDATE

DUTU$SEND_DRIVER_MSG

DUTU$SEND _DUPLICATE_UNIT

DUTU$SEND_MSCP _MSG

DUTU$SEND_WALKER_MSG

DUTU$SERVER_MV

DUTU$SETUP _CDP _UCB

DUTU$SETUP _DUAL_PATH

DUTU$SEVER_CDDB

DUTU$SEVER_SEC_UCB

DUTU$TEMPLATE_ORB

DUTU$TEMPLATE_UCB

DUTU$TERMINATE_PENDING

DUTU$TEST_CANCEL_ CDRP

DUTU$TEST_CANCEL_DONE

DUTU$UNITINIT

Module

Module

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

C-8 Digital Equipment Corporation/ Internal Use Only

Cross Reference

Table C-3 (Cont.): VMS Routine and Module Cross Reference

Routine

DUTU$WAIT_ORIG_IO

DUTU$WALK_NEXT_CONN

DUTU$WALK_RESET_MSCP_MSG

DUTU$WALK_SEND_MSG

DU_BEGIN_IVCMD

DU_CONTROLLER_INIT

DU_FUNCTABLE

DU_RESTARTIO

DU_STARTIO

DU_UNSOLNT

EMBENDl

EMBEND2

EMB_BUFFER

EMB_CURRENT

EMB_REDl

EMB_RED2

EMB_YELLOWl

EMB_YELLOW2

ENDDEALL

ENDPARENS

END RED

END YELLOW

END_BROADCAST

END_ CONBRDCST

END_IO

END_PACKACK

END_PACKACK_BA

ENTABLE_BEGIN

ENTABLE_END

EQUAL_PATH_CALL_COUNT

ERASE

ERRORB

ERROR

ERROR_ EXIT

ERROR_NO_UNIT

Module

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

Dig Ital Equipment Corporation / Internal Use Only . C-9

Cross Reference

Table C-3 (Cont.): VMS Routine and Module Cross Reference

Routine Module

ERROR_ OUT [MSCP.LIS]MSCP.LIS

ERR_OFFLINE [MSCP.LIS]MSCP.LIS

ERR_ROUTINE [SYSLOA.LIS]SYS$SCS.LIS

ERR_TBL [MSCP.LIS]MSCP.LIS

ERR_ WRITLCK [MSCP.LIS]MSCP.LIS

EXDVNM [SYS.LIS]IOSUBNPAG.LIS

EXE$ABORTIO [SYS.LIS]SYSQIOREQ.LIS

EXE$ALTQUEPKT [SYS.LIS]SYSQIOREQ.LIS

EXE$BLDPKTGSR [SYS.LIS]SYSQIOREQ.LIS

EXE$BLDPKTGSW [SYS.LIS]SYSQIOREQ.LIS

EXE$BLDPKTMPW [SYS.LIS]SYSQIOREQ.LIS

EXE$BLDPKTSWPR [SYS.LIS]SYSQIOREQ.LIS

EXE$BLDPKTSWPW [SYS.LIS]SYSQIOREQ.LIS

EXE$BUILDPKTR [SYS.LIS]SYSQIOREQ.LIS

EXE$BUILDPKTW [SYS.LIS]SYSQIOREQ.LIS

EXE$CLUTRANIO [SYSLOA.LIS]MOUNTVER.LIS

EXE$FINISHIOC [SYS.LIS]SYSQIOREQ.LIS

EXE$FINISHIO [SYS.LIS]SYSQIOREQ.LIS

EXE$INSERTIRP [SYS.LIS]SYSQIOREQ.LIS

EXE$INSIOQC [SYS.LIS]SYSQIOREQ.LIS

EXE$INSIOQ [SYS.LIS]SYSQIOREQ.LIS

EXE$MATCH_NAME [SYS.LIS]IOSUBNPAG.LIS

EXE$MNTVERSHDOL [SYSLOA.LIS]MOUNTVER.LIS

EXE$MNTVERSIO [SYSLOA.LIS]MOUNTVER.LIS

EXE$MNTVERSP1 [SYSLOA.LIS]MOUNTVER.LIS

EXE$MNTVERSP2 [SYSLOA.LIS]MOUNTVER.LIS

EXE$MNTVER_GEN_CRC [SYSLOA.LIS]MOUNTVER.LIS

EXE$MOUNTVER [SYSLOA.LIS]MOUNTVER.LIS

EXE$QIOACPPKT [SYS.LIS]SYSQIOREQ.LIS

EXE$QIODRVPKT [SYS.LIS]SYSQIOREQ.LIS

EXE$QIORETURN1 [SYS.LIS]SYSQIOREQ.LIS

EXE$QIORETURNL [SYS.LIS]SYSQIOREQ.LIS

EXE$QIORETURN [SYS.LIS]SYSQIOREQ.LIS

EXE$QXQPPKT [SYS.LIS]SYSQIOREQ.LIS

EXE$UPDGNERNUM [SYSLOA.LIS]MOUNTVER.LIS

C-10 Digital Equipment Corporation/ Internal Use Only

Table C-3 (Cont.): VMS Routine and Module Cross Reference

Routine

EXITAVGll

EXIT

EXIT_ATTN_MSG

EXIT_MOVE_IODB

EXTEND_HULB

Module

[SYSLOALIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[MSCP.LIS]MSCP.LIS

Table C-4: VMS Routine and Module Cross Reference

Routine

FILL_BUFFER

FIND_BEST_MATCH

FIND_UQB

FINISHED_ WITH_MESSAGE

FINISH_ORIGUCB

FKB_INIT

FLUSH

FORMAT_ABRTD

FORMAT_AVAIL

FORMAT_CDTERR

FORMAT_CTRLERR

FORMAT_DRVERR

FORMAT_HOST_BUFFER_ACCESS

FORMAT_HSTBF

FORMAT_IPARM

FORMAT_IVCMD

FORMAT_IVCMD_END

FORMAT_MFMTE

FORMAT_OFFLINE

FORMAT_PACKACK

FORMAT_SUCC

FORMAT_ WRITE_LOCK

FORMAT_WRTPR

FPC$CHK_DCONID

FPC$CHK_LCONID

FPC$CHK_SCONID

Module

[SYS.LIS]SYSACPFDT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVERLISJDUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

Cross Reference

Digital Equipment Corporation/ Internal Use Only C-11

Cross Reference

Table C-4 (Cont.): VMS Routine and Module Cross Reference

Routine

FPC_SUCCESS

FREE_BUFFER

FULL

FULL_NAME

FUNCTION_EXIT

FUNC_EXIT_REQCOM

GENCRC_PACKACK

GENCRC_POSITION

GENCRC_READ

GENCRC_REWIND

GENCRC_UNLOAD

GENCRC_ WRITEOF

GENCRC_WRITE

GETNUMBER

GET_BUFFER

GET_CHECKSUM_BUF

GET_COMMAND_STATUS

GET_FIRST_SB

GET_FIRST_SB_LNK

GET_MSG_ID

GET_NEXT_DDB

GET_NEXT_SB

GET_PARENT_SB

GET_UNIT_STATUS

GET_VCB

GTPKT

ILLIO

IMMEDIATE

INCR_SANITY_LOOP

IN1$10C_RETURN

INITIAL

INIT_CDL

INIT_DONE

INIT_IRP

INIT_IRP _READ

Module

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSQIOREQ.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

C-12 Digital Equipment Corporation./ Internal Use Only

Table C-4 (Cont.): VMS Routine and Module Cross Reference

Routine

INIT_IRP _REPOS

INIT_IRP _REWIND

INIT_LOAD_SHARE

INIT_RDT

INIT_TIMEOUT

INTR_ACTION_COMMON

INTR_SUB_ACTION_COMMON

INTR_SUB_COMMON

INVALID_STS

INVAL

INV _ATrN_MSG

INV_FLAGS

IOC$ALODATAP

IOC$ALOMAPUDA

IOC$ALOUBAMAPN

IOC$ALOUBAMAPSP

IOC$ALOUBAMAP

IOC$ALOUBMAPRMN

IOC$ALOUBMAPRM

IOC$ALTREQCOM

IOC$APPLYECC

IOC$BROADCAST

IOC$CANCELIO

IOC$CHECK_HWM

IOC$CONBRDCST

IOC$CTRLINIT

Module

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCPLIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAGLIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBRAMS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

Table C-5: VMS Routine and Module Cross Reference

Routine

IOC$CVTLOGPHY

IOC$CVTLOGPHYU

IOC$CVT_DEVNAM

IOC$DALOCUBAMAP

IOC$DCLSYSEVT

Module

[SYS.LIS]IOSUBRAMS.LIS

[SYS.LIS]IOSUBRAMS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

Cross Reference

Digital Equipment Corporation / Internal Use Only C-13

Cross Reference

Table C-5 (Cont.): VMS Routine and Module Cross Reference

Routine Module

IOC$DIAGBUFILL [SYS.LIS]IOSUBNPAG.LIS

IOC$INITIATE [SYS.LIS]IOSUBNPAG.LIS

IOC$LAST_CHAN [SYS.LIS]IOSUBNPAG.LIS

IOC$LAST_CHAN_AMBX [SYS.LIS]IOSUBNPAG.LIS

IOC$LOG_EVENT [SYS.LIS]IOSUBNPAG.LIS

IOC$MAPVBLK [SYS.LIS]IOSUBRAMS.LIS

IOC$MNTVER [SYS.LIS]IOSUBNPAG.LIS

IOC$PARSDEVNAM [SYS.LIS]IOSUBNPAG.LIS

IOC$POST_IRP [SYS.LIS]IOSUBNPAG.LIS

IOC$RELCHAN [SYS.LIS]IOSUBNPAG.LIS

IOC$RELDATAPUDA [SYS.LIS]IOSUBNPAG.LIS

IOC$RELDATAP [SYS.LIS]IOSUBNPAG.LIS

IOC$RELMAPREG [SYS.LIS]IOSUBNPAG.LIS

IOC$RELMAPUDA [SYS.LIS]IOSUBNPAG.LIS

IOC$RELSCHAN [SYS.LIS]IOSUBNPAG.LIS

IOC$REQCOM [SYS.LIS]IOSUBNPAG.LIS

IOC$REQDATAPNW [SYS.LIS]IOSUBNPAG.LIS

IOC$REQDATAPUDA [SYS.LIS]IOSUBNPAG.LIS

IOC$REQDATAP [SYS.LIS]IOSUBNPAG.LIS

IOC$REQMAPREG [SYS.LIS]IOSUBNPAG.LIS

IOC$REQMAPUDA [SYS.LIS]IOSUBNPAG.LIS

IOC$REQPCHANH [SYS.LIS]IOSUBNPAG.LIS

IOC$REQPCHANL [SYS.LIS]IOSUBNPAG.LIS

IOC$REQSCHANH [SYS.LIS]IOSUBNPAG.LIS

IOC$REQSCHANL [SYS.LIS]IOSUBNPAG.LIS

IOC$SCAN_IODB [SYS.LIS]IOSUBNPAG.LIS

IOC$SCAN_IODB_2P [SYS.LIS]IOSUBNPAG.LIS

IOC$SCAN_IODB_USRCTX [SYS.LIS]IOSUBNPAG.LIS

IOC$SEARCHCONT [SYS.LIS]IOSUBNPAG.LIS

IOC$SEARCHINT [SYS.LIS]IOSUBNPAG.LIS

IOC$SENSEDISK [SYS.LIS]IOSUBRAMS.LIS

IOC$TESTUNIT [SYS.LIS]IOSUBNPAG.LIS

IOC$THREADCRB [SYS.LIS]IOSUBNPAG.LIS

IOC$UNITINIT [SYS.LIS]IOSUBNPAG.LIS

IOC$UPDATRANSP [SYS.LIS]IOSUBRAMS.LIS

C-14 Digital Equipment Corporation 1·1nternal Use Only

Cross Reference

Table C-5 (Cont.): VMS Routine and Module Cross Reference

Routine

IOC$WFIKPCH

IOC$WFIRLCH

IO_STALLED

IO_STALLED_BA

IRP _ALLOC_ERR

IV CHAN

IVCMD_ALIGN

IVCMD_ENDMSG

IVCMD_MSGLEN

IVCMD_ORGMSG

IVCMD_WORK

KFMSA_EB

LEAST_LOADED

LINK_2P _UCB

LINK_NEW_UCB

LIS TE NE RR

LIS TN

LIS_ERR

LM_DONE

LM_EXIT

LM_INIT

LM_INIT_CAPACITY

LM_LOOP

LM_PASS

LOAD_DEFAULT

LOAD_MONITOR

LOAD_SHARE_BEG_TIME

LOAD_SHARE_BUGCHECK

LOAD_SHARE_BUGCHECK_COUNT

LOAD_SHARE_END_TIME

LOCAL_NAME

LOCATE_ WBUF

LOCKE RR

LOG_ATTENTION_MESSAGE

LOG_CMD_PKT

Module

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]SYS$SCSLIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCPLIS]MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]SYSACPFDT.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

Digital Equipment Corporation / Internal Use Only C-15

Cross Reference

Table C-5 (Cont.): VMS Routine and Module Cross Reference

Routine Module

LOG_END_PKT [MSCP.LIS]MSCP.LIS

LOG_FINAL_STATUS [DRIVER.LIS]DUDRIVER.LIS

LOOKUP_LOCAL_UCB [DRIVER.LIS]DUTUSUBS.LIS

LOO Pl [SYSLOA.LIS]SYS$SCS.LIS

LOOP2 [SYSLOA.LIS]SYS$SCS.LIS

LOOP3 [SYSLOA.LIS]SYS$SCS.LIS

LS_DOMAIN_PORTS [SYSLOA.LIS]SYS$SCS.LIS

MAKE_ CONNECTION [DRIVER.LIS]DUDRIVER.LIS

MAP_COMMON [DRIVER.LIS]SCSXPORT.LIS

MAP _USER_BUFFER · [SYSLOA.LIS]MOUNTVER.LIS

MNTVERPNDCHK [SYS.LIS]IOSUBNPAG.LIS

MOST_LOADED [SYSLOA.LIS]SYS$SCS.LIS

MSCP$ALLOCATE [MSCP.LIS]MSCP.LIS

MSCP$DEALLOCATE [MSCP.LIS]MSCP.LIS

MSCP$TMR [MSCP.LIS]MSCP.LIS

MSCP_BEGIN [MSCP.LIS]MSCP.LIS

MSCP_BUF [DRIVER.LIS]DUTUSUBS.LIS

MSCP_END [MSCP.LIS]MSCP.LIS

MSCP_START [MSCP.LIS]MSCP.LIS

MSG_BUF _FAILURE [DRIVER.LIS]DUDRIVER.LIS

MSG_INPUT [SYSLOA.LIS]SYS$SCS.LIS

MSG_IN [MSCP.LIS]MSCP.LIS

MV _INITIATE [SYSLOA.LIS]MOUNTVER.LIS

MV_MSCP [SYSLOA.LIS]MOUNTVER.LIS

MV_RSB [SYSLOA.LIS]MOUNTVER.LIS

MV _SET_OFFLINE [MSCP.LIS]MSCP.LIS

Table C-6: VMS Routine and Module Cross Reference

Routine

NALLOC

NATIVE_SNDDATWM

NEWMODE

NEW_DEVICE

NEXTUCB

Module

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYS.LIS]SYSACPFDT.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

C-16 Digital Equipment Corporation/ Internal Use Only

Cross Reference

Table C-6 (Cont.): VMS Routine and Module Cross Reference

Routine

NEXT_REVAL_UCB

NOACP

NOCNT

NODCNT

NOIOSB

NOMEM

NOMEM_ERR

NONSEQB

NON SEQ

NOP_AVAIL

NOP_CDTERR

NOP_CTRLERR

NOP_DRVERR

NOP_IVCMD

NOP _IVCMD_END

NOP _OFFLINE

NOP_SSSC

NOP_SUCC

NORMAL

NORMAL_TRANSFEREND

NORMAL_ZONE

NORM_EXIT

NOSECT

NOSERV

NOTSHR

NOT_FILE_DEVB

NOT_FILE_DEV

NOT_FffiST

NOT_NEXT_UNIT

NOT_RCT_ACCESS

NOT_READY

NO~CDT

NO_MEM

NO_MSCP _LISTN

NO_ORIGUCB

Module

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LISJSYSQIOREQ.LIS

[SYS.LIS]SYSQIOREQ.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

CDRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]SYSQIOREQ.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

Digital Equipment Corporation/ Internal Use Only C-17

Cross Reference

Table C-6 (Cont.): VMS Routine and Module Cross Reference

Routine

NO_ROOM

NO_SECONDARY

NS POOL

NUM_DISCONNECT

NXTIRP

OFFLINE

OH_NO

OK

OK_TEST_LAST_REG

ONLINE

PACKACK_576

PACKACK_ABORT

PACKACK_AVLBL

PACKACK_BADRCT

PACKACK_CANCEL

PACKACK_COUNT_MEMBERS

PACKACK_DO_ONLINE

PACKACK_DUPUN

PACKACK_FAILOVER

PACKACK_FAILOVER_MSG

PACKACK_FAIL

PACKACK_GTUNT_SUCC

PACKACK_IVCMD

PACKACK_MFMTE

PACKACK_MOVE_SERVER

PACKACK_OFFLINE

PACKACK_SUCC

PACKACK_TEST_SSM

PACKACK_UNAVAILABLE

PACKACK_UNKNO_INOPR

PACKACK_ VOLUME

PACKACK_WRONG_DODl

PACKET_ERROR

PATCH_DEBUGGING_SANITY_CHECK

PAUSE

Module

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS] DUD RIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]MOUNTVER.LIS

C-18 Digital Equipment Corporation/ Internal Use Only

Table C-6 (Cont.): VMS Routine and Module Cross Reference

Routine Module

PC HIST [MSCP.LIS]MSCP.LIS

PDTDONE [SYSLOA.LIS]SYS$SCS.LIS

PDT_JMP [SYSLOA.LIS]SYS$SCS.LIS

PERFORM_ SHADOW [SYSLOA.LIS]MOUNTVER.LIS

PERFORM_ VALIDATE [SYSLOA.LIS]MOUNTVER.LIS

PHYIO_VOLINV [DRIVER.LIS]DUDRIVER.LIS

PHYS_BAD_BCNT [DRIVER.LIS]DUDRIVER.LIS

PHYS_BAD_LBN [DRIVER.LIS]DUDRIVER.LIS

PHYS_IO _NORCT [DRIVER.LIS]DUDRIVER.LIS

PHYS_IO_RCT [DRIVER.LIS]DUDRIVER.LIS

PKAK_IVCMD_END [DRIVER.LIS]DUDRIVER.LIS

PMS END [SYS.LIS]IOSUBNPAG.LIS

POLLER_INIT [SYSLOA.LIS]SYS$SCS.LIS

POLL_CONN_BROKE [DRIVER.LIS]DUTUSUBS.LIS

POLL_LOOP [DRIVER.LIS]DUTUSUBS.LIS

PORT_FAIR_SHARE [SYSLOA.LIS]SYS$SCS.LIS

PRIOSB [SYS.LIS]SYSQIOREQ.LIS

PRIVE RR [SYS.LIS]SYSQIOREQ.LIS

PRP _STCON_MSG [DRIVER.LIS]DUDRIVER.LIS

PUTASCIC [SYS.LIS]IOSUBNPAG.LIS

PUTCHAR [SYS.LIS]IOSUBNPAG.LIS

PUTDOLLAR [SYS.LIS]IOSUBNPAG.LIS

PUTNUM [SYS.LIS]IOSUBNPAG.LIS

PUTS PACE [SYS.LIS]IOSUBNPAG.LIS

Table C-7: VMS Routine and Module Cross Reference

Routine

QIORETURN

QIO

QUEUE_DG

QUEUE_IRP

Q_FIPL

Q_INCOMPLETE

Q_SUCCESS

Module

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

Cross Reference

Digital Equipment Corporation/ Internal Use Only C-19

Cross Reference

Table C-7 (Cont.): VMS Routine and Module Cross Reference

Routine

RATE_DONE

RDDESCR

RD_SEQ_ERR

READ

READ_ACCESS

READ_LOOP

REALLOC_CD_MAPREGS

RECONN_COMMON2

RECONN_COMMON

RECONN_EXIT

RECORD_ONLINE

RECORD_STCON

RECORD_UNIT_STATUS

RELDATAP _COMMON

RELEASE

REPLACE

RESET_TIMER

RESTARTIO

RESTART_FIRST_CDRP

RESTART_POLL

RESTOR

REVAL_HBS_MEMBER

REVAL_STARTED

SANITY_ALL_DONE

SANITY_LOOP

SCAN_ALL_DEVICES

SCS$ACCEPI'

SCS$ALLOC_CDT

SCS$ALLOC_RSPID

SCS$CANCEL_MBX

SCS$CHECK_POOL

SCS$CONFIG_PTH

SCS$CONFIG_SYS

SCS$CONNECT

SCS$DEALL_CDT1

Module

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]SYSACPFDT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]IOSUBNPAG.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[BOOTS.LIS]STACONFIG_MSCP.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

C-20 Digital Equipment Corporation I Internal Use Only

Cross Reference

Table C-7 (Cont.): VMS Routine and Module Cross Reference

Routine

SCS$DEALL_CDT

SCS$DEALL_RSPID

SCS$DIRECTORY

SCS$DIR_LOOKUP

SCS$DISCONNECT

SCS$ENTER

SCS$FIND_RDTE

SCS$FPC_ALLOCDG

SCS$FPC_ALLOCMSG

SCS$FPC_DEALLOCDG

SCS$FPC_DEALLOMSG

SCS$FPC_DEALRGMSG

SCS$FPC_MAPBYPASS

SCS$FPC_MAPIRPBYP

SCS$FPC_MAPIRP

SCS$FPC_MAP

SCS$FPC_QUEUEDG

SCS$FPC_QUEUEMDGS

SCS$FPC_RCHMSGBUF

SCS$FPC_RCLMSGBUF

SCS$FPC_REQDATA

SCS$FPC_SCAN_MAP _WAIT

SCS$FPC_SENDDATAWMSG

SCS$FPC_SENDDATA

SCS$FPC_SENDDG

SCS$FPC_SENDMSG

SCS$FPC_SENDRGDG

SCS$FPC_SNDCNTMSG

SCS$FPC_UNMAP

SCS$FREE_MSG

SCS$GL_LOAD_SHARE_ COUNTERS

SCS$INITIAL

SCS$LISTEN

SCS$LKP _MSGWAIT

SCS$LKP _RDTCDRP

Module

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LISJSCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVERLIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVERLIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVERLIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

Dlgltal Equipment Corporation I Internal Use Only C-21

Cross Reference

Table C-7 (Cont.): VMS Routine and Module Cross Reference

Routine

SCS$LKP _RDTWAIT

SCS$LOCLOOKUP

SCS$L_EB_TBL

SCS$NEW_PB

SCS$NEW_SB

SCS$POLL_MBX

SCS$POLL_MODE

SCS$POLL_PROC

SCS$RECYL_RSPID

SCS$REC_CNFREC

SCS$REC_CNFWMREC

SCS$REC_DATREC

SCS$REC_DGREC

SCS$REC_MSGREC

SCS$REC_SNDDG

SCS$REC_SNDMSG

SCS$REMOVE

SCS$RESUMEWAITR

SCS$SET_LOAD_RATING

SCS$SHUTDOWN

SCS$UNSTALLUCB

SCS$UPDATE_PORT_LOAD_VECTOR

SCS_ALONONPAGED

SCS_CALC_BYTES_XFER

SCS_CHECK_QUEUES

Module

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

Table C-8: VMS Routine and Module Cross Reference

Routine

SCS_CHK_CDT_REUSE_QUEUE

SCS_CONTROL_MSG

SCS_CTRS_UPDATE

SCS_DEALNONPAGD

SCS_END

SCS_GET_LOAD_VECTOR

Module

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

C-22 Digital Equipment Corporation / Internal Use Only

Cross Reference

Table C-8 (Cont.): VMS Routine and Module Cross Reference

Routine

SCS_INIT

SCS_LOAD_SHARE_TIMER

SCS_L_SHARE_TQE

SCS_PROCESS_CDTS

SCS_REDISTRIBUTE_CDTS

SCS_REGISTER_LOCAL_NAME

SCS_SELECT_PATH

SCS_UPDATE_REG_CTRS

scs_ VECTOR_FLAG

SC_SEQ_ERR

SDONEl

SDONE

SECONDARY_NAME

SECTION

SEND_ABORTS

SEND_AVAIL

SEND_END

SEND_MESSAGE

SEND_PKT

SEQUENTIAL

SEQ_ALT

SETUP _ERASE

SET_ CONTROLLER_ CHAR

SET_RATING

SET_UNIT_CHR

SHARE_ TIMER_ COUNT

SHDIO_REJECT

SINGLE_STREAM

SLOOP

SORTED

SPOOL

STALE_ CDT

START

START_AVAILABLE

START_DISPLAY

Module

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[DRIVER.LIS]SCSXPORT.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYSLOALIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOALIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSACPFDT.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOALIS]SYS$SCS.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOALIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

Dlgltal Equipment Corporation / Internal Use Only C-23

Cross Reference

Table C-8 (Cont.): VMS Routine and Module Cross Reference

Routine

START_DSE

START_FORMAT

START_LOCAL_DEVICE

START_MOUNT_ VER

START_NOP

START_NOSUCH

START_PACKACK

START_POLL

START_READPBLK

START_READWRITE

START_SETPATH

START_ UNLOAD

START_ WCHK_DSE

START_ WITH_MODIFIERS

START_ WRITECHECK

START_ WRITEPBLK

STATE_ERR

STATE_ERR_R3

STMV_BA

SUCCES

SVCDRP

SVERLIP

SVPDT

SVR7

SVRET

SVSTATUS

SVUCB

TEST_QUORUM

THIS_ISNT_SORTED

THREAD_HAS_RWAITCNT

TIME_DELAY

TRANSFER_CDTERR

TRANSFER_DATA_ERROR

TRANSFER_HOST_BUFFER_ERROR

TRANSFER_INVALID _COMMAND

Module

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]SCSXPORT.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]SYSQIOREQ.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

C-24 Dlgltal Equipment Corporation/ Internal Use Only

Table C-8 (Cont.): VMS Routine and Module Cross Reference

Routine

TRANSFER_IVCMD_END

TRANSFER_MEDOFL

TRANSFER_MSCP_ERROR

TRANSFER_REPLACE

TRANSFER_RTN_BCNT

TRANSFER_SHIFT

TRANSFER_ SIZE

UCB_SCAN_LOOP

UNBLOCK

UNDO_ONLINE

UNDO_ONLINE_BA

UNEQUAL_PATH_CALL_COUNT

UNHOOK_ CORP

UNIT_AVAILABLE_ATTN

UNSORTED

UNSORTED_START

UPBYTCNT

UPBYTCTl

UPDATE_AVAIL_MAP

UPDATE_SCB

UPTRANSCNT

Module

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]IOSUBNPAG.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCSLIS

[MSCP.LIS]MSCP.LIS

IDRIVERLIS]DUDRIVER.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]IOSUBNPAG.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYS.LIS]SYSACPFDT.LIS

Table C-9: VMS Routine and Module Cross Reference

Routine

VALIDATE_BAD_ VOLNAM

VALIDATE_ERROR

VALIDATE_ EXIT

VALIDATE_HOME

VALIDATE_SCB

VALIDATE_SUCCESS

VALIDATE_ TAPE

VALIDATE_ VOLUME

VALID_PACKACK

VCHAN

Module

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LISJMOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]SYSQIOREQ.LIS

Cross Reference

Digital Equipment Corporation / Internal Use Only C-25

Cross Reference

Table C-9 (Cont.): VMS Routine and Module Cross Reference

Routine

VC_ERR

VC_ERR_ABORT

VC_ERR_COMMON

VC_PATH_MOVE

VOLNOTVAL

VOL_INVALID

WAIT_BD

WAIT_FOR_INT

WAIT_FOR_QUORUM

WALKERR

WALK_NEXT_COMMON

WALK_ TEST_ CONN

WLOOP

WORSE_PATH_CONNECTIONS

WRDESCR

WRITE

WRITE_ACCESS

WRITE_LOOP

WRITLCK_HNDLR

XFER_ERR

XFER_IVCMD_END

XFER_NORMALEND

XFER_REPLACE

XFER_RTN_BCNT

XFER_SETUP_ERROR

XQP$BLOCK_ROUTINE

XQP$FCBSTALE

XQP$REL_QUOTA

XQP$UNLOCK_CACHE

XQP

XQUOTA

X_PHYS_IO_RCT

YELLOWQ

Y_ZONE

ZERO_TOL

Module

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]SCSXPORT.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[DRIVER.LIS]DUTUSUBS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYS.LIS]SYSACPFDT.LIS

[MSCP.LIS]MSCP.LIS

[SYS.LIS]SYSQIOREQ.LIS

[MSCP.LIS]MSCP.LIS

[SYSLOA.LIS]MOUNTVER.LIS

[MSCP.LIS]MSCP.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSACPFDT.LIS

[SYS.LIS]SYSQIOREQ.LIS

[SYS.LISJSYSACPFDT.LIS

[DRIVER.LIS]DUDRIVER.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

[SYSLOA.LIS]SYS$SCS.LIS

C-26 Dlgltal Equipment Corporation/ Internal Use Only

A
ABCNT•3-25
ABORT•S-52
Abort With Status• 5-54, 5-55
ABORTWS

See Abort With Status
ACCESS • 5-53, 5--65
Access Paths Attention Message • 2-32, 2-51
Access_Path_Attn • 2-34
Accumulated Byte Count

See ABCNT
ACP$GB_WINDOW • 3-8
ACP$READBLK • 3-24
ACP$WRITEBLK • 3-24
ACP 010 • 3-16
ACP _WINDOW• 3-8
Active 1/0 Requests • 4-40
Active Node• 1-3
Adapter Control Block • 3-40
ALLOCATE_HRB • 5-42
Allocation Class • 4-32, 5-1
AST_REC • 2-35
Attention Messages • 2-34
ATIN_MSG • 2-49
Attn_msg Routine • 2-34
Autoconfigure All • 2-26
Auto-Serving • 5-25
AVAILABLE • 5-53
Available Attention • 2-24

B
BACK

See MSCP Routine BACK
Bad Block Replacement • 3-8, 4-13
BBR

See Bad Block Replacement
BCNT•3-24
BOT

See Buffer Descriptor Table
BDTE

See Buffer Descriptor Table Entry

Block Count Field • 3-8
Block Data Transfers • 1-4

Mapping and Unmapping • 1-16
BOFF •3-24
BOO$CONFIGURE • 2-51
BOO$CONNECT • 2-35
Boo$gl_dskdrv • 2-25
Boo$gl_prtdrv • 2-25
Buffer Descriptor • 1-26
Buffer Descriptor Table• 1-26
Buffer Descriptor Table Entry • 1-26
Buffered 1/0 Function Mask • 3-13
Buffer Handle• 1-26, 1-27
Buffer Name • 1-27
Buffer Ring • 1-29
Bugcheck • 4-59
Build_pdt • 3-34
Byte Offset Bit • 3-39

c
CALC_MVTIMEOUT • 4-50
Cancel 1/0 • 3-11
Cathedral Window • 3-8
CCB

See Channel Control Block
CCB$B_AMOD • 3-3, 3-23
CCB$L_UCB • 3-3
CCB$L WIND • 3-3
CDDB-

See Class Driver Data Block
CDDB$0_CNTRLID • 5-13
CDDB$V _IMPEND• 4-3
CDDB$V_PATHMOVE •4-19
CDDB$W_LOAD_AVAIL • 4-4
CDDB$W_STATUS • 4-3
COL

See Connection Descriptor List
CORP

See Class Driver Request Packet
CDRP$L_MSG_BUF • 3-37
CDT

See Connection Descriptor Table

Index

lndex-1

CDT$L_AUXSTRUC • 5-42, 5-83
Channelcnt • 3-2
Channel Control Block • 3-2
Channel Request Block • 2-16

Cl

AUXSTRUC • 2-18
Duetime • 2-17
TOUTROUT field • 2-17

See Computer Interconnect
Class Driver • 1-1
Class Driver Data Block • 2-1

Description• 2-11
Class Driver Input Dispatching Routine • 2-49
Class Driver Request Packet• 1-24, 3-10
CLU$GL_MSCP _CREDITS• 5-25
CLU$GL_MSCP _LOAD • 5-26
CLU$GL_MSCP _SERVE_ALL • 5-25
CLUSTRLOA

See SYS$CLUSTER
CMD STS • 5-41
Command Buffer • 1-16
Command Reference Number• 1-24
Command Ring• 1-16, 3-21, 3-37, 3-43
Computer Interconnect• 1-5
COMP _CTRL_DATA • 5-65
CONFIGMN • 2-35
Configure Process• 1-15, 1-20, 2-26, 2-35, 2-51

Auto Serving of Disks • 2-35
Connection• 1-4

Defin ition • 1-8
Connection Blocks

See Connection Descriptor Table
Connection Descriptor List • 1-9
Connection Descriptor Table• 1-9
Connection Manager

See VMS Connection Manager
Connection Walk • 4-37, 4-51, 4-56
Connectivity • 1-3
Connect Response• 1-20
Controller Based Shadow Set• 4-46
Controller Identifier• 5-15
Controller Online • 2-24
Controller Timeout Interval • 5-25
CRB

See Channel Request Block
CRB$L AUXSTRUC • 2-18
Create_=-device_entry • 3-34
Credit stall • 4-4, 4-5
CTL$GL_CCBBASE • 3-2
CTL$GW_CHINDX • 3-4, 3-23

2-lndex

D
OAP

See Determine Access Paths
OAP IRP/CDRP • 2-15
OAP_ COUNT• 2-33
Datagrams • 1-3
Data Path • 3-40
Data Security Erase• 5-63
DOB

See Device Data Block
DDT

See Driver Dispatch Table
DDT$L_MNTVER • 4-49
DDT$L_START • 3-26
DELUA •2-4
DEMNA•2-4
Determine Access Paths• 2-15, 2-32, 5-69
DEUNA•2-4
Device Data Block • 2-1, 2-5
Digital Storage Architecture • 1-1
Digital Storage Systems Interconnect • 1-5
Direct Memory Access • 3-19
Directory Lookup

See SCS Directory Service
Disk Class Driver

See DUDRIVER
Disk Device Naming Convention • 5-11
DISKSERVE BUGCHECK • 5-86
Disk Server Structure • 5-8
OMA

See Direct Memory Access
DOUBLDEALO BUGCHECK • 5-86
DO ACTION • 4-1 O
DO-DISK • 5-38
DO - ORIG UCB• 2-29
Driver DisP"atch Table • 3-2, 3-9
Driver Interrupt Service Routine• 2-16
DSA

See Digital Storage Architecture
DSDRIVER • 1-2
DSE

See Data Security Erase
DSRV

See Disk Server Structure
DSRV$B_HOSTS • 5-19
DSRV$L AVAIL• 5-26
DSRV$L=BUFFER_MIN • 5-24, 5-26, 5-44
DSRV$L_FREE_LIST • 5-21
DSRV$L_MEMW_BL

See DSRV Memory Wait Queue
DSRV$L SRVBUF • 5-26
DSRV$L-UNITS • 5-11, 5-43
DSRV$Q-=-CTRL_ID • 5-15
DSRV$W_LM_LOAD1 • 5-32

DSRV$W LM LOAD2 • 5-32
DSRV$W=LM=LOAD3 • 5-32
DSRV$W_LM_LOAD4•5-32
DSRV$W LOAD AVAIL• 5-32
DSRV$W=LOAD=CAPACITY • 5-30
DSRV$W MEMW CNT • 5-58
DSRV Memory wait Queue • 5-44
DSRV Unit Table• 5-11
DSSI

See Digital Storage Systems Interconnect
DU$CONNECT ERR• 4-18
DU$CRESHAD-FDT•2-45
DU$1DR • 3-31:-4-10
DU$1NIT HIRT• 2-40
DU$MSG_ERR_HNDLR • 4-13
DU$RE_SYNCH • 2-34, 4-3, 4-18, 4-29
DU$RE SYNCH PKT • 4-3
DU$SHADOW_GTCMD_UNIT • 4-5
DU$TMR

See DUDRIVER Timeout Mechanism
Dual-Pathing • 4-32
Dual Ported Disk • 5-2
Dual Port Extension • 2-1 O
DUDRIVER • 1-2

Timeout Mechanism • 4-1, 5-40
Unit Polling • 2-43

DUETIME • 2-17
Duplicate Unit Attention Message• 2-51
Duplicate Unit Attn • 2-34
DUTU$BEGIN=CONN_WALK • 4-37, 4-51
DUTU$BEGIN MNTVER • 4-40
DUTU$DODAP • 2-32, 2-48
DUTU$DRAIN_CDDB_CDRPQ • 4-23
DUTU$END_MNTVER • 4-41
DUTU$END_SINGLE_STREAM • 4-57
DUTU$LOCATE_UNIT • 4-37, 4-51
DUTU$LOOKUP UCB• 2-46
DUTU$MOUNTVER • 4-49
DUTU$NEW_UNIT • 2-29, 2-45
DUTU$POLL_FOR_UNITS • 2-29, 2-43
DUTU$RESTART_NEXT_CDRP•4-42,4-57
DUTU$REVALIDATE • 4-20, 4-30
DUTU$SETUP _DUAL_PATH • 2-32, 2-45
DUTU$TERMINATE_PENDING • 4-46
DUTUMAC • 4-11
DU_BEGIN_IVCMD • 4-14
DU_CONTROLLER_INIT • 2-29, 2-39
DU_RESTARTIO • 4-14
DU_STARTIO • 3-26
DW780 Unibus Adapter Technical Description • 3-40
Dynamic Load Balancing • 5-31

E
EMB$K_CLTRES_IMTMO• 4-3
Enable Set Write Protect• 5~8
End Message

See MSCP End Message
End Mount Verification Routine

See DUTU$END MNTVER
Envelope Address • i-44
ERASE•5-53
ERL$LOGSTATUS • 4-16
Errorlog Entry

Determining conditions for • 4-13
DU$MSG_ERR_HNDLR • 4-13
EMB$C DUPUN • 2-51
EMB$C -INVAIT • 2-50

Error Log E;tension • 2-9
Error Logging • 4-16
Error Status • 4-7
Ethernet • 1-5
EXDRIVER • 2-4
EXE$ALLOCIRP • 3-23
EXE$CLUTRANIO • 4-30
EXE$FINISHIOC • 3-18
EXE$1NSIOQ • 3-26, 3-33
EXE$1NSIOQC • 5-38
EXE$MOUNTVER • 4-14, 4-29, 4-30
EXE$QIOACPPKT • 3-26
EXE$QIODRVPKT • 3-26
EXE$QIORETURN • 3-26
EXE$READLOCK•3-24
EXE$TIMEOUT • 2-17
EXE$WRITELOCK • 3-24
EXIT _AITN_MSG • 2-50

F
FDT

See Function Decision Table
FIND_UQB • 5-43
FLUSH·~?
FORKLOCK • 3-26
Fork Lock Field • 5-42
Fork Process• 1-15, 1-24
Fork Spinlock • 3-26
FOUND_PROC • 2-51
FPC$ALLOCMSG • 3-27, 3-36
FPC$DEALLOMSG • 3-50
FPC$SNDCNTMSG • 3-29, 3-45
Function Decision Table • 3-9

lndex-3

G
Get Command Status • ~2
Get Unit Status • 2-29

Next Unit• ~5

H
HANDLE_INT • 3-30
Hardware Write Protect • 5-48
Hello Packet • 2-4
Hierarchical Storage Controller • 5-1
HIRT

See Host Initiated Replacement Table
Host Based Shadow Set • 4-46
Host Clear • 4-19, 4-24, 5-52
Host Initiated Replacement Table • 2-40, 4-23
Host Number• 5-19, 5-28
Host Queue Block • 5-6
Host Request Block • 5-5
Host Unit Load Block • 5-8

Operation Count • 5-8
HQB

See Host Queue Block
HQB$Q_ TIME • 5-55
HRB

See Host Request Block
HRB$B_LBUFF • 5-38
HRB$K_SNDAT_WAIT • 5-47, 5-49
HRB$K ST MAP WAIT• 5-45
HRB$K=ST =MSG-=.WAIT • 5-51
HRB$K_ST_SEQ_WAIT • 5-44
HRB$K_ST_SNDMS_WAIT • 5-51
HRB$L_BUFADR • 5-44
HRB$L_BUFLEN • 5-44
HRB$L_HQB • 5-42
HRB$L_RESPC • 5-38
HRB$W_STATE • 5-44
HSC

See Hierarchical Storage Controller
HULB

See Host Unit Load Block
Operation Count• 5-39, 5-40, 5-46

Hustvedt
See RAD Hustvedt

110 Channel Number • 3-1
110 Postprocessing • 5-46
110 Postprocessing Routine

Back• 5-45
1/0 Request Packet• 1-22, 3-9
110 Status Block • 3-9
IDR

4-lndex

IDR (Cont.)
See Class Driver Input Dispatching Routine

IDREC •2-4
IF _IVCMD • 4-14
IF _MSCP • 4-10
IMMEDIATE • 5-54
Immediate Class Commands • 4-3
Immediate Commands• ~2
INIT_UDA_BUFFERS • 3-44
lni_bootdevic • 2-24
Integrated Storage Element • 5-1
INVALID_STS • 4-29
10$PACK ACK• 4-27
10$_ACCESS • 3-5, 3-16
10$_AVAILABLE • 4-15
10$_ CRESHAD • 2-45
10$_DSE • 5-63
10$_NOP • 4-15
10$_PACKACK •4-15
10$_READPBLK • 5-38
IOC$ALTREQCOM • 4-29

JMP •4-58
JSB•4-58

IOC$COPY UCB • 2-48
IOC$CVTLOOPHY • 3-25, 5-45
IOC$CVT _DEVNAM • 5-28
IOC$FFCHAN • 3-4
IOC$GL_CRBTMOUT • 2-17, 4-1
IOC$GL_DEVLIST • 2-7
IOC$GL DU CDDB • 4-30
1oc$Ga-=_posT1a • 3-32
IOC$GW_MVTIMEOUT • 4-39
IOC$1NITDRV • 2-25
IOC$1NITIATE • 3-26, 4-55
IOC$10POST • 5-40, 5-46
IOC$LUBAUDAMAP • 3-40
IOC$MAPVBLK • 3-8, 3-25
IOC$REQMAPUDA • 3-40
IOC$SEARCH • 3-4
IOSB

See 1/0 Status Block
IPL$_10POST • 5-46, 5-50
IRP

See 1/0 Request Packet
IRP$L_MEDIA • 3-25
IRP$L_SEGVBN • 3-25, 3-33
IRP$W_STS • 3-25
IRP/CDRP Pair• 3-10
ISE

See Integrated Storage Element
ISR

See Driver Interrupt Service Routine

K
KDM70 Local Port• 3-34

L
LBN

See Logical Block Number
LCONID

See Local Connection Identifier
LINK_NEW_UCB • 2-48
Listening CDT• 1-13
LM_INIT • 5-31
LM_INIT_CAPACITY • 5-30
Load Availability • 5-31
Load Available • 4-4
Load Balance• 4-37, 4-51, 4-55, 5--8
Load Capacity • 5-2, 5--8, 5-30
Load Monitoring Thread• 5-25, 5-31
Load Monitor Initialization Routine • 5-32
Load Monitor Interval• 5-31
Load Threshold • 5-32
LOAD_BALANCE Routine• 5-32
LOAD_MONITOR Routine• 5-31
Local Connection Identifier • 1-9

Definition • 1-9
Lock Manager

See VMS Lock Manager
Logical Block Number • 3-6
Logical Blocks • 3-6
Logical Controller • 5-3

M
Maintainence Commands • 5-37
Make Connection • 4-20
MAKE_ CONNECTION • 2-29
MAP • 5-45, 5-48
Mapping Registers • 3-38
MAP _IRP • 3-28
Massbus • 5-2
Mass Storage Control Protocol • 1-1 , 5-1
Master File Directory • 3-4
Message Buffer• 1-16
Message Free Queue• 1-29
Messages • 1-4
MFD

See Master File Directory
Mountver • 4-27
Mount Verification• 4-20, 4-26

Connection Manager Induced • 4-30
Mount Verification IRP • 4-43
Mount Verification Timeout Period

See MVTIMEOUT

MSCP
See Mass Storage Control Protocol

MSCP$ADDUNIT • 5-27
MSCP$K_CM_EMULA • 4-19
MSCP$K_OP _READ • 3-28
MSCP$K_OP _WRITE• 3-28
MSCP$K_SLUN_RSVP•5-43
MSCP$K_ST _AVLBL • 4-56, 5-63
MSCP$K_ST _ICMD • 5-37
MSCP$K_ST _SUCC • 4-56
MSCP$K..:..ST _WRTPR • 5-65
MSCP$L_CMD_REF • 3-31
MSCP$TMR • 5-32
MSCP$V_EF _ERLOG • 4-16
MSCP$V_MD_NXUNT • 5-55
MSCP.EXE

See VMS based MSCP Disk Server
MSCP Class Field • 5-36
MSCP Commands

Immediate • 5-52
Nonsequential Buffered • 5-36
NonSequential Nonbuffered • 5-52
Sequential • 5-52

MSCP Disk Serving
Automatic• 5-2
Selective • 5-2

MSCP End Message • 1-23, 4-6
MSCP Error Status

Error Codes • 4-11
Major Status Code• 4-7
Sub-Code• 4-7
VMS error to MSCP error translation• 5-72

MSCP Extension • 2-1 O
MSCP Reset • 4-19
MSCP Routine BACK • 5-38
MSCP Routine READ • 5-37
MSCP Routine WRITE • 5-37
MSCPSERV BUGCHECK • 5-85
MSCP Server• 1-1

Dynamic Load Balancing • 5-31
Load Availability • 5-31
Load Capacity • 5-30
Static Load Balancing• 5-30, 5-31

MSCP Start• 4-19
MSCP Unique Identifiers • 5-13
MSCP Unit Identifier • 5-11
MSCP Unit Number• 5-11
MSCP _BUFFER • 5-23
MSCP _CREDIT• 5-25
MSCP _LOAD • 5-1
MSCP _SERVE_ALL • 5-25
MSGLENGTH_ARRAY•3-34
MSG_IN • 5-35, 5-37
MVTIMEOUT • 4-37, 4-39

Default Value • 4-39

lndex-5

N
Network Interconnect• 1-5
New 1/0 Requests • 4-40
NI

See Network Interconnect
NISCS LOAD PEAO • 2-25
NONSEQB. 5:..31, 5-42
NonSequential Buffered Commands• 5-36, 5-37,

5-42
NonSequential Nonbuffered Commands • 5-52

0
OBCNT•3-24
Odd Byte Count Error • 4-15
ONLINE • 5-53
Online Command • 5-20
Original Byte Count

SeeOBCNT

p

PACKACK_UNKNO_INOPR • 4-38
Packack_ Volume • 4-35
PADRIVER • 1-5
Page Frame Number • 3-38
Page Table Entry • 1-26
Passive Node • 1-7
Path Block• 1-7
Pathmove • 2-41
Path Move·4~1. 4-55
PB

See Path Block
PDT$B_ CRINGCNT • 3-46
PDT$B_CRINGINX • 3-43
PDT$B_RPOLLINX • 3-47
PDT$B_RRINGINX • 3-47
PDT$L_BUFARY • 3~4
PDT$L CMDRING • 3-43
PDT$L= CRCONTENT • 3-34
PDT$L_NO_BUFFS • 3~4
PDT$L_PU_BUFQFL • 3-37
PDT$L_PU_CDTARY•3-49
PDT$L_PU_FQBL • 3-47
PDT$L_PU_FQFL • 3-34
PDT$L_PU_PORTCHAR • 3-46
PDT$L_PU_SNDOFL • 3-46
PDT$L_RINGSIZE • 3-43
PDT$L_RRCONTENT • 3-34
PDT$L_RSPRING • 3-47
PDT$L_SNDCNTMSG • 3-28
PDT$L_UDAB_LEN • 3~4
PE$1NT • 3-21

6-lndex·

PEM
See Port Emulator

Pending 1/0 Queue • 4-40
Pending IRP Queue • 4-40
PERFORM_ VALIDATE• 4~5
Permanent IRP/CDRP • 2-15
PFN

See Page Frame Number
Physical Blocks • 3-5
Physical Interconnect • 1-11

Description• 1-17
Pl

See Physical Interconnect
PIDRIVER • 1-5
Ping Pong • 4~8
POLL_RSPRING • 3-47
Port• 1-4

Definition• 1-4
Port Driver • 1-5
Port Emulator• 1-5, 2-4
Port to Port Driver • 1-11

Description • 1-17
PPD

See Port to Port Driver
Preferred Path • 4~7. 4-51
Protocol• 1-11
Pseudo Map Registers • 3-42
PTE

See Page Table Entry
PU$1NT

See Pudriver Interrupt Service Routine
PUDRIVER • 1-6, 3-33
Pudriver Interrupt Service Routine• 3-47

Q

Q-bus •3-42

R
RAD Hustvedt • 5-19, B-57
RBN

See Replacement Block Number
RCONID

See Remote Connection Identifier
ROT

See Request Descriptor Table
ROTE

See Request Descriptor Table Entry
READ

See MSCP Routine READ
RECORD ONLINE • 4-57
RECORD=UNIT_STATUS • 4-57
RECYCL_MSG_BUF • 5-51
Register Dump • 3-11
Relative Volume Table • 3-8

Remote Connection Identifier • 1-9
Definition • 1-9

REPLACE • 5-53, 5-67
Replacement Block Number• 3-6
Replacement Blocks • 3-6
Request Descriptor Table• 1-24
Request Descriptor Table Entry • 1-24
REQUEST _DATA Macro • 5-40
Resource Wait Count • 4-40
Response Descriptor Table • 4-29
Response Identifier • 1-24

Service • 1-24
Response Queue • 2-4
Response Ring • 1-16, 3-21, 3-47
REVAL_HBS_MEMBER • 4-31, 4-46
Ringexp_array • 3-34
Root Volume • 3-4
Routine SCAN_ALL_DEVICES • 2-35
RSPID

See Response Identifier
RVT

See Relative Volume Table
RWAITCNT • 3-27, 4-23

See Resource Wait Count

s
SB

See System Block
SB$B_ENBMSK • 1-14
SBI

See Synchronous Backplane Interconnect
SCA

See Systems Communications Architecture
SCAN_RSPID_WAIT • 4-23
scs

See Systems Communication Services
SCS$C_USE_ALTERNATE_PORT • 4-19, 5-83
SCS$DIRECTORY

See SCS Directory Service
SCS$DIR_LOOKUP

See SCS Process Poller Service
SCS$FPC _MAP • 5-45
SCS$FPC_MAPIRP • 3-28
SCS$FPC_UNMAP • 3-32
SCS$GL_MSCP • 5-9
SCS$GQ_CONFIG • 1--8

See System Block Configuration Listhead
SCS$POLL_MBX • 1-15
SCS$POLL_PROC • 1-14
SCS$UNSTALLUCB•4-41
SCSCl$FORK • 3-30
SCSCl$PROCESS_RSP _PPD • 3-30
SCSC1$SNDMSG • 3-29
SCS Directory Entry• 1-13
SCS Directory Service • 1-13

SCS Flow Control• 1-28
SCSLOA

See SYS$SCS
SCS Process Name Block• 1-14
SCS Process Poller Service • 1-14
SCS Process Polling Block• 1-14, 2-52
SDI

See Standard Disk Interface
SDIR

See SCS Directory Entry
Secondary Offset Into A Buffer • 1-28
Segment• 3-9
Send Credits • 1-28
SEND_DATA Macro• 5-39
SEND_END • 5-51
SEND_MSCP _MSG• 4-10
Sequence Number Order• 4-41
Sequential Commands • 5-52
Server Local Unit Number• 2-43, 5-7, 5--8, 5-27,

5-43
Server Mount Verification Routine • 4-49
Set Controller Characteristics• 4-18, 5-61
SET UNIT CHARACTERISTICS • 5-53
SGN$GW_PCHANCNT • 3-2
SLUN

See Server Local Unit Number
SNDDAT • 5-39
Software Interrupt

IPL$_10POST • 5-46, 5-50
Software Invalid • 4-39
Software Write Protect • 5-48, 5-68
Special Credit • 1-29
Special Dudriver Extension • 2-10
Spindown • 5-68
SPL$C_SCS • 5-42
Split 1/0 • 3-25
SPNB

See SCS Process Name Block
SPPB

See SCS Process Polling Block
SRVBUF$L_SIZE • 5-26
SS$_CTRLERR • 4-59
SS$_VOLINV •4-42
STACONFIG

See Standalone Configure Process

See Stand Alone Configure Process
Standalone Configure Process • 5-1
Stand Alone Configure Process • 2-25
Standard Disk Extension • 2-1 O
Standard Disk Interface • 4-34
Start/Stack/ Ack dialogue • 2-4
Start 1/0 • 3-11
Startio Routine• 1-24
START_NOP •4-15
Start_Packack • 4-56

Retry Attempts • 4-56
START _PACKACK • 4-15

lndex-7

START_READBLK•3-28
START WRITEBLK • 3-28
STATEJNVALID • 5-42
Static Load Balancing • 5-30, 5-31
SVAPTE

See System Virtual Address Page Table Entry
$SYNCH • 3-18
Synchronous Backplane Interconnect • 3-38
SYS$ASSIGN • 3-1
SYS$CLUSTER

SYSAP• 1-12
SYS$GL BOOTDDB • 2-8
SYS$SCS • 1-12
SYS AP

See System Application
Sysgen

MSCP load command• 5-1
Sysgen Parameter

ACP _WINDOW• 3-8
CHANNELCNT • 3-2
MSCP _BUFFER• 5-23
MSCP _CREDIT• 5-25
~SCP _LOAD• 5-1, 5-30
MSCP _SERVE_ALL • 2-35, 5-2, 5-25
MVTIMEOUT • 4-39
NISCS_LOAD_PEAO • 2-25

System Application
Definition• 1-12

System Block• 1-7
System Block Configuration Listhead • 2-3
System Block Enable Mask• 1-14
Systems Communications Architecture

definition • 1-1
Systems Communication Services

Accept• 1-12
Connect• 1-12
definition • 1-1
Disconnect • 1-13
Listen• 1-13
Port Dependent Layer • 1-12
PortlndependentLayer•1-12
Reject• 1-12

System Virtual Address Page Table Entry• 1-26

T
Tape Class Driver

See TUDRIVER
Tape Mass Storage Control Protocol • 1-3
Timer Queue Entry • 4-1
TMSCP

See Tape Mass Storage Control Protocol.
TOE

See Timer Queue Entry
Transfer Buffers• 5-21
Transfer Segments • 3-9

8-lndex

TRANSFER_MSCP _ERROR• 4-10
TUDRIVER • 1-3

u
UCB

See Unit Control Block
UCB$L_CDDB

See UCB pointer to CDDB
UCB$L_IOOFL • 4-23, 4-40
UCB$L_PREF _CDDB • 4-37, 4-51
UCB$V _MSCP _MNTVERIP • 4-40
UCB$W_ERRCNT • 4-16
UCB Extensions • 2-9

Dual Port • 2-1 O
Error Log • 2-9
MSCP • 2-10
Special Dudriver • 2-1 O
Standard Disk • 2-1 O

UCB pointer to CDDB • 2-12
UDA$K_MAX_RINGSIZE • 3-34
UDAB$L_DESCRIP • 3-44
UDAB$T_TEXT • 3-34
U DAB buffer • 3-34
Unibus • 3-37
Unique Device Number• 5-16
Unit Available Attention Message • 2-50
Unit Control Block

Creation • 2-8
Definition • 2-2
Error Count• 4-13

Unit Identifier• 5-43
Unit Initialization • 3-11
Unit Polling • 2-43
Unit available attn • 2-34
UN MAP -

See SCS$FPC UNMAP
UQB$B_ONLINE • S-20
UOB$L BLOCKED BL• 5-75
UQB$L-BLOCKED-FL• 5-75
UQB$W OLD UNIT. 5-13
UQB$W=SLUN • 5-13

v
Validate_ Volume• 4-35
Valid 1/0 Function Mask • 3-13
VBN

See Virtual Block Number
vc

See Virtual Circuit
Version Specific Constants

AST _REC timer • 2-35
CORP Restart Retry Count• 4-59
CONNECT_DELTA • 2-41, 4-20
Controller Identifier • 5-13

Version Specific Constants (Cont.)

Credit Stall Timeout• 4-4, 4-5
DAP _COUNT• 2-33
Default Buffers • 3-34
Dynamic Load Balancing• 5-31
EMB$C_ACPTH • 2-51
Example• 1-7
Host Bitmap • 5-28
Host Timeout • 5-28
HOST TIMEOUT• 2-42
Load Monitor Interval • 5-31, 5-32
Local Controller Default Buffer Count • 3-35
Local Controller Default Ringsize • 3-43, 3-4 7
Mount Verification Timeout• 4-39, 4-50
MSCP _CREDITS• 5-25
Ping Pong Retry Limit • 4-38
Stalled Request Buffers • 3-34
Start Packack Retry Limit • 4-56
Tape Serving • 1-3
UDA$K_MAX_RINGSIZE • 3-34
Unit Identifier• 5-19
WCB Limitations • 3-6

Virtual Block Number• 3-6
Virtual Blocks • 3-5
Virtual Circuit• 1-4

Definition • 1-7
VMS based MSCP Disk Server • 2-6, 5-1
VMS based MSCP server

Message Input Routine • 5-35
START•5-26

VMS based MSCP server Routines
ACCESS • 5-65
ADD •5-27
COMP _CTRL_DATA • 5-65
ERASE• 5-65
FLUSH •5-67
LISTN •5-28
REPLACE • 5-65, 5-67

VMS Connection Manager• 1-3
SYSAP • 1-12

VMS Crb Timeout Auxilary Structure

See AUXSTRUC
VMS Crb Timeout Routine

See TOUTROUT
VMS Device Timeout Check

See EXE$TIMEOUT
VMS Lock Manager• 1-3

SYSAP • 1-12
Volume Set• 3-7

w
$WAITFR •3-18
WCB

See Window Control Block
WCB$L_STVBN • 3-7

WCB$W_NMAP • 3-8
Window Control Block • 3-3, 3-5

Block Count Field • 3-8
limitations • 3-6
Mapping• 3-7

Window Tum • 3-8, 3-26
WAITE •5-39

See MSCP Routine WRITE
Write Attention AST • 2-52

x
XFER_REPLACE • 4-29

lndex-9

